CONTENTS

1 Finite Rings 1
 1.1 Ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n 1
 1.2 Elements of $\mathbb{Z}/n\mathbb{Z}$... 15

2 Finite Fields 39
 2.1 Finite Fields ... 39
 2.2 Base Classes for Finite Fields ... 47
 2.3 Base class for finite field elements 61
 2.4 Homset for Finite Fields .. 69
 2.5 Finite field morphisms .. 71

3 Prime Fields 77
 3.1 Finite Prime Fields ... 77
 3.2 Finite field morphisms for prime fields 79

4 Finite Fields Using Pari 81
 4.1 Finite fields implemented via PARI’s FFELT type 81
 4.2 Finite field elements implemented via PARI’s FFELT type 83

5 Finite Fields Using Givaro 89
 5.1 Givaro Finite Field ... 89
 5.2 Givaro Field Elements .. 94
 5.3 Finite field morphisms using Givaro 102

6 Finite Fields of Characteristic 2 Using NTL 105
 6.1 Finite Fields of Characteristic 2 105
 6.2 Finite Fields of characteristic 2 107

7 Miscellaneous 113
 7.1 Finite residue fields ... 113
 7.2 Algebraic closures of finite fields 125
 7.3 Routines for Conway and pseudo-Conway polynomials 133

8 Indices and Tables 137

Python Module Index 139

Index 141
1.1 Ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n

EXAMPLES:

```
sage: R = Integers(97)
sage: a = R(5)
sage: a**1000000000000000000000000000000000000000000000000000000000000000
61
```

This example illustrates the relation between $\mathbb{Z}/p\mathbb{Z}$ and \mathbb{F}_p. In particular, there is a canonical map to \mathbb{F}_p, but not in the other direction.

```
sage: r = Integers(7)
sage: s = GF(7)
sage: r.has_coerce_map_from(s)
False
sage: s.has_coerce_map_from(r)
True
sage: s(1) + r(1)
2
sage: parent(s(1) + r(1))
Finite Field of size 7
sage: parent(r(1) + s(1))
Finite Field of size 7
```

We list the elements of $\mathbb{Z}/3\mathbb{Z}$:

```
sage: R = Integers(3)
sage: list(R)
[0, 1, 2]
```

AUTHORS:
- William Stein (initial code)
- David Joyner (2005-12-22): most examples
- Robert Bradshaw (2006-08-24): convert to SageX (Cython)
- Simon King (2011-04-21): allow to prescribe a category
- Simon King (2013-09): Only allow to prescribe the category of fields
class sage.rings.finite_rings.integer_mod_ring.IntegerModFactory
 Bases: sage.structure.factory.UniqueFactory

Return the quotient ring \(\mathbb{Z}/n\mathbb{Z} \).

INPUT:

- order – integer (default: 0); positive or negative
- is_field – bool (default: False); assert that the order is prime and hence the quotient ring belongs to the
 category of fields
- category (optional) - the category that the quotient ring belongs to.

Note: The optional argument is_field is not part of the cache key. Hence, this factory will create precisely
one instance of \(\mathbb{Z}/n\mathbb{Z} \). However, if is_field is true, then a previously created instance of the quotient ring will
be updated to be in the category of fields.

Use with care! Erroneously putting \(\mathbb{Z}/n\mathbb{Z} \) into the category of fields may have consequences that can compro-
mise a whole Sage session, so that a restart will be needed.

EXAMPLES:

```python
sage: IntegerModRing(15)
Ring of integers modulo 15
sage: IntegerModRing(7)
Ring of integers modulo 7
sage: IntegerModRing(-100)
Ring of integers modulo 100
```

Note that you can also use Integers, which is a synonym for IntegerModRing.

```python
sage: Integers(18)
Ring of integers modulo 18
sage: Integers() is Integers(0) is ZZ
True
```

Note: Testing whether a quotient ring \(\mathbb{Z}/n\mathbb{Z} \) is a field can of course be very costly. By default, it is not tested
whether \(n \) is prime or not, in contrast to GF(). If the user is sure that the modulus is prime and wants to avoid a
primality test, (s)he can provide category=Fields() when constructing the quotient ring, and then the result
will behave like a field. If the category is not provided during initialisation, and it is found out later that the ring
is in fact a field, then the category will be changed at runtime, having the same effect as providing Fields()
during initialisation.

EXAMPLES:

```python
sage: R = IntegerModRing(5)
sage: R.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
sage: R in Fields()
True
```

(continues on next page)
Warning: If the optional argument is_field was used by mistake, there is currently no way to revert its impact, even though IntegerModRing_generic.is_field() with the optional argument proof=True would return the correct answer. So, prescribe is_field=True only if you know what your are doing!

EXAMPLES:

```
sage: R = IntegerModRing(33, is_field=True)
sage: R in Fields()
True
sage: R.is_field()
True
```

If the optional argument proof = True is provided, primality is tested and the mistaken category assignment is reported:

```
sage: R.is_field(proof=True)
Traceback (most recent call last):
... ValueError: THIS SAGE SESSION MIGHT BE SERIOUSLY COMPROMISED!
The order 33 is not prime, but this ring has been put into the category of fields. This may already have consequences in other parts of Sage. Either it was a mistake of the user, or a probabilistic primality test has failed. In the latter case, please inform the developers.
```

However, the mistaken assignment is not automatically corrected:

```
sage: R in Fields()
True
```

To avoid side-effects of this test on other tests, we clear the cache of the ring factory:

```
sage: IntegerModRing._cache.clear()
sage: Zmod.create_key_and_extra_args(order=0, is_field=False, category=None)
(7, { })
sage: Zmod.create_key_and_extra_args(7, True)
(7, {'category': Category of fields})
```
create_object(\texttt{version}, \texttt{order}, **\texttt{kwds})

EXAMPLES:

\begin{verbatim}
sage: R = Integers(10)
sage: TestSuite(R).run() # indirect doctest
\end{verbatim}

get_object(\texttt{version}, \texttt{key}, \texttt{extra_args})

class \texttt{sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic}(\texttt{order}, \texttt{cache=\texttt{None}}, \texttt{category=\texttt{None}})

Bases: \texttt{sage.rings.quotient_ring.QuotientRing_generic}

The ring of integers modulo \(N\).

INPUT:

\begin{itemize}
\item order – an integer
\item category – a subcategory of \texttt{CommutativeRings()} (the default)
\end{itemize}

OUTPUT:

The ring of integers modulo \(N\).

EXAMPLES:

First we compute with integers modulo 29.

\begin{verbatim}
sage: FF = IntegerModRing(29)
sage: FF
Ring of integers modulo 29
sage: FF.category()
Join of Category of finite commutative rings
 and Category of subquotients of monoids
 and Category of quotients of semigroups
 and Category of finite enumerated sets
sage: FF.is_field()
True
sage: FF.characteristic()
29
sage: FF.order()
29
sage: gens = FF.unit_gens()
sage: a = gens[0]
sage: a
2
sage: a.is_square()
False
sage: def pow(i): return a**i
sage: [pow(i) for i in range(16)]
[1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27]
sage: TestSuite(FF).run()
\end{verbatim}

We have seen above that an integer mod ring is, by default, not initialised as an object in the category of fields. However, one can force it to be. Moreover, testing containment in the category of fields my re-initialise the category of the integer mod ring:
sage: F19 = IntegerModRing(19, is_field=True)
sage: F19.category().is_subcategory(Fields())
True
sage: F23 = IntegerModRing(23)
sage: F23.category().is_subcategory(Fields())
False
sage: F23 in Fields()
True
sage: F23.category().is_subcategory(Fields())
True
sage: TestSuite(F19).run()
sage: TestSuite(F23).run()

By trac ticket #15229, there is a unique instance of the integral quotient ring of a given order. Using the IntegerModRing() factory twice, and using is_field=True the second time, will update the category of the unique instance:

sage: F31a = IntegerModRing(31)
sage: F31a.category().is_subcategory(Fields())
False
sage: F31b = IntegerModRing(31, is_field=True)

sage: F31a is F31b
True
sage: F31a.category().is_subcategory(Fields())
True

Next we compute with the integers modulo 16.

sage: Z16 = IntegerModRing(16)
sage: Z16.category()
Join of Category of finite commutative rings
 and Category of subquotients of monoids
 and Category of quotients of semigroups
 and Category of finite enumerated sets
sage: Z16.is_field()
False
sage: Z16.order()
16
sage: Z16.characteristic()
16
sage: gens = Z16.unit_gens()
sage: gens
(15, 5)

sage: a = gens[0]
sage: b = gens[1]
sage: def powa(i): return a**i
sage: def powb(i): return b**i
sage: gp_exp = FF.unit_group_exponent()
sage: gp_exp
28
sage: [powa(i) for i in range(15)]
[1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1, 15, 1]
sage: [powb(i) for i in range(15)]
(continues on next page)
[1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9, 13, 1, 5, 9]
sage: a.multiplicative_order()
2
sage: b.multiplicative_order()
4
sage: TestSuite(Z16).run()

Saving and loading:

sage: R = Integers(100000)
sage: TestSuite(R).run() # long time (17s on sage.math, 2011)

Testing ideals and quotients:

sage: Z10 = Integers(10)
sage: I = Z10.principal_ideal(0)
sage: Z10.quotient(I) == Z10
True
sage: I = Z10.principal_ideal(2)
sage: Z10.quotient(I) == Z10
False
sage: I.is_prime()
True

sage: R = IntegerModRing(97)
sage: a = R(5)
sage: a**(10^62)
61

cardinality()
Return the cardinality of this ring.

EXAMPLES:

sage: Zmod(87).cardinality()
87

characteristic()
EXAMPLES:

sage: R = IntegerModRing(18)
sage: FF = IntegerModRing(17)
sage: FF.characteristic()
17
sage: R.characteristic()
18

degree()
Return 1.

EXAMPLES:
sage: R = Integers(12345678900)
sage: R.degree()
1

extension\((\text{poly}, \text{name}=None, \text{names}=None, **\text{kwds})\)
Return an algebraic extension of \text{self}. See \text{sage.rings.ring.CommutativeRing.extension()} for more information.

EXAMPLES:

\begin{verbatim}
sage: R.<t> = QQ[]
sage: Integers(8).extension(t^2 - 3)
Univariate Quotient Polynomial Ring in t over Ring of integers modulo 8 with modulus t^2 + 5
\end{verbatim}

factored_order()

EXAMPLES:

\begin{verbatim}
sage: R = IntegerModRing(18)
sage: FF = IntegerModRing(17)
sage: R.factored_order()
2 * 3^2
sage: FF.factored_order()
17
\end{verbatim}

factored_unit_order()

Return a list of Factorization objects, each the factorization of the order of the units in a \(\mathbb{Z}/p^n\mathbb{Z}\) component of this group (using the Chinese Remainder Theorem).

EXAMPLES:

\begin{verbatim}
sage: R = Integers(8*9*25*17*29)
sage: R.factored_unit_order()
[2^2, 2 * 3, 2^2 * 5, 2^4, 2^2 * 7]
\end{verbatim}

field()

If this ring is a field, return the corresponding field as a finite field, which may have extra functionality and structure. Otherwise, raise a ValueError.

EXAMPLES:

\begin{verbatim}
sage: R = Integers(7); R
Ring of integers modulo 7
sage: R.field()
Finite Field of size 7
sage: R = Integers(9)
sage: R.field()
Traceback (most recent call last):
...
ValueError: self must be a field
\end{verbatim}

is_field\((\text{proof}=\text{None})\)

Return True precisely if the order is prime.

INPUT:

1.1. \text{Ring} \(\mathbb{Z}/n\mathbb{Z}\) of integers modulo \(n\)
• proof (optional bool or None, default None): If False, then test whether the category of the quotient is a subcategory of Fields(), or do a probabilistic primality test. If None, then test the category and then do a primality test according to the global arithmetic proof settings. If True, do a deterministic primality test.

If it is found (perhaps probabilistically) that the ring is a field, then the category of the ring is refined to include the category of fields. This may change the Python class of the ring!

EXAMPLES:

```
sage: R = IntegerModRing(18)
sage: R.is_field()
False
sage: FF = IntegerModRing(17)
sage: FF.is_field()
True
```

By trac ticket #15229, the category of the ring is refined, if it is found that the ring is in fact a field:

```
sage: R = IntegerModRing(127)
sage: R.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
sage: R.is_field()
True
sage: R.category()
Join of Category of finite enumerated fields
    and Category of subquotients of monoids
    and Category of quotients of semigroups
```

It is possible to mistakenly put \(\mathbb{Z}/n\mathbb{Z} \) into the category of fields. In this case, is_field() will return True without performing a primality check. However, if the optional argument proof = True is provided, primality is tested and the mistake is uncovered in a warning message:

```
sage: R = IntegerModRing(21, is_field=True)
sage: R.is_field()
True
sage: R.is_field(proof=True)
Traceback (most recent call last):
  ... ValueError: THIS SAGE SESSION MIGHT BE SERIOUSLY COMPROMISED!
The order 21 is not prime, but this ring has been put into the category of fields. This may already have consequences in other parts of Sage. Either it was a mistake of the user, or a probabilistic primality test has failed.
In the latter case, please inform the developers.
```

To avoid side-effects of this test on other tests, we clear the cache of the ring factory:

```
sage: IntegerModRing._cache.clear()
```

is_integral_domain(proof=None)
Return True if and only if the order of self is prime.
is_noetherian()
Check if self is a Noetherian ring.

EXAMPLES:

```python
sage: Integers(8).is_noetherian()
True
```

is_prime_field()
Return True if the order is prime.

EXAMPLES:

```python
sage: Zmod(7).is_prime_field()
True
sage: Zmod(8).is_prime_field()
False
```

is_unique_factorization_domain(proof=None)
Return True if and only if the order of self is prime.

EXAMPLES:

```python
sage: Integers(389).is_unique_factorization_domain()
True
sage: Integers(389^2).is_unique_factorization_domain()
False
```

krull_dimension()
Return the Krull dimension of self.

EXAMPLES:

```python
sage: Integers(18).krull_dimension()
0
```

list_of_elements_of_multiplicative_group()
Return a list of all invertible elements, as python ints.

EXAMPLES:

```python
sage: R = Zmod(12)
sage: L = R.list_of_elements_of_multiplicative_group(); L
[1, 5, 7, 11]
sage: type(L[0])
<... 'int'>
sage: Zmod(1).list_of_elements_of_multiplicative_group()
[0]
```

modulus()
Return the polynomial $x - 1$ over this ring.

1.1. Ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n
Note: This function exists for consistency with the finite-field modulus function.

EXAMPLES:

```python
sage: R = IntegerModRing(18)
sage: R.modulus()
x + 17
sage: R = IntegerModRing(17)
sage: R.modulus()
x + 16
```

multiplicative_generator()

Return a generator for the multiplicative group of this ring, assuming the multiplicative group is cyclic.

Use the unit_gens function to obtain generators even in the non-cyclic case.

EXAMPLES:

```python
sage: R = Integers(7); R
Ring of integers modulo 7
sage: R.multiplicative_generator()
3
sage: R = Integers(9)
sage: R.multiplicative_generator()
2
sage: Integers(8).multiplicative_generator()
Traceback (most recent call last):
... ValueError: multiplicative group of this ring is not cyclic
sage: Integers(4).multiplicative_generator()
3
sage: Integers(25*3).multiplicative_generator()
Traceback (most recent call last):
... ValueError: multiplicative group of this ring is not cyclic
sage: Integers(25*3).unit_gens()
(26, 52)
sage: Integers(162).unit_gens()
(83,)
```

multiplicative_group_is_cyclic()

Return True if the multiplicative group of this field is cyclic. This is the case exactly when the order is less than 8, a power of an odd prime, or twice a power of an odd prime.

EXAMPLES:

```python
sage: R = Integers(7); R
Ring of integers modulo 7
sage: R.multiplicative_group_is_cyclic()
True
sage: R = Integers(9)
sage: R.multiplicative_group_is_cyclic()
True
sage: Integers(8).multiplicative_group_is_cyclic()
```

(continues on next page)
False

```python
sage: Integers(4).multiplicative_group_is_cyclic()
True
sage: Integers(25*3).multiplicative_group_is_cyclic()
False
```

We test that trac ticket #5250 is fixed:

```python
sage: Integers(162).multiplicative_group_is_cyclic()
True
```

`multiplicative_subgroups()`

Return generators for each subgroup of \((\mathbb{Z}/N\mathbb{Z})^*\).

EXAMPLES:

```python
sage: Integers(5).multiplicative_subgroups()
((2,), (4,), ())
sage: Integers(15).multiplicative_subgroups()
(((11, 7), (11, 4), (2,), (11,), (14,), (7,), (4,), ()),)
sage: Integers(2).multiplicative_subgroups()
((,),)
sage: len(Integers(341).multiplicative_subgroups())
80
```

`order()`

Return the order of this ring.

EXAMPLES:

```python
sage: Zmod(87).order()
87
```

`quadratic_nonresidue()`

Return a quadratic non-residue in \(self\).

EXAMPLES:

```python
sage: R = Integers(17)
sage: R.quadratic_nonresidue()
3
sage: R(3).is_square()
False
```

`random_element(bound=None)`

Return a random element of this ring.

INPUT:

- `bound`, a positive integer or `None` (the default). Is given, return the coercion of an integer in the interval \([-\text{bound}, \text{bound}]\) into this ring.

EXAMPLES:
We test bound-option:

\begin{verbatim}
sage: R.random_element(2) in [R(16), R(17), R(0), R(1), R(2)] True
\end{verbatim}

\section*{square_roots_of_one()}

Return all square roots of 1 in self, i.e., all solutions to \(x^2 - 1 = 0\).

\begin{verbatim}
OUTPUT:
The square roots of 1 in self as a tuple.

EXAMPLES:
\end{verbatim}

\begin{verbatim}
sage: R = Integers(2^10)
sage: [x for x in R if x^2 == 1] [1, 511, 513, 1023]
sage: R.square_roots_of_one() (1, 511, 513, 1023)
sage: v = Integers(9*5).square_roots_of_one(); v (1, 19, 26, 44)
sage: [x^2 for x in v] [1, 1, 1, 1]
sage: v = Integers(9*5*8).square_roots_of_one(); v (1, 19, 71, 89, 109, 161, 179, 181, 199, 251, 269, 271, 289, 341, 359)
sage: [x^2 for x in v] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
\end{verbatim}

\section*{unit_gens(**kwds)}

Returns generators for the unit group \((\mathbb{Z}/N\mathbb{Z})^*\).

We compute the list of generators using a deterministic algorithm, so the generators list will always be the same. For each odd prime divisor of \(N\) there will be exactly one corresponding generator; if \(N\) is even there will be 0, 1 or 2 generators according to whether 2 divides \(N\) to order 1, 2 or \(\geq 3\).

\begin{verbatim}
OUTPUT:
A tuple containing the units of self.

EXAMPLES:
\end{verbatim}

\begin{verbatim}
sage: R = IntegerModRing(18)
sage: R.unit_gens() (11,)
sage: R = IntegerModRing(17)
sage: R.unit_gens() (3,)
sage: IntegerModRing(next_prime(10^30)).unit_gens() (5,)
\end{verbatim}

The choice of generators is affected by the optional keyword \texttt{algorithm}; this can be \texttt{'sage'} (default) or \texttt{'pari'}. See \texttt{unit_group()} for details.
sage: A = Zmod(55)
sage: A.unit_gens(algorithm='sage')
(12, 46)
sage: A.unit_gens(algorithm='pari')
(2, 21)

unit_group(algorithm='sage')
Return the unit group of self.

INPUT:

• self – the ring \(\mathbb{Z}/n\mathbb{Z} \) for a positive integer \(n \)
• algorithm – either 'sage' (default) or 'pari'

OUTPUT:

The unit group of self. This is a finite Abelian group equipped with a distinguished set of generators, which is computed using a deterministic algorithm depending on the algorithm parameter.

• If algorithm == 'sage', the generators correspond to the prime factors \(p \mid n \) (one generator for each odd \(p \); the number of generators for \(p = 2 \) is 0, 1 or 2 depending on the order to which 2 divides \(n \)).

• If algorithm == 'pari', the generators are chosen such that their orders form a decreasing sequence with respect to divisibility.

EXAMPLES:

The output of the algorithms 'sage' and 'pari' can differ in various ways. In the following example, the same cyclic factors are computed, but in a different order:

```
sage: A = Zmod(15)
sage: G = A.unit_group(); G
Multiplicative Abelian group isomorphic to C2 x C4
sage: G.gens_values()
(11, 7)
sage: H = A.unit_group(algorithm='pari'); H
Multiplicative Abelian group isomorphic to C4 x C2
sage: H.gens_values()
(7, 11)
```

Here are two examples where the cyclic factors are isomorphic, but are ordered differently and have different generators:

```
sage: A = Zmod(40)
sage: G = A.unit_group(); G
Multiplicative Abelian group isomorphic to C2 x C2 x C4
sage: G.gens_values()
(31, 21, 17)
sage: H = A.unit_group(algorithm='pari'); H
Multiplicative Abelian group isomorphic to C4 x C2 x C2
sage: H.gens_values()
(17, 31, 21)
sage: A = Zmod(192)
sage: G = A.unit_group(); G
Multiplicative Abelian group isomorphic to C2 x C16 x C2
sage: G.gens_values()
(127, 133, 65)
sage: H = A.unit_group(algorithm='pari'); H
Multiplicative Abelian group isomorphic to C16 x C2 x C2
```

(continues on next page)
sage: H.gens_values()
(133, 127, 65)

In the following examples, the cyclic factors are not even isomorphic:

sage: A = Zmod(319)
sage: A.unit_group()
Multiplicative Abelian group isomorphic to C10 x C28
sage: A.unit_group(algorithm='pari')
Multiplicative Abelian group isomorphic to C140 x C2

sage: A = Zmod(30.factorial())
sage: A.unit_group()
Multiplicative Abelian group isomorphic to C2 x C16777216 x C3188646 x C62500 x...
→C2058 x C110 x C156 x C16 x C18 x C22 x C28
sage: A.unit_group(algorithm='pari')
Multiplicative Abelian group isomorphic to C20499647385305088000000 x C55440 x...
→C12 x C12 x C4 x C2 x C2 x C2 x C2 x C2 x C2 x C2

unit_group_exponent()
EXAMPLES:

sage: R = IntegerModRing(17)
sage: R.unit_group_exponent()
16
sage: R = IntegerModRing(18)
sage: R.unit_group_exponent()
6

unit_group_order()
Return the order of the unit group of this residue class ring.

EXAMPLES:

sage: R = Integers(500)
sage: R.unit_group_order()
200

sage.rings.finite_rings.integer_mod_ring.crt(v)
INPUT:

* v – (list) a lift of elements of \texttt{rings.IntegerMod(n)}, for various coprime moduli \texttt{n}

EXAMPLES:

sage: from sage.rings.finite_rings.integer_mod_ring import crt
sage: crt([mod(3, 8),mod(1,19),mod(7, 15)])
1027

sage.rings.finite_rings.integer_mod_ring.is_IntegerModRing(x)
Return True if \texttt{x} is an integer modulo ring.

EXAMPLES:
1.2 Elements of $\mathbb{Z}/n\mathbb{Z}$

An element of the integers modulo n.

There are three types of integer_mod classes, depending on the size of the modulus.

- `IntegerMod_int` stores its value in a `int_fast32_t` (typically an `int`); this is used if the modulus is less than $\sqrt{2^{31} - 1}$.
- `IntegerMod_int64` stores its value in a `int_fast64_t` (typically a `long long`); this is used if the modulus is less than $2^{31} - 1$. In many places, we assume that the values and the modulus actually fit inside an `unsigned long`.
- `IntegerMod_gmp` stores its value in a `mpz_t`; this can be used for an arbitrarily large modulus.

All extend `IntegerMod_abstract`.

For efficiency reasons, it stores the modulus (in all three forms, if possible) in a common (cdef) class `NativeIntStruct` rather than in the parent.

AUTHORS:
- Robert Bradshaw: most of the work
- Didier Deshommes: bit shifting
- William Stein: editing and polishing; new arith architecture
- Robert Bradshaw: implement native is_square and square_root
- William Stein: sqrt
- Maarten Derickx: moved the valuation code from the global valuation function to here

class `sage.rings.finite_rings.integer_mod.Int_to_IntegerMod`
Bases: `sage.rings.finite_rings.integer_mod.IntegerMod_hom`

EXAMPLES:

We make sure it works for every type.

```python
sage: from sage.rings.finite_rings.integer_mod import Int_to_IntegerMod
sage: Rs = [Integers(2**k) for k in range(1,50,10)]
[<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>, <type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp'>]
```
sage: fs = [Int_to_IntegerMod(R) for R in Rs]
sage: [f(-1) for f in fs]
[1, 2047, 2097151, 2147483647, 2199023255551]

sage.rings.finite_rings.integer_mod.IntegerMod(parent, value)
Create an integer modulo \(n \) with the given parent.
This is mainly for internal use.

EXAMPLES:

sage: from sage.rings.finite_rings.integer_mod import IntegerMod
sage: R = IntegerModRing(100)
sage: type(R._pyx_order.table)
<type 'list'>
sage: IntegerMod(R, 42)
42
sage: IntegerMod(R, 142)
42
sage: IntegerMod(R, 10^100 + 42)
42
sage: IntegerMod(R, -9158)
42

class sage.rings.finite_rings.integer_mod.IntegerMod_abstract
Bases: sage.rings.finite_rings.element_base.FiniteRingElement

EXAMPLES:

sage: a = Mod(10, 30^10); a
10
sage: type(a)
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp'>
sage: loads(a.dumps()) == a
True

additive_order()
Returns the additive order of self.
This is the same as self.order().

EXAMPLES:

sage: Integers(20)(2).additive_order()
10
sage: Integers(20)(7).additive_order()
20
sage: Integers(90308402384902)(2).additive_order()
45154201192451

charpoly(var='x')
Returns the characteristic polynomial of this element.

EXAMPLES:
AUTHORS:
• Craig Citro

crt(other)
Use the Chinese Remainder Theorem to find an element of the integers modulo the product of the moduli that reduces to self and to other. The modulus of other must be coprime to the modulus of self.

EXAMPLES:

```python
sage: a = mod(3,5)
sage: b = mod(2,7)
sage: a.crt(b)
23
```

```python
sage: a = mod(37,10^8)
sage: b = mod(9,3^8)
sage: a.crt(b)
125900000037
```

```python
sage: b = mod(0,1)
sage: a.crt(b) == a
True
sage: a.crt(b).modulus()
100000000
```

AUTHORS:
• Robert Bradshaw
divides(other)
Test whether self divides other.

EXAMPLES:

```python
sage: R = Zmod(6)
sage: R(2).divides(R(4))
True
sage: R(4).divides(R(2))
True
sage: R(2).divides(R(3))
False
```
generalised_log()
Return integers $[n_1, \ldots, n_d]$ such that

$$\prod_{i=1}^{d} x_i^{n_i} = \text{self},$$

where x_1, \ldots, x_d are the generators of the unit group returned by self.parent().unit_gens().
EXAMPLES:

```
sage: m = Mod(3, 1568)
sage: v = m.generalised_log(); v
[1, 3, 1]
sage: prod([Zmod(1568).unit_gens()[i] ** v[i] for i in [0..2]])
3
```

See also:
The method `log()`.

