Combinatorial and Discrete Geometry
Release 10.6

The Sage Development Team

Apr 01, 2025

6

Hyperplane arrangements
Polyhedral computations
Triangulations
Miscellaneous

Helper functions

Indices and Tables

Python Module Index

Index

CONTENTS

121
1187
1253
1331
1359
1361

1363

Combinatorial and Discrete Geometry, Release 10.6

Sage includes classes for hyperplane arrangements, polyhedra, toric varieties (including polyhedral cones and fans), tri-
angulations and some other helper classes and functions.

CONTENTS 1

Combinatorial and Discrete Geometry, Release 10.6

2 CONTENTS

CHAPTER
ONE

HYPERPLANE ARRANGEMENTS

1.1 Hyperplane Arrangements

Before talking about hyperplane arrangements, let us start with individual hyperplanes. This package uses certain linear
expressions to represent hyperplanes, that is, a linear expression 3x + 3y — 5z — 7 stands for the hyperplane with the
equation 3z + 3y — 5z = 7. To create it in Sage, you first have to create a HyperplaneArrangement s object to define
the variables z, vy, 2:

sage: H.<x,y,z> = HyperplaneArrangements (QQ)
sage: h = 3*x + 2*y - 5*z - 7; h
Hyperplane 3*x + 2*y — 5%z — 7

sage: h.normal ()

(31 2/ _5)
sage: h.constant_term()
=7

>>> from sage.all import *

>>> H = HyperplaneArrangements (QQ, names=('x', 'yv', 'z',)); (x, y, z,) = H._first_
—ngens (3)

>>> h = Integer(3)*x + Integer(2)*y - Integer(5)*z - Integer(7); h

Hyperplane 3*x + 2*y - 5*z - 7

>>> h.normal ()

(3, 2, -5)
>>> h.constant_term/()
=7

The individual hyperplanes behave like the linear expression with regard to addition and scalar multiplication, which is
why you can do linear combinations of the coordinates:

sage: —2*h

Hyperplane -6*x — 4*y + 10*z + 14
sage: x, Yy, z

(Hyperplane x + 0*y + 0*z + 0,
Hyperplane 0*x + y + 0*z + O,
Hyperplane 0*x + 0*y + z + 0)

>>> from sage.all import *
>>> —-Integer (2) *h
Hyperplane -6*x — 4*y + 10*z + 14
>>> x, y, Z
(Hyperplane x + 0*y + 0*z + 0,
(continues on next page)

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)
Hyperplane 0*x + y + 0*z + O,
Hyperplane 0*x + 0*y + z + 0)

See sage.geometry.hyperplane_arrangement.hyperplane for more ﬁnmﬁonﬂhy oftheindhdduﬂ.hypep
planes.
1.1.1 Arrangements

There are several ways to create hyperplane arrangements:

Notation (i): by passing individual hyperplanes to the HyperplaneArrangement s object:

sage: H.<x,y> = HyperplaneArrangements (QQ)

sage: box = x | vy | x-1 | y-1; box

Arrangement <y - 1 | yv | x — 1 | x>

sage: box == H(x, y, x-1, y-1) # alternative syntax
True

>>> from sage.all import *

>>> H = HyperplaneArrangements (QQ, names=('x', 'yv',)); (x, y,) = H._first_ngens(2)
>>> pbox = x | y | x-Integer(l) | y-Integer(l); box

Arrangement <y - 1 | y | x — 1 | x>

>>> box == H(x, y, x-Integer(l), y-Integer(l)) # alternative syntax

True

Notation (ii): by passing anything that defines a hyperplane, for example a coefficient vector and constant term:

sage: H = HyperplaneArrangements (QQ, ('x', 'y'))
sage: triangle = H([(12, O0), O], [(O, 1), O], [(1,1), -11); triangle
Arrangement <y | x | x + vy — 1>

sage: H.inject_variables ()
Defining x, y

sage: triangle == x | y | xty-1
True

>>> from sage.all import *

>>> H = HyperplaneArrangements (QQ, ('x', 'y'))

>>> triangle = H([(Integer(l), Integer(0)), Integer(0)], [(Integer(0), Integer(l)),._
—Integer (0)], [(Integer(l),Integer(l)), —-Integer(l)]); triangle

Arrangement <y | x | x + vy — 1>

>>> H.inject_variables ()

Defining x, vy

>>> triangle == x | y | x+ty-Integer (1)
True

The default base field is Q, the rational numbers. Finite fields are also supported:

sage: H.<x,y,z> = HyperplaneArrangements (GF (5))
sage: a = H([(1,2,3), 4], [(5,6,7), 81); a
Arrangement <y + 2*z + 3 | x + 2*y + 3%z + 4>

4 Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

>>> from sage.all import *

>>> H = HyperplaneArrangements (GF (Integer (5)), names=('x'"', 'v', 'z',)); (x, vy, z2,) =
—H._first_ngens (3)

>>> a = H([(Integer(l),Integer(2),Integer(3)), Integer(4)], [(Integer(5),Integer(6),
—Integer (7)), Integer(8)1]); a

Arrangement <y + 2*z + 3 | x + 2*y + 3%z + 4>

Number fields are also possible:

sage: # needs sage.rings.number_field
sage: x = polygen(QQ,
sage: NF.<a> = NumberField(x**4 - 5*x**2 + 5, embedding=1.90)

IXI)

sage: H.<y,z> = HyperplaneArrangements (NF)
sage: A = H([[(-a**3 + 3*a, -a**2 + 4), 1], [(a**3 - 4*a, -1), 1],
5000 & [(0, 2*a**2 - 6), 11, [(-a**3 + 4*a, -1), 11,

R [(a**3 - 3*a, —-a**2 + 4), 111)

sage: A

Arrangement of 5 hyperplanes of dimension 2 and rank 2
sage: A.base_ring()

Number Field in a with defining polynomial x*4 - 5*x"2 + 5
with a = 1.9021130325903087

>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> x = polygen(QQ, 'x')
>>> NF = NumberField(x**Integer (4) - Integer (5)*x**Integer (2) + Integer(5),.
—embedding=RealNumber ('1.90"), names=('a',)); (a,) = NF._first_ngens (1)
>>> H = HyperplaneArrangements (NF, names=('y', 'z',)); (y, z,) = H._first_ngens(2)
>>> A = H([[(-a**Integer(3) + Integer(3)*a, —-a**Integer(2) + Integer(4)), Integer(l)],
— [(a**Integer (3) - Integer(4)*a, —-Integer(l)), Integer(l)],
. [(Integer (0), Integer(2)*a**Integer(2) - Integer(6)), Integer(l)], [(-
—a**Integer(3) + Integer(4)*a, —-Integer(l)), Integer(l)],
[(a**Integer (3) - Integer(3)*a, —-a**Integer(2) + Integer(4)), Integer(l)]])
>>> A
Arrangement of 5 hyperplanes of dimension 2 and rank 2
>>> A.base_ring()
Number Field in a with defining polynomial x"4 - 5*x"2 + 5
with a = 1.9021130325903087

Notation (iii): a list or tuple of hyperplanes:

sage: H.<x,y,z> = HyperplaneArrangements (GF (5))

sage: k = [x+1 for i in range(4)]; k

[Hyperplane x + O*y + 0*z + 0, Hyperplane x + 0*y + 0*z + 1,
Hyperplane x + 0*y + 0*z + 2, Hyperplane x + 0*y + 0*z + 3]
sage: H (k)

Arrangement <x | x + 1 | x + 2 | x + 3>

>>> from sage.all import *

>>> H = HyperplaneArrangements (GF (Integer (5)), names=('x'"', 'v', 'z',)); (x, vy, z,) =
—H._first_ngens (3)

>>> k = [x+1 for i in range (Integer(4))]; k

[Hyperplane x + O*y + 0*z + 0, Hyperplane x + 0*y + 0*z + 1,
(continues on next page)

1.1. Hyperplane Arrangements 5

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)
Hyperplane x + 0*y + 0*z + 2, Hyperplane x + 0*y + 0*z + 3]
>>> H (k)
Arrangement <x | x + 1 | x + 2 | x + 3>

