Sage 9.4 Reference Manual: Discrete dynamics

Release 9.4

The Sage Development Team

Aug 24, 2021
CONTENTS

1 Cellular Automata
 1.1 Catalog of Cellular Automata .. 1
 1.2 Elementary Cellular Automata .. 1
 1.3 Graftal Lace Cellular Automata ... 9
 1.4 Soliton Cellular Automata ... 12

2 Plotting of Mandelbrot and Julia Sets
 2.1 Mandelbrot and Julia sets ... 31

3 Discrete dynamical systems .. 39

4 Sandpiles ... 53

5 Arithmetic Dynamical Systems
 5.1 Generic dynamical systems on schemes 109
 5.2 Dynamical systems on affine schemes 116
 5.3 Dynamical systems on projective schemes 127
 5.4 Dynamical systems for products of projective spaces 197
 5.5 Wehler K3 Surfaces ... 200

6 Indices and Tables .. 223

Python Module Index .. 225

Index ... 227
1.1 Catalog of Cellular Automata

The `cellular_automata` object may be used to access examples of various cellular automata currently implemented in Sage. Using tab-completion on this object is an easy way to discover and quickly create the cellular automata that are available (as listed here).

Let `<tab>` indicate pressing the tab key. So begin by typing `cellular_automata.<tab>` to see the currently implemented named cellular automata.

- `cellular_automata.Elementary`
- `cellular_automata.GraftalLace`
- `cellular_automata.PeriodicSoliton`
- `cellular_automata.Soliton`

1.2 Elementary Cellular Automata

AUTHORS:

- Travis Scrimshaw (2018-07-07): Initial version

```python
class sage.dynamics.cellular_automata.elementary.ElementaryCellularAutomata(
    rule,
    width=None,
    initial_state=None,
    boundary=(0, 0))
```

Bases: `sage.structure.sage_object.SageObject`

Elementary cellular automata.

An elementary cellular automaton is a 1-dimensional cellular deterministic automaton with two possible values: $X := \{0, 1\}$. A state is therefore a sequence $s \in X^n$, and the evolution of a state $s \rightarrow s'$ is given for s'_i by looking at the values at positions s_{i-1}, s_i, s_{i+1} and is determined by the rule $0 \leq r \leq 255$ as follows. Consider the binary representation $r = b_7b_6b_5b_4b_3b_2b_1b_0$. Then, we define $s'_i = b_j$, where $j = s_{i-1}s_is_{i+1}$ is the corresponding binary representation. In other words, the value s'_i is given according to the following table:

<table>
<thead>
<tr>
<th></th>
<th>111</th>
<th>110</th>
<th>101</th>
<th>100</th>
<th>011</th>
<th>010</th>
<th>001</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_7</td>
<td>b_6</td>
<td>b_5</td>
<td>b_4</td>
<td>b_3</td>
<td>b_2</td>
<td>b_1</td>
<td>b_0</td>
<td></td>
</tr>
</tbody>
</table>

We consider the boundary values of $s_0 = s_{n+1} = 0$.

INPUT:
• rule – an integer between 0 and 255
• width – (optional) the width of the ECA
• initial_state – (optional) the initial state given as a list of 0 and 1
• boundary – (default: (0, 0)) a tuple of the left and right boundary conditions respectively or None for periodic boundary conditions

Either width or initial_state must be given. If width is less than the length of initial_state, then initial_state has 0 prepended so the resulting list has length width. If only width is given, then the initial state is constructed randomly.

The boundary conditions can either be 0, 1, or a function that takes an integer n corresponding to the state and outputs either 0 or 1.

EXAMPLES:

We construct an example with rule 𝑟 = 90 using 𝑛 = 20. The initial state consists of a single 1 in the rightmost entry:

```python
sage: ECA = cellular_automata.Elementary(90, width=20, initial_state=[1])
sage: ECA.evolve(20)
sage: ascii_art(ECA)
```

We now construct it with different boundary conditions. The first is with the left boundary being 1 (instead of 0):

```python
sage: ECA = cellular_automata.Elementary(90, width=20, initial_state=[1], boundary=(1,0))
sage: ECA.evolve(20)
sage: ascii_art(ECA)
```

(continues on next page)
Now we consider the right boundary as being 1 on every third value:

```python
sage: def rbdry(n):
    return 1 if n % 3 == 0 else 0
sage: ECA = cellular_automata.Elementary(90, width=20, initial_state=[1],
→boundary=(0, rbdry))
sage: ECA.evolve(20)
sage: ascii_art(ECA)
```

Lastly we consider it with periodic boundary condition:

```python
sage: ECA = cellular_automata.Elementary(90, width=20, initial_state=[1],
→boundary=None)
sage: ECA.evolve(20)
```

(continues on next page)
We show the local evolution rules for rule 110:

```python
sage: for t in cartesian_product([[0,1],[0,1],[0,1]]):
    ECA = cellular_automata.Elementary(110, list(t))
    ECA.print_states(2)
    print('#')
```

```
#  X
#  XX
# X
#  X
#  XX
#  XXX
#  X
#  X
#  XX
#  XXX
#  XX
#  XXX
```

(continues on next page)
We construct an elementary cellular automaton with a random initial state with \(n = 15 \) and see the state after 50 evolutions:

```python
sage: ECA = cellular_automata.Elementary(26, width=25)
sage: ECA.print_state(50)  # random
```

```
 X X X X X X
```

We construct and plot a larger example with rule 60:

```python
sage: ECA = cellular_automata.Elementary(60, width=200)
sage: ECA.evolve(200)
sage: ECA.plot()
```

Graphics object consisting of 1 graphics primitive

With periodic boundary condition for rule 90:

```python
sage: ECA = cellular_automata.Elementary(90, initial_state=[1]+[0]*254+[1],
   boundary=None)
sage: ECA.evolve(256)
sage: ECA.plot()
```

Graphics object consisting of 1 graphics primitive
Chapter 1. Cellular Automata
References:

Wikipedia article Elementary_cellular_automaton

evolve(number=None)

Evolve self.

INPUT:

- `number` – (optional) the number of times to perform the evolution

EXAMPLES:

```
sage: ECA = cellular_automata.Elementary(110, [1,0,0,1,1,0,0,1,0,1])
sage: ascii_art(ECA)
x xx x x
sage: ECA.evolve()
sage: ascii_art(ECA)
x xx x x
x xxx xxxx
sage: ECA.evolve(10)
sage: ascii_art(ECA)
x xx x x
x xxx xxxx
xxx xxxx x
xxx xxxx x
xxx xx x
xxx x xxx
xxx x xx x
x xxxxxx
xxx xxx x
xx x xx
x xxxx
```

plot(number=None)

Return a plot of self.

INPUT:

- `number` – the number of states to plot

EXAMPLES:

```
sage: ECA = cellular_automata.Elementary(110, width=256)
sage: ECA.evolve(256)
sage: ECA.plot()
Graphics object consisting of 1 graphics primitive
```

print_state(number=None)

Print the state `number`.

INPUT:

- `number` – (default: the current state) the state to print

EXAMPLES:
```
sage: ECA = cellular_automata.Elementary(110, width=10, initial_state=[1,0,0,1,1,0,1])
sage: ECA.print_state(15)
X X XXXXX
sage: ECA.print_state(10)
X X XX
sage: ECA.print_state(20)
X XXX
sage: for i in range(11):
    ....:     ECA.print_state(i)
    X XX X
    XX XXXXX
    XXXXX X
    XX X XX
    XX XX XXX
    XX XXXXX X
    XXXX XXX
    X X XX X
    X XX XXXXX
    XXXXX X
    X X XX
```

print_states(number=None)

Print the first `num` states of `self`.

Note: If the number of states computed for `self` is less than `num`, then this evolves the system using the default time evolution.

INPUT:

- `number` – the number of states to print

EXAMPLES:

```
sage: ECA = cellular_automata.Elementary(110, width=10, initial_state=[1,0,0,1,1,0,1])
sage: ECA.print_states(10)
    X XX X
    XX XXXXX
    XXXXX X
    XX X XX
    XX XX XXX
    XX XXXXX X
    XXXX XXX
    X X XX X
    X XX XXXXX
    XXXXX X
```
1.3 Graftal Lace Cellular Automata

AUTHORS:

- Travis Scrimshaw (2020-04-30): Initial version

```python
class sage.dynamics.cellular_automata.glca.GraftalLaceCellularAutomata(rule)
Bases: sage.structure.sage_object.SageObject
```

Graftal Lace Cellular Automata (GLCA).

A GLCA is a deterministic cellular automaton whose rule is given by an 8-digit octal number \(r_7 \cdots r_0 \). For a node \(s_i \), let \(b_k \), for \(k = -1, 0, 1 \) denote if there is an edge from \(s_i \) to \(s'_{i+k} \), where \(s'_j \) is the previous row. We determine the value at \(t_{i+k} \) by considering the value of \(r_m \), where the binary representation of \(m \) is \(b_{-1}b_0b_1 \). If \(r_m \) has a binary representation of \(b'_1 b'_0 b'_{-1} \), then we add \(b'_k \) to \(t_{i+k} \).

INPUT:

- \texttt{rule} -- a list of length 8 with integer entries \(0 \leq x < 8 \)

EXAMPLES:

```python
sage: G = cellular_automata.GraftalLace([0,2,5,4,7,2,3,3])
sage: G.evolve(3)
sage: ascii_art(G)
  o
  | |
  o o o
  /  /|
  o o o o
  /  / \|
  o o o o o

sage: G = cellular_automata.GraftalLace([3,0,3,4,7,6,3,1])
sage: G.evolve(3)
sage: ascii_art(G)
  o
  | |
  o o o
  /  /|
  o o o o
  /  / |
  o o o o o

sage: G = cellular_automata.GraftalLace([2,0,3,3,6,0,2,7])
sage: G.evolve(20)
sage: G.plot()
Graphics object consisting of 842 graphics primitives
```

REFERENCES:

- [Kas2018]
evolve(number=None)
Evolve self.

INPUT:

• number – (default: 1) the number of times to perform the evolution

EXAMPLES:

```python
sage: G = cellular_automata.GraftalLace([5,1,2,5,4,5,5,0])
sage: ascii_art(G)
 o
 | 
 o
sage: G.evolve(2)
sage: ascii_art(G)
 o
 | 
 o
 / \ 
 o o o 
/ \ / \ 
o o o o o
sage: G = cellular_automata.GraftalLace([0,2,1,4,7,2,3,0])
sage: G.evolve(3)
sage: ascii_art(G)
o
 | 
 o
 / 
 o o o o o
/ \ / \ 
 o o o o o o o
```

plot(number=None)
Return a plot of self.

INPUT:

• number – the number of states to plot

EXAMPLES:

```python
sage: G = cellular_automata.GraftalLace([5,1,2,5,4,5,5,0])
sage: G.evolve(20)
sage: G.plot()
Graphics object consisting of 865 graphics primitives
```

print_states(number=None, use_unicode=False)
Print the first num states of self.

Note: If the number of states computed for self is less than num, then this evolves the system using the default time evolution.
INPUT:

• `number` – the number of states to print

EXAMPLES:

```python
sage: G = cellular_automata.GraftalLace([5,1,2,5,4,5,5,0])
sage: G.evolve(2)
sage: G.print_states()
   o |
   o |
   o o o
  / \ / \\
  o o o o o
sage: G.evolve(20)
sage: G.print_states(3)
   o |
   o |
   o o o
  / \ / \\
  o o o o o
```

1.4 Soliton Cellular Automata

AUTHORS:

• Travis Scrimshaw (2017-06-30): Initial version
• Travis Scrimshaw (2018-02-03): Periodic version

```python
class sage.dynamics.cellular_automata.solitons.PeriodicSolitonCellularAutomata(initial_state, cartan_type=2, vacuum=1)
```

A periodic soliton cellular automata.

Fix some \(r \in I_0 \). A periodic soliton cellular automata is a `SolitonCellularAutomata` with a state being a fixed number of tensor factors \(p = p_{\ell} \otimes \cdots \otimes p_1 \otimes p_0 \) and the time evolution \(T_s \) is defined by

\[
R(p \otimes u) = u \otimes T_s(p),
\]

for some element \(u \in B^{r,s} \).

INPUT:

• `initial_state` – the list of elements, can also be a string when vacuum is 1 and \(n \) is \(sl_n \)
• `cartan_type` – (default: 2) the value \(n \), for \(sl_n \), or a Cartan type
• `r` – (default: 1) the node index \(r \); typically this corresponds to the height of the vacuum element
EXAMPLES:
The construction and usage is the same as for SolitonCellularAutomata:

```
sage: P = PeriodicSolitonCellularAutomata('11233411124111142311141123112', 4)
sage: P.evolve()
sage: P

Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
..23334...24....423...4...23..2
evolutions: [(1, 31)]
current state:
344....24....243....4.223.233.
```

```
sage: P.evolve(carrier_capacity=2)
sage: P.evolve(carrier_index=2)
sage: P.evolve(carrier_index=2, carrier_capacity=3)
sage: P.print_states(10)

<table>
<thead>
<tr>
<th>t</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>..23334...24....423...4...23..2</td>
</tr>
<tr>
<td>1</td>
<td>344....24....243....4.223.233.</td>
</tr>
<tr>
<td>2</td>
<td>.....24....24.3....4223.2333.4</td>
</tr>
<tr>
<td>3</td>
<td>.....34....34.2...23234.24....3.</td>
</tr>
<tr>
<td>4</td>
<td>.....34...23..242223.4..33....4.</td>
</tr>
<tr>
<td>5</td>
<td>.....34.2223.224.3....4.33.....4..</td>
</tr>
<tr>
<td>6</td>
<td>34223...24....3....433....4.22</td>
</tr>
<tr>
<td>7</td>
<td>23....24....3...343....222434..</td>
</tr>
<tr>
<td>8</td>
<td>.....24....3...34.322244....3..23</td>
</tr>
<tr>
<td>9</td>
<td>.....24....3324423424....3.23..</td>
</tr>
</tbody>
</table>
```

Using $r = 2$ in type $A_3^{(1)}$:

```
sage: initial = [[2,1],[2,1],[4,1],[2,1],[2,1],[2,1],[3,1],[3,1],[3,2]]
sage: P = PeriodicSolitonCellularAutomata(initial, 4, 2)
sage: P.print_states(10)

<table>
<thead>
<tr>
<th>t</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4 333</td>
</tr>
<tr>
<td>1</td>
<td>4 333</td>
</tr>
<tr>
<td>2</td>
<td>2 433 3</td>
</tr>
<tr>
<td>3</td>
<td>3 3 334</td>
</tr>
<tr>
<td>4</td>
<td>3 34 3</td>
</tr>
<tr>
<td>5</td>
<td>34 33</td>
</tr>
</tbody>
</table>
```

(continues on next page)
We do some examples in other types:

```
sage: initial = [[1], [2], [2], [1], [1], [3], [1], [1], ['E'], [1], [1]]
sage: P = PeriodicSolitonCellularAutomata(initial, ['D', 4, 3])
sage: P.print_states(10)
t: 0
   .22...3.E..
t: 1
   2....3.E..2
    t: 2
   ....3.E.22.
    t: 3
   ...3.E22...
    t: 4
   .32E2.....
    t: 5
   .00.2.......)
    t: 6
   22.2.......)
    t: 7
   2.2......3E
    t: 8
   .2.....30.2
    t: 9
   2....332.2.
sage: P = PeriodicSolitonCellularAutomata([[3], [2], [1], [1], [-2]], ['C', 2, 1])
sage: P.print_state_evolution(0)
```

REFERENCES:
- [KTT2006]
- [KS2006]
- [YT2002]
- [YYT2003]
The time evolution T_s of a SCA state p is determined by

$$u \otimes T_s(p) = R(p \otimes u),$$

where u is some element in $B^{r \times s}$.

INPUT:

- `carrier_capacity` – (default: the number of balls in the system) the size s of carrier
- `carrier_index` – (default: the vacuum index) the index r of the carrier
- `number` – (optional) the number of times to perform the evolutions

To perform multiple evolutions of the SCA, `carrier_capacity` and `carrier_index` may be lists of the same length.

Warning: Time evolution is only guaranteed to result in a solution when the `carrier_index` is the defining r of the SCA. If no solution is found, then this will raise an error.

EXAMPLES:

```python
sage: P = PeriodicSolitonCellularAutomata('12411133214131221122', 4)
sage: P.evolve()
sage: P.print_state(0)
.24...332.4.3.22..22
sage: P.print_state(1)
4...33.2.42322..22..
sage: P.evolve(carrier_capacity=2)
sage: P.print_state(2)
..33.22.42322..22..4
sage: P.evolve(carrier_capacity=[1,3,1,2])
sage: P.evolve(1, number=3)
sage: P.print_states(10)
t: 0
  .24...332.4.3.22..22
t: 1
  4...33.2.42322..22..
t: 2
  ..33.22.42322..22..4
t: 3
  .33.22.42322..22..4.
t: 4
  3222..43.2.22....4.3
t: 5
  222..43.2.22....4.33
t: 6
  2..4322.2......43322
t: 7
  ...4322.2......43322
```

(continues on next page)
Soliton cellular automata.

Fix an affine Lie algebra \mathfrak{g} with index I and classical index set I_0. Any fixed value $r \in I_0$. A soliton cellular automaton (SCA) is a discrete (non-linear) dynamical system given as follows. The states are given by elements of a semi-infinite tensor product of Kirillov-Reshetikhin crystals B^r, where only a finite number of factors are not the maximal element u, which we will call the vacuum. The time evolution T_s is defined by

$$R(p \otimes u_s) = u_s \otimes T_s(p),$$

where $p = \cdots \otimes p_3 \otimes p_2 \otimes p_1 \otimes p_0$ is a state and u_s is the maximal element of B^r, u_s. In more detail, we have $R(p_i \otimes u^{i+1}) = u^{i+1} \otimes p_i$ with $u^{(0)} = u_s$ and $T_s(p) = \cdots \otimes \tilde{p}_1 \otimes \tilde{p}_0$. This is well-defined since $R(u \otimes u_s) = u_s \otimes u$ and $u^{(k)} = u_s$ for all $k \gg 1$.

INPUT:

- `initial_state` – the list of elements, can also be a string when vacuum is 1 and n is \mathfrak{sl}_n
- `cartan_type` – (default: 2) the value n, for \mathfrak{sl}_n, or a Cartan type
- `r` – (default: 1) the node index r; typically this corresponds to the height of the vacuum element

EXAMPLES:

We first create an example in \mathfrak{sl}_4 (type A_3):

```
sage: B = SolitonCellularAutomata('341111122411112223', 4)
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
34......224....2223
evolutions: []
current state:
34......224....2223
```
We then apply an standard evolution:

```
sage: B.evolve()
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
34......224....2223
evolutions: [(1, 19)]
current state:
.................34......224...2223....
```

Next, we apply a smaller carrier evolution. Note that the soliton of size 4 moves only 3 steps:

```
sage: B.evolve(3)
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
34......224....2223
evolutions: [(1, 19), (1, 3)]
current state:
.................34......224...2223....
```

We can also use carriers corresponding to non-vacuum indices. In these cases, the carrier might not return to its initial state, which results in a message being displayed about the resulting state of the carrier:

```
sage: B.evolve(carrier_capacity=7, carrier_index=3)
Last carrier:
   1  1  1  1  1  1  1
   2  2  2  2  2  3  3
   3  3  3  3  3  4  4
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
34......224....2223
evolutions: [(1, 19), (1, 3), (3, 7)]
current state:
.................23....222....2223....
```

To summarize our current evolutions, we can use `print_states()`:

```
sage: B.print_states(5)
t: 0
```

(continues on next page)
To run the SCA further under the standard evolutions, one can use `print_states()` or `latex_states()`:

```sage
sage: B.print_states(15)
t: 0

34.....224...2223

t: 1

34.....224...2223...

t: 2

34.....224...2223.....

t: 3

34.....224...2223.......

t: 4

34.....224...2223........

t: 5

34.....224...2223.........

t: 6

34.....224...2223...........

t: 7

34.....224...2223.........

t: 8

34.....224...2223.........

t: 9

34.....224...2223.........

t: 10

34.....224...2223.........

t: 11

34.....224...2223.........

t: 12

34.....224...2223.........

t: 13

34.....224...2223.........

t: 14

34.....224...2223........
```

Next, we use $r = 2$ in type A_3. Here, we give the data as lists of values corresponding to the entries of the column of height 2 from the largest entry to smallest. Our columns are drawn in French convention:

```sage
sage: B = SolitonCellularAutomata([[4,1],[4,1],[2,1],[2,1],[2,1],[2,1],[3,1],[3,1],
    [3,2]], 4, 2)
```

We perform 3 evolutions and obtain the following:
1.4. Soliton Cellular Automata

We construct Example 2.9 from [LS2017]:

```python
sage: B = SolitonCellularAutomata([[2],[-3],[1],[1],[1],[4],[0],[-2],
......: [1],[1],[1],[1],[3],[-4],[-3],[1]], ['D',5,2])
sage: B.print_states(10)
t: 0
   ........................................23...402....3433.
t: 1
   ........................................23..402...3433.....
t: 2
   ........................................23.402...3433....
t: 3
   ........................................243.02.3433........
t: 4
   ........................................2403..42333........
t: 5
   ........................................2403....4243........
t: 6
   ........................................2403...424343....
t: 7
   ........................................2403......442....43...
t: 8
   ........................................2403.......442...43....
t: 9
   ........................................2403........442..43..
```

Example 3.4 from [LS2017]:

```python
sage: B = SolitonCellularAutomata([[E],[1],[1],[1],[3],[0],
......: [1],[1],[1],[1],[2],[-3],[-1],[1]], ['D',4,2])
sage: B.print_states(10)
t: 0
   ..................................E...30....231.
t: 1
   ..................................E..30..231.....
t: 2
   ..................................E303.21........
t: 3
   ..................................303E2.22........
t: 4
   ..................................303E...222........
t: 5
   ..................................303E...222........
```

(continues on next page)
Example 3.12 from [LS2017]:

```python
sage: B = SolitonCellularAutomata([[-1,3,2],[3,2,1],[3,2,1],[-3,2,1],
                                   [-2,-3,1]], ['B',3,1], 3)
sage: B.print_states(6)
-1 -3-2
  3 2-3
  . . . . . . . . . . . . . 2 1 1...
  -3-1

```

Example 4.12 from [LS2017]:

```python
sage: B = SolitonCellularAutomata([[[-1,3,2],[3,2,1],[3,2,1],[-3,2,1],
                                    [-2,-3,1]], ['B',3,1], 3)

```

```python
```

```python
sage: B = SolitonCellularAutomata([[a, u,u,u, x,y], ['E',6,1], 1])
sage: B
Soliton cellular automata of type ['E', 6, 1] and vacuum = 1
    initial state:
        (-2, 5) . . . . . (-5, 2, 6)(-2, -6, 4)
evolutions: []
current state:
        (-2, 5) . . . . . (-5, 2, 6)(-2, -6, 4)
sage: B.print_states(8)
t: 0 ...
```
evolve(carrier_capacity=None, carrier_index=None, number=None)

Evolve self.

Time evolution T_s of a SCA state p is determined by

$$u_{r,s} \otimes T_s(p) = R(p \otimes u_{r,s}),$$

where $u_{r,s}$ is the maximal element of $B^{r,s}$.

INPUT:

- **carrier_capacity** – (default: the number of balls in the system) the size s of carrier
- **carrier_index** – (default: the vacuum index) the index r of the carrier
- **number** – (optional) the number of times to perform the evolutions

To perform multiple evolutions of the SCA, carrier_capacity and carrier_index may be lists of the same length.

EXAMPLES:

```
sage: B = SolitonCellularAutomata('341111122411112223', 4)
sage: for k in range(10):
    ....:     B.evolve()

sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
34......224....2223
evolutuions: [(1, 19), (1, 19), (1, 19), (1, 19), (1, 19), (1, 19),
(1, 19), (1, 19), (1, 19), (1, 19)]
current state:
......2344......222....23.................................

sage: B.reset()
sage: B.evolve(number=10); B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
34.......224....2223
evolutuions: [(1, 19), (1, 19), (1, 19), (1, 19), (1, 19), (1, 19),
(1, 19), (1, 19), (1, 19), (1, 19)]
current state:
......2344......222....23.................................

sage: B.reset()
sage: B.evolve(carrier\_capacity=[1,2,3,4,5,6,7,8,9,10]); B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
34.......224....2223
evolutuions: [(1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
(1, 6), (1, 7), (1, 8), (1, 9), (1, 10)]
current state:
......2344......222....23.................................

sage: B.reset()
sage: B.evolve(carrier\_index=[1,2,3])
Last carrier:
```
sage: B

Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
34.......224....2223
evolutions: [(1, 19), (2, 19), (3, 19)]
current state:
..................................22......223...2222....

sage: B.reset()
sage: B.evolve(carrier_capacity=[1,2,3], carrier_index=[1,2,3])

Last carrier:
1 1
3 4

Last carrier:
1 1 1
2 2 3
3 3 4

sage: B

Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
34.......224....2223
evolutions: [(1, 1), (2, 2), (3, 3)]
current state:
.....22.......223....2222..

sage: B.reset()
sage: B.evolve(1, 2, number=3)

Last carrier:
1
3

Last carrier:
1
4

Last carrier:
1
3

sage: B

Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
initial state:
34.......224....2223
evolutions: [(2, 1), (2, 1), (2, 1)]
current state:
.24......222.....2222.

\texttt{latex_state_evolution}(\texttt{num}, \texttt{scale}=1)

Return a latex version of the evolution process of the state \texttt{num}.

See also:

\texttt{state_evolution()}, \texttt{print_state_evolution()}

EXAMPLES:
sage: B = SolitonCellularAutomata('113123', 3)
sage: B.evolve(3)
sage: B.latex_state_evolution(0)
\begin{tikzpicture}[scale=1]
\node (i0) at (0.0,0.9) {1};
\node (i1) at (2.48,0.9) {1};
\node (i2) at (4.96,0.9) {3};
...
\draw[->] (i5) -- (t5);
\draw[->] (u6) -- (u5);
\end{tikzpicture}
sage: B.latex_state_evolution(1)
\begin{tikzpicture}[scale=1]
...
\end{tikzpicture}

latex_states(num=None, as_array=True, box_width='5pt')

Return a latex version of the states.

INPUT:

- **num** – the number of states
- **as_array** (default: True) if True, then the states are placed inside of an array; if False, then the states are given as a word
- **box_width** – (default: '5pt') the width of the _ to represent the vacuum state when as_array is True

If as_array is False, then the vacuum element is printed in a gray color. If as_array is True, then the vacuum is given as _.

Use the box_width to help create more even spacing when a column in the output contains only vacuum elements.

EXAMPLES:

```python
sage: B = SolitonCellularAutomata('411122', 4)
sage: B.latex_states(8)
{arraycolsep=0.5pt \begin{array}{c|ccccccccccccccccccc}
t = 0 & \cdots & \cdots & \makebox[5pt]{.} & 4 & \makebox[5pt]{.} & \makebox[5pt]{.} & 2 & 2 \ \
t = 1 & \cdots & \cdots & 4 & \makebox[5pt]{.} & \makebox[5pt]{.} & 2 & 2 & \cdots \ \
t = 2 & \cdots & \cdots & 4 & \makebox[5pt]{.} & \makebox[5pt]{.} \ \
t = 3 & \cdots & \cdots & 4 & 2 & 2 & ... \ \
t = 4 & \cdots & \cdots & 2 & 4 & 2 & ... \ \
t = 5 & \cdots & \cdots & 2 & 4 & \makebox[5pt]{.} & 2 & ... \ \
t = 6 & \cdots & \cdots & 2 & 4 & \makebox[5pt]{.} \ 
\end{array}}
```

```python
sage: B = SolitonCellularAutomata('511122', 5)
sage: B.latex_states(8, as_array=False)
{\begin{array}{c|c}
```
```
print_state\(\text{(num=None, vacuum_letter='.', remove_trailing_vacuums=False)}\)

Print the state num.

INPUT:

- num – (default: the current state) the state to print
- vacuum_letter – (default: '.') the letter to print for the vacuum
- remove_trailing_vacuums – (default: False) if True then this does not print the vacuum letters at the right end of the state

EXAMPLES:

\[
\begin{array}{cccccccc}
\text{t = 0} & \cdots & \{\text{color(gray) 1}\} & 5 & \{\text{color(gray) 1}\} \\
\{\text{color(gray) 1}\} & \{\text{color(gray) 1}\} & 2 & 2 & \backslash \\
\text{t = 1} & \cdots & 5 & \{\text{color(gray) 1}\} & 1 & \{\text{color(gray) 1}\} & 2 & 2 & \backslash \\
\text{t = 2} & \cdots & 5 & \{\text{color(gray) 1}\} & 2 & 2 & \backslash \\
\text{t = 3} & \cdots & 5 & 2 & 2 & \backslash \\
\text{t = 4} & \cdots & 2 & 5 & 2 & \backslash \\
\text{t = 5} & \cdots & 2 & 5 & \{\text{color(gray) 1}\} & 2 & \backslash \\
\text{t = 6} & \cdots & 2 & 5 & \{\text{color(gray) 1}\} & 2 & \backslash \\
\text{t = 7} & \cdots & 2 & 5 & \{\text{color(gray) 1}\} & 2 & \backslash \\
\{\text{color(gray) 1}\} & \{\text{color(gray) 1}\} & 2 & \cdots & \backslash \\
\end{array}
\]

\text{print_state}\text{evolution}\text{(num)}

Print the evolution process of the state num.

See also:

\text{state\hspace{0.1em}evolution()}, \text{latex\hspace{0.1em}state\hspace{0.1em}evolution()}

EXAMPLES:

\[
\begin{array}{ccc}
\text{sage: } & \text{B = SolitonCellularAutomata('341111122411112223', 4)} \\
\text{sage: } & \text{B.print_state()} \\
\text{sage: } & \text{B.evolve(number=2)} \\
\text{sage: } & \text{B.print_state(vacuum_letter='.', remove_trailing_vacuums=True)} \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{sage: } & \text{B.print_state(10, '_.')} \\
\text{sage: } & \text{B.print_state(10, '_', True)} \\
\end{array}
\]
print_states$(\text{num}={\text{None}}, \text{vacuum_letter}=\text{'}.)$

Print the first num states of self.

**Note:** If the number of states computed for self is less than num, then this evolves the system using the default time evolution.

**INPUT:**

- num – the number of states to print

**EXAMPLES:**

```
sage: B = SolitonCellularAutomata([[2],[-1],[1],[1],[1],[1],[2],[2],[3],
.....: [-2],[1],[1],[2],[-1],[1],[1],[1],[1],[1],[1],[2],[3],[3],[-3],[-2]],
.....: ['B',3,1])
sage: B.print_states(7)
t: 0 _ _ _ __ 21...2232...21.....23332
 21...2232...21....23332.....
t: 2 _ _ _ __ 21...2232...21...23332........
t: 3 _ _ _ __ 21...2232...21...23332........
t: 4 _ _ _ __ 21...2232...21...23332........
t: 5 _ _ _ __ 21...2232...21...23332........
t: 6 _ _ _ __ 21...2232...21...23332........
```

```
sage: B = SolitonCellularAutomata([[2],[1],[1],[1],[3],[-2],[1],[1],
.....: [1],[2],[2],[-3],[1],[1],[1],[1],[1],[1],[2],[3],[3],[-3]],
.....: ['B',3,1])
sage: B.print_states(9, ' ')
t: 0 _ _ _ __ _ _ _ 2 32 223 2333
 2 32 223 2333
 2 32 223 2333
 2 32 223 2333
 2 32 223 2333
 2 32 223 2333
 2 32 223 2333
 2 32 223 2333
 2 32 223 2333
```

(continues on next page)
Example 4.13 from [Yamada2007]:

```python
sage: B = SolitonCellularAutomata([[3],[3],[1],[1],[1],[1],[2],[2],[2]], ['D',4,-3])
sage: B.print_states(15)
```

```
t: 0
 33...222

```

```
t: 1
 33...222...

```

```
t: 2
 33..222......

```

```
t: 3
 33.222.........

```

```
t: 4
 33222..........

```

```
t: 5
 3022...............

```

```
t: 6
 33223............

```

```
t: 7
 33223...........

```

```
t: 8
 33223............

```

```
t: 9
 33223............

```
Example 4.14 from [Yamada2007]:

```python
sage: B = SolitonCellularAutomata([[3],[1],[1],[1],[2],[3],[1],[1],[1],[2],[3],
 ['D',4,3])
sage: B.print_states(15)
t: 0
 3...23...233

t: 1
 3..23..233...

t: 2
 3.23.233....

t: 3
 323233....

t: 4
 0033........

t: 5
 313.........

t: 6
 30E.3........

t: 7
 333...3........

t: 8
 3302...3........

t: 9
 33322....3........

t: 10
 333.22....3........

t: 11
 333..22...3........

t: 12
 333...22...3........

t: 13
 333...22.....3........

t: 14
 333....22....3........
```

1.4. Soliton Cellular Automata
reset()

Reset self back to the initial state.

EXAMPLES:

```python
sage: B = SolitonCellularAutomata('34111111224', 4)
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
 initial state:
 34......224
evolutions: []
current state:
 34......224
sage: B.evolve()
sage: B.evolve()
sage: B.evolve()
sage: B.evolve()
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
 initial state:
 34......224
evolutions: [(1, 11), (1, 11), (1, 11), (1, 11)]
current state:
 ...34..224............
sage: B.reset()
sage: B
Soliton cellular automata of type ['A', 3, 1] and vacuum = 1
 initial state:
 34......224
evolutions: []
current state:
 34......224
```

`sage_state_evolution(num)`

Return a list of the carrier values at state num evolving to the next state.

If num is greater than the number of states, this performs the standard evolution $T_k$, where $k$ is the number of balls in the system.

See also:

`print_state_evolution()`, `latex_state_evolution()`

EXAMPLES:

```python
sage: B = SolitonCellularAutomata('1113123', 3)
sage: B.evolve(3)
sage: B.state_evolution(0)
[[[1, 1, 1]],
 [[1, 1, 1]],
 [[1, 1, 3]],
 [[1, 1, 2]],
 [[1, 2, 3]],
 [[1, 1, 3]],
 [[1, 1, 1]]]
```
Sage: B.state_evolution(2)

[[[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 3]],
 [[1, 1, 1, 1, 1, 3, 3]],
 [[1, 1, 1, 1, 1, 1, 3]],
 [[1, 1, 1, 1, 1, 1, 2]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]],
 [[1, 1, 1, 1, 1, 1, 1]]]
2.1 Mandelbrot and Julia sets

Plots the Mandelbrot and Julia sets for general polynomial maps in the complex plane.

The Mandelbrot set is the set of complex numbers $c$ for which the map $f_c(z)$ does not diverge when iterated from $z = 0$. This set of complex numbers can be visualized by plotting each value for $c$ in the complex plane. The Mandelbrot set is often an example of a fractal when plotted in the complex plane. For general one parameter families of polynomials, the mandelbrot set is the parameter values for which the orbits of all critical points remains bounded.

The Julia set for a given parameter $c$ is the set of complex numbers for which the function $f_c(z)$ is bounded under iteration.

AUTHORS:

- Ben Barros

sage.dynamics.complex_dynamics.mandel_julia.external_ray(theta, **kwds)

Draws the external ray(s) of a given angle (or list of angles) by connecting a finite number of points that were approximated using Newton’s method. The algorithm used is described in a paper by Tomoki Kawahira.

REFERENCE:

[Kaw2009]

INPUT:

- theta – double or list of doubles, angles between 0 and 1 inclusive.

kwds:

- image – 24-bit RGB image (optional - default: None) user specified image of Mandelbrot set.
- D – long (optional - default: 25) depth of the approximation. As D increases, the external ray gets closer to the boundary of the Mandelbrot set. If the ray doesn’t reach the boundary of the Mandelbrot set, increase D.
- S – long (optional - default: 10) sharpness of the approximation. Adjusts the number of points used to approximate the external ray (number of points is equal to S*D). If ray looks jagged, increase S.
- R – long (optional - default: 100) radial parameter. If R is large, the external ray reaches sufficiently close to infinity. If R is too small, Newton’s method may not converge to the correct ray.
- prec – long (optional - default: 300) specifies the bits of precision used by the Complex Field when using Newton’s method to compute points on the external ray.
- ray_color – RGB color (optional - default: [255, 255, 255]) color of the external ray(s).
24-bit RGB image of external ray(s) on the Mandelbrot set.

EXAMPLES:

```python
sage: external_ray(1/3)
500x500px 24-bit RGB image

sage: external_ray(0.6, ray_color=[255, 0, 0])
500x500px 24-bit RGB image

sage: external_ray([0, 0.2, 0.4, 0.7])
500x500px 24-bit RGB image

sage: external_ray([i/5 for i in range(1,5)])
500x500px 24-bit RGB image
```

**WARNING:**

If you are passing in an image, make sure you specify which parameters to use when drawing the external ray. For example, the following is incorrect:

```python
sage: M = mandelbrot_plot(x_center=0) # not tested
sage: external_ray(5/7, image=M) # not tested
500x500px 24-bit RGB image
```

To get the correct external ray, we adjust our parameters:

```python
sage: M = mandelbrot_plot(x_center=0)
sage: external_ray(5/7, x_center=0, image=M)
500x500px 24-bit RGB image
```

**Todo:** The copy() function for bitmap images needs to be implemented in Sage.

### Julia Plot

Plots the Julia set of a given polynomial \( f \). Users can specify whether they would like to display the Mandelbrot side by side with the Julia set with the `mandelbrot` argument. If \( f \) is not specified, this method defaults to \( f(z) = z^2 - 1 \).

The Julia set of a polynomial \( f \) is the set of complex numbers \( z \) for which the function \( f(z) \) is bounded under iteration. The Julia set can be visualized by plotting each point in the set in the complex plane. Julia sets are examples of fractals when plotted in the complex plane.

**ALGORITHM:**

Let \( R_c = \frac{1 + \sqrt{1 + 4|c|}}{2} \) if the polynomial is of the form \( f(z) = z^2 + c \); otherwise, let \( R_c = 2 \). For every \( p \in \mathbb{C} \), if \( |f^k(p)| > R_c \) for some \( k \geq 0 \), then \( f^n(p) \to \infty \). Let \( N \) be the maximum number of iterations. Compute the first \( N \) points on the orbit of \( p \) under \( f \). If for any \( k < N \), \( |f^k(p)| > R_c \), we stop the iteration and assign a color to the point \( p \) based on how quickly \( p \) escaped to infinity under iteration of \( f \). If \( |f^i(p)| \leq R_c \) for all \( i \leq N \), we assume \( p \) is in the Julia set and assign the point \( p \) the color black.

**INPUT:**

- \( f \) – input polynomial (optional - default: \( z^2 - 1 \)).
• **period** – list (optional - default: *None*), returns the Julia set for a random $c$ value with the given (formal) cycle structure.

• **mandelbrot** – boolean (optional - default: *True*), when set to *True*, an image of the Mandelbrot set is appended to the right of the Julia set.

• **point_color** – RGB color (optional - default: *'tomato'*), color of the point $c$ in the Mandelbrot set (any valid input for *Color*).

• **x_center** – double (optional - default: $-1.0$), Real part of center point.

• **y_center** – double (optional - default: $0.0$), Imaginary part of center point.

• **image_width** – double (optional - default: $4.0$), width of image in the complex plane.

• **max_iteration** – long (optional - default: $500$), maximum number of iterations the map $f(z)$.

• **pixel_count** – long (optional - default: $500$), side length of image in number of pixels.

• **base_color** – hex color (optional - default: *'steelblue'*), color used to determine the coloring of set (any valid input for *Color*).

• **level_sep** – long (optional - default: $1$), number of iterations between each color level.

• **number_of_colors** – long (optional - default: $30$), number of colors used to plot image.

• **interact** – boolean (optional - default: *False*), controls whether plot will have interactive functionality.

OUTPUT:

24-bit RGB image of the Julia set in the complex plane.

**Todo:** Implement the side-by-side Mandelbrot-Julia plots for general one-parameter families of polynomials.

**EXAMPLES:**

The default $f$ is $z^2 - 1$:

```sage
julia_plot()
```
1001x500px 24-bit RGB image

To display only the Julia set, set **mandelbrot** to *False*:

```sage
julia_plot(mandelbrot=False)
```
500x500px 24-bit RGB image

```sage
R.<z> = CC[]
sage: f = z^3 - z + 1
sage: julia_plot(f)
```
500x500px 24-bit RGB image

To display an interactive plot of the Julia set in the Notebook, set **interact** to *True*. (This is only implemented for polynomials of the form $f = z^2 + c$):

```sage
julia_plot(interact=True)
interactive(children=(FloatSlider(value=-1.0, description=u'Real c...'))
```
::

(continues on next page)
To return the Julia set of a random $c$ value with (formal) cycle structure $(2, 3)$, set `period = [2, 3]`:

```
sage: julia_plot(period=[2,3])
```

To return all of the Julia sets of $c$ values with (formal) cycle structure $(2, 3)$:

```
sage: period = [2,3] # not tested
...... R.<c> = QQ[]
...... P.<x,y> = ProjectiveSpace(R,1)
...... f = DynamicalSystem([x^2+c*y^2, y^2]).roots(ring=CC)
...... c_values = [k[0] for k in L]
...... for c in c_values:
......
 julia_plot(c)
```

Polynomial maps can be defined over a polynomial ring or a fraction field, so long as $f$ is polynomial:

```
sage: R.<z> = CC[]
sage: f = z^2 - 1
sage: julia_plot(f)
```

```
sage: R.<z> = CC[]
sage: K = R.fraction_field(); z = K.gen()
sage: f = z^2 - 1
sage: julia_plot(f)
```

Interact functionality is not implemented if the polynomial is not of the form $f = z^2 + c$:

```
sage: R.<z> = CC[]
sage: f = z^3 + 1
sage: julia_plot(f, interact=True)
Traceback (most recent call last):
...
NotImplementedError: The interactive plot is only implemented for ...
```

`sage.dynamics.complex_dynamics.mandel_julia.kneading_sequence(theta)`

Determines the kneading sequence for an angle theta in RR/ZZ which is periodic under doubling. We use the definition for the kneading sequence given in Definition 3.2 of [LS1994].

**INPUT:**

- theta – a rational number with odd denominator

**OUTPUT:**

a string representing the kneading sequence of theta in RR/ZZ

**REFERENCES:**
EXAMPLES:

```
sage: kneading_sequence(0)
'*
```

```
sage: kneading_sequence(1/3)
'1*
```

Since 1/3 and 7/3 are the same in RR/ZZ, they have the same kneading sequence:

```
sage: kneading_sequence(7/3)
'1*
```

We can also use (finite) decimal inputs, as long as the denominator in reduced form is odd:

```
sage: kneading_sequence(1.2)
'110*
```

Since rationals with even denominator are not periodic under doubling, we have not implemented kneading sequences for such rationals:

```
sage: kneading_sequence(1/4)
Traceback (most recent call last):
 ... ValueError: input must be a rational number with odd denominator
```

```
sage.dynamics.complex_dynamics.mandel_julia.mandelbrot_plot(f=None, **kwds)
```

Plot of the Mandelbrot set for a one parameter family of polynomial maps.

The family $f_c(z)$ must have parent $R$ of the form $R.<z,c> = \mathbb{C}[$.

REFERENCE:

[Dev2005]

INPUT:

- $f$ – map (optional - default: $z^2 + c$), polynomial family used to plot the Mandelbrot set.
- $\text{parameter}$ – variable (optional - default: $c$), parameter variable used to plot the Mandelbrot set.
- $x\_center$ – double (optional - default: $-1.0$), Real part of center point.
- $y\_center$ – double (optional - default: $0.0$), Imaginary part of center point.
- $image\_width$ – double (optional - default: $4.0$), width of image in the complex plane.
- $max\_iteration$ – long (optional - default: $500$), maximum number of iterations the map $f_c(z)$.
- $pixel\_count$ – long (optional - default: $500$), side length of image in number of pixels.
- $base\_color$ – RGB color (optional - default: $[40, 40, 40]$) color used to determine the coloring of set.
- $level\_sep$ – long (optional - default: $1$) number of iterations between each color level.
- $number\_of\_colors$ – long (optional - default: $30$) number of colors used to plot image.
- $interact$ – boolean (optional - default: $False$), controls whether plot will have interactive functionality.
OUTPUT:
24-bit RGB image of the Mandelbrot set in the complex plane.

EXAMPLES:

```
sage: mandelbrot_plot()
500x500px 24-bit RGB image
```

```
sage: mandelbrot_plot(pixel_count=1000)
1000x1000px 24-bit RGB image
```

```
sage: mandelbrot_plot(x_center=-1.11, y_center=0.2283, image_width=1/128, # long
˓→time
 max_iteration=2000, number_of_colors=500, base_color=[40, 100, 100])
500x500px 24-bit RGB image
```

To display an interactive plot of the Mandelbrot in the Notebook, set `interact` to `True`. (This is only implemented for $z^2 + c$):

```
sage: mandelbrot_plot(interact=True)
```

```
interactive(children=(FloatSlider(value=0.0, description=u'Real center', max=1.0,␣
˓→min=-1.0, step=1e-05),
 FloatSlider(value=0.0, description=u'Imag center', max=1.0, min=-1.0, step=1e-05),
 FloatSlider(value=4.0, description=u'Width', max=4.0, min=1e-05, step=1e-05),
 IntSlider(value=500, description=u'Iterations', max=1000),
 IntSlider(value=500, description=u'Pixels', max=1000, min=10),
 IntSlider(value=1, description=u'Color sep', max=20, min=1),
 IntSlider(value=30, description=u'# Colors', min=1),
 ColorPicker(value='ff6347', description=u'Base color'), Output()),
 _dom_classes=(u'widget-interact',))
```

```
sage: mandelbrot_plot(interact=True, x_center=-0.75, y_center=0.25,
˓→image_width=1/2, number_of_colors=75)
interactive(children=(FloatSlider(value=-0.75, description=u'Real center', max=1.0,␣
˓→min=-1.0, step=1e-05),
 FloatSlider(value=0.25, description=u'Imag center', max=1.0, min=-1.0, step=1e-05),
 FloatSlider(value=0.5, description=u'Width', max=4.0, min=1e-05, step=1e-05),
 IntSlider(value=500, description=u'Iterations', max=1000),
 IntSlider(value=500, description=u'Pixels', max=1000, min=10),
 IntSlider(value=1, description=u'Color sep', max=20, min=1),
 IntSlider(value=75, description=u'# Colors', min=1),
 ColorPicker(value='ff6347', description=u'Base color'), Output()),
 _dom_classes=(u'widget-interact',))
```

Polynomial maps can be defined over a multivariate polynomial ring or a univariate polynomial ring tower:

```
sage: R.<z,c> = CC[]
sage: f = z^2 + c
sage: mandelbrot_plot(f)
```

```
sage: B.<c> = CC[]
sage: R.<z> = B[]
```

(continues on next page)
When the polynomial is defined over a multivariate polynomial ring it is necessary to specify the parameter variable (default parameter is $c$):

```
\begin{verbatim}
sage: R.<a,b> = CC[]
sage: f = a^2 + b^3
sage: mandelbrot_plot(f, parameter=b)
\end{verbatim}
```

Interact functionality is not implemented for general polynomial maps:

```
\begin{verbatim}
sage: R.<z,c> = CC[]
sage: f = z^3 + c
sage: mandelbrot_plot(f, interact=True)
Traceback (most recent call last):
...
NotImplementedError: Interact only implemented for $z^2 + c$
\end{verbatim}
```
A discrete dynamical system (henceforth DDS) is a pair \((X, \phi)\) of a set \(X\) and a map \(\phi : X \rightarrow X\). (This is one of several things known as a “discrete dynamical system” in mathematics.)

This file implements the following classes for discrete dynamical systems:

- **DiscreteDynamicalSystem**: general discrete dynamical system, as above. Inherit from this class if the ground set of your DDS is infinite or large enough that you want to avoid it getting stored as a list. See the doc of this class for further details.

- **FiniteDynamicalSystem**: finite discrete dynamical system. This can be instantiated by calling `DiscreteDynamicalSystem` with the parameter `is_finite` set to `True`.

- **InvertibleDiscreteDynamicalSystem**: invertible discrete dynamical system. This implements an `inverse_evolution` method for \(\phi^{-1}\) (the default implementation simply applies \(\phi\) over and over until the original value is revisited; the last value before that is then taken to be the result). This can be instantiated by calling `DiscreteDynamicalSystem` with the parameter `inverse` provided.

- **InvertibleFiniteDynamicalSystem**: invertible finite discrete dynamical system. This can be instantiated by calling `DiscreteDynamicalSystem` with the parameter `is_finite` set to `True` and the parameter `inverse` provided.

Todo:

- Implement some more functionality for homomesy and invariance testing: Checking invariance on a sublist; computing the first \(k\) entries of an orbit (useful when orbits can be too large); orbits_iterator (for when there are too many orbits to list); etc.

- Further examples for non-auto functionality: e.g., infection on a chessboard; Conway’s game of life.

- Subclasses for DDSes whose ground set is an enumerated set. Should we have those?

- Implement caching for orbits (can be useful: some DDSes have a complicated evolution that shouldn’t be recomputed every time). Does this require a whole new class?

- Further functionality for non-invertible DDSes: is_recurrent, recurrent_entries, idempotent_power, etc.

- Wrap (some of) the `cyclic_sieving_phenomenon.py` methods (`sage.combinat.cyclic_sieving_phenomenon`).

- Interact with sage.dynamics. This requires someone who knows the latter part of the Sage library well.

