CONTENTS

1 Drinfeld modules 3
 1.1 Drinfeld modules ... 3
 1.2 Drinfeld modules over rings of characteristic zero 22
 1.3 Finite Drinfeld modules ... 26

2 Morphisms and isogenies 35
 2.1 Drinfeld module morphisms .. 35
 2.2 Set of morphisms between two Drinfeld modules 42

3 The module action induced by a Drinfeld module 47
 3.1 The module action induced by a Drinfeld module 47

4 The category of Drinfeld modules 49
 4.1 Drinfeld modules over a base ... 49

5 Indices and Tables 59

Python Module Index 61

Index 63
SageMath include facilities to manipulate Drinfeld modules and their morphisms. The main entry point is the class `sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule`.
1.1 Drinfeld modules

This module provides the class `sage.rings.function_field.drinfeld_module.drinfeld_module.DrinfeldModule`.

For finite Drinfeld modules and their theory of complex multiplication, see class `sage.rings.function_field.drinfeld_module.finite_drinfeld_module.DrinfeldModule`.

AUTHORS:

- Antoine Leudière (2022-04): initial version
- Xavier Caruso (2022-06): initial version
- David Ayotte (2023-03): added basic \(j \)-invariants

```python
class sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule(gen, category)
```

Bases: `Parent`, `UniqueRepresentation`

This class implements Drinfeld \(\mathbb{F}_q[T] \)-modules.

Let \(\mathbb{F}_q[T] \) be a polynomial ring with coefficients in a finite field \(\mathbb{F}_q \) and let \(K \) be a field. Fix a ring morphism \(\gamma : \mathbb{F}_q[T] \to K \); we say that \(K \) is an \(\mathbb{F}_q[T] \)-field. Let \(K\{\tau\} \) be the ring of Ore polynomials with coefficients in \(K \), whose multiplication is given by the rule \(\tau \lambda = \lambda^q \tau \) for any \(\lambda \in K \).

A Drinfeld \(\mathbb{F}_q[T] \)-module over the base \(\mathbb{F}_q[T] \)-field \(K \) is an \(\mathbb{F}_q \)-algebra morphism \(\phi : \mathbb{F}_q[T] \to K\{\tau\} \) such that \(\text{Im}(\phi) \not\subset K \) and \(\phi \) agrees with \(\gamma \) on \(\mathbb{F}_q \).

For \(a \) in \(\mathbb{F}_q[T] \), \(\phi(a) \) is denoted \(\phi(a) \).

The Drinfeld \(\mathbb{F}_q[T] \)-module \(\phi \) is uniquely determined by the image \(\phi_T \) of \(T \); this serves as input of the class.

Note: See also `sage.categories.drinfeld_modules`.

The *base morphism* is the morphism \(\gamma : \mathbb{F}_q[T] \to K \). The monic polynomial that generates the kernel of \(\gamma \) is called the \(\mathbb{F}_q[T] \)-characteristic, or *function-field characteristic*, of the base field. We say that \(\mathbb{F}_q[T] \) is the *function ring* of \(\phi \); \(K\{\tau\} \) is the *Ore polynomial ring*. Further, the *generator* is \(\phi_T \) and the *constant coefficient* is the constant coefficient of \(\phi_T \).

A Drinfeld module is said to be *finite* if the field \(K \) is. Despite an emphasis on this case, the base field can be any extension of \(\mathbb{F}_q \):
Drinfeld modules, Release 10.2

```sage
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(6)
sage: phi = DrinfeldModule(A, [z, 4, 1])
sage: phi
Drinfeld module defined by T |--> t^2 + 4*t + z
```

```sage
sage: Fq = GF(49)
sage: A.<T> = Fq[]
sage: K = Frac(A)
sage: psi = DrinfeldModule(A, [K(T), T+1])
sage: psi
Drinfeld module defined by T |--> (T + 1)*t + T
```

Note: Finite Drinfeld modules are implemented in the class `sage.rings.function_field.drinfeld_modules.finite_drinfeld_module`.

Classical references on Drinfeld modules include [Gos1998], [Rosen2002], [VS06] and [Gek1991].

Note: Drinfeld modules are defined in a larger setting, in which the polynomial ring $\mathbb{F}_q[T]$ is replaced by a more general function ring: the ring of functions in k that are regular outside ∞, where k is a function field over \mathbb{F}_q with transcendence degree 1 and ∞ is a fixed place of k. This is out of the scope of this implementation.

INPUT:

- `function_ring` – a univariate polynomial ring whose base field is a finite field
- `gen` – the generator of the Drinfeld module; as a list of coefficients or an Ore polynomial
- `name` (default: `'t'`) – the name of the Ore polynomial ring generator

Construction

A Drinfeld module object is constructed by giving the function ring and the generator:

```sage
sage: Fq.<z2> = GF(3^2)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(6)
sage: phi = DrinfeldModule(A, [z, 1, 1])
sage: phi
Drinfeld module defined by T |--> t^2 + t + z
```

Note: Note that the definition of the base field is implicit; it is automatically defined as the compositum of all the parents of the coefficients.

The above Drinfeld module is finite; it can also be infinite:

```sage
sage: L = Frac(A)
sage: psi = DrinfeldModule(A, [L(T), 1, T^3 + T + 1])
```

(continues on next page)
In those examples, we used a list of coefficients ([z, 1, 1]) to represent the generator $\phi_T = z + t + t^2$. One can also use regular Ore polynomials:

```
sage: ore_polring = phi.ore_polring()
sage: t = ore_polring.gen()
sage: rho_T = z + t^3
sage: rho = DrinfeldModule(A, rho_T)
sage: rho
Drinfeld module defined by T |--> t^3 + z
sage: rho(T) == rho_T
True
```

Images under the Drinfeld module are computed by calling the object:

```
sage: phi(T) # phi_T, the generator of the Drinfeld module
t^2 + t + z
sage: phi(T^3 + T + 1) # phi_(T^3 + T + 1)
t^6 + (z^11 + z^9 + 2*z^6 + 2*z^4 + 2*z + 1)*t^4
  + (2*z^11 + 2*z^10 + z^9 + z^8 + 2*z^7 + 2*z^6 + z^5 + 2*z^3)*t^3
  + (2*z^11 + z^10 + z^9 + 2*z^7 + 2*z^6 + z^5 + z^4 + 2*z^3 + 2*z + 2)*t^2
  + (2*z^11 + 2*z^8 + 2*z^6 + z^5 + z^4 + 2*z^2)*t + z^3 + z + 1
sage: phi(1) # phi_1
1
```

The category of Drinfeld modules

Drinfeld modules have their own category (see class `sage.categories.drinfeld_modules.DrinfeldModules`):

```
sage: phi.category()
Category of Drinfeld modules over Finite Field in z of size 3^12 over its base
sage: phi.category() is psi.category()
False
sage: phi.category() is rho.category()
True
```

One can use the category to directly create new objects:

```
sage: cat = phi.category()
sage: cat.object([z, 0, 0, 1])
Drinfeld module defined by T |--> t^3 + z
```
The base field of a Drinfeld module

The base field of the Drinfeld module is retrieved using \texttt{base()}:

\begin{verbatim}
sage: phi.base()
Finite Field in z of size 3^12 over its base
\end{verbatim}

The base morphism is retrieved using \texttt{base_morphism()}:

\begin{verbatim}
sage: phi.base_morphism()
Ring morphism:
 \text{From: Univariate Polynomial Ring in T over Finite Field in z2 of size 3^2}
 \text{To: Finite Field in z of size 3^12 over its base}
 \text{Defn: T |--> z}
\end{verbatim}

Note that the base field is \textit{not} the field \(K \). Rather, it is a ring extension (see \texttt{sage.rings.ring_extension.RingExtension}) whose underlying ring is \(K \) and whose base is the base morphism:

\begin{verbatim}
sage: phi.base() is K
False
\end{verbatim}

Getters

One can retrieve basic properties:

\begin{verbatim}
sage: phi.base_morphism()
Ring morphism:
 \text{From: Univariate Polynomial Ring in T over Finite Field in z2 of size 3^2}
 \text{To: Finite Field in z of size 3^12 over its base}
 \text{Defn: T |--> z}

sage: phi.ore_polring() # \(K\{t\} \)
Ore Polynomial Ring in t over Finite Field in z of size 3^12 over its base
twisted by Frob^2

sage: phi.function_ring() # \(F_q[T] \)
Univariate Polynomial Ring in T over Finite Field in z2 of size 3^2

sage: phi.gen() # \(\phi_T \)
t^2 + t + z
sage: phi.gen() == phi(T)
True

sage: phi.constant_coefficient() # Constant coefficient of \(\phi_T \)
z

sage: phi.morphism() # The Drinfeld module as a morphism
Ring morphism:
 \text{From: Univariate Polynomial Ring in T over Finite Field in z2 of size 3^2}
 \text{To: Ore Polynomial Ring in t over Finite Field in z of size 3^12 over its base}
\end{verbatim}
twisted by Frob^2
Defn: T |--> t^2 + t + z

One can compute the rank and height:

\begin{verbatim}
sage: phi.rank()
sage: phi.height()
2
1
\end{verbatim}

As well as the j-invariant:

\begin{verbatim}
sage: phi.j_invariant() # j-invariant
1
\end{verbatim}

A Drinfeld \(\mathbb{F}_q[T] \)-module can be seen as an Ore polynomial with positive degree and constant coefficient \(\gamma(T) \), where \(\gamma \) is the base morphism. This analogy is the motivation for the following methods:

\begin{verbatim}
sage: phi.coefficients()
[z, 1, 1]
sage: phi.coefficient(1)
1
\end{verbatim}

Morphisms and isogenies

A *morphism* of Drinfeld modules \(\phi \rightarrow \psi \) is an Ore polynomial \(f \in K\{\tau\} \) such that \(f \phi_a = \psi_a f \) for every \(a \) in the function ring. In our case, this is equivalent to \(f \phi_T = \psi_T f \). An *isogeny* is a nonzero morphism.

Use the `in` syntax to test if an Ore polynomial defines a morphism:

\begin{verbatim}
sage: phi(T) in Hom(phi, phi)
sage: t^6 in Hom(phi, phi)
sage: t^5 + 2*t^3 + 1 in Hom(phi, phi)
sage: 1 in Hom(phi, rho)
sage: 0 in Hom(phi, rho)
True
True
False
False
True
\end{verbatim}

To create a SageMath object representing the morphism, call the homset (`hom`):

\begin{verbatim}
sage: hom = Hom(phi, phi)
sage: frobenius_endomorphism = hom(t^6)
sage: identity_morphism = hom(1)
sage: zero_morphism = hom(0)
sage: frobenius_endomorphism
Endomorphism of Drinfeld module defined by T |--> t^2 + t + z
\end{verbatim}
Defn: \(t^6 \)

sage: identity_morphism

Identity morphism of Drinfeld module defined by \(T \mapsto t^2 + t + z \)

sage: zero_morphism

Endomorphism of Drinfeld module defined by \(T \mapsto t^2 + t + z \)

Defn: \(0 \)

The underlying Ore polynomial is retrieved with the method `ore_polynomial()`:

sage: frobenius_endomorphism.ore_polynomial()

\(t^6 \)

sage: identity_morphism.ore_polynomial()

\(1 \)

One checks if a morphism is an isogeny, endomorphism or isomorphism:

sage: frobenius_endomorphism.is_isogeny()

True

sage: identity_morphism.is_isogeny()

True

sage: zero_morphism.is_isogeny()

False

sage: frobenius_endomorphism.is_isomorphism()

False

sage: identity_morphism.is_isomorphism()

True

sage: zero_morphism.is_isomorphism()

False

The Vélu formula

Let \(P \) be a nonzero Ore polynomial. We can decide if \(P \) defines an isogeny with a given domain and, if it does, find the codomain:

sage: \(P = (2^6 z^6 + z^3 + 2^5 z^2 + z + 2)^t + z^11 + 2^6 z^10 + 2^5 z^9 + 2^4 z^8 + z^7 + \) \(z^6 + z^5 + z^3 + z^2 + z \)

sage: psi = phi.velu(P)

sage: psi

Drinfeld module defined by \(T \mapsto (2^6 z^{11} + 2^5 z^9 + z^6 + 2^4 z^5 + 2^4 z^4 + 2^3 z^2 + \) \(+ (2^6 z^{11} + 2^5 z^{10} + 2^4 z^9 + z^8 + 2^4 z^7 + 2^4 z^6 + z^5 + 2^4 z^4 + 2^3 z^2 + 2^3 z) \) \(* t + z \)

sage: \(P \) in Hom(phi, psi)

True

sage: \(P \ast \phi(T) == psi(T) \ast P \)

True

If the input does not define an isogeny, an exception is raised:

sage: phi.velu(0)

Traceback (most recent call last):

...