Notation (iv): using the library of arrangements:

sage: hyperplane_arrangements.braid (4) #.
—needs sage.graphs

Arrangement of 6 hyperplanes of dimension 4 and rank 3

sage: hyperplane_arrangements.semiorder (3)

Arrangement of 6 hyperplanes of dimension 3 and rank 2

sage: hyperplane_arrangements.graphical (graphs.PetersenGraph()) #.
—needs sage.graphs

Arrangement of 15 hyperplanes of dimension 10 and rank 9

sage: hyperplane_arrangements.Ish (5)

Arrangement of 20 hyperplanes of dimension 5 and rank 4

>>> from sage.all import *

>>> hyperplane_arrangements.braid(Integer (4)) -
— # needs sage.graphs

Arrangement of 6 hyperplanes of dimension 4 and rank 3

>>> hyperplane_arrangements.semiorder (Integer (3))

Arrangement of 6 hyperplanes of dimension 3 and rank 2

>>> hyperplane_arrangements.graphical (graphs.PetersenGraph()) #o
—needs sage.graphs

Arrangement of 15 hyperplanes of dimension 10 and rank 9

>>> hyperplane_arrangements.Ish(Integer(5))

Arrangement of 20 hyperplanes of dimension 5 and rank 4

Notation (v): from the bounding hyperplanes of a polyhedron:

sage: a = polytopes.cube () .hyperplane_arrangement (); a
Arrangement of 6 hyperplanes of dimension 3 and rank 3
sage: a.n_regions()

27

>>> from sage.all import *

>>> a = polytopes.cube () .hyperplane_arrangement(); a
Arrangement of 6 hyperplanes of dimension 3 and rank 3
>>> a.n_regions()

27

New arrangements from old:

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(3)
sage: b = a.add_hyperplane([4, 1, 2, 3])
sage: b
Arrangement <tl1 - t2 | t0 - t1 | t0 - t2 | t0 + 2*tl + 3*t2 + 4>
sage: c¢c = b.deletion([4, 1, 2, 3])
sage: a == c
True
(continues on next page)

6 Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)

sage: # needs sage.combinat sage.graphs
sage: a = hyperplane_arrangements.braid(3)
sage: b = a.union (hyperplane_arrangements.semiorder (3))

sage: b == | hyperplane_arrangements.semiorder (3) # alternate syntax
True

sage: b == hyperplane_arrangements.Catalan (3)

True

sage: a

Arrangement <tl1 - t2 | t0 - t1 | t0 - t2>

sage: hyperplane_arrangements.coordinate (4)

sage: = a.hyperplanes () [0]

a
h

sage: b = a.restriction (h)

sage: b == hyperplane_arrangements.coordinate (3)

True

>>> from sage.all import *

>>> # needs sage.graphs

>>> a = hyperplane_arrangements.braid(Integer (3))

>>> b = a.add_hyperplane([Integer(4), Integer(l), Integer(2), Integer(3)])
>>> b

Arrangement <tl - t2 | t0 - t1 | t0 - t2 | t0 + 2*tl + 3*t2 + 4>

>>> ¢ = b.deletion([Integer(4), Integer(l), Integer(2), Integer(3)])

>>> g ==

True

>>> # needs sage.combinat sage.graphs
>>> a = hyperplane_arrangements.braid(Integer (3))

>>> b = a.union (hyperplane_arrangements.semiorder (Integer (3)))

>>> b == a | hyperplane_arrangements.semiorder (Integer (3)) # alternate syntax
True

>>> b == hyperplane_arrangements.Catalan (Integer(3))

True

>>> a

Arrangement <tl - t2 | t0 - t1 | t0 - t2>
>>> a = hyperplane_arrangements.coordinate (Integer (4))
>>> h = a.hyperplanes () [Integer (0)]

>>> b = a.restriction (h)

>>> b == hyperplane_arrangements.coordinate (Integer (3))

True

1.1.2 Properties of Arrangements

A hyperplane arrangement is essential if the normals to its hyperplanes span the ambient space. Otherwise, it is inessential.
The essentialization is formed by intersecting the hyperplanes by this normal space (actually, it is a bit more complicated
over finite fields):

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(4); a
(continues on next page)

1.1. Hyperplane Arrangements 7

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)
Arrangement of 6 hyperplanes of dimension 4 and rank 3
sage: a.is_essential()
False
sage: a.rank() < a.dimension() # double—-check
True
sage: a.essentialization()
Arrangement of 6 hyperplanes of dimension 3 and rank 3

>>> from sage.all import *

>>> # needs sage.graphs

>>> a = hyperplane_arrangements.braid(Integer (4)); a
Arrangement of 6 hyperplanes of dimension 4 and rank 3
>>> a.1s_essential ()

False

>>> a.rank () < a.dimension () # double-check

True

>>> a.essentialization()

Arrangement of 6 hyperplanes of dimension 3 and rank 3

The connected components of the complement of the hyperplanes of an arrangement in R™ are called the regions of the
arrangement:

sage: a = hyperplane_arrangements.semiorder (3)

sage: b = a.essentialization(); b

Arrangement of 6 hyperplanes of dimension 2 and rank 2
sage: b.n_regions()

19

sage: b.regions|()

(A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 6 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 3 vertices and 1.

—ray,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices and 1.
—ray,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 3 vertices,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices and 1.
—ray,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,

A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 3 vertices and 1.
—ray,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices and 1.
—ray,

A 2-dimensional polyhedron in QQ*2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices and 1.
—ray,

A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 1 vertex and 2 rays,

(continues on next page)

8 Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 1 vertex and 2 rays)
sage: b.bounded_regions ()

(A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 6 vertices,
A 2-dimensional polyhedron in QQ"2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices)

sage: b.n_bounded_regions ()

7

sage: a.unbounded_regions ()

(A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—line,

A 3-dimensional polyhedron in QQ”3 defined as the convex hull of 3 vertices, 1 ray,.

-1 line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—~line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 3 vertices, 1 ray,.

—~1 line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—~line,

A 3-dimensional polyhedron in QQ”3 defined as the convex hull of 3 vertices, 1 ray,-

—~1 line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 3 vertices, 1 ray,.

-1 line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 3 vertices, 1 ray,-

—~1 line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—line,

A 3-dimensional polyhedron in QQ”3 defined as the convex hull of 3 vertices, 1 ray,.

—~1 line,

A 3-dimensional polyhedron in QQ”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—line)

>>> from sage.all import *

>>> a = hyperplane_arrangements.semiorder (Integer (3))
>>> b = a.essentialization(); b

Arrangement of 6 hyperplanes of dimension 2 and rank 2
>>> b.n_regions ()

19

>>> b.regions ()

(A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 6 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices and 1.

—ray,
A 2-dimensional polyhedron in QQ"2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices and 1.
—ray,
(continues on next page)

1.1. Hyperplane Arrangements 9

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices and 1.
—ray,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,

A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 3 vertices and 1.
—ray,

A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 3 vertices,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices and 1.
—ray,

A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices and 1.
—ray,

A 2-dimensional polyhedron in QQ*2 defined as the convex hull of 1 vertex and 2 rays,
A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 1 vertex and 2 rays)
>>> b.bounded_regions ()

(A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 6 vertices,
A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ0"2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices,
A 2-dimensional polyhedron in QQ”2 defined as the convex hull of 3 vertices)

>>> b.n_bounded_regions ()

7

>>> a.unbounded_regions ()

(A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—~line,

A 3-dimensional polyhedron in QQ”3 defined as the convex hull of 3 vertices, 1 ray,.

-1 line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—~line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 3 vertices, 1 ray,.

—~1 line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—~line,

A 3-dimensional polyhedron in QQ"3 defined as the convex hull of 3 vertices, 1 ray,.

—~1 line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 3 vertices, 1 ray,.

-1 line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—~line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 3 vertices, 1 ray,-

—~1 line,

A 3-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—~line,

A 3-dimensional polyhedron in QQ"3 defined as the convex hull of 3 vertices, 1 ray,.