```python
class sage.dynamics.finite_dynamical_system.DiscreteDynamicalSystem(X, phi, cache_orbits=False, create_tuple=False)
```

Bases: `sage.structure.sage_object.SageObject`
A discrete dynamical system.

A discrete dynamical system (henceforth DDS) is a pair \((X, \phi)\) of a set \(X\) and a map \(\phi : X \rightarrow X\). This set \(X\) is called the ground set of the DDS, while the map \(\phi\) is called the evolution of the DDS.

A discrete dynamical system (short: DDS) is a pair \((X, \phi)\) of a set \(X\) and a map \(\phi : X \rightarrow X\). (This is one of several things known as a “discrete dynamical system” in mathematics.) Thus, a DDS is the same as an endomorphism of a set. The DDS is said to be finite if \(X\) is finite. The DDS is said to be invertible if the map \(\phi\) is invertible. The set \(X\) is called the ground set of the DDS; the map \(\phi\) is called the evolution of the DDS; the inverse map \(\phi^{-1}\) (when it exists) is called the inverse evolution of the DDS.

Given a DDS \((X, \phi)\), we can study

- its orbits (i.e., the lists \((s, \phi(s), \phi^2(s), \phi^3(s), \ldots)\) for \(s \in X\)),
- its invariants (i.e., maps \(f : X \rightarrow Y\) satisfying \(f \circ \phi = f\)),
- its cycles (i.e., lists \((u_1, u_2, \ldots, u_k)\) of elements of \(X\) such that \(\phi(u_i) = u_{i+1}\) for each \(i \leq k\), where we set \(u_{k+1} = u_1\)),
- its homomesies (i.e., maps \(h : X \rightarrow A\) to a \(Q\)-vector space \(A\) such that the average of the values of \(h\) on each cycle is the same),

and various other features. (Some of these require \(X\) to be finite or at least to have finite orbits.)

INPUT:

- \(X\) – set, list, tuple, or another iterable, or \texttt{None} (default: \texttt{None}); the ground set for the DDS. This can be \texttt{None} (in which case Sage will not know the ground set, but can still apply evolution to any elements that are provided to it). Make sure to set the \texttt{create_tuple} argument to \texttt{True} if the \(X\) you provide is an iterator or a list, as otherwise your \(X\) would be exposed (and thus subject to mutation or exhaustion).
- \(\phi\) – function, or callable that acts like a function; the evolution of the DDS.
- \texttt{cache_orbits} – boolean (default: \texttt{False}); whether or not the orbits should be cached once they are computed. This currently does nothing, as we are not caching orbits yet.
- \texttt{create_tuple} – boolean (default: \texttt{False}); whether or not the input \(X\) should be translated into a tuple. Set this to \texttt{True} to prevent mutation if \(X\) is a list, and to prevent exhaustion if \(X\) is an iterator.
- \texttt{inverse} – function, or callable that acts like a function, or boolean or \texttt{None} (default: \texttt{None}); the inverse evolution of the DDS, if the DDS is invertible. Set this to \texttt{None} or \texttt{False} if the DDS is not invertible (or you don’t want Sage to treat it as such). Alternatively, by setting this argument to \texttt{True}, you can signal that the DDS is invertible without providing the inverse evolution. (In this case, Sage will compute the inverse, assuming the orbits to be finite.)
- \texttt{is_finite} – boolean or \texttt{None} (default: \texttt{None}); whether the DDS is finite. The default option \texttt{None} leaves this to Sage to decide. Only set this to \texttt{True} if you provide the ground set \(X\).

EXAMPLES:

The following discrete dynamical system is neither finite nor invertible:

```
sage: D = DiscreteDynamicalSystem(NN, lambda x: x + 2)
sage: D.ground_set()
non negative integer semiring
sage: D.evolution()(5)
7
sage: D.evolution_power(7)(5)
19
sage: D.evolution_power(0)(5)
5
```
The necessity of `create_tuple=True`:

```python
sage: X = [0, 1, 2, 3, 4]
sage: D_wrong = DiscreteDynamicalSystem(X, lambda x: (x**3) % 5)
sage: D_right = DiscreteDynamicalSystem(X, lambda x: (x**3) % 5, create_tuple=True)
sage: X[4] = 666 # evil
sage: D_wrong.ground_set()
[0, 1, 2, 3, 666]
sage: D_right.ground_set()
(0, 1, 2, 3, 4)
```

Here is an invertible (but infinite) discrete dynamical system whose orbits are finite:

```python
sage: D = DiscreteDynamicalSystem(NN, lambda x: (x + 2 if x % 6 < 4 else x - 4), create_tuple=True)
sage: D.ground_set()
Non negative integer semiring
sage: D.evolution()(5)
1
sage: D.evolution()(1)
3
sage: D.evolution()(3)
5
sage: D.evolution_power(2)(5)
3
sage: D.evolution_power(3)(5)
5
sage: D.evolution_power(-2)(5)
1
sage: D.inverse_evolution()(4)
2
sage: D.orbit(3)
[3, 5, 1]
```

Setting the `inverse` parameter to `None` or `False` would give the same system without the functionality that relies on invertibility:

```python
sage: D = DiscreteDynamicalSystem(NN, lambda x: (x + 2 if x % 6 < 4 else x - 4), inverse=False)
sage: D.ground_set()
Non negative integer semiring
sage: D.evolution()(5)
1
sage: D.inverse_evolution()(4)
Traceback (most recent call last):
 ... AttributeError: 'DiscreteDynamicalSystem' object has no attribute 'inverse_evolution'
```

(continues on next page)
Non negative integer semiring

```python
sage: D.evolution()(5)
1
sage: D.inverse_evolution()(4)
Traceback (most recent call last):
 ... AttributeError: 'DiscreteDynamicalSystem' object has no attribute 'inverse_evolution'
```

```python
sage: D.orbit(3)
[3, 5, 1]
```

Next, let us try out a finite non-invertible DDS:

```python
sage: D = DiscreteDynamicalSystem(tuple(range(13)), lambda x: (x**2) % 13)
sage: D.ground_set()
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
sage: D.evolution()(4)
3
sage: D.orbit(4)
[4, 3, 9]
sage: D.orbit(1)
[1]
sage: D.orbit(3)
[3, 9]
```

Note that the finiteness is automatically being inferred here, since the (finite) tuple `tuple(range(13))` has been provided as the ground set.

Finally, here is a finite invertible DDS:

```python
sage: X = cartesian_product([[0, 1]]*8)
sage: Y = [s for s in X if sum(s) == 4]
sage: rot = lambda s: s[1:] + (s[0],)
sage: D = DiscreteDynamicalSystem(Y, rot, inverse=True)
sage: D.evolution()((0, 1, 1, 0, 1, 0, 0, 1))
(1, 1, 0, 1, 0, 0, 1, 0)
sage: D.inverse_evolution()((0, 1, 1, 0, 1, 0, 0, 1))
(1, 0, 1, 1, 0, 1, 0, 0)
sage: sorted(D.orbit_lengths())
[2, 4, 8, 8, 8, 8, 8, 8, 8, 8]
```

We could have just as well provided its inverse explicitly:

```python
sage: rot7 = lambda s: (s[-1],) + s[:-1]
sage: D = DiscreteDynamicalSystem(Y, rot, inverse=rot7)
sage: D.evolution()((0, 1, 1, 0, 1, 0, 0, 1))
(1, 1, 0, 1, 0, 0, 1, 0)
sage: D.inverse_evolution()((0, 1, 1, 0, 1, 0, 0, 1))
(1, 0, 1, 1, 0, 1, 0, 0)
```

**evolution()**

Return the evolution of self.

**EXAMPLES:**
sage: D = DiscreteDynamicalSystem([1, 3, 4], lambda x: (3 if x == 4 else 1),
   ...create_tuple=True)
sage: ev = D.evolution()
sage: ev(1)
1
sage: ev(4)
3

**evolution_power**(\(n\))

Return the \(n\)-th power (with respect to composition) of the evolution of \(self\).

This requires \(n\) to be a nonnegative integer.

**EXAMPLES:**

```python
sage: D = DiscreteDynamicalSystem(range(10), lambda x: (x + 3) % 10, create_
 ...tuple=True)
sage: ev3 = D.evolution_power(3)
sage: ev3(1)
0
sage: ev3(2)
1
sage: ev0 = D.evolution_power(0)
sage: ev0(1)
1
sage: ev0(2)
2
sage: D.evolution_power(-1)
Traceback (most recent call last):
 ... ValueError: the n-th power of evolution is only defined for nonnegative
 ... integers n
```

**ground_set()**

Return the ground set of \(self\).

This will return `None` if no ground set was provided in the construction of \(self\).

**Warning:** Unless \(self\) has been constructed with the `create_tuple` parameter set to `True`, this method will return whatever ground set was provided to the constructor. In particular, if a list was provided, then this precise list will be returned; mutating this list will then corrupt \(self\).

**EXAMPLES:**

```python
sage: D = DiscreteDynamicalSystem([1, 3, 4], lambda x: (3 if x == 4 else 1),
 ...create_tuple=True)
sage: D.ground_set()
(1, 3, 4)
```

**is_homomesic**(\(h\), `average=None`, `find_average=False`, `elements=None`)

Check if \(h\) (a map from the ground set of \(self\) to a \(\mathbb{Q}\)-vector space) is homomesic with respect to \(self\).

If the optional argument `average` is provided, then this also checks that the averages are equal to `average`. 

43
If the optional argument find\_average is set to True, then this method returns the average of h in case h is homomesic (instead of returning True).

If the optional argument elements (an iterable of elements of the ground set of self) is provided, then this method only checks homomesy for the cycles in the orbits of the elements given in the list elements.

Note that elements must be provided if the ground set of self is infinite (or cannot be iterated through for any other reason), since there is no way to check all the cycles in this case.

This method will fail to terminate if any element of elements has an infinite orbit.

Let us recall the definition of homomesy: Let \((X, \phi)\) be a DDS. A cycle of \((X, \phi)\) is a finite list \(u = (u_1, u_2, \ldots, u_k)\) of elements of \(X\) such that \(\phi(u_i) = u_{i+1}\) for each \(i \leq k\), where we set \(u_{k+1} = u_1\). Note that any element of \(X\) whose orbit is finite has a cycle in its orbit. Now, let \(h\) be a map from \(X\) to a \(Q\)-vector space \(A\). If \(u = (u_1, u_2, \ldots, u_k)\) is any cycle of \((X, \phi)\), then the average of \(h\) on this cycle is defined to be the element \(\frac{h(u_1) + h(u_2) + \cdots + h(u_k)}{k}\) of \(A\). We say that \(h\) is homomesic (with respect to the DDS \((X, \phi)\)) if and only if the averages of \(h\) on all cycles of \((X, \phi)\) are equal.

**EXAMPLES:**

```python
sage: W = Words(2, 5)
sage: F = DiscreteDynamicalSystem(W, lambda x: x[1:] + Word([x[0]]), is_finite=True, inverse=True)
sage: F.is_homomesic(lambda w: sum(w))
False
sage: F.is_homomesic(lambda w: 1, average=1)
True
sage: F.is_homomesic(lambda w: 1, average=0)
False
sage: F.is_homomesic(lambda w: 1)
True
sage: F.is_homomesic(lambda w: w[0] - w[1], average=0)
True
sage: F.is_homomesic(lambda w: w[0] - w[1], find_average=True)
0
```

Now, let us check homomesy restricted to specific cycles:

```python
sage: F = finite_dynamical_systems.bitstring_rotation(7)
sage: descents = lambda x: sum(1 for i in range(6) if x[i] > x[i+1])
sage: F.is_homomesic(descents)
False
sage: F.is_homomesic(descents, elements=[(1, 0, 1, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0, 0)])
True
sage: F.is_homomesic(descents, elements=[])
False
sage: F.is_homomesic(descents, elements=[(1, 0, 1, 0, 0, 0, 0)])
True
```

And here is a non-invertible finite dynamical system:
sage: F = finite_dynamical_systems.one_line([9, 1, 1, 6, 5, 4, 5, 5, 1])
sage: F.is_homomesic(lambda i: i)
True
sage: F.is_homomesic(lambda i: i % 2)
False
sage: F.is_homomesic(lambda i: i % 2, elements=[2, 9, 7])
True
sage: F.is_homomesic(lambda i: i % 2, elements=[2, 9, 4])
False
sage: F.is_homomesic(lambda i: i % 2, elements=[2, 9, 5, 7, 8, 2])
True

orbit(x, preperiod=False)

Return the orbit of the element $x$ of the ground set of self under the evolution $\phi$ of self.

This orbit is a list beginning with $x$ and ending with the last element that is not a repetition of a previous element. If the orbit is infinite, then this method does not terminate!

If the optional argument preperiod is set to True, then this method returns a pair $(o, k)$, where $o$ is the orbit of self, while $k$ is the smallest nonnegative integer such that $\phi^k(x) \in \{\phi^i(x) | i > k\}$.

The orbit of the element $x$ is also called the “rho” of $x$, due to its shape when it is depicted as a directed graph.

EXAMPLES:

sage: D = DiscreteDynamicalSystem(tuple(range(11)), lambda x: (x ** 2) % 11)
sage: D.orbit(6)
[6, 3, 9, 4, 5]
sage: D.orbit(6, preperiod=True)
([6, 3, 9, 4, 5], 1)
sage: D.orbit(3)
[3, 9, 4, 5]
sage: D.orbit(3, preperiod=True)
([3, 9, 4, 5], 0)
sage: D.orbit(9)
[9, 4, 5, 3]
sage: D.orbit(0)
[0]
sage: D.evolution()(4)
sage: D.orbit(4)
[4, 5, 3, 9]
sage: D.orbit(1)
[1]
sage: D.orbit(2)
[2, 4, 5, 3, 9]

sage: X = cartesian_product([[0, 1]]*8)
sage: Y = [s for s in X if sum(s) == 4]
sage: rot = lambda s: s[1:] + (0,)
sage: D = FiniteDynamicalSystem(Y, rot)
sage: D.evolution()((1, 1, 1, 0, 1, 0, 0, 1))
(1, 1, 0, 1, 0, 0, 1, 0)

cycles()

Return a list of all cycles of self, up to cyclic rotation.

We recall the definition of cycles: Let \((X, \phi)\) be a DDS. A cycle of \((X, \phi)\) is a finite list \(u = (u_1, u_2, \ldots, u_k)\) of elements of \(X\) such that \(\phi(u_i) = u_{i+1}\) for each \(i \leq k\), where we set \(u_{k+1} = u_1\). Note that any element of \(X\) whose orbit is finite has a cycle in its orbit.

EXAMPLES:

```
sage: BS = finite_dynamical_systems.bulgarian_solitaire
sage: BS(8).cycles()
[[[4, 3, 1], [3, 3, 2], [3, 2, 2, 1], [4, 2, 1, 1]],
 [[4, 2, 2], [3, 3, 1, 1]]]
sage: BS(6).cycles()
[[[3, 2, 1]]]
sage: D = DiscreteDynamicalSystem(tuple(range(6)), lambda x: (x + 2) % 6)
sage: D.cycles()
[[[5, 1, 3], [4, 0, 2]]]
sage: D = DiscreteDynamicalSystem(tuple(range(6)), lambda x: (x ** 2) % 6)
sage: D.cycles()
[[[1], [4], [3], [0]]]
sage: D = DiscreteDynamicalSystem(tuple(range(11)), lambda x: (x ** 2 - 1) % 11)
sage: D.cycles()
[[[10, 0], [8], [4]]]
sage: F = finite_dynamical_systems.one_line([4, 7, 2, 6, 2, 10, 9, 11, 5, 6, 12, 12, 12, 12, 12, 12, 12])
sage: F.cycles()
[[[6, 10], [12], [9, 5, 2, 7]]]
```

is_invariant(f)

Check if \(f\) is an invariant of self.

Let \((X, \phi)\) be a discrete dynamical system. Let \(Y\) be any set. Let \(f : X \rightarrow Y\) be any map. Then, we say that \(f\) is an invariant of \((X, \phi)\) if and only if \(f \circ \phi = f\).

EXAMPLES:
Invariants and non-invariants of a permutation:

```python
sage: F = finite_dynamical_systems.permutation([3, 4, 5, 6, 1, 2])
sage: F.is_invariant(lambda i: i % 2)
True
sage: F.is_invariant(lambda i: i % 3)
False
sage: F.is_invariant(lambda i: i > 1)
False
sage: F.is_invariant(lambda i: i % 2 == 0)
True
```

A discrete dynamical system (henceforth DDS) is a pair \((X, \phi)\) of a set \(X\) and a map \(\phi : X \rightarrow X\). This set \(X\) is called the ground set of the DDS, while the map \(\phi\) is called the evolution of the DDS. An invertible DDS is a DDS \((X, \phi)\) whose evolution \(\phi\) is invertible. In that case, \(\phi^{-1}\) is called the inverse evolution of the DDS.

See `DiscreteDynamicalSystem` for details.

INPUT:

- \(X\) – set, list, tuple, or another iterable, or \(None\); the ground set for the DDS. This can be \(None\) in case of a `DiscreteDynamicalSystem` or a `InvertibleDiscreteDynamicalSystem`. Make sure to set the `create_tuple` argument to `True` if you provide an iterator or a list for \(X\), as otherwise the input would be exposed.
- \(\phi\) – function, or callable that acts like a function; the evolution of the DDS.
- `inverse` – function, or callable that acts like a function; the inverse evolution of the DDS. (A default implementation is implemented when this argument is not provided; but it assumes the orbits to be finite.)
- `cache_orbits` – boolean (default: `False`); whether or not the orbits should be cached once they are computed.
- `create_tuple` – boolean (default: `False`); whether or not the input \(X\) should be translated into a tuple (set this to `True` to prevent mutation if \(X\) is a list, and to prevent exhaustion if \(X\) is an iterator).

EXAMPLES:
sage: from sage.dynamics.finite_dynamical_system import InvertibleDiscreteDynamicalSystem

sage: D = InvertibleDiscreteDynamicalSystem(NN, lambda x: (x + 2 if x % 4 < 2 else x - 2))

sage: D.ground_set()
Non negative integer semiring

sage: D.evolution()(5)
7
sage: D.evolution()(6)
4
sage: D.evolution()(4)
6
sage: D.inverse_evo

The necessity of create_tuple=True:

sage: X = [0, 1, 2, 3, 4]

sage: D_wrong = InvertibleDiscreteDynamicalSystem(X, lambda x: (x**3) % 5)

sage: D_right = InvertibleDiscreteDynamicalSystem(X, lambda x: (x**3) % 5, create_  tuple=True)

sage: X[4] = 666 # evil

sage: D_wrong.ground_set()
[0, 1, 2, 3, 666]

sage: D_right.ground_set()
(0, 1, 2, 3, 4)

evolution_power(n)

Return the $n$-th power (with respect to composition) of the evolution of self.

This requires $n$ to be an integer.

EXAMPLES:

sage: D = DiscreteDynamicalSystem(range(10), lambda x: (x + 3) % 10, create_  tuple=True, inverse=True)

sage: ev3 = D.evolution_power(3)

sage: ev3(1)
0

sage: ev0 = D.evolution_power(0)

sage: ev0(1)
1

sage: ev0(2)
2

sage: evm1 = D.evolution_power(-1)

sage: evm1(1)
8

sage: evm1(2)
9

sage: evm2 = D.evolution_power(-2)

sage: evm2(1)
5

(continues on next page)
inverse_evolution()
Return the inverse evolution of self (as a map from the ground set of self to itself).

EXAMPLES:

```
sage: D = DiscreteDynamicalSystem(tuple(range(8)), lambda x: (x + 2) % 8, inverse=True)
sage: D.inverse_evolution()(1)
7
sage: D.inverse_evolution()(3)
1
```

inverse_evolution_default(x)
Return the inverse evolution of self, applied to the element x of the ground set of self.

This is the default implementation, assuming that the orbit of x is finite.

EXAMPLES:

```
sage: D = DiscreteDynamicalSystem(tuple(range(8)), lambda x: (x + 2) % 8, inverse=True)
sage: D.inverse_evolution_default(1)
7
sage: D.inverse_evolution_default(3)
1
```

orbit(x, preperiod=False)
Return the orbit of the element x of the ground set of self.

This orbit is a list beginning with x and ending with the last element until x reappears. If x never reappears, then this will not terminate!

If the optional argument preperiod is set to True, then this method returns a pair (o, k), where o is the orbit of self, while k is the smallest nonnegative integer such that φ^k(x) ∈ \{φ^i(x) | i > k\}. Note that k is necessarily 0, since the DDS self is invertible!

EXAMPLES:

```
sage: D = DiscreteDynamicalSystem(tuple(range(8)), lambda x: (x + 2) % 8, inverse=True)
sage: D.ground_set()
(0, 1, 2, 3, 4, 5, 6, 7)
sage: D.orbit(2)
[2, 4, 6, 0]
sage: D.orbit(5)
[5, 7, 1, 3]
```
sage: D.orbit(5, preperiod=True)
([5, 7, 1, 3], 0)
sage: D = DiscreteDynamicalSystem(ZZ, lambda x: (x + 2) % 8, inverse=True)
sage: D.ground_set()
Integer Ring
sage: D.orbit(2)
[2, 4, 6, 0]
sage: D.orbit(5)
[5, 7, 1, 3]
sage: D.orbit(5, preperiod=True)
([5, 7, 1, 3], 0)

 Henceforth, a finite discrete dynamical system (FDDS) is a pair \((X, \phi)\) of a finite set \(X\) and a map \(\phi : X \rightarrow X\). This set \(X\) is called the ground set of the FDDS, while the map \(\phi\) is called the evolution of the FDDS. An FDDS \((X, \phi)\) is called invertible if the map \(\phi\) is invertible; in this case, \(\phi^{-1}\) is called the inverse evolution of the FDDS.

The ground set \(X\) should always be provided as an iterable when defining a FiniteDynamicalSystem.

EXAMPLES:

```python
verify_inverse_evolution(x=None)
```

Verify that the composition of evolution and inverse evolution on \(self\) is the identity (both ways).

The optional argument \(x\), if provided, restricts the testing to the element \(x\) only. Otherwise, all elements of the ground set are tested (if they can be enumerated).

This is mostly used to check the correctness of self-implemented inverse evolution methods.

EXAMPLES:

```python
sage: D = DiscreteDynamicalSystem(tuple(range(8)), lambda x: (x + 2) % 8,
 inverse=True)
sage: D.verify_inverse_evolution()
True
sage: D.verify_inverse_evolution(3)
True
sage: fake_inverse = lambda x: x
sage: D = DiscreteDynamicalSystem(tuple(range(8)), lambda x: (x + 2) % 8,
 inverse=fake_inverse)
sage: D.verify_inverse_evolution()
False
sage: D.verify_inverse_evolution(3)
False
```
sage: from sage.dynamics.finite_dynamical_system import InvertibleFiniteDynamicalSystem

sage: D = InvertibleFiniteDynamicalSystem(tuple(range(5)), lambda x: (x + 2) % 5)

sage: D.ground_set()
(0, 1, 2, 3, 4)

sage: D.evolution()(4)
1

sage: D.orbits()
[[4, 1, 3, 0, 2]]

sage: D.inverse_evolution()(2)
0

sage: D.evolution_power(-1)(1)
4

sage: D.evolution_power(-2)(1)
2

sage: X = cartesian_product([[0, 1]]*8)

sage: Y = [s for s in X if sum(s) == 4]

sage: rot = lambda s : s[1:] + (s[0],)

sage: D = InvertibleFiniteDynamicalSystem(Y, rot)

sage: D.evolution()((0, 1, 1, 0, 1, 0, 0, 1))
(1, 1, 0, 1, 0, 0, 1, 0)

sage: D.inverse_evolution()((0, 1, 1, 0, 1, 0, 0, 1))
(1, 0, 1, 1, 0, 1, 0, 0)

sage: sorted(D.orbit_lengths())
[2, 4, 8, 8, 8, 8, 8, 8, 8, 8]

**cycles()**

Return a list of all cycles of self, up to cyclic rotation.

We recall the definition of cycles: Let \((X, \phi)\) be a DDS. A cycle of \((X, \phi)\) is a finite list \(u = (u_1, u_2, \ldots, u_k)\) of elements of \(X\) such that \(\phi(u_i) = u_{i+1}\) for each \(i \leq k\), where we set \(u_{k+1} = u_1\). Note that any element of \(X\) whose orbit is finite has a cycle in its orbit.

Since self is invertible, the cycles of self are the same as its orbits.

**EXAMPLES:**

```python
sage: D = DiscreteDynamicalSystem(tuple(range(6)), lambda x: (x + 2) % 6, inverse=True)

sage: D.cycles()
[[5, 1, 3], [4, 0, 2]]

sage: D = DiscreteDynamicalSystem(tuple(range(6)), lambda x: (x + 3) % 6, inverse=True)

sage: D.cycles()
[[5, 2], [4, 1], [3, 0]]
```

**orbit_lengths()**

Return a list of the lengths of all orbits of self.

**EXAMPLES:**

```python
```
orbits()

Return a list of all orbits of self, up to cyclic rotation.

EXAMPLES:

```python
sage: D = DiscreteDynamicalSystem(tuple(range(6)), lambda x: (x + 2) % 6,
inverson=True)
sage: D.orbit_lengths()
[3, 3]
sage: D = DiscreteDynamicalSystem(tuple(range(6)), lambda x: (x + 3) % 6,
inverson=True)
sage: D.orbit_lengths()
[2, 2, 2]
```
SANDPILES

Functions and classes for mathematical sandpiles.

Version: 2.4

AUTHOR:

• David Perkinson (June 4, 2015) Upgraded from version 2.3 to 2.4.

MAJOR CHANGES

1. Eliminated dependence on 4ti2, substituting the use of Polyhedron methods. Thus, no optional packages are necessary.
2. Fixed bug in Sandpile.__init__ so that now multigraphs are handled correctly.
3. Created sandpiles to handle examples of Sandpiles in analogy with graphs, simplicial_complexes, and polytopes. In the process, we implemented a much faster way of producing the sandpile grid graph.
4. Added support for open and closed sandpile Markov chains.
5. Added support for Weierstrass points.
6. Implemented the Cori-Le Borgne algorithm for computing ranks of divisors on complete graphs.

NEW METHODS

Sandpile: avalanche_polynomial, genus, group_gens, help, jacobian_representatives, markov_chain, picipart_representatives, smith_form, stable_configs, stationary_density, tutte_polynomial.

SandpileConfig: burst_size, help.

SandpileDivisor: help, is_linearly_equivalent, is_q_reduced, is_weierstrass_pt, polytope, polytope_integer_pts, q_reduced, rank, simulate_threshold, stabilize, weierstrass_div, weierstrass_gap_seq, weierstrass_pts, weierstrass_rank_seq.

MINOR CHANGES

• The sink argument to Sandpile.__init__ now defaults to the first vertex.
• A SandpileConfig or SandpileDivisor may now be multiplied by an integer.
• Sped up __add__ method for SandpileConfig and SandpileDivisor.
• Enhanced string representation of a Sandpile (via _repr_ and the name methods).
• Recurrents for complete graphs and cycle graphs are computed more quickly.
• The stabilization code for SandpileConfig has been made more efficient.
• Added optional probability distribution arguments to add_random methods.
• Marshall Hampton (2010-1-10) modified for inclusion as a module within Sage library.

• David Perkinson (2010-12-14) added show3d(), fixed bug in resolution(), replaced elementary_divisors() with invariant_factors(), added show() for SandpileConfig and SandpileDivisor.

• David Perkinson (2010-9-18): removed is_unoriented, added show(), added verbose arguments to several functions to display SandpileConfigs and divisors as lists of integers

• David Perkinson (2010-12-19): created separate SandpileConfig, SandpileDivisor, and Sandpile classes

• David Perkinson (2009-07-15): switched to using config_to_list instead of .values(), thus fixing a few bugs when not using integer labels for vertices.

• David Perkinson (2009): many undocumented improvements

• David Perkinson (2008-12-27): initial version

EXAMPLES:

For general help, enter Sandpile.help(), SandpileConfig.help(), and SandpileDivisor.help(). Miscellaneous examples appear below.

A weighted directed graph given as a Python dictionary:

```
sage: from sage.sandpiles import *
sage: g = {0: {},
....: 1: {0: 1, 2: 1, 3: 1},
....: 2: {1: 1, 3: 1, 4: 1},
....: 3: {1: 1, 2: 1, 4: 1},
....: 4: {2: 1, 3: 1}}
```

The associated sandpile with 0 chosen as the sink:

```
sage: S = Sandpile(g,0)
```

Or just:

```
sage: S = Sandpile(g)
```

A picture of the graph:

```
sage: S.show() # long time
```

The relevant Laplacian matrices:

```
sage: S.laplacian()
[0 0 0 0 0]
[-1 3 -1 -1 0]
[0 -1 3 -1 -1]
[0 -1 -1 3 -1]
[0 0 -1 -1 2]
sage: S.reduced_laplacian()
[3 -1 -1 0]
[-1 3 -1 -1]
[-1 -1 3 -1]
[0 -1 -1 2]
```

The number of elements of the sandpile group for S:

```
sage: S.group_order()
8

The structure of the sandpile group:
sage: S.invariant_factors()
[1, 1, 1, 8]

The elements of the sandpile group for S:
sage: S.recurrents()
[{1: 2, 2: 2, 3: 2, 4: 1},
 {1: 2, 2: 2, 3: 2, 4: 0},
 {1: 2, 2: 1, 3: 2, 4: 0},
 {1: 2, 2: 2, 3: 0, 4: 1},
 {1: 2, 2: 0, 3: 2, 4: 1},
 {1: 2, 2: 2, 3: 1, 4: 0},
 {1: 2, 2: 1, 3: 2, 4: 1},
 {1: 2, 2: 2, 3: 1, 4: 1}]

The maximal stable element (2 grains of sand on vertices 1, 2, and 3, and 1 grain of sand on vertex 4:
sage: S.max_stable()
{1: 2, 2: 2, 3: 2, 4: 1}
sage: S.max_stable().values()
[2, 2, 2, 1]

The identity of the sandpile group for S:
sage: S.identity()
{1: 2, 2: 2, 3: 2, 4: 0}

An arbitrary sandpile configuration:
sage: c = SandpileConfig(S,[1,0,4,-3])
sage: c.equivalent_recurrent()
{1: 2, 2: 2, 3: 2, 4: 0}

Some group operations:
sage: m = S.max_stable()
sage: i = S.identity()
sage: m.values()
[2, 2, 2, 1]
sage: i.values()
[2, 2, 2, 0]
sage: m + i # coordinate-wise sum
{1: 4, 2: 4, 3: 4, 4: 1}
sage: m - i
{1: 0, 2: 0, 3: 0, 4: 1}
sage: m & i # add, then stabilize
{1: 2, 2: 2, 3: 2, 4: 1}
sage: e = m + m
sage: e

(continues on next page)
{1: 4, 2: 4, 3: 4, 4: 2}
sage: ~e # stabilize
{1: 2, 2: 2, 3: 2, 4: 0}
sage: a = -m
sage: a & m
{1: 0, 2: 0, 3: 0, 4: 0}
sage: a * m # add, then find the equivalent recurrent
{1: 2, 2: 2, 3: 2, 4: 0}
sage: a^3 # a*a*a
{1: 2, 2: 2, 3: 2, 4: 1}
sage: a^(-1) == m
True
sage: a < m # every coordinate of a is < that of m
True

Firing an unstable vertex returns resulting configuration:

```
sage: c = S.max_stable() + S.identity()
sage: c.fire_vertex(1)
{1: 1, 2: 5, 3: 5, 4: 1}
sage: c
{1: 4, 2: 4, 3: 4, 4: 1}
```

Fire all unstable vertices:

```
sage: c.unstable()
[1, 2, 3]
sage: c.fire_unstable()
{1: 3, 2: 3, 3: 3, 4: 3}
```

Stabilize c, returning the resulting configuration and the firing vector:

```
sage: c.stabilize(True)
[{1: 2, 2: 2, 3: 2, 4: 1}, {1: 6, 2: 8, 3: 8, 4: 8}]
sage: c
{1: 4, 2: 4, 3: 4, 4: 1}
sage: S.max_stable() & S.identity() == c.stabilize()
True
```

The number of superstable configurations of each degree:

```
sage: S.h_vector()
[1, 3, 4]
sage: S.postulation()
2
```

the saturated homogeneous toppling ideal:

```
sage: S.ideal()
Ideal (x1 - x0, x3*x2 - x0^2, x4^2 - x0^2, x2^3 - x4*x3*x0, x4*x2^2 - x3^2*x0, x3^3 - x4*x2*x0, x4*x3^2 - x2^2*x0) of Multivariate Polynomial Ring in x4, x3, x2, x1, x0 over Rational Field
```

its minimal free resolution:
Sage 9.4 Reference Manual: Discrete dynamics, Release 9.4

```
sage: S.resolution()
'R^1 <-- R^7 <-- R^15 <-- R^13 <-- R^4'

and its Betti numbers:
```
sage: S.betti()
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2:</td>
<td>-</td>
<td>4</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>total:</td>
<td>1</td>
<td>7</td>
<td>15</td>
<td>13</td>
</tr>
</tbody>
</table>
```

Some various ways of creating Sandpiles:
```
sage: S = sandpiles.Complete(4) # for more options enter ``sandpile.TAB``
sage: S = sandpiles.Wheel(6)
```

A multidigraph with loops (vertices 0, 1, 2; for example, there is a directed edge from vertex 2 to vertex 1 of weight 3, which can be thought of as three directed edges of the form (2,3). There is also a single loop at vertex 2 and an edge (2,0) of weight 2):
```
sage: S = Sandpile({0:[1,2], 1:[0,0,2], 2:[0,0,1,1,1,2], 3:[2]})
```

Using the graph library (vertex 1 is specified as the sink; omitting this would make the sink vertex 0 by default):
```
sage: S = Sandpile(graphs.PetersenGraph(),1)
```

Distribution of avalanche sizes:
```
sage: S = sandpiles.Grid(10,10)
sage: m = S.max_stable()
sage: a = []
sage: for i in range(1000):
 m = m.add_random()
 m, f = m.stabilize(True)
 a.append(sum(f.values()))

sage: p = list_plot([[log(i+1),log(a.count(i))] for i in [0..max(a)] if a.count(i)])
sage: p.axes_labels(['log(N)', 'log(D(N))']) # long time
```

Working with sandpile divisors:
```
sage: S = sandpiles.Complete(4)
sage: D = SandpileDivisor(S, [0,0,0,5])
sage: E = D.stabilize(); E
{0: 1, 1: 1, 2: 1, 3: 2}
sage: D.is_linearly_equivalent(E)
True
sage: D.q_reduced()
{0: 4, 1: 0, 2: 0, 3: 1}
sage: S = sandpiles.Complete(4)
```

(continues on next page)
sage: D = SandpileDivisor(S, [0, 0, 0, 5])
sage: E = D.stabilize(); E
{0: 1, 1: 1, 2: 1, 3: 2}
sage: D.is_linearly_equivalent(E)
True
sage: D.q_reduced()
{0: 4, 1: 0, 2: 0, 3: 1}
sage: D.rank()
2
sage: sorted(D.effective_div(), key=str)
[{0: 0, 1: 0, 2: 0, 3: 5},
 {0: 0, 1: 0, 2: 4, 3: 1},
 {0: 0, 1: 4, 2: 0, 3: 1},
 {0: 1, 1: 1, 2: 1, 3: 2},
 {0: 4, 1: 0, 2: 0, 3: 1}]
sage: sorted(D.effective_div(False))
[[0, 0, 0, 5], [0, 0, 4, 1], [0, 4, 0, 1], [1, 1, 1, 2], [4, 0, 0, 1]]
sage: D.rank()
2
sage: D.rank(True)
(2, {0: 2, 1: 1, 2: 0, 3: 0})
sage: E = D.rank(True)[1]
# E proves the rank is not 3
sage: E.values()
[2, 1, 0, 0]
sage: E.deg()
3
sage: rank(D - E)
-1
sage: (D - E).effective_div()
[]
sage: D.weierstrass_pts()
(0, 1, 2, 3)
sage: D.weierstrass_rank_seq(0)
(2, 1, 0, 0, -1)
sage: D.weierstrass_rank_seq(0)
(2, 1, 0, 0, -1)

class sage.sandpiles.sandpile.Sandpile(g, sink=None)
Bases: sage.graphs.digraph.DiGraph

Class for Dhar's abelian sandpile model.

class sage.sandpiles.sandpile.Sandpile(g, sink=None)

 all_k_config(k)
The constant configuration with all values set to k.

 INPUT:

 k – integer

 OUTPUT:

 SandpileConfig

 EXAMPLES:
```
sage: s = sandpiles.Diamond()
sage: s.all_k_config(7)
{1: 7, 2: 7, 3: 7}
```

**all_k_div**\(k\)

The divisor with all values set to \(k\).

**INPUT:**

\(k\) – integer

**OUTPUT:**

SandpileDivisor

**EXAMPLES:**

```
sage: S = sandpiles.House()
sage: S.all_k_div(7)
{0: 7, 1: 7, 2: 7, 3: 7, 4: 7}
```

**avalanche_polynomial**\((multivariable=True)\)

The avalanche polynomial. See NOTE for details.

**INPUT:**

\(multivariable\) – (default: True) boolean

**OUTPUT:**

polynomial

**EXAMPLES:**

```
sage: s = sandpiles.Complete(4)
sage: s.avalanche_polynomial()
9*x0*x1*x2 + 2*x0*x1 + 2*x0*x2 + 2*x1*x2 + 3*x0 + 3*x1 + 3*x2 + 24
sage: s.avalanche_polynomial(False)
9*x0^3 + 6*x0^2 + 9*x0 + 24
```

**Note:** For each nonsink vertex \(v\), let \(x_v\) be an indeterminate. If \((r, v)\) is a pair consisting of a recurrent \(r\) and nonsink vertex \(v\), then for each nonsink vertex \(w\), let \(n_w\) be the number of times vertex \(w\) fires in the stabilization of \(r + v\). Let \(M(r, v)\) be the monomial \(\prod_{w} x_{w}^{n_{w}}\), i.e., the exponent records the vector of \(n_{w}\) as \(w\) ranges over the nonsink vertices. The avalanche polynomial is then the sum of \(M(r, v)\) as \(r\) ranges over the recurrences and \(v\) ranges over the nonsink vertices. If \(multivariable\) is False, then set all the indeterminates equal to each other (and, thus, only count the number of vertex firings in the stabilizations, forgetting which particular vertices fired).

**betti**\((verbose=True)\)

The Betti table for the homogeneous toppling ideal. If \(verbose\) is True, it prints the standard Betti table, otherwise, it returns a less formatted table.

**INPUT:**

\(verbose\) – (default: True) boolean

**OUTPUT:**

Betti numbers for the sandpile
EXAMPLES:

```
sage: S = sandpiles.Diamond()
sage: S.betti()
 0 1 2 3

 0: 1 - - -
 1: - 2 - -
 2: - 4 9 4

total: 1 6 9 4
sage: S.betti(False)
[1, 6, 9, 4]
```

**betti_complexes()**

The support-complexes with non-trivial homology. (See NOTE.)

OUTPUT:

list (of pairs [divisors, corresponding simplicial complex])

EXAMPLES:

```
sage: S = Sandpile({0:{},1:{0: 1, 2: 1, 3: 4},2:{3: 5},3:{1: 1, 2: 1}},0)
sage: p = S.betti_complexes()
sage: p[0]
[[0: -8, 1: 5, 2: 4, 3: 1], Simplicial complex with vertex set (1, 2, 3) and
 facets {(3,), (1, 2)}]
sage: S.resolution()
'R^1 <-- R^5 <-- R^5 <-- R^1'
sage: S.betti()
 0 1 2 3

 0: 1 - - -
 1: - 5 5 -
 2: - - - 1

total: 1 5 5 1
sage: len(p)
11
sage: p[0][1].homology()
{0: Z, 1: 0}
sage: p[-1][1].homology()
{0: 0, 1: 0, 2: Z}
```

**Note**: A support-complex is the simplicial complex formed from the supports of the divisors in a linear system.

**burning_config()**

The minimal burning configuration.

OUTPUT:

dict (configuration)

EXAMPLES:
sage: g = {0:{},1:{0:1,3:1,4:1},2:{0:1,3:1,5:1},
....:     3:{2:1,5:1},4:{1:1,3:1},5:{2:1,3:1}}

sage: S = Sandpile(g,0)
sage: S.burning_config()
{1: 2, 2: 0, 3: 1, 4: 1, 5: 0}
sage: S.burning_config().values()
[2, 0, 1, 1, 0]
sage: S.burning_script()
{1: 1, 2: 3, 3: 5, 4: 1, 5: 4}
sage: script = S.burning_script().values()
sage: script
[1, 3, 5, 1, 4]
sage: matrix(script)*S.reduced_laplacian()
[2 0 1 1 0]

Note: The burning configuration and script are computed using a modified version of Speer's script algorithm. This is a generalization to directed multigraphs of Dhar's burning algorithm.

A burning configuration is a nonnegative integer-linear combination of the rows of the reduced Laplacian matrix having nonnegative entries and such that every vertex has a path from some vertex in its support. The corresponding burning script gives the integer-linear combination needed to obtain the burning configuration. So if $b$ is the burning configuration, $\sigma$ is its script, and $\tilde{L}$ is the reduced Laplacian, then $\sigma \cdot \tilde{L} = b$. The minimal burning configuration is the one with the minimal script (its components are no larger than the components of any other script for a burning configuration).

The following are equivalent for a configuration $c$ with burning configuration $b$ having script $\sigma$:

- $c$ is recurrent;
- $c + b$ stabilizes to $c$;
- the firing vector for the stabilization of $c + b$ is $\sigma$.

burning_script()  
A script for the minimal burning configuration.

OUTPUT:
dict

EXAMPLES:

sage: g = {0:{},1:{0:1,3:1,4:1},2:{0:1,3:1,5:1},
....:     3:{2:1,5:1},4:{1:1,3:1},5:{2:1,3:1}}

sage: S = Sandpile(g,0)
sage: S.burning_config()
{1: 2, 2: 0, 3: 1, 4: 1, 5: 0}
sage: S.burning_config().values()
[2, 0, 1, 1, 0]
sage: S.burning_script()
{1: 1, 2: 3, 3: 5, 4: 1, 5: 4}
sage: script = S.burning_script().values()
sage: script
[1, 3, 5, 1, 4]
sage: matrix(script)*S.reduced_laplacian()
[2 0 1 1 0]
Note: The burning configuration and script are computed using a modified version of Speer’s script algorithm. This is a generalization to directed multigraphs of Dhar’s burning algorithm.

A burning configuration is a nonnegative integer-linear combination of the rows of the reduced Laplacian matrix having nonnegative entries and such that every vertex has a path from some vertex in its support. The corresponding burning script gives the integer-linear combination needed to obtain the burning configuration. So if \( b \) is the burning configuration, \( s \) is its script, and \( L_{\text{red}} \) is the reduced Laplacian, then \( s \cdot L_{\text{red}} = b \). The minimal burning configuration is the one with the minimal script (its components are no larger than the components of any other script for a burning configuration).

The following are equivalent for a configuration \( c \) with burning configuration \( b \) having script \( s \):

- \( c \) is recurrent;
- \( c + b \) stabilizes to \( c \);
- the firing vector for the stabilization of \( c + b \) is \( s \).

**canonical_divisor()**

The canonical divisor. This is the divisor with \( \deg(v) - 2 \) grains of sand on each vertex (not counting loops). Only for undirected graphs.

```python
sage: S = sandpiles.Complete(4)
sage: S.canonical_divisor()
{0: 1, 1: 1, 2: 1, 3: 1}
sage: s = Sandpile({0:[1,1],1:[0,0,1,1,1]},0)
sage: s.canonical_divisor() # loops are disregarded
{0: 0, 1: 0}
```

**Warning:** The underlying graph must be undirected.

**dict()**

A dictionary of dictionaries representing a directed graph.

```python
sage: S = sandpiles.Diamond()
sage: S.dict()
{0: {1: 1, 2: 1},
 1: {0: 1, 2: 1, 3: 1},
 2: {0: 1, 1: 1, 3: 1},
 3: {1: 1, 2: 1}}
sage: S.sink()
0
```

**genus()**

The genus: \((# \text{ non-loop edges}) - (# \text{ vertices}) + 1\). Only defined for undirected graphs.
### Examples

```python
sage: sandpiles.Complete(4).genus()
sage: sandpiles.Cycle(5).genus()
```

```python
groebner()
sage: S = sandpiles.Diamond()
sage: S.groebner()
```

```
[x3*x2^2 - x1^2*x0, x2^3 - x3*x1*x0, x3^2 - x2^2*x0, x1^3 - x3*x2*x0, x3^2 - 3*x0^2, x2*x1 - x0^2]
```

```python
group_gens(\texttt{verbose=True})
sage: s = sandpiles.Cycle(5)
sage: s.group_gens()
```

```
[{1: 0, 2: 1, 3: 1, 4: 1}]
```

```python
group_order()
sage: s = sandpiles.Complete(5)
sage: s.group_order()
```

```
5
```

### Example Output

```
63
```
**Discrete dynamics, Release 9.4**

```python
sage: S = sandpiles.House()
sage: S.group_order()
11
```

**h_vector()**

The number of superstable configurations in each degree. Equivalently, this is the list of first differences of the Hilbert function of the (homogeneous) toppling ideal.

**OUTPUT:**

list of nonnegative integers

**EXAMPLES:**

```python
sage: S = sandpiles.House()
sage: S.group_order()
11
```

```python
sage: S.h_vector()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
```

**static help( verbose=True )**

List of Sandpile-specific methods (not inherited from **Graph**). If **verbose**, include short descriptions.

**INPUT:**

verbose – (default: True) boolean

**OUTPUT:**

printed string

**EXAMPLES:**

```python
sage: Sandpile.help() # long time
For detailed help with any method FOO listed below, enter "Sandpile.FOO?" or enter "S.FOO?" for any Sandpile S.
```

- `all_k_config` -- The constant configuration with all values set to k.
- `all_k_div` -- The divisor with all values set to k.
- `avalanche_polynomial` -- The avalanche polynomial.
- `betti` -- The Betti table for the homogeneous toppling ideal.
- `betti_complexes` -- The support-complexes with non-trivial homology.
- `burning_config` -- The minimal burning configuration.
- `burning_script` -- A script for the minimal burning configuration.
- `canonical_divisor` -- The canonical divisor.
- `dict` -- A dictionary of dictionaries representing a directed graph.
- `genus` -- The genus: (# non-loop edges) - (# vertices) + 1.
- `groebner` -- A Groebner basis for the homogeneous toppling ideal.
- `group_gens` -- A minimal list of generators for the sandpile group.
- `group_order` -- The size of the sandpile group.
- `h_vector` -- The number of superstable configurations in each degree.
- `help` -- List of Sandpile-specific methods (not inherited from "Graph").
- `hilbert_function` -- The Hilbert function of the homogeneous toppling ideal.
### Functions

- **ideal** -- The saturated homogeneous toppling ideal.
- **identity** -- The identity configuration.
- **in_degree** -- The in-degree of a vertex or a list of all in-degrees.
- **invariant_factors** -- The invariant factors of the sandpile group.
- **is_undirected** -- Is the underlying graph undirected?
- **jacobian_representatives** -- Representatives for the elements of the Jacobian group.
- **laplacian** -- The Laplacian matrix of the graph.
- **markov_chain** -- The sandpile Markov chain for configurations or divisors.
- **max_stable** -- The maximal stable configuration.
- **max_stable_div** -- The maximal stable divisor.
- **max_superstables** -- The maximal superstable configurations.
- **min_recurrents** -- The minimal recurrent elements.
- **nonsink_vertices** -- The nonsink vertices.
- **nonspecial_divisors** -- The nonspecial divisors.
- **out_degree** -- The out-degree of a vertex or a list of all out-degrees.
- **picard_representatives** -- Representatives of the divisor classes of degree $d$, in the Picard group.
- **points** -- Generators for the multiplicative group of zeros of the sandpile ideal.
- **postulation** -- The postulation number of the toppling ideal.
- **recurrents** -- The recurrent configurations.
- **reduced_laplacian** -- The reduced Laplacian matrix of the graph.
- **reorder_vertices** -- A copy of the sandpile with vertex names permuted.
- **resolution** -- A minimal free resolution of the homogeneous toppling ideal.
- **ring** -- The ring containing the homogeneous toppling ideal.
- **show** -- Draw the underlying graph.
- **show3d** -- Draw the underlying graph.
- **sink** -- The sink vertex.
- **smith_form** -- The Smith normal form for the Laplacian.
- **solve** -- Approximations of the complex affine zeros of the sandpile ideal.
- **stable_configs** -- Generator for all stable configurations.
- **stationary_density** -- The stationary density of the sandpile.
- **superstables** -- The superstable configurations.
- **symmetric_recurrents** -- The symmetric recurrent configurations.
- **tutte_polynomial** -- The Tutte polynomial of the underlying graph.
- **unsaturated_ideal** -- The unsaturated, homogeneous toppling ideal.
- **version** -- The version number of Sage Sandpiles.
- **zero_config** -- The all-zero configuration.
- **zero_div** -- The all-zero divisor.

### hilbert_function()

The Hilbert function of the homogeneous toppling ideal.

**OUTPUT:**

list of nonnegative integers

**EXAMPLES:**
```
sage: s = sandpiles.Wheel(5)
sage: s.hilbert_function()
[1, 5, 15, 31, 45]
sage: s.h_vector()
[1, 4, 10, 16, 14]
```

**ideal** *(gens=False)*

The saturated homogeneous toppling ideal. If `gens` is `True`, the generators for the ideal are returned instead.

**INPUT:**

- `gens` – (default: `False`) boolean

**OUTPUT:**

- `ideal` or, optionally, the generators of an ideal

**EXAMPLES:**

```
sage: S = sandpiles.Diamond()
sage: S.ideal() # another way to get the generators
Ideal (x2^2*x1 - x0^2, x3^2 - x0^2, x1^3 - x3^2*x0, x3^2*x1^2 - x2^2*x0, x2^3 - x^2*x1*x0, x3*x2^2 - x1^2*x0) of Multivariate Polynomial Ring in x3, x2, x1, x0 over Rational Field
sage: S.ideal(True)
[x2^2*x1 - x0^2, x3^2 - x0^2, x1^3 - x3^2*x0, x3^2*x1^2 - x2^2*x0, x2^3 - x^2*x1*x0, x3*x2^2 - x1^2*x0]
sage: S.ideal().gens() # another way to get the generators
[x2^2*x1 - x0^2, x3^2 - x0^2, x1^3 - x3^2*x0, x3^2*x1^2 - x2^2*x0, x2^3 - x^2*x1*x0, x3*x2^2 - x1^2*x0]
```

**identity** *(verbose=True)*

The identity configuration. If `verbose` is `False`, the configuration are converted to a list of integers.

**INPUT:**

- `verbose` – (default: `True`) boolean

**OUTPUT:**

- SandpileConfig or a list of integers If `verbose` is `False`, the configuration are converted to a list of integers.

**EXAMPLES:**

```
sage: s = sandpiles.Diamond()
sage: s.identity()
{1: 2, 2: 2, 3: 0}
sage: s.identity(False)
[2, 2, 0]
sage: s.identity() & s.max_stable() == s.max_stable()
True
```

**in_degree** *(v=None)*

The in-degree of a vertex or a list of all in-degrees.

**INPUT:**

- `v` – (optional) vertex name

**OUTPUT:**
integer or dict

EXAMPLES:

```
sage: s = sandpiles.House()
sage: s.in_degree()
{0: 2, 1: 2, 2: 3, 3: 3, 4: 2}
sage: s.in_degree(2)
3
```

**invariant_factors()**

The invariant factors of the sandpile group.

OUTPUT:

list of integers

EXAMPLES:

```
sage: s = sandpiles.Grid(2,2)
sage: s.invariant_factors()
[1, 1, 8, 24]
```

**is_undirected()**

Is the underlying graph undirected? True if \((u, v)\) is an edge if and only if \((v, u)\) is an edge, each edge with the same weight.

OUTPUT:

boolean

EXAMPLES:

```
sage: sandpiles.Complete(4).is_undirected()
True
sage: s = Sandpile({0:[1,2], 1:[0,2], 2:[0]}, 0)
sage: s.is_undirected()
False
```

**jacobian_representatives(verbosetrue)**

Representatives for the elements of the Jacobian group. If \(\text{verbose}\) is \(\text{False}\), then lists representing the divisors are returned.

INPUT:

\(\text{verbose} = \text{(default: True)}\) boolean

OUTPUT:

list of SandpileDivisor (or of lists representing divisors)

EXAMPLES:

For an undirected graph, divisors of the form \(s - \deg(s) \cdot \text{sink}\) as \(s\) varies over the superstables forms a distinct set of representatives for the Jacobian group.:

```
sage: s = sandpiles.Complete(3)
sage: s.superstables(False)
[[0, 0], [0, 1], [1, 0]]
sage: s.jacobian_representatives(False)
[[0, 0, 0], [-1, 0, 1], [-1, 1, 0]]
```
If the graph is directed, the representatives described above may by equivalent modulo the rowspan of the Laplacian matrix:

```sage
s = Sandpile({0: {1: 1, 2: 2}, 1: {0: 2, 2: 4}, 2: {0: 4, 1: 2}},0)
sage: s.group_order()
28
sage: s.jacobian_representatives()

