Functions

Release 10.3

The Sage Development Team

Mar 20, 2024
1 Built-in Functions ... 1
2 Indices and Tables ... 157
Python Module Index ... 159
Index .. 161
1.1 Logarithmic functions

AUTHORS:

- Yoora Yi Tenen (2012-11-16): Add documentation for \(\log() \) (github issue #12113)
- Tomas Kalvoda (2015-04-01): Add \(\exp_{\text{polar}}() \) (github issue #18085)

```python
class sage.functions.log.Function_dilog
    Bases: GinacFunction

    The dilogarithm function \( \text{Li}_2(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^2} \).
    This is simply an alias for \( \text{polylog}(2, z) \).

EXAMPLES:
```

```python
sage: # needs sage.symbolic
sage: dilog(1)
1/6*pi^2
sage: dilog(1/2)
1/12*pi^2 - 1/2*log(2)^2
sage: dilog(x^2+1)
dilog(x^2 + 1)
sage: dilog(-1)
-1/12*pi^2
sage: dilog(-1.0)
-0.822467033424113
sage: dilog(-1.1)
-0.89038090262283
sage: dilog(1/2)
1/12*pi^2 - 1/2*log(2)^2
sage: dilog(0.5)
0.582240526465012
sage: dilog(1/2).n()
0.582240526465012
sage: var('z')
z
sage: dilog(z).diff(z, 2)
log(-z + 1)/z^2 - 1/((z - 1)*z)
sage: dilog(z).series(z==1/2, 3)
(1/12*pi^2 - 1/2*log(2)^2) + (-2*log(1/2))*(z - 1/2) + (2*log(1/2) + 2)*(z - 1/2)^2 + Order(1/8*(2*z - 1)^3)
sage: latex(dilog(z))
```

(continues on next page)
Dilog has a branch point at 1. Sage's floating point libraries may handle this differently from the symbolic package:

```sage
sage: # needs sage.symbolic
dsage: dilog(1)
1/6*pi^2
dsage: dilog(1.)
1.64493406684823
sage: dilog(1).n()
1.64493406684823
sage: float(dilog(1))
1.6449340668482262
```

class `sage.functions.log.Function_exp`

Bases: `GinacFunction`

The exponential function, \(\exp(x) = e^x \).

EXAMPLES:

```sage
sage: # needs sage.symbolic
dsage: exp(-1)
e^(-1)
dsage: exp(2)
e^2
dsage: exp(2).n(100)
7.3890560989306502272304274606
sage: exp(x^2 + log(x))
e^(x^2 + log(x))
dsage: exp(x^2 + log(x)).simplify()
x*e^(x^2)
dsage: exp(2.5)
12.1824939607035
sage: exp(I*pi/12)
(1/4*I + 1/4)*sqrt(6) - (1/4*I - 1/4)*sqrt(2)
sage: exp(float(2.5))
12.182493960703473
sage: exp(RDF('2.5'))
12.182493960703473
```

To prevent automatic evaluation, use the `hold` parameter:

```sage
sage: exp(I*pi, hold=True)  # needs sage.symbolic
e^(I*pi)
sage: exp(0, hold=True)    # needs sage.symbolic
e^0
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:
For the sake of simplification, the argument is reduced modulo the period of the complex exponential function, $2\pi i$:

```
sage: k = var('k', domain='integer')  
# needs sage.symbolic

sage: exp(2*k*pi*I)  
# needs sage.symbolic

1

sage: exp(log(2) + 2*k*pi*I)  
# needs sage.symbolic

2
```

The precision for the result is deduced from the precision of the input. Convert the input to a higher precision explicitly if a result with higher precision is desired:

```
sage: t = exp(RealField(100)(2)); t  
# needs sage.rings.real_mpfr

7.3890560989306502272304274606

sage: t.prec()  
# needs sage.rings.real_mpfr

100

sage: exp(2).n(100)  
# needs sage.symbolic

7.3890560989306502272304274606
```

```
class sage.functions.log.Function_exp_polar
    Bases: BuiltinFunction

Representation of a complex number in a polar form.

INPUT:

• $z$ – a complex number $z = a + ib$.

OUTPUT:

A complex number with modulus $\exp(a)$ and argument $b$.

If $-\pi < b \leq \pi$ then $\exp_polar(z) = \exp(z)$. For other values of $b$ the function is left unevaluated.

EXAMPLES:

The following expressions are evaluated using the exponential function:
```
The function is left unevaluated when the imaginary part of the input \(z \) does not satisfy \(-\pi < \Im(z) \leq \pi\):

```python
sage: exp_polar(2*pi*I)
#--
needs sage.symbolic
exp_polar(2*I*pi)
```

This fixes github issue #18085:

```python
sage: integrate(1/sqrt(1+x^3), x, algorithm='sympy')
#--
needs sage.symbolic
1/3*x*gamma(1/3)*hypergeometric((1/3, 1/2), (4/3,), -x^3)/gamma(4/3)
```

See also:

Examples in Sympy documentation, Sympy source code of exp_polar

REFERENCES:

Wikipedia article Complex_number#Polar_form

class sage.functions.log.Function_harmonic_number
Bases: BuiltinFunction

Harmonic number function, defined by:

\[
H_n = H_{n,1} = \sum_{k=1}^{n} \frac{1}{k}
\]

\[
H_s = \int_{0}^{1} \frac{1 - x^s}{1 - x}
\]

See the docstring for `Function_harmonic_number_generalized()`.

This class exists as callback for harmonic_number returned by Maxima.

class sage.functions.log.Function_harmonic_number_generalized
Bases: BuiltinFunction

Harmonic and generalized harmonic number functions, defined by:

\[
H_n = H_{n,1} = \sum_{k=1}^{n} \frac{1}{k}
\]

\[
H_{n,m} = \sum_{k=1}^{n} \frac{1}{km}
\]
They are also well-defined for complex argument, through:

\[H_s = \int_0^1 \frac{1 - x^s}{1 - x} \]

\[H_s,m = \zeta(m) - \zeta(m, s - 1) \]

If called with a single argument, that argument is \(s \) and \(m \) is assumed to be 1 (the normal harmonic numbers \(H_s \)).

ALGORITHM:

Numerical evaluation is handled using the mpmath and FLINT libraries.

REFERENCES:

- Wikipedia article Harmonic_number

EXAMPLES:

Evaluation of integer, rational, or complex argument:

```
sage: harmonic_number(5)  # needs mpmath
137/60

sage: # needs sage.symbolic
sage: harmonic_number(3, 3)
251/216
sage: harmonic_number(5/2)
-2*log(2) + 46/15
sage: harmonic_number(3., 3)
zeta(3) - 0.0400198661225573
sage: harmonic_number(3., 3.).n(200)
1.16203703703703703703703...
```

Solutions to certain sums are returned in terms of harmonic numbers:

```
sage: k = var('k')  # needs sage.symbolic
sage: sum(1/k^7,k,1,x)  # needs sage.symbolic
harmonic_number(x, 7)
```

Check the defining integral at a random integer:

```
sage: n = randint(10,100)  # needs sage.symbolic
sage: bool(SR(integrate((1-x^n)/(1-x),x,0,1)) == harmonic_number(n))  # needs sage.symbolic
True
```

There are several special values which are automatically simplified:

```
sage: harmonic_number(0)  # needs mpmath
0
```

(continues on next page)
Functions, Release 10.3

```python
sage: harmonic_number(1)  # needs mpmath
1
sage: harmonic_number(x, 1)  # needs sage.symbolic
harmonic_number(x)
```

```python
class sage.functions.log.Function_lambert_w
    Bases: BuiltinFunction

    The integral branches of the Lambert W function $W_n(z)$.

    This function satisfies the equation

    $z = W_n(z)e^{W_n(z)}$

    INPUT:

    - $n$ – an integer. $n = 0$ corresponds to the principal branch.
    - $z$ – a complex number

    If called with a single argument, that argument is $z$ and the branch $n$ is assumed to be 0 (the principal branch).

    ALGORITHM:

    Numerical evaluation is handled using the mpmath and SciPy libraries.

    REFERENCES:

    - Wikipedia article Lambert_W_function

    EXAMPLES:

    Evaluation of the principal branch:

    ```python
 sage: lambert_w(1.0) # needs scipy
 0.567143290409784
 sage: lambert_w(-1).n() # needs mpmath
 -0.318131505204764 + 1.33723570143069*I
 sage: lambert_w(-1.5 + 5*I) # needs mpmath sage.symbolic
 1.17418016254171 + 1.10651494102011*I
    ```

    Evaluation of other branches:

    ```python
 sage: lambert_w(2, 1.0) # needs scipy
 -2.40158510486800 + 10.7762995161151*I
    ```

    Solutions to certain exponential equations are returned in terms of lambert_w:

    ```python
 sage: S = solve(e^(5*x)+x==0, x, to_poly_solve=True) # needs sage.symbolic
 sage: z = S[0].rhs(); z # needs sage.symbolic
 -1/5*lambert_w(5)
 sage: N(z) # needs sage.symbolic
 -0.197530869258587
    ```
```
Check the defining equation numerically at $z = 5$:

```sage
sage: N(lambert_w(5)*exp(lambert_w(5)) - 5)
```

There are several special values of the principal branch which are automatically simplified:

```sage
sage: lambert_w(0)

sage: lambert_w(e)

sage: lambert_w(-1/e)
```

Integration (of the principal branch) is evaluated using Maxima:

```sage
sage: integrate(lambert_w(x), x)

sage: integrate(lambert_w(x), x, 0, 1)

sage: integrate(lambert_w(x), x, 0, 1.0)
```

Warning: The integral of a non-principal branch is not implemented, neither is numerical integration using GSL. The `numerical_integral()` function does work if you pass a lambda function:

```sage
sage: numerical_integral(lambda x: lambert_w(x), 0, 1)
```

```code
class sage.functions.log.Function_log1

Bases: GinacFunction

The natural logarithm of $x$.

See `log()` for extensive documentation.

EXAMPLES:

```sage
sage: ln(e^2)

sage: ln(2)

sage: ln(10)
```
class sage.functions.log.Function_log2

Bases: GinacFunction

Return the logarithm of x to the given base.

See log() for extensive documentation.

EXAMPLES:

```
sage: from sage.functions.log import logb
sage: logb(1000, 10) # needs sage.symbolic
3
```

class sage.functions.log.Function_polylog

Bases: GinacFunction

The polylog function \( Li_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s} \).

The first argument is \( s \) (usually an integer called the weight) and the second argument is \( z \): \( \text{polylog}(s, z) \).

This definition is valid for arbitrary complex numbers \( s \) and \( z \) with \( |z| < 1 \). It can be extended to \( |z| \geq 1 \) by the process of analytic continuation, with a branch cut along the positive real axis from 1 to \(+\infty\). A NaN value may be returned for floating point arguments that are on the branch cut.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: polylog(2.7, 0)
0.000000000000000
sage: polylog(2, 1)
1/6*pi^2
sage: polylog(2, -1)
-1/12*pi^2
sage: polylog(3, -1)
-3/4*zeta(3)
sage: polylog(2, I)
I*catalan - 1/48*pi^2
sage: polylog(4, 1/2)
polylog(4, 1/2)
sage: polylog(4, 0.5)
0.517479061673899
sage: polylog(4, 1)
1/90*pi^4
sage: f = polylog(4, 1); f
1/90*pi^4
sage: f.n() # needs sage.symbolic
1.0823323371114
sage: polylog(4, 2).n()
2.42786280675470 - 0.174371300025453*I
sage: complex(polylog(4, 2))
(2.4278628067547032-0.17437130002545306j)
sage: float(polylog(4, 0.5))
0.5174790616738993
sage: z = var('z')
sage: polylog(2, z).series(z==0, 5)
```

(continues on next page)
1.2 Trigonometric functions

```python
class sage.functions.trig.Function_arccos
 Bases: GinacFunction

The arccosine function.

EXAMPLES:

```sage
arccos(0.5)
1.04719755119660
arccos(1/2)  # needs sage.symbolic
1/3*pi
arccos(1 + 1.0*I)  # needs sage.symbolic
0.904556894302381 - 1.06127506190504*I
arccos(3/4).n(100)  # needs sage.symbolic
0.722734247813416117837735264
```

We can delay evaluation using the hold parameter:

```sage
arccos(0, hold=True)  # needs sage.symbolic
arccos(0)
```

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

```sage
a = arccos(0, hold=True); a.simplify()  # needs sage.symbolic
1/2*pi
```

conjugate(arccos(x)) == arccos(conjugate(x)). unless on the branch cuts, which run along the real axis outside the interval [-1, +1]:

```sage
# needs sage.symbolic
conjugate(arccos(x))
conjugate(arccos(x))
var('y', domain='positive')
y
```

(continues on next page)
```python
sage: conjugate(arccos(y))
conjugate(arccos(y))
sage: conjugate(arccos(y+I))
conjugate(arccos(y + I))
sage: conjugate(arccos(1/16))
arccos(1/16)
sage: conjugate(arccos(2))
conjugate(arccos(2))
sage: conjugate(arccos(-2))
pi - conjugate(arccos(2))
```

class `sage.functions.trig.Function_arccot`

Bases: GinacFunction

The arccotangent function.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: arccot(1/2)
arccot(1/2)
sage: RDF(arccot(1/2))  # abs tol 2e-16
1.1071487177940906
sage: arccot(1 + I)
arccot(1 + I)
sage: arccot(1/2).n(100)
1.1071487177940905030170654602
sage: float(arccot(1/2))  # abs tol 2e-16
1.1071487177940906
sage: bool(diff(acot(x), x) == -diff(atan(x), x))
True
sage: diff(acot(x), x)
-1/(x^2 + 1)
```

We can delay evaluation using the `hold` parameter:

```python
sage: arccot(1, hold=True)  # needs sage.symbolic
arccot(1)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: a = arccot(1, hold=True); a.simplify()  # needs sage.symbolic
1/4*pi
```

class `sage.functions.trig.Function_arccsc`

Bases: GinacFunction

The arccosecant function.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: arccsc(2)
arccsc(2)
```

(continues on next page)
We can delay evaluation using the `hold` parameter:

```sage
sage: arccsc(1, hold=True)  # needs sage.symbolic
arccsc(1)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```sage
sage: a = arccsc(1, hold=True).simplify()  # needs sage.symbolic
1/2*pi
```

The `arccsc` function.

```python
class sage.functions.trig.Function_arccsc
    Bases: GinacFunction

    The arcsecant function.

    EXAMPLES:
```

```sage
sage: # needs sage.symbolic
sage: arccsc(2)
arccsc(2)
```

1.2. Trigonometric functions
class sage.functions.trig.Function_arcsin

Bases: GinacFunction

The arcsine function.

EXAMPLES:

\begin{verbatim}
sage: arcsin(0.5)
0.523598775598299
sage: arcsin(1/2)
→needs sage.symbolic
1/6*pi
sage: arcsin(1 + 1.0*I)
→needs sage.symbolic
0.666239432492515 + 1.06127506190504*I
\end{verbatim}

We can delay evaluation using the hold parameter:

\begin{verbatim}
sage: arcsin(0, hold=True)
→needs sage.symbolic
arcsin(0)
\end{verbatim}

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

\begin{verbatim}
sage: a = arcsin(0, hold=True); a.simplify()
→needs sage.symbolic
0
\end{verbatim}

\begin{verbatim}
conjugate(arcsin(x))==arcsin(conjugate(x)), unless on the branch cuts which run along the
real axis outside the interval [-1, +1].:
\end{verbatim}

\begin{verbatim}
sage: # needs sage.symbolic
sage: conjugate(arcsin(x))
conjugate(arcsin(x))
sage: var('y', domain='positive')
y
sage: conjugate(arcsin(y))
conjugate(arcsin(y))
sage: conjugate(arcsin(y+I))
conjugate(arcsin(y + I))
sage: conjugate(arcsin(1/16))
arcsin(1/16)
sage: conjugate(arcsin(2))
conjugate(arcsin(2))
sage: conjugate(arcsin(-2))
~conjugate(arcsin(2))
\end{verbatim}
class sage.functions.trig.Function_arctan

Bases: GinacFunction

The arctangent function.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: arctan(1/2)
arctan(1/2)
sage: RDF(arctan(1/2))  # rel tol 1e-15
0.46364760900080615
sage: arctan(1 + I)
arctan(I + 1)
sage: a = arctan(1/2).n(100)
0.46364760900080611621425623146
```

We can delay evaluation using the hold parameter:

```
sage: arctan(0, hold=True) #˓
\rightarrow needs sage.symbolic
arctan(0)
```

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

```
sage: a = arctan(0, hold=True); a.simplify() #˓
\rightarrow needs sage.symbolic
0
```

\(\text{conjugate}(\text{arctan}(x)) =\text{arctan}(\text{conjugate}(x))\), unless on the branch cuts which run along the imaginary axis outside the interval \([-1, +1]\).

```
sage: # needs sage.symbolic
sage: conjugate(arctan(x))
conjugate(arctan(x))
sage: var('y', domain='positive')
y
sage: conjugate(arctan(y))
arctan(y)
sage: conjugate(arctan(y+I))
conjugate(arctan(y + I))
sage: conjugate(arctan(1/16))
arctan(1/16)
sage: conjugate(arctan(-2*I))
conjugate(arctan(-2*I))
sage: conjugate(arctan(2*I))
conjugate(arctan(2*I))
sage: conjugate(arctan(I/2))
arctan(-1/2*I)
```

class sage.functions.trig.Function_arctan2

Bases: GinacFunction

The modified arctangent function.

Returns the arc tangent (measured in radians) of \(y/x\), where unlike \text{arctan}(y/x), the signs of both \(x\) and \(y\) are considered. In particular, this function measures the angle of a ray through the origin and \((x, y)\), with the positive \(x\)-axis the zero mark, and with output angle \(\theta\) being between \(-\pi < \theta <= \pi\).
Hence, \(\arctan2(y, x) = \arctan(y/x) \) only for \(x > 0 \). One may consider the usual \(\arctan \) to measure angles of lines through the origin, while the modified function measures rays through the origin.

Note that the \(y \)-coordinate is by convention the first input.

EXAMPLES:

Note the difference between the two functions:

```sage
sage: arctan2(1, -1)             # needs sage.symbolic
3/4*pi
sage: arctan(1/-1)               # needs sage.symbolic
1/4*pi
```

This is consistent with Python and Maxima:

```sage
sage: maxima.atan2(1, -1)         # needs sage.symbolic
(3*%pi)/4
sage: math.atan2(1,-1)            # needs sage.symbolic
2.356194490192345
```

More examples:

```sage
sage: arctan2(1, 0)               # needs sage.symbolic
1/2*pi
sage: arctan2(2, 3)               # needs sage.symbolic
arctan(2/3)
sage: arctan2(-1, -1)             # needs sage.symbolic
-3/4*pi
```

Of course we can approximate as well:

```sage
sage: arctan2(-1/2, 1).n(100)     # needs sage.symbolic
-0.4636476090008061621425623146
sage: arctan2(2, 3).n(100)         # needs sage.symbolic
0.58800260354756755124561108063
```

We can delay evaluation using the `hold` parameter:

```sage
sage: arctan2(-1/2, 1, hold=True) # needs sage.symbolic
arctan2(-1/2, 1)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```sage
sage: arctan2(-1/2, 1, hold=True).simplify() # needs sage.symbolic
-arctan(1/2)
```

The function also works with numpy arrays as input:
Functions, Release 10.3

```python
sage: # needs numpy
sage: import numpy
sage: a = numpy.linspace(1, 3, 3)
sage: b = numpy.linspace(3, 6, 3)
sage: atan2(a, b)
array([0.32175055, 0.41822433, 0.46364761])
sage: atan2(1, a)  # needs numpy
array([0.78539816, 0.46364761, 0.32175055])
sage: atan2(a, 1)  # needs numpy
array([0.78539816, 1.10714872, 1.24904577])
```

class sage.functions.trig.Function_cos

Bases: GinacFunction

The cosine function.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: cos(pi)
-1
sage: cos(x).subs(x==pi)
-1
sage: cos(2).n(100)
-0.41614683654714238699756822950
sage: cos(x)._sympy_()  # needs sympy
cos(x)
```

We can prevent evaluation using the hold parameter:

```python
sage: cos(0, hold=True)  # needs sage.symbolic
cos(0)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: a = cos(0, hold=True); a.simplify()  # needs sage.symbolic
1
```

If possible, the argument is also reduced modulo the period length 2π, and well-known identities are directly evaluated:

```python
sage: # needs sage.symbolic
sage: k = var('k', domain='integer')
sage: cos(1 + 2*k*pi)
1
sage: cos(k*pi)
cos(pi*k)
sage: cos(pi/3 + 2*k*pi)
1/2
```

1.2. Trigonometric functions
class `sage.functions.trig.Function_cot`
Bases: `GinacFunction`
The cotangent function.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: cot(pi/4)
1
sage: RR(cot(pi/4))
1.00000000000000
sage: cot(1/2)
cot(1/2)
1.83048772171245

sage: latex(cot(x))  # needs sage.symbolic
\cot\left(x\right)
sage: cot(x)._sympy_()  # needs sympy
cot(x)
```

We can prevent evaluation using the `hold` parameter:

```python
sage: cot(pi/4, hold=True)  # needs sage.symbolic
cot(1/4*pi)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: a = cot(pi/4, hold=True); a.simplify()  # needs sage.symbolic
1
```

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: cot(pi/4)
1
sage: cot(x).subs(x==pi/4)
1
sage: cot(pi/7)
cot(1/7*pi)
sage: cot(x)
cot(x)

sage: # needs sage.symbolic
sage: n(cot(pi/4), 100)
1.000000000000000000000000000000000000000000
sage: float(cot(1))
0.64209261593433
sage: bool(diff(cot(x), x) == diff(1/tan(x), x))
True
sage: diff(cot(x), x)
-cot(x)^2 - 1
```
class sage.functions.trig.Function_csc

Bases: GinacFunction

The cosecant function.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: csc(pi/4)
sqrt(2)
sage: csc(x).subs(x==pi/4)
sqrt(2)
sage: csc(pi/7)
csc(1/7*pi)
sage: csc(x)
csc(x)
sage: RR(csc(pi/4))
1.41421356237310
sage: n(csc(pi/4), 100)
1.4142135623730950488016887242
sage: float(csc(pi/4))
1.4142135623730951
sage: csc(1/2)
csc(1/2)
sage: csc(0.5)
2.0852964293349
```

We can prevent evaluation using the hold parameter:

```
sage: csc(pi/4, hold=True)  # needs sage.symbolic
1.41421356237310
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```
sage: a = csc(pi/4,hold=True); a.simplify()  # needs sage.symbolic
sqrt(2)
```

\[
\text{class \ sage.functions.trig.Function_sec}
\]

Bases: GinacFunction

The secant function.

EXAMPLES:
functions: Release 10.3

```
sage: # needs sage.symbolic
sage: sec(pi/4)
sqrt(2)
sage: sec(x).subs(x==pi/4)
sqrt(2)
sage: sec(pi/7)
sec(1/7*pi)
sage: sec(x)
sec(x)
sage: RR(sec(pi/4))
1.41421356237310
sage: n(sec(pi/4),100)
1.4142135623730950488016887242
sage: float(sec(pi/4))
1.4142135623730951
sage: sec(1/2)
sec(1/2)
sage: sec(0.5)
1.13949392732455
```

We can prevent evaluation using the hold parameter:

```
sage: sec(pi/4, hold=True) # needs sage.symbolic
sec(1/4*pi)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```
sage: a = sec(pi/4, hold=True); a.simplify() # needs sage.symbolic
sqrt(2)
```

class sage.functions.trig.Function_sin

Bases: GinacFunction

The sine function.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: sin(0)
0
sage: sin(x).subs(x==0)
0
sage: sin(2).n(100)
0.90929424682568169539601986591
```
We can prevent evaluation using the `hold` parameter:

```
sage: sin(0, hold=True)  # needs sage.symbolic
sin(0)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```
sage: a = sin(0, hold=True); a.simplify()  # needs sage.symbolic
0
```

If possible, the argument is also reduced modulo the period length 2π, and well-known identities are directly evaluated:

```
sage: k = var('k', domain='integer')  # needs sage.symbolic
sage: sin(1 + 2*k*pi)  # needs sage.symbolic
sin(1)
sage: sin(k*pi)  # needs sage.symbolic
0
```

class sage.functions.trig.Function_tan

Bases: `GinacFunction`

The tangent function.