—~1 line,

A 3-dimensional polyhedron in QQ”3 defined as the convex hull of 1 vertex, 2 rays, 1.
—line)

10 Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

The distance between regions is defined as the number of hyperplanes separating them. For example:

sage: # needs sage.combinat

sage: rl = b.regions () [0]

sage: r2 = b.regions() [1]

sage: b.distance_between_regions(rl, r2)

1

sage: [hyp for hyp in b if b.is_separating_hyperplane (rl, r2, hyp)]
[Hyperplane 2*tl + t2 + 1]

sage: b.distance_enumerator (rl) # generating function for distances from rl
6*x"3 + 6*x72 + 6*x + 1

>>> from sage.all import *

>>> # needs sage.combinat

>>> rl = b.regions () [Integer (0)]

>>> r2 = b.regions () [Integer (1)]

>>> b.distance_between_regions (rl, r2)

1

>>> [hyp for hyp in b if b.is_separating_hyperplane(rl, r2, hyp)]
[Hyperplane 2*tl + t2 + 1]

>>> b.distance_enumerator (rl) # generating function for distances from rl
6*x"3 4+ 6*x"2 + 6*x + 1

© Note

bounded region really mean relatively bounded here. A region is relatively bounded if its intersection with space
spanned by the normals of the hyperplanes in the arrangement is bounded.

The intersection poset of a hyperplane arrangement is the collection of all nonempty intersections of hyperplanes in the
arrangement, ordered by reverse inclusion. It includes the ambient space of the arrangement (as the intersection over the
empty set):

sage: # needs sage.graphs

sage: a = hyperplane_arrangements.braid(3)
sage: p = a.intersection_poset ()

sage: p.is_ranked()

True

sage: p.order_polytope ()
A 5-dimensional polyhedron in ZZ"5 defined as the convex hull of 10 vertices

>>> from sage.all import *

>>> # needs sage.graphs

>>> a = hyperplane_arrangements.braid(Integer (3))

>>> p = a.intersection_poset ()

>>> p.is_ranked()

True

>>> p.order_polytope ()

A 5-dimensional polyhedron in ZZ"5 defined as the convex hull of 10 vertices

The characteristic polynomial is a basic invariant of a hyperplane arrangement. It is defined as

X(@) = 3 p(w)atm)

weP

1.1. Hyperplane Arrangements 11

Combinatorial and Discrete Geometry, Release 10.6

where P isthe intersection_poset () of the arrangement and y is the Mobius function of P:

sage: # long time

sage: a = hyperplane_arrangements.semiorder (5)

sage: a.characteristic_polynomial () # about a second on Core i7
x"5 - 20*x"4 + 180*x"3 - 790*x"2 + 1380*x

sage: a.poincare_polynomial ()

1380*x"~4 + 790*x"3 + 180*x"2 + 20*x + 1

sage: a.n_regions()

2371

sage: charpoly = a.characteristic_polynomial ()

sage: charpoly(-1)

-2371

sage: a.n_bounded_regions ()
751

sage: charpoly (1)

751

>>> from sage.all import *

>>> # long time

>>> a = hyperplane_arrangements.semiorder (Integer (5))
>>> a.characteristic_polynomial () # about a second on Core 17
x"5 - 20*x"4 + 180*x"3 - 790*x"2 + 1380*x

>>> a.poincare_polynomial ()

1380*x74 + 790*x”3 + 180*x"2 + 20*x + 1

>>> a.n_regions ()

2371

>>> charpoly = a.characteristic_polynomial ()

>>> charpoly (—-Integer (1))

-2371

>>> a.n_bounded_regions ()

751

>>> charpoly (Integer (1))

751

For finer invariants derived from the intersection poset, see whitney number () and doubly indexed whit-
ney_number ().

Miscellaneous methods (see documentation for an explanation):

sage: a = hyperplane_arrangements.semiorder (3)

sage: a.has_good_reduction (5) #.
—needs sage.rings.finite_rings

True

sage: b = a.change_ring(GF (5))

sage: pa = a.intersection_poset () #_
—needs sage.graphs

sage: pb = b.intersection_poset () #o
—needs sage.rings.finite_rings

sage: pa.is_isomorphic (pb) #o
—needs sage.graphs sage.rings.finite_rings

True

sage: a.face_vector /() #

—needs sage.graphs
(continues on next page)

12 Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)
(0, 12, 30, 19)
sage: a.face_vector () #.
—needs sage.graphs
(0, 12, 30, 19)
sage: a.is_central()

sage: a.is_linear()

sage: a.sign_vector((1,1,1))
(_11 1! _11 1/ _1/ 1)

sage: a.varchenko_matrix()[:6, :6]

[1 h2 h2*h4 h2*h3 h2*h3*h4 h2*h3*h4*h5]
[h2 1 h4 h3 h3*h4 h3*h4*h5]
[h2+*h4 h4 1 h3*h4 h3 h3*h5]
[h2*h3 h3 h3*h4 1 h4 h4*h5]
[h2*h3*h4 h3*h4 h3 h4 1 h5]
[h2*h3*h4*h5 h3*h4*h5 h3*h5 h4*h5 h5 1]

>>> from sage.all import *

>>> a = hyperplane_arrangements.semiorder (Integer (3))

>>> a.has_good_reduction (Integer (5)) -
— # needs sage.rings.finite_rings

True

>>> b = a.change_ring(GF (Integer(5)))

>>> pa = a.intersection_poset () #_
—needs sage.graphs

>>> pb = b.intersection_poset () #_
—needs sage.rings.finite_rings

>>> pa.is_isomorphic (pb) #_
—needs sage.graphs sage.rings.finite_rings

True

>>> a.face_vector () #_

—needs sage.graphs

(0, 12, 30, 19)

>>> a.face_vector () #_
—needs sage.graphs

(0, 12, 30, 19)

>>> a.is_central ()

False

>>> a.1is_linear ()

False

>>> a.sign_vector ((Integer (1), Integer (1), Integer(l)))
(=1, i1, =4, 1, =i, 1)

>>> a.varchenko_matrix () [:Integer(6), :Integer(6)]

[1 h2 h2+*h4 h2*h3 h2*h3*h4 h2*h3*h4*h5]
[h2 1 h4 h3 h3*h4 h3*h4*h5]
[h2*h4 h4 1 h3*h4 h3 h3*h5]
[h2*h3 h3 h3*h4 1 h4 h4*h5]
[h2*h3*h4 h3*h4 h3 h4 1 h5]
[h2*h3*h4*h5 h3*h4*h5 h3*h5 h4*h5 h5 1]

There are extensive methods for visualizing hyperplane arrangements in low dimensions. See plot () for details.

1.1. Hyperplane Arrangements 13

Combinatorial and Discrete Geometry, Release 10.6

AUTHORS:

¢ David Perkinson (2013-06): initial version
* Qiaoyu Yang (2013-07)
e Kuai Yu (2013-07)

 Volker Braun (2013-10): Better Sage integration, major code refactoring.

This module implements hyperplane arrangements defined over the rationals or over finite fields. The original motivation
was to make a companion to Richard Stanley’s notes [Sta2007] on hyperplane arrangements.

class sage.geometry.hyperplane_arrangement.arrangement .HyperplaneArrangementElement (par-

Bases: Element

A hyperplane arrangement.

ent,

hy-

per-

planes,
check=True,
back-
end=None)

A\ Warning

You should never create HyperplaneArrangementElement instances directly, always use the parent.

add_hyperplane (other)
The union of self with other.