[[0: -5, 1: 3, 2: 2], [0: -4, 1: 3, 2: 1]]
```

Let \( \tau \) be the nonnegative generator of the kernel of the transpose of the Laplacian, and let \( \tau_s \) be its sink component, then the sandpile group is isomorphic to the direct sum of the cyclic group of order \( \tau_s \) and the Jacobian group. In the example above, we have:

```sage
s.laplacian().left_kernel()
Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:
[14 5 8]
```

**Note:** The Jacobian group is the set of all divisors of degree zero modulo the integer rowspan of the Laplacian matrix.

---

**laplacian()**

The Laplacian matrix of the graph. Its rows encode the vertex firing rules.

**OUTPUT:**

matrix

**EXAMPLES:**

```sage
G = sandpiles.Diamond()
sage: G.laplacian()

[2 -1 -1 0]
[-1 3 -1 -1]
[-1 -1 3 -1]
[0 -1 -1 2]
```

**Warning:** The function `laplacian_matrix` should be avoided. It returns the indegree version of the Laplacian.

---

**markov_chain(state, distrib=None)**

The sandpile Markov chain for configurations or divisors. The chain starts at `state`. See NOTE for details.

**INPUT:**

- `state` – SandpileConfig, SandpileDivisor, or list representing one of these
- `distrib` – (optional) list of nonnegative numbers summing to 1 (representing a prob. dist.)

**OUTPUT:**

generator for Markov chain (see NOTE)

**EXAMPLES:**
sage: s = sandpiles.Complete(4)
sage: m = s.markov_chain([0,0,0])
sage: next(m)  # random
{1: 0, 2: 0, 3: 0}
sage: next(m).values()  # random
[0, 0, 0]
sage: next(m).values()  # random
[0, 0, 0]
sage: next(m).values()  # random
[0, 0, 0]
sage: next(m).values()  # random
[0, 1, 0]
sage: next(m).values()  # random
[0, 2, 0]
sage: next(m).values()  # random
[0, 2, 1]
sage: next(m).values()  # random
[1, 2, 1]
sage: next(m).values()  # random
[2, 1, 1]
sage: m = s.markov_chain(s.zero_div(), [0.1,0.1,0.1,0.7])
sage: next(m).values()  # random
[0, 0, 0, 1]
sage: next(m).values()  # random
[0, 0, 1, 1]
sage: next(m).values()  # random
[0, 1, 2, 0]
sage: next(m).values()  # random
[1, 1, 2, 1]
sage: next(m).values()  # random
[1, 1, 2, 2]
sage: next(m).values()  # random
[1, 1, 2, 3]
sage: next(m).values()  # random
[1, 1, 2, 4]
sage: next(m).values()  # random
[1, 1, 3, 4]

**Note:** The closed sandpile Markov chain has state space consisting of the configurations on a sandpile. It transitions from a state by choosing a vertex at random (according to the probability distribution `distrib`), dropping a grain of sand at that vertex, and stabilizing. If the chosen vertex is the sink, the chain stays at the current state.

The open sandpile Markov chain has state space consisting of the recurrent elements, i.e., the state space is the sandpile group. It transitions from the configuration $c$ by choosing a vertex $v$ at random according to `distrib`. The next state is the stabilization of $c + v$. If $v$ is the sink vertex, then the stabilization of $c + v$ is defined to be $c$.

Note that in either case, if `distrib` is specified, its length is equal to the total number of vertices (including the sink).
REFERENCES:

• [Lev2014]

max_stable()

The maximal stable configuration.

OUTPUT:

SandpileConfig (the maximal stable configuration)

EXAMPLES:

```
sage: S = sandpiles.House()
sage: S.max_stable()
{1: 1, 2: 2, 3: 2, 4: 1}
```

max_stable_div()

The maximal stable divisor.

OUTPUT:

SandpileDivisor (the maximal stable divisor)

EXAMPLES:

```
sage: s = sandpiles.Diamond()
sage: s.max_stable_div()
{0: 1, 1: 2, 2: 2, 3: 1}
sage: s.out_degree()
{0: 2, 1: 3, 2: 3, 3: 2}
```

max_superstables(verbosetrue)

The maximal superstable configurations. If the underlying graph is undirected, these are the superstables of highest degree. If `verbose` is False, the configurations are converted to lists of integers.

INPUT:

verbosetrue – (default: True) boolean

OUTPUT:

tuple of SandpileConfig

EXAMPLES:

```
sage: s = sandpiles.Diamond()
sage: s.superstables(False)
[[0, 0, 0],
 [0, 0, 1],
 [1, 0, 1],
 [0, 2, 0],
 [2, 0, 0],
 [0, 1, 1],
 [1, 0, 0],
 [0, 1, 0]]
sage: s.max_superstables(False)
[[1, 0, 1], [0, 2, 0], [2, 0, 0], [0, 1, 1]]
sage: s.h_vector()
[1, 3, 4]
```
**min_recurrents**(verbose=True)

The minimal recurrent elements. If the underlying graph is undirected, these are the recurrent elements of least degree. If `verbose` is False, the configurations are converted to lists of integers.

**INPUT:**

verbose – (default: True) boolean

**OUTPUT:**

list of SandpileConfig

**EXAMPLES:**

```
sage: s = sandpiles.Diamond()
sage: s.recurrents(False)
[[2, 2, 1],
 [2, 2, 0],
 [1, 2, 0],
 [2, 0, 1],
 [0, 2, 1],
 [2, 1, 0],
 [1, 2, 1],
 [2, 1, 1]]
sage: s.min_recurrents(False)
[[1, 2, 0], [2, 0, 1], [0, 2, 1], [2, 1, 0]]
sage: [i.deg() for i in s.recurrents()]
[5, 4, 3, 3, 3, 3, 4, 4]
```

**nonsink_vertices()**

The nonsink vertices.

**OUTPUT:**

list of vertices

**EXAMPLES:**

```
sage: s = sandpiles.Grid(2,3)
sage: s.nonsink_vertices()
[(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)]
```

**nonspecial_divisors**(verbose=True)

The nonspecial divisors. Only for undirected graphs. (See NOTE.)

**INPUT:**

verbose – (default: True) boolean

**OUTPUT:**

list (of divisors)

**EXAMPLES:**

```
sage: S = sandpiles.Complete(4)
sage: ns = S.nonspecial_divisors()
sage: D = ns[0]
sage: D.values()
[-1, 0, 1, 2]
```

(continues on next page)
sage: D.deg()
2
sage: [i.effective_div() for i in ns]
[[], [], [], [], [], []]

Note: The “nonspecial divisors” are those divisors of degree \( g - 1 \) with empty linear system. The term is only defined for undirected graphs. Here, \( g = |E| - |V| + 1 \) is the genus of the graph (not counting loops as part of \(|E|\)). If \( \text{verbose} \) is \( \text{False} \), the divisors are converted to lists of integers.

Warning: The underlying graph must be undirected.

\textbf{out\_degree}(v=None)

The out-degree of a vertex or a list of all out-degrees.

**INPUT:**

\( v \) - (optional) vertex name

**OUTPUT:**

integer or dict

**EXAMPLES:**

```python
sage: s = sandpiles.House()
sage: s.out_degree()
{0: 2, 1: 2, 2: 3, 3: 3, 4: 2}
sage: s.out_degree(2)
3
```

\textbf{picard\_representatives}(d, verbose=True)

Representatives of the divisor classes of degree \( d \) in the Picard group. (Also see the documentation for \texttt{jacobian\_representatives}.)

**INPUT:**

- \( d \) – integer
- \( \text{verbose} \) – (default: \( \text{True} \)) boolean

**OUTPUT:**

list of \texttt{SandpileDivisors} (or lists representing divisors)

**EXAMPLES:**

```python
sage: s = sandpiles.Complete(3)
sage: s.superstables(False)
[[0, 0], [0, 1], [1, 0]]
sage: s.jacobian_representatives(False)
[[0, 0, 0], [-1, 0, 1], [-1, 1, 0]]
sage: s.picard_representatives(3,False)
[[3, 0, 0], [2, 0, 1], [2, 1, 0]]
```
points()
Generators for the multiplicative group of zeros of the sandpile ideal.

OUTPUT:
list of complex numbers

EXAMPLES:
The sandpile group in this example is cyclic, and hence there is a single generator for the group of solutions.

```python
sage: S = sandpiles.Complete(4)
sage: S.points()
[[-1, 1, 1], [-1, 1, 1]]
```

postulation()
The postulation number of the toppling ideal. This is the largest weight of a superstable configuration of the graph.

OUTPUT:
nonnegative integer

EXAMPLES:

```python
sage: s = sandpiles.Complete(4)
sage: s.postulation()
3
```

recurrents(verbosetrue=False)
The recurrent configurations. If verbose is False, the configurations are converted to lists of integers.

INPUT:
verbosetrue – (default: True) boolean

OUTPUT:
list of recurrent configurations

EXAMPLES:

```python
sage: r = Sandpile(graphs.HouseXGraph(),0).recurrents()
sage: r[:3]
[[1, 2, 2, 1], [2, 2, 1], [2, 1, 2], [1, 2, 1], [2, 2, 0], [2, 0, 2], [0, 2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [2, 1, 0], [2, 0, 1], [1, 2, 0], [1, 0, 2], ...
```
Sage 9.4 Reference Manual: Discrete dynamics, Release 9.4

reduced_laplacian()

The reduced Laplacian matrix of the graph.

```
sage: sandpiles.Cycle(4).recurrents(False)
[[0, 1, 1, 0], [1, 0, 1, 1], [0, 1, 0, 1], [1, 1, 0, 0]]
```

reduced_laplacian()

```
sage: S = sandpiles.Diamond()
sage: S.laplacian()
[2 -1 -1 0]
[-1 3 -1 -1]
[-1 -1 3 -1]
[0 -1 -1 2]
sage: S.reduced_laplacian()
[3 -1 -1]
[-1 3 -1]
[-1 -1 2]
```

Note: This is the Laplacian matrix with the row and column indexed by the sink vertex removed.

reorder_vertices()

A copy of the sandpile with vertex names permuted.

```
sage: S = Sandpile({0:[1], 2:[0,1], 1:[2]})
sage: S.dict()
{0: {1: 1}, 1: {2: 1}, 2: {0: 1, 1: 1}}
sage: T = S.reorder_vertices()
```

The vertices 1 and 2 have been swapped:

```
sage: T.dict()
{0: {1: 1}, 1: {0: 1, 2: 1}, 2: {0: 1}}
```

resolution(\texttt{verbose}=False)

A minimal free resolution of the homogeneous toppling ideal. If \texttt{verbose} is \texttt{True}, then all of the mappings are returned. Otherwise, the resolution is summarized.

```
sage: S = Sandpile({0:[1], 2:[0,1], 1:[2]})
sage: S.resolution() # verbose=False
```

```
INPUT:

\texttt{verbose} – (default: \texttt{False}) boolean
```

OUTPUT:
EXAMPLES:

```
sage: S = Sandpile({0: {}, 1: {0: 1, 2: 1, 3: 4}, 2: {3: 5}, 3: {1: 1, 2: 1}}, 0)
sage: S.resolution() # a Gorenstein sandpile graph
 R^1 <-- R^5 <-- R^5 <-- R^1
sage: S.resolution(True)
[[x1^2 - x3*x0 x3*x1 - x2*x0 x3^2 - x2*x1 x2*x3 - x0^2 x2^2 - x1*x0],
 [x3 x2 0 x0 0] [x2^2 - x1*x0]
 [-x1 -x3 x2 0 -x0] [-x2^2 + x0^2]
 [x0 x1 0 x2 0] [-x3^2 + x2*x1]
 [0 0 -x1 -x3 x2] [x3*x1 - x2*x0]
 [0 0 x0 x1 -x3], [x1^2 - x3*x0]
]
sage: r = S.resolution(True)
sage: r[0]*r[1]
[0 0 0 0 0]
sage: r[1]*r[2]
[0]
[0]
[0]
[0]
[0]
```

```
r = S.resolution(True)
r[0]*r[1]
[0 0 0 0 0]
r[1]*r[2]
[0]
[0]
[0]
[0]
[0]
```

```
sage: ring()
The ring containing the homogeneous toppling ideal.
```

```
OUTPUT:

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
sage: S = Sandpile({0:[], 1:[0,3,4], 2:[0,3,5], 3:[2,5], 4:[1,1], 5:[2,4]})
sage: S.show()
sage: S.show(graph_border=True, edge_labels=True)

show3d(**kwds)
Draw the underlying graph.

INPUT:

kwds – (optional) arguments passed to the show method for Graph or DiGraph

EXAMPLES:

sage: S = sandpiles.House()
sage: S.show3d()  # long time

sink()
The sink vertex.

OUTPUT:

sink vertex

EXAMPLES:

sage: G = sandpiles.House()
sage: G.sink()
0
sage: H = sandpiles.Grid(2,2)
sage: H.sink()
(0, 0)
sage: type(H.sink())
<... 'tuple'>

smith_form()
The Smith normal form for the Laplacian. In detail: a list of integer matrices $D, U, V$ such that $ULV = D$ where $L$ is the transpose of the Laplacian, $D$ is diagonal, and $U$ and $V$ are invertible over the integers.

OUTPUT:
list of integer matrices

EXAMPLES:

sage: s = sandpiles.Complete(4)
sage: D,U,V = s.smith_form()
sage: D
[[1 0 0 0]
 [0 4 0 0]
 [0 0 4 0]
 [0 0 0 0]]
sage: U*s.laplacian()*V == D  # Laplacian symmetric => transpose not necessary
True

solve()
Approximations of the complex affine zeros of the sandpile ideal.

OUTPUT:
list of complex numbers

EXAMPLES:

```
sage: S = Sandpile({0: {}, 1: {2: 2}, 2: {0: 4, 1: 1}}, 0)
sage: S.solve()

[-0.707107000000000 + 0.707107000000000*I,
 0.707107000000000 - 0.707107000000000*I],
[-0.707107000000000 - 0.707107000000000*I,
 0.707107000000000 + 0.707107000000000*I],
[-I, -I],
[I, I],
[0.707107000000000 + 0.707107000000000*I,
 -0.707107000000000 - 0.707107000000000*I],
[0.707107000000000 - 0.707107000000000*I,
 -0.707107000000000 + 0.707107000000000*I],
[1, 1],
[-1, -1]
sage: len(_)
8
sage: S.group_order()
8

Note: The solutions form a multiplicative group isomorphic to the sandpile group. Generators for this group are given exactly by points().

stable_configs *(smax=*)

Generator for all stable configurations. If `smax` is provided, then the generator gives all stable configurations less than or equal to `smax`. If `smax` does not represent a stable configuration, then each component of `smax` is replaced by the corresponding component of the maximal stable configuration.

INPUT:

`smax` – (optional) SandpileConfig or list representing a SandpileConfig

OUTPUT:

generator for all stable configurations

EXAMPLES:

```
sage: s = sandpiles.Complete(3)
sage: a = s.stable_configs()
sage: next(a)
{1: 0, 2: 0}
sage: [i.values() for i in a]
[[0, 1], [1, 0], [1, 1]]
sage: b = s.stable_configs([1,0])
sage: list(b)
[[1: 0, 2: 0], [1: 1, 2: 0]]
```

stationary_density

The stationary density of the sandpile.

OUTPUT:

rational number
EXAMPLES:

```python
sage: s = sandpiles.Complete(3)
sage: s.stationary_density()
10/9
sage: s = Sandpile(digraphs.DeBruijn(2,2),'00')
sage: s.stationary_density()
9/8
```

Note: The stationary density of a sandpile is the sum $\sum c (\deg(c) + \deg(s))$ where $\deg(s)$ is the degree of the sink and the sum is over all recurrent configurations.

REFERENCES:

- [Lev2014]

superstables\((%\text{verbose}=\text{True}) \)

The superstable configurations. If `verbose` is `False`, the configurations are converted to lists of integers. Superstables for undirected graphs are also known as G-parking functions.

INPUT:

- `verbose` – (default: `True`) boolean

OUTPUT:

list of SandpileConfig

EXAMPLES:

```python
sage: sp = Sandpile(graphs.HouseXGraph(),0).superstables()
sage: sp[:3]
[[1: 0, 2: 0, 3: 0, 4: 0], [1: 1, 2: 0, 3: 0, 4: 1], [1: 1, 2: 0, 3: 0, 4: 0]]
sage: sandpiles.Complete(4).superstables(False)
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 2], [0, 2, 0], [2, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0], [0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
sage: sandpiles.Cycle(4).superstables(False)
[[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]]
```

symmetric_recurrents\((\text{orbits}) \)

The symmetric recurrent configurations.

INPUT:

- `verbose` – (default: `True`) boolean

OUTPUT:

list of SandpileConfig

EXAMPLES:

```python
sage: sp = Sandpile(graphs.HouseXGraph(),0).symmetric_recurrents()
```
orbits - list of lists partitioning the vertices

OUTPUT:
list of recurrent configurations

EXAMPLES:

```
sage: S = Sandpile({0: {},
                ....:  1: {0: 1, 2: 1, 3: 1},
                ....:  2: {1: 1, 3: 1, 4: 1},
                ....:  3: {1: 1, 2: 1, 4: 1},
                ....:  4: {2: 1, 3: 1}})
sage: S.symmetric_recurrents([[1],[2,3],[4]])
[[1: 2, 2: 2, 3: 2, 4: 1], {1: 2, 2: 2, 3: 2, 4: 0}]
```

```
sage: S.recurrents()
[[1: 2, 2: 2, 3: 2, 4: 1],
 {1: 2, 2: 2, 3: 2, 4: 0},
 {1: 2, 2: 1, 3: 2, 4: 0},
 {1: 2, 2: 2, 3: 0, 4: 1},
 {1: 2, 2: 0, 3: 2, 4: 1},
 {1: 2, 2: 2, 3: 1, 4: 0},
 {1: 2, 2: 1, 3: 2, 4: 1},
 {1: 2, 2: 2, 3: 1, 4: 1}]
```

Note: The user is responsible for ensuring that the list of orbits comes from a group of symmetries of the underlying graph.

tutte_polynomial()
The Tutte polynomial of the underlying graph. Only defined for undirected sandpile graphs.

OUTPUT:
polynomial

EXAMPLES:

```
sage: s = sandpiles.Complete(4)
sage: s.tutte_polynomial()
x^3 + y^3 + 3*x^2 + 4*x*y + 3*y^2 + 2*x + 2*y
```

```
sage: s = sandpiles.Complete(4).subs(x=1)
y^3 + 3*y^2 + 6*y + 6
```

```
sage: s = sandpiles.Diamond()
sage: S.unsaturated_ideal().gens()
[x1^3 - x3*x2*x0, x2^3 - x3*x1*x0, x3^2 - x2*x1]
```

(continues on next page)
sage: S.ideal().gens()
[x2*x1 - x0^2, x3^2 - x0^2, x1^3 - x3*x2*x0, x3*x1^2 - x2^2*x0, x2^3 - x3*x1*x0, x3*x2^2 - x1^2*x0]

static version()

The version number of Sage Sandpiles.

OUTPUT:

string

EXAMPLES:

\begin{verbatim}
sage: Sandpile.version()
Sage Sandpiles Version 2.4
sage: S = sandpiles.Complete(3)
sage: S.version()
Sage Sandpiles Version 2.4
\end{verbatim}

zero_config()

The all-zero configuration.

OUTPUT:

SandpileConfig

EXAMPLES:

\begin{verbatim}
sage: s = sandpiles.Diamond()
sage: s.zero_config()
\{1: 0, 2: 0, 3: 0\}
\end{verbatim}

zero_div()

The all-zero divisor.

OUTPUT:

SandpileDivisor

EXAMPLES:

\begin{verbatim}
sage: S = sandpiles.House()
sage: S.zero_div()
\{0: 0, 1: 0, 2: 0, 3: 0, 4: 0\}
\end{verbatim}

class sage.sandpiles.sandpile.SandpileConfig(S,c)

Bases: dict

Class for configurations on a sandpile.

\texttt{add_random}\hspace{1em}(\texttt{distrib=\texttt{None}})

Add one grain of sand to a random vertex. Optionally, a probability distribution, distrib, may be placed on the vertices or the nonsink vertices. See NOTE for details.

INPUT:

distrib – (optional) list of nonnegative numbers summing to 1 (representing a prob. dist.)

OUTPUT:

SandpileConfig
EXAMPLES:

```python
sage: s = sandpiles.Complete(4)
sage: c = s.zero_config()
sage: c.add_random() # random
{1: 0, 2: 1, 3: 0}
sage: c
{1: 0, 2: 0, 3: 0}
sage: c.add_random([0.1,0.1,0.8]) # random
{1: 0, 2: 0, 3: 1}
sage: c.add_random([0.7,0.1,0.1,0.1]) # random
{1: 0, 2: 0, 3: 0}
```

We compute the “sizes” of the avalanches caused by adding random grains of sand to the maximal stable configuration on a grid graph. The function `stabilize()` returns the firing vector of the stabilization, a dictionary whose values say how many times each vertex fires in the stabilization.:

```python
sage: S = sandpiles.Grid(10,10)
sage: m = S.max_stable()
sage: a = []
sage: for i in range(1000):
    m = m.add_random()
    m, f = m.stabilize(True)
    a.append(sum(f.values()))
sage: p = list_plot([[log(i+1),log(a.count(i))]
         for i in [0..max(a)] if a.
         count(i))
sage: p.axes_labels(['log(N)','log(D(N))'])
sage: t = text("Distribution of avalanche sizes", (2,2),
         rgbcolor=(1,0,0))
sage: show(p+t,axes_labels=['log(N)','log(D(N))'])
```

Note: If `distrib` is `None`, then the probability is the uniform probability on the nonsink vertices. Otherwise, there are two possibilities:

(i) the length of `distrib` is equal to the number of vertices, and `distrib` represents a probability distribution on all of the vertices. In that case, the sink may be chosen at random, in which case, the configuration is unchanged.

(ii) Otherwise, the length of `distrib` must be equal to the number of nonsink vertices, and `distrib` represents a probability distribution on the nonsink vertices.

Warning: If `distrib` != `None`, the user is responsible for assuring the sum of its entries is 1 and that its length is equal to the number of sink vertices or the number of nonsink vertices.

burst_size(v)

The burst size of the configuration with respect to the given vertex.

INPUT:

- `v` – vertex

OUTPUT:

- integer

EXAMPLES:
sage: s = sandpiles.Diamond()
sage: [i.burst_size(0) for i in s.recurrents()]
[1, 1, 1, 1, 1, 1, 1, 1]
sage: [i.burst_size(1) for i in s.recurrents()]
[0, 0, 1, 2, 1, 2, 0, 2]

Note: To define $c.burst(v)$, if v is not the sink, let c' be the unique recurrent for which the stabilization of $c' + v$ is c. The burst size is then the amount of sand that goes into the sink during this stabilization. If v is the sink, the burst size is defined to be 1.

REFERENCES:
 • [Lev2014]

deg()
The degree of the configuration.
OUTPUT:
integer
EXAMPLES:

sage: S = sandpiles.Complete(3)
sage: c = SandpileConfig(S, [1,2])
sage: c.deg()
3
dualize()
The difference with the maximal stable configuration.
OUTPUT:
SandpileConfig
EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: S.max_stable()
{1: 1, 2: 1}
sage: c.dualize()
{1: 0, 2: -1}
sage: S.max_stable() - c == c.dualize()
True
equivalent_recurrent(with_firing_vector=False)
The recurrent configuration equivalent to the given configuration. Optionally, return the corresponding firing vector.
INPUT:
with_firing_vector – (default: False) boolean
OUTPUT:
SandpileConfig or [SandpileConfig, firing_vector]
EXAMPLES:
sage: S = sandpiles.Diamond()
sage: c = SandpileConfig(S, [0,0,0])
sage: c.equivalent_recurrent() == S.identity()
True
sage: x = c.equivalent_recurrent(True)
sage: r = vector([x[0][v] for v in S.nonsink_vertices()])
sage: f = vector([x[1][v] for v in S.nonsink_vertices()])
sage: cv = vector(c.values())
sage: r == cv - f*S.reduced_laplacian()
True

Note: Let L be the reduced Laplacian, c the initial configuration, r the returned configuration, and f the firing vector. Then $r = c - f \cdot L$.

equivalent_superstable(with_firing_vector=False)
The equivalent superstable configuration. Optionally, return the corresponding firing vector.

INPUT:
with_firing_vector – (default: False) boolean

OUTPUT:
SandpileConfig or [SandpileConfig, firing_vector]

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: m = S.max_stable()
sage: m.equivalent_superstable().is_superstable()
True
sage: x = m.equivalent_superstable(True)
sage: s = vector(x[0].values())
sage: f = vector(x[1].values())
sage: mv = vector(m.values())
sage: s == mv - f*S.reduced_laplacian()
True

Note: Let L be the reduced Laplacian, c the initial configuration, s the returned configuration, and f the firing vector. Then $s = c - f \cdot L$.

fire_script(sigma)
Fire the given script. In other words, fire each vertex the number of times indicated by $sigma$.

INPUT:
sigma – SandpileConfig or (list or dict representing a SandpileConfig)

OUTPUT:
SandpileConfig

EXAMPLES:
sage: S = sandpiles.Cycle(4)
sage: c = SandpileConfig(S, [1,2,3])
sage: c.unstable()
[2, 3]
sage: c.fire_script(SandpileConfig(S,[0,1,1]))
{1: 2, 2: 1, 3: 2}
sage: c.fire_script(SandpileConfig(S,[2,0,0])) == c.fire_vertex(1).fire_vertex(1)
True

fire_unstable()
Fire all unstable vertices.

OUTPUT:
SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: c = SandpileConfig(S, [1,2,3])
sage: c.fire_unstable()
{1: 2, 2: 1, 3: 2}

fire_vertex(v)
Fire the given vertex.

INPUT:
- v – vertex

OUTPUT:
SandpileConfig

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: c = SandpileConfig(S, [1,2])
sage: c.fire_vertex(2)
{1: 2, 2: 0}

static help(\texttt{verbose=True})
List of SandpileConfig methods. If \texttt{verbose}, include short descriptions.

INPUT:
- verbose – (default: True) boolean

OUTPUT:
printed string

EXAMPLES:

sage: SandpileConfig.help()
Shortcuts for SandpileConfig operations:
~c -- stabilize
c & d -- add and stabilize
c * c -- add and find equivalent recurrent

(continues on next page)
c^k -- add k times and find equivalent recurrent
 (taking inverse if k is negative)

For detailed help with any method FOO listed below,
enter "SandpileConfig.FOO?" or enter "c.FOO?" for any SandpileConfig c.

add_random -- Add one grain of sand to a random vertex.
burst_size -- The burst size of the configuration with respect to...
 the given vertex.
deg -- The degree of the configuration.
dualize -- The difference with the maximal stable configuration.
equivalent_recurrent -- The recurrent configuration equivalent to the given...
 configuration.
equivalent_superstable -- The equivalent superstable configuration.
fire_script -- Fire the given script.
fire_unstable -- Fire all unstable vertices.
fire_vertex -- Fire the given vertex.
help -- List of SandpileConfig methods.
is_recurrent -- Is the configuration recurrent?
is_stable -- Is the configuration stable?
is_superstable -- Is the configuration superstable?
is_symmetric -- Is the configuration symmetric?
order -- The order of the equivalent recurrent element.
sandpile -- The configuration's underlying sandpile.
show -- Show the configuration.
stabilize -- The stabilized configuration.
support -- The vertices containing sand.
unstable -- The unstable vertices.
values -- The values of the configuration as a list.

\textbf{is_recurrent()}

Is the configuration recurrent?

\textbf{OUTPUT:}

boolean

\textbf{EXAMPLES:}

\begin{verbatim}
sage: S = sandpiles.Diamond()
sage: S.identity().is_recurrent()
True
sage: S.zero_config().is_recurrent()
False
\end{verbatim}

\textbf{is_stable()}

Is the configuration stable?

\textbf{OUTPUT:}

boolean

\textbf{EXAMPLES:}
sage: S = sandpiles.Diamond()
sage: S.max_stable().is_stable()
True
sage: (2*S.max_stable()).is_stable()
False
sage: (S.max_stable() & S.max_stable()).is_stable()
True

is_superstable()
Is the configuration superstable?

OUTPUT:
boolean

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: S.zero_config().is_superstable()
True

is_symmetric(orbits)
Is the configuration symmetric? Return True if the values of the configuration are constant over the vertices in each sublist of orbits.

INPUT:

orbits – list of lists of vertices

OUTPUT:
boolean

EXAMPLES:

sage: S = Sandpile({0: {},
....: 1: {0: 1, 2: 1, 3: 1},
....: 2: {1: 1, 3: 1, 4: 1},
....: 3: {1: 1, 2: 1, 4: 1},
....: 4: {2: 1, 3: 1}})
sage: c = SandpileConfig(S, [1, 2, 2, 3])
sage: c.is_symmetric([[2,3]])
True

order()
The order of the equivalent recurrent element.

OUTPUT:
integer

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: c = SandpileConfig(S,[2,0,1])
sage: c.order()
4
sage: ~(c + c + c + c) == S.identity()
True

(continues on next page)
sage: c = SandpileConfig(S,[1,1,0])
sage: c.order()
1
sage: c.is_recurrent()
False
sage: c.equivalent_recurrent() == S.identity()
True

sandpile()
The configuration’s underlying sandpile.

OUTPUT:
Sandpile

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: c = S.identity()
sage: c.sandpile()
Diamond sandpile graph: 4 vertices, sink = 0
sage: c.sandpile() == S
True

show(sink=True, colors=True, heights=False, directed=None, **kwds)
Show the configuration.

INPUT:
- sink – (default: True) whether to show the sink
- colors – (default: True) whether to color-code the amount of sand on each vertex
- heights – (default: False) whether to label each vertex with the amount of sand
- directed – (optional) whether to draw directed edges
- kwds – (optional) arguments passed to the show method for Graph

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: c = S.identity()
sage: c.show()
sage: c.show(directed=False)
sage: c.show(sink=False,colors=False,heights=True)

stabilize(with_firing_vector=False)
The stabilized configuration. Optionally returns the corresponding firing vector.

INPUT:
- with_firing_vector – (default: False) boolean

OUTPUT:
SandpileConfig or [SandpileConfig, firing_vector]

EXAMPLES:
support()
The vertices containing sand.

OUTPUT:
list - support of the configuration

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: c = S.identity()
sage: c
{1: 2, 2: 2, 3: 0}
sage: c.support()
[1, 2]

unstable()
The unstable vertices.

OUTPUT:
list of vertices

EXAMPLES:

sage: S = sandpiles.Cycle(4)
sage: c = SandpileConfig(S, [1,2,3])
sage: c.unstable()
[2, 3]

values()
The values of the configuration as a list.
The list is sorted in the order of the vertices.

OUTPUT:
list of integers
boolean

EXAMPLES:

sage: S = Sandpile({'a':['c','b'], 'b': ['c','a'], 'c': ['a']}, 'a')
sage: c = SandpileConfig(S, {'b':1, 'c':2})

(continues on next page)
class sage.sandpiles.sandpile.SandpileDivisor(S, D)

Bases: dict

Class for divisors on a sandpile.

Dcomplex()

The support-complex. (See NOTE.)

OUTPUT:

simplicial complex

EXAMPLES:

```
sage: S = sandpiles.House()
sage: p = SandpileDivisor(S, [1,2,1,0,0]).Dcomplex()
sage: p.homology()
{0: 0, 1: Z x Z, 2: 0}
sage: p.f_vector()
[1, 5, 10, 4]
sage: p.betti()
{0: 1, 1: 2, 2: 0}
```

Note: The “support-complex” is the simplicial complex determined by the supports of the linearly equivalent effective divisors.

add_random(distrib=None)

Add one grain of sand to a random vertex.

INPUT:

distrib – (optional) list of nonnegative numbers representing a probability distribution on the vertices

OUTPUT:

SandpileDivisor

EXAMPLES:

```
sage: s = sandpiles.Complete(4)
sage: D = s.zero_div()
sage: D.add_random()  # random
{0: 0, 1: 0, 2: 1, 3: 0}
sage: D.add_random([0.1,0.1,0.1,0.7])  # random
{0: 0, 1: 0, 2: 0, 3: 1}
```

Warning: If distrib is not None, the user is responsible for assuring the sum of its entries is 1.
betti()

The Betti numbers for the support-complex. (See NOTE.)

OUTPUT:

dictionary of integers

EXAMPLES:

```sage
S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [2,0,1])
sage: D.betti()
{0: 1, 1: 1}
```

Note: The “support-complex” is the simplicial complex determined by the supports of the linearly equivalent effective divisors.

deg()

The degree of the divisor.

OUTPUT:

integer

EXAMPLES:

```sage
S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: D.deg()
6
```
dualize()

The difference with the maximal stable divisor.

OUTPUT:

SandpileDivisor

EXAMPLES:

```sage
S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: D.dualize()
{0: 0, 1: -1, 2: -2}
sage: S.max_stable_div() - D == D.dualize()
True
```
affective_div(verbos=True, with_firing_vectors=False)

All linearly equivalent effective divisors. If `verbose` is `False`, the divisors are converted to lists of integers. If `with_firing_vectors` is `True` then a list of firing vectors is also given, each of which prescribes the vertices to be fired in order to obtain an effective divisor.

INPUT:

- `verbose` – (default: `True`) boolean
- `with_firing_vectors` – (default: `False`) boolean

OUTPUT:
list (of divisors)

EXAMPLES:

```python
sage: s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[4,2,0,0])
sage: sorted(D.effective_div(), key=str)
[[{0: 0, 1: 2, 2: 0, 3: 4}, {0: 0, 1: 2, 2: 4, 3: 0}, {0: 0, 1: 6, 2: 0, 3: 0}, {0: 1, 1: 3, 2: 1, 3: 1}, {0: 2, 1: 0, 2: 2, 3: 2}, {0: 4, 1: 2, 2: 0, 3: 0}]
sage: sorted(D.effective_div(False))
[[0, 2, 0, 4], [0, 2, 4, 0], [0, 6, 0, 0], [1, 3, 1, 1], [2, 0, 2, 2], [4, 2, 0, 0]]
sage: sorted(D.effective_div(with_firing_vectors=True), key=str)
[({0: 0, 1: 2, 2: 0, 3: 4}, (0, -1, -1, -2)), ({0: 0, 1: 2, 2: 4, 3: 0}, (0, -1, -2, -1)), ({0: 0, 1: 6, 2: 0, 3: 0}, (0, -2, -1, -1)), ({0: 1, 1: 3, 2: 1, 3: 1}, (0, -1, -1, -1)), ({0: 2, 1: 0, 2: 2, 3: 2}, (0, 0, -1, -1)), ({0: 4, 1: 2, 2: 0, 3: 0}, (0, 0, 0, 0))]
sage: a = _[2]
sage: a[0].values()
[0, 6, 0, 0]
sage: vector(D.values()) - s.laplacian()*a[1]
(0, 6, 0, 0)
sage: sorted(D.effective_div(False, True))
[([0, 2, 0, 4], (0, -1, -1, -2)), ([0, 2, 4, 0], (0, -1, -2, -1)), ([0, 6, 0, 0], (0, -2, -1, -1)), ([1, 3, 1, 1], (0, -1, -1, -1)), ([2, 0, 2, 2], (0, 0, -1, -1)), ([4, 2, 0, 0], (0, 0, 0, 0))]
sage: D = SandpileDivisor(s,[-1,0,0,0])
sage: D.effective_div(False,True)
[]
```

fire_script(σ)
Fire the given script. In other words, fire each vertex the number of times indicated by σ.

INPUT:

σ – SandpileDivisor or (list or dict representing a SandpileDivisor)

OUTPUT:

SandpileDivisor

EXAMPLES:
sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: D.unstable()
[1, 2]
sage: D.fire_script([0,1,1])
{0: 3, 1: 1, 2: 2}
sage: D.fire_script(SandpileDivisor(S,[2,0,0])) == D.fire_vertex(0).fire_vertex(0)
True

fire_unstable()
Fire all unstable vertices.

OUTPUT:
SandpileDivisor

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: D.fire_unstable()
{0: 3, 1: 1, 2: 2}

fire_vertex(v)
Fire the given vertex.

INPUT:

v – vertex

OUTPUT:
SandpileDivisor

EXAMPLES:

sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
sage: D.fire_vertex(1)
{0: 2, 1: 0, 2: 4}

static help(verbosetrue)
List of SandpileDivisor methods. If verbose, include short descriptions.

INPUT:

verbose – (default: True) boolean

OUTPUT:

printed string

EXAMPLES:

sage: SandpileDivisor.help()
For detailed help with any method FOO listed below,
enter "SandpileDivisor.FOO?" or enter "D.FOO?" for any SandpileDivisor D.

Dcomplex -- The support-complex.

(continues on next page)
add_random -- Add one grain of sand to a random vertex.
betti -- The Betti numbers for the support-complex.
deg -- The degree of the divisor.
dualize -- The difference with the maximal stable divisor.
effective_div -- All linearly equivalent effective divisors.
fire_script -- Fire the given script.
fire_unstable -- Fire all unstable vertices.
fire_vertex -- Fire the given vertex.
help -- List of SandpileDivisor methods.
is_alive -- Is the divisor stabilizable?
is_linearly_equivalent -- Is the given divisor linearly equivalent?
is_q_reduced -- Is the divisor q-reduced?
is_symmetric -- Is the divisor symmetric?
is_weierstrass_pt -- Is the given vertex a Weierstrass point?
polytope -- The polytope determining the complete linear system.
polytope_integer_pts -- The integer points inside divisor's polytope.
q_reduced -- The linearly equivalent q-reduced divisor.
rank -- The rank of the divisor.
sandpile -- The divisor's underlying sandpile.
show -- Show the divisor.
simulate_threshold -- The first unstabilizable divisor in the closed Markov chain.
stabilize -- The stabilization of the divisor.
support -- List of vertices at which the divisor is nonzero.
unstable -- The unstable vertices.
values -- The values of the divisor as a list.
weierstrass_div -- The Weierstrass divisor.
weierstrass_gap_seq -- The Weierstrass gap sequence at the given vertex.
weierstrass_pts -- The Weierstrass points (vertices).
weierstrass_rank_seq -- The Weierstrass rank sequence at the given vertex.

is_alive(cycle=False)
Is the divisor stabilizable? In other words, will the divisor stabilize under repeated firings of all unstable vertices? Optionally returns the resulting cycle.

INPUT:

- cycle – (default: False) boolean

OUTPUT:

- boolean or optionally, a list of SandpileDivisors

EXAMPLES:

```python
sage: S = sandpiles.Complete(4)
sage: D = SandpileDivisor(S, {0: 4, 1: 3, 2: 3, 3: 2})
sage: D.is_alive()
True
sage: D.is_alive(True)
[[0: 4, 1: 3, 2: 3, 3: 2], [0: 3, 1: 2, 2: 2, 3: 5], [0: 1, 1: 4, 2: 4, 3: 3]]
```

is_linearly_equivalent(D, with_firing_vector=False)
Is the given divisor linearly equivalent? Optionally, returns the firing vector. (See NOTE.)

INPUT:
• D – SandpileDivisor or list, tuple, etc. representing a divisor

• with_firing_vector – (default: False) boolean

OUTPUT:

boolean or integer vector

EXAMPLES:

```
sage: s = sandpiles.Complete(3)
sage: D = SandpileDivisor(s,[2,0,0])
sage: D.is_linearly_equivalent([0,1,1])
True
sage: D.is_linearly_equivalent([0,1,1],True)
(0, -1, -1)
sage: v = vector(D.is_linearly_equivalent([0,1,1],True))

sage: D.values() - s.laplacian()^v
(0, 1, 1)
sage: D.is_linearly_equivalent([0,0,0])
False
sage: D.is_linearly_equivalent([0,0,0],True)
()
```

Note:

• If with_firing_vector is False, returns either True or False.

• If with_firing_vector is True then: (i) if self is linearly equivalent to D, returns a vector v such that $\text{self} - v^*\text{self.laplacian().transpose()} = D$. Otherwise, (ii) if self is not linearly equivalent to D, the output is the empty vector, ()

```
is_q_reduced()
```

Is the divisor q-reduced? This would mean that $\text{self} = c + kq$ where c is superstable, k is an integer, and q is the sink vertex.

OUTPUT:

boolean

EXAMPLES:

```
sage: s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[2,-3,2,0])
sage: D.is_q_reduced()
False
sage: SandpileDivisor(s,[10,0,1,2]).is_q_reduced()
True
```

For undirected or, more generally, Eulerian graphs, q-reduced divisors are linearly equivalent if and only if they are equal. The same does not hold for general directed graphs:

```
sage: s = Sandpile({0:[1],1:[1,1]})
sage: D = SandpileDivisor(s,[-1,1])
sage: Z = s.zero_div()
sage: D.is_q_reduced()
True
```
\begin{verbatim}
sage: Z.is_q_reduced()
True
sage: D == Z
False
sage: D.is_linearly_equivalent(Z)
True
\end{verbatim}

is_symmetric \textit{(orbits)}
Is the divisor symmetric? Return True if the values of the configuration are constant over the vertices in each sublist of \textit{orbits}.

INPUT:

\textit{orbits} – list of lists of vertices

OUTPUT:

boolean

EXAMPLES:

\begin{verbatim}
sage: S = sandpiles.House()
sage: S.dict()
{0: {1: 1, 2: 1},
 1: {0: 1, 3: 1},
 2: {0: 1, 3: 1, 4: 1},
 3: {1: 1, 2: 1, 4: 1},
 4: {2: 1, 3: 1}}
sage: D = SandpileDivisor(S, [0,0,1,1,3])
sage: D.is_symmetric([[2,3], [4]])
True
\end{verbatim}

is_weierstrass_pt \textit{(v=sink)}
Is the given vertex a Weierstrass point?

INPUT:

\textit{v} – (default: sink) vertex

OUTPUT:

boolean

EXAMPLES:

\begin{verbatim}
sage: s = sandpiles.House()
sage: K = s.canonical_divisor()
sage: K.weierstrass_rank_seq() # sequence at the sink vertex, 0
(1, 0, -1)
sage: K.is_weierstrass_pt()
False
sage: K.weierstrass_rank_seq(4)
(1, 0, 0, -1)
sage: K.is_weierstrass_pt(4)
True
\end{verbatim}
The vertex \(v \) is a (generalized) Weierstrass point for divisor \(D \) if the sequence of ranks \(r(D - nv) \) for \(n = 0, 1, 2, \ldots \) is not \(r(D), r(D) - 1, \ldots, 0, -1, -1, \ldots \)

polytope()

The polytope determining the complete linear system.

OUTPUT:

polytope

EXAMPLES:

```sage
s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[4,2,0,0])
sage: p = D.polytope()
sage: p.inequalities()
(An inequality (-3, 1, 1) x + 2 >= 0,
 An inequality (1, 1, 1) x + 4 >= 0,
 An inequality (1, -3, 1) x + 0 >= 0,
 An inequality (1, 1, -3) x + 0 >= 0)
sage: D = SandpileDivisor(s,[-1,0,0,0])
sage: D.polytope()
The empty polyhedron in QQ^3
```

Note: For a divisor \(D \), this is the intersection of (i) the polyhedron determined by the system of inequalities \(L^t x \leq D \) where \(L^t \) is the transpose of the Laplacian with (ii) the hyperplane \(x_{\text{sink vertex}} = 0 \). The polytope is thought of as sitting in \((n - 1) \)-dimensional Euclidean space where \(n \) is the number of vertices.

polytope_integer_pts()

The integer points inside divisor’s polytope. The polytope referred to here is the one determining the divisor’s complete linear system (see the documentation for `polytope`).

OUTPUT:

tuple of integer vectors

EXAMPLES:

```sage
s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[4,2,0,0])
sage: sorted(D.polytope_integer_pts())
[(-2, -1, -1),
 (-1, -2, -1),
 (-1, -1, -2),
 (-1, -1, -1),
 (0, -1, -1),
 (0, 0, 0)]
sage: D = SandpileDivisor(s,[-1,0,0,0])
sage: D.polytope_integer_pts()
()
```

q_reduced

The linearly equivalent \(q \)-reduced divisor.

INPUT:
verbose – (default: True) boolean

OUTPUT:
SandpileDivisor or list representing SandpileDivisor

EXAMPLES:

```
sage: s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[2,-3,2,0])
sage: D.q_reduced()
{0: -2, 1: 1, 2: 2, 3: 0}
sage: D.q_reduced(False)
[-2, 1, 2, 0]
```

Note: The divisor D is q-reduced if where c is superstable, k is an integer, and q is the sink.

rank
(with_witness=False)

The rank of the divisor. Optionally returns an effective divisor E such that $D - E$ is not winnable (has an empty complete linear system).

INPUT:

with_witness – (default: False) boolean

OUTPUT:

integer or (integer, SandpileDivisor)

EXAMPLES:

```
sage: S = sandpiles.Complete(4)
sage: D = SandpileDivisor(S,[4,2,0,0])
sage: D.rank()
3
sage: D.rank(True)
(3, {0: 3, 1: 0, 2: 1, 3: 0})
sage: E = D.rank(False)
sage: (D - E).rank()
-1
```

Riemann-Roch theorem::

```
sage: D.rank() - (S.canonical_divisor()-D).rank() == D.deg() + 1 - S.genus()
True
```

Riemann-Roch theorem::

```
sage: D.rank() - (S.canonical_divisor()-D).rank() == D.deg() + 1 - S.genus()
True
sage: S = Sandpile({0:[1,1,1,2],1:[0,0,0,1,1,2,2],2:[2,2,1,1,0]},0) # multigraph with loops
sage: D = SandpileDivisor(S,[4,2,0])
sage: D.rank(True)
(2, {0: 1, 1: 1, 2: 1})
sage: S = Sandpile({0:[1,2], 1:[0,2,2], 2: [0,1]},0) # directed graph
```
sage: S.is_undirected()
False
sage: D = SandpileDivisor(S,[0,2,0])
sage: D.effective_div()
[{
0: 0,
1: 2,
2: 0,
},
{
0: 2,
1: 0,
2: 0,
}]

sage: D.rank(True)
(0, {0: 0, 1: 0, 2: 1})

sage: E = D.rank(True)[1]

sage: (D - E).effective_div()
[]

Note: The rank of a divisor D is -1 if D is not linearly equivalent to an effective divisor (i.e., the dollar game represented by D is unwinnable). Otherwise, the rank of D is the largest integer r such that $D - E$ is linearly equivalent to an effective divisor for all effective divisors E with $\text{deg}(E) = r$.

sandpile()
The divisor's underlying sandpile.

OUTPUT:

Sandpile

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: D = SandpileDivisor(S,[1,-2,0,3])
sage: D.sandpile()
Diamond sandpile graph: 4 vertices, sink = 0
sage: D.sandpile() == S
True

show(heights=True, directed=None, **kwds)
Show the divisor.

INPUT:

- heights – (default: True) whether to label each vertex with the amount of sand
- directed – (optional) whether to draw directed edges
- kwds – (optional) arguments passed to the show method for Graph

EXAMPLES:

sage: S = sandpiles.Diamond()
sage: D = SandpileDivisor(S,[1,-2,0,2])
sage: D.show(graph_border=True,vertex_size=700,directed=False)

simulate_threshold(distrib=None)
The first unstabilizable divisor in the closed Markov chain. (See NOTE.)

INPUT:

distrib – (optional) list of nonnegative numbers representing a probability distribution on the vertices

OUTPUT:

SandpileDivisor
EXAMPLES:

```python
sage: s = sandpiles.Complete(4)
sage: D = s.zero_div()
sage: D.simulate_threshold()  # random
{0: 2, 1: 3, 2: 1, 3: 2}
sage: n(mean([D.simulate_threshold().deg() for _ in range(10)]))  # random
7.10000000000000
sage: n(s.stationary_density()*s.num_verts())
6.93750000000000
```

Note: Starting at self, repeatedly choose a vertex and add a grain of sand to it. Return the first unstabilizable divisor that is reached. Also see the `markov_chain` method for the underlying sandpile.

stabilize(`with_firing_vector=False`)

The stabilization of the divisor. If not stabilizable, return an error.

INPUT:

- `with_firing_vector` – (default: False) boolean

EXAMPLES:

```python
sage: s = sandpiles.Complete(4)
sage: D = SandpileDivisor(s,[0,3,0,0])
sage: D.stabilize()
{0: 1, 1: 0, 2: 1, 3: 1}
sage: D.stabilize(with_firing_vector=True)
[{0: 1, 1: 0, 2: 1, 3: 1}, {0: 0, 1: 1, 2: 0, 3: 0}]
```

support()

List of vertices at which the divisor is nonzero.

OUTPUT:

- list representing the support of the divisor

EXAMPLES:

```python
sage: S = sandpiles.Cycle(4)
sage: D = SandpileDivisor(S, [0,0,1,1])
sage: D.support()
[2, 3]
sage: S.vertices()
[0, 1, 2, 3]
```

unstable()

The unstable vertices.

OUTPUT:

- list of vertices

EXAMPLES:

```python
sage: S = sandpiles.Cycle(3)
sage: D = SandpileDivisor(S, [1,2,3])
```
values()
The values of the divisor as a list.
The list is sorted in the order of the vertices.

OUTPUT:
list of integers
boolean

EXAMPLES:

```python
sage: S = Sandpile({'a': ['c', 'b'], 'b': ['c', 'a'], 'c': ['a']})
sage: D = SandpileDivisor(S, {'a': 0, 'b': 1, 'c': 2})
sage: D
{'a': 0, 'b': 1, 'c': 2}
sage: D.values()
[0, 1, 2]
sage: S.vertices()
['a', 'b', 'c']
```

weierstrass_div(verbosetrue=True)
The Weierstrass divisor. Its value at a vertex is the weight of that vertex as a Weierstrass point. (See SandpileDivisor.weierstrass_gap_seq.)

INPUT:

- verbose – (default: True) boolean

OUTPUT:

SandpileDivisor

EXAMPLES:

```python
sage: s = sandpiles.Diamond()
sage: D = SandpileDivisor(s, [4, 2, 1, 0])
sage: [D.weierstrass_rank_seq(v) for v in s]
[(5, 4, 3, 2, 1, 0, 0, -1),
 (5, 4, 3, 2, 1, 0, 0, -1),
 (5, 4, 3, 2, 1, 0, 0, -1)]
sage: D.weierstrass_div()
{0: 1, 1: 0, 2: 2, 3: 1}
sage: k5 = sandpiles.Complete(5)
sage: K = k5.canonical_divisor()
sage: K.weierstrass_div()
{0: 9, 1: 9, 2: 9, 3: 9, 4: 9}
```

weierstrass_gap_seq(v=sink, weighttrue=False)
The Weierstrass gap sequence at the given vertex. If weight is True, then also compute the weight of each gap value.

INPUT:
• v – (default: sink) vertex
• weight – (default: True) boolean

OUTPUT:
list or (list of list) of integers

EXAMPLES:

```
sage: s = sandpiles.Cycle(4)
sage: D = SandpileDivisor(s,[2,0,0,0])
sage: [D.weierstrass_gap_seq(v,False) for v in s.vertices()]
[(1, 3), (1, 2), (1, 3), (1, 2)]
sage: [D.weierstrass_gap_seq(v) for v in s.vertices()]
[((1, 3), 1), ((1, 2), 0), ((1, 3), 1), ((1, 2), 0)]
sage: D.weierstrass_gap_seq()  # gap sequence at sink vertex, False
((1, 3), 1)
sage: D.weierstrass_rank_seq()  # rank sequence at the sink vertex
((1, 3), 1)
```

Note: The integer k is a Weierstrass gap for the divisor D at vertex v if the rank of $D - (k-1)v$ does not equal the rank of $D - kv$. Let r be the rank of D and let k_i be the i-th gap at v. The Weierstrass weight of v for D is the sum of $(k_i - i)$ as i ranges from 1 to $r + 1$. It measures the difference between the sequence $r, r-1, 0, -1, -1, ...$ and the rank sequence $\text{rank}(D), \text{rank}(D-v), \text{rank}(D-2v), ...$.

weierstrass_pts(with_rank_seq=False)
The Weierstrass points (vertices). Optionally, return the corresponding rank sequences.

INPUT:

with_rank_seq – (default: False) boolean

OUTPUT:

tuple of vertices or list of (vertex, rank sequence)

EXAMPLES:

```
sage: s = sandpiles.House()
sage: K = s.canonical_divisor()
sage: K.weierstrass_pts()
(4,)
sage: K.weierstrass_pts(True)
[(4, (1, 0, 0, -1))]
```

Note: The vertex v is a (generalized) Weierstrass point for divisor D if the sequence of ranks $r(D - nv)$ for $n = 0, 1, 2, ...$ is not $r(D), r(D) - 1, ..., 0, -1, -1, ...$

weierstrass_rank_seq(v='sink')
The Weierstrass rank sequence at the given vertex. Computes the rank of the divisor $D - nv$ starting with $n = 0$ and ending when the rank is -1.

INPUT:

v – (default: sink) vertex
OUTPUT:

tuple of int

EXAMPLES:

```python
sage: s = sandpiles.House()
sage: K = s.canonical_divisor()
[(1, 0, -1), (1, 0, -1), (1, 0, -1), (1, 0, -1), (1, 0, 0, -1)]
```

sage.sandpiles.sandpile.admissible_partitions(S, k)

The partitions of the vertices of S into k parts, each of which is connected.

INPUT:

S – Sandpile

k – integer

OUTPUT:

list of partitions

EXAMPLES:

```python
sage: from sage.sandpiles.sandpile import admissible_partitions
sage: from sage.sandpiles.sandpile import partition_sandpile
sage: S = sandpiles.Cycle(4)
sage: P = [admissible_partitions(S, i) for i in [2,3,4]]
sage: P
[[{{0, 2, 3}, {1}},
  {{0, 3}, {1, 2}},
  {{0}, {1, 2, 3}},
  {{0, 1}, {2, 3}},
  {{0}, {1, 2}, {3}}],
 [[{{0, 3}, {1}, {2}},
  {{0}, {1}, {2, 3}},
  {{0}, {1, 2}, {3}},
  {{0, 1}, {2}, {3}}],
 [{{0}, {1}, {2}, {3}}]]
```


```python
sage: for p in P:
    ....:  sum([partition_sandpile(S, i).betti(verbose=False)[-1] for i in p])
6
8
3
sage: S.betti()

0  1  2  3
-------------------------------
0:  1   -   -   -
1:  -  6  8  3
-------------------------------
total:  1  6  8  3
```

sage.sandpiles.sandpile.aztec_sandpile(n)

The aztec diamond graph.

INPUT:
n – integer

OUTPUT:
dictionary for the aztec diamond graph

EXAMPLES:

```
from sage.sandpiles.sandpile import aztec_sandpile
T = aztec_sandpile(2)
sorted(len(v) for u, v in T.items())

[3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 8]

Sandpile(T,(0, 0)).group_order()

4542720
```

Note: This is the aztec diamond graph with a sink vertex added. Boundary vertices have edges to the sink so that each vertex has degree 4.

