CONTENTS

1 Finite Rings 1
 1.1 Ring \(\mathbb{Z}/n\mathbb{Z} \) of integers modulo \(n \) .. 1
 1.2 Elements of \(\mathbb{Z}/n\mathbb{Z} \) ... 14

2 Finite Fields 39
 2.1 Finite Fields ... 39
 2.2 Base Classes for Finite Fields ... 47
 2.3 Base class for finite field elements ... 60
 2.4 Homset for Finite Fields .. 68
 2.5 Finite field morphisms ... 70

3 Prime Fields 75
 3.1 Finite Prime Fields ... 75
 3.2 Finite field morphisms for prime fields .. 77

4 Finite Fields Using Pari 79
 4.1 Finite fields implemented via PARI’s FFELT type 79
 4.2 Finite field elements implemented via PARI’s FFELT type 81

5 Finite Fields Using Givaro 87
 5.1 Givaro Finite Field ... 87
 5.2 Givaro Field Elements ... 92
 5.3 Finite field morphisms using Givaro .. 100

6 Finite Fields of Characteristic 2 Using NTL 103
 6.1 Finite Fields of Characteristic 2 ... 103
 6.2 Finite Fields of characteristic 2.. 105

7 Miscellaneous 111
 7.1 Finite residue fields ... 111
 7.2 Algebraic closures of finite fields .. 123
 7.3 Routines for Conway and pseudo-Conway polynomials 130

8 Indices and Tables 133

Python Module Index 135

Index 137
1.1 Ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n

EXAMPLES:

```
sage: R = Integers(97)
sage: a = R(5)
sage: a**100000000000000000000000000000000000000000000000000000000000000
61
```

This example illustrates the relation between $\mathbb{Z}/p\mathbb{Z}$ and \mathbb{F}_p. In particular, there is a canonical map to \mathbb{F}_p, but not in the other direction.

```
sage: r = Integers(7)
sage: s = GF(7)
sage: r.has_coerce_map_from(s)
False
sage: s.has_coerce_map_from(r)
True
sage: s(1) + r(1)
2
sage: parent(s(1) + r(1))
Finite Field of size 7
sage: parent(r(1) + s(1))
Finite Field of size 7
```

We list the elements of $\mathbb{Z}/3\mathbb{Z}$:

```
sage: R = Integers(3)
sage: list(R)
[0, 1, 2]
```

AUTHORS:

- William Stein (initial code)
- David Joyner (2005-12-22): most examples
- Robert Bradshaw (2006-08-24): convert to SageX (Cython)
- Simon King (2011-04-21): allow to prescribe a category
- Simon King (2013-09): Only allow to prescribe the category of fields
class sage.rings.finite_rings.integer_mod_ring.IntegerModFactory
 Bases: sage.structure.factory.UniqueFactory

Return the quotient ring \(\mathbb{Z}/n\mathbb{Z} \).

INPUT:

- order – integer (default: 0); positive or negative
- is_field – bool (default: False); assert that the order is prime and hence the quotient ring belongs to the category of fields
- category (optional) - the category that the quotient ring belongs to.

Note: The optional argument `is_field` is not part of the cache key. Hence, this factory will create precisely one instance of \(\mathbb{Z}/n\mathbb{Z} \). However, if `is_field` is true, then a previously created instance of the quotient ring will be updated to be in the category of fields.

Use with care! Erroneously putting \(\mathbb{Z}/n\mathbb{Z} \) into the category of fields may have consequences that can compromise a whole Sage session, so that a restart will be needed.

EXAMPLES:

```python
sage: IntegerModRing(15)
Ring of integers modulo 15
sage: IntegerModRing(7)
Ring of integers modulo 7
sage: IntegerModRing(-100)
Ring of integers modulo 100
```

Note that you can also use `Integers`, which is a synonym for `IntegerModRing`.

```python
sage: Integers(18)
Ring of integers modulo 18
sage: Integers() == Integers(0) == ZZ
True
```

Note: Testing whether a quotient ring \(\mathbb{Z}/n\mathbb{Z} \) is a field can of course be very costly. By default, it is not tested whether \(n \) is prime or not, in contrast to \(\text{GF}() \). If the user is sure that the modulus is prime and wants to avoid a primality test, (s)he can provide `category=Fields()` when constructing the quotient ring, and then the result will behave like a field. If the category is not provided during initialisation, and it is found out later that the ring is in fact a field, then the category will be changed at runtime, having the same effect as providing `Fields()` during initialisation.

EXAMPLES:

```python
sage: R = IntegerModRing(5)
sage: R.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
sage: R in Fields()
True
sage: R.category()
Join of Category of finite enumerated fields
```

(continues on next page)
and Category of subquotients of monoids
and Category of quotients of semigroups

```
sage: S = IntegerModRing(5, is_field=True)
sage: S
True

Warning: If the optional argument \texttt{is\_field} was used by mistake, there is currently no way to revert its impact, even though \texttt{IntegerModRing\_generic.is\_field()} with the optional argument \texttt{proof=True} would return the correct answer. So, prescribe \texttt{is\_field=True} only if you know what your are doing!

EXAMPLES:

```
sage: R = IntegerModRing(33, is_field=True)
sage: R
in Fields()
True
sage: R.is_field()
True
```

If the optional argument \texttt{proof=True} is provided, primality is tested and the mistaken category assignment is reported:

```
sage: R.is_field(proof=True)
Traceback (most recent call last):
 ...
ValueError: THIS SAGE SESSION MIGHT BE SERIOUSLY COMPROMISED!
The order 33 is not prime, but this ring has been put into the category of fields. This may already have consequences in other parts of Sage. Either it was a mistake of the user, or a probabilistic primality test has failed.
In the latter case, please inform the developers.
```

However, the mistaken assignment is not automatically corrected:

```
sage: R in Fields()
True
```

To avoid side-effects of this test on other tests, we clear the cache of the ring factory:

```
sage: IntegerModRing._cache.clear()
```

\texttt{create\_key\_and\_extra\_args} \texttt{(order=0, is\_field=False, category=None)}

An integer mod ring is specified uniquely by its order.

EXAMPLES:

```
sage: Zmod.create_key_and_extra_args(7)
(7, {})
sage: Zmod.create_key_and_extra_args(7, True)
(7, {'category': Category of fields})
```

\texttt{create\_object} \texttt{(version, order, **kwds)}

EXAMPLES:

1.1. Ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo $n$

```python
sage: R = Integers(10)
sage: TestSuite(R).run() # indirect doctest
```

```python
def get_object(version, key, extra_args):
 return None
```

```python
class IntegerModRing_generic(sage.rings.quotient_ring.QuotientRing_generic, Input:

- order – an integer
- category – a subcategory of CommutativeRings() (the default)

OUTPUT:

The ring of integers modulo N.

EXAMPLES:

First we compute with integers modulo 29.

```python
sage: FF = IntegerModRing(29)
sage: FF
Ring of integers modulo 29
sage: FF.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
sage: FF.is_field()
True
sage: FF.characteristic()
29
sage: FF.order()
29
sage: gens = FF.unit_gens()
sage: a = gens[0]
sage: a
2
sage: a.is_square()
False
sage: def pow(i):
    return a**i
sage: [pow(i) for i in range(16)]
[1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27]
sage: TestSuite(FF).run()
```

We have seen above that an integer mod ring is, by default, not initialised as an object in the category of fields. However, one can force it to be. Moreover, testing containment in the category of fields my re-initialise the category of the integer mod ring:

```python
sage: F19 = IntegerModRing(19, is_field=True)
sage: F19.category().is_subcategory(Fields())
True
sage: F23 = IntegerModRing(23)
```

(continues on next page)
sage: F23.category().is_subcategory(Fields())
False
sage: F23 in Fields()
True
sage: F23.category().is_subcategory(Fields())
True
sage: TestSuite(F19).run()
sage: TestSuite(F23).run()

By trac ticket #15229, there is a unique instance of the integral quotient ring of a given order. Using the IntegerModRing() factory twice, and using is_field=True the second time, will update the category of the unique instance:

sage: F31a = IntegerModRing(31)
sage: F31a.category().is_subcategory(Fields())
False
sage: F31b = IntegerModRing(31, is_field=True)
sage: F31a is F31b
True
sage: F31a.category().is_subcategory(Fields())
True

Next we compute with the integers modulo 16.

sage: Z16 = IntegerModRing(16)
sage: Z16.category()
Join of Category of finite commutative rings
 and Category of subquotients of monoids
 and Category of quotients of semigroups
 and Category of finite enumerated sets
sage: Z16.is_field()
False
sage: Z16.order()
16
sage: Z16.characteristic()
16
sage: gens = Z16.unit_gens()
sage: gens
(15, 5)
sage: a = gens[0]
sage: b = gens[1]
sage: def powa(i): return a**i
sage: def powb(i): return b**i
sage: gp_exp = FF.unit_group_exponent()
sage: gp_exp
28
sage: [powa(i) for i in range(15)]
[1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1]
sage: [powb(i) for i in range(15)]
[1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9]
sage: a.multiplicative_order()
2
sage: b.multiplicative_order()
4
sage: TestSuite(Z16).run()

Saving and loading:
Testing ideals and quotients:

```python
sage: Z10 = Integers(10)
sage: I = Z10.principal_ideal(0)
sage: Z10.quotient(I) == Z10
True
sage: I = Z10.principal_ideal(2)
sage: Z10.quotient(I) == Z10
False
sage: I.is_prime()
True
```

```python
sage: R = IntegerModRing(97)
sage: a = R(5)
sage: a**(10^62)
61
```

cardinality()
Return the cardinality of this ring.

EXAMPLES:

```python
sage: Zmod(87).cardinality()
87
```

characteristic()
EXAMPLES:

```python
sage: R = IntegerModRing(18)
sage: FF = IntegerModRing(17)
sage: FF.characteristic()
17
sage: R.characteristic()
18
```

degree()
Return 1.

EXAMPLES:

```python
sage: R = Integers(12345678900)
sage: R.degree()
1
```

extension (poly, name=None, names=None, **kwds)
Return an algebraic extension of self. See sage.rings.ring.CommutativeRing.extension() for more information.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: Integers(8).extension(t^2 - 3)
Univariate Quotient Polynomial Ring in t over Ring of integers modulo 8 with
   modulus t^2 + 5
```
factored_order()

EXAMPLES:

```python
sage: R = IntegerModRing(18)
sage: R.factored_order()
2 * 3^2
sage: FF = IntegerModRing(17)
sage: FF.factored_order()
17
```

factored_unit_order()

Return a list of `Factorization` objects, each the factorization of the order of the units in a \(\mathbb{Z}/p^n\mathbb{Z}\) component of this group (using the Chinese Remainder Theorem).

EXAMPLES:

```python
sage: R = Integers(8*9*25*17*29)
sage: R.factored_unit_order()
[2^2, 2 * 3, 2^2 * 5, 2^4, 2^2 * 7]
```

field()

If this ring is a field, return the corresponding field as a finite field, which may have extra functionality and structure. Otherwise, raise a `ValueError`.

EXAMPLES:

```python
sage: R = Integers(7); R
Ring of integers modulo 7
sage: R.field()
Finite Field of size 7
sage: R = Integers(9)
sage: R.field()
Traceback (most recent call last):
...: ValueError: self must be a field
```

is_field(proof=None)

Return True precisely if the order is prime.

INPUT:

- **proof** (optional bool or None, default None): If `False`, then test whether the category of the quotient is a subcategory of `Fields()`, or do a probabilistic primality test. If `None`, then test the category and then do a primality test according to the global arithmetic proof settings. If `True`, do a deterministic primality test.

If it is found (perhaps probabilistically) that the ring is a field, then the category of the ring is refined, if it is found that the ring is in fact a field.

EXAMPLES:

```python
sage: R = IntegerModRing(18)
sage: R.is_field()
False
sage: FF = IntegerModRing(17)
sage: FF.is_field()
True
```

By trac ticket #15229, the category of the ring is refined, if it is found that the ring is in fact a field:

1.1. Ring \(\mathbb{Z}/n\mathbb{Z}\) of integers modulo \(n\)
sage: R = IntegerModRing(127)
sage: R.category()
Join of Category of finite commutative rings
 and Category of subquotients of monoids
 and Category of quotients of semigroups
 and Category of finite enumerated sets
sage: R.is_field()
True
sage: R.category()
Join of Category of finite enumerated fields
 and Category of subquotients of monoids
 and Category of quotients of semigroups

It is possible to mistakenly put \(\mathbb{Z}/n\mathbb{Z} \) into the category of fields. In this case, \texttt{is_field()} will return True without performing a primality check. However, if the optional argument \texttt{proof = True} is provided, primality is tested and the mistake is uncovered in a warning message:

```
sage: R = IntegerModRing(21, is_field=True)
sage: R.is_field()
True
sage: R.is_field(proof=True)
Traceback (most recent call last):
  ...  
ValueError: THIS SAGE SESSION MIGHT BE SERIOUSLY COMPROMISED!
The order 21 is not prime, but this ring has been put into the category of fields. This may already have consequences in other parts of Sage. Either it was a mistake of the user, or a probabilistic primality test has failed. In the latter case, please inform the developers.
```

To avoid side-effects of this test on other tests, we clear the cache of the ring factory:

```
sage: IntegerModRing._cache.clear()
```

\texttt{is_integral_domain}(\texttt{proof=None})

Return True if and only if the order of \texttt{self} is prime.

\textbf{EXAMPLES:}

```
sage: Integers(389).is_integral_domain()
True
sage: Integers(389^2).is_integral_domain()
False
```

\texttt{is_noetherian}()

Check if \texttt{self} is a Noetherian ring.

\textbf{EXAMPLES:}

```
sage: Integers(8).is_noetherian()
True
```

\texttt{is_prime_field}()

Return True if the order is prime.

\textbf{EXAMPLES:}

```
```
sage: Zmod(7).is_prime_field()
True
sage: Zmod(8).is_prime_field()
False

is_unique_factorization_domain (proof=None)
Return True if and only if the order of self is prime.

EXAMPLES:

sage: Integers(389).is_unique_factorization_domain()
True
sage: Integers(389^2).is_unique_factorization_domain()
False

krull_dimension()
Return the Krull dimension of self.

EXAMPLES:

sage: Integers(18).krull_dimension()
0

list_of_elements_of_multiplicative_group()
Return a list of all invertible elements, as python ints.

EXAMPLES:

sage: R = Zmod(12)
sage: L = R.list_of_elements_of_multiplicative_group(); L
[1, 5, 7, 11]
sage: type(L[0])
<... 'int'>
sage: Zmod(1).list_of_elements_of_multiplicative_group()
[0]

modulus()
Return the polynomial $x - 1$ over this ring.

Note: This function exists for consistency with the finite-field modulus function.

EXAMPLES:

sage: R = IntegerModRing(18)
sage: R.modulus()
x + 17
sage: R = IntegerModRing(17)
sage: R.modulus()
x + 16

multiplicative_generator()
Return a generator for the multiplicative group of this ring, assuming the multiplicative group is cyclic.

Use the unit_gens function to obtain generators even in the non-cyclic case.

EXAMPLES:
```python
sage: R = Integers(7); R
Ring of integers modulo 7
sage: R.multiplicative_generator()
3
sage: R = Integers(9)
sage: R.multiplicative_generator()
2
sage: Integers(8).multiplicative_generator()
Traceback (most recent call last):
...
ValueError: multiplicative group of this ring is not cyclic
sage: Integers(4).multiplicative_generator()
3
sage: Integers(25*3).multiplicative_generator()
Traceback (most recent call last):
...
ValueError: multiplicative group of this ring is not cyclic
sage: Integers(25*3).unit_gens()
(26, 52)
sage: Integers(162).unit_gens()
(83,)
```

multiplicative_group_is_cyclic()

Return True if the multiplicative group of this field is cyclic. This is the case exactly when the order is less than 8, a power of an odd prime, or twice a power of an odd prime.

EXAMPLES:

```python
sage: R = Integers(7); R
Ring of integers modulo 7
sage: R.multiplicative_group_is_cyclic()
True
sage: R = Integers(9)
sage: R.multiplicative_group_is_cyclic()
True
sage: Integers(8).multiplicative_group_is_cyclic()
False
sage: Integers(4).multiplicative_group_is_cyclic()
True
sage: Integers(25*3).multiplicative_group_is_cyclic()
False
```

We test that trac ticket #5250 is fixed:

```python
sage: Integers(162).multiplicative_group_is_cyclic()
True
```

multiplicative_subgroups()

Return generators for each subgroup of \((\mathbb{Z}/N\mathbb{Z})^*\).

EXAMPLES:

```python
sage: Integers(5).multiplicative_subgroups()
((2,), (4,), ())
sage: Integers(15).multiplicative_subgroups()
((11, 7), (4, 11), (8,), (11,), (14,), (7,), (4,), ())
sage: Integers(2).multiplicative_subgroups()
((1,),)
```

(continues on next page)
order()

Return the order of this ring.

EXAMPLES:

```
sage: Zmod(87).order()
87
```

quadratic_nonresidue()

Return a quadratic non-residue in self.

EXAMPLES:

```
sage: R = Integers(17)
sage: R.quadratic_nonresidue()
3
```

random_element (bound=None)

Return a random element of this ring.

INPUT:

- bound, a positive integer or None (the default). Is given, return the coercion of an integer in the interval \([-\text{bound}, \text{bound}]\) into this ring.

EXAMPLES:

```
sage: R = IntegerModRing(18)
sage: R.random_element()
2
```

square_roots_of_one()

Return all square roots of 1 in self, i.e., all solutions to \(x^2 - 1 = 0\).

OUTPUT:

The square roots of 1 in self as a tuple.

EXAMPLES:

```
sage: R = Integers(2^10)
sage: [x for x in R if x^2 == 1]
[1, 511, 513, 1023]
sage: R.square_roots_of_one()
(1, 511, 513, 1023)
sage: v = Integers(9*5).square_roots_of_one(); v
(1, 19, 26, 44)
```
unit_gens (**kwds)

Returns generators for the unit group \((\mathbb{Z}/N\mathbb{Z})^\ast\).

We compute the list of generators using a deterministic algorithm, so the generators list will always be the same. For each odd prime divisor of \(N\) there will be exactly one corresponding generator; if \(N\) is even there will be 0, 1 or 2 generators according to whether 2 divides \(N\) to order 1, 2 or \(\geq 3\).

OUTPUT:

A tuple containing the units of self.

EXAMPLES:

```
sage: R = IntegerModRing(18)
sage: R.unit_gens()
(11,)
sage: R = IntegerModRing(17)
sage: R.unit_gens()
(3,)
sage: IntegerModRing(next_prime(10^30)).unit_gens()
(5,)
```

The choice of generators is affected by the optional keyword algorithm; this can be 'sage' (default) or 'pari'. See unit_group() for details.

```
sage: A = Zmod(55)
sage: A.unit_gens(algorithm='sage')
(12, 46)
sage: A.unit_gens(algorithm='pari')
(2, 21)
```

unit_group (algorithm='sage')

Return the unit group of self.

INPUT:

- self – the ring \(\mathbb{Z}/n\mathbb{Z}\) for a positive integer \(n\)
- algorithm – either 'sage' (default) or 'pari'

OUTPUT:

The unit group of self. This is a finite Abelian group equipped with a distinguished set of generators, which is computed using a deterministic algorithm depending on the algorithm parameter.

- If algorithm == 'sage', the generators correspond to the prime factors \(p \mid n\) (one generator for each odd \(p\); the number of generators for \(p = 2\) is 0, 1 or 2 depending on the order to which 2 divides \(n\)).
- If algorithm == 'pari', the generators are chosen such that their orders form a decreasing sequence with respect to divisibility.

EXAMPLES:

The output of the algorithms 'sage' and 'pari' can differ in various ways. In the following example, the same cyclic factors are computed, but in a different order:
Here are two examples where the cyclic factors are isomorphic, but are ordered differently and have different generators:

```python
sage: A = Zmod(40)
sage: G = A.unit_group(); G
Multiplicative Abelian group isomorphic to C2 x C2 x C4
sage: G.gens_values()
(31, 21, 17)
sage: H = A.unit_group(algorithm='pari'); H
Multiplicative Abelian group isomorphic to C4 x C2 x C2
sage: H.gens_values()
(17, 31, 21)
```

In the following examples, the cyclic factors are not even isomorphic:

```python
sage: A = Zmod(319)
sage: A.unit_group()
Multiplicative Abelian group isomorphic to C10 x C28
sage: A.unit_group(algorithm='pari')
Multiplicative Abelian group isomorphic to C140 x C2
```

```
unit_group_exponent()

EXAMPLES:
```
unit_group_order()

Return the order of the unit group of this residue class ring.

EXAMPLES:

```python
sage: R = Integers(500)
sage: R.unit_group_order()
200
```

sage.rings.finite_rings.integer_mod_ring.crt(v)

INPUT:

- v - (list) a lift of elements of rings.IntegerField(n), for various coprime moduli n

EXAMPLES:

```python
sage: from sage.rings.finite_rings.integer_mod_ring import crt
sage: crt([mod(3, 8), mod(1, 19), mod(7, 15)])
1027
```

elements

```python
sage: from sage.rings.finite_rings.integer_mod_ring import is_IntegerModRing
sage: R = IntegerModRing(17)
sage: is_IntegerModRing(R)
True
sage: is_IntegerModRing(GF(13))
True
sage: is_IntegerModRing(GF(4, 'a'))
False
sage: is_IntegerModRing(10)
False
sage: is_IntegerModRing(ZZ)
False
```

1.2 Elements of $\mathbb{Z}/n\mathbb{Z}$

An element of the integers modulo n.

There are three types of integer_mod classes, depending on the size of the modulus.

- IntegerMod_int stores its value in a int_fast32_t (typically an int); this is used if the modulus is less than $\sqrt{2^{31}} - 1$.
- IntegerMod_int64 stores its value in a int_fast64_t (typically a long long); this is used if the modulus is less than $2^{31} - 1$. In many places, we assume that the values and the modulus actually fit inside an unsigned long.
- IntegerMod_gmp stores its value in a mpz_t; this can be used for an arbitrarily large modulus.

All extend IntegerMod_abstract.
For efficiency reasons, it stores the modulus (in all three forms, if possible) in a common (cdef) class NativeIntStruct rather than in the parent.

AUTHORS:

- Robert Bradshaw: most of the work
- Didier Deshommes: bit shifting
- William Stein: editing and polishing; new arith architecture
- Robert Bradshaw: implement native is_square and square_root
- William Stein: sqrt
- Maarten Derickx: moved the valuation code from the global valuation function to here

```python
class sage.rings.finite_rings.integer_mod.Int_to_IntegerMod
    Bases: sage.rings.finite_rings.integer_mod.IntegerMod_hom

EXAMPLES:

We make sure it works for every type.

```sage
def parse_mod(R):
 if R.is_prime_power():
 return IntegerModRing(p)
 else:
 return IntegerModRing(n)

from sage.rings.finite_rings.integer_mod import Int_to_IntegerMod
Rs = [Integers(2**k) for k in range(1,50,10)]
fs = [Int_to_IntegerMod(R) for R in Rs]
```

```python
class sage.rings.finite_rings.integer_mod.IntegerMod
 (parent, value)

Create an integer modulo \(n \) with the given parent.

This is mainly for internal use.

```sage
def parse_mod(R):
    if R.is_prime_power():
        return IntegerModRing(p)
    else:
        return IntegerModRing(n)

from sage.rings.finite_rings.integer_mod import IntegerMod
R = Integers(100)
type(R._pyx_order.table)
IntegerMod(R, 42)
IntegerMod(R, 142)
IntegerMod(R, 10^100 + 42)
IntegerMod(R, -9158)
```

```python
class sage.rings.finite_rings.integer_mod.IntegerMod_abstract
    Bases: sage.rings.finite_rings.element_base.FiniteRingElement

EXAMPLES:

```sage
def parse_mod(R):
 if R.is_prime_power():
 return IntegerModRing(p)
 else:
 return IntegerModRing(n)

from sage.rings.finite_rings.integer_mod import IntegerMod
R = Integers(100)
type(R._pyx_order.table)
IntegerMod(R, 42)
IntegerMod(R, 142)
IntegerMod(R, 10^100 + 42)
IntegerMod(R, -9158)
```
additive_order()

Returns the additive order of self.

This is the same as self.order().

EXAMPLES:

```
sage: Integers(20)(2).additive_order()
sage: Integers(20)(7).additive_order()
sage: Integers(90308402384902)(2).additive_order()
```

charpoly(var='x')

Returns the characteristic polynomial of this element.

EXAMPLES:

```
sage: k = GF(3)
sage: a = k.gen()
sage: a.charpoly('x')
sage: a + 2
```

AUTHORS:

- Craig Citro

crt(other)

Use the Chinese Remainder Theorem to find an element of the integers modulo the product of the moduli that reduces to self and to other. The modulus of other must be coprime to the modulus of self.

EXAMPLES:

```
sage: a = mod(3,5)
sage: b = mod(2,7)
sage: a.crt(b)
sage: a = mod(37,10^8)
sage: b = mod(9,3^8)
sage: a.crt(b)
sage: b = mod(0,1)
sage: a.crt(b) == a
```

AUTHORS:
• Robert Bradshaw

**divides**(other)

Test whether `self` divides `other`.

**EXAMPLES:**

```python
sage: R = Zmod(6)
sage: R(2).divides(R(4))
True
sage: R(4).divides(R(2))
True
sage: R(2).divides(R(3))
False
```

**generalised_log**( )

Return integers \( [n_1, \ldots, n_d] \) such that

\[
\prod_{i=1}^{d} x_i^{n_i} = \text{self},
\]

where \( x_1, \ldots, x_d \) are the generators of the unit group returned by `self.parent().unit_gens()`.

**EXAMPLES:**

```python
sage: m = Mod(3, 1568)
sage: v = m.generalised_log(); v
[1, 3, 1]
sage: prod([Zmod(1568).unit_gens()[i] ** v[i] for i in [0..2]])
3
```

**See also:**
The method `log()`.

**Warning:** The output is given relative to the set of generators obtained by passing `algorithm='sage'` to the method `unit_gens()` of the parent (which is the default). Specifying `algorithm='pari'` usually yields a different set of generators that is incompatible with this method.

**is_nilpotent**( )

Return `True` if `self` is nilpotent, i.e., some power of `self` is zero.

**EXAMPLES:**

```python
sage: a = Integers(90384098234^3)
sage: factor(a.order())
2^3 * 191^3 * 236607587^3
sage: b = a(2*191)
sage: b.is_nilpotent()
False
sage: b = a(2*191*236607587)
sage: b.is_nilpotent()
True
```

**ALGORITHM:** Let \( m \geq \log_2(n) \), where \( n \) is the modulus. Then \( x \in \mathbb{Z}/n\mathbb{Z} \) is nilpotent if and only if \( x^m = 0 \).
PROOF: This is clear if you reduce to the prime power case, which you can do via the Chinese Remainder Theorem.

We could alternatively factor $n$ and check to see if the prime divisors of $n$ all divide $x$. This is asymptotically slower :-).

**is_one()**

**is_primitive_root()**

Determines whether this element generates the group of units modulo $n$.

This is only possible if the group of units is cyclic, which occurs if $n$ is 2, 4, a power of an odd prime or twice a power of an odd prime.

**EXAMPLES:**

```python
sage: mod(1,2).is_primitive_root()
True
sage: mod(3,4).is_primitive_root()
True
sage: mod(2,7).is_primitive_root()
False
sage: mod(3,98).is_primitive_root()
True
sage: mod(11,1009^2).is_primitive_root()
True
```

**is_square()**

**EXAMPLES:**

```python
sage: Mod(3,17).is_square()
False
sage: Mod(9,17).is_square()
True
sage: Mod(9,17*19^2).is_square()
True
sage: Mod(-1,17^30).is_square()
True
sage: Mod(1/9, next_prime(2^40)).is_square()
True
sage: Mod(1/25, next_prime(2^90)).is_square()
True
```

**ALGORITHM:** Calculate the Jacobi symbol $(\text{self}/p)$ at each prime $p$ dividing $n$. It must be 1 or 0 for each prime, and if it is 0 mod $p$, where $p^k || n$, then $\text{ord}_p(\text{self})$ must be even or greater than $k$.

The case $p = 2$ is handled separately.

**AUTHORS:**

- Robert Bradshaw

**is_unit()**

**lift_centered()**

Lift self to a centered congruent integer.

**OUTPUT:**

The unique integer $i$ such that $-n/2 < i \leq n/2$ and $i = \text{self} \mod n$ (where $n$ denotes the modulus).