ValueError: the input does not define an isogeny
The action of a Drinfeld module

The $\mathbb{F}_q[T]$-Drinfeld module ϕ induces a special left $\mathbb{F}_q[T]$-module structure on any field extension L/K. Let $x \in L$ and a be in the function ring; the action is defined as $(a, x) \mapsto \phi_a(x)$. The method `action()` returns a `sage.rings.function_field.drinfeld_modules.action.Action` object representing the Drinfeld module action.

Note: In this implementation, L is K:

```sage
sage: action = phi.action()
sage: action
Action on Finite Field in z of size 3^12 over its base
induced by Drinfeld module defined by T |--> t^2 + t + z
```

The action on elements is computed by calling the action object:

```sage
sage: P = T + 1
sage: a = z
sage: action(P, a)
...
z^9 + 2*z^8 + 2*z^7 + 2*z^6 + 2*z^3 + z^2
sage: action(0, K.random_element())
0
sage: action(A.random_element(), 0)
0
```

Warning: The class `DrinfeldModuleAction` may be replaced later on. See issues #34833 and #34834.

`action()`

Return the action object (sage.rings.function_field.drinfeld_modules.action.Action) that represents the module action, on the base codomain, that is induced by the Drinfeld module.

OUTPUT: a Drinfeld module action object

EXAMPLES:

```sage
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: action = phi.action()
sage: action
```

(continues on next page)
Action on Finite Field in z_{12} of size 5^{12} over its base
induced by Drinfeld module defined by
$$T \mapsto z_{12}^5 t^2 + z_{12}^3 t + 2 z_{12}^{11} + 2 z_{12}^{10} + z_{12}^9 + 3 z_{12}^8 + z_{12}^7 + 2 z_{12}^5 + 2 z_{12}^4 + 3 z_{12}^3 + z_{12}^2 + z_{12}.$$

The action on elements is computed as follows:

```python
sage: P = T^2 + T + 1
sage: a = z_{12} + 1
sage: action(P, a)
3 z_{12}^{11} + 2 z_{12}^{10} + 3 z_{12}^9 + 3 z_{12}^7 + 4 z_{12}^5 + z_{12}^4 + z_{12}^3 + 2 z_{12} + 1
sage: action(0, a)
0
sage: action(P, 0)
0
```

`basic_j_invariant_parameters(coeff_indices=None, nonzero=False)`

Return the list of basic j-invariant parameters.

See the method `j_invariant()` for definitions.

INPUT:

- `coeff_indices` (list or tuple, or NoneType; default: None) – indices of the Drinfeld module generator coefficients to be considered in the computation. If the parameter is None (default), all the coefficients are involved.
- `nonzero` (boolean, default: False) – if this flag is set to True, then only the parameters for which the corresponding basic j-invariant is nonzero are returned.

Warning: The usage of this method can be computationally expensive e.g. if the rank is greater than four, or if q is large. Setting the `nonzero` flag to True can speed up the computation considerably if the Drinfeld module generator possesses multiple zero coefficients.

EXAMPLES:

```python
sage: A = GF(5)['T']
sage: K.<T> = Frac(A)
sage: phi = DrinfeldModule(A, [T, 0, T+1, T^2 + 1])
sage: phi.basic_j_invariant_parameters()
[((1,), (31, 1)),
 ((1, 2), (1, 5, 1)),
 ((1, 2), (7, 4, 1)),
 ((1, 2), (8, 9, 2)),
 ((1, 2), (9, 14, 3)),
 ((1, 2), (10, 19, 4)),
 ((1, 2), (11, 24, 5)),
 ((1, 2), (12, 29, 6)),
 ((1, 2), (13, 3, 1)),
 ((1, 2), (15, 13, 3)),
 ((1, 2), (17, 23, 5)),
 ((1, 2), (19, 2, 1)),
 ((1, 2), (20, 7, 2)),
```

(continues on next page)
Use the nonzero=True flag to display only the parameters whose j-invariant value is nonzero:

```sage
sage: phi.basic_j_invariant_parameters(nonzero=True)
[((2,), (31, 6))]
```

One can specify the list of coefficients indices to be considered in the computation:

```sage
sage: A = GF(2)[['T']]
sage: K.<T> = Frac(A)
sage: phi = DrinfeldModule(A, [T, T, 1, T])
sage: phi.basic_j_invariant_parameters([1, 2])
[((1,), (7, 1)),
 ((1, 2), (1, 2, 1)),
 ((1, 2), (4, 1, 1)),
 ((1, 2), (5, 3, 2)),
 ((1, 2), (6, 5, 3)),
 ((1, 2), (7, 7, 4)),
 ((2,), (7, 3))]
```

basic_j_invariants *(nonzero=False)*

Return a dictionary whose keys are all the basic j-invariants parameters and values are the corresponding j-invariant.

See the method j-invariant() for definitions.

INPUT:

- *nonzero* (boolean, default: False) – if this flag is set to True, then only the parameters for which the corresponding basic j-invariant is nonzero are returned.

Warning: The usage of this method can be computationally expensive e.g. if the rank is greater than four, or if q is large. Setting the nonzero flag to True can speed up the computation considerably if the Drinfeld module generator possesses multiple zero coefficients.

EXAMPLES:

```sage
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.basic_j_invariants()
{(1,), (26, 1)): z12^10 + 4*z12^9 + 3*z12^8 + 2*z12^7 + 3*z12^6 + z12^5 + z12^4 + 3*z12^3 + 4*z12^2 + z12 + 2}
```
Drinfeld modules, Release 10.2

```python
sage: phi = DrinfeldModule(A, [p_root, 0, 1, z12])
sage: phi.basic_j_invariants(nonzero=True)
(((2,), (651, 26)): z12^11 + 3*z12^10 + 4*z12^9 + 3*z12^8 + z12^7 + 2*z12^6 +
   3*z12^4 + 2*z12^3 + z12^2 + 4*z12)

sage: A = GF(5)[T]
sage: K.<T> = Frac(A)
sage: phi = DrinfeldModule(A, [T, T + 2, T+1, 1])
sage: J_phi = phi.basic_j_invariants(); J_phi
{((1,), (31, 1)): T^31 + 2*T^30 + 2*T^26 + 4*T^25 + 2*T^6 + 4*T^5 + 4*T + 3,
((1, 2), (1, 5, 1)): T^6 + 2*T^5 + T + 2, 
((1, 2), (7, 4, 1)): T^11 + 3*T^10 + T^9 + 4*T^8 + T^7 + 2*T^6 + 2*T^4 + 3*T^3 +
   2*T^2 + 3,
((1, 2), (8, 9, 2)): T^17 + 2*T^15 + T^14 + 4*T^13 + 4*T^11 + 4*T^10 + 3*T^9 +
   2*T^8 + 3*T^7 + 2*T^6 + 3*T^5 + 2*T^4 + 3*T^3 + 4*T^2 + 3 + 1,
((1, 2), (9, 14, 3)): T^23 + 2*T^22 + 2*T^21 + T^19 + 4*T^18 + T^17 + 4*T^16 +
   T^15 + 4*T^14 + 2*T^12 + 4*T^11 + 4*T^10 + 2*T^8 + 4*T^7 + 4*T^6 + 2*T^4 + T^2 +
   2 + 2*T + 2,
((1, 2), (10, 19, 4)): T^29 + 4*T^28 + T^27 + 4*T^26 + T^25 + 2*T^24 + 3*T^23 +
   2*T^22 + 3*T^21 + 2*T^20 + 4*T^19 + T^18 + 4*T^17 + T^16 + 4*T^15 + T^9 +
   4*T^8 + T^7 + 4*T^6 + T^5 + 4*T^4 + T^3 + 4*T^2 + T + 4, 
...
((2,), (31, 6)): T^31 + T^30 + T^26 + T^25 + T^6 + T^5 + T + 1}

sage: J_phi[[(1, 2), (7, 4, 1)]]
T^11 + 3*T^10 + T^9 + 4*T^8 + T^7 + 2*T^6 + 2*T^4 + 3*T^3 + 2*T^2 + 3
```

coefficient*(n)***

Return the *n*-th coefficient of the generator.

INPUT:

- *n* – a nonnegative integer

OUTPUT: an element in the base codomain

EXAMPLES:

```python
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.coefficient(0)
2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi.coefficient(0) == p_root
True
sage: phi.coefficient(1)
z12^3
sage: phi.coefficient(2)
z12^5
sage: phi.coefficient(5)
Traceback (most recent call last):
```
coefficients(sparse=True)
Return the coefficients of the generator, as a list.

If the flag sparse is True (default), only return the nonzero coefficients; otherwise, return all of them.

INPUT:
• sparse – a boolean

EXAMPLES:

```python
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.coefficients()
[2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12, z12^3, z12^5]
sage: rho = DrinfeldModule(A, [p_root, 0, 0, 0, 1])
sage: rho.coefficients()
[2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12, 1]
sage: rho.coefficients(sparse=False)
[2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12, 0, 0, 0, 1]
```

Careful, the method only returns the nonzero coefficients, unless otherwise specified:

```python
sage: rho = DrinfeldModule(A, [p_root, 0, 0, 0, 1])
sage: rho.coefficients()  
[2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12, 0, 0, 0, 1]
sage: rho.coefficients(sparse=False)
```

gen()
Return the generator of the Drinfeld module.

EXAMPLES:

```python
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.gen() == phi(T)
True
```
height()

Return the height of the Drinfeld module if the function field characteristic is a prime ideal; raise ValueError otherwise.

The height of a Drinfeld module is defined when the function field characteristic is a prime ideal. In our case, this ideal is even generated by a monic polynomial p in the function field. Write $\phi_p = a_0 + a_1 \tau^r + \ldots + a_{s-1} \tau^{r+\deg(p)}$. The height of the Drinfeld module is the well-defined positive integer $h = \frac{s}{\deg(p)}$.

Note: See [Gos1998], Definition 4.5.8 for the general definition.

EXAMPLES:

```
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.height() == 1
True
sage: phi.is_ordinary()
True
```

```
sage: Fq = GF(343)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(2)
sage: phi = DrinfeldModule(A, [1, 0, z6])
sage: phi.height()
2
sage: phi.is_supersingular()
True
```

In characteristic zero, height is not defined:

```
sage: L = A.fraction_field()
sage: phi = DrinfeldModule(A, [L(T), L(1)])
sage: phi.height()
Traceback (most recent call last):
  ...
ValueError: height is only defined for prime function field characteristic
```

hom(*x*, **codomain=None**)

Return the homomorphism defined by *x* having this Drinfeld module as domain.

We recall that a homomorphism $f : \phi \rightarrow \psi$ between two Drinfeld modules is defined by an Ore polynomial u, which is subject to the relation $\phi u = u \psi$.

INPUT:

- *x* – an element of the ring of functions, or an Ore polynomial
- **codomain** – a Drinfeld module or None (default: None)

EXAMPLES:
An important class of endomorphisms of a Drinfeld module ϕ is given by scalar multiplications, that are endomorphisms corresponding to the Ore polynomials ϕ_a with a in the function ring A. We construct them as follows:

```sage
sage: phi.hom(T)
Endomorphism of Drinfeld module defined by T |--> z*t^3 + t^2 + z
   Defn: z*t^3 + t^2 + z
```

We can also define a morphism by passing in the Ore polynomial defining it. For example, below, we construct the Frobenius endomorphism of ϕ:

```sage
sage: t = phi.ore_variable()
sage: phi.hom(t^3)
Endomorphism of Drinfeld module defined by T |--> z*t^3 + t^2 + z
   Defn: t^3
```

If the input Ore polynomial defines a morphism to another Drinfeld module, the latter is determined automatically:

```sage
sage: phi.hom(t + 1)
Drinfeld Module morphism:
   From: Drinfeld module defined by T |--> z*t^3 + t^2 + z
   To:   Drinfeld module defined by T |--> (2*z^2 + 4*z + 4)*t^3 + (3*z^2 + 2*z + 2)*t^2 + (2*z^2 + 3*z + 4)*t + z
   Defn: t + 1
```

is_finite()

Return True if this Drinfeld module is finite, False otherwise.

