Algebraic Function Fields

Release 10.1

The Sage Development Team

Aug 21, 2023
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Function Fields</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Function Fields: rational</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Function Fields: extension</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>Elements of function fields</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>Elements of function fields: rational</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>Elements of function fields: extension</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>Orders of function fields</td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>Orders of function fields: rational</td>
<td>83</td>
</tr>
<tr>
<td>9</td>
<td>Orders of function fields: basis</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>Orders of function fields: extension</td>
<td>95</td>
</tr>
<tr>
<td>11</td>
<td>Ideals of function fields</td>
<td>105</td>
</tr>
<tr>
<td>12</td>
<td>Ideals of function fields: rational</td>
<td>117</td>
</tr>
<tr>
<td>13</td>
<td>Ideals of function fields: extension</td>
<td>121</td>
</tr>
<tr>
<td>14</td>
<td>Places of function fields</td>
<td>133</td>
</tr>
<tr>
<td>15</td>
<td>Places of function fields: rational</td>
<td>137</td>
</tr>
<tr>
<td>16</td>
<td>Places of function fields: extension</td>
<td>139</td>
</tr>
<tr>
<td>17</td>
<td>Divisors of function fields</td>
<td>143</td>
</tr>
<tr>
<td>18</td>
<td>Differentials of function fields</td>
<td>151</td>
</tr>
<tr>
<td>19</td>
<td>Valuation rings of function fields</td>
<td>159</td>
</tr>
<tr>
<td>20</td>
<td>Derivations of function fields</td>
<td>163</td>
</tr>
<tr>
<td>21</td>
<td>Derivations of function fields: rational</td>
<td>165</td>
</tr>
<tr>
<td>22</td>
<td>Derivations of function fields: extension</td>
<td>167</td>
</tr>
</tbody>
</table>
Sage allows basic computations with elements and ideals in orders of algebraic function fields over arbitrary constant fields. Advanced computations, like computing the genus or a basis of the Riemann-Roch space of a divisor, are available for function fields over finite fields, number fields, and the algebraic closure of \mathbb{Q}.
A function field (of one variable) is a finitely generated field extension of transcendence degree one. In Sage, a function field can be a rational function field or a finite extension of a function field.

EXAMPLES:

We create a rational function field:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(5^2,'a')); K
Rational function field in x over Finite Field in a of size 5^2
sage: K.genus()
0
sage: f = (x^2 + x + 1) / (x^3 + 1)
sage: f
(x^2 + x + 1)/(x^3 + 1)
sage: f^3
(x^6 + 3*x^5 + x^4 + 2*x^3 + x^2 + 3*x + 1)/(x^9 + 3*x^6 + 3*x^3 + 1)
```

Then we create an extension of the rational function field, and do some simple arithmetic in it:

```
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^3 - (x^3 + 2*x*y + 1/x)); L
Function field in y defined by y^3 + 3*x*y + (4*x^4 + 4)/x
sage: y^2
y^2
sage: y^3
2*x*y + (x^4 + 1)/x
sage: a = 1/y; a
(x/(x^4 + 1))*y^2 + 3*x^2/(x^4 + 1)
sage: a * y
1
```

We next make an extension of the above function field, illustrating that arithmetic with a tower of three fields is fully supported:

```
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: S.<t> = L[]
sage: M.<t> = L.extension(t^2 - x*y)
sage: M
Function field in t defined by t^2 + 4*x*y
sage: t^2
```

(continues on next page)
\[x^y \]

sage: 1/t

\[((1/(x^4 + 1))^2 * y^2 + 3*x/(x^4 + 1)) * t \]

sage: M.base_field()

Function field in y defined by \(y^3 + 3*x*y + (4*x^4 + 4)/x \)

sage: M.base_field().base_field()

Rational function field in x over Finite Field in a of size 5^2

It is also possible to construct function fields over an imperfect base field:

sage: N.<u> = FunctionField(K) # needs sage.rings.finite_rings

and inseparable extension function fields:

sage: J.<x> = FunctionField(GF(5)); J

Rational function field in x over Finite Field of size 5

sage: T.<v> = J[]

sage: O.<v> = J.extension(v^5 - x); O # needs sage.rings.function_field

Function field in v defined by \(v^5 + 4*x \)

Function fields over the rational field are supported:

sage: # needs sage.rings.function_field

sage: F.<x> = FunctionField(QQ)

sage: R.<Y> = F[]

sage: L.<y> = F.extension(Y^2 - x^8 - 1)

sage: O = L.maximal_order()

sage: I = O.ideal(x, y - 1)

sage: D = P.divisor()

sage: D.basis_function_space()

\([1]\)

\([2*D].basis_function_space()\)

\([1]\)

\([3*D].basis_function_space()\)

\([1]\)

\([4*D].basis_function_space()\)

\([1, 1/x^4*y + 1/x^4]\)

sage: # needs sage.rings.function_field

sage: K.<x> = FunctionField(QQ); _.<Y> = K[]

sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)

(continues on next page)
Function fields over the algebraic field are supported:

```python
sage: K.<x> = FunctionField(QQbar); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: O = L.maximal_order()
sage: I = O.ideal(y)
sage: I.divisor()
-place (x - I, x*y)
+ place (x^2 + 1, x*y)
```

1.1 Global function fields

A global function field in Sage is an extension field of a rational function field over a finite constant field by an irreducible separable polynomial over the rational function field.

EXAMPLES:

A fundamental computation for a global or any function field is to get a basis of its maximal order and maximal infinite order, and then do arithmetic with ideals of those maximal orders:

```python
sage: K.<x> = FunctionField(GF(3)); _.<t> = K[]
sage: L.<y> = K.extension(t^4 + t - x^5)
sage: O = L.maximal_order()
sage: O.basis()
(1, y, 1/x*y^2 + 1/x*y, 1/x^3*y^3 + 2/x^3*y^2 + 1/x^3*y)
sage: I = O.ideal(x,y); I
Ideal (x, y) of Maximal order of Function field in y defined by y^4 + y + 2*x^5
sage: J = I^-1
sage: J.basis_matrix()
[ 1 0 0 0]
[1/x 1/x 0 0]
[ 0 0 1 0]
[ 0 0 0 1]
sage: L.maximal_order_infinite().basis()
(1, 1/x^2*y, 1/x^3*y^2, 1/x^4*y^3)
```
As an example of the most sophisticated computations that Sage can do with a global function field, we compute all the Weierstrass places of the Klein quartic over \mathbb{F}_2 and gap numbers for ordinary places:

```python
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
```

```python
sage: L.genus()
3

sage: L.weierstrass_places()  # needs sage.modules
[Place (1/x, 1/x^3*y^2 + 1/x),
 Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1),
 Place (x, y),
 Place (x + 1, (x^3 + 1)*y + x + 1),
 Place (x^3 + x + 1, y + 1),
 Place (x^3 + x + 1, y + x^2),
 Place (x^3 + x + 1, y + x^2 + 1),
 Place (x^3 + x^2 + 1, y + x),
 Place (x^3 + x^2 + 1, y + x^2 + 1),
 Place (x^3 + x^2 + 1, y + x^2 + x + 1)]
```

```python
sage: L.gaps()  # needs sage.modules
[1, 2, 3]
```

The gap numbers for Weierstrass places are of course not ordinary:

```python
sage: # needs sage.modules sage.rings.function_field
sage: p1, p2, p3 = L.weierstrass_places()[:3]
```

```python
sage: p1.gaps()
[1, 2, 4]

sage: p2.gaps()
[1, 2, 4]

sage: p3.gaps()
[1, 2, 4]
```

AUTHORS:

- William Stein (2010): initial version
- Robert Bradshaw (2010-05-30): added is_finite()
- Julian Rüth (2011-06-08, 2011-09-14, 2014-06-23, 2014-06-24, 2016-11-13): fixed hom(), extension(); use @cached_method; added derivation(); added support for relative vector spaces; fixed conversion to base fields
- Maarten Derickx (2011-09-11): added doctests
- Syed Ahmad Lavasani (2011-12-16): added genus(), is_RationalFunctionField()
- Simon King (2014-10-29): Use the same generator names for a function field extension and the underlying polynomial ring.
- Kwankyu Lee (2017-04-30): added global function fields
- Brent Baccala (2019-12-20): added function fields over number fields and QQbar

```python
class sage.rings.function_field.function_field.FunctionField(base_field, names,
 category=Category of function fields)
```

Bases: Field
Abstract base class for all function fields.

INPUT:

• base_field – field; the base of this function field
• names – string that gives the name of the generator

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: K
Rational function field in x over Rational Field
```

`basis_of_differentials_of_first_kind()`

Return a basis of the space of holomorphic differentials of this function field.

EXAMPLES:

```
sage: K.<t> = FunctionField(QQ)
sage: K.basis_of_holomorphic_differentials()  # needs sage.libs.pari sage.modules
[]
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))
# needs sage.rings.function_field
sage: L.basis_of_holomorphic_differentials()  # needs sage.modules sage.rings.function_field
[((x/(x^3 + 4))*y) d(x),
 ((1/(x^3 + 4))*y) d(x),
((x/(x^3 + 4))*y^2) d(x),
((1/(x^3 + 4))*y^2) d(x)]
```

`basis_of_holomorphic_differentials()`

Return a basis of the space of holomorphic differentials of this function field.

EXAMPLES:

```
sage: K.<t> = FunctionField(QQ)
sage: K.basis_of_holomorphic_differentials()  # needs sage.libs.pari sage.modules
[]
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))
# needs sage.rings.function_field
sage: L.basis_of_holomorphic_differentials()  # needs sage.modules sage.rings.function_field
[((x/(x^3 + 4))*y) d(x),
 ((1/(x^3 + 4))*y) d(x),
((x/(x^3 + 4))*y^2) d(x),
((1/(x^3 + 4))*y^2) d(x)]
```

`characteristic()`

Return the characteristic of the function field.

EXAMPLES:

```
```
Algebraic Function Fields, Release 10.1

\begin{verbatim}
 sage: K.<x> = FunctionField(QQ)
 sage: K.characteristic()
 0
 sage: K.<x> = FunctionField(QQbar)
 # needs sage.rings.number_field
 sage: K.characteristic()
 0
 sage: K.<x> = FunctionField(GF(7))
 sage: K.characteristic()
 7
 sage: R.<y> = K[]
 sage: L.<y> = K.extension(y^2 - x)
 # needs sage.rings.function_field
 sage: L.characteristic()
 # needs sage.rings.function_field
 7

 completion(place, name=None, prec=None, gen_name=None)

 Return the completion of the function field at the place.

 INPUT:

 • place – place
 • name – string; name of the series variable
 • prec – positive integer; default precision
 • gen_name – string; name of the generator of the residue field; used only when the place is non-rational

 EXAMPLES:

 \begin{verbatim}
 sage: # needs sage.rings.function_field
 sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[
 sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
 sage: p = L.places_finite()[0]
 sage: m = L.completion(p); m
 Completion map:
 From: Function field in y defined by y^2 + y + (x^2 + 1)/x
 To: Laurent Series Ring in s over Finite Field of size 2
 sage: m(x, 10)
 s^2 + s^3 + s^4 + s^5 + s^7 + s^8 + s^9 + s^10 + O(s^12)
 sage: m(y, 10)
 (continues on next page)
 \end{verbatim}
\end{verbatim}
\[s^{-1} + 1 + s^3 + s^5 + s^7 + O(s^9) \]

```
sage: K.<x> = FunctionField(GF(2))
sage: p = K.places_finite()[0]; p
# needs sage.libs.pari
Place (x)
sage: m = K.completion(p); m
# needs sage.rings.function_field
Completion map:
  From: Rational function field in x over Finite Field of size 2
  To: Laurent Series Ring in s over Finite Field of size 2
sage: m(1/(x+1))
# needs sage.rings.function_field
1 + s + s^2 + s^3 + s^4 + s^5 + s^6 + s^7 + s^8 + s^9 + s^{10} + s^{11} + s^{12} + s^{13} + s^{14} + s^{15} + s^{16} + s^{17} + s^{18} + s^{19} + O(s^{20})
```

```
sage: p = K.place_infinite(); p
Place (1/x)
sage: m = K.completion(p); m
# needs sage.rings.function_field
Completion map:
  From: Rational function field in x over Finite Field of size 2
  To: Laurent Series Ring in s over Finite Field of size 2
sage: m(x)
# needs sage.rings.function_field
s^{-1} + O(s^{19})
```

```
sage: m = K.completion(p, prec=infinity); m
# needs sage.rings.function_field
Completion map:
  From: Rational function field in x over Finite Field of size 2
  To: Lazy Laurent Series Ring in s over Finite Field of size 2
sage: f = m(x); f
# needs sage.rings.function_field
s^{-1} + ...
```

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 - x)
sage: O = L.maximal_order()
sage: decomp = O.decomposition(K.maximal_order().ideal(x - 1))
sage: pls = (decomp[0][0].place(), decomp[1][0].place())
sage: m = L.completion(pls[0]); m
Completion map:
  From: Function field in y defined by y^2 - x
  To: Laurent Series Ring in s over Rational Field
sage: xe = m(x)
sage: ye = m(y)
sage: ye^2 - xe == 0
```

(continues on next page)
True

```python
sage: # needs sage.rings.function_field
sage: decomp2 = O.decomposition(K.maximal_order().ideal(x^2 + 1))
sage: pls2 = decomp2[0][0].place()
sage: m = L.completion(pls2); m
Completion map:
  From: Function field in y defined by y^2 - x
  To:  Laurent Series Ring in s over
        Number Field in a with defining polynomial x^4 + 2*x^2 + 4*x + 2
sage: xe = m(x)
sage: ye = m(y)
sage: ye^2 - xe == 0
True
```

divisor_group()

Return the group of divisors attached to the function field.

EXAMPLES:

```python
sage: K.<t> = FunctionField(QQ)
sage: K.divisor_group()  # needs sage.modules
Divisor group of Rational function field in t over Rational Field
sage: _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 - (t^3 - 1)/(t^3 - 2))  # needs sage.rings.function_field
sage: L.divisor_group()  # needs sage.modules sage.rings.function_field
Divisor group of Function field in y defined by y^3 + (-t^3 + 1)/(t^3 - 2)
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))  # needs sage.rings.function_field
sage: L.divisor_group()  # needs sage.modules sage.rings.function_field
Divisor group of Function field in y defined by y^3 + (4*x^3 + 1)/(x^3 + 3)
```

extension\((f, names=None)\)

Create an extension \(K(y)\) of this function field \(K\) extended with a root \(y\) of the univariate polynomial \(f\) over \(K\).

INPUT:

- \(f\) – univariate polynomial over \(K\)
- \(names\) – string or tuple of length 1 that names the variable \(y\)

OUTPUT:

- a function field

EXAMPLES:
A nonintegral defining polynomial:

```sage
K.<t> = FunctionField(QQ); R.<y> = K[]
sage: K.extension(t*y^3 + (1/t)*y + t^3/(t+1))
needs sage.rings.function_field
Function field in y defined by t*y^3 + 1/t*y + t^3/(t + 1)
```

The defining polynomial need not be monic or integral:

```sage
K.<t> = FunctionField(QQ); R.<y> = K[]
sage: K.extension(t*y^3 + (1/t)*y + t^3/(t+1))
needs sage.rings.function_field
Function field in y defined by t*y^3 + 1/t*y + t^3/(t + 1)
```

extension_constant_field(k)

Return the constant field extension with constant field \(k \).

INPUT:

- \(k \) – an extension field of the constant field of this function field

EXAMPLES:

```sage
# needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: E = F.extension_constant_field(GF(2^4))
```

is_finite()

Return whether the function field is finite, which is false.

EXAMPLES:

```sage
R.<t> = FunctionField(QQ)
sage: R.is_finite()
False
sage: R.<t> = FunctionField(GF(7))
sage: R.is_finite()
False
```

is_global()

Return whether the function field is global, that is, whether the constant field is finite.

EXAMPLES:

```sage
R.<t> = FunctionField(QQ)
sage: R.is_global()
```
is_perfect()

Return whether the field is perfect, i.e., its characteristic p is zero or every element has a p-th root.

EXAMPLES:

```
sage: FunctionField(QQ, 'x').is_perfect()
True
sage: FunctionField(GF(2), 'x').is_perfect()
False
```

order(x, check=True)

Return the order generated by x over the base maximal order.

INPUT:

• x – element or list of elements of the function field

• check – boolean; if True, check that x really generates an order

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^3 + x^3 + 4*x + 1)
sage: O = L.order(y); O
Order in Function field in y defined by y^3 + x^3 + 4*x + 1
sage: O.basis()
(1, y, y^2)
sage: Z = K.order(x); Z
Order in Rational function field in x over Rational Field
sage: Z.basis()
(1,)
```

Orders with multiple generators are not yet supported:

```
sage: Z = K.order([x, x^2]); Z
Order in Rational function field
Traceback (most recent call last):
  ... Not Implemented Error```

---

**Chapter 1. Function Fields**
order_infinite(x, check=True)

Return the order generated by x over the maximal infinite order.

INPUT:

- x – element or a list of elements of the function field
- check – boolean; if True, check that x really generates an order

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^3 + x^3 + 4*x + 1) # needs sage.rings.function_field
sage: L.order_infinite(y) # not implemented # needs sage.modules sage.rings.function_field

sage: Z = K.order(x); Z # needs sage.modules
Order in Rational function field in x over Rational Field
sage: Z.basis() # needs sage.modules
(1,)
```

Orders with multiple generators, not yet supported:

```
sage: Z = K.order_infinite([x, x^2]); Z
Traceback (most recent call last):
 ... NotImplementedError
```

order_infinite_with_basis(basis, check=True)

Return the order with given basis over the maximal infinite order of the base field.

INPUT:

- basis – list of elements of the function field
- check – boolean (default: True); if True, check that the basis is really linearly independent and that the module it spans is closed under multiplication, and contains the identity element.

EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^3 + x^3 + 4*x + 1)
sage: O = L.order_infinite_with_basis([1, 1/x*y, 1/x^2*y^2]); O
Infinite order in Function field in y defined by y^3 + x^3 + 4*x + 1
sage: O.basis()
(1, 1/x*y, 1/x^2*y^2)

Note that 1 does not need to be an element of the basis, as long it is in the module spanned by it:

```
sage: O = L.order_infinite_with_basis([1+1/x*y, 1/x^2*y^2]); O # needs sage.rings.function_field
Infinite order in Function field in y defined by y^3 + x^3 + 4*x + 1
sage: O.basis() #
```
```
The following error is raised when the module spanned by the basis is not closed under multiplication:

```
sage: O = L.order_infinite_with_basis([1/x, 1/x*y, 1/x^2*y^2]); O
ValueError: the identity element must be in the module spanned by basis (1/x, 1/x*y, 1/x^2*y^2)
```

and this happens when the identity is not in the module spanned by the basis:

```
sage: O = L.order_infinite_with_basis([1/x, 1/x*y, 1/x^2*y^2])
ValueError: the module generated by basis (1/x, 1/x*y, 1/x^2*y^2) must be closed under multiplication
```

**order_with_basis(basis, check=True)**

Return the order with given basis over the maximal order of the base field.

**INPUT:**

- `basis` – list of elements of this function field
- `check` – boolean (default: `True`); if `True`, check that the basis is really linearly independent and that the module it spans is closed under multiplication, and contains the identity element.

**OUTPUT:**

- an order in the function field

**EXAMPLES:**

```
sage: K.<x> = FunctionField(QQ); R.<y> = K[
```

```
sage: L.<y> = K.extension(y^3 + x^3 + 4*x + 1)
```

```
sage: O = L.order_with_basis([1, y, y^2]); O
Order in Function field in y defined by y^3 + x^3 + 4*x + 1
```

```
sage: O.basis()
(1, y, y^2)
```

Note that 1 does not need to be an element of the basis, as long it is in the module spanned by it:

```
sage: O = L.order_with_basis([1+y, y, y^2]); O
```

```
sage: O.basis()
(y + 1, y, y^2)
```

(continued from previous page)
The following error is raised when the module spanned by the basis is not closed under multiplication:

```sage
does: O = L.order_with_basis([1, x^2 + x*y, (2/3)*y^2]); O
needs sage.rings.function_field
Traceback (most recent call last):
...
ValueError: the module generated by basis (1, x*y + x^2, 2/3*y^2) must be closed under multiplication
```

and this happens when the identity is not in the module spanned by the basis:

```sage
does: O = L.order_with_basis([x, x^2 + x*y, (2/3)*y^2])
needs sage.rings.function_field
Traceback (most recent call last):
...
ValueError: the identity element must be in the module spanned by basis (x, x*y + x^2, 2/3*y^2)
```

**place_set()**

Return the set of all places of the function field.

**EXAMPLES:**

```sage
does: K.<t> = FunctionField(GF(7))
does: K.place_set()
Set of places of Rational function field in t over Finite Field of size 7
does: K.<t> = FunctionField(QQ)
does: K.place_set()
Set of places of Rational function field in t over Rational Field
does: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
does: L.<y> = K.extension(Y^2 + Y + x + 1/x)
needs sage.rings.function_field
does: L.place_set()
needs sage.rings.function_field
Set of places of Function field in y defined by y^2 + y + (x^2 + 1)/x
```

**rational_function_field()**

Return the rational function field from which this field has been created as an extension.

**EXAMPLES:**

```sage
does: K.<x> = FunctionField(QQ)
does: K.rational_function_field()
Rational function field in x over Rational Field
does: R.<y> = K[]
does: L.<y> = K.extension(y^2 - x)
needs sage.rings.function_field
does: L.rational_function_field()
needs sage.rings.function_field
Rational function field in x over Rational Field
does: R.<z> = L[]
(continues on next page)
```
needs sage.rings.function_field
sage: M.<z> = L.extension(z^2 - y)  # needs sage.rings.function_field
sage: M.rational_function_field()  # needs sage.rings.function_field
Rational function field in x over Rational Field

some_elements()
Return some elements in this function field.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: K.some_elements()
[1,
x,
2*x,
x/(x^2 + 2*x + 1),
1/x^2,
x/(x^2 - 1),
x/(x^2 + 1),
1/2*x/(x^2 + 1),
0,
1/x,
...
]

sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)  # needs sage.rings.function_field
sage: L.some_elements()  # needs sage.rings.function_field
[1,
y,
1/x*y,
((x + 1)/(x^2 - 2*x + 1))*y - 2*x/(x^2 - 2*x + 1),
1/x,
(1/(x - 1))*y,
(1/(x + 1))*y,
(1/2/(x + 1))*y,
0,
...
]

space_of_differentials()
Return the space of differentials attached to the function field.

EXAMPLES:

sage: K.<t> = FunctionField(QQ)
sage: K.space_of_differentials()  # needs sage.modules
Space of differentials of Rational function field in t over Rational Field

sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))
# needs sage.rings.function_field
sage: L.space_of_differentials()
# needs sage.modules sage.rings.function_field
Space of differentials of Function field in y
defined by y^3 + (4*x^3 + 1)/(x^3 + 3)

**space_of_differentials_of_first_kind()**

Return the space of holomorphic differentials of this function field.

**EXAMPLES:**

```python
sage: K.<t> = FunctionField(QQ)
sage: K.space_of_holomorphic_differentials()
needs sage.libs.pari sage.modules
(Vector space of dimension 0 over Rational Field,
 Linear map:
 From: Vector space of dimension 0 over Rational Field
 To: Space of differentials of Rational function field in t over Rational
Field,
 Section of linear map:
 From: Space of differentials of Rational function field in t over Rational
Field
 To: Vector space of dimension 0 over Rational Field)
```

```python
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[

sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))
needs sage.rings.function_field
sage: L.space_of_holomorphic_differentials()
needs sage.modules sage.rings.function_field
(Vector space of dimension 4 over Finite Field of size 5,
 Linear map:
 From: Vector space of dimension 4 over Finite Field of size 5
 To: Space of differentials of Function field in y
defined by y^3 + (4*x^3 + 1)/(x^3 + 3),
 Section of linear map:
 From: Space of differentials of Function field in y
defined by y^3 + (4*x^3 + 1)/(x^3 + 3)
 To: Vector space of dimension 4 over Finite Field of size 5)
```

**space_of_holomorphic_differentials()**

Return the space of holomorphic differentials of this function field.

**EXAMPLES:**

```python
sage: K.<t> = FunctionField(QQ)
sage: K.space_of_holomorphic_differentials()
needs sage.libs.pari sage.modules
(Vector space of dimension 0 over Rational Field,
 Linear map:
 From: Vector space of dimension 0 over Rational Field
 To: Space of differentials of Rational function field in t over Rational
Field,
 Section of linear map:
 From: Space of differentials of Rational function field in t over Rational
Field
 To: Vector space of dimension 0 over Rational Field)
```

(continues on next page)
valueation(prime)

Return the discrete valuation on this function field defined by prime.

INPUT:

• prime – a place of the function field, a valuation on a subring, or a valuation on another function field together with information for isomorphisms to and from that function field

EXAMPLES:

We create valuations that correspond to finite rational places of a function field:

```
sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(1); v # needs sage.rings.function_field
(x - 1)-adic valuation
sage: v(x) # needs sage.rings.function_field
0
sage: v(x - 1) # needs sage.rings.function_field
1
```

A place can also be specified with an irreducible polynomial:

```
sage: v = K.valuation(x - 1); v # needs sage.rings.function_field
(x - 1)-adic valuation
```

Similarly, for a finite non-rational place:

```
sage: v = K.valuation(x^2 + 1); v # needs sage.rings.function_field
(x^2 + 1)-adic valuation
```
Instead of specifying a generator of a place, we can define a valuation on a rational function field by giving a discrete valuation on the underlying polynomial ring:

```
sage: # needs sage.rings.function_field
sage: R.<x> = QQ[]
sage: u = valuations.GaussValuation(R, valuations.TrivialValuation(QQ))
sage: w = u.augmentation(x - 1, 1)
sage: v = K.valuation(w); v
(x - 1)-adic valuation
```

Note that this allows us to specify valuations which do not correspond to a place of the function field:

```
sage: w = valuations.GaussValuation(R, QQ.valuation(2)).augmentation(x, 1)
sage: w = K.valuation(w)
sage: v = K.valuation((w, K.hom([~K.gen()]), K.hom([~K.gen()])))
2-adic valuation
```

The same is possible for valuations with $v(1/x) > 0$ by passing in an extra pair of parameters, an isomorphism between this function field and an isomorphic function field. That way you can, for example, indicate that the valuation is to be understood as a valuation on $K[1/x]$, i.e., after applying the substitution $x \mapsto 1/x$ (here, the inverse map is also $x \mapsto 1/x$):

```
sage: # needs sage.rings.function_field
sage: w = valuations.GaussValuation(R, QQ.valuation(2)).augmentation(x, 1)
sage: v = K.valuation((w, K.hom([-K.gen()]), K.hom([-K.gen()])))
Valuation on rational function field
induced by [Gauss valuation induced by 2-adic valuation, v(x) = 1]
(in Rational function field in x over Rational Field after x |---> 1/x)
```

Note that classical valuations at finite places or the infinite place are always normalized such that the uniformizing element has valuation 1:

```
sage: # needs sage.rings.function_field
sage: K.<t> = FunctionField(GF(3))
```

\section*{1.1. Global function fields}

(continues on next page)
sage: v = M.valuation(x^3 - t)
sage: v(x^3 - t)
1

However, if such a valuation comes out of a base change of the ground field, this is not the case anymore. In the example below, the unique extension of $v$ to $L$ still has valuation 1 on $x^3 - t$ but it has valuation $1/3$ on its uniformizing element $x - w$:

```sage
needs sage.rings.function_field
sage: R.<w> = K[]
sage: L.<w> = K.extension(w^3 - t)
sage: N.<x> = FunctionField(L)
sage: w = v.extension(N) # missing factorization, :trac:`16572`
Traceback (most recent call last):
...
NotImplementedError
sage: w(x^3 - t) # not tested
1
sage: w(x - w) # not tested
1/3
```

There are several ways to create valuations on extensions of rational function fields:

```sage
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x); L # needs sage.rings.function_field
Function field in y defined by y^2 - x
```

A place that has a unique extension can just be defined downstairs:

```sage
sage: v = L.valuation(x); v # needs sage.rings.function_field
(x)-adic valuation
```

```
sage.rings.function_field.function_field.is_FunctionField(x)
Return True if x is a function field.
EXAMPLES:
sage: from sage.rings.function_field.function_field import is_FunctionField
sage: is_FunctionField(QQ)
False
sage: is_FunctionField(FunctionField(QQ, 't'))
True
```

20 Chapter 1. Function Fields
FUNCTION FIELDS: RATIONAL

```python
class sage.rings.function_field.function_field_rational.RationalFunctionField(constant_field, names, category=None):
```

Bases: `FunctionField`

Rational function field in one variable, over an arbitrary base field.

INPUT:

- constant_field – arbitrary field
- names – string or tuple of length 1

EXAMPLES:

```python
sage: K.<t> = FunctionField(GF(3)); K
Rational function field in t over Finite Field of size 3
sage: K.gen()
t
sage: 1/t + t^3 + 5
(t^4 + 2*t + 1)/t

sage: K.<t> = FunctionField(QQ); K
Rational function field in t over Rational Field
sage: K.gen()
t
sage: 1/t + t^3 + 5
(t^4 + 5*t + 1)/t
```

There are various ways to get at the underlying fields and rings associated to a rational function field:

```python
sage: K.<t> = FunctionField(GF(7)); K
Rational function field in t over Finite Field of size 7
sage: K.base_field()
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7
sage: K.field()
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7
sage: K.constant_field()
Finite Field of size 7
sage: K.maximal_order()
Maximal order of Rational function field in t over Finite Field of size 7
```

```python
sage: K.<t> = FunctionField(QQ);
```

(continues on next page)
We define a morphism:

\[
\text{sage: } K.<t> = FunctionField(QQ) \\
\text{sage: } L = FunctionField(QQ, 'tbar') \quad \text{# give variable name as second input} \\
\text{sage: } K.hom(L.gen())
\]

Function Field morphism:
From: Rational function field in t over Rational Field
To: Rational function field in tbar over Rational Field
Defn: t |\rightarrow tbar

Here are some calculations over a number field:

\[
\text{sage: } R.<x> = FunctionField(QQ) \\
\text{sage: } L.<y> = R[] \\
\text{sage: } F.<y> = R.extension(y^2 - (x^2+1)) \quad \text{# needs sage.rings.function_field} \\
\text{sage: } (y/x).divisor() \quad \text{# needs sage.modules sage.rings.function_field} \\
\]

- Place (x, y - 1)
- Place (x, y + 1)
+ Place (x^2 + 1, y)

\[
\text{sage: } # \text{ needs sage.rings.number_field} \\
\text{sage: } A.<z> = QQ[] \\
\text{sage: } NF.<i> = NumberField(z^2 + 1) \\
\text{sage: } R.<x> = FunctionField(NF) \\
\text{sage: } L.<y> = R[] \\
\text{sage: } F.<y> = R.extension(y^2 - (x^2+1)) \quad \text{# needs sage.rings.function_field} \\
\]

\[
\text{sage: } (x/y*x.differential()).divisor() \quad \text{# needs sage.modules sage.rings.function_field sage.rings.number_field} \\
-2\times\text{Place (1/x, 1/x\times y - 1)} \\
- 2\times\text{Place (1/x, 1/x\times y + 1)} \\
+ \text{Place (x, y - 1)} \\
+ \text{Place (x, y + 1)}
\]

\[
\text{sage: } (x/y).divisor() \quad \text{# needs sage.modules sage.rings.function_field sage.rings.number_field} \\
- \text{Place (x - i, y)} \\
+ \text{Place (x, y - 1)} \\
+ \text{Place (x, y + 1)} \\
- \text{Place (x + i, y)}
\]
alias of `FunctionFieldElement_rational`

`base_field()`

Return the base field of the rational function field, which is just the function field itself.

EXAMPLES:

```
sage: K.<t> = FunctionField(GF(7))
sage: K.base_field()
Rational function field in t over Finite Field of size 7
```

`change_variable_name(name)`

Return a field isomorphic to this field with variable name.

INPUT:

- `name` – a string or a tuple consisting of a single string, the name of the new variable

OUTPUT:

A triple $F, f, t$ where $F$ is a rational function field, $f$ is an isomorphism from $F$ to this field, and $t$ is the inverse of $f$.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: L,f,t = K.change_variable_name('y')
sage: L,f,t
(Rational function field in y over Rational Field, Function Field morphism: From: Rational function field in y over Rational Field To: Rational function field in x over Rational Field Defn: y |--> x, Function Field morphism: From: Rational function field in x over Rational Field To: Rational function field in y over Rational Field Defn: x |--> y)
sage: L.change_variable_name('x')[0] is K
True
```

`constant_base_field()`

Return the field of which the rational function field is a transcendental extension.

EXAMPLES:

```
sage: K.<t> = FunctionField(QQ)
sage: K.constant_base_field()
Rational Field
```

`constant_field()`

Return the field of which the rational function field is a transcendental extension.

EXAMPLES:

```
sage: K.<t> = FunctionField(QQ)
sage: K.constant_base_field()
Rational Field
```
**degree(base=None)**

Return the degree over the base field of the rational function field. Since the base field is the rational function field itself, the degree is 1.

**INPUT:**

- base – the base field of the vector space; must be the function field itself (the default)

**EXAMPLES:**

```python
sage: K.<t> = FunctionField(QQ)
sage: K.degree()
1
```

**different()**

Return the different of the rational function field.

For a rational function field, the different is simply the zero divisor.

**EXAMPLES:**

```python
sage: K.<t> = FunctionField(QQ)
sage: K.different() # needs sage.modules
0
```

**equation_order()**

Return the maximal order of the function field.

Since this is a rational function field it is of the form $K(t)$, and the maximal order is by definition $K[t]$, where $K$ is the constant field.

**EXAMPLES:**

```python
sage: K.<t> = FunctionField(QQ)
sage: K.maximal_order()
Maximal order of Rational function field in t over Rational Field
```

**equation_order_infinite()**

Return the maximal infinite order of the function field.

By definition, this is the valuation ring of the degree valuation of the rational function field.

**EXAMPLES:**

```python
sage: K.<t> = FunctionField(QQ)
sage: K.maximal_order_infinite()
Maximal infinite order of Rational function field in t over Rational Field
```

**extension(f, names=None)**

Create an extension $L = K[y]/(f(y))$ of the rational function field.

**INPUT:**

- $f$ – univariate polynomial over self
• names – string or length-1 tuple

OUTPUT:

• a function field

EXAMPLES:

```sage
t.<x> = FunctionField(QQ); R.<y> = K[]
e.<y> = K.extension(y^5 - x^3 - 3*x + x*y) # needs sage.rings.function_field
Function field in y defined by y^5 + x*y - x^3 - 3*x
```

A nonintegral defining polynomial:

```sage
t.<t> = FunctionField(QQ); R.<y> = K[]
e.<y> = K.extension(y^3 + (1/t)*y + t^3/(t+1)) # needs sage.rings.function_field
Function field in y defined by y^3 + 1/t*y + t^3/(t + 1)
```

The defining polynomial need not be monic or integral:

```sage
e.<y> = K.extension(t*y^3 + (1/t)*y + t^3/(t+1)) # needs sage.rings.function_field
Function field in y defined by t*y^3 + 1/t*y + t^3/(t + 1)
```

field()

Return the underlying field, forgetting the function field structure.

EXAMPLES:

```sage
t.<t> = FunctionField(GF(7))
e.<t> = K.field()
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7
```

See also:

```sage
sage.rings.fraction_field.FractionField_1poly_field.function_field()
```

free_module(base=None, basis=None, map=True)

Return a vector space \( V \) and isomorphisms from the field to \( V \) and from \( V \) to the field.

This function allows us to identify the elements of this field with elements of a one-dimensional vector space over the field itself. This method exists so that all function fields (rational or not) have the same interface.

INPUT:

• base – the base field of the vector space; must be the function field itself (the default)
• basis – (ignored) a basis for the vector space
• map – (default True), whether to return maps to and from the vector space

OUTPUT:

• a vector space \( V \) over base field
• an isomorphism from \( V \) to the field
• the inverse isomorphism from the field to \( V \)
EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)

sage: K.free_module() # needs sage.modules

(Vector space of dimension 1 over Rational function field in x over RationalField,
Isomorphism:
 From: Vector space of dimension 1 over Rational function field in x over RationalField
 To: Rational function field in x over Rational Field
 Isomorphism:
 From: Rational function field in x over Rational Field
 To: Vector space of dimension 1 over Rational function field in x over Rational Field)
```

**gen**(n=0)

Return the n-th generator of the function field. If n is not 0, then an IndexError is raised.

**Examples:**

```
sage: K.<t> = FunctionField(QQ); K.gen()
t
sage: K.gen().parent()
Rational function field in t over Rational Field
sage: K.gen(1)
Traceback (most recent call last):
 ...IndexError: Only one generator.
```

**genus()**

Return the genus of the function field, namely 0.

**Examples:**

```
sage: K.<x> = FunctionField(QQ)
sage: K.genus()
0
```

**hom**(im_gens, base_morphism=None)

Create a homomorphism from self to another ring.

**Input:**

- **im_gens** – exactly one element of some ring. It must be invertible and transcendental over the image of base_morphism; this is not checked.
- **base_morphism** – a homomorphism from the base field into the other ring. If None, try to use a coercion map.

**Output:**

- a map between function fields

**Examples:**

We make a map from a rational function field to itself:
We construct a map from a rational function field into a non-rational extension field:

```python
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[
 sage: L.<y> = K.extension(y^3 + 6*x^3 + x)
 sage: f = K.hom(y^2 + y + 2); f
 Function Field morphism:
 From: Rational function field in x over Finite Field of size 7
 To: Function field in y defined by y^3 + 6*x^3 + x
 Defn: x |--> y^2 + y + 2
 sage: f(x)
y^2 + y + 2
 sage: f(x^2)
5*y^2 + (x^3 + 6*x + 4)*y + 2*x^3 + 5*x + 4
```

### maximal_order()

Return the maximal order of the function field.

Since this is a rational function field it is of the form $\mathbb{K}(t)$, and the maximal order is by definition $\mathbb{K}[t]$, where $\mathbb{K}$ is the constant field.

**EXAMPLES:**

```python
sage: K.<t> = FunctionField(QQ)
 sage: K.maximal_order()
Maximal order of Rational function field in t over Rational Field
 sage: K.equation_order()
Maximal order of Rational function field in t over Rational Field
```

### maximal_order_infinite()

Return the maximal infinite order of the function field.

By definition, this is the valuation ring of the degree valuation of the rational function field.

**EXAMPLES:**

```python
sage: K.<t> = FunctionField(QQ)
 sage: K.maximal_order_infinite()
Maximal infinite order of Rational function field in t over Rational Field
 sage: K.equation_order_infinite()
Maximal infinite order of Rational function field in t over Rational Field
```

### ngens()

Return the number of generators, which is 1.

**EXAMPLES:**

```python
sage: K.<t> = FunctionField(QQ)
 sage: K.ngens()
1
```
polynomial_ring(var=x')

Return a polynomial ring in one variable over the rational function field.

INPUT:

• var – string; name of the variable

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: K.polynomial_ring()
Univariate Polynomial Ring in x over Rational function field in x over Rational Field
sage: K.polynomial_ring('T')
Univariate Polynomial Ring in T over Rational function field in x over Rational Field

random_element(*args, **kwds)

Create a random element of the rational function field.

Parameters are passed to the random_element method of the underlying fraction field.

EXAMPLES:

sage: FunctionField(QQ,'alpha').random_element()  # random
(-1/2*alpha^2 - 4)/(-12*alpha^2 + 1/2*alpha - 1/95)

residue_field(place, name=None)

Return the residue field of the place along with the maps from and to it.

INPUT:

• place – place of the function field

• name – string; name of the generator of the residue field

EXAMPLES:

sage: F.<x> = FunctionField(GF(5))
sage: p = F.places_finite(2)[0]  # needs sage.libs.pari
sage: R, fr_R, to_R = F.residue_field(p)  # needs sage.libs.pari sage.rings.function_field
sage: R
Finite Field in z2 of size 5^2
sage: to_R(x) in R  # needs sage.libs.pari sage.rings.function_field
True

class sage.rings.function_field.function_field_rational.RationalFunctionField_char_zero(constant_field, names, category=None)

Bases: RationalFunctionField

Rational function fields of characteristic zero.
```
higher_derivation()

Return the higher derivation for the function field.
This is also called the Hasse-Schmidt derivation.

EXAMPLES:

```
sage: F.<x> = FunctionField(QQ)
sage: d = F.higher_derivation()               # needs sage.libs.singular sage.modules
```
```
sage: [d(x^5,i) for i in range(10)]              # needs sage.libs.singular sage.modules
[x^5, 5*x^4, 10*x^3, 10*x^2, 5*x, 1, 0, 0, 0, 0]
```
```
sage: [d(x^9,i) for i in range(10)]              # needs sage.libs.singular sage.modules
[x^9, 9*x^8, 36*x^7, 84*x^6, 126*x^5, 126*x^4, 84*x^3, 36*x^2, 9*x, 1]
```
```
```
```
class sage.rings.function_field.function_field_rational.RationalFunctionField_global(constant_field, names, category=None)

Bases: RationalFunctionField

Rational function field over finite fields.

get_place(degree)

Return a place of degree.

INPUT:

- degree – a positive integer

EXAMPLES:

```
sage: F.<a> = GF(2)
sage: K.<x> = FunctionField(F)
sage: K.get_place(1) # needs sage.libs.pari
Place (x)
```
```
sage: K.get_place(2) # needs sage.libs.pari
Place (x^2 + x + 1)
```
```
sage: K.get_place(3) # needs sage.libs.pari
Place (x^3 + x + 1)
```
```
sage: K.get_place(4) # needs sage.libs.pari
Place (x^4 + x + 1)
```
```
sage: K.get_place(5) # needs sage.libs.pari
Place (x^5 + x^2 + 1)
```
```
higher_derivation()

Return the higher derivation for the function field.
This is also called the Hasse-Schmidt derivation.

EXAMPLES:

```
sage: F.<x> = FunctionField(GF(5))
sage: d = F.higher_derivation() # needs sage.rings.function_field
sage: [d(x^5,i) for i in range(10)] # needs sage.rings.function_field
[x^5, 0, 0, 0, 1, 0, 0, 0, 0]
sage: [d(x^7,i) for i in range(10)] # needs sage.rings.function_field
[x^7, 2*x^6, x^5, 0, 0, x^2, 2*x, 1, 0, 0]

place_infinite()

Return the unique place at infinity.

EXAMPLES:

sage: F.<x> = FunctionField(GF(5))
sage: F.place_infinite()
Place (1/x)

places(degree=1)

Return all places of the degree.

INPUT:

- degree – (default: 1) a positive integer

EXAMPLES:

sage: F.<x> = FunctionField(GF(5))
sage: F.places() # needs sage.libs.pari
[Place (1/x),
 Place (x),
 Place (x + 1),
 Place (x + 2),
 Place (x + 3),
 Place (x + 4)]

places_finite(degree=1)

Return the finite places of the degree.

INPUT:

- degree – (default: 1) a positive integer

EXAMPLES:

sage: F.<x> = FunctionField(GF(5))
sage: F.places_finite() # needs sage.libs.pari
[Place (x), Place (x + 1), Place (x + 2), Place (x + 3), Place (x + 4)]
class sage.rings.function_field.function_field_polymod.FunctionField_char_zero(polynomial, names, category=None)

Bases: FunctionField_simple

Function fields of characteristic zero.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ); _.<Y> = K[
```
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))
sage: L
Function field in y defined by y^3 + (-x^3 + 1)/(x^3 - 2)
sage: L.characteristic()
0

higher_derivation()

Return the higher derivation (also called the Hasse-Schmidt derivation) for the function field.

The higher derivation of the function field is uniquely determined with respect to the separating element \(x\) of the base rational function field \(k(x)\).

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ); _.<Y> = K[
```
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))
sage: L.higher_derivation()  # needs sage.modules
Higher derivation map:
  From: Function field in y defined by y^3 + (-x^3 + 1)/(x^3 - 2)
  To:   Function field in y defined by y^3 + (-x^3 + 1)/(x^3 - 2)
```

class sage.rings.function_field.function_field_polymod.FunctionField_char_zero_integral(polynomial, names, category=None)

Bases: FunctionField_char_zero, FunctionField_integral

Function fields of characteristic zero, defined by an irreducible and separable polynomial, integral over the maximal order of the base rational function field with a finite constant field.
class sage.rings.function_field.function_field_polymod.FunctionField_global(
 polynomial, names)

Bases: FunctionField_simple

Global function fields.

INPUT:

- polynomial – monic irreducible and separable polynomial
- names – name of the generator of the function field

EXAMPLES:

sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^3 - (x^3 - 1)/(x^3 - 2))
needs sage.rings.finite_rings
sage: L
Function field in y defined by y^3 + (4*x^3 + 1)/(x^3 + 3)

The defining equation needs not be monic:

sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
needs sage.rings.finite_rings
sage: L.<y> = K.extension((1 - x)*Y^7 - x^3)
needs sage.rings.finite_rings
sage: L.gaps()
long time (6s)
[1, 2, 3]

or may define a trivial extension:

sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y - 1)
needs sage.rings.finite_rings
sage: L.genus()

0

L_polynomial(name='t')
Return the L-polynomial of the function field.

INPUT:

- name – (default: t) name of the variable of the polynomial

EXAMPLES:

sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
needs sage.rings.finite_rings
sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)
needs sage.rings.finite_rings
sage: F.L_polynomial()

2*t^2 + t + 1
gaps()

Return the gaps of the function field.

These are the gaps at the ordinary places, that is, places which are not Weierstrass places.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
# needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^3 + x^3 * Y + x)
# needs sage.rings.finite_rings
sage: L.gaps()
# needs sage.modules sage.rings.finite_rings
[1, 2, 3]
```

get_place(degree)

Return a place of degree.

INPUT:

* degree – a positive integer

OUTPUT: a place of degree if any exists; otherwise None

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2)
sage: K.<x> = FunctionField(F)
sage: R.<Y> = PolynomialRing(K)
sage: L.<y> = K.extension(Y^4 + Y - x^5)
sage: L.get_place(1)
Place (x, y)
sage: L.get_place(2)
Place (x, y^2 + y + 1)
sage: L.get_place(3)
Place (x^3 + x^2 + 1, y + x^2 + x)
sage: L.get_place(4)
Place (x + 1, x^5 + 1)
sage: L.get_place(5)
Place (x^5 + x^3 + x^2 + x + 1, y + x^4 + 1)
sage: L.get_place(6)
Place (x^3 + x^2 + 1, y^2 + y + x^2)
sage: L.get_place(7)
Place (x^7 + x + 1, y + x^6 + x^5 + x^4 + x^3 + x)
sage: L.get_place(8)
```

higher_derivation()

Return the higher derivation (also called the Hasse-Schmidt derivation) for the function field.

The higher derivation of the function field is uniquely determined with respect to the separating element x of the base rational function field $k(x)$.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
# needs sage.rings.finite_rings
```
maximal_order()

Return the maximal order of the function field.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: R.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^4 + x^12*t^2 + x^18*t + x^21 + x^18)
sage: O = F.maximal_order()
sage: O.basis()
(1, 1/x^4*y, 1/x^11*y^2 + 1/x^2, 1/x^15*y^3 + 1/x^6*y)
```

number_of_rational_places(r=1)

Return the number of rational places of the function field whose constant field extended by degree \(r \).

INPUT:

- \(r \) – positive integer (default: 1)

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[

sage: F.<y> = K.extension(Y^2 + Y + x + 1/x)

sage: F.number_of_rational_places()
4

sage: [F.number_of_rational_places(r) for r in [1..10]]
[4, 8, 4, 16, 44, 56, 116, 288, 508, 968]
```

places(degree=1)

Return a list of the places with degree.

INPUT:

- degree – positive integer (default: 1)

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2)
sage: K.<x> = FunctionField(F)
sage: R.<t> = PolynomialRing(K)
sage: L.<y> = K.extension(t^4 + t - x^5)
sage: L.places(1)
[Place (1/x, 1/x^4*y^3), Place (x, y), Place (x, y + 1)]
```
places_finite\((\text{degree}=1)\)
Return a list of the finite places with degree.

INPUT:

- degree – positive integer (default: 1)

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2)
```
```
sage: K.<x> = FunctionField(F)
```
```
sage: R.<t> = PolynomialRing(K)
```
```
sage: L.<y> = K.extension(t^4 + t - x^5)
```
```
sage: L.places_finite(1)
[Place (x, y), Place (x, y + 1)]
```

places_infinite\((\text{degree}=1)\)
Return a list of the infinite places with degree.

INPUT:

- degree – positive integer (default: 1)

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2)
``` 
```
sage: K.<x> = FunctionField(F)
```
```
sage: R.<t> = PolynomialRing(K)
```
```
sage: L.<y> = K.extension(t^4 + t - x^5)
```
```
sage: L.places_infinite(1)
[Place (1/x, 1/x^4*y^3)]
```

weierstrass_places()
Return all Weierstrass places of the function field.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
```
```
# needs sage.rings.finite_rings
```
```
sage: L.<y> = K.extension(Y^3 + x^3 * Y + x)
```
```
# needs sage.rings.finite_rings
```
```
sage: L.weierstrass_places()
```
```
# needs sage.modules sage.rings.finite_rings
```
```
[Place (1/x, 1/x^3*y^2 + 1/x),
 Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1),
 Place (x, y),
 Place (x + 1, (x^3 + 1)*y + x + 1),
 Place (x^3 + x + 1, y + 1),
 Place (x^3 + x + 1, y + x^2),
 Place (x^3 + x + 1, y + x^2 + 1),
 Place (x^3 + x^2 + 1, y + x),
 Place (x^3 + x^2 + 1, y + x^2 + 1),
 Place (x^3 + x^2 + 1, y + x^2 + x + 1)]
```
Algebraic Function Fields, Release 10.1

```python
class sage.rings.function_field.function_field_polymod.FunctionField_global_integral(polynomial, names):
    Bases: FunctionField_global, FunctionField_integral
    Global function fields, defined by an irreducible and separable polynomial, integral over the maximal order of
    the base rational function field with a finite constant field.

class sage.rings.function_field.function_field_polymod.FunctionField_integral(polynomial, names, category=None):
    Bases: FunctionField_simple
    Integral function fields.
    A function field is integral if it is defined by an irreducible separable polynomial, which is integral over the
    maximal order of the base rational function field.

equation_order()
    Return the equation order of the function field.

EXAMPLES:

    sage: K.<x> = FunctionField(GF(2)); R.<t> = PolynomialRing(K)
    #← needs sage.rings.finite_rings
    sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
    #← needs sage.rings.finite_rings
    sage: F.equation_order()
    #← needs sage.rings.finite_rings
    Order in Function field in y defined by y^3 + x^6 + x^4 + x^2

    sage: K.<x> = FunctionField(QQ); R.<t> = PolynomialRing(K)
    sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
    sage: F.equation_order()
    Order in Function field in y defined by y^3 - x^6 - 2*x^5 - 3*x^4 - 2*x^3 - x^2

equation_order_infinite()
    Return the infinite equation order of the function field.

    This is by definition o[b] where b is the primitive integral element from
    primitive_integral_element_infinite() and o is the maximal infinite order of the base rational
    function field.

    EXAMPLES:

    sage: K.<x> = FunctionField(GF(2)); R.<t> = PolynomialRing(K)
    #← needs sage.rings.finite_rings
    sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
    #← needs sage.rings.finite_rings
    sage: F.equation_order_infinite()
    #← needs sage.rings.finite_rings
    Infinite order in Function field in y defined by y^3 + x^6 + x^4 + x^2

    sage: K.<x> = FunctionField(QQ); R.<t> = PolynomialRing(K)
    sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
    sage: F.equation_order_infinite()
    Infinite order in Function field in y defined by y^3 - x^6 - 2*x^5 - 3*x^4 - 2*x^3 - x^2
```

Chapter 3. Function Fields: extension
primitive_integral_element_infinite()

Return a primitive integral element over the base maximal infinite order.

This element is integral over the maximal infinite order of the base rational function field and the function field is a simple extension by this element over the base order.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); R.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: b = F.primitive_integral_element_infinite(); b
1/x^2*y
t^3 + (x^4 + x^2 + 1)/x^4
```

class `sage.rings.function_field.function_field_polymod.FunctionField_polymod`(*polynomial, names, category=None*)

Bases: `FunctionField`

Function fields defined by a univariate polynomial, as an extension of the base field.

INPUT:

- `polynomial` – univariate polynomial over a function field
- `names` – tuple of length 1 or string; variable names
- `category` – category (default: category of function fields)

EXAMPLES:

We make a function field defined by a degree 5 polynomial over the rational function field over the rational numbers:

```python
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x)); L
Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
```

We next make a function field over the above nontrivial function field L:

```python
sage: S.<z> = L[]
sage: M.<z> = L.extension(z^2 + y*z + y); M
Function field in z defined by z^2 + y*z + y
sage: 1/z
((-x/(x^4 + 1))*y^4 + 2*x^2/(x^4 + 1))*z - 1
sage: z * (1/z)
1
```

We drill down the tower of function fields:

```python
sage: M.base_field()
Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
sage: M.base_field().base_field()
Rational function field in x over Rational Field
sage: M.base_field().base_field().constant_field()
```

(continues on next page)
Warning: It is not checked if the polynomial used to define the function field is irreducible. Hence it is not guaranteed that this object really is a field! This is illustrated below.

Element

alias of `FunctionFieldElement_polymod`

base_field()

Return the base field of the function field. This function field is presented as $L = K[y]/(f(y))$, and the base field is by definition the field K.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(x^2 - y^2)
sage: (y - x)^2 * (y + x)
0
sage: 1/(y - x)
1
sage: y - x == 0; y + x == 0
False False
```

change_variable_name(name)

Return a field isomorphic to this field with variable(s) name.

INPUT:

- `name` – a string or a tuple consisting of a strings, the names of the new variables starting with a generator of this field and going down to the rational function field.

OUTPUT:

A triple F,f,t where F is a function field, f is an isomorphism from F to this field, and t is the inverse of f.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: M.<z> = L.extension(z^2 - y)
```

(continues on next page)
sage: M.change_variable_name('zz')
(Function field in zz defined by zz^2 - y,
Function Field morphism:
 From: Function field in zz defined by zz^2 - y
 To: Function field in z defined by z^2 - y
 Defn: zz |--> z
 y |--> y
 x |--> x,
Function Field morphism:
 From: Function field in z defined by z^2 - y
 To: Function field in zz defined by zz^2 - y
 Defn: z |--> zz
 y |--> y
 x |--> x)
sage: M.change_variable_name(('zz','yy'))
(Function field in zz defined by zz^2 - yy,
Function Field morphism:
 From: Function field in zz defined by zz^2 - yy
 To: Function field in z defined by z^2 - y
 Defn: zz |--> z
 yy |--> y
 x |--> x,
Function Field morphism:
 From: Function field in z defined by z^2 - y
 To: Function field in zz defined by zz^2 - yy
 Defn: z |--> zz
 y |--> yy
 x |--> x)
sage: M.change_variable_name(('zz','yy','xx'))
(Function field in zz defined by zz^2 - yy,
Function Field morphism:
 From: Function field in zz defined by zz^2 - yy
 To: Function field in z defined by z^2 - y
 Defn: zz |--> z
 yy |--> y
 xx |--> x,
Function Field morphism:
 From: Function field in z defined by z^2 - y
 To: Function field in zz defined by zz^2 - yy
 Defn: z |--> zz
 y |--> yy
 x |--> xx)

constant_base_field()

Return the base constant field of the function field.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x)); L
Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
sage: L.constant_base_field()
Rational Field
sage: S.<z> = L[]
constant_field()

Return the algebraic closure of the constant field of the function field.

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
     # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^5 - x)
     # needs sage.rings.finite_rings
sage: L.constant_field()
     # needs sage.rings.finite_rings
Traceback (most recent call last):
  ... ImplementedError
```

degree(base=None)

Return the degree of the function field over the function field base.

INPUT:

• base – a function field (default: None), a function field from which this field has been constructed as a finite extension.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x)); L
Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
sage: L.degree()
5
sage: L.degree(L)
1
sage: R.<z> = L[]
sage: M.<z> = L.extension(z^2 - y)
sage: M.degree(L)
2
sage: M.degree(K)
10
```

different()

Return the different of the function field.

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
     # needs sage.rings.finite_rings
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
     # needs sage.rings.finite_rings
```

equation_order()

Return the equation order of the function field.

If we view the function field as being presented as \(K[y]/(f(y)) \), then the order generated by the class of \(y \) is returned. If \(f \) is not monic, then _make_monic_integral() is called, and instead we get the order generated by some integral multiple of a root of \(f \).

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: O = L.equation_order()
sage: O.basis()
(1, x*y, x^2*y^2, x^3*y^3, x^4*y^4)
```

We try an example, in which the defining polynomial is not monic and is not integral:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(x^2*y^5 - 1/x); L
Function field in y defined by x^2*y^5 - 1/x
sage: O = L.equation_order()
sage: O.basis()
(1, x^3*y, x^6*y^2, x^9*y^3, x^12*y^4)
```

free_module(base=None, basis=None, map=True)

Return a vector space and isomorphisms from the field to and from the vector space.

This function allows us to identify the elements of this field with elements of a vector space over the base field, which is useful for representation and arithmetic with orders, ideals, etc.

INPUT:

- `base` – a function field (default: None), the returned vector space is over this subfield \(R \), which defaults to the base field of this function field.
- `basis` – a basis for this field over the base.
- `maps` – boolean (default True), whether to return \(R \)-linear maps to and from \(V \).

OUTPUT:

- a vector space over the base function field
- an isomorphism from the vector space to the field (if requested)
- an isomorphism from the field to the vector space (if requested)

EXAMPLES:

We define a function field:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x)); L
Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
```
We get the vector spaces, and maps back and forth:

```
sage: # needs sage.modules
sage: V, from_V, to_V = L.free_module()
sage: V
Vector space of dimension 5 over Rational function field in x over Rational Field
sage: from_V
Isomorphism:
  From: Vector space of dimension 5 over Rational function field in x over Rational Field
  To:  Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
sage: to_V
Isomorphism:
  From: Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
  To:  Vector space of dimension 5 over Rational function field in x over Rational Field
```

We convert an element of the vector space back to the function field:

```
sage: from_V(V.1) # needs sage.modules
y
```

We define an interesting element of the function field:

```
sage: a = 1/L.0; a # needs sage.modules
(x/(x^4 + 1))*y^4 - 2*x^2/(x^4 + 1)
```

We convert it to the vector space, and get a vector over the base field:

```
sage: to_V(a) # needs sage.modules
(-2*x^2/(x^4 + 1), 0, 0, 0, x/(x^4 + 1))
```

We convert to and back, and get the same element:

```
sage: from_V(to_V(a)) == a # needs sage.modules
True
```

In the other direction:

```
sage: v = x*V.0 + (1/x)*V.1 # needs sage.modules
```

```
sage: to_V(from_V(v)) == v # needs sage.modules
True
```

And we show how it works over an extension of an extension field:

```
sage: R2.<z> = L[]; M.<z> = L.extension(z^2 - y)
sage: M.free_module() # needs sage.modules
```

(continues on next page)
(Vector space of dimension 2 over Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x, Isomorphism:
From: Vector space of dimension 2 over Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x
To: Function field in z defined by z^2 - y, Isomorphism:
From: Function field in z defined by z^2 - y
To: Vector space of dimension 2 over Function field in y defined by y^5 - 2*x*y + (-x^4 - 1)/x)

We can also get the vector space of \(M \) over \(K \):

\[
\text{sage: } M\text{.free_module}(K) \quad # \text{ needs sage.modules}
\]

(Vector space of dimension 10 over Rational function field in x over Rational
Field, Isomorphism:
From: Vector space of dimension 10 over Rational function field in x over
Rational Field
To: Function field in z defined by z^2 - y, Isomorphism:
From: Function field in z defined by z^2 - y
To: Vector space of dimension 10 over Rational function field in x over
Rational Field)

gen\((n=0)\)

Return the \(n \)-th generator of the function field. By default, \(n \) is 0; any other value of \(n \) leads to an error. The generator is the class of \(y \), if we view the function field as being presented as \(K[y]/(f(y)) \).

EXAMPLES:

\[
\text{sage: } K.<x> = FunctionField(QQ); R.<y> = K[
\text{sage: } L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
\text{sage: } L\text{.gen()}
\text{y}
\text{sage: } L\text{.gen(1)}
\text{Traceback (most recent call last):
...}
\text{IndexError: there is only one generator}
\]

genus\()

Return the genus of the function field.

For now, the genus is computed using Singular.

EXAMPLES:

\[
\text{sage: } K.<x> = FunctionField(QQ); R.<y> = K[
\text{sage: } L.<y> = K.extension(y^3 - (x^3 + 2*x*y + 1/x))
\text{sage: } L\text{.genus()}
3
\]

hom\((\text{im_gens, base_morphism=None})\)

Create a homomorphism from the function field to another function field.

INPUT:

- \text{im_gens} – list of images of the generators of the function field and of successive base rings.
• base_morphism – homomorphism of the base ring, after the im_gens are used. Thus if im_gens has length 2, then base_morphism should be a morphism from the base ring of the base ring of the function field.

EXAMPLES:

We create a rational function field, and a quadratic extension of it:

\[
\text{sage: } K.<x> = \text{FunctionField}(\mathbb{Q}); R.<y> = K[\]\]
\[
\text{sage: } L.<y> = K\text{.extension}(y^2 - x^3 - 1)\]

We make the field automorphism that sends y to -y:

\[
\text{sage: } f = L\text{.hom}(-y); f\]

Function Field endomorphism of Function field in y defined by y^2 - x^3 - 1
 Defn: y |--> -y

Evaluation works:

\[
\text{sage: } f(y*x - 1/x)\]

-\(x*y - 1/x\)

We try to define an invalid morphism:

\[
\text{sage: } f = L\text{.hom}(y + 1)\]

Traceback (most recent call last):
 ... \nValueError: invalid morphism

We make a morphism of the base rational function field:

\[
\text{sage: } \phi = K\text{.hom}(x + 1); \phi\]

Function Field endomorphism of Rational function field in x over Rational Field
 Defn: x |--> x + 1
\[
\text{sage: } \phi(x^3 - 3)\]

\(x^3 + 3*x^2 + 3*x - 2\)
\[
\text{sage: } (x+1)^3 - 3\]

\(x^3 + 3*x^2 + 3*x - 2\)

We make a morphism by specifying where the generators and the base generators go:

\[
\text{sage: } L\text{.hom([-y, x])}\]

Function Field endomorphism of Function field in y defined by y^2 - x^3 - 1
 Defn: y |--> -y
 x |--> x

You can also specify a morphism on the base:

\[
\text{sage: } R1.<q> = K[\]
\text{sage: } L1.<q> = K\text{.extension}(q^2 - (x+1)^3 - 1)\]
\[
\text{sage: } L\text{.hom}(q, \text{base_morphism=phi})\]

Function Field morphism:
 From: Function field in y defined by y^2 - x^3 - 1
 To: Function field in q defined by q^2 - x^3 - 3*x^2 - 3*x - 2
 Defn: y |--> q
 x |--> x + 1
We make another extension of a rational function field:

```python
sage: K2.<t> = FunctionField(QQ); R2.<w> = K2[]
sage: L2.<w> = K2.extension((4*w)^2 - (t+1)^3 - 1)
```

We define a morphism, by giving the images of generators:

```python
sage: f = L2.hom([4*w, t + 1]); f
Function Field morphism:
  From: Function field in y defined by y^2 - x^3 - 1
  To:   Function field in w defined by 16*w^2 - t^3 - 3*t^2 - 3*t - 2
  Defn: y |--> 4*w
         x |--> t + 1
```

Evaluation works, as expected:

```python
sage: f(y+x)
4*w + t + 1
sage: f(x*y + x/(x^2+1))
(4*t + 4)*w + (t + 1)/(t^2 + 2*t + 2)
```

We make another extension of a rational function field:

```python
sage: K3.<yy> = FunctionField(QQ); R3.<xx> = K3[]
sage: L3.<xx> = K3.extension(yy^2 - xx^3 - 1)
```

This is the function field L with the generators exchanged. We define a morphism to L:

```python
sage: g = L3.hom([x,y]); g
Function Field morphism:
  From: Function field in xx defined by -xx^3 + yy^2 - 1
  To:   Function field in y defined by y^2 - x^3 - 1
  Defn: xx |--> x
         yy |--> y
```

```python
is_separable(base=None)
```

Return whether this is a separable extension of base.

INPUT:

- `base` – a function field from which this field has been created as an extension or `None` (default: `None`);
 if `None`, then return whether this is a separable extension over its base field.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: L.is_separable()
False
sage: R.<z> = L[]
sage: M.<z> = L.extension(z^3 - y)
sage: M.is_separable()
True
sage: M.is_separable(K)
```

(continues on next page)
False

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(5))
```
```python
sage: R.<y> = K[]
```
```python
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x^2*y + 1/x))
```
```python
sage: L.is_separable()
```
```python
True
```
```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(5))
```
```python
sage: R.<y> = K[]
```
```python
sage: L.<y> = K.extension(y^5 - 1)
```
```python
sage: L.is_separable()
```
```python
False
```

maximal_order()

Return the maximal order of the function field.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
```
```python
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x^2*y + 1/x))
```
```python
sage: L.maximal_order()
```
```python
Maximal order of Function field in y defined by y^5 - 2*x^2*y + (-x^4 - 1)/x
```

maximal_order_infinite()

Return the maximal infinite order of the function field.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
```
```python
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x^2*y + 1/x))
```
```python
sage: L.maximal_order_infinite()
```
```python
Maximal infinite order of Function field in y defined by y^5 - 2*x^2*y + (-x^4 - 1)/x
```
```python

sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
```
```python
# needs sage.rings.finite_rings
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
```
```python
# needs sage.rings.finite_rings
sage: F.maximal_order_infinite()
```
```python
Maximal infinite order of Function field in y defined by y^3 + x^6 + x^4 + x^2
```
```python
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
```
```python
# needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
```
```python
# needs sage.rings.finite_rings
sage: L.maximal_order_infinite()
```
```python
Maximal infinite order of Function field in y defined by y^2 + y + (x^2 + 1)/x
```
monic_integral_model(names=None)

Return a function field isomorphic to this field but which is an extension of a rational function field with
defining polynomial that is monic and integral over the constant base field.

INPUT:

• names – a string or a tuple of up to two strings (default: None), the name of the generator of the field,
 and the name of the generator of the underlying rational function field (if a tuple); if not given, then
 the names are chosen automatically.

OUTPUT:

A triple \((F,f,t)\) where \(F\) is a function field, \(f\) is an isomorphism from \(F\) to this field, and \(t\) is the inverse
of \(f\).

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(x^2*y^5 - 1/x); L
Function field in y defined by x^2*y^5 - 1/x
sage: A, from_A, to_A = L.monic_integral_model('z')
sage: A
Function field in z defined by z^5 - x^12
sage: from_A
Function Field morphism:
  From: Function field in z defined by z^5 - x^12
  To:   Function field in y defined by x^2*y^5 - 1/x
  Defn: z |--> x^3*y
  x |--> x
sage: to_A
Function Field morphism:
  From: Function field in y defined by x^2*y^5 - 1/x
  To:   Function field in z defined by z^5 - x^12
  Defn: y |--> 1/x^3*z
  x |--> x
sage: to_A(y)
1/x^3*z
sage: from_A(to_A(y))
y
sage: from_A(to_A(1/y))
x^3*y^4
sage: from_A(to_A(1/y)) == 1/y
True
```

This also works for towers of function fields:

```
sage: R.<z> = L[]
sage: M.<z> = L.extension(z^2*y - 1/x)
sage: M.monic_integral_model()
(Function field in z_ defined by z_^10 - x^18,
 Function Field morphism:
  From: Function field in z_ defined by z_^10 - x^18
  To:   Function field in z defined by y*z^2 - 1/x
  Defn: z_ |--> x^2*z
  x |--> x, Function Field morphism:
```
From: Function field in `z` defined by `y*z^2 - 1/x`
To: Function field in `z_` defined by `z_^10 - x^18`
Defn: `z |--> 1/x^2*z_`
 `y |--> 1/x^15*z_^8`
 `x |--> x`

```python
ngens()
```

Return the number of generators of the function field over its base field. This is by definition 1.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.ngens()
1
```

```python
polynomial()
```

Return the univariate polynomial that defines the function field, that is, the polynomial \(f(y) \) so that the function field is of the form \(K[y]/(f(y)) \).

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.polynomial()
y^5 - 2*x*y + (-x^4 - 1)/x
```

```python
polynomial_ring()
```

Return the polynomial ring used to represent elements of the function field. If we view the function field as being presented as \(K[y]/(f(y)) \), then this function returns the ring \(K[y] \).

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: L.polynomial_ring()
Univariate Polynomial Ring in y over Rational function field in x over Rational Field
```

```python
primitive_element()
```

Return a primitive element over the underlying rational function field.

If this is a finite extension of a rational function field \(K(x) \) with \(K \) perfect, then this is a simple extension of \(K(x) \), i.e., there is a primitive element \(y \) which generates this field over \(K(x) \). This method returns such an element \(y \).

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: R.<z> = L[]
sage: N.<z> = L.extension(z^2 - y)
sage: R.<z> = L[]
```
This also works for inseparable extensions:

```sage
# needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: R.<Y> = K[]
sage: L.<y> = K.extension(Y^2 - x)
sage: R.<Z> = L[]
sage: M.<z> = L.extension(Z^2 - y)
sage: M.primitive_element()
z
```

`random_element(*args, **kwds)`

Create a random element of the function field. Parameters are passed onto the `random_element` method of the base_field.

EXAMPLES:

```sage
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - (x^2 + x))
sage: L.random_element()  
# random
((x^2 - x + 2/3)/(x^2 + 1/3*x - 1))*y^2 + ((-1/4*x^2 + 1/2*x - 1)/(-5/2*x + 2/3))*y + (-1/2*x^2 - 4)/(-12*x^2 + 1/2*x - 1/95)
```

`separable_model(names=None)`

Return a function field isomorphic to this field which is a separable extension of a rational function field.

INPUT:

- `names` – a tuple of two strings or `None` (default: `None`); the second entry will be used as the variable name of the rational function field, the first entry will be used as the variable name of its separable extension. If `None`, then the variable names will be chosen automatically.

OUTPUT:

A triple `(F, f, t)` where `F` is a function field, `f` is an isomorphism from `F` to this function field, and `t` is the inverse of `f`.

ALGORITHM:

Suppose that the constant base field is perfect. If this is a monic integral inseparable extension of a rational function field, then the defining polynomial is separable if we swap the variables (Proposition 4.8 in Chapter VIII of [Lan2002]). The algorithm reduces to this case with `monic_integral_model()`.

EXAMPLES:

```sage
# needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
```
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3)
sage: L.separable_model(('t','w'))
(Function field in t defined by t^3 + w^2,
 Function Field morphism:
 From: Function field in t defined by t^3 + w^2
 To: Function field in y defined by y^2 + x^3
 Defn: t |--> x
 w |--> y,
 Function Field morphism:
 From: Function field in y defined by y^2 + x^3
 To: Function field in t defined by t^3 + w^2
 Defn: y |--> w
 x |--> t)

This also works for non-integral polynomials:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2/x - x^2)
sage: L.separable_model()
(Function field in y_ defined by y_^3 + x_^2,
 Function Field morphism:
 From: Function field in y_ defined by y_^3 + x_^2
 To: Function field in y defined by 1/x*y^2 + x^2
 Defn: y_ |--> x
 x_ |--> y,
 Function Field morphism:
 From: Function field in y defined by 1/x*y^2 + x^2
 To: Function field in y_ defined by y_^3 + x_^2
 Defn: y |--> x_
 x |--> y_)

If the base field is not perfect this is only implemented in trivial cases:

sage: # needs sage.rings.finite_rings
sage: k.<t> = FunctionField(GF(2))
sage: k.is_perfect()
False
sage: K.<x> = FunctionField(k)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^3 - t)
sage: L.separable_model()
(Function field in y defined by y^3 + t,
 Function Field endomorphism of Function field in y defined by y^3 + t
 Defn: y |--> y
 x |--> x,
 Function Field endomorphism of Function field in y defined by y^3 + t
 Defn: y |--> y
 x |--> x)

Some other cases for which a separable model could be constructed are not supported yet:
simple_model(name=None)

Return a function field isomorphic to this field which is a simple extension of a rational function field.

INPUT:

- name – a string (default: None), the name of generator of the simple extension. If None, then the name of the generator will be the same as the name of the generator of this function field.

OUTPUT:

A triple \((F, f, t)\) where \(F\) is a field isomorphic to this field, \(f\) is an isomorphism from \(F\) to this function field and \(t\) is the inverse of \(f\).

EXAMPLES:

A tower of four function fields:

```python
sage: K.<x> = FunctionField(QQ); R.<z> = K[]
sage: L.<z> = K.extension(z^2 - x); R.<u> = L[]
sage: M.<u> = L.extension(u^2 - z); R.<v> = M[]
sage: N.<v> = M.extension(v^2 - u)
```

The fields \(N\) and \(M\) as simple extensions of \(K\):

```python
sage: N.simple_model()  
(Function field in v defined by v^8 - x,  
Function Field morphism:  
From: Function field in v defined by v^8 - x  
To: Function field in v defined by v^2 - u  
Defn: v |--> v,  
Function Field morphism:  
From: Function field in v defined by v^2 - u  
To: Function field in v defined by v^8 - x  
Defn: v |--> v  
     u |--> v^2  
     z |--> v^4  
     x |--> x)
sage: M.simple_model()  
(Function field in u defined by u^4 - x,  
Function Field morphism:  
From: Function field in u defined by u^4 - x  
To: Function field in u defined by u^2 - z  
Defn: u |--> u,  
Function Field morphism:  
From: Function field in u defined by u^2 - z
```

(continues on next page)
To: Function field in u defined by u^4 - x
Defn: u |--> u
 z |--> u^2
 x |--> x)

An optional parameter name can be used to set the name of the generator of the simple extension:

```
sage: M.simple_model(name='t')

(Function field in t defined by t^4 - x, Function Field morphism:
  From: Function field in t defined by t^4 - x
  To:  Function field in u defined by u^2 - z
  Defn: t |--> u, Function Field morphism:
  From: Function field in u defined by u^2 - z
  To:  Function field in t defined by t^4 - x
  Defn: u |--> t
        z |--> t^2
        x |--> x)
```

An example with higher degrees:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3)); R.<y> = K[]
sage: L.<y> = K.extension(y^5 - x); R.<z> = L[]
sage: M.<z> = L.extension(z^3 - x)
sage: M.simple_model()

(Function field in z defined by z^15 + x*z^12 + x^2*z^9 + 2*x^3*z^6 + 2*x^4*z^3 + 2*x^5 + 2*x^3,
  Function Field morphism:
  From: Function field in z defined by z^15 + x*z^12 + x^2*z^9 + 2*x^3*z^6 + 2*x^4*z^3 + 2*x^5 + 2*x^3
  To:  Function field in z defined by z^3 + 2*x
  Defn: z |--> z + y,
  Function Field morphism:
  From: Function field in z defined by z^3 + 2*x
  To:  Function field in z defined by z^15 + x*z^12 + x^2*z^9 + 2*x^3*z^6 + 2*x^4*z^3 + 2*x^5 + 2*x^3
  Defn: z |--> 2/x*z^6 + 2*z^3 + z + 2*x
        y |--> 1/x*z^6 + z^3 + x
        x |--> x)
```

This also works for inseparable extensions:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x); R.<z> = L[]
sage: M.<z> = L.extension(z^2 - y)
sage: M.simple_model()

(Function field in z defined by z^4 + x, Function Field morphism:
  From: Function field in z defined by z^4 + x
  To:  Function field in z defined by z^4 + x
  Defn: z |--> z, Function Field morphism:
  From: Function field in z defined by z^4 + x
  To:  Function field in z defined by z^4 + x
```

(continues on next page)
class sage.rings.function_field.function_field_polymod.FunctionField_simple(polynomial, names, category=None)

Bases: FunctionField_polymod

Function fields defined by irreducible and separable polynomials over rational function fields.

constant_field()

Return the algebraic closure of the base constant field in the function field.

EXAMPLES:

```sage
sage: K.<x> = FunctionField(GF(3)); _.<y> = K[]
# needs sage.rings.finite_rings
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
# needs sage.rings.finite_rings
sage: L.constant_field()
# needs sage.rings.finite_rings
Finite Field of size 3
```

exact_constant_field(name='t')

Return the exact constant field and its embedding into the function field.

INPUT:

- name – name (default: t) of the generator of the exact constant field

EXAMPLES:

```sage
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3)); _.<Y> = K[]
sage: f = Y^2 - x*Y + x^2 + 1
# irreducible but not absolutely irreducible
sage: L.<y> = K.extension(f)
sage: L.genus()
0
sage: L.exact_constant_field()
(Finite Field in t of size 3^2, Ring morphism:
  From: Finite Field in t of size 3^2
  To:   Function field in y defined by y^2 + 2*x*y + x^2 + 1
  Defn: t |--> y + x)
sage: (y+x).divisor()
```

genus()

Return the genus of the function field.

EXAMPLES:

```sage
sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(16)
sage: K.<x> = FunctionField(F); K
(continues on next page)
Rational function field in x over Finite Field in a of size 2^4

```python
sage: R.<t> = PolynomialRing(K)
sage: L.<y> = K.extension(t^4 + t - x^5)
sage: L.genus()
6
```

The genus is computed by the Hurwitz genus formula.

places_above(p)

Return places lying above p.

INPUT:

• p – place of the base rational function field.

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[
˓→ needs sage.rings.finite_rings
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
˓→ needs sage.rings.finite_rings
sage: all(q.place_below() == p ˓→ needs sage.rings.finite_rings
....: for p in K.places() for q in F.places_above(p))
True
sage: K.<x> = FunctionField(QQ); _.<Y> = K[
 sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
 sage: O = K.maximal_order()
 sage: pls = [O.ideal(x - c).place() for c in [-2, -1, 0, 1, 2]]
 sage: all(q.place_below() == p ˓→ needs sage.rings.finite_rings
....: for p in pls for q in F.places_above(p))
True
 sage: # needs sage.rings.number_field
 sage: K.<x> = FunctionField(QQbar); _.<Y> = K[
 sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
 sage: O = K.maximal_order()
 sage: pls = [O.ideal(x - QQbar(sqrt(c))).place() ˓→ needs sage.rings.finite_rings
 : for c in [-2, -1, 0, 1, 2]]
 sage: all(q.place_below() == p ˓→ needs sage.rings.finite_rings
 : for p in pls for q in F.places_above(p))
 # long time (4s)
 True
```

residue_field(place, name=None)

Return the residue field associated with the place along with the maps from and to the residue field.

INPUT:

• place – place of the function field

• name – string; name of the generator of the residue field

The domain of the map to the residue field is the discrete valuation ring associated with the place.

The discrete valuation ring is defined as the ring of all elements of the function field with nonnegative valuation at the place. The maximal ideal is the set of elements of positive valuation. The residue field is
then the quotient of the discrete valuation ring by its maximal ideal.

If an element not in the valuation ring is applied to the map, an exception `TypeError` is raised.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: p = L.places_finite()[0]
```
```python
sage: R, fr_R, to_R = L.residue_field(p)
sage: R
Finite Field of size 2
sage: f = 1 + y
sage: f.valuation(p)
-1
```
```python
sage: to_R(f)
Traceback (most recent call last):
 ...
TypeError: ...
```
```python
sage: (1+1/f).valuation(p)
0
sage: to_R(1 + 1/f)
1
```
```python
sage: [fr_R(e) for e in R]
[0, 1]
```
Sage provides arithmetic with elements of function fields.

EXAMPLES:

Arithmetic with rational functions:

```
sage: K.<t> = FunctionField(QQ)
sage: f = t - 1
sage: g = t^2 - 3
sage: h = f^2/g^3
sage: h.valuation(t-1)
2
sage: h.valuation(t)
0
sage: h.valuation(t^2 - 3)
-3
```

Derivatives of elements in separable extensions:

```
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
needs sage.rings.finite_rings sage.rings.function_field
sage: (y^3 + x).derivative()
needs sage.rings.finite_rings sage.rings.function_field
((x^2 + 1)/x^2)*y + (x^4 + x^3 + 1)/x^3
```

The divisor of an element of a global function field:

```
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
needs sage.rings.finite_rings sage.rings.function_field
sage: y.divisor()
needs sage.rings.finite_rings sage.rings.function_field
- Place (1/x, 1/x*y)
- Place (x, x*y)
+ 2*Place (x + 1, x*y)
```

AUTHORS:

- William Stein: initial version
- Robert Bradshaw (2010-05-27): cythonize function field elements
class sage.rings.function_field.element.FunctionFieldElement

Bases: FieldElement

Abstract base class for function field elements.

EXAMPLES:

sage: t = FunctionField(QQ,'t').gen()
sage: isinstance(t, sage.rings.function_field.element.FunctionFieldElement)
True

characteristic_polynomial(*args, **kwds)

Return the characteristic polynomial of the element. Give an optional input string to name the variable in the characteristic polynomial.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[]
# needs sage.rings.function_field
sage: M.<z> = L.extension(z^3 - y^2*z + x)
# needs sage.rings.function_field
sage: x.characteristic_polynomial('W')
# needs sage.modules
W - x
sage: y.characteristic_polynomial('W')
# needs sage.modules sage.rings.function_field
W^2 - x*W + 4*x^3
sage: z.characteristic_polynomial('W')
# needs sage.modules sage.rings.function_field
W^3 + (-x*y + 4*x^3)*W + x

charpoly(*args, **kwds)

Return the characteristic polynomial of the element. Give an optional input string to name the variable in the characteristic polynomial.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[]
# needs sage.rings.function_field
sage: M.<z> = L.extension(z^3 - y^2*z + x)
# needs sage.rings.function_field
sage: x.characteristic_polynomial('W')
# needs sage.modules
W - x
sage: y.characteristic_polynomial('W')
# needs sage.modules sage.rings.function_field
W^2 - x*W + 4*x^3
sage: z.characteristic_polynomial('W')
# needs sage.modules sage.rings.function_field
W^3 + (-x*y + 4*x^3)*W + x

(continues on next page)
degree()
Return the max degree between the denominator and numerator.

EXAMPLES:

```
sage: FF.<t> = FunctionField(QQ)
sage: f = (t^2 + 3) / (t^3 - 1/3); f
(t^2 + 3)/(t^3 - 1/3)
sage: f.degree()
3
```

```
sage: FF.<t> = FunctionField(QQ)
sage: f = (t+8); f
t + 8
sage: f.degree()
1
```

derivative()
Return the derivative of the element.

The derivative is with respect to the generator of the base rational function field, over which the function field is a separable extension.

EXAMPLES:

```
sage: K.<t> = FunctionField(QQ)
sage: f = (t + 1) / (t^2 - 1/3)
sage: f.derivative()
Needs sage.modules
(-t^2 - 2*t - 1/3)/(t^4 - 2/3*t^2 + 1/9)
```

```
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
Needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
Needs sage.rings.finite_rings sage.rings.function_field
sage: (y^3 + x).derivative()
Needs sage.modules sage.rings.finite_rings sage.rings.function_field
((x^2 + 1)/x^2)*y + (x^4 + x^3 + 1)/x^3
```

differential()
Return the differential $dx$ where $x$ is the element.

EXAMPLES:

```
sage: K.<t> = FunctionField(QQ)
sage: f = 1 / t
sage: f.differential()
Needs sage.modules
(-1/t^2) d(t)
```

```
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
Needs sage.rings.finite_rings
```

(continues on next page)
needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)  # needs sage.rings.finite_rings
sage: (y^3 + x).differential()  # needs sage.rings.finite_rings sage.rings.function_field
((x^2 + 1)/x^2)*y + (x^4 + x^3 + 1)/x^3) d(x)

**divisor()**

Return the divisor of the element.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(GF(2))
sage: f = 1/(x^3 + x^2 + x)
sage: f.divisor() # needs sage.libs.pari sage.modules
3*Place (1/x)
- Place (x)
- Place (x^2 + x + 1)
```

```python
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.function_field
sage: y.divisor() # needs sage.modules sage.rings.function_field
- Place (1/x, 1/x*y)
- Place (x, x*y)
+ 2*Place (x + 1, x*y)
```

**divisor_of_poles()**

Return the divisor of poles for the element.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(GF(2))
sage: f = 1/(x^3 + x^2 + x)
sage: f.divisor_of_poles() # needs sage.libs.pari sage.modules
Place (x)
+ Place (x^2 + x + 1)
```

```python
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.function_field
sage: (x/y).divisor_of_poles() # needs sage.rings.function_field
Place (1/x, 1/x*y) + 2*Place (x + 1, x*y)
```

**divisor_of_zeros()**

Return the divisor of zeros for the element.

**EXAMPLES:**
\begin{verbatim}
sage: K.<x> = FunctionField(GF(2))
sage: f = 1/(x^3 + x^2 + x)
sage: f.divisor_of_zeros() # needs sage.libs.pari sage.modules
3*Place (1/x)
\end{verbatim}

\textbf{evaluate}(place)

Return the value of the element at the place.

\textbf{INPUT}:

\begin{itemize}
  \item place – a function field place
\end{itemize}

\textbf{OUTPUT}:

If the element is in the valuation ring at the place, then an element in the residue field at the place is returned. Otherwise, \texttt{ValueError} is raised.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: K.<t> = FunctionField(GF(5))
sage: p = K.place_infinite()
sage: f = 1/t^2 + 3
sage: f.evaluate(p)
3
\end{verbatim}

\begin{verbatim}
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: p, = L.places_infinite()
sage: (y + x).evaluate(p)
Traceback (most recent call last):
  ... ValueError: has a pole at the place
sage: (y/x + 1).evaluate(p)
1
\end{verbatim}

\textbf{higher_derivative}(i, \texttt{separating_element=None})

Return the $i$-th derivative of the element with respect to the separating element.

\textbf{INPUT}:

\begin{itemize}
  \item $i$ – nonnegative integer
  \item \texttt{separating_element} – a separating element of the function field; the default is the generator of the rational function field
\end{itemize}

\textbf{EXAMPLES}:
is_integral()
Determine if the element is integral over the maximal order of the base field.

EXAMPLES:

```python
sage: # needs sage.modules sage.rings.function_field
sage: K.<x> = FunctionField(GF(3)); _.<y> = K[]
```

is_nth_power($n$)
Return whether this element is an $n$-th power in the rational function field.

INPUT:
• $n$ – an integer

OUTPUT:
Returns True if there is an element $a$ in the function field such that this element equals $a^n$.

See also:
nth_root()

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(3))
sage: f = (x+1)/(x-1)
sage: f.is_nth_power(2)
False
```
matrix(base=None)

Return the matrix of multiplication by this element, interpreting this element as an element of a vector space over base.

INPUT:

• base – a function field (default: None), if None, then the matrix is formed over the base field of this function field.

EXAMPLES:

A rational function field:

```python
sage: K.<t> = FunctionField(QQ)
sage: t.matrix() # needs sage.modules
[t]
sage: (1/(t+1)).matrix() # needs sage.modules
[1/(t + 1)]
```

Now an example in a nontrivial extension of a rational function field:

```python
sage: # needs sage.modules sage.rings.function_field
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
sage: y.matrix()
[0 1]
[-4*x^3 x]
sage: y.matrix().charpoly('Z')
Z^2 - x*Z + 4*x^3
```

An example in a relative extension, where neither function field is rational:

```python
sage: # needs sage.modules sage.rings.function_field
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
sage: M.<T> = L[]
sage: Z.<alpha> = L.extension(T^3 - y^2*T + x)
sage: alpha.matrix()
[0 1 0]
[0 0 1]
[-x x*y - 4*x^3 0]
sage: alpha.matrix(K)
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[-x 0 -4*x^3 x 0 0]
[0 -x -4*x^4 -4*x^3 + x^2 0 0]
sage: alpha.matrix(Z)
[alpha]
```

We show that this matrix does indeed work as expected when making a vector space from a function field:
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))
sage: V, from_V, to_V = L.vector_space()
sage: y5 = to_V(y^5); y5
((x^4 + 1)/x, 2*x, 0, 0, 0)
sage: y4y = to_V(y^4) * y.matrix(); y4y
((x^4 + 1)/x, 2*x, 0, 0, 0)
sage: y5 == y4y
True

**minimal_polynomial(***args, **kwds)**

Return the minimal polynomial of the element. Give an optional input string to name the variable in the characteristic polynomial.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[]
needs sage.rings.function_field
sage: M.<z> = L.extension(z^3 - y^2*z + x)
needs sage.rings.function_field
sage: x.minimal_polynomial('W')
needs sage.modules
W - x
sage: y.minimal_polynomial('W')
needs sage.modules sage.rings.function_field
W^2 - x*W + 4*x^3
sage: z.minimal_polynomial('W')
needs sage.modules sage.rings.function_field
W^3 + (-x*y + 4*x^3)*W + x
```

**minopoly(***args, **kwds)**

Return the minimal polynomial of the element. Give an optional input string to name the variable in the characteristic polynomial.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[]
needs sage.rings.function_field
sage: M.<z> = L.extension(z^3 - y^2*z + x)
needs sage.rings.function_field
sage: x.minimal_polynomial('W')
needs sage.modules
W - x
sage: y.minimal_polynomial('W')
needs sage.modules sage.rings.function_field
W^2 - x*W + 4*x^3
sage: z.minimal_polynomial('W')
needs sage.modules sage.rings.function_field
W^3 + (-x*y + 4*x^3)*W + x
```
norm()

Return the norm of the element.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) # needs sage.rings.function_field
sage: y.norm() # needs sage.modules sage.rings.function_field
4*x^3
```

The norm is relative:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3); R.<z> = L[] # needs sage.rings.function_field
sage: M.<z> = L.extension(z^3 - y^2*z + x) # needs sage.rings.function_field
sage: z.norm() # needs sage.modules sage.rings.function_field
-x
sage: z.norm().parent() # needs sage.modules sage.rings.function_field
Function field in y defined by y^2 - x*y + 4*x^3
```

nth_root(n)

Return an n-th root of this element in the function field.

INPUT:

- n – an integer

OUTPUT:

Returns an element a in the function field such that this element equals a^n. Raises an error if no such element exists.

See also:

is_nth_power()

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(3))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x) # needs sage.rings.function_field
sage: L(y^27).nth_root(27) # needs sage.rings.function_field
y
```

poles()

Return the list of the poles of the element.

EXAMPLES:
sage: K.<x> = FunctionField(GF(2))
sage: f = 1/(x^3 + x^2 + x)
sage: f.poles()            # needs sage.libs.pari sage.modules
[Place (x), Place (x^2 + x + 1)]

sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]                       # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)                           # needs sage.rings.finite_rings sage.rings.function_field
sage: (x/y).poles()                                                   # needs sage.modules sage.rings.finite_rings sage.rings.function_field
[Place (1/x, 1/x*y), Place (x + 1, x*y)]

trace()

Return the trace of the element.

EXAMPLES:

sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)                          # needs sage.rings.function_field
sage: y.trace()                                                     # needs sage.modules sage.rings.function_field
x

valuation(place)

Return the valuation of the element at the place.

INPUT:

- place – a place of the function field

EXAMPLES:

sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]                       # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)                           # needs sage.rings.finite_rings sage.rings.function_field
sage: p = L.places_infinite()[0]                                     # needs sage.modules sage.rings.function_field
sage: y.valuation(p)                                                 # needs sage.modules sage.rings.function_field
-1

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: O = L.maximal_order()
sage: p = O.ideal(x - 1).place()
sage: y.valuation(p)                                                  
0

zeros()

Return the list of the zeros of the element.
EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2))
sage: f = 1/(x^3 + x^2 + x)
sage: f.zeros() # needs sage.libs.pari sage.modules
[Place (1/x)]
```

```
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]

sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)

sage: (x/y).zeros() # needs sage.modules sage.rings.finite_rings sage.rings.function_field
[Place (x, x*y)]
```

```
sage.rings.function_field.element.is_FunctionFieldElement(x)
Return True if x is any type of function field element.
```

```
EXAMPLES:

```
sage: t = FunctionField(QQ,'t').gen()
sage: sage.rings.function_field.element.is_FunctionFieldElement(t)
True
sage: sage.rings.function_field.element.is_FunctionFieldElement(0)
False
```

```
sage.rings.function_field.element.make_FunctionFieldElement(parent, element_class, representing_element)
Used for unpickling FunctionFieldElement objects (and subclasses).
```

```
EXAMPLES:

```
sage: from sage.rings.function_field.element import make_FunctionFieldElement
sage: K.<x> = FunctionField(QQ)
sage: make_FunctionFieldElement(K, K.element_class, (x+1)/x)
(x + 1)/x
```
ELEMENTS OF FUNCTION FIELDS: RATIONAL

class sage.rings.function_field.element_rational.FunctionFieldElement_rational

Bases: FunctionFieldElement

Elements of a rational function field.

EXAMPLES:

```
sage: K.<t> = FunctionField(QQ); K
Rational function field in t over Rational Field
sage: t^2 + 3/2*t
t^2 + 3/2*t
sage: FunctionField(QQ, 't').gen()^3
t^3
```

denominator()

Return the denominator of the rational function.

EXAMPLES:

```
sage: K.<t> = FunctionField(QQ)
sage: f = (t+1) / (t^2 - 1/3); f
(t + 1)/(t^2 - 1/3)
sage: f.denominator()
t^2 - 1/3
```

element()

Return the underlying fraction field element that represents the element.

EXAMPLES:

```
sage: K.<t> = FunctionField(GF(7))
sage: t.element()
t
sage: type(t.element()) # needs sage.rings.finite_rings
<... 'sage.rings.fraction_field_FpT.FpTElement'>
sage: K.<t> = FunctionField(GF(131101)) # needs sage.libs.pari
sage: t.element()
t
sage: type(t.element())
<... 'sage.rings.fraction_field_element.FractionFieldElement_1poly_field'>
```
factor()

Factor the rational function.

EXAMPLES:

```
sage: # needs sage.libs.pari
sage: K.<t> = FunctionField(QQ)
sage: f = (t+1) / (t^2 - 1/3)
sage: f.factor()
(t + 1) * (t^2 - 1/3)^-1
sage: (7*f).factor()
(7) * (t + 1) * (t^2 - 1/3)^-1
sage: ((7*f).factor()).unit()
7
sage: (f^3).factor()
(t + 1)^3 * (t^2 - 1/3)^-3
```

inverse_mod(I)

Return an inverse of the element modulo the integral ideal $I$, if $I$ and the element together generate the unit ideal.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: O = K.maximal_order(); I = O.ideal(x^2 + 1)
sage: t = O(x + 1).inverse_mod(I); t
-1/2*x + 1/2
sage: (t*(x+1) - 1) in I
True
```

is_nth_power(n)

Return whether this element is an n-th power in the rational function field.

INPUT:

- n – an integer

OUTPUT:

Returns True if there is an element $a$ in the function field such that this element equals $a^n$.

ALGORITHM:

If $n$ is a power of the characteristic of the field and the constant base field is perfect, then this uses the algorithm described in Lemma 3 of [GiTr1996].

See also:

nth_root()

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3))
sage: f = (x+1)/(x-1)
sage: f.is_nth_power(1)
True
sage: f.is_nth_power(3)
False
```
### is_square()

Return whether the element is a square.

**EXAMPLES:**

```sage
sage: K.<t> = FunctionField(QQ)
sage: t.is_square()
False
sage: (t^2/4).is_square()
True
sage: f = 9 * (t+1)^6 / (t^2 - 2*t + 1); f.is_square()
True
```

### list()

Return a list with just the element.

The list represents the element when the rational function field is viewed as a (one-dimensional) vector space over itself.

**EXAMPLES:**

```sage
sage: K.<t> = FunctionField(QQ)
sage: t.list()
[t]
```

### nth_root(n)

Return an n-th root of this element in the function field.

**INPUT:**

- n – an integer

**OUTPUT:**

Returns an element a in the rational function field such that this element equals $a^n$. Raises an error if no such element exists.

**ALGORITHM:**

If n is a power of the characteristic of the field and the constant base field is perfect, then this uses the algorithm described in Corollary 3 of [GiTr1996].

**See also:**

- `is_nth_power()`
EXAMPLES:

```sage
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3))
sage: f = (x+1)/(x+2)
sage: f.nth_root(1)
(x + 1)/(x + 2)
sage: f.nth_root(3)
Traceback (most recent call last):
 ... ValueError: element is not an n-th power
sage: (f^3).nth_root(3)
(x + 1)/(x + 2)
sage: (f^9).nth_root(-9)
(x + 2)/(x + 1)
```

**numerator()**

Return the numerator of the rational function.

**EXAMPLES:**

```sage
sage: K.<t> = FunctionField(QQ)
sage: f = (t+1) / (t^2 - 1/3); f
(t + 1)/(t^2 - 1/3)
sage: f.numerator()
t + 1
```

**sqrt(all=False)**

Return the square root of the rational function.

**EXAMPLES:**

```sage
sage: K.<t> = FunctionField(QQ)
sage: f = t^2 - 2 + 1/t^2; f
(t^2 - 1)/t
sage: f.sqrt(all=True)
[t, -t]
```

**valuation(place)**

Return the valuation of the rational function at the place.

Rational function field places are associated with irreducible polynomials.

**INPUT:**

- place – a place or an irreducible polynomial

**EXAMPLES:**

```sage
sage: K.<t> = FunctionField(QQ)
sage: f = (t - 1)^2*(t + 1)/(t^2 - 1/3)^3
sage: f.valuation(t - 1)
2
sage: f.valuation(t)
0
sage: f.valuation(t^2 - 1/3)
(continues on next page)
```
sage: K.<x> = FunctionField(GF(2))
sage: p = K.places_finite()[0]  # needs sage.libs.pari

sage: (1/x^2).valuation(p)  # needs sage.libs.pari

-2
Elements of a finite extension of a function field.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
sage: x*y + 1/x^3
```

**element()**

Return the underlying polynomial that represents the element.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ); R.<T> = K[]
sage: L.<y> = K.extension(T^2 - x*T + 4*x^3)
sage: f = y/x^2 + x/(x^2+1); f
1/x^2*y + x/(x^2 + 1)
sage: f.element()
1/x^2*y + x/(x^2 + 1)
```

**is_nth_power(n)**

Return whether this element is an $n$-th power in the function field.

INPUT:

- $n$ – an integer

ALGORITHM:

If $n$ is a power of the characteristic of the field and the constant base field is perfect, then this uses the algorithm described in Proposition 12 of [GiTr1996].

See also:

- **nth_root()**

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(4))
sage: R.<y> = K[]
```
Algebraic Function Fields, Release 10.1

sage: L.<y> = K.extension(y^2 - x)
sage: y.is_nth_power(2)
False
sage: L(x).is_nth_power(2)
True

list()

Return the list of the coefficients representing the element.

If the function field is $K[y]/(f(y))$, then return the coefficients of the reduced presentation of the element as a polynomial in $K[y]$.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ); R.<y> = K[
```
```
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
sage: a = ~(2*y + 1/x); a
(-1/8*x^2/(x^5 + 1/8*x^2 + 1/16))*y + (1/8*x^3 + 1/16*x)/(x^5 + 1/8*x^2 + 1/16)
sage: a.list()
[(1/8*x^3 + 1/16*x)/(x^5 + 1/8*x^2 + 1/16), -1/8*x^2/(x^5 + 1/8*x^2 + 1/16)]
sage: (x*y).list()
[0, x]
```

nth_root(n)

Return an n-th root of this element in the function field.

INPUT:

• n – an integer

OUTPUT:

Returns an element $a$ in the function field such that this element equals $a^n$. Raises an error if no such element exists.

ALGORITHM:

If $n$ is a power of the characteristic of the field and the constant base field is perfect, then this uses the algorithm described in Proposition 12 of [GiTr1996].

See also:

is_nth_power()

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(3))
sage: R.<y> = K[
```
```
sage: L.<y> = K.extension(y^2 - x)
sage: L(y^3).nth_root(3)
y
sage: L(y^9).nth_root(-9)
1/x^y
```

This also works for inseparable extensions:
```sage
K.<x> = FunctionField(GF(3))
R.<y> = K[]
L.<y> = K.extension(y^3 - x^2)
L(x).nth_root(3)^3
L(x^9).nth_root(-27)^-27
```
ORDERS OF FUNCTION FIELDS

An order of a function field is a subring that is, as a module over the base maximal order, finitely generated and of maximal rank \( n \), where \( n \) is the extension degree of the function field. All orders are subrings of maximal orders.

A rational function field has two maximal orders: maximal finite order \( o \) and maximal infinite order \( o_\infty \). The maximal order of a rational function field over constant field \( k \) is just the polynomial ring \( o = k[x] \). The maximal infinite order is the set of rational functions whose denominator has degree greater than or equal to that of the numerator.

EXAMPLES:

```sage
sage: K.<x> = FunctionField(QQ)
sage: O = K.maximal_order()
sage: I = O.ideal(1/x); I
Ideal (1/x) of Maximal order of Rational function field in x over Rational Field
sage: 1/x in O
False
sage: Oinf = K.maximal_order_infinite()
sage: 1/x in Oinf
True
```

In an extension of a rational function field, an order over the maximal finite order is called a finite order while an order over the maximal infinite order is called an infinite order. Thus a function field has one maximal finite order \( O \) and one maximal infinite order \( O_\infty \). There are other non-maximal orders such as equation orders:

```sage
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(3)); R.<y> = K[

```

Sage provides an extensive functionality for computations in maximal orders of function fields. For example, you can decompose a prime ideal of a rational function field in an extension:

```sage
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[

```

(continues on next page)
When the base constant field is the algebraic field $\mathbb{Q}$, the only prime ideals of the maximal order of the rational function field are linear polynomials.

AUTHORS:

- William Stein (2010): initial version
- Maarten Derickx (2011-09-14): fixed ideal_with_gens_over_base() for rational function fields
- Julian Rueth (2011-09-14): added check in _element_constructor_
- Kwankyu Lee (2017-04-30): added maximal orders of global function fields
- Brent Baccala (2019-12-20): support orders in characteristic zero

class sage.rings.function_field.order.FunctionFieldMaximalOrder(field, ideal_class=<class 'sage.rings.function_field.ideal.FunctionFieldIdeal'>, category=None)

    Bases: UniqueRepresentation, FunctionFieldOrder

    Base class of maximal orders of function fields.
class sage.rings.function_field.order.FunctionFieldMaximalOrderInfinite(field, ideal_class=<class 'sage.rings.function_field.ideal.FunctionFieldIdeal'>, category=None)

Bases: FunctionFieldMaximalOrder, FunctionFieldOrderInfinite

Base class of maximal infinite orders of function fields.

class sage.rings.function_field.order.FunctionFieldOrder(field, ideal_class=<class 'sage.rings.function_field.ideal.FunctionFieldIdeal'>, category=None)

Bases: FunctionFieldOrder_base

Base class for orders in function fields.

class sage.rings.function_field.order.FunctionFieldOrderInfinite(field, ideal_class=<class 'sage.rings.function_field.ideal.FunctionFieldIdeal'>, category=None)

Bases: FunctionFieldOrder_base

Base class for infinite orders in function fields.

class sage.rings.function_field.order.FunctionFieldOrder_base(field, ideal_class=<class 'sage.rings.function_field.ideal.FunctionFieldIdeal'>, category=None)

Bases: CachedRepresentation, Parent

Base class for orders in function fields.

INPUT:

• field – function field

EXAMPLES:

sage: F = FunctionField(QQ,'y')
sage: F.maximal_order()
Maximal order of Rational function field in y over Rational Field

fraction_field()

Return the function field to which the order belongs.

EXAMPLES:

sage: F = FunctionField(QQ,'y').maximal_order().function_field()
Rational function field in y over Rational Field

function_field()

Return the function field to which the order belongs.

EXAMPLES:

sage: F = FunctionField(QQ,'y').maximal_order().function_field()
Rational function field in y over Rational Field

ideal_monoid()

Return the monoid of ideals of the order.

EXAMPLES:
sage: FunctionField(QQ,'y').maximal_order().ideal_monoid()
Monoid of ideals of Maximal order of Rational function field in y over Rational

is_field(proof=True)
Return False since orders are never fields.

EXAMPLES:

sage: FunctionField(QQ,'y').maximal_order().is_field()
False

is_noetherian()
Return True since orders in function fields are noetherian.

EXAMPLES:

sage: FunctionField(QQ,'y').maximal_order().is_noetherian()
True

is_subring(other)
Return True if the order is a subring of the other order.

INPUT:

* other – order of the function field or the field itself

EXAMPLES:

sage: F = FunctionField(QQ,'y')
sage: O = F.maximal_order()
sage: O.is_subring(F)
True
ORDERS OF FUNCTION FIELDS: RATIONAL

**class** `sage.rings.function_field.order_rational.FunctionFieldMaximalOrderInfinite_rational(field, category=None)`

Bases: `FunctionFieldMaximalOrderInfinite`

Maximal infinite orders of rational function fields.

**INPUT:**
- `field` – a rational function field

**EXAMPLES:**
```
sage: K.<t> = FunctionField(GF(19)); K
Rational function field in t over Finite Field of size 19
sage: R = K.maximal_order_infinite(); R
Maximal infinite order of Rational function field in t over Finite Field of size 19
```

**basis()**

Return the basis (=1) of the order as a module over the polynomial ring.

**EXAMPLES:**
```
sage: K.<t> = FunctionField(GF(19))
sage: 0 = K.maximal_order_infinite()
sage: 0.basis()
(1,)
```

**gen**(n=0)

Return the n-th generator of self. Since there is only one generator n must be 0.

**EXAMPLES:**
```
sage: 0 = FunctionField(QQ, 'y').maximal_order()
sage: 0.gen()
y
sage: 0.gen(1)
Traceback (most recent call last):
... IndexError: there is only one generator
```
ideal(*gens*)

Return the fractional ideal generated by gens.

INPUT:

• gens – elements of the function field

EXAMPLES:

```sage
sage: K.<x> = FunctionField(QQ)
sage: O = K.maximal_order_infinite()
sage: O.ideal(x)
Ideal (x) of Maximal infinite order of Rational function field in x over Rational Field
```

```sage
sage: O.ideal([x, 1/x]) == O.ideal(x ,1/x) # multiple generators may be given
True
```

```sage
sage: O.ideal(x^3 + 1, x^3 + 6)
Ideal (x^3) of Maximal infinite order of Rational function field in x over Rational Field
```

```sage
sage: I = O.ideal((x^2+1)*(x^3+1), (x^3+6)*(x^2+1)); I
Ideal (x^5) of Maximal infinite order of Rational function field in x over Rational Field
```

```sage
sage: O.ideal(I)
Ideal (x^5) of Maximal infinite order of Rational function field in x over Rational Field
```

ngens()

Return 1 the number of generators of the order.

EXAMPLES:

```sage
sage: FunctionField(QQ,'y').maximal_order().ngens()
1
```

prime_ideal()

Return the unique prime ideal of the order.

EXAMPLES:

```sage
sage: K.<t> = FunctionField(GF(19))
sage: O = K.maximal_order_infinite()
sage: O.prime_ideal()
Ideal (1/t) of Maximal infinite order of Rational function field in t over Finite Field of size 19
```

class sage.rings.function_field.order_rational.FunctionFieldMaximalOrder_rational(field)

Bases: FunctionFieldMaximalOrder

Maximal orders of rational function fields.

INPUT:

• field – a function field

EXAMPLES:
sage: K.<t> = FunctionField(GF(19)); K
Rational function field in t over Finite Field of size 19
sage: R = K.maximal_order(); R
Maximal order of Rational function field in t over Finite Field of size 19

basis()
Return the basis (=1) of the order as a module over the polynomial ring.

EXAMPLES:

sage: K.<t> = FunctionField(GF(19))
sage: O = K.maximal_order()
sage: O.basis()
(1,)

gen(n=0)
Return the n-th generator of the order. Since there is only one generator n must be 0.

EXAMPLES:

sage: O = FunctionField(QQ,'y').maximal_order()
sage: O.gen()
y
sage: O.gen(1)
Traceback (most recent call last):
  ...
IndexError: there is only one generator

ideal(*gens)
Return the fractional ideal generated by gens.

INPUT:
- gens – elements of the function field

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: O = K.maximal_order()
sage: I = O.ideal(x)
Ideal (x) of Maximal order of Rational function field in x over Rational Field
sage: O.ideal([x, 1/x]) == O.ideal(x, 1/x) # multiple generators may be given
true
sage: O.ideal(x^3 + 1, x^3 + 6)
Ideal (x^3 + 1, x^3 + 6) of Maximal order of Rational function field in x over Rational Field

ideal_with_gens_over_base(gens)
Return the fractional ideal with generators gens.
INPUT:

- gens – elements of the function field

EXAMPLES:

```sage
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1) # needs sage.rings.function_field
sage: O = L.equation_order() # needs sage.rings.function_field
sage: O.ideal_with_gens_over_base([x^3 + 1, -y]) # needs sage.rings.function_field
Ideal (x^3 + 1, -y) of Order in Function field in y defined by y^2 - x^3 - 1
```

`ngens()`

Return the number of generators of the order.

EXAMPLES:

```sage
sage: FunctionField(QQ, 'y').maximal_order().ngens()
1
```
ORDERS OF FUNCTION FIELDS: BASIS

class sage.rings.function_field.order_basis.FunctionFieldOrderInfinite_basis(basis, check=True):

Bases: FunctionFieldOrderInfinite

Order given by a basis over the infinite maximal order of the base field.

INPUT:

• basis – elements of the function field
• check – boolean (default: True); if True, check the basis generates an order

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1) # needs sage.rings.function_field
sage: O = L.equation_order_infinite(); O
Infinite order in Function field in y defined by y^4 + x*y + 4*x + 1
```

The basis only defines an order if the module it generates is closed under multiplication and contains the identity element (only checked when check is True):

```
sage: O = L.order_infinite_with_basis([1, y, 1/x^2*y^2, y^3]); O # needs sage.rings.function_field
Traceback (most recent call last):
...
ValueError: the module generated by basis (1, y, 1/x^2*y^2, y^3) must be closed under multiplication
```

The basis also has to be linearly independent and of the same rank as the degree of the function field of its elements (only checked when check is True):

```
sage: O = L.order_infinite_with_basis([1, y, 1/x^2*y^2, 1 + y]); O # needs sage.rings.function_field
Traceback (most recent call last):
...
ValueError: The given basis vectors must be linearly independent.
```

Note that 1 does not need to be an element of the basis, as long as it is in the module spanned by it:
basis()

Return a basis of this order over the maximal order of the base field.

EXAMPLES:

```sage
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
 # needs sage.rings.function_field
sage: O = L.equation_order()
 # needs sage.rings.function_field
sage: O.basis()
 # needs sage.rings.function_field
(1, y, y^2, y^3)
```

free_module()

Return the free module formed by the basis over the maximal order of the base field.

EXAMPLES:

```sage
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
 # needs sage.rings.function_field
sage: O = L.equation_order()
 # needs sage.rings.function_field
sage: O.free_module()
 # needs sage.rings.function_field
Free module of degree 4 and rank 4 over Maximal order of Rational function field in x over Finite Field of size 7
Echelon basis matrix:
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
```

ideal(*gens)

Return the fractional ideal generated by the elements in gens.

INPUT:

- gens – list of generators or an ideal in a ring which coerces to this order

EXAMPLES:

```sage
sage: K.<y> = FunctionField(QQ)
sage: O = K.maximal_order()
sage: O.ideal(y)
Ideal (y) of Maximal order of Rational function field in y over Rational Field
sage: O.ideal([y,1/y]) == O.ideal(y,1/y) # multiple generators may be given as
 # a list
True
```
A fractional ideal of a nontrivial extension:

```
sage: K.<x> = FunctionField(QQ); R.<y> = K[

sage: 0 = K.maximal_order_infinite()

sage: I = 0.ideal(x^2 - 4)

sage: L.<y> = K.extension(y^2 - x^3 - 1) # needs sage.rings.function_field

sage: S = L.order_infinite_with_basis([1, 1/x^2*y]) # needs sage.rings.function_field
```

```
ideal_with_gens_over_base(gens)
```

Return the fractional ideal with basis gens over the maximal order of the base field.

It is not checked that gens really generates an ideal.

INPUT:

- gens – list of elements that are a basis for the ideal over the maximal order of the base field

EXAMPLES:

We construct an ideal in a rational function field:

```
sage: K.<y> = FunctionField(QQ)

sage: O = K.maximal_order()

sage: I = O.ideal([y]); I
Ideal (y) of Maximal order of Rational function field in y over Rational Field

sage: I*I
Ideal (y^2) of Maximal order of Rational function field in y over Rational Field
```

We construct some ideals in a nontrivial function field:

```
sage: # needs sage.rings.function_field

sage: K.<x> = FunctionField(GF(7)); R.<y> = K[

sage: L.<y> = K.extension(y^2 - x^3 - 1)

sage: O = L.equation_order(); O
Order in Function field in y defined by y^2 + 6*x^3 + 6

sage: I = O.ideal_with_gens_over_base([1, y]); I
Ideal (1) of Order in Function field in y defined by y^2 + 6*x^3 + 6

sage: I.module()
Free module of degree 2 and rank 2 over Maximal order of Rational function field in x over Finite Field of size 7
Echelon basis matrix:

| 1 0 |
| 0 1 |
```

There is no check if the resulting object is really an ideal:

```
sage: # needs sage.rings.function_field

sage: K.<x> = FunctionField(GF(7)); R.<y> = K[

sage: L.<y> = K.extension(y^2 - x^3 - 1)

sage: O = L.equation_order()

sage: I = O.ideal_with_gens_over_base([y]); I
Ideal (y) of Order in Function field in y defined by y^2 + 6*x^3 + 6

sage: y in I
True
```

(continues on next page)
polynomial()

Return the defining polynomial of the function field of which this is an order.

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[

sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)

needs sage.rings.function_field

sage: 0 = L.equation_order()

needs sage.rings.function_field

sage: O = L.equation_order()

needs sage.rings.function_field

sage: O.polynomial()

needs sage.rings.function_field

y^4 + x*y + 4*x + 1
```

**class** `sage.rings.function_field.order_basis.FunctionFieldOrder_basis(basis, check=True)`

Order given by a basis over the maximal order of the base field.

**INPUT:**

- `basis` – list of elements of the function field
- `check` – (default: True) if True, check whether the module that `basis` generates forms an order

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[

sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)

needs sage.rings.function_field

sage: L.order(y)

needs sage.rings.function_field

Traceback (most recent call last):
...
ValueError: the module generated by basis (1, y, y^2, y^3, y^4) must be closed under multiplication
```

The basis only defines an order if the module it generates is closed under multiplication and contains the identity element:

```python
sage: K.<x> = FunctionField(QQ)

sage: R.<y> = K[

sage: L.<y> = K.extension(y^5 - (x^3 + 2*x*y + 1/x))

needs sage.rings.function_field

sage: y.is_integral()

needs sage.rings.function_field

False

sage: L.order(y)

needs sage.rings.function_field

Traceback (most recent call last):
...
ValueError: the module generated by basis (1, y, y^2, y^3, y^4) must be closed under multiplication
```

The basis also has to be linearly independent and of the same rank as the degree of the function field of its elements (only checked when check is True):
sage: # needs sage.rings.function_field
sage: L.order(L(x))
Traceback (most recent call last):
  ...  
ValueError: basis (1, x, x^2, x^3, x^4) is not linearly independent
sage: from sage.rings.function_field.order_basis import FunctionFieldOrder_basis
sage: FunctionFieldOrder_basis((y,y,y^3,y^4,y^5))
Traceback (most recent call last):
  ...  
ValueError: basis (y, y, y^3, y^4, 2*x*y + (x^4 + 1)/x) is not linearly independent

basis()
Return a basis of the order over the maximal order of the base field.

EXAMPLES:

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.equation_order()
sage: O.basis()
(1, y, y^2, y^3)

coordinate_vector(e)
Return the coordinates of e with respect to the basis of the order.

INPUT:

• e – element of the order or the function field

EXAMPLES:

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.equation_order()
sage: f = (x + y)^3
sage: O.coordinate_vector(f)
(x^3, 3*x^2, 3*x, 1)

free_module()
Return the free module formed by the basis over the maximal order of the base function field.

EXAMPLES:

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.equation_order()
sage: O.free_module()
Free module of degree 4 and rank 4 over Maximal order of Rational function field in x over Finite Field of size 7
Echelon basis matrix:
[1 0 0 0]
[0 1 0 0]

(continues on next page)
ideal(*gens*)
Return the fractional ideal generated by the elements in gens.

**INPUT:**
- gens – list of generators or an ideal in a ring which coerces to this order

**EXAMPLES:**

```sage
sage: K.<y> = FunctionField(QQ)
sage: O = K.maximal_order()
sage: O.ideal(y)
Ideal (y) of Maximal order of Rational function field in y over Rational Field
sage: O.ideal([y,1/y]) == O.ideal(y,1/y) # multiple generators may be given as a list
True
```

A fractional ideal of a nontrivial extension:

```sage
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: O = K.maximal_order()
sage: I = O.ideal(x^2 - 4)
sage: # needs sage.rings.function_field
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: S = L.equation_order()
sage: S.ideal(1/y)
Ideal (1, (6/(x^3 + 1))*y) of Order in Function field in y defined by y^2 + 6*x^3 + 6
sage: I2 = S.ideal(I); I2
Ideal (x^2 + 3) of Order in Function field in y defined by y^2 + 6*x^3 + 6
sage: I2 == S.ideal(I)
True
```

ideal_with_gens_over_base(*gens*)
Return the fractional ideal with basis gens over the maximal order of the base field.

It is not checked that the gens really generates an ideal.

**INPUT:**
- gens – list of elements of the function field

**EXAMPLES:**

We construct an ideal in a rational function field:

```sage
sage: K.<y> = FunctionField(QQ)
sage: O = K.maximal_order()
sage: I = O.ideal([y]); I
Ideal (y) of Maximal order of Rational function field in y over Rational Field
sage: I * I
Ideal (y^2) of Maximal order of Rational function field in y over Rational Field
```
We construct some ideals in a nontrivial function field:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: O = L.equation_order(); O
Order in Function field in y defined by y^2 + 6*x^3 + 6
sage: I = O.ideal_with_gens_over_base([1, y]); I
Ideal (1) of Order in Function field in y defined by y^2 + 6*x^3 + 6
sage: I.module()
Free module of degree 2 and rank 2 over
 Maximal order of Rational function field in x over Finite Field of size 7
Echelon basis matrix:
[1 0]
[0 1]
```

There is no check if the resulting object is really an ideal:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: O = L.equation_order()
sage: I = O.ideal_with_gens_over_base([y]); I
Ideal (y) of Order in Function field in y defined by y^2 + 6*x^3 + 6
sage: y in I
True
sage: y^2 in I
False
```

polynomial()

Return the defining polynomial of the function field of which this is an order.

EXAMPLES:

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.equation_order()
sage: O.polynomial()
y^4 + x*y + 4*x + 1
```
CHAPTER TEN

ORDERS OF FUNCTION FIELDS: EXTENSION

class sage.rings.function_field.order_polymod.FunctionFieldMaximalOrderInfinite_polymod(field, category=None):

    Bases: FunctionFieldMaximalOrderInfinite

    Maximal infinite orders of function fields.

    INPUT:

    • field – function field

    EXAMPLES:

    sage: K.<x> = FunctionField(GF(2)); _.<t> = PolynomialRing(K)  # needs sage.rings.finite_rings
    sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)  # needs sage.rings.finite_rings
    sage: F.maximal_order_infinite()  # needs sage.rings.finite_rings

    Maximal infinite order of Function field in y defined by y^3 + x^6 + x^4 + x^2

    sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]  # needs sage.rings.finite_rings
    sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)  # needs sage.rings.finite_rings
    sage: L.maximal_order_infinite()  # needs sage.rings.finite_rings

    Maximal infinite order of Function field in y defined by y^2 + y + (x^2 + 1)/x

    basis()

    Return a basis of this order as a module over the maximal order of the base function field.

    EXAMPLES:

    sage: # needs sage.rings.finite_rings
    sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
    sage: L.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
    sage: Oinf = L.maximal_order_infinite()
    sage: Oinf.basis()
    (1, 1/x^2*y, (1/(x^4 + x^3 + x^2))*y^2)
**coordinate_vector** (*e*)

Return the coordinates of *e* with respect to the basis of the order.

**INPUT:**

- *e* – element of the function field

The returned coordinates are in the base maximal infinite order if and only if the element is in the order.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: Oinf = L.maximal_order_infinite()
sage: f = 1/y^2
sage: f in Oinf
True
sage: Oinf.coordinate_vector(f)
((x^3 + x^2 + x)/(x^4 + 1), x^3/(x^4 + 1))
```

**decomposition()**

Return prime ideal decomposition of \(pO_\infty\) where \(p\) is the unique prime ideal of the maximal infinite order of the rational function field.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: Oinf = F.maximal_order_infinite()
sage: Oinf.decomposition()
[(Ideal ((1/(x^4 + x^3 + x^2))*y^2 + 1) of Maximal infinite order
 of Function field in y defined by y^3 + x^6 + x^4 + x^2, 1, 1),
 (Ideal ((1/(x^4 + x^3 + x^2))*y^2 + 1/x^2*y + 1) of Maximal infinite order
 of Function field in y defined by y^3 + x^6 + x^4 + x^2, 2, 1)]

sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
```

(continues on next page)
sage: Oinf = F.maximal_order_infinite()
sage: Oinf.decomposition()
[[Ideal (1/x^2*y - 1) of Maximal infinite order
  of Function field in y defined by y^3 - x^6 - 2*x^5 - 3*x^4 - 2*x^3 - x^2, 1, →1),
  (Ideal ((1/(x^4 + x^3 + x^2))*y^2 + 1/x^2*y + 1) of Maximal infinite order
  of Function field in y defined by y^3 - x^6 - 2*x^5 - 3*x^4 - 2*x^3 - x^2, 2, →1)]

sage: K.<x> = FunctionField(QQ); _.<Y> = K[

sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: Oinf = L.maximal_order_infinite()
sage: Oinf.decomposition()
[[Ideal (1/x*y) of Maximal infinite order of Function field in y
  defined by y^2 + y + (x^2 + 1)/x, 1, 2)]

different()
Return the different ideal of the maximal infinite order.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[

sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: Oinf = L.maximal_order_infinite()
sage: Oinf.different()
Ideal (1/x) of Maximal infinite order of Function field in y
defined by y^2 + y + (x^2 + 1)/x

gen(n=0)
Return the n-th generator of the order.
The basis elements of the order are generators.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[

sage: L.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: Oinf = L.maximal_order_infinite()
sage: Oinf.gen()
1
sage: Oinf.gen(1)
1/x^2*y
sage: Oinf.gen(2)
(1/(x^4 + x^3 + x^2))*y^2
sage: Oinf.gen(3)
Traceback (most recent call last):
  ... IndexError: there are only 3 generators

ideal(*gens*)
Return the ideal generated by gens.
INPUT:

• gens – tuple of elements of the function field

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: Oinf = F.maximal_order_infinite()
sage: I = Oinf.ideal(x, y); I
Ideal (y) of Maximal infinite order of Function field in y defined by y^3 + x^6 + x^4 + x^2
```

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: Oinf = L.maximal_order_infinite()
sage: I = Oinf.ideal(x, y); I
Ideal (x) of Maximal infinite order of Function field in y defined by y^2 + y + (x^2 + 1)/x
```

\textbf{ideal_with_gens_over_base}(\texttt{gens})

Return the ideal generated by \texttt{gens} as a module.

INPUT:

• gens – tuple of elements of the function field

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2)); R.<t> = K[]
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: Oinf = F.maximal_order_infinite()
sage: Oinf.ideal_with_gens_over_base((x^2, y, (1/(x^2 + x + 1))*y^2))
Ideal (y) of Maximal infinite order of Function field in y defined by y^3 + x^6 + x^4 + x^2
```

\textbf{ngens}()

Return the number of generators of the order.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
sage: L.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: Oinf = L.maximal_order_infinite()
sage: Oinf.ngens()
3
```

\textbf{class } \texttt{sage.rings.function_field.order_polymod.FunctionFieldMaximalOrder_global}(\texttt{field})

Bases: \texttt{FunctionFieldMaximalOrder_polymod}

Maximal orders of global function fields.

INPUT:

• field – function field to which this maximal order belongs
EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
needs sage.rings.finite_rings
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
needs sage.rings.finite_rings
sage: L.maximal_order()
needs sage.rings.finite_rings
Maximal order of Function field in y defined by y^4 + x*y + 4*x + 1
```

```python
def decomposition(ideal)
 # Return the decomposition of the prime ideal.
 # INPUT:
 # • ideal – prime ideal of the base maximal order
 EXAMPLES:
```

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); R.<t> = K[]
sage: F.<y> = K.extension(t^3 - x^2 * (x^2 + x + 1)^2)
sage: o = K.maximal_order()
sage: O = F.maximal_order()
sage: p = o.ideal(x + 1)
sage: O.decomposition(p)
[(Ideal (x + 1, y + 1) of Maximal order of Function field in y defined by y^3 + x^6 + x^4 + x^2, 1, 1),
 (Ideal (x + 1, (1/(x^3 + x^2 + x))*y^2 + y + 1) of Maximal order of Function field in y defined by y^3 + x^6 + x^4 + x^2, 2, 1)]
```

```python
def p_radical(prime)
 # Return the prime-radical of the maximal order.
 # INPUT:
 # • prime – prime ideal of the maximal order of the base rational function field
 # The algorithm is outlined in Section 6.1.3 of [Coh1993].
 # EXAMPLES:
```

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
sage: F.<y> = K.extension(t^3 - x^2 * (x^2 + x + 1)^2)
sage: o = K.maximal_order()
sage: O = F.maximal_order()
sage: p = o.ideal(x + 1)
sage: O.p_radical(p)
Ideal (x + 1) of Maximal order of Function field in y defined by y^3 + x^6 + x^4 + x^2
```

```python
class sage.rings.function_field.order_polymod.FunctionFieldMaximalOrder_polymod(field, ideal_class=<class 'sage.rings.function_field.ideal_polymod.FunctionFieldIdeal_polymod'>)
 Bases: FunctionFieldMaximalOrder

 Maximal orders of extensions of function fields.
```
basis()

Return a basis of the order over the maximal order of the base function field.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.equation_order()
sage: O.basis()
(1, y, y^2, y^3)
```

codifferent()

Return the codifferent ideal of the function field.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.maximal_order()
sage: O.codifferent()
Ideal (1, (1/(x^4 + 4*x^3 + 3*x^2 + 6*x + 4))*y^3
+ ((5*x^3 + 6*x^2 + x + 6)/(x^4 + 4*x^3 + 3*x^2 + 6*x + 4))*y^2
+ ((x^3 + 2*x^2 + 2*x + 2)/(x^4 + 4*x^3 + 3*x^2 + 6*x + 4))*y
+ 6*x/(x^4 + 4*x^3 + 3*x^2 + 6*x + 4)) of Maximal order of Function field
in y defined by y^4 + x*y + 4*x + 1
```

coordinate_vector(e)

Return the coordinates of e with respect to the basis of this order.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.equation_order()
sage: f = (x + y)^3
sage: O.coordinate_vector(f)
(x^3, 3*x^2, 3*x, 1)
```
decomposition(ideal)

Return the decomposition of the prime ideal.

INPUT:

- ideal – prime ideal of the base maximal order

EXAMPLES:

```sage
needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); R.<t> = K[]
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: o = K.maximal_order()
```

```sage
sage: O = F.maximal_order()
sage: p = o.ideal(x + 1)
sage: O.decomposition(p)
```

```output
[(Ideal (x + 1, y + 1) of Maximal order
 of Function field in y defined by y^3 + x^6 + x^4 + x^2, 1, 1),
 (Ideal (x + 1, (1/(x^3 + x^2 + x))*y^2 + y + 1) of Maximal order
 of Function field in y defined by y^3 + x^6 + x^4 + x^2, 2, 1)]
```

ALGORITHM:

In principle, we're trying to compute a primary decomposition of the extension of `ideal` in `self` (an order, and therefore a ring). However, while we have primary decomposition methods for polynomial rings, we lack any such method for an order. Therefore, we construct `self` mod `ideal` as a finite-dimensional algebra, a construct for which we do support primary decomposition.

See github issue #28094 and https://github.com/sagemath/sage/files/10659303/decomposition.pdf.gz

Todo: Use Kummer's theorem to shortcut this code if possible, like as done in `FunctionFieldMaximalOrder_global.decomposition()`

different()

Return the different ideal of the function field.

EXAMPLES:

```sage
needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
```

```sage
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.maximal_order()
sage: O.different()
```

```output
Ideal (y^3 + 2*x) of Maximal order of Function field in y defined by y^4 + x*y + 4*x + 1
```

free_module()

Return the free module formed by the basis over the maximal order of the base field.

EXAMPLES:

```sage
needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
```

```sage
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.maximal_order()
sage: O.free_module()
```

(continues on next page)
Free module of degree 4 and rank 4 over
Maximal order of Rational function field in x over Finite Field of size 7
User basis matrix:
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

\texttt{gen}(n=0)

Return the \(n\)-th generator of the order.

The basis elements of the order are generators.

**EXAMPLES:**

\begin{center}
\begin{verbatim}
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
sage: L.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: O = L.maximal_order()
sage: O.gen()
1
sage: O.gen(1)
y
sage: O.gen(2)
(1/(x^3 + x^2 + x))*y^2
sage: O.gen(3)
Traceback (most recent call last):
  ... IndexError: there are only 3 generators
\end{verbatim}
\end{center}

\texttt{ideal}(\texttt{\textit{gens}}, **\texttt{kwargs})

Return the fractional ideal generated by the elements in \texttt{gens}.

**INPUT:**

- \texttt{gens} – list of generators

**EXAMPLES:**

\begin{center}
\begin{verbatim}
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: O = K.maximal_order()
sage: I = O.ideal(x^2 - 4)
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: S = L.maximal_order()
sage: S.ideal(1/y)
Ideal ((1/(x^3 + 1))*y) of Maximal order of Function field in y defined by y^2 + 6*x^3 + 6
sage: I2 = S.ideal(x^2 - 4); I2
Ideal (x^2 + 3) of Maximal order of Function field in y defined by y^2 + 6*x^3 + 6
sage: I2 == S.ideal(I)
True
\end{verbatim}
\end{center}
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: O = K.maximal_order()
sage: I = O.ideal(x^2 - 4)
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: S = L.maximal_order()
sage: S.ideal(1/y)
Ideal ((1/(x^3 + 1))*y) of Maximal order of Function field in y defined by y^2 - x^3 - 1
sage: I2 = S.ideal(x^2-4); I2
Ideal (x^2 - 4) of Maximal order of Function field in y defined by y^2 - x^3 - 1
sage: I2 == S.ideal(I)
True

**ideal_with_gens_over_base(gens)**

Return the fractional ideal with basis gens over the maximal order of the base field.

**INPUT:**

- gens – list of elements that generates the ideal over the maximal order of the base field

**EXAMPLES:**

```sage
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: O = L.maximal_order(); O
Maximal order of Function field in y defined by y^2 + 6*x^3 + 6
sage: I = O.ideal_with_gens_over_base([1, y]); I
Ideal (1) of Maximal order of Function field in y defined by y^2 + 6*x^3 + 6
sage: I.module()
Free module of degree 2 and rank 2 over
 Maximal order of Rational function field in x over Finite Field of size 7
 Echelon basis matrix:
 [1 0]
 [0 1]
```

There is no check if the resulting object is really an ideal:

```sage
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: O = L.equation_order()
sage: I = O.ideal_with_gens_over_base([y]); I
Ideal (y) of Order in Function field in y defined by y^2 + 6*x^3 + 6
sage: y in I
True
sage: y^2 in I
False
```

**ngens()**

Return the number of generators of the order.

**EXAMPLES:**
polynomial()  
Return the defining polynomial of the function field of which this is an order.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
sage: L.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: Oinf = L.maximal_order()
sage: Oinf.ngens()
3
```

```python
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.equation_order()
sage: O.polynomial()
y^4 + x*y + 4*x + 1
```

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^4 + x*y + 4*x + 1)
sage: O = L.equation_order()
sage: O.polynomial()
y^4 + x*y + 4*x + 1
```
Ideals of an order of a function field include all fractional ideals of the order. Sage provides basic arithmetic with fractional ideals.

The fractional ideals of the maximal order of a global function field forms a multiplicative monoid. Sage allows advanced arithmetic with the fractional ideals. For example, an ideal of the maximal order can be factored into a product of prime ideals.

**EXAMPLES:**

Ideals in the maximal order of a rational function field:

```sage
sage: K.<x> = FunctionField(QQ)
sage: O = K.maximal_order()
sage: I = O.ideal(x^3 + 1); I
Ideal (x^3 + 1) of Maximal order of Rational function field in x over Rational Field
sage: I^2
Ideal (x^6 + 2*x^3 + 1) of Maximal order of Rational function field in x over Rational Field
sage: ~I
Ideal (1/(x^3 + 1)) of Maximal order of Rational function field in x over Rational Field
sage: ~I * I
Ideal (1) of Maximal order of Rational function field in x over Rational Field
```

Ideals in the equation order of an extension of a rational function field:

```sage
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1) # needs sage.rings.function_field
sage: O = L.equation_order() # needs sage.rings.function_field
sage: I = O.ideal(y); I
Ideal (x^3 + 1, -y) of Order in Function field in y defined by y^2 - x^3 - 1
sage: I^2
Ideal (x^3 + 1, (-x^3 - 1)*y) of Order in Function field in y defined by y^2 - x^3 - 1
```

Ideals in the maximal order of a global function field:

```sage
sage: K.<x> = FunctionField(GF(2)); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3*y - x) # needs sage.rings.finite_rings
sage: # needs sage.rings.finite_rings
```

(continues on next page)
Ideals in the maximal infinite order of a global function field:

\[
\begin{align*}
\text{sage: } & \quad \text{# needs sage.rings.rational} \\
\text{sage: } & \quad \text{Oinf} = F.\text{maximal_order_infinite}() \\
\text{sage: } & \quad \text{I = Oinf.ideal(1/y)} \\
\text{sage: } & \quad I + I == I \\
\text{sage: } & \quad I^2 \\
\text{sage: } & \quad \text{~I} \\
\text{sage: } & \quad \text{~I} * I \\
\text{sage: } & \quad \text{I.factor()} \\
\end{align*}
\]

AUTHORS:

- William Stein (2010): initial version
• Maarten Derickx (2011-09-14): fixed ideal_with_gens_over_base()
• Kwankyu Lee (2017-04-30): added ideals for global function fields

class sage.rings.function_field.ideal.FunctionFieldIdeal(ring)
   Bases: Element
   Base class of fractional ideals of function fields.
   INPUT:
   • ring – ring of the ideal

   EXAMPLES:

   sage: K.<x> = FunctionField(GF(7))
sage: 0 = K.equation_order()
sage: 0.ideal(x^3 + 1)
Ideal (x^3 + 1) of Maximal order of Rational function field in x over Finite Field of size 7

   base_ring()
   Return the base ring of this ideal.

   EXAMPLES:

   sage: # needs sage.rings.function_field
   sage: K.<x> = FunctionField(QQ); R.<y> = K[
   sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: 0 = L.equation_order()
sage: I = 0.ideal(x^2 + 1)
sage: I.base_ring()
Order in Function field in y defined by y^2 - x^3 - 1

divisor()
Return the divisor corresponding to the ideal.

   EXAMPLES:

   sage: # needs sage.rings.function_field
   sage: K.<x> = FunctionField(GF(4))
sage: 0 = K.maximal_order()
sage: I = 0.ideal(x*(x + 1)^2/(x^2 + x + 1))
sage: I.divisor()
Place (x) + 2*Place (x + 1) - Place (x + z2) - Place (x + z2 + 1)

   sage: # needs sage.rings.function_field
   sage: K.<x> = FunctionField(GF(2)); _.<T> = PolynomialRing(K)
sage: F.<y> = K.extension(T^3 - x^2*(x^2 + x + 1)^2)
sage: 0 = F.maximal_order()
sage: I = 0.ideal(y)

   (continues on next page)
sage: I.divisor()
2*Place (x, (1/(x^3 + x^2 + x))*y^2)
  + 2*Place (x^2 + x + 1, (1/(x^3 + x^2 + x))*y^2)

sage: # needs sage.rings.function_field
sage: Oinf = F.maximal_order_infinite()
sage: I = Oinf.ideal(y)
sage: I.divisor()
-2*Place (1/x, 1/x^4*y^2 + 1/x^2*y + 1)
  - 2*Place (1/x, 1/x^2*y + 1)

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: O = L.maximal_order()
sage: I = O.ideal(y)
sage: I.divisor()
- Place (x, x*y)
  + 2*Place (x + 1, x*y)

sage: # needs sage.rings.function_field
sage: Oinf = L.maximal_order_infinite()
sage: I = Oinf.ideal(y)
sage: I.divisor()
- Place (1/x, 1/x*y)

divisor_of_poles()

Return the divisor of poles corresponding to the ideal.

EXAMPLES:

sage: # needs sage.modules sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(4))
sage: O = K.maximal_order()
sage: I = O.ideal((x + 1)/(x^3 + 1))
sage: I.divisor_of_poles()
Place (x + z2) + Place (x + z2 + 1)

sage: # needs sage.modules
sage: K.<x> = FunctionField(GF(2))
sage: Oinf = K.maximal_order_infinite()
sage: I = Oinf.ideal((x + 1)/(x^3 + 1))
sage: I.divisor_of_poles()
0

sage: # needs sage.modules sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: O = L.maximal_order()
sage: I = O.ideal(y)
Place (x, x*y)

divisor_of_zeros()
Return the divisor of zeros corresponding to the ideal.

EXAMPLES:

```
sage: # needs sage.modules sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(4))
sage: O = K.maximal_order()
sage: I = O.ideal(x*(x + 1)^2/(x^2 + x + 1))
sage: I.divisor_of_zeros()
Place (x) + 2*Place (x + 1)
```

```
sage: # needs sage.modules
sage: K.<x> = FunctionField(GF(2))
sage: Oinf = K.maximal_order_infinite()
sage: I = Oinf.ideal((x + 1)/(x^3 + 1))
sage: I.divisor_of_zeros()
2*Place (1/x)
```

```
sage: # needs sage.modules sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: O = L.maximal_order()
sage: I = O.ideal(y)
sage: I.divisor_of_zeros()
2*Place (x + 1, x*y)
```

```
factor()
Return the factorization of this ideal.

Subclass of this class should define _factor() method that returns a list of prime ideal and multiplicity pairs.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(4))
sage: O = K.maximal_order()
sage: I = O.ideal(x^3*(x + 1)^2)
sage: I.factor()
(Ideal (x) of Maximal order of Rational function field in x
 over Finite Field in z2 of size 2^2)^3 *
(Ideal (x + 1) of Maximal order of Rational function field in x
 over Finite Field in z2 of size 2^2)^2
```

```
sage: # needs sage.rings.finite_rings
sage: Oinf = K.maximal_order_infinite()
sage: I = Oinf.ideal((x + 1)/(x^3 + 1))
sage: I.factor()
(Ideal (1/x) of Maximal infinite order of Rational function field in x
 over Finite Field in z2 of size 2^2)^2
```

```
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); _.<T> = PolynomialRing(K)
sage: F.<y> = K.extension(T^3 - x^2*(x^2 + x + 1)^2)
```

(continues on next page)
\begin{verbatim}
 sage: 0 == F.maximal_order()
sage: I = 0.ideal(y)
sage: I == I.factor().prod()
True

 sage: # needs sage.rings.function_field
sage: Oinf = F.maximal_order_infinite()
sage: f = 1/x
 sage: I = Oinf.ideal(f)
sage: I.factor()
(Ideal ((1/(x^4 + x^3 + x^2))*y^2 + 1/x^2*y + 1) of Maximal infinite order
of Function field in y defined by y^3 + x^6 + x^4 + x^2) *
(Ideal ((1/(x^4 + x^3 + x^2))*y^2 + 1) of Maximal infinite order
of Function field in y defined by y^3 + x^6 + x^4 + x^2)

 sage: # needs sage.rings.function_field
 sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: O = L.maximal_order()
sage: I = O.ideal(y)
sage: I == I.factor().prod()
True

gens_reduced()
Return reduced generators.

For now, this method just looks at the generators and sees if any can be removed without changing the ideal.
It prefers principal representations (a single generator) over all others, and otherwise picks the generator
set with the shortest print representation.

This method is provided so that ideals in function fields have the method \texttt{gens_reduced()}, just like ideals
of number fields. Sage linear algebra machinery sometimes requires this.

EXAMPLES:

 sage: K.<x> = FunctionField(GF(7))
sage: O = K.equation_order()
sage: I = O.ideal(x, x^2, x^2 + x)
sage: I.gens_reduced()
(x,)

place()
Return the place associated with this prime ideal.

EXAMPLES:
\end{verbatim}
```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(4))
sage: O = K.maximal_order()
sage: I = O.ideal(x^2 + x + 1)
sage: I.place()
Traceback (most recent call last):
  ...TypeError: not a prime ideal
sage: I = O.ideal(x^3 + x + 1)
sage: I.place()
Place (x^3 + x + 1)

sage: K.<x> = FunctionField(GF(2))
sage: Oinf = K.maximal_order_infinite()
sage: I = Oinf.ideal((x + 1)/(x^3 + 1))
sage: p = I.factor()[0][0]
sage: p.place()
Place (1/x)

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); _.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: O = F.maximal_order()
sage: I = O.ideal(y)
[sage: f.place() for f, _ in I.factor()]
[Place (x, (1/(x^3 + x^2 + x))*y^2),
 Place (x^2 + x + 1, (1/(x^3 + x^2 + x))*y^2)]

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]

(continues on next page)
```
sage: Oinf = L.maximal_order_infinite()
sage: I = Oinf.ideal(1/x)
sage: I.factor()
(Ideal (1/x*y) of Maximal infinite order of Function field in y defined by y^2 + y + (x^2 + 1)/x)^2
sage: J = I.factor()[0][0]
sage: J.is_prime()
True
sage: J.place()
Place (1/x, 1/x*y)

ring()

Return the ring to which this ideal belongs.

EXAMPLES:

```sage
sage: K.<x> = FunctionField(GF(7))
sage: O = K.equation_order()
sage: I = O.ideal(x, x^2, x^2 + x)
sage: I.ring()
Maximal order of Rational function field in x over Finite Field of size 7
```

```sage
module()

Return the module over the maximal order of the base field that underlies this ideal.

The formation of the module is compatible with the vector space corresponding to the function field.

EXAMPLES:

```sage
sage: K.<x> = FunctionField(GF(7))
sage: O = K.maximal_order(); O
Maximal order of Rational function field in x over Finite Field of size 7
```

```sage
```
sage: K.polynomial_ring()
Univariate Polynomial Ring in x over
  Rational function field in x over Finite Field of size 7
sage: I = 0.ideal([x^2 + 1, x*(x^2+1)])
sage: I.gens()
(x^2 + 1,)
sage: I.module()  # needs sage.modules
Free module of degree 1 and rank 1 over
  Maximal order of Rational function field in x over Finite Field of size 7
Echelon basis matrix:
[x^2 + 1]
sage: V, from_V, to_V = K.vector_space(); V  # needs sage.modules
Vector space of dimension 1 over
  Rational function field in x over Finite Field of size 7
sage: I.module().is_submodule(V)  # needs sage.modules
True

class sage.rings.function_field.ideal.FunctionFieldIdeal_module(ring, module)
Bases: FunctionFieldIdeal, Ideal_generic
A fractional ideal specified by a finitely generated module over the integers of the base field.

INPUT:

* ring – an order in a function field
* module – a module of the order

EXAMPLES:

An ideal in an extension of a rational function field:

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: O = L.equation_order()
sage: I = O.ideal(y)
sage: I
Ideal (x^3 + 1, -y) of Order in Function field in y defined by y^2 - x^3 - 1
sage: I^2
Ideal (x^3 + 1, (-x^3 - 1)*y) of Order in Function field in y defined by y^2 - x^3 - 1

gen(i)

Return the i-th generator in the current basis of this ideal.

EXAMPLES:
sage: I = O.ideal(x^2 + 1)
sage: I.gen(1)
(x^2 + 1)*y

gens()

Return a set of generators of this ideal.

EXAMPLES:

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: O = L.equation_order()
sage: I = O.ideal(x^2 + 1)
sage: I.gens()
(x^2 + 1, (x^2 + 1)*y)

intersection(other)

Return the intersection of this ideal and other.

EXAMPLES:

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: O = L.equation_order(); O
Order in Function field in y defined by y^2 - x^3 - 1
sage: I = O.ideal(x^2 + 1)
sage: I.gens()
(x^2 + 1, (x^2 + 1)*y)

sage: J = O.ideal(y^2)

sage: Z = I.intersection(J); Z
Ideal (x^6 + 2*x^3 + 1, (-x^3 - 1)*y) of Order in Function field in y defined by y^2 - x^3 - 1

sage: y^2 in Z
False
sage: y^3 in Z
True

module()

Return the module over the maximal order of the base field that underlies this ideal.

The formation of the module is compatible with the vector space corresponding to the function field.

OUTPUT:

• a module over the maximal order of the base field of the ideal

EXAMPLES:

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: O = L.equation_order(); O
Order in Function field in y defined by y^2 - x^3 - 1
sage: I = O.ideal(x^2 + 1)
sage: I.gens()
(x^2 + 1, (x^2 + 1)*y)
sage: I.module()
Free module of degree 2 and rank 2 over Maximal order of Rational function field in x over Rational Field
Echelon basis matrix:
\[
\begin{bmatrix}
x^2 + 1 & 0 \\
0 & x^2 + 1
\end{bmatrix}
\]
sage: V, from_V, to_V = L.vector_space(); V
Vector space of dimension 2 over Rational function field in x over Rational Field
sage: I.module().is_submodule(V)
True

gens()
Return the number of generators in the basis.

EXAMPLES:

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ); R.<y> = K[

ring()
Return the ring of which this is the ideal monoid.

EXAMPLES:
class sage.rings.function_field.ideal_rational.FunctionFieldIdealInfinite_rational(ring, gen)

Bases: FunctionFieldIdealInfinite

Fractional ideal of the maximal order of rational function field.

INPUT:

• ring – infinite maximal order
• gen – generator

Note that the infinite maximal order is a principal ideal domain.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2))
sage: Oinf = K.maximal_order_infinite()
sage: Oinf.ideal(x)
Ideal (x) of Maximal infinite order of Rational function field in x over Finite Field of size 2

gen()

Return the generator of this principal ideal.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: Oinf = K.maximal_order_infinite()
sage: I = Oinf.ideal((x+1)/(x^3+x), (x^2+1)/x^4)
sage: I.gen()
1/x^2

gens()

Return the generator of this principal ideal.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: Oinf = K.maximal_order_infinite()
sage: I = Oinf.ideal((x+1)/(x^3+x), (x^2+1)/x^4)
sage: I.gens()
(1/x^2,)
**gens_over_base()**

Return the generator of this ideal as a rank one module over the infinite maximal order.

**EXAMPLES:**

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: Oinf = K.maximal_order_infinite()
sage: I = Oinf.ideal((x+1)/(x^3+x), (x^2+1)/x^4)
sage: I.gens_over_base()
(1/x^2,)
```

**is_prime()**

Return True if this ideal is a prime ideal.

**EXAMPLES:**

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2))
sage: Oinf = K.maximal_order_infinite()
sage: I = Oinf.ideal(x/(x^2 + 1))
sage: I.is_prime()
True
```

**valuation(ideal)**

Return the valuation of `ideal` at this prime ideal.

**INPUT:**

- `ideal` – fractional ideal

**EXAMPLES:**

```python
sage: F.<x> = FunctionField(QQ)
sage: O = F.maximal_order_infinite()
sage: p = O.ideal(1/x)
sage: p.valuation(O.ideal(x/(x+1)))
0
sage: p.valuation(O.ideal(0))
+Infinity
```

**class** `sage.rings.function_field.ideal.rational.FunctionFieldIdeal_rational(ring, gen)`

**Bases:** `FunctionFieldIdeal`

Fractional ideals of the maximal order of a rational function field.

**INPUT:**

- `ring` – the maximal order of the rational function field.
- `gen` – generator of the ideal, an element of the function field.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(QQ)
sage: O = K.maximal_order()
sage: I = O.ideal(1/(x^2+x)); I
Ideal (1/(x^2 + x)) of Maximal order of Rational function field in x over Rational Field
```
denominator()

Return the denominator of this fractional ideal.

EXAMPLES:

```
sage: F.<x> = FunctionField(QQ)
sage: O = F.maximal_order()
sage: I = O.ideal(x/(x^2+1))
sage: I.denominator()
x^2 + 1
```

gen()

Return the unique generator of this ideal.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(4))
sage: O = K.maximal_order()
sage: I = O.ideal(x^2 + x)
sage: I.gen()
x^2 + x
```

gens()

Return the tuple of the unique generator of this ideal.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(4))
sage: O = K.maximal_order()
sage: I = O.ideal(x^2 + x)
sage: I.gens()
(x^2 + x,)
```

gens_over_base()

Return the generator of this ideal as a rank one module over the maximal order.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(4))
sage: O = K.maximal_order()
sage: I = O.ideal(x^2 + x)
sage: I.gens_over_base()
(x^2 + x,)
```

is_prime()

Return True if this is a prime ideal.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: O = K.maximal_order()
sage: I = O.ideal(x^3 + x^2)
```
module()

Return the module, that is the ideal viewed as a module over the ring.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ)
sage: O = K.maximal_order()
sage: I = O.ideal(x^3 + x^2)
sage: I.module() # needs sage.modules
Free module of degree 1 and rank 1 over Maximal order of Rational function field in x over Rational Field
Echelon basis matrix:
[x^3 + x^2]
sage: J = 0*I
sage: J.module() # needs sage.modules
Free module of degree 1 and rank 0 over Maximal order of Rational function field in x over Rational Field
Echelon basis matrix:
[]
```

valuation(ideal)

Return the valuation of the ideal at this prime ideal.

INPUT:

- `ideal` – fractional ideal

EXAMPLES:

```python
sage: F.<x> = FunctionField(QQ)
sage: O = F.maximal_order()
sage: I = O.ideal(x^2*(x^2+x+1)^3)
sage: [f.valuation(I) for f, _ in I.factor()] # needs sage.libs.pari
[2, 3]
```
IDEALS OF FUNCTION FIELDS: EXTENSION

class sage.rings.function_field.ideal_polymod.FunctionFieldIdealInfinite_polymod(ring, ideal):

Bases: FunctionFieldIdealInfinite

Ideals of the infinite maximal order of an algebraic function field.

INPUT:

• ring – infinite maximal order of the function field
• ideal – ideal in the inverted function field

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3^2)); R.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 + t^2 - x^4)
sage: Oinf = F.maximal_order_infinite()
sage: Oinf.ideal(1/y)
Ideal (1/x^4*y^2) of Maximal infinite order of Function field in y defined by y^3 + y^2 + 2*x^4
gens()

Return a set of generators of this ideal.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3^2)); R.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 + t^2 - x^4)
sage: Oinf = F.maximal_order_infinite()
sage: I = Oinf.ideal(x + y)
sage: I.gens()
(x, y, 1/x^2*y^2)

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: Oinf = L.maximal_order_infinite()
sage: I = Oinf.ideal(x + y)
sage: I.gens()
(x, y)
**gens_over_base()**
Return a set of generators of this ideal.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3^2)); _.<t> = K[]
sage: F.<y> = K.extension(t^3 + t^2 - x^4)
sage: Oinf = F.maximal_order_infinite()
sage: I = Oinf.ideal(x + y)
sage: I.gens_over_base()
(x, y, 1/x^2*y^2)
```

**gens_two()**
Return a set of at most two generators of this ideal.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3^2)); R.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 + t^2 - x^4)
sage: Oinf = F.maximal_order_infinite()
sage: I = Oinf.ideal(x + y)
sage: I.gens_two()
(x, y)
```

**ideal_below()**
Return a set of generators of this ideal.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3^2)); _.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 + t^2 - x^4)
sage: Oinf = F.maximal_order_infinite()
sage: I = Oinf.ideal(1/y^2)
sage: I.ideal_below()
Ideal (x^3) of Maximal order of Rational function field in x over Finite Field in z2 of size 3^2
```

**is_prime()**
Return True if this ideal is a prime ideal.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3^2)); _.<t> = PolynomialRing(K)
```

(continues on next page)
sage: F.<y> = K.extension(t^3 + t^2 - x^4)
sage: Oinf = F.maximal_order_infinite()
sage: I = Oinf.ideal(1/x)
sage: I.factor()
(Ideal (1/x^3*y^2) of Maximal infinite order of Function field in y defined by y^3 + y^2 + 2*x^4)^3
sage: I.is_prime()
False
sage: J = I.factor()[0][0]
sage: J.is_prime()
True

primes_below()
Return the prime of the base order that underlies this prime ideal.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(3^2)); _.<Y> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 + t^2 - x^4)
sage: Oinf = F.maximal_order_infinite()
sage: I = Oinf.ideal(1/x)
sage: I.factor()
(Ideal (1/x^3*y^2) of Maximal infinite order of Function field in y defined by y^3 + y^2 + 2*x^4)^3
sage: J = I.factor()[0][0]
sage: J.is_prime()
True
sage: J.prime_below()
Ideal (1/x) of Maximal infinite order of Rational function field in x over Finite Field in z2 of size 3^2
(Ideal (1/x*y) of Maximal infinite order of Function field in y
defined by y^2 + y + (x^2 + 1)/x)^2
sage: J = I.factor()[0][0]
sage: J.is_prime()
True
sage: J.prime_below()
Ideal (1/x) of Maximal infinite order of Rational function field in x
over Finite Field of size 2

valuation(ideal)
Return the valuation of ideal with respect to this prime ideal.

INPUT:

• ideal – fractional ideal

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: Oinf = L.maximal_order_infinite()
sage: I = Oinf.ideal(y)
sage: [f.valuation(I) for f, _ in I.factor()]
[-1]

class sage.rings.function_field.ideal_polymod.FunctionFieldIdeal_global(ring, hnf,
denominator=1)

Bases: FunctionFieldIdeal_polymod
Fractional ideals of canonical function fields

INPUT:

• ring – order in a function field
• hnf – matrix in hermite normal form
• denominator – denominator

The rows of hnf is a basis of the ideal, which itself is denominator times the fractional ideal.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3*y - x)
sage: O = L.maximal_order()
sage: O.ideal(y)
Ideal (y) of Maximal order of Function field in y defined by y^2 + x^3*y + x

gens()
Return a set of generators of this ideal.

This provides whatever set of generators as quickly as possible.

EXAMPLES:
```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]

sage: L.<y> = K.extension(Y^2 - x^3*Y - x)

sage: O = L.maximal_order()

sage: I = O.ideal(x + y)

sage: I.gens()
(x^4 + x^2 + x, y + x)

sage: # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)

sage: O = L.maximal_order()

sage: I = O.ideal(x + y)

sage: I.gens()
(x^3 + 1, y + x)
```

gens_two()

Return two generators of this fractional ideal.

If the ideal is principal, one generator may be returned.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]

sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)

sage: O = F.maximal_order()

sage: I = O.ideal(y)

sage: I
Ideal (y) of Maximal order of Function field in y defined by y^3 + x^6 + x^4 + x^2

sage: ~I
Ideal ((1/(x^6 + x^4 + x^2))*y^2) of Maximal order of Function field in y defined by y^3 + x^6 + x^4 + x^2

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]

sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)

sage: O = L.maximal_order()

sage: I = O.ideal(y)

sage: I
Ideal (y) of Maximal order of Function field in y defined by y^2 + y + (x^2 + 1)/x

sage: ~I
Ideal ((x/(x^2 + 1))*y + x/(x^2 + 1)) of Maximal order of Function field in y defined by y^2 + y + (x^2 + 1)/x
```

class sage.rings.function_field.ideal_polymod.FunctionFieldIdeal_polymod(ring, hnf, denominator=1)

Bases: FunctionFieldIdeal

Fractional ideals of algebraic function fields

INPUT:

* ring – order in a function field
Algebraic Function Fields, Release 10.1

- `hnf` – matrix in hermite normal form
- `denominator` – denominator

The rows of `hnf` is a basis of the ideal, which itself is `denominator` times the fractional ideal.

**EXAMPLES:**

```sage
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); R.<y> = K[]
```

```sage
sage: L.<y> = K.extension(y^2 - x^3*y - x)
```

```sage
sage: 0 = L.maximal_order()
```

```sage
sage: O = L.maximal_order()
```

```sage
sage: O.ideal(y)
```

```
Ideal (y) of Maximal order of Function field in y defined by y^2 + x^3*y + x
```

### `basis_matrix()`

Return the matrix of basis vectors of this ideal as a module.

The basis matrix is by definition the hermite norm form of the ideal divided by the denominator.

**EXAMPLES:**

```sage
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); R.<t> = PolynomialRing(K)
```

```sage
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
```

```sage
sage: 0 = F.maximal_order()
```

```sage
sage: I = O.ideal(x, 1/y)
```

```sage
sage: I.denominator() * I.basis_matrix() == I.hnf()
```

```
True
```

### `denominator()`

Return the denominator of this fractional ideal.

**EXAMPLES:**

```sage
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
```

```sage
sage: L.<y> = K.extension(y^2 - x^3 - 1)
```

```sage
sage: O = L.maximal_order()
```

```sage
sage: I = O.ideal(y/(y+1))
```

```sage
sage: d = I.denominator(); d
```

```
x^3
```

```sage
sage: d in O
```

```
True
```

```sage
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
```

```sage
sage: L.<y> = K.extension(y^2 - x^3 - 1)
```

```sage
sage: O = L.maximal_order()
```

```sage
sage: I = O.ideal(y/(y+1))
```

```sage
sage: d = I.denominator(); d
```

```
x^3
```

```sage
sage: d in O
```

```
True
```

### `gens()`

Return a set of generators of this ideal.
This provides whatever set of generators as quickly as possible.

**EXAMPLES:**

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 - x^3*Y - x)
sage: O = L.maximal_order()
sage: I = O.ideal(x + y)
sage: I.gens()
(x^4 + x^2 + x, y + x)
```

```python
sage: # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
```

### gens_over_base()

Return the generators of this ideal as a module over the maximal order of the base rational function field.

**EXAMPLES:**

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 - x^3*Y - x)
sage: I = O.ideal(y*(y+1)); I.gens_over_base()
(x^4 + x^2 + x, y + x)
```

### hnf()

Return the matrix in hermite normal form representing this ideal.

See also `denominator()`

**EXAMPLES:**

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: I = 0.ideal(y^4 + y^3 + y^2 + y + 1)
sage: I.hnf()
[x^6 + x^3 0]
[x^3 + 1 1]
```
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^3 - 1)
sage: O = L.maximal_order()
sage: I = O.ideal(y*(y+1)); I.hnf()
[x^6 + x^3  0]
[  x^3 + 1   1]

**ideal_below()**

Return the ideal below this ideal.

This is defined only for integral ideals.

**EXAMPLES:**

```sage
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: O = F.maximal_order()
sage: I = O.ideal(x, 1/y)
sage: I.ideal_below()
Traceback (most recent call last):
 ... TypeError: not an integral ideal
sage: J = I.denominator() * I
sage: J.ideal_below()
Ideal (x^3 + x^2 + x) of Maximal order of Rational function field
in x over Finite Field of size 2

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: O = L.maximal_order()
sage: I = O.ideal(x, 1/y)
sage: I.ideal_below()
Traceback (most recent call last):
 ... TypeError: not an integral ideal
sage: J = I.denominator() * I
sage: J.ideal_below()
Ideal (x^3 + x) of Maximal order of Rational function field
in x over Finite Field of size 2

sage: K.<x> = FunctionField(QQ); _.<t> = K[]
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: O = F.maximal_order()
sage: I = O.ideal(x, 1/y)
sage: I.ideal_below()
Traceback (most recent call last):
 ... TypeError: not an integral ideal
sage: J = I.denominator() * I
sage: J.ideal_below()
Ideal (x^3 + x^2 + x) of Maximal order of Rational function field
in x over Rational Field
```
intersect\(\text{other}\)
Intersect this ideal with the other ideal as fractional ideals.

INPUT:
• other \(\rightarrow\) ideal

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 - x^3*Y - x)
sage: O = L.maximal_order()
sage: I = O.ideal(x + y)
sage: J = O.ideal(x)
sage: I.intersect(J) == I * J * (I + J)^{-1}
True
```

is_integral()
Return True if this is an integral ideal.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: O = F.maximal_order()
sage: I = O.ideal(x, 1/y)
sage: I.is_integral()
False
sage: J = I.denominator() * I
sage: J.is_integral()
True
```

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: O = L.maximal_order()
sage: I = O.ideal(x, 1/y)
sage: I.is_integral()
False
sage: J = I.denominator() * I
sage: J.is_integral()
True
```

```python
sage: K.<x> = FunctionField(QQ); _.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: O = F.maximal_order()
sage: I = O.ideal(x, 1/y)
sage: I.is_integral()
False
sage: J = I.denominator() * I
sage: J.is_integral()
True
```
is_prime()

Return True if this ideal is a prime ideal.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: O = F.maximal_order()
sage: I = O.ideal(y)
sage: [f.is_prime() for f, _ in I.factor()]
[True, True]
```

module()

Return the module, that is the ideal viewed as a module over the base maximal order.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(7)); R.<y> = K[]
sage: F.<y> = K.extension(y^2 - x^3 - 1)
sage: O = F.maximal_order()
sage: I = O.ideal(x, 1/y)
sage: I.module()
Free module of degree 2 and rank 2 over Maximal order of Rational function field in x over Finite Field of size 7
Echelon basis matrix:
[1 0]
[0 1/(x^3 + 1)]
```

norm()

Return the norm of this fractional ideal.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2)
sage: O = F.maximal_order()
sage: i1 = O.ideal(x)
```
sage: i2 = O.ideal(y)
sage: i3 = i1 * i2
sage: i3.norm() == i1.norm() * i2.norm()
True
sage: i1.norm()
x^3
sage: i1.norm() == x ** F.degree()
True
sage: i2.norm()
x^6 + x^4 + x^2
sage: i2.norm() == y.norm()
True

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[

prime_below()

Return the prime lying below this prime ideal.

EXAMPLES:

sage: F.<Y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
sage: O = F.maximal_order()
sage: I = O.ideal(y)
[Ideal (x) of Maximal order of Rational function field in x over Finite Field of size 2, Ideal (x^2 + x + 1) of Maximal order of Rational function field in x over Finite Field of size 2]
[Ideal (x) of Maximal order of Rational function field in x over Finite Field, ideal of size 2, Ideal (x + 1) of Maximal order of Rational function field in x over Finite Field of size 2]

sage: K.<x> = FunctionField(QQ); _.<Y> = K[

sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)

sage: O = F.maximal_order()

sage: I = O.ideal(y)

sage: [f.prime_below() for f, _ in I.factor()]

[ Ideal (x) of Maximal order of Rational function field in x over Rational Field, Ideal (x^2 + x + 1) of Maximal order of Rational function field in x over Rational Field]

valuation(ideal)

Return the valuation of ideal at this prime ideal.

INPUT:

* ideal – fractional ideal

EXAMPLES:

sage: # needs sage.rings.finite_rings

sage: K.<x> = FunctionField(GF(2)); _.<t> = K[

sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)

sage: O = F.maximal_order()

sage: I = O.ideal(x, (1/(x^3 + x^2 + x))*y^2)

sage: I.is_prime()

True

sage: J = O.ideal(y)

sage: I.valuation(J)

2

sage: # needs sage.rings.finite_rings

sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[

sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)

sage: O = L.maximal_order()

sage: I = O.ideal(y)

sage: [f.valuation(I) for f, _ in I.factor()]

[-1, 2]

The method closely follows Algorithm 4.8.17 of [Coh1993].
The places of a function field correspond, one-to-one, to valuation rings of the function field, each of which defines a discrete valuation for the elements of the function field. “Finite” places are in one-to-one correspondence with the prime ideals of the finite maximal order while places “at infinity” are in one-to-one correspondence with the prime ideals of the infinite maximal order.

EXAMPLES:

All rational places of a function field can be computed:

```
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field
sage: L.places() # needs sage.rings.function_field
[Place (1/x, 1/x^3*y^2 + 1/x),
 Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1),
 Place (x, y)]
```

The residue field associated with a place is given as an extension of the constant field:

```
sage: F.<x> = FunctionField(GF(2))
sage: O = F.maximal_order()
sage: p = O.ideal(x^2 + x + 1).place() # needs sage.libs.pari
sage: k, fr_k, to_k = p.residue_field() # needs sage.rings.function_field
sage: k
Finite Field in z2 of size 2^2
```

The homomorphisms are between the valuation ring and the residue field:

```
sage: fr_k
Ring morphism:
 From: Finite Field in z2 of size 2^2
 To: Valuation ring at Place (x^2 + x + 1)
sage: to_k
Ring morphism:
 From: Valuation ring at Place (x^2 + x + 1)
 To: Finite Field in z2 of size 2^2
```

AUTHORS:

- Kwankyu Lee (2017-04-30): initial version
• Brent Baccala (2019-12-20): function fields of characteristic zero

class sage.rings.function_field.place.FunctionFieldPlace(parent, prime)

Bases: Element

Places of function fields.

INPUT:

• parent – place set of a function field
• prime – prime ideal associated with the place

EXAMPLES:

```sage
definition
K.<x> = FunctionField(GF(2)); _.<Y> = K[]
L.<y> = K.extension(Y^3 + x + x^3*Y)
needs sage.rings.function_field
L.places_finite()[0]
needs sage.rings.function_field
Place (x, y)
```

def divisor(multiplicity=1)

Return the prime divisor corresponding to the place.

EXAMPLES:

```sage
needs sage.rings.function_field
K.<x> = FunctionField(GF(5)); R.<Y> = PolynomialRing(K)
F.<y> = K.extension(Y^2 - x^3 - 1)
O = F.maximal_order()
I = O.ideal(x + 1, y)
P = I.place()
P.divisor()
Place (x + 1, y)
```

def function_field()

Return the function field to which the place belongs.

EXAMPLES:

```sage
K.<x> = FunctionField(GF(2)); _.<Y> = K[]
L.<y> = K.extension(Y^3 + x^3*Y + x)
needs sage.rings.function_field
L.places()[0]
needs sage.rings.function_field
L.function_field() == L
needs sage.rings.function_field
True
```

def prime_ideal()

Return the prime ideal associated with the place.

EXAMPLES:

```sage
K.<x> = FunctionField(GF(2)); _.<Y> = K[]
L.<y> = K.extension(Y^3 + x^3*Y + x)
needs sage.rings.function_field
L.places()[0]
needs sage.rings.function_field
L.function_field() == L
needs sage.rings.function_field
True
```
needs sage.rings.function_field
sage: p = L.places()[0]  # needs sage.rings.function_field
sage: p.prime_ideal()  # needs sage.rings.function_field
Ideal (1/x^3*y^2 + 1/x) of Maximal infinite order of Function field in y defined by y^3 + x^3*y + x

class sage.rings.function_field.place.PlaceSet(field)
Bases: UniqueRepresentation, Parent
Sets of Places of function fields.

INPUT:
• field – function field

EXAMPLES:

sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)  # needs sage.rings.function_field
sage: L.place_set()  # needs sage.rings.function_field
Set of places of Function field in y defined by y^3 + x^3*y + x

Element
alias of FunctionFieldPlace

function_field()
Return the function field to which this place set belongs.

EXAMPLES:

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: PS = L.place_set()
sage: PS.function_field() == L
True
class sage.rings.function_field.place_rational.FunctionFieldPlace_rational(parent, prime)

Places of rational function fields.

degree()
    Return the degree of the place.

EXAMPLES:

```
sage: F.<x> = FunctionField(GF(2))
sage: O = F.maximal_order()
sage: i = O.ideal(x^2 + x + 1)
sage: p = i.place()
sage: p.degree()
2
```

is_infinite_place()
    Return True if the place is at infinite.

EXAMPLES:

```
sage: F.<x> = FunctionField(GF(2))
sage: F.places()
[Place (1/x), Place (x), Place (x + 1)]
sage: [p.is_infinite_place() for p in F.places()]
[True, False, False]
```

local_uniformizer()
    Return a local uniformizer of the place.

EXAMPLES:

```
sage: F.<x> = FunctionField(GF(2))
sage: F.places()
[Place (1/x), Place (x), Place (x + 1)]
sage: [p.local_uniformizer() for p in F.places()]
[1/x, x, x + 1]
```

residue_field(name=None)
    Return the residue field of the place.

EXAMPLES:
```
sage: F.<x> = FunctionField(GF(2))
sage: O = F.maximal_order()
sage: p = O.ideal(x^2 + x + 1).place()
sage: k, fr_k, to_k = p.residue_field()

needs sage.rings.function_field
sage: k
Finite Field in z2 of size 2^2
sage: fr_k
Ring morphism:
 From: Finite Field in z2 of size 2^2
 To: Valuation ring at Place (x^2 + x + 1)
sage: to_k
Ring morphism:
 From: Valuation ring at Place (x^2 + x + 1)
 To: Finite Field in z2 of size 2^2
```

valuation_ring()

Return the valuation ring at the place.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
needs sage.rings.function_field
sage: p = L.places_finite()[0]
sage: p.valuation_ring()
Valuation ring at Place (x, x*y)
```
class sage.rings.function_field.place_polymod.FunctionFieldPlace_polymod(parent, prime)

Bases: FunctionFieldPlace

Places of extensions of function fields.

degree()

Return the degree of the place.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[
]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: OK = K.maximal_order()
sage: OL = L.maximal_order()
sage: p = OK.ideal(x^2 + x + 1)
sage: dec = OL.decomposition(p)
sage: q = dec[0][0].place()
sage: q.degree()
2

gaps()

Return the gap sequence for the place.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[
]
# needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^3 + x^3 * Y + x)
# needs sage.rings.finite_rings
sage: [p.gaps() for p in L.places()]
[[1, 2, 4], [1, 2, 4], [1, 2, 4]]
**is_infinite_place()**

Return True if the place is above the unique infinite place of the underlying rational function field.

**EXAMPLES:**

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
```
```
sage: pls = L.places()
sage: [p.is_infinite_place() for p in pls]
[True, True, False]
```

**local_uniformizer()**

Return an element of the function field that has a simple zero at the place.

**EXAMPLES:**

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[
```
```
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
```
```
sage: pls = L.places()
sage: [p.local_uniformizer().valuation(p) for p in pls]
[1, 1, 1, 1, 1]
```

**place_below()**

Return the place lying below the place.

**EXAMPLES:**

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[
```
```
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
```
```
sage: OK = K.maximal_order()
sage: OL = L.maximal_order()
sage: p = OK.ideal(x^2 + x + 1)
sage: dec = OL.decomposition(p)
sage: q = dec[0][0].place()
sage: q.place_below()
```
```
Place (x^2 + x + 1)
```

**relative_degree()**

Return the relative degree of the place.

**EXAMPLES:**

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[
```
```
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
```
```
sage: OK = K.maximal_order()
sage: OL = L.maximal_order()
sage: p = OK.ideal(x^2 + x + 1)
sage: dec = OL.decomposition(p)
sage: q = dec[0][0].place()
```
```
sage: q.relative_degree()
```
```
(continues on next page)
sage: q.relative_degree()
1

residue_field(name=None)

Return the residue field of the place.

INPUT:

- name – string; name of the generator of the residue field

OUTPUT:

- a field isomorphic to the residue field
- a ring homomorphism from the valuation ring to the field
- a ring homomorphism from the field to the valuation ring

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
```

```python
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
```

```python
sage: p = L.places_finite()[0]
```

```python
sage: k, fr_k, to_k = p.residue_field()
```

```python
sage: k
Finite Field of size 2
```

```python
sage: fr_k
Ring morphism:
  From: Finite Field of size 2
  To:   Valuation ring at Place (x, x*y)
```

```python
sage: to_k
Ring morphism:
  From: Valuation ring at Place (x, x*y)
  To:   Finite Field of size 2
```

```python
sage: to_k(y)
```

```python
Traceback (most recent call last):
...
TypeError: y fails to convert into the map’s domain
```

```python
sage: to_k(1/y)
0
```

```python
sage: to_k(y/(1+y))
1
```

valuation_ring()

Return the valuation ring at the place.

EXAMPLES:

```python
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
```

```python
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
```

```python
sage: p = L.places_finite()[0]
```

```python
sage: p.valuation_ring()
Valuation ring at Place (x, x*y)
```
Sage allows extensive computations with divisors on function fields.

EXAMPLES:

The divisor of an element of the function field is the formal sum of poles and zeros of the element with multiplicities:

```python
sage: K.<x> = FunctionField(GF(2)); R.<t> = K[]
sage: L.<y> = K.extension(t^3 + x^3*t + x)
sage: f = x/(y+1)
sage: f.divisor()
- Place (1/x, 1/x^3*y^2 + 1/x)
+ Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1)
+ 3*Place (x, y)
- Place (x^3 + x + 1, y + 1)
```

The Riemann-Roch space of a divisor can be computed. We can get a basis of the space as a vector space over the constant field:

```python
sage: p = L.places_finite()[0]
sage: q = L.places_infinite()[0]
sage: (3*p + 2*q).basis_function_space()
[1/x*y^2 + x^2, 1, 1/x]
```

We verify the Riemann-Roch theorem:

```python
sage: D = 3*p - q
sage: index_of_speciality = len(D.basis_differential_space())
sage: D.dimension() == D.degree() - L.genus() + 1 + index_of_speciality
True
```

AUTHORS:

- Kwankyu Lee (2017-04-30): initial version

```python
class sage.rings.function_field.divisor.DivisorGroup(field)
    Bases: UniqueRepresentation, Parent

Groups of divisors of function fields.

INPUT:

- field – function field

EXAMPLES:
Element

\texttt{sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]}
\texttt{sage: F.<y> = K.extension(Y^2 - x^3 - 1)}
\texttt{sage: F.divisor_group()}
Divisor group of Function field in y defined by \(y^2 + 4^*x^3 + 4\)

\textbf{function\_field()}

Return the function field to which the divisor group is attached.

\textbf{EXAMPLES:}

\texttt{sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]}
\texttt{sage: F.<y> = K.extension(Y^2 - x^3 - 1)}
\texttt{sage: G = F.divisor_group()}
\texttt{sage: G.function\_field()}
Function field in y defined by \(y^2 + 4^*x^3 + 4\)

\textbf{class \texttt{sage.rings.function\_field.divisor.FunctionFieldDivisor}(parent, data)}

\textbf{Bases: ModuleElement}

Divisors of function fields.

\textbf{INPUT:}

\begin{itemize}
  \item \texttt{parent} – divisor group
  \item \texttt{data} – dict of place and multiplicity pairs
\end{itemize}

\textbf{EXAMPLES:}

\texttt{sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]}
\texttt{sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)}
\texttt{sage: f = x/(y + 1)}
\texttt{sage: f.divisor()}
Place \((1/x, 1/x^4*y^2 + 1/x^2*y + 1)\)
+ Place \((1/x, 1/x^2*y + 1)\)
+ 3*Place \((x, (1/(x^3 + x^2 + x))*y^2)\)
- 6*Place \((x + 1, y + 1)\)

\textbf{basis\_differential\_space()}

Return a basis of the space of differentials \(\Omega(D)\) for the divisor \(D\).

\textbf{EXAMPLES:}

We check the Riemann-Roch theorem:

\texttt{sage: K.<x>=FunctionField(GF(4)); _.<Y> = K[]}
\texttt{sage: L.<y>=K.extension(Y^3 + x^3*Y + x)}
\texttt{sage: d = 3*L.places()[0]}
\texttt{sage: l = len(d.basis\_function\_space())}
\texttt{sage: i = len(d.basis\_differential\_space())}
\texttt{sage: l == d.degree() + 1 - L.genus() + i}
\texttt{True}
basis_function_space()
Return a basis of the Riemann-Roch space of the divisor.

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: F.<y> = K.extension(Y^2 - x^3 - 1)
sage: O = F.maximal_order()
sage: I = O.ideal(x - 2)
sage: D = I.divisor()
sage: D.basis_function_space()
[x/(x + 3), 1/(x + 3)]
```

degree()
Return the degree of the divisor.

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: p1,p2 = L.places()[:2]
sage: D = 2*p1 - 3*p2
sage: D.degree()
-1
```

denominator()
Return the denominator part of the divisor.
The denominator of a divisor is the negative of the negative part of the divisor.

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: p1,p2 = L.places()[:2]
sage: D = 2*p1 - 3*p2
sage: D.denominator()
3*Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1)
```

dict()
Return the dictionary representing the divisor.

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: f = x/(y + 1)
sage: D = f.divisor()
sage: D.dict()
{Place (1/x, 1/x^3*y^2 + 1/x): -1,
 Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1): 1,
 Place (x, y): 3,
 Place (x^3 + x + 1, y + 1): -1}
```

differential_space()
Return the vector space of the differential space $\Omega(D)$ of the divisor $D$. 

145
OUTPUT:

• a vector space isomorphic to $\Omega(D)$
• an isomorphism from the vector space to the differential space
• the inverse of the isomorphism

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: F.<y> = K.extension(Y^2 - x^3 - 1)
sage: O = F.maximal_order()
sage: I = O.ideal(x - 2)
sage: P1 = I.divisor().support()[0]
sage: Pinf = F.places_infinite()[0]
sage: D = -3*Pinf + P1
sage: V, from_V, to_V = D.differential_space()
sage: all(to_V(from_V(e)) == e for e in V)
True
```

dimension()

Return the dimension of the Riemann-Roch space of the divisor.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: F.<y> = K.extension(Y^2 - x^3 - 1)
sage: O = F.maximal_order()
sage: I = O.ideal(x - 2)
sage: P1 = I.divisor().support()[0]
sage: Pinf = F.places_infinite()[0]
sage: D = 3*Pinf + 2*P1
sage: D.dimension()
5
```

function_space()

Return the vector space of the Riemann-Roch space of the divisor.

OUTPUT:

• a vector space, an isomorphism from the vector space to the Riemann-Roch space, and its inverse.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: F.<y> = K.extension(Y^2 - x^3 - 1)
sage: O = F.maximal_order()
sage: I = O.ideal(x - 2)
sage: D = I.divisor()
sage: V, from_V, to_V = D.function_space()
sage: all(to_V(from_V(e)) == e for e in V)
True
```

is_effective()

Return True if this divisor has non-negative multiplicity at all places.

EXAMPLES:
\begin{verbatim}
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: p1, p2 = L.places()[:2]
sage: D = 2*p1 + 3*p2
sage: D.is_effective()
True
sage: E = D - 4*p2
sage: E.is_effective()
False

list()
Return the list of place and multiplicity pairs of the divisor.

EXAMPLES:
\begin{verbatim}
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: f = x/(y + 1)
sage: D = f.divisor()
sage: D.list()
[(Place (1/x, 1/x^3*y^2 + 1/x), -1),
 (Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1), 1),
 (Place (x, y), 3),
 (Place (x^3 + x + 1, y + 1), -1)]
\end{verbatim}

multiplicity(place)
Return the multiplicity of the divisor at the place.

INPUT:

• place – place of a function field

EXAMPLES:
\begin{verbatim}
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: p1,p2 = L.places()[:2]
sage: D = 2*p1 - 3*p2
sage: D.multiplicity(p1)
2
sage: D.multiplicity(p2)
-3
\end{verbatim}

numerator()
Return the numerator part of the divisor.

The numerator of a divisor is the positive part of the divisor.

EXAMPLES:
\begin{verbatim}
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: p1,p2 = L.places()[:2]
sage: D = 2*p1 - 3*p2
sage: D.numerator()
2*Place (1/x, 1/x^3*y^2 + 1/x)
\end{verbatim}
\end{verbatim}
**support()**

Return the support of the divisor.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: f = x/(y + 1)
sage: D = f.divisor()
sage: D.support()
[Place (1/x, 1/x^3*y^2 + 1/x),
 Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1),
 Place (x, y),
 Place (x^3 + x + 1, 1 + y)]
```

**valuation(place)**

Return the multiplicity of the divisor at the place.

**INPUT:**

- place – place of a function field

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: p1,p2 = L.places()[:2]
sage: D = 2*p1 - 3*p2
sage: D.multiplicity(p1)
2
sage: D.multiplicity(p2)
-3
```

```
from sage.rings.function_field.divisor import divisor
sage: divisor(F, {p: 1, q: 2, r: 3})
Place (1/x, 1/x^2*y + 1) + 2*Place (x, (1/(x^3 + x^2 + x))*y^2) + 3*Place (x + 1, y + 1)
```

**sage.rings.function_field.divisor.divisor(field, data)**

Construct a divisor from the data.

**INPUT:**

- field – function field
- data – dictionary of place and multiplicity pairs

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(GF(2)); R.<t> = K[]
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: from sage.rings.function_field.divisor import divisor
sage: p, q, r = F.places()
sage: divisor(F, {p: 1, q: 2, r: 3})
```

**sage.rings.function_field.divisor.prime_divisor(field, place, m=1)**

Construct a prime divisor from the place.

**INPUT:**

- field – function field
• \textit{place} – place of the function field
• \textit{m} – (default: 1) a positive integer; multiplicity at the place

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(GF(2)); R.<t> = K[]
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: p = F.places()[0]
sage: from sage.rings.function_field.divisor import prime_divisor
sage: d = prime_divisor(F, p)
sage: 3 * d == prime_divisor(F, p, 3)
True
```
Sage provides arithmetic with differentials of function fields.

EXAMPLES:

The module of differentials on a function field forms an one-dimensional vector space over the function field:

```python
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: f = x + y
sage: g = 1 / y
sage: df = f.differential()
sage: dg = g.differential()
sage: dfdg = f.derivative() / g.derivative()
sage: df == dfdg * dg
True
sage: df
(x*y^2 + 1/x*y + 1) d(x)
sage: df.parent()
Space of differentials of Function field in y defined by y^3 + x^3*y + x
```

We can compute a canonical divisor:

```python
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: k = df.divisor()
sage: k.degree()
4
sage: k.degree() == 2 * L.genus() - 2
True
```

Exact differentials vanish and logarithmic differentials are stable under the Cartier operation:

```python
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: df.cartier()
0
sage: w = 1/f * df
sage: w.cartier() == w
True
```

AUTHORS:

- Kwankyu Lee (2017-04-30): initial version
class sage.rings.function_field.differential.DifferentialsSpace(field, category=None)

Bases: UniqueRepresentation, Parent

Space of differentials of a function field.

INPUT:

• field – function field

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
 # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
 # needs sage.rings.finite_rings sage.rings.function_field
sage: L.space_of_differentials()
 # needs sage.rings.finite_rings sage.rings.function_field
Space of differentials of Function field in y defined by y^3 + x^3*y + x
```

The space of differentials is a one-dimensional module over the function field. So a base differential is chosen to represent differentials. Usually the generator of the base rational function field is a separating element and used to generate the base differential. Otherwise a separating element is automatically found and used to generate the base differential relative to which other differentials are denoted:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(5))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^5 - 1/x)
sage: L(x).differential()
0
dsage: y.differential()
d(y)
sage: (y^2).differential()
(2*y) d(y)
```

Element

alias of FunctionFieldDifferential

basis()

Return a basis.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
sage: S = L.space_of_differentials()
sage: S.basis()
Family (d(x),)
```

function_field()

Return the function field to which the space of differentials is attached.

EXAMPLES:
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[

sage: L.<y> = K.extension(Y^3 + x^3*Y + x)

sage: S = L.space_of_differentials()

sage: S.function_field()
Function field in y defined by y^3 + x^3*y + x

class sage.rings.function_field.differential.DifferentialsSpaceInclusion

Bases: Morphism

Inclusion morphisms for extensions of function fields.

EXAMPLES:

```sage
sage: K.<x> = FunctionField(QQ); R.<y> = K[

sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) # needs sage.rings.function_field

sage: OK = K.space_of_differentials()

sage: OL = L.space_of_differentials() # needs sage.rings.function_field

sage: OL.coerce_map_from(OK) # needs sage.rings.function_field
Inclusion morphism:
From: Space of differentials of Rational function field in x over Rational Field
To: Space of differentials of Function field in y defined by y^2 - x*y + 4*x^3

is_injective()

Return True, since the inclusion morphism is injective.

EXAMPLES:

```sage

sage: K.<x> = FunctionField(QQ); R.<y> = K[

sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) # needs sage.rings.function_field

sage: OK = K.space_of_differentials()

sage: OL = L.space_of_differentials() # needs sage.rings.function_field

sage: OL.coerce_map_from(OK).is_injective() # needs sage.rings.function_field
True

is_surjective()

Return True if the inclusion morphism is surjective.

EXAMPLES:

```sage

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(QQ); R.<y> = K[

sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)

sage: OK = K.space_of_differentials()

sage: OL = L.space_of_differentials()

sage: OL.coerce_map_from(OK).is_surjective() # needs sage.rings.function_field
False

sage: S.<z> = L[

sage: M.<z> = L.extension(z - 1)

(continues on next page)
class sage.rings.function_field.differential.DifferentialsSpace_global(field, category=None)

Bases: DifferentialsSpace

Space of differentials of a global function field.

INPUT:
• field – function field

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
# needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^3 + x^3*Y + x)
# needs sage.rings.finite_rings sage.rings.function_field
sage: L.space_of_differentials()
# needs sage.rings.finite_rings sage.rings.function_field
Space of differentials of Function field in y defined by y^3 + x^3*y + x
```

Element

alias of `FunctionFieldDifferential_global`

class sage.rings.function_field.differential.FunctionFieldDifferential(parent, f, t=None)

Bases: ModuleElement

Base class for differentials on function fields.

INPUT:
• f – element of the function field
• t – element of the function field; if t is not specified, the generator of the base differential is assumed

EXAMPLES:

```
sage: F.<x> = FunctionField(QQ)
sage: f = x/(x^2 + x + 1)
sage: f.differential()
((-x^2 + 1)/(x^4 + 2*x^3 + 3*x^2 + 2*x + 1)) d(x)
```

```
sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
# needs sage.rings.function_field
sage: L(x).differential()
# needs sage.rings.function_field
d(x)
sage: y.differential()
# needs sage.rings.function_field
((21/4*x/(x^7 + 27/4))*y^2 + ((3/2*x^7 + 9/4)/(x^8 + 27/4*x))*(x^7 + 27/4))/d(x)
```
divisor()

Return the divisor of the differential.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)  # needs sage.rings.function_field
sage: w = (1/y) * y.differential()  # needs sage.rings.function_field
sage: w.divisor()  # needs sage.rings.function_field
- Place (1/x, 1/x^3*y^2 + 1/x)
- Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1)
- Place (x, y)
- Place (x + 2, y + 3)
- Place (x^6 + 3*x^5 + 4*x^4 + 2*x^3 + x^2 + 3*x + 4, y + x^5)
```

```
sage: F.<x> = FunctionField(QQ)
sage: w = (1/x).differential()
sage: w.divisor()  # needs sage.libs.pari
-2*Place (x)
```

monomial_coefficients(copy=True)

Return a dictionary whose keys are indices of basis elements in the support of self and whose values are the corresponding coefficients.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)  # needs sage.rings.function_field
sage: d = y.differential()  # needs sage.rings.function_field
sage: d  # needs sage.rings.function_field
((4*x/(x^7 + 3))*y^2 + ((4*x^7 + 1)/(x^8 + 3*x))*y + x^4/(x^7 + 3)) d(x)
sage: d.monomial_coefficients()  # needs sage.rings.function_field
{0: (4*x/(x^7 + 3))*y^2 + ((4*x^7 + 1)/(x^8 + 3*x))*y + x^4/(x^7 + 3)}
```

residue(place)

Return the residue of the differential at the place.

INPUT:

- place – a place of the function field

OUTPUT:

- an element of the residue field of the place

EXAMPLES:

We verify the residue theorem in a rational function field:
sage: # needs sage.rings.finite_rings
sage: F.<x> = FunctionField(GF(4))
sage: f = 0
sage: while f == 0:
 : f = F.random_element()
 : w = 1/f * f.differential()
 : d = f.divisor()
 : s = d.support()
 sage: sum([w.residue(p).trace() for p in s])
→ needs sage.rings.function_field
0

and in an extension field:

sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(7)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: f = 0
sage: while f == 0:
 : f = L.random_element()
 : w = 1/f * f.differential()
 : d = f.divisor()
 : s = d.support()
 sage: sum([w.residue(p).trace() for p in s])
0

and also in a function field of characteristic zero:

sage: # needs sage.rings.function_field
sage: R.<x> = FunctionField(QQ)
sage: L.<Y> = R[
 sage: F.<y> = R.extension(Y^2 - x^4 - 4*x^3 - 2*x^2 - 1)
 sage: a = 6*x^2 + 5*x + 7
 sage: b = 2*x^6 + 8*x^5 + 3*x^4 - 4*x^3 - 1
 sage: w = y*a/b*x.differential()
 sage: d = w.divisor()
 sage: sum([QQ(w.residue(p)) for p in d.support()])
0

valuation(place)

Return the valuation of the differential at the place.

INPUT:

• place – a place of the function field

EXAMPLES:

sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y) # → needs sage.rings.function_field
sage: w = (1/y) * y.differential() # → needs sage.rings.function_field
sage: [w.valuation(p) for p in L.places()]
(continues on next page)
class sage.rings.function_field.differential.FunctionFieldDifferential_global(parent, f, t=None):
 Bases: FunctionFieldDifferential

 Differentials on global function fields.

 EXAMPLES:

 sage: F.<x> = FunctionField(GF(7))
 sage: f = x/(x^2 + x + 1)
 sage: f.differential()
 ((6*x^2 + 1)/(x^4 + 2*x^3 + 3*x^2 + 2*x + 1)) d(x)

 sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[
 # needs sage.rings.finite_rings sage.rings.function_field
 sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
 # needs sage.rings.finite_rings sage.rings.function_field
 sage: y.differential()
 # needs sage.rings.finite_rings sage.rings.function_field
 (x*y^2 + 1/x*y) d(x)

cartier()

 Return the image of the differential by the Cartier operator.

 The Cartier operator operates on differentials. Let \(x \) be a separating element of the function field. If a differential \(\omega \) is written in prime-power representation \(\omega = (f_0^p + f_1^p x + \cdots + f_{p-1}^p x^{p-1}) dx \), then the Cartier operator maps \(\omega \) to \(f_{p-1}^p dx \). It is known that this definition does not depend on the choice of \(x \).

 The Cartier operator has interesting properties. Notably, the set of exact differentials is precisely the kernel of the Cartier operator and logarithmic differentials are stable under the Cartier operation.

 EXAMPLES:

 sage: # needs sage.rings.finite_rings sage.rings.function_field
 sage: K.<x> = FunctionField(GF(4))
 sage: f = x/(x^2 + x + 1)
 sage: w = 1/f*f.differential()
 sage: w.cartier() == w
 # needs sage.rings.function_field
 True

 sage: # needs sage.rings.finite_rings
 sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
 sage: y.differential()
 # needs sage.rings.finite_rings
 (x*y^2 + 1/x*y) d(x)
 sage: w = 1/f*f.differential()
 sage: w.cartier() == w
 True
A valuation ring of a function field is associated with a place of the function field. The valuation ring consists of all elements of the function field that have nonnegative valuation at the place.

EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: p = L.places_finite()[0]
sage: p
Place (x, x*y)
sage: R = p.valuation_ring()
sage: R
Valuation ring at Place (x, x*y)
sage: R.place() == p
True
```

Thus any nonzero element or its inverse of the function field lies in the valuation ring, as shown in the following example:

```python
sage: f = y/(1+y)
sage: f in R
True
sage: f not in R
False
sage: f.valuation(p)
0
```

The residue field at the place is defined as the quotient ring of the valuation ring modulo its unique maximal ideal. The method `residue_field()` of the valuation ring returns an extension field of the constant base field, isomorphic to the residue field, along with lifting and evaluation homomorphisms:

```python
sage: k,phi,psi = R.residue_field()
sage: k
Finite Field of size 2
sage: phi
Ring morphism:
  From: Finite Field of size 2
  To:   Valuation ring at Place (x, x*y)
sage: psi
Ring morphism:
  From: Valuation ring at Place (x, x*y)
```

(continues on next page)
To: Finite Field of size 2

```
sage: psi(f) in k
True
```

AUTHORS:

- Kwankyu Lee (2017-04-30): initial version

```python
class sage.rings.function_field.valuation_ring.FunctionFieldValuationRing(field, place, category=None)
```

Bases: `UniqueRepresentation`, `Parent`

Base class for valuation rings of function fields.

INPUT:

- `field` – function field
- `place` – place of the function field

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: p = L.places_finite()[0]
sage: p.valuation_ring()
Valuation ring at Place (x, x*y)
```

`place()`

Return the place associated with the valuation ring.

EXAMPLES:

```
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: p = L.places_finite()[0]
sage: R = p.valuation_ring()
sage: p == R.place()
True
```

`residue_field(name=None)`

Return the residue field of the valuation ring together with the maps from and to it.

INPUT:

- `name` – string; name of the generator of the field

OUTPUT:

- a field isomorphic to the residue field
- a ring homomorphism from the valuation ring to the field
- a ring homomorphism from the field to the valuation ring

EXAMPLES:
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: p = L.places_finite()[0]
sage: R = p.valuation_ring()
sage: k, fr_k, to_k = R.residue_field()
sage: k
Finite Field of size 2
sage: fr_k
Ring morphism:
 From: Finite Field of size 2
 To: Valuation ring at Place (x, x*y)
sage: to_k
Ring morphism:
 From: Valuation ring at Place (x, x*y)
 To: Finite Field of size 2
sage: to_k(1/y)
0
sage: to_k(y/(1+y))
1
For global function fields, which have positive characteristics, the higher derivation is available:

```python
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
# needs sage.rings.function_field
sage: h = L.higher_derivation()
# needs sage.rings.function_field
sage: h(y^2, 2)
# needs sage.rings.function_field
((x^7 + 1)/x^2)*y^2 + x^3*y
```

AUTHORS:

- William Stein (2010): initial version
- Julian Rüth (2011-09-14, 2014-06-23, 2017-08-21): refactored class hierarchy; added derivation classes; morphisms to/from fraction fields
- Kwankyu Lee (2017-04-30): added higher derivations and completions

class sage.rings.function_field.derivations.FunctionFieldDerivation(parent)

Bases: RingDerivationWithoutTwist

Base class for derivations on function fields.

A derivation on R is a map $R \to R$ with $D(\alpha + \beta) = D(\alpha) + D(\beta)$ and $D(\alpha\beta) = \beta D(\alpha) + \alpha D(\beta)$ for all $\alpha, \beta \in R$.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ)
sage: d = K.derivation()
sage: d
d/dx

is_injective()

Return False since a derivation is never injective.

EXAMPLES:

```python
sage: K.<x> = FunctionField(QQ)
sage: d = K.derivation()
sage: d.is_injective()
False
```
DERIVATIONS OF FUNCTION FIELDS: RATIONAL

class sage.rings.function_field.derivations_rational.FunctionFieldDerivation_rational(parent, u=None):

    Bases: FunctionFieldDerivation

    Derivations on rational function fields.

    EXAMPLES:

    sage: K.<x> = FunctionField(QQ)
    sage: K.derivation()
    d/dx
CHAPTER
TWENTYTWO

DERIVATIONS OF FUNCTION FIELDS: EXTENSION

class sage.rings.function_field.derivations_polymod.FunctionFieldDerivation_inseparable(parent, u=None):
    Bases: FunctionFieldDerivation
    Initialize this derivation.
    INPUT:
    • parent – the parent of this derivation
    • u – a parameter describing the derivation

    EXAMPLES:
    sage: K.<x> = FunctionField(GF(2))
    sage: R.<y> = K[]
    sage: L.<y> = K.extension(y^2 - x)
    sage: d = L.derivation()

    This also works for iterated non-monic extensions:
    sage: K.<x> = FunctionField(GF(2))
    sage: R.<y> = K[]
    sage: L.<y> = K.extension(y^2 - 1/x)
    sage: R.<z> = L[
    sage: M.<z> = L.extension(z^2*y - x^3)
    sage: M.derivation()
    d/dz

    We can also create a multiple of the canonical derivation:
    sage: M.derivation([x])
    x*d/dz

class sage.rings.function_field.derivations_polymod.FunctionFieldDerivation_separable(parent, d):
    Bases: FunctionFieldDerivation
    Derivations of separable extensions.

    EXAMPLES:
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: L.derivation()
d/dx

class sage.rings.function_field.derivations_polymod.FunctionFieldHigherDerivation(field)
Bases: Map
Base class of higher derivations on function fields.
INPUT:
• field – function field on which the derivation operates

EXAMPLES:

sage: F.<x> = FunctionField(GF(2))
sage: F.higher_derivation()
Higher derivation map:
  From: Rational function field in x over Finite Field of size 2
  To:  Rational function field in x over Finite Field of size 2

class sage.rings.function_field.derivations_polymod.FunctionFieldHigherDerivation_char_zero(field)
Bases: FunctionFieldHigherDerivation
Higher derivations of function fields of characteristic zero.
INPUT:
• field – function field on which the derivation operates

EXAMPLES:

sage: K.<x> = FunctionField(QQ); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: h = L.higher_derivation()
sage: h
Higher derivation map:
  From: Function field in y defined by y^3 + x^3*y + x
  To:  Function field in y defined by y^3 + x^3*y + x
sage: h(y,1) == -(3*x^2*y+1)/(3*y^2+x^3)
True
sage: h(y^2,1) == -2*y*(3*x^2*y+1)/(3*y^2+x^3)
True
sage: e = L.random_element()
sage: h(h(e,1),1) == 2*h(e,2)
True
sage: h(h(h(e,1),1),1) == 3*2*h(e,3)
True

class sage.rings.function_field.derivations_polymod.FunctionFieldHigherDerivation_global(field)
Bases: FunctionFieldHigherDerivation
Higher derivations of global function fields.
INPUT:
• field – function field on which the derivation operates
EXAMPLES:

```python
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: h = L.higher_derivation()
sage: h
Higher derivation map:
 From: Function field in y defined by y^3 + x^3*y + x
 To: Function field in y defined by y^3 + x^3*y + x
sage: h(y^2, 2)
((x^7 + 1)/x^2)*y^2 + x^3*y
```

class sage.rings.function_field.derivations_polymod.RationalFunctionFieldHigherDerivation_global(field)

Bases: FunctionFieldHigherDerivation

Higher derivations of rational function fields over finite fields.

INPUT:

* field – function field on which the derivation operates

EXAMPLES:

```python
sage: F.<x> = FunctionField(GF(2))
sage: h = F.higher_derivation()
sage: h
Higher derivation map:
 From: Rational function field in x over Finite Field of size 2
 To: Rational function field in x over Finite Field of size 2
sage: h(x^2, 2)
```

1
Maps and morphisms useful for computations with function fields.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: K.hom(1/x)
Function Field endomorphism of Rational function field in x over Rational Field
 Defn: x |--> 1/x
sage: L.<y> = K.extension(y^2 - x) # needs sage.rings.function_field
 ... needs sage.rings.function_field
sage: K.hom(y) # needs sage.rings.function_field
 Function Field morphism:
 From: Rational function field in x over Rational Field
 To: Function field in y defined by y^2 - x
 Defn: x |--> y
sage: L.hom([y,x]) # needs sage.rings.function_field
 Function Field endomorphism of Function field in y defined by y^2 - x
 Defn: y |--> y
 x |--> x
sage: L.hom([x,y]) # needs sage.rings.function_field
 Traceback (most recent call last):
 ...
ValueError: invalid morphism
```

AUTHORS:

- William Stein (2010): initial version
- Julian Rüth (2011-09-14, 2014-06-23, 2017-08-21): refactored class hierarchy; added derivation classes; morphisms to/from fraction fields
- Kwankyu Lee (2017-04-30): added higher derivations and completions
sage: K = QQ['x'].fraction_field()
sage: L = K.function_field()

Isomorphism:
   From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
   To:   Rational function field in x over Rational Field

Return the inverse map of this isomorphism.

EXAMPLES:

sage: K = QQ['x'].fraction_field()
      L = K.function_field()
      f = L.coerce_map_from(K)
      f.section()

Isomorphism:
   From: Rational function field in x over Rational Field
   To:   Fraction Field of Univariate Polynomial Ring in x over Rational Field

class sage.rings.function_field.maps.FunctionFieldCompletion(field, place, name=None, prec=None, gen_name=None)

Bases: Map

Completions on function fields.

INPUT:

- field – function field
- place – place of the function field
- name – string for the name of the series variable
- prec – positive integer; default precision
- gen_name – string; name of the generator of the residue field; used only when place is non-rational

EXAMPLES:

sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[

Completion map:
   From: Function field in y defined by y^2 + y + (x^2 + 1)/x
   To:   Laurent Series Ring in s over Finite Field of size 2
The variable name of the series can be supplied. If the place is not rational such that the residue field is a proper extension of the constant field, you can also specify the generator name of the extension:

```
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: p2 = L.places_finite(2)[0]
sage: p2
(x^2 + x + 1, x*y + 1)
sage: m2 = L.completion(p2, 't', gen_name='b')
sage: m2(x)
(b + 1) + t + t^2 + t^4 + t^8 + t^16 + O(t^20)
sage: m2(y)
b + b*t + b*t^3 + b*t^4 + (b + 1)*t^5 + (b + 1)*t^7 + b*t^9 + b*t^11
+ b*t^12 + b*t^13 + b*t^15 + b*t^16 + (b + 1)*t^17 + (b + 1)*t^19 + O(t^20)
```

default_precision()  
Return the default precision.

EXAMPLES:

```
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
sage: p = L.places_finite()[0]
```

class sage.rings.function_field.maps.FunctionFieldConversionToConstantBaseField(parent)

Bases: Map

Conversion map from the function field to its constant base field.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: QQ.convert_map_from(K)
Conversion map:
```

class sage.rings.function_field.maps.FunctionFieldLinearMap

    Bases: SetMorphism

    Linear map to function fields.

class sage.rings.function_field.maps.FunctionFieldLinearMapSection

    Bases: SetMorphism

    Section of linear map from function fields.

class sage.rings.function_field.maps.FunctionFieldMorphism

    (parent, im_gen, base_morphism)

    Bases: RingHomomorphism

    Base class for morphisms between function fields.

    EXAMPLES:

    sage: K.<x> = FunctionField(QQ)
    sage: f = K.hom(1/x); f
    Function Field endomorphism of Rational function field in x over Rational Field
    Defn: x |--> 1/x

class sage.rings.function_field.maps.FunctionFieldMorphism_polymod

    (parent, im_gen, base_morphism)

    Bases: FunctionFieldMorphism

    Morphism from a finite extension of a function field to a function field.

    EXAMPLES:

    sage: # needs sage.rings.finite_rings
    sage: K.<x> = FunctionField(GF(7)); R.<y> = K[
    ...]
    sage: L.<y> = K.extension(y^3 + 6*x^3 + x)
    →
    # needs sage.rings.function_field
    sage: f = L.hom(y*2); f
    →
    # needs sage.rings.function_field
    Function Field endomorphism of Function field in y defined by y^3 + 6*x^3 + x
    Defn: y |--> 2*y
    sage: factor(L.polynomial())
    →
    # needs sage.rings.function_field
    y^3 + 6*x^3 + x
    sage: f(y).charpoly('y')
    →
    # needs sage.rings.function_field
    y^3 + 6*x^3 + x

class sage.rings.function_field.maps.FunctionFieldMorphism_rational

    (parent, im_gen, base_morphism)

    Bases: FunctionFieldMorphism

    Morphism from a rational function field to a function field.

class sage.rings.function_field.maps.FunctionFieldRingMorphism

    Bases: SetMorphism
Ring homomorphism.

```python
class sage.rings.function_field.maps.FunctionFieldToFractionField
Bases: FunctionFieldVectorSpaceIsomorphism
Isomorphism from rational function field to the isomorphic fraction field of a polynomial ring.
```

**EXAMPLES:**

```python
sage: K = QQ['x'].fraction_field()
sage: L = K.function_field()
sage: f = K.coerce_map_from(L)
Isomorphism:
 From: Rational function field in x over Rational Field
 To: Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

See also:

* *FractionFieldToFunctionField*

```python
section()
Return the inverse map of this isomorphism.
```

**EXAMPLES:**

```python
sage: K = QQ['x'].fraction_field()
sage: L = K.function_field()
sage: f = K.coerce_map_from(L)
sage: f.section()
Isomorphism:
 From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
 To: Rational function field in x over Rational Field
```

```python
class sage.rings.function_field.maps.FunctionFieldVectorSpaceIsomorphism
Bases: Morphism
Base class for isomorphisms between function fields and vector spaces.
```

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[

needs sage.rings.function_field
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)

needs sage.rings.function_field
sage: V, f, t = L.vector_space()

needs sage.modules sage.rings.function_field
sage: isinstance(f, sage.rings.function_field.maps.FunctionFieldVectorSpaceIsomorphism)
True
```

```python
is_injective()
Return True, since the isomorphism is injective.
```

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[

needs sage.rings.function_field
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
```

(continues on next page)
needs sage.rings.function_field
sage: V, f, t = L.vector_space()  
# needs sage.modules sage.rings.function_field
sage: f.is_injective()  
# needs sage.rings.function_field
sage: f.is_surjective()  
# needs sage.modules sage.rings.function_field
True

**is_surjective()**

Return True, since the isomorphism is surjective.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
needs sage.rings.function_field
sage: V, f, t = L.vector_space(); t
needs sage.modules sage.rings.function_field
sage: f.is_surjective()
needs sage.modules sage.rings.function_field
True
```

class sage.rings.function_field.maps.MapFunctionFieldToVectorSpace(K, V)
Bases: FunctionFieldVectorSpaceIsomorphism

Isomorphism from a function field to a vector space.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
needs sage.rings.function_field
sage: V, f, t = L.vector_space(); t
needs sage.modules sage.rings.function_field
Isomorphism:
From: Function field in y defined by y^2 - x*y + 4*x^3
To: Vector space of dimension 2 over Rational function field in x over Rational Field
```

class sage.rings.function_field.maps.MapVectorSpaceToFunctionField(V, K)
Bases: FunctionFieldVectorSpaceIsomorphism

Isomorphism from a vector space to a function field.

**EXAMPLES:**

```python
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
needs sage.rings.function_field
sage: V, f, t = L.vector_space(); f
needs sage.modules sage.rings.function_field
Isomorphism:
From: Vector space of dimension 2 over Rational function field in x over Rational Field
To: Function field in y defined by y^2 - x*y + 4*x^3
```
codomain()

Return the function field which is the codomain of the isomorphism.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
 # needs sage.rings.function_field
sage: V, f, t = L.vector_space()
 # needs sage.modules sage.rings.function_field
sage: f.codomain()
 # needs sage.modules sage.rings.function_field
Function field in y defined by y^2 - x*y + 4*x^3
```

domain()

Return the vector space which is the domain of the isomorphism.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ); R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x*y + 4*x^3)
 # needs sage.rings.function_field
sage: V, f, t = L.vector_space()
 # needs sage.modules sage.rings.function_field
sage: f.domain()
 # needs sage.modules sage.rings.function_field
Vector space of dimension 2 over Rational function field in x over RationalFunctionField
```
CHAPTER
TWENTYFOUR

SPECIAL EXTENSIONS OF FUNCTION FIELDS

This module currently implements only constant field extension.

24.1 Constant field extensions

EXAMPLES:

Constant field extension of the rational function field over rational numbers:

```sage
t = K.<x> = FunctionField(QQ)
sage: N.<a> = QuadraticField(2) # needs sage.rings.number_field
sage: L = K.extension_constant_field(N) # needs sage.rings.number_field
sage: L # needs sage.rings.number_field
```
Rational function field in x over Number Field in a with defining polynomial x^2 - 2 with a = 1.4142... over its base

```sage
d = (x^2 - 2).divisor() # needs sage.libs.pari sage.modules
```

```sage
d # needs sage.libs.pari sage.modules
-2*Place (1/x) + Place (x^2 - 2)
```

```sage
L.conorm_divisor(d) # needs sage.libs.pari sage.modules sage.rings.number_field
```

-2*Place (1/x) + Place (x - a) + Place (x + a)

Constant field extension of a function field over a finite field:

```sage
needs sage.rings.finite_rings sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); R.<Y> = K[]
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
sage: E = F.extension_constant_field(GF(2^3))
sage: E
```
Function field in y defined by y^3 + x^6 + x^4 + x^2 over its base

```sage
p = F.get_place(3)
sage: E.conorm_place(p) # random
```

(continues on next page)
Place (x + z3, y + z3^2 + z3)
+ Place (x + z3^2, y + z3)
+ Place (x + z3^2 + z3, y + z3^2)

sage: q = F.get_place(2)
sage: E.conorm_place(q)  # random
Place (x + 1, y^2 + y + 1)

sage: E.conorm_divisor(p + q)  # random
Place (x + 1, y^2 + y + 1)
+ Place (x + z3, y + z3^2 + z3)
+ Place (x + z3^2, y + z3)
+ Place (x + z3^2 + z3, y + z3^2)

AUTHORS:

• Kwankyu Lee (2021-12-24): added constant field extension

class sage.rings.function_field.extensions.ConstantFieldExtension(F, k_ext)

Bases: FunctionFieldExtension

Constant field extension.

INPUT:

• F – a function field whose constant field is \( k \)

• k_ext – an extension of \( k \)

conorm_divisor(d)

Return the conorm of the divisor \( d \) in this extension.

INPUT:

• \( d \) – divisor of the base function field

OUTPUT: a divisor of the top function field

EXAMPLES:

```
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); R.<Y> = K[]
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
sage: E = F.extension_constant_field(GF(2^3))
sage: p1 = F.get_place(3)
sage: p2 = F.get_place(2)
sage: c = E.conorm_divisor(2*p1 + 3*p2)
sage: c1 = E.conorm_place(p1)
sage: c2 = E.conorm_place(p2)
sage: c == 2*c1 + 3*c2
True
```

conorm_place(p)

Return the conorm of the place \( p \) in this extension.

INPUT:

• \( p \) – place of the base function field

OUTPUT: divisor of the top function field

EXAMPLES:
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); R.<Y> = K[]
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
sage: E = F.extension_constant_field(GF(2^3))
sage: p = F.get_place(3)
sage: d = E.conorm_place(p)
sage: [pl.degree() for pl in d.support()]
[1, 1, 1]
sage: p = F.get_place(2)
sage: d = E.conorm_place(p)
sage: [pl.degree() for pl in d.support()]
[2]

defining_morphism()
Return the defining morphism of this extension.
This is the morphism from the base to the top.
EXAMPLES:

sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); R.<Y> = K[]
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
sage: E = F.extension_constant_field(GF(2^3))
sage: E.defining_morphism()
Function Field morphism:
  From: Function field in y defined by y^3 + x^6 + x^4 + x^2
  To:   Function field in y defined by y^3 + x^6 + x^4 + x^2
  Defn: y |--> y
         x |--> x
         1 |--> 1

top()
Return the top function field of this extension.
EXAMPLES:

sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: K.<x> = FunctionField(GF(2)); R.<Y> = K[]
sage: F.<y> = K.extension(Y^3 - x^2*(x^2 + x + 1)^2)
sage: E = F.extension_constant_field(GF(2^3))
sage: E.top()
Function field in y defined by y^3 + x^6 + x^4 + x^2

class sage.rings.function_field.extensions.FunctionFieldExtension
    Bases: RingExtension_generic

Abstract base class of function field extensions.
FACTORIES TO CONSTRUCT FUNCTION FIELDS

This module provides factories to construct function fields. These factories are only for internal use.

EXAMPLES:

```sage
sage: K.<x> = FunctionField(QQ); K
Rational function field in x over Rational Field
sage: L.<x> = FunctionField(QQ); L
Rational function field in x over Rational Field
sage: K is L
True
```

AUTHORS:

• William Stein (2010): initial version
• Maarten Derickx (2011-09-11): added FunctionField_polmod_Constructor, use @cached_function
• Julian Rueth (2011-09-14): replaced @cached_function with UniqueFactory

```python
class sage.rings.function_field.constructor.FunctionFieldExtensionFactory
 Bases: UniqueFactory

 Create a function field defined as an extension of another function field by adjoining a root of a univariate polynomial. The returned function field is unique in the sense that if you call this function twice with an equal polynomial and names it returns the same python object in both calls.

INPUT:

• polynomial – univariate polynomial over a function field
• names – variable names (as a tuple of length 1 or string)
• category – category (defaults to category of function fields)

EXAMPLES:
```
```
create_key\((\text{polynomial, names})\)

Given the arguments and keywords, create a key that uniquely determines this object.

EXAMPLES:

```
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<w> = K.extension(x - y^2) # indirect doctest

create_object\((\text{version, key, **extra_args})\)

Create the object from the key and extra arguments. This is only called if the object was not found in the cache.

**EXAMPLES:**

```
sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<w> = K.extension(x - y^2) # indirect doctest
```

class \texttt{sage.rings.function_field.constructor.FunctionFieldFactory}

Bases: \texttt{UniqueFactory}

Return the function field in one variable with constant field \(F\). The function field returned is unique in the sense that if you call this function twice with the same base field and name then you get the same python object back.

**INPUT:**

- \(F\) – field
- \texttt{names} – name of variable as a string or a tuple containing a string

**EXAMPLES:**

```
sage: K.<x> = FunctionField(QQ); K
Rational function field in x over Rational Field
sage: L.<y> = FunctionField(GF(7)); L
Rational function field in y over Finite Field of size 7
sage: R.<z> = L[]
sage: M.<z> = L.extension(z^7 - z - y); M # indirect doctest
```

create_key\((F, \text{names})\)

Given the arguments and keywords, create a key that uniquely determines this object.

**EXAMPLES:**
A basic reference for the theory of algebraic function fields is [Stich2009].
26.1 Hermite form computation for function fields

This module provides an optimized implementation of the algorithm computing Hermite forms of matrices over polynomials. This is the workhorse of the function field machinery of Sage.

EXAMPLES:

```python
sage: P.<x> = PolynomialRing(QQ)
sage: A = matrix(P,3,[-(x-1)^((i-j+1) % 3) for i in range(3) for j in range(3)])
sage: A
[-x + 1 -1 -x^2 + 2*x - 1]
[-x^2 + 2*x - 1 -x + 1 -1]
[-1 -x^2 + 2*x - 1 -x + 1]
sage: from sage.rings.function_field.hermite_form_polynomial import reversed_hermite_form
sage: B = copy(A)
sage: U = reversed_hermite_form(B, transformation=True)
sage: U * A == B
True
sage: B
[x^3 - 3*x^2 + 3*x - 2 0 0]
[0 x^3 - 3*x^2 + 3*x - 2 0]
[x^2 - 2*x + 1 x - 1 1]
```

The function `reversed_hermite_form()` computes the reversed hermite form, which is reversed both row-wise and column-wise from the usual hermite form. Let us check it:

```python
sage: A.reverse_rows_and_columns()
sage: C = copy(A.hermite_form())
sage: C.reverse_rows_and_columns()
sage: C
[x^3 - 3*x^2 + 3*x - 2 0 0]
[0 x^3 - 3*x^2 + 3*x - 2 0]
[x^2 - 2*x + 1 x - 1 1]
sage: C == B
True
```

AUTHORS:

- Kwankyu Lee (2021-05-21): initial version
Transform the matrix in place to reversed hermite normal form and optionally return the transformation matrix.

**INPUT:**

- transformation – boolean (default: False); if True, return the transformation matrix

**EXAMPLES:**

```python
sage: from sage.rings.function_field.hermite_form_polynomial import reversed_hermite_form
sage: P.<x> = PolynomialRing(QQ)
sage: A = matrix(P,3,[-(x-1)^((i-2*j) % 4) for i in range(3) for j in range(3)])
sage: A
[-1 -x^2 + 2*x - 1 -1]
[-x + 1 -x^3 + 3*x^2 - 3*x + 1 -x + 1]
[-x^2 + 2*x - 1 -x^2 + 2*x - 1]
sage: B = copy(A)
sage: U = reversed_hermite_form(B, transformation=True)
sage: U * A == B
True
sage: B
[0 0 0]
[0 x^4 - 4*x^3 + 6*x^2 - 4*x 0]
[1 x^2 - 2*x + 1 1]
```
• Index
• Module Index
• Search Page
sage.rings.function_field.constructor, 183
sage.rings.function_field.derivations, 163
sage.rings.function_field.derivations_polymod, 167
sage.rings.function_field.derivations_rational, 165
sage.rings.function_field.differential, 151
sage.rings.function_field.divisor, 143
sage.rings.function_field.element, 57
sage.rings.function_field.element_polymod, 75
sage.rings.function_field.element_rational, 69
sage.rings.function_field.extensions, 179
sage.rings.function_field.function_field, 3
sage.rings.function_field.function_field_polymod, 31
sage.rings.function_field.function_field_rational, 21
sage.rings.function_field.hermite_form_polynomial, 187
sage.rings.function_field.ideal, 105
sage.rings.function_field.ideal_polymod, 121
sage.rings.function_field.ideal_rational, 117
sage.rings.function_field.maps, 171
sage.rings.function_field.order, 79
sage.rings.function_field.order_basis, 87
sage.rings.function_field.order_polymod, 95
sage.rings.function_field.order_rational, 83
sage.rings.function_field.place, 133
sage.rings.function_field.place_polymod, 139
sage.rings.function_field.place_rational, 137
sage.rings.function_field.valuation_ring, 159
INDEX

B

base_field() (sage.rings.function_field.function_field_polymod.FunctionField_polymod.method), 38
base_field() (sage.rings.function_field.function_field_rational.RationalFunctionField.method), 23
base_ring() (sage.rings.function_field.ideal.FunctionFieldIdeal.method), 107
basis() (sage.rings.function_field.differential.DifferentialsSpace.method), 152
basis() (sage.rings.function_field.order_basis.FunctionFieldOrder_basis.method), 91
basis() (sage.rings.function_field.order_polymod.FunctionFieldMaximalOrder_polymod.method), 99
basis() (sage.rings.function_field.order_rational.FunctionFieldMaximalOrder_rational.method), 85
basis() (sage.rings.function_field.order_rational.FunctionFieldMaximalOrderInfinite_rational.method), 83
basis_differential_space() (sage.rings.function_field.divisor.FunctionFieldDivisor.method), 144
basis_function_space() (sage.rings.function_field.divisor.FunctionFieldDivisor.method), 144
basis_matrix() (sage.rings.function_field.ideal_polymod.FunctionFieldIdeal_polymod.method), 126
basis_of_differentials_of_first_kind() (sage.rings.function_field.function_field.FunctionField.method), 7
basis_of_holomorphic_differentials() (sage.rings.function_field.function_field.FunctionField.method), 7
change_variable_name() (sage.rings.function_field.function_field_rational.RationalFunctionField.method), 23
characteristic() (sage.rings.function_field.function_field.FunctionField.method), 7
characteristic_polynomial() (sage.rings.function_field.element.FunctionFieldElement.method), 58
charpoly() (sage.rings.function_field.element.FunctionFieldElement.method), 58
codifferent() (sage.rings.function_field.order_polymod.FunctionFieldMaximalOrder_polymod.method), 100
codomain() (sage.rings.function_field.maps.MapVectorSpaceToFunctionField.method), 176
completion() (sage.rings.function_field.function_field.FunctionField.method), 8
conorm_divisor() (sage.rings.function_field.extensions.ConstantFieldExtension.method), 180
conorm_place() (sage.rings.function_field.extensions.ConstantFieldExtension.method), 180
constant_base_field() (sage.rings.function_field.function_field_polymod.FunctionField_polymod.method), 39
constant_base_field() (sage.rings.function_field.function_field_polymod.FunctionField_simple.method), 53
constant_field() (sage.rings.function_field.function_field_polymod.FunctionField_polymod.method), 39
constant_field() (sage.rings.function_field.function_field_rational.RationalFunctionField.method), 23
constant_field() (sage.rings.function_field.function_field_polymod.FunctionField_maximal_polymod.method), 53
 ConstantFieldExtension (class in sage.rings.function_field.extensions), 180
coordinate_vector() (sage.rings.function_field.order_basis.FunctionFieldOrder_basis.method), 91
coordinate_vector() (sage.rings.function_field.function_field.FunctionField_polymod.method), 100
coordinate_vector() (sage.rings.function_field.order_polymod.FunctionFieldMaximalOrder_polymod.method), 100
cartier() (sage.rings.function_field.differential.FunctionFieldDifferential_global.method), 157
change_variable_name() (sage.rings.function_field.function_field_polymod.FunctionField_polymod.method), 38
FunctionFieldElement (class in sage.rings.function_field.element), 58
FunctionFieldElement_polymod (class in sage.rings.function_field.element_polymod), 75
FunctionFieldElement_rational (class in sage.rings.function_field.element_rational), 69
FunctionFieldExtension (class in sage.rings.function_field.extensions), 181
FunctionFieldExtensionFactory (class in sage.rings.function_field.constructor), 183
FunctionFieldFactory (class in sage.rings.function_field.constructor), 184
FunctionFieldHigherDerivation (class in sage.rings.function_field.derivations_polymod), 168
FunctionFieldHigherDerivation_char_zero (class in sage.rings.function_field.derivations_polymod), 168
FunctionFieldHigherDerivation_global (class in sage.rings.function_field.derivations_polymod), 168
FunctionFieldIdeal (class in sage.rings.function_field.ideal), 107
FunctionFieldIdeal_global (class in sage.rings.function_field.ideal_global), 124
FunctionFieldIdeal_module (class in sage.rings.function_field.ideal_module), 113
FunctionFieldIdeal_polymod (class in sage.rings.function_field.ideal_polymod), 125
FunctionFieldIdeal_rational (class in sage.rings.function_field.ideal_rational), 118
FunctionFieldIdealInfinite (class in sage.rings.function_field.ideal_infinite), 112
FunctionFieldIdealInfinite_module (class in sage.rings.function_field.ideal_infinite_module), 112
FunctionFieldIdealInfinite_polymod (class in sage.rings.function_field.ideal_infinite_polymod), 121
FunctionFieldIdealInfinite_rational (class in sage.rings.function_field.ideal_infinite_rational), 117
FunctionFieldLinearMap (class in sage.rings.function_field.maps), 174
FunctionFieldLinearMapSection (class in sage.rings.function_field.maps), 174
FunctionFieldMaximalOrder (class in sage.rings.function_field.order), 80
FunctionFieldMaximalOrder_global (class in sage.rings.function_field.order_global), 98
FunctionFieldMaximalOrder_polymod (class in sage.rings.function_field.order_polymod), 99
FunctionFieldMaximalOrder_rational (class in sage.rings.function_field.order_rational), 84
FunctionFieldMaximalOrderInfinite (class in sage.rings.function_field.order_infinite), 81
FunctionFieldMaximalOrderInfinite_global (class in sage.rings.function_field.order_infinite_global), 83
FunctionFieldMaximalOrderInfinite_polymod (class in sage.rings.function_field.order_infinite_polymod), 85
FunctionFieldMaximalOrderInfinite_rational (class in sage.rings.function_field.order_infinite_rational), 86
FunctionFieldMorphism (class in sage.rings.function_field.maps), 174
FunctionFieldMorphism_polymod (class in sage.rings.function_field.maps), 174
FunctionFieldMorphism_rational (class in sage.rings.function_field.maps), 174
FunctionFieldOrder (class in sage.rings.function_field.order), 81
FunctionFieldOrder_base (class in sage.rings.function_field.order_base), 81
FunctionFieldOrder_basis (class in sage.rings.function_field.order_basis), 90
FunctionFieldOrderInfinite (class in sage.rings.function_field.order_infinite), 81
FunctionFieldOrderInfinite_base (class in sage.rings.function_field.order_infinite_base), 87
FunctionFieldOrderInfinite_rational (class in sage.rings.function_field.order_infinite_rational), 86
FunctionFieldPlace (class in sage.rings.function_field.place), 134
FunctionFieldPlace_polymod (class in sage.rings.function_field.place_polymod), 139
FunctionFieldPlace_rational (class in sage.rings.function_field.place_rational), 137
FunctionFieldRingMorphism (class in sage.rings.function_field.maps), 174
FunctionFieldToFractionField (class in sage.rings.function_field.maps), 175
FunctionFieldValuationRing (class in sage.rings.function_field.valuation_ring), 160
FunctionFieldVectorSpaceIsomorphism (class in sage.rings.function_field.maps), 175

G

gaps() (sage.rings.function_field.function_field_polymod.FunctionField_global method), 32
gaps() (sage.rings.function_field.place_polymod.FunctionFieldPlace_polymod method), 139
gen() (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 43
gen() (sage.rings.function_field.function_field_rational.RationalFunctionField method), 26
gen() (sage.rings.function_field.ideal.FunctionFieldIdeal_module method), 113

Index
Algebraic Function Fields, Release 10.1

\textbf{gen()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_rational method), 119
\textbf{gen()} (sage.rings.function_field.ideal_rational.FunctionFieldIdealInfinite_rational method), 119
\textbf{higher_derivative()} (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 53
\textbf{gens()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_rational method), 117
\textbf{gens()} (sage.rings.function_field.ideal_rational.FunctionFieldIdealInfinite_rational method), 119
\textbf{higher_derivative()} (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 28
\textbf{gens_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 102
\textbf{higher_derivative()} (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 97
\textbf{hom()} (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 85
\textbf{ideal()} (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 120
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 85
\textbf{ideal()} (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 124
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdealInfinite_rational method), 127
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 97
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdealInfinite_rational method), 121
\textbf{ideal()} (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 126
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 126
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 121
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdealInfinite_rational method), 121
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_rational method), 119
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_rational method), 119
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_rational method), 117
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 127
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 121
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 120
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 102
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 97
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 85
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 83
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 110
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 128
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 122
\textbf{ideal_over_base()} (sage.rings.function_field.ideal_rational.FunctionFieldIdeal_infinite method), 81
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.order_rational.FunctionFieldOrder_basis method), 31
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.order_rational.FunctionFieldOrder_basis method), 53
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.order_rational.FunctionFieldOrder BASIS method), 26
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.order_rational.FunctionFieldOrder BASIS method), 28
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.order_rational.FunctionFieldOrder BASIS method), 89
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.order_rational.FunctionFieldOrder BASIS method), 85
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.order_rational.FunctionFieldOrder BASIS method), 98
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.order_rational.FunctionFieldOrder BASIS method), 92
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.order_rational.FunctionFieldOrder_Infinite BASIS method), 92
\textbf{ideal_with_gens_over_base()} (sage.rings.function_field.order_rational.FunctionFieldOrder_Infinite BASIS method), 92
IdealMonoid (class in sage.rings.function_field.ideal), 115

intersect() (sage.rings.function_field.ideal_polymod.FunctionFieldIdealPolynomial method), 128

intersection() (sage.rings.function_field.ideal.FunctionFieldIdeal module), 114

inverse_mod() (sage.rings.function_field.element_rational.FunctionFieldElement method), 70

is_effective() (sage.rings.function_field.divisor.FunctionFieldDivisor method), 146

is_field() (sage.rings.function_field.order.FunctionFieldOrder_base method), 176

is_finite() (sage.rings.function_field.function_field.FunctionField method), 11

is_FunctionField() (in module sage.rings.function_field.function_field), 20

is_FunctionFieldElement() (in module sage.rings.function_field.function_field), 67

is_global() (sage.rings.function_field.function_field.FunctionField method), 11

is_infinite_place() (sage.rings.function_field.place_polymod.FunctionFieldPlace_polymod method), 137

is_infinite_place() (sage.rings.function_field.function_field.FunctionField method), 153

is_injective() (sage.rings.function_field.function_field.FunctionField method), 163

is_injective() (sage.rings.function_field.function_field_rational.RationalFunctionField method), 129

is_integrale() (sage.rings.function_field.function_field_polymod.FunctionFieldPolynomial method), 129

is_integrale() (sage.rings.function_field.function_field_polymod.FunctionFieldPolynomial method), 129

is_noetherian() (sage.rings.function_field.order.FunctionFieldOrder_base method), 82

is_nth_power() (sage.rings.function_field.function_field.FunctionField method), 12

is_prime() (sage.rings.function_field.function_field.FunctionField method), 129

is_prime() (sage.rings.function_field.function_field.FunctionField method), 122

is_prime() (sage.rings.function_field.function_field.FunctionField method), 119
module, 143
sage.rings.function_field.element
module, 57
sage.rings.function_field.element_polymod
module, 75
sage.rings.function_field.element_rational
module, 69
sage.rings.function_field.extensions
module, 179
sage.rings.function_field.function_field
module, 3
sage.rings.function_field.function_field_polymod
module, 31
sage.rings.function_field.function_field_rational
module, 21
sage.rings.function_field.hermite_form_polynomial
module, 187
sage.rings.function_field.ideal
module, 105
sage.rings.function_field.ideal_polymod
module, 121
sage.rings.function_field.ideal_rational
module, 117
sage.rings.function_field.maps
module, 171
sage.rings.function_field.order
module, 79
sage.rings.function_field.order_basis
module, 87
sage.rings.function_field.order_polymod
module, 95
sage.rings.function_field.order_rational
module, 83
sage.rings.function_field.place
module, 133
sage.rings.function_field.place_polymod
module, 139
sage.rings.function_field.place_rational
module, 137
sage.rings.function_field.valuation_ring
module, 159

section() (sage.rings.function_field.maps.FractionFieldToFunctionField method), 172
section() (sage.rings.function_field.maps.FunctionFieldToFractionField method), 175
separable_model() (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 49
simple_model() (sage.rings.function_field.function_field_polymod.FunctionField_polymod method), 51
some_elements() (sage.rings.function_field.function_field.FunctionField method), 16
space_of_differentials() (sage.rings.function_field.function_field.FunctionField method), 16
space_of_differentials_of_first_kind()
(space.rings.function_field.function_field.FunctionField method), 17
space_of_holomorphic_differentials()
(space.rings.function_field.function_field.FunctionField method), 17
sqrt() (sage.rings.function_field.element_rational.FunctionFieldElement method), 72
support() (sage.rings.function_field.divisor.FunctionFieldDivisor method), 147
top() (sage.rings.function_field.extensions.ConstantFieldExtension method), 181
trace() (sage.rings.function_field.element.FunctionFieldElement method), 66
valuation() (sage.rings.function_field.diffential.FunctionFieldDifferent method), 156
valuation() (sage.rings.function_field.divisor.FunctionFieldDivisor method), 148
valuation() (sage.rings.function_field.element.FunctionFieldElement method), 66
valuation() (sage.rings.function_field.element_rational.FunctionFieldElement method), 72
valuation() (sage.rings.function_field.function_field.FunctionField method), 18
valuation() (sage.rings.function_field.ideal_polymod.FunctionFieldIdealPolymod method), 132
valuation() (sage.rings.function_field.ideal_polymod.FunctionFieldIdealPolymod method), 124
valuation() (sage.rings.function_field.ideal_rational.FunctionFieldIdealRational method), 120
valuation() (sage.rings.function_field.ideal_rational.FunctionFieldIdealRational method), 118
valuation_ring() (sage.rings.function_field.place_polymod.FunctionField method), 141
valuation_ring() (sage.rings.function_field.place_rational.FunctionField method), 138
weierstrass_places()
(sage.rings.function_field.function_field_polymod.FunctionFieldPolymod method), 35
zeros() (sage.rings.function_field.element.FunctionFieldElement method), 66