**EXAMPLES:**
\texttt{sage: Mod(0,5).lift_centered()}
0
\texttt{sage: Mod(1,5).lift_centered()}
1
\texttt{sage: Mod(2,5).lift_centered()}
2
\texttt{sage: Mod(3,5).lift_centered()}
-2
\texttt{sage: Mod(4,5).lift_centered()}
-1
\texttt{sage: Mod(50,100).lift_centered()}
50
\texttt{sage: Mod(51,100).lift_centered()}
-49
\texttt{sage: Mod(-1,3^100).lift_centered()}
-1

\texttt{sage: Mod(0,5).lift_centered()}
0
\texttt{sage: Mod(1,5).lift_centered()}
1
\texttt{sage: Mod(2,5).lift_centered()}
2
\texttt{sage: Mod(3,5).lift_centered()}
-2
\texttt{sage: Mod(4,5).lift_centered()}
-1
\texttt{sage: Mod(50,100).lift_centered()}
50
\texttt{sage: Mod(51,100).lift_centered()}
-49
\texttt{sage: Mod(-1,3^100).lift_centered()}
-1

\texttt{log}(b=None, \texttt{logarithm_exists}=False)

Return an integer \(x\) such that \(b^x = a\), where \(a\) is \texttt{self}.

\textbf{INPUT}:

- \texttt{self} - unit modulo \(n\)
- \texttt{b} - a unit modulo \(n\). If \(b\) is not given, \texttt{R.multiplicative_generator()} is used, where \(R\) is the parent of \texttt{self}.
- \texttt{logarithm_exists} - a boolean (default False). If True it assumes that the logarithm exists in order to speed up the computation, the code might end up in an infinite loop if this is set to True but the logarithm does not exist.

\textbf{OUTPUT}: Integer \(x\) such that \(b^x = a\), if this exists; a ValueError otherwise.

\textbf{Note}: If the modulus is prime and \(b\) is a generator, this calls Pari’s \texttt{znlog} function, which is rather fast. If not, it falls back on the generic discrete log implementation in \texttt{sage.groups.generic.discrete_log}().

\textbf{EXAMPLES}:

\texttt{sage: r = Integers(125)}
\texttt{sage: b = r.multiplicative_generator()^3}
\texttt{sage: a = b^17}
\texttt{sage: a.log(b)}
17
\texttt{sage: a.log()}
51

A bigger example:

\texttt{sage: FF = FiniteField(2^32+61)}
\texttt{sage: c = FF(4294967356)}
\texttt{sage: x = FF(2)}
\texttt{sage: a = c.log(x)}
\texttt{sage: a}
2147483678
\texttt{sage: x^a}
4294967356

1.2. Elements of \(\mathbb{Z}/n\mathbb{Z}\)
Things that can go wrong. E.g., if the base is not a generator for the multiplicative group, or not even a unit.

```
sage: Mod(3, 7).log(Mod(2, 7))
Traceback (most recent call last):
...
ValueError: No discrete log of 3 found to base 2 modulo 7
```

```
sage: a = Mod(16, 100); b = Mod(4,100)
sage: a.log(b)
Traceback (most recent call last):
...
ValueError: logarithm of 16 is not defined since it is not a unit modulo 100
```

AUTHORS:

• David Joyner and William Stein (2005-11)
• Simon King (2010-07-07): fix a side effect on PARI

**minimal_polynomial**(var='x')

Returns the minimal polynomial of this element.

**EXAMPLES:**

```
sage: GF(241, 'a')(1).minimal_polynomial(var = 'z')
z + 240
```

**minpoly**(var='x')

Returns the minimal polynomial of this element.

**EXAMPLES:**

```
sage: GF(241, 'a')(1).minpoly()
x + 240
```

**modulus**

**EXAMPLES:**

```
sage: Mod(3,17).modulus()
17
```

**multiplicative_order**

Returns the multiplicative order of self.

**EXAMPLES:**

```
sage: Mod(-1,5).multiplicative_order()
2
sage: Mod(1,5).multiplicative_order()
1
sage: Mod(0,5).multiplicative_order()
Traceback (most recent call last):
...
ArithmeticError: multiplicative order of 0 not defined since it is not a unit
```

**norm**

Returns the norm of this element, which is itself. (This is here for compatibility with higher order finite fields.)

**EXAMPLES:**

```
sage: Mod(-1,5).norm()
1
sage: Mod(1,5).norm()
1
sage: Mod(0,5).norm()
Traceback (most recent call last):
...
ArithmeticError: norm of 0 not defined since it is not a unit
```
EXAMPLES:

```python
sage: k = GF(691)
sage: a = k(389)
sage: a.norm()
389
```

AUTHORS:

• Craig Citro

\texttt{nth_root} \((n, \text{extend}=False, \text{all}=False, \text{algorithm}=None, \text{cunningham}=False)\)

Returns an \(n\)th root of \texttt{self}.

INPUT:

• \texttt{n} - integer \(\geq 1\)

• \texttt{extend} - bool (default: True); if True, return an \(n\)th root in an extension ring, if necessary. Otherwise, raise a \texttt{ValueError} if the root is not in the base ring. Warning: this option is not implemented!

• \texttt{all} - bool (default: False); if True, return all \(n\)th roots of \texttt{self}, instead of just one.

• \texttt{algorithm} - string (default: None); The algorithm for the prime modulus case. CRT and \(p\)-adic log techniques are used to reduce to this case. ‘Johnston’ is the only currently supported option.

• \texttt{cunningham} - bool (default: False); In some cases, factorization of \(n\) is computed. If \texttt{cunningham} is set to \texttt{True}, the factorization of \(n\) is computed using trial division for all primes in the so called Cunningham table. Refer to \texttt{sage.rings.factorint.factor_cunningham} for more information. You need to install an optional package to use this method, this can be done with the following command line

\texttt{sage -i cunningham_tables}

OUTPUT:

If \texttt{self} has an \(n\)th root, returns one (if \texttt{all} is \texttt{False}) or a list of all of them (if \texttt{all} is \texttt{True}). Otherwise, raises a \texttt{ValueError} (if \texttt{extend} is \texttt{False}) or a \texttt{NotImplementedError} (if \texttt{extend} is \texttt{True}).

**Warning:** The ‘extend’ option is not implemented (yet).

NOTES:

• If \(n = 0\):
  
  – if \texttt{all}=\texttt{True}:

    • if \texttt{self}=\texttt{1}: all nonzero elements of the parent are returned in a list. Note that this could be very expensive for large parents.

    • otherwise: an empty list is returned

  – if \texttt{all}=\texttt{False}:

    • if \texttt{self}=\texttt{1}: \texttt{self} is returned

    • otherwise: a \texttt{ValueError} is raised

• If \(n < 0\):
  
  – if \texttt{self} is invertible, the \((-n)\)th root of the inverse of \texttt{self} is returned

  – otherwise a \texttt{ValueError} is raised or empty list returned.

EXAMPLES:
sage: K = GF(31)
sage: a = K(22)
sage: K(22).nth_root(7)
13
sage: K(25).nth_root(5)
5
sage: K(23).nth_root(3)
29
sage: mod(225,2^5*3^2).nth_root(4, all=True)
[225, 129, 33, 63, 255, 159, 9, 201, 105, 279, 183, 87, 81, 273, 177, 207, 111,
  15, 153, 57, 249, 135, 39, 231, 111, 15, 153, 57, 249, 135, 39, 231]
sage: mod(275,2^5*7^4).nth_root(7, all=True)
[58235, 25307, 69211, 36283, 3355, 47259, 14331]
sage: mod(1,8).nth_root(2,all=True)
[1, 7, 5, 3]
sage: mod(4,8).nth_root(2,all=True)
[2, 6]
sage: mod(1,16).nth_root(4,all=True)
[1, 15, 13, 3, 9, 7, 5, 11]
sage: (mod(22,31)^200).nth_root(200)
5
sage: mod(3,6).nth_root(0,all=True)
[]
sage: mod(3,6).nth_root(0)
Traceback (most recent call last):
  ... ValueError
sage: mod(1,6).nth_root(0,all=True)
[1, 2, 3, 4, 5]

ALGORITHMS:

- The default for prime modulus is currently an algorithm described in the following paper:


AUTHORS:

- David Roe (2010-2-13)

dozen

polynomial \( (\text{var}='x') \)

Returns a constant polynomial representing this value.

EXAMPLES:

sage: k = GF(7)
sage: a = k.gen(); a
1
sage: a.polynomial()
1
sage: type(a.polynomial())
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>

dozen

rational_reconstruction()

Use rational reconstruction to try to find a lift of this element to the rational numbers.

EXAMPLES:

```python
sage: R = IntegerModRing(97)
sage: a = R(2) / R(3)
sage: a
33
sage: a.rational_reconstruction()
2/3
```

This method is also inherited by prime finite fields elements:

```python
sage: k = GF(97)
sage: a = k(RationalField()('2/3'))
sage: a
33
sage: a.rational_reconstruction()
2/3
```

**sqrt**(extend=True, all=False)

Return square root or square roots of self modulo \( n \).

**INPUT:**

- extend - bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a \( \text{ValueError} \) if the square root is not in the base ring.
- all - bool (default: False); if True, return \{all\} square roots of self, instead of just one.

**ALGORITHM:** Calculates the square roots mod \( p \) for each of the primes \( p \) dividing the order of the ring, then lifts them \( p \)-adically and uses the CRT to find a square root mod \( n \).

See also \( \text{square_root_mod_prime_power} \) and \( \text{square_root_mod_prime} \) (in this module) for more algorithmic details.

**EXAMPLES:**

```python
sage: mod(-1, 17).sqrt()
4
sage: mod(5, 389).sqrt()
86
sage: mod(7, 18).sqrt()
5
sage: a = mod(14, 5^60).sqrt()
```

...  
```
Traceback (most recent call last):
 ...
ValueError: self must be a square
sage: Mod(1/9, next_prime(2^40)).sqrt()^(-2)
9
sage: Mod(1/25, next_prime(2^90)).sqrt()^(-2)
25
```

```python
sage: a = Mod(3,5); a
3
sage: x = Mod(-1, 360)
sage: x.sqrt(extend=False)
Traceback (most recent call last):
 ...
ValueError: self must be a square
```
sage: y = x.sqrt(); y
sqrt359
sage: y.parent()
Univariate Quotient Polynomial Ring in sqrt359 over Ring of integers modulo 360 with modulus x^2 + 1
sage: y^2
359

We compute all square roots in several cases:

sage: R = Integers(5*2^3*3^2); R
Ring of integers modulo 360
sage: R(40).sqrt(all=True)
[20, 160, 200, 340]
sage: [x for x in R if x^2 == 40]  # Brute force verification
[20, 160, 200, 340]
sage: R(1).sqrt(all=True)
[1, 19, 71, 89, 109, 161, 179, 181, 199, 251, 269, 271, 289, 341, 359]
sage: R(0).sqrt(all=True)
[0, 60, 120, 180, 240, 300]

sage: v = R(-1).sqrt(all=True); v
[78853, 111808, 160142, 193097, 213348, 246303, 294637, 327592]
sage: [x^2 for x in v]
[406444, 406444, 406444, 406444, 406444, 406444, 406444, 406444]
sage: v = R(169).sqrt(all=True); min(v), -max(v), len(v)
(13, 13, 104)
sage: all(x^2 == 169 for x in v)
True

sage: t = FiniteField(next_prime(2^100))(4)
sage: t.sqrt(extend = False, all = True)
[2, 1267650600228229401496703205651]
sage: t = FiniteField(next_prime(2^100))(2)
sage: t.sqrt(extend = False, all = True)
[]

Modulo a power of 2:

sage: R = Integers(2^7); R
Ring of integers modulo 128
sage: a = R(17)
sage: a.sqrt()
23
sage: a.sqrt(all=True)
[23, 41, 87, 105]
sage: [x for x in R if x^2==17]
[23, 41, 87, 105]

\texttt{square}\_\texttt{root}(extend=True, all=False)

Return square root or square roots of self modulo \( n \).

\textbf{INPUT:}

\begin{itemize}
\item extend - bool (default: True); if True, return a square root in an extension ring, if necessary.
\end{itemize}
Otherwise, raise a ValueError if the square root is not in the base ring.

- all - bool (default: False); if True, return \{all\} square roots of self, instead of just one.

ALGORITHM: Calculates the square roots mod \( p \) for each of the primes \( p \) dividing the order of the ring, then lifts them \( p \)-adically and uses the CRT to find a square root mod \( n \).

See also square_root_mod_prime_power and square_root_mod_prime (in this module) for more algorithmic details.

EXAMPLES:

```
sage: mod(-1, 17).sqrt() 4
sage: mod(5, 389).sqrt() 86
sage: mod(7, 18).sqrt() 5
sage: a = mod(14, 5^60).sqrt()
sage: a*a 14
sage: mod(15, 389).sqrt(extend=False) Traceback (most recent call last): ...
ValueError: self must be a square
sage: Mod(1/9, next_prime(2^40)).sqrt()^(-2) 9
sage: Mod(1/25, next_prime(2^90)).sqrt()^(-2) 25
sage: a = Mod(3,5); a
3
sage: x = Mod(-1, 360)
sage: x.sqrt(extend=False)
Traceback (most recent call last):
...
ValueError: self must be a square
sage: y = x.sqrt(); y
sqtr359
sage: y.parent() Univariate Quotient Polynomial Ring in sqtr359 over Ring of integers modulo
˓→360 with modulus x^2 + 1
sage: y^2 359

We compute all square roots in several cases:

```
sage: R = Integers(5*2^3*3^2); R
Ring of integers modulo 360
sage: R(40).sqrt(all=True)
[20, 160, 200, 340]
sage: [x for x in R if x^2 == 40] # Brute force verification
[20, 160, 200, 340]
sage: R(1).sqrt(all=True)
[1, 19, 71, 89, 91, 109, 161, 179, 181, 199, 251, 269, 271, 289, 341, 359]
sage: R(0).sqrt(all=True)
[0, 60, 120, 180, 240, 300]
```

1.2. Elements of \(\mathbb{Z}/n\mathbb{Z} \)
```python
sage: R = Integers(5*13^3*37); R
Ring of integers modulo 406445
sage: v = R(-1).sqrt(all=True); v
[78853, 111808, 160142, 193097, 213348, 246303, 294637, 327592]
sage: [x^2 for x in v]
[406444, 406444, 406444, 406444, 406444, 406444, 406444, 406444]
sage: v = R(169).sqrt(all=True); min(v), -max(v), len(v)
(13, 13, 104)
sage: all(x^2 == 169 for x in v)
True
```

Modulo a power of 2:

```python
sage: R = Integers(2^7); R
Ring of integers modulo 128
sage: a = R(17)
sage: a.sqrt()
23
sage: a.sqrt(all=True)
[23, 41, 87, 105]
sage: [x for x in R if x^2==17]
[23, 41, 87, 105]
```

`trace()`

Returns the trace of this element, which is itself. (This is here for compatibility with higher order finite fields.)

EXAMPLES:

```python
sage: k = GF(691)
sage: a = k(389)
sage: a.trace()
389
```

AUTHORS:

- Craig Citro

`valuation(p)`

The largest power r such that m is in the ideal generated by p^r or infinity if there is not a largest such power. However it is an error to take the valuation with respect to a unit.

Note: This is not a valuation in the mathematical sense. As shown with the examples below.

EXAMPLES:

This example shows that the (a*b).valuation(n) is not always the same as a.valuation(n) + b.valuation(n)
1.2. Elements of \(\mathbb{Z}/n\mathbb{Z} \)

```
sage: R=ZZ.quo(9)
sage: a=R(3)
sage: b=R(6)
sage: a.valuation(3)
1
sage: a.valuation(3) + b.valuation(3)
2
sage: (a*b).valuation(3)
+Infinity
```

The valuation with respect to a unit is an error

```
sage: a.valuation(4)
Traceback (most recent call last):
...  
ValueError: Valuation with respect to a unit is not defined.
```

Class `sage.rings.finite_rings.integer_mod.IntegerMod_gmp`

Bases: `sage.rings.finite_rings.integer_mod.IntegerMod_abstract`

Elements of \(\mathbb{Z}/n\mathbb{Z} \) for \(n \) not small enough to be operated on in word size.

AUTHORS:
- Robert Bradshaw (2006-08-24)

`gcd(other)`

Greatest common divisor

Returns the “smallest” generator in \(\mathbb{Z}/N\mathbb{Z} \) of the ideal generated by `self` and `other`.

INPUT:
- `other` – an element of the same ring as this one.

EXAMPLES:

```
sage: mod(2^3*3^2*5, 3^3*2^2*17^8).gcd(mod(2^4*3*17, 3^3*2^2*17^8))
12
sage: mod(0,17^8).gcd(mod(0,17^8))
0
```

`is_one()`

Returns True if this is 1, otherwise False.

EXAMPLES:

```
sage: mod(1,5^23).is_one()
True
sage: mod(0,5^23).is_one()
False
```

`is_unit()`

Returns True if this element is a unit.

EXAMPLES:

```
sage: mod(13, 5^23).is_unit()
True
sage: mod(25, 5^23).is_unit()
False
```
lift()
Lift an integer modulo n to the integers.

EXAMPLES:

```python
sage: a = Mod(8943, 2^70); type(a)
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp'>
sage: lift(a)
8943
sage: a.lift()
8943
```

class sage.rings.finite_rings.integer_mod.IntegerMod_hom
Bases: sage.categories.morphism.Morphism
class sage.rings.finite_rings.integer_mod.IntegerMod_int
Bases: sage.rings.finite_rings.integer_mod.IntegerMod_abstract

Elements of $\mathbb{Z}/n\mathbb{Z}$ for n small enough to be operated on in 32 bits

AUTHORS:
• Robert Bradshaw (2006-08-24)

EXAMPLES:

```python
sage: a = Mod(10,30); a
10
sage: loads(a.dumps()) == a
True
```

gcd(other)

Greatest common divisor

Returns the “smallest” generator in $\mathbb{Z}/N\mathbb{Z}$ of the ideal generated by self and other.

INPUT:
• other – an element of the same ring as this one.

EXAMPLES:

```python
sage: R = Zmod(60); S = Zmod(72)
sage: a = R(40).gcd(S(30)); a
2
sage: a.parent()
Ring of integers modulo 12
sage: b = R(17).gcd(60); b
1
sage: b.parent()
Ring of integers modulo 60
sage: mod(72*5, 3^3*2^2*17^2).gcd(mod(48*17, 3^3*2^2*17^2))
12
sage: mod(0,1).gcd(mod(0,1))
0
```

is_one()

Returns True if this is 1, otherwise False.

EXAMPLES:
\begin{verbatim}
sage: mod(6,5).is_one()
True
sage: mod(0,5).is_one()
False
sage: mod(1, 1).is_one()
True
sage: Zmod(1).one().is_one()
True
\end{verbatim}

is_unit()

Return True iff this element is a unit

EXAMPLES:

\begin{verbatim}
sage: a=Mod(23,100)
sage: a.is_unit()
True
sage: a=Mod(24,100)
sage: a.is_unit()
False
\end{verbatim}

lift()

Lift an integer modulo \(n\) to the integers.

EXAMPLES:

\begin{verbatim}
sage: a = Mod(8943, 2^10); type(a)
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: lift(a)
751
sage: a.lift()
751
\end{verbatim}

sqrt(extend=True, all=False)

Return square root or square roots of self modulo \(n\).

INPUT:

- extend - bool (default: True); if True, return a square root in an extension ring, if necessary.
 - Otherwise, raise a \texttt{ValueError} if the square root is not in the base ring.
- all - bool (default: False); if True, return \{all\} square roots of self, instead of just one.

ALGORITHM: Calculates the square roots mod \(p\) for each of the primes \(p\) dividing the order of the ring, then lifts them \(p\)-adically and uses the CRT to find a square root mod \(n\).

See also \texttt{square_root_mod_prime_power} and \texttt{square_root_mod_prime} (in this module) for more algorithmic details.

EXAMPLES:

\begin{verbatim}
sage: mod(-1, 17).sqrt()
4
sage: mod(5, 389).sqrt()
86
sage: mod(7, 18).sqrt()
5
sage: a = mod(14, 5^60).sqrt()
sage: a*a
14
\end{verbatim}

(continues on next page)
sage: mod(15, 389).sqrt(extend=False)
Traceback (most recent call last):
...
ValueError: self must be a square
sage: Mod(1/9, next_prime(2^40)).sqrt()^(-2)
9
sage: Mod(1/25, next_prime(2^90)).sqrt()^(-2)
25

sage: a = Mod(3,5); a
3
sage: x = Mod(-1, 360)
sage: x.sqrt(extend=False)
Traceback (most recent call last):
...
ValueError: self must be a square
sage: y = x.sqrt(); y
sqrt359
sage: y.parent()
Univariate Quotient Polynomial Ring in sqrt359 over Ring of integers modulo 360 with modulus x^2 + 1
sage: y^2
359

We compute all square roots in several cases:

```
sage: R = Integers(5*2^3*3^2); R
Ring of integers modulo 360
sage: R(40).sqrt(all=True)
[20, 160, 200, 340]
sage: [x for x in R if x^2 == 40]  # Brute force verification
[20, 160, 200, 340]
sage: R(1).sqrt(all=True)
[1, 19, 71, 89, 91, 109, 161, 179, 181, 199, 251, 269, 271, 289, 341, 359]
sage: R(0).sqrt(all=True)
[0, 60, 120, 180, 240, 300]
sage: GF(107)(0).sqrt(all=True)
[0]
sage: R = Integers(5*13^3*37); R
Ring of integers modulo 406445
sage: v = R(-1).sqrt(all=True); v
[78853, 111808, 160142, 193097, 213348, 246303, 294637, 327592]
sage: [x^2 for x in v]
[406444, 406444, 406444, 406444, 406444, 406444, 406444, 406444]
sage: v = R(169).sqrt(all=True); min(v), -max(v), len(v)
(13, 13, 104)
sage: all(x^2 == 169 for x in v)
True
```

Modulo a power of 2:

```
sage: R = Integers(2^7); R
Ring of integers modulo 128
sage: a = R(17)
sage: a.sqrt()

(continues on next page)
23
\texttt{sage:} \texttt{a.sqrt(all=True)}
\[[23, 41, 87, 105]\]
\texttt{sage:} \texttt{[x for x in R if x^2==17]}
\[[23, 41, 87, 105]\]

\texttt{class} \texttt{sage.rings.finite_rings.integer_mod.IntegerMod_int64}
\texttt{Bases: \texttt{sage.rings.finite_rings.integer_mod.IntegerMod_abstract}}

Elements of $\mathbb{Z}/n\mathbb{Z}$ for n small enough to be operated on in 64 bits

\textbf{EXAMPLES:}
\begin{verbatim}
sage: a = Mod(10,3^10); a
10
sage: type(a)
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int64'>
sage: loads(a.dumps()) == a
True
sage: Mod(5, 2^31)
5
\end{verbatim}

\textbf{AUTHORS:}

- Robert Bradshaw (2006-09-14)

\texttt{gcd}(\texttt{other})

Greatest common divisor

Returns the “smallest” generator in $\mathbb{Z}/N\mathbb{Z}$ of the ideal generated by self and other.

\textbf{INPUT:}

- \texttt{other} – an element of the same ring as this one.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: mod(2^3*3^2*5, 3^3*2^2*17^5).gcd(mod(2^4*3*17, 3^3*2^2*17^5))
12
sage: mod(0,17^5).gcd(mod(0,17^5))
0
\end{verbatim}

\texttt{is_one}()

Returns True if this is 1, otherwise False.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: (mod(-1,5^10)^2).is_one()
True
sage: mod(0,5^10).is_one()
False
\end{verbatim}

\texttt{is_unit}()

Return True iff this element is a unit.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: mod(13, 5^10).is_unit()
True
\end{verbatim}
lift()

Lift an integer modulo \( n \) to the integers.

**EXAMPLES:**

```python
sage: a = Mod(8943, 2^25); type(a)
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int64'>

sage: lift(a)
8943

sage: a.lift()
8943
```

**class** sage.rings.finite_rings.integer_mod.IntegerMod_to_Integer

**Bases:** sage.categories.map.Map

Map to lift elements to Integer.

**EXAMPLES:**

```python
sage: ZZ.convert_map_from(GF(2))
Lifting map:
 From: Finite Field of size 2
 To: Integer Ring
```

**class** sage.rings.finite_rings.integer_mod.IntegerMod_to_IntegerMod

**Bases:** sage.rings.finite_rings.integer_mod.IntegerMod_hom

Very fast IntegerMod to IntegerMod homomorphism.

**EXAMPLES:**

```python
sage: from sage.rings.finite_rings.integer_mod import IntegerMod_to_IntegerMod
sage: Rs = [Integers(3**k) for k in range(1,30,5)]

sage: [type(R(0)) for R in Rs]
[<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>, <type 'sage.rings.finite_rings.integer_mod.IntegerMod_int64'>, <type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp'>, <type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp'>, <type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp'>]

sage: all(f(-1) == f.codomain()(-1) for f in fs)
True

sage: [f(-1) for f in fs]
[2, 2]
```

**is_injective()**

Return whether this morphism is injective.

**EXAMPLES:**

```python
sage: Zmod(4).hom(Zmod(2)).is_injective()
False
```
**is_surjective()**
Return whether this morphism is surjective.

**EXAMPLES:**
```
sage: Zmod(4).hom(Zmod(2)).is_surjective()
True
```

**class** sage.rings.finite_rings.integer_mod.Integer_to_IntegerMod
**Bases:** sage.rings.finite_rings.integer_mod.IntegerMod_hom

Fast \( Z \rightarrow \mathbb{Z}/n\mathbb{Z} \) morphism.

**EXAMPLES:**
We make sure it works for every type.
```
sage: from sage.rings.finite_rings.integer_mod import Integer_to_IntegerMod
sage: Rs = [Integers(10), Integers(10^5), Integers(10^10)]
sage: [type(R(0)) for R in Rs]
[<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>, <type 'sage.rings.finite_rings.integer_mod.IntegerMod_int64'>, <type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp'>]
sage: fs = [Integer_to_IntegerMod(R) for R in Rs]
sage: [f(-1) for f in fs]
[9, 99999, 9999999999]
```

**is_injective()**
Return whether this morphism is injective.

**EXAMPLES:**
```
sage: ZZ.hom(Zmod(2)).is_injective()
False
```

**is_surjective()**
Return whether this morphism is surjective.

**EXAMPLES:**
```
sage: ZZ.hom(Zmod(2)).is_surjective()
True
```

**section()**
sage.rings.finite_rings.integer_mod.Mod \( n, m, \text{parent=\text{None}} \)
Return the equivalence class of \( n \) modulo \( m \) as an element of \( \mathbb{Z}/m\mathbb{Z} \).