INPUT:

e other — a hyperplane arrangement or something that can be converted into a hyperplane arrangement

OUTPUT: a new hyperplane arrangement
EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements (QQ)

sage: A = H([.,2,3], [0,1,11, [O,%,-211, [1,-1,0]1, [1,1,01])
sage: B = H([1,1,21], [1,-1,1]1, [1,0,-1])

sage: C = A.union(B); C

Arrangement of 8 hyperplanes of dimension 2 and rank 2
sage: C == A | B # syntactic sugar

True

>>> from sage.all import *

—ngens (2)

>>> H = HyperplaneArrangements (QQ, names=('x", v',)); (x, y,) = H._first_

>>> A = H([Integer(l),Integer(2),Integer(3)], [Integer(0),Integer(l),
—Integer(1)], [Integer (0),Integer(l), -Integer(l)], [Integer(l),-Integer(l),
—Integer(0)], [Integer(l),Integer(l),Integer(0)])

>>> B = H([Integer(l),Integer(l),Integer(1l)], [Integer(l),-Integer(l),
—Integer(1l)], [Integer(l),Integer(0),-Integer(l)])

>>> C = A.union(B); C

(continues on next page)

14

Chapter 1. Hyperplane arrangements

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorial and Discrete Geometry, Release 10.6

Arrangement of 8 hyperplanes of dimension 2 and rank 2
>>> C == | B # syntactic sugar
True

(continued from previous page)

A single hyperplane is coerced into a hyperplane arrangement if necessary:

sage: A.union (x+ty-1)

Arrangement of 6 hyperplanes of dimension 2 and rank 2
sage: A.add_hyperplane (x+ty-1) # alias

Arrangement of 6 hyperplanes of dimension 2 and rank 2

sage: P.<x,y> = HyperplaneArrangements (RR)

sage: C = P(2*x + 4*y + 5)

sage: C.union (A)

Arrangement of 6 hyperplanes of dimension 2 and rank 2

>>> from sage.all import *

>>> A.union (x+y-Integer (1))

Arrangement of 6 hyperplanes of dimension 2 and rank 2
>>> A.add_hyperplane (x+y-Integer (1)) # alias
Arrangement of 6 hyperplanes of dimension 2 and rank 2
>>> P = HyperplaneArrangements (RR, names=('x', 'y',));
—ngens (2)

>>> C = P(Integer(2)*x + Integer(4)*y + Integer(5))
>>> C.union (A)

Arrangement of 6 hyperplanes of dimension 2 and rank 2

Yr)

= P. first_

backend ()

Return the backend used for polyhedral objects.

OUTPUT: string giving the backend or None if none is specified
EXAMPLES:

By default, no backend is specified:

sage: H = HyperplaneArrangements (QQ)
sage: A = H()
sage: A.backend()

>>> from sage.all import *

>>> H = HyperplaneArrangements (QQ)
>>> A = H()

>>> A.backend()

Otherwise, one may specify a polyhedral backend:

sage: A = H(backend='ppl')
sage: A.backend()

"ppl’

sage: A = H(backend='normaliz')
sage: A.backend()

'normaliz’

1.1. Hyperplane Arrangements

15

Combinatorial and Discrete Geometry, Release 10.6

>>> from sage.all import *
>>> A = H(backend='"ppl")

>>> A.backend()

'ppl’

>>> A = H(backend='normaliz")
>>> A.backend ()

'normaliz'

bounded_regions ()

Return the relatively bounded regions of the arrangement.

A region is relatively bounded if its intersection with the space spanned by the normals to the hyperplanes is
bounded. This is the same as being bounded in the case that the hyperplane arrangement is essential. It is
assumed that the arrangement is defined over the rationals.

OUTPUT:

Tuple of polyhedra. The relatively bounded regions of the arrangement.

> See also

unbounded_regions ()

EXAMPLES:

sage: # needs sage.combinat
sage: A = hyperplane_arrangements.semiorder (3)
sage: A.bounded_regions ()
(A 3-dimensional polyhedron in Q0”3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ"3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ”3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ”3 defined

as the convex hull of 6 vertices and 1 line,
A 3-dimensional polyhedron in QQ"3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ”3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ”3 defined

as the convex hull of 3 vertices and 1 line)
sage: A.bounded_regions () [0].1is_compact () # the regions are only.
—*relatively* bounded
False
sage: A.is_essential ()
False

>>> from sage.all import *
>>> # needs sage.combinat
>>> A = hyperplane_arrangements.semiorder (Integer (3))
>>> A.bounded_regions ()
(A 3-dimensional polyhedron in Q0”3 defined
(continues on next page)

16

Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ”3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ*3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ”3 defined

as the convex hull of 6 vertices and 1 line,
A 3-dimensional polyhedron in QQ”3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ”*3 defined

as the convex hull of 3 vertices and 1 line,
A 3-dimensional polyhedron in QQ”3 defined

as the convex hull of 3 vertices and 1 line)
>>> A.bounded_regions () [Integer (0)].is_compact () # the regions are only.
—*relatively* bounded
False
>>> A.is_essential ()

False

center ()

Return the center of the hyperplane arrangement.

The polyhedron defined to be the set of all points in the ambient space of the arrangement that lie on all of
the hyperplanes.

OUTPUT: a polyhedron
EXAMPLES:

The empty hyperplane arrangement has the entire ambient space as its center:

sage: H.<x,y> = HyperplaneArrangements (QQ)

sage: A = H{()

sage: A.center ()

A 2-dimensional polyhedron in Q0”2 defined as the convex hull of 1 vertex and.
—2 lines

>>> from sage.all import *

>>> H = HyperplaneArrangements (QQ, names=('x', 'yv',)); (x, y,) = H._first_
—ngens (2)
>>> A = H()

>>> A.center ()
A 2-dimensional polyhedron in QQ0"2 defined as the convex hull of 1 vertex and.
—2 lines

The Shi arrangement in dimension 3 has an empty center:

sage: A = hyperplane_arrangements.Shi (3)
sage: A.center()
The empty polyhedron in QQ"3

>>> from sage.all import *
>>> A = hyperplane_arrangements.Shi (Integer (3))

(continues on next page)

1.1. Hyperplane Arrangements 17

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)

>>> A.center ()
The empty polyhedron in QQ"3

The Braid arrangement in dimension 3 has a center that is neither empty nor full-dimensional:

sage: A = hyperplane_arrangements.braid(3) #
—needs sage.combinat
sage: A.center () #_
—needs sage.combinat
A l-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex and.

—1 line

>>> from sage.all import *

>>> A = hyperplane_arrangements.braid(Integer (3)) -
— # needs sage.combinat

>>> A.center () #
—needs sage.combinat

A l-dimensional polyhedron in Q0”3 defined as the convex hull of 1 vertex and.

—~1 line

change_ring (base_ring)

Return hyperplane arrangement over the new base ring.
INPUT:

* base_ring — the new base ring; must be a field for hyperplane arrangements
OUTPUT:

The hyperplane arrangement obtained by changing the base field, as a new hyperplane arrangement.

A Warning

While there is often a one-to-one correspondence between the hyperplanes of self and those of self.
change_ring (base_ring), there is no guarantee that the order in which they appear in self.
hyperplanes () will match the order in which their counterpartsin se1f . cone () willappearin self.
change_ring (base_ring) .hyperplanes ()!

EXAMPLES:
sage: H.<x,y> = HyperplaneArrangements (QQ)
sage: A = H([(1,1), 0], [(2,3), —-11)

sage: A.change_ring(FiniteField(2))
Arrangement <y + 1 | x + y>

>>> from sage.all import *

>>> H = HyperplaneArrangements (QQ, names=('x', 'v',)); (x, y,) = H._first_
—ngens (2)

>>> A = H([(Integer(l),Integer(1l)), Integer(0)], [(Integer(2),Integer(3)), -
—Integer(1l)])

>>> A.change_ring (FiniteField (Integer(2)))

Arrangement <y + 1 | x + y>

18

Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

characteristic_polynomial ()

Return the characteristic polynomial of the hyperplane arrangement.
OUTPUT: the characteristic polynomial in Q|x]
EXAMPLES:

sage: a = hyperplane_arrangements.coordinate (2)
sage: a.characteristic_polynomial ()
X"2 - 2*x + 1

>>> from sage.all import *

>>> a = hyperplane_arrangements.coordinate (Integer (2))
>>> a.characteristic_polynomial ()

2h2 = 2% 4 A

closed_faces (labelled=True)

Return the closed faces of the hyperplane arrangement self (provided that self is defined over a totally
ordered field).

Let A be a hyperplane arrangement in the vector space K", whose hyperplanes are the zero sets of the
affine-linear functions w1, us, . .., un. (We consider these functions w1, ue, . . ., un, and not just the hyper-
planes, as given. We also assume the field K to be totally ordered.) For any point x € K™, we define the
sign vector of x to be the vector (vy,va,...,vx) € {—1,0,1}" such that (for each i) the number v; is the
sign of u; (). Forany v € {—1,0,1}¥, we let F, be the set of all z € K™ which have sign vector v. The
nonempty ones among all these subsets F;, are called the open faces of A. They form a partition of the set
K"

Furthermore, for any v = (v, va, . ..,vy) € {—1,0,1}¥, we let G, be the set of all z € K" such that, for
every i, the sign of u;(z) is either 0 or v;. Then, G, is a polyhedron. The nonempty ones among all these
polyhedra G,, are called the closed faces of A. While several sign vectors v can lead to one and the same
closed face GG,,, we can assign to every closed face a canonical choice of a sign vector: Namely, if G is a
closed face of A, then the sign vector of G is defined to be the vector (vy,va, . ..,vy) € {—1,0,1}" where
2 is any point in the relative interior of G' and where, for each i, the number v; is the sign of u;(x). (This
does not depend on the choice of z.)