```
sage.sandpiles.sandpile.firing_graph(S, eff)

Creates a digraph with divisors as vertices and edges between two divisors \( D \) and \( E \) if firing a single vertex in \( D \) gives \( E \).

INPUT:

\( S \) – Sandpile
\( \text{eff} \) – list of divisors

OUTPUT:

DiGraph

EXAMPLES:

```
s = sandpiles.Cycle(6)
D = SandpileDivisor(S, [1, 1, 1, 1, 2, 0])
eff = D.effective_div()
firing_graph(S, eff).show3d(edge_size=.005, vertex_size=0.01) # long time
```
```
sage.sandpiles.sandpile.glue_graphs(g, h, glue_g, glue_h)

Glue two graphs together.

INPUT:

* \(g, h \) – dictionaries for directed multigraphs
* \(\text{glue}_g, \text{glue}_h \) – dictionaries for a vertex

OUTPUT:

dictionary for a directed multigraph

EXAMPLES:

```
from sage.sandpiles.sandpile import glue_graphs
x = {0: {}, 1: {0: 1}, 2: {0: 1, 1: 1}, 3: {0: 1, 1: 1, 2: 1}}
y = {0: {}, 1: {0: 2}, 2: {1: 2}, 3: {0: 1, 2: 1}}
glue_x = {1: 1, 3: 2}
glue_y = {0: 1, 1: 2, 3: 1}
z = glue_graphs(x, y, glue_x, glue_y); z
```
```
{'sink': {},
'x0': {'x1': 1, 'x3': 1, 'x1': 1, 'y1': 2, 'y3': 1},
'x1': {'x0': 1},
'x2': {'x0': 1, 'x1': 1},
'x3': {'x0': 1, 'x1': 1, 'x2': 1},
'y1': {'sink': 2},
'y2': {'y1': 2},
'y3': {'sink': 1, 'y2': 1}}

sage: S = Sandpile(z,'sink')
sage: S.h_vector()
[1, 6, 17, 31, 41, 41, 31, 17, 6, 1]
sage: S.resolution()
'R^1 <-- R^7 <-- R^21 <-- R^35 <-- R^35 <-- R^21 <-- R^7 <-- R^1'

**Note:** This method makes a dictionary for a graph by combining those for \(g\) and \(h\). The sink of \(g\) is replaced by a vertex that is connected to the vertices of \(g\) as specified by \(\text{glue}_g\) the vertices of \(h\) as specified in \(\text{glue}_h\). The sink of the glued graph is 'sink'.

Both \(\text{glue}_g\) and \(\text{glue}_h\) are dictionaries with entries of the form \(v:w\) where \(v\) is the vertex to be connected to and \(w\) is the weight of the connecting edge.

sage.sandpiles.sandpile.min_cycles\((G, v)\)
Minimal length cycles in the digraph \(G\) starting at vertex \(v\).

**INPUT:**
- \(G\) – DiGraph
- \(v\) – vertex of \(G\)

**OUTPUT:**
list of lists of vertices

**EXAMPLES:**

```
sage: from sage.sandpiles.sandpile import min_cycles, sandlib
sage: T = sandlib('gor')
sage: [min_cycles(T, i) for i in T.vertices()]
[[], [[1, 3]], [[2, 3, 1], [2, 3]], [[3, 1], [3, 2]]]
```

sage.sandpiles.sandpile.parallel_firing_graph\((S, \text{eff})\)
Creates a digraph with divisors as vertices and edges between two divisors \(D\) and \(E\) if firing all unstable vertices in \(D\) gives \(E\).

**INPUT:**
- \(S\) – Sandpile
- \(\text{eff}\) – list of divisors

**OUTPUT:**
DiGraph

**EXAMPLES:**
sage: S = sandpiles.Cycle(6)
sage: D = SandpileDivisor(S, [1,1,1,1,2,0])
sage: eff = D.effective_div()
sage: parallel_firing_graph(S,eff).show3d(edge_size=.005,vertex_size=0.01) # long...
˓
˓→time

sage.sandpiles.sandpile.partition_sandpile(S, p)

Each set of vertices in $p$ is regarded as a single vertex, with an edge between $A$ and $B$ if some element of $A$ is connected by an edge to some element of $B$ in $S$.

INPUT:

$S$ – Sandpile

$p$ – partition of the vertices of $S$

OUTPUT:

Sandpile

EXAMPLES:

sage: from sage.sandpiles.sandpile import admissible_partitions, partition_sandpile
sage: S = sandpiles.Cycle(4)
sage: P = [admissible_partitions(S, i) for i in [2,3,4]]
sage: for p in P:
....:   sum([partition_sandpile(S, i).betti(verbose=False)[-1] for i in p])
  6
  8
  3
sage: S.betti()
  0  1  2  3
-------------------------------
  0:  1  -  -  -
  1:  -  6  8  3
-------------------------------
  total:  1  6  8  3

sage.sandpiles.sandpile.random_DAG(num_verts, p=0.5, weight_max=1)

A random directed acyclic graph with $num_verts$ vertices. The method starts with the sink vertex and adds vertices one at a time. Each vertex is connected only to only previously defined vertices, and the probability of each possible connection is given by the argument $p$. The weight of an edge is a random integer between 1 and $weight_max$.

INPUT:

• $num_verts$ – positive integer

• $p$ – (default: 0,5) real number such that $0 < p \leq 1$

• $weight_max$ – (default: 1) positive integer

OUTPUT:

a dictionary, encoding the edges of a directed acyclic graph with sink 0

EXAMPLES:
```python
sage: from sage.sandpiles.sandpile import random_DAG
sage: d = DiGraph(random_DAG(5, .5)); d
doctest:...: DeprecationWarning: method random_DAG is deprecated. Please use
digraphs.RandomDirectedAcyclicGraph instead.
See https://trac.sagemath.org/30479 for details.
Digraph on 5 vertices
```

**sage.sandpiles.sandpile**(*selector=None*)

Returns the sandpile identified by *selector*. If no argument is given, a description of the sandpiles in the sandlib is printed.

**INPUT:**

- *selector* – (optional) identifier or None

**OUTPUT:**

- sandpile or description

**EXAMPLES:**

```python
sage: from sage.sandpiles.sandpile import sandlib
sage: sandlib()
Sandpiles in the sandlib:
 ci1 : complete intersection, non-DAG but equivalent to a DAG
 generic : generic digraph with 6 vertices
 genus2 : Undirected graph of genus 2
 gor : Gorenstein but not a complete intersection
 kite : generic undirected graphs with 5 vertices
 riemann-roch1 : directed graph with postulation 9 and 3 maximal weight
 superstables
 riemann-roch2 : directed graph with a superstable not majorized by a maximal
 superstable
sage: S = sandlib('gor')
sage: S.resolution()
'R^1 <-- R^5 <-- R^5 <-- R^1'
```

**sage.sandpiles.sandpile.triangle_sandpile**(*n*)

A triangular sandpile. Each nonsink vertex has out-degree six. The vertices on the boundary of the triangle are connected to the sink.

**INPUT:**

- *n* – integer

**OUTPUT:**

- Sandpile

**EXAMPLES:**

```python
sage: from sage.sandpiles.sandpile import triangle_sandpile
sage: T = triangle_sandpile(5)
sage: T.group_order()
135418115000
```

**sage.sandpiles.sandpile.wilmes_algorithm**(*M*)

Computes an integer matrix $L$ with the same integer row span as $M$ and such that $L$ is the reduced Laplacian of a directed multigraph.
INPUT:

M – square integer matrix of full rank

OUTPUT:

integer matrix (L)

EXAMPLES:

```
sage: P = matrix([[2,3,-7,-3],[5,2,-5,5],[8,2,5,4],[5,-9,6,6]])
sage: wilmes_algorithm(P)
[3279 -79 -1599 -1600]
[-1 1539 -136 -1402]
[0 -1 1650 -1649]
[0 0 -1658 1658]
```

REFERENCES:

• [PPW2013]

See also:

• sage.combinat.e_one_star
• sage.combinat.constellation
5.1 Generic dynamical systems on schemes

This is the generic class for dynamical systems and contains the exported constructor functions. The constructor functions can take either polynomials (or rational functions in the affine case) or morphisms from which to construct a dynamical system. If the domain is not specified, it is constructed. However, if you plan on working with points or subvarieties in the domain, it recommended to specify the domain. For products of projective spaces the domain must be specified.

The initialization checks are always performed by the constructor functions. It is possible, but not recommended, to skip these checks by calling the class initialization directly.

AUTHORS:

• Ben Hutz (July 2017): initial version

```python
class sage.dynamics.arithmetic_dynamics.generic_ds.DynamicalSystem(polys_or_rat_fncts, domain)
 Bases: sage.schemes.generic.morphism.SchemeMorphism_polynomial

Base class for dynamical systems of schemes.

INPUT:

• polys_or_rat_fncts – a list of polynomials or rational functions, all of which should have the same parent

• domain – an affine or projective scheme, or product of projective schemes, on which polys defines an endomorphism. Subschemes are also ok

• names – (default: ('X', 'Y')) tuple of strings to be used as coordinate names for a projective space that is constructed

The following combinations of morphism_or_polys and domain are meaningful:

- morphism_or_polys is a SchemeMorphism; domain is ignored in this case

- morphism_or_polys is a list of homogeneous polynomials that define a rational endomorphism of domain

- morphism_or_polys is a list of homogeneous polynomials and domain is unspecified; domain is then taken to be the projective space of appropriate dimension over the common parent of the elements in morphism_or_polys

- morphism_or_polys is a single polynomial or rational function; domain is ignored and taken to be a 1-dimensional projective space over the base ring of morphism_or_polys with coordinate names given by names

EXAMPLES:
```
sage: A.<x> = AffineSpace(QQ,1)
sage: f = DynamicalSystem_affine([x^2+1])
sage: type(f)
<class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine_field'>

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2])
sage: type(f)
<class 'sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field'>

sage: P1.<x,y> = ProjectiveSpace(CC,1)
sage: H = End(P1)
sage: DynamicalSystem(H([y, x]))
Dynamical System of Projective Space of dimension 1 over Complex Field
with 53 bits of precision
  Defn: Defined on coordinates by sending (x : y) to
        (y : x)

DynamicalSystem defaults to projective:

sage: R.<x,y,z> = QQ[]
sage: DynamicalSystem([x^2, y^2, z^2])
Dynamical System of Projective Space of dimension 2 over Rational Field
  Defn: Defined on coordinates by sending (x : y : z) to
        (x^2 : y^2 : z^2)

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: DynamicalSystem([y, x], domain=A)
Dynamical System of Affine Space of dimension 2 over Rational Field
  Defn: Defined on coordinates by sending (x, y) to
        (y, x)

Note that domain is ignored if an endomorphism is passed in:

sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: P2.<x,y> = ProjectiveSpace(CC, 1)
sage: H = End(P2)
sage: f = H([CC.0*x^2, y^2])
sage: g = DynamicalSystem(f, domain=P)
sage: g.domain()
Projective Space of dimension 1 over Complex Field with 53 bits of precision

Constructing a common parent:

sage: P.<x,y> = ProjectiveSpace(ZZ, 1)
sage: DynamicalSystem([CC.0*x^2, 4/5*y^2])
(continues on next page)
Dynamical System of Projective Space of dimension 1 over Complex Field with 53 bits of precision
Defn: Defined on coordinates by sending (x : y) to
(1.00000000000000*I*x^2 : 0.800000000000000*y^2)
sage: P.<x,y> = ProjectiveSpace(GF(5), 1)
sage: K.<t> = GF(25)
sage: DynamicalSystem([GF(5)(3)*x^2, K(t)*y^2])
Dynamical System of Projective Space of dimension 1 over Finite Field in t of size 5^2
Defn: Defined on coordinates by sending (x : y) to
(-2*x^2 : (t)*y^2)
as_scheme_morphism()
Return this dynamical system as SchemeMorphism_polynomial.
OUTPUT: SchemeMorphism_polynomial
EXAMPLES:

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ, 2)
sage: f = DynamicalSystem_projective([x^2, y^2, z^2])
sage: type(f.as_scheme_morphism())
<class 'sage.schemes.projective.projective_morphism.SchemeMorphism_polynomial_projective_space'>
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([x^2-y^2, y^2])
sage: type(f.as_scheme_morphism())
<class 'sage.schemes.projective.projective_morphism.SchemeMorphism_polynomial_projective_space_field'>
```

```
sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: f = DynamicalSystem_affine([x^2-2, y^2])
sage: type(f.as_scheme_morphism())
<class 'sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space'>
```

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: f = DynamicalSystem_affine([x^2-2, y^2])
sage: type(f.as_scheme_morphism())
<class 'sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space_field'>
```

```
sage: A.<x,y> = AffineSpace(GF(3), 2)
sage: f = DynamicalSystem_affine([x^2-2, y^2])
```

(continues on next page)
change_ring($R$, check=True)

Return a new dynamical system which is this map coerced to $R$.

If check is True, then the initialization checks are performed.

INPUT:

- $R$ – ring or morphism

OUTPUT:

A new DynamicalSystem_projective that is this map coerced to $R$.

EXAMPLES:

```python
sage: P.<x,y> = ProjectiveSpace(ZZ, 1)
sage: f = DynamicalSystem_projective([3*x^2, y^2])
sage: f.change_ring(GF(5))
Dynamical System of Projective Space of dimension 1 over Finite Field of size 5
Defn: Defined on coordinates by sending (x : y) to
(-2*x^2 : y^2)
```

field_of_definition_critical($return_embedding=False$, $simplify_all=False$, names='a')

Return smallest extension of the base field which contains the critical points.

Ambient space of dynamical system must be either the affine line or projective line over a number field or finite field.

INPUT:

- $return_embedding$ – (default: False) boolean; If True, return an embedding of base field of dynamical system into the returned number field or finite field. Note that computing this embedding might be expensive.

- $simplify_all$ – (default: False) boolean; If True, simplify intermediate fields and also the resulting number field. Note that this is not implemented for finite fields and has no effect

- $names$ – (optional) string to be used as generator for returned number field or finite field

OUTPUT:

If $return_embedding$ is False, the field of definition as an absolute number field or finite field. If $return_embedding$ is True, a tuple $(K, phi)$ where phi is an embedding of the base field in K.

EXAMPLES:

Note that the number of critical points is 2d-2, but (1:0) has multiplicity 2 in this case:

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem([1/3*x^3 + x*y^2, y^3], domain=P)
sage: f.critical_points()
[(1 : 0)]
sage: N.<a> = f.field_of_definition_critical(); N
Number Field in a with defining polynomial x^2 + 1
sage: g = f.change_ring(N)
```
sage: A.<z> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem([z^4 + 2*z^2 + 2], domain=A)
sage: K.<a> = f.field_of_definition_critical(); K
Number Field in a with defining polynomial z^2 + 1

sage: G.<a> = GF(9)
sage: R.<z> = G[]
sage: R.irreducible_element(3, algorithm='first_lexicographic')
z^3 + (a + 1)*z + a
sage: A.<x> = AffineSpace(G,1)
sage: f = DynamicalSystem([x^4 + (2*a+2)*x^2 + a*x], domain=A)
sage: f[0].derivative(x).univariate_polynomial().is_irreducible()
True

sage: f.field_of_definition_critical(return_embedding=True, names='b')
(Finite Field in b of size 3^6, Ring morphism:
  From: Finite Field in a of size 3^2
  To:   Finite Field in b of size 3^6
  Defn: a |--> 2*b^5 + 2*b^3 + b^2 + 2*b + 2)

field_of_definition_periodic(n, formal=False, return_embedding=False, simplify_all=False, names=None)

Return smallest extension of the base field which contains all fixed points of the n-th iterate

Ambient space of dynamical system must be either the affine line or projective line over a number field or finite field.

INPUT:

- n – a positive integer
- formal – (default: False) boolean; True signals to return number field or finite field over which the formal periodic points are defined, where a formal periodic point is a root of the n-th dynatomic polynomial. False specifies to find number field or finite field over which all periodic points of the n-th iterate are defined
- return_embedding – (default: False) boolean; If True, return an embedding of base field of dynamical system into the returned number field or finite field. Note that computing this embedding might be expensive.
- simplify_all – (default: False) boolean; If True, simplify intermediate fields and also the resulting number field. Note that this is not implemented for finite fields and has no effect
- names – (optional) string to be used as generator for returned number field or finite field

OUTPUT:

If return_embedding is False, the field of definition as an absolute number field or finite field. If return_embedding is True, a tuple (K, phi) where phi is an embedding of the base field in K.

EXAMPLES:

sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem([x^2, y^2], domain=P)

(continues on next page)
sage: f.periodic_points(3, minimal=False)
[(0 : 1), (1 : 0), (1 : 1)]
sage: N.<a> = f.field_of_definition_periodic(3); N
Number Field in a with defining polynomial x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: sorted(f.periodic_points(3, minimal=False, R=N), key=str)
[(-a^5 - a^4 - a^3 - a^2 - a - 1 : 1),
 (0 : 1),
 (1 : 0),
 (1 : 1),
 (a : 1),
 (a^2 : 1),
 (a^3 : 1),
 (a^4 : 1),
 (a^5 : 1)]

sage: A.<z> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem([(z^2 + 1)/(2*z + 1)], domain=A)
sage: K.<a> = f.field_of_definition_periodic(2); K
Number Field in a with defining polynomial z^4 + 12*z^3 + 39*z^2 + 18*z + 171
sage: F.<b> = f.field_of_definition_periodic(2, formal=True); F
Number Field in b with defining polynomial z^2 + 3*z + 6
sage: G.<a> = GF(4)
sage: A.<x> = AffineSpace(G, 1)
sage: f = DynamicalSystem([x^2 + (a+1)*x + 1], domain=A)
sage: g = f.nth_iterate_map(2)[0]
sage: (g-x).univariate_polynomial().factor()
(x + 1) * (x + a + 1) * (x^2 + a*x + 1)
sage: f.field_of_definition_periodic(2, return_embedding=True, names='b')
(Finite Field in b of size 2^4, Ring morphism:
   From: Finite Field in a of size 2^2
   To:   Finite Field in b of size 2^4
   Defn: a |--> b^2 + b)

**field_of_definition_preimage** (point, n, return_embedding=False, simplify_all=False, names='a')

Return smallest extension of the base field which contains the n-th preimages of point.

**INPUT:**

- **point** – a point in this map’s domain
- **n** – a positive integer
- **return_embedding** – (default: False) boolean; If True, return an embedding of base field of dynamical system into the returned number field or finite field. Note that computing this embedding might be expensive.
- **simplify_all** – (default: False) boolean; If True, simplify intermediate fields and also the resulting number field. Note that this is not implemented for finite fields and has no effect
- **names** – (optional) string to be used as generator for returned number field or finite field

**OUTPUT:**
If `return_embedding` is False, the field of definition as an absolute number field or finite field. If `return_embedding` is True, a tuple $(K, \phi)$ where $\phi$ is an embedding of the base field in $K$.

**EXAMPLES:**

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem([[1/3*x^2 + 2/3*x*y, x^2 - 2*y^2]], domain=P)
sage: N.<a> = f.field_of_definition_preimage(P(1,1), 2, simplify_all=True); N
Number Field in a with defining polynomial x^8 - 4*x^7 - 128*x^6 + 398*x^5 + 3913*x^4 - 8494*x^3 - 26250*x^2 + 30564*x - 2916

sage: A.<z> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem([z^2], domain=A)
sage: K.<a> = f.field_of_definition_preimage(A(1), 3); K
Number Field in a with defining polynomial z^4 + 1

sage: G = GF(5)
sage: P.<x,y> = ProjectiveSpace(G, 1)
sage: f = DynamicalSystem([x^2 + 2*y^2, y^2], domain=P)
sage: f.field_of_definition_preimage(P(2,1), 2, return_embedding=True, names='a ---> ’)
(Finite Field in a of size 5^2, Ring morphism:
 From: Finite Field of size 5
 To: Finite Field in a of size 5^2
 Defn: 1 |--> 1)
```

`specialization(D=None, phi=None, homset=None)`

Specialization of this dynamical system.

Given a family of maps defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a SpecializationMorphism.

**INPUT:**

- `D` – (optional) dictionary
- `phi` – (optional) SpecializationMorphism
- `homset` – (optional) homset of specialized map

**OUTPUT:** `DynamicalSystem`

**EXAMPLES:**

```python
sage: R.<c> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2], domain=P)
sage: f.specialization({c:1})
Dynamical System of Projective Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x : y) to
 (x^2 + y^2 : y^2)
```
5.2 Dynamical systems on affine schemes

An endomorphism of an affine scheme or subscheme determined by polynomials or rational functions.

The main constructor function is given by `DynamicalSystem_affine`. The constructor function can take polynomials, rational functions, or morphisms from which to construct a dynamical system. If the domain is not specified, it is constructed. However, if you plan on working with points or subvarieties in the domain, it recommended to specify the domain.

The initialization checks are always performed by the constructor functions. It is possible, but not recommended, to skip these checks by calling the class initialization directly.

AUTHORS:

- David Kohel, William Stein
- Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.
- Ben Hutz (2017) relocate code and create new class

```python
class sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine(
polys_or_rat_fncts,
 domain)
```

Bases: `sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space`, `sage.dynamics.arithmetic_dynamics.generic_ds.DynamicalSystem`

An endomorphism of affine schemes determined by rational functions.

**Warning:** You should not create objects of this class directly because no type or consistency checking is performed. The preferred method to construct such dynamical systems is to use `DynamicalSystem_affine()` function.

**INPUT:**

- `morphism_or_polys` – a SchemeMorphism, a polynomial, a rational function, or a list or tuple of polynomials or rational functions
- `domain` – optional affine space or subscheme of such; the following combinations of `morphism_or_polys` and `domain` are meaningful:
  - `morphism_or_polys` is a SchemeMorphism; `domain` is ignored in this case
  - `morphism_or_polys` is a list of polynomials or rational functions that define a rational endomorphism of `domain`
  - `morphism_or_polys` is a list of polynomials or rational functions and `domain` is unspecified; `domain` is then taken to be the affine space of appropriate dimension over the common base ring, if one exists, of the elements of `morphism_or_polys`
  - `morphism_or_polys` is a single polynomial or rational function; `domain` is ignored and assumed to be the 1-dimensional affine space over the base ring of `morphism_or_polys`

**OUTPUT:** `DynamicalSystem_affine`

**EXAMPLES:**

```
sage: A3.<x,y,z> = AffineSpace(QQ, 3)
sage: DynamicalSystem_affine([x, y, 1])
Dynamical System of Affine Space of dimension 3 over Rational Field
 Defn: Defined on coordinates by sending (x, y, z) to
 (x, y, 1)
```
Discrete dynamics

Dynamical System of Affine Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x, y) to
(x/y, y^2 + 1)

Dynamical System of Affine Space of dimension 1 over Integer Ring
Defn: Defined on coordinates by sending (t) to
(t^2 - 1)

Notice that \( \mathbb{Z} \) becomes \( \mathbb{Q} \) since the function is rational:

Dynamical System of Affine Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x, y) to
(9/4*x^2, 3/2*y)

If you pass in quotient ring elements, they are reduced:

Dynamical System of Closed subscheme of Affine Space of dimension 3 over Rational Field defined by:
x - y

5.2. Dynamical systems on affine schemes
Defn: Defined on coordinates by sending \((x, y, z)\) to \((y, y, 2*y)\)

```
sage: R.<t> = PolynomialRing(QQ)
sage: A.<x,y,z> = AffineSpace(R, 3)
sage: X = A.subscheme(x^2-y^2)
sage: H = End(X)
sage: f = H([x^2/(t*y), t*y^2, x*z])
sage: DynamicalSystem_affine(f)
Dynamical System of Closed subscheme of Affine Space of dimension 3 over Univariate Polynomial Ring in t over Rational Field defined by:
 x^2 - y^2
Defn: Defined on coordinates by sending \((x, y, z)\) to
 \((x^2/(t*y), t*y^2, x*z)\)
```

```
sage: x = var('x')
sage: DynamicalSystem_affine(x^2+1)
Traceback (most recent call last):
 ... TypeError: Symbolic Ring cannot be the base ring
```

**conjugate**(*M*)

Conjugate this dynamical system by *M*, i.e. \(M^{-1} \circ f \circ M\).

If possible the new map will be defined over the same space. Otherwise, will try to coerce to the base ring of *M*.

**INPUT:**

- *M* – a square invertible matrix

**OUTPUT:**

An affine dynamical system

**EXAMPLES:**

```
sage: A.<t> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem_affine([t^2+1])
sage: f.conjugate(matrix([[1,2],[0,1]]))
Dynamical System of Affine Space of dimension 1 over Rational Field
 Defn: Defined on coordinates by sending (t) to
 \((t^2 + 4*t + 3)\)
```

```
sage: A.<x,y> = AffineSpace(ZZ,2)
sage: f = DynamicalSystem_affine([x^3+y^3,y^2])
sage: f.conjugate(matrix([[1,2,3],[0,1,2],[0,0,1]]))
Dynamical System of Affine Space of dimension 2 over Integer Ring
 Defn: Defined on coordinates by sending (x, y) to
 \((x^3 + 6*x^2*y + 12*x*y^2 + 9*y^3 + 9*x^2 + 36*x*y + 40*y^2 + 27*x + ˓→58*y + 28, y^2 + 4*y + 2)\)
```

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<i> = NumberField(x^2+1)
```

(continues on next page)
**dynatomic_polynomial** (*period*)

Compute the (affine) dynatomic polynomial of a dynamical system \( f : \mathbb{A}^1 \rightarrow \mathbb{A}^1 \).

The dynatomic polynomial is the analog of the cyclotomic polynomial and its roots are the points of formal period \( n \).

**ALGORITHM:**

Homogenize to a map \( f : \mathbb{P}^1 \rightarrow \mathbb{P}^1 \) and compute the dynatomic polynomial there. Then, dehomogenize.

**INPUT:**

- `period` – a positive integer or a list/tuple \([m, n]\), where \( m \) is the preperiod and \( n \) is the period

**OUTPUT:**

If possible, a single variable polynomial in the coordinate ring of the polynomial. Otherwise a fraction field element of the coordinate ring of the polynomial.

**EXAMPLES:**

```python
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: f = DynamicalSystem_affine([x^2+y^2, y^2])
sage: f.dynatomic_polynomial(2)
Traceback (most recent call last):
 ...
TypeError: does not make sense in dimension >1
```

```python
sage: A.<x> = AffineSpace(ZZ, 1)
sage: f = DynamicalSystem_affine([(x^2+1)/x])
sage: f.dynatomic_polynomial(4)
2*x^12 + 18*x^10 + 57*x^8 + 79*x^6 + 48*x^4 + 12*x^2 + 1
```

```python
sage: A.<x> = AffineSpace(CC, 1)
sage: f = DynamicalSystem_affine([x^2-10/9])
sage: f.dynatomic_polynomial([2, 1])
531441*x^4 - 649539*x^2 - 524880
```

```python
sage: A.<x> = AffineSpace(CC, 1)
sage: f = DynamicalSystem_affine([x^2+CC.0])
sage: f.dynatomic_polynomial(2)
x^2 + x + 1.00000000000000 + 1.00000000000000*I
```
\begin{verbatim}
sage: K.<c> = FunctionField(QQ)
sage: A.<x> = AffineSpace(K, 1)
sage: f = DynamicalSystem_affine([x^2 + c])
sage: f.dynatomic_polynomial(4)
x^12 + 6*c*x^10 + x^9 + (15*c^2 + 3*c)*x^8 + 4*c^2*x^7 + (20*c^3 + 12*c^2 + 1)*x^6 + (6*c^2 + 2*c)*x^5 + (15*c^4 + 18*c^3 + 3*c^2 + 4*c)*x^4 + (4*c^3 + 4*c^2 + 1)*x^3 + (6*c^5 + 12*c^4 + 6*c^3 + 5*c^2 + 2*c)*x^2 + (c^4 + 2*c^3 + c^2 + 2*c)*x + c^6 + 3*c^5 + 3*c^4 + 3*c^3 + 2*c^2 + 1

sage: A.<z> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem_affine([z^2+3/z+1/7])
sage: f.dynatomic_polynomial(1).parent()
Multivariate Polynomial Ring in z over Rational Field

sage: R.<c> = QQ[]
sage: A.<z> = AffineSpace(R,1)
sage: f = DynamicalSystem_affine([z^2 + c])
sage: f.dynatomic_polynomial([1,1])
z^2 + z + c

sage: A.<x> = AffineSpace(CC,1)
sage: F = DynamicalSystem_affine([(1/2*x^2 + CC(sqrt(3))]

sage: f.homogenize(2)
Dynamical System of Projective Space of dimension 2 over Complex Field with 53 bits of precision
\end{verbatim}

**homogenize** (n)

Return the homogenization of this dynamical system.

If its domain is a subscheme, the domain of the homogenized map is the projective embedding of the
domain. The domain and codomain can be homogenized at different coordinates: \(n[0]\) for the domain and \(n[1]\) for the codomain.

**INPUT:**

- \(n\) – a tuple of nonnegative integers. If \(n\) is an integer, then the two values of the tuple are assumed to be the same

**OUTPUT:** **DynamicalSystem_projective**

**EXAMPLES:**

\begin{verbatim}
sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: f = DynamicalSystem_affine([(x^2-2)/x^5, y^2])
sage: f.homogenize(2)
Dynamical System of Projective Space of dimension 2 over Rational Field
  Defn: Defined on coordinates by sending (x0 : x1 : x2) to
  (x0^2*x2^5 - 2*x2^7 : x0^5*x1^2 : x0*x2^2)

sage: A.<x,y> = AffineSpace(CC, 2)
sage: f = DynamicalSystem_affine([(x^2-2)/(x*y), y^2-x])
sage: f.homogenize((2, 0))
Dynamical System of Projective Space of dimension 2 over Complex Field with 53 bits of precision
\end{verbatim}
Defn: Defined on coordinates by sending \((x_0 : x_1 : x_2)\) to
\[
(x_0^2 x_1 x_2^2 : x_0^2 x_2^2 + (-2.00000000000000) x_2^4 : x_0 + x_1^3 - x_0^2)
\]

sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: X = A.subscheme([x-y^2])
sage: f = DynamicalSystem_affine([9*y^2, 3*y], domain=X)
sage: f.homogenize(2)
Dynamical System of Closed subscheme of Projective Space
of dimension 2 over Integer Ring defined by:
\[x_1^2 - x_0 x_2\]
Defn: Defined on coordinates by sending \((x_0 : x_1 : x_2)\) to
\[(9 x_1^2 : 3 x_1 x_2 : x_2^2)\]

sage: A.<x,y> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem_affine([x^2 - 1])
sage: f.homogenize((1, 0))
Dynamical System of Projective Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending \((x_0 : x_1)\) to
\[(x_1^2 : x_0^2 - x_1^2)\]

sage: R.<a> = PolynomialRing(QQbar)
sage: A.<x,y> = AffineSpace(R, 2)
sage: f = DynamicalSystem_affine([QQbar(sqrt(2))*x*y, a*x^2])
sage: f.homogenize(2)
Dynamical System of Projective Space of dimension 2 over Univariate
Polynomial Ring in a over Algebraic Field
Defn: Defined on coordinates by sending \((x_0 : x_1 : x_2)\) to
\[(1.414213562373095? x_0 x_1 : a x_0^2 : x_2^2)\]

sage: P.<x,y,z> = AffineSpace(QQ, 3)
sage: f = DynamicalSystem_affine([x^2 - 2*x*y + z*x, z^2 - y^2 , 5*z*y])
sage: f.homogenize(2).dehomogenize(2) == f
True

**multiplier**\((P, n, \text{check}=True)\)
Return the multiplier of the point \(P\) of period \(n\) by this dynamical system.

**INPUT:**
- \(P\) – a point on domain of the map
- \(n\) – a positive integer, the period of \(P\)
- \(\text{check}\) – (default: True) boolean, verify that \(P\) has period \(n\)

**OUTPUT:**
A square matrix of size self.codomain().dimension_relative() in the base_ring of the map.

**EXAMPLES:**

```python
sage: P.<x,y> = AffineSpace(QQ, 2)
sage: f = DynamicalSystem_affine([x^2, y^2])
```
sage: f.multiplier(P([1, 1]), 1)
[2 0]
[0 2]

sage: P.<x,y,z> = AffineSpace(QQ, 3)
sage: f = DynamicalSystem_affine([x, y^2, z^2 - y])
sage: f.multiplier(P([1/2, 1, 0]), 2)
[1 0 0]
[0 4 0]
[0 0 0]

sage: P.<x> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem_affine([x^2 + 1/2])
sage: f.multiplier(P([0.5 + 0.5*I]), 1)
[1.00000000000000 + 1.00000000000000*I]

sage: R.<t> = PolynomialRing(CC, 1)
sage: P.<x> = AffineSpace(R, 1)
sage: f = DynamicalSystem_affine([x^2 - t^2 + t])
sage: f.multiplier(P([-t + 1]), 1)
[(-2.00000000000000)*t + 2.00000000000000]

sage: P.<x,y> = AffineSpace(QQ, 2)
sage: X = P.subscheme([x^2-y^2])
sage: f = DynamicalSystem_affine([x^2, y^2], domain=X)
sage: f.multiplier(X([1, 1]), 1)
[2 0]
[0 2]

nth_iterate\( (P, n) \)
Return the \( n \)-th iterate of the point \( P \) by this dynamical system.

INPUT:
- \( P \) – a point in the map’s domain
- \( n \) – a positive integer

OUTPUT: a point in the map’s codomain

EXAMPLES:

sage: A.<x,y> = AffineSpace(QQ, 2)
sage: f = DynamicalSystem_affine([(x-2*y^2)/x, 3*x*y])
sage: f.nth_iterate(A(9, 3), 3)
(-104975/13123, -9566667)

sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: X = A.subscheme([x-y^2])
sage: f = DynamicalSystem_affine([9*y^2, 3*y], domain=X)
sage: f.nth_iterate(X(9, 3), 4)
(59049, 243)
sage: R.<t> = PolynomialRing(QQ)
sage: A.<x,y> = AffineSpace(FractionField(R), 2)
sage: f = DynamicalSystem_affine([(x-t^2*y^2)/x, t^x*y])
sage: f.nth_iterate(A(1, t), 3)
((-t^16 + 3*t^13 - 3*t^10 + t^7 + t^5 + t^3 - 1)/(t^5 + t^3 - 1), -t^9 - t^7 + t^4)

sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: X = A.subscheme([x^2-y^2])
sage: f = DynamicalSystem_affine([x^2, y^2, x+y], domain=X)
sage: f.nth_iterate_map(2)
Dynamical System of Closed subscheme of Affine Space of dimension 3 over Rational Field
defn: Defined on coordinates by sending (x, y, z) to
        (x^4, y^4, x^2 + y^2)

nth_iterate_map(n)
Return the n-th iterate of self.

ALGORITHM:
Uses a form of successive squaring to reducing computations.

Todo: This could be improved.

INPUT:
• n – a positive integer

OUTPUT: a dynamical system of affine space

EXAMPLES:

sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: f = DynamicalSystem_affine([(x^2-2)/(2*y), y^2-3*x])
sage: f.nth_iterate_map(2)
Dynamical System of Affine Space of dimension 2 over Rational Field
defn: Defined on coordinates by sending (x, y) to
        ((x^4 - 4*x^2 - 8*y^2 + 4)/(8*y^4 - 24*x*y^2),
        (2*y^5 - 12*x*y^3 + 18*x^2*y - 3*x^2 + 6)/(2*y))

sage: A.<x> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem_affine([(3*x^2-2)/(x)])
sage: f.nth_iterate_map(3)
Dynamical System of Affine Space of dimension 1 over Rational Field
defn: Defined on coordinates by sending (x) to
        ((2187*x^8 - 6174*x^6 + 6300*x^4 - 2744*x^2 + 432)/(81*x^7 -
        168*x^5 - 112*x^3 - 24*x))

sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: X = A.subscheme([x-y^2])
sage: f = DynamicalSystem_affine([9*x^2, 3*y], domain=X)

(continues on next page)
orbit\((P,n)\)

Return the orbit of \(P\) by the dynamical system.

Let \(F\) be this dynamical system. If \(n\) is an integer return \([P,F(P),\ldots,F^n(P)]\). If \(n\) is a list or tuple \(n = [m,k]\) return \([F^m(P),\ldots,F^k(P)]\).

**INPUT:**

- \(P\) – a point in the map’s domain
- \(n\) – a non-negative integer or list or tuple of two non-negative integers

**OUTPUT:** a list of points in the map’s codomain

**EXAMPLES:**

```python
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: f = DynamicalSystem_affine([(x-2*y^2)/x, 3*x*y])
sage: f.orbit(A(9, 3), 3)
[(9, 3), (-1, 81), (13123, -243), (-104975/13123, -9566667)]
sage: A.<x> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem_affine([(x-2)/x])
sage: f.orbit(A(1/2), [1, 3])
[(-3), (5/3), (-1/5)]
sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: X = A.subscheme([x-y^2])
sage: f = DynamicalSystem_affine([(9*y^2, 3*y), domain=X])
sage: f.orbit(X(9, 3), (0, 4))
[(9, 3), (81, 9), (729, 27), (6561, 81), (59049, 243)]
```

```python
sage: R.<t> = PolynomialRing(QQ)
sage: A.<x,y> = AffineSpace(FractionField(R), 2)
sage: f = DynamicalSystem_affine([(x-t*y^2)/x, t*x*y])
sage: f.orbit(A(1, t), 3)
[(1, t),
 (-t^3 + 1, t^2),
 ((t^5 + t^3 - 1)/(t^3 - 1), -t^6 + t^3),
 ((-t^16 + 3*t^13 - 3*t^10 + t^7 + t^5 + t^3 - 1)/(t^5 + t^3 - 1), -t^9 - t^7 + t^4))
```

(continues on next page)
class sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine_field(polys_or_rat_fncts, domain)

Bases: sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine, sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space_field

reduce_base_field()

Return this map defined over the field of definition of the coefficients.

The base field of the map could be strictly larger than the field where all of the coefficients are defined. This function reduces the base field to the minimal possible. This can be done when the base ring is a number field, QQbar, a finite field, or algebraic closure of a finite field.

OUTPUT: A dynamical system

EXAMPLES:

```python
sage: K.<t> = GF(5^2)
sage: A.<x,y> = AffineSpace(K, 2)
sage: f = DynamicalSystem_affine([x^2 + 3*y^2, 3*y^2])
sage: f.reduce_base_field()
Dynamical System of Affine Space of dimension 2 over Finite Field of size 5
Defn: Defined on coordinates by sending (x, y) to
 (x^2 - 2*y^2, -2*y^2)
```

```python
sage: A.<x,y> = AffineSpace(QQbar, 2)
sage: f = DynamicalSystem_affine([x^2 + QQbar(sqrt(3))*y^2, QQbar(sqrt(-1))*y^2])
sage: f.reduce_base_field()
Dynamical System of Affine Space of dimension 2 over Number Field in a with defining polynomial y^4 - y^2 + 1 with a = -0.866025403784439? + 0.5000000000000000?*I
Defn: Defined on coordinates by sending (x, y) to
 (x^2 + (a^3 - 2*a)*y^2, (a^3)*y^2)
```

```python
sage: K.<v> = CyclotomicField(5)
sage: A.<x,y> = AffineSpace(K, 2)
sage: f = DynamicalSystem_affine([(3*x^2 + y) / (5*x), (y^2+1) / (x+y)])
sage: f.reduce_base_field()
Dynamical System of Affine Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x, y) to
 ((3*x^2 + y)/(5*x), (5*y^2 + 5)/(5*x + 5*y))
```

weil_restriction()

Compute the Weil restriction of this morphism over some extension field.

If the field is a finite field, then this computes the Weil restriction to the prime subfield.

A Weil restriction of scalars - denoted $\text{Res}_{L/k}$ - is a functor which, for any finite extension of fields $L/k$ and any algebraic variety $X$ over $L$, produces another corresponding variety $\text{Res}_{L/k}(X)$, defined over $k$. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields. Since it is a functor it also applied to morphisms. In particular, the functor applied to a morphism gives the equivalent morphism from the Weil restriction of the domain to the Weil restriction of the codomain.
Scheme morphism on the Weil restrictions of the domain and codomain of the map.

EXAMPLES:

```python
sage: K.<v> = QuadraticField(5)
sage: A.<x,y> = AffineSpace(K, 2)
sage: f = DynamicalSystem_affine([x^2-y^2, y^2])
sage: f.weil_restriction()
Dynamical System of Affine Space of dimension 4 over Rational Field
 Defn: Defined on coordinates by sending (z0, z1, z2, z3) to
 (z0^2 + 5*z1^2 - z2^2 - 5*z3^2, 2*z0*z1 - 2*z2*z3, z2^2 + 5*z3^2, 2*z2*z3)

sage: K.<v> = QuadraticField(5)
sage: PS.<x,y> = AffineSpace(K, 2)
sage: f = DynamicalSystem_affine([x, y])
sage: F = f.weil_restriction()
sage: P = PS(2, 1)
sage: Q = P.weil_restriction()
sage: f(P).weil_restriction() == F(Q)
True
```

```python
class sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine_finite_field(polys_or_rat_functs, domain)

Bases: sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine_field, sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space_finite_field
```

cyclegraph()

Return the digraph of all orbits of this morphism mod $p$.

For subschemes, only points on the subscheme whose image are also on the subscheme are in the digraph.

OUTPUT: a digraph

EXAMPLES:

```python
sage: P.<x,y> = AffineSpace(GF(5), 2)
sage: f = DynamicalSystem_affine([x^2-y, x*y+1])
sage: f.cyclegraph()
Looped digraph on 25 vertices

sage: P.<x,y> = AffineSpace(GF(5), 2)
sage: f = DynamicalSystem_affine([x^2-y, x*y+1])
sage: f.cyclegraph()
Looped digraph on 27 vertices
```

```python
orbit_structure(P)

Every point is preperiodic over a finite field.
```

126 Chapter 5. Arithmetic Dynamical Systems
This function returns the pair \([m, n]\) where \(m\) is the preperiod and \(n\) is the period of the point \(P\) by this map.

INPUT:

- \(P\) – a point in the map’s domain

OUTPUT: a list \([m, n]\) of integers

EXAMPLES:

```python
sage: A.<x,y> = AffineSpace(GF(13), 2)
sage: f = DynamicalSystem_affine([x^2 - 1, y^2])
sage: f.orbit_structure(A(2, 3))
[1, 6]
```

```python
sage: A.<x,y,z> = AffineSpace(GF(49, 't'), 3)
sage: f = DynamicalSystem_affine([x^2 - z, x - y + z, y^2 - x^2])
sage: f.orbit_structure(A(1, 1, 2))
[7, 6]
```

### 5.3 Dynamical systems on projective schemes

A dynamical system of projective schemes determined by homogeneous polynomials functions that define what the morphism does on points in the ambient projective space.

The main constructor functions are given by `DynamicalSystem` and `DynamicalSystem_projective`. The constructors function can take either polynomials or a morphism from which to construct a dynamical system. If the domain is not specified, it is constructed. However, if you plan on working with points or subvarieties in the domain, it recommended to specify the domain.

The initialization checks are always performed by the constructor functions. It is possible, but not recommended, to skip these checks by calling the class initialization directly.

**AUTHORS:**

- David Kohel, William Stein
- William Stein (2006-02-11): fixed bug where \(P(0,0,0)\) was allowed as a projective point.
- Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.
- Ben Hutz (2013-03) iteration functionality and new directory structure for affine/projective, height functionality
- Brian Stout, Ben Hutz (Nov 2013) - added minimal model functionality
- Dillon Rose (2014-01): Speed enhancements
- Ben Hutz (2015-11): iteration of subschemes
- Ben Hutz (2017-7): relocate code and create class

```python
class sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective(polys, domain)
```

A dynamical system of projective schemes determined by homogeneous polynomials that define what the morphism does on points in the ambient projective space.
Warning: You should not create objects of this class directly because no type or consistency checking is performed. The preferred method to construct such dynamical systems is to use \texttt{DynamicalSystem\_projective()} function.

INPUT:

- \texttt{morphism\_or\_polys} – a SchemeMorphism, a polynomial, a rational function, or a list or tuple of homogeneous polynomials.
- \texttt{domain} – optional projective space or projective subscheme.
- \texttt{names} – optional tuple of strings to be used as coordinate names for a projective space that is constructed; defaults to `\textquoteleft\textquoteleft X', 'Y'.

The following combinations of \texttt{morphism\_or\_polys} and \texttt{domain} are meaningful:

- \texttt{morphism\_or\_polys} is a SchemeMorphism; \texttt{domain} is ignored in this case.
- \texttt{morphism\_or\_polys} is a list of homogeneous polynomials that define a rational endomorphism of \texttt{domain}.
- \texttt{morphism\_or\_polys} is a list of homogeneous polynomials and \texttt{domain} is unspecified; \texttt{domain} is then taken to be the projective space of appropriate dimension over the common base ring, if one exists, of the elements of \texttt{morphism\_or\_polys}.
- \texttt{morphism\_or\_polys} is a single polynomial or rational function; \texttt{domain} is ignored and taken to be a 1-dimensional projective space over the base ring of \texttt{morphism\_or\_polys} with coordinate names given by \texttt{names}.

OUTPUT: \texttt{DynamicalSystem\_projective}.

EXAMPLES:

```
sage: P1.<x,y> = ProjectiveSpace(QQ,1)
sage: DynamicalSystem_projective([y, 2*x])
Dynamical System of Projective Space of dimension 1 over Rational Field
 Defn: Defined on coordinates by sending (x : y) to
 (y : 2*x)
```

We can define dynamical systems on \(P^1\) by giving a polynomial or rational function:

```
sage: R.<t> = QQ[]
sage: DynamicalSystem_projective(t^2 - 3)
Dynamical System of Projective Space of dimension 1 over Rational Field
 Defn: Defined on coordinates by sending (X : Y) to
 (X^2 - 3*Y^2 : Y^2)
sage: DynamicalSystem_projective(1/t^2)
Dynamical System of Projective Space of dimension 1 over Rational Field
 Defn: Defined on coordinates by sending (X : Y) to
 (Y^2 : X^2)
```

Symbolic Ring elements are not allowed:

```
sage: R.<x> = PolynomialRing(QQ,1)
sage: DynamicalSystem_projective(x^2, names=['a','b'])
Dynamical System of Projective Space of dimension 1 over Rational Field
 Defn: Defined on coordinates by sending (a : b) to
 (a^2 : b^2)
```
```python
sage: x,y = var('x,y')
sage: DynamicalSystem_projective([x^2,y^2])
Traceback (most recent call last):
 ... ValueError: [x^2, y^2] must be elements of a polynomial ring
```

```python
sage: R.<x> = PolynomialRing(QQ,1)
sage: DynamicalSystem_projective(x^2)
Dynamical System of Projective Space of dimension 1 over Rational Field
 Defn: Defined on coordinates by sending (X : Y) to
 (X^2 : Y^2)
```

```python
sage: R.<t> = PolynomialRing(QQ)
sage: P.<x,y,z> = ProjectiveSpace(R, 2)
sage: X = P.subscheme([x])
sage: DynamicalSystem_projective([x^2, t*y^2, x*z], domain=X)
Dynamical System of Closed subscheme of Projective Space of dimension
 2 over Univariate Polynomial Ring in t over Rational Field defined by:
 x
 Defn: Defined on coordinates by sending (x : y : z) to
 (x^2 : t*y^2 : x*z)
```

When elements of the quotient ring are used, they are reduced:

```python
sage: P.<x,y,z> = ProjectiveSpace(CC, 2)
sage: u,v,w = X.coordinate_ring().gens()
sage: DynamicalSystem_projective([u^2, v^2, w*u], domain=X)
Dynamical System of Closed subscheme of Projective Space of dimension
 2 over Complex Field with 53 bits of precision defined by:
 x - y
 Defn: Defined on coordinates by sending (x : y : z) to
 (y^2 : y^2 : y*z)
```

We can also compute the forward image of subschemes through elimination. In particular, let $X = V(h_1, \ldots, h_t)$ and define the ideal $I = (h_1, \ldots, h_t, y_0 - f_0(\bar{x}), \ldots, y_n - f_n(\bar{x}))$. Then the elimination ideal $I_{n+1} = I \cap K[y_0, \ldots, y_n]$ is a homogeneous ideal and $f(X) = V(I_{n+1})$:

```python
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([(x-2*y)^2, (x-2*z)^2, x^2])
sage: X = P.subscheme(y-z)
sage: f(f(f(X)))
Closed subscheme of Projective Space of dimension 2 over Rational Field
 defined by:
 y - z
```

```python
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: f = DynamicalSystem_projective([(x-2*y)^2, (x-2*z)^2, (x-2*w)^2, x^2])
sage: f(P.subscheme([x,y,z]))
Closed subscheme of Projective Space of dimension 3 over Rational Field
 defined by:
 w,
```

(continues on next page)
y,
x

\begin{verbatim}
    sage: T.<x,y,z,w,u> = ProductProjectiveSpaces([2, 1], QQ)
    sage: DynamicalSystem_projective([x^2*u, y^2*w, z^2*u, w^2, u^2], domain=T)
    Dynamical System of Product of projective spaces P^2 x P^1 over Rational Field
    Defn: Defined by sending (x : y : z , w : u) to
          (x^2*u : y^2*w : z^2*u , w^2 : u^2).

    sage: K.<v> = QuadraticField(-7)
    sage: P.<x,y> = ProjectiveSpace(K, 1)
    sage: f = DynamicalSystem([x^3 + v*x*y^2, y^3])
    sage: fbar = f.change_ring(QQbar)
    sage: fbar.is_postcritically_finite()
    False

    affine_preperiodic_model(m, n, return_conjugation=False)

    Return a dynamical system conjugate to this one with affine (n, m) preperiodic points.

    If the base ring of this dynamical system is finite, there may not be a model with affine preperiodic points,
    in which case a ValueError is thrown.

    INPUT:
    • m – the preperiod of the preperiodic points to make affine.
    • n – the period of the preperiodic points to make affine.
    • return_conjugation – (default: False) If True, return a tuple (g, phi) where g is a model with
      affine (n, m) preperiodic points and phi is the matrix that moves f to g.

    OUTPUT: a dynamical system conjugate to this one.

    EXAMPLES:

    sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
    sage: f = DynamicalSystem_projective([x^2, y^2, z^2])
    sage: g = f.affine_preperiodic_model(0, 1); g
    Dynamical System of Projective Space of dimension 2 over Rational Field
    Defn: Defined on coordinates by sending (x : y : z) to
          (-x^2 : 2*x^2 + 2*x*y + y^2 : 2*x^2 + 2*x*y + 2*y^2 - 2*y*z + z^2)

    We can check that g has affine fixed points:

    sage: g.periodic_points(1)
    [(-1 : 1 : 1), (-1/2 : 1/2 : 1), (-1/2 : 1 : 1), (-1/3 : 2/3 : 1), (0 : 0 : 1),
     (0 : 1/2 : 1), (0 : 1 : 1)]

    sage: P.<x,y,z> = ProjectiveSpace(GF(9), 2)
    sage: f = DynamicalSystem_projective([x^2, y^2, z^2])
    sage: f.affine_preperiodic_model(0, 1)
    Dynamical System of Projective Space of dimension 2 over Finite Field in z2 of size 3^2
    Defn: Defined on coordinates by sending (x : y : z) to
          (continues on next page)
\end{verbatim}
Sage: \texttt{R.<c> = GF(3)[]}
Sage: \texttt{P.<x,y,z> = ProjectiveSpace(R, 2)}
Sage: \texttt{f = DynamicalSystem_projective([x^2, y^2, z^2])}
Sage: \texttt{f.affine_preperiodic_model(0, 1)} \# \textit{long time}

Dynamical System of Projective Space of dimension 2 over Univariate Polynomial Ring in \(c\) over Finite Field of size 3
Defn: Defined on coordinates by sending \((x : y : z)\) to

\[
((2c^4 + c^3)x^2 : (2c^4 + c^3)x^2 + (2c^4 + c^3)x*y + (c^4 + 2c^3 + 2c^2)*y^2 : c^3x^2 + c^3x*y + (2c^3 + 2c^2)*y^2 + (c^3 + 2c^2)*y*z + (2c^4 + 2c^3 + 2c^2)*z^2)
\]

Sage: \texttt{K.<k> = CyclotomicField(3)}
Sage: \texttt{P.<x,y,z> = ProjectiveSpace(K, 2)}
Sage: \texttt{f = DynamicalSystem_projective([x^2 + k*x*y + y^2, z^2, y^2])}
Sage: \texttt{f.affine_preperiodic_model(1, 1)}

Dynamical System of Projective Space of dimension 2
over Cyclotomic Field of order 3 and degree 2
Defn: Defined on coordinates by sending \((x : y : z)\) to

\[
(x^2 + y^2 + (-k + 2)x*z - 2y*z + (-k + 3)z^2 : -2x^2 + (k - 4)x*z + (k - 3)z^2 : -x^2 + (k - 2)x*z + (k - 2)z^2)
\]

Sage: \texttt{P.<x,y> = ProjectiveSpace(QQ, 1)}
Sage: \texttt{f = DynamicalSystem_projective([x^2 + y^2, y^2])}
Sage: \texttt{g, mat = f.affine_preperiodic_model(0, 1, return_conjugation=True)}
Sage: \texttt{g == f.conjugate(mat)}

True

Sage: \texttt{P.<x,y,z> = ProjectiveSpace(QQ, 2)}
Sage: \texttt{X = P.subscheme(2*y - z)}
Sage: \texttt{f = DynamicalSystem_projective([x^2 + y^2, z^2 + y^2, z^2], domain=X)}
Sage: \texttt{f.affine_preperiodic_model(0, 1)}

Dynamical System of Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:

\[
2*y - z
\]
Defn: Defined on coordinates by sending \((x : y : z)\) to

\[
(2x^2 + y^2 + 4x*z - 2y*z + 4z^2 : -x^2 - y^2 - 2x*z + 2y*z - 3z^2 : -2x^2 - 2x*z - 2z^2)
\]

\texttt{all_minimal_models}(\texttt{return_transformation=False, prime_list=None, algorithm=None, check_minimal=True})

Determine a representative in each \(SL(2, \mathbb{Z})\)-orbit of this map.

This can be done either with the Bruin-Molnar algorithm or the Hutz-Stoll algorithm. The Hutz-Stoll algorithm requires the map to have minimal resultant and then finds representatives in orbits with minimal resultant. The Bruin-Molnar algorithm finds representatives with the same resultant (up to sign) of the given map.
Bruin-Molnar does not work for polynomials and is more efficient for large primes.

INPUT:

- `return_transformation` – (default: False) boolean; this signals a return of the $PGL_2$ transformation to conjugate this map to the calculated models
- `prime_list` – (optional) a list of primes, in case one only wants to determine minimality at those specific primes
- `algorithm` – (optional) string; can be one of the following:
  - `'BM'` - the Bruin-Molnar algorithm [BM2012]
  - `'HS'` - for the Hutz-Stoll algorithm [HS2018]
  
  If not specified, properties of the map are utilized to choose
- `check_minimal` – (optional) boolean; to first check if the map is minimal and if not, compute a minimal model before computing for orbit representatives

OUTPUT:

A list of pairs $(F, m)$, where $F$ is dynamical system on the projective line and $m$ is the associated $PGL_2(Q)$ element. Or just a list of dynamical systems if not returning the conjugation.

EXAMPLES:

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem([2*x^2, 3*y^2])
sage: f.all_minimal_models()

[Dynamical System of Projective Space of dimension 1 over Rational Field
 Defined on coordinates by sending (x : y) to
 (x^2 : y^2)]
```

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem([x^3 - c^2*y^3, x*y^2])
sage: len(f.all_minimal_models(algorithm='HS'))
14
sage: len(f.all_minimal_models(prime_list=[2], algorithm='HS'))
2
```

REFERENCES:

- [BM2012]
- [HS2018]

`automorphism_group(**kwds)`

Calculates the subgroup of $PGL_2$ that is the automorphism group of this dynamical system.

The automorphism group is the set of $PGL(2)$ elements that fixes this map under conjugation.

INPUT:

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem([237568*x^3 + 1204224*x^2*y + 2032560*x*y^2
 : + 1142289*y^3, -131072*x^3 + 663552*x^2*y - 1118464*x*y^2
 : - 627664*y^3])
sage: len(f.all_minimal_models(algorithm='BM'))
2
```
keywords:
- **starting_prime** – (default: 5) the first prime to use for CRT
- **algorithm** – (optional) can be one of the following:
  - 'CRT' - Chinese Remainder Theorem
  - 'fixed_points' - fixed points algorithm
- **return_functions** – (default: False) boolean; True returns elements as linear fractional transformations and False returns elements as $PGL_2$ matrices
- **iso_type** – (default: False) boolean; True returns the isomorphism type of the automorphism group

OUTPUT: a list of elements in the automorphism group

AUTHORS:
- Original algorithm written by Xander Faber, Michelle Manes, Bianca Viray
- Modified by Joao Alberto de Faria, Ben Hutz, Bianca Thompson

REFERENCES:
- [FMV2014]

EXAMPLES:

```python
sage: R.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2-y^2, x*y])
sage: f.automorphism_group(return_functions=True)
[x, -x]
```

```python
sage: R.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 + 5*x*y + 5*y^2, 5*x^2 + 5*x*y + y^2])
sage: f.automorphism_group()
[[1 0]
 [0 2]]
```

```python
sage: R.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([3*x^2*y - y^3, x^3 - 3*x*y^2])
```

```python
sage: A.<z> = AffineSpace(QQ,1)
sage: f = DynamicalSystem_affine([1/z^3])
sage: F = f.homogenize(1)
sage: F.automorphism_group()
```

(continues on next page)
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
-w - 1 & 0 & 0 \\
0 & -w - 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\]

**canonical_height** \((P, **kwds)**

Evaluate the (absolute) canonical height of \(P\) with respect to this dynamical system.

Must be over number field or order of a number field. Specify either the number of terms of the series to evaluate or the error bound required.

**ALGORITHM:**

The sum of the Green’s function at the archimedean places and the places of bad reduction.

If function is defined over \(\mathbb{Q}\) uses Wells’ Algorithm, which allows us to not have to factor the resultant.

**INPUT:**

- \(P\) – a projective point

**kwds:**

- `badprimes` – (optional) a list of primes of bad reduction
- `N` – (default: 10) positive integer. number of terms of the series to use in the local green functions
- `prec` – (default: 100) positive integer, float point or \(p\)-adic precision
- `error_bound` – (optional) a positive real number

**OUTPUT:** a real number

**EXAMPLES:**

```python
sage: P.<x,y> = ProjectiveSpace(ZZ,1)
sage: f = DynamicalSystem_projective([x^2+y^2, 2*x*y]);
sage: f.canonical_height(P.point([5,4]), error_bound=0.001)
2.197055319503404898926835324
```
sage: f.canonical_height(P.point([2,1]), error_bound=0.001)
1.0984430632822307984974382955

Notice that preperiodic points may not return exactly 0:

sage: R.<X> = PolynomialRing(QQ)
sage: K.<a> = NumberField(X^2 + X - 1)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^2-2*y^2, y^2])
sage: Q = P.point([a,1])
sage: f.canonical_height(Q, error_bound=0.000001) # Answer only within error_
˓→bound of 0
5.7364919788790160119266380480e-8
sage: f.nth_iterate(Q,2) == Q # but it is indeed preperiodic
True

sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: X = P.subscheme(x^2-y^2);
sage: f = DynamicalSystem_projective([x^2,y^2, 4*z^2], domain=X);
sage: Q = X([4,4,1])
sage: f.canonical_height(Q, badprimes=[2])
0.0013538030870311431824555314882

sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: X = P.subscheme(x^2-y^2);
sage: f = DynamicalSystem_projective([1000*x^2-29*y^2, 1000*y^2], domain=X)
sage: Q = X(-1/4, 1)
sage: f.canonical_height(Q, error_bound=0.01)
3.7996079979254623065837411853

5.3. Dynamical systems on projective schemes 135
Discrete dynamics

Conjugate this dynamical system by $M$, i.e. $M^{-1} \circ f \circ M$.

**INPUT:**

- $M$ – a square invertible matrix
- *adjugate* – (default: False) boolean, also classically called adjoint, takes a square matrix $M$ and finds the transpose of its cofactor matrix. Used for conjugation in place of inverse when specified 'True'. Functionality is the same in projective space.
- *normalize* – (default: False) boolean, if normalize is 'True', then the function `normalize_coordinates` is called.

**OUTPUT:** a dynamical system

**EXAMPLES:**

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem([2*(-2*x^3 + 3*(x^2*y)) + 3*y^3, 3*y^3])
sage: f.canonical_height(P(1,0))
0.00000000000000000000000000000
```

```python
sage: f.conjugate(M, adjugate=False, normalize=False)
Dynamical System of Projective Space of dimension 1 over Integer Ring
Defn: Defined on coordinates by sending (x : y) to
(2*x^2 + 4*x*y + 3*y^2 : y^2)
```

```python
sage: R.<x> = PolynomialRing(QQ)
sage: K.<i> = NumberField(x^2+1)
sage: P.<x,y> = ProjectiveSpace(ZZ,1)
sage: f = DynamicalSystem_projective([x^3+y^3, y^3])
sage: f.conjugate(matrix([[i,0], [0,-i]]))
Dynamical System of Projective Space of dimension 1 over Integer Ring
Defn: Defined on coordinates by sending (x : y) to
(-x^3 + y^3 : -y^3)
```

```python
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2])
sage: f.conjugate(matrix([[1,2,3], [0,1,2], [0,0,1]]))
Dynamical System of Projective Space of dimension 2 over Integer Ring
Defn: Defined on coordinates by sending (x : y : z) to
(2*x^2 + 1/8*y^2 : 1/2*y^2)
```

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2])
sage: f.conjugate(matrix([[2,0], [0,1/2]]))
Dynamical System of Projective Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x : y) to
(2*x^2 + 1/8*y^2 : 1/2*y^2)
```
Todo: Use the left and right action functionality to replace the code below with #return DynamicalSystem_projective(M.inverse()*self*M, domain=self.codomain()) once there is a function to pass to the smallest field of definition.

**critical_height(**kwds**)**

Compute the critical height of this dynamical system.

The critical height is defined by J. Silverman as the sum of the canonical heights of the critical points. This must be dimension 1 and defined over a number field or number field order.

The computations can be done either over the algebraic closure of the base field or over the minimal extension of the base field that contains the critical points.

**INPUT:**

kwds:

- **badprimes** – (optional) a list of primes of bad reduction
- **N** – (default: 10) positive integer; number of terms of the series to use in the local green functions
- **prec** – (default: 100) positive integer, float point or $p$-adic precision
- **error_bound** – (optional) a positive real number
- **use_algebraic_closure** – boolean (default: True) – If True uses the algebraic closure. If False, uses the smallest extension of the base field containing all the critical points.

**OUTPUT:** real number

**EXAMPLES:**

```python
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^3+7*y^3, 11*y^3])
sage: f.critical_height()
1.1989273321156851418802151128
```

```python
sage: K.<w> = QuadraticField(2)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^2+w*y^2, y^2])
sage: f.critical_height()
0.16090842452312941163719755472
```

Postcritically finite maps have critical height 0:

```python
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^3-3/4*x*y^2 + 3/4*y^3, y^3])
```
sage: f.critical_height(error_bound=0.0001)
0.00000000000000000000000000000

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^3+3*x*y^2, y^3])
sage: f.critical_height(use_algebraic_closure=False)
0.000023477016733897112886491967991
sage: f.critical_height()
0.000023477016733897112886491967991

```
critical_point_portrait(check=True, use_algebraic_closure=True)
```

If this dynamical system is post-critically finite, return its critical point portrait.

This is the directed graph of iterates starting with the critical points. Must be dimension 1. If check is True, then the map is first checked to see if it is postcritically finite.

The computations can be done either over the algebraic closure of the base field or over the minimal extension of the base field that contains the critical points.

INPUT:

• check – boolean (default: True)
• use_algebraic_closure – boolean (default: True) – If True uses the algebraic closure. If False, uses the smallest extension of the base field containing all the critical points.

OUTPUT: a digraph

EXAMPLES:

```
sage: R.<z> = QQ[]
sage: K.<v> = NumberField(z^6 + 2*z^5 + 2*z^4 + 2*z^3 + z^2 + 1)
sage: PS.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^2+v*y^2, y^2])
sage: f.critical_point_portrait(check=False) # long time
Looped digraph on 6 vertices
```

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^5 + 5/4*x*y^4, y^5])
sage: f.critical_point_portrait(check=False)
Looped digraph on 5 vertices
```

```
sage: R.<t> = QQ[]
sage: K.<v> = NumberField(t^3 + 2*t^2 + t + 1)
sage: phi = K.embeddings(QQbar)[0]
sage: P.<x, y> = ProjectiveSpace(K, 1)
sage: f = DynamicalSystem_projective([x^2 + v*y^2, y^2])
```

Traceback (most recent call last):
...
TypeError: map must be post-critically finite
sage: f.change_ring(phi).critical_point_portrait()
Looped digraph on 4 vertices

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([8*x^4 - 8*x^2*y^2 + y^4, y^4])
sage: f.critical_point_portrait(use_algebraic_closure=False)  #long time
Looped digraph on 6 vertices

sage: P.<x,y> = ProjectiveSpace(QQbar,1)
sage: f = DynamicalSystem_projective([8*x^4 - 8*x^2*y^2 + y^4, y^4])
sage: f.critical_point_portrait()  #long time
Looped digraph on 6 vertices

sage: P.<x,y> = ProjectiveSpace(GF(3),1)
sage: f = DynamicalSystem_projective([x^2 + x*y - y^2, x*y])
sage: f.critical_point_portrait(use_algebraic_closure=False)
Looped digraph on 6 vertices
sage: f.critical_point_portrait()  #long time
Looped digraph on 6 vertices

**critical_points** *(R=None)*

Return the critical points of this dynamical system defined over the ring \(R\) or the base ring of this map.

Must be dimension 1.

INPUT:

- \(R\) – (optional) a ring

OUTPUT: a list of projective space points defined over \(R\)

EXAMPLES:

```
sage: setVerbose(None)
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^3-2*x*y^2 + 2*y^3, y^3])
sage: f.critical_points()
[(1 : 0)]
sage: K.<w> = QuadraticField(6)
sage: f.critical_points(K)
[(-1/3*w : 1), (1/3*w : 1), (1 : 0)]
```

**critical_subscheme**()

Return the critical subscheme of this dynamical system.

OUTPUT: projective subscheme

EXAMPLES:
sage: set_verbose(None)
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^3-2*x*y^2 + 2*y^3, y^3])
sage: f.critical_subscheme()
Closed subscheme of Projective Space of dimension 1 over Rational Field
defined by:
9*x^2*y^2 - 6*y^4

sage: set_verbose(None)
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([2*x^2-y^2, x*y])
sage: f.critical_subscheme()
Closed subscheme of Projective Space of dimension 1 over Rational Field
defined by:
4*x^2 + 2*y^2

sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: f = DynamicalSystem_projective([2*x^2-y^2, x*y, z^2])
sage: f.critical_subscheme()
Closed subscheme of Projective Space of dimension 2 over Rational Field
defined by:
8*x^2*z + 4*y^2*z

sage: P.<x,y,z,w> = ProjectiveSpace(GF(81),3)
sage: g = DynamicalSystem_projective([x^2+y^3, y^3+z^3, z^3+x^3, w^3])
sage: g.critical_subscheme()
Traceback (most recent call last):
... TypeError: the function is not a morphism

degree_sequence(iterates=2)

Return sequence of degrees of normalized iterates starting with the degree of this dynamical system.

INPUT: iterates – (default: 2) positive integer

OUTPUT: list of integers

EXAMPLES:

sage: P2.<X,Y,Z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([Z^2, X*Y, Y^2])
sage: f.degree_sequence(15)
[2, 3, 5, 8, 11, 17, 24, 31, 45, 56, 68, 91, 93, 184, 275]

sage: F.<t> = PolynomialRing(QQ)
sage: P2.<X,Y,Z> = ProjectiveSpace(F, 2)
sage: f = DynamicalSystem_projective([Y*Z, X*Y, Y^2 + t*X*Z])
sage: f.degree_sequence(5)
[2, 3, 5, 8, 13]

sage: P2.<X,Y,Z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([X^2, Y^2, Z^2])
sage: f.degree_sequence(10)
[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

sage: P2.<X,Y,Z> = ProjectiveSpace(ZZ, 2)
sage: f = DynamicalSystem_projective([X*Y, Y*Z+Z^2, Z^2])
sage: f.degree_sequence(10)
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

dehomogenize(n)
Return the standard dehomogenization at the \( n[0] \) coordinate for the domain and the \( n[1] \) coordinate for the codomain.

Note that the new function is defined over the fraction field of the base ring of this map.

INPUT:

- \( n \) – a tuple of nonnegative integers; if \( n \) is an integer, then the two values of the tuple are assumed to be the same

OUTPUT:

If the dehomogenizing indices are the same for the domain and codomain, then a DynamicalSystem_affine given by dehomogenizing the source and target of self with respect to the given indices is returned. If the dehomogenizing indices for the domain and codomain are different then the resulting affine patches are different and a scheme morphism is returned.

EXAMPLES:

sage: P.<x,y> = ProjectiveSpace(ZZ,1)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2])
sage: f.dehomogenize(0)
Dynamical System of Affine Space of dimension 1 over Integer Ring
  Defn: Defined on coordinates by sending (y) to
        (y^2/(y^2 + 1))
sage: f.dehomogenize((0, 1))
Scheme morphism:
  From: Affine Space of dimension 1 over Integer Ring
  To:   Affine Space of dimension 1 over Integer Ring
  Defn: Defined on coordinates by sending (y) to
        ((y^2 + 1)/y^2)

dynamical_degree(N=3, prec=53)
Return an approximation to the dynamical degree of this dynamical system. The dynamical degree is defined as \( \lim_{n \to \infty} \sqrt[\deg(f^n)]{n} \).

INPUT:

- \( N \) – (default: 3) positive integer, iterate to use for approximation
- \( prec \) – (default: 53) positive integer, real precision to use when computing root
OUTPUT: real number

EXAMPLES:

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([x^42 + (x^2y), y^42])
sage: f.dynamical_degree()
2.00000000000000
```

```python
sage: P2.<X,Y,Z> = ProjectiveSpace(ZZ, 2)
sage: f = DynamicalSystem_projective([X^4Y, Y^4Z+Z^4, Z^4])
sage: f.dynamical_degree(N=5, prec=100)
1.4309690811052555010452244131
```

dynatomic_polynomial(period)

For a dynamical system of \( \mathbb{P}^1 \) compute the dynatomic polynomial.

The dynatomic polynomial is the analog of the cyclotomic polynomial and its roots are the points of formal period \( \text{period} \). If possible the division is done in the coordinate ring of this map and a polynomial is returned. In rings where that is not possible, a FractionField element will be returned. In certain cases, when the conversion back to a polynomial fails, a SymbolicRing element will be returned.

**ALGORITHM:**

For a positive integer \( n \), let \( [F_n, G_n] \) be the coordinates of the \( n \text{th} \) iterate of \( f \). Then construct

\[
\Phi^*_n(f)(x, y) = \sum_{d|n} (yF_d(x, y) - xG_d(x, y))\mu(n/d),
\]

where \( \mu \) is the Möbius function.

For a pair \([m, n]\), let \( f^m = [F_m, G_m] \). Compute

\[
\Phi^*_{m,n}(f)(x, y) = \Phi^*_n(f)(F_m, G_m)/\Phi^*_n(f)(F_{m-1}, G_{m-1})
\]

**REFERENCES:**

- [Hutz2015]
- [MoPa1994]

**INPUT:**

- period – a positive integer or a list/tuple \([m, n]\) where \( m \) is the preperiod and \( n \) is the period

**OUTPUT:**

If possible, a two variable polynomial in the coordinate ring of this map. Otherwise a fraction field element of the coordinate ring of this map. Or, a SymbolicRing element.

**Todo:**

- Do the division when the base ring is \( p \)-adic so that the output is a polynomial.
- Convert back to a polynomial when the base ring is a function field (not over \( \mathbb{Q} \) or \( \mathbb{F}_p \)).

**EXAMPLES:**
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 + y^2, x*y])
sage: f.dynatomic_polynomial(2)
x^2 + x*y + 2*y^2

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 + y^2, x^3*y])
sage: f.dynatomic_polynomial(4)
2^8*x^12 + 18*x^10*y^2 + 57*x^8*y^4 + 79*x^6*y^6 + 48*x^4*y^8 + 12*x^2*y^10 + y^12

sage: P.<x,y> = ProjectiveSpace(ZZ,1)
sage: f = DynamicalSystem_projective([x^2 + y^2, x*y])
sage: f.dynatomic_polynomial([2,1])
x^4*y^2 - 11/9*x^2*y^4 - 80/81*y^6

sage: P.<x,y> = ProjectiveSpace(CC,1)
sage: f = DynamicalSystem_projective([x^2 + y^2, 3*x*y])
sage: f.dynatomic_polynomial([3])
13.0000000000000000000000000000000000*x^6 + 117.0000000000000000000000000000000000*x^4*y^2 + 78.0000000000000000000000000000000000*y^6

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 - 10/9*y^2, y^2])
sage: f.dynatomic_polynomial([2,1])
x^4*y^2 - 11/9*x^2*y^4 - 80/81*y^6

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 - 29/16*y^2, y^2])
sage: f.dynatomic_polynomial([2,3])
x^12 - 95/8*x^10*y^2 + 13799/256*x^8*y^4 - 119953/1024*x^6*y^6 + 8198847/65536*x^4*y^8 - 31492431/524288*x^2*y^10 + 172692729/16777216*y^12

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 - y^2, y^2])
sage: f.dynatomic_polynomial([1,2])
x^2 - x*y

sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: f = DynamicalSystem_projective([x^2 + y^2, x*y, z^2])
sage: f.dynatomic_polynomial(2)
Traceback (most recent call last):
...  
TypeError: does not make sense in dimension >1

sage: P.<x,y> = ProjectiveSpace(Qp(5),1)
sage: f = DynamicalSystem_projective([x^2 + y^2, y^2])
sage: f.dynatomic_polynomial(2)
(x^4*y + (2 + O(5^20))*x^2*y^3 - x*y^4 + (2 + O(5^20))*y^5)/(x^2*y - x*y^2 + y^3)
sage: L.<t> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(L, 1)
sage: f = DynamicalSystem_projective([x^2 + t*y^2, y^2])
sage: f.dynatomic_polynomial(2)
x^2 + x*y + (t + 1)*y^2

sage: K.<c> = PolynomialRing(ZZ)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2])
sage: f.dynatomic_polynomial([1, 2])
x^2 - x*y + (c + 1)*y^2

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 + y^2, x*y])
sage: f.dynatomic_polynomial(2)
x^4 + 4*x^2*y^2 + y^4

sage: R.<X> = PolynomialRing(QQ)
sage: K.<c> = NumberField(X^4 + 4*X^2 + 1)
sage: PP = P.change_ring(K)
sage: ff = f.change_ring(K)
sage: p = PP((c, 1))
sage: ff.nth_iterate(p, 4) == ff.nth_iterate(p, 2)
True

sage: P.<x,y> = ProjectiveSpace(CC, 1)
sage: f = DynamicalSystem_projective([x^2 - CC.0/3*y^2, y^2])
sage: f.dynatomic_polynomial(2)
(x^4*y + (-0.6666666666666666*I)*x^2*y^3 - x*y^4 + (-0.1111111111111111 - 0.
˓→33333333333333333*I)*y^5)/(x^2*y - x*y^2 + (-0.3333333333333333*I)*y^3)

sage: P.<x,y> = ProjectiveSpace(CC, 1)
sage: f = DynamicalSystem_projective([x^2-CC.0/5*y^2, y^2])
sage: f.dynatomic_polynomial(2)
x^2 + x*y + (1.000000000000000 - 0.200000000000000*I)*y^2

sage: L.<t> = PolynomialRing(QuadraticField(2).maximal_order())
sage: P.<x, y> = ProjectiveSpace(L.fraction_field(), 1)
sage: f = DynamicalSystem_projective([x^2 + (t^2 + 1)*y^2, y^2])
sage: f.dynatomic_polynomial(2)
x^2 + x*y + (t^2 + 2)*y^2

\begin{Verbatim}
sage: P.<x,y> = ProjectiveSpace(ZZ, 1)
sage: f = DynamicalSystem_projective([x^2 - 5*y^2, y^2])
sage: f.dynatomic_polynomial([3,0 ])
0
\end{Verbatim}

\texttt{green\_function}(P, v, **kwds)
Evaluate the local Green's function at the place \(v\) for \(P\) with \(N\) terms of the series or to within a given error bound.

Must be over a number field or order of a number field. Note that this is the absolute local Green's function so is scaled by the degree of the base field.

Use \(v=0\) for the archimedean place over \(\mathbb{Q}\) or field embedding. Non-archimedean places are prime ideals for number fields or primes over \(\mathbb{Q}\).

\textbf{ALGORITHM:}
See Exercise 5.29 and Figure 5.6 of [Sil2007].

\textbf{INPUT:}

- \(P\) – a projective point
- \(v\) – non-negative integer. a place, use 0 for the archimedean place

\textbf{kwds:}
- \(N\) – (optional - default: 10) positive integer. number of terms of the series to use
- \(\text{prec}\) – (default: 100) positive integer, float point or \(p\)-adic precision
- \(\text{error\_bound}\) – (optional) a positive real number

\textbf{OUTPUT:} a real number

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2+y^2, x*y]);
sage: Q = P(5, 1)
sage: f.green_function(Q, 0, N=30)
1.6460930159932946233759277576
\end{Verbatim}

\begin{Verbatim}
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2+y^2, x*y]);
sage: Q = P(5, 1)
sage: f.green_function(Q, 0, N=200, prec=200)
1.6460930160038721802875250367738355497198064992657997569827
\end{Verbatim}

\begin{Verbatim}
sage: K.<w> = QuadraticField(3)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([17*x^2+1/7*y^2, 17*w*x*y])
sage: f.green_function(P.point([w, 2], False), K.places()[1])
1.7236334013785676107373093775
\end{Verbatim}

\begin{Verbatim}
sage: f.green_function(P([2, 1]), K.ideal(7), N=7)
0.48647753726382832627633818586
\end{Verbatim}
height_difference_bound\(_{(\text{prec}=\text{None})}\)

Return an upper bound on the different between the canonical height of a point with respect to this dynamical system and the absolute height of the point.

This map must be a morphism.

**ALGORITHM:**

Uses a Nullstellensatz argument to compute the constant. For details: see [Hutz2015].

**INPUT:**

- \text{prec} – (default: \text{RealField default}) positive integer, float point precision

**OUTPUT:** a real number

**EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2+y^2, x*y])
sage: f.height_difference_bound()
1.38629436111989
```

This function does not automatically normalize.

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: f = DynamicalSystem_projective([4*x^2+100*y^2, 210*x*y, 10000*z^2])
sage: f.height_difference_bound()
11.0020998412042
```

A number field example:

```
sage: R.<x> = QQ[]
sage: K.<c> = NumberField(x^3 - 2)
sage: P.<x,y,z> = ProjectiveSpace(K,2)
sage: f = DynamicalSystem_projective([1/(c+1)*x^2+c*y^2, 210*x*y, 10000*z^2])
sage: f.height_difference_bound()
11.0020998412042
```
sage: P.<x,y,z> = ProjectiveSpace(QQbar,2)
sage: f = DynamicalSystem_projective([x^2, QQbar(sqrt(-1))*y^2, QQbar(sqrt(3))*z^2])
sage: f.height_difference_bound()
3.43967790223022

is_PGL_minimal(prime_list=None)
Check if this dynamical system is a minimal model in its conjugacy class.

INPUT:
• prime_list – (optional) list of primes to check minimality

OUTPUT: boolean

EXAMPLES:

```python
sage: PS.<X,Y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([X^2+3*Y^2, X*Y])
sage: f.is_PGL_minimal()
True
```

```python
sage: PS.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([6*x^2+12*x*y+7*y^2, 12*x*y])
sage: f.is_PGL_minimal()
False
```

is_postcritically_finite(err=0.01, use_algebraic_closure=True)
Determine if this dynamical system is post-critically finite.
Only for endomorphisms of $\mathbb{P}^1$. It checks if each critical point is preperiodic. The optional parameter err is passed into is_preperiodic() as part of the preperiodic check.

The computations can be done either over the algebraic closure of the base field or over the minimal extension of the base field that contains the critical points.

INPUT:
• err – (default: 0.01) positive real number
• use_algebraic_closure – boolean (default: True) – If True uses the algebraic closure. If False, uses the smallest extension of the base field containing all the critical points.

OUTPUT: boolean

EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 - y^2, y^2])
sage: f.is_postcritically_finite()
True

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^3- y^3, y^3])
sage: f.is_postcritically_finite()
False

sage: R.<z> = QQ[]
sage: K.<v> = NumberField(z^8 + 3*z^6 + 3*z^4 + z^2 + 1)
sage: PS.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^3+v*y^3, y^3])
sage: f.is_postcritically_finite() # long time
True

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([6*x^2+16*x*y+16*y^2, -3*x^2-4*x*y-4*y^2])
sage: f.is_postcritically_finite()
True

sage: K = UniversalCyclotomicField()
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: F = DynamicalSystem_projective([x^2 - y^2, y^2], domain=P)
sage: F.is_postcritically_finite()
True

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([8*x^4 - 8*x^2*y^2 + y^4, y^4])
sage: f.is_postcritically_finite(use_algebraic_closure=False) # long time
False

sage: P.<x,y> = ProjectiveSpace(QQbar,1)
sage: f = DynamicalSystem_projective([x^4 - x^2*y^2, y^4])
sage: f.is_postcritically_finite()
False

minimal_model

Determine if this dynamical system is minimal.

This dynamical system must be defined over the projective line over the rationals. In particular, determine if this map is affine minimal, which is enough to decide if it is minimal or not. See Proposition 2.10 in [BM2012].

INPUT:
• **return_transformation** – (default: `False`) boolean; this signals a return of the $PGL_2$ transformation to conjugate this map to the calculated minimal model

• **prime_list** – (optional) a list of primes, in case one only wants to determine minimality at those specific primes

• **algorithm** – (optional) string; can be one of the following:
  
  - 'BM' - the Bruin-Molnar algorithm [BM2012]
  - 'HS' - the Hutz-Stoll algorithm [HS2018]

**OUTPUT:**

- a dynamical system on the projective line which is a minimal model of this map
- a $PGL(2, \mathbb{Q})$ element which conjugates this map to a minimal model

**EXAMPLES:**

```python
sage: PS.<X,Y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([X^2+3*Y^2, X*Y])
sage: f.minimal_model(return_transformation=True)
(Dynamical System of Projective Space of dimension 1 over Rational Field
 Defn: Defined on coordinates by sending (X : Y) to
 (X^2 + 3*Y^2 : X*Y),
 [1 0]
 [0 1])
sage: PS.<X,Y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([7365/2*X^4 + 6282*X^3*Y + 4023*X^2*Y^2 + ... → 1146*X*Y^3 + 245/2*Y^4,
 : -12329/2*X^4 - 10506*X^3*Y - 6723*X^2*Y^2 → 1914*X*Y^3 - 409/2*Y^4])
sage: f.minimal_model(return_transformation=True)
(Dynamical System of Projective Space of dimension 1 over Rational Field
 Defn: Defined on coordinates by sending (X : Y) to
 (9847*X^4 + 28088*X^3*Y + 30048*X^2*Y^2 + 14288*X*Y^3 + 2548*Y^4 → -12329*X^4 - 35164*X^3*Y - 37614*X^2*Y^2 - 17884*X*Y^3 - 3189*Y^4),
 [2 1]
 [0 1])
sage: PS.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([6*x^2+12*x*y+7*y^2, 12*x*y])
sage: f.minimal_model()
Dynamical System of Projective Space of dimension 1 over Rational
```

(continues on next page)
Field

Defn: Defined on coordinates by sending \((x : y)\) to
\((x^2 + 12xy + 42y^2 : 2xy)\)

```
sage: PS.<x,y> = ProjectiveSpace(ZZ,1)
sage: f = DynamicalSystem_projective([6*x^2+12*x*y+7*y^2, 12*x*y + 42*y^2])
sage: g,M = f.minimal_model(return_transformation=True, algorithm='BM')
sage: f.conjugate(M) == g
True
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem([2*x^2, y^2])
sage: f.minimal_model(return_transformation=True)
(Dynamical System of Projective Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x : y) to
(x^2 : y^2),
[1 0],
[0 2])
sage: f.minimal_model(prime_list=[3])
(Dynamical System of Projective Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x : y) to
(2*x^2 : y^2)
```

REFERENCES:
- [BM2012]
- [Mol2015]
- [HS2018]

multiplier\(P, n, \text{check}=\text{True}\)

Return the multiplier of the point \(P\) of period \(n\) with respect to this dynamical system.

INPUT:
- \(P\) – a point on domain of this map
- \(n\) – a positive integer, the period of \(P\)
- \(\text{check}\) – (default: True) boolean; verify that \(P\) has period \(n\)

OUTPUT:
A square matrix of size self.codomain().dimension_relative() in the base_ring of this dynamical system.

EXAMPLES:

```
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: f = DynamicalSystem_projective([x^2,y^2, 4*z^2]);
sage: Q = P.point([4,4,1], False);
sage: f.multiplier(Q,1)
[2 0]
[0 2]
```
```python
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([7*x^2 - 28*y^2, 24*x*y])
sage: f.multiplier(P(2,5), 4)
[231361/20736]

sage: P.<x,y> = ProjectiveSpace(CC,1)
sage: f = DynamicalSystem_projective([x^3 - 25*x^2*y^2 + 12*y^3, 12*y^3])
sage: f.multiplier(P(1,1), 5)
[0.389017489711934]

sage: P.<x,y> = ProjectiveSpace(RR,1)
sage: f = DynamicalSystem_projective([x^2-2*y^2, y^2])
sage: f.multiplier(P(2,1), 1)
[4.00000000000000]

sage: P.<x,y> = ProjectiveSpace(Qp(13),1)
sage: f = DynamicalSystem_projective([x^2-29/16*y^2, y^2])
sage: f.multiplier(P(5,4), 3)
[6 + 8*13 + 13^2 + 8*13^3 + 13^4 + 8*13^5 + 13^6 + 8*13^7 + 13^8 +
8*13^9 + 13^10 + 8*13^11 + 13^12 + 8*13^13 + 13^14 + 8*13^15 + 13^16 +
8*13^17 + 13^18 + 8*13^19 + O(13^20)]

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2-y^2, y^2])
sage: f.multiplier(P(0,1), 1)
Traceback (most recent call last):
 ... ValueError: (0 : 1) is not periodic of period 1
```

**multiplier_spectra**(*n*, *formal=False*, *type='point'* , *use_algebraic_closure=True*)

Computes the *n*-multiplier spectra of this dynamical system.

This is the set of multipliers of the periodic points of formal period *n* included with the appropriate multiplicity. User can also specify to compute the *n*-multiplier spectra instead which includes the multipliers of all periodic points of period *n*. The map must be defined over projective space of dimension 1 over a number field or finite field.

The computations can be done either over the algebraic closure of the base field or over the minimal extension of the base field that contains the critical points.

**INPUT:**

- *n* – a positive integer, the period
- *formal* – (default: False) boolean; True specifies to find the formal *n*-multiplier spectra of this map and False specifies to find the *n*-multiplier spectra
- *type* – (default: 'point') string; either 'point' or 'cycle' depending on whether you compute one multiplier per point or one per cycle
- **use_algebraic_closure** – boolean (default: True) – If True uses the algebraic closure. If False, uses the smallest extension of the base field containing all the critical points.

**OUTPUT:** a list of field elements
EXAMPLES:

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([4608*x^10 - 2910096*x^9*y + ...
˓→ -32598868*y^10 + 31825198932*x^7*y^3 - 413980662663*x^6*y^4 - ...
˓→ + 113578270285012470*x*y^9 - 150049940203963800*y^10, 4608*y^10])
sage: sorted(f.multiplier_spectra(1))
[-119820502365680843999,
 -7198147681176255644585/256,
 -306838435599991/9,
 -3232781962860268721722583135/35184372088832,
 -4290991994944936653/2097152,
 0,
 529278480109921/256,
 1061953534167447403/19683,
 84844615756848459363/19683,
 82911372672808161930567/8192,
 35534977515593015751261317/8192]
sage: set_verbose(None)
sage: z = QQ['z'].0
sage: K.<w> = NumberField(z^4 - 4*z^2 + 1, 'z')
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^2 - w/4*y^2, y^2])
sage: sorted(f.multiplier_spectra(2, formal=False, type='cycle'))
[0,
 0.0681483474218635? - 1.930649271699173?*I,
 0.0681483474218635? + 1.930649271699173?*I,
 5.931851652578137? + 0.?e-49*I]
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2])
sage: sorted(f.multiplier_spectra(2, formal=False, type='cycle'))
[0, 1, 1, 9]
sage: sorted(f.multiplier_spectra(2, formal=False, type='point'))
[0, 1, 1, 1, 9]
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 - 7/4*y^2, y^2])
sage: f.multiplier_spectra(3, formal=True, type='cycle')
[1, 1]
sage: f.multiplier_spectra(3, formal=True, type='point')
[1, 1, 1, 1, 1, 1]
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^4 + 3*y^4, 4*x^2*y^2])
sage: f.multiplier_spectra(1, use_algebraic_closure=False)
[0,
 -1,
 1/128*a^5 - 13/384*a^4 + 5/96*a^3 + 1/16*a^2 + 43/128*a + 303/128,
(continues on next page)
```
\[-1/288*a^5 + 1/96*a^4 + 1/24*a^3 - 1/3*a^2 + 5/32*a - 115/32,\]
\[-5/1152*a^5 + 3/128*a^4 - 3/32*a^3 + 13/48*a^2 - 63/128*a - 227/128\]

sage: f.multiplier_spectra(1)
[0, -1, 1.951373035591442?, -2.475686517795721? - 0.730035681602057?*I, -2.475686517795721? + 0.730035681602057?*I]

sage: P.<x,y> = ProjectiveSpace(GF(5),1)
sage: f = DynamicalSystem_projective([x^4 + 2*y^4, 4*x^2*y^2])
sage: f.multiplier_spectra(1, use_algebraic_closure=False)
[0, 3*a + 3, 2*a + 1, 1, 1]
sage: f.multiplier_spectra(1)
[0, 2*z2 + 1, 3*z2 + 3, 1, 1]

sage: P.<x,y> = ProjectiveSpace(QQbar,1)
sage: f = DynamicalSystem_projective([x^5 + 3*y^5, 4*x^3*y^2])
sage: f.multiplier_spectra(1)

sage: K = GF(3).algebraic_closure()
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^5 + 2*y^5, 4*x^3*y^2])
sage: f.multiplier_spectra(1)
[0, z3 + 2, z3 + 1, z3, 1, 1]

nth_iterate(P, n, **kwds)
Return the n-th iterate of the point P by this dynamical system.

If normalize is True, then the coordinates are automatically normalized.

Todo: Is there a more efficient way to do this?

INPUT:

• P – a point in this map’s domain
• n – a positive integer

kwds:

• normalize – (default: False) boolean

OUTPUT: a point in this map’s codomain

EXAMPLES:
```python
sage: P.<x,y> = ProjectiveSpace(ZZ,1)
sage: Q = P(1,1)
sage: f = DynamicalSystem_projective([x^2+y^2, 2*y^2])
sage: f.nth_iterate(Q,4)
(32768 : 32768)
```

```python
sage: P.<x,y> = ProjectiveSpace(ZZ,1)
sage: f = DynamicalSystem_projective([x^2+y^2, 2*y^2])
sage: Q = P(1,1)
sage: f.nth_iterate(Q, 4, normalize=True)
(1 : 1)
```

```python
sage: P.<x,y> = ProjectiveSpace(QQ,2)
sage: f = DynamicalSystem_projective([x^2, 2*y^2, z^2-x^2])
sage: Q = P(2,7,1)
sage: f.nth_iterate(Q,2)
(-16/7 : -2744 : 1)
```

```python
sage: R.<t> = PolynomialRing(QQ)
sage: P.<x,y,z> = ProjectiveSpace(R,2)
sage: f = DynamicalSystem_projective([x^2+t*y^2, (2-t)*y^2, z^2])
sage: Q = P(2,t,7)
sage: f.nth_iterate(Q,2)
(t^4 + 2507*t^3 - 6787*t^2 + 16 : -2401*t^3 + 14406*t^2 - 28812*t + 19208 : t^4)
```

```python
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: X = P.subscheme(x^2-y^2)
sage: f = DynamicalSystem_projective([x^3 - 2*x*y^2 - c*y^3, x*y^2], domain=X)
sage: f.nth_iterate(X(2,2,3), 3)
(256 : 256 : 6561)
```

```python
sage: K.<c> = FunctionField(QQ)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^3 - 2*x*y^2 - c*y^3, x*y^2])
sage: f.nth_iterate(P(c,1), 2)
((c^6 - 9*c^4 + 25*c^2 - c - 21)/(c^2 - 3) : 1)
```

```python
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: f = DynamicalSystem_projective([x^2+3*y^2, 2*y^2,z^2])
sage: f.nth_iterate(P(2, 7, 1), -2)
Traceback (most recent call last):
 ...TypeError: must be a forward orbit
```

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([x^3, x*y^2], domain=P)
sage: f.nth_iterate(P(0, 1), 3, check=False)
(0 : 0)
sage: f.nth_iterate(P(0, 1), 3)
Traceback (most recent call last):
```

(continues on next page)
...\nValueError: \([0, 0]\) does not define a valid point since all entries are 0
\n\[\text{sage: } P.<x,y> = ProjectiveSpace(ZZ, 1)\]
\[\text{sage: } f = \text{DynamicalSystem_projective}([x^3, x^2*y^2], \text{domain}=P)\]
\[\text{sage: } f.nth_iterate(P(2,1), 3, \text{normalize}=False)\]
\((134217728 : 524288)\)
\[\text{sage: } f.nth_iterate(P(2,1), 3, \text{normalize}=True)\]
\((256 : 1)\)

\[\text{sage: } P.<x,y> = ProjectiveSpace(QQ,1)\]
\[\text{sage: } f = \text{DynamicalSystem}([x+y,y])\]
\[\text{sage: } Q = (3,1)\]
\[\text{sage: } f.nth_iterate(Q,0)\]
\((3 : 1)\)

**\text{nth\_iterate\_map}(n, normalize=False)**

Return the \(n\)-th iterate of this dynamical system.

**Todo:** This could be improved.

**INPUT:**

- \(n\) – positive integer
- \(\text{normalize}\) – boolean; remove gcd’s during iteration

**OUTPUT:** a projective dynamical system

**EXAMPLES:**

\[\text{sage: } P.<x,y> = ProjectiveSpace(QQ,1)\]
\[\text{sage: } f = \text{DynamicalSystem_projective}([x^2+y^2, y^2])\]
\[\text{sage: } f.nth_iterate_map(2)\]
\text{Dynamical System of Projective Space of dimension 1 over Rational Field}
\text{Defn: Defined on coordinates by sending (x : y) to}
\((x^4 + 2*x^2*y^2 + 2*y^4 : y^4)\)

\[\text{sage: } P.<x,y> = ProjectiveSpace(CC,1)\]
\[\text{sage: } f = \text{DynamicalSystem_projective}([x^2-y^2, x*y])\]
\[\text{sage: } f.nth_iterate_map(3)\]
\text{Dynamical System of Projective Space of dimension 1 over Complex Field with 53 bits of precision}
\text{Defn: Defined on coordinates by sending (x : y) to}
\((-7.00000000000000*x^6*y^2 + 13.0000000000000*y^4 + x^8 + (-7.00000000000000)*x^2*y^6 + y^8 : x^7*y + (-4.00000000000000)*x^5*y^3 + 4.00000000000000*x^3*y^5 - x*y^7)\)
```sage
P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: X = P.subscheme(x*z-y^2)
sage: f = DynamicalSystem_projective([x^2, x*z, z^2], domain=X)
sage: f.nth_iterate_map(5, normalize=True)
Dynamical System of Projective Space of dimension 2 over Rational Field
Defn: Defined on coordinates by sending (x : y : z) to
(x^4 : x^2*z^2 : z^4)
```

nkth preimage tree$(Q, n, **kwds)$

Return the $n$-th pre-image tree rooted at $Q$.

This map must be an endomorphism of the projective line defined over a number field, algebraic field, or finite field.

**INPUT:**

- $Q$ – a point in the domain of this map
- $n$ – a positive integer, the depth of the pre-image tree

**kwds:**

- `return_points` (default: False) boolean; if True, return a list of lists where the index $i$ is the level of the tree and the elements of the list at that index are the $i$-th preimage points as an algebraic element of the splitting field of the polynomial $f^n - Q = 0$
- `numerical` (default: False) boolean; calculate pre-images numerically. Note if this is set to True, preimage points are displayed as complex numbers
- `prec` (default: 100) positive integer; the precision of the ComplexField if we compute the preimage points numerically
- `display_labels` (default: True) boolean; whether to display vertex labels. Since labels can be very cluttered, can set display_labels to False and use return_points to get a hold of the points themselves, either as algebraic or complex numbers
- `display_complex` (default: False) boolean; display vertex labels as complex numbers. Note if this option is chosen that we must choose an embedding from the splitting field field_def of the nth-preimage equation into C. We make the choice of the first embedding returned by field_def.embeddings(ComplexField())
• `digits` – a positive integer, the number of decimal digits to display for complex numbers. This only applies if `display_complex` is set to `True`.

**OUTPUT:**

If `return_points` is `False`, a `GraphPlot` object representing the n-th pre-image tree. If `return_points` is `True`, a tuple `(GP, points)`, where `GP` is a `GraphPlot` object, and `points` is a list of lists as described above under `return_points`.

**EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 + y^2, y^2])
sage: Q = P(0,1)
sage: f.nth_preimage_tree(Q, 2)
GraphPlot object for Digraph on 7 vertices
```

```
sage: P.<x,y> = ProjectiveSpace(GF(3),1)
sage: f = DynamicalSystem_projective([x^2 + x*y + y^2, y^2])
sage: Q = P(0,1)
sage: f.nth_preimage_tree(Q, 2, return_points=True)
(GraphPlot object for Digraph on 4 vertices, [['(0 : 1)'], ['(1 : 1)'], ['(0 : 1), (2 : 1)']])
```

**orbit**(*P*, *N*, **kwds*)

Return the orbit of the point *P* by this dynamical system.

Let *F* be this dynamical system. If *N* is an integer return \([P, F(P), \ldots, F^N(P)]\). If *N* is a list or tuple \(N = [m, k]\) return \([F^m(P), \ldots, F^k(P)]\). Automatically normalize the points if `normalize=True`. Perform the checks on point initialization if `check=True`.

**INPUT:**

• *P* – a point in this dynamical system’s domain

• *n* – a non-negative integer or list or tuple of two non-negative integers

**kwds:**

• `check` – (default: `True`) boolean

• `normalize` – (default: `False`) boolean

**OUTPUT:** a list of points in this dynamical system’s codomain

**EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2-z^2, 2*z^2])
sage: f.orbit(P(1,2,1), 3)
[(1 : 2 : 1), (5 : 3 : 2), (34 : 5 : 8), (1181 : -39 : 128)]
```

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2-z^2, 2*z^2])
sage: f.orbit(P(1,2,1), [2,4])
[(34 : 5 : 8), (1181 : -39 : 128), (1396282 : -14863 : 32768)]
```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: X = P.subscheme(x^2-y^2)
sage: f = DynamicalSystem_projective([x^2, y^2, x*z], domain=X)
sage: f.orbit(X(2,2,3), 3, normalize=True)
[(2 : 2 : 3), (2 : 2 : 3), (2 : 2 : 3), (2 : 2 : 3)]

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2])
sage: f.orbit(P.point([1,2],False), 4, check=False)
[(1 : 2), (5 : 4), (41 : 16), (1937 : 256), (3817505 : 65536)]

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2+c*y^2, y^2])
sage: f.orbit(P(0,1), 3)
[(0 : 1), (c : 1), (c^2 + c : 1), (c^4 + 2*c^3 + c^2 + c : 1)]

sage: P.<x,y> = ProjectiveSpace(QQ,1)

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2, 2*y^2], domain=P)
sage: f.orbit(P(2, 1), [-1, 4])
Traceback (most recent call last):
...  TypeError: orbit bounds must be non-negative
 sage: f.orbit(P(2, 1), 0.1)
Traceback (most recent call last):
...  TypeError: Attempt to coerce non-integral RealNumber to Integer

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^3, x*y^2], domain=P)
sage: f.orbit(P(0, 1), 3)
Traceback (most recent call last):
...  ValueError: [0, 0] does not define a valid point since all entries are 0
 sage: f.orbit(P(0, 1), 3, check=False)
[(0 : 1), (0 : 0), (0 : 0), (0 : 0)]

sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: f = DynamicalSystem_projective([x^2, y^2, x*z])
\texttt{sage}: f.orbit((2/3,1/3), 3)

\texttt{periodic\_points}(n, minimal=True, formal=False, R=None, algorithm='variety', return_scheme=False)

Computes the periodic points of period \( n \) of this dynamical system defined over the ring \( R \) or the base ring of the map.

This can be done either by finding the rational points on the variety defining the points of period \( n \), or, for finite fields, finding the cycle of appropriate length in the cyclegraph. For small cardinality fields, the cyclegraph algorithm is effective for any map and length cycle, but is slow when the cyclegraph is large. The variety algorithm is good for small period, degree, and dimension, but is slow as the defining equations of the variety get more complicated.

For rational maps, where there are potentially infinitely many periodic points of a given period, you must use the \texttt{return\_scheme} option. Note that this scheme will include the indeterminacy locus.

**INPUT:**

- \( n \) - a positive integer
- \texttt{minimal} – (default: True) boolean; True specifies to find only the periodic points of minimal period \( n \) and False specifies to find all periodic points of period \( n \)
- \texttt{formal} – (default: False) boolean; True specifies to find the formal periodic points only. The formal periodic points are the points in the support of the dynatomic cycle.
- \( R \) – (optional) a commutative ring. Defaults to the base ring of this map.
- \texttt{algorithm} – (default: 'variety') must be one of the following:
  - 'variety' - find the rational points on the appropriate variety
  - 'cyclegraph' - find the cycles from the cycle graph
- \texttt{return\_scheme} – return a subscheme of the ambient space that defines the \( n \)th periodic points

**OUTPUT:**

A list of periodic points of this map or the subscheme defining the periodic points.

**EXAMPLES:**

\begin{verbatim}
\texttt{sage}: set\_verbose(None)
\texttt{sage}: P.<x,y> = ProjectiveSpace(QQbar, 1)
\texttt{sage}: f = DynamicalSystem_projective([x^2 - x*y + y^2, x^2 - y^2 + x*y])
\texttt{sage}: f.periodic\_points(1)
\[
\begin{align*}
(-0.500000000000000 - 0.866025403784439*I : 1), \\
(-0.500000000000000 + 0.866025403784439*I : 1), \\
(1 : 1)
\end{align*}
\]
\end{verbatim}

\begin{verbatim}
\texttt{sage}: P.<x,y,z> = ProjectiveSpace(QuadraticField(5,'t'), 2)
\texttt{sage}: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2 - z^2, z^2])
\texttt{sage}: f.periodic\_points(2)
\[
\begin{align*}
(-5/4 : -1 : 1), (-5/4 : -1/2*t + 1/2 : 1), (-5/4 : 0 : 1), \\
(-5/4 : 1/2*t + 1/2 : 1), (-3/4 : -1 : 1), (-3/4 : 0 : 1), \\
(1/4 : -1 : 1), (1/4 : -1/2*t + 1/2 : 1), (1/4 : 0 : 1), \\
(1/4 : 1/2*t + 1/2 : 1), (7/4 : -1 : 1), (7/4 : 0 : 1)
\end{align*}
\]
\end{verbatim}
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2, z^2])
sage: f.periodic_points(2, formal=True)
[(-1/2 : 1 : 0), (-1/2 : 1 : 1)]

sage: w = QQ['w'].0
sage: K = NumberField(w^6 - 3*w^5 + 5*w^4 - 5*w^3 + 5*w^2 - 3*w + 1, 's')
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: f = DynamicalSystem_projective([x^2 + z^2, y^2 + x^2, z^2 + y^2])
sage: sorted(f.periodic_points(1), key=str)
[(-2*s^5 + 4*s^4 - 5*s^3 + 3*s^2 - 4*s + 2 : -2*s^5 + 5*s^4 - 7*s^3 + 6*s^2 - 7*s + 1 : 1),
 (-s^5 + 3*s^4 - 5*s^3 + 3*s^2 - 4*s + 3 : s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 4*s - 2 : 1),
 (s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 3*s - 1 : -s^5 + 3*s^4 - 5*s^3 + 4*s^2 - 4*s + 2 : 1)]

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2 - 2*z^2, z^2])
sage: f.periodic_points(2, False)
 (-3/4 : 2 : 1), (0 : 1 : 0), (1/4 : -1 : 1), (1/4 : 2 : 1),
 (1 : 0 : 0), (1 : 1 : 0), (7/4 : -1 : 1), (7/4 : 2 : 1)]

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2 - 2*z^2, z^2])
sage: f.periodic_points(2)
[(-5/4 : -1 : 1), (-5/4 : 2 : 1), (1/4 : -1 : 1), (1/4 : 2 : 1)]

sage: set_verbose(None)
sage: P.<x,y> = ProjectiveSpace(ZZ, 1)
sage: f = DynamicalSystem_projective([x^2 + y^2, y^2])
sage: f.periodic_points(2, R=QQbar, minimal=False)
[(-0.5000000000000000? - 1.322875655322958?*I : 1),
 (-0.5000000000000000? + 1.322875655322958?*I : 1),
 (0.5000000000000000? - 0.866025403784439?*I : 1),
 (0.5000000000000000? + 0.866025403784439?*I : 1),
 (1 : 0)]

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2 - 3/4*z^2, y^2 - 3/4*z^2, z^2])
sage: f.periodic_points(2, formal=True)
[(-1/2 : -1/2 : 1), (-1/2 : 3/2 : 1), (3/2 : -1/2 : 1)]

sage: P.<x,y> = ProjectiveSpace(GF(307), 1)
sage: f = DynamicalSystem_projective([x^10 + y^10, y^10])

(continues on next page)
sage: f.periodic_points(16, minimal=True, algorithm='cyclegraph')
[(69 : 1), (185 : 1), (120 : 1), (136 : 1), (97 : 1), (183 : 1), (170 : 1), (105 : 1), (274 : 1), (275 : 1), (154 : 1), (156 : 1), (87 : 1), (95 : 1), (161 : 1), (128 : 1)]

sage: P.<x,y> = ProjectiveSpace(GF(13^2, 't'), 1)
sage: f = DynamicalSystem_projective([x^3 + 3*y^3, x^2*y])
sage: f.periodic_points(30, minimal=True, algorithm='cyclegraph')
[(t + 3 : 1), (6*t + 6 : 1), (7*t + 1 : 1), (2*t + 8 : 1), (3*t + 4 : 1), (10*t + 12 : 1), (8*t + 10 : 1), (5*t + 11 : 1), (7*t + 4 : 1), (4*t + 8 : 1), (9*t + 1 : 1), (2*t + 2 : 1), (11*t + 9 : 1), (5*t + 7 : 1), (t + 10 : 1), (12*t + 4 : 1), (7*t + 12 : 1), (6*t + 8 : 1), (11*t + 10 : 1), (10*t + 7 : 1), (3*t + 9 : 1), (5*t + 5 : 1), (8*t + 3 : 1), (6*t + 11 : 1), (9*t + 12 : 1), (4*t + 10 : 1), (11*t + 4 : 1), (2*t + 7 : 1), (8*t + 12 : 1), (12*t + 11 : 1)]

sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([3*x^2 + 5*y^2, y^2])
sage: f.periodic_points(2, R=GF(3), minimal=False)
[(2 : 1)]
sage: f.periodic_points(2, R=GF(7))
[]

sage: R.<x> = QQ[]
sage: K.<u> = NumberField(x^2 - x + 3)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: X = P.subscheme(2*x - y)
sage: f = DynamicalSystem_projective([x^2 - y^2, 2*(x^2 - y^2), y^2 - z^2], domain=X)
sage: f.periodic_points(2)
[(-1/5*u - 1/5 : -2/5*u - 2/5 : 1), (1/5*u - 2/5 : 2/5*u - 4/5 : 1)]

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2 - y^2, x^2 - z^2, y^2 - z^2])
sage: f.periodic_points(1)
[(-1 : 0 : 1)]
sage: f.periodic_points(1, return_scheme=True)
Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
-x^3 + x^2*y - y^3 + x*z^2,
-x*y^2 + x^2*z - y^2*z + x*z^2,
-y^3 + x^2*z + y*z^2 - z^3

5.3. Dynamical systems on projective schemes

161
sage: P.<x,y>=ProjectiveSpace(GF(3), 1)
sage: f = DynamicalSystem_projective([x^2 - 2*y^2, y^2])
sage: f.periodic_points(2, R=GF(3^2,'t'))
[(t + 2 : 1), (2*t : 1)]

sage: S.<c> = QQ[]
sage: R.<x,y> = PolynomialRing(S, 2)
sage: P = ProjectiveSpace(R)
sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2])
sage: f.periodic_points(2, return_scheme=True)
Closed subscheme of Projective Space of dimension 1 over Univariate Polynomial Ring in c over Rational Field defined by:
  x^2 + x*y + (c + 1)*y^2

sage: P.<x,y,z> = ProjectiveSpace(ZZ, 2)
sage: f = DynamicalSystem([x^2 - 2*y^2, y^2, z^2])
sage: X = f.periodic_points(2, minimal=False, formal=True, return_scheme=True)
sage: len(X.defining_polynomials())
19

possible_periods(**kwds)
Return the set of possible periods for rational periodic points of this dynamical system.
Must be defined over \(\mathbb{Z}\) or \(\mathbb{Q}\).

ALGORITHM:
Calls self.possible_periods() modulo all primes of good reduction in range prime_bound. Return the intersection of those lists.

INPUT:

kwds:

- prime_bound – (default: [1, 20]) a list or tuple of two positive integers or an integer for the upper bound
- bad_primes – (optional) a list or tuple of integer primes, the primes of bad reduction
- ncpus – (default: all cpus) number of cpus to use in parallel

OUTPUT: a list of positive integers

EXAMPLES:

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2-29/16*y^2, y^2])
sage: f.possible_periods(ncpus=1)
[1, 3]

sage: PS.<x,y> = ProjectiveSpace(1,QQ)
sage: f = DynamicalSystem_projective([5*x^3 - 53*x*y^2 + 24*y^3, 24*y^3])
sage: f.possible_periods(prime_bound=[1,5])
Traceback (most recent call last):
  ... ValueError: no primes of good reduction in that range
sage: f.possible_periods(prime_bound=[1,10])
(continues on next page)
preperiodic_points\((m, n, **kwds)\)

Computes the preperiodic points of period \(m\), \(n\) of this dynamical system defined over the ring \(R\) or the base ring of the map.

This is done by finding the rational points on the variety defining the points of period \(m\), \(n\).

For rational maps, where there are potentially infinitely many periodic points of a given period, you must use the return\_scheme option. Note that this scheme will include the indeterminacy locus.

INPUT:

\* \(n\) - a positive integer, the period

\* \(m\) - a non negative integer, the preperiod

kwds:

\* minimal – (default: True) boolean; True specifies to find only the preperiodic points of minimal period \(m\), \(n\) and False specifies to find all preperiodic points of period \(m\), \(n\)

\* formal – (default: False) boolean; True specifies to find the formal periodic points only. The formal periodic points are the points in the support of the dynatomic cycle.

\* \(R\) – (default: the base ring of the dynamical system) a commutative ring over which to find the preperiodic points

\* return\_scheme – (default: False) boolean; return a subscheme of the ambient space that defines the \(m\), \(n\)th preperiodic points

OUTPUT:

A list of preperiodic points of this map or the subscheme defining the preperiodic points.

EXAMPLES:

```python
sage: P.<x,y> = ProjectiveSpace(QQbar, 1)
sage: f = DynamicalSystem_projective([x^2 - y^2, y^2])
sage: f.preperiodic_points(0, 1)
[(-0.618033988749895? : 1), (1 : 0), (1.618033988749895? : 1)]
```

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([x^2 - 29/16*y^2, y^2])
sage: f.preperiodic_points(1, 3)
[(-5/4 : 1), (1/4 : 1), (7/4 : 1)]
```
 sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2, z^2])
sage: f.preperiodic_points(0, 2, formal=True)
[(-1/2 : 1 : 0), (-1/2 : 1 : 1)]

 sage: P.<x,y> = ProjectiveSpace(QQbar, 1)
sage: f = DynamicalSystem_projective([x^2 - x*y + 2*y^2, x^2 - y^2])
sage: f.preperiodic_points(1, 2, minimal=False)
[(-3.133183566641252 : 1), (-1 : 1), (-0.3478103847799310 - 1.028852254136693*I : 1), (-0.3478103847799310 + 1.028852254136693*I : 1), (0.8165928333206258? - 0.6710067557437100*I : 1), (0.8165928333206258? + 0.6710067557437100*I : 1), (1 : 0), (1 : 1), (1.695620769559862? : 1), (3 : 1)]

 sage: R.<w> = QQ[]
sage: K.<s> = NumberField(w^6 - 3*w^5 + 5*w^4 - 5*w^3 + 5*w^2 - 3*w + 1)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: f = DynamicalSystem_projective([x^2 + z^2, y^2 + x^2, z^2 + y^2])
sage: sorted(f.preperiodic_points(0, 1), key=str)
[(-2*s^5 + 4*s^4 - 5*s^3 + 3*s^2 - 4*s - 3 : 1), (-s^5 + 3*s^4 - 4*s^3 + 4*s^2 - 4*s + 2 : -s^5 + 2*s^4 - 2*s^3 + s^2 - s : 1), (s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 4*s - 1 : 1), (1 : 1 : 1), (2*s^5 - 6*s^4 + 9*s^3 - 8*s^2 + 7*s - 4 : 2*s^5 - 5*s^4 + 7*s^3 - 5*s^2 + 6*s - 2 : 1), (s^5 - 2*s^4 + 3*s^3 - 3*s^2 + 3*s - 1 : -s^5 + 3*s^4 - 5*s^3 + 4*s^2 - 4*s + 2 : 1)]
```python
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: X = P.subscheme(2*x - y)
sage: f = DynamicalSystem_projective([x^2 - y^2, 2*(x^2 - y^2), y^2 - z^2], domain=X)
sage: f.preperiodic_points(1, 1)
[(-1/4 : -1/2 : 1), (1 : 2 : 1)]
```

```python
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, z^2, y^2])
sage: f.preperiodic_points(1, 1)
[(-3/2 : -1 : 1), (-3/2 : 1 : 1), (-1/2 : -1 : 1), (1/2 : -1 : 1), (1/2 : 1 : 1), (3/2 : -1 : 1)]
```

```python
sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
sage: f = DynamicalSystem_projective([x^2, y^2, z^2])
sage: sorted(f.preperiodic_points(2, 1), return_scheme=True, minimal=False)
Closed subscheme of Projective Space of dimension 2 over Finite Field of size 5 defined by:
0,
x^8*z^4 - x^4*z^8,
x^7*y*z^4 - x^3*y^2*z^8
```

When the ring over which to find the preperiodic points is a number field, the ordering of the preperiodic points might depend on the architecture (32 or 64 bits):

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: R.<c> = QQ[]
sage: K.<v> = NumberField(z^4 - z^2 - 1)
sage: f = DynamicalSystem_projective([x^2 - y^2, y^2])
sage: sorted(f.preperiodic_points(2, 1, R=K), key=str)
[(-v : 1), (v : 1)]
```

```python
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2, z^2])
sage: f.preperiodic_points(0, 2, formal=True)
[(-1/2 : 1 : 0), (-1/2 : 1 : 1)]
```

```python
sage: S.<c> = QQ[]
sage: R.<x,y> = PolynomialRing(S, 2)
sage: P = ProjectiveSpace(R)
sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2])
sage: f.preperiodic_points(1, 2, return_scheme=True)
Closed subscheme of Projective Space of dimension 1 over Univariate Polynomial Ring in c over Rational Field defined by:
x^2 - x*y + (c + 1)*y^2
```

5.3. Dynamical systems on projective schemes 165


**primes_of_bad_reduction** *(check=True)*

Determine the primes of bad reduction for this dynamical system.

Must be defined over a number field.

If `check` is `True`, each prime is verified to be of bad reduction.

**ALGORITHM:**

$p$ is a prime of bad reduction if and only if the defining polynomials of self have a common zero. Or stated another way, $p$ is a prime of bad reduction if and only if the radical of the ideal defined by the defining polynomials of self is not $\langle x_0, x_1, \ldots, x_N \rangle$. This happens if and only if some power of each $x_i$ is not in the ideal defined by the defining polynomials of self. This last condition is what is checked. The lcm of the coefficients of the monomials $x_i$ in a Groebner basis is computed. This may return extra primes.

**INPUT:**

- `check` – (default: `True`) boolean

**OUTPUT:** a list of primes

**EXAMPLES:**

```
\begin{verbatim}
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([1/3*x^2+1/2*y^2, y^2])
sage: f.primes_of_bad_reduction()
[2, 3]
\end{verbatim}
```

```
\begin{verbatim}
sage: P.<x,y,z,w> = ProjectiveSpace(QQ,3)
sage: f = DynamicalSystem_projective([12*x^2*z-7*y^2, 31*x^2-y^2, 26*z^2, 3*w^2-z^w])
sage: f.primes_of_bad_reduction()
[2, 3, 7, 13, 31]
\end{verbatim}
```

A number field example:

```
\begin{verbatim}
sage: R.<z> = QQ[]
sage: K.<a> = NumberField(z^2 - 2)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([1/3*x^2+1/a*y^2, y^2])
sage: f.primes_of_bad_reduction()
[Fractional ideal (a), Fractional ideal (3)]
\end{verbatim}
```

This is an example where `check = False` returns extra primes:

```
\begin{verbatim}
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: f = DynamicalSystem_projective([3*x^2*y^2 + 7*y^3 - 4*y^2*z + 5*z^3,
...: -5*x^3 + x^2*y + y^3 + 2*x^2*z,
...: -2*x^2*y + x*y^2 + y^3 - 4*y^2*z + x*z^2])
sage: f.primes_of_bad_reduction(False)
[2, 5, 37, 2239, 304432717]
sage: f.primes_of_bad_reduction()
[5, 37, 2239, 304432717]
\end{verbatim}
```

**ramification_type** *(R=None, stable=True)*

Return the ramification type of endomorphisms of $\mathbb{P}^1$.

Only branch points defined over the ring $R$ contribute to the ramification type if specified, otherwise $R$ is the ring of definition for $self$. 

---

166 Chapter 5. Arithmetic Dynamical Systems
Note that branch points defined over \( R \) may not be geometric points if stable not set to True.

If \( R \) is specified, stable is ignored.

If stable, then this will return the ramification type over an extension which splits the Galois orbits of critical points.

INPUT:

- \( R \) – ring or morphism (optional)
- split – boolean (optional)

OUTPUT:

list of lists, each term being the list of ramification indices in the pre-images of one critical value

EXAMPLES:

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: F = DynamicalSystem_projective([x^4, y^4])
sage: F.ramification_type()
[[4], [4]]

sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: F = DynamicalSystem_projective([x^3, 4*y^3 - 3*x^2*y])
sage: F.ramification_type()
[[2], [2], [3]]

sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: F = DynamicalSystem_projective([(x + y)^4, 16*x*y*(x-y)^2])
sage: F.ramification_type()
[[2], [2], [4]]

sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: F = DynamicalSystem_projective([(x + y)*(x - y)^3, y*(2*x+y)^3])
sage: F.ramification_type()
[[3], [3], [3]]

sage: F = DynamicalSystem_projective([x^3-2*x*y^2 + 2*y^3, y^3])
sage: F.ramification_type()
[[2], [2], [3]]
sage: F.ramification_type(R=F.base_ring())
[[2], [3]]
```

**reduced_form(**kwds**)

Return reduced form of this dynamical system.

The reduced form is the \( SL(2, \mathbb{Z}) \) equivalent morphism obtained by applying the binary form reduction algorithm from Stoll and Cremona [CS2003] to the homogeneous polynomial defining the periodic points (the dynatomic polynomial). The smallest period \( n \) with enough periodic points is used and without roots of too large multiplicity.

This should also minimize the size of the coefficients, but this is not always the case. By default the coefficient minimizing algorithm in [HS2018] is applied.

See `sage.rings.polynomial.multi_polynomial.reduced_form()` for the information on binary form reduction.
Sage 9.4 Reference Manual: Discrete dynamics, Release 9.4

Implemented by Rebecca Lauren Miller as part of GSOC 2016. Minimal height added by Ben Hutz July 2018.

INPUT:

keywords:
• prec – (default: 300) integer, desired precision
• return_conjugation – (default: True) boolean; return an element of $SL(2, \mathbb{Z})$
• error_limit – (default: 0.000001) a real number, sets the error tolerance
• smallest_coeffs – (default: True), boolean, whether to find the model with smallest coefficients
• dynatomic – (default: True) boolean, to use formal periodic points
• start_n – (default: 1), positive integer, first period to try to find appropriate binary form
• emb – (optional) embedding of base field into CC
• algorithm – (optional) which algorithm to use to find all minimal models. Can be one of the following:
  – 'BM' – Bruin-Molnar algorithm [BM2012]
  – 'HS' – Hutz-Stoll algorithm [HS2018]
• check_minimal – (default: True), boolean, whether to check if this map is a minimal model
• smallest_coeffs – (default: True), boolean, whether to find the model with smallest coefficients

OUTPUT:

• a projective morphism
• a matrix

EXAMPLES:

```
sage: PS.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([x^3 + x*y^2, y^3])
sage: m = matrix(QQ, 2, 2, [-201221, -1, 1, 0])
sage: f = f.conjugate(m)
sage: f.reduced_form(prec=50, smallest_coeffs=False) #needs 2 periodic
Traceback (most recent call last):
...
ValueError: accuracy of Newton's root not within tolerance(0.000066... > 1e-06), → increase precision
sage: f.reduced_form(smallest_coeffs=False)
(Dynamical System of Projective Space of dimension 1 over Rational Field
 Defined on coordinates by sending (x : y) to
 (x^3 + x*y^2 : y^3)
 ,
 [0 -1]
 [1 201221])
```

```
sage: PS.<x,y> = ProjectiveSpace(ZZ, 1)
sage: f = DynamicalSystem_projective([x^2+ x*y, y^2]) #needs 3 periodic
```

(continues on next page)
 sage: m = matrix(QQ, 2, 2, [-221, -1, 1, 0])
 sage: f = f.conjugate(m)
 sage: f.reduced_form(prec=200, smallest_coeffs=False)
 (Dynamical System of Projective Space of dimension 1 over Integer Ring
  Defn: Defined on coordinates by sending (x : y) to
  (-x^2 + x*y - y^2 : -y^2),
  [ 0 -1]
  [ 1 220])

 sage: P.<x,y> = ProjectiveSpace(QQ, 1)
 sage: f = DynamicalSystem_projective([x^3, y^3])
 sage: f.reduced_form(smallest_coeffs=False)
 (Dynamical System of Projective Space of dimension 1 over Rational Field
  Defn: Defined on coordinates by sending (x : y) to
  (x^3 : y^3),
  [1 0]
  [0 1])

 sage: PS.<X,Y> = ProjectiveSpace(QQ,1)
 sage: f = DynamicalSystem_projective([7365*X^4 + 12564*X^3*Y + 8046*X^2*Y^2 +
       2292*X*Y^3 + 245*Y^4, \n -12329*X^4 - 21012*X^3*Y - 13446*X^2*Y^2 - 3828*X*Y^3 - 409*Y^4])
 sage: f.reduced_form(prec=30, smallest_coeffs=False)
 Traceback (most recent call last):
 ... ValueError: accuracy of Newton's root not within tolerance(0.00008... > 1e-06),
  increase precision
 sage: f.reduced_form(smallest_coeffs=False)
 (Dynamical System of Projective Space of dimension 1 over Rational Field
  Defn: Defined on coordinates by sending (X : Y) to
  (-7*X^4 - 12*X^3*Y - 42*X^2*Y^2 - 12*X*Y^3 - 7*Y^4 : -X^4 - 4*X^3*Y -
  6*X^2*Y^2 - 4*X*Y^3 - Y^4),
  [-1  2]
  [ 2 -5])

 sage: P.<x,y> = ProjectiveSpace(RR, 1)
 sage: f = DynamicalSystem_projective([x^4, RR(sqrt(2))*y^4])
 sage: m = matrix(RR, 2, 2, [1,12,0,1])
 sage: f = f.conjugate(m)
 sage: g, m = f.reduced_form(smallest_coeffs=False); m
 [ 1 -12]
sage: P.<x,y> = ProjectiveSpace(CC, 1)
sage: f = DynamicalSystem_projective([x^4, CC(sqrt(-2))*y^4])
sage: m = matrix(CC, 2, 2, [1,12,0,1])
sage: f = f.conjugate(m)
sage: g, m = f.reduced_form(smallest_coeffs=False); m

\[
\begin{bmatrix}
0 & 1 \\
1 & -12 \\
0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & -12 \\
0 & 1
\end{bmatrix}
\]

sage: K.<w> = QuadraticField(2)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: f = DynamicalSystem_projective([x^3, w*y^3])
sage: m = matrix(K, 2, 2, [1,12,0,1])
sage: f = f.conjugate(m)
sage: f.reduced_form(smallest_coeffs=False)

\[
\begin{bmatrix}
1 & -12 \\
0 & 1
\end{bmatrix}
\]

sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^5+x-3, embedding=(x^5+x-3).roots(ring=CC)[0][0])
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: f = DynamicalSystem_projective([12*x^3, 2334*w*y^3])
sage: m = matrix(K, 2, 2, [-12,1,1,0])
sage: f = f.conjugate(m)
sage: f.reduced_form(smallest_coeffs=False)

\[
\begin{bmatrix}
0 & -1 \\
1 & -12
\end{bmatrix}
\]

sage: P.<x,y> = QQ[]
sage: f = DynamicalSystem([-4*y^2, 9*x^2 - 12*x*y])
sage: f.reduced_form()
resultant

(resultant = False)
Computes the resultant of the defining polynomials of this dynamical system.

If normalize is True, then first normalize the coordinate functions with normalize_coordinates().

**INPUT:**

```
resultant(normalize=False)
```
• normalize – (default: False) boolean

OUTPUT: an element of the base ring of this map

EXAMPLES:

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2+y^2, 6*y^2])
sage: f.resultant()
36
```

```
sage: R.<t> = PolynomialRing(GF(17))
sage: P.<x,y> = ProjectiveSpace(R,1)
sage: f = DynamicalSystem_projective([t*x^2+t*y^2, 6*y^2])
sage: f.resultant()
2*t^2
```

```
sage: R.<t> = PolynomialRing(GF(17))
sage: P.<x,y,z> = ProjectiveSpace(R,2)
sage: f = DynamicalSystem_projective([t*x^2+t*y^2, 6*y^2, 2*t*z^2])
sage: f.resultant()
13*t^8
```

```
sage: R.<t> = PolynomialRing(QQ)
sage: s = (t^3+t+1).roots(QQbar)[0][0]
sage: P.<x,y> = ProjectiveSpace(QQbar,1)
sage: f = DynamicalSystem_projective([s*x^3-13*y^3, y^3-15*y^3])
sage: f.resultant()
871.6925062959149?
```

_sigma_invariants(n, formal=False, embedding=None, type='point')_

Computes the values of the elementary symmetric polynomials of the $n$ multiplier spectra of this dynamical system.

Can specify to instead compute the values corresponding to the elementary symmetric polynomials of the formal $n$ multiplier spectra. The map must be defined over projective space of dimension 1. The base ring should be a number field, number field order, or a finite field or a polynomial ring or function field over a number field, number field order, or finite field.

The parameter type determines if the sigma are computed from the multipliers calculated at one per cycle (with multiplicity) or one per point (with multiplicity). Note that in the cycle case, a map with a cycle which collapses into multiple smaller cycles, this is still considered one cycle. In other words, if a 4-cycle collapses into a 2-cycle with multiplicity 2, there is only one multiplier used for the doubled 2-cycle when computing $n=4$.

ALGORITHM:

We use the Poisson product of the resultant of two polynomials:

$$res(f, g) = \prod_{f(a)=0} g(a).$$
Letting \( f \) be the polynomial defining the periodic or formal periodic points and \( g = w - f' \) for an auxilarly variable \( w \). Note that if \( f \) is a rational function, we clear denominators for \( g \).

**INPUT:**

- \( n \) – a positive integer, the period
- \( \text{formal} \) – (default: \( \text{False} \)) boolean; \( \text{True} \) specifies to find the values of the elementary symmetric polynomials corresponding to the formal \( n \) multiplier spectra and \( \text{False} \) specifies to instead find the values corresponding to the \( n \) multiplier spectra, which includes the multipliers of all periodic points of period \( n \)
- \( \text{embedding} \) – deprecated in trac ticket \#23333
- \( \text{type} \) – (default: \( '\text{point}' \)) string; either \( '\text{point}' \) or \( '\text{cycle}' \) depending on whether you compute with one multiplier per point or one per cycle

**OUTPUT:** a list of elements in the base ring

**EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([512*x^5 - 378128*x^4*y + 76594292*x^3*y^2, 4570550136*x^2*y^3 - 2630045017*x*y^4 + 28193217129*y^5, 512*y^5])
sage: f.sigma_invariants(1)
[19575526074450617/1048576, -9078122048145044298567432325/2147483648, -262266110793102104196133701280271632423/549755813888, 3385232048301611650315320945076350063171478825448006778305/72057594037927936, 0]
sage: f.sigma_invariants(2, formal=False, type='cycle')
[13, 11, -25, 0]
sage: f.sigma_invariants(2, formal=False, type='point')
[12, -2, -36, 25, 0]
sage: f.sigma_invariants(2, formal=True, type='cycle')
[0]
sage: f.sigma_invariants(2, formal=True, type='point')
[0, 0]
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2, y^2, z^2])
```

(continues on next page)
```
sage: f.sigma_invariants(1)
Traceback (most recent call last):
...
NotImplementedError: only implemented for dimension 1
```

```
sage: K.<w> = QuadraticField(3)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: f = DynamicalSystem_projective([x^2 - w*y^2, (1-w)*x*y])
sage: f.sigma_invariants(2, formal=False, type='cycle')
[6*w + 21, 78*w + 159, 210*w + 367, 90*w + 156]
sage: f.sigma_invariants(2, formal=False, type='point')
[6*w + 24, 96*w + 222, 444*w + 844, 720*w + 1257, 270*w + 468]
```

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 + x*y + y^2, y^2 + x*y])
sage: f.sigma_invariants(1)
[3, 3, 1]
```

```
sage: R.<c> = QQ[]
sage: Pc.<x,y> = ProjectiveSpace(R, 1)
sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2])
sage: f.sigma_invariants(1)
[2, 4*c, 0]
sage: f.sigma_invariants(2, formal=True, type='point')
[8*c + 8, 16*c^2 + 32*c + 16]
sage: f.sigma_invariants(2, formal=True, type='cycle')
[4*c + 4]
```

doubled fixed point:

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([x^2 - 3/4*y^2, y^2])
sage: f.sigma_invariants(2, formal=True)
[2, 1]
```

doubled 2 cycle:

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([x^2 - 5/4*y^2, y^2])
sage: f.sigma_invariants(4, formal=False, type='cycle')
[170, 5195, 172700, 968615, 1439066, 638125, 0]
```

```python
class sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field(polys, domain)
Bases: sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective,
sage.schemes.projective.projective_morphism.SchemeMorphism_polynomial_projective_space_field

all_periodic_points(**kwds)
 Determine the set of rational periodic points for this dynamical system.
 The map must be defined over \(\mathbb{Q} \) and be an endomorphism of projective space. If the map is a polynomial
endomorphism of \mathbb{P}^1, i.e. has a totally ramified fixed point, then the base ring can be an absolute number field. This is done by passing to the Weil restriction.

The default parameter values are typically good choices for \mathbb{P}^1. If you are having trouble getting a particular map to finish, try first computing the possible periods, then try various different lifting_prime values.

ALGORITHM:

Modulo each prime of good reduction p determine the set of periodic points modulo p. For each cycle modulo p compute the set of possible periods (mrp^p). Take the intersection of the list of possible periods modulo several primes of good reduction to get a possible list of minimal periods of rational periodic points. Take each point modulo p associated to each of these possible periods and try to lift it to a rational point with a combination of p-adic approximation and the LLL basis reduction algorithm.

See [Hutz2015].

INPUT:

kwds:

- R – (default: domain of dynamical system) the base ring over which the periodic points of the dynamical system are found
- prime_bound – (default: $[1,20]$) a pair (list or tuple) of positive integers that represent the limits of primes to use in the reduction step or an integer that represents the upper bound
- lifting_prime – (default: 23) a prime integer; argument that specifies modulo which prime to try and perform the lifting
- $\text{period_degree_bounds}$ – (default: $[4,4]$) a pair of positive integers (max period, max degree) for which the dynatomic polynomial should be solved for
- algorithm – (optional) specifies which algorithm to use; current options are dynatomic and lifting; defaults to solving the dynatomic for low periods and degrees and lifts for everything else
- periods – (optional) a list of positive integers that is the list of possible periods
- bad_primes – (optional) a list or tuple of integer primes; the primes of bad reduction
- ncpus – (default: all cpus) number of cpus to use in parallel

OUTPUT: a list of rational points in projective space

EXAMPLES:

```python
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2-3/4*y^2, y^2])
sage: sorted(f.all_periodic_points(prime_bound=20, lifting_prime=7))
# long time
[(-1/2 : 1), (1 : 0), (3/2 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: f = DynamicalSystem_projective([[2*x^3 - 50*x*z^2 + 24*z^3, 5*y^3 - 53*y*z^2 + 24*z^3, 24*z^3]])
sage: sorted(f.all_periodic_points(prime_bound=[1,20]))
# long time
[(-3 : -1 : 1), (-3 : 0 : 1), (-3 : 1 : 1), (-3 : 3 : 1), (-1 : -1 : 1),
 (-1 : 0 : 1), (-1 : 1 : 1), (-1 : 3 : 1), (0 : 1 : 0), (1 : -1 : 1),
 (1 : 0 : 0), (1 : 1 : 1), (1 : 3 : 1), (3 : -1 : 1),
 (3 : 0 : 1), (3 : 1 : 1), (3 : 3 : 1), (5 : -1 : 1), (5 : 0 : 1),
 (5 : 1 : 1), (5 : 3 : 1)]
```

5.3. Dynamical systems on projective schemes 175
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([-5*x^2 + 4*y^2, 4*x*y])
sage: sorted(f.all_periodic_points()) # long time
[(-2 : 1), (-2/3 : 1), (2/3 : 1), (1 : 0), (2 : 1)]

sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^2-x+1)
sage: P.<u,v> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([u^2 + v^2, u*v])
sage: sorted(f.all_periodic_points())
[(-w + 1 : 1), (w : 1), (1 : 0)]

sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^2-x+1)
sage: P.<u,v> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([u^2+v^2,u*v])
sage: f.all_periodic_points()
Traceback (most recent call last):
... NotImplementedError: rational periodic points for number fields only
˓→ implemented for polynomials

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: f = DynamicalSystem_projective([x^2 - (3/4)*w^2, y^2 - 3/4*w^2, z^2 - 3/4*w^2, w^2])
sage: sorted(f.all_periodic_points(algorithm="dynatomic"))
[(-1/2 : -1/2 : -1/2 : 1),
 (-1/2 : -1/2 : 3/2 : 1),
 (-1/2 : 3/2 : -1/2 : 1),
 (-1/2 : 3/2 : 3/2 : 1),
 (0 : 0 : 1 : 0),
 (0 : 1 : 0 : 0),
 (0 : 1 : 1 : 0),
 (1 : 0 : 0 : 0),
 (1 : 1 : 0 : 0),
 (1 : 1 : 1 : 0),
 (3/2 : -1/2 : -1/2 : 1),
 (3/2 : -1/2 : 3/2 : 1),
 (3/2 : 3/2 : -1/2 : 1),
 (3/2 : 3/2 : 3/2 : 1)]
all_preperiodic_points(**kwds)

Determine the set of rational preperiodic points for this dynamical system.

The map must be defined over \mathbb{Q} and be an endomorphism of projective space. If the map is a polynomial endomorphism of \mathbb{P}^1, i.e. has a totally ramified fixed point, then the base ring can be an absolute number field. This is done by passing to the Weil restriction.

The default parameter values are typically good choices for \mathbb{P}^1. If you are having trouble getting a particular map to finish, try first computing the possible periods, then try various different values for lifting_prime.

ALGORITHM:

- Determines the list of possible periods.
- Determines the rational periodic points from the possible periods.
- Determines the rational preperiodic points from the rational periodic points by determining rational preimages.

INPUT:

kwds:

- R – (default: domain of dynamical system) the base ring over which the periodic points of the dynamical system are found
- prime_bound – (default: [1, 20]) a pair (list or tuple) of positive integers that represent the limits of primes to use in the reduction step or an integer that represents the upper bound
- lifting_prime – (default: 23) a prime integer; specifies modulo which prime to try and perform the lifting
- periods – (optional) a list of positive integers that is the list of possible periods
- bad_primes – (optional) a list or tuple of integer primes; the primes of bad reduction
- ncpus – (default: all cpus) number of cpus to use in parallel
- period_degree_bounds – (default: [4, 4]) a pair of positive integers (max period, max degree) for which the dynatomic polynomial should be solved for when in dimension 1
- algorithm – (optional) specifies which algorithm to use; current options are dynatomic and lifting; defaults to solving the dynatomic for low periods and degrees and lifts for everything else

OUTPUT: a list of rational points in projective space

EXAMPLES:

```
sage: PS.<x,y> = ProjectiveSpace(1,QQ)
sage: f = DynamicalSystem_projective([x^2 -y^2, 3*x*y])
sage: sorted(f.all_preperiodic_points())
[(-2 : 1), (-1 : 1), (-1/2 : 1), (0 : 1), (1/2 : 1), (1 : 0), (1 : 1),
 (2 : 1)]
```

```
sage: PS.<x,y> = ProjectiveSpace(1,QQ)
sage: f = DynamicalSystem_projective([5*x^3 - 53*x*y^2 + 24*y^3, 24*y^3])
sage: sorted(f.all_preperiodic_points(prime_bound=10))
[(-1 : 1), (0 : 1), (1 : 0), (1 : 1), (3 : 1)]
```
sage: PS.<x,y,z> = ProjectiveSpace(2,QQ)
sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2-2*z^2, z^2])
sage: sorted(f.all_preperiodic_points(prime_bound=[1,8], lifting_prime=7, periods=[2])) # long time

sage: K.<w> = QuadraticField(33)
sage: PS.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^2-71/48*y^2, y^2])
sage: sorted(f.all_preperiodic_points()) # long time
[(-1/12*w - 1 : 1),
 (-1/6*w - 1/4 : 1),
 (-1/12*w - 1/2 : 1),
 (-1/6*w + 1/4 : 1),
 (1/12*w - 1 : 1),
 (1/12*w - 1/2 : 1),
 (-1/12*w + 1/2 : 1),
 (-1/12*w + 1 : 1),
 (1/6*w - 1/4 : 1),
 (1/12*w + 1/2 : 1),
 (1 : 0),
 (1/6*w + 1/4 : 1),
 (1/12*w + 1 : 1)]

all_rational_preimages(points)
Given a set of rational points in the domain of this dynamical system, return all the rational preimages of those points.

In others words, all the rational points which have some iterate in the set points. This function repeatedly calls rational_preimages. If the degree is at least two, by Northcott, this is always a finite set. The map must be defined over number fields and be an endomorphism.

INPUT:
• points – a list of rational points in the domain of this map

OUTPUT: a list of rational points in the domain of this map

EXAMPLES:

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([[16*x^2 - 29*y^2, 16*y^2]])
sage: sorted(f.all_rational_preimages([P(-1,4)]))

sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: f = DynamicalSystem_projective([16*x^2 - 180*x*y + 45*y^2 + 14*x*z + 45*y*z - 90*z^2, 67*x^2 - 180*x*y - 157*x*z + 90*y*z - 90*z^2])
sage: sorted(f.all_rational_preimages([P(-9,-4,1)]))
A non-periodic example

```python
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 + y^2, 2*x*y])
sage: sorted(f.all_rational_preimages([P(17,15)]))
[(1/3 : 1), (3/5 : 1), (5/3 : 1), (3 : 1)]
```

A number field example:

```python
sage: z = QQ['z'].0
sage: K.<w> = NumberField(z^3 + (z^2)/4 - (41/16)*z + 23/64);
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([16*x^2 - 29*y^2, 16*y^2])
sage: sorted(f.all_rational_preimages([P(16*w^2 - 29,16)]), key=str)
[(-w - 1/2 : 1),
 (-w : 1),
 (-w^2 + 21/16 : 1),
 (-w^2 + 29/16 : 1),
 (-w^2 - w + 25/16 : 1),
 (-w^2 - w + 33/16 : 1),
 (w + 1/2 : 1),
 (w : 1),
 (w^2 + w - 25/16 : 1),
 (w^2 + w - 33/16 : 1),
 (w^2 - 21/16 : 1),
 (w^2 - 29/16 : 1)]
```

```python
sage: K.<w> = QuadraticField(3)
sage: P.<u,v> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([u^2+v^2, v^2])
sage: f.all_rational_preimages(P(4))
[(-w : 1), (w : 1)]
```

`conjugating_set(other, R=None)`
Return the set of elements in PGL over the base ring that conjugates one dynamical system to the other.

Given two nonconstant rational functions of equal degree, determine if there is a rational element of PGL that conjugates one rational function to another.

The optional argument `R` specifies the field of definition of the PGL elements. The set is determined by taking the fixed points of one map and mapping them to all unique permutations of the fixed points of the other map. If there are not enough fixed points the function compares the mapping between rational preimages of fixed points and the rational preimages of the preimages of fixed points until there are enough points; such that there are \(n + 2 \) points with all \(n + 1 \) subsets linearly independent.

Warning: For degree 1 maps that are conjugate, there is a positive dimensional set of conjugations. This function returns only one such element.

ALGORITHM:

5.3. Dynamical systems on projective schemes

Implementing invariant set algorithm from the paper [FMV2014]. Given that the set of \(n \) th preimages of fixed points is invariant under conjugation find all elements of PGL that take one set to another.

INPUT:
- `other` – a rational function of same degree as this map
- `R` – a field or embedding

OUTPUT:
Set of conjugating \(n + 1 \) by \(n + 1 \) matrices.

AUTHORS:
- Original algorithm written by Xander Faber, Michelle Manes, Bianca Viray [FMV2014].
- Implemented by Rebecca Lauren Miller, as part of GSOC 2016.

EXAMPLES:

```sage
definitions
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 - 2*y^2, y^2])
sage: m = matrix(QQbar, 2, 2, [-1, 3, 2, 1])
sage: g = f.conjugate(m)
sage: f.conjugating_set(g)
```

```
[[-1, 3], [2, 1]]
```

```sage
definitions
sage: K.<w> = QuadraticField(-1)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^2 + y^2, x*y])
sage: m = matrix(K, 2, 2, [1, 1, 2, 1])
sage: g = f.conjugate(m)
sage: sorted(f.conjugating_set(g)) # long time
```

```
[[-1, -1], [1 1], [2 1], [2 1]]
```

```sage
definitions
sage: K.<i> = QuadraticField(-1)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: D8 = DynamicalSystem_projective([y^3, x^3])
sage: sorted(D8.conjugating_set(D8)) # long time
```

```
[[-1 0], [-i 0], [0 -1], [0 -i], [0 i], [0 1], [i 0], [1 0], [0 1], [0 1], [1 0], [0 1]]
```

```sage
definitions
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: D8 = DynamicalSystem_projective([y^2, x^2])
sage: D8.conjugating_set(D8)
```

```
Traceback (most recent call last):
  ...
ValueError: not enough rational preimages
```
sage: P.<x,y> = ProjectiveSpace(GF(7),1)
sage: D6 = DynamicalSystem_projective([y^2, x^2])
sage: D6.conjugating_set(D6)
[[1 0] [0 1] [0 2] [4 0] [2 0] [0 4]
 [0 1] [1 0] [1 0] [0 1] [0 1] [1 0]]
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: f = DynamicalSystem_projective([x^2 + x*z, y^2, z^2])
sage: f.conjugating_set(f) # long time
[[1 0 0]
 [0 1 0]
 [0 0 1]]
sage: P.<x,y> = ProjectiveSpace(QQbar, 1)
sage: R = P.coordinate_ring()
sage: f = DynamicalSystem_projective([R(3), R(4)])
sage: g = DynamicalSystem_projective([R(5), R(2)])
sage: m = f.conjugating_set(g)[0]
sage: f.conjugate(m) == g
True

sage: P.<x,y,z> = ProjectiveSpace(GF(11),2)
sage: f = DynamicalSystem_projective([2*x + 12*y, 11*y+2*z, x+z])
sage: m1 = matrix(GF(11), 3, 3, [1,4,1,0,2,1,1,1,1])
sage: g = f.conjugate(m1)
sage: g.conjugating_set(g)
[[1 0 0]
 [9 1 4]
 [4 10 8]]

sage: L.<v> = CyclotomicField(8)
sage: P.<x,y,z> = ProjectiveSpace(L, 2)
sage: f = DynamicalSystem_projective([2*x + 12*y, 11*y+2*z, x+z])
sage: m1 = matrix(L, 3, 3, [1,4,v^2,0,2,1,1,1,1])
sage: g = f.conjugate(m1)
sage: g.conjugating_set(g)
[[1 0 0]
 [9 1 4]
 [4 10 8]]

note that only one possible conjugation is returned:
connected_rational_component($P,$ $n=0$)

Computes the connected component of a rational preperiodic point P by this dynamical system.

Will work for non-preperiodic points if n is positive. Otherwise this will not terminate.

INPUT:

- P – a rational preperiodic point of this map
- n – (default: 0) integer; maximum distance from P to branch out; a value of 0 indicates no bound

OUTPUT:

A list of points connected to P up to the specified distance.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<w> = NumberField(x^3+1/4*x^2-41/16*x+23/64)
sage: PS.<x,y> = ProjectiveSpace(1,K)
sage: f = DynamicalSystem_projective([x^2 - 29/16*y^2, y^2])
sage: P = PS([w,1])
sage: sorted(f.connected_rational_component(P), key=str)
[(-w - 1/2 : 1),
 (-w : 1),
 (-w^2 + 21/16 : 1),
 (-w^2 + 29/16 : 1),
 (-w^2 - w + 25/16 : 1),
 (-w^2 - w + 33/16 : 1),
 (w + 1/2 : 1),
 (w : 1),
 (w^2 + w - 25/16 : 1),
 (w^2 + w - 33/16 : 1),
 (w^2 - 21/16 : 1),
 (w^2 - 29/16 : 1)]
```

```
sage: PS.<x,y,z> = ProjectiveSpace(2,QQ)
sage: f = DynamicalSystem_projective([x^2 - 21/16*z^2, y^2-2*z^2, z^2])
sage: P = PS([17/16,7/4,1])
sage: f.connected_rational_component(P,3)
[(17/16 : 7/4 : 1),
 (-47/256 : 17/16 : 1),
 (-83807/65536 : -223/256 : 1),
 (-17/16 : -7/4 : 1),
 (-17/16 : 7/4 : 1),
 (17/16 : -7/4 : 1),
 (1386468673/4294967296 : -81343/65536 : 1),
 (-47/256 : -17/16 : 1),
 (47/256 : -17/16 : 1),
 (47/256 : 17/16 : 1),
 (-1/2 : -1/2 : 1),
 (-1/2 : 1/2 : 1),
 (1/2 : -1/2 : 1),
 (1/2 : 1/2 : 1)]
```
The `is_conjugate` function is used to determine whether two dynamical systems are conjugate over their base ring (by default) or over the ring \mathcal{R} entered as an optional parameter.

Algorithm:
Implementing invariant set algorithm from the paper [FMV2014]. Given that the set of nth preimages is invariant under conjugation, this function finds whether two maps are conjugate.

Input:
- `other` – a nonconstant rational function of the same degree as this map
- `R` – a field or embedding

Output: boolean

Authors:
- Original algorithm written by Xander Faber, Michelle Manes, Bianca Viray [FMV2014].
- Implemented by Rebecca Lauren Miller as part of GSOC 2016.

Examples:

```python
sage: K.<w> = CyclotomicField(3)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: D8 = DynamicalSystem_projective([y^2, x^2])
sage: D8.is_conjugate(D8)
```

```
True
```

```python
sage: set_verbose(None)
sage: P.<x,y> = ProjectiveSpace(QQbar,1)
sage: f = DynamicalSystem_projective([x^2 + x*y, y^2])
sage: m = matrix(QQbar, 2, 2, [1, 1, 2, 1])
sage: g = f.conjugate(m)
sage: f.is_conjugate(g)  # long time
```

```
True
```

```python
sage: P.<x,y> = ProjectiveSpace(GF(5),1)
sage: f = DynamicalSystem_projective([x^3 + x*y^2, y^3])
sage: m = matrix(GF(5), 2, 2, [1, 3, 2, 9])
sage: g = f.conjugate(m)
sage: f.is_conjugate(g)
```

```
True
```

```python
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 + x*y, y^2])
sage: g = DynamicalSystem_projective([x^3 - 2*y^2, y^2])
sage: f.is_conjugate(g)
```

```
False
```

```python
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 + x*y, y^2])
sage: g = DynamicalSystem_projective([x^2 - 2*y^2, y^2])
sage: f.is_conjugate(g)
```

```
False
```
conjugation is only checked over the base field by default:

```python
sage: P.<x,y> = ProjectiveSpace(QQbar, 1)
sage: f = DynamicalSystem_projective([7*x + 12*y, 8*x])
sage: g = DynamicalSystem_projective([1645*x - 318*y, 8473*x - 1638*y])
sage: f.is_conjugate(g)
True
```

```python
sage: P.<x,y,z> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([-3*y^2, 3*x^2])
sage: g = DynamicalSystem_projective([-x^2 - 2*x*y, 2*x*y + y^2])
sage: f.is_conjugate(g), f.is_conjugate(g, R=QQbar)  # long time
(False, True)
```

```python
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([7*x + 12*y, 8*y^2 + 2*z, x + z])
sage: m1 = matrix(QQ, 3, 3, [1,4,1,0,2,1,1,1,1])
sage: g = f.conjugate(m1)
sage: f.is_conjugate(g)
True
```

```python
sage: P.<x,y,z> = ProjectiveSpace(GF(7), 2)
sage: f = DynamicalSystem_projective([2*x^2 + 12*y*x, 11*y^2 + 2*z, x + z])
sage: m1 = matrix(GF(7), 3, 3, [1,4,1,0,2,1,1,1,1])
sage: g = f.conjugate(m1)
sage: f.is_conjugate(g)
True
```

```python
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([2*x^2 + 12*y*x, 11*y^2 + 2*z, x^2 + z^2])
sage: m1 = matrix(QQ, 3, 3, [1,4,1,0,2,1,1,1,1])
sage: g = f.conjugate(m1)
sage: f.is_conjugate(g)  # long time
True
```

The `is_newton` method checks whether a map is Newton, and if so, returns the conjugation to the Newton form. The conjugation may be defined over an extension if the map has fixed points not defined over the base field.

EXAMPLES:

```python
sage: is_newton(return_conjugation=False)
Return whether self is a Newton map.