**EXAMPLES:**
```
sage: x = Mod(12345678, 32098203845329048)
sage: x
12345678
sage: x^100
1017322209155072
```

You can also use the lowercase version:
```
sage: mod(12, 5)
2
```

### 1.2. Elements of \( \mathbb{Z}/n\mathbb{Z} \)
Illustrates that trac ticket #5971 is fixed. Consider \( n \) modulo \( m = 0 \). Then \( \mathbb{Z}/0\mathbb{Z} \) is isomorphic to \( \mathbb{Z} \) so \( n \) modulo 0 is equivalent to \( n \) for any integer value of \( n \):

```sage
sage: Mod(10, 0)
10
sage: a = randint(-100, 100)
sage: Mod(a, 0) == a
True
```

```class sage.rings.finite_rings.integer_mod.NativeIntStruct
Bases: object

We store the various forms of the modulus here rather than in the parent for efficiency reasons.

We may also store a cached table of all elements of a given ring in this class.

inverses

precompute_table(parent)

Function to compute and cache all elements of this class.

If inverses == True, also computes and caches the inverses of the invertible elements.

EXAMPLES:

```sage:
from sage.rings.finite_rings.integer_mod import NativeIntStruct
sage: R = IntegerModRing(10)
sage: M = NativeIntStruct(R.order())
sage: M.precompute_table(R)
sage: M.table
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: M.inverses
[None, 1, None, 7, None, None, None, 3, None, 9]
```

This is used by the `sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic` constructor:

```sage:
from sage.rings.finite_rings.integer_mod_ring import IntegerModRing_˓→generic
sage: R = IntegerModRing_generic(39, cache=False)
sage: R(5)^-1
8
sage: R(5)^-1 is R(8)
False
sage: R = IntegerModRing_generic(39, cache=True)  # indirect doctest
sage: R(5)^-1 is R(8)
True
```

Check that the inverse of 0 modulo 1 works, see trac ticket #13639:

```sage: R = IntegerModRing_generic(1, cache=True)  # indirect doctest
sage: R(0)^-1 is R(0)
True
```

table

`sage.rings.finite_rings.integer_mod.is_IntegerMod(x)`

Return True if and only if \(x \) is an integer modulo \(n \).

EXAMPLES:
sage: from sage.rings.finite_rings.integer_mod import is_IntegerMod
sage: is_IntegerMod(5)
False
sage: is_IntegerMod(Mod(5,10))
True

sage.rings.finite_rings.integer_mod.lucas(k, P, Q=1, n=None)
Return \[V_k(P, Q) \mod n, Q^{k/2} \mod n \] where \(V_k \) is the Lucas function defined by the recursive relation

\[V_k(P, Q) = PV_{k-1}(P, Q) - QV_{k-2}(P, Q) \]

with \(V_0 = 2 \), \(V_1 = P \).

INPUT:
- \(k \) – integer; index to compute
- \(P, Q \) – integers or modular integers; initial values
- \(n \) – integer (optional); modulus to use if \(P \) is not a modular integer

REFERENCES:
- [IEEEP1363]

AUTHORS:
- Somindu Chaya Ramanna, Shashank Singh and Srinivas Vivek Venkatesh (2011-09-15, ECC2011 summer school)
- Robert Bradshaw

EXAMPLES:

```python
sage: [lucas(k,4,5,11)[0] for k in range(30)]
[2, 4, 6, 4, 8, 1, 8, 5, 2, 5, 10, 4, 10, 9, 8, 9, 7, 5, 7, 3, 10, 3, 6, 9, 6, 1, \ldots]
sage: lucas(20,4,5,11)
[10, 1]
```

sage.rings.finite_rings.integer_mod.lucas_q1(mm, P)
Return \(V_k(P, 1) \) where \(V_k \) is the Lucas function defined by the recursive relation

\[V_k(P, Q) = PV_{k-1}(P, Q) - QV_{k-2}(P, Q) \]

with \(V_0 = 2 \), \(V_1(P_Q) = P \).

REFERENCES:
- [Pos1988]

AUTHORS:
- Robert Bradshaw

sage.rings.finite_rings.integer_mod.makeNativeIntStruct
alias of sage.rings.finite_rings.integer_mod.NativeIntStruct

sage.rings.finite_rings.integer_mod.mod(n, m, parent=None)
Return the equivalence class of \(n \) modulo \(m \) as an element of \(\mathbb{Z}/m\mathbb{Z} \).

EXAMPLES:
You can also use the lowercase version:

```
sage: mod(12, 5)
2
```

Illustrates that trac ticket #5971 is fixed. Consider n modulo m when $m = 0$. Then $\mathbb{Z}/0\mathbb{Z}$ is isomorphic to \mathbb{Z} so n modulo 0 is equivalent to n for any integer value of n:

```
sage: Mod(10, 0)
10
sage: a = randint(-100, 100)
sage: Mod(a, 0) == a
True
```

`sage.rings.finite_rings.integer_mod.square_root_mod_prime(a, p=None)`
Calculates the square root of a, where a is an integer mod p; if a is not a perfect square, this returns an (incorrect) answer without checking.

ALGORITHM: Several cases based on residue class of p mod 16.

- p mod 2 = 0: $p = 2$ so $\sqrt{a} = a$.
- p mod 4 = 3: $\sqrt{a} = a^{(p+1)/4}$.
- p mod 8 = 5: $\sqrt{a} = \zeta a$ where $\zeta = (2a)^{(p-5)/8}$, $i = \sqrt{-1}$.
- p mod 16 = 9: Similar, work in a bi-quadratic extension of \mathbb{F}_p for small p, Tonelli and Shanks for large p.
- p mod 16 = 1: Tonelli and Shanks.

REFERENCES:

- [Mul2004]
- [Atk1992]
- [Pos1988]

AUTHORS:

- Robert Bradshaw

`sage.rings.finite_rings.integer_mod.square_root_mod_prime_power(a, p, e)`
Calculates the square root of a, where a is an integer mod p^e.

ALGORITHM: Perform p-adically by stripping off even powers of p to get a unit and lifting $\sqrt{\text{unit}} \mod p$ via Newton’s method.

AUTHORS:

- Robert Bradshaw

EXAMPLES:

```
sage: from sage.rings.finite_rings.integer_mod import square_root_mod_prime_power
sage: a=Mod(17,2^20)
sage: b=square_root_mod_prime_power(a, 2, 20)
```
(continues on next page)
sage: b^2 == a
True

sage: a=Mod(72,97^10)
sage: b=square_root_mod_prime_power(a,97,10)
sage: b^2 == a
True
sage: mod(100, 5^7).sqrt()^2
100
2.1 Finite Fields

Sage supports arithmetic in finite prime and extension fields. Several implementation for prime fields are implemented natively in Sage for several sizes of primes p. These implementations are

- `sage.rings.finite_rings.integer_mod.IntegerMod_int`,
- `sage.rings.finite_rings.integer_mod.IntegerMod_int64`, and
- `sage.rings.finite_rings.integer_mod.IntegerMod_gmp`.

Small extension fields of cardinality $< 2^{16}$ are implemented using tables of Zech logs via the Givaro C++ library (`sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro`). While this representation is very fast it is limited to finite fields of small cardinality. Larger finite extension fields of order $q > 2^{16}$ are internally represented as polynomials over smaller finite prime fields. If the characteristic of such a field is 2 then NTL is used internally to represent the field (`sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e`). In all other case the PARI C library is used (`sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt`).

However, this distinction is internal only and the user usually does not have to worry about it because consistency across all implementations is aimed for. In all extension field implementations the user may either specify a minimal polynomial or leave the choice to Sage.

For small finite fields the default choice are Conway polynomials. The Conway polynomial C_n is the lexicographically first monic irreducible, primitive polynomial of degree n over $GF(p)$ with the property that for a root α of C_n we have that $\beta = \alpha^{(p^n - 1)/(p^m - 1)}$ is a root of C_m for all m dividing n.

Sage contains a database of Conway polynomials which also can be queried independently of finite field construction.

A pseudo-Conway polynomial satisfies all of the conditions required of a Conway polynomial except the condition that it is lexicographically first. They are therefore not unique. If no variable name is specified for an extension field, Sage will fit the finite field into a compatible lattice of field extensions defined by pseudo-Conway polynomials. This lattice is stored in an `AlgebraicClosureFiniteField` object; different algebraic closure objects can be created by using a different prefix keyword to the finite field constructor.

Note that the computation of pseudo-Conway polynomials is expensive when the degree is large and highly composite. If a variable name is specified then a random polynomial is used instead, which will be much faster to find.

While Sage supports basic arithmetic in finite fields some more advanced features for computing with finite fields are still not implemented. For instance, Sage does not calculate embeddings of finite fields yet.

EXAMPLES:

```sage
sage: k = GF(5); type(k)
<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'>
```
Finite Fields support iteration, starting with 0.

We output the base rings of several finite fields.

Further examples:
AUTHORS:

- William Stein: initial version
- Robert Bradshaw: prime field implementation
- Martin Albrecht: Givaro and ntl.GF2E implementations

class sage.rings.finite_rings.finite_field_constructor.FiniteFieldFactory

Bases: sage.structure.factory.UniqueFactory

Return the globally unique finite field of given order with generator labeled by the given name and possibly with given modulus.

INPUT:

- order – a prime power
- name – string, optional. Note that there can be a substantial speed penalty (in creating extension fields) when omitting the variable name, since doing so triggers the computation of pseudo-Conway polynomials in order to define a coherent lattice of extensions of the prime field. The speed penalty grows with the size of extension degree and with the number of factors of the extension degree.
- modulus – (optional) either a defining polynomial for the field, or a string specifying an algorithm to use to generate such a polynomial. If modulus is a string, it is passed to irreducible_element() as the parameter algorithm; see there for the permissible values of this parameter. In particular, you can specify modulus="primitive" to get a primitive polynomial. You may not specify a modulus if you do not specify a variable name.
- impl – (optional) a string specifying the implementation of the finite field. Possible values are:
 - 'modn' – ring of integers modulo \(p \) (only for prime fields).
 - 'givaro' – Givaro, which uses Zech logs (only for fields of at most 65521 elements).
 - 'ntl' – NTL using GF2X (only in characteristic 2).
 - 'pari' or 'pari_ffelt' – PARI's FFELT type (only for extension fields).
- elem_cache – (default: order < 500) cache all elements to avoid creation time; ignored unless impl='givaro'
- repr – (default: 'poly') ignored unless impl='givaro'; controls the way elements are printed to the user:
 - 'log': repr is log_repr()
 - 'int': repr is int_repr()
 - 'poly': repr is poly_repr()
- check_irreducible – verify that the polynomial modulus is irreducible
- proof – bool (default: True): if True, use provable primality test; otherwise only use pseudoprimality test.

ALIAS: You can also use GF instead of FiniteField – they are identical.

EXAMPLES:
sage: k.<a> = FiniteField(9); k
Finite Field in a of size 3^2
sage: parent(a)
Finite Field in a of size 3^2
sage: charpoly(a, 'y')
y^2 + 2*y + 2

We illustrate the proof flag. The following example would hang for a very long time if we didn’t use proof=False.

Note: Magma only supports proof=False for making finite fields, so falsely appears to be faster than Sage – see trac ticket #10975.

sage: k = FiniteField(10^1000 + 453, proof=False)
sage: k = FiniteField((10^1000 + 453)^2, 'a', proof=False)
long time -- about 5 seconds
sage: F.<x> = GF(5)[]
sage: K.<a> = GF(5**5, name='a', modulus=x^5 - x +1)
sage: f = K.modulus(); f
x^5 + 4*x + 1
sage: type(f)
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>

By default, the given generator is not guaranteed to be primitive (a generator of the multiplicative group), use modulus="primitive" if you need this:

sage: K.<a> = GF(5^40)
sage: a.multiplicative_order()
18947806286360049565633138
sage: a.is_square()
True
sage: K. = GF(5^40, modulus="primitive")
sage: b.multiplicative_order()
9094947017729282379150390624

The modulus must be irreducible:

sage: K.<a> = GF(5**5, name='a', modulus=x^5 - x)
Traceback (most recent call last):
... ValueError: finite field modulus must be irreducible but it is not

You can’t accidentally fool the constructor into thinking the modulus is irreducible when it is not, since it actually tests irreducibility modulo p. Also, the modulus has to be of the right degree (this is always checked):

sage: F.<x> = QQ[]
sage: factor(x^5 + 2)
x^5 + 2
sage: K.<a> = GF(5**5, modulus=x^5 + 2)
Traceback (most recent call last):
... ValueError: finite field modulus must be irreducible but it is not
sage: K.<a> = GF(5^5, modulus=x^3 + 3*x + 3, check_irreducible=False)
Traceback (most recent call last):
... ValueError: the degree of the modulus does not equal the degree of the field

Any type which can be converted to the polynomial ring $\mathbb{GF}(p)[x]$ is accepted as modulus:

```
sage: K.<a> = GF(13^3, modulus=[1,0,0,2])
sage: K.<a> = GF(13^10, modulus=pari("ffinit(13,10)"))
sage: var('x')
x
sage: K.<a> = GF(13^2, modulus=x^2 - 2)
sage: K.<a> = GF(13^2, modulus=sin(x))
Traceback (most recent call last):
...
TypeError: self must be a numeric expression
```

If you wish to live dangerously, you can tell the constructor not to test irreducibility using `check_irreducible=False`, but this can easily lead to crashes and hangs – so do not do it unless you know that the modulus really is irreducible!

```
sage: K.<a> = GF(5**2, name='a', modulus=x^2 + 2, check_irreducible=False)
```

Even for prime fields, you can specify a modulus. This will not change how Sage computes in this field, but it will change the result of the `modulus()` and `gen()` methods:

```
sage: k.<a> = GF(5, modulus="primitive")
sage: k.modulus()
x + 3
sage: a
2
```

The order of a finite field must be a prime power:

```
sage: GF(1)
Traceback (most recent call last):
...
ValueError: the order of a finite field must be at least 2
sage: GF(100)
Traceback (most recent call last):
...
ValueError: the order of a finite field must be a prime power
```

Finite fields with explicit random modulus are not cached:

```
sage: k.<a> = GF(5**10, modulus='random')
sage: n.<a> = GF(5**10, modulus='random')
sage: n is k
False
sage: GF(5**10, 'a') is GF(5**10, 'a')
True
```

We check that various ways of creating the same finite field yield the same object, which is cached:

```
sage: K = GF(7, 'a')
sage: L = GF(7, 'b')
sage: K is L # name is ignored for prime fields
True
```
sage: K is GF(7, modulus=K.modulus())
True
sage: K = GF(4,'a'); K.modulus()
x^2 + x + 1
sage: L = GF(4,'a', K.modulus())
sage: K is L
True
sage: M = GF(4,'a', K.modulus().change_variable_name('y'))
sage: K is M
True

You may print finite field elements as integers. This currently only works if the order of field is $< 2^{16}$, though:

sage: k.<a> = GF(2^8, repr='int')
sage: a
2

The following demonstrate coercions for finite fields using Conway polynomials:

sage: k = GF(5^2); a = k.gen()
sage: l = GF(5^5); b = l.gen()
sage: a + b
3*z10^5 + z10^4 + z10^2 + 3*z10 + 1

Note that embeddings are compatible in lattices of such finite fields:

sage: m = GF(5^3); c = m.gen()
sage: (a+b)+c == a+(b+c)
True
sage: (a*b)*c == a*(b*c)
True

sage: from sage.categories.pushout import pushout
sage: n = pushout(k, l)
sage: o = pushout(l, m)
sage: q = pushout(n, o)
sage: q(o(b)) == q(n(b))
True

Another check that embeddings are defined properly:

sage: k = GF(3**10)
sage: l = GF(3**20)
sage: l(k.gen()**10) == l(k.gen())**10
True

Using pseudo-Conway polynomials is slow for highly composite extension degrees:

sage: k = GF(3^120) # long time -- about 3 seconds
sage: GF(3^40).gen().minimal_polynomial()(k.gen()^(3^120-1)/(3^40-1)) # long

Before trac ticket #17569, the boolean keyword argument conway was required when creating finite fields without a variable name. This keyword argument is now removed (trac ticket #21433). You can still pass in prefix as an argument, which has the effect of changing the variable name of the algebraic closure:
```python
sage: K = GF(3^10, prefix='w'); L = GF(3^10); K is L
False
sage: K.variable_name(), L.variable_name()
('w10', 'z10')
sage: list(K.polynomial()) == list(L.polynomial())
True
```

create_key_and_extra_args

```python
create_key_and_extra_args(order, name=None, modulus=None, names=None, impl=None, proof=None, check_irreducible=True, prefix=None, repr=None, elem_cache=None, **kwds)
```

EXAMPLES:

```python
sage: GF.create_key_and_extra_args(9, 'a')
((9, ('a',), x^2 + 2*x + 2, 'givaro', 3, 2, True, None, 'poly', True), {})
```

We do not take invalid keyword arguments and raise a value error to better ensure uniqueness:

```python
sage: GF.create_key_and_extra_args(9, 'a', foo='value')
Traceback (most recent call last):
...
TypeError: create_key_and_extra_args() got an unexpected keyword argument 'foo'
```

Moreover, `repr` and `elem_cache` are ignored when not using givaro:

```python
sage: GF.create_key_and_extra_args(16, 'a', impl='ntl', repr='poly')
((16, ('a',), x^4 + x + 1, 'ntl', 2, 4, True, None, None, None), {})
sage: GF.create_key_and_extra_args(16, 'a', impl='ntl', elem_cache=False)
((16, ('a',), x^4 + x + 1, 'ntl', 2, 4, True, None, None, None), {})
sage: GF(16, impl='ntl') is GF(16, impl='ntl', repr='foo')
True
```

We handle extra arguments for the givaro finite field and create unique objects for their defaults:

```python
sage: GF(25, impl='givaro') is GF(25, impl='givaro', repr='poly')
True
sage: GF(25, impl='givaro') is GF(25, impl='givaro', elem_cache=True)
True
sage: GF(625, impl='givaro') is GF(625, impl='givaro', elem_cache=False)
True
```

We explicitly take `structure`, `implementation` and `prec` attributes for compatibility with `AlgebraicExtensionFunctor` but we ignore them as they are not used, see trac ticket #21433:

```python
sage: GF.create_key_and_extra_args(9, 'a', structure=None)
((9, ('a',), x^2 + 2*x + 2, 'givaro', 3, 2, True, None, 'poly', True), {})
```

create_object

```python
create_object(version, key, **kwds)
```

EXAMPLES:

```python
sage: K = GF(19) # indirect doctest
data: TestSuite(K).run()
```

We try to create finite fields with various implementations:

```python
sage: k = GF(2, impl='modn')
sage: k = GF(2, impl='givaro')
```

(continues on next page)
.. code-block:: python

 sage: from sage.rings.finite_rings.finite_field_constructor import is_
 PrimeFiniteField
 sage: is_PrimeFiniteField(QQ)
 False
 sage: is_PrimeFiniteField(GF(7))
 True
 sage: is_PrimeFiniteField(GF(7^2,'a'))
 False
 sage: is_PrimeFiniteField(GF(next_prime(10^90,proof=False)))
 True
2.2 Base Classes for Finite Fields

AUTHORS:

- Adrien Brochard, David Roe, Jeroen Demeyer, Julian Rueth, Niles Johnson, Peter Bruin, Travis Scrimshaw,
 Xavier Caruso: initial version

class sage.rings.finite_rings.finite_field_base.FiniteField
 Bases: sage.rings.ring.Field

Abstract base class for finite fields.

algebraic_closure(name='z', **kwds)
 Return an algebraic closure of self.

INPUT:

- name – string (default: 'z'): prefix to use for variable names of subfields
- implementation – string (optional): specifies how to construct the algebraic closure.
 The only value supported at the moment is 'pseudo_conway'. For more details, see algebraic_closure_finite_field.

OUTPUT:

An algebraic closure of self. Note that mathematically speaking, this is only unique up to non-unique isomorphism. To obtain canonically defined algebraic closures, one needs an algorithm that also provides a canonical isomorphism between any two algebraic closures constructed using the algorithm.

This non-uniqueness problem can in principle be solved by using Conway polynomials; see for example Wikipedia article Conway_polynomial_(finite_fields). These have the drawback that computing them takes a long time. Therefore Sage implements a variant called pseudo-Conway polynomials, which are easier to compute but do not determine an algebraic closure up to unique isomorphism.

The output of this method is cached, so that within the same Sage session, calling it multiple times will return the same algebraic closure (i.e. the same Sage object). Despite this, the non-uniqueness of the current implementation means that coercion and pickling cannot work as one might expect. See below for an example.

EXAMPLES:

```python
sage: F = GF(5).algebraic_closure()
sage: F
Algebraic closure of Finite Field of size 5
sage: F.gen(3)
z3
```

The default name is ‘z’ but you can change it through the option name:

```python
sage: Ft = GF(5).algebraic_closure('t')
sage: Ft.gen(3)
t3
```

Because Sage currently only implements algebraic closures using a non-unique definition (see above), it is currently impossible to implement pickling in such a way that a pickled and unpickled element compares equal to the original:

```python
sage: F = GF(7).algebraic_closure()
sage: x = F.gen(2)
```
sage: loads(dumps(x)) == x
False

Note: This is currently only implemented for prime fields.

cardinality()

Return the cardinality of self.

Same as order().

EXAMPLES:

sage: GF(997).cardinality()
997

collection()

Return the construction of this finite field, as a ConstructionFunctor and the base field.

EXAMPLES:

sage: v = GF(3^3).construction(); v
(AlgebraicExtensionFunctor, Finite Field of size 3)
sage: v[0].polys[0]
3
sage: v = GF(2^1000, 'a').construction(); v[0].polys[0]
a^1000 + a^5 + a^4 + a^3 + 1

The implementation is taken into account, by trac ticket #15223:

sage: k = FiniteField(9, 'a', impl='pari_ffelt')
sage: F, R = k.construction()
sage: F(R) is k
True

dual_basis(basis=None, check=True)

Return the dual basis of basis, or the dual basis of the power basis if no basis is supplied.

If \(e = \{e_0, e_1, ..., e_{n-1}\} \) is a basis of \(F_p^n \) as a vector space over \(F_p \), then the dual basis of \(e \), \(d = \{d_0, d_1, ..., d_{n-1}\} \), is the unique basis such that \(\text{Tr}(e_i d_j) = \delta_{i,j}, 0 \leq i, j \leq n - 1 \), where \(\text{Tr} \) is the trace function.

INPUT:

- basis – (default: None): a basis of the finite field self, \(F_p^n \), as a vector space over the base field \(F_p \). Uses the power basis \(\{x^i : 0 \leq i \leq n - 1\} \) as input if no basis is supplied, where \(x \) is the generator of self.
- check – (default: True): verifies that basis is a valid basis of self.

ALGORITHM:

The algorithm used to calculate the dual basis comes from pages 110–111 of [McE1987].

Let \(e = \{e_0, e_1, ..., e_{n-1}\} \) be a basis of \(F_p^n \) as a vector space over \(F_p \) and \(d = \{d_0, d_1, ..., d_{n-1}\} \) be the dual basis of \(e \). Since \(e \) is a basis, we can rewrite any \(d_c = \sum \beta_c e_i \) for some \(\beta_0, \beta_1, ..., \beta_{n-1} \in F_p \). Using properties of the trace function, we can rewrite the \(n \) equations of the form \(\text{Tr}(e_i d_c) = \delta_{i,c} \) and express the result as the matrix vector product: \(A[\beta_0, \beta_1, ..., \beta_{n-1}] = i_c \), where the \(i, j \)-th element of \(A \) is \(\text{Tr}(e_i e_j) \) and \(i_c \) is the \(i \)-th column of...
the \(n \times n \) identity matrix. Since \(A \) is an invertible matrix, \([\beta_0, \beta_1, \ldots, \beta_{n-1}] = A^{-1}i_c \), from which we can easily calculate \(d_c \).

EXAMPLES:

```python
sage: F.<a> = GF(2^4)
sage: F.dual_basis(basis=None, check=False)
[\(a^3 + 1, a^2, a, 1\)]
```

We can test that the dual basis returned satisfies the defining property of a dual basis: \(\text{Tr}(e_i d_j) = \delta_{i,j}, 0 \leq i, j \leq n - 1 \)

```python
sage: F.<a> = GF(2^4)
sage: e = [4*a^3, 2*a^3 + a^2 + a, 2*a^3 + 2*a^2 + 2]
....: 3*a^3 + 5*a^2 + 4*a + 2, 2*a^3 + 2*a^2 + 2]
sage: d = F.dual_basis(e, check=True); d
[3*a^3 + 4*a^2 + 2*a + 5, 5*a^2 + 4*a + 3]
sage: vals = [[(x * y).trace() for x in e] for y in d]
sage: matrix(vals) == matrix.identity(4)
```

```python
True
```

We can test that if \(d \) is the dual basis of \(e \), then \(e \) is the dual basis of \(d \):

```python
sage: F.<a> = GF(2^3)
sage: F.dual_basis([a], check=True)
Traceback (most recent call last):
  ...
ValueError: basis length should be 3, not 1
```

```python
sage: F.dual_basis([a^0, a, a^0 + a], check=True)
Traceback (most recent call last):
  ...
ValueError: value of 'basis' keyword is not a basis
```

AUTHOR:

- Thomas Gagne (2015-06-16)

extension \((\text{modulus, name=None, names=None, map=False, embedding=None, latex_name=None, latex_names=None, **kwds})\)

Return an extension of this finite field.

INPUT:
• **modulus** – a polynomial with coefficients in `self`, or an integer.
• **name** or **names** – string: the name of the generator in the new extension
• **latex_name** or **latex_names** – string: latex name of the generator in the new extension
• **map** – boolean (default: False): if False, return just the extension \(E \); if True, return a pair \((E, f)\), where \(f \) is an embedding of \(self \) into \(E \).
• **embedding** – currently not used; for compatibility with other `AlgebraicExtensionFunctor` calls.
• **kwds**: further keywords, passed to the finite field constructor.

OUTPUT:
An extension of the given modulus, or pseudo-Conway of the given degree if `modulus` is an integer.

EXAMPLES:
```python
sage: k = GF(2)
sage: R.<x> = k[]
sage: k.extension(x^1000 + x^5 + x^4 + x^3 + 1, 'a')
Finite Field in a of size 2^1000
sage: k = GF(3^4)
sage: R.<x> = k[]
sage: k.extension(3)
Finite Field in z12 of size 3^12
sage: K = k.extension(2, 'a')
sage: k.is_subring(K)
True
```

An example using the **map** argument:
```python
sage: F = GF(5)
sage: E, f = F.extension(2, 'b', map=True)
sage: E
Finite Field in b of size 5^2
sage: f
Ring morphism:
  From: Finite Field of size 5
  To:    Finite Field in b of size 5^2
  Defn: 1 |--> 1
sage: f.parent()
Set of field embeddings from Finite Field of size 5 to Finite Field in b of...
  size 5^2
```

Extensions of non-prime finite fields by polynomials are not yet supported: we fall back to generic code:
```python
sage: k.extension(x^5 + x^2 + x - 1)
Univariate Quotient Polynomial Ring in x over Finite Field in z4 of size 3^4,
  with modulus x^5 + x^2 + x + 2
```

factored_order()
Returns the factored order of this field. For compatibility with `integer_mod_ring`.

EXAMPLES:
```python
sage: GF(7^2,'a').factored_order()
7^2
```
factored_unit_order()

Returns the factorization of self.order() - 1, as a 1-tuple.

The format is for compatibility with integer_mod_ring.

EXAMPLES:

```
sage: GF(7^2,'a').factored_unit_order()
(2^4 * 3,)
```

fetch_int (n)

Return the element of self that equals n under the condition that gen() is set to the characteristic of the finite field self.

INPUT:

- n – integer. Must not be negative, and must be less than the cardinality of self.

EXAMPLES:

```
sage: p = 4091
sage: F = GF(p^4, 'a')
sage: n = 100*p^3 + 37*p^2 + 12*p + 6
sage: F.fetch_int(n)
100*a^3 + 37*a^2 + 12*a + 6
```

free_module (base=None, basis=None, map=None, subfield=None)

Return the vector space over the subfield isomorphic to this finite field as a vector space, along with the isomorphisms.

INPUT:

- base – a subfield of or a morphism into this finite field. If not given, the prime subfield is assumed. A subfield means a finite field with coercion to this finite field.
- basis – a basis of the finite field as a vector space over the subfield. If not given, one is chosen automatically.
- map – boolean (default: True); if True, isomorphisms from and to the vector space are also returned. The basis maps to the standard basis of the vector space by the isomorphisms.

OUTPUT: if map is False,

- vector space over the subfield or the domain of the morphism, isomorphic to this finite field.

and if map is True, then also

- an isomorphism from the vector space to the finite field.
- the inverse isomorphism to the vector space from the finite field.

EXAMPLES:

```
sage: GF(27,'a').vector_space(map=False)
Vector space of dimension 3 over Finite Field of size 3
sage: F = GF(8)
sage: E = GF(64)
sage: V, from_V, to_V = E.vector_space(F, map=True)
sage: V
```
Vector space of dimension 2 over Finite Field in z3 of size 2^3
\[\text{sage: } \text{to}_V(\text{E}.\text{gen}()) \]
(0, 1)
\[\text{sage: } \text{all}(\text{from}_V(\text{to}_V(e)) == e \text{ for } e \text{ in } E) \]
True
\[\text{sage: } \text{all}(\text{to}_V(e1 + e2) == \text{to}_V(e1) + \text{to}_V(e2) \text{ for } e1, e2 \text{ in } E) \]
True
\[\text{sage: } \text{all}(\text{to}_V(c * e) == c * \text{to}_V(e) \text{ for } e \text{ in } E, c \text{ in } F) \]
True

\[\text{sage: } \text{basis} = [\text{E}.\text{gen}(), \text{E}.\text{gen}() + 1] \]
\[\text{sage: } \text{W}, \text{from}_W, \text{to}_W = \text{E}.\text{vector}_\text{space}(F, \text{basis}, \text{map=True}) \]
\[\text{sage: } \text{all}(\text{from}_W(\text{to}_W(e)) == e \text{ for } e \text{ in } E) \]
True
\[\text{sage: } \text{all}(\text{to}_W(c * e) == c * \text{to}_W(e) \text{ for } e \text{ in } E, c \text{ in } F) \]
True

\[\text{sage: } \text{all}(\text{to}_W(e1 + e2) == \text{to}_W(e1) + \text{to}_W(e2) \text{ for } e1, e2 \text{ in } E) \] """# long time"
True
\[\text{sage: } \text{to}_W(\text{basis}[0]); \text{to}_W(\text{basis}[1]) \]
(1, 0)
(0, 1)

\[\text{sage: } \text{F} = \text{GF}(9, \text{'t'}, \text{modulus}=(x^2+x-1)) \]
\[\text{sage: } \text{E} = \text{GF}(81) \]
\[\text{sage: } \text{h} = \text{Hom}(\text{F}, \text{E}).\text{an_element}() \]
\[\text{sage: } \text{V}, \text{from}_V, \text{to}_V = \text{E}.\text{vector}_\text{space}(\text{h}, \text{map=True}) \]
\[\text{sage: } \text{V} \]
Vector space of dimension 2 over Finite Field in t of size 3^2
\[\text{sage: } \text{V}.\text{base}_\text{ring}() \text{ is } \text{F} \]
True
\[\text{sage: } \text{all}(\text{from}_V(\text{to}_V(e)) == e \text{ for } e \text{ in } E) \]
True
\[\text{sage: } \text{all}(\text{to}_V(e1 + e2) == \text{to}_V(e1) + \text{to}_V(e2) \text{ for } e1, e2 \text{ in } E) \]
True
\[\text{sage: } \text{all}(\text{to}_V(h(c) * e) == c * \text{to}_V(e) \text{ for } e \text{ in } E, c \text{ in } F) \]
True

frobenius_endomorphism \((n=1)\)

INPUT:

- \(n \) – an integer (default: 1)

OUTPUT:

The \(n \)-th power of the absolute arithmetic Frobenius endomorphism on this finite field.

EXAMPLES:

\[\text{sage: } \text{k.<t>} = \text{GF}(3^5) \]
\[\text{sage: } \text{Frob} = \text{k}.\text{frobenius_endomorphism}(); \text{Frob} \]
Frobenius endomorphism \(t \mapsto t^3 \) on Finite Field in t of size 3^5
\[\text{sage: } \text{a} = \text{k}.\text{random_element}() \]
\[\text{sage: } \text{Frob} (\text{a}) == \text{a}^3 \]
True

We can specify a power:
The result is simplified if possible:

```
sage: k.frobenius_endomorphism(6)
Frobenius endomorphism t |--> t^3 on Finite Field in t of size 3^5
sage: k.frobenius_endomorphism(5)
Identity endomorphism of Finite Field in t of size 3^5
```

Comparisons work:

```
sage: k.frobenius_endomorphism(6) == Frob
True
sage: from sage.categories.morphism import IdentityMorphism
sage: k.frobenius_endomorphism(5) == IdentityMorphism(k)
True
```

AUTHOR:

- Xavier Caruso (2012-06-29)

gen()

Return a generator of this field (over its prime field). As this is an abstract base class, this just raises a `NotImplementedError`.

is_conway()

Return `True` if self is defined by a Conway polynomial.

is_field(proof=True)

Returns whether or not the finite field is a field, i.e., always returns `True`.

is_perfect()

Return whether this field is perfect, i.e., every element has a p-th root. Always returns `True` since finite fields are perfect.
sage: GF(2).is_perfect()
True

is_prime_field()
Return True if self is a prime field, i.e., has degree 1.

EXAMPLES:

sage: GF(3^7, 'a').is_prime_field()
False
sage: GF(3, 'a').is_prime_field()
True

modulus()
Return the minimal polynomial of the generator of self over the prime finite field.

The minimal polynomial of an element \(a\) in a field is the unique monic irreducible polynomial of smallest degree with coefficients in the base field that has \(a\) as a root. In finite field extensions, \(\mathbb{F}_{p^n}\), the base field is \(\mathbb{F}_p\).

OUTPUT:

- a monic polynomial over \(\mathbb{F}_p\) in the variable \(x\).

EXAMPLES:

sage: F.<a> = GF(7^2); F
Finite Field in a of size 7^2
sage: F.polynomial_ring()
Univariate Polynomial Ring in a over Finite Field of size 7
sage: f = F.modulus(); f
x^2 + 6*x + 3
sage: f(a)
0

Although \(f\) is irreducible over the base field, we can double-check whether or not \(f\) factors in \(F\) as follows. The command \(F['x'](f)\) coerces \(f\) as a polynomial with coefficients in \(F\). (Instead of a polynomial with coefficients over the base field.)

sage: f.factor()
x^2 + 6*x + 3
sage: F['x'](f).factor()
(x + a + 6) * (x + 6*a)

Here is an example with a degree 3 extension:

sage: G. = GF(7^3); G
Finite Field in b of size 7^3
sage: g = G.modulus(); g
x^3 + 6*x^2 + 4
sage: g.degree(); G.degree()
3
3

For prime fields, this returns \(x - 1\) unless a custom modulus was given when constructing this field:

sage: k = GF(199)
sage: k.modulus()

(continues on next page)
The given modulus is always made monic:

```sage```
sage: k.<a> = GF(7^2, modulus=2*x^2-3, impl="pari_ffelt")
sage: k.modulus()
x^2 + 2```

**multiplicative_generator()**

Return a primitive element of this finite field, i.e. a generator of the multiplicative group.

You can use `multiplicative_generator()` or `primitive_element()`, these mean the same thing.

**Warning:** This generator might change from one version of Sage to another.

**EXAMPLES:**

```sage```
sage: k = GF(997)
sage: k.multiplicative_generator()
7
sage: k.<a> = GF(11^3)
sage: k.primitive_element()
a
sage: k. = GF(19^32)
sage: k.multiplicative_generator()
b + 4```

ngens()

The number of generators of the finite field. Always 1.

EXAMPLES:

```sage```
sage: k = FiniteField(3^4, 'b')
sage: k.ngens()
1```

**order()**

Return the order of this finite field.

**EXAMPLES:**

```sage```
sage: GF(997).order()
997```

polynomial(name=None)

Return the minimal polynomial of the generator of `self` over the prime finite field.

INPUT:

- `name` – a variable name to use for the polynomial. By default, use the name given when constructing this field.
OUTPUT:

- a monic polynomial over \(F_p \) in the variable \texttt{name}.

See also:

Except for the \texttt{name} argument, this is identical to the \texttt{modulus()} method.

EXAMPLES:

```sage
sage: k.<a> = FiniteField(9)
sage: k.polynomial('x')
x^2 + 2*x + 2
sage: k.polynomial()
a^2 + 2*a + 2
sage: F = FiniteField(9, 'a', impl='pari_ffelt')
sage: F.polynomial()
a^2 + 2*a + 2
sage: F = FiniteField(7^20, 'a', impl='pari_ffelt')
sage: f = F.polynomial(); f
a^20 + a^12 + 6*a^11 + 2*a^10 + 5*a^9 + 2*a^8 + 3*a^7 + a^6 + 3*a^5 + 3*a^3 + a + 3
sage: f(F.gen())
0
sage: k.<a> = GF(2^20, impl='ntl')
sage: k.polynomial()
a^20 + a^10 + a^9 + a^7 + a^6 + a^5 + a^4 + a + 1
sage: k.polynomial('FOO')
FOO^20 + FOO^10 + FOO^9 + FOO^7 + FOO^6 + FOO^5 + FOO^4 + FOO + 1
sage: a^20
a^10 + a^9 + a^7 + a^6 + a^5 + a^4 + a + 1
```

\texttt{polynomial_ring}(variable_name=None)

Returns the polynomial ring over the prime subfield in the same variable as this finite field.

EXAMPLES:

```sage
sage: k.<alpha> = FiniteField(3^4)
sage: k.polynomial_ring()
Univariate Polynomial Ring in alpha over Finite Field of size 3
```

\texttt{primitive_element()}

Return a primitive element of this finite field, i.e. a generator of the multiplicative group.

You can use \texttt{multiplicative_generator()} or \texttt{primitive_element()}, these mean the same thing.

\textbf{Warning:} This generator might change from one version of Sage to another.

EXAMPLES:

```sage
sage: k = GF(997)
sage: k.multiplicative_generator()
7
sage: k.<a> = GF(11^3)
(continues on next page)
```
sage: k.primitive_element()
a
sage: k. = GF(19^32)
sage: k.multiplicative_generator()
b + 4

random_element(*args, **kwds)
A random element of the finite field. Passes arguments to random_element() function of underlying vector space.

EXAMPLES:

sage: k = GF(19^4, 'a')
sage: k.random_element()
a^3 + 3*a^2 + 6*a + 9

Passes extra positional or keyword arguments through:

sage: k.random_element(prob=0)
0

some_elements()
Returns a collection of elements of this finite field for use in unit testing.

EXAMPLES:

sage: k = GF(2^8,'a')
sage: k.some_elements()
[a^4 + a^3 + 1, a^6 + a^4 + a^3, a^5 + a^4 + a, a^2 + a]

subfield(degree, name=None, map=False)
Return the subfield of the field of degree.
The inclusion maps between these subfields will always commute, but they are only added as coercion maps if the following condition holds for the generator \(g \) of the field, where \(d \) is the degree of this field over the prime field:
The element \(g(p^d-1)/(p^n-1) \) generates the subfield of degree \(n \) for all divisors \(n \) of \(d \).

INPUT:

• degree – integer; degree of the subfield
• name – string; name of the generator of the subfield
• map – boolean (default False); whether to also return the inclusion map

EXAMPLES:

sage: k = GF(2^21)
sage: k.subfield(3)
Finite Field in z3 of size 2^3
sage: k.subfield(7, 'a')
Finite Field in a of size 2^7
sage: k.coerce_map_from(_)
Ring morphism:
 From: Finite Field in a of size 2^7
 To: Finite Field in z21 of size 2^21
 Defn: a |--> z21^20 + z21^19 + z21^17 + z21^15 + z21^14 + z21^6 + z21^4 + \ldots + z21^3 + z21
subfields (degree=0, name=None)

Return all subfields of self of the given degree, or all possible degrees if degree is 0.

The subfields are returned as absolute fields together with an embedding into self.

INPUT:

- degree – (default: 0) an integer
- name – a string, a dictionary or None:
 - If degree is nonzero, then name must be a string (or None, if this is a pseudo-Conway extension), and will be the variable name of the returned field.
 - If degree is zero, the dictionary should have keys the divisors of the degree of this field, with the desired variable name for the field of that degree as an entry.
 - As a shortcut, you can provide a string and the degree of each subfield will be appended for the variable name of that subfield.
 - If None, uses the prefix of this field.

OUTPUT:

A list of pairs (K, e), where K ranges over the subfields of this field and e gives an embedding of K into self.

EXAMPLES:

```
sage: k = GF(2^21)
sage: k.subfields() [(Finite Field of size 2,
  Ring morphism:
    From: Finite Field of size 2
    To:  Finite Field in z21 of size 2^21
    Defn: 1 |--> 1),
  (Finite Field in z3 of size 2^3,
  Ring morphism:
    From: Finite Field in z3 of size 2^3
    To:  Finite Field in z21 of size 2^21
    Defn: z3 |--> z21^20 + z21^19 + z21^17 + z21^15 + z21^11 + z21^9 + z21^8 + z21^6 + z21^2),
  (Finite Field in z7 of size 2^7,
  Ring morphism:
    From: Finite Field in z7 of size 2^7
    To:  Finite Field in z21 of size 2^21
    Defn: z7 |--> z21^20 + z21^19 + z21^17 + z21^15 + z21^14 + z21^6 + z21^4 + z21^3 + z21),
  (Finite Field in z21 of size 2^21,
   Identity endomorphism of Finite Field in z21 of size 2^21)]
```

unit_group_exponent ()

The exponent of the unit group of the finite field. For a finite field, this is always the order minus 1.

EXAMPLES:
```python
sage: k = GF(2^10, 'a')
sage: k.order()
1024
sage: k.unit_group_exponent()
1023
```

zeta (n=None)

Return an element of multiplicative order n in this finite field. If there is no such element, raise `ValueError`.

Warning: In general, this returns an arbitrary element of the correct order. There are no compatibility guarantees: `F.zeta(9)^3` may not be equal to `F.zeta(3)`.

EXAMPLES:

```python
sage: k = GF(7)
sage: k.zeta()
3
sage: k.zeta().multiplicative_order()
6
sage: k.zeta(3)
2
sage: k.zeta(3).multiplicative_order()
3
sage: k = GF(49, 'a')
sage: k.zeta().multiplicative_order()
48
sage: k.zeta(6)
3
sage: k.zeta(5)
Traceback (most recent call last):
...
ValueError: no 5th root of unity in Finite Field in a of size 7^2
```

Even more examples:

```python
sage: GF(9,'a').zeta_order()
8
sage: GF(9,'a').zeta()
a
sage: GF(9,'a').zeta(4)
a + 1
sage: GF(9,'a').zeta()^2
a + 1
```

This works even in very large finite fields, provided that n can be factored (see trac ticket #25203):

```python
sage: k.<a> = GF(2^2000)
sage: p = ~8877945148742945001146041439025147034098690503591013177336356694416517527310181938001
sage: z = k.zeta(p)
sage: z
a^1999 + a^1996 + a^1995 + a^1994 + ... + a^7 + a^5 + a^4 + 1
sage: z ^ p
1
```

2.2. Base Classes for Finite Fields
zeta_order()
Return the order of the distinguished root of unity in self.

EXAMPLES:

```python
sage: GF(9,'a').zeta_order()
8
sage: GF(9,'a').zeta()
a
sage: GF(9,'a').zeta().multiplicative_order()
8
```

sage.rings.finite_rings.finite_field_base.is_FiniteField(x)
Return True if x is of type finite field, and False otherwise.

EXAMPLES:

```python
sage: from sage.rings.finite_rings.finite_field_base import is_FiniteField
sage: is_FiniteField(GF(9,'a'))
True
sage: is_FiniteField(GF(next_prime(10^10)))
True
```

Note that the integers modulo n are not of type finite field, so this function returns False:

```python
sage: is_FiniteField(Integers(7))
False
```

sage.rings.finite_rings.finite_field_base.unpickle_FiniteField_ext(_type, order, variable_name, modulus, kwargs)
Used to unpickle extensions of finite fields. Now superseded (hence no doctest), but kept around for backward compatibility.

sage.rings.finite_rings.finite_field_base.unpickle_FiniteField_prm(_type, order, variable_name, kwargs)
Used to unpickle finite prime fields. Now superseded (hence no doctest), but kept around for backward compatibility.

2.3 Base class for finite field elements

AUTHORS:

- David Roe (2010-1-14) -- factored out of sage.structure.element
- Sebastian Oehms (2018-7-19) -- add :meth:`conjugate` (see :trac:`26761`)

```python
class sage.rings.finite_rings.element_base.Cache_base
    Bases: sage.structure.sage_object.SageObject

    def fetch_int(self, number)
        Given an integer less than \( p^n \) with base 2 representation \( a_0 + a_1 \cdot 2 + \cdots + a_k 2^k \), this returns \( a_0 + a_1 x + \cdots + a_k x^k \), where \( x \) is the generator of this finite field.
```
EXAMPLES:

```python
sage: k.<a> = GF(2^48)
sage: k._cache.fetch_int(2^33 + 2 + 1)
a^33 + a + 1
```

```python
class sage.rings.finite_rings.element_base.FinitePolyExtElement
Bases: sage.rings.finite_rings.element_base.FiniteRingElement

Elements represented as polynomials modulo a given ideal.

**additive_order()**
Return the additive order of this finite field element.

EXAMPLES:

```python
sage: k.<a> = FiniteField(2^12, 'a')
sage: b = a^3 + a + 1
sage: b.additive_order()
2
sage: k(0).additive_order()
1
```

**charpoly(var='x', algorithm='pari')**
Return the characteristic polynomial of self as a polynomial with given variable.

**INPUT:**
- `var` – string (default: ‘x’)
- `algorithm` – string (default: ‘pari’)
  - ‘pari’ – use pari’s charpoly
  - ‘matrix’ – return the charpoly computed from the matrix of left multiplication by self

The result is not cached.

**conjugate()**
This method returns the result of the Frobenius morphism in the case where the field is a quadratic extension, say $GF(q^2)$, where $q = p^k$ is a prime power and $p$ the characteristic of the field.

**OUTPUT:**
Instance of this class representing the image under the Frobenius morphisms.

2.3. Base class for finite field elements
EXAMPLES:

```python
sage: F.<a> = GF(16)
sage: b = a.conjugate(); b
a + 1
sage: a == b.conjugate()
True

sage: F.<a> = GF(27)
sage: a.conjugate()
Traceback (most recent call last):
 ...
TypeError: cardinality of the field must be a square number
```

**frobenius** $(k=1)$

Return the $(p^k)^{th}$ power of self, where $p$ is the characteristic of the field.

**INPUT:**

- $k$ – integer (default: 1, must fit in C int type)

Note that if $k$ is negative, then this computes the appropriate root.

**EXAMPLES:**

```python
sage: F.<a> = GF(29^2)
sage: z = a^2 + 5*a + 1
sage: z.pth_power()
19*a + 20
sage: z.pth_power(10)
10*a + 28
sage: z.pth_power(-10) == z
True
sage: F. = GF(2^12)
sage: y = b^3 + b + 1
sage: y == (y.pth_power(-3))^(2^3)
True
sage: y.pth_power(2)
b^7 + b^6 + b^5 + b^4 + b^3 + b
```

**is_square**

Returns True if and only if this element is a perfect square.

**EXAMPLES:**

```python
sage: k.<a> = FiniteField(9, impl='givaro', modulus='primitive')
sage: a.is_square()
False
sage: (a**2).is_square()
True
sage: k.<a> = FiniteField(4, impl='ntl', modulus='primitive')
sage: (a**2).is_square()
True
sage: k.<a> = FiniteField(17^5, impl='pari_ffelt', modulus='primitive')
sage: a.is_square()
False
sage: (a**2).is_square()
True
```
matrix(reverse=False)
Return the matrix of left multiplication by the element on the power basis 1, x, x^2, ..., x^{d-1} for the field extension. Thus the columns of this matrix give the images of each of the x^i.

INPUT:

- reverse – if True, act on vectors in reversed order

EXAMPLES:

```
sage: k.<a> = GF(2^4)
sage: b = k.random_element()
sage: vector(a*b) == a.matrix() * vector(b)
True
sage: (a*b)._vector_(reverse=True) == a.matrix(reverse=True) * b._vector_(reverse=True)
True
```

minimal_polynomial(var='x')
Returns the minimal polynomial of this element (over the corresponding prime subfield).

EXAMPLES:

```
sage: k.<a> = FiniteField(3^4)
sage: parent(a)
Finite Field in a of size 3^4
sage: b=a**20;p=charpoly(b,"y");p
y^4 + 2*y^2 + 1
sage: factor(p)
(y^2 + 1)^2
sage: b.minimal_polynomial('y')
y^2 + 1
```

minpoly(var='x', algorithm='pari')
Returns the minimal polynomial of this element (over the corresponding prime subfield).

INPUT:

- var - string (default: ‘x’)
- algorithm - string (default: ‘pari’)
  - ‘pari’ – use pari’s minpoly
  - ‘matrix’ – return the minpoly computed from the matrix of left multiplication by self

EXAMPLES:

```
sage: from sage.rings.finite_rings.element_base import FinitePolyExtElement
sage: k.<a> = FiniteField(19^2)
sage: parent(a)
Finite Field in a of size 19^2
sage: b=a**20
sage: p=FinitePolyExtElement.minpoly(b,"x", algorithm="pari")
sage: q=FinitePolyExtElement.minpoly(b,"x", algorithm="matrix")
sage: q == p
True
```
sage: p
x + 17

**multiplicative_order()**

Return the multiplicative order of this field element.

**EXAMPLES:**

```
sage: S.<a> = GF(5^3); S
Finite Field in a of size 5^3
sage: a.multiplicative_order()
124
sage: (a^8).multiplicative_order()
31
sage: S(0).multiplicative_order()
Traceback (most recent call last):
...
ArithmeticError: Multiplicative order of 0 not defined.
```

**norm()**

Return the norm of self down to the prime subfield.

This is the product of the Galois conjugates of self.

**EXAMPLES:**

```
sage: S. = GF(5^2); S
Finite Field in b of size 5^2
sage: b.norm()
2
sage: b.charpoly('t')
t^2 + 4*t + 2
```

Next we consider a cubic extension:

```
sage: S.<a> = GF(5^3); S
Finite Field in a of size 5^3
sage: a.norm()
2
sage: a.charpoly('t')
t^3 + 3*t + 3
sage: a * a^5 * (a^25)
2
```

**nth_root** *(n, extend=False, all=False, algorithm=None, cunningham=False)*

Returns an nth root of self.

**INPUT:**

- `n` – integer ≥ 1
- `extend` – bool (default: False); if True, return an nth root in an extension ring, if necessary. Otherwise, raise a ValueError if the root is not in the base ring. Warning: this option is not implemented!
- `all` – bool (default: False); if True, return all nth roots of self, instead of just one.
- `algorithm` – string (default: None); ‘Johnston’ is the only currently supported option. For IntegerMod elements, the problem is reduced to the prime modulus case using CRT and p-adic logs, and then this algorithm used.
If self has an \(n\)th root, returns one (if \(\text{all} \) is \(\text{False}\)) or a list of all of them (if \(\text{all} \) is \(\text{True}\)). Otherwise, raises a \(\text{ValueError}\) (if \(\text{extend} \) is \(\text{False}\)) or a \(\text{NotImplementedError}\) (if \(\text{extend} \) is \(\text{True}\)).

**Warning:** The \(\text{extend}\) option is not implemented (yet).

**EXAMPLES:**

```python
sage: K = GF(31)
sage: a = K(22)
sage: K(22).nth_root(7)
13
sage: K(25).nth_root(5)
5
sage: K(23).nth_root(3)
29
sage: K.<a> = GF(625)
sage: (3*a^2+a+1).nth_root(13)**13
3*a^2 + a + 1
sage: k.<a> = GF(29^2)
sage: b = a^2 + 5*a + 1
sage: b.nth_root(11)
3*a + 20
sage: b.nth_root(5)
Traceback (most recent call last):
...
ValueError: no nth root
sage: b.nth_root(5, all = True)
[]
sage: b.nth_root(3, all = True)
[14*a + 18, 10*a + 13, 5*a + 27]
sage: k.<a> = GF(29^5)
sage: b = a^2 + 5*a + 1
sage: b.nth_root(5)
19*a^4 + 2*a^3 + 2*a^2 + 16*a + 3
sage: b.nth_root(7)
Traceback (most recent call last):
...
ValueError: no nth root
sage: b.nth_root(4, all=True)
[]
```

**ALGORITHMS:**

- The default is currently an algorithm described in the following paper:


**AUTHOR:**

- David Roe (2010-02-13)

\(\text{pth\_power}\) \((k=1)\)

Return the \((p^k)^{th}\) power of self, where \(p\) is the characteristic of the field.
INPUT:

• $k$ – integer (default: 1, must fit in C int type)

Note that if $k$ is negative, then this computes the appropriate root.

EXAMPLES:

```sage
sage: F.<a> = GF(29^2)
sage: z = a^2 + 5*a + 1
sage: z.pth_power()
19*a + 20
sage: z.pth_power(10)
10*a + 28
sage: z.pth_power(-10) == z
True
sage: F. = GF(2^12)
sage: y = b^3 + b + 1
sage: y == (y.pth_power(-3))^(2^3)
True
sage: y.pth_power(2)
b^7 + b^6 + b^5 + b^4 + b^3 + b
```

$pth\_root\ (k=1)$

Return the $(p^k)^{th}$ root of self, where $p$ is the characteristic of the field.

INPUT:

• $k$ – integer (default: 1, must fit in C int type)

Note that if $k$ is negative, then this computes the appropriate power.

EXAMPLES:

```sage
sage: F. = GF(2^12)
sage: y = b^3 + b + 1
sage: y == (y.pth_root(3))^(2^3)
True
sage: y.pth_root(2)
b^11 + b^10 + b^9 + b^7 + b^5 + b^4 + b^2 + b
```

$sqrt\ (extend=False, \ all=False)$

See $square\_root()$.

EXAMPLES:

```sage
sage: k.<a> = GF(3^17)
sage: (a^3 - a - 1).sqrt()
a^16 + 2*a^15 + a^13 + 2*a^12 + a^10 + 2*a^9 + 2*a^8 + a^7 + a^6 + 2*a^5 + a^4 + 2*a^2 + 2*a + 2
```

$square\_root\ (extend=False, \ all=False)$

The square root function.

INPUT:

• extend – bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the root is not in the base ring.
Warning: This option is not implemented!

• all – bool (default: False); if True, return all square roots of self, instead of just one.

Warning: The ‘extend’ option is not implemented (yet).

EXAMPLES:

```python
sage: F = FiniteField(7^2, 'a')
sage: F(2).square_root()
4
sage: F(3).square_root()
2*a + 6
sage: F(3).square_root()**2
3
sage: F(4).square_root()
2
sage: K = FiniteField(7^3, 'alpha', impl='pari_ffelt')
sage: K(3).square_root()
Traceback (most recent call last):
... ValueError: must be a perfect square.
```

trace()
Return the trace of this element, which is the sum of the Galois conjugates.

EXAMPLES:

```python
sage: S.<a> = GF(5^3); S
Finite Field in a of size 5^3
sage: a.trace()
0
sage: a.charpoly('t')
t^3 + 3*t + 3
sage: a + a^5 + a^25
0
sage: z = a^2 + a + 1
sage: z.trace()
2
sage: z.charpoly('t')
t^3 + 3*t^2 + 2*t + 2
sage: z + z^5 + z^25
2
```

class sage.rings.finite_rings.element_base.FiniteRingElement
Bases: sage.structure.element.CommutativeRingElement

sage.rings.finite_rings.element_base.is_FiniteFieldElement(x)
Returns if x is a finite field element.

EXAMPLES:

```python
sage: from sage.rings.finite_rings.element_base import is_FiniteFieldElement
sage: is_FiniteFieldElement(1)
False
```
2.4 Homset for Finite Fields

This is the set of all field homomorphisms between two finite fields.

EXAMPLES:

```python
sage: R.<t> = ZZ[]
sage: E.<a> = GF(25, modulus = t^2 - 2)
sage: F. = GF(625)
sage: H = Hom(E, F)
sage: f = H([4*b^3 + 4*b^2 + 4*b]); f
Ring morphism:
 From: Finite Field in a of size 5^2
 To: Finite Field in b of size 5^4
 Defn: a |--> 4*b^3 + 4*b^2 + 4*b
sage: f(2)
2
sage: f(a)
4*b^3 + 4*b^2 + 4*b
sage: len(H)
2
sage: [phi(2*a)^2 for phi in Hom(E, F)]
[3, 3]
```

We can also create endomorphisms:

```python
sage: End(E)
Automorphism group of Finite Field in a of size 5^2
sage: End(GF(7))[0]
Ring endomorphism of Finite Field of size 7
 Defn: 1 |--> 1
sage: H = Hom(GF(7), GF(49, 'c'))
sage: H[0](2)
2
```

```python
class sage.rings.finite_rings.homset.FiniteFieldHomset(R, S, category=None)
 Bases: sage.rings.homset.RingHomset_generic

 Set of homomorphisms with domain a given finite field.

 index(item)
 Return the index of self.

 EXAMPLES:

 sage: K.<z> = GF(1024)
sage: g = End(K)[3]
sage: End(K).index(g) == 3
 True
```
is_aut()  
Check if self is an automorphism

EXAMPLES:

```python
sage: Hom(GF(4, 'a'), GF(16, 'b')).is_aut()
False
sage: Hom(GF(4, 'a'), GF(4, 'c')).is_aut()
False
sage: Hom(GF(4, 'a'), GF(4, 'a')).is_aut()
True
```

list()  
Return a list of all the elements in this set of field homomorphisms.

EXAMPLES:

```python
sage: K.<a> = GF(25)
sage: End(K)
Automorphism group of Finite Field in a of size 5^2
sage: list(End(K))
[Ring endomorphism of Finite Field in a of size 5^2
 Defn: a |--> 4*a + 1,
 Ring endomorphism of Finite Field in a of size 5^2
 Defn: a |--> a]
sage: L.<z> = GF(7^6)
sage: [g for g in End(L) if (g^3)(z) == z]
[Ring endomorphism of Finite Field in z of size 7^6
 Defn: z |--> z,
 Ring endomorphism of Finite Field in z of size 7^6
 Defn: z |--> 5*z^4 + 5*z^3 + 4*z^2 + 3*z + 1,
 Ring endomorphism of Finite Field in z of size 7^6
 Defn: z |--> 3*z^5 + 5*z^4 + 5*z^2 + 2*z + 3]
```

Between isomorphic fields with different moduli:

```python
sage: k1 = GF(1009)
sage: k2 = GF(1009, modulus="primitive")
sage: Hom(k1, k2).list()
[
 Ring morphism:
 From: Finite Field of size 1009
 To: Finite Field of size 1009
 Defn: 1 |--> 1
]
sage: Hom(k2, k1).list()
[
 Ring morphism:
 From: Finite Field of size 1009
 To: Finite Field of size 1009
 Defn: 11 |--> 11
]
sage: k1.<a> = GF(1009^2, modulus="first_lexicographic")
sage: k2. = GF(1009^2, modulus="conway")
sage: Hom(k1, k2).list()
[
 Ring morphism:
 From: Finite Field in a of size 1009^2
 To: Finite Field in b of size 1009^2
 Defn: a |--> ...]
```

(continues on next page)
To: Finite Field in b of size 1009^2  
Defn: a |--> 290*b + 864,  
Ring morphism:  
From: Finite Field in a of size 1009^2  
To: Finite Field in b of size 1009^2  
Defn: a |--> 719*b + 145  
]

order()
Return the order of this set of field homomorphisms.