There is a one-to-one correspondence between the closed faces and the open faces of A. It sends a closed
face G to the open face F),, where v is the sign vector of Gj this F), is also the relative interior of GG,,. The
inverse map sends any open face O to the closure of O.

INPUT:

¢ labelled — boolean (default: True); if True, then this method returns not the faces itself but rather
pairs (v, F') where F is a closed face and v is its sign vector (here, the order and the orientation of the
U1, Uz, ..., unN i as given by self.hyperplanes ()).

OUTPUT:

A tuple containing the closed faces as polyhedra, or (if 1abelled is set to True) the pairs of sign vectors
and corresponding closed faces.

& Todo

Should the output rather be a dictionary where the keys are the sign vectors and the values are the faces?

EXAMPLES:

1.1. Hyperplane Arrangements 19

Combinatorial and Discrete Geometry, Release 10.6

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(2)
sage: a.hyperplanes ()
(Hyperplane t0 - t1 + 0,)
sage: a.closed_faces()
(((0,), A l-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex and 1 line),
((1,), A 2-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex, 1 ray, 1 line),
((=1,), A 2-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex, 1 ray, 1 line))
sage: a.closed_faces (labelled=False)
(A 1-dimensional polyhedron in Q0”2 defined
as the convex hull of 1 vertex and 1 line,
A 2-dimensional polyhedron in QQ”2 defined
as the convex hull of 1 vertex, 1 ray, 1 line,
A 2-dimensional polyhedron in QQ”2 defined
as the convex hull of 1 vertex, 1 ray, 1 line)

sage: # needs sage.graphs
sage: a = hyperplane_arrangements.braid(3)

sage: a.hyperplanes()

sage: [(v, F, F.representative_point()) for v, F in a.closed_faces()]
[((0,), A l1-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex and 1 line, (0, 0)),
((1,), A 2-dimensional polyhedron in Q0”2 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (0, =1)),
((=1,), A 2-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (=1, 0))1]
sage: H.<x,y> = HyperplaneArrangements (QQ)
sage: a = H(x, yt+l)
sage: a.hyperplanes()
(Hyperplane 0*x + y + 1, Hyperplane x + 0*y + 0)
sage: [(v, F, F.representative_point()) for v, F in a.closed_faces()]
[((O0, 0), A O-dimensional polyhedron in QQ”*2 defined
as the convex hull of 1 vertex, (0, -1)),
((0, 1), A l1-dimensional polyhedron in QQ”2 defined
as the convex hull of 1 vertex and 1 ray, (i, =id)),
((0, -1), A l1-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex and 1 ray, (=1, =1)),
((1, 0), A l-dimensional polyhedron in QQ”*2 defined
as the convex hull of 1 vertex and 1 ray, (0, 0)),
(1, 1), A 2-dimensional polyhedron in QQ”2 defined
as the convex hull of 1 vertex and 2 rays, (1, 0)),
((1, -1), A 2-dimensional polyhedron in Q0”2 defined
as the convex hull of 1 vertex and 2 rays, (-1, 0)),
((=1, 0), A l-dimensional polyhedron in QQ0"2 defined
as the convex hull of 1 vertex and 1 ray, (0, =2)),
((=1, 1), A 2-dimensional polyhedron in Q0”2 defined
as the convex hull of 1 vertex and 2 rays, (L, =2)),
((=1, -1), A 2-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex and 2 rays, (-1, -2))]

(continues on next page)

20 Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)

(Hyperplane 0*t0 + t1 - t2 + O,
Hyperplane t0 - t1 + 0*t2 + O,
Hyperplane t0 + 0*tl - t2 + 0)
sage: [(v, F, F.representative_point()) for v, F in a.closed_faces()]
[((o, 0, 0), A l1-dimensional polyhedron in QQ”3 defined
as the convex hull of 1 vertex and 1 line, (0, 0, 0)),
((o0, 1, 1), A 2-dimensional polyhedron in QQ"3 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (0, -1, -1)),
((0, -1, -1), A 2-dimensional polyhedron in Q0”3 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (=i, 0, Q@)),
(1, ©, i), A 2-dimensional polyhedron in QQ"3 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (i, 4, 0)),
((1, 1, 1), A 3-dimensional polyhedron in QQ”3 defined
as the convex hull of 1 vertex, 2 rays, 1 line, (0, -1, -2)),
((1, -1, 0y, A 2-dimensional polyhedron in QQ”3 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (=i, 0, =1)),
(12, -1, 1), A 3-dimensional polyhedron in QQ*3 defined
as the convex hull of 1 vertex, 2 rays, 1 line, (1, 2, 0)),
((1, -1, -1), A 3-dimensional polyhedron in Q0”3 defined
as the convex hull of 1 vertex, 2 rays, 1 line, (-2, 0, -1)),
((=1, 0, -1), A 2-dimensional polyhedron in QQ"3 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (@, ©, 4)),
((-1, 1, 0y, A 2-dimensional polyhedron in QQ*3 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (1, 0, 1)),
((-1, 1, 1), A 3-dimensional polyhedron in QQ”3 defined
as the convex hull of 1 vertex, 2 rays, 1 line, (0, -2, -1)),
((=1, 1, -1), A 3-dimensional polyhedron in QQ"3 defined
as the convex hull of 1 vertex, 2 rays, 1 line, (1, 0, 2)),
((-1, -1, -1), A 3-dimensional polyhedron in Q0”3 defined
as the convex hull of 1 vertex, 2 rays, 1 line, (-1, 0, 1))]
>>> from sage.all import *
>>> # needs sage.graphs
>>> a = hyperplane_arrangements.braid(Integer (2))
>>> a.hyperplanes ()
(Hyperplane t0 - t1 + 0,)
>>> a.closed_faces ()
(((0,), A l-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex and 1 line),
((1,), A 2-dimensional polyhedron in Q0”2 defined
as the convex hull of 1 vertex, 1 ray, 1 line),
((=1,), A 2-dimensional polyhedron in Q0”2 defined
as the convex hull of 1 vertex, 1 ray, 1 line))
>>> a.closed_faces (labelled=False)
(A 1-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex and 1 line,
A 2-dimensional polyhedron in Q0”2 defined
as the convex hull of 1 vertex, 1 ray, 1 line,
A 2-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex, 1 ray, 1 line)
>>> [(v, F, F.representative_point()) for v, F in a.closed_faces()]
[((0,), A l1-dimensional polyhedron in QQ"2 defined

(continues on next page)

1.1. Hyperplane Arrangements 21

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)

—ngens (2)
H(x,
>>> a.hyperplanes ()

>>> a

y+Integer (1))

(Hyperplane 0*x + y + 1, Hyperplane x + 0*y + 0)

>>> # needs sage.graphs
>>> a

hyperplane_arrangements.braid(Integer (3))
>>> a.hyperplanes ()

as the convex hull of 1 vertex and 1 line, (0, 0)),
((1,), A 2-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (0, =-1)),
((=1,), A 2-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (=1, 0))]
>>> H = HyperplaneArrangements (QQ, names=('x', 'y',)); (x, y,) = H._first_