EXAMPLES:

```sage
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^6 + 3*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.is_finite()
True
sage: B.<Y> = Fq[]
sage: L = Frac(B)
```
sage: psi = DrinfeldModule(A, [L(2), L(1)])
sage: psi.is_finite()
False

is_isomorphic(other, absolutely=False)

Return True if this Drinfeld module is isomorphic to other; return False otherwise.

INPUT:

- absolutely – a boolean (default: False): if True, check the existence of an isomorphism defined on the base field; if False, check over an algebraic closure.

EXAMPLES:

sage: Fq = GF(5)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(3)
sage: phi = DrinfeldModule(A, [z, 0, 1, z])
sage: t = phi.ore_variable()

We create a second Drinfeld module, which is isomorphic to \(\phi \) and then check that they are indeed isomorphic:

sage: psi = phi.velu(z)
sage: psi.is_isomorphic(psi)
True

In the example below, \(\phi \) and \(\psi \) are isogenous but not isomorphic:

sage: psi = phi.velu(t + 1)
sage: psi.is_isomorphic(psi)
False

Here is an example of two Drinfeld modules which are isomorphic on an algebraic closure but not on the base field:

sage: phi = DrinfeldModule(A, [z, 1])
sage: psi = DrinfeldModule(A, [z, z])
sage: psi.is_isomorphic(psi)
False

sage: phi.is_isomorphic(psi, absolutely=True)
True

On certain fields, testing isomorphisms over the base field may fail:

sage: L = A.fraction_field()
sage: T = L.gen()
sage: phi = DrinfeldModule(A, [T, 0, 1])
sage: psi = DrinfeldModule(A, [T, 0, T])
sage: psi.is_isomorphic(phi)
Traceback (most recent call last):
 ... NotImplementedError: cannot solve the equation u^24 == T

However, it never fails over the algebraic closure:
Note finally that when the constant coefficients of ϕ_T and ψ_T differ, ϕ and ψ do not belong to the same category and checking whether they are isomorphic does not make sense; in this case, an error is raised:

```python
sage: phi = DrinfeldModule(A, [z, 0, 1])
sage: psi = DrinfeldModule(A, [z^2, 0, 1])
sage: phi.is_isomorphic(psi)
Traceback (most recent call last):
...
ValueError: Drinfeld modules are not in the same category
```

j_invariant

Return the j-invariant of the Drinfeld $\mathbb{F}_q[T]$-module for the given parameter.

Suppose that $\phi_T = g_0 + g_1 T + \cdots + g_r T^r$ with $g_r \neq 0$. Then the $((k_1, \ldots, k_n), (d_1, \ldots, d_n, d_r))$-$j$-invariant of ϕ is defined by

$$ j_{k_1,\ldots,k_n,d_1,d_r}(\phi) := \frac{1}{g_{fr}^q} \prod_{i=1}^n g_{k_i}^{d_i}, $$

where $1 \leq k_1 < k_2 < \ldots < k_n \leq r - 1$ and the integers d_i satisfy the weight-0 condition:

$$ d_1(q^{k_1} - 1) + d_2(q^{k_2} - 1) + \cdots + d_n(q^{k_n} - 1) = d_r(q^r - 1). $$

Furthermore, if $\gcd(d_1, \ldots, d_n, d_r) = 1$ and

$$ 0 \leq d_i \leq (q^r - 1)/(q^{\gcd(i,r)} - 1), \quad 1 \leq i \leq n, $$

then the j-invariant is called basic. See the method `basic_j_invariant_parameters()` for computing the list of all basic j-invariant parameters.

INPUT:

- **parameter** (tuple or list, integer or NoneType; default: None) – the j-invariant parameter:
 - If `parameter` is a list or a tuple, then it must be of the form: $((k_1, k_2, \ldots, k_n), (d_1, d_2, \ldots, d_n, d_r))$, where the k_i and d_i are integers satisfying the weight-0 condition described above.
 - If `parameter` is an integer k then the method returns the j-invariant associated to the parameter $((k,),(d_k,d_r))$.
 - If `parameter` is `None` and the rank of the Drinfeld module is 2, then the method returns its usual j-invariant, that is the j-invariant for the parameter $((1),(q+1,1))$.

- **check** (bool, default: True) – if this flag is set to `False` then the code will not check if the given parameter is valid and satisfy the weight-0 condition.

OUTPUT: the j-invariant of `self` for the given parameter.

REFERENCE: the j-invariant of a Drinfeld module was introduced by Potemine in [Pot1998].

EXAMPLES:
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12

sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.j_invariant()
1

sage: psi = DrinfeldModule(A, [p_root, 1, 1])

sage: rho = DrinfeldModule(A, [p_root, 0, 1])

sage: A = GF(5)['T']

sage: K.<T> = Frac(A)
sage: phi = DrinfeldModule(A, [T, T^2, 1, T + 1, T^3])

The parameter can either be a tuple or a list:

sage: Fq.<a> = GF(7)
sage: A.<T> = Fq[]
sage: phi = DrinfeldModule(A, [a, a^2 + a, 0, 3*a, a^2+1])

sage: J = phi.j_invariant(((1, 3), (267, 269, 39))); J
5

sage: J == (phi.coefficient(1)**267)*(phi.coefficient(3)**269)/(phi.
 coefficient(4)**39)
True

sage: phi.j_invariant([[3], [400, 57]])
4

The list of all basic \(j\)-invariant parameters can be retrieved using the method `basic_j_invariant_parameters()`:

sage: A = GF(3)['T']

sage: K.<T> = Frac(A)
sage: phi = DrinfeldModule(A, [T, T^2 + T + 1, 0, T^4 + 1, T - 1])

sage: param = phi.basic_j_invariant_parameters(nonzero=True)

sage: phi.j_invariant(param[1])
T^13 + 2*T^12 + T + 2

sage: phi.j_invariant(param[2])
T^35 + 2*T^31 + T^27 + 2*T^8 + T^4 + 2
jk_invariants()

Return a dictionary whose keys are all the integers $1 \leq k \leq r - 1$ and the values are the corresponding j_k-invariants.

Recall that the j_k-invariant of self is defined by:

$$j_k := \frac{g_k^{(q^r-1)/(\gcd(k,r)-1)}}{g_r^{(q^r-1)/(\gcd(k,r)-1)}}$$

where g_i is the i-th coefficient of the generator of self.

EXAMPLES:

```python
sage: A = GF(3)['T']
sage: K.<T> = Frac(A)
sage: phi = DrinfeldModule(A, [T, 1, T+1, T^3, T^6])
sage: jk_inv = phi.jk_invariants(); jk_inv
{1: 1/T^6, 2: (T^10 + T^9 + T + 1)/T^6, 3: T^42}
sage: jk_inv[2]
(T^10 + T^9 + T + 1)/T^6
```

morphism()

Return the morphism object that defines the Drinfeld module.

OUTPUT: a ring morphism from the function ring to the Ore polynomial ring

EXAMPLES:

```python
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 2*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 2*z12^3 + 4*z12^2 + 4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.morphism()
Ring morphism:
  From: Univariate Polynomial Ring in T over Finite Field in z2 of size 5^2
  To: Ore Polynomial Ring in t over Finite Field in z12 of size 5^12
  over its base twisted by Frob^2
  Defn: T |---> z12^5*t^4 + z12^3*t + 2*z12^11 + 2*z12^10 + z12^9 + 2*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 2*z12^3 + z12^2 + 2*z12
def: from sage.rings.morphism import RingHomomorphism
sage: isinstance(phi.morphism(), RingHomomorphism)
True
```

Actually, the DrinfeldModule method `__call__()` simply class the `__call__` method of this morphism:
sage: phi.morphism()(T) == phi(T)
True
sage: a = A.random_element()
sage: phi.morphism()(a) == phi(a)
True

And many methods of the Drinfeld module have a counterpart in the morphism object:

sage: m = phi.morphism()
sage: m.domain() is phi.function_ring()
True
sage: m.codomain() is phi.ore_polring()
True
sage: m.im_gens()
[z12^5*t^2 + z12^3*t + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12]
sage: phi(T) == m.im_gens()[0]
True

\[\text{rank}()\]

Return the rank of the Drinfeld module.

In our case, the rank is the degree of the generator.

\[\text{OUTPUT: an integer}\]

\[\text{EXAMPLES:}\]

sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.rank()
2
sage: psi = DrinfeldModule(A, [p_root, 2])
sage: psi.rank()
1
sage: rho = DrinfeldModule(A, [p_root, 0, 0, 0, 1])
sage: rho.rank()
4

\[\text{scalar_multiplication}(x)\]

Return the endomorphism of this Drinfeld module, which is the multiplication by \(x\), i.e. the isogeny defined by the Ore polynomial \(\phi_x\).

\[\text{INPUT:}\]

- \(x\) – an element in the ring of functions

\[\text{EXAMPLES:}\]

sage: Fq = GF(5)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(3)

(continues on next page)
sage: phi = DrinfeldModule(A, [z, 0, 1, z])
sage: phi
Drinfeld module defined by $T \mapsto z^3 t + t^2 + z$
sage: phi.hom(T)
Endomorphism of Drinfeld module defined by $T \mapsto z^3 t + t^2 + z$
 Defn: $z^3 t + t^2 + z$

sage: phi.hom(T^2 + 1)
Endomorphism of Drinfeld module defined by $T \mapsto z^3 t + t^2 + z$
 Defn: $z^6 t^2 + (3 z^2 + z + 1) t^5 + t^4 + 2 z^2 t^3 + (3 z^2 + z + 1) t^2 + z^2 + 1$

velu(isog)

Return a new Drinfeld module such that input is an isogeny to this module with domain self; if no such isogeny exists, raise an exception.

INPUT:

• isog – the Ore polynomial that defines the isogeny

OUTPUT: a Drinfeld module

ALGORITHM:

The input defines an isogeny if only if:

1. The degree of the characteristic divides the height of the input. (The height of an Ore polynomial $P(\tau)$ is the maximum n such that τ^n right-divides $P(\tau)$.)

2. The input right-divides the generator, which can be tested with Euclidean division.

We test if the input is an isogeny, and, if it is, we return the quotient of the Euclidean division.

Height and Euclidean division of Ore polynomials are implemented as methods of class sage.rings.polynomial.ore_polynomial_element.OrePolynomial.

Another possible algorithm is to recursively solve a system, see arXiv 2203.06970, Eq. 1.1.

EXAMPLES:

sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: t = phi.ore_polring().gen()
sage: isog = t + 2*z12^11 + 4*z12^9 + 2*z12^8 + 2*z12^6 + 3*z12^5 + z12^4 + 2*z12^3 + 4*z12^2 + 4*z12 + 4
sage: psi = phi.velu(isog)
sage: psi
Drinfeld module defined by $T \mapsto$
 $(z12^11 + 3*z12^10 + z12^9 + z12^7 + z12^5 + 4*z12^4 + 4*z12^3 + z12^2 + 1) t^2$
 $+ (2*z12^11 + 4*z12^10 + 2*z12^8 + z12^6 + 3*z12^5 + z12^4 + 2*z12^3 + z12^2 + 1) t$
 $+ z12^2 + 2*z12$
Drinfeld modules, Release 10.2

(continued from previous page)

```python
sage: isog in Hom(phi, psi)
True
```

This method works for endomorphisms as well:

```python
sage: phi.velu(phi(T)) is phi
True
sage: phi.velu(t^6) is phi
True
```

The following inputs do not define isogenies, and the method returns `None`:

```python
sage: phi.velu(0)
Traceback (most recent call last):
  ... ValueError: the input does not define an isogeny
sage: phi.velu(t)
Traceback (most recent call last):
  ... ValueError: the input does not define an isogeny
sage: phi.velu(t^3 + t + 2)
Traceback (most recent call last):
  ... ValueError: the input does not define an isogeny
```

1.2 Drinfeld modules over rings of characteristic zero

This module provides the class `sage.rings.function_fields.drinfeld_module.charzero_drinfeld_module.DrinfeldModule_charzero`, which inherits `sage.rings.function_fields.drinfeld_module.DrinfeldModule`.