EXAMPLES:

```sage
sage: K.<a> = GF(125)
sage: L. = GF(25)
sage: K.order()
3
sage: L.order()
4
sage: Hom(L, K).order() == Hom(K, L).order() == 0
True
```

## 2.5 Finite field morphisms

This file provides several classes implementing:

- embeddings between finite fields
- Frobenius isomorphism on finite fields

### EXAMPLES:

```sage
def f(K, K): from sage.rings.finite_rings.hom_finite_field import FiniteFieldHomomorphism_
 generic
 Construction of an embedding:

dsage: k.<t> = GF(3^7)
sage: K.<T> = GF(3^21)
sage: f = FiniteFieldHomomorphism_generic(Hom(k, K)); f
Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
 Defn: t |--> T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5 + T^3 +
 2*T^2 + T

dsage: f(t)
T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5 + T^3 + 2*T^2 + T
```

The map $f$ has a method `section()` which returns a partially defined map which is the inverse of $f$ on the image of $f$:

```sage
def f(K, K): from sage.rings.finite_rings.hom_finite_field import FiniteFieldHomomorphism_
 generic
 Construction of an embedding:

dsage: k.<t> = GF(3^7)
sage: K.<T> = GF(3^21)
sage: f = FiniteFieldHomomorphism_generic(Hom(k, K)); f
Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
 Defn: t |--> T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5 + T^3 +
 2*T^2 + T

dsage: g = f.section(); g
Section of Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
```
Defn: $t \mapsto T^{20} + 2T^{18} + T^{16} + 2T^{13} + T^9 + 2T^8 + T^7 + T^6 + T^5 + T^3 + 2T^2 + T$

```
sage: g(f(t^3+t^2+1))
t^3 + t^2 + 1
sage: g(T)
Traceback (most recent call last):
...
ValueError: T is not in the image of Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
 Defn: $t \mapsto T^{20} + 2T^{18} + T^{16} + 2T^{13} + T^9 + 2T^8 + T^7 + T^6 + T^5 + T^3 + 2T^2 + T$
```

There is no embedding of $GF(5^6)$ into $GF(5^{11})$:

```
sage: k.<t> = GF(5^6)
sage: K.<T> = GF(5^11)
sage: FiniteFieldHomomorphism_generic(Hom(k, K))
Traceback (most recent call last):
...
ValueError: No embedding of Finite Field in t of size 5^6 into Finite Field in T of size 5^11
```

Construction of Frobenius endomorphisms:

```
sage: k.<t> = GF(7^14)
sage: Frob = k.frobenius_endomorphism(); Frob
Frobenius endomorphism $t \mapsto t^7$ on Finite Field in t of size 7^{14}
sage: Frob(t)
t^7
```

Some basic arithmetics is supported:

```
sage: Frob^2
Frobenius endomorphism $t \mapsto t^{(7^2)}$ on Finite Field in t of size 7^{14}
sage: f = k.frobenius_endomorphism(7); f
Frobenius endomorphism $t \mapsto t^{(7^7)}$ on Finite Field in t of size 7^{14}
sage: f*Frob
Frobenius endomorphism $t \mapsto t^{(7^8)}$ on Finite Field in t of size 7^{14}
sage: Frob.order()
14
sage: f.order()
2
```

Note that simplifications are made automatically:

```
sage: Frob^16
Frobenius endomorphism $t \mapsto t^{(7^2)}$ on Finite Field in t of size 7^{14}
sage: Frob^28
Identity endomorphism of Finite Field in t of size 7^{14}
```

And that comparisons work:

```
sage: Frob == Frob^15
True
```
AUTHOR:

- Xavier Caruso (2012-06-29)

class sage.rings.finite_rings.hom_finite_field.FiniteFieldHomomorphism_generic

Bases: sage.rings.morphism.RingHomomorphism_im_gens

A class implementing embeddings between finite fields.

is_injective()

Return True since a embedding between finite fields is always injective.

EXAMPLES:

```python
sage: from sage.rings.finite_rings.hom_finite_field import FiniteFieldHomomorphism_generic
sage: k.<t> = GF(3^3)
sage: K.<T> = GF(3^9)
sage: f = FiniteFieldHomomorphism_generic(Hom(k, K))
sage: f.is_injective()
True
```

is_surjective()

Return true if this embedding is surjective (and hence an isomorphism).

EXAMPLES:

```python
sage: from sage.rings.finite_rings.hom_finite_field import FiniteFieldHomomorphism_generic
sage: k.<t> = GF(3^3)
sage: K.<T> = GF(3^9)
sage: f = FiniteFieldHomomorphism_generic(Hom(k, K))
sage: f.is_surjective()
False
sage: g = FiniteFieldHomomorphism_generic(Hom(k, k))
sage: g.is_surjective()
True
```

section()

Return the inverse of this embedding.

It is a partially defined map whose domain is the codomain of the embedding, but which is only defined on the image of the embedding.

EXAMPLES:

```python
sage: from sage.rings.finite_rings.hom_finite_field import FiniteFieldHomomorphism_generic
sage: k.<t> = GF(3^7)
sage: K.<T> = GF(3^21)
sage: f = FiniteFieldHomomorphism_generic(Hom(k, K))
sage: g = f.section(); g
Section of Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
 Defn: t |--> T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5 + T + 2
```
```python
sage: g(t^3+t^2+1)
Traceback (most recent call last):
 ... ValueError: T is not in the image of Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
 Defn: t |--> T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5
 + T^3 + 2*T^2 + T
```

```python
class sage.rings.finite_rings.hom_finite_field.FrobeniusEndomorphism_finite_field
 Bases: sage.rings.morphism.FrobeniusEndomorphism_generic

A class implementing Frobenius endomorphisms on finite fields.

fixed_field()
Return the fixed field of self.

OUTPUT:
- a tuple \((K, e)\), where \(K\) is the subfield of the domain consisting of elements fixed by self and \(e\) is an embedding of \(K\) into the domain.

Note: The name of the variable used for the subfield (if it is not a prime subfield) is suffixed by \(_fixed\).

EXAMPLES:

```python
sage: k.<t> = GF(5^6)
sage: f = k.frobenius_endomorphism(2)
sage: kfixed, embed = f.fixed_field()
sage: kfixed
Finite Field in t_fixed of size 5^2
sage: embed
Ring morphism:
  From: Finite Field in t_fixed of size 5^2
  To:   Finite Field in t of size 5^6
  Defn: t_fixed |--> 4*t^5 + 2*t^4 + 4*t^2 + t
sage: tfixed = kfixed.gen()
sage: embed(tfixed)
4*t^5 + 2*t^4 + 4*t^2 + t
```

inverse()
Return the inverse of this Frobenius endomorphism.

EXAMPLES:

```python
sage: k.<a> = GF(7^11)
sage: f = k.frobenius_endomorphism(5)
sage: (f.inverse() * f).is_identity()
True
```

is_identity()
Return true if this morphism is the identity morphism.

EXAMPLES:

2.5. Finite field morphisms
is_injective()
Return true since any power of the Frobenius endomorphism over a finite field is always injective.

EXAMPLES:

```sage
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: Frob.is_injective()
True
```

is_surjective()
Return true since any power of the Frobenius endomorphism over a finite field is always surjective.

EXAMPLES:

```sage
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: Frob.is_surjective()
True
```

order()
Return the order of this endomorphism.

EXAMPLES:

```sage
sage: k.<t> = GF(5^12)
sage: Frob = k.frobenius_endomorphism()
sage: Frob.order()
12
sage: (Frob^2).order()
6
sage: (Frob^9).order()
4
```

power()
Return an integer n such that this endomorphism is the n-th power of the absolute (arithmetic) Frobenius.

EXAMPLES:

```sage
sage: k.<t> = GF(5^12)
sage: Frob = k.frobenius_endomorphism()
sage: Frob.power()
1
sage: (Frob^9).power()
9
sage: (Frob^13).power()
1
```

class `sage.rings.finite_rings.hom_finite_field.SectionFiniteFieldHomomorphism_generic`

Bases: `sage.categories.map.Section`

A class implementing sections of embeddings between finite fields.
3.1 Finite Prime Fields

AUTHORS:

- William Stein: initial version
- Martin Albrecht (2008-01): refactoring

```python
class sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn(p, check=True, modulus=None):
    # Implementation details...
```

Bases: `sage.rings.finite_rings.finite_field_base.FiniteField`, `sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic`

Finite field of order p where p is prime.

EXAMPLES:

```python
sage: FiniteField(3)
Finite Field of size 3
sage: FiniteField(next_prime(1000))
Finite Field of size 1009
```

`characteristic()`

Return the characteristic of code{self}.

EXAMPLES:

```python
sage: k = GF(7)
sage: k.characteristic()
7
```

`construction()`

Returns the construction of this finite field (for use by sage.categories.pushout)

EXAMPLES:

```python
sage: GF(3).construction()
(QuotientFunctor, Integer Ring)
```

`degree()`

Return the degree of self over its prime field.
This always returns 1.

EXAMPLES:

```sage
FiniteField(3).degree()
```

```
1
```

gen \((n=0)\)
Return a generator of \(\text{self}\) over its prime field, which is a root of \(\text{self}.\text{modulus()}\).
Unless a custom modulus was given when constructing this prime field, this returns 1.

INPUT:
- \(n\) – must be 0

OUTPUT:
An element \(a\) of \(\text{self}\) such that \(\text{self}.\text{modulus}() (a) == 0\).

Warning: This generator is not guaranteed to be a generator for the multiplicative group. To obtain the latter, use `multiplicative_generator()` or use the `modulus="primitive"` option when constructing the field.

EXAMPLES:

```sage
k = GF(13)
sage: k.gen()
1
```

```sage
k = GF(1009, modulus="primitive")
sage: k.gen() # this gives a primitive element
11
```

```sage
k.gen(1)
Traceback (most recent call last):
...
IndexError: only one generator
```

is_prime_field
Return True since this is a prime field.

EXAMPLES:

```sage
k.<a> = GF(3)
sage: k.is_prime_field()
True
```

```sage
k.<a> = GF(3^2)
sage: k.is_prime_field()
False
```

order
Return the order of this finite field.

EXAMPLES:

```sage
k = GF(5)
sage: k.order()
5
```
polynomial (name=None)
 Returns the polynomial name.

EXAMPLES:

```sage
sage: k.<a> = GF(3)
sage: k.polynomial()
x
```

3.2 Finite field morphisms for prime fields

Special implementation for prime finite field of:

- embeddings of such field into general finite fields
- Frobenius endomorphisms (= identity with our assumptions)

See also:

`sage.rings.finite_rings.hom_finite_field`

AUTHOR:

- Xavier Caruso (2012-06-29)

class `sage.rings.finite_rings.hom_prime_finite_field.FiniteFieldHomomorphism_prime`

Bases: `sage.rings.finite_rings.hom_finite_field.FiniteFieldHomomorphism_generic`

A class implementing embeddings of prime finite fields into general finite fields.

class `sage.rings.finite_rings.hom_prime_finite_field.FrobeniusEndomorphism_prime`

Bases: `sage.rings.finite_rings.hom_finite_field.FrobeniusEndomorphism_finite_field`

A class implementing Frobenius endomorphism on prime finite fields (i.e. identity map :-).

fixed_field ()

Return the fixed field of self.

OUTPUT:

- a tuple \((K, \epsilon)\), where \(K\) is the subfield of the domain consisting of elements fixed by self and \(\epsilon\) is an embedding of \(K\) into the domain.

Note: Since here the domain is a prime field, the subfield is the same prime field and the embedding is necessarily the identity map.

EXAMPLES:

```sage
sage: k.<t> = GF(5)
sage: f = k.frobenius_endomorphism(2); f
Identity endomorphism of Finite Field of size 5
sage: kfixed, embed = f.fixed_field()
sage: kfixed == k
True
sage: [ embed(x) == x for x in kfixed ]
[True, True, True, True, True]
```
class sage.rings.finite_rings.hom_prime_finite_field.SectionFiniteFieldHomomorphism_prime
 Bases: sage.rings.finite_rings.hom_finite_field.SectionFiniteFieldHomomorphism_generic
CHAPTER
FOUR

FINITE FIELDS USING PARI

4.1 Finite fields implemented via PARI’s FFELT type

AUTHORS:
- Peter Bruin (June 2013): initial version, based on finite_field_ext_pari.py by William Stein et al.

```python
class sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt(
p, modulus, name=None)
```

Bases: `sage.rings.finite_rings.finite_field_base.FiniteField`

Finite fields whose cardinality is a prime power (not a prime), implemented using PARI’s FFELT type.

INPUT:
- `p` – prime number
- `modulus` – an irreducible polynomial of degree at least 2 over the field of `p` elements
- `name` – string: name of the distinguished generator (default: variable name of `modulus`)

OUTPUT:
A finite field of order \(q = p^n \), generated by a distinguished element with minimal polynomial `modulus`. Elements are represented as polynomials in `name` of degree less than \(n \).

Note: Direct construction of `FiniteField_pari_ffelt` objects requires specifying a characteristic and a modulus. To construct a finite field by specifying a cardinality and an algorithm for finding an irreducible polynomial, use the `FiniteField` constructor with `impl='pari_ffelt'`.

EXAMPLES:
Some computations with a finite field of order 9:

```
sage: k = FiniteField(9, 'a', impl='pari_ffelt')
sage: k
Finite Field in a of size 3^2
sage: k.is_field()
True
sage: k.characteristic()
3
sage: a = k.gen()
```

(continues on next page)
Next we compute with a finite field of order 16:

```
sage: k16 = FiniteField(16, 'b', impl='pari_ffelt')
sage: z = k16.gen()
sage: z
b
sage: z.charpoly('x')
x^4 + x + 1
sage: k16.is_field()
True
sage: k16.characteristic()
2
sage: z.multiplicative_order()
15
```

Illustration of dumping and loading:

```
sage: K = FiniteField(7^10, 'b', impl='pari_ffelt')
sage: loads(K.dumps()) == K
True
sage: K = FiniteField(10007^10, 'a', impl='pari_ffelt')
sage: loads(K.dumps()) == K
True
```

```
Element

alias of sage.rings.finite_rings.element_pari_ffelt.
FiniteFieldElement_pari_ffelt

characteristic()

Return the characteristic of self.

EXAMPLES:

```
sage: F = FiniteField(3^4, 'a', impl='pari_ffelt')
sage: F.characteristic()
3
```

degree()

Returns the degree of self over its prime field.

EXAMPLES:

```
sage: F = FiniteField(3^20, 'a', impl='pari_ffelt')
sage: F.degree()
20
```
gen \((n=0)\)

Return a generator of \(\text{self}\) over its prime field, which is a root of \(\text{self.modulus()}\).

INPUT:

- \(n\) – must be 0

OUTPUT:

An element \(a\) of \(\text{self}\) such that \(\text{self.modulus()}(a) == 0\).

**Warning:** This generator is not guaranteed to be a generator for the multiplicative group. To obtain the latter, use `multiplicative_generator()` or use the `modulus="primitive"` option when constructing the field.

**EXAMPLES:**

```
sage: R.<x> = PolynomialRing(GF(2))
sage: FiniteField(2^4, 'b', impl='pari_ffelt').gen()
b
sage: k = FiniteField(3^4, 'alpha', impl='pari_ffelt')
sage: a = k.gen()
sage: a
alpha
sage: a^4
alpha^3 + 1
```

### 4.2 Finite field elements implemented via PARI's FFELT type

**AUTHORS:**

- Peter Bruin (June 2013): initial version, based on `element_ext_pari.py` by William Stein et al. and `element_ntl_gf2e.pyx` by Martin Albrecht.

**class** `sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt`

Bases: `sage.rings.finite_rings.element_base.FinitePolyExtElement`

An element of a finite field implemented using PARI.

**EXAMPLES:**

```
sage: K = FiniteField(10007^10, 'a', impl='pari_ffelt')
sage: a = K.gen(); a
a
sage: type(a)
<type 'sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt'>
```

**charpoly** \((\text{var}='x')\)

Return the characteristic polynomial of \(\text{self}\).

**INPUT:**

- \(\text{var}\) – string (default: 'x'): variable name to use.

**EXAMPLES:**

---

**4.2. Finite field elements implemented via PARI's FFELT type**
**is_one()**

Return `True` if `self` equals 1.

**EXAMPLES:**

```
sage: F.<a> = FiniteField(5^3, impl='pari_ffelt')
sage: a.is_one()
False
sage: (a/a).is_one()
True
```

**is_square()**

Return `True` if and only if `self` is a square in the finite field.

**EXAMPLES:**

```
sage: k.<a> = FiniteField(3^2, impl='pari_ffelt')
sage: a.is_square()
False
sage: (a**2).is_square()
True
sage: k.<a> = FiniteField(2^2, impl='pari_ffelt')
sage: (a**2).is_square()
True
sage: k.<a> = FiniteField(17^5, impl='pari_ffelt')
sage: (a**2).is_square()
True
sage: a.is_square()
False
sage: k(0).is_square()
True
```

**is_unit()**

Return `True` if `self` is non-zero.

**EXAMPLES:**

```
sage: F.<a> = FiniteField(5^3, impl='pari_ffelt')
sage: a.is_unit()
True
```

**is_zero()**

Return `True` if `self` equals 0.

**EXAMPLES:**

```
sage: F.<a> = FiniteField(5^3, impl='pari_ffelt')
sage: a.is_zero()
False
sage: (a - a).is_zero()
True
```
lift()

If self is an element of the prime field, return a lift of this element to an integer.

EXAMPLES:

```
sage: k = FiniteField(next_prime(10^10)^2, 'u', impl='pari_ffelt')
sage: a = k(17)/k(19)
sage: b = a.lift(); b
7894736858
sage: b.parent()
Integer Ring
```

log(base)

Return a discrete logarithm of self with respect to the given base.

INPUT:

- base – non-zero field element

OUTPUT:

An integer \( x \) such that \( self \) equals \( base \) raised to the power \( x \). If no such \( x \) exists, a ValueError is raised.

EXAMPLES:

```
sage: F.<g> = FiniteField(2^10, impl='pari_ffelt')
sage: b = g; a = g^37
sage: a.log(b)
37
sage: b^37; a

37
```

```
sage: F.<a> = FiniteField(5^2, impl='pari_ffelt')
sage: F(-1).log(F(2)) # 2
sage: F(1).log(a) # 0
```

Some cases where the logarithm is not defined or does not exist:

```
sage: F.<a> = GF(3^10, impl='pari_ffelt')
sage: a.log(-1)
Traceback (most recent call last):
... ArithmeticError: element a does not lie in group generated by 2
sage: a.log(0)
Traceback (most recent call last):
... ArithmeticError: discrete logarithm with base 0 is not defined
sage: F(0).log(1)
Traceback (most recent call last):
... ArithmeticError: discrete logarithm of 0 is not defined
```

minpoly(var='x')

Return the minimal polynomial of self.

INPUT:
• var – string (default: ’x’): variable name to use.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(FiniteField(3))
sage: F.<a> = FiniteField(3^2, modulus=x^2 + 1, impl='pari_ffelt')
sage: a.minpoly('y')
y^2 + 1
```

**multiplicative_order()**

Returns the order of self in the multiplicative group.

EXAMPLES:

```python
sage: a = FiniteField(5^3, 'a', impl='pari_ffelt').0
sage: a.multiplicative_order()
124
sage: a**124
1
```

**polynomial(name=None)**

Return the unique representative of self as a polynomial over the prime field whose degree is less than the degree of the finite field over its prime field.

INPUT:

• name – (optional) variable name

EXAMPLES:

```python
sage: k.<a> = FiniteField(3^2, impl='pari_ffelt')
sage: pol = a.polynomial()
sage: pol
a
sage: parent(pol)
Univariate Polynomial Ring in a over Finite Field of size 3
```

```python
sage: k = FiniteField(3^4, 'alpha', impl='pari_ffelt')
sage: a = k.gen()
sage: a.polynomial()
alpha
sage: (a**2 + 1).polynomial('beta')
beta^2 + 1
sage: (a**2 + 1).polynomial().parent()
Univariate Polynomial Ring in alpha over Finite Field of size 3
sage: (a**2 + 1).polynomial('beta').parent()
Univariate Polynomial Ring in beta over Finite Field of size 3
```

**sqrt(extend=False, all=False)**

Return a square root of self, if it exists.

INPUT:

• extend – bool (default: False)

  **Warning:** This option is not implemented.

  • all - bool (default: False)
OUTPUT:

A square root of self, if it exists. If all is True, a list containing all square roots of self (of length zero, one or two) is returned instead.

If extend is True, a square root is chosen in an extension field if necessary. If extend is False, a ValueError is raised if the element is not a square in the base field.

**Warning:** The extend option is not implemented (yet).

**EXAMPLES:**

```python
sage: F = FiniteField(7^2, 'a', impl='pari_ffelt')
sage: F(2).sqrt()
4
sage: F(3).sqrt() in (2*F.gen() + 6, 5*F.gen() + 1)
True
sage: F(3).sqrt()**2
3
sage: F(4).sqrt(all=True)
[2, 5]
```

```python
sage: K = FiniteField(7^3, 'alpha', impl='pari_ffelt')
sage: K(3).sqrt()
Traceback (most recent call last):
 ... ValueError: element is not a square
sage: K(3).sqrt(all=True)
[]
```

```python
sage: K.<a> = GF(3^17, impl='pari_ffelt')
sage: (a^3 - a - 1).sqrt()
a^16 + 2*a^15 + a^13 + 2*a^12 + a^10 + 2*a^9 + 2*a^8 + a^7 + a^6 + 2*a^5 + a^4 + 2*a^2 + 2*a + 2
```

**EXAMPLES:**

```python
sage: k.<a> = GF(2^20, impl='pari_ffelt')
sage: e = k.random_element()
sage: f = loads(dumps(e)) # indirect doctest
sage: e == f
True
```
5.1 Givaro Finite Field

Finite fields that are implemented using Zech logs and the cardinality must be less than $2^{16}$. By default, Conway polynomials are used as minimal polynomial.

```python
class sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro(q, name='a', modulus=None, repr='poly', cache=False):
 ... Bases: sage.rings.finite_rings.finite_field_base.FiniteField
```

Finite field implemented using Zech logs and the cardinality must be less than $2^{16}$. By default, Conway polynomials are used as minimal polynomials.

**INPUT:**
- $q = p^n$ (must be prime power)
- name – (default: 'a') variable used for poly_repr()
- modulus – A minimal polynomial to use for reduction.
- repr – (default: 'poly') controls the way elements are printed to the user:
  - 'log': repr is log_repr()
  - 'int': repr is int_repr()
  - 'poly': repr is poly_repr()
- cache – (default: False) if True a cache of all elements of this field is created. Thus, arithmetic does not create new elements which speeds calculations up. Also, if many elements are needed during a calculation this cache reduces the memory requirement as at most order() elements are created.

**OUTPUT:**
Givaro finite field with characteristic $p$ and cardinality $p^n$.

**EXAMPLES:**
By default, Conway polynomials are used for extension fields:

```
sage: k.<a> = GF(2**8)
sage: -a ^ k.degree()
a^4 + a^3 + a^2 + 1
```

(continues on next page)
You may enforce a modulus:

```
sage: P.<x> = PolynomialRing(GF(2))
sage: f = x^8 + x^4 + x^3 + x + 1 # Rijndael Polynomial
sage: k.<a> = GF(2^8, modulus=f)
sage: k.modulus()
x^8 + x^4 + x^3 + x + 1
sage: a^(2^8)
a
```

You may enforce a random modulus:

```
sage: k = GF(3**5, 'a', modulus='random')
sage: k.modulus() # random polynomial
x^5 + 2*x^4 + 2*x^3 + x^2 + 2
```

Three different representations are possible:

```
sage: FiniteField(9, 'a', impl='givaro', repr='poly').gen()
a
sage: FiniteField(9, 'a', impl='givaro', repr='int').gen()
3
sage: FiniteField(9, 'a', impl='givaro', repr='log').gen()
1
```

For prime fields, the default modulus is the polynomial $x - 1$, but you can ask for a different modulus:

```
sage: GF(1009, impl='givaro').modulus()
x + 1008
sage: GF(1009, impl='givaro', modulus='conway').modulus()
x + 998
```

**a_times_b_minus_c**(a, b, c)
Return $a \times b - c$.

**INPUT:**
- `a, b, c` — *FiniteField_givaroElement*

**EXAMPLES:**

```
sage: k.<a> = GF(3**3)
sage: k.a_times_b_minus_c(a,a,k(1))
a^2 + 2
```

**a_times_b_plus_c**(a, b, c)
Return $a \times b + c$. This is faster than multiplying $a$ and $b$ first and adding $c$ to the result.

**INPUT:**
- `a, b, c` — *FiniteField_givaroElement*

**EXAMPLES:**
```python
sage: k.<a> = GF(2**8)
sage: k.a_times_b_plus_c(a,a,k(1))
a^2 + 1
```

**c_minus_a_times_b** \((a, b, c)\)

Return \(c - a \times b\).

**INPUT:**
- \(a, b, c\) – \texttt{FiniteField_givaroElement}

**EXAMPLES:**
```python
sage: k.<a> = GF(3**3)
sage: k.c_minus_a_times_b(a,a,k(1))
2*a^2 + 1
```

**characteristic()**

Return the characteristic of this field.

**EXAMPLES:**
```python
sage: p = GF(19^5,'a').characteristic(); p
19
```

**degree()**

If the cardinality of \(self\) is \(p^n\), then this returns \(n\).

**OUTPUT:**

Integer – the degree

**EXAMPLES:**
```python
sage: GF(3^4,'a').degree()
4
```

**fetch_int** \((n)\)

Given an integer \(n\) return a finite field element in \(self\) which equals \(n\) under the condition that \(gen()\) is set to \(characteristic()\).

**EXAMPLES:**
```python
sage: k.<a> = GF(2^8)
sage: k.fetch_int(8)
a^3
sage: e = k.fetch_int(151); e
a^7 + a^4 + a^2 + a + 1
sage: 2^7 + 2^4 + 2^2 + 2 + 1
151
```

**frobenius_endomorphism** \((n=1)\)

**INPUT:**
- \(n\) – an integer (default: 1)

**OUTPUT:**

The \(n\)-th power of the absolute arithmetic Frobenius endomorphism on this finite field.

EXAMPLES:

```python
sage: k.<t> = GF(3^5)
sage: Frob = k.frobenius_endomorphism(); Frob
Frobenius endomorphism t |---> t^3 on Finite Field in t of size 3^5
sage: a = k.random_element()
sage: Frob(a) == a^3
True
```

We can specify a power:

```python
sage: k.frobenius_endomorphism(2)
Frobenius endomorphism t |---> t^(3^2) on Finite Field in t of size 3^5
```

The result is simplified if possible:

```python
sage: k.frobenius_endomorphism(6)
Frobenius endomorphism t |---> t^3 on Finite Field in t of size 3^5
sage: k.frobenius_endomorphism(5)
Identity endomorphism of Finite Field in t of size 3^5
```

Comparisons work:

```python
sage: k.frobenius_endomorphism(6) == Frob
True
sage: from sage.categories.morphism import IdentityMorphism
sage: k.frobenius_endomorphism(5) == IdentityMorphism(k)
True
```

AUTHOR:

• Xavier Caruso (2012-06-29)

**gen**

Return a generator of self over its prime field, which is a root of self.modulus().

INPUT:

• n – must be 0

OUTPUT:

An element \( a \) of self such that self.modulus()(a) == 0.

**Warning:** This generator is not guaranteed to be a generator for the multiplicative group. To obtain the latter, use multiplicative_generator() or use the modulus="primitive" option when constructing the field.

EXAMPLES:

```python
sage: k = GF(3^4, 'b'); k.gen()
```

(continues on next page)
int_to_log(n)
Given an integer \( n \) this method returns \( i \) where \( i \) satisfies \( g^i = n \mod p \) where \( g \) is the generator and \( p \) is the characteristic of \( self \).

INPUT:

* \( n \) – integer representation of a finite field element

OUTPUT:

log representation of \( n \)

EXAMPLES:

```python
sage: k = GF(7**3, 'a')
sage: k.int_to_log(4)
228
sage: k.int_to_log(3)
57
sage: k.gen()^57
3
```

log_to_int(n)
Given an integer \( n \) this method returns \( i \) where \( i \) satisfies \( g^n = i \) where \( g \) is the generator of \( self \); the result is interpreted as an integer.

INPUT:

* \( n \) – log representation of a finite field element

OUTPUT:

integer representation of a finite field element.

EXAMPLES:

```python
sage: k = GF(2**8, 'a')
sage: k.log_to_int(4)
16
sage: k.log_to_int(20)
180
```

order()
Return the cardinality of this field.

OUTPUT:

Integer – the number of elements in \( self \).

EXAMPLES:

```python
sage: n = GF(19^5,'a').order(); n
2476099
sage: type(n)
<type 'sage.rings.integer.Integer'>
```

prime_subfield()
Return the prime subfield \( F_p \) of \( self \) if \( self \) is \( F_{p^n} \).

5.1. Givaro Finite Field
EXAMPLES:

```python
sage: GF(3^4, 'b').prime_subfield()
Finite Field of size 3
sage: S. = GF(5^2); S
Finite Field in b of size 5^2
sage: S.prime_subfield()
Finite Field of size 5
sage: type(S.prime_subfield())
<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'>
```

**random_element (**args, **kwds)**

Return a random element of self.

EXAMPLES:

```python
sage: k = GF(23**3, 'a')
sage: e = k.random_element(); e
2*a^2 + 14*a + 21
sage: type(e)
<type 'sage.rings.finite_rings.element_givaro.FiniteField_givaroElement'>
```

## 5.2 Givaro Field Elements

Sage includes the Givaro finite field library, for highly optimized arithmetic in finite fields.

**Note:** The arithmetic is performed by the Givaro C++ library which uses Zech logs internally to represent finite field elements. This implementation is the default finite extension field implementation in Sage for the cardinality less than $2^{16}$, as it is a lot faster than the PARI implementation. Some functionality in this class however is implemented using PARI.

EXAMPLES:

```python
sage: k = GF(5); type(k)
<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'>
sage: k = GF(5^2, 'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'>
sage: k = GF(2^16, 'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e_with_category'>
sage: k = GF(3^16, 'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt_with_category'>
sage: n = previous_prime_power(2^16 - 1)
sage: while is_prime(n):
```

(continues on next page)
n = previous_prime_power(n)
sage: factor(n)
251^2
sage: k = GF(n,'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'>

AUTHORS:

- Martin Albrecht <malb@informatik.uni-bremen.de> (2006-06-05)
- William Stein (2006-12-07): editing, lots of docs, etc.

class sage.rings.finite_rings.element_givaro.Cache_givaro

Bases: sage.rings.finite_rings.element_base.Cache_base

Finite Field.

These are implemented using Zech logs and the cardinality must be less than $2^{16}$. By default Conway polynomials are used as minimal polynomial.

INPUT:

- $q = p^n$ (must be prime power)
- name – variable used for poly_repr (default: 'a')
- modulus – a polynomial to use as modulus.
- repr – (default: ‘poly’) controls the way elements are printed to the user:
  - ‘log’: repr is log_repr()
  - ‘int’: repr is int_repr()
  - ‘poly’: repr is poly_repr()
- cache – (default: False) if True a cache of all elements of this field is created. Thus, arithmetic does not create new elements which speeds calculations up. Also, if many elements are needed during a calculation this cache reduces the memory requirement as at most order() elements are created.

OUTPUT:

Givaro finite field with characteristic $p$ and cardinality $p^n$.

EXAMPLES:

By default Conway polynomials are used:

```sage
c.<a> = GF(2**8)
sage: -a ^ k.degree()
a^4 + a^3 + a^2 + 1
sage: f = k.modulus(); f
x^8 + x^4 + x^3 + x^2 + 1
```

You may enforce a modulus:

```sage
P.<x> = PolynomialRing(GF(2))
sage: f = x^8 + x^4 + x^3 + x + 1 # Rijndael polynomial
sage: k.<a> = GF(2^8, modulus=f)
sage: k.modulus()
x^8 + x^4 + x^3 + x + 1
```

5.2. Givaro Field Elements
sage: a^(2^8)
a
You may enforce a random modulus:

sage: k = GF(3**5, 'a', modulus='random')
sage: k.modulus()  # random polynomial
x^5 + 2*x^4 + 2*x^3 + x^2 + 2

For binary fields, you may ask for a minimal weight polynomial:

sage: k = GF(2**10, 'a', modulus='minimal_weight')
sage: k.modulus()
x^10 + x^3 + 1

\texttt{a\_times\_b\_minus\_c}(a, b, c)

Return $a \times b - c$.

\textbf{INPUT:}

\begin{itemize}
  \item $a, b, c$ – \texttt{FiniteField_givaroElement}
\end{itemize}

\textbf{EXAMPLES:}

sage: k.<a> = GF(3**3)
sage: k._cache.a_times_b_minus_c(a,a,k(1))
a^2 + 2

\texttt{a\_times\_b\_plus\_c}(a, b, c)

Return $a \times b + c$.

This is faster than multiplying $a$ and $b$ first and adding $c$ to the result.

\textbf{INPUT:}

\begin{itemize}
  \item $a, b, c$ – \texttt{FiniteField_givaroElement}
\end{itemize}

\textbf{EXAMPLES:}

sage: k.<a> = GF(2**8)
sage: k._cache.a_times_b_plus_c(a,a,k(1))
a^2 + 1

\texttt{c\_minus\_a\_times\_b}(a, b, c)

Return $c - a \times b$.

\textbf{INPUT:}

\begin{itemize}
  \item $a, b, c$ – \texttt{FiniteField_givaroElement}
\end{itemize}

\textbf{EXAMPLES:}

sage: k.<a> = GF(3**3)
sage: k._cache.c_minus_a_times_b(a,a,k(1))
2*a^2 + 1

\texttt{characteristic}()

Return the characteristic of this field.

\textbf{EXAMPLES:}
element_from_data(e)
            Coerces several data types to self.

            INPUT:

            • e – data to coerce in.

            EXAMPLES:

            sage: k = GF(3^8, 'a')
            sage: type(k)
            <class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_
            →category'>
            sage: e = k.vector_space(map=False).gen(1); e
            (0, 1, 0, 0, 0, 0, 0, 0)
            sage: k(e)  #indirect doctest
            a

exponent()
            Return the degree of this field over \(F_p\).

            EXAMPLES:

            sage: K.<a> = GF(9); K._cache.exponent()
            2

fetch_int(number)
            Given an integer \(n\) return a finite field element in self which equals \(n\) under the condition that gen() is set to characteristic().

            EXAMPLES:

            sage: k.<a> = GF(2^8)
            sage: k._cache.fetch_int(8)
            a^3
            sage: e = k._cache.fetch_int(151); e
            a^7 + a^4 + a^2 + a + 1
            sage: 2^7 + 2^4 + 2^2 + 2 + 1
            151

gen()
            Return a generator of the field.

            EXAMPLES:

            sage: K.<a> = GF(625)
            sage: K._cache.gen()
            a

int_to_log(n)
            Given an integer \(n\) this method returns \(i\) where \(i\) satisfies \(g^i = n \mod p\) where \(g\) is the generator and \(p\) is the characteristic of self.

            INPUT:

            • \(n\) – integer representation of an finite field element
OUTPUT:
log representation of \( n \)

EXAMPLES:

```
sage: k = GF(7**3, 'a')
sage: k._cache.int_to_log(4)
228
sage: k._cache.int_to_log(3)
57
sage: k.gen()^57
3
```

**log_to_int** \((n)\)

Given an integer \( n \) this method returns \( i \) where \( i \) satisfies \( g^n = i \) where \( g \) is the generator of \( \text{self} \); the result is interpreted as an integer.

INPUT:

- \( n \) – log representation of a finite field element

OUTPUT:

integer representation of a finite field element.

EXAMPLES:

```
sage: k = GF(2**8, 'a')
sage: k._cache.log_to_int(4)
16
sage: k._cache.log_to_int(20)
180
```

**order**

Return the order of this field.

EXAMPLES:

```
sage: K.<a> = GF(9)
sage: K._cache.order()
9
```

**order_c**

Return the order of this field.

EXAMPLES:

```
sage: K.<a> = GF(9)
sage: K._cache.order_c()
9
```

**random_element** \((*args, **kwds)\)

Return a random element of \( \text{self} \).

EXAMPLES:

```
sage: k = GF(23**3, 'a')
sage: e = k._cache.random_element(); e
2*a^2 + 14*a + 21
sage: type(e)
```

(continues on next page)
<type 'sage.rings.finite_rings.element_givaro.FiniteField_givaroElement'>

```
sage: P.<x> = PowerSeriesRing(GF(3^3, 'a'))
sage: P.random_element(5)
a^2 + (2*a^2 + a)*x + x^2 + (2*a^2 + 2*a + 2)*x^3 + (a^2 + 2*a + 2)*x^4 + O(x^5)
```

### repr

```python
class sage.rings.finite_rings.element_givaro.FiniteField_givaroElement
 Bases: sage.rings.finite_rings.element_base.FinitePolyExtElement

An element of a (Givaro) finite field.

integer_representation()

Return the integer representation of `self`. When `self` is in the prime subfield, the integer returned is equal to `self`.

Elements of this field are represented as integers as follows: given the element \(e \in \mathbb{F}_p[x] \) with \(e = a_0 + a_1x + a_2x^2 + \cdots \), the integer representation is \(a_0 + a_1p + a_2p^2 + \cdots \).

OUTPUT: A Python `int`.

EXAMPLES:

```
sage: k.<b> = GF(5^2); k
Finite Field in b of size 5^2
sage: k(4).integer_representation()
4
sage: b.integer_representation()
5
sage: type(b.integer_representation())
<... 'int'>
```

is_one()

Return `True` if `self == k(1)`.

EXAMPLES:

```
sage: k.<a> = GF(3^4); k
Finite Field in a of size 3^4
sage: a.is_one()
False
sage: k(1).is_one()
True
```

is_square()

Return `True` if `self` is a square in `self.parent()`.

ALGORITHM:

Elements are stored as powers of generators, so we simply check to see if it is an even power of a generator.

EXAMPLES:

```
sage: k.<a> = GF(9); k
Finite Field in a of size 3^2
sage: a.is_square()
False
sage: v = set([x^2 for x in k])
```

(continues on next page)
is_unit()

Return `True` if self is nonzero, so it is a unit as an element of the finite field.

EXAMPLES:

```python
sage: k.<a> = GF(3^4); k
Finite Field in a of size 3^4
sage: a.is_unit()
True
sage: k(0).is_unit()
False
```

log(base)

Return the log to the base `b` of `self`, i.e., an integer `n` such that `b^n = self`.

Warning: TODO – This is currently implemented by solving the discrete log problem – which shouldn’t be needed because of how finite field elements are represented.

EXAMPLES:

```python
sage: k.<b> = GF(5^2); k
Finite Field in b of size 5^2
sage: a = b^7
sage: a.log(b)
7
```

multiplicative_order()

Return the multiplicative order of this field element.

EXAMPLES:

```python
sage: S.<b> = GF(5^2); S
Finite Field in b of size 5^2
sage: b.multiplicative_order()
24
sage: (b^6).multiplicative_order()
4
```

polynomial(name=None)

Return `self` viewed as a polynomial over `self.parent().prime_subfield()`.

EXAMPLES:

```python
sage: k.<b> = GF(5^2); k
Finite Field in b of size 5^2
sage: f = (b^2+1).polynomial(); f
b + 4
sage: type(f)
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
sage: parent(f)
Univariate Polynomial Ring in b over Finite Field of size 5
```
\textbf{sqrt}(extend=False, all=False)

Return a square root of this finite field element in its parent, if there is one. Otherwise, raise a \texttt{ValueError}.

\textbf{INPUT}:

- \texttt{extend} – bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a \texttt{ValueError} if the root is not in the base ring.

\textbf{Warning:} this option is not implemented!

- \texttt{all} – bool (default: False); if True, return all square roots of \texttt{self}, instead of just one.

\textbf{Warning:} The \texttt{extend} option is not implemented (yet).

\textbf{ALGORITHM}:

\texttt{self} is stored as \(a^k\) for some generator \(a\). Return \(a^{k/2}\) for even \(k\).

\textbf{EXAMPLES}:

\begin{verbatim}
 sage: k.<a> = GF(7^2)
 sage: k(2).sqrt()
 3
 sage: k(3).sqrt()
 2*a + 6
 sage: k(3).sqrt()**2
 3
 sage: k(4).sqrt()
 2
 sage: k.<a> = GF(7^3)
 sage: k(3).sqrt()
 Traceback (most recent call last):
 ...
 ValueError: must be a perfect square.
\end{verbatim}

class \texttt{sage.rings.finite_rings.element_givaro.FiniteField_givaro_iterator}

\texttt{Bases: object}

Iterator over \texttt{FiniteField_givaro} elements. We iterate multiplicatively, as powers of a fixed internal generator.

\textbf{EXAMPLES}:

\begin{verbatim}
 sage: for x in GF(2^2,'a'): print(x)
 0
 a
 a + 1
 1
\end{verbatim}
5.3 Finite field morphisms using Givaro

Special implementation for givaro finite fields of:

- embeddings between finite fields
- frobenius endomorphisms

SEEALSO:

:smod: `sage.rings.finite_rings.hom_finite_field`

AUTHOR:

- Xavier Caruso (2012-06-29)

class sage.rings.finite_rings.hom_finite_field_givaro.FiniteFieldHomomorphism_givaro
 Bases: sage.rings.finite_rings.hom_finite_field.FiniteFieldHomomorphism_generic

class sage.rings.finite_rings.hom_finite_field_givaro.FrobeniusEndomorphism_givaro
 Bases: sage.rings.finite_rings.hom_finite_field.FrobeniusEndomorphism_finite_field

fixed_field()
 Return the fixed field of self.

OUTPUT:

- a tuple \((K, e)\), where \(K\) is the subfield of the domain consisting of elements fixed by \(self\) and \(e\) is an embedding of \(K\) into the domain.

Note: The name of the variable used for the subfield (if it is not a prime subfield) is suffixed by \(_\text{fixed}\).

EXAMPLES:

```python
sage: k.<t> = GF(5^6)
sage: f = k.frobenius_endomorphism(2)
sage: kfixed, embed = f.fixed_field()
sage: kfixed
Finite Field in t_fixed of size 5^2
sage: embed
Ring morphism:
   From: Finite Field in t_fixed of size 5^2
   To:   Finite Field in t of size 5^6
   Defn: t_fixed |--> 4*t^5 + 2*t^4 + 4*t^2 + t
sage: tfixed = kfixed.gen()
sage: embed(tfixed)
4*t^5 + 2*t^4 + 4*t^2 + t
```
class sage.rings.finite_rings.hom_finite_field_givaro.SectionFiniteFieldHomomorphism_givaro
 Bases: sage.rings.finite_rings.hom_finite_field.SectionFiniteFieldHomomorphism_generic
6.1 Finite Fields of Characteristic 2

```python
class sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e(q,
    names='a',
    modulus=None,
    repr='poly'))
```

Bases: `sage.rings.finite_rings.finite_field_base.FiniteField`

Finite Field of characteristic 2 and order 2^n.

INPUT:

- $q = 2^n$ (must be 2 power)
- `names` – variable used for poly_repr (default: `'a'`)
- `modulus` – A minimal polynomial to use for reduction.

- `repr` – controls the way elements are printed to the user: (default: `'poly'`)
 - `'poly'`: polynomial representation

OUTPUT:

Finite field with characteristic 2 and cardinality 2^n.

EXAMPLES:

```python
sage: k.<a> = GF(2^16)
sage: type(k)
<class 'sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e_with_category'>
sage: k.<a> = GF(2^1024)
sage: k.modulus()
x^1024 + x^19 + x^6 + x + 1
sage: set_random_seed(6397)
sage: k.<a> = GF(2^17, modulus='random')
sage: k.modulus()
x^17 + x^16 + x^15 + x^10 + x^8 + x^6 + x^4 + x^3 + x^2 + x + 1
sage: k.modulus().is_irreducible()
True
sage: k.<a> = GF(2^211, modulus='minimal_weight')
sage: k.modulus()
```

(continues on next page)
\[x^{211} + x^{11} + x^{10} + x^8 + 1 \]
\[\text{sage: } k.<a> = GF(2^{211}, \text{modulus}='\text{conway}') \]
\[\text{sage: } k.modulus() \]
\[x^{211} + x^9 + x^6 + x^5 + x^3 + x + 1 \]
\[\text{sage: } k.<a> = GF(2^{23}, \text{modulus}='\text{conway}') \]
\[\text{sage: } a.multiplicative_order() == k.order() - 1 \]
\[\text{True} \]

characteristic()

Return the characteristic of `self` which is 2.

EXAMPLES:

\[\text{sage: } k.<a> = GF(2^{16}, \text{modulus}=\text{random}') \]
\[\text{sage: } k.characteristic() \]
\[2 \]

degree()

If this field has cardinality \(2^n\) this method returns \(n\).

EXAMPLES:

\[\text{sage: } k.<a> = GF(2^{64}) \]
\[\text{sage: } k.degree() \]
\[64 \]

fetch_int(number)

Given an integer \(n\) less than cardinality() with base 2 representation \(a_0 + 2 \cdot a_1 + \cdots + 2^k a_k\), returns \(a_0 + a_1 \cdot x + \cdots + a_k x^k\), where \(x\) is the generator of this finite field.

INPUT:

- number – an integer

EXAMPLES:

\[\text{sage: } k.<a> = GF(2^{48}) \]
\[\text{sage: } k.fetch_int(2^{43} + 2^{15} + 1) \]
\[a^43 + a^{15} + 1 \]
\[\text{sage: } k.fetch_int(33793) \]
\[a^{15} + a^{10} + 1 \]
\[\text{sage: } 33793.digits(2) \# \text{ little endian} \]
\[\text{[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]} \]

gen(n=0)

Return a generator of \(self\) over its prime field, which is a root of \(self.modulus()\).

INPUT:

- n – must be 0

OUTPUT:

An element \(a\) of \(self\) such that \(self.modulus()\)(a) == 0.

Warning: This generator is not guaranteed to be a generator for the multiplicative group. To obtain the latter, use multiplicative_generator() or use the modulus="primitive" option when constructing the field.
EXAMPLES:

```python
sage: k.<a> = GF(2^19)
sage: k.gen() == a
True
sage: a
a
```

order()
Return the cardinality of this field.

EXAMPLES:

```python
sage: k.<a> = GF(2^64)
sage: k.order()
18446744073709551616
```

prime_subfield()
Return the prime subfield F_p of self if self is F_{p^n}.

EXAMPLES:

```python
sage: F.<a> = GF(2^16)
sage: F.prime_subfield()
Finite Field of size 2
```

```
sage.rings.finite_rings.finite_field_ntl_gf2e.late_import()
Imports various modules after startup.
```

EXAMPLES:

```python
sage: sage.rings.finite_rings.finite_field_ntl_gf2e.late_import()
sage: sage.rings.finite_rings.finite_field_ntl_gf2e.GF2 is None # indirect doctest
False
```

6.2 Finite Fields of characteristic 2.

This implementation uses NTL’s GF2E class to perform the arithmetic and is the standard implementation for $GF(2^n)$ for $n \geq 16$.

AUTHORS:
- Martin Albrecht <malb@informatik.uni-bremen.de> (2007-10)

```
sage.rings.finite_rings.finite_field_element_ntl_gf2e.Cache_ntl_gf2e
Bases: sage.rings.finite_rings.finite_field_element_base.Cache_base

This class stores information for an NTL finite field in a Cython class so that elements can access it quickly.
```

It’s modeled on `NativeIntStruct`, but includes many functions that were previously included in the parent (see trac ticket #12062).

degree()
If the field has cardinality 2^n this method returns n.

EXAMPLES:
sage: k.<a> = GF(2^64)
sage: k._cache.degree()
64

fetch_int(number)
Given an integer less than \(p^n \) with base 2 representation \(a_0 + a_1 \cdot 2 + \cdots + a_k 2^k \), this returns \(a_0 + a_1 x + \cdots + a_k x^k \), where \(x \) is the generator of this finite field.

INPUT:

- number – an integer, of size less than the cardinality

EXAMPLES:

sage: k.<a> = GF(2^48)
sage: k._cache.fetch_int(2^33 + 2 + 1)
a^33 + a + 1

import_data(e)
EXAMPLES:

sage: k.<a> = GF(2^17)
sage: V = k.vector_space(map=False)
sage: v = [1,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0]
sage: k._cache.import_data(v)
a^13 + a^8 + a^5 + 1
sage: k._cache.import_data(V(v))
a^13 + a^8 + a^5 + 1

order()
Return the cardinality of the field.

EXAMPLES:

sage: k.<a> = GF(2^64)
sage: k._cache.order()
18446744073709551616

polynomial()
Returns the list of 0’s and 1’s giving the defining polynomial of the field.

EXAMPLES:

sage: k.<a> = GF(2^20,modulus="minimal_weight")
sage: k._cache.polynomial()
[1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

class sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement
Bases: sage.rings.finite_rings.element_base.FinitePolyExtElement

An element of an NTL:GF2E finite field.

charpoly(var='x')
Return the characteristic polynomial of self as a polynomial in var over the prime subfield.

INPUT:

- var – string (default: 'x')

OUTPUT:
EXAMPLES:

```python
sage: k.<a> = GF(2^8, impl="ntl")
sage: b = a^3 + a
sage: b.minpoly()
x^4 + x^3 + x^2 + x + 1
sage: b.charpoly()
x^8 + x^6 + x^4 + x^2 + 1
sage: b.charpoly().factor()
(x^4 + x^3 + x^2 + x + 1)^2
sage: b.charpoly('Z')
Z^8 + Z^6 + Z^4 + Z^2 + 1
```

integer_representation()

Return the int representation of self. When self is in the prime subfield, the integer returned is equal to self and not to log_repr.

Elements of this field are represented as ints in as follows: for \(e \in \mathbb{F}_p[x] \) with \(e = a_0 + a_1 x + a_2 x^2 + \cdots \), \(e \) is represented as: \(n = a_0 + a_1 p + a_2 p^2 + \cdots \).

EXAMPLES:

```python
sage: k.<a> = GF(2^20)
sage: a.integer_representation()
2
sage: (a^2 + 1).integer_representation()
5
sage: k.<a> = GF(2^70)
sage: (a^65 + a^64 + 1).integer_representation()
5534023221128654849L
```

is_one()

Return True if self == k(1).

Equivalent to self != k(0).

EXAMPLES:

```python
sage: k.<a> = GF(2^20)
sage: a.is_one() # indirect doctest
False
sage: k(1).is_one()
True
```

is_square()

Return True as every element in \(\mathbb{F}_{2^n} \) is a square.

EXAMPLES:

```python
sage: k.<a> = GF(2^18)
sage: e = k.random_element()
sage: e
a^15 + a^14 + a^13 + a^11 + a^10 + a^9 + a^6 + a^5 + a^4 + 1
sage: e.is_square()
True
sage: e.sqrt()
a^16 + a^15 + a^14 + a^11 + a^9 + a^8 + a^7 + a^6 + a^4 + a^3 + 1
```

(continues on next page)
is_unit()
Return True if self is nonzero, so it is a unit as an element of the finite field.

EXAMPLES:
```python
sage: k.<a> = GF(2^17)
sage: a.is_unit()
True
sage: k(0).is_unit()
False
```

log(base)
Return x such that $b^x = a$, where x is a and b is the base.

INPUT:

- base – finite field element that generates the multiplicative group.

OUTPUT:
Integer x such that $a^x = b$, if it exists. Raises a ValueError exception if no such x exists.

EXAMPLES:
```python
sage: F = GF(17)
sage: F(3^11).log(F(3))
11
sage: F = GF(113)
sage: F(3^19).log(F(3))
19
sage: F = GF(next_prime(10000))
sage: F(23^997).log(F(23))
997
```

```
sage: F = FiniteField(2^10, 'a')
sage: g = F.gen()
sage: b = g; a = g^37
sage: a.log(b)
37
sage: b^37; a
a^8 + a^7 + a^4 + a + 1
```

AUTHOR: David Joyner and William Stein (2005-11)

minpoly(var='x')
Return the minimal polynomial of self, which is the smallest degree polynomial $f \in \mathbb{F}_2[x]$ such that $f(self) = 0$.

INPUT:

- var – string (default: 'x')

OUTPUT:

- polynomial

EXAMPLES:
```python
sage: K.<a> = GF(2^100)
sage: f = a.minpoly(); f
x^100 + x^57 + x^55 + x^52 + x^48 + x^47 + x^46 + x^45 + x^44 + x^43 + x^41 + x^37 + x^36 + x^35 + x^34 + x^31 + x^30 + x^27 + x^25 + x^24 + x^22 + x^20 + x^19 + x^16 + x^15 + x^11 + x^9 + x^8 + x^6 + x^5 + x^3 + 1
sage: f(a)
0
sage: g = K.random_element()
sage: g.minpoly()(g)
0
```

`polynomial(name=None)`
Return `self` viewed as a polynomial over `self.parent().prime_subfield()`.

INPUT:
- `name` – (optional) variable name

EXAMPLES:
```python
sage: k.<a> = GF(2^17)
sage: e = a^15 + a^13 + a^11 + a^10 + a^9 + a^8 + a^7 + a^6 + a^4 + a + 1
sage: e.polynomial()
a^15 + a^13 + a^11 + a^10 + a^9 + a^8 + a^7 + a^6 + a^4 + a + 1
sage: from sage.rings.polynomial.polynomial_element import is_Polynomial
sage: is_Polynomial(e.polynomial())
True
sage: e.polynomial('x')
x^15 + x^13 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^4 + x + 1
```

`sqrt(all=False, extend=False)`
Return a square root of this finite field element in its parent.

EXAMPLES:
```python
sage: k.<a> = GF(2^20)
sage: a.is_square()
True
sage: a.sqrt()
a^19 + a^15 + a^14 + a^12 + a^9 + a^7 + a^4 + a^3 + a + 1
sage: a.sqrt()^2 == a
True
```

This failed before trac ticket #4899:
```python
sage: GF(2^16,'a')(1).sqrt()
1
```

`trace()`
Return the trace of `self`.

EXAMPLES:
```python
sage: K.<a> = GF(2^25)
sage: a.trace()
0
sage: a.charpoly()
(continues on next page)
```

6.2. Finite Fields of characteristic 2. 109
\(x^25 + x^8 + x^6 + x^2 + 1 \)
\[
\text{sage: parent(a.trace())} \\
\text{Finite Field of size 2}
\]
\[
\text{sage: b = a+1} \\
\text{sage: b.trace()} \\
1
\]
\[
\text{sage: b.charpoly()[1]} \\
1
\]

weight()

Returns the number of non-zero coefficients in the polynomial representation of \(\text{self} \).

EXAMPLES:

\[
\text{sage: K.<a> = GF(2^21)} \\
\text{sage: a.weight()} \\
1 \\
\text{sage: (a^5+a^2+1).weight()} \\
3 \\
\text{sage: b = 1/(a+1); b} \\
\quad a^20 + a^19 + a^18 + a^17 + a^16 + a^15 + a^14 + a^13 + a^12 + a^11 + a^10 + \cdots \\
\quad \rightarrow a^9 + a^8 + a^7 + a^6 + a^4 + a^3 + a^2 \\
\text{sage: b.weight()} \\
18
\]

`sage.rings.finite_rings.element_ntl_gf2e.unpickleFiniteField_ntl_gf2eElement` *(parent, elem)*

EXAMPLES:

\[
\text{sage: k.<a> = GF(2^20)} \\
\text{sage: e = k.random_element()} \\
\text{sage: f = loads(dumps(e)) \# indirect doctest} \\
\text{sage: e == f} \\
\text{True}
\]
7.1 Finite residue fields

We can take the residue field of maximal ideals in the ring of integers of number fields. We can also take the residue field of irreducible polynomials over \(GF(p) \).