Warning: The output is given relative to the set of generators obtained by passing `algorithm='sage'` to the method `unit_gens()` of the parent (which is the default). Specifying `algorithm='pari'` usually yields a different set of generators that is incompatible with this method.

is_nilpotent()

Return True if `self` is nilpotent, i.e., some power of `self` is zero.

EXAMPLES:

```
sage: a = Integers(90384098234^3)
sage: factor(a.order())
2^3 * 191^3 * 236607587^3
sage: b = a(2*191)
sage: b.is_nilpotent()
False
sage: b = a(2*191*236607587)
sage: b.is_nilpotent()
True
```

ALGORITHM: Let \(m \geq \log_2(n) \), where \(n \) is the modulus. Then \(x \in \mathbb{Z}/n\mathbb{Z} \) is nilpotent if and only if \(x^m = 0 \).

PROOF: This is clear if you reduce to the prime power case, which you can do via the Chinese Remainder Theorem.

We could alternatively factor \(n \) and check to see if the prime divisors of \(n \) all divide \(x \). This is asymptotically slower :-).

is_one()

is_primitive_root()

Determines whether this element generates the group of units modulo \(n \).

This is only possible if the group of units is cyclic, which occurs if \(n \) is 2, 4, a power of an odd prime or twice a power of an odd prime.

EXAMPLES:

```
sage: mod(1,2).is_primitive_root()
True
sage: mod(3,4).is_primitive_root()
True
sage: mod(2,7).is_primitive_root()
False
```

(continues on next page)
is_square()

EXAMPLES:

```
sage: Mod(3,17).is_square()
False
sage: Mod(9,17).is_square()
True
sage: Mod(9,17*19^2).is_square()
True
sage: Mod(-1,17^30).is_square()
True
sage: Mod(1/9, next_prime(2^40)).is_square()
True
sage: Mod(1/25, next_prime(2^90)).is_square()
True
```

ALGORITHM: Calculate the Jacobi symbol \((self/p)\) at each prime \(p\) dividing \(n\). It must be 1 or 0 for each prime, and if it is 0 mod \(p\), where \(p^k||n\), then \(ord_p(self)\) must be even or greater than \(k\).

The case \(p = 2\) is handled separately.

AUTHORS:
- Robert Bradshaw

is_unit

lift_centered()

Lift \(self\) to a centered congruent integer.

OUTPUT:

The unique integer \(i\) such that \(-n/2 < i \leq n/2\) and \(i = self \mod n\) (where \(n\) denotes the modulus).

EXAMPLES:

```
sage: Mod(0,5).lift_centered()
0
sage: Mod(1,5).lift_centered()
1
sage: Mod(2,5).lift_centered()
2
sage: Mod(3,5).lift_centered()
-2
sage: Mod(4,5).lift_centered()
-1
sage: Mod(50,100).lift_centered()
50
sage: Mod(51,100).lift_centered()
-49
sage: Mod(-1,13^100).lift_centered()
-1
```
\texttt{log}(b=None, \textit{logarithm_exists}=False)

Return an integer x such that $b^x = a$, where a is self.

INPUT:

- self - unit modulo n
- b - a unit modulo n. If b is not given, \texttt{R.multiplicative_generator()} is used, where \texttt{R} is the parent of self.
- \textit{logarithm_exists} - a boolean (default True). If True it assumes that the logarithm exists in order to speed up the computation, the code might end up in an infinite loop if this is set to True but the logarithm does not exist.

OUTPUT: Integer x such that $b^x = a$, if this exists; a ValueError otherwise.

\textbf{Note:} If the modulus is prime and b is a generator, this calls Pari’s \texttt{znlog} function, which is rather fast. If not, it falls back on the generic discrete log implementation in \texttt{sage.groups.generic.discrete_log()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: r = Integers(125)
sage: b = r.multiplicative_generator()^3
sage: a = b^17
sage: a.log(b)
sage: a.log()

17
51
\end{verbatim}

A bigger example:

\begin{verbatim}
sage: FF = FiniteField(2^32+61)
sage: c = FF(4294967356)
sage: x = FF(2)
sage: a = c.log(x)
sage: a
2147483678
sage: x^a
4294967356
\end{verbatim}

Things that can go wrong. E.g., if the base is not a generator for the multiplicative group, or not even a unit.

\begin{verbatim}
sage: Mod(3, 7).log(Mod(2, 7))
Traceback (most recent call last):
... ValueError: No discrete log of 3 found to base 2 modulo 7
sage: a = Mod(16, 100); b = Mod(4, 100)
sage: a.log(b)
Traceback (most recent call last):
... ValueError: logarithm of 16 is not defined since it is not a unit modulo 100
\end{verbatim}

\textbf{AUTHORS:}

- David Joyner and William Stein (2005-11)
• Simon King (2010-07-07): fix a side effect on PARI

minimal_polynomial(var='x')

Returns the minimal polynomial of this element.

EXAMPLES:

```
sage: GF(241, 'a')(1).minimal_polynomial(var = 'z')
z + 240
```

minpoly(var='x')

Returns the minimal polynomial of this element.

EXAMPLES:

```
sage: GF(241, 'a')(1).minpoly()
x + 240
```

modulus

EXAMPLES:

```
sage: Mod(3,17).modulus() 17
```

multiplicative_order

Returns the multiplicative order of self.

EXAMPLES:

```
sage: Mod(-1,5).multiplicative_order() 2
sage: Mod(1,5).multiplicative_order() 1
sage: Mod(0,5).multiplicative_order() Traceback (most recent call last):
  ... ArithmeticError: multiplicative order of 0 not defined since it is not a unit modulo 5
```

norm

Returns the norm of this element, which is itself. (This is here for compatibility with higher order finite fields.)

EXAMPLES:

```
sage: k = GF(691)
sage: a = k(389)
sage: a.norm() 389
```

AUTHORS:

• Craig Citro

nth_root(n, extend=False, all=False, algorithm=None, cunningham=False)

Returns an nth root of self.

INPUT:
• **n** - integer ≥ 1
• **extend** - bool (default: True); if True, return an nth root in an extension ring, if necessary. Otherwise, raise a ValueError if the root is not in the base ring. Warning: this option is not implemented!
• **all** - bool (default: False); if True, return all nth roots of self, instead of just one.
• **algorithm** - string (default: None); The algorithm for the prime modulus case. CRT and p-adic log techniques are used to reduce to this case. 'Johnston' is the only currently supported option.
• **cunningham** - bool (default: False); In some cases, factorization of **n** is computed. If cunningham is set to True, the factorization of **n** is computed using trial division for all primes in the so called Cunningham table. Refer to sage.rings.factorint.factor_cunningham for more information. You need to install an optional package to use this method, this can be done with the following command line `sage -i cunningham_tables`

OUTPUT:
If self has an nth root, returns one (if all is False) or a list of all of them (if all is True). Otherwise, raises a ValueError (if extend is False) or a NotImplementedError (if extend is True).

Warning: The 'extend' option is not implemented (yet).

NOTES:
• If **n** = 0:
 – if all=True:
 * if self=1: all nonzero elements of the parent are returned in a list. Note that this could be very expensive for large parents.
 * otherwise: an empty list is returned
 – if all=False:
 * if self=1: self is returned
 * otherwise: a ValueError is raised
• If **n** < 0:
 – if self is invertible, the (−**n**)th root of the inverse of self is returned
 – otherwise a ValueError is raised or empty list returned.

EXAMPLES:

```sage```
sage: K = GF(31)
sage: a = K(22)
sage: K(22).nth_root(7)
13
sage: K(25).nth_root(5)
5
sage: K(23).nth_root(3)
29
sage: mod(225,2^5*3^2).nth_root(4, all=True)
[225, 129, 33, 63, 255, 159, 9, 201, 105, 279, 183, 87, 81, 273, 177, 207, 111, ...
  15, 153, 57, 249, 135, 39, 231]
sage: mod(275,2^5*7^4).nth_root(7, all=True)
```

(continues on next page)
\[[58235, 25307, 69211, 36283, 3355, 47259, 14331] \]

\[
\text{sage: } \text{mod}(1,8).\text{nth_root}(2,\text{all=True}) \\
[1, 7, 5, 3] \\
\text{sage: } \text{mod}(4,8).\text{nth_root}(2,\text{all=True}) \\
[2, 6] \\
\text{sage: } \text{mod}(1,16).\text{nth_root}(4,\text{all=True}) \\
[1, 15, 13, 3, 9, 7, 5, 11] \\
\text{sage: } (\text{mod}(22,31)^{200}).\text{nth_root}(200) \\
5 \\
\text{sage: } \text{mod}(3,6).\text{nth_root}(0,\text{all=True}) \\
[] \\
\text{sage: } \text{mod}(3,6).\text{nth_root}(0) \\
\text{Traceback (most recent call last):} \\
... \\
\text{ValueError} \\
\text{sage: } \text{mod}(1,6).\text{nth_root}(0,\text{all=True}) \\
[1, 2, 3, 4, 5] \\
\]

ALGORITHMS:

- The default for prime modulus is currently an algorithm described in the following paper:

AUTHORS:

- David Roe (2010-2-13)

polynomial(\textit{var}='x')

Returns a constant polynomial representing this value.

EXAMPLES:

\[
\text{sage: } k = \text{GF}(7) \\
\text{sage: } a = k.\text{gen}(); a \\
1 \\
\text{sage: } a.\text{polynomial()} \\
1 \\
\text{sage: } \text{type}(a.\text{polynomial()}) \\
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'> \\
\]

rational_reconstruction()

Use rational reconstruction to try to find a lift of this element to the rational numbers.

EXAMPLES:

\[
\text{sage: } R = \text{IntegerModRing}(97) \\
\text{sage: } a = R(2) / R(3) \\
\text{sage: } a \\
33 \\
\text{sage: } a.\text{rational_reconstruction()} \\
2/3 \\
\]

This method is also inherited by prime finite fields elements:

1.2. Elements of $\mathbb{Z}/n\mathbb{Z}$
```
sage: k = GF(97)
sage: a = k(RationalField()('2/3'))
sage: a
33
sage: a.rational_reconstruction()
2/3
```

sqrt(extend=True, all=False)

Return square root or square roots of self modulo n.

INPUT:

- extend - bool (default: True): if True, return a square root in an extension ring, if necessary. Otherwise, raise a `ValueError` if the square root is not in the base ring.
- all - bool (default: False): if True, return all square roots of self, instead of just one.

ALGORITHM: Calculates the square roots mod p for each of the primes p dividing the order of the ring, then lifts them p-adically and uses the CRT to find a square root mod n.

See also `square_root_mod_prime_power` and `square_root_mod_prime` (in this module) for more algorithmic details.

EXAMPLES:

```
sage: mod(-1, 17).sqrt()
4
sage: mod(5, 389).sqrt()
86
sage: mod(7, 18).sqrt()
5
sage: a = mod(14, 5^60).sqrt()
sage: a*a
14
sage: mod(15, 389).sqrt(extend=False)
Traceback (most recent call last):
... ValueError: self must be a square
sage: Mod(1/9, next_prime(2^40)).sqrt()^(-2)
9
sage: Mod(1/25, next_prime(2^90)).sqrt()^(-2)
25
```

```
sage: a = Mod(3,5); a
3
sage: x = Mod(-1, 360)
sage: x.sqrt(extend=False)
Traceback (most recent call last):
... ValueError: self must be a square
sage: y = x.sqrt(); y
sqrt359
sage: y.parent()
Univariate Quotient Polynomial Ring in sqrt359 over Ring of integers modulo 360
˓→ with modulus x^2 + 1
sage: y^2
```

(continues on next page)
We compute all square roots in several cases:

```
sage: R = Integers(5*2^3*3^2); R
Ring of integers modulo 360
sage: R(40).sqrt(all=True)
[20, 160, 200, 340]
sage: [x for x in R if x^2 == 40]  # Brute force verification
[20, 160, 200, 340]
sage: R(1).sqrt(all=True)
[1, 19, 71, 89, 91, 109, 161, 179, 181, 199, 251, 269, 271, 289, 341, 359]
sage: R(0).sqrt(all=True)
[0, 60, 120, 180, 240, 300]
sage: R = Integers(5*13^3*37); R
Ring of integers modulo 406445
sage: v = R(-1).sqrt(all=True); v
[78853, 111808, 193097, 213348, 246303, 294637, 327592]
sage: [x^2 for x in v]
[406444, 406444, 406444, 406444, 406444, 406444, 406444]
sage: v = R(169).sqrt(all=True); min(v), -max(v), len(v)
(13, 13, 104)
sage: all(x^2 == 169 for x in v)
True
```

```
sage: t = FiniteField(next_prime(2^100))(4)
sage: t.sqrt(extend = False, all = True)
[2, 1267650600228229401496703205651]
sage: t = FiniteField(next_prime(2^100))(2)
sage: t.sqrt(extend = False, all = True)
[]
```

Modulo a power of 2:

```
sage: R = Integers(2^7); R
Ring of integers modulo 128
sage: a = R(17)
sage: a.sqrt()
23
sage: a.sqrt(all=True)
[23, 41, 87, 105]
sage: [x for x in R if x^2==17]
[23, 41, 87, 105]
```

square_root(extend=True, all=False)

Return square root or square roots of self modulo n.

INPUT:

- extend - bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the square root is not in the base ring.
- all - bool (default: False); if True, return {all} square roots of self, instead of just one.
ALGORITHM: Calculates the square roots mod \(p \) for each of the primes \(p \) dividing the order of the ring, then lifts them \(p \)-adically and uses the CRT to find a square root mod \(n \).

See also \texttt{square_root_mod_prime_power} and \texttt{square_root_mod_prime} (in this module) for more algorithmic details.

EXAMPLES:

```python
sage: mod(-1, 17).sqrt()
4
sage: mod(5, 389).sqrt()
86
sage: mod(7, 18).sqrt()
5
sage: a = mod(14, 5^60).sqrt()
sage: a*a
14
sage: mod(15, 389).sqrt(extend=False)
Traceback (most recent call last):
  ... ValueError: self must be a square
sage: Mod(1/9, next_prime(2^40)).sqrt()^(-2)
9
sage: Mod(1/25, next_prime(2^90)).sqrt()^(-2)
25
```

```python
sage: a = Mod(3,5); a
3
sage: x = Mod(-1, 360)
sage: x.sqrt(extend=False)
Traceback (most recent call last):
  ... ValueError: self must be a square
sage: y = x.sqrt(); y
sqrt359
sage: y.parent()
Univariate Quotient Polynomial Ring in sqrt359 over Ring of integers modulo 360
˓→ with modulus x^2 + 1
sage: y^2
359
```

We compute all square roots in several cases:

```python
sage: R = Integers(5*2^3*3^2); R
Ring of integers modulo 360
sage: R(40).sqrt(all=True)
[20, 160, 200, 340]
sage: [x for x in R if x^2 == 40] # Brute force verification
[20, 160, 200, 340]
sage: R(1).sqrt(all=True)
[1, 19, 71, 89, 91, 109, 161, 179, 181, 199, 251, 269, 271, 289, 341, 359]
sage: R(0).sqrt(all=True)
[0, 60, 120, 180, 240, 300]
```
 sage: R = Integers(5^3*13^3*37); R
 Ring of integers modulo 406445
 sage: v = R(-1).sqrt(all=True); v
 [78853, 111808, 160142, 193097, 213348, 246303, 294637, 327592]
 sage: [x^2 for x in v]
 [406444, 406444, 406444, 406444, 406444, 406444, 406444, 406444]
 sage: v = R(169).sqrt(all=True); min(v), -max(v), len(v)
 (13, 13, 104)
 sage: all(x^2 == 169 for x in v)
 True
 sage: t = FiniteField(next_prime(2^100))(4)
 sage: t.sqrt(extend = False, all = True)
 [2, 1267650600228229401496703205651]
 sage: t = FiniteField(next_prime(2^100))(2)
 sage: t.sqrt(extend = False, all = True)
 []

Modulo a power of 2:

 sage: R = Integers(2^7); R
 Ring of integers modulo 128
 sage: a = R(17)
 sage: a.sqrt()
 23
 sage: a.sqrt(all=True)
 [23, 41, 87, 105]
 sage: [x for x in R if x^2==17]
 [23, 41, 87, 105]

trace()

Returns the trace of this element, which is itself. (This is here for compatibility with higher order finite fields.)

EXAMPLES:

 sage: k = GF(691)
 sage: a = k(389)
 sage: a.trace()
 389

AUTHORS:

• Craig Citro

valuation(p)

The largest power r such that m is in the ideal generated by p^r or infinity if there is not a largest such power. However it is an error to take the valuation with respect to a unit.

Note: This is not a valuation in the mathematical sense. As shown with the examples below.

EXAMPLES:

This example shows that the (a*b).valuation(n) is not always the same as a.valuation(n) + b.valuation(n)
The valuation with respect to a unit is an error

The valuation with respect to a unit is an error

```
sage: a.valuation(4)
Traceback (most recent call last):
  ... ValueError: Valuation with respect to a unit is not defined.
```

class sage.rings.finite_rings.integer_mod.IntegerMod_gmp

Bases: sage.rings.finite_rings.integer_mod.IntegerMod_abstract

Elements of \(\mathbb{Z}/n\mathbb{Z} \) for \(n \) not small enough to be operated on in word size.

AUTHORS:

• Robert Bradshaw (2006-08-24)

\textbf{gcd}(\textit{other})

Greatest common divisor

Returns the “smallest” generator in \(\mathbb{Z}/N\mathbb{Z} \) of the ideal generated by \textit{self} and \textit{other}.

INPUT:

• \textit{other} – an element of the same ring as this one.

EXAMPLES:

```
sage: mod(2^3*3^2*5, 3^3*2^2*17^8).gcd(mod(2^4*3*17, 3^3*2^2*17^8))
12
sage: mod(0,17^8).gcd(mod(0,17^8))
0
```

\textbf{is_one}()

Returns True if this is 1, otherwise False.

EXAMPLES:

```
sage: mod(1,5^23).is_one()
True
sage: mod(0,5^23).is_one()
False
```

\textbf{is_unit}()

Return True iff this element is a unit.

EXAMPLES:
lift()

Lift an integer modulo n to the integers.

EXAMPLES:

```python
sage: a = Mod(8943, 2^70); type(a)
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp'>
sage: lift(a)
8943
sage: a.lift()
8943
```

class sage.rings.finite_rings.integer_mod.IntegerMod_hom

Bases: sage.categories.morphism.Morphism
class sage.rings.finite_rings.integer_mod.IntegerMod_int

Bases: sage.rings.finite_rings.integer_mod.IntegerMod_abstract

Elements of \(\mathbb{Z}/n\mathbb{Z} \) for \(n \) small enough to be operated on in 32 bits

AUTHORS:

• Robert Bradshaw (2006-08-24)

EXAMPLES:

```python
sage: a = Mod(10, 30); a
10
sage: loads(a.dumps()) == a
True
```

gcd(other)

Greatest common divisor

Returns the “smallest” generator in \(\mathbb{Z}/N\mathbb{Z} \) of the ideal generated by self and other.

INPUT:

• other – an element of the same ring as this one.

EXAMPLES:

```python
sage: R = Zmod(60); S = Zmod(72)
sage: a = R(40).gcd(S(30)); a
2
sage: a.parent()
Ring of integers modulo 12
sage: b = R(17).gcd(60); b
1
sage: b.parent()
Ring of integers modulo 60
sage: mod(72*5, 3^3*2^2*17^2).gcd(mod(48*17, 3^3*2^2*17^2))
```

(continues on next page)
is_one()
Returns True if this is 1, otherwise False.

EXAMPLES:

```python
sage: mod(6,5).is_one()
True
sage: mod(0,5).is_one()
False
sage: mod(1, 1).is_one()
True
sage: Zmod(1).one().is_one()
True
```

is_unit()
Return True iff this element is a unit

EXAMPLES:

```python
sage: a=Mod(23,100)
sage: a.is_unit()
True
sage: a=Mod(24,100)
sage: a.is_unit()
False
```

lift()
Lift an integer modulo \(n \) to the integers.

EXAMPLES:

```python
sage: a = Mod(8943, 2^10); type(a)
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: lift(a)
751
sage: a.lift()
751
```

sqrt(extend=True, all=False)
Return square root or square roots of self modulo \(n \).

INPUT:

- extend - bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the square root is not in the base ring.
- all - bool (default: False); if True, return \{all\} square roots of self, instead of just one.

ALGORITHM: Calculates the square roots mod \(p \) for each of the primes \(p \) dividing the order of the ring, then lifts them \(p \)-adically and uses the CRT to find a square root mod \(n \).

See also square_root_mod_prime_power and square_root_mod_prime (in this module) for more algorithmic details.
EXAMPLES:

```python
sage: mod(-1, 17).sqrt()
4
sage: mod(5, 389).sqrt()
86
sage: mod(7, 18).sqrt()
5
sage: a = mod(14, 5^60).sqrt()
sage: a*a
14
sage: mod(15, 389).sqrt(extend=False)
Traceback (most recent call last):
  ... 
ValueError: self must be a square
sage: Mod(1/9, next_prime(2^40)).sqrt()^(-2)
9
sage: Mod(1/25, next_prime(2^90)).sqrt()^(-2)
25
sage: a = Mod(3,5); a
3
sage: x = Mod(-1, 360)
sage: x.sqrt(extend=False)
Traceback (most recent call last):
  ... 
ValueError: self must be a square
sage: y = x.sqrt(); y
sqrt359
sage: y.parent()
Univariate Quotient Polynomial Ring in sqrt359 over Ring of integers modulo 360
˓→ with modulus x^2 + 1
sage: y^2
359
```

We compute all square roots in several cases:

```python
sage: R = Integers(5*2^3*3^2); R
Ring of integers modulo 360
sage: R(40).sqrt(all=True)
[20, 160, 200, 340]
sage: [x for x in R if x^2 == 40]  # Brute force verification
[20, 160, 200, 340]
sage: R(1).sqrt(all=True)
[1, 19, 71, 89, 91, 109, 161, 179, 181, 199, 251, 269, 271, 289, 341, 359]
sage: R(0).sqrt(all=True)
[0, 60, 120, 180, 240, 300]
sage: GF(107)(0).sqrt(all=True)
[0]
```

```python
sage: R = Integers(5*13^3*37); R
Ring of integers modulo 406445
sage: v = R(-1).sqrt(all=True); v
```

(continues on next page)
Modulo a power of 2:

```python
sage: R = Integers(2^7); R
Ring of integers modulo 128
sage: a = R(17)
```

```
sage: a.sqrt()
23
sage: a.sqrt(all=True)
[23, 41, 87, 105]
```

class sage.rings.finite_rings.integer_mod.IntegerMod_int64

Bases: sage.rings.finite_rings.integer_mod.IntegerMod_abstract

Elements of \(\mathbb{Z}/n\mathbb{Z} \) for \(n \) small enough to be operated on in 64 bits

EXAMAPLES:

```python
sage: a = Mod(10,3^10); a
10
```

```python
sage: type(a)
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int64'>
```

```python
sage: loads(a.dumps()) == a
True
```

```python
sage: Mod(5, 2^31)
5
```

AUTHORS:

• Robert Bradshaw (2006-09-14)

gcd(other)

Greatest common divisor

Returns the “smallest” generator in \(\mathbb{Z}/N\mathbb{Z} \) of the ideal generated by self and other.

INPUT:

• other – an element of the same ring as this one.

EXAMPLES:

```python
sage: mod(2^3*3^2*5, 3^3*2^2*17^5).gcd(mod(2^4*3*17, 3^3*2^2*17^5))
12
sage: mod(0,17^5).gcd(mod(0,17^5))
0
```
is_one()
Returns True if this is 1, otherwise False.

EXAMPLES:

sage: (mod(-1,5^10)^2).is_one()
True
sage: mod(0,5^10).is_one()
False

is_unit()
Return True iff this element is a unit.

EXAMPLES:

sage: mod(13, 5^10).is_unit()
True
sage: mod(25, 5^10).is_unit()
False

lift()
Lift an integer modulo n to the integers.

EXAMPLES:

sage: a = Mod(8943, 2^25); type(a)
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int64'>
sage: lift(a)
8943
sage: a.lift()
8943

class sage.rings.finite_rings.integer_mod.IntegerMod_to_Integer
Bases: sage.categories.map.Map
Map to lift elements to Integer.

EXAMPLES:

sage: ZZ.convert_map_from(GF(2))
Lifting map:
 From: Finite Field of size 2
 To: Integer Ring

class sage.rings.finite_rings.integer_mod.IntegerMod_to_IntegerMod
Bases: sage.rings.finite_rings.integer_mod.IntegerMod_hom
Very fast IntegerMod to IntegerMod homomorphism.

EXAMPLES:

sage: from sage.rings.finite_rings.integer_mod import IntegerMod_to_IntegerMod
sage: Rs = [Integers(3**k) for k in range(1,30,5)]
sage: [type(R(0)) for R in Rs]
[<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>,<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int64'>,<type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp'>,<type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp_int64'>]
sage: fs = [IntegerMod_to_IntegerMod(S, R) for R in Rs for S in Rs if S is not R
˓→ and S.order() > R.order()]
sage: all(f(-1) == f.codomain()(-1) for f in fs)
True
sage: [f(-1) for f in fs]
[2, 2, 2, 2, 2, 728, 728, 728, 728, 177146, 177146, 177146, 43046720, 43046720, ˓→ 10460353202]

is_injective()

Return whether this morphism is injective.

EXAMPLES:

sage: Zmod(4).hom(Zmod(2)).is_injective()
False

is_surjective()

Return whether this morphism is surjective.

EXAMPLES:

sage: Zmod(4).hom(Zmod(2)).is_surjective()
True

class sage.rings.finite_rings.integer_mod.Integer_to_IntegerMod

Bases: sage.rings.finite_rings.integer_mod.IntegerMod_hom

Fast \(Z \rightarrow Z/nZ \) morphism.

EXAMPLES:

We make sure it works for every type.

sage: from sage.rings.finite_rings.integer_mod import Integer_to_IntegerMod
sage: Rs = [Integers(10), Integers(10^5), Integers(10^10)]
[<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>, <type 'sage.rings.finite_rings.integer_mod.IntegerMod_int64'>, <type 'sage.rings.finite_rings.integer_mod.IntegerMod_gmp'>]

sage: fs = [Integer_to_IntegerMod(R) for R in Rs]

sage: [f(-1) for f in fs]
[9, 99999, 9999999999]

is_injective()

Return whether this morphism is injective.

EXAMPLES:

sage: ZZ.hom(Zmod(2)).is_injective()
False

is_surjective()

Return whether this morphism is surjective.

EXAMPLES:
sage: ZZ.hom(Zmod(2)).is_surjective()
True

section()

sage.rings.finite_rings.integer_mod.Mod(n, m, parent=None)
Return the equivalence class of \(n \) modulo \(m \) as an element of \(\mathbb{Z}/m\mathbb{Z} \).