EXAMPLES:

```
sage: tan(3.1415)
-0.0000926535900581913
sage: tan(3.1415/4)
0.999953674278156
```

```
sage: # needs sage.symbolic
sage: tan(pi)
0
sage: tan(pi/4)
1
```

```
sage: tan(1/2)
tan(1/2)
sage: RR(tan(1/2))
0.546302489843790
```

We can prevent evaluation using the `hold` parameter:

```
sage: tan(pi/4, hold=True)  # needs sage.symbolic
tan(1/4*pi)
```
To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```sage
sage: a = tan(pi/4, hold=True); a.simplify()
      # needs sage.symbolic
1
```

If possible, the argument is also reduced modulo the period length π, and well-known identities are directly evaluated:

```sage
sage: k = var('k', domain='integer')
      # needs sage.symbolic
sage: tan(1 + 2*k*pi)
      # needs sage.symbolic
tan(1)
sage: tan(k*pi)
      # needs sage.symbolic
0
```

1.3 Hyperbolic functions

The full set of hyperbolic and inverse hyperbolic functions is available:

- hyperbolic sine: `sinh()`
- hyperbolic cosine: `cosh()`
- hyperbolic tangent: `tanh()`
- hyperbolic cotangent: `coth()`
- hyperbolic secant: `sech()`
- hyperbolic cosecant: `csch()`
- inverse hyperbolic sine: `asinh()`
- inverse hyperbolic cosine: `acosh()`
- inverse hyperbolic tangent: `atanh()`
- inverse hyperbolic cotangent: `acoth()`
- inverse hyperbolic secant: `asech()`
- inverse hyperbolic cosecant: `acsch()`

REFERENCES:

- Wikipedia article Hyperbolic function
- Wikipedia article Inverse hyperbolic functions

EXAMPLES:

Inverse hyperbolic functions have logarithmic expressions, so expressions of the form $\exp(c*f(x))$ simplify:
Functions, Release 10.3

class sage.functions.hyperbolic.Function_arccosh
 Bases: GinacFunction

The inverse of the hyperbolic cosine function.

EXAMPLES:

sage: # needs sage.symbolic
sage: acosh(1/2)
acosh(1/2)

sage: acosh(1 + I*1.0)
1.06127506190504 + 0.904556894302381*I

sage: float(acosh(2))
1.3169578969248168

sage: cosh(float(acosh(2)))
2.0

sage: acosh(complex(1, 2)) # abs tol 1e-15
(1.5285709194809982+1.1437177404024204j)

Warning: If the input is in the complex field or symbolic (which includes rational and integer input), the output will be complex. However, if the input is a real decimal, the output will be real or NaN. See the examples for details.

sage: acosh(CC(0.5)) # needs sage.rings.complex_double
1.04719755119660*I

sage: # needs sage.symbolic
sage: acosh(0.5)
NaN

sage: acosh(0.5)
NaN

sage: acosh(0)
1/2*I*pi

sage: acosh(-1)
I*pi

To prevent automatic evaluation use the hold argument:

1.3. Hyperbolic functions
Functions, Release 10.3

sage: acosh(-1, hold=True) # needs sage.symbolic
arccosh(-1)

To then evaluate again, use the unhold method:

sage: acosh(-1, hold=True).unhold() # needs sage.symbolic
I*pi

conjugate(arccosh(x))==arccosh(conjugate(x)) unless on the branch cut which runs along the
real axis from +1 to -inf.:

sage: # needs sage.symbolic
sage: conjugate(acosh(x))
conjugate(arccosh(x))

sage: var('y', domain='positive')
y
sage: conjugate(acosh(y))
conjugate(arccosh(y))

sage: conjugate(acosh(y+I))
conjugate(arccosh(y + I))

sage: conjugate(acosh(1/16))
conjugate(arccosh(1/16))

sage: conjugate(acosh(2))
arccosh(2)

sage: conjugate(acosh(I/2))
arccosh(-1/2*I)

class sage.functions.hyperbolic.Function_arccoth
Bases: GinacFunction

The inverse of the hyperbolic cotangent function.

EXAMPLES:

sage: # needs sage.symbolic
sage: acoth(2.0)
0.549306144334055

sage: acoth(2)
1/2*log(3)

sage: acoth(1 + I*1.0)
0.402359478108525 - 0.553574358897045*I

sage: acoth(2).n(200)
0.54930614433405484569762261846126285232374527891137472586735

sage: bool(diff(acoth(x), x) == diff(atanh(x), x)) # needs sage.symbolic
True

sage: diff(acoth(x), x) # needs sage.symbolic
-1/(x^2 - 1)

sage: float(acoth(2)) # needs sage.symbolic
0.5493061443340549

sage: float(acoth(2).n(53)) # Correct result to 53 bits # needs sage.rings.real_mpfr sage.symbolic
(continues on next page)
class sage.functions.hyperbolic.Function_arccsch

Bases: GinacFunction

The inverse of the hyperbolic cosecant function.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: acsch(2.0)
0.481211825059603
sage: acsch(2)
arccsch(2)
sage: acsch(1 + I*1.0)
0.530637530952518 - 0.452278447151191*I
sage: acsch(1).n(200)
0.88137358701954302523620932497979230902816032826163541075330
sage: float(acsch(1))
0.881373587019543
sage: diff(acsch(x), x) #...
-1/(sqrt(x^2 + 1)*x)
sage: latex(acsch(x)) #...
\operatorname{arcsch}\left(x\right)
```

class sage.functions.hyperbolic.Function_arcsech

Bases: GinacFunction

The inverse of the hyperbolic secant function.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: asech(0.5)
1.31695789692482
sage: asech(1/2)
arccsech(1/2)
sage: asech(1 + I*1.0)
0.530637530952518 - 1.11851787964371*I
sage: asech(1/2).n(200)
1.31695789692481676086250463473079684440269819714675164797685
sage: float(asech(1/2))
1.3169578969248168
sage: diff(asech(x), x) #...
-1/(sqrt(-x^2 + 1)*x)
sage: latex(asech(x)) #...
\operatorname{arsech}\left(x\right)
```

(continues on next page)
class sage.functions.hyperbolic.Function_arcsinh

Bases: GinacFunction

The inverse of the hyperbolic sine function.

EXAMPLES:

```python
sage: asinh
arcsinh
sage: asinh(0.5)
0.481211825059603
sage: asinh(1/2)  # needs sage.symbolic
arcsinh(1/2)
sage: asinh(1 + I*1.0)  # needs sage.symbolic
1.06127506190504 + 0.666239432492515*I
```

To prevent automatic evaluation use the `hold` argument:

```python
sage: asinh(-2, hold=True)  # needs sage.symbolic
arcsinh(-2)
```

To then evaluate again, use the `unhold` method:

```python
sage: asinh(-2, hold=True).unhold()  # needs sage.symbolic
-arcsinh(2)
```

conjugate(asinh(x))==asinh(conjugate(x)) unless on the branch cuts which run along the imaginary axis outside the interval [-I, +I].:

```python
sage: # needs sage.symbolic
sage: conjugate(asinh(y))
arcsinh(y)
sage: var('y', domain='positive')
y
sage: conjugate(asinh(y))
arcsinh(y)
sage: conjugate(asinh(y+I))
arcsinh(y + I)
sage: conjugate(asinh(1/16))
arcsinh(1/16)
sage: conjugate(asinh(I/2))
arcsinh(-1/2*I)
sage: conjugate(asinh(2*I))
arcsinh(2*I)
```

class sage.functions.hyperbolic.Function_arctanh

Bases: GinacFunction

The inverse of the hyperbolic tangent function.

EXAMPLES:
To prevent automatic evaluation use the `hold` argument:

```
sage: atanh(-1/2, hold=True)          # needs sage.symbolic
arctanh(-1/2)
```

To then evaluate again, use the `unhold` method:

```
sage: atanh(-1/2, hold=True).unhold() # needs sage.symbolic
-1/2*log(3)
```

\[
\text{conjugate}(\text{arctanh}(x)) = \text{arctanh}(\text{conjugate}(x)) \text{ unless on the branch cuts which run along the real axis outside the interval } [-1, +1].
\]

```
sage: # needs sage.symbolic
cosh(3.1415)
cosh(pi)
```

\[
\text{EXAMPLES:}
\]

```
sage: cosh(3.1415)
11.5908832931176
```

\[
\text{EXAMPLES:}
\]

```
sage: cosh(pi)
```

\[
\text{EXAMPLES:}
\]

```
sage: # needs sage.symbolic
cosh(pi)
```

\[
\text{EXAMPLES:}
\]

```
sage: float(cosh(pi))
11.591953275521519
```
\[
\cosh(x)\]

sage: cosh(x)._sympy_()
→ needs sympy

cosh(x)

To prevent automatic evaluation, use the `hold` parameter:

sage: cosh(arcsinh(x), hold=True)
→ needs sage.symbolic

cosh(arcsinh(x))

To then evaluate again, use the `unhold` method:

sage: cosh(arcsinh(x), hold=True).unhold()
→ needs sage.symbolic

sqrt(x^2 + 1)

class sage.functions.hyperbolic.Function_coth

Bases: GinacFunction

The hyperbolic cotangent function.

EXAMPLES:

sage: coth(3.1415)
1.00374256795520

sage: coth(complex(1, 2))
abs tol 1e-15
→ needs sage.rings.complex_double

0.8213297974938518+0.17138361290918508j

sage: coth(pi)
coth(pi)

sage: coth(0)
Infinity

sage: coth(pi*I)
Infinity

sage: coth(pi*I/2)
0

sage: coth(7*pi*I/2)
0

sage: coth(8*pi*I/2)
Infinity

sage: coth(7.5*pi*I/2)
-I*cot(3.5000000000000000*pi)

sage: float(coth(pi))
1.0037418731973213

sage: RR(coth(pi))
1.00374187319732

sage: bool(diff(coth(x), x) == diff(1/tanh(x), x))
True

sage: diff(coth(x), x)
-1/sinh(x)^2

sage: latex(coth(x))
\(\coth(x)\)

(continues on next page)
sage: coth(x)._sympy_() # needs sympy
coth(x)

class sage.functions.hyperbolic.Function_csch
Bases: GinacFunction
The hyperbolic cosecant function.

EXAMPLES:

sage: csch(3.1415)
0.0865975907592133

sage: # needs sage.symbolic
csch(pi)

sage: float(csch(pi))
0.0865895375300469...

sage: RR(csch(pi))
0.0865895375300470

sage: csch(0)
Infinity

sage: csch(pi*I)
Infinity

sage: csch(pi*I/2)
-I

sage: csch(7*pi*I/2)
I

sage: csch(7.*pi*I/2)
-I*csc(3.50000000000000*pi)

sage: # needs sage.symbolic
bool(diff(csch(x), x) == diff(1/sinh(x), x))
True

class sage.functions.hyperbolic.Function_sech
Bases: GinacFunction
The hyperbolic secant function.

EXAMPLES:

sage: sech(3.1415)
0.0862747018248192

sage: # needs sage.symbolic
sech(pi)

sage: float(sech(pi))
Functions, Release 10.3

(continued from previous page)

\[
\begin{align*}
0.0862667383340544 & \ldots \\
\text{sage: } & \text{RR(sech(pi))} \\
0.0862667383340544 & \\
\text{sage: } & \text{sech(0)} \\
1 & \\
\text{sage: } & \text{sech(pi*I)} \\
-1 & \\
\text{sage: } & \text{sech(pi*I/2)} \\
\text{Infinity} & \\
\text{sage: } & \text{sech(7*pi*I/2)} \\
\text{Infinity} & \\
\text{sage: } & \text{sech(8*pi*I/2)} \\
1 & \\
\text{sage: } & \text{sech(8.*pi*I/2)} \\
\text{sec}(4.00000000000000\pi) & \\
\text{sage: } & \text{# needs sage.symbolic} \\
\text{sage: } & \text{bool(diff(sech(x), x) == diff(1/cosh(x), x))} \\
\text{True} & \\
\text{sage: } & \text{diff(sech(x), x)} \\
-\text{sech(x)}*\text{tanh(x)} & \\
\text{sage: } & \text{latex(sech(x))} \\
\text{\operatorname{sech}\left(x\right)} & \\
\text{sage: } & \text{sech(x)._sympy()} \\
\text{#˓→ needs sympy} & \\
\text{sech(x)} & \\
\end{align*}
\]

\[\text{class sage.functions.hyperbolic.Function_sinh}\]

Bases: GinacFunction

The hyperbolic sine function.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{sinh(3.1415)} \\
11.547653707437 & \\
\text{sage: } & \text{# needs sage.symbolic} \\
\text{sage: } & \text{sinh(pi)} \\
\sinh(pi) & \\
\text{sage: } & \text{float(sinh(pi))} \\
11.54873935725774 & \ldots \\
\text{sage: } & \text{RR(sinh(pi))} \\
11.5487393572577 & \\
\text{sage: } & \text{latex(sinh(x))} \\
\sinh\left(x\right) & \\
\text{sage: } & \text{sinh(x)._sympy()} \\
\text{#˓→ needs sympy} & \\
\text{sinh(x)} & \\
\end{align*}
\]

To prevent automatic evaluation, use the hold parameter:

\[
\begin{align*}
\text{sage: } & \text{sinh(arccosh(x), hold=True)} \\
\text{˓→ needs sage.symbolic} & \\
\text{sinh(arccosh(x))} & \\
\end{align*}
\]

To then evaluate again, use the unhold method:
Functions, Release 10.3

```python
sage: sinh(arccosh(x), hold=True).unhold()  # needs sage.symbolic
sqrt(x + 1)*sqrt(x - 1)
```

class sage.functions.hyperbolic.Function_tanh

The hyperbolic tangent function.

EXAMPLES:

```python
sage: tanh(3.1415)
0.996271386633702
sage: tan(3.1415/4)
0.999953674278156

sage: # needs sage.symbolic
tanh(pi)
tanh(pi/4)
tanh(1/4*pi)
sage: RR(tanh(1/2))
0.462117157260010

sage: CC(tanh(pi + I*e))  # needs sage.rings.real_mpfr sage.symbolic
0.99752473197616361034204366446 - 0.0027906876810031453884245163923*I

To prevent automatic evaluation, use the `hold` parameter:

```python
sage: tanh(arcsinh(x), hold=True) # needs sage.symbolic
tanh(arcsinh(x))
```

To then evaluate again, use the `unhold` method:

```python
sage: tanh(arcsinh(x), hold=True).unhold() # needs sage.symbolic
x/sqrt(x^2 + 1)
```

1.3. Hyperbolic functions 29
1.4 Number-theoretic functions

class sage.functions.transcendental.DickmanRho
Bases: BuiltinFunction

Dickman’s function is the continuous function satisfying the differential equation

\[ x \rho'(x) + \rho(x - 1) = 0 \]

with initial conditions \( \rho(x) = 1 \) for \( 0 \leq x \leq 1 \). It is useful in estimating the frequency of smooth numbers as asymptotically

\[ \Psi(a, a^{1/s}) \sim a \rho(s) \]

where \( \Psi(a, b) \) is the number of \( b \)-smooth numbers less than \( a \).

ALGORITHM:

Dickman’s function is analytic on the interval \([n, n + 1]\) for each integer \( n \). To evaluate at \( n + t \), \( 0 \leq t < 1 \), a power series is recursively computed about \( n + 1/2 \) using the differential equation stated above. As high precision arithmetic may be needed for intermediate results the computed series are cached for later use.

Simple explicit formulas are used for the intervals \([0, 1]\) and \([1, 2]\).

EXAMPLES:

```
sage: dickman_rho(2)
0.306852819440055
sage: dickman_rho(10)
2.77017183772596e-11
sage: dickman_rho(10.00000000000000000000000000000)
2.770171837725958988758120063434232634e-11
```

AUTHORS:

- Robert Bradshaw (2008-09)

REFERENCES:


approximate (x, parent=None)

Approximate using de Bruijn’s formula

\[ \rho(x) \sim \frac{e^{\pi x} + Ei(\xi)}{\sqrt{2\pi x} \xi} \]

which is asymptotically equal to Dickman’s function, and is much faster to compute.

REFERENCES:


EXAMPLES:
power_series(n, abs_prec)

This function returns the power series about \( n + 1/2 \) used to evaluate Dickman\’s function. It is scaled such that the interval \([n, n + 1]\) corresponds to \( x \) in \([-1, 1]\).

**INPUT:**

- \( n \) - the lower endpoint of the interval for which this power series holds
- \( \text{abs\_prec} \) - the absolute precision of the resulting power series

**EXAMPLES:**

```python
sage: f = dickman_rho.power_series(2, 20); f
-9.9376e-8*x^11 + 3.7722e-7*x^10 - 1.4684e-6*x^9 + 5.8783e-6*x^8 - 0.000024259*x^7 + 0.00010341*x^6 - 0.00045583*x^5 + 0.0020773*x^4 - 0.0097336*x^3 + 0.045224*x^2 - 0.11891*x + 0.13032
```

```python
sage: f(-1), f(0), f(1)
(0.30685, 0.13032, 0.048608)
```

```python
sage: dickman_rho(2), dickman_rho(2.5), dickman_rho(3)
(0.306852819440055, 0.130319561832251, 0.0486083882911316)
```

class sage.functions.transcendental.Function_HurwitzZeta

Bases: BuiltinFunction

class sage.functions.transcendental.Function_stieltjes

Bases: GinacFunction

Stieltjes constant of index \( n \).

\( \text{stieltjes}(0) \) is identical to the Euler-Mascheroni constant (\( \text{sage.symbolic.constants.EulerGamma} \)). The Stieltjes constants are used in the series expansions of \( \zeta(s) \).

**INPUT:**

- \( n \) - non-negative integer

**EXAMPLES:**

```python
sage: # needs sage.symbolic
sage: _ = var('n')
sage: stieltjes(n)
stieltjes(n)
sage: stieltjes(0)
euler_gamma
sage: stieltjes(2)
stieltjes(2)
sage: stieltjes(int(2))
stieltjes(2)
sage: stieltjes(2).n(100)
```

(continues on next page)
It is possible to use the `hold` argument to prevent automatic evaluation:

```python
sage: stieltjes(0, hold=True) # needs sage.symbolic
stieltjes(0)
```

```python
sage: latex(stieltjes(n)) \gamma_n
```

```python
sage: a = loads(dumps(stieltjes(n)))
sage: a.operator() == stieltjes
True
```

```python
sage: stieltjes(x)._sympy_
```

```python
sage: stieltjes(x).subs(x==0) # needs sage.symbolic
euler_gamma
```

---

**class** `sage.functions.transcendental.Function_zeta`

**Bases:** `GinacFunction`

Riemann zeta function at $s$ with $s$ a real or complex number.

**INPUT:**

- $s$ - real or complex number

If $s$ is a real number, the computation is done using the MPFR library. When the input is not real, the computation is done using the PARI C library.

**EXAMPLES:**

```python
sage: RR = RealField(200) # needs sage.rings.real_mpfr
sage: zeta(RR(2)) # needs sage.rings.real_mpfr
1.64493406684823
sage: zeta(I).n() # needs sage.symbolic
0.00330022368532410 - 0.418155449141322*I
```
sage: zeta(sqrt(2))
zeta(sqrt(2))
sage: zeta(sqrt(2)).n() # rel tol 1e-10
3.02073767948603

It is possible to use the `hold` argument to prevent automatic evaluation:

```python
sage: zeta(2, hold=True)
needs sage.symbolic
zeta(2)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: a = zeta(2, hold=True); a.simplify() # needs sage.symbolic
1/6*pi^2
```

The Laurent expansion of $\zeta(s)$ at $s = 1$ is implemented by means of the Stieltjes constants:

```python
sage: s = SR('s')
needs sage.symbolic
sage: zeta(s).series(s==1, 2) # needs sage.symbolic
1*(s - 1)^(-1) + euler_gamma + (-stieltjes(1))*(s - 1) + Order((s - 1)^2)
```

Generally, the Stieltjes constants occur in the Laurent expansion of $\zeta$-type singularities:

```python
sage: zeta(2*s/(s+1)).series(s==1, 2) # needs sage.symbolic
2*(s - 1)^(-1) + (euler_gamma + 1) + (-1/2*stieltjes(1))*(s - 1) + Order((s - 1)^2)
```

class sage.functions.transcendental.Function_zetaderiv
Bases: GinacFunction

Derivatives of the Riemann zeta function.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: zetaderiv(1, x)
zetaderiv(1, x)
sage: zetaderiv(1, x).diff(x)
zetaderiv(2, x)
sage: var('n')
n
sage: zetaderiv(n, x)
zetaderiv(n, x)
sage: zetaderiv(1, 4).n()
-0.0689112658961254
sage: import mpmath; mpmath.diff(lambda x: mpmath.zeta(x), 4) # needs mpmath
mpf('-0.068911265896125382')
```

sage.functions.transcendental.hurwitz_zeta(s, x, **kwargs)
The Hurwitz zeta function $\zeta(s, x)$, where $s$ and $x$ are complex.
The Hurwitz zeta function is one of the many zeta functions. It is defined as

\[ \zeta(s, x) = \sum_{k=0}^{\infty} (k + x)^{-s}. \]

When \( x = 1 \), this coincides with Riemann’s zeta function. The Dirichlet L-functions may be expressed as linear combinations of Hurwitz zeta functions.

**EXAMPLES:**

**Symbolic evaluations:**

```sage
sage: # needs sage.symbolic
sage: hurwitz_zeta(x, 1)
zeta(x)
sage: hurwitz_zeta(4, 3)
1/90*pi^4 - 17/16
sage: hurwitz_zeta(-4, x)
-1/5*x^5 + 1/2*x^4 - 1/3*x^3 + 1/30*x
sage: hurwitz_zeta(7, -1/2)
127*zeta(7) - 128
sage: hurwitz_zeta(-3, 1)
1/120
```

**Numerical evaluations:**

```sage
sage: hurwitz_zeta(3, 1/2).n() # needs mpmath
8.41439832211716
sage: hurwitz_zeta(11/10, 1/2).n() # needs sage.symbolic
12.1038134956837
sage: hurwitz_zeta(3, x).series(x, 60).subs(x=0.5).n() # needs sage.symbolic
8.41439832211716
sage: hurwitz_zeta(3, 0.5) # needs mpmath
8.41439832211716
```

**REFERENCES:**

- Wikipedia article Hurwitz_zeta_function

`sage.functions.transcendental.zeta_symmetric(s)`

Completed function \( \xi(s) \) that satisfies \( \xi(s) = \xi(1 - s) \) and has zeros at the same points as the Riemann zeta function.

**INPUT:**

- \( s \) - real or complex number

If \( s \) is a real number the computation is done using the MPFR library. When the input is not real, the computation is done using the PARI C library.

More precisely,

\[ xi(s) = \gamma(s/2 + 1) * (s - 1) * \pi^{-s/2} * \zeta(s). \]

**EXAMPLES:**
1.5 Error functions

This module provides symbolic error functions. These functions use the mpmathlibrary for numerical evaluation and Maxima, Pynac for symbolics.

The main objects which are exported from this module are:

- **erf** – The error function
- **erfc** – The complementary error function
- **erfi** – The imaginary error function
- **erfinv** – The inverse error function
- **fresnel_sin** – The Fresnel integral $S(x)$
- **fresnel_cos** – The Fresnel integral $C(x)$

**AUTHORS:**

- Original authors *erf/error_fcn* (c) 2006-2014: Karl-Dieter Crisman, Benjamin Jones, Mike Hansen, William Stein, Burcin Erocal, Jeroen Demeyer, W. D. Joyner, R. Andrew Ohana
- Reorganisation in new file, addition of *erf/erfinv/erfc* (c) 2016: Ralf Stephan
- Fresnel integrals (c) 2017 Marcelo Forets

**REFERENCES:**

- [DLMF-Error]
- [WP-Error]

**class** `sage.functions.error.Function_Fresnel_cos`

**Bases:** `BuiltinFunction`

The cosine Fresnel integral.
It is defined by the integral

$$C(x) = \int_0^x \cos \left( \frac{\pi t^2}{2} \right) dt$$

for real $x$. Using power series expansions, it can be extended to the domain of complex numbers. See the Wikipedia article Fresnel_integral.

INPUT:

• $x$ – the argument of the function

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: fresnel_cos(0)
0
sage: fresnel_cos(x).subs(x==0)
0
sage: x = var('x')

sage: fresnel_cos(1).n(100)
0.77989340037682282947420641365
sage: fresnel_cos(x)._sympy_()

class sage.functions.error.Function_Fresnel_sin
Bases: BuiltinFunction

The sine Fresnel integral.

It is defined by the integral

$$S(x) = \int_0^x \sin \left(\frac{\pi t^2}{2} \right) dt$$

for real x. Using power series expansions, it can be extended to the domain of complex numbers. See the Wikipedia article Fresnel_integral.

INPUT:

• x – the argument of the function

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: fresnel_sin(0)
0
sage: fresnel_sin(x).subs(x==0)
0
sage: x = var('x')

sage: fresnel_sin(1).n(100)
0.43825914739035476607675669662
sage: fresnel_sin(x)._sympy_()

class sage.functions.error.Function_erf
Bases: BuiltinFunction

The error function.
The error function is defined for real values as

\[ \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt. \]

This function is also defined for complex values, via analytic continuation.

**EXAMPLES:**

We can evaluate numerically:

```
sage: erf(2) # needs sage.symbolic
erf(2)
sage: erf(2).n() # needs sage.symbolic
0.995322265018953
sage: erf(2).n(100) # needs sage.symbolic
0.99532226501895273416206925637
sage: erf(ComplexField(100)(2+3j)) # needs sage.rings.real_mpfr
-20.829461427614568389103088452 + 8.6873182714701631444280787545*I
```

Basic symbolic properties are handled by Sage and Maxima:

```
sage: x = var("x") # needs sage.symbolic
sage: diff(erf(x),x) # needs sage.symbolic
2*e^(-x^2)/sqrt(pi)
sage: integrate(erf(x),x) # needs sage.symbolic
x*erf(x) + e^(-x^2)/sqrt(pi)
```

**ALGORITHM:**

Sage implements numerical evaluation of the error function via the `erf()` function from mpmath. Symbolics are handled by Sage and Maxima.

**REFERENCES:**

- Wikipedia article Error_function

**class** `sage.functions.error.Function_erfc`

**Bases:** `BuiltinFunction`

The complementary error function.

The complementary error function is defined by

\[ \frac{2}{\sqrt{\pi}} \int_t^{\infty} e^{-x^2} dx. \]

**EXAMPLES:**

```
sage: erfc(6) # needs sage.symbolic
erfc(6)
```

(continues on next page)
class sage.functions.error.Function_erfi

Bases: BuiltinFunction

The imaginary error function.

The imaginary error function is defined by

\[ \text{erfi}(x) = -i\text{erf}(ix). \]

class sage.functions.error.Function_erfinv

Bases: BuiltinFunction

The inverse error function.

The inverse error function is defined by:

\[ \text{erfinv}(x) = \text{erf}^{-1}(x). \]

1.6 Piecewise functions

This module implement piecewise functions in a single variable. See [sage.sets.real_set](#) for more information about how to construct subsets of the real line for the domains.

EXAMPLES:

```
sage: f = piecewise([((0,1), x^3), ([-1,0], -x^2)]); f
piecewise(x|-->x^3 on (0, 1), x|-->-x^2 on [-1, 0]; x)
sage: 2*f
2*piecewise(x|-->x^3 on (0, 1), x|-->-x^2 on [-1, 0]; x)
sage: f(x=1/2)
1/8
sage: plot(f) # not tested
```

Todo: Implement max/min location and values,

AUTHORS:

- David Joyner (2006-04): initial version
• David Joyner (2006-09): added \_eq\_, extend\_by\_zero\_to, unextend, convolution, trapezoid, trapezoid\_integral\_approximation, riemann\_sum, riemann\_sum\_integral\_approximation, tangent\_line fixed bugs in __mul__, __add__

• David Joyner (2007-03): adding Hann filter for FS, added general FS filter methods for computing and plotting, added options to plotting of FS (eg, specifying rgb values are now allowed). Fixed bug in documentation reported by Pablo De Napoli.

• David Joyner (2007-09): bug fixes due to behaviour of SymbolicArithmetic

• David Joyner (2008-04): fixed docstring bugs reported by J Morrow; added support for Laplace transform of functions with infinite support.

• David Joyner (2008-07): fixed a left multiplication bug reported by C. Boncelet (by defining __rmul__ = __mul__).

• Paul Butler (2009-01): added indefinite integration and default\_variable

• Volker Braun (2013): Complete rewrite

• Ralf Stephan (2015): Rewrite of convolution() and other calculus functions; many doctest adaptations

• Eric Gourgoulhon (2017): Improve documentation and user interface of Fourier series

class sage.functions.piecewise.PiecewiseFunction

Bases: BuiltinFunction

Piecewise function

EXAMPLES:

\begin{verbatim}
sage: var('x, y')
(x, y)
sage: f = piecewise([[(0,1), x^2*y], [(-1,0), -x*y^2]], var=x); f
piecewise(x|-->x^2*y on (0, 1), x|-->-x*y^2 on [-1, 0]; x)
sage: f(1/2)
1/4*y
sage: f(-1/2)
1/2*y^2
\end{verbatim}

class EvaluationMethods

Bases: object

\texttt{convolution}(\texttt{parameters, variable, other})

Return the convolution function, \( f \ast g(t) = \int_{-\infty}^{\infty} f(u)g(t-u)du \), for compactly supported \( f, g \).

EXAMPLES:

\begin{verbatim}
sage: x = PolynomialRing(QQ,'x').gen()
sage: f = piecewise([[0,1],1]) # example 0
sage: g = f.convolution(f); g
piecewise(x|-->x on (0, 1], x|-->-x + 2 on (1, 2]; x)
sage: f(1/2)
1/4*y
sage: f(-1/2)
1/2*y^2
sage: h = f.convolution(g); h
piecewise(x|-->1/2*x^2 on (0, 1],
         x|-->-x^2 + 3*x - 3/2 on (1, 2],
         x|-->1/2*x^2 - 3*x + 9/2 on (2, 3]; x)
sage: f = piecewise([[0,1], [(1,2),2], [(2,3),1]]) # example 1
sage: g = f.convolution(f)
sage: h = f.convolution(g); h
piecewise(x|-->1/2*x^2 on (0, 1],
         x|-->2*x^2 - 3*x + 3/2 on (1, 3],
         x|-->-2*x^2 + 21*x - 69/2 on (3, 4],
\end{verbatim}

(continues on next page)
functions, Release 10.3

[continued from previous page]

\[
\begin{align*}
  x & \rightarrow -5x^2 + 45x - 165/2 \text{ on } (4, 5], \\
  x & \rightarrow -2x^2 + 15x - 15/2 \text{ on } (5, 6], \\
  x & \rightarrow 2x^2 - 33x + 273/2 \text{ on } (6, 8], \\
  x & \rightarrow 1/2x^2 - 9x + 81/2 \text{ on } (8, 9]; x)
\end{align*}
\]

sage: f = piecewise([[(-1,1),1]])  # example 2
sage: g = piecewise([[0,3],x]])

sage: f.convolution(g)
piecewise(x |--> 1/2*x^2 + x + 1/2 on (-1, 1], \\
  x |--> 2*x on (1, 2], \\
  x |--> -1/2*x^2 + x + 4 on (2, 4]; x)

sage: g = piecewise([[0,3],[1],[3,4],2]])

sage: f.convolution(g)
piecewise(x |--> x + 1 on (-1, 1], \\
  x |--> 2 on (1, 2], \\
  x |--> x on (2, 3], \\
  x |--> -x + 6 on (3, 4], \\
  x |--> -2*x + 10 on (4, 5]; x)

Check that the bugs raised in github issue #12123 are fixed:

sage: f = piecewise([[(-2, 2), 2]])

sage: g = piecewise([[0, 2], 3/4]])

sage: f.convolution(g)
piecewise(x |--> 3/2*x + 3 on (-2, 0], \\
  x |--> 3 on (0, 2], \\
  x |--> -3/2*x + 6 on (2, 4]; x)

sage: f = piecewise([[[-1, 1], [1]])

sage: g = piecewise([[0, 1], x], [(1, 2), -x + 2]])

sage: f.convolution(g)
piecewise(x |--> 1/2*x^2 + x + 1/2 on (-1, 0], \\
  x |--> -1/2*x^2 + x + 1/2 on (0, 2], \\
  x |--> 1/2*x^2 - 3*x + 9/2 on (2, 3]; x)

critical_points (parameters, variable)

Return the critical points of this piecewise function.

EXAMPLES:

sage: R.<x> = QQ[]

sage: f1 = x^0
sage: f2 = 10*x - x^2
sage: f3 = 3*x^4 - 156*x^3 + 3036*x^2 - 26208*x

sage: f = piecewise([[0,3],f1],[3,10],f2],[10,20],f3])

sage: expected = [5, 12, 13, 14]

sage: all(abs(e-a) < 0.001 for e,a in zip(expected, f.critical_points()))
True

domain (parameters, variable)

Return the domain

OUTPUT:

The union of the domains of the individual pieces as a RealSet.

EXAMPLES:
domains *(parameters, variable)*

Return the individual domains

See also `expressions()`.

**OUTPUT:**

The collection of domains of the component functions as a tuple of `RealSet`.

**EXAMPLES:**

```sage
define x
f = piecewise([([0,0], sin(x)), ((0,2), cos(x))]); f
f.domain()
```

```
```

end_points *(parameters, variable)*

Return a list of all interval endpoints for this function.

**EXAMPLES:**

```sage
define x
f1(x) = 1
f2(x) = 1-x
f3(x) = x^2-5
f = piecewise([([0,1],f1),([1,2],f2),([2,3],f3)])
f.end_points()
f = piecewise([([0,0], sin(x)), ((0,2), cos(x))]); f
f.end_points()
```

```
```

expression_at *(parameters, variable, point)*

Return the expression defining the piecewise function at `value`

**INPUT:**

- `point` – a real number.

**OUTPUT:**

The symbolic expression defining the function value at the given `point`.

**EXAMPLES:**

```sage
define x
f = piecewise([([0,0], sin(x)), ((0,2), cos(x))]); f
f.expression_at(0)
f.expression_at(1)
f.expression_at(2)
```

```
```
**expressions** *(parameters, variable)*

Return the individual domains

See also `domains()`.

**OUTPUT:**

The collection of expressions of the component functions.

**EXAMPLES:**

```python
sage: f = piecewise([[(0, 0), sin(x)], ((0, 2), cos(x))]); f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.expressions()
(sin(x), cos(x))
```

**extension** *(parameters, variable, extension, extension_domain=None)*

Extend the function

**INPUT:**

- `extension` – a symbolic expression
- `extension_domain` – a `RealSet` or `None` (default). The domain of the extension. By default, the entire complement of the current domain.

**EXAMPLES:**

```python
sage: f = piecewise([([-1, 1], x)]); f
piecewise(x|-->x on (-1, 1); x)
sage: f(3)
Traceback (most recent call last):
... ValueError: point 3 is not in the domain
sage: g = f.extension(0); g
piecewise(x|-->x on (-1, 1), x|-->0 on (-oo, -1] ∪ [1, +oo); x)
sage: g(3)
0
sage: h = f.extension(1, RealSet.unbounded_above_closed(1)); h
piecewise(x|-->x on (-1, 1), x|-->1 on [1, +oo); x)
sage: h(3)
1
```

**fourier_series_cosine_coefficient** *(parameters, variable, n, L=None)*

Return the \(n\)-th cosine coefficient of the Fourier series of the periodic function \(f\) extending the piecewise-defined function \(self\).

Given an integer \(n \geq 0\), the \(n\)-th cosine coefficient of the Fourier series of \(f\) is defined by

\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L}\right) \, dx,
\]

where \(L\) is the half-period of \(f\). For \(n \geq 1\), \(a_n\) is the coefficient of \(\cos(n\pi x/L)\) in the Fourier series of \(f\), while \(a_0\) is twice the coefficient of the constant term \(\cos(0x)\), i.e. twice the mean value of \(f\) over one period (cf. `fourier_series_partial_sum()`).

**INPUT:**

- `n` – a non-negative integer
- `L` – (default: `None`) the half-period of \(f\); if none is provided, \(L\) is assumed to be the half-width of the domain of \(self\)
OUTPUT:

- the Fourier coefficient $a_n$, as defined above

EXAMPLES:

A triangle wave function of period 2:

```
sage: f = piecewise([[(0,1), x], [(1,2), 2-x]])
sage: f.fourier_series_cosine_coefficient(0)
1
sage: f.fourier_series_cosine_coefficient(3)
-4/9/pi^2
```

If the domain of the piecewise-defined function encompasses more than one period, the half-period must be passed as the second argument; for instance:

```
sage: f2 = piecewise([[(0,1), x], [(1,2), 2 - x],
 : (2,3), x - 2], [(3,4), 2 - (x-2)])
sage: bool(f2.restriction((0,2)) == f) # f2 extends f on (0,4)
True
sage: f2.fourier_series_cosine_coefficient(3, 1) # half-period = 1
-4/9/pi^2
```

The default half-period is 2 and one has:

```
sage: f2.fourier_series_cosine_coefficient(3) # half-period = 2
0
```

The Fourier coefficient $-4/(9\pi^2)$ obtained above is actually recovered for $n = 6$:

```
sage: f2.fourier_series_cosine_coefficient(6)
-4/9/pi^2
```

Other examples:

```
sage: f(x) = x^2
sage: f = piecewise([[-1,1], f])
sage: f.fourier_series_cosine_coefficient(2)
pi^(-2)
sage: f1(x) = -1
sage: f2(x) = 2
sage: f = piecewise([[-pi,pi/2], f1], [(pi/2,pi), f2])
sage: f.fourier_series_cosine_coefficient(5, pi)
-3/5/pi
```

`fourier_series_partial_sum(parameters, variable, N, L=None)`

Returns the partial sum up to a given order of the Fourier series of the periodic function $f$ extending the piecewise-defined function `self`.

The Fourier partial sum of order $N$ is defined as

$$S_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[ a_n \cos \left( \frac{n\pi x}{L} \right) + b_n \sin \left( \frac{n\pi x}{L} \right) \right],$$

where $L$ is the half-period of $f$ and the $a_n$'s and $b_n$'s are respectively the cosine coefficients and sine coefficients of the Fourier series of $f$ (cf. `fourier_series_cosine_coefficient()` and `fourier_series_sine_coefficient()`).

INPUT:
• $N$ – a positive integer; the order of the partial sum
• $L$ – (default: None) the half-period of $f$; if none is provided, $L$ is assumed to be the half-width of the domain of $\text{self}$

OUTPUT:
• the partial sum $S_N(x)$, as a symbolic expression

EXAMPLES:

A square wave function of period 2:

```plaintext
sage: f = piecewise([((-1,0), -1), ((0,1), 1)])
sage: f.fourier_series_partial_sum(5)
4/5*sin(5*pi*x)/pi + 4/3*sin(3*pi*x)/pi + 4*sin(pi*x)/pi
```

If the domain of the piecewise-defined function encompasses more than one period, the half-period must be passed as the second argument; for instance:

```plaintext
code
sage: f2 = piecewise([((-1,0), -1), ((0,1), 1),
.....: ((1,2), -1), ((2,3), 1)])
sage: bool(f2.restriction((-1,1)) == f) # f2 extends f on (-1,3)
True
sage: f2.fourier_series_partial_sum(5, 1) # half-period = 1
4/5*sin(5*pi*x)/pi + 4/3*sin(3*pi*x)/pi + 4*sin(pi*x)/pi
sage: bool(f2.fourier_series_partial_sum(5, 1) ==
.....: f.fourier_series_partial_sum(5))
True
```

The default half-period is 2, so that skipping the second argument yields a different result:

```plaintext
code
sage: f2.fourier_series_partial_sum(5) # half-period = 2
4*sin(pi*x)/pi
```

An example of partial sum involving both cosine and sine terms:

```plaintext
code
sage: f = piecewise([((-1,0), 0), ((0,1/2), 2*x),
.....: ((1/2,1), 2*(1-x))])
sage: f.fourier_series_partial_sum(5)
-2*cos(2*pi*x)/pi^2 + 4/25*sin(5*pi*x)/pi^2
- 4/9*sin(3*pi*x)/pi^2 + 4*sin(pi*x)/pi^2 + 1/4
```

`fourier_series_sine_coefficient` (parameters, variable, n, L=None)

Return the $n$-th sine coefficient of the Fourier series of the periodic function $f$ extending the piecewise-defined function $\text{self}$.

Given an integer $n \geq 0$, the $n$-th sine coefficient of the Fourier series of $f$ is defined by

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left( \frac{n \pi x}{L} \right) dx,$$

where $L$ is the half-period of $f$. The number $b_n$ is the coefficient of $\sin(n \pi x/L)$ in the Fourier series of $f$ (cf. `fourier_series_partial_sum()`).

INPUT:
• $n$ – a non-negative integer
• $L$ – (default: None) the half-period of $f$; if none is provided, $L$ is assumed to be the half-width of the domain of $\text{self}$

OUTPUT:
• the Fourier coefficient $b_n$, as defined above
EXAMPLES:

A square wave function of period 2:

```
sage: f = piecewise([[(-1,0), -1], ((0,1), 1)])
sage: f.fourier_series_sine_coefficient(1)
4/pi
sage: f.fourier_series_sine_coefficient(2)
0
sage: f.fourier_series_sine_coefficient(3)
4/3/pi
```

If the domain of the piecewise-defined function encompasses more than one period, the half-period must be passed as the second argument; for instance:

```
sage: f2 = piecewise([((-1,0), -1), ((0,1), 1),
.........((1,2), -1), ((2,3), 1)])
sage: bool(f2.restriction((-1,1)) == f) # f2 extends f on (-1,3)
True
sage: f2.fourier_series_sine_coefficient(1, 1) # half-period = 1
4/pi
sage: f2.fourier_series_sine_coefficient(3, 1) # half-period = 1
4/3/pi
```

The default half-period is 2 and one has:

```
sage: f2.fourier_series_sine_coefficient(1) # half-period = 2
0
sage: f2.fourier_series_sine_coefficient(3) # half-period = 2
0
```

The Fourier coefficients obtained from \( f \) are actually recovered for \( n = 2 \) and \( n = 6 \) respectively:

```
sage: f2.fourier_series_sine_coefficient(2)
4/pi
sage: f2.fourier_series_sine_coefficient(6)
4/3/pi
```

```integral``` *parameters, variable, x=None, a=None, b=None, definite=False, **kwds*

By default, return the indefinite integral of the function. If definite=True is given, returns the definite integral.

AUTHOR:
• Paul Butler

EXAMPLES:

```
sage: f1(x) = 1-x
sage: f = piecewise([[(0,1), 1], [(1,2), f1]])
sage: f.integral(definite=True)
1/2
```

```
sage: f1(x) = -1
sage: f2(x) = 2
sage: f = piecewise([[(0,pi/2), f1], [(pi/2,pi), f2]])
sage: f.integral(definite=True)
1/2*pi
```
Ensure results are consistent with FTC:

```python
sage: F(-3) - F(-4)
-1
sage: F(-1) - F(-3)
1
sage: F(2) - F(0)
2/3
sage: f.integral(y, 0, 2)
2/3
sage: F(3) - F(-4)
19/6
sage: f.integral(y, -4, 3)
19/6
sage: f.integral(definite=True)
19/6
```

```python
sage: f1(y) = (y+3)^2
sage: f2(y) = y+3
sage: f3(y) = 3
sage: f = piecewise([([-infinity, -3], f1), [-3, 0], f2), [0, infinity), ...
˓→(f3)])

sage: f.integral()
piecewise(y|-->1/3*y^3 + 3*y^2 + 9*y + 9 on (-oo, -3),
y|-->1/2*y^2 + 3*y + 9/2 on (-3, 0),
y|-->3*y + 9/2 on (0, +oo); y)
```

```python
sage: f1(x) = e^(-abs(x))

sage: f = piecewise([[(-infinity, infinity), f1]])

sage: result = f.integral(definite=True)
...

sage: result
2
```

```python
sage: f.integral()
piecewise(x|-->integrate(e^(-abs(x)), x, x, +Infinity) on (-oo, +oo); x)
```
functions, release 10.3

\begin{Verbatim}
sage: f = piecewise([[((0, 5), cos(x))]])
sage: f.integral()
piecewise(x|-->sin(x) on (0, 5); x)
\end{Verbatim}

\textbf{items (parameters, variable)}
Iterate over the pieces of the piecewise function

\textbf{Note:} You should probably use \texttt{pieces()} instead, which offers a nicer interface.

\textbf{OUTPUT:}
This method iterates over pieces of the piecewise function, each represented by a pair. The first element
is the support, and the second the function over that support.

\textbf{EXAMPLES:}
\begin{Verbatim}
sage: f = piecewise([[(0,0), sin(x)], [(0,2), cos(x)]])
sage: for support, function in f.items():
 : print('support is {}, function is {}'.format(support, function))
support is (0), function is sin(x)
support is (0, 2), function is cos(x)
\end{Verbatim}

\begin{Verbatim}
laplace (parameters, variable, x='x', s='t')
Returns the Laplace transform of self with respect to the variable var.
\end{Verbatim}

\textbf{INPUT:}
\begin{itemize}
\item x - variable of self
\item s - variable of Laplace transform.
\end{itemize}
We assume that a piecewise function is 0 outside of its domain and that the left-most endpoint of the
domain is 0.

\textbf{EXAMPLES:}
\begin{Verbatim}
sage: x, s, w = var('x, s, w')
sage: f = piecewise([[(0,1),1], [(1,2), 1 - x]])
sage: f.laplace(x, s)
-e^(-s)/s + (s + 1)*e^(-2*s)/s^2 + 1/s - e^(-s)/s^2
sage: f.laplace(x, w)
-e^(-w)/w + (w + 1)*e^(-2*w)/w^2 + 1/w - e^(-w)/w^2
\end{Verbatim}

\begin{Verbatim}
sage: y, t = var('y, t')
sage: f = piecewise([[1,2], 1 - y])
sage: f.laplace(y, t)
(t + 1)*e^(-2*t)/t^2 - e^(-t)/t^2
\end{Verbatim}

\begin{Verbatim}
sage: s = var('s')
sage: t = var('t')
sage: f1(t) = -t
sage: f2(t) = 2
sage: f = piecewise([[(0,1),f1], [(1.infinity),f2]])
sage: f.laplace(t,s)
(s + 1)*e^(-s)/s^2 + 2*e^(-s)/s - 1/s^2
\end{Verbatim}

\textbf{pieces (parameters, variable)}
Return the “pieces”.

1.6. Piecewise functions
OUTPUT:
A tuple of piecewise functions, each having only a single expression.

EXAMPLES:

```
sage: p = piecewise([((-1, 0), -x), ([0, 1], x)], var=x)
sage: p.pieces()
(piecewise(x|-->-x on (-1, 0); x),
 piecewise(x|-->x on [0, 1]; x))
```

piecewise_add *(parameters, variable, other)*

Return a new piecewise function with domain the union of the original domains and functions summed. Undefined intervals in the union domain get function value 0.

EXAMPLES:

```
sage: f = piecewise([([0,1], 1), ((2,3), x)])
sage: g = piecewise([((1/2, 2), x)])
sage: f.piecewise_add(g).unextend_zero()
piecewise(x|-->1 on (0, 1/2]∪(2, 3); x)
```

restriction *(parameters, variable, restricted_domain)*

Restrict the domain

INPUT:

• restricted_domain – a RealSet or something that defines one.

OUTPUT:

A new piecewise function obtained by restricting the domain.

EXAMPLES:

```
sage: f = piecewise([((-oo, oo), x)]); f
piecewise(x|-->x on (-oo, +oo); x)
sage: f.restriction([[-1,1], [3,3]])
piecewise(x|-->x on [-1, 1]∪{3}; x)
```

trapezoid *(parameters, variable, N)*

Return the piecewise line function defined by the trapezoid rule for numerical integration based on a subdivision of each domain interval into N subintervals.

EXAMPLES:

```
sage: f = piecewise([[[0,1], x^2], [RealSet.open_closed(1,2), 5-x^2]])
sage: f.trapezoid(2)
piecewise(x|-->1/2*x on (0, 1/2],
 x|-->3/2*x - 1/2 on (1/2, 1),
 x|-->7/2*x - 5/2 on (1, 3/2),
 x|-->7/2*x + 8 on (3/2, 2]; x)
sage: f = piecewise([[-1,1], 1 - x^2)])
sage: f.trapezoid(4).integral(definite=True)
5/4
sage: f = piecewise([[-1,1], 1/2 + x - x^3])
sage: f.trapezoid(6).integral(definite=True)  # example 3
1
```
unextend_zero (parameters, variable)

Remove zero pieces.

EXAMPLES:

```sage
sage: f = piecewise([((-1,1), x)]); f
piecewise(x|-->x on (-1, 1); x)
sage: g = f.extension(0); g
piecewise(x|-->x on (-1, 1), x|-->0 on (-oo, -1] ∪ [1, +oo); x)
sage: g(3)
0
sage: h = g.unextend_zero()
sage: bool(h == f)
True
```

which_function (parameters, variable, point)

Return the expression defining the piecewise function at value

INPUT:
 • point – a real number.

OUTPUT:

The symbolic expression defining the function value at the given point.

EXAMPLES:

```sage
sage: f = piecewise([(0, 0), sin(x), ((0, 2), cos(x))]); f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.expression_at(0)
sin(x)
sage: f.expression_at(1)
cos(x)
sage: f.expression_at(2)
Traceback (most recent call last):
  ... ValueError: point is not in the domain
```

static in_operands (ex)

Return whether a symbolic expression contains a piecewise function as operand

INPUT:
 • ex – a symbolic expression.

OUTPUT:

Boolean

EXAMPLES:

```sage
sage: f = piecewise([(0, 0), sin(x), (0, 2), cos(x)))); f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: piecewise.in_operands(f)
True
sage: piecewise.in_operands(1+sin(f))
True
sage: piecewise.in_operands(1+sin(0*f))
False
```
static simplify(ex)

Combine piecewise operands into single piecewise function

OUTPUT:

A piecewise function whose operands are not piecewise if possible, that is, as long as the piecewise variable is the same.

EXAMPLES:

```python
sage: f = piecewise([[(0,0), sin(x)], ((0,2), cos(x))])
sage: piecewise.simplify(f)
Traceback (most recent call last):
  ...  
NotImplementedError
```

1.7 Spike functions

AUTHORS:

- Karl-Dieter Crisman (2009-09): adding documentation and doctests

class *sage.functions.spike_function.SpikeFunction*(v, eps=1e-07)

Bases: object

Base class for spike functions.

INPUT:

- v – list of pairs (x, height)
- eps – parameter that determines approximation to a true spike

OUTPUT:

A function with spikes at each point x in v with the given height.