>>> [(v, F, F.representative_point()) for v, F in a.closed_faces()]
[((O0, 0), A O-dimensional polyhedron in QQ”*2 defined
as the convex hull of 1 vertex, (0, -1)),
((0, 1), A l1-dimensional polyhedron in QQ”2 defined
as the convex hull of 1 vertex and 1 ray, (i, =id)),
((0, -1), A l1-dimensional polyhedron in QQ"2 defined
as the convex hull of 1 vertex and 1 ray, (-1, -1)),
((1, 0), A l-dimensional polyhedron in Q0”2 defined
as the convex hull of 1 vertex and 1 ray, (0, 0)),
(1, 1), A 2-dimensional polyhedron in QQ”2 defined
as the convex hull of 1 vertex and 2 rays, (i, ©)),
((1, -1), A 2-dimensional polyhedron in Q0”2 defined
as the convex hull of 1 vertex and 2 rays, (-1, 0)),
((=1, 0), A l-dimensional polyhedron in QQ0"2 defined
as the convex hull of 1 vertex and 1 ray, (0, =2)),
((=1, 1), A 2-dimensional polyhedron in Q0”2 defined
as the convex hull of 1 vertex and 2 rays, (L, =2)),
((=1, -1), A 2-dimensional polyhedron in QQ0"2 defined
as the convex hull of 1 vertex and 2 rays, (-1, -2))]

(Hyperplane 0*t0 + t1 - t2 + O,
Hyperplane t0 - t1 + 0*t2 + O,
Hyperplane t0 + 0*tl - t2 + 0)
>>> [(v, F, F.representative_point()) for v, F in a.closed_faces()]
[((0, 0, 0), A l-dimensional polyhedron in Q0”3 defined
as the convex hull of 1 vertex and 1 line, (0, 0, 0)),
((0, 1, 1), A 2-dimensional polyhedron in QQ”3 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (©, =i, =1)),
((0, -1, -1), A 2-dimensional polyhedron in QQ"3 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (=1, 0, 0)),
((1, 0, 1), A 2-dimensional polyhedron in Q0”3 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (1, 1, 0)),
(1, 12, 1), A 3-dimensional polyhedron in QQ”3 defined
as the convex hull of 1 vertex, 2 rays, 1 line, (0, -1, -2)),
(12, -1, 0y, A 2-dimensional polyhedron in QQ*3 defined
as the convex hull of 1 vertex, 1 ray, 1 line, (=1, 0, =1)),
((1, -1, 1), A 3-dimensional polyhedron in Q0”3 defined
as the convex hull of 1 vertex, 2 rays, 1 line, (1, 2, 0)),

(continues on next page)

22

Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)

((1, -1, -1), A 3-dimensional polyhedron in Q0”3 defined

as the convex hull of 1 vertex, 2 rays, 1 line, (-2, 0, -1)),
((-1, 0, -1), A 2-dimensional polyhedron in Q0”3 defined

as the convex hull of 1 vertex, 1 ray, 1 line, (0, 0, 1)),
((=1, 41, @), A 2-dimensional polyhedron in QQ”3 defined

as the convex hull of 1 vertex, 1 ray, 1 line, (i, ©, 4)),
((-1, 1, 1), A 3-dimensional polyhedron in QQ"3 defined

as the convex hull of 1 vertex, 2 rays, 1 line, (0, -2, -1)),
((-1, 1, -1), A 3-dimensional polyhedron in Q0”3 defined

as the convex hull of 1 vertex, 2 rays, 1 line, (1, 0, 2)),
((-1, -1, -1), A 3-dimensional polyhedron in Q0”3 defined

as the convex hull of 1 vertex, 2 rays, 1 line, (-1, 0, 1))]

Let us check that the number of closed faces with a given dimension computed using self.
closed_faces () equals the one computed using face_vector():

sage: def test_number (a):
e Ox = PolynomialRing (QQ, 'x'"); x = 0Ox.gen()

e RHS = Ox.sum(vi * x ** 1 for i, vi in enumerate (a.face_vector()))
el LHS = Ox.sum(x ** F[1].dim() for F in a.closed_faces())
et return LHS == RHS

sage: a = hyperplane_arrangements.Catalan(2)

sage: test_number (a) #_
—needs sage.combinat

True

sage: a = hyperplane_arrangements.Shi (3)

sage: test_number (a) # long time #
—needs sage.combinat

True

>>> from sage.all import *
>>> def test_number (a):
QOx = PolynomialRing(QQ, 'x'"); x = Qx.gen()

RHS = Ox.sum(vi * x ** 1 for i, vi in enumerate (a.face_vector()))
LHS = Qx.sum(x ** F[Integer(l)].dim() for F in a.closed_faces())
return LHS == RHS

>>> a = hyperplane_arrangements.Catalan (Integer(2))

>>> test_number (a) #.

—needs sage.combinat

True
>>> a = hyperplane_arrangements.Shi (Integer (3))
>>> test_number (a) # long time #_

—needs sage.combinat
True

cocharacteristic_polynomial ()

Return the cocharacteristic polynomial of self.
The cocharacteristic polynomial of a hyperplane arrangement A is defined by
Ua(z) = |u(B, X)]z"Y,
XeL

where L is the intersection poset of A, B is the minimal element of L (here, the 0 dimensional subspace),

1.1. Hyperplane Arrangements 23

Combinatorial and Discrete Geometry, Release 10.6

and y is the Mobius function of L.
OUTPUT: the cocharacteristic polynomial in Z|z]
EXAMPLES:

sage: A = hyperplane_arrangements.coordinate (2)

sage: A.cocharacteristic_polynomial () #
—needs sage.graphs

z"2 + 2*z + 1

sage: B = hyperplane_arrangements.braid(3)

sage: B.cocharacteristic_polynomial () #_
—needs sage.graphs

2%m™3 4+ I¥B*2 F =

>>> from sage.all import *

>>> A = hyperplane_arrangements.coordinate (Integer(2))

>>> A.cocharacteristic_polynomial () #.
—needs sage.graphs

z"2 + 2*z + 1

>>> B = hyperplane_arrangements.braid(Integer(3))

>>> B.cocharacteristic_polynomial () #.
—needs sage.graphs

2*%z"3 + 3*z"2 + z

cone (variable="t")

Return the cone over the hyperplane arrangement.
INPUT:

* variable — string; the name of the additional variable

OUTPUT:
A new hyperplane arrangement L. Its equations consist of [0, —d, a1, . .., a,] for each [d, a1, ..., a,] in the
original arrangement and the equation [0, 1,0, . .., 0] (maybe not in this order).

A Warning

While there is an almost-one-to-one correspondence between the hyperplanes of sel £ and those of self.
cone (), there is no guarantee that the order in which they appear in self.hyperplanes () will match
the order in which their counterparts in se1f.cone () will appearin self.cone () .hyperplanes () !
This warning does not apply to ordered hyperplane arrangements.

EXAMPLES:

sage: # needs sage.combinat
sage: a.<x,y,z> = hyperplane_arrangements.semiorder (3)

sage: b = a.cone|()

sage: a.characteristic_polynomial () .factor ()
k% (%P2 = 6%Fx F 12)

sage: b.characteristic_polynomial () .factor ()
(x — 1) * x * (x"2 — 6*x + 12)

sage: a.hyperplanes()
(Hyperplane 0*x + v - z — 1,

(continues on next page)

24

Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)

Hyperplane 0*x + y — z +

~

Hyperplane x — y + 0*z —

~

Hyperplane x — y + 0*z +
Hyperplane x + 0*y - z —

A e
N

- ~

Hyperplane x + 0*y - z +
sage: b.hyperplanes()
(Hyperplane -t + 0*x + yv - z + 0,

Hyperplane -t + x — y + 0*z + 0,

Hyperplane -t + x + 0*y - z + O,

+ 0*x + 0*y + 0*z + O,
t +0*x +y -2z + 0,
Hyperplane t + x — y + 0*z + O,
€& #+ x 4+ 0%y = = + 0)

Hyperplane t
Hyperplane

Hyperplane

>>> from sage.all import *
>>> # needs sage.combinat

>>> a = hyperplane_arrangements.semiorder (Integer (3), names=('x', 'y', 'z',));
— (x, y, z,) = a._first_ngens(3)

>>> b = a.cone()

>>> a.characteristic_polynomial () .factor ()

X * (x"2 - 6*x + 12)

>>> b.characteristic_polynomial () .factor ()

(x = 1) * x * (x"2 - 6*x + 12)

>>> a.hyperplanes ()
(Hyperplane 0*x + v - z —

~

Hyperplane 0*x + y — z +

~

Hyperplane x — y + 0*z —

~

Hyperplane x — y + 0*z +

~

Hyperplane x + 0*y - z -

e

— ~

Hyperplane x + 0*y - z +
>>> b.hyperplanes ()
(Hyperplane -t + 0*x + yv — z + O,

Hyperplane -t + x — y + 0*z + O,

Hyperplane -t + x + 0*y - z + O,

Hyperplane t + 0*x + O0*y + 0*z + O,

Hyperplane t + 0*x + v - z + 0,

Hyperplane t + x — y + 0*z + 0,

Hyperplane t + x + 0*y — z + 0)
defining polynomial ()

Return the defining polynomial of A.

