CONTENTS

1. Hyperplane arrangements 3
2. Polyhedral computations 61
3. Triangulations 475
4. Miscellaneous 511
5. Helper functions 557
6. Indices and Tables 575
Python Module Index 577
Index 579
Sage includes classes for hyperplane arrangements, polyhedra, toric varieties (including polyhedral cones and fans), triangulations and some other helper classes and functions.
1.1 Hyperplane Arrangements

Before talking about hyperplane arrangements, let us start with individual hyperplanes. This package uses certain linear expressions to represent hyperplanes, that is, a linear expression $3x + 3y - 5z - 7$ stands for the hyperplane with the equation $3x + 3y - 5z = 7$. To create it in Sage, you first have to create a `HyperplaneArrangements` object to define the variables x, y, z:

```sage
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
```

```sage
sage: h = 3*x + 2*y - 5*z - 7; h
Hyperplane 3*x + 2*y - 5*z - 7
```

```sage
sage: h.normal()
(3, 2, -5)
```

```sage
sage: h.constant_term()
-7
```

The individual hyperplanes behave like the linear expression with regard to addition and scalar multiplication, which is why you can do linear combinations of the coordinates:

```sage
sage: -2*h
Hyperplane -6*x - 4*y + 10*z + 14
```

```sage
sage: x, y, z
(Hyperplane x + 0*y + 0*z + 0,
 Hyperplane 0*x + y + 0*z + 0,
 Hyperplane 0*x + 0*y + z + 0)
```

See `sage.geometry.hyperplane_arrangement.hyperplane` for more functionality of the individual hyperplanes.

1.1.1 Arrangements

There are several ways to create hyperplane arrangements:

Notation (i): by passing individual hyperplanes to the `HyperplaneArrangements` object:

```sage
sage: H.<x,y> = HyperplaneArrangements(QQ)
```

```sage
sage: box = x | y | x-1 | y-1; box
Arrangement <y - 1 | y | x - 1 | x>
```

```sage
sage: box == H(x, y, x-1, y-1)  # alternative syntax
True
```

Notation (ii): by passing anything that defines a hyperplane, for example a coefficient vector and constant term:
Combinatorial and Discrete Geometry, Release 9.6

```
sage: H = HyperplaneArrangements(QQ, ('x', 'y'))
sage: triangle = H([(1, 0, 0), [(0, 1, 0), [(1,1), -1]]); triangle
Arrangement <y | x | x + y - 1>
sage: H.inject_variables()
Defining x, y
sage: triangle == x | y | x+y-1
True
```

The default base field is \(\mathbb{Q} \), the rational numbers. Finite fields are also supported:

```
sage: H.<x,y,z> = HyperplaneArrangements(GF(5))
sage: a = H([(1,2,3), 4], [(5,6,7), 8]); a
Arrangement <y + 2*z + 3 | x + 2*y + 3*z + 4>
```

Number fields are also possible:

```
sage: x = var('x')
sage: NF.<a> = NumberField(x**4 - 5*x**2 + 5,embedding=1.90)
sage: H.<y,z> = HyperplaneArrangements(NF)
sage: A = H(....:
[(-a**3 + 3*a, -a**2 + 4), 1], [(a**3 - 4*a, -1), 1],
....:
[(a**3 - 3*a, -a**2 + 4), 1])
sage: A
Arrangement of 5 hyperplanes of dimension 2 and rank 2
sage: A.base_ring()
Number Field in a with defining polynomial x^4 - 5*x^2 + 5 with a = 1.902113032590308?
```

Notation (iii): a list or tuple of hyperplanes:

```
sage: H.<x,y,z> = HyperplaneArrangements(GF(5))
sage: k = [x+i for i in range(4)]; k
[Hyperplane x + 0*y + 0*z + 0, Hyperplane x + 0*y + 0*z + 1, Hyperplane x + 0*y + 0*z + 2, Hyperplane x + 0*y + 0*z + 3]
sage: H(k)
Arrangement <x | x + 1 | x + 2 | x + 3>
```

Notation (iv): using the library of arrangements:

```
sage: hyperplane_arrangements.braid(4)
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: hyperplane_arrangements.semiorder(3)
Arrangement of 6 hyperplanes of dimension 3 and rank 2
sage: hyperplane_arrangements.graphical(graphs.PetersenGraph())
Arrangement of 15 hyperplanes of dimension 10 and rank 9
sage: hyperplane_arrangements.Ish(5)
Arrangement of 20 hyperplanes of dimension 5 and rank 4
```

Notation (v): from the bounding hyperplanes of a polyhedron:

```
sage: a = polytopes.cube().hyperplane_arrangement(); a
Arrangement of 6 hyperplanes of dimension 3 and rank 3
sage: a.n_regions()
27
```
New arrangements from old:

```python
sage: a = hyperplane_arrangements.braid(3)
sage: b = a.add_hyperplane([4, 1, 2, 3])
sage: b
Arrangement <t1 - t2 | t0 - t1 | t0 - t2 | t0 + 2*t1 + 3*t2 + 4>
sage: c = b.deletion([4, 1, 2, 3])
sage: a == c
True

sage: a = hyperplane_arrangements.braid(3)
sage: b = a.union(hyperplane_arrangements.semiorder(3))
sage: b == a | hyperplane_arrangements.semiorder(3)  # alternate syntax
True

sage: b == hyperplane_arrangements.Catalan(3)
True

sage: a
Arrangement <t1 - t2 | t0 - t1 | t0 - t2>
sage: a = hyperplane_arrangements.coordinate(4)
sage: h = a.hyperplanes()[0]
sage: b = a.restriction(h)
sage: b == hyperplane_arrangements.coordinate(3)
True
```

1.1.2 Properties of Arrangements

A hyperplane arrangement is *essential* if the normals to its hyperplanes span the ambient space. Otherwise, it is *inessential*. The essentialization is formed by intersecting the hyperplanes by this normal space (actually, it is a bit more complicated over finite fields):

```python
sage: a = hyperplane_arrangements.braid(4); a
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: a.is_essential()
False
sage: a.rank() < a.dimension()  # double-check
True
sage: a.essentialization()
Arrangement of 6 hyperplanes of dimension 3 and rank 3
```

The connected components of the complement of the hyperplanes of an arrangement in \mathbb{R}^n are called the *regions* of the arrangement:

```python
sage: a = hyperplane_arrangements.semiorder(3)
sage: b = a.essentialization(); b
Arrangement of 6 hyperplanes of dimension 2 and rank 2
sage: b.n_regions()
19
sage: b.regions()
(A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 6 vertices, A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices, A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices, (continues on next page)
```
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices.

\textbf{sage: b.bounded_regions()}

(A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 6 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices)

\textbf{sage: b.n_bounded_regions()}

7

\textbf{sage: a.unbounded_regions()}

(A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices, 1 ray, 1 line)

The distance between regions is defined as the number of hyperplanes separating them. For example:
sage: r1 = b.regions()[0]
sage: r2 = b.regions()[1]
sage: b.distance_between_regions(r1, r2)
1
sage: [hyp for hyp in b if b.is_separating_hyperplane(r1, r2, hyp)]
[Hyperplane 2*t1 + t2 + 1]
sage: b.distance Enumerator(r1) # generating function for distances from r1
6*x^3 + 6*x^2 + 6*x + 1

Note: bounded region really mean relatively bounded here. A region is relatively bounded if its intersection with space spanned by the normals of the hyperplanes in the arrangement is bounded.

The intersection poset of a hyperplane arrangement is the collection of all nonempty intersections of hyperplanes in the arrangement, ordered by reverse inclusion. It includes the ambient space of the arrangement (as the intersection over the empty set):

sage: a = hyperplane_arrangements.braid(3)
sage: p = a.intersection_poset()
sage: p.is_ranked()
True
sage: p.order_polytope()
A 5-dimensional polyhedron in ZZ^5 defined as the convex hull of 10 vertices

The characteristic polynomial is a basic invariant of a hyperplane arrangement. It is defined as

\[\chi(x) := \sum_{w \in P} \mu(w)x^{\dim(w)} \]

where the sum is \(P \) is the intersection poset() of the arrangement and \(\mu \) is the Möbius function of \(P \):

sage: a = hyperplane_arrangements.semiorder(5)
sage: a.characteristic_polynomial() # long time (about a second on Core i7)
x^5 - 20*x^4 + 180*x^3 - 790*x^2 + 1380*x
sage: a.poincare_polynomial() # long time
1380*x^4 + 790*x^3 + 180*x^2 + 20*x + 1
sage: a.n_regions() # long time
2371
sage: charpoly = a.characteristic_polynomial() # long time
sage: charpoly(-1) # long time
-2371
sage: a.n_bounded_regions() # long time
751
sage: charpoly(1) # long time
751

For finer invariants derived from the intersection poset, see whitney_number() and doubly_indexed_whitney_number().

Miscellaneous methods (see documentation for an explanation):

sage: a = hyperplane_arrangements.semiorder(3)
sage: a.has_good_reduction(5)
True

(continues on next page)
There are extensive methods for visualizing hyperplane arrangements in low dimensions. See `plot()` for details.

AUTHORS:

- David Perkinson (2013-06): initial version
- Qiaoyu Yang (2013-07)
- Kuai Yu (2013-07)

This module implements hyperplane arrangements defined over the rationals or over finite fields. The original motivation was to make a companion to Richard Stanley’s notes [Sta2007] on hyperplane arrangements.
• other – a hyperplane arrangement or something that can be converted into a hyperplane arrangement

OUTPUT:
A new hyperplane arrangement.

EXAMPLES:

```
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([1,2,3], [0,1,1], [0,1,-1], [1,-1,0], [1,1,0])
sage: B = H([1,1,1], [1,-1,1], [1,0,-1])
sage: A.union(B)
Arrangement of 8 hyperplanes of dimension 2 and rank 2
```
A single hyperplane is coerced into a hyperplane arrangement if necessary:

```
sage: A.union(x+y-1)
Arrangement of 6 hyperplanes of dimension 2 and rank 2
```

```
sage: A.add_hyperplane(x+y-1) # alias
Arrangement of 6 hyperplanes of dimension 2 and rank 2
```

```
sage: P.<x,y> = HyperplaneArrangements(RR)
sage: C = P(2*x + 4*y + 5)
sage: C.union(A)
Arrangement of 6 hyperplanes of dimension 2 and rank 2
```

```
sage: H = HyperplaneArrangements(QQ)
sage: A = H()
sage: A.backend()
```

Otherwise, one may specify a polyhedral backend:

```
sage: A = H(backend='ppl')
sage: A.backend()
'ppl'
sage: A = H(backend='normaliz')
sage: A.backend()
'normaliz'
```

```
backend()
```
Return the backend used for polyhedral objects

OUTPUT:
A string giving the backend or `None` if none is specified.

EXAMPLES:

By default, no backend is specified:

```
sage: H = HyperplaneArrangements(QQ)
sage: A = H()
sage: A.backend()
```

Otherwise, one may specify a polyhedral backend:

```
sage: A = H(backend='ppl')
sage: A.backend()
'ppl'
sage: A = H(backend='normaliz')
sage: A.backend()
'normaliz'
```

```
bounded_regions()
```
Return the relatively bounded regions of the arrangement.

A region is relatively bounded if its intersection with the space spanned by the normals to the hyperplanes is bounded. This is the same as being bounded in the case that the hyperplane arrangement is essential. It is assumed that the arrangement is defined over the rationals.

1.1. Hyperplane Arrangements
OUTPUT:
Tuple of polyhedra. The relatively bounded regions of the arrangement.

See also:
unbounded_regions()

EXAMPLES:

```sage
A = hyperplane_arrangements.semiorder(3)
sage: A.bounded_regions()
(A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 6 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices and 1 line)
sage: A.bounded_regions()[0].is_compact() # the regions are only
relatively bounded
False
```

center()
Return the center of the hyperplane arrangement.

The polyhedron defined to be the set of all points in the ambient space of the arrangement that lie on all of the hyperplanes.

OUTPUT:
A polyhedron.

EXAMPLES:
The empty hyperplane arrangement has the entire ambient space as its center:

```sage
H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H()
sage: A.center()
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 lines
```
The Shi arrangement in dimension 3 has an empty center:

```sage
A = hyperplane_arrangements.Shi(3)
sage: A.center()
The empty polyhedron in QQ^3
```
The Braid arrangement in dimension 3 has a center that is neither empty nor full-dimensional:
sage: A = hyperplane_arrangements.braid(3)
sage: A.center()
A 1-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 1 line

change_ring(base_ring)
Return hyperplane arrangement over the new base ring.

INPUT:
• base_ring – the new base ring; must be a field for hyperplane arrangements

OUTPUT:
The hyperplane arrangement obtained by changing the base field, as a new hyperplane arrangement.

Warning: While there is often a one-to-one correspondence between the hyperplanes of self and those of self.change_ring(base_ring), there is no guarantee that the order in which they appear in self.hyperplanes() will match the order in which their counterparts in self.cone() will appear in self.change_ring(base_ring).hyperplanes()!

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([(1,1), 0], [(2,3), -1])
sage: A.change_ring(FiniteField(2))
Arrangement <y + 1 | x + y>

characteristic_polynomial()
Return the characteristic polynomial of the hyperplane arrangement.

OUTPUT:
The characteristic polynomial in Q[x].

EXAMPLES:

sage: a = hyperplane_arrangements.coordinate(2)
sage: a.characteristic_polynomial()
x^2 - 2*x + 1

closed_faces(labelled=True)
Return the closed faces of the hyperplane arrangement self (provided that self is defined over a totally ordered field).

Let \(\mathcal{A} \) be a hyperplane arrangement in the vector space \(K^n \), whose hyperplanes are the zero sets of the affine-linear functions \(u_1, u_2, \ldots, u_N \). (We consider these functions \(u_1, u_2, \ldots, u_N \), and not just the hyperplanes, as given. We also assume the field \(K \) to be totally ordered.) For any point \(x \in K^n \), we define the sign vector of \(x \) to be the vector \((v_1, v_2, \ldots, v_N) \in \{-1, 0, 1\}^N \) such that (for each \(i \)) the number \(v_i \) is the sign of \(u_i(x) \). For any \(v \in \{-1, 0, 1\}^N \), we let \(F_v \) be the set of all \(x \in K^n \) which have sign vector \(v \). The nonempty ones among all these subsets \(F_v \) are called the open faces of \(\mathcal{A} \). They form a partition of the set \(K^n \).

Furthermore, for any \(v = (v_1, v_2, \ldots, v_N) \in \{-1, 0, 1\}^N \), we let \(G_v \) be the set of all \(x \in K^n \) such that, for every \(i \), the sign of \(u_i(x) \) is either 0 or \(v_i \). Then, \(G_v \) is a polyhedron. The nonempty ones among all these polyhedra \(G_v \) are called the closed faces of \(\mathcal{A} \). While several sign vectors \(v \) can lead to one and the same closed face \(G_v \), we can assign to every closed face a canonical choice of a sign vector: Namely, if \(G \)
is a closed face of \(\mathcal{A} \), then the **sign vector** of \(G \) is defined to be the vector \((v_1, v_2, \ldots, v_N) \in \{-1, 0, 1\}^N\) where \(x \) is any point in the relative interior of \(G \) and where, for each \(i \), the number \(v_i \) is the sign of \(u_i(x) \). (This does not depend on the choice of \(x \).)

There is a one-to-one correspondence between the closed faces and the open faces of \(\mathcal{A} \). It sends a closed face \(G \) to the open face \(F_v \), where \(v \) is the sign vector of \(G \); this \(F_v \) is also the relative interior of \(G_v \). The inverse map sends any open face \(O \) to the closure of \(O \).

INPUT:

- **labelled** – boolean (default: \(\text{True} \)); if \(\text{True} \), then this method returns not the faces itself but rather pairs \((v, F)\) where \(F \) is a closed face and \(v \) is its sign vector (here, the order and the orientation of the \(u_1, u_2, \ldots, u_N \) is as given by \(\text{self.hyperplanes()} \)).

OUTPUT:

A tuple containing the closed faces as polyhedra, or (if \(\text{labelled} \) is set to \(\text{True} \)) the pairs of sign vectors and corresponding closed faces.

Todo: Should the output rather be a dictionary where the keys are the sign vectors and the values are the faces?

EXAMPLES:

```sage
sage: a = hyperplane_arrangements.braid(2)
sage: a.hyperplanes()
(Hyperplane t0 - t1 + 0,)
sage: a.closed_faces()
(((0,),
  A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
  1 line),
 ((1,),
  A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex, 1
  ray, 1 line),
 ((-1,),
  A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex, 1
  ray, 1 line))
sage: a.closed_faces(labelled=False)
(A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
  1 line,
  A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex, 1
  ray, 1 line,
  A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex, 1
  ray, 1 line)
sage: [(v, F.representative_point()) for v, F in a.closed_faces()]
[[((0,),
  A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
  1 line,
  (0, 0)),
 ((1,),
  A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex, 1
  ray, 1 line,
  (0, -1)),
 ((-1,),
  A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex, 1
  ray, 1 line),
 (continues on next page)
```
(-1, 0))]

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: a = H(x, y+1)
sage: a.hyperplanes()
(Hyperplane 0*x + y + 1, Hyperplane x + 0*y + 0)
sage: [(v, F, F.representative_point()) for v, F in a.closed_faces()]

[((0, 0),
 A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex,
 (0, -1)),
 ((0, 1),
 A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
 → 1 ray,
 (1, -1)),
 ((0, -1),
 A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
 → 1 ray,
 (-1, -1)),
 ((1, 0),
 A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
 → 1 ray,
 (0, 0)),
 ((1, 1),
 A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
 → 2 rays,
 (1, 0)),
 ((1, -1),
 A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
 → 2 rays,
 (-1, 0)),
 ((-1, 0),
 A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
 → 1 ray,
 (0, -2)),
 ((-1, 1),
 A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
 → 2 rays,
 (1, -2)),
 ((-1, -1),
 A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and
 → 2 rays,
 (-1, -2))]

sage: a = hyperplane_arrangements.braid(3)
sage: a.hyperplanes()
(Hyperplane 0*t0 + t1 - t2 + 0,
 Hyperplane t0 - t1 + 0*t2 + 0,
 Hyperplane t0 + 0*t1 - t2 + 0)
sage: [(v, F, F.representative_point()) for v, F in a.closed_faces()]

[((0, 0, 0),
 A 1-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and
 → 1 line,
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((0, -1, -1)),
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((-1, 0, 0)),
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((1, 0, 1)),
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((1, 1, 0)),
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((1, 1, 1)),
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
((0, -1, -2)),
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((1, -1, 0)),
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((1, -1, 1)),
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
((1, 2, 0)),
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
((1, -1, -1)),
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((-2, 0, -1)),
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((1, 0, 1)),
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((-1, 1, 0)),
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line,
((-1, 1, 1)),
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
((0, -2, -1)),
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
((-1, -1, -1)),
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line,
((-1, -1, 1)))

Let us check that the number of closed faces with a given dimension computed using self.
closed_faces() equals the one computed using face_vector():
sage: def test_number(a):

 Qx = PolynomialRing(QQ, 'x'); x = Qx.gen()

 RHS = Qx.sum(vi * x ** i for i, vi in enumerate(a.face_vector()))

 LHS = Qx.sum(x ** F[1].dim() for F in a.closed_faces())

 return LHS == RHS
sage: a = hyperplane_arrangements.Catalan(2)
sage: test_number(a)
True
sage: a = hyperplane_arrangements.Shi(3)
sage: test_number(a) # long time
True

cone(variable='t')

Return the cone over the hyperplane arrangement.

INPUT:

• variable – string; the name of the additional variable

OUTPUT:

A new hyperplane arrangement. Its equations consist of \([0, -d, a_1, \ldots, a_n]\) for each \([d, a_1, \ldots, a_n]\) in the original arrangement and the equation \([0, 1, 0, \ldots, 0]\).

Warning: While there is an almost-one-to-one correspondence between the hyperplanes of self and those of self.cone(), there is no guarantee that the order in which they appear in self.hyperplanes() will match the order in which their counterparts in self.cone().hyperplanes()!

EXAMPLES:

sage: a.<x,y,z> = hyperplane_arrangements.semiorder(3)
sage: b = a.cone()
sage: a.characteristic_polynomial().factor()
x * (x^2 - 6*x + 12)
sage: b.characteristic_polynomial().factor()
(x - 1) * x * (x^2 - 6*x + 12)
sage: a.hyperplanes()
(Hyperplane 0*x + y - z - 1, Hyperplane 0*x + y - z + 1, Hyperplane x - y + 0*z - 1, Hyperplane x - y + 0*z + 1, Hyperplane x + 0*y - z - 1, Hyperplane x + 0*y - z + 1)
sage: b.hyperplanes()
(Hyperplane -t + 0*x + y - z + 0, Hyperplane -t + x - y + 0*z + 0, Hyperplane -t + x + 0*y - z + 0, Hyperplane t + 0*x + 0*y + 0*z + 0, Hyperplane t + 0*x + y - z + 0, Hyperplane t + x - y + 0*z + 0, Hyperplane t + x + 0*y - z + 0)
defining_polynomial()

Return the defining polynomial of A.

Let $A = (H_i)_i$ be a hyperplane arrangement in a vector space V corresponding to the null spaces of $\alpha_{H_i} \in V^*$. Then the defining polynomial of A is given by

$$Q(A) = \prod_i \alpha_{H_i} \in S(V^*).$$

EXAMPLES:

```
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H([2*x + y - z, -x - 2*y + z])
sage: p = A.defining_polynomial(); p
-2*x^2 - 5*x*y - 2*y^2 + 3*x*z + 3*y*z - z^2
sage: p.factor()
(-1) * (x + 2*y - z) * (2*x + y - z)
```

deletion(hyperplanes)

Return the hyperplane arrangement obtained by removing h.

INPUT:

- h – a hyperplane or hyperplane arrangement

OUTPUT:

A new hyperplane arrangement with the given hyperplane(s) h removed.

See also:

restriction()

EXAMPLES:

```
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([0,1,0], [1,0,1], [-1,0,1], [0,1,-1], [0,1,1]); A
Arrangement of 5 hyperplanes of dimension 2 and rank 2
sage: A.deletion(x)
Arrangement <y - 1 | y + 1 | x - y | x + y>
sage: h = H([0,1,0], [0,1,1])
sage: A.deletion(h)
Arrangement <y - 1 | y + 1 | x - y>
```

derivation_module_basis(algorithm='singular')

Return a basis for the derivation module of self if one exists, otherwise return None.

See also:

derivation_module_free_chain(), is_free()

INPUT:

- algorithm – (default: "singular") can be one of the following:
 - "singular" – use Singular’s minimal free resolution
 - "BC" – use the algorithm given by Barakat and Cuntz in [BC2012] (much slower than using Singular)

OUTPUT:

A basis for the derivation module (over S, the symmetric space) as vectors of a free module over S.

Chapter 1. Hyperplane arrangements
ALGORITHM:

Singular

This gets the reduced syzygy module of the Jacobian ideal of the defining polynomial f of `self`. It then checks Saito's criterion that the determinant of the basis matrix is a scalar multiple of f. If the basis matrix is not square or it fails Saito's criterion, then we check if the arrangement is free. If it is free, then we fall back to the Barakat-Cuntz algorithm.

BC

Return the product of the derivation module free chain matrices. See Section 6 of [BC2012].

EXAMPLES:

```python
sage: W = WeylGroup(['A',2], prefix='s')
sage: A = W.long_element().inversion_arrangement()
sage: A.derivation_module_basis()
[(a1, a2), (0, a1*a2 + a2^2)]
```

description_module_free_chain()

Return a free chain for the derivation module if one exists, otherwise return `None`.

See also:

`is_free()`

EXAMPLES:

```python
sage: W = WeylGroup(['A',3], prefix='s')
sage: A = W.long_element().inversion_arrangement()
sage: for M in A.derivation_module_free_chain(): print("%s\n"%M)
[ 1 0 0]
[ 0 1 0]
[ 0 0 a3]

[ 1 0 0]
[ 0 0 1]
[ 0 a2 0]

[ 1 0 0]
[ 0 -1 -1]
[ 0 a2 -a3]

[ 0 1 0]
[ 0 0 1]
[a1 0 0]

[ 1 0 -1]
[a3 -1 0]
[a1 0 a2]

[ 1 0 0]
[a3 -1 -1]
[ 0 a1 -a2 - a3]
```

1.1. Hyperplane Arrangements
dimension()
Return the ambient space dimension of the arrangement.

OUTPUT:
An integer.

EXAMPLES:

```
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: (x | x-1 | x+1).dimension()
2
sage: H(x).dimension()
2
```

distance_between_regions(region1, region2)
Return the number of hyperplanes separating the two regions.

INPUT:
• region1, region2 – regions of the arrangement or representative points of regions

OUTPUT:
An integer. The number of hyperplanes separating the two regions.

EXAMPLES:

```
sage: c = hyperplane_arrangements.coordinate(2)
sage: r = c.region_containing_point([-1, -1])
sage: s = c.region_containing_point([1, 1])
sage: c.distance_between_regions(r, s)
2
sage: c.distance_between_regions(s, s)
0
```

distance_enumerator(base_region)
Return the generating function for the number of hyperplanes at given distance.

INPUT:
• base_region – region of arrangement or point in region

OUTPUT:
A polynomial $f(x)$ for which the coefficient of x^i is the number of hyperplanes of distance i from base_region, i.e., the number of hyperplanes separated by i hyperplanes from base_region.

EXAMPLES:

```
sage: c = hyperplane_arrangements.coordinate(3)
sage: c.distance_enumerator(c.region_containing_point([1,1,1]))
x^3 + 3*x^2 + 3*x + 1
```

doubly_indexed_whitney_number(i, j, kind=1)
Return the i, j-th doubly-indexed Whitney number.

If kind=1, this number is obtained by adding the Möbius function values $\mu(x, y)$ over all x, y in the intersection poset with rank$(x) = i$ and rank$(y) = j$.

If kind = 2, this number is the number of elements x, y in the intersection poset such that $x \leq y$ with ranks i and j, respectively.
INPUT:

- i, j – integers
- kind – (default: 1) 1 or 2

OUTPUT:

Integer. The (i, j)-th entry of the kind Whitney number.

See also:

- whitney_number()
- whitney_data()

EXAMPLES:

```sage
A = hyperplane_arrangements.Shi(3)
sage: A.doubly_indexed_whitney_number(0, 2)
9
sage: A.whitney_number(2)
9
sage: A.doubly_indexed_whitney_number(1, 2)
-15
```

REFERENCES:

- [GZ1983]

essentialization()

Return the essentialization of the hyperplane arrangement.

The essentialization of a hyperplane arrangement whose base field has characteristic 0 is obtained by intersecting the hyperplanes by the space spanned by their normal vectors.

OUTPUT:

The essentialization as a new hyperplane arrangement.

EXAMPLES:

```sage
a = hyperplane_arrangements.braid(3)
sage: a.is_essential()
False
sage: a.essentialization()
Arrangement <t1 - t2 | t1 + 2*t2 | 2*t1 + t2>
H.<x,y> = HyperplaneArrangements(QQ)
sage: B = H([(1,0),1], [(1,0),-1])
sage: B.is_essential()
False
sage: B.essentialization()
Arrangement <-x + 1 | x + 1>
H.<x,y> = HyperplaneArrangements(GF(2))
sage: C = H([(1,1),1], [(1,1),0])
sage: C.essentialization()
Arrangement <y | y + 1>
```

(continues on next page)
Combinatorial and Discrete Geometry, Release 9.6

sage: h = hyperplane_arrangements.semiorder(4)
sage: h.essentialization()
Arrangement of 12 hyperplanes of dimension 3 and rank 3

face_product(F, G, normalize=True)

Return the product FG in the face semigroup of self, where F and G are two closed faces of self.

The face semigroup of a hyperplane arrangement \mathcal{A} is defined as follows: As a set, it is the set of all open faces of self (see closed_faces()). Its product is defined by the following rule: If F and G are two open faces of \mathcal{A}, then FG is an open face of \mathcal{A}, and for every hyperplane $H \in \mathcal{A}$, the open face FG lies on the same side of H as F unless $F \subseteq H$, in which case FG lies on the same side of H as G. Alternatively, FG can be defined as follows: If f and g are two points in F and G, respectively, then FG is the face that contains the point $(f + \varepsilon g)/(1 + \varepsilon)$ for any sufficiently small positive ε.

In our implementation, the face semigroup consists of closed faces rather than open faces (thanks to the 1-to-1 correspondence between open faces and closed faces, this is not really a different semigroup); these closed faces are given as polyhedra.

The face semigroup of a hyperplane arrangement is always a left-regular band (i.e., a semigroup satisfying the identities $x^2 = x$ and $xyx = xy$). When the arrangement is central, then this semigroup is a monoid. See [Br2000] (Appendix A in particular) for further properties.

INPUT:

- F, G – two faces of self (as polyhedra)
- normalize – Boolean (default: True); if True, then this method returns the precise instance of FG in the list returned by self.closed_faces(), rather than creating a new instance

EXAMPLES:

sage: a = hyperplane_arrangements.braid(3)
sage: a.hyperplanes()
(Hyperplane $0^*t0 + t1 - t2 + 0$,
 Hyperplane $t0 + t1 + 0^*t2 + 0$,
 Hyperplane $t0 + 0^*t1 - t2 + 0$)
sage: faces = {F0: F1 for F0, F1 in a.closed_faces()}
sage: xGyEz = faces[(0, 1, 1)] # closed face $x \geq y = z$
sage: xGyEz.representative_point()
(0, -1, -1)
sage: xGyEz = faces[(0, 1, 1)] # closed face $x \geq y = z$
sage: xGyEz.representative_point()
(0, -1, -1)
sage: yGxGz = faces[(1, -1, 1)] # closed face $y \geq x \geq z$
sage: yGxGz.representative_point()
(0, -1, -1)
sage: a.face_product(xGyEz, yGxGz) == xGyGz
True
sage: a.face_product(yGxGz, xGyEz) == yGxGz
True
sage: xEyGz = faces[(-1, 1, 0)] # closed face $x = z \geq y$
sage: xEyGz = faces[(-1, 1, 1)] # closed face $x \geq z \geq y$
sage: a.face_product(xEyGz, yGxGz) == xGzGy
True
sage: a.face_product(yGxGz, xGyEz) == yGxGz
True

Chapter 1. Hyperplane arrangements
face_semigroup_algebra(*field=None, names='e')

Return the face semigroup algebra of self.

This is the semigroup algebra of the face semigroup of self (see face_product() for the definition of the semigroup).

Due to limitations of the current Sage codebase (e.g., semigroup algebras do not profit from the functionality of the FiniteDimensionalAlgebra class), this is implemented not as a semigroup algebra, but as a FiniteDimensionalAlgebra. The closed faces of self (in the order in which the closed_faces() method outputs them) are identified with the vectors (0, 0, . . ., 0, 1, 0, 0, . . ., 0) (with the 1 moving from left to right).

INPUT:

• field – a field (default: \(\mathbb{Q}\)), to be used as the base ring for the algebra (can also be a commutative ring, but then certain representation-theoretical methods might misbehave)

• names – (default: 'e') string; names for the basis elements of the algebra

Todo: Also implement it as an actual semigroup algebra?

EXAMPLES:

```
sage: a = hyperplane_arrangements.braid(3)
sage: [(i, F[0]) for i, F in enumerate(a.closed_faces())]
[(0, (0, 0, 0)),
 (1, (0, 1, 1)),
 (2, (0, -1, -1)),
 (3, (1, 0, 1)),
 (4, (1, 1, 1)),
 (5, (1, -1, 0)),
 (6, (1, -1, 1)),
 (7, (1, -1, -1)),
 (8, (-1, 0, -1)),
 (9, (-1, 1, 0)),
 (10, (-1, 1, 1)),
 (11, (-1, 1, -1)),
 (12, (-1, -1, -1))]
sage: U = a.face_semigroup_algebra(); U
Finite-dimensional algebra of degree 13 over Rational Field
sage: e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12 = U.basis()
sage: e0 * e1
e0
sage: e0 * e5
e5
sage: e5 * e0
e5
sage: e3 * e2
e6
sage: e7 * e12
e7
sage: e3 * e12
e6
sage: e4 * e8
e4
(continues on next page)
Combinatorial and Discrete Geometry, Release 9.6

(continued from previous page)

\begin{verbatim}
sage: e8 * e4
e11
sage: e8 * e1
e11
sage: e5 * e12
e7
sage: (e3 + 2*e4) * (e1 - e7)
e4 - e6
sage: U3 = A.face_semigroup_algebra(field=GF(3)); U3
Finite-dimensional algebra of degree 13 over Finite Field of size 3
\end{verbatim}

\textbf{face\_vector()}

Return the face vector.

\textbf{OUTPUT:}

A vector of integers.

The $d$-th entry is the number of faces of dimension $d$. A face is the intersection of a region with a hyperplane of the arrangement.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: A = hyperplane_arrangements.Shi(3)
sage: A.face_vector()
(0, 6, 21, 16)
\end{verbatim}

\textbf{has\_good\_reduction($p$)}

Return whether the hyperplane arrangement has good reduction mod $p$.

Let $A$ be a hyperplane arrangement with equations defined over the integers, and let $B$ be the hyperplane arrangement defined by reducing these equations modulo a prime $p$. Then $A$ has good reduction modulo $p$ if the intersection posets of $A$ and $B$ are isomorphic.

\textbf{INPUT:}

- $p$ – prime number

\textbf{OUTPUT:}

A boolean.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: a = hyperplane_arrangements.semiorder(3)
sage: a.has_good_reduction(5)
True
sage: a.has_good_reduction(3)
False
sage: b = a.change_ring(GF(3))
sage: a.characteristic_polynomial()
x^3 - 6*x^2 + 12*x
sage: b.characteristic_polynomial()  # not equal to that for a
x^3 - 6*x^2 + 10*x
\end{verbatim}

\textbf{hyperplanes()}

Return the hyperplanes in the arrangement as a tuple.

Chapter 1. Hyperplane arrangements
OUTPUT:

An integer.

EXAMPLES:

```
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([1,1,0], [2,3,-1], [4,5,3])
sage: A.hyperplanes()
(Hyperplane x + 0*y + 1, Hyperplane 3*x - y + 2, Hyperplane 5*x + 3*y + 4)
```

Note that the hyperplanes can be indexed as if they were a list:

```
sage: A[0]
Hyperplane x + 0*y + 1
```

```
intersection_poset(element_label='int')
```

Return the intersection poset of the hyperplane arrangement.

INPUT:

- `element_label` – (default: "int") specify how an intersection should be represented; must be one of the following:
  - "subspace" - as a subspace
  - "subset" - as a subset of the defining hyperplanes
  - "int" - as an integer

OUTPUT:

The poset of non-empty intersections of hyperplanes, with intersections represented by integers, subsets of integers or subspaces (see the examples for more details).

EXAMPLES:

By default, the elements of the poset are the integers from 0 through the cardinality of the poset minus one. The element labelled 0 always corresponds to the ambient vector space, and the hyperplanes themselves are labelled 1, 2, ..., n, where n is the number of hyperplanes of the arrangement.

```
sage: A = hyperplane_arrangements.coordinate(2)
sage: L = A.intersection_poset(); L
Finite poset containing 4 elements
sage: sorted(L)
[0, 1, 2, 3]
sage: L.level_sets()
[[0], [1, 2], [3]]
```

```
sage: A = hyperplane_arrangements.semiorder(3)
sage: L = A.intersection_poset(); L
Finite poset containing 19 elements
sage: sorted(L)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
sage: [sorted(level_set) for level_set in L.level_sets()]
[[0], [1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
```

By passing the argument `element_label="subset"`, each element of the intersection poset is labelled by the set of indices of the hyperplanes whose intersection is said element. The index of a hyperplane is its index in `self.hyperplanes()`.

1.1. Hyperplane Arrangements 23
```python
sage: A = hyperplane_arrangements.semiorder(3)
sage: L = A.intersection_poset(element_label='subset')
sage: [sorted(level, key=sorted) for level in L.level_sets()]
[[{}],
 [\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}],
 [\{0, 2\}, \{0, 3\}, \{0, 4\}, \{0, 5\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{2, 4\}, \{2, 5\},
 \{3, 4\}, \{3, 5\}]]
```

```python
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H((y, (y-1), (y+1), (x - y), (x + y)))
sage: L = A.intersection_poset(element_label='subset')
sage: sorted(L, key=sorted)
[{}, {0}, {0, 3}, {0, 4}, {1}, {1, 3, 4}, {2}, {2, 3}, {2, 4}, {3}, {4}]
```

One can instead use affine subspaces as elements, which is what is used to compute the poset in the first place:

```python
sage: A = hyperplane_arrangements.coordinate(2)
sage: L = A.intersection_poset(element_label='subspace'); L
Finite poset containing 4 elements
sage: sorted(L, key=lambda S: (S.dimension(), S.linear_part().basis_matrix()))
[Affine space p + W where:
 p = (0, 0)
 W = Vector space of degree 2 and dimension 0 over Rational Field
 Basis matrix:
 [], Affine space p + W where:
 p = (0, 0)
 W = Vector space of degree 2 and dimension 1 over Rational Field
 Basis matrix:
 [0 1], Affine space p + W where:
 p = (0, 0)
 W = Vector space of degree 2 and dimension 1 over Rational Field
 Basis matrix:
 [1 0], Affine space p + W where:
 p = (0, 0)
 W = Vector space of dimension 2 over Rational Field]
```

```

is_central(certificate=False)

Test whether the intersection of all the hyperplanes is nonempty.

A hyperplane arrangement is central if the intersection of all the hyperplanes in the arrangement is nonempty.

INPUT:

- **certificate** – boolean (default: False); specifies whether to return the center as a polyhedron (possibly empty) as part of the output

OUTPUT:

If certificate is True, returns a tuple containing:

1. A boolean
2. The polyhedron defined to be the intersection of all the hyperplanes

If certificate is False, returns a boolean.

```
EXAMPLES:

```
sage: a = hyperplane_arrangements.braid(2)
sage: a.is_central()
True
```

The Catalan arrangement in dimension 3 is not central:

```
sage: b = hyperplane_arrangements.Catalan(3)
sage: b.is_central(certificate=True)
(False, The empty polyhedron in QQ^3)
```

The empty arrangement in dimension 5 is central:

```
sage: H = HyperplaneArrangements(QQ,names=tuple([str(i) for i in range(7)]))
sage: c = H()
sage: c.is_central(certificate=True)
(True, A 7-dimensional polyhedron in QQ^7 defined as the convex hull of 1 vertex and 7 lines)
```

**is_essential()**

Test whether the hyperplane arrangement is essential.

A hyperplane arrangement is essential if the span of the normals of its hyperplanes spans the ambient space.

See also:

**essentialization()**

**OUTPUT:**

A boolean indicating whether the hyperplane arrangement is essential.

**EXAMPLES:**

```
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: H(x, x+1).is_essential()
False
sage: H(x, y).is_essential()
True
```

**is_formal()**

Return if self is formal.

A hyperplane arrangement is formal if it is $3$-generated [Yuz1993], where $k$-generated is defined in **minimal_generated_number()**.

**EXAMPLES:**

```
sage: P.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z, 3*x+5*z,\n → 3*x+4*y+5*z)
sage: B = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z, x+3*z, x+2*y+3*z)
sage: A.is_formal()
True
sage: B.is_formal()
False
```
is_free(algorithm='singular')
Return if self is free.
A hyperplane arrangement $A$ is free if the module of derivations $\text{Der}(A)$ is a free $S$-module, where $S$ is the corresponding symmetric space.

INPUT:
- algorithm – (default: "singular") can be one of the following:
  - "singular" – use Singular’s minimal free resolution
  - "BC" – use the algorithm given by Barakat and Cuntz in [BC2012] (much slower than using Singular)

ALGORITHM:

singular
Check that the minimal free resolution has length at most 2 by using Singular.

BC
This implementation follows [BC2012] by constructing a chain of free modules
$$D(A) = D(A_n) < D(A_{n-1}) < \cdots < D(A_1) < D(A_0)$$
corresponding to some ordering of the arrangements $A_0 \subset A_1 \subset \cdots \subset A_{n-1} \subset A_n = A$. Such a chain is found by using a backtracking algorithm.

EXAMPLES:
For type $A$ arrangements, chordality is equivalent to freeness. We verify that in type $A_3$:

```sage
W = WeylGroup(['A',3], prefix='s')
for x in W:
 A = x.inversion_arrangement()
 assert A.matroid().is_chordal() == A.is_free()
```

is_linear()
Test whether all hyperplanes pass through the origin.

OUTPUT:
A boolean. Whether all the hyperplanes pass through the origin.

EXAMPLES:

```sage
a = hyperplane_arrangements.semiorder(3)
a.is_linear()
False
b = hyperplane_arrangements.braid(3)
b.is_linear()
True
H.<x,y> = HyperplaneArrangements(QQ)
c = H(x+1, y+1)
c.is_linear()
```
is_separating_hyperplane(region1, region2, hyperplane)

Test whether the hyperplane separates the given regions.

INPUT:

- region1, region2 – polyhedra or list/tuple/iterable of coordinates which are regions of the arrangement or an interior point of a region
- hyperplane – a hyperplane

OUTPUT:

A boolean. Whether the hyperplane hyperplane separate the given regions.

EXAMPLES:

```python
sage: A.<x,y> = hyperplane_arrangements.coordinate(2)
sage: A.is_separating_hyperplane([1,1], [2,1], y)
False
sage: A.is_separating_hyperplane([1,1], [-1,1], x)
True
```

is_simplicial()

Test whether the arrangement is simplicial.

A region is simplicial if the normal vectors of its bounding hyperplanes are linearly independent. A hyperplane arrangement is said to be simplicial if every region is simplicial.

OUTPUT:

A boolean whether the hyperplane arrangement is simplicial.

EXAMPLES:

```python
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H([[0,1,1,1],[0,1,2,3]])
sage: A.is_simplicial()
True
sage: A = H([[0,1,1,1],[0,1,2,3],[0,1,3,2]])
sage: A.is_simplicial()
True
sage: A = H([[0,1,1,1],[0,1,2,3],[0,1,3,2],[0,2,1,3]])
sage: A.is_simplicial()
False
```

matroid()

Return the matroid associated to self.
Let $A$ denote a central hyperplane arrangement and $n_H$ the normal vector of some hyperplane $H \in A$. We define a matroid $M_A$ as the linear matroid spanned by $\{n_H | H \in A\}$. The matroid $M_A$ is such that the lattice of flats of $M$ is isomorphic to the intersection lattice of $A$ (Proposition 3.6 in [Sta2007]).

EXAMPLES:

```sage
P.\<x,y,z\> = HyperplaneArrangements(QQ)
A = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z)
M = A.matroid(); M
Linear matroid of rank 3 on 7 elements represented over the Rational Field
```

We check the lattice of flats is isomorphic to the intersection lattice:

```sage
f = sum([list(M.flats(i)) for i in range(M.rank()+1)], [])
PF = Poset([f, lambda x,y: x < y])
PF.is_isomorphic(A.intersection_poset())
True
```

**minimal_generated_number()**

Return the minimum $k$ such that $\text{self}$ is $k$-generated.

Let $A$ be a central hyperplane arrangement. Let $W_k$ denote the solution space of the linear system corresponding to the linear dependencies among the hyperplanes of $A$ of length at most $k$. We say $A$ is $k$-generated if $\dim W_k = \text{rank } A$.

Equivalently this says all dependencies forming the Orlik-Terao ideal are generated by at most $k$ hyperplanes.

EXAMPLES:

We construct Example 2.2 from [Yuz1993]:

```sage
P.\<x,y,z\> = HyperplaneArrangements(QQ)
A = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z, 3*x+5*z, ˓→3*x+4*y+5*z)
B = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z, x+3*z, x+2*y+3*z)
A.minimal_generated_number()
3
B.minimal_generated_number()
4
```

**n_bounded_regions()**

Return the number of (relatively) bounded regions.

OUTPUT:

An integer. The number of relatively bounded regions of the hyperplane arrangement.

EXAMPLES:

```sage
A = hyperplane_arrangements.semiorder(3)
A.n_bounded_regions()
7
```

**n_hyperplanes()**

Return the number of hyperplanes in the arrangement.

OUTPUT:

An integer.
EXAMPLES:

```sage
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([1,1,0], [2,3,-1], [4,5,3])
sage: A.n_hyperplanes()
3
sage: len(A) # equivalent
3
```

**n_regions()**
The number of regions of the hyperplane arrangement.

**OUTPUT:**
An integer.

**EXAMPLES:**

```sage
sage: A = hyperplane_arrangements.semiorder(3)
sage: A.n_regions()
19
```

**orlik_solomon_algebra**(base_ring=None, ordering=None, **kwds)
Return the Orlik-Solomon algebra of self.

**INPUT:**
- `base_ring` – (default: the base field of self) the ring over which the Orlik-Solomon algebra will be defined
- `ordering` – (optional) an ordering of the ground set

**EXAMPLES:**

```sage
sage: P.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z)
sage: A.orlik_solomon_algebra()
Orlik-Solomon algebra of Linear matroid of rank 3 on 7 elements represented over the Rational Field
sage: A.orlik_solomon_algebra(base_ring=ZZ)
Orlik-Solomon algebra of Linear matroid of rank 3 on 7 elements represented over the Rational Field
```

**orlik_terao_algebra**(base_ring=None, ordering=None, **kwds)
Return the Orlik-Terao algebra of self.

**INPUT:**
- `base_ring` – (default: the base field of self) the ring over which the Orlik-Terao algebra will be defined
- `ordering` – (optional) an ordering of the ground set

**EXAMPLES:**

```sage
sage: P.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = P(x, y, z, x+y+z, 2*x+y+z, 2*x+3*y+z, 2*x+3*y+4*z)
sage: A.orlik_terao_algebra()
Orlik-Terao algebra of Linear matroid of rank 3 on 7 elements
```

(continues on next page)
represented over the Rational Field over Rational Field
sage: A.orlik_terao_algebra(base_ring=QQ['t'])
Orlik-Terao algebra of Linear matroid of rank 3 on 7 elements
represented over the Rational Field
over Univariate Polynomial Ring in t over Rational Field

plot(**kwds)
Plot the hyperplane arrangement.

OUTPUT:
A graphics object.

EXAMPLES:

sage: L.<x, y> = HyperplaneArrangements(QQ)
sage: L(x, y, x+y-2).plot()  # optional - sage.plot
Graphics object consisting of 3 graphics primitives

poincare_polynomial()
Return the Poincaré polynomial of the hyperplane arrangement.

OUTPUT:
The Poincaré polynomial in $\mathbb{Q}[x]$.

EXAMPLES:

sage: a = hyperplane_arrangements.coordinate(2)
sage: a.poincare_polynomial()
x^2 + 2*x + 1

poset_of_regions(B=None, numbered_labels=True)
Return the poset of regions for a central hyperplane arrangement.

The poset of regions is a partial order on the set of regions where the regions
are ordered by $R \leq R'$ if and only if $S(R) \subseteq S(R')$ where $S(R)$ is the set of hyperplanes which separate the region $R$ from the base
region $B$.

INPUT:

• B – a region (optional; default: None); if None, then an arbitrary region
  is chosen as the base region.

• numbered_labels – bool (optional; default: True); if True, then the elements of the poset are num-
  bered. Else they are labelled with the regions themselves.

OUTPUT:
A Poset object containing the poset of regions.

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H([[0,1,1,1],[0,1,2,3]])
sage: A.poincare_polynomial()
A.poset_of_regions()
Finite poset containing 4 elements

sage: A = hyperplane_arrangements.braid(3)
sage: A.poincare_polynomial()
A.poset_of_regions()
Finite poset containing 6 elements
\texttt{sage: A.poset_of_regions(numbered_labels=False)}
Finite poset containing 6 elements
\texttt{sage: A = hyperplane_arrangements.braid(4)}
\texttt{sage: A.poset_of_regions()}
Finite poset containing 24 elements
\texttt{sage: H.<x,y,z> = HyperplaneArrangements(QQ)}
\texttt{sage: A = H([[0,1,1,1],[0,1,2,3],[0,1,3,2],[0,2,1,3]])}
\texttt{sage: R = A.regions()}
\texttt{sage: base_region = R[3]}
\texttt{sage: A.poset_of_regions(B=base_region)}
Finite poset containing 14 elements

\texttt{rank()}
Return the rank.

\textbf{OUTPUT:}

The dimension of the span of the normals to the hyperplanes in the arrangement.

\textbf{EXAMPLES:}

\texttt{sage: H.<x,y,z> = HyperplaneArrangements(QQ)}
\texttt{sage: A = H([[0, 1, 2, 3], [-3, 4, 5, 6]])}
\texttt{sage: A.dimension()}
3
\texttt{sage: A.rank()}
2
\texttt{sage: B = hyperplane_arrangements.braid(3)}
\texttt{sage: B.hyperplanes()}
(Hyperplane 0*t0 + t1 - t2 + 0,
Hyperplane t0 - t1 + 0*t2 + 0,
Hyperplane t0 + 0*t1 - t2 + 0)
\texttt{sage: B.dimension()}
3
\texttt{sage: B.rank()}
2
\texttt{sage: p = polytopes.simplex(5, project=True)}
\texttt{sage: H = p.hyperplane_arrangement()}
\texttt{sage: H.rank()}
5

\texttt{region_containing_point(p)}
The region in the hyperplane arrangement containing a given point.
The base field must have characteristic zero.

\textbf{INPUT:}

\begin{itemize}
  \item p – point
\end{itemize}

\textbf{OUTPUT:}

A polyhedron. A \texttt{ValueError} is raised if the point is not interior to a region, that is, sits on a hyperplane.
EXAMPLES:

```python
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([(1,0), 0], [(0,1), 1], [(0,1), -1], [(1,-1), 0], [(1,1), 0])
sage: A.region_containing_point([1,2])
```

A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices and 2 rays

**regions()**

Return the regions of the hyperplane arrangement.

The base field must have characteristic zero.

**OUTPUT:**

A tuple containing the regions as polyhedra.

The regions are the connected components of the complement of the union of the hyperplanes as a subset of R^n.

**EXAMPLES:**

```python
sage: a = hyperplane_arrangements.braid(2)
sage: a.regions()
(A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex, 1 ray, 1 line,
 A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex, 1 ray, 1 line)
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H(x, y+1)
sage: A.regions()
(A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
 A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
 A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays,
 A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays)
sage: chessboard = []
sage: N = 8
sage: for x0 in range(N+1):
....: for y0 in range(N+1):
....: chessboard.extend([x-x0, y-y0])
sage: chessboard = H(chessboard)
sage: len(chessboard.bounded_regions()) # long time, 359 ms on a Core i7
64
```

Example 6 of [KP2020]:

```python
sage: from itertools import product
sage: def zero_one(d):
....: for x in product([0,1], repeat=d):
....: if any(y for y in x):
....: # (continues on next page)
```
It is possible to specify the backend:

```python
sage: K.<q> = CyclotomicField(9)
sage: L.<r9> = NumberField((q+q**(-1)).minpoly(),embedding = AA(q+q**-1))
sage: norms = [[1,1/3*(-2*r9**2-r9+1),0],
 [1,-r9**2-r9,0],
 [1,-r9**2,0],
 [1,r9**2-4,-r9**2+3]]
sage: H.<x,y,z> = HyperplaneArrangements(L)
sage: A = H(backend='normaliz')
sage: for v in norms:
 a,b,c = v
 A = A.add_hyperplane(a*x + b*y + c*z)
sage: R = A.regions() # optional - pynormaliz
sage: R[0].backend() # optional - pynormaliz
'normaliz'
```

`restriction(hyperplane)`

Return the restriction to a hyperplane.

**INPUT:**

- hyperplane – a hyperplane of the hyperplane arrangement

**OUTPUT:**

The restriction of the hyperplane arrangement to the given hyperplane.

**EXAMPLES:**

```python
sage: A.<u,x,y,z> = hyperplane_arrangements.braid(4); A
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: H = A[0]; H
Hyperplane 0*u + 0*x + y - z + 0
sage: R = A.restriction(H); R
```
Arrangement <x - z | u - x | u - z>
sage: D = A.deletion(H); D
Arrangement of 5 hyperplanes of dimension 4 and rank 3
sage: ca = A.characteristic_polynomial()
sage: cr = R.characteristic_polynomial()
sage: cd = D.characteristic_polynomial()
sage: ca
x^4 - 6*x^3 + 11*x^2 - 6*x
sage: cd - cr
x^4 - 6*x^3 + 11*x^2 - 6*x

See also:
deletion()

sign_vector(p)
Indicates on which side of each hyperplane the given point $p$ lies.
The base field must have characteristic zero.

INPUT:
• $p$ – point as a list/tuple/iterable

OUTPUT:
A vector whose entries are in $[-1, 0, +1]$.

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: A = H([[1,0], [0,1]]); A
Arrangement <y + 1 | x>
sage: A.sign_vector([2, -2])
(-1, 1)
sage: A.sign_vector([-1, -1])
(0, -1)

unbounded_regions()
Return the relatively bounded regions of the arrangement.

OUTPUT:
Tuple of polyhedra. The regions of the arrangement that are not relatively bounded. It is assumed that the arrangement is defined over the rationals.

See also:
bounded_regions()

EXAMPLES:

sage: A = hyperplane_arrangements.semiorder(3)
sage: B = A.essentialization()
sage: B.n_regions() - B.n_bounded_regions()
12
sage: B.unbounded_regions()
(A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices\ and 1 ray,
(continues on next page)
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 3 vertices and 1 ray,
A 2-dimensional polyhedron in \(\mathbb{Q}^2\) defined as the convex hull of 1 vertex and 2 rays,

\[ \text{union}(\text{other}) \]

The union of self with other.

INPUT:

- other – a hyperplane arrangement or something that can be converted into a hyperplane arrangement

OUTPUT:

A new hyperplane arrangement.

EXAMPLES:

\[ \text{sage: } \text{H.<x,y> = HyperplaneArrangements(QQ)} \]
\[ \text{sage: } A = \text{H([1,2,3], [0,1,1], [0,1,-1], [1,-1,0], [1,1,0])} \]
\[ \text{sage: } B = \text{H([1,1,1], [1,-1,1], [1,0,-1])} \]
\[ \text{sage: } \text{A.union(B)} \]
Arrangement of 8 hyperplanes of dimension 2 and rank 2
\[ \text{sage: } \text{A | B } \quad \# \text{ syntactic sugar} \]
Arrangement of 8 hyperplanes of dimension 2 and rank 2

A single hyperplane is coerced into a hyperplane arrangement if necessary:

\[ \text{sage: } \text{A.union(x+y-1)} \]
Arrangement of 6 hyperplanes of dimension 2 and rank 2
\[ \text{sage: } \text{A.add_hyperplane(x+y-1)} \quad \# \text{ alias} \]
Arrangement of 6 hyperplanes of dimension 2 and rank 2
\[ \text{sage: } \text{P.<x,y> = HyperplaneArrangements(RR)} \]
\[ \text{sage: } C = \text{P(2*x + 4*y + 5)} \]
\[ \text{sage: } \text{C.union(A)} \]
Arrangement of 6 hyperplanes of dimension 2 and rank 2

1.1. Hyperplane Arrangements
varchenko_matrix(names='h')

Return the Varchenko matrix of the arrangement.

Let \( H_1, \ldots, H_s \) and \( R_1, \ldots, R_t \) denote the hyperplanes and regions, respectively, of the arrangement. Let \( S = \mathbb{Q}[h_1, \ldots, h_s] \), a polynomial ring with indeterminate \( h_i \) corresponding to hyperplane \( H_i \). The Varchenko matrix is the \( t \times t \) matrix with \( i, j \)-th entry the product of those \( h_k \) such that \( H_k \) separates \( R_i \) and \( R_j \).

INPUT:

• names – string or list/tuple/iterable of strings. The variable names for the polynomial ring \( S \).

OUTPUT:

The Varchenko matrix.

EXAMPLES:

```
sage: a = hyperplane_arrangements.coordinate(3)
sage: v = a.varchenko_matrix(); v
[1 h2 h1]
[h2 1 h1*h2]
[h1 h1*h2 1]
sage: factor(det(v))
(h2 - 1) * (h2 + 1) * (h1 - 1) * (h1 + 1)
```

vertices(exclude_sandwiched=False)

Return the vertices.

The vertices are the zero-dimensional faces, see \texttt{face_vector()}. 

INPUT:

• exclude_sandwiched – boolean (default: False). Whether to exclude hyperplanes that are sandwiched between parallel hyperplanes. Useful if you only need the convex hull.

OUTPUT:

The vertices in a sorted tuple. Each vertex is returned as a vector in the ambient vector space.

EXAMPLES:

```
sage: A = hyperplane_arrangements.Shi(3).essentialization()
sage: A.dimension()
2
sage: A.face_vector()
(6, 21, 16)
sage: A.vertices()
((-2/3, 1/3), (-1/3, -1/3), (0, -1), (0, 0), (1/3, -2/3), (2/3, -1/3))
sage: point2d(A.vertices(), size=20) + A.plot() # optional - sage.plot
Graphics object consisting of 7 graphics primitives
```

```
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: chessboard = []
sage: N = 8
sage: for x0 in range(N+1):
 : for y0 in range(N+1):
 : chessboard.extend([(x-x0, y-y0)])
sage: chessboard = H(chessboard)
```
whitney_data()

Return the Whitney numbers.

See also:

whitney_number(), doubly_indexed_whitney_number()

OUTPUT:

A pair of integer matrices. The two matrices are the doubly-indexed Whitney numbers of the first or second kind, respectively. The $i, j$-th entry is the $i, j$-th doubly-indexed Whitney number.

EXAMPLES:

sage: A = hyperplane_arrangements.Shi(3)
sage: A.whitney_data()
(([1, -6, 9], [1, 6, 6], [0, 6, -15], [0, 6, 15], [0, 0, 6], [0, 0, 6]),
)

whitney_number($k, kind=1$)

Return the $k$-th Whitney number.

If $kind=1$, this number is obtained by summing the Möbius function values $\mu(0, x)$ over all $x$ in the intersection poset with $rank(x) = k$.

If $kind=2$, this number is the number of elements $x, y$ in the intersection poset such that $x \leq y$ with ranks $i$ and $j$, respectively.

See [GZ1983] for more details.

INPUT:

- $k$ – integer
- $kind$ – 1 or 2 (default: 1)

OUTPUT:

Integer. The $k$-th Whitney number.

See also:

doubly_indexed_whitney_number() whitney_data()
Hyperplane arrangements.

For more information on hyperplane arrangements, see `sage.geometry.hyperplane_arrangement.arrangement`.

**INPUT:**

- `base_ring` – ring; the base ring
- `names` – tuple of strings; the variable names

**EXAMPLES:**

```python
sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: x
Hyperplane x + 0*y + 0
sage: x + y
Hyperplane x + y + 0
sage: H(x, y, x-1, y-1)
Arrangement <y - 1 | y | x - 1 | x>
```

**Element**

alias of `HyperplaneArrangementElement`

**ambient_space()**

Return the ambient space.

The ambient space is the parent of hyperplanes. That is, new hyperplanes are always constructed internally from the ambient space instance.

**EXAMPLES:**

```python
sage: L.<x, y> = HyperplaneArrangements(QQ)
sage: L.ambient_space()([(1,0), 0])
Hyperplane x + 0*y + 0
sage: L.ambient_space()([(1,0), 0]) == x
True
```

**base_ring()**

Return the base ring.

**OUTPUT:**

The base ring of the hyperplane arrangement.
EXAMPLES:

```python
sage: L.<x,y> = HyperplaneArrangements(QQ)
sage: L.base_ring()
Rational Field
```

**change_ring**(base\_ring)

Return hyperplane arrangements over a different base ring.

**INPUT:**

• base\_ring – a ring; the new base ring.

**OUTPUT:**

A new `HyperplaneArrangements` instance over the new base ring.

**EXAMPLES:**

```python
sage: L.<x,y> = HyperplaneArrangements(QQ)
sage: L.gen(0)
Hyperplane x + 0*y + 0
sage: L.change_ring(RR).gen(0)
Hyperplane 1.00000000000000*x + 0.000000000000000*y + 0.000000000000000
```

**gen**\((i)\)

Return the \(i\)-th coordinate hyperplane.

**INPUT:**

• \(i\) – integer

**OUTPUT:**

A linear expression.

**EXAMPLES:**

```python
sage: L.<x, y, z> = HyperplaneArrangements(QQ); L
Hyperplane arrangements in 3-dimensional linear space over Rational Field with \(\rightarrow\)coordinates x, y, z
sage: L.gen(0)
Hyperplane x + 0*y + 0*z + 0
```

**gens**()

Return the coordinate hyperplanes.

**OUTPUT:**

A tuple of linear expressions, one for each linear variable.

**EXAMPLES:**

```python
sage: L.<x, y, z> = HyperplaneArrangements(QQ); L
Hyperplane arrangements in 3-dimensional linear space over Rational Field with \(\rightarrow\)coordinates x, y, z
sage: L.gens()
(Hyperplane x + 0*y + 0*z + 0,
 Hyperplane 0*x + y + 0*z + 0,
 Hyperplane 0*x + 0*y + z + 0)
```

**ngens**()

Return the number of linear variables.

1.1. Hyperplane Arrangements

39
OUTPUT:
An integer.
EXAMPLES:

```
sage: L.<x, y, z> = HyperplaneArrangements(QQ); L
Hyperplane arrangements in 3-dimensional linear space over Rational Field with coordinates x, y, z
sage: L.ngens()
3
```

1.2 Library of Hyperplane Arrangements

A collection of useful or interesting hyperplane arrangements. See `sage.geometry.hyperplane_arrangement.arrangement` for details about how to construct your own hyperplane arrangements.

```python
class sage.geometry.hyperplane_arrangement.library.HyperplaneArrangementLibrary
 Bases: object

 The library of hyperplane arrangements.

 Catalan(n, K=Rational Field, names=None)
 Return the Catalan arrangement.

 INPUT:
 • n – integer
 • K – field (default: \(\mathbb{Q} \))
 • names – tuple of strings or None (default); the variable names for the ambient space

 OUTPUT:
 The arrangement of \(3n(n - 1)/2\) hyperplanes \(\{x_i - x_j = -1, 0, 1 : 1 \leq i \leq j \leq n\}\).

 EXAMPLES:

    ```
sage: hyperplane_arrangements.Catalan(5)
Arrangement of 30 hyperplanes of dimension 5 and rank 4
```

G_Shi(G, K=Rational Field, names=None)
Return the Shi hyperplane arrangement of a graph \(G\).

INPUT:
• G – graph
• K – field (default: \(\mathbb{Q} \))
• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:
The Shi hyperplane arrangement of the given graph \(G\).

EXAMPLES:
sage: G = graphs.CompleteGraph(5)
sage: hyperplane_arrangements.G_Shi(G)
Arrangement of 20 hyperplanes of dimension 5 and rank 4
sage: g = graphs.HouseGraph()
sage: hyperplane_arrangements.G_Shi(g)
Arrangement of 12 hyperplanes of dimension 5 and rank 4
sage: a = hyperplane_arrangements.G_Shi(graphs.WheelGraph(4)); a
Arrangement of 12 hyperplanes of dimension 4 and rank 3

G_semiorder(G, K=Rational Field, names=None)
Return the semiorder hyperplane arrangement of a graph.

INPUT:
• G – graph
• K – field (default: Q)
• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:
The semiorder hyperplane arrangement of a graph G is the arrangement \{x_i - x_j = -1, 1\} where \(ij\) is an edge of G.

EXAMPLES:
sage: G = graphs.CompleteGraph(5)
sage: hyperplane_arrangements.G_semiorder(G)
Arrangement of 20 hyperplanes of dimension 5 and rank 4
sage: g = graphs.HouseGraph()
sage: hyperplane_arrangements.G_semiorder(g)
Arrangement of 12 hyperplanes of dimension 5 and rank 4

Ish(n, K=Rational Field, names=None)
Return the Ish arrangement.

INPUT:
• n – integer
• K – field (default: QQ)
• names – tuple of strings or None (default); the variable names for the ambient space

OUTPUT:
The Ish arrangement, which is the set of \(n(n-1)\) hyperplanes.

\[
\{x_i - x_j = 0 : 1 \leq i \leq j \leq n\} \cup \{x_1 - x_j = i : 1 \leq i \leq j \leq n\}.
\]

EXAMPLES:
sage: a = hyperplane_arrangements.Ish(3); a
Arrangement of 6 hyperplanes of dimension 3 and rank 2
sage: a.characteristic_polynomial()
x^3 - 6*x^2 + 9*x
sage: b = hyperplane_arrangements.Shi(3)
sage: b.characteristic_polynomial()
x^3 - 6*x^2 + 9*x
REFERENCES:

• [AR2012]

\textbf{Shi}(\textit{data, K=Rational Field, names=None, m=1})

Return the Shi arrangement.

INPUT:

• \textit{data} – either an integer or a Cartan type (or coercible into; see “CartanType”)
• \textit{K} – field (default: QQ)
• \textit{names} – tuple of strings or None (default); the variable names for the ambient space
• \textit{m} – integer (default: 1)

OUTPUT:

• If \textit{data} is an integer \(n\), return the Shi arrangement in dimension \(n\), i.e. the set of \(n(n-1)\) hyperplanes: \(\{x_i - x_j = 0, 1 \leq i \leq j \leq n\}\). This corresponds to the Shi arrangement of Cartan type \(A_{n-1}\).
• If \textit{data} is a Cartan type, return the Shi arrangement of given type.
• If \(m > 1\), return the \(m\)-extended Shi arrangement of given type.

The \(m\)-extended Shi arrangement of a given crystallographic Cartan type is defined by the inner product \(\langle a, x \rangle = k\) for \(-m < k \leq m\) and \(a \in \Phi^+\) is a positive root of the root system \(\Phi\).

EXAMPLES:

```
sage: hyperplane_arrangements.Shi(4)
Arrangement of 12 hyperplanes of dimension 4 and rank 3
sage: hyperplane_arrangements.Shi("A3")
Arrangement of 12 hyperplanes of dimension 4 and rank 3
sage: hyperplane_arrangements.Shi("A3",m=2)
Arrangement of 24 hyperplanes of dimension 4 and rank 3
sage: hyperplane_arrangements.Shi("B4")
Arrangement of 32 hyperplanes of dimension 4 and rank 4
sage: hyperplane_arrangements.Shi("B4",m=3)
Arrangement of 96 hyperplanes of dimension 4 and rank 4
sage: hyperplane_arrangements.Shi("C3")
Arrangement of 18 hyperplanes of dimension 3 and rank 3
sage: hyperplane_arrangements.Shi("D4",m=3)
Arrangement of 72 hyperplanes of dimension 4 and rank 4
sage: hyperplane_arrangements.Shi("E6")
Arrangement of 72 hyperplanes of dimension 8 and rank 6
sage: hyperplane_arrangements.Shi("E6",m=2)
Arrangement of 144 hyperplanes of dimension 8 and rank 6
```

If the Cartan type is not crystallographic, the Shi arrangement is not defined:

```
sage: hyperplane_arrangements.Shi("H4")
Traceback (most recent call last):
... Not ImplementedError: Shi arrangements are not defined for non crystallographic Cartan types
```

The characteristic polynomial is pre-computed using the results of [Ath1996]:
sage: hyperplane_arrangements.Shi("A3").characteristic_polynomial()
x^4 - 12*x^3 + 48*x^2 - 64*x
sage: hyperplane_arrangements.Shi("A3",m=2).characteristic_polynomial()
x^4 - 24*x^3 + 192*x^2 - 512*x
sage: hyperplane_arrangements.Shi("C3").characteristic_polynomial()
x^3 - 18*x^2 + 108*x - 216
sage: hyperplane_arrangements.Shi("E6").characteristic_polynomial()
x^8 - 72*x^7 + 2160*x^6 - 34560*x^5 + 311040*x^4 - 1492992*x^3 + 2985984*x^2
sage: hyperplane_arrangements.Shi("B4",m=3).characteristic_polynomial()
x^4 - 96*x^3 + 3456*x^2 - 55296*x + 331776

bigraphical\((G, A=None, K=\text{Rational Field}, names=None)\)
Return a bigraphical hyperplane arrangement.

INPUT:
\begin{itemize}
\item G – graph
\item A – list, matrix, dictionary (default: None gives semiorder), or the string 'generic'
\item K – field (default: Q)
\item names – tuple of strings or None (default); the variable names for the ambient space
\end{itemize}

OUTPUT:
The hyperplane arrangement with hyperplanes \(x_i - x_j = A[i,j]\) and \(x_j - x_i = A[j,i]\) for each edge \(v_i, v_j\) of G. The indices \(i, j\) are the indices of elements of G.vertices().

EXAMPLES:

sage: G = graphs.CycleGraph(4)
sage: G.edges()
\[(0, 1, None), (0, 3, None), (1, 2, None), (2, 3, None)\]
sage: G.edges(labels=False)
\[(0, 1), (0, 3), (1, 2), (2, 3)\]
sage: A = {0:{1:1, 3:2}, 1:{0:3, 2:0}, 2:{1:2, 3:1}, 3:{2:0, 0:2}}
sage: HA = hyperplane_arrangements.bigraphical(G, A)
sage: HA.n_regions()
63
sage: hyperplane_arrangements.bigraphical(G, 'generic').n_regions()
65
sage: hyperplane_arrangements.bigraphical(G).n_regions()
59

REFERENCES:
\begin{itemize}
\item [HP2016]
\end{itemize}

braid\((n, K=\text{Rational Field}, names=None)\)
The braid arrangement.

INPUT:
\begin{itemize}
\item n – integer
\item K – field (default: QQ)
\item names – tuple of strings or None (default); the variable names for the ambient space
\end{itemize}
OUTPUT:
The hyperplane arrangement consisting of the $n(n - 1)/2$ hyperplanes $\{x_i - x_j = 0 : 1 \leq i \leq j \leq n\}$.

EXAMPLES:

\begin{verbatim}
sage: hyperplane_arrangements.braid(4)
Arrangement of 6 hyperplanes of dimension 4 and rank 3
\end{verbatim}

coordinate($n, K=Rational Field, names=None$)

Return the coordinate hyperplane arrangement.

INPUT:

- n – integer
- K – field (default: \mathbb{Q})
- $names$ – tuple of strings or $None$ (default); the variable names for the ambient space

OUTPUT:
The coordinate hyperplane arrangement, which is the central hyperplane arrangement consisting of the coordinate hyperplanes $x_i = 0$.

EXAMPLES:

\begin{verbatim}
sage: hyperplane_arrangements.coordinate(5)
Arrangement of 5 hyperplanes of dimension 5 and rank 5
\end{verbatim}

graphical($G, K=Rational Field, names=None$)

Return the graphical hyperplane arrangement of a graph G.

INPUT:

- G – graph
- K – field (default: \mathbb{Q})
- $names$ – tuple of strings or $None$ (default); the variable names for the ambient space

OUTPUT:
The graphical hyperplane arrangement of a graph G, which is the arrangement $\{x_i - x_j = 0\}$ for all edges ij of the graph G.

EXAMPLES:

\begin{verbatim}
sage: G = graphs.CompleteGraph(5)
sage: hyperplane_arrangements.graphical(G)
Arrangement of 10 hyperplanes of dimension 5 and rank 4
sage: g = graphs.HouseGraph()
sage: hyperplane_arrangements.graphical(g)
Arrangement of 6 hyperplanes of dimension 5 and rank 4
\end{verbatim}

linial($n, K=Rational Field, names=None$)

Return the linial hyperplane arrangement.

INPUT:

- n – integer
- K – field (default: \mathbb{Q})
- $names$ – tuple of strings or $None$ (default); the variable names for the ambient space
OUTPUT:
The linial hyperplane arrangement is the set of hyperplanes \(\{ x_i - x_j = 1 : 1 \leq i < j \leq n \} \).

EXAMPLES:

```python
sage: a = hyperplane_arrangements.linial(4); a
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: a.characteristic_polynomial()
x^4 - 6*x^3 + 15*x^2 - 14*x
```

semiorder\((n, K=Rational Field, names=None)\)
Return the semiorder arrangement.

INPUT:
- \(n\) – integer
- \(K\) – field (default: \(\mathbb{Q}\))
- \(names\) – tuple of strings or \(None\) (default); the variable names for the ambient space

OUTPUT:
The semiorder arrangement, which is the set of \(n(n-1)\) hyperplanes \(\{ x_i - x_j = -1, 1 \leq i < j \leq n \} \).

EXAMPLES:

```python
sage: hyperplane_arrangements.semiorder(4)
Arrangement of 12 hyperplanes of dimension 4 and rank 3
```

`sage.geometry.hyperplane_arrangement.library.make_parent(base_ring, dimension, names=None)`
Construct the parent for the hyperplane arrangements.
For internal use only.

INPUT:
- \(base_ring\) – a ring
- \(dimension\) – integer
- \(names\) – \(None\) (default) or a list/tuple/iterable of strings

OUTPUT:
A new \(Hyperplane_Arrangements\) instance.

EXAMPLES:

```python
sage: from sage.geometry.hyperplane_arrangement.library import make_parent
sage: make_parent(QQ, 3)
Hyperplane arrangements in 3-dimensional linear space over Rational Field with coordinates t0, t1, t2
```
1.3 Hyperplanes

Note: If you want to learn about Sage’s hyperplane arrangements then you should start with `sage.geometry.hyperplane_arrangement.arrangement`. This module is used to represent the individual hyperplanes, but you should never construct the classes from this module directly (but only via the `HyperplaneArrangements`).

A linear expression, for example, $3x + 3y - 5z - 7$ stands for the hyperplane with the equation $x + 3y - 5z = 7$. To create it in Sage, you first have to create a `HyperplaneArrangements` object to define the variables x, y, z:

```
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = 3*x + 2*y - 5*z - 7; h
Hyperplane 3*x + 2*y - 5*z - 7
sage: h.coefficients()
[-7, 3, 2, -5]
sage: h.normal()
(3, 2, -5)
sage: h.constant_term()
-7
sage: h.change_ring(GF(3))
Hyperplane 0*x + 2*y + z + 2
sage: h.point()
(21/38, 7/19, -35/38)
sage: h.linear_part()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 3/5]
[ 0 1 2/5]
```

Another syntax to create hyperplanes is to specify coefficients and a constant term:

```
sage: V = H.ambient_space(); V
3-dimensional linear space over Rational Field with coordinates x, y, z
sage: h in V
True
sage: V([3, 2, -5], -7)
Hyperplane 3*x + 2*y - 5*z - 7
```

Or constant term and coefficients together in one list/tuple/iterable:

```
sage: V([-7, 3, 2, -5])
Hyperplane 3*x + 2*y - 5*z - 7
sage: v = vector([-7, 3, 2, -5]); v
(-7, 3, 2, -5)
sage: V(v)
Hyperplane 3*x + 2*y - 5*z - 7
```

Note that the constant term comes first, which matches the notation for Sage’s `Polyhedron()`:

```
sage: Polyhedron(ieqs=[[4,1,2,3]]).Hrepresentation()
(An inequality (1, 2, 3) x + 4 >= 0,)
```

The difference between hyperplanes as implemented in this module and hyperplane arrangements is that:
• hyperplane arrangements contain multiple hyperplanes (of course),
• linear expressions are a module over the base ring, and these module structure is inherited by the hyperplanes.

The latter means that you can add and multiply by a scalar:

```
sage: h = 3*x + 2*y - 5*z - 7; h
Hyperplane 3*x + 2*y - 5*z - 7
sage: -h
Hyperplane -3*x - 2*y + 5*z + 7
sage: h + x
Hyperplane 4*x + 2*y - 5*z - 7
sage: h + 7
Hyperplane 3*x + 2*y - 5*z + 0
sage: 3*h
Hyperplane 9*x + 6*y - 15*z - 21
sage: h * RDF(3)
Hyperplane 9.0*x + 6.0*y - 15.0*z - 21.0
```

Which you can’t do with hyperplane arrangements:

```
sage: arrangement = H(h, x, y, x+y-1); arrangement
Arrangement <y | x | x + y - 1 | 3*x + 2*y - 5*z - 7>
sage: arrangement + x
Traceback (most recent call last):
  ...
TypeError: unsupported operand parent(s) for +:
'Hyperplane arrangements in 3-dimensional linear space
  over Rational Field with coordinates x, y, z' and
'Hyperplane arrangements in 3-dimensional linear space
  over Rational Field with coordinates x, y, z'
```

```
class sage.geometry.hyperplane_arrangement.hyperplane.AmbientVectorSpace(base_ring, names=())

Bases: sage.geometry.linear_expression.LinearExpressionModule

The ambient space for hyperplanes.

This class is the parent for the Hyperplane instances.

Element

alias of Hyperplane

change_ring(base_ring)

Return a ambient vector space with a changed base ring.

INPUT:
• base_ring – a ring; the new base ring

OUTPUT:
A new AmbientVectorSpace.

EXAMPLES:

```
sage: M.<y> = HyperplaneArrangements(QQ)
sage: V = M.ambient_space()
```

(continues on next page)
sage: V.change_ring(RR)
1-dimensional linear space over Real Field with 53 bits of precision with coordinate y

dimension()

Return the ambient space dimension.

OUTPUT:
An integer.

EXAMPLES:

sage: M.<x,y> = HyperplaneArrangements(QQ)
sage: x.parent().dimension()
2
sage: x.parent() is M.ambient_space()
True
sage: x.dimension()
1

symmetric_space()

Construct the symmetric space of self.

Consider a hyperplane arrangement \( A \) in the vector space \( V = k^n \), for some field \( k \). The symmetric space is the symmetric algebra \( S(V^*) \) as the polynomial ring \( k[x_1, x_2, \ldots, x_n] \) where \( (x_1, x_2, \ldots, x_n) \) is a basis for \( V \).

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H.ambient_space()
sage: A.symmetric_space()
Multivariate Polynomial Ring in x, y, z over Rational Field

class sage.geometry.hyperplane_arrangement.hyperplane.Hyperplane(parent, coefficients, constant)

Bases: sage.geometry.linear_expression.LinearExpression

A hyperplane.

You should always use AmbientVectorSpace to construct instances of this class.

INPUT:

- parent – the parent AmbientVectorSpace
- coefficients – a vector of coefficients of the linear variables
- constant – the constant term for the linear expression

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: x+y-1
Hyperplane x + y - 1

sage: ambient = H.ambient_space()
sage: ambient._element_constructor_(x+y-1)
Hyperplane x + y - 1
For technical reasons, we must allow the degenerate cases of an empty space and of a full space:

```
sage: 0*x
Hyperplane 0*x + 0*y + 0
sage: 0*x + 1
Hyperplane 0*x + 0*y + 1
sage: x + 0 == x + ambient(0) # because coercion requires them
True
```

dimension()

The dimension of the hyperplane.

OUTPUT:

An integer.

EXAMPLES:

```
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + y + z - 1
sage: h.dimension()
2
```

intersection(other)

The intersection of self with other.

INPUT:

• other – a hyperplane, a polyhedron, or something that defines a polyhedron

OUTPUT:

A polyhedron.

EXAMPLES:

```
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + y + z - 1
sage: h.intersection(x - y)
A 1-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 1 → line
sage: h.intersection(polytopes.cube())
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices
```

linear_part()

The linear part of the affine space.

OUTPUT:

Vector subspace of the ambient vector space, parallel to the hyperplane.

EXAMPLES:

```
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + 2*y + 3*z - 1
sage: h.linear_part()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[1 0 -1/3]
[0 1 -2/3]
```
**linear_part_projection**(point)

Orthogonal projection onto the linear part.

**INPUT:**

- point – vector of the ambient space, or anything that can be converted into one; not necessarily on the hyperplane

**OUTPUT:**

Coordinate vector of the projection of point with respect to the basis of linear_part(). In particular, the length of this vector is one less than the ambient space dimension.

**EXAMPLES:**

```
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + 2*y + 3*z - 4
sage: h.linear_part()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[1 0 -1/3]
[0 1 -2/3]
sage: p1 = h.linear_part_projection(0); p1
(0, 0)
sage: p2 = h.linear_part_projection([3,4,5]); p2
(8/7, 2/7)
sage: h.linear_part().basis()
[(1, 0, -1/3),
 (0, 1, -2/3)]
sage: p3 = h.linear_part_projection([1,1,1]); p3
(4/7, 1/7)
```

**normal()**

Return the normal vector.

**OUTPUT:**

A vector over the base ring.

**EXAMPLES:**

```
sage: H.<x, y, z> = HyperplaneArrangements(QQ)
sage: x.normal()
(1, 0, 0)
sage: x.A(), x.b()
((1, 0, 0), 0)
sage: (x + 2*y + 3*z + 4).normal()
(1, 2, 3)
```

**orthogonal_projection**(point)

Return the orthogonal projection of a point.

**INPUT:**

- point – vector of the ambient space, or anything that can be converted into one; not necessarily on the hyperplane

**OUTPUT:**
A vector in the ambient vector space that lies on the hyperplane.

In finite characteristic, a `ValueError` is raised if the norm of the hyperplane normal is zero.

**EXAMPLES:**

```python
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + 2*y + 3*z - 4
sage: p1 = h.orthogonal_projection(0); p1
(2/7, 4/7, 6/7)
sage: p1 in h
True
sage: p2 = h.orthogonal_projection([3,4,5]); p2
(10/7, 6/7, 2/7)
sage: p1 in h
True
sage: p3 = h.orthogonal_projection([1,1,1]); p3
(6/7, 5/7, 4/7)
sage: p3 in h
True
```

**plot(**`kws`**)

Plot the hyperplane.

**OUTPUT:**

A graphics object.

**EXAMPLES:**

```python
sage: L.<x, y> = HyperplaneArrangements(QQ)
sage: (x+y-2).plot() # optional - sage.plot
Graphics object consisting of 2 graphics primitives
```

**point()**

Return the point closest to the origin.

**OUTPUT:**

A vector of the ambient vector space. The closest point to the origin in the $L^2$-norm.

In finite characteristic a random point will be returned if the norm of the hyperplane normal vector is zero.

**EXAMPLES:**

```python
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + 2*y + 3*z - 4
sage: h.point()
(2/7, 4/7, 6/7)
sage: h.point() in h
True
sage: H.<x,y,z> = HyperplaneArrangements(GF(3))
sage: h = 2*x + y + z + 1
sage: h.point()
(1, 0, 0)
sage: h.point().base_ring()
Finite Field of size 3
```

(continues on next page)
sage: H.<x,y,z> = HyperplaneArrangements(GF(3))
sage: h = x + y + z + 1
sage: h.point()
(2, 0, 0)

polyhedron()
Return the hyperplane as a polyhedron.

OUTPUT:
A Polyhedron() instance.

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = x + 2*y + 3*z - 4
sage: P = h.polyhedron(); P
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 2 lines
sage: P.Hrepresentation()
(An equation (1, 2, 3) x - 4 == 0,)
sage: P.Vrepresentation()
(A line in the direction (0, 3, -2),
A line in the direction (3, 0, -1),
A vertex at (0, 0, 4/3))

primitive(signed=True)
Return hyperplane defined by primitive equation.

INPUT:
• signed – boolean (optional, default: True); whether to preserve the overall sign

OUTPUT:
Hyperplane whose linear expression has common factors and denominators cleared. That is, the same hyperplane (with the same sign) but defined by a rescaled equation. Note that different linear expressions must define different hyperplanes as comparison is used in caching.

If signed, the overall rescaling is by a positive constant only.

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements(QQ)
sage: h = -1/3*x + 1/2*y - 1; h
Hyperplane -1/3*x + 1/2*y - 1
sage: h.primitive()
Hyperplane -2*x + 3*y - 6
sage: h == h.primitive() # default
False
sage: (4*x + 8).primitive()
Hyperplane x + 0*y + 2
sage: (4*x - y - 8).primitive(signed=True) # default
Hyperplane 4*x - y - 8

(continues on next page)
```python
sage: (4*x - y - 8).primitive(signed=False)
Hyperplane -4*x + y + 8

to_symmetric_space()
Return self considered as an element in the corresponding symmetric space.

EXAMPLES:

```python
sage: L.<x, y> = HyperplaneArrangements(QQ)
sage: h = -1/3*x + 1/2*y
to_symmetric_space()

```
```
```
```
Traceback (most recent call last):
... ValueError: the hyperplane must pass through the origin

1.4 Affine Subspaces of a Vector Space

An affine subspace of a vector space is a translation of a linear subspace. The affine subspaces here are only used internally in hyperplane arrangements. You should not use them for interactive work or return them to the user.

EXAMPLES:

```python
sage: from sage.geometry.hyperplane_arrangement.affine_subspace import AffineSubspace
sage: a = AffineSubspace([1,0,0,0], QQ^4)
sage: adimension()
4
sage: apoint()
(1, 0, 0, 0)
sage: alinear_part()
Vector space of dimension 4 over Rational Field
sage: a
Affine space p + W where:
 p = (1, 0, 0, 0)
 W = Vector space of dimension 4 over Rational Field
sage: b = AffineSubspace((1,0,0,0), matrix(QQ, [[1,2,3,4]]).right_kernel())
sage: c = AffineSubspace((0,2,0,0), matrix(QQ, [[0,0,1,2]]).right_kernel())
sage: b.intersection(c)
Affine space p + W where:
 p = (-3, 2, 0, 0)
 W = Vector space of degree 4 and dimension 2 over Rational Field
 Basis matrix:
 [1 0 -1 1/2]
 [0 1 -2 1]
sage: b < a
True
sage: c < b
False
```
sage: A = AffineSubspace([8,38,21,250], VectorSpace(GF(19),4))
sage: A
Affine space p + W where:
  p = (8, 0, 2, 3)
  W = Vector space of dimension 4 over Finite Field of size 19

class sage.geometry.hyperplane_arrangement.affine_subspace.AffineSubspace(p, V)
    Bases: sage.structure.sage_object.SageObject

An affine subspace.

INPUT:
  • p – list/tuple/iterable representing a point on the affine space
  • V – vector subspace

OUTPUT:
  Affine subspace parallel to V and passing through p.

EXAMPLES:

sage: from sage.geometry.hyperplane_arrangement.affine_subspace import AffineSubspace
sage: a = AffineSubspace([1,0,0,0], VectorSpace(QQ,4))
sage: a
Affine space p + W where:
  p = (1, 0, 0, 0)
  W = Vector space of dimension 4 over Rational Field

dimension()
    Return the dimension of the affine space.

OUTPUT:
    An integer.

EXAMPLES:

sage: from sage.geometry.hyperplane_arrangement.affine_subspace import AffineSubspace
sage: a = AffineSubspace([1,0,0,0],VectorSpace(QQ,4))
sage: a.dimension()
4

intersection(other)
    Return the intersection of self with other.

INPUT:
  • other – an AffineSubspace

OUTPUT:
    A new affine subspace, (or None if the intersection is empty).

EXAMPLES:
```python
sage: from sage.geometry.hyperplane_arrangement.affine_subspace import AffineSubspace
sage: V = VectorSpace(QQ, 3)
sage: U = V.subspace([[1,0,0], (0,1,0)])
sage: W = V.subspace([[0,1,0], (0,0,1)])
sage: A = AffineSubspace((0,0,0), U)
sage: B = AffineSubspace((1,1,1), W)
sage: A.intersection(B)
Affine space p + W where:
 p = (1, 1, 0)
 W = Vector space of degree 3 and dimension 1 over Rational Field
 Basis matrix:
 [0 1 0]
sage: C = AffineSubspace((0,0,1), U)
sage: A.intersection(C)
sage: C = AffineSubspace((7,8,9), U.complement())
sage: A.intersection(C)
Affine space p + W where:
 p = (7, 8, 0)
 W = Vector space of degree 3 and dimension 0 over Rational Field
 Basis matrix:
 []
sage: A.intersection(C).intersection(B)
```

`linear_part()`

Return the linear part of the affine space.

**OUTPUT:**

A vector subspace of the ambient space.

**EXAMPLES:**

```python
sage: from sage.geometry.hyperplane_arrangement.affine_subspace import AffineSubspace
sage: A = AffineSubspace([2,3,1], matrix(QQ, [[1,2,3]]).right_kernel())
sage: A.linear_part()
Vector space of degree 3 and dimension 2 over Rational Field
 Basis matrix:
 [1 0 -1/3]
 [0 1 -2/3]
sage: A.linear_part().ambient_vector_space()
Vector space of dimension 3 over Rational Field
```

`point()`

Return a point p in the affine space.

**OUTPUT:**

1.4. Affine Subspaces of a Vector Space 55
A point of the affine space as a vector in the ambient space.

EXAMPLES:

```python
sage: from sage.geometry.hyperplane_arrangement.affine_subspace import AffineSubspace
sage: A = AffineSubspace([2,3,1], VectorSpace(QQ,3))
sage: A.point()
(2, 3, 1)
```

1.5 Plotting of Hyperplane Arrangements

PLOT OPTIONS:

Beside the usual plot options (enter `plot?`), the plot command for hyperplane arrangements includes the following:

- **hyperplane_colors** – Color or list of colors, one for each hyperplane (default: equally spread range of hues).
- **hyperplane_labels** – Boolean, 'short', 'long' (default: False). If False, no labels are shown; if 'short' or 'long', the hyperplanes are given short or long labels, respectively. If True, the hyperplanes are given long labels.
- **label_colors** – Color or list of colors, one for each hyperplane (default: black).
- **label_fontsize** – Size for hyperplane_label font (default: 14). This does not work for 3d plots.
- **labelOffsets** – Amount be which labels are offset from h.point() for each hyperplane h. The format is different for each dimension: if the hyperplanes have dimension 0, the offset can be a single number or a list of numbers, one for each hyperplane; if the hyperplanes have dimension 1, the offset can be a single 2-tuple, or a list of 2-tuples, one for each hyperplane; if the hyperplanes have dimension 2, the offset can be a single 3-tuple or a list of 3-tuples, one for each hyperplane. (Defaults: 0-dim: 0.1, 1-dim: 0, 2-dim: (0,0,0.2).)
- **hyperplane_legend** – Boolean, 'short', 'long' (default: 'long'; in 3-d: False). If False, no legend is shown; if True, 'short', or 'long', the legend is shown with the default, long, or short labeling, respectively. (For arrangements of lines or planes, only.)
- **hyperplane_opacities** – A number or list of numbers, one for each hyperplane, between 0 and 1. Only applies to 3d plots.
- **point_sizes** – Number or list of numbers, one for each hyperplane giving the sizes of points in a zero-dimensional arrangement (default: 50).
- **ranges** – Range for the parameters or a list of ranges of parameters, one for each hyperplane, for the parametric plots of the hyperplanes. If a single positive number \( r \) is given for `ranges`, then all parameters run from \(-r\) to \(r\). Otherwise, for a line in the plane, the range has the form \([a,b]\) (default: \([-3,3]\)), and for a plane in 3-space, the range has the form \([[a,b], [c,d]]\) (default: \([-3,3],[-3,3]\)). The ranges are centered around `hyperplane_arrangement.point()`.

EXAMPLES:

```python
sage: H3.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H3([(1,0,0), 0], [(0,0,1), 5])
sage: A.plot(hyperplane_opacities=0.5, hyperplane_labels=True, hyperplane_legend=False)
 # optional - sage.plot
Graphics3d Object
sage: c = H3([[1,0,0],[0,0,1],[0,0,0,1]], [[0,0,1],[0,1,0],[1,0,0],[0,0,0,1]])
```

(continues on next page)
sage: c.plot(ranges=10)  # optional - sage.plot
Graphics3d Object
sage: c.plot(ranges=[[9.5,10], [-3,3]])  # optional - sage.plot
Graphics3d Object
sage: c.plot(ranges=[[9.5,10], [-3,3], [-6,6], [-5,5]])  # optional - sage.plot
Graphics3d Object

sage: H2.<s,t> = HyperplaneArrangements(QQ)
sage: h = H2([(1,1),0], [(1,-1),0], [(0,1),2])
sage: h.plot(ranges=20)  # optional - sage.plot
Graphics object consisting of 3 graphics primitives
sage: h.plot(ranges=[-1, 10])  # optional - sage.plot
Graphics object consisting of 3 graphics primitives
sage: h.plot(ranges=[[-1, 1], [-5, 5], [-1, 10]])  # optional - sage.plot
Graphics object consisting of 3 graphics primitives

sage: a = hyperplane_arrangements.coordinate(3)
sage: opts = {"hyperplane_colors" : ['yellow', 'green', 'blue']}
sage: opts['hyperplane_labels'] = True
sage: opts['label_offsets'] = [(0,2,2), (2,0,2), (2,2,0)]
sage: opts['hyperplane_legend'] = False
sage: opts['hyperplane_opacities'] = 0.7
sage: a.plot(**opts)  # optional - sage.plot
Graphics3d Object
sage: a.plot(hyperplane_labels='short')  # optional - sage.plot
Graphics3d Object

sage: H.<u> = HyperplaneArrangements(QQ)
sage: pts = H(3*u+4, 2*u+5, 7*u+1)
sage: pts.plot(hyperplane_colors=['yellow','black','blue'])  # optional - sage.plot
Graphics object consisting of 3 graphics primitives
sage: pts.plot(point_sizes=[50,100,200], hyperplane_colors='blue')  # optional - sage.plot
Graphics object consisting of 3 graphics primitives

sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: a = H(x, y+1, y+2)
sage: a.plot(hyperplane_labels=True, label_colors='blue', label_fontsize=18)  # optional - sage.plot
Graphics3d Object
sage: a.plot(hyperplane_labels=True, label_colors=['red','green','black'])  # optional - sage.plot
Graphics3d Object

Create plot of a 3d legend for an arrangement of planes in 3-space. The \texttt{length} parameter determines whether short or long labels are used in the legend.

\textbf{INPUT:}

- \texttt{hyperplane\_arrangement} – a hyperplane arrangement

\section*{1.5. Plotting of Hyperplane Arrangements}
• hyperplane_colors – list of colors
• length – either 'short' or 'long'

OUTPUT:
• A graphics object.

EXAMPLES:

```sage
sage: a = hyperplane_arrangements.semiorder(3)
sage: from sage.geometry.hyperplane_arrangement.plot import legend_3d
sage: legend_3d(a, list(colors.values())[:6], length='long')
Graphics object consisting of 6 graphics primitives

sage: b = hyperplane_arrangements.semiorder(4)
sage: c = b.essentialization()
sage: legend_3d(c, list(colors.values())[:12], length='long')
Graphics object consisting of 12 graphics primitives

sage: legend_3d(c, list(colors.values())[:12], length='short')
Graphics object consisting of 12 graphics primitives

sage: p = legend_3d(c, list(colors.values())[:12], length='short')
sage: p.set_legend_options(ncol=4)
sage: type(p)
<class 'sage.plot.graphics.Graphics'>
```

sage.geometry.hyperplane_arrangement.plot.plot(hyperplane_arrangement, **kwds)

Return a plot of the hyperplane arrangement.

If the arrangement is in 4 dimensions but inessential, a plot of the essentialization is returned.

**Note:** This function is available as the `plot()` method of hyperplane arrangements. You should not call this function directly, only through the method.

INPUT:
• hyperplane_arrangement – the hyperplane arrangement to plot
• **kwds – plot options: see `sage.geometry.hyperplane_arrangement.plot`. OUTPUT:
A graphics object of the plot.

EXAMPLES:

```sage
sage: B = hyperplane_arrangements.semiorder(4)
sage: B.plot() # optional - sage.plot
Displaying the essentialization.
Graphics3d Object
```

sage.geometry.hyperplane_arrangement.plot.plot_hyperplane(hyperplane, **kwds)

Return the plot of a single hyperplane.

INPUT:
• **kwds – plot options: see below
OUTPUT:
A graphics object of the plot.

Plot Options

Beside the usual plot options (enter `plot?`), the plot command for hyperplanes includes the following:

- `hyperplane_label` – Boolean value or string (default: `True`). If `True`, the hyperplane is labeled with its equation, if a string, it is labeled by that string, otherwise it is not labeled.

- `label_color` – (Default: `'black'`) Color for `hyperplane_label`.

- `label_fontsize` – Size for `hyperplane_label` font (default: 14) (does not work in 3d, yet).

- `label_offset` – (Default: 0-dim: 0.1, 1-dim: (0,1), 2-dim: (0,0,0.2)) Amount by which label is offset from `hyperplane.point()`.

- `point_size` – (Default: 50) Size of points in a zero-dimensional arrangement or of an arrangement over a finite field.

- `ranges` – Range for the parameters for the parametric plot of the hyperplane. If a single positive number `r` is given for the value of `ranges`, then the ranges for all parameters are set to `[-r, r]`. Otherwise, for a line in the plane, `ranges` has the form `[a, b]` (default: `[-3,3]`), and for a plane in 3-space, the `ranges` has the form `[[a, b], [c, d]]` (default: `[[[-3,3], [-3,3]]`). (The ranges are centered around `hyperplane.point()`.)

EXAMPLES:

```sage
sage: H1.<x> = HyperplaneArrangements(QQ)
sage: a = 3*x + 4
sage: a.plot() # indirect doctest # optional - sage.plot
Graphics object consisting of 3 graphics primitives
sage: a.plot(point_size=100,hyperplane_label='hello') # optional - sage.plot
Graphics object consisting of 3 graphics primitives

sage: H2.<x,y> = HyperplaneArrangements(QQ)
sage: b = 3*x + 4*y + 5
sage: b.plot() # optional - sage.plot
Graphics object consisting of 2 graphics primitives
sage: b.plot(ranges=(1,5),label_offset=(2,-1)) # optional - sage.plot
Graphics object consisting of 2 graphics primitives
sage: opts = {'hyperplane_label':True, 'label_color':'green', ...
 'label_fontsize':24, 'label_offset':(0,1.5)}
sage: b.plot(**opts) # optional - sage.plot
Graphics object consisting of 2 graphics primitives

sage: H3.<x,y,z> = HyperplaneArrangements(QQ)
sage: c = 2*x + 3*y + 4*z + 5
sage: c.plot() # optional - sage.plot
Graphics3d Object
sage: c.plot(label_offset=(1,0,1), color='green', label_color='red', frame=False)
Graphics3d Object
sage: d = -3*x + 2*y + 2*z + 3
sage: d.plot(opacity=0.8) # optional - sage.plot
Graphics3d Object
```

(continues on next page)
sage: e = 4*x + 2*z + 3
sage: e.plot(ranges=[[-1,1],[0,8]], label_offset=(2,2,1), aspect_ratio=1)  # optional - sage.plot
Graphics3d Object
2.1 Polyhedra

2.1.1 Library of commonly used, famous, or interesting polytopes

This module gathers several constructors of polytopes that can be reached through polytopes. For example, here is the hypercube in dimension 5:

```sage
polytopes.hypercube(5)
```

A 5-dimensional polyhedron in ZZ^5 defined as the convex hull of 32 vertices

The following constructions are available:

- Birkhoff_polytope()
- associahedron()
- bitruncated_six_hundred_cell()
- buckyball()
- cantellated_one_hundred_twenty_cell()
- cantellated_six_hundred_cell()
- cantitruncated_one_hundred_twenty_cell()
- cantitruncated_six_hundred_cell()
- cross_polytope()
- cube()
- cuboctahedron()
- cyclic_polytope()
- dodecahedron()
- flow_polytope()
- Gosset_3_21()
- grand_antiprism()
- great_rhombicuboctahedron()
- hypercube()
- hypersimplex()
- icosahedron()
- icosidodecahedron()
- Kirkman_icosahedron()
- octahedron()
- omnitruncated_one_hundred_twenty_cell()
- omnitruncated_six_hundred_cell()
- one_hundred_twenty_cell()
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Polytope</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallelootope()</td>
</tr>
<tr>
<td>pentakis_dodecahedron()</td>
</tr>
<tr>
<td>permutahedron()</td>
</tr>
<tr>
<td>generalized_permutahedron()</td>
</tr>
<tr>
<td>rectified_one_hundred_twenty_cell()</td>
</tr>
<tr>
<td>rectified_six_hundred_cell()</td>
</tr>
<tr>
<td>regular_polygon()</td>
</tr>
<tr>
<td>rhombic_dodecahedron()</td>
</tr>
<tr>
<td>rhombicosidodecahedron()</td>
</tr>
<tr>
<td>runcinated_one_hundred_twenty_cell()</td>
</tr>
<tr>
<td>runcitruncated_one_hundred_twenty_cell()</td>
</tr>
<tr>
<td>runcitruncated_six_hundred_cell()</td>
</tr>
<tr>
<td>simplex()</td>
</tr>
<tr>
<td>six_hundred_cell()</td>
</tr>
<tr>
<td>small_rhombicuboctahedron()</td>
</tr>
<tr>
<td>snub_cube()</td>
</tr>
<tr>
<td>snub_dodecahedron()</td>
</tr>
<tr>
<td>tetrahedron()</td>
</tr>
<tr>
<td>truncated_cube()</td>
</tr>
<tr>
<td>truncated_dodecahedron()</td>
</tr>
<tr>
<td>truncated_icosidodecahedron()</td>
</tr>
<tr>
<td>truncated_tetrahedron()</td>
</tr>
<tr>
<td>truncated_octahedron()</td>
</tr>
<tr>
<td>truncated_one_hundred_twenty_cell()</td>
</tr>
<tr>
<td>truncated_six_hundred_cell()</td>
</tr>
<tr>
<td>twenty_four_cell()</td>
</tr>
</tbody>
</table>

class sage.geometry.polyhedron.library.Polytopes

Bases: object

A class of constructors for commonly used, famous, or interesting polytopes.

**Birkhoff_polytope**\((n, backend=None)\)

Return the Birkhoff polytope with \(n\) vertices.

The vertices of this polyhedron are the (flattened) \(n\) by \(n\) permutation matrices. So the ambient vector space has dimension \(n^2\) but the dimension of the polyhedron is \((n - 1)^2\).

**INPUT:**

- \(n\) – a positive integer giving the size of the permutation matrices.
- \(backend\) – the backend to use to create the polytope.

**See also:**

sage.matrix.matrix2.Matrix.as_sum_of_permutations() – return the current matrix as a sum of permutation matrices

**EXAMPLES:**

```
sage: b3 = polytopes.Birkhoff_polytope(3)
sage: b3.f_vector()
(1, 6, 15, 18, 9, 1)
sage: b3.ambient_dim(), b3.dim()
(9, 4)
```
sage: b3.is_lattice_polytope()
True
sage: p3 = b3.ehrhart_polynomial()  # optional - latte_int
sage: p3
1/8*t^4 + 3/4*t^3 + 15/8*t^2 + 9/4*t + 1
sage: [p3(i) for i in [1,2,3,4]]  # optional - latte_int
[6, 21, 55, 120]

sage: b4 = polytopes.Birkhoff_polytope(4)
sage: b4.n_vertices(), b4.ambient_dim(), b4.dim()
(24, 16, 9)

Gosset_3_21(backend=None)

Return the Gosset 3_21 polytope.

The Gosset 3_21 polytope is a uniform 7-polytope. It has 56 vertices, and 702 facets: 126 3_11 and 576 6-simplex. For more information, see the Wikipedia article 3_21_polytope.

INPUT:

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: g = polytopes.Gosset_3_21(); g
A 7-dimensional polyhedron in ZZ^8 defined as the convex hull of 56 vertices
sage: g.f_vector()  # not tested (~16s)
(1, 56, 756, 4032, 10080, 12096, 6048, 702, 1)

Kirkman_icosahedron(backend=None)

Return the Kirkman icosahedron.

The Kirkman icosahedron is a 3-polytope with integer coordinates: (±9, ±6, ±6), (±12, ±4, 0), (0, ±12, ±8), (±6, 0, ±12). See [Fe2012] for more information.

INPUT:

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: ki = polytopes.Kirkman_icosahedron()
sage: ki.f_vector()
(1, 20, 38, 20, 1)
sage: ki.volume()
6528
sage: vertices = ki.vertices()
sage: edges = [[vertex(edge[0]), vertex(edge[1])] for edge in ki.bounded_edges()]
sage: edge_lengths = [norm(edge[0] - edge[1]) for edge in edges]
sage: sorted(set(edge_lengths))
[7, 8, 9, 11, 12, 14, 16]
bitruncated_six_hundred_cell\((exact=True, backend=None)\)

Return the bitruncated 600-cell.

The bitruncated 600-cell is a 4-dimensional 4-uniform polytope in the \(H_4\) family. It has 3600 vertices. For more information see Wikipedia article Bitruncated 600-cell.

**Warning:** The coordinates are exact by default. The computation with inexact coordinates (using the backend 'cdd') returns a numerical inconsistency error, and thus cannot be computed.

**INPUT:**

- `exact` - (boolean, default True) if True use exact coordinates instead of floating point approximations.
- `backend` – the backend to use to create the polytope.

**EXAMPLES:**

```python
sage: polytopes.runcinated_six_hundred_cell(exact=True, backend='normaliz') # not tested - very long time
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 3600 vertices
```

buckyball\((exact=True, base_ring=None, backend=None)\)

Return the bucky ball.

The bucky ball, also known as the truncated icosahedron is an Archimedean solid. It has 32 faces and 60 vertices.

**See also:**

`icosahedron()`

**INPUT:**

- `exact` – (boolean, default True) If False use an approximate ring for the coordinates.
- `base_ring` – the ring in which the coordinates will belong to. If it is not provided and exact=True it will be a the number field \(\mathbb{Q}[\phi]\) where \(\phi\) is the golden ratio and if exact=False it will be the real double field.
- `backend` – the backend to use to create the polytope.

**EXAMPLES:**

```python
sage: bb = polytopes.buckyball() # long time - 6secs
optional - sage.rings.number_field
sage: bb.f_vector() # long time
(1, 60, 90, 32, 1)
optional - sage.rings.number_field
(1, 60, 90, 32, 1)
sage: bb.base_ring() # long time
optional - sage.rings.number_field
Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.
optional - sage.rings.number_field
Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.
```

A much faster implementation using floating point approximations:

```python
sage: bb = polytopes.buckyball(exact=False)
sage: bb.f_vector()
(1, 60, 90, 32, 1)
```
Its facets are 5 regular pentagons and 6 regular hexagons:

\[
\text{sage: } \sum(1 \text{ for } f \text{ in } bb.\text{facets()} \text{ if } \text{len}(f.\text{vertices()}) == 5) \\
12
\]

\[
\text{sage: } \sum(1 \text{ for } f \text{ in } bb.\text{facets()} \text{ if } \text{len}(f.\text{vertices()}) == 6) \\
20
\]

cantellated_one_hundred_twenty_cell(exact=True, backend=None)
Return the cantellated 120-cell.

The cantellated 120-cell is a 4-dimensional 4-uniform polytope in the \(H_4\) family. It has 3600 vertices. For more information see Wikipedia article Cantellated 120-cell.

**Warning:** The coordinates are exact by default. The computation with inexact coordinates (using the backend 'cdd') returns a numerical inconsistency error, and thus cannot be computed.

**INPUT:**
- `exact` - (boolean, default True) if True use exact coordinates instead of floating point approximations.
- `backend` – the backend to use to create the polytope.

**EXAMPLES:**

\[
\text{sage: polytopes.cantellated_one_hundred_twenty_cell(backend='normaliz') } # \text{ not tested - long time} \\
\text{doctest:warning...} \\
\text{UserWarning: This polyhedron data is numerically complicated; cdd} \\
\text{could not convert between the inexact V and H representation}
\]

cantellated_six_hundred_cell(exact=False, backend=None)
Return the cantellated 600-cell.

The cantellated 600-cell is a 4-dimensional 4-uniform polytope in the \(H_4\) family. It has 3600 vertices. For more information see Wikipedia article Cantellated 600-cell.

**Warning:** The coordinates are inexact by default. The computation with inexact coordinates (using the backend 'cdd') issues a UserWarning on inconsistencies.

**INPUT:**
- `exact` - (boolean, default False) if True use exact coordinates instead of floating point approximations.
- `backend` – the backend to use to create the polytope.

**EXAMPLES:**

\[
\text{sage: polytopes.cantellated_six_hundred_cell() } # \text{ not tested - very long time} \\
\text{doctest:warning} \\
\text{...} \\
\text{UserWarning: This polyhedron data is numerically complicated; cdd} \\
\text{could not convert between the inexact V and H representation}
\]
without loss of data. The resulting object might show inconsistencies.
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 3600 vertices

It is possible to use the backend 'normaliz' to get an exact representation:

\[ \text{sage: polytopes.cantellated_six_hundred_cell(exact=True,backend='normaliz')} \]
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 3600 vertices

\[ \text{cantitruncated_one_hundred_twenty_cell(exact=True,backend=None)} \]
Return the cantitruncated 120-cell.
The cantitruncated 120-cell is a 4-dimensional 4-uniform polytope in the $H_4$ family. It has 7200 vertices.
For more information see Wikipedia article Cantitruncated 120-cell.

**Warning:** The coordinates are exact by default. The computation with inexact coordinates (using the backend 'cdd') returns a numerical inconsistency error, and thus cannot be computed.

**INPUT:**
- `exact` - (boolean, default True) if True use exact coordinates instead of floating point approximations.
- `backend` – the backend to use to create the polytope.

**EXAMPLES:**

\[ \text{sage: polytopes.cantitruncated_one_hundred_twenty_cell(exact=True,backend='normaliz')} \]
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 7200 vertices

\[ \text{cantitruncated_six_hundred_cell(exact=True,backend=None)} \]
Return the cantitruncated 600-cell.
The cantitruncated 600-cell is a 4-dimensional 4-uniform polytope in the $H_4$ family. It has 7200 vertices.
For more information see Wikipedia article Cantitruncated 600-cell.

**Warning:** The coordinates are exact by default. The computation with inexact coordinates (using the backend 'cdd') returns a numerical inconsistency error, and thus cannot be computed.

**INPUT:**
- `exact` - (boolean, default True) if True use exact coordinates instead of floating point approximations.
- `backend` – the backend to use to create the polytope.

**EXAMPLES:**

\[ \text{sage: polytopes.cantitruncated_six_hundred_cell(exact=True,backend='normaliz')} \]
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 7200 vertices

\[ \text{cross_polytope(dim,backend=None)} \]
Return a cross-polytope in dimension `dim`. 

Chapter 2. Polyhedral computations
A cross-polytope is a higher dimensional generalization of the octahedron. It is the convex hull of the $2d$ points $(\pm 1, 0, \ldots, 0), (0, \pm 1, \ldots, 0), \ldots, (0, 0, \ldots, \pm 1)$. See the Wikipedia article Cross-polytope for more information.

**INPUT:**
- **dim** – integer. The dimension of the cross-polytope.
- **backend** – the backend to use to create the polytope.

**EXAMPLES:**

```sage
sage: four_cross = polytopes.cross_polytope(4)
sage: four_cross.f_vector()
(1, 8, 24, 32, 16, 1)
sage: four_cross.is_simple()
False
```

cube(intervals=None, backend=None)

Return the cube.

The cube is the Platonic solid that is obtained as the convex hull of the eight $\pm 1$ vectors of length 3 (by default). Alternatively, the cube is the product of three intervals from `intervals`.

See also:
- hypercube()  

**INPUT:**
- **intervals** – list (default=None). It takes the following possible inputs:
  - If the input is `None` (the default), returns the convex hull of the eight $\pm 1$ vectors of length three.
  - `'zero_one'` – (string). Return the 0/1-cube.
  - a list of 3 lists of length 2. The cube will be a product of these three intervals.
- **backend** – the backend to use to create the polytope.

**OUTPUT:**
A cube as a polyhedron object.

**EXAMPLES:**

Return the $\pm 1$-cube:

```sage
sage: c = polytopes.cube()
sage: c
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: c.f_vector()
(1, 8, 12, 6, 1)
sage: c.volume()
8
sage: c.plot() # optional - sage.plot
Graphics3d Object
```

Return the 0/1-cube:

```sage
sage: cc = polytopes.cube(intervals = 'zero_one')
sage: cc.vertices_list()
```

(continues on next page)
cuboctahedron(backend=None)
Return the cuboctahedron.

The cuboctahedron is an Archimedean solid with 12 vertices and 14 faces dual to the rhombic dodecahedron. It can be defined as the convex hull of the twelve vertices \((0, \pm 1, \pm 1), (\pm 1, 0, \pm 1)\) and \((\pm 1, \pm 1, 0)\). For more information, see the Wikipedia article Cuboctahedron.

**INPUT:**

- backend – the backend to use to create the polytope.

**See also:**

* rhombic_dodecahedron()

**EXAMPLES:**

```sage
sage: co = polytopes.cuboctahedron()
sage: co.f_vector()
(1, 12, 24, 14, 1)
```

Its facets are 8 triangles and 6 squares:

```sage
sage: sum(1 for f in co.facets() if len(f.vertices()) == 3)
8
sage: sum(1 for f in co.facets() if len(f.vertices()) == 4)
6
```

Some more computation:

```sage
sage: co.volume()
20/3
sage: co.ehrhart_polynomial() # optional - latte_int
20/3*t^3 + 8*t^2 + 10/3*t + 1
```

cyclic_polytope(dim, n, base_ring=QQ, backend=None)
Return a cyclic polytope.

A cyclic polytope of dimension \(\dim\) with \(n\) vertices is the convex hull of the points \((t, t^2, \ldots, t^\dim)\) with \(t \in \{0, 1, \ldots, n - 1\}\). For more information, see the Wikipedia article Cyclic_polytope.

**INPUT:**

- \(\dim\) – positive integer. the dimension of the polytope.
- \(n\) – positive integer. the number of vertices.
- base_ring – either QQ (default) or RDF.
- backend – the backend to use to create the polytope.
EXAMPLES:

```python
sage: c = polytopes.cyclic_polytope(4,10)
sage: c.f_vector()
(1, 10, 45, 70, 35, 1)
```

dodecahedron(exact=True, base_ring=None, backend=None)

Return a dodecahedron.

The dodecahedron is the Platonic solid dual to the icosahedron().

INPUT:

- **exact** – (boolean, default True) If False use an approximate ring for the coordinates.
- **base_ring** – (optional) the ring in which the coordinates will belong to. Note that this ring must contain $\sqrt{5}$. If it is not provided and exact=True it will be the number field $\mathbb{Q}[\sqrt{5}]$ and if exact=False it will be the real double field.
- **backend** – the backend to use to create the polytope.

EXAMPLES:

```python
sage: d12 = polytopes.dodecahedron()
optional - sage.rings.number_field
sage: d12.f_vector()
optional - sage.rings.number_field
(1, 20, 30, 12, 1)
sage: d12.volume()
optional - sage.rings.number_field
-176*sqrt5 + 400
sage: numerical_approx(_)
optional - sage.rings.number_field
6.45203596003699
sage: d12 = polytopes.dodecahedron(exact=False)
sage: d12.base_ring()
Real Double Field
```

Here is an error with a field that does not contain $\sqrt{5}$:

```python
sage: polytopes.dodecahedron(base_ring=QQ)
optional - sage.symbolic
Traceback (most recent call last):
...TypeError: unable to convert 1/4*sqrt(5) + 1/4 to a rational
```

static edge_polytope(backend=None)

Return the edge polytope of self.

The edge polytope (EP) of a Graph on $n$ vertices is the polytope in $\mathbb{Z}^n$ defined as the convex hull of $e_i + e_j$ for each edge $(i,j)$. Here $e_1, \ldots, e_n$ denotes the standard basis.

INPUT:

- **backend** – string or None (default); the backend to use; see `sage.geometry.polyhedron.constructor.Polyhedron()`

EXAMPLES:
The EP of a 4-cycle is a square:

```
sage: G = graphs.CycleGraph(4)
sage: P = G.edge_polytope(); P
A 2-dimensional polyhedron in ZZ^4 defined as the convex hull of 4 vertices
```

The EP of a complete graph on 4 vertices is cross polytope:

```
sage: G = graphs.CompleteGraph(4)
sage: P = G.edge_polytope(); P
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 6 vertices
sage: P.is_combinatorially_isomorphic(polytopes.cross_polytope(3))
True
```

The EP of a graph is isomorphic to the subdirect sum of its connected components EPs:

```
sage: n = randint(3, 6)
sage: G1 = graphs.RandomGNP(n, 0.2)
sage: n = randint(3, 6)
sage: G2 = graphs.RandomGNP(n, 0.2)
sage: G = G1.disjoint_union(G2)
sage: P = G.edge_polytope()
sage: P1 = G1.edge_polytope()
sage: P2 = G2.edge_polytope()
sage: P.is_combinatorially_isomorphic(P1.subdirect_sum(P2))
True
```

All trees on $n$ vertices have isomorphic EPs:

```
sage: n = randint(4, 10)
sage: G1 = graphs.RandomTree(n)
sage: G2 = graphs.RandomTree(n)
sage: P1 = G1.edge_polytope()
sage: P2 = G2.edge_polytope()
sage: P1.is_combinatorially_isomorphic(P2)
True
```

However, there are still many different EPs:

```
sage: len(list(graphs(5)))
34
sage: polys = []
sage: for G in graphs(5):
.....: P = G.edge_polytope()
.....: for P1 in polys:
.....: if P.is_combinatorially_isomorphic(P1):
.....: break
.....: else:
.....: polys.append(P)
sage: len(polys)
19
```

```
static flow_polytope(edges=None, ends=None, backend=None)
Return the flow polytope of a digraph.
```
The flow polytope of a directed graph is the polytope consisting of all nonnegative flows on the graph with a given set $S$ of sources and a given set $T$ of sinks.

A flow on a directed graph $G$ with a given set $S$ of sources and a given set $T$ of sinks means an assignment of a nonnegative real to each edge of $G$ such that the flow is conserved in each vertex outside of $S$ and $T$, and there is a unit of flow entering each vertex in $S$ and a unit of flow leaving each vertex in $T$. These flows clearly form a polytope in the space of all assignments of reals to the edges of $G$.

The polytope is empty unless the sets $S$ and $T$ are equinumerous.

By default, $S$ is taken to be the set of all sources (i.e., vertices of indegree 0) of $G$, and $T$ is taken to be the set of all sinks (i.e., vertices of outdegree 0) of $G$. If a different choice of $S$ and $T$ is desired, it can be specified using the optional ends parameter.

The polytope is returned as a polytope in $\mathbb{R}^m$, where $m$ is the number of edges of the digraph self. The $k$-th coordinate of a point in the polytope is the real assigned to the $k$-th edge of self. The order of the edges is the one returned by self.edges(). If a different order is desired, it can be specified using the optional edges parameter.

The faces and volume of these polytopes are of interest. Examples of these polytopes are the Chan-Robbins-Yuen polytope and the Pitman-Stanley polytope [PS2002].

INPUT:

• edges – list (default: None); a list of edges of self. If not specified, the list of all edges of self is used with the default ordering of self.edges(). This determines which coordinate of a point in the polytope will correspond to which edge of self. It is also possible to specify a list which contains not all edges of self; this results in a polytope corresponding to the flows which are 0 on all remaining edges. Notice that the edges entered here must be in the precisely same format as outputted by self.edges(); so, if self.edges() outputs an edge in the form (1, 3, None), then (1, 3) will not do!

• ends – (optional, default: (self.sources(), self.sinks())) a pair $(S, T)$ of an iterable $S$ and an iterable $T$.

• backend – string or None (default); the backend to use: see sage.geometry.polyhedron.constructor.Polyhedron()

Note: Flow polytopes can also be built through the polytopes.<tab> object:

\[
\text{sage: polytopes.flow_polytope(digraphs.Path(5))}
\]

A 0-dimensional polyhedron in $\mathbb{Q}^4$ defined as the convex hull of 1 vertex

EXAMPLES:

A commutative square:

\[
\text{sage: G = DiGraph({1: [2, 3], 2: [4], 3: [4]})}
\]
\[
\text{sage: fl = G.flow_polytope(); fl}
\]

A 1-dimensional polyhedron in $\mathbb{Q}^4$ defined as the convex hull of 2 vertices

\[
\text{sage: fl.vertices()}
\]

(A vertex at (0, 1, 0, 1), A vertex at (1, 0, 1, 0))

Using a different order for the edges of the graph:
A tournament on 4 vertices:

```
sage: H = digraphs.TransitiveTournament(4)
sage: fl = H.flow_polytope(); fl
A 3-dimensional polyhedron in QQ^6 defined as the convex hull of 4 vertices
sage: fl.vertices()
(A vertex at (0, 0, 0, 1, 0, 0),
 A vertex at (0, 1, 0, 0, 0, 1),
 A vertex at (1, 0, 0, 0, 1, 0),
 A vertex at (1, 0, 0, 1, 0, 1))
```

Restricting to a subset of the edges:

```
sage: fl = H.flow_polytope(edges=[(0, 1, None), (1, 2, None),
 (2, 3, None), (0, 3, None)])
sage: fl
A 1-dimensional polyhedron in QQ^4 defined as the convex hull of 2 vertices
sage: fl.vertices()
(A vertex at (0, 0, 0, 1), A vertex at (1, 1, 1, 0))
```

Using a different choice of sources and sinks:

```
sage: fl = H.flow_polytope(ends=([1], [3])); fl
A 1-dimensional polyhedron in QQ^6 defined as the convex hull of 2 vertices
sage: fl.vertices()
(A vertex at (0, 0, 0, 1), A vertex at (1, 1, 1, 0))
```

```
sage: fl = H.flow_polytope(ends=([0, 1], [2, 3])); fl
A 3-dimensional polyhedron in QQ^6 defined as the convex hull of 5 vertices
sage: fl.vertices()
(A vertex at (0, 0, 1, 1, 0, 0),
 A vertex at (0, 1, 0, 0, 1, 0),
 A vertex at (1, 0, 0, 1, 0, 1),
 A vertex at (1, 0, 0, 1, 0, 1),
 A vertex at (0, 1, 0, 0, 1, 0))
```

```
sage: fl = H.flow_polytope(edges=[(0, 1, None), (1, 2, None),
 (2, 3, None), (0, 2, None),
 (1, 3, None),
 ends=[(0, 1), (2, 3)]); fl
A 2-dimensional polyhedron in QQ^5 defined as the convex hull of 4 vertices
```

(continues on next page)
A digraph with one source and two sinks:

```
sage: Y = DiGraph({1: [2], 2: [3, 4]})
sage: Y.flow_polytope()
The empty polyhedron in QQ^3
```

A digraph with one vertex and no edge:

```
sage: Z = DiGraph({1: []})
sage: Z.flow_polytope()
A 0-dimensional polyhedron in QQ^0 defined as the convex hull of 1 vertex
```

A digraph with multiple edges (trac ticket #28837):

```
sage: G = DiGraph([(0, 1), (0,1)], multiedges=True)
sage: G
Multi-digraph on 2 vertices
sage: P = G.flow_polytope()
sage: P
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices
sage: P.vertices()
(A vertex at (1, 0), A vertex at (0, 1))
sage: P.lines()
()
```

```
genralized_permutahedron(coxeter_type, point=None, exact=True, regular=False, backend=None)

Return the generalized permutahedron of type coxeter_type as the convex hull of the orbit of point in the fundamental cone.

This generalized permutahedron lies in the vector space used in the geometric representation, that is, in the default case, the dimension of generalized permutahedron equals the dimension of the space.

INPUT:

- **coxeter_type** – a Coxeter type; given as a pair [type,rank], where type is a letter and rank is the number of generators.
- **point** – a list (default: None); a point given by its coordinates in the weight basis. If None is given, the point (1,1,1,...) is used.
- **exact** – (boolean, default True) if False use floating point approximations instead of exact coordinates
- **regular** – boolean (default: False); whether to apply a linear transformation making the vertex figures isometric.
- **backend** – backend to use to create the polytope; (default: None)

EXAMPLES:
```
sage: perm_a3 = polytopes.generalized_permutahedron(['A',3]); perm_a3
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 24 vertices

You can put the starting point along the hyperplane of the first generator:

sage: perm_a3_011 = polytopes.generalized_permutahedron(['A',3],[0,1,1]); perm_a3_011
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 12 vertices

sage: perm_a3_110 = polytopes.generalized_permutahedron(['A',3],[1,1,0]); perm_a3_110
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 12 vertices

sage: perm_a3_011.is_combinatorially_isomorphic(perm_a3_110)
True

sage: perm_a3_101 = polytopes.generalized_permutahedron(['A',3],[1,0,1]); perm_a3_101
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 12 vertices

sage: perm_a3_110.is_combinatorially_isomorphic(perm_a3_101)
False

sage: perm_a3_011.f_vector()
(1, 12, 18, 8, 1)

sage: perm_a3_101.f_vector()
(1, 12, 24, 14, 1)

The usual output does not necessarily give a polyhedron with isometric vertex figures:

sage: perm_a2 = polytopes.generalized_permutahedron(['A',2])

sage: perm_a2.vertices()
(A vertex at (-1, -1),
 A vertex at (-1, 0),
 A vertex at (0, -1),
 A vertex at (0, 1),
 A vertex at (1, 0),
 A vertex at (1, 1))

Setting regular=True applies a linear transformation to get isometric vertex figures and the result is inscribed. Even though there are traces of small numbers, the internal computations are done using an exact embedded NumberField:

sage: perm_a2_reg = polytopes.generalized_permutahedron(['A',2],regular=True)

sage: V = sorted(perm_a2_reg.vertices()); V  # random
[A vertex at (-1, 0),
 A vertex at (-1/2, -0.866025403784439?),
 A vertex at (-1/2, 0.866025403784439?),
 A vertex at (1/2, -0.866025403784439?),
 A vertex at (1/2, 0.866025403784439?),
 A vertex at (1.000000000000000?, 0.?e-18)]

sage: for v in V:
......:     for x in v:
......:         x.exactify()

sage: V
[A vertex at (-1, 0),
 A vertex at (-1/2, -0.866025403784439?),
 A vertex at (-1/2, -0.866025403784439?),
 A vertex at (-1/2, 0.866025403784439?),
 A vertex at (1/2, 0.866025403784439?),
 A vertex at (1.000000000000000?, 0.?e-18)]
A vertex at $(1/2, -0.866025403784439?)$, 
A vertex at $(1/2, 0.866025403784439?)$, 
A vertex at $(1, 0)$

```
sage: perm_a2_reg.is_inscribed()
True
sage: perm_a3_reg = polytopes.generalized_permutahedron(['A',3],regular=True)
long time
sage: perm_a3_reg.is_inscribed()
long time
True
```

The same is possible with vertices in RDF:

```
sage: perm_a2_inexact = polytopes.generalized_permutahedron(['A',2],exact=False)
sage: sorted(perm_a2_inexact.vertices())
[A vertex at (-1.0, -1.0),
 A vertex at (-1.0, 0.0),
 A vertex at (0.0, -1.0),
 A vertex at (0.0, 1.0),
 A vertex at (1.0, 0.0),
 A vertex at (1.0, 1.0)]
sage: perm_a2_inexact_reg = polytopes.generalized_permutahedron(['A',2],exact=False,regular=True)
sage: sorted(perm_a2_inexact_reg.vertices())
[A vertex at (-1.0, 0.0),
 A vertex at (-0.5, -0.8660254038),
 A vertex at (-0.5, 0.8660254038),
 A vertex at (0.5, -0.8660254038),
 A vertex at (0.5, 0.8660254038),
 A vertex at (1.0, 0.0)]
```

It works also with types with non-rational coordinates:

```
sage: perm_b3 = polytopes.generalized_permutahedron(['B',3]); perm_b3
long time
A 3-dimensional polyhedron in (Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?)^3 defined as the convex hull of 48 vertices
sage: perm_b3_reg = polytopes.generalized_permutahedron(['B',3],regular=True);perm_b3_reg
not tested - long time (12sec on 64 bits).
A 3-dimensional polyhedron in AA^3 defined as the convex hull of 48 vertices
```

It is faster with the backend 'normaliz':

```
sage: perm_b3_reg_norm = polytopes.generalized_permutahedron(['B',3],regular=True,backend='normaliz') # optional - pynormaliz
sage: perm_b3_reg_norm # optional - pynormaliz
A 3-dimensional polyhedron in AA^3 defined as the convex hull of 48 vertices
```

The backend 'normaliz' allows further faster computation in the non-rational case:
sage: perm_h3 = polytopes.generalized_permutahedron(['H',3],backend='normaliz')  # optional - pynormaliz
sage: perm_h3  # optional - pynormaliz
A 3-dimensional polyhedron in (Number Field in a with defining polynomial x^2 - 5 with a = 2.36067977499790?)^3 defined as the convex hull of 120 vertices

sage: perm_f4 = polytopes.generalized_permutahedron(['F',4],backend='normaliz')  # optional - pynormaliz, long time
sage: perm_f4  # optional - pynormaliz, long time
A 4-dimensional polyhedron in (Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?)^4 defined as the convex hull of 1152 vertices

See also:

• permutahedron()
• permutahedron()

grand_antiprism(exact=True, backend=None, verbose=False)

Return the grand antiprism.