A map $g$ is Newton if it is conjugate to a map of the form $f(z) = z - \frac{p(z)}{p'(z)}$ after dehomogenization, where $p(z)$ is a squarefree polynomial.

**INPUT:**

• `return_conjugation` – (default: False) if the map is Newton and True, then return the conjugation that moves this map to the above form

**OUTPUT:**

A Boolean. If `return_conjugation` is True, then this also returns the conjugation as a matrix if `self` is Newton or None otherwise.

The conjugation may be defined over an extension if the map has fixed points not defined over the base field.

**EXAMPLES:**
sage: A.<z> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem_affine([z - (z^2 + 1)/(2*z)])
sage: F = f.homogenize(1)
sage: F.is_newton(return_conjugation=True)
( [1 0]
True, [0 1]
)

sage: A.<z> = AffineSpace(QQ, 1)
sage: f = DynamicalSystem_affine([z^2 + 1])
sage: F = f.homogenize(1)
sage: F.is_newton()
False
sage: F.is_newton(return_conjugation=True)
(False, None)

sage: PP.<x,y> = ProjectiveSpace(QQ, 1)
sage: F = DynamicalSystem_projective([-4*x^3 - 3*x*y^2, -2*y^3])
sage: F.is_newton(return_conjugation=True)[1]
[ -4*a 2*a]

is_polynomial()
Check to see if the dynamical system has a totally ramified fixed point.
The function must be defined over an absolute number field or a finite field.
OUTPUT: boolean
EXAMPLES:

sage: R.<x> = QQ[]
sage: K.<w> = QuadraticField(7)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: f = DynamicalSystem_projective([x^2 + 2*x*y - 5*y^2, 2*x^2*y])
sage: f.is_polynomial()
False

sage: R.<x> = QQ[]
sage: K.<w> = QuadraticField(7)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: f = DynamicalSystem_projective([x^2 - 7*x*y, 2*y^2])
sage: m = matrix(K, 2, 2, [w, 1, 0, 1])
sage: f = f.conjugate(m)
sage: f.is_polynomial()
True
sage: K.<w> = QuadraticField(4/27)
sage: f = DynamicalSystem_projective([x**3 + w*y**3, x*y**2])
sage: f.is_polynomial()
False
sage: K = GF(3**2, prefix='w')
sage: f = DynamicalSystem_projective([x**2 + K.gen()*y**2, x*y])
sage: f.is_polynomial()
False
sage: PS.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([6*x^2+12*x*y+7*y^2, 12*x*y + 42*y^2])
sage: f.is_polynomial()
False

lift_to_rational_periodic(points_modp, B=None)

Given a list of points in projective space over $\mathbb{F}_p$, determine if they lift to $\mathbb{Q}$-rational periodic points.

The map must be an endomorphism of projective space defined over $\mathbb{Q}$.

ALGORITHM:
Use Hensel lifting to find a $p$-adic approximation for that rational point. The accuracy needed is determined by the height bound $B$. Then apply the LLL algorithm to determine if the lift corresponds to a rational point.

If the point is a point of high multiplicity (multiplier 1), the procedure can be very slow.

INPUT:
- points_modp – a list or tuple of pairs containing a point in projective space over $\mathbb{F}_p$ and the possible period
- B – (optional) a positive integer; the height bound for a rational preperiodic point

OUTPUT: a list of projective points

EXAMPLES:
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2 - y^2, y^2])
sage: f.lift_to_rational_periodic([[P(0,1).change_ring(GF(7)), 4]])
[[[0 : 1], 2]]

There may be multiple points in the lift.
sage: f = DynamicalSystem_projective([-5*x^2 + 4*y^2, 4*x*y])
sage: f.lift_to_rational_periodic([[P(1,0).change_ring(GF(3)), 1]]) # long time
[[[1 : 0], 1], [[2/3 : 1], 1], [[-2/3 : 1], 1]]

sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([16*x^2 - 29*y^2, 16*y^2])
sage: f.lift_to_rational_periodic([[P(3,1).change_ring(GF(13)), 3]])
[[[-1/4 : 1], 3]]
normal_form\( (\text{return\_conjugation}=\text{False}) \)

Return a normal form in the moduli space of dynamical systems.

Currently implemented only for polynomials. The totally ramified fixed point is moved to infinity and the map is conjugated to the form \(x^n + a_{n-2}x^{n-2} + \cdots + a_0\). Note that for finite fields we can only remove the \((n-1)\)-st term when the characteristic does not divide \(n\).

INPUT:

\* \text{return\_conjugation} – (default: False) boolean; if \text{True}, then return the conjugation element of \text{PGL} along with the embedding into the new field

OUTPUT:

\* \text{SchemeMorphism\_polynomial}

\* (optional) an element of \text{PGL} as a matrix

\* (optional) the field embedding

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^2 - 5)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^2 + w*x*y^2, y^2])
sage: g,m,psi = f.normal_form(return_conjugation = True);m
[1 -1/2*w]
[0 1]
sage: f.change_ring(psi).conjugate(m) == g
True
```

```sql
(continues on next page)
```
sage: f.normal_form()
Dynamical System of Projective Space of dimension 1 over Finite Field in w3 of size 3^3
Defn: Defined on coordinates by sending (x : y) to
(x^3 + x^2*y + x*y^2 + (-w3)*y^3 : y^3)

sage: P.<x,y> = ProjectiveSpace(GF(3),1)
sage: f = DynamicalSystem_projective([[2*x^3 + x^2*y, y^3]])
sage: g,m,psi = f.normal_form(return_conjugation=True); psi
Ring morphism:
  From: Finite Field of size 3
  To:   Finite Field in z2 of size 3^2
  Defn: 1 |--> 1

potential_good_reduction(prime, return_conjugation=False)

Returns True if this dynamical system has potential good reduction at prime.

A dynamical system has good reduction at prime if after the coefficients are reduced modulo prime
the degree remains the same. A dynamical system $f$ has potential good reduction if there exists
$\phi \in PGL(n, K)$ such that $\phi^{-1} \circ f \circ \phi$ has good reduction.

If this dynamical system $f$ has potential good reduction at $\text{prime}$, a dynamical system
$g = \phi^{-1} \circ f \circ \phi$ which has good reduction at $\text{prime}$ is returned.

This dynamical system must have as its domain $\mathbb{P}^1(K)$, where $K$ is a number field.

INPUT:

- prime – a prime ideal of the field of definition of the fixed points of the map, or a prime number in $\mathbb{Q}$
  if the field of definition of the fixed points is $\mathbb{Q}$.

- return_conjugation – (default: False) if set to True, the $PGL_2$ map used to achieve good reduction
  will be returned

OUTPUT:

A tuple:

- The first element is:
  - False if this dynamical system does not have potential good reduction.
  - True if this dynamical system does have potential good reduction.

- The second element is:
  - None if this dynamical system does not have potential good reduction.
  - A dynamical system with good reduction at prime otherwise.

- If return_conjugation is True, then the tuple will have a third element, which is:
  - None if this dynamical system does not have potential good reduction.
  - The $PGL_2$ map used to achieve good reduction otherwise.

EXAMPLES:

sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: system = DynamicalSystem_projective([x^2-y^2, 2*x*y])
sage: prime = system.field_of_definition_periodic(1).prime_above(2)
```python
sage: new_system = system.potential_good_reduction(prime)[1]
sage: new_system
Dynamical System of Projective Space of dimension 1 over Number Field in a with defining polynomial x^2 + 1
 Defn: Defined on coordinates by sending (x : y) to
 ((-1/2*a)*x^2 + (-5/2*a)*y^2 : (-a)*x*y + y^2)
```

Note that this map has good reduction at 2:

```python
sage: new_system.resultant()
1
```

Using `return_conjugation`, we can get the conjugation that achieves good reduction:

```python
sage: conj = system.potential_good_reduction(prime, True)[2]; conj
[-1/2*a 1/2]
[0 1]
```

We can check that this conjugation achieves good reduction:

```python
sage: system.conjugate(conj).resultant()
1
```

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: system = DynamicalSystem_projective([3^4*x^3+3*x*y^2+y^3, 3^6*y^3])
sage: prime = system.field_of_definition_periodic(1).prime_above(3)
sage: system.potential_good_reduction(prime)
(False, None)
```

```python
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: system = DynamicalSystem_projective([x^5-x*y^4, 5*y^5])
sage: prime = system.field_of_definition_periodic(1).prime_above(5)
sage: system.potential_good_reduction(prime)
(False, None)
```

`rational_periodic_points(**kwds)`

Determine the set of rational periodic points for this dynamical system.

The map must be defined over \( \mathbb{Q} \) and be an endomorphism of projective space. If the map is a polynomial endomorphism of \( \mathbb{P}^1 \), i.e. has a totally ramified fixed point, then the base ring can be an absolute number field. This is done by passing to the Weil restriction.

The default parameter values are typically good choices for \( \mathbb{P}^1 \). If you are having trouble getting a particular map to finish, try first computing the possible periods, then try various different lifting_prime values.

**ALGORITHM:**

Modulo each prime of good reduction \( p \) determine the set of periodic points modulo \( p \). For each cycle modulo \( p \) compute the set of possible periods \( (m_{rp}) \). Take the intersection of the list of possible periods modulo several primes of good reduction to get a possible list of minimal periods of rational periodic points. Take each point modulo \( p \) associated to each of these possible periods and try to lift it to a rational point with a combination of \( p \)-adic approximation and the LLL basis reduction algorithm.

See [Hutz2015].

**INPUT:**
**rational_preperiodic_graph**(**kwds**)

Determine the directed graph of the rational preperiodic points for this dynamical system.

The map must be defined over **Q** and be an endomorphism of projective space. If this map is a polynomial endomorphism of **P**^1, i.e. has a totally ramified fixed point, then the base ring can be an absolute number field. This is done by passing to the Weil restriction.

**INPUT:**

**kwds:**

- **prime_bound** – (default: [1, 20]) a pair (list or tuple) of positive integers that represent the limits of primes to use in the reduction step or an integer that represents the upper bound
- **lifting_prime** – (default: 23) a prime integer; argument that specifies modulo which prime to try and perform the lifting
- **periods** – (optional) a list of positive integers that is the list of possible periods
- **bad_primes** – (optional) a list or tuple of integer primes; the primes of bad reduction
- **ncpus** – (default: all cpus) number of cpus to use in parallel

**OUTPUT:** A digraph representing the orbits of the rational preperiodic points in projective space.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^2-x+1)
sage: P.<u,v> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([u^2 + v^2, v^2])
sage: sorted(f.rational_periodic_points())
doctest:warning
```

```python
[(w + 1 : 1), (w : 1), (1 : 0)]
```
```sage```
sage: PS.<x,y> = ProjectiveSpace(1,QQ)
sage: f = DynamicalSystem_projective([7*x^2 - 28*y^2, 24*x*y])
sage: f.rational_preperiodic_graph()
Looped digraph on 12 vertices
```
```
sage: PS.<x,y> = ProjectiveSpace(1,QQ)
sage: f = DynamicalSystem_projective([-3/2*x^3 +19/6*x*y^2, y^3])
sage: f.rational_preperiodic_graph(prime_bound=[1,8])
Looped digraph on 12 vertices
```
```
sage: PS.<x,y,z> = ProjectiveSpace(2,QQ)
sage: f = DynamicalSystem_projective([2*x^3 - 50*x*z^2 + 24*z^3, 5*y^3 - 53*y*z^2 + 24*z^3, 24*z^3])
sage: f.rational_preperiodic_graph(prime_bound=[1,11], lifting_prime=13) # long time
Looped digraph on 30 vertices
```
```
sage: K.<w> = QuadraticField(-3)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2])
sage: f.rational_preperiodic_graph() # long time
Looped digraph on 5 vertices
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
• **algorithm** (optional) specifies which algorithm to use; current options are `dynatomic` and `lifting`;
defaults to solving the dynatomic for low periods and degrees and lifts for everything else

OUTPUT: a list of rational points in projective space

EXAMPLES:

```python
sage: PS.<x,y> = ProjectiveSpace(1,QQ)
sage: f = DynamicalSystem_projective([x^2 -y^2, 3*x*y])
sage: sorted(f.rational_preperiodic_points())
doctest:warning
... [[-2 : 1], (-1 : 1), (-1/2 : 1), (0 : 1), (1/2 : 1), (1 : 0), (1 : 1),
(2 : 1)]
```

reduce_base_field()

Return this map defined over the field of definition of the coefficients.

The base field of the map could be strictly larger than the field where all of the coefficients are defined. This
function reduces the base field to the minimal possible. This can be done when the base ring is a number
field, QQbar, a finite field, or algebraic closure of a finite field.

OUTPUT: A dynamical system

EXAMPLES:

```python
sage: K.<t> = GF(2^3)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: f = DynamicalSystem_projective([x^2 + y^2, y^2, z^2+z*y])
sage: f.reduce_base_field()
Dynamical System of Projective Space of dimension 2 over Finite Field of size 2
  Defn: Defined on coordinates by sending (x : y : z) to
        (x^2 + y^2 : y^2 : y*z + z^2)
```

```python
sage: R.<x> = QQ[]
sage: K.<v> = NumberField(x^3-2, embedding=(x^3-2).roots(ring=CC)[0][0])
sage: L.<w> = NumberField(x^6 + 9*x^4 - 4*x^3 + 27*x^2 + 36*x + 31,
                      embedding=(x^6 + 9*x^4 - 4*x^3 + 27*x^2 + 36*x + 31).
                      roots(ring=CC)[0][0])
sage: P.<x,y> = ProjectiveSpace(L,1)
sage: f = DynamicalSystem([L(v)*x^2 + y^2, x*y])
sage: f.reduce_base_field().base_ring().is_isomorphic(K)
True
```
```
sage: K.<v> = CyclotomicField(5)
sage: A.<x,y> = ProjectiveSpace(K, 1)
sage: f = DynamicalSystem_projective([3*x^2 + y^2, x*y])
sage: f.reduce_base_field()
Dynamical System of Projective Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x : y) to
(3*x^2 + y^2 : x*y)
```

```python
class sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field(polys, domain)

Bases: sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field,
sage.schemes.projective.projective_morphism.SchemeMorphism_polynomial_projective_space_finite_field

all_periodic_points(**kwds)
Return a list of all periodic points over a finite field.

INPUT:

keywords:
• R – (default: base ring of dynamical system) the base ring over which the periodic points of the dynamical system are found

OUTPUT: a list of elements which are periodic

EXAMPLES:

```
sage: P.<x,y> = ProjectiveSpace(GF(5^2),1)
sage: f = DynamicalSystem_projective([x^2+y^2, x*y])
sage: f.all_periodic_points()
[(1 : 0), (z2 + 2 : 1), (4*z2 + 3 : 1)]
sage: P.<x,y,z> = ProjectiveSpace(GF(5),2)
sage: f = DynamicalSystem_projective([x^2+y^2+z^2, x*y+x*z, z^2])
sage: f.all_periodic_points()
[(1 : 0 : 0),
 (0 : 0 : 1),
 (1 : 0 : 1),
 (2 : 1 : 1),
 (1 : 4 : 1),
 (3 : 0 : 1),
 (0 : 3 : 1)]
```
```
sage: P.<x,y>=ProjectiveSpace(GF(3), 1)
sage: f = DynamicalSystem_projective([x^2 - y^2, y^2])
sage: f.all_periodic_points(R=GF(3^2, 't'))
[(1 : 0), (0 : 1), (2 : 1), (t : 1), (2*t + 1 : 1)]
```
```
automorphism_group(absolute=False, iso_type=False, return_functions=False)
Return the subgroup of PGL_2 that is the automorphism group of this dynamical system.

Only for dimension 1. The automorphism group is the set of PGL_2 elements that fixed the map under conjugation. See [FMV2014] for the algorithm.

INPUT:
```
• **absolute** – (default: False) boolean; if True, then return the absolute automorphism group and a field of definition

• **iso_type** – (default: False) boolean; if True, then return the isomorphism type of the automorphism group

• **return_functions** – (default: False) boolean; True returns elements as linear fractional transformations and False returns elements as $PGL_2$ matrices

OUTPUT: a list of elements of the automorphism group

AUTHORS:

• Original algorithm written by Xander Faber, Michelle Manes, Bianca Viray

• Modified by Joao Alberto de Faria, Ben Hutz, Bianca Thompson

EXAMPLES:

```
sage: R.<x,y> = ProjectiveSpace(GF(7^3,'t'),1)
sage: f = DynamicalSystem_projective([x^2-y^2, x*y])
sage: f.automorphism_group()
[[1 0] [6 0]
 [0 1] [0 1]]
```

```
sage: R.<x,y> = ProjectiveSpace(GF(3^2,'t'),1)
sage: f = DynamicalSystem_projective([x^3,y^3])
sage: lst, label = f.automorphism_group(return_functions=True, iso_type=True) # long time

sage: sorted(lst, key=str), label # long time
(([2*x + 1)/(x + 1),
 (2*x + 1)/x,
 (2*x + 2)/(x + 2),
 (2*x + 2)/x,
 (x + 1)/(x + 2),
 (x + 1)/x,
 (x + 2)/(x + 1),
 (x + 2)/x,
 1/(x + 1),
 1/(x + 2),
 1/x,
 2*x,
 2*x + 1,
 2*x + 2,
 2*x/(x + 1),
 2*x/(x + 2),
 2/(x + 1),
 2/(x + 2),
 2/x,
 x,
 x + 1,
 x + 2,
 x/(x + 1),
 x/(x + 2)],
'PGL(2,3)')
```
sage: R.<x,y> = ProjectiveSpace(GF(2^5,'t'),1)
sage: f = DynamicalSystem_projective([x^5,y^5])
sage: f.automorphism_group(return_functions=True, iso_type=True)
([x, 1/x], 'Cyclic of order 2')

sage: R.<x,y> = ProjectiveSpace(GF(3^4,'t'),1)
sage: f = DynamicalSystem_projective([x^4+25*x^3*y+y^2, x*y+3*y^2])
sage: f.automorphism_group(absolute=True)
[Univariate Polynomial Ring in w over Finite Field in b of size 3^4,
 [1 0]
 [0 1]]

**cyclegraph()**

Return the digraph of all orbits of this dynamical system.

Over a finite field this is a finite graph. For subscheme domains, only points on the subscheme whose image are also on the subscheme are in the digraph.

OUTPUT: a digraph

EXAMPLES:

```python
sage: P.<x,y> = ProjectiveSpace(GF(13),1)
sage: f = DynamicalSystem_projective([x^2-y^2, y^2])
sage: f.cyclegraph()
Looped digraph on 14 vertices
```

```python
sage: P.<x,y,z> = ProjectiveSpace(GF(3^2,'t'),2)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2, z^2+y*z])
sage: f.cyclegraph()
Looped digraph on 91 vertices
```

```python
sage: P.<x,y,z> = ProjectiveSpace(GF(7),2)
sage: X = P.subscheme(x^2-y^2)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2, z^2+y*z^2], domain=X)
sage: f.cyclegraph()
Looped digraph on 15 vertices
```

```python
sage: P.<x,y,z> = ProjectiveSpace(GF(3),2)
sage: X = P.subscheme([x-y])
sage: f = DynamicalSystem_projective([x^2-y^2, x^2-y^2, y^2-z^2], domain=X)
sage: f.cyclegraph()
Looped digraph on 4 vertices
```

**is_postcritically_finite(**kwds**)**

Every point is postcritically finite in a finite field.
INPUT: None. \texttt{kwds} is to parallel the overridden function

OUTPUT: the boolean True

EXAMPLES:

```python
sage: P.<x,y,z> = ProjectiveSpace(GF(5),2)
sage: f = DynamicalSystem_projective([x^2 + y^2, y^2, z^2 + y*z], domain=P)
sage: f.is_postcritically_finite()
True
```

```python
sage: P.<x,y> = ProjectiveSpace(GF(13),1)
sage: f = DynamicalSystem_projective([x^4 - x^2*y^2 + y^4, y^4])
sage: f.is_postcritically_finite(use_algebraic_closure=False)
True
```

\texttt{orbit\_structure}(P)

Return the pair \((m,n)\), where \(m\) is the preperiod and \(n\) is the period of the point \(P\) by this dynamical system.

Every point is preperiodic over a finite field so every point will be preperiodic.

INPUT:

\begin{itemize}
  \item \(P\) – a point in the domain of this map
\end{itemize}

OUTPUT: a tuple \((m,n)\) of integers

EXAMPLES:

```python
sage: P.<x,y,z> = ProjectiveSpace(GF(5),2)
sage: f = DynamicalSystem_projective([x^2 + y^2, y^2, z^2 + y*z], domain=P)
sage: f.orbit_structure(P(2,1,2))
(0, 6)
```

```python
sage: P.<x,y,z> = ProjectiveSpace(GF(7),2)
sage: X = P.subscheme(x^2-y^2)
sage: f = DynamicalSystem_projective([x^2, y^2, z^2], domain=X)
sage: f.orbit_structure(X(1,1,2))
(0, 2)
```

```python
sage: P.<x,y,z> = ProjectiveSpace(GF(13),1)
sage: f = DynamicalSystem_projective([x^2 - y^2, y^2], domain=P)
sage: f.orbit_structure(P(3,4))
(2, 3)
```

```python
sage: R.<t> = GF(13^3)
sage: P.<x,y> = ProjectiveSpace(R,1)
sage: f = DynamicalSystem_projective([x^2 - y^2, y^2], domain=P)
sage: f.orbit_structure(P(t, 4))
(11, 6)
```

\texttt{possible\_periods}(\texttt{return\_points=False})

Return the list of possible minimal periods of a periodic point over \(\mathbb{Q}\) and (optionally) a point in each cycle.

ALGORITHM:

See [Hutz2009].
INPUT:

- \texttt{return\_points} – (default: \texttt{False}) boolean; if \texttt{True}, then return the points as well as the possible periods

OUTPUT:

A list of positive integers, or a list of pairs of projective points and periods if \texttt{return\_points} is \texttt{True}.

EXAMPLES:

\begin{verbatim}
sage: P.<x,y> = ProjectiveSpace(GF(23),1)
sage: f = DynamicalSystem_projective([x^2-2*y^2, y^2])
sage: f.possible_periods()
[1, 5, 11, 22, 110]
\end{verbatim}

\begin{verbatim}
sage: P.<x,y> = ProjectiveSpace(GF(13),1)
sage: f = DynamicalSystem_projective([x^2-y^2, y^2])
sage: sorted(f.possible_periods(True))
[[\{0 : 1\}, 2], [[1 : 0], 1], [[3 : 1], 3], [[3 : 1], 36]]
\end{verbatim}

\begin{verbatim}
sage: PS.<x,y,z> = ProjectiveSpace(2,GF(7))
sage: f = DynamicalSystem_projective([-360*x^3 + 760*x*z^2,
....: y^3 - 604*y*z^2 + 240*z^3, 240*z^3])
sage: f.possible_periods()
[1, 2, 4, 6, 12, 14, 28, 42, 84]
\end{verbatim}

Todo:

- do not return duplicate points
- improve hash to reduce memory of point-table

5.4 Dynamical systems for products of projective spaces

This class builds on the product projective space class. The main constructor functions are given by \texttt{DynamicalSystem} and \texttt{DynamicalSystem\_projective}. The constructors function can take either polynomials or a morphism from which to construct a dynamical system.

The must be specified.

EXAMPLES:

\begin{verbatim}
sage: P1xP1.<x,y,u,v> = ProductProjectiveSpaces(QQ, [1, 1])
sage: DynamicalSystem_projective([x^2*u, y^2*v, x*v^2, y*u^2], domain=P1xP1)
Dynamical System of Product of projective spaces P^1 x P^1 over Rational Field
Defn: Defined by sending (x : y , u : v) to (x^2*u : y^2*v , x*v^2 : y*u^2).
\end{verbatim}

\begin{verbatim}
\texttt{class sage.dynamics.arithmetic_dynamics.product_projective_ds.DynamicalSystem\_product\_projective}\texttt{(polys, domain)}

Bases: \texttt{sage.dynamics.arithmetic_dynamics.generic_ds.DynamicalSystem}, \texttt{sage.schemes.product_projective.morphism.ProductProjectiveSpaces\_morphism}\texttt{ring}
\end{verbatim}

5.4. Dynamical systems for products of projective spaces
The class of dynamical systems on products of projective spaces.

**Warning:** You should not create objects of this class directly because no type or consistency checking is performed. The preferred method to construct such dynamical systems is to use `DynamicalSystem_projective()` function.

**INPUT:**

- `polys` – a list of $n_1 + \cdots + n_r$ multi-homogeneous polynomials, all of which should have the same parent.
- `domain` – a projective scheme embedded in $\mathbb{P}^{n_1-1} \times \cdots \times \mathbb{P}^{n_r-1}$

**EXAMPLES:**

```python
sage: T.<x,y,z,w,u> = ProductProjectiveSpaces([2, 1], QQ)
sage: DynamicalSystem_projective([x^2, y^2, z^2, w^2, u^2], domain=T)
Dynamical System of Product of projective spaces $\mathbb{P}^2 \times \mathbb{P}^1$ over Rational Field
Defn: Defined by sending $(x : y : z , w : u)$ to
$(x^2 : y^2 : z^2 , w^2 : u^2)$.
```

**nth_iterate**($P$, $n$, normalize=False)

Return the $n$-th iterate of $P$ by this dynamical system.

If `normalize` is `True`, then the coordinates are automatically normalized.

**INPUT:**

- `P` – a point in `self.domain()`
- `n` – a positive integer
- `normalize` – (default: False) boolean

**OUTPUT:** A point in `self.codomain()`

**EXAMPLES:**

```python
sage: Z.<a,b,x,y,z> = ProductProjectiveSpaces([1, 2], QQ)
sage: f = DynamicalSystem_projective([a^3, b^3 + a*b^2, x^2, y^2 - z^2, z*y], domain=Z)
sage: P = Z([1, 1, 1, 1, 1])
sage: f.nth_iterate(P, 3)
(1/1872 : 1 , 1 : 1 : 0)
```

**nth_iterate_map**($n$)

Return the $n$th iterate of this dynamical system.

**ALGORITHM:**
Uses a form of successive squaring to reduce computations.

Todo: This could be improved.

INPUT:
- \( n \) – a positive integer

OUTPUT: A dynamical system of products of projective spaces

EXAMPLES:

```python
sage: Z.<a,b,x,y,z> = ProductProjectiveSpaces([1, 2], QQ)
sage: f = DynamicalSystem_projective([a^3, b^3, x^2, y^2, z^2], domain=Z)
sage: f.nth_iterate_map(3)
Dynamical System of Product of projective spaces P^1 x P^2 over Rational Field
Defn: Defined by sending (a : b , x : y : z) to
(a^27 : b^27 , x^8 : y^8 : z^8).
```

\textbf{orbit}(\( P, N, **kwds \))

Return the orbit of \( P \) by this dynamical system.

Let \( F \) be this dynamical system. If \( N \) is an integer return \([P, F(P), \ldots, F^N(P)]\).

If \( N \) is a list or tuple \( N = [m, k] \) return \([F^m(P), \ldots, F^k(P)]\). Automatically normalize the points if normalize is True. Perform the checks on point initialize if check is True.

INPUT:
- \( P \) – a point in self.domain()
- \( N \) – a non-negative integer or list or tuple of two non-negative integers

kwds:
- \texttt{check} – (default: True) boolean
- \texttt{normalize} – (default: False) boolean

OUTPUT: a list of points in self.codomain()

EXAMPLES:

```python
sage: Z.<a,b,x,y,z> = ProductProjectiveSpaces([1, 2], QQ)
sage: f = DynamicalSystem_projective([a^3, b^3 + a*b^2, x^2, y^2 - z^2, z*y], domain=Z)
sage: P = Z([1, 1, 1, 1, 1])
sage: f.orbit(P, 3)
[(1 : 1 , 1 : 1 : 1), (1/2 : 1 , 1 : 0 : 1), (1/12 : 1 , -1 : 1 : 0), (1/1872 : 1 , 1 : 0 : 1)]
```

```python
sage: Z.<a,b,x,y> = ProductProjectiveSpaces([1, 1], ZZ)
sage: f = DynamicalSystem_projective([a*b, b^2, x^3 - y^3, y^2*x], domain=Z)
sage: P = Z([2, 6, 2, 4])
sage: f.orbit(P, 3, normalize=True)
[(1 : 3 , 1 : 2), (1 : 3 , -7 : 4), (1 : 3 , 407 : 112), (1 : 3 , 66014215 : 5105408)]
```
class sage.dynamics.arithmetic_dynamics.product_projective_ds.DynamicalSystem_product_projective_field(polys, domain)

Bases: sage.dynamics.arithmetic_dynamics.product_projective_ds.DynamicalSystem_product_projective

DynamicalSystem_product_projective_field

cyclegraph()

Return the digraph of all orbits of this morphism mod \( p \).

OUTPUT: a digraph

EXAMPLES:

```
sage: P.<a,b,c,d> = ProductProjectiveSpaces(GF(3), [1,1])
sage: f = DynamicalSystem_projective([a^2,b^2,c^2,d^2], domain=P)
sage: f.cyclegraph()
Looped digraph on 16 vertices
```

```
sage: P.<a,b,c,d> = ProductProjectiveSpaces(GF(5), [1,1])
sage: f = DynamicalSystem_projective([a^2,b^2,c,d], domain=P)
sage: f.cyclegraph()
Looped digraph on 36 vertices
```

```
sage: P.<a,b,c,d,e> = ProductProjectiveSpaces(GF(2), [1,2])
sage: f = DynamicalSystem_projective([a^2,b^2,c,d,e], domain=P)
sage: f.cyclegraph()
Looped digraph on 21 vertices
```

Todo: Dynamical systems for subschemes of product projective spaces needs work. Thus this is not implemented for subschemes.

5.5 Wehler K3 Surfaces

AUTHORS:

• Ben Hutz (11-2012)
• Joao Alberto de Faria (10-2013)

Todo: Hasse-Weil Zeta Function

Picard Number

Number Fields

REFERENCES: [FH2015], [CS1996], [Weh1998], [Hutz2007]
sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface(polys)
Defines a K3 Surface over $\mathbb{P}^2 \times \mathbb{P}^2$ defined as the intersection of a bilinear and biquadratic form. [Weh1998]

INPUT: Bilinear and biquadratic polynomials as a tuple or list

OUTPUT: WehlerK3Surface_ring

EXAMPLES:

```sage
definitions:
 sage: PP.<x0,x1, x2, y0, y1, y2> = ProductProjectiveSpaces([2, 2],QQ)
sage: L = x0*y0 + x1*y1 - x2*y2
sage: Q = x0*x1*y1^2 + x2^2*y0^2
sage: WehlerK3Surface([L, Q])
Closed subscheme of Product of projective spaces $\mathbb{P}^2 \times \mathbb{P}^2$ over Rational Field defined by:
 x0*y0 + x1*y1 - x2*y2,
 x0*x1*y1^2 + x2^2*y0^2
```

```sage
class sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_field(polys)
Bases: sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring

EXAMPLES:

```sage
definitions:
    sage: PP.<x0, x1, x2, y0, y1, y2> = ProductProjectiveSpaces([2, 2],GF(7))
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \
    3*x0*x1*y0^2*y1^2 + 2*x2*y0*y1 + x0^2*y1^2 + x0^2*y1^2 + x0*x2*y1^2 + \
    x2^2*y0*y1 - 4*x1^2*y2^2 + 5*x0^2*y0^2*y2^2 + 4*x1*x2*y0*x2^2 + 7*x0^2*x2*y1^2 + 7*x0^2*x2*y1^2 + 3*x2^2*y2^2 \n    + x0*x1*y2^2 + x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: X.cardinality()
55
```

class sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring(polys)
Bases: sage.schemes.product_projective.subscheme.AlgebraicScheme_subscheme_product_projective

A K3 surface in $\mathbb{P}^2 \times \mathbb{P}^2$ defined as the intersection of a bilinear and biquadratic form. [Weh1998]

EXAMPLES:

```sage
definitions:
    sage: R.<x,y,z,u,v,w> = PolynomialRing(QQ, 6)
sage: L = x*u - y*v
sage: Q = x^2*y^2 + z^2*u*w
sage: WehlerK3Surface([L, Q])
Closed subscheme of Product of projective spaces $\mathbb{P}^2 \times \mathbb{P}^2$ over Rational Field defined by:
    x*u - y*v,
    x^2*y^2 + z^2*u*w
```

5.5. Wehler K3 Surfaces
\textbf{Gpoly}(\textit{component}, \textit{k})

Return the G polynomials G^*_k.

They are defined as: $G^*_k = (L^*_i)^2 Q^*_i - L^*_i L^*_j Q^*_ij + (L^*_j)^2 Q^*_ji$, where \{i, j, k\} is some permutation of (0, 1, 2) and * is either x (Component = 1) or y (Component = 0).

INPUT:
- \textit{component} - Integer: 0 or 1
- \textit{k} - Integer: 0, 1 or 2

OUTPUT: polynomial in terms of either y (Component = 0) or x (Component = 1)

EXAMPLES:

```python
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6)

sage: Y = x0*y0 + x1*y1 - x2*y2

sage: Z = x0^2*y0^2*y1 + x0^2*y2^2 - x0*x1*y1*y2 + x1^2*y2^2*y1 \n    + x2^2*y2^2 + x2^2*y1^2 + x1^2*y2^2

sage: X = WehlerK3Surface([Z, Y])

sage: X.Gpoly(1, 0)
x0^2*x1^2 + x1^4 - x0^2*x1*x2 + x1^3*x2 + x1^2*x2^2 + x2^4
```

\textbf{Hpoly}(\textit{component}, \textit{i}, \textit{j})

Return the H polynomials defined as H^*_{ij}.

This polynomial is defined by:

$H^*_{ij} = 2L^*_i L^*_j Q^*_ik - L^*_i L^*_k Q^*_ij - L^*_j L^*_k Q^*_jk + (L^*_k)^2 Q^*_ji$ where \{i, j, k\} is some permutation of (0, 1, 2) and * is either y (Component = 0) or x (Component = 1).

INPUT:
- \textit{component} - Integer: 0 or 1
- \textit{i} - Integer: 0, 1 or 2
- \textit{j} - Integer: 0, 1 or 2

OUTPUT: polynomial in terms of either y (Component = 0) or x (Component = 1)

EXAMPLES:

```python
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6)

sage: Y = x0*y0 + x1*y1 - x2*y2

sage: Z = x0^2*y0^2*y1 + x0^2*y2^2 - x0*x1*y1*y2 + x1^2*y2^2*y1 \n    + x2^2*y2^2 + x2^2*y1^2 + x1^2*y2^2

sage: X = WehlerK3Surface([Z, Y])

sage: X.Hpoly(0, 1, 0)
2*y0*y1^3 + 2*y0*y1*y2^2 - y1*y2^3
```

\textbf{Lxa}(\textit{a})

Function will return the L polynomial defining the fiber, given by L^*_a.

This polynomial is defined as:

$L^*_a = \{(a, y) \in \mathbb{P}^2 \times \mathbb{P}^2 : L(a, y) = 0\}$.

INPUT: \textit{a} - Point in \mathbb{P}^2

OUTPUT: A polynomial representing the fiber

202 Chapter 5. Arithmetic Dynamical Systems
EXAMPLES:

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 - \
    3*x0^2*y1^2 + 2*x1^2*y1^2 - 5*x0*x2*y0*y2 - 5*x1*y0^2*y1^2 - \
    4*x1^2*y0*y2 - 6*x0*x2*y1*y2 - 7*x0*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: T = PP(1, 1, 0, 1, 0, 0)
sage: X.Lxa(T[0])
y0 + y1
```

Lyb

Function will return a fiber by L_y^b.

This polynomial is defined as:

$$L_y^b = \{(x, b) \in \mathbb{P}^2 \times \mathbb{P}^2 : L(x, b) = 0\}.$$

Notation and definition from: [CS1996]

INPUT: b - Point in projective space

OUTPUT: A polynomial representing the fiber

EXAMPLES:

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 - \
    3*x0^2*y1^2 + 2*x1^2*y1^2 - 5*x0*x2*y0*y2 - 5*x1*y0^2*y1^2 - \
    4*x1^2*y0*y2 - 6*x0*x2*y1*y2 - 7*x0*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: T = PP(1, 1, 0, 1, 0, 0)
sage: X.Lyb(T[1])
x0
```

Qxa

Function will return the Q polynomial defining a fiber given by Q_x^a.

This polynomial is defined as:

$$Q_x^a = \{(a, y) \in \mathbb{P}^2 \times \mathbb{P}^2 : Q(a, y) = 0\}.$$

Notation and definition from: [CS1996]

INPUT: a - Point in \mathbb{P}^2

OUTPUT: A polynomial representing the fiber

EXAMPLES:

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 - \
    3*x0^2*y1^2 + 2*x1^2*y1^2 - 5*x0*x2*y0*y2 - 5*x1*y0^2*y1^2 - \
    4*x1^2*y0*y2 - 6*x0*x2*y1*y2 - 7*x0*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: L = PP(1, 0, 1, 0, 0, 0)
sage: X.Qxa(L[1])
x0
```

(continues on next page)
\[
+ 5^*x^0*x^2*y^0*y^2 \\
- 4^*x^1*x^2*y^0*y^2 + 7^*x^0^2*y^1*y^2 + 4^*x^1^2*y^1*y^2 + x^0^2*x^1*y^2^2 + 3^*x^2^2*y^2^2 \\
\]

\[
sage: Y = x^0^*y^0 + x^1*y^1 + x^2*y^2 \\
sage: X = WehlerK3Surface([Z, Y]) \\
sage: T = PP(1, 1, 0, 1, 0, 0) \\
sage: X.Qxa(T[0]) \\
5^*y^0^2 + 7^*y^0^*y^1 + y^1^2 + 11^*y^1^*y^2 + y^2^2 \\
\]

\textbf{Qyb(b)}

Function will return a fiber by \(Q^b_y \).

This polynomial is defined as:

\[
Q^b_y = \{(x, b) \in \mathbb{P}^2 \times \mathbb{P}^2 : Q(x, b) = 0 \}.
\]

Notation and definition from: [CS1996]

\textbf{INPUT:} b - Point in projective space

\textbf{OUTPUT:} A polynomial representing the fiber

\textbf{EXAMPLES:}

```
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) \\
sage: Z = x^0^2*y^0^2 + 3^*x^0*x^1*y^0^2 + x^1^2*y^0^2 + 4^*x^0^2*y^0*y^1 \\
+ 3^*x^0*x^1*y^0*y^1 - 2^*x^2^2*y^0*y^1 - x^0^2*y^1^2 + 2^*x^1^2*y^1^2 - x^0^2*x^2*y^1^2 \\
- 4^*x^1*x^2*y^0*y^2 - 4^*x^1*x^2*y^0*y^2 + 7^*x^0^2*y^1*y^2 \\
+ 4^*x^1*x^2*y^1*y^2 + x^0^2*x^1*y^2^2 + 3^*x^2^2*y^2^2 \\
sage: Y = x^0*y^0 + x^1*y^1 + x^2*y^2 \\
sage: X = WehlerK3Surface([Z, Y]) \\
sage: T = PP(1, 1, 0, 1, 0, 0) \\
sage: X.Qyb(T[1]) \\
x^0^2 + 3^*x^0*x^1 + x^1^2 \\
```

\textbf{Ramification_poly(i)}

Function will return the Ramification polynomial \(g^* \).

This polynomial is defined by:

\[
g^* = \frac{(H^*)^2 - 4G^*_iG^*_j}{(L^*_k)^2}.
\]

The roots of this polynomial will either be degenerate fibers or fixed points of the involutions \(\sigma_x \) or \(\sigma_y \) for more information, see [CS1996].

\textbf{INPUT:} i - Integer, either 0 (polynomial in y) or 1 (polynomial in x)

\textbf{OUTPUT:} Polynomial in the coordinate ring of the ambient space

\textbf{EXAMPLES:}

```
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ) \\
sage: Z = x^0^2*y^0^2 + 3^*x^0*x^1*y^0^2 + x^1^2*y^0^2 + 4^*x^0^2*y^0*y^1 \\
+ 3^*x^0*x^1*y^0*y^1 - 2^*x^2^2*y^0*y^1 - x^0^2*y^1^2 + 2^*x^1^2*y^1^2 - x^0^2*x^2*y^1^2 \\
- 4^*x^1*x^2*y^0*y^2 - 4^*x^1*x^2*y^0*y^2 + 7^*x^0^2*y^1*y^2 \\
+ 4^*x^1*x^2*y^1*y^2 + x^0^2*x^1*y^2^2 + 3^*x^2^2*y^2^2 \\
sage: Y = x^0*y^0 + x^1*y^1 + x^2*y^2 \\
sage: X = WehlerK3Surface([Z, Y]) \\
sage: T = PP(1, 1, 0, 1, 0, 0) \\
sage: X.Ramification\_poly(1) \\
```

(continues on next page)
Sage: X.Ramification_poly(0)
8*y0^5*y1 - 24*y0^4*y1^2 + 48*y0^3*y1^4 - 16*y0^2*y1^5 + y1^6 + 84*y0^3*y1^2*y2 + 46*y0^2*y1^3*y2 - 20*y0*y1^4*y2 + 16*y1^5*y2 + 53*y0^4*y2^2 + 56*y0^3*y1*y2^2 - 32*y0^2*y1^2*y2^2 - 80*y0*y1^3*y2^2 - 92*y1^4*y2^2 - 12*y0^2*y1*y2^3 - 168*y0*y1^2*y2^3 - 122*y1^3*y2^3 + 14*y0^2*y2^4 + 8*y0*y1*y2^4 - 112*y1^2*y2^4 - 4 + y2^6

Sxa(a)

Function will return fiber by S^x_a.
This function is defined as:
$S^x_a = L^x_a \cap Q^x_a$.
Notation and definition from: [CS1996]

INPUT: a - Point in \mathbb{P}^2
OUTPUT: A subscheme representing the fiber

EXAMPLES:

sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^3*y0^2*y1 \\
+ 3*x0*x1*y0*y1 \\
- 2*x0^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2^2*y0^2 - 4*x1*x2*y0^2 \\
+ 5*x0*x2*y0*y2 \\
- 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: T = PP(1, 1, 0, 1, 0, 0)
sage: X.Sxa(T[0])
Closed subscheme of Projective Space of dimension 2 over Rational Field
→ defined by:
y0 + y1,
5*y0^2 + 7*y0*y1 + y1^2 + 11*y1*y2 + y2^2

Syb(b)

Function will return fiber by S^y_b.
This function is defined by:
$S^y_b = L^y_b \cap Q^y_b$.
Notation and definition from: [CS1996]

INPUT: b - Point in \mathbb{P}^2
OUTPUT: A subscheme representing the fiber

EXAMPLES:

sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^3*y0^2*y1 \\
+ 3*x0*x1*y0*y1 \\
- 2*x0^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2^2*y0^2 - 4*x1*x2*y0^2 \\
+ 5*x0*x2*y0*y2 \\
- 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: T = PP(1, 1, 0, 1, 0, 0)
sage: X.Sya(T[0])
Closed subscheme of Projective Space of dimension 2 over Rational Field
→ defined by:
y0 + y1,
5*y0^2 + 7*y0*y1 + y1^2 + 11*y1*y2 + y2^2

(continues on next page)
sage: Y = x0 * y0 + x1 * y1 + x2 * y2
sage: X = WehlerK3Surface([Z, Y])
sage: T = PP(1, 1, 0, 1, 0, 0)
sage: X.Syb(T[1])
Closed subscheme of Projective Space of dimension 2 over Rational Field, defined by:
 x0,
 x0^2 + 3*x0*x1 + x1^2

canonical_height(P, N, badprimes=None, prec=100)
Evaluates the canonical height for P with N terms of the series of the local heights.

ALGORITHM:
The sum of the canonical height minus and canonical height plus, for more info see section 4 of [CS1996].

INPUT:
- P – a surface point
- N – positive integer (number of terms of the series to use)
- badprimes – (optional) list of integer primes (where the surface is degenerate)
- prec – (default: 100) float point or p-adic precision

OUTPUT: A real number

EXAMPLES:

```
sage: set_verbose(None)
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(QQ, 6)
sage: L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2)
sage: Q = (-y2*y0 - y1^2)*x0^2 + ((-y0^2 - y2*y0 - y2^2))*x1 + 
   (-y0^2 - y2*y1)*x2) + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y2*y0 - y1^2)*x2*x1 
   \n   + (-y0^2 + (-y1 - y2)*y0)*x2^2)
sage: X = WehlerK3Surface([L, Q])
sage: P = X([1, 0, -1, 1, -1, 0])
# order 16
sage: X.canonical_height(P, 5)
0.00000000000000000000000000000
```

Call-Silverman example:

```
sage: set_verbose(None)
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 - 2*x1^2*y0*y2 
   \n   - 5*x0*x2*y0^2 + 2*x0^2*y0^2 - 2*x0*x1^2*y0^2 - 2*x0*x2*y1^2 - 4*x1*x2*y1^2 + 3*x2^2*y2^2
sage: Y = x0^2*y0 + x1^1*y1 + x2^2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: P = X(0, 1, 0, 0, 1)
sage: X.canonical_height(P, 4)
0.698264586666658598569990618895
```
canonical_height_minus\((P, N, \text{badprimes}=None, \text{prec}=100)\)

Evaluates the canonical height minus function of Call-Silverman for \(P\) with \(N\) terms of the series of the local heights.

Must be over \(\mathbb{Z}\) or \(\mathbb{Q}\).

ALGORITHM:

Sum over the lambda minus heights (local heights) in a convergent series, for more detail see section 7 of [CS1996].

INPUT:

- \(P\) – a surface point
- \(N\) – positive integer (number of terms of the series to use)
- \(\text{badprimes}\) – (optional) list of integer primes (where the surface is degenerate)
- \(\text{prec}\) – (default: 100) float point or p-adic precision

OUTPUT: A real number

EXAMPLES:

```
sage: set_verbose(None)
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(QQ, 6)
sage: L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2)
sage: Q = (-y0^2 - y2*y1 - y2^2)*x1^2 + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y0*x0 - y1^2)*x2^2)
   + (-y0^2 + y0*y1)*x2^2
sage: X = WehlerK3Surface([L, Q])
sage: P = X([1, 0, -1, 1, -1, 0])  # order 16
sage: X.canonical_height_minus(P, 5)  # long time
0.00000000000000000000000000000
```

Call-Silverman example:

```
sage: set_verbose(None)
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0^2 + x0*y1^2 + \n    3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - \n    4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*x1^2*y1*y2 + 4*x0^2*x1^2*y1*y2 + \n    x0^2*y1^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: P = X([0, 1, 0, 0, 0, 1])
sage: X.canonical_height_minus(P, 4)  # long time
0.55073705369676788175590206734
```

canonical_height_plus\((P, N, \text{badprimes}=None, \text{prec}=100)\)

Evaluates the canonical height plus function of Call-Silverman for \(P\) with \(N\) terms of the series of the local heights.

Must be over \(\mathbb{Z}\) or \(\mathbb{Q}\).

ALGORITHM:

Sum over the lambda plus heights (local heights) in a convergent series, for more detail see section 7 of [CS1996].
INPUT:

- P – a surface point
- N – positive integer. Number of terms of the series to use
- badprimes – (optional) list of integer primes (where the surface is degenerate)
- prec – (default: 100) float point or p-adic precision

OUTPUT: A real number

EXAMPLES:

```
sage: set_verbose(None)
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(QQ, 6)
sage: L = (-y0 - y1)*x0 + (-y0*y1 - y2*x2)
sage: Q = ((-y0^2 - y2*y0 + (-y2*y1 - y2^2))*x1 + \\
(-y0^2 - y2*y1)*x2)*x0 + ((-y0^2 - y2*y0 - y2^2)*x1^2 + (-y2*y0 - y1^2)*x2^2*x1 \\
+ (-y0^2 + (-y1 - y2)*y0)*x2^2)
sage: X = WehlerK3Surface([L, Q])
sage: P = X([1, 0, -1, 1, -1, 0])  # order 16
sage: X.canonical_height_plus(P, 5)  # long time
0.0000000000000000000
```

Call-Silverman Example:

```
sage: set_verbose(None)
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0^2*y1 + \
3*x0^2*x1*y0*y1 - 2*x2^2*y0^2*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \\
- 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 -4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \\
+ x0*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: P = X([0, 1, 0, 0, 0, 1])
sage: X.canonical_height_plus(P, 4)  # long time
0.14752753298983071394400412161
```

change_ring(R)

Changes the base ring on which the Wehler K3 Surface is defined.

INPUT: R - ring

OUTPUT: K3 Surface defined over input ring

EXAMPLES:

```
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], GF(3))
sage: L = x0*y0 + x1*y1 - x2^2*y2
sage: Q = x0*x1*y1^2 + x2^2*y0*y2
sage: W = WehlerK3Surface([L, Q])
sage: W.base_ring()
Finite Field of size 3
sage: T = W.change_ring(GF(7))
sage: T.base_ring()
Finite Field of size 7
```
degenerate_fibers()
Function will return the (rational) degenerate fibers of the surface defined over the base ring, or the fraction field of the base ring if it is not a field.

ALGORITHM:
The criteria for degeneracy by the common vanishing of the polynomials self.Gpoly(1, 0), self.Gpoly(1, 1), self.Gpoly(1, 2), self.Hpoly(1, θ, 1), self.Hpoly(1, 0, 2), self.Hpoly(1, 1, 2) (for the first component), is from Proposition 1.4 in the following article: [CS1996].
This function finds the common solution through elimination via Groebner bases by using the .variety() function on the three affine charts in each component.

OUTPUT: The output is a list of lists where the elements of lists are points in the appropriate projective space. The first list is the points whose pullback by the projection to the first component (projective space) is dimension greater than 0. The second list is points in the second component

EXAMPLES:

```python
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6)
sage: Y = x0^2*y0 + x1*y1 - x2*y2
sage: Z = x0^2*y0*y1 + x0^2*y2^2 - x0*x1*y1*y2 + x1^2*y2*y1 + x2^2*y2^2
+ x2^2*y1^2 + x1^2*y2^2
sage: X = WehlerK3Surface([Z, Y])
sage: X.degenerate_fibers()
[[], [(1 : 0 : 0)]]
```

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 + 2*x0^2*y1^2 + 2*x1^2*y1^2 + x0*x1^2*y1^2 + x0^2*x2*y1^2 + x0*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: X.degenerate_fibers()
[[], []]
```

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: R = PP.coordinate_ring()
sage: l = y0*x0 + y1*x1 + (y0 - y1)*x2
sage: q = (y1*y0 + y2^2)*x0^2 + (y0^2 + y2^2)*x1 + (y0^2 + y1^2)*x2 + (y0^2 + y2^2)*x0
sage: X = WehlerK3Surface([l,q])
sage: X.degenerate_fibers()
[[(1 : -1 : 1), (0 : 0 : 1)], [(1 : 1 : 1), (0 : 0 : 1)]]
```

degenerate_primes(check=True)
Determine which primes \(\mathfrak{p} \) self has degenerate fibers over \(GF(p) \).
If check is False, then may return primes that do not have degenerate fibers. Raises an error if the surface is degenerate. Works only for ZZ or QQ.

INPUT: check – (default: True) boolean, whether the primes are verified

ALGORITHM:
\(p \) is a prime of bad reduction if and only if the defining polynomials of self plus the \(G \) and \(H \) polynomials have a common zero. Or stated another way, \(p \) is a prime of bad reduction if and only if the radical of the ideal defined by the defining polynomials of self plus the \(G \) and \(H \) polynomials is not \((x_0, x_1, \ldots, x_N)\). This happens if and only if some power of each \(x_i \) is not in the ideal defined by the defining polynomials of self (with \(G \) and \(H \)). This last condition is what is checked. The \lcm\ of the coefficients of the monomials \(x_i \) in a groebner basis is computed. This may return extra primes.

OUTPUT: List of primes.

EXAMPLES:

```
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(QQ, 6)
sage: L = y0*x0 + (y1*x1 + y2*x2)
sage: Q = (2*y0^2 + y2*y0 + (2*y1^2 + y2^2))*x0^2 + ((y0^2 + y1*y0 + \\
 (y1^2 + y2^2 + y0^2 + y2^2))*y1^2 + (2*y1^2 + y2*y1 + y2^2)*x0 + ((2*y0^2*
 + (y1 + 2*y2)*y0 + (2*y1^2 + y2*y1))*x1^2 + ((2*y1^2 + 2*y2^2)*y0 + (y1^2 + \\
 y2^2 + y0^2 + y2^2))*x2^2 + (2*y^2 + y1*y0 + (2*y^2 + y2^2))*x2^2)

sage: X = WehlerK3Surface([L, Q])
sage: X.degenerate_primes()
[2, 3, 5, 11, 23, 47, 48747691, 111301831]
```

fiber \((p, \text{component})\)
Return the fibers \([y \text{ (component = 1)} \text{ or } x \text{ (Component = 0)}]\) of a point on a K3 Surface.

This will work for nondegenerate fibers only.

For algorithm, see [Hutz2007].

INPUT:

- \(p \) - a point in \(\mathbb{P}^2 \)

OUTPUT: The corresponding fiber (as a list)

EXAMPLES:

```
sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6)
sage: Y = x0*y0 + x1*y1 - x2*y2
sage: Z = y0^2*x0^2 + y0^2*x1^2 + y0^2*x2^2 - y1^2*x0*x1 + y1^2*x2^2 + x0^2*y0^2 + x0^2*y1^2 + x0^2*y2^2 + x0*y0*y1 + x0*y1*y2 + x0*y2*y3 + x1^2*y0^2 + x1^2*y1^2 + x1^2*y2^2 + x1*y0*y1 + x1*y1*y2 + x1*y2*y3 + x2^2*y0^2 + x2^2*y1^2 + x2^2*y2^2 + x2*y0*y1 + x2*y1*y2 + x2*y2*y3
sage: X = WehlerK3Surface([Z, Y])

sage: Proj = ProjectiveSpace(QQ, 2)
sage: P = Proj([1, 0, 0])
sage: X.fiber(P, 1)
Traceback (most recent call last):
...
TypeError: fiber is degenerate
```

```
sage: T = Proj([0, 0, 1])
sage: X.fiber(T, 1)
[(0 : 0 : 1 , 0 : 1 : 0), (0 : 0 : 1 , 2 : 0 : 0)]

sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], GF(7))
sage: L = x0^2*y0 + x1*y1 - 1*x2^2*y2
sage: Q=(2*x0^2 + x2*x0 + (2*x1^2 + x2^2))*y0^2 + ((x0^2 + x1*x0 +(x1^2 +
    →2*x2^2*x1 + x2^2)*y1 + /
    (2*x1^2 + x2*x1 + x2^2)*y2)*y0 + ((2*x0^2+ (x1 + 2*x2)*x0 + (2*x1^2 +
    →x2^2*x1))*y2^2 + ((2*x1 + 2*x2)*x0 + /
    (x1^2 +2*x1 + 2*x2^2))*y1 + (2*x0^2 + x1*x0 + (2*x1^2 + x2^2))*y2^2)

sage: W = WehlerK3Surface([L, Q])
sage: W.fiber([4, 0, 1], 0)
[(0 : 1 : 0 , 4 : 0 : 1), (4 : 0 : 2 , 4 : 0 : 1)]

is_degenerate()
Function will return True if there is a fiber (over the algebraic closure of the base ring) of dimension greater
than 0 and False otherwise.