EXAMPLES:

```python
sage: spike_function([(-3,4), (-1,1), (2,3)], 0.001)
A spike function with spikes at [-3.0, -1.0, 2.0]
```

Putting the spikes too close together may delete some:

```python
sage: spike_function([(1,1), (1.01,4)], 0.1)
Some overlapping spikes have been deleted.
You might want to use a smaller value for eps.
A spike function with spikes at [1.0]
```

Note this should normally be used indirectly via `spike_function`, but one can use it directly:

```python
sage: from sage.functions.spike_function import SpikeFunction
sage: S = SpikeFunction([(0,1), (1.0, pi,-5)]); S
#...
˓→needs sage.symbolic
A spike function with spikes at [0.0, 1.0, 3.141592653589793]
sage: S.support
˓→needs sage.symbolic
[0.0, 1.0, 3.141592653589793]
```
plot (*xmin=None, xmax=None, **kwds*)

Special fast plot method for spike functions.

EXAMPLES:

```
sage: S = spike_function([(1,-1), (1,4)])
sage: P = plot(S)  #...  
                # needs sage.plot
sage: P[0]  #...  
                # needs sage.plot
Line defined by 8 points
```

plot_fft_abs (*samples=4096, xmin=None, xmax=None, **kwds*)

Plot of (absolute values of) Fast Fourier Transform of the spike function with given number of samples.

EXAMPLES:

```
sage: S = spike_function([(-3,4), (-1,1), (2,3)]); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: P = S.plot_fft_abs(8)  #...  
                        # needs sage.plot
sage: p = P[0]; p.ydata  # abs tol 1e-8  
                        # needs sage.plot
[5.0, 5.0, 3.367958691924177, 3.367958691924177, 4.123105625617661,  
  4.123105625617661, 4.759921664218055, 4.759921664218055]
```

plot_fft_arg (*samples=4096, xmin=None, xmax=None, **kwds*)

Plot of (absolute values of) Fast Fourier Transform of the spike function with given number of samples.

EXAMPLES:

```
sage: S = spike_function([(-3,4), (-1,1), (2,3)]); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: P = S.plot_fft_arg(8)  #...  
                        # needs sage.plot
sage: p = P[0]; p.ydata  # abs tol 1e-8  
                        # needs sage.plot
[0.0, 0.0, -0.211524990023434, -0.211524990023434,  
  0.244978663126864, 0.244978663126864, -0.149106180027477,  
  -0.149106180027477]
```

vector (*samples=65536, xmin=None, xmax=None*)

Create a sampling vector of the spike function in question.

EXAMPLES:

```
sage: S = spike_function([(-3,4), (-1,1), (2,3)], 0.001); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: S.vector(16)  #...  
                    # needs sage.modules
(4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
  0.0, 0.0, 0.0)
```

```
sage.functions.spike_function.spike_function
    alias of SpikeFunction
```

1.7. Spike functions
1.8 Orthogonal polynomials

1.8.1 Chebyshev polynomials

The Chebyshev polynomial of the first kind arises as a solution to the differential equation

\[(1 - x^2) y'' - x y' + n^2 y = 0\]

and those of the second kind as a solution to

\[(1 - x^2) y'' - 3x y' + n(n + 2) y = 0.\]

The Chebyshev polynomials of the first kind are defined by the recurrence relation

\[T_0(x) = 1, \quad T_1(x) = x, \quad T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).\]

The Chebyshev polynomials of the second kind are defined by the recurrence relation

\[U_0(x) = 1, \quad U_1(x) = 2x, \quad U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x).\]

For integers \(m, n\), they satisfy the orthogonality relations

\[\int_{-1}^{1} T_n(x)T_m(x) \frac{dx}{\sqrt{1 - x^2}} = \begin{cases} 0 & \text{if } n \neq m, \\ \pi & \text{if } n = m = 0, \\ \pi/2 & \text{if } n = m \neq 0, \end{cases}\]

and

\[\int_{-1}^{1} U_n(x)U_m(x) \sqrt{1 - x^2} dx = \frac{\pi}{2} \delta_{m,n}.\]

They are named after Pafnuty Chebyshev (1821-1894, alternative transliterations: Tchebyshef or Tschebyscheff).

1.8.2 Hermite polynomials

The Hermite polynomials are defined either by

\[H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}\]

(the “probabilists’ Hermite polynomials”), or by

\[H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}\]

(the “physicists’ Hermite polynomials”). Sage (via Maxima) implements the latter flavor. These satisfy the orthogonality relation

\[\int_{-\infty}^{\infty} H_n(x)H_m(x) e^{-x^2} dx = \sqrt{\pi} n! 2^n \delta_{nm}.\]

They are named in honor of Charles Hermite (1822-1901), but were first introduced by Laplace in 1810 and also studied by Chebyshev in 1859.
1.8.3 Legendre polynomials

Each Legendre polynomial $P_n(x)$ is an n-th degree polynomial. It may be expressed using Rodrigues’ formula:

$$P_n(x) = (2^n n!)^{-1} \frac{d^n}{dx^n} (x^2 - 1)^n.$$

These are solutions to Legendre’s differential equation:

$$\frac{d}{dx} \left[(1 - x^2) \frac{d}{dx} P(x) \right] + n(n + 1) P(x) = 0$$

and satisfy the orthogonality relation

$$\int_{-1}^{1} P_m(x) P_n(x) \, dx = \frac{2}{2n + 1} \delta_{m,n}.$$

The Legendre function of the second kind $Q_n(x)$ is another (linearly independent) solution to the Legendre differential equation. It is not an “orthogonal polynomial” however.

The associated Legendre functions of the first kind $P_{\ell}^m(x)$ can be given in terms of the “usual” Legendre polynomials by

$$P_{\ell}^m(x) = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_{\ell}(x) = (-1)^m \frac{2^\ell \ell!}{(2\ell + 1)(\ell - m)!} (1 - x^2)^{m/2} d_{\ell+m} (x^2 - 1)^{\ell}.$$

Assuming $0 \leq m \leq \ell$, they satisfy the orthogonality relation:

$$\int_{-1}^{1} P_{m(k)} P_{m(\ell)} \, dx = \frac{2(\ell + m)!}{(2\ell + 1)(\ell - m)!} \delta_{k,\ell},$$

where $\delta_{k,\ell}$ is the Kronecker delta.

The associated Legendre functions of the second kind $Q_{\ell}^m(x)$ can be given in terms of the “usual” Legendre polynomials by

$$Q_{\ell}^m(x) = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} Q_{\ell}(x).$$

They are named after Adrien-Marie Legendre (1752-1833).

1.8.4 Laguerre polynomials

Laguerre polynomials may be defined by the Rodrigues formula

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (e^{-x} x^n).$$

They are solutions of Laguerre’s equation:

$$x y'' + (1 - x) y' + ny = 0$$

and satisfy the orthogonality relation

$$\int_0^\infty L_m(x)L_n(x)e^{-x} \, dx = \delta_{mn}.$$

The generalized Laguerre polynomials may be defined by the Rodrigues formula:

$$L_n^{(\alpha)}(x) = \frac{x^{-\alpha} e^x}{n!} \frac{d^n}{dx^n} (e^{-x} x^{n+\alpha}).$$

(These are also sometimes called the associated Laguerre polynomials.) The simple Laguerre polynomials are recovered from the generalized polynomials by setting $\alpha = 0$.

They are named after Edmond Laguerre (1834-1886).
1.8.5 Jacobi polynomials

Jacobi polynomials are a class of orthogonal polynomials. They are obtained from hypergeometric series in cases where the series is in fact finite:

\[P_n^{(\alpha,\beta)}(z) = \binom{\alpha + 1}{n} \frac{2F_1}{\Gamma(\alpha + 1)} \left(-n, 1 + \alpha + \beta + n; \alpha + 1; \frac{1 - z}{2} \right), \]

where \(\binom{\cdot}{\cdot} \) is Pochhammer’s symbol (for the rising factorial), (Abramowitz and Stegun p561.) and thus have the explicit expression

\[P_n^{(\alpha,\beta)}(z) = \frac{\Gamma(\alpha + n + 1)}{n! \Gamma(\alpha + \beta + n + 1)} \sum_{m=0}^{n} \binom{n}{m} \frac{\Gamma(\alpha + \beta + n + m + 1)}{\Gamma(\alpha + m + 1)} \left(\frac{z - 1}{2} \right)^m. \]

They are named after Carl Gustav Jacob Jacobi (1804-1851).

1.8.6 Gegenbauer polynomials

Ultraspherical or Gegenbauer polynomials are given in terms of the Jacobi polynomials \(P_n^{(\alpha,\beta)}(x) \) with \(\alpha = \beta = a - 1/2 \) by

\[C_n^{(a)}(x) = \frac{\Gamma(a + 1/2)}{\Gamma(2a)} \frac{\Gamma(n + 2a)}{\Gamma(n + a + 1/2)} P_n^{(a-1/2,a-1/2)}(x). \]

They satisfy the orthogonality relation

\[\int_{-1}^{1} (1 - x^2)^{a-1/2} C_n^{(a)}(x) C_m^{(a)}(x) dx = \delta_{nm} 2^{1 - 2a} \pi \frac{\Gamma(n + 2a)}{(n + a) \Gamma^2(a) \Gamma(n + 1)}, \]

for \(a > -1/2 \). They are obtained from hypergeometric series in cases where the series is in fact finite:

\[C_n^{(a)}(z) = \binom{2a}{n} \frac{2F_1}{n!} \left(-n, 2a + n; a + 1; \frac{1 - z}{2} \right) \]

where \(\binom{\cdot}{\cdot} \) is the falling factorial. (See Abramowitz and Stegun p561.)

They are named for Leopold Gegenbauer (1849-1903).

1.8.7 Krawtchouk polynomials

The Krawtchouk polynomials are discrete orthogonal polynomials that are given by the hypergeometric series

\[K_j(x; n, p) = (-1)^j \binom{n}{j} p^j \binom{1}{p} (-j, -x; -n; p^{-1}). \]

Since they are discrete orthogonal polynomials, they satisfy an orthogonality relation defined on a discrete (in this case finite) set of points:

\[\sum_{m=0}^{n} K_i(m; n, p) K_j(m; n, p) \binom{n}{m} p^m q^{n-m} = \binom{n}{j} (pq)^j \delta_{ij}, \]

where \(q = 1 - p \). They can also be described by the recurrence relation

\[j K_j(x; n, p) = (x - (n - j + 1)p - (j - 1)q) K_{j-1}(x; n, p) - pq(n - j + 2) K_{j-2}(x; n, p), \]

where \(K_0(x; n, p) = 1 \) and \(K_1(x; n, p) = x - np \).

They are named for Mykhailo Krawtchouk (1892-1942).
1.8.8 Meixner polynomials

The Meixner polynomials are discrete orthogonal polynomials that are given by the hypergeometric series

\[M_n(x; n, p) = (-1)^j \binom{n}{j} p^j \frac{\Gamma(j)}{\Gamma(n-j+1)} \frac{\Gamma(n-j+1)}{\Gamma(n)} \frac{\Gamma(n+1)}{\Gamma(n-j+1)} \, _2F_1(-j, -n; -n; p^{-1}) . \]

They satisfy an orthogonality relation:

\[\sum_{k=0}^{\infty} \tilde{M}_n(k; b, c) \tilde{M}_m(k; b, c) \frac{b^k}{k!} \frac{c^k}{k!} = \frac{e^{-n} n!}{(b)_n (1-c)^n} \delta_{nm} , \]

where \(\tilde{M}_n(x; b, c) = M_n(x; b, c)/(b)_x \), for \(b > 0 \) and \(0 < c < 1 \). They can also be described by the recurrence relation

\[e(n-1+b)M_n(x; b, c) = ((c-1)x+n-1+e(n-1+b))(b+n-1)M_{n-1}(x; b, c) \]
\[- (b+n-1)(b+n-2)(n-1)M_{n-2}(x; b, c) , \]

where \(M_0(x; b, c) = 0 \) and \(M_1(x; b, c) = (1-e^{-1})x + b \).

They are named for Josef Meixner (1908-1994).

1.8.9 Hahn polynomials

The Hahn polynomials are discrete orthogonal polynomials that are given by the hypergeometric series

\[Q_k(x; a, b, n) = \frac{3}{2} F_2(-k, k + a + b + 1, -x; a + 1, -n; 1) . \]

They satisfy an orthogonality relation:

\[\sum_{k=0}^{n-1} Q_i(k; a, b, n) Q_j(k; a, b, n) \rho(k) = \frac{\delta_{ij}}{\pi_i} , \]

where

\[\rho(k) = \binom{a+k}{k} \binom{b+n-k}{n-k} , \]
\[\pi_i = \delta_{ij} \frac{(-1)^i i! (b+1) (i+a+b+1) (i+b) (a+1) i}{i! (2i+a+b+1)(-n)_i (a+1)_i} . \]

They can also be described by the recurrence relation

\[AQ_k(x; a, b, n) = (-x + A + C) Q_{k-1}(x; a, b, n) - C Q_{k-2}(x; a, b, n) , \]

where \(Q_0(x; a, b, n) = 1 \) and \(Q_1(x; a, b, n) = 1 - \frac{a+b+2}{(a+b+1)n} x \) and

\[A = \frac{(k+a+b)(k+a)(n-k+1)}{(2k+a+b-1)(2k+a+b)} , \quad C = \frac{(k-1)(k+b-1)(k+a+b+n)}{(2k+a+b-2)(2k+a+b-1)} . \]

They are named for Wolfgang Hahn (1911-1998), although they were first introduced by Chebyshev in 1875.
1.8.10 Pochhammer symbol

For completeness, the *Pochhammer symbol*, introduced by Leo August Pochhammer, \((x)_n\), is used in the theory of special functions to represent the “rising factorial” or “upper factorial”

\[
(x)_n = x(x + 1)(x + 2) \cdots (x + n - 1) = \frac{(x + n - 1)!}{(x - 1)!}.
\]

On the other hand, the *falling factorial* or *lower factorial* is

\[
x^n = \frac{x!}{(x - n)!},
\]

in the notation of Ronald L. Graham, Donald E. Knuth and Oren Patashnik in their book *Concrete Mathematics*.

Todo: Implement Zernike polynomials. Wikipedia article Zernike_polynomials

REFERENCES:

- [AS1964]
- Wikipedia article Chebyshev_polynomials
- Wikipedia article Legendre_polynomials
- Wikipedia article Hermite_polynomials
- Wikipedia article Jacobi_polynomials
- Wikipedia article Laguerre_polynomials
- Wikipedia article Associated_Legendre_polynomials
- Wikipedia article Kravchuk_polynomials
- Wikipedia article Meixner_polynomials
- Wikipedia article Hahn_polynomials
- Roelof Koekekoek and René F. Swarttouw, arXiv math/9602214
- [Koe1999]

AUTHORS:

- David Joyner (2006-06)
- Stefan Reiterer (2010-)
- Ralf Stephan (2015-)

The original module wrapped some of the orthogonal/special functions in the Maxima package “orthopoly” and was written by Barton Willis of the University of Nebraska at Kearney.

```python
class sage.functions.orthogonal_polys.ChebyshevFunction
    name, nargs=2,
    latex_name=None,
    conversions=None
```

Bases: OrthogonalFunction

Abstract base class for Chebyshev polynomials of the first and second kind.

EXAMPLES:
class sage.functions.orthogonal_polys.Func_assoc_legendre_P
Bases: BuiltinFunction

Return the Ferrers function \(P_{m}^{n}(x) \) of first kind for \(x \in (-1, 1) \) with general order \(m \) and general degree \(n \).

Ferrers functions of first kind are one of two linearly independent solutions of the associated Legendre differential equation

\[
(1 - x^2) \frac{d^2 w}{dx^2} - 2x \frac{dw}{dx} + \left(n(n + 1) - \frac{m^2}{1 - x^2} \right) w = 0
\]
on the interval \(x \in (-1, 1) \) and are usually denoted by \(P_{n}^{m}(x) \).

See also:
The other linearly independent solution is called Ferrers function of second kind and denoted by \(Q_{n}^{m}(x) \), see Func_assoc_legendre_Q.

Warning: Ferrers functions must be carefully distinguished from associated Legendre functions which are defined on \(\mathbb{C} \setminus (-\infty, 1] \) and have not yet been implemented.

EXAMPLES:
We give the first Ferrers functions for non-negative integers \(n \) and \(m \) in the interval \(-1 < x < 1\):

\[
sage: for n in range(4):
 for m in range(n+1):
 print(f"P_{n}^{{m}}(x) = \{gen_legendre_P(n, m, x)\}"")
\]

These expressions for non-negative integers are computed by the Rodrigues-type given in eval_gen_poly(). Negative values for \(n \) are obtained by the following identity:

\[
P_{n}^{m}(x) = P_{n-1}^{m}(x).
\]

For \(n \) being a non-negative integer, negative values for \(m \) are obtained by

\[
P_{n}^{-|m|}(x) = (-1)^{|m|} \frac{(n - |m|)!}{(n + |m|)!} \frac{m!}{P_{n}^{|m|}(x)},
\]

where \(|m| \leq n \).

Here are some specific values with negative integers:
Here are some other random values with floating numbers:

```
sage: # needs sage.symbolic
sage: m = var('m'); assume(m, 'integer')
sage: gen_legendre_P(m, m, .2)
0.960000000000000^(1/2*m)*(-1)^m*factorial(2*m)/(2^m*factorial(m))
sage: gen_legendre_P(.2, m, 0)
sqrt(pi)*2^m/(gamma(-1/2*m + 1.10000000000000)*gamma(-1/2*m + 0.400000000000000))
sage: gen_legendre_P(.2, .2, .2)
0.757714892929573
```

REFERENCES:

- [DLMF-Legendre]

deprecated_function_alias *(issue_number, func)*

Create an aliased version of a function or a method which raises a deprecation warning message.

If \(f \) is a function or a method, write \(g = \texttt{deprecated_function_alias(issue_number, f)} \)

to make a deprecated aliased version of \(f \).

INPUT:

- \(\text{issue_number} \) – integer. The github issue number where the deprecation is introduced.
- \(\text{func} \) – the function or method to be aliased

EXAMPLES:

```
sage: from sage.misc.superseded import deprecated_function_alias
sage: g = deprecated_function_alias(13109, number_of_partitions) # needs sage.combinat sage.libs.flint
sage: g(5) # needs sage.combinat sage.libs.flint
```

This also works for methods:

```
sage: class cls():
    ... def new_meth(self): return 42
    ... old_meth = deprecated_function_alias(13109, new_meth)
sage: cls().old_meth()
doctest:...: DeprecationWarning: old_meth is deprecated. Please use new_meth...
    →instead.
See https://github.com/sagemath/sage/issues/13109 for details.
42
```
github issue #11585:

```python
sage: def a(): pass
sage: b = deprecated_function_alias(13109, a)
sage: b()
doctest:...: DeprecationWarning: b is deprecated. Please use a instead. See https://github.com/sagemath/sage/issues/13109 for details.
```

AUTHORS:

- Florent Hivert (2009-11-23), with the help of Mike Hansen.
- Luca De Feo (2011-07-11), printing the full module path when different from old path

eval_gen_poly(n, m, arg, **kwds)

Return the Ferrers function of first kind \(P^m_n(x) \) for integers \(n > -1, m > -1 \) given by the following Rodrigues-type formula:

\[
P^m_n(x) = (-1)^m+n \frac{(1-x^2)^{m/2}}{2^n n!} \frac{d^{m+n}}{dx^{m+n}} (1-x^2)^n.
\]

INPUT:

- \(n \) – an integer degree
- \(m \) – an integer order
- \(x \) – either an integer or a non-numerical symbolic expression

EXAMPLES:

```python
sage: gen_legendre_P(7, 4, x)  # needs sage.symbolic
3465/2*(13*x^3 - 3*x)*(x^2 - 1)^2
sage: gen_legendre_P(3, 1, sqrt(x))  # needs sage.symbolic
-3/2*(5*x - 1)*sqrt(-x + 1)
```

REFERENCE:

- [DLMF-Legendre], Section 14.7 eq. 10 (https://dlmf.nist.gov/14.7#E10)

eval_poly(*args, **kwds)

Deprecated: Use `eval_gen_poly()` instead. See github issue #25034 for details.

class sage.functions.orthogonal_polys.Func_assoc_legendre_Q

Bases: BuiltinFunction

EXAMPLES:

```python
sage: loads(dumps(gen_legendre_Q))
gen_legendre_Q
sage: maxima(gen_legendre_Q(2, 1, 3, hold=True))._sage_().simplify_full()  # needs sage.symbolic
1/4*sqrt(2)*(36*pi - 36*I*log(2) + 25*I)
```

eval_recursive(n, m, x, **kwds)

Return the associated Legendre \(Q(n, m, arg) \) function for integers \(n > -1, m > -1 \).

EXAMPLES:

1.8. Orthogonal polynomials

59
Functions, Release 10.3

```python
sage: # needs sage.symbolic
gen_legendre_Q(3, 4, x)
48/(x^2 - 1)^2
sage: gen_legendre_Q(4, 5, x)
-384/((x^2 - 1)^2*sqrt(-x^2 + 1))
-1/sqrt(-x^2 + 1)
sage: gen_legendre_Q(0, 1, x)
-1/sqrt(-x^2 + 1)
sage: gen_legendre_Q(0, 2, x)
-1/2*((x + 1)^2 - (x - 1)^2)/(x^2 - 1)
sage: gen_legendre_Q(2, 2, x).subs(x=2).expand()
9/2*I*pi - 9/2*log(3) + 14/3
```

```python
class sage.functions.orthogonal_polys.Func_chebyshev_T

Bases: ChebyshevFunction

Chebyshev polynomials of the first kind.

REFERENCE:

• [AS1964] 22.5.31 page 778 and 6.1.22 page 256.

EXAMPLES:

```python
sage: chebyshev_T(5, x)
16*x^5 - 20*x^3 + 5*x
sage: var('k')
k
sage: test = chebyshev_T(k, x); test
chebyshev_T(k, x)
```

```python
eval_algebraic(n, x)

Evaluate chebyshev_T as polynomial, using a recursive formula.