The grand antiprism is a 4-dimensional non-Wythoffian uniform polytope. The coordinates were taken from http://eusebeia.dyndns.org/4d/gap. For more information, see the Wikipedia article Grand_antiprism.

Warning: The coordinates are exact by default. The computation with exact coordinates is not as fast as with floating point approximations. If you find this method to be too slow, consider using floating point approximations.

INPUT:

• exact - (boolean, default True) if False use floating point approximations instead of exact coordinates
• backend – the backend to use to create the polytope.

EXAMPLES:

sage: gap = polytopes.grand_antiprism()  # not tested - very long time
sage: gap  # not tested - very long time
A 4-dimensional polyhedron in (Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.236067977499790?)^4 defined as the convex hull of 100 vertices

Computation with the backend 'normaliz' is instantaneous:

sage: gap_norm = polytopes.grand_antiprism(backend='normaliz')  # optional - pynormaliz
sage: gap_norm  # optional - pynormaliz
A 4-dimensional polyhedron in (Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.236067977499790?)^4 defined as the convex hull of 100 vertices

Computation with approximated coordinates is also faster, but inexact:
sage: gap = polytopes.grand_antiprism(exact=False) # random
sage: gap
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 100 vertices
sage: gap.f_vector()
(1, 100, 500, 720, 320, 1)
sage: len(list(gap.bounded_edges()))
500

great_rhombicuboctahedron(exact=True, base_ring=None, backend=None)
Return the great rhombicuboctahedron.

The great rhombicuboctahedron (or truncated cuboctahedron) is an Archimedean solid with 48 vertices and 26 faces. For more information see the Wikipedia article Truncated_cuboctahedron.

INPUT:

• exact – (boolean, default True) If False use an approximate ring for the coordinates.

• base_ring – the ring in which the coordinates will belong to. If it is not provided and exact=True it will be a the number field \( \mathbb{Q}[\phi] \) where \( \phi \) is the golden ratio and if exact=False it will be the real double field.

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: gr = polytopes.great_rhombicuboctahedron() # long time ~ 3sec  # optional - sage.rings.number_field
sage: gr.f_vector() # long time  # optional - sage.rings.number_field
(1, 48, 72, 26, 1)

A faster implementation is obtained by setting exact=False:

sage: gr = polytopes.great_rhombicuboctahedron(exact=False)
sage: gr.f_vector()
(1, 48, 72, 26, 1)

Its facets are 4 squares, 8 regular hexagons and 6 regular octagons:

sage: sum(1 for f in gr.facets() if len(f.vertices()) == 4)
12
sage: sum(1 for f in gr.facets() if len(f.vertices()) == 6)
8
sage: sum(1 for f in gr.facets() if len(f.vertices()) == 8)
6

hypercube(dim, intervals=None, backend=None)
Return a hypercube of the given dimension.

The \( \dim \)-dimensional hypercube is by default the convex hull of the \( 2^{\dim} \pm 1 \) vectors of length \( \dim \). Alternatively, it is the product of \( \dim \) line segments given in the intervals. For more information see the wikipedia article Wikipedia article Hypercube.

INPUT:

• \( \dim \) – integer. The dimension of the hypercube.

• intervals – (default = None). It takes the following possible inputs:
- If None (the default), it returns the ±1-cube of dimension \( \text{dim} \).
- 'zero_one' – (string). Return the 0/1-cube.
- a list of length \( \text{dim} \). Its elements are pairs of numbers \((a, b)\) with \(a < b\). The cube will be the product of these intervals.

- backend – the backend to use to create the polytope.

**EXAMPLES:**

Create the ±1-hypercube of dimension 4:

```python
sage: four_cube = polytopes.hypercube(4)
sage: four_cube.is_simple()
True
sage: four_cube.base_ring()
Integer Ring
sage: four_cube.volume()
16
sage: four_cube.ehrhart_polynomial()
optional - latte_int
16*t^4 + 32*t^3 + 24*t^2 + 8*t + 1
```

Return the 0/1-hypercube of dimension 4:

```python
sage: z_cube = polytopes.hypercube(4, intervals = 'zero_one')
sage: z_cube.vertices()[0]
A vertex at (1, 0, 1, 1)
sage: z_cube.is_simple()
True
sage: z_cube.base_ring()
Integer Ring
sage: z_cube.volume()
1
sage: z_cube.ehrhart_polynomial()
optional - latte_int
t^4 + 4*t^3 + 6*t^2 + 4*t + 1
```

Return the 4-dimensional combinatorial cube that is the product of [0,3]^4:

```python
sage: t_cube = polytopes.hypercube(4, intervals = [[0,3]]*4)
```

Checking that \( t_{\text{cube}} \) is three times the previous 0/1-cube:

```python
sage: t_cube == 3 * z_cube
True
```

**hypersimplex\((\text{dim}, k, \text{project}=False, \text{backend}=None)\)**

Return the hypersimplex in dimension \( \text{dim} \) and parameter \( k \).

The hypersimplex \( \Delta_{d,k} \) is the convex hull of the vertices made of \( k \) ones and \( d - k \) zeros. It lies in the \( d - 1 \) hyperplane of vectors of sum \( k \). If you want a projected version to \( \mathbb{R}^{d-1} \) (with floating point coordinates) then set \text{project}=True in the options.

**See also:**

**simplex()**

**INPUT:**

- \( \text{dim} \) – the dimension
• \( n \) – the numbers \((1, \ldots, n)\) are permuted

• \texttt{project} – (boolean, default \texttt{False}) if \texttt{True}, the polytope is (isometrically) projected to a vector space of dimension \( \dim-1 \). This operation turns the coordinates into floating point approximations and corresponds to the projection given by the matrix from \texttt{zero_sum_projection()}.

• \texttt{backend} – the backend to use to create the polytope.

**EXAMPLES:**

```python
sage: h_4_2 = polytopes.hypersimplex(4, 2)
sage: h_4_2
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 6 vertices
sage: h_4_2.f_vector()
(1, 6, 12, 8, 1)
sage: h_4_2.ehrhart_polynomial() # optional - latte_int
2/3*t^3 + 2*t^2 + 7/3*t + 1
sage: TestSuite(h_4_2).run()
sage: h_7_3 = polytopes.hypersimplex(7, 3, project=True)
sage: h_7_3
A 6-dimensional polyhedron in RDF^6 defined as the convex hull of 35 vertices
sage: h_7_3.f_vector()
(1, 35, 210, 350, 245, 84, 14, 1)
sage: TestSuite(h_7_3).run(skip=['_test_pyramid', '_test_lawrence'])
```

\texttt{icosahedron(exact=True, base_ring=None, backend=None)}

Return an icosahedron with edge length 1.

The icosahedron is one of the Platonic solids. It has 20 faces and is dual to the \texttt{dodecahedron()}.

**INPUT:**

• \texttt{exact} – (boolean, default \texttt{True}) If \texttt{False} use an approximate ring for the coordinates.

• \texttt{base_ring} – (optional) the ring in which the coordinates will belong to. Note that this ring must contain \( \sqrt{5} \). If it is not provided and \texttt{exact=True} it will be the number field \( \mathbb{Q}[\sqrt{5}] \) and if \texttt{exact=False} it will be the real double field.

• \texttt{backend} – the backend to use to create the polytope.

**EXAMPLES:**

```python
sage: ico = polytopes.icosahedron() # optional - sage.rings.number_field
sage: ico.f_vector() # optional - sage.rings.number_field
(1, 12, 30, 20, 1)
sage: ico.volume() # optional - sage.rings.number_field
5/12*sqrt5 + 5/4
```

Its non exact version:

```python
sage: ico = polytopes.icosahedron(exact=False)
sage: ico.base_ring()
Real Double Field
sage: ico.volume() # known bug (trac 18214)
2.181694990...
```
A version using $\mathbb{A} \subseteq \texttt{sage.rings.qqbar.AlgebraicRealField}$:

```python
sage: ico = polytopes.icosahedron(base_ring=AA) # long time
˓→ # optional - sage.rings.number_field
sage: ico.base_ring() # long time
˓→ # optional - sage.rings.number_field
Algebraic Real Field
sage: ico.volume() # long time
˓→ # optional - sage.rings.number_field
2.181694990624913?
```

Note that if base ring is provided it must contain the square root of 5. Otherwise you will get an error:

```python
sage: polytopes.icosahedron(base_ring=QQ) # optional - sage.symbolic
˓→ # recent call last):
TypeError: unable to convert 1/4*sqrt(5) + 1/4 to a rational
```

**icosidodecahedron** $(\texttt{exact} = \texttt{True}, \texttt{backend} = \texttt{None})$

Return the icosidodecahedron.

The Icosidodecahedron is a polyhedron with twenty triangular faces and twelve pentagonal faces. For more information see the Wikipedia article Icosidodecahedron.

**INPUT:**

- **exact** – (boolean, default $\texttt{True}$) If $\texttt{False}$ use an approximate ring for the coordinates.
- **backend** – the backend to use to create the polytope.

**EXAMPLES:**

```python
sage: id = polytopes.icosidodecahedron() # long time
˓→ # optional - sage.rings.number_field
sage: id.f_vector() # long time
(1, 30, 60, 32, 1)
```

**icosidodecahedron_V2** $(\texttt{exact} = \texttt{True}, \texttt{base_ring} = \texttt{None}, \texttt{backend} = \texttt{None})$

Return the icosidodecahedron.

The icosidodecahedron is an Archimedean solid. It has 32 faces and 30 vertices. For more information, see the Wikipedia article Icosidodecahedron.

**INPUT:**

- **exact** – (boolean, default $\texttt{True}$) If $\texttt{False}$ use an approximate ring for the coordinates.
- **base_ring** – the ring in which the coordinates will belong to. If it is not provided and $\texttt{exact} = \texttt{True}$ it will be a the number field $\mathbb{Q}[\phi]$ where $\phi$ is the golden ratio and if $\texttt{exact} = \texttt{False}$ it will be the real double field.
- **backend** – the backend to use to create the polytope.

**EXAMPLES:**

```python
sage: id = polytopes.icosidodecahedron_V2() # long time - 6secs
sage: id.f_vector() # long time
```

(continues on next page)
(1, 30, 60, 32, 1)

sage: id.base_ring()  # long time
Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2. →236067977499790?

A much faster implementation using floating point approximations:

sage: id = polytopes.icosidodecahedron_V2(exact=False)
sage: id.f_vector()
(1, 30, 60, 32, 1)
sage: id.base_ring()
Real Double Field

Its facets are 20 triangles and 12 regular pentagons:

sage: sum(1 for f in id.facets() if len(f.vertices()) == 3)
20
sage: sum(1 for f in id.facets() if len(f.vertices()) == 5)
12

octahedron(backend=None)
Return the octahedron.

The octahedron is a Platonic solid with 6 vertices and 8 faces dual to the cube. It can be defined as the convex hull of the six vertices \((0, 0, \pm 1), (\pm 1, 0, 0)\) and \((0, \pm 1, 0)\). For more information, see the Wikipedia article Octahedron.

INPUT:

• backend – the backend to use to create the polytope.

EXAMPLES:

sage: co = polytopes.octahedron()
sage: co.f_vector()
(1, 6, 12, 8, 1)

Its facets are 8 triangles:

sage: sum(1 for f in co.facets() if len(f.vertices()) == 3)
8

Some more computation:

sage: co.volume()
4/3
sage: co.ehrhart_polynomial()  # optional - latte_int
4/3*t^3 + 2*t^2 + 8/3*t + 1

omnitruncated_one_hundred_twenty_cell(exact=True, backend=None)
Return the omnitruncated 120-cell.

The omnitruncated 120-cell is a 4-dimensional 4-uniform polytope in the \(H_4\) family. It has 14400 vertices. For more information see Wikipedia article Omnitruncated 120-cell.
**Warning:** The coordinates are exact by default. The computation with inexact coordinates (using the backend 'cdd') returns a numerical inconsistency error, and thus cannot be computed.

**INPUT:**
- **exact** - (boolean, default True) if True use exact coordinates instead of floating point approximations.
- **backend** – the backend to use to create the polytope.

**EXAMPLES:**

```sage
polytopes.omnitruncated_one_hundred_twenty_cell(backend='normaliz') # not tested - very long time ~10min
```

A 4-dimensional polyhedron in AA^4 defined as the convex hull of 14400 vertices.

**omnitruncated_six_hundred_cell**(exact=True, backend=None)

Return the omnitruncated 120-cell.

The omnitruncated 120-cell is a 4-dimensional 4-uniform polytope in the $H_4$ family. It has 14400 vertices. For more information see Wikipedia article Omnitruncated 120-cell.

**Warning:** The coordinates are exact by default. The computation with inexact coordinates (using the backend 'cdd') returns a numerical inconsistency error, and thus cannot be computed.

**INPUT:**
- **exact** – (boolean, default True) if True use exact coordinates instead of floating point approximations.
- **backend** – the backend to use to create the polytope.

**EXAMPLES:**

```sage
polytopes.omnitruncated_one_hundred_twenty_cell(backend='normaliz') # not tested - very long time ~10min
```

A 4-dimensional polyhedron in AA^4 defined as the convex hull of 14400 vertices.

**one_hundred_twenty_cell**(exact=True, backend=None, construction='coxeter')

Return the 120-cell.

The 120-cell is a 4-dimensional 4-uniform polytope in the $H_4$ family. It has 600 vertices and 120 facets. For more information see Wikipedia article 120-cell.

**Warning:** The coordinates are exact by default. The computation with inexact coordinates (using the backend 'cdd') returns a numerical inconsistency error, and thus cannot be computed.

**INPUT:**
- **exact** – (boolean, default True) if True use exact coordinates instead of floating point approximations.
- **backend** – the backend to use to create the polytope.
- **construction** – the construction to use (string, default 'coxeter'); the other possibility is 'as_permutahedron'.
EXAMPLES:

The classical construction given by Coxeter in [Cox1969] is given by:

```python
sage: polytopes.one_hundred_twenty_cell()
```

A 4-dimensional polyhedron in (Number Field in sqrt5 with defining polynomial \(x^2 - 5\) with sqrt5 = 2.236067977499790)^4 defined as the convex hull of 600 vertices.

The 'normalize' is faster:

```python
sage: P = polytopes.one_hundred_twenty_cell(backend='normaliz'); P
```

A 4-dimensional polyhedron in (Number Field in sqrt5 with defining polynomial \(x^2 - 5\) with sqrt5 = 2.236067977499790)^4 defined as the convex hull of 600 vertices.

It is also possible to realize it using the generalized permutahedron of type \(H_4\):

```python
sage: polytopes.one_hundred_twenty_cell(backend='normaliz',construction='as_permutahedron')
```

A 4-dimensional polyhedron in AA^4 defined as the convex hull of 600 vertices.

parallelotope\((\text{generators, backend=None})\)

Return the zonotope, or parallelotope, spanned by the generators.

The parallelotope is the multi-dimensional generalization of a parallelogram (2 generators) and a parallelepiped (3 generators).

**INPUT:**

- **generators** – a list of vectors of same dimension
- **backend** – the backend to use to create the polytope.

**EXAMPLES:**

```python
sage: polytopes.parallelotope([(1,0), (0,1)])
sage: polytopes.parallelotope([[1,2,3,4],[0,1,0,7],[3,1,0,2],[0,0,1,0]])
sage: K = QuadraticField(2, 'sqrt2')
sage: sqrt2 = K.gen()
sage: P = polytopes.parallelotope([(1,sqrt2), (1,-1)]); P
```

A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices.

A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 16 vertices.

A 2-dimensional polyhedron in (Number Field in sqrt2 with defining polynomial \(x^2 - 2\) with sqrt2 = 1.414213562373095)^2 defined as the convex hull of 4 vertices.

pentakis_dodecahedron\((\text{exact=True, base_ring=None, backend=None})\)

Return the pentakis dodecahedron.

The pentakis dodecahedron (orkisdodecahedron) is a face-regular, vertex-uniform polytope dual to the truncated icosahedron. It has 60 facets and 32 vertices. See the Wikipedia article Pentakis_dodecahedron for more information.

**INPUT:**
• `exact` – (boolean, default `True`) If `False` use an approximate ring for the coordinates.

• `base_ring` – the ring in which the coordinates will belong to. If it is not provided and `exact=True` it will be a the number field `Q[\phi]` where \( \phi \) is the golden ratio and if `exact=False` it will be the real double field.

• `backend` – the backend to use to create the polytope.

EXAMPLES:

```python
sage: pd = polytopes.pentakis_dodecahedron() # long time - ~10 sec
sage: pd.n_vertices() # long time
32
sage: pd.n_inequalities() # long time
60
```

A much faster implementation is obtained when setting `exact=False`:

```python
sage: pd = polytopes.pentakis_dodecahedron(exact=False)
sage: pd.n_vertices()
32
sage: pd.n_inequalities()
60
```

The 60 are triangles:

```python
sage: all(len(f.vertices()) == 3 for f in pd.facets())
True
```

The standard permutahedron of \( 1, \ldots, n \):

```python
perm_4 = polytopes.permutahedron(4)
```

A 3-dimensional polyhedron in \( \mathbb{Z}^4 \) defined as the convex hull of 24 vertices

```python
perm_4.is_lattice_polytope()
True
perm_4.ehrhart_polynomial() # optional - latte_int
16*t^3 + 15*t^2 + 6*t + 1
```
sage: perm4 = polytopes.permutahedron(4, project=True)
sage: perm4
A 3-dimensional polyhedron in RDF^3 defined as the convex hull of 24 vertices
sage: perm4.plot()    # optional - sage.plot
Graphics3d Object
sage: perm4.graph().is_isomorphic(graphs.BubbleSortGraph(4))
True

As both Hrepresentation an Vrepresentation are known, the permutahedron can be set up with both using the backend field. The following takes very very long time to recompute, e.g. with backend ppl:

sage: polytopes.permutahedron(8, backend='field')    # (~1s)
A 7-dimensional polyhedron in QQ^8 defined as the convex hull of 40320 vertices
sage: polytopes.permutahedron(9, backend='field')    # not tested (memory consumption) # (~5s)
A 8-dimensional polyhedron in QQ^9 defined as the convex hull of 362880 vertices

See also:

• BubbleSortGraph()

rectified_one_hundred_twenty_cell(exact=True, backend=None)

Return the rectified 120-cell.

The rectified 120-cell is a 4-dimensional 4-uniform polytope in the $H_4$ family. It has 1200 vertices. For more information see Wikipedia article Rectified 120-cell.

**Warning:** The coordinates are exact by default. The computation with inexact coordinates (using the backend “cdd”) returns a numerical inconsistency error, and thus cannot be computed.

**INPUT:**

• exact - (boolean, default True) if True use exact coordinates instead of floating point approximations.

• backend – the backend to use to create the polytope.

**EXAMPLES:**

sage: polytopes.rectified_one_hundred_twenty_cell(backend='normaliz')    # not tested - long time
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 1200 vertices

rectified_six_hundred_cell(exact=True, backend=None)

Return the rectified 600-cell.

The rectified 600-cell is a 4-dimensional 4-uniform polytope in the $H_4$ family. It has 720 vertices. For more information see Wikipedia article Rectified 600-cell.

**Warning:** The coordinates are exact by default. The computation with inexact coordinates (using the backend "cdd") returns a numerical inconsistency error, and thus cannot be computed.

**INPUT:**
Combinatorial and Discrete Geometry, Release 9.6

- **exact** - (boolean, default True) if True use exact coordinates instead of floating point approximations.
- **backend** – the backend to use to create the polytope.

**EXAMPLES:**

```
sage: polytopes.rectified_six_hundred_cell(backend='normaliz') # not tested ˓→long time ~14sec
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 720 vertices
```

**regular_polygon**(*n*, exact=True, base_ring=None, backend=None)

Return a regular polygon with *n* vertices.

**INPUT:**

- **n** – a positive integer, the number of vertices.
- **exact** – (boolean, default True) if False floating point numbers are used for coordinates.
- **base_ring** – a ring in which the coordinates will lie. It is None by default. If it is not provided and exact is True then it will be the field of real algebraic number, if exact is False it will be the real double field.
- **backend** – the backend to use to create the polytope.

**EXAMPLES:**

```
sage: octagon = polytopes.regular_polygon(8) # optional - sage.rings.number_field
sage: octagon # optional - sage.rings.number_field
A 2-dimensional polyhedron in AA^2 defined as the convex hull of 8 vertices
sage: octagon.n_vertices() # optional - sage.rings.number_field
8
sage: v = octagon.volume() # optional - sage.rings.number_field
sage: v # optional - sage.rings.number_field
2.828427124746190?
sage: v == 2*QQbar(2).sqrt() # optional - sage.rings.number_field
True
```

Its non exact version:

```
sage: polytopes.regular_polygon(3, exact=False).vertices()
(A vertex at (0.0, 1.0),
 A vertex at (0.8660254038, -0.5),
 A vertex at (-0.8660254038, -0.5))
sage: polytopes.regular_polygon(25, exact=False).n_vertices()
25
```

**rhombic_dodecahedron**(*backend=None*)

Return the rhombic dodecahedron.

The rhombic dodecahedron is a polytope dual to the cuboctahedron. It has 14 vertices and 12 faces. For more information see the Wikipedia article Rhombic_dodecahedron.

**INPUT:**
• backend – the backend to use to create the polytope.

See also:

cuboctahedron()

EXAMPLES:

```
sage: rd = polytopes.rhombic_dodecahedron()
sage: rd.f_vector()
(1, 14, 24, 12, 1)
```

Its facets are 12 quadrilaterals (not all identical):

```
sage: sum(1 for f in rd.facets() if len(f.vertices()) == 4)
12
```

Some more computations:

```
sage: p = rd.ehrhart_polynomial() # optional - latte_int
sage: p # optional - latte_int
16*t^3 + 12*t^2 + 4*t + 1
sage: [p(i) for i in [1,2,3,4]] # optional - latte_int
[33, 185, 553, 1233]
sage: [len((i*rd).integral_points()) for i in [1,2,3,4]]
[33, 185, 553, 1233]
```

`rhombicosidodecahedron(exact=True, base_ring=None, backend=None)`

Return the rhombicosidodecahedron.

The rhombicosidodecahedron is an Archimedean solid. It has 62 faces and 60 vertices. For more information, see the [Wikipedia article Rhombicosidodecahedron](https://en.wikipedia.org/wiki/Rhombicosidodecahedron).

INPUT:

• `exact` – (boolean, default True) If False use an approximate ring for the coordinates.

• `base_ring` – the ring in which the coordinates will belong to. If it is not provided and `exact=True` it will be a the number field \( \mathbb{Q}[\phi] \) where \( \phi \) is the golden ratio and if `exact=False` it will be the real double field.

• `backend` – the backend to use to create the polytope.

EXAMPLES:

```
sage: rid = polytopes.rhombicosidodecahedron() # long time - 6secs
sage: rid.f_vector() # long time
(1, 60, 120, 62, 1)
sage: rid.base_ring() # long time
Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.
→236067977499790?
```

A much faster implementation using floating point approximations:

```
sage: rid = polytopes.rhombicosidodecahedron(exact=False)
sage: rid.f_vector()
(1, 60, 120, 62, 1)
sage: rid.base_ring()
Real Double Field
```
Its facets are 20 triangles, 30 squares and 12 pentagons:

```
sage: sum(1 for f in rid.facets() if len(f.vertices()) == 3)
20
sage: sum(1 for f in rid.facets() if len(f.vertices()) == 4)
30
sage: sum(1 for f in rid.facets() if len(f.vertices()) == 5)
12
```

**runcinated_one_hundred_twenty_cell**(*exact=False, backend=None*)

Return the runcinated 120-cell.

The runcinated 120-cell is a 4-dimensional 4-uniform polytope in the \(H_4\) family. It has 2400 vertices. For more information see Wikipedia article Runcinated 120-cell.

**Warning:** The coordinates are inexact by default. The computation with inexact coordinates (using the backend ‘cdd’) issues a UserWarning on inconsistencies.

**INPUT:**

- `exact` - (boolean, default False) if True use exact coordinates instead of floating point approximations.
- `backend` – the backend to use to create the polytope.

**EXAMPLES:**

```
sage: polytopes.runcinated_one_hundred_twenty_cell(exact=False) # not tested - very long time
doctest:warning ... UserWarning: This polyhedron data is numerically complicated; cdd could not convert between the inexact V and H representation without loss of data. The resulting object might show inconsistencies.
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 2400 vertices
```

It is possible to use the backend 'normaliz' to get an exact representation:

```
sage: polytopes.runcinated_one_hundred_twenty_cell(exact=True, backend='normaliz') # not tested - very long time
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 2400 vertices
```

**runcitruncated_one_hundred_twenty_cell**(*exact=False, backend=None*)

Return the runcitruncated 120-cell.

The runcitruncated 120-cell is a 4-dimensional 4-uniform polytope in the \(H_4\) family. It has 7200 vertices. For more information see Wikipedia article Runcitruncated 120-cell.

**Warning:** The coordinates are inexact by default. The computation with inexact coordinates (using the backend ‘cdd’) issues a UserWarning on inconsistencies.

**INPUT:**

- `exact` - (boolean, default False) if True use exact coordinates instead of floating point approximations.
• backend – the backend to use to create the polytope.

EXAMPLES:

```python
sage: polytopes.runcitruncated_one_hundred_twenty_cell(exact=False) # not tested - very long time
doctest:warning...
... UserWarning: This polyhedron data is numerically complicated; cdd could not convert between the inexact V and H representation without loss of data. The resulting object might show inconsistencies.
```

It is possible to use the backend 'normaliz' to get an exact representation:

```python
sage: polytopes.runcitruncated_one_hundred_twenty_cell(exact=True, backend='normaliz') # not tested - very long time
```

**runcitruncated_six_hundred_cell**(exact=True, backend=None)

Return the runcitruncated 600-cell.

The runcitruncated 600-cell is a 4-dimensional 4-uniform polytope in the $H_4$ family. It has 7200 vertices. For more information see Wikipedia article Runcitruncated 600-cell.

**Warning**: The coordinates are exact by default. The computation with inexact coordinates (using the backend 'cdd') returns a numerical inconsistency error, and thus cannot be computed.

**INPUT:**

• exact - (boolean, default True) if True use exact coordinates instead of floating point approximations.

• backend – the backend to use to create the polytope.

**EXAMPLES:**

```python
sage: polytopes.runcitruncated_six_hundred_cell(backend='normaliz') # not tested - very long time
```

**simplex**(dim=3, project=False, base_ring=None, backend=None)

Return the dim dimensional simplex.

The $d$-simplex is the convex hull in $\mathbb{R}^{d+1}$ of the standard basis $(1,0,\ldots,0)$, $(0,1,\ldots,0)$, $\ldots$, $(0,\ldots,1)$. For more information, see the Wikipedia article Simplex.

**INPUT:**

• dim – The dimension of the simplex, a positive integer.

• project – (boolean, default False) if True, the polytope is (isometrically) projected to a vector space of dimension $\dim-1$. This corresponds to the projection given by the matrix from zero_sum_projection(). By default, this operation turns the coordinates into floating point approximations (see base_ring).

• base_ring – the base ring to use to create the polytope. If project is False, this defaults to $\mathbb{Z}$. Otherwise, it defaults to RDF.
• backend – the backend to use to create the polytope.

See also:

tetrahedron()

EXAMPLES:

```python
sage: s5 = polytopes.simplex(5)
sage: s5
A 5-dimensional polyhedron in ZZ^6 defined as the convex hull of 6 vertices
sage: s5.f_vector()
(1, 6, 15, 20, 15, 6, 1)
sage: s5 = polytopes.simplex(5, project=True)
sage: s5
A 5-dimensional polyhedron in RDF^5 defined as the convex hull of 6 vertices

Its volume is $\sqrt{d + 1/d}$:

```python
sage: s5 = polytopes.simplex(5, project=True)
sage: s5.volume() # abs tol 1e-10
0.0204124145231931
sage: sqrt(6.) / factorial(5)
0.0204124145231931
sage: s6 = polytopes.simplex(6, project=True)
sage: s6.volume() # abs tol 1e-10
0.00367465459870082
sage: sqrt(7.) / factorial(6)
0.00367465459870082
```

Computation in algebraic reals:

```python
sage: s3 = polytopes.simplex(3, project=True, base_ring=AA)
˓→ # optional - sage.rings.number_field
sage: s3.volume() == sqrt(3+1) / factorial(3)
˓→ # optional - sage.rings.number_field
True
```

six_hundred_cell(exact=False, backend=None)

Return the standard 600-cell polytope.

The 600-cell is a 4-dimensional regular polytope. In many ways this is an analogue of the icosahedron.

Warning: The coordinates are not exact by default. The computation with exact coordinates takes a huge amount of time.

INPUT:

• exact - (boolean, default False) if True use exact coordinates instead of floating point approximations

• backend – the backend to use to create the polytope.

EXAMPLES:
sage: p600 = polytopes.six_hundred_cell()
sage: p600
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 120 vertices
sage: p600.f_vector() # long time ~2sec
(1, 120, 720, 1200, 600, 1)

Computation with exact coordinates is currently too long to be useful:

sage: p600 = polytopes.six_hundred_cell(exact=True) # not tested - very long
sage: len(list(p600.bounded_edges())) # not tested - very long
720

\texttt{small_rhombicuboctahedron}(\texttt{exact=True, base_ring=None, backend=None})

Return the (small) rhombicuboctahedron.

The rhombicuboctahedron is an Archimedean solid with 24 vertices and 26 faces. See the Wikipedia article \texttt{Rhombicuboctahedron} for more information.

INPUT:

- \texttt{exact} – (boolean, default \texttt{True}) If \texttt{False} use an approximate ring for the coordinates.
- \texttt{base_ring} – the ring in which the coordinates will belong to. If it is not provided and \texttt{exact=True} it will be the number field \(\mathbb{Q}[\phi]\) where \(\phi\) is the golden ratio and if \texttt{exact=False} it will be the real double field.
- \texttt{backend} – the backend to use to create the polytope.

EXAMPLES:

sage: sr = polytopes.small_rhombicuboctahedron() # optional - sage.rings.number_field
sage: sr.f_vector() # optional - sage.rings.number_field
(1, 24, 48, 26, 1)
sage: sr.volume() # optional - sage.rings.number_field
\frac{80}{3}\sqrt{2} + 32

The faces are 8 equilateral triangles and 18 squares:

sage: sum(1 for f in sr.facets() if len(f.vertices()) == 3) # optional - sage.rings.number_field
8
sage: sum(1 for f in sr.facets() if len(f.vertices()) == 4) # optional - sage.rings.number_field
18

Its non exact version:

sage: sr = polytopes.small_rhombicuboctahedron(\texttt{False})
sage: sr
A 3-dimensional polyhedron in RDF^3 defined as the convex hull of 24 vertices

(continues on next page)
sage: sr.f_vector()
(1, 24, 48, 26, 1)

snub_cube(exact=False, base_ring=None, backend=None, verbose=False)

Return a snub cube.

The snub cube is an Archimedean solid. It has 24 vertices and 38 faces. For more information see the Wikipedia article Snub_cube.

The constant \(z \) used in constructing this polytope is the reciprocal of the tribonacci constant, that is, the solution of the equation \(x^3 + x^2 + x - 1 = 0 \). See Wikipedia article Generalizations_of_Fibonacci_numbers#Tribonacci_numbers.

INPUT:

- **exact** – (boolean, default False) if True use exact coordinates instead of floating point approximations
- **base_ring** – the field to use. If None (the default), construct the exact number field needed (if exact is True) or default to RDF (if exact is True).
- **backend** – the backend to use to create the polytope. If None (the default), the backend will be selected automatically.

EXAMPLES:

```sage
sage: sc_inexact = polytopes.snub_cube(exact=False); sc_inexact
A 3-dimensional polyhedron in RDF^3 defined as the convex hull of 24 vertices
sage: sc_inexact.f_vector()
(1, 24, 60, 38, 1)
```

```sage
sage: sc_exact = polytopes.snub_cube(exact=True) # long time
sage: sc_exact.f_vector() # long time
(1, 24, 60, 38, 1)
```

```sage
sage: sorted(sc_exact.vertices()) # long time
[A vertex at (-1, -z, -z^2),
 A vertex at (-1, -z^2, z),
 A vertex at (-1, z, z^2),
 A vertex at (-z, -1, z^2),
 A vertex at (-z, -z^2, -1),
 A vertex at (-z, z^2, 1),
 A vertex at (z^2, -1, z),
 A vertex at (z^2, -z, -1),
 A vertex at (z^2, z, 1),
 A vertex at (z, -1, -z^2),
 A vertex at (-z^2, -1, -z),
 A vertex at (-z^2, -z, 1),
 A vertex at (-z^2, z, -1),
 A vertex at (z^2, -1, z),
 A vertex at (z^2, -z, -1),
 A vertex at (z^2, z, 1),
 A vertex at (z, -1, -z^2),
```
A vertex at \((z, -z^2, 1)\),
A vertex at \((z, z^2, -1)\),
A vertex at \((z, 1, z^2)\),
A vertex at \((1, -z, z^2)\),
A vertex at \((1, -z^2, -z)\),
A vertex at \((1, z^2, z)\),
A vertex at \((1, z, -z^2)\)]

\[
\text{sage: } \text{sc_exact.is_combinatorially_isomorphic(sc_inexact)} \text{ # long time}
\]
\[
\text{→ # optional - sage_groups sage_rings_number_field}
\]
\[
\text{True}
\]

snub_dodecahedron\((base_ring=None, \text{backend}=None, \text{verbose}=False)\)

Return the snub dodecahedron.

The snub dodecahedron is an Archimedean solid. It has 92 faces and 60 vertices. For more information, see the Wikipedia article Snub_dodecahedron.

INPUT:

- **base_ring** – the ring in which the coordinates will belong to. If it is not provided it will be the real double field.
- **backend** – the backend to use to create the polytope.

EXAMPLES:

Only the backend using the optional normaliz package can construct the snub dodecahedron in reasonable time:

\[
\text{sage: } \text{sd = polytopes.snub_dodecahedron(base_ring=AA, \text{backend}='normaliz') \text{ # long time}}
\]
\[
\text{optional - pynormaliz, long time}
\]
\[
\text{sage: } \text{sd.f_vector()}
\]
\[
\text{optional - pynormaliz, long time}
\]
\[
(1, 60, 150, 92, 1)
\]
\[
\text{sage: } \text{sd.base_ring()}
\]
\[
\text{optional - pynormaliz, long time}
\]
\[
\text{Algebraic Real Field}
\]

Its facets are 80 triangles and 12 pentagons:

\[
\text{sage: } \text{sum(1 for f in sd_facets() if len(f_vertices()) == 3)} \text{ # long time}
\]
\[
\text{optional - pynormaliz, long time}
\]
\[
80
\]
\[
\text{sage: } \text{sum(1 for f in sd_facets() if len(f_vertices()) == 5)} \text{ # long time}
\]
\[
\text{optional - pynormaliz, long time}
\]
\[
12
\]

static symmetric_edge_polytope\((\text{backend}=None)\)

Return the symmetric edge polytope of \(self\).

The symmetric edge polytope (SEP) of a Graph on \(n\) vertices is the polytope in \(\mathbb{Z}^n\) defined as the convex hull of \(e_i - e_j\) and \(e_j - e_i\) for each edge \((i,j)\). Here \(e_1, \ldots, e_n\) denotes the standard basis.

INPUT:

- **backend** – string or None (default); the backend to use; see \textit{sage_geometry_polyhedron_constructor_Polyhedron()}

2.1. Polyhedra

93
EXAMPLES:

The SEP of a 4-cycle is a cube:

```python
sage: G = graphs.CycleGraph(4)
sage: P = G.symmetric_edge_polytope(); P
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 8 vertices
sage: P.is_combinatorially_isomorphic(polytopes.cube())
True
```

The SEP of a complete graph on 4 vertices is a cuboctahedron:

```python
sage: G = graphs.CompleteGraph(4)
sage: P = G.symmetric_edge_polytope(); P
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 12 vertices
sage: P.is_combinatorially_isomorphic(polytopes.cuboctahedron())
True
```

The SEP of a graph with edges on \(n \) vertices has dimension \(n \) minus the number of connected components:

```python
sage: n = randint(5, 12)
sage: G = Graph()
sage: while not G.num_edges():
    ...:     G = graphs.RandomGNP(n, 0.2)
    ...
sage: P = G.symmetric_edge_polytope()
    sage: P.ambient_dim() == n
    True
    sage: P.dim() == n - G.connected_components_number()
    True
```

The SEP of a graph is isomorphic to the subdirect sum of its connected components SEP’s:

```python
sage: n = randint(3, 6)
sage: G1 = graphs.RandomGNP(n, 0.2)
sage: n = randint(3, 6)
sage: G2 = graphs.RandomGNP(n, 0.2)
sage: G = G1.disjoint_union(G2)
sage: P = G.symmetric_edge_polytope()
sage: P1 = G1.symmetric_edge_polytope()
sage: P2 = G2.symmetric_edge_polytope()
sage: P.is_combinatorially_isomorphic(P1.subdirect_sum(P2))
True
```

All trees on \(n \) vertices have isomorphic SEPs:

```python
sage: n = randint(4, 10)
sage: G1 = graphs.RandomTree(n)
sage: G2 = graphs.RandomTree(n)
sage: P1 = G1.symmetric_edge_polytope()
sage: P2 = G2.symmetric_edge_polytope()
sage: P1.is_combinatorially_isomorphic(P2)
True
```

However, there are still many different SEPs:
sage: len(list(graphs(5)))
34
sage: polys = []
sage: for G in graphs(5):
 P = G.symmetric_edge_polytope()
 for P1 in polys:
 if P.is_combinatorially_isomorphic(P1):
 break
 else:
 polys.append(P)
sage: len(polys)
25

A non-trivial example of two graphs with isomorphic SEPs:

sage: G1 = graphs.CycleGraph(4)
sage: G1.add_edges([[0, 5], [5, 2], [1, 6], [6, 2]])
sage: G2 = copy(G1)
sage: G1.add_edges([[2, 7], [7, 3]])
sage: G2.add_edges([[0, 7], [7, 3]])
sage: G1.is_isomorphic(G2)
False
sage: P1 = G1.symmetric_edge_polytope()
sage: P2 = G2.symmetric_edge_polytope()
sage: P1.is_combinatorially_isomorphic(P2)
True

Apparently, gluing two graphs together on a vertex gives isomorphic SEPs:

sage: n = randint(3, 7)
sage: g1 = graphs.RandomGNP(n, 0.2)
sage: g2 = graphs.RandomGNP(n, 0.2)
sage: G = g1.disjoint_union(g2)
sage: H = copy(G)
sage: G.merge_vertices(((0, randrange(n)), (1, randrange(n))))
sage: H.merge_vertices(((0, randrange(n)), (1, randrange(n))))
sage: PG = G.symmetric_edge_polytope()
sage: PH = H.symmetric_edge_polytope()
sage: PG.is_combinatorially_isomorphic(PH)
True

tetrahedron(backend=None)

Return the tetrahedron.

The tetrahedron is a Platonic solid with 4 vertices and 4 faces dual to itself. It can be defined as the convex hull of the 4 vertices \((0, 0, 0), (1, 1, 0), (1, 0, 1)\) and \((0, 1, 1)\). For more information, see the Wikipedia article Tetrahedron.

INPUT:

- backend – the backend to use to create the polytope.

See also:

- simplex()

EXAMPLES:
```python
sage: co = polytopes.tetrahedron()
sage: co.f_vector()
(1, 4, 6, 4, 1)
```

Its facets are 4 triangles:

```python
sage: sum(1 for f in co.facets() if len(f.vertices()) == 3)
4
```

Some more computation:

```python
sage: co.volume()
1/3
sage: co.ehrhart_polynomial()  # optional - latte_int
1/3*t^3 + t^2 + 5/3*t + 1
```

The truncated cube is an Archimedean solid with 24 vertices and 14 faces. It can be defined as the convex hull of the 24 vertices \((\pm x, \pm 1, \pm 1), (\pm 1, \pm x, \pm 1), (\pm 1, \pm 1, \pm x)\) where \(x = \sqrt(2) - 1\). For more information, see the Wikipedia article Truncated_cube.

INPUT:

- `exact` – (boolean, default True) If False use an approximate ring for the coordinates.
- `base_ring` – the ring in which the coordinates will belong to. If it is not provided and `exact=True` it will be the number field \(\mathbb{Q}[^{\sqrt 2}]\) and if `exact=False` it will be the real double field.
- `backend` – the backend to use to create the polytope.

EXAMPLES:

```python
sage: co = polytopes.truncated_cube()  # optional - sage.rings.number_field
sage: co.f_vector()  # optional - sage.rings.number_field
(1, 24, 36, 14, 1)
```

Its facets are 8 triangles and 6 octagons:

```python
sage: sum(1 for f in co.facets() if len(f.vertices()) == 3)  # optional - sage.rings.number_field
8
sage: sum(1 for f in co.facets() if len(f.vertices()) == 8)  # optional - sage.rings.number_field
6
```

Some more computation:

```python
sage: co.volume()  # optional - sage.rings.number_field
```

```
```

The truncated dodecahedron is an Archimedean solid with 60 vertices and 32 faces. It can be defined as the convex hull of the 60 vertices \((\pm x, \pm 1, \pm 1), (\pm 1, \pm x, \pm 1), (\pm 1, \pm 1, \pm x)\) where \(x = \sqrt(2) - 1\). For more information, see the Wikipedia article Truncated_dodecahedron.

INPUT:

- `exact` – (boolean, default True) If False use an approximate ring for the coordinates.
- `base_ring` – the ring in which the coordinates will belong to. If it is not provided and `exact=True` it will be the number field \(\mathbb{Q}[^{\sqrt 2}]\) and if `exact=False` it will be the real double field.
- `backend` – the backend to use to create the polytope.

EXAMPLES:

```python
sage: co = polytopes.truncated_dodecahedron()  # optional - sage.rings.number_field
sage: co.f_vector()  # optional - sage.rings.number_field
(1, 60, 90, 32, 1)
```

Its facets are 8 triangles and 6 octagons:

```python
sage: sum(1 for f in co.facets() if len(f.vertices()) == 3)  # optional - sage.rings.number_field
8
sage: sum(1 for f in co.facets() if len(f.vertices()) == 8)  # optional - sage.rings.number_field
6
```

Some more computation:

```python
sage: co.volume()  # optional - sage.rings.number_field
```

```
```

truncated_dodecahedron(exact=True, base_ring=None, backend=None)

Return the truncated dodecahedron.
The truncated dodecahedron is an Archimedean solid. It has 32 faces and 60 vertices. For more information, see the Wikipedia article Truncated dodecahedron.

INPUT:
- `exact` – (boolean, default `True`) If `False` use an approximate ring for the coordinates.
- `base_ring` – the ring in which the coordinates will belong to. If it is not provided and `exact=True` it will be a the number field $\mathbb{Q}[\phi]$ where ϕ is the golden ratio and if `exact=False` it will be the real double field.
- `backend` – the backend to use to create the polytope.

EXAMPLES:

```python
sage: td = polytopes.truncated_dodecahedron()
sage: td.f_vector()
(1, 60, 90, 32, 1)
sage: td.base_ring()
Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2. → 23607977493790?
```

Its facets are 20 triangles and 12 regular decagons:

```python
sage: sum(1 for f in td.facets() if len(f.vertices()) == 3)
20
sage: sum(1 for f in td.facets() if len(f.vertices()) == 10)
12
```

The faster implementation using floating point approximations does not fully work unfortunately, see https://github.com/cddlib/cddlib/pull/7 for a detailed discussion of this case:

```python
sage: td = polytopes.truncated_dodecahedron(exact=False) # random
doctest:warning
...
UserWarning: This polyhedron data is numerically complicated; cdd could not convert between the inexact V and H representation without loss of data. The resulting object might show inconsistencies.
sage: td.f_vector()
Traceback (most recent call last):
...
ValueError: not all vertices are intersections of facets
sage: td.base_ring()
Real Double Field
```

The truncated icosidodecahedron is an Archimedean solid. It has 62 faces and 120 vertices. For more information, see the Wikipedia article Truncated icosidodecahedron.

INPUT:
- `exact` – (boolean, default `True`) If `False` use an approximate ring for the coordinates.
- `base_ring` – the ring in which the coordinates will belong to. If it is not provided and `exact=True` it will be a the number field $\mathbb{Q}[\phi]$ where ϕ is the golden ratio and if `exact=False` it will be the real double field.

`truncated_icosidodecahedron`(`exact=True, base_ring=None, backend=None`) Return the truncated icosidodecahedron.
• backend – the backend to use to create the polytope.

EXAMPLES:

```
sage: ti = polytopes.truncated_icosidodecahedron()  # long time
sage: ti.f_vector()  # long time
(1, 120, 180, 62, 1)
sage: ti.base_ring()  # long time
Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.
˓
```

The implementation using floating point approximations is much faster:

```
sage: ti = polytopes.truncated_icosidodecahedron(exact=False)  # random
sage: ti.f_vector()
(1, 120, 180, 62, 1)
sage: ti.base_ring()
Real Double Field
```

Its facets are 30 squares, 20 hexagons and 12 decagons:

```
sage: sum(1 for f in ti.facets() if len(f.vertices()) == 4)
30
sage: sum(1 for f in ti.facets() if len(f.vertices()) == 6)
20
sage: sum(1 for f in ti.facets() if len(f.vertices()) == 10)
12
```

`truncated_octahedron(backend=None)`

Return the truncated octahedron.

The truncated octahedron is an Archimedean solid with 24 vertices and 14 faces. It can be defined as the convex hull off all the permutations of $(0, \pm 1, \pm 2)$. For more information, see the Wikipedia article `Truncated_octahedron`.

This is also known as the permutohedron of dimension 3.

INPUT:

• backend – the backend to use to create the polytope.

EXAMPLES:

```
sage: co = polytopes.truncated_octahedron()
sage: co.f_vector()
(1, 24, 36, 14, 1)
sage: co.base_ring()
```

Its facets are 6 squares and 8 hexagons:

```
sage: sum(1 for f in co.facets() if len(f.vertices()) == 4)
6
sage: sum(1 for f in co.facets() if len(f.vertices()) == 6)
8
```

Some more computation:
truncated_one_hundred_twenty_cell(exact=True, backend=None)

Return the truncated 120-cell.

The truncated 120-cell is a 4-dimensional 4-uniform polytope in the H_4 family. It has 2400 vertices. For more information see Wikipedia article Truncated 120-cell.

Warning: The coordinates are exact by default. The computation with inexact coordinates (using the backend 'cdd') returns a numerical inconsistency error, and thus cannot be computed.

INPUT:

- exact - (boolean, default True) if True use exact coordinates instead of floating point approximations.
- backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.truncated_one_hundred_twenty_cell(backend='normaliz') # not tested - long time
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 2400 vertices

truncated_six_hundred_cell(exact=False, backend=None)

Return the truncated 600-cell.

The truncated 600-cell is a 4-dimensional 4-uniform polytope in the H_4 family. It has 1440 vertices. For more information see Wikipedia article Truncated 600-cell.

Warning: The coordinates are not exact by default. The computation with exact coordinates takes a huge amount of time.

INPUT:

- exact - (boolean, default False) if True use exact coordinates instead of floating point approximations
- backend – the backend to use to create the polytope.

EXAMPLES:

sage: polytopes.truncated_six_hundred_cell() # not tested - long time
A 4-dimensional polyhedron in RDF^4 defined as the convex hull of 1440 vertices

It is possible to use the backend 'normaliz' to get an exact representation:

sage: polytopes.truncated_six_hundred_cell(exact=True, backend='normaliz') # not tested - long time ~16sec
A 4-dimensional polyhedron in AA^4 defined as the convex hull of 1440 vertices

truncated_tetrahedron(backend=None)

Return the truncated tetrahedron.
The truncated tetrahedron is an Archimedean solid with 12 vertices and 8 faces. It can be defined as the convex hull off all the permutations of $(\pm 1, \pm 1, \pm 3)$ with an even number of minus signs. For more information, see the Wikipedia article Truncated_tetrahedron.

INPUT:

- `backend` – the backend to use to create the polytope.

EXAMPLES:

```python
sage: co = polytopes.truncated_tetrahedron()
sage: co.f_vector()
(1, 12, 18, 8, 1)
```

Its facets are 4 triangles and 4 hexagons:

```python
sage: sum(1 for f in co.facets() if len(f.vertices()) == 3)
4
sage: sum(1 for f in co.facets() if len(f.vertices()) == 6)
4
```

Some more computation:

```python
sage: co.volume()
184/3
sage: co.ehrhart_polynomial()  # optional - latte_int
184/3*t^3 + 28*t^2 + 26/3*t + 1
```

twenty_four_cell(backend=None)

Return the standard 24-cell polytope.

The 24-cell polyhedron (also called icositetrachoron or octaplex) is a regular polyhedron in 4-dimension. For more information see the Wikipedia article 24-cell.

INPUT:

- `backend` – the backend to use to create the polytope.

EXAMPLES:

```python
sage: p24 = polytopes.twenty_four_cell()
sage: p24.f_vector()
(1, 24, 96, 96, 24, 1)
sage: v = next(p24.vertex_generator())
sage: for adj in v.neighbors(): print(adj)
A vertex at (-1/2, -1/2, -1/2, 1/2)
A vertex at (-1/2, -1/2, 1/2, -1/2)
A vertex at (-1, 0, 0, 0)
A vertex at (-1/2, 1/2, -1/2, -1/2)
A vertex at (0, -1, 0, 0)
A vertex at (0, 0, -1, 0)
A vertex at (0, 0, 0, -1)
A vertex at (1/2, -1/2, -1/2, -1/2)
sage: p24.volume()
2
```
zonotope *(generators, backend=None)*
Return the zonotope, or parallelotope, spanned by the generators.

The parallelotope is the multi-dimensional generalization of a parallelogram (2 generators) and a parallelepiped (3 generators).

INPUT:
- **generators** – a list of vectors of same dimension
- **backend** – the backend to use to create the polytope

EXAMPLES:

```python
sage: polytopes.parallelotope([[1,0], [0,1]])
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: polytopes.parallelotope([[1,2,3,4],[0,1,0,7],[3,1,0,2],[0,0,1,0]])
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 16 vertices
```

```
K = QuadraticField(2, 'sqrt2')
sqrt2 = K.gen()
sage: P = polytopes.parallelotope([[1,sqrt2], [1,-1]]); P
A 2-dimensional polyhedron in (Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095?)^2 defined as the convex hull of 4 vertices
```

gale_transform_to_polytope *(vectors, base_ring=None, backend=None)*

Return the polytope associated to the list of vectors forming a Gale transform.

This function is the inverse of **gale_transform()** up to projective transformation.

INPUT:
- **vectors** – the vectors of the Gale transform
- **base_ring** – string (default: *None*); the base ring to be used for the construction
- **backend** – string (default: *None*); the backend to use to create the polytope

Note: The order of the input vectors will not be preserved.

If the center of the (input) vectors is the origin, the function is much faster and might give a nicer representation of the polytope.

If this is not the case, the vectors will be scaled (each by a positive scalar) accordingly to obtain the polytope.

See also:
:func:`sage.geometry.polyhedron.library.gale_transform_to_primal`

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.library import gale_transform_to_polytope
sage: points = polytopes.octahedron().gale_transform()
sage: points
((0, -1), (-1, 0), (1, 1), (1, 1), (-1, 0), (0, -1))
sage: P = gale_transform_to_polytope(points); P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
```

(continues on next page)
One can specify the base ring:

```python
sage: gale_transform_to_polytope(
      ....: [(1,1), (-1,-1), (1,0),
      ....: (-1,0), (1,-1), (-2,1)],
      ....: base_ring=RDF).vertices()
```

One can also specify the backend:

```python
sage: gale_transform_to_polytope(
      ....: [(1,1), (-1,-1), (1,0),
      ....: (-1,0), (1,-1), (-2,1)],
      ....: backend='field').backend()
'field'
```

A gale transform corresponds to a polytope if and only if every oriented (linear) hyperplane has at least two vectors on each side. See Theorem 6.19 of [Zie2007]. If this is not the case, one of two errors is raised.

If there is such a hyperplane with no vector on one side, the vectors are not totally cyclic:

```python
sage: gale_transform_to_polytope([(0,1), (1,1), (1,0), (-1,0)])
Traceback (most recent call last):
  ...
ValueError: input vectors not totally cyclic
```

If every hyperplane has at least one vector on each side, then the gale transform corresponds to a point config-
uration. It corresponds to a polytope if and only if this point configuration is convex and if and only if every hyperplane contains at least two vectors of the gale transform on each side.

If this is not the case, an error is raised:

```python
sage: gale_transform_to_polytope([(0,1), (1,1), (1,0), (-1,-1)])
Traceback (most recent call last):
  ...  
ValueError: the gale transform does not correspond to a polytope
```

```python
sage.geometry.polyhedron.library.gale_transform_to_primal(vectors, base_ring=None, backend=None)
```

Return a point configuration dual to a totally cyclic vector configuration.

This is the dehomogenized vector configuration dual to the input. The dual vector configuration is acyclic and can therefore be dehomogenized as the input is totally cyclic.

INPUT:

- `vectors` – the ordered vectors of the Gale transform
- `base_ring` – string (default: `None`); the base ring to be used for the construction
- `backend` – string (default: `None`); the backend to be use to construct a polyhedral, used internally in case the center is not the origin, see `Polyhedron()`

OUTPUT: An ordered point configuration as list of vectors.

Note: If the center of the (input) vectors is the origin, the function is much faster and might give a nicer representation of the point configuration.

If this is not the case, the vectors will be scaled (each by a positive scalar) accordingly.

ALGORITHM:

Step 1: If the center of the (input) vectors is not the origin, we do an appropriate transformation to make it so.

Step 2: We add a row of ones on top of `Matrix(vectors)`. The right kernel of this larger matrix is the dual configuration space, and a basis of this space provides the dual point configuration.

More concretely, the dual vector configuration (inhomogeneous) is obtained by taking a basis of the right kernel of `Matrix(vectors)`. If the center of the (input) vectors is the origin, there exists a basis of the right kernel of the form `[[1], [V]]`, where `[1]` represents a row of ones. Then, `V` is a dehomogenization and thus the dual point configuration.

To extend `[1]` to a basis of `Matrix(vectors)`, we add a row of ones to `Matrix(vectors)` and calculate a basis of the right kernel of the obtained matrix.

REFERENCES:

For more information, see Section 6.4 of [Zie2007] or Definition 2.5.1 and Definition 4.1.35 of [DLRS2010].

See also:

:func:`sage.geometry.polyhedron.library.gale_transform_to_polytope`.

EXAMPLES:
sage: from sage.geometry.polyhedron.library import gale_transform_to_primal
sage: points = ((0, -1), (-1, 0), (1, 1), (1, 1), (-1, 0), (0, -1))
sage: gale_transform_to_primal(points)

[(0, 0, 1), (0, 1, 0), (1, 0, 0), (-1, 0, 0), (0, -1, 0), (0, 0, -1)]

One can specify the base ring:

sage: gale_transform_to_primal(
 : [(1,1), (-1,-1), (1,0),
 : (-1,0), (1,-1), (-2,1)], base_ring=RDF)

[(-0.6400000000000001, 1.4, -2.1600000000000006),
 (-0.9600000000000002, -0.39999999999999997, -1.2400000000000002),
 (0.6000000000000001, -2.0, 2.4000000000000004),
 (1.0, 0.0, 0.0),
 (0.0, 1.0, 0.0),
 (0.0, 0.0, 1.0)]

One can also specify the backend to be used internally:

sage: gale_transform_to_primal(
 : [(1,1), (-1,-1), (1,0),
 : (-1,0), (1,-1), (-2,1)], backend='field')

[(48, -71, 88),
 (84, -28, 99),
 (-77, 154, -132),
 (-55, 0, 0),
 (0, -55, 0),
 (0, 0, -55)]

sage: gale_transform_to_primal(
 : [(1,1), (-1,-1), (1,0),
 : (-1,0), (1,-1), (-2,1)], backend='normaliz')

[(16, -35, 54),
 (24, 10, 31),
 (-15, 50, -60),
 (-25, 0, 0),
 (0, -25, 0),
 (0, 0, -25)]

The input vectors should be totally cyclic:

sage: gale_transform_to_primal(((0,1), (1,0), (1,1), (-1,0)))

Traceback (most recent call last):
...
ValueError: input vectors not totally cyclic

(continues on next page)
sage: gale_transform_to_primal(
 : [(1,1,0), (-1,-1,0), (1,0,0),
 : (-1,0,0), (1,-1,0), (-2,1,0)], backend='field')
Traceback (most recent call last):
 ...
ValueError: input vectors not totally cyclic

sage.geometry.polyhedron.library.project_points(*points, **kwds)
Projects a set of points into a vector space of dimension one less.

INPUT:

• points... – the points to project.

• base_ring – (defaults to RDF if keyword is None or not provided in kwds) the base ring to use.

The projection is isometric to the orthogonal projection on the hyperplane made of zero sum vector. Hence, if the set of points have all equal sums, then their projection is isometric (as a set of points).

The projection used is the matrix given by zero_sum_projection().

EXAMPLES:

sage: from sage.geometry.polyhedron.library import project_points
sage: project_points([2,-1,3,2]) # abs tol 1e-15
[(2.1213203435596424, -2.041241452319315, -0.577350269189626)]
sage: project_points([1,2,3],[3,3,5]) # abs tol 1e-15
[(-0.7071067811865475, -1.2247448713915892), (0.0, -1.6329931618554523)]

These projections are compatible with the restriction. More precisely, given a vector \(v \), the projection of \(v \) restricted to the first \(i \) coordinates will be equal to the projection of the first \(i + 1 \) coordinates of \(v \):

sage: project_points([1,2]) # abs tol 1e-15
[(-0.7071067811865475)]
sage: project_points([1,2,3]) # abs tol 1e-15
[(-0.7071067811865475, -1.2247448713915892)]
sage: project_points([1,2,3,4]) # abs tol 1e-15
[(-0.7071067811865475, -1.2247448713915892, -1.7320508075688776)]
sage: project_points([1,2,3,4,0]) # abs tol 1e-15
[(-0.7071067811865475, -1.2247448713915892, -1.7320508075688776, 2.23606797749979)]

Check that it is (almost) an isometry:

sage: V = list(map(vector, IntegerVectors(n=5, length=3))) # optional - sage.combinat
sage: P = project_points(*V) # optional - sage.combinat
sage: for i in range(21): # optional - sage.combinat
 : for j in range(21):
 : assert abs((V[i]-V[j]).norm() - (P[i]-P[j]).norm()) < 0.0001

Example with exact computation:

2.1. Polyhedra 105
```
sage: V = [ vector(v) for v in IntegerVectors(n=4, length=2) ]
    # optional -
    → sage.combinat
sage: P = project_points(*V, base_ring=AA)
    # optional -
    → sage.combinat sage.rings.number_field
sage: for i in range(len(V)):
    for j in range(len(V)):
        assert (V[i]-V[j]).norm() == (P[i]-P[j]).norm()
```

sage.geometry.polyhedron.library.zero_sum_projection(\(d, base_ring=None\))

Return a matrix corresponding to the projection on the orthogonal of \((1, 1, \ldots, 1)\) in dimension \(d\).

The projection maps the orthonormal basis \((1, -1, 0, \ldots, 0)/\sqrt{2}\), \((1, 1, -1, 0, \ldots, 0)/\sqrt{3}\), \ldots, \((1, 1, \ldots, 1, -1)/\sqrt{d}\) to the canonical basis in \(\mathbb{R}^{d-1}\).

OUTPUT:

A matrix of dimensions \((d - 1) \times d\) defined over \(base_ring\) (default: RDF).

EXAMPLES:

```
sage: from sage.geometry.polyhedron.library import zero_sum_projection
sage: zero_sum_projection(2)
[ 0.7071067811865475 -0.7071067811865475]
sage: zero_sum_projection(3)
[ 0.7071067811865475 -0.7071067811865475 0.0]
[ 0.4082482904638630 0.4082482904638630 -0.81649658092772607]
```

Exact computation in \(AA\):

```
sage: zero_sum_projection(3, base_ring=AA)
    # optional -
    → sage.rings.number_field
[ 0.7071067811865475? -0.7071067811865475? 0.0]
[ 0.4082482904638630? 0.4082482904638630? -0.81649658092772607?]
```

2.1.2 Polyhedra

In this module, a polyhedron is a convex (possibly unbounded) set in Euclidean space cut out by a finite set of linear inequalities and linear equations. Note that the dimension of the polyhedron can be less than the dimension of the ambient space. There are two complementary representations of the same data:

H(alf-space/Hyperplane)-representation This describes a polyhedron as the common solution set of a finite number of

- linear inequalities \(A\vec{x} + b \geq 0\), and
- linear equations \(C\vec{x} + d = 0\).

V(ertex)-representation The other representation is as the convex hull of vertices (and rays and lines to all for unbounded polyhedra) as generators. The polyhedron is then the Minkowski sum

\[
P = \text{conv}\{v_1, \ldots, v_k\} + \sum_{i=1}^{m} \mathbb{R} r_i + \sum_{j=1}^{n} \mathbb{R} \ell_j
\]

where
• **vertices** \(v_1, \ldots, v_k \) are a finite number of points. Each vertex is specified by an arbitrary vector, and two points are equal if and only if the vector is the same.

• **rays** \(r_1, \ldots, r_m \) are a finite number of directions (directions of infinity). Each ray is specified by a non-zero vector, and two rays are equal if and only if the vectors are the same up to rescaling with a positive constant.

• **lines** \(\ell_1, \ldots, \ell_n \) are a finite number of unoriented directions. In other words, a line is equivalent to the set \(\{ r, -r \} \) for a ray \(r \). Each line is specified by a non-zero vector, and two lines are equivalent if and only if the vectors are the same up to rescaling with a non-zero (possibly negative) constant.

When specifying a polyhedron, you can input a non-minimal set of inequalities/equations or generating vertices/rays/lines. The non-minimal generators are usually called points, non-extremal rays, and non-extremal lines, but for our purposes it is more convenient to always talk about vertices/rays/lines. Sage will remove any superfluous representation objects and always return a minimal representation. For example, \((0, 0)\) is a superfluous vertex here:

```sage
triangle = Polyhedron(vertices=[(0,2), (-1,0), (1,0), (0,0)])
triangle.vertices()
(A vertex at (-1, 0), A vertex at (1, 0), A vertex at (0, 2))
```

See also:

If one only needs to keep track of a system of linear system of inequalities, one should also consider the class for mixed integer linear programming.

• **Mixed Integer Linear Programming**

Unbounded Polyhedra

A polytope is defined as a bounded polyhedron. In this case, the minimal representation is unique and a vertex of the minimal representation is equivalent to a 0-dimensional face of the polytope. This is why one generally does not distinguish vertices and 0-dimensional faces. But for non-bounded polyhedra we have to allow for a more general notion of “vertex” in order to make sense of the Minkowski sum presentation:

```sage
half_plane = Polyhedron(ieqs=[(0,1,0)])
half_plane.Hrepresentation()
(An inequality (1, 0) x + 0 >= 0,)
half_plane.Vrepresentation()
(A line in the direction (0, 1), A ray in the direction (1, 0), A vertex at (0, 0))
```

Note how we need a point in the above example to anchor the ray and line. But any point on the boundary of the half-plane would serve the purpose just as well. Sage picked the origin here, but this choice is not unique. Similarly, the choice of ray is arbitrary but necessary to generate the half-plane.

Finally, note that while rays and lines generate unbounded edges of the polyhedron they are not in a one-to-one correspondence with them. For example, the infinite strip has two infinite edges (1-faces) but only one generating line:

```sage
strip = Polyhedron(vertices=[(1,0),(-1,0)], lines=[(0,1)])
strip.Hrepresentation()
(An inequality (1, 0) x + 1 >= 0, An inequality (-1, 0) x + 1 >= 0)
strip.lines()
(A line in the direction (0, 1),)
strip.[f.ambient_V_indices() for f in strip.faces(1)]
[(0, 2), (0, 1)]
strip.[f.ambient_V_indices() for face in strip.faces(1):]
....:
print(face.ambient_V_indices())
(0, 2)
```

(continues on next page)
Combinatorial and Discrete Geometry, Release 9.6

(continued from previous page)

(0, 1)

```python
sage: for face in strip.faces(1):
    ....:     print("{} = {}".format(face.ambient_V_indices(), face.as_polyhedron().
               __Vrepresentation()))

(0, 2) = (A line in the direction (0, 1), A vertex at (1, 0))
(0, 1) = (A line in the direction (0, 1), A vertex at (-1, 0))
```

EXAMPLES:

```python
sage: trunc_quadr = Polyhedron(vertices=[[1,0],[0,1]], rays=[[1,0],[0,1]])
```

A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices and 2 rays

```python
sage: v = next(trunc_quadr.vertex_generator())  # the first vertex in the internal
          _enumeration
```

```python
sage: v
A vertex at (0, 1)
sage: v.vector()
(0, 1)
sage: len(v)
2
sage: v[0] + v[1]
1
sage: v.is_vertex()
True
sage: type(v)
<class 'sage.geometry.polyhedron.representation.Vertex'>
sage: v.polyhedron()
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices and 2 rays
```

```python
sage: r = next(trunc_quadr.ray_generator())
```

```python
sage: r
A ray in the direction (0, 1)
sage: r.vector()
(0, 1)
sage: list( v.neighbors() )
[A ray in the direction (0, 1), A vertex at (1, 0)]
```

Inequalities $A\vec{x} + b \geq 0$ (and, similarly, equations) are specified by a list $[b, A]$:

```python
sage: Polyhedron(ieqs=[[0,1,0],[0,0,1],[1,-1,-1]]).Hrepresentation()
(An inequality (-1, -1) x + 1 >= 0,
 An inequality (1, 0) x + 0 >= 0,
 An inequality (0, 1) x + 0 >= 0)
```

See `Polyhedron()` for a detailed description of all possible ways to construct a polyhedron.
Base Rings

The base ring of the polyhedron can be specified by the base_ring optional keyword argument. If not specified, a suitable common base ring for all coordinates/coefficients will be chosen automatically. Important cases are:

- base_ring=QQ uses a fast implementation for exact rational numbers.
- base_ring=ZZ is similar to QQ, but the resulting polyhedron object will have extra methods for lattice polyhedra.
- base_ring=RDF uses floating point numbers, this is fast but susceptible to numerical errors.

Polyhedra with symmetries often are defined over some algebraic field extension of the rationals. As a simple example, consider the equilateral triangle whose vertex coordinates involve $\sqrt{3}$. An exact way to work with roots in Sage is the Algebraic Real Field:

```sage
triangle = Polyhedron([(0,0), (1,0), (1/2, sqrt(3)/2)], base_ring=AA) # optional - sage.rings.number_field # optional - sage.symbolic
triangle.Hrepresentation() # optional - sage.rings.number_field # optional - sage.symbolic
```

(An inequality (-1, -0.5773502691896258?) x + 1 >= 0,
An inequality (1, -0.5773502691896258?) x + 0 >= 0,
An inequality (0, 1.154700538379252?) x + 0 >= 0)

Without specifying the base_ring, the sqrt(3) would be a symbolic ring element and, therefore, the polyhedron defined over the symbolic ring. This is currently not supported as SR is not exact:

```sage
Polyhedron([(0,0), (1,0), (1/2, sqrt(3)/2)]) # optional - sage.symbolic
Traceback (most recent call last):
... ValueError: no default backend for computations with Symbolic Ring
```

Even faster than all algebraic real numbers (the field AA) is to take the smallest extension field. For the equilateral triangle, that would be:

```sage
K.<sqrt3> = NumberField(x^2 - 3, embedding=AA(3)**(1/2))
Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)]) # optional - sage.rings.number_field
```

A 2-dimensional polyhedron in (Number Field in sqrt3 with defining polynomial x^2 - 3 with sqrt3 = 1.732050807568878?)^2 defined as the convex hull of 3 vertices

Warning: Be careful when you construct polyhedra with floating point numbers. The only available backend for such computation is cdd which uses machine floating point numbers which have have limited precision. If the input consists of floating point numbers and the base_ring is not specified, the base ring is set to be the RealField with the precision given by the minimal bit precision of the input. Then, if the obtained minimum is 53 bits of precision, the constructor converts automatically the base ring to RDF. Otherwise, it returns an error:

```sage
Polyhedron(vertices = [[1.12345678901234, 2.12345678901234]])
A 0-dimensional polyhedron in RDF^2 defined as the convex hull of 1 vertex
```

2.1. Polyhedra
Combinatorial and Discrete Geometry, Release 9.6

```
sage: Polyhedron(vertices = [[1.123456789012345, 2.123456789012345]])
Traceback (most recent call last):
...
ValueError: the only allowed inexact ring is 'RDF' with backend 'cdd'
```

The strongly suggested method to input floating point numbers is to specify the base_ring to be RDF:

```
sage: Polyhedron(vertices = [[1.123456789012345, 2.123456789012345]], base_ring=RDF)
```

A 0-dimensional polyhedron in RDF^2 defined as the convex hull of 1 vertex

See also:

Parents for polyhedra

Base classes

Depending on the chosen base ring, a specific class is used to represent the polyhedron object.

See also:

- Base class for polyhedra
- Base class for polyhedra over integers
- Base class for polyhedra over rationals
- Base class for polyhedra over RDF

The most important base class is Base class for polyhedra from which other base classes and backends inherit.

Backends

There are different backends available to deal with polyhedron objects.

See also:

- cdd backend for polyhedra
- field backend for polyhedra
- normaliz backend for polyhedra
- ppl backend for polyhedra

Note: Depending on the backend used, it may occur that different methods are available or not.
Appendix

REFERENCES:

Komei Fukuda’s FAQ in Polyhedral Computation

AUTHORS:

• Marshall Hampton: first version, bug fixes, and various improvements, 2008 and 2009
• Arnaud Bergeron: improvements to triangulation and rendering, 2008
• Sebastien Barthelemy: documentation improvements, 2008
• Volker Braun: refactoring, handle non-compact case, 2009 and 2010
• Andrey Novoseltsev: added lattice_from_incidences, 2010
• Volker Braun: rewrite to use PPL instead of cddlib, 2011
• Volker Braun: Add support for arbitrary subfields of the reals

`sage.geometry.polyhedron.constructor.Polyhedron(vertices=None, rays=None, lines=None, ieqs=None, eqns=None, ambient_dim=None, base_ring=None, minimize=True, verbose=False, backend=None, mutable=False)`

Construct a polyhedron object.

You may either define it with vertex/ray/line or inequalities/equations data, but not both. Redundant data will automatically be removed (unless `minimize=False`), and the complementary representation will be computed.

INPUT:

• `vertices` – list of points. Each point can be specified as any iterable container of `base_ring` elements. If `rays` or `lines` are specified but no `vertices`, the origin is taken to be the single vertex.
• `rays` – list of rays. Each ray can be specified as any iterable container of `base_ring` elements.
• `lines` – list of lines. Each line can be specified as any iterable container of `base_ring` elements.
• `ieqs` – list of inequalities. Each line can be specified as any iterable container of `base_ring` elements. An entry equal to `[-1,7,3,4]` represents the inequality `7x_1 + 3x_2 + 4x_3 \geq 1`.
• `eqns` – list of equalities. Each line can be specified as any iterable container of `base_ring` elements. An entry equal to `[-1,7,3,4]` represents the equality `7x_1 + 3x_2 + 4x_3 = 1`.
• `base_ring` – a sub-field of the reals implemented in Sage. The field over which the polyhedron will be defined. For QQ and algebraic extensions, exact arithmetic will be used. For RDF, floating point numbers will be used. Floating point arithmetic is faster but might give the wrong result for degenerate input.
• `ambient_dim` – integer. The ambient space dimension. Usually can be figured out automatically from the H/Vrepresentation dimensions.
• `backend` – string or `None` (default). The backend to use. Valid choices are
 - `'cdd'`: use cdd (`backend_cdd`) with Q or R coefficients depending on `base_ring`
 - `'normaliz'`: use normaliz (`backend_normaliz`) with Z or Q coefficients depending on `base_ring`
 - `'polymake'`: use polymake (`backend_polymake`) with Q, R or QuadraticField coefficients depending on `base_ring`
 - `'ppl'`: use ppl (`backend_ppl`) with Z or Q coefficients depending on `base_ring`
 - `'field'`: use python implementation (`backend_field`) for any field

Some backends support further optional arguments:
• **minimize** – boolean (default: True); whether to immediately remove redundant H/V-representation data; currently not used.

• **verbose** – boolean (default: False); whether to print verbose output for debugging purposes; only supported by the cdd and normaliz backends

• **mutable** – boolean (default: False); whether the polyhedron is mutable

OUTPUT:

The polyhedron defined by the input data.

EXAMPLES:

Construct some polyhedra:

\[
\text{sage: square_from_vertices = Polyhedron(}\text{vertices = } [[1, 1], [1, -1], [-1, 1], [-1, -1]])
\]

\[
\text{sage: square_from_ieqs = Polyhedron(}\text{ieqs = } [[1, 0, 1], [1, 1, 0], [1, 0, -1], [1, -1, 0]])
\]

\[
\text{sage: list(square_from_ieqs.}\text{vertex_generator()})
\]

[A vertex at (1, -1),
A vertex at (1, 1),
A vertex at (-1, 1),
A vertex at (-1, -1)]

\[
\text{sage: list(square_from_vertices.}\text{inequality_generator()})
\]

[An inequality (1, 0) x + 1 >= 0,
An inequality (0, 1) x + 1 >= 0,
An inequality (-1, 0) x + 1 >= 0,
An inequality (0, -1) x + 1 >= 0]

\[
\text{sage: p = Polyhedron(}\text{vertices = } [[1.1, 2.2], [3.3, 4.4]])\]

\[
\text{sage: p.n}\text{.}\text{inequalities()}
\]

2

The same polyhedron given in two ways:

\[
\text{sage: p = Polyhedron(}\text{ieqs = } [[0,1,0,0],[0,0,1,0]])
\]

\[
\text{sage: p.Vrepresentation()}
\]

(A line in the direction (0, 0, 1),
A ray in the direction (1, 0, 0),
A ray in the direction (0, 1, 0),
A vertex at (0, 0, 0))

\[
\text{sage: q = Polyhedron(}\text{vertices=[[0,0,0]],}\text{rays=[[1,0,0],[0,1,0]]},\text{lines=[[0,0,1]]})
\]

\[
\text{sage: q.Hrepresentation()}
\]

(An inequality (1, 0, 0) x + 0 >= 0,
An inequality (0, 1, 0) x + 0 >= 0)

Finally, a more complicated example. Take $\mathbb{R}_{\geq 0}^6$ with coordinates a, b, \ldots, f and

• The inequality $e + b \geq c + d$

• The inequality $e + c \geq b + d$

• The equation $a + b + c + d + e + f = 31$

\[
\text{sage: positive_coords = Polyhedron(}\text{ieqs=[}
\]

(continues on next page)
sage: P = Polyhedron(ieqs=positive_coords.inequalities() + (0,0,1,-1,-1,1,0), [0,0,-1,1,-1,1,0], eqns=[[-31,1,1,1,1,1,1]])
sage: P
A 5-dimensional polyhedron in QQ^6 defined as the convex hull of 7 vertices
sage: P.dim()
5
sage: P.Vrepresentation()
(A vertex at (31, 0, 0, 0, 0, 0), A vertex at (0, 0, 0, 0, 0, 31),
A vertex at (0, 0, 0, 31/2, 0, 31/2), A vertex at (0, 31/2, 31/2, 0, 0, 0),
A vertex at (0, 31/2, 0, 0, 31/2, 0), A vertex at (0, 0, 0, 31/2, 31/2, 0))

Regular icosahedron, centered at 0 with edge length 2, with vertices given by the cyclic shifts of \((0, \pm 1, \pm (1 + \sqrt{5}))/2\), cf. Wikipedia article Regular_icosahedron. It needs a number field:

```
sage: R0.<r0> = QQ[]
# optional - sage.rings.number_field
sage: R1.<r1> = NumberField(r0^2-5, embedding=AA(5)**(1/2))
# optional - sage.rings.number_field
sage: gold = (1+r1)/2
# optional - sage.rings.number_field
sage: v = [[0, 1, gold], [0, 1, -gold], [0, -1, gold], [0, -1, -gold]]
# optional - sage.rings.number_field
sage: pp = Permutation((1, 2, 3))
# optional - sage.combinat
sage: icosah = Polyhedron(
....: [(pp^2).action(w) for w in v] + [pp.action(w) for w in v] + v,
....: base_ring=R1)
```

```
sage: len(icosah.faces(2))
20
```

When the input contains elements of a Number Field, they require an embedding:

```
sage: K = NumberField(x^2-2, 's')
# optional - sage.rings.number_field
sage: s = K.0
# optional - sage.rings.number_field
sage: L = NumberField(x^3-2, 't')
# optional - sage.rings.number_field
sage: t = L.0
# optional - sage.rings.number_field
sage: P = Polyhedron(vertices = [[s], [t,0]])
# optional - sage.rings.number_field
Traceback (most recent call last):
...
ValueError: invalid base ring
```

Create a mutable polyhedron:

```
sage: P = Polyhedron(vertices=[[0, 1], [1, 0]], mutable=True)
sage: P.is_mutable()
```
True
sage: hasattr(P, "_Vrepresentation")
False
sage: P.Vrepresentation()
(A vertex at (0, 1), A vertex at (1, 0))
sage: hasattr(P, "_Vrepresentation")
True

Note:

• Once constructed, a Polyhedron object is immutable.
• Although the option base_ring=RDF allows numerical data to be used, it might not give the right answer for degenerate input data - the results can depend upon the tolerance setting of cdd.

See also:

Library of polytopes

2.1.3 Parents for Polyhedra

sage.geometry.polyhedron.parent.Polyhedra(ambient_space_or_base_ring, ambient_dim, backend=None, ambient_space=None, base_ring=None)

Construct a suitable parent class for polyhedra

INPUT:

• base_ring – A ring. Currently there are backends for \(\mathbb{Z}\), \(\mathbb{Q}\), and \(\mathbb{R}\).
• ambient_dim – integer. The ambient space dimension.
• ambient_space – A free module.
• backend – string. The name of the backend for computations. There are several backends implemented:
 – backend="ppl" uses the Parma Polyhedra Library
 – backend="cdd" uses CDD
 – backend="normaliz" uses normaliz
 – backend="polymake" uses polymake
 – backend="field" a generic Sage implementation

OUTPUT:

A parent class for polyhedra over the given base ring if the backend supports it. If not, the parent base ring can be larger (for example, \(\mathbb{Q}\) instead of \(\mathbb{Z}\)). If there is no implementation at all, a ValueError is raised.

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(AA, 3)
Polyhedra in AA^3
sage: Polyhedra(ZZ, 3)
Polyhedra in ZZ^3
Combinatorial and Discrete Geometry, Release 9.6

(continued from previous page)

```
sage: type(_)
<class 'sage.geometry.polyhedron.parent.Polyhedra_ZZ_ppl_with_category'>
sage: Polyhedra(QQ, 3, backend='cdd')
Polyhedra in QQ^3
sage: type(_)
<class 'sage.geometry.polyhedron.parent.Polyhedra_QQ_cdd_with_category'>

CDD does not support integer polytopes directly:

```
sage: Polyhedra(ZZ, 3, backend='cdd')
Polyhedra in QQ^3
```

Using a more general form of the constructor:

```
sage: V = VectorSpace(QQ, 3)
sage: Polyhedra(V) is Polyhedra(QQ, 3)
True
sage: Polyhedra(V, backend='field') is Polyhedra(QQ, 3, 'field')
True
sage: Polyhedra(backend='field', ambient_space=V) is Polyhedra(QQ, 3, 'field')
True
```

```
sage: M = FreeModule(ZZ, 2)
sage: Polyhedra(M, backend='ppl') is Polyhedra(ZZ, 2, 'ppl')
True
```

```python
class sage.geometry.polyhedron.parent.Polyhedra_QQ_cdd(base_ring, ambient_dim, backend)
 Bases: sage.geometry.polyhedron.parent.Polyhedra_base

 Element
 alias of sage.geometry.polyhedron.backend_cdd.Polyhedron_QQ_cdd

class sage.geometry.polyhedron.parent.Polyhedra_QQ_normaliz(base_ring, ambient_dim, backend)
 Bases: sage.geometry.polyhedron.parent.Polyhedra_base

 Element
 alias of sage.geometry.polyhedron.backend_normaliz.Polyhedron_QQ_normaliz

class sage.geometry.polyhedron.parent.Polyhedra_QQ_ppl(base_ring, ambient_dim, backend)
 Bases: sage.geometry.polyhedron.parent.Polyhedra_base

 Element
 alias of sage.geometry.polyhedron.backend_ppl.Polyhedron_QQ_ppl

class sage.geometry.polyhedron.parent.Polyhedra_RDF_cdd(base_ring, ambient_dim, backend)
 Bases: sage.geometry.polyhedron.parent.Polyhedra_base

 Element
 alias of sage.geometry.polyhedron.backend_cdd_rdf.Polyhedron_RDF_cdd

class sage.geometry.polyhedron.parent.Polyhedra_ZZ_normaliz(base_ring, ambient_dim, backend)
 Bases: sage.geometry.polyhedron.parent.Polyhedra_base

 Element
 alias of sage.geometry.polyhedron.backend_normaliz.Polyhedron_ZZ_normaliz

class sage.geometry.polyhedron.parent.Polyhedra_ZZ_ppl(base_ring, ambient_dim, backend)
 Bases: sage.geometry.polyhedron.parent.Polyhedra_base
```

2.1. Polyhedra
Element alias of `sage.geometry.polyhedron.backend_ppl.Polyhedron_ZZ_ppl`

class `sage.geometry.polyhedron.parent.Polyhedra_base(base_ring, ambient_dim, backend)`

Bases: `sage.structure.unique_representation.UniqueRepresentation`, `sage.structure.parent.Parent`

Polyhedra in a fixed ambient space.

INPUT:

- `base_ring` – either ZZ, QQ, or RDF. The base ring of the ambient module/vector space.
- `ambient_dim` – integer. The ambient space dimension.
- `backend` – string. The name of the backend for computations. There are several backends implemented:
  - `backend="ppl"` uses the Parma Polyhedra Library
  - `backend="cdd"` uses CDD
  - `backend="normaliz"` uses normaliz
  - `backend="polymake"` uses polymake
  - `backend="field"` a generic Sage implementation

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(ZZ, 3)
Polyhedra in ZZ^3
```

`Hrepresentation_space()`

Return the linear space containing the H-representation vectors.

OUTPUT:

A free module over the base ring of dimension `ambient_dim()` + 1.

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(ZZ, 2).Hrepresentation_space()
Ambient free module of rank 3 over the principal ideal domain Integer Ring
```

`Vrepresentation_space()`

Return the ambient vector space.

This is the vector space or module containing the Vrepresentation vectors.

OUTPUT:

A free module over the base ring of dimension `ambient_dim()`.

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 4).Vrepresentation_space()
Vector space of dimension 4 over Rational Field
sage: Polyhedra(QQ, 4).ambient_space()
Vector space of dimension 4 over Rational Field
```
ambient_dim()  
Return the dimension of the ambient space.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 3).ambient_dim()
sage: 3
```

ambient_space()  
Return the ambient vector space.

This is the vector space or module containing the Vrepresentation vectors.

OUTPUT:

A free module over the base ring of dimension ambient_dim().

EXAMPLES:

```
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 4).Vrepresentation_space()
Vector space of dimension 4 over Rational Field
sage: Polyhedra(QQ, 4).ambient_space()
Vector space of dimension 4 over Rational Field
```

an_element()  
Return a Polyhedron.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 4).an_element()
A 4-dimensional polyhedron in QQ^4 defined as the convex hull of 5 vertices
```

backend()  
Return the backend.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 3).backend()
'ppl'
```

base_extend(base_ring, backend=None, ambient_dim=None)  
Return the base extended parent.

INPUT:

• base_ring, backend – see Polyhedron().

• ambient_dim – if not None change ambient dimension accordingly.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(ZZ,3).base_extend(QQ)
Polyhedra in QQ^3
sage: Polyhedra(ZZ,3).an_element().base_extend(QQ)
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 4 vertices
```

(continues on next page)

2.1. Polyhedra  117
sage: Polyhedra(QQ, 2).base_extend(ZZ)
Polyhedra in QQ^2

\textbf{change\_ring}(base\_ring=\text{None}, \text{ambient\_dim}=\text{None})

Return the parent with the new base ring.

INPUT:

- base\_ring.backend – see \texttt{Polyhedron()}.
- ambient\_dim – if not \text{None} change ambient dimension accordingly.

\textbf{EXAMPLES:}

sage: from sage.geometry.polyhedron.parent import Polyhedra
g<b>sage</b>: Polyhedra(ZZ, 3).change_ring(QQ)
Polyhedra in QQ^3
g<b>sage</b>: Polyhedra(ZZ, 3).an_element().change_ring(QQ)
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 4 vertices
sage: Polyhedra(RDF, 3).change_ring(QQ).backend()
'cdd'
sage: Polyhedra(QQ, 3).change_ring(ZZ, ambient_dim=4)
Polyhedra in ZZ^4
sage: Polyhedra(QQ, 3, backend='cdd').change_ring(QQ, ambient_dim=4).backend()
'cdd'

\textbf{empty()}  

Return the empty polyhedron.

\textbf{EXAMPLES:}

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: P = Polyhedra(QQ, 4)
sage: P.empty()
The empty polyhedron in QQ^4
sage: P.empty().is_empty()
True

\textbf{list()}  

Return the two polyhedra in ambient dimension 0, raise an error otherwise

\textbf{EXAMPLES:}

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: P = Polyhedra(QQ, 3)
sage: P.cardinality()
+Infinity
sage: P.category()
\text{Category of finite enumerated polyhedral sets over Algebraic Real Field}

sage: P.list()
[The empty polyhedron in AA^0,
A 0-dimensional polyhedron in AA^0 defined as the convex hull of 1 vertex]
**sage:** P.cardinality()

```
2
```

**recycle** *(polyhedron)*
Recycle the H/V-representation objects of a polyhedron.

This speeds up creation of new polyhedra by reusing objects. After recycling a polyhedron object, it is not in a consistent state any more and neither the polyhedron nor its H/V-representation objects may be used any more.

**INPUT:**
- polyhedron – a polyhedron whose parent is self.

**EXAMPLES:**

```
sage: p = Polyhedron([(0,0),(1,0),(0,1)])
sage: p.parent().recycle(p)
```

**some_elements** *
Return a list of some elements of the semigroup.

**EXAMPLES:**

```
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: Polyhedra(QQ, 4).some_elements()
[A 3-dimensional polyhedron in QQ^4 defined as the convex hull of 4 vertices,
 A 4-dimensional polyhedron in QQ^4 defined as the convex hull of 1 vertex and
 4 rays,
 A 2-dimensional polyhedron in QQ^4 defined as the convex hull of 2 vertices
 and 1 ray,
 The empty polyhedron in QQ^4]
sage: Polyhedra(ZZ, 0).some_elements()
[The empty polyhedron in ZZ^0,
 A 0-dimensional polyhedron in ZZ^0 defined as the convex hull of 1 vertex]
```

**universe** *
Return the entire ambient space as polyhedron.

**EXAMPLES:**

```
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: P = Polyhedra(QQ, 4)
sage: P.universe()
A 4-dimensional polyhedron in QQ^4 defined as the convex hull of 1 vertex and 4
 lines
sage: P.universe().is_universe()
True
```

**zero** *
Return the polyhedron consisting of the origin, which is the neutral element for Minkowski addition.

**EXAMPLES:**

```
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: p = Polyhedra(QQ, 4).zero(); p
```
A 0-dimensional polyhedron in \( \mathbb{Q}^4 \) defined as the convex hull of 1 vertex
\[
\text{sage: } p+p == p
\]
\[
\text{True}
\]

```python
class sage.geometry.polyhedron.parent.Polyhedra_field(base_ring, ambient_dim, backend):
 #...
 Bases: sage.geometry.polyhedron.parent.Polyhedra_base

 Element
 alias of sage.geometry.polyhedron.backend_field.Polyhedron_field

class sage.geometry.polyhedron.parent.Polyhedra_normaliz(base_ring, ambient_dim, backend):
 #...
 Bases: sage.geometry.polyhedron.parent.Polyhedra_base

 Element
 alias of sage.geometry.polyhedron.backend_normaliz.Polyhedron_normaliz

class sage.geometry.polyhedron.parent.Polyhedra_polymake(base_ring, ambient_dim, backend):
 #...
 Bases: sage.geometry.polyhedron.parent.Polyhedra_base

 Element
 alias of sage.geometry.polyhedron.backend_polymake.Polyhedron_polymake
```

```
sage: from sage.geometry.polyhedron.parent import does_backend_handle_base_ring
sage: does_backend_handle_base_ring(QQ, 'ppl')
True
sage: does_backend_handle_base_ring(QQ[sqrt(5)], 'ppl')
False
sage: does_backend_handle_base_ring(QQ[sqrt(5)], 'field')
True
```

### 2.1.4 H(yperplane) and V(ertex) representation objects for polyhedra

```python
class sage.geometry.polyhedron.representation.Equation(polyhedron_parent):
 #...
 Bases: sage.geometry.polyhedron.representation.Hrepresentation

 contains(Vobj)
 #...
```

```
sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: v = next(p.vertex_generator())
sage: v
A vertex at (0, 0, 0)
sage: a = next(p.equation_generator())
sage: a
An equation (0, 0, 1) x + 0 == 0
```
interior_contains(Vobj)
Tests whether the interior of the halfspace (excluding its boundary) defined by the inequality contains the
given vertex/ray/line.

Note: Return False for any equation.

EXAMPLES:

```sage
p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
v = next(p.vertex_generator())
v
A vertex at (0, 0, 0)
a = next(p.equation_generator())
a
An equation (0, 0, 1) x + 0 == 0
a.interior_contains(v)
False
```

is_equation()
Tests if this object is an equation. By construction, it must be.

type()
Return the type (equation/inequality/vertex/ray/line) as an integer.

OUTPUT:
Integer. One of PolyhedronRepresentation.INEQUALITY, .EQUATION, .VERTEX, .RAY, or .LINE.

EXAMPLES:

```sage
p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
repr_obj = next(p.equation_generator())
repr_obj.type()
1
repr_obj.type() == repr_obj.INEQUALITY
False
repr_obj.type() == repr_obj.EQUATION
True
repr_obj.type() == repr_obj.VERTEX
False
repr_obj.type() == repr_obj.RAY
False
repr_obj.type() == repr_obj.LINE
False
```

class sage.geometry.polyhedron.representation.Hrepresentation(polyhedron_parent)
Bases: sage.geometry.polyhedron.representation.PolyhedronRepresentation

The internal base class for H-representation objects of a polyhedron. Inherits from PolyhedronRepresentation.
A()

Return the coefficient vector $A$ in $A\vec{x} + b$.

EXAMPLES:

```
sage: p = Polyhedron(ieqs = [[0,1,0],[0,0,1],[1,-1,0],[1,0,-1]])
sage: pH = p.Hrepresentation(2)
sage: pH.A()
(1, 0)
```

adjacent()

Alias for neighbors().

b()

Return the constant $b$ in $A\vec{x} + b$.

EXAMPLES:

```
sage: p = Polyhedron(ieqs = [[0,1,0],[0,0,1],[1,-1,0],[1,0,-1]])
sage: pH = p.Hrepresentation(2)
sage: pH.b()
0
```

eval(Vobj)

Evaluate the left hand side $A\vec{x} + b$ on the given vertex/ray/line.

EXAMPLES:

```
sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[-1,-1]])
sage: ineq = next(triangle.inequality_generator())
sage: ineq
An inequality (2, -1) x + 1 >= 0
sage: [ineq.eval(v) for v in triangle.vertex_generator()]
[0, 0, 3]
sage: [ineq * v for v in triangle.vertex_generator()]
[0, 0, 3]
```

If you pass a vector, it is assumed to be the coordinate vector of a point:

```
sage: ineq.eval(vector(ZZ, [3,2]))
5
```

incident()

Return a generator for the incident H-representation objects, that is, the vertices/rays/lines satisfying the 
(in)equality.

EXAMPLES:

```
sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[-1,-1]])
sage: ineq = next(triangle.inequality_generator())
sage: ineq
An inequality (2, -1) x + 1 >= 0
sage: [v for v in ineq.incident()]
[A vertex at (-1, -1), A vertex at (0, 1)]
sage: p = Polyhedron(ieqs=[[0,0,0],[0,1,0],[0,0,1]], rays=[[1,-1,-1]])
sage: ineq = p.Hrepresentation(2)
sage: ineq
(continues on next page)
```
An inequality \((1, 0, 1) x + 0 >= 0\)

```
sage: [x for x in ineq.incident()]
[A vertex at (0, 0, 0),
 A vertex at (0, 1, 0),
 A ray in the direction (1, -1, -1)]
```

**is_H()**

Return True if the object is part of a H-representation (inequality or equation).

**EXAMPLES:**

```
sage: p = Polyhedron(ieqs = [[0,1,0],[0,0,1],[1,-1,0],[1,0,-1]])
sage: pH = p.Hrepresentation(0)
sage: pH.is_H()
True
```

**is_equation()**

Return True if the object is an equation of the H-representation.

**EXAMPLES:**

```
sage: p = Polyhedron(ieqs = [[0,1,0],[0,0,1],[1,-1,0],[1,0,-1]], eqns = [[1,1,-1,1]])
sage: pH = p.Hrepresentation(0)
sage: pH.is_equation()
True
```

**is_incident(Vobj)**

Return whether the incidence matrix element \((Vobj, self) == 1\)

**EXAMPLES:**

```
sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[0,1,0,0],
.....:[1,-1,0,0],[1,0,-1,0],[1,0,0,-1]])
sage: pH = p.Hrepresentation(0)
sage: pH.is_incident(p.Vrepresentation(1))
True
sage: pH.is_incident(p.Vrepresentation(5))
False
```

**is_inequality()**

Return True if the object is an inequality of the H-representation.

**EXAMPLES:**

```
sage: p = Polyhedron(ieqs = [[0,1,0],[0,0,1],[1,-1,0],[1,0,-1]])
sage: pH = p.Hrepresentation(0)
sage: pH.is_inequality()
True
```

**neighbors()**

Iterate over the adjacent facets (i.e. inequalities).

Only defined for inequalities.

**EXAMPLES:**

```
```
```python
sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[0,1,0,0],
....: [1,-1,0,0],[1,0,-1,0],[1,0,0,-1]])
```

```python
sage: pH = p.Hrepresentation(0)
sage: a = list(pH.neighbors())
sage: a[0]
```

An inequality $(0, -1, 0) x + 1 \geq 0$

```python
sage: list(a[0])
```

```
[1, 0, -1, 0]
```

**repr_pretty(**kwds)**

Return a pretty representation of this equality/inequality.

**INPUT:**

- prefix – a string
- indices – a tuple or other iterable
- latex – a boolean

**OUTPUT:**
A string

**EXAMPLES:**

```python
sage: P = Polyhedron(ieqs=[(0, 1, 0, 0), (1, 2, 1, 0)],
....: eqns=[(1, -1, -1, 1)])
sage: for h in P.Hrepresentation():
....: print(h.repr_pretty())
x0 + x1 - x2 == 1
x0 >= 0
2*x0 + x1 >= -1
```

**class** `sage.geometry.polyhedron.representation.Inequality(polyhedron_parent)`

**Bases:** `sage.geometry.polyhedron.representation.Hrepresentation`

A linear inequality (supporting hyperplane) of the polyhedron. Inherits from `Hrepresentation`.

**contains**(Vobj)

Tests whether the halfspace (including its boundary) defined by the inequality contains the given vertex/ray/line.

**EXAMPLES:**

```python
sage: p = polytopes.cross_polytope(3)
sage: i1 = next(p.inequality_generator())
sage: [i1.contains(q) for q in p.vertex_generator()]
[True, True, True, True, True, True]
sage: p2 = 3*polytopes.hypercube(3)
sage: [i1.contains(q) for q in p2.vertex_generator()]
[True, True, False, True, False, True, False, False]
```

**interior_contains**(Vobj)

Tests whether the interior of the halfspace (excluding its boundary) defined by the inequality contains the given vertex/ray/line.

**EXAMPLES:**
```python
sage: p = polytopes.cross_polytope(3)
sage: i1 = next(p.inequality_generator())
[False, True, False, False, False, True]
sage: p2 = 3*polytopes.hypercube(3)
[True, True, False, True, False, True, False, False]
```

If you pass a vector, it is assumed to be the coordinate vector of a point:

```python
sage: P = Polyhedron(vertices=[[1,1], [1,-1], [-1,1], [-1,-1]])
sage: p = vector(ZZ, [1,0])
[True, True, False, True]
```

```python
is_facet_defining_inequality(self, other)
Check if self defines a facet of other.

INPUT:

- other -- a polyhedron

See also:
slack_matrix() incidence_matrix()

EXAMPLES:
```
is_inequality()
Return True since this is, by construction, an inequality.

EXAMPLES:

```
sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: a = next(p.inequality_generator())
sage: a.is_inequality()
```

outer_normal()
Return the outer normal vector of self.

OUTPUT:
The normal vector directed away from the interior of the polyhedron.

EXAMPLES:

```
sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: a = next(p.inequality_generator())
sage: a.outer_normal()
(1, -1, 0)
```

type()
Return the type (equation/inequality/vertex/ray/line) as an integer.

OUTPUT:
Integer. One of PolyhedronRepresentation.INEQUALITY, .EQUATION, .VERTEX, .RAY, or .LINE.

EXAMPLES:

```
sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: repr_obj = next(p.inequality_generator())
sage: repr_obj.type()
0
```

class sage.geometry.polyhedron.representation.Line(polynomial_parent)
Bases: sage.geometry.polyhedron.representation.Vrepresentation
A line (Minkowski summand \( \simeq \mathbb{R} \)) of the polyhedron. Inherits from \( \text{Vrepresentation} \).

**evaluated_on(**\( Hobj \))

Return \( \vec{A} \ell \)

EXAMPLES:

```
sage: p = Polyhedron(ieqs = [[1, 0, 0, 1],[1,1,0,0]])
sage: a = next(p.line_generator())
sage: h = next(p.inequality_generator())
sage: a.evaluated_on(h)
0
```

**homogeneous_vector(**\( base\_ring=None \))

Return homogeneous coordinates for this line.

Since a line is given by a direction, this is the vector with a 0 appended.

INPUT:

- \( base\_ring \) – the base ring of the vector.

EXAMPLES:

```
sage: P = Polyhedron(vertices=[(2,0)], rays=[(1,0)], lines=[(3,2)])
sage: P.lines()[0].homogeneous_vector()
(3, 2, 0)
sage: P.lines()[0].homogeneous_vector(RDF)
(3.0, 2.0, 0.0)
```

**is_line()**

Tests if the object is a line. By construction it must be.

**type()**

Return the type (equation/inequality/vertex/ray/line) as an integer.

OUTPUT:

Integer. One of \( \text{PolyhedronRepresentation}.\text{INEQUALITY}, \text{.EQUATION}, \text{.VERTEX}, \text{.RAY}, \text{or .LINE} \).

EXAMPLES:

```
sage: p = Polyhedron(ieqs = [[1, 0, 0, 1],[1,1,0,0]])
sage: repr_obj = next(p.line_generator())
sage: repr_obj.type()
4
sage: repr_obj.type() == repr_obj.INEQUALITY
False
sage: repr_obj.type() == repr_obj.EQUATION
False
sage: repr_obj.type() == repr_obj.VERTEX
False
sage: repr_obj.type() == repr_obj.RAY
False
sage: repr_obj.type() == repr_obj.LINE
True
```
The internal base class for all representation objects of Polyhedron (vertices/rays/lines and inequalities/equations)

**Note:** You should not (and cannot) instantiate it yourself. You can only obtain them from a Polyhedron() class.

**count(i)**
Count the number of occurrences of \( i \) in the coordinates.

**INPUT:**
- \( i \) – Anything.

**OUTPUT:**
Integer. The number of occurrences of \( i \) in the coordinates.

**EXAMPLES:**

```sage
sage: p = Polyhedron(vertices=[(0,1,1,2,1)])
sage: v = p.Vrepresentation(0); v
A vertex at (0, 1, 1, 2, 1)
sage: v.count(1)
3
```

**index()**
Return an arbitrary but fixed number according to the internal storage order.

**Note:** H-representation and V-representation objects are enumerated independently. That is, amongst all vertices/rays/lines there will be one with \( \text{index}() == 0 \), and amongst all inequalities/equations there will be one with \( \text{index}() == 0 \), unless the polyhedron is empty or spans the whole space.

**EXAMPLES:**

```sage
sage: s = Polyhedron(vertices=[[1],[-1]])
sage: first_vertex = next(s.vertex_generator())
sage: first_vertex.index()
0
sage: first_vertex == s.Vrepresentation(0)
True
```

**polyhedron()**
Return the underlying polyhedron.

**vector(base_ring=None)**
Return the vector representation of the H/V-representation object.

**INPUT:**
- \( \text{base\_ring} \) – the base ring of the vector.

**OUTPUT:**
For a V-representation object, a vector of length \( \text{ambient\_dim()} \). For a H-representation object, a vector of length \( \text{ambient\_dim()} + 1 \).

**EXAMPLES:**
```python
sage: s = polytopes.cuboctahedron()
sage: v = next(s.vertex_generator())
sage: v
A vertex at (-1, -1, 0)
sage: v.vector()
(-1, -1, 0)
sage: v()
(-1, -1, 0)
sage: type(v())
<class 'sage.modules.vector_integer_dense.Vector_integer_dense'>
```

Conversion to a different base ring can be forced with the optional argument:

```python
sage: v.vector(RDF)
(-1.0, -1.0, 0.0)
sage: vector(RDF, v)
(-1.0, -1.0, 0.0)
```

```python
class sage.geometry.polyhedron.representation.Ray(polyhedron_parent)
Bases: sage.geometry.polyhedron.representation.Vrepresentation
A ray of the polyhedron. Inherits from Vrepresentation.

evaluated_on(Hobj)
Return \(\vec{A} \vec{r} \)

EXAMPLES:
```python
sage: p = Polyhedron(ieqs = [[0,0,1],[0,1,0],[1,-1,0]])
sage: a = next(p.ray_generator())
sage: h = next(p.inequality_generator())
sage: a.evaluated_on(h)
0
```

```python
homogeneous_vector(base_ring=None)
Return homogeneous coordinates for this ray.

Since a ray is given by a direction, this is the vector with a 0 appended.

INPUT:
- base_ring – the base ring of the vector.

EXAMPLES:
```python
sage: P = Polyhedron(vertices=[[2,0]], rays=[[1,0]], lines=[[3,2]])
sage: P.rays()[0].homogeneous_vector()
(1, 0, 0)
sage: P.rays()[0].homogeneous_vector(RDF)
(1.0, 0.0, 0.0)
```

```python
is_ray()
Tests if this object is a ray. Always True by construction.

EXAMPLES:
```
sage: p = Polyhedron(ieqs = [[0,0,1],[0,1,0],[1,-1,0]])
sage: a = next(p.ray_generator())
sage: a.is_ray()
True

**type()**
Return the type (equation/inequality/vertex/ray/line) as an integer.

**OUTPUT:**
Integer. One of PolyhedronRepresentation.INEQUALITY, .EQUATION, .VERTEX, .RAY, or .LINE.

**EXAMPLES:**

sage: p = Polyhedron(ieqs = [[0,0,1],[0,1,0],[1,-1,0]])
sage: repr_obj = next(p.ray_generator())
sage: repr_obj.type()
3
sage: repr_obj.type() == repr_obj.INEQUALITY
False
sage: repr_obj.type() == repr_obj.EQUATION
False
sage: repr_obj.type() == repr_obj.VERTEX
False
sage: repr_obj.type() == repr_obj.RAY
True
sage: repr_obj.type() == repr_obj.LINE
False

class sage.geometry.polyhedron.representation.Vertex(polyhedron_parent)
Bases: sage.geometry.polyhedron.representation.Vrepresentation

A vertex of the polyhedron. Inherits from Vrepresentation.

evaluated_on(Hobj)
Return $A\vec{x} + b$

**EXAMPLES:**

sage: p = polytopes.hypercube(3)
sage: v = next(p.vertex_generator())
sage: h = next(p.inequality_generator())
sage: v
A vertex at (1, -1, -1)
sage: h
An inequality (-1, 0, 0) x + 1 >= 0
sage: v.evaluated_on(h)
0

**homogeneous_vector(base_ring=None)**
Return homogeneous coordinates for this vertex.

Since a vertex is given by an affine point, this is the vector with a 1 appended.

**INPUT:**
* base_ring – the base ring of the vector.

**OUTPUT:**
sage: P = Polyhedron(vertices=[(2,0)], rays=[(1,0)], lines=[(3,2)])

sage: P.vertices()[0].homogeneous_vector()
(2, 0, 1)

sage: P.vertices()[0].homogeneous_vector(RDF)
(2.0, 0.0, 1.0)

**is_integral()**

Return whether the coordinates of the vertex are all integral.

**OUTPUT:**

Boolean.

**EXAMPLES:**

```python
sage: p = Polyhedron([(1/2,3,5), (0,0,0), (2,3,7)])
sage: [v.is_integral() for v in p.vertex_generator()]
[True, False, True]
```

**is_vertex()**

Tests if this object is a vertex. By construction it always is.

**EXAMPLES:**

```python
sage: p = Polyhedron(ieqs = [[0,0,1],[0,1,0],[1,-1,0]])
sage: a = next(p.vertex_generator())
sage: a.is_vertex()
True
```

**type()**

Return the type (equation/inequality/vertex/ray/line) as an integer.

**OUTPUT:**

Integer. One of PolyhedronRepresentation.INEQUALITY, .EQUATION, .VERTEX, .RAY, or .LINE.

**EXAMPLES:**

```python
sage: p = Polyhedron(vertices = [[0,0,0],[1,1,0],[1,2,0]])
sage: repr_obj = next(p.vertex_generator())
sage: repr_obj.type()
2
sage: repr_obj.type() == repr_obj.INEQUALITY
False
sage: repr_obj.type() == repr_obj.EQUATION
False
sage: repr_obj.type() == repr_obj.VERTEX
True
sage: repr_obj.type() == repr_obj.RAY
False
sage: repr_obj.type() == repr_obj.LINE
False
```

class sage.geometry.polyhedron.representation.Vrepresentation(polyhedron_parent)

Bases: sage.geometry.polyhedron.representation.PolyhedronRepresentation

The base class for V-representation objects of a polyhedron. Inherits from PolyhedronRepresentation.

2.1. Polyhedra 131
adjacent()
   Alias for neighbors().

incident()
   Return a generator for the equations/inequalities that are satisfied on the given vertex/ray/line.

   EXAMPLES:
   sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[-1,-1]])
   sage: ineq = next(triangle.inequality_generator())
   sage: ineq
   An inequality (2, -1) x + 1 >= 0
   sage: [ v for v in ineq.incident() ]
   [A vertex at (-1, -1), A vertex at (0, 1)]
   sage: p = Polyhedron(vertices=[[0,0],[0,1],[0,0,1]], rays=[[1,-1,-1]])
   sage: ineq = p.Hrepresentation(2)
   sage: ineq
   An inequality (1, 0, 1) x + 0 >= 0
   sage: [ x for x in ineq.incident() ]
   [A vertex at (0, 0, 0),
    A vertex at (0, 1, 0),
    A ray in the direction (1, -1, -1)]

is_V()
   Return True if the object is part of a V-representation (a vertex, ray, or line).

   EXAMPLES:
   sage: p = Polyhedron(vertices = [[0,0],[1,0],[0,3],[1,3]])
   sage: v = next(p.vertex_generator())
   sage: v.is_V()
   True

is_incident(Hobj)
   Return whether the incidence matrix element (self,Hobj) == 1

   EXAMPLES:
   sage: p = polytopes.hypercube(3)
   sage: h1 = next(p.inequality_generator())
   sage: h1
   An inequality (-1, 0, 0) x + 1 >= 0
   sage: v1 = next(p.vertex_generator())
   sage: v1
   A vertex at (1, -1, -1)
   sage: v1.is_incident(h1)
   True

is_line()
   Return True if the object is a line of the V-representation. This method is over-ridden by the corresponding method in the derived class Line.

   EXAMPLES:
   sage: p = Polyhedron(ieqs = [[1, 0, 0, 0, 1], [1, 1, 0, 0, 0], [1, 0, 1, 0, 0]])
   sage: line1 = next(p.line_generator())
   (continues on next page)
is_line()

Return True if the object is a line of the V-representation. This method is over-ridden by the corresponding method in the derived class Line.

EXAMPLES:

```
sage: line1.is_line()
True
sage: v1 = next(p.vertex_generator())
sage: v1.is_line()
False
```

is_ray()

Return True if the object is a ray of the V-representation. This method is over-ridden by the corresponding method in the derived class Ray.

EXAMPLES:

```
sage: p = Polyhedron(ieqs = [[1, 0, 0, 0, 1], [1, 1, 0, 0, 0], [1, 0, 1, 0, 0]])
sage: r1 = next(p.ray_generator())
sage: r1.is_ray()
True
sage: v1 = next(p.vertex_generator())
sage: v1.is_ray()
False
```

is_vertex()

Return True if the object is a vertex of the V-representation. This method is over-ridden by the corresponding method in the derived class Vertex.

EXAMPLES:

```
sage: p = Polyhedron(vertices = [[0,0],[1,0],[0,3],[1,3]])
sage: v = next(p.vertex_generator())
sage: v.is_vertex()
True
sage: p = Polyhedron(ieqs = [[1, 0, 0, 0, 1], [1, 1, 0, 0, 0], [1, 0, 1, 0, 0]])
sage: r1 = next(p.ray_generator())
sage: r1.is_vertex()
False
```

neighbors()

Return a generator for the adjacent vertices/rays/lines.

EXAMPLES:

```
sage: p = Polyhedron(vertices = [[0,0],[1,0],[0,3],[1,4]])
sage: v = next(p.vertex_generator())
sage: next(v.neighbors())
A vertex at (0, 3)
```

```
sage.geometry.polyhedron.representation.repr_pretty(coefficients, type, prefix='x', indices=None, latex=False, style='>=', split=False)
```

Return a pretty representation of equation/inequality represented by the coefficients.

INPUT:

- coefficients – a tuple or other iterable
• type – either 0 (PolyhedronRepresentation.INEQUALITY) or 1 (PolyhedronRepresentation.EQUATION)
• prefix – a string
• indices – a tuple or other iterable
• latex – a boolean

• **split** – a boolean; (Default: False). If set to True, the output is split into a 3-tuple containing the left-hand side, the relation, and the right-hand side of the object.

• style – either "positive" (making all coefficients positive), or "<=" or ">=".

OUTPUT:
A string or 3-tuple of strings (depending on split).

EXAMPLES:
```
sage: from sage.geometry.polyhedron.representation import repr_pretty
sage: from sage.geometry.polyhedron.representation import PolyhedronRepresentation
sage: print(repr_pretty((0, 1, 0, 0), PolyhedronRepresentation.INEQUALITY))
x0 >= 0
sage: print(repr_pretty((1, 2, 1, 0), PolyhedronRepresentation.INEQUALITY))
2*x0 + x1 >= -1
sage: print(repr_pretty((1, -1, -1, 1), PolyhedronRepresentation.EQUATION))
-x0 - x1 + x2 == -1
```

2.1.5 Functions for plotting polyhedra

class sage.geometry.polyhedron.plot.Projection(polyhedron, proj=<function projection_func_identity at 0x7f09caf13430>):
    Bases: sage.structure.sage_object.SageObject

    The projection of a Polyhedron.

    This class keeps track of the necessary data to plot the input polyhedron.

    **coord_index_of(v)**
    Convert a coordinate vector to its internal index.

    EXAMPLES:
    ```
sage: p = polytopes.hypercube(3)
sage: proj = p.projection()
sage: proj.coord_index_of(vector((1,1,1)))
2
```

    **coord_indices_of(v_list)**
    Convert list of coordinate vectors to the corresponding list of internal indices.

    EXAMPLES:
    ```
sage: p = polytopes.hypercube(3)
sage: proj = p.projection()
sage: proj.coord_indices_of([vector((1,1,1)), vector((1,-1,1))])
[2, 3]
```
coordinates_of(coord_index_list)
Given a list of indices, return the projected coordinates.

EXAMPLES:

```
sage: p = polytopes.simplex(4, project=True).projection()
sage: p.coordinates_of([1])
[[[-0.7071067812, 0.4082482905, 0.2886751346, 0.2236067977]]
```

identity()
Return the identity projection of the polyhedron.

EXAMPLES:

```
sage: p = polytopes.icosahedron(exact=False)
sage: from sage.geometry.polyhedron.plot import Projection
sage: pproj = Projection(p)
sage: ppid = pproj.identity()
sage: ppid.dimension
3
```

render_0d(point_opts=None, line_opts=None, polygon_opts=None)
Return 0d rendering of the projection of a polyhedron into 2-dimensional ambient space.

INPUT:
See plot().

OUTPUT:
A 2-d graphics object.

EXAMPLES:

```
sage: print(Polyhedron([]).projection().render_0d().description()) # optional - sage.plot
Point set defined by 0 point(s):

sage: print(Polyhedron(ieqs=[[1]]).projection().render_0d().description()) # optional - sage.plot
Point set defined by 1 point(s): [(0.0, 0.0, 0.0)]
```

render_1d(point_opts=None, line_opts=None, polygon_opts=None)
Return 1d rendering of the projection of a polyhedron into 2-dimensional ambient space.

INPUT:
See plot().

OUTPUT:
A 2-d graphics object.

EXAMPLES:

```
sage: Polyhedron([0], [1]).projection().render_1d() # optional - sage.plot
Graphics object consisting of 2 graphics primitives
```

render_2d(point_opts=None, line_opts=None, polygon_opts=None)
Return 2d rendering of the projection of a polyhedron into 2-dimensional ambient space.

EXAMPLES:
sage: p1 = Polyhedron(vertices=[[1,1]], rays=[[1,1]])
sage: q1 = p1.projection()

sage: p2 = Polyhedron(vertices=[[1,0], [0,1], [0,0]])
sage: q2 = p2.projection()

sage: p3 = Polyhedron(vertices=[[1,2]])
sage: q3 = p3.projection()

sage: p4 = Polyhedron(vertices=[[2,0]], rays=[[1,-1]], lines=[[1,1]])
sage: q4 = p4.projection()

sage: q1.plot() + q2.plot() + q3.plot() + q4.plot()  # optional - sage.plot
Graphics object consisting of 18 graphics primitives

render_3d(point_opts=None, line_opts=None, polygon_opts=None)
Return 3d rendering of a polyhedron projected into 3-dimensional ambient space.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[[1,1,1]], rays=[[1,1,1]])
sage: p2 = Polyhedron(vertices=[[2,0,0], [0,2,0], [0,0,2]])
sage: p3 = Polyhedron(vertices=[[1,0,0], [0,1,0], [0,0,1]], rays=[[1,-1,-1]])

sage: p1.projection().plot() + p2.projection().plot() + p3.projection().plot()  # optional - sage.plot
˓→Graphics3d Object

It correctly handles various degenerate cases:

sage: Polyhedron(lines=[[0,1,0],[0,0,1]]).plot()  # whole space # optional - sage.plot
Graphics3d Object

sage: Polyhedron(vertices=[[1,1,1]], rays=[[1,0,0]], lines=[[0,1,0],[0,0,1]]).plot()  # half space
˓→Graphics3d Object

sage: Polyhedron(vertices=[[1,1,1]], lines=[[0,1,0],[0,0,1]]).plot()  # R^2 in R^3
˓→Graphics3d Object

sage: Polyhedron(rays=[[0,1,0]], lines=[[1,0,0]]).plot()  # quadrant wedge in R^2
˓→Graphics3d Object

sage: Polyhedron(rays=[[0,1,0]], lines=[[1,0,0]]).plot()  # upper half plane in R^3
˓→Graphics3d Object

sage: Polyhedron(lines=[[1,0,0]]).plot()  # R^1 in R^2
˓→Graphics3d Object

sage: Polyhedron(rays=[[0,1,0]]).plot()  # Half-line in R^3
˓→Graphics3d Object

sage: Polyhedron(vertices=[[1,1,1]]).plot()  # point in R^3
˓→Graphics3d Object

The origin is not included, if it is not in the polyhedron (trac ticket #23555):
Combinatorial and Discrete Geometry, Release 9.6

```python
sage: Q = Polyhedron([[100],[101]])
sage: P = Q*Q*Q; P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: p = P.plot()
optional - sage.plot
sage: p.bounding_box()
optional - sage.plot
((100.0, 100.0, 100.0), (101.0, 101.0, 101.0))
```

Plot 3d polytope with rainbow colors:

```python
sage: polytopes.hypercube(3).plot(polygon='rainbow', alpha=0.4)
optional - sage.plot
Graphics3d Object
```

**render_fill_2d(**kwds)**

Return the filled interior (a polygon) of a polyhedron in 2d.

EXAMPLES:

```python
sage: cps = [i^3 for i in srange(-2,2,1/5)]
sage: p = Polyhedron(vertices = [[(t^2-1)/(t^2+1),2*t/(t^2+1)] for t in cps])
sage: proj = p.projection()
sage: filled_poly = proj.render_fill_2d() # optional - sage.plot
sage: filled_poly.axes_width() # optional - sage.plot
0.8
```

**render_line_1d(**kwds)**

Return the line of a polyhedron in 1d.

INPUT:

* **kwds – options passed through to line2d().

OUTPUT:

A 2-d graphics object.

EXAMPLES:

```python
sage: outline = polytopes.hypercube(1).projection().render_line_1d() #
optional - sage.plot
sage: outline._objects[0] #
optional - sage.plot
Line defined by 2 points
```

**render_outline_2d(**kwds)**

Return the outline (edges) of a polyhedron in 2d.

EXAMPLES:

```python
sage: penta = polytopes.regular_polygon(5)
sage: outline = penta.projection().render_outline_2d() # optional - sage.plot
sage: outline._objects[0] # optional - sage.plot
Line defined by 2 points
```

**render_points_1d(**kwds)**

Return the points of a polyhedron in 1d.

2.1. Polyhedra

137
INPUT:

• **kwds** – options passed through to `point2d()`.

OUTPUT:

A 2-d graphics object.

EXAMPLES:

```
sage: cubel = polytopes.hypercube(1)
sage: proj = cubel.projection()
sage: points = proj.render_points_1d() # optional - sage.plot
sage: points._objects # optional - sage.plot
[Point set defined by 2 point(s)]
```

**render_points_2d(**kwds)**

Return the points of a polyhedron in 2d.

EXAMPLES:

```
sage: hex = polytopes.regular_polygon(6)
sage: proj = hex.projection()
sage: hex_points = proj.render_points_2d() # optional - sage.plot
sage: hex_points._objects # optional - sage.plot
[Point set defined by 6 point(s)]
```

**render_solid_3d(**kwds)**

Return solid 3d rendering of a 3d polytope.

EXAMPLES:

```
sage: p = polytopes.hypercube(3).projection()
sage: p_solid = p.render_solid_3d(opacity=.7) # optional - sage.plot
sage: type(p_solid) # optional - sage.plot
<class 'sage.plot.plot3d.index_face_set.IndexFaceSet'>
```

**render_vertices_3d(**kwds)**

Return the 3d rendering of the vertices.

EXAMPLES:

```
sage: p = polytopes.cross_polytope(3)
sage: proj = p.projection()
sage: verts = proj.render_vertices_3d() # optional - sage.plot
sage: verts.bounding_box() # optional - sage.plot
((-1.0, -1.0, -1.0), (1.0, 1.0, 1.0))
```

**render_wireframe_3d(**kwds)**

Return the 3d wireframe rendering.

EXAMPLES:

```
sage: cube = polytopes.hypercube(3)
sage: cube_proj = cube.projection()
sage: wire = cube_proj.render_wireframe_3d() # optional - sage.plot
```

(continues on next page)
sage: print(wire.tachyon().split('\n')[77]) # for testing # optional - sage.
...
plot

\texttt{FCylinder base 1.0 1.0 -1.0 apex -1.0 1.0 -1.0 rad 0.005 texture...}

\texttt{schlegel}(\texttt{facet=}\texttt{None}, \texttt{position=}\texttt{None})

Return the Schlegel projection.

- The facet is orthonormally transformed into its affine hull.
- The position specifies a point coming out of the barycenter of the facet from which the other vertices will be projected into the facet.

\textbf{INPUT:}

- \texttt{facet} – a \texttt{PolyhedronFace}. The facet into which the Schlegel diagram is created. The default is the first facet.
- \texttt{position} – a positive number. Determines a relative distance from the barycenter of \texttt{facet}. A value close to 0 will place the projection point close to the facet and a large value further away. If the given value is too large, an error is returned. If no position is given, it takes the midpoint of the possible point of views along a line spanned by the barycenter of the facet and a valid point outside the facet.

\textbf{EXAMPLES:}

\texttt{sage: cube4 = polytopes.hypercube(4)}
\texttt{sage: from sage.geometry.polyhedron.plot\ import Projection}
\texttt{sage: Projection(cube4).schlegel()}

The projection of a polyhedron into 3 dimensions
\texttt{sage: \_\_\_.plot() \# optional - sage.plot}

\texttt{Graphics3d Object}

The 4-cube with a truncated vertex seen into the resulting tetrahedron facet:

\texttt{sage: tcube4 = cube4.face_truncation(cube4.faces(0)[0])}
\texttt{sage: tcube4 facets()[4]}

A 3-dimensional face of a Polyhedron in \texttt{QQ^4} defined as the convex hull of 4 \rightarrow \texttt{vertices}
\texttt{sage: into_tetra = Projection(tcube4).schlegel(tcube4.facets()[4])}
\texttt{sage: into_tetra.plot() \# optional - sage.plot}

\texttt{Graphics3d Object}

Taking a larger value for the position changes the image:

\texttt{sage: into_tetra_far = Projection(tcube4).schlegel(tcube4.facets()[4],4)}
\texttt{sage: into_tetra_far.plot() \# optional - sage.plot}

\texttt{Graphics3d Object}

A value which is too large or negative give a projection point that sees more than one facet resulting in an error:

\texttt{sage: Projection(tcube4).schlegel(tcube4.facets()[4],5)}

Traceback (most recent call last):
...
ValueError: the chosen position is too large
\texttt{sage: Projection(tcube4).schlegel(tcube4.facets()[4],-1)}

Traceback (most recent call last):
ValueError: 'position' should be a positive number

**stereographic** *(projection_point=None)*

Return the stereographic projection.

**INPUT:**

- **projection_point** - The projection point. This must be distinct from the polyhedron’s vertices. Default is \((1,0,\ldots,0)\)

**EXAMPLES:**

```python
sage: from sage.geometry.polyhedron.plot import Projection
sage: proj = Projection(polytopes.buckyball())
#long time
sage: proj
#long time
```

The projection of a polyhedron into 3 dimensions

```python
sage: proj.stereographic([5,2,3]).plot()
#long time # optional - sage.
```

Graphics object consisting of 123 graphics primitives

```python
sage: Projection(polytopes.twenty_four_cell()).stereographic([2,0,0,0])
The projection of a polyhedron into 3 dimensions
```

**tikz** *(view=[0, 0, 1], angle=0, scale=1, edge_color='blue!95!black', facet_color='blue!95!black', opacity=0.8, vertex_color='green', axis=False)*

Return a string **tikz** picture of **self** according to a projection **view** and an angle **angle** obtained via Jmol through the current state property.

**INPUT:**

- **view** - list (default: \([0,0,1]\)) representing the rotation axis (see note below).
- **angle** - integer (default: 0) angle of rotation in degree from 0 to 360 (see note below).
- **scale** - integer (default: 1) specifying the scaling of the tikz picture.
- **edge_color** - string (default: ‘blue!95!black’) representing colors which tikz recognize.
- **facet_color** - string (default: ‘blue!95!black’) representing colors which tikz recognize.
- **vertex_color** - string (default: ‘green’) representing colors which tikz recognize.
- **opacity** - real number (default: 0.8) between 0 and 1 giving the opacity of the front facets.
- **axis** - Boolean (default: False) draw the axes at the origin or not.

**OUTPUT:**

- **LatexExpr** – containing the TikZ picture.

**Note:** The inputs **view** and **angle** can be obtained by visualizing it using **.show(aspect_ratio=1)**. This will open an interactive view in your default browser, where you can rotate the polytope. Once the desired view angle is found, click on the information icon in the lower right-hand corner and select **Get Viewpoint**. This will copy a string of the form ‘\([x,y,z],angle\)’ to your local clipboard. Go back to Sage and type `Img = P.projection().tikz([x,y,z],angle)`.

The inputs **view** and **angle** can also be obtained from the viewer Jmol:
1) Right click on the image
2) Select \``Console\"
3) Select the tab \``State``
4) Scroll to the line \``moveto``

It reads something like:

\texttt{moveto 0.0 \{x y z \text{angle}\} Scale}

The view is then \([x,y,z]\) and \text{angle} is angle. The following number is the scale.

Jmol performs a rotation of \text{angle} degrees along the vector \([x,y,z]\) and show the result from the z-axis.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: P1 = polytopes.small_rhombicuboctahedron()}
\texttt{sage: Image1 = P1.projection().tikz([1,3,5], 175, scale=4)}
\texttt{sage: type(Image1)}
<class 'sage.misc.latex.LatexExpr'>
\texttt{sage: print(\\n.join(Image1.splitlines()[:4]))}
\begin{tikzpicture}
\[x=\{(-0.939161cm, 0.244762cm)\},
y=\{(0.097442cm, -0.482887cm)\},
z=\{(0.329367cm, 0.840780cm)\},
\texttt{sage: with open('polytope-tikz1.tex', 'w') as f: # not tested}
....: \_ = f.write(Image1)
\texttt{sage: P2 = Polyhedron(\text{vertices=\{[1, 1],[1, 2],[2, 1]\}})}
\texttt{sage: Image2 = P2.projection().tikz(\text{scale=3, \text{edge_color=\text{\textquoteleft\textbackquoteleft blue!95!black\textbackquoteleft\textbackquoteleft}, \text{facet_color=\text{\textquoteleft\textbackquoteleft orange!95!black\textbackquoteleft\textbackquoteleft}, \text{opacity=0.4, \text{vertex_color=\text{\textquoteleft\textbackquoteleft yellow\textbackquoteleft\textbackquoteleft}, \text{axis=\text{\textbackquoteleft\textbackquoteleft True\textbackquoteleft\textbackquoteleft)}}}}
\texttt{sage: type(Image2)}
<class 'sage.misc.latex.LatexExpr'>
\texttt{sage: print(\\n.join(Image2.splitlines()[:4]))}
\begin{tikzpicture}
\[\text{scale=3.000000},
\text{back/.style={loosely dotted, thin}},
\text{edge/.style={color=\text{\textquoteleft\textbackquoteleft blue!95!black\textbackquoteleft\textbackquoteleft}, thick}},
\texttt{sage: with open('polytope-tikz2.tex', 'w') as f: # not tested}
....: \_ = f.write(Image2)
\texttt{sage: P3 = Polyhedron(\text{vertices=\{[-1, -1, 2],[-1, 2, -1],[2, -1, -1]\}})}
\texttt{sage: P3}
\text{A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices}
\texttt{sage: Image3 = P3.projection().tikz(\text{[0.5,-1,-0.1], 55, scale=3, \text{edge_color=\text{\textquoteleft\textbackquoteleft blue!95!black\textbackquoteleft\textbackquoteleft}, \text{facet_color=\text{\textquoteleft\textbackquoteleft orange!95!black\textbackquoteleft\textbackquoteleft}, \text{opacity=0.7, \text{vertex_color=\text{\textquoteleft\textbackquoteleft yellow\textbackquoteleft\textbackquoteleft}, \text{axis=\text{\textbackquoteleft\textbackquoteleft True\textbackquoteleft\textbackquoteleft)}}}}
\texttt{sage: print(\\n.join(Image3.splitlines()[:4]))}
\begin{tikzpicture}
\[x=\{(0.658184cm, -0.242192cm)\},
y=\{(-0.096240cm, 0.912008cm)\},
z=\{(-0.746680cm, -0.331036cm)\},
\texttt{sage: with open('polytope-tikz3.tex', 'w') as f: # not tested}
....: \_ = f.write(Image3)
\end{verbatim}
Todo: Make it possible to draw Schlegel diagram for 4-polytopes.

```python
sage: P = Polyhedron(vertices=[[1,1,0,0],[1,2,0,0],[2,1,0,0],[0,0,1,0],[0,0,0,1]])
sage: P
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices
sage: P.projection().tikz()
Traceback (most recent call last):
 ... Not ImplementedError: The polytope has to live in 2 or 3 dimensions.
```

Make it possible to draw 3-polytopes living in higher dimension.

class sage.geometry.polyhedron.plot.ProjectionFuncSchlegel(facet, projection_point)
Bases: object
The Schlegel projection from the given input point.