AUTHORS:

- David Ayotte (2023-09)

```python
class sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module.DrinfeldModule_charzero(gen, cat=category)
```

Bases: `DrinfeldModule`

This class implements Drinfeld $\mathbb{F}_q[T]$-modules defined over fields of $\mathbb{F}_q[T]$-characteristic zero.

Recall that the $\mathbb{F}_q[T]$-characteristic is defined as the kernel of the underlying structure morphism. For general definitions and help on Drinfeld modules, see class `sage.rings.function_fields.drinfeld_module.DrinfeldModule`.

Chapter 1. Drinfeld modules
Construction:

The user does not ever need to directly call `DrinfeldModule_charzero` — the metaclass `DrinfeldModule` is responsible for instantiating the right class depending on the input:

```
sage: A = GF(3)[T]
sage: K.<T> = Frac(A)
sage: phi = DrinfeldModule(A, [T, 1])
sage: phi
Drinfeld module defined by T |--> t + T
```

```
sage: isinstance(phi, DrinfeldModule)
True
sage: from sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module
˓→import DrinfeldModule_charzero
sage: isinstance(phi, DrinfeldModule_charzero)
True
```

Logarithm and exponential

It is possible to calculate the logarithm and the exponential of any Drinfeld modules of characteristic zero:

```
sage: A = GF(2)[T]
sage: K.<T> = Frac(A)
sage: phi = DrinfeldModule(A, [T, 1])
sage: phi.exponential()
z + ((1/(T^2+T))*z^2) + ((1/(T^8+T^6+T^5+T^3))*z^4) + O(z^8)
sage: phi.logarithm()
z + ((1/(T^2+T))*z^2) + ((1/(T^6+T^5+T^3+T^2))*z^4) + O(z^8)
```

Goss polynomials

Goss polynomials are a sequence of polynomials related with the analytic theory of Drinfeld module. They provide a function field analogue of certain classical trigonometric functions:

```
sage: A = GF(2)[T]
sage: K.<T> = Frac(A)
sage: phi = DrinfeldModule(A, [T, 1])
sage: phi.goss_polynomial(1)
X
sage: phi.goss_polynomial(2)
X^2
sage: phi.goss_polynomial(3)
X^3 + (1/(T^2 + T))*X^2
```
Base fields of $\mathbb{F}_q[T]$-characteristic zero

The base fields need not only be fraction fields of polynomials ring. In the following example, we construct a Drinfeld module over $\mathbb{F}_q((1/T))$, the completion of the rational function field at the place $1/T$:

```sage
A.<T> = GF(2)[]
L.<s> = LaurentSeriesRing(GF(2))  # s = 1/T
phi = DrinfeldModule(A, [1/s, s + s^2 + s^5 + O(s^6), 1+1/s])
phi(T)
(s^-1 + 1)*t^2 + (s + s^2 + s^5 + O(s^6))*t + s^-1
```

One can also construct Drinfeld modules over SageMath’s global function fields:

```sage
A.<T> = GF(5)[]
K.<z> = FunctionField(GF(5))  # z = T
phi = DrinfeldModule(A, [z, 1, z^2])
phi(T)
z^2*t^2 + t + z
```

exponential(name='z')

Return the exponential of this Drinfeld module.

Note that the exponential is only defined when the $\mathbb{F}_q[T]$-characteristic is zero.

INPUT:
- name (string, default: 'z') – the name of the generator of the lazy power series ring.

OUTPUT:
A lazy power series over the base field.

EXAMPLES:

```sage
A = GF(2)['T']
K.<T> = Frac(A)
phi = DrinfeldModule(A, [T, 1])
q = A.base_ring().cardinality()
exp = phi.exponential(); exp
z + ((T/(T^4+4))*z^5) + O(z^8)
```

The exponential is returned as a lazy power series, meaning that any of its coefficients can be computed on demands:

```sage
exp[2^4]*
1/(T^64 + T^56 + T^52 + ... + T^27 + T^23 + T^15)
```

Example in higher rank:

```sage
A = GF(5)['T']
K.<T> = Frac(A)
phi = DrinfeldModule(A, [T, T^2, T + T^2 + T^4, 1])
exp = phi.exponential(); exp
z + ((T/(T^4+4))*z^5) + O(z^8)
```

The exponential is the compositional inverse of the logarithm (see **logarithm()**):
\begin{verbatim}
sage: log = phi.logarithm(); log
z + ((4*T/(T^4+4))*z^5) + O(z^8)
sage: exp.compose(log)
z + O(z^8)
sage: log.compose(exp)
z + O(z^8)
\end{verbatim}

REFERENCE:

See section 4.6 of [Gos1998] for the definition of the exponential.

\textbf{goss_polynomial}(n, var='X')

Return the \(n\)-th Goss polynomial of the Drinfeld module.

Note that Goss polynomials are only defined for Drinfeld modules of characteristic zero.

INPUT:

- \(n\) (integer) – the index of the Goss polynomial
- \(var\) (str, default: 'X') – the name of polynomial variable.

OUTPUT:

- a univariate polynomial in \(var\) over the base \(A\)-field.

EXAMPLES:

\begin{verbatim}
sage: A = GF(3)[T]
sage: K.<T> = Frac(A)
sage: phi = DrinfeldModule(A, [T, 1]) # Carlitz module
go sage: phi.goss_polynomial(1)
X
sage: phi.goss_polynomial(2)
X^2
sage: phi.goss_polynomial(4)
X^4 + (1/(T^3 + 2*T))*X^2
sage: phi.goss_polynomial(5)
X^5 + (2/(T^3 + 2*T))*X^3
sage: phi.goss_polynomial(10)
X^10 + (1/(T^3 + 2*T))*X^8 + (1/(T^6 + T^4 + T^2))*X^6 + (1/(T^9 + 2*T^3))*X^4 + (1/(T^18 + 2*T^12 + 2*T^10 + T^4))*X^2
\end{verbatim}

REFERENCE:

Section 3 of [Gek1988] provides an exposition of Goss polynomials.

\textbf{logarithm}(name='z')

Return the logarithm of the given Drinfeld module.

By definition, the logarithm is the compositional inverse of the exponential (see \texttt{exponential()}). Note that the logarithm is only defined when the \(F_q[T]\)-characteristic is zero.

INPUT:

- \(name\) (string, default: 'z') – the name of the generator of the lazy power series ring.

OUTPUT:

A lazy power series over the base field.

EXAMPLES:
The logarithm is returned as a lazy power series, meaning that any of its coefficients can be computed on demand:

\[
\text{sage: } \log[2^4] \\
\frac{1}{T^{30} + T^{29} + \ldots + T^7 + T^5 + T^4}
\]

\[
\text{sage: } \log[2^5] \\
\frac{1}{T^{62} + T^{61} + \ldots + T^8 + T^6 + T^5}
\]

Example in higher rank:

\[
\text{sage: } A = \GF(5)[T] \\
\text{sage: } K.<T> = \text{Frac}(A) \\
\text{sage: } \phi = \text{DrinfeldModule}(A, [T, T^2, T + T^2 + T^4, 1]) \\
\text{sage: } \phi.\text{logarithm}() \\
z + ((4T/(T^4+4))z^5) + O(z^8)
\]

1.3 Finite Drinfeld modules

This module provides the class \mbox{sage.rings.function_fields.drinfeld_module.finite_drinfeld_module.DrinfeldModule_finite}, which inherits \mbox{sage.rings.function_fields.drinfeld_module.DrinfeldModule}.

AUTHORS:
- Antoine Leudière (2022-04)
- Yossef Musleh (2023-02): added characteristic polynomial methods

class \mbox{sage.rings.function_field.drinfeld_modules.finite_drinfeld_module.DrinfeldModule_finite}\mbox{(gen, category)}

Bases: \mbox{DrinfeldModule}

This class implements finite Drinfeld $\mathbb{F}_q[T]$-modules. A finite Drinfeld module is a Drinfeld module whose base field is finite. In this case, the function field characteristic is a prime ideal.

For general definitions and help on Drinfeld modules, see class \mbox{sage.rings.function_fields.drinfeld_module.DrinfeldModule}.

26 Chapter 1. Drinfeld modules
Construction:

The user does not ever need to directly call DrinfeldModule_finite — the metaclass DrinfeldModule is responsible for instantiating DrinfeldModule or DrinfeldModule_finite depending on the input:

```
sage: Fq = GF(343)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(2)
sage: phi = DrinfeldModule(A, [z6, 0, 5])
sage: phi
Drinfeld module defined by T |--> 5*t^2 + z6
```

```
sage: isinstance(phi, DrinfeldModule)
True
sage: from sage.rings.function_field.drinfeld_modules.finite_drinfeld_module import DrinfeldModule_finite
sage: isinstance(phi, DrinfeldModule_finite)
True
```

The user should never use DrinfeldModule_finite to test if a Drinfeld module is finite, but rather the is_finite method:

```
sage: phi.is_finite()
True
```

Complex multiplication of rank two finite Drinfeld modules

We can handle some aspects of the theory of complex multiplication of finite Drinfeld modules. Apart from the method frobenius_endomorphism, we only handle rank two Drinfeld modules.

First of all, it is easy to create the Frobenius endomorphism:

```
sage: frobenius_endomorphism = phi.frobenius_endomorphism()
sage: frobenius_endomorphism
Endomorphism of Drinfeld module defined by T |--> 5*t^2 + z6
    Defn: t^2
```

Its characteristic polynomial can be computed:

```
sage: chi = phi.frobenius_charpoly()
sage: chi
X^2 + (t + 2*z3^2 + 2*z3 + 1)*X + 2*t^2 + (z3^2 + z3 + 4)*t + 2*z3
sage: frob_pol = frobenius_endomorphism.ore_polynomial()
sage: chi(frob_pol, phi(T))
0
```

as well as its trace and norm:

```
sage: phi.frobenius_trace()
6*t + 5*z3^2 + 5*z3 + 6
sage: phi.frobenius_trace() == -chi[1]
True
sage: phi.frobenius_norm()
2*t^2 + (z3^2 + z3 + 4)*t + 2*z3
```
We can decide if a Drinfeld module is ordinary or supersingular:

```python
sage: phi.is_ordinary()
True
sage: phi.is_supersingular()
False
```

Inverting the Drinfeld module

The morphism that defines a Drinfeld module is injective (see [Gos1998], cor. 4.5.2). If the Drinfeld module is finite, one can retrieve preimages:

```python
sage: a = A.random_element()
sage: phi.invert(phi(a)) == a
True
```

frobenius_charpoly(var='X', algorithm='crystalline')

Return the characteristic polynomial of the Frobenius endomorphism.

Let \(\mathbb{F}_q \) be the base field of the function ring. The characteristic polynomial \(\chi \) of the Frobenius endomorphism is defined in [Gek1991]. An important feature of this polynomial is that it is monic, univariate, and has coefficients in the function ring. As in our case the function ring is a univariate polynomial ring, it is customary to see the characteristic polynomial of the Frobenius endomorphism as a bivariate polynomial.

Let \(\chi = X^r + \sum_{i=0}^{r-1} A_i(T)X^i \) be the characteristic polynomial of the Frobenius endomorphism, and let \(t^n \) be the Ore polynomial that defines the Frobenius endomorphism of \(\phi \); by definition, \(n \) is the degree of \(K \) over the base field \(\mathbb{F}_q \). Then we have

\[
\chi(t^n)(\phi(T)) = t^{nr} + \sum_{i=1}^{r} \phi_{A_i} t^n(i) = 0,
\]

with \(\deg(A_i) \leq \frac{n(r-i)}{r} \).

Note that the Frobenius trace is defined as \(A_{r-1}(T) \) and the Frobenius norm is defined as \(A_0(T) \).