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: k
Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
sage: k.order()
841
```

We reduce mod a prime for which the ring of integers is not monogenic (i.e., 2 is an essential discriminant divisor):

```python
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: F = K.factor(2); F
(Fractional ideal (1/2*a^2 - 1/2*a + 1)) * (Fractional ideal (-a^2 + 2*a - 3)) * →(Fractional ideal (-3/2*a^2 + 5/2*a - 4))
sage: F[0][0].residue_field()
Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
sage: F[1][0].residue_field()
Residue field of Fractional ideal (-a^2 + 2*a - 3)
sage: F[2][0].residue_field()
Residue field of Fractional ideal (-3/2*a^2 + 5/2*a - 4)
```

We can also form residue fields from \(\mathbb{Z} \):

```python
sage: ZZ.residue_field(17)
Residue field of Integers modulo 17
```

And for polynomial rings over finite fields:

```python
sage: R.<t> = GF(5)[]
sage: I = R.ideal(t^2 + 2)
sage: k = ResidueField(I); k
Residue field in tbar of Principal ideal (t^2 + 2) of Univariate Polynomial Ring in t over Finite Field of size 5
```

AUTHORS:

- David Roe (2007-10-3): initial version
• William Stein (2007-12): bug fixes
• John Cremona (2008-9): extend reduction maps to the whole valuation ring add support for residue fields of ZZ
• David Roe (2009-12): added support for $\mathbb{G}_F(p)(t)$ and moved to new coercion framework.

```python
class sage.rings.finite_rings.residue_field.LiftingMap
Bases: sage.categories.map.Section

Lifting map from residue class field to number field.

EXAMPLES:

```
sage: K.<a> = NumberField(x^3 + 2)
sage: F = K.factor(5)[0][0].residue_field()
sage: F.degree()
2
sage: L = F.lift_map(); L
Lifting map:
 From: Residue field in abar of Fractional ideal (a^2 + 2*a - 1)
 To: Maximal Order in Number Field in a with defining polynomial x^3 + 2
sage: L(3*a + 1)
3*a + 1
sage: L(3*a + 1) == F.0^2
True
```

```python
class sage.rings.finite_rings.residue_field.ReductionMap
Bases: sage.categories.map.Map

A reduction map from a (subset) of a number field or function field to this residue class field.

It will be defined on those elements of the field with non-negative valuation at the specified prime.

EXAMPLES:

```
sage: I = QQ[sqrt(17)].factor(5)[0][0]; I
Fractional ideal (5)
sage: k = I.residue_field(); k
Residue field in sqrt17bar of Fractional ideal (5)
sage: R = k.reduction_map()
```

(continues on next page)
section()

Computes a section of the map, namely a map that lifts elements of the residue field to elements of the field.

EXAMPLES:

```sage
doctest_MARKER
sage: K.<a> = NumberField(x^5 - 5*x + 2)
sage: P = K.ideal(47).factor()[0][0]
sage: k = K.residue_field(P)
sage: f = k.convert_map_from(K)
sage: s = f.section(); s
Lifting map:
  From: Residue field in abar of Fractional ideal (14*a^4 - 24*a^3 - 26*a^2 +...
  To:  Number Field in a with defining polynomial x^5 - 5*x + 2
sage: s(k.gen())
a
sage: L.<b> = NumberField(x^5 + 17*x + 1)
sage: P = L.factor(53)[0][0]
sage: l = L.residue_field(P)
sage: g = l.convert_map_from(L)
sage: s = g.section(); s
Lifting map:
  From: Residue field in bbar of Fractional ideal (53, b^2 + 23*b + 8)
  To:  Number Field in b with defining polynomial x^5 + 17*x + 1
sage: s(l.gen()).parent()
Number Field in b with defining polynomial x^5 + 17*x + 1
```

class `sage.rings.finite_rings.residue_field.ResidueFieldFactory`

A factory that returns the residue class field of a prime ideal p of the ring of integers of a number field, or of a polynomial ring over a finite field.

INPUT:

- p – a prime ideal of an order in a number field.
- names – the variable name for the finite field created. Defaults to the name of the number field variable but with bar placed after it.
- check – whether or not to check if p is prime.
OUTPUT:

- The residue field at the prime p.

EXAMPLES:

```sage
t = GF(next_prime(2^18))
sage: P = t^5 + 2*t + 11
sage: R.<t> = GF(31)[t]
sage: k = ResidueField(P)
sage: k
Residue field in tbar of Principal ideal (t^5 + 2*t + 11) of Univariate Polynomial Ring in t over Finite Field of size 31
```

The result is cached:

```sage
sage: ResidueField(P) is ResidueField(P)
True
sage: k = K.residue_field(P); k
Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
sage: k.order()
841
```

It also works for polynomial rings:

```sage
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: ResidueField(P)
Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
sage: ResidueField(P) is ResidueField(P)
True
sage: k = K.residue_field(P); k
Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
sage: k.order()
841
```

An example where the generator of the number field doesn’t generate the residue class field:

```sage
sage: K.<a> = NumberField(x^3-875)
sage: P = K.ideal(5).factor()[0][0]; k = K.residue_field(P); k
Residue field in abar of Fractional ideal (5, 1/25*a^2 - 2/5*a - 1)
sage: k.polynomial()
abar^2 + 3*abar + 4
sage: k.0^3 - 875
2
```

An example where the residue class field is large but of degree 1:

```sage
sage: K.<a> = NumberField(x^3-875); P = K.ideal(2007).factor()[2][0]; k = K.residue_field(P); k
Residue field of Fractional ideal (223, 1/5*a + 11)
sage: k(a)
168
sage: k(a)^3 - 875
0
```

And for polynomial rings:

```sage
sage: R.<t> = GF(31)[t]
sage: P = R.ideal(t - 5)
sage: k = ResidueField(P); k
```

(continues on next page)
Residue field of Principal ideal (t + 262142) of Univariate Polynomial Ring in t over Finite Field of size 262147
sage: k(t)
5

In this example, 2 is an inessential discriminant divisor, so divides the index of \(\mathbb{Z}[a] \) in the maximal order for all \(a \):

```python
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8); P = K.ideal(2).factor()[0][0]; P
Fractional ideal (1/2*a^2 - 1/2*a + 1)
sage: F = K.residue_field(P); F
Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
sage: F(a)
0
sage: B = K.maximal_order().basis(); B
[1, 1/2*a^2 + 1/2*a, a^2]
sage: F(B[1])
1
sage: F(B[2])
0
sage: F
Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
sage: F.degree()
1
```

create_key_and_extra_args *(p, names=None, check=True, impl=None, **kwds)*

Return a tuple containing the key (uniquely defining data) and any extra arguments.

create_object *(version, key, **kwds)*

Create the object from the key and extra arguments. This is only called if the object was not found in the cache.

class *sage.rings.finite_rings.residue_field.ResidueFieldHomomorphism_global*

The class representing a homomorphism from the order of a number field or function field to the residue field at a given prime.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: ResidueField(P) is ResidueField(P)  # indirect doctest
True
```
sage: abar = k(OK.1); abar
abar
sage: (1+abar)^179
24*abar + 12
sage: phi = k.coerce_map_from(OK); phi
Ring morphism:
 From: Maximal Order in Number Field in a with defining polynomial x^3 - 7
 To: Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
sage: phi in Hom(OK,k)
True
sage: phi(OK.1)
abar
sage: R.<t> = GF(19)[]; P = R.ideal(t^2 + 5)
sage: k.<a> = P.residue_field(); f = k.coerce_map_from(R); f
Ring morphism:
 From: Univariate Polynomial Ring in t over Finite Field of size 19
 To: Residue field in a of Principal ideal (t^2 + 5) of Univariate Polynomial
 \rightarrow Ring in t over Finite Field of size 19
lift(x)
Returns a lift of x to the Order, returning a “polynomial” in the generator with coefficients between 0 and p – 1.

EXAMPLES:

sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: f = k.coerce_map_from(K.ring_of_integers())
sage: c = OK(a)
sage: b = k(a)
sage: f.lift(13*b + 5)
13*a + 5
sage: f.lift(12821*b+918)
3*a + 19
sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + t^2 + 7)
sage: k.<a> = P.residue_field(); f = k.coerce_map_from(R)
sage: f lift(a^2 + 5*a + 1)
t^2 + 5*t + 1
sage: f(f lift(a^2 + 5*a + 1)) == a^2 + 5*a + 1
True

section()
Computes a section of the map, namely a map that lifts elements of the residue field to elements of the ring of integers.

EXAMPLES:

sage: K.<a> = NumberField(x^5 - 5*x + 2)
sage: P = K.ideal(47).factor()[0][0]
sage: k = K.residue_field(P)
sage: f = k.coerce_map_from(K.ring_of_integers())
sage: s = f.section(); s
Lifting map:
 From: Residue field in abar of Fractional ideal (14*a^4 - 24*a^3 - 26*a^2 +
 -58*a - 15)
 To: Maximal Order in Number Field in a with defining polynomial x^5 - 5*x +
 +2
sage: s(k.gen())
a
sage: L. = NumberField(x^5 + 17*x + 1)
sage: P = L.factor(53)[0][0]
sage: l = L.residue_field(P)
sage: g = l.coerce_map_from(L.ring_of_integers())
sage: s = g.section(); s
Lifting map:
 From: Residue field in bbar of Fractional ideal (53, b^2 + 23*b + 8)
 To: Maximal Order in Number Field in b with defining polynomial x^5 +
 +17*x + 1
sage: s(l.gen()).parent()
Maximal Order in Number Field in b with defining polynomial x^5 + 17*x + 1
sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + t^2 + 7)
sage: k.<a> = P.residue_field()
sage: f = k.coerce_map_from(R)
sage: f.section()
(map internal to coercion system -- copy before use)
Lifting map:
 From: Residue field in a of Principal ideal (t^3 + t^2 + 7) of Univariate Polynomial Ring in t over Finite Field of size 17
 To: Univariate Polynomial Ring in t over Finite Field of size 17

class sage.rings.finite_rings.residue_field.ResidueField_generic(p)

Bases: sage.rings.ring.Field

The class representing a generic residue field.

EXAMPLES:

sage: I = QQ[i].factor(2)[0][0]; I
Fractional ideal (I + 1)
sage: k = I.residue_field(); k
Residue field of Fractional ideal (I + 1)
sage: type(k)
<class 'sage.rings.finite_rings.residue_field.ResidueFiniteField_prime_modn_with_category'>

sage: R.<t> = GF(29)[]; P = R.ideal(t^2 + 2); k.<a> = ResidueField(P); k
Residue field in a of Principal ideal (t^2 + 2) of Univariate Polynomial Ring in t over Finite Field of size 29
sage: type(k)
<class 'sage.rings.finite_rings.residue_field.ResidueFiniteField_givaro_with_category'>

construction()
Construction of this residue field.

OUTPUT:

An AlgebraicExtensionFunctor and the number field that this residue field has been obtained
from.

The residue field is determined by a prime (fractional) ideal in a number field. If this ideal can be coerced into a different number field, then the construction functor applied to this number field will return the corresponding residue field. See trac ticket #15223.

EXAMPLES:

```
sage: K.<z> = CyclotomicField(7)
sage: P = K.factor(17)[0][0]
sage: k = K.residue_field(P)
sage: k
Residue field in zbar of Fractional ideal (17)
sage: F, R = k.construction()
sage: F
AlgebraicExtensionFunctor
sage: R
Cyclotomic Field of order 7 and degree 6
sage: F(R) is k
True
sage: F(ZZ)
Residue field of Integers modulo 17
sage: F(CyclotomicField(49))
Residue field in zbar of Fractional ideal (17)
```

ideal()

Return the maximal ideal that this residue field is the quotient by.

EXAMPLES:

```
sage: K.<a> = NumberField(x^3 + x + 1)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P) # indirect doctest
sage: k.ideal() is P
True
sage: p = next_prime(2^40); p
1099511627791
sage: k = K.residue_field(K.prime_above(p))
sage: k.ideal().norm() == p
True
sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + t^2 + 7)
sage: k.<a> = R.residue_field(P)
sage: k.ideal()
Principal ideal (t^3 + t^2 + 7) of Univariate Polynomial Ring in t over Finite Field of size 17
```

lift(x)

Returns a lift of \(x \) to the Order, returning a “polynomial” in the generator with coefficients between 0 and \(p - 1 \).

EXAMPLES:

```
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: OK = K.maximal_order()
sage: c = OK(a)
sage: b = k(a)
```

(continues on next page)
sage: k.lift(13*b + 5)
13*a + 5
sage: k.lift(12821*b+918)
3*a + 19

sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + t^2 + 7)
sage: k.<a> = P.residue_field()
sage: k.lift(a^2 + 5)
t^2 + 5

lift_map()

Returns the standard map from this residue field up to the ring of integers lifting the canonical projection.

EXAMPLES:

```sage
sage: I = QQ[3^(1/3)].factor(5)[1][0]; I
Fractional ideal (-a + 2)
sage: k = I.residue_field(); k
Residue field of Fractional ideal (-a + 2)
sage: f = k.lift_map(); f
Lifting map:
  From: Residue field of Fractional ideal (-a + 2)
  To: Maximal Order in Number Field in a with defining polynomial x^3 - 3
  ↦ with a = 1.442249570307409?
sage: f.domain()
Residue field of Fractional ideal (-a + 2)
sage: f.codomain()
Maximal Order in Number Field in a with defining polynomial x^3 - 3 with a =
  ↦1.442249570307409?
sage: f(k.0)
1

sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + t^2 + 7)
sage: k.<a> = P.residue_field()
sage: f = k.lift_map(); f
(map internal to coercion system -- copy before use)
Lifting map:
  From: Residue field in a of Principal ideal (t^3 + t^2 + 7) of Univariate Polynomial Ring in t over Finite Field of size 17
  To: Univariate Polynomial Ring in t over Finite Field of size 17
sage: f(a^2 + 5)
t^2 + 5
```

reduction_map()

Return the partially defined reduction map from the number field to this residue class field.

EXAMPLES:

```sage
sage: I = QQ[2^(1/3)].factor(2)[0][0]; I
Fractional ideal (a)
sage: k = I.residue_field(); k
Residue field of Fractional ideal (a)
sage: pi = k.reduction_map(); pi
Partially defined reduction map:
  From: Number Field in a with defining polynomial x^3 - 2 with a = 1.
  ↦259921049894873?
  To: Residue field of Fractional ideal (a)
```

(continues on next page)
sage: pi.domain()
Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?

sage: pi.codomain()
Residue field of Fractional ideal (a)

sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 32)

sage: F = K.factor(2)[0][0].residue_field()

sage: F.reduction_map().domain()
Number Field in a with defining polynomial x^3 + x^2 - 2*x + 32

sage: F = K.factor(2)[0][0].residue_field()

sage: F.reduction_map().codomain()
Residue field of Fractional ideal (1/4*a)

sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + t^2 + 7)

sage: k.<a> = P.residue_field(); f = k.reduction_map(); f
Partially defined reduction map:
 From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 17
 To: Residue field in a of Principal ideal (t^3 + t^2 + 7) of Univariate Polynomial Ring in t over Finite Field of size 17

sage: f(1/t)
12*a^2 + 12*a

class sage.rings.finite_rings.residue_field.ResidueFiniteField_givaro
 p, q, name, modulus, to_vs, to_order, PB

Bases: sage.rings.finite_rings.residue_field.ResidueField_generic, sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro

The class representing residue fields of number fields that have non-prime order strictly less than 2^{16}.

EXAMPLES:

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: k.degree()
2

sage: OK = K.maximal_order()
sage: c = OK(a)
sage: b = k(c)
sage: b*a^2
7

sage: b*a
13*a*abar + 5

sage: R.<t> = GF(7)[]; P = R.ideal(t^2 + 4)
sage: k.<a> = R.residue_field(P); type(k)
<class 'sage.rings.finite_rings.residue_field.ResidueFiniteField_givaro_with_category'>
sage: k(1/t)

class sage.rings.finite_rings.residue_field.ResidueFiniteField_ntl_gf2e(q, name, modulus, repr, p, to_vs, to_order, PB)

Bases: sage.rings.finite_rings.residue_field.ResidueField_generic, sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e

The class representing residue fields with order a power of 2.

When the order is less than 2^{16}, givaro is used by default instead.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: k.degree()  
2
sage: OK = K.maximal_order()  
sage: c = OK(a)  
sage: b = k(c)  
sage: b*c^2  
7
sage: b*c  
13*a^2 + 5

sage: R.<t> = GF(2)[]; P = R.ideal(t^19 + t^5 + t^2 + t + 1)
sage: k.<a> = R.residue_field(P); type(k) 
<class 'sage.rings.finite_rings.residue_field.ResidueFiniteField_ntl_gf2e_with_category'>
sage: k(1/t)  
a^18 + a^4 + a + 1
sage: k(1/t)*t  
1
```

class sage.rings.finite_rings.residue_field.ResidueFiniteField_pari_ffelt(p, characteristic, name, modulus, to_vs, to_order, PB)

7.1. Finite residue fields
Bases: `sage.rings.finite_rings.residue_field.ResidueField_generic`, `sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt`

The class representing residue fields of number fields that have non-prime order at least 2^6.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(923478923).factor()[0][0]
sage: k = K.residue_field(P)
sage: k.degree()
2
sage: OK = K.maximal_order()
sage: c = OK(a)
sage: b = k(c)
2*abar
sage: b+c
2*abar
sage: b*c
664346875*abar + 535606347
sage: k.base_ring()
Finite Field of size 923478923
sage: R.<t> = GF(5)[]; P = R.ideal(4*t^12 + 3*t^11 + 4*t^10 + t^9 + t^8 + 3*t^7 +
   →2*t^6 + 3*t^4 + t^3 + 3*t^2 + 2)
sage: k.<a> = P.residue_field()
sage: type(k)
<class 'sage.rings.finite_rings.residue_field.ResidueFiniteField_pari_ffelt_with_
   →category'>
sage: k(1/t)
3*a^11 + a^10 + 3*a^9 + 2*a^8 + 2*a^7 + a^6 + 4*a^5 + a^3 + 2*a^2 + a
```

```python
class sage.rings.finite_rings.residue_field.ResidueFiniteField_prime_modn
(p, name, intp, to_vs, to_order, PB)
Bases: `sage.rings.finite_rings.residue_field.ResidueField_generic`, `sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn`

The class representing residue fields of number fields that have prime order.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[1][0]
sage: k = ResidueField(P)
sage: k
Residue field of Fractional ideal (a^2 + 2*a + 2)
sage: k.order()
29
sage: OK = K.maximal_order()
sage: c = OK(a)
sage: b = k(a)
sage: k.coerce_map_from(OK)(c)
16
sage: k(4)
4
```
```
7.2 Algebraic closures of finite fields

Let \mathbb{F} be a finite field, and let $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F}; this is unique up to (non-canonical) isomorphism. For every $n \geq 1$, there is a unique subfield \mathbb{F}_n of $\overline{\mathbb{F}}$ such that $\mathbb{F} \subset \mathbb{F}_n$ and $[\mathbb{F}_n : \mathbb{F}] = n$.

In Sage, algebraic closures of finite fields are implemented using compatible systems of finite fields. The resulting Sage object keeps track of a finite lattice of the subfields \mathbb{F}_n and the embeddings between them. This lattice is extended as necessary.

The Sage class corresponding to \mathbb{F} can be constructed from the finite field \mathbb{F} by using the `algebraic_closure()` method.

The Sage class for elements of $\overline{\mathbb{F}}$ is `AlgebraicClosureFiniteFieldElement`. Such an element is represented as an element of one of the \mathbb{F}_n. This means that each element $x \in \overline{\mathbb{F}}$ has infinitely many different representations, one for each n such that x is in \mathbb{F}_n.

Note: Only prime finite fields are currently accepted as base fields for algebraic closures. To obtain an algebraic closure of a non-prime finite field \mathbb{F}, take an algebraic closure of the prime field of \mathbb{F} and embed \mathbb{F} into this.

Algebraic closures of finite fields are currently implemented using (pseudo-)Conway polynomials; see `AlgebraicClosureFiniteField_pseudo_conway` and the module `conway_polynomials`. Other implementations may be added by creating appropriate subclasses of `AlgebraicClosureFiniteField_generic`.

In the current implementation, algebraic closures do not satisfy the unique parent condition. Moreover, there is no coercion map between different algebraic closures of the same finite field. There is a conceptual reason for this, namely that the definition of pseudo-Conway polynomials only determines an algebraic closure up to non-unique isomorphism. This means in particular that different algebraic closures, and their respective elements, never compare equal.

AUTHORS:

• Peter Bruin (August 2013): initial version
• Vincent Delecroix (November 2013): additional methods

7.2. Algebraic closures of finite fields 123
Construct an algebraic closure of a finite field.

The recommended way to use this functionality is by calling the `algebraic_closure()` method of the finite field.

Note: Algebraic closures of finite fields in Sage do not have the unique representation property, because they are not determined up to unique isomorphism by their defining data.

EXAMPLES:

```python
def demo_algebraic_closure():
    F = GF(2).algebraic_closure()
    F1 = AlgebraicClosureFiniteField(GF(2), 'z')
    print(F1 == F)
    print(loads(dumps(F)) == F)
```

In the pseudo-Conway implementation, non-identical instances never compare equal:

```python
sage: F1 == F
False
sage: loads(dumps(F)) == F
False
```

This is to ensure that the result of comparing two instances cannot change with time.

class `AlgebraicClosureFiniteFieldElement`

Bases: `sage.structure.element.FieldElement`

Element of an algebraic closure of a finite field.

EXAMPLES:

```python
sage: F = GF(3).algebraic_closure()
sage: F.gen(2)
z2
sage: type(F.gen(2))
<class 'sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_pseudo_conway_with_category.element_class'>
```

as_finite_field_element (minimal=False)

Return self as a finite field element.

INPUT:

- minimal – boolean (default: False). If True, always return the smallest subfield containing self.
• a triple (field, element, morphism) where field is a finite field, element an element of field and morphism a morphism from field to self.parent().

EXAMPLES:

```python
sage: F = GF(3).algebraic_closure('t')
sage: t = F.gen(5)
sage: t.as_finite_field_element()
(Finite Field in t5 of size 3^5,
t5,
Ring morphism:
  From: Finite Field in t5 of size 3^5
  To:  Algebraic closure of Finite Field of size 3
  Defn: t5 |--> t5)
```

By default, field is not necessarily minimal. We can force it to be minimal using the minimal option:

```python
sage: s = t + 1 - t
sage: s.as_finite_field_element()[0]
Finite Field in t5 of size 3^5
sage: s.as_finite_field_element(minimal=True)[0]
Finite Field of size 3
```

This also works when the element has to be converted between two non-trivial finite subfields (see trac ticket #16509):

```python
sage: K = GF(5).algebraic_closure()
sage: z = K.gen(5) - K.gen(5) + K.gen(2)
sage: z.as_finite_field_element(minimal=True)
(Finite Field in z2 of size 5^2, z2, Ring morphism:
  From: Finite Field in z2 of size 5^2
  To:  Algebraic closure of Finite Field of size 5
  Defn: z2 |--> z2)
```

There are automatic coercions between the various subfields:

```python
sage: a = K.gen(2) + 1
sage: _,b, _ = a.as_finite_field_element()
sage: K4 = K.subfield(4)[0]
sage: K4(b)
z4^3 + z4^2 + z4 + 4
sage: b.minimal_polynomial() == K4(b).minimal_polynomial()
True
sage: K(K4(b)) == K(b)
True
```

You can also use the inclusions that are implemented at the level of the algebraic closure:

```python
sage: f = K.inclusion(2,4); f
Ring morphism:
  From: Finite Field in z2 of size 5^2
  To:  Finite Field in z4 of size 5^4
  Defn: z2 |--> z4^3 + z4^2 + z4 + 3
sage: f(b)
z4^3 + z4^2 + z4 + 4
```
change_level(n)

Return a representation of self as an element of the subfield of degree n of the parent, if possible.

EXAMPLES:

```python
sage: F = GF(3).algebraic_closure()
sage: z = F.gen(4)
sage: (z^10).change_level(6)
2*z6^5 + 2*z6^3 + z6^2 + 2*z6 + 2
sage: z.change_level(6)
Traceback (most recent call last):
... ValueError: z4 is not in the image of Ring morphism:
  From: Finite Field in z2 of size 3^2
  To:  Finite Field in z4 of size 3^4
  Defn: z2 |--> 2*z4^3 + 2*z4^2 + 1
```

is_square

Return True if self is a square.

This always returns True.

EXAMPLES:

```python
sage: F = GF(3).algebraic_closure()
sage: F.gen(2).is_square()
True
```

minimal_polynomial

Return the minimal polynomial of self over the prime field.

EXAMPLES:

```python
sage: F = GF(11).algebraic_closure()
sage: F.gen(3).minpoly()
x^3 + 2*x + 9
```

minpoly

Return the minimal polynomial of self over the prime field.

EXAMPLES:

```python
sage: F = GF(11).algebraic_closure()
sage: F.gen(3).minpoly()
x^3 + 2*x + 9
```

multiplicative_order

Return the multiplicative order of self.
EXAMPLES:

```sage
t = (K.gen(1) + K.gen(2) + K.gen(3)).multiplicative_order()
18275
```

\texttt{nth_root} \texttt{(n)}

Return an \(n\)-th root of \texttt{self}.

EXAMPLES:

```sage
t3 = K.gen(3)
s = 1 + t3 + t3^2
s.pth\_power()
10*t3^2 + 6*t3
```

\texttt{Todo:} This function could probably be made faster.

\texttt{pth_power} \texttt{(k=1)}

Return the \(p^k\)-th power of \texttt{self}, where \(p\) is the characteristic of \texttt{self.parent()}.

EXAMPLES:

```sage
t = (K.gen(1) + K.gen(2) + K.gen(3)).multiplicative_order()
```

\texttt{pth_root} \texttt{(k=1)}

Return the unique \(p^k\)-th root of \texttt{self}, where \(p\) is the characteristic of \texttt{self.parent()}.

EXAMPLES:

```sage
t = (K.gen(1) + K.gen(2) + K.gen(3)).multiplicative_order()
```

\texttt{sqrt} ()

Return a square root of \texttt{self}.

\subsection{Algebraic closures of finite fields}

127
EXAMPLES:

```python
sage: F = GF(3).algebraic_closure()
sage: F.gen(2).sqrt()
z4^3 + z4 + 1
```

```
class sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic(base_ring, name, category=None)

Bases: sage.rings.ring.Field

Algebraic closure of a finite field.

Element
alias of AlgebraicClosureFiniteFieldElement

algebraic_closure()
Return an algebraic closure of self.
This always returns self.

EXAMPLES:

```python
sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: F = AlgebraicClosureFiniteField(GF(5), 'z')
sage: F.algebraic_closure() == F
True
```

characteristic()
Return the characteristic of self.

EXAMPLES:

```python
sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: p = next_prime(1000)
sage: F = AlgebraicClosureFiniteField(GF(p), 'z')
sage: F.characteristic() == p
True
```

gen(n)
Return the $n$-th generator of self.

EXAMPLES:

```python
sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: F = AlgebraicClosureFiniteField(GF(5), 'z')
sage: F.gen(2)
z2
```

gens()
Return a family of generators of self.

OUTPUT:

- a Family, indexed by the positive integers, whose $n$-th element is self.gen(n).

EXAMPLES:
sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: F = AlgebraicClosureFiniteField(GF(5), 'z')
sage: g = F.gens()
sage: g
Lazy family (<lambda>(i))_{i in Positive integers}
sage: g[3]
z3

inclusion \((m, n)\)

Return the canonical inclusion map from the subfield of degree \(m\) to the subfield of degree \(n\).

EXAMPLES:

sage: F = GF(3).algebraic_closure()
sage: F.inclusion(1, 2)
Ring morphism:
  From: Finite Field of size 3
  To:   Finite Field in z2 of size 3^2
  Defn: 1 |---> 1
sage: F.inclusion(2, 4)
Ring morphism:
  From: Finite Field in z2 of size 3^2
  To:   Finite Field in z4 of size 3^4
  Defn: z2 |---> 2*z4^3 + 2*z4^2 + 1

ngens ()

Return the number of generators of \(\text{self}\), which is infinity.

EXAMPLES:

sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: AlgebraicClosureFiniteField(GF(5), 'z').ngens()
+Infinity

some_elements ()

Return some elements of this field.

EXAMPLES:

sage: F = GF(7).algebraic_closure()
sage: F.some_elements()
(1, z2, z3 + 1)

subfield \((n)\)

Return the unique subfield of degree \(n\) of \(\text{self}\) together with its canonical embedding into \(\text{self}\).

EXAMPLES:

sage: F = GF(3).algebraic_closure()
sage: F.subfield(1)
(Finite Field of size 3,
 Ring morphism:
  From: Finite Field of size 3
  To:   Algebraic closure of Finite Field of size 3
  Defn: 1 |---> 1)
sage: F.subfield(4)
class sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_pseudo_conway(base_ring, name, category=None, lattice=None, use_database=True)

Bases: sage.misc.fast_methods.WithEqualityById, sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic

Algebraic closure of a finite field, constructed using pseudo-Conway polynomials.