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.plot import ProjectionFuncSchlegel
sage: fcube = polytopes.hypercube(4)
sage: facet = fcube.facets()[0]
sage: proj = ProjectionFuncSchlegel(facet,[0,-1.5,0,0])
sage: proj([0,0,0,0])[0]
1.0
```

class sage.geometry.polyhedron.plot.ProjectionFuncStereographic(projection_point)
Bases: object
The stereographic (or perspective) projection onto a codimension-1 linear subspace with respect to a sphere centered at the origin.

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.plot import ProjectionFuncStereographic
sage: cube = polytopes.hypercube(3).vertices()
sage: proj = ProjectionFuncStereographic([1.2, 3.4, 5.6])
sage: ppoints = [proj(vector(x)) for x in cube]
sage: ppoints[5]
(-0.0918273..., -0.036375...)
```

sage.geometry.polyhedron.plot.cyclic_sort_vertices_2d(Vlist)
Return the vertices/rays in cyclic order if possible.
Note: This works if and only if each vertex/ray is adjacent to exactly two others. For example, any 2-dimensional polyhedron satisfies this.

See vertex_adjacency_matrix() for a discussion of “adjacent”.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.plot import cyclic_sort_vertices_2d
gage: square = Polyhedron([[1,0],[-1,0],[0,1],[0,-1]])
sage: vertices = [v for v in square.vertex_generator()]
sage: vertices
[A vertex at (-1, 0),
 A vertex at (0, -1),
 A vertex at (0, 1),
 A vertex at (1, 0)]
sage: cyclic_sort_vertices_2d(vertices)
[A vertex at (1, 0),
 A vertex at (0, -1),
 A vertex at (-1, 0),
 A vertex at (0, 1)]
```

Rays are allowed, too:

```
sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (2, 0), (3, 0), (4, 1)], rays=[(0,1)])
sage: P.adjacency_matrix()
[0 1 0 0 0]
[1 0 1 0 0]
[0 1 0 0 1]
[1 0 0 0 1]
[0 0 1 1 0]
sage: cyclic_sort_vertices_2d(P.Vrepresentation())
[A vertex at (3, 0),
 A vertex at (1, 0),
 A vertex at (0, 1),
 A ray in the direction (0, 1),
 A vertex at (4, 1)]
```

```
sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (2, 0), (3, 0), (4, 1)], rays=[(0,1), (1,1)])
sage: P.adjacency_matrix()
[0 1 0 0 0]
[1 0 1 0 0]
[0 1 0 0 1]
[0 0 0 0 1]
[0 0 1 1 0]
sage: cyclic_sort_vertices_2d(P.Vrepresentation())
[A ray in the direction (1, 1),
 A vertex at (3, 0),
 A vertex at (1, 0),
 A vertex at (0, 1),
 A ray in the direction (0, 1)]
```

(continues on next page)
sage: P = Polyhedron(vertices=[(1,2)], rays=[(0,1)], lines=[(1,0)])
sage: P.adjacency_matrix()
[0 0 1]
[0 0 0]
[1 0 0]
sage: cyclic_sort_vertices_2d(P.Vrepresentation())
[A vertex at (0, 2),
A line in the direction (1, 0),
A ray in the direction (0, 1)]

sage.geometry.polyhedron.plot.projection_func_identity(x)
The identity projection.

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import projection_func_identity
sage: projection_func_identity((1,2,3))
[1, 2, 3]

2.1.6 A class to keep information about faces of a polyhedron

This module gives you a tool to work with the faces of a polyhedron and their relative position. First, you need to find
the faces. To get the faces in a particular dimension, use the face() method:

sage: P = polytopes.cross_polytope(3)
sage: P.faces(3)
(A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 6 vertices,)
sage: [f.ambient_V_indices() for f in P.facets()]
[(3, 4, 5),
 (2, 4, 5),
 (1, 3, 5),
 (1, 2, 5),
 (0, 3, 4),
 (0, 2, 4),
 (0, 1, 3),
 (0, 1, 2)]
sage: [f.ambient_V_indices() for f in P.faces(1)]
[(4, 5),
 (3, 5),
 (2, 5),
 (1, 5),
 (3, 4),
 (2, 4),
 (0, 4),
 (1, 3),
 (0, 3),
 (1, 2),
 (0, 2),
 (0, 1)]
or face_lattice() to get the whole face lattice as a poset:
sage: P.face_lattice()  # optional - __sage.combinat
Finite lattice containing 28 elements

The faces are printed in shorthand notation where each integer is the index of a vertex/ray/line in the same order as the
containing Polyhedron's Vrepresentation()

sage: face = P.faces(1)[8]; face
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2 vertices
sage: face.ambient_V_indices()
(0, 3)
sage: P.Vrepresentation(0)
A vertex at (-1, 0, 0)
sage: P.Vrepresentation(3)
A vertex at (0, 0, 1)
sage: face.vertices()
(A vertex at (-1, 0, 0), A vertex at (0, 0, 1))

The face itself is not represented by Sage's sage.geometry.polyhedron.constructor.Polyhedron() class, but
by an auxiliary class to keep the information. You can get the face as a polyhedron with the PolyhedronFace.
as_polyhedron() method:

sage: face.as_polyhedron()
A 1-dimensional polyhedron in ZZ^3 defined as the convex hull of 2 vertices
sage: _.equations()
(An equation (0, 1, 0) x + 0 == 0,
An equation (1, 0, -1) x + 1 == 0)

class sage.geometry.polyhedron.face.PolyhedronFace(polyhedron, V_indices, H_indices)

Bases: sage.geometry.convex_set.ConvexSet_closed

A face of a polyhedron.

This class is for use in face_lattice().

INPUT:

No checking is performed whether the H/V-representation indices actually determine a face of the polyhedron.
You should not manually create PolyhedronFace objects unless you know what you are doing.

OUTPUT:

A PolyhedronFace.

EXAMPLES:

sage: octahedron = polytopes.cross_polytope(3)
sage: inequality = octahedron.Hrepresentation(2)
sage: face_h = tuple([ inequality ])
sage: face_v = tuple( inequality.incident() )
sage: face_h_indices = [ h.index() for h in face_h ]
sage: face_v_indices = [ v.index() for v in face_v ]
sage: from sage.geometry.polyhedron.face import PolyhedronFace
sage: face = PolyhedronFace(octahedron, face_v_indices, face_h_indices)
sage: face
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3 vertices

(continues on next page)
sage: face.dim()
2
sage: face.ambient_V_indices()
(0, 1, 2)
sage: face.ambient_Hrepresentation()
(An inequality (1, 1, 1) x + 1 >= 0,)
sage: face.ambient_Vrepresentation()
(A vertex at (-1, 0, 0), A vertex at (0, -1, 0), A vertex at (0, 0, -1))

affine_tangent_cone()
Return the affine tangent cone of self as a polyhedron.

It is equal to the sum of self and the cone of feasible directions at any point of the relative interior of self.

OUTPUT:
A polyhedron.

EXAMPLES:

sage: half_plane_in_space = Polyhedron(ieqs=[[0,1,0,0]], eqns=[(0,0,0,1)])
sage: line = half_plane_in_space.faces(1)[0]; line
A 1-dimensional face
of a Polyhedron in QQ^3 defined as the convex hull of 1 vertex and 1 line
sage: T_line = line.affine_tangent_cone()
sage: T_line == half_plane_in_space
True
sage: c = polytopes.cube()
sage: edge = min(c.faces(1))
sage: edge.vertices()
(A vertex at (1, -1, -1), A vertex at (1, 1, -1))
sage: T_edge = edge.affine_tangent_cone()
sage: T_edge.Vrepresentation()
(A line in the direction (0, 1, 0),
A ray in the direction (0, 0, 1),
A vertex at (1, 0, -1),
A ray in the direction (-1, 0, 0))

ambient()
Return the containing polyhedron.

EXAMPLES:

sage: P = polytopes.cross_polytope(3); P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
sage: face = P.facets()[3]
sage: face
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3 vertices
sage: face.polyhedron()
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices

ambient_H_indices()
Return the indices of the H-representation objects of the ambient polyhedron that make up the H-
representation of self.

See also ambient_Hrepresentation().

OUTPUT:
TUPLE OF INDICES

EXAMPLES:

```python
sage: Q = polytopes.cross_polytope(3)
sage: F = Q.faces(1)
sage: [f.ambient_H_indices() for f in F]
[(4, 5),
 (5, 6),
 (4, 7),
 (6, 7),
 (0, 5),
 (3, 4),
 (0, 3),
 (1, 6),
 (0, 1),
 (2, 7),
 (2, 3),
 (1, 2)]
```

ambient_Hrepresentation(index=None)

Return the H-representation objects of the ambient polytope defining the face.

INPUT:

• index – optional. Either an integer or None (default).

OUTPUT:

If the optional argument is not present, a tuple of H-representation objects. Each entry is either an inequality or an equation.

If the optional integer index is specified, the index-th element of the tuple is returned.

EXAMPLES:

```python
sage: square = polytopes.hypercube(2)
sage: for face in square.face_lattice():
 print(face.ambient_Hrepresentation()) # optional - sage.combinat
....:
(An inequality (-1, 0) x + 1 >= 0, An inequality (0, -1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0)
(An inequality (-1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0)
(An inequality (-1, 0) x + 1 >= 0, An inequality (0, -1) x + 1 >= 0)
(An inequality (-1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0)
(An inequality (0, -1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0)
(An inequality (0, -1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0)
(An inequality (0, 1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0)
(An inequality (0, 1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0)
(An inequality (0, 1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0)
(0)
```
ambient_V_indices()

Return the indices of the V-representation objects of the ambient polyhedron that make up the V-representation of self.

See also ambient_Vrepresentation().

OUTPUT:

Tuple of indices

EXAMPLES:

```sage
P = polytopes.cube()
P = P.faces(2)
F = [f.ambient_V_indices() for f in F]
[(0, 3, 4, 5),
 (0, 1, 5, 6),
 (4, 5, 6, 7),
 (2, 3, 4, 7),
 (1, 2, 6, 7),
 (0, 1, 2, 3)]
```

ambient_Vrepresentation(index=None)

Return the V-representation objects of the ambient polytope defining the face.

INPUT:

- index – optional. Either an integer or None (default).

OUTPUT:

If the optional argument is not present, a tuple of V-representation objects. Each entry is either a vertex, a ray, or a line.

If the optional integer index is specified, the index-th element of the tuple is returned.

EXAMPLES:

```sage
square = polytopes.hypercube(2)
square = polytopes.hypercube(2)
square = polytopes.hypercube(2)
square = polytopes.hypercube(2)
for fl in square.face_lattice():
 print(fl.ambient_Vrepresentation())
(A vertex at (1, -1),)
(A vertex at (1, 1),)
(A vertex at (1, -1), A vertex at (1, 1))
(A vertex at (1, 1),)
(A vertex at (1, 1), A vertex at (1, 1))
(A vertex at (1, 1),)
(A vertex at (1, 1), A vertex at (1, 1))
(A vertex at (1, -1),)
(A vertex at (1, -1),)```

ambient_dim()

Return the dimension of the containing polyhedron.

EXAMPLES:
... continue from previous page...
A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line

```
sage: line.contains([0, 1])
True
```

As a shorthand, one may use the usual `in` operator:

```
sage: [5, 7] in line
False
```

dim()
Return the dimension of the face.

OUTPUT:
Integer.

EXAMPLES:

```
sage: fl = polytopes.dodecahedron().face_lattice()  # optional - sage.combinat
sage: sorted([x.dim() for x in fl])  # optional - sage.combinat
[-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3]
```

is_compact()
Return whether self is compact.

OUTPUT:
Boolean.

EXAMPLES:

```
sage: half_plane = Polyhedron(ieqs=[[0,1,0]])
sage: line = half_plane.faces(1)[0]; line
A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line
sage: line.is_compact()
False
```

is_relatively_open()
Return whether self is relatively open.

OUTPUT:
Boolean.

EXAMPLES:

```
sage: half_plane = Polyhedron(ieqs=[[0,1,0]])
sage: line = half_plane.faces(1)[0]; line
A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line
sage: line.is_relatively_open()
True
```
line_generator()
Return a generator for the lines of the face.

EXAMPLES:

```
sage: pr = Polyhedron(rays=[[1,0],[-1,0],[0,1]], vertices=[[1,-1]])
sage: face = pr.faces(1)[0]
sage: next(face.line_generator())
A line in the direction (1, 0)
```

lines()
Return all lines of the face.

OUTPUT:
A tuple of lines.

EXAMPLES:

```
sage: p = Polyhedron(rays=[[1,0],[-1,0],[0,1],[1,1]], vertices=[[2,2],[2,3]])
sage: p.lines()
(A line in the direction (1, 0),)
```

n_ambient_Hrepresentation()
Return the number of objects that make up the ambient H-representation of the polyhedron.

See also ambient_Hrepresentation().

OUTPUT:
Integer.

EXAMPLES:

```
sage: p = polytopes.cross_polytope(4)
sage: face = p.face_lattice()[5]  # optional - sage.combinat
sage: face
A 1-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 2 vertices
sage: face.ambient_Hrepresentation()  # optional - sage.combinat
(An inequality (1, -1, 1, -1) x + 1 >= 0, An inequality (1, 1, 1, 1) x + 1 >= 0, An inequality (1, 1, 1, -1) x + 1 >= 0, An inequality (1, -1, 1, 1) x + 1 >= 0)
sage: face.n_ambient_Hrepresentation()  # optional - sage.combinat
4
```

n_ambient_Vrepresentation()
Return the number of objects that make up the ambient V-representation of the polyhedron.

See also ambient_Vrepresentation().

OUTPUT:
Integer.
EXAMPLES:

```python
sage: p = polytopes.cross_polytope(4)
sage: face = p.face_lattice()[5] # optional - sage.combinat
sage: face # optional - sage.combinat
A 1-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 2 vertices
sage: face.ambient_Vrepresentation() # optional - sage.combinat
(A vertex at (-1, 0, 0, 0), A vertex at (0, 0, -1, 0))
sage: face.n_ambient_Vrepresentation() # optional - sage.combinat
2
```

`n_lines()`

Return the number of lines of the face.

OUTPUT:

Integer.

EXAMPLES:

```python
sage: p = Polyhedron(rays = [[1,0],[-1,0],[0,1],[1,1]], vertices = [[-2,-2],[2,3]])
sage: p.n_lines()
1
```

`n_rays()`

Return the number of rays of the face.

OUTPUT:

Integer.

EXAMPLES:

```python
sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[1,1,0,0]])
sage: face = p.faces(2)[0]
sage: face.n_rays()
2
```

`n_vertices()`

Return the number of vertices of the face.

OUTPUT:

Integer.

EXAMPLES:

```python
sage: Q = polytopes.cross_polytope(3)
sage: face = Q.faces(2)[0]
sage: face.n_vertices()
3
```
normal_cone(direction='outer')

Return the polyhedral cone consisting of normal vectors to hyperplanes supporting self.

INPUT:

• direction – string (default: 'outer'), the direction in which to consider the normals. The other allowed option is 'inner'.

OUTPUT:

A polyhedron.

EXAMPLES:

sage: p = Polyhedron(vertices = [[1,2],[2,1],[-2,2],[-2,-2],[2,-2]])
sage: for v in p.face_generator(0):
 : vect = v.vertices()[0].vector()
 : nc = v.normal_cone().rays_list()
 : print("{} has outer normal cone spanned by {}".format(vect,nc))
 :
 (2, 1) has outer normal cone spanned by [[1, 0], [1, 1]]
 (1, 2) has outer normal cone spanned by [[0, 1], [1, 1]]
 (2, -2) has outer normal cone spanned by [[0, -1], [1, 0]]
 (-2, -2) has outer normal cone spanned by [[-1, 0], [0, -1]]
 (-2, 2) has outer normal cone spanned by [[-1, 0], [0, 1]]

sage: for v in p.face_generator(0):
 : vect = v.vertices()[0].vector()
 : nc = v.normal_cone(direction='inner').rays_list()
 : print("{} has inner normal cone spanned by {}".format(vect,nc))
 :
 (2, 1) has inner normal cone spanned by [[-1, -1], [-1, 0]]
 (1, 2) has inner normal cone spanned by [[-1, -1], [0, -1]]
 (2, -2) has inner normal cone spanned by [[-1, 0], [0, 1]]
 (-2, -2) has inner normal cone spanned by [[0, 1], [1, 0]]
 (-2, 2) has inner normal cone spanned by [[0, -1], [1, 0]]

The function works for polytopes that are not full-dimensional:

sage: p = polytopes.permutahedron(3)
sage: f1 = p.faces(0)[0]
sage: f2 = p.faces(1)[0]
sage: f3 = p.faces(2)[0]
sage: f1.normal_cone()
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line
sage: f2.normal_cone()
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line
sage: f3.normal_cone()
A 1-dimensional polyhedron in ZZ^3 defined as the convex hull of 1 vertex and 1 line

Normal cones are only defined for non-empty faces:
sage: f0 = p.faces(-1)[0]
sage: f0.normal_cone()
Traceback (most recent call last):
...
ValueError: the empty face does not have a normal cone

polyhedron()

Return the containing polyhedron.

EXAMPLES:

sage: P = polytopes.cross_polytope(3); P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
sage: face = P.facets()[3]
sage: face
A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3
→ vertices
sage: face.polyhedron()
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices

ray_generator()

Return a generator for the rays of the face.

EXAMPLES:

sage: pi = Polyhedron(ieqs =
[[1,1,0],[1,0,1]])
sage: face = pi.faces(1)[1]
sage: next(face.ray_generator())
A ray in the direction (1, 0)

rays()

Return the rays of the face.

OUTPUT:
A tuple of rays.

EXAMPLES:

sage: p = Polyhedron(ieqs =
[[0,0,0,1],[0,0,1,0],[1,1,0,0]])
sage: face = p.faces(2)[2]
sage: face.rays()
(A ray in the direction (1, 0, 0), A ray in the direction (0, 1, 0))

stacking_locus()

Return the polyhedron containing the points that sees every facet containing self.

OUTPUT:
A polyhedron.

EXAMPLES:

sage: cp = polytopes.cross_polytope(4)
sage: facet = cp.facets()[0]
sage: facet.stacking_locus().vertices()
(A vertex at (1/2, 1/2, 1/2, 1/2),
(continues on next page)
A vertex at (1, 0, 0, 0),
A vertex at (0, 0, 0, 1),
A vertex at (0, 0, 1, 0),
A vertex at (0, 1, 0, 0))

```
sage: face = cp.faces(2)[0]
sage: face.stacking_locus().vertices()
(A vertex at (0, 1, 0, 0),
 A vertex at (0, 0, 1, 0),
 A vertex at (1, 0, 0, 0),
 A vertex at (1, 1, 1, 0),
 A vertex at (1/2, 1/2, 1/2, 1/2),
 A vertex at (1/2, 1/2, 1/2, -1/2))
```

vertex_generator()

Return a generator for the vertices of the face.

EXAMPLES:

```
sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]])
sage: face = triangle.facets()[0]
sage: for v in face.vertex_generator(): print(v)
 A vertex at (1, 0)
 A vertex at (1, 1)
sage: type(face.vertex_generator())
<... 'generator'>
```

vertices()

Return all vertices of the face.

OUTPUT:
A tuple of vertices.

EXAMPLES:

```
sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]])
sage: face = triangle.faces(1)[2]
sage: face.vertices()
(A vertex at (0, 1), A vertex at (1, 0))
```

```
sage.geometry.polyhedron.face.combinatorial_face_to_polyhedral_face(polyhedron,
combinatorial_face)

Convert a combinatorial face to a face of a polyhedron.

INPUT:
• polyhedron – a polyhedron containing combinatorial_face
• combinatorial_face – a CombinatorialFace

OUTPUT: a PolyhedronFace.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.face import combinatorial_face_to_polyhedral_
←face
sage: P = polytopes.simplex()
```
2.1.7 Generate cdd .ext / .ine file format

sage.geometry.polyhedron.cdd_file_format.cdd_Hrepresentation(cdd_type, ieqs, eqns, file_output=None)

Return a string containing the H-representation in cddlib’s ine format.

INPUT:

• file_output (string; optional) – a filename to which the representation should be written. If set to None (default), representation is returned as a string.

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.cdd_file_format import cdd_Hrepresentation
sage: cdd_Hrepresentation('rational', None, [[[0,1]])
'H-representation\nlinearity 1 1\nbegin\n 1 2 rational\n 0 1\nend
```

sage.geometry.polyhedron.cdd_file_format.cdd_Vrepresentation(cdd_type, vertices, rays, lines, file_output=None)

Return a string containing the V-representation in cddlib’s ext format.

INPUT:

• file_output (string; optional) – a filename to which the representation should be written. If set to None (default), representation is returned as a string.

Note: If there is no vertex given, then the origin will be implicitly added. You cannot write the empty V-representation (which cdd would refuse to process).

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.cdd_file_format import cdd_Vrepresentation
sage: print(cdd_Vrepresentation('rational', [[0,0]], [[1,0]], [[0,1]])
V-representation
linearity 1 1
begin
 3 3 rational
 0 0 1
 0 1 0
 1 0 0
end
```
### 2.1.8 Formal modules generated by polyhedra

**class** `sage.geometry.polyhedron.modules.formal_polyhedra_module.FormalPolyhedraModule(base_ring, dimension, basis, category)`

Bases: `sage.combinat.free_module.CombinatorialFreeModule`

Class for formal modules generated by polyhedra.

It is formal because it is free – it does not know about linear relations of polyhedra.

A formal polyhedral module is graded by dimension.

**INPUT:**

- `base_ring` – base ring of the module; unrelated to the base ring of the polyhedra
- `dimension` – the ambient dimension of the polyhedra
- `basis` – the basis

**EXAMPLES:**

```python
sage: from sage.geometry.polyhedron.modules.formal_polyhedra_module import FormalPolyhedraModule
sage: def closed_interval(a, b):
 return Polyhedron(vertices=[[a], [b]])

A three-dimensional vector space of polyhedra:

```python
sage: I01 = closed_interval(0, 1); I01.rename("conv([0], [1])")
sage: I11 = closed_interval(1, 1); I11.rename("{[1]}")
sage: I12 = closed_interval(1, 2); I12.rename("conv([1], [2])")
sage: basis = [I01, I11, I12]
sage: M = FormalPolyhedraModule(QQ, 1, basis=basis); M
Free module generated by {conv([0], [1]), {[1]}, conv([1], [2])} over Rational Field
sage: M.get_order()
[conv([0], [1]), {[1]}, conv([1], [2])]
```

A one-dimensional subspace; bases of subspaces just use the indexing set 0, ..., d − 1, where d is the dimension:

```python
sage: M_lower = M.submodule([M(I11)]); M_lower
Free module generated by {0} over Rational Field
sage: M_lower.print_options(prefix='S')
sage: M_lower.is_submodule(M)
True
sage: x = M(I01) - 2*M(I11) + M(I12)
sage: M_lower.reduce(x)
[conv([0], [1])] + [conv([1], [2])]
sage: M_lower.retract.domain() is M
True
sage: y = M_lower.retract(M(I11)); y
S[0]
sage: M_lower.lift(y)
[[[1]]]
```
Quotient space; bases of quotient space are families indexed by elements of the ambient space:

```sage
M_mod_lower = M.quotient_module(M_lower); M_mod_lower
Free module generated by {conv([0], [1]), conv([1], [2])} over Rational Field
sage: M_mod_lower.print_options(prefix='Q')
sage: M_mod_lower.retract(x)
Q[conv([0], [1])] + Q[conv([1], [2])]
sage: M_mod_lower.retract(M(I01) - 2*M(I11) + M(I12)) == M_mod_lower.
→ retract(M(I01) + M(I12))
True
```

degree_on_basis(*m*)

The degree of an element of the basis is defined as the dimension of the polyhedron.

INPUT:

- *m* – an element of the basis (a polyhedron)

EXAMPLES:

```sage
from sage.geometry.polyhedron.modules.formal_polyhedra_module import FormalPolyhedraModule
sage: def closed_interval(a,b): return Polyhedron(vertices=[[a], [b]])
sage: I01 = closed_interval(0, 1); I01.rename("conv([0], [1])")
sage: I11 = closed_interval(1, 1); I11.rename("[[1]]")
sage: I12 = closed_interval(1, 2); I12.rename("conv([1], [2])")
sage: I02 = closed_interval(0, 2); I02.rename("conv([0], [2])")
sage: M = FormalPolyhedraModule(QQ, 1, basis=[I01, I11, I12, I02])
```

We can extract homogeneous components:

```sage:
O = M(I01) + M(I11) + M(I12)
sage: O.homogeneous_component(0)
[[[1]]]
sage: O.homogeneous_component(1)
[conv([0], [1])] + [conv([1], [2])]
```

We note that modulo the linear relations of polyhedra, this would only be a filtration, not a grading, as the following example shows:

```sage:
X = M(I01) + M(I12) - M(I02)
sage: X.degree()
1
sage: Y = M(I11)
sage: Y.degree()
0
```
2.2 Lattice polyhedra

2.2.1 Lattice and reflexive polytopes

This module provides tools for work with lattice and reflexive polytopes. A **convex polytope** is the convex hull of finitely many points in \(\mathbb{R}^n \). The dimension \(n \) of a polytope is the smallest \(n \) such that the polytope can be embedded in \(\mathbb{R}^n \).

A **lattice polytope** is a polytope whose vertices all have integer coordinates.

If \(L \) is a lattice polytope, the dual polytope of \(L \) is

\[
\{ y \in \mathbb{Z}^n : x \cdot y \geq -1 \text{ all } x \in L \}
\]

A **reflexive polytope** is a lattice polytope, such that its polar is also a lattice polytope, i.e. it is bounded and has vertices with integer coordinates.

This Sage module uses Package for Analyzing Lattice Polytopes (PALP), which is a program written in C by Maximilian Kreuzer and Harald Skarke, which is freely available under the GNU license terms at http://hep.itp.tuwien.ac.at/~kreuzer/CY/. Moreover, PALP is included standard with Sage.

PALP is described in the paper arXiv math.SC/0204356. Its distribution also contains the application nef.x, which was created by Erwin Riegler and computes nef-partitions and Hodge data for toric complete intersections.

ACKNOWLEDGMENT: polytope.py module written by William Stein was used as an example of organizing an interface between an external program and Sage. William Stein also helped Andrey Novoseltsev with debugging and tuning of this module.

Robert Bradshaw helped Andrey Novoseltsev to realize plot3d function.

Note: IMPORTANT: PALP requires some parameters to be determined during compilation time, i.e., the maximum dimension of polytopes, the maximum number of points, etc. These limitations may lead to errors during calls to different functions of these module. Currently, a ValueError exception will be raised if the output of poly.x or nef.x is empty or contains the exclamation mark. The error message will contain the exact command that caused an error, the description and vertices of the polytope, and the obtained output.

Data obtained from PALP and some other data is cached and most returned values are immutable. In particular, you cannot change the vertices of the polytope or their order after creation of the polytope.

If you are going to work with large sets of data, take a look at all_* functions in this module. They precompute different data for sequences of polynomials with a few runs of external programs. This can significantly affect the time of future computations. You can also use dump/load, but not all data will be stored (currently only faces and the number of their internal and boundary points are stored, in addition to polytope vertices and its polar).

AUTHORS:

- Andrey Novoseltsev (2007-01-15): all_* functions
- Andrey Novoseltsev (2008-04-01): second version, including:
 - dual nef-partitions and necessary convex_hull and minkowski_sum
 - built-in sequences of 2- and 3-dimensional reflexive polytopes
 - plot3d, skeleton_show
- Andrey Novoseltsev (2009-08-26): dropped maximal dimension requirement
- Andrey Novoseltsev (2010-12-15): new version of nef-partitions
sage.geometry.lattice_polytope.LatticePolytope(data, compute_vertices=True, n=0, lattice=None)

Construct a lattice polytope.

INPUT:

• **data** – points spanning the lattice polytope, specified as one of:
 – a *point collection* (this is the preferred input and it is the quickest and the most memory efficient one);
 – an iterable of iterables (for example, a list of vectors) defining the point coordinates;
 – a file with matrix data, opened for reading, or
 – a filename of such a file, see `read_palp_point_collection()` for the file format;

• **compute_vertices** – boolean (default: `True`). If *True*, the convex hull of the given points will be computed for determining vertices. Otherwise, the given points must be vertices;

• **n** – an integer (default: 0) if *data* is a *name of a file*, that contains data blocks for several polytopes, the *n*-th block will be used;

• **lattice** – the ambient lattice of the polytope. If not given, a suitable lattice will be determined automatically, most likely the *toric lattice* \mathcal{M} of the appropriate dimension.

OUTPUT:

• a *lattice polytope*.

EXAMPLES:

```python
sage: points = [(1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), (0,0,-1)]
sage: p = LatticePolytope(points)
sage: p
3-d reflexive polytope in 3-d lattice $\mathcal{M}$
sage: p.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1) in 3-d lattice $\mathcal{M}$
```

We draw a pretty picture of the polytope in 3-dimensional space:

```python
sage: p.plot3d().show() # optional - palindrome sage.plot
```

Now we add an extra point, which is in the interior of the polytope...

```python
sage: points.append((0,0,0))
sage: p = LatticePolytope(points)
sage: p.nvertices()
6
```
You can suppress vertex computation for speed but this can lead to mistakes:

```python
sage: p = LatticePolytope(points, compute_vertices=False)
...
sage: p.nvertices()
7
```

Given points must be in the lattice:

```python
sage: LatticePolytope([[1/2], [3/2]])
Traceback (most recent call last):
...
ValueError: points
[[1/2], [3/2]]
are not in 1-d lattice M!
```

But it is OK to create polytopes of non-maximal dimension:

```python
sage: p = LatticePolytope([[1,0,0], [0,1,0], [0,0,0],
....: (-1,0,0), (0,-1,0), (0,0,0), (0,0,0)])
sage: p
2-d lattice polytope in 3-d lattice M
sage: p.vertices()
M(-1, 0, 0),
M( 0, -1, 0),
M( 1, 0, 0),
M( 0, 1, 0)
in 3-d lattice M
```

An empty lattice polytope can be considered as well:

```python
sage: p = LatticePolytope([], lattice=ToricLattice(3).dual()); p
-1-d lattice polytope in 3-d lattice M
sage: p.lattice_dim()
3
sage: p.npoints()
0
sage: p.nfacets()
0
sage: p.points()
Empty collection in 3-d lattice M
sage: p.faces()
((-1-d lattice polytope in 3-d lattice M,),)
```

```python
class sage.geometry.lattice_polytope.LatticePolytopeClass(points=None, compute_vertices=None, ambient=None, ambient_vertex_indices=None, ambient_facet_indices=None):


    Create a lattice polytope.
```
Warning: This class does not perform any checks of correctness of input nor does it convert input into the standard representation. Use LatticePolytope() to construct lattice polytopes.

Lattice polytopes are immutable, but they cache most of the returned values.

INPUT:

The input can be either:

• points – PointCollection;
• compute_vertices – boolean.

or (these parameters must be given as keywords):

• ambient – ambient structure, this polytope must be a face of ambient;
• ambient_vertex_indices – increasing list or tuple of integers, indices of vertices of ambient generating this polytope;
• ambient_facet_indices – increasing list or tuple of integers, indices of facets of ambient generating this polytope.

OUTPUT:

• lattice polytope.

Note: Every polytope has an ambient structure. If it was not specified, it is this polytope itself.

adjacent()

Return faces adjacent to self in the ambient face lattice.

Two distinct faces F_1 and F_2 of the same face lattice are adjacent if all of the following conditions hold:

• F_1 and F_2 have the same dimension d;
• F_1 and F_2 share a facet of dimension $d-1$;
• F_1 and F_2 are facets of some face of dimension $d+1$, unless d is the dimension of the ambient structure.

OUTPUT:

• tuple of lattice polytopes.

EXAMPLES:

```sage
doctest:option: +short +long

sage: o = lattice_polytope.cross_polytope(3)
sage: o.adjacent()
()  # Method returns an empty tuple

sage: face = o.faces(1)[0]
sage: face.adjacent()
(1-d face of 3-d reflexive polytope in 3-d lattice M,
  1-d face of 3-d reflexive polytope in 3-d lattice M,
  1-d face of 3-d reflexive polytope in 3-d lattice M,
  1-d face of 3-d reflexive polytope in 3-d lattice M)
```

affine_transform($a=1$, $b=0$)

Return $aP+b$, where P is this lattice polytope.

Note:
1. While \(a \) and \(b \) may be rational, the final result must be a lattice polytope, i.e. all vertices must be integral.

2. If the transform (restricted to this polytope) is bijective, facial structure will be preserved, e.g. the first facet of the image will be spanned by the images of vertices which span the first facet of the original polytope.

INPUT:

- \(a \) - (default: 1) rational scalar or matrix
- \(b \) - (default: 0) rational scalar or vector, scalars are interpreted as vectors with the same components

EXAMPLES:

```sage
sage: o = lattice_polytope.cross_polytope(2)
sage: o.vertices()
M( 1, 0),
M( 0, 1),
M(-1, 0),
M( 0, -1)
in 2-d lattice M
sage: o.affine_transform(2).vertices()
M( 2, 0),
M( 0, 2),
M(-2, 0),
M( 0, -2)
in 2-d lattice M
sage: o.affine_transform(1,1).vertices()
M(2, 1),
M(1, 2),
M(0, 1),
M(1, 0)
in 2-d lattice M
sage: o.affine_transform(b=1).vertices()
M(2, 1),
M(1, 2),
M(0, 1),
M(1, 0)
in 2-d lattice M
sage: o.affine_transform(b=(1, 0)).vertices()
M(2, 0),
M(1, 1),
M(0, 0),
M(1, -1)
in 2-d lattice M
sage: a = matrix(QQ, 2, [1/2, 0, 0, 3/2])
sage: o.polar().vertices()
N( 1, 1),
N( 1, -1),
N(-1, -1),
N(-1, 1)
in 2-d lattice N
sage: o.polar().affine_transform(a, (1/2, -1/2)).vertices()
M(1, 1),
(continues on next page)
```

2.2. Lattice polyhedra
While you can use rational transformation, the result must be integer:

```python
sage: o.affine_transform(a)
Traceback (most recent call last):
 ... 
ValueError: points
[[1/2, 0], (0, 3/2), (-1/2, 0), (0, -3/2)]
are not in 2-d lattice M!
```

ambient()

Return the ambient structure of `self`.

OUTPUT:

- lattice polytope containing `self` as a face.

EXAMPLES:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: o.ambient()
3-d reflexive polytope in 3-d lattice M
sage: o.ambient() is o
True
sage: face = o.faces(1)[0]
sage: face
1-d face of 3-d reflexive polytope in 3-d lattice M
sage: face.ambient()
3-d reflexive polytope in 3-d lattice M
sage: face.ambient() is o
True
```

ambient_dim()

Return the dimension of the ambient lattice of `self`.

An alias is `ambient_dim()`.

OUTPUT:

- integer.

EXAMPLES:

```
sage: p = LatticePolytope([[1,0]])
sage: p.lattice_dim()
2
sage: p.dim()  
0
```

ambient_facet_indices()

Return indices of facets of the ambient polytope containing `self`.

OUTPUT:
• increasing tuple of integers.

EXAMPLES:
The polytope itself is not contained in any of its facets:

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: o.ambient_facet_indices()
()  # Optional - palp
```

But each of its other faces is contained in one or more facets:

```python
sage: face = o.faces(1)[0]
sage: face.ambient_facet_indices()
(4, 5)
sage: face.vertices()
M(1, 0, 0),
M(0, 1, 0)
in 3-d lattice M
```

`ambient_ordered_point_indices()`

Return indices of points of the ambient polytope contained in this one.

OUTPUT:

• tuple of integers such that ambient points in this order are geometrically ordered, e.g. for an edge points will appear from one end point to the other.

EXAMPLES:

```python
sage: cube = lattice_polytope.cross_polytope(3).polar()
sage: face = cube.facets()[0]
sage: face.ambient_ordered_point_indices()  # optional - palp
(5, 8, 4, 9, 10, 11, 6, 12, 7)
sage: cube.points(face.ambient_ordered_point_indices())  # optional - palp
N(-1, -1, -1),
N(-1, -1, 0),
N(-1, -1, 1),
N(-1, 0, -1),
N(-1, 0, 0),
N(-1, 0, 1),
N(-1, 1, -1),
N(-1, 1, 0),
N(-1, 1, 1)
in 3-d lattice N
```

`ambient_point_indices()`

Return indices of points of the ambient polytope contained in this one.

OUTPUT:
• tuple of integers, the order corresponds to the order of points of this polytope.

EXAMPLES:

```
sage: cube = lattice_polytope.cross_polytope(3).polar()
sage: face = cube.facets()[0]
sage: face.ambient_point_indices()  # optional - palp
(4, 5, 6, 7, 8, 9, 10, 11, 12)
sage: cube.points(face.ambient_point_indices()) == face.points()  # optional - palp
True
```

`ambient_vector_space(base_field=None)`

Return the ambient vector space.

It is the ambient lattice (`lattice()`) tensored with a field.

INPUT:

• `base_field` – (default: the rationals) a field.

EXAMPLES:

```
sage: p = LatticePolytope([(1,0)])
sage: p.ambient_vector_space()
Vector space of dimension 2 over Rational Field
sage: p.ambient_vector_space(AA)
Vector space of dimension 2 over Algebraic Real Field
```

`ambient_vertex_indices()`

Return indices of vertices of the ambient structure generating `self`.

OUTPUT:

• increasing tuple of integers.

EXAMPLES:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: o.ambient_vertex_indices()
(0, 1, 2, 3, 4, 5)
sage: face = o.faces(1)[0]
sage: face.ambient_vertex_indices()
(0, 1)
```

`boundary_point_indices()`

Return indices of (relative) boundary lattice points of this polytope.

OUTPUT:

• increasing tuple of integers.

EXAMPLES:

All points but the origin are on the boundary of this square:

```
sage: square = lattice_polytope.cross_polytope(2).polar()  # optional - palp
sage: square.points()
```

(continues on next page)
N(1, 1),
N(1, -1),
N(-1, -1),
N(-1, 1),
N(-1, 0),
N(0, -1),
N(0, 0),
N(0, 1),
N(1, 0)
in 2-d lattice N

\textbf{sage}: square.boundary_point_indices() # optional -
\texttt{\rightarrow palp}
(0, 1, 2, 3, 4, 5, 7, 8)

For an edge the boundary is formed by the end points:

\textbf{sage}: face = square.edges()[0]
\textbf{sage}: face.points()
N(-1, -1),
N(-1, 1),
N(-1, 0)
in 2-d lattice N
\textbf{sage}: face.boundary_point_indices()
(0, 1)

\texttt{boundary_points()}
Return (relative) boundary lattice points of this polytope.

\textbf{OUTPUT}:

- \texttt{a point collection}.

\textbf{EXAMPLES}:

All points but the origin are on the boundary of this square:

\textbf{sage}: square = lattice_polytope.cross_polytope(2).polar() # optional -
\texttt{\rightarrow palp}
N(1, 1),
N(1, -1),
N(-1, -1),
N(-1, 1),
N(-1, 0),
N(0, -1),
N(0, 1),
N(1, 0)
in 2-d lattice N

For an edge the boundary is formed by the end points:

\textbf{sage}: face = square.edges()[0]
\textbf{sage}: face.boundary_points()
N(-1, -1),
contains(*args)
Check if a given point is contained in self.

INPUT:
• an attempt will be made to convert all arguments into a single element of the ambient space of self;
 if it fails, False will be returned

OUTPUT:
• True if the given point is contained in self, False otherwise

EXAMPLES:

```python
sage: p = lattice_polytope.cross_polytope(2)
sage: p.contains(p.lattice()(1,0))
True
sage: p.contains((1,0))
True
sage: p.contains(1,0)
True
sage: p.contains((2,0))
False
```

dim()
Return the dimension of this polytope.

EXAMPLES:

We create a 3-dimensional octahedron and check its dimension:

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: o.dim()
3
```

Now we create a 2-dimensional diamond in a 3-dimensional space:

```python
sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.dim()
2
sage: p.lattice_dim()
3
```

distances(point=None)
Return the matrix of distances for this polytope or distances for the given point.

The matrix of distances m gives distances m[i,j] between the i-th facet (which is also the i-th vertex of the polar polytope in the reflexive case) and j-th point of this polytope.

If point is specified, integral distances from the point to all facets of this polytope will be computed.

EXAMPLES: The matrix of distances for a 3-dimensional octahedron:
sage: o = lattice_polytope.cross_polytope(3)
sage: o.distances() # optional - palp
[2 0 0 2 2 1]
[2 0 0 0 2 1]
[2 2 0 0 0 1]
[2 0 2 0 2 1]
[0 0 2 2 2 1]
[0 0 0 2 2 1]
[0 2 0 2 0 1]
[0 2 2 2 0 1]

Distances from facets to the point (1,2,3):

sage: o.distances([1,2,3])
(-3, 1, 7, 3, 1, -5, -1, 5)

It is OK to use RATIONAL coordinates:

sage: o.distances([1,2,3/2])
(-3/2, 5/2, 11/2, 3/2, -1/2, -7/2, 1/2, 7/2)

sage: o.distances([1,2,sqrt(2)])
Traceback (most recent call last):
...
TypeError: unable to convert sqrt(2) to an element of Rational Field

Now we create a non-spanning polytope:

sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.distances() # optional - palp
[2 2 0 0 1]
[2 0 0 2 1]
[0 0 2 2 1]
[0 2 0 2 1]
sage: p.distances((1/2, 3, 0)) # optional - palp
(9/2, -3/2, -5/2, 7/2)

This point is not even in the affine subspace of the polytope:

sage: p.distances((1, 1, 1)) # optional - palp
(3, 1, -1, 1)

dual()
Return the dual face under face duality of polar reflexive polytopes.

This duality extends the correspondence between vertices and facets.

OUTPUT:
• a lattice polytope.

EXAMPLES:
sage: o = lattice_polytope.cross_polytope(4)
sage: e = o.edges()[0]; e
1-d face of 4-d reflexive polytope in 4-d lattice M
sage: ed = e.dual(); ed
2-d face of 4-d reflexive polytope in 4-d lattice N
sage: ed.ambient() is e.ambient().polar()
True
sage: e.ambient_vertex_indices() == ed.ambient_facet_indices()
True
sage: e.ambient_facet_indices() == ed.ambient_vertex_indices()
True

dual_lattice()
Return the dual of the ambient lattice of self.

OUTPUT:

• a lattice. If possible (that is, if lattice() has a dual() method), the dual lattice is returned. Otherwise, \(\mathbb{Z}^n \) is returned, where \(n \) is the dimension of self.

EXAMPLES:

sage: LatticePolytope([(1,0)]).dual_lattice()
2-d lattice N
sage: LatticePolytope([], lattice=ZZ^3).dual_lattice()
Ambient free module of rank 3 over the principal ideal domain Integer Ring

edges()
Return edges (faces of dimension 1) of self.

OUTPUT:

• tuple of lattice polytopes.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.edges()
(1-d face of 3-d reflexive polytope in 3-d lattice M, ...
 1-d face of 3-d reflexive polytope in 3-d lattice M)
sage: len(o.edges())
12

face_lattice()
Return the face lattice of self.

This lattice will have the empty polytope as the bottom and this polytope itself as the top.

OUTPUT:

• finite poset of lattice polytopes.

EXAMPLES:

Let's take a look at the face lattice of a square:
sage: square = LatticePolytope([(0,0), (1,0), (1,1), (0,1)])
sage: L = square.face_lattice()
sage: L
Finite lattice containing 10 elements with distinguished linear extension

To see all faces arranged by dimension, you can do this:

sage: for level in L.level_sets(): print(level)
[-1-d face of 2-d lattice polytope in 2-d lattice M]
[0-d face of 2-d lattice polytope in 2-d lattice M,
 0-d face of 2-d lattice polytope in 2-d lattice M,
 0-d face of 2-d lattice polytope in 2-d lattice M,
 0-d face of 2-d lattice polytope in 2-d lattice M]
[1-d face of 2-d lattice polytope in 2-d lattice M,
 1-d face of 2-d lattice polytope in 2-d lattice M,
 1-d face of 2-d lattice polytope in 2-d lattice M,
 1-d face of 2-d lattice polytope in 2-d lattice M]
[2-d lattice polytope in 2-d lattice M]

For a particular face you can look at its actual vertices...

sage: face = L.level_sets()[1][0]
sage: face.vertices()
M(0, 0)
in 2-d lattice M

... or you can see the index of the vertex of the original polytope that corresponds to the above one:

sage: face.ambient_vertex_indices()
(0,)
sage: square.vertex(0)
M(0, 0)

An alternative to extracting faces from the face lattice is to use faces() method:

sage: face is square.faces(dim=0)[0]
True

The advantage of working with the face lattice directly is that you can (relatively easily) get faces that are related to the given one:

sage: face = L.level_sets()[1][0]
sage: D = L.hasse_diagram()
sage: sorted(D.neighbors(face))
[-1-d face of 2-d lattice polytope in 2-d lattice M,
 1-d face of 2-d lattice polytope in 2-d lattice M,
 1-d face of 2-d lattice polytope in 2-d lattice M]

However, you can achieve some of this functionality using facets(), facet_of(), and adjacent() methods:

sage: face = square.faces(0)[0]
sage: face
0-d face of 2-d lattice polytope in 2-d lattice M

(continues on next page)
sage: face.vertices()
M(0, 0)
in 2-d lattice M

sage: face.facets()
(-1-d face of 2-d lattice polytope in 2-d lattice M,)

sage: face.facet_of()
(1-d face of 2-d lattice polytope in 2-d lattice M, 1-d face of 2-d lattice polytope in 2-d lattice M)

sage: face.adjacent()
(0-d face of 2-d lattice polytope in 2-d lattice M, 0-d face of 2-d lattice polytope in 2-d lattice M)

sage: face.adjacent()[0].vertices()
M(1, 0)
in 2-d lattice M

Note that if \(p \) is a face of \(\text{superp} \), then the face lattice of \(p \) consists of (appropriate) faces of \(\text{superp} \):

sage: superp = LatticePolytope([(1,2,3,4), (5,6,7,8),:
(1,2,4,8), (1,3,9,7)])

sage: superp.face_lattice()
Finite lattice containing 16 elements with distinguished linear extension

sage: superp.face_lattice().top()
3-d lattice polytope in 4-d lattice M

sage: p = superp.facets()[0]

sage: p
2-d face of 3-d lattice polytope in 4-d lattice M

sage: p.face_lattice()
Finite poset containing 8 elements with distinguished linear extension

sage: p.face_lattice().bottom()
-1-d face of 3-d lattice polytope in 4-d lattice M

sage: p.face_lattice().top()
2-d face of 3-d lattice polytope in 4-d lattice M

sage: p.face_lattice().top() is p
True

faces (dim=None, codim=None)
Return faces of self of specified (co)dimension.

INPUT:

- dim – integer, dimension of the requested faces;
- codim – integer, codimension of the requested faces.

Note: You can specify at most one parameter. If you don’t give any, then all faces will be returned.

OUTPUT:

- if either dim or codim is given, the output will be a tuple of lattice polytopes;
- if neither dim nor codim is given, the output will be the tuple of tuples as above, giving faces of all existing dimensions. If you care about inclusion relations between faces, consider using face_lattice(), adjacent(), facet_of(), and facets().

EXAMPLES:
Let’s take a look at the faces of a square:

```sage
sage: square = LatticePolytope([(0,0), (1,0), (1,1), (0,1)])
sage: square.faces()
((-1-d face of 2-d lattice polytope in 2-d lattice M,),
 (0-d face of 2-d lattice polytope in 2-d lattice M,
  0-d face of 2-d lattice polytope in 2-d lattice M,
  0-d face of 2-d lattice polytope in 2-d lattice M,
  0-d face of 2-d lattice polytope in 2-d lattice M),
 (1-d face of 2-d lattice polytope in 2-d lattice M,
  1-d face of 2-d lattice polytope in 2-d lattice M,
  1-d face of 2-d lattice polytope in 2-d lattice M,
  1-d face of 2-d lattice polytope in 2-d lattice M),
 (2-d lattice polytope in 2-d lattice M,))
```

Its faces of dimension one (i.e., edges):

```sage
sage: square.faces(dim=1)
(1-d face of 2-d lattice polytope in 2-d lattice M,
  1-d face of 2-d lattice polytope in 2-d lattice M,
  1-d face of 2-d lattice polytope in 2-d lattice M,
  1-d face of 2-d lattice polytope in 2-d lattice M)
```

Its faces of codimension one are the same (also edges):

```sage
sage: square.faces(codim=1) is square.faces(dim=1)
True
```

Let’s pick a particular face:

```sage
sage: face = square.faces(dim=1)[0]
```

Now you can look at the actual vertices of this face...

```sage
sage: face.vertices()
M(0, 0),
M(0, 1)
in 2-d lattice M
```

... or you can see indices of the vertices of the original polytope that correspond to the above ones:

```sage
sage: face.ambient_vertex_indices()
(0, 3)
sage: square.vertices(face.ambient_vertex_indices())
M(0, 0),
M(0, 1)
in 2-d lattice M
```

facet_constant(i)

Return the constant in the i-th facet inequality of this polytope.

This is equivalent to `facet_constants()[i]`.

INPUT:

- i – integer; the index of the facet
OUTPUT:

- integer – the constant in the i-th facet inequality.

See also:

facet_constants(), facet_normal(), facet_normals(), facets().

EXAMPLES:

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: o.facet_constant(0)
1
sage: o.facet_constant(0) == o.facet_constants()[0]
True
```

facet_constants()
Return facet constants of self.

Facet inequalities have form \(\mathbf{n} \cdot \mathbf{x} + c \geq 0 \) where \(\mathbf{n} \) is the inner normal and \(c \) is a constant.

OUTPUT:

- an integer vector

See also:

facet_constant(), facet_normal(), facet_normals(), facets().

EXAMPLES:

For reflexive polytopes all constants are 1:

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: o.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: o.facet_constants()
(1, 1, 1, 1, 1, 1, 1)
```

Here is an example of a 3-dimensional polytope in a 4-dimensional space with 3 facets containing the origin:

```python
sage: p = LatticePolytope([(0,0,0,0), (1,1,1,3),
                        (1,-1,1,3), (-1,-1,1,3)])
sage: p.vertices()
M( 0, 0, 0, 0),
M( 1, 1, 1, 3),
M( 1, -1, 1, 3),
M(-1, -1, 1, 3)
in 4-d lattice M
sage: p.facet_constants()
(0, 0, 3, 0)
```
facet_normal(i)
Return the inner normal to the i-th facet of this polytope.

This is equivalent to facet_normals()[i].

INPUT:
• i – integer; the index of the facet

OUTPUT:
• a vector

See also:
facet_constant(), facet_constants(), facet_normals(), facets().

EXAMPLES:
sage: o = lattice_polytope.cross_polytope(3)
sage: o.facet_normal(0)
N(1, -1, -1)
sage: o.facet_normal(0) is o.facet_normals()[0]
True

facet_normals()
Return inner normals to the facets of self.

If this polytope is not full-dimensional, facet normals will define this polytope in the affine subspace spanned by it.

OUTPUT:
• a point collection in the dual_lattice() of self.

See also:
facet_constant(), facet_constants(), facet_normal(), facets().

EXAMPLES:
Normals to facets of an octahedron are vertices of a cube:
sage: o = lattice_polytope.cross_polytope(3)
sage: o.vertices()
M(1, 0, 0),
M(0, 1, 0),
M(0, 0, 1),
M(-1, 0, 0),
M(0, -1, 0),
M(0, 0, -1) in 3-d lattice M
sage: o.facet_normals()
N(1, -1, -1),
N(1, 1, -1),
N(1, 1, 1),
N(1, -1, 1),
N(-1, -1, 1),
N(-1, -1, -1),
N(-1, 1, -1),
N(-1, 1, 1),

Here is an example of a 3-dimensional polytope in a 4-dimensional space:

```sage
p = LatticePolytope([(0,0,0,0), (1,1,1,3),
(1,-1,1,3), (-1,-1,1,3)])
sage: p.vertices()
M( 0, 0, 0, 0),
M( 1, 1, 1, 3),
M( 1, -1, 1, 3),
M(-1, -1, 1, 3)
in 4-d lattice M
sage: p.facet_normals()
N( 0, 3, 0, 1),
N( 1, -1, 0, 0),
N( 0, 0, 0, -1),
N(-3, 0, 0, 1)
in 4-d lattice N
sage: p.facet_constants()
(0, 0, 3, 0)
```

Now we manually compute the distance matrix of this polytope. Since it is a simplex, each line (corresponding to a facet) should consist of zeros (indicating generating vertices of the corresponding facet) and a single positive number (since our normals are inner):

```sage
matrix([[n * v + c for v in p.vertices()] for n, c in zip(p.facet_normals(), p.facet_constants())])
```

```
[0 6 0 0]
[0 0 2 0]
[3 0 0 0]
[0 0 0 6]
```

facet_of()

Return elements of the ambient face lattice having `self` as a facet.

OUTPUT:

- tuple of *lattice polytopes*.

EXAMPLES:

```sage
square = LatticePolytope([(0,0), (1,0), (1,1), (0,1)])
sage: square.facet_of()
() 
sage: face = square.faces(0)[0] 
sage: len(face.facet_of())
2 
sage: face.facet_of()[1] 
1-d face of 2-d lattice polytope in 2-d lattice M
```

facets()

Return facets (faces of codimension 1) of `self`.

OUTPUT:
In Examples:

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: o.facets()
(2-d face of 3-d reflexive polytope in 3-d lattice M,
 ... 2-d face of 3-d reflexive polytope in 3-d lattice M)
sage: len(o.facets())
8
```

incidence_matrix()

Return the incidence matrix.

Note: The columns correspond to facets/facet normals in the order of `facet_normals()`, the rows correspond to the vertices in the order of `vertices()`.

In Examples:

```python
sage: o = lattice_polytope.cross_polytope(2)
sage: o.incidence_matrix()
[0 0 1 1]
[0 1 1 0]
[1 1 0 0]
[1 0 0 1]
sage: o.faces(1)[0].incidence_matrix()
[1 0]
[0 1]
sage: o = lattice_polytope.cross_polytope(4)
sage: o.incidence_matrix().column(3).nonzero_positions()
[3, 4, 5, 6]
sage: o.facets()[3].ambient_vertex_indices()
(3, 4, 5, 6)
```

index()

Return the index of this polytope in the internal database of 2- or 3-dimensional reflexive polytopes. Databases are stored in the directory of the package.

Note: The first call to this function for each dimension can take a few seconds while the dictionary of all polytopes is constructed, but after that it is cached and fast.

Return type integer

In Examples: We check what is the index of the “diamond” in the database:

```python
sage: d = lattice_polytope.cross_polytope(2)
sage: d.index() # optional - palp
3
```

Note that polytopes with the same index are not necessarily the same:
But they are in the same \(GL(Z^n) \) orbit and have the same normal form:

```python
sage: d.normal_form()  # optional - \( \rightarrow \) palp
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M
sage: lattice_polytope.ReflexivePolytope(2,3).normal_form()
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M
```

interior_point_indices()

Return indices of (relative) interior lattice points of this polytope.

OUTPUT:

- increasing tuple of integers.

EXAMPLES:

The origin is the only interior point of this square:

```python
sage: square = lattice_polytope.cross_polytope(2).polar()
sage: square.points()  # optional - \( \rightarrow \) palp
N( 1, 1),
N( 1, -1),
N(-1, -1),
N(-1, 1),
N(-1, 0),
N( 0, -1),
N( 0, 0),
N( 0, 1),
in 2-d lattice N
sage: square.interior_point_indices()  # optional - \( \rightarrow \) palp
```
Its edges also have a single interior point each:

```sage
face = square.edges()[0]
face.points()
N(-1, -1),
N(-1, 1),
N(-1, 0)
in 2-d lattice N
face.interior_point_indices()
(2,)
```

interior_points()

Return (relative) boundary lattice points of this polytope.

OUTPUT:

• a *point collection*.

EXAMPLES:

The origin is the only interior point of this square:

```sage
square = lattice_polytope.cross_polytope(2).polar()
sage: square.interior_points()
N(0, 0)
in 2-d lattice N
```

Its edges also have a single interior point each:

```sage
face = square.edges()[0]
sage: face.interior_points()
N(-1, 0)
in 2-d lattice N
```

is_reflexive()

Return True if this polytope is reflexive.

EXAMPLES: The 3-dimensional octahedron is reflexive (and 4319 other 3-polytopes):

```sage
o = lattice_polytope.cross_polytope(3)
sage: o.is_reflexive()
True
```

But not all polytopes are reflexive:

```sage
p = LatticePolytope([(1,0,0), (0,1,17), (-1,0,0), (0,-1,0)])
sage: p.is_reflexive()
False
```

Only full-dimensional polytopes can be reflexive (otherwise the polar set is not a polytope at all, since it is unbounded):
lattice()
Return the ambient lattice of self.

OUTPUT:
• a lattice.

EXAMPLES:

```sage
sage: lattice_polytope.cross_polytope(3).lattice()
lattice
```

lattice_dim()
Return the dimension of the ambient lattice of self.

An alias is `ambient_dim()`.

OUTPUT:
• integer.

EXAMPLES:

```sage
sage: p = LatticePolytope([(1,0)])
sage: p.lattice_dim()  
2
sage: p_dim()  
0
```

linearly_independent_vertices()
Return a maximal set of linearly independent vertices.

OUTPUT:
A tuple of vertex indices.

EXAMPLES:

```sage
sage: L = LatticePolytope([[0,0], [-1,1], [-1,-1]])
sage: L.linearly_independent_vertices()  
(1, 2)
sage: L = LatticePolytope([[0,0,0]])
sage: L.linearly_independent_vertices()  
()
sage: L = LatticePolytope([[0,1,0]])
sage: L.linearly_independent_vertices()  
(0,)
```

nef_partitions(keep_symmetric=False, keep_products=True, keep_projections=True, hodge_numbers=False)
Return 2-part nef-partitions of self.

INPUT:
• `keep_symmetric` – (default: False) if True, “-s” option will be passed to nef.x in order to keep symmetric partitions, i.e. partitions related by lattice automorphisms preserving self.
• **keep_products** – (default: True) if True, “-D” option will be passed to nef.x in order to keep product partitions, with corresponding complete intersections being direct products;

• **keep_projections** – (default: True) if True, “-P” option will be passed to nef.x in order to keep projection partitions, i.e. partitions with one of the parts consisting of a single vertex;

• **hodge_numbers** – (default: False) if False, “-p” option will be passed to nef.x in order to skip Hodge numbers computation, which takes a lot of time.

OUTPUT:

• a sequence of *nef-partitions*.

Type `NefPartition?` for definitions and notation.

EXAMPLES:

Nef-partitions of the 4-dimensional cross-polytope:

```python
sage: p = lattice_polytope.cross_polytope(4)
sage: p.nef_partitions() # optional - palp
[
    Nef-partition {0, 1, 4, 5} \sqcup {2, 3, 6, 7} (direct product),
    Nef-partition {0, 1, 2, 4} \sqcup {3, 5, 6, 7},
    Nef-partition {0, 1, 2, 4, 5} \sqcup {3, 6, 7},
    Nef-partition {0, 1, 2, 4, 5, 6} \sqcup {3, 7} (direct product),
    Nef-partition {0, 1, 2, 3} \sqcup {4, 5, 6, 7},
    Nef-partition {0, 1, 2, 3, 4} \sqcup {5, 6, 7},
    Nef-partition {0, 1, 2, 3, 4, 5} \sqcup {6, 7},
    Nef-partition {0, 1, 2, 3, 4, 5, 6} \sqcup {7} (projection)
]
```

Now we omit projections:

```python
sage: p.nef_partitions(keep_projections=False) # optional - palp
[
    Nef-partition {0, 1, 4, 5} \sqcup {2, 3, 6, 7} (direct product),
    Nef-partition {0, 1, 2, 4} \sqcup {3, 5, 6, 7},
    Nef-partition {0, 1, 2, 4, 5} \sqcup {3, 6, 7},
    Nef-partition {0, 1, 2, 4, 5, 6} \sqcup {3, 7} (direct product),
    Nef-partition {0, 1, 2, 3} \sqcup {4, 5, 6, 7},
    Nef-partition {0, 1, 2, 3, 4} \sqcup {5, 6, 7},
    Nef-partition {0, 1, 2, 3, 4, 5} \sqcup {6, 7}
]
```

Currently Hodge numbers cannot be computed for a given nef-partition:

```python
sage: p.nef_partitions()[1].hodge_numbers() # optional - palp
Traceback (most recent call last):
...
NotImplementedError: use nef_partitions(hodge_numbers=True)!
```

But they can be obtained from nef.x for all nef-partitions at once. Partitions will be exactly the same:
Now it is possible to get Hodge numbers:

```
sage: p.nef_partitions(hodge_numbers=True)[1].hodge_numbers() # optional - palp
(20,)
```

Since nef-partitions are cached, their Hodge numbers are accessible after the first request, even if you do not specify `hodge_numbers=True` anymore:

```
sage: p.nef_partitions()[1].hodge_numbers() # optional - palp
(20,)
```

We illustrate removal of symmetric partitions on a diamond:

```
sage: p = lattice_polytope.cross_polytope(2)
sage: p.nef_partitions() # optional - palp
[  
Nef-partition {0, 2} ⊔ {1, 3} (direct product),
Nef-partition {0, 1} ⊔ {2, 3},
Nef-partition {0, 1, 2} ⊔ {3} (projection)  
]
sage: p.nef_partitions(keep_symmetric=True) # optional - palp
[  
Nef-partition {0, 1, 3} ⊔ {2} (projection),
Nef-partition {0, 2, 3} ⊔ {1} (projection),
Nef-partition {0, 3} ⊔ {1, 2},
Nef-partition {1, 2, 3} ⊔ {0} (projection),
Nef-partition {1, 3} ⊔ {0, 2} (direct product),
Nef-partition {2, 3} ⊔ {0, 1},
Nef-partition {0, 1, 2} ⊔ {3} (projection)  
]
```

Nef-partitions can be computed only for reflexive polytopes:

```
sage: p = LatticePolytope([(1,0,0), (0,1,0), (0,0,2),  
....: (-1,0,0), (0,-1,0), (0,0,-1)])
sage: p.nef_partitions() # optional - palp
```

(continues on next page)
Traceback (most recent call last):
...
ValueError: The given polytope is not reflexive!
Polytope: 3-d lattice polytope in 3-d lattice \(\mathbb{M} \)

\textbf{nef_x} (\textit{keys})
\textit{Run }\texttt{nef.x} \textit{with given }\textit{keys} \textit{on vertices of this polytope.}

\textbf{INPUT:}

- \textit{keys} - a string of options passed to \texttt{nef.x}. The key “-f” is added automatically.

\textbf{OUTPUT:} the output of \texttt{nef.x} as a string.

\textbf{EXAMPLES:} This call is used internally for computing nef-partitions:

\begin{verbatim}
sage: o = lattice_polytope.cross_polytope(3)
sage: s = o.nef_x("-N -V -p") # optional - → palp
sage: s # output contains random time # optional - → palp
M:27 8 N:7 6 codim=2 #part=5
3 6 Vertices of P:
 1 0 0 -1 0 0
 0 1 0 0 -1 0
 0 0 1 0 0 -1
P:0 V:2 4 5 0sec 0cpu
P:2 V:3 4 5 0sec 0cpu
P:3 V:4 5 0sec 0cpu
np=3 d:1 p:1 0sec 0cpu
\end{verbatim}

\textbf{nfacets}()

\textit{Return the number of facets of this polytope.}

\textbf{EXAMPLES:} The number of facets of the 3-dimensional octahedron:

\begin{verbatim}
sage: o = lattice_polytope.cross_polytope(3)
sage: o.nfacets()
8
\end{verbatim}

The number of facets of an interval is 2:

\begin{verbatim}
sage: LatticePolytope(([1],[2])).nfacets()
2
\end{verbatim}

Now consider a 2-dimensional diamond in a 3-dimensional space:

\begin{verbatim}
sage: p = LatticePolytope(((1,0,0), (0,1,0), (-1,0,0), (0,-1,0)))
sage: p.nfacets()
4
\end{verbatim}

\textbf{normal_form} (\textit{algorithm}='\texttt{palp}', \textit{permutation}=False)
\textit{Return the normal form of vertices of }\texttt{self}.

Two full-dimensional lattice polytopes are in the same \(\text{GL}(\mathbb{Z})\)-orbit if and only if their normal forms are the same. Normal form is not defined and thus cannot be used for polytopes whose dimension is smaller than the dimension of the ambient space.

\section{Lattice polyhedra}

183
The original algorithm was presented in [KS1998] and implemented in PALP. A modified version of the PALP algorithm is discussed in [GK2013] and available here as “palp_modified”.

INPUT:

- **algorithm** – (default: “palp”) The algorithm which is used to compute the normal form. Options are:
 - “palp” – Run external PALP code, usually the fastest option.
 - “palp_native” – The original PALP algorithm implemented in sage. Currently considerably slower than PALP.
 - “palp_modified” – A modified version of the PALP algorithm which determines the maximal vertex-facet pairing matrix first and then computes its automorphisms, while the PALP algorithm does both things concurrently.

- **permutation** – (default: False) If True the permutation applied to vertices to obtain the normal form is returned as well. Note that the different algorithms may return different results that nevertheless lead to the same normal form.

OUTPUT:

- a point collection in the lattice() of self or a tuple of it and a permutation.

EXAMPLES:

We compute the normal form of the “diamond”:

```
sage: d = LatticePolytope([(1,0), (0,1), (-1,0), (0,-1)])
sage: d.vertices()  
M( 1, 0),
M( 0, 1),
M(-1, 0),
M( 0, -1)
in 2-d lattice M
sage: d.normal_form()  
# optional -
  -> palp
M( 1, 0),
M( 0, 1),
M( 0, -1),
M(-1, 0)
in 2-d lattice M
```

The diamond is the 3rd polytope in the internal database:

```
sage: d.index()  
# optional -
  -> palp
3
sage: d  
# optional -
  -> palp
2-d reflexive polytope #3 in 2-d lattice M
```

You can get it in its normal form (in the default lattice) as

```
sage: lattice_polytope.ReflexivePolytope(2, 3).vertices()  
M( 1, 0),
M( 0, 1),
M( 0, -1),  
(continues on next page)
```
It is not possible to compute normal forms for polytopes which do not span the space:

```python
sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.normal_form()
Traceback (most recent call last):
  ... ValueError: normal form is not defined for
2-d lattice polytope in 3-d lattice M
```

We can perform the same examples using other algorithms:

```python
sage: o = lattice_polytope.cross_polytope(2)
sage: o.normal_form(algorithm="palp_native")
```

```python
M(1, 0), M(0, 1), M(0, -1), M(-1, 0)
in 2-d lattice M
```

```python
sage: o = lattice_polytope.cross_polytope(2)
sage: o.normal_form(algorithm="palp_modified")
```

```python
M(1, 0), M(0, 1), M(0, -1), M(-1, 0)
in 2-d lattice M
```

npoints()

Return the number of lattice points of this polytope.

EXAMPLES: The number of lattice points of the 3-dimensional octahedron and its polar cube:

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: o.npoints()                       # optional - palp
7
```

```python
cube = o.polar()
sage: cube.npoints()                  # optional - palp
27
```

nvertices()

Return the number of vertices of this polytope.

EXAMPLES: The number of vertices of the 3-dimensional octahedron and its polar cube:

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: o.nvertices()                     # optional - palp
6
```

```python
cube = o.polar()
```
sage: cube.nvertices()
8

origin()

Return the index of the origin in the list of points of self.

OUTPUT:

• integer if the origin belongs to this polytope, None otherwise.

EXAMPLES:

```
sage: p = lattice_polytope.cross_polytope(2)
sage: p.origin()  # optional - palp
4
```

```
sage: p.point(p.origin())  # optional - palp
M(0, 0)
```

```
sage: p = LatticePolytope([[1], [2]])
sage: p.points()
M(1), M(2)
in 1-d lattice M
sage: print(p.origin())
None
```

Now we make sure that the origin of non-full-dimensional polytopes can be identified correctly (trac ticket #10661):

```
sage: LatticePolytope([[1, 0, 0], (-1, 0, 0)]).origin()
2
```

parent()

Return the set of all lattice polytopes.

EXAMPLES:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: o.parent()
Set of all Lattice Polytopes
```

```
sage: LatticePolytope([[1, 0, 0], (-1, 0, 0)], origin()
2
```

plot3d(show_facets=True, facet_opacity=0.5, facet_color=(0, 1, 0), facet_colors=None, show_edges=True, edge_thickness=3, edge_color=(0.5, 0.5, 0.5), show_vertices=True, vertex_size=10, vertex_color=(1, 0, 0), show_points=True, point_size=10, point_color=(0, 0, 1), show_vindices=None, vindex_color=(0, 0, 0), vlabels=None, show_pindices=None, pindex_color=(0, 0, 0), index_shift=1.1)

Return a 3d-plot of this polytope.

Polytopes with ambient dimension 1 and 2 will be plotted along x-axis or in xy-plane respectively. Polytopes of dimension 3 and less with ambient dimension 4 and greater will be plotted in some basis of the spanned space.

By default, everything is shown with more or less pretty combination of size and color parameters.

INPUT: Most of the parameters are self-explanatory:
• show_facets - (default: True)
• facet_opacity - (default: 0.5)
• facet_color - (default: (0,1,0))
• facet_colors - (default: None) if specified, must be a list of colors for each facet separately, used instead of facet_color
• show_edges - (default: True) whether to draw edges as lines
• edge_thickness - (default: 3)
• edge_color - (default: (0.5,0.5,0.5))
• show_vertices - (default: True) whether to draw vertices as balls
• vertex_size - (default: 10)
• vertex_color - (default: (1,0,0))
• show_points - (default: True) whether to draw other points as balls
• point_size - (default: 10)
• point_color - (default: (0,0,1))
• show_vindices - (default: same as show_vertices) whether to show indices of vertices
• vindex_color - (default: (0,0,0)) color for vertex labels
• vlabels - (default: None) if specified, must be a list of labels for each vertex, default labels are vertex indices
• show_pindices - (default: same as show_points) whether to show indices of other points
• pindex_color - (default: (0,0,0)) color for point labels
• index_shift - (default: 1.1)) if 1, labels are placed exactly at the corresponding points. Otherwise the label position is computed as a multiple of the point position vector.

EXAMPLES: The default plot of a cube:

```sage
c = lattice_polytope.cross_polytope(3).polar()
sage: c.plot3d()
```

Plot without facets and points, shown without the frame:

```sage:
c.plot3d(show_facets=false, show_points=false).show(frame=False)
```

Plot with facets of different colors:

```sage:
c.plot3d(facet_colors=rainbow(c.nfacets(), 'rgbtuple'))
```

It is also possible to plot lower dimensional polytops in 3D (let’s also change labels of vertices):

```sage:
lattice_polytope.cross_polytope(2).plot3d(vlabels=['A', 'B', 'C', 'D'])
```
point(i)

Return the i-th point of this polytope, i.e. the i-th column of the matrix returned by points().

EXAMPLES: First few points are actually vertices:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: o.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: o.point(1)                  # optional - → palp
M(0, 1, 0)
```

The only other point in the octahedron is the origin:

```
sage: o.point(6)                  # optional - → palp
M(0, 0, 0)
sage: o.points()                # optional - → palp
```

points(*args, **kwds)

Return all lattice points of self.

INPUT:

• any arguments given will be passed on to the returned object.

OUTPUT:

• a point collection.

EXAMPLES:

Lattice points of the octahedron and its polar cube:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: o.points()                # optional - → palp
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1),
M( 0, 0, 0)
in 3-d lattice M
```

(continues on next page)
Lattice points of a 2-dimensional diamond in a 3-dimensional space:

```python
sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.points()                      # optional - palp
  → palp
M( 1, 0, 0),
M( 0, 1, 0),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, 0)
in 3-d lattice M
```

Only two of the above points:

```
sage: p.points(1, 3) # optional - palp M(0, 1, 0), M(0, -1, 0) in 3-d lattice M
```

We check that points of a zero-dimensional polytope can be computed:

```
2.2. Lattice polyhedra
```
Combinatorial and Discrete Geometry, Release 9.6

```python
def example_code():
    p = LatticePolytope([[1]])
    p.points()
    M(1)
in 1-d lattice M

def polar Polytope
Return the polar polytope, if this polytope is reflexive.

EXAMPLES: The polar polytope to the 3-dimensional octahedron:

```python
def example_code():
 o = lattice_polytope.cross_polytope(3)
 cube = o.polar()
 cube
3-d reflexive polytope in 3-d lattice M
```

The polar polytope “remembers” the original one:

```python
def example_code():
 cube = cube.polar()
 cube
3-d reflexive polytope in 3-d lattice M
```

Only reflexive polytopes have polars:

```python
def example_code():
 p = LatticePolytope([(1,0,0), (0,1,0), (0,0,2),
 (-1,0,0), (0,-1,0), (0,0,-1)])
 p.polar()
Traceback (most recent call last):
...
ValueError: The given polytope is not reflexive!
```

```python
def poly_x(keys, reduce_dimension=False)
Run poly.x with given keys on vertices of this polytope.

INPUT:

- keys - a string of options passed to poly.x. The key “f” is added automatically.
- reduce_dimension - (default: False) if True and this polytope is not full-dimensional, poly.x will
 be called for the vertices of this polytope in some basis of the spanned affine space.

OUTPUT: the output of poly.x as a string.

EXAMPLES: This call is used for determining if a polytope is reflexive or not:

```python
def example_code():
    o = lattice_polytope.cross_polytope(3)
    print(o.poly_x("e"))
# optional -
```

(continues on next page)
Since PALP has limits on different parameters determined during compilation, the following code is likely to fail, unless you change default settings of PALP:

```python
sage: BIG = lattice_polytope.cross_polytope(7)
sage: BIG
7-d reflexive polytope in 7-d lattice M
sage: BIG.poly_x("e")  # optional - palp
Traceback (most recent call last):
... ValueError: Error executing 'poly.x -fe' for the given polytope!
Output:
Please increase POLY_Dmax to at least 7
```

You cannot call poly.x for polytopes that don’t span the space (if you could, it would crush anyway):

```python
sage: p = LatticePolytope([(1,0,0), (0,1,0), (-1,0,0), (0,-1,0)])
sage: p.poly_x("e")  # optional - palp
Traceback (most recent call last):
... ValueError: Cannot run PALP for a 2-dimensional polytope in a 3-dimensional space!
```

But if you know what you are doing, you can call it for the polytope in some basis of the spanned space:

```python
sage: print(p.poly_x("e", reduce_dimension=True))  # optional - palp
4 2 Equations of P
-1 1 0
1 1 2
-1 -1 0
1 -1 2
```

polyhedron()

Return the Polyhedron object determined by this polytope’s vertices.

EXAMPLES:

```python
sage: o = lattice_polytope.cross_polytope(2)
sage: o.polyhedron()
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
```

show3d()

Show a 3d picture of the polytope with default settings and without axes or frame.

See self.plot3d? for more details.

EXAMPLES:

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: o.show3d()  # optional - palp sage.plot
(continues on next page)```
skeleton()

Return the graph of the one-skeleton of this polytope.

EXAMPLES:

```sage
d = lattice_polytope.cross_polytope(2)
g = d.skeleton(); g
optional - palp
Graph on 4 vertices
```

```sage
g.edges()
optional - palp
[(0, 1, None), (0, 3, None), (1, 2, None), (2, 3, None)]
```

skeleton_points(k=1)

Return the increasing list of indices of lattice points in k-skeleton of the polytope (k is 1 by default).

EXAMPLES: We compute all skeleton points for the cube:

```sage
o = lattice_polytope.cross_polytope(3)
c = o.polar()
c.skeleton_points()
optional - palp
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 19, 21, 22, 23, 25, 26]
```

The default was 1-skeleton:

```sage
c.skeleton_points(k=1)
optional - palp
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 19, 21, 22, 23, 25, 26]
```

0-skeleton just lists all vertices:

```sage
c.skeleton_points(k=0)
optional - palp
[0, 1, 2, 3, 4, 5, 6, 7]
```

2-skeleton lists all points except for the origin (point #17):

```sage
c.skeleton_points(k=2)
optional - palp
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26]
```

3-skeleton includes all points:

```sage
c.skeleton_points(k=3)
optional - palp
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
```

It is OK to compute higher dimensional skeletons - you will get the list of all points:
sage: c.skeleton_points(k=100)  # optional - palp
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]

skeleton_show(normal=None)
Show the graph of one-skeleton of this polytope. Works only for polytopes in a 3-dimensional space.

INPUT:

- normal - a 3-dimensional vector (can be given as a list), which should be perpendicular to the screen.
  If not given, will be selected randomly (new each time and it may be far from “nice”).

EXAMPLES: Show a pretty picture of the octahedron:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.skeleton_show([1,2,4])  # optional - palp

Does not work for a diamond at the moment:

sage: d = lattice_polytope.cross_polytope(2)
sage: d.skeleton_show()
Traceback (most recent call last):
...  
NotImplementedError: skeleton view is implemented only in 3-d space

traverse_boundary()
Return a list of indices of vertices of a 2-dimensional polytope in their boundary order.

Needed for plot3d function of polytopes.

EXAMPLES:

sage: p = lattice_polytope.cross_polytope(2).polar()
sage: p.traverse_boundary()
[3, 0, 1, 2]

vertex(i)
Return the i-th vertex of this polytope, i.e. the i-th column of the matrix returned by vertices().

EXAMPLES: Note that numeration starts with zero:

sage: o = lattice_polytope.cross_polytope(3)
sage: o.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M
sage: o.vertex(3)
M(-1, 0, 0)

vertex_facet_pairing_matrix()
Return the vertex facet pairing matrix $PM$. 

2.2. Lattice polyhedra 193
Return a matrix whose the \(i,j\)th entry is the height of the \(j\)th vertex over the \(i\)th facet. The ordering of the vertices and facets is as in \texttt{vertices()} and \texttt{facets()}.

\textbf{EXAMPLES:}

```
sage: L = lattice_polytope.cross_polytope(3)
sage: L.vertex_facet_pairing_matrix()
[2 0 0 0 2 2]
[2 2 0 0 0 2]
[2 2 2 0 0 0]
[2 0 2 0 2 0]
[0 0 2 2 2 0]
[0 0 0 2 2 2]
[0 2 0 2 0 2]
[0 2 2 2 0 0]
```

\textbf{vertices(*args, **kwds)}

Return vertices of \texttt{self}.

INPUT:

- any arguments given will be passed on to the returned object.

OUTPUT:

- a \texttt{point collection}.

\textbf{EXAMPLES:}

Vertices of the octahedron and its polar cube are in dual lattices:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: o.vertices()
M(1, 0, 0),
M(0, 1, 0),
M(0, 0, 1),
M(-1, 0, 0),
M(0, -1, 0),
M(0, 0, -1)
in 3-d lattice M
sage: cube = o.polar()
sage: cube.vertices()
N(1, -1, -1),
N(1, 1, -1),
N(1, 1, 1),
N(1, -1, 1),
N(-1, -1, 1),
N(-1, 1, -1),
N(-1, 1, 1)
in 3-d lattice N
```

\textbf{class sage.geometry.lattice_polytope.NefPartition(data, Delta_polar, check=True)}

Bases: \texttt{sage.structure.sage_object.SageObject}, \texttt{collections.abc.Hasable}

Create a nef-partition.

INPUT:
• **data** – a list of integers, the $i$-th element of this list must be the part of the $i$-th vertex of $\text{Delta}_{\text{polar}}$ in this nef-partition;

• **$\text{Delta}_{\text{polar}}$** – a lattice polytope;

• **check** – by default the input will be checked for correctness, i.e. that data indeed specify a nef-partition. If you are sure that the input is correct, you can speed up construction via check=False option.

**OUTPUT:**

• a nef-partition of $\text{Delta}_{\text{polar}}$.

Let $M$ and $N$ be dual lattices. Let $\Delta \subset M_{\mathbb{R}}$ be a reflexive polytope with polar $\Delta^\circ \subset N_{\mathbb{R}}$. Let $X_\Delta$ be the toric variety associated to the normal fan of $\Delta$. A **nef-partition** is a decomposition of the vertex set $V$ of $\Delta^\circ$ into a disjoint union $V = V_0 \sqcup V_1 \sqcup \cdots \sqcup V_{k-1}$ such that divisors $E_i = \sum_{v \in V_i} D_v$ are Cartier (here $D_v$ are prime torus-invariant Weil divisors corresponding to vertices of $\Delta^\circ$). Equivalently, let $\nabla_i \subset N_{\mathbb{R}}$ be the convex hull of vertices from $V_i$ and the origin. These polytopes form a nef-partition if their Minkowski sum $\nabla \subset N_{\mathbb{R}}$ is a reflexive polytope.

The **dual nef-partition** is formed by polytopes $\Delta_i \subset M_{\mathbb{R}}$ of $E_i$, which give a decomposition of the vertex set of $\nabla^\circ \subset M_{\mathbb{R}}$ and their Minkowski sum is $\Delta$, i.e. the polar duality of reflexive polytopes switches convex hull and Minkowski sum for dual nef-partitions:

$$\Delta^\circ = \text{Conv}(\nabla_0, \nabla_1, \ldots, \nabla_{k-1}),$$

$$\nabla = \nabla_0 + \nabla_1 + \cdots + \nabla_{k-1},$$

$$\Delta = \Delta_0 + \Delta_1 + \cdots + \Delta_{k-1},$$

$$\nabla^\circ = \text{Conv}(\Delta_0, \Delta_1, \ldots, \Delta_{k-1}).$$

One can also interpret the duality of nef-partitions as the duality of the associated cones. Below $\overline{M} = M \times \mathbb{Z}^k$ and $\overline{N} = N \times \mathbb{Z}^k$ are dual lattices.

The **Cayley polytope** $P \subset M_{\mathbb{R}}$ of a nef-partition is given by $P = \text{Conv}(\Delta_0 \times e_0, \Delta_1 \times e_1, \ldots, \Delta_{k-1} \times e_{k-1})$, where $\{e_i\}_{i=0}^{k-1}$ is the standard basis of $\mathbb{Z}^k$. The **dual Cayley polytope** $P^* \subset N_{\mathbb{R}}$ is the Cayley polytope of the dual nef-partition.

The **Cayley cone** $C \subset \overline{M}_{\mathbb{R}}$ of a nef-partition is the cone spanned by its Cayley polytope. The **dual Cayley cone** $C^\vee \subset \overline{M}_{\mathbb{R}}$ is the usual dual cone of $C$. It turns out, that $C^\vee$ is spanned by $P^*$.

It is also possible to go back from the Cayley cone to the Cayley polytope, since $C$ is a reflexive Gorenstein cone supported by $P$: primitive integral ray generators of $C$ are contained in an affine hyperplane and coincide with vertices of $P$.

See Section 4.3.1 in [CK1999] and references therein for further details, or [BN2008] for a purely combinatorial approach.

**EXAMPLES:**

It is very easy to create a nef-partition for the octahedron, since for this polytope any decomposition of vertices is a nef-partition. We create a 3-part nef-partition with the 0-th and 1-st vertices belonging to the 0-th part (recall that numeration in Sage starts with 0), the 2-nd and 5-th vertices belonging to the 1-st part, and 3-rd and 4-th vertices belonging to the 2-nd part:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0,0,1,2,2,1], o)
sage: np
Nef-partition {0, 1} □ {2, 5} □ {3, 4}
```

The octahedron plays the role of $\Delta^\circ$ in the above description.
The dual nef-partition (corresponding to the “mirror complete intersection”) gives decomposition of the vertex set of $\nabla^o$:

```
sage: np.dual()
Nef-partition \(\{0, 1, 2\} \sqcup \{3, 4\} \sqcup \{5, 6, 7\}\)
```

```
sage: np.nabla_polar().vertices()
N(-1, -1, 0),
N(-1, 0, 0),
N(0, -1, 0),
N(0, 0, -1),
N(0, 0, 1),
N(1, 0, 0),
N(0, 1, 0),
N(1, 1, 0)
in 3-d lattice \(N\)
```

Of course, $\nabla^o$ is $\Delta^o$ from the point of view of the dual nef-partition:

```
sage: np.dual().Delta_polar() is np.nabla_polar()
True
```

```
sage: np.Delta(1).vertices()
N(0, 0, -1),
N(0, 0, 1)
in 3-d lattice \(N\)
```

```
sage: np.dual().nabla(1).vertices()
N(0, 0, -1),
N(0, 0, 1)
in 3-d lattice \(N\)
```

Instead of constructing nef-partitions directly, you can request all 2-part nef-partitions of a given reflexive polytope (they will be computed using nef.x program from PALP):

```
sage: o.nef_partitions()
[
Nef-partition \(\{0, 1, 3\} \sqcup \{2, 4, 5\}\),
Nef-partition \(\{0, 1, 3, 4\} \sqcup \{2, 5\}\) (direct product),
Nef-partition \(\{0, 1, 2\} \sqcup \{3, 4, 5\}\),
Nef-partition \(\{0, 1, 2, 3\} \sqcup \{4, 5\}\),
Nef-partition \(\{0, 1, 2, 3, 4\} \sqcup \{5\}\) (projection)
]
```

**Delta**

Return the polytope $\Delta$ or $\Delta_i$ corresponding to self.

**INPUT:**

- $i$ – an integer. If not given, $\Delta$ will be returned.

**OUTPUT:**

- a **lattice polytope**.
See *nef-partition* class documentation for definitions and notation.

**EXAMPLES:**

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} □ {2, 4, 5}
sage: np.Delta().polar() is o
True
sage: np.Delta().vertices()
N(1, -1, -1),
N(1, 1, -1),
N(1, 1, 1),
N(-1, -1, 1),
N(-1, -1, -1),
N(-1, 1, -1),
N(-1, 1, 1)
in 3-d lattice N
```

**Delta_polar()**

Return the polytope $\Delta^\circ$ corresponding to self.

**OUTPUT:**

• a *lattice polytope*.

See *nef-partition* class documentation for definitions and notation.

**EXAMPLES:**

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} □ {2, 4, 5}
sage: np.Delta_polar() is o
True
sage: np.Delta(0).vertices()
N(-1, -1, 0),
N(-1, 0, 0),
N(1, 0, 0),
N(1, -1, 0)
in 3-d lattice N
```

**Deltas()**

Return the polytopes $\Delta_i$ corresponding to self.

**OUTPUT:**

• a tuple of *lattice polytopes*.

See *nef-partition* class documentation for definitions and notation.

**EXAMPLES:**

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} □ {2, 4, 5}
sage: np.Delta().vertices()
(continues on next page)
```

2.2. Lattice polyhedra 197

(continues on next page)
\[ \text{N}(1, -1, -1), \]
\[ \text{N}(1, 1, -1), \]
\[ \text{N}(1, 1, 1), \]
\[ \text{N}(1, -1, 1), \]
\[ \text{N}(-1, -1, 1), \]
\[ \text{N}(-1, -1, -1), \]
\[ \text{N}(-1, 1, -1), \]
\[ \text{N}(-1, 1, 1) \]
in 3-d lattice \( \text{N} \)

\[
\text{sage: } [\Delta_i . \text{vertices()} \text{ for } \Delta_i \text{ in np.Deltas()}]
\]
\[ \text{[N}(-1, -1, 0), \]
\[ \text{N}(-1, 0, 0), \]
\[ \text{N}(1, 0, 0), \]
\[ \text{N}(1, -1, 0) \]
in 3-d lattice \( \text{N} \),
\[ \text{N}(0, 0, -1), \]
\[ \text{N}(0, 1, 1), \]
\[ \text{N}(0, 0, 1), \]
\[ \text{N}(0, 1, -1) \]
in 3-d lattice \( \text{N} \)

\[
\text{sage: } \text{np.nabla_polar().vertices()}
\]
\[ \text{[N}(-1, -1, 0), \]
\[ \text{N}(1, -1, 0), \]
\[ \text{N}(1, 0, 0), \]
\[ \text{N}(-1, 0, 0), \]
\[ \text{N}(0, 1, -1), \]
\[ \text{N}(0, 1, 1), \]
\[ \text{N}(0, 0, 1), \]
\[ \text{N}(0, 0, -1) \]
in 3-d lattice \( \text{N} \)

dual() 
Return the dual nef-partition.

OUTPUT:

\* a \textit{nef-partition}.

See the class documentation for the definition.

ALGORITHM:

See Proposition 3.19 in [BN2008].

Note: Automatically constructed dual nef-partitions will be ordered, i.e. vertex partition of \( \nabla \) will look like \{0, 1, 2\} \( \sqcup \) \{3, 4, 5, 6\} \( \sqcup \) \{7, 8\}.

EXAMPLES:

\[
\text{sage: } o = \text{lattice_polytope.cross_polytope(3)}
\]
\[
\text{sage: } \text{np = NefPartition([\emptyset, 0, 1, 0, 1, 1], o); np}
\]
Nef-partition \{0, 1, 3\} \( \sqcup \) \{2, 4, 5\}
\[
\text{sage: } \text{np.dual()}
\]
Nef-partition \{0, 1, 2, 3\} \( \sqcup \) \{4, 5, 6, 7\}
sage: np.dual().Delta() is np.nabla()
True
sage: np.dual().nabla(0) is np.Delta(0)
True

hodge_numbers()
Return Hodge numbers corresponding to self.

OUTPUT:
• a tuple of integers (produced by nef.x program from PALP).

EXAMPLES:
Currently, you need to request Hodge numbers when you compute nef-partitions:

```
sage: p = lattice_polytope.cross_polytope(5)
sage: np = p.nef_partitions()[0] # long time (4s on sage.math, 2011)
 # optional - palp
sage: np.hodge_numbers() # long time
 # optional - palp
Traceback (most recent call last):
... Not ImplementedError: use nef_partitions(hodge_numbers=True)!
sage: np = p.nef_partitions(hodge_numbers=True)[0] # long time (13s on sage.math, 2011) # optional - palp
sage: np.hodge_numbers() # long time
 # optional - palp
(19, 19)
```

nabla(i=None)
Return the polytope ∇ or ∇_i corresponding to self.

INPUT:
• i – an integer. If not given, ∇ will be returned.

OUTPUT:
• a lattice polytope.

See nef_partition class documentation for definitions and notation.

EXAMPLES:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}
sage: np.Delta_polar().vertices()
M(1, 0, 0),
M(0, 1, 0),
M(0, 0, 1),
M(-1, 0, 0),
M(0, -1, 0),
M(0, 0, -1)
in 3-d lattice M
sage: np.nabla(0).vertices()
```

(continues on next page)
M(-1, 0, 0),
M( 1, 0, 0),
M( 0, 1, 0)
in 3-d lattice M

```sage```
np.nabla().vertices()
M(-1, 0, 1),
M(-1, 0, -1),
M(1, 0, 1),
M(1, 0, -1),
M(0, 1, 1),
M(0, 1, -1),
M(1, -1, 0),
M(-1, -1, 0)
in 3-d lattice M```

nabla_polar()
Return the polytope ∇^o corresponding to self.

OUTPUT:
- a lattice polytope.

See `nef-partition` class documentation for definitions and notation.

EXAMPLES:

```sage```
o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} □ {2, 4, 5}
sage: np.nabla_polar().vertices()
N(-1, -1, 0),
N( 1, -1, 0),
N( 1, 0, 0),
N(-1, 0, 0),
N( 0, 1, -1),
N( 0, 1, 1),
N( 0, 0, 1),
N( 0, 0, -1)
in 3-d lattice N```

```sage```
sage: np.nabla_polar() is np.dual().Delta_polar()
True```

nablas()
Return the polytopes ∇_i corresponding to self.

OUTPUT:
- a tuple of lattice polytopes.

See `nef-partition` class documentation for definitions and notation.

EXAMPLES:

```sage```
o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} □ {2, 4, 5}```
Combinatorial and Discrete Geometry, Release 9.6

$sage$: np.Delta_polar().vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
M( 0, 0, -1)
in 3-d lattice M

$sage$: [nabla_i.vertices() for nabla_i in np.nablas()]
[M(-1, 0, 0),
 M( 1, 0, 0),
 M( 0, 1, 0)
in 3-d lattice M,
 M(0, -1, 0),
 M(0, 0, -1),
 M(0, 0, 1)]
in 3-d lattice M

nparts()
Return the number of parts in self.

OUTPUT:
• an integer.

EXAMPLES:

$sage$: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} \sqcup {2, 4, 5}
sage: np.nparts()
2

part(i, all_points=False)
Return the i-th part of self.

INPUT:
• i – an integer
• all_points – (default: False) whether to list all lattice points or just vertices

OUTPUT:
• a tuple of integers, indices of vertices (or all lattice points) of $\Delta^\circ$ belonging to $V_i$.

See nef-partition class documentation for definitions and notation.

EXAMPLES:

$sage$: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} \sqcup {2, 4, 5}
sage: np.part(0)
(0, 1, 3)
sage: np.part(0, all_points=True)
(0, 1, 3)

2.2. Lattice polyhedra

(continues on next page)
part_of(i)
Return the index of the part containing the i-th vertex.

INPUT:

• i – an integer.

OUTPUT:

• an integer j such that the i-th vertex of ∆∘ belongs to V_j.

See nef-partition class documentation for definitions and notation.

EXAMPLES:

sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition {0, 1, 3} ⊔ {2, 4, 5}

sage: np.part_of(3)
0
sage: np.part_of(2)
1

part_of_point(i)
Return the index of the part containing the i-th point.

INPUT:

• i – an integer.

OUTPUT:

• an integer j such that the i-th point of ∆∘ belongs to ∇_j.

Note: Since a nef-partition induces a partition on the set of boundary lattice points of ∆∘, the value of j is well-defined for all i but the one that corresponds to the origin, in which case this method will raise a ValueError exception. (The origin always belongs to all ∇_j.)

See nef-partition class documentation for definitions and notation.

EXAMPLES:

We consider a relatively complicated reflexive polytope #2252 (easily accessible in Sage as ReflexivePolytope(3, 2252), we create it here explicitly to avoid loading the whole database):

sage: p = LatticePolytope([(1,0,0), (0,1,0), (0,0,1), (0,1,-1),
....: (0,-1,1), (-1,1,0), (0,-1,-1), (-1,-1,0), (-1,-1,2)])
sage: np = p.nef_partitions()[0]; np  # optional - palp
Nef-partition {1, 2, 5, 7, 8} ⊔ {0, 3, 4, 6}
We see that the polytope has 6 more points in addition to vertices. One of them is the origin:

```
sage: p.origin() # optional - \texttt{palp}
14
```

Traceback (most recent call last):
  ...: if p.origin() != n and np.part_of_point(n) == 0]
[1, 2, 5, 7, 8, 9, 11, 13]
```
sage: [n for n in range(p.npoints()) if p.origin() != n and np.part_of_point(n) == 1]
[0, 3, 4, 6, 10, 12]
```

But the remaining 5 are partitioned by \texttt{np}:

```
sage: [n for n in range(p.npoints())] # optional - \texttt{palp}
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
```

\texttt{parts(\texttt{all\_points}=False)}

Return all parts of self.

INPUT:

\begin{itemize}
  \item \texttt{all\_points} – (default: False) whether to list all lattice points or just vertices
\end{itemize}

OUTPUT:

\begin{itemize}
  \item a tuple of tuples of integers. The \texttt{i}-th tuple contains indices of vertices (or all lattice points) of $\Delta^\circ$ belonging to $\mathcal{SV}_i$
\end{itemize}

See \texttt{nef-partition} class documentation for definitions and notation.

EXAMPLES:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: np = NefPartition([0, 0, 1, 0, 1, 1], o); np
Nef-partition \{0, 1, 3\} \sqcup \{2, 4, 5\}
sage: np.parts() # optional - \texttt{palp}
((0, 1, 3), (2, 4, 5))
sage: np.parts(\texttt{all_points}=True) # optional - \texttt{palp}
((0, 1, 3), (2, 4, 5))
sage: np.dual().parts()
((0, 1, 2, 3), (4, 5, 6, 7))
```
sage: np.dual().parts(all_points=True)  # optional - palp
((0, 1, 2, 3, 8), (4, 5, 6, 7, 10))

sage.geometry.lattice_polytope.ReflexivePolytope(dim, n)
Return the \(n\)-th 2- or 3-dimensional reflexive polytope.

**Note:**
1. Numeration starts with zero: \(0 \leq n \leq 15\) for \(\text{dim} = 2\) and \(0 \leq n \leq 4318\) for \(\text{dim} = 3\).
2. During the first call, all reflexive polytopes of requested dimension are loaded and cached for future use, so the first call for 3-dimensional polytopes can take several seconds, but all consecutive calls are fast.
3. Equivalent to ReflexivePolytopes(dim)[n] but checks bounds first.

**EXAMPLES:**
The 3rd 2-dimensional polytope is “the diamond”:

```python
sage: ReflexivePolytope(2, 3)
2-d reflexive polytope #3 in 2-d lattice M
sage: lattice_polytope.ReflexivePolytope(2,3).vertices()
M(1, 0),
M(0, 1),
M(0, -1),
M(-1, 0)
in 2-d lattice M
```

There are 16 reflexive polygons and numeration starts with 0:

```python
sage: ReflexivePolytope(2,16)
Traceback (most recent call last):
 ... ValueError: there are only 16 reflexive polygons!
```

It is not possible to load a 4-dimensional polytope in this way:

```python
sage: ReflexivePolytope(4,16)
Traceback (most recent call last):
 ... NotImplementedError: only 2- and 3-dimensional reflexive polytopes are available!
```

sage.geometry.lattice_polytope.ReflexivePolytopes(dim)
Return the sequence of all 2- or 3-dimensional reflexive polytopes.

**Note:** During the first call the database is loaded and cached for future use, so repetitive calls will return the same object in memory.

**Parameters**  
\textbf{dim} (2 or 3) – dimension of required reflexive polytopes

**Return type**  
list of lattice polytopes
EXAMPLES:

There are 16 reflexive polygons:

```python
sage: len(ReflexivePolytopes(2))
16
```

It is not possible to load 4-dimensional polytopes in this way:

```python
sage: ReflexivePolytopes(4)
Traceback (most recent call last):
 ... NotImplementedError: only 2- and 3-dimensional reflexive polytopes are available!
```

```python
class sage.geometry.lattice_polytope.SetOfAllLatticePolytopesClass
 Bases: sage.structure.parent.Set_generic

sage.geometry.lattice_polytope.all Cached_data(polytopes)
 Compute all cached data for all given polytopes and their polars.
 This functions does it MUCH faster than member functions of LatticePolytope during the first run. So it is recommended to use this functions if you work with big sets of data. None of the polytopes in the given sequence should be constructed as the polar polytope to another one.
 INPUT: a sequence of lattice polytopes.

 EXAMPLES: This function has no output, it is just a fast way to work with long sequences of polytopes. Of course, you can use short sequences as well:

```python
sage: o = lattice_polytope.cross Polytope(3)
sage: lattice_polytope.all Cached_data([o])
```

```python
sage.geometry.lattice_polytope.all facet equations(polytopes)
    Compute polar polytopes for all reflexive and equations of facets for all non-reflexive polytopes.
    all facet equations and all_polars are synonyms.
    This functions does it MUCH faster than member functions of LatticePolytope during the first run. So it is recommended to use this functions if you work with big sets of data.
    INPUT: a sequence of lattice polytopes.

    EXAMPLES: This function has no output, it is just a fast way to work with long sequences of polytopes. Of course, you can use short sequences as well:

```python
sage: o = lattice_polytope.cross Polytope(3)
sage: lattice_polytope.all_polars([o])
```

```python
sage.geometry.lattice_polytope.all nef partitions(polytopes, keep_symmetric=False)
 Compute nef-partitions for all given polytopes.
 This functions does it MUCH faster than member functions of LatticePolytope during the first run. So it is recommended to use this functions if you work with big sets of data.

2.2. Lattice polyhedra
Note: member function is_reflexive will be called separately for each polytope. It is strictly recommended to call all_polars on the sequence of polytopes before using this function.

INPUT: a sequence of lattice polytopes.

EXAMPLES: This function has no output, it is just a fast way to work with long sequences of polytopes. Of course, you can use short sequences as well:

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: lattice_polytope.all_nef_partitions([o])          # optional -  → palp
sage: o.nef_partitions()                                # optional -  → palp
[ Nef-partition {0, 1, 3} △ {2, 4, 5},
  Nef-partition {0, 1, 3, 4} △ {2, 5} (direct product),
  Nef-partition {0, 1, 2} △ {3, 4, 5},
  Nef-partition {0, 1, 2, 3} △ {4, 5},
  Nef-partition {0, 1, 2, 3, 4} △ {5} (projection)
]
```

You cannot use this function for non-reflexive polytopes:

```python
sage: p = LatticePolytope([(1,0,0), (0,1,0), (0,0,2),
  ....: (-1,0,0), (0,-1,0), (0,0,-1)])
sage: lattice_polytope.all_nef_partitions([o, p])         # optional -  → palp
Traceback (most recent call last):
... ValueError: nef-partitions can be computed for reflexive polytopes only
```

sage.geometry.lattice_polytope.all_points(polytopes)

Compute lattice points for all given polytopes.

This functions does it MUCH faster than member functions of LatticePolytope during the first run. So it is recommended to use this functions if you work with big sets of data.

INPUT: a sequence of lattice polytopes.

EXAMPLES: This function has no output, it is just a fast way to work with long sequences of polytopes. Of course, you can use short sequences as well:

```python
sage: o = lattice_polytope.cross_polytope(3)
sage: lattice_polytope.all_points([o])                    # optional -  → palp
sage: o.points()                                          # optional -  → palp
  M( 1, 0, 0),
  M( 0, 1, 0),
  M( 0, 0, 1),
  M(-1, 0, 0),
  M( 0, -1, 0),
  M( 0, 0, -1),
  M( 0, 0, 0)
in 3-d lattice M
```
sage.geometry.lattice_polytope.all_polars(polytopes)
Compute polar polytopes for all reflexive and equations of facets for all non-reflexive polytopes.

all_facet_equations and all_polars are synonyms.
This functions does it MUCH faster than member functions of LatticePolytope during the first run. So it is recommended to use this functions if you work with big sets of data.

INPUT: a sequence of lattice polytopes.

EXAMPLES: This function has no output, it is just a fast way to work with long sequences of polytopes. Of course, you can use short sequences as well:

```sage
sage: o = lattice_polytope.cross_polytope(3)
sage: lattice_polytope.all_polars([o]) # optional - palp
sage: o.polar() # optional - palp
3-d reflexive polytope in 3-d lattice N
```

sage.geometry.lattice_polytope.convex_hull(points)
Compute the convex hull of the given points.

Note: points might not span the space. Also, it fails for large numbers of vertices in dimensions 4 or greater

INPUT:

- points - a list that can be converted into vectors of the same dimension over ZZ.

OUTPUT: list of vertices of the convex hull of the given points (as vectors).

EXAMPLES: Let's compute the convex hull of several points on a line in the plane:

```sage
sage: lattice_polytope.convex_hull([[1,2],[3,4],[5,6],[7,8]])
[(1, 2), (7, 8)]
```

sage.geometry.lattice_polytope.cross_polytope(dim)
Return a cross-polytope of the given dimension.

INPUT:

- dim – an integer.

OUTPUT:

- a lattice polytope.

EXAMPLES:

```sage
sage: o = lattice_polytope.cross_polytope(3)
sage: o
3-d reflexive polytope in 3-d lattice M
sage: o.vertices()
M( 1, 0, 0),
M( 0, 1, 0),
M( 0, 0, 1),
M(-1, 0, 0),
M( 0, -1, 0),
```

(continues on next page)
sage.geometry.lattice_polytope.is_LatticePolytope(x)
Check if x is a lattice polytope.

INPUT:
• x – anything.

OUTPUT:
• True if x is a \textit{lattice polytope}, False otherwise.

EXAMPLES:

```python
sage: from sage.geometry.lattice_polytope import is_LatticePolytope
sage: is_LatticePolytope(1)
False
sage: p = LatticePolytope([(1,0), (0,1), (-1,-1)])
# optional - palp
sage: p
2-d reflexive polytope #0 in 2-d lattice M
sage: is_LatticePolytope(p)
True
```

sage.geometry.lattice_polytope.is_NefPartition(x)
Check if x is a nef-partition.

INPUT:
• x – anything.

OUTPUT:
• True if x is a \textit{nef-partition} and False otherwise.

EXAMPLES:

```python
sage: from sage.geometry.lattice_polytope import is_NefPartition
sage: is_NefPartition(1)
False
sage: o = lattice_polytope.cross_polytope(3)
# optional - palp
sage: np = o.nef_partitions()[0]; np
Nef-partition \{0, 1, 3\} \sqcup \{2, 4, 5\}
# optional - palp
sage: is_NefPartition(np)
True
```

sage.geometry.lattice_polytope.minkowski_sum(points1, points2)
Compute the Minkowski sum of two convex polytopes.

\textbf{Note:} Polytopes might not be of maximal dimension.
• **points1, points2** - lists of objects that can be converted into vectors of the same dimension, treated as vertices of two polytopes.

OUTPUT: list of vertices of the Minkowski sum, given as vectors.

EXAMPLES: Let’s compute the Minkowski sum of two line segments:

```sage
lattice_polytope.minkowski_sum([[1,0],[-1,0]],[[0,1],[0,-1]])
```

```sage
[(1, 1), (-1, 1), (-1, -1)]
```

`sage.geometry.lattice_polytope.positive_integer_relations(points)`

Return relations between given points.

INPUT:

• **points** - lattice points given as columns of a matrix

OUTPUT: matrix of relations between given points with non-negative integer coefficients

EXAMPLES: This is a 3-dimensional reflexive polytope:

```sage
p = LatticePolytope([(1,0,0), (0,1,0),
                      (-1,-1,0), (0,0,1), (-1,0,-1)])
p.points()  #→ optional - palp
M( 1, 0, 0),
M( 0, 1, 0),
M(-1, -1, 0),
M( 0, 0, 1),
M(-1, 0, -1),
M( 0, 0, 0)
in 3-d lattice M
```

We can compute linear relations between its points in the following way:

```sage
p.points().matrix().kernel().echelonized_basis_matrix()  #→
```

```sage
[ 1 0 0 1 1 0]
[ 0 1 1 -1 -1 0]
[ 0 0 0 0 0 1]
```

However, the above relations may contain negative and rational numbers. This function transforms them in such a way, that all coefficients are non-negative integers:

```sage
lattice_polytope.positive_integer_relations(p.points().column_matrix())  #→
```

```sage
[1 0 1 1 0]
[1 1 0 0 0]
[0 0 0 0 1]
```

```sage
cm = ReflexivePolytope(2,1).vertices().column_matrix()
lattice_polytope.positive_integer_relations(cm)
```

```sage
[2 1 1]
```

`sage.geometry.lattice_polytope.read_all_polytopes(file_name)`

Read all polytopes from the given file.

INPUT:
• file_name – a string with the name of a file with VERTICES of polytopes.

OUTPUT:

• a sequence of polytopes.

EXAMPLES:

We use poly.x to compute two polar polytopes and read them:

```python
sage: d = lattice_polytope.cross_polytope(2)
sage: o = lattice_polytope.cross_polytope(3)
sage: result_name = lattice_polytope._palp("poly.x -fe", [d, o])  # optional - palp
sage: with open(result_name) as f:
    # optional - palp
    ....:     print(f.read())
4 2 Vertices of P-dual <-> Equations of P
 -1  1
 1  1
-1 -1
 1 -1
8 3 Vertices of P-dual <-> Equations of P
 -1 -1  1
 1 -1  1
-1  1  1
 1  1  1
-1 -1 -1
 1 -1 -1
-1  1 -1
 1  1 -1
 1  1 -1
sage: lattice_polytope.read_all_polytopes(result_name)  # optional - palp
[2-d reflexive polytope #14 in 2-d lattice M,
 3-d reflexive polytope in 3-d lattice M]
sage: os.remove(result_name)  # optional - palp
```

```python
sage.geometry.lattice_polytope.read_palp_matrix(data, permutation=False)
```

Read and return an integer matrix from a string or an opened file.

First input line must start with two integers m and n, the number of rows and columns of the matrix. The rest of the first line is ignored. The next m lines must contain n numbers each.

If m>n, returns the transposed matrix. If the string is empty or EOF is reached, returns the empty matrix, constructed by `matrix()`.

INPUT:

• data – Either a string containing the filename or the file itself containing the output by PALP.

• permutation – (default: False) If True, try to retrieve the permutation output by PALP. This parameter makes sense only when PALP computed the normal form of a lattice polytope.

OUTPUT:

A matrix or a tuple of a matrix and a permutation.

EXAMPLES:
sage.geometry.lattice_polytope.set_palp_dimension(d)
Set the dimension for PALP calls to d.

INPUT:
• d – an integer from the list [4,5,6,11] or None.

OUTPUT:
• none.

PALP has many hard-coded limits, which must be specified before compilation, one of them is dimension. Sage includes several versions with different dimension settings (which may also affect other limits and enable certain features of PALP). You can change the version which will be used by calling this function. Such a change is not done automatically for each polytope based on its dimension, since depending on what you are doing it may be necessary to use dimensions higher than that of the input polytope.

EXAMPLES:
Let’s try to work with a 7-dimensional polytope:

```
sage: p = lattice_polytope.cross_polytope(7)
sage: p._palp("poly.x -fv") # optional - palp
Traceback (most recent call last):
  ... ValueError: Error executing 'poly.x -fv' for the given polytope!
Output:
Please increase POLY_Dmax to at least 7
```

However, we can work with this polytope by changing PALP dimension to 11:

```
sage: lattice_polytope.set_palp_dimension(11)
sage: p._palp("poly.x -fv") # optional - palp
'7 14 Vertices of P...'
```

Let’s go back to default settings:

```
sage: lattice_polytope.set_palp_dimension(None)
```

sage.geometry.lattice_polytope.skip_palp_matrix($data$, $n=1$)
Skip matrix data in a file.

INPUT:
• $data$ - opened file with blocks of matrix data in the following format: A block consisting of $m+1$ lines has the number m as the first element of its first line.
• n - (default: 1) integer, specifies how many blocks should be skipped
If EOF is reached during the process, raises ValueError exception.

EXAMPLES: We create a file with vertices of the square and the cube, but read only the second set:

```python
sage: d = lattice_polytope.cross_polytope(2)
sage: o = lattice_polytope.cross_polytope(3)
sage: result_name = lattice_polytope._palp("poly.x -fe", [d, o])  # optional - palp
sage: with open(result_name) as f:  # optional - palp
....:
print(f.read())
4 2 Vertices of P-dual <-> Equations of P
-1 1
1 1
-1 -1
1 -1
8 3 Vertices of P-dual <-> Equations of P
-1 -1 1
1 -1 1
-1 1 1
1 1 1
-1 -1 -1
1 -1 -1
-1 1 -1
1 1 -1
sage: f = open(result_name)  # optional - palp
sage: lattice_polytope.skip_palp_matrix(f)  # optional - palp
sage: lattice_polytope.read_palp_matrix(f)  # optional - palp
[-1 1 -1 1 -1 1 -1 1]
[-1 -1 1 1 -1 -1 1 1]
[ 1 1 1 -1 -1 -1 -1 -1]
sage: f.close()  # optional - palp
sage: os.remove(result_name)  # optional - palp
```

```python
sage.geometry.lattice_polytope.write_palp_matrix(m, ofile=None, comment='', format=None)
```
Write \(m \) into \(\text{ofile} \) in PALP format.

INPUT:

- \(m \) – a matrix over integers or a *point collection*.
- \(\text{ofile} \) – a file opened for writing (default: stdout)
- \(\text{comment} \) – a string (default: empty) see output description
- \(\text{format} \) – a format string used to print matrix entries.

OUTPUT:

- nothing is returned, output written to \(\text{ofile} \) has the format
 - First line: number_of_rows number_of_columns comment
 - Next number_of_rows lines: rows of the matrix.
EXAMPLES:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: lattice_polytope.write_palp_matrix(o.vertices(), comment="3D Octahedron")
3 6 3D Octahedron
 1 0 0 -1 0 0
 0 1 0 0 -1 0
 0 0 1 0 0 -1
sage: lattice_polytope.write_palp_matrix(o.vertices(), format="%4d")
3 6
 1 0 0 -1 0 0
 0 1 0 0 -1 0
 0 0 1 0 0 -1
```

2.2.2 Lattice Euclidean Group Elements

The classes here are used to return particular isomorphisms of PPL lattice polytopes.

class `sage.geometry.polyhedron.lattice_euclidean_group_element.LatticeEuclideanGroupElement(A, b)`

Bases: `sage.structure.sage_object.SageObject`

An element of the lattice Euclidean group.

Note that this is just intended as a container for results from LatticePolytope_PPL. There is no group-theoretic functionality to speak of.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL,
    C_Polyhedron
sage: from sage.geometry.polyhedron.lattice_euclidean_group_element import LatticeEuclideanGroupElement
sage: M = LatticeEuclideanGroupElement([[1,2],[2,3],[-1,2]], [1,2,3])
sage: M
```

```
The map A*x+b with A=
 [ 1 2]
 [ 2 3]
 [-1 2]
b =
 (1, 2, 3)
sage: M._A
 [ 1 2]
 [ 2 3]
 [-1 2]
sage: M._b
 (1, 2, 3)
sage: M(vector([0,0]))
(1, 2, 3)
sage: M(LatticePolytope_PPL((0,0),(1,0),(0,1)))
A 2-dimensional lattice polytope in ZZ^3 with 3 vertices
sage: _.vertices()
((1, 2, 3), (2, 4, 2), (3, 5, 5))
```
codomain_dim()
Return the dimension of the codomain lattice

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.lattice_euclidean_group_element import LatticeEuclideanGroupElement
sage: M = LatticeEuclideanGroupElement([[1,2],[2,3],[-1,2]], [1,2,3])
sage: M
The map A*x+b with A=
[ 1  2]
[ 2  3]
[-1  2]
b =
(1, 2, 3)
sage: M.codomain_dim()
3
```

Note that this is not the same as the rank. In fact, the codomain dimension depends only on the matrix shape, and not on the rank of the linear mapping:

```python
sage: zero_map = LatticeEuclideanGroupElement([[0,0],[0,0],[0,0]], [0,0,0])
sage: zero_map.codomain_dim()
3
```

domain_dim()
Return the dimension of the domain lattice

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.lattice_euclidean_group_element import LatticeEuclideanGroupElement
sage: M = LatticeEuclideanGroupElement([[1,2],[2,3],[-1,2]], [1,2,3])
sage: M
The map A*x+b with A=
[ 1  2]
[ 2  3]
[-1  2]
b =
(1, 2, 3)
sage: M.domain_dim()
2
```

exception sage.geometry.polyhedron.lattice_euclidean_group_element.LatticePolytopeError
Bases: Exception

Base class for errors from lattice polytopes

exception sage.geometry.polyhedron.lattice_euclidean_group_element.LatticePolytopeNoEmbeddingError
Bases: sage.geometry.polyhedron.lattice_euclidean_group_element.LatticePolytopeError

Raised when no embedding of the desired kind can be found.

exception sage.geometry.polyhedron.lattice_euclidean_group_element.LatticePolytopesNotIsomorphicError
Bases: sage.geometry.polyhedron.lattice_euclidean_group_element.LatticePolytopeError

Raised when no embedding of the desired kind can be found.
2.2.3 Access the PALP database(s) of reflexive lattice polytopes

EXAMPLES:

```python
class sage.geometry.polyhedron.palp_database.PALPreader(dim, data_basename=None, output='Polyhedron')
```

Bases: `sage.structure.sage_object.SageObject`

Read PALP database of polytopes.

INPUT:

- `dim` – integer. The dimension of the polyhedra

- `data_basename` – string or `None` (default). The directory and database base filename (PALP usually uses 'zzdb') name containing the PALP database to read. Defaults to the built-in database location.

- `output` – string. How to return the reflexive polyhedron data. Allowed values = 'list', 'Polyhedron' (default), 'pointcollection', and 'PPL'. Case is ignored.

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.palp_database import PALPreader
sage: polygons = PALPreader(2)
sage: [(p.n_Vrepresentation(), len(p.integral_points())) for p in polygons]
[(3, 4), (3, 10), (3, 5), (3, 9), (3, 7), (4, 6), (4, 8), (4, 9), (4, 5), (4, 4), (4, 9), (4, 7), (5, 8), (5, 6), (5, 7), (6, 7)]
sage: next(iter(PALPreader(2, output='list')))
[[[1, 0], [0, 1], [-1, -1]]
```

(continues on next page)
class sage.geometry.polyhedron.palp_database.Reflexive4dHodge(h11, h21, data_basename=None, **kwds)
 Bases: sage.geometry.polyhedron.palp_database.PALPreader

Read the PALP database for Hodge numbers of 4d polytopes.

The database is very large and not installed by default. You can install it with the shell command `sage -i polytopes_db_4d`.

INPUT:

* h11, h21 – Integers. The Hodge numbers of the reflexive polytopes to list.

Any additional keyword arguments are passed to `PALPreader`.

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.palp_database import Reflexive4dHodge
sage: ref = Reflexive4dHodge(1, 101)  # optional - polytopes_db_4d
sage: next(iter(ref)).Vrepresentation()  # optional - polytopes_db_4d
(A vertex at (-1, -1, -1), A vertex at (0, 0, 0, 1),
A vertex at (0, 0, 1, 0), A vertex at (0, 1, 0, 0), A vertex at (1, 0, 0, 0))
```
2.2.4 Fast Lattice Polygons using PPL

See `ppl_lattice_polytope` for the implementation of arbitrary-dimensional lattice polytopes. This module is about the specialization to 2 dimensions. To be more precise, the `LatticePolygon_PPL_class` is used if the ambient space is of dimension 2 or less. These all allow you to cyclically order (see `LatticePolygon_PPL_class.ordered_vertices()`) the vertices, which is in general not possible in higher dimensions.

```python
class sage.geometry.polyhedron.ppl_lattice_polygon.LatticePolygon_PPL_class
    Bases: sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class

    A lattice polygon

    This includes 2-dimensional polytopes as well as degenerate (0 and 1-dimensional) lattice polygons. Any polytope in 2d is a polygon.

    find_isomorphism(polytope)
        Return a lattice isomorphism with polytope.

        INPUT:
            • polytope – a polytope, potentially higher-dimensional.

        OUTPUT:

        A `LatticeEuclideanGroupElement`. It is not necessarily invertible if the affine dimension of `self` or polytope is not two. A `LatticePolytopesNotIsomorphicError` is raised if no such isomorphism exists.

        EXAMPLES:

        sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
        sage: L1 = LatticePolytope_PPL((1,0),(0,1),(0,0))
        sage: L2 = LatticePolytope_PPL((1,0,3),(0,1,0),(0,0,1))
        sage: iso = L1.find_isomorphism(L2)
        sage: iso(L1) == L2
        True
        sage: L1 = LatticePolytope_PPL((0, 1), (3, 0), (0, 3), (1, 0))
        sage: L2 = LatticePolytope_PPL((0,0,2,1),(0,1,2,0),(2,0,0,3),(2,3,0,0))
        sage: iso = L1.find_isomorphism(L2)
        sage: iso(L1) == L2
        True
        sage: L1 = LatticePolytope_PPL((1,0),(0,1),(-1,-1))
        sage: L2 = LatticePolytope_PPL((0, 0), (0, 1), (1, 0))
        sage: L1.find_isomorphism(L2)
        Traceback (most recent call last):
        ...LatticePolytopesNotIsomorphicError: different number of integral points
        sage: L2.find_isomorphism(L1)
        Traceback (most recent call last):
        ...LatticePolytopesNotIsomorphicError: different number of integral points
```

The following polygons are isomorphic over \(\mathbb{Q} \), but not as lattice polytopes:

```python
sage: L1 = LatticePolytope_PPL((1,0),(0,1),(-1,-1))
sage: L2 = LatticePolytope_PPL((0, 0), (0, 1), (1, 0))
sage: L1.find_isomorphism(L2)
Traceback (most recent call last):
...LatticePolytopesNotIsomorphicError: different number of integral points
sage: L2.find_isomorphism(L1)
Traceback (most recent call last):
...LatticePolytopesNotIsomorphicError: different number of integral points

is_isomorphic(polytope)
    Test if self and polytope are isomorphic.
INPUT:
• polytope – a lattice polytope.

OUTPUT:
Boolean.

EXAMPLES:
```sage
def from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL:
L1 = LatticePolytope_PPL((1,0),(0,1),(0,0))
L2 = LatticePolytope_PPL((1,0,3),(0,1,0),(0,0,1))
L1.is_isomorphic(L2)
True
```

ordered_vertices()

Return the vertices of a lattice polygon in cyclic order.

OUTPUT:
A tuple of vertices ordered along the perimeter of the polygon. The first point is arbitrary.

EXAMPLES:
```sage
def from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL:
square = LatticePolytope_PPL((0,0), (1,1), (0,1), (1,0))
square.vertices()
((0, 0), (0, 1), (1, 0), (1, 1))
square.ordered_vertices()
((0, 0), (1, 0), (1, 1), (0, 1))
```

plot()

Plot the lattice polygon.

OUTPUT:
A graphics object.

EXAMPLES:
```sage
def from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL:
P = LatticePolytope_PPL((1,0), (0,1), (0,0), (2,2))
P.plot() # optional - sage.plot
```

sub_polytopes()

Return a list of all lattice sub-polygons up to isomorphism.

OUTPUT:
All non-empty sub-lattice polytopes up to isomorphism. This includes self as improper sub-polytope, but excludes the empty polytope. Isomorphic sub-polytopes that can be embedded in different places are only returned once.
EXAMPLES:

```
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: P1xP1 = LatticePolytope_PPL((1,0), (0,1), (-1,0), (0,-1))
sage: P1xP1.sub_polytopes()
(A 2-dimensional lattice polytope in ZZ^2 with 4 vertices,
 A 2-dimensional lattice polytope in ZZ^2 with 3 vertices,
 A 2-dimensional lattice polytope in ZZ^2 with 3 vertices,
 A 1-dimensional lattice polytope in ZZ^2 with 2 vertices,
 A 1-dimensional lattice polytope in ZZ^2 with 2 vertices,
 A 0-dimensional lattice polytope in ZZ^2 with 1 vertex)
```

`sage.geometry.polyhedron.ppl_lattice_polygon.polar_P1xP1_polytope()`

The polar of the $P^1 \times P^1$ polytope

**EXAMPLES:**

```
sage: from sage.geometry.polyhedron.ppl_lattice_polygon import polar_P1xP1_polytope
sage: polar_P1xP1_polytope()
A 2-dimensional lattice polytope in ZZ^2 with 4 vertices
sage: _.vertices()
((0, 0), (0, 2), (2, 0), (2, 2))
```

`sage.geometry.polyhedron.ppl_lattice_polygon.polar_P2_112_polytope()`

The polar of the $P^2[1,1,2]$ polytope

**EXAMPLES:**

```
sage: from sage.geometry.polyhedron.ppl_lattice_polygon import polar_P2_112_polytope
sage: polar_P2_112_polytope()
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
sage: _.vertices()
((0, 0), (0, 2), (4, 0))
```

`sage.geometry.polyhedron.ppl_lattice_polygon.polar_P2_polytope()`

The polar of the $P^2$ polytope

**EXAMPLES:**

```
sage: from sage.geometry.polyhedron.ppl_lattice_polygon import polar_P2_polytope
sage: polar_P2_polytope()
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
sage: _.vertices()
((0, 0), (0, 3), (3, 0))
```

`sage.geometry.polyhedron.ppl_lattice_polygon.sub_reflexive_polygons()`

Return all lattice sub-polygons of reflexive polygons.

**OUTPUT:**

A tuple of all lattice sub-polygons. Each sub-polygon is returned as a pair sub-polygon, containing reflexive polygon.

**EXAMPLES:**
```python
sage: from sage.geometry.polyhedron.ppl_lattice_polygon import sub_reflexive_polygons
sage: l = sub_reflexive_polygons(); l[5]
(A 2-dimensional lattice polytope in ZZ^2 with 6 vertices,
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices)
sage: len(l)
33
```

```
sage.geometry.polyhedron.ppl_lattice_polygon.subpolygons_of_polar_P1xP1()
The lattice sub-polygons of the polar $P^1 \times P^1$ polytope

OUTPUT:
A tuple of lattice polytopes.

EXAMPLES:
```python
sage: from sage.geometry.polyhedron.ppl_lattice_polygon import subpolygons_of_polar_P1xP1
sage: len(subpolygons_of_polar_P1xP1())
20
```

```
sage.geometry.polyhedron.ppl_lattice_polygon.subpolygons_of_polar_P2()
The lattice sub-polygons of the polar $P^2$ polytope

OUTPUT:
A tuple of lattice polytopes.

EXAMPLES:
```python
sage: from sage.geometry.polyhedron.ppl_lattice_polygon import subpolygons_of_polar_P2
sage: len(subpolygons_of_polar_P2())
27
```

```
sage.geometry.polyhedron.ppl_lattice_polygon.subpolygons_of_polar_P2_112()
The lattice sub-polygons of the polar $P^2[1,1,2]$ polytope

OUTPUT:
A tuple of lattice polytopes.

EXAMPLES:
```python
sage: from sage.geometry.polyhedron.ppl_lattice_polygon import subpolygons_of_polar_P2_112
sage: len(subpolygons_of_polar_P2_112())
28
```
2.2.5 Fast Lattice Polytopes using PPL.

The \texttt{LatticePolytope_PPL()} class is a thin wrapper around PPL polyhedra. Its main purpose is to be fast to construct, at the cost of being much less full-featured than the usual polyhedra. This makes it possible to iterate with it over the list of all 473800776 reflexive polytopes in 4 dimensions.

Note: For general lattice polyhedra you should use \texttt{Polyhedron()} with \texttt{base_ring=ZZ}.

The class derives from the PPL \texttt{ppl.polyhedron.C_Polyhedron} class, so you can work with the underlying generator and constraint objects. However, integral points are generally represented by \texttt{Z}-vectors. In the following, we always use \texttt{generator} to refer the PPL generator objects and \texttt{vertex} (or integral point) for the corresponding \texttt{Z}-vector.