OUTPUT: boolean

EXAMPLES:

sage: R.<x0,x1,x2,y0,y1,y2> = PolynomialRing(ZZ, 6)
sage: Y = x0*y0 + x1*y1 - x2*y2
sage: Z = x0^2*y0^2 + 3*x0*x1*y0*y2 + x1^2*y0*y2 - 2*x0*x2*y0*y2 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0^2*x2^2 + 3*x2^2*y2^2
sage: X = WehlerK3Surface([Z, Y])
sage: X.is_degenerate()
True

sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0*y2 + x1^2*y0*y2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 -
    \2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0^2*x2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: X.is_degenerate()
False

sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], GF(3))
sage: Z = x0^2*y0^2 + 3*x0*x1*y0*y2 + x1^2*y0*y2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 -
    \2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + x0^2*x2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: X.is_degenerate()
True
is_isomorphic(right)
Checks to see if two K3 surfaces have the same defining ideal.

INPUT:
• right - the K3 surface to compare to the original

OUTPUT: Boolean

EXAMPLES:

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0*x2^2*y0^y1 + \
 3*x0*x1*y0*y1 - 2*x2^2*y0^y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \
 - 4*x1*x2*y1^2 + 5*x0*x2*y0^y2 - 6*x1*x2*y0^y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \
 + x0*x1*y2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: W = WehlerK3Surface([Z + Y^2, Y])
sage: X.is_isomorphic(W)
True
```

is_smooth()
Function will return the status of the smoothness of the surface.

ALGORITHM:
Checks to confirm that all of the 2x2 minors of the Jacobian generated from the biquadratic and bilinear forms have no common vanishing points.

OUTPUT: Boolean

EXAMPLES:

```python
sage: R.<x,y,z,u,v,w> = PolynomialRing(QQ, 6)
sage: L = x*u - y*v
sage: Q = x^2*y^2 + z^2*u*w
sage: W1 = WehlerK3Surface([L, Q])
sage: R.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: L = x0^2*y0 + x1^2*y1 + x2^2*y2
sage: Q = x1^2*y0^2 + 2*x2^2*y0^y1 + x0^2*y1^2 - x0*x1*y2^2
sage: W2 = WehlerK3Surface([L, Q])
sage: W1.is_isomorphic(W2)
False
```

(continues on next page)
\begin{verbatim}
+ x0^8*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])

sage: X.is_smooth()
True
\end{verbatim}

**is_symmetric_orbit(orbit)**

Checks to see if the orbit is symmetric (i.e. if one of the points on the orbit is fixed by \('\sigma_x'\) or \('\sigma_y'\)).

**INPUT:**

- orbit - a periodic cycle of either psi or phi

**OUTPUT:** Boolean

**EXAMPLES:**

\begin{verbatim}
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], GF(7))
sage: Z = x0^2*y0^2 + 3*x0*x1*y0*y1 + x1^2*y0^2 + 4*x0^2*y0*y1 + 3*x0*x1*y0*y1 \n- 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 4*x1*x2*y1^2 + \n- 5*x0*x2*y0*y2 \n- 4*x1*x2*y0*y2 + 7*x0*x2*y1*y2 + 4*x1^2*y1*y2 + x0^2*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: T = PP([0, 0, 1, 1, 0, 0])
sage: orbit = X.orbit_psi(T, 4)
sage: X.is_symmetric_orbit(orbit)
True
\end{verbatim}

\begin{verbatim}
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: L = x1^2*y0^2 + 2*x2^2*y0^2 + x0^2*y1^2 - x0*x1*y2^2
sage: Q = WehlerK3Surface([L, Q])
sage: T = W([-1, -1, 1, 1, 0, 1])
sage: Orb = W.orbit_phi(T, 7)
sage: W.is_symmetric_orbit(Orb)
False
\end{verbatim}

**lambda_minus(P, v, N, m, n, prec=100)**

Evaluates the local canonical height minus function of Call-Silverman at the place \(v\) for \(P\) with \(N\) terms of the series.

Use \(v = 0\) for the Archimedean place. Must be over \(\mathbb{Z}\) or \(\mathbb{Q}\).

**ALGORITHM:**

Sum over local heights using convergent series, for more details, see section 4 of [CS1996].

**INPUT:**

- \(P\) – a projective point
- \(N\) – positive integer. number of terms of the series to use
- \(v\) – non-negative integer. a place, use \(v = 0\) for the Archimedean place
- \(m, n\) – positive integers, We compute the local height for the divisor \(E^+_{mn}\). These must be indices of non-zero coordinates of the point \(P\).
• prec – (default: 100) float point or p-adic precision

OUTPUT: A real number

EXAMPLES:

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0^2*y1^2 + 3*x0*x1*y0^2*y1^2 - 2*x2^2*y0^2*y1 - x0^2*y1^2 + 2*x1^2*y1^2 + x0^2*y1^2 + 2*x1^2*y1^2 - x0^2*y1^2 - x0^2*y1^2 + 2*x1^2*y1^2 + x0^2*y1^2 + 2*x1^2*y1^2 + x0^2*y1^2 + 2*x1^2*y1^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: P = X([0, 0, 1, 1, 0, 0])
sage: X.lambda_minus(P, 0, 10, 2, 0)
-0.1857335167204713503717280577967191488351056677474271893705
```

**lambda_plus**

Evaluates the local canonical height plus function of Call-Silverman at the place \(v\) for \(P\) with \(N\) terms of the series.

Use \(v = 0\) for the archimedean place. Must be over \(\mathbb{Z}\) or \(\mathbb{Q}\).

ALGORITHM:

Sum over local heights using convergent series, for more details, see section 4 of [CS1996].

INPUT:

• \(P\) – a surface point
• \(N\) – positive integer. number of terms of the series to use
• \(v\) – non-negative integer. a place, use \(v = 0\) for the Archimedean place
• \(m, n\) – positive integers. We compute the local height for the divisor \(E_{mn}\). These must be indices of non-zero coordinates of the point \(P\).
• prec – (default: 100) float point or p-adic precision

OUTPUT: A real number

EXAMPLES:

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0^2*y1^2 + 3*x0*x1*y0^2*y1^2 - 2*x2^2*y0^2*y1 - x0^2*y1^2 + 2*x1^2*y1^2 + x0^2*y1^2 + 2*x1^2*y1^2 - x0^2*y1^2 - x0^2*y1^2 + 2*x1^2*y1^2 + x0^2*y1^2 + 2*x1^2*y1^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: P = X([0, 0, 1, 1, 0, 0])
sage: X.lambda_plus(P, 0, 10, 2, 0)
0.89230705016916608922595928129
```

**nth_iterate_phi**

Computes the \(n\)th iterate for the phi function.

INPUT:

• \(P\) – a point in \(\mathbb{P}^2 \times \mathbb{P}^2\)
• \( n \) – an integer

_kwds:

• `check` - (default: True) boolean checks to see if point is on the surface

• `normalize` – (default: False) boolean normalizes the point

**OUTPUT:** The \( n \)th iterate of the point given the \( \phi \) function (if \( n \) is positive), or the \( \psi \) function (if \( n \) is negative)

**EXAMPLES:**

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: L = x0*y0 + x1*y1 + x2*y2
sage: Q = x1^2*x0^2 + 2*x2*y0*y1 + x0^2*y1^2 - x0*x1*y2^2
sage: W = WehlerK3Surface([L, Q])
sage: T = W([-1, -1, 1, 1, 0, 1])
sage: W.nth_iterate_phi(T, 7)
(-1 : 0 : 1 , 1 : -2 : 1)
sage: W.nth_iterate_phi(T, -7)
(1 : 0 : 1 , -1 : 2 : 1)
```

**nth_iterate_phi**

Computes the \( n \)th iterate for the \( \phi \) function.

**INPUT:**

• \( P \) – a point in \( \mathbb{P}^2 \times \mathbb{P}^2 \)

• \( n \) – an integer

_kwds:

• `check` – (default: True) boolean, checks to see if point is on the surface

• `normalize` – (default: False) boolean, normalizes the point

**OUTPUT:** The \( n \)th iterate of the point given the \( \psi \) function (if \( n \) is positive), or the \( \phi \) function (if \( n \) is negative)

**EXAMPLES:**

```python
sage: R.<x0,x1,x2,y0,y1,y2>=PolynomialRing(QQ, 6)
sage: L = (-y0 - y1)*x0 + (-y0*x1 - y2*x2)
sage: Q = (-y2*y0 - y1^2)*x0^2 + ((-y0^2 - y2*y0 + (-y2*y1 - y2^2))*x1 + (-y0^2 + (-y1 - y2)*y0)*x2^2)
sage: X = WehlerK3Surface([L, Q])
sage: P = X([1, 0, -1, 1, -1, 0])
sage: X.nth_iterate_phi(P, 8) == X.nth_iterate_psi(P, 8)
True
```
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: L = x0^2*y0 + x1^2*y1 + x2^2*y2
sage: Q = x1^2*y0^2 + 2*x2^2*y0*y1 + x0^2*y1^2 - x0*x1*y2^2
sage: W = WehlerK3Surface([L, Q])
sage: T = W([-1, -1, 1, 1, 0, 1])
sage: W.nth_iterate_psi(T, -7)
(-1 : 0 : 1, 1 : -2 : 1)
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: L = x0^2*y0 + x1^2*y1 + x2^2*y2
sage: Q = x1^2*y0^2 + 2*x2^2*y0*y1 + x0^2*y1^2 - x0*x1*y2^2
sage: W = WehlerK3Surface([L, Q])
sage: T = W([-1, -1, 1, 1, 0, 1])
sage: W.nth_iterate_psi(T, 7)
(1 : 0 : 1, -1 : 2 : 1)

\texttt{orbit\_phi}(P, N, **kwds)

Return the orbit of the \(\phi\) function defined by \(\phi = \sigma_y \circ \sigma_x\).

This function is defined in [CS1996].

INPUT:

- \(P\) - Point on the K3 surface
- \(N\) - a non-negative integer or list or tuple of two non-negative integers

kwds:

- \texttt{check} – (default: True) boolean, checks to see if point is on the surface
- \texttt{normalize} – (default: False) boolean, normalizes the point

OUTPUT: List of points in the orbit

EXAMPLES:

sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0*y1 + 
   3*x0*x1*y0*y1 - 2*x0^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 - 
   4*x1^2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 + 
   x0*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: T = PP(0, 0, 1, 1, 0, 0)
sage: X.orbit_phi(T, 2, normalize = True)
[(0 : 0 : 1, 1 : 0 : 0), (-1 : 0 : 1, 0 : 1 : 0), (-12816/6659 : 55413/6659 : 1, 1 : 1/9 : 1)]
sage: X.orbit_phi(T, [2,3], normalize = True)
[(-12816/6659 : 55413/6659 : 1, 1 : 1/9 : 1), 
 (-399226869132718828582255586014785683985398282752963013491644987908/ 
  18550615454277582153932951051931712107449915856862264913424670784695 : 
  399226869132718828582255586014785683985398282752963013491644987908/ 
  18550615454277582153932951051931712107449915856862264913424670784695 : 
  1, -117756062505511/54767410965117 : -23134947983794359/37466994368025041 : 1)]

\texttt{orbit\_psi}(P, N, **kwds)

Return the orbit of the \(\psi\) function defined by \(\psi = \sigma_x \circ \sigma_y\).
This function is defined in [CS1996].

INPUT:

- P - a point on the K3 surface
- N - a non-negative integer or list or tuple of two non-negative integers

kwds:

- check - (default: True) boolean, checks to see if point is on the surface
- normalize – (default: False) boolean, normalizes the point

OUTPUT: a list of points in the orbit

EXAMPLES:

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0*y2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \
 3*x0*x1*y0^2 + 5^2*x1^2*y0*y2 - x0^2*x1*y0*y2 + 7*x0^2*y0*y1^2 + \
 x0^2*y0^2 + 3*x1^2*y0^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: T = X(0, 0, 1, 1, 0, 0)
sage: X.orbit_psi(T, 2, normalize = True)
[(0 : 0 : 1 , 1 : 0 : 0), (0 : 0 : 1 , 0 : 1 : 0), (-1 : 0 : 1 , 1 : 1/9 : 1)]
sage: X.orbit_psi(T,[2,3], normalize = True)
[(-12816/6659 : 55413/6659 : 1 , -117756062505511/54767410965117 : - \n ˓→23134047983794359/37466994368025041 : 1)]
```

\[
\phi(a, **kwds)
\]
Evaluates the function \( \phi = \sigma_y \circ \sigma_x \).

ALGORITHM:

Refer to Section 6: “An algorithm to compute \( \sigma_x, \sigma_y, \phi, \) and \( \psi \)” in [CS1996].

For the degenerate case refer to [FH2015].

INPUT:

- a - Point in \( \mathbb{P}^2 \times \mathbb{P}^2 \)

kwds:

- check - (default: True) boolean checks to see if point is on the surface
- normalize – (default: True) boolean normalizes the point

OUTPUT: A point on this surface

EXAMPLES:

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0*y2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \
 3*x0*x1*y0^2 + 5^2*x1^2*y0*y2 - x0^2*x1*y0*y2 + 7*x0^2*y0*y1^2 + \
 x0^2*y0^2 + 3*x1^2*y0^2
sage: Y = x0*y0 + x1*y1 + x2*y2
```

(continues on next page)
psi(a, **kwds)
    Evaluates the function $\psi = \sigma_x \circ \sigma_y$.

ALGORITHM:
Refer to Section 6: “An algorithm to compute $\sigma_x, \sigma_y, \phi$, and $\psi$” in [CS1996].

For the degenerate case refer to [FH2015].

INPUT:
• a - Point in $\mathbb{P}^2 \times \mathbb{P}^2$
kwds:
• check - (default: True) boolean checks to see if point is on the surface
• normalize – (default: True) boolean normalizes the point

OUTPUT: A point on this surface

EXAMPLES:

```
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0*y2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \
3*x0*x1*y0*y1 -2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2*y1^2 \
- 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \
+ x0*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: T = PP([0, 0, 1, 1, 0, 0])
sage: X.psi(T)
(0 : 0 : 1 , 0 : 1 : 0)
```

sigmaX(P, **kwds)
Function returns the involution on the Wehler K3 surface induced by the double covers.

In particular, it fixes the projection to the first coordinate and swaps the two points in the fiber, i.e. $(x, y) \rightarrow (x, y')$. Note that in the degenerate case, while we can split fiber into pairs of points, it is not always possible to distinguish them, using this algorithm.

ALGORITHM:
Refer to Section 6: “An algorithm to compute $\sigma_x, \sigma_y, \phi$, and $\psi$” in [CS1996FH2015]. For the degenerate case refer to [FH2015].

INPUT:
• P - a point in $\mathbb{P}^2 \times \mathbb{P}^2$
kwds:
• check - (default: True) boolean checks to see if point is on the surface
• normalize – (default: True) boolean normalizes the point
EXAMPLES:

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0^2 + x1^2*y0^2 + 4*x0^2*y0^2*y1 + \n 3*x0*x2*y0*y1 - 2*x0*x2*y0*y1 - x0^2*x1*y1^2 + 2*x1^2*x0*y1^2 - x0*x2*y1^2 - \n 4*x1*x2*y1^2 + 5*x0*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + \n 4*x1*x2*y2 + x0*x1*y2 + x2^2*y2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: Z = WehlerK3Surface([Z, Y])
sage: T = PP(0, 0, 1, 1, 0, 0)
sage: X = WehlerK3Surface([Z, Y])
sage: X.sigmaX(T)
(0 : 0 : 1 , 0 : 1 : 0)
```

degenerate examples:

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: l = y0*x0 + y1*x1 + (y0 - y1)*x2
sage: q = (y1*y0)*x0^2 + ((y0^2)*x1 + (y0^2 + (y1^2 - y2^2))*x2)*x0\n + (y2*y0 + y1^2)*x1^2 + (y0^2 + (-y1^2 + y2^2))*x2*x1
sage: X = WehlerK3Surface([l, q])
sage: X.sigmaX(X([1, 0, 0, 0, 1, -2]))
(1 : 0 : 0 , 0 : 1/2 : 1)
sage: X.sigmaX(X([1, 0, 0, 0, 0, 1]))
(1 : 0 : 0 , 0 : 0 : 1)
sage: X.sigmaX(X([-1, 1, 1, -1, -1, 1]))
(-1 : 1 : 1 , 2 : 2 : 1)
sage: X.sigmaX(X([0, 0, 1, 1, 0, 0]))
(0 : 0 : 1 , 1 : 0)
sage: X.sigmaX(X([0, 0, 1, 1, 1, 1]))
(0 : 0 : 1 , -1 : -1 : 1)
```

Case where we cannot distinguish the two points:

```python
sage: PP.<y0,y1,y2,x0,x1,x2>=ProductProjectiveSpaces([2, 2], GF(3))
sage: l = x0*y0 + x1*y1 + x2*y2
sage: q = -3*x0^2*y0^2 + 4*x0*x1*y0^2 - 3*x0*x2*y0^2 - 5*x0^2*y0*y1 - \n 190*x0*x1*x0*y0^2 + 5*x0*x2*x0*y0*y1 + 14*x0*x1*x2*y0*y1 + 5*x0*x2*y0*y1 - \n x0^2*y0*y2 - x0^2*x0*y2 - 6*x0*x1*y1^2 + 2*x0*x2*y1^2 - \n 4*x1^2*y1^2 + 2*x1^2*y0^2 + 3*x0*x2*y0*y2 + 6*x1*x2*y0*y2 - \n 6*x0*x1*y1*y2 - 4*x0*x1*x1*y1*y2 - x1^2*y1*y2 + 51*x0*x2*x1*y1*y2 - 7*x1*x2*y1*y2 - \n 9*x2^2*y1*y2 - x0^2*x0*y2 - 4*x0*y0*x1*y2 + 4*x1*x2*y0*y2 - x0^2*x2*y2^2 + ˓→13*x1*x2*y2^2 - x2^2*y2^2
sage: X = WehlerK3Surface([l, q])
sage: X(sigmaX([1, 0, 0, 0, 0, 1]))
```

```python
sage: X = WehlerK3Surface([l, q])
sage: X.sigmaX(X([1, 0, 0, 0, 0, 1]))
Traceback (most recent call last):
...
ValueError: cannot distinguish points in the degenerate fiber
```

5.5. Wehler K3 Surfaces

\( \sigma_Y \) (\( P, **kwds \))

Function returns the involution on the Wehler K3 surfaces induced by the double covers.

In particular, it fixes the projection to the second coordinate and swaps the two points in the fiber, i.e. \((x, y) \rightarrow (x', y)\). Note that in the degenerate case, while we can split the fiber into two points, it is not
always possible to distinguish them, using this algorithm.

**ALGORITHM:**

Refer to Section 6: “An algorithm to compute $\sigma_x, \sigma_y, \phi,$ and $\psi”$ in [CS1996]. For the degenerate case refer to [FH2015].

**INPUT:**

- $P$ - a point in $\mathbb{P}^2 \times \mathbb{P}^2$

**kwds:**

- `check` - (default: True) boolean checks to see if point is on the surface
- `normalize` – (default: True) boolean normalizes the point

**OUTPUT:** A point on the K3 surface

**EXAMPLES:**

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: Z = x0^2*y0^2 + 3*x0*x1*y0*y2 + x1^2*y0^2 + 4*x0^2*y0*y1 + \ 3*x0*x1*y0*y1 - 2*x2^2*y0*y1 - x0^2*y1^2 + 2*x1^2*y1^2 - x0*x2^2*y1^2 \ - 4*x1*x2*y1^2 + 5*x0^2*x2*y0*y2 - 4*x1*x2*y0*y2 + 7*x0^2*y1*y2 + 4*x1^2*y1*y2 \ + x0*x1*y2^2 + 3*x2^2*y2^2
sage: Y = x0*y0 + x1*y1 + x2*y2
sage: X = WehlerK3Surface([Z, Y])
sage: T = PP(0, 0, 1, 1, 0, 0)
sage: X.sigmaY(T)
(0 : 0 : 1 , 1 : 0 : 0)
```

**degenerate examples:**

```python
sage: PP.<x0,x1,x2,y0,y1,y2> = ProductProjectiveSpaces([2, 2], QQ)
sage: l = y0*x0 + y1*x1 + (y0 - y1)*x2
sage: q = (y1*y0)*x0^2 + ((y0^2)*x1 + (y0^2 + (y1^2 - y2^2))*x2)*x0 +\ (y2*y0 + y1^2)*x1^2 + (y0^2 + (-y1^2 + y2^2))*x2*x1
sage: X = WehlerK3Surface([l, q])
sage: X.sigmaY(X([1, -1, 0 , -1, -1, 1]))
(1/10 : -1/10 : 1 , -1 : -1 : 1)
sage: X.sigmaY(X([0, 0, 1, -1, -1, 1]))
(-4 : 4 : 1 , -1 : -1 : 1)
sage: X.sigmaY(X([1, 2, 0, 0, 0, 1]))
(-3 : -3 : 1 , 0 : 0 : 1)
sage: X.sigmaY(X([1, 1, 1, 0, 0, 1]))
(1 : 0 : 0 , 0 : 0 : 1)
```

Case where we cannot distinguish the two points:

```python
sage: PP.<x0,x1,x2,y0,y1,y2>=ProductProjectiveSpaces([2, 2], GF(3))
sage: l = x0*y0 + x1*y1 + x2*y2
sage: q=-3*x0^2*y0^2 + 4*x0*x1*y0*y2 - 3*x0^2*y0^2 - 5*x0^2*y0*y1 -\ -190*x0*x1*y0*y1 \ - 5*x1^2*y0*y1 + 5*x0^2*x2*y0*y1 + 14*x1^2*y2^2*y0*y1 + 5*x2^2*y0*y1 - x0^2*y1^2 +\ -6*x0*x1*y1^2 \ - 2*x1^2*y1^2 + 2*x0^2*x2*y1^2 + 4*x0^2*y1*y2 + x1^2*y0*y2 +\ +3*x0^2*x2*y0*y2 \ (continues on next page)
```
\begin{verbatim}
+ 6*x1*x2*y0*y2 - 6*x0^2*y1*y2 - 4*x0*x1*y1*y2 - x1^2*y1*y2 + 51*x0*x2*y1*y2 - 7*x1*x2*y1*y2 - 9*x2^2*y1*y2 - x0^2*y2^2 + 4*x0^2*y1*y2^2 - x0*x2*y1*y2^2 + 13*x1*x2*y1*y2^2 - x2^2*y2^2
\end{verbatim}

\begin{verbatim}
sage: X = WehlerK3Surface([l, q])
sage: P = X([0, 1, 1, 1, 0, 0])
sage: X.sigmaY(X.sigmaY(P))
Traceback (most recent call last):
... ValueError: cannot distinguish points in the degenerate fiber
\end{verbatim}

\texttt{sage.dynamics.arithmetic_dynamics.wehlerK3.random_WehlerK3Surface(PP)}

Produces a random K3 surface in $P^2 \times P^2$ defined as the intersection of a bilinear and biquadratic form. [Weh1998]

\texttt{INPUT: Projective space cartesian product}

\texttt{OUTPUT: \texttt{WehlerK3Surface\_ring}}

\texttt{EXAMPLES:}

\begin{verbatim}
\texttt{sage: PP.<x0, x1, x2, y0, y1, y2> = ProductProjectiveSpaces([2, 2], GF(3))}
\texttt{sage: w = random_WehlerK3Surface(PP)}
\texttt{sage: type(w)}
<class 'sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface\_finite\_field\_with\_category'>
\end{verbatim}

See also:

- \texttt{sage.schemes.affine.affine_morphism}
- \texttt{sage.schemes.projective.projective_morphism}
- \texttt{sage.schemes.product\_projective.morphism}
CHAPTER SIX

INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.dynamics.arithmetic_dynamics.affine_ds,
116
sage.dynamics.arithmetic_dynamics.generic_ds,
109
sage.dynamics.arithmetic_dynamics.product_projective_ds,
197
sage.dynamics.arithmetic_dynamics.projective_ds,
127
sage.dynamics.arithmetic_dynamics.wehlerK3,
200
sage.dynamics.cellular_automata.catalog,
1
sage.dynamics.cellular_automata.elementary,
1
sage.dynamics.cellular_automata.glca,
9
sage.dynamics.cellular_automata.solitons,
12
sage.dynamics.complex_dynamics.mandel_julia,
31
sage.dynamics.finite_dynamical_system,
39

sage.sandpiles.sandpile,
53
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_random()</td>
<td>betti()</td>
<td>all_periodic_points()</td>
</tr>
<tr>
<td>(sage.sandpiles.sandpile.SandpileConfig method), 80</td>
<td>(sage.sandpiles.sandpile.Sandpile method), 59</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field method), 177</td>
</tr>
<tr>
<td>add_random()</td>
<td>betti()</td>
<td>as_scheme_morphism()</td>
</tr>
<tr>
<td>(sage.sandpiles.sandpile.SandpileDivisor method), 89</td>
<td>(sage.sandpiles.sandpile.Sandpile method), 89</td>
<td>(sage.dynamics.arithmetic_dynamics.generic_ds.DynamicalSystem method), 111</td>
</tr>
<tr>
<td>admissible_partitions()</td>
<td>betti_complexes()</td>
<td>automorphism_group()</td>
</tr>
<tr>
<td>(in module sage.sandpiles.sandpile), 102</td>
<td>(sage.sandpiles.sandpile.Sandpile method), 60</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem method), 132</td>
</tr>
<tr>
<td>affine_preperiodic_model()</td>
<td>burning_config()</td>
<td>all_rational_preimages()</td>
</tr>
<tr>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective method), 130</td>
<td>(sage.sandpiles.sandpile.Sandpile method), 60</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_finite_field method), 178</td>
</tr>
<tr>
<td>all_k_config()</td>
<td>burning_script()</td>
<td>automorphism_group()</td>
</tr>
<tr>
<td>(sage.sandpiles.sandpile.Sandpile method), 58</td>
<td>(sage.sandpiles.sandpile.Sandpile method), 61</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_finite_field method), 193</td>
</tr>
<tr>
<td>all_k_div()</td>
<td>burst_size()</td>
<td>avalanche_polynomial()</td>
</tr>
<tr>
<td>(sage.sandpiles.sandpile.Sandpile method), 59</td>
<td>(sage.sandpiles.sandpile.SandpileConfig method), 81</td>
<td>(sage.sandpiles.sandpile.Sandpile method), 59</td>
</tr>
<tr>
<td>all_minimal_models()</td>
<td>canonical_divisor()</td>
<td>aztec_sandpile()</td>
</tr>
<tr>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective method), 131</td>
<td>(sage.sandpiles.sandpile.Sandpile method), 102</td>
<td>(sage.sandpiles.sandpile.Sandpile method), 102</td>
</tr>
<tr>
<td>all_periodic_points()</td>
<td>canonical_height()</td>
<td>betti()</td>
</tr>
<tr>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field method), 174</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective method), 134</td>
<td>(sage.sandpiles.sandpile.Sandpile method), 59</td>
</tr>
<tr>
<td>all_periodic_points()</td>
<td>canonical_height()</td>
<td>as_scheme_morphism()</td>
</tr>
<tr>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field method), 193</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field method), 206</td>
<td>(sage.dynamics.arithmetic_dynamics.generic_ds.DynamicalSystem method), 112</td>
</tr>
<tr>
<td>all_preperiodic_points()</td>
<td>canonical_height()</td>
<td>automorphism_group()</td>
</tr>
<tr>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field method), 177</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_finite_field method), 206</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_finite_field method), 193</td>
</tr>
<tr>
<td>all_rational_preimages()</td>
<td>canonical_height()</td>
<td>conjugate()</td>
</tr>
<tr>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field method), 178</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_finite_field method), 207</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_finite_field method), 136</td>
</tr>
<tr>
<td>as_scheme_morphism()</td>
<td>cardinality()</td>
<td>conjugating_set()</td>
</tr>
<tr>
<td>(sage.dynamics.arithmetic_dynamics.generic_ds.DynamicalSystem method), 111</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem method), 201</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem method), 179</td>
</tr>
<tr>
<td>automorphism_group()</td>
<td>change_ring()</td>
<td>conjugate()</td>
</tr>
<tr>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_finite_field method), 132</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem method), 112</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem method), 136</td>
</tr>
<tr>
<td>avalanche_polynomial()</td>
<td>change_ring()</td>
<td>conjugating_set()</td>
</tr>
<tr>
<td>(sage.sandpiles.sandpile.Sandpile method), 59</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem method), 208</td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem method), 179</td>
</tr>
<tr>
<td>aztec_sandpile()</td>
<td>conjugate()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem method), 136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>conjugating_set()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem method), 179</td>
<td></td>
</tr>
</tbody>
</table>
connected_rational_component() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 182)
critical_height() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 137)
critical_point_portrait() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 138)
critical_points() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 139)
critical_subscheme() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 139)
cyclegraph() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 126)
cyclegraph() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 200)
cyclegraph() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 195)
cycles() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 46)
cycles() (sage.dynamics.arithmetic_dynamics.projective_ds.InvertibleDiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 51)

D
Dcomplex() (sage.sandpiles.sandpile.SandpileDivisor method, 89)
deg() (sage.sandpiles.sandpile.SandpileConfig method), 82
deg() (sage.sandpiles.sandpile.SandpileConfig method, 90)
degenerate_primes() (sage.dynamics.arithmetic_dynamics.wehlerK3.WeheuerK3SandpileConfig method, 208)
degree_sequence() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 140)
degree_sequence() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 39)
dynamical_degree() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 141)
DynamicalSystem (class in sage.dynamics.arithmetic_dynamics.generic_ds), 109
DynamicalSystem_affine (class in sage.dynamics.arithmetic_dynamics affine ds), 116
DynamicalSystem_affine_finite_field (class in sage.dynamics.arithmetic_dynamics affine ds), 125
DynamicalSystem_affine_finite_field (class in sage.dynamics.arithmetic_dynamics affine ds), 125
DynamicalSystem_projective (class in sage.dynamics.arithmetic_dynamics.product_projective_ds), 126
DynamicalSystem_projective (class in sage.dynamics.arithmetic_dynamics.product_projective_ds), 127
DynamicalSystem_projective (class in sage.dynamics.arithmetic_dynamics.projective_ds), 199
DynamicalSystem_projective_finite_field (class in sage.dynamics.arithmetic_dynamics.product_projective_ds), 199
DynamicalSystem_projective_finite_field (class in sage.dynamics.arithmetic_dynamics.product_projective_ds), 199
DynamicalSystem_projective_finite_field (class in sage.dynamics.arithmetic_dynamics.projective_ds), 174
dynatomic_polynomial() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 119)
dynatomic_polynomial() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 119)
dynatomic_polynomial() (sage.dynamics.arithmetic_dynamics.projective_ds.DiscreteDynamicalSystemAffineFinitelyGeneratedDivisorAffine method, 119)

E
effective_div() (sage.sandpiles.sandpile.SandpileDivisor method, 90)
effective_div() (sage.sandpiles.sandpile.SandpileDivisor method, 90)
equivalent_recurrent() (sage.sandpiles.sandpile.SandpileConfig method, 82)
equivalent_recurrent() (sage.sandpiles.sandpile.SandpileConfig method, 82)
equivalent_superstable() (sage.sandpiles.sandpile.SandpileConfig method, 83)
evolution() (sage.dynamics.finite_dynamical_system.DiscreteDynamicalSystem method, 42)
evolution() (sage.dynamics.finite_dynamical_system.DiscreteDynamicalSystem method, 42)
evolution() (sage.dynamics.finite_dynamical_system.DiscreteDynamicalSystem method, 42)
evolution_power() (sage.dynamics.finite_dynamical_system.DiscreteDynamicalSystem method, 48)
evolution_power() (sage.dynamics.finite_dynamical_system.InvertibleDynamicalSystem method, 48)
evolution_power() (sage.dynamics.finite_dynamical_system.InvertibleDynamicalSystem method, 48)

ElementaryCellularAutomata (class in sage.dynamics.cellular_automata.elementary), 122
ElementaryCellularAutomata (class in sage.dynamics.cellular_automata.elementary), 122
ElementaryCellularAutomata (class in sage.dynamics.cellular_automata.elementary), 122

SandpileConfig (sage.sandpiles.sandpile.SandpileConfig, 182)
Index 229

G

green_function() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field method), 182

groebner() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 211

group_gens() (sage.sandpiles.sandpile.Sandpile method), 63

group_order() (sage.sandpiles.sandpile.Sandpile method), 63

H

height_difference_bound() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field method), 182

homogenize() (sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine method), 120

Hpoly() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 202

doctor() (sage.sandpiles.sandpile.Sandpile static method), 64

doctor() (sage.sandpiles.sandpile.SandpileConfig static method), 84

doctor() (sage.sandpiles.sandpile.SandpileDivisor static method), 92

docstrings() (sage.dynamics.cellular_automata.solitons.SolitonCellularAutomata method), 20

double_arrows() (sage.sandpiles.sandpile.Sandpile method), 66

E

evolve() (sage.dynamics.cellular_automata.glca.GraftalLaceCellularAutomata method), 9
evolve() (sage.dynamics.cellular_automata.solitons.PeriodicSolitonCellularAutomata method), 14

evolve() (sage.dynamics.cellular_automata.solitons.SolitonCellularAutomata method), 20

evolve() (sage.dynamics.cellular_automata.solitons.SolitonCellularAutomata method), 20

evolve() (sage.dynamics.cellular_automata.solitons.PeriodicSolitonCellularAutomata method), 14

evolve() (sage.dynamics.cellular_automata.solitons.SolitonCellularAutomata method), 20

F

fibre() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 210

field_of_definition_critical() (sage.dynamics.arithmetic_dynamics.generic_ds.DynamicalSystem method), 112

field_of_definition_periodic() (sage.dynamics.arithmetic_dynamics.generic_ds.DynamicalSystem method), 113

field_of_definition_preimage() (sage.dynamics.arithmetic_dynamics.generic_ds.DynamicalSystem method), 114

FiniteDynamicalSystem (class in sage.dynamics.finite_dynamical_system), 45

fire_script() (sage.sandpiles.sandpile.SandpileConfig method), 83

fire_script() (sage.sandpiles.sandpile.SandpileDivisor method), 91

fire_unstable() (sage.sandpiles.sandpile.SandpileConfig method), 84

fire_unstable() (sage.sandpiles.sandpile.SandpileDivisor method), 92

fire_vertex() (sage.sandpiles.sandpile.SandpileConfig method), 84

fire_vertex() (sage.sandpiles.sandpile.SandpileDivisor method), 92

firing_graph() (in module sage.sandpiles.sandpile), 103

genus() (sage.sandpiles.sandpile.Sandpile method), 62

G

GraftalLaceCellularAutomata (class in sage.dynamics.cellular_automata.glca), 9

green_function() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective method), 145

groebner() (sage.sandpiles.sandpile.Sandpile method), 63

ground_set() (sage.dynamics.finite_dynamical_system.DiscreteDynamicalSystem method), 43

H

h_vector() (sage.sandpiles.sandpile.Sandpile method), 64

height_difference_bound() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem method), 146

help() (sage.sandpiles.sandpile.SandpileConfig static method), 64

help() (sage.sandpiles.sandpile.SandpileDivisor static method), 92

help() (sage.sandpiles.sandpile.SandpileDivisor method), 65

Hpoly() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 202

I

ideal() (sage.sandpiles.sandpile.Sandpile method), 66

identity() (sage.sandpiles.sandpile.Sandpile method), 66

in_degree() (sage.sandpiles.sandpile.Sandpile method), 66

invariant_factors() (sage.sandpiles.sandpile.Sandpile method), 67

inverse_evolution() (sage.dynamics.finite_dynamical_system.InvertibleDiscreteDynamicalSystem method), 49

inverse_evolution_default() (sage.dynamics.finite_dynamical_system.InvertibleDiscreteDynamicalSystem method), 49

InvertibleDiscreteDynamicalSystem (class in sage.dynamics.finite_dynamical_system), 47

InvertibleFiniteDynamicalSystem (class in sage.dynamics.finite_dynamical_system), 50

is_alive() (sage.sandpiles.sandpile.SandpileDivisor method), 83

is_conjugate() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective method), 182

is_degenerate() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 211

is_homomesic() (sage.dynamics.finite_dynamical_system.DiscreteDynamicalSystem method), 43

is_invariant() (sage.dynamics.finite_dynamical_system.FiniteDynamicalSystem method), 40
is_isomorphic() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 211
lambda_minus() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 213
lambda_plus() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 214
is_linearly_equivalent() (sage.sandpiles.sandpile.SandpileDivisor method), 93
laplacian() (sage.sandpiles.sandpile.Sandpile method), 68
is_PGL_minimal() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field method), 147
latex_states() (sage.dynamics.cellular_automata.solutions.SolitonCellularAutomata method), 23
is_polynomial() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field method), 185
is_postcritically_finite() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective method), 147
is_PGL_minimal() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field method), 195
is_q_reduced() (sage.sandpiles.sandpile.SandpileDivisor method), 94
is_recurrent() (sage.sandpiles.sandpile.SandpileConfig method), 85
is_smooth() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 212
is_stable() (sage.sandpiles.sandpile.SandpileConfig method), 85
is_superstable() (sage.sandpiles.sandpile.SandpileConfig method), 86
is_symmetric() (sage.sandpiles.sandpile.SandpileConfig method), 86
is_symmetric_orbit() (sage.sandpiles.sandpile.SandpileDivisor method), 95
is_symmetric_orbit() (sage.sandpiles.sandpile.SandpileDivisor method), 95
is_undirected() (sage.sandpiles.sandpile.Sandpile method), 67
is_superstable() (sage.sandpiles.sandpile.SandpileDivisor method), 95
is_weierstrass_pt() (sage.sandpiles.sandpile.SandpileDivisor method), 95
jacobian_representatives() (in module sage.dynamics.complex_dynamics.mandel_julia), 35
markov_chain() (sage.sandpiles.sandpile.Sandpile method), 68
max_stable() (sage.sandpiles.sandpile.Sandpile method), 70
max_superstables() (sage.sandpiles.sandpile.Sandpile method), 70
min_cycles() (in module sage.sandpiles.sandpile), 104
min_recurrents() (sage.sandpiles.sandpile.Sandpile method), 70
minimal_model() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field method), 148
min_cycles() (in module sage.sandpiles.sandpile), 104
max_superstables() (sage.sandpiles.sandpile.Sandpile method), 70
min_recurrents() (sage.sandpiles.sandpile.Sandpile method), 70
minimal_model() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field method), 148
module
sage.dynamics.arithmetic_dynamics.affine_ds, 116
sage.dynamics.arithmetic_dynamics.generic_ds, 109
sage.dynamics.arithmetic_dynamics.product_projective_DS, 197
sage.dynamics.arithmetic_dynamics.projective_ds, 127
sage.dynamics.arithmetic_dynamics.wehlerK3, 200
sage.dynamics.cellular_automata.catalog, 1
sage.dynamics.cellular_automata.elementary, 1
sage.dynamics.cellular_automata.glca, 9
julia_plot() (sage.dynamics.complex_dynamics.mandel_julia), 32
latex_states() (sage.dynamics.cellular_automata.solutions.SolitonCellularAutomata method), 23
julia_plot() (in module sage.dynamics.complex_dynamics.mandel_julia), 32
latex_states() (sage.dynamics.cellular_automata.solutions.SolitonCellularAutomata method), 23
kneading_sequence() (sage.dynamics.complex_dynamics.mandel_julia), 34
Index

sage.dynamics.cellular_automata.solitons, orbit_lengths() (sage.dynamics.finite_dynamical_system.InvertibleFiniteDynamicalSystem), 51
sage.dynamics.cellular_automata.mandel_julia orbit_phi() (sage.dynamics.arithmetic_dynamics.wehlerK3.WeherK3SuperellipticSurface), 216
sage.dynamics.finite_dynamical_system, 39 orbit_psi() (sage.dynamics.arithmetic_dynamics.wehlerK3.WeherK3SuperellipticSurface), 216
multiplier() (sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine), 121
multiplier() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective), 126
multiplier() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field), 196
multiplier_spectra() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field), 151

N

nonsink_vertices() (sage.sandpiles.sandpile.Sandpile method), 71

method, 71

normal_form() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field), 187
nth_iterate() (sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine), 122
nth_iterate() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective), 198
nth_iterate() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field), 153
nth_iterate_map() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective), 123
nth_iterate_map() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field), 198
nth_iterate_map() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field), 155
nth_iterate_phi() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring), 214
nth_iterate_psi() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring), 215
nth_preimage_tree() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field), 156

O

orbit() (sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine_finite_field), 124
orbit() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_finite_field), 199
orbit() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field), 157
orbit() (sage.dynamics.finite_dynamical_system.InvertibleDiscreteDynamicalSystem), 45
orbit() (sage.dynamics.finite_dynamical_system.InvertibleDiscreteDynamicalSystem_field), 49

P

parallel_firing_graph() (in module sage.sandpiles.sandpile), 104
partition() (sage.dynamics.cellular_automata.elementary.ElementaryCellularAutomata), 105
periodic_points() (sage.dynamics.cellular_automata.solitons), 12
periodic_points() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective), 151
phi() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective), 217
phi() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field), 96

polytope_integer_pts() (sage.sandpiles.sandpile.SandpileDivisor method), 96
possible_periods() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field), 162
postulation() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field), 73
potential_good_reduction() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field), 188
preperiodic_points() (sage.sandpiles.sandpile.SandpileDivisor method), 163
primes_of_bad_reduction() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field), 163
reduce_base_field() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field method), 166
reduce_form() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective method), 165
print_state() (sage.dynamics.cellular_automata.elementary.ElementaryCellularAutomata method), 7
print_state() (sage.dynamics.cellular_automata.solitons.SolitonCellularAutomata method), 24
print_state_evolution() (sage.dynamics.cellular_automata.solitons.SolitonCellularAutomata method), 25
print_states() (sage.dynamics.cellular_automata.elementary.ElementaryCellularAutomata method), 8
print_states() (sage.dynamics.cellular_automata.solitons.SolitonCellularAutomata method), 24
psi() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 218
Q
q_reduced() (sage.sandpiles.sandpile.SandpileDivisor method), 96
Qxa() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 203
Qyb() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 204
R
Ramification_poly() (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 204
ramification_type() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective method), 166
random_DAG() (in module sage.sandpiles.sandpile), 105
random_WehlerK3Surface() (in module sage.dynamics.arithmetic_dynamics.wehlerK3), 221
rank() (sage.sandpiles.sandpile.SandpileDivisor method), 97
rational_preperiodic_points() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field method), 189
rational_preperiodic_points() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective method), 191
recurrents() (sage.sandpiles.sandpile.Sandpile method), 73
reduce_base_field() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field method), 125
S
resultant() (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective_field method), 171
ring() (sage.sandpiles.sandpile.Sandpile method), 75
sage.dynamics.arithmetic_dynamics.affine_ds module, 116
sage.dynamics.arithmetic_dynamics.generic_ds module, 109
sage.dynamics.arithmetic_dynamics.product_projective_ds module, 197
sage.dynamics.arithmetic_dynamics.projective_ds module, 127
sage.dynamics.arithmetic_dynamics.wehlerK3 module, 200
sage.dynamics.cellular_automata.catalog module, 1
sage.dynamics.cellular_automata.elementary module, 1
sage.dynamics.cellular_automata.glca module, 9
sage.dynamics.cellular_automata.solitons module, 12
sage.dynamics.complex_dynamics.mandel_julia module, 31
sage.dynamics.finite_dynamical_system module, 39
sage.sandpiles.sandpile module, 53
sandlib() (in module sage.sandpiles.sandpile), 106
Sandpile (class in sage.sandpiles.sandpile), 58
sandpile() (sage.sandpiles.sandpile.SandpileConfig method), 87
Sandpile (sage.sandpiles.sandpile.SandpileDivisor method), 98
SandpileConfig (class in sage.sandpiles.sandpile), 80
SandpileDivisor (class in sage.sandpiles.sandpile), 89
show() (sage.sandpiles.sandpile.SandpileConfig method), 87
show()  (sage.sandpiles.sandpile.SandpileDivisor method), 98
show3d()  (sage.sandpiles.sandpile.Sandpile method), 76
sigma_invariants()  (sage.dynamics.arithmetic_dynamics.projective_ds.DynamicalSystem_projective method), 172
sigmaX()  (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 218
sigmaY()  (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 205
sigmaX()  (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 218
sigmaX()  (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 219
simulate_threshold()  (sage.sandpiles.sandpile.Sandpile method), 76
sink()  (sage.sandpiles.sandpile.Sandpile method), 76
smith_form()  (sage.sandpiles.sandpile.Sandpile method), 76
SolitonCellularAutomata  (class in sage.dynamics.cellular_automata.solitons), 16
solve()  (sage.sandpiles.sandpile.Sandpile method), 76
specialization()  (sage.dynamics.arithmetic_dynamics.generic_ds.DynamicalSystem method), 115
stabilize()  (sage.sandpiles.sandpile.SandpileConfig method), 87
stabilize()  (sage.sandpiles.sandpile.SandpileDivisor method), 99
stable_configs()  (sage.sandpiles.sandpile.Sandpile method), 77
state_evolution()  (sage.dynamics.cellular_automata.solitons.SolitonCellularAutomata method), 28
stationary_density()  (sage.sandpiles.sandpile.Sandpile method), 77
superstables()  (sage.sandpiles.sandpile.Sandpile method), 78
support()  (sage.sandpiles.sandpile.SandpileConfig method), 88
support()  (sage.sandpiles.sandpile.SandpileDivisor method), 99
Sxa()  (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 205
Syb()  (sage.dynamics.arithmetic_dynamics.wehlerK3.WehlerK3Surface_ring method), 205
symmetric_recurrents()  (sage.sandpiles.sandpile.Sandpile method), 78

T
triangle_sandpile()  (in module sage.sandpiles.sandpile), 106
tutte_polynomial()  (sage.sandpiles.sandpile.Sandpile method), 79

U
unsaturated_ideal()