EXAMPLES:

```python
sage: F = GF(5).algebraic_closure(implementation='pseudo_conway')
```

```python
sage: F.cardinality()
+Infinity
```

```python
sage: F.algebraic_closure() is F
True
```

```python
sage: x = F(3).nth_root(12); x
z4^3 + z4^2 + 4*z4
```

```python
sage: x**12
3
```

7.3 Routines for Conway and pseudo-Conway polynomials

AUTHORS:

- David Roe
- Jean-Pierre Flori
- Peter Bruin

class sage.rings.finite_rings.conway_polynomials.PseudoConwayLattice(p, use_database=True)

Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.

SageObject

A pseudo-Conway lattice over a given finite prime field.

The Conway polynomial $f_n$ of degree $n$ over $\mathbb{F}_p$ is defined by the following four conditions:

- $f_n$ is irreducible.
- In the quotient field $\mathbb{F}_p[x]/(f_n)$, the element $x \mod f_n$ generates the multiplicative group.
- The minimal polynomial of $(x \mod f_n)^{p^{n-1}}$ equals the Conway polynomial $f_m$, for every divisor $m$ of $n$.
- $f_n$ is lexicographically least among all such polynomials, under a certain ordering.
The final condition is needed only in order to make the Conway polynomial unique. We define a pseudo-Conway lattice to be any family of polynomials, indexed by the positive integers, satisfying the first three conditions.

**INPUT:**

- \( p \) – prime number
- `use_database` – boolean. If True, use actual Conway polynomials whenever they are available in the database. If False, always compute pseudo-Conway polynomials.

**EXAMPLES:**

```python
sage: from sage.rings.finite_rings.conway_polynomials import PseudoConwayLattice
sage: PCL = PseudoConwayLattice(2, use_database=False)
sage: PCL.polynomial(3)
x^3 + x + 1
```

**check_consistency\((n)\)**

Check that the pseudo-Conway polynomials of degree dividing \( n \) in this lattice satisfy the required compatibility conditions.

**EXAMPLES:**

```python
sage: from sage.rings.finite_rings.conway_polynomials import PseudoConwayLattice
sage: PCL = PseudoConwayLattice(2, use_database=False)
sage: PCL.check_consistency(6)
sage: PCL.check_consistency(60) # long time
```

**polynomial\((n)\)**

Return the pseudo-Conway polynomial of degree \( n \) in this lattice.

**INPUT:**

- \( n \) – positive integer

**OUTPUT:**

- a pseudo-Conway polynomial of degree \( n \) for the prime \( p \).

**ALGORITHM:**

Uses an algorithm described in [HL1999], modified to find pseudo-Conway polynomials rather than Conway polynomials. The major difference is that we stop as soon as we find a primitive polynomial.

**EXAMPLES:**

```python
sage: from sage.rings.finite_rings.conway_polynomials import PseudoConwayLattice
sage: PCL = PseudoConwayLattice(2, use_database=False)
sage: PCL.polynomial(3)
x^3 + x + 1
sage: PCL.polynomial(4)
x^4 + x^3 + 1
sage: PCL.polynomial(60)
x^60 + x^59 + x^58 + x^55 + x^54 + x^53 + x^52 + x^51 + x^48 + x^46 + x^45 + x^42 + x^41 + x^39 + x^38 + x^37 + x^35 + x^32 + x^31 + x^30 + x^28 + x^24 + x^22 + x^21 + x^18 + x^17 + x^16 + x^15 + x^14 + x^10 + x^8 + x^7 + x^5 + x^3 + x^2 + x + 1
```

`sage.rings.finite_rings.conway_polynomials.conway_polynomial\((p, n)\)`

Return the Conway polynomial of degree \( n \) over \( GF(p) \).
If the requested polynomial is not known, this function raises a `RuntimeError` exception.

**INPUT:**

- \( p \) – prime number
- \( n \) – positive integer

**OUTPUT:**

- the Conway polynomial of degree \( n \) over the finite field \( \text{GF}(p) \), loaded from a table.

**Note:** The first time this function is called a table is read from disk, which takes a fraction of a second. Subsequent calls do not require reloading the table.

See also the `ConwayPolynomials()` object, which is the table of Conway polynomials used by this function.

**EXAMPLES:**

```
sage: conway_polynomial(2,5)
x^5 + x^2 + 1
sage: conway_polynomial(101,5)
x^5 + 2*x + 99
sage: conway_polynomial(97,101)
Traceback (most recent call last):
 ... RuntimeError: requested Conway polynomial not in database.
```

```
sage.rings.finite_rings.conway_polynomials.exists_conway_polynomial(p,n)
Check whether the Conway polynomial of degree \(n \) over \(\text{GF}(p) \) is known.

INPUT:

- \(p \) – prime number
- \(n \) – positive integer

OUTPUT:

- boolean: True if the Conway polynomial of degree \(n \) over \(\text{GF}(p) \) is in the database, False otherwise.

If the Conway polynomial is in the database, it can be obtained using the command `conway_polynomial(p,n)`.

EXAMPLES:

```
sage: exists_conway_polynomial(2,3)
True
sage: exists_conway_polynomial(2,-1)
False
sage: exists_conway_polynomial(97,200)
False
sage: exists_conway_polynomial(6,6)
False
```

CHAPTER EIGHT

INDICES AND TABLES

- Index
- Module Index
- Search Page
sage.rings.algebraic_closure_finite_field, 123
sage.rings.finite_rings.conway_polynomials, 130
sage.rings.finite_rings.element_base, 60
sage.rings.finite_rings.element_givaro, 92
sage.rings.finite_rings.element_ntl_gf2e, 105
sage.rings.finite_rings.element_pari_ffelt, 81
sage.rings.finite_rings.finite_field_base, 47
sage.rings.finite_rings.finite_field_constructor, 39
sage.rings.finite_rings.finite_field_givaro, 87
sage.rings.finite_rings.finite_field_ntl_gf2e, 103
sage.rings.finite_rings.finite_field_pari_ffelt, 79
sage.rings.finite_rings.finite_field_prime_modn, 75
sage.rings.finite_rings.homFinite_field, 70
sage.rings.finite_rings.homFinite_field_givaro, 100
sage.rings.finite_rings.homPrimeFinite_field, 77
sage.rings.finite_rings.homset, 68
sage.rings.finite_rings.integer_mod, 14
sage.rings.finite_rings.integer_mod_ring, 1
sage.rings.finite_rings.residue_field, 111
INDEX

A
a_times_b_minus_c() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 94
a_times_b_minus_c() (sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro method), 88
a_times_b_plus_c() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 94
a_times_b_plus_c() (sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro method), 88
additive_order() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 61
additive_order() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 16
algebraic_closure() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic method), 128
algebraic_closure() (sage.rings.finite_rings.finite_field_base.FiniteField method), 47
AlgebraicClosureFiniteField() (in module sage.rings.algebraic_closure_finite_field), 123
AlgebraicClosureFiniteField_generic (class in sage.rings.algebraic_closure_finite_field), 128
AlgebraicClosureFiniteField_pseudo_conway (class in sage.rings.algebraic_closure_finite_field), 130
AlgebraicClosureFiniteFieldElement (class in sage.rings.algebraic_closure_finite_field), 124
as_finite_field_element() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement method), 124

C
c_minus_a_times_b() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 94
c_minus_a_times_b() (sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro method), 89
Cache_base (class in sage.rings.finite_rings.element_base), 60
Cache_givaro (class in sage.rings.finite_rings.element_givaro), 93
Cache_ntl_gf2e (class in sage.rings.finite_rings.element_ntl_gf2e), 105
cardinality() (sage.rings.finite_rings.finite_field_base.FiniteField method), 48
cardinality() (sage.rings.finite_rings.integer_mod_ring.IntegerModRingGeneric method), 6
change_level() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement method), 125
characteristic() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic method), 128
characteristic() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 94
characteristic() (sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro method), 89
characteristic() (sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e method), 104
characteristic() (sage.rings.finite_rings.finite_field_pari_ffelt.FiniteFieldElement_pari_ffelt method), 80
characteristic() (sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn method), 75
characteristic() (sage.rings.finite_rings.integer_mod_ring.IntegerModRingGeneric method), 6
charpoly() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 61
charpoly() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 106
charpoly() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 81
charpoly() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 16
check_consistency() (sage.rings.finite_rings.conway_polynomials.PseudoConwayLattice method), 131
conjugate() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 61
construction() (sage.rings.finite_rings.finite_field_base.FiniteField method), 48
construction() (sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn method), 75
construction() (sage.rings.finite_rings.residue_field.ResidueField_generic method), 117
cr() (in module sage.rings.finite_rings.conway_polynomials), 131
cr() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 16
cr() (sage.rings.finite_rings.integer_mod_ring.IntegerModFactory method), 14
cr() (sage.rings.finite_rings.integer_mod_ring.IntegerMod_abstract method), 16
degrees() (sage.rings.finite_rings.finite_field_base.FiniteField method), 50
degrees() (sage.rings.finite_rings.finite_field_base.FiniteField method), 50
degrees() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 6
divides() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 17
dual_basis() (sage.rings.finite_rings.finite_field_base.FiniteField method), 48
Element (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic attribute), 128
Element (sage.rings.finite_rings.element_givaro.Cache_givaro attribute), 80
exists_conway_polynomial() (in module sage.rings.finite_rings.conway_polynomials), 132
exponent() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 95
extension() (in module sage.rings.finite_rings.finite_field_base.FiniteField), 49
extension() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 6
fetch_int() (sage.rings.finite_rings.element_base.Cache_base method), 60
fetch_int() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 95
fetch_int() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 95
fetch_int() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 95
factored_order() (sage.rings.finite_rings.finite_field_base.FiniteField method), 50
factored_order() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 6
factored_unit_order() (sage.rings.finite_rings.element_base.FiniteField method), 50
factored_unit_order() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 6
field() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 7
FiniteField (class in sage.rings.finite_rings.finite_field_base), 47
FiniteField_givaro (class in sage.rings.finite_rings.finite_field_givaro), 87
Index

FiniteField_givaro_iterator (class in sage.rings.finite_rings.element_givaro), 99
FiniteField_givaroElement (class in sage.rings.finite_rings.element_givaro), 97
FiniteField_ntl_gf2e (class in sage.rings.finite_rings.finite_field_ntl_gf2e), 103
FiniteField_ntl_gf2eElement (class in sage.rings.finite_rings.element_ntl_gf2e), 106
FiniteField_pari_ffelt (class in sage.rings.finite_rings.finite_field_pari_ffelt), 79
FiniteField_prime_modn (class in sage.rings.finite_rings.finite_field_prime_modn), 75
FiniteFieldElement_pari_ffelt (class in sage.rings.finite_rings.element_pari_ffelt), 81
FiniteFieldFactory (class in sage.rings.finite_rings.finite_field_constructor), 41
FiniteFieldHomomorphism_generic (class in sage.rings.finite_rings.hom_finite_field), 72
FiniteFieldHomomorphism_givaro (class in sage.rings.finite_rings.hom_finite_field_givaro), 100
FiniteFieldHomomorphism_prime (class in sage.rings.finite_rings.hom_prime_finite_field), 77
FiniteFieldHomset (class in sage.rings.finite_rings.homset), 68
FinitePolyExtElement (class in sage.rings.finite_rings.element_base), 61
FiniteRingElement (class in sage.rings.finite_rings.element_base), 67
fixed_field() (sage.rings.finite_rings.hom_finite_field.FrobeniusEndomorphism_finite_field method), 73
fixed_field() (sage.rings.finite_rings.hom_finite_field_givaro.FrobeniusEndomorphism_givaro method), 100
fixed_field() (sage.rings.finite_rings.hom_prime_finite_field.FrobeniusEndomorphism_prime method), 77
free_module() (sage.rings.finite_rings.finite_field_base.FiniteField method), 51
frobenius() (sage.rings.finite_rings.finite_field_base.FiniteField method), 52
frobenius_endomorphism() (sage.rings.finite_rings.finite_field_base.FiniteField method), 52
frobenius_endomorphism() (sage.rings.finite_rings.hom_prime_finite_field.FrobeniusEndomorphism_prime method), 89
FrobeniusEndomorphism_finite_field (class in sage.rings.finite_rings.hom_finite_field), 73
FrobeniusEndomorphism_givaro (class in sage.rings.finite_rings.hom_finite_field_givaro), 100
FrobeniusEndomorphism_prime (class in sage.rings.finite_rings.hom_prime_finite_field), 77
G
gcd() (sage.rings.finite_rings.integer_mod.IntegerMod_gmp method), 27
gcd() (sage.rings.finite_rings.integer_mod.IntegerMod_int method), 28
gcd() (sage.rings.finite_rings.integer_mod.IntegerMod_int64 method), 31
gen() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic method), 128
gen() (sage.rings.finite_rings.finite_field_base.FiniteField method), 53
gen() (sage.rings.finite_rings.finite_field_base.FiniteField_element_givaro.Cache_givaro method), 95
gen() (sage.rings.finite_rings.finite_field_base.FiniteField method), 90
gen() (sage.rings.finite_rings.finite_field_homset.Element_givaro.Cache_givaro method), 95
gen() (sage.rings.finite_rings.finite_field_prime_modn.Element_givaro.Cache_givaro method), 91
gen() (sage.rings.finite_rings.integer_mod.IntegerMod_gmp method), 4
ideal() (sage.rings.finite_rings.residue_field.ResidueField_generic method), 118
import_data() (sage.rings.finite_rings.element_ntl_gf2e.Cache_ntl_gf2e method), 106
inclusion() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic method), 129
index() (sage.rings.finite_rings.homset.FiniteFieldHomset method), 68
Int_to_IntegerMod (class in sage.rings.finite_rings.integer_mod), 15
int_to_log() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 95
int_to_log() (sage.rings.finite_rings.finite_field_givaro.Cache_givaro method), 91
integer_representation() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 97

139
integer_representation() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 107
Integer_to_IntegerMod (class in sage.rings.finite_rings.integer_mod), 33
IntegerMod() (in module sage.rings.finite_rings.integer_mod), 15
IntegerMod_abstract (class in sage.rings.finite_rings.integer_mod), 15
IntegerMod_gmp (class in sage.rings.finite_rings.integer_mod), 27
IntegerMod_hom (class in sage.rings.finite_rings.integer_mod), 28
IntegerMod_int (class in sage.rings.finite_rings.integer_mod), 28
IntegerMod_int64 (class in sage.rings.finite_rings.integer_mod), 31
IntegerMod_to_Integer (class in sage.rings.finite_rings.integer_mod), 32
IntegerMod_to_IntegerMod (class in sage.rings.finite_rings.integer_mod), 32
IntegerModFactory (class in sage.rings.finite_rings.integer_mod_ring), 1
IntegerModRing_generic (class in sage.rings.finite_rings.integer_mod_ring), 4
inverse() (sage.rings.finite_rings.hom_field.FrobeniusEndomorphism_field method), 73
inverses (sage.rings.finite_rings.integer_mod.NativeIntStruct attribute), 34
is_aut() (sage.rings.finite_rings.homset.FiniteFieldHomset method), 68
is_conway() (sage.rings.finite_rings.integer_field_base.FiniteField method), 53
is_field() (sage.rings.finite_rings.integer_field_base.FiniteField method), 53
is_field() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 7
isFieldType() (in module sage.rings.finite_rings.integer_field_base), 60
isFieldTypeElement() (in module sage.rings.finite_rings.integer_element_base), 67
is_identity() (sage.rings.finite_rings.hom_field.FrobeniusEndomorphism_field method), 73
is_injective() (sage.rings.finite_rings.hom_field.FiniteFieldHomomorphism_generic method), 72
is_injective() (sage.rings.finite_rings.hom_field.FrobeniusEndomorphism_field method), 74
is_injective() (sage.rings.finite_rings.integer_mod.Integer_to_IntegerMod method), 33
is_injective() (sage.rings.finite_rings.integer_mod.IntegerMod_to_IntegerMod method), 32
isIntegerMod() (in module sage.rings.finite_rings.integer_mod_ring), 34
isIntegerModRing() (in module sage.rings.finite_rings.integer_mod_ring), 14
is_integral_domain() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 8
is_nilpotent() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 17
is_noetherian() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 8
is_one() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 97
is_one() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 107
is_one() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 82
is_one() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 18
is_one() (sage.rings.finite_rings.integer_mod.IntegerMod_gmp method), 27
is_one() (sage.rings.finite_rings.integer_mod.IntegerMod_int method), 28
is_one() (sage.rings.finite_rings.integer_mod.IntegerMod_int64 method), 31
is_perfect() (sage.rings.finite_rings.integer_field_base.FiniteField method), 53
is_prime_field() (sage.rings.finite_rings.integer_field_base.FiniteField method), 54
is_prime_field() (sage.rings.finite_rings.integer_field_prime_modn.FiniteField_prime_modn method), 76
is_prime_field() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 8
isPrimitiveRoot() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 46
is_square() (sage.rings.algebraic_closure_field.AlgebraicClosureFiniteFieldElement method), 126
is_square() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 62
is_square() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 97
is_square() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 107
is_square() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 82
is_square() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 18
is_surjective() (sage.rings.finite_rings.hom_finite_field.FiniteFieldHomomorphism_generic method), 72
is_surjective() (sage.rings.finite_rings.hom_finite_field.FrobeniusEndomorphism_finite_field method), 74
is_surjective() (sage.rings.finite_rings.integer_mod.Integer_to_IntervalMod method), 33
is_surjective() (sage.rings.finite_rings.integer_mod.IntegerMod_to_IntegerMod method), 32
is_unique_factorization_domain() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 9
is_unit() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 98
is_unit() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 108
is_unit() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 82
is_unit() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 18
is_unit() (sage.rings.finite_rings.integer_mod.IntegerModAbstract method), 18
is_unit() (sage.rings.finite_rings.integer_mod.IntegerModGmp method), 27
is_unit() (sage.rings.finite_rings.integer_mod.IntegerModInt method), 29
is_unit() (sage.rings.finite_rings.integer_mod.IntegerModInt64 method), 31
is_zero() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 82

K
krull_dimension() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 9

L
late_import() (in module sage.rings.finite_rings.finite_field_ntl_gf2e), 105
lift() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 82
lift() (sage.rings.finite_rings.integer_mod.IntegerModGmp method), 27
lift() (sage.rings.finite_rings.integer_mod.IntegerModInt method), 29
lift() (sage.rings.finite_rings.integer_mod.IntegerModInt64 method), 32
lift() (sage.rings.finite_rings.residue_field.ResidueFieldGeneric method), 118
lift() (sage.rings.finite_rings.residue_field.ResidueFieldHomomorphismGlobal method), 116
lift_centered() (sage.rings.finite_rings.integer_mod.IntegerModAbstract method), 18
lift_map() (sage.rings.finite_rings.residue_field.ResidueFieldGeneric method), 119
LiftingMap (class in sage.rings.finite_rings.residue_field), 112
list() (sage.rings.finite_rings.homset.FiniteFieldHomset method), 69
list_of_elements_of_multiplicative_group() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 9
log() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 98
log() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 108
log() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 83
log() (sage.rings.finite_rings.integer_mod.IntegerModAbstract method), 19
log_to_int() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 96
log_to_int() (sage.rings.finite_rings.integer_mod.IntegerModGmp method), 91
lucas() (in module sage.rings.finite_rings.integer_mod), 35
lucas_q1() (in module sage.rings.finite_rings.integer_mod), 35

M
makeNativeIntStruct (in module sage.rings.finite_rings.integer_mod), 35
matrix() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 63
minimal_polynomial() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement method), 126
minimal_polynomial() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 63
minimal_polynomial() (sage.rings.finite_rings.integer_mod.IntegerModAbstract method), 20
minpoly() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement method), 126
minpoly() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 63
minpoly() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 108

minpoly() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 83

minpoly() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 20

Mod() (in module sage.rings.finite_rings.integer_mod), 33

mod() (in module sage.rings.finite_rings.integer_mod), 35

module

sage.rings.algebraic_closure_finite_field, 123
sage.rings.finite_rings.conway_polynomials, 130
sage.rings.finite_rings.element_base, 60
sage.rings.finite_rings.element_givaro, 92
sage.rings.finite_rings.element_ntl_gf2e, 105
sage.rings.finite_rings.element_pari_ffelt, 81
sage.rings.finite_rings.finite_field_base, 47
sage.rings.finite_rings.finite_field_constructor, 39
sage.rings.finite_rings.finite_field_givaro, 87
sage.rings.finite_rings.finite_field_ntl_gf2e, 103
sage.rings.finite_rings.finite_field_pari_ffelt, 79
sage.rings.finite_rings.finite_field_prime_modn, 75
sage.rings.finite_rings.homFiniteField, 70
sage.rings.finite_rings.homFiniteField_givaro, 100
sage.rings.finite_rings.hom_prime_finite_field, 77
sage.rings.finite_rings.homset, 68
sage.rings.finite_rings.integer_mod, 14
sage.rings.finite_rings.integer_mod_ring, 1
sage.rings.finite_rings.residue_field, 111

modulus() (sage.rings.finite_rings.finite_field_base.FiniteField method), 54

modulus() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 20

multiplicative_generator() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 9

multiplicative_generator() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 9

multiplicative_group_is_cyclic() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 10

multiplicative_order() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement method), 126

multiplicative_order() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 64

multiplicative_order() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 98

multiplicative_order() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 84

multiplicative_order() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 20

multiplicative_subgroups() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 10

N

NativeIntStruct (class in sage.rings.finite_rings.integer_mod), 34

ngens() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic method), 129

ngens() (sage.rings.finite_rings.finite_field_base.FiniteField method), 55

norm() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 64

norm() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 20
nth_root() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 64
nth_root() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 21

O
order() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 96
order() (sage.rings.finite_rings.element_ntl_gf2e.Cache_ntl_gf2e method), 106
order() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 96
order() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 98
order() (sage.rings.finite_rings.element_ntl_gf2e.Cache_ntl_gf2e method), 109
order() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 84
order() (sage.rings.finite_rings.finite_field_base.FiniteField method), 55
order() (sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro method), 91
order() (sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro method), 105
order() (sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn method), 76
order() (sage.rings.finite_rings.hom_finite_field.FrobeniusEndomorphism_finite_field method), 74
order() (sage.rings.finite_rings.homset.FiniteFieldHomset method), 70
order() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 11
order_c() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 96

P
polynomial() (sage.rings.finite_rings.conway_polynomials.PseudoConwayLattice method), 131
canonical_polynomial() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 98
polynomial() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 98
polynomial() (sage.rings.finite_rings.element_ntl_gf2e.Cache_ntl_gf2e method), 106
polynomial() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 109
polynomial() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 84
polynomial() (sage.rings.finite_rings.finite_field_base.FiniteField method), 55
polynomial() (sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro method), 91
polynomial() (sage.rings.finite_rings.integer_mod_ring.IntegerModAbstract method), 22
polynomial_ring() (sage.rings.finite_rings.finite_field_base.FiniteField method), 56
power() (sage.rings.finite_rings.hom_finite_field.FrobeniusEndomorphism_finite_field method), 74
precompute_table() (sage.rings.finite_rings.integer_mod_ring.NativeIntStruct method), 34
precompute_table() (sage.rings.finite_rings.integer_mod_integermod decorator method), 34
prime_subfield() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 11
prime_subfield() (sage.rings.finite_rings.integer_mod_integer_mod method), 91
primitive_element() (sage.rings.finite_rings.finite_field_base.FiniteField method), 56
-polynomial() (sage.rings.finite_rings.conway_polynomials.PseudoConwayLattice method), 130
PseudoConwayLattice (class in sage.rings.finite_rings.conway_polynomials), 130
pth_power() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement method), 127
pth_power() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 65
pth_root() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement method), 127
pth_root() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 66

Q
quadratic_nonresidue() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 11

R
random_element() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 96
random_element() (sage.rings.finite_rings.finite_field_base.FiniteField method), 57
random_element() (sage.rings.finite_rings.element_givaro.FiniteField_givaro method), 92
random_element() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 11
rational_reconstruction() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 22
reduction_map() (sage.rings.finite_rings.residue_field.ResidueField_generic method), 119
RationalFunction_field (class in sage.rings.finite_rings.element_givaro.Cache_givaro), 97
ResidueField_generic (class in sage.rings.finite_rings.residue_field), 117
ResidueFieldFactory (class in sage.rings.finite_rings.residue_field), 113
ResidueFieldHomomorphism_global (class in sage.rings.finite_rings.residue_field), 115
ResidueFiniteField_givaro (class in sage.rings.finite_rings.residue_field), 120
ResidueFiniteField_ntl_gf2e (class in sage.rings.finite_rings.residue_field), 121
ResidueFiniteField_pari_ffelt (class in sage.rings.finite_rings.residue_field), 121
ResidueFiniteField_prime_modn (class in sage.rings.finite_rings.residue_field), 122

S

sage.rings.algebraic_closure_finite_field module, 123
sage.rings.finite_rings.conway_polynomials module, 130
sage.rings.finite_rings.element_base module, 60
sage.rings.finite_rings.element_givaro module, 92
sage.rings.finite_rings.element_ntl_gf2e module, 105
sage.rings.finite_rings.element_pari_ffelt module, 81
sage.rings.finite_rings.finite_field_base module, 47
sage.rings.finite_rings.finite_field_constructor module, 39
sage.rings.finite_rings.finite_field_givaro module, 87
sage.rings.finite_rings.finite_field_ntl_gf2e module, 103
sage.rings.finite_rings.finite_field_pari_ffelt module, 79
sage.rings.finite_rings.finite_field_prime_modn module, 75
sage.rings.finite_rings.homFiniteField module, 70
sage.rings.finite_rings.homFiniteField_givaro module, 100
sage.rings.finite_rings.hom_prime_finite_field module, 77
sage.rings.finite_rings.homset module, 68
sage.rings.finite_rings.integer_mod module, 14
sage.rings.finite_rings.integer_mod_ring module, 1
sage.rings.finite_rings.residue_field module, 111

section() (sage.rings.finite_rings.homFiniteField.FiniteFieldHomomorphism_generic method), 72
section() (sage.rings.finite_rings.integer_mod.Integer_to_IntegerMod method), 33
section() (sage.rings.finite_rings.residue_field.ReductionMap method), 113
section() (sage.rings.finite_rings.residue_field.ResidueFieldHomomorphism_global method), 116
SectionFiniteFieldHomomorphism_generic (class in sage.rings.finite_rings.homFiniteField), 74
Section FiniteFieldHomomorphism_givaro (class in sage.rings.finite_rings.hom_finite_field_givaro), 100
Section FiniteFieldHomomorphism_prime (class in sage.rings.finite_rings.hom_prime_finite_field), 77
some_elements () (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic method), 129
some_elements () (sage.rings.finite_rings.finite_field_base.FiniteField method), 57
sqrt () (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic method), 127
sqrt () (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 66
sqrt () (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 98
sqrt () (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 109
sqrt () (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 23
sqrt () (sage.rings.finite_rings.integer_mod.IntegerMod_int method), 29
square_root () (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 66
square_root () (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 24
square_root_mod_prime () (in module sage.rings.finite_rings.integer_mod), 36
square_root_mod_prime_power () (in module sage.rings.finite_rings.integer_mod), 36
square_roots_of_one () (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 11
subfield () (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic method), 129
subfield () (sage.rings.finite_rings.finite_field_base.FiniteField method), 57
subfields () (sage.rings.finite_rings.finite_field_base.FiniteField method), 58

T

table (sage.rings.finite_rings.integer_mod.NativeIntStruct attribute), 34
trace () (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 67
trace () (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 109
trace () (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 26

U

unit_gens () (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 12
unit_group () (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 12
unit_group_exponent () (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 13
unit_group_order () (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 14
unpickle_Cache_givaro () (in module sage.rings.finite_rings.element_givaro), 99
unpickle_FiniteField_ext () (in module sage.rings.finite_rings.finite_field_base), 60
unpickle_FiniteField_givaroElement () (in module sage.rings.finite_rings.element_givaro), 100
unpickle_FiniteField_prm () (in module sage.rings.finite_rings.finite_field_base), 60
unpickle_FiniteFieldElement_pari_ffelt () (in module sage.rings.finite_rings.element_pari_ffelt), 85
unpickleFiniteField_ntl_gf2eElement () (in module sage.rings.finite_rings.element_ntl_gf2e), 110

V

valuation () (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 26

W

weight () (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 110

Z

zeta () (sage.rings.finite_rings.finite_field_base.FiniteField method), 59
zeta_order () (sage.rings.finite_rings.finite_field_base.FiniteField method), 59