EXAMPLES:

```
sage: vertices = [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (-9, -6, -1, -1)]
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope\_PPL
sage: P = LatticePolytope\_PPL\_PPL(vertices);
P
A 4-dimensional lattice polytope in ZZ^4 with 5 vertices
sage: P\_integral\_points()
((-9, -6, -1, -1), (-3, -2, 0, 0), (-2, -1, 0, 0), (-1, -1, 0, 0),
(-1, 0, 0, 0), (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0))
```

Fibrations of the lattice polytopes are defined as lattice sub-polytopes and give rise to fibrations of toric varieties for suitable fan refinements. We can compute them using \texttt{fibration_generator()}.

```
sage: F = next(P\_fibration\_generator\(2\))
sage: F\_vertices()
((1, 0, 0, 0), (0, 1, 0, 0), (-3, -2, 0, 0))
```

Finally, we can compute automorphisms and identify fibrations that only differ by a lattice automorphism:

```
sage: square = LatticePolytope\_PPL((-1,-1),(-1,1),(1,-1),(1,1))
sage: fibers = [ f\_vertices() for f in square\_fibration\_generator\(1\) ]; fibers
[[((1, 0), (-1, 0)), ((0, 1), (0, -1)), ((-1, -1), (1, 1)), ((-1, 1), (1, -1))]
sage: square\_pointsets\_mod\_automorphism(fibers)
(frozenset(((1, -1), (1, 1))), frozenset(((1, 0), (0, 1))))
```

AUTHORS:

- Volker Braun: initial version, 2012

\texttt{sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL(*args)}

Construct a new instance of the PPL-based lattice polytope class.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope\_PPL
sage: LatticePolytope\_PPL\((0,0),(1,0),(0,1))
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
```

(continues on next page)
sage: p = point(Linear_Expression([2,3],0)); p
point(2/1, 3/1)
sage: LatticePolytope_PPL(p)
A 0-dimensional lattice polytope in ZZ^2 with 1 vertex
sage: P = C_Polyhedron(Generator_System(p)); P
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
sage: LatticePolytope_PPL(P)
A 0-dimensional lattice polytope in ZZ^2 with 1 vertex

A TypeError is raised if the arguments do not specify a lattice polytope:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: LatticePolytope_PPL((0,0),(1/2,1))
Traceback (most recent call last):
 ...TypeError: unable to convert rational 1/2 to an integer
sage: from ppl import point, Generator_System, C_Polyhedron, Linear_Expression, Variable
sage: p = point(Linear_Expression([2,3],0), 5); p
point(2/5, 3/5)
sage: LatticePolytope_PPL(p)
Traceback (most recent call last):
 ...TypeError: generator is not a lattice polytope generator
sage: P = C_Polyhedron(Generator_System(p)); P
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
sage: LatticePolytope_PPL(P)
Traceback (most recent call last):
 ...TypeError: polyhedron has non-integral generators

class sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class
Bases: ppl.polyhedron.C_Polyhedron

The lattice polytope class.

You should use LatticePolytope_PPL() to construct instances.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: LatticePolytope_PPL((0,0),(1/2,1))
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices

affine_lattice_polytope()

Return the lattice polytope restricted to affine_space().

OUTPUT:

A new, full-dimensional lattice polytope.

EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: poly_4d = LatticePolytope_PPL((-9,-6,0,0),(0,1,0,0),(1,0,0,0)); poly_4d
A 2-dimensional lattice polytope in ZZ^4 with 3 vertices
sage: poly_4d.space_dimension()
4
sage: poly_2d = poly_4d.affine_lattice_polytope(); poly_2d
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
sage: poly_2d.space_dimension()
2

affine_space()

Return the affine space spanned by the polytope.

OUTPUT:
The free module \mathbb{Z}^n, where n is the dimension of the affine space spanned by the points of the polytope.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: point = LatticePolytope_PPL((1,2,3))
sage: point.affine_space()
Free module of degree 3 and rank 0 over Integer Ring
Echelon basis matrix:
[]
sage: line = LatticePolytope_PPL((1,1,1), (1,2,3))
sage: line.affine_space()
Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:
[0 1 2]

ambient_space()

Return the ambient space.

OUTPUT:
The free module \mathbb{Z}^d, where d is the ambient space dimension.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: point = LatticePolytope_PPL((1,2,3))
sage: point.ambient_space()
Ambient free module of rank 3 over the principal ideal domain Integer Ring

base_projection(fiber)

The projection that maps the sub-polytope fiber to a single point.

OUTPUT:
The quotient module of the ambient space modulo the `affine_space()` spanned by the fiber.

EXAMPLES:
\begin{verbatim}
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: poly = LatticePolytope_PPL((-9,-6,-1,-1),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0))
sage: fiber = next(poly.fibration_generator(2))
sage: poly.base_projection(fiber)
Finitely generated module V/W over Integer Ring with invariants (0, 0)

\textbf{base_projection_matrix}(\textit{fiber})

The projection that maps the sub-polytope \textit{fiber} to a single point.

\textbf{OUTPUT:}

An integer matrix that represents the projection to the base.

\textbf{See also:}

The \texttt{base_projection()} yields equivalent information, and is easier to use. However, just returning the
matrix has lower overhead.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: poly = LatticePolytope_PPL((-9,-6,-1,-1),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0))
sage: fiber = next(poly.fibration_generator(2))
sage: poly.base_projection_matrix(fiber)
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\end{verbatim}

\textbf{base_rays}(\textit{fiber, points})

Return the primitive lattice vectors that generate the direction given by the base projection of points.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{fiber} – a sub-polytope defining the \texttt{base_projection().}
 \item \texttt{points} – the points to project to the base.
\end{itemize}

\textbf{OUTPUT:}

A tuple of primitive \textbf{Z}-vectors.

\textbf{EXAMPLES:}
\end{verbatim}
Combinatorial and Discrete Geometry, Release 9.6

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: poly = LatticePolytope_PPL((-9, -6, -1, -1), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0))
sage: fiber = next(poly.fibration_generator(2))
sage: poly.base_rays(fiber, poly.integral_points_not_interior_to_facets())
((-1, -1), (0, 1), (1, 0))
sage: p = LatticePolytope_PPL((1, 0), (1, 2), (-1, 0))
sage: f = LatticePolytope_PPL((1, 0), (-1, 0))
sage: p.base_rays(f, p.integral_points())
((1),)

bounding_box()
Return the coordinates of a rectangular box containing the non-empty polytope.

OUTPUT:
A pair of tuples (box_min, box_max) where box_min are the coordinates of a point bounding the coordinates of the polytope from below and box_max bounds the coordinates from above.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: LatticePolytope_PPL((0, 0), (1, 0), (0, 1)).bounding_box()
((0, 0), (1, 1))

contains(point_coordinates)
Test whether point is contained in the polytope.

INPUT:
* point_coordinates – a list/tuple/iterable of rational numbers. The coordinates of the point.

OUTPUT:
Boolean.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: line = LatticePolytope_PPL((1, 2, 3), (-1, -2, -3))
sage: line.contains([0, 0, 0])
True
sage: line.contains([1, 0, 0])
False

contains_origin()
Test whether the polytope contains the origin

OUTPUT:
Boolean.

EXAMPLES:
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: LatticePolytope_PPL((1,2,3), (-1,-2,-3)).contains_origin()
True
sage: LatticePolytope_PPL((1,2,5), (-1,-2,-3)).contains_origin()
False

```
embed_in_reflexive_polytope(output='hom')
```

Find an embedding as a sub-polytope of a maximal reflexive polytope.

INPUT:

- `hom` – string. One of 'hom' (default), 'polytope', or points. How the embedding is returned. See the output section for details.

OUTPUT:

An embedding into a reflexive polytope. Depending on the output option slightly different data is returned.

- If `output='hom'`, a map from a reflexive polytope onto `self` is returned.
- If `output='polytope'`, a reflexive polytope that contains `self` (up to a lattice linear transformation) is returned. That is, the domain of the `output='hom'` map is returned. If the affine span of `self` is less or equal 2-dimensional, the output is one of the following three possibilities:
 - `polar_P2_polytope()`, `polar_P1xP1_polytope()`, or `polar_P2_112_polytope()`.
- If `output='points'`, a dictionary containing the integral points of `self` as keys and the corresponding integral point of the reflexive polytope as value.

If there is no such embedding, a `LatticePolytopeNoEmbeddingError` is raised. Even if it exists, the ambient reflexive polytope is usually not uniquely determined and a random but fixed choice will be returned.

EXAMPLES:

```sage
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: polygon = LatticePolytope_PPL((0,0,2,1),(0,1,2,0),(2,3,0,0),(2,0,0,3))
sage: polygon.embed_in_reflexive_polytope()
The map A*x+b with A=
[ 1  1]
[ 0  1]
[-1 -1]
[ 1  0]
b =
(-1, 0, 3, 0)
sage: polygon.embed_in_reflexive_polytope('polytope')
A 2-dimensional lattice polytope in ZZ^2 with 3 vertices
sage: polygon.embed_in_reflexive_polytope('points')
((0, 0, 2, 1): (1, 0),
 (0, 1, 2, 0): (0, 1),
 (1, 0, 1, 2): (2, 0),
 (1, 1, 1, 1): (1, 1),
 (1, 2, 1, 0): (0, 2),
 (2, 0, 0, 3): (3, 0),
 (2, 1, 0, 2): (2, 1),
 (2, 2, 0, 1): (1, 2),
```

(continues on next page)
(2, 3, 0, 0): (0, 3)

sage: LatticePolytope_PPL((0,0), (4,0), (0,4)).embed_in_reflexive_polytope()
Traceback (most recent call last):
...
LatticePolytopeNoEmbeddingError: not a sub-polytope of a reflexive polygon

fibration_generator(dim)

Generate the lattice polytope fibrations.

For the purposes of this function, a lattice polytope fiber is a sub-lattice polytope. Projecting the plane spanned by the subpolytope to a point yields another lattice polytope, the base of the fibration.

INPUT:

- dim – integer. The dimension of the lattice polytope fiber.

OUTPUT:

A generator yielding the distinct lattice polytope fibers of given dimension.

EXAMPLES:

```sage
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: p = LatticePolytope_PPL((-9,-6,-1,-1),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0))
sage: list(p.fibration_generator(2))
[A 2-dimensional lattice polytope in ZZ^4 with 3 vertices]
```

has_IP_property()

Whether the lattice polytope has the IP property.

That is, the polytope is full-dimensional and the origin is an interior point not on the boundary.

OUTPUT:

Boolean.

EXAMPLES:

```sage
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: LatticePolytope_PPL((-1,-1),(0,1),(1,0)).has_IP_property()
True
sage: LatticePolytope_PPL((-1,-1),(1,1)).has_IP_property()
False
```

integral_points()

Return the integral points in the polyhedron.

Uses the naive algorithm (iterate over a rectangular bounding box).

OUTPUT:

The list of integral points in the polyhedron. If the polyhedron is not compact, a `ValueError` is raised.

EXAMPLES:

```sage
```
Combinatorial and Discrete Geometry, Release 9.6

```
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: LatticePolytope_PPL((-1,-1),(1,0),(1,1),(0,1)).integral_points()
((-1, -1), (0, 0), (0, 1), (1, 0), (1, 1))
sage: simplex = LatticePolytope_PPL((1,2,3), (2,3,7), (-2,-3,-11))
sage: simplex.integral_points()
((-2, -3, -11), (0, 0, -2), (1, 2, 3), (2, 3, 7))
```

The polyhedron need not be full-dimensional:

```
sage: simplex = LatticePolytope_PPL((1,2,3,5), (2,3,7,5), (-2,-3,-11,5))
sage: simplex.integral_points()
((-2, -3, -11, 5), (0, 0, -2, 5), (1, 2, 3, 5), (2, 3, 7, 5))
sage: point = LatticePolytope_PPL((2,3,7))
sage: point.integral_points()
((2, 3, 7),)
sage: empty = LatticePolytope_PPL()
sage: empty.integral_points()
()
```

Here is a simplex where the naive algorithm of running over all points in a rectangular bounding box no longer works fast enough:

```
sage: v = [(1,0,7,-1), (-2,-2,4,-3), (-1,-1,-1,4), (2,9,0,-5), (-2,-1,5,1)]
sage: simplex = LatticePolytope_PPL(v); simplex
A 4-dimensional lattice polytope in ZZ^4 with 5 vertices
sage: len(simplex.integral_points())
49
```

Finally, the 3-d reflexive polytope number 4078:

```
sage: v = [(1,0,0), (0,1,0), (0,0,1), (0,0,-1), (0,-2,1),
      (-1,2,-1), (-1,2,-2), (-1,1,-2), (-1,-1,2), (-1,-3,2)]
sage: P = LatticePolytope_PPL(*v)
sage: pts1 = P.integral_points() # Sage's own code
# optional - palp
sage: pts2 = LatticePolytope(v).points() # optional - palp
sage: for p in pts1: p.set_immutable()
# optional - palp
sage: set(pts1) == set(pts2) # optional - palp
True
sage: len(Polyhedron(v).integral_points()) # takes about 1 ms
23
sage: len(LatticePolytope(v).points()) # takes about 13 ms # optional - palp
23
sage: len(LatticePolytope_PPL(*v).integral_points()) # takes about 0.5 ms
23
```
integral_points_not_interior_to_facets()
Return the integral points not interior to facets

OUTPUT:
A tuple whose entries are the coordinate vectors of integral points not interior to facets (codimension one faces) of the lattice polytope.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: square = LatticePolytope_PPL((-1,-1),(-1,1),(1,-1),(1,1))
sage: square.n_integral_points()
9
sage: square.integral_points_not_interior_to_facets()
((-1, -1), (-1, 1), (0, 0), (1, -1), (1, 1))
```

is_bounded()
Return whether the lattice polytope is compact.

OUTPUT:
Always True, since polytopes are by definition compact.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: LatticePolytope_PPL((0,0),(1,0),(0,1)).is_bounded()
True
```

is_full_dimensional()
Return whether the lattice polytope is full dimensional.

OUTPUT:
Boolean. Whether the affine_dimension() equals the ambient space dimension.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: p = LatticePolytope_PPL((0,0),(0,1))
sage: p.is_full_dimensional()
False
sage: q = LatticePolytope_PPL((0,0),(1,1))
sage: q.is_full_dimensional()
True
```

is_simplex()
Return whether the polyhedron is a simplex.

OUTPUT:
Boolean, whether the polyhedron is a simplex (possibly of strictly smaller dimension than the ambient space).

EXAMPLES:
The integral subgroup of the restricted automorphism group.

INPUT:

• points – A tuple of coordinate vectors or None (default). If specified, the points must form complete orbits under the lattice automorphism group. If None all vertices are used.

• point_labels – A tuple of labels for the points or None (default). These will be used as labels for the do permutation group. If None the points will be used themselves.

OUTPUT:

The integral subgroup of the restricted automorphism group acting on the given points, or all vertices if not specified.

EXAMPLES:

```sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: Z3square = LatticePolytope_PPL((0,0), (1,2), (2,1), (3,3))
sage: G1 = Z3square.lattice_automorphism_group(point_labels=(1,2,3,4)); G1
Permutation Group with generators [(), (1,2,3,4)]
sage: G1.cardinality()
4
sage: G2 = Z3square.restricted_automorphism_group(vertex_labels=(1,2,3,4))
Permutation Group with generators [(), (1,2,3,4)]
```

Point labels also work for lattice polytopes that are not full-dimensional, see trac ticket #16669:
n_integral_points()
Return the number of integral points.

OUTPUT:
Integer. The number of integral points contained in the lattice polytope.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: LatticePolytope_PPL((0,0),(1,0),(0,1)).n_integral_points()
3
```

n_vertices()
Return the number of vertices.

OUTPUT:
An integer, the number of vertices.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: LatticePolytope_PPL((0,0,0), (1,0,0), (0,1,0)).n_vertices()
3
```

pointsets_mod_automorphism(pointsets)
Return pointsets modulo the automorphisms of self.

INPUT:
- polytopes a tuple/list/iterable of subsets of the integral points of self.

OUTPUT:
Representatives of the point sets modulo the lattice_automorphism_group() of self.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: square = LatticePolytope_PPL((-1,-1),(-1,1),(1,-1),(1,1))
sage: fibers = [ f.vertices() for f in square.fibration_generator(1) ]
sage: square.pointsets_mod_automorphism(fibers)
     # optional - sage.groups # optional - sage.graphs
(frozenset({(-1, -1), (1, 1)}), frozenset({(-1, 0), (1, 0)}))
sage: cell24 = LatticePolytope_PPL(...:
    (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(-1,1,1,-1),
    (continues on next page)
```

2.2. Lattice polyhedra 231
restricted_automorphism_group(\text{vertex_labels}=\text{None})

Return the restricted automorphism group.

First, let the linear automorphism group be the subgroup of the Euclidean group \(E(d) = \text{GL}(d, \mathbb{R}) \times \mathbb{R}^d \) preserving the \(d \)-dimensional polyhedron. The Euclidean group acts in the usual way \(\vec{x} \mapsto \mathbf{A}\vec{x} + \mathbf{b} \) on the ambient space. The restricted automorphism group is the subgroup of the linear automorphism group generated by permutations of vertices. If the polytope is full-dimensional, it is equal to the full (unrestricted) automorphism group.

INPUT:

* \text{vertex_labels} – a tuple or None (default). The labels of the vertices that will be used in the output permutation group. By default, the vertices are used themselves.

OUTPUT:

A \text{PermutationGroup} acting on the vertices (or the \text{vertex_labels}, if specified).

REFERENCES:

[BSS2009]

EXAMPLES:

\begin{verbatim}
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: Z3square = LatticePolytope_PPL((0,0), (1,2), (2,1), (3,3))
sage: G1234 = Z3square.restricted_automorphism_group(vertex_labels=(1,2,3,4))
sage: G1234 == PermutationGroup([[(2,3)],[(1,2),(3,4)]]))
True
sage: G = Z3square.restricted_automorphism_group()
optional - sage.groups # optional - sage.graphs
sage: G == PermutationGroup([[(1,2),(2,1)],[(0,0),(1,2)],[(2,1),(3,3)]],[[(0,0),(3,3)]]])
optional - sage.groups # optional - sage.graphs
True
sage: set(G.domain()) == set(Z3square.vertices())
optional - sage.groups # optional - sage.graphs
True
sage: set(map(tuple,G.orbit(Z3square.vertices()[0]))) == set([(0, 0), (1, 2), (3, 3), (2, 1)])
optional - sage.groups # optional - sage.graphs
True
\end{verbatim}
sage: cell24 = LatticePolytope_PPL((
....: (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,-1,-1,1),
....: (0,-1,0,1),(1,0,0,-1),(1,0,0,0),(0,0,0,1),
....: (-1,0,0,0),(0,0,0,1),(-1,1,1,-1),
....: (0,1,1,-1),(-1,1,1,0),(-1,0,1,0),(-1,-1,1,-1),(-1,0,1,0),
....: (1,-1,-1,0),(0,0,-1,0),(0,-1,0,0),(-1,0,0,0),(1,-1,0,0),
....: (0,0,0,1),(-1,-1,-1,0),(0,0,0,-1)
....:)).cardinality()
˓→
˓→ # optional - sage.groups # optional - sage.graphs
˓→ 1152

sub_polytope_generator()

Generate the maximal lattice sub-polytopes.

OUTPUT:

A generator yielding the maximal (with respect to inclusion) lattice sub polytopes. That is, each can be gotten as the convex hull of the integral points of self with one vertex removed.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: P = LatticePolytope_PPL((1,0,0),(0,1,0),(0,0,1),(-1,-1,-1))
sage: for p in P.sub_polytope_generator():
 : print(p.vertices())
((0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0))
((-1, -1, -1), (0, 0, 0), (0, 1, 0), (1, 0, 0))
((-1, -1, -1), (0, 0, 0), (0, 0, 1), (1, 0, 0))
((-1, -1, -1), (0, 0, 0), (0, 0, 1), (0, 1, 0))

vertices()

Return the vertices as a tuple of \(\mathbb{Z}\)-vectors.

OUTPUT:

A tuple of \(\mathbb{Z}\)-vectors. Each entry is the coordinate vector of an integral points of the lattice polytope.

EXAMPLES:

sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: p = LatticePolytope_PPL((-9,-6,-1,-1),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0))
sage: p.vertices()
((-9, -6, -1, -1), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0))
sage: p.minimized_generators()
Generator_System {point(-9/1, -6/1, -1/1, -1/1), point(0/1, 0/1, 0/1, 1/1),
point(0/1, 0/1, 1/1, 0/1), point(0/1, 1/1, 0/1, 0/1), point(0/1, 0/1, 0/1, 0/1)}

vertices_saturating(constraint)

Return the vertices saturating the constraint

INPUT:

- constraint – a constraint (inequality or equation) of the polytope.

OUTPUT:

The tuple of vertices saturating the constraint. The vertices are returned as \(\mathbb{Z}\)-vectors, as in vertices().

2.2. Lattice polyhedra 233
EXAMPLES:

```python
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
sage: p = LatticePolytope_PPL((0,0),(0,1),(1,0))
sage: ieq = next(iter(p.constraints())); ieq
x0>=0
sage: p.vertices_saturating(ieq)
((0, 0), (0, 1))
```

```python
sage.geometry.polyhedron.ppl_lattice_polytope.line(cls, expression)
Generator.line(type cls, expression)
Construct a line.

INPUT:

- expression – a LinearExpression or something convertible to it (Variable or integer).

OUTPUT:

A new Generator representing the line.

 Raises a ValueError if the homogeneous part of ```expression``` represents the origin of the vector space.

Examples:

```python
>>> from ppl import Generator, Variable
>>> y = Variable(1)
>>> Generator.line(2*y)
line(0, 1)
>>> Generator.line(y)
line(0, 1)
>>> Generator.line(1)
Traceback (most recent call last):
...
ValueError: PPL::line(e):
e == 0, but the origin cannot be a line.
```

```python
sage.geometry.polyhedron.ppl_lattice_polytope.point(cls, expression=0, divisor=1)
Generator.point(type cls, expression=0, divisor=1)
Construct a point.

INPUT:

- expression – a LinearExpression or something convertible to it (Variable or integer).
- divisor – an integer.

OUTPUT:

A new Generator representing the point.

 Raises a ValueError if ```divisor==0```

Examples:

```python
>>> from ppl import Generator, Variable
>>> y = Variable(1)
```
2.3 Polyhedral complexes

2.3.1 Finite polyhedral complexes

This module implements the basic structure of finite polyhedral complexes. For more information, see `PolyhedralComplex`.

AUTHORS:

• Yuan Zhou (2021-05): initial implementation

List of PolyhedralComplex methods

Maximal cells and cells

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>maximal_cells()</code></td>
<td>Return the dictionary of the maximal cells in this polyhedral complex.</td>
</tr>
<tr>
<td><code>maximal_cell_iterator()</code></td>
<td>Return an iterator over maximal cells in this polyhedral complex.</td>
</tr>
<tr>
<td><code>maximal_cells_sorted()</code></td>
<td>Return the sorted list of all maximal cells in this polyhedral complex.</td>
</tr>
<tr>
<td><code>n_maximal_cells()</code></td>
<td>List the maximal cells of dimension (n) in this polyhedral complex.</td>
</tr>
<tr>
<td><code>_n_maximal_cells_sorted()</code></td>
<td>Return the sorted list of maximal cells of dim (n) in this complex.</td>
</tr>
<tr>
<td><code>is_maximal_cell()</code></td>
<td>Return <code>True</code> if the given cell is a maximal cell in this complex.</td>
</tr>
<tr>
<td><code>cells()</code></td>
<td>Return the dictionary of the cells in this polyhedral complex.</td>
</tr>
<tr>
<td><code>cell_iterator()</code></td>
<td>Return an iterator over cells in this polyhedral complex.</td>
</tr>
<tr>
<td><code>cells_sorted()</code></td>
<td>Return the sorted list of all cells in this polyhedral complex.</td>
</tr>
<tr>
<td><code>n_cells()</code></td>
<td>List the cells of dimension (n) in this polyhedral complex.</td>
</tr>
<tr>
<td><code>_n_cells_sorted()</code></td>
<td>Return the sorted list of (n)-cells in this polyhedral complex.</td>
</tr>
<tr>
<td><code>is_cell()</code></td>
<td>Return <code>True</code> if the given cell is in this polyhedral complex.</td>
</tr>
<tr>
<td><code>face_poset()</code></td>
<td>Return the poset of nonempty cells in the polyhedral complex.</td>
</tr>
<tr>
<td><code>relative_boundary_cells()</code></td>
<td>List the maximal cells on the boundary of the polyhedral complex.</td>
</tr>
</tbody>
</table>

Properties of the polyhedral complex
dimension() Return the dimension of the polyhedral complex.
ambient_dimension() Return the ambient dimension of the polyhedral complex.
is_pure() Return True if the polyhedral complex is pure.
is_full_dimensional() Return True if the polyhedral complex is full dimensional.
is_compact() Return True if the polyhedral complex is bounded.
is_connected() Return True if the polyhedral complex is connected.
is_subcomplex() Return True if this complex is a subcomplex of the other.
is_convex() Return True if the polyhedral complex is convex.
is Mutable() Return True if the polyhedral complex is mutable.
is_immutable() Return True if the polyhedral complex is not mutable.
is_simplicial_complex() Return True if the polyhedral complex is a simplicial complex.
is_polyhedral_fan() Return True if the polyhedral complex is a fan.
is_simplicial_fan() Return True if the polyhedral complex is a simplicial fan.

New polyhedral complexes from old ones

connected_component() Return the connected component containing a cell as a subcomplex.
connected_components() Return the connected components of this polyhedral complex.
n_skeleton() Return the n-skeleton of this polyhedral complex.
stratify() Return the (pure) subcomplex formed by the maximal cells of dim n in this complex.
boundary_subcomplex() Return the boundary subcomplex of this polyhedral complex.
product() Return the (Cartesian) product of this polyhedral complex with another one.
disjoint_union() Return the disjoint union of this polyhedral complex with another one.
union() Return the union of this polyhedral complex with another one.
join() Return the join of this polyhedral complex with another one.
subdivide() Return a new polyhedral complex (with option make_simplicial) subdividing this one.

Update polyhedral complex

set_immutable() Make this polyhedral complex immutable.
add_cell() Add a cell to this polyhedral complex.
remove_cell() Remove a cell from this polyhedral complex.

Miscellaneous

plot() Return a Graphic object showing the plot of polyhedral complex.
graph() Return a directed graph corresponding to the 1-skeleton of this polyhedral complex, given that it is bounded.
union_as_polyhedron() Return a Polyhedron which is the union of cells in this polyhedral complex, given that it is convex.
Classes and functions

```python
class sage.geometry.polyhedral_complex.PolyhedralComplex(maximal_cells=None, backend=None, maximality_check=True, face_to_face_check=False, is_mutable=True, is_immutable=False, ambient_dim=None)
```

Bases: `sage.topology.cell_complex.GenericCellComplex`

A polyhedral complex.

A **polyhedral complex** PC is a collection of polyhedra in a certain ambient space \mathbb{R}^n such that the following hold:

- If a polyhedron P is in PC, then all the faces of P are in PC.
- If polyhedra P and Q are in PC, then $P \cap Q$ is either empty or a face of both P and Q.

In this context, a “polyhedron” means the geometric realization of a polyhedron. This is in contrast to simplicial complex, whose cells are abstract simplices. The concept of a polyhedral complex generalizes that of a geometric simplicial complex.

Note: This class derives from `GenericCellComplex`, and so inherits its methods. Some of those methods are not listed here; see the `Generic Cell Complex` page instead.

INPUT:

- `maximal_cells` – a list, a tuple, or a dictionary (indexed by dimension) of cells of the Complex. Each cell is of class `Polyhedron` of the same ambient dimension. To set up a :class:`PolyhedralComplex`, it is sufficient to provide the maximal faces. Use keyword argument `partial=True` to set up a partial polyhedral complex, which is a subset of the faces (viewed as relatively open) of a polyhedral complex that is not necessarily closed under taking intersection.
- `maximality_check` – boolean (default: True); if True, then the constructor checks that each given maximal cell is indeed maximal, and ignores those that are not
- `face_to_face_check` – boolean (default: False); if True, then the constructor checks whether the cells are face-to-face, and it raises a `ValueError` if they are not
- `is_mutable` and `is_immutable` – boolean (default: `True` and `False` respectively); set `is_mutable=False` or `is_immutable=True` to make this polyhedral complex immutable
- `backend` – string (optional); the name of the backend used for computations on Sage polyhedra; if it is not given, then each cell has its own backend; otherwise it must be one of the following:
 - `'ppl'` - the Parma Polyhedra Library
 - `'cdd'` - CDD
 - `'normaliz'` - normaliz
 - `'polymake'` - polymake
 - `'field'` - a generic Sage implementation
- `ambient_dim` – integer (optional); used to set up an empty complex in the intended ambient space

EXAMPLES:

2.3. Polyhedral complexes
```python
sage: pc = PolyhedralComplex(
....: Polyhedron(vertices=((1/3, 1/3), (0, 0), (1/7, 2/7))),
....: Polyhedron(vertices=((1/7, 2/7), (0, 0), (0, 1/4))))
sage: [p.Vrepresentation() for p in pc.cells_sorted()]
[(A vertex at (0, 0), A vertex at (0, 1/4), A vertex at (1/7, 2/7)),
 (A vertex at (0, 0), A vertex at (1/3, 1/3), A vertex at (1/7, 2/7)),
 (A vertex at (0, 0), A vertex at (0, 1/4)),
 (A vertex at (0, 0), A vertex at (1/7, 2/7)),
 (A vertex at (0, 0), A vertex at (1/3, 1/3)),
 (A vertex at (1/3, 1/3), A vertex at (1/7, 2/7)),
 (A vertex at (1/7, 2/7), A vertex at (0, 0),),
 (A vertex at (0, 1/4), A vertex at (1/7, 2/7),),
 (A vertex at (1/3, 1/3),)]
sage: pc.plot()  # optional - sage.plot
Graphics object consisting of 10 graphics primitives
sage: pc.is_pure()
True
sage: pc.is_full_dimensional()
True
sage: pc.is_compact()
True
sage: pc.boundary_subcomplex()
Polyhedral complex with 4 maximal cells
sage: pc.is_convex()
True
sage: pc.union_as_polyhedron().Hrepresentation()
(An inequality (1, -4) x + 1 >= 0,
 An inequality (-1, 1) x + 0 >= 0,
 An inequality (1, 0) x + 0 >= 0)
sage: pc.face_poset()
Finite poset containing 11 elements
sage: pc.is_connected()
True
sage: pc.connected_component() == pc
True
```

add_cell(cell)

Add a cell to this polyhedral complex.

INPUT:

- `cell` – a polyhedron

This **changes** the polyhedral complex, by adding a new cell and all of its subfaces.

EXAMPLES:

Set up an empty complex in the intended ambient space, then add a cell:

```python
sage: pc = PolyhedralComplex(ambient_dim=2)
sage: pc.add_cell(Polyhedron(vertices=[[1, 2], (0, 2)]))
sage: pc
Polyhedral complex with 1 maximal cell
```
If you add a cell which is already present, there is no effect:

```python
sage: pc.add_cell(Polyhedron(vertices=[[1, 2]]))
sage: pc
Polyhedral complex with 1 maximal cell
sage: pc.dimension()
1
```

Add a cell and check that dimension is correctly updated:

```python
sage: pc.add_cell(Polyhedron(vertices=[[1, 2], (0, 0), (0, 2)]))
sage: pc.dimension()
2
sage: pc.maximal_cells()
{2: {A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices}}
sage: pc.is_convex()
True
```

Add another cell and check that the properties are correctly updated:

```python
sage: pc.add_cell(Polyhedron(vertices=[[1, 1], (0, 0), (1, 2)]))
sage: pc
Polyhedral complex with 2 maximal cells
sage: len(pc._cells[1])
5
sage: pc._face_poset
Finite poset containing 11 elements
sage: pc._is_convex
True
sage: pc._polyhedron.vertices_list()
[[0, 0], [0, 2], [1, 1], [1, 2]]
```

Add a ray which makes the complex non convex:

```python
sage: pc.add_cell(Polyhedron(rays=[[1, 0]]))
sage: pc
Polyhedral complex with 3 maximal cells
sage: len(pc._cells[1])
6
sage: (pc._is_convex is False) and (pc._polyhedron is None)
True
```

```
alexander_whitney(cell, dim_left)

The decomposition of cell in this complex into left and right factors, suitable for computing cup products.

Todo: Implement alexander_whitney() of a polyhedral complex.

EXAMPLES:

```python
sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc.alexander_whitney(None, 1)
Traceback (most recent call last):
...
```

(continues on next page)
...\nNotImplementedError: alexander_whitney is not implemented for polyhedral complex

ambient_dimension()  
The ambient dimension of this cell complex: the ambient dimension of each of its cells.  
EXAMPLES:

```
sage: pc = PolyhedralComplex([Polyhedron(vertices=[[1, 2, 3]])])
sage: pc.ambient_dimension()
3
sage: empty_pc = PolyhedralComplex([])
sage: empty_pc.ambient_dimension()
-1
sage: pc0 = PolyhedralComplex(ambient_dim=2)
sage: pc0.ambient_dimension()
2
```

boundary_subcomplex()  
Return the sub-polyhedral complex that is the boundary of self.  
A point \( P \) is on the boundary of a set \( S \) if \( P \) is in the closure of \( S \) but not in the interior of \( S \).  
EXAMPLES:

```
sage: p1 = Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]])
sage: p2 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])
sage: p3 = Polyhedron(vertices=[[1, 2], [0, 2]])
sage: bd = PolyhedralComplex([p1, p2]).boundary_subcomplex()
sage: len(bd.n_maximal_cells(2))
0
sage: len(bd.n_maximal_cells(1))
4
sage: pt = PolyhedralComplex([p3])
sage: pt.boundary_subcomplex() == pt
True
```

Test on polyhedral complex which is not pure:

```
sage: pc_non_pure = PolyhedralComplex([p1, p3])
sage: pc_non_pure.boundary_subcomplex() == pc_non_pure.n_skeleton(1)
True
```

Test with maximality_check == False:

```
sage: pc_invalid = PolyhedralComplex([p2, p3],
.....: maximality_check=False)
sage: pc_invalid.boundary_subcomplex() == pc_invalid.n_skeleton(1)
True
```

Test unbounded cases:

```
sage: pc1 = PolyhedralComplex([
.....: Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,0], [0,1]])])
```

(continues on next page)
```python
sage: pc1.boundary_subcomplex() == pc1.n_skeleton(1)
True
sage: pc1b = PolyhedralComplex([Polyhedron(
 vertices=[[1,0,0], [0,1,0]], rays=[[1,0,0],[0,1,0]]))
sage: pc1b.boundary_subcomplex() == pc1b
True
sage: pc2 = PolyhedralComplex([Polyhedron(vertices=[[1,0], [0,1]], lines=[[0,1]])])
sage: pc2.boundary_subcomplex() == pc2.n_skeleton(1)
True
sage: pc3 = PolyhedralComplex([Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,0], [0,1]]),
 Polyhedron(vertices=[[1,0], [0,-1]], rays=[[1,0], [0,-1]])])
sage: pc3.boundary_subcomplex() == pc3.n_skeleton(1)
False
```

**cell_iterator**(increasing=True)

An iterator for the cells in this polyhedral complex.

**INPUT:**

- **increasing** – (default True) if True, return cells in increasing order of dimension, thus starting with the zero-dimensional cells; otherwise it returns cells in decreasing order of dimension

**Note:** Among the cells of a fixed dimension, there is no sorting.

**EXAMPLES:**

```python
sage: pc = PolyhedralComplex([Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
 Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])])
sage: len(list(pc.cell_iterator()))
11
```

**cells**(subcomplex=None)

The cells of this polyhedral complex, in the form of a dictionary: the keys are integers, representing dimension, and the value associated to an integer $d$ is the set of $d$-cells.

**INPUT:**

- **subcomplex** – (optional) if a subcomplex is given then return the cells which are not in this subcomplex

**EXAMPLES:**

```python
sage: pc = PolyhedralComplex([Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
 Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])])
sage: list(pc.cells().keys())
[2, 1, 0]
```

**cells_sorted**(subcomplex=None)

The sorted list of the cells of this polyhedral complex in non-increasing dimensions.

**INPUT:**

2.3. Polyhedral complexes
• subcomplex – (optional) if a subcomplex is given then return the cells which are not in this subcomplex

EXAMPLES:

```
sage: pc = PolyhedralComplex([
 : Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]]),
 : Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])])
sage: len(pc.cells_sorted())
11
sage: pc.cells_sorted()[0].Vrepresentation()
(A vertex at (0, 0), A vertex at (0, 2), A vertex at (1, 2))
```

```
chain_complex(subcomplex=None, augmented=False, verbose=False, check=True, dimensions=None,
base_ring=Integer Ring, cochain=False)
The chain complex associated to this polyhedral complex.

Todo: Implement chain complexes of a polyhedral complex.
```

EXAMPLES:

```
sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc.chain_complex()
Traceback (most recent call last):
 ...
NotImplementedError: chain_complex is not implemented for polyhedral complex
```

```
connected_component(cell=None)
Return the connected component of this polyhedral complex containing a given cell.

INPUT:
• cell – (default: self.an_element()) a cell of self

OUTPUT:
The connected component containing cell. If the polyhedral complex is empty or if it does not contain the given cell, raise an error.

EXAMPLES:

```
sage: t1 = Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]])  
sage: t2 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])  
sage: v1 = Polyhedron(vertices=[[1, 1]])  
sage: v2 = Polyhedron(vertices=[[0, 2]])  
sage: v3 = Polyhedron(vertices=[[-1, 0]])  
sage: o = Polyhedron(vertices=[[0, 0]])  
sage: r = Polyhedron(rays=[[1, 0]])  
sage: l = Polyhedron(  
      vertices=[[-1, 0]],  
      lines=[(1, -1)])  
sage: pc1 = PolyhedralComplex([t1, t2])  
sage: pc1.connected_component() == pc1  
True  
sage: pc1.connected_component(v1) == pc1  
True  
sage: pc2 = PolyhedralComplex([t1, v2])  
sage: pc2.connected_component(t1) == PolyhedralComplex([t1])
```
```
True
sage: pc2.connected_component(o) == PolyhedralComplex([t1])
True
sage: pc2.connected_component(v3)
Traceback (most recent call last):
  ...ValueError: the polyhedral complex does not contain the given cell
sage: pc2.connected_component(r)
Traceback (most recent call last):
  ...ValueError: the polyhedral complex does not contain the given cell
sage: pc3 = PolyhedralComplex([t1, t2, r])
sage: pc3.connected_component(v2) == pc3
True
sage: pc4 = PolyhedralComplex([t1, t2, r, l])
sage: pc4.connected_component(o) == pc3
True
sage: pc4.connected_component(v3)
Traceback (most recent call last):
  ...ValueError: the polyhedral complex does not contain the given cell
sage: pc5 = PolyhedralComplex([t1, t2, r, l, v3])
sage: pc5.connected_component(v3) == PolyhedralComplex([v3])
True
sage: PolyhedralComplex([]).connected_component()
Traceback (most recent call last):
  ...ValueError: the empty polyhedral complex has no connected components

**connected_components()**

Return the connected components of this polyhedral complex, as list of (sub-)PolyhedralComplexes.

**EXAMPLES:**

sage: t1 = Polyhedron(verts=[(1, 1), (0, 0), (1, 2)])
sage: t2 = Polyhedron(verts=[(1, 2), (0, 0), (0, 2)])
sage: v1 = Polyhedron(verts=[(1, 1)])
sage: v2 = Polyhedron(verts=[(0, 2)])
sage: v3 = Polyhedron(verts=[(-1, 0)])
sage: o = Polyhedron(verts=[(0, 0)])
sage: r = Polyhedron(rays=[(1, 0)])
sage: l = Polyhedron(verts=[(-1, 0)], lines=[(1, -1)])
sage: pc1 = PolyhedralComplex([t1, t2])
sage: len(pc1.connected_components())
1
sage: pc2 = PolyhedralComplex([t1, v2])
sage: len(pc2.connected_components())
2
sage: pc3 = PolyhedralComplex([t1, t2, r])
sage: len(pc3.connected_components())
1
sage: pc4 = PolyhedralComplex([t1, t2, r, l])
sage: len(pc4.connected_components())
(continues on next page)
Combinatorial and Discrete Geometry, Release 9.6

2
sage: pc5 = PolyhedralComplex([t1, t2, r, l, v3])
sage: len(pc5.connected_components())
3
sage: PolyhedralComplex([]).connected_components()
Traceback (most recent call last):
...
ValueError: the empty polyhedral complex has no connected components

dimension()
The dimension of this cell complex: the maximum dimension of its cells.

EXAMPLES:

sage: pc = PolyhedralComplex([
    ....:     Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
    ....:     Polyhedron(vertices=[(1, 2), (0, 2)])
])
sage: pc.dimension()
2
sage: empty_pc = PolyhedralComplex([])
sage: empty_pc.dimension()
-1

disjoint_union(right)
The disjoint union of this polyhedral complex with another one.

INPUT:

- right – the other polyhedral complex (the right-hand factor)

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(-1, 0), (0, 0), (0, 1)])
sage: p2 = Polyhedron(vertices=[(0, -1), (0, 0), (1, 0)])
sage: p3 = Polyhedron(vertices=[(0, -1), (1, -1), (1, 0)])
sage: pc = PolyhedralComplex([p1]).disjoint_union(PolyhedralComplex([p3]))
sage: set(pc.maximal_cell_iterator()) == set([p1, p3])
True
sage: pc.disjoint_union(PolyhedralComplex([p2]))
Traceback (most recent call last):
...
ValueError: the two complexes are not disjoint

face_poset()
The face poset of this polyhedral complex, the poset of nonempty cells, ordered by inclusion.

EXAMPLES:

sage: pc = PolyhedralComplex([
    ....:     Polyhedron(vertices=[(1/3, 1/3), (0, 0), (1, 2)]),
    ....:     Polyhedron(vertices=[(1, 2), (0, 0), (0, 1/2)])
])
sage: poset = pc.face_poset()
sage: poset
Finite poset containing 11 elements
sage: d = {i: i.vertices_matrix() for i in poset}
For a nonbounded polyhedral complex:

```
sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1/3, 1/3), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 1/2)]),
....: Polyhedron(vertices=[(-1/2, -1/2)], lines=[[1, -1]]),
....: Polyhedron(rays=[[1, 0]])])
sage: poset = pc.face_poset()
sage: poset
Finite poset containing 13 elements
sage: d = {i: '
'.join([str(v) for v in i.Vrepresentation()]) for i in poset}
sage: poset.show(element_labels=d, figsize=15) # not tested
```

```
sage: pc = PolyhedralComplex([
....: Polyhedron(rays=[(1,0),(0,1)]),
....: Polyhedron(rays=[(-1,0),(0,1)]),
....: Polyhedron(rays=[(-1,0),(0,-1)]),
....: Polyhedron(rays=[[1,0]])])
sage: pc.face_poset()
Finite poset containing 9 elements
```

`graph()`

The 1-skeleton of this polyhedral complex, as a graph.

The vertices of the graph are of type `vector`. Raises a `NotImplementedError` if the polyhedral complex is unbounded.

**Warning:** This may give the wrong answer if the polyhedral complex was constructed with `maximality_check=False`.

**EXAMPLES:**

```
sage: pc = PolyhedralComplex([
....: Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
....: Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])])
sage: g = pc.graph(); g
Graph on 4 vertices
sage: g.vertices()
[(0, 0), (0, 2), (1, 1), (1, 2)]
sage: g.edges(labels=False)
[((0, 0), (0, 2)), ((0, 0), (1, 1)), ((0, 0), (1, 2)), ((0, 2), (1, 2)), ((1, 2), (1, 2))]
sage: PolyhedralComplex([Polyhedron(rays=[[1,1]])]).graph()
Traceback (most recent call last):
 ...
NotImplementedError: the polyhedral complex is unbounded
```

Wrong answer due to `maximality_check=False`:  

2.3. Polyhedral complexes 245
```
sage: p1 = Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]])
sage: p2 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])
sage: p3 = Polyhedron(vertices=[[1, 2], [0, 2]])
sage: PolyhedralComplex([p1, p2]).is_pure()
True
sage: PolyhedralComplex([p2, p3], maximality_check=True).is_pure()
True
sage: PolyhedralComplex([p2, p3], maximality_check=False).is_pure()
False
```

**is_cell(c)**

Return whether the given cell `c` is a cell of `self`.

EXAMPLES:

```
sage: p1 = Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]])
sage: p2 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])
sage: p3 = Polyhedron(vertices=[[1, 2], [0, 2]])
sage: pc = PolyhedralComplex([p1, p2])
sage: pc.is_cell(p3)
True
sage: pc.is_cell(Polyhedron(vertices=[[0, 0]]))
True
```

**is_compact()**

Test for boundedness of the polyhedral complex

EXAMPLES:

```
sage: p1 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 1/2]])
sage: p2 = Polyhedron(rays=[[1, 0]])
sage: PolyhedralComplex([p1]).is_compact()
True
sage: PolyhedralComplex([p1, p2]).is_compact()
False
```

**is_connected()**

Return whether `self` is connected.

EXAMPLES:

```
sage: pc1 = PolyhedralComplex([
.......: Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]]),
.......: Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]]))
sage: pc1.is_connected()
True
sage: pc2 = PolyhedralComplex([
.......: Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]]),
.......: Polyhedron(vertices=[[0, 2]]))
sage: pc2.is_connected()
False
sage: pc3 = PolyhedralComplex([
.......: Polyhedron(vertices=[[1/3, 1/3], [0, 0], [1, 2]]),
.......: Polyhedron(vertices=[[1, 2], [0, 0], [0, 1/2]]),
.......: Polyhedron(vertices=[[-1/2, -1/2]], lines=[[1, -1]]),
```

(continues on next page)
is\_convex()

Return whether the set of points in self is a convex set.

When self is convex, the union of its cells is a Polyhedron.

See also:

union\_as\_polyhedron()

EXAMPLES:

```
sage: p1 = Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]])
sage: p2 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])
sage: p3 = Polyhedron(vertices=[[0, 0], [1, 1], [2, 0]])
sage: p4 = Polyhedron(vertices=[[2, 2]])
sage: PolyhedralComplex([p1, p2]).is_convex()
True
sage: PolyhedralComplex([p1, p3]).is_convex()
False
sage: PolyhedralComplex([p1, p4]).is_convex()
False
```

Test unbounded cases:

```
sage: pc1 = PolyhedralComplex([
....: Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,0], [0,1]])])
sage: pc1.is_convex()
True
sage: pc2 = PolyhedralComplex([
....: Polyhedron(vertices=[[1,0], [0,1]], lines=[[0,1]])])
sage: pc2.is_convex()
True
sage: pc3 = PolyhedralComplex([
....: Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,0], [0,1]]),
....: Polyhedron(vertices=[[1,0], [0,-1]], rays=[[1,0], [0,-1]])])
sage: pc3.is_convex()
False
sage: pc4 = PolyhedralComplex([Polyhedron(rays=[[1,0], [-1,1]]),
....: Polyhedron(rays=[[1,0], [-1,-1]])])
sage: pc4.is_convex()
False
```

The whole 3d space minus the first orthant is not convex:

```
sage: pc5 = PolyhedralComplex([
....: Polyhedron(rays=[[1,0,0], [0,1,0], [0,0,-1]])],
```

(continues on next page)
is_full_dimensional()

Return whether this polyhedral complex is full-dimensional: its dimension is equal to its ambient dimension.

EXAMPLES:

```python
sage: p1 = Polyhedron(vertices=[[1, 1], (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[[1, 2], (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[[1, 2], (0, 0), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: pc.is_full_dimensional() # True
sage: PolyhedralComplex([p3]).is_full_dimensional() # False
```

is_immutable()

Return whether self is immutable.

EXAMPLES:

```python
sage: pc1 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc1.is_immutable() # False
sage: pc2 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]], is mutable=False)])
sage: pc2.is_immutable() # True
sage: pc3 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]], is Immutable=True)])
```

Test some non-full-dimensional examples:

```python
sage: l = PolyhedralComplex([Polyhedron(vertices=[[1, 0], (0, 1)])])
sage: l.is_convex() # True
sage: pc1b = PolyhedralComplex([Polyhedron(vertices=[[0], [1]], rays=[[1, 0], [0, 1]])])
sage: pc1b.is_convex() # True
sage: pc4b = PolyhedralComplex([Polyhedron(rays=[[1, 0], [-1, 1]], rays=[[1, 0], [-1, -1]])])
sage: pc4b.is_convex() # False
```
sage: pc3.is Immutable()
True

is_maximal_cell(c)
Return whether the given cell c is a maximal cell of self.

**Warning:** This may give the wrong answer if the polyhedral complex was constructed with maximality_check set to False.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]])
sage: p2 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])
sage: p3 = Polyhedron(vertices=[[1, 2], [0, 2]])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: pc.is_maximal_cell(p1)
True
sage: pc.is_maximal_cell(p3)
False
Wrong answer due to maximality_check=False:

sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
.....: maximality_check=False)
sage: pc_invalid.is_maximal_cell(p3)
True

is_mutable()
Return whether self is mutable.

EXAMPLES:

sage: pc1 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc1.is_mutable()
True
sage: pc2 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])],
.....: is_mutable=False)
sage: pc2.is_mutable()
False
sage: pc1 == pc2
True
sage: pc3 = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])],
.....: is_immutable=True)
sage: pc3.is_mutable()
False
sage: pc2 == pc3
True

is_polyhedral_fan()
Test if this polyhedral complex is a polyhedral fan.

A polyhedral complex is a **fan** if all of its (maximal) cells are cones.

EXAMPLES:
**is_pure()**
Test if this polyhedral complex is pure.

A polyhedral complex is pure if and only if all of its maximal cells have the same dimension.

**Warning:** This may give the wrong answer if the polyhedral complex was constructed with maximality_check set to False.

**EXAMPLES:**

```python
sage: p1 = Polyhedron(verts=[(0, 0), (1, 1), (1, 2)])
sage: p2 = Polyhedron(verts=[(1, 0)])
sage: p3 = Polyhedron(verts=[(1, 2), (0, 0), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: pc.is_pure()
True
```

Wrong answer due to maximality_check=False:

```python
sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
.....: maximality_check=False)
sage: pc_invalid.is_pure()
False
```

**is_simplicial_complex()**
Test if this polyhedral complex is a simplicial complex.

A polyhedral complex is simplicial if all of its (maximal) cells are simplices, i.e., every cell is a bounded polytope with \(d+1\) vertices, where \(d\) is the dimension of the polytope.

**EXAMPLES:**

```python
sage: p1 = Polyhedron(verts=[(0, 0), (1, 1), (1, 2)])
sage: p2 = Polyhedron(verts=[(1, 0)])
sage: PolyhedralComplex([p1]).is_simplicial_complex()
True
sage: PolyhedralComplex([p2]).is_simplicial_complex()
False
```

**is_simplicial_fan()**
Test if this polyhedral complex is a simplicial fan.

A polyhedral complex is a simplicial fan if all of its (maximal) cells are simplical cones, i.e., every cell is a pointed cone (with vertex being the origin) generated by \(d\) linearly independent rays, where \(d\) is the dimension of the cone.
EXAMPLES:

```
sage: p1 = Polyhedron(vertices=[[0, 0], (1, 1), (1, 2)])
sage: p2 = Polyhedron(rays=[[1, 0]])
sage: PolyhedralComplex([p1]).is_simplicial_fan()
False
sage: PolyhedralComplex([p2]).is_simplicial_fan()
True
sage: halfplane = Polyhedron(rays=[[1, 0], (-1, 0), (0, 1)])
sage: PolyhedralComplex([halfplane]).is_simplicial_fan()
False
```

**is_subcomplex** *(other)*

Return whether self is a subcomplex of other.

**INPUT:**

- **other** – a polyhedral complex

Each maximal cell of self must be a cell of other for this to be True.

**EXAMPLES:**

```
sage: p1 = Polyhedron(vertices=[[1/3, 1/3], (0, 0), (1, 0/3)])
sage: p2 = Polyhedron(vertices=[[1, 2], (0, 0), (0, 1/2)])
sage: p3 = Polyhedron(vertices=[[0, 0], (1, 0)])
sage: pc = PolyhedralComplex([p1, Polyhedron(vertices=[[1, 0]])])
sage: pc.is_subcomplex(PolyhedralComplex([p1, p2, p3]))
True
sage: pc.is_subcomplex(PolyhedralComplex([p1, p2]))
False
```

**join** *(right)*

The join of this polyhedral complex with another one.

**INPUT:**

- **right** – the other polyhedral complex (the right-hand factor)

**EXAMPLES:**

```
sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc_join = pc.join(pc)
sage: pc_join
Polyhedral complex with 1 maximal cell
sage: next(pc_join.maximal_cell_iterator()).vertices()
(A vertex at (0, 0, 0),
A vertex at (0, 0, 1),
A vertex at (0, 1, 1),
A vertex at (1, 0, 0))
```

**maximal_cell_iterator** *(increasing=False)*

An iterator for the maximal cells in this polyhedral complex.

**INPUT:**

- **increasing** – (optional, default False) if True, return maximal cells in increasing order of dimension. Otherwise it returns cells in decreasing order of dimension.
Note: Among the cells of a fixed dimension, there is no sorting.

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximality_check set to False.

EXAMPLES:

```python
sage: p1 = Polyhedron(verts=((1, 1), (0, 0), (1, 2)))
sage: p2 = Polyhedron(verts=((1, 2), (0, 0), (0, 2)))
sage: p3 = Polyhedron(verts=((1, 2), (0, 2)))
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: len(list(pc.maximal_cell_iterator()))
2
```

Wrong answer due to maximality_check=False:

```python
sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
.....: maximality_check=False)
sage: len(list(pc_invalid.maximal_cell_iterator()))
3
```

```
maximal_cells()
```

The maximal cells of this polyhedral complex, in the form of a dictionary: the keys are integers, representing dimension, and the value associated to an integer $d$ is the set of $d$-maximal cells.

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximality_check set to False.

EXAMPLES:

```python
sage: p1 = Polyhedron(verts=((1, 1), (0, 0), (1, 2)))
sage: p2 = Polyhedron(verts=((1, 2), (0, 0), (0, 2)))
sage: p3 = Polyhedron(verts=((1, 2), (0, 2)))
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: len(pc.maximal_cells()[2])
2
sage: 1 in pc.maximal_cells()
False
```

Wrong answer due to maximality_check=False:

```python
sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
.....: maximality_check=False)
sage: len(pc_invalid.maximal_cells())[1]
1
```

```
maximal_cells_sorted()
```

Return the sorted list of the maximal cells of this polyhedral complex by non-increasing dimensions.

EXAMPLES:
sage: pc = PolyhedralComplex([  ....: Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]]),  ....: Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]]))
sage: [p.vertices_list() for p in pc.maximal_cells_sorted()]
[[[0, 0], [0, 2], [1, 2]], [[0, 0], [1, 1], [1, 2]]]

\textbf{n\_maximal\_cells}(n)

List of maximal cells of dimension \(n\) of this polyhedral complex.

\textbf{INPUT:}

\begin{itemize}
  \item \(n\) – non-negative integer; the dimension
\end{itemize}

\textbf{Note:} The resulting list need not be sorted. If you want a sorted list of \(n\)-cells, use \_n\_maximal\_cells\_sorted().

\textbf{Warning:} This may give the wrong answer if the polyhedral complex was constructed with \texttt{maximality\_check} set to \texttt{False}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: p1 = Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]])
sage: p2 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])
sage: p3 = Polyhedron(vertices=[[1, 2], [0, 2]])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: len(pc.n_maximal_cells(2))
2
sage: len(pc.n_maximal_cells(1))
0
\end{verbatim}

Wrong answer due to \texttt{maximality\_check}=\texttt{False}:

\begin{verbatim}
sage: pc_invalid = PolyhedralComplex([p1, p2, p3],      ....: maximality_check=\texttt{False})
sage: len(pc_invalid.n_maximal_cells(1))
1
\end{verbatim}

\textbf{n\_skeleton}(n)

The \(n\)-skeleton of this polyhedral complex.

The \(n\)-skeleton of a polyhedral complex is obtained by discarding all of the cells in dimensions larger than \(n\).

\textbf{INPUT:}

\begin{itemize}
  \item \(n\) – non-negative integer; the dimension
\end{itemize}

\textbf{See also:}

\texttt{stratify()}\n
\textbf{EXAMPLES:}
sage: pc = PolyhedralComplex(
....:     Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)]),
....:     Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)]))
sage: pc.n_skeleton(2)
Polyhedral complex with 2 maximal cells
sage: pc.n_skeleton(1)
Polyhedral complex with 5 maximal cells
sage: pc.n_skeleton(0)
Polyhedral complex with 4 maximal cells

plot(**kwds)
Return a plot of the polyhedral complex, if it is of dim at most 3.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(vertices=[(1, 2), (0, 0), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2])
sage: pc.plot()  # optional - sage.plot
Graphics object consisting of 10 graphics primitives

product(right)
The (Cartesian) product of this polyhedral complex with another one.

INPUT:

* right – the other polyhedral complex (the right-hand factor)

OUTPUT:

* the product self x right

EXAMPLES:

sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc_square = pc.product(pc)
sage: pc_square
Polyhedral complex with 1 maximal cell
sage: next(pc_square.maximal_cell_iterator()).vertices()
(A vertex at (0, 0),
 A vertex at (0, 1),
 A vertex at (1, 0),
 A vertex at (1, 1))

relative_boundary_cells()
Return the maximal cells of the relative-boundary sub-complex.

A point $P$ is in the relative boundary of a set $S$ if $P$ is in the closure of $S$ but not in the relative interior of $S$.

Warning: This may give the wrong answer if the polyhedral complex was constructed with maximality_check set to False.

EXAMPLES:
sage: p1 = Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]])
sage: p2 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])
sage: p3 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])
sage: p4 = Polyhedron(vertices=[[2, 2]])
sage: pc = PolyhedralComplex([p1, p2])
sage: rbd_cells = pc.relative_boundary_cells()
sage: len(rbd_cells)
4
sage: all(p.dimension() == 1 for p in rbd_cells)
True
sage: pc_lower_dim = PolyhedralComplex([p3])
sage: sorted([p.vertices() for p in pc_lower_dim.relative_boundary_cells()])
[(A vertex at (0, 2),), (A vertex at (1, 2),)]

Test on polyhedral complex which is not pure:

sage: pc_non_pure = PolyhedralComplex([p1, p3, p4])
sage: (set(pc_non_pure.relative_boundary_cells()) == set([f.as_polyhedron() for f in p1.faces(1)] + [p3, p4]))
True

Test with maximality_check == False:

sage: pc_invalid = PolyhedralComplex([p2, p3],
.....:          maximality_check=False)
.....:  (set(pc_invalid.relative_boundary_cells())
.....:  == set([f.as_polyhedron() for f in p2.faces(1)]))
True

Test unbounded case:

sage: pc3 = PolyhedralComplex([
.....:  Polyhedron(vertices=[[1,0], [0,1]], rays=[[1,0], [0,1]]),
.....:  Polyhedron(vertices=[[1,0], [0,-1]], rays=[[1,0], [0,-1]])])
sage: len(pc3.relative_boundary_cells())
4

remove_cell(cell, check=False)
Remove cell from self and all the cells that contain cell as a subface.

INPUT:

• cell – a cell of the polyhedral complex
• check – boolean (default: False); if True, raise an error if cell is not a cell of this complex

This does not return anything; instead, it changes the polyhedral complex.

EXAMPLES:

If you add a cell which is already present, there is no effect:

sage: p1 = Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]])
sage: p2 = Polyhedron(vertices=[[1, 2], [0, 0], [0, 2]])
sage: r = Polyhedron(rays=[[1, 0]])
sage: pc = PolyhedralComplex([p1, p2, r])

(continues on next page)
Continued from previous page

```python
sage: pc.dimension()
2
sage: pc.remove_cell(Polyhedron(verts=[(0, 0), (1, 2)]))
sage: pc.dimension()
1
sage: pc
Polyhedral complex with 5 maximal cells
sage: pc.remove_cell(Polyhedron(verts=[(1, 2)]))
sage: pc.dimension()
1
sage: pc
Polyhedral complex with 3 maximal cells
sage: pc.remove_cell(Polyhedron(verts=[(0, 0)]))
sage: pc.dimension()
0
```

**set_immutable()**

Make this polyhedral complex immutable.

**EXAMPLES:**

```python
sage: pc = PolyhedralComplex([Polyhedron(verts=[(0), (1)])])
sage: pc.is_mutable()
True
sage: pc.set_immutable()
```

**stratify(n)**

Return the pure sub-polyhedral complex which is constructed from the $n$-dimensional maximal cells of this polyhedral complex.

**See also:**

nSkeleton()

**Warning:** This may give the wrong answer if the polyhedral complex was constructed with `maximality_check` set to False.

**EXAMPLES:**

```python
sage: p1 = Polyhedron(verts=[(1, 1), (0, 0), (1, 2)])
sage: p2 = Polyhedron(verts=[(1, 2), (0, 0), (0, 2)])
sage: p3 = Polyhedron(verts=[(1, 2), (0, 2)])
sage: pc = PolyhedralComplex([p1, p2, p3])
sage: pc.stratify(2) == pc
True
sage: pc.stratify(1)
Polyhedral complex with 0 maximal cells
```

Wrong answer due to `maximality_check=False`:
sage: pc_invalid = PolyhedralComplex([p1, p2, p3],
.....:                         maximality_check=False)

sage: pc_invalid.stratify(1)

Polyhedral complex with 1 maximal cell

\texttt{subdivide}(\texttt{make\_simplicial}=False, \texttt{new\_vertices}=None, \texttt{new\_rays}=None)

Construct a new polyhedral complex by iterative stellar subdivision of self for each new vertex/ray given.

Currently, subdivision is only supported for bounded polyhedral complex or polyhedral fan.

\textbf{INPUT:}

- \texttt{make\_simplicial} – boolean (default: False); if True, the returned polyhedral complex is simplicial
- \texttt{new\_vertices}, \texttt{new\_rays} – list (optional); new generators to be added during subdivision

\textbf{EXAMPLES:}

\begin{verbatim}
sage: square_vertices = [(1, 1, 1), (-1, 1, 1), (-1, -1, 1), (1, -1, 1)]
sage: pc = PolyhedralComplex([Polyhedron(vertices=[(0, 0, 0)] + square_vertices),
....:                     Polyhedron(vertices=[(0, 0, 2)] + square_vertices))
sage: pc.is_compact() and not pc.is_simplicial_complex()
True
sage: subdivided_pc = pc.subdivide(new_vertices=[(0, 0, 1)])
sage: subdivided_pc
Polyhedral complex with 8 maximal cells
sage: subdivided_pc.is_simplicial_complex()
True
sage: simplicial_pc = pc.subdivide(make_simplicial=True)
sage: simplicial_pc
Polyhedral complex with 4 maximal cells
sage: simplicial_pc.is_simplicial_complex()
True
sage: fan = PolyhedralComplex([Polyhedron(rays=square_vertices)])
sage: fan.is_polyhedral_fan() and not fan.is_simplicial_fan()
True
sage: fan.subdivide(new_vertices=[(0, 0, 1)])
Traceback (most recent call last):
... ValueError: new vertices cannot be used for subdivision
sage: subdivided_fan = fan.subdivide(new_rays=[(0, 0, 1)])
sage: subdivided_fan
Polyhedral complex with 4 maximal cells
sage: subdivided_fan.is_simplicial_fan()
True
sage: simplicial_fan = fan.subdivide(make_simplicial=True)
sage: simplicial_fan
Polyhedral complex with 2 maximal cells
sage: simplicial_fan.is_simplicial_fan()
True
sage: halfspace = PolyhedralComplex([Polyhedron(rays=[(0, 0, 1)],
....: lines=[(1, 0, 0), (0, 1, 0)])])
\end{verbatim}

(continues on next page)
sage: halfspace.is_simplicial_fan()
False
sage: subdiv_halfspace = halfspace.subdivide(make_simplicial=True)
sage: subdiv_halfspace
Polyhedral complex with 4 maximal cells
sage: subdiv_halfspace.is_simplicial_fan()
True

union(right)
The union of this polyhedral complex with another one.

INPUT:

* right – the other polyhedral complex (the right-hand factor)

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(-1, 0), (0, 0), (0, 1)])
sage: p2 = Polyhedron(vertices=[(0, -1), (0, 0), (1, 0)])
sage: p3 = Polyhedron(vertices=[(0, -1), (1, -1), (1, 0)])
sage: pc = PolyhedralComplex([p1]).union(PolyhedralComplex([p3]))
sage: set(pc.maximal_cell_iterator()) == set([p1, p3])
True
sage: pc.union(PolyhedralComplex([p2]))
Polyhedral complex with 3 maximal cells
sage: p4 = Polyhedron(vertices=[(0, -1), (0, 0), (1, 0), (1, -1)])
sage: pc.union(PolyhedralComplex([p4]))
Traceback (most recent call last):
  ...
ValueError: the given cells are not face-to-face

union_as_polyhedron()
Return self as a Polyhedron if self is convex.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[(-1, 0), (0, 0), (0, 1)])
sage: p2 = Polyhedron(vertices=[(1, 0), (0, 0), (0, 2)])
sage: p3 = Polyhedron(vertices=[(0, 0), (1, 0), (2, 0)])
sage: P = PolyhedralComplex([p1, p2]).union_as_polyhedron()
sage: P.vertices_list()
[[0, 0], [0, 2], [1, 0], [1, 2]]
sage: PolyhedralComplex([p1, p3]).union_as_polyhedron()
Traceback (most recent call last):
  ...
ValueError: the polyhedral complex is not convex

wedge(right)
The wedge (one-point union) of self with right.

Todo: Implement the wedge product of two polyhedral complexes.

EXAMPLES:
sage: pc = PolyhedralComplex([Polyhedron(vertices=[[0], [1]])])
sage: pc.wedge(pc)
Traceback (most recent call last):
...
NotImplementedError: wedge is not implemented for polyhedral complex

sage.geometry.polyhedral_complex.cells_list_to_cells_dict(cells_list)
Helper function that returns the dictionary whose keys are the dimensions, and the value associated to an integer $d$ is the set of $d$-dimensional polyhedra in the given list.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[[1, 1], [0, 0], [1, 2]])
sage: p2 = Polyhedron(vertices=[[1, 1], [0, 0]])
sage: p3 = Polyhedron(vertices=[[0, 0]])
sage: p4 = Polyhedron(vertices=[[1, 1]])
sage: sage.geometry.polyhedral_complex.cells_list_to_cells_dict([p1, p2, p3, p4])
{0: {A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex,
     A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex},
  1: {A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices},
  2: {A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices}}

2.4 Toric geometry

2.4.1 Toric lattices

This module was designed as a part of the framework for toric varieties (variety, fano_variety).

All toric lattices are isomorphic to $\mathbb{Z}^n$ for some $n$, but will prevent you from doing “wrong” operations with objects from different lattices.

AUTHORS:


EXAMPLES:
The simplest way to create a toric lattice is to specify its dimension only:

sage: N = ToricLattice(3)
sage: N
3-d lattice N

While our lattice $N$ is called exactly “N” it is a coincidence: all lattices are called “N” by default:

sage: another_name = ToricLattice(3)
sage: another_name
3-d lattice N

If fact, the above lattice is exactly the same as before as an object in memory:

sage: N is another_name
True
There are actually four names associated to a toric lattice and they all must be the same for two lattices to coincide:

\begin{verbatim}
 sage: N, N.dual(), latex(N), latex(N.dual())
(3-d lattice N, 3-d lattice M, N, M)
\end{verbatim}

Notice that the lattice dual to \( N \) is called “M” which is standard in toric geometry. This happens only if you allow completely automatic handling of names:

\begin{verbatim}
 sage: another_N = ToricLattice(3, "N")
sage: another_N.dual()
3-d lattice N*
sage: N is another_N
False
\end{verbatim}

What can you do with toric lattices? Well, their main purpose is to allow creation of elements of toric lattices:

\begin{verbatim}
 sage: n = N([1,2,3])
sage: n
N(1, 2, 3)
sage: M = N.dual()
sage: m = M(1,2,3)
sage: m
M(1, 2, 3)
\end{verbatim}

Dual lattices can act on each other:

\begin{verbatim}
 sage: n * m
14
 sage: m * n
14
\end{verbatim}

You can also add elements of the same lattice or scale them:

\begin{verbatim}
 sage: 2 * n
N(2, 4, 6)
sage: n * 2
N(2, 4, 6)
sage: n + n
N(2, 4, 6)
\end{verbatim}

However, you cannot “mix wrong lattices” in your expressions:

\begin{verbatim}
 sage: n + m
Traceback (most recent call last):
 ...
 TypeError: unsupported operand parent(s) for +:
 '3-d lattice N' and '3-d lattice M'
sage: n * n
Traceback (most recent call last):
 ...
 TypeError: elements of the same toric lattice cannot be multiplied!
sage: n == m
False
\end{verbatim}
Note that \( n \) and \( m \) are not equal to each other even though they are both “just (1,2,3).” Moreover, you cannot easily convert elements between toric lattices:

```sage
sage: M(n)
Traceback (most recent call last):
 ...
TypeError: N(1, 2, 3) cannot be converted to 3-d lattice M!
```

If you really need to consider elements of one lattice as elements of another, you can either use intermediate conversion to “just a vector”:

```sage
sage: ZZ3 = ZZ^3
sage: n_in_M = M(ZZ3(n))
sage: n_in_M
M(1, 2, 3)
sage: n == n_in_M
False
sage: n_in_M == m
True
```

Or you can create a homomorphism from one lattice to any other:

```sage
sage: h = N.hom(identity_matrix(3), M)
sage: h(n)
M(1, 2, 3)
```

**Warning:** While integer vectors (elements of \( \mathbb{Z}^n \)) are printed as \((1,2,3)\), in the code \((1,2,3)\) is a tuple, which has nothing to do neither with vectors, nor with toric lattices, so the following is probably not what you want while working with toric geometry objects:

```sage
sage: (1,2,3) + (1,2,3)
(1, 2, 3, 1, 2, 3)
```

Instead, use syntax like

```sage
sage: N(1,2,3) + N(1,2,3)
N(2, 4, 6)
```

```python
class sage.geometry.toric_lattice.ToricLatticeFactory
 Bases: sage.structure.factory.UniqueFactory

 Create a lattice for toric geometry objects.

 INPUT:
 • rank – nonnegative integer, the only mandatory parameter;
 • name – string;
 • dual_name – string;
 • latex_name – string;
 • latex_dual_name – string.

 OUTPUT:
 • lattice.
```

2.4. Toric geometry
A toric lattice is uniquely determined by its rank and associated names. There are four such “associated names” whose meaning should be clear from the names of the corresponding parameters, but the choice of default values is a little bit involved. So here is the full description of the “naming algorithm”:

1. If no names were given at all, then this lattice will be called “N” and the dual one “M”. These are the standard choices in toric geometry.

2. If `name` was given and `dual_name` was not, then `dual_name` will be `name` followed by “*”.

3. If LaTeX names were not given, they will coincide with the “usual” names, but if `dual_name` was constructed automatically, the trailing star will be typeset as a superscript.

**EXAMPLES:**

Let’s start with no names at all and see how automatic names are given:

```sage
sage: L1 = ToricLattice(3)
sage: L1
3-d lattice N
sage: L1.dual()
3-d lattice M
```

If we give the name “N” explicitly, the dual lattice will be called “N*”:

```sage
sage: L2 = ToricLattice(3, "N")
sage: L2
3-d lattice N
sage: L2.dual()
3-d lattice N*
```

However, we can give an explicit name for it too:

```sage
sage: L3 = ToricLattice(3, "N", "M")
sage: L3
3-d lattice N
sage: L3.dual()
3-d lattice M
```

If you want, you may also give explicit LaTeX names:

```sage
sage: L4 = ToricLattice(3, "N", "M", r"\mathbb{N}", r"\mathbb{M}")
sage: latex(L4)
\mathbb{N}
sage: latex(L4.dual())
\mathbb{M}
```

While all four lattices above are called “N”, only two of them are equal (and are actually the same):

```sage
sage: L1 == L2
False
sage: L1 == L3
True
sage: L1 is L3
True
sage: L1 == L4
False
```

The reason for this is that L2 and L4 have different names either for dual lattices or for LaTeX typesetting.
create_key(rank, name=None, dual_name=None, latex_name=None, latex_dual_name=None)
Create a key that uniquely identifies this toric lattice.
See ToricLattice for documentation.

Warning: You probably should not use this function directly.

create_object(version, key)
Create the toric lattice described by key.
See ToricLattice for documentation.

Warning: You probably should not use this function directly.

class sage.geometry.toric_lattice.ToricLattice_ambient(rank, name, dual_name, latex_name, latex_dual_name)
Bases: sage.geometry.toric_lattice.ToricLattice_generic, sage.modules.free_module.FreeModule_ambient_pid
Create a toric lattice.
See ToricLattice for documentation.

Warning: There should be only one toric lattice with the given rank and associated names. Using this class directly to create toric lattices may lead to unexpected results. Please, use ToricLattice to create toric lattices.

Element
alias of sage.geometry.toric_lattice_element.ToricLatticeElement

ambient_module()
Return the ambient module of self.
OUTPUT:
• toric lattice.

Note: For any ambient toric lattice its ambient module is the lattice itself.

EXAMPLES:
sage: N = ToricLattice(3)
sage: N.ambient_module() 3-d lattice N
sage: N.ambient_module() is N True
dual()
Return the lattice dual to self.
OUTPUT:
• toric lattice.
EXAMPLES:

```
sage: N = ToricLattice(3)
sage: N
3-d lattice N
sage: M = N.dual()
sage: M
3-d lattice M
sage: M.dual() is N
True
```

Elements of dual lattices can act on each other:

```
sage: n = N(1,2,3)
sage: m = M(4,5,6)
sage: n * m
32
sage: m * n
32
```

```
plot(**options)

Plot self.

INPUT:
 • any options for toric plots (see toric_plotter.options), none are mandatory.

OUTPUT:
 • a plot.

EXAMPLES:

```
sage: N = ToricLattice(3)
sage: N.plot()  # optional - sage.plot
Graphics3d Object
```
```
class sage.geometry.toric_lattice.ToricLattice_generic(base_ring, rank, degree, sparse=False, coordinate_ring=None)

Bases: sage.modules.free_module.FreeModule_generic_pid

Abstract base class for toric lattices.

Element
  alias of sage.geometry.toric_lattice_element.ToricLatticeElement

construction()

Return the functorial construction of self.

OUTPUT:
  • None, we do not think of toric lattices as constructed from simpler objects since we do not want to
    perform arithmetic involving different lattices.

direct_sum(other)

Return the direct sum with other.

INPUT:
  • other – a toric lattice or more general module.
OUTPUT:

The direct sum of self and other as $\mathbb{Z}$-modules. If other is a ToricLattice, another toric lattice will be returned.

EXAMPLES:

```sage
sage: K = ToricLattice(3, 'K')
sage: L = ToricLattice(3, 'L')
sage: N = K.direct_sum(L); N
6-d lattice K+L
sage: N, N.dual(), latex(N), latex(N.dual())
(6-d lattice K+L, 6-d lattice K^*+L^*, K \oplus L, K^\ast \oplus L^\ast)
```

With default names:

```sage
sage: N = ToricLattice(3).direct_sum(ToricLattice(2))
sage: N, N.dual(), latex(N), latex(N.dual())
(5-d lattice N+N, 5-d lattice M+M, N \oplus N, M \oplus M)
```

If other is not a ToricLattice, fall back to sum of modules:

```sage
sage: ToricLattice(3).direct_sum(ZZ^2)
Free module of degree 5 and rank 5 over Integer Ring
Echelon basis matrix:
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
```

**intersection(other)**

Return the intersection of self and other.

INPUT:

* other - a toric (sub)lattice dual

OUTPUT:

* a toric (sub)lattice.

EXAMPLES:

```sage
sage: N = ToricLattice(3)
sage: Ns1 = N.submodule([N(2,4,0), N(9,12,0)])
sage: Ns2 = N.submodule([N(1,4,9), N(9,2,0)])
sage: Ns1.intersection(Ns2)
Sublattice \langle N(54, 12, 0) \rangle
```

Note that if one of the intersecting sublattices is a sublattice of another, no new lattices will be constructed:

```sage
sage: N.intersection(N) is N
True
sage: Ns1.intersection(N) is Ns1
True
sage: N.intersection(Ns1) is Ns1
True
```
**quotient**(*sub*, *check=True*, *positive_point=None*, *positive_dual_point=None*, **kwds**)

Return the quotient of *self* by the given sublattice *sub*.

**INPUT:**

- *sub* – sublattice of *self*;
- *check* – (default: True) whether or not to check that *sub* is a valid sublattice.

If the quotient is one-dimensional and torsion free, the following two mutually exclusive keyword arguments are also allowed. They decide the sign choice for the (single) generator of the quotient lattice:

- *positive_point* – a lattice point of *self* not in the sublattice *sub* (that is, not zero in the quotient lattice). The quotient generator will be in the same direction as *positive_point*.

- *positive_dual_point* – a dual lattice point. The quotient generator will be chosen such that its lift has a positive product with *positive_dual_point*. Note: if *positive_dual_point* is not zero on the sublattice *sub*, then the notion of positivity will depend on the choice of lift!

Further named arguments are passed to the constructor of a toric lattice quotient.

**EXAMPLES:**

```sage
sage: N = ToricLattice(3)
sage: Ms = N.quotient(Ms.vector_space())
Quotient with torsion of 3-d lattice N by Sublattice <N(1, 8, 0), N(0, 12, 0)>
```

Attempting to quotient one lattice by a sublattice of another will result in a **ValueError**:

```sage
sage: N = ToricLattice(3)
sage: M = ToricLattice(3, name='M')
sage: Ms = M.quotient(Ms)
Traceback (most recent call last):
...
ValueError: M(1, 8, 0) cannot generate a sublattice of 3-d lattice N
```

However, if we forget the sublattice structure, then it is possible to quotient by vector spaces or modules constructed from any sublattice:

```sage
sage: N = ToricLattice(3)
sage: M = ToricLattice(3, name='M')
sage: Ms = M.quotient(Ms.sparse_module())
Quotient with torsion of 3-d lattice N by Sublattice <N(1, 8, 0), N(0, 12, 0)>
```

See *ToricLattice_quotient* for more examples.

**saturation**()

Return the saturation of *self*.

**OUTPUT:**
• a toric lattice.

EXAMPLES:

```python
sage: N = ToricLattice(3)
sage: Ns = N.submodule([(1,2,3), (4,5,6)])
sage: Ns
Sublattice <N(1, 2, 3), N(0, 3, 6)>
sage: Ns_sat = Ns.saturation()
sage: Ns_sat
Sublattice <N(1, 0, -1), N(0, 1, 2)>
sage: Ns_sat is Ns_sat.saturation()
True
```

```python
span(gens, base_ring=Integer Ring, *args, **kwds)
```

Return the span of the given generators.

INPUT:

• `gens` – list of elements of the ambient vector space of `self`.
• `base_ring` – (default: `Z`) base ring for the generated module.

OUTPUT:

• submodule spanned by `gens`.

**Note:** The output need not be a submodule of `self`, nor even of the ambient space. It must, however, be contained in the ambient vector space.

See also `span_of_basis()`, `submodule()`, and `submodule_with_basis()`.

EXAMPLES:

```python
sage: N = ToricLattice(3)
sage: Ns = N.submodule([N.gen(0)])
sage: Ns.span([N.gen(1)])
Sublattice <N(0, 1, 0)>
sage: Ns.submodule([N.gen(1)])
Traceback (most recent call last):
 ...
ArithmeticError: Argument gens (= [N(0, 1, 0)])
does not generate a submodule of self.
```

```python
span_of_basis(basis, base_ring=Integer Ring, *args, **kwds)
```

Return the submodule with the given basis.

INPUT:

• `basis` – list of elements of the ambient vector space of `self`.
• `base_ring` – (default: `Z`) base ring for the generated module.

OUTPUT:

• submodule spanned by `basis`.
Note: The output need not be a submodule of `self`, nor even of the ambient space. It must, however, be contained in the ambient vector space.

See also `span()`, `submodule()`, and `submodule_with_basis()`.

EXAMPLES:

```python
sage: N = ToricLattice(3)
sage: Ns = N.span_of_basis([(1,2,3)])
sage: Ns.span_of_basis([(2,4,0)])
Sublattice <N(2, 4, 0)>
sage: Ns.span_of_basis([(1/5,2/5,0), (1/7,1/7,0)])
Free module of degree 3 and rank 2 over Integer Ring
User basis matrix:
[1/5 2/5 0]
[1/7 1/7 0]
```

Of course the input basis vectors must be linearly independent:

```python
sage: Ns.span_of_basis([(1,2,0), (2,4,0)])
Traceback (most recent call last):
 ... ValueException: The given basis vectors must be linearly independent.
```

class sage.geometry.toric_lattice.ToricLattice_quotient(V, W, check=True, positive_point=None, positive_dual_point=None, **kwds)

Bases: sage.modules.fg_pid.fgp_module.FGP_Module_class

Construct the quotient of a toric lattice `V` by its sublattice `W`.

INPUT:

- `V` – ambient toric lattice;
- `W` – sublattice of `V`;
- `check` – (default: `True`) whether to check correctness of input or not.

If the quotient is one-dimensional and torsion free, the following two mutually exclusive keyword arguments are also allowed. They decide the sign choice for the (single) generator of the quotient lattice:

- `positive_point` – a lattice point of `self` not in the sublattice `sub` (that is, not zero in the quotient lattice). The quotient generator will be in the same direction as `positive_point`.
- `positive_dual_point` – a dual lattice point. The quotient generator will be chosen such that its lift has a positive product with `positive_dual_point`. Note: if `positive_dual_point` is not zero on the sublattice `sub`, then the notion of positivity will depend on the choice of lift!

Further given named arguments are passed to the constructor of an FGP module.

OUTPUT:

- quotient of `V` by `W`.

EXAMPLES:

The intended way to get objects of this class is to use `quotient()` method of toric lattices:
sage: N = ToricLattice(3)
sage: sublattice = N.submodule([(1,1,0), (3,2,1)])
sage: Q = N/sublattice
sage: Q
1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)>
sage: Q gens()
(N[1, 0, 0],)

Here, sublattice happens to be of codimension one in N. If you want to prescribe the sign of the quotient generator, you can do either:

sage: Q = N.quotient(sublattice, positive_point=N(0,0,-1)); Q
1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)>
sage: Q gens()
(N[1, 0, 0],)

or:

sage: M = N.dual()
sage: Q = N.quotient(sublattice, positive_dual_point=M(1,0,0)); Q
1-d lattice, quotient of 3-d lattice N by Sublattice <N(1, 0, 1), N(0, 1, -1)>
sage: Q gens()
(N[1, 0, 0],)

Element

alias of ToricLattice_quotient_element

base_extend(R)

Return the base change of self to the ring R.

INPUT:

• R – either Z or Q.

OUTPUT:

• self if $R = Z$, quotient of the base extension of the ambient lattice by the base extension of the sublattice if $R = Q$.

EXAMPLES:

sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q.base_extend(ZZ) is Q
True
sage: Q.base_extend(QQ)
Vector space quotient V/W of dimension 1 over Rational Field where
V: Vector space of dimension 3 over Rational Field
W: Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[1 0 0]
[0 1 0]

coordinate_vector(x, reduce=False)

Return coordinates of $x$ with respect to the optimized representation of self.

INPUT:
• \( x \) – element of \( \text{self} \) or convertible to \( \text{self} \)
• \( \text{reduce} \) – (default: \( \text{False} \)); if \( \text{True} \), reduce coefficients modulo invariants

OUTPUT:

The coordinates as a vector.

EXAMPLES:

```python
sage: N = ToricLattice(3)
sage: Q = N.quotient(N.span([N(1,2,3), N(0,2,1)]), positive_point=N(0,-1,0))
sage: q = Q.gen(0); q
N[0, -1, 0]
sage: Q.coordinate_vector(q)
indirect test
(1)
sage: Q.coordinate_vector(q)
(1)
```

dimension()

Return the rank of \( \text{self} \).

OUTPUT:

Integer. The dimension of the free part of the quotient.

EXAMPLES:

```python
sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q.ngens()
2
sage: Q.rank()
1
sage: Ns = N.submodule([N(1,4,0)])
sage: Q = N/Ns
sage: Q.ngens()
2
sage: Q.rank()
2
```

dual()

Return the lattice dual to \( \text{self} \).

OUTPUT:

• a \textit{toric lattice quotient}.

EXAMPLES:

```python
sage: N = ToricLattice(3)
sage: Ns = N.submodule([[1, -1, -1]])
sage: Q = N / Ns
sage: Q.dual()
Sublattice <M(1, 0, 1), M(0, 1, -1)>
```

gens()

Return the generators of the quotient.
A tuple of \texttt{ToricLattice\_quotient\_element} generating the quotient.

**EXAMPLES:**

```python
sage: N = ToricLattice(3)
sage: Q = N.quotient(N.span([N(1,2,3), N(0,2,1)]), positive_point=N(0,-1,0))
sage: Q.gens()
(N[0, -1, 0],)
```

\texttt{is\_torsion\_free}()

Check if self is torsion-free.

**OUTPUT:**

- True is self has no torsion and False otherwise.

**EXAMPLES:**

```python
sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q.is_torsion_free()
False
sage: Ns = N.submodule([N(1,4,0)])
sage: Q = N/Ns
sage: Q.is_torsion_free()
True
```

\texttt{rank}()

Return the rank of self.

**OUTPUT:**

Integer. The dimension of the free part of the quotient.

**EXAMPLES:**

```python
sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q.ngens()
2
sage: Q.rank()
1
sage: Ns = N.submodule([N(1,4,0)])
sage: Q = N/Ns
sage: Q.ngens()
2
sage: Q.rank()
2
```

\texttt{class} \texttt{sage.geometry.toric_lattice.ToricLattice\_quotient\_element}(parent, x, check=True)

Bases: \texttt{sage.modules.fg_pid.fgp_element.FGP\_Element}

Create an element of a toric lattice quotient.
Warning: You probably should not construct such elements explicitly.

INPUT:
• same as for FGP_Element.

OUTPUT:
• element of a toric lattice quotient.

set_immutable()
Make self immutable.

OUTPUT:
• none.

Note: Elements of toric lattice quotients are always immutable, so this method does nothing, it is introduced for compatibility purposes only.

EXAMPLES:

```python
sage: N = ToricLattice(3)
sage: Ns = N.submodule([N(2,4,0), N(9,12,0)])
sage: Q = N/Ns
sage: Q.0.set_immutable()
```

class `sage.geometry.toric_lattice.ToricLattice_sublattice`(ambient, gens, check=True, already_echelonized=False)

Bases: `sage.geometry.toric_lattice.ToricLattice_sublattice_with_basis`, `sage.modules.free_module.FreeModule_submodule_pid`

Construct the sublattice of ambient toric lattice generated by gens.

INPUT (same as for `FreeModule_submodule_pid`):
• ambient – ambient toric lattice for this sublattice;
• gens – list of elements of ambient generating the constructed sublattice;
• see the base class for other available options.

OUTPUT:
• sublattice of a toric lattice with an automatically chosen basis.

See also `ToricLattice_sublattice_with_basis` if you want to specify an explicit basis.

EXAMPLES:
The intended way to get objects of this class is to use `submodule()` method of toric lattices:

```python
sage: N = ToricLattice(3)
sage: sublattice = N.submodule([[1,1,0), (3,2,1)])
sage: sublattice.has_user_basis()
False
sage: sublattice.basis()
[
 N(1, 0, 1),
]```
For sublattices without user-specified basis, the basis obtained above is the same as the “standard” one:

```python
sage: sublattice.echelonized_basis()
[  N(1, 0, 1),
  N(0, 1, -1)
]
```

```python
class sage.geometry.toric_lattice.ToricLattice_sublattice_with_basis(ambient, basis, check=True, echelonize=False, echelonized_basis=None, already_echelonized=False)

Bases:  sage.geometry.toric_lattice.ToricLattice_generic,  sage.modules.free_module.FreeModule_submodule_with_basis_pid

Construct the sublattice of ambient toric lattice with given basis.

INPUT (same as for FreeModule_submodule_with_basis_pid):

- ambient – ambient toric lattice for this sublattice;
- basis – list of linearly independent elements of ambient, these elements will be used as the default basis of the constructed sublattice;
- see the base class for other available options.

OUTPUT:

- sublattice of a toric lattice with a user-specified basis.

See also ToricLattice_sublattice if you do not want to specify an explicit basis.

EXAMPLES:

The intended way to get objects of this class is to use submodule_with_basis() method of toric lattices:

```python
sage: N = ToricLattice(3)
sage: sublattice = N.submodule_with_basis([[1,1,0], [3,2,1]])
sage: sublattice.has_user_basis()
True
sage: sublattice.basis()
[N(1, 1, 0),
 N(3, 2, 1)
]
```

Even if you have provided your own basis, you still can access the “standard” one:

```python
sage: sublattice.echelonized_basis()
[N(1, 0, 1),
 N(0, 1, -1)
]
dual()
Return the lattice dual to self.

OUTPUT:
• a toric lattice quotient.

EXAMPLES:

```
sage: N = ToricLattice(3)
sage: Ns = N.submodule([(1,1,0), (3,2,1)])
sage: Ns.dual()
2-d lattice, quotient of 3-d lattice M by Sublattice <M(1, -1, -1)>
```

plot(**options)
Plot self.

INPUT:
• any options for toric plots (see toric_plotter.options), none are mandatory.

OUTPUT:
• a plot.

EXAMPLES:

```
sage: N = ToricLattice(3)
sage: sublattice = N.submodule_with_basis([(1,1,0), (3,2,1)])
sage: sublattice.plot()  # optional - sage.plot
Graphics3d Object
```

Now we plot both the ambient lattice and its sublattice:

```
sage: N.plot() + sublattice.plot(point_color="red")  # optional - sage.plot
Graphics3d Object
```

sage.geometry.toric_lattice.is_ToricLattice(x)
Check if x is a toric lattice.

INPUT:
• x – anything.

OUTPUT:
• True if x is a toric lattice and False otherwise.

EXAMPLES:

```
sage: from sage.geometry.toric_lattice import (  
    ....:  is_ToricLattice)
sage: is_ToricLattice(1)
False
sage: N = ToricLattice(3)
sage: N
3-d lattice N
sage: is_ToricLattice(N)
True
```
Combinatorial and Discrete Geometry, Release 9.6

sage.geometry.toric_lattice.is_ToricLatticeQuotient(x)
Check if x is a toric lattice quotient.

INPUT:
• x – anything.

OUTPUT:
• True if x is a toric lattice quotient and False otherwise.

EXAMPLES:

```python
sage: from sage.geometry.toric_lattice import is_ToricLatticeQuotient
sage: is_ToricLatticeQuotient(1)
False
sage: N = ToricLattice(3)
sage: is_ToricLatticeQuotient(N)
False
sage: Q = N / N.submodule([(1,2,3), (3,2,1)])
sage: is_ToricLatticeQuotient(Q)
True
```

2.4.2 Convex rational polyhedral cones

This module was designed as a part of framework for toric varieties (variety, fano_variety). While the emphasis is on strictly convex cones, non-strictly convex cones are supported as well. Work with distinct lattices (in the sense of discrete subgroups spanning vector spaces) is supported. The default lattice is ToricLattice \(N \) of the appropriate dimension. The only case when you must specify lattice explicitly is creation of a 0-dimensional cone, where dimension of the ambient space cannot be guessed.

AUTHORS:
• Andrey Novoseltsev (2010-06-17): substantial improvement during review by Volker Braun.
• Volker Braun (2010-06-21): various spanned/quotient/dual lattice computations added.
• Volker Braun (2010-12-28): Hilbert basis for cones.
• Andrey Novoseltsev (2012-02-23): switch to PointCollection container.

EXAMPLES:

Use `Cone()` to construct cones:

```python
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: halfspace = Cone([(1,0,0), (0,1,0), (-1,-1,0), (0,0,1)])
sage: positive_xy = Cone([(1,0,0), (0,1,0)])
sage: four_rays = Cone([(1,1,1), (1,-1,1), (-1,-1,1), (-1,1,1)])
```
For all of the cones above we have provided primitive generating rays, but in fact this is not necessary - a cone can
be constructed from any collection of rays (from the same space, of course). If there are non-primitive (or even non-
integral) rays, they will be replaced with primitive ones. If there are extra rays, they will be discarded. Of course, this
means that \texttt{Cone()} has to do some work before actually constructing the cone and sometimes it is not desirable, if you
know for sure that your input is already “good”. In this case you can use options \texttt{check=False} to force \texttt{Cone()} to
use exactly the directions that you have specified and \texttt{normalize=False} to force it to use exactly the rays that you
have specified. However, it is better not to use these possibilities without necessity, since cones are assumed to be
represented by a minimal set of primitive generating rays. See \texttt{Cone()} for further documentation on construction.

Once you have a cone, you can perform numerous operations on it. The most important ones are, probably, ray accessing
methods:

\begin{verbatim}
sage: rays = halfspace.rays()
sage: rays
N(0, 0, 1),
N(0, 1, 0),
N(0, -1, 0),
N(1, 0, 0),
N(-1, 0, 0)
in 3-d lattice N
sage: rays.set()
frozenset({N(-1, 0, 0), N(0, -1, 0), N(0, 0, 1), N(0, 1, 0), N(1, 0, 0)})
sage: rays.matrix()
[0 0 1]
[0 1 0]
[0 -1 0]
[1 0 0]
[-1 0 0]
sage: rays.column_matrix()
[0 0 0 1 -1]
[0 1 -1 0 0]
[1 0 0 0 0]
sage: rays(3)
N(1, 0, 0)
in 3-d lattice N
sage: rays[3]
N(1, 0, 0)
sage: halfspace.ray(3)
N(1, 0, 0)
\end{verbatim}

The method \texttt{rays()} returns a \texttt{PointCollection} with the \textit{i}-th element being the primitive integral generator of the \textit{i}-th ray. It is possible to convert this collection to a matrix with either rows or columns corresponding to these generators.
You may also change the default \texttt{output_format()} of all point collections to be such a matrix.

If you want to do something with each ray of a cone, you can write

\begin{verbatim}
sage: for ray in positive_xy: print(ray)
N(1, 0, 0)
N(0, 1, 0)
\end{verbatim}

There are two dimensions associated to each cone - the dimension of the subspace spanned by the cone and the dimen-
sion of the space where it lives:

\begin{verbatim}
sage: positive_xy.dim()
2
\end{verbatim}

(continues on next page)
sage: positive_xy.lattice_dim()
3

You also may be interested in this dimension:

sage: dim(positive_xy.linear_subspace())
0
sage: dim(halfspace.linear_subspace())
2

Or, perhaps, all you care about is whether it is zero or not:

sage: positive_xy.is_strictly_convex()
True
sage: halfspace.is_strictly_convex()
False

You can also perform these checks:

sage: positive_xy.is_simplicial()
True
sage: four_rays.is_simplicial()
False
sage: positive_xy.is_smooth()
True

You can work with subcones that form faces of other cones:

sage: face = four_rays.faces(dim=2)[0]
sage: face
2-d face of 3-d cone in 3-d lattice N
sage: face.rays()
N(-1, -1, 1),
N(-1, 1, 1)
in 3-d lattice N
sage: face.ambient_ray_indices()
(2, 3)
sage: four_rays.rays(face.ambient_ray_indices())
N(-1, -1, 1),
N(-1, 1, 1)
in 3-d lattice N

If you need to know inclusion relations between faces, you can use

sage: L = four_rays.face_lattice()
sage: [len(s) for s in L.level_sets()]
[1, 4, 4, 1]
sage: face = L.level_sets()[2][0]
sage: face.rays()
N(1, 1, 1),
N(1, -1, 1)
in 3-d lattice N
sage: L.hasse_diagram().neighbors_in(face)

2.4. Toric geometry
Warning: The order of faces in level sets of the face lattice may differ from the order of faces returned by `faces()`.
While the first order is random, the latter one ensures that one-dimensional faces are listed in the same order as generating rays.

When all the functionality provided by cones is not enough, you may want to check if you can do necessary things using polyhedra corresponding to cones:

```
sage: four_rays.polyhedron()
A 3-dimensional polyhedron in ZZ^3 defined as
the convex hull of 1 vertex and 4 rays
```

And of course you are always welcome to suggest new features that should be added to cones!

REFERENCES:
- [Ful1993]

```python
sage.geometry.cone.Cone(rays, lattice=None, check=True, normalize=True)
```
Construct a (not necessarily strictly) convex rational polyhedral cone.

INPUT:
- `rays` – a list of rays. Each ray should be given as a list or a vector convertible to the rational extension of the given lattice. May also be specified by a `Polyhedron_base` object;
- `lattice` – `ToricLattice`, `Z^n`, or any other object that behaves like these. If not specified, an attempt will be made to determine an appropriate toric lattice automatically;
- `check` – by default the input data will be checked for correctness (e.g. that all rays have the same number of components) and generating rays will be constructed from `rays`. If you know that the input is a minimal set of generators of a valid cone, you may significantly decrease construction time using `check=False` option;
- `normalize` – you can further speed up construction using `normalize=False` option. In this case `rays` must be a list of immutable primitive rays in `lattice`. In general, you should not use this option, it is designed for code optimization and does not give as drastic improvement in speed as the previous one.

OUTPUT:
- convex rational polyhedral cone determined by `rays`.

EXAMPLES:
Let’s define a cone corresponding to the first quadrant of the plane (note, you can even mix objects of different types to represent rays, as long as you let this function to perform all the checks and necessary conversions!):

```
sage: quadrant = Cone([(1,0), [0,1]])
sage: quadrant
2-d cone in 2-d lattice N
sage: quadrant.rays()
N(1, 0),
N(0, 1)
in 2-d lattice N
```
If you give more rays than necessary, the extra ones will be discarded:

```sage
sage: Cone([(1,0), (0,1), (1,1), (0,1)]).rays()
N(0, 1),
N(1, 0)
in 2-d lattice N
```

However, this work is not done with `check=False` option, so use it carefully!

```sage
sage: Cone([(1,0), (0,1), (1,1), (0,1)], check=False).rays()
N(1, 0),
N(0, 1),
N(1, 1),
N(0, 1)
in 2-d lattice N
```

Even worse things can happen with `normalize=False` option:

```sage
sage: Cone([(1,0), (0,1)], check=False, normalize=False)
```

```
Traceback (most recent call last):
...
AttributeError: 'tuple' object has no attribute 'parent'
```

You can construct different “not” cones: not full-dimensional, not strictly convex, not containing any rays:

```sage
sage: one_dim_cone = Cone([(1,0)])
sage: one_dim_cone.dim()
1
sage: half_plane = Cone([(1,0), (0,1), (-1,0)])
sage: half_plane.rays()
N( 0, 1),
N( 1, 0),
N(-1, 0)
in 2-d lattice N
sage: half_plane.is_strictly_convex()
False
sage: origin = Cone([(0,0)])
sage: origin.rays()
Empty collection
in 2-d lattice N
sage: origin.dim()
0
sage: origin.lattice_dim()
2
```

You may construct the cone above without giving any rays, but in this case you must provide `lattice` explicitly:

```sage
sage: origin = Cone([])
```

```
Traceback (most recent call last):
...
ValueError: lattice must be given explicitly if there are no rays!
sage: origin = Cone([], lattice=ToricLattice(2))
sage: origin.dim()
0
```

(continues on next page)
Combinatorial and Discrete Geometry, Release 9.6

(continued from previous page)

```
sage: origin.lattice_dim()
2
sage: origin.lattice()
2-d lattice N
```

However, the trivial cone in \(n \) dimensions has a predefined constructor for you to use:

```
sage: origin = cones.trivial(2)
sage: origin.rays()
Empty collection
in 2-d lattice N
```

Of course, you can also provide \texttt{lattice} in other cases:

```
sage: L = ToricLattice(3, "L")
sage: c1 = Cone([(1,0,0),(1,1,1)], lattice=L)
sage: c1.rays()
L(1, 0, 0),
L(1, 1, 1)
in 3-d lattice L
```

Or you can construct cones from rays of a particular lattice:

```
sage: ray1 = L(1,0,0)
sage: ray2 = L(1,1,1)
sage: c2 = Cone([ray1, ray2])
sage: c2.rays()
L(1, 0, 0),
L(1, 1, 1)
in 3-d lattice L
sage: c1 == c2
True
```

When the cone in question is not strictly convex, the standard form for the “generating rays” of the linear subspace is “basis vectors and their negatives”, as in the following example:

```
sage: plane = Cone([(1,0), (0,1), (-1,-1)])
sage: plane.rays()
N( 0, 1),
N( 0, -1),
N( 1, 0),
N(-1, 0)
in 2-d lattice N
```

The cone can also be specified by a \texttt{Polyhedron_base}:

```
sage: p = plane.polyhedron()
sage: Cone(p)
2-d cone in 2-d lattice N
sage: Cone(p) == plane
True
```
class sage.geometry.cone.ConvexRationalPolyhedralCone(rays=None, lattice=None, ambient=None, ambient_ray_indices=None, PPL=None)

Create a convex rational polyhedral cone.

Warning: This class does not perform any checks of correctness of input nor does it convert input into the standard representation. Use :func:`Cone()` to construct cones.

Cones are immutable, but they cache most of the returned values.

INPUT:

The input can be either:

- **rays** – list of immutable primitive vectors in lattice:
- **lattice** – :class:`ToricLattice`, :math:`\mathbb{Z}^n`, or any other object that behaves like these. If :obj:`None`, it will be determined as :meth:`parent()` of the first ray. Of course, this cannot be done if there are no rays, so in this case you must give an appropriate lattice directly.

or (these parameters must be given as keywords):

- **ambient** – ambient structure of this cone, a bigger :class:`cone` or a :class:`fan`, this cone must be a face of ambient;
- **ambient_ray_indices** – increasing list or tuple of integers, indices of rays of ambient generating this cone.

In both cases, the following keyword parameter may be specified in addition:

- **PPL** – either :obj:`None` (default) or a :class:`C_Polyhedron` representing the cone. This serves only to cache the polyhedral data if you know it already. The constructor does not make a copy so the PPL object should not be modified afterwards.

OUTPUT:

- convex rational polyhedral cone.

Note: Every cone has its ambient structure. If it was not specified, it is this cone itself.

.. function:: Hilbert_basis()

 Return the Hilbert basis of the cone.

 Given a strictly convex cone :math:`C \subset \mathbb{R}^d`, the Hilbert basis of :math:`C` is the set of all irreducible elements in the semigroup :math:`C \cap \mathbb{Z}^d`. It is the unique minimal generating set over :math:`\mathbb{Z}` for the integral points :math:`C \cap \mathbb{Z}^d`.

 If the cone :math:`C` is not strictly convex, this method finds the (unique) minimal set of lattice points that need to be added to the defining rays of the cone to generate the whole semigroup :math:`C \cap \mathbb{Z}^d`. But because the rays of the cone are not unique nor necessarily minimal in this case, neither is the returned generating set (consisting of the rays plus additional generators).

 See also :func:`semigroup_generators()` if you are not interested in a minimal set of generators.

OUTPUT:

- a :class:`PointCollection`. The rays of self are the first self.nrays() entries.

EXAMPLES:
The following command ensures that the output ordering in the examples below is independent of TOP-COM, you don't have to use it:

```
sage: PointConfiguration.set_engine('internal')
```

We start with a simple case of a non-smooth 2-dimensional cone:

```
sage: Cone([(1,0), (1,2)]).Hilbert_basis()
N(1, 0),
N(1, 2),
N(1, 1)
in 2-d lattice N
```

Two more complicated example from GAP/toric:

```
sage: Cone([[1,0],[3,4]]).dual().Hilbert_basis()
M(0, 1),
M(4, -3),
M(1, 0),
M(2, -1),
M(3, -2)
in 2-d lattice M
```

```
sage: cone = Cone([[1,2,3,4],[0,1,0,7],[3,1,0,2],[0,0,1,0]]).dual() # long time
sage: cone.Hilbert_basis()
M(10, -7, 0, 1),
M(-5, 21, 0, -3),
M( 0, -2, 0, 1),
M(15, -63, 25, 9),
M( 2, -3, 0, 1),
M( 1, -4, 1, 1),
M( 4, -4, 0, 1),
M(-1, 3, 0, 0),
M( 1, -5, 2, 1),
M( 3, -5, 1, 1),
M( 6, -5, 0, 1),
M( 3, -13, 5, 2),
M( 2, -6, 2, 1),
M( 5, -6, 1, 1),
M( 8, -6, 0, 1),
M( 0, 1, 0, 0),
M(-2, 8, 0, -1),
M(10, -42, 17, 6),
M( 7, -28, 11, 4),
M( 5, -21, 9, 3),
M( 6, -21, 8, 3),
M( 5, -14, 5, 2),
M( 2, -7, 3, 1),
M( 4, -7, 2, 1),
M( 7, -7, 1, 1),
M( 0, 0, 1, 0),
M( 1, 0, 0, 0),
M(-1, 7, 0, -1),
M(-3, 14, 0, -2)
in 4-d lattice M
```
Not a strictly convex cone:

```
sage: wedge = Cone([ (1,0,0), (1,2,0), (0,0,1), (0,0,-1) ])
sage: sorted(wedge.semigroup_generators())
[N(0, 0, -1), N(0, 0, 1), N(1, 0, 0), N(1, 1, 0), N(1, 2, 0)]
sage: wedge.Hilbert_basis()
N(1, 2, 0),
N(1, 0, 0),
N(0, 0, 1),
N(0, 0, -1),
N(1, 1, 0)
in 3-d lattice N
```

Not full-dimensional cones are ok, too (see trac ticket #11312):

```
sage: Cone([(1,1,0), (-1,1,0)]).Hilbert_basis()
N( 1, 1, 0),
N(-1, 1, 0),
N( 0, 1, 0)
in 3-d lattice N
```

ALGORITHM:

The primal Normaliz algorithm, see [Normaliz].

Hilbert_coefficients *(point, solver, verbose=None, integrality_tolerance=0)*

Return the expansion coefficients of point with respect to Hilbert basis().

INPUT:

- point – a lattice() point in the cone, or something that can be converted to a point. For example, a list or tuple of integers.
- solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- verbose – integer (default: 0). Sets the level of verbosity of the LP solver. Set to 0 by default, which means quiet.
- integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT:

A Z-vector of length len(self.Hilbert_basis()) with nonnegative components.

Note: Since the Hilbert basis elements are not necessarily linearly independent, the expansion coefficients are not unique. However, this method will always return the same expansion coefficients when invoked with the same argument.

EXAMPLES:

```
sage: cone = Cone([(1,0),(0,1)])
sage: cone.rays()
N(1, 0),
N(0, 1)
```

(continues on next page)
A more complicated example:

```python
def N = ToricLattice(2)
cone = Cone([N(1,0),N(1,2)])
cone.Hilbert_basis()
N(1, 0),
N(1, 2),
N(1, 1)
in 2-d lattice N
cone.Hilbert_coefficients( N(1,1) )
(0, 0, 1)
```

The cone need not be strictly convex:

```python
def N = ToricLattice(3)
cone = Cone([N(1,0,0),N(1,2,0),N(0,0,1),N(0,0,-1)])
cone.Hilbert_basis()
N(1, 2, 0),
N(1, 0, 0),
N(0, 0, 1),
N(0, 0, -1),
N(1, 1, 0)
in 3-d lattice N
cone.Hilbert_coefficients( N(1,1,3) )
(0, 0, 3, 0, 1)
```

Z_operators_gens()

Compute minimal generators of the Z-operators on this cone.

The Z-operators on a cone generalize the Z-matrices over the nonnegative orthant. They are simply negations of the `cross_positive_operators_gens()`.

OUTPUT:

A list of n-by-n matrices where n is the ambient dimension of this cone. Each matrix L in the list has the property that $s(L(x)) \leq 0$ whenever (x, s) is an element of this cone's `discrete_complementarity_set()`.

The returned matrices generate the cone of Z-operators on this cone; that is,

- Any nonnegative linear combination of the returned matrices is a Z-operator on this cone.
- Every Z-operator on this cone is some nonnegative linear combination of the returned matrices.

See also:

`cross_positive_operators_gens()`, `lyapunov_like_basis()`, `positive_operators_gens()`

REFERENCES:

- [BP1994]
- [Or2018b]
adjacent()

Return faces adjacent to self in the ambient face lattice.

Two distinct faces \(F_1 \) and \(F_2 \) of the same face lattice are adjacent if all of the following conditions hold:

- \(F_1 \) and \(F_2 \) have the same dimension \(d \);
- \(F_1 \) and \(F_2 \) share a facet of dimension \(d - 1 \);
- \(F_1 \) and \(F_2 \) are facets of some face of dimension \(d+1 \), unless \(d \) is the dimension of the ambient structure.

OUTPUT:

- tuple of cones.

EXAMPLES:

```
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.adjacent()
()  
sage: one_face = octant.faces(1)[0]
sage: len(one_face.adjacent())
2
```

1-d face of 3-d cone in 3-d lattice N

Things are a little bit subtle with fans, as we illustrate below.

First, we create a fan from two cones in the plane:

```
sage: fan = Fan(cones=[[0,1], [1,2]],
    .....:  rays=[[1,0], [0,1], [-1,0]])
sage: cone = fan.generating_cone(0)
sage: len(cone.adjacent())
1
```

The second generating cone is adjacent to this one. Now we create the same fan, but embedded into the 3-dimensional space:

```
sage: fan = Fan(cones=[[0,1], [1,2]],
    .....:  rays=[[1,0,0], [0,1,0], [-1,0,0]])
sage: cone = fan.generating_cone(0)
sage: len(cone.adjacent())
1
```

The result is as before, since we still have:

```
sage: fan.dim()
2
```

Now we add another cone to make the fan 3-dimensional:

```
sage: fan = Fan(cones=[[0,1], [1,2], [3]],
    .....:  rays=[[1,0,0], [0,1,0], [-1,0,0], (0,0,1)])
sage: cone = fan.generating_cone(0)
sage: len(cone.adjacent())
0
```

2.4. Toric geometry
Since now cone has smaller dimension than fan, it and its adjacent cones must be facets of a bigger one, but since cone in this example is generating, it is not contained in any other.

ambient()
Return the ambient structure of self.

OUTPUT:

• cone or fan containing self as a face.

EXAMPLES:

sage: cone = Cone([[(1,2,3), (4,6,5), (9,8,7)]])
sage: cone.ambient()
3-d cone in 3-d lattice N
sage: cone.ambient() is cone
True
sage: face = cone.faces(1)[0]
sage: face
1-d face of 3-d cone in 3-d lattice N
sage: face.ambient()
3-d cone in 3-d lattice N
sage: face.ambient() is cone
True

ambient_ray_indices()
Return indices of rays of the ambient structure generating self.

OUTPUT:

• increasing tuple of integers.

EXAMPLES:

sage: quadrant = Cone([[(1,0), (0,1)]]
sage: quadrant.ambient_ray_indices()
(0, 1)
sage: quadrant.facets()[1].ambient_ray_indices()
(1,)

an_affine_basis()
Return points in self that form a basis for the affine hull.

EXAMPLES:

sage: quadrant = Cone([[(1,0), (0,1)]]
sage: quadrant.an_affine_basis()
Traceback (most recent call last):
...
NotImplementedError: this function is not implemented for unbounded polyhedra
sage: ray = Cone([[(1, 1)]]
sage: ray.an_affine_basis()
Traceback (most recent call last):
...
NotImplementedError: this function is not implemented for unbounded polyhedra
sage: line = Cone([[(1,0), (-1,0)]]
sage: line.an_affine_basis()
Traceback (most recent call last):
...
NotImplementedError: this function is not implemented for unbounded polyhedra

cartesian_product(*other, lattice=None*)
Return the Cartesian product of *self* with *other*.

INPUT:
• *other* – a cone;
• *lattice* – (optional) the ambient lattice for the Cartesian product cone. By default, the direct sum of the ambient lattices of *self* and *other* is constructed.

OUTPUT:
• a cone.

EXAMPLES:

```
sage: c = Cone([(1,)])
sage: c.cartesian_product(c)
2-d cone in 2-d lattice N+N  
sage: _.rays()
N+N(1, 0),
N+N(0, 1)
in 2-d lattice N+N
```

contains(*args*)
Check if a given point is contained in *self*.

INPUT:
• anything. An attempt will be made to convert all arguments into a single element of the ambient space of *self*. If it fails, False will be returned.

OUTPUT:
• True if the given point is contained in *self*, False otherwise.

EXAMPLES:

```
sage: c = Cone([(1,0), (0,1)])
sage: c.contains(c.lattice()(1,0))
True  
sage: c.contains((1,0))
True  
sage: c.contains((1,1))
True  
sage: c.contains(1,1)
True  
sage: c.contains((-1,0))
False  
sage: c.contains(c.dual_lattice()(1,0))  #random output (warning)
False  
sage: c.contains(c.dual_lattice()(1,0))
False  
sage: c.contains(1)
False  
```

(continues on next page)
cross_positive_operators_gens()

Compute minimal generators of the cross-positive operators on this cone.

Any positive operator P on this cone will have $s(P(x)) \geq 0$ whenever x is an element of this cone and s is an element of its dual. By contrast, the cross-positive operators need only satisfy that property on the $\text{discrete_complementarity_set}();$ that is, when x and s are “cross” (orthogonal).

The cross-positive operators (on some fixed cone) themselves form a closed convex cone. This method computes and returns the generators of that cone as a list of matrices.

Cross-positive operators are also called exponentially-positive, since they become positive operators when exponentiated. Other equivalent names are resolvent-positive, essentially-positive, and quasimonotone.

OUTPUT:

A list of n-by-n matrices where n is the ambient dimension of this cone. Each matrix L in the list has the property that $s(L(x)) \geq 0$ whenever (x, s) is an element of this cone’s $\text{discrete_complementarity_set}().$

The returned matrices generate the cone of cross-positive operators on this cone; that is,

- Any nonnegative linear combination of the returned matrices is cross-positive on this cone.
- Every cross-positive operator on this cone is some nonnegative linear combination of the returned matrices.

See also:

lyapunov_like_basis(), positive_operators_gens(), Z_operators_gens()

REFERENCES:

- [SV1970]
- [Or2018b]

EXAMPLES:

Cross-positive operators on the nonnegative orthant are negations of Z-matrices; that is, matrices whose off-diagonal elements are nonnegative:

```python
sage: K = cones.nonnegative_orthropant(2)
sage: K.cross_positive_operators_gens()
[0 1][0 0][1 0][-1 0][0 0][0 0]
[0 0],[1 0],[0 0],[0 0],[0 1],[0 -1]]
sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)])
sage: all( c[i][j] >= 0 for c in K.cross_positive_operators_gens() for i in range(c.nrows())
......: for j in range(c.ncols())
......: if i != j )
True
```

The trivial cone in a trivial space has no cross-positive operators:
Every operator is a cross-positive operator on the ambient vector space:

```
sage: K = Cone([[1,],(-1,)])
sage: K.is_full_space()
True
sage: K.cross_positive_operators_gens()
[[1], [-1]]

sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
sage: K.is_full_space()
True
sage: K.cross_positive_operators_gens()
[
  [1 0] [-1 0] [0 0] [0 0] [0 0] [0 0]
  [0 0], [0 0], [1 0], [-1 0], [0 1], [0 -1]
]
```

A non-obvious application is to find the cross-positive operators on the right half-plane [Or2018b]:

```
sage: K = Cone([(1,0),(0,1),(0,-1)])
sage: K.cross_positive_operators_gens()
[
  [1 0] [-1 0] [0 0] [0 0] [0 0] [0 0]
  [0 0], [0 0], [1 0], [-1 0], [0 1], [0 -1]
]
```

Cross-positive operators on a subspace are Lyapunov-like and vice-versa:

```
sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
sage: K.is_full_space()
True
sage: lls = span( vector(l.list())
.....:     for l in K.lyapunov_like_basis() )
sage: cs = span( vector(c.list())
.....:     for c in K.cross_positive_operators_gens() )
sage: cs == lls
True
```

discrete_complementarity_set()

Compute a discrete complementarity set of this cone.

A discrete complementarity set of a cone is the set of all orthogonal pairs \((x, s)\) where \(x\) is in some fixed generating set of the cone, and \(s\) is in some fixed generating set of its dual. The generators chosen for this cone and its dual are simply their \(rays()\).

OUTPUT:

A tuple of pairs \((x, s)\) such that,

- \(x\) and \(s\) are nonzero.
- \(s(x)\) is zero.

2.4. Toric geometry
- x is one of this cone’s rays().
- s is one of the rays() of this cone’s dual().

REFERENCES:
- [Or2017]

EXAMPLES:
Pairs of standard basis elements form a discrete complementarity set for the nonnegative orthant:

```
sage: K = cones.nonnegative_orthant(2)
sage: K.discrete_complementarity_set()
((N(1, 0), M(0, 1)), (N(0, 1), M(1, 0)))
```

If a cone consists of a single ray, then the second components of a discrete complementarity set for that cone should generate the orthogonal complement of the ray:

```
sage: K = Cone([(1,0)])
sage: K.discrete_complementarity_set()
((N(1, 0), M(0, 1)), (N(1, 0), M(0, -1)))
sage: K = Cone([(1,0,0)])
sage: K.discrete_complementarity_set()
((N(1, 0, 0), M(0, 1, 0)),
 (N(1, 0, 0), M(0, -1, 0)),
 (N(1, 0, 0), M(0, 0, 1)),
 (N(1, 0, 0), M(0, 0, -1)))
```

When a cone is the entire space, its dual is the trivial cone, so the only discrete complementarity set for it is empty:

```
sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
sage: K.is_full_space()
True
sage: K.discrete_complementarity_set()
()  
```

Likewise for trivial cones, whose duals are the entire space:

```
sage: cones.trivial(0).discrete_complementarity_set()
()  
```

dual()

Return the dual cone of self.

OUTPUT:
- cone.

EXAMPLES:
```
sage: cone = Cone([(1,0), (-1,3)])
sage: cone.dual().rays()
 M(0, 1),
 M(3, 1)
in 2-d lattice M
```

Now let’s look at a more complicated case:
We correctly handle the degenerate cases:

```
sage: N = ToricLattice(2)
sage: Cone([], lattice=N).dual().rays()  # empty cone
M(1, 0),
M(-1, 0),
M( 0, 1),
M( 0, -1)
in 2-d lattice M
sage: Cone([(1,0)], lattice=N).dual().rays()  # ray in 2d
M(1, 0),
M(0, 1),
M(0, -1)
in 2-d lattice M
sage: Cone([(1,0),(-1,0)], lattice=N).dual().rays()  # line in 2d
M(0, 1),
M(0, -1)
in 2-d lattice M
sage: Cone([(1,0),0,1)], lattice=N).dual().rays()  # strictly convex cone
M(0, 1),
M(1, 0)
in 2-d lattice M
sage: Cone([(1,0),(-1,0),(0,1)], lattice=N).dual().rays()  # half space
M(0, 1)
in 2-d lattice M
sage: Cone([(1,0),(0,1),(-1,-1)], lattice=N).dual().rays()  # whole space
Empty collection
```

`embed(cone)`

Return the cone equivalent to the given one, but sitting in `self` as a face.

You may need to use this method before calling methods of `cone` that depend on the ambient structure, such as `ambient_ray_indices()` or `facet_of()`. The cone returned by this method will have `self` as ambient. If `cone` does not represent a valid cone of `self`, `ValueError` exception is raised.

Note: This method is very quick if `self` is already the ambient structure of `cone`, so you can use without extra checks and performance hit even if `cone` is likely to sit in `self` but in principle may not.

INPUT:

- `cone` – a `cone`.

2.4. Toric geometry
OUTPUT:

- a cone, equivalent to cone but sitting inside self.

EXAMPLES:

Let's take a 3-d cone on 4 rays:

```
sage: c = Cone([(1,0,1), (0,1,1), (-1,0,1), (0,-1,1)])
```

Then any ray generates a 1-d face of this cone, but if you construct such a face directly, it will not “sit” inside the cone:

```
sage: ray = Cone([(0,-1,1)])
sage: ray
1-d cone in 3-d lattice N
sage: ray.ambient_ray_indices()
(0,)
sage: ray.adjacent()
()
sage: ray.ambient()
1-d cone in 3-d lattice N
```

If we want to operate with this ray as a face of the cone, we need to embed it first:

```
sage: e_ray = c.embed(ray)
sage: e_ray
1-d face of 3-d cone in 3-d lattice N
sage: e_ray.rays()
N(0, -1, 1)
in 3-d lattice N
sage: e_ray is ray
False
sage: e_ray.is_equivalent(ray)
True
sage: e_ray.ambient_ray_indices()
(3,)
sage: e_ray.adjacent()
(1-d face of 3-d cone in 3-d lattice N, 1-d face of 3-d cone in 3-d lattice N)
sage: e_ray.ambient()
3-d cone in 3-d lattice N
```

Not every cone can be embedded into a fixed ambient cone:

```
sage: c.embed(Cone([(0,0,1)]))
Traceback (most recent call last):
...
ValueError: 1-d cone in 3-d lattice N is not a face of 3-d cone in 3-d lattice N!
sage: c.embed(Cone([(1,0,1), (-1,0,1)]))
Traceback (most recent call last):
...
ValueError: 2-d cone in 3-d lattice N is not a face of 3-d cone in 3-d lattice N!
```
face_lattice()

Return the face lattice of self.

This lattice will have the origin as the bottom (we do not include the empty set as a face) and this cone itself as the top.

OUTPUT:

• finite poset of cones.

EXAMPLES:

Let’s take a look at the face lattice of the first quadrant:

```
sage: quadrant = Cone(([1,0], (0,1)))
sage: L = quadrant.face_lattice()
sage: L
Finite lattice containing 4 elements with distinguished linear extension
```

To see all faces arranged by dimension, you can do this:

```
sage: for level in L.level_sets(): print(level)
[0-d face of 2-d cone in 2-d lattice N]
[1-d face of 2-d cone in 2-d lattice N, 1-d face of 2-d cone in 2-d lattice N]
[2-d cone in 2-d lattice N]
```

For a particular face you can look at its actual rays...

```
sage: face = L.level_sets()[1][0]
sage: face.rays()
N(1, 0)
```

... or you can see the index of the ray of the original cone that corresponds to the above one:

```
sage: face.ambient_ray_indices()
(0,)
sage: quadrant.ray(0)
N(1, 0)
```

An alternative to extracting faces from the face lattice is to use faces() method:

```
sage: face is quadrant.faces(dim=1)[0]
True
```

The advantage of working with the face lattice directly is that you can (relatively easily) get faces that are related to the given one:

```
sage: face = L.level_sets()[1][0]
sage: D = L.hasse_diagram()
sage: sorted(D.neighbors(face))
[0-d face of 2-d cone in 2-d lattice N, 2-d cone in 2-d lattice N]
```

However, you can achieve some of this functionality using facets(), facet_of(), and adjacent() methods:
sage: face = quadrant.faces(1)[0]
sage: face
1-d face of 2-d cone in 2-d lattice N
sage: face.rays()
N(1, 0)
in 2-d lattice N
sage: face.facets()
(0-d face of 2-d cone in 2-d lattice N,)
sage: face.facet_of()
(2-d cone in 2-d lattice N,)
sage: face.adjacent()
(1-d face of 2-d cone in 2-d lattice N,)
sage: face.adjacent()[0].rays()
N(0, 1)
in 2-d lattice N

Note that if cone is a face of supercone, then the face lattice of cone consists of (appropriate) faces of supercone:

sage: supercone = Cone([(1,2,3,4), (5,6,7,8),
.....: (1,2,4,8), (1,3,9,7)])
sage: supercone.face_lattice()
Finite lattice containing 16 elements with distinguished linear extension
sage: supercone.face_lattice().top()
4-d cone in 4-d lattice N
sage: cone = supercone.facets()[0]
sage: cone
3-d face of 4-d cone in 4-d lattice N
sage: cone.face_lattice()
Finite poset containing 8 elements with distinguished linear extension
sage: cone.face_lattice().bottom()
0-d face of 4-d cone in 4-d lattice N
sage: cone.face_lattice().top()
3-d face of 4-d cone in 4-d lattice N
sage: cone.face_lattice().top() == cone
True

\textit{faces}(\texttt{dim}=\texttt{None}, \texttt{codim}=\texttt{None})

Return faces of \texttt{self} of specified (co)dimension.

\textbf{INPUT}:

- \texttt{dim} – integer, dimension of the requested faces;
- \texttt{codim} – integer, codimension of the requested faces.

\textbf{Note}: You can specify at most one parameter. If you don't give any, then all faces will be returned.

\textbf{OUTPUT}:

- if either \texttt{dim} or \texttt{codim} is given, the output will be a tuple of \texttt{cones};
- if neither \texttt{dim} nor \texttt{codim} is given, the output will be the tuple of tuples as above, giving faces of all existing dimensions. If you care about inclusion relations between faces, consider using \texttt{face_lattice()} or \texttt{adjacent()}, \texttt{facet_of()}, and \texttt{facets()}. 294 Chapter 2. Polyhedral computations
EXAMPLES:

Let’s take a look at the faces of the first quadrant:

```python
sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.faces()
((0-d face of 2-d cone in 2-d lattice N,),
 (1-d face of 2-d cone in 2-d lattice N,
  1-d face of 2-d cone in 2-d lattice N),
 (2-d cone in 2-d lattice N,))
sage: quadrant.faces(dim=1)
(1-d face of 2-d cone in 2-d lattice N,
  1-d face of 2-d cone in 2-d lattice N)
sage: face = quadrant.faces(dim=1)[0]

Now you can look at the actual rays of this face...

```python
sage: face.rays()
N(1, 0)
in 2-d lattice N
```

... or you can see indices of the rays of the original cone that correspond to the above ray:

```python
sage: face.ambient_ray_indices()
(0,)
sage: quadrant.ray(0)
N(1, 0)
```

Note that it is OK to ask for faces of too small or high dimension:

```python
sage: quadrant.faces(-1)
()
sage: quadrant.faces(3)
()
```

In the case of non-strictly convex cones even faces of small non-negative dimension may be missing:

```python
sage: halfplane = Cone([(1,0), (0,1), (-1,0)])
sage: halfplane.faces(0)
()
sage: halfplane.faces()
((1-d face of 2-d cone in 2-d lattice N,),
 (2-d cone in 2-d lattice N,))
sage: plane = Cone([(1,0), (0,1), (-1,-1)])
sage: plane.faces(1)
()
sage: plane.faces()
((2-d cone in 2-d lattice N,),)
```

```python
facet_normals()
```

Return inward normals to facets of self.

Note:

1. For a not full-dimensional cone facet normals will specify hyperplanes whose intersections with the space spanned by self give facets of self.
2. For a not strictly convex cone facet normals will be orthogonal to the linear subspace of `self`, i.e. they always will be elements of the dual cone of `self`.

3. The order of normals is random, but consistent with `facets()`.

**OUTPUT:**

- a `PointCollection`.

If the ambient `lattice()` of `self` is a toric lattice, the facet normals will be elements of the dual lattice. If it is a general lattice (like `ZZ^n`) that does not have a `dual()` method, the facet normals will be returned as integral vectors.

**EXAMPLES:**

```python
sage: cone = Cone([(1,0), (-1,3)])
sage: cone.facet_normals()
M(0, 1),
M(3, 1)
in 2-d lattice M
```

Now let's look at a more complicated case:

```python
sage: cone = Cone([(-2,-1,2), (4,1,0), (-4,-1,-5), (4,1,5)])
sage: cone.is_strictly_convex() # False
sage: cone.dim() # 3
sage: cone.linear_subspace().dimension() # 1
sage: lsg = (QQ^3)(cone.linear_subspace().gen(0)); lsg
(1, 1/4, 5/4)
sage: cone.facet_normals()
M(7, -18, -2),
M(1, -4, 0)
in 3-d lattice M
sage: [lsg*normal for normal in cone.facet_normals()]
[0, 0]
```

A lattice that does not have a `dual()` method:

```python
sage: Cone([[(1,1),(0,1)], lattice=ZZ^2]).facet_normals()
(-1, 1),
(1, 0)
in Ambient free module of rank 2
over the principal ideal domain Integer Ring
```

We correctly handle the degenerate cases:

```python
sage: N = ToricLattice(2)
sage: Cone([], lattice=N).facet_normals() # empty cone
Empty collection
in 2-d lattice M
sage: Cone([(1,0)], lattice=N).facet_normals() # ray in 2d
M(1, 0)
```

(continues on next page)
in 2-d lattice M
```
sage: Cone([[1,0],[-1,0]], lattice=N).facet_normals() # line in 2d
Empty collection
```
in 2-d lattice M
```
sage: Cone([1,0,0,1], lattice=N).facet_normals() # strictly convex cone
M(0, 1),
M(1, 0)
in 2-d lattice M
```
in 2-d lattice M
```
sage: Cone([1,0,-1,0],(0,1)) lattice=N).facet_normals() # half space
M(0, 1)
in 2-d lattice M
```
in 2-d lattice M
```
sage: Cone([1,0,0,1], lattice=N).facet_normals() # whole space
Empty collection
```
in 2-d lattice M

**facet_of()**

Return cones of the ambient face lattice having `self` as a facet.