EXAMPLES:

```
sage: x = Mod(12345678, 32098203845329048)
sage: x
12345678
sage: x^100
101732209155072
```

You can also use the lowercase version:

```
sage: mod(12, 5)
2
```

Illustrates that trac ticket #5971 is fixed. Consider \(n \) modulo \(m \) when \(m = 0 \). Then \(\mathbb{Z}/0\mathbb{Z} \) is isomorphic to \(\mathbb{Z} \) so \(n \) modulo 0 is equivalent to \(n \) for any integer value of \(n \):

```
sage: Mod(10, 0)
10
sage: a = randint(-100, 100)
sage: Mod(a, 0) == a
True
```

class sage.rings.finite_rings.integer_mod.NativeIntStruct
Bases: object

We store the various forms of the modulus here rather than in the parent for efficiency reasons.

We may also store a cached table of all elements of a given ring in this class.

inverses

precompute_table(parent)
Function to compute and cache all elements of this class.

If inverses == True, also computes and caches the inverses of the invertible elements.

EXAMPLES:

```
sage: from sage.rings.finite_rings.integer_mod import NativeIntStruct
sage: R = IntegerModRing(10)
sage: N = NativeIntStruct(R.order())
sage: N.precompute_table(R)
sage: N.table
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: N.inverses
[None, 1, None, 7, None, None, 3, None, 9]
```

This is used by the sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic constructor:

1.2. Elements of \(\mathbb{Z}/n\mathbb{Z} \)
sage: from sage.rings.finite_rings.integer_mod_ring import IntegerModRing_generic
sage: R = IntegerModRing_generic(39, cache=False)
8
sage: R(5)^-1 is R(8)
False
sage: R = IntegerModRing_generic(39, cache=True) # indirect doctest
sage: R(5)^-1 is R(8)
True
sage: R = IntegerModRing_generic(1, cache=True) # indirect doctest
sage: R(0)^-1 is R(0)
True

Check that the inverse of 0 modulo 1 works, see trac ticket #13639:

sage: R = IntegerModRing_generic(1, cache=True) # indirect doctest
sage: R(0)^-1 is R(0)
True

```
sage.rings.finite_rings.integer_mod.is_IntegerMod(x)
Return True if and only if x is an integer modulo n.

EXAMPLES:

```
sage: from sage.rings.finite_rings.integer_mod import is_IntegerMod
sage: is_IntegerMod(5)
False
sage: is_IntegerMod(Mod(5,10))
True

```
sage.rings.finite_rings.integer_mod.lucas(k, P, Q=1, n=None)
Return \[V_k(P, Q) \pmod n, Q^{\lfloor k/2 \rfloor} \pmod n\] where \(V_k\) is the Lucas function defined by the recursive relation

\[V_k(P, Q) = PV_{k-1}(P, Q) - QV_{k-2}(P, Q)\]

with \(V_0 = 2, V_1 = P\).

INPUT:

- k – integer; index to compute
- P, Q – integers or modular integers; initial values
- n – integer (optional); modulus to use if P is not a modular integer

REFERENCES:

- [IEEEP1363]

AUTHORS:

- Somindu Chaya Ramanna, Shashank Singh and Srinivas Vivek Venkatesh (2011-09-15, ECC2011 summer school)
- Robert Bradshaw

EXAMPLES:
sage: [lucas(k,4,5,11) for k in range(30)]
[2, 4, 6, 4, 8, 1, 8, 5, 2, 5, 10, 4, 10, 9, 8, 9, 7, 5, 7, 3, 10, 3, 6, 9, 6, 1, 7, ← 1, 2, 3]
sage: lucas(20,4,5,11)
[10, 1]

 sage.rings.finite_rings.integer_mod.lucas_q1(mm, P)
\hspace*{1cm} Return \(V_k(P,1)\) where \(V_k\) is the Lucas function defined by the recursive relation
\[V_k(P,Q) = PV_{k-1}(P,Q) - QV_{k-2}(P,Q)\]
with \(V_0 = 2, V_1(P,Q) = P\).

REFERENCES:
\hspace*{1cm} • [Pos1988]

AUTHORS:
\hspace*{1cm} • Robert Bradshaw

 sage.rings.finite_rings.integer_mod.makeNativeIntStruct
\hspace*{1cm} alias of sage.rings.finite_rings.integer_mod.NativeIntStruct

 sage.rings.finite_rings.integer_mod.mod(n, m, parent=None)
\hspace*{1cm} Return the equivalence class of \(n\) modulo \(m\) as an element of \(\mathbb{Z}/m\mathbb{Z}\).

EXAMPLES:

sage: x = Mod(12345678, 32098203845329048)
sage: x
12345678
sage: x^100
1017322209155072

You can also use the lowercase version:

sage: mod(12,5)
2

Illustrates that trac ticket #5971 is fixed. Consider \(n\) modulo \(m\) when \(m = 0\). Then \(\mathbb{Z}/0\mathbb{Z}\) is isomorphic to \(\mathbb{Z}\) so \(n\) modulo 0 is equivalent to \(n\) for any integer value of \(n\):

sage: Mod(10, 0)
10
sage: a = randint(-100, 100)
sage: Mod(a, 0) == a
True

 sage.rings.finite_rings.integer_mod.square_root_mod_prime(a, p=None)
\hspace*{1cm} Calculates the square root of \(a\), where \(a\) is an integer mod \(p\); if \(a\) is not a perfect square, this returns an (incorrect) answer without checking.

ALGORITHM: Several cases based on residue class of \(p\) mod 16.
\hspace*{1cm} • \(p\) mod 2 = 0: \(p = 2\) so \(\sqrt{a} = a\).
\hspace*{1cm} • \(p\) mod 4 = 3: \(\sqrt{a} = a^{(p+1)/4}\).
**p mod 8 = 5:** $\sqrt{a} = \zeta i a$ where $\zeta = (2a)^{(p-5)/8}$, $i = \sqrt{-1}$.

**p mod 16 = 9:** Similar, work in a bi-quadratic extension of $F_p$ for small $p$, Tonelli and Shanks for large $p$.

**p mod 16 = 1:** Tonelli and Shanks.

**REFERENCES:**
- [Mul2004]
- [Atk1992]
- [Pos1988]

**AUTHORS:**
- Robert Bradshaw

```
sage: from sage.rings.finite_rings.integer_mod import square_root_mod_prime_power
sage: a=Mod(17,2^20)
sage: b=square_root_mod_prime_power(a,2,20)
sage: b^2 == a
True
sage: a=Mod(72,97^10)
sage: b=square_root_mod_prime_power(a,97,10)
sage: b^2 == a
True
sage: mod(100, 5^7).sqrt()^2
100
```
2.1 Finite Fields

Sage supports arithmetic in finite prime and extension fields. Several implementation for prime fields are implemented natively in Sage for several sizes of primes \( p \). These implementations are

- `sage.rings.finite_rings.integer_mod.IntegerMod_int`,
- `sage.rings.finite_rings.integer_mod.IntegerMod_int64`, and
- `sage.rings.finite_rings.integer_mod.IntegerMod_gmp`.

Small extension fields of cardinality \(< 2^{16}\) are implemented using tables of Zech logs via the Givaro C++ library (`sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro`). While this representation is very fast it is limited to finite fields of small cardinality. Larger finite extension fields of order \( q > 2^{16} \) are internally represented as polynomials over smaller finite prime fields. If the characteristic of such a field is 2 then NTL is used internally to represent the field (`sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e`). In all other case the PARI C library is used (`sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt`).

However, this distinction is internal only and the user usually does not have to worry about it because consistency across all implementations is aimed for. In all extension field implementations the user may either specify a minimal polynomial or leave the choice to Sage.

For small finite fields the default choice are Conway polynomials. The Conway polynomial \( C_n \) is the lexicographically first monic irreducible, primitive polynomial of degree \( n \) over \( GF(p) \) with the property that for a root \( \alpha \) of \( C_n \) we have that \( \beta = \alpha^{(p^n-1)/(p^m-1)} \) is a root of \( C_m \) for all \( m \) dividing \( n \).

Sage contains a database of Conway polynomials which also can be queried independently of finite field construction. A pseudo-Conway polynomial satisfies all of the conditions required of a Conway polynomial except the condition that it is lexicographically first. They are therefore not unique. If no variable name is specified for an extension field, Sage will fit the finite field into a compatible lattice of field extensions defined by pseudo-Conway polynomials. This lattice is stored in an `AlgebraicClosureFiniteField` object; different algebraic closure objects can be created by using a different prefix keyword to the finite field constructor.

Note that the computation of pseudo-Conway polynomials is expensive when the degree is large and highly composite. If a variable name is specified then a random polynomial is used instead, which will be much faster to find.

While Sage supports basic arithmetic in finite fields some more advanced features for computing with finite fields are still not implemented. For instance, Sage does not calculate embeddings of finite fields yet.

EXAMPLES:

```
sage: k = GF(5); type(k)
<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'>
```
Finite Fields support iteration, starting with 0.

```python
sage: k = GF(9, 'a')
sage: for i, x in enumerate(k): print("\{\} {}".format(i, x))
0 0
1 a
2 a + 1
3 2*a + 1
4 2
5 2*a
6 2*a + 2
7 a + 2
8 1
sage: for a in GF(5):
....: print(a)
0
1
2
3
4
```

We output the base rings of several finite fields.

```python
sage: k = GF(3); type(k)
<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'>
sage: k.base_ring()
Finite Field of size 3
```

```python
sage: k = GF(9, 'alpha'); type(k)
<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'>
sage: k.base_ring()
Finite Field of size 3
```

```python
sage: k = GF(3^40, 'b'); type(k)
<class 'sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt_with_category'>
sage: k.base_ring()
Finite Field of size 3
```
Further examples:

```python
sage: GF(2).is_field()
True
sage: GF(next_prime(10^20)).is_field()
True
sage: GF(19^20,'a').is_field()
True
sage: GF(8,'a').is_field()
True
```

AUTHORS:

- William Stein: initial version
- Robert Bradshaw: prime field implementation
- Martin Albrecht: Givaro and ntl.GF2E implementations

```python
class sage.rings.finite_rings.finite_field_constructor.FiniteFieldFactory(*args, **kwds)
 Bases: sage.structure.factory.UniqueFactory

 Return the globally unique finite field of given order with generator labeled by the given name and possibly with given modulus.

 INPUT:

 - **order** – a prime power
 - **name** – string, optional. Note that there can be a substantial speed penalty (in creating extension fields) when omitting the variable name, since doing so triggers the computation of pseudo-Conway polynomials in order to define a coherent lattice of extensions of the prime field. The speed penalty grows with the size of extension degree and with the number of factors of the extension degree.
 - **modulus** – (optional) either a defining polynomial for the field, or a string specifying an algorithm to use to generate such a polynomial. If modulus is a string, it is passed to irreducible_element() as the parameter algorithm; see there for the permissible values of this parameter. In particular, you can specify modulus="primitive" to get a primitive polynomial. You may not specify a modulus if you do not specify a variable name.
 - **impl** – (optional) a string specifying the implementation of the finite field. Possible values are:
 - 'modn' – ring of integers modulo \(p \) (only for prime fields).
 - 'givaro' – Givaro, which uses Zech logs (only for fields of at most 65521 elements).
 - 'ntl' – NTL using GF2X (only in characteristic 2).
 - 'pari' or 'pari_ffelt' – PARI's FFELT type (only for extension fields).
 - **elem_cache** – (default: order < 500) cache all elements to avoid creation time; ignored unless impl='givaro'
 - **repr** – (default: 'poly') ignored unless impl='givaro'; controls the way elements are printed to the user:
 - 'log': repr is log_repr()
 - 'int': repr is int_repr()
 - 'poly': repr is poly_repr()
 - **check_irreducible** – verify that the polynomial modulus is irreducible
```
• proof – bool (default: True): if True, use provable primality test; otherwise only use pseudoprimality test.

ALIAS: You can also use GF instead of FiniteField – they are identical.

EXAMPLES:

```sage
sage: k.<a> = FiniteField(9); k
Finite Field in a of size 3^2
sage: parent(a)
Finite Field in a of size 3^2
sage: charpoly(a, 'y')
y^2 + 2*y + 2
```

We illustrate the proof flag. The following example would hang for a very long time if we didn’t use proof=False.

**Note:** Magma only supports proof=False for making finite fields, so falsely appears to be faster than Sage – see trac ticket #10975.

```sage
sage: k = FiniteField(10^1000 + 453, proof=False) # long time --r
˓→about 5 seconds
sage: k = FiniteField((10^1000 + 453)^2, 'a', proof=False) # long time --r
˓→about 5 seconds
```

```sage
sage: F.<x> = GF(5)[]

sage: K.<a> = GF(5^5, name='a', modulus=x^5 - x +1)

sage: f = K.modulus(); f
x^5 + 4*x + 1

sage: type(f)
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
```

By default, the given generator is not guaranteed to be primitive (a generator of the multiplicative group), use modulus="primitive" if you need this:

```sage
sage: K.<a> = GF(5^45)

sage: a.multiplicative_order()
710542735760100185871242675781
sage: a.is_square()
True

sage: K. = GF(5^45, modulus="primitive")

sage: b.multiplicative_order()
284217094304040007434844970703124
```

The modulus must be irreducible:

```sage
sage: K.<a> = GF(5^5, name='a', modulus=x^5 - x)

Traceback (most recent call last):
...
ValueError: finite field modulus must be irreducible but it is not
```

You can’t accidentally fool the constructor into thinking the modulus is irreducible when it is not, since it actually tests irreducibility modulo $p$. Also, the modulus has to be of the right degree (this is always checked):
```python
sage: F.<x> = QQ[
(sage: factor(x^5 + 2)
 x^5 + 2
(sage: K.<a> = GF(5^5, modulus=x^5 + 2)
Traceback (most recent call last):
 ... ValueError: finite field modulus must be irreducible but it is not
(sage: K.<a> = GF(5^5, modulus=x^3 + 3*x + 3, check_irreducible=False)
Traceback (most recent call last):
 ... ValueError: the degree of the modulus does not equal the degree of the field

Any type which can be converted to the polynomial ring $GF(p)[x]$ is accepted as modulus:

```python
(sage: K.<a> = GF(13^3, modulus=[1,0,0,2])
(sage: K.<a> = GF(13^10, modulus=pari("ffinit(13,10)"))
(sage: var('x')
   x
(sage: K.<a> = GF(13^2, modulus=x^2 - 2)
(sage: K.<a> = GF(13^2, modulus=sin(x))
Traceback (most recent call last):
  ... TypeError: self must be a numeric expression

If you wish to live dangerously, you can tell the constructor not to test irreducibility using `check_irreducible=False`, but this can easily lead to crashes and hangs – so do not do it unless you know that the modulus really is irreducible!

```python
(sage: K.<a> = GF(5**2, name='a', modulus=x^2 + 2, check_irreducible=False)

Even for prime fields, you can specify a modulus. This will not change how Sage computes in this field, but it will change the result of the `modulus()` and `gen()` methods:

```python
(sage: k.<a> = GF(5, modulus="primitive")
(sage: k.modulus()
   x + 3
(sage: a
   2

The order of a finite field must be a prime power:

```python
(sage: GF(1)
Traceback (most recent call last):
 ... ValueError: the order of a finite field must be at least 2
(sage: GF(100)
Traceback (most recent call last):
 ... ValueError: the order of a finite field must be a prime power

Finite fields with explicit random modulus are not cached:

```python
(sage: k.<a> = GF(5**10, modulus='random')
(sage: n.<a> = GF(5**10, modulus='random')
```

(continues on next page)
We check that various ways of creating the same finite field yield the same object, which is cached:

```sage
sage: K = GF(7, 'a')
sage: L = GF(7, 'b')
sage: K is L  # name is ignored for prime fields
True
sage: K is GF(7, modulus=K.modulus())
True
sage: K = GF(4,'a'); K.modulus()
x^2 + x + 1
sage: L = GF(4,'a', K.modulus())
sage: K is L
True
sage: M = GF(4,'a', K.modulus().change_variable_name('y'))
sage: K is M
True
```

You may print finite field elements as integers. This currently only works if the order of field is $< 2^{16}$, though:

```sage
sage: k.<a> = GF(2^8, repr='int')
sage: a
2
```

The following demonstrate coercions for finite fields using Conway polynomials:

```sage
sage: k = GF(5^2); a = k.gen()
sage: l = GF(5^5); b = l.gen()
sage: a + b
3*z10^5 + z10^4 + z10^2 + 3*z10 + 1
```

Note that embeddings are compatible in lattices of such finite fields:

```sage
sage: m = GF(5^3); c = m.gen()
sage: (a+b)+c == a+(b+c)
True
sage: (a*b)*c == a*(b*c)
True
sage: from sage.categories.pushout import pushout
sage: n = pushout(k, l)
sage: o = pushout(l, m)
sage: q = pushout(n, o)
sage: q(o(b)) == q(n(b))
True
```

Another check that embeddings are defined properly:

```sage
sage: k = GF(3**10)
sage: l = GF(3**20)
```

(continues on next page)
Using pseudo-Conway polynomials is slow for highly composite extension degrees:

```
sage: k = GF(3^120)  # long time -- about 3 seconds
sage: GF(3^40).gen().minimal_polynomial()(k.gen()^((3^120-1)/(3^40-1)))  # long time...
            → because of previous line
0
```

Before trac ticket #17569, the boolean keyword argument conway was required when creating finite fields without a variable name. This keyword argument is now removed (trac ticket #21433). You can still pass in prefix as an argument, which has the effect of changing the variable name of the algebraic closure:

```
sage: K = GF(3^10, prefix='w'); L = GF(3^10); K is L
False
sage: K.variable_name(), L.variable_name()
('w10', 'z10')
sage: list(K.polynomial()) == list(L.polynomial())
True
```

create_key_and_extra_args

```
create_key_and_extra_args(order, name=None, modulus=None, names=None, impl=None, proof=None, check_irreducible=True, prefix=None, repr=None, elem_cache=None, **kwds)
```

EXAMPLES:

```
sage: GF.create_key_and_extra_args(9, 'a')
((9, ('a',)), x^2 + 2*x + 2, 'givaro', 3, 2, True, None, 'poly', True, {})
```

We do not take invalid keyword arguments and raise a value error to better ensure uniqueness:

```
sage: GF.create_key_and_extra_args(9, 'a', foo='value')
Traceback (most recent call last):
  ...
TypeError: create_key_and_extra_args() got an unexpected keyword argument 'foo'
```

Moreover, repr and elem_cache are ignored when not using givaro:

```
sage: GF.create_key_and_extra_args(16, 'a', impl='ntl', repr='poly')
((16, ('a',)), x^4 + x + 1, 'ntl', 2, 4, True, None, None, None), {})
```

We handle extra arguments for the givaro finite field and create unique objects for their defaults:

```
sage: GF(25, impl='givaro') is GF(25, impl='givaro', repr='poly')
True
sage: GF(25, impl='givaro') is GF(25, impl='givaro', elem_cache=True)
True
sage: GF(625, impl='givaro') is GF(625, impl='givaro', elem_cache=False)
True
```
We explicitly take structure, implementation and prec attributes for compatibility with AlgebraicExtensionFunctor but we ignore them as they are not used, see trac ticket #21433:

```python
sage: GF.create_key_and_extra_args(9, 'a', structure=None)
((9, ('a',), x^2 + 2*x + 2, 'givaro', 3, 2, True, None, 'poly', True), {})
```

```python
create_object(version, key, **kwds)
```

EXAMPLES:

```python
sage: K = GF(19) # indirect doctest
sage: TestSuite(K).run()
```

We try to create finite fields with various implementations:

```python
sage: k = GF(2, impl='modn')
sage: k = GF(2, impl='givaro')
sage: k = GF(2, impl='ntl')
sage: k = GF(2, impl='pari')
Traceback (most recent call last):
... ValueError: the degree must be at least 2
sage: k = GF(2, impl='supercalifragilisticexpialidocious')
Traceback (most recent call last):
... ValueError: no such finite field implementation:
˓→'supercalifragilisticexpialidocious'
sage: k.<a> = GF(2^15, impl='modn')
Traceback (most recent call last):
... ValueError: the 'modn' implementation requires a prime order
sage: k.<a> = GF(2^15, impl='givaro')
sage: k.<a> = GF(2^15, impl='ntl')
sage: k.<a> = GF(2^15, impl='pari')
sage: k.<a> = GF(3^60, impl='modn')
Traceback (most recent call last):
... ValueError: the 'modn' implementation requires a prime order
sage: k.<a> = GF(3^60, impl='givaro')
Traceback (most recent call last):
... ValueError: q must be < 2^16
sage: k.<a> = GF(3^60, impl='ntl')
Traceback (most recent call last):
... ValueError: q must be a 2-power
sage: k.<a> = GF(3^60, impl='pari')
```

```python
sage.rings.finite_rings.finite_field_constructor.is_PrimeFiniteField(x)
```

Returns True if x is a prime finite field.

EXAMPLES:

```python
sage: from sage.rings.finite_rings.finite_field_constructor import is_PrimeFiniteField
sage: is_PrimeFiniteField(QQ)
```
False
sage: is_PrimeFiniteField(GF(7))
True
sage: is_PrimeFiniteField(GF(7^2, 'a'))
False
sage: is_PrimeFiniteField(GF(next_prime(10^90, proof=False)))
True

2.2 Base Classes for Finite Fields

AUTHORS:

• Adrien Brochard, David Roe, Jeroen Demeyer, Julian Rueth, Niles Johnson, Peter Bruin, Travis Scrimshaw,
 Xavier Caruso: initial version

class sage.rings.finite_rings.finite_field_base.FiniteField
Bases: sage.rings.ring.Field
Abstract base class for finite fields.

algebraic_closure(name='z', **kwds)
Return an algebraic closure of self.

INPUT:

• name – string (default: ‘z’): prefix to use for variable names of subfields
• implementation – string (optional): specifies how to construct the algebraic closure.
 The only value supported at the moment is 'pseudo_conway'. For more details, see
 algebraic_closure_finite_field.

OUTPUT:

An algebraic closure of self. Note that mathematically speaking, this is only unique up to non-unique
isomorphism. To obtain canonically defined algebraic closures, one needs an algorithm that also provides
a canonical isomorphism between any two algebraic closures constructed using the algorithm.

This non-uniqueness problem can in principle be solved by using Conway polynomials; see for example
Wikipedia article Conway_polynomial_(finite_fields). These have the drawback that computing them takes
a long time. Therefore Sage implements a variant called pseudo-Conway polynomials, which are easier to
compute but do not determine an algebraic closure up to unique isomorphism.

The output of this method is cached, so that within the same Sage session, calling it multiple times will
return the same algebraic closure (i.e. the same Sage object). Despite this, the non-uniqueness of the
current implementation means that coercion and pickling cannot work as one might expect. See below for
an example.

EXAMPLES:

sage: F = GF(5).algebraic_closure()
sage: F
Algebraic closure of Finite Field of size 5
sage: F.gen(3)
z3

The default name is ‘z’ but you can change it through the option name:
Because Sage currently only implements algebraic closures using a non-unique definition (see above), it is currently impossible to implement pickling in such a way that a pickled and unpickled element compares equal to the original:

```python
sage: F = GF(7).algebraic_closure()
sage: x = F.gen(2)
sage: loads(dumps(x)) == x
False
```

Note: This is currently only implemented for prime fields.

cardinality()
Return the cardinality of self.
Same as order().
EXAMPLES:

```python
sage: GF(997).cardinality()
997
```

coloration()
Return the construction of this finite field, as a ConstructionFunctor and the base field.
EXAMPLES:

```python
sage: v = GF(3^3).construction(); v
(AlgebraicExtensionFunctor, Finite Field of size 3)
sage: v[0].polys[0]
3
sage: v = GF(2^1000, 'a').construction(); v[0].polys[0]
a^1000 + a^5 + a^4 + a^3 + 1
```

The implementation is taken into account, by trac ticket #15223:

```python
sage: k = FiniteField(9, 'a', impl='pari_ffelt')
sage: F, R = k.construction()
sage: F(R) is k
True
```

dual_basis(basis=None, check=True)
Return the dual basis of basis, or the dual basis of the power basis if no basis is supplied.

If \(e = \{e_0, e_1, \ldots, e_{n-1}\} \) is a basis of \(\mathbb{F}_{p^n} \) as a vector space over \(\mathbb{F}_p \), then the dual basis of \(e \), \(d = \{d_0, d_1, \ldots, d_{n-1}\} \), is the unique basis such that \(\text{Tr}(e_id_j) = \delta_{i,j}, 0 \leq i, j \leq n - 1 \), where \(\text{Tr} \) is the trace function.

INPUT:

- **basis** – (default: None): a basis of the finite field \(\text{self} \), \(\mathbb{F}_{p^n} \), as a vector space over the base field \(\mathbb{F}_p \).

 Uses the power basis \(\{x^i : 0 \leq i \leq n - 1\} \) as input if no basis is supplied, where \(x \) is the generator of \(\text{self} \).
• check – (default: True): verifies that basis is a valid basis of self.

ALGORITHM:

The algorithm used to calculate the dual basis comes from pages 110–111 of [McE1987].

Let \(e = \{e_0, e_1, ..., e_{n-1}\} \) be a basis of \(\mathbb{F}_p^n \) as a vector space over \(\mathbb{F}_p \) and \(d = \{d_0, d_1, ..., d_{n-1}\} \) be the dual basis of \(e \). Since \(e \) is a basis, we can rewrite any \(d_c \), \(0 \leq c \leq n-1 \), as \(d_c = \beta_0 e_0 + \beta_1 e_1 + ... + \beta_{n-1} e_{n-1} \), for some \(\beta_0, \beta_1, ..., \beta_{n-1} \in \mathbb{F}_p \). Using properties of the trace function, we can rewrite the \(n \) equations of the form \(\text{Tr}(e_i d_c) = \delta_{i,c} \) and express the result as the matrix vector product: \(A[\beta_0, \beta_1, ..., \beta_{n-1}] = i_c \), where the \(i,j \)-th element of \(A \) is \(\text{Tr}(e_i e_j) \) and \(i_c \) is the \(i \)-th column of the \(n \times n \) identity matrix. Since \(A \) is an invertible matrix, \([\beta_0, \beta_1, ..., \beta_{n-1}] = A^{-1} i_c \), from which we can easily calculate \(d_c \).