Let A = (H;); be a hyperplane arrangement in a vector space V' corresponding to the null spaces of oy, €
V*. Then the defining polynomial of A is given by

Q(A) = HaH,i € S(V).

EXAMPLES:

sage: H.<x,y,z> = HyperplaneArrangements (QQ)
sage: A = H([2*x +y — z, —-x — 2*y + z])
sage: p = A.defining _polynomial(); p

(continues on next page)

1.1. Hyperplane Arrangements 25

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)
—2*x"2 — S5*x*y - 2*%y"2 + 3*x*z + 3*y*z - z"2
sage: p.factor()
(=1) * (= + 2¥y = =) * (2¥=% &+ § = 2)

>>> from sage.all import *

>>> H = HyperplaneArrangements (QQ, names=('x', 'y', 'z',)); (x, y, z,) = H.
—first_ngens (3)

>>> A = H([Integer(2)*x + y — z, —-x — Integer(2)*y + z])

>>> p = A.defining_polynomial(); p

=2¥RA2 = BUxRHy = 2¥y 2 + IFR*m + IFyrz = 272

>>> p.factor ()

(=) = (= + 2%y = 7)) ¥ (2% + ¥ = =)

deletion (hyperplanes)

Return the hyperplane arrangement obtained by removing h.
INPUT:

* h —a hyperplane or hyperplane arrangement
OUTPUT:

A new hyperplane arrangement with the given hyperplane(s) h removed.

> See also

restriction()

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements (QQ)

sage: A = H([O,1,0], [1,0,21, [-1,0,21, [O,%1,-211, [O,1,11); A
Arrangement of 5 hyperplanes of dimension 2 and rank 2

sage: A.deletion (x)

Arrangement <y - 1 | y + 1 | x -y | x + y>

sage: h = H([0,1,0], [0,1,1])

sage: A.deletion (h)

Arrangement <y - 1 | y + 1 | x — y>

>>> from sage.all import *

>>> H = HyperplaneArrangements (QQ, names=('x', 'v',)); (x, y,) = H._first_
—ngens (2)

>>> A = H([Integer(0),Integer(l),Integer(0)], [Integer(l),Integer(0),
—Integer(l)], [-Integer(l),Integer(0),Integer(l)], [Integer(0),Integer(l),—
—Integer(l)], [Integer(0),Integer(l),Integer(l)]); A

Arrangement of 5 hyperplanes of dimension 2 and rank 2

>>> A.deletion (x)

Arrangement <y - 1 | vy + 1 | x -y | x + y>

>>> h = H([Integer(0),Integer(l),Integer(0)], [Integer(0),Integer(l),
—Integer(1l)1])

>>> A.deletion (h)

Arrangement <y - 1 | y + 1 | x — y>

26

Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

derivation_module_basis (algorithm='singular’)

Return a basis for the derivation module of self if one exists, otherwise return None.

> See also

derivation_module_free_ chain (), is_free ()

INPUT:
* algorithm— (default: 'singular') can be one of the following:
— 'singular' - use Singular’s minimal free resolution
— 'BC' —use the algorithm given by Barakat and Cuntz in [BC2012] (much slower than using Singular)
OUTPUT:
A basis for the derivation module (over S, the symmetric space) as vectors of a free module over S.

ALGORITHM:

Singular

This gets the reduced syzygy module of the Jacobian ideal of the defining polynomial f of self. It then
checks Saito’s criterion that the determinant of the basis matrix is a scalar multiple of f. If the basis matrix
is not square or it fails Saito’s criterion, then we check if the arrangement is free. If it is free, then we fall
back to the Barakat-Cuntz algorithm.

BC

Return the product of the derivation module free chain matrices. See Section 6 of [BC2012].
EXAMPLES:

sage: # needs sage.combinat sage.groups

sage: W = WeylGroup(['A', 2], prefix='s")

sage: A = W.long_element ().inversion_arrangement ()

sage: A.derivation_module_basis ()

[(al, a2), (0, al*a2 + a2"72)]

>>> from sage.all import *

>>> # needs sage.combinat sage.groups

>>> W = WeylGroup(['A', Integer(2)], prefix='s')
>>> A = W.long_element () .inversion_arrangement ()
>>> A.derivation_module_basis ()

[(al, a2), (0, al*a2 + a272)]

derivation_module_free_chain ()

Return a free chain for the derivation module if one exists, otherwise return None.

> See also

is_free ()

EXAMPLES:

1.1.

Hyperplane Arrangements 27

Combinatorial and Discrete Geometry, Release 10.6

sage: # needs sage.combinat sage.groups

sage: W = WeylGroup(['A',3], prefix='s")

sage: A = W.long_element () .inversion_arrangement ()
sage: for M in A.derivation_module_free_chain(): print (" 2s\n"3M)
[1 0 0]

[0O 1 0]

[0O 0 a3]

[0 0]

[0 1]

[az 0]

[1 0 0]

[0 -1 -1]

[0 a2 -a3]

[0O 1 0]

[O 0 1]

[al 0]

[1 0 -1]

[a3 -1 0]

[al 0 a2]

[1 0 0]

[a3 =i -1]

[0 al —-a2 - a3]

>>> from sage.all import *

>>> # needs sage.combinat sage.groups

>>> W = WeylGroup(['A',Integer(3)], prefix='s")
>>> A = W.long_element () .inversion_arrangement ()
>>> for M in A.derivation_module_free_chain(): print ("2s\n"3M)
[1 0 0]

[0O 1 0]

[0O 0 a3]

<BLANKLINE>

[1 0 0]

[O 0 1]

[0 a2 0]

<BLANKLINE>

[1 0 0]

[0 -1 -1]

[0 a2 -a3]

<BLANKLINE>

[0O 1 0]

[O 0 1]

[al 0 0]

<BLANKLINE>

[1 0 -1]

[a3 -1 0]

[al 0 a2]

(continues on next page)

28

Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

(continued from previous page)

<BLANKLINE>
[1 0 0]
[a3 =il -1]
[0] al —-a2 - a3]
<BLANKLINE>

dimension ()

Return the ambient space dimension of the arrangement.

OUTPUT: integer

EXAMPLES:

sage: H.<x,y> = HyperplaneArrangements (QQ)
sage: (x | x-1 | xtl1).dimension/()

2

sage: H(x) .dimension ()

2

>>> from sage.all import *

>>> H = HyperplaneArrangements (QQ, names=('x', 'v',)); (x, y,) = H._first_
—ngens (2)

>>> (x | x-Integer(l) | xt+Integer(l)).dimension ()

2

>>> H(x) .dimension ()

2

distance_between_regions (regionl, region2)

Return the number of hyperplanes separating the two regions.
INPUT:
* regionl, region2 — regions of the arrangement or representative points of regions

OUTPUT: integer; the number of hyperplanes separating the two regions

EXAMPLES:

sage: ¢ = hyperplane_arrangements.coordinate (2)
sage: r = c.region_containing_point ([-1, -11)
sage: s = c.region_containing_point ([1, 1])
sage: c.distance_between_regions(r, s)

2

sage: c.distance_between_regions (s, s)

0

>>> from sage.all import *
>>> ¢ = hyperplane_arrangements.coordinate (Integer (2))

>>> r = c.region_containing point ([-Integer (1), —-Integer(l)])
>>> s = c.region_containing_point ([Integer(l), Integer(1l)])
>>> c.distance_between_regions(r, s)

2

>>> c.distance_between_regions (s, s)

0

1.1. Hyperplane Arrangements 29

Combinatorial and Discrete Geometry, Release 10.6

distance_enumerator(ba&;ngkm)

Return the generating function for the number of hyperplanes at given distance.
INPUT:

* base_region — region of arrangement or point in region
OUTPUT:

A polynomial f(x) for which the coefficient of ' is the number of hyperplanes of distance i from base_re-
gion, i.e., the number of hyperplanes separated by ¢ hyperplanes from base_region.