**OUTPUT:**

• tuple of cones.

**EXAMPLES:**

```
sage: octant = Cone([1,0,0,1])
sage: octant.facet_of()
()
```

While fan is the top element of its own cone lattice, which is a variant of a face lattice, we do not refer to cones as its facets:

```
sage: fan = Fan([octant])
sage: fan.generating_cone(0).facet_of()
()
```

**facets()**

Return facets (faces of codimension 1) of `self`.

**OUTPUT:**

• tuple of cones.

**EXAMPLES:**
Combinatorial and Discrete Geometry, Release 9.6

```
sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.facets()
(1-d face of 2-d cone in 2-d lattice N, 1-d face of 2-d cone in 2-d lattice N)
```

**incidence_matrix()**

Return the incidence matrix.

**Note:** The columns correspond to facets/facet normals in the order of `facet_normals()`, the rows correspond to the rays in the order of `rays()`.

**EXAMPLES:**

```
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.incidence_matrix()
[0 1 1]
[1 0 1]
[1 1 0]
sage: halfspace = Cone([(1,0,0), (0,1,0), (-1,-1,0), (0,0,1)])
sage: halfspace.incidence_matrix()
[0]
[1]
[1]
[1]
```

**interior()**

Return the interior of `self`.

**OUTPUT:**

• either `self`, an empty polyhedron, or an instance of `RelativeInterior`.

**EXAMPLES:**

```
sage: c = Cone([(1,0,0), (0,1,0)]); c
2-d cone in 3-d lattice N
sage: c.interior()
The empty polyhedron in ZZ^3

sage: origin = cones.trivial(2); origin
0-d cone in 2-d lattice N
sage: origin.interior()
The empty polyhedron in ZZ^2

sage: K = cones.nonnegative_orthant(2); K
2-d cone in 2-d lattice N
sage: K.interior()
Relative interior of 2-d cone in 2-d lattice N
sage: K2 = Cone([(1,0),(-1,0),(0,1),(0,-1)]); K2
2-d cone in 2-d lattice N
```

(continues on next page)
interior_contains(*args)

Check if a given point is contained in the interior of self.

For a cone of strictly lower-dimension than the ambient space, the interior is always empty. You probably want to use relative_interior_contains() in this case.

INPUT:

• anything. An attempt will be made to convert all arguments into a single element of the ambient space of self. If it fails, False will be returned.

OUTPUT:

• True if the given point is contained in the interior of self, False otherwise.

EXAMPLES:

sage: c = Cone([(1,0), (0,1)])
sage: c.contains((1,1))
True
sage: c.interior_contains((1,1))
True
sage: c.contains((1,0))
True
sage: c.interior_contains((1,0))
False

intersection(other)

Compute the intersection of two cones.

INPUT:

• other - cone.

OUTPUT:

• cone.

 Raises ValueError if the ambient space dimensions are not compatible.

EXAMPLES:

sage: cone1 = Cone([(1,0), (-1, 3)])
sage: cone2 = Cone([(-1,0), (2, 5)])
sage: cone1.intersection(cone2).rays()
N(-1, 3), N( 2, 5)
in 2-d lattice N

It is OK to intersect cones living in sublattices of the same ambient lattice:

sage: N = cone1.lattice()
sage: Ns = N.submodule([(1,1)])
sage: cone3 = Cone([(1,1)], lattice=Ns)
sage: I = cone1.intersection(cone3)
But you cannot intersect cones from incompatible lattices without explicit conversion:

```
sage: cone1.intersection(cone1.dual())
Traceback (most recent call last):
 ...
ValueError: 2-d lattice N and 2-d lattice M
have different ambient lattices!
sage: cone1.intersection(Cone(cone1.dual().rays(), N)).rays()
N(3, 1),
N(0, 1)
in 2-d lattice N
```

**is_compact()**
Checks if the cone has no rays.

**OUTPUT:**

- True if the cone has no rays, False otherwise.

**EXAMPLES:**

```
sage: c0 = cones.trivial(3)
sage: c0.is_trivial()
True
sage: c0.nrays()
0
```

**is_empty()**
Return whether self is the empty set.

Because a cone always contains the origin, this method returns False.

**EXAMPLES:**

```
sage: trivial_cone = cones.trivial(3)
sage: trivial_cone.is_empty()
False
```

**is_equivalent(other)**
Check if self is “mathematically” the same as other.

**INPUT:**

- other - cone.

**OUTPUT:**

- True if self and other define the same cones as sets of points in the same lattice, False otherwise.

There are three different equivalences between cones $C_1$ and $C_2$ in the same lattice:

1. They have the same generating rays in the same order. This is tested by $C_1 == C_2$.
2. They describe the same sets of points. This is tested by `C1.is_equivalent(C2)`.

3. They are in the same orbit of $GL(n, \mathbb{Z})$ (and, therefore, correspond to isomorphic affine toric varieties). This is tested by `C1.is_isomorphic(C2)`.

**EXAMPLES:**

```python
sage: cone1 = Cone([[1,0], [-1, 3]])
sage: cone2 = Cone([[-1,3], [1, 0]])
sage: cone1.rays()
N(1, 0),
N(-1, 3)
in 2-d lattice N
sage: cone2.rays()
N(-1, 3),
N(1, 0)
in 2-d lattice N
sage: cone1 == cone2
False
sage: cone1.is_equivalent(cone2)
True
```

### `is_face_of(cone)`

Check if `self` forms a face of another cone.

**INPUT:**

- `cone` – cone.

**OUTPUT:**

- True if `self` is a face of `cone`, False otherwise.

**EXAMPLES:**

```python
sage: quadrant = Cone([[1,0], [0,1]])
sage: cone1 = Cone([[1,0]])
sage: cone2 = Cone([[1,2]])
sage: quadrant.is_face_of(quadrant)
True
sage: cone1.is_face_of(quadrant)
True
sage: cone2.is_face_of(quadrant)
False
```

Being a face means more than just saturating a facet inequality:

```python
sage: octant = Cone([[1,0,0], [0,1,0], [0,0,1]])
sage: cone = Cone([[2,1,0],[1,2,0]])
sage: cone.is_face_of(octant)
False
```

### `is_full_dimensional()`

Check if this cone is solid.

A cone is said to be solid if it has nonempty interior. That is, if its extreme rays span the entire ambient space.

An alias is `is_full_dimensional()`.
OUTPUT:

True if this cone is solid, and False otherwise.

See also:

\texttt{is_proper()}

EXAMPLES:

The nonnegative orthant is always solid:

\begin{verbatim}
  sage: quadrant = cones.nonnegative_orthant(2)
  sage: quadrant.is_solid()
  True
  sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
  sage: octant.is_solid()
  True
\end{verbatim}

However, if we embed the two-dimensional nonnegative quadrant into three-dimensional space, then the resulting cone no longer has interior, so it is not solid:

\begin{verbatim}
  sage: quadrant = Cone([(1,0,0), (0,1,0)])
  sage: quadrant.is_solid()
  False
\end{verbatim}

\texttt{is_full_space()}

Check if this cone is equal to its ambient vector space.

An alias is \texttt{is_universe()}.

OUTPUT:

True if this cone equals its entire ambient vector space and False otherwise.

EXAMPLES:

A single ray in two dimensions is not equal to the entire space:

\begin{verbatim}
  sage: K = Cone([(1,0)])
  sage: K.is_full_space()
  False
\end{verbatim}

Neither is the nonnegative orthant:

\begin{verbatim}
  sage: K = cones.nonnegative_orthant(2)
  sage: K.is_full_space()
  False
\end{verbatim}

The right half-space contains a vector subspace, but it is still not equal to the entire space:

\begin{verbatim}
  sage: K = Cone([(1,0),(-1,0),(0,1)])
  sage: K.is_full_space()
  False
\end{verbatim}

However, if we allow conic combinations of both axes, then the resulting cone is the entire two-dimensional space:

\begin{verbatim}
  sage: K = Cone([(1,0),(-1,0),(0,1)])
  sage: K.is_full_space()
  True
\end{verbatim}
sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
sage: K.is_full_space()
True

is_isomorphic(other)
Check if self is in the same $GL(n,\mathbb{Z})$-orbit as other.

INPUT:
• other - cone.

OUTPUT:
• True if self and other are in the same $GL(n,\mathbb{Z})$-orbit, False otherwise.

There are three different equivalences between cones $C_1$ and $C_2$ in the same lattice:
1. They have the same generating rays in the same order. This is tested by $C_1 == C_2$.
2. They describe the same sets of points. This is tested by $C_1.is_equivalent(C_2)$.
3. They are in the same orbit of $GL(n,\mathbb{Z})$ (and, therefore, correspond to isomorphic affine toric varieties). This is tested by $C_1.is_isomorphic(C_2)$.

EXAMPLES:

```sage
cone1 = Cone([(1,0), (0, 3)])
m = matrix(ZZ, [(1, -5), (-1, 4)]) # a GL(2,ZZ)-matrix
cone2 = Cone(m*r for r in cone1.rays())
cone1.is_isomorphic(cone2)
True
cone1 = Cone([(1,0), (0, 3)])
cone2 = Cone([(-1,3), (1, 0)])
cone1.is_isomorphic(cone2)
False
```

is_proper()
Check if this cone is proper.

A cone is said to be proper if it is closed, convex, solid, and contains no lines. This cone is assumed to be closed and convex; therefore it is proper if it is solid and contains no lines.

OUTPUT:
True if this cone is proper, and False otherwise.

See also:
is_strictly_convex(), is_solid()

EXAMPLES:
The nonnegative orthant is always proper:

```sage:
quadrant = cones.nonnegative_orthant(2)
quadrant.is_proper()
True
sage:
octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
octant.is_proper()
True
```
However, if we embed the two-dimensional nonnegative quadrant into three-dimensional space, then the resulting cone no longer has interior, so it is not solid, and thus not proper:

```python
sage: quadrant = Cone([(1,0,0), (0,1,0)])
sage: quadrant.is_proper()
False
```

Likewise, a half-space contains at least one line, so it is not proper:

```python
sage: halfspace = Cone([(1,0),(0,1),(-1,0)])
sage: halfspace.is_proper()
False
```

**is_relatively_open()**

Return whether `self` is relatively open.

**OUTPUT:**

Boolean.

**EXAMPLES:**

```python
sage: K = cones.nonnegative_orthant(3)
sage: K.is_relatively_open()
False
sage: K1 = Cone([(1,0), (-1,0)]); K1
1-d cone in 2-d lattice N
sage: K1.is_relatively_open()
True
```

**is_simplicial()**

Check if `self` is simplicial.

A cone is called simplicial if primitive vectors along its generating rays form a part of a rational basis of the ambient space.

**OUTPUT:**

• True if `self` is simplicial, False otherwise.

**EXAMPLES:**

```python
sage: cone1 = Cone([(1,0), (0, 3)])
sage: cone2 = Cone([(1,0), (0, 3), (-1,-1)])
sage: cone1.is_simplicial()
True
sage: cone2.is_simplicial()
False
```

**is_smooth()**

Check if `self` is smooth.

A cone is called smooth if primitive vectors along its generating rays form a part of an integral basis of the ambient space. Equivalently, they generate the whole lattice on the linear subspace spanned by the rays.

**OUTPUT:**

• True if `self` is smooth, False otherwise.
EXAMPLES:

```
sage: cone1 = Cone([(1,0), (0, 1)])
sage: cone2 = Cone([(1,0), (-1, 3)])
sage: cone1.is_smooth()
True
sage: cone2.is_smooth()
False
```

The following cones are the same up to a $SL(2, \mathbb{Z})$ coordinate transformation:

```
sage: Cone([(1,0,0), (2,1,-1)]).is_smooth()
True
sage: Cone([(1,0,0), (2,1,1)]).is_smooth()
True
sage: Cone([(1,0,0), (2,1,2)]).is_smooth()
True
```

`is_solid()`

Check if this cone is solid.

A cone is said to be solid if it has nonempty interior. That is, if its extreme rays span the entire ambient space.

An alias is `is_full_dimensional()`.

OUTPUT:

True if this cone is solid, and False otherwise.

See also:

`is_proper()`

EXAMPLES:

The nonnegative orthant is always solid:

```
sage: quadrant = cones.nonnegative_orthant(2)
sage: quadrant.is_solid()
True
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.is_solid()
True
```

However, if we embed the two-dimensional nonnegative quadrant into three-dimensional space, then the resulting cone no longer has interior, so it is not solid:

```
sage: quadrant = Cone([(1,0,0), (0,1,0)])
sage: quadrant.is_solid()
False
```

`is_strictly_convex()`

Check if self is strictly convex.

A cone is called strictly convex if it does not contain any lines.

OUTPUT:

• True if self is strictly convex, False otherwise.
EXAMPLES:

```
sage: cone1 = Cone([(1,0), (0, 1)])
sage: cone2 = Cone([(1,0), (-1, 0)])
sage: cone1.is_strictly_convex()
True
sage: cone2.is_strictly_convex()
False
```

**is_trivial()**
Checks if the cone has no rays.

**OUTPUT:**
- True if the cone has no rays, False otherwise.

**EXAMPLES:**
```
sage: c0 = cones.trivial(3)
sage: c0.is_trivial()
True
sage: c0.nrays()
0
```

**is_universe()**
Check if this cone is equal to its ambient vector space.

An alias is `is_universe()`.

**OUTPUT:**
- True if this cone equals its entire ambient vector space and False otherwise.

**EXAMPLES:**
A single ray in two dimensions is not equal to the entire space:
```
sage: K = Cone([(1,0)])
sage: K.is_full_space()
False
```

Neither is the nonnegative orthant:
```
sage: K = cones.nonnegative_orthant(2)
sage: K.is_full_space()
False
```

The right half-space contains a vector subspace, but it is still not equal to the entire space:
```
sage: K = Cone([(1,0),(-1,0),(0,1)])
sage: K.is_full_space()
False
```

However, if we allow conic combinations of both axes, then the resulting cone is the entire two-dimensional space:
```
sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
sage: K.is_full_space()
True
```
lineality()

Return the lineality of this cone.

The lineality of a cone is the dimension of the largest linear subspace contained in that cone.

OUTPUT:

A nonnegative integer; the dimension of the largest subspace contained within this cone.

REFERENCES:

• [Roc1970]

EXAMPLES:

The lineality of the nonnegative orthant is zero, since it clearly contains no lines:

```
sage: K = cones.nonnegative_orthant(3)
sage: K.lineality()
0
```

However, if we add another ray so that the entire $x$-axis belongs to the cone, then the resulting cone will have lineality one:

```
sage: K = Cone([(1,0,0), (-1,0,0), (0,1,0), (0,0,1)])
sage: K.lineality()
1
```

If our cone is all of $\mathbb{R}^2$, then its lineality is equal to the dimension of the ambient space (i.e. two):

```
sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: K.lineality()
2
sage: K.lattice_dim()
2
```

Per the definition, the lineality of the trivial cone in a trivial space is zero:

```
sage: K = cones.trivial(0)
sage: K.lineality()
0
```

linear_subspace()

Return the largest linear subspace contained inside of self.

OUTPUT:

• subspace of the ambient space of self.

EXAMPLES:

```
sage: halfplane = Cone([(1,0), (0,1), (-1,0)])
sage: halfplane.linear_subspace()
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0]
```
lines()
Return lines generating the linear subspace of self.

OUTPUT:
• tuple of primitive vectors in the lattice of self giving directions of lines that span the linear subspace of self. These lines are arbitrary, but fixed. If you do not care about the order, see also line_set().

EXAMPLES:

```
sage: halfplane = Cone([(1,0), (0,1), (-1,0)])
sage: halfplane.lines()
N(1, 0)
in 2-d lattice N
```

```
sage: fullplane = Cone([(1,0), (0,1), (-1,-1)])
sage: fullplane.lines()
N(0, 1),
N(1, 0)
in 2-d lattice N
```

lyapunov_like_basis()
Compute a basis of Lyapunov-like transformations on this cone.
A linear transformation \( L \) is said to be Lyapunov-like on this cone if \( L(x) \) and \( s \) are orthogonal for every pair \((x, s)\) in its \texttt{discrete_complementarity_set}(). The set of all such transformations forms a vector space, namely the Lie algebra of the automorphism group of this cone.

OUTPUT:
A list of matrices forming a basis for the space of all Lyapunov-like transformations on this cone.

See also:
cross_positive_operators_gens(), positive_operators_gens(), Z_operators_gens()

REFERENCES:
• [Or2017]
• [RNPA2011]

EXAMPLES:
Every transformation is Lyapunov-like on the trivial cone:

```
sage: K = cones.trivial(2)
sage: M = MatrixSpace(K.lattice().base_field(), K.lattice_dim())
sage: list(M.basis()) == K.lyapunov_like_basis()
True
```

And by duality, every transformation is Lyapunov-like on the ambient space:

```
sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: M = MatrixSpace(K.lattice().base_field(), K.lattice_dim())
sage: list(M.basis()) == K.lyapunov_like_basis()
True
```

However, in a trivial space, there are no non-trivial linear maps, so there can be no Lyapunov-like basis:
The Lyapunov-like transformations on the nonnegative orthant are diagonal matrices:

```python
sage: K = cones.nonnegative_orthant(1)
sage: K.lyapunov_like_basis()
[[1]]

sage: K = cones.nonnegative_orthant(2)
sage: K.lyapunov_like_basis()
[[1 0] [0 0]
 [0 0], [0 1]]

sage: K = cones.nonnegative_orthant(3)
sage: K.lyapunov_like_basis()
[[1 0 0] [0 0 0] [0 0 0]
 [0 0 0] [0 1 0] [0 0 0]
 [0 0 0], [0 0 0], [0 0 1]]
```

Only the identity matrix is Lyapunov-like on the pyramids defined by the one- and infinity-norms [RNPA2011]:

```python
sage: l31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
sage: l31.lyapunov_like_basis()
[[1 0 0]
 [0 1 0]
 [0 0 1]]

sage: l3infty = Cone([(0,1,1), (1,0,1), (0,-1,1), (-1,0,1)])
sage: l3infty.lyapunov_like_basis()
[[1 0 0]
 [0 1 0]
 [0 0 1]]
```

**lyapunov_rank()**

Compute the Lyapunov rank of this cone.

The Lyapunov rank of a cone is the dimension of the space of its Lyapunov-like transformations — that is, the length of a `lyapunov_like_basis()`. Equivalently, the Lyapunov rank is the dimension of the Lie algebra of the automorphism group of the cone.

**OUTPUT:**

A nonnegative integer representing the Lyapunov rank of this cone.

If the ambient space is trivial, then the Lyapunov rank will be zero. On the other hand, if the dimension of
the ambient vector space is $n > 0$, then the resulting Lyapunov rank will be between 1 and $n^2$ inclusive. If this cone is \textit{is.proper()}, then that upper bound reduces from $n^2$ to $n$. A Lyapunov rank of $n-1$ is not possible (by Lemma 6 [Or2017]) in either case.

**ALGORITHM:**

Algorithm 3 [Or2017] is used. Every closed convex cone is isomorphic to a Cartesian product of a proper cone, a subspace, and a trivial cone. The Lyapunov ranks of the subspace and trivial cone are easy to compute. Essentially, we “peel off” those easy parts of the cone and compute their Lyapunov ranks separately. We then compute the rank of the proper cone by counting a \textit{lyapunov_like_basis()} for it. Summing the individual ranks gives the Lyapunov rank of the original cone.

**REFERENCES:**

- [GT2014]
- [Or2017]
- [RNPA2011]

**EXAMPLES:**

The Lyapunov rank of the nonnegative orthant is the same as the dimension of the ambient space [RNPA2011]:

```
sage: positives = cones.nonnegative_orthant(1)
sage: positives.lyapunov_rank()
1
sage: quadrant = cones.nonnegative_orthant(2)
sage: quadrant.lyapunov_rank()
2
sage: octant = cones.nonnegative_orthant(3)
sage: octant.lyapunov_rank()
3
```

A vector space of dimension $n$ has Lyapunov rank $n^2$ [Or2017]:

```
sage: Q5 = VectorSpace(QQ, 5)
sage: gs = Q5.basis() + [-r for r in Q5.basis()]
sage: K = Cone(gs)
sage: K.lyapunov_rank()
25
```

A pyramid in three dimensions has Lyapunov rank one [RNPA2011]:

```
sage: l31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
sage: l31.lyapunov_rank()
1
sage: l3infty = Cone([(0,1,1), (1,0,1), (0,-1,1), (-1,0,1)])
sage: l3infty.lyapunov_rank()
1
```

A ray in $n$ dimensions has Lyapunov rank $n^2 - n + 1$ [Or2017]:

```
sage: K = Cone([(1,0,0,0,0)])
sage: K.lyapunov_rank()
21
```
A subspace of dimension $m$ in an $n$-dimensional ambient space has Lyapunov rank $n^2 - m(n - m)$ \[Or2017\]:

```
sage: e1 = vector(QQ, [1,0,0,0,0])
sage: e2 = vector(QQ, [0,1,0,0,0])
sage: z = (0,0,0,0,0)
sage: K = Cone([e1, -e1, e2, -e2, z, z, z])
sage: K.lyapunov_rank()
19
sage: K.lattice_dim()**2 - K.dim()*K.codim()
19
```

Lyapunov rank is additive on a product of proper cones \[RNPA2011\]:

```
sage: l31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)])
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: K = l31.cartesian_product(octant)
sage: K.lyapunov_rank()
4
sage: l31.lyapunov_rank() + octant.lyapunov_rank()
4
```

Two linearly-isomorphic cones have the same Lyapunov rank \[RNPA2011\]. A cone linearly-isomorphic to the nonnegative octant will have Lyapunov rank 3:

```
sage: K = Cone([(1,2,3), (-1,1,0), (1,0,6)])
sage: K.lyapunov_rank()
3
```

Lyapunov rank is invariant under \texttt{dual()} \[RNPA2011\]:

```
sage: K = Cone([(2,2,4), (-1,9,0), (2,0,6)])
sage: K.lyapunov_rank() == K.dual().lyapunov_rank()
True
```

\textbf{orthogonal\_sublattice(*args, **kwds)}

The sublattice (in the dual lattice) orthogonal to the sublattice spanned by the cone.

Let $M = \texttt{self.dual\_lattice()}$ be the lattice dual to the ambient lattice of the given cone $\sigma$. Then, in the notation of [Ful1993], this method returns the sublattice

\[ M(\sigma) \overset{\text{def}}{=} \sigma^\perp \cap M \subset M \]

\textbf{INPUT:}

- either nothing or something that can be turned into an element of this lattice.

\textbf{OUTPUT:}

- if no arguments were given, a \textit{toric sublattice}, otherwise the corresponding element of it.

\textbf{EXAMPLES:}

2.4. Toric geometry
sage: c = Cone([(1,1,1), (1,-1,1), (-1,-1,1), (-1,1,1)])
sage: c.orthogonal_sublattice()
Sublattice <>
sage: c12 = Cone([(1,1,1), (1,-1,1)])
sage: c12.sublattice()
Sublattice <N(1, 1, 1), N(0, -1, 0)>
sage: c12.orthogonal_sublattice()
Sublattice <M(1, 0, -1)>

plot(**options)
Plot self.

INPUT:
- any options for toric plots (see toric_plotter.options), none are mandatory.

OUTPUT:
- a plot.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.plot()  # optional - sage.plot
Graphics object consisting of 9 graphics primitives

polyhedron()
Return the polyhedron associated to self.
Mathematically this polyhedron is the same as self.

OUTPUT:
- Polyhedron_base.

EXAMPLES:

sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant.polyhedron()
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and 2 rays
sage: line = Cone([(1,0), (-1,0)])
sage: line.polyhedron()
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and 1 line

Here is an example of a trivial cone (see trac ticket #10237):

sage: origin = Cone([], lattice=ZZ^2)
sage: origin.polyhedron()
A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex

positive_operators_gens(K2=None)
Compute minimal generators of the positive operators on this cone.
A linear operator on a cone is positive if the image of the cone under the operator is a subset of the cone. This concept can be extended to two cones: the image of the first cone under a positive operator is a subset of the second cone, which may live in a different space.
The positive operators (on one or two fixed cones) themselves form a closed convex cone. This method computes and returns the generators of that cone as a list of matrices.

**INPUT:**
- • \(K2\) – (default: \texttt{self}) the codomain cone; the image of this cone under the returned generators is a subset of \(K2\).

**OUTPUT:**
A list of \(m\)-by-\(n\) matrices where \(m\) is the ambient dimension of \(K2\) and \(n\) is the ambient dimension of this cone. Each matrix \(P\) in the list has the property that \(P(x)\) is an element of \(K2\) whenever \(x\) is an element of this cone.

The returned matrices generate the cone of positive operators from this cone to \(K2\); that is,
- • Any nonnegative linear combination of the returned matrices sends elements of this cone to \(K2\).
- • Every positive operator on this cone (with respect to \(K2\)) is some nonnegative linear combination of the returned matrices.

**ALGORITHM:**
Computing positive operators directly is difficult, but computing their dual is straightforward using the generators of Berman and Gaiha. We construct the dual of the positive operators, and then return the dual of that, which is guaranteed to be the desired positive operators because everything is closed, convex, and polyhedral.

**See also:**
- \texttt{cross_positive_operators_gens()}, \texttt{lyapunov_like_basis()}, \texttt{Z_operators_gens()}

**REFERENCES:**
- • [BG1972]
- • [BP1994]
- • [Or2018b]

**EXAMPLES:**

Positive operators on the nonnegative orthant are nonnegative matrices:

```python
sage: K = Cone([\{(1,\)]

sage: K.positive_operators_gens()
[[1]]

sage: K = Cone([\{(1,0),(0,1)\}]

sage: K.positive_operators_gens()
[
[1 0] [0 1] [0 0] [0 0]
[0 0], [0 0], [1 0], [0 1]
]
```

The trivial cone in a trivial space has no positive operators:

```python
sage: K = cones.trivial(0)

sage: K.positive_operators_gens()
[]
```

Every operator is positive on the trivial cone:
Combinatorial and Discrete Geometry, Release 9.6

```
sage: K = cones.trivial(1)
sage: K.positive_operators_gens()
[[1], [-1]]

sage: K = cones.trivial(2)
sage: K.is_trivial()
True
sage: K.positive_operators_gens()
[
[1 0] [-1 0] [0 1] [0 -1] [0 0] [0 0] [0 0] [0 0]
[0 0], [0 0], [0 0], [0 0], [1 0], [-1 0], [0 1], [0 -1]
]
```

Every operator is positive on the ambient vector space:

```
sage: K = Cone([[1,],[-1,]])
sage: K.is_full_space()
True
sage: K.positive_operators_gens()
[[1], [-1]]

sage: K = Cone([[1,0],[-1,0],[0,1],[0,-1]])
sage: K.is_full_space()
True
sage: K.positive_operators_gens()
[
[1 0] [-1 0] [0 1] [0 -1] [0 0] [0 0] [0 0] [0 0]
[0 0], [0 0], [0 0], [0 0], [1 0], [-1 0], [0 1], [0 -1]
]
```

A non-obvious application is to find the positive operators on the right half-plane [Or2018b]:

```
sage: K = Cone([[1,0],[0,1],[0,-1]])
sage: K.positive_operators_gens()
[
[1 0] [-1 0] [0 1] [0 -1] [0 0] [0 0] [0 0] [0 0]
[0 0], [0 0], [0 0], [0 0], [1 0], [-1 0], [0 1], [0 -1]
]
```

```
random_element(ring=Integer Ring)
```

Return a random element of this cone.

All elements of a convex cone can be represented as a nonnegative linear combination of its generators. A random element is thus constructed by assigning random nonnegative weights to the generators of this cone. By default, these weights are integral and the resulting random element will live in the same lattice as the cone.

The random nonnegative weights are chosen from ring which defaults to ZZ. When ring is not ZZ, the random element returned will be a vector. Only the rings ZZ and QQ are currently supported.

**INPUT:**

- **ring** – (default: ZZ) the ring from which the random generator weights are chosen; either ZZ or QQ.

**OUTPUT:**
Either a lattice element or vector contained in both this cone and its ambient vector space. If \texttt{ring} is \texttt{ZZ}, a lattice element is returned; otherwise a vector is returned. If \texttt{ring} is neither \texttt{ZZ} nor \texttt{QQ}, then a \texttt{NotImplementedError} is raised.

**EXAMPLES:**

The trivial element (0) is always returned in a trivial space:

```sage
sage: K = cones.trivial(0)
sage: K.random_element()
N(0)
sage: K.random_element(ring=QQ)
(0)
```

A random element of the trivial cone in a nontrivial space is zero:

```sage
sage: K = cones.trivial(3)
sage: K.random_element()
N(0, 0, 0)
sage: K.random_element(ring=QQ)
(0, 0, 0)
```

A random element of the nonnegative orthant should have all components nonnegative:

```sage
sage: K = cones.nonnegative_orthant(3)
sage: all(x >= 0 for x in K.random_element())
True
sage: all(x >= 0 for x in K.random_element(ring=QQ))
True
```

If \texttt{ring} is not \texttt{ZZ} or \texttt{QQ}, an error is raised:

```sage
sage: K = Cone([(1,0),(0,1)])
sage: K.random_element(ring=RR)
Traceback (most recent call last):
...
NotImplementedError: ring must be either ZZ or QQ.
```

**relative_interior()**

Return the relative interior of \texttt{self}.

**OUTPUT:**

• either \texttt{self} or an instance of \texttt{RelativeInterior}.

**EXAMPLES:**

```sage
c = Cone([(1,0,0), (0,1,0)]); c
2-d cone in 3-d lattice N
c: c.relative_interior()
Relative interior of 2-d cone in 3-d lattice N

sage: origin = cones.trivial(2); origin
0-d cone in 2-d lattice N
sage: origin.relative_interior() is origin
True
```
sage: K1 = Cone([(1,0), (-1,0)]); K1
1-d cone in 2-d lattice N
sage: K1.relative_interior() is K1
True

sage: K2 = Cone([(1,0),(-1,0),(0,1),(0,-1)]); K2
2-d cone in 2-d lattice N
sage: K2.relative_interior() is K2
True

relative_interior_contains(*args)
Check if a given point is contained in the relative interior of self.

For a full-dimensional cone the relative interior is simply the interior, so this method will do the same check as interior_contains(). For a strictly lower-dimensional cone, the relative interior is the cone without its facets.

INPUT:
  • anything. An attempt will be made to convert all arguments into a single element of the ambient space of self. If it fails, False will be returned.

OUTPUT:
  • True if the given point is contained in the relative interior of self, False otherwise.

EXAMPLES:

sage: c = Cone([(1,0,0), (0,1,0)])
sage: c.contains((1,1,0))
True
sage: c.relative_interior_contains((1,1,0))
True
sage: c.interior_contains((1,1,0))
False
sage: c.contains((1,0,0))
True
sage: c.relative_interior_contains((1,0,0))
False
sage: c.interior_contains((1,0,0))
False

relative_orthogonal_quotient(supercone)
The quotient of the dual spanned lattice by the dual of the supercone’s spanned lattice.

In the notation of [Ful1993], if supercone = ρ > σ = self is a cone that contains σ as a face, then $M(\rho) = supercone.orthogonal_sublattice()$ is a saturated sublattice of $M(\sigma) = self.orthogonal_sublattice()$. This method returns the quotient lattice. The lifts of the quotient generators are $\dim(\rho) - \dim(\sigma)$ linearly independent M-lattice lattice points that, together with $M(\rho)$, generate $M(\sigma)$.

OUTPUT:
  • toric lattice quotient.

If we call the output Mrho, then
  • Mrho.cover() == self.orthogonal_sublattice(), and
• Mrho.relations() == supercone.orthogonal_sublattice().

Note:
• \( M(\sigma)/M(\rho) \) has no torsion since the sublattice \( M(\rho) \) is saturated.
• In the codimension one case, (a lift of) the generator of \( M(\sigma)/M(\rho) \) is chosen to be positive on \( \sigma \).

EXAMPLES:

```python
sage: rho = Cone([[1,1,1,3],[1,-1,1,3],[-1,-1,1,3],[-1,1,1,3]])
sage: rho.orthogonal_sublattice()
Sublattice <M(0, 0, 3, -1)>
sage: sigma = rho.facets()[1]
sage: sigma.orthogonal_sublattice()
Sublattice <M(0, 1, 1, 0), M(0, 0, 3, -1)>
sage: sigma.is_face_of(rho)
True
sage: Q = sigma.relative_orthogonal_quotient(rho); Q
1-d lattice, quotient
of Sublattice <M(0, 1, 1, 0), M(0, 0, 3, -1)>
by Sublattice <M(0, 0, 3, -1)>
sage: Q.gens()
(M[0, 1, 1, 0],)
```

Different codimension:

```python
sage: rho = Cone([[1,-1,1,3],[-1,-1,1,3]])
sage: sigma = rho.facets()[0]
sage: sigma.orthogonal_sublattice()
Sublattice <M(1, 0, 2, -1), M(0, 1, 1, 0), M(0, 0, 3, -1)>
sage: rho.orthogonal_sublattice()
Sublattice <M(0, 1, 1, 0), M(0, 0, 3, -1)>
sage: sigma.relative_orthogonal_quotient(rho).gens()
(M[-1, 0, -2, 1],)
```

Sign choice in the codimension one case:

```python
sage: sigma1 = Cone([[1, 2, 3], (1, -1, 1), (-1, 1, 1), (-1, -1, 1)]) # 3d
sage: sigma2 = Cone([[1, -1, -1], (1, 2, 3), (1, -1, 1), (1, -1, -1)]) # 3d
sage: rho = sigma1.intersection(sigma2)
```

```python
relative_quotient(subcone)
The quotient of the spanned lattice by the lattice spanned by a subcone.

In the notation of [Ful1993], let \(N \) be the ambient lattice and \(N_\sigma \) the sublattice spanned by the given cone \(\sigma \). If \(\rho < \sigma \) is a subcone, then \(N_\rho = rho.sublattice() \) is a saturated sublattice of \(N_\sigma = self.sublattice() \). This method returns the quotient lattice. The lifts of the quotient generators are \(\dim(\sigma) - \dim(\rho) \) linearly independent primitive lattice points that, together with \(N_\rho \), generate \(N_\sigma \).

OUTPUT:

2.4. Toric geometry
• toric lattice quotient.

Note:
• The quotient N_σ/N_ρ of spanned sublattices has no torsion since the sublattice N_ρ is saturated.
• In the codimension one case, the generator of N_σ/N_ρ is chosen to be in the same direction as the image σ/N_ρ

EXAMPLES:

```python
sage: sigma = Cone([[(1,1,1,3),(1,-1,1,3),(-1,-1,1,3),(-1,1,1,3)]
sage: rho = Cone([[-1, -1, 1, 3), (-1, 1, 1, 3))

sage: sigma.sublattice()
Sublattice <N(1, 1, 1, 3), N(0, -1, 0, 0), N(-1, -1, 0, 0)>

sage: rho.sublattice()
Sublattice <N(-1, -1, 1, 3), N(0, 1, 0, 0)>

sage: sigma.relative_quotient(rho)
1-d lattice, quotient
of Sublattice <N(1, 1, 1, 3), N(0, -1, 0, 0), N(-1, -1, 0, 0)>
by Sublattice <N(1, 0, -1, -3), N(0, 1, 0, 0)>

sage: sigma.relative_quotient(rho).gens()
(N[1, 0, 0, 0],)

More complicated example:

```python
sage: rho = Cone([[(1, 2, 3), (1, -1, 1)]
sage: sigma = Cone([[(1, 2, 3), (1, -1, 1), (-1, 1, 1), (-1, -1, 1)]
sage: N_sigma = sigma.sublattice()

sage: N_rho = rho.sublattice()

sage: sigma.relative_quotient(rho).gens()
(N[-1, -1, -2],)

sage: N = rho.lattice()
sage: N_sigma == N.span(N_rho.gens() + tuple(q.lift() for q in sigma.relative_quotient(rho).gens()))
True
```

Sign choice in the codimension one case:

```python
sage: sigma1 = Cone([[(1, 2, 3), (1, -1, 1)]])

sage: sigma2 = Cone([[(1, 1, -1), (1, 2, 3), (1, -1, 1), (1, -1, -1)]])

sage: rho = sigma1.intersection(sigma2)

sage: rho.sublattice()
Sublattice <N(1, 1, 1), N(0, 1, 0)>

sage: sigma1.relative_quotient(rho)
1-d lattice, quotient
of Sublattice <N(1, 2, 3), N(0, -1, 0), N(-1, -1, 0)>
by Sublattice <N(1, 0, -1, -3), N(0, 1, 0, 0)>

sage: sigma1.relative_quotient(rho).gens()
(N[-1, -1, -2],)
```

(continues on next page)
semigroup_generators()
Return generators for the semigroup of lattice points of self.

OUTPUT:
• a PointCollection of lattice points generating the semigroup of lattice points contained in self.

Note: No attempt is made to return a minimal set of generators, see Hilbert_basis() for that.

EXAMPLES:
The following command ensures that the output ordering in the examples below is independent of TOP-COM, you don’t have to use it:

```
sage: PointConfiguration.set_engine('internal')
```

We start with a simple case of a non-smooth 2-dimensional cone:

```
sage: Cone([[1,0], (1,2)]).semigroup_generators()
N(1, 1),
N(1, 0),
N(1, 2)
in 2-d lattice N
```

A non-simplicial cone works, too:

```
sage: cone = Cone([[3,0,-1], (1,-1,0), (0,1,0), (0,0,1)])
sage: sorted(cone.semigroup_generators())
[N(0, 0, 1), N(0, 1, 0), N(1, -1, 0), N(1, 0, 0), N(3, 0, -1)]
```

GAP’s toric package thinks this is challenging:

```
sage: cone = Cone([[1,2,3,4],[0,1,0,7],[3,1,0,2],[0,0,1,0]]).dual()
sage: len(cone.semigroup_generators())
2806
```

The cone need not be strictly convex:

```
sage: halfplane = Cone([[1,0),(2,1),(-1,0)])
sage: sorted(halfplane.semigroup_generators())
[N(-1, 0), N(0, 1), N(1, 0)]
sage: line = Cone([[1,1,1),(-1,-1,-1)])
sage: sorted(line.semigroup_generators())
[N(-1, -1, -1), N(1, 1, 1)]
sage: wedge = Cone([[1,0,0), (1,2,0), (0,0,1), (0,0,-1)])
sage: sorted(wedge.semigroup_generators())
[N(0, 0, -1), N(0, 0, 1), N(1, 0, 0), N(1, 1, 0), N(1, 2, 0)]
```

Nor does it have to be full-dimensional (see trac ticket #11312):
Neither full-dimensional nor simplicial:

```
sage: A = matrix([[1, 3, 0], [-1, 0, 1], [1, 1, -2], [15, -2, 0]])
sage: A.elementary_divisors()
[1, 1, 1, 0]
sage: cone3d = Cone([(3,0,-1), (1,-1,0), (0,1,0), (0,0,1)])
sage: rays = (A*vector(v) for v in cone3d.rays())
sage: gens = Cone(rays).semigroup_generators(); sorted(gens)
[N(-2, -1, 0, 17),
 N(0, 1, -2, 0),
 N(1, -1, 1, 15),
 N(3, -4, 5, 45),
 N(3, 0, 1, -2)]
sage: set(map(tuple,gens)) == set(tuple(A*r) for r in cone3d.semigroup_generators())
True
```

ALGORITHM:

If the cone is not simplicial, it is first triangulated. Each simplicial subcone has the integral points of the spaned parallelotope as generators. This is the first step of the primal Normaliz algorithm, see [Normaliz]. For each simplicial cone (of dimension \(d\)), the integral points of the open parallelotope

\[
\text{par}(x_1, \ldots, x_d) = \mathbb{Z}^n \cap \{ q_1 x_1 + \cdots + q_d x_d : 0 \leq q_i < 1 \}
\]

are then computed [BK2001].

Finally, the union of the generators of all simplicial subcones is returned.

### solid_restriction()

Return a solid representation of this cone in terms of a basis of its sublattice().

We define the solid restriction of a cone to be a representation of that cone in a basis of its own sublattice. Since a cone’s sublattice is just large enough to hold the cone (by definition), the resulting solid restriction is_solid(). For convenience, the solid restriction lives in a new lattice (of the appropriate dimension) and not actually in the sublattice object returned by sublattice().

**OUTPUT:**

A solid cone in a new lattice having the same dimension as this cone’s sublattice().

**EXAMPLES:**

The nonnegative quadrant in the plane is left after we take its solid restriction in space:

```
sage: K = Cone([(1,0,0), (0,1,0)])
sage: K.solid_restriction().rays()
N(0, 1),
N(1, 0)
in 2-d lattice N
```

The solid restriction of a single ray has the same representation regardless of the ambient space:
sage: K = Cone([[1,0]])
sage: K.solid_restriction().rays()
N(1)
in 1-d lattice N
sage: K = Cone([[1,1]])
sage: K.solid_restriction().rays()
N(1)
in 1-d lattice N

The solid restriction of the trivial cone lives in a trivial space:

sage: K = cones.trivial(0)
sage: K.solid_restriction()
0-d cone in 0-d lattice N
sage: K = cones.trivial(4)
sage: K.solid_restriction()
0-d cone in 0-d lattice N

The solid restriction of a solid cone is itself:

sage: K = Cone([[1,1],(1,2)])
sage: K.solid_restriction()
is K
True

strict_quotient()
Return the quotient of self by the linear subspace.

We define the strict quotient of a cone to be the image of this cone in the quotient of the ambient space by the linear subspace of the cone, i.e. it is the “complementary part” to the linear subspace.

OUTPUT:
• cone.

EXAMPLES:

sage: halfplane = Cone([[1,0], (0,1), (-1,0)])
sage: ssc = halfplane.strict_quotient()
sage: ssc
1-d cone in 1-d lattice N
sage: ssc.rays()
N(1)
in 1-d lattice N
sage: line = Cone([[1,0], (-1,0)])
sage: ssc = line.strict_quotient()
sage: ssc
0-d cone in 1-d lattice N
sage: ssc.rays()
Empty collection
in 1-d lattice N

The quotient of the trivial cone is trivial:

sage: K = cones.trivial(0)
sage: K.strict_quotient()
$	heta$-d cone in $\theta$-d lattice $N$

```
sage: K = Cone([[0,0,0,0]])
sage: K.strict_quotient()
```

$	heta$-d cone in 4-d lattice $N$

```
sublattice(*args, **kwds)
The sublattice spanned by the cone.

Let σ be the given cone and $N = self.lattice()$ the ambient lattice. Then, in the notation of [Ful1993],
this method returns the sublattice

$$N_\sigma \overset{\text{def}}{=} \text{span}(N \cap \sigma)$$

INPUT:

- either nothing or something that can be turned into an element of this lattice.

OUTPUT:

- if no arguments were given, a toric sublattice, otherwise the corresponding element of it.

Note:

- The sublattice spanned by the cone is the saturation of the sublattice generated by the rays of the cone.
- If you only need a \mathbb{Q}-basis, you may want to try the `basis()` method on the result of `rays()`.
- The returned lattice points are usually not rays of the cone. In fact, for a non-smooth cone the rays do
not generate the sublattice N_σ, but only a finite index sublattice.

EXAMPLES:

```
sage: cone = Cone([[1, 1, 1], (1, -1, 1), (-1, -1, 1), (-1, 1, 1)])
sage: cone.rays().basis()
N( 1, 1, 1),
N( 1, -1, 1),
N(-1, -1, 1)
in 3-d lattice N
sage: cone.rays().basis().matrix().det()
-4
sage: cone.sublattice()
Sublattice <N(1, 1, 1), N(0, -1, 0), N(-1, -1, 0)>
sage: matrix( cone.sublattice().gens() ).det()
-1
```

Another example:

```
sage: c = Cone([[1,2,3], (4,-5,1)])
sage: c
2-d cone in 3-d lattice N
sage: c.rays()
N(1, 2, 3),
N(4, -5, 1)
in 3-d lattice N
sage: c.sublattice()
```

(continues on next page)
Sublattice \(\langle N(4, -5, 1), N(1, 2, 3) \rangle\)

```python
c.sublattice(5, -3, 4)
N(5, -3, 4)
c.sublattice(1, 0, 0)
```

Traceback (most recent call last):
...
TypeError: element \([1, 0, 0]\) is not in free module

sublattice_complement(*args, **kwds)
A complement of the sublattice spanned by the cone.

In other words, `sublattice()` and `sublattice_complement()` together form a \(\mathbb{Z}\)-basis for the ambient lattice.

In the notation of [Ful1993], let \(\sigma\) be the given cone and \(N = \text{self.lattice()}\) the ambient lattice. Then this method returns

\[
N(\sigma) \overset{\text{def}}{=} N/N_\sigma
\]

lifted (non-canonically) to a sublattice of \(N\).

INPUT:
- either nothing or something that can be turned into an element of this lattice.

OUTPUT:
- if no arguments were given, a toric sublattice, otherwise the corresponding element of it.

EXAMPLES:

```python
c2_Z2 = Cone([[1,0],[1,2]]) # C^2/\mathbb{Z}_2
c1, c2 = c2_Z2.facets()
c2.sublattice()
```

Sublattice \(\langle N(1, 2) \rangle\)

```python
c2.sublattice_complement()
```

Sublattice \(\langle N(0, 1) \rangle\)

A more complicated example:

```python
c = Cone([[1,2,3], [4,-5,1]])
c.sublattice()
```

Sublattice \(\langle N(4, -5, 1), N(1, 2, 3) \rangle\)

```python
c.sublattice_complement()
```

Sublattice \(\langle N(2, -3, 0) \rangle\)

```python
m = matrix( c.sublattice().gens() + c.sublattice_complement().gens() )
m
```

```
[ 4 -5  1]
[ 1  2  3]
[ 2 -3  0]
```

```python
m.det()
```

-1

sublattice_quotient(*args, **kwds)
The quotient of the ambient lattice by the sublattice spanned by the cone.

INPUT:
• either nothing or something that can be turned into an element of this lattice.

OUTPUT:

• if no arguments were given, a quotient of a toric lattice, otherwise the corresponding element of it.

EXAMPLES:

```python
sage: C2_Z2 = Cone([(1,0),(1,2)]) # C^2/Z_2
sage: c1, c2 = C2_Z2.facets()
sage: c2.sublattice_quotient()
1-d lattice, quotient of 2-d lattice N by Sublattice <N(1, 2)>
sage: N = C2_Z2.lattice()
sage: n = N(1,1)
sage: n_bar = c2.sublattice_quotient(n); n_bar
N[1, 1]
sage: n_bar.lift()
N(1, 1)
sage: vector(n_bar)
(-1)
```

class `sage.geometry.cone.IntegralRayCollection`(rays, lattice)

Bases: `sage.structure.sage_object.SageObject`, `collections.abc.Hashable`, `collections.abc.Iterable`

Create a collection of integral rays.

Warning: No correctness check or normalization is performed on the input data. This class is designed for internal operations and you probably should not use it directly.

This is a base class for convex rational polyhedral cones and fans.

Ray collections are immutable, but they cache most of the returned values.

INPUT:

• `rays` – list of immutable vectors in `lattice`;

• `lattice` – `ToricLattice`, `Z^n`, or any other object that behaves like these. If `None`, it will be determined as `parent()` of the first ray. Of course, this cannot be done if there are no rays, so in this case you must give an appropriate `lattice` directly. Note that `None` is not the default value - you always must give this argument explicitly, even if it is `None`.

OUTPUT:

• collection of given integral rays.

`ambient_dim()`

Return the dimension of the ambient lattice of `self`.

An alias is `ambient_dim()`.

OUTPUT:

• integer.

EXAMPLES:
Combinatorial and Discrete Geometry, Release 9.6

```
sage: c = Cone([(1,0)])
sage: c.lattice_dim()
2
sage: c.dim()
1
```

ambient_vector_space(base_field=None)

Return the ambient vector space.

It is the ambient lattice (lattice()) tensored with a field.

INPUT:
- base_field – (default: the rationals) a field.

EXAMPLES:

```
sage: c = Cone([(1,0)])
sage: c.ambient_vector_space()
Vector space of dimension 2 over Rational Field
sage: c.ambient_vector_space(AA)
Vector space of dimension 2 over Algebraic Real Field
```

cartesian_product(other, lattice=None)

Return the Cartesian product of self with other.

INPUT:
- other – an IntegralRayCollection;
- lattice – (optional) the ambient lattice for the result. By default, the direct sum of the ambient lattices of self and other is constructed.

OUTPUT:
- an IntegralRayCollection.

By the Cartesian product of ray collections \((r_0, \ldots, r_{n-1})\) and \((s_0, \ldots, s_{m-1})\) we understand the ray collection of the form \(((r_0, 0), \ldots, (r_{n-1}, 0), (0, s_0), \ldots, (0, s_{m-1}))\), which is suitable for Cartesian products of cones and fans. The ray order is guaranteed to be as described.

EXAMPLES:

```
sage: c = Cone([(1,)])
sage: c.cartesian_product(c)  # indirect doctest
2-d cone in 2-d lattice N+N
sage: _.rays()
N+N(1, 0),
N+N(0, 1)
in 2-d lattice N+N
```

codim

Return the codimension of self.

The codimension of a collection of rays (of a cone/fan) is the difference between the dimension of the ambient space and the dimension of the subspace spanned by those rays (of the cone/fan).

OUTPUT:
- A nonnegative integer representing the codimension of self.
See also:
\texttt{dim()}, \texttt{lattice_dim()}

EXAMPLES:

The codimension of the nonnegative orthant is zero, since the span of its generators equals the entire ambient space:

\begin{verbatim}
sage: K = cones.nonnegative_orthant(3)
sage: K.codim()
0
\end{verbatim}

However, if we remove a ray so that the entire cone is contained within the x-y plane, then the resulting cone will have codimension one, because the z-axis is perpendicular to every element of the cone:

\begin{verbatim}
sage: K = Cone([(1,0,0), (0,1,0)])
sage: K.codim()
1
\end{verbatim}

If our cone is all of \mathbb{R}^2, then its codimension is zero:

\begin{verbatim}
sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: K.codim()
0
\end{verbatim}

And if the cone is trivial in any space, then its codimension is equal to the dimension of the ambient space:

\begin{verbatim}
sage: K = cones.trivial(0)
sage: K.lattice_dim()
0
sage: K.codim()
0
sage: K = cones.trivial(1)
sage: K.lattice_dim()
1
sage: K.codim()
1
sage: K = cones.trivial(2)
sage: K.lattice_dim()
2
sage: K.codim()
2
\end{verbatim}

codimension()

Return the codimension of \texttt{self}.

The codimension of a collection of rays (of a cone/fan) is the difference between the dimension of the ambient space and the dimension of the subspace spanned by those rays (of the cone/fan).

OUTPUT:

A nonnegative integer representing the codimension of \texttt{self}.

326 Chapter 2. Polyhedral computations
See also:

`dim(), lattice_dim()`

EXAMPLES:

The codimension of the nonnegative orthant is zero, since the span of its generators equals the entire ambient space:

```
sage: K = cones.nonnegative_orthant(3)
sage: K.codim()
0
```

However, if we remove a ray so that the entire cone is contained within the x-y plane, then the resulting cone will have codimension one, because the z-axis is perpendicular to every element of the cone:

```
sage: K = Cone([(1,0,0), (0,1,0)])
sage: K.codim()
1
```

If our cone is all of \mathbb{R}^2, then its codimension is zero:

```
sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: K.lattice_dim()
0
sage: K.codim()
0
```

And if the cone is trivial in any space, then its codimension is equal to the dimension of the ambient space:

```
sage: K = cones.trivial(0)
sage: K.lattice_dim()
0
sage: K.codim()
0
sage: K = cones.trivial(1)
sage: K.lattice_dim()
1
sage: K.codim()
1
sage: K = cones.trivial(2)
sage: K.lattice_dim()
2
sage: K.codim()
2
```

`dim()`

Return the dimension of the subspace spanned by rays of `self`.

OUTPUT:

* integer.

EXAMPLES:
sage: c = Cone([(1,0)])
sage: c.lattice_dim()
2
sage: c.dim()
1

dual_lattice()

Return the dual of the ambient lattice of self.

OUTPUT:

• lattice. If possible (that is, if lattice() has a dual() method), the dual lattice is returned. Otherwise, \mathbb{Z}^n is returned, where n is the dimension of lattice().

EXAMPLES:

sage: c = Cone([(1,0)])
sage: c.dual_lattice()
2-d lattice \mathbb{N}
sage: Cone([], ZZ^3).dual_lattice()
Ambient free module of rank 3
over the principal ideal domain Integer Ring

lattice()

Return the ambient lattice of self.

OUTPUT:

• lattice.

EXAMPLES:

sage: c = Cone([(1,0)])
sage: c.lattice()
2-d lattice \mathbb{N}
sage: Cone([], ZZ^3).lattice()
Ambient free module of rank 3
over the principal ideal domain Integer Ring

lattice_dim()

Return the dimension of the ambient lattice of self.

An alias is ambient_dim().

OUTPUT:

• integer.

EXAMPLES:

sage: c = Cone([(1,0)])
sage: c.lattice_dim()
2
sage: c.dim()
1

nrays()

Return the number of rays of self.

OUTPUT:
• integer.

EXAMPLES:

```sage
c = Cone([((1,0), (0,1))]
sage: c.nrays()
2
```

`plot(**options)`

Plot self.

INPUT:

• any options for toric plots (see `toric_plotter.options`), none are mandatory.

OUTPUT:

• a plot.

EXAMPLES:

```sage: quadrant = Cone([[(1,0), (0,1)]]
sage: quadrant.plot() # optional - sage.plot
Graphics object consisting of 9 graphics primitives
```

`ray(n)`

Return the n-th ray of self.

INPUT:

• n – integer, an index of a ray of self. Enumeration of rays starts with zero.

OUTPUT:

• ray, an element of the lattice of self.

EXAMPLES:

```sage: c = Cone([[(1,0), (0,1)]]
sage: c.ray(0)
N(1, 0)
```

`rays(*args)`

Return (some of the) rays of self.

INPUT:

• ray_list – a list of integers, the indices of the requested rays. If not specified, all rays of self will be returned.

OUTPUT:

• a `PointCollection` of primitive integral ray generators.

EXAMPLES:

```sage: c = Cone([[(1,0), (0,1), (-1, 0)]]
sage: c.rays()
N( 0, 1),
N( 1, 0),
N(-1, 0)
in 2-d lattice N
```

(continues on next page)
You can also give ray indices directly, without packing them into a list:

```python
sage: c.rays(0, 2)
N( 0, 1),
N(-1, 0)
in 2-d lattice N
```

span(base_ring=None)
Return the span of self.

INPUT:

• base_ring – (default: from lattice) the base ring to use for the generated module.

OUTPUT:
A module spanned by the generators of self.

EXAMPLES:
The span of a single ray is a one-dimensional sublattice:

```python
sage: K1 = Cone([(1,)])
sage: K1.span()
Sublattice <N(1)>
sage: K2 = Cone([(1,0)])
sage: K2.span()
Sublattice <N(1, 0)>
```

The span of the nonnegative orthant is the entire ambient lattice:

```python
sage: K = cones.nonnegative_orthant(3)
sage: K.span() == K.lattice()
True
```

By specifying a base_ring, we can obtain a vector space:

```python
sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
sage: K.span(base_ring=QQ)
Vector space of degree 3 and dimension 3 over Rational Field
Basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]
```

sage.geometry.cone.classify_cone_2d(ray0, ray1, check=True)
Return \((d, k)\) classifying the lattice cone spanned by the two rays.

INPUT:

• ray0, ray1 – two primitive integer vectors. The generators of the two rays generating the two-dimensional cone.
• check – boolean (default: True). Whether to check the input rays for consistency.

OUTPUT:
A pair \((d, k)\) of integers classifying the cone up to \(GL(2, \mathbb{Z})\) equivalence. See Proposition 10.1.1 of [CLS2011] for the definition. We return the unique \((d, k)\) with minimal \(k\), see Proposition 10.1.3 of [CLS2011].

EXAMPLES:

```python
sage: ray0 = vector([1,0])
sage: ray1 = vector([2,3])
sage: from sage.geometry.cone import classify_cone_2d
classify_cone_2d(ray0, ray1)
(3, 2)

sage: ray0 = vector([2,4,5])
sage: ray1 = vector([5,19,11])
classify_cone_2d(ray0, ray1)
(3, 1)

sage: m = matrix(ZZ, [(19, -14, -115), (-2, 5, 25), (43, -42, -298)])
m.det()  # check that it is in GL(3,ZZ)
-1
sage: classify_cone_2d(m*ray0, m*ray1)
(3, 1)
```

```
sage.geometry.cone.integral_length(v)
```

Compute the integral length of a given rational vector.

INPUT:

• \(v\) – any object which can be converted to a list of rationals

OUTPUT:

Rational number \(r\) such that \(v = r \cdot u\), where \(u\) is the primitive integral vector in the direction of \(v\).

EXAMPLES:

```python
sage: from sage.geometry.cone import integral_length
ingeval = integral_length([1, 2, 4])
1
sage: integral_length([2, 2, 4])
2
sage: integral_length([2/3, 2, 4])
2/3
```

```
sage.geometry.cone.is_Cone(x)
```

Check if \(x\) is a cone.

INPUT:

• \(x\) – anything.

OUTPUT:

• True if \(x\) is a cone and False otherwise.

EXAMPLES:
sage: from sage.geometry.cone import is_Cone
sage: is_Cone(1)
False
sage: quadrant = Cone([(1,0), (0,1)])
2-d cone in 2-d lattice N
sage: is_Cone(quadrant)
True

sage.geometry.cone.normalize_rays(rays, lattice)
Normalize a list of rational rays: make them primitive and immutable.

INPUT:
• rays – list of rays which can be converted to the rational extension of lattice;
• lattice – ToricLattice, \(\mathbb{Z}^n\), or any other object that behaves like these. If None, an attempt will be made to determine an appropriate toric lattice automatically.

OUTPUT:
• list of immutable primitive vectors of the lattice in the same directions as original rays.

EXAMPLES:

sage: from sage.geometry.cone import normalize_rays
sage: normalize_rays([(0, 1), (0, 2), (3, 2), (5/7, 10/3)], None)
[N(0, 1), N(0, 1), N(3, 2), N(3, 14)]
sage: L = ToricLattice(2, "L")
sage: normalize_rays([(0, 1), (0, 2), (3, 2), (5/7, 10/3)], L.dual())
[L*(0, 1), L*(0, 1), L*(3, 2), L*(3, 14)]
sage: ray_in_L = L(0,1)
sage: normalize_rays([ray_in_L, (0, 2), (3, 2), (5/7, 10/3)], None)
[L(0, 1), L(0, 1), L(3, 2), L(3, 14)]
sage: normalize_rays([(0, 1), (0, 2), (3, 2), (5/7, 10/3)], ZZ^2)
[(0, 1), (0, 1), (3, 2), (3, 14)]
sage: normalize_rays([(0, 1), (0, 2), (3, 2), (5/7, 10/3)], ZZ^3)
Traceback (most recent call last):
 ... TypeError: cannot convert (0, 1) to Vector space of dimension 3 over Rational Field!
sage: normalize_rays([], ZZ^3)
[]

sage.geometry.cone.random_cone(lattice=None, min_ambient_dim=0, max_ambient_dim=None, min_rays=0, max_rays=None, strictly_convex=None, solid=None)
Generate a random convex rational polyhedral cone.

Lower and upper bounds may be provided for both the dimension of the ambient space and the number of generating rays of the cone. If a lower bound is left unspecified, it defaults to zero. Unspecified upper bounds will be chosen randomly, unless you set solid, in which case they are chosen a little more wisely.

You may specify the ambient lattice for the returned cone. In that case, the min_ambient_dim and max_ambient_dim parameters are ignored.

You may also request that the returned cone be strictly convex (or not). Likewise you may request that it be (non-)solid.
Warning: If you request a large number of rays in a low-dimensional space, you might be waiting for a while. For example, in three dimensions, it is possible to obtain an octagon raised up to height one (all z-coordinates equal to one). But in practice, we usually generate the entire three-dimensional space with six rays before we get to the eight rays needed for an octagon. We therefore have to throw the cone out and start over from scratch. This process repeats until we get lucky.

We also refrain from “adjusting” the min/max parameters given to us when a (non-)strictly convex or (non-)solid cone is requested. This means that it may take a long time to generate such a cone if the parameters are chosen unwisely.

For example, you may want to set min_rays close to min_ambient_dim if you desire a solid cone. Or, if you desire a non-strictly-convex cone, then they all contain at least two generating rays. So that might be a good candidate for min_rays.

INPUT:
- **lattice** (default: random) – A ToricLattice object in which the returned cone will live. By default a new lattice will be constructed with a randomly-chosen rank (subject to min_ambient_dim and max_ambient_dim).
- **min_ambient_dim** (default: zero) – A nonnegative integer representing the minimum dimension of the ambient lattice.
- **max_ambient_dim** (default: random) – A nonnegative integer representing the maximum dimension of the ambient lattice.
- **min_rays** (default: zero) – A nonnegative integer representing the minimum number of generating rays of the cone.
- **max_rays** (default: random) – A nonnegative integer representing the maximum number of generating rays of the cone.
- **strictly_convex** (default: random) – Whether or not to make the returned cone strictly convex. Specify True for a strictly convex cone, False for a non-strictly-convex cone, or None if you don’t care.
- **solid** (default: random) – Whether or not to make the returned cone solid. Specify True for a solid cone, False for a non-solid cone, or None if you don’t care.

OUTPUT:
A new, randomly generated cone.

A ValueError will be thrown under the following conditions:
- Any of min_ambient_dim, max_ambient_dim, min_rays, or max_rays are negative.
- max_ambient_dim is less than min_ambient_dim.
- max_rays is less than min_rays.
- Both max_ambient_dim and lattice are specified.
- min_rays is greater than four but max_ambient_dim is less than three.
- min_rays is greater than four but lattice has dimension less than three.
- min_rays is greater than two but max_ambient_dim is less than two.
- min_rays is greater than two but lattice has dimension less than two.
- min_rays is positive but max_ambient_dim is zero.
- min_rays is positive but lattice has dimension zero.
• A trivial lattice is supplied and a non-strictly-convex cone is requested.
• A non-strictly-convex cone is requested but \texttt{max_rays} is less than two.
• A solid cone is requested but \texttt{max_rays} is less than \texttt{min_ambient_dim}.
• A solid cone is requested but \texttt{max_rays} is less than the dimension of \texttt{lattice}.
• A non-solid cone is requested but \texttt{max_ambient_dim} is zero.
• A non-solid cone is requested but \texttt{lattice} has dimension zero.
• A non-solid cone is requested but \texttt{min_rays} is so large that it guarantees a solid cone.

ALGORITHM:
First, a lattice is determined from \texttt{min_ambient_dim} and \texttt{max_ambient_dim} (or from the supplied \texttt{lattice}).

Then, lattice elements are generated one at a time and added to a cone. This continues until either the cone meets the user’s requirements, or the cone is equal to the entire space (at which point it is futile to generate more).

We check whether or not the resulting cone meets the user’s requirements; if it does, it is returned. If not, we throw it away and start over. This process repeats indefinitely until an appropriate cone is generated.

EXAMPLES:
Generate a trivial cone in a trivial space:

\begin{verbatim}
sage: random_cone(max_ambient_dim=0, max_rays=0)
0-d cone in 0-d lattice N
\end{verbatim}

We can predict the ambient dimension when \texttt{min_ambient_dim == max_ambient_dim}:

\begin{verbatim}
sage: K = random_cone(min_ambient_dim=4, max_ambient_dim=4)
sage: K.lattice_dim()
4
\end{verbatim}

Likewise for the number of rays when \texttt{min_rays == max_rays}:

\begin{verbatim}
sage: K = random_cone(min_rays=3, max_rays=3)
sage: K.nrays()
3
\end{verbatim}

If we specify a lattice, then the returned cone will live in it:

\begin{verbatim}
sage: L = ToricLattice(5, "L")
sage: K = random_cone(lattice=L)
sage: K.lattice() is L
True
\end{verbatim}

We can also request a strictly convex cone:

\begin{verbatim}
sage: K = random_cone(max_ambient_dim=8, max_rays=10,
.....: strictly_convex=True)
sage: K.is_strictly_convex()
True
\end{verbatim}

Or one that isn’t strictly convex:
2.4.3 Catalog of common polyhedral convex cones

This module provides shortcut functions, grouped under the globally-available cones prefix, to create some common cones:

- The nonnegative orthant,
- The rearrangement cone of order p,
- The Schur cone,
- The trivial cone.

At the moment, only convex rational polyhedral cones are supported—specifically, those cones that can be built using the Cone() constructor. As a result, each shortcut method can be passed either an ambient dimension ambient_dim, or a toric lattice (from which the dimension can be inferred) to determine the ambient space.

Here are some typical usage examples:

```python
sage: cones.nonnegative_orthant(2).rays()
N(1, 0),
N(0, 1)
in 2-d lattice N

sage: cones.rearrangement(2,2).rays()
N( 1, 0),
N( 1, -1),
N(-1, 1)
in 2-d lattice N

sage: cones.schur(3).rays()
N(1, -1, 0),
N(0, 1, -1)
in 3-d lattice N
```
sage: cones.trivial(3).rays()
Empty collection
in 3-d lattice N

To specify some other lattice, pass it as an argument to the function:

sage: K = cones.nonnegative_orthant(3)
sage: cones.schur(lattice=K.dual().lattice())
2-d cone in 3-d lattice M

For more information about these cones, see the documentation for the individual functions and the references therein.

sage.geometry.cone_catalog.nonnegative_orthant(ambient_dim=None, lattice=None)
The nonnegative orthant in ambient_dim dimensions, or living in lattice.
The nonnegative orthant consists of all componentwise-nonnegative vectors. It is the convex-conic hull of the standard basis.

INPUT:
- ambient_dim – a nonnegative integer (default: None); the dimension of the ambient space
- lattice – a toric lattice (default: None); the lattice in which the cone will live

If ambient_dim is omitted, then it will be inferred from the rank of lattice. If the lattice is omitted, then the default lattice of rank ambient_dim will be used.

A ValueError is raised if neither ambient_dim nor lattice are specified. It is also a ValueError to specify both ambient_dim and lattice unless the rank of lattice is equal to ambient_dim.

OUTPUT:
A ConvexRationalPolyhedralCone living in lattice and having ambient_dim standard basis vectors as its generators. Each generating ray has the integer ring as its base ring.

A ValueError can be raised if the inputs are incompatible or insufficient. See the INPUT documentation for details.

REFERENCES:
- Chapter 2 in [BV2009] (Examples 2.4, 2.14, and 2.23 in particular)

EXAMPLES:
sage: cones.nonnegative_orthant(3).rays()
N(1, 0, 0),
N(0, 1, 0),
N(0, 0, 1)
in 3-d lattice N

sage.geometry.cone_catalog.rearrangement(p, ambient_dim=None, lattice=None)
The rearrangement cone of order p in ambient_dim dimensions, or living in lattice.
The rearrangement cone of order p in ambient_dim dimensions consists of all vectors of length ambient_dim whose smallest p components sum to a nonnegative number.
For example, the rearrangement cone of order one has its single smallest component nonnegative. This implies that all components are nonnegative, and that therefore the rearrangement cone of order one is the nonnegative orthant in its ambient space.
When \(p \) and \(\text{ambient_dim} \) are equal, all components of the cone’s elements must sum to a nonnegative number. In other words, the rearrangement cone of order \(\text{ambient_dim} \) is a half-space.

INPUT:
- \(p \) – a nonnegative integer; the number of components to “rearrange”, between 1 and \(\text{ambient_dim} \) inclusive
- \(\text{ambient_dim} \) – a nonnegative integer (default: \(\text{None} \)); the dimension of the ambient space
- \(\text{lattice} \) – a toric lattice (default: \(\text{None} \)); the lattice in which the cone will live

If \(\text{ambient_dim} \) is omitted, then it will be inferred from the rank of \(\text{lattice} \). If the \(\text{lattice} \) is omitted, then the default lattice of rank \(\text{ambient_dim} \) will be used.

A \text{ValueError} is raised if neither \(\text{ambient_dim} \) nor \(\text{lattice} \) are specified. It is also a \text{ValueError} to specify both \(\text{ambient_dim} \) and \(\text{lattice} \) unless the rank of \(\text{lattice} \) is equal to \(\text{ambient_dim} \).

It is also a \text{ValueError} to specify a non-integer \(p \).

OUTPUT:
A \texttt{ConvexRationalPolyhedralCone} representing the rearrangement cone of order \(p \) living in \(\text{lattice} \), with ambient dimension \(\text{ambient_dim} \). Each generating ray has the integer ring as its base ring.

A \text{ValueError} can be raised if the inputs are incompatible or insufficient. See the INPUT documentation for details.

ALGORITHM:
Suppose that the ambient space is of dimension \(n \). The extreme directions of the rearrangement cone for \(1 \leq p \leq n - 1 \) are given by [Jeong2017] Theorem 5.2.3. When \(2 \leq p \leq n - 2 \) (that is, if we ignore \(p = 1 \) and \(p = n - 1 \)), they consist of
- the standard basis \(\{e_1, e_2, \ldots, e_n\} \) for the ambient space, and
- the \(n \) vectors \((1, 1, \ldots, 1)^T - pe_i \) for \(i = 1, 2, \ldots, n \).

Special cases are then given for \(p = 1 \) and \(p = n - 1 \) in the theorem. However in SageMath we don’t need conically-independent extreme directions. We only need a generating set, because the \texttt{Cone()} function will eliminate any redundant generators. And one can easily verify that the special-case extreme directions for \(p = 1 \) and \(p = n - 1 \) are contained in the conic hull of the \(2n \) generators just described. The half space resulting from \(p = n \) is also covered by this set of generators, so for all valid \(p \) we simply take the conic hull of those \(2n \) vectors.

REFERENCES:
- [GJ2016], Section 4
- [HS2010], Example 2.21
- [Jeong2017], Section 5.2

EXAMPLES:
The rearrangement cones of order one are nonnegative orthants:

```
sage: orthant = cones.nonnegative_orthant(6)
sage: cones.rearrangement(1,6).is_equivalent(orthant)
True
```

When \(p \) and \(\text{ambient_dim} \) are equal, the rearrangement cone is a half-space, so we expect its lineality to be one less than \(\text{ambient_dim} \) because it will contain a hyperplane but is not the entire space:

```
sage: cones.rearrangement(5,5).lineality()
4
```
Jeong’s Proposition 5.2.1 [Jeong2017] states that all rearrangement cones are proper when \(p \) is less than \(\text{ambient}_\text{dim} \):

\[
\text{sage: } \text{all(cones.rearrangement(p, ambient_dim).is_proper())}
\]
\[
\text{....: } \text{for ambient_dim in range(10)}
\]
\[
\text{....: } \text{for p in range(1, ambient_dim) }
\]
\[
\text{True}
\]

Jeong’s Corollary 5.2.4 [Jeong2017] states that if \(p = n - 1 \) in an \(n \)-dimensional ambient space, then the Lyapunov rank of the rearrangement cone is \(n \), and that for all other \(p > 1 \) its Lyapunov rank is one:

\[
\text{sage: } \text{all(cones.rearrangement(p, ambient_dim).lyapunov_rank() == ambient_dim)}
\]
\[
\text{....: } \text{for ambient_dim in range(2, 10)}
\]
\[
\text{....: } \text{for p in [ambient_dim-1] }
\]
\[
\text{True}
\]

\[
\text{sage: } \text{all(cones.rearrangement(p, ambient_dim).lyapunov_rank() == 1}
\]
\[
\text{....: } \text{for ambient_dim in range(3, 10)}
\]
\[
\text{....: } \text{for p in range(2, ambient_dim-1) }
\]
\[
\text{True}
\]

\[
\text{sage.geometry.cone_catalog.schur(ambient_dim=None, lattice=None)}
\]

The Schur cone in \(\text{ambient}_\text{dim} \) dimensions, or living in \(\text{lattice} \).

The Schur cone in \(n \) dimensions induces the majorization ordering on the ambient space. If \(\{e_1, e_2, \ldots, e_n\} \) is the standard basis for the space, then its generators are \(\{e_i - e_{i+1} | 1 \leq i \leq n - 1\} \). Its dual is the downward monotonic cone.

INPUT:

- \text{ambient}_\text{dim} – a nonnegative integer (default: None); the dimension of the ambient space
- \text{lattice} – a toric lattice (default: None); the lattice in which the cone will live

If \text{ambient}_\text{dim} is omitted, then it will be inferred from the rank of \text{lattice}. If the \text{lattice} is omitted, then the default lattice of rank \text{ambient}_\text{dim} will be used.

A \text{ValueError} is raised if neither \text{ambient}_\text{dim} nor \text{lattice} are specified. It is also a \text{ValueError} to specify both \text{ambient}_\text{dim} and \text{lattice} unless the rank of \text{lattice} is equal to \text{ambient}_\text{dim}.

OUTPUT:

A \text{ConvexRationalPolyhedralCone} representing the Schur cone living in \text{lattice}, with ambient dimension \text{ambient}_\text{dim}. Each generating ray has the integer ring as its base ring.

A \text{ValueError} can be raised if the inputs are incompatible or insufficient. See the INPUT documentation for details.

REFERENCES:

- [GS2010], Section 3.1
- [IS2005], Example 7.3
- [SS2016], Example 7.4

EXAMPLES:

Verify the claim [SS2016] that the maximal angle between any two generators of the Schur cone and the non-negative orthant in dimension five is \((3/4) \pi\):

\[
\text{Verify the relationship [SS2016] that the maximal angle is \((3/4) \pi\):}
\]
The dual of the Schur cone is the “downward monotonic cone” [GS2010], whose elements’ entries are in non-increasing order:

```python
sage: ambient_dim = ZZ.random_element(10)
sage: K = cones.schur(ambient_dim).dual()
sage: x = K.random_element()
sage: all( x[i] >= x[i+1] for i in range(ambient_dim-1) )
True
```

The trivial cone with no nonzero generators in `ambient_dim` dimensions, or living in `lattice`.

INPUT:

- `ambient_dim` – a nonnegative integer (default: `None`); the dimension of the ambient space
- `lattice` – a toric lattice (default: `None`); the lattice in which the cone will live

If `ambient_dim` is omitted, then it will be inferred from the rank of `lattice`. If the `lattice` is omitted, then the default lattice of rank `ambient_dim` will be used.

A `ValueError` is raised if neither `ambient_dim` nor `lattice` are specified. It is also a `ValueError` to specify both `ambient_dim` and `lattice` unless the rank of `lattice` is equal to `ambient_dim`.

OUTPUT:

A `ConvexRationalPolyhedralCone` representing the trivial cone with no nonzero generators living in `lattice`, with ambient dimension `ambient_dim`.

A `ValueError` can be raised if the inputs are incompatible or insufficient. See the INPUT documentation for details.

EXAMPLES:

Construct the trivial cone, containing only the origin, in three dimensions:

```python
sage: cones.trivial(3)
0-d cone in 3-d lattice N
```

If a lattice is given, the trivial cone will live in that lattice:

```python
sage: L = ToricLattice(3, 'M')
sage: cones.trivial(3, lattice=L)
0-d cone in 3-d lattice M
```
2.4.4 Rational polyhedral fans

This module was designed as a part of the framework for toric varieties (\texttt{variety, fano_variety}). While the emphasis is on complete full-dimensional fans, arbitrary fans are supported. Work with distinct lattices. The default lattice is \texttt{ToricLattice} N of the appropriate dimension. The only case when you must specify lattice explicitly is creation of a 0-dimensional fan, where dimension of the ambient space cannot be guessed.

A rational polyhedral fan is a finite collection of strictly convex rational polyhedral cones, such that the intersection of any two cones of the fan is a face of each of them and each face of each cone is also a cone of the fan.

AUTHORS:

- Andrey Novoseltsev (2010-06-17): substantial improvement during review by Volker Braun.

EXAMPLES:

Use \texttt{Fan()} to construct fans “explicitly”:

\begin{verbatim}
sage: fan = Fan(cones=[(0,1), (1,2)],
....: rays=[(1,0), (0,1), (-1,0)])
sage: fan
Rational polyhedral fan in 2-d lattice N
\end{verbatim}

In addition to giving such lists of cones and rays you can also create cones first using \texttt{Cone()} and then combine them into a fan. See the documentation of \texttt{Fan()} for details.

In 2 dimensions there is a unique maximal fan determined by rays, and you can use \texttt{Fan2d()} to construct it:

\begin{verbatim}
sage: fan2d = Fan2d(rays=[(1,0), (0,1), (-1,0)])
sage: fan2d.is_equivalent(fan)
True
\end{verbatim}

But keep in mind that in higher dimensions the cone data is essential and cannot be omitted. Instead of building a fan from scratch, for this tutorial we will use an easy way to get two fans associated to \textit{lattice polytopes}: \texttt{FaceFan()} and \texttt{NormalFan()}:

\begin{verbatim}
sage: fan1 = FaceFan(lattice_polytope.cross_polytope(3))
sage: fan2 = NormalFan(lattice_polytope.cross_polytope(3))
\end{verbatim}

Given such “automatic” fans, you may wonder what are their rays and cones:

\begin{verbatim}
sage: fan1.rays()
M(1, 0, 0),
M(0, 1, 0),
M(0, 0, 1),
M(-1, 0, 0),
M(0, -1, 0),
M(0, 0, -1)
in 3-d lattice M
sage: fan1.generating_cones()
(3-d cone of Rational polyhedral fan in 3-d lattice M,
 3-d cone of Rational polyhedral fan in 3-d lattice M,
 3-d cone of Rational polyhedral fan in 3-d lattice M,
 3-d cone of Rational polyhedral fan in 3-d lattice M,
 3-d cone of Rational polyhedral fan in 3-d lattice M,
 3-d cone of Rational polyhedral fan in 3-d lattice M,
\end{verbatim}
3-d cone of Rational polyhedral fan in 3-d lattice \mathbb{M}, 3-d cone of Rational polyhedral fan in 3-d lattice \mathbb{M}, 3-d cone of Rational polyhedral fan in 3-d lattice \mathbb{M})

The last output is not very illuminating. Let’s try to improve it:

```sage
for cone in fan1: print(cone.rays())
M( 0,  1,  0),
M( 0,  0,  1),
M(-1,  0,  0)
in 3-d lattice M
M( 0,  0,  1),
M(-1,  0,  0),
M( 0, -1,  0)
in 3-d lattice M
M(-1,  0,  0),
M( 0,  0, -1),
M( 0,  1,  0)
in 3-d lattice M
M( 0,  1,  0),
M(-1,  0,  0),
M( 0,  0, -1)
in 3-d lattice M
M( 0,  0,  1),
M( 0,  1,  0),
M(0,  0, -1)
in 3-d lattice M
M(1,  0,  0),
M(0,  1,  0),
M(0,  0, -1)
in 3-d lattice M
M(1,  0,  0),
M(0,  1,  0),
M(0,  0,  1)
in 3-d lattice M
M(1,  0,  0),
M(0,  0,  1),
M(0, -1,  0)
in 3-d lattice M
M(1,  0,  0),
M(0, -1,  0),
M(0,  0, -1)
in 3-d lattice M
M(1,  0,  0),
M(0,  0,  1),
M(0,  1,  0)
in 3-d lattice M
M(1,  0,  0),
M(0,  0,  1),
M(0, -1,  0)
in 3-d lattice M
M(1,  0,  0),
M(0, -1,  0),
M(0,  0, -1)
in 3-d lattice M
```

You can also do

```sage
for cone in fan1: print(cone.ambient_ray_indices())
(1, 2, 3)
(2, 3, 4)
(3, 4, 5)
(1, 3, 5)
(0, 1, 5)
(0, 1, 2)
(0, 2, 4)
(0, 4, 5)
```

to see indices of rays of the fan corresponding to each cone.

2.4. Toric geometry
While the above cycles were over “cones in fan”, it is obvious that we did not get ALL the cones: every face of every cone in a fan must also be in the fan, but all of the above cones were of dimension three. The reason for this behaviour is that in many cases it is enough to work with generating cones of the fan, i.e. cones which are not faces of bigger cones. When you do need to work with lower dimensional cones, you can easily get access to them using `cones()`:

```sage
[cone.ambient_ray_indices() for cone in fan1.cones(2)]
```

[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (0, 4),
 (2, 4), (3, 4), (1, 5), (3, 5), (4, 5), (0, 5)]

In fact, you do not have to type `.cones`:

```sage
[cone.ambient_ray_indices() for cone in fan1(2)]
```

[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (0, 4),
 (2, 4), (3, 4), (1, 5), (3, 5), (4, 5), (0, 5)]

You may also need to know the inclusion relations between all of the cones of the fan. In this case check out `cone_lattice()`:

```sage
L = fan1.cone_lattice()
L
```

Finite lattice containing 28 elements with distinguished linear extension

```sage
L.bottom()
```

0-d cone of Rational polyhedral fan in 3-d lattice M

```sage
L.top()
```

Rational polyhedral fan in 3-d lattice M

```sage
cone = L.level_sets()[2][0]
```

2-d cone of Rational polyhedral fan in 3-d lattice M

```sage
sorted(L.hasse_diagram().neighbors(cone))
```

[1-d cone of Rational polyhedral fan in 3-d lattice M,
 1-d cone of Rational polyhedral fan in 3-d lattice M,
 3-d cone of Rational polyhedral fan in 3-d lattice M,
 3-d cone of Rational polyhedral fan in 3-d lattice M]

You can check how “good” a fan is:

```sage
fan1.is_complete()
```

True

```sage
fan1.is_simplicial()
```

True

```sage
fan1.is_smooth()
```

True

The face fan of the octahedron is really good! Time to remember that we have also constructed its normal fan:

```sage
fan2.is_complete()
```

True

```sage
fan2.is_simplicial()
```

False

```sage
fan2.is_smooth()
```

False

This one does have some “problems,” but we can fix them:
Note that we had to save the result of \texttt{make_simplicial()} in a new fan. Fans in Sage are immutable, so any operation that does change them constructs a new fan.

We can also make \texttt{fan3} smooth, but it will take a bit more work:

```python
sage: cube = lattice_polytope.cross_polytope(3).polar()
sage: sk = cube.skeleton_points(2) # optional - palp
sage: rays = [cube.point(p) for p in sk] # optional - palp
sage: fan4 = fan3.subdivide(new_rays=rays) # optional - palp
sage: fan4.is_smooth() # optional - palp
True
```

Let's see how “different” are \texttt{fan2} and \texttt{fan4}:

```python
sage: fan2.ngenerating_cones()
6
sage: fan2.nrays()
8
sage: fan4.ngenerating_cones() # optional - palp
48
sage: fan4.nrays() # optional - palp
26
```

Smoothness does not come for free!

Please take a look at the rest of the available functions below and their complete descriptions. If you need any features that are missing, feel free to suggest them. (Or implement them on your own and submit a patch to Sage for inclusion!)

```python
class sage.geometry.fan.Cone_of_fan(ambient, ambient_ray_indices)
    Bases: sage.geometry.cone.ConvexRationalPolyhedralCone

    Construct a cone belonging to a fan.

    \textbf{Warning:} This class does not check that the input defines a valid cone of a fan. You must not construct objects of this class directly.
```

In addition to all of the properties of “regular” \texttt{cones}, such cones know their relation to the fan.

\textbf{INPUT:}
- \texttt{ambient} – fan whose cone is constructed;
ambient_ray_indices

- increasing list or tuple of integers, indices of rays of ambient generating this cone.

OUTPUT:

- cone of ambient.

EXAMPLES:

The intended way to get objects of this class is the following:

```
sage: fan = toric_varieties.P1xP1().fan()  # optional - palp
sage: cone = fan.generating_cone(0); cone  # optional - palp
2-d cone of Rational polyhedral fan in 2-d lattice N
sage: cone.ambient_ray_indices()  # optional - palp
(0, 2)
sage: cone.star_generator_indices()  # optional - palp
(0,)
```

star_generator_indices()

Return indices of generating cones of the “ambient fan” containing self.

OUTPUT:

- increasing tuple of integers.

EXAMPLES:

```
sage: P1xP1 = toric_varieties.P1xP1()  # optional - palp
sage: cone = P1xP1.fan().generating_cone(0)  # optional - palp
sage: cone.star_generator_indices()  # optional - palp
(0,)
```

star Generators()

Return indices of generating cones of the “ambient fan” containing self.

OUTPUT:

- increasing tuple of integers.

EXAMPLES:

```
sage: P1xP1 = toric_varieties.P1xP1()  # optional - palp
sage: cone = P1xP1.fan().generating_cone(0)  # optional - palp
sage: cone.star_generators()  # optional - palp
(2-d cone of Rational polyhedral fan in 2-d lattice N,)
```

```
sage.geometry.fan.FaceFan(polytope, lattice=None)
Construct the face fan of the given rational polytope.
```

Chapter 2. Polyhedral computations
INPUT:

- **polytope** – a polytope over \(\mathbb{Q} \) or a lattice polytope. A (not necessarily full-dimensional) polytope containing the origin in its relative interior.

- **lattice** – ToricLattice, \(\mathbb{Z}^n \), or any other object that behaves like these. If not specified, an attempt will be made to determine an appropriate toric lattice automatically.

OUTPUT:

- rational polyhedral fan.

See also NormalFan().

EXAMPLES:

Let’s construct the fan corresponding to the product of two projective lines:

```python
sage: diamond = lattice_polytope.cross_polytope(2)

sage: P1xP1 = FaceFan(diamond)

sage: P1xP1.rays()
M( 1, 0),
M( 0, 1),
M(-1, 0),
M( 0, -1)

in 2-d lattice M

sage: for cone in P1xP1: print(cone.rays())
M(-1, 0),
M( 0, -1)
in 2-d lattice M

M( 0, 1),
M(-1, 0)
in 2-d lattice M

M(1, 0),
M(0, 1)
in 2-d lattice M

M(1, 0),
M(0, -1)
in 2-d lattice M
```

```
 sage.geometry.fan.Fan(cones, rays=None, lattice=None, check=True, normalize=True, is_complete=None, virtual_rays=None, discard_faces=False, allow_arrangement=False)
```

Construct a rational polyhedral fan.

Note: Approximate time to construct a fan consisting of \(n \) cones is \(n^2/5 \) seconds. That is half an hour for 100 cones. This time can be significantly reduced in the future, but it is still likely to be \(\sim n^2 \) (with, say, \(/500 \) instead of \(/5 \)). If you know that your input does form a valid fan, use check=False option to skip consistency checks.

INPUT:

- **cones** – list of either Cone objects or lists of integers interpreted as indices of generating rays in rays. These must be only maximal cones of the fan, unless discard_faces=True or allow_arrangement=True option is specified;

- **rays** – list of rays given as list or vectors convertible to the rational extension of lattice. If cones are given by Cone objects rays may be determined automatically. You still may give them explicitly to ensure a particular order of rays in the fan. In this case you must list all rays that appear in cones. You can give
“extra” ones if it is convenient (e.g. if you have a big list of rays for several fans), but all “extra” rays will be discarded;

- **lattice** – *ToricLattice*, \mathbb{Z}^n, or any other object that behaves like these. If not specified, an attempt will be made to determine an appropriate toric lattice automatically;

- **check** – by default the input data will be checked for correctness (e.g. that intersection of any two given cones is a face of each), unless `allow_arrangement=True` option is specified. If you know for sure that the input is correct, you may significantly decrease construction time using `check=False` option;

- **normalize** – you can further speed up construction using `normalize=False` option. In this case `cones` must be a list of sorted tuples and `rays` must be immutable primitive vectors in `lattice`. In general, you should not use this option, it is designed for code optimization and does not give as drastic improvement in speed as the previous one;

- **is_complete** – every fan can determine on its own if it is complete or not, however it can take quite a bit of time for “big” fans with many generating cones. On the other hand, in some situations it is known in advance that a certain fan is complete. In this case you can pass `is_complete=True` option to speed up some computations. You may also pass `is_complete=False` option, although it is less likely to be beneficial. Of course, passing a wrong value can compromise the integrity of data structures of the fan and lead to wrong results, so you should be very careful if you decide to use this option;

- **virtual_rays** – (optional, computed automatically if needed) a list of ray generators to be used for `virtual_rays()`;

- **discard_faces** – by default, the fan constructor expects the list of **maximal** cones, unless `allow_arrangement=True` option is specified. If you provide “extra” ones and leave `allow_arrangement=False` (default) and `check=True` (default), an exception will be raised. If you provide “extra” cones and set `allow_arrangement=False` (default) and `check=False`, you may get wrong results as assumptions on internal data structures will be invalid. If you want the fan constructor to select the maximal cones from the given input, you may provide `discard_faces=True` option (it works both for `check=True` and `check=False`).

- **allow_arrangement** – by default (`allow_arrangement=False`), the fan constructor expects that the intersection of any two given cones is a face of each. If `allow_arrangement=True` option is specified, then construct a rational polyhedral fan from the cone arrangement, so that the union of the cones in the polyhedral fan equals to the union of the given cones, and each given cone is the union of some cones in the polyhedral fan.

OUTPUT:

- a **fan**.

See also:

In 2 dimensions you can cyclically order the rays. Hence the rays determine a unique maximal fan without having to specify the cones, and you can use `Fan2d()` to construct this fan from just the rays.

EXAMPLES:

Let’s construct a fan corresponding to the projective plane in several ways:

```sage
sage: cone1 = Cone([[1,0], [0,1]])
sage: cone2 = Cone([[0,1], [-1,-1]])
sage: cone3 = Cone([[-1,-1], (1,0)])
sage: P2 = Fan([cone1, cone2, cone2])
Traceback (most recent call last):
... ValueError: you have provided 3 cones, but only 2 of them are maximal!
```

(continues on next page)
Use discard_faces=True if you indeed need to construct a fan from these cones.

Oops! There was a typo and cone2 was listed twice as a generating cone of the fan. If it was intentional (e.g. the list of cones was generated automatically and it is possible that it contains repetitions or faces of other cones), use discard_faces=True option:

```
sage: P2 = Fan([cone1, cone2, cone2], discard_faces=True)
sage: P2.ngenerating_cones()
2
```

However, in this case it was definitely a typo, since the fan of \mathbb{P}^2 has 3 maximal cones:

```
sage: P2 = Fan([cone1, cone2, cone3])
sage: P2.ngenerating_cones()
3
```

Looks better. An alternative way is

```
sage: rays = [(1,0), (0,1), (-1,-1)]
sage: cones = [(0,1), (1,2), (2,0)]
sage: P2a = Fan(cones, rays)
sage: P2a.ngenerating_cones()
3
sage: P2 == P2a
False
```

That may seem wrong, but it is not:

```
sage: P2.is_equivalent(P2a)
True
```

See is_equivalent() for details.

Yet another way to construct this fan is

```
sage: P2b = Fan(cones, rays, check=False)
sage: P2b.ngenerating_cones()
3
sage: P2a == P2b
True
```

If you try the above examples, you are likely to notice the difference in speed, so when you are sure that everything is correct, it is a good idea to use check=False option. On the other hand, it is usually NOT a good idea to use normalize=False option:

```
sage: P2c = Fan(cones, rays, check=False, normalize=False)
Traceback (most recent call last):
  ...
AttributeError: 'tuple' object has no attribute 'parent'
```

Yet another way is to use functions FaceFan() and NormalFan() to construct fans from lattice polytopes.

We have not yet used lattice argument, since if was determined automatically:
However, it is necessary to specify it explicitly if you want to construct a fan without rays or cones:

```
sage: Fan([[]], [])
Traceback (most recent call last):
  ...
ValueError: you must specify the lattice
when you construct a fan without rays and cones!
sage: F = Fan([], [], lattice=ToricLattice(2, "L"))
sage: F
Rational polyhedral fan in 2-d lattice L
sage: F.lattice_dim()
2
sage: F.dim()
0
```

In the following examples, we test the `allow_arrangement=True` option. See `trac ticket #25122`.

The intersection of the two cones is not a face of each. Therefore, they do not belong to the same rational polyhedral fan:

```
sage: c1 = Cone([-2,-1,1], [-2,1,1], [2,1,1], [2,-1,1])
sage: c2 = Cone([-1,-2,1], [-1,2,1], [1,2,1], [1,-2,1])
sage: c1.intersection(c2).is_face_of(c1)
False
sage: c1.intersection(c2).is_face_of(c2)
False
sage: Fan([c1, c2])
Traceback (most recent call last):
  ...
ValueError: these cones cannot belong to the same fan!
  ...
```

Let's construct the fan using `allow_arrangement=True` option:

```
sage: fan = Fan([c1, c2], allow_arrangement=True)
sage: fan.ngenerating_cones()
5
```

Another example where cone c2 is inside cone c1:

```
sage: c1 = Cone([4, 0, 0], [0, 4, 0], [0, 0, 4])
sage: c2 = Cone([2, 1, 1], [1, 2, 1], [1, 1, 2])
sage: fan = Fan([c1, c2], allow_arrangement=True)
sage: fan.ngenerating_cones()
7
sage: fan.plot()  # optional - sage.plot
Graphics3d Object
```

Cones of different dimension:
```
sage: c1 = Cone([(1,0), (0,1)])
sage: c2 = Cone([(2,1)])
sage: c3 = Cone([(-1,-2)])
sage: fan = Fan([c1, c2, c3], allow_arrangement=True)
sage: for cone in sorted(fan.generating_cones()):
    print(sorted(cone.rays()))
[N(-1, -2)]
[N(0, 1), N(1, 2)]
[N(1, 0), N(2, 1)]
[N(1, 2), N(2, 1)]
```

A 3-d cone and a 1-d cone:
```
sage: c3 = Cone([[0, 1, 1], [1, 0, 1], [0, -1, 1], [-1, 0, 1]])
sage: c1 = Cone([[0, 0, 1]])
sage: fan1 = Fan([c1, c3], allow_arrangement=True)
sage: fan1.plot()  # optional - sage.plot
Graphics3d Object
```

A 3-d cone and two 2-d cones:
```
sage: c2v = Cone([[0, 1, 1], [0, -1, 1]])
sage: c2h = Cone([[1, 0, 1], [-1, 0, 1]])
sage: fan2 = Fan([c2v, c2h, c3], allow_arrangement=True)
sage: fan2.is_simplicial()
True
sage: fan2.is_equivalent(fan1)
True
```

`sage.geometry.fan.Fan2d(rays, lattice=None)`

Construct the maximal 2-d fan with given rays.

In two dimensions we can uniquely construct a fan from just rays, just by cyclically ordering the rays and constructing as many cones as possible. This is why we implement a special constructor for this case.

INPUT:

- **rays** – list of rays given as list or vectors convertible to the rational extension of `lattice`. Duplicate rays are removed without changing the ordering of the remaining rays.
- **lattice** – `ToricLattice`, \(\mathbb{Z}^n \), or any other object that behaves like these. If not specified, an attempt will be made to determine an appropriate toric lattice automatically.

EXAMPLES:
```
sage: Fan2d([[0,1], (1,0)])
Rational polyhedral fan in 2-d lattice N
sage: Fan2d([], lattice=ToricLattice(2, 'myN'))
Rational polyhedral fan in 2-d lattice myN
```

The ray order is as specified, even if it is not the cyclic order:
```
sage: fan1 = Fan2d([[0,1], (1,0)])
sage: fan1.rays()
N(0, 1),
N(1, 0)
in 2-d lattice N
```
sage: fan2 = Fan2d([(1,0), (0,1)])
sage: fan2.rays()
N(1, 0),
N(0, 1)
in 2-d lattice N
sage: fan1 == fan2, fan1.is_equivalent(fan2)
(False, True)
sage: fan = Fan2d([(1,1), (-1,-1), (1,-1), (-1,1)])
sage: [cone.ambient_ray_indices() for cone in fan]
[(2, 1), (1, 3), (3, 0), (0, 2)]
sage: fan.is_complete()
True

sage.geometry.fan.NormalFan(polytope, lattice=None)
Construct the normal fan of the given rational polytope.
This returns the inner normal fan. For the outer normal fan, use NormalFan(-P).

INPUT:
• polytope – a full-dimensional polytope over \(\mathbb{Q} \) or:
 sage.geometry.lattice_polytope.LatticePolytopeClass >.

• lattice – ToricLattice, \(\mathbb{Z}^n \), or any other object that behaves like these. If not specified, an attempt will be made to determine an appropriate toric lattice automatically.

OUTPUT:
• rational polyhedral fan.

See also FaceFan().

EXAMPLES:
Let's construct the fan corresponding to the product of two projective lines:

sage: square = LatticePolytope([(1,1), (-1,1), (-1,-1), (1,-1)])
sage: P1xP1 = NormalFan(square)
sage: P1xP1.rays()
N(1, 0),
N(0, 1),
N(-1, 0),
N(0, -1)
in 2-d lattice N
sage: for cone in P1xP1: print(cone.rays())
N(-1, 0),
N(0, -1)
in 2-d lattice N
N(1, 0),
N(0, -1)
in 2-d lattice N
N(1, 0),
N(0, 1)
in 2-d lattice N
N(0, 1),
N(-1, 0)
in 2-d lattice N

```
sage: cuboctahed = polytopes.cuboctahedron()
sage: NormalFan(cuboctahed)
Rational polyhedral fan in 3-d lattice N
```

class `sage.geometry.fan.RationalPolyhedralFan`(`cones`, `rays`, `lattice`, `is_complete`=None,
`virtual_rays`=None)

Bases: `sage.geometry.cone.IntegralRayCollection`, `collections.abc.Callable`, `collections.abc.Container`

Create a rational polyhedral fan.

Warning: This class does not perform any checks of correctness of input nor does it convert input into the standard representation. Use `Fan()` to construct fans from “raw data” or `FaceFan()` and `NormalFan()` to get fans associated to polytopes.

Fans are immutable, but they cache most of the returned values.

INPUT:

- `cones` – list of generating cones of the fan, each cone given as a list of indices of its generating rays in `rays`;
- `rays` – list of immutable primitive vectors in `lattice` consisting of exactly the rays of the fan (i.e. no “extra” ones);
- `lattice` – `ToricLattice`, \(\mathbb{Z}^n \), or any other object that behaves like these. If `None`, it will be determined as `parent()` of the first ray. Of course, this cannot be done if there are no rays, so in this case you must give an appropriate `lattice` directly;
- `is_complete` – if given, must be `True` or `False` depending on whether this fan is complete or not. By default, it will be determined automatically if necessary;
- `virtual_rays` – if given, must be a list of immutable primitive vectors in `lattice`, see `virtual_rays()` for details. By default, it will be determined automatically if necessary.

OUTPUT:

- rational polyhedral fan.

Gale_transform()

Return the Gale transform of `self`.

OUTPUT:

A matrix over \(\mathbb{Z} \).

EXAMPLES:

```
sage: fan = toric_varieties.P1xP1().fan()  # optional - palp
    >>> fan.Gale_transform()  # optional - palp
    [ 1 1 0 0 -2]
```

(continues on next page)
Stanley_Reisner_ideal(ring)

Return the Stanley-Reisner ideal.

INPUT:

- A polynomial ring in \texttt{self.nrays()} variables.

OUTPUT:

- The Stanley-Reisner ideal in the given polynomial ring.

EXAMPLES:

```python
sage: fan = Fan([[0,1,3],[3,4],[2,0],[1,2,4]], 
    [(-3, -2, 1), (0, 0, 1), (3, -2, -1), 
    (-1, -1, 1), (1, -1, 1)])
sage: fan.Stanley_Reisner_ideal( PolynomialRing(QQ,5, 
    'A, B, C, D, E') )
over Rational Field
```

cartesian_product(other, lattice=None)

Return the Cartesian product of \texttt{self} with \texttt{other}.

INPUT:

- \texttt{other} – a \texttt{rational polyhedral fan};
- \texttt{lattice} – (optional) the ambient lattice for the Cartesian product fan. By default, the direct sum of the ambient lattices of \texttt{self} and \texttt{other} is constructed.

OUTPUT:

- a \texttt{fan} whose cones are all pairwise Cartesian products of the cones of \texttt{self} and \texttt{other}.

EXAMPLES:

```python
sage: K = ToricLattice(1, 'K')
sage: fan1 = Fan([[0],[1]],[(1,),(-1,)], lattice=K)
sage: L = ToricLattice(2, 'L')
sage: fan2 = Fan(rays=[(1,0),(0,1),(-1,-1)], 
    cones=[[0,1],[1,2],[2,0]], lattice=L)
sage: fan1.cartesian_product(fan2)
Rational polyhedral fan in 3-d lattice K+L
sage: _.ngenerating_cones()
6
```

common_refinement(other)

Return the common refinement of this fan and \texttt{other}.

INPUT:

- \texttt{other} – a \texttt{fan} in the same \texttt{lattice()} and with the same support as this fan

OUTPUT:

- a \texttt{fan}
EXAMPLES:

Refining a fan with itself gives itself:

```python
sage: F0 = Fan2d([(1,0),(0,1),(-1,0),(0,-1)])
sage: F0.common_refinement(F0) == F0
True
```

A more complex example with complete fans:

```python
sage: F1 = Fan([[0],[1]],[(1,),(-1,)])
sage: F2 = Fan2d([(1,0),(1,1),(0,1),(-1,0),(0,-1)])
sage: F3 = F2.cartesian_product(F1)
sage: F4 = F1.cartesian_product(F2)
sage: FF = F3.common_refinement(F4)
sage: F3.ngenerating_cones()
10
sage: F4.ngenerating_cones()
10
sage: FF.ngenerating_cones()
13
```

An example with two non-complete fans with the same support:

```python
sage: F5 = Fan2d([(1,0),(1,2),(0,1)])
sage: F6 = Fan2d([(1,0),(2,1),(0,1)])
sage: F5.common_refinement(F6).ngenerating_cones()
3
```

Both fans must live in the same lattice:

```python
sage: F0.common_refinement(F1)
Traceback (most recent call last):
...
ValueError: the fans are not in the same lattice
```

complex(base_ring=Integer Ring, extended=False)

Return the chain complex of the fan.

To a d-dimensional fan Σ, one can canonically associate a chain complex K^\bullet

$$0 \longrightarrow \mathbb{Z}^{\Sigma(d)} \longrightarrow \mathbb{Z}^{\Sigma(d-1)} \longrightarrow \ldots \longrightarrow \mathbb{Z}^{\Sigma(0)} \longrightarrow 0$$

where the leftmost non-zero entry is in degree 0 and the rightmost entry in degree d. See [Kly1990], eq. (3.2). This complex computes the homology of $|\Sigma| \subset \mathbb{N}_R$ with arbitrary support,

$$H_i(K) = H_{d-i}(|\Sigma|, \mathbb{Z})_{\text{non-cpct}}$$

For a complete fan, this is just the non-compactly supported homology of \mathbb{R}^d. In this case, $H_0(K) = \mathbb{Z}$ and 0 in all non-zero degrees.

For a complete fan, there is an extended chain complex

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}^{\Sigma(d)} \longrightarrow \mathbb{Z}^{\Sigma(d-1)} \longrightarrow \ldots \longrightarrow \mathbb{Z}^{\Sigma(0)} \longrightarrow 0$$

where we take the first \mathbb{Z} term to be in degree -1. This complex is an exact sequence, that is, all homology groups vanish.

2.4. Toric geometry
The orientation of each cone is chosen as in :func:`oriented_boundary()`.

INPUT:

- `extended` – Boolean (default:False). Whether to construct the extended complex, that is, including the \(\mathbb{Z}\)-term at degree -1 or not.
- `base_ring` – A ring (default: \(\mathbb{Z}\)). The ring to use instead of \(\mathbb{Z}\).

OUTPUT:

The complex associated to the fan as a :class:`ChainComplex`. Raises a :exc:`ValueError` if the extended complex is requested for a non-complete fan.

EXAMPLES:

```
sage: fan = toric_varieties.P(3).fan()                 # optional - palp
sage: K_normal = fan.complex(); K_normal               # optional - palp
Chain complex with at most 4 nonzero terms over Integer Ring
sage: K_normal.homology()                               # optional - palp
{0: \(\mathbb{Z}\), 1: 0, 2: 0, 3: 0}
sage: K_extended = fan.complex(extended=True); K_extended # optional - palp
Chain complex with at most 5 nonzero terms over Integer Ring
sage: K_extended.homology()                             # optional - palp
{-1: 0, 0: 0, 1: 0, 2: 0, 3: 0}
```

Homology computations are much faster over \(\mathbb{Q}\) if you do not care about the torsion coefficients:

```
sage: toric_varieties.P2_123().fan().complex(extended=True, base_ring=QQ) # optional - palp
Chain complex with at most 4 nonzero terms over Rational Field
sage: _.homology() # optional - palp
{-1: Vector space of dimension 0 over Rational Field, 0: Vector space of dimension 0 over Rational Field, 1: Vector space of dimension 0 over Rational Field, 2: Vector space of dimension 0 over Rational Field}
```

The extended complex is only defined for complete fans:

```
sage: fan = Fan([[ Cone([(1, 0)]) ]])
sage: fan.is_complete()  # optional - palp
False
sage: fan.complex(extended=True)  # optional - palp
Traceback (most recent call last):
... ValueError: The extended complex is only defined for complete fans!
```

The definition of the complex does not refer to the ambient space of the fan, so it does not distinguish a fan from the same fan embedded in a subspace:
Things get more complicated for non-complete fans:

```python
sage: fan = Fan([Cone([(1,1,1)]),
        ....: Cone([(1,0,0),(0,1,0)]),
        ....: Cone([(-1,0,0),(0,-1,0),(0,0,-1)])
])
sage: fan.complex().homology()
{0: 0, 1: 0, 2: Z x Z, 3: 0}
sage: fan = Fan([Cone([-1,0,0),(0,-1,0),(0,0,-1)])
)sage: fan.complex().homology()
{0: 0, 1: 0, 2: 0, 3: 0}
```

`cone_containing(*points)`

Return the smallest cone of `self` containing all given points.

INPUT:

- either one or more indices of rays of `self`, or one or more objects representing points of the ambient space of `self`, or a list of such objects (you CANNOT give a list of indices).

OUTPUT:

- A cone of fan whose ambient fan is `self`.

Note: We think of the origin as of the smallest cone containing no rays at all. If there is no ray in `self` that contains all rays, a `ValueError` exception will be raised.

EXAMPLES:

```python
sage: cone1 = Cone([(0,-1), (1,0)])
sage: cone2 = Cone([(1,0), (0,1)])
sage: f = Fan([cone1, cone2])
sage: f.rays()
N(0, -1),  
N(0,  1),
N(1,  0)
in 2-d lattice N
sage: f.cone_containing(0)  # ray index
1-d cone of Rational polyhedral fan in 2-d lattice N
sage: f.cone_containing(0, 1)  # ray indices
Traceback (most recent call last):
...  
ValueError: there is no cone in  
Rational polyhedral fan in 2-d lattice N  
containing all of the given rays! Ray indices: [0, 1]
sage: f.cone_containing(0, 2)  # ray indices
```

(continues on next page)
cone_lattice()

Return the cone lattice of self.

This lattice will have the origin as the bottom (we do not include the empty set as a cone) and the fan itself as the top.

OUTPUT:

- finite poset <sage.combinat.posets.posets.FinitePoset of cones of fan, behaving like “regular” cones, but also containing the information about their relation to this fan, namely, the contained rays and containing generating cones. The top of the lattice will be this fan itself (which is not a cone of fan).

See also cones().

EXAMPLES:

Cone lattices can be computed for arbitrary fans:

\[
\text{sage: cone1 = Cone([[1,0], [0,1]])} \\
\text{sage: cone2 = Cone([[-1,0]])} \\
\text{sage: fan = Fan([cone1, cone2])} \\
\text{sage: fan.rays()} \\
\text{N(-1, 0),} \\
\text{N(0, 1),} \\
\text{N(1, 0) in 2-d lattice N} \\
\text{sage: for cone in fan: print(cone.ambient_ray_indices())} \\
(1, 2) \\
(0,) \\
\text{sage: L = fan.cone_lattice()} \\
\text{sage: L} \\
\text{Finite poset containing 6 elements with distinguished linear extension}
\]

These 6 elements are the origin, three rays, one two-dimensional cone, and the fan itself. Since we do add the fan itself as the largest face, you should be a little bit careful with this last element:
sage: for face in L: print(face.ambient_ray_indices())
Traceback (most recent call last):
...
AttributeError: 'RationalPolyhedralFan'
object has no attribute 'ambient_ray_indices'
sage: L.top()
Rational polyhedral fan in 2-d lattice N

For example, you can do

sage: for l in L.level_sets()[:-1]:
.....: print([f.ambient_ray_indices() for f in l])
[()]
[(0,), (1,), (2,)]
[(1, 2)]

If the fan is complete, its cone lattice is atomic and coatomic and can (and will!) be computed in a much
more efficient way, but the interface is exactly the same:

sage: fan = toric_varieties.P1xP1().fan() # optional - palp
sage: L = fan.cone_lattice() # optional - palp
sage: for l in L.level_sets()[:-1]: # optional - palp
.....: print([f.ambient_ray_indices() for f in l])
[()]
[(0,), (1,), (2,), (3,)]
[(0, 2), (1, 2), (0, 3), (1, 3)]

Let’s also consider the cone lattice of a fan generated by a single cone:

sage: fan = Fan([cone1])
sage: L = fan.cone_lattice()
sage: L
Finite poset containing 5 elements with distinguished linear extension

Here these 5 elements correspond to the origin, two rays, one generating cone of dimension two, and the
whole fan. While this single cone “is” the whole fan, it is consistent and convenient to distinguish them in
the cone lattice.

cones(dim=None, codim=None)

Return the specified cones of self.

INPUT:

• dim – dimension of the requested cones;

• codim – codimension of the requested cones.

Note: You can specify at most one input parameter.

OUTPUT:

• tuple of cones of self of the specified (co)dimension, if either dim or codim is given. Otherwise
tuple of such tuples for all existing dimensions.
EXAMPLES:

```python
sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(-1,0)])
sage: fan = Fan([cone1, cone2])
```

```python
sage: fan(dim=0)
(0-d cone of Rational polyhedral fan in 2-d lattice N,)
```

```python
sage: fan(codim=2)
(0-d cone of Rational polyhedral fan in 2-d lattice N,)
```

```python
sage: for cone in fan.cones(1): cone.ray(0)
N(-1, 0)
N(0, 1)
N(1, 0)
```

```python
sage: fan.cones(2)
(2-d cone of Rational polyhedral fan in 2-d lattice N,)
```

You cannot specify both dimension and codimension, even if they “agree”:

```python
sage: fan(dim=1, codim=1)
Traceback (most recent call last):
  ...
ValueError: dimension and codimension cannot be specified together!
```

But it is OK to ask for cones of too high or low (co)dimension:

```python
sage: fan(-1)
()
```

```python
sage: fan(3)
()
```

```python
sage: fan(codim=4)
()
```

`contains(cone)`

Check if a given `cone` is equivalent to a cone of the fan.

INPUT:

- `cone` – anything.

OUTPUT:

- `False` if `cone` is not a cone or if `cone` is not equivalent to a cone of the fan. `True` otherwise.

Note: Recall that a fan is a (finite) collection of cones. A cone is contained in a fan if it is equivalent to one of the cones of the fan. In particular, it is possible that all rays of the cone are in the fan, but the cone itself is not.

If you want to know whether a point is in the support of the fan, you should use `support_contains()`.

EXAMPLES:

We first construct a simple fan:
Now we check if some cones are in this fan. First, we make sure that the order of rays of the input cone does not matter (check=False option ensures that rays of these cones will be listed exactly as they are given):

```sage```
```
f.contains(Cone([[1,0], (0,1)], check=False))
True
f.contains(Cone([[0,1], (1,0)], check=False))
True```
```
```
Now we check that a non-generating cone is in our fan:

```sage```
```
f.contains(Cone([[1,0]]))
True
Cone([[1,0]]) in f # equivalent to the previous command
True```
```
```
Finally, we test some cones which are not in this fan:

```sage```
```
f.contains(Cone([[1,1]]))
False
f.contains(Cone([[1,0], (-0,1)]))
True```
```
```
A point is not a cone:

```sage```
```
n = f.lattice()(1,1); n
N(1, 1)
f.contains(n)
False```
```
```
embed(cone)

Return the cone equivalent to the given one, but sitting in self.

You may need to use this method before calling methods of cone that depend on the ambient structure, such as ambient_ray_indices() or facet_of(). The cone returned by this method will have self as ambient. If cone does not represent a valid cone of self, ValueError exception is raised.

Note: This method is very quick if self is already the ambient structure of cone, so you can use without extra checks and performance hit even if cone is likely to sit in self but in principle may not.

INPUT:
- cone – a cone.

OUTPUT:
- a cone of fan, equivalent to cone but sitting inside self.

EXAMPLES:
Let’s take a 3-d fan generated by a cone on 4 rays:
Then any ray generates a 1-d cone of this fan, but if you construct such a cone directly, it will not “sit” inside the fan:

```python
sage: ray = Cone([[0, -1, 1]])
sage: ray
1-d cone in 3-d lattice N
sage: ray.ambient_ray_indices()
(0,)
sage: ray.adjacent()
()
sage: ray.ambient()
1-d cone in 3-d lattice N
```

If we want to operate with this ray as a part of the fan, we need to embed it first:

```python
sage: e_ray = f.embed(ray)
sage: e_ray
1-d cone of Rational polyhedral fan in 3-d lattice N
sage: e_ray.rays()
N(0, -1, 1)
in 3-d lattice N
sage: e_ray.is ray
False
sage: e_ray.is_equivalent(ray)
True
sage: e_ray.ambient_ray_indices()
(3,)
sage: e_ray.adjacent()
(1-d cone of Rational polyhedral fan in 3-d lattice N, 1-d cone of Rational polyhedral fan in 3-d lattice N)
sage: e_ray.ambient()
Rational polyhedral fan in 3-d lattice N
```

Not every cone can be embedded into a fixed fan:

```python
sage: f.embed(Cone([[0, 0, 1]]))
Traceback (most recent call last):
...
ValueError: 1-d cone in 3-d lattice N does not belong to Rational polyhedral fan in 3-d lattice N!
sage: f.embed(Cone([[1, 0, 1], (-1, 0, 1)])
Traceback (most recent call last):
...
ValueError: 2-d cone in 3-d lattice N does not belong to Rational polyhedral fan in 3-d lattice N!
```

generating_cone(n)

Return the n-th generating cone of self.

INPUT:

- n – integer, the index of a generating cone.

OUTPUT:
• cone of fan.

EXAMPLES:

```
sage: fan = toric_varieties.P1xP1().fan()  # optional - palp
sage: fan.generating_cone(0)  # optional - palp
2-d cone of Rational polyhedral fan in 2-d lattice N
```

generating_cones()

Return generating cones of self.

OUTPUT:

• tuple of cones of fan.

EXAMPLES:

```
sage: fan = toric_varieties.P1xP1().fan()  # optional - palp
sage: fan.generating_cones()  # optional - palp
(2-d cone of Rational polyhedral fan in 2-d lattice N,
  2-d cone of Rational polyhedral fan in 2-d lattice N,
  2-d cone of Rational polyhedral fan in 2-d lattice N,
  2-d cone of Rational polyhedral fan in 2-d lattice N)
sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(-1,0)])
sage: fan = Fan([cone1, cone2])
sage: fan.generating_cones()
(2-d cone of Rational polyhedral fan in 2-d lattice N,
  1-d cone of Rational polyhedral fan in 2-d lattice N)
```

is_complete()

Check if self is complete.

A rational polyhedral fan is complete if its cones fill the whole space.

OUTPUT:

• True if self is complete and False otherwise.

EXAMPLES:

```
sage: fan = toric_varieties.P1xP1().fan()  # optional - palp
sage: fan.is_complete()  # optional - palp
True
sage: cone1 = Cone([(1,0), (0,1)])
sage: cone2 = Cone([(-1,0)])
sage: fan = Fan([cone1, cone2])
sage: fan.is_complete()
False
```

is_equivalent(other)

Check if self is “mathematically” the same as other.
INPUT:
- other - fan.

OUTPUT:
- True if self and other define the same fans as collections of equivalent cones in the same lattice, False otherwise.

There are three different equivalences between fans F_1 and F_2 in the same lattice:

1. They have the same rays in the same order and the same generating cones in the same order. This is tested by $F1 == F2$.

2. They have the same rays and the same generating cones without taking into account any order. This is tested by $F1.is_equivalent(F2)$.

3. They are in the same orbit of $GL(n, \mathbb{Z})$ (and, therefore, correspond to isomorphic toric varieties). This is tested by $F1.is_isomorphic(F2)$.

Note that virtual_rays() are included into consideration for all of the above equivalences.

EXAMPLES:

```sage
sage: fan1 = Fan(cones=[(0,1), (1,2)],
......: rays=[(1,0), (0,1), (-1,-1)],
......: check=False)
sage: fan2 = Fan(cones=[(2,1), (0,2)],
......: rays=[(1,0), (-1,-1), (0,1)],
......: check=False)
sage: fan3 = Fan(cones=[(0,1), (1,2)],
......: rays=[(1,0), (0,1), (-1,1)],
......: check=False)
sage: fan1 == fan2
False
sage: fan1.is_equivalent(fan2)
True
sage: fan1 == fan3
False
sage: fan1.is_equivalent(fan3)
False
```

`is_isomorphic(other)`

Check if self is in the same $GL(n, \mathbb{Z})$-orbit as other.

There are three different equivalences between fans F_1 and F_2 in the same lattice:

1. They have the same rays in the same order and the same generating cones in the same order. This is tested by $F1 == F2$.

2. They have the same rays and the same generating cones without taking into account any order. This is tested by $F1.is_equivalent(F2)$.

3. They are in the same orbit of $GL(n, \mathbb{Z})$ (and, therefore, correspond to isomorphic toric varieties). This is tested by $F1.is_isomorphic(F2)$.

Note that virtual_rays() are included into consideration for all of the above equivalences.
• True if self and other are in the same $GL(n,\mathbb{Z})$-orbit, False otherwise.

See also:

If you want to obtain the actual fan isomorphism, use isomorphism().

EXAMPLES:

Here we pick an $SL(2,\mathbb{Z})$ matrix m and then verify that the image fan is isomorphic:

```
sage: rays = ((1, 1), (0, 1), (-1, -1), (1, 0))
sage: cones = [(0,1), (1,2), (2,3), (3,0)]
sage: fan1 = Fan(cones, rays)
sage: m = matrix([[2,3], [1,-1]])
sage: fan2 = Fan(cones, [vector(r)*m for r in rays])
sage: fan1.is_isomorphic(fan2)
True
sage: fan1.is_equivalent(fan2)
False
sage: fan1 == fan2
False
```

These fans are “mirrors” of each other:

```
sage: fan1 = Fan(cones=[(0,1), (1,2)],
......:      rays=[(1,0), (0,1), (-1,-1)],
......:      check=False)
sage: fan2 = Fan(cones=[(0,1), (1,2)],
......:      rays=[(1,0), (0,-1), (-1,1)],
......:      check=False)
sage: fan1 == fan2
False
sage: fan1.is_equivalent(fan2)
False
sage: fan1.is_isomorphic(fan2)
True
sage: fan1.is_isomorphic(fan1)
True
```

is_simplicial()

Check if self is simplicial.

A rational polyhedral fan is simplicial if all of its cones are, i.e. primitive vectors along generating rays of every cone form a part of a rational basis of the ambient space.

OUTPUT:

• True if self is simplicial and False otherwise.

EXAMPLES:

```
sage: fan = toric_varieties.P1xP1().fan()          # optional - palp
sage: fan.is_simplicial()                          # optional - palp
True
sage: cone1 = Cone([[1,0], [0,1]])               
```

(continues on next page)
In fact, any fan in a two-dimensional ambient space is simplicial. This is no longer the case in dimension three:

```
sage: fan = NormalFan(lattice_polytope.cross_polytope(3))
sage: fan.is_simplicial()  # optional - palp
False
```

\textbf{is_smooth}(\textit{codim=None})

Check if self is smooth.

A rational polyhedral fan is \textbf{smooth} if all of its cones are, i.e. primitive vectors along generating rays of every cone form a part of an integral basis of the ambient space. In this case the corresponding toric variety is smooth.

A fan in an \textit{n}-dimensional lattice is smooth up to codimension \textit{c} if all cones of codimension greater than or equal to \textit{c} are smooth, i.e. if all cones of dimension less than or equal to \textit{n} − \textit{c} are smooth. In this case the singular set of the corresponding toric variety is of dimension less than \textit{c}.

\textbf{INPUT:}

- \textit{codim} – codimension in which smoothness has to be checked, by default complete smoothness will be checked.

\textbf{OUTPUT:}

- \textbf{True} if self is smooth (in codimension \textit{codim}, if it was given) and \textbf{False} otherwise.

\textbf{EXAMPLES:}

```
sage: fan = toric_varieties.P1xP1().fan()  # optional - palp
sage: fan.is_smooth()  # optional - palp
True
sage: cone1 = Cone([\((1,0)\), \((0,1)\)])
sage: cone2 = Cone([\((-1,0)\)])
sage: fan = Fan([cone1, cone2])
sage: fan.is_smooth()  # optional - palp
True
sage: fan = NormalFan(lattice_polytope.cross_polytope(2))
sage: fan.is_smooth()  # optional - palp
False
sage: fan.is_smooth(codim=1)
True
sage: fan.generating_cone(0).rays()
\text{N}(-1, -1), \text{N}(-1, 1)
in 2-d lattice N
sage: fan.generating_cone(0).rays().matrix().det()
-2
```
isomorphism *(other)*

Return a fan isomorphism from *self* to *other*.

INPUT:
- *other* – fan.

OUTPUT:
A fan isomorphism. If no such isomorphism exists, a *FanNotIsomorphicError* is raised.

EXAMPLES:

```sage
sage: rays = ((1, 1), (0, 1), (-1, -1), (3, 1))
sage: cones = [(0,1), (1,2), (2,3), (3,0)]
sage: fan1 = Fan(cones, rays)
sage: m = matrix([[-2,3], [1,-1]])
sage: fan2 = Fan(cones, [vector(r)*m for r in rays])

sage: fan1.isomorphism(fan2)
Fan morphism defined by the matrix
[-2  3]
[ 1 -1]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in 2-d lattice N

sage: fan2.isomorphism(fan1)
Fan morphism defined by the matrix
[ 1  3]
[ 1  2]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in 2-d lattice N

sage: fan1.isomorphism(toric_varieties.P2().fan()) # optional - palp
Traceback (most recent call last):
... FanNotIsomorphicError
```

linear_equivalence_ideal *(ring)*

Return the ideal generated by linear relations.

INPUT:
- A polynomial ring in *self.nrays()* variables.

OUTPUT:
Return the ideal, in the given *ring*, generated by the linear relations of the rays. In toric geometry, this corresponds to rational equivalence of divisors.

EXAMPLES:

```sage
sage: fan = Fan([[0,1,3],[3,4],[2,0],[1,2,4]],
             [(-3, -2, 1), (0, 0, 1), (3, -2, 1),
             (-1, -1, 1), (1, -1, 1)])

sage: fan.linear_equivalence_ideal( PolynomialRing(QQ,5,'A, B, C, D, E') )
Ideal (-3*A + 3*C - D + E, -2*A - 2*C - D - E, A + B + C + D + E) of...
```

2.4. Toric geometry
make_simplicial(**kwds**)

Construct a simplicial fan subdividing self.

It is a synonym for `subdivide()` with `make_simplicial=True` option.

INPUT:

- this function accepts only keyword arguments. See `subdivide()` for documentation.

OUTPUT:

- rational polyhedral fan.

EXAMPLES:

```python
sage: fan = NormalFan(lattice_polytope.cross_polytope(3))
sage: fan.is_simplicial()
False
sage: fan.ngenerating_cones()
6
sage: new_fan = fan.make_simplicial()
sage: new_fan.is_simplicial()
True
sage: new_fan.ngenerating_cones()
12
```

ngenerating_cones()

Return the number of generating cones of self.

OUTPUT:

- integer.

EXAMPLES:

```python
sage: fan = toric_varieties.P1xP1().fan()  # optional - palp
sage: fan.ngenerating_cones()  # optional - palp
4
sage: cone1 = Cone([(-1, 0), (0, 1)])
sage: cone2 = Cone([(1, 0)])
sage: fan = Fan([cone1, cone2])
sage: fan.ngenerating_cones()
2
```

oriented_boundary(cone**)**

Return the facets bounding cone with their induced orientation.

INPUT:

- cone – a cone of the fan or the whole fan.

OUTPUT:

The boundary cones of cone as a formal linear combination of cones with coefficients ±1. Each summand is a facet of cone and the coefficient indicates whether their (chosen) orientation agrees or disagrees with the “outward normal first” boundary orientation. Note that the orientation of any individual cone is arbitrary. This method once and for all picks orientations for all cones and then computes the boundaries relative to that chosen orientation.
If cone is the fan itself, the generating cones with their orientation relative to the ambient space are returned. See complex() for the associated chain complex. If you do not require the orientation, use cone.facets() instead.

EXAMPLES:

```
sage: fan = toric_varieties.P(3).fan() # optional - palp
sage: cone = fan(2)[0] # optional - palp
sage: bdry = fan.oriented_boundary(cone); bdry # optional - palp
-1-d cone of Rational polyhedral fan in 3-d lattice N + 1-d cone of Rational polyhedral fan in 3-d lattice N
sage: bdry[0] # optional - palp
(-1, 1-d cone of Rational polyhedral fan in 3-d lattice N)
sage: bdry[1] # optional - palp
(1, 1-d cone of Rational polyhedral fan in 3-d lattice N)
sage: fan.oriented_boundary(bdry[0][1]) # optional - palp
-0-d cone of Rational polyhedral fan in 3-d lattice N
sage: fan.oriented_boundary(bdry[1][1]) # optional - palp
-0-d cone of Rational polyhedral fan in 3-d lattice N
```

If you pass the fan itself, this method returns the orientation of the generating cones which is determined by the order of the rays in cone.ray_basis()

```
sage: fan.oriented_boundary(fan) # optional - palp
-3-d cone of Rational polyhedral fan in 3-d lattice N + 3-d cone of Rational polyhedral fan in 3-d lattice N - 3-d cone of Rational polyhedral fan in 3-d lattice N + 3-d cone of Rational polyhedral fan in 3-d lattice N
sage: [cone.rays().basis().matrix().det() for cone in fan.generating_cones()] # optional - palp
[-1, 1, -1, 1]
```

A non-full dimensional fan:

```
sage: cone = Cone([(4,5)])
sage: fan = Fan([cone])
sage: fan.oriented_boundary(cone)
0-d cone of Rational polyhedral fan in 2-d lattice N
sage: fan.oriented_boundary(fan)
1-d cone of Rational polyhedral fan in 2-d lattice N
plot(**options)
Plot self.
INPUT:

• any options for toric plots (see toric_plotter.options), none are mandatory.
```
OUTPUT:
• a plot.

EXAMPLES:

```sage
fan = toric_varieties.dP6().fan()  # optional - palp
fan.plot()  # optional - palp sage.plot
```

Graphics object consisting of 31 graphics primitives

primitive_collections()

Return the primitive collections.

OUTPUT:

Return the subsets \(\{i_1, \ldots, i_k\} \subset \{1, \ldots, n\} \) such that

- The points \(p_{i_1}, \ldots, p_{i_k} \) do not span a cone of the fan.
- If you remove any one \(p_{i_j} \) from the set, then they do span a cone of the fan.

Note: By replacing the multiindices \(\{i_1, \ldots, i_k\} \) of each primitive collection with the monomials \(x_{i_1} \cdots x_{i_k} \), one generates the Stanley-Reisner ideal in \(\mathbb{Z}[x_1, \ldots] \).

REFERENCES:

- [Bat1991]

EXAMPLES:

```sage
fan = Fan([ [0,1,3], [3,0], [1,2,4], [(-3, -2, 1), (0, 0, 1), (3, -2, -1), (-1, -1, 1), (1, -1, 1)]])
fan.primitive_collections()
```

[frozenset({0, 4}), frozenset({2, 3}), frozenset({0, 1, 2}), frozenset({1, 3, 4})]

subdivide *(new_rays=None, make_simplicial=False, algorithm='default', verbose=False)*

Construct a new fan subdividing self.

INPUT:

- **new_rays** - list of new rays to be added during subdivision, each ray must be a list or a vector. May be empty or None (default);
- **make_simplicial** - if True, the returned fan is guaranteed to be simplicial, default is False;
- **algorithm** - string with the name of the algorithm used for subdivision. Currently there is only one available algorithm called “default”;
- **verbose** - if True, some timing information may be printed during the process of subdivision.

OUTPUT:

- **rational polyhedral fan.**

Currently the “default” algorithm corresponds to iterative stellar subdivision for each ray in new_rays.

EXAMPLES:
sage: fan = NormalFan(lattice_polytope.cross_polytope(3))
sage: fan.is_simplicial()
False
sage: fan.ngenerating_cones()
6
sage: fan.nrays()
8
sage: new_fan = fan.subdivide(new_rays=[(1,0,0)])
sage: new_fan.is_simplicial()
False
sage: new_fan.ngenerating_cones()
9
sage: new_fan.nrays()
9

support_contains(*args)
Check if a point is contained in the support of the fan.
The support of a fan is the union of all cones of the fan. If you want to know whether the fan contains a
given cone, you should use contains() instead.

INPUT:
• *args – an element of self.lattice() or something that can be converted to it (for example, a list
of coordinates).

OUTPUT:
• True if point is contained in the support of the fan, False otherwise.

toric_variety(*args, **kwds)
Return the associated toric variety.

INPUT:
same arguments as ToricVariety()

OUTPUT:
a toric variety
This is equivalent to the command ToricVariety(self) and is provided only as a convenient alternative
method to go from the fan to the associated toric variety.

EXAMPLES:

sage: Fan([Cone([[1,0]]), Cone([[0,1]])]).toric_variety()
2-d toric variety covered by 2 affine patches

vertex_graph()
Return the graph of 1- and 2-cones.

OUTPUT:
An edge-colored graph. The vertices correspond to the 1-cones (i.e. rays) of the fan. Two vertices are
joined by an edge iff the rays span a 2-cone of the fan. The edges are colored by pairs of integers that
classify the 2-cones up to $GL(2, \mathbb{Z})$ transformation, see classify_cone_2d().

EXAMPLES:
virtual_rays(*args)

Return (some of the) virtual rays of self.

Let N be the D-dimensional lattice() of a d-dimensional fan Σ in $N_\mathbb{R}$. Then the corresponding toric variety is of the form $X \times (\mathbb{C}^*)^{D-d}$. The actual rays() of Σ give a canonical choice of homogeneous coordinates on X. This function returns an arbitrary but fixed choice of virtual rays corresponding to a (non-canonical) choice of homogeneous coordinates on the torus factor. Combinatorially primitive integral generators of virtual rays span the $D-d$ dimensions of $N_{\mathbb{Q}}$ “missed” by the actual rays. (In general addition of virtual rays is not sufficient to span N over \mathbb{Z}.)

Note: You may use a particular choice of virtual rays by passing optional argument virtual_rays to the Fan() constructor.

INPUT:
- ray_list – a list of integers, the indices of the requested virtual rays. If not specified, all virtual rays of self will be returned.

OUTPUT:
- a PointCollection of primitive integral ray generators. Usually (if the fan is full-dimensional) this will be empty.

EXAMPLES:

```
sage: f = Fan([Cone([[1,0,1,0], (0,1,1,0)]])
sage: f.virtual_rays()
N(1, 0, 0, 0),
N(0, 0, 0, 1)
in 4-d lattice N
```

(continues on next page)
N(0, 1, 1, 0)
in 4-d lattice N

```
sage: f.virtual_rays([0])
N(1, 0, 0, 0)
in 4-d lattice N
```

You can also give virtual ray indices directly, without packing them into a list:

```
sage: f.virtual_rays(0)
N(1, 0, 0, 0)
in 4-d lattice N
```

Make sure that trac ticket #16344 is fixed and one can compute the virtual rays of fans in non-saturated lattices:

```
sage: N = ToricLattice(1)
sage: B = N.submodule([[2,]]).basis()
sage: f = Fan([Cone([B[0]])])
sage: len(f.virtual_rays())
0
```

`sage.geometry.fan.discard_faces(cones)`

Return the cones of the given list which are not faces of each other.

INPUT:
- `cones` – a list of cones.

OUTPUT:
- A list of cones, sorted by dimension in decreasing order.

EXAMPLES:

Consider all cones of a fan:

```
sage: Sigma = toric_varieties.P2().fan()                  # optional - palp
sage: cones = flatten(Sigma.cones())                      # optional - palp
sage: len(cones)                                          # optional - palp
7
```

Most of them are not necessary to generate this fan:

```
sage: from sage.geometry.fan import discard_faces
sage: len(discard_faces(cones))                           # optional - palp
3
sage: Sigma.ngenerating_cones()                           # optional - palp
3
```

`sage.geometry.fan.is_Fan(x)`

Check if x is a Fan.

2.4. Toric geometry
INPUT:
• x – anything.

OUTPUT:
• True if x is a fan and False otherwise.

EXAMPLES:

```sage
def is_Fan(x):
    return True

sage: is_Fan(1)
False
sage: fan = toric_varieties.P2().fan(); fan
Rational polyhedral fan in 2-d lattice N
sage: is_Fan(fan)
True
```

2.4.5 Morphisms between toric lattices compatible with fans

This module is a part of the framework for toric varieties (`variety`, `fano_variety`). Its main purpose is to provide support for working with lattice morphisms compatible with fans via `FanMorphism` class.

AUTHORS:

• Andrey Novoseltsev (2010-10-17): initial version.
• Andrey Novoseltsev (2011-04-11): added tests for injectivity/surjectivity, fibration, bundle, as well as some related methods.

EXAMPLES:

Let’s consider the face and normal fans of the “diamond” and the projection to the x-axis:

```sage
diamond = lattice_polytope.cross_polytope(2)
fraction = FaceFan(diamond, lattice=ToricLattice(2))
normal = NormalFan(diamond)
N = face.lattice()
H = End(N)
phi = H([N.0, 0])
FanMorphism(phi, normal, face)
```

Some of the cones of the normal fan fail to be mapped to a single cone of the face fan. We can rectify the situation in the following way:

```sage
diamond = lattice_polytope.cross_polytope(2)
fraction = FaceFan(diamond, lattice=ToricLattice(2))
normal = NormalFan(diamond)
N = face.lattice()
H = End(N)
phi = H([N.0, 0])
FanMorphism(phi, normal, face)
```

ValueError: the image of generating cone #1 of the domain fan is not contained in a single cone of the codomain fan!
sage: fm = FanMorphism(phi, normal, face, subdivide=True)
sage: fm
Fan morphism defined by the matrix
[[1 0]
 [0 0]]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in 2-d lattice N
sage: fm.domain_fan().rays()
N(1, 1),
N(1, -1),
N(-1, -1),
N(-1, 1),
N(0, -1),
N(0, 1)
in 2-d lattice N
sage: normal.rays()
N(1, 1),
N(1, -1),
N(-1, -1),
N(-1, 1)
in 2-d lattice N

As you see, it was necessary to insert two new rays (to prevent “upper” and “lower” cones of the normal fan from being mapped to the whole x-axis).

class `sage.geometry.fan_morphism.FanMorphism(morphism, domain_fan, codomain=None, subdivide=False, check=True, verbose=False)`

Create a fan morphism.

Let Σ_1 and Σ_2 be two fans in lattices N_1 and N_2 respectively. Let ϕ be a morphism (i.e. a linear map) from N_1 to N_2. We say that ϕ is *compatible* with Σ_1 and Σ_2 if every cone $\sigma_1 \in \Sigma_1$ is mapped by ϕ into a single cone $\sigma_2 \in \Sigma_2$, i.e. $\phi(\sigma_1) \subset \sigma_2$ (where σ_2 may be different for different σ_1).

By a *fan morphism* we understand a morphism between two lattices compatible with specified fans in these lattices. Such morphisms behave in exactly the same way as “regular” morphisms between lattices, but:

- fan morphisms have a special constructor allowing some automatic adjustments to the initial fans (see below);
- fan morphisms are aware of the associated fans and they can be accessed via `codomain_fan()` and `domain_fan()`;
- fan morphisms can efficiently compute `image_cone()` of a given cone of the domain fan and `preimage_cones()` of a given cone of the codomain fan.

INPUT:

- `morphism` – either a morphism between domain and codomain, or an integral matrix defining such a morphism;
- `domain_fan` – a *fan* in the domain;
- `codomain` – (default: None) either a codomain lattice or a fan in the codomain. If the codomain fan is not given, the image fan (fan generated by images of generating cones) of `domain_fan` will be used, if possible;
• **subdivide** – (default: False) if True and domain_fan is not compatible with the codomain fan because it is too coarse, it will be automatically refined to become compatible (the minimal refinement is canonical, so there are no choices involved);

• **check** – (default: True) if False, given fans and morphism will be assumed to be compatible. Be careful when using this option, since wrong assumptions can lead to wrong and hard-to-detect errors. On the other hand, this option may save you some time;

• **verbose** – (default: False) if True, some information may be printed during construction of the fan morphism.

OUTPUT:

• a fan morphism.

EXAMPLES:

Here we consider the face and normal fans of the “diamond” and the projection to the \(x \)-axis:

```sage
diamond = lattice_polytope.cross_polytope(2)
sage: face = FaceFan(diamond, lattice=ToricLattice(2))
sage: normal = NormalFan(diamond)
sage: N = face.lattice()
sage: H = End(N)
sage: phi = H([N.0, 0])
sage: phi
Free module morphism defined by the matrix
[1 0]
[0 0]
Domain: 2-d lattice N
Codomain: 2-d lattice N
```

```sage
defn = FanMorphism(phi, face, normal)
sage: dfn.domain_fan() is face
True
```

Note, that since \(\phi \) is compatible with these fans, the returned fan is exactly the same object as the initial domain_fan.