EXAMPLES:

```
sage: F.<a> = GF(2^4)
sage: F.dual_basis(basis=None, check=False)
[a^3 + 1, a^2, a, 1]
```

We can test that the dual basis returned satisfies the defining property of a dual basis: \(\text{Tr}(e_i d_j) = \delta_{i,j}, 0 \leq i, j \leq n-1 \)

```
sage: F.<a> = GF(7^4)
sage: e = [4*a^3, 2*a^3 + a^2 + 3*a + 5, 3*a^3 + 4*a^2 + 2*a + 5, 6*a^3 + 6*a^2 + 2*a + 5, 5*a^2 + 4*a + 3]
sage: d = F.dual_basis(e, check=True); d
[3*a^3 + 4*a^2 + 6*a + 2, a^3 + 6*a + 5, 3*a^3 + 6*a^2 + 2*a + 5, 5*a^2 + 4*a + 3]
sage: vals = [[[x * y).trace() for x in e] for y in d]
sage: matrix(vals) == matrix.identity(4)
True
```

We can test that if \(d \) is the dual basis of \(e \), then \(e \) is the dual basis of \(d \):

```
sage: F.<a> = GF(7^8)
sage: e = [a^0, a^1, a^2, a^3, a^4, a^5, a^6, a^7]
sage: d = F.dual_basis(e, check=True); d
[6*a^6 + 4*a^5 + 4*a^4 + a^3 + 6*a^2 + 3, 6*a^7 + 4*a^6 + 4*a^5 + 2*a^4 + a^2, 4*a^6 + 5*a^5 + 5*a^4 + 4*a^3 + 5*a^2 + a + 6, 5*a^7 + a^6 + a^5 + a^4 + 4*a^3 + 4*a^2 + a^2 + 4, a^7 + 2*a^6 + 5*a^5 + a^4 + 5*a^2 + 4*a + 4, a^7 + a^6 + 2*a^5 + 5*a^4 + a^3 + 4*a^2 + 4*a + 6, 5*a^7 + a^6 + a^5 + 2*a^4 + 5*a^3 + 6*a^2]
sage: F.dual_basis(d)
[1, a, a^2, a^3, a^4, a^5, a^6, a^7]
```

We cannot calculate the dual basis if basis is not a valid basis.

```
sage: F.<a> = GF(2^3)
sage: F.dual_basis([a], check=True)
Traceback (most recent call last):
  ... ValueError: basis length should be 3, not 1
```

(continues on next page)
sage: F.dual_basis([a^0, a, a^0 + a], check=True)
Traceback (most recent call last):
...
ValueError: value of 'basis' keyword is not a basis

AUTHOR:

• Thomas Gagne (2015-06-16)

extension(modulus, name=None, names=None, map=False, embedding=None, latex_name=None,
latex_names=None, **kwds)

Return an extension of this finite field.

INPUT:

• modulus – a polynomial with coefficients in self, or an integer.
• name or names – string: the name of the generator in the new extension
• latex_name or latex_names – string: latex name of the generator in the new extension
• map – boolean (default: False): if False, return just the extension \(E \); if True, return a pair \((E, f)\), where \(f \) is an embedding of self into \(E \).
• embedding – currently not used; for compatibility with other AlgebraicExtensionFunctor calls.
• **kwds: further keywords, passed to the finite field constructor.

OUTPUT:

An extension of the given modulus, or pseudo-Conway of the given degree if modulus is an integer.

EXAMPLES:

sage: k = GF(2)
sage: R.<x> = k[]
sage: k.extension(x^1000 + x^5 + x^4 + x^3 + 1, 'a')
Finite Field in a of size 2^1000
sage: k = GF(3^4)
sage: R.<x> = k[]
sage: k.extension(3)
Finite Field in z12 of size 3^12
sage: K = k.extension(2, 'a')
sage: k.is_subring(K)
True

An example using the map argument:

sage: F = GF(5)
sage: E, f = F.extension(2, 'b', map=True)
sage: E
Finite Field in b of size 5^2
sage: f
Ring morphism:
 From: Finite Field of size 5
 To: Finite Field in b of size 5^2
 Defn: 1 |--> 1

(continues on next page)
sage: f.parent()
Set of field embeddings from Finite Field of size 5 to Finite Field in b of size 5^2

Extensions of non-prime finite fields by polynomials are not yet supported: we fall back to generic code:

sage: k.extension(x^5 + x^2 + x - 1)
Univariate Quotient Polynomial Ring in x over Finite Field in z4 of size 3^4
with modulus x^5 + x^2 + x + 2

factored_order()
Returns the factored order of this field. For compatibility with integer_mod_ring.

EXAMPLES:

sage: GF(7^2,'a').factored_order()
7^2

factored_unit_order()
Returns the factorization of self.order()-1, as a 1-tuple.
The format is for compatibility with integer_mod_ring.

EXAMPLES:

sage: GF(7^2,'a').factored_unit_order()
(2^4 * 3,)

fetch_int(n)
Return the element of self that equals n under the condition that gen() is set to the characteristic of the finite field self.

INPUT:

• n – integer. Must not be negative, and must be less than the cardinality of self.

EXAMPLES:

sage: p = 4091
sage: F = GF(p^4, 'a')
sage: n = 100*p^3 + 37*p^2 + 12*p + 6
sage: F.fetch_int(n)
100*a^3 + 37*a^2 + 12*a + 6
sage: F.fetch_int(n) in F
True

free_module(base=None, basis=None, map=None, subfield=None)
Return the vector space over the subfield isomorphic to this finite field as a vector space, along with the isomorphisms.

INPUT:

• base – a subfield of or a morphism into this finite field. If not given, the prime subfield is assumed. A subfield means a finite field with coercion to this finite field.
• basis – a basis of the finite field as a vector space over the subfield. If not given, one is chosen automatically.
• map – boolean (default: True); if True, isomorphisms from and to the vector space are also returned.
The basis maps to the standard basis of the vector space by the isomorphisms.

OUTPUT: if map is False,

 • vector space over the subfield or the domain of the morphism, isomorphic to this finite field.

and if map is True, then also

 • an isomorphism from the vector space to the finite field.

 • the inverse isomorphism to the vector space from the finite field.

EXAMPLES:

```python
sage: GF(27,'a').vector_space(map=False)
Vector space of dimension 3 over Finite Field of size 3

sage: F = GF(8)
sage: E = GF(64)
sage: V, from_V, to_V = E.vector_space(F, map=True)
sage: V
Vector space of dimension 2 over Finite Field in z3 of size 2^3

sage: to_V(E.gen())
(0, 1)
sage: all(from_V(to_V(e)) == e for e in E)
True

sage: all(to_V(e1 + e2) == to_V(e1) + to_V(e2) for e1 in E for e2 in E)
True

sage: all(to_V(c * e) == c * to_V(e) for e in E for c in F)
True

sage: basis = [E.gen(), E.gen() + 1]
sage: W, from_W, to_W = E.vector_space(F, basis, map=True)
sage: all(from_W(to_W(e)) == e for e in E)
True

sage: all(to_W(c * e) == c * to_W(e) for e in E for c in F)
True

sage: all(to_W(e1 + e2) == to_W(e1) + to_W(e2) for e1 in E for e2 in E)  # long...
True

sage: F = GF(9, 't', modulus=(x^2+x-1))
sage: E = GF(81)
sage: h = Hom(F,E).an_element()
sage: V, from_V, to_V = E.vector_space(h, map=True)
sage: V
Vector space of dimension 2 over Finite Field in t of size 3^2

sage: V.base_ring() == E
True

sage: all(from_V(to_V(e)) == e for e in E)
True

sage: all(to_V(e1 + e2) == to_V(e1) + to_V(e2) for e1 in E for e2 in E)
True

(continues on next page)
sage: all(to_V(h(c) * e) == c * to_V(e) for e in E for c in F)
True

**frobenius_endomorphism**(n=1)

**INPUT:**

• n – an integer (default: 1)

**OUTPUT:**

The n-th power of the absolute arithmetic Frobenius endomorphism on this finite field.

**EXAMPLES:**

```python
sage: k.<t> = GF(3^5)
sage: Frob = k.frobenius_endomorphism(); Frob
Frobenius endomorphism t |--> t^3 on Finite Field in t of size 3^5
sage: a = k.random_element()
sage: Frob(a) == a^3
True
```

We can specify a power:

```python
sage: k.frobenius_endomorphism(2)
Frobenius endomorphism t |--> t^(3^2) on Finite Field in t of size 3^5
```

The result is simplified if possible:

```python
sage: k.frobenius_endomorphism(6)
Frobenius endomorphism t |--> t^3 on Finite Field in t of size 3^5
sage: k.frobenius_endomorphism(5)
Identity endomorphism of Finite Field in t of size 3^5
```

Comparisons work:

```python
sage: k.frobenius_endomorphism(6) == Frob
True
```

**AUTHOR:**

• Xavier Caruso (2012-06-29)

**galois_group()**

Return the Galois group of this finite field, a cyclic group generated by Frobenius.

**EXAMPLES:**

```python
sage: G = GF(3^6).galois_group()
sage: G
Galois group C6 of GF(3^6)
sage: F = G.gen()
sage: F^2
```

(continues on next page)
Frob^2
\texttt{sage: F^6}
1

\textbf{gen()}

Return a generator of this field (over its prime field). As this is an abstract base class, this just raises a \texttt{NotImplementedError}.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: K = GF(17)}
\texttt{sage: sage.rings.finite_rings.finite_field_base.FiniteField.gen(K)}
\texttt{Traceback (most recent call last):
...\texttt{NotImplementedError}
\end{verbatim}

\textbf{is_conway()}

Return \texttt{True} if self is defined by a Conway polynomial.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: GF(5^3, 'a').is_conway()}
\texttt{True}
\texttt{sage: GF(5^3, 'a', modulus='adleman-lenstra').is_conway()}
\texttt{False}
\texttt{sage: GF(next_prime(2^16, 2), 'a').is_conway()}
\texttt{False}
\end{verbatim}

\textbf{is_field(proof=True)}

Returns whether or not the finite field is a field, i.e., always returns \texttt{True}.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: k.<a> = FiniteField(3^4)}
\texttt{sage: k.is_field()}
\texttt{True}
\end{verbatim}

\textbf{is_perfect()}

Return whether this field is perfect, i.e., every element has a \(p\)-th root. Always returns \texttt{True} since finite fields are perfect.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: GF(2).is_perfect()}
\texttt{True}
\end{verbatim}

\textbf{is_prime_field()}

Return \texttt{True} if self is a prime field, i.e., has degree 1.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: GF(3^7, 'a').is_prime_field()}
\texttt{False}
\texttt{sage: GF(3, 'a').is_prime_field()}
\texttt{True}
\end{verbatim}
modulus()

Return the minimal polynomial of the generator of self over the prime finite field.

The minimal polynomial of an element \( a \) in a field is the unique monic irreducible polynomial of smallest degree with coefficients in the base field that has \( a \) as a root. In finite field extensions, \( \mathbb{F}_{p^n} \), the base field is \( \mathbb{F}_p \).

OUTPUT:

- a monic polynomial over \( \mathbb{F}_p \) in the variable \( x \).

EXAMPLES:

```sage
sage: F.<a> = GF(7^2); F
Finite Field in a of size 7^2
sage: F.polynomial_ring()
Univariate Polynomial Ring in a over Finite Field of size 7
sage: f = F.modulus(); f
x^2 + 6*x + 3
sage: f(a)
0
```

Although \( f \) is irreducible over the base field, we can double-check whether or not \( f \) factors in \( F \) as follows. The command \( F['x'](f) \) coerces \( f \) as a polynomial with coefficients in \( F \). (Instead of a polynomial with coefficients over the base field.)

```sage
sage: f.factor()
x^2 + 6*x + 3
sage: F['x'](f).factor()
(x + a + 6) * (x + 6*a)
```

Here is an example with a degree 3 extension:

```sage
sage: G. = GF(7^3); G
Finite Field in b of size 7^3
sage: g = G.modulus(); g
x^3 + 6*x^2 + 4
sage: g.degree(); G.degree()
3
3
```

For prime fields, this returns \( x - 1 \) unless a custom modulus was given when constructing this field:

```sage
sage: k = GF(199)
sage: k.modulus()
x + 198
sage: var('x')
x
sage: k = GF(199, modulus=x+1)
sage: k.modulus()
x + 1
```

The given modulus is always made monic:

```sage
sage: k.<a> = GF(7^2, modulus=2^2*x^2-3, impl="pari_ffelt")
sage: k.modulus()
x^2 + 2
```
**multiplicative_generator()**

Return a primitive element of this finite field, i.e. a generator of the multiplicative group.

You can use `multiplicative_generator()` or `primitive_element()`, these mean the same thing.

**Warning:** This generator might change from one version of Sage to another.

**EXAMPLES:**

```
sage: k = GF(997)
sage: k.multiplicative_generator()
7
sage: k.<a> = GF(11^3)
sage: k.primitive_element()
a
sage: k. = GF(19^32)
sage: k.multiplicative_generator()
b + 4
```

**ngens()**

The number of generators of the finite field. Always 1.

**EXAMPLES:**

```
sage: k = FiniteField(3^4, 'b')
sage: k.ngens()
1
```

**order()**

Return the order of this finite field.

**EXAMPLES:**

```
sage: GF(997).order()
997
```

**polynomial**(name=None)

Return the minimal polynomial of the generator of `self` over the prime finite field.

**INPUT:**

• name – a variable name to use for the polynomial. By default, use the name given when constructing this field.

**OUTPUT:**

• a monic polynomial over \(F_p\) in the variable name.

**See also:**

Except for the name argument, this is identical to the `modulus()` method.

**EXAMPLES:**

```
sage: k.<a> = FiniteField(9)
sage: k.polynomial('x')
x^2 + 2*x + 2
sage: k.polynomial()
```

(continues on next page)

(continued from previous page)

\[ a^2 + 2a + 2 \]

```python
sage: F = FiniteField(9, 'a', impl='pari_ffelt')
sage: F.polynomial()
a^2 + 2*a + 2
```

```python
sage: F = FiniteField(7^20, 'a', impl='pari_ffelt')
sage: f = F.polynomial(); f
a^20 + a^12 + 6*a^11 + 2*a^10 + 5*a^9 + 2*a^8 + 3*a^7 + a^6 + 3*a^5 + 3*a^3 + a...
 + 3
sage: f(F.gen())
0
```

```python
sage: k.<a> = GF(2^20, impl='ntl')
sage: k.polynomial()
a^20 + a^10 + a^9 + a^7 + a^6 + a^5 + a^4 + a + 1
sage: k.polynomial('FOO')
FOO^20 + FOO^10 + FOO^9 + FOO^7 + FOO^6 + FOO^5 + FOO^4 + FOO + 1
sage: a^20
a^10 + a^9 + a^7 + a^6 + a^5 + a^4 + a + 1
```

`polynomial_ring(variable_name=None)`

Returns the polynomial ring over the prime subfield in the same variable as this finite field.

**EXAMPLES:**

```python
sage: k.<alpha> = FiniteField(3^4)
sage: k.polynomial_ring()
Univariate Polynomial Ring in alpha over Finite Field of size 3
```

`primitive_element()`

Return a primitive element of this finite field, i.e. a generator of the multiplicative group.

You can use `multiplicative_generator()` or `primitive_element()`, these mean the same thing.

**Warning:** This generator might change from one version of Sage to another.

**EXAMPLES:**

```python
sage: k = GF(997)
sage: k.multiplicative_generator()
7
sage: k.<a> = GF(11^3)
sage: k.primitive_element()
a
sage: k. = GF(19^32)
sage: k.multiplicative_generator()
b + 4
```

`random_element(*args, **kwds)`

A random element of the finite field. Passes arguments to `random_element()` function of underlying vector space.
EXAMPLES:

```
sage: k = GF(19^4, 'a')
sage: k.random_element()
a^3 + 3*a^2 + 6*a + 9
```

Passes extra positional or keyword arguments through:

```
sage: k.random_element(prob=0)
0
```

`sage._some_elements()`

Returns a collection of elements of this finite field for use in unit testing.

EXAMPLES:

```
sage: k = GF(2^8, 'a')
sage: k._some_elements() # random output
[a^4 + a^3 + 1, a^6 + a^4 + a^3, a^5 + a^4 + a, a^2 + a]
```

`sage._subfield_(degree, name=None, map=False)`

Return the subfield of the field of `degree`.

The inclusion maps between these subfields will always commute, but they are only added as coercion maps if the following condition holds for the generator `g` of the field, where `d` is the degree of this field over the prime field:

The element \( g^{(p^d-1)/(p^m-1)} \) generates the subfield of degree `n` for all divisors `n` of `d`.

INPUT:

- `degree` – integer; degree of the subfield
- `name` – string; name of the generator of the subfield
- `map` – boolean (default False); whether to also return the inclusion map

EXAMPLES:

```
sage: k = GF(2^21)
sage: k._subfield_(3)
Finite Field in z3 of size 2^3
sage: k._subfield_(7, 'a')
Finite Field in a of size 2^7
sage: k._coerce_map_from(_) # random output
Ring morphism:
 From: Finite Field in a of size 2^7
 To: Finite Field in z21 of size 2^21
 Defn: a |--> z21^20 + z21^19 + z21^17 + z21^15 + z21^14 + z21^6 + z21^4 + z21^3 + z21
sage: k._subfield_(8)
Traceback (most recent call last):

ValueError: no subfield of order 2^8
```

`sage._subfields_(degree=0, name=None)`

Return all subfields of `self` of the given `degree`, or all possible degrees if `degree` is 0.

The subfields are returned as absolute fields together with an embedding into `self`. 
INPUT:

- **degree** – (default: 0) an integer
- **name** – a string, a dictionary or None:
  - If **degree** is nonzero, then **name** must be a string (or None, if this is a pseudo-Conway extension), and will be the variable name of the returned field.
  - If **degree** is zero, the dictionary should have keys the divisors of the degree of this field, with the desired variable name for the field of that degree as an entry.
  - As a shortcut, you can provide a string and the degree of each subfield will be appended for the variable name of that subfield.
  - If None, uses the prefix of this field.

OUTPUT:

A list of pairs \((K, e)\), where \(K\) ranges over the subfields of this field and \(e\) gives an embedding of \(K\) into self.

EXAMPLES:

```
sage: k = GF(2^21)
sage: k.subfields()
[(Finite Field of size 2,
 Ring morphism:
 From: Finite Field of size 2
 To: Finite Field in z21 of size 2^21
 Defn: 1 |--> 1),
 (Finite Field in z3 of size 2^3,
 Ring morphism:
 From: Finite Field in z3 of size 2^3
 To: Finite Field in z21 of size 2^21
 Defn: z3 |--> z21^20 + z21^19 + z21^17 + z21^15 + z21^11 + z21^9 + z21^8 + z21^6 + z21^2),
 (Finite Field in z7 of size 2^7,
 Ring morphism:
 From: Finite Field in z7 of size 2^7
 To: Finite Field in z21 of size 2^21
 Defn: z7 |--> z21^20 + z21^19 + z21^17 + z21^15 + z21^14 + z21^6 + z21^4 + z21^3 + z21),
 (Finite Field in z21 of size 2^21,
 Identity endomorphism of Finite Field in z21 of size 2^21)]
```
ValueError.

**Warning:** In general, this returns an arbitrary element of the correct order. There are no compatibility guarantees: $F.zeta(9)^3$ may not be equal to $F.zeta(3)$.

**EXAMPLES:**

```python
sage: k = GF(7)
sage: k.zeta()
3
sage: k.zeta().multiplicative_order()
6
sage: k.zeta(3)
2
sage: k.zeta(3).multiplicative_order()
3
sage: k = GF(49, 'a')
sage: k.zeta().multiplicative_order()
48
sage: k.zeta(6)
3
sage: k.zeta(5)
Traceback (most recent call last):
...
ValueError: no 5th root of unity in Finite Field in a of size 7^2
```

Even more examples:

```python
sage: GF(9,'a').zeta_order()
8
sage: GF(9,'a').zeta()
a
sage: GF(9,'a').zeta(4)
a + 1
sage: GF(9,'a').zeta()^2
a + 1
```

This works even in very large finite fields, provided that $n$ can be factored (see trac ticket #25203):

```python
sage: k.<a> = GF(2^2000)
sage: p = 8877945148742945001146041439025147034098690503591013177336356694416517527310181338001
sage: z = k.zeta(p)
sage: z
a^1999 + a^1996 + a^1995 + a^1994 + ... + a^7 + a^5 + a^4 + 1
sage: z^p
1
```

**zeta_order()**

Return the order of the distinguished root of unity in `self`.

**EXAMPLES:**
sage: GF(9,'a').zeta_order()
8
sage: GF(9,'a').zeta()
a
sage: GF(9,'a').zeta().multiplicative_order()
8

sage.rings.finite_rings.finite_field_base.is_FiniteField(R)
Return whether the implementation of R has the interface provided by the standard finite field implementation.

EXAMPLES:

sage: from sage.rings.finite_rings.finite_field_base import is_FiniteField
sage: is_FiniteField(GF(9,'a'))
True
sage: is_FiniteField(GF(next_prime(10^10)))
True

Note that the integers modulo n are not backed by the finite field type:

sage: is_FiniteField(Integers(7))
False

sage.rings.finite_rings.finite_field_base.unpickle_FiniteField_ext(_type, order, variable_name, modulus, kwargs)
Used to unpickle extensions of finite fields. Now superseded (hence no doctest), but kept around for backward compatibility.

sage.rings.finite_rings.finite_field_base.unpickle_FiniteField_prm(_type, order, variable_name, kwargs)
Used to unpickle finite prime fields. Now superseded (hence no doctest), but kept around for backward compatibility.

### 2.3 Base class for finite field elements

AUTHORS:
- David Roe (2010-1-14): factored out of sage.structure.element
- Sebastian Oehms (2018-7-19): added conjugate() (see trac ticket #26761)

class sage.rings.finite_rings.element_base.Cache_base
Bases: sage.structure.sage_object.SageObject

fetch_int(number)
Given an integer less than \( p^n \) with base 2 representation \( a_0 + a_1 \cdot 2 + \cdots + a_k 2^k \), this returns \( a_0 + a_1 x + \cdots + a_k x^k \), where \( x \) is the generator of this finite field.

EXAMPLES:

sage: k.<a> = GF(2^48)
sage: k._cache.fetch_int(2^33 + 2 + 1)
a^33 + a + 1

class sage.rings.finite_rings.element_base.FinitePolyExtElement
Bases: sage.rings.finite_rings.element_base.FiniteRingElement
Elements represented as polynomials modulo a given ideal.

**additive_order()**

Return the additive order of this finite field element.

**EXAMPLES:**

```python
sage: k.<a> = FiniteField(2^12, 'a')
sage: b = a^3 + a + 1
sage: b.additive_order()
2
sage: k(0).additive_order()
1
```

**charpoly(var='x', algorithm='pari')**

Return the characteristic polynomial of self as a polynomial with given variable.

**INPUT:**

- `var` – string (default: ‘x’)
- `algorithm` – string (default: ‘pari’)
  - ‘pari’ – use pari’s charpoly
  - ‘matrix’ – return the charpoly computed from the matrix of left multiplication by self

The result is not cached.

**EXAMPLES:**

```python
sage: from sage.rings.finite_rings.element_base import FinitePolyExtElement
sage: k.<a> = FiniteField(19^2)
sage: parent(a)
Finite Field in a of size 19^2
sage: b=a^20
sage: p=FinitePolyExtElement.charpoly(b,"x", algorithm="pari")
sage: q=FinitePolyExtElement.charpoly(b,"x", algorithm="matrix")
sage: q == p
True
sage: p
x^2 + 15*x + 4
sage: factor(p)
(x + 17)^2
sage: b.minpoly('x')
x + 17
```

**conjugate()**

This method returns the result of the Frobenius morphism in the case where the field is a quadratic extension, say $GF(q^2)$, where $q = p^k$ is a prime power and $p$ the characteristic of the field.

**OUTPUT:**

Instance of this class representing the image under the Frobenius morphisms.

**EXAMPLES:**

```python
sage: F.<a> = GF(16)
sage: b = a.conjugate(); b
a + 1
```
sage: a == b.conjugate()
True

sage: F.<a> = GF(27)
sage: a.conjugate()
Traceback (most recent call last):
...
TypeError: cardinality of the field must be a square number

\textbf{frobenius}(k=1)

Return the \((p^k)\text{th}\) power of self, where \(p\) is the characteristic of the field.

\textbf{INPUT:}

\begin{itemize}
  \item \(k\) – integer (default: 1, must fit in C \text{int} type)
\end{itemize}

Note that if \(k\) is negative, then this computes the appropriate root.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: F.<a> = GF(29^2)
sage: z = a^2 + 5*a + 1
sage: z.pth_power()
19*a + 20
sage: z.pth_power(10)
10*a + 28
sage: z.pth_power(-10) == z
True
sage: F.<b> = GF(2^12)
sage: y = b^3 + b + 1
sage: y == (y.pth_power(-3))^(2^3)
True
sage: y.pth_power(2)
b^7 + b^6 + b^5 + b^4 + b^3 + b
\end{verbatim}

\textbf{is\_square}()

Returns True if and only if this element is a perfect square.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: k.<a> = FiniteField(9, impl='givaro', modulus='primitive')
sage: a.is_square()
False
sage: (a**2).is_square()
True
sage: k.<a> = FiniteField(4, impl='ntl', modulus='primitive')
sage: (a**2).is_square()
True
sage: k.<a> = FiniteField(17^5, impl='pari_ffelt', modulus='primitive')
sage: a.is_square()
False
sage: (a**2).is_square()
True
\end{verbatim}
sage: k(0).is_square()
True

**matrix(reverse=False)**
Return the matrix of left multiplication by the element on the power basis $1, x, x^2, \ldots, x^{d-1}$ for the field extension. Thus the columns of this matrix give the images of each of the $x^i$.

**INPUT:**
- `reverse` – if True, act on vectors in reversed order

**EXAMPLES:**
```
sage: k.<a> = GF(2^4)
sage: b = k.random_element()
sage: vector(a*b) == a.matrix() * vector(b)
True
sage: (a*b)._vector_(reverse=True) == a.matrix(reverse=True) * b._vector_(reverse=True)
True
```

**minimal_polynomial(var='x')**
Returns the minimal polynomial of this element (over the corresponding prime subfield).

**EXAMPLES:**
```
sage: k.<a> = FiniteField(3^4)
sage: parent(a)
Finite Field in a of size 3^4
sage: b=a**20;p=charpoly(b,'y');p
y^4 + 2*y^2 + 1
sage: factor(p)
(y^2 + 1)^2
sage: b.minimal_polynomial('y')
y^2 + 1
```

**minpoly(var='x', algorithm='pari')**
Returns the minimal polynomial of this element (over the corresponding prime subfield).

**INPUT:**
- `var` - string (default: `x`)
- `algorithm` - string (default: `pari`)
  - `pari` – use pari’s minpoly
  - `matrix` – return the minpoly computed from the matrix of left multiplication by self

**EXAMPLES:**
```
sage: from sage.rings.finite_rings.element_base import FinitePolyExtElement
sage: k.<a> = FiniteField(19^2)
sage: parent(a)
Finite Field in a of size 19^2
sage: b=a**20
sage: p=FinitePolyExtElement.minpoly(b,"x", algorithm="pari")
sage: q=FinitePolyExtElement.minpoly(b,"x", algorithm="matrix")
```

(continues on next page)
sage: q == p
True
sage: p
x + 17

\textbf{multiplicative\_order()}

Return the multiplicative order of this field element.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: S.<a> = GF(5^3); S
Finite Field in a of size 5^3
sage: a.multiplicative_order()
124
sage: (a^8).multiplicative_order()
31
sage: S(0).multiplicative_order()
Traceback (most recent call last):
...
ArithmeticError: Multiplicative order of 0 not defined.
\end{verbatim}

\textbf{norm()}

Return the norm of self down to the prime subfield.

This is the product of the Galois conjugates of self.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: S.<b> = GF(5^2); S
Finite Field in b of size 5^2
sage: b.norm()
2
sage: b.charpoly('t')
t^2 + 4*t + 2
\end{verbatim}

Next we consider a cubic extension:

\begin{verbatim}
sage: S.<a> = GF(5^3); S
Finite Field in a of size 5^3
sage: a.norm()
2
sage: a.charpoly('t')
t^3 + 3*t + 3
sage: a * a^5 * (a^25)
2
\end{verbatim}

\textbf{nth\_root}(n, extend=False, all=False, algorithm=None, cunningham=False)

Returns an \textit{n}th root of \textit{self}.

\textbf{INPUT:}

- \texttt{n} – integer ≥ 1
- \texttt{extend} – bool (default: False); if True, return an \textit{n}th root in an extension ring, if necessary. Otherwise, raise a ValueError if the root is not in the base ring. Warning: this option is not implemented!
- \texttt{all} – bool (default: False); if True, return all \textit{n}th roots of \textit{self}, instead of just one.
• algorithm – string (default: None); ‘Johnston’ is the only currently supported option. For IntegerMod elements, the problem is reduced to the prime modulus case using CRT and $p$-adic logs, and then this algorithm used.

OUTPUT:

If self has an $n$th root, returns one (if all is False) or a list of all of them (if all is True). Otherwise, raises a ValueError (if extend is False) or a NotImplementedError (if extend is True).

**Warning:** The extend option is not implemented (yet).

EXAMPLES:

```sage
sage: K = GF(31)
sage: a = K(22)
sage: K(22).nth_root(7)
13
sage: K(25).nth_root(5)
5
sage: K(23).nth_root(3)
29

sage: K.<a> = GF(625)
sage: (3*a^2+a+1).nth_root(13)**13
3*a^2 + a + 1

sage: k.<a> = GF(29^2)
sage: b = a^2 + 5*a + 1
sage: b.nth_root(11)
3*a + 20
sage: b.nth_root(5)
Traceback (most recent call last):
 ... ValueError: no nth root
sage: b.nth_root(5, all = True)
[]
sage: b.nth_root(3, all = True)
[14*a + 18, 10*a + 13, 5*a + 27]

sage: k.<a> = GF(29^5)
sage: b = a^2 + 5*a + 1
sage: b.nth_root(5)
19*a^4 + 2*a^3 + 2*a^2 + 16*a + 3
sage: b.nth_root(7)
Traceback (most recent call last):
 ... ValueError: no nth root
sage: b.nth_root(4, all=True)
[]
```

ALGORITHMS:

• The default is currently an algorithm described in the following paper:

AUTHOR:
• David Roe (2010-02-13)

pth_power(k=1)
Return the \( (p^k)^{th} \) power of self, where \( p \) is the characteristic of the field.

INPUT:
• \( k \) – integer (default: 1, must fit in C int type)

Note that if \( k \) is negative, then this computes the appropriate root.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & F.<a> = GF(29^2) \\
\text{sage: } & z = a^2 + 5*a + 1 \\
\text{sage: } & z.pth_power() \\
& 19*a + 20 \\
\text{sage: } & z.pth_power(10) \\
& 10^a + 28 \\
\text{sage: } & z.pth_power(-10) == z \\
& \text{True} \\
\text{sage: } & F.<b> = GF(2^12) \\
\text{sage: } & y = b^3 + b + 1 \\
\text{sage: } & y == (y.pth_power(-3))^(2^3) \\
& \text{True} \\
\text{sage: } & y.pth_power(2) \\
& b^7 + b^6 + b^5 + b^4 + b^3 + b
\end{align*}
\]

pth_root(k=1)
Return the \( (p^k)^{th} \) root of self, where \( p \) is the characteristic of the field.

INPUT:
• \( k \) – integer (default: 1, must fit in C int type)

Note that if \( k \) is negative, then this computes the appropriate power.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & F.<b> = GF(2^12) \\
\text{sage: } & y = b^3 + b + 1 \\
\text{sage: } & y == (y.pth_root(3))^(2^3) \\
& \text{True} \\
\text{sage: } & y.pth_root(2) \\
& b^11 + b^10 + b^9 + b^7 + b^5 + b^4 + b^3 + b
\end{align*}
\]

sqrt(extend=False, all=False)
See square_root().

EXAMPLES:

\[
\begin{align*}
\text{sage: } & k.<a> = GF(3^17) \\
\text{sage: } & (a^3 - a - 1).sqrt() \\
& a^16 + 2*a^15 + a^13 + 2*a^12 + a^10 + 2*a^9 + 2*a^8 + a^7 + a^6 + 2*a^5 + a^4 + \\
& 2*a^2 + 2*a + 2
\end{align*}
\]
**square_root***(extend=False, all=False)***
The square root function.

**INPUT:**

- **extend** – bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a ValueError if the root is not in the base ring.

**Warning:** This option is not implemented!

- **all** – bool (default: False); if True, return all square roots of self, instead of just one.

**Warning:** The 'extend' option is not implemented (yet).

**EXAMPLES:**

```python
sage: F = FiniteField(7**2, 'a')
sage: F(2).square_root()
4
sage: F(3).square_root()
2*a + 6
sage: F(3).square_root()**2
3
sage: F(4).square_root()
2
sage: K = FiniteField(7**3, 'alpha', impl='pari_ffelt')
sage: K(3).square_root()
Traceback (most recent call last):
... ValueErro: must be a perfect square.
```

**trace()**

Return the trace of this element, which is the sum of the Galois conjugates.

**EXAMPLES:**

```python
sage: S.<a> = GF(5^3); S
Finite Field in a of size 5^3
sage: a.trace()
0
sage: a.charpoly('t')
t^3 + 3*t + 3
sage: a + a^5 + a^25
0
sage: z = a^2 + a + 1
sage: z.trace()
2
sage: z.charpoly('t')
t^3 + 3*t^2 + 2*t + 2
sage: z + z^5 + z^25
2
```
class sage.rings.finite_rings.element_base.FiniteRingElement

Bases: sage.structure.element.CommutativeRingElement

sage.rings.finite_rings.element_base.is_FiniteFieldElement(x)

Returns if x is a finite field element.

EXAMPLES:

```
from sage.rings.finite_rings.element_base import is_FiniteFieldElement

sage: is_FiniteFieldElement(1)
False
sage: is_FiniteFieldElement(IntegerRing())
False
sage: is_FiniteFieldElement(GF(5)(2))
True
```

### 2.4 Homset for Finite Fields

This is the set of all field homomorphisms between two finite fields.

EXAMPLES:

```
R.<t> = ZZ[]
E.<a> = GF(25, modulus = t^2 - 2)
F. = GF(625)
H = Hom(E, F)
f = H([4*b^3 + 4*b^2 + 4*b]); f
Ring morphism:
 From: Finite Field in a of size 5^2
 To: Finite Field in b of size 5^4
 Defn: a |--> 4*b^3 + 4*b^2 + 4*b

sage: f(2)
2
sage: f(a)
4*b^3 + 4*b^2 + 4*b

len(H)
2

sage: [phi(2*a)^2 for phi in Hom(E, F)]
[3, 3]
```

We can also create endomorphisms:

```
sage: End(E)
Automorphism group of Finite Field in a of size 5^2
sage: End(GF(7))[0]
Ring endomorphism of Finite Field of size 7
 Defn: 1 |--> 1
sage: H = Hom(GF(7), GF(49, 'c'))
sage: H[0](2)
2
```

class sage.rings.finite_rings.homset.FiniteFieldHomset(R, S, category=None)

Bases: sage.rings.homset.RingHomset_generic

Set of homomorphisms with domain a given finite field.
**index**(item)
Return the index of self.

**EXAMPLES:**

```sage
sage: K.<z> = GF(1024)
sage: g = End(K)[3]
sage: End(K).index(g) == 3
True
```

**is_aut()**
Check if self is an automorphism

**EXAMPLES:**

```sage
sage: Hom(GF(4, 'a'), GF(16, 'b')).is_aut()
False
sage: Hom(GF(4, 'a'), GF(4, 'c')).is_aut()
False
sage: Hom(GF(4, 'a'), GF(4, 'a')).is_aut()
True
```

**list()**
Return a list of all the elements in this set of field homomorphisms.

**EXAMPLES:**

```sage
sage: K.<a> = GF(25)
sage: End(K)
Automorphism group of Finite Field in a of size 5^2
sage: list(End(K))
[Ring endomorphism of Finite Field in a of size 5^2
 Defn: a |--> 4*a + 1,
 Ring endomorphism of Finite Field in a of size 5^2
 Defn: a |--> a]
sage: L.<z> = GF(7^6)
sage: [g for g in End(L) if (g^3)(z) == z]
[Ring endomorphism of Finite Field in z of size 7^6
 Defn: z |--> z,
 Ring endomorphism of Finite Field in z of size 7^6
 Defn: z |--> 5*z^4 + 5*z^3 + 4*z^2 + 3*z + 1,
 Ring endomorphism of Finite Field in z of size 7^6
 Defn: z |--> 3*z^5 + 5*z^4 + 5*z^2 + 2*z + 3]
```

Between isomorphic fields with different moduli:

```sage
sage: k1 = GF(1009)
sage: k2 = GF(1009, modulus="primitive")
sage: Hom(k1, k2).list()
[
 Ring morphism:
 From: Finite Field of size 1009
 To: Finite Field of size 1009
 Defn: 1 |--> 1
]```

(continues on next page)
sage: Hom(k2, k1).list()
[
 Ring morphism:
 From: Finite Field of size 1009
 To: Finite Field of size 1009
 Defn: 11 |--> 11
]

sage: k1.<a> = GF(1009^2, modulus="first_lexicographic")
sage: k2. = GF(1009^2, modulus="conway")
sage: Hom(k1, k2).list()
[
 Ring morphism:
 From: Finite Field in a of size 1009^2
 To: Finite Field in b of size 1009^2
 Defn: a |--> 290*b + 864,
 Ring morphism:
 From: Finite Field in a of size 1009^2
 To: Finite Field in b of size 1009^2
 Defn: a |--> 719*b + 145
]

order()

Return the order of this set of field homomorphisms.

EXAMPLES:

sage: K.<a> = GF(125)
sage: End(K)
Automorphism group of Finite Field in a of size 5^3
sage: End(K).order()
3
sage: L. = GF(25)
sage: Hom(L, K).order() == Hom(K, L).order() == 0
True

2.5 Finite field morphisms

This file provides several classes implementing:

- embeddings between finite fields
- Frobenius isomorphism on finite fields

EXAMPLES:

```python
sage: from sage.rings.finite_rings.hom_finite_field import FiniteFieldHomomorphism_
generic
```

Construction of an embedding:
sage: k.<t> = GF(3^7)
sage: K.<T> = GF(3^21)
sage: f = FiniteFieldHomomorphism_generic(Hom(k, K)); f
Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
 Defn: t |--> T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5 + 2*T^4 + T

sage: f(t)
T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5 + 2*T^4 + T

The map f has a method `section` which returns a partially defined map which is the inverse of f on the image of f:

sage: g = f.section(); g
Section of Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
 Defn: t |--> T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5 + 2*T^4 + T

sage: g(f(t^3+t^2+1))
t^3 + t^2 + 1
sage: g(T)
Traceback (most recent call last):
...
ValueError: T is not in the image of Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
 Defn: t |--> T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5 + 2*T^4 + T

There is no embedding of $GF(5^6)$ into $GF(5^{11})$:

sage: k.<t> = GF(5^6)
sage: K.<T> = GF(5^{11})
sage: FiniteFieldHomomorphism_generic(Hom(k, K))
Traceback (most recent call last):
...
ValueError: No embedding of Finite Field in t of size 5^6 into Finite Field in T of size 5^{11}

Construction of Frobenius endomorphisms:

sage: k.<t> = GF(7^14)
sage: Frob = k.frobenius_endomorphism(); Frob
Frobenius endomorphism t |---> t^7 on Finite Field in t of size 7^14
sage: Frob(t)
t^7

Some basic arithmetics is supported:

sage: Frob^2
Frobenius endomorphism t |---> t^(7^2) on Finite Field in t of size 7^14
(continues on next page)
sage: f = k.frobenius_endomorphism(7); f
Frobenius endomorphism t |---> t^(7^7) on Finite Field in t of size 7^14
sage: f*Frob
Frobenius endomorphism t |---> t^(7^8) on Finite Field in t of size 7^14
sage: Frob.order()
14
sage: f.order()
2

Note that simplifications are made automatically:

sage: Frob^16
Frobenius endomorphism t |---> t^(7^2) on Finite Field in t of size 7^14
sage: Frob^28
Identity endomorphism of Finite Field in t of size 7^14

And that comparisons work:

\[
\text{sage: Frob} \;\text{== Frob}^\text{15}
\]
True
\[
\text{sage: Frob}^\text{14} \;\text{== Hom}(k, k).\text{identity()}
\]
True

AUTHOR:

• Xavier Caruso (2012-06-29)

class sage.rings.finite_rings.hom_finite_field.FiniteFieldHomomorphism_generic

\[
\text{Bases: sage.rings.morphism.RingHomomorphism_im_gens}
\]

A class implementing embeddings between finite fields.

\[
\text{is_injective()}
\]
Return True since a embedding between finite fields is always injective.

\[
\text{EXAMPLES:}
\]
\[
\text{sage: from sage.rings.finite_rings.hom_finite_field import FiniteFieldHomomorphism_generic}
\]
\[
\text{sage: k.<t> = GF(3^3)}
\]
\[
\text{sage: K.<T> = GF(3^9)}
\]
\[
\text{sage: f = FiniteFieldHomomorphism_generic(Hom(k, K))}
\]
\[
\text{sage: f.is_injective()}
\]
True

\[
\text{is_surjective()}
\]
Return true if this embedding is surjective (and hence an isomorphism.

\[
\text{EXAMPLES:}
\]
\[
\text{sage: from sage.rings.finite_rings.hom_finite_field import FiniteFieldHomomorphism_generic}
\]
\[
\text{sage: k.<t> = GF(3^3)}
\]
\[
\text{sage: K.<T> = GF(3^9)}
\]
\[
\text{sage: f = FiniteFieldHomomorphism_generic(Hom(k, K))}
\]
sage: f.is_surjective()
False
sage: g = FiniteFieldHomomorphism_generic(Hom(k, k))
sage: g.is_surjective()
True

section()

Return the inverse of this embedding.

It is a partially defined map whose domain is the codomain of the embedding, but which is only defined on the image of the embedding.

EXAMPLES:

sage: from sage.rings.finite_rings.hom Finite_field import FiniteFieldHomomorphism_generic
sage: k.<t> = GF(3^7)
sage: K.<T> = GF(3^21)
sage: f = FiniteFieldHomomorphism_generic(Hom(k, K))
sage: g = f.section(); g
Section of Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
 Defn: t |--> T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5 +
 T^3 + 2*T^2 + T
sage: g(f(t^3+t^2+1))
t^3 + t^2 + 1
sage: g(T)
Traceback (most recent call last):
 ... ValueError: T is not in the image of Ring morphism:
 From: Finite Field in t of size 3^7
 To: Finite Field in T of size 3^21
 Defn: t |--> T^20 + 2*T^18 + T^16 + 2*T^13 + T^9 + 2*T^8 + T^7 + T^6 + T^5 +
 T^3 + 2*T^2 + T

class sage.rings.finite_rings.hom Finite_field.FrobeniusEndomorphism_finite_field

Bases: sage.rings.morphism.FrobeniusEndomorphism_generic

A class implementing Frobenius endomorphisms on finite fields.

fixed_field()

Return the fixed field of self.

OUTPUT:

• a tuple \((K, e)\), where \(K\) is the subfield of the domain consisting of elements fixed by \(self\) and \(e\) is an embedding of \(K\) into the domain.

Note: The name of the variable used for the subfield (if it is not a prime subfield) is suffixed by \(_\text{fixed}\).

EXAMPLES:
sage: k.<t> = GF(5^6)
sage: f = k.frobenius_endomorphism(2)
sage: kfixed, embed = f.fixed_field()
sage: kfixed
Finite Field in t_fixed of size 5^2
sage: embed
Ring morphism:
 From: Finite Field in t_fixed of size 5^2
 To: Finite Field in t of size 5^6
 Defn: t_fixed |--> 4*t^5 + 2*t^4 + 4*t^2 + t
sage: tfixed = kfixed.gen()
sage: embed(tfixed)
4*t^5 + 2*t^4 + 4*t^2 + t

inverse()
Return the inverse of this Frobenius endomorphism.

EXAMPLES:

 sage: k.<a> = GF(7^11)
sage: f = k.frobenius_endomorphism(5)
sage: (f.inverse() * f).is_identity()
 True

is_identity()
Return true if this morphism is the identity morphism.

EXAMPLES:

 sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: Frob.is_identity()
 False
sage: (Frob^3).is_identity()
 True

is_injective()
Return true since any power of the Frobenius endomorphism over a finite field is always injective.

EXAMPLES:

 sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: Frob.is_injective()
 True

is_surjective()
Return true since any power of the Frobenius endomorphism over a finite field is always surjective.

EXAMPLES:

 sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: Frob.is_surjective()
 True
order()

Return the order of this endomorphism.

EXAMPLES:

```
sage: k.<t> = GF(5^12)
sage: Frob = k.frobenius_endomorphism()
sage: Frob.order()  
12
sage: (Frob^2).order()  
6
sage: (Frob^9).order()  
4
```

power()

Return an integer n such that this endomorphism is the n-th power of the absolute (arithmetic) Frobenius.

EXAMPLES:

```
sage: k.<t> = GF(5^12)
sage: Frob = k.frobenius_endomorphism()
sage: Frob.power()  
1
sage: (Frob^9).power()  
9
sage: (Frob^13).power()  
1
```

class `sage.rings.finite_rings.hom_finite_field.SectionFiniteFieldHomomorphism_generic`

Bases: `sage.categories.map.Section`

A class implementing sections of embeddings between finite fields.
3.1 Finite Prime Fields

AUTHORS:

- William Stein: initial version
- Martin Albrecht (2008-01): refactoring

```python
class sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn(p, check=True, modulus=None):
    Bases: sage.rings.finite_rings.finite_field_base.FiniteField, sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic

    Finite field of order $p$ where $p$ is prime.

    EXAMPLES:

    sage: FiniteField(3)
    Finite Field of size 3
    sage: FiniteField(next_prime(1000))
    Finite Field of size 1009
```

`characteristic()`

Return the characteristic of `self`.

EXAMPLES:

```python
sage: k = GF(7)
sage: k.characteristic()
7
```

`construction()`

Returns the construction of this finite field (for use by `sage.categories.pushout`)

EXAMPLES:

```python
sage: GF(3).construction()
(QuotientFunctor, Integer Ring)
```

`degree()`

Return the degree of `self` over its prime field.

This always returns 1.
EXAMPLES:

```sage
sage: FiniteField(3).degree()
1
```

gen(\(n=0\))

Return a generator of self over its prime field, which is a root of self.modulus().

Unless a custom modulus was given when constructing this prime field, this returns 1.

INPUT:

- n – must be 0

OUTPUT:

An element \(a\) of self such that self.modulus()(a) == 0.

Warning: This generator is not guaranteed to be a generator for the multiplicative group. To obtain the latter, use multiplicative_generator() or use the modulus="primitive" option when constructing the field.

EXAMPLES:

```sage
sage: k = GF(13)
sage: k.gen()
1
sage: k = GF(1009, modulus="primitive")
sage: k.gen()  # this gives a primitive element
11
```

```sage
sage: k.gen(1)
Traceback (most recent call last):
  ...
IndexError: only one generator
```

is_prime_field()

Return True since this is a prime field.

EXAMPLES:

```sage
sage: k.<a> = GF(3)
sage: k.is_prime_field()
True
```

```sage
sage: k.<a> = GF(3^2)
sage: k.is_prime_field()
False
```

order()

Return the order of this finite field.

EXAMPLES:

```sage
sage: k = GF(5)
sage: k.order()
5
```
polynomial(name=None)
 Returns the polynomial name.

EXAMPLES:

sage: k.<a> = GF(3)
sage: k.polynomial()
x

3.2 Finite field morphisms for prime fields

Special implementation for prime finite field of:

- embeddings of such field into general finite fields
- Frobenius endomorphisms (= identity with our assumptions)

See also:

sage.rings.finite_rings.hom_finite_field

AUTHOR:

- Xavier Caruso (2012-06-29)

class sage.rings.finite_rings.hom_prime_finite_field.FiniteFieldHomomorphism_prime
 Bases: sage.rings.finite_rings.hom_finite_field.FiniteFieldHomomorphism_generic

A class implementing embeddings of prime finite fields into general finite fields.

class sage.rings.finite_rings.hom_prime_finite_field.FrobeniusEndomorphism_prime
 Bases: sage.rings.finite_rings.hom_finite_field.FrobeniusEndomorphism_finite_field

A class implementing Frobenius endomorphism on prime finite fields (i.e. identity map :-).

fixed_field()
 Return the fixed field of self.

OUTPUT:

- a tuple \((K, e)\), where \(K\) is the subfield of the domain consisting of elements fixed by \(self\) and \(e\) is an embedding of \(K\) into the domain.

Note: Since here the domain is a prime field, the subfield is the same prime field and the embedding is necessarily the identity map.

EXAMPLES:

sage: k.<t> = GF(5)
sage: f = k.frobenius_endomorphism(2); f
Identity endomorphism of Finite Field of size 5
sage: kfixed, embed = f.fixed_field()
sage: kfixed == k
True
sage: [embed(x) == x for x in kfixed]
[True, True, True, True, True]
class sage.rings.finite_rings.hom_prime_finite_field.SectionFiniteFieldHomomorphism_prime
 Bases: sage.rings.finite_rings.hom_finite_field.SectionFiniteFieldHomomorphism_generic
4.1 Finite fields implemented via PARI's FFELT type

AUTHORS:
• Peter Bruin (June 2013): initial version, based on finite_field_ext_pari.py by William Stein et al.

class sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt(p, modulus, name=None)

Bases: sage.rings.finite_rings.finite_field_base.FiniteField

Finite fields whose cardinality is a prime power (not a prime), implemented using PARI's FFELT type.

INPUT:
• p – prime number
• modulus – an irreducible polynomial of degree at least 2 over the field of \(p \) elements
• name – string: name of the distinguished generator (default: variable name of modulus)

OUTPUT:
A finite field of order \(q = p^n \), generated by a distinguished element with minimal polynomial modulus. Elements are represented as polynomials in name of degree less than \(n \).

Note: Direct construction of FiniteField_pari_ffelt objects requires specifying a characteristic and a modulus. To construct a finite field by specifying a cardinality and an algorithm for finding an irreducible polynomial, use the FiniteField constructor with impl='pari_ffelt'.

EXAMPLES:

Some computations with a finite field of order 9:

```
sage: k = FiniteField(9, 'a', impl='pari_ffelt')
sage: k
Finite Field in a of size 3^2
sage: k.is_field()
True
sage: k.characteristic()
3
sage: a = k.gen()
sage: a
```

(continues on next page)
sage: a.parent()
Finite Field in a of size 3^2
sage: a.charpoly('x')
x^2 + 2*x + 2
sage: [a^i for i in range(8)]
[1, a, a + 1, 2*a + 1, 2*a, 2*a + 2, a + 2]
sage: TestSuite(k).run()

Next we compute with a finite field of order 16:

sage: k16 = FiniteField(16, 'b', impl='pari_ffelt')
sage: z = k16.gen()
sage: z
b
sage: z.charpoly('x')
x^4 + x + 1
sage: k16.is_field()
True
sage: k16.characteristic()
2
sage: z.multiplicative_order()
15

Illustration of dumping and loading:

sage: K = FiniteField(7^10, 'b', impl='pari_ffelt')
sage: loads(K.dumps()) == K
True
sage: K = FiniteField(10007^10, 'a', impl='pari_ffelt')
sage: loads(K.dumps()) == K
True

Element

alias of sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt

characteristic()

Return the characteristic of self.

EXAMPLES:

sage: F = FiniteField(3^4, 'a', impl='pari_ffelt')
sage: F.characteristic()
3

degree()

Returns the degree of self over its prime field.

EXAMPLES:

sage: F = FiniteField(3^20, 'a', impl='pari_ffelt')
sage: F.degree()
20
gen\(_{(n=0)}\)

Return a generator of self over its prime field, which is a root of self.modulus().

INPUT:

- n – must be 0

OUTPUT:

An element \(a\) of self such that self.modulus()\((a) == 0\).

Warning: This generator is not guaranteed to be a generator for the multiplicative group. To obtain the latter, use multiplicative_generator() or use the modulus="primitive" option when constructing the field.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(GF(2))
sage: FiniteField(2^4, 'b', impl='pari_ffelt').gen()
b
sage: k = FiniteField(3^4, 'alpha', impl='pari_ffelt')
sage: a = k.gen()
sage: a
alpha
sage: a^4
alpha^3 + 1
```

4.2 Finite field elements implemented via PARI’s FFELT type

AUTHORS:

- Peter Bruin (June 2013): initial version, based on element_ext_pari.py by William Stein et al. and element_ntl_gf2e.pyx by Martin Albrecht.

class `sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt`

Bases: `sage.rings.finite_rings.element_base.FinitePolyExtElement`

An element of a finite field implemented using PARI.

EXAMPLES:

```python
sage: K = FiniteField(10007^10, 'a', impl='pari_ffelt')
sage: a = K.gen(); a
a
sage: type(a)
<type 'sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt'>
```

charpoly(\(\text{var}='x'\))

Return the characteristic polynomial of self.

INPUT:

- var – string (default: 'x'): variable name to use.

EXAMPLES:
```python
sage: R.<x> = PolynomialRing(FiniteField(3))
sage: F.<a> = FiniteField(3^2, modulus=x^2 + 1, impl='pari_ffelt')
sage: a.charpoly('y')
y^2 + 1
```

is_one()

Return True if self equals 1.

EXAMPLES:

```python
sage: F.<a> = FiniteField(5^3, impl='pari_ffelt')
sage: a.is_one()
False
sage: (a/a).is_one()
True
```

is_square()

Return True if and only if self is a square in the finite field.

EXAMPLES:

```python
sage: k.<a> = FiniteField(3^2, impl='pari_ffelt')
sage: a.is_square()
False
sage: (a**2).is_square()
True
sage: k.<a> = FiniteField(2^2, impl='pari_ffelt')
sage: (a**2).is_square()
True
sage: k.<a> = FiniteField(17^5, impl='pari_ffelt')
sage: (a**2).is_square()
True
sage: a.is_square()
False
sage: k(0).is_square()
True
```

is_unit()

Return True if self is non-zero.

EXAMPLES:

```python
sage: F.<a> = FiniteField(5^3, impl='pari_ffelt')
sage: a.is_unit()
True
```

is_zero()

Return True if self equals 0.

EXAMPLES:

```python
sage: F.<a> = FiniteField(5^3, impl='pari_ffelt')
sage: a.is_zero()
```

(continues on next page)
lift()
If self is an element of the prime field, return a lift of this element to an integer.

EXAMPLES:
```
sage: k = FiniteField(next_prime(10^10)^2, 'u', impl='pari_ffelt')
sage: a = k(17)/k(19)
sage: b = a.lift(); b
7894736858
sage: b.parent()
Integer Ring
```

log(base)
Return a discrete logarithm of self with respect to the given base.

INPUT:

- base – non-zero field element

OUTPUT:

An integer x such that self equals base raised to the power x. If no such x exists, a ValueError is raised.

EXAMPLES:
```
sage: F.<g> = FiniteField(2^10, impl='pari_ffelt')
sage: b = g; a = g^37
sage: a.log(b)
37
sage: b^37; a
g^8 + g^7 + g^4 + g + 1
g^8 + g^7 + g^4 + g + 1
```
```
sage: F.<a> = FiniteField(5^2, impl='pari_ffelt')
sage: F(-1).log(F(2))
2
sage: F(1).log(a)
0
```

Some cases where the logarithm is not defined or does not exist:
```
sage: F.<a> = GF(3^10, impl='pari_ffelt')
sage: a.log(-1)
Traceback (most recent call last):
  ... ArithmeticError: element a does not lie in group generated by 2
sage: a.log(0)
Traceback (most recent call last):
  ... ArithmeticError: discrete logarithm with base 0 is not defined
sage: F(0).log(1)
```

Traceback (most recent call last):
 ...
ArithmeticError: discrete logarithm of 0 is not defined

minpoly(var='x')
Return the minimal polynomial of self.
INPUT:
 • var – string (default: 'x'): variable name to use.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(FiniteField(3))
sage: F.<a> = FiniteField(3^2, modulus=x^2 + 1, impl='pari_ffelt')
sage: a.minpoly('y')
y^2 + 1
```

multiplicative_order()
Returns the order of self in the multiplicative group.

EXAMPLES:

```python
sage: a = FiniteField(5^3, 'a', impl='pari_ffelt').0
sage: a.multiplicative_order()
124
sage: a**124
1
```

polynomial(name=None)
Return the unique representative of self as a polynomial over the prime field whose degree is less than the degree of the finite field over its prime field.

INPUT:
 • name – (optional) variable name

EXAMPLES:

```python
sage: k.<a> = FiniteField(3^2, impl='pari_ffelt')
sage: pol = a.polynomial()
sage: pol
a
sage: parent(pol)
Univariate Polynomial Ring in a over Finite Field of size 3
```

```python
sage: k = FiniteField(3^4, 'alpha', impl='pari_ffelt')
sage: a = k.gen()
sage: a.polynomial()
alpha
sage: (a**2 + 1).polynomial('beta')
beta^2 + 1
sage: (a**2 + 1).polynomial('beta').parent()
Univariate Polynomial Ring in alpha over Finite Field of size 3
sage: (a**2 + 1).polynomial('beta').parent()
Univariate Polynomial Ring in beta over Finite Field of size 3
```
\textbf{sqrt} (\texttt{extend=False, all=False})

Return a square root of \texttt{self}, if it exists.

\textbf{INPUT:}

- \texttt{extend} – bool (default: False)

\begin{itemize}
 \item \textbf{Warning:} This option is not implemented.
\end{itemize}

- \texttt{all} - bool (default: False)

\textbf{OUTPUT:}

A square root of \texttt{self}, if it exists. If \texttt{all} is True, a list containing all square roots of \texttt{self} (of length zero, one or two) is returned instead.

If \texttt{extend} is True, a square root is chosen in an extension field if necessary. If \texttt{extend} is False, a \texttt{ValueError} is raised if the element is not a square in the base field.

\begin{itemize}
 \item \textbf{Warning:} The \texttt{extend} option is not implemented (yet).
\end{itemize}
\begin{verbatim}
 sage: e == f
 True
\end{verbatim}
5.1 Givaro Finite Field

Finite fields that are implemented using Zech logs and the cardinality must be less than 2^{16}. By default, Conway polynomials are used as minimal polynomial.

```python
class sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro(q, name='a', modulus=None, repr='poly', cache=False):
    # Bases: sage.rings.finite_rings.finite_field_base.FiniteField
    Finite field implemented using Zech logs and the cardinality must be less than $2^{16}$. By default, Conway polynomials are used as minimal polynomials.

    INPUT:
    • $q = p^n$ (must be prime power)
    • name – (default: 'a') variable used for poly_repr()
    • modulus – A minimal polynomial to use for reduction.
    • repr – (default: 'poly') controls the way elements are printed to the user:
        - 'log': repr is log_repr()
        - 'int': repr is int_repr()
        - 'poly': repr is poly_repr()
    • cache – (default: False) if True a cache of all elements of this field is created. Thus, arithmetic does not create new elements which speeds calculations up. Also, if many elements are needed during a calculation this cache reduces the memory requirement as at most order() elements are created.

    OUTPUT:
    Givaro finite field with characteristic $p$ and cardinality $p^n$.

    EXAMPLES:
    By default, Conway polynomials are used for extension fields:

    ```sage```
 k.<a> = GF(2**8)
 -a ^ k.degree()
 a^4 + a^3 + a^2 + 1
 f = k.modulus(); f
 x^8 + x^4 + x^3 + x^2 + 1
    ```sage```

    You may enforce a modulus:
sage: P.<x> = PolynomialRing(GF(2))
sage: f = x^8 + x^4 + x^3 + x + 1  # Rijndael Polynomial
sage: k.<a> = GF(2^8, modulus=f)
sage: k.modulus()
x^8 + x^4 + x^3 + x + 1
sage: a^(2^8)
a
You may enforce a random modulus:

sage: k = GF(3**5, 'a', modulus='random')
sage: k.modulus()  # random polynomial
x^5 + 2*x^4 + 2*x^3 + x^2 + 2

Three different representations are possible:

sage: FiniteField(9, 'a', impl='givaro', repr='poly').gen()
a
sage: FiniteField(9, 'a', impl='givaro', repr='int').gen()
3
sage: FiniteField(9, 'a', impl='givaro', repr='log').gen()
1

For prime fields, the default modulus is the polynomial \(x - 1\), but you can ask for a different modulus:

sage: GF(1009, impl='givaro').modulus()
x + 1008
sage: GF(1009, impl='givaro', modulus='conway').modulus()
x + 998

\texttt{a\_times\_b\_minus\_c}(a, b, c)
Return \(a \ast b - c\).

\begin{itemize}
\item a, b, c -- FiniteField\_givaroElement
\end{itemize}

\textbf{EXAMPLES:}

sage: k.<a> = GF(3**3)
sage: k.a_times_b_minus_c(a,a,k(1))
a^2 + 2

\texttt{a\_times\_b\_plus\_c}(a, b, c)
Return \(a \ast b + c\). This is faster than multiplying \(a\) and \(b\) first and adding \(c\) to the result.

\begin{itemize}
\item a, b, c -- FiniteField\_givaroElement
\end{itemize}

\textbf{EXAMPLES:}

sage: k.<a> = GF(2**8)
sage: k.a_times_b_plus_c(a,a,k(1))
a^2 + 1

\texttt{c\_minus\_a\_times\_b}(a, b, c)
Return \(c - a \ast b\).
INPUT:

• \(a, b, c\) – \texttt{FiniteField.givaroElement}

EXAMPLES:

```
sage: k.<a> = GF(3^3)
sage: k.c_minus_a_times_b(a,a,k(1))
2*a^2 + 1
```

\textbf{characteristic()} 

Return the characteristic of this field.

EXAMPLES:

```
sage: p = GF(19^5,'a').characteristic(); p
19
sage: type(p)
<type 'sage.rings.integer.Integer'>
```

\textbf{degree()} 

If the cardinality of \texttt{self} is \(p^n\), then this returns \(n\).

OUTPUT:

Integer – the degree

EXAMPLES:

```
sage: GF(3^4,'a').degree()
4
```

\textbf{fetch_int(n)} 

Given an integer \(n\) return a finite field element in \texttt{self} which equals \(n\) under the condition that \texttt{gen()} is set to \texttt{characteristic()}.

EXAMPLES:

```
sage: k.<a> = GF(2^8)
sage: k.fetch_int(8)
a^3
sage: e = k.fetch_int(151); e
a^7 + a^4 + a^2 + a + 1
sage: 2^7 + 2^4 + 2^2 + 2 + 1
151
```

\textbf{frobenius_endomorphism(n=\texttt{})} 

INPUT:

• \(n\) – an integer (default: 1)

OUTPUT:

The \(n\)-th power of the absolute arithmetic Frobenius endomorphism on this finite field.

EXAMPLES:

```
sage: k.<t> = GF(3^5)
sage: Frob = k.frobenius_endomorphism(); Frob
Frobenius endomorphism t |--> t^3 on Finite Field in t of size 3^5
```

(continues on next page)
We can specify a power:

```
sage: k.frobenius_endomorphism(2)
Frobenius endomorphism t |--> t^(3^2) on Finite Field in t of size 3^5
```

The result is simplified if possible:

```
sage: k.frobenius_endomorphism(6)
Frobenius endomorphism t |--> t^3 on Finite Field in t of size 3^5
sage: k.frobenius_endomorphism(5)
Identity endomorphism of Finite Field in t of size 3^5
```

Comparisons work:

```
sage: k.frobenius_endomorphism(6) == Frob
True
sage: from sage.categories.morphism import IdentityMorphism
sage: k.frobenius_endomorphism(5) == IdentityMorphism(k)
True
```

AUTHOR:
- Xavier Caruso (2012-06-29)

---

**gen**($n=0$)

Return a generator of `self` over its prime field, which is a root of `self.modulus()`.

INPUT:
- `n` – must be 0

OUTPUT:
An element $a$ of `self` such that `self.modulus()(a) == 0`.

**Warning:** This generator is not guaranteed to be a generator for the multiplicative group. To obtain the latter, use `multiplicative_generator()` or use the `modulus="primitive"` option when constructing the field.

EXAMPLES:

```
sage: k = GF(3^4, 'b'); k.gen()
b
sage: k.gen(1)
Traceback (most recent call last):
...
IndexError: only one generator
sage: F = FiniteField(31, impl='givaro')
sage: F.gen()
1
```
**int_to_log**

Given an integer \( n \) this method returns \( i \) where \( i \) satisfies \( g^i = n \mod p \) where \( g \) is the generator and \( p \) is the characteristic of \( \text{self} \).

**INPUT:**
- \( n \) – integer representation of an finite field element

**OUTPUT:**
log representation of \( n \)

**EXAMPLES:**
```sage
k = GF(7**3, 'a')
k.int_to_log(4)
228
k.int_to_log(3)
57
k.gen()^57
3
```

**log_to_int**

Given an integer \( n \) this method returns \( i \) where \( i \) satisfies \( g^n = i \) where \( g \) is the generator of \( \text{self} \); the result is interpreted as an integer.

**INPUT:**
- \( n \) – log representation of a finite field element

**OUTPUT:**
integer representation of a finite field element.

**EXAMPLES:**
```sage
k = GF(2**8, 'a')
k.log_to_int(4)
16
k.log_to_int(20)
180
```

**order**

Return the cardinality of this field.

**OUTPUT:**
Integer – the number of elements in \( \text{self} \).

**EXAMPLES:**
```sage
n = GF(19**5, 'a').order(); n
2476099
sage: type(n)
<type 'sage.rings.integer.Integer'>
```

**prime_subfield**

Return the prime subfield \( F_p \) of \( \text{self} \) if \( \text{self} \) is \( F_p^n \).

**EXAMPLES:**

sage: GF(3^4, 'b').prime_subfield()
Finite Field of size 3

sage: S.<b> = GF(5^2); S
Finite Field in b of size 5^2

sage: S.prime_subfield()
Finite Field of size 5

sage: type(S.prime_subfield())
<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'>

random_element(*args, **kwds)
Return a random element of self.

EXAMPLES:

sage: k = GF(23^{3}, 'a')
sage: e = k.random_element(); e
2*a^2 + 14*a + 21

sage: type(e)
<type 'sage.rings.finite_rings.element_givaro.FiniteField_givaroElement'>

sage: P.<x> = PowerSeriesRing(GF(3^3, 'a'))
sage: P.random_element(5)
a^2 + (2*a^2 + a)*x + x^2 + (2*a^2 + 2*a + 2)*x^3 + (a^2 + 2*a + 2)*x^4 + O(x^5)

5.2 Givaro Field Elements

Sage includes the Givaro finite field library, for highly optimized arithmetic in finite fields.

Note: The arithmetic is performed by the Givaro C++ library which uses Zech logs internally to represent finite field elements. This implementation is the default finite extension field implementation in Sage for the cardinality less than $2^{16}$, as it is a lot faster than the PARI implementation. Some functionality in this class however is implemented using PARI.

EXAMPLES:

sage: k = GF(5); type(k)
<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'>

sage: k = GF(5^2, 'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'>

sage: k = GF(2^{16}, 'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e_with_category'>

sage: k = GF(3^{16}, 'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt_with_category'>
sage: while is_prime(n):
   ....:  n = previous_prime_power(n)
sage: factor(n)
251^2
sage: k = GF(n, 'c'); type(k)
<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'>

AUTHORS:

- Martin Albrecht <malb@informatik.uni-bremen.de> (2006-06-05)
- William Stein (2006-12-07): editing, lots of docs, etc.

class sage.rings.finite_rings.element_givaro.Cache_givaro
Bases: sage.rings.finite_rings.element_base.Cache_base

Finite Field.

These are implemented using Zech logs and the cardinality must be less than $2^{16}$. By default Conway polynomials are used as minimal polynomial.

INPUT:

- $q - p^n$ (must be prime power)
- name – variable used for poly_repr (default: 'a')
- modulus – a polynomial to use as modulus.
- repr – (default: 'poly') controls the way elements are printed to the user:
  - 'log': repr is log_repr()
  - 'int': repr is int_repr()
  - 'poly': repr is poly_repr()
- cache – (default: False) if True a cache of all elements of this field is created. Thus, arithmetic does not create new elements which speeds calculations up. Also, if many elements are needed during a calculation this cache reduces the memory requirement as at most order() elements are created.

OUTPUT:

Givaro finite field with characteristic $p$ and cardinality $p^n$.

EXAMPLES:

By default Conway polynomials are used:

sage: k.<a> = GF(2^8)
sage: -a ^ k.degree()  
a^4 + a^3 + a^2 + 1
sage: f = k.modulus(); f
x^8 + x^4 + x^3 + x^2 + 1

You may enforce a modulus:

sage: P.<x> = PolynomialRing(GF(2))
sage: f = x^8 + x^4 + x^3 + x + 1 # Rijndael polynomial
sage: k.<a> = GF(2^8, modulus=f)

5.2. Givaro Field Elements
You may enforce a random modulus:

```
sage: k = GF(3**5, 'a', modulus='random')
sage: k.modulus() # random polynomial
x^5 + 2*x^4 + 2*x^3 + x^2 + 2
```

For binary fields, you may ask for a minimal weight polynomial:

```
sage: k = GF(2**10, 'a', modulus='minimal_weight')
sage: k.modulus()
x^10 + x^3 + 1
```

### a_times_b_minus_c(a, b, c)

Return \(a \times b - c\).

**INPUT:**

- \(a, b, c\) – \(\text{FiniteField_givaroElement}\)

**EXAMPLES:**

```
sage: k.<a> = GF(3**3)
sage: k._cache.a_times_b_minus_c(a,a,k(1))
a^2 + 2
```

### a_times_b_plus_c(a, b, c)

Return \(a \times b + c\).

This is faster than multiplying \(a\) and \(b\) first and adding \(c\) to the result.

**INPUT:**

- \(a, b, c\) – \(\text{FiniteField_givaroElement}\)

**EXAMPLES:**

```
sage: k.<a> = GF(2**8)
sage: k._cache.a_times_b_plus_c(a,a,k(1))
a^2 + 1
```

### c_minus_a_times_b(a, b, c)

Return \(c - a \times b\).

**INPUT:**

- \(a, b, c\) – \(\text{FiniteField_givaroElement}\)

**EXAMPLES:**

```
sage: k.<a> = GF(3**3)
sage: k._cache.c_minus_a_times_b(a,a,k(1))
2*a^2 + 1
```
characteristic()

Return the characteristic of this field.

EXAMPLES:

```
sage: p = GF(19^3,'a')._cache.characteristic(); p
19
```

element_from_data(e)

Coerces several data types to self.

INPUT:

- `e` – data to coerce in.

EXAMPLES:

```
sage: k = GF(3^8, 'a')
sage: type(k)
<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'>
sage: e = k.vector_space(map=False).gen(1); e
(0, 1, 0, 0, 0, 0, 0)
sage: k(e) #indirect doctest
a
```

exponent()

Return the degree of this field over \( \mathbb{F}_p \).

EXAMPLES:

```
sage: K.<a> = GF(9); K._cache.exponent()
2
```

fetch_int(number)

Given an integer \( n \) return a finite field element in self which equals \( n \) under the condition that \( \text{gen()} \) is set to \( \text{characteristic()} \).

EXAMPLES:

```
sage: k.<a> = GF(2^8)
sage: k._cache.fetch_int(8)
a^3
sage: e = k._cache.fetch_int(151); e
a^7 + a^4 + a^2 + a + 1
sage: 2^7 + 2^4 + 2^2 + 2 + 1
151
```

gen()

Return a generator of the field.

EXAMPLES:

```
sage: K.<a> = GF(625)
sage: K._cache.gen()
a
```
**int_to_log(n)**

Given an integer \(n\) this method returns \(i\) where \(i\) satisfies \(g^i = n \mod p\) where \(g\) is the generator and \(p\) is the characteristic of \(\text{self}\).

**INPUT:**

- \(n\) – integer representation of an finite field element

**OUTPUT:**

log representation of \(n\)

**EXAMPLES:**

```sage
sage: k = GF(7**3, 'a')
sage: k._cache.int_to_log(4) 228
sage: k._cache.int_to_log(3)
57
sage: k.gen()^57 3
```

**log_to_int(n)**

Given an integer \(n\) this method returns \(i\) where \(i\) satisfies \(g^i = n\) where \(g\) is the generator of \(\text{self}\); the result is interpreted as an integer.

**INPUT:**

- \(n\) – log representation of a finite field element

**OUTPUT:**

integer representation of a finite field element.

**EXAMPLES:**

```sage
sage: k = GF(2**8, 'a')
sage: k._cache.log_to_int(4) 16
sage: k._cache.log_to_int(20) 180
```

**order()**

Return the order of this field.

**EXAMPLES:**

```sage
sage: K.<a> = GF(9)
sage: K._cache.order()
9
```

**order_c()**

Return the order of this field.

**EXAMPLES:**

```sage
sage: K.<a> = GF(9)
sage: K._cache.order_c()
9
```
**random_element(**args**, **kwds)**

Return a random element of self.

**EXAMPLES:**

```
sage: k = GF(23^3, 'a')
sage: e = k._cache.random_element(); e
2*a^2 + 14*a + 21
sage: type(e)
<type 'sage.rings.finite_rings.element_givaro.FiniteField_givaroElement'>

sage: P.<x> = PowerSeriesRing(GF(3^3, 'a'))
sage: P.random_element(5)
a^2 + (2*a^2 + a)*x + x^2 + (2*a^2 + 2*a + 2)*x^3 + (a^2 + 2*a + 2)*x^4 + O(x^5)
```

**is_one()**

Return True if self == k(1).

**EXAMPLES:**

```
sage: k.<a> = GF(3^4); k
Finite Field in a of size 3^4
sage: a.is_one()
False
sage: k(1).is_one()
True
```

**is_square()**

Return True if self is a square in self.parent()

**ALGORITHM:**

Elements are stored as powers of generators, so we simply check to see if it is an even power of a generator.

---

**repr**

**class** `sage.rings.finite_rings.element_givaro.FiniteField_givaroElement`

**Bases:** `sage.rings.finite_rings.element_base.FinitePolyExtElement`

An element of a (Givaro) finite field.

**integer_representation()**

Return the integer representation of self. When self is in the prime subfield, the integer returned is equal to self.

Elements of this field are represented as integers as follows: given the element \( e \in F_p[x] \) with \( e = a_0 + a_1x + a_2x^2 + \cdots \), the integer representation is \( a_0 + a_1p + a_2p^2 + \cdots \).

**OUTPUT:** A Python int.

**EXAMPLES:**

```
sage: k. = GF(5^2); k
Finite Field in b of size 5^2
sage: k(4).integer_representation()
4
sage: b.integer_representation()
5
sage: type(b.integer_representation())
<... 'int'>
```

---

5.2. Givaro Field Elements
EXAMPLES:

```python
sage: k.<a> = GF(9); k
Finite Field in a of size 3^2
sage: a.is_square()
False
sage: v = set([x^2 for x in k])
sage: [x.is_square() for x in v]
[True, True, True, True, True]
sage: [x.is_square() for x in k if not x in v]
[False, False, False, False]
```

`is_unit()`

Return True if self is nonzero, so it is a unit as an element of the finite field.

EXAMPLES:

```python
sage: k.<a> = GF(3^4); k
Finite Field in a of size 3^4
sage: a.is_unit()
True
sage: k(0).is_unit()
False
```

`log(base)`

Return the log to the base \( b \) of \( \text{self} \), i.e., an integer \( n \) such that \( b^n = \text{self} \).

**Warning:** TODO – This is currently implemented by solving the discrete log problem – which shouldn’t be needed because of how finite field elements are represented.

EXAMPLES:

```python
sage: k. = GF(5^2); k
Finite Field in b of size 5^2
sage: a = b^7
sage: a.log(b)
7
```

`multiplicative_order()`

Return the multiplicative order of this field element.

EXAMPLES:

```python
sage: S. = GF(5^2); S
Finite Field in b of size 5^2
sage: b.multiplicative_order()
24
sage: (b^6).multiplicative_order()
4
```

`polynomial(name=None)`

Return self viewed as a polynomial over `self.parent().prime_subfield()`.

EXAMPLES:
sage: k.<b> = GF(5^2); k
Finite Field in b of size 5^2
sage: f = (b^2+1).polynomial(); f
b + 4
sage: type(f)
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
sage: parent(f)
Univariate Polynomial Ring in b over Finite Field of size 5

\texttt{sqrt}(extend=False, all=False)

Return a square root of this finite field element in its parent, if there is one. Otherwise, raise a \texttt{ValueError}.

**INPUT:**

- \texttt{extend} – bool (default: True); if True, return a square root in an extension ring, if necessary. Otherwise, raise a \texttt{ValueError} if the root is not in the base ring.

**Warning:** this option is not implemented!

- \texttt{all} – bool (default: False); if True, return all square roots of \texttt{self}, instead of just one.

**Warning:** The \texttt{extend} option is not implemented (yet).

**ALGORITHM:**

\texttt{self} is stored as $a^k$ for some generator $a$. Return $a^{k/2}$ for even $k$.

**EXAMPLES:**

\begin{verbatim}
sage: k.<a> = GF(7^2)
sage: k(2).sqrt()
3
sage: k(3).sqrt()
2*a + 6
sage: k(3).sqrt()**2
3
sage: k(4).sqrt()
2
sage: k.<a> = GF(7^3)
sage: k(3).sqrt()
Traceback (most recent call last):
  ... ValueError: must be a perfect square.
\end{verbatim}

\texttt{class} \texttt{sage.rings.finite_rings.element_givaro.FiniteField_givaro_iterator}

Bases: object

Iterator over FiniteField\_givaro elements. We iterate multiplicatively, as powers of a fixed internal generator.

**EXAMPLES:**

\begin{verbatim}
sage: for x in GF(2^2, 'a'): print(x)
0
\end{verbatim}

(continues on next page)
5.3 Finite field morphisms using Givaro

Special implementation for givaro finite fields of:

- embeddings between finite fields
- frobenius endomorphisms

SEEALSO:

:mod:`sage.rings.finite_rings.homFiniteField`
From: Finite Field in t_fixed of size $5^2$
To:   Finite Field in t of size $5^6$
Defn: t_fixed |---> $4*t^5 + 2*t^4 + 4*t^2 + t$

```
sage: tfixed = kfixed.gen()
sage: embed(tfixed)
4*t^5 + 2*t^4 + 4*t^2 + t
```
6.1 Finite Fields of Characteristic 2

class sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e(q, names='a', modulus=None, repr='poly')

Bases: sage.rings.finite_rings.finite_field_base.FiniteField

Finite Field of characteristic 2 and order $2^n$.

INPUT:

- $q = 2^n$ (must be 2 power)
- names – variable used for poly_repr (default: 'a')
- modulus – A minimal polynomial to use for reduction.
- repr – controls the way elements are printed to the user: (default: 'poly')
  - 'poly': polynomial representation

OUTPUT:

Finite field with characteristic 2 and cardinality $2^n$.

EXAMPLES:

```
sage: k.<a> = GF(2^16)
sage: type(k)
<...>

sage: k.<a> = GF(2^1024)
sage: k.modulus()
x^1024 + x^19 + x^6 + x + 1

sage: set_random_seed(6397)
sage: k.<a> = GF(2^17, modulus='random')
sage: k.modulus()
x^17 + x^16 + x^15 + x^10 + x^8 + x^6 + x^4 + x^3 + x^2 + x + 1

sage: k.modulus().is_irreducible()
True

sage: k.<a> = GF(2^211, modulus='minimal_weight')
sage: k.modulus()
x^211 + x^11 + x^10 + x^8 + 1
```

(continues on next page)
sage: k.<a> = GF(2^211, modulus='conway')
sage: k.modulus()
x^211 + x^9 + x^6 + x^5 + x^3 + x + 1
sage: k.<a> = GF(2^23, modulus='conway')
sage: a.multiplicative_order() == k.order() - 1
True

characteristic()  
Return the characteristic of self which is 2.

EXAMPLES:

sage: k.<a> = GF(2^16, modulus='random')
sage: k.characteristic()
2

degree()  
If this field has cardinality $2^n$ this method returns $n$.

EXAMPLES:

sage: k.<a> = GF(2^64)
sage: k.degree()
64

fetch_int(number)  
Given an integer $n$ less than cardinality() with base 2 representation
$a_0 + 2 \cdot a_1 + \cdots + 2^k a_k$, returns
$a_0 + a_1 \cdot x + \cdots + a_k x^k$, where $x$ is the generator of this finite field.

INPUT:

* number – an integer

EXAMPLES:

sage: k.<a> = GF(2^48)
sage: k.fetch_int(2^43 + 2^15 + 1)
a^43 + a^15 + 1
sage: k.fetch_int(33793)
a^15 + a^10 + 1
sage: 33793.digits(2)  # little endian
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]

gen(n=0)  
Return a generator of self over its prime field, which is a root of self.modulus().

INPUT:

* n – must be 0

OUTPUT:

An element $a$ of self such that self.modulus()($a$) == 0.
Warning: This generator is not guaranteed to be a generator for the multiplicative group. To obtain the latter, use multiplicative_generator() or use the modulus="primitive" option when constructing the field.

EXAMPLES:

```python
sage: k.<a> = GF(2^19)
sage: k.gen() == a
True
sage: a
a
```

order()

Return the cardinality of this field.

EXAMPLES:

```python
sage: k.<a> = GF(2^64)
sage: k.order()
18446744073709551616
```

prime_subfield()

Return the prime subfield \( \mathbb{F}_p \) of \( \text{self} \) if \( \text{self} \) is \( \mathbb{F}_{p^n} \).

EXAMPLES:

```python
sage: F.<a> = GF(2^16)
sage: F.prime_subfield()
Finite Field of size 2
```

sage.rings.finite_rings.finite_field_ntl_gf2e.late_import()

Imports various modules after startup.

EXAMPLES:

```python
sage: sage.rings.finite_rings.finite_field_ntl_gf2e.late_import()
sage: sage.rings.finite_rings.finite_field_ntl_gf2e.GF2 is None
False
```

## 6.2 Finite Fields of characteristic 2.

This implementation uses NTL's GF2E class to perform the arithmetic and is the standard implementation for GF(2\(^n\)) for \( n \geq 16 \).

AUTHORS:

- Martin Albrecht <malb@informatik.uni-bremen.de> (2007-10)

```python
class sage.rings.finite_rings.element_ntl_gf2e.Cache_ntl_gf2e
Bases: sage.rings.finite_rings.element_base.Cache_base

This class stores information for an NTL finite field in a Cython class so that elements can access it quickly.

It's modeled on NativeIntStruct, but includes many functions that were previously included in the parent (see trac ticket #12062).
```
degree()

If the field has cardinality $2^n$ this method returns $n$.

EXAMPLES:

```
sage: k.<a> = GF(2^64)
sage: k._cache.degree()
64
```

fetch_int(number)

Given an integer less than $p^n$ with base 2 representation $a_0 + a_1 \cdot 2 + \cdots + a_k 2^k$, this returns $a_0 + a_1 x + \cdots + a_k x^k$, where $x$ is the generator of this finite field.

INPUT:

* number – an integer, of size less than the cardinality

EXAMPLES:

```
sage: k.<a> = GF(2^48)
sage: k._cache.fetch_int(2^33 + 2 + 1)
a^33 + a + 1
```

import_data(e)

EXAMPLES:

```
sage: k.<a> = GF(2^17)
sage: V = k.vector_space(map=False)
sage: v = [1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0]
sage: k._cache.import_data(v)
a^13 + a^8 + a^5 + 1
```

order()

Return the cardinality of the field.

EXAMPLES:

```
sage: k.<a> = GF(2^64)
sage: k._cache.order()
18446744073709551616
```

polynomial()

Returns the list of 0’s and 1’s giving the defining polynomial of the field.

EXAMPLES:

```
sage: k.<a> = GF(2^20,modulus="minimal_weight")
sage: k._cache.polynomial()
[1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
```

class sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement

Bases: `sage.rings.finite_rings.element_base.FinitePolyExtElement`

An element of an NTL:GF2E finite field.

charpoly(var=’x’)

Return the characteristic polynomial of self as a polynomial in var over the prime subfield.
INPUT:

- *var* – string (default: 'x')

OUTPUT:

polynomial

EXAMPLES:

```python
sage: k.<a> = GF(2^8, impl="ntl")
sage: b = a^3 + a
sage: b.minpoly()
x^4 + x^3 + x^2 + x + 1
sage: b.charpoly()
x^8 + x^6 + x^4 + x^2 + 1
sage: b.charpoly().factor()
(x^4 + x^3 + x^2 + x + 1)^2
sage: b.charpoly('Z')
Z^8 + Z^6 + Z^4 + Z^2 + 1
```

**integer_representation()**

Return the int representation of `self`. When `self` is in the prime subfield, the integer returned is equal to `self` and not to `log_repr`.

Elements of this field are represented as ints in as follows: for \( e \in \mathbb{F}_p[x] \) with \( e = a_0 + a_1 x + a_2 x^2 + \cdots \), \( e \) is represented as: \( n = a_0 + a_1 p + a_2 p^2 + \cdots \).

EXAMPLES:

```python
sage: k.<a> = GF(2^20)
sage: a.integer_representation()
2
sage: (a^2 + 1).integer_representation()
5
sage: k.<a> = GF(2^70)
sage: (a^65 + a^64 + 1).integer_representation()
55349232221128654849L
```

**is_one()**

Return True if `self` \( = k(1) \).

Equivalent to `self \neq k(0)`.

EXAMPLES:

```python
sage: k.<a> = GF(2^20)
sage: a.is_one() # indirect doctest
False
sage: k(1).is_one()
True
```

**is_square()**

Return True as every element in \( \mathbb{F}_{2^n} \) is a square.

EXAMPLES:
\begin{verbatim}
\sage{k.<a> = GF(2^18)}
\sage{e = k.random_element()}
\sage{e}
a^15 + a^14 + a^13 + a^11 + a^10 + a^9 + a^6 + a^5 + a^4 + 1
\sage{e.is_square()}
True
\sage{e.sqrt()}
a^16 + a^15 + a^14 + a^11 + a^9 + a^8 + a^7 + a^6 + a^4 + a^3 + 1
\sage{e.sqrt()^2 == e}
True
\end{verbatim}

\textbf{is_unit()}

Return True if \texttt{self} is nonzero, so it is a unit as an element of the finite field.

EXAMPLES:

\begin{verbatim}
\sage{k.<a> = GF(2^17)}
\sage{a.is_unit()}
True
\sage{k(0).is_unit()}
False
\end{verbatim}

\textbf{log(base)}

Return \(x\) such that \(b^x = a\), where \(x\) is \(a\) and \(b\) is the base.

\textbf{INPUT:}

\begin{itemize}
\item base – finite field element that generates the multiplicative group.
\end{itemize}

\textbf{OUTPUT:}

Integer \(x\) such that \(a^x = b\), if it exists. Raises a \texttt{ValueError} exception if no such \(x\) exists.

\textbf{EXAMPLES:}

\begin{verbatim}
\sage{F = GF(17)}
\sage{F(3^11).log(F(3))}
11
\sage{F = GF(113)}
\sage{F(3^19).log(F(3))}
19
\sage{F = GF(next_prime(10000))}
\sage{F(23^997).log(F(23))}
997
\sage{F = FiniteField(2^10, 'a')}
\sage{g = F.gen()}
\sage{b = g; a = g^37}
\sage{a.log(b)}
37
\sage{b^37; a}
a^8 + a^7 + a^4 + a + 1
\end{verbatim}

AUTHOR: David Joyner and William Stein (2005-11)
minpoly\((var='x')\)
Return the minimal polynomial of \(self\), which is the smallest degree polynomial \(f \in F_2[x]\) such that \(f(self) = 0\).

INPUT:
- \(var\) – string (default: 'x')

OUTPUT:
polynomial

EXAMPLES:

```sage
sage: K.<a> = GF(2^100)
sage: f = a.minpoly(); f
x^100 + x^57 + x^56 + x^55 + x^52 + x^48 + x^47 + x^46 + x^45 + x^44 + x^43 + x^41 + x^37 + x^36 + x^35 + x^34 + x^31 + x^30 + x^27 + x^25 + x^24 + x^22 + x^20 + x^19 + x^16 + x^15 + x^11 + x^9 + x^8 + x^6 + x^5 + x^3 + 1
sage: f(a)
0
```

polynomial\((name=None)\)
Return \(self\) viewed as a polynomial over \(self.parent().prime_subfield()\).

INPUT:
- \(name\) – (optional) variable name

EXAMPLES:

```sage
sage: k.<a> = GF(2^17)
sage: e = a^15 + a^13 + a^11 + a^10 + a^9 + a^8 + a^7 + a^6 + a^4 + a + 1
sage: e.polynomial()
a^15 + a^13 + a^11 + a^10 + a^9 + a^8 + a^7 + a^6 + a^4 + a + 1
sage: from sage.rings.polynomial.polynomial_element import is_Polynomial
sage: is_Polynomial(e.polynomial())
True
sage: e.polynomial('x')
x^15 + x^13 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^4 + x + 1
```

sqrt\((all=False, extend=False)\)
Return a square root of this finite field element in its parent.

EXAMPLES:

```sage
sage: k.<a> = GF(2^20)
sage: a.is_square()
True
sage: a.sqrt()
a^19 + a^15 + a^14 + a^12 + a^9 + a^7 + a^4 + a^3 + a + 1
sage: a.sqrt()^2 == a
True
```
This failed before trac ticket #4899:

```
sage: GF(2^16,'a')(1).sqrt()
1
```

**trace()**

Return the trace of *self*.

**EXAMPLES:**

```
sage: K.<a> = GF(2^25)
sage: a.trace()
0
sage: a.charpoly()
x^25 + x^8 + x^6 + x^2 + 1
sage: parent(a.trace())
Finite Field of size 2
sage: b = a+1
sage: b.trace()
1
sage: b.charpoly()[-1]
1
```

**weight()**

Returns the number of non-zero coefficients in the polynomial representation of *self*.

**EXAMPLES:**

```
sage: K.<a> = GF(2^21)
sage: a.weight()
1
sage: (a^5+a^2+1).weight()
3
sage: b = 1/(a+1); b
a^20 + a^19 + a^18 + a^17 + a^16 + a^15 + a^14 + a^13 + a^12 + a^11 + a^10 + a^9 + a^8 + a^7 + a^6 + a^4 + a^3 + a^2
sage: b.weight()
18
```

```
sage.rings.finite_rings.element_ntl_gf2e.unpickleFiniteField_ntl_gf2eElement(parent, elem)
```

**EXAMPLES:**

```
sage: k.<a> = GF(2^20)
sage: e = k.random_element()
sage: f = loads(dumps(e)) # indirect doctest
sage: e == f
True
```
7.1 Finite residue fields

We can take the residue field of maximal ideals in the ring of integers of number fields. We can also take the residue field of irreducible polynomials over $GF(p)$.

EXAMPLES:

```sage
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: k
Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
sage: k.order()
841
```

We reduce mod a prime for which the ring of integers is not monogenic (i.e., 2 is an essential discriminant divisor):

```sage
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: F = K.factor(2); F
(Fractional ideal (1/2*a^2 - 1/2*a + 1)) * (Fractional ideal (-a^2 + 2*a - 3)) * (Fractional ideal (-3/2*a^2 + 5/2*a - 4))
sage: F[0][0].residue_field()
Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
sage: F[1][0].residue_field()
Residue field of Fractional ideal (-a^2 + 2*a - 3)
sage: F[2][0].residue_field()
Residue field of Fractional ideal (-3/2*a^2 + 5/2*a - 4)
```

We can also form residue fields from $\mathbb{Z}$:

```sage
sage: ZZ.residue_field(17)
Residue field of Integers modulo 17
```

And for polynomial rings over finite fields:

```sage
sage: R.<t> = GF(5)[]
sage: I = R.ideal(t^2 + 2)
sage: k = ResidueField(I); k
Residue field in tbar of Principal ideal (t^2 + 2) of Univariate Polynomial Ring in t over Finite Field of size 5
```
AUTHORS:

- David Roe (2007-10-3): initial version
- William Stein (2007-12): bug fixes
- John Cremona (2008-9): extend reduction maps to the whole valuation ring add support for residue fields of \( \mathbb{Z} \)
- David Roe (2009-12): added support for \( \mathbb{G}_F(p)(t) \) and moved to new coercion framework.

class sage.rings.finite_rings.residue_field.LiftingMap

Bases: sage.categories.map.Section

Lifting map from residue class field to number field.

EXAMPLES:

```
sage: K.<a> = NumberField(x^3 + 2)
sage: F = K.factor(5)[0][0].residue_field()
sage: F.degree()
2
sage: L = F.lift_map(); L
Lifting map:
 From: Residue field in abar of Fractional ideal (a^2 + 2*a - 1)
 To: Maximal Order in Number Field in a with defining polynomial x^3 + 2
sage: L(F.0^2)
3*a + 1
sage: L(3*a + 1) == F.0^2
True
```

class sage.rings.finite_rings.residue_field.ReductionMap

Bases: sage.categories.map.Map

A reduction map from a (subset) of a number field or function field to this residue class field.

It will be defined on those elements of the field with non-negative valuation at the specified prime.

EXAMPLES:

```
sage: I = QQ[sqrt(17)].factor(5)[0][0]; I
Fractional ideal (5)
sage: k = I.residue_field(); k
Residue field in sqrt17bar of Fractional ideal (5)
sage: R = k.reduction_map(); R
Partially defined reduction map:
 From: Number Field in sqrt17 with defining polynomial x^2 - 17 with sqrt17 = 4.
 To: Residue field in sqrt17bar of Fractional ideal (5)
```

### 7.1. Finite residue fields


```python
sage: R.<t> = GF(next_prime(2^20))(); P = R.ideal(t^2 + t + 1)
sage: k = P.residue_field()
sage: k.reduction_map()
```

**Partially defined reduction map:**

From: Fraction Field of Univariate Polynomial Ring in \( t \) over Finite Field of size 1048583

To: Residue field in \( \overline{t} \) of Principal ideal \( (t^2 + t + 1) \) of Univariate Polynomial Ring in \( t \) over Finite Field of size 1048583

```python
sage: section()
```

Computes a section of the map, namely a map that lifts elements of the residue field to elements of the field.

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^5 - 5*x + 2)
sage: P = K.ideal(47).factor()[0][0]
sage: k = K.residue_field(P)
sage: f = k.convert_map_from(K)
sage: s = f.section(); s
```

Lifting map:

From: Residue field in \( \overline{a} \) of Fractional ideal \((-14*a^4 + 24*a^3 + 26*a^2 \sim \sim \sim 58*a + 15)\)

To: Number Field in \( a \) with defining polynomial \( x^5 - 5*x + 2 \)

```python
sage: s(k.gen())
a
```

```python
sage: L. = NumberField(x^5 + 17*x + 1)
sage: P = L.factor(53)[0][0]
sage: l = L.residue_field(P)
sage: g = l.convert_map_from(L)
sage: s = g.section(); s
```

Lifting map:

From: Residue field in \( \overline{b} \) of Fractional ideal \((53, b^2 + 23*b + 8)\)

To: Number Field in \( b \) with defining polynomial \( x^5 + 17*x + 1 \)

```python
sage: s(l.gen()).parent()
```

Number Field in \( b \) with defining polynomial \( x^5 + 17*x + 1 \)

```python
sage: R.<t> = GF(2)(); h = t^5 + t^2 + 1
sage: k.<a> = R.residue_field(h)
sage: K = R.fraction_field()
sage: f = k.convert_map_from(K)
sage: f.section()
```

Lifting map:

From: Residue field in \( a \) of Principal ideal \( (t^5 + t^2 + 1) \) of Univariate Polynomial Ring in \( t \) over Finite Field of size 2 (using GF2X)

To: Fraction Field of Univariate Polynomial Ring in \( t \) over Finite Field of size 2 (using GF2X)

---

**class** `sage.rings.finite_rings.residue_field.ResidueFieldFactory`

Bases: `sage.structure.factory.UniqueFactory`

A factory that returns the residue class field of a prime ideal \( p \) of the ring of integers of a number field, or of a polynomial ring over a finite field.
INPUT:
- \( p \) – a prime ideal of an order in a number field.
- \( \text{names} \) – the variable name for the finite field created. Defaults to the name of the number field variable but with bar placed after it.
- \( \text{check} \) – whether or not to check if \( p \) is prime.

OUTPUT:
- The residue field at the prime \( p \).

EXAMPLES:

```sage
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: ResidueField(P)
Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
```

The result is cached:

```sage
sage: ResidueField(P) is ResidueField(P)
True
sage: k = K.residue_field(P); k
Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
sage: k.order()
841
```

It also works for polynomial rings:

```sage
sage: R.<t> = GF(31)[]
sage: P = R.ideal(t^5 + 2*t + 11)
sage: ResidueField(P)
Residue field in tbar of Principal ideal (t^5 + 2*t + 11) of Univariate PolynomialRing in t over Finite Field of size 31
sage: ResidueField(P) is ResidueField(P)
True
sage: k = ResidueField(P); k.order()
28629151
```

An example where the generator of the number field doesn’t generate the residue class field:

```sage
sage: K.<a> = NumberField(x^3-875)
sage: P = K.ideal(5).factor()[0][0]; k = K.residue_field(P); k
Residue field in abar of Fractional ideal (5, 1/25*a^2 - 2/5*a - 1)
sage: k.polynomial()
abar^2 + 3*abar + 4
sage: k.0^3 - 875
2
```

An example where the residue class field is large but of degree 1:

```sage
sage: K.<a> = NumberField(x^3-875); P = K.ideal(2007).factor()[2][0]; k = K.residue_field(P); k
Residue field of Fractional ideal (223, 1/5*a + 11)
```

(continues on next page)
sage: k(a)
168
sage: k(a)^3 - 875
0

And for polynomial rings:

sage: R.<t> = GF(next_prime(2^18))[]
sage: P = R.ideal(t - 5)
sage: k = ResidueField(P); k
Residue field of Principal ideal (t + 262142) of Univariate Polynomial Ring in t over Finite Field of size 262147
sage: k(t)
5

In this example, 2 is an inessential discriminant divisor, so divides the index of \(\mathbb{Z}[a]\) in the maximal order for all \(a\):

sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8); P = K.ideal(2).factor()[0][0]; P
Fractional ideal (1/2*a^2 - 1/2*a + 1)
sage: F = K.residue_field(P); F
Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
sage: F(a)
0
sage: B = K.maximal_order().basis(); B
[1, 1/2*a^2 + 1/2*a, a^2]
sage: F(B[1])
1
sage: F(B[2])
0
sage: F
Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
sage: F.degree()
1

\texttt{create_key_and_extra_args}(p, names=None, check=True, impl=None, **kwds)

Return a tuple containing the key (uniquely defining data) and any extra arguments.

EXAMPLES:

sage: K.<a> = NumberField(x^3-7)
sage: ResidueField(K.ideal(29).factor()[0][0]) # indirect doctest
Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)

\texttt{create_object}(version, key, **kwds)

Create the object from the key and extra arguments. This is only called if the object was not found in the cache.

EXAMPLES:

sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: ResidueField(P) is ResidueField(P) # indirect doctest
True

7.1. Finite residue fields
class sage.rings.finite_rings.residue_field.ResidueFieldHomomorphism_global

Bases: sage.rings.morphism.RingHomomorphism

The class representing a homomorphism from the order of a number field or function field to the residue field at a given prime.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: OK = K.maximal_order()
sage: abar = k(OK.1); abar
abar
sage: (1+abar)^179
24*abar + 12
sage: phi = k.coerce_map_from(OK); phi
Ring morphism:
 From: Maximal Order in Number Field in a with defining polynomial x^3 - 7
 To: Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
sage: phi in Hom(OK,k)
True
sage: phi(OK.1)
abar
sage: R.<t> = GF(19)[]; P = R.ideal(t^2 + 5)
sage: k.<a> = P.residue_field(); f = k.coerce_map_from(R)
sage: f(a^2 + 5*a + 1)
(continues on next page)
```

`lift(x)`

Returns a lift of \( x \) to the Order, returning a “polynomial” in the generator with coefficients between 0 and \( p - 1 \).

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: OK = K.maximal_order()
sage: c = OK(a)
sage: b = k(a)
sage: f = k.coerce_map_from(OK)
sage: f.lift(13*b + 5)
13*a + 5
sage: f.lift(12821*b+918)
3*a + 19
sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + t^2 + 7)
sage: k.<a> = P.residue_field(); f = k.coerce_map_from(R)
sage: f.lift(a^2 + 5*a + 1)
(continues on next page)
```
t^2 + 5*t + 1
 sage: f(f.lift(a^2 + 5*a + 1)) == a^2 + 5*a + 1
 True

section()
 Computes a section of the map, namely a map that lifts elements of the residue field to elements of the ring of integers.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^5 - 5*x + 2)
sage: P = K.ideal(47).factor()[0][0]
sage: k = K.residue_field(P)
sage: f = k.coerce_map_from(K.ring_of_integers())
sage: s = f.section(); s
Lifting map:
 From: Residue field in abar of Fractional ideal (-14*a^4 + 24*a^3 + 26*a^2 - 58*a + 15)
 To: Maximal Order in Number Field in a with defining polynomial x^5 - 5*x + 2
sage: s(k.gen())
a
sage: L. = NumberField(x^5 + 17*x + 1)
sage: P = L.factor(53)[0][0]
sage: l = L.residue_field(P)
sage: g = l.coerce_map_from(L.ring_of_integers())
sage: s = g.section(); s
Lifting map:
 From: Residue field in bbar of Fractional ideal (53, b^2 + 23*b + 8)
 To: Maximal Order in Number Field in b with defining polynomial x^5 + 17*x + 1
sage: s(l.gen()).parent()
Maximal Order in Number Field in b with defining polynomial x^5 + 17*x + 1
```

```python
class sage.rings.finite_rings.residue_field.ResidueField_generic(p)
 Bases: sage.rings.ring.Field

The class representing a generic residue field.

EXAMPLES:

```python
sage: I = QQ[i].factor(2)[0][0]; I
Fractional ideal (I + 1)
sage: k = I.residue_field(); k
```
Residue field of Fractional ideal (I + 1)

```
sage: type(k)
<class 'sage.rings.finite_rings.residue_field.ResidueFiniteField_prime_modn_with_category'>
```

```
sage: R.<t> = GF(29)[]; P = R.ideal(t^2 + 2); k.<a> = ResidueField(P); k
Residue field in a of Principal ideal (t^2 + 2) of Univariate Polynomial Ring in t over Finite Field of size 29
sage: type(k)
<class 'sage.rings.finite_rings.residue_field.ResidueFiniteField_givaro_with_category'>
```

```
construction()
Construction of this residue field.

OUTPUT:
An AlgebraicExtensionFunctor and the number field that this residue field has been obtained from.

The residue field is determined by a prime (fractional) ideal in a number field. If this ideal can be coerced into a different number field, then the construction functor applied to this number field will return the corresponding residue field. See trac ticket #15223.

EXAMPLES:
```
sage: K.<z> = CyclotomicField(7)
sage: P = K.factor(17)[0][0]
sage: k = K.residue_field(P)
sage: k
Residue field in zbar of Fractional ideal (17)
sage: F, R = k.construction()
sage: F
AlgebraicExtensionFunctor
sage: R
Cyclotomic Field of order 7 and degree 6
sage: F(R) is k
True
sage: F(ZZ)
Residue field of Integers modulo 17
sage: F(CyclotomicField(49))
Residue field in zbar of Fractional ideal (17)
```
```
ideal()
Return the maximal ideal that this residue field is the quotient by.

EXAMPLES:
```
sage: K.<a> = NumberField(x^3 + x + 1)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P) # indirect doctest
sage: k.ideal() is P
True
sage: p = next_prime(2^40); p
1099511627791
sage: k = K.residue_field(K.prime_above(p))
```
```
sage: k.ideal().norm() == p
True

sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + t^2 + 7)
sage: k.<a> = R.residue_field(P)
sage: k.ideal()
Principal ideal (t^3 + t^2 + 7) of Univariate Polynomial Ring in t over Finite
→ Field of size 17

lift(x)
Returns a lift of \( x \) to the Order, returning a “polynomial” in the generator with coefficients between 0 and \( p - 1 \).

EXAMPLES:

sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: c = K.maximal_order()
sage: b = k(a)
sage: k.lift(13*b + 5)
13*a + 5
sage: k.lift(12821*b+918)
3*a + 19

lift_map()
Returns the standard map from this residue field up to the ring of integers lifting the canonical projection.

EXAMPLES:

sage: I = QQ[3^(1/3)].factor(5)[1][0]; I
Fractional ideal (-a + 2)
sage: k = I.residue_field(); k
Residue field of Fractional ideal (-a + 2)
sage: f = k.lift_map(); f
Lifting map:
From: Residue field of Fractional ideal (-a + 2)
To: Maximal Order in Number Field in a with defining polynomial x^3 - 3
→ with a = 1.442249570307409?
sage: f.domain()
Residue field of Fractional ideal (-a + 2)
sage: f.codomain()
Maximal Order in Number Field in a with defining polynomial x^3 - 3 with a = 1.
→ 442249570307409?
sage: f(k.0)
1

7.1. Finite residue fields
sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + t^2 + 7)
sage: k.<a> = P.residue_field()
sage: f = k.lift_map(); f
(map internal to coercion system -- copy before use)
Lifting map:
  From: Residue field in a of Principal ideal (t^3 + t^2 + 7) of Univariate_Polynomial Ring in t over Finite Field of size 17
  To:  Univariate Polynomial Ring in t over Finite Field of size 17
sage: f(a^2 + 5)
t^2 + 5

reduction_map()

Return the partially defined reduction map from the number field to this residue class field.

EXAMPLES:

sage: I = QQ[2^(1/3)].factor(2)[0][0]; I
Fractional ideal (a)
sage: k = I.residue_field(); k
Residue field of Fractional ideal (a)
sage: pi = k.reduction_map(); pi
Partially defined reduction map:
  From: Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
  To:  Residue field of Fractional ideal (a)
sage: pi.domain()
Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
sage: pi.codomain()
Residue field of Fractional ideal (a)

sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 32)
sage: F = K.factor(2)[0][0].residue_field()
sage: F.reduction_map().domain()
Number Field in a with defining polynomial x^3 + x^2 - 2*x + 32
sage: F.reduction_map().codomain()
Residue field of Fractional ideal (1/4*a)

sage: R.<t> = GF(17)[]; P = R.ideal(t^3 + t^2 + 7)
sage: k.<a> = P.residue_field(); f = k.reduction_map(); f
Partially defined reduction map:
  From: Fraction Field of Univariate Polynomial Ring in t over Finite Field of...
  To:  Residue field in a of Principal ideal (t^3 + t^2 + 7) of Univariate_Polynomial Ring in t over Finite Field of size 17
sage: f(1/t)
12*a^2 + 12*a

class sage.rings.finite_rings.residue_field.ResidueFiniteField_givaro(p, q, name, modulus, to_vs, to_order, PB)

Bases: sage.rings.finite_rings.residue_field.ResidueField_generic, sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro
The class representing residue fields of number fields that have non-prime order strictly less than $2^{16}$.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: k.degree()
2
sage: OK = K.maximal_order()
sage: c = OK(a)
sage: b = k(c)
sage: b*c^2
7
sage: b*c
13*abar + 5
```

```python
sage: R.<t> = GF(7)[]; P = R.ideal(t^2 + 4)
sage: k.<a> = R.residue_field(P); type(k)
<class 'sage.rings.finite_rings.residue_field.ResidueFiniteField_givaro_with_category'>
sage: k(1/t)
5*a
```

**class** `sage.rings.finite_rings.residue_field.ResidueFiniteField_ntl_gf2e(q, name, modulus, repr, p, to_vs, to_order, PB)`

Bases: `sage.rings.finite_rings.residue_field.ResidueField_generic`, `sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e`

The class representing residue fields with order a power of 2.

When the order is less than $2^{16}$, givaro is used by default instead.

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: k = K.residue_field(P)
sage: k.degree()
2
sage: OK = K.maximal_order()
sage: c = OK(a)
sage: b = k(c)
sage: b*c^2
7
sage: b*c
13*abar + 5
```

```python
sage: R.<t> = GF(2)[]; P = R.ideal(t^19 + t^5 + t^2 + t + 1)
sage: k.<a> = R.residue_field(P); type(k)
<class 'sage.rings.finite_rings.residue_field.ResidueFiniteField_ntl_gf2e_with_category'>
sage: k(1/t)
```

(continues on next page)
The class representing residue fields of number fields that have non-prime order at least $2^46$.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(923478923).factor()[0][0]
sage: k = K.residue_field(P)
sage: k.degree()
2
sage: OK = K.maximal_order()
sage: c = OK(a)
sage: b = k(c)
sage: b+c
2*abar
sage: b*c
664346875*abar + 535606347
sage: k.base_ring()
Finite Field of size 923478923
```

```python
sage: R.<t> = GF(5)[]; P = R.ideal(4*t^12 + 3*t^11 + 4*t^10 + t^9 + t^8 + 3*t^7 + 2*t^6 + 3*t^4 + t^3 + 3*t^2 + 2)
sage: k.<a> = P.residue_field()
sage: type(k)
<class 'sage.rings.finite_rings.residue_field.ResidueField_pari_ffelt_with_category'>
sage: k(1/t)
3*a^11 + a^10 + 3*a^9 + 2*a^8 + 2*a^7 + a^6 + 4*a^5 + a^3 + 2*a^2 + a
```

The class representing residue fields of number fields that have prime order.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[1][0]
sage: k = ResidueField(P)
sage: k
Residue field of Fractional ideal (-a^2 - 2*a - 2)
```

sage: k.order()
29
sage: OK = K.maximal_order()

sage: c = OK(a)
sage: b = k(a)
sage: k.coerce_map_from(OK)(c)
16
sage: k(4)
4
sage: k(c + 5)
21
sage: b + c
3

sage: R.<t> = GF(7)[]; P = R.ideal(2*t + 3)
sage: k = P.residue_field(); k
Residue field of Principal ideal (t + 5) of Univariate Polynomial Ring in t over
−→Finite Field of size 7
sage: k(t^2)
4
sage: k.order()
7

7.2 Algebraic closures of finite fields

Let \( F \) be a finite field, and let \( \overline{F} \) be an algebraic closure of \( F \); this is unique up to (non-canonical) isomorphism. For every \( n \geq 1 \), there is a unique subfield \( F_n \) of \( \overline{F} \) such that \( F \subset F_n \) and \( [F_n : F] = n \).

In Sage, algebraic closures of finite fields are implemented using compatible systems of finite fields. The resulting Sage object keeps track of a finite lattice of the subfields \( F_n \) and the embeddings between them. This lattice is extended as necessary.

The Sage class corresponding to \( \overline{F} \) can be constructed from the finite field \( F \) by using the `algebraic_closure()` method.

The Sage class for elements of \( \overline{F} \) is `AlgebraicClosureFiniteFieldElement`. Such an element is represented as an element of one of the \( F_n \). This means that each element \( x \in F \) has infinitely many different representations, one for each \( n \) such that \( x \) is in \( F_n \).

**Note:** Only prime finite fields are currently accepted as base fields for algebraic closures. To obtain an algebraic closure of a non-prime finite field \( F \), take an algebraic closure of the prime field of \( F \) and embed \( F \) into this.

Algebraic closures of finite fields are currently implemented using (pseudo-)Conway polynomials; see `AlgebraicClosureFiniteField_pseudo_conway` and the module `conway_polynomials`. Other implementations may be added by creating appropriate subclasses of `AlgebraicClosureFiniteField_generic`.

In the current implementation, algebraic closures do not satisfy the unique parent condition. Moreover, there is no coercion map between different algebraic closures of the same finite field. There is a conceptual reason for this, namely that the definition of pseudo-Conway polynomials only determines an algebraic closure up to *non-unique* isomorphism. This means in particular that different algebraic closures, and their respective elements, never compare equal.

**AUTHORS:**
Construct an algebraic closure of a finite field.

The recommended way to use this functionality is by calling the `algebraic_closure()` method of the finite field.

**Note:** Algebraic closures of finite fields in Sage do not have the unique representation property, because they are not determined up to unique isomorphism by their defining data.

**EXAMPLES:**

```python
sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: F = GF(2).algebraic_closure()
sage: F1 = AlgebraicClosureFiniteField(GF(2), 'z')
sage: F1 is F
False
```

In the pseudo-Conway implementation, non-identical instances never compare equal:

```python
sage: F1 == F
False
sage: loads(dumps(F)) == F
False
```

This is to ensure that the result of comparing two instances cannot change with time.

**class** `sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement`

Bases: `sage.structure.element.FieldElement`

Element of an algebraic closure of a finite field.

**EXAMPLES:**

```python
sage: F = GF(3).algebraic_closure()
sage: F.gen(2)
z2
sage: type(F.gen(2))
<class 'sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement'>
```

**as_finite_field_element**(minimal=False)

Return self as a finite field element.

**INPUT:**

- minimal – boolean (default: False). If True, always return the smallest subfield containing self.

**OUTPUT:**
• a triple (field, element, morphism) where field is a finite field, element an element of field and morphism a morphism from field to self.parent().

EXAMPLES:

```python
sage: F = GF(3).algebraic_closure('t')
sage: t = F.gen(5)
sage: t.as_finite_field_element()
(Finite Field in t5 of size 3^5, t5, Ring morphism:
 From: Finite Field in t5 of size 3^5
 To: Algebraic closure of Finite Field of size 3
 Defn: t5 |--> t5)
```

By default, field is not necessarily minimal. We can force it to be minimal using the minimal option:

```python
sage: s = t + 1 - t
sage: s.as_finite_field_element()[0]
Finite Field in t5 of size 3^5
sage: s.as_finite_field_element(minimal=True)[0]
Finite Field of size 3
```

This also works when the element has to be converted between two non-trivial finite subfields (see trac ticket #16509):

```python
sage: K = GF(5).algebraic_closure()
sage: z = K.gen(5) - K.gen(5) + K.gen(2)
sage: z.as_finite_field_element(minimal=True)
(Finite Field in z2 of size 5^2, z2, Ring morphism:
 From: Finite Field in z2 of size 5^2
 To: Algebraic closure of Finite Field of size 5
 Defn: z2 |--> z2)
```

There are automatic coercions between the various subfields:

```python
sage: a = K.gen(2) + 1
sage: _,b,_ = a.as_finite_field_element()
sage: K4 = K.subfield(4)[0]
sage: K4(b)
z4^3 + z4^2 + z4 + 4
sage: b.minimal_polynomial() == K4(b).minimal_polynomial()
True
sage: K(K4(b)) == K(b)
True
```

You can also use the inclusions that are implemented at the level of the algebraic closure:

```python
sage: f = K.inclusion(2,4); f
Ring morphism:
 From: Finite Field in z2 of size 5^2
 To: Finite Field in z4 of size 5^4
 Defn: z2 |--> z4^3 + z4^2 + z4 + 3
sage: f(b)
z4^3 + z4^2 + z4 + 4
```
change_level($n$)
Return a representation of self as an element of the subfield of degree $n$ of the parent, if possible.

EXAMPLES:

```
sage: F = GF(3).algebraic_closure()
sage: z = F.gen(4)
sage: (z^10).change_level(6)
2*z^5 + 2*z^3 + z^2 + 2*z + 2
sage: z.change_level(6)
Traceback (most recent call last):
 ... ValueErro... Field in z2 of size 3^2
To: Finite Field in z4 of size 3^4
 Defn: z2 |--> 2*z4^3 + 2*z4^2 + 1
sage: a = F(1).change_level(3); a
1
sage: a.change_level(2)
1
sage: F.gen(3).change_level(1)
Traceback (most recent call last):
 ... ValueErro... Field of size 3
To: Finite Field in z3 of size 3^3
 Defn: 1 |--> 1
```

is_square()
Return True if self is a square.
This always returns True.

EXAMPLES:

```
sage: F = GF(3).algebraic_closure()
sage: F.gen(2).is_square()
True
```

minimal_polynomial()
Return the minimal polynomial of self over the prime field.

EXAMPLES:

```
sage: F = GF(11).algebraic_closure()
sage: F.gen(3).minpoly()
x^3 + 2*x + 9
```

minpoly()
Return the minimal polynomial of self over the prime field.

EXAMPLES:

```
sage: F = GF(11).algebraic_closure()
sage: F.gen(3).minpoly()
x^3 + 2*x + 9
```
multiplicative_order()
Return the multiplicative order of self.

EXAMPLES:

```
sage: K = GF(7).algebraic_closure()
sage: K.gen(5).multiplicative_order()
16806
sage: (K.gen(1) + K.gen(2) + K.gen(3)).multiplicative_order()
7353
```

nth_root(n)
Return an $n$-th root of self.

EXAMPLES:

```
sage: F = GF(5).algebraic_closure()
sage: t = F.gen(2) + 1
sage: s = t.nth_root(15); s
4*z6^5 + 3*z6^4 + 2*z6^3 + 2*z6^2 + 4
sage: s**15 == t
True
```

Todo: This function could probably be made faster.

pth_power(k=1)
Return the $p^k$-th power of self, where $p$ is the characteristic of self.parent().

EXAMPLES:

```
sage: K = GF(13).algebraic_closure('t')
sage: t3 = K.gen(3)
sage: s = 1 + t3 + t3**2
sage: s.pth_power()
10*t3^2 + 6*t3
sage: s.pth_power(2)
2*t3^2 + 6*t3 + 11
sage: s.pth_power(3)
t3^2 + t3 + 1
sage: s.pth_power(3).parent() is K
True
```

pth_root(k=1)
Return the unique $p^k$-th root of self, where $p$ is the characteristic of self.parent().

EXAMPLES:

```
sage: K = GF(13).algebraic_closure('t')
sage: t3 = K.gen(3)
sage: s = 1 + t3 + t3**2
sage: s.pth_root()
2*t3^2 + 6*t3 + 11
sage: s.pth_root(2)
10*t3^2 + 6*t3
```

(continues on next page)
sage: s.pth_root(3)
t3^2 + t3 + 1
sage: s.pth_root(2).parent() is K
True

sqrt()  
Return a square root of self.

EXAMPLES:

sage: F = GF(3).algebraic_closure()
sage: F.gen(2).sqrt()
z4^3 + z4 + 1

class sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic(base_ring, name, category=None)

Bases: sage.rings.ring.Field

Algebraic closure of a finite field.

Element  
alias of AlgebraicClosureFiniteFieldElement

algebraic_closure()  
Return an algebraic closure of self.

This always returns self.

EXAMPLES:

sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: F = AlgebraicClosureFiniteField(GF(5), 'z')
sage: F.algebraic_closure() is F
True

characteristic()  
Return the characteristic of self.

EXAMPLES:

sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: p = next_prime(1000)
sage: F = AlgebraicClosureFiniteField(GF(p), 'z')
sage: F.characteristic() == p
True

gen(n)  
Return the \( n \)-th generator of self.

EXAMPLES:
sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: F = AlgebraicClosureFiniteField(GF(5), 'z')
sage: F.gen(2)
z2
gens()
Return a family of generators of self.

OUTPUT:

• a Family, indexed by the positive integers, whose $n$-th element is self.gen(n).

EXAMPLES:

sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: F = AlgebraicClosureFiniteField(GF(5), 'z')
sage: g = F.gens()
sage: g
Lazy family (<lambda>(i))_{i in Positive integers}
sage: g[3]
z3

inclusion($m$, $n$)
Return the canonical inclusion map from the subfield of degree $m$ to the subfield of degree $n$.

EXAMPLES:

sage: F = GF(3).algebraic_closure()
sage: F.inclusion(1, 2)
Ring morphism:
    From: Finite Field of size 3
    To:  Finite Field in z2 of size 3^2
    Defn: 1 |---> 1
sage: F.inclusion(2, 4)
Ring morphism:
    From: Finite Field in z2 of size 3^2
    To:  Finite Field in z4 of size 3^4
    Defn: z2 |---> 2*z4^3 + 2*z4^2 + 1

ngens()
Return the number of generators of self, which is infinity.

EXAMPLES:

sage: from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField
sage: AlgebraicClosureFiniteField(GF(5), 'z').ngens() +Infinity

some_elements()
Return some elements of this field.

EXAMPLES:

7.2. Algebraic closures of finite fields 131
subfield(n)
Return the unique subfield of degree n of self together with its canonical embedding into self.

EXAMPLES:

```
sage: F = GF(3).algebraic_closure()
sage: F.subfield(1)
(Finite Field of size 3,
 Ring morphism:
 From: Finite Field of size 3
 To: Algebraic closure of Finite Field of size 3
 Defn: 1 |---> 1)
sage: F.subfield(4)
(Finite Field in z4 of size 3^4,
 Ring morphism:
 From: Finite Field in z4 of size 3^4
 To: Algebraic closure of Finite Field of size 3
 Defn: z4 |---> z4)
```

class sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_pseudo_conway(base_ring, name, category=None, lattice=None, use_database=True)

Bases: sage.misc.fast_methods.WithEqualityById, sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic

Algebraic closure of a finite field, constructed using pseudo-Conway polynomials.

EXAMPLES:

```
sage: F = GF(5).algebraic_closure(implementation='pseudo_conway')
sage: F.cardinality()
+Infinity
sage: F.algebraic_closure() is F
True
sage: x = F(3).nth_root(12); x
z4^3 + z4^2 + 4*z4
sage: x**12
3
```
7.3 Routines for Conway and pseudo-Conway polynomials

AUTHORS:

• David Roe
• Jean-Pierre Flori
• Peter Bruin

class sage.rings.finite_rings.conway_polynomials.PseudoConwayLattice(p, use_database=True)

Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.SageObject

A pseudo-Conway lattice over a given finite prime field.

The Conway polynomial $f_n$ of degree $n$ over $\mathbb{F}_p$ is defined by the following four conditions:

- $f_n$ is irreducible.
- In the quotient field $\mathbb{F}_p[x]/(f_n)$, the element $x \mod f_n$ generates the multiplicative group.
- The minimal polynomial of $(x \mod f_n)^{\frac{p^n-1}{p^m-1}}$ equals the Conway polynomial $f_m$, for every divisor $m$ of $n$.
- $f_n$ is lexicographically least among all such polynomials, under a certain ordering.

The final condition is needed only in order to make the Conway polynomial unique. We define a pseudo-Conway lattice to be any family of polynomials, indexed by the positive integers, satisfying the first three conditions.

INPUT:

- $p$ – prime number
- use_database – boolean. If True, use actual Conway polynomials whenever they are available in the database. If False, always compute pseudo-Conway polynomials.

EXAMPLES:

```python
sage: from sage.rings.finite_rings.conway_polynomials import PseudoConwayLattice
sage: PCL = PseudoConwayLattice(2, use_database=False)
sage: PCL.polynomial(3)
x^3 + x + 1
```

```python
check_consistency(n)
Check that the pseudo-Conway polynomials of degree dividing n in this lattice satisfy the required compatibility conditions.

EXAMPLES:

```python
sage: from sage.rings.finite_rings.conway_polynomials import PseudoConwayLattice
sage: PCL = PseudoConwayLattice(2, use_database=False)
sage: PCL.check_consistency(6)
sage: PCL.check_consistency(60)  # long time
```

```python
polynomial(n)
Return the pseudo-Conway polynomial of degree $n$ in this lattice.

INPUT:

- $n$ – positive integer

OUTPUT:

- a pseudo-Conway polynomial of degree $n$ for the prime $p.$

```
ALGORITHM:
Uses an algorithm described in [HL1999], modified to find pseudo-Conway polynomials rather than Conway polynomials. The major difference is that we stop as soon as we find a primitive polynomial.

EXAMPLES:

```python
from sage.rings.finite_rings.conway_polynomials import PseudoConwayLattice
PCL = PseudoConwayLattice(2, use_database=False)
PCL.polynomial(3)
x^3 + x + 1
PCL.polynomial(4)
x^4 + x^3 + 1
PCL.polynomial(60)
x^60 + x^59 + x^58 + x^55 + x^54 + x^53 + x^51 + x^48 + x^46 + x^45 + x^42 + x^41 + x^39 + x^38 + x^37 + x^35 + x^32 + x^31 + x^30 + x^28 + x^24 + x^22 + x^21 + x^18 + x^17 + x^16 + x^15 + x^14 + x^10 + x^8 + x^7 + x^5 + x^3 + x + 1
```

sage.rings.finite_rings.conway_polynomials.conway_polynomial(p, n)
Return the Conway polynomial of degree \(n \) over \(\text{GF}(p) \).

If the requested polynomial is not known, this function raises a RuntimeError exception.

INPUT:

- \(p \) – prime number
- \(n \) – positive integer

OUTPUT:

- the Conway polynomial of degree \(n \) over the finite field \(\text{GF}(p) \), loaded from a table.

Note: The first time this function is called a table is read from disk, which takes a fraction of a second. Subsequent calls do not require reloading the table.

See also the ConwayPolynomials() object, which is the table of Conway polynomials used by this function.

EXAMPLES:

```python
conway_polynomial(2,5)
x^5 + x^2 + 1
conway_polynomial(101,5)
x^5 + 2*x + 99
conway_polynomial(97,101)
Traceback (most recent call last):
  ...
RuntimeError: requested Conway polynomial not in database.
```

sage.rings.finite_rings.conway_polynomials.exists_conway_polynomial(p, n)
Check whether the Conway polynomial of degree \(n \) over \(\text{GF}(p) \) is known.

INPUT:

- \(p \) – prime number
- \(n \) – positive integer

OUTPUT:
• boolean: True if the Conway polynomial of degree \(n \) over \(\text{GF}(p) \) is in the database, False otherwise.

If the Conway polynomial is in the database, it can be obtained using the command `conway_polynomial(p, n)`.

EXAMPLES:

```python
sage: exists_conway_polynomial(2,3)
True
sage: exists_conway_polynomial(2,-1)
False
sage: exists_conway_polynomial(97,200)
False
sage: exists_conway_polynomial(6,6)
False
```
CHAPTER
EIGHT

INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.rings.algebraic_closure_finite_field, 125
sage.rings.finite_rings.conway_polynomials, 133
sage.rings.finite_rings.element_base, 61
sage.rings.finite_rings.element_givaro, 94
sage.rings.finite_rings.element_ntl_gf2e, 107
sage.rings.finite_rings.element_pari_ffelt, 83
sage.rings.finite_rings.finite_field_base, 47
sage.rings.finite_rings.finite_field_constructor, 39
sage.rings.finite_rings.finite_field_givaro, 89
sage.rings.finite_rings.finite_field_ntl_gf2e, 105
sage.rings.finite_rings.finite_field_pari_ffelt, 81
sage.rings.finite_rings.finite_field_prime_modn, 77
sage.rings.finite_rings.homFinite_field, 71
sage.rings.finite_rings.homFinite_field_givaro, 102
sage.rings.finite_rings.hom_prime_finite_field, 79
sage.rings.finite_rings.homset, 69
sage.rings.finite_rings.integer_mod, 15
sage.rings.finite_rings.integer_mod_ring, 1
sage.rings.finite_rings.residue_field, 113
INDEX

A

a_times_b_minus_c()
(sage.rings.finite_rings.element_givaro.Cache_givaro
method), 96

a_times_b_minus_c()
(sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro
method), 90

a_times_b_plus_c()
(sage.rings.finite_rings.element_givaro.Cache_givaro
method), 96

a_times_b_plus_c()
(sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro
method), 90

additive_order()
(sage.rings.finite_rings.element_base.FinitePolyExtElement
method), 62

additive_order()
(sage.rings.finite_rings.integer_mod_ring.IntegerMod_abstract
method), 16

algebraic_closure()
(sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField
method), 47

algebraic_closure()
(sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic
method), 126

AlgebraicClosureFiniteField()
(in module
sage.rings.algebraic_closure_finite_field), 126

AlgebraicClosureFiniteField_generic
(class in
sage.rings.algebraic_closure_finite_field), 130

AlgebraicClosureFiniteField_pseudo_conway
(class in sage.rings.algebraic_closure_finite_field), 132

AlgebraicClosureFiniteFieldElement
(class in
sage.rings.algebraic_closure_finite_field), 126

as_finite_field_element()
(sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField
method), 126

C

c_minus_a_times_b()
(sage.rings.finite_rings.element_givaro.Cache_givaro
method), 96

c_minus_a_times_b()
(sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro
method), 90

Cache_base
(class in sage.rings.finite_rings.element_base),
IntegerMod_int (class in sage.rings.finite_rings.integer_mod), 29
is_one() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 99

IntegerMod_int64 (class in sage.rings.finite_rings.integer_mod), 32
is_one() (sage.rings.finite_rings.element_pari_ffelt.FiniteFieldElement_pari_ffelt method), 109

IntegerMod_to_Integer (class in sage.rings.finite_rings.integer_mod), 33
is_one() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 84

IntegerModFactory (class in sage.rings.finite_rings.integer_mod), 2
is_one() (sage.rings.finite_rings.integer_mod.IntegerMod_gmp method), 18

IntegerModRing_generic (class in sage.rings.finite_rings.integer_mod_ring), 4
is_one() (sage.rings.finite_rings.integer_mod.IntegerModRing_generic method), 34

inverse() (sage.rings.finite_rings.hom_finite_field.FrobeniusEndomorphism method), 75

inverses (sage.rings.finite_rings.integer_mod.NativeIntStruct attribute), 35

is_aut() (sage.rings.finite_rings.homset.FiniteFieldHomset method), 70

is_conway() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_general method), 34

is_prime_field() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 28

is_unit() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 18

is_noetherian() (sage.rings.finite_rings.integer_mod.IntegerMod_int method), 30

is_one() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 110
sage.rings.finite_rings.finite_field_ntl_gf2e
105
sage.rings.finite_rings.finite_field_pari_ffelt
81
sage.rings.finite_rings.finite_field_prime_modn
77
sage.rings.finite_rings.homFinite_field
71
sage.rings.finite_rings.homFinite_field_givaro
102
sage.rings.finite_rings.homset_prime
79
sage.rings.finite_rings.integer_mod
15
sage.rings.finite_rings.integer_mod_ring
1
sage.rings.finite_rings.residue_field
113

modulus() (sage.rings.finite_rings.finite_field_base.FiniteField method), 54
modulus() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 21
modulus() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 9

multiplicative_generator()
(sage.rings.finite_rings.finite_field_base.FiniteField method), 55
multiplicative_generator()
(sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 10

multiplicative_group_is_cyclic()
(sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 10

multiplicative_order()
(sage.rings.finite_rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField method), 128

multiplicative_order()
(sage.rings.finite_rings.element_base.FinitePolyExtElement method), 65

multiplicative_order()
(sage.rings.finite_rings.element_givaro.FiniteField_givaro_element method), 100

multiplicative_order()
(sage.rings.finite_rings.element_pari_ffelt.FiniteField_givaro_element method), 86

multiplicative_order()
(sage.rings.finite_rings.integer_mod.IntegerModAbstract method), 21

multiplicative_subgroups()
(sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 11

N
NativeIntStruct (class in

O
order() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 98
order() (sage.rings.finite_rings.element_ntl_gf2e.Cache_ntl_gf2e method), 108
order() (sage.rings.finite_rings.finite_field_base.FiniteField method), 105

P
polynomial() (sage.rings.finite_rings.conway_polynomials.PseudoConwayLattice method), 133
polynomial() (sage.rings.finite_rings.element_givaro.FiniteField_givaro_element method), 100

polynomial() (sage.rings.finite_rings.element_pari_ffelt.FiniteField_givaro_element method), 86

polynomial() (sage.rings.finite_rings.integer_mod.IntegerModAbstract method), 21

polynomial() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 11

polynomial() (sage.rings.finite_rings.homFinite_field.FrobeniusEndomorphism method), 75

polynomial() (sage.rings.finite_rings.homFinite_field.homset.FiniteFieldHomset method), 71

Index
Polynomial() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 23

polynomial() (sage.rings.finite_rings.finite_field_base.FiniteField method), 57

power() (sage.rings.finite_rings.hom_finite_field.Frobenius endomorphism method), 76

polycomputation_table() (sage.rings.finite_rings.integer_mod.IntegerModAbstract method), 35

prime_subfield() (sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro method), 93

prime_subfield() (sage.rings.finite_rings.finite_field_ntl_gf2e.FiniteField_ntl_gf2e method), 107

primitive_element() (sage.rings.finite_rings.finite_field_base.FiniteField method), 57

PseudoConwayLattice (class in sage.rings.finite_rings.conway_polynomials), 133

pth_power() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_element method), 129

pth_power() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 67

pth_root() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_element method), 129

pth_root() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 67

RationalNonresidue() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 11

random_element() (sage.rings.finite_rings.element_givaro.Cache_givaro method), 99

random_element() (sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro method), 89

random_element() (sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField_pari_ffelt method), 81

random_element() (sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn method), 77

random_element() (sage.rings.finite_rings.hom_finite_field.hom_finite_field_givaro method), 102

random_element() (sage.rings.finite_rings.homset.Homset method), 69

reduction_map() (sage.rings.finite_rings.residue_field.ResidueFieldGeneric method), 23

ReductionMap (class in sage.rings.finite_rings.integer_mod_ring), 15

repr(sage.rings.finite_rings.element_givaro.Cache_givaro method), 114

ResidueFieldGeneric (class in sage.rings.finite_rings.residue_field), 115

ResidueFieldFactory (class in sage.rings.finite_rings.residue_field), 119

section() (sage.rings.finite_rings.hom_finite_field.FiniteFieldHomomorphism_givaro method), 74

section() (sage.rings.finite_rings.integer_mod.Integer_to_IntegerMod method), 35

Index 147
section() (sage.rings.finite_rings.residue_field.ReductionMap method), 115
section() (sage.rings.finite_rings.residue_field.ResidueFieldHomomorphism_global method), 119
SectionFiniteFieldHomomorphism_generic (class in sage.rings.finite_rings.hom_finite_field), 76
SectionFiniteFieldHomomorphism_givaro (class in sage.rings.finite_rings.hom_finite_field_givaro), 103
SectionFiniteFieldHomomorphism_prime (class in sage.rings.finite_rings.hom_prime_finite_field), 79
some_elements() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteField_generic method), 131
some_elements() (sage.rings.finite_rings.finite_field_base.FiniteField method), 58
sqrt() (sage.rings.algebraic_closure_finite_field.AlgebraicClosureFiniteFieldElement method), 130
sqrt() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 67
sqrt() (sage.rings.finite_rings.element_givaro.FiniteField_givaroElement method), 101
sqrt() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 111
sqrt() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 27

unpickle_Cache_givaro() (in module sage.rings.finite_rings.element_givaro), 102
unpickle_FiniteField_ext() (in module sage.rings.finite_rings.finite_field_base), 61
unpickle_FiniteField_givaroElement() (in module sage.rings.finite_rings.element_givaro), 102
unpickle_FiniteField_prm() (in module sage.rings.finite_rings.finite_field_base), 61
unpickle_FiniteFieldElement_pari_ffelt() (in module sage.rings.finite_rings.element_pari_ffelt), 87
unpickleFiniteField_ntl_gf2eElement() (in module sage.rings.finite_rings.element_ntl_gf2e), 112

valuation() (sage.rings.finite_rings.integer_mod.IntegerMod_abstract method), 27

weight() (sage.rings.finite_rings.element_ntl_gf2e.FiniteField_ntl_gf2eElement method), 112

zeta() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 14
unit_group() (sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic method), 14

trace() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 68

T
table (sage.rings.finite_rings.integer_mod.NativeIntStruct attribute), 36

trace() (sage.rings.finite_rings.element_base.FinitePolyExtElement method), 68