INPUT:

- var (default: 'X') – the name of the second variable
- algorithm (default: 'crystalline') – the algorithm used to compute the characteristic polynomial

EXAMPLES:

```python
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.frobenius_charpoly()
X^2 + ((4*z2 + 4)*T^3 + (z2 + 3)*T^2 + 3*T + 2*z2 + 3)*X + 3*z2*T^6 + (4*z2 + 4)*T^5 + (4*z2 + 4)*T^4 + 2*T^3 + (3*z2 + 3)*T^2 + (z2 + 2)*T + 4*z2
```

```python
sage: Fq = GF(343)
sage: A.<T> = Fq[]
(continues on next page)```
ALGORITHM:
By default, this method uses the so-called crystalline algorithm which computes the characteristic polynomial of the Frobenius acting on the crystalline cohomology of the Drinfeld module. For further details, see [Ang1997].

The available options for ‘algorithm’ are:
- 'crystalline' – Computes the characteristic polynomial of the Frobenius endomorphism on the crystalline cohomology of a Drinfeld module.
- 'motive' – Based on computing the characteristic polynomial of the Frobenius endomorphism on the motive of a Drinfeld module. This instantiates the Frobenius as a morphism object and calls its 'characteristic_polynomial' method.

**frobenius_endomorphism()**

Return the Frobenius endomorphism of the Drinfeld module as a morphism object.

Let \( q \) be the order of the base field of the function ring. The Frobenius endomorphism is defined as the endomorphism whose defining Ore polynomial is \( t^q \).

**EXAMPLES:**

```python
sage: Fq = GF(343)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(2)
sage: phi = DrinfeldModule(A, [1, 0, z6])
sage: phi.frobenius_endomorphism()
Endomorphism of Drinfeld module defined by T |--> z6*t^2 + 1
 Defn: t^2
```

**frobenius_norm()**

Return the Frobenius norm of the Drinfeld module.

Let \( C(X) = \sum_{i=0}^{n} a_i X^i \) denote the characteristic polynomial of the Frobenius endomorphism. The Frobenius norm is \((-1)^n a_0\). This is an element of the regular function ring and if \( n \) is the degree of the base field over \( \mathbb{F}_q \), then the Frobenius norm has degree \( n \).

**EXAMPLES:**

```python
 ```
sage: Fq = GF(343)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(2)
sage: phi = DrinfeldModule(A, [1, 0, z6])
sage: B = phi.frobenius_norm()
sage: B
(5*z3^2 + 2*z3)*T^2 + (4*z3^2 + 3*z3)*T + 5*z3^2 + 2*z3

sage: n = 2  # Degree of the base field over Fq
sage: B.degree() == n
True

sage: B == phi.frobenius_charpoly()[0]
True

ALGORITHM:

The Frobenius norm is computed using the formula, by Gekeler, given in [MS2019], Section 4, Proposition 3.

\textbf{frobenius\_trace()}

Return the Frobenius trace of the Drinfeld module.

Let \( C(X) = \sum_{i=0}^{r} a_i X^i \) denote the characteristic polynomial of the Frobenius endomorphism. The Frobenius trace is \(-a_{r-1}\). This is an element of the regular function ring and if \( n \) is the degree of the base field over \( \mathbb{F}_q \), then the Frobenius trace has degree at most \( \frac{n}{2} \).

EXAMPLES:

sage: Fq = GF(343)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(2)
sage: phi = DrinfeldModule(A, [1, 0, z6])
sage: A = phi.frobenius_trace()
sage: A
(4*z3^2 + 6*z3 + 3)*T + 3*z3^2 + z3 + 4

sage: n = 2  # Degree over Fq of the base codomain
sage: A.degree() <= n/2
True

sage: A == -phi.frobenius_charpoly()[1]
True

ALGORITHM:

We extract the coefficient of \( X^{r-1} \) from the characteristic polynomial if it has been previously computed, otherwise we compute the trace of the matrix of the Frobenius acting on the crystalline cohomology.

\textbf{invert(ore\_pol)}

Return the preimage of the input under the Drinfeld module, if it exists.

INPUT:

- ore\_pol – the Ore polynomial whose preimage we want to compute
EXAMPLES:

```python
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^6
 + 2*z12^5 + z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: a = A.random_element()
sage: phi.invert(phi(a)) == a
True
sage: phi.invert(phi(T)) == T
True
sage: phi.invert(phi(Fq.gen())) == Fq.gen()
True
```

When the input is not in the image of the Drinfeld module, an exception is raised:

```python
sage: t = phi.ore_polring().gen()
sage: phi.invert(t + 1)
Traceback (most recent call last):
 ... ValueError: input must be in the image of the Drinfeld module
```

ALGORITHM:

The algorithm relies on the inversion of a linear algebra system. See [MS2019], 3.2.5 for details.

```python
is_isogenous(psi)
```

Return True when self is isogenous to the other Drinfeld module.

If the Drinfeld modules do not belong to the same category, an exception is raised.

EXAMPLES:

```python
sage: Fq = GF(2)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(3)
sage: psi = DrinfeldModule(A, [z, z + 1, z^2 + z + 1])
sage: phi = DrinfeldModule(A, [z, z^2 + z + 1, z^2 + z])
sage: phi.is_isogenous(psi)
True
```

```python
sage: chi = DrinfeldModule(A, [z, z + 1, z^2 + z])
sage: phi.is_isogenous(chi)
False
```

```python
sage: mu = DrinfeldModule(A, [z + 1, z^2 + z + 1, z^2 + z])
sage: phi.is_isogenous(mu)
Traceback (most recent call last):
```

(continues on next page)
... TypeError: Drinfeld modules are not in the same category

```python
sage: mu = 1
sage: phi.is_isogenous(mu)
Traceback (most recent call last):
...
TypeError: input must be a Drinfeld module
```

**ALGORITHM:**

Two Drinfeld A-modules of equal characteristic are isogenous if and only if:

- they have the same rank
- the characteristic polynomial of the Frobenius endomorphism for both Drinfeld modules are equal.

**is_ordinary()**

Return True if this Drinfeld module is ordinary.

A Drinfeld module is ordinary if and only if its height is one.

**EXAMPLES:**

```python
sage: Fq = GF(343)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(2)
sage: phi = DrinfeldModule(A, [1, 0, z6])
sage: phi.is_ordinary() # False
```

```python
sage: phi = DrinfeldModule(A, [1, z6, 0, z6])
sage: phi.is_ordinary() # True
```

**is_supersingular()**

Return True if this Drinfeld module is supersingular.

A Drinfeld module is supersingular if and only if its height equals its rank.

**EXAMPLES:**

```python
sage: Fq = GF(343)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(2)
sage: phi = DrinfeldModule(A, [1, 0, z6])
sage: phi.is_supersingular() # True
```

```python
sage: phi(phi.characteristic()) # Purely inseparable
z6^2*t^2
```

In rank two, a Drinfeld module is either ordinary or supersingular. In higher ranks, it could be neither of the two:
sage: psi = DrinfeldModule(A, [1, 0, z6, z6])
sage: psi.is_ordinary()
False
sage: psi.is_supersingular()
False
MORPHISMS AND ISOGENIES

2.1 Drinfeld module morphisms

This module provides the class sage.rings.function_fields.drinfeld_module.morphism.
DrinfeldModuleMorphism.

AUTHORS: - Antoine Leudière (2022-04)

class sage.rings.function_field.drinfeld_modules.morphism.DrinfeldModuleMorphism(parent, ore_pol)

Bases: Morphism, UniqueRepresentation

This class represents Drinfeld \( F_q[T] \)-module morphisms.

Let \( \phi \) and \( \psi \) be two Drinfeld \( F_q[T] \)-modules over a field \( K \). A morphism of Drinfeld modules \( \phi \to \psi \) is an Ore polynomial \( f \in K\{\tau}\) such that \( f\phi_a = \psi_a f \) for every \( a \in F_q[T] \). In our case, this is equivalent to \( f\phi_T = \psi_T f \).

An isogeny is a nonzero morphism.

To create a morphism object, the user should never explicitly instantiate DrinfeldModuleMorphism, but rather call the parent homset with the defining Ore polynomial:

```
sage: Fq = GF(4)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(3)
sage: phi = DrinfeldModule(A, [z, z^2 + z, z^2 + z])
sage: t = phi.ore_polring().gen()
sage: ore_pol = t + z^5 + z^3 + z + 1
sage: psi = phi.velu(ore_pol)
sage: morphism = Hom(phi, psi)(ore_pol)
sage: morphism
Drinfeld Module morphism:
 From: Drinfeld module defined by T |--> (z^2 + z)*t^2 + (z^2 + z)*t + z
 To: Drinfeld module defined by T |--> (z^5 + z^2 + z + 1)*t^2 + (z^4 + z + 1)*t + z
 Defn: t + z^5 + z^3 + z + 1
```

The given Ore polynomial must indeed define a morphism:

```
sage: morphism = Hom(phi, psi)(1)
Traceback (most recent call last):
 ... ValueError: Ore polynomial does not define a morphism
```

One can get basic data on the morphism:
sage: morphism.domain()
Drinfeld module defined by $T \mapsto (z^2 + z) t^2 + (z^2 + z) t + z$
sage: morphism.domain() is phi
True

sage: morphism.codomain()
Drinfeld module defined by $T \mapsto (z^5 + z^2 + z + 1) t^2 + (z^4 + z + 1) t + z$
sage: morphism.codomain() is psi
True

sage: morphism.ore_polynomial()
t + z^5 + z^3 + z + 1
sage: morphism.ore_polynomial() is ore_pol
True

One can check various properties:

sage: morphism.is_zero()
False
sage: morphism.is_isogeny()
True
sage: morphism.is_endomorphism()
False
sage: morphism.is_isomorphism()
False

\textbf{characteristic\_polynomial}(\textit{var}='X')

Return the characteristic polynomial of this endomorphism.

\textbf{INPUT:}

\begin{itemize}
\item var – a string (default: \textit{X}), the name of the variable of the characteristic polynomial
\end{itemize}

\textbf{EXAMPLES:}

sage: Fq = GF(5)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(3)
sage: phi = DrinfeldModule(A, [z, 0, 1, z])
sage: f = phi.frobenius_endomorphism()
sage: f.characteristic_polynomial()
$X^3 + (T + 1)X^2 + (2T + 3)X + 2T^3 + T + 1$

We verify, on an example, that the characteristic polynomial of a morphism corresponding to $\phi_a$ is $(X - a)^r$
where $r$ is the rank:

sage: g = phi.hom(T^2 + 1)
sage: chi = g.characteristic_polynomial()
sage: chi.factor()
(X + 4T^2 + 4)^3

An example with another variable name:
```python
sage: f.characteristic_polynomial(var='Y')
Y^3 + (T + 1)*Y^2 + (2*T + 3)*Y + 2*T^3 + T + 1
```

**charpoly**(var='X')

Return the characteristic polynomial of this endomorphism.

**INPUT:**

- var – a string (default: X), the name of the variable of the characteristic polynomial

**EXAMPLES:**

```python
sage: Fq = GF(5)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(3)
sage: phi = DrinfeldModule(A, [z, 0, 1, z])
sage: f = phi.frobenius_endomorphism()
sage: chi = f.charpoly()
sage: chi
X^3 + (T + 1)*X^2 + (2*T + 3)*X + 2*T^3 + T + 1
```

We check that the characteristic polynomial annihilates the morphism (Cayley-Hamilton’s theorem):

```python
sage: chi(f)
Endomorphism of Drinfeld module defined by T |--> z*t^3 + t^2 + z
 Defn: 0
```

We verify, on an example, that the characteristic polynomial of the morphism corresponding to \( \phi_\alpha \) is \((X - \alpha)^r\) where \( r \) is the rank:

```python
sage: g = phi.hom(T^2 + 1)
sage: g.charpoly().factor()
(X + 4*T^2 + 4)^3
```

An example with another variable name:

```python
sage: f.charpoly(var='Y')
Y^3 + (T + 1)*Y^2 + (2*T + 3)*Y + 2*T^3 + T + 1
```

**dual_isogeny()**

Return a dual isogeny to this morphism.

By definition, a dual isogeny of \( f : \phi \rightarrow \psi \) is an isogeny \( g : \psi \rightarrow \phi \) such that the composite \( g \circ f \) is the multiplication by a generator of the norm of \( f \).

**EXAMPLES:**