```sage
defn = FanMorphism(phi, normal, face)
Traceback (most recent call last):
... ValueError: the image of generating cone #1 of the domain fan is not contained in a single cone of the codomain fan!
sage: dfn = FanMorphism(phi, normal, face, subdivide=True)
sage: dfn.domain_fan() is normal
False
```

```sage
defn = FanMorphism(phi, face, normal)
sage: defn.domain_fan().ngenerating_cones()
6
```

We had to subdivide two of the four cones of the normal fan, since they were mapped by \(\phi \) into non-strictly convex cones.

It is possible to omit the codomain fan, in which case the image fan will be used instead of it:

```sage
defn = FanMorphism(phi, face)
defn = FanMorphism(phi, face)
Rational polyhedral fan in 2-d lattice N
```

(continues on next page)
Now we demonstrate a more subtle example. We take the first quadrant as our domain fan. Then we divide the first quadrant into three cones, throw away the middle one and take the other two as our codomain fan. These fans are incompatible with the identity lattice morphism since the image of the domain fan is out of the support of the codomain fan:

```sage
N = ToricLattice(2)
phi = End(N).identity()
F1 = Fan(cones=[(0,1)], rays=[(1,0), (0,1)])
F2 = Fan(cones=[(0,1), (2,3)],
....: rays=[(1,0), (2,1), (1,2), (0,1)])
fMorphism(phi, F1, F2)
Traceback (most recent call last):
... ValueError: the image of generating cone #0 of the domain fan
is not contained in a single cone of the codomain fan!
```

```sage:
fMorphism(phi, F1, F2, subdivide=True)
Traceback (most recent call last):
... ValueError: morphism defined by
[1 0]
[0 1]
does not map
Rational polyhedral fan in 2-d lattice N
into the support of
Rational polyhedral fan in 2-d lattice N!
```

The problem was detected and handled correctly (i.e. an exception was raised). However, the used algorithm requires extra checks for this situation after constructing a potential subdivision and this can take significant time. You can save about half the time using `check=False` option, if you know in advance that it is possible to make fans compatible with the morphism by subdividing the domain fan. Of course, if your assumption was incorrect, the result will be wrong and you will get a fan which does map into the support of the codomain fan, but is not a subdivision of the domain fan. You can test it on the example above:

```sage
fm = FanMorphism(phi, F1, F2, subdivide=True,
.....: check=False, verbose=True)
Placing ray images (... ms)
Computing chambers (... ms)
Number of domain cones: 1.
Number of chambers: 2.
Cone 0 sits in chambers 0 1 (... ms)
sage: fm.domain_fan().is_equivalent(F2)
True
```

\[\text{codomain_fan}(dim=\text{None}, codim=\text{None})\]
Return the codomain fan of \text{self}.

\[\text{INPUT:}\]
\[\text{• dim – dimension of the requested cones;}\]
• codim – codimension of the requested cones.

OUTPUT:
• *rational polyhedral fan* if no parameters were given, *tuple of cones* otherwise.

EXAMPLES:

```python
sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant = Fan([quadrant])
sage: quadrant_bl = quadrant.subdivide([(1,1)])
sage: fm = FanMorphism(identity_matrix(2), quadrant_bl, quadrant)
sage: fm.codomain_fan()
Rational polyhedral fan in 2-d lattice N
sage: fm.codomain_fan() is quadrant
True
```

domain_fan *(dim=None, codim=None)*

Return the codomain fan of *self*.

INPUT:
• dim – dimension of the requested cones;
• codim – codimension of the requested cones.

OUTPUT:
• *rational polyhedral fan* if no parameters were given, *tuple of cones* otherwise.

EXAMPLES:

```python
sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant = Fan([quadrant])
sage: quadrant_bl = quadrant.subdivide([(1,1)])
sage: fm = FanMorphism(identity_matrix(2), quadrant_bl, quadrant)
sage: fm.domain_fan()
Rational polyhedral fan in 2-d lattice N
sage: fm.domain_fan() is quadrant_bl
True
```

factor()

Factor *self* into injective * birational * surjective morphisms.

OUTPUT:
• a triple of *FanMorphism* \((\phi_i, \phi_b, \phi_s)\), such that \(\phi_s\) is surjective, \(\phi_b\) is birational, \(\phi_i\) is injective, and *self* is equal to \(\phi_i \circ \phi_b \circ \phi_s\).

Intermediate fans live in the saturation of the image of *self* as a map between lattices and are the image of the *domain_fan()*, and the restriction of the *codomain_fan()*, i.e. if *self* maps \(\Sigma \rightarrow \Sigma'\), then we have factorization into

\[\Sigma \rightarrow \Sigma_s \rightarrow \Sigma_i \rightarrow \Sigma.\]

Note:
• \(\Sigma_s\) is the finest fan with the smallest support that is compatible with *self*: any fan morphism from \(\Sigma\) given by the same map of lattices as *self* factors through \(\Sigma_s\).
• Σ_i is the coarsest fan of the largest support that is compatible with `self`: any fan morphism into Σ' given by the same map of lattices as `self` factors though Σ_i.

EXAMPLES:

We map an affine plane into a projective 3-space in such a way, that it becomes “a double cover of a chart of the blow up of one of the coordinate planes”:

```
sage: A2 = toric_varieties.A2()
sage: P3 = toric_varieties.P(3)
sage: m = matrix([[2,0,0], [1,1,0]])
sage: phi = A2.hom(m, P3)
sage: phi.as_polynomial_map()
```

```
Scheme morphism:
From: 2-d affine toric variety
To: 3-d CPR-Fano toric variety covered by 4 affine patches
Defn: Defined on coordinates by sending [x : y] to
[x^2*y : y : 1 : 1]
```

Now we will work with the underlying fan morphism:

```
sage: phi = phi.fan_morphism(); phi
```

```
Fan morphism defined by the matrix
[2 0 0]
[1 1 0]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in 3-d lattice N
```

```
sage: phi.is_surjective(), phi.is_birational(), phi.is_injective()
```

```
(False, False, False)
```

```
sage: phi_i, phi_b, phi_s = phi.factor()
sage: phi_s.is_surjective(), phi_b.is_birational(), phi_i.is_injective()
```

```
(True, True, True)
```

```
sage: prod(phi.factor()) == phi
```

```
True
```

Double cover (surjective):

```
sage: A2.fan().rays()
N(1, 0),
N(0, 1)
in 2-d lattice N
```

```
sage: phi_s
```

```
Fan morphism defined by the matrix
[2 0]
[1 1]
```
Domain fan: Rational polyhedral fan in 2-d lattice \(\mathbb{N} \)
Codomain fan: Rational polyhedral fan in Sublattice \(<\mathbb{N}(1, 0, 0), \mathbb{N}(0, 1, 0)>\)

```
sage: phi_s.codomain_fan().rays()
```

\[\text{optional - palp}\]
\(\mathbb{N}(1, 0, 0), \mathbb{N}(1, 1, 0)\)
in Sublattice \(<\mathbb{N}(1, 0, 0), \mathbb{N}(0, 1, 0)>\)

Blowup chart (birational):

```
sage: phi_b
```

\[\text{optional - palp}\]
Fan morphism defined by the matrix
\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]
Domain fan: Rational polyhedral fan in Sublattice \(<\mathbb{N}(1, 0, 0), \mathbb{N}(0, 1, 0)>\)
Codomain fan: Rational polyhedral fan in Sublattice \(<\mathbb{N}(1, 0, 0), \mathbb{N}(0, 1, 0)>\)

```
sage: phi_b.codomain_fan().rays()
```

\[\text{optional - palp}\]
\(\mathbb{N}(-1, -1, 0), \mathbb{N}(0, 1, 0), \mathbb{N}(1, 0, 0)\)
in Sublattice \(<\mathbb{N}(1, 0, 0), \mathbb{N}(0, 1, 0)>\)

Coordinate plane inclusion (injective):

```
sage: phi_i
```

\[\text{optional - palp}\]
Fan morphism defined by the matrix
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\]
Domain fan: Rational polyhedral fan in Sublattice \(<\mathbb{N}(1, 0, 0), \mathbb{N}(0, 1, 0)>\)
Codomain fan: Rational polyhedral fan in 3-d lattice \(\mathbb{N}\)

```
sage: phi.codomain_fan().rays()
```

\[\text{optional - palp}\]
\(\mathbb{N}(1, 0, 0), \mathbb{N}(0, 1, 0), \mathbb{N}(0, 0, 1), \mathbb{N}(-1, -1, -1)\)
in 3-d lattice \(\mathbb{N}\)

image_cone(cone)
Return the cone of the codomain fan containing the image of \(cone\).

INPUT:
- \(cone\) – a \(cone\) equivalent to a cone of the \(domain_fan()\) of \(self\).

OUTPUT:
- a \(cone\) of the \(codomain_fan()\) of \(self\).

EXAMPLES:
Combinatorial and Discrete Geometry, Release 9.6

\begin{verbatim}
sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant = Fan([quadrant])
sage: quadrant_bl = quadrant.subdivide([(1,1)])
sage: fm = FanMorphism(identity_matrix(2), quadrant_bl, quadrant)
sage: fm.image_cone(Cone([(1,0)]))
1-d cone of Rational polyhedral fan in 2-d lattice N
sage: fm.image_cone(Cone([(1,1)]))
2-d cone of Rational polyhedral fan in 2-d lattice N
\end{verbatim}

\textbf{index}(\texttt{cone=None})

Return the index of \texttt{self} as a map between lattices.

INPUT:

\begin{itemize}
 \item \texttt{cone} – (default: None) a \texttt{cone} of the \texttt{codomain_fan()} of \texttt{self}.
\end{itemize}

OUTPUT:

\begin{itemize}
 \item an integer, infinity, or None.
\end{itemize}

If no cone was specified, this function computes the index of the image of \texttt{self} in the codomain. If a cone \(\sigma\) was given, the index of \texttt{self} over \(\sigma\) is computed in the sense of Definition 2.1.7 of [HLY2002]: if \(\sigma'\) is any cone of the \texttt{domain_fan()} of \texttt{self} whose relative interior is mapped to the relative interior of \(\sigma\), it is the index of the image of \(N'(\sigma')\) in \(N(\sigma)\), where \(N'\) and \(N\) are domain and codomain lattices respectively. While that definition was formulated for the case of the finite index only, we extend it to the infinite one as well and return \texttt{None} if there is no \(\sigma'\) at all. See examples below for situations when such things happen. Note also that the index of \texttt{self} is the same as index over the trivial cone.

EXAMPLES:

\begin{verbatim}
sage: Sigma = toric_varieties.dP8().fan() # optional - palp
sage: Sigma_p = toric_varieties.P1().fan() # optional - palp
sage: phi = FanMorphism(matrix([[1], [-1]]), Sigma, Sigma_p) # optional - palp
sage: phi.index() # optional - palp
1
sage: psi = FanMorphism(matrix([[2], [-2]]), Sigma, Sigma_p) # optional - palp
sage: psi.index() # optional - palp
2
sage: xi = FanMorphism(matrix([[1, 0]]), Sigma_p, Sigma) # optional - palp
sage: xi.index() # optional - palp
+Infinity
\end{verbatim}

Infinite index in the last example indicates that the image has positive codimension in the codomain. Let’s look at the rays of our fans:

\begin{verbatim}
sage: Sigma_p.rays()
N(1),
N(-1)
in 1-d lattice N
\end{verbatim}

(continues on next page)
We see that one of the rays of the fan of \mathbb{P}^1 is mapped to a ray, while the other one to the interior of some 2-d cone. Both rays correspond to single points on \mathbb{P}^1, yet one is mapped to the distinguished point of a torus invariant curve of dP_8 (with the rest of this curve being uncovered) and the other to a fixed point of dP_8 (thus completely covering this torus orbit in dP_8).

We should therefore expect the following behaviour: all indices over 1-d cones are `None`, except for one which is infinite, and all indices over 2-d cones are `None`, except for one which is 1:

```
sage: [xi.index(cone) for cone in Sigma(1)]  # optional - palp
[None, None, None, +Infinity]
sage: [xi.index(cone) for cone in Sigma(2)]  # optional - palp
[None, 1, None, None]
```

is_birational()

Check if self is birational.

OUTPUT:

- True if self is birational, False otherwise.

For fan morphisms this check is equivalent to `self.index() == 1` and means that the corresponding map between toric varieties is birational.

EXAMPLES:

```
sage: Sigma = toric_varieties.dP8().fan()  # optional - palp
sage: Sigma_p = toric_varieties.P1().fan()
sage: phi = FanMorphism(matrix([[1], [-1]]), Sigma, Sigma_p)  # optional - palp
sage: psi = FanMorphism(matrix([[2], [-2]]), Sigma, Sigma_p)  # optional - palp
sage: xi = FanMorphism(matrix([[1, 0]]), Sigma_p, Sigma)  # optional - palp
sage: phi.index(), psi.index(), xi.index()  # optional - palp
(1, 2, +Infinity)
sage: phi.is_birational(), psi.is_birational(), xi.is_birational()  # optional - palp
(True, False, False)
```
is_bundle()

Check if self is a bundle.

OUTPUT:

- True if self is a bundle, False otherwise.

Let $\phi : \Sigma \to \Sigma'$ be a fan morphism such that the underlying lattice morphism $\phi : N \to N'$ is surjective. Let Σ_0 be the kernel fan of ϕ. Then ϕ is a bundle (or splitting) if there is a subfan $\widehat{\Sigma}$ of Σ such that the following two conditions are satisfied:

1. Cones of Σ are precisely the cones of the form $\sigma_0 + \widehat{\sigma}$, where $\sigma_0 \in \Sigma_0$ and $\widehat{\sigma} \in \widehat{\Sigma}$.
2. Cones of $\widehat{\Sigma}$ are in bijection with cones of Σ' induced by ϕ and ϕ maps lattice points in every cone $\widehat{\sigma} \in \widehat{\Sigma}$ bijectively onto lattice points in $\phi(\widehat{\sigma})$.

If a fan morphism $\phi : \Sigma \to \Sigma'$ is a bundle, then X_Σ is a fiber bundle over $X_{\Sigma'}$ with fibers X_{Σ_0,N_0}, where N_0 is the kernel lattice of ϕ. See [CLS2011] for more details.

See also:

`is_fibration()`, `kernel_fan()`.

EXAMPLES:

We consider several maps between fans of a del Pezzo surface and the projective line:

```python
sage: Sigma = toric_varieties.dP8().fan()  # optional - palp
sage: Sigma_p = toric_varieties.P1().fan()  # optional - palp
sage: phi = FanMorphism(matrix([[1], [-1]]), Sigma, Sigma_p)  # optional - palp
sage: psi = FanMorphism(matrix([[2], [-2]]), Sigma, Sigma_p)  # optional - palp
sage: xi = FanMorphism(matrix([[1, 0]]), Sigma_p, Sigma)  # optional - palp
sage: phi.is_bundle()                                # optional - palp
True
sage: phi.is_fibration()                             # optional - palp
True
sage: phi.index()                                    # optional - palp
1
sage: psi.is_bundle()                                # optional - palp
False
sage: psi.is_fibration()                             # optional - palp
True
sage: psi.index()                                    # optional - palp
2
sage: xi.is_fibration()                              # optional - palp
False
```
(continues on next page)
The first of these maps induces not only a fibration, but a fiber bundle structure. The second map is very similar, yet it fails to be a bundle, as its index is 2. The last map is not even a fibration.

is_dominant()

Return whether the fan morphism is dominant.

A fan morphism ϕ is dominant if it is surjective as a map of vector spaces. That is, $\phi_R : N_R \to N'_R$ is surjective.

If the domain fan is **complete**, then this implies that the fan morphism is **surjective**.

If the fan morphism is dominant, then the associated morphism of toric varieties is dominant in the algebraic-geometric sense (that is, surjective onto a dense subset).

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: P1 = toric_varieties.P1()
sage: A1 = toric_varieties.A1()
sage: phi = FanMorphism(matrix([[1]]), A1.fan(), P1.fan())
sage: phi.is_dominant()
True
sage: phi.is_surjective()
False
```

is_fibration()

Check if self is a fibration.

OUTPUT:

• True if self is a fibration, False otherwise.

A fan morphism $\phi : \Sigma \to \Sigma'$ is a **fibration** if for any cone $\sigma' \in \Sigma'$ and any primitive preimage cone $\sigma \in \Sigma$ corresponding to σ' the linear map of vector spaces ϕ_R induces a bijection between σ and σ', and, in addition, ϕ is **dominant** (that is, $\phi_R : N_R \to N'_R$ is surjective).

If a fan morphism $\phi : \Sigma \to \Sigma'$ is a fibration, then the associated morphism between toric varieties $\tilde{\phi} : X_\Sigma \to X_{\Sigma'}$ is a fibration in the sense that it is surjective and all of its fibers have the same dimension, namely $\dim X_\Sigma - \dim X_{\Sigma'}$. These fibers do not have to be isomorphic, i.e. a fibration is not necessarily a fiber bundle. See [HLY2002] for more details.

See also:

is_bundle(), **primitive_preimage_cones()**.

EXAMPLES:

We consider several maps between fans of a del Pezzo surface and the projective line:

```python
sage: Sigma = toric_varieties.dP8().fan()  # optional - palp
sage: Sigma_p = toric_varieties.P1().fan()
sage: phi = FanMorphism(matrix([[1], [-1]]), Sigma, Sigma_p)  # optional - palp
```
Combinatorial and Discrete Geometry, Release 9.6

The first of these maps induces not only a fibration, but a fiber bundle structure. The second map is very similar, yet it fails to be a bundle, as its index is 2. The last map is not even a fibration.

```
sage: psi = FanMorphism(matrix([[2], [-2]]), Sigma, Sigma_p)     # optional - palp
sage: xi = FanMorphism(matrix([[1, 0]]), Sigma_p, Sigma)       # optional - palp
sage: phi.is_bundle()                        # optional - palp
   True
sage: phi.is_fibration()                     # optional - palp
   True
sage: phi.index()                           # optional - palp
   1
sage: psi.is_bundle()                        # optional - palp
   False
sage: psi.is_fibration()                     # optional - palp
   True
sage: psi.index()                           # optional - palp
   2
sage: xi.is_fibration()                      # optional - palp
   False
sage: xi.index()                            # optional - palp
   +Infinity
```

The first of these maps induces not only a fibration, but a fiber bundle structure. The second map is very similar, yet it fails to be a bundle, as its index is 2. The last map is not even a fibration.

`is_injective()`

Check if `self` is injective.

OUTPUT:

- True if `self` is injective, False otherwise.

Let $\phi : \Sigma \to \Sigma'$ be a fan morphism such that the underlying lattice morphism $\phi : N \to N'$ bijectively maps N to a saturated sublattice of N'. Let $\psi : \Sigma \to \Sigma_0$ be the restriction of ϕ to the image. Then ϕ is **injective** if the map between cones corresponding to ψ (injectively) maps each cone of Σ to a cone of the same dimension.

If a fan morphism $\phi : \Sigma \to \Sigma'$ is injective, then the associated morphism between toric varieties $\tilde{\phi} : X_\Sigma \to X_{\Sigma'}$ is injective.

See also:

`factor()`.

EXAMPLES:

Consider the fan of the affine plane:

```
sage: A2 = toric_varieties.A(2).fan()
```
We will map several fans consisting of a single ray into the interior of the 2-cone:

```
sage: Sigma = Fan([Cone([(1,1)])])
sage: m = identity_matrix(2)
sage: FanMorphism(m, Sigma, A2).is_injective()
False
```

This morphism was not injective since (in the toric varieties interpretation) the 1-dimensional orbit corresponding to the ray was mapped to the 0-dimensional orbit corresponding to the 2-cone.

```
sage: Sigma = Fan([Cone([(1,)])])
sage: m = matrix(1, 2, [1,1])
sage: FanMorphism(m, Sigma, A2).is_injective()
True
```

While the fans in this example are close to the previous one, here the ray corresponds to a 0-dimensional orbit.

```
sage: Sigma = Fan([Cone([(1,)])])
sage: m = matrix(1, 2, [2,2])
sage: FanMorphism(m, Sigma, A2).is_injective()
False
```

Here the problem is that m maps the domain lattice to a non-saturated sublattice of the codomain. The corresponding map of the toric varieties is a two-sheeted cover of its image.

We also embed the affine plane into the projective one:

```
sage: P2 = toric_varieties.P(2).fan()  # optional - palp
sage: m = identity_matrix(2)
sage: FanMorphism(m, A2, P2).is_injective()  # optional - palp
True
```

is_surjective()

Check if self is surjective.

OUTPUT:

- True if self is surjective, False otherwise.

A fan morphism $\phi : \Sigma \to \Sigma'$ is **surjective** if the corresponding map between cones is surjective, i.e. for each cone $\sigma' \in \Sigma'$ there is at least one preimage cone $\sigma \in \Sigma$ such that the relative interior of σ is mapped to the relative interior of σ' and, in addition, $\phi_R : N_R \to N'_R$ is surjective.

If a fan morphism $\phi : \Sigma \to \Sigma'$ is surjective, then the associated morphism between toric varieties $\tilde{\phi} : X_{\Sigma} \to X_{\Sigma'}$ is surjective.

See also:

`is_bundle()`, `is_fibration()`, `preimage_cones()`, `is_complete()`.

EXAMPLES:

We check that the blow up of the affine plane at the origin is surjective:
It remains surjective if we throw away “south and north poles” of the exceptional divisor:

```
sage: FanMorphism(m, Fan(Bl.cones(1)), A2).is_surjective()
```
```
True
```

But a single patch of the blow up does not cover the plane:

```
sage: F = Fan([Bl.generating_cone(0)])
sage: FanMorphism(m, F, A2).is_surjective()
```
```
False
```

kernel_fan()

Return the subfan of the domain fan mapped into the origin.

OUTPUT:

- a **fan**.

Note: The lattice of the kernel fan is the kernel() sublattice of self.

See also:

preimage_fan().

EXAMPLES:

```
sage: fan = Fan(rays=[[1,0], (1,1), (0,1)], cones=[[0,1], (1,2)])
sage: fm = FanMorphism(matrix(2, 1, [1,-1]), fan, ToricLattice(1))
sage: fm.kernel_fan()
```
```
Rational polyhedral fan in Sublattice <N(1, 1)>
```

```
sage: _.rays()
```
```
N(1, 1)
in Sublattice <N(1, 1)>
```

```
sage: fm.kernel_fan().cones()
```
```
((0-d cone of Rational polyhedral fan in Sublattice <N(1, 1)>,),
(1-d cone of Rational polyhedral fan in Sublattice <N(1, 1)>,))
```

preimage_cones(cone)

Return cones of the domain fan whose image_cone() is cone.

INPUT:

- `cone` – a **cone** equivalent to a cone of the codomain_fan() of self.

OUTPUT:

- a tuple of cones of the domain_fan() of self, sorted by dimension.

See also:

preimage_fan().

EXAMPLES:
```
sage: quadrant = Cone([(1,0), (0,1)])
sage: quadrant = Fan([quadrant])
sage: quadrant_bl = quadrant.subdivide([(1,1)])
sage: fm = FanMorphism(identity_matrix(2), quadrant_bl, quadrant)
sage: fm.preimage_cones(Cone([(1,0)]))
(1-d cone of Rational polyhedral fan in 2-d lattice N,)
sage: fm.preimage_cones(Cone([(1,0), (0,1)]))
(1-d cone of Rational polyhedral fan in 2-d lattice N, 2-d cone of Rational polyhedral fan in 2-d lattice N, 2-d cone of Rational polyhedral fan in 2-d lattice N)
```

preimage_fan(cone)

Return the subfan of the domain fan mapped into cone.

INPUT:

* cone – a cone equivalent to a cone of the codomain_fan() of self.

OUTPUT:

* a fan.

Note: The preimage fan of cone consists of all cones of the domain_fan() which are mapped into cone, including those that are mapped into its boundary. So this fan is not necessarily generated by preimage_cones() of cone.

See also:

kernel_fan(), preimage_cones().

EXAMPLES:

```
sage: quadrant_cone = Cone([(1,0), (0,1)])
sage: quadrant_fan = Fan([quadrant_cone])
sage: quadrant_bl = quadrant_fan.subdivide([(1,1)])
sage: fm = FanMorphism(identity_matrix(2), quadrant_fan, quadrant)
....:
sage: fm.preimage_fan(Cone([(1,0)])).cones()
((0-d cone of Rational polyhedral fan in 2-d lattice N,),)
sage: fm.preimage_fan(quadrant_cone).ngenerating_cones()
2
sage: len(fm.preimage_cones(quadrant_cone))
3
```

primitive_preimage_cones(cone)

Return the primitive cones of the domain fan corresponding to cone.

INPUT:

* cone – a cone equivalent to a cone of the codomain_fan() of self.

OUTPUT:

* a cone.

Let \(\phi : \Sigma \to \Sigma' \) be a fan morphism, let \(\sigma \in \Sigma \), and let \(\sigma' = \phi(\sigma) \). Then \(\sigma \) is a **primitive cone corresponding to** \(\sigma' \) if there is no proper face \(\tau \) of \(\sigma \) such that \(\phi(\tau) = \sigma' \).
Primitive cones play an important role for fibration morphisms.

See also:

`is_fibration()`, `preimage_cones()`, `preimage_fan()`.

EXAMPLES:

Consider a projection of a del Pezzo surface onto the projective line:

```python
sage: Sigma = toric_varieties.dP6().fan()  # optional - palp
sage: Sigma.rays()                           # optional - palp
N( 0, 1),
N(-1, 0),
N(-1, -1),
N( 0, -1),
N( 1, 0),
N( 1, 1)
in 2-d lattice N
sage: Sigma_p = toric_varieties.P1().fan()
sage: phi = FanMorphism(matrix([[1], [-1]]), Sigma, Sigma_p)  # optional - palp

Under this map, one pair of rays is mapped to the origin, one in the positive direction, and one in the negative one. Also three 2-dimensional cones are mapped in the positive direction and three in the negative one, so there are 5 preimage cones corresponding to either of the rays of the codomain fan `Sigma_p`:

```python
sage: len(phi.preimage_cones(Cone([[1,]]))) # optional - palp
5
```

Yet only rays are primitive:

```python
sage: phi.primitive_preimage_cones(Cone([[1,]])) # optional - palp
(1-d cone of Rational polyhedral fan in 2-d lattice N, 1-d cone of Rational polyhedral fan in 2-d lattice N)
```

Since all primitive cones are mapped onto their images bijectively, we get a fibration:

```python
sage: phi.is_fibration() # optional - palp
True
```

But since there are several primitive cones corresponding to the same cone of the codomain fan, this map is not a bundle, even though its index is 1:

```python
sage: phi.is_bundle() # optional - palp
False
sage: phi.index() # optional - palp
1
```
**relative_star_generators**(*domain_cone*)

Return the relative star generators of *domain_cone*.

**INPUT:**

- *domain_cone* – a cone of the *domain_fan()* of *self*.

**OUTPUT:**

- star_generators() of *domain_cone* viewed as a cone of preimage_fan() of image_cone() of *domain_cone*.

**EXAMPLES:**

```sage
sage: A2 = toric_varieties.A(2).fan()
sage: Bl = A2.subdivide([(1,1)])
sage: f = FanMorphism(identity_matrix(2), Bl, A2)
sage: for c1 in Bl(1):
 : print(f.relative_star_generators(c1))
(1-d cone of Rational polyhedral fan in 2-d lattice N,)
(1-d cone of Rational polyhedral fan in 2-d lattice N,)
(2-d cone of Rational polyhedral fan in 2-d lattice N, 2-d cone of Rational polyhedral fan in 2-d lattice N)
```

### 2.4.6 Point collections

This module was designed as a part of framework for toric varieties (*variety*, *fano Variety*).

**AUTHORS:**

- Andrey Novoseltsev (2012-03-06): additions and doctest changes while switching cones to use point collections.

**EXAMPLES:**

The idea behind *point collections* is to have a container for points of the same space that

- behaves like a tuple *without significant performance penalty*:

```sage
sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c[1]
N(1, 0, 1)
sage: for point in c: point
N(0, 0, 1)
N(1, 0, 1)
N(0, 1, 1)
N(1, 1, 1)
```

- prints in a convenient way and with clear indication of the ambient space:

```sage
c
N(0, 0, 1),
N(1, 0, 1),
N(0, 1, 1),
N(1, 1, 1)
in 3-d lattice N
```

- allows (cached) access to alternative representations:
sage: c.set()
frozenset({N(0, 0, 1), N(0, 1, 1), N(1, 0, 1), N(1, 1, 1)})

• allows introduction of additional methods:

sage: c.basis()
N(0, 0, 1),
N(1, 0, 1),
N(0, 1, 1)
in 3-d lattice N

Examples of natural point collections include ray and line generators of cones, vertices and points of polytopes, normals to facets, their subcollections, etc.

Using this class for all of the above cases allows for unified interface and cache sharing. Suppose that $\Delta$ is a reflexive polytope. Then the same point collection can be linked as

1. vertices of $\Delta$;
2. facet normals of its polar $\Delta^o$;
3. ray generators of the face fan of $\Delta$;
4. ray generators of the normal fan of $\Delta$.

If all these objects are in use and, say, a matrix representation was computed for one of them, it becomes available to all others as well, eliminating the need to spend time and memory four times.

class sage.geometry.point_collection.PointCollection

Create a point collection.

Warning: No correctness check or normalization is performed on the input data. This class is designed for internal operations and you probably should not use it directly.

Point collections are immutable, but cache most of the returned values.

INPUT:

• points – an iterable structure of immutable elements of module, if points are already accessible to you as a tuple, it is preferable to use it for speed and memory consumption reasons;

• module – an ambient module for points. If None (the default), it will be determined as parent() of the first point. Of course, this cannot be done if there are no points, so in this case you must give an appropriate module directly.

OUTPUT:

• a point collection.

basis()

Return a linearly independent subset of points of self.

OUTPUT:

• a point collection giving a random (but fixed) choice of an R-basis for the vector space spanned by the points of self.

EXAMPLES:
sage: c = Cone([[(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)]]).rays()
sage: c.basis()
N(0, 0, 1),
N(1, 0, 1),
N(0, 1, 1)
in 3-d lattice N

Calling this method twice will always return *exactly the same* point collection:

sage: c.basis().basis() is c.basis()
True

cardinality()
Return the number of points in self.

OUTPUT:
• an integer.

EXAMPLES:

sage: c = Cone([[(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)]]).rays()
sage: c.cardinality()
4

cartesian_product(other, module=None)
Return the Cartesian product of self with other.

INPUT:
• other – a point collection;
• module – (optional) the ambient module for the result. By default, the direct sum of the ambient modules of self and other is constructed.

OUTPUT:
• a point collection.

EXAMPLES:

sage: c = Cone([[(0, 0, 1), (1, 1, 1)]]).rays()
sage: c.cartesian_product(c)
N+N(0, 0, 1, 0, 0, 1),
N+N(1, 1, 1, 0, 0, 1),
N+N(0, 0, 1, 1, 1, 1),
N+N(1, 1, 1, 1, 1, 1)
in 6-d lattice N+N

column_matrix()
Return a matrix whose columns are points of self.

OUTPUT:
• a matrix.

EXAMPLES:
```
sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.column_matrix()
[0 1 0 1]
[0 0 1 1]
[1 1 1 1]
```

`dim()`

Return the dimension of the space spanned by points of `self`.

**Note:** You can use either `dim()` or `dimension()`.

**OUTPUT:**

• an integer.

**EXAMPLES:**

```
sage: c = Cone([(0,0,1), (1,1,1)]).rays()
sage: c.dimension()
2
sage: c.dim()
2
```

`dimension()`

Return the dimension of the space spanned by points of `self`.

**Note:** You can use either `dim()` or `dimension()`.

**OUTPUT:**

• an integer.

**EXAMPLES:**

```
sage: c = Cone([(0,0,1), (1,1,1)]).rays()
sage: c.dimension()
2
sage: c.dim()
2
```

`dual_module()`

Return the dual of the ambient module of `self`.

**OUTPUT:**

• a module. If possible (that is, if the ambient `module()` \( M \) of `self` has a `dual()` method), the dual module is returned. Otherwise, \( R^n \) is returned, where \( n \) is the dimension of \( M \) and \( R \) is its base ring.

**EXAMPLES:**

```
sage: c = Cone([(0,0,1), (1,1,1)]).rays()
sage: c.dual_module()
3-d lattice M
```

`index(*args)`

Return the index of the first occurrence of point in `self`.

---

2.4. Toric geometry 391
INPUT:
- point – a point of self;
- start – (optional) an integer, if given, the search will start at this position;
- stop – (optional) an integer, if given, the search will stop at this position.

OUTPUT:
- an integer if point is in self[start:stop], otherwise a ValueError exception is raised.

EXAMPLES:

```
sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.index((0,1,1))
Traceback (most recent call last):
...
ValueError: tuple.index(x): x not in tuple
```

Note that this was not a mistake: the tuple (0,1,1) is not a point of c! We need to pass actual element of the ambient module of c to get their indices:

```
sage: N = c.module()
sage: c.index(N(0,1,1))
2
```

**matrix()**
Return a matrix whose rows are points of self.

OUTPUT:
- a matrix.

EXAMPLES:

```
sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.matrix()
[0 0 1]
[1 0 1]
[0 1 1]
[1 1 1]
```

**module()**
Return the ambient module of self.

OUTPUT:
- a module.

EXAMPLES:

```
sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c.module()
3-d lattice N
```

**static output_format**(format=None)
Return or set the output format for ALL point collections.
INPUT:

- **format** – (optional) if given, must be one of the strings
  - “default” – output one point per line with vertical alignment of coordinates in text mode, same as “tuple” for LaTeX;
  - “tuple” – output `tuple(self)` with lattice information;
  - “matrix” – output `matrix()` with lattice information;
  - “column matrix” – output `column_matrix()` with lattice information;
  - “separated column matrix” – same as “column matrix” for text mode, for LaTeX separate columns by lines (not shown by jsMath).

OUTPUT:

- a string with the current format (only if `format` was omitted).

This function affects both regular and LaTeX output.

EXAMPLES:

```python
sage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)]).rays()
sage: c
N(0, 0, 1),
N(1, 0, 1),
N(0, 1, 1),
N(1, 1, 1)
in 3-d lattice N
sage: c.output_format()
'default'
sage: c.output_format("tuple")
sage: c
(N(0, 0, 1), N(1, 0, 1), N(0, 1, 1), N(1, 1, 1))
in 3-d lattice N
sage: c.output_format("matrix")
sage: c
[0 1 0 1]
[1 0 1 1]
[0 1 1 1]
in 3-d lattice N
sage: c.output_format("column matrix")
sage: c
[0 1 0 1]
[0 0 1 1]
[1 1 1 1]
in 3-d lattice N
sage: c.output_format("separated column matrix")
sage: c
[0 1 0 1]
[0 0 1 1]
[1 1 1 1]
in 3-d lattice N
```

Note that the last two outputs are identical, separators are only inserted in the LaTeX mode:
sage: latex(c)
\left(\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)_{N}

Since this is a static method, you can call it for the class directly:

```
sage: from sage.geometry.point_collection import PointCollection
sage: PointCollection.output_format("default")
sage: c
N(0, 0, 1),
N(1, 0, 1),
N(0, 1, 1),
N(1, 1, 1)
in 3-d lattice N
```

**set()**

Return points of self as a frozenset.

**OUTPUT:**

• a frozenset.

**EXAMPLES:**

```
sage: c = Cone([N(0,0,1), N(1,0,1), N(0,1,1), N(1,1,1)]).rays()
sage: c.set()
frozenset({N(0, 0, 1), N(0, 1, 1), N(1, 0, 1), N(1, 1, 1)})
```

**write_for_palp(f)**

Write self into an open file f in PALP format.

**INPUT:**

• f – a file opened for writing.

**EXAMPLES:**

```
sage: o = lattice_polytope.cross_polytope(3)
sage: from io import StringIO
sage: f = StringIO()
sage: o.vertices().write_for_palp(f)
sage: print(f.getvalue())
6 3
1 0 0
0 1 0
0 0 1
-1 0 0
0 -1 0
0 0 -1
```

`sage.geometry.point_collection.is_PointCollection(x)`

Check if x is a point collection.

**INPUT:**
• x – anything.

OUTPUT:
• True if x is a point collection and False otherwise.

EXAMPLES:

```
sage: from sage.geometry.point_collection import is_PointCollection
dsage: is_PointCollection(1)
False
dsage: c = Cone([(0,0,1), (1,0,1), (0,1,1), (1,1,1)])
dsage: is_PointCollection(c.rays())
True
```

```
sage.geometry.point_collection.read_palp_point_collection(f, lattice=None, permutation=False)
```

Read and return a point collection from an opened file.

Data must be in PALP format:
• the first input line starts with two integers $m$ and $n$, the number of points and the number of components of each;
• the rest of the first line may contain a permutation;
• the next $m$ lines contain $n$ numbers each.

Note: If $m < n$, it is assumed (for compatibility with PALP) that the matrix is transposed, i.e. that each column is a point.

INPUT:
• f – an opened file with PALP output.
• lattice – the lattice for points. If not given, the toric lattice $M$ of dimension $n$ will be used.
• permutation – (default: False) if True, try to retrieve the permutation. This parameter makes sense only when PALP computed the normal form of a lattice polytope.

OUTPUT:
• a point collection, optionally followed by a permutation. None if EOF is reached.

EXAMPLES:

```
sage: data = "3 2 regular\n1 2\n3 4\n5 6\ntransposed\n1 2 3\n4 5 6"
sage: print(data)
3 2 regular
1 2
3 4
5 6
2 3 transposed
1 2 3
4 5 6
sage: from io import StringIO
sage: f = StringIO(data)
sage: from sage.geometry.point_collection import read_palp_point_collection
...: import read_palp_point_collection
sage: read_palp_point_collection(f)
```
2.4.7 Toric plotter

This module provides a helper class ToricPlotter for producing plots of objects related to toric geometry. Default plotting objects can be adjusted using options() and reset using reset_options().

AUTHORS:

- Andrey Novoseltsev (2010-10-03): initial version, using some code bits by Volker Braun.

EXAMPLES:

In most cases, this module is used indirectly, e.g.

```
sage: fan = toric_varieties.dP6().fan() # optional -
palp
sage: fan.plot() # optional - sage.plot # optional -
palp
```

Graphics object consisting of 31 graphics primitives

You may change default plotting options as follows:

```
sage: toric_plotter.options("show_rays")
True
sage: toric_plotter.options(show_rays=False)
False
sage: fan.plot() # optional - sage.plot # optional -
palp
```

Graphics object consisting of 19 graphics primitives

```
sage: toric_plotter.reset_options()
sage: toric_plotter.options("show_rays")
True
sage: fan.plot() # optional - sage.plot # optional -
palp
```

Graphics object consisting of 31 graphics primitives

```
class sage.geometry.toric_plotter.ToricPlotter(all_options, dimension, generators=None)
 Bases: sage.structure.sage_object.SageObject

 Create a toric plotter.
```

INPUT:
• **all_options** — a dictionary, containing any of the options related to toric objects (see `options()`) and any other options that will be passed to lower level plotting functions;

• **dimension** — an integer (1, 2, or 3), dimension of toric objects to be plotted;

• **generators** — (optional) a list of ray generators, see examples for a detailed explanation of this argument.

**OUTPUT:**

• a toric plotter.

**EXAMPLES:**

In most cases there is no need to create and use `ToricPlotter` directly. Instead, use plotting method of the object which you want to plot, e.g.

```sage
sage: fan = toric_varieties.dP6().fan() # optional - palp
sage: fan.plot() # optional - sage.plot # optional - palp
Graphics object consisting of 31 graphics primitives
sage: print(fan.plot()) # optional - sage.plot # optional - palp
Graphics object consisting of 31 graphics primitives
```

If you do want to create your own plotting function for some toric structure, the anticipated usage of toric plotters is the following:

• collect all necessary options in a dictionary;

• pass these options and **dimension** to `ToricPlotter`;

• call `include_points()` on ray generators and any other points that you want to be present on the plot (it will try to set appropriate cut-off bounds);

• call `adjust_options()` to choose “nice” default values for all options that were not set yet and ensure consistency of rectangular and spherical cut-off bounds;

• call `set_rays()` on ray generators to scale them to the cut-off bounds of the plot;

• call appropriate `plot_*` functions to actually construct the plot.

For example, the plot from the previous example can be obtained as follows:

```sage
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: options = dict() # use default for everything
sage: tp = ToricPlotter(options, fan.lattice().degree()) # optional - palp
sage: tp.include_points(fan.rays()) # optional - palp
sage: tp.adjust_options() # optional - palp
sage: tp.set_rays(fan.rays()) # optional - palp
sage: result = tp.plot_lattice() # optional - palp
sage: result += tp.plot_rays() # optional - palp
sage: result += tp.plot_generators() # optional - palp
```

(continues on next page)
In most situations it is only necessary to include generators of rays, in this case they can be passed to the constructor as an optional argument. In the example above, the toric plotter can be completely set up using

```
sage: tp = ToricPlotter(options, fan.lattice().degree(), fan.rays()) # optional - palp
```

All options are exposed as attributes of toric plotters and can be modified after constructions, however you will have to manually call `adjust_options()` and `set_rays()` again if you decide to change the plotting mode and/or cut-off bounds. Otherwise plots maybe invalid.

**adjust_options()**

Adjust plotting options.

This function determines appropriate default values for those options, that were not specified by the user, based on the other options. See `ToricPlotter` for a detailed example.

**OUTPUT:**

* none.

**include_points(points, force=False)**

Try to include points into the bounding box of self.

**INPUT:**

* points – a list of points;
* force – boolean (default: False). by default, only bounds that were not set before will be chosen to include points. Use `force=True` if you don’t mind increasing existing bounding box.

**OUTPUT:**

* none.

**EXAMPLES:**

```
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2)
sage: print(tp.radius)
None
sage: tp.include_points([(3, 4)])
sage: print(tp.radius)
5.5...
sage: tp.include_points([(5, 12)])
sage: print(tp.radius)
5.5...
sage: tp.include_points([(5, 12)], force=True)
sage: print(tp.radius)
13.5...
```

**plot_generators()**

Plot ray generators.
Ray generators must be specified during construction or using `set_rays()` before calling this method.

OUTPUT:

- a plot.

EXAMPLES:

```python
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2, [(3,4)])
sage: tp.plot_generators()
Graphics object consisting of 1 graphics primitive
```

**plot_labels**(*labels, positions*)

Plot labels at specified positions.

INPUT:

- `labels` – a string or a list of strings;
- `positions` – a list of points.

OUTPUT:

- a plot.

EXAMPLES:

```python
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2)
sage: tp.plot_labels("u", [(1.5,0)])
Graphics object consisting of 1 graphics primitive
```

**plot_lattice**()

Plot the lattice (i.e. its points in the cut-off bounds of `self`).

OUTPUT:

- a plot.

EXAMPLES:

```python
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2)
sage: tp.adjust_options()
nsage: tp.plot_lattice()
Graphics object consisting of 1 graphics primitive
```

**plot_points**(*points*)

Plot given points.

INPUT:

- `points` – a list of points.

OUTPUT:

- a plot.

EXAMPLES:
```python
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2)
sage: tp.adjust_options()
```

```python
tp.plot_points([(1,0), (0,1)])
```

Graphics object consisting of 1 graphics primitive

---

**plot_ray_labels()**

Plot ray labels.

Usually ray labels are plotted together with rays, but in some cases it is desirable to output them separately.

Ray generators must be specified during construction or using `set_rays()` before calling this method.

**OUTPUT:**

- a plot.

**EXAMPLES:**

```python
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2, [(3,4)])
```

```python
tp.plot_ray_labels()
```

Graphics object consisting of 1 graphics primitive

---

**plot_rays()**

Plot rays and their labels.

Ray generators must be specified during construction or using `set_rays()` before calling this method.

**OUTPUT:**

- a plot.

**EXAMPLES:**

```python
sage: from sage.geometry.toric_plotter import ToricPlotter
sage: tp = ToricPlotter(dict(), 2, [(3,4)])
```

```python
tp.plot_rays()
```

Graphics object consisting of 2 graphics primitives

---

**plot_walls(walls)**

Plot walls, i.e. 2-d cones, and their labels.

Ray generators must be specified during construction or using `set_rays()` before calling this method and these specified ray generators will be used in conjunction with `ambient_ray_indices()` of `walls`.

**INPUT:**

- `walls` – a list of 2-d cones.

**OUTPUT:**

- a plot.

**EXAMPLES:**

```python
sage: quadrant = Cone([(1,0), (0,1)])
```

```python
sage: from sage.geometry.toric_plotter import ToricPlotter
```

```python
sage: tp = ToricPlotter(dict(), 2, quadrant.rays())
```

```python
tp.plot_walls([quadrant])
```

Graphics object consisting of 2 graphics primitives
Let’s also check that the truncating polyhedron is functioning correctly:

```
sage: tp = ToricPlotter({"mode": "box"}, 2, quadrant.rays())
sage: tp.plot_walls([quadrant])
Graphics object consisting of 2 graphics primitives
```

**set_rays(generators)**

Set up rays and their generators to be used by plotting functions.

As an alternative to using this method, you can pass `generators` to `ToricPlotter` constructor.

**INPUT:**

- `generators` - a list of primitive non-zero ray generators.

**OUTPUT:**

- none.

**EXAMPLES:**

```
sage: from sage.geometry.toric_plotter import ToricPlotter
toric_plotter
sage: tp = ToricPlotter(dict(), 2)
sage: tp.adjust_options()
sage: tp.plot_rays()
Traceback (most recent call last):
 ... AttributeError: 'ToricPlotter' object has no attribute 'rays'
sage: tp.set_rays([(0,1)])
sage: tp.plot_rays()
Graphics object consisting of 2 graphics primitives
```

**sage.geometry.toric_plotter.color_list(color, n)**

Normalize a list of n colors.

**INPUT:**

- `color` – anything specifying a `Color`, a list of such specifications, or the string “rainbow”;
- `n` - an integer.

**OUTPUT:**

- a list of n colors.

If `color` specified a single color, it is repeated `n` times. If it was a list of `n` colors, it is returned without changes. If it was “rainbow”, the rainbow of `n` colors is returned.

**EXAMPLES:**

```
sage: from sage.geometry.toric_plotter import color_list
color_list
sage: color_list("grey", 1)
[RGB color (0.5019607843137255, 0.5019607843137255, 0.5019607843137255)]
sage: len(color_list("grey", 3))
3
sage: L = color_list("rainbow", 3)
sage: L
[RGB color (1.0, 0.0, 0.0),
 RGB color (0.0, 1.0, 0.0),
 RGB color (0.0, 0.0, 1.0)]
```
Combinatorial and Discrete Geometry, Release 9.6

sage: color_list(L, 3)
[RGB color (1.0, 0.0, 0.0),
 RGB color (0.0, 1.0, 0.0),
 RGB color (0.0, 0.0, 1.0)]
sage: color_list(L, 4)
Traceback (most recent call last):
...
ValueError: expected 4 colors, got 3!

sage.geometry.toric_plotter.label_list(label, n, math_mode, index_set=None)
Normalize a list of n labels.

INPUT:

- label – None, a string, or a list of string;
- n - an integer;
- math_mode – boolean, if True, will produce LaTeX expressions for labels;
- index_set – a list of integers (default: range(n)) that will be used as subscripts for labels.

OUTPUT:

- a list of n labels.

If label was a list of n entries, it is returned without changes. If label is None, a list of n None’s is returned. If label is a string, a list of strings of the form “label_i” is returned, where i ranges over index_set. (If math_mode=False, the form “label_i” is used instead.) If n=1, there is no subscript added, unless index_set was specified explicitly.

EXAMPLES:

sage: from sage.geometry.toric_plotter import label_list
sage: label_list("u", 3, False)
['u_0', 'u_1', 'u_2']
sage: label_list("u", 3, True)
['$u_{0}$', '$u_{1}$', '$u_{2}$']
sage: label_list("u", 1, True)
['$u$']

sage.geometry.toric_plotter.options(option=None, **kwds)
Get or set options for plots of toric geometry objects.

Note: This function provides access to global default options. Any of these options can be overridden by passing them directly to plotting functions. See also reset_options().

INPUT:

- None;

OR:

- option – a string, name of the option whose value you wish to get;

OR:

- keyword arguments specifying new values for one or more options.
OUTPUT:
- if there was no input, the dictionary of current options for toric plots;
- if option argument was given, the current value of option;
- if other keyword arguments were given, none.

Name Conventions
To clearly distinguish parts of toric plots, in options and methods we use the following name conventions:

**Generator** A primitive integral vector generating a 1-dimensional cone, plotted as an arrow from the origin (or a line, if the head of the arrow is beyond cut-off bounds for the plot).

**Ray** A 1-dimensional cone, plotted as a line from the origin to the cut-off bounds for the plot.

**Wall** A 2-dimensional cone, plotted as a region between rays (in the above sense). Its exact shape depends on the plotting mode (see below).

**Chamber** A 3-dimensional cone, plotting is not implemented yet.

Plotting Modes
A plotting mode mostly determines the shape of the cut-off region (which is always relevant for toric plots except for trivial objects consisting of the origin only). The following options are available:

**Box** The cut-off region is a box with edges parallel to coordinate axes.

**Generators** The cut-off region is determined by primitive integral generators of rays. Note that this notion is well-defined only for rays and walls, in particular you should plot the lattice on your own (plot_lattice() will use box mode which is likely to be unsuitable). While this method may not be suitable for general fans, it is quite natural for fans of CPR-Fano toric varieties. `<sage.schemes.toric.fano_variety.CPRFanoToricVariety_field`

**Round** The cut-off regions is a sphere centered at the origin.

Available Options
Default values for the following options can be set using this function:
- **mode** – “box”, “generators”, or “round”, see above for descriptions;
- **show_lattice** – boolean, whether to show lattice points in the cut-off region or not;
- **show_rays** – boolean, whether to show rays or not;
- **show_generators** – boolean, whether to show rays or not;
- **show_walls** – boolean, whether to show rays or not;
- **generator_color** – a color for generators;
- **label_color** – a color for labels;
- **point_color** – a color for lattice points;
- **ray_color** – a color for rays, a list of colors (one for each ray), or the string “rainbow”;
- **wall_color** – a color for walls, a list of colors (one for each wall), or the string “rainbow”;
- **wall_alpha** – a number between 0 and 1, the alpha-value for walls (determining their transparency);
- **point_size** – an integer, the size of lattice points;
- **ray_thickness** – an integer, the thickness of rays;
- **generator_thickness** – an integer, the thickness of generators;
• **font_size** – an integer, the size of font used for labels;
• **ray_label** – a string or a list of strings used for ray labels; use `None` to hide labels;
• **wall_label** – a string or a list of strings used for wall labels; use `None` to hide labels;
• **radius** – a positive number, the radius of the cut-off region for “round” mode;
• **xmin, xmax, ymin, ymax, zmin, zmax** – numbers determining the cut-off region for “box” mode. Note that you cannot exclude the origin - if you try to do so, bounds will be automatically expanded to include it;
• **lattice_filter** – a callable, taking as an argument a lattice point and returning `True` if this point should be included on the plot (useful, e.g. for plotting sublattices);
• **wall_zorder, ray_zorder, generator_zorder, point_zorder, label_zorder** – integers, z-orders for different classes of objects. By default all values are negative, so that you can add other graphic objects on top of a toric plot. You may need to adjust these parameters if you want to put a toric plot on top of something else or if you want to overlap several toric plots.

You can see the current default value of any options by typing, e.g.

```sage
sage: toric_plotter.options("show_rays")
True
```

If the default value is `None`, it means that the actual default is determined later based on the known options. Note, that not all options can be determined in such a way, so you should not set options to `None` unless it was its original state. (You can always revert to this “original state” using `reset_options()`.)

**EXAMPLES:**
The following line will make all subsequent toric plotting commands to draw “rainbows” from walls:

```sage
sage: toric_plotter.options(wall_color="rainbow")
```

If you prefer a less colorful output (e.g. if you need black-and-white illustrations for a paper), you can use something like this:

```sage
sage: toric_plotter.options(wall_color="grey")
```

```
sage.geometry.toric_plotter.reset_options()
sage: toric_plotter.reset_options()
```

Reset options for plots of toric geometry objects.

**OUTPUT:**

• none.

**EXAMPLES:**

```sage
sage: toric_plotter.options("show_rays")
True
sage: toric_plotter.options(show_rays=False)
False
sage: toric_plotter.options("show_rays")
False
```

Now all toric plots will not show rays, unless explicitly requested. If you want to go back to “default defaults”, use this method:

```sage
sage: toric_plotter.reset_options()
sage: toric_plotter.options("show_rays")
True
```

404 Chapter 2. Polyhedral computations
sage.geometry.toric_plotter.sector(ray1, ray2, **extra_options)
Plot a sector between ray1 and ray2 centered at the origin.

**Note:** This function was intended for plotting strictly convex cones, so it plots the smaller sector between ray1 and ray2 and, therefore, they cannot be opposite. If you do want to use this function for bigger regions, split them into several parts.

**Note:** As of version 4.6 Sage does not have a graphic primitive for sectors in 3-dimensional space, so this function will actually approximate them using polygons (the number of vertices used depends on the angle between rays).

**INPUT:**
- ray1, ray2 – rays in 2- or 3-dimensional space of the same length;
- extra_options – a dictionary of options that should be passed to lower level plotting functions.

**OUTPUT:**
- a plot.

**EXAMPLES:**
```python
sage: from sage.geometry.toric_plotter import sector
sage: sector((1,0), (0,1))
Graphics object consisting of 1 graphics primitive
sage: sector((3,2,1), (1,2,3))
Graphics3d Object
```

### 2.4.8 Groebner Fans

Sage provides much of the functionality of gfan, which is a software package whose main function is to enumerate all reduced Groebner bases of a polynomial ideal. The reduced Groebner bases yield the maximal cones in the Groebner fan of the ideal. Several subcomputations can be issued and additional tools are included. Among these the highlights are:

- Commands for computing tropical varieties.
- Interactive walks in the Groebner fan of an ideal.
- Commands for graphical renderings of Groebner fans and monomial ideals.

**AUTHORS:**
- Anders Nedergaard Jensen: Wrote the gfan C++ program, which implements algorithms many of which were invented by Jensen, Komei Fukuda, and Rekha Thomas. All the underlying hard work of the Groebner fans functionality of Sage depends on this C++ program.
- Tristram Bogart: the design of the Sage interface to gfan is joint work with Tristram Bogart, who also supplied numerous examples.
- Marshall Hampton (2008-03-25): Rewrote various functions to use gfan-0.3. This is still a work in progress, comments are appreciated on sage-devel@googlegroups.com (or personally at hamptonio@gmail.com).

**EXAMPLES:**
```
sage: x,y = QQ['x,y'].gens()
sage: i = ideal(x^2 - y^2 + 1)
sage: g = i.groebner_fan()
sage: g.reduced_groebner_bases()
[[x^2 - y^2 + 1], [-x^2 + y^2 - 1]]
```

REFERENCES:

- Anders N. Jensen; *Gfan, a software system for Groebner fans*; http://home.math.au.dk/jensen/software/gfan/gfan.html

class sage.rings.polynomial.groebner_fan.GroebnerFan(I, is_groebner_basis=False, symmetry=None, verbose=False)

Bases: sage.structure.sage_object.SageObject

This class is used to access capabilities of the program *Gfan*.

In addition to computing Groebner fans, *Gfan* can compute other things in tropical geometry such as tropical prevarieties.

INPUT:

- I – ideal in a multivariate polynomial ring
- is_groebner_basis – bool (default False). If True, then I.gens() must be a Groebner basis with respect to the standard degree lexicographic term order.
- symmetry – default: None; if not None, describes symmetries of the ideal
- verbose – default: False; if True, printout useful info during computations

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: I = R.ideal([x^2*y - z, y^2*z - x, z^2*x - y])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.rays()
[[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]
sage: RPF = PF.to_RationalPolyhedralFan()
sage: RPF.Stanley_Reisner_ideal(PolynomialRing(QQ,4,'A, B, C, D'))
```

```
buchberger()

 Return a lexicographic reduced Groebner basis for the ideal.

 EXAMPLES:
```

```
```
Combinatorial and Discrete Geometry, Release 9.6

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: G = R.ideal([x - z^3, y^2 - x + x^2 - z^3*x]).groebner_fan()
sage: G.buchberger()
[-z^3 + y^2, -z^3 + x]
```

**characteristic()**

Return the characteristic of the base ring.

**EXAMPLES:**

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: i1 = ideal(x*z + 6*y*z - z^2, x*y + 6*x*z + y*z - z^2, y^2 + x*z + y*z)
sage: gf = i1.groebner_fan()
sage: gf.characteristic()
0
```

**dimension_of_homogeneity_space()**

Return the dimension of the homogeneity space.

**EXAMPLES:**

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G.dimension_of_homogeneity_space()
0
```

**gfan(cmd='bases', I=None, format=None)**

Return the gfan output as a string given an input cmd.

The default is to produce the list of reduced Groebner bases in gfan format.

**INPUT:**

- `cmd` – string (default: ‘bases’), GFan command
- `I` – ideal (default: None)
- `format` – bool (default: None), deprecated

**EXAMPLES:**

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: gf = R.ideal([x^3-y,y^3-x-1]).groebner_fan()
sage: gf.gfan()
'Q[x,y]\n{{\ny^9-1-y+3*y^3-3*y^6,\nx+1-y^3\n,\nx^3-y,\ny^3-1-x\n,\nx^9-x-1-x,\nx-y^3}\n,\nx^9-1-x,\nx-y^3]\n}
```

**homogeneity_space()**

Return the homogeneity space of a the list of polynomials that define this Groebner fan.

**EXAMPLES:**

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: H = G.homogeneity_space()
```

**ideal()**

Return the ideal the was used to define this Groebner fan.
EXAMPLES:

```sage
R.<x1,x2> = PolynomialRing(QQ,2)
sage: gf = R.ideal([x1^3-x2,x2^3-2*x1-1]).groebner_fan()
sage: gf.ideal()
Ideal (x1^3 - x2, x2^3 - 2*x1 - 1) of Multivariate Polynomial Ring in x1, x2
˓
→ over Rational Field
```

```sage
interactive(*args, **kwds)
See the documentation for self[0].interactive(). This does not work with the notebook.
EXAMPLES:

```sage
print("This is not easily doc-testable; please write a good one!")
This is not easily doc-testable; please write a good one!
```

```sage
maximal_total_degree_of_a_groebner_basis()
Return the maximal total degree of any Groebner basis.

EXAMPLES:

```sage
R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G.maximal_total_degree_of_a_groebner_basis()
4
```

```sage
minimal_total_degree_of_a_groebner_basis()
Return the minimal total degree of any Groebner basis.

EXAMPLES:

```sage
R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G.minimal_total_degree_of_a_groebner_basis()
2
```

```sage
mixed_volume()
Return the mixed volume of the generators of this ideal.
This is not really an ideal property, it can depend on the generators used.
The generators must give a square system (as many polynomials as variables).

EXAMPLES:

```sage
R.<x,y,z> = QQ[]
sage: example_ideal = R.ideal([x^2-y-1,y^2-z-1,z^2-x-1])
sage: gf = example_ideal.groebner_fan()
sage: mv = gf.mixed_volume()
sage: mv
8
```

```sage
R2.<x,y> = QQ[]
sage: g1 = 1 - x + x^7*y^3 + 2*x^8*y^4
sage: g2 = 2 + y + 3*x^7*y^3 + x^8*y^4
sage: example2 = R2.ideal([g1,g2])
sage: example2.groebner_fan().mixed_volume()
15
```
number_of_reduced_groebner_bases()
Return the number of reduced Groebner bases.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G.number_of_reduced_groebner_bases()
3
```

number_of_variables()
Return the number of variables.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G.number_of_variables()
2
```

polyhedralfan()
Return a polyhedral fan object corresponding to the reduced Groebner bases.

EXAMPLES:

```
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^2*y - z, y^2*z - x, z^2*x - y]).groebner_fan()
sage: pf = gf.polyhedralfan()
sage: pf.rays()
[[0, 0, 1], [0, 1, 0], [1, 0, 0]]
```

reduced_groebner_bases()
EXAMPLES:

```
sage: R.<x,y,z> = PolynomialRing(QQ, 3, order='lex')
sage: G = R.ideal([x^2*y - z, y^2*z - x, z^2*x - y]).groebner_fan()
sage: X = G.reduced_groebner_bases()
sage: len(X)
33
sage: X[0]
[z^15 - z, x - z^9, y - z^11]
sage: X[0].ideal()
Ideal (z^15 - z, x - z^9, y - z^11) of Multivariate Polynomial Ring in x, y, z over Rational Field
sage: X[:5]
[[z^15 - z, x - z^9, y - z^11],
[y^2 - z^8, x - z^9, y^2*z^4 - z, -y + z^11],
[y^3 - z^5, x - y^2*z, y^2*z^3 - y, y*z^4 - z, -y^2 + z^8],
...]
```

(continues on next page)
Combinatorial and Discrete Geometry, Release 9.6

(continued from previous page)

\[y^4 - z^2, x - y^2*z, y^2*z^3 - y, y*z^4 - z, -y^3 + z^5],
\[y^9 - z, y^6*z - y, x - y^2*z, -y^4 + z^2]\]

**sage:** R3.\(x,y,z\) = PolynomialRing(GF(2477),3)

**sage:** gf = R3.ideal([300*x^3-y,y^2-z,z^2-12]).groebner_fan()

**sage:** gf.reduced_groebner_bases()

\[
\begin{align*}
& [z^2 - 12, y^2 - z, x^3 + 933*y],
& [y^4 - 12, x^3 + 933*y, -y^2 + z],
& [x^6 - 1062*z, z^2 - 12, -300*x^3 + y],
& [x^12 + 200, -300*x^3 + y, -828*x^6 + z]
\end{align*}
\]

**render**(file=None, larger=False, shift=0, rgbcolor=(0, 0, 0), polyfill=<function max_degree at 0x7f09cab085e0>, scale_colors=True)

Render a Groebner fan as sage graphics or save as an xfig file.

More precisely, the output is a drawing of the Groebner fan intersected with a triangle. The corners of the triangle are (1,0,0) to the right, (0,1,0) to the left and (0,0,1) at the top. If there are more than three variables in the ring we extend these coordinates with zeros.

**INPUT:**

- **file** - a filename if you prefer the output saved to a file. This will be in xfig format.
- **shift** - shift the positions of the variables in the drawing. For example, with shift=1, the corners will be b (right), c (left), and d (top). The shifting is done modulo the number of variables in the polynomial ring. The default is 0.
- **larger** - bool (default: False): if True, make the triangle larger so that the shape of the Groebner region appears. Affects the xfig file but probably not the sage graphics (?)
- **rgbcolor** - This will not affect the saved xfig file, only the sage graphics produced.
- **polyfill** - Whether or not to fill the cones with a color determined by the highest degree in each reduced Groebner basis for that cone.
- **scale_colors** - if True, this will normalize color values to try to maximize the range

**EXAMPLES:**

**sage:** R.<x,y,z> = PolynomialRing(QQ,3)
**sage:** G = R.ideal([y^3 - x^2, y^2 - 13*x,z]).groebner_fan()
**sage:** test_render = G.render()

**sage:** R.<x,y,z> = PolynomialRing(QQ,3)
**sage:** G = R.ideal([x^2*y - z, y^2*z - x, z^2*x - y]).groebner_fan()
**sage:** test_render = G.render(larger=True)

**render3d**(verbose=False)

For a Groebner fan of an ideal in a ring with four variables, this function intersects the fan with the standard simplex perpendicular to (1,1,1,1), creating a 3d polytope, which is then projected into 3 dimensions. The edges of this projected polytope are returned as lines.

**EXAMPLES:**

**sage:** R4.<w,x,y,z> = PolynomialRing(QQ,4)
**sage:** gf = R4.ideal([w^2-x,x^2-y,y^2*z - x, z^2*x - y]).groebner_fan()
**sage:** three_d = gf.render3d()
Combinatorial and Discrete Geometry, Release 9.6

ring()

Return the multivariate polynomial ring.

EXAMPLES:

```
sage: R.<x1,x2> = PolynomialRing(QQ,2)
sage: gf = R.ideal([x1^3-x2,x2^3-x1-2]).groebner_fan()
sage: gf.ring()
Multivariate Polynomial Ring in x1, x2 over Rational Field
```

tropical_basis(check=True, verbose=False)

Return a tropical basis for the tropical curve associated to this ideal.

INPUT:

- check - bool (default: True); if True raises a ValueError exception if this ideal does not define a tropical curve (i.e., the condition that R/I has dimension equal to 1 + the dimension of the homogeneity space is not satisfied).

EXAMPLES:

```
sage: R.<x,y,z> = PolynomialRing(QQ,3, order='lex')
sage: G = R.ideal([y^3-3*x^2, z^3-x-y-2*y^3+2*x^2]).groebner_fan()
sage: G
Groebner fan of the ideal:
Ideal (-3*x^2 + y^3, 2*x^2 - x - 2*y^3 - y + z^3) of Multivariate Polynomial
→Ring in x, y, z over Rational Field
sage: G.tropical_basis()
[-3*x^2 + y^3, 2*x^2 - x - 2*y^3 - y + z^3, 3/4*x + y^3 + 3/4*y - 3/4*z^3]
```

tropical_intersection(parameters=[], symmetry_generators=[], *args, **kwds)

Return information about the tropical intersection of the polynomials defining the ideal. This is the common refinement of the outward-pointing normal fans of the Newton polytopes of the generators of the ideal. Note that some people use the inward-pointing normal fans.

INPUT:

- parameters (optional) - a list of variables to be considered as parameters
- symmetry_generators (optional) - generators of the symmetry group

OUTPUT: a TropicalPrevariety object

EXAMPLES:

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: I = R.ideal(x*z + 6*y*z - z^2, x*y + 6*x*z + y*z - z^2, y^2 + x*z + y*z)
sage: gf = I.groebner_fan()
sage: pf = gf.tropical_intersection()
sage: pf.rays()
[[[-2, 1, 1]]

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: f1 = x*y*z - 1
sage: f2 = f1*(x^2 + y^2 + z^2)
sage: f3 = f2*(x + y + z - 1)
sage: I = R.ideal([f1,f2,f3])
sage: gf = I.groebner_fan()
```

(continues on next page)
The cone associated with the initial form system.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: I = R.ideal([(x+y)^2-1,(x+y)^2-2,(x+y)^2-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.rays()
[['-2, 1, 1'], ['1, -2, 1'], ['1, 1, -2']]
```

412 Chapter 2. Polyhedral computations
Combinatorial and Discrete Geometry, Release 9.6

\begin{verbatim}
sage: pfi0 = PF.initial_form_systems()[0]
sage: pfi0.cone()

initial_forms()
The initial forms (polynomials).

EXAMPLES:
sage: R.<x,y> = QQ[]
sage: I = R.ideal([(x+y)^2-1,(x+y)^2-2,(x+y)^2-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: pfi0 = PF.initial_form_systems()[0]
sage: pfi0.initial_forms()
y^2 - 1, y^2 - 2, y^2 - 3

internal_ray()
A ray internal to the cone associated with the initial form system.

EXAMPLES:
sage: R.<x,y> = QQ[]
sage: I = R.ideal([(x+y)^2-1,(x+y)^2-2,(x+y)^2-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: pfi0 = PF.initial_form_systems()[0]
sage: pfi0.internal_ray()
(-1, 0)

rays()
The rays of the cone associated with the initial form system.

EXAMPLES:
sage: R.<x,y> = QQ[]
sage: I = R.ideal([(x+y)^2-1,(x+y)^2-2,(x+y)^2-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: pfi0 = PF.initial_form_systems()[0]
sage: pfi0.rays()


class sage.rings.polynomial.groebner_fan.PolyhedralCone(gfan_polyhedral_cone, ring=Rational Field)
Bases: sage.structure.sage_object.SageObject

Convert polymake/gfan data on a polyhedral cone into a sage class.

Currently (18-03-2008) needs a lot of work.

EXAMPLES:
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()
\end{verbatim}
sage: a.facets()
[[0, 0, 1], [0, 1, 0], [1, 0, 0]]

ambient_dim()
Return the ambient dimension of the Groebner cone.

EXAMPLES:

```
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()
sage: a.ambient_dim()
3
```

dim()
Return the dimension of the Groebner cone.

EXAMPLES:

```
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()
sage: a.dim()
3
```

facets()
Return the inward facet normals of the Groebner cone.

EXAMPLES:

```
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()
sage: a.facets()
[[0, 0, 1], [0, 1, 0], [1, 0, 0]]
```

lineality_dim()
Return the lineality dimension of the Groebner cone. This is just the difference between the ambient dimension and the dimension of the cone.

EXAMPLES:

```
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf[0].groebner_cone()
sage: a.lineality_dim()
0
```

relative_interior_point()
Return a point in the relative interior of the Groebner cone.

EXAMPLES:

```
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
```
class sage.rings.polynomial.groebner_fan.PolyhedralFan(gfan_polyhedral_fan, 
parameter_indices=None)

Bases: sage.structure.sage_object.SageObject

Convert polymake/gfan data on a polyhedral fan into a sage class.

INPUT:

- gfan_polyhedral_fan - output from gfan of a polyhedral fan.

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: i2 = ideal(x*z + 6*y*z - z^2, x*y + 6*x*z + y*z - z^2, y^2 + x*z + y*z)
sage: gf2 = i2.groebner_fan(\text{verbose=False})
sage: pf = gf2.polyhedralfan()
sage: pf.rays()
[-1, 0, 1], [-1, 1, 0], [1, -2, 1], [1, 1, -2], [2, -1, -1]
```

ambient_dim()

Return the ambient dimension of the Groebner fan.

EXAMPLES:

```python
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf.polyhedralfan()
sage: a.ambient_dim()
3
```

cones()

A dictionary of cones in which the keys are the cone dimensions. For each dimension, the value is a list of the cones, where each element consists of a list of ray indices.

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: f = 1+x+y+x*y
sage: I = R.ideal([f+z^2*f, 2*f+z^2, 3*f+z^2])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.cones()
{1: [[0], [1], [2], [3], [4], [5]], 2: [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2],...
 →[1, 3], [2, 4], [3, 4], [1, 5], [2, 5], [3, 5], [4, 5]]}
```

dim()

Return the dimension of the Groebner fan.

EXAMPLES:

```python
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
```

(continues on next page)
sage: a = gf.polyhedralfan()
sage: a.dim()
3

f_vector()
The f-vector of the fan.
EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: f = 1+x+y+x*y
sage: I = R.ideal([f+z*f, 2*f+z*f, 3*f+z^2*f])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.f_vector()
[1, 6, 12]
```

is_simplicial()
Whether the fan is simplicial or not.
EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: f = 1+x+y+x*y
sage: I = R.ideal([f+z*f, 2*f+z*f, 3*f+z^2*f])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.is_simplicial()
True
```

lineality_dim()
Return the lineality dimension of the fan. This is the dimension of the largest subspace contained in the fan.
EXAMPLES:

```
sage: R3.<x,y,z> = PolynomialRing(QQ,3)
sage: gf = R3.ideal([x^8-y^4,y^4-z^2,z^2-2]).groebner_fan()
sage: a = gf.polyhedralfan()
sage: a.lineality_dim()
0
```

maximal_cones()
A dictionary of the maximal cones in which the keys are the cone dimensions. For each dimension, the value is a list of the maximal cones, where each element consists of a list of ray indices.
EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: f = 1+x+y+x*y
sage: I = R.ideal([f+z*f, 2*f+z*f, 3*f+z^2*f])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: PF.maximal_cones()
{2: [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [2, 4], [3, 4], [1, 5], [2, 5], [3, 5], [4, 5]]}
```
rays()
A list of rays of the polyhedral fan.

EXAMPLES:

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: i2 = ideal(x^2 + 6*y*z - z^2, x*y + 6*x*z + y*z - z^2, y^2 + x^2 + y^2)
sage: gf2 = i2.groebner_fan(verbos=False)
sage: pf = gf2.polyhedralfan()
sage: pf.rays()
[-1, 0, 1], [-1, 1, 0], [1, -2, 1], [1, 1, -2], [2, -1, -1]
```

to_RationalPolyhedralFan()
Converts to the RationalPolyhedralFan class, which is more actively maintained. While the information in
each class is essentially the same, the methods and implementation are different.

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: f = 1+x+y+x*y
sage: I = R.ideal([f+z*f, 2*f+z*f, 3*f+z^2*f])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: fan = PF.to_RationalPolyhedralFan()
sage: [tuple(q.facet_normals()) for q in fan]
[(M(0, -1, 0), M(-1, 0, 0)), (M(0, 0, -1), M(-1, 0, 0)), (M(0, 0, 1), M(-1, 0, 0)),
 (M(0, 1, 0), M(-1, 0, 0)), (M(1, 0, 0), M(0, -1, 0)), (M(1, 0, 0), M(0, 0, -1)),
 (M(1, 0, 0), M(0, 0, 1)), (M(1, 0, 0), M(0, 0, 1)), (M(1, 0, 0), M(0, 0, 1)),
 (M(1, 0, 0), M(0, 0, 1)), (M(1, 0, 0), M(0, 0, 1))]
```

Here we use the RationalPolyhedralFan’s Gale_transform method on a tropical prevariety.

```
sage: fan.Gale_transform()
[1 0 0 0 0 1 -2]
[0 1 0 0 1 0 -2]
[0 0 1 1 0 0 -2]
```

class sage.rings.polynomial.groebner_fan.ReducedGroebnerBasis(groebner_fan, gens, gfan_gens)
Bases: sage.structure.sage_object.SageObject, list

A class for representing reduced Groebner bases as produced by gfan.

INPUT:

- groebner_fan - a GroebnerFan object from an ideal
- gens - the generators of the ideal
- gfan_gens - the generators as a gfan string

EXAMPLES:

```
sage: R.<a,b> = PolynomialRing(QQ,2)
sage: gf = R.ideal([a^2-b^2, b-a-1]).groebner_fan()
```
sage: from sage.rings.polynomial.groebner_fan import ReducedGroebnerBasis
sage: ReducedGroebnerBasis(gf,gf[0],gf[0]._gfan_gens())
[b - 1/2, a + 1/2]

groebner_cone(restrict=False)
Return defining inequalities for the full-dimensional Groebner cone associated to this marked minimal
reduced Groebner basis.

INPUT:

• restrict - bool (default: False); if True, add an inequality for each coordinate, so that the cone is
restricted to the positive orthant.

OUTPUT: tuple of integer vectors

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: poly_cone = G[1].groebner_cone()
sage: poly_cone.facets()
[[-1, 2], [1, -1]]
sage: [g.groebner_cone().facets() for g in G]
[[[0, 1], [1, -2]], [[-1, 2], [1, -1]], [[-1, 1], [1, 0]]]
sage: G[1].groebner_cone(restrict=True).facets()
[[-1, 2], [1, -1]]

ideal()
Return the ideal generated by this basis.

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: G = R.ideal([x - z^3, y^2 - 13*x]).groebner_fan()
sage: G[0].ideal()
Ideal (-13*z^3 + y^2, -z^3 + x) of Multivariate Polynomial Ring in x, y, z over
˓→Rational Field

interactive(latex=False, flippable=False, wall=False, inequalities=False, weight=False)
Do an interactive walk of the Groebner fan starting at this reduced Groebner basis.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: G = R.ideal([y^3 - x^2, y^2 - 13*x]).groebner_fan()
sage: G[0].interactive()  # not tested
Initializing gfan interactive mode
*****************************************************
* Press control-C to return to Sage               *
*****************************************************
....

class sage.rings.polynomial.groebner_fan.TropicalPrevariety(gfan_polyhedral_fan, polynomial_system, poly_ring, parameters=None)

Bases: sage.rings.polynomial.groebner_fan.PolyhedralFan
This class is a subclass of the PolyhedralFan class, with some additional methods for tropical prevarieties.

INPUT:

- `gfan_polyhedral_fan` – output from `gfan` of a polyhedral fan.
- `polynomial_system` – a list of polynomials
- `poly_ring` – the polynomial ring of the list of polynomials
- `parameters` (optional) – a list of variables to be considered as parameters

EXAMPLES:

```python
sage: R.<x,y,z> = QQ[]
sage: I = R.ideal([(x+y+z)^2-1,(x+y+z)-x,(x+y+z)-3])
sage: GF = I.groebner_fan()
sage: TI = GF.tropical_intersection()
sage: TI._polynomial_system
[x^2 + 2*x*y + y^2 + 2*x^2*z + 2*y*z + z^2 - 1, y + z, x + y + z - 3]
```

`initial_form_systems()`

Return a list of systems of initial forms for each cone in the tropical prevariety.

EXAMPLES:

```python
sage: R.<x,y> = QQ[]
sage: I = R.ideal([(x+y)^2-1,(x+y)^2-2,(x+y)^2-3])
sage: GF = I.groebner_fan()
sage: PF = GF.tropical_intersection()
sage: pfi = PF.initial_form_systems()
sage: for q in pfi:
....: print(q.initial_forms())
[y^2 - 1, y^2 - 2, y^2 - 3]
[x^2 - 1, x^2 - 2, x^2 - 3]
[x^2 + 2*x*y + y^2, x^2 + 2*x*y + y^2, x^2 + 2*x*y + y^2]
```

`sage.rings.polynomial.groebner_fan.ideal_to_gfan_format(input_ring, polys)`

Return the ideal in gfan’s notation.

EXAMPLES:

```python
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: polys = [x^2*y - z, y^2*z - x, z^2*x - y]
sage: from sage.rings.polynomial.groebner_fan import ideal_to_gfan_format
sage: ideal_to_gfan_format(R, polys)
'Q[x, y, z]{x^2*y-z,y^2*z-x,z^2*x-y}'
```

`sage.rings.polynomial.groebner_fan.max_degree(list_of_polys)`

Compute the maximum degree of a list of polynomials

EXAMPLES:

```python
sage: from sage.rings.polynomial.groebner_fan import max_degree
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: p_list = [x^2-y,x*y^10-x]
sage: max_degree(p_list)
11.0
```
sage.rings.polynomial.groebner_fan.prefix_check(str_list)
Check if any strings in a list are prefixes of another string in the list.

EXAMPLES:

```sage
from sage.rings.polynomial.groebner_fan import prefix_check
prefix_check(['z1', 'z1z1'])
False
prefix_check(['z1', 'zz1'])
True
```

sage.rings.polynomial.groebner_fan.ring_to_gfan_format(input_ring)
Converts a ring to gfan's format.

EXAMPLES:

```sage
R.<w,x,y,z> = QQ[]
from sage.rings.polynomial.groebner_fan import ring_to_gfan_format
ring_to_gfan_format(R)
'Q[w, x, y, z]'
R2.<x,y> = GF(2)[]
ring_to_gfan_format(R2)
'Z/2Z[x, y]
```

sage.rings.polynomial.groebner_fan.verts_for_normal(normal, poly)
Return the exponents of the vertices of a Newton polytope that make up the supporting hyperplane for the given outward normal.

EXAMPLES:

```sage
from sage.rings.polynomial.groebner_fan import verts_for_normal
R.<x,y,z> = PolynomialRing(QQ,3)
f1 = x*y*z - 1
f2 = f1*(x^2 + y^2 + 1)
verts_for_normal([1,1,1],f2)
[(3, 1, 1), (1, 3, 1)]
```

## 2.5 Base classes for polyhedra

### 2.5.1 Base class for polyhedra

This is split into several modules, organized as follows:

- **base0** – basic initialization etc.
- **base1** – methods defined by the `ConvexSet_base` API
- **base2** – lattice points
- **base3** – combinatorial methods
- **base4** – methods relying on graphs
- **base5** – constructions of new polyhedra
- **base6** – plotting and affine projection
- **base7** – triangulation and volume
class sage.geometry.polyhedron.base.Polyhedron_base(parent, Vrep, Hrep, Vrep_minimal=None, Hrep_minimal=None, pref_rep=None, mutable=False, **kwds)

Bases: sage.geometry.polyhedron.base7.Polyhedron_base7

Base class for Polyhedron objects

INPUT:

- **parent** – the parent, an instance of Polyhedra.
- **Vrep** – a list [vertices, rays, lines] or None. The V-representation of the polyhedron. If None, the polyhedron is determined by the H-representation.
- **Hrep** – a list [ieqs, eqns] or None. The H-representation of the polyhedron. If None, the polyhedron is determined by the V-representation.
- **Vrep_minimal** (optional) – see below
- **Hrep_minimal** (optional) – see below
- **pref_rep** – string (default: None); one of 'Vrep' or 'Hrep' to pick this in case the backend cannot initialize from complete double description
- **mutable** – ignored

If both Vrep and Hrep are provided, then Vrep_minimal and Hrep_minimal must be set to True.

barycentric_subdivision(subdivision_frac=None)

Return the barycentric subdivision of a compact polyhedron.

DEFINITION:

The barycentric subdivision of a compact polyhedron is a standard way to triangulate its faces in such a way that maximal faces correspond to flags of faces of the starting polyhedron (i.e. a maximal chain in the face lattice of the polyhedron). As a simplicial complex, this is known as the order complex of the face lattice of the polyhedron.

REFERENCE:


INPUT:

- **subdivision_frac** – number. Gives the proportion how far the new vertices are pulled out of the polytope. Default is 1/3 and the value should be smaller than 1/2. The subdivision is computed on the polar polyhedron.

OUTPUT:

A Polyhedron object, subdivided as described above.

EXAMPLES:

```
sage: P = polytopes.hypercube(3)
sage: P.barycentric_subdivision()
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 26 vertices
sage: P = Polyhedron(vertices=[[0,0,0],[0,1,0],[1,0,0],[0,0,1]])
sage: P.barycentric_subdivision()
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 14 vertices
```
sage: P = Polyhedron(vertices=[[0,1,0],[0,0,1],[1,0,0]])
sage: P.barycentric_subdivision()
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 6 vertices

sage: P = polytopes.regular_polygon(4, base_ring=QQ)  # optional - sage.rings.number_field
sage: P.barycentric_subdivision()  # optional - sage.rings.number_field
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 8 vertices

boundary_complex()
Return the simplicial complex given by the boundary faces of self, if it is simplicial.

OUTPUT:
A (spherical) simplicial complex

EXAMPLES:
The boundary complex of the octahedron:

sage: oc = polytopes.octahedron()
sage: sc_oc = oc.boundary_complex()
sage: fl_oc = oc.face_lattice()
sage: fl_sc = sc_oc.face_poset()
sage: [len(x) for x in fl_oc.level_sets()]
[1, 6, 12, 8, 1]
sage: [len(x) for x in fl_sc.level_sets()]
[6, 12, 8]
sage: sc_oc.euler_characteristic()
2
sage: sc_oc.homology()
{0: 0, 1: 0, 2: Z}

The polyhedron should be simplicial:

sage: c = polytopes.cube()
sage: c.boundary_complex()
Traceback (most recent call last):
...
NotImplementedError: this function is only implemented for simplicial polytopes

bounding_box(integral=False, integral_hull=False)
Return the coordinates of a rectangular box containing the non-empty polytope.

INPUT:

• integral – Boolean (default: False). Whether to only allow integral coordinates in the bounding box.

• integral_hull – Boolean (default: False). If True, return a box containing the integral points of the polytope, or None, None if it is known that the polytope has no integral points.

OUTPUT:

A pair of tuples (box_min, box_max) where box_min are the coordinates of a point bounding the coordinates of the polytope from below and box_max bounds the coordinates from above.
EXAMPLES:

```python
sage: Polyhedron([(1/3,2/3), (2/3, 1/3)]).bounding_box()
((1/3, 1/3), (2/3, 2/3))
sage: Polyhedron([(1/3,2/3), (2/3, 1/3)]).bounding_box(integral=True)
((0, 0), (1, 1))
sage: Polyhedron([(1/3,2/3), (2/3, 1/3)]).bounding_box(integral_hull=True)
(None, None)
sage: Polyhedron([(1/3,2/3), (3/3, 4/3)]).bounding_box(integral_hull=True)
((1, 1), (1, 1))
sage: polytopes.buckyball(exact=False).bounding_box()
((-0.8090169944, -0.8090169944, -0.8090169944), (0.8090169944, 0.8090169944, 0.8090169944))
```

center()

Return the average of the vertices.

See also:

```
sage.geometry.polyhedron.base1.Polyhedron_base1.representative_point()
```

OUTPUT:

The center of the polyhedron. All rays and lines are ignored. Raises a ZeroDivisionError for the empty polytope.

EXAMPLES:

```python
sage: p = polytopes.hypercube(3)
sage: p = p + vector([1,0,0])
sage: p.center()
(1, 0, 0)
```

face_fan()

Return the face fan of a compact rational polyhedron.

OUTPUT:

A fan of the ambient space as a RationalPolyhedralFan.

See also:

```
normal_fan()
```

EXAMPLES:

```python
sage: T = polytopes.cuboctahedron()
sage: T.face_fan()
Rational polyhedral fan in 3-d lattice M
```

The polytope should contain the origin in the interior:

```python
sage: P = Polyhedron(vertices = [[1/2, 1], [1, 1/2]])
sage: P.face_fan()
Traceback (most recent call last):
...
ValueError: face fans are defined only for polytopes containing the origin as an interior point!
```
The polytope has to have rational coordinates:

```
sage: S = polytopes.dodecahedron() # optional - sage.rings.number_field
sage: S.face_fan() # optional - sage.rings.number_field
Traceback (most recent call last):
...
NotImplementedError: face fan handles only polytopes over the rationals
```

REFERENCES:
For more information, see Chapter 7 of [Zie2007].

**hyperplane_arrangement()**

Return the hyperplane arrangement defined by the equations and inequalities.

**OUTPUT:**

A *hyperplane arrangement* consisting of the hyperplanes defined by the \texttt{Hrepresentation()}. If the polytope is full-dimensional, this is the hyperplane arrangement spanned by the facets of the polyhedron.

**EXAMPLES:**

```
sage: p = polytopes.hypercube(2)
sage: p.hyperplane_arrangement()
Arrangement <-t0 + 1 | -t1 + 1 | t1 + 1 | t0 + 1>
```

**is_inscribed**(\texttt{certificate=False})

This function tests whether the vertices of the polyhedron are inscribed on a sphere.

The polyhedron is expected to be compact and full-dimensional. A full-dimensional compact polytope is inscribed if there exists a point in space which is equidistant to all its vertices.

**ALGORITHM:**

The function first computes the circumsphere of a full-dimensional simplex with vertices of \texttt{self}. It is found by lifting the points on a paraboloid to find the hyperplane on which the circumsphere is lifted. Then, it checks if all other vertices are equidistant to the circumcenter of that simplex.

**INPUT:**

- \texttt{certificate} – (default: False) boolean; specifies whether to return the circumcenter, if found.

**OUTPUT:**

If \texttt{certificate} is true, returns a tuple containing:

1. Boolean.
2. The circumcenter of the polytope or None.

If \texttt{certificate} is false:

- a Boolean.
EXAMPLES:

```python
sage: q = Polyhedron(vertices=[[1,1,1,1],[-1,-1,1,1],[1,-1,-1,1],
 [-1,1,-1,1],[1,1,1,-1],[-1,-1,1,-1],
 [1,-1,-1,-1],[-1,1,-1,-1],[0,0,10/13,-24/13],
 [0,0,-10/13,-24/13]])
sage: q.is_inscribed(certificate=True)
(True, (0, 0, 0, 0))

sage: cube = polytopes.cube()
sage: cube.is_inscribed()
True

sage: translated_cube = Polyhedron(vertices=[v.vector() + vector([1,2,3])
 for v in cube.vertices()])
sage: translated_cube.is_inscribed(certificate=True)
(True, (1, 2, 3))

sage: truncated_cube = cube.face_truncation(cube.faces(0)[0])
sage: truncated_cube.is_inscribed()
False
```

The method is not implemented for non-full-dimensional polytope or unbounded polyhedra:

```python
sage: square = Polyhedron(vertices=[[1,0,0],[0,1,0],[1,1,0],[0,0,0]])
sage: square.is_inscribed()
Traceback (most recent call last):
...
NotImplementedError: this function is implemented for full-dimensional →polyhedra only

sage: p = Polyhedron(vertices=[(0,0)],rays=[(1,0),(0,1)])
sage: p.is_inscribed()
Traceback (most recent call last):
...
NotImplementedError: this function is not implemented for unbounded polyhedra
```

`is_minkowski_summand(Y)`

Test whether `Y` is a Minkowski summand.

See `minkowski_sum()`.

**OUTPUT:**

Boolean. Whether there exists another polyhedron `Z` such that `self` can be written as `Y ⊕ Z`.

**EXAMPLES:**

```python
sage: A = polytopes.hypercube(2)
sage: B = Polyhedron(vertises=[[0,1], (1/2,1)])
sage: C = Polyhedron(vertises=[[1,1]])
sage: A.is_minkowski_summand(B)
True
sage: A.is_minkowski_summand(C)
True
sage: B.is_minkowski_summand(C)
```

(continues on next page)
normal_fan(direction='inner')

Return the normal fan of a compact full-dimensional rational polyhedron.

This returns the inner normal fan of self. For the outer normal fan, use direction='outer'.

INPUT:

• direction – either 'inner' (default) or 'outer'; if set to 'inner', use the inner normal vectors
to span the cones of the fan, if set to 'outer', use the outer normal vectors.

OUTPUT:

A complete fan of the ambient space as a RationalPolyhedralFan.

See also:

face_fan().

EXAMPLES:

sage: S = Polyhedron(vertices = [[0, 0], [1, 0], [0, 1]])
sage: S.normal_fan()
Rational polyhedral fan in 2-d lattice N

sage: C = polytopes.hypercube(4)
sage: NF = C.normal_fan(); NF
Rational polyhedral fan in 4-d lattice N

Currently, it is only possible to get the normal fan of a bounded rational polytope:

sage: P = Polyhedron(rays = [[1, 0], [0, 1]])
sage: P.normal_fan()  
Traceback (most recent call last):
...
NotImplementedError: the normal fan is only supported for polytopes (compact → polyhedra).

sage: Q = Polyhedron(vertices = [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
sage: Q.normal_fan()  
Traceback (most recent call last):
...
ValueError: the normal fan is only defined for full-dimensional polytopes

sage: R = Polyhedron(vertices=[[0, 0], [AA(sqrt(2)), 0], [0, AA(sqrt(2))]])  
# optional - sage.rings.number_field
sage: R.normal_fan()  
# optional - sage.rings.number_field
Traceback (most recent call last):
...\nNotImplementedError: normal fan handles only polytopes over the rationals
\n```
sage: P = Polyhedron(\text{vertices}=[[0,0],[2,0],[0,2],[2,1],[1,2]])
sage: P.normal_fan(\text{direction}='\text{None}')
Traceback (most recent call last):
  ...TypeError: the direction should be 'inner' or 'outer'
```
```
sage: inner_nf = P.normal_fan()
sage: inner_nf.rays()
(\text{N}(1,0), \text{N}(0,-1), \text{N}(0,1), \text{N}(-1,0), \text{N}(-1,-1))
in 2-d lattice N
```
```
sage: outer_nf = P.normal_fan(\text{direction}='\text{outer}')
sage: outer_nf.rays()
(\text{N}(1,0), \text{N}(1,1), \text{N}(0,1), \text{N}(0,0), \text{N}(0,-1))
in 2-d lattice N
```

REFERENCES:
For more information, see Chapter 7 of [Zie2007].

\texttt{permutations_to_matrices}(\text{conj_class_reps, acting_group=}'\text{None}', additional_elts='\text{None}')

Return a dictionary between different representations of elements in the \textit{acting_group}, with group elements represented as permutations of the vertices of this polytope (keys) or matrices (values).

The dictionary has entries for the generators of the \textit{acting_group} and the representatives of conjugacy classes in \text{conj_class_reps}. By default, the \textit{acting_group} is the \texttt{restricted_automorphism_group} of the polytope. Each element in \text{additional_elts} also becomes a key.

INPUT:
\begin{itemize}
\item \text{conj_class_reps} – list. A list of representatives of the conjugacy classes of the \textit{acting_group}.
\item \text{acting_group} – a subgroup of polytope’s \texttt{restricted_automorphism_group}.
\item \text{additional_elts} – list (default='\text{None}'). a subset of the \texttt{restricted_automorphism_group} of the polytope expressed as permutations.
\end{itemize}

OUTPUT:
A dictionary between elements of the \texttt{restricted_automorphism_group} or \textit{acting_group} expressed as permutations (keys) and matrices (values).

EXAMPLES:
This example shows the dictionary between permutations and matrices for the generators of the \texttt{restricted_automorphism_group} of the \pm 1 2-dimensional square. The permutations are written in terms of the vertices of the square:
```python
sage: square = Polyhedron(vertices=[[1,1],[-1,1],[-1,-1],[1,-1]], backend='normaliz')  # optional - pynormaliz
sage: square.vertices()  # optional - pynormaliz
(A vertex at (-1, -1),
A vertex at (-1, 1),
A vertex at (1, -1),
A vertex at (1, 1))
sage: aut_square = square.restricted_automorphism_group(output='permutation')  # optional - pynormaliz
sage: conj_reps = aut_square.conjugacy_classes_representatives()  # optional - pynormaliz
sage: gens_dict = square.permutations_to_matrices(conj_reps);  # optional - pynormaliz
sage: conj_reps[1], gens_dict[conj_reps[1]]  # optional - pynormaliz
([0 1 0]
[1 0 0]
(1,2), [0 0 1])
```

This example tests the functionality for additional elements:

```python
sage: C = polytopes.cross_polytope(2)
sage: G = C.restricted_automorphism_group(output='permutation')
sage: conj_reps = G.conjugacy_classes_representatives()
sage: add_elt = G[6]; add_elt
(0,2,3,1)
sage: dict = C.permutations_to_matrices(conj_reps, additional_elts = [add_elt])
sage: dict[add_elt]
[ 0 1 0]
[-1 0 0]
[ 0 0 1]
```

radius()

Return the maximal distance from the center to a vertex. All rays and lines are ignored.

OUTPUT:

The radius for a rational polyhedron is, in general, not rational. Use `radius_square()` if you need a rational distance measure.

EXAMPLES:

```python
sage: p = polytopes.hypercube(4)
sage: p.radius()
2
```

radius_square()

Return the square of the maximal distance from the center() to a vertex. All rays and lines are ignored.

OUTPUT:

The square of the radius, which is in `base_ring()`.

EXAMPLES:

```python
```
```python
sage: p = polytopes.permutahedron(4, project = False)
sage: p.radius_square()
5
```

`to_linear_program(solver=None, return_variable=False, base_ring=None)`

Return a linear optimization problem over the polyhedron in the form of a `MixedIntegerLinearProgram`.

INPUT:

- ` solver ` — select a solver (MIP backend). See the documentation of for `MixedIntegerLinearProgram`. Set to `None` by default.
- ` return_variable ` — (default: `False`) If `True`, return a tuple `(p, x)`, where `p` is the `MixedIntegerLinearProgram` object and `x` is the vector-valued MIP variable in this problem, indexed from 0. If `False`, only return `p`.
- ` base_ring ` — select a field over which the linear program should be set up. Use `RDF` to request a fast inexact (floating point) solver even if `self` is exact.

Note that the `MixedIntegerLinearProgram` object will have the null function as an objective to be maximized.

See also:

- `polyhedron()` — return the polyhedron associated with a `MixedIntegerLinearProgram` object.

EXAMPLES:

Exact rational linear program:

```python
sage: p = polytopes.cube()
sage: p.to_linear_program()
Linear Program (no objective, 3 variables, 6 constraints)
sage: lp, x = p.to_linear_program(return_variable=True)
sage: lp.set_objective(2*x[0] + 1*x[1] + 39*x[2])
sage: lp.solve()
42
sage: lp.get_values(x[0], x[1], x[2])
[1, 1, 1]
```

Floating-point linear program:

```python
sage: lp, x = p.to_linear_program(return_variable=True, base_ring=RDF)
sage: lp.set_objective(2*x[0] + 1*x[1] + 39*x[2])
sage: lp.solve()
42.0
```

Irrational algebraic linear program over an embedded number field:

```python
sage: p = polytopes.icosahedron()  # optional - sage.rings.number_field
sage: lp, x = p.to_linear_program(return_variable=True)  # optional - sage.rings.number_field
sage: lp.set_objective(x[0] + x[1] + x[2])  # optional - sage.rings.number_field
sage: lp.solve()  # optional - sage.rings.number_field
1/4*sqrt5 + 3/4
```

2.5. Base classes for polyhedra
Same example with floating point:

```
sage: lp, x = p.to_linear_program(return_variable=True, base_ring=RDF)  #
      # optional - sage.rings.number_field
sage: lp.set_objective(x[0] + x[1] + x[2])  #
      # optional - sage.rings.number_field
sage: lp.solve()  # tol 1e-5  #
      # optional - sage.rings.number_field
1.3090169943749475
```

Same example with a specific floating point solver:

```
sage: lp, x = p.to_linear_program(return_variable=True, solver='GLPK')  #
      # optional - sage.rings.number_field
sage: lp.set_objective(x[0] + x[1] + x[2])  #
      # optional - sage.rings.number_field
sage: lp.solve()  # tol 1e-8  #
      # optional - sage.rings.number_field
1.3090169943749475
```

Irrational algebraic linear program over \mathbb{A}:

```
sage: p = polytopes.icosahedron(base_ring=AA)  #
      # optional - sage.rings.number_field
sage: lp, x = p.to_linear_program(return_variable=True)  #
      # optional - sage.rings.number_field
sage: lp.set_objective(x[0] + x[1] + x[2])  #
      # optional - sage.rings.number_field
sage: lp.solve()  # long time  #
      # optional - sage.rings.number_field
1.309016994374948?
```

sage.geometry.polyhedron.base.is_Polyhedron(X)

Test whether X is a Polyhedron.

INPUT:

- X – anything.

OUTPUT:

Boolean.

EXAMPLES:

```
sage: p = polytopes.hypercube(2)
sage: from sage.geometry.polyhedron.base import is_Polyhedron
sage: is_Polyhedron(p)
True
sage: is_Polyhedron(123456)
False
```
2.5.2 Base class for polyhedra over \(\mathbb{Q} \)

```python
class sage.geometry.polyhedron.base_QQ.Polyhedron_QQ(parent, Vrep, Hrep, Vrep_minimal=None, Hrep_minimal=None, pref_rep=None, mutable=False, **kwds)
```

Bases: `sage.geometry.polyhedron.base.Polyhedron_base`

Base class for Polyhedra over \(\mathbb{Q} \)

`Hstar_function(actor_group=None, output=None)`

Return \(H^* \) as a rational function in \(t \) with coefficients in the ring of class functions of the `acting_group` of this polytope.

Here, \(H^*(t) = \sum m \chi_m(t) \det(Id - \rho(t)) \). The irreducible characters of `acting_group` form an orthonormal basis for the ring of class functions with values in \(\mathbb{C} \). The coefficients of \(H^*(t) \) are expressed in this basis.

INPUT:

- `acting_group` – (default=None) a permgroup object. A subgroup of the polytope's `restricted_automorphism_group`. If None, it is set to the full `restricted_automorphism_group` of the polytope. The acting group should always use output='permutation'.
- `output` – string. an output option. The allowed values are:
 - None (default): returns the rational function \(H^*(t) \). \(H^* \) is a rational function in \(t \) with coefficients in the ring of class functions.
 - 'e_series_list': Returns a list of the ehrhart_series for the fixed_subpolytopes of each conjugacy class representative.
 - 'determinant_vec': Returns a list of the determinants of \(Id - \rho \circ t \) for each conjugacy class representative.
 - 'Hstar_as_lin_comb': Returns a vector of the coefficients of the irreducible representations in the expression of \(H^* \).
 - 'prod_det_es': Returns a vector of the product of determinants and the Ehrhart series.
 - 'complete': Returns a list with Hstar, Hstar_as_lin_comb, character table of the acting group, and whether Hstar is effective.

OUTPUT:

The default output is the rational function \(H^* \). \(H^* \) is a rational function in \(t \) with coefficients in the ring of class functions. There are several output options to see the intermediary outputs of the function.

EXAMPLES:

The \(H^* \)-polynomial of the standard \((d - 1) \)-dimensional simplex \(S = \text{conv}(e_1, \ldots, e_d) \) under its `restricted_automorphism_group` is equal to \(1 = \chi_{\text{trivial}} \) (Prop 6.1 [Stap2011]). Here is the computation for the 3-dimensional standard simplex:

```python
sage: S = polytopes.simplex(3, backend = 'normaliz'); S  # optional
˓→ pynormaliz
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 4 vertices
sage: G = S.restricted_automorphism_group(output = 'permutation'); G  # optional
˓→ pynormaliz
Permutation Group with generators [(2,3), (1,2), (0,1)]
sage: len(G)  # optional
˓→ pynormaliz
```

(continues on next page)
The next example is Example 7.6 in [Sta2011], and shows that H^* is not always a polynomial. Let P be the polytope with vertices $\pm(0,0,1), \pm(1,0,1), \pm(0,1,1), \pm(1,1,1)$ and let $G = \mathbb{Z}/2\mathbb{Z}$ act on P as follows:

```
sage: P = Polyhedron(vertices=[[0,0,1],[0,0,-1],[1,0,1],[-1,0,-1],[0,1,1],
              [-1,-1,-1],[1,1,1],[-1,-1,-1]],backend='normaliz')
# optional - pynormaliz
sage: K = P.restricted_automorphism_group(output = 'permutation')
# optional - pynormaliz
sage: G = K.subgroup(gens = [K[6]]); G
Subgroup generated by [(0,2)(1,3)(4,6)(5,7)] of (Permutation Group with
generators [(2,4)(3,5), (1,2)(5,6), (0,1)(2,3)(4,5)(6,7), (0,7)(1,3)(2,5)(4,
6)])
```

Then we calculate the rational function $H^*(t)$:

```
sage: Hst = P._Hstar_function_normaliz(G); Hst
# optional - pynormaliz
(\chi_0*t^4 + (3*\chi_0 + 3*\chi_1)*t^3 + (8*\chi_0 + 2*\chi_1)*t^2 + (3*\chi_0 +
3*\chi_1)*t + \chi_0)/(t + 1)
```
To see the exact as written in [Stap2011], we can format it as 'Hstar_as_lin_comb'. The first coordinate
is the coefficient of the trivial character; the second is the coefficient of the sign character:

```sage
lin = P._Hstar_function_normaliz(G,output = 'Hstar_as_lin_comb'); lin
```

\[
(t^4 + 3*t^3 + 8*t^2 + 3*t + 1)/(t + 1), (3*t^3 + 2*t^2 + 3*t)/(t + 1)
\]

ehrhart_polynomial

```
enGINE=None, variable='t', verbose=False, dual=None, irrational_primal=None,
irrational_all_primal=None, maxdet=None, no_decomposition=None,
compute_vertex_cones=None, smith_form=None, dualization=None,
triangulation=None, triangulation_max_height=None, **kwds)
```

Return the Ehrhart polynomial of this polyhedron.

The polyhedron must be a lattice polytope. Let \(P \) be a lattice polytope in \(\mathbb{R}^d \) and define \(L(P, t) = \#(tP \cap \mathbb{Z}^d) \). Then E. Ehrhart proved in 1962 that \(L \) coincides with a rational polynomial of degree \(d \) for integer \(t \). \(L \) is called the Ehrhart polynomial of \(P \). For more information see the Wikipedia article Ehrhart_polynomial.

The Ehrhart polynomial may be computed using either LattE Integrale or Normaliz by setting engine to ‘latte’ or ‘normaliz’ respectively.

INPUT:

- **engine** – string: The backend to use. Allowed values are:
 - None (default): When no input is given the Ehrhart polynomial is computed using LattE Integrale (optional)
 - ‘latte’: use LattE integrale program (optional)
 - ‘normaliz’: use Normaliz program (optional package pynormaliz). The backend of self must be set to ‘normaliz’.
- **variable** – string (default: ‘t’); The variable in which the Ehrhart polynomial should be expressed.
- When the engine is ‘latte’, the additional input values are:
 - verbose - boolean (default: False); If True, print the whole output of the LattE command.

The following options are passed to the LattE command, for details consult the LattE documentation:

- dual - boolean; triangulate and signed-decompose in the dual space
- irrational_primal - boolean; triangulate in the dual space, signed-decompose in the primal space using irrationalization.
- irrational_all_primal - boolean; triangulate and signed-decompose in the primal space using irrationalization.
- maxdet – integer; decompose down to an index (determinant) of maxdet instead of index 1 (uni-modular cones).
- no_decomposition – boolean; do not signed-decompose simplicial cones.
- compute_vertex_cones – string: either ‘cdd’ or ‘lrs’ or ‘4ti2’
- smith_form – string: either ‘ilio’ or ‘lidia’
- dualization – string: either ‘cdd’ or ‘4ti2’
- triangulation - string: ‘cddlib’, ‘4ti2’ or ‘topcom’
- triangulation_max_height - integer; use a uniform distribution of height from 1 to this number
OUTPUT:

A univariate polynomial in variable over a rational field.

See also:

latte the interface to LattE Integrale PyNormaliz

EXAMPLES:

To start, we find the Ehrhart polynomial of a three-dimensional simplex, first using engine='latte'. Leaving the engine unspecified sets the engine to 'latte' by default:

```
sage: simplex = Polyhedron(vertices=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)])
sage: simplex = simplex.change_ring(QQ)
sage: poly = simplex.ehrhart_polynomial(engine='latte')  # optional - latte_int
7/2*t^3 + 2*t^2 - 1/2*t + 1
sage: poly(1)  # optional - latte_int
6
sage: len(simplex.integral_points())  # optional - latte_int
6
sage: poly(2)  # optional - latte_int
36
sage: len((2*simplex).integral_points())  # optional - latte_int
36
```

Now we find the same Ehrhart polynomial, this time using engine='normaliz'. To use the Normaliz engine, the simplex must be defined with backend='normaliz':

```
sage: simplex = Polyhedron(vertices=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)])  
    # optional - pynormaliz
...
sage: simplex = simplex.change_ring(QQ)  # optional - pynormaliz
sage: poly = simplex.ehrhart_polynomial(engine='normaliz')  # optional - pynormaliz
7/2*t^3 + 2*t^2 - 1/2*t + 1
```

If the engine='normaliz', the backend should be 'normaliz', otherwise it returns an error:

```
sage: simplex = Polyhedron(vertices=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)])
sage: simplex = simplex.change_ring(QQ)
sage: simplex.ehrhart_polynomial(engine='normaliz')  # optional - pynormaliz
Traceback (most recent call last):
...
TypeError: The backend of the polyhedron should be 'normaliz'
```

The polyhedron should be compact:

```
sage: C = Polyhedron(backend='normaliz',rays=[[1,2],[2,1]])  # optional - pynormaliz
sage: C = C.change_ring(QQ)  # optional - pynormaliz
sage: C.ehrhart_polynomial()  # optional - pynormaliz
```

(continues on next page)
Traceback (most recent call last):
...
ValueError: Ehrhart polynomial only defined for compact polyhedra

The polyhedron should have integral vertices:

```python
sage: L = Polyhedron(vertices = [[0],[1/2]])
sage: L.ehrhart_polynomial()
Traceback (most recent call last):
...
TypeError: the polytope has nonintegral vertices, use ehrhart_quasipolynomial
```

```
Compute the Ehrhart quasipolynomial of this polyhedron with rational vertices.

If the polyhedron is a lattice polytope, returns the Ehrhart polynomial, a univariate polynomial in variable over a rational field. If the polyhedron has rational, nonintegral vertices, returns a tuple of polynomials in variable over a rational field. The Ehrhart counting function of a polytope $P$ with rational vertices is given by a \textit{quasipolynomial}. That is, there exists a positive integer $l$ and $l$ polynomials $ehr_{P,i}$ for $i \in \{1, \ldots, l\}$ such that if $t$ is equivalent to $i$ mod $l$ then $tP \cap \mathbb{Z}^d = ehr_{P,i}(t)$.

\textbf{INPUT:}

- \texttt{variable} -- string (default: ‘t’); The variable in which the Ehrhart polynomial should be expressed.
- \texttt{engine} -- string; The backend to use. Allowed values are:
  - \texttt{None} (default); When no input is given the Ehrhart polynomial is computed using Normaliz (optional)
  - \texttt{'latte'}; use LattE Integrale program (requires optional package ‘latte_int’)
  - \texttt{'normaliz'}; use the Normaliz program (requires optional package ‘pynormaliz’). The backend of self must be set to ‘normaliz’.
- When the engine is ‘latte’, the additional input values are:
  - \texttt{verbose} - boolean (default: False); If True, print the whole output of the LattE command.

The following options are passed to the LattE command, for details consult \textit{the LattE documentation}:

- \texttt{dual} - boolean; triangulate and signed-decompose in the dual space
- \texttt{irrational\_primal} - boolean; triangulate in the dual space, signed-decompose in the primal space using irrationalization.
- \texttt{irrational\_all\_primal} - boolean; triangulate and signed-decompose in the primal space using irrationalization.
- \texttt{maxdet} – integer; decompose down to an index (determinant) of maxdet instead of index 1 (unimodular cones).
- \texttt{no\_decomposition} – boolean; do not signed-decompose simplicial cones.
- \texttt{compute\_vertex\_cones} – string; either ‘cdd’ or ‘lrs’ or ‘4ti2’
- smith_form – string; either ‘ilio’ or ‘lidia’
- dualization – string; either ‘cdd’ or ‘4ti2’
- triangulation – string; ‘cddlib’, ‘4ti2’ or ‘topcom’
- triangulation_max_height – integer; use a uniform distribution of height from 1 to this number

OUTPUT:
A univariate polynomial over a rational field or a tuple of such polynomials.

See also:
latte the interface to LattE Integrale PyNormaliz

**Warning:** If the polytope has rational, non integral vertices, it must have backend='normaliz'.

EXAMPLES:
As a first example, consider the line segment \([0,1/2]\). If we dilate this line segment by an even integral factor \(k\), then the dilated line segment will contain \(k/2 + 1\) lattice points. If \(k\) is odd then there will be \(k/2 + 1/2\) lattice points in the dilated line segment. Note that it is necessary to set the backend of the polytope to ‘normaliz’:

```
sage: line_seg = Polyhedron(vertices=[[0],[1/2]],backend='normaliz') # optional
 → pynormaliz
sage: line_seg
 → pynormaliz
A 1-dimensional polyhedron in QQ^1 defined as the convex hull of 2 vertices
sage: line_seg.ehrhart_quasipolynomial()
 # optional
 → pynormaliz
(1/2*t + 1, 1/2*t + 1/2)
```

For a more exciting example, let us look at the subpolytope of the 3 dimensional permutahedron fixed by the reflection across the hyperplane \(x_1 = x_4\):

```
sage: verts = [[3/2, 3, 4, 3/2],
 : [3/2, 4, 3, 3/2],
 : [5/2, 1, 4, 5/2],
 : [5/2, 4, 1, 5/2],
 : [7/2, 1, 2, 7/2],
 : [7/2, 2, 1, 7/2]]
sage: subpoly = Polyhedron(vertices=verts, backend='normaliz') # optional
 → pynormaliz
sage: eq = subpoly.ehrhart_quasipolynomial() # optional
 → pynormaliz
(4*t^2 + 3*t + 1, 4*t^2 + 2*t)
```

(continues on next page)
A polytope with rational nonintegral vertices must have backend='normaliz':

```python
sage: line_seg = Polyhedron(backend='normaliz',rays=[[1/2,2],[2,1]]) # optional - pynormaliz
Traceback (most recent call last):
...TypeError: The backend of the polyhedron should be 'normaliz'
```

The polyhedron should be compact:

```python
sage: C = Polyhedron(backend='normaliz',rays=[[1/2,2],[2,1]]) # optional - pynormaliz
Traceback (most recent call last):
...ValueError: Ehrhart quasipolynomial only defined for compact polyhedra
```

If the polytope happens to be a lattice polytope, the Ehrhart polynomial is returned:

```python
sage: simplex = Polyhedron(backend='normaliz',vertices=[[0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)]) # optional - pynormaliz
sage: simplex = simplex.change_ring(QQ) # optional - pynormaliz
sage: poly = simplex.ehrhart_quasipolynomial(engine='normaliz') # optional - pynormaliz
sage: poly
7/2*t^3 + 2*t^2 - 1/2*t + 1
sage: simplex.ehrhart_polynomial() # optional - pynormaliz latte_int
7/2*t^3 + 2*t^2 - 1/2*t + 1
```

**fixed_subpolytope**(vertex_permutation)

Return the fixed subpolytope of this polytope by the cyclic action of vertex_permutation.

The fixed subpolytope of this polytope under the vertex_permutation is the subset of this polytope that is fixed pointwise.

**INPUT:**

* vertex_permutation – permutation; a permutation of the vertices of self.

**OUTPUT:**

A subpolytope of self.
Note: The vertex_permutation is obtained as a permutation of the vertices represented as a permutation. For example, vertex_permutation = self.restricted_automorphism_group(output='permutation').

Requiring a lattice polytope as opposed to a rational polytope as input is purely conventional.

EXAMPLES:
The fixed subpolytopes of the cube can be obtained as follows:

```python
sage: Cube = polytopes.cube(backend = 'normaliz') # optional - pynormaliz
sage: AG = Cube.restricted_automorphism_group(output='permutation') # optional - pynormaliz
sage: reprs = AG.conjugacy_classes_representatives() # optional - pynormaliz
```

The fixed subpolytope of the identity element of the group is the entire cube:

```python
sage: reprs[0] # optional - pynormaliz
()
sage: Cube.fixed_subpolytope(vertex_permutation = reprs[0]) # optional - pynormaliz
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 8 vertices
sage: _.vertices() # optional - pynormaliz
(A vertex at (-1, -1, -1),
A vertex at (-1, -1, 1),
A vertex at (-1, 1, -1),
A vertex at (-1, 1, 1),
A vertex at (1, -1, -1),
A vertex at (1, -1, 1),
A vertex at (1, 1, -1),
A vertex at (1, 1, 1))
```

You can obtain non-trivial examples:

```python
sage: fsp1 = Cube.fixed_subpolytope(reprs[8]);fsp1 # optional - pynormaliz
A 0-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex
sage: fsp1.vertices() # optional - pynormaliz
(A vertex at (0, 0, 0),)
sage: fsp2 = Cube.fixed_subpolytope(reprs[3]);fsp2 # optional - pynormaliz
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 4 vertices
sage: fsp2.vertices() # optional - pynormaliz
(A vertex at (-1, -1, 0),
A vertex at (-1, 1, 0),
A vertex at (1, -1, 0),
A vertex at (1, 1, 0))
```
The next example shows that `fixed_subpolytope` works for rational polytopes:

```
sage: P = Polyhedron(vertices = [[0,0],[3/2,0],[3/2,3/2],[0,3/2]], backend = 'normaliz') # optional - pynormaliz
sage: P.vertices() # optional
(A vertex at (0, 0),
 A vertex at (0, 3/2),
 A vertex at (3/2, 0),
 A vertex at (3/2, 3/2))
sage: G = P.restricted_automorphism_group(output = 'permutation'); G # optional
Permutation Group with generators [(1,2), (0,1)(2,3), (0,3)]
sage: len(G) # optional
8
sage: G[2] # optional
(0,1)(2,3)
sage: fixed_set = P.fixed_subpolytope(G[2]); fixed_set # optional
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices
sage: fixed_set.vertices() # optional
(A vertex at (0, 3/4), A vertex at (3/2, 3/4))
```

`fixed_subpolytopes(conj_class_reps)`

Return the fixed subpolytopes of this polytope under the actions of the given conjugacy class representatives.

The `conj_class_reps` are representatives of the conjugacy classes of a subgroup of the automorphism group of this polytope. For an element of the automorphism group, the fixed subpolytope is the subset of this polytope that is fixed pointwise.

**INPUT:**

- `conj_class_reps` – a list of representatives of the conjugacy classes of the subgroup of the restricted_automorphism_group of the polytope. Each element is written as a permutation of the vertices of the polytope.

**OUTPUT:**

A dictionary where the elements of `conj_class_reps` are keys and the fixed subpolytopes are values.

**Note:** Two elements in the same conjugacy class fix lattice-isomorphic subpolytopes.

**EXAMPLES:**

Here is an example for the square:

```
sage: p = polytopes.hypercube(2, backend = 'normaliz'); p # optional
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
sage: aut_p = p.restricted_automorphism_group(output = 'permutation') # optional
sage: aut_p.order() # optional
...
sage: aut_p.order() # optional
```
8
sage: conj_list = aut_p.conjugacy_classes_representatives(); conj_list  # optional - pynormaliz
[(), (1,2), (0,1)(2,3), (0,1,3,2), (0,3)(1,2)]
sage: p.fixed_subpolytopes(conj_list)  # optional - pynormaliz
{(0): A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4 vertices, (1,2): A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices, (0,1)(2,3): A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices, (0,1,3,2): A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex, (0,3)(1,2): A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex}

\textbf{integral_points_count}(\texttt{verbose=False}, \texttt{use_Hrepresentation=False}, \\
\texttt{explicitEnumerationThreshold=1000}, \texttt{preprocess=True}, \texttt{**kwds})

Return the number of integral points in the polyhedron. This method uses the optional package \texttt{latte_int} if an estimate for lattice points based on bounding boxes exceeds \texttt{explicitEnumerationThreshold}.