INPUT:

• n – an integer

• x – a value to evaluate the polynomial at (this can be any ring element)

EXAMPLES:

```python
sage: chebyshev_T.eval_algebraic(5, x)  # needs sage.symbolic
2*(2*(2*x^2 - 1)*x - x)*(2*x^2 - 1) - x
sage: chebyshev_T(-7, x) - chebyshev_T(7, x)  # needs sage.symbolic
0
```
```
functions, release 10.3

sage: chebyshev_T(7^100, Mod(2,3))
2
sage: n = 97; x = RIF(pi/2/n)
# needs sage.symbolic
sage: chebyshev_T(n, cos(x)).contains_zero()
# needs sage.symbolic
True

sage: # needs sage.rings.padics
sage: R.<t> = Zp(2, 8, capped-abs)[[]]
sage: chebyshev_T(10^6 + 1, t)
(2^7 + O(2^8))*t^5 + O(2^8)*t^4 + (2^6 + O(2^8))*t^3 + O(2^8)*t^2
+ (1 + 2^6 + O(2^8))*t + O(2^8)

\texttt{eval\_formula}(n, x)

Evaluate \texttt{chebyshev\_T} using an explicit formula. See [AS1964] 227 (p. 782) for details for the recursions. See also [Koe1999] for fast evaluation techniques.

INPUT:

\begin{itemize}
  \item \texttt{n} – an integer
  \item \texttt{x} – a value to evaluate the polynomial at (this can be any ring element)
\end{itemize}

EXAMPLES:

sage: # needs sage.symbolic
sage: chebyshev_T.eval_formula(-1, x)
x
sage: chebyshev_T.eval_formula(0, x)
1
sage: chebyshev_T.eval_formula(1, x)
x
sage: chebyshev_T.eval_formula(10, x)
512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1
sage: chebyshev_T.eval_algebraic(10, x).expand()
512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1
sage: chebyshev_T.eval_formula(2, 0.1) == chebyshev_T._evalf_(2, 0.1)
# needs sage.rings.complex_double
True

class \texttt{sage.functions.orthogonal\_polys.Func\_chebyshev\_U}

\texttt{Bases: ChebyshevFunction}

Class for the Chebyshev polynomial of the second kind.

REFERENCE:

\begin{itemize}
  \item [AS1964] 22.8.3 page 783 and 6.1.22 page 256.
\end{itemize}

EXAMPLES:

sage: R.<t> = QQ[]
sage: chebyshev_U(2, t)
4*t^2 - 1
sage: chebyshev_U(3, t)
8*t^3 - 4*t

1.8. Orthogonal polynomials
**eval_algebraic** (*n*, *x*)

Evaluate `chebyshev_U` as polynomial, using a recursive formula.

**INPUT:**

- *n* – an integer
- *x* – a value to evaluate the polynomial at (this can be any ring element)

**EXAMPLES:**

```python
sage: chebyshev_U.eval_algebraic(5, x) # needs sage.symbolic
-2*((2*x + 1)*(2*x - 1)*x - 4*(2*x^2 - 1)*x)*(2*x + 1)*(2*x - 1)
sage: parent(chebyshev_U(3, Mod(8,9)))
Ring of integers modulo 9
sage: parent(chebyshev_U(3, Mod(1,9)))
Ring of integers modulo 9
sage: chebyshev_U(-3, x) + chebyshev_U(1, x) # needs sage.symbolic
0
sage: chebyshev_U(-1, Mod(5,8))
0
sage: parent(chebyshev_U(-1, Mod(5,8)))
Ring of integers modulo 8
sage: R.<t> = ZZ[]
sage: chebyshev_U.eval_algebraic(-2, t)
-1
sage: chebyshev_U.eval_algebraic(-1, t)
0
sage: chebyshev_U.eval_algebraic(0, t)
1
sage: chebyshev_U.eval_algebraic(1, t)
2*t
```

**eval_formula** (*n*, *x*)

Evaluate `chebyshev_U` using an explicit formula.

See [AS1964] 227 (p. 782) for details on the recursions. See also [Koe1999] for the recursion formulas.

**INPUT:**

- *n* – an integer
- *x* – a value to evaluate the polynomial at (this can be any ring element)

**EXAMPLES:**

```python
sage: # needs sage.symbolic
sage: chebyshev_U.eval_formula(10, x)
1024*x^10 - 2304*x^8 + 1792*x^6 - 560*x^4 + 60*x^2 - 1
```

(continues on next page)
sage: chebyshev_U.eval_formula(-2, x)
-1
sage: chebyshev_U.eval_formula(-1, x)
0
sage: chebyshev_U.eval_formula(0, x)
1
sage: chebyshev_U.eval_formula(1, x)
2*x
sage: chebyshev_U.eval_formula(2,0.1) == chebyshev_U._evalf_(2,0.1)
True

class sage.functions.orthogonal_polys.Func_gen_laguerre
    Bases: OrthogonalFunction

REFERENCE:

class sage.functions.orthogonal_polys.Func_hahn
    Bases: OrthogonalFunction

Hahn polynomials $Q_k(x; a, b, n)$.

INPUT:
  • $k$ – the degree
  • $x$ – the independent variable $x$
  • $a, b$ – the parameters $a, b$
  • $n$ – the number of discrete points

EXAMPLES:
We verify the orthogonality for $n = 3$:

```python
sage: # needs sage.symbolic
sage: n = 2
sage: a, b = SR.var('a,b')
sage: def rho(k, a, b, n):
 : return binomial(a + k, k) * binomial(b + n - k, n - k)
sage: M = matrix([[
 : sum(rho(k, a, b, n)
 : * hahn(i, k, a, b, n)
 : * hahn(j, k, a, b, n)
 : for k in range(n + 1)).expand().factor()
 : for i in range(n+1) for j in range(n+1)])
```

```python
sage: P = rising_factorial
sage: def diag(i, a, b, n):
 : return ((-1)^i * factorial(i) * P(b + 1, i) * P(i + a + b + 1, n + 1)
 : / (factorial(n) * (2*i + a + b + 1) * P(-n, i) * P(a + 1, i)))
```

```python
sage: all(M[i,i] == diag(i, a, b, n) for i in range(3))
True
```

```python
sage: all(M[i,j] == 0 for i in range(3) for j in range(3) if i != j)
True
```

eval_formula ($k, x, a, b, n$)
    Evaluate self using an explicit formula.

EXAMPLES:
sage: # needs sage.symbolic
sage: x, x, a, b, n = var('k, x, a, b, n')
sage: Q2 = hahn.eval_formula(2, x, a, b, n).simplify_full()
sage: Q2.coefficient(x^2).factor()
(a + b + 4)*(a + b + 3)/((a + 2)*(a + 1)*(n - 1)*n)
sage: Q2.coefficient(x).factor()
-2*a*n + a + b + 4*n*(a + b + 3)/((a + 2)*(a + 1)*(n - 1)*n)
sage: Q2(x=0)
1

eval_recursive(k, x, a, b, n, *args, **kwds)
Return the Hahnpolynomial \( Q_k(x; a, b, n) \) using the recursive formula.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: x, a, b, n = var('x, a, b, n')
sage: hahn.eval_recursive(0, x, a, b, n)
1
sage: hahn.eval_recursive(1, x, a, b, n)
-(a + b + 2)*x/((a + 1)*n) + 1
sage: bool(hahn(2, x, a, b, n) == hahn.eval_recursive(2, x, a, b, n))
True
sage: bool(hahn(3, x, a, b, n) == hahn.eval_recursive(3, x, a, b, n))
True
sage: bool(hahn(4, x, a, b, n) == hahn.eval_recursive(4, x, a, b, n))
True
```

class sage.functions.orthogonal_polys.Func_hermite
Bases: GinacFunction

Return the Hermite polynomial for integers \( n > -1 \).

REFERENCE:

- [AS1964] 22.5.40 and 22.5.41, page 779.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: x = PolynomialRing(QQ, 'x').gen()
sage: hermite(2, x)
4*x^2 - 2
sage: hermite(3, x)
8*x^3 - 12*x
sage: hermite(3, 2)
40
sage: S.<y> = PolynomialRing(RR)
sage: hermite(3, y)
8.00000000000000*y^3 - 12.00000000000000*y
```

(continues on next page)
Check that github issue #17192 is fixed:

```python
sage: # needs sage.symbolic
sage: x = PolynomialRing(QQ, 'x').gen()
sage: hermite(0, x)
1
sage: hermite(-1, x)
Traceback (most recent call last):
 ...
RuntimeError: hermite_eval: The index n must be a nonnegative integer
sage: hermite(-7, x)
Traceback (most recent call last):
 ...
RuntimeError: hermite_eval: The index n must be a nonnegative integer
sage: m, x = SR.var('m, x')
sage: hermite(m, x).diff(m)
Traceback (most recent call last):
 ...
RuntimeError: derivative w.r.t. to the index is not supported yet
```

**class sage.functions.orthogonal_polys.Func_jacobi_P**

Bases: `OrthogonalFunction`

Return the Jacobi polynomial $P_n^{(a,b)}(x)$ for integers $n > -1$ and $a$ and $b$ symbolic or $a > -1$ and $b > -1$.

The Jacobi polynomials are actually defined for all $a$ and $b$. However, the Jacobi polynomial weight $(1-x)^a(1+x)^b$ is not integrable for $a \leq -1$ or $b \leq -1$.

**REFERENCE:**
- Table on page 789 in [AS1964].

**EXAMPLES:**

```python
sage: x = PolynomialRing(QQ, 'x').gen()
sage: jacobi_P(2,0,0,x)
3/2*x^2 - 1/2
```

**class sage.functions.orthogonal_polys.Func_krawtchouk**

Bases: `OrthogonalFunction`

Krawtchouk polynomials $K_j(x; n, p)$.

**INPUT:**
• \( j \) – the degree
• \( x \) – the independent variable \( x \)
• \( n \) – the number of discrete points
• \( p \) – the parameter \( p \)

See also:

\[
\text{sage.coding.delsarte_bounds.krawtchouk()} \ K_1^{n,q}(x), \text{ which are related by}
\]

\[
(-q)^j \bar{K}_j^{n,q^{-1}}(x) = K_j(x; n, 1-q).
\]

**EXAMPLES:**

We verify the orthogonality for \( n = 4 \):

```python
sage: n = 4
sage: p = SR.var('p')
\# needs sage.symbolic
sage: matrix([[sum(binomial(n,m) * p**m * (1-p)**(n-m)) * krawtchouk(i,m,n,p) * krawtchouk(j,m,n,p) for m in range(n+1)].expand().factor() for i in range(n+1)] for j in range(n+1)])
\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & -4*(p - 1)*p & 0 & 0 \\
0 & 0 & 6*(p - 1)^2*p^2 & 0 \\
0 & 0 & 0 & -4*(p - 1)^3*p^3 \\
0 & 0 & 0 & 0 & (p - 1)^4*p^4
\end{bmatrix}
\]

We verify the relationship between the Krawtchouk implementations:

```python
sage: q = SR.var('q')
\# needs sage.symbolic
sage: all(codes.bounds.krawtchouk(n, 1/q, j, x) *(-q)**j == krawtchouk(j, x, n, 1-q) for j in range(n+1))
True
```

eval_formula \((k, x, n, p)\)

Evaluate \textit{self} using an explicit formula.

EXAMPLES:

```python
sage: x, n, p = var('x,n,p')
\# needs sage.symbolic
sage: krawtchouk.eval_formula(3, x, n, p).expand().collect(x)
\# needs sage.symbolic
-1/6*n^3*p^3 + 1/2*n^2*p^3 - 1/3*n*p^3 - 1/2*(n*p - 2*p + 1)*x^2 + 1/6*x^3 + 1/6*(3*n^2*p^2 - 9*n*p^2 + 3*n*p + 6*p^2 - 6*p + 2)*x
```
eval_recursive(*j*, *x*, *n*, *p*, *args*, **kwds*)

Return the Krawtchouk polynomial $K_j(x; n, p)$ using the recursive formula.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: x, n, p = var('x, n, p')
sage: krawtchouk.eval_recursive(0, x, n, p)
1
sage: krawtchouk.eval_recursive(1, x, n, p)
-n*p + x
1/2*n^2*p^2 + 1/2*n*(p - 1)*p - n*p^2 + 1/2*n*p
- 1/2*(2*n*p - 2*p + 1)*x + 1/2*x^2
sage: bool(krawtchouk.eval_recursive(2, x, n, p) == krawtchouk(2, x, n, p))
True
sage: bool(krawtchouk.eval_recursive(3, x, n, p) == krawtchouk(3, x, n, p))
True
sage: bool(krawtchouk.eval_recursive(4, x, n, p) == krawtchouk(4, x, n, p))
True
sage: M = matrix([[1/2, -1], [ 1, 0]])  # needs sage.modules
sage: krawtchouk.eval_recursive(2, M, 3, 1/2)  # needs sage.modules
[ 9/8  7/4]
[-7/4  1/4]
```

class sage.functions.orthogonal_polys.Func_laguerre

Bases: OrthogonalFunction

REFERENCE:

class sage.functions.orthogonal_polys.Func_legendre_P

Bases: GinacFunction

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: legendre_P(4, 2.0)
55.3750000000000
sage: legendre_P(1, x)
x
sage: legendre_P(4, x + 1)
35/8*(x + 1)^4 - 15/4*(x + 1)^2 + 3/8
sage: legendre_P(1/2, I+1.)
1.05338240025858 + 0.359890322109665*I
sage: legendre_P(0, SR(1)).parent()
Symbolic Ring
sage: # needs sage.symbolic
sage: legendre_P(0, 0)  # needs sage.symbolic
1
sage: legendre_P(1, x)  # needs sage.symbolic
x
```

(continues on next page)
sage: # needs sage.symbolic
sage: legendre_P(4, 2.)
55.3750000000000
sage: legendre_P(5.5, 1.00001)
1.00017875754114
sage: legendre_P(1/2, I + 1).n()
1.05338240025858 + 0.359890322109665*I
sage: legendre_P(1/2, I + 1).n(59)
1.0533824002585801 + 0.35989032210966539*I
sage: legendre_P(42, RR(12345678))
2.66314881466753e309
sage: legendre_P(42, Reals(20)(12345678))
2.6632e309
sage: legendre_P(201/2, 0).n()
0.0561386178630179
sage: legendre_P(201/2, 0).n(100)
0.056138617863017877699963095883

sage: # needs sage.symbolic
sage: R.<x> = QQ[]
sage: legendre_P(4, x)
35/8*x^4 - 15/4*x^2 + 3/8
sage: legendre_P(4, x + 1)
35/8*(x + 1)^4 - 15/4*(x + 1)^2 + 3/8
sage: legendre_P(4, sqrt(2))
83/8

sage: # needs sage.symbolic
sage: n = var('n')
sage: derivative(legendre_P(n,x), x)
(n*x*legendre_P(n, x) - n*legendre_P(n - 1, x))/(x^2 - 1)

sage: derivative(legendre_P(3,x), x)
15/2*x^2 - 3/2

sage: derivative(legendre_P(n,x), n)
Traceback (most recent call last):
...
RuntimeError: derivative w.r.t. to the index is not supported yet

class sage.functions.orthogonal_polys.Func_legendre_Q
Bases: BuiltinFunction

EXAMPLES:

sage: loads(dumps(legendre_Q))
legendre_Q
sage: maxima(legendre_Q(20, x, hold=True))._sage_().coefficient(x, 10) # needs sage.symbolic
-29113619535/131072*log(-(x + 1)/(x - 1))

eval_formula(n, arg, **kwds)
Return expanded Legendre $Q(n, \arg)$ function expression.

REFERENCE:

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: legendre_Q.eval_formula(1, x)
1/2*x*(log(x + 1) - log(-x + 1)) - 1
sage: legendre_Q.eval_formula(2, x).expand().collect(log(1+x)).collect(log(1-x))
1/4*(3*x^2 - 1)*log(x + 1) - 1/4*(3*x^2 - 1)*log(-x + 1) - 3/2*x
sage: legendre_Q.eval_recursive(20, x).expand().coefficient(x, 10)
-29113619535/131072*log(x + 1) + 29113619535/131072*log(-x + 1)
```

eval_recursive(n, \arg, **kwds)

Return expanded Legendre $Q(n, \arg)$ function expression.

EXAMPLES:

```python
sage: legendre_Q.eval_recursive(2, x)  # needs sage.symbolic
3/4*x^2*(log(x + 1) - log(-x + 1)) - 3/2*x - 1/4*log(x + 1) + 1/4*log(-x + 1)
```

class sage.functions.orthogonal_polys.Func_meixner

Meixner polynomials $M_n(x; b, c)$.

INPUT:

- n – the degree
- x – the independent variable x
- b, c – the parameters b, c

evau evaluated using an explicit formula.

EXAMPLES:

```python
sage: x, b, c = var('x,b,c')  # needs sage.symbolic
sage: meixner.eval_formula(3, x, b, c).expand().collect(x)  # needs sage.symbolic
-x^3*(3/c - 3/c^2 + 1/c^3 - 1) + b^3 + 3*(b - 2*b/c + b/c^2 - 1/c - 1/c^2 + 1/c^3 + 1)*x^2 + 3*b^2 + (3*b^2 + 6*b - 3*b^2/c - 3*b/c - 3*b/c^2 - 2/c^3 + 2)*x + 2*b
```
eval_recursive *(n, x, b, c, *args, **kwds)*

Return the Meixner polynomial \(M_n(x; b, c) \) using the recursive formula.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: x, b, c = var('x,b,c')
sage: meixner.eval_recursive(0, x, b, c)
1
sage: meixner.eval_recursive(1, x, b, c)
-x*(1/c - 1) + b
sage: meixner.eval_recursive(2, x, b, c) .simplify_full().collect(x)
-x^2*(2/c - 1/c^2 - 1) + b^2 + (2*b - 2*b/c - 1/c^2 + 1)*x + b
sage: bool(meixner(2, x, b, c) == meixner.eval_recursive(2, x, b, c))
True
sage: bool(meixner(3, x, b, c) == meixner.eval_recursive(3, x, b, c))
True
sage: bool(meixner(4, x, b, c) == meixner.eval_recursive(4, x, b, c))
True
sage: M = matrix([[1/2, -1], [ 1, 0]])
sage: ret = meixner.eval_recursive(2, M, b, c) .simplify_full().factor()
sage: for i in range(2):
    ...:     for j in range(2):
        ...:         ret[i, j] = ret[i, j].collect(c)
sage: ret
[b^2 + 1/2*(2*b + 3)/c - 1/4/c^2 - 5/4
 [-2*b + (2*b - 1)/c + 3/2/c^2 - 1/2]  b^2 + b + 2/c - 1/c^2 - 1]
```

class `sage.functions.orthogonal_polys.Func_ultraspherical`

Bases: `GinacFunction`

Return the ultraspherical (or Gegenbauer) polynomial \(\text{gegenbauer}(n, a, x) \),

\[
C_n^a(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{\Gamma(n-k+a)}{\Gamma(a)k!(n-2k)!}(2x)^{n-2k}.
\]

When \(n \) is a nonnegative integer, this formula gives a polynomial in \(z \) of degree \(n \), but all parameters are permitted to be complex numbers. When \(a = 1/2 \), the Gegenbauer polynomial reduces to a Legendre polynomial.

Computed using Pynac.

For numerical evaluation, consider using the mpmath library, as it also allows complex numbers (and negative \(n \) as well); see the examples below.

REFERENCE:

• [AS1964] 22.5.27

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: ultraspherical(8, 101/11, x)
795972057547264/214358881*x^8 - 62604543852032/19487171*x^6...
sage: x = PolynomialRing(QQ, 'x').gen()
sage: ultraspherical(2, 3/2, x)
15/2*x^2 - 3/2
sage: ultraspherical(1, 1, x)
2*x
sage: t = PolynomialRing(RationalField(), "t").gen()
```

(continues on next page)
Functions, Release 10.3

(continued from previous page)

| sage: gegenbauer(3, 2, t) |
| 32*t^3 - 12*t |
| sage: x = SR.var('x') |
| sage: n = ZZ.random_element(5, 5001) |
| sage: a = QQ.random_element().abs() + 5 |
| sage: s = ((n + 1)*ultraspherical(n + 1, a, x) |
|: - 2*x*(n + a)*ultraspherical(n, a, x) |
|: +(n + 2*a - 1)*ultraspherical(n - 1, a, x)) |
| sage: s.expand().is_zero() True |
| sage: ultraspherical(5, 9/10, 3.1416) 6949.55439044240 |
| sage: ultraspherical(5, 9/10, RealField(100)(pi)) #... |
| sage: gegenbauer(2, a, x) 2*(a + 1)*a*x^2 - a |
| sage: gegenbauer(3, a, x) 4/3*(a + 2)*(a + 1)*a*x^3 - 2*(a + 1)*a*x |
| sage: gegenbauer(3, a, x).expand() 4/3*a^3*x^3 + 4*a^2*x - 2*a^2*x - 2*a*x |
| sage: gegenbauer(10, a, x).expand().coefficient(x, 2) 1/12*a^6 + 5/4*a^5 + 85/12*a^4 + 75/4*a^3 + 137/6*a^2 + 10*a |
| sage: ex = gegenbauer(100, a, x) |
| sage: (ex.subs(a==55/98) - gegenbauer(100, 55/98, x)).is_trivial_zero() True |
| sage: gegenbauer(2, -3, x) 12*x^2 + 3 |
| sage: gegenbauer(120,-99/2,3) |
| 165450237260857068211268753017832849486192349372493824 |
| sage: gegenbauer(5, 9/2, x) 21879/8*x^5 - 6435/4*x^3 + 1287/8*x |
| sage: gegenbauer(15,3/2,5) 3903412392243800 |

Numerical evaluation with the mpmath library:

| sage: from mpmath import gegenbauer as gegenbauer_mp |
| sage: from mpmath import mp |

(continues on next page)
Functions, Release 10.3

(continued from previous page)

```sage
sage: mp.pretty = True; mp.dps=25
sage: gegenbauer_mp(-7, 0.5, 0.3)
0.1291811875
sage: gegenbauer_mp(2+3j, -0.75, -1000j)
(-5038991.358609026523401901 + 9414549.285447104177860806j)
```

class sage.functions.orthogonal_polys.OrthogonalFunction

(name, nargs=2, latex_name=None, conversions=None)

Bases: BuiltinFunction

Base class for orthogonal polynomials.

This class is an abstract base class for all orthogonal polynomials since they share similar properties. The evaluation as a polynomial is either done via maxima, or with pynac.

Convention: The first argument is always the order of the polynomial, the others are other values or parameters where the polynomial is evaluated.

`eval_formula(*args)`

Evaluate this polynomial using an explicit formula.

EXAMPLES:

```sage
sage: from sage.functions.orthogonal_polys import OrthogonalFunction
sage: P = OrthogonalFunction('testo_P')
```

```sage
sage: P.eval_formula(1, 2.0)
Traceback (most recent call last):
  ...: Not ImplementedError: no explicit calculation of values implemented
```

1.9 Other functions

class sage.functions.other.Function_Order

Bases: GinacFunction

The order function.

This function gives the order of magnitude of some expression, similar to O-terms.

See also:

Order(), big_oh

EXAMPLES:

```sage
sage: x = SR('x')
  # needs sage.symbolic
sage: x.Order()  # needs sage.symbolic
Order(x)
sage: (x^2 + x).Order()  # needs sage.symbolic
Order(x^2 + x)
```
class sage.functions.other.Function_abs

Bases: GinacFunction

The absolute value function.

EXAMPLES:

```
sage: abs(-2)
2

sage: # needs sage.symbolic
sage: var('x y')
(x, y)
sage: abs(x)
abs(x)
sage: abs(x^2 + y^2)
abs(x^2 + y^2)
sage: sqrt(x^2)
sqrt(x^2)
sage: abs(sqrt(x))
sqrt(abs(x))
sage: complex(abs(3*I))
(3+0j)

sage: f = sage.functions.other.Function_abs()
sage: latex(f)
\mathrm{abs}

sage: latex(abs(x))
\left| x \right|

sage: abs(x)._sympy_()
Abs(x)
```

Test pickling:

```
sage: loads(dumps(abs(x)))
needs sage.symbolic
```

class sage.functions.other.Function_arg

Bases: BuiltinFunction

The argument function for complex numbers.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: arg(3+i)
arctan(1/3)
sage: arg(-1+i)
3/4*pi
sage: arg(2+2*i)
1/4*pi
sage: arg(2+x)
arg(x + 2)
sage: arg(2.0+i*x)
arg(x + 2.00000000000000 + 1.00000000000000*I)
sage: arg(-3)
```

(continues on next page)
pi
sage: arg(3)
0
sage: arg(0)
0

sage: # needs sage.symbolic
sage: latex(arg(x))
\(\text{arg}\left(x\right)\)

sage: maxima(arg(x))
atan2(0, SAGE_VAR_x)
sage: maxima(arg(2+i))
atan(1/2)
sage: maxima(arg(sqrt(2)+i))
atan(1/sqrt(2))

sage: # needs sympy
sage: arg(x)._sympy_() # --

sage: arg(2+i) # --

sage: arg(sqrt(2)+i) # --
sage: arg(sqrt(2)+i).simplify() # --

class sage.functions.other.Function_binomial

Bases: GinacFunction

Return the binomial coefficient

\[\binom{x}{m} = \frac{x(x-1)\cdots(x-m+1)}{m!} \]

which is defined for \(m \in \mathbb{Z}\) and any \(x\). We extend this definition to include cases when \(x - m\) is an integer but \(m\) is not by

\[\binom{x}{m} = \binom{x}{x-m} \]

If \(m < 0\), return 0.

INPUT:

- \(x, m\) - numbers or symbolic expressions. Either \(m\) or \(x-m\) must be an integer, else the output is symbolic.

OUTPUT: number or symbolic expression (if input is symbolic)

EXAMPLES:

sage: # needs sage.symbolic
sage: binomial(5, 2)
10
sage: binomial(2, 0)
1
sage: binomial(1/2, 0) # --
Functions, Release 10.3

We can use a \texttt{hold} parameter to prevent automatic evaluation:

```python
sage: SR(5).binomial(3, hold=True)
```

Numbers are considered conditions with zero being \texttt{False}. A true condition marks a default value. The function
is not evaluated as long as it contains a relation that cannot be decided by \texttt{Pynac}.

\textbf{EXAMPLES:}

```python
sage: # needs sage.symbolic
sage: ex = cases([[(x==0, pi), (True, 0)]]); ex
```

```python
binomial(5, 3)
```

```python
sage: SR(5).binomial(3, hold=True).simplify()
```

```python
10
```

\texttt{Function_cases}

Formal function holding \texttt{(condition, expression) pairs.}

\textbf{EXAMPLES:}

```python
sage: # needs sage.symbolic
sage: ex = cases([[(x==0, pi), (True, 0)]]); ex
```

```python
cases(((x == 0, pi), (1, 0)))
```

```python
pi
```

```python
ex + 1
```

```python
cases(((x == 0, pi), (1, 0))) + 1
```

```python
pi + 1
```
The first encountered default is used, as well as the first relation that can be trivially decided:

```python
sage: cases(((True, pi), (True, 0)))  # needs sage.symbolic
  pi
sage: # needs sage.symbolic
sage: _ = var('y')
sage: ex = cases(((x==0, pi), (y==1, 0))); ex
  cases(((x == 0, pi), (y == 1, 0)))
  pi
sage: ex.subs(x==0)
  pi
sage: ex.subs(x==0, y==1)
  pi
```

```python
class sage.functions.other.Function_ceil
  Bases: BuiltinFunction

  The ceiling function.

  The ceiling of \( x \) is computed in the following manner.

  1. The \( x.ceil() \) method is called and returned if it is there. If it is not, then Sage checks if \( x \) is one of Python’s native numeric data types. If so, then it calls and returns \( \text{Integer}(\text{math.ceil}(x)) \).

  2. Sage tries to convert \( x \) into a \text{RealIntervalField} with 53 bits of precision. Next, the ceilings of the endpoints are computed. If they are the same, then that value is returned. Otherwise, the precision of the \text{RealIntervalField} is increased until they do match up or it reaches \text{bits} of precision.

  3. If none of the above work, Sage returns a \text{Expression} object.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: a = ceil(2/5 + x); a
 \text{ceil}(x + 2/5)
 ceil(x + 2/5)
 5
sage: a(x=4)
 5
sage: a(x=4.0)
 5
sage: ZZ(a(x=3))
 4
sage: a = ceil(x^3 + x + 5/2); a
 \text{ceil}(x^3 + x + 1/2) + 2
 ceil(x^3 + x + 1/2) + 2
 13
sage: a(x=2)
 13
sage: ceil(sin(8)/sin(2)) # needs sage.symbolic
 2
sage: ceil(5.4)
 6
sage: type(ceil(5.4))
 \text{<class 'sage.rings.integer.Integer'>}
```
Small numbers which are extremely close to an integer are hard to deal with:

```
sage: ceil((33^100 + 1)^(1/100))
needs sage.symbolic
Traceback (most recent call last):
...
ValueError: cannot compute ceil(...) using 256 bits of precision
```

This can be fixed by giving a sufficiently large `bits` argument:

```
sage: ceil((33^100 + 1)^(1/100), bits=500)
needs sage.symbolic
Traceback (most recent call last):
...
ValueError: cannot compute ceil(...) using 512 bits of precision
sage: ceil((33^100 + 1)^(1/100), bits=1000)
needs sage.symbolic
34
```

```
sage: ceil(sec(e))
needs sage.symbolic
-1
```

```
sage: latex(ceil(x))
needs sage.symbolic
\left \lceil x \right \rceil
sage: ceil(x)._sympy_()
needs sympy sage.symbolic
ceiling(x)
```

```
sage: import numpy
needs numpy
sage: a = numpy.linspace(0,2,6)
needs numpy
sage: ceil(a)
needs numpy
array([0., 1., 1., 2., 2., 2.])
```

Test pickling:

```
sage: loads(dumps(ceil))
ceil
```

class sage.functions.other.Function_conjugate
    Bases: GinacFunction

    Returns the complex conjugate of the input.
It is possible to prevent automatic evaluation using the `hold` parameter:

```python
sage: conjugate(I, hold=True) #...

needs sage.symbolic
conjugate(I)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: conjugate(I, hold=True).simplify() #...

needs sage.symbolic
-I
```

class `sage.functions.other.Function_crootof`

Bases: `BuiltinFunction`

Formal function holding \((\text{polynomial}, \text{index})\) pairs.

The expression evaluates to a floating point value that is an approximation to a specific complex root of the polynomial. The ordering is fixed so you always get the same root.

The functionality is imported from SymPy, see http://docs.sympy.org/latest/_modules/sympy/polys/rootoftools.html

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: c = complex_root_of(x^6 + x + 1, 1); c
c
complex_root_of(x^6 + x + 1, 1)
sage: c.n()
-0.790667188814418 + 0.300506920309552*I
sage: c.n(100)
-0.7906671888144176449859281847 + 0.30050692030955162512002521*I
sage: (c^6 + c + 1).n(100) < 1e-25
True
```

class `sage.functions.other.Function_elementof`

Bases: `BuiltinFunction`

Formal set membership function that is only accessible internally.

This function is called to express a set membership statement, usually as part of a solution set returned by `solve()`.

See `sage.sets.set.Set` and `sage.sets.real_set.RealSet` for possible set arguments.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: from sage.functions.other import element_of
def element_of(x, SR(ZZ))
element_of(x, Integer Ring)
sage: element_of(sin(x), SR(QQ))
element_of(sin(x), Rational Field)
sage: element_of(x, SR(RealSet.open_closed(0,1)))
element_of(x, (0, 1])
sage: element_of(x, SR({4,6,8}))
element_of(x, {8, 4, 6})
```

class `sage.functions.other.Function_factorial`

Bases: `GinacFunction`
Returns the factorial of $n$.

INPUT:

- $n$ – a non-negative integer, a complex number (except negative integers) or any symbolic expression

OUTPUT: an integer or symbolic expression

EXAMPLES:

```
sage: factorial(0)
1
sage: factorial(4)
24
sage: factorial(10)
3628800
sage: factorial(6) == 6*5*4*3*2
True

sage: # needs sage.symbolic
sage: x = SR.var('x')
sage: f = factorial(x + factorial(x)); f
factorial(x + factorial(x))
sage: f(x=3)
362880
sage: factorial(x)^2
factorial(x)^2
```

To prevent automatic evaluation use the `hold` argument:

```
sage: factorial(5, hold=True) # needs sage.symbolic
factorial(5)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```
sage: factorial(5, hold=True).simplify() # needs sage.symbolic
120
```

We can also give input other than nonnegative integers. For other nonnegative numbers, the `sage.functions.gamma.gamma()` function is used:

```
sage: factorial(1/2) # needs sage.symbolic
1/2*sqrt(pi)
sage: factorial(3/4) # needs sage.symbolic
gamma(7/4)
sage: factorial(2.3) # needs sage.symbolic
2.68343738195577
```

But negative input always fails:

```
sage: factorial(-32)
Traceback (most recent call last):
...
ValueError: factorial only defined for non-negative integers
```
And very large integers remain unevaluated:

```
sage: factorial(2**64)
#...
needs sage.symbolic
factorial(18446744073709551616)
sage: SR(2**64).factorial()
#...
needs sage.symbolic
factorial(18446744073709551616)
```

```python
class sage.functions.other.Function_floor
Bases: BuiltinFunction

The floor function.

The floor of \(x \) is computed in the following manner.

1. The \(x.floor() \) method is called and returned if it is there. If it is not, then Sage checks if \(x \) is one of Python’s native numeric data types. If so, then it calls and returns \(\text{Integer}(\text{math.floor}(x)) \).

2. Sage tries to convert \(x \) into a \text{RealIntervalField} with 53 bits of precision. Next, the floors of the endpoints are computed. If they are the same, then that value is returned. Otherwise, the precision of the \text{RealIntervalField} is increased until they do match up or it reaches bits of precision.

3. If none of the above work, Sage returns a symbolic \text{Expression} object.

EXAMPLES:

```
sage: floor(5.4)  
5
sage: type(floor(5.4))  
<class 'sage.rings.integer.Integer'>

sage: # needs sage.symbolic  
sage: var('x')  
x  
sage: a = floor(5.25 + x); a  
floor(x + 5.25000000000000)

sage: a.simplify()  
floor(x + 0.25) + 5

sage: a(x=2)  
7

sage: # needs sage.symbolic  
sage: floor(cos(8) / cos(2))  
0
sage: floor(log(4) / log(2))  
2

sage: a = floor(5.4 + x); a  
floor(x + 5.40000000000000)

sage: a.subs(x==2)  
7

sage: floor(log(2^(3/2)) / log(2) + 1/2)  
2

sage: floor(log(2^(-3/2)) / log(2) + 1/2)  
-1

sage: floor(factorial(50)/exp(1))  
111887199640782480504630258070757734324011354208865721592720336800
```

(continues on next page)
functions which are extremely close to an integer are hard to deal with:

```python
sage: floor((33^100 + 1)^(1/100))
needs sage.symbolic
Traceback (most recent call last):
... ValueError: cannot compute floor(...) using 256 bits of precision
```

This can be fixed by giving a sufficiently large `bits` argument:

```python
sage: floor((33^100 + 1)^(1/100), bits=500)
needs sage.symbolic
Traceback (most recent call last):
... ValueError: cannot compute floor(...) using 512 bits of precision
sage: floor((33^100 + 1)^(1/100), bits=1000)
needs sage.symbolic
33
```

```python
sage: import numpy
needs numpy
sage: a = numpy.linspace(0,2,6)
needs numpy
sage: floor(a)
needs numpy
array([0., 0., 0., 1., 1., 2.])
sage: floor(x)._sympy_(
needs sympy sage.symbolic
floor(x)
```

Test pickling:

```python
sage: loads(dumps(floor))
floor
```

class `sage.functions.other.Function_frac`

Bases: `BuiltinFunction`

The fractional part function \(\{x\} \).

\(\frac{x} \) is defined as \(\{x\} = x - \lfloor x \rfloor \).

EXAMPLES:

```python
sage: frac(5.4)
0.400000000000000
sage: type(frac(5.4))
<class 'sage.rings.real_mpfr.RealNumber'>
```
sage: \texttt{frac}(456/123)
\texttt{29/41}

sage: \# \texttt{needs sage.symbolic}
sage: \texttt{var('x')}
x
sage: a = \texttt{frac}(5.4 + x); a
\texttt{frac}(x + 5.400000000000000)

sage: \texttt{frac(cos(8)/cos(2))}
\texttt{cos(8)/cos(2)}

sage: \texttt{latex(frac(x))}
\texttt{\operatorname{frac}\left(x\right)}

sage: \texttt{frac(x)._sympy_}
\rightarrow \texttt{needs sympy}

\texttt{frac(x)}

Test pickling:

sage: \texttt{loads(dumps(floor))}
floor

\texttt{class sage.functions.other.Function_imag_part}

\texttt{Bases: GinacFunction}

Returns the imaginary part of the (possibly complex) input.

It is possible to prevent automatic evaluation using the \texttt{hold} parameter:

sage: \texttt{imag_part(I, hold=True)}
\rightarrow \texttt{needs sage.symbolic}
imag_part(I)

To then evaluate again, we currently must use Maxima via \texttt{sage.symbolic.expression.Expression.simplify()}:

sage: \texttt{imag_part(I, hold=True).simplify()}
\rightarrow \texttt{needs sage.symbolic}
1

\texttt{class sage.functions.other.Function_limit}

\texttt{Bases: BuiltinFunction}

Placeholder symbolic limit function that is only accessible internally.

This function is called to create formal wrappers of limits that Maxima can’t compute:

sage: \texttt{a = lim(exp(x^2)*(1-erf(x)), x=infinity); a}
\rightarrow \texttt{needs sage.symbolic}
\texttt{-limit((erf(x) - 1)*e^(x^2), x, +Infinity)}

EXAMPLES:

sage: \# \texttt{needs sage.symbolic}
sage: \texttt{from sage.functions.other import symbolic_limit as slimit}
sage: \texttt{slimit(1/x, x, \infty)}
\texttt{limit(1/x, x, +Infinity)}
sage: \texttt{var('minus,plus')}
class sage.functions.other.Function_prod

Bases: BuiltinFunction

Placeholder symbolic product function that is only accessible internally.

EXAMPLES:

```python
sage: from sage.functions.other import symbolic_product as sprod
sage: r = sprod(x, x, 1, 10); r
```

needs sage.symbolic

```python
product(x, x, 1, 10)
```

```python
sage: r.unhold()  #...
```

needs sage.symbolic

3628800

class sage.functions.other.Function_real_nth_root

Bases: BuiltinFunction

Real \(n \)-th root function \(x^{\frac{1}{n}} \).

The function assumes positive integer \(n \) and real number \(x \).

EXAMPLES:

```python
sage: real_nth_root(2, 3)  #...
```

needs sage.symbolic

\(2^{\frac{1}{3}} \)

```python
sage: real_nth_root(-2, 3)  #...
```

needs sage.symbolic

\(-2^{\frac{1}{3}} \)

```python
sage: real_nth_root(8, 3)
```

2

```python
sage: real_nth_root(-8, 3)
```

-2

```python
sage: real_nth_root(-2, 4)
```

Traceback (most recent call last):
...
ValueError: no real nth root of negative real number with even n

For numeric input, it gives a numerical approximation.

```python
sage: real_nth_root(2., 3)
```

1.25992104989487

```python
sage: real_nth_root(-2., 3)
```

-1.25992104989487

Some symbolic calculus:

```python
```
```python
sage: # needs sage.symbolic
sage: f = real_nth_root(x, 5)^3; f
real_nth_root(x^3, 5)
sage: f.diff()
3/5*x^2*real_nth_root(x^(-12), 5)
sage: result = f.integrate(x)
...
sage: result
integrate((abs(x)^3)^(1/5)*sgn(x^3), x)
sage: _.diff()
(abs(x)^3)^(1/5)*sgn(x^3)
```

```python
class sage.functions.other.Function_real_part
Bases: GinacFunction

Returns the real part of the (possibly complex) input.

It is possible to prevent automatic evaluation using the `hold` parameter:

```python
sage: real_part(I, hold=True) #...
needs sage.symbolic
real_part(I)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: real_part(I, hold=True).simplify() #...
needs sage.symbolic
0
```

**EXAMPLES:**

```python
sage: z = 1+2*I
needs sage.symbolic
sage: real(z)
needs sage.symbolic
1
sage: real(5/3)
5/3
sage: a = 2.5
sage: real(a)
2.50000000000000
sage: type(real(a))
<class 'sage.rings.real_mpfr.RealLiteral'>
sage: real(1.0r)
1.0
sage: real(complex(3, 4))
3.0
```

Sage can recognize some expressions as real and accordingly return the identical argument:

```python
sage: # needs sage.symbolic
sage: SR.var('x', domain='integer').real_part()
x
sage: SR.var('x', domain='integer').imag_part()
0
sage: real_part(sin(x)+x)
x + sin(x)
```

(continues on next page)
1.10 Miscellaneous special functions

This module provides easy access to many of Maxima and PARI’s special functions.

Maxima’s special functions package (which includes spherical harmonic functions, spherical Bessel functions (of the 1st and 2nd kind), and spherical Hankel functions (of the 1st and 2nd kind)) was written by Barton Willis of the University of Nebraska at Kearney. It is released under the terms of the General Public License (GPL).

Support for elliptic functions and integrals was written by Raymond Toy. It is placed under the terms of the General Public License (GPL) that governs the distribution of Maxima.

Next, we summarize some of the properties of the functions implemented here.

- **Spherical harmonics**: Laplace’s equation in spherical coordinates is:

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2} = 0.
\]

Note that the spherical coordinates $\theta$ and $\varphi$ are defined here as follows: $\theta$ is the colatitude or polar angle, ranging from $0 \leq \theta \leq \pi$ and $\varphi$ the azimuth or longitude, ranging from $0 \leq \varphi < 2\pi$.

The general solution which remains finite towards infinity is a linear combination of functions of the form

\[
r^{-1-\ell} \cos(m \varphi) P^m_\ell (\cos \theta)
\]

and
\[ r^{1-\ell} \sin(m \phi) P^m_\ell (\cos \theta) \]

where \( P^m_\ell \) are the associated Legendre polynomials (cf. `Func_assoc_legendre_P()`), and with integer parameters \( \ell \geq 0 \) and \( m \) from 0 to \( \ell \). Put in another way, the solutions with integer parameters \( \ell \geq 0 \) and \( -\ell \leq m \leq \ell \), can be written as linear combinations of:

\[ U_{\ell,m}(r, \theta, \varphi) = r^{1-\ell} Y^m_\ell(\theta, \varphi) \]

where the functions \( Y \) are the spherical harmonic functions with parameters \( \ell, m \), which can be written as:

\[ Y^m_\ell(\theta, \varphi) = \sqrt{\frac{(2\ell + 1)(\ell - m)!}{4\pi(\ell + m)!}} e^{im\varphi} P^m_\ell(\cos \theta). \]

The spherical harmonics obey the normalisation condition

\[ \int_0^{2\pi} \int_0^\pi Y^m_\ell Y^{m'}_{\ell'} \ast d\Omega = \delta_{\ell\ell'} \delta_{mm'} \quad d\Omega = \sin \theta d\varphi d\theta. \]

- The incomplete elliptic integrals (of the first kind, etc.) are:

\[ \int_0^\phi \frac{1}{\sqrt{1 - m \sin(x)^2}} dx, \]
\[ \int_0^\phi \sqrt{1 - m \sin(x)^2} dx, \]
\[ \int_0^\phi \frac{1}{\sqrt{1 - m^2}} dx, \]
\[ \int_0^\phi \frac{1}{\sqrt{1 - t^2}} dx, \]
\[ \int_0^\phi \frac{1}{\sqrt{1 - m \sin(x)^2 \sqrt{1 - n \sin(x)^2}}} dx, \]

and the complete ones are obtained by taking \( \phi = \pi/2 \).

**Warning:** SciPy’s versions are poorly documented and seem less accurate than the Maxima and PARI versions. Typically they are limited by hardware floats precision.

**REFERENCES:**
- Abramowitz and Stegun: *Handbook of Mathematical Functions* [AS1964]
- Wikipedia article Spherical_harmonics
- Wikipedia article Helmholtz_equation
- Online Encyclopedia of Special Functions

**AUTHORS:**
- David Joyner (2006-13-06): initial version
- David Joyner (2006-30-10): bug fixes to pari wrappers of Bessel functions, hypergeometric_U
- David Joyner (2008-02-16): optional calls to scipy and replace all #random by ...
- Eviatar Bach (2013): making elliptic integrals symbolic
- Eric Gourgoulhon (2022): add Condon-Shortley phase to spherical harmonics

```python
class sage.functions.special.EllipticE

Bases: BuiltinFunction

Return the incomplete elliptic integral of the second kind:

\[E(\varphi \mid m) = \int_0^{\varphi} \sqrt{1 - m \sin^2(x)} \, dx. \]

EXAMPLES:

```sage
z = var("z")
# sage: elliptic_e(z, 1)
# needs sage.symbolic

sage: elliptic_e(z, 1).simplify() # not tested
# needs sage.symbolic
2*round(z/pi) - sin(pi*round(z/pi) - z)

sage: elliptic_e(0.5, 0.1) # abs tol 2e-15
# needs mpmath
0.498011394498832

sage: elliptic_e(1/2, 1/10).n(200) # needs sage.symbolic
0.4980113944988315331154610406...
```

See also:
- Taking \(\varphi = \pi/2 \) gives `elliptic_ec()`.
- Taking \(\varphi = \arcsin(sn(u, m)) \) gives `elliptic_eu()`.

REFERENCES:
- Wikipedia article Elliptic_integral#Incomplete_elliptic_integral_of_the_second_kind
- Wikipedia article Jacobi_elliptic_functions

```python
class sage.functions.special.EllipticEC

Bases: BuiltinFunction

Return the complete elliptic integral of the second kind:

\[ E(m) = \int_0^{\pi/2} \sqrt{1 - m \sin^2(x)} \, dx. \]

EXAMPLES:
```
sage: elliptic_ec(0.1) # needs mpmath
1.53075763689776
sage: elliptic_ec(x).diff() # needs sage.symbolic
1/2*(elliptic_ec(x) - elliptic_kc(x))/x

See also:

• `elliptic_e()`.

REFERENCES:

• Wikipedia article Elliptic integral#Complete_elliptic_integral_of_the_second_kind

```
class sage.functions.special.EllipticEU

Return Jacobi's form of the incomplete elliptic integral of the second kind:

\[ E(u, m) = \int_0^u \frac{\sqrt{1 - mx^2}}{\sqrt{1 - x^2}} \, dx. \]

where \( \tau = \text{sn}(u, m) \).

Also, \( \text{elliptic}_\text{eu}(u, m) = \text{elliptic}_\text{e}(\text{asin}(\text{sn}(u,m)), m) \).

EXAMPLES:

sage: elliptic_eu(0.5, 0.1)  # needs mpmath
0.496054551286597

See also:

• `elliptic_e()`.

REFERENCES:

• Wikipedia article Elliptic integral#Incomplete_elliptic_integral_of_the_second_kind
• Wikipedia article Jacobi_elliptic_functions
```

```
class sage.functions.special.EllipticF

Bases: BuiltinFunction

Return the incomplete elliptic integral of the first kind.

\[ F(\varphi \mid m) = \int_0^\varphi \frac{dx}{\sqrt{1 - m \sin^2(x)}}, \]

Taking \( \varphi = \pi/2 \) gives \( \text{elliptic}_\text{kc}() \).

EXAMPLES:

sage: z = var("z")  # needs sage.symbolic
sage: elliptic_f(z, 0)  # needs sage.symbolic
```

(continues on next page)
The complete elliptic integral of the first kind is defined as:

\[K(m) = \int_0^{\pi/2} \frac{dx}{\sqrt{1 - m \sin^2(x)}}. \]

Examples:

```python
sage: elliptic_kc(0.5)  # needs mpmath
1.85407467730137
```

See also:

- `elliptic_e()`.
- `elliptic_ec()`.

REFERENCES:

- Wikipedia article Elliptic_integral#Complete_elliptic_integral_of_the_first_kind

The incomplete elliptic integral of the third kind is defined as:

\[\Pi(n, t, m) = \int_0^t \frac{dx}{(1 - n \sin^2(x)) \sqrt{1 - m \sin^2(x)}}. \]

Input:

- \(n \) – a real number, called the “characteristic”
- \(t \) – a real number, called the “amplitude”
- \(m \) – a real number, called the “parameter”

Examples:

```python
sage: elliptic_pi(0, 1, 0.5)  # needs mpmath
0.785398163397448
```

See also:

- `elliptic_f()`.
- `elliptic_e()`.
sage: N(elliptic_pi(1, pi/4, 1)) # needs sage.symbolic
1.14779357469632

Compare the value computed by Maxima to the definition as a definite integral (using GSL):

sage: elliptic_pi(0.1, 0.2, 0.3) # needs mpmath
0.200665068220979
sage: numerical_integral(1/(1-0.1*sin(x)^2)/sqrt(1-0.3*sin(x)^2), 0.0, 0.2) # needs sage.symbolic
(0.2006650682209791, 2.227829789769088e-15)

REFERENCES:
- Wikipedia article Elliptic_integral#Incomplete_elliptic_integral_of_the_third_kind

class sage.functions.special.SphericalHarmonic

Bases: BuiltInFunction

Returns the spherical harmonic function \(Y_n^m(\theta, \varphi)\).

For integers \(n > -1, |m| \leq n\), simplification is done automatically. Numeric evaluation is supported for complex \(n\) and \(m\).

EXAMPLES:

sage: x, y = var('x, y')
sage: spherical_harmonic(3, 2, x, y)
1/8*sqrt(30)*sqrt(7)*cos(x)*e^(2*I*y)*sin(x)^2/sqrt(pi)
sage: spherical_harmonic(3, 2, 1, 2)
1/8*sqrt(30)*sqrt(7)*cos(1)*e^(4*I)*sin(1)^2/sqrt(pi)
sage: spherical_harmonic(3 + I, 2., 1, 2)
-0.351154337307488 - 0.415562233975369*I
sage: latex(spherical_harmonic(3, 2, x, y, hold = True))
Y_{3}^{2}\left(x, y\right)

sage: latex(spherical_harmonic(1, 2, x, y))
0

The degree \(n\) and the order \(m\) can be symbolic:

sage: n, m = var('n m')
sage: spherical_harmonic(n, m, x, y)
spherical_harmonic(n, m, x, y)
sage: latex(spherical_harmonic(n, m, x, y))
Y_{\(n\)^\(m\)}(x, y\right)
sage: diff(spherical_harmonic(n, m, x, y), x)
m*cot(x)*spherical_harmonic(n, m, x, y) + sqrt(-(m + n + 1)*(m - n))*e^(-I*y)*spherical_harmonic(n, m + 1, x, y)

The convention regarding the Condon-Shortley phase \((-1)^m\) is the same as for SymPy’s spherical harmonics and Wikipedia article Spherical_harmonics:
It also agrees with SciPy's spherical harmonics:

```python
sage: spherical_harmonic(1, 1, pi /2, pi) .n()  # abs tol 1e-14
0.345494149471335
sage: from scipy.special import sph_harm  # NB: arguments x and y are swapped
                 # needs scipy
sage: sph_harm(1, 1, (pi /2).n(), (pi /2).n())  # abs tol 1e-14
(0.3454941494713355-4.231083042742082e-17j)
```

Note that this convention differs from the one in Maxima, as revealed by the sign difference for odd values of \(m \):

```python
sage: maxima.spherical_harmonic(1, 1, x, y) .sage()  # needs sage.symbolic
1/2*sqrt(3/2)*e^(I*y)*sin(x)/sqrt(pi)
```

It follows that, contrary to Maxima, SageMath uses the same sign convention for spherical harmonics as SymPy, SciPy, Mathematica and Wikipedia article Table_of_spherical_harmonics.

REFERENCES:

- Wikipedia article Spherical_harmonics
- SageMath functions special elliptic_j(z, prec=53)

Returns the elliptic modular \(j \)-function evaluated at \(z \).

INPUT:

- \(z \) (complex) – a complex number with positive imaginary part.
- \(\text{prec} \) (default: 53) – precision in bits for the complex field.

OUTPUT:

(complex) The value of \(j(z) \).

ALGORITHM:
Calls the pari function `ellj()`.

AUTHOR:

John Cremona

EXAMPLES:

```python
sage: elliptic_j(CC(i))  # needs sage.rings.real_mpfr
1728.00000000000
sage: elliptic_j(sqrt(-2.0))  # needs sage.rings.complex_double
8000.00000000000
sage: z = ComplexField(100)(1, sqrt(11))/2  # needs sage.rings.real_mpfr sage.symbolic
sage: elliptic_j(z)  # needs sage.rings.real_mpfr sage.symbolic
-32768.000...
```

This example shows the need for higher precision than the default one of the `ComplexField`, see github issue #28355:

```python
sage: tau = (1 + sqrt(-163))/2  # needs sage.symbolic
sage: (-elliptic_j(tau.n(100)).real().round())^(1/3)  # needs sage.symbolic
640320
```

1.11 Hypergeometric functions

This module implements manipulation of infinite hypergeometric series represented in standard parametric form as \(pFq \) functions.

AUTHORS:

- Fredrik Johansson (2010): initial version
- Eviatar Bach (2013): major changes

EXAMPLES:

Examples from github issue #9908:
Functions, Release 10.3

\sage: \text{maxima('integrate(bessel_j(2, x), x)').sage()}
\frac{1}{24} x^3 \text{hypergeometric}\left(\frac{3}{2}, \left\{\frac{5}{2}, 3\right\}, \frac{-1}{4} x^2\right)

\sage: \text{sum}\left((\frac{2 x^3}{x^3 + 1})^{(1/4)} x, x, 0, \infty\right)
\text{hypergeometric}\left(1, 1, \frac{-1}{2} i \sqrt{3} - 1/2, \frac{-1}{2} i \sqrt{3} + 1/2\right)

\sage: \text{res} = \text{sum}\left((\frac{-1}{2} x^3/((2 x + 1)^3 \text{factorial}(2 x + 1)), x, 0, \infty\right)
\text{res} \# \text{not tested} \quad \text{depends on maxima version}
\text{hypergeometric}\left(1/2, 1/2, 1/2, 1/2\right)

\sage: \text{res} \in \left[\text{hypergeometric}\left(1/2, 1/2\right), \left(3/2, 3/2\right), -1/4\right]
\text{True}

\text{Simplification (note that simplify_full does not yet call simplify_hypergeometric)}:

\sage: \text{hypergeometric}\left([-2], [], x\right).simplify_hypergeometric()
x^2 - 2 x + 1
\sage: \text{hypergeometric}\left([], [], x\right).simplify_hypergeometric()
e^x
\sage: a = \text{hypergeometric}\left(\text{hypergeometric}\left([], [], x\right), [], \right)
\sage: a.simplify_hypergeometric()
\frac{1}{(-e^x + 1)^e^x}
\sage: a.simplify_hypergeometric(algorithm='sage')
\frac{1}{((-e^x + 1)^e^x)}

\text{Equality testing:}

\sage: \text{bool}\left(\text{hypergeometric}\left([], [], x\right) \text{derivative}(x) ==
\text{hypergeometric}\left([], [], x\right)\right)
\text{True}
\sage: \text{bool}\left(\text{hypergeometric}\left([], [], x\right) == \text{hypergeometric}\left([], [1], x\right)\right)
\text{False}

\text{Computing terms and series:}

\sage: \# \text{needs sage.symbolic}
\sage: \text{var}('z')
z
\sage: \text{hypergeometric}\left([], [], z\right).series(z, 0)
\text{Order}(1)
\sage: \text{hypergeometric}\left([], [], z\right).series(z, 1)
1 + \text{Order}(z)
\sage: \text{hypergeometric}\left([], [], z\right).series(z, 2)
1 + \text{Order}(z^2)
\sage: \text{hypergeometric}\left([], [], z\right).series(z, 3)
1 + \text{Order}(z^3)
\sage: \# \text{needs sage.symbolic}
\sage: \text{hypergeometric}\left([-2], [], z\right).series(z, 3)
1 - 2 z + 1 \text{Order}(z^2)
\sage: \text{hypergeometric}\left([-2], [], z\right).series(z, 6)
1 - 2 z + 1 \text{Order}(z^2)
\sage: \text{hypergeometric}\left([-2], [], z\right).series(z, 6).is_terminating_series()
\text{True}
\sage: \text{hypergeometric}\left([-2], [], z\right).series(z, 2)
1 - 2 z + \text{Order}(z^2)
\sage: \text{hypergeometric}\left([-2], [], z\right).series(z, 2).is_terminating_series()
\text{False}

1.11. Hypergeometric functions
Functions, Release 10.3

(continued from previous page)

sage: hypergeometric([1], [], z).series(z, 6) #-
 → needs sage.symbolic
1 + 1*z + 1*z^2 + 1*z^3 + 1*z^4 + 1*z^5 + Order(z^6)
sage: hypergeometric([], [1/2], -z^2/4).series(z, 11) #-
 → needs sage.symbolic
1 + (-1/2)*z^2 + 1/24*z^4 + (-1/720)*z^6 + 1/40320*z^8 +...
(-1/3628800)*z^10 + Order(z^11)
sage: hypergeometric([1], [5], x).series(x, 5)
1 + 1/5*x + 1/30*x^2 + 1/210*x^3 + 1/1680*x^4 + Order(x^5)
sage: sum(hypergeometric([1, 2], [3], 1/3).terms(6)).n() #-
 → needs sage.symbolic
1.29788359788360
sage: hypergeometric([1, 2], [3], 1/3).n() #-
 → needs sage.symbolic
1.29837194594696
sage: hypergeometric([], [], x).series(x, 20)(x=1).n() == e.n()
True

Plotting:

sage: # needs sage.symbolic
sage: f(x) = hypergeometric([1, 1], [3, 3, 3], x)
sage: plot(f, x, -30, 30) #-
 → needs sage.plot
Graphics object consisting of 1 graphics primitive
sage: g(x) = hypergeometric([x], [], 2)
sage: complex_plot(g, (-1, 1), (-1, 1))
Graphics object consisting of 1 graphics primitive

Numeric evaluation:

sage: # needs sage.symbolic
sage: hypergeometric([1], [], 1/10).n() # geometric series
1.11111111111111
sage: hypergeometric([], [], 1).n() # e
2.71828182845905
sage: hypergeometric([], [], 3., hold=True)
hypergeometric((), (), 3.00000000000000)
sage: hypergeometric([1, 2, 3], [4, 5, 6], 1/2).n()
1.02573619590134
sage: hypergeometric([1, 2, 3], [4, 5, 6], 1/2).n(digits=30)
1.02573619590133865036584139535
sage: hypergeometric([5 - 3*I], [3/2, 2 + I, sqrt(2)], 4 + I).n()
5.52605111678803 - 7.86331357527540*I
sage: hypergeometric((10, 10), (50,), 2.)
-1705.75733163554 - 356.749986056024*I

Conversions:

sage: maxima(hypergeometric([1, 1, 1], [3, 3, 3], x)) #-
 → needs sage.symbolic
hypergeometric([1,1,1],[3,3,3],_SAGE_VAR_x)
sage: hypergeometric((5, 4), (4, 4), 3)._sympy_() #-
 → needs sage.symbolic
(hypergeometric(_SAGE_VAR_x, _SAGE_VAR_y, _SAGE_VAR_z))
Arbitrary level of nesting for conversions:

```plaintext
sage: maxima(nest(lambda y: hypergeometric([y], [], x), 3, 1))
```

The confluent hypergeometric functions can arise as solutions to second-order differential equations (example from here):

```plaintext
sage: y = function('y')(x)
```

Series expansions of confluent hypergeometric functions:

```plaintext
class sage.functions.hypergeometric.Hypergeometric
Bases: BuiltinFunction

Represent a (formal) generalized infinite hypergeometric series.

It is defined as

\[ ^pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{z^n}{n!}, \]

where \((x)_n\) is the rising factorial.

```
deflated \((a, b, z)\)

Rewrite as a linear combination of functions of strictly lower degree by eliminating all parameters \(a[i]\) and \(b[j]\) such that \(a[i] = b[i] + m\) for nonnegative integer \(m\).

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: x = hypergeometric([6, 1], [3, 4, 5], 10)
sage: y = x.deflated()
sage: y
1/252*hypergeometric((4,), (7, 8), 10)  
+ 1/12*hypergeometric((3,), (6, 7), 10)  
+ 1/2*hypergeometric((2,), (5, 6), 10)  
+ hypergeometric((1,), (4, 5), 10)
sage: x.n(); y.n()
2.87893612686782
2.87893612686782
```

```python
sage: # needs sage.symbolic
sage: x = hypergeometric([6, 7], [3, 4, 5], 10)
sage: y = x.deflated()
sage: y
25/27216*hypergeometric((), (11,), 10)  
+ 25/648*hypergeometric((), (10,), 10)  
+ 265/504*hypergeometric((), (9,), 10)  
+ 181/63*hypergeometric((), (8,), 10)  
+ 19/3*hypergeometric((), (7,), 10)  
+ 5*hypergeometric((), (6,), 10)  
+ hypergeometric((), (5,), 10)
sage: x.n(); y.n()
63.0734110716969
63.0734110716969
```

eliminate_parameters \((a, b, z)\)

Eliminate repeated parameters by pairwise cancellation of identical terms in \(a\) and \(b\).

EXAMPLES:

```python
sage: hypergeometric([1, 1, 2, 5], [5, 1, 4], 1/2).eliminate_parameters()  
....:
1/2).eliminate_parameters()
sage: hypergeometric([x], [x], x).eliminate_parameters()
sage: hypergeometric((5, 4), (4, 4), 3).eliminate_parameters()
```

is_absolutely_convergent \((a, b, z)\)

Determine whether \(self\) converges absolutely as an infinite series. \(False\) is returned if not all terms are finite.

EXAMPLES:

Degree giving infinite radius of convergence:
Functions, Release 10.3

6).is_absolutely_convergent()
True

sage: hypergeometric([2, 3], [-4, 5],
˓→needs sage.symbolic
False

6).is_absolutely_convergent() # undefined

sage: (hypergeometric([2, 3], [-4, 5], Infinity)
˓→needs sage.symbolic
False

Ordinary geometric series (unit radius of convergence):

sage: # needs sage.symbolic
sage: hypergeometric([1], [], 1/2).is_absolutely_convergent()
True
sage: hypergeometric([1], [], 2).is_absolutely_convergent()
False
sage: hypergeometric([1], [], 1).is_absolutely_convergent()
False
sage: hypergeometric([1], [], -1).is_absolutely_convergent()
False
sage: hypergeometric([1], [], -1).n() # Sum still exists
0.500000000000000

Degree \(p = q + 1 \) (unit radius of convergence):

sage: # needs sage.symbolic
sage: hypergeometric([2, 3], [4], 6).is_absolutely_convergent()
False
sage: hypergeometric([2, 3], [4], 1).is_absolutely_convergent()
False
sage: hypergeometric([2, 3], [5], 1).is_absolutely_convergent()
False
sage: hypergeometric([2, 3], [6], 1).is_absolutely_convergent()
True
sage: hypergeometric([-2, 3], [4],
˓→needs sage.symbolic
5).is_absolutely_convergent()
True
sage: hypergeometric([2, -3], [4],
˓→needs sage.symbolic
5).is_absolutely_convergent()
True
sage: hypergeometric([2, -3], [-4],
˓→needs sage.symbolic
5).is_absolutely_convergent()
True
sage: hypergeometric([2, -3], [-1],
˓→needs sage.symbolic
5).is_absolutely_convergent()
False

Degree giving zero radius of convergence:

sage: hypergeometric([1, 2, 3], [4],
˓→needs sage.symbolic
2).is_absolutely_convergent()
False
sage: hypergeometric([1, 2, 3], [4],
˓→needs sage.symbolic
#
is_terminating \((a, b, z) \)

Determine whether the series represented by \(\text{self} \) terminates after a finite number of terms.

This happens if any of the numerator parameters are nonnegative integers (with no preceding nonnegative denominator parameters), or \(z = 0 \).

If terminating, the series represents a polynomial of \(z \).

EXAMPLES:

```python
sage: hypergeometric([1, 2], [3, 4], x).is_terminating()
False
sage: hypergeometric([1, -2], [3, 4], x).is_terminating()
True
sage: hypergeometric([1, -2], [], x).is_terminating()
True
```

is_termwise_finite \((a, b, z) \)

Determine whether all terms of \(\text{self} \) are finite.

Any infinite terms or ambiguous terms beyond the first zero, if one exists, are ignored. Ambiguous cases (where a term is the product of both zero and an infinity) are not considered finite.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: hypergeometric([2], [3, 4], 5).is_termwise_finite()
True
sage: hypergeometric([2], [-3, 4], 5).is_termwise_finite()
False
sage: hypergeometric([-2], [-3, 4], 5).is_termwise_finite()
True
sage: hypergeometric([-3], [-3, 4], 5).is_termwise_finite()  # ambiguous
False
sage: # needs sage.symbolic
sage: hypergeometric([0], [-1], 5).is_termwise_finite()
True
sage: hypergeometric([0], [0], 5).is_termwise_finite()  # ambiguous
False
sage: hypergeometric([1], [2], Infinity).is_termwise_finite()
False
sage: (hypergeometric([0], [0], Infinity)).is_termwise_finite()  # ambiguous
False
sage: (hypergeometric([0], [], Infinity)).is_termwise_finite()  # ambiguous
False
```

(continued from previous page)
sorted_parameters\((a, b, z)\)

Return with parameters sorted in a canonical order.

EXAMPLES:

```
sage: hypergeometric([2, 1, 3], [5, 4],
     # needs sage.symbolic
      ....: 1/2).sorted_parameters()
hypergeometric((1, 2, 3), (4, 5), 1/2)
```

terms\((a, b, z, n=None)\)

Generate the terms of `self` (optionally only `n` terms).

EXAMPLES:

```
sage: list(hypergeometric([-2, 1], [3, 4], x) .terms())
[1, -1/6*x, 1/120*x^2]
sage: list(hypergeometric([-2, 1], [3, 4], x) .terms(2))
[1, -1/6*x]
sage: list(hypergeometric([-2, 1], [3, 4], x) .terms(0))
[]
```

class sage.functions.hypergeometric.Hypergeometric_M

Bases: BuiltinFunction

The confluent hypergeometric function of the first kind, \(y = M(a, b, z)\), is defined to be the solution to Kummer's differential equation

\[zy'' + (b - z)y' - ay = 0. \]

This is not the same as Kummer's \(U\)-hypergeometric function, though it satisfies the same DE that \(M\) does.

Warning: In the literature, both are called "Kummer confluent hypergeometric" functions.

EXAMPLES:

```
sage: # needs mpmath
sage: hypergeometric_M(1, 1, 1)
hypergeometric_M(1, 1, 1)
sage: hypergeometric_M(1, 1, 1.)
2.71828182845905
sage: hypergeometric_M(1, 1, 1).n(70)
2.7182818284590452354
sage: hypergeometric_M(1, 1, 1).simplify_hypergeometric()
e
sage: hypergeometric_M(1, 3/2, 1).simplify_hypergeometric()
1/2*sqrt(pi)*erf(1)*e
sage: hypergeometric_M(1, 1/2, x).simplify_hypergeometric()
#...
     # needs sage.symbolic
(-I*sqrt(pi)*x*erf(I*sqrt(-x))*e^x + sqrt(-x))/sqrt(-x)
```

class EvaluationMethods

Bases: object

1.11. Hypergeometric functions
Functions, Release 10.3

generalized \((a, b, z)\)

Return as a generalized hypergeometric function.

EXAMPLES:

```
sage: var('a b z')  # needs sage.symbolic
(a, b, z)
sage: hypergeometric_M(a, b, z).generalized()  # needs sage.symbolic
hypergeometric((a,), (b,), z)
```

class `sage.functions.hypergeometric.Hypergeometric_U`

Bases: `BuiltinFunction`

The confluent hypergeometric function of the second kind, \(y = U(a, b, z)\), is defined to be the solution to Kummer's differential equation

\[
zy'' + (b - z)y' - ay = 0.
\]

This satisfies \(U(a, b, z) \sim z^{-a}\), as \(z \to \infty\), and is sometimes denoted \(z^{-a} 2F_0(a, 1 + a - b; -1/z)\). This is not the same as Kummer's \(M\)-hypergeometric function, denoted sometimes as \(1F_1(\alpha, \beta, z)\), though it satisfies the same DE that \(U\) does.

Warning: In the literature, both are called “Kummer confluent hypergeometric” functions.

EXAMPLES:

```
sage: # needs mpmath
sage: hypergeometric_U(1, 1, 1)
hypergeometric_U(1, 1, 1)
sage: hypergeometric_U(1, 1, 1.).n(70)
0.59634736232319407434
sage: hypergeometric_U(10^4, 1/3, 1).n()  # needs sage.libs.pari
6.60377008885811e-35745
sage: hypergeometric_U(1, 2, 2).simplify_hypergeometric()  # needs sage.symbolic
(1/2)
sage: hypergeometric_U(2 + I, 2, 1).n()  # needs sage.symbolic
0.183481989942099 - 0.458685959185190*I
sage: hypergeometric_U(1, 3, x).simplify_hypergeometric()  # needs sage.symbolic
(x + 1)/x^2
```

class `EvaluationMethods`

Bases: `object`

generalized \((a, b, z)\)

Return in terms of the generalized hypergeometric function.

EXAMPLES:
sage: var('a b z')
needs sage.symbolic
(a, b, z)
sage: hypergeometric_U(a, b, z).generalized() # needs sage.symbolic
hypergeometric((a, a - b + 1), (), -1/z)/z^a
sage: hypergeometric_U(1, 3, 1/2).generalized() # needs mpmath
2*hypergeometric((1, -1), (), -2)
sage: hypergeometric_U(3, I, 2).generalized() # needs sage.symbolic
1/8*hypergeometric((3, -I + 4), (), -1/2)

sage.functions.hypergeometric.closed_form(hyp)

Try to evaluate hyp in closed form using elementary (and other simple) functions.

It may be necessary to call Hypergeometric.deflated() first to find some closed forms.

EXAMPLES:

sage: # needs sage.symbolic
sage: from sage.functions.hypergeometric import closed_form
sage: var('a b c z')
(a, b, c, z)
sage: closed_form(hypergeometric([1], [], 1 + z))
-1/z
cosh(4)
sage: e^z
sage: closed_form(hypergeometric([1], [], 1 + z))
e^z
sage: closed_form(hypergeometric([], [], 1 + z))
e^z
sage: closed_form(hypergeometric([], [], 4))
cosh(4)
sage: closed_form(hypergeometric([], [1/2], 4))
1/4*sinh(4)
sage: closed_form(hypergeometric([], [3/2], 4))
1/4*sinh(4)
sage: closed_form(hypergeometric([], [-3/2], 4))
1/4*sinh(4)
sage: closed_form(hypergeometric([1], [0], -5))
-1/(x - 1)^3 + 3*x/(x - 1)^4
sage: closed_form(hypergeometric([1/2], [1/2], -5))
1/10*sqrt(5)*sqrt(pi)*erf(sqrt(5))
sage: closed_form(hypergeometric([2], [5], 3))
4
cos(4)
sage: closed_form(hypergeometric([2], [5], 5))
48/625*e^5 + 612/625
Functions, Release 10.3

(continued from previous page)

```python
sage: closed_form(hypergeometric([1, 1], [2], z))
-log(-z + 1)/z
sage: closed_form(hypergeometric([1, 1], [3], z))
-2*((z - 1)*log(-z + 1)/z - 1)/z
sage: closed_form(hypergeometric([1, 1, 1], [2, 2], x))
hypergeometric((1, 1, 1), (2, 2), x)
```

`sage.functions.hypergeometric.rational_param_as_tuple(x)`

Utility function for converting rational \(p_F_q \) parameters to tuples (which mpmath handles more efficiently).

EXAMPLES:

```python
sage: from sage.functions.hypergeometric import rational_param_as_tuple
sage: rational_param_as_tuple(1/2)
(1, 2)
sage: rational_param_as_tuple(3)
3
sage: rational_param_as_tuple(pi)
#... ~needs sage.symbolic
pi
```

1.12 Jacobi elliptic functions

This module implements the 12 Jacobi elliptic functions, along with their inverses and the Jacobi amplitude function.

Jacobi elliptic functions can be thought of as generalizations of both ordinary and hyperbolic trig functions. There are twelve Jacobian elliptic functions. Each of the twelve corresponds to an arrow drawn from one corner of a rectangle to another.

```
+---------+-----+
<p>| | |
|         |     |</p>
<table>
<thead>
<tr>
<th>n</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>c</td>
</tr>
</tbody>
</table>
```

Each of the corners of the rectangle are labeled, by convention, \(s, c, d, \) and \(n \). The rectangle is understood to be lying on the complex plane, so that \(s \) is at the origin, \(c \) is on the real axis, and \(n \) is on the imaginary axis. The twelve Jacobian elliptic functions are then \(pq(x) \), where \(p \) and \(q \) are one of the letters \(s, c, d, n \).

The Jacobian elliptic functions are then the unique doubly-periodic, meromorphic functions satisfying the following three properties:

1. There is a simple zero at the corner \(p \), and a simple pole at the corner \(q \).
2. The step from \(p \) to \(q \) is equal to half the period of the function \(pq(x) \); that is, the function \(pq(x) \) is periodic in the direction \(p \rightarrow q \), with the period being twice the distance from \(p \) to \(q \). \(pq(x) \) is periodic in the other two directions as well, with a period such that the distance from \(p \) to one of the other corners is a quarter period.
3. If the function \(pq(x) \) is expanded in terms of \(x \) at one of the corners, the leading term in the expansion has a coefficient of \(1 \). In other words, the leading term of the expansion of \(pq(x) \) at the corner \(p \) is \(x \); the leading term of the expansion at the corner \(q \) is \(1/x \), and the leading term of an expansion at the other two corners is \(1 \).

We can write

\[
pq(x) = \frac{pr(x)}{qr(x)}
\]
where \(p, q, \) and \(r \) are any of the letters \(s, c, d, n, \) with the understanding that \(ss = cc = dd = nn = 1. \)

Let
\[
 u = \int_0^\phi \frac{d\theta}{\sqrt{1 - m \sin^2 \theta}},
\]
then the Jacobi elliptic function \(\text{sn}(u) \) is given by
\[
 \text{sn} u = \sin \phi
\]
and \(\text{cn}(u) \) is given by
\[
 \text{cn} u = \cos \phi
\]
and
\[
 \text{dn} u = \sqrt{1 - m \sin^2 \phi}.
\]
To emphasize the dependence on \(m \), one can write \(\text{sn}(u|m) \) for example (and similarly for \(\text{cn} \) and \(\text{dn} \)). This is the notation used below.

For a given \(k \) with \(0 < k < 1 \) they therefore are solutions to the following nonlinear ordinary differential equations:
- \(\text{sn}(x;k) \) solves the differential equations
 \[
 \frac{d^2 y}{dx^2} + (1 + k^2)y - 2k^2y^3 = 0 \quad \text{and} \quad \left(\frac{dy}{dx} \right)^2 = (1 - y^2)(1 - k^2y^2).
 \]
- \(\text{cn}(x;k) \) solves the differential equations
 \[
 \frac{d^2 y}{dx^2} + (1 - 2k^2)y + 2k^2y^3 = 0 \quad \text{and} \quad \left(\frac{dy}{dx} \right)^2 = (1 - y^2)(1 - k^2 + k^2y^2).
 \]
- \(\text{dn}(x;k) \) solves the differential equations
 \[
 \frac{d^2 y}{dx^2} - (2 - k^2)y + 2y^3 = 0 \quad \text{and} \quad \left(\frac{dy}{dx} \right)^2 = y^2(1 - k^2 - y^2).
 \]

If \(K(m) \) denotes the complete elliptic integral of the first kind (named \(\text{elliptic_kc} \) in Sage), the elliptic functions \(\text{sn}(x|m) \) and \(\text{cn}(x|m) \) have real periods \(4K(m) \), whereas \(\text{dn}(x|m) \) has a period \(2K(m) \). The limit \(m \to 0 \) gives \(K(0) = \pi/2 \) and trigonometric functions: \(\text{sn}(x|0) = \sin x, \text{cn}(x|0) = \cos x, \text{dn}(x|0) = 1. \) The limit \(m \to 1 \) gives \(K(1) \to \infty \) and hyperbolic functions: \(\text{sn}(x|1) = \tanh x, \text{cn}(x|1) = \sech x, \text{dn}(x|1) = \sech x. \)

REFERENCES:
- Wikipedia article Jacobi%27s_elliptic_functions
- [KS2002]

AUTHORS:
- David Joyner (2006): initial version
- Eviatar Bach (2013): complete rewrite, new numerical evaluation, and addition of the Jacobi amplitude function

class sage.functions.jacobi.InverseJacobi(kind)
Bases: BuiltinFunction
Base class for the inverse Jacobi elliptic functions.
class sage.functions.jacobi.Jacobi(kind)
Bases: BuiltinFunction
Base class for the Jacobi elliptic functions.

class sage.functions.jacobi.JacobiAmplitude
Bases: BuiltinFunction
The Jacobi amplitude function am\((x|m) = \int_0^x \text{dn}(t|m)\,dt \) for \(-K(m) \le x \le K(m)\), \(F(\text{am}(x|m)|m) = x\).

sage.functions.jacobi.inverse_jacobi(kind, x, m, **kwargs)
The inverses of the 12 Jacobi elliptic functions. They have the property that
\[pq(\text{arcpq}(x|m)|m) = pq(pq^{-1}(x|m)|m) = x. \]

INPUT:
- kind – a string of the form 'pq', where p, q are in c, d, n, s
- x – a real number
- m – a real number; note that \(m = k^2\), where k is the elliptic modulus

EXAMPLES:

```
sage: jacobi('dn', inverse_jacobi('dn', 3, 0.4), 0.4)  # needs mpmath
3.00000000000000
sage: inverse_jacobi('dn', 10, 1/10).n(digits=50)  # needs mpmath
2.477736267904273296523691232988240759001423661683*I
sage: inverse_jacobi_dn(x, 1)  # needs sage.symbolic
arccsech(x)
sage: inverse_jacobi_dn(1, 3)  # needs mpmath
0
sage: # needs sage.symbolic
sage: m = var('m')
sage: z = inverse_jacobi_dn(x, m).series(x, 4).subs(x=0.1, m=0.7)
sage: jacobi_dn(z, 0.7)
0.0999892750039819...
```

```
sage: inverse_jacobi_sn(x, 1/2)  # needs mpmath
0
sage: inverse_jacobi_sn(10^-5, 3).n()
5.77350269202456e-6 + 1.17142008414677*I
sage: jacobi_sn(1/2, 1/2)
0.470750473655657
sage: jacobi_sn(1/2, 1/2).n()
0.470750473655657
```

```
sage: P = plot(inverse_jacobi('sn', x, 0.5), 0, 1)  # needs sage.plot
```

104 Chapter 1. Built-in Functions
sage.functions.jacobi.inverse_jacobi_f(kind, x, m)

Internal function for numerical evaluation of a continuous complex branch of each inverse Jacobi function, as described in [Tee1997]. Only accepts real arguments.

sage.functions.jacobi.jacobi(kind, z, m, **kwargs)

The 12 Jacobi elliptic functions.

INPUT:

- kind – a string of the form 'pq', where p, q are in c, d, n, s
- z – a complex number
- m – a complex number; note that $m = k^2$, where k is the elliptic modulus

EXAMPLES:

```python
sage: # needs mpmath
sage: jacobi('sn', 1, 1)
tanh(1)
sage: jacobi('cd', 1, 1/2)
 jacobi_cd(1, 1/2)
sage: RDF(jacobi('cd', 1, 1/2))
0.724097216593705
sage: (RDF(jacobi('cn', 1, 1/2)), RDF(jacobi('dn', 1, 1/2)),
 ....:  RDF(jacobi('cn', 1, 1/2) / jacobi('dn', 1, 1/2)))
(0.5959765676721407, 0.8231610016315962, 0.724097216593705)
sage: jsn = jacobi('sn', x, 1)  # needs sage.symbolic
sage: P = plot(jsn, 0, 1)  # needs sage.plot sage.symbolic
```

sage.functions.jacobi.jacobi_am_f(x, m)

Internal function for numeric evaluation of the Jacobi amplitude function for real arguments. Procedure described in [Eh2013].

1.13 Airy functions

This module implements Airy functions and their generalized derivatives. It supports symbolic functionality through Maxima and numeric evaluation through mpmath and scipy.

Airy functions are solutions to the differential equation $f''(x) - xf(x) = 0$.

Four global function symbols are immediately available, please see

- `airy_ai()`: for the Airy Ai function
- `airy_ai_prime()`: for the first differential of the Airy Ai function
- `airy_bi()`: for the Airy Bi function
- `airy_bi_prime()`: for the first differential of the Airy Bi function

AUTHORS:

- Oscar Gerardo Lazo Arjona (2010): initial version
- Douglas McNeil (2012): rewrite
EXAMPLES:
Verify that the Airy functions are solutions to the differential equation:

```sage
def(airy_ai(x), x, 2) - x * airy_ai(x) # needs sage.symbolic
0
def(airy_bi(x), x, 2) - x * airy_bi(x) # needs sage.symbolic
0
```

class sage.functions.airy.FunctionAiryAiGeneral
Bases: BuiltinFunction

The generalized derivative of the Airy Ai function

INPUT:
- `alpha` – Return the \(\alpha \)-th order fractional derivative with respect to \(z \). For \(\alpha = n = 1, 2, 3, \ldots \) this gives the derivative \(\text{Ai}^{(n)}(z) \), and for \(\alpha = -n = -1, -2, -3, \ldots \) this gives the \(n \)-fold iterated integral.

\[
f_0(z) = \text{Ai}(z)
\]
\[
f_n(z) = \int_0^z f_{n-1}(t) \, dt
\]

- `x` – The argument of the function

EXAMPLES:

```sage
# needs sage.symbolic
from sage.functions.airy import airy_ai_general
x, n = var('x n')
airy_ai_general(-2, x)
airy_ai(-2, x)
derivative(airy_ai_general(-2, x), x)
airy_ai(-1, x)
derivative(airy_ai_general(n, x), x)
airy_ai(n, x)
derivative(airy_ai_general(n, x), x)
airy_ai(n + 1, x)
```

class sage.functions.airy.FunctionAiryAiPrime
Bases: BuiltinFunction

The derivative of the Airy Ai function; see `airy_ai()` for the full documentation.

EXAMPLES:

```sage
# needs sage.symbolic
x, n = var('x n')
airy_ai_prime(x)
airy_ai_prime(x)
derivative(airy_ai_prime(x), x)
airy_ai_prime(0)
-1/3*3^(2/3)/gamma(1/3)
derivative(airy_ai_prime(x), x)._sympy_() # needs sympy
airy_ai_prime(x)
```
functions.airy.FunctionAiryAiSimple

Bases: BuiltinFunction

The class for the Airy Ai function.

EXAMPLES:

```python
sage: from sage.functions.airy import airy_ai_simple
sage: f = airy_ai_simple(x); f
˓→ needs sage.symbolic
airy_ai(x)
sage: airy_ai_simple(x)._sympy_()
˓→ needs sage.symbolic
airyai(x)
```

functions.airy.FunctionAiryBiGeneral

Bases: BuiltinFunction

The generalized derivative of the Airy Bi function.

INPUT:

- `alpha` – Return the \(\alpha\)-th order fractional derivative with respect to \(z\). For \(\alpha = n = 1, 2, 3, \ldots\) this gives the derivative \(Bi^{(n)}(z)\), and for \(\alpha = -n = -1, -2, -3, \ldots\) this gives the \(n\)-fold iterated integral.

\[
f_0(z) = Bi(z) \\
f_n(z) = \int_0^z f_{n-1}(t) dt
\]

- `x` – The argument of the function

EXAMPLES:

```python
sage: from sage.functions.airy import airy_bi_general
sage: x, n = var('x n')
sage: airy_bi_general(-2, x)
airy_bi(-2, x)
sage: derivative(airy_bi_general(-2, x), x)
airy_bi(-1, x)
sage: airy_bi_general(n, x)
airy_bi(n, x)
sage: derivative(airy_bi_general(n, x), x)
airy_bi(n + 1, x)
```

functions.airy.FunctionAiryBiPrime

Bases: BuiltinFunction

The derivative of the Airy Bi function; see \(airy_bi()\) for the full documentation.

EXAMPLES:

```python
sage: from sage.functions.airy import airy_bi_prime
sage: x, n = var('x n')
sage: airy_bi_prime(x)
airy_bi_prime(x)
sage: airy_bi_prime(0)
3^(1/6)/gamma(1/3)
sage: airy_bi_prime(x)._sympy_()
˓→ needs sage.symbolic
airybi(x)
```
class sage.functions.airy.FunctionAiryBiSimple

Bases: BuiltinFunction

The class for the Airy Bi function.

EXAMPLES:

sage: from sage.functions.airy import airy_bi_simple
sage: f = airy_bi_simple(x); f

airy_ai(alpha, x=None, hold_derivative=True, **kwds)

The Airy Ai function

The Airy Ai function $\text{Ai}(x)$ is (along with $\text{Bi}(x)$) one of the two linearly independent standard solutions to the Airy differential equation $f''(x) - xf(x) = 0$. It is defined by the initial conditions:

\[
\text{Ai}(0) = \frac{1}{2^{2/3} \Gamma\left(\frac{2}{3}\right)}, \\
\text{Ai}'(0) = -\frac{1}{2^{1/3} \Gamma\left(\frac{1}{3}\right)}.
\]

Another way to define the Airy Ai function is:

\[
\text{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{1}{3} t^3 + xt\right) dt.
\]

INPUT:

- **alpha** – Return the α-th order fractional derivative with respect to z. For $\alpha = n = 1, 2, 3, \ldots$ this gives the derivative $\text{Ai}^{(n)}(z)$, and for $\alpha = -n = -1, -2, -3, \ldots$ this gives the n-fold iterated integral.

- **x** – The argument of the function

- **hold_derivative** – Whether or not to stop from returning higher derivatives in terms of $\text{Ai}(x)$ and $\text{Ai}'(x)$

See also:

airy_bi()
It can return derivatives or integrals:

```
sage: # needs sage.symbolic
sage: airy_ai(2, x)
airy_ai(2, x)
sage: airy_ai(1, x, hold_derivative=False)
airy_ai_prime(x)
sage: airy_ai(2, x, hold_derivative=False)
x*airy_ai(x)
sage: airy_ai(-2, x, hold_derivative=False)
airy_ai(-2, x)
sage: airy_ai(n, x)
airy_ai(n, x)
```

It can be evaluated symbolically or numerically for real or complex values:

```
sage: airy_ai(0)
# needs sage.symbolic
1/3*3^(1/3)/gamma(2/3)
sage: airy_ai(0.0)
# needs mpmath
0.355028053887817
sage: airy_ai(I)
# needs sage.symbolic
airy_ai(I)
sage: airy_ai(1.0*I)
# needs sage.symbolic
0.331493305432141 - 0.317449858968444*I
```

The functions can be evaluated numerically either using mpmath, which can compute the values to arbitrary precision, and scipy:

```
sage: airy_ai(2).n(prec=100)
# needs sage.symbolic
0.034924130423274379135322080792
sage: airy_ai(2).n(algorithm='mpmath', prec=100)
# needs sage.symbolic
0.034924130423274379135322080792
sage: airy_ai(2).n(algorithm='scipy')  # rel tol 1e-10
# needs scipy sage.symbolic
0.03492413042327323
```

And the derivatives can be evaluated:

```
sage: airy_ai(1, 0)
# needs sage.symbolic
-1/3*3^(2/3)/gamma(1/3)
sage: airy_ai(1, 0.0)
# needs mpmath
-0.258819403792807
```

Plots:

```
sage: plot(airy_ai(x), (x, -10, 5)) + plot(airy_ai_prime(x),
......: (x, -10, 5), color='red')
```

REFERENCES:

1.13. Airy functions
The Airy Bifunction

The Airy Bi function $Bi(x)$ is (along with $Ai(x)$) one of the two linearly independent standard solutions to the Airy differential equation $f''(x) - xf(x) = 0$. It is defined by the initial conditions:

$$
Bi(0) = \frac{1}{3^{1/6} \Gamma\left(\frac{2}{3}\right)},
$$

$$
Bi'(0) = \frac{3^{1/6}}{\Gamma\left(\frac{1}{3}\right)}.
$$

Another way to define the Airy Bi function is:

$$
Bi(x) = \frac{1}{\pi} \int_0^\infty \left[\exp\left(xt - \frac{t^3}{3} \right) + \sin\left(xt + \frac{1}{3} t^3 \right) \right] dt.
$$

INPUT:

- α – Return the α-th order fractional derivative with respect to z. For $\alpha = n = 1, 2, 3, \ldots$ this gives the derivative $Bi^{(n)}(z)$, and for $\alpha = -n = -1, -2, -3, \ldots$ this gives the n-fold iterated integral.

$$
\begin{align*}
 f_0(z) &= Bi(z) \\
 f_n(z) &= \int_0^z f_{n-1}(t) dt
\end{align*}
$$

- x – The argument of the function

- hold_derivative – Whether or not to stop from returning higher derivatives in terms of $Bi(x)$ and $Bi'(x)$

See also:

`airy_ai()`

EXAMPLES:

```python
sage: n, x = var('n x')  # needs sage.symbolic
sage: airy_bi(x)  # needs sage.symbolic
airy_bi(x)
```

It can return derivatives or integrals:

```python
sage: airy_bi(2, x)
airy_bi(2, x)
```

```python
sage: airy_bi_prime(x)
airy_bi_prime(x)
```

```python
sage: airy_bi(1, x, hold_derivative=False)
airy_bi(1, x, hold_derivative=False)
```

```python
sage: airy_bi(2, x, hold_derivative=False)
airy_bi(2, x, hold_derivative=False)
```

```python
sage: airy_bi(-2, x, hold_derivative=False)
airy_bi(-2, x, hold_derivative=False)
```

```python
sage: airy_bi(n, x)
airy_bi(n, x)
```
It can be evaluated symbolically or numerically for real or complex values:

```
sage: airy_bi(0)

1/3*3^(5/6)/gamma(2/3)

sage: airy_bi(0.0)

0.614926627446001

sage: airy_bi(I)

airy_bi(I)

sage: airy_bi(1.0*I)

0.648858208330395 + 0.344958634768048*I
```

The functions can be evaluated numerically using mpmath, which can compute the values to arbitrary precision, and scipy:

```
sage: airy_bi(2).n(prec=100)

3.298094999782147102806044252

sage: airy_bi(2).n(algorithm='mpmath', prec=100)

3.298094999782147102806044252

sage: airy_bi(2).n(algorithm='scipy')  # rel tol 1e-10

3.298094999782134
```

And the derivatives can be evaluated:

```
sage: airy_bi(1, 0)

3^(1/6)/gamma(1/3)

sage: airy_bi(1, 0.0)

0.448288357353826
```

Plots:

```
sage: plot(airy_bi(x), (x, -10, 5)) + plot(airy_bi_prime(x),  # ...

....: (x, -10, 5), color='red')

Graphics object consisting of 2 graphics primitives
```

REFERENCES:

- Abramowitz, Milton; Stegun, Irene A., eds. (1965), “Chapter 10”
- Wikipedia article Airy_function
1.14 Bessel functions

This module provides symbolic Bessel and Hankel functions, and their spherical versions. These functions use the mpmath library for numerical evaluation and Maxima, GiNaC, Pynac for symbolics.

The main objects which are exported from this module are:

- `bessel_J(n, x)` – The Bessel J function
- `bessel_Y(n, x)` – The Bessel Y function
- `bessel_I(n, x)` – The Bessel I function
- `bessel_K(n, x)` – The Bessel K function
- `Bessel(...)` – A factory function for producing Bessel functions of various kinds and orders
- `hankel1(nu, z)` – The Hankel function of the first kind
- `hankel2(nu, z)` – The Hankel function of the second kind
- `struve_H(nu, z)` – The Struve function
- `struve_L(nu, z)` – The modified Struve function
- `spherical_bessel_J(n, z)` – The Spherical Bessel J function
- `spherical_bessel_Y(n, z)` – The Spherical Bessel Y function
- `spherical_hankel1(n, z)` – The Spherical Hankel function of the first kind
- `spherical_hankel2(n, z)` – The Spherical Hankel function of the second kind

Bessel functions, first defined by the Swiss mathematician Daniel Bernoulli and named after Friedrich Bessel, are canonical solutions $y(x)$ of Bessel’s differential equation:

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \nu^2) y = 0,$$

for an arbitrary complex number ν (the order).

- In this module, J_ν denotes the unique solution of Bessel’s equation which is non-singular at $x = 0$. This function is known as the Bessel Function of the First Kind. This function also arises as a special case of the hypergeometric function $\,\!_0F_1$:

$$J_\nu(x) = \frac{x^n}{2^n \Gamma(n + 1)} \,\!_0F_1(\nu + 1, -\frac{x^2}{4}).$$

- The second linearly independent solution to Bessel’s equation (which is singular at $x = 0$) is denoted by Y_ν and is called the Bessel Function of the Second Kind:

$$Y_\nu(x) = \frac{J_\nu(x) \cos(\pi \nu) - J_{-\nu}(x)}{\sin(\pi \nu)}.$$

- There are also two commonly used combinations of the Bessel J and Y Functions. The Bessel I Function, or the Modified Bessel Function of the First Kind, is defined by:

$$I_\nu(x) = i^{-\nu} J_\nu(ix).$$

The Bessel K Function, or the Modified Bessel Function of the Second Kind, is defined by:

$$K_\nu(x) = \frac{\pi}{2} \cdot \frac{I_{-\nu}(x) - I_\nu(x)}{\sin(\pi \nu)}.$$

We should note here that the above formulas for Bessel Y and K functions should be understood as limits when ν is an integer.
• It follows from Bessel’s differential equation that the derivative of $J_n(x)$ with respect to x is:

$$\frac{d}{dx} J_n(x) = \frac{1}{x^n} \left(x^n J_{n-1}(x) - n x^{n-1} J_n(x) \right)$$

• Another important formulation of the two linearly independent solutions to Bessel’s equation are the Hankel functions $H^{(1)}_\nu(x)$ and $H^{(2)}_\nu(x)$, defined by:

$$H^{(1)}_\nu(x) = J_\nu(x) + i Y_\nu(x)$$

$$H^{(2)}_\nu(x) = J_\nu(x) - i Y_\nu(x)$$

where i is the imaginary unit (and J_ν and Y_ν are the usual J- and Y-Bessel functions). These linear combinations are also known as Bessel functions of the third kind; they are also two linearly independent solutions of Bessel’s differential equation. They are named for Hermann Hankel.

• When solving for separable solutions of Laplace’s equation in spherical coordinates, the radial equation has the form:

$$x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} + [x^2 - n(n + 1)] y = 0.$$

The spherical Bessel functions j_n and y_n, are two linearly independent solutions to this equation. They are related to the ordinary Bessel functions J_n and Y_n by:

$$j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+1/2}(x),$$

$$y_n(x) = \sqrt{\frac{\pi}{2x}} Y_{n+1/2}(x) = (-1)^{n+1} \sqrt{\frac{\pi}{2x}} J_{-n-1/2}(x).$$

EXAMPLES:

Evaluate the Bessel J function symbolically and numerically:

```sage
# needs sage.symbolic
sage: bessel_J(0, x)
bessel_J(0, x)
sage: bessel_J(0, 0)
1
sage: bessel_J(0, x).diff(x)
-1/2*bessel_J(1, x) + 1/2*bessel_J(-1, x)
sage: N(bessel_J(0, 0), digits=20)
1.0000000000000000000
sage: find_root(bessel_J(0,x), 0, 5) # needs scipy
2.40482557695773
```

Plot the Bessel J function:

```sage
f(x) = Bessel(0)(x); f
# needs sage.symbolic
x |--> bessel_J(0, x)
sage: plot(f, (x, 1, 10))
# needs sage.plot sage.symbolic
Graphics object consisting of 1 graphics primitive
```

Visualize the Bessel Y function on the complex plane (set plot_points to a higher value to get more detail):
Evaluate a combination of Bessel functions:

```python
sage: f(x) = bessel_J(1, x) - bessel_Y(0, x)
sage: f(pi)
bessel_J(1, pi) - bessel_Y(0, pi)
sage: f(pi).n()
-0.0437509653365599
sage: f(pi).n(digits=50)
-0.043750965336559909054985168023342675387737118378169
```

Symbolically solve a second order differential equation with initial conditions \(y(1) = a \) and \(y'(1) = b \) in terms of Bessel functions:

```python
sage: diffeq = x^2*diff(y, x, x) + x*diff(y, x) + x^2*y == 0
sage: f = desolve(diffeq, y, [1, a, b]); f
(a*bessel_Y(1, 1) + b*bessel_Y(0, 1))*bessel_J(0, x)/(bessel_J(0, 1)*bessel_Y(1, 1) - bessel_J(1, 1)*bessel_Y(0, 1)) - (a*bessel_J(1, 1) + b*bessel_J(0, 1))*bessel_Y(0, x)/(bessel_J(0, 1)*bessel_Y(1, 1) - bessel_J(1, 1)*bessel_Y(0, 1))
```

For more examples, see the docstring for `Bessel()`.

AUTHORS:

- Some of the documentation here has been adapted from David Joyner’s original documentation of Sage’s special functions module (2006).

REFERENCES:

- [AS-Bessel]
- [AS-Spherical]
- [AS-Struve]
- [DLMF-Bessel]
- [DLMF-Struve]
- [WP-Bessel]
- [WP-Struve]

sage.functions.bessel.Bessel(*args, **kwds)

A function factory that produces symbolic I, J, K, and Y Bessel functions. There are several ways to call this function:

- `Bessel(order, type)`
- `Bessel(order) – type defaults to 'J'`
- `Bessel(order, typ=T)`
- `Bessel(typ=T) – order is unspecified, this is a 2-parameter function`
- Bessel() – order is unspecified, type is 'J'

where order can be any integer and T must be one of the strings 'I', 'J', 'K', or 'Y'.

See the EXAMPLES below.

EXAMPLES:

Construction of Bessel functions with various orders and types:

```
sage: Bessel()
bessel_J
sage: Bessel(typ='K')
bessel_K

sage: # needs sage.symbolic
sage: Bessel(1)(x)
bessel_J(1, x)
sage: Bessel(1, 'Y')(x)
bessel_Y(1, x)
sage: Bessel(-2, 'Y')(x)
bessel_Y(-2, x)
sage: Bessel(0, typ='I')(x)
bessel_I(0, x)
```

Evaluation:

```
sage: f = Bessel(1)
sage: f(3.0)       # needs mpmath
0.339058958525936

sage: g = Bessel(typ='J')
sage: g(1,3)
bessel_J(1, 3)
sage: g(2, 3+I).n()          # needs sage.symbolic
0.634160370148554 + 0.0253384000032695*I

sage: abs(numerical_integral(1/pi*cos(3*sin(x)), 0.0, pi)[0]...:
    - Bessel(0, 'J')(3.0)) < 1e-15
True
```

Symbolic calculus:

```
sage: f(x) = Bessel(0, 'J')(x)       # needs sage.symbolic

sage: derivative(f, x)      # needs sage.symbolic
x |--> -1/2*bessel_J(1, x) + 1/2*bessel_J(-1, x)
sage: derivative(f, x)      # needs sage.symbolic
x |--> 1/4*bessel_J(2, x) - 1/2*bessel_J(0, x) + 1/4*bessel_J(-2, x)
```

Verify that J_0 satisfies Bessel's differential equation numerically using the `test_relation()` method:
Conversion to other systems:

```python
sage: # needs sage.symbolic
sage: x,y = var('x,y')
sage: f = Bessel(typ='K')(x,y)
sage: expected = f.derivative(y)
sage: actual = maxima(f).derivative('_SAGE_VAR_y').sage()
sage: bool(actual == expected)
True
```

Compute the particular solution to Bessel’s Differential Equation that satisfies \(y(1) = 1\) and \(y'(1) = 1\), then verify the initial conditions and plot it:

```python
sage: # needs sage.symbolic
sage: y = function('y')(x)
sage: diffeq = x^2*diff(y,x,x) + x*diff(y,x) + x^2*y == 0
sage: f = desolve(diffeq, y, [1, 1, 1]); f
(bessel_Y(1, 1) + bessel_Y(0, 1))*bessel_J(0, x)/(bessel_J(0, 1)*bessel_Y(1, 1) - bessel_J(1, 1)*bessel_Y(0, 1)) - (bessel_J(1, 1) + bessel_J(0, 1))*bessel_Y(0, x)/(bessel_J(0, 1)*bessel_Y(1, 1) - bessel_J(1, 1)*bessel_Y(0, 1))
sage: f.subs(x=1).n()  # numerical verification
1.00000000000000
sage: fp = f.diff(x)
sage: fp.subs(x=1).n()  # symbolic verification
1
sage: f.subs(x=1).simplify_full()  # symbolic verification
1
sage: fp = f.diff(x)
```

Plotting:

```python
sage: f(x) = Bessel(0)(x); f
```

(continues on next page)
sage: plot([Bessel(i, 'J') for i in range(5)], 2, 10) #...
needs sage.plot
Graphics object consisting of 5 graphics primitives

sage: G = Graphics() #...
needs sage.plot
sage: G += sum(plot(Bessel(i), 0, 4*pi, rgbcolor=hue(sin(pi*i/10))) #...
needs sage.plot sage.symbolic
.....: for i in range(5))
sage: show(G) #...
needs sage.plot

A recreation of Abramowitz and Stegun Figure 9.1:

sage: # needs sage.plot sage.symbolic
sage: G = plot(Bessel(0, 'J'), 0, 15, color='black')
sage: G += plot(Bessel(0, 'Y'), 0, 15, color='black')
sage: G += plot(Bessel(1, 'J'), 0, 15, color='black', linestyle='dotted')
sage: G += plot(Bessel(1, 'Y'), 0, 15, color='black', linestyle='dotted')
sage: show(G, ymin=-1, ymax=1)

class sage.functions.bessel.Function_Bessel_I
Bases: BuiltinFunction

The Bessel I function, or the Modified Bessel Function of the First Kind.

DEFINITION:

\[I_\nu(x) = i^{-\nu} J_\nu(ix) \]

EXAMPLES:

sage: bessel_I(1.0, 1.0) #...
needs mpmath
0.565159103992485

sage: # needs sage.symbolic
sage: a = bessel_I(pi, bessel_I(1, I))

Examples of symbolic manipulation:

sage: # needs sage.symbolic