```python
sage: Fq = GF(5)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(3)
sage: phi = DrinfeldModule(A, [z, 0, 1, z])
sage: t = phi.ore_variable()
sage: f = phi.hom(t + 1)
sage: f
Drinfeld Module morphism:
(continues on next page)
```
From: Drinfeld module defined by $T \mapsto z^2 t^3 + t^2 + z$
To: Drinfeld module defined by $T \mapsto (2 z^2 + 4 z + 4) t^3 + (3 z^2 + 2 z + 2) t^2 + (2 z^2 + 3 z + 4) t + z$
Defn: $t + 1$

\[
\text{sage: } g = f.\text{dual_isogeny}()
\]
\[
\text{sage: } g
\]
Drinfeld Module morphism:
From: Drinfeld module defined by $T \mapsto (2 z^2 + 4 z + 4) t^3 + (3 z^2 + 2 z + 2) t^2 + (2 z^2 + 3 z + 4) t + z$
To: Drinfeld module defined by $T \mapsto z^2 t^3 + t^2 + z$
Defn: $z t^2 + (4 z + 1) t + z + 4$

We check that $f \circ g$ (resp. $g \circ f$) is the multiplication by the norm of $f$:

\[
\text{sage: } a = f.\text{norm().gen()}; a
\]
\[
T + 4
\]
\[
\text{sage: } g * f == phi.\text{hom}(a)
\]
True

\[
\text{sage: } psi = f.\text{codomain()}
\]
\[
\text{sage: } f * g == psi.\text{hom}(a)
\]
True

\textbf{inverse()}

Return the inverse of this morphism.

Only morphisms defined by constant nonzero Ore polynomials are invertible.

\textbf{EXAMPLES:}

\[
\text{sage: } Fq = GF(5)
\]
\[
\text{sage: } A.<T> = Fq[]
\]
\[
\text{sage: } K.<z> = Fq.extension(3)
\]
\[
\text{sage: } phi = DrinfeldModule(A, [z, 1, z, z^2])
\]
\[
\text{sage: } f = phi.\text{hom}(2); f
\]
Endomorphism of Drinfeld module defined by $T \mapsto z^2 t^3 + z t^2 + t + z$
Defn: $2$

\[
\text{sage: } f.\text{inverse()}
\]
Endomorphism of Drinfeld module defined by $T \mapsto z^2 t^3 + z t^2 + t + z$
Defn: $3$

Inversion of general isomorphisms between different Drinfeld modules also works:

\[
\text{sage: } g = phi.\text{hom}(z); g
\]
Drinfeld Module morphism:
From: Drinfeld module defined by $T \mapsto z^2 t^3 + z t^2 + t + z$
To: Drinfeld module defined by $T \mapsto z^2 t^3 + (z^2 + 2 z + 3) t^2 + (z^2 + 3 z + 3) t + z$
Defn: $z$

\[
\text{sage: } g.\text{inverse()}
\]
Drinfeld Module morphism:
From: Drinfeld module defined by $T \mapsto z^2 t^3 + (z^2 + 2 z + 3) t^2 + (z^2 + 3 z + 3) t + z$
To: Drinfeld module defined by $T \mapsto z^2 t^3 + z t^2 + t + z$
Defn: $z$

(continues on next page)
To: Drinfeld module defined by $T \mapsto z^2 t^3 + z t^2 + t + z$
Defn: $3^2 z^2 + 4$

When the morphism is not invertible, an error is raised:

```
sage: F = phi.frobenius_endomorphism()
sage: F.inverse()
Traceback (most recent call last):
...
ZeroDivisionError: this morphism is not invertible
```

**is_identity()**

Return True whether the morphism is the identity morphism.

EXAMPLES:

```
sage: Fq = GF(2)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(6)
sage: phi = DrinfeldModule(A, [z6, 1, 1])
sage: morphism = End(phi)(1)
sage: morphism.is_identity()
True
sage: psi = DrinfeldModule(A, [z6, z6^4 + z6^2 + 1, 1])
sage: t = phi.ore_polring().gen()
sage: morphism = Hom(phi, psi)(t + z6^5 + z6^2 + 1)
sage: morphism.is_identity()
False
```

**is_isogeny()**

Return True whether the morphism is an isogeny.

EXAMPLES:

```
sage: Fq = GF(2)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(6)
sage: phi = DrinfeldModule(A, [z6, 1, 1])
sage: psi = DrinfeldModule(A, [z6, z6^4 + z6^2 + 1, 1])
sage: t = phi.ore_polring().gen()
sage: morphism = Hom(phi, psi)(t + z6^5 + z6^2 + 1)
sage: morphism.is_isogeny()
True
sage: zero_morphism = End(phi)(0)
sage: zero_morphism.is_isogeny()
False
sage: identity_morphism = End(phi)(1)
sage: identity_morphism.is_isogeny()
True
```
\begin{verbatim}
sage: frobenius_endomorphism = phi.frobenius_endomorphism()
sage: frobenius_endomorphism.is_isogeny()
True

is_isomorphism()
Return True whether the morphism is an isomorphism.

EXAMPLES:

sage: Fq = GF(2)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(6)
sage: phi = DrinfeldModule(A, [z6, 1, 1])
sage: psi = DrinfeldModule(A, [z6, z6^4 + z6^2 + 1, 1])
sage: t = phi.ore_polring().gen()
sage: morphism = Hom(phi, psi)(t + z6^5 + z6^2 + 1)
sage: morphism.is_isomorphism()
False
sage: zero_morphism = End(phi)(0)
sage: zero_morphism.is_isomorphism()
False
sage: identity_morphism = End(phi)(1)
sage: identity_morphism.is_isomorphism()
True
sage: frobenius_endomorphism = phi.frobenius_endomorphism()
sage: frobenius_endomorphism.is_isomorphism()
False

is_zero()
Return True whether the morphism is the zero morphism.

EXAMPLES:

sage: Fq = GF(2)
sage: A.<T> = Fq[]
sage: K.<z6> = Fq.extension(6)
sage: phi = DrinfeldModule(A, [z6, 1, 1])
sage: psi = DrinfeldModule(A, [z6, z6^4 + z6^2 + 1, 1])
sage: t = phi.ore_polring().gen()
sage: morphism = Hom(phi, psi)(t + z6^5 + z6^2 + 1)
sage: morphism.is_zero()
False
sage: zero_morphism = End(phi)(0)
sage: zero_morphism.is_zero()
True

norm(ideal=True)
Return the norm of this isogeny.

INPUT:
\end{verbatim}
• ideal – a boolean (default: True); if True, return the norm as an ideal in the function ring of the Drinfeld modules; if False, return the norm as an element in this function ring (only relevant for endomorphisms)

EXAMPLES:

```
sage: Fq = GF(5)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(3)
sage: phi = DrinfeldModule(A, [z, 0, 1, z])
sage: t = phi.ore_variable()
sage: f = phi.hom(t + 1)
sage: f.norm()
Principal ideal (T + 4) of Univariate Polynomial Ring in T over Finite Field of size 5
```

The norm of the Frobenius endomorphism is equal to the characteristic:

```
sage: F = phi.frobenius_endomorphism()
sage: F.norm()
Principal ideal (T^3 + 3*T + 3) of Univariate Polynomial Ring in T over Finite Field of size 5
sage: phi.characteristic()
T^3 + 3*T + 3
```

For $a$ in the underlying function ring, the norm of the endomorphism given by $\phi_a$ is $a^r$ where $r$ is the rank:

```
sage: g = phi.hom(T)
sage: g.norm()
Principal ideal (T^3) of Univariate Polynomial Ring in T over Finite Field of size 5
sage: h = phi.hom(T+1)
sage: h.norm()
Principal ideal (T^3 + 3*T^2 + 3*T + 1) of Univariate Polynomial Ring in T over Finite Field of size 5
```

For endomorphisms, the norm is not an ideal of $A$ but it makes sense as an actual element of $A$. We can get this element by passing in the argument ideal=False:

```
sage: phi.hom(2*T).norm(ideal=False)
3*T^3
sage: f.norm(ideal=False)
Traceback (most recent call last):
 ... ValueError: norm is defined as an actual element only for endomorphisms
```

**ore_polynomial()**

Return the Ore polynomial that defines the morphism.

EXAMPLES:

```
sage: Fq = GF(2)
sage: A.<T> = Fq[]
```

(continues on next page)
2.2 Set of morphisms between two Drinfeld modules

This module provides the class `sage.rings.function_field.drinfeld_module.homset.DrinfeldModuleHomset`.

AUTHORS:

- Antoine Leudière (2022-04)

```python
sage: from sage.rings.function_field.drinfeld_modules.homset import DrinfeldModuleHomset
sage: isinstance(H, DrinfeldModuleHomset)
True
```

There is a simpler syntax for endomorphisms sets:
The domain and codomain must have the same Drinfeld modules category:

```
sage: rho = DrinfeldModule(A, [Frac(A)(T), 1])
sage: Hom(phi, rho)
Traceback (most recent call last):
...
ValueError: Drinfeld modules must be in the same category
```

```
sage: sigma = DrinfeldModule(A, [1, z6, 2])
sage: Hom(phi, sigma)
Traceback (most recent call last):
...
ValueError: Drinfeld modules must be in the same category
```

One can create morphism objects by calling the homset:

```
sage: identity_morphism = E(1)
sage: identity_morphism
Identity morphism of Drinfeld module defined by T |--> 2*t^2 + z6*t + z6
```

```
sage: t = phi.ore_polring().gen()
sage: frobenius_endomorphism = E(t^6)
sage: frobenius_endomorphism
Endomorphism of Drinfeld module defined by T |--> 2*t^2 + z6*t + z6
 Defn: t^6
```

```
sage: isogeny = H(t + 1)
sage: isogeny
Drinfeld Module morphism:
 From: Drinfeld module defined by T |--> 2*t^2 + z6*t + z6
 To: Drinfeld module defined by T |--> 2*t^2 + (2*z6^5 + 2*z6^4 + 2*z6 + 1)*t + z6
 Defn: t + 1
```

And one can test if an Ore polynomial defines a morphism using the in syntax:

```
sage: 1 in H
False
sage: t^6 in H
False
sage: t + 1 in H
True
sage: 1 in E
True
sage: t^6 in E
```

(continues on next page)
True

\texttt{sage: t + 1 in E}

False

This also works if the candidate is a morphism object:

\texttt{sage: isogeny in H}

True

\texttt{sage: E(0) in E}

True

\texttt{sage: identity_morphism in H}

False

\texttt{sage: frobenius_endomorphism in H}

False

\texttt{Element}

alias of \emph{DrinfeldModuleMorphism}

\begin{verbatim}
class sage.rings.function_field.drinfeld_modules.homset.DrinfeldModuleMorphismAction(A, H, is_left, op)

Bases: Action

Action of the function ring on the homset of a Drinfeld module.

EXAMPLES:

\texttt{sage: Fq = GF(5)}
\texttt{sage: A.<T> = Fq[]}
\texttt{sage: K.<z> = Fq.extension(3)}
\texttt{sage: phi = DrinfeldModule(A, [z, 1, z])}
\texttt{sage: psi = DrinfeldModule(A, [z, z^2 + 4*z + 3, 2*z^2 + 4*z + 4])}
\texttt{sage: H = Hom(phi, psi)}
\texttt{sage: t = phi.ore_variable()}
\texttt{sage: f = H(t + 2)}

Left action:

\texttt{f * (T + 1)}

Traceback (most recent call last):
...
TypeError: right (=T + 1) must be a map to multiply it by Drinfeld Module morphism:

\texttt{From: Drinfeld module defined by T |--> z*t^2 + t + z}
\texttt{To: Drinfeld module defined by T |--> (2*z^2 + 4*z + 4)*t^2 + (z^2 + 4*z + 3)*t}
\texttt{˓→ z}

Defn: (2*z^2 + 4*z + 4)*t^3 + (2*z + 1)*t^2 + (2*z^2 + 4*z + 2)*t + 2*z + 2

Right action currently does not work (it is a known bug, due to an incompatibility between multiplication of morphisms and the coercion system):

\texttt{f * (T + 1)}

Traceback (most recent call last):
...
TypeError: right (=T + 1) must be a map to multiply it by Drinfeld Module morphism:

\texttt{From: Drinfeld module defined by T |--> z*t^2 + t + z}
\texttt{To: Drinfeld module defined by T |--> (2*z^2 + 4*z + 4)*t^2 + (z^2 + 4*z + 3)*t}
\texttt{˓→ z}

Defn: (2*z^2 + 4*z + 4)*t^3 + (2*z + 1)*t^2 + (2*z^2 + 4*z + 2)*t + 2*z + 2

(continues on next page)
2.2. Set of morphisms between two Drinfeld modules

\[
\begin{array}{c}
\rightarrow z \\
\text{Defn: } t + 2
\end{array}
\]
3.1 The module action induced by a Drinfeld module

This module provides the class `sage.rings.function_field.drinfeld_module.action.DrinfeldModuleAction`.

AUTHORS:

- Antoine Leudière (2022-04)

```python
class sage.rings.function_field.drinfeld_modules.action.DrinfeldModuleAction(drinfeld_module)
Bases: Action

This class implements the module action induced by a Drinfeld $\mathbb{F}_q[T]$-module.