\textbf{INPUT:}

- \texttt{verbose} (boolean; \texttt{False} by default) – whether to display verbose output.
- \texttt{use_Hrepresentation} (boolean; \texttt{False} by default) – whether to send the H or V representation to \texttt{LattE}
- \texttt{preprocess} (boolean; \texttt{True} by default) – whether, if the integral hull is known to lie in a coordinate hyperplane, to tighten bounds to reduce dimension

\textbf{See also:}

\texttt{latte} the interface to \texttt{LattE} interfaces

\textbf{EXAMPLES:}

sage: P = polytopes.cube()
sage: P.integral_points_count() 27
sage: P.integral_points_count(\texttt{explicitEnumerationThreshold=0}) # optional - \texttt{latte_int}
27

We enlarge the polyhedron to force the use of the generating function methods implemented in \texttt{LattE integrale}, rather than explicit enumeration.

sage: (1000000000*P).integral_points_count(\texttt{verbose=True}) # optional - \texttt{latte_int} This is \texttt{LattE integrale}... ... Total time:... 8000000012000000006000000001

We shrink the polyhedron a little bit:

sage: Q = P*(8/9)
sage: Q.integral_points_count()
Unbounded polyhedra (with or without lattice points) are not supported:

```
sage: P = Polyhedron(vertices=[[1/2, 1/3]], rays=[[1, 1]])
sage: P.integral_points_count()
Traceback (most recent call last):
...
NotImplementedError: ...
sage: P = Polyhedron(vertices=[[1, 1]], rays=[[1, 1]])
sage: P.integral_points_count()
Traceback (most recent call last):
...
NotImplementedError: ...
```

“Fibonacci” knapsacks (preprocessing helps a lot):

```
sage: def fibonacci_knapsack(d, b, backend=None):
 ...:
 lp = MixedIntegerLinearProgram(base_ring=QQ)
 ...:
 x = lp.new_variable(nonnegative=True)
 ...:
 lp.add_constraint(lp.sum(fibonacci(i+3)*x[i] for i in range(d)) <= b)
 ...:
 return lp.polyhedron(backend=backend)
sage: fibonacci_knapsack(20, 12).integral_points_count() # does not finish with,
˓→preprocess=False
33
```

`is_effective(Hstar, Hstar_as_lin_comb)`

Test for the effectiveness of the Hstar series of this polytope.

The Hstar series of the polytope is determined by the action of a subgroup of the polytope’s restricted_automorphism_group. The Hstar series is effective if it is a polynomial in t and the coefficient of each $t^i$ is an effective character in the ring of class functions of the acting group. A character $\rho$ is effective if the coefficients of the irreducible representations in the expression of $\rho$ are non-negative integers.

INPUT:

- Hstar – a rational function in $t$ with coefficients in the ring of class functions.
- Hstar_as_lin_comb – vector. The coefficients of the irreducible representations of the acting group in the expression of Hstar as a linear combination of irreducible representations with coefficients in the field of rational functions in $t$.

OUTPUT:

Boolean. Whether the Hstar series is effective.

See also:

Hstar_function()

EXAMPLES:

The $H^*$ series of the two-dimensional permutahedron under the action of the symmetric group is effective:
If the $H^*$-series is not polynomial, then it is not effective:

```python
sage: Hstar = p2.Hstar_function(H); Hstar
(chi_0*t^4 + (3*chi_0 + 3*chi_1)*t^3 + (8*chi_0 + 2*chi_1)*t^2 + (3*chi_0 + 3*chi_1)*t + chi_0)/(t + 1)
```

```python
sage: Hstar_lin = p2.Hstar_function(H, output = 'Hstar_as_lin_comb')
```

```python
sage: P.is_effective(Hstar, Hstar_lin) # optional - pynormaliz
False
```

### 2.5.3 Base class for polyhedra over $\mathbb{Z}$

```python
class sage.geometry.polyhedron.base_ZZ.Polyhedron_ZZ(parent, Vrep, Hrep, Vrep_minimal=None, Hrep_minimal=None, pref_rep=None, mutable=False, **kwds):
 Bases: sage.geometry.polyhedron.base_QQ.Polyhedron_QQ

 Base class for Polyhedra over \mathbb{Z}

 ehrhart_polynomial(engine=None, variable='t', verbose=False, dual=None, irrational_primal=None, irrational_all_primal=None, maxdet=None, no_decomposition=None, compute_vertex_cones=None, smith_form=None, dualization=None, triangulation=None, triangulation_max_height=None, **kwds)
```

Return the Ehrhart polynomial of this polyhedron.

Let $P$ be a lattice polytope in $\mathbb{R}^d$ and define $L(P, t) = \#(tP \cap \mathbb{Z}^d)$. Then E. Ehrhart proved in 1962 that $L$ coincides with a rational polynomial of degree $d$ for integer $t$. $L$ is called the Ehrhart polynomial of $P$.

For more information see the Wikipedia article Ehrhart_polynomial.
The Ehrhart polynomial may be computed using either LattE Integrale or Normaliz by setting engine to 'latte' or 'normaliz' respectively.

INPUT:

• engine – string; The backend to use. Allowed values are:
  – None (default); When no input is given the Ehrhart polynomial is computed using LattE Integrale (optional)
  – 'latte'; use LattE integrale program (optional)
  – 'normaliz'; use Normaliz program (optional). The backend of self must be set to 'normaliz'.
• variable – string (default: 't'); The variable in which the Ehrhart polynomial should be expressed.
• When the engine is 'latte' or None, the additional input values are:
  – verbose - boolean (default: False); if True, print the whole output of the LattE command.

The following options are passed to the LattE command, for details consult the LattE documentation:
  – dual - boolean; triangulate and signed-decompose in the dual space
  – irrational primal - boolean; triangulate in the dual space, signed-decompose in the primal space using irrationalization.
  – irrational all primal - boolean; Triangulate and signed-decompose in the primal space using irrationalization.
  – maxdet – integer; decompose down to an index (determinant) of maxdet instead of index 1 (unimodular cones).
  – no decomposition – boolean; do not signed-decompose simplicial cones.
  – compute vertex cones – string; either 'cdd' or 'lrs' or '4ti2'
  – smith form – string; either 'ilio' or 'lidia'
  – dualization – string; either 'cdd' or '4ti2'
  – triangulation - string; 'cddlib', '4ti2' or 'topcom'
  – triangulation max height - integer; use a uniform distribution of height from 1 to this number

OUTPUT:

The Ehrhart polynomial as a univariate polynomial in variable over a rational field.

See also:

latte the interface to LattE Integrale PyNormaliz

EXAMPLES:

To start, we find the Ehrhart polynomial of a three-dimensional simplex, first using engine='latte'. Leaving the engine unspecified sets the engine to 'latte' by default:

\[
sage: \text{simplex} = \text{Polyhedron(}\text{vertices}=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)])
\]
\[
sage: \text{poly} = \text{simplex.ehrhart_polynomial(}\text{engine} = \text{'}latte'\text{')} \quad \# \text{optional - latte_}
\]
\[
\text{\texttt{poly(1)}} \quad \# \text{optional - latte_}
\]

(continues on next page)
Now we find the same Ehrhart polynomial, this time using \texttt{engine='normaliz'}. To use the Normaliz engine, the simplex must be defined with \texttt{backend='normaliz'}:

\begin{verbatim}
sage: simplex = Polyhedron(vertices=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)], backend='normaliz') # optional - pynormaliz
sage: poly = simplex.ehrhart_polynomial(engine='normaliz') # optional - pynormaliz
sage: poly
\end{verbatim}

\begin{verbatim}
7/2*t^3 + 2*t^2 - 1/2*t + 1
\end{verbatim}

If the \texttt{engine='normaliz'}, the backend should be \texttt{'normaliz'}, otherwise it returns an error:

\begin{verbatim}
sage: simplex = Polyhedron(vertices=[(0,0,0),(3,3,3),(-3,2,1),(1,-1,-2)])
sage: simplex.ehrhart_polynomial(engine='normaliz') # optional - pynormaliz
Traceback (most recent call last):
...  
TypeError: The polyhedron's backend should be 'normaliz'
\end{verbatim}

Now we find the Ehrhart polynomials of the unit hypercubes of dimensions three through six. They are computed first with \texttt{engine='latte'} and then with \texttt{engine='normaliz'}. The degree of the Ehrhart polynomial matches the dimension of the hypercube, and the coefficient of the leading monomial equals the volume of the unit hypercube:

\begin{verbatim}
sage: from itertools import product
sage: def hypercube(d):
....:     return Polyhedron(vertices=list(product([0,1],repeat=d)))

sage: hypercube(3).ehrhart_polynomial()  # optional - latte_int
\end{verbatim}

\begin{verbatim}
t^3 + 3*t^2 + 3*t + 1
\end{verbatim}

\begin{verbatim}
sage: hypercube(4).ehrhart_polynomial()  # optional - latte_int
\end{verbatim}

\begin{verbatim}
t^4 + 4*t^3 + 6*t^2 + 4*t + 1
\end{verbatim}

\begin{verbatim}
sage: hypercube(5).ehrhart_polynomial()  # optional - latte_int
\end{verbatim}

\begin{verbatim}
t^5 + 5*t^4 + 10*t^3 + 10*t^2 + 5*t + 1
\end{verbatim}

\begin{verbatim}
sage: hypercube(6).ehrhart_polynomial()  # optional - latte_int
\end{verbatim}

\begin{verbatim}
t^6 + 6*t^5 + 15*t^4 + 20*t^3 + 15*t^2 + 6*t + 1
\end{verbatim}

\begin{verbatim}
sage: def hypercube(d):
....:     return Polyhedron(vertices=list(product([0,1],repeat=d)),backend='normaliz') # optional - pynormaliz

sage: hypercube(3).ehrhart_polynomial(engine='normaliz') # optional - pynormaliz
\end{verbatim}

\begin{verbatim}
t^3 + 3*t^2 + 3*t + 1
\end{verbatim}

(continues on next page)
sage: hypercube(4).ehrhart_polynomial(engine='normaliz') # optional - pynormaliz
\[t^4 + 4t^3 + 6t^2 + 4t + 1\]
sage: hypercube(5).ehrhart_polynomial(engine='normaliz') # optional - pynormaliz
\[t^5 + 5t^4 + 10t^3 + 10t^2 + 5t + 1\]
sage: hypercube(6).ehrhart_polynomial(engine='normaliz') # optional - pynormaliz
\[t^6 + 6t^5 + 15t^4 + 20t^3 + 15t^2 + 6t + 1\]

An empty polyhedron:

```
sage: p = Polyhedron(ambient_dim=3, vertices=[])
sage: p.ehrhart_polynomial()
@
sage: parent(_)
Univariate Polynomial Ring in t over Rational Field
```

The polyhedron should be compact:

```
sage: C = Polyhedron(rays=[[1,2],[2,1]])
sage: C.ehrhart_polynomial()
Traceback (most recent call last):
...
ValueError: Ehrhart polynomial only defined for compact polyhedra
```

**fibration_generator**(\(dim\))

Generate the lattice polytope fibrations.

For the purposes of this function, a lattice polytope fiber is a sub-lattice polytope. Projecting the plane spanned by the subpolytope to a point yields another lattice polytope, the base of the fibration.

**INPUT:**

- \(dim\) – integer. The dimension of the lattice polytope fiber.

**OUTPUT:**

A generator yielding the distinct lattice polytope fibers of given dimension.

**EXAMPLES:**

```
sage: P = Polyhedron(toric_varieties.P4_11169().fan().rays(), base_ring=ZZ)
 # optional - palp
sage: list(P.fibration_generator(2))
 # optional - palp
[A 2-dimensional polyhedron in ZZ^4 defined as the convex hull of 3 vertices]
```

**find_translation**(\(translated\_polyhedron\))

Return the translation vector to \(translated\_polyhedron\).

**INPUT:**

- \(translated\_polyhedron\) – a polyhedron.

**OUTPUT:**

A \(\mathbb{Z}\)-vector that translates \(self\) to \(translated\_polyhedron\). A `ValueError` is raised if \(translated\_polyhedron\) is not a translation of \(self\), this can be used to check that two polyhedra are not translates of each other.

**EXAMPLES:**

2.5. Base classes for polyhedra
```python
sage: X = polytopes.cube()
sage: X.find_translation(X + vector([2,3,5]))
(2, 3, 5)
sage: X.find_translation(2*X)
Traceback (most recent call last):
...
ValueError: polyhedron is not a translation of self
```

**has_IP_property()**

Test whether the polyhedron has the IP property.

The IP (interior point) property means that

- `self` is compact (a polytope).
- `self` contains the origin as an interior point.

This implies that

- `self` is full-dimensional.
- The dual polyhedron is again a polytope (that is, a compact polyhedron), though not necessarily a lattice polytope.

**EXAMPLES:**

```python
sage: Polyhedron([(1,1),(1,0),(0,1)], base_ring=ZZ).has_IP_property()
False
sage: Polyhedron([(0,0),(1,0),(0,1)], base_ring=ZZ).has_IP_property()
False
sage: Polyhedron([(-1,-1),(1,0),(0,1)], base_ring=ZZ).has_IP_property()
True
```

**REFERENCES:**

- [PALP]

**is_lattice_polytope()**

Return whether the polyhedron is a lattice polytope.

**OUTPUT:**

True if the polyhedron is compact and has only integral vertices, False otherwise.

**EXAMPLES:**

```python
sage: polytopes.cross_polytope(3).is_lattice_polytope()
True
sage: polytopes.regular_polygon(5).is_lattice_polytope()
False
```

**is_reflexive()**

A lattice polytope is reflexive if it contains the origin in its interior and its polar with respect to the origin is a lattice polytope.

Equivalently, it is reflexive if it is of the form \( \{ x \in \mathbb{R}^d : Ax \leq 1 \} \) for some integer matrix \( A \) and \( d \) the ambient dimension.

**EXAMPLES:**
```
sage: p = Polyhedron(vertices=[(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1)], base_ring=ZZ)
sage: p.is_reflexive()
True
sage: polytopes.hypercube(4).is_reflexive()
True
sage: p = Polyhedron(vertices=[(1,0), (0,2), (-1,0), (0,-1)], base_ring=ZZ)
sage: p.is_reflexive()
False
sage: p = Polyhedron(vertices=[(1,0), (0,2), (-1,0)], base_ring=ZZ)
sage: p.is_reflexive()
False
```

An error is raised, if the polyhedron is not compact:

```
sage: p = Polyhedron(rays=[(1,)], base_ring=ZZ)
sage: p.is_reflexive()
Traceback (most recent call last):
 ...
ValueError: the polyhedron is not compact
```

**minkowski_decompositions()**

Return all Minkowski sums that add up to the polyhedron.

**OUTPUT:**

A tuple consisting of pairs \((X, Y)\) of \(\mathbb{Z}\)-polyhedra that add up to \(self\). All pairs up to exchange of the summands are returned, that is, \((Y, X)\) is not included if \((X, Y)\) already is.

**EXAMPLES:**

```sage: square = Polyhedron(vertices=[(0,0),(1,0),(0,1),(1,1)])
sage: square.minkowski_decompositions()
((A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex,
 A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices),
 (A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices,
 A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices))
```

Example from http://cgi.di.uoa.gr/~amantzaf/geo/

```
sage: Q = Polyhedron(vertices=[(4,0), (6,0), (0,3), (4,3)])
sage: R = Polyhedron(vertices=[(0,0), (5,0), (8,4), (3,2)])
sage: (Q+R).minkowski_decompositions()
((A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex,
 A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices),
 (A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices),
 (A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices),
 (A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices),
 (A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices),
 (continues on next page)
```
(A 1-dimensional polyhedron in \( \mathbb{Z}^2 \) defined as the convex hull of 2 vertices,
A 2-dimensional polyhedron in \( \mathbb{Z}^2 \) defined as the convex hull of 7 vertices),
(A 1-dimensional polyhedron in \( \mathbb{Z}^2 \) defined as the convex hull of 2 vertices,
A 2-dimensional polyhedron in \( \mathbb{Z}^2 \) defined as the convex hull of 6 vertices))

\[
\text{sage: } \text{len(square.dilation(i).minkowski_decompositions())}
\]
\[
\text{...: for i in range(6) ]}
\]
\[
[1, 2, 5, 8, 13, 18]
\]
\[
\text{sage: [ integer_ceil((i^2 + 2*i - 1) / 2) + 1 for i in range(10) ]}
\]
\[
[1, 2, 5, 8, 13, 18, 25, 32, 41, 50]
\]

\[\text{polar()}
\]
Return the polar (dual) polytope.

The polytope must have the IP-property (see \texttt{has_IP_property()})
that is, the origin must be an interior point. In particular, it must be full-dimensional.

\[\text{OUTPUT:}
\]

The polytope whose vertices are the coefficient vectors of the inequalities of \texttt{self}
with inhomogeneous term normalized to unity.

\[\text{EXAMPLES:}
\]
\[
\text{sage: p = Polyhedron(}
\text{vertices=[(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1)], base_}
\text{→ring=ZZ)}
\]
\[
\text{sage: p.polar()}
\]
A 3-dimensional polyhedron in \( \mathbb{Z}^3 \) defined as the convex hull of 4 vertices

\[
\text{sage: type(_)}
\]
\[
<\text{class } 'sage.geometry.polyhedron.parent.Polyhedra} \_\_ppl\_\_with\_\_category.element\_\_class'>
\]
\[
\text{sage: p.polar().base\_ring()}
\]
\[
\text{Integer Ring}
\]

### 2.5.4 Base class for polyhedra over RDF

\[\text{class sage.geometry.polyhedron.base} \_\_RDF.\_\_Polyhedron} \_\_RDF(parent, Vrep, Hrep, Vrep\_minimal=None, Hrep\_minimal=None, pref\_rep=None, mutable=False, **kwds)
\]

Bases: \texttt{sage.geometry.polyhedron.base.Polyhedron_base}

Base class for polyhedra over RDF.

### 2.6 Backends for Polyhedra

#### 2.6.1 The cdd backend for polyhedral computations

\[\text{class sage.geometry.polyhedron.backend} \_\_cdd.\_\_Polyhedron} \_\_QQ\_\_cdd(parent, Vrep, Hrep, **kwds)
\]

Bases: \texttt{sage.geometry.polyhedron.backend} \_\_cdd.\_\_Polyhedron} \_\_QQ\_\_cdd, \texttt{sage.geometry.polyhedron.}
\_\_base} \_\_QQ.\_\_Polyhedron} \_\_QQ

Polyhedra over QQ with cdd
INPUT:

- parent – the parent, an instance of `Polyhedra`.
- Vrep – a list [vertices, rays, lines] or None.
- Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: parent = Polyhedra(QQ, 2, backend='cdd')
sage: from sage.geometry.polyhedron.backend_cdd import Polyhedron_QQ_cdd
sage: Polyhedron_QQ_cdd(parent, [[(1,0),(0,1),(0,0)], [], []], None, verbose=False)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices
```

class `sage.geometry.polyhedron.backend_cdd.Polyhedron_cdd`(
    parent, Vrep, Hrep,
    Vrep_minimal=None,
    Hrep_minimal=None,
    pref_rep=None,
    mutable=False,
    **kwds)

Bases: `sage.geometry.polyhedron.base.Polyhedron_base`

Base class for the cdd backend.

### 2.6.2 The Python backend

While slower than specialized C/C++ implementations, the implementation is general and works with any exact field in Sage that allows you to define polyhedra.

EXAMPLES:

```python
sage: p0 = (0, 0)
sage: p1 = (1, 0)
sage: p2 = (1/2, AA(3).sqrt()/2) # optional - sage.rings.number_field
sage: equilateral_triangle = Polyhedron([p0, p1, p2]) # optional - sage.rings.number_field
sage: equilateral_triangle.vertices() # optional - sage.rings.number_field
(A vertex at (0, 0),
 A vertex at (1, 0),
 A vertex at (0.500000000000000?, 0.866025403784439?))
sage: equilateral_triangle.inequalities() # optional - sage.rings.number_field
(An inequality (-1, -0.5773502691896258?) x + 1 >= 0,
 An inequality (1, -0.5773502691896258?) x + 0 >= 0,
 An inequality (0, 1.154700538379252?) x + 0 >= 0)
```

class `sage.geometry.polyhedron.backend_field.Polyhedron_field`(
    parent, Vrep, Hrep,
    Vrep_minimal=None,
    Hrep_minimal=None,
    pref_rep=None, mutable=False,
    **kwds)

Bases: `sage.geometry.polyhedron.base.Polyhedron_base`

Polyhedra over all fields supported by Sage

INPUT:
Combinatorial and Discrete Geometry, Release 9.6

- Vrep – a list \([\text{vertices}, \text{rays}, \text{lines}]\) or None.
- Hrep – a list \([\text{ieqs}, \text{eqns}]\) or None.

**EXAMPLES:**

```python
sage: p = Polyhedron(vertices=[[0,0],(AA(2).sqrt(),0),(0,AA(3).sqrt())], ...)
......: rays=[[1,1]], lines=[], backend='field', base_ring=AA)
sage: TestSuite(p).run()
```

### 2.6.3 The Normaliz backend for polyhedral computations

**Note:** This backend requires PyNormaliz. To install PyNormaliz, type `sage -i pynormaliz` in the terminal.

**AUTHORS:**
- Matthias Köppe (2016-12): initial version
- Jean-Philippe Labbé (2019-04): Expose normaliz features and added functionalities

```python
class sage.geometry.polyhedron.backend_normaliz.Polyhedron_QQ_normaliz(...)
```

**INPUT:**
- Vrep – a list \([\text{vertices}, \text{rays}, \text{lines}]\) or None
- Hrep – a list \([\text{ieqs}, \text{eqns}]\) or None

**EXAMPLES:**

```python
sage: p = Polyhedron(vertices=[[0,0],(1,0),(0,1)], ...)
......: rays=[[1,1]], backend='normaliz', base_ring=QQ)
sage: TestSuite(p).run()
```

**ehrhart_series**(``variable='t'``)

Return the Ehrhart series of a compact rational polyhedron.

The Ehrhart series is the generating function where the coefficient of \(t^k\) is number of integer lattice points inside the \(k\)-th dilation of the polytope.

**INPUT:**
- variable – string (default: 't')
OUTPUT:
A rational function.

EXAMPLES:

```python
sage: S = Polyhedron(vertices=[[0,1],[1,0]], backend='normaliz') # optional - pynormaliz
sage: ES = S.ehrhart_series() # optional - pynormaliz
sage: ES.numerator() # optional - pynormaliz
1
sage: ES.denominator().factor() # optional - pynormaliz
(t - 1)^2

sage: C = Polyhedron(vertices=[[0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]], backend='normaliz') # optional - pynormaliz
sage: ES = C.ehrhart_series() # optional - pynormaliz
sage: ES.numerator() # optional - pynormaliz
1
sage: ES.denominator().factor() # optional - pynormaliz
(t - 1)^4
```

The following example is from the Normaliz manual contained in the file rational.in:

```python
sage: rat_poly = Polyhedron(vertices=[[1/2,1/2],[-1/3,-1/3],[1/4,-1/2]], backend='normaliz') # optional - pynormaliz
sage: ES = rat_poly.ehrhart_series() # optional - pynormaliz
sage: ES.numerator() # optional - pynormaliz
2*t^6 + 3*t^5 + 4*t^4 + 3*t^3 + t^2 + t + 1
sage: ES.denominator().factor() # optional - pynormaliz
(-1) * (t + 1)^2 * (t - 1)^3 * (t^2 + 1) * (t^2 + t + 1)
```

The polyhedron should be compact:

```python
sage: C = Polyhedron(backend='normaliz',rays=[[1,2],[2,1]]) # optional - pynormaliz
sage: C.ehrhart_series() # optional - pynormaliz
Traceback (most recent call last):
 ...
NotImplementedError: Ehrhart series can only be computed for compact polyhedron
```

See also:

hilbert_series()

hilbert_series(grading, variable='r')
Return the Hilbert series of the polyhedron with respect to grading.

INPUT:

- grading – vector. The grading to use to form the Hilbert series
• variable – string (default: 't')

OUTPUT:
A rational function.

EXAMPLES:

```
sage: C = Polyhedron(backend='normaliz',rays=[[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
˓→ # optional - pynormaliz
sage: HS = C.hilbert_series([1,1,1]) # optional - pynormaliz
sage: HS.numerator() # optional - pynormaliz
t^2 + 1
sage: HS.denominator().factor() # optional - pynormaliz
(-1) * (t + 1) * (t - 1)^3 * (t^2 + t + 1)
```

By changing the grading, you can get the Ehrhart series of the square lifted at height 1:

```
sage: C.hilbert_series([0,0,1]) # optional - pynormaliz
(t + 1)/(-t^3 + 3*t^2 - 3*t + 1)
```

Here is an example 2cone.in from the Normaliz manual:

```
sage: C = Polyhedron(backend='normaliz',rays=[[1,3],[2,1]]) # optional - pynormaliz
sage: HS = C.hilbert_series([1,1]) # optional - pynormaliz
sage: HS.numerator() # optional - pynormaliz
(t + 1) * (t - 1)^2 * (t^2 + 1) * (t^2 + t + 1)
```

Here is the magic square example form the Normaliz manual:

```
sage: eq =
 [[0,1,1,1,-1,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[
 0,0,1,1,-1, 0, 0,-1,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0],[
 0,1,0,1, 0,-1, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0],[
 0,1,1,0, 0,-1, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0],[
 0,0,1,1,-1, 0, 0,-1,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[
 0,1,1,0, 0,-1, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
```

```
sage: magic_square = Polyhedron(eqns=eq,backend='normaliz') & →Polyhedron(rays=identity_matrix(9).rows()) # optional - pynormaliz
sage: grading = [1,1,1,0,0,0,0,0,0]
```

```
sage: magic_square.hilbert_series(grading) # optional - pynormaliz
(t^6 + 2*t^3 + 1)/(-t^9 + 3*t^6 - 3*t^3 + 1)
```

See also:

ehrhart_series()
integral_points\((threshold=10000)\)
Return the integral points in the polyhedron.

Uses either the naïve algorithm (iterate over a rectangular bounding box) or triangulation + Smith form.

INPUT:

- threshold – integer (default: 10000); use the naïve algorithm as long as the bounding box is smaller than this

OUTPUT:

The list of integral points in the polyhedron. If the polyhedron is not compact, a ValueError is raised.

EXAMPLES:

sage: Polyhedron(vertices=[(-1,-1), (1,0), (1,1), (0,1)], # optional -
                   backend='normaliz').integral_points()
((-1, -1), (0, 0), (0, 1), (1, 0), (1, 1))

sage: simplex = Polyhedron([(1,2,3), (2,3,7), (-2,-3,-11)], # optional -
                         backend='normaliz').integral_points()
((-2, -3, -11), (0, 0, -2), (1, 2, 3), (2, 3, 7))

The polyhedron need not be full-dimensional:

sage: simplex = Polyhedron(((1,2,3,5), (2,3,7,5), (-2,-3,-11,5)), # optional -
                        backend='normaliz').integral_points()
((-2, -3, -11, 5), (0, 0, -2, 5), (1, 2, 3, 5), (2, 3, 7, 5))

sage: point = Polyhedron([(2,3,7)], # optional -
                       backend='normaliz').integral_points()
((2, 3, 7),)

sage: empty = Polyhedron(backend='normaliz') # optional -
empty.integral_points() # optional -
()

Here is a simplex where the naïve algorithm of running over all points in a rectangular bounding box no longer works fast enough:

sage: v = [(1,0,7,-1), (-2,-2,4,-3), (-1,-1,-1,4), (2,9,0,-5), (-2,-1,5,1)]
sage: simplex = Polyhedron(v, backend='normaliz'); simplex # optional -
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices
A rather thin polytope for which the bounding box method would be a very bad idea (note this is a rational (non-lattice) polytope, so the other backends use the bounding box method):

```
sage: P = Polyhedron(vertices=((0, 0), (178933,37121))) + 1/1000*polytopes.hypercube(2)
sage: P = Polyhedron(vertices=P.vertices_list(), backend='normaliz')
sage: len(P.integral_points())
```

```
49
```

Finally, the 3-d reflexive polytope number 4078:

```
sage: v = [(1,0,0), (0,1,0), (0,0,1), (0,0,-1), (0,-2,1),
 (-1,2,-1), (-1,2,-2), (-1,1,-2), (-1,-1,2), (-1,-3,2)]
sage: P = Polyhedron(v, backend='normaliz')
```

```
sage: pts1 = P.integral_points()
sage: all(P.contains(p) for p in pts1)
sage: pts2 = LatticePolytope(v).points()
sage: set(pts1) == set(pts2)
```

```
True
```

```
sage: timeit('Polyhedron(v, backend='normaliz').integral_points()')
```

```
625 loops, best of 3: 1.41 ms per loop
```

```
sage: timeit('LatticePolytope(v).points()')
```

```
25 loops, best of 3: 17.2 ms per loop
```

**integral_points_generators()**

Return the integral points generators of the polyhedron.

Every integral point in the polyhedron can be written as a (unique) non-negative linear combination of integral points contained in the three defining parts of the polyhedron: the integral points (the compact part), the recession cone, and the lineality space.

**OUTPUT:**

A tuple consisting of the integral points, the Hilbert basis of the recession cone, and an integral basis for the lineality space.

**EXAMPLES:**

Normaliz gives a nonnegative integer basis of the lineality space:
A recession cone generated by two rays:

```sage
C = Polyhedron(backend='normaliz', rays=[[1,2],[2,1]]) # optional - pynormaliz
C.integral_points_generators() # optional - pynormaliz
(((0, 0),), ((1, 1), (1, 2), (2, 1)), ()),)
```

Empty polyhedron:

```sage
P = Polyhedron(backend='normaliz') # optional - pynormaliz
P.integral_points_generators() # optional - pynormaliz
(((), (), ()),)
```

### class sage.geometry.polyhedron.backend_normaliz.Polyhedron_ZZ_normaliz

Bases: `sage.geometry.polyhedron.backend_normaliz.Polyhedron_QQ_normaliz, sage.geometry.polyhedron.base.ZZ.Polyhedron_ZZ`

Polyhedra over \(\mathbb{Z}\) with normaliz.

**INPUT:**

- \(V\text{rep}\) – a list [vertices, rays, lines] or None
- \(H\text{rep}\) – a list [ieqs, eqns] or None

**EXAMPLES:**

```sage
p = Polyhedron(\text{vertices}=[[0,0),(1,0),(0,1)],
\text{rays}=[(1,1)], \text{lines}=[],
\text{backend}='normaliz', \text{base}_\text{ring}=\mathbb{Z}) # optional - pynormaliz
TestSuite(p).run() # optional - pynormaliz
```

### class sage.geometry.polyhedron.backend_normaliz.Polyhedron_normaliz

Bases: `sage.geometry.polyhedron.backend_normaliz.Polyhedron_QQ_normaliz, sage.geometry.polyhedron.base.Polyhedron_base`

Polyhedra with normaliz.

**INPUT:**

- \(\text{parent}\) – \(\text{Polyhedra}\) the parent
- \(V\text{rep}\) – a list [vertices, rays, lines] or None; the V-representation of the polyhedron; if None, the polyhedron is determined by the H-representation
• **Hrep** – a list [ieqs, eqns] or None; the H-representation of the polyhedron; if None, the polyhedron is determined by the V-representation

• **normaliz_cone** – a PyNormaliz wrapper of a normaliz cone

Only one of Vrep, Hrep, or normaliz_cone can be different from None.

**EXAMPLES:**

```python
sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], # optional -=
 rays=[[1,1]], # optional -=
 backend='normaliz') # optional -=
 : lines=[]
sage: TestSuite(p).run() # optional -=
```

Two ways to get the full space:

```python
sage: Polyhedron(eqns=[[0, 0, 0]], backend='normaliz') # optional -=
 : backend='normaliz'
sage: Polyhedron(ieqs=[[0, 0, 0]], backend='normaliz') # optional -=
 : backend='normaliz'
```

A lower-dimensional affine cone; we test that there are no mysterious inequalities coming in from the homogenization:

```python
sage: P = Polyhedron(vertices=[[1, 1]], rays=[[0, 1]], # optional -=
 backend='normaliz') # optional -=
 : backend='normaliz'
sage: P.n_inequalities() # optional -=
 : backend='normaliz'
1
sage: P.equations() # optional -=
 : backend='normaliz'
(An equation (1, 0) x - 1 == 0,)
```

The empty polyhedron:

```python
sage: P=Polyhedron(ieqs=[[-2, 1, 1], [-3, -1, -1], [-4, 1, -2]], # optional -=
 backend='normaliz') # optional -=
sage: P # optional -=
```

```
integral_hull()
Return the integral hull in the polyhedron.
```
This is a new polyhedron that is the convex hull of all integral points.

EXAMPLES:

Unbounded example from Normaliz manual, “a dull polyhedron”:

```
sage: P = Polyhedron(ieqs=[[1, 0, 2], [3, 0, -2], [3, 2, -2]], # optional -
\pynormaliz
\.....: backend='normaliz')
sage: PI = P.integral_hull() # optional -
\pynormaliz
\sage: P.plot(color='yellow') + PI.plot(color='green') # optional -
\pynormaliz # optional - sage.plot
Graphics object consisting of 10 graphics primitives
sage: PI.Vrepresentation() # optional -
\pynormaliz
(A vertex at (-1, 0), A vertex at (0, 1), A ray in the direction (1, 0))
```

Nonpointed case:

```
sage: P = Polyhedron(vertices=[[1/2, 1/3]], rays=[[1, 1]], # optional -
\pynormaliz
\.....: lines=[[-1, 1]], backend='normaliz')
sage: PI = P.integral_hull() # optional -
\pynormaliz
sage: PI.Vrepresentation() # optional -
\pynormaliz
(A vertex at (1, 0),
 A ray in the direction (1, 0),
 A line in the direction (1, -1))
```

Empty polyhedron:

```
sage: P = Polyhedron(backend='normaliz') # optional -
\pynormaliz
\sage: PI = P.integral_hull() # optional -
\pynormaliz
\sage: PI.Vrepresentation() # optional -
\pynormaliz
()
```

2.6.4 The polymake backend for polyhedral computations

Note: This backend requires polymake. To install it, type `sage -i polymake` in the terminal.

AUTHORS:

- Matthias Köppe (2017-03): initial version

```python
class sage.geometry.polyhedron.backend_polymake.Polyhedron_QQ_polymake(parent, Vrep, Hrep, polymake_polytope=None, **kwds):

 Bases: sage.geometry.polyhedron.backend_polymake.Polyhedron_polymake, sage.geometry.
```
**polyhedron.base_QQ.Polyhedron_QQ**

Polyhedra over \( \mathbb{Q} \) with polymake.

INPUT:

- **Vrep** – a list \([\text{vertices, rays, lines}]\) or None
- **Hrep** – a list \([\text{ieqs, eqns}]\) or None

EXAMPLES:

```python
sage: p = Polyhedron(vertices=[[0,0],[1,0],[0,1]], # optional - polymake
 rays=[[1,1]], lines=[],
 backend='polymake', base_ring=QQ)

sage: TestSuite(p).run() # optional - polymake
```

**class** `sage.geometry.polyhedron.backend_polymake.Polyhedron_ZZ_polymake` *(parent, Vrep, Hrep, polymake_polytope=None, **kwds)*

Polyhedra over \( \mathbb{Z} \) with polymake.

INPUT:

- **Vrep** – a list \([\text{vertices, rays, lines}]\) or None
- **Hrep** – a list \([\text{ieqs, eqns}]\) or None

EXAMPLES:

```python
sage: p = Polyhedron(vertices=[[0,0],[1,0],[0,1]], # optional - polymake
 rays=[[1,1]], lines=[],
 backend='polymake', base_ring=ZZ)

sage: TestSuite(p).run() # optional - polymake
```

**class** `sage.geometry.polyhedron.backend_polymake.Polyhedron_polymake` *(parent, Vrep, Hrep, polymake_polytope=None, **kwds)*

Polyhedra with polymake

INPUT:

- **parent** – *Polyhedra* the parent
- **Vrep** – a list \([\text{vertices, rays, lines}]\) or None: the V-representation of the polyhedron; if None, the polyhedron is determined by the H-representation
- **Hrep** – a list \([\text{ieqs, eqns}]\) or None: the H-representation of the polyhedron; if None, the polyhedron is determined by the V-representation
- **polymake_polytope** – a polymake polytope object
Only one of Vrep, Hrep, or polymake_polytope can be different from None.

EXAMPLES:

```python
sage: p = Polyhedron(vertices=[[0,0],[1,0],[0,1]], rays=[[1,1]],
 backend='polymake')
 : lines=[], backend='polymake')
sage: TestSuite(p).run() # optional - polymake
```

A lower-dimensional affine cone; we test that there are no mysterious inequalities coming in from the homogenization:

```python
sage: P = Polyhedron(vertices=[[1, 1]], rays=[[0, 1]],
 backend='polymake')
 : P.n_inequalities() # optional - polymake
sage: P.equations() # optional - polymake
(An equation (1, 0) x - 1 == 0,)
```

The empty polyhedron:

```python
sage: Polyhedron(eqns=[[1, 0, 0]], backend='polymake') # optional - polymake
The empty polyhedron in QQ^2
```

It can also be obtained differently:

```python
sage: P=Polyhedron(ieqs=[[1, 0, 0]], backend='polymake') # optional - polymake
The empty polyhedron in QQ^2
```

The full polyhedron:

```python
sage: Polyhedron(eqns=[[0, 0, 0]], backend='polymake') # optional - polymake
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 lines
```

Quadratic fields work:
class sage.geometry.polyhedron.backend_ppl.Polyhedron_QQ_ppl(parent, Vrep, Hrep, ppl_polyhedron=None, mutable=False, **kwds)

Bases: sage.geometry.polyhedron.backend_ppl.Polyhedron_ppl, sage.geometry.polyhedron.base_QQ.Polyhedron_QQ

Polyhedra over $\mathbb{Q}$ with ppl

INPUT:

- $\text{Vrep}$ – a list [vertices, rays, lines] or None.
- $\text{Hrep}$ – a list [ieqs, eqns] or None.

EXAMPLES:

```python
sage: p = Polyhedron(vertices=[[0,0],[1,0],[0,1]], rays=[[1,1]], lines=[], backend='ppl', base_ring=QQ)
sage: TestSuite(p).run()
```

class sage.geometry.polyhedron.backend_ppl.Polyhedron_ZZ_ppl(parent, Vrep, Hrep, ppl_polyhedron=None, mutable=False, **kwds)

Bases: sage.geometry.polyhedron.backend_ppl.Polyhedron_ppl, sage.geometry.polyhedron.base_ZZ.Polyhedron_ZZ

Polyhedra over $\mathbb{Z}$ with ppl

INPUT:

- $\text{Vrep}$ – a list [vertices, rays, lines] or None.
- $\text{Hrep}$ – a list [ieqs, eqns] or None.

EXAMPLES:

```python
sage: p = Polyhedron(vertices=[[0,0],[1,0],[0,1]], rays=[[1,1]], lines=[], backend='ppl', base_ring=ZZ)
sage: TestSuite(p).run()
```

class sage.geometry.polyhedron.backend_ppl.Polyhedron_ppl(parent, Vrep, Hrep, ppl_polyhedron=None, mutable=False, **kwds)

Bases: sage.geometry.polyhedron.base_mutable.Polyhedron_mutable

Polyhedra with ppl
INPUT:

- Vrep – a list [vertices, rays, lines] or None.
- Hrep – a list [ieqs, eqns] or None.

EXAMPLES:

```
sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)], rays=[(1,1)], lines=[], backend='ppl')
sage: TestSuite(p).run()
```

Hrepresentation(index=None)

Return the objects of the H-representation. Each entry is either an inequality or an equation.

INPUT:

- index – either an integer or None

OUTPUT:

The optional argument is an index running from 0 to self.n_Hrepresentation()-1. If present, the H-representation object at the given index will be returned. Without an argument, returns the list of all H-representation objects.

EXAMPLES:

```
sage: p = polytopes.hypercube(3)
sage: p.Hrepresentation(0)
An inequality (-1, 0, 0) x + 1 >= 0
sage: p.Hrepresentation(0) == p.Hrepresentation()[0]
True
```

```
sage: P = p.parent()
sage: p = P._element_constructor_(p, mutable=True)
sage: p.Hrepresentation(0)
An inequality (0, 0, -1) x + 1 >= 0
sage: p._clear_cache()
sage: p.Hrepresentation(0)
An inequality (0, 0, -1) x + 1 >= 0
sage: TestSuite(p).run()
```

Vrepresentation(index=None)

Return the objects of the V-representation. Each entry is either a vertex, a ray, or a line.

See `sage.geometry.polyhedron.constructor` for a definition of vertex/ray/line.

INPUT:

- index – either an integer or None

OUTPUT:

The optional argument is an index running from 0 to self.n_Vrepresentation()-1. If present, the V-representation object at the given index will be returned. Without an argument, returns the list of all V-representation objects.

EXAMPLES:
sage: p = polytopes.cube()
sage: p.Vrepresentation(0)
A vertex at (1, -1, -1)

sage: P = p.parent()
sage: p = P._element_constructor_(p, mutable=True)
sage: p.Vrepresentation(0)
A vertex at (-1, -1, -1)
sage: p._clear_cache()
sage: p.Vrepresentation(0)
A vertex at (-1, -1, -1)
sage: TestSuite(p).run()

set_immutable()
Make this polyhedron immutable. This operation cannot be undone.

EXAMPLES:

sage: p = Polyhedron([[1, 1]], mutable=True)
sage: p.is_mutable()
True
sage: hasattr(p, "_Vrepresentation")
False
sage: p.set_immutable()

2.6.6 Double Description Algorithm for Cones

This module implements the double description algorithm for extremal vertex enumeration in a pointed cone following [FP1996]. With a little bit of preprocessing (see double_description_inhomogeneous) this defines a backend for polyhedral computations. But as far as this module is concerned, inequality always means without a constant term and the origin is always a point of the cone.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: alg = StandardAlgorithm(A); alg
Pointed cone with inequalities
(1, 0, 1)
(0, 1, 1)
(-1, -1, 1)
sage: DD, _ = alg.initial_pair(); DD
Double description pair (A, R) defined by
[ 1 0 1]  [ 2/3 -1/3 -1/3]
A = [ 0 1 1], R = [-1/3 2/3 -1/3]
[-1 -1 1]  [ 1/3 1/3 1/3]

The implementation works over any exact field that is embedded in \( \mathbb{R} \), for example:

sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(AA, [(1,0,1), (0,1,1), (-AA(2).sqrt(),-AA(3).sqrt(),1), # optional -˓→sage.rings.number_field
(continues on next page)
class sage.geometry.polyhedron.double_description.DoubleDescriptionPair(problem, A_rows, R_cols)

Bases: object

Base class for a double description pair \((A, R)\)

**Warning:** You should use the `Problem.initial_pair()` or `Problem.run()` to generate double description pairs for a set of inequalities, and not generate `DoubleDescriptionPair` instances directly.

**INPUT:**

- `problem` – instance of `Problem`.
- `A_rows` – list of row vectors of the matrix \(A\). These encode the inequalities.
- `R_cols` – list of column vectors of the matrix \(R\). These encode the rays.

**`R_by_sign(a)`**

Classify the rays into those that are positive, zero, and negative on \(a\).

**INPUT:**


**OUTPUT:**

A triple consisting of the rays (columns of \(R\)) that are positive, zero, and negative on \(a\). In that order.

**EXAMPLES:**

```python
sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(QQ, [[1,0,1], [0,1,1], [-1,-1,1]])
sage: DD, _ = StandardAlgorithm(A).initial_pair()
sage: DD.R_by_sign(vector([1,-1,0]))
([(2/3, -1/3, 1/3)], [], [(2/3, -1/3, 1/3)])
```

**`are_adjacent(r1, r2)`**

Return whether the two rays are adjacent.

**INPUT:**

- `r1, r2` – two rays.

**OUTPUT:**

Boolean. Whether the two rays are adjacent.
EXAMPLES:

```sage
from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(QQ, [(0,1,0), (1,0,0), (0,-1,1), (-1,0,1)])
sage: DD = StandardAlgorithm(A).run()
sage: DD.are_adjacent(DD.R[0], DD.R[1])
True
sage: DD.are_adjacent(DD.R[0], DD.R[2])
True
sage: DD.are_adjacent(DD.R[0], DD.R[3])
False
```

**cone()**

Return the cone defined by $A$.

This method is for debugging only. Assumes that the base ring is $\mathbb{Q}$.

**OUTPUT:**

The cone defined by the inequalities as a $\text{Polyhedron()}$, using the PPL backend.

**EXAMPLES:**

```sage
from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: DD, _ = StandardAlgorithm(A).initial_pair()
sage: DD.cone().Hrepresentation()
((An inequality (-1, -1, 1) x + 0 >= 0,
 An inequality (0, 1, 1) x + 0 >= 0,
 An inequality (1, 0, 1) x + 0 >= 0)
```

**dual()**

Return the dual.

**OUTPUT:**

For the double description pair $(A, R)$ this method returns the dual double description pair $(R^T, A^T)$

**EXAMPLES:**

```sage
from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(QQ, [(0,1,0), (1,0,0), (0,-1,1), (-1,0,1)])
sage: DD, _ = StandardAlgorithm(A).initial_pair()
sage: DD
double description pair (A, R) defined by
[0 1 0] [0 1 0]
A = [1 0 0], R = [0 1 0]
[0 -1 1] [1 0 1]
sage: DD.dual()
double description pair (A, R) defined by
[0 1 1] [0 1 0]
A = [1 0 0], R = [1 0 -1]
[0 0 1] [0 0 1]
```

**first_coordinate_plane()**

Restrict to the first coordinate plane.

**OUTPUT:**
A new double description pair with the constraint $x_0 = 0$ added.

EXAMPLES:

```python
sage: A = matrix([(1, 1), (-1, 1)])
sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: DD, _ = StandardAlgorithm(A).initial_pair()
sage: DD
Double description pair (A, R) defined by
A = [1 1], R = [1/2 -1/2]
[-1 1] [1/2 1/2]
sage: DD.first_coordinate_plane()
Double description pair (A, R) defined by
[1 1]
A = [-1 1], R = [0]
[-1 0] [1/2]
[1 0]
```

`inner_product_matrix()`
Return the inner product matrix between the rows of $A$ and the columns of $R$.

**OUTPUT:**
A matrix over the base ring. There is one row for each row of $A$ and one column for each column of $R$.

**EXAMPLES:**

```python
sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: alg = StandardAlgorithm(A)
sage: DD, _ = alg.initial_pair()
sage: DD.inner_product_matrix()
[1 0 0]
[0 1 0]
[0 0 1]
```

`is_extremal(ray)`
Test whether the ray is extremal.

**EXAMPLES:**

```python
sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(QQ, [(0,1,0), (1,0,0), (0,-1,1), (-1,0,1)])
sage: DD = StandardAlgorithm(A).run()
sage: DD.is_extremal(DD.R[0])
True
```

`matrix_space(nrows, ncols)`
Return a matrix space of size nrows and ncols over the base ring of self.

These matrix spaces are cached to avoid their creation in the very demanding `add_inequality()` and more precisely `are_adjacent()`.

**EXAMPLES:**

```python
sage: from sage.geometry.polyhedron.double_description import Problem
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
```

(continues on next page)
Combinatorial and Discrete Geometry, Release 9.6

```
sage: DD, _ = Problem(A).initial_pair()
sage: DD.matrix_space(2,2)
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: DD.matrix_space(3,2)
Full MatrixSpace of 3 by 2 dense matrices over Rational Field
sage: K.<sqrt2> = QuadraticField(2) # optional - sage.rings.number_field
sage: A = matrix([1,sqrt2],[2,0]) # optional - sage.rings.number_field
sage: DD, _ = Problem(A).initial_pair() # optional - sage.rings.number_field
sage: DD.matrix_space(1,2) # optional - sage.rings.number_field
Full MatrixSpace of 1 by 2 dense matrices over Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.

verify()
Validate the double description pair.
This method used the PPL backend to check that the double description pair is valid. An assertion is triggered if it is not. Does nothing if the base ring is not \(\mathbb{Q} \).

EXAMPLES:
```
sage: from sage.geometry.polyhedron.double_description import DoubleDescriptionPair, Problem
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: alg = Problem(A)
sage: DD = DoubleDescriptionPair(alg,
                [(1, 0, 3), (0, 1, 1), (-1, -1, 1)],
                [(2/3, -1/3, 1/3), (-1/3, 2/3, 1/3), (-1/3, -1/3, 1/3)])
sage: DD.verify()
Traceback (most recent call last):
  ... assert A_cone == R_cone
AssertionError
```

zero_set(ray)
Return the zero set (active set) \(Z(r) \).

INPUT:
* ray – a ray vector.

OUTPUT:
A set containing the inequality vectors that are zero on ray.

EXAMPLES:
```
sage: from sage.geometry.polyhedron.double_description import Problem
sage: A = matrix(QQ, [(1,0,1), (0,1,1), (-1,-1,1)])
sage: DD, _ = Problem(A).initial_pair()
sage: r = DD.R[0]; r  
(2/3, -1/3, 1/3)
sage: DD.zero_set(r)  
{(−1, −1, 1), (0, 1, 1)}
```
class sage.geometry.polyhedron.double_description.Problem(A)
 Bases: object

 Base class for implementations of the double description algorithm

 It does not make sense to instantiate the base class directly, it just provides helpers for implementations.

 INPUT:

 • A – a matrix. The rows of the matrix are interpreted as homogeneous inequalities $Ax \geq 0$. Must have maximal rank.

 A()

 Return the rows of the defining matrix A.

 OUTPUT:

 The matrix A whose rows are the inequalities.

 EXAMPLES:

 sage: A = matrix([(1, 1), (-1, 1)])
 sage: from sage.geometry.polyhedron.double_description import Problem
 sage: Problem(A).A()
 ((1, 1), (-1, 1))

 A_matrix()

 Return the defining matrix A.

 OUTPUT:

 Matrix whose rows are the inequalities.

 EXAMPLES:

 sage: A = matrix([(1, 1), (-1, 1)])
 sage: from sage.geometry.polyhedron.double_description import Problem
 sage: Problem(A).A_matrix()
 [1 1]
 [-1 1]

 base_ring()

 Return the base field.

 OUTPUT:

 A field.

 EXAMPLES:

 sage: A = matrix(AA, [(1, 1), (-1, 1)]) # optional - sage.rings.number_field
 sage: from sage.geometry.polyhedron.double_description import Problem
 sage: Problem(A).base_ring() # optional - sage.rings.number_field
 Algebraic Real Field

 dim()

 Return the ambient space dimension.

 OUTPUT:

 Integer. The ambient space dimension of the cone.

 EXAMPLES:
```sage
A = matrix(QQ, [(1, 1), (-1, 1)])
sage: from sage.geometry.polyhedron.double_description import Problem
sage: Problem(A).dim()
2
```

initial_pair()

Return an initial double description pair.

Picks an initial set of rays by selecting a basis. This is probably the most efficient way to select the initial set.

INPUT:

- `pair_class` – subclass of `DoubleDescriptionPair`.

OUTPUT:

A pair consisting of a `DoubleDescriptionPair` instance and the tuple of remaining unused inequalities.

EXAMPLES:

```sage
A = matrix([(-1, 1), (-1, 2), (1/2, -1/2), (1/2, 2)])
sage: from sage.geometry.polyhedron.double_description import Problem
sage: DD, remaining = Problem(A).initial_pair()
sage: DD.verify()
sage: remaining
[(1/2, -1/2), (1/2, 2)]
```

pair_class

alias of `DoubleDescriptionPair`

class `sage.geometry.polyhedron.double_description.StandardAlgorithm(A)`

Bases: `sage.geometry.polyhedron.double_description.Problem`

Standard implementation of the double description algorithm

See [FP1996] for the definition of the “Standard Algorithm”.

EXAMPLES:

```sage
A = matrix(QQ, [(1, 1), (-1, 1)])
sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: DD = StandardAlgorithm(A).run()
sage: DD.R  # the extremal rays
[(1/2, 1/2), (-1/2, -1/2), (1/2, 2)]
```

pair_class

alias of `StandardDoubleDescriptionPair`

run()

Run the Standard Algorithm.

OUTPUT:

A double description pair `(A, R)` of all inequalities as a `DoubleDescriptionPair`. By virtue of the double description algorithm, the columns of `R` are the extremal rays.

EXAMPLES:
sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: A = matrix(QQ, [(0,1,0), (1,0,0), (0,-1,1), (-1,0,1)])
sage: StandardAlgorithm(A).run()
Double description pair (A, R) defined by
\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & -1 & 1 \\
-1 & 0 & 1 \\
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & -1 & -1/2 & -2 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

class sage.geometry.polyhedron.double_description.StandardDoubleDescriptionPair(problem, A_rows, R_cols)

Bases: sage.geometry.polyhedron.double_description.DoubleDescriptionPair

Double description pair for the “Standard Algorithm”.
See StandardAlgorithm.

add_inequality(a)
Add the inequality a to the matrix A of the double description.

INPUT:
• a – vector. An inequality.

EXAMPLES:

sage: A = matrix([(-1, 1, 0), (-1, 2, 1), (1/2, -1/2, -1)])
sage: from sage.geometry.polyhedron.double_description import StandardAlgorithm
sage: DD, _ = StandardAlgorithm(A).initial_pair()
sage: DD.add_inequality(vector([1,0,0]))
sage: DD
Double description pair (A, R) defined by
\[
\begin{bmatrix}
-1 & 1 & 0 \\
-1 & 2 & 1 \\
1/2 & -1/2 & -1 \\
1 & 0 & 0 \\
\end{bmatrix},
\begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & -1 & -1/2 & -2 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

sage.geometry.polyhedron.double_description.random_inequalities(d, n)
Random collections of inequalities for testing purposes.

INPUT:
• d – integer. The dimension.
• n – integer. The number of random inequalities to generate.

OUTPUT:
A random set of inequalities as a StandardAlgorithm instance.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description import random_inequalities
sage: P = random_inequalities(5, 10)
sage: P.run().verify()
2.6.7 Double Description for Arbitrary Polyhedra

This module is part of the python backend for polyhedra. It uses the double description method for cones `double_description` to find minimal H/V-representations of polyhedra. The latter works with cones only. This is sufficient to treat general polyhedra by the following construction: Any polyhedron can be embedded in one dimension higher in the hyperplane \((1, x_1, \ldots, x_n)\). The cone over the embedded polyhedron will be called the homogenized cone in the following. Conversely, intersecting the homogenized cone with the hyperplane \(x_0 = 1\) gives you back the original polyhedron.

While slower than specialized C/C++ implementations, the implementation is general and works with any field in Sage that allows you to define polyhedra.

Note: If you just want polyhedra over arbitrary fields then you should just use the `Polyhedron()` constructor.

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.double_description_inhomogeneous import Hrep2Vrep, Vrep2Hrep
sage: Hrep2Vrep(QQ, 2, [(1,2,3), (2,4,3)], [])
[-1/2|-1/2 1/2|
 [ 0| 2/3 -1/3|

Note that the columns of the printed matrix are the vertices, rays, and lines of the minimal V-representation. Dually, the rows of the following are the inequalities and equations:

```python
sage: Vrep2Hrep(QQ, 2, [(-1/2,0)], [(-1/2,2/3), (1/2,-1/3)], [])
[1 2 3]
[2 4 3]
[-----]
```

```python
class sage.geometry.polyhedron.double_description_inhomogeneous.Hrep2Vrep(base_ring, dim, inequalities, equations)

Bases: sage.geometry.polyhedron.double_description_inhomogeneous.PivotedInequalities

Convert H-representation to a minimal V-representation.

INPUT:

* base_ring – a field.
* dim – integer. The ambient space dimension.
* inequalities – list of inequalities. Each inequality is given as constant term, dim coefficients.
* equations – list of equations. Same notation as for inequalities.

EXAMPLES:

```python
sage: from sage.geometry.polyhedron.double_description_inhomogeneous import Hrep2Vrep
sage: Hrep2Vrep(QQ, 2, [(1,2,3), (2,4,3)], [])
[-1/2|-1/2 1/2|
 [ 0| 2/3 -1/3|

(continues on next page)
```
sage: Hrep2Vrep(QQ, 2, [(1,2,3), (2,2,3)], [])
[-1/2 | 1/2 | 1]
[0 | 0 | -2/3]
sage: Hrep2Vrep(QQ, 2, [(8,7,-2), (1,-4,3), (4,-3,-1)], [])
[1 0 -2|1]
[1 4 -3|1]
sage: Hrep2Vrep(QQ, 2, [(1,2,3), (2,4,3), (5,-1,-2)], [])
[-19/5 -1/2 | 2/33 2/33]
[22/5 0 | -1/11]
sage: Hrep2Vrep(QQ, 2, [(0,2,3), (0,4,3), (0,-1,-2)], [])
[0 | 1/2 1/3]
[0 | -1/3 -1/6]
sage: Hrep2Vrep(QQ, 2, [(1,2,3), (7,8,9)], [])
[-2|1]
[1|1]
sage: Hrep2Vrep(QQ, 2, [(1,0,0)], []) # universe
[0|1 0]
[0|0 1]
sage: Hrep2Vrep(QQ, 2, [(-1,0,0)], []) # empty
[]
sage: Hrep2Vrep(QQ, 2, [], []) # universe
[0|1 0]
[0|0 1]

verify(inequalities, equations)
Compare result to PPL if the base ring is QQ.
This method is for debugging purposes and compares the computation with another backend if available.

INPUT:
• inequalities, equations – see Hrep2Vrep.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description_inhomogeneous import Hrep2Vrep
sage: H = Hrep2Vrep(QQ, 1, [(1,2)], [])
sage: H.verify([(1,2)], [])

class sage.geometry.polyhedron.double_description_inhomogeneous.PivotedInequalities(base_ring, dim)

Bases: sage.structure.sage_object.SageObject

Base class for inequalities that may contain linear subspaces

INPUT:
• base_ring – a field.
• dim – integer. The ambient space dimension.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description_inhomogeneous import PivotedInequalities
sage: piv = PivotedInequalities(QQ, 2)
sage: piv._pivot_inequalities(matrix([[1,1,3], (5,5,7)]))
[1 3]
[5 7]
sage: piv._pivots
(0, 2)
sage: piv._linear_subspace
Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:
[1 -1 0]

class sage.geometry.polyhedron.double_description_inhomogeneous.Vrep2Hrep(base_ring, dim, vertices, rays, lines)

Bases: sage.geometry.polyhedron.double_description_inhomogeneous.PivotedInequalities

Convert V-representation to a minimal H-representation.

INPUT:

• base_ring – a field.
• dim – integer. The ambient space dimension.
• vertices – list of vertices. Each vertex is given as list of dim coordinates.
• rays – list of rays. Each ray is given as list of dim coordinates, not all zero.
• lines – list of line generators. Each line is given as list of dim coordinates, not all zero.

EXAMPLES:

sage: from sage.geometry.polyhedron.double_description_inhomogeneous import Vrep2Hrep

sage: Vrep2Hrep(QQ, 2, [(-1/2,0)], [(-1/2,2/3), (1/2,-1/3)], [])
[1 2 3]
[2 4 3]

sage: Vrep2Hrep(QQ, 2, [(1,0), (-1/2,0)], [], [(1,-2/3)])
[1/3 2/3 1]
[2/3 -2/3 -1]

sage: Vrep2Hrep(QQ, 2, [(-1/2,0)], [(1/2,0)], [(1,-2/3)])
[1 2 3]

sage: Vrep2Hrep(QQ, 2, [(-19/5,22/5), (-1/2,0)], [((2/33,-1/33), (1/11,-2/33)], [])
[10/11 -2/11 -4/11]
[66/5 132/5 99/5]
```
[-----------------]
```

```
sage: Vrep2Hrep(QQ, 2, [(0,0)], [(1/2,-1/3), (1/3,-1/6)], [])
[ 0  -6  -12]
[ 0   12   18]
[-----------]
```

```
sage: Vrep2Hrep(QQ, 2, [(-1/2,0)], [], [(1,-2/3)])
[-----]
[1  2  3]
```

```
sage: Vrep2Hrep(QQ, 2, [(-1/2,0)], [], [(1,-2/3), (1,0)])
[]
```

verify(*vertices, rays, lines*)

Compare result to PPL if the base ring is QQ.

This method is for debugging purposes and compares the computation with another backend if available.

INPUT:

• *vertices, rays, lines* – see *Vrep2Hrep*.

EXAMPLES:

```
sage: from sage.geometry.polyhedron.double_description_inhomogeneous import Vrep2Hrep
sage: vertices = [(-1/2,0)]
sage: rays = [(-1/2,2/3), (1/2,-1/3)]
sage: lines = []
sage: V2H = Vrep2Hrep(QQ, 2, vertices, rays, lines)
sage: V2H.verify(vertices, rays, lines)
```
CHAPTER THREE

TRIANGULATIONS

3.1 Triangulations of a point configuration

A point configuration is a finite set of points in Euclidean space or, more generally, in projective space. A triangulation is a simplicial decomposition of the convex hull of a given point configuration such that all vertices of the simplices end up lying on points of the configuration. That is, there are no new vertices apart from the initial points.

Note that points that are not vertices of the convex hull need not be used in the triangulation. A triangulation that does make use of all points of the configuration is called fine, and you can restrict yourself to such triangulations if you want. See \texttt{PointConfiguration} and \texttt{restrict_to_fine_triangulations()} for more details.

Finding a single triangulation and listing all connected triangulations is implemented natively in this package. However, for more advanced options \cite{TOPCOM} needs to be installed. It is available as an optional package for Sage, and you can install it with the shell command

\begin{verbatim}
sage -i topcom
\end{verbatim}

\textbf{Note:} TOPCOM and the internal algorithms tend to enumerate triangulations in a different order. This is why we always explicitly specify the engine as \texttt{engine='topcom'} or \texttt{engine='internal'} in the doctests. In your own applications, you do not need to specify the engine. By default, TOPCOM is used if it is available and the internal algorithms are used otherwise.

\textbf{EXAMPLES:}

First, we select the internal implementation for enumerating triangulations:

\begin{verbatim}
sage: PointConfiguration.set_engine('internal') # to make doctests independent of TOPCOM
\end{verbatim}

A 2-dimensional point configuration:

\begin{verbatim}
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: p
A point configuration in affine 2-space over Integer Ring consisting of 5 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular.
\end{verbatim}

A triangulation of it:

\begin{verbatim}
sage: t = p.triangulate() # a single triangulation
sage: t
\end{verbatim}
List triangulations of it:

```
sage: list( p.triangulations() )
[[(<1,3,4>, <2,3,4>),
  (<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),
  (<1,2,3>, <1,2,4>),
  (<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)]
sage: p_fine = p.restrict_to_fine_triangulations()
sage: p_fine
```

Graphics object consisting of 12 graphics primitives
A point configuration in affine 2-space over Integer Ring consisting of 5 points. The triangulations of this point configuration are assumed to be connected, fine, not necessarily regular.

```
sage: list( p_fine.triangulations() )
[(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),
 (<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)]
```

A 3-dimensional point configuration:

```
sage: p = [[0,-1,-1],[0,0,1],[0,1,0],
       [1,-1,-1],[1,0,1],[1,1,0]]
sage: points = PointConfiguration(p)
sage: triang = points.triangulate()
sage: triang.plot(axes=False)  # optional - sage.plot
```

![Graphics3d Object](image)

The standard example of a non-regular triangulation (requires TOPCOM):

```
sage: PointConfiguration.set_engine('topcom')  # optional - topcom
sage: p = PointConfiguration([[-1,-5/9],[0,10/9],[1,-5/9],[-2,-10/9],[0,20/9],[2,-10/9]])
sage: regular = p.restrict_to_regular_triangulations(True).triangulations_list()  # optional - topcom
sage: nonregular = p.restrict_to_regular_triangulations(False).triangulations_list()  # optional - topcom
sage: len(regular)  # optional - topcom
16
sage: len(nonregular)  # optional - topcom
2
sage: nonregular[0].plot(aspect_ratio=1, axes=False)  # optional - topcom # optional - sage.plot
```

Graphics object consisting of 25 graphics primitives

```
sage: PointConfiguration.set_engine('internal')  # to make doctests independent of TOPCOM
```

Note that the points need not be in general position. That is, the points may lie in a hyperplane and the linear dependencies will be removed before passing the data to TOPCOM which cannot handle it:
```
sage: points = [[0,0,0,1],[0,3,0,1],[3,0,0,1],[0,0,1,1],[0,3,1,1],[3,0,1,1],[1,1,2,1]]
sage: points = [ p+[1,2,3] for p in points ]
sage: pc = PointConfiguration(points)
sage: pc.ambient_dim()
7
sage: pc.dim()
3
sage: pc.triangulate()
(<0,1,2,6>, <0,1,3,6>, <0,2,3,6>, <1,2,4,6>, <1,3,4,6>, <2,3,5,6>, <2,4,5,6>)
sage: _ in pc.triangulations()
True
sage: len(pc.triangulations_list())
26
```

AUTHORS:

- Volker Braun: initial version, 2010
- Josh Whitney: added functionality for computing volumes and secondary polytopes of PointConfigurations
- Marshall Hampton: improved documentation and doctest coverage
- Volker Braun: Cythonized parts of it, added a C++ implementation of the bistellar flip algorithm to enumerate all connected triangulations.
- Volker Braun 2011: switched the triangulate() method to the placing triangulation (faster).

class `sage.geometry.triangulation.point_configuration.PointConfiguration`(`points`, `connected`, `fine`, `regular`, `star`, `defined_affine`)

Bases: `sage.structure.unique_representation.UniqueRepresentation`, `sage.geometry.triangulation.base.PointConfiguration_base`

A collection of points in Euclidean (or projective) space.

This is the parent class for the triangulations of the point configuration. There are a few options to specifically select what kind of triangulations are admissible.

INPUT:

The constructor accepts the following arguments:

- **points** – the points. Technically, any iterable of iterables will do. In particular, a `PointConfiguration` can be passed.
- **projective** – boolean (default: False). Whether the point coordinates should be interpreted as projective (True) or affine (False) coordinates. If necessary, points are projectivized by setting the last homogeneous coordinate to one and/or affine patches are chosen internally.
- **connected** – boolean (default: True). Whether the triangulations should be connected to the regular triangulations via bistellar flips. These are much easier to compute than all triangulations.
- **fine** – boolean (default: False). Whether the triangulations must be fine, that is, make use of all points of the configuration.
- **regular** – boolean or None (default: None). Whether the triangulations must be regular. A regular triangulation is one that is induced by a piecewise-linear convex support function. In other words, the shadows of the faces of a polyhedron in one higher dimension.
 - True: Only regular triangulations.
Combinatorial and Discrete Geometry, Release 9.6

- False: Only non-regular triangulations.
- None (default): Both kinds of triangulation.

- star – either None or a point. Whether the triangulations must be star. A triangulation is star if all maximal simplices contain a common point. The central point can be specified by its index (an integer) in the given points or by its coordinates (anything iterable.)

EXAMPLES:

```
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: p
A point configuration in affine 2-space over Integer Ring consisting of 5 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular.
sage: p.triangulate()  # a single triangulation
(<1,3,4>, <2,3,4>)
```

Element

alias of `sage.geometry.triangulation.element.Triangulation`

Gale_transform(points=None)

Return the Gale transform of self.

INPUT:

- points – a tuple of points or point indices or None (default). A subset of points for which to compute the Gale transform. By default, all points are used.

OUTPUT:

A matrix over `base_ring()`.

EXAMPLES:

```
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,1),(0,1)])
sage: pc.Gale_transform()
[ 1 -1 0 1 -1]
[ 0 0 1 -2 1]
sage: pc.Gale_transform((0,1,3,4))
[ 1 -1 1 -1]
sage: points = (pc.point(0), pc.point(1), pc.point(3), pc.point(4))
sage: pc.Gale_transform(points)
[ 1 -1 1 -1]
```

an_element()

Synonymous for `triangulate()`.

bistellar_flips()

Return the bistellar flips.

OUTPUT:

The bistellar flips as a tuple. Each flip is a pair \((T_+, T_-)\) where \(T_+\) and \(T_-\) are partial triangulations of the point configuration.

EXAMPLES:
sage: pc = PointConfiguration([(0,0),(1,0),(0,1),(1,1)])
sage: pc.bistellar_flips()
(((<0,1,3>, <0,2,3>), (<0,1,2>, <1,2,3>)),)
sage: Tpos, Tneg = pc.bistellar_flips()[0]
sage: Tpos.plot(axes=False) # optional - sage.plot
Graphics object consisting of 11 graphics primitives
sage: Tneg.plot(axes=False) # optional - sage.plot
Graphics object consisting of 11 graphics primitives

The 3d analog:
sage: pc = PointConfiguration([(0,0,0),(0,2,0),(0,0,2),(-1,0,0),(1,1,1)])
sage: pc.bistellar_flips()
(((<0,1,2,3>, <0,1,2,4>), (<0,1,3,4>, <0,2,3,4>, <1,2,3,4>)),)

A 2d flip on the base of the pyramid over a square:
sage: pc = PointConfiguration([(0,0,0),(0,2,0),(0,0,2),(0,2,2),(1,1,1)])
sage: pc.bistellar_flips()
(((<0,1,3>, <0,2,3>), (<0,1,2>, <1,2,3>)),)
sage: Tpos, Tneg = pc.bistellar_flips()[0]
sage: Tpos.plot(axes=False) # optional - sage.plot
Graphics3d Object

circuits()

Return the circuits of the point configuration.

Roughly, a circuit is a minimal linearly dependent subset of the points. That is, a circuit is a partition

\[\{0, 1, \ldots, n - 1\} = C_+ \cup C_0 \cup C_- \]

such that there is an (unique up to an overall normalization) affine relation

\[\sum_{i \in C_+} \alpha_i \vec{p}_i = \sum_{j \in C_-} \alpha_j \vec{p}_j \]

with all positive (or all negative) coefficients, where \(\vec{p}_i = (p_1, \ldots, p_k, 1) \) are the projective coordinates of the \(i \)-th point.

OUTPUT:

The list of (unsigned) circuits as triples \((C_+, C_0, C_-)\). The swapped circuit \((C_-, C_0, C_+)\) is not returned separately.

EXAMPLES:

sage: p = PointConfiguration([(0,0),(+1,0),(-1,0),(0,+1),(0,-1)])
sage: sorted(p.circuits())
[((0,), (1, 2), (3, 4)), ((0,), (3, 4), (1, 2)), ((1, 2), (0,), (3, 4))]

circuits_support()

A generator for the supports of the circuits of the point configuration.

See circuits() for details.

OUTPUT:

A generator for the supports \(C_- \cup C_+ \) (returned as a Python tuple) for all circuits of the point configuration.

EXAMPLES:
Combinatorial and Discrete Geometry, Release 9.6

```python
sage: p = PointConfiguration([(0,0), (+1,0), (-1,0), (0,+1), (0,-1)])
sage: sorted(p.circuits_support())
[(0, 1, 2), (0, 3, 4), (1, 2, 3, 4)]
```

contained_simplex *(large=True, initial_point=None, point_order=None)*

Return a simplex contained in the point configuration.

INPUT:

- `large` – boolean. Whether to attempt to return a large simplex.
- `initial_point` – a `Point` or `None` (default). A specific point to start with when picking the simplex vertices.
- `point_order` – a list or tuple of (some or all) `Point` s or `None` (default).

OUTPUT:

A tuple of points that span a simplex of dimension `dim()`. If `large==True`, the simplex is constructed by successively picking the farthest point. This will ensure that the simplex is not unnecessarily small, but will in general not return a maximal simplex. If a `point_order` is specified, the simplex is greedily constructed by considering the points in this order. The `large` option and `initial_point` is ignored in this case. The `point_order` may contain only a subset of the points; in this case, the dimension of the simplex will be the dimension of this subset.

EXAMPLES:

```python
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,1),(0,1)])
sage: pc.contained_simplex()
(P(0, 1), P(2, 1), P(1, 0))
sage: pc.contained_simplex(large=False)
(P(0, 1), P(1, 1), P(1, 0))
sage: pc.contained_simplex(initial_point=pc.point(2))
(P(2, 1), P(0, 0), P(1, 0))
sage: pc = PointConfiguration([(0,0),[0,1],[1,0],[1,1],[-1,-1]])
sage: pc.contained_simplex()
(P(-1, -1), P(1, 1), P(0, 0), P(0, 1))
sage: pc.contained_simplex(point_order = [pc[1],pc[3],pc[4],pc[2],pc[0]])
(P(0, 1), P(1, 1), P(-1, -1))
```

Lower-dimensional example:

```python
sage: pc.contained_simplex(point_order = [pc[0],pc[3],pc[4]])
(P(0, 0), P(1, 1))
```

convex_hull()

Return the convex hull of the point configuration.

EXAMPLES:

```python
sage: p = PointConfiguration([(0,0),[0,1],[1,0],[1,1],[-1,-1]])
sage: p.convex_hull()
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 4 vertices
```

distance(x, y)

Returns the distance between two points.

INPUT:

3.1. Triangulations of a point configuration
• \(x, y \) – two points of the point configuration.

OUTPUT:

The distance between \(x \) and \(y \), measured either with \texttt{distance_affine()} or \texttt{distance_FS()} depending on whether the point configuration is defined by affine or projective points. These are related, but not equal to the usual flat and Fubini-Study distance.

EXAMPLES:

```python
sage: pc = PointConfiguration([[(0,0),(1,0),(2,1),(1,2),(0,1)]
sage: [ pc.distance(pc.point(0), p) for p in pc.points() ]
[0, 1, 5, 5, 1]

sage: pc = PointConfiguration([[(0,0,1),(1,0,1),(2,1,1),(1,2,1),(0,1,1)],
˓→projective=True)

sage: [ pc.distance(pc.point(0), p) for p in pc.points() ]
[0, 1/2, 5/6, 5/6, 1/2]
```

\(\texttt{distance_FS}(x, y) \)

Returns the distance between two points.

The distance function used in this method is \(1 - \cos \, d_{FS}(x, y)^2 \), where \(d_{FS} \) is the Fubini-Study distance of projective points. Recall the Fubini-Stud distance function

\[
d_{FS}(x, y) = \arccos \sqrt{\frac{(x \cdot y)^2}{|x|^2|y|^2}}
\]

INPUT:

• \(x, y \) – two points of the point configuration.

OUTPUT:

The distance \(1 - \cos \, d_{FS}(x, y)^2 \). Note that this distance lies in the same field as the entries of \(x, y \). That is, the distance of rational points will be rational and so on.

EXAMPLES:

```python
sage: pc = PointConfiguration([[(0,0,1),(1,0,1),(2,1,1),(1,2,1),(0,1,1)]
˓→)

sage: [ pc.distance_FS(pc.point(0), p) for p in pc.points() ]
[0, 1/2, 5/6, 5/6, 1/2]
```

\(\texttt{distance_affine}(x, y) \)

Returns the distance between two points.

The distance function used in this method is \(d_{aff}(x, y)^2 \), the square of the usual affine distance function

\[
d_{aff}(x, y) = |x - y|
\]

INPUT:

• \(x, y \) – two points of the point configuration.

OUTPUT:

The metric distance-square \(d_{aff}(x, y)^2 \). Note that this distance lies in the same field as the entries of \(x, y \). That is, the distance of rational points will be rational and so on.

EXAMPLES:

```python
```
Combinatorial and Discrete Geometry, Release 9.6

```python
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,2),(0,1)])
sage: [ pc.distance_affine(pc.point(0), p) for p in pc.points() ]
[0, 1, 5, 5, 1]
```

exclude_points(point_idx_list)

Return a new point configuration with the given points removed.

INPUT:

- point_idx_list – a list of integers. The indices of points to exclude.

OUTPUT:

A new `PointConfiguration` with the given points removed.

EXAMPLES:

```python
sage: p = PointConfiguration([[-1,0], [0,0], [1,-1], [1,0], [1,1]])
sage: list(p)
[P(-1, 0), P(0, 0), P(1, -1), P(1, 0), P(1, 1)]
sage: q = p.exclude_points([3])
sage: list(q)
[P(-1, 0), P(0, 0), P(1, -1), P(1, 1)]
sage: p.exclude_points( p.face_interior(codim=1) ).points()  
(P(-1, 0), P(0, 0), P(1, -1), P(1, 1))
```

face_codimension(point)

Return the smallest \(d \in \mathbb{Z}\) such that point is contained in the interior of a codimension-\(d\) face.

EXAMPLES:

```python
sage: triangle = PointConfiguration([[-1,0], [0,0], [1,-1], [1,0], [1,1]])
sage: triangle.point(2)
P(1, 0)
sage: triangle.face_codimension(2)
1
sage: triangle.face_codimension( [1,0] )
1
```

This also works for degenerate cases like the tip of the pyramid over a square (which saturates four inequalities):

```python
sage: pyramid = PointConfiguration([[-1,0,0],[0,1,1],[0,1,-1],[0,-1,-1],[0,-1,1]])
sage: pyramid.face_codimension(0)
3
```

face_interior(dim=None, codim=None)

Return points by the codimension of the containing face in the convex hull.

EXAMPLES:

```python
sage: triangle = PointConfiguration([[-1,0], [0,0], [1,-1], [1,0], [1,1]])
sage: triangle.face_interior()  
((1,), (3,), (0, 2, 4))
sage: triangle.face_interior(dim=0)  
# the vertices of the convex hull  
(0, 2, 4)
```

(continues on next page)
farthest_point(points, among=None)

Return the point with the most distance from points.

INPUT:

• points – a list of points.
• among – a list of points or None (default). The set of points from which to pick the farthest one. By default, all points of the configuration are considered.

OUTPUT:

A Point with largest minimal distance from all given points.

EXAMPLES:

```python
sage: pc = PointConfiguration([(0,0),(1,0),(1,1),(0,1)])
sage: pc.farthest_point([ pc.point(0) ])
P(1, 1)
```

lexicographic_triangulation()

Return the lexicographic triangulation.

The algorithm was taken from [PUNTOS].

EXAMPLES:

```python
sage: p = PointConfiguration([ (0,0),(+1,0),(-1,0),(0,+1),(0,-1) ]) sage: p.lexicographic_triangulation() (<1,3,4>, <2,3,4>)
```

placing_triangulation(point_order=None)

Construct the placing (pushing) triangulation.

INPUT:

• point_order – list of points or integers. The order in which the points are to be placed. If not given, the points will be placed in some arbitrary order that attempts to produce a small number of simplices.

OUTPUT:

A Triangulation.

EXAMPLES:

```python
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,2),(0,1)]) sage: pc.placing_triangulation() (<0,1,2>, <0,2,4>, <2,3,4>) sage: pc.placing_triangulation(point_order=(3,2,1,4,0)) (<0,1,4>, <1,2,3>, <1,3,4>) sage: pc.placing_triangulation(point_order=[pc[1],pc[3],pc[4],pc[0]]) (<0,1,4>, <1,3,4>)
sage: U=matrix([ ....: [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 1, 0, 1, 0], ....: [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0], ....: [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1, 0], ....: ])
```

(continues on next page)
\begin{verbatim}
....: [0, 1, 1, 0, 1, 0, 0, 1, 0, 0, -1, 1, 1],
....: [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
....:]
sage: p = PointConfiguration(U.columns())
sage: triangulation = p.placing_triangulation(); triangulation
(<0,2,3,4,6,7>, <0,2,3,4,6,12>, <0,2,3,4,7,13>, <0,2,3,4,12,13>,
<0,2,3,6,7,13>, <0,2,3,6,12,13>, <0,2,4,6,7,13>, <0,2,4,6,12,13>,
<0,3,4,6,7,12>, <0,3,4,7,12,13>, <0,3,6,7,12,13>, <0,4,6,7,12,13>,
<1,3,4,5,6,12>, <1,3,4,6,11,12>, <1,3,4,7,11,13>, <1,3,4,11,12,13>,
<1,3,6,7,11,13>, <1,3,6,11,12,13>, <1,4,6,7,11,13>, <1,4,6,11,12,13>,
<3,4,6,7,11,12>, <3,4,7,11,12,13>, <3,6,7,11,12,13>, <4,6,7,11,12,13>)
sage: sum(p.volume(t)
 for t in triangulation)
42
sage: p0 = PointConfiguration((0,0),(+1,0),(-1,0),(0,+1),(0,-1))
sage: p0.pushing_triangulation(point_order=[1,2,0,3,4])
(<1,2,3>, <1,2,4>)
sage: p0.pushing_triangulation(point_order=[0,1,2,3,4])
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)
\end{verbatim}

The same triangulation with renumbered points 0->4, 1->0, etc:
\begin{verbatim}
sage: p1 = PointConfiguration((+1,0),(-1,0),(0,+1),(0,-1),(0,0))
sage: p1.pushing_triangulation(point_order=[4,0,1,2,3])
(<0,2,4>, <0,3,4>, <1,2,4>, <1,3,4>)
\end{verbatim}

\texttt{plot(**kwds)}

Produce a graphical representation of the point configuration.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: p.plot(axes=False) # optional - sage.plot
Graphics object consisting of 5 graphics primitives
\end{verbatim}

\texttt{positive_circuits(**negative)}

Returns the positive part of circuits with fixed negative part.

A circuit is a pair \((C_+, C_-)\), each consisting of a subset (actually, an ordered tuple) of point indices.

3.1. Triangulations of a point configuration 485
INPUT:
 • *negative – integer. The indices of points.

OUTPUT:
A tuple of all circuits with \(C_- = \text{negative} \).

EXAMPLES:
```
sage: p = PointConfiguration([(1,0,0),(0,1,0),(0,0,1),(-2,0,-1),(-2,-1,0),(-3,-
6→1,-1),(1,1,1),(-1,0,0),(0,0,0)])
sage: sorted(p.positive_circuits(8))
[(0, 1, 2, 5), (0, 1, 4), (0, 2, 3), (0, 3, 4, 6), (0, 5, 6), (0, 7)]
sage: p.positive_circuits(0,5,6)
((8,),)
```

`pushing_triangulation(point_order=None)`
Construct the placing (pushing) triangulation.

INPUT:
 • point_order – list of points or integers. The order in which the points are to be placed. If not given, the points will be placed in some arbitrary order that attempts to produce a small number of simplices.

OUTPUT:
A Triangulation.

EXAMPLES:
```
sage: pc = PointConfiguration([(0,0),(1,0),(2,1),(1,2),(0,1)])
sage: pc.placing_triangulation()
(<0,1,2>, <0,2,4>, <2,3,4>)
sage: pc.placing_triangulation(point_order=(3,2,1,4,0))
(<0,1,4>, <1,2,3>, <1,3,4>)
sage: pc.placing_triangulation(point_order=[pc[1],pc[3],pc[4],pc[0]])
(<0,1,4>, <1,3,4>)
sage: U=matrix([...
    [ 0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0],
    [ 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 1, 0],
    [ 0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 0, 0, 0, 0],
    [ 0, 1, 1, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1, 0],
    [ 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0]
    ....])
sage: p = PointConfiguration(U.columns())
sage: triangulation = p.placing_triangulation(); triangulation
(<0,2,3,4,6,7>, <0,2,3,4,6,12>, <0,2,3,4,7,13>, <0,2,3,4,12,13>,
 <0,2,3,6,7,13>, <0,2,3,6,12,13>, <0,2,4,6,7,13>, <0,2,4,6,12,13>,
 <0,3,4,6,7,12>, <0,3,4,7,12,13>, <0,3,6,7,12,13>, <0,4,6,7,12,13>,
 <1,3,4,5,6,12>, <1,3,4,6,11,12>, <1,3,4,7,11,13>, <1,3,4,11,12,13>,
 <1,3,6,7,11,13>, <1,3,6,11,12,13>, <1,4,6,7,11,13>, <1,4,6,11,12,13>,
 <3,4,6,7,11,12>, <3,4,7,11,12,13>, <3,6,7,11,12,13>, <4,6,7,11,12,13>)
sage: sum(p.volume(t) for t in triangulation)
42
sage: p0 = PointConfiguration([(0,0),(+1,0),(-1,0),(0,+1),(0,-1)])
sage: p0.pushing_triangulation(point_order=[1,2,0,3,4])
(<1,2,3>, <1,2,4>)
```
The same triangulation with renumbered points 0->4, 1->0, etc:

\begin{verbatim}
sage: p1 = PointConfiguration([(1,0),(-1,0),(0,1),(0,-1),(0,0)])
sage: p1.pushing_triangulation(point_order=[4,0,1,2,3])
(<0,2,4>, <0,3,4>, <1,2,4>, <1,3,4>)
\end{verbatim}

\textbf{restrict_to_connected_triangulations(connected=True)}
Restrict to connected triangulations.

\textbf{NOTE:}
Finding non-connected triangulations requires the optional TOPCOM package.

\textbf{INPUT:}

• connected – boolean. Whether to restrict to triangulations that are connected by bistellar flips to the regular triangulations.

\textbf{OUTPUT:}
A new \texttt{PointConfiguration} with the same points, but whose triangulations will all be in the connected component. See \texttt{PointConfiguration} for details.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: p = PointConfiguration([(0,0),(0,1),(1,0),(1,1),(-1,-1)])
sage: p
A point configuration in affine 2-space over Integer Ring consisting of 5 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular.
sage: len(p.triangulations_list())
4
sage: PointConfiguration.set_engine('topcom') #optional - topcom
sage: p_all = p.restrict_to_connected_triangulations(connected=False) #optional - topcom
sage: len(p_all.triangulations_list()) #optional - topcom
4
sage: p == p_all.restrict_to_connected_triangulations(connected=True) #optional - topcom
True
sage: PointConfiguration.set_engine('internal')
\end{verbatim}

\textbf{restrict_to_fine_triangulations(fine=True)}
Restrict to fine triangulations.

\textbf{INPUT:}

• fine – boolean. Whether to restrict to fine triangulations.

\textbf{OUTPUT:}
A new \texttt{PointConfiguration} with the same points, but whose triangulations will all be fine. See \texttt{PointConfiguration} for details.
EXAMPLES:

```python
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])

sage: p
A point configuration in affine 2-space over Integer Ring
consisting of 5 points. The triangulations of this point
configuration are assumed to be connected, not necessarily
fine, not necessarily regular.

sage: len(p.triangulations_list())
4

sage: p_fine = p.restrict_to_fine_triangulations()

sage: len(p.triangulations_list())
4

sage: p == p_fine.restrict_to_fine_triangulations(fine=False)
True
```

```
restrict_to_regular_triangulations(\texttt{regular}=True)

Restrict to regular triangulations.

\textbf{NOTE:}

Regularity testing requires the optional TOPCOM package.

\textbf{INPUT:}

- \texttt{regular} – \texttt{True}, \texttt{False}, or \texttt{None}. Whether to restrict to regular triangulations, irregular triangulations, or lift any restrictions on regularity.

\textbf{OUTPUT:}

A new \texttt{PointConfiguration} with the same points, but whose triangulations will all be regular as specified. See \texttt{PointConfiguration} for details.

EXAMPLES:

```python
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])

sage: p
A point configuration in affine 2-space over Integer Ring
consisting of 5 points. The triangulations of this point
configuration are assumed to be connected, not necessarily
fine, not necessarily regular.

sage: len(p.triangulations_list())
4

sage: PointConfiguration.set_engine('topcom') # optional - topcom

sage: p_regular = p.restrict_to_regular_triangulations() # optional - topcom

sage: len(p_regular.triangulations_list()) # optional - topcom
4

sage: p == p_regular.restrict_to_regular_triangulations(regular=None) # optional - topcom
True
```

```
restrict_to_star_triangulations(\texttt{star})

Restrict to star triangulations with the given point as the center.

\textbf{INPUT:}
Combinatorial and Discrete Geometry, Release 9.6

• origin – None or an integer or the coordinates of a point. An integer denotes the index of the central point. If None is passed, any restriction on the starshape will be removed.

OUTPUT:
A new PointConfiguration with the same points, but whose triangulations will all be star. See PointConfiguration for details.

EXAMPLES:

```sage
p = PointConfiguration([\[0,0\], [0,1], [1,0], [1,1], [-1,-1]])
len(list(p.triangulations()))
4
p_star = p.restrict_to_star_triangulations(0)
p_star is p.restrict_to_star_triangulations([0,0])
True
p_star.triangulations_list()
[[<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>]]
p_newstar = p_star.restrict_to_star_triangulations(1) # pick different origin
p_newstar.triangulations_list()
[[<1,2,3>, <1,2,4>]]
p == p_star.restrict_to_star_triangulations(star=None)
True
```

restricted_automorphism_group()
Return the restricted automorphism group.

First, let the linear automorphism group be the subgroup of the affine group $AGL(d, \mathbb{R}) = GL(d, \mathbb{R}) \rtimes \mathbb{R}^d$ preserving the d-dimensional point configuration. The affine group acts in the usual way $\vec{x} \mapsto A\vec{x} + b$ on the ambient space.

The restricted automorphism group is the subgroup of the linear automorphism group generated by permutations of points. See [BSS2009] for more details and a description of the algorithm.

OUTPUT:
A PermutationGroup that is isomorphic to the restricted automorphism group is returned.

Note that in Sage, permutation groups always act on positive integers while lists etc. are indexed by nonnegative integers. The indexing of the permutation group is chosen to be shifted by +1. That is, the transposition (i,j) in the permutation group corresponds to exchange of self[i-1] and self[j-1].

EXAMPLES:

```sage
pyramid = PointConfiguration([\[1,0,0\], [0,1,1], [0,1,-1], [0,-1,-1], [0,-1,1]])
G = pyramid.restricted_automorphism_group()
G == PermutationGroup([[(3,5)], [(2,3),(4,5)], [(2,4)]])
True
DihedralGroup(4).is_isomorphic(G)
True
```

The square with an off-center point in the middle. Note that the middle point breaks the restricted automorphism group D_4 of the convex hull:

```sage
square = PointConfiguration([\[3/4,3/4\], (1,1), (1,-1), (-1,-1), (-1,1)])
square.restricted_automorphism_group()
```

(continues on next page)
Permutation Group with generators [(3,5)]
\texttt{sage}: DihedralGroup(1).is_isomorphic(_)
\texttt{True}

\textbf{secondary_polytope()}

Calculate the secondary polytope of the point configuration.

For a definition of the secondary polytope, see [GKZ1994] page 220 Definition 1.6.

Note that if you restricted the admissible triangulations of the point configuration then the output will be the corresponding face of the whole secondary polytope.

\textbf{OUTPUT:}

The secondary polytope of the point configuration as an instance of \texttt{Polyhedron_base}.

\textbf{EXAMPLES:}

\texttt{sage}: p = PointConfiguration([[0,0],[1,0],[2,1],[1,2],[0,1]])
\texttt{sage}: poly = p.secondary_polytope()
\texttt{sage}: poly.vertices_matrix()
\begin{array}{llllll}
 1 & 1 & 3 & 3 & 5 \\
 3 & 5 & 1 & 4 & 1 \\
 4 & 2 & 5 & 2 & 4 \\
 2 & 4 & 2 & 5 & 4 \\
 5 & 3 & 4 & 1 & 1 \\
\end{array}
\texttt{sage}: poly.Vrepresentation()
(A vertex at (1, 3, 4, 2, 5),
A vertex at (1, 5, 2, 4, 3),
A vertex at (3, 1, 5, 2, 4),
A vertex at (3, 4, 2, 5, 1),
A vertex at (5, 1, 4, 4, 1))
\texttt{sage}: poly.Hrepresentation()
(An equation (0, 0, 1, 2, 1) x - 13 == 0,
An equation (1, 0, 0, 2, 2) x - 15 == 0,
An equation (0, 1, 0, -3, -2) x + 13 == 0,
An inequality (0, 0, 0, -1, -1) x + 7 >= 0,
An inequality (0, 0, 0, -2, -1) x + 11 >= 0,
An inequality (0, 0, 0, 0, 1) x - 2 >= 0,
An inequality (0, 0, 0, 3, 2) x - 14 >= 0)

\textbf{classmethod set_engine(engine='auto')}

Set the engine used to compute triangulations.

\textbf{INPUT:}

- \texttt{engine} – either ‘auto’ (default), ‘internal’, or ‘topcom’. The latter two instruct this package to always use its own triangulation algorithms or TOPCOM’s algorithms, respectively. By default (‘auto’), internal routines are used.

\textbf{EXAMPLES:}

\texttt{sage}: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
\texttt{sage}: p.set_engine('internal') # to make doctests independent of TOPCOM
\texttt{sage}: p.triangulate()
(<1,3,4>, <2,3,4>)
sage: p.set_engine('topcom') # optional - topcom
sage: p.triangulate() # optional - topcom
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)
sage: p.set_engine('internal') # optional - topcom

star_center()
Return the center used for star triangulations.

See also:
restrict_to_star_triangulations().

OUTPUT:
A \texttt{Point} if a distinguished star central point has been fixed. \texttt{ValueError} exception is raised otherwise.

EXAMPLES:

\begin{verbatim}
sage: pc = PointConfiguration([(1,0),(-1,0),(0,1),(0,2)], star=(0,1)); pc
A point configuration in affine 2-space over Integer Ring consisting of 4 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular, and star with center P(0, 1).
sage: pc.star_center()
P(0, 1)
sage: pc_nostar = pc.restrict_to_star_triangulations(None)
sage: pc_nostar
A point configuration in affine 2-space over Integer Ring consisting of 4 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular.
sage: pc_nostar.star_center()
Traceback (most recent call last):
... ValueError: The point configuration has no star center defined.
\end{verbatim}

triangulate(\texttt{verbose=\texttt{False}})
Return one (in no particular order) triangulation.

INPUT:

• \texttt{verbose} – boolean. Whether to print out the TOPCOM interaction, if any.

OUTPUT:

A \texttt{Triangulation} satisfying all restrictions imposed. Raises a \texttt{ValueError} if no such triangulation exists.

EXAMPLES:

\begin{verbatim}
sage: p = PointConfiguration([(0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: p.triangulate()
(<1,3,4>, <2,3,4>)
sage: list(p.triangulate())
[(1, 3, 4), (2, 3, 4)]
\end{verbatim}
Using TOPCOM yields a different, but equally good, triangulation:

```
sage: p.set_engine('topcom')  # optional - topcom
sage: p.triangulate()         # optional - topcom
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)
sage: list( p.triangulate() )  # optional - topcom
[(0, 1, 2), (0, 1, 4), (0, 2, 4), (1, 2, 3)]
sage: p.set_engine('internal')  # optional - topcom
```

```
triangulations( verbose=False)
Returns all triangulations.

• verbose – boolean (default: False). Whether to print out the TOPCOM interaction, if any.

OUTPUT:
A generator for the triangulations satisfying all the restrictions imposed. Each triangulation is returned as a Triangulation object.

EXAMPLES:
```
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: iter = p.triangulations()
sage: next(iter)
(<1,3,4>, <2,3,4>)
sage: next(iter)
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)
sage: next(iter)
(<1,2,3>, <1,2,4>)
sage: next(iter)
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)
sage: p.triangulations_list()
[(<1,3,4>, <2,3,4>),
 (<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),
 (<1,2,3>, <1,2,4>),
 (<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)]
sage: p_fine = p.restrict_to_fine_triangulations()
sage: p_fine.triangulations_list()
[(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>),
 (<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)]
```

Note that we explicitly asked the internal algorithm to compute the triangulations. Using TOPCOM, we obtain the same triangulations but in a different order:

```
sage: p.set_engine('topcom') # optional - topcom
sage: iter = p.triangulations() # optional - topcom
sage: next(iter) # optional - topcom
(<0,1,2>, <0,1,4>, <0,2,4>, <1,2,3>)
sage: next(iter) # optional - topcom
(<0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>)
sage: next(iter) # optional - topcom
(<1,2,3>, <1,2,4>)
sage: next(iter) # optional - topcom
(<1,3,4>, <2,3,4>)
sage: p.triangulations_list() # optional - topcom
```

(continues on next page)
\[(\langle 0,1,2 \rangle, \langle 0,1,4 \rangle, \langle 0,2,4 \rangle, \langle 1,2,3 \rangle),
(\langle 0,1,3 \rangle, \langle 0,1,4 \rangle, \langle 0,2,3 \rangle, \langle 0,2,4 \rangle),
(\langle 1,2,3 \rangle, \langle 1,2,4 \rangle),
(\langle 1,3,4 \rangle, \langle 2,3,4 \rangle)\]

```python
sage: p_fine = p.restrict_to_fine_triangulations() # optional - topcom
sage: p_fine.set_engine('topcom') # optional - topcom
sage: p_fine.triangulations_list() # optional - topcom
\[(\langle 0,1,2 \rangle, \langle 0,1,4 \rangle, \langle 0,2,4 \rangle, \langle 1,2,3 \rangle),
(\langle 0,1,3 \rangle, \langle 0,1,4 \rangle, \langle 0,2,3 \rangle, \langle 0,2,4 \rangle)\]
```

```python
sage: p.set_engine('internal') # optional - topcom
```

### triangulations_list

**Function:**

```
triangulations_list(verbose=False)
```

**Return:**

All triangulations.

**Input:**

- `verbose` – boolean. Whether to print out the TOPCOM interaction, if any.

**Output:**

A list of triangulations (see `Triangulation`) satisfying all restrictions imposed previously.

**Examples:**

```python
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1]])
sage: p.triangulations_list()
\[(\langle 0,1,2 \rangle, \langle 1,2,3 \rangle), (\langle 0,1,3 \rangle, \langle 0,2,3 \rangle)\]
sage: list(map(list, p.triangulations_list()))
\[
[(0, 1, 2), (1, 2, 3)], [(0, 1, 3), (0, 2, 3)]
\]
```

### volume

**Function:**

```
volume(simplex=None)
```

**Return:**

- If a simplex was passed as an argument: \( n! \cdot \text{(volume of simplex)} \).
- Without argument: \( n! \cdot \text{(the total volume of the convex hull)} \).

**Examples:**

The volume of the standard simplex should always be 1:

```python
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1]])
sage: p.volume([0,1,2])
1
```

```python
sage: simplex = p.triangulate()[0] # first simplex of triangulation
sage: p.volume(simplex)
1
```
The square can be triangulated into two minimal simplices, so in the “integral” normalization its volume equals two:

```sage
sage: p.volume()
2
```

**Note:** We return $n!*(\text{metric volume of the simplex})$ to ensure that the volume is an integer. Essentially, this normalizes things so that the volume of the standard $n$-simplex is 1. See [GKZ1994] page 182.

### 3.2 Base classes for triangulations

We provide (fast) cython implementations here.

**AUTHORS:**

- Volker Braun (2010-09-14): initial version.

**class** `sage.geometry.triangulation.base.ConnectedTriangulationsIterator`

Bases: `sage.structure.sage_object.SageObject`

A Python shim for the C++-class ‘triangulations’

**INPUT:**

- `point_configuration` – a `PointConfiguration`.
- `seed` – a regular triangulation or `None` (default). In the latter case, a suitable triangulation is generated automatically. Otherwise, you can explicitly specify the seed triangulation as
  - A `Triangulation` object, or
  - an iterable of iterables specifying the vertices of the simplices, or
  - an iterable of integers, which are then considered the enumerated simplices (see `simplex_to_int()`).
- `star` – either `None` (default) or an integer. If an integer is passed, all returned triangulations will be star with respect to the
- `fine` – boolean (default: `False`). Whether to return only fine triangulations, that is, simplicial decompositions that make use of all the points of the configuration.

**OUTPUT:**

An iterator. The generated values are tuples of integers, which encode simplices of the triangulation. The output is a suitable input to `Triangulation`.

**EXAMPLES:**

```sage
sage: p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: from sage.geometry.triangulation.base import ConnectedTriangulationsIterator
sage: ci = ConnectedTriangulationsIterator(p)
sage: next(ci)
(9, 10)
sage: next(ci)
(2, 3, 4, 5)
sage: next(ci)
(7, 8)
```

(continues on next page)
sage: next(ci)
(1, 3, 5, 7)
sage: next(ci)
Traceback (most recent call last):
  ... StopIteration

You can reconstruct the triangulation from the compressed output via:

```
sage: from sage.geometry.triangulation.element import Triangulation
sage: Triangulation((2, 3, 4, 5), p)
((0, 1, 3), (0, 1, 4), (0, 2, 3), (0, 2, 4))
```

How to use the restrictions:

```
sage: ci = ConnectedTriangulationsIterator(p, fine=True)
sage: list(ci)
[(2, 3, 4, 5), (1, 3, 5, 7)]
sage: ci = ConnectedTriangulationsIterator(p, star=1)
sage: list(ci)
[(7, 8)]
sage: ci = ConnectedTriangulationsIterator(p, star=1, fine=True)
sage: list(ci)
[]
```

class sage.geometry.triangulation.base.Point

Bases: sage.structure.sage_object.SageObject

A point of a point configuration.

Note that the coordinates of the points of a point configuration are somewhat arbitrary. What counts are the abstract linear relations between the points, for example encoded by the `circuits()`.

**Warning:** You should not create `Point` objects manually. The constructor of `PointConfiguration_base` takes care of this for you.

**INPUT:**

- `point_configuration` – `PointConfiguration_base`. The point configuration to which the point belongs.
- `i` – integer. The index of the point in the point configuration.
- `projective` – the projective coordinates of the point.
- `affine` – the affine coordinates of the point.
- `reduced` – the reduced (with linearities removed) coordinates of the point.

**EXAMPLES:**

```
sage: pc = PointConfiguration([(0,0)])
sage: from sage.geometry.triangulation.base import Point
sage: Point(pc, 123, (0,0,1), (0,0), ())
P(0, 0)
```

3.2. Base classes for triangulations
affine()  
Return the affine coordinates of the point in the ambient space.

OUTPUT:
A tuple containing the coordinates.

EXAMPLES:

```python
sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)
```

index()  
Return the index of the point in the point configuration.

EXAMPLES:

```python
sage: pc = PointConfiguration([[0, 1], [0, 0], [1, 0]])
sage: p = pc.point(2); p
P(1, 0)
sage: p.index()
2
```

point_configuration()  
Return the point configuration to which the point belongs.

OUTPUT:
A \texttt{PointConfiguration}.

EXAMPLES:

```python
sage: pc = PointConfiguration([(0,0), (1,0), (0,1)])
sage: p = pc.point(0)
sage: p
P(0, 0)
sage: p.is pc.point(0)
True
sage: p.point_configuration() is pc
True
```

projective()  
Return the projective coordinates of the point in the ambient space.

OUTPUT:
A tuple containing the coordinates.

EXAMPLES:
sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)

reduced_affine()
Return the affine coordinates of the point on the hyperplane spanned by the point configuration.

OUTPUT:
A tuple containing the coordinates.

EXAMPLES:

sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)

reduced_affine_vector()
Return the affine coordinates of the point on the hyperplane spanned by the point configuration.

OUTPUT:
A tuple containing the coordinates.

EXAMPLES:

sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)

reduced_projective()

Return the projective coordinates of the point on the hyperplane spanned by the point configuration.

OUTPUT:
A tuple containing the coordinates.

EXAMPLES:

sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)

reduced_projective_vector()

Return the affine coordinates of the point on the hyperplane spanned by the point configuration.

OUTPUT:
A tuple containing the coordinates.

EXAMPLES:

sage: pc = PointConfiguration([[10, 0, 1], [10, 0, 0], [10, 2, 3]])
sage: p = pc.point(2); p
P(10, 2, 3)
sage: p.affine()
(10, 2, 3)
sage: p.projective()
(10, 2, 3, 1)
sage: p.reduced_affine()
(2, 2)
sage: p.reduced_projective()
(2, 2, 1)
sage: p.reduced_affine_vector()
(2, 2)
sage: type(p.reduced_affine_vector())
<class 'sage.modules.vector_rational_dense.Vector_rational_dense'>

class sage.geometry.triangulation.base.PointConfiguration_base

    Bases: sage.structure.parent.Parent

    The cython abstract base class for PointConfiguration.
ambient_dim()  
Return the dimension of the ambient space of the point configuration.

See also dimension()

EXAMPLES:

```
sage: p = PointConfiguration([[0,0,0]])
sage: p.ambient_dim()
3
sage: p.dim()
0
```

base_ring()  
Return the base ring, that is, the ring containing the coordinates of the points.

OUTPUT:
A ring.

EXAMPLES:

```
sage: p = PointConfiguration([(0,0)])
sage: p.base_ring()
Integer Ring
sage: p = PointConfiguration([(1/2,3)])
sage: p.base_ring()
Rational Field
sage: p = PointConfiguration([(0.2, 5)])
sage: p.base_ring()
Real Field with 53 bits of precision
```

dim()  
Return the actual dimension of the point configuration.

See also ambient_dim()

EXAMPLES:

```
sage: p = PointConfiguration([[0,0,0]])
sage: p.ambient_dim()
3
sage: p.dim()
0
```

int_to_simplex(s)  
Reverses the enumeration of possible simplices in simplex_to_int().

The enumeration is compatible with [PUNTOS].

INPUT:

- *s* – int. An integer that uniquely specifies a simplex.
OUTPUT:

An ordered tuple consisting of the indices of the vertices of the simplex.

EXAMPLES:

```sage
U = matrix([...]
 [0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0],
 [0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0],
 [0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1],
 [0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1],
 [0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0]
])
U.columns()

sage: pc = PointConfiguration(U.columns())
sage: pc.simplex_to_int([1,3,4,7,10,13])
1678
sage: pc.int_to_simplex(1678)
(1, 3, 4, 7, 10, 13)
```

**is_affine()**

Whether the configuration is defined by affine points.

OUTPUT:

Boolean. If true, the homogeneous coordinates all have 1 as their last entry.

EXAMPLES:

```sage
p = PointConfiguration([(0.2, 5), (3, 0.1)])
p.is_affine()
True

sage: p = PointConfiguration([(0.2, 5, 1), (3, 0.1, 1)], projective=True)
p.is_affine()
False
```

**n_points()**

Return the number of points.

Same as `len(self)`.

EXAMPLES:

```sage
p = PointConfiguration([(0,0),[0,1],[1,0],[1,1],[-1,-1]])
p.n_points()
5
```

**point()**

Return the i-th point of the configuration.

Same as `__getitem__()`
INPUT:
- \( i \) – integer.

OUTPUT:
A point of the point configuration.

EXAMPLES:

```sage
c = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
list(c)
[p for p in c.points()]
c.point(0)
c[0]
c.point(c.n_points()-1)
```
sage: p.reduced_projective_vector_space()  
Vector space of dimension 2 over Rational Field

**reduced_projective_vector_space()**

Return the vector space that is spanned by the homogeneous coordinates.

**OUTPUT:**

A vector space over the fraction field of `base_ring()`.

**EXAMPLES:**

```
sage: p = PointConfiguration([[0,0,0], [1,2,3]])
sage: p.base_ring()
Integer Ring
sage: p.reduced_affine_vector_space()
Vector space of dimension 1 over Rational Field
sage: p.reduced_projective_vector_space()
Vector space of dimension 2 over Rational Field
```

**simplex_to_int**(simplex)

Returns an integer that uniquely identifies the given simplex.

See also the inverse method `int_to_simplex()`.

The enumeration is compatible with [PUNTOS].

**INPUT:**

• simplex – iterable, for example a list. The elements are the vertex indices of the simplex.

**OUTPUT:**

An integer that uniquely specifies the simplex.

**EXAMPLES:**

```
sage: U=matrix([
........: [0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0],
........: [0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0],
........: [0, 2, 0, 0, 0, 0,-1, 0, 1, 0, 1, 0, 0, 1],
........: [0, 1, 1, 0, 0, 1, 0,-2, 1, 0, 0,-1, 1, 1],
........: [0, 0, 0, 0, 1, 0,-1, 0, 0, 0, 0, 0, 0, 0]
........:])
nsage: pc = PointConfiguration(U.columns())
sage: pc.simplex_to_int([1,3,4,7,10,13])
1678
sage: pc.int_to_simplex(1678)
(1, 3, 4, 7, 10, 13)
```

---

**Chapter 3. Triangulations**
3.3 A triangulation

In Sage, the `PointConfiguration` and `Triangulation` satisfy a parent/element relationship. In particular, each triangulation refers back to its point configuration. If you want to triangulate a point configuration, you should construct a point configuration first and then use one of its methods to triangulate it according to your requirements. You should never have to construct a `Triangulation` object directly.

EXAMPLES:

First, we select the internal implementation for enumerating triangulations:

```python
sage: PointConfiguration.set_engine('internal') # to make doctests independent of TOPCOM
```

Here is a simple example of how to triangulate a point configuration:

```python
sage: p = [[0,-1,-1],[0,0,1],[0,1,0], [1,-1,-1],[1,0,1],[1,1,0]]
sage: points = PointConfiguration(p)
sage: triang = points.triangulate(); triang
(<0,1,2,5>, <0,1,3,5>, <1,3,4,5>)
sage: triang.plot(axes=False) # optional - sage.plot
Graphics3d Object
```

See `sage.geometry.triangulation.point_configuration` for more details.

```
class sage.geometry.triangulation.element.Triangulation(triangulation, parent, check=True)
Bases: sage.structure.element.Element

A triangulation of a `PointConfiguration`.

Warning: You should never create `Triangulation` objects manually. See `triangulate()` and `triangulations()` to triangulate point configurations.
```

`adjacency_graph()`

Returns a graph showing which simplices are adjacent in the triangulation

OUTPUT:

A graph consisting of vertices referring to the simplices in the triangulation, and edges showing which simplices are adjacent to each other.

See also:

- To obtain the triangulation's 1-skeleton, use `SimplicialComplex.graph()` through `MyTriangulation.simplicial_complex().graph()`.

AUTHORS:

- Stephen Farley (2013-08-10): initial version

EXAMPLES:

```python
sage: p = PointConfiguration([[1,0,0], [0,1,0], [0,0,1], [-1,0,1],
....: [-1,0,-1], [-1,0,0], [0,-1,0], [0,0,-1]])
sage: t = p.triangulate()
sage: t.adjacency_graph()
Graph on 8 vertices
```
boundary()
Return the boundary of the triangulation.

OUTPUT:
The outward-facing boundary simplices (of dimension $d - 1$) of the $d$-dimensional triangulation as a set. Each boundary is returned by a tuple of point indices.

EXAMPLES:

```
sage: triangulation = polytopes.cube().triangulate(engine='internal')
sage: triangulation
(<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>)
sage: triangulation.boundary()
frozenset({(0, 1, 2),
 (0, 1, 5),
 (0, 2, 3),
 (0, 3, 4),
 (0, 4, 5),
 (1, 2, 7),
 (1, 5, 6),
 (1, 6, 7),
 (2, 3, 7),
 (3, 4, 7),
 (4, 5, 7),
 (5, 6, 7)})
sage: triangulation.interior_facets()
frozenset({(0, 1, 7), (0, 2, 7), (0, 3, 7), (0, 4, 7), (0, 5, 7), (1, 5, 7)})
```

enumerate_simplices()
Return the enumerated simplices.

OUTPUT:
A tuple of integers that uniquely specifies the triangulation.

EXAMPLES:

```
sage: pc = PointConfiguration(matrix([0, 0, 0, 0, 0, 2, 4,-1, 1, 1, 0, 0, 1, 0],
: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
: [0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0],
: [0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
: [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
:]).columns())
sage: triangulation = pc.lexicographic_triangulation()
sage: triangulation.enumerate_simplices()
(1678, 1688, 1769, 1779, 1895, 1905, 2112, 2143, 2360, 2367, 2555, 2580,
 2610, 2626, 2650, 2652, 2654, 2661, 2663, 2667, 2685, 2755, 2757, 2759,
 2766, 2768, 2772, 2811, 2881, 2883, 2885, 2892, 2894, 2898)
```

You can recreate the triangulation from this list by passing it to the constructor:

```
sage: from sage.geometry.triangulation.point_configuration import Triangulation
sage: Triangulation([1678, 1688, 1769, 1779, 1895, 1905, 2112, 2143,
: 2360, 2367, 2555, 2580, 2610, 2626, 2650, 2652, 2654, 2661, 2663,
: 2667, 2685, 2755, 2757, 2759, 2766, 2768, 2772, 2811, 2881, 2883, 2885,
: 2892, 2894, 2898],
:)
```
(continues on next page)
fan(origin=None)
Construct the fan of cones over the simplices of the triangulation.

INPUT:

• origin – None (default) or coordinates of a point. The common apex of all cones of the fan. If None, the triangulation must be a star triangulation and the distinguished central point is used as the origin.

OUTPUT:

A RationalPolyhedralFan. The coordinates of the points are shifted so that the apex of the fan is the origin of the coordinate system.

Note: If the set of cones over the simplices is not a fan, a suitable exception is raised.

EXAMPLES:

```
sage: pc = PointConfiguration([(0,0), (1,0), (0,1), (-1,-1)], star=0, fine=True)
sage: triangulation = pc.triangulate()
sage: fan = triangulation.fan(); fan
Rational polyhedral fan in 2-d lattice N
sage: fan.is_equivalent(toric_varieties.P2().fan())
optional - palp
True
```

Toric diagrams (the $\mathbb{Z}_5$ hyperconifold):

```
sage: vertices=[(0, 1, 0), (0, 3, 1), (0, 2, 3), (0, 0, 2)]
sage: interior=[(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)]
sage: points = vertices+interior
sage: pc = PointConfiguration(points, fine=True)
sage: triangulation = pc.triangulate()
sage: fan = triangulation.fan((-1,0,0))
sage: fan
Rational polyhedral fan in 3-d lattice N
sage: fan.rays()
N(1, 1, 0),
N(1, 3, 1),
N(1, 2, 3),
N(1, 0, 2),
N(1, 1, 1),
N(1, 1, 2),
```

(continues on next page)
N(1, 2, 1),
N(1, 2, 2)
in 3-d lattice N

gkz_phi()
Calculate the GKZ phi vector of the triangulation.
The phi vector is a vector of length equals to the number of points in the point configuration. For a fixed
triangulation $T$, the entry corresponding to the $i$-th point $p_i$ is

$$\phi_T(p_i) = \sum_{t \in T, t \ni p_i} Vol(t)$$

that is, the total volume of all simplices containing $p_i$. See also [GKZ1994] page 220 equation 1.4.

OUTPUT:
The phi vector of self.

EXAMPLES:

```python
sage: p = PointConfiguration([[0,0],[1,0],[2,1],[1,2],[0,1]])
sage: p.triangulate().gkz_phi()
(3, 1, 5, 2, 4)
sage: p.lexicographic_triangulation().gkz_phi()
(1, 3, 4, 2, 5)
```

interior_facets()
Return the interior facets of the triangulation.

OUTPUT:
The inward-facing boundary simplices (of dimension $d - 1$) of the $d$-dimensional triangulation as a set. Each boundary is returned by a tuple of point indices.

EXAMPLES:

```python
sage: triangulation = polytopes.cube().triangulate(engine='internal')
sage: triangulation
(<0,1,2,7>, <0,1,5,7>, <0,2,3,7>, <0,3,4,7>, <0,4,5,7>, <1,5,6,7>)
sage: triangulation.boundary()
frozenset({(0, 1, 2),
 (0, 1, 5),
 (0, 2, 3),
 (0, 3, 4),
 (0, 4, 5),
 (1, 2, 7),
 (1, 5, 6),
 (2, 3, 7),
 (3, 4, 7),
 (4, 5, 7),
 (5, 6, 7)})
sage: triangulation.interior_facets()
frozenset({(0, 1, 7), (0, 2, 7), (0, 3, 7), (0, 4, 7), (0, 5, 7), (1, 5, 7)})
```
normal_cone()

Return the (closure of the) normal cone of the triangulation.

Recall that a regular triangulation is one that equals the “crease lines” of a convex piecewise-linear function. This support function is not unique, for example, you can scale it by a positive constant. The set of all piecewise-linear functions with fixed creases forms an open cone. This cone can be interpreted as the cone of normal vectors at a point of the secondary polytope, which is why we call it normal cone. See [GKZ1994] Section 7.1 for details.

OUTPUT:

The closure of the normal cone. The \( i \)-th entry equals the value of the piecewise-linear function at the \( i \)-th point of the configuration.

For an irregular triangulation, the normal cone is empty. In this case, a single point (the origin) is returned.

EXAMPLES:

```sage
triangulation = polytopes.hypercube(2).triangulate(engine='internal')
triangulation
(<0,1,3>, <1,2,3>)
N = triangulation.normal_cone(); N
4-d cone in 4-d lattice
N.rays()
(0, 0, 0, -1),
(0, 0, 1, 1),
(0, -1, -1),
(1, 0, 0, 1),
(-1, 0, 0, -1),
(0, 1, 0, -1),
(0, -1, 0, 1)
in Ambient free module of rank 4
over the principal ideal domain Integer Ring
N.dual().rays()
(1, -1, 1, -1)
in Ambient free module of rank 4
over the principal ideal domain Integer Ring
```

plot(**kwds)

Produce a graphical representation of the triangulation.

EXAMPLES:

```sage:p = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
triangulation = p.triangulate()
triangulation
(<1,3,4>, <2,3,4>)
triangulation.plot(axes=False) # optional - sage.plot
Graphics object consisting of 12 graphics primitives
```

point_configuration()

Returns the point configuration underlying the triangulation.

EXAMPLES:

```sage:pconfig = PointConfiguration([[0,0],[0,1],[1,0]])
sage:pconfig
```
A point configuration in affine 2-space over Integer Ring consisting of 3 points. The triangulations of this point configuration are assumed to be connected, not necessarily fine, not necessarily regular.

```sage```
triangulation = pconfig.triangulate()
triangulation
`(<0,1,2>)`
```sage```
triangulation.point_configuration()
```sage```
pconfig == triangulation.point_configuration()
```
True
```

simplicial_complex()

Return a simplicial complex from a triangulation of the point configuration.

OUTPUT:

A **SimplicialComplex**.

EXAMPLES:

```sage```
p = polytopes.cuboctahedron()
sage: sc = p.triangulate(engine='internal').simplicial_complex()
sage: sc
```
```
Simplicial complex with 12 vertices and 16 facets
```sage.geomtry.triangulation.element.triangulation_render_2d```

Return a graphical representation of a 2-d triangulation.

INPUT:

- triangulation – a **Triangulation**.
- **kwds** – keywords that are passed on to the graphics primitives.

OUTPUT:

A 2-d graphics object.

EXAMPLES:

```sage```
points = PointConfiguration([[0,0],[0,1],[1,0],[1,1],[-1,-1]])
sage: triang = points.triangulate()
sage: triang.plot(axes=False, aspect_ratio=1) # indirect doctest # optional -sage.plot
```

sage.geomtry.triangulation.element.triangulation_render_3d```

Return a graphical representation of a 3-d triangulation.
INPUT:

- triangulation – a Triangulation.
- **kwds** – keywords that are passed on to the graphics primitives.

OUTPUT:

A 3-d graphics object.

EXAMPLES:

```
sage: p = [[0,-1,-1],[0,0,1],[0,1,0], [1,-1,-1],[1,0,1],[1,1,0]]
sage: points = PointConfiguration(p)
sage: triang = points.triangulate()
sage: triang.plot(axes=False)  # indirect doctest  # optional - sage.plot
Graphics3d Object
```
4.1 Convex Sets

```python
class AffineHullProjectionData(image=None, 
    projection_linear_map=None, 
    projection_translation=None, 
    section_linear_map=None, 
    section_translation=None)
```

Bases: object

```python
class ConvexSet_base
Bases: sage.structure.sage_object.SageObject, sage.sets.set.Set_base
```

Abstract base class for convex sets.

```python
def affine_hull(*args, **kwds)
    Return the affine hull of self as a polyhedron.
```

EXAMPLES:

```python
sage: from sage.geometry.convex_set import ConvexSet_compact
sage: class EmbeddedDisk(ConvexSet_compact):
    ....:     def an_affine_basis(self):
    ....:         return [vector([1, 0, 0]), vector([1, 1, 0]), vector([1, 0, 1])]

sage: O = EmbeddedDisk()
sage: O.dim()
2
sage: O.affine_hull()
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 2.. lines
```

```python
def affine_hull_projection(as_convex_set=None, as_affine_map=False, orthogonal=False, 
    orthonormal=False, extend=False, minimal=False, return_all_data=False, 
    **kwds)
```

Return self projected into its affine hull.

Each convex set is contained in some smallest affine subspace (possibly the entire ambient space) – its affine hull. We provide an affine linear map that projects the ambient space of the convex set to the standard Euclidean space of dimension of the convex set, which restricts to a bijection from the affine hull.

The projection map is not unique; some parameters control the choice of the map. Other parameters control the output of the function.

EXAMPLES:
sage: P = Polyhedron(vertices=[[1, 0], [0, 1]])
sage: ri_P = P.relative_interior(); ri_P
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex...
usher of 2 vertices
sage: ri_P.affine_hull_projection(as_affine_map=True)
(Vector space morphism represented by the matrix:
[1]
[0]
Domain: Vector space of dimension 2 over Rational Field
Codomain: Vector space of dimension 1 over Rational Field,
(0))
sage: P_aff = P.affine_hull_projection(); P_aff
A 1-dimensional polyhedron in ZZ^1 defined as the convex hull of 2 vertices
sage: ri_P_aff = ri_P.affine_hull_projection(); ri_P_aff
Relative interior of a 1-dimensional polyhedron in QQ^1 defined as the convex...
usher of 2 vertices
sage: ri_P_aff.closure() == P_aff
True

ambient()
Return the ambient convex set or space.
The default implementation delegates to ambient_vector_space().
EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_base
sage: class ExampleSet(ConvexSet_base):
 : def ambient_vector_space(self, base_field=None):
 : return (base_field or QQ)^2001
sage: ExampleSet().ambient()
Vector space of dimension 2001 over Rational Field

ambient_dim()
Return the dimension of the ambient convex set or space.
The default implementation obtains it from ambient().
EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_base
sage: class ExampleSet(ConvexSet_base):
 : def ambient(self):
 : return QQ^7
sage: ExampleSet().ambient_dim()
7

ambient_dimension()
Return the dimension of the ambient convex set or space.
This is the same as ambient_dim().
EXAMPLES:
ambient_dim(self):
 return 91
sage: ExampleSet().ambient_dimension()
91

ambient_vector_space(base_field=None)
 Return the ambient vector space.
 Subclasses must provide an implementation of this method.
 The default implementations of ambient(), ambient_dim(), ambient_dimension() use this method.
 EXAMPLES:
 sage: from sage.geometry.convex_set import ConvexSet_base
 sage: C = ConvexSet_base()
 sage: C.ambient_vector_space()
 Traceback (most recent call last):
 ...
 NotImplementedError: <abstract method ambient_vector_space at ...>

an_affine_basis()
 Return points that form an affine basis for the affine hull.
 The points are guaranteed to lie in the topological closure of self.
 EXAMPLES:
 sage: from sage.geometry.convex_set import ConvexSet_base
 sage: C = ConvexSet_base()
 sage: C.an_affine_basis()
 Traceback (most recent call last):
 ...
 TypeError: 'NotImplementedType' object is not callable

an_element()
 Return a point of self.
 If self is empty, an EmptySetError will be raised.
 The default implementation delegates to _some_elements_().
 EXAMPLES:
 sage: from sage.geometry.convex_set import ConvexSet_compact
 sage: class BlueBox(ConvexSet_compact):
 : def _some_elements_(self):
 : yield 'blue'
 : yield 'cyan'
 sage: BlueBox().an_element()
 'blue'

cardinality()
 Return the cardinality of this set.
 OUTPUT:
 Either an integer or Infinity.

4.1. Convex Sets
EXAMPLES:

```python
sage: p = LatticePolytope([], lattice=ToricLattice(3).dual()); p
(-1-d) lattice polytope in 3-d lattice M
sage: p.cardinality()
0
sage: q = Polyhedron(ambient_dim=2); q
The empty polyhedron in ZZ^2
sage: q.cardinality()
0
sage: r = Polyhedron(rays=[(1, 0)]); r
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and 1
---ray
sage: r.cardinality()
+Infinity
```

cartesian_product(other)

Return the Cartesian product.

INPUT:

• other – another convex set

OUTPUT:

The Cartesian product of self and other.

closure()

Return the topological closure of self.

EXAMPLES:

```python
sage: from sage.geometry.convex_set import ConvexSet_closed
sage: C = ConvexSet_closed()
sage: C_closure = C.closure()
is C_closure is C
True
```

codim()

Return the codimension of self in self.ambient().

EXAMPLES:

```python
sage: P = Polyhedron(vertices=[(1,2,3)], rays=[(1,0,0)])
sage: P.codimension()
2
```

An alias is codim():

```python
sage: P.codim()
2
```

codimension()

Return the codimension of self in self.ambient().

EXAMPLES:

```python
sage: P = Polyhedron(vertices=[(1,2,3)], rays=[(1,0,0)])
sage: P.codimension()
2
```
An alias is \texttt{codim()}:

\begin{verbatim}
sage: P.codim()
sage: 2
\end{verbatim}

\textbf{contains}(\textit{point})
Test whether \textit{self} contains the given \textit{point}.

\begin{itemize}
 \item \textit{point} – a point or its coordinates
\end{itemize}

\textbf{dilation}(\textit{scalar})
Return the dilated (uniformly stretched) set.

\begin{itemize}
 \item \textit{scalar} – A scalar, not necessarily in \texttt{base_ring()}
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.geometry.convex_set import ConvexSet_compact
tsage: class GlorifiedPoint(ConvexSet_compact):
....: def __init__(self, p):
....: self._p = p
....: def ambient_vector_space(self):
....: return self._p.parent().vector_space()
....: def linear_transformation(self, linear_transf):
....: return GlorifiedPoint(linear_transf * self._p)
sage: P = GlorifiedPoint(vector([2, 3]))
sage: P.dilation(10)._p
sage: (20, 30)
\end{verbatim}

\textbf{dim()}
Return the dimension of \textit{self}.

Subclasses must provide an implementation of this method or of the method \texttt{an_affine_basis()}.

\textbf{dimension()}
Return the dimension of \textit{self}.

This is the same as \texttt{dim()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.geometry.convex_set import ConvexSet_base
tsage: class ExampleSet(ConvexSet_base):
....: def dim(self):
....: return 42
sage: ExampleSet().dimension()
sage: 42
\end{verbatim}

\textbf{interior()}
Return the topological interior of \textit{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.geometry.convex_set import ConvexSet_open
sage: C = ConvexSet_open()
\end{verbatim}

(continues on next page)
intersection(other)

Return the intersection of self and other.

INPUT:

• other – another convex set

OUTPUT:

The intersection.

is_closed()

Return whether self is closed.

The default implementation of this method only knows that the empty set, a singleton set, and the ambient space are closed.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: from sage.geometry.convex_set import ConvexSet_base
class ExampleSet(ConvexSet_base):
    def dim(self):
        return 0
sage: ExampleSet().is_closed()
True
```

is_compact()

Return whether self is compact.

The default implementation of this method only knows that a non-closed set cannot be compact, and that the empty set and a singleton set are compact.