EXAMPLES:

sage: c¢ = hyperplane_arrangements.coordinate (3)
sage: c.distance_enumerator (c.region_containing point ([1,1,1]))
X"3 + 3*x"2 + 3*x + 1

>>> from sage.all import *

>>> ¢ = hyperplane_arrangements.coordinate (Integer (3))

>>> c.distance_enumerator (c.region_containing_point ([Integer (1), Integer (1),
—Integer(1)1))

223 F IERP2 F+ FEx 4

doubly_ indexed_whitney_number (i, j, kind=1)

Return the ¢, j-th doubly-indexed Whitney number.

If kind=1, this number is obtained by adding the Mgbius function values mu(x,y) over all x,y in the
intersection poset with rank () = ¢ and rank(y) = j.

If kind = 2, this number is the number of elements x, y in the intersection poset such that x < y with ranks
1 and j, respectively.

INPUT:

e i, j —integers

* kind — (default: 1) 1 or 2
OUTPUT:

Integer. The (i, j)-th entry of the kind Whitney number.

> See also

whitney_number (), whitney_data ()

EXAMPLES:

sage: # needs sage.combinat

sage: A = hyperplane_arrangements.Shi (3)
sage: A.doubly_indexed_whitney_number (0, 2)
9

sage: A.whitney_number (2)

9

sage: A.doubly_indexed_whitney_number (1, 2)
-15

30

Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

>>> from sage.all import *

>>> # needs sage.combinat

>>> A = hyperplane_arrangements.Shi (Integer (3))

>>> A.doubly_indexed_whitney_number (Integer (0), Integer(2))

>>> A.whitney_number (Integer (2))

9

>>> A.doubly_indexed_whitney_number (Integer (1), Integer(2))
-15

REFERENCES:
* [GZ1983]

essentialization ()

Return the essentialization of the hyperplane arrangement.

The essentialization of a hyperplane arrangement whose base field has characteristic 0 is obtained by inter-
secting the hyperplanes by the space spanned by their normal vectors.

OUTPUT:
The essentialization A’ of A as a new hyperplane arrangement.

EXAMPLES:

sage: a = hyperplane_arrangements.braid(3) #-
—needs sage.graphs

sage: a.is_essential () #.
—needs sage.graphs

False

sage: a.essentialization() #
—needs sage.graphs

Arrangement <tl - t2 | tl1 + 2*t2 | 2*tl + t2>

sage: H.<x,y> = HyperplaneArrangements (QQ)

sage: B = H([(1,0),1]1, [(1,0),-11)

sage: B.is_essential ()

False

sage: B.essentialization()

Arrangement <-x + 1 | x + 1>

sage: B.essentialization () .parent ()

Hyperplane arrangements in l-dimensional linear space over
Rational Field with coordinate x

sage: H.<x,y> = HyperplaneArrangements (GF (2))
sage: C = H([(L,1),11, [(1,1),01)

sage: C.essentialization()

Arrangement <y | y + 1>

sage: h = hyperplane_arrangements.semiorder (4)
sage: h.essentialization()

Arrangement of 12 hyperplanes of dimension 3 and rank 3

1.1. Hyperplane Arrangements 31

Combinatorial and Discrete Geometry, Release 10.6

>>> from sage.all import *

>>> a = hyperplane_arrangements.braid(Integer (3)) -
— # needs sage.graphs

>>> a.is_essential () #o
—needs sage.graphs

False

>>> g.essentialization() #_
—needs sage.graphs

Arrangement <tl - t2 | tl + 2*t2 | 2*tl + t2>

>>> H = HyperplaneArrangements (QQ, names=('x', 'v',)); (x, y,) = H._first_
—ngens (2)

>>> B = H([(Integer(l),Integer(0)),Integer(1)], [(Integer(l),Integer(0)),—
—Integer(1l)1])

>>> B.is_essential ()

False

>>> B.essentialization()

Arrangement <-x + 1 | x + 1>

>>> B.essentialization () .parent ()

Hyperplane arrangements in l-dimensional linear space over

Rational Field with coordinate x

>>> H = HyperplaneArrangements (GF (Integer (2)), names=('x"', 'yv',)); (x, y,) =2
—H._first_ngens (2)

>>> C = H([(Integer(1l),Integer(l)),Integer(l)], [(Integer(l),Integer(l)),
—Integer(0)1])

>>> C.essentialization()

Arrangement <y | y + 1>

>>> h = hyperplane_arrangements.semiorder (Integer (4))
>>> h.essentialization()
Arrangement of 12 hyperplanes of dimension 3 and rank 3

face_product (F, G, normalize=True)

Return the product F'G in the face semigroup of self, where F' and G are two closed faces of self.

The face semigroup of a hyperplane arrangement A is defined as follows: As a set, it is the set of all open
faces of self (see closed_rfaces ()). Its product is defined by the following rule: If F' and G are two
open faces of A, then F'G is an open face of A, and for every hyperplane H € A, the open face F'G lies on
the same side of H as F' unless F' C H, in which case F'G lies on the same side of H as GG. Alternatively,
F'G can be defined as follows: If f and g are two points in F' and G, respectively, then F'G is the face that
contains the point (f + £g)/(1 + ¢) for any sufficiently small positive ¢.

In our implementation, the face semigroup consists of closed faces rather than open faces (thanks to the 1-to-1
correspondence between open faces and closed faces, this is not really a different semigroup); these closed
faces are given as polyhedra.

The face semigroup of a hyperplane arrangement is always a left-regular band (i.e., a semigroup satisfying
the identities 22 = x and zyx = xy). When the arrangement is central, then this semigroup is a monoid.
See [Br2000] (Appendix A in particular) for further properties.

INPUT:
e F, G —two faces of self (as polyhedra)

* normalize —boolean (default: True); if True, then this method returns the precise instance of F'G in

32

Chapter 1. Hyperplane arrangements

Combinatorial and Discrete Geometry, Release 10.6

the list returned by self.closed_faces (), rather than creating a new instance

EXAMPLES:

sage: # needs sage.graphs

sage: a

sage: a.hyperplanes()

0*t0 + t1 - t2 + O,
t0 - t1 + 0*t2 + 0,
t0 + 0*tl - t2 + 0)
{FO: F1 for FO,

faces[(0, 1, 1)]

(Hyperplane
Hyperplane
Hyperplane

sage: faces

sage: xGyEz
sage: xGyEz.
(0, =1, =1)
sage: xGyEz

faces[(0, 1, 1)]

sage: xGyEz.
(Ol 71! 71)

sage: yGxGz

-1,
1,
a.face_product (xGyEz,

1)1
1)1

faces|[(1,

sage: xGyGz faces|[(1,

sage:
True
sage: a.face_product (yGxGz,
True

faces[(-1, 1,
1,

a.face_product (xEzGy,

0)1
1)1

sage: xEzGy

sage: xGzGy faces[(-1,
sage:

True

yGxGz)

xGyEz)

yGxGz)

hyperplane_arrangements.braid(3)

F1 in a.closed_faces()}

closed face x >=y

representative_point ()

closed face

representative_point ()

#
#

\%
1
\%
1

closed face

S
\%
Il
N
v
Il
N N

closed face

xGyGz

== yGxGz

#
#

closed face
closed face
== xGzGy

>>> from sage.all import *

>>> # needs sage.graphs

>>> a

>>> a.hyperplanes ()

(Hyperplane 0*t0 + t1 - t2 + O,
Hyperplane t0 - t1 + 0*t2 + O,
Hyperplane t0 + 0*tl - t2 + 0)

>>> {FO0: F1 for FO,

faces|[(Integer (0),

faces

>>>

xGyEz

=y zZ

>>>
(O,
>>>
=Y
>>>
(0,
>>>

xGyEz.representative_point ()
=i, =)
XGyEz

faces|[(Integer (0),

z
XGyEz.representative_point ()
=i, =)

yGxGz

faces|[(Integer (1),

X >= Z

>>>

xGyGz = faces|[(I