Let ϕ be a Drinfeld $\mathbb{F}_q[T]$-module over a field K and let L/K be a field extension. Let $x \in L$ and let a be a function ring element; the action is defined as $(a, x) \mapsto \phi_a(x)$.

Note: In this implementation, L is K.

Note: The user should never explicitly instantiate the class `DrinfeldModuleAction`.

Warning: This class may be replaced later on. See issues #34833 and #34834.

INPUT: the Drinfeld module

EXAMPLES:

```sage
sage: Fq.<z2> = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(2)
sage: phi = DrinfeldModule(A, [z, 0, 0, 1])
sage: action = phi.action()
sage: action
```

Action on Finite Field in z of size 11^2 over its base
induced by Drinfeld module defined by $T \mapsto t^3 + z$

The action on elements is computed as follows:
Finally, given a Drinfeld module action, it is easy to recover the corresponding Drinfeld module:

```sage```
```
sage: action.drinfeld_module() is phi
True
```

`drinfeld_module()`

Return the Drinfeld module defining the action.

OUTPUT: a Drinfeld module

EXAMPLES:

```sage```
```
sage: Fq.<z2> = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(2)
sage: phi = DrinfeldModule(A, [z, 0, 0, 1])
sage: action = phi.action()
sage: action.drinfeld_module() is phi
True
```
CHAPTER FOUR

THE CATEGORY OF DRINFELD MODULES

4.1 Drinfeld modules over a base

This module provides the class `sage.category.drinfeld_modules.DrinfeldModules`.

AUTHORS:
- Antoine Leudière (2022-04)
- Xavier Caruso (2022-06)

```python
class sage.categories.drinfeld_modules.DrinfeldModules(base_field, name='t')
    Bases: Category_over_base_ring

This class implements the category of Drinfeld \( \mathbb{F}_q[T] \)-modules on a given base field.

Let \( \mathbb{F}_q[T] \) be a polynomial ring with coefficients in a finite field \( \mathbb{F}_q \) and let \( K \) be a field. Fix a ring morphism \( \gamma: \mathbb{F}_q[T] \to K \); we say that \( K \) is an \( \mathbb{F}_q[T] \)-\*field\*. Let \( K\{\tau\} \) be the ring of Ore polynomials with coefficients in \( K \), whose multiplication is given by the rule \( \tau\lambda = \lambda^q \tau \) for any \( \lambda \in K \).

The extension \( K/\mathbb{F}_q[T] \) (represented as an instance of the class `sage.rings.ring_extension.RingExtension`) is the base field of the category; its defining morphism \( \gamma \) is called the base morphism.

The monic polynomial that generates the kernel of \( \gamma \) is called the \( \mathbb{F}_q[T] \)-characteristic, or function-field characteristic, of the base field. We say that \( \mathbb{F}_q[T] \) is the function ring of the category; \( K\{\tau\} \) is the Ore polynomial ring. The constant coefficient of the category is the image of \( T \) under the base morphism.

**Construction**

Generally, Drinfeld modules objects are created before their category, and the category is retrieved as an attribute of the Drinfeld module:

```python
sage: Fq = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(4)
sage: p_root = z^3 + 7*z^2 + 6*z + 10
sage: phi = DrinfeldModule(A, [p_root, 0, 0, 1])
sage: C = phi.category()
sage: C
Category of Drinfeld modules over Finite Field in z of size 11^4 over its base
```

The output tells the user that the category is only defined by its base.
Properties of the category

The base field is retrieved using the method `base()`.

```
sage: C.base() Finite Field in z of size 11^4 over its base
```

Equivalently, one can use `base_morphism()` to retrieve the base morphism:

```
sage: C.base_morphism()
Ring morphism:
 From: Univariate Polynomial Ring in T over Finite Field of size 11
 To: Finite Field in z of size 11^4 over its base
 Defn: T |--> z^3 + 7*z^2 + 6*z + 10
```

The so-called constant coefficient — which is the same for all Drinfeld modules in the category — is simply the image of $T$ by the base morphism:

```
sage: C.constant_coefficient()
z^3 + 7*z^2 + 6*z + 10
sage: C.base_morphism()(T) == C.constant_coefficient()
True
```

Similarly, the function ring-characteristic of the category is either 0 or the unique monic polynomial in $\mathbb{F}_q[T]$ that generates the kernel of the base:

```
sage: C.characteristic()
T^2 + 7*T + 2
sage: C.base_morphism()(C.characteristic())
0
```

The base field, base morphism, function ring and Ore polynomial ring are the same for the category and its objects:

```
sage: C.base() is phi.base()
True
sage: C.base_morphism() is phi.base_morphism()
True
sage: C.function_ring() Univariate Polynomial Ring in T over Finite Field of size 11
sage: C.function_ring() is phi.function_ring()
True
sage: C.ore_polring() Ore Polynomial Ring in t over Finite Field in z of size 11^4 over its base twisted by Frob
sage: C.ore_polring() is phi.ore_polring()
True
```
Creating Drinfeld module objects from the category

Calling \texttt{object()} with an Ore polynomial creates a Drinfeld module object in the category whose generator is the input:

\begin{verbatim}
sage: psi = C.object([p_root, 1])
sage: psi
Drinfeld module defined by \(T \mapsto t + z^3 + 7z^2 + 6z + 10\)
sage: psi.category() is C
True
\end{verbatim}

Of course, the constant coefficient of the input must be the same as the category:

\begin{verbatim}
sage: C.object([z, 1])
Traceback (most recent call last):
...
ValueError: constant coefficient must equal that of the category
\end{verbatim}

It is also possible to create a random object in the category. The input is the desired rank:

\begin{verbatim}
sage: rho = C.random_object(2)
sage: rho
# random
Drinfeld module defined by \(T \mapsto (7z^3 + 7z^2 + 10z + 2)t^2 + (9z^3 + 5z^2 + 2z + 7)t + z^3 + 7z^2 + 6z + 10\)
sage: rho.rank() == 2
True
sage: rho.category() is C
True
\end{verbatim}

\textbf{Endsets()}

Return the category of endsets.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Fq = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(4)
sage: p_root = z^3 + 7z^2 + 6z + 10
sage: phi = DrinfeldModule(A, [p_root, 0, 0, 1])
sage: C = phi.category()
sage: from sage.categories.homsets import Homsets
sage: C.Endsets() is Homsets().Endsets()
True
\end{verbatim}

\textbf{Homsets()}

Return the category of homsets.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Fq = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(4)
sage: p_root = z^3 + 7z^2 + 6z + 10
sage: phi = DrinfeldModule(A, [p_root, 0, 0, 1])
\end{verbatim}

(continues on next page)
class ParentMethods
    Bases: object

    base()

    Return the base field of this Drinfeld module, viewed as an algebra over the function ring.

    This is an instance of the class `sage.rings.ring_extension.RingExtension`.

    EXAMPLES:

    
    sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 +
         2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.base()
Finite Field in z12 of size 5^12 over its base

The base can be infinite:

    sage: sigma = DrinfeldModule(A, [Frac(A).gen(), 1])
sage: sigma.base()
Fraction Field of Univariate Polynomial Ring in T over Finite Field in z2 of size 5^2 over its base

    base_morphism()

    Return the base morphism of this Drinfeld module.

    EXAMPLES:

    sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 +
         2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.base_morphism()
Ring morphism:
    From: Univariate Polynomial Ring in T over Finite Field in z2 of size 5^2
    To: Finite Field in z12 of size 5^12 over its base
    Defn: T |--> 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 +
         2*z12^4 + 3*z12^3 + z12^2 + 2*z12

The base field can be infinite:

    sage: sigma = DrinfeldModule(A, [Frac(A).gen(), 1])
sage: sigma.base_morphism()
Ring morphism:
From: Univariate Polynomial Ring in T over Finite Field in z2 of size 5^2
To: Fraction Field of Univariate Polynomial Ring in T over Finite Field in z2 of size 5^2 over its base
Defn: T |---> T

base_over_constants_field()
Return the base field, seen as an extension over the constants field $\mathbb{F}_q$.
This is an instance of the class `sage.rings.ring_extension.RingExtension`.

EXAMPLES:

```sage
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + ...
 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.base_over_constants_field()
Field in z12 with defining polynomial x^6 + (4*z2 + 3)*x^5 + x^4 + (3*z2 + ...
 + 1)*x^3 + x^2 + (4*z2 + 1)*x + z2 over its base
```

characteristic()
Return the function ring-characteristic.

EXAMPLES:

```sage
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + ...
 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: phi.characteristic()
T^2 + (4*z2 + 2)*T + 2
sage: phi.base_morphism()(phi.characteristic())
0
```

```sage
sage: B.<Y> = Fq[]
sage: L = Frac(B)
sage: psi = DrinfeldModule(A, [L(1), 0, 0, L(1)])
sage: psi.characteristic()
Traceback (most recent call last):
... NotImplementedError: function ring characteristic not implemented in this case
```

constant_coefficient()
Return the constant coefficient of the generator of this Drinfeld module.

OUTPUT: an element in the base field

EXAMPLES:
Let $F_q[T]$ be the function ring, and let $\gamma$ be the base of the Drinfeld module. The constant coefficient is $\gamma(T)$:

```sage
sage: C = phi.category()
sage: base = C.base()
sage: base(T) == phi.constant_coefficient()
True
```

Naturally, two Drinfeld modules in the same category have the same constant coefficient:

```sage
t = phi.ore_polring().gen()
sage: psi = C.object(phi.constant_coefficient() + t^3)
sage: psi
Drinfeld module defined by T |--> t^3 + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 +...
\rightarrow 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
```

Reciprocally, it is impossible to create two Drinfeld modules in this category if they do not share the same constant coefficient:

```sage
rho = C.object(phi.constant_coefficient() + 1 + t^3)
Traceback (most recent call last):
... ValueError: constant coefficient must equal that of the category
```

**function_ring()**

Return the function ring of this Drinfeld module.

**ore_polring()**

Return the Ore polynomial ring of this Drinfeld module.
sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 +
   2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
sage: S = phi.ore_polring()
sage: S
Ore Polynomial Ring in t over Finite Field in z12 of size 5^12 over its␣
   base twisted by Frob^2

The Ore polynomial ring can also be retrieved from the category of the Drinfeld module:

sage: S is phi.category().ore_polring()
True

The generator of the Drinfeld module is in the Ore polynomial ring:

sage: phi(T) in S
True

ore_variable()

Return the variable of the Ore polynomial ring of this Drinfeld module.

EXAMPLES:

sage: Fq = GF(25)
sage: A.<T> = Fq[]
sage: K.<z12> = Fq.extension(6)
sage: p_root = 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 +
   2*z12^4 + 3*z12^3 + z12^2 + 2*z12
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])

sage: phi.ore_polring()
Ore Polynomial Ring in t over Finite Field in z12 of size 5^12 over its␣
   base twisted by Frob^2
sage: phi.ore_variable()
t

base_morphism()

Return the base morphism of the category.

EXAMPLES:

sage: Fq = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(4)
sage: p_root = z^3 + 7*z^2 + 6*z + 10
sage: phi = DrinfeldModule(A, [p_root, 0, 0, 1])
sage: C = phi.category()
sage: C.base_morphism()
Ring morphism:
  From: Univariate Polynomial Ring in T over Finite Field of size 11
  To:   Finite Field in z of size 11^4 over its base

(continues on next page)
\textbf{Defn:} \( T \mapsto z^3 + 7z^2 + 6z + 10 \)

\texttt{sage}: \ C.constant\_coefficient() == C.base\_morphism()(T)
\texttt{True}

\textbf{base\_over\_constants\_field()}

Return the base field, seen as an extension over the constants field \( \mathbb{F}_q \).

\textbf{EXAMPLES:}

\texttt{sage}: \ Fq = GF(11)
\texttt{sage}: \ A.<T> = Fq[]
\texttt{sage}: \ K.<z> = Fq.extension(4)
\texttt{sage}: \ p\_root = z^3 + 7z^2 + 6z + 10
\texttt{sage}: \ phi = DrinfeldModule(A, [p\_root, 0, 0, 1])
\texttt{sage}: \ C = phi.category()
\texttt{sage}: \ C.base\_over\_constants\_field()
Field in \( z \) with defining polynomial \( x^4 + 8x^2 + 10x + 2 \) over its base

\textbf{characteristic()}

Return the function ring-characteristic.

\textbf{EXAMPLES:}

\texttt{sage}: \ Fq = GF(11)
\texttt{sage}: \ A.<T> = Fq[]
\texttt{sage}: \ K.<z> = Fq.extension(4)
\texttt{sage}: \ p\_root = z^3 + 7z^2 + 6z + 10
\texttt{sage}: \ phi = DrinfeldModule(A, [p\_root, 0, 0, 1])
\texttt{sage}: \ C = phi.category()
\texttt{sage}: \ C.characteristic() \n\texttt{T^2 + 7*T + 2}
\texttt{sage}: \ psi = DrinfeldModule(A, [Frac(A).gen(), 1])
\texttt{sage}: \ C = psi.category()
\texttt{sage}: \ C.characteristic() \n0

\textbf{constant\_coefficient()}

Return the constant coefficient of the category.

\textbf{EXAMPLES:}

\texttt{sage}: \ Fq = GF(11)
\texttt{sage}: \ A.<T> = Fq[]
\texttt{sage}: \ K.<z> = Fq.extension(4)
\texttt{sage}: \ p\_root = z^3 + 7z^2 + 6z + 10
\texttt{sage}: \ phi = DrinfeldModule(A, [p\_root, 0, 0, 1])
\texttt{sage}: \ C = phi.category()
\texttt{sage}: \ C.constant\_coefficient() \n\texttt{z^3 + 7z^2 + 6z + 10}
\texttt{sage}: \ C.constant\_coefficient() == C.base()(T)
\texttt{True}
**function_ring()**

Return the function ring of the category.

**EXAMPLES:**

```python
sage: Fq = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(4)
sage: p_root = z^3 + 7*z^2 + 6*z + 10
sage: phi = DrinfeldModule(A, [p_root, 0, 0, 1])
sage: C = phi.category()
sage: C.function_ring()
```

```
Univariate Polynomial Ring in T over Finite Field of size 11
```

```python
sage: C.function_ring() is A
```

```
True
```

**object(gen)**

Return a Drinfeld module object in the category whose generator is the input.

**INPUT:**

- gen – the generator of the Drinfeld module, given as an Ore polynomial or a list of coefficients

**EXAMPLES:**

```python
sage: Fq = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(4)
sage: p_root = z^3 + 7*z^2 + 6*z + 10
sage: psi = DrinfeldModule(A, [p_root, 1])
sage: C = psi.category()
sage: phi = C.object([p_root, 0, 1])
sage: phi
```

```
Drinfeld module defined by T |--> t^2 + z^3 + 7*z^2 + 6*z + 10
```

```python
sage: t = phi.ore_polring().gen()
sage: C.object(t^2 + z^3 + 7*z^2 + 6*z + 10) is phi
```

```
True
```

**ore_polring()**

Return the Ore polynomial ring of the category

**EXAMPLES:**

```python
sage: Fq = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(4)
sage: p_root = z^3 + 7*z^2 + 6*z + 10
sage: phi = DrinfeldModule(A, [p_root, 0, 0, 1])
sage: C = phi.category()
sage: C.ore_polring()
```

```
Ore Polynomial Ring in t over Finite Field in z of size 11^4 over its base -> twisted by Frob
```

**random_object(rank)**

Return a random Drinfeld module in the category with given rank.

---

4.1. Drinfeld modules over a base 57
INPUT:

- rank – an integer, the rank of the Drinfeld module

EXAMPLES:

```python
sage: Fq = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(4)
sage: p_root = z^3 + 7*z^2 + 6*z + 10
sage: phi = DrinfeldModule(A, [p_root, 0, 0, 1])
sage: C = phi.category()
```

Drinfeld module defined by $T \mapsto (6z^3 + 4z^2 + 10z + 9)t^3 + (4z^3 + 8z^2 + 8z + 2 + 8z)t^2 + (10z^3 + 3z^2 + 6z)t + z^3 + 7z^2 + 6z + 10$

```python
sage: psi = C.random_object(3) # random
sage: psi.rank() == 3
True
```

```
sage: C = C.category()
```

```
sage: C = C.category()
```

```
[Category of objects]
```

super_categories()

EXAMPLES:

```python
sage: Fq = GF(11)
sage: A.<T> = Fq[]
sage: K.<z> = Fq.extension(4)
sage: p_root = z^3 + 7*z^2 + 6*z + 10
sage: phi = DrinfeldModule(A, [p_root, 0, 0, 1])
sage: C = phi.category()
```

```
sage: psi = C.random_object(3) # random
```

True
CHAPTER
FIVE

INDICES AND TABLES

• Index
• Module Index
• Search Page
C
sage.categories.drinfeld_modules, 49

r
sage.rings.function_field.drinfeld_modules.action,
        47
sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module,
        22
sage.rings.function_field.drinfeld_modules.drinfeld_module,
        3
sage.rings.function_field.drinfeld_modules.finite_drinfeld_module,
        26
sage.rings.function_field.drinfeld_modules.homset,
        42
sage.rings.function_field.drinfeld_modules.morphism,
        35
INDEX

A

action() (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule method), 9

constant_coefficient() (sage.categories.drinfeld_modules.DrinfeldModules.ParentMethods method), 53

B

base() (sage.categories.drinfeld_modules.DrinfeldModules.ParentMethods method), 52

base_morphism() (sage.categories.drinfeld_modules.DrinfeldModules method), 55

base_morphism() (sage.categories.drinfeld_modules.DrinfeldModules.ParentMethods method), 52

base_over_constants_field() (sage.categories.drinfeld_modules.DrinfeldModules method), 56

base_over_constants_field() (sage.categories.drinfeld_modules.DrinfeldModules.ParentMethods method), 53

basic_j_invariant_parameters() (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule method), 10

basic_j_invariants() (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule method), 11

C

characteristic() (sage.categories.drinfeld_modules.DrinfeldModules method), 56

characteristic() (sage.categories.drinfeld_modules.DrinfeldModules.ParentMethods method), 53

characteristic_polynomial() (sage.rings.function_field.drinfeld_modules.morphism.DrinfeldModule method), 36

charpoly() (sage.rings.function_field.drinfeld_modules.morphism.DrinfeldModule method), 37

dual_isogeny() (sage.rings.function_field.drinfeld_modules.morphism.DrinfeldModuleMorphism method), 37

e

drinfeld_module() (sage.rings.function_field.drinfeld_modules.action.DrinfeldModuleAction method), 48

DrinfeldModule (class in sage.rings.function_field.drinfeld_modules.drinfeld_module), 49

DrinfeldModule_charzero (class in sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module), 22

DrinfeldModule_finite (class in sage.rings.function_field.drinfeld_modules.finite_drinfeld_module), 26

DrinfeldModuleHomset (class in sage.rings.function_field.drinfeld_modules.homset), 42

DrinfeldModuleMorphism (class in sage.rings.function_field.drinfeld_modules.morphism), 35

DrinfeldModuleMorphismAction (class in sage.rings.function_field.drinfeld_modules.homset), 44

D

Element (sage.rings.function_field.drinfeld_modules.homset.DrinfeldModuleHomset attribute), 44

Endsets() (sage.categories.drinfeld_modules.DrinfeldModules method), 51

exponential() (sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module.DrinfeldModule method), 24
Drinfeld modules, Release 10.2

F
frobenius_charpoly()
    (sage.rings.function_field.drinfeld_modules.finite_drinfeld_module.DrinfeldModule_finite
     method), 28

frobenius_endomorphism()
    (sage.rings.function_field.drinfeld_modules.finite_drinfeld_module.DrinfeldModule_finite
     method), 29

frobenius_norm()
    (sage.rings.function_field.drinfeld_modules.finite_drinfeld_module.DrinfeldModule_finite
     method), 29

frobenius_trace()
    (sage.rings.function_field.drinfeld_modules.finite_drinfeld_module.DrinfeldModule_finite
     method), 30

function_ring()
    (sage.categories.drinfeld_modules.DrinfeldModules
     method), 56

function_ring()
    (sage.categories.drinfeld_modules.DrinfeldModules.ParentMethods
     method), 54

g
gen()
    (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
     method), 13

goss_polynomial()
    (sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module.DrinfeldModule_charzero
     method), 25

H
height()
    (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
     method), 13

hom()
    (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
     method), 14

Homsets()
    (sage.categories.drinfeld_modules.DrinfeldModules
     method), 51

I
inverse()
    (sage.rings.function_field.drinfeld_modules.morphism.DrinfeldModuleMorphism
     method), 38

invert()
    (sage.rings.function_field.drinfeld_modules.finite_drinfeld_module.DrinfeldModule_finite
     method), 30

is_finite()
    (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
     method), 15

is_identity()
    (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
     method), 39

is_isogenous()
    (sage.rings.function_field.drinfeld_modules.finite_drinfeld_module.DrinfeldModule_finite
     method), 31

is_isogeny()
    (sage.rings.function_field.drinfeld_modules.morphism.DrinfeldModuleMorphism
     method), 39

is_isomorphic()
    (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
     method), 16

is_isomorphism()
    (sage.rings.function_field.drinfeld_modules.morphism.DrinfeldModuleMorphism
     method), 40

is_ordinary()
    (sage.rings.function_field.drinfeld_modules.finite_drinfeld_module.DrinfeldModule_finite
     method), 32

is_supersingular()
    (sage.rings.function_field.drinfeld_modules.finite_drinfeld_module.DrinfeldModule_finite
     method), 32

is_zero()
    (sage.rings.function_field.drinfeld_modules.morphism.DrinfeldModuleMorphism
     method), 40

J
j_invariant()
    (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
     method), 17

jk_invariants()
    (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
     method), 18

L
logarithm()
    (sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module.DrinfeldModule_charzero
     method), 25

M
morphism()
    (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
     method), 19

N
norm()
    (sage.rings.function_field.drinfeld_modules.morphism.DrinfeldModuleMorphism
     method), 40

O
object()
    (sage.categories.drinfeld_modules.DrinfeldModules
     method), 57

ore_polynomial()
    (sage.rings.function_field.drinfeld_modules.morphism.DrinfeldModuleMorphism
     method), 41

ore_variable()
    (sage.categories.drinfeld_modules.DrinfeldModules.ParentMethods
     method), 55

R
random_object()
    (sage.categories.drinfeld_modules.DrinfeldModules
     method), 57

S
sage.categories.drinfeld_modules

64 Index
sage.rings.function_field.drinfeld_modules.action
   module, 47
sage.rings.function_field.drinfeld_modules.charzero_drinfeld_module
   module, 22
sage.rings.function_field.drinfeld_modules.drinfeld_module
   module, 3
sage.rings.function_field.drinfeld_modules.finite_drinfeld_module
   module, 26
sage.rings.function_field.drinfeld_modules.homset
   module, 42
sage.rings.function_field.drinfeld_modules.morphism
   module, 35
scalar_multiplication()
   (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
    method), 20
super_categories()
   (sage.categories.drinfeld_modules.DrinfeldModules
    method), 58
velu()
   (sage.rings.function_field.drinfeld_modules.drinfeld_module.DrinfeldModule
    method), 21