OUTPUT:

Boolean.

```python
sage: from sage.geometry.convex_set import ConvexSet_base
class ExampleSet(ConvexSet_base):
    def dim(self):
        return 0
sage: ExampleSet().is_compact()
True
```

is_empty()

Test whether self is the empty set.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: p = LatticePolytope([], lattice=ToricLattice(3).dual()); p
-1-d lattice polytope in 3-d lattice M
sage: p.is_empty()
True
```
is_finite()
Test whether self is a finite set.

OUTPUT:
Boolean.

EXAMPLES:

```sage
p = LatticePolytope([], lattice=ToricLattice(3).dual()); p
-1-d lattice polytope in 3-d lattice M
sage: p.is_finite()
True
sage: q = Polyhedron(ambient_dim=2); q
The empty polyhedron in ZZ^2
sage: q.is_finite()
True
sage: r = Polyhedron(rays=[(1, 0)]); r
A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex and 1 → ray
sage: r.is_finite()
False
```

is_full_dimensional()
Return whether self is full dimensional.

OUTPUT:
Boolean. Whether the polyhedron is not contained in any strict affine subspace.

EXAMPLES:

```sage
c = Cone([(1,0)])
sage: c.is_full_dimensional()
False
sage: polytopes.hypercube(3).is_full_dimensional()
True
sage: Polyhedron(vertices=[(1,2,3)], rays=[(1,0,0)]).is_full_dimensional()
False
```

is_open()
Return whether self is open.

The default implementation of this method only knows that the empty set and the ambient space are open.

OUTPUT:
Boolean.

EXAMPLES:

```sage
from sage.geometry.convex_set import ConvexSet_base
class ExampleSet(ConvexSet_base):
    ....:    def is_empty(self):
    ....:        return False
    ....:    def is_universe(self):
    ....:        return True
```

(continues on next page)
is_relatively_open()
Return whether self is relatively open.

The default implementation of this method only knows that open sets are also relatively open, and in addition singletons are relatively open.

OUTPUT:
Boolean.

EXAMPLES:

```python
sage: from sage.geometry.convex_set import ConvexSet_base
class ExampleSet(ConvexSet_base):
    def is_open(self):
        return True
sage: ExampleSet().is_relatively_open()
True
```

is_universe()
Test whether self is the whole ambient space.

OUTPUT:
Boolean.

linear_transformation(linear_transf)
Return the linear transformation of self.

INPUT:
- linear_transf – a matrix

EXAMPLES:

```python
sage: from sage.geometry.convex_set import ConvexSet_relatively_open
c = ConvexSet_relatively_open()
c.relative_interior() is c
True
```

some_elements()
Return a list of some points of self.

If self is empty, an empty list is returned; no exception will be raised.

The default implementation delegates to _some_elements_().

EXAMPLES:

```python
sage: from sage.geometry.convex_set import ConvexSet_compact
class BlueBox(ConvexSet_compact):
    def _some_elements_(self):
        yield 'blue'
```
```python
....:     yield 'cyan'
sage: BlueBox().some_elements()
['blue', 'cyan']
```

translation *(displacement)*

Return the translation of *self* by a displacement vector.

INPUT:

- *displacement* – a displacement vector or a list/tuple of coordinates that determines a displacement vector

class *sage.geometry.convex_set.ConvexSet_closed*

Bases: *sage.geometry.convex_set.ConvexSet_base*

Abstract base class for closed convex sets.

is_closed()

Return whether *self* is closed.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: hcube = polytopes.hypercube(5)
sage: hcube.is_closed()
True
```

is_open()

Return whether *self* is open.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: hcube = polytopes.hypercube(5)
sage: hcube.is_open()
False
sage: zerocube = polytopes.hypercube(0)
sage: zerocube.is_open()
True
```

class *sage.geometry.convex_set.ConvexSet_compact*

Bases: *sage.geometry.convex_set.ConvexSet_closed*

Abstract base class for compact convex sets.

is_compact()

Return whether *self* is compact.

OUTPUT:

Boolean.

EXAMPLES:
sage: cross3 = lattice_polytope.cross_polytope(3)
sage: cross3.is_compact()
True

is_relatively_open()
Return whether `self` is open.

OUTPUT:
Boolean.

EXAMPLES:

```python
sage: hcube = polytopes.hypercube(5)
sage: hcube.is_open()
False
sage: zerocube = polytopes.hypercube(0)
sage: zerocube.is_open()
True
```

is_universe()
Return whether `self` is the whole ambient space.

OUTPUT:
Boolean.

EXAMPLES:

```python
cross3 = lattice_polytope.cross_polytope(3)
cross3.is_universe()
False
polytope([[[]]); point0
0-d reflexive polytope in 0-d lattice M
point0.is_universe()
True
```

```python
class ConvexSet_open
   Bases: ConvexSet_relatively_open
Abstract base class for open convex sets.

is_closed()  
Return whether `self` is closed.

OUTPUT:
Boolean.

EXAMPLES:

```python
from sage.geometry.convex_set import ConvexSet_open
sage: class OpenBall(ConvexSet_open):
 : def dim(self):
 : return 3
 : def is_universe(self):
 : return False
```
sage: OpenBall().is_closed()
False

is_open()
Return whether self is open.

OUTPUT:
Boolean.

EXAMPLES:

sage: from sage.geometry.convex_set import ConvexSet_open
sage: b = ConvexSet_open()

sage: b.is_open()
True

class sage.geometry.convex_set.ConvexSet_relatively_open
Bases: sage.geometry.convex_set.ConvexSet_base

Abstract base class for relatively open convex sets.

is_open()
Return whether self is open.

OUTPUT:
Boolean.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior()

sage: ri_segment.is_open()
False

is_relatively_open()
Return whether self is relatively open.

OUTPUT:
Boolean.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior()

sage: ri_segment.is_relatively_open()
True
4.2 Linear Expressions

A linear expression is just a linear polynomial in some (fixed) variables (allowing a nonzero constant term). This class only implements linear expressions for others to use.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ); L
Module of linear expressions in variables x, y, z over Rational Field
sage: x + 2*y + 3*z + 4
x + 2*y + 3*z + 4
sage: L(4)
0*x + 0*y + 0*z + 4
```

You can also pass coefficients and a constant term to construct linear expressions:

```python
sage: L([1, 2, 3], 4)
x + 2*y + 3*z + 4
sage: L([(1, 2, 3), 4])
x + 2*y + 3*z + 4
sage: L([4, 1, 2, 3]) # note: constant is first in single-tuple notation
x + 2*y + 3*z + 4
```

The linear expressions are a module over the base ring, so you can add them and multiply them with scalars:

```python
sage: m = x + 2*y + 3*z + 4
sage: 2*m
2*x + 4*y + 6*z + 8
sage: m+m
2*x + 4*y + 6*z + 8
sage: m-m
0*x + 0*y + 0*z + 0
```

```python
class sage.geometry.linear_expression.LinearExpression

Bases: sage.structure.element.ModuleElement

A linear expression.

A linear expression is just a linear polynomial in some (fixed) variables.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
```

(continues on next page)
sage: L.zero()
0*x + 0*y + 0*z + 0
sage: a = L([12, 2/3, -1], -2)
sage: a - m
11*x - 4/3*y - 4*z - 6
sage: LZ.<x,y,z> = LinearExpressionModule(ZZ)
sage: a - LZ([2, -1, 3], 1)
10*x + 5/3*y - 4*z - 3

A()
Return the coefficient vector.

OUTPUT:
The coefficient vector of the linear expression.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4); linear
x + 2*y + 3*z + 4
sage: linear.A()
(1, 2, 3)
sage: linear.b()
4

b()
Return the constant term.

OUTPUT:
The constant term of the linear expression.

EXAMPLES:

sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4); linear
x + 2*y + 3*z + 4
sage: linear.A()
(1, 2, 3)
sage: linear.b()
4

change_ring(base_ring)
Change the base ring of this linear expression.

INPUT:
- base_ring – a ring; the new base ring

OUTPUT:
A new linear expression over the new base ring.

EXAMPLES:
```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: a = x + 2*y + 3*z + 4; a
x + 2*y + 3*z + 4
sage: a.change_ring(RDF)
1.0*x + 2.0*y + 3.0*z + 4.0
```

coefficients()

Return all coefficients.

OUTPUT:

The constant (as first entry) and coefficients of the linear terms (as subsequent entries) in a list.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4); linear
x + 2*y + 3*z + 4
sage: linear.coefficients()
[4, 1, 2, 3]
```

constant_term()

Return the constant term.

OUTPUT:

The constant term of the linear expression.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4); linear
x + 2*y + 3*z + 4
sage: linear.A()
(1, 2, 3)
sage: linear.b()
4
```

dense_coefficient_list()

Return all coefficients.

OUTPUT:

The constant (as first entry) and coefficients of the linear terms (as subsequent entries) in a list.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: linear = L([1, 2, 3], 4); linear
x + 2*y + 3*z + 4
sage: linear.coefficients()
[4, 1, 2, 3]
```

evaluate(point)

Evaluate the linear expression.
INPUT:

• point – list/tuple/iterable of coordinates; the coordinates of a point

OUTPUT:

The linear expression $Ax + b$ evaluated at the point x.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y> = LinearExpressionModule(QQ)
sage: ex = 2*x + 3*y + 4
sage: ex.evaluate([1,1])
9
sage: ex([1,1])  # syntactic sugar
9
sage: ex([pi, e])
2*pi + 3*e + 4
```

`monomial_coefficients(copy=True)`

Return a dictionary whose keys are indices of basis elements in the support of self and whose values are the corresponding coefficients.

INPUT:

• copy – ignored

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
```

```python
sage: linear = L([1, 2, 3], 4)
```

```python
sage: sorted(linear.monomial_coefficients().items(), key=lambda x: str(x[0]))
[(0, 1), (1, 2), (2, 3), ('b', 4)]
```

class `sage.geometry.linear_expression.LinearExpressionModule`(base_ring, names=())

Bases: `sage.structure.parent.Parent`, `sage.structure.unique_representation.UniqueRepresentation`

The module of linear expressions.

This is the module of linear polynomials which is the parent for linear expressions.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
```

```python
sage: L
Module of linear expressions in variables x, y, z over Rational Field
```

```python
sage: L.an_element()
x + 0*y + 0*z + 0
```

`Element`

alias of `LinearExpression`

`ambient_module()`

Return the ambient module.
See also:

\texttt{ambient_vector_space()}

OUTPUT:

The domain of the linear expressions as a free module over the base ring.

EXAMPLES:

\begin{verbatim}
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L.ambient_module()
Vector space of dimension 3 over Rational Field
sage: M = LinearExpressionModule(ZZ, ('r', 's'))
sage: M.ambient_module()
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: M.ambient_vector_space()
Vector space of dimension 2 over Rational Field
\end{verbatim}

\texttt{ambient_vector_space()}

Return the ambient vector space.

See also:

\texttt{ambient_module()}

OUTPUT:

The vector space (over the fraction field of the base ring) where the linear expressions live.

EXAMPLES:

\begin{verbatim}
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L.ambient_vector_space()
Vector space of dimension 3 over Rational Field
sage: M = LinearExpressionModule(ZZ, ('r', 's'))
sage: M.ambient_module()
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: M.ambient_vector_space()
Vector space of dimension 2 over Rational Field
\end{verbatim}

\texttt{basis()}

Return a basis of self.

EXAMPLES:

\begin{verbatim}
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: list(L.basis())
[x + 0*y + 0*z + 0,
 0*x + y + 0*z + 0,
 0*x + 0*y + z + 0,
 0*x + 0*y + 0*z + 1]
\end{verbatim}

\texttt{change_ring(base_ring)}

Return a new module with a changed base ring.

INPUT:
• base_ring – a ring; the new base ring

OUTPUT:
A new linear expression over the new base ring.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: M.<y> = LinearExpressionModule(ZZ)
sage: L = M.change_ring(QQ); L
Module of linear expressions in variable y over Rational Field
```

gen(i)
Return the \(i\)-th generator.

INPUT:
• \(i\) – integer

OUTPUT:
A linear expression.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L.gen(0)
x + 0*y + 0*z + 0
```

gens()
Return the generators of `self`.

OUTPUT:
A tuple of linear expressions, one for each linear variable.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L.gens()
(x + 0*y + 0*z + 0, 0*x + y + 0*z + 0, 0*x + 0*y + z + 0)
```

ngens()
Return the number of linear variables.

OUTPUT:
An integer.

EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L = LinearExpressionModule(QQ, ('x', 'y', 'z'))
sage: L.ngens()
3
```

random_element()
Return a random element.
EXAMPLES:

```python
sage: from sage.geometry.linear_expression import LinearExpressionModule
sage: L.<x,y,z> = LinearExpressionModule(QQ)
sage: L.random_element() in L
True
```

4.3 Newton Polygons

This module implements finite Newton polygons and infinite Newton polygons having a finite number of slopes (and hence a last infinite slope).

```
sage.geometry.newton_polygon.NewtonPolygon = Parent for Newton polygons
```

```python
class sage.geometry.newton_polygon.NewtonPolygon_element(polyhedron, parent):
    Bases: sage.structure.element.Element
    Class for infinite Newton polygons with last slope.
    last_slope()
    Returns the last (infinite) slope of this Newton polygon if it is infinite and +Infinity otherwise.
```

EXAMPLES:

```python
sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP1 = NewtonPolygon([ (0,0), (1,1), (2,8), (3,5) ], last_slope=3)
sage: NP1.last_slope()
3
sage: NP2 = NewtonPolygon([ (0,0), (1,1), (2,5) ])
sage: NP2.last_slope()
+Infinity
```

We check that the last slope of a sum (resp. a product) is the minimum of the last slopes of the summands (resp. the factors):

```python
sage: (NP1 + NP2).last_slope()
3
sage: (NP1 * NP2).last_slope()
3
```

```
plot(**kwargs)
Plot this Newton polygon.
```

Note: All usual rendering options (color, thickness, etc.) are available.

EXAMPLES:

```python
sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP = NewtonPolygon([ (0,0), (1,1), (2,6) ])
```

```
reverse(degree=None)
Returns the symmetric of self
```

```python
sage: NP.reverse()  # optional - sage.plot
```

```python
sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP = NewtonPolygon([ (0,0), (1,1), (2,6) ])  # optional - sage.plot
sage: polygon = NP.plot()  # optional - sage.plot
```
INPUT:

- degree – an integer (default: the top right abscissa of this Newton polygon)

OUTPUT:

The image this Newton polygon under the symmetry \((x, y) \mapsto (degree-x, y)\)

EXAMPLES:

```python
sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP = NewtonPolygon([ (0,0), (1,1), (2,5) ])
```

```
Finite Newton polygon with 3 vertices: (0, 5), (1, 1), (2, 0)
```

We check that the slopes of the symmetric Newton polygon are the opposites of the slopes of the original
Newton polygon:

```python
sage: NP.slopes()
[1, 4]
```

```python
sage: NP2 = NP.reverse(); NP2
```

```
Finite Newton polygon with 3 vertices: (0, 5), (1, 1), (2, 0)
```

```python
sage: NP2.slopes()
[-4, -1]
```

slopes(repetition=True)

Returns the slopes of this Newton polygon

INPUT:

- repetition – a boolean (default: True)

OUTPUT:

The consecutive slopes (not including the last slope if the polygon is infinity) of this Newton polygon.

If repetition is True, each slope is repeated a number of times equal to its length. Otherwise, it appears
only one time.

EXAMPLES:

```python
sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP = NewtonPolygon([ (0,0), (1,1), (3,6) ]); NP
```

```
Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 6)
```

```python
sage: NP.slopes()
[1, 5/2, 5/2]
```

```python
sage: NP.slopes(repetition=False)
```

```
[1, 5/2]
```

vertices(copy=True)

Returns the list of vertices of this Newton polygon

INPUT:

- copy – a boolean (default: True)

OUTPUT:

The list of vertices of this Newton polygon (or a copy of it if copy is set to True)

EXAMPLES:
sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NP = NewtonPolygon([(0,0), (1,1), (2,5)]); NP
Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (2, 5)

sage: v = NP.vertices(); v
[(0, 0), (1, 1), (2, 5)]

class sage.geometry.newton_polygon.ParentNewtonPolygon
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

Construct a Newton polygon.

INPUT:
• arg – a list/tuple/iterable of vertices or of slopes. Currently, slopes must be rational numbers.
• sort_slopes – boolean (default: True). Specifying whether slopes must be first sorted
• last_slope – rational or infinity (default: Infinity). The last slope of the Newton polygon

OUTPUT:
The corresponding Newton polygon.

Note: By convention, a Newton polygon always contains the point at infinity (0, ∞). These polygons are attached to polynomials or series over discrete valuation rings (e.g. padics).

EXAMPLES:
We specify here a Newton polygon by its vertices:

sage: from sage.geometry.newton_polygon import NewtonPolygon
sage: NewtonPolygon([(0,0), (1,1), (3,5)])
Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5)

We note that the convex hull of the vertices is automatically computed:

sage: NewtonPolygon([(0,0), (1,1), (2,8), (3,5)])
Finite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5)

Note that the value +Infinity is allowed as the second coordinate of a vertex:

sage: NewtonPolygon([(0,0), (1,Infinity), (2,8), (3,5)])
Finite Newton polygon with 2 vertices: (0, 0), (3, 5)

If last_slope is set, the returned Newton polygon is infinite and ends with an infinite line having the specified slope:

sage: NewtonPolygon([(0,0), (1,1), (2,8), (3,5)], last_slope=3)
Infinite Newton polygon with 3 vertices: (0, 0), (1, 1), (3, 5) ending by an infinite line of slope 3

Specifying a last slope may discard some vertices:

sage: NewtonPolygon([(0,0), (1,1), (2,8), (3,5)], last_slope=3/2)
Infinite Newton polygon with 2 vertices: (0, 0), (1, 1) ending by an infinite line of slope 3/2
Next, we define a Newton polygon by its slopes:

```ruby
sage: NP = NewtonPolygon([0, 1/2, 1/2, 2/3, 2/3, 2/3, 1, 1])
sage: NP
Finite Newton polygon with 5 vertices: (0, 0), (1, 0), (3, 1), (6, 3), (8, 5)
sage: NP.slopes()
[0, 1/2, 1/2, 2/3, 2/3, 2/3, 1, 1]
```

By default, slopes are automatically sorted:

```ruby
sage: NP2 = NewtonPolygon([0, 1, 1/2, 2/3, 1/2, 2/3, 1, 2/3])
sage: NP2
Finite Newton polygon with 5 vertices: (0, 0), (1, 0), (3, 1), (6, 3), (8, 5)
sage: NP == NP2
True
```

except if the contrary is explicitly mentioned:

```ruby
sage: NewtonPolygon([0, 1, 1/2, 2/3, 1/2, 2/3, 1, 2/3], sort_slopes=False)
Finite Newton polygon with 4 vertices: (0, 0), (1, 0), (6, 10/3), (8, 5)
```

Slopes greater than or equal last_slope (if specified) are discarded:

```ruby
sage: NP = NewtonPolygon([0, 1/2, 1/2, 2/3, 2/3, 2/3, 1, 1], last_slope=2/3)
sage: NP
Infinite Newton polygon with 3 vertices: (0, 0), (1, 0), (3, 1) ending by an
        infinite line of slope 2/3
sage: NP.slopes()
[0, 1/2, 1/2]
```

Be careful, do not confuse Newton polygons provided by this class with Newton polytopes. Compare:

```ruby
sage: NP = NewtonPolygon([(0,0), (1,45), (3,6)]); NP
Finite Newton polygon with 2 vertices: (0, 0), (3, 6)
sage: x, y = polygen(QQ, 'x, y')
sage: p = 1 + x*y**45 + x**3*y**6
sage: p.newton_polytope()
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: p.newton_polytope().vertices()
(A vertex at (0, 0), A vertex at (1, 45), A vertex at (3, 6))
```

Element

alias of `NewtonPolygon_element`
4.4 Relative Interiors of Polyhedra and Cones

class sage.geometry.relative_interior.RelativeInterior(polyhedron)
Bases: sage.geometry.convex_set.ConvexSet_relatively_open

The relative interior of a polyhedron or cone
This class should not be used directly. Use methods relative_interior(), interior(),
relative_interior(), interior() instead.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: segment.relative_interior()
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: octant.relative_interior()
Relative interior of 3-d cone in 3-d lattice N

ambient()
Return the ambient convex set or space.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: ri_segment.ambient()
Vector space of dimension 2 over Rational Field

ambient_dim()
Return the dimension of the ambient space.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: segment.ambient_dim()
2
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: ri_segment.ambient_dim()
2

ambient_vector_space(base_field=None)
Return the ambient vector space.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: ri_segment.ambient_vector_space()
Vector space of dimension 2 over Rational Field
an_affine_basis()

Return points that form an affine basis for the affine hull.

The points are guaranteed to lie in the topological closure of `self`.

EXAMPLES:

```
sage: segment = Polyhedron([[1, 0], [0, 1]])
sage: segment.relative_interior().an_affine_basis()
[A vertex at (1, 0), A vertex at (0, 1)]
```

closure()

Return the topological closure of `self`.

EXAMPLES:

```
sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: ri_segment.closure() is segment
True
```

dilation(scalar)

Return the dilated (uniformly stretched) set.

INPUT:

- scalar – A scalar

EXAMPLES:

```
sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: A = ri_segment.dilation(2); A
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: A.closure().vertices()
(A vertex at (2, 4), A vertex at (6, 8))
sage: B = ri_segment.dilation(-1/3); B
Relative interior of a 1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices
sage: B.closure().vertices()
(A vertex at (-1, -4/3), A vertex at (-1/3, -2/3))
sage: C = ri_segment.dilation(0); C
A 0-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex
sage: C.vertices()
(A vertex at (0, 0),)
```

dim()

Return the dimension of `self`.

EXAMPLES:
```
sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: segment.dim()
1
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: ri_segment.dim()
1
```

interior()

Return the interior of self.

EXAMPLES:

```
sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: ri_segment.interior()
The empty polyhedron in ZZ^2
sage: octant = Cone([(1,0,0), (0,1,0), (0,0,1)])
sage: ri_octant = octant.relative_interior(); ri_octant
Relative interior of 3-d cone in 3-d lattice N
sage: ri_octant.interior() is ri_octant
True
```

is_closed()

Return whether self is closed.

OUTPUT:

Boolean.

EXAMPLES:

```
sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: ri_segment.is_closed()
False
```

is_universe()

Return whether self is the whole ambient space

OUTPUT:

Boolean.

EXAMPLES:

```
sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: ri_segment.is_universe()
False
```

(continues on next page)
Combinatorial and Discrete Geometry, Release 9.6

(continued from previous page)

sage: ri_segment.is_universe()
False

linear_transformation(linear_transf, **kwds)
Return the linear transformation of self.

By [Roc1970], Theorem 6.6, the linear transformation of a relative interior is the relative interior of the linear transformation.

INPUT:

- linear_transf – a matrix
- **kwds** – passed to the linear_transformation() method of the closure of self.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: T = matrix([[1, 1]])
sage: A = ri_segment.linear_transformation(T); A
Relative interior of a 1-dimensional polyhedron in ZZ^1 defined as the convex hull of 2 vertices
sage: A.closure().vertices()
(A vertex at (3), A vertex at (7))

relative_interior()
Return the relative interior of self.

As self is already relatively open, this method just returns self.

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: ri_segment.relative_interior() is ri_segment
True

translation(displacement)
Return the translation of self by a displacement vector.

INPUT:

- displacement – a displacement vector or a list/tuple of coordinates that determines a displacement vector

EXAMPLES:

sage: segment = Polyhedron([[1, 2], [3, 4]])
sage: ri_segment = segment.relative_interior(); ri_segment
Relative interior of a 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: t = vector([100, 100])
4.5 Ribbon Graphs

This file implements objects called ribbon graphs. These are graphs together with a cyclic ordering of the darts adjacent to each vertex. This data allows us to unambiguously “thicken” the ribbon graph to an orientable surface with boundary. Also, every orientable surface with non-empty boundary is the thickening of a ribbon graph.

AUTHORS:

• Pablo Portilla (2016)

```python
sage: ri_segment.translation(t)
Relative interior of a
1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices
sage: ri_segment.closure().vertices()
(A vertex at (1, 2), A vertex at (3, 4))
```

class `sage.geometry.ribbon_graph.RibbonGraph`(sigma, rho)

Bases: `sage.structure.sage_object.SageObject`, `sage.structure.unique_representation.UniqueRepresentation`

A ribbon graph codified as two elements of a certain permutation group.

A comprehensive introduction on the topic can be found in the beginning of [GGD2011] Chapter 4. More concretely, we will use a variation of what is called in the reference “The permutation representation pair of a dessin”. Note that in that book, ribbon graphs are called “dessins d’enfant”. For the sake on completeness we reproduce an adapted version of that introduction here.

Brief introduction

Let Σ be an orientable surface with non-empty boundary and let Γ be the topological realization of a graph that is embedded in Σ in such a way that the graph is a strong deformation retract of the surface.

Let $v(\Gamma)$ be the set of vertices of Γ, suppose that these are white vertices. Now we mark black vertices in an interior point of each edge. In this way we get a bipartite graph where all the black vertices have valency 2 and there is no restriction on the valency of the white vertices. We call the edges of this new graph darts (sometimes they are also called half edges of the original graph). Observe that each edge of the original graph is formed by two darts.

Given a white vertex $v \in v(\Gamma)$, let $d(v)$ be the set of darts adjacent to v. Let $D(\Gamma)$ be the set of all the darts of Γ and suppose that we enumerate the set $D(\Gamma)$ and that it has n elements.

With the orientation of the surface and the embedding of the graph in the surface we can produce two permutations:

- A permutation that we denote by σ. This permutation is a product of as many cycles as white vertices (that is vertices in Γ). For each vertex consider a small topological circle around it in Σ. This circle intersects each adjacent dart once. The circle has an orientation induced by the orientation on Σ and so defines a cycle that sends the number associated to one dart to the number associated to the next dart in the positive orientation of the circle.

- A permutation that we denote by ρ. This permutation is a product of as many 2-cycles as edges has Γ. It just tells which two darts belong to the same edge.
Abstract definition

Consider a graph Γ (not a priori embedded in any surface). Now we can again consider one vertex in the interior of each edge splitting each edge in two darts. We label the darts with numbers.

We say that a ribbon structure on Γ is a set of two permutations (σ, ρ). Where σ is formed by as many disjoint cycles as vertices had Γ. And each cycle is a cyclic ordering of the darts adjacent to a vertex. The permutation ρ just tell us which two darts belong to the same edge.

For any two such permutations there is a way of “thickening” the graph to a surface with boundary in such a way that the surface retracts (by a strong deformation retract) to the graph and hence the graph is embedded in the surface in such a way that we could recover σ and ρ.

INPUT:

- σ – a permutation a product of disjoint cycles of any length; singletons (vertices of valency 1) need not be specified
- ρ – a permutation which is a product of disjoint 2-cycles

Alternatively, one can pass in 2 integers and this will construct a ribbon graph with genus σ and ρ boundary components. See make_ribbon().

One can also construct the bipartite graph modeling the corresponding Brieskorn-Pham singularity by passing 2 integers and the keyword bipartite=True. See bipartite_ribbon_graph().

EXAMPLES:

Consider the ribbon graph consisting of just 1 edge and 2 vertices of valency 1:

```
sage: s0 = PermutationGroupElement('(1)(2)')
sage: r0 = PermutationGroupElement('(1,2)')
sage: R0 = RibbonGraph(s0, r0); R0
Ribbon graph of genus 0 and 1 boundary components
```

Consider a graph that has 2 vertices of valency 3 (and hence 3 edges). That is represented by the following two permutations:

```
sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)')
sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)')
sage: R1 = RibbonGraph(s1, r1); R1
Ribbon graph of genus 1 and 1 boundary components
```

By drawing the picture in a piece of paper, one can see that its thickening has only 1 boundary component. Since the thickening is homotopically equivalent to the graph and the graph has Euler characteristic -1, we find that the thickening has genus 1:

```
sage: R1.number_boundaries()
1
sage: R1.genus()
1
```

The following example corresponds to the complete bipartite graph of type $(2, 3)$, where we have added one more edge $(8, 15)$ that ends at a vertex of valency 1. Observe that it is not necessary to specify the vertex (15) of valency 1 when we define sigma:

```
sage: s2 = PermutationGroupElement('(1,3,5,8)(2,4,6)')
sage: r2 = PermutationGroupElement('(1,2)(3,4)(5,6)(8,15)')
```
This example is constructed by taking the bipartite graph of type $(3, 3)$:

```
sage: s3 = PermutationGroupElement('1,2,3(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)')
sage: r3 = PermutationGroupElement('(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)')
sage: R3 = RibbonGraph(s3, r3); R3
Ribbon graph of genus 1 and 3 boundary components
```

The labeling of the darts can omit some numbers:

```
sage: s4 = PermutationGroupElement('(3,5,10,12)')
sage: r4 = PermutationGroupElement('(3,10)(5,12)')
sage: R4 = RibbonGraph(s4, r4); R4
Ribbon graph of genus 1 and 1 boundary components
```

The next example is the complete bipartite graph of type $(3, 3)$, where we have added an edge that ends at a vertex of valency 1:

```
sage: s5 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19)')
sage: R5 = RibbonGraph(s5, r5); R5
Ribbon graph of genus 1 and 3 boundary components
sage: C = R5.contract_edge(9); C
Ribbon graph of genus 1 and 3 boundary components
sage: C.sigma()
(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)
sage: C.rho()
(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)
sage: S = R5.reduced(); S
Ribbon graph of genus 1 and 3 boundary components
sage: S.sigma()
(5,6,8,9,14,15,11,12)
sage: S.rho()
(5,14)(6,11)(8,15)(9,12)
sage: R5.boundary()
[[1, 16, 17, 4, 5, 14, 15, 8, 9, 12, 10, 3],
 [2, 13, 14, 5, 6, 11, 12, 9, 7, 18, 19, 20, 20, 19, 16, 1],
 [3, 10, 11, 6, 4, 17, 18, 7, 8, 15, 13, 2]]
sage: S.boundary()
[[5, 14, 15, 8, 9, 12], [6, 11, 12, 9, 14, 5], [8, 15, 11, 6]]
sage: R5.homology_basis()
[[[5, 14], [13, 2], [1, 16], [17, 4]],
 [[6, 11], [10, 3], [1, 16], [17, 4]],
 [[8, 15], [13, 2], [1, 16], [18, 7]],
 [[9, 12], [10, 3], [1, 16], [18, 7]]
```

(continues on next page)
We construct a ribbon graph corresponding to a genus 0 surface with 5 boundary components:

```
sage: R = RibbonGraph(0, 5); R
Ribbon graph of genus 0 and 5 boundary components
sage: R.sigma()
(1,9,7,5,3)(2,4,6,8,10)
sage: R.rho()
(1,2)(3,4)(5,6)(7,8)(9,10)
```

We construct the Brieskorn-Pham singularity of type $(2, 3)$:

```
sage: B23 = RibbonGraph(2, 3, bipartite=True); B23
Ribbon graph of genus 1 and 1 boundary components
sage: B23.sigma()
(1,2,3)(4,5,6)(7,8)(9,10)(11,12)
sage: B23.rho()
(1,8)(2,10)(3,12)(4,7)(5,9)(6,11)
```

`boundary()`

Return the labeled boundaries of `self`.

If you cut the thickening of the graph along the graph, you get a collection of cylinders (recall that the graph was a strong deformation retract of the thickening). In each cylinder one of the boundary components has a labelling of its edges induced by the labelling of the darts.

OUTPUT:

A list of lists. The number of inner lists is the number of boundary components of the surface. Each list in the list consists of an ordered tuple of numbers, each number comes from the number assigned to the corresponding dart before cutting.

EXAMPLES:

We start with a ribbon graph whose thickening has one boundary component. We compute its labeled boundary, then reduce it and compute the labeled boundary of the reduced ribbon graph:

```
sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)')
sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)')
sage: R1 = RibbonGraph(s1,r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: R1.boundary()
[[1, 2, 4, 3, 5, 6, 2, 1, 3, 4, 6, 5]]
sage: H1 = R1.reduced(); H1
Ribbon graph of genus 1 and 1 boundary components
sage: H1.sigma()
(3,5,4,6)
sage: H1.rho()
(3,4)(5,6)
sage: H1.boundary()
[[3, 4, 6, 5, 4, 3, 5, 6]]
```

We now consider a ribbon graph whose thickening has 3 boundary components. Also observe that in one of the labeled boundary components, a numbers appears twice in a row. That is because the ribbon graph
has a vertex of valency 1:

```python
sage: s2 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19)')
sage: R2 = RibbonGraph(s2, r2)
sage: R2.number_boundaries()
3
```

`contract_edge(k)`

Return the ribbon graph resulting from the contraction of the k-th edge in `self`.

For a ribbon graph \((\sigma, \rho)\), we contract the edge corresponding to the \(k\)-th transposition of \(\rho\).

INPUT:

- \(k\) – non-negative integer; the position in \(\rho\) of the transposition that is going to be contracted

OUTPUT:

- a ribbon graph resulting from the contraction of that edge

EXAMPLES:

We start again with the one-holed torus ribbon graph:

```python
sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)')
sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)')
sage: R1 = RibbonGraph(s1, r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: S1 = R1.contract_edge(1); S1
Ribbon graph of genus 1 and 1 boundary components
sage: S1.sigma()
(1,6,2,5)
sage: S1.rho()
(1,2)(5,6)
```

However, this ribbon graphs is formed only by loops and hence it cannot be longer reduced, we get an error if we try to contract a loop:

```python
sage: S1.contract_edge(1)
Traceback (most recent call last):
...
ValueError: the edge is a loop and cannot be contracted
```

In this example, we consider a graph that has one edge \((19,20)\) such that one of its ends is a vertex of valency 1. This is the vertex \((20)\) that is not specified when defining \(\sigma\). We contract precisely this edge and get a ribbon graph with no vertices of valency 1:

```python
sage: s2 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19)')
```
sage: R2 = RibbonGraph(s2,r2); R2
Ribbon graph of genus 1 and 3 boundary components
sage: R2.sigma()
(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18,19)
sage: R2c = R2.contract_edge(9); R2; R2c.sigma(); R2c.rho()
Ribbon graph of genus 1 and 3 boundary components
(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)
(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)

extrude_edge(vertex, dart1, dart2)
Return a ribbon graph resulting from extruding an edge from a vertex, pulling from it, all darts from dart1 to dart2 including both.

INPUT:

- vertex – the position of the vertex in the permutation \(\sigma \), which must have valency at least 2
- dart1 – the position of the first in the cycle corresponding to vertex
- dart2 – the position of the second dart in the cycle corresponding to vertex

OUTPUT:

A ribbon graph resulting from extruding a new edge that pulls from vertex a new vertex that is, now, adjacent to all the darts from dart1 to dart2 (not including dart2) in the cyclic ordering given by the cycle corresponding to vertex. Note that dart1 may be equal to dart2 allowing thus to extrude a contractible edge from a vertex.

EXAMPLES:

We try several possibilities in the same graph:

sage: s1 = PermutationGroupElement('1,3,5)(2,4,6')
sage: r1 = PermutationGroupElement('1,2)(3,4)(5,6')
sage: R1 = RibbonGraph(s1,r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: E1 = R1.extrude_edge(1,1,2); E1
Ribbon graph of genus 1 and 1 boundary components
sage: E1.sigma()
(1,3,5)(2,8,6)(4,7)
sage: E1.rho()
(1,2)(3,4)(5,6)(7,8)
sage: E2 = R1.extrude_edge(1,1,3); E2
Ribbon graph of genus 1 and 1 boundary components
sage: E2.sigma()
(1,3,5)(2,8)(4,17)(5,14)(6,11)(7,18)(8,15)(9,12)
sage: E2.rho()
(1,2)(3,4)(5,6)(7,8)

We can also extrude a contractible edge from a vertex. This new edge will end at a vertex of valency 1:

sage: E1p = R1.extrude_edge(0,0,0); E1p
Ribbon graph of genus 1 and 1 boundary components
sage: E1p.sigma()
(1,3,5,8)(2,4,6)
sage: E1p.rho()
(1,2)(3,4)(5,6)(7,8)
In the following example we first extrude one edge from a vertex of valency 3 generating a new vertex of valency 2. Then we extrude a new edge from this vertex of valency 2:

```python
sage: s1 = PermutationGroupElement('((1,3,5)(2,4,6))

sage: r1 = PermutationGroupElement('((1,2)(3,4)(5,6))

sage: R1 = RibbonGraph(s1,r1); R1
Ribbon graph of genus 1 and 1 boundary components

sage: E1 = R1.extrude_edge(0,0,1); E1
Ribbon graph of genus 1 and 1 boundary components

sage: E1.sigma()
(1,7)(2,4,6)(3,5,8)

sage: E1.rho()
(1,2)(3,4)(5,6)(7,8)

sage: F1 = E1.extrude_edge(0,0,1); F1
Ribbon graph of genus 1 and 1 boundary components

sage: F1.sigma()
(1,9)(2,4,6)(3,5,8)(7,10)

sage: F1.rho()
(1,2)(3,4)(5,6)(7,8)(9,10)
```

genus()

Return the genus of the thickening of self.

OUTPUT:

- g – non-negative integer representing the genus of the thickening of the ribbon graph

EXAMPLES:

```python
sage: s1 = PermutationGroupElement('((1,3,5)(2,4,6))

sage: r1 = PermutationGroupElement('((1,2)(3,4)(5,6))

sage: R1 = RibbonGraph(s1,r1)

sage: R1.genus()
1

sage: s3=PermutationGroupElement('((1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24))


sage: R3 = RibbonGraph(s3,r3); R3.genus()
3
```

homology_basis()

Return an oriented basis of the first homology group of the graph.

OUTPUT:

- A 2-dimensional array of ordered edges in the graph (given by pairs). The length of the first dimension is μ. Each row corresponds to an element of the basis and is a circle contained in the graph.

EXAMPLES:

```python
sage: R = RibbonGraph(0,6); R
Ribbon graph of genus 0 and 6 boundary components

sage: R.mu()
5

sage: R.homology_basis()
```
Combinatorial and Discrete Geometry, Release 9.6

(continued from previous page)

\[
\begin{align*}
\text{sage: } & R = \text{RibbonGraph}(1,1); R \\
& \text{Ribbon graph of genus 1 and 1 boundary components} \\
\text{sage: } & R.\mu() \\
& 2 \\
\text{sage: } & R.\text{homology_basis()} \\
& [[[2], [5]], [[4], [1]], [[3], [6]], [[4], [1]]] \\
\text{sage: } & H = R.\text{reduced(); H} \\
& \text{Ribbon graph of genus 1 and 1 boundary components} \\
\text{sage: } & H.\sigma() \\
& (2,3,5,6) \\
\text{sage: } & H.\rho() \\
& (2,5)(3,6) \\
\text{sage: } & H.\text{homology_basis()} \\
& [[[2]], [[3], [6]]] \\
\text{sage: } & s3 = \text{PermutationGroupElement}'(1,2,3,4,5,6,7,8,9,10,11,27,25,23)(12,24,26,28,13,14,15,16,17,18,19,20,21,22)' \\
\text{sage: } & R3 = \text{RibbonGraph}(s3,r3); R3 \\
& \text{Ribbon graph of genus 5 and 4 boundary components} \\
\text{sage: } & R3.\mu() \\
& 13 \\
\text{sage: } & R3.\text{homology_basis()} \\
& [[[2], [13]], [[12], [1]], [[3], [14]], [[12], [1]], [[4], [15]], [[12], [1]], [[5], [16]], [[12], [1]], [[6], [17]], [[12], [1]], [[7], [18]], [[12], [1]], [[8], [19]], [[12], [1]], [[9], [20]], [[12], [1]], [[10], [21]], [[12], [1]], [[11], [22]], [[12], [1]], [[23], [24]], [[12], [1]], [[25], [26]], [[12], [1]], [[27], [28]], [[12], [1]]] \\
\text{sage: } & H3 = R3.\text{reduced(); H3} \\
& \text{Ribbon graph of genus 5 and 4 boundary components} \\
\text{sage: } & H3.\sigma() \\
& (2,3,4,5,6,7,8,9,10,11,27,25,23,24,26,28,13,14,15,16,17,18,19,20,21,22) \\
\text{sage: } & H3.\rho() \\
\text{sage: } & H3.\text{homology_basis()} \\
& [[[2], [13]],
\end{align*}
\]

(continues on next page)
make_generic()
Return a ribbon graph equivalent to self but where every vertex has valency 3.

OUTPUT:
• a ribbon graph that is equivalent to self but is generic in the sense that all vertices have valency 3

EXAMPLES:

```sage
R = RibbonGraph(1,3); R
Ribbon graph of genus 1 and 3 boundary components
sage: R.sigma()
(1,2,3,9,7)(4,8,10,5,6)
sage: R.rho()
(1,4)(2,5)(3,6)(7,8)(9,10)
sage: G = R.make_generic(); G
Ribbon graph of genus 1 and 3 boundary components
sage: G.sigma()
(2,3,11)(5,6,13)(7,8,15)(9,16,17)(10,14,19)(12,18,21)(20,22)
sage: G.rho()
(2,5)(3,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
sage: R.genus() == G.genus() and R.number_boundaries() == G.number_boundaries()
True
```

```sage
R = RibbonGraph(5,4); R
Ribbon graph of genus 5 and 4 boundary components
sage: R.sigma()
(1,2,3,4,5,6,7,8,9,10,11,27,25,23)(12,24,26,28,13,14,15,16,17,18,19,20,21,22)
sage: R.rho()
sage: G = R.reduced(); G
Ribbon graph of genus 5 and 4 boundary components
sage: G.sigma()
(2,3,4,5,6,7,8,9,10,11,27,25,23,24,26,28,13,14,15,16,17,18,19,20,21,22)
sage: G.rho()
sage: G.genus() == R.genus() and G.number_boundaries() == R.number_boundaries()
True
```
sage: R = RibbonGraph(0, 6); R
Ribbon graph of genus 0 and 6 boundary components
sage: R.sigma()
(1,11,9,7,5,3)(2,4,6,8,10,12)
sage: R.rho()
(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)
sage: G = R.reduced(); G
Ribbon graph of genus 0 and 6 boundary components
sage: G.sigma()
(3,4,6,8,10,12,11,9,7,5)
sage: G.rho()
(3,4)(5,6)(7,8)(9,10)(11,12)
sage: G.genus() == R.genus() and G.number_boundaries() == R.number_boundaries()
True

\textbf{\texttt{\textbf{mu}}()}

Return the rank of the first homology group of the thickening of the ribbon graph.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)')
sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)')
sage: R1 = RibbonGraph(s1, r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: R1.mu()
2
\end{verbatim}

\textbf{\texttt{\textbf{normalize}}()}

Return an equivalent graph such that the enumeration of its darts exhausts all numbers from 1 to the number of darts.

\textbf{OUTPUT:}

- a ribbon graph equivalent to \texttt{self} such that the enumeration of its darts exhausts all numbers from 1 to the number of darts.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: s0 = PermutationGroupElement('(1,2,3,4,5,6,7,15)(8,16,9,10,11,12,13,14)')
sage: r0 = PermutationGroupElement('(1,8)(22,9)(3,10)(4,11)(5,12)(6,13)(7,
˓→14)(15,16)')
sage: R0 = RibbonGraph(s0, r0); R0
Ribbon graph of genus 3 and 2 boundary components
sage: R0.normalize(); R0.sigma(); R0.rho()
Ribbon graph of genus 3 and 2 boundary components
(1,6,2,3,4,5,6,14)(7,15,8,9,10,11,12,13)
(1,7)(2,9)(3,10)(4,11)(5,12)(6,13)(8,16)(14,15)
sage: s1 = PermutationGroupElement('(5,10,12)(30,34,78)')
sage: r1 = PermutationGroupElement('(5,30)(10,34)(12,78)')
sage: R1 = RibbonGraph(s1, r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: R1.normalize(); R1.sigma(); R1.rho()
Ribbon graph of genus 1 and 1 boundary components
\end{verbatim}
number_boundaries()

Return number of boundary components of the thickening of the ribbon graph.

EXAMPLES:
The first example is the ribbon graph corresponding to the torus with one hole:

```
sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)')
sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)')
sage: R1 = RibbonGraph(s1,r1)
sage: R1.number_boundaries()
1
```
This example is constructed by taking the bipartite graph of type (3,3):

```
sage: s2 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,\rightarrow 15)(16,17,18)')
sage: r2 = PermutationGroupElement('(1,16)(2,13)(3,10)(4,17)(5,14)(6,11)(7,\rightarrow 18)(8,15)(9,12)')
sage: R2 = RibbonGraph(s2,r2)
sage: R2.number_boundaries()
3
```
reduced()

Return a ribbon graph with 1 vertex and \(\mu \) edges (where \(\mu \) is the first betti number of the graph).

OUTPUT:

- a ribbon graph whose \(\sigma \) permutation has only 1 non-singleton cycle and whose \(\rho \) permutation is a product of \(\mu \) disjoint 2-cycles

EXAMPLES:

```
sage: s1 = PermutationGroupElement('(1,3,5)(2,4,6)')
sage: r1 = PermutationGroupElement('(1,2)(3,4)(5,6)')
sage: R1 = RibbonGraph(s1,r1); R1
Ribbon graph of genus 1 and 1 boundary components
sage: G1 = R1.reduced(); G1
Ribbon graph of genus 1 and 1 boundary components
sage: G1.sigma()
(3,5,4,6)
sage: G1.rho()
(3,4)(5,6)
```
```
sage: s2 = PermutationGroupElement('(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,\rightarrow 15)(16,17,18,19)')
sage: R2 = RibbonGraph(s2,r2); R2
Ribbon graph of genus 1 and 3 boundary components
sage: G2 = R2.reduced(); G2
Ribbon graph of genus 1 and 3 boundary components
```
sage: G2.sigma()
(5,6,8,9,14,15,11,12)
sage: G2.rho()
(5,14)(6,11)(8,15)(9,12)
sage: s3 = PermutationGroupElement('((1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24))'
)
)
sage: R3 = RibbonGraph(s3,r3); R3
Ribbon graph of genus 3 and 1 boundary components
sage: G3 = R3.reduced(); G3
Ribbon graph of genus 3 and 1 boundary components
sage: G3.sigma()
(5,6,8,9,11,12,18,19,20,14,15,16)
sage: G3.rho()
(5,18)(6,14)(8,19)(9,15)(11,20)(12,16)

rho()

Return the permutation ρ of self.

EXAMPLES:

sage: s1 = PermutationGroupElement('((1,3,5,8)(2,4,6))'
)
sage: r1 = PermutationGroupElement('((1,2)(3,4)(5,6)(8,15))'
)
sage: R = RibbonGraph(s1, r1)
sage: R.rho()
(1,2)(3,4)(5,6)(8,15)

sigma()

Return the permutation σ of self.

EXAMPLES:

sage: s1 = PermutationGroupElement('((1,3,5,8)(2,4,6))'
)
sage: r1 = PermutationGroupElement('((1,2)(3,4)(5,6)(8,15))'
)
sage: R = RibbonGraph(s1, r1)
sage: R.sigma()
(1,3,5,8)(2,4,6)

sage.geometry.ribbon_graph.bipartite_ribbon_graph(p, q)

Return the bipartite graph modeling the corresponding Brieskorn-Pham singularity.

Take two parallel lines in the plane, and consider p points in one of them and q points in the other. Join with a line each point from the first set with every point with the second set. The resulting is a planar projection of the complete bipartite graph of type (p,q). If you consider the cyclic ordering at each vertex induced by the positive orientation of the plane, the result is a ribbon graph whose associated orientable surface with boundary is homeomorphic to the Milnor fiber of the Brieskorn-Pham singularity $x^p + y^q$. It satisfies that it has $\gcd(p,q)$ number of boundary components and genus $(pq - p - q - \gcd(p,q) - 2)/2$.

INPUT:

- p – a positive integer
- q – a positive integer

EXAMPLES:
sage: B23 = RibbonGraph(2,3,bipartite=True); B23; B23.sigma(); B23.rho()
Ribbon graph of genus 1 and 1 boundary components
(1,2,3)(4,5,6)(7,8)(9,10)(11,12)
(1,8)(2,10)(3,12)(4,7)(5,9)(6,11)

sage: B32 = RibbonGraph(3,2,bipartite=True); B32; B32.sigma(); B32.rho()
Ribbon graph of genus 1 and 1 boundary components
(1,2)(3,4)(5,6)(7,8,9)(10,11,12)
(1,9)(2,12)(3,8)(4,11)(5,7)(6,10)

sage: B33 = RibbonGraph(3,3,bipartite=True); B33; B33.sigma(); B33.rho()
Ribbon graph of genus 1 and 3 boundary components
(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)
(1,12)(2,15)(3,18)(4,11)(5,14)(6,17)(7,10)(8,13)(9,16)

sage: B24 = RibbonGraph(2,4,bipartite=True); B24; B24.sigma(); B24.rho()
Ribbon graph of genus 1 and 2 boundary components
(1,2,3,4)(5,6,7,8)(9,10)(11,12)(13,14)(15,16)
(1,10)(2,12)(3,14)(4,16)(5,9)(6,11)(7,13)(8,15)

sage: B47 = RibbonGraph(4,7, bipartite=True); B47; B47.sigma(); B47.rho()
Ribbon graph of genus 9 and 1 boundary components
(1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32)
(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)
(25,41)(26,45)(27,49)(28,53)

sage.geometry.ribbon_graph.make_ribbon(g, r)
Return a ribbon graph whose thickening has genus g and r boundary components.

INPUT:

- g – non-negative integer representing the genus of the thickening
- r – positive integer representing the number of boundary components of the thickening

OUTPUT:

- a ribbon graph that has 2 vertices (two non-trivial cycles in its sigma permutation) of valency 2g + r and it has 2g + r edges (and hence 4g + 2r darts)

EXAMPLES:

sage: from sage.geometry.ribbon_graph import make_ribbon
sage: R = make_ribbon(0,1); R
Ribbon graph of genus 0 and 1 boundary components
sage: R.sigma()
()
sage: R.rho()
(1,2)

sage: R = make_ribbon(0,5); R
Ribbon graph of genus 0 and 5 boundary components
sage: R.sigma()
4.6 Pseudolines

This module gathers everything that has to do with pseudolines, and for a start a `PseudolineArrangement` class that can be used to describe an arrangement of pseudolines in several different ways, and to translate one description into another, as well as to display `Wiring diagrams` via the `show` method.

In the following, we try to stick to the terminology given in [Fe1997], which can be checked in case of doubt. And please fix this module’s documentation afterwards :-)

Definition

A pseudoline can not be defined by itself, though it can be thought of as a x-monotone curve in the plane. A set of pseudolines, however, represents a set of such curves that pairwise intersect exactly once (and hence mimic the behaviour of straight lines in general position). We also assume that those pseudolines are in general position, that is that no three of them cross at the same point.

The present class is made to deal with a combinatorial encoding of a pseudolines arrangement, that is the ordering in which a pseudoline l_i of an arrangement $l_0, ..., l_{n-1}$ crosses the $n - 1$ other lines.

Warning: It is assumed through all the methods that the given lines are numbered according to their y-coordinate on the vertical line $x = -\infty$. For instance, it is not possible that the first transposition be $(0, 2)$ (or equivalently that the first line l_0 crosses is l_2 and conversely), because one of them would have to cross l_1 first.
4.6.1 Encodings

Permutations

An arrangement of pseudolines can be described by a sequence of n lists of length $n-1$, where the i-th list is a permutation of $\{0,\ldots,n-1\}\backslash i$ representing the ordering in which the i-th pseudoline meets the other ones.

```python
sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
sage: p = PseudolineArrangement(permutations)
sage: p
Arrangement of pseudolines of size 4
```

Sequence of transpositions

An arrangement of pseudolines can also be described as a sequence of $\binom{n}{2}$ transpositions (permutations of two elements). In this sequence, the transposition $(2,3)$ appears before $(8,2)$ if l_2 crosses l_3 before it crosses l_8. This encoding is easy to obtain by reading the wiring diagram from left to right (see the `show` method).

```python
sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: transpositions = [(3, 2), (3, 1), (0, 3), (2, 1), (0, 2), (0, 1)]
sage: p = PseudolineArrangement(transpositions)
sage: p
Arrangement of pseudolines of size 4
```

Note that this ordering is not necessarily unique.

Felsner’s Matrix

Felser gave an encoding of an arrangement of pseudolines that takes n^2 bits instead of the $n^2 log(n)$ bits required by the two previous encodings.

Instead of storing the permutation [3, 2, 1] to remember that line l_0 crosses l_3 then l_2 then l_1, it is sufficient to remember the positions for which each line l_i meets a line l_j with $j < i$. As l_0 – the first of the lines – can only meet pseudolines with higher index, we can store [0, 0, 0] instead of [3, 2, 1] stored previously. For l_1’s permutation [3, 2, 0] we only need to remember that l_1 first crosses 2 pseudolines of higher index, and then a pseudoline with smaller index, which yields the bit vector [0, 0, 1]. Hence we can transform the list of permutations above into a list of n bit vectors of length $n-1$, that is

```
3 2 1 0 0 0
3 2 0 0 0 1
3 1 0 0 1 1
2 1 0 1 1 1
```

In order to go back from Felser’s matrix to an encoding by a sequence of transpositions, it is sufficient to look for occurrences of 0 1 in the first column of the matrix, as it corresponds in the wiring diagram to a line going up while the line immediately above it goes down – those two lines cross. Each time such a pattern is found it yields a new transposition, and the matrix can be updated so that this pattern disappears. A more detailed description of this algorithm is given in [Fe1997].

```python
sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: felsner_matrix = [[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]]
sage: p = PseudolineArrangement(felsner_matrix)
sage: p
Arrangement of pseudolines of size 4
```
4.6.2 Example

Let us define in the plane several lines l_i of equation $y = ax + b$ by picking a coefficient a and b for each of them. We make sure that no two of them are parallel by making sure all of the a chosen are different, and we avoid a common crossing of three lines by adding a random noise to b:

```python
sage: n = 20
sage: l = sorted(zip(Subsets(20*n,n).random_element(), [randint(0,20*n)+random() for i in range(n)]))
```

We can now compute for each i the order in which line i meets the other lines:

```python
sage: permutations = [[0..i-1]+[i+1..n-1] for i in range(n)]
sage: a = lambda x : l[x][0]
sage: b = lambda x : l[x][1]
sage: for i, perm in enumerate(permutations):
    ....:    perm.sort(key = lambda j : (b(j)-b(i))/(a(i)-a(j)))
```

And finally build the line arrangement:

```python
sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: p = PseudolineArrangement(permutations)
sage: print(p)
Arrangement of pseudolines of size 20
sage: p.show(figsize=[20,8])
```

Author

Nathann Cohen

4.6.3 Methods

```python
class sage.geometry.pseudolines.PseudolineArrangement(seq, encoding='auto')
Bases: object

Creates an arrangement of pseudolines.

INPUT:

- seq (a sequence describing the line arrangement). It can be:
  - A list of $n$ permutations of size $n - 1$.
  - A list of $\binom{n}{2}$ transpositions
  - A Felsner matrix, given as a sequence of $n$ binary vectors of length $n - 1$.
- encoding (information on how the data should be interpreted), and can assume any value among ‘transpositions’, ‘permutations’, ‘Felsner’ or ‘auto’. In the latter case, the type will be guessed (default behaviour).

Note:

- The pseudolines are assumed to be integers $0..(n - 1)$.
```
• For more information on the different encodings, see the pseudolines module’s documentation.

felsner_matrix()

Return a Felsner matrix describing the arrangement.

See the pseudolines module’s documentation for more information on this encoding.

EXAMPLES:

```
sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
sage: p = PseudolineArrangement(permutations)
sage: p.felsner_matrix()
[[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]]
```

permutations()

Return the arrangements as n permutations of size $n-1$.

See the pseudolines module’s documentation for more information on this encoding.

EXAMPLES:

```
sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
sage: p = PseudolineArrangement(permutations)
sage: p.permutations()
[[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
```

show(**args)

Displays the pseudoline arrangement as a wiring diagram.

INPUT:

• **args – any arguments to be forwarded to the show method. In particular, to tune the dimensions, use the figsize argument (example below).

EXAMPLES:

```
sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
sage: p = PseudolineArrangement(permutations)
sage: p.show(figsize=[7,5])
```

transpositions()

Return the arrangement as $\binom{n}{2}$ transpositions.

See the pseudolines module’s documentation for more information on this encoding.

EXAMPLES:

```
sage: from sage.geometry.pseudolines import PseudolineArrangement
sage: permutations = [[3, 2, 1], [3, 2, 0], [3, 1, 0], [2, 1, 0]]
sage: p1 = PseudolineArrangement(permutations)
sage: transpositions = [(3, 2), (3, 1), (0, 3), (2, 1), (0, 2), (0, 1)]
sage: p2 = PseudolineArrangement(transpositions)
sage: p1 == p2
True
sage: p1.transpositions()
```
4.7 Voronoi diagram

This module provides the class `VoronoiDiagram` for computing the Voronoi diagram of a finite list of points in \mathbb{R}^d.

```python
class sage.geometry.voronoi_diagram.VoronoiDiagram(points)
    Bases: sage.structure.sage_object.SageObject

    Base class for the Voronoi diagram.

    Compute the Voronoi diagram of a list of points.

    INPUT:

    * points -- a list of points. Any valid input for the `PointConfiguration` will do.

    OUTPUT:

    An instance of the VoronoiDiagram class.

    EXAMPLES:

    Get the Voronoi diagram for some points in $\mathbb{R}^3$:
    ```
 sage: V = VoronoiDiagram([[1, 3, .3], [2, -2, 1], [-1, 2, -.1]]); V
 The Voronoi diagram of 3 points of dimension 3 in the Real Double Field
 sage: VoronoiDiagram([])
 The empty Voronoi diagram.
    ```

    Get the Voronoi diagram of a regular pentagon in $\mathbb{A}^2$. All cells meet at the origin:
    ```
 sage: DV = VoronoiDiagram([AA(c) for c in v for v in polytopes.regular_polygon(5).vertices_list()]); DV
 # optional - sage.rings.number_field
 The Voronoi diagram of 5 points of dimension 2 in the Algebraic Real Field
 sage: all(P.contains([0, 0]) for P in DV.regions().values())
 True
 sage: any(P.interior_contains([0, 0]) for P in DV.regions().values())
 False
    ```

    If the vertices are not converted to $\mathbb{A}$ before, the method throws an error:
    ```
 sage: polytopes.dodecahedron().vertices_list()[0][0].parent()
 # optional - sage.rings.number_field
 Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.
 sage: VoronoiDiagram(polytopes.dodecahedron().vertices_list())
 # optional - sage.rings.number_field
 Traceback (most recent call last):
 ...
    ```
```
ALGORITHM:
We use hyperplanes tangent to the paraboloid one dimension higher to get a convex polyhedron and then project back to one dimension lower.

Todo:
- The dual construction: Delaunay triangulation
- improve 2d-plotting
- implement 3d-plotting
- more general constructions, like Voronoi diagrams with weights (power diagrams)

REFERENCES:
- [Mat2002] Ch.5.7, p.118.

AUTHORS:
- Moritz Firsching (2012-09-21)

ambient_dim()
Return the ambient dimension of the points.

EXAMPLES:

sage: V = VoronoiDiagram([[.5, 3], [2, 5], [4, 5], [4, -1]])
sage: V.ambient_dim()
2
sage: V = VoronoiDiagram([[1, 2, 3, 4, 5, 6]]); V.ambient_dim()
6

base_ring()
Return the base_ring of the regions of the Voronoi diagram.

EXAMPLES:

sage: V = VoronoiDiagram([[1, 3, 1], [2, -2, 1], [-1, 2, 1/2]]); V.base_ring()
Rational Field
sage: V = VoronoiDiagram([[1, 3.14], [2, -2/3], [-1, 22]]); V.base_ring()
Real Double Field
sage: V = VoronoiDiagram([[1, 3], [2, 4]]); V.base_ring()
Rational Field

plot(cell_colors=None, **kwds)
Return a graphical representation for 2-dimensional Voronoi diagrams.

INPUT:
- cell_colors – (default: None) provide the colors for the cells, either as dictionary. Randomly colored cells are provided with None.
- **kwds – optional keyword parameters, passed on as arguments for plot().
OUTPUT:
A graphics object.

EXAMPLES:

```python
sage: P = [[0.671, 0.650], [0.258, 0.767], [0.562, 0.406], [0.254, 0.709], [0.
˓→493, 0.879]]

sage: V = VoronoiDiagram(P); S=V.plot()  # optional - sage.plot
sage: show(S, xmin=0, xmax=1, ymin=0, ymax=1, aspect_ratio=1, axes=false)  # optional - sage.plot

sage: S=V.plot(cell_colors={0: 'red', 1: 'blue', 2: 'green', 3: 'white', 4: 'yellow'})  # optional - sage.plot
sage: show(S, xmin=0, xmax=1, ymin=0, ymax=1, aspect_ratio=1, axes=false)  # optional - sage.plot

sage: S=V.plot(cell_colors=['red', 'blue', 'red', 'white', 'white'])  # optional - sage.plot
sage: show(S, xmin=0, xmax=1, ymin=0, ymax=1, aspect_ratio=1, axes=false)  # optional - sage.plot

sage: S=V.plot(cell_colors='something else')  # optional - sage.plot
Traceback (most recent call last):
... AssertionError: 'cell_colors' must be a list or a dictionary
```

Trying to plot a Voronoi diagram of dimension other than 2 gives an error:

```python
sage: VoronoiDiagram([[1, 2, 3], [6, 5, 4]]).plot()  # optional - sage.plot
Traceback (most recent call last):
... NotImplementedError: Plotting of 3-dimensional Voronoi diagrams not implemented
```

points()
Return the input points (as a PointConfiguration).

EXAMPLES:

```python
sage: V = VoronoiDiagram([[.5, 3], [2, 5], [4, 5], [4, -1]]); V.points()
A point configuration in affine 2-space over Real Field
with 53 bits of precision consisting of 4 points.
The triangulations of this point configuration are
assumed to be connected, not necessarily fine,
not necessarily regular.
```

regions()
Return the Voronoi regions of the Voronoi diagram as a dictionary of polyhedra.

EXAMPLES:
sage: V = VoronoiDiagram([[1, 3, .3], [2, -2, 1], [-1, 2, -.1]])

sage: P = V.points()

sage: V.regions() == {P[0]: Polyhedron(base_ring=RDF, lines=[(-RDF(0.375), RDF(0.13888888890000001), RDF(1.5277777779999999))],
 rays=[(RDF(9), -RDF(1), -RDF(20)), (RDF(4.5), RDF(1), -RDF(25))],
 vertices=[(-RDF(1.10749999999999999)), RDF(1.1494444444), RDF(9.0138888890000004))]),
 P[1]: Polyhedron(base_ring=RDF, lines=[(-RDF(0.375), RDF(0.13888888890000001), RDF(1.5277777779999999))],
 rays=[(RDF(9), -RDF(1), -RDF(20)), (-RDF(2.25), -RDF(1), RDF(2.5))],
 vertices=[(-RDF(1.10749999999999999), RDF(1.1494444444), RDF(9.0138888890000004))]),
 P[2]: Polyhedron(base_ring=RDF, lines=[(-RDF(0.375), RDF(0.13888888890000001), RDF(1.5277777779999999))],
 rays=[(RDF(4.5), RDF(1), -RDF(25)), (-RDF(2.25), -RDF(1), RDF(2.5))],
 vertices=[(-RDF(1.10749999999999999), RDF(1.1494444444), RDF(9.0138888890000004))])}

True
5.1 Find isomorphisms between fans

exception `sage.geometry.fan_isomorphism.FanNotIsomorphicError`

Bases: `Exception`

Exception to return if there is no fan isomorphism

`sage.geometry.fan_isomorphism.fan_2d_cyclically_ordered_rays(fan)`

Return the rays of a 2-dimensional fan in cyclic order.

INPUT:

- *fan* – a 2-dimensional fan.

OUTPUT:

A `PointCollection` containing the rays in one particular cyclic order.

EXAMPLES:

```python
sage: rays = ((1, 1), (-1, -1), (-1, 1), (1, -1))
sage: cones = [(0,2), (2,1), (1,3), (3,0)]
sage: fan = Fan(cones, rays)
sage: fan.rays()
N( 1, 1),
N(-1, -1),
N(-1, 1),
N( 1, -1)
in 2-d lattice N
sage: from sage.geometry.fan_isomorphism import fan_2d_cyclicallyordered_rays
sage: fan_2d_cyclicallyordered_rays(fan)
N(-1, -1),
N(-1, 1),
N( 1, 1),
N( 1, -1)
in 2-d lattice N
```

`sage.geometry.fan_isomorphism.fan_2d_echelon_form(fan)`

Return echelon form of a cyclically ordered ray matrix.

INPUT:

- *fan* – a fan.
OUTPUT:
A matrix. The echelon form of the rays in one particular cyclic order.

EXAMPLES:

```
sage: fan = toric_varieties.P2().fan() # optional - palp
sage: from sage.geometry.fan_isomorphism import fan_2d_echelon_form
sage: fan_2d_echelon_form(fan) # optional - palp
[ 1 0 -1]
[ 0 1 -1]
```

```
note that the echelon form of the ordered ray matrices are unique up to different cyclic orderings.

INPUT:
* fan – a fan.

OUTPUT:
A set of matrices. The set of all echelon forms for all different cyclic orderings.

EXAMPLES:

```
sage: fan = toric_varieties.P2().fan() # optional - palp
sage: from sage.geometry.fan_isomorphism import fan_2d_echelon_forms
sage: fan_2d_echelon_forms(fan) # optional - palp
frozenset({[[1 0 -1]
[0 1 -1]})
```

```
sage: fan = toric_varieties.dP7().fan() # optional - palp
sage: sorted(fan_2d_echelon_forms(fan)) # optional - palp
[[1 0 -1 -1 0] [1 0 -1 -1 0] [1 0 -1 -1 1] [1 0 -1 0 1]
[0 1 0 -1 -1], [0 1 1 0 -1], [0 1 1 0 -1], [0 1 0 -1 -1],
[1 0 -1 0 1]
[0 1 1 -1 -1]
```

```
sage.geometry.fan_isomorphism.fan_isomorphic_necessary_conditions(fan1, fan2)
Check necessary (but not sufficient) conditions for the fans to be isomorphic.

INPUT:
* fan1, fan2 – two fans.

OUTPUT:
Boolean. False if the two fans cannot be isomorphic. True if the two fans may be isomorphic.

EXAMPLES:
sage.geometry.fan_isomorphism.fan_isomorphism_generator(fan1, fan2)

Iterate over the isomorphisms from fan1 to fan2.

ALGORITHM:
The sage.geometry.fan.Fan.vertex_graph() of the two fans is compared. For each graph isomorphism, we attempt to lift it to an actual isomorphism of fans.

INPUT:
• fan1, fan2 – two fans.

OUTPUT:
Yields the fan isomorphisms as matrices acting from the right on rays.

EXAMPLES:

sage: fan = toric_varieties.P2().fan() # optional - palp
sage: from sage.geometry.fan_isomorphism import fan_isomorphism_generator
sage: sorted(fan_isomorphism_generator(fan, fan)) # optional - palp
[[[-1, -1], [-1, 0], [0, 1], [0, 1], [1, 0], [1, 0]]
[[-1, -1], [-1, 1], [0, 1], [0, 1], [1, 0], [1, 0]]
[[0, 1], [1, 0], [-1, -1], [-1, 1], [0, 1], [0, 1]]
]
sage: m1 = matrix([[1, 0], [0, -5], [-3, 4]])
sage: m2 = matrix([[3, 0], [1, 0], [-2, 1]])
sage: m1.elementary_divisors() == m2.elementary_divisors() == [1, 1, 0]
True
sage: fan1 = Fan([Cone([m1*vector([23, 14]), m1*vector([3, 100])]),
....: Cone([m1*vector([-1, -14]), m1*vector([-100, -5])])])
...
[[-12, 1, -5]
[-4, 0, -1]
[-5, 0, -1]]
]
sage: m0 = identity_matrix(ZZ, 2)
sage: m1 = matrix([[1, 0], [0, -5], [-3, 4]])
sage: m2 = matrix([[3, 0], [1, 0], [-2, 1]])
sage: m1.elementary_divisors() == m2.elementary_divisors() == [1, 1, 0]
True
sage: fan0 = Fan([Cone([m0*vector([1,0]), m0*vector([1,1])]),
 Cone([m0*vector([1,1]), m0*vector([0,1])])])

sage: fan1 = Fan([Cone([m1*vector([1,0]), m1*vector([1,1])]),
 Cone([m1*vector([1,1]), m1*vector([0,1])])])

sage: fan2 = Fan([Cone([m2*vector([1,0]), m2*vector([1,1])]),
 Cone([m2*vector([1,1]), m2*vector([0,1])])])

sage: sorted(fan_isomorphism_generator(fan0, fan0))

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

sage: sorted(fan_isomorphism_generator(fan1, fan1))

\[
\begin{bmatrix}
-3 & -20 & 28 \\
-1 & -4 & 7 \\
-1 & -5 & 8
\end{bmatrix},
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

sage: sorted(fan_isomorphism_generator(fan1, fan2))

\[
\begin{bmatrix}
-24 & -3 & 7 \\
-7 & -1 & 2 \\
-8 & -1 & 2
\end{bmatrix},
\begin{bmatrix}
-12 & 1 & -5 \\
-4 & 0 & -1 \\
-5 & 0 & -1
\end{bmatrix}
\]

sage: sorted(fan_isomorphism_generator(fan2, fan1))

\[
\begin{bmatrix}
0 & 1 & -1 \\
1 & -13 & 8 \\
0 & -5 & 4
\end{bmatrix},
\begin{bmatrix}
0 & 1 & -1 \\
2 & -8 & 1 \\
1 & 0 & -3
\end{bmatrix}
\]

\begin{verbatim}
sage.geometry.fan_isomorphism.find_isomorphism(fan1, fan2, check=False)

Find an isomorphism of the two fans.

INPUT:

- fan1, fan2 – two fans.
- check – boolean (default: False). Passed to the fan morphism constructor, see FanMorphism().

OUTPUT:

A fan isomorphism. If the fans are not isomorphic, a FanNotIsomorphicError is raised.

EXAMPLES:

sage: rays = ((1, 1), (0, 1), (-1, -1), (3, 1))

sage: cones = [(0,1), (1,2), (2,3), (3,0)]

sage: fan1 = Fan(cones, rays)

sage: m = matrix([[[-2,3],[1,-1]]])

sage: m.det() == -1
True

sage: fan2 = Fan(cones, [vector(r)*m for r in rays])

sage: from sage.geometry.fan_isomorphism import find_isomorphism
\end{verbatim}
5.2 Construction of finite atomic and coatomic lattices from incidences

This module provides the function \texttt{lattice_from_incidences()} for computing finite atomic and coatomic lattices in the sense of partially ordered sets where any two elements have meet and joint. For example, the face lattice of a polyhedron.

\begin{Verbatim}
\texttt{sage.geometry.hasse_diagram.lattice_from_incidences(atom_to_coatoms, coatom_to_atoms,}
\texttt{ face_constructor=None, required_atoms=None,}
\texttt{ key=None, **kwds)}
\end{Verbatim}

Compute an atomic and coatomic lattice from the incidence between atoms and coatoms.

INPUT:

- \texttt{atom_to_coatoms} – list, \texttt{atom_to_coatom[i]} should list all coatoms over the \texttt{i}-th atom;
- \texttt{coatom_to_atoms} – list, \texttt{coatom_to_atom[i]} should list all atoms under the \texttt{i}-th coatom;
- \texttt{face_constructor} – function or class taking as the first two arguments sorted tuple of integers and any keyword arguments. It will be called to construct a face over atoms passed as the first argument and under coatoms passed as the second argument. Default implementation will just return these two tuples as a tuple;
- \texttt{required_atoms} – list of atoms (default:None). Each non-empty “face” requires at least one of the specified atoms present. Used to ensure that each face has a vertex.
- \texttt{key} – any hashable value (default: None). It is passed down to \texttt{FinitePoset}.
- all other keyword arguments will be passed to \texttt{face_constructor} on each call.

OUTPUT:

- \texttt{finite poset} with elements constructed by \texttt{face_constructor}.

\textbf{Note:} In addition to the specified partial order, finite posets in Sage have internal total linear order of elements which extends the partial one. This function will try to make this internal order to start with the bottom and
atoms in the order corresponding to `atom_to_coatoms` and to finish with coatoms in the order corresponding to `coatom_to_atoms` and the top. This may not be possible if atoms and coatoms are the same, in which case the preference is given to the first list.

ALGORITHM:
The detailed description of the used algorithm is given in [KP2002].
The code of this function follows the pseudo-code description in the section 2.5 of the paper, although it is mostly based on frozen sets instead of sorted lists - this makes the implementation easier and should not cost a big performance penalty. (If one wants to make this function faster, it should be probably written in Cython.)

While the title of the paper mentions only polytopes, the algorithm (and the implementation provided here) is applicable to any atomic and coatomic lattice if both incidences are given, see Section 3.4.

In particular, this function can be used for strictly convex cones and complete fans.

REFERENCES: [KP2002]

AUTHORS:

EXAMPLES:
Let us construct the lattice of subsets of \{0, 1, 2\}. Our atoms are \{0\}, \{1\}, and \{2\}, while our coatoms are \{0,1\}, \{0,2\}, and \{1,2\}. Then incidences are

```sage
atom_to_coatoms = [(0,1), (0,2), (1,2)]
sage: coatom_to_atoms = [(0,1), (0,2), (1,2)]
```

and we can compute the lattice as

```sage
from sage.geometry.cone import lattice_from_incidences
sage: L = lattice_from_incidences(  
    atom_to_coatoms, coatom_to_atoms)
sage: L
Finite lattice containing 8 elements with distinguished linear extension
```

```sage
sage: for level in L.level_sets(): print(level)
[()]
[((0,), (0, 1)), ((1,), (0, 2)), ((2,), (1, 2))]
[((0, 1), (0,)), ((0, 2), (1,)), ((1, 2), (2,))]
[((0, 1, 2), ())]  
```

For more involved examples see the source code of `sage.geometry.cone.ConvexRationalPolyhedralCone.face_lattice()` and `sage.geometry.fan.RationalPolyhedralFan._compute_cone_lattice()`.
5.3 Cython helper methods to compute integral points in polyhedra.

```python
class sage.geometry.integral_points.InequalityCollection:
    Bases: object
    A collection of inequalities.

    INPUT:
    • polyhedron – a polyhedron defining the inequalities.
    • permutation – list; a 0-based permutation of the coordinates. Will be used to permute the coordinates of
      the inequality.
    • box_min, box_max – the (not permuted) minimal and maximal coordinates of the bounding box. Used for
      bounds checking.

    EXAMPLES:
    sage: from sage.geometry.integral_points import InequalityCollection
    sage: P_QQ = Polyhedron(identity_matrix(3).columns() + [(-2, -1, -1)], base_ring=QQ)
    sage: ieq = InequalityCollection(P_QQ, [0, 1, 2], [0]*3, [1]*3); ieq
    The collection of inequalities
    integer: (3, -2, -2) x + 2 >= 0
    integer: (-1, 4, -1) x + 1 >= 0
    integer: (-1, -1, 4) x + 1 >= 0
    integer: (-1, -1, -1) x + 1 >= 0
    sage: P_RR = Polyhedron(identity_matrix(2).columns() + [(-2.7, -1)], base_ring=RDF)
    sage: InequalityCollection(P_RR, [0, 1], [0]*2, [1]*2)
    The collection of inequalities
    integer: (-1, -1) x + 1 >= 0
    generic: (-1.0, 3.7) x + 1.0 >= 0
    generic: (1.0, -1.35) x + 1.35 >= 0
    sage: line = Polyhedron(eqns=[(2, 3, 7)])
    sage: InequalityCollection(line, [0, 1], [0]*2, [1]*2)
    The collection of inequalities
    integer: (3, 7) x + 2 >= 0
    integer: (-3, -7) x + -2 >= 0
```

are_satisfied(inner_loop_variable)

Return whether all inequalities are satisfied.

You must call `prepare_inner_loop()` before calling this method.

INPUT:

• inner_loop_variable – Integer. the 0-th coordinate of the lattice point.

OUTPUT:

Boolean. Whether the lattice point is in the polyhedron.

EXAMPLES:

```python
sage: from sage.geometry.integral_points import InequalityCollection
sage: line = Polyhedron(eqns=[[2, 3, 7]])
sage: ieq = InequalityCollection(line, [0, 1], [0]*2, [1]*2)
```
Combinatorial and Discrete Geometry, Release 9.6

(continued from previous page)

```python
sage: ieq.prepare_next_to_inner_loop([3,4])
sage: ieq.prepare_inner_loop([3,4])
sage: ieq.are_satisfied(3)
False
```

prepare_inner_loop \(p\)

Peel off the inner loop.

In the inner loop of `rectangular_box_points()`, we have to repeatedly evaluate \(Ax + b \geq 0\). To speed up computation, we pre-evaluate

\[
c = Ax - A_0 x_0 + b = b + \sum_{i=1}^n A_i x_i
\]

and only test \(A_0 x_0 + c \geq 0\) in the inner loop.

You must call `prepare_next_to_inner_loop()` before calling this method.

INPUT:

- \(p\) – the coordinates of the point to loop over. Only the \(p[1:]\) entries are used.

EXAMPLES:

```python
sage: from sage.geometry.integral_points import InequalityCollection, print_cache
sage: P = Polyhedron(ieqs=[(2,3,7,11)])
sage: ieq = InequalityCollection(P, [0,1,2], [0]*3, [1]*3); ieq
The collection of inequalities
integer: (3, 7, 11) x + 2 >= 0
sage: ieq.prepare_next_to_inner_loop([2,1,3])
sage: ieq.prepare_inner_loop([2,1,3])
sage: print_cache(ieq)
Cached inner loop: 3 * x_0 + 42 >= 0
Cached next-to-inner loop: 3 * x_0 + 7 * x_1 + 35 >= 0
```

prepare_next_to_inner_loop \(p\)

Peel off the next-to-inner loop.

In the next-to-inner loop of `rectangular_box_points()`, we have to repeatedly evaluate \(Ax - A_0 x_0 + b\).

To speed up computation, we pre-evaluate

\[
c = b + \sum_{i=2}^n A_i x_i
\]

and only compute \(Ax - A_0 x_0 + b = A_1 x_1 + c \geq 0\) in the next-to-inner loop.

INPUT:

- \(p\) – the point coordinates. Only \(p[2:]\) coordinates are potentially used by this method.

EXAMPLES:

```python
sage: from sage.geometry.integral_points import InequalityCollection, print_cache
sage: P = Polyhedron(ieqs=[(2,3,7,11)])
sage: ieq = InequalityCollection(P, [0,1,2], [0]*3, [1]*3); ieq
The collection of inequalities
integer: (3, 7, 11) x + 2 >= 0
sage: ieq.prepare_next_to_inner_loop([2,1,3])
sage: ieq.prepare_inner_loop([2,1,3])
sage: print_cache(ieq)
Cached inner loop: 3 * x_0 + 42 >= 0
Cached next-to-inner loop: 3 * x_0 + 7 * x_1 + 35 >= 0
```
Combinatorial and Discrete Geometry, Release 9.6

(continued from previous page)

integer: (3, 7, 11) x + 2 >= 0
sage: ieq.prepare_next_to_inner_loop([2,1,3])
sage: ieq.prepare_inner_loop([2,1,3])
sage: print_cache(ieq)
Cached inner loop: 3 * x_0 + 42 >= 0
Cached next-to-inner loop: 3 * x_0 + 7 * x_1 + 35 >= 0

satisfied_as_equalities(inner_loop_variable)

Return the inequalities (by their index) that are satisfied as equalities.

INPUT:

• inner_loop_variable – Integer. the 0-th coordinate of the lattice point.

OUTPUT:

A set of integers in ascending order. Each integer is the index of a H-representation object of the polyhedron (either a inequality or an equation).

EXAMPLES:

sage: from sage.geometry.integral_points import InequalityCollection
sage: quadrant = Polyhedron(rays=[[1,0], (0,1)])
sage: ieqs = InequalityCollection(quadrant, [0,1], [-1]*2, [1]*2)
sage: ieqs.prepare_next_to_inner_loop([-1,0])
sage: ieqs.prepare_inner_loop([-1,0])
sage: ieqs.satisfied_as_equalities(-1)
frozenset({1})
sage: ieqs.satisfied_as_equalities(0)
frozenset({0, 1})
sage: ieqs.satisfied_as_equalities(1)
frozenset({1})

swap_ineq_to_front(i)

Swap the i-th entry of the list to the front of the list of inequalities.

INPUT:

• i – Integer. The Inequality_int to swap to the beginning of the list of integral inequalities.

EXAMPLES:

sage: from sage.geometry.integral_points import InequalityCollection
sage: P_QQ = Polyhedron(identity_matrix(3).columns() + [(-2, -1,-1)], base_ring=QQ)
sage: iec = InequalityCollection(P_QQ, [0,1,2], [0]*3,[1]*3)
sage: iec
The collection of inequalities
integer: (3, -2, -2) x + 2 >= 0
integer: (1, 4, -1) x + 1 >= 0
integer: (1, -1, 4) x + 1 >= 0
integer: (-1, -1, 1) x + 1 >= 0
sage: iec.swap_ineq_to_front(3)
sage: iec
The collection of inequalities
integer: (3, -2, -2) x + 2 >= 0
integer: (1, 4, -1) x + 1 >= 0
integer: (1, -1, 4) x + 1 >= 0
(continues on next page)

5.3. Cython helper methods to compute integral points in polyhedra.
class sage.geometry.integral_points.Inequality_generic

Bases: object

An inequality whose coefficients are arbitrary Python/Sage objects

INPUT:

- \(A\) – list of coefficients
- \(b\) – element

OUTPUT:

Inequality \(Ax + b \geq 0\).

EXAMPLES:

```sage
def from sage.geometry.integral_points import Inequality_generic
def Inequality_generic([2*pi, sqrt(3), 7/2], -5.5)
generic: (2*pi, sqrt(3), 7/2) x + -5.50000000000000 >= 0
```
sage: Inequality_int([2,3,7], -5.2, [10]*3)
Traceback (most recent call last):
 ...
ValueError: Not integral.

sage: Inequality_int([2,3,7], -5*10^50, [10]*3) # actual error message can differ
 ← between 32 and 64 bit
Traceback (most recent call last):
 ...
OverflowError: ...

sage.geometry.integral_points.loop_over_parallelotope_points(e, d, VDinv, R, lattice, A=None, b=None)
The inner loop of parallelotope_points().

INPUT:
See parallelotope_points() for e, d, VDinv, R, lattice.
• A, b: Either both None or a vector and number. If present, only the parallelotope points satisfying $Ax \leq b$
are returned.

OUTPUT:
The points of the half-open parallelotope as a tuple of lattice points.

EXAMPLES:

sage: e = [3]
sage: d = prod(e)
sage: VDinv = matrix(ZZ, [[1]])
sage: R = column_matrix(ZZ, [3,3,3])
sage: lattice = ZZ^3
sage: from sage.geometry.integral_points import loop_over_parallelotope_points
sage: loop_over_parallelotope_points(e, d, VDinv, R, lattice)
((0, 0, 0), (1, 1, 1), (2, 2, 2))

sage: A = vector(ZZ, [1,0,0])
sage: b = 1
sage: loop_over_parallelotope_points(e, d, VDinv, R, lattice, A, b)
((0, 0, 0), (1, 1, 1))

sage.geometry.integral_points.parallelotope_points(spanning_points, lattice)
Return integral points in the parallelotope starting at the origin and spanned by the spanning_points.

See semigroup_generators() for a description of the algorithm.

INPUT:
• spanning_points – a non-empty list of linearly independent rays (\mathbb{Z}-vectors or toric lattice
 elements), not necessarily primitive lattice points.

OUTPUT:
The tuple of all lattice points in the half-open parallelotope spanned by the rays r_i,
\[
par\{r_i\} = \sum_{0 \leq a_i < 1} a_i r_i
\]
By half-open parallelotope, we mean that the points in the facets not meeting the origin are omitted.

EXAMPLES:

Note how the points on the outward-facing factes are omitted:

```python
sage: from sage.geometry.integral_points import parallelotope_points
sage: rays = list(map(vector, [(2,0), (0,2)]))
(sage: parallelotope_points(rays, ZZ^2)
((0, 0), (0, 1), (1, 0), (1, 1))
```

The rays can also be toric lattice points:

```python
sage: rays = list(map(ToricLattice(2), [(2,0), (0,2)]))
(sage: parallelotope_points(rays, ToricLattice(2))
(N(0, 0), N(0, 1), N(1, 0), N(1, 1))
```

A non-smooth cone:

```python
sage: c = Cone([ (1,0), (1,2) ])
(sage: parallelotope_points(c.rays(), c.lattice())
(N(0, 0), N(1, 1))
```

A ValueError is raised if the spanning_points are not linearly independent:

```python
sage: rays = list(map(ToricLattice(2), [(1,1)]*2))
(sage: parallelotope_points(rays, ToricLattice(2))
Traceback (most recent call last):
...
ValueError: The spanning points are not linearly independent!
```

sage.geometry.integral_points.print_cache(inequality_collection)

Print the cached values in *Inequality_int* (for debugging/doctesting only).

EXAMPLES:

```python
sage: from sage.geometry.integral_points import InequalityCollection, print_cache
sage: P = Polyhedron(ieqs=[[2,3,7]])
(sage: ieq = InequalityCollection(P, [0,1], [0]*2,[1]*2); ieq
The collection of inequalities
integer: (3, 7) x + 2 >= 0
(sage: ieq.prepare_next_to_inner_loop([3,5])
(sage: ieq.prepare_inner_loop([3,5])
(sage: print_cache(ieq)
Cached inner loop: 3 * x_0 + 37 >= 0
Cached next-to-inner loop: 3 * x_0 + 7 * x_1 + 2 >= 0
```

sage.geometry.integral_points.ray_matrix_normal_form(R)

Compute the Smith normal form of the ray matrix for *parallelotope_points()*.

INPUT:

- R – Z-matrix whose columns are the rays spanning the parallelotope.

OUTPUT:

A tuple containing e, d, and VDinv.

EXAMPLES:
sage: from sage.geometry.integral_points import ray_matrix_normal_form
sage: R = column_matrix(ZZ, [3, 3, 3])
sage: ray_matrix_normal_form(R)
([3], 3, [1])

sage.geometry.integral_points.rectangular_box_points(box_min, box_max, polyhedron=None, count_only=False, return_saturated=False)

Return the integral points in the lattice bounding box that are also contained in the given polyhedron.

INPUT:

- `box_min` – A list of integers. The minimal value for each coordinate of the rectangular bounding box.
- `box_max` – A list of integers. The maximal value for each coordinate of the rectangular bounding box.
- `polyhedron` – A `Polyhedron_base`, a PPL `C_Polyhedron`, or `None` (default).
- `count_only` – Boolean (default: False). Whether to return only the total number of vertices, and not their coordinates. Enabling this option speeds up the enumeration. Cannot be combined with the `return_saturated` option.
- `return_saturated` – Boolean (default: False). Whether to also return which inequalities are saturated for each point of the polyhedron. Enabling this slows down the enumeration. Cannot be combined with the `count_only` option.

OUTPUT:

By default, this function returns a tuple containing the integral points of the rectangular box spanned by `box_min` and `box_max` and that lie inside the `polyhedron`. For sufficiently large bounding boxes, this are all integral points of the polyhedron.

If no polyhedron is specified, all integral points of the rectangular box are returned.

If `count_only` is specified, only the total number (an integer) of found lattice points is returned.

If `return_saturated` is enabled, then for each integral point a pair `(point, Hrep)` is returned where `point` is the point and `Hrep` is the set of indices of the H-representation objects that are saturated at the point.

ALGORITHM:

This function implements the naive algorithm towards counting integral points. Given min and max of vertex coordinates, it iterates over all points in the bounding box and checks whether they lie in the polyhedron. The following optimizations are implemented:

- Cython: Use machine integers and optimizing C/C++ compiler where possible, arbitrary precision integers where necessary. Bounds checking, no compile time limits.
- Unwind inner loop (and next-to-inner loop):

\[Ax \leq b \iff a_1 x_1 \leq b - \sum_{i=2}^{d} a_i x_i \]

so we only have to evaluate \(a_1 \times x_1 \) in the inner loop.

- Coordinates are permuted to make the longest box edge the inner loop. The inner loop is optimized to run very fast, so its best to do as much work as possible there.
- Continuously reorder inequalities and test the most restrictive inequalities first.
- Use convexity and only find first and last allowed point in the inner loop. The points in-between must be points of the polyhedron, too.

EXAMPLES:

5.3. Cython helper methods to compute integral points in polyhedra. 569
sage: from sage.geometry.integral_points import rectangular_box_points
sage: rectangular_box_points([0,0,0],[1,2,3])
((0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3),
 (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 1, 3),
 (0, 2, 0), (0, 2, 1), (0, 2, 2), (0, 2, 3),
 (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 0, 3),
 (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 1, 3),
 (1, 2, 0), (1, 2, 1), (1, 2, 2), (1, 2, 3))

sage: rectangular_box_points([0,0,0],[1,2,3], count_only=True)
24

sage: cell24 = polytopes.twenty_four_cell()
sage: rectangular_box_points([-1]*4, [1]*4, cell24)
((-1, 0, 0, 0), (0, -1, 0, 0), (0, 0, -1, 0), (0, 0, 0, -1),
 (0, 0, 0, 0),
 (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0))

sage: d = 3
sage: dilated_cell24 = d*cell24
sage: len(rectangular_box_points([-d]*4, [d]*4, dilated_cell24))
305

sage: d = 6
sage: dilated_cell24 = d*cell24
sage: len(rectangular_box_points([-d]*4, [d]*4, dilated_cell24))
3625

sage: rectangular_box_points([-d]*4, [d]*4, dilated_cell24, count_only=True)
3625

sage: polytope = Polyhedron([(-4,-3,-2,-1),(3,1,1,1),(1,2,1,1),(1,1,3,0),(1,3,2,4)])
sage: pts = rectangular_box_points([-4]*4, [4]*4, polytope); pts
((-4, -3, -2, -1), (-1, 1, 1, 1), (0, 1, 2, 1), (1, 1, 3, 0),
 (1, 2, 1, 1), (1, 2, 2, 2), (1, 3, 2, 4), (2, 1, 1, 1), (3, 1, 1, 1))

sage: all(polytope.contains(p) for p in pts)
True

sage: set(map(tuple,pts)) == \
.....: set([(-4,-3,-2,-1),(3,1,1,1),(1,2,1,1),(1,1,3,0),(1,3,2,4),
.....: (0,1,1,1),(1,2,2,2),(-1,0,0,1),(1,1,1,1),(2,1,1,1)]) # computed with
.....: PALP
True

Long ints and non-integral polyhedra are explicitly allowed:

sage: polytope = Polyhedron([[1], [10*pi.n()]], base_ring=RDF)
sage: len(rectangular_box_points([-100], [100], polytope))
31

sage: halfplane = Polyhedron(ieqs=[(-1,1,0)])
sage: rectangular_box_points([0,-1+10^50], [0,1+10^50])
((0, 99),
(0, 100),
(0, 10001))
sage: len(rectangular_box_points([0, -100+10^50], [1, 100+10^50], halfplane))
201

Using a PPL polyhedron:

```python
sage: from ppl import Variable, Generator_System, C_Polyhedron, point
sage: gs = Generator_System()
sage: x = Variable(0); y = Variable(1); z = Variable(2)
sage: gs.insert(point(0*x + 1*y + 0*z))
sage: gs.insert(point(0*x + 1*y + 3*z))
sage: gs.insert(point(3*x + 1*y + 0*z))
sage: gs.insert(point(3*x + 1*y + 3*z))
sage: poly = C_Polyhedron(gs)
sage: rectangular_box_points([0]*3, [3]*3, poly)
((0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 1, 3),
(2, 1, 0), (2, 1, 1), (2, 1, 2), (2, 1, 3), (3, 1, 0), (3, 1, 1), (3, 1, 2), (3, 1, 3))
```

Optionally, return the information about the saturated inequalities as well:

```python
sage: cube = polytopes.cube()
sage: cube.Hrepresentation(0)
An inequality (-1, 0, 0) x + 1 >= 0
sage: cube.Hrepresentation(1)
An inequality (0, -1, 0) x + 1 >= 0
sage: cube.Hrepresentation(2)
An inequality (0, 0, -1) x + 1 >= 0
sage: rectangular_box_points([0]^3, [1]^3, cube, return_saturated=True)
(((0, 0, 0), frozenset()),
((0, 0, 1), frozenset({2})),
((0, 1, 0), frozenset({1})),
((0, 1, 1), frozenset({1, 2})),
((1, 0, 0), frozenset({0})),
((1, 0, 1), frozenset({0, 2})),
((1, 1, 0), frozenset({0, 1})),
((1, 1, 1), frozenset({0, 1, 2})))
```

`sage.geometry.integral_points.simplex_points(vertices)`
Return the integral points in a lattice simplex.

INPUT:

- `vertices` – an iterable of integer coordinate vectors. The indices of vertices that span the simplex under consideration.

OUTPUT:

A tuple containing the integral point coordinates as Z-vectors.

EXAMPLES:

5.3. Cython helper methods to compute integral points in polyhedra.
The simplex need not be full-dimensional:

```
sage: simplex = Polyhedron([(1,2,3,5), (2,3,7,5), (-2,-3,-11,5)])
sage: simplex_points(simplex.Vrepresentation())
((2, 3, 7, 5), (0, 0, -2, 5), (-2, -3, -11, 5), (1, 2, 3, 5))
```

```
sage: simplex_points([(2,3,7)])
((2, 3, 7),)
```

5.4 Helper Functions For Freeness Of Hyperplane Arrangements

This contains the algorithms to check for freeness of a hyperplane arrangement. See `sage.geometry.hyperplane_arrangement.HyperplaneArrangementElement.is_free()` for details.

Note: This could be extended to a freeness check for more general modules over a polynomial ring.

```
sage.geometry.hyperplane_arrangement.check_freeness.construct_free_chain(A)
```

Construct the free chain for the hyperplanes \(A \).

ALGORITHM:

We follow Algorithm 6.5 in [BC2012].

INPUT:

- \(A \) – a hyperplane arrangement

EXAMPLES:

```
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: A = H(z, y+z, x+y+z)
sage: construct_free_chain(A)
[ [1 0 0] [ 1 0 0] [ 0 1 0]
 [0 1 0] [ 0 z -1] [y + z 0 -1]
 [0 0 z], [ 0 y 1], [ x 0 1]
 ]
```

```
sage.geometry.hyperplane_arrangement.check_freeness.less_generators(X)
```

Reduce the generator matrix of the module defined by \(X \).

This is Algorithm 6.4 in [BC2012] and relies on the row syzygies of the matrix \(X \).

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
```
\begin{verbatim}
sage: m = matrix([[1, 0, 0], [0, z, -1], [0, 0, 0], [0, y, 1]])
sage: less_generators(m)
[1 0 0]
[0 z -1]
[0 y 1]
\end{verbatim}
INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.geometry.cone, 275
sage.geometry.cone_catalog, 335
sage.geometry.convex_set, 511
sage.geometry.fan, 340
sage.geometry.fan_isomorphism, 557
sage.geometry.fan_morphism, 372
sage.geometry.hasse_diagram, 561
sage.geometry.hyperplane_arrangement.affine_subspace, 53
sage.geometry.hyperplane_arrangement.arrangement, 3
sage.geometry.hyperplane_arrangement.check_freeness, 572
sage.geometry.hyperplane_arrangement.hyperplane, 46
sage.geometry.hyperplane_arrangement.library, 40
sage.geometry.hyperplane_arrangement.plot, 56
sage.geometry.integral_points, 563
sage.geometry.lattice_polytope, 159
sage.geometry.linear_expression, 522
sage.geometry.newton_polygon, 528
sage.geometry.point_collection, 388
sage.geometry.polyhedral_complex, 235
sage.geometry.polyhedron.backend_cdd, 448
sage.geometry.polyhedron.backend_field, 449
sage.geometry.polyhedron.backend normaliz, 450
sage.geometry.polyhedron.backend_polymake, 457
sage.geometry.polyhedron.backend_ppl, 460
sage.geometry.polyhedron.base, 420
sage.geometry.polyhedron.base_QQ, 431
sage.geometry.polyhedron.base_RDF, 448
sage.geometry.polyhedron.base_ZZ, 442
sage.geometry.polyhedron.cdd_file_format, 156
sage.geometry.polyhedron.constructor, 106
sage.geometry.polyhedron.double_description, 462
sage.geometry.polyhedron.double_description_inhomogeneous, 470
sage.geometry.polyhedron.face, 144
sage.geometry.polyhedron.lattice_euclidean_group_element, 213
sage.geometry.polyhedron.library, 61
sage.geometry.polyhedron.modules.formal_polyhedra_module, 157
sage.geometry.polyhedron.palp_database, 215
sage.geometry.polyhedron.parent, 114
sage.geometry.polyhedron.plot, 134
sage.geometry.polyhedron.ppl_lattice_polygon, 217
sage.geometry.polyhedron.ppl_lattice_polytope, 221
sage.geometry.polyhedron.representation, 120
sage.geometry.pseudolines, 549
sage.geometry.relative_interior, 532
sage.geometry.ribbon_graph, 536
sage.geometry.toric_lattice, 259
sage.geometry.toric_plotter, 396
sage.geometry.triangulation.base, 494
sage.geometry.triangulation.element, 503
sage.geometry.triangulation.point_configuration, 475
sage.geometry.voronoi_diagram, 553
sage.rings.polynomial.groebner_fan, 405
INDEX

A

A() (sage.geometry.linear_expression.LinearExpression method), 523

A() (sage.geometry.polyhedron.double_description.Problem method), 467

A() (sage.geometry.polyhedron.representation.Hrepresentation method), 121

A_matrix() (sage.geometry.polyhedron.double_description.Problem method), 467

add_cell() (sage.geometry.polyhedral_complex.PolyhedralComplex method), 238

add_hyperplane() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement method), 8

add_inequality() (sage.geometry.polyhedron.double_description.StandardDoubleDescriptionPair method), 469

adjacency_graph() (sage.geometry.triangulation.element.Triangulation method), 503

adjacent() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 284

adjacent() (sage.geometry.lattice_polytope.LatticePolytopeClass method), 162

adjacent() (sage.geometry.polyhedron.representation.Hrepresentation method), 122

adjacent() (sage.geometry.polyhedron.representation.Vrepresentation method), 131

adjacent() (sage.geometry.polyhedral_complex.PolyhedralComplex method), 239

adjust_options() (sage.geometry.toric_plotter.ToricPlotter method), 398

affine() (sage.geometry.triangulation.base.Point method), 495

affine_hull() (sage.geometry.convex_set.ConvexSet_base method), 511

affine_hull_projection() (sage.geometry.convex_set.ConvexSet_base method), 511

affine_lattice_polytope() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 222

affine_space() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 223

affine_tangent_cone() (sage.geometry.polyhedron.face.PolyhedronFace method), 146

affine_transform() (sage.geometry.lattice_polytope.LatticePolytopeClass method), 162

AffineHullProjectionData (class in sage.geometry.convex_set), 511

AffineSubspace (class in sage.geometry.hyperplane_arrangement.affine_subspace), 54

alexander_whitney() (sage.geometry.polyhedral_complex.PolyhedralComplex method), 239

all_cached_data() (sage.geometry.lattice_polytope), 205

all_facet_equations() (sage.geometry.lattice_polytope), 205

all_nef_partitions() (sage.geometry.lattice_polytope), 205

all_points() (sage.geometry.lattice_polytope), 206

all_polars() (sage.geometry.lattice_polytope), 206

ambient() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 286

ambient() (sage.geometry.convex_set.ConvexSet_base method), 512

ambient() (sage.geometry.lattice_polytope.LatticePolytopeClass method), 164

ambient() (sage.geometry.polyhedron.face.PolyhedronFace method), 146

ambient() (sage.geometry.relative_interior.RelativeInterior method), 532

ambient_dim() (sage.geometry.cone.IntegralRayCollection method), 324

ambient_dim() (sage.geometry.convex_set.ConvexSet_base method), 512

ambient_dim() (sage.geometry.lattice_polytope.LatticePolytopeClass method), 164

ambient_dim() (sage.geometry.polyhedron.face.PolyhedronFace method), 148

ambient_dim() (sage.geometry.polyhedron.parent.Polyhedra_base method), 116

ambient_dim() (sage.geometry.relative_interior.RelativeInterior method), 532

579
<table>
<thead>
<tr>
<th>Method</th>
<th>Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ambient_dim()</td>
<td>sage.geometry.triangulation.base.PointConfiguration_base.method</td>
<td>499</td>
</tr>
<tr>
<td>ambient_dim()</td>
<td>sage.geometry.voronoi_diagram.VoronoiDiagram.method</td>
<td>554</td>
</tr>
<tr>
<td>ambient_dim()</td>
<td>sage.rings.polynomial.groebner_fan.PolyhedralCone.method</td>
<td>414</td>
</tr>
<tr>
<td>ambient_dim()</td>
<td>sage.rings.polynomial.groebner_fan.PolyhedronFace.method</td>
<td>415</td>
</tr>
<tr>
<td>ambient_dimension()</td>
<td>sage.geometry.convex_set.ConvexSet_base.method</td>
<td>512</td>
</tr>
<tr>
<td>ambient_dimension()</td>
<td>sage.geometry.polyhedral_complex.PolyhedralComplex.method</td>
<td>240</td>
</tr>
<tr>
<td>ambient_facet_indices()</td>
<td>sage.geometry.lattice_polytope.LatticePolytopeClass.method</td>
<td>164</td>
</tr>
<tr>
<td>ambient_H_indices()</td>
<td>sage.geometry.polyhedron.face.PolyhedronFace.method</td>
<td>146</td>
</tr>
<tr>
<td>ambient_Hrepresentation()</td>
<td>sage.geometry.polyhedron.face.PolyhedronFace.method</td>
<td>147</td>
</tr>
<tr>
<td>ambient_module()</td>
<td>sage.geometry.linear_expression.LinearExpressionModule.method</td>
<td>525</td>
</tr>
<tr>
<td>ambient_module()</td>
<td>sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class.method</td>
<td>223</td>
</tr>
<tr>
<td>ambient_ambient_vector_space()</td>
<td>sage.geometry.linear_expression.LinearExpressionMethod</td>
<td>526</td>
</tr>
<tr>
<td>ambient_ambient_vector_space()</td>
<td>sage.geometry.polyhedron.face.PolyhedronFace.method</td>
<td>149</td>
</tr>
<tr>
<td>ambient_ambient_vertex_indices()</td>
<td>sage.geometry.polyhedron.face.PolyhedronFace.method</td>
<td>166</td>
</tr>
<tr>
<td>ambient_Vrepresentation()</td>
<td>sage.geometry.polyhedron.face.PolyhedronFace.method</td>
<td>148</td>
</tr>
<tr>
<td>ambient_vector_space()</td>
<td>sage.geometry.relative_interior.RelativeInterior.method</td>
<td>532</td>
</tr>
<tr>
<td>ambient_vector_space()</td>
<td>sage.geometry.lattice_polytope.LatticePolytopeClass.method</td>
<td>166</td>
</tr>
<tr>
<td>ambient_vector_space()</td>
<td>sage.geometry.hyperplane_arrangement.hyperplane.method</td>
<td>47</td>
</tr>
<tr>
<td>ambient_vector_space()</td>
<td>sage.geometry.convex_set.ConvexSet_base.method</td>
<td>513</td>
</tr>
<tr>
<td>ambient_vector_space()</td>
<td>sage.geometry.polyhedron.parent.Polyhedra_base.method</td>
<td>117</td>
</tr>
<tr>
<td>ambient_vector_space()</td>
<td>sage.geometry.triangulation.point_configuration.PointConfiguration.method</td>
<td>479</td>
</tr>
<tr>
<td>ambient_Vrepresentation()</td>
<td>sage.geometry.polyhedron.face.PolyhedronFace.method</td>
<td>149</td>
</tr>
<tr>
<td>ambient_Vrepresentation()</td>
<td>sage.geometry.polyhedron.parent.Polyhedra_base.method</td>
<td>117</td>
</tr>
<tr>
<td>ambient_Vrepresentation()</td>
<td>sage.geometry.convex_set.ConvexSet_base.method</td>
<td>513</td>
</tr>
<tr>
<td>ambient_Vrepresentation()</td>
<td>sage.geometry.polyhedron.parent.Polyhedra_base.method</td>
<td>117</td>
</tr>
<tr>
<td>ambient_Vrepresentation()</td>
<td>sage.geometry.convex_set.ConvexSet_base.method</td>
<td>513</td>
</tr>
<tr>
<td>ambient_Vrepresentation()</td>
<td>sage.geometry.polyhedron.parent.Polyhedra_base.method</td>
<td>117</td>
</tr>
</tbody>
</table>
center() (sage.geometry.polyhedron.base.Polyhedron_base method), 423
chain_complex() (sage.geometry.polyhedral_complex.PolyhedralComplex method), 242
change_ring() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangement method), 11
change_ring() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangements method), 39
change_ring() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangements method), 47
change_ring() (sage.geometry.linear_expression.LinearExpression method), 412
change_ring() (sage.geometry.linear_expression.LinearExpression method), 523
change_ring() (sage.geometry.linear_expression.LinearExpression method), 526
change_ring() (sage.geometry.polyhedron.parent.Polyhedra_base method), 356
characteristic() (sage.rings.polynomial.groebner_fan.PolyhedralFan method), 407
characteristic_polynomial() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangement method), 11
circuits() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 480
circuits_support() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 480
classify_cone_2d() (in module sage.geometry.cone), 330
closed_faces() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangement method), 11
closure() (sage.geometry.convex_set.ConvexSet_base method), 514
closure() (sage.geometry.convex_set.ConvexSet_base method), 514
codim() (sage.geometry.cone.IntegralRayCollection method), 325

codim() (sage.geometry.convex_set.ConvexSet_base method), 514
codimension() (sage.geometry.cone.IntegralRayCollection method), 326

codimension() (sage.geometry.convex_set.ConvexSet_base method), 514
codomain_dim() (sage.geometry.polyhedron.lattice_euclidean_group.Element method), 213
codomain_fan() (sage.geometry.fan_morphism.FanMorphism method), 375
coefficients() (sage.geometry.linear_expression.LinearExpression method), 524

color_list() (in module sage.geometry.toric_plotter), 401
column_matrix() (sage.geometry.point_collection.PointCollection method), 390
combinatorial_face_to_polyhedral_face() (in module sage.geometry.polyhedron.face), 155
common_refinement()
Index
ideal() (sage.rings.polynomial.groebner_fan.GroebnerFan basis method), 407
ideal() (sage.rings.polynomial.groebner_fan.ReducedGroebnerBasis module method), 418
ideal_to_gfan_format() (in module sage.rings.polynomial.groebner_fan), 419
identity() (sage.geometry.polyhedron.plot.Projection method), 135
image_cone() (sage.geometry.fan.morphism.FanMorphism method), 378
incidence_matrix() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 177
incidence_matrix() (sage.geometry.lattice_polytope.LatticePolytopeClass method), 177
incident() (sage.geometry.polyhedron.representation.Hrepresentation method), 122
incident() (sage.geometry.polyhedron.representation.Vrepresentation method), 132
include_points() (sage.geometry.toric_plotter.ToricPlotter method), 132
index() (sage.geometry.fan.morphism.FanMorphism method), 398
index() (sage.geometry.lattice_polytope.LatticePolytopeClass method), 177
index() (sage.geometry.point_collection.PointCollection method), 391
index() (sage.geometry.polyhedron.representation.PolyhedronRepresentation method), 128
index() (sage.geometry.triangulation.base.Point method), 496
Inequality (class in sage.geometry.polyhedron.representation), 124
Inequality_class (class in sage.geometry.polyhedron.representation), 124
Inequality_generic (class in sage.geometry.integral_points), 566
Inequality_int (class in sage.geometry.integral_points), 566
InitialForm (class in sage.rings.polynomial.groebner_fan.InitialForm method), 413
initial_form_systems() (in module sage.rings.polynomial.groebner_fan.TropicalPrevariety method), 419
initial_forms() (sage.rings.polynomial.groebner_fan.InitialForm method), 413
initial_pair() (sage.geometry.polyhedron.double_description.Problem method), 468
InitialForm (class in sage.rings.polynomial.groebner_fan), 412
inner_product_matrix() (sage.geometry.polyhedron.double_description.DoubleDescriptionPair method), 465
int_to_simplex() (sage.geometry.triangulation.base.PointConfiguration method), 499
integral_hull() (sage.geometry.polyhedron.backend_normaliz.Polyhedron_QQ_normaliz method), 456
integral_length() (in module sage.geometry.cone), 331
integral_points() (sage.geometry.polyhedron.backend_normaliz.Polyhedron_QQ_normaliz method), 452
integral_points() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 227

integral_points_count() (sage.geometry.polyhedron_base.QQ.Polyhedron_QQ method), 440

integral_points_generators() (sage.geometry.polyhedron.backend_normaliz.PolyhedronNormaliz method), 500

integral_points_not_interior_to_facets() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 228

IntegralRayCollection (class in sage.geometry.cone), 324

is_essential() (sage.geometry.fan_morphism.FanMorphism method), 361

is_birational() (sage.geometry.fan_morphism.FanMorphism method), 380

is_bounded() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 229

is_closed() (sage.geometry.convex_set.ConvexSet_base method), 24

is_central() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement method), 24

is_compact() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 300

is_complete() (sage.geometry.polyhedron.representation.Inequality method), 150

is_connected() (sage.geometry.polyhedron.representation.Inequality method), 150

is_dominant() (sage.geometry.convex_set.ConvexSet_compact method), 435

is_effective() (sage.geometry.fan.RationalPolyhedralFan method), 361

is_empty() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 441

is_equation() (sage.geometry.polyhedron.representation.Inequality method), 121

is_equivalent() (sage.geometry.fan.RationalPolyhedralFan method), 382

is_effective() (sage.geometry.polyhedron_base.QQ.Polyhedron_QQ method), 413

is_empty() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 299

is_empty() (sage.geometry.convex_set.ConvexSet_base method), 300

is_empty() (sage.geometry.polyhedron.representation.Inequality method), 121

is_equivalent() (sage.geometry.fan.RationalPolyhedralFan method), 300

is_equivalent() (sage.geometry.polyhedron_base.QQ.Polyhedron_QQ method), 413

is_equivalent() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement method), 23
is_relatively_open() (sage.geometry.convex_set.ConvexSet_compact method), 520
is_relatively_open() (sage.geometry.convex_set.ConvexSet_relatively_open method), 521
is_relatively_open() (sage.geometry.polyhedron.face.PolyhedronFace method), 150
is_relatively_open() (sage.geometry.convex_set.ConvexSet_base method), 518

is_separating_hyperplane() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 229
is_separating_hyperplane() (sage.geometry.polyhedron.representation.Vrepresentation method), 132
is_separating_hyperplane() (sage.geometry.polyhedron.representation.Vertex method), 131
is_separating_hyperplane() (sage.geometry.convex_set.ConvexSet_base method), 518

is_simplex() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 221
is_simplex() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_LatticePolytopePPL_class method), 229

is_simplex() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 221
is_simplex() (sage.geometry.polyhedron.representation.Vrepresentation method), 132
is_simplex() (sage.geometry.polyhedron.representation.Vertex method), 131
is_simplex() (sage.geometry.convex_set.ConvexSet_base method), 518

is_simplicial() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 304
is_simplicial() (sage.geometry.fan.RationalPolyhedralFan method), 363
is_simplicial() (sage.geometry.polyhedron.face.PolyhedronFace method), 150
is_simplicial() (sage.geometry.polyhedron.representation.Vrepresentation method), 132
is_simplicial() (sage.geometry.polyhedron.representation.Vertex method), 131
is_simplicial() (sage.geometry.convex_set.ConvexSet_compact method), 520

is_simplicial() (sage.geometry.convex_set.ConvexSet_relatively_open method), 150
is_simplicial() (sage.geometry.convex_set.ConvexSet_base method), 518

is_solid() (sage.geometry.convex_set.ConvexSet_compact method), 520
is_solid() (sage.geometry.convex_set.ConvexSet_relatively_open method), 521

is_smooth() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 304
is_smooth() (sage.geometry.fan.RationalPolyhedralFan method), 364

is_strictly_convex() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 221
is_strictly_convex() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_class_PPL_class method), 221

is_subcomplex() (sage.geometry.polyhedron.representation.Vrepresentation method), 132
is_subcomplex() (sage.geometry.polyhedron.representation.Vertex method), 131
is_subcomplex() (sage.geometry.convex_set.ConvexSet_compact method), 520

is_trivial() (sage.geometry.convex_set.ConvexSet מספיק method), 518
Index 593

n_rays() (sage.geometry.polyhedron.face.PolyhedronFace

nabla_polar() (sage.geometry.lattice_polytope.

nabla() (sage.geometry.lattice_polytope.

nabla() (sage.geometry.polyhedron.

nabla() (sage.geometry.polyhedron.

n_skeleton() (sage.geometry.polyhedral_complex.

n_vertices() (sage.geometry.polyhedron.

n_vertices() (sage.geometry.polyhedron.

n_points() (sage.geometry.polyhedron.

n_points() (sage.geometry.polyhedron.

n_rays() (sage.geometry.polyhedron.

nrays() (sage.geometry.polyhedron.

nvertices() (sage.geometry.polyhedron.

NefPartition (class in sage.

neighbors() (sage.geometry.

neighbors() (sage.geometry.

NewtonPolygon (in module
class in sage.

NewtonPolygon_element (class in
class in

nfacets() (sage.geometry.

nfacets() (sage.geometry.

n_generating_cones() (sage.geometry.

n_generating_cones() (sage.geometry.

ngens() (sage.geometry.

ngens() (sage.geometry.

nonnegative_orfhant() (in module
class in

normal() (sage.geometry.

normal() (sage.geometry.

normal_cone() (sage.geometry.

normal_cone() (sage.geometry.

normal_fan() (sage.geometry.

normal_fan() (sage.geometry.

NormalFan (in module
class in

normalize() (sage.geometry.

number_of_reduced_groebner_bases()
nabla() (sage.geometry.

nabla() (sage.geometry.

number_of_variables()
nabla() (sage.geometry.

nabla() (sage.geometry.
nablas() (sage.geometry.
negations() (sage.geometry.

octahedron() (sage.geometry.

omnitruncated_one_hundred_twenty_cell() (sage.geometry.

omnitruncated_one_hundred_twenty_cell() (sage.geometry.

one_hundred_twenty_cell() (sage.geometry.

one_hundred_twenty_cell() (sage.geometry.

options() (in module
class in

ordered_vertices() (sage.geometry.

orlik_solomon_algebra() (sage.geometry.

orthogonal_projection() (sage.geometry.

orthogonal_sublattice() (sage.geometry.

outer_normal() (sage.geometry.

Combinatorial and Discrete Geometry, Release 9.6
Index 595
sage.geometry.polyhedron.base_ZZ), 442
Polyhedron_ZZ_normaliz (class in sage.geometry.polyhedron.backend_normaliz), 455
Polyhedron_ZZ_polymake (class in sage.geometry.polyhedron.backend_polymake), 458
Polyhedron_ZZ_ppl (class in sage.geometry.polyhedron.backend_ppl), 460
PolyhedronFace (class in sage.geometry.polyhedron.face), 145
PolyhedronRepresentation (class in sage.geometry.polyhedron.representation), 127
Polytopes (class in sage.geometry.polyhedron.library), 62
poset_of_regions() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement method), 30
positive_circuits() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 485
positive_integer_relations() (in module sage.geometry.lattice_polytope), 209
positive_operators_gens() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 312
prefix_check() (in module sage.rings.polynomial.groebner_fan), 419
preimage_cones() (sage.geometry.fan_morphism.FanMorphism method), 386
preimage_cones() (sage.geometry.fan_morphism.FanMorphism method), 386
prepare_inner_loop() (sage.geometry.integral_points.InequalityCollection method), 564
prepare_next_to_inner_loop() (sage.geometry.integral_points.InequalityCollection method), 564
primitive() (sage.geometry.hyperplane_arrangement.hyperplane.Hyperplane method), 52
primitive_collections() (sage.geometry.fan.RationalPolyhedralFan method), 368
primitive_preimage_cones() (sage.geometry.fan_morphism.FanMorphism method), 386
print_cache() (in module sage.geometry.integral_points), 568
Problem (class in sage.geometry.polyhedron.double_description), 466
product() (sage.geometry.polyhedral_complex.PolyhedralComplex method), 254
project_points() (in module sage.geometry.polyhedron.library), 105
Projection (class in sage.geometry.polyhedron.plot), 134
projection_func_identity() (in module sage.geometry.polyhedron.plot), 144
ProjectionFuncSchlegel (class in sage.geometry.polyhedron.plot), 142
ProjectionFuncStereographic (class in sage.geometry.polyhedron.plot), 142
projective() (sage.geometry.triangulation.base.Point method), 496
PseudolineArrangement (class in sage.geometry.pseudolines), 551
pushing_triangulation() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 486

Q

quotient() (sage.geometry.toric_lattice.ToricLattice_generic method), 265
R

R_by_sign() (sage.geometry.polyhedron.double_description.DoubleDescription method), 463
radius() (sage.geometry.polyhedron.base.Polyhedron_base method), 428
radius_square() (sage.geometry.polyhedron.base.Polyhedron_base method), 428
random_cone() (in module sage.geometry.cone), 332
Random_element() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 314
Random_element() (sage.geometry.linear_expression.LinearExpression method), 527
random_inequalities() (in module sage.geometry.polyhedron.double_description), 469
rank() (sage.geometry.hyperplane_arrangement.arrangement.Hyperplane arrangement method), 31
rank() (sage.geometry.toric_lattice.ToricLattice_quotient method), 271
RationalPolyhedralFan (class in sage.geometry.fan), 351
Ray (class in sage.geometry.polyhedron.representation), 129
ray() (sage.geometry.cone.IntegralRayCollection method), 329
ray_generator() (sage.geometry.polyhedron.face.PolyhedronFace method), 154
ray_matrix_normal_form() (in module sage.geometry.integral_points), 568
rays() (sage.geometry.cone.IntegralRayCollection method), 329
rays() (sage.geometry.polyhedron.face.PolyhedronFace method), 154

596 Index
rays() (sage.rings.polynomial.groebner_fan.InitialForm method), 413
rays() (sage.rings.polynomial.groebner_fan.PolyhedralFan method), 417
read_all_polytopes() (in module sage.geometry.lattice_polytope), 209
read_palp_matrix() (in module sage.geometry.lattice_polytope), 209
read_palp_point_collection() (in module sage.geometry.point_collection), 395
rearrangement() (in module sage.geometry.cone_catalog), 336
rectangular_box_points() (in module sage.geometry.integral_points), 569
rectified_one_hundred_twenty_cell() (sage.geometry.polyhedron.library.Polytopes method), 85
rectified_six_hundred_cell() (sage.geometry.polyhedron.library.Polytopes method), 85
recycle() (sage.geometry.polyhedron.parent.Polyhedra_base method), 119
reduced() (sage.geometry.ribbon_graph.RibbonGraph method), 546
reduced_affine() (sage.geometry.triangulation.base.Point method), 497
reduced_affine_vector() (sage.geometry.triangulation.base.Point method), 497
reduced_affine_vector_space() (sage.geometry.triangulation.base.PointConfiguration_base(sage.geometry.convex_set.ConvexSet_base method), 518
relative_boundary_cells() (sage.geometry.convex_set.ConvexSet_base method), 518
relative_interior() (sage.geometry.convex_set.ConvexSet_base method), 518
relative_orthogonal_quotient() (sage.geometry.convex_set.ConvexSet_base method), 518
relative_star_generators() (sage.geometry.convex_set.ConvexSet_base method), 518
RelativeInterior (class in sage.geometry.relative_interior, 532
remove_cell() (sage.geometry.polyhedral_complex.PolyhedralComplex method), 255
render() (sage.rings.polynomial.groebner_fan.GroebnerFan method), 409
render3d() (sage.rings.polynomial.groebner_fan.GroebnerFan method), 409
render_0d() (sage.geometry.polyhedron.plot.Projection method), 135
render_1d() (sage.geometry.polyhedron.plot.Projection method), 135
render_2d() (sage.geometry.polyhedron.plot.Projection method), 135
render_3d() (sage.geometry.polyhedron.plot.Projection method), 135
render_fill_2d() (sage.geometry.polyhedron.plot.Projection method), 135
render_line_1d() (sage.geometry.polyhedron.plot.Projection method), 135

Index 597
Combinatorial and Discrete Geometry, Release 9.6

render_outline_2d() (sage.geometry.polyhedron.plot.Projection method), 137
render_points_1d() (sage.geometry.polyhedron.plot.Projection method), 137
render_points_2d() (sage.geometry.polyhedron.plot.Projection method), 138
render_solid_3d() (sage.geometry.polyhedron.plot.Projection method), 138
render_vertices_3d() (sage.geometry.polyhedron.plot.Projection method), 138
render_wireframe_3d() (sage.geometry.polyhedron.plot.Projection method), 138
repr_pretty() (in module sage.geometry.polyhedron.representation), 133
repr_pretty() (sage.geometry.polyhedron.representation.Hrepresentation method), 124
reset_options() (in module sage.geometry.toric_plotter), 404
restrict_to_connected_triangulations() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 487
restrict_to_fine_triangulations() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 487
restrict_to_regular_triangulations() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 487
restrict_to_star_triangulations() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 487
restricted_automorphism_group() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 232
restricted_automorphism_group() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 489
restriction() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement method), 33
reverse() (sage.geometry.newton_polygon.NewtonPolygon_element method), 528
rho() (sage.geometry.ribbon_graph.RibbonGraph method), 547
rhombic_dodecahedron() (sage.geometry.polyhedron.library.Polytopes method), 86
rhombicosidodecahedron() (sage.geometry.polyhedron.library.Polytopes method), 87
RibbonGraph (class in sage.geometry.ribbon_graph), 536
ring() (sage.rings.polynomial.groebner_fan.GroebnerFan method), 410
ring_to_gfan_format() (in module sage.rings.polynomial.groebner_fan), 420
run() (sage.geometry.polyhedron.double_description.StandardAlgorithm method), 468
runcinated_one_hundred_twenty_cell() (sage.geometry.polyhedron.library.Polytopes method), 88
runcitruncated_one_hundred_twenty_cell() (sage.geometry.polyhedron.library.Polytopes method), 88
runcitruncated_six_hundred_cell() (sage.geometry.polyhedron.library.Polytopes method), 89

S
sage.geometry.cone module, 335
sage.geometry.cone_catalog module, 335
sage.geometry.convex_set module, 511
sage.geometry.fan module, 340
sage.geometry.fan_isomorphism module, 372
sage.geometry.fan_morphism module, 372
sage.geometry.hasse_diagram module, 561
sage.geometry.hyperplane_arrangement.affine_subspace module, 3
sage.geometry.hyperplane_arrangement.arrangement module, 3
sage.geometry.hyperplane_arrangement.check_freeness module, 572
sage.geometry.hyperplane_arrangement.hyperplane module, 572
sage.geometry.hyperplane_arrangement.library module, 572
sage.geometry.hyperplane_arrangement.plot module, 56
sage.geometry.integral_points module, 563
sage.geometry.lattice_polytope module, 159
sage.geometry.linear_expression module, 522
sage.geometry.newton_polygon module, 528
sage.geometry.point_collection module, 388
Index
tetrahedron() (sage.geometry.polyhedron.library.Polytopes method), 95

tikz() (sage.geometry.polyhedron.plot.Projection method), 140

to_linear_program() (sage.geometry.polyhedron.base.Polyhedron_base method), 429

to_RationalPolyhedralFan() (sage.rings.polynomial.groebner_fan.PolyhedralFan method), 417

to_symmetric_space() (sage.geometry.hyperplane_arrangement.hyperplane.Hyperplane method), 53

toric_variety() (sage.geometry.fan.RationalPolyhedralFan method), 369

ToricLattice_ambient (class in sage.geometry.toric_lattice), 263
ToricLattice_generic (class in sage.geometry.toric_lattice), 264
ToricLattice_quotient (class in sage.geometry.toric_lattice), 268
ToricLattice_quotient_element (class in sage.geometry.toric_lattice), 271
ToricLattice_sublattice (class in sage.geometry.toric_lattice), 272
ToricLattice_sublattice_with_basis (class in sage.geometry.toric_lattice), 273
ToricLatticeFactory (class in sage.geometry.toric.lattice), 261
ToricPlotter (class in sage.geometry.toric_plotter), 396
translation() (sage.geometry.convex_set.ConvexSet_base method), 519
translation() (sage.geometry.relative_interior.RelativeInterior method), 535
transpositions() (sage.geometry.pseudolines.PseudolineArrangement method), 552
traverse_boundary() (sage.geometry.lattice_polytope.LatticePolytopeClass method), 193
triangulate() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 491

Triangulation (class in sage.geometry.triangulation.element), 503
triangulation_render_2d() (in module sage.geometry.triangulation.element), 508
triangulation_render_3d() (in module sage.geometry.triangulation.element), 508
triangulations() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 492
triangulations_list() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 493

trivial() (in module sage.geometry.cone_catalog), 339
tropical_basis() (sage.rings.polynomial.groebner_fan.GroebnerFan method), 411
tropical_intersection() (sage.rings.polynomial.groebner_fan.GroebnerFan method), 411
TropicalPrevariety (class in sage.rings.polynomial.groebner_fan), 418
truncated_cube() (sage.geometry.polyhedron.library.Polytopes method), 96
truncated_dodecahedron() (sage.geometry.polyhedron.library.Polytopes method), 96
truncated_icosidodecahedron() (sage.geometry.polyhedron.library.Polytopes method), 96

truncated_octahedron() (sage.geometry.polyhedron.library.Polytopes method), 97
t truncated_one_hundred_twenty_cell() (sage.geometry.polyhedron.library.Polytopes method), 99
truncated_six_hundred_cell() (sage.geometry.polyhedron.library.Polytopes method), 99
t truncated_tetrahedron() (sage.geometry.polyhedron.library.Polytopes method), 99
twenty_four_cell() (sage.geometry.polyhedron.library.Polytopes method), 100
type() (sage.geometry.polyhedron.representation.Equation method), 121
type() (sage.geometry.polyhedron.representation.Inequality method), 126
type() (sage.geometry.polyhedron.representation.Line method), 127
type() (sage.geometry.polyhedron.representation.Ray method), 130
type() (sage.geometry.polyhedron.representation.Vertex method), 131

U

unbounded_regions() (sage.geometry.polyhedron.parent.Polyhedra_base method), 119
union() (sage.geometry.polyhedron.parent.Polyhedra_base method), 154
union() (sage.geometry.polyhedral_complex.PolyhedralComplex method), 258
union() (sage.geometry.polyhedral_complex.PolyhedralComplex method), 258
universe() (sage.geometry.polyhedron.parent.Polyhedra_base method), 119
Combinatorial and Discrete Geometry, Release 9.6

V

varchenko_matrix() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement method), 35

vector() (sage.geometry.polyhedron.representation.PolyhedronRepresentation method), 128

dual_vector() (sage.rings.polynomial.groebner_fan.GroebnerFan method), 412

verify() (sage.geometry.polyhedron.double_description.DoubleDescriptionPair method), 466

dual_hilbert_matrix() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement method), 37

verify() (sage.geometry.polyhedron.double_description_inhomogeneous.Hrep2Vrep method), 471

verify() (sage.geometry.polyhedron.double_description_inhomogeneous.Vrep2Hrep method), 473

Vertex (class in sage.geometry.polyhedron.representation), write_palp_matrix() (in module sage.geometry.lattice_polytope), 212

vertex() (sage.geometry.lattice_polytope.LatticePolytopeClass method), 130

vertex_facet_pairing_matrix() (sage.geometry.lattice_polytope.LatticePolytopeClass method), 193

vertex_generator() (sage.geometry.polyhedron.face.PolyhedronFace method), 155

vertex_graph() (sage.geometry.fan.RationalPolyhedralFan method), 369

vertices() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement method), 36

vertices() (sage.geometry.lattice_polytope.LatticePolytopeClass method), 194

vertices() (sage.geometry.newton_polygon.NewtonPolygon_element method), 529

vertices() (sage.geometry.polyhedron.face.PolyhedronFace method), 155

vertices() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 233

vertices_saturating() (sage.geometry.polyhedron.ppl_lattice_polytope.LatticePolytope_PPL_class method), 233

verts_for_normal() (in module sage.rings.polynomial.groebner_fan), 420

virtual_rays() (sage.geometry.fan.RationalPolyhedralFan method), 370

volume() (sage.geometry.triangulation.point_configuration.PointConfiguration method), 493

VoronoiDiagram (class in sage.geometry.voronoi_diagram), 553

Vrep2Hrep (class in sage.geometry.polyhedron.double_description_inhomogeneous), 472

Vrepresentation (class in sage.geometry.polyhedron.representation), 131

Vrepresentation() (sage.geometry.polyhedron.backend_ppl.Polyhedron_ppl method), 461

Vrepresentation_space() (sage.geometry.polyhedron.parent.Polyhedra_base method), 116

W

wedge() (sage.geometry.polyhedral_complex.PolyhedralComplex method), 258

dual_wedge() (sage.geometry.polyhedron.representation.PolyhedronRepresentation method), 461

weight_vectors() (sage.rings.polynomial.groebner_fan.GroebnerFan method), 412

whitney_data() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement method), 37

whitney_number() (sage.geometry.hyperplane_arrangement.arrangement.HyperplaneArrangementElement method), 37

write_for_palp() (sage.geometry.point_collection.PointCollection method), 394

write_palp_matrix() (in module sage.geometry.lattice_polytope), 212

Z

Z_operators_gens() (sage.geometry.cone.ConvexRationalPolyhedralCone method), 284

zero() (sage.geometry.polyhedron.parent.Polyhedra_base method), 119

zero_set() (sage.geometry.polyhedron.double_description.DoubleDescriptionPair method), 466

zero_sum_projection() (in module sage.geometry.polyhedron.double_description), 466

zonotope() (sage.geometry.polyhedron.library.Polytopes method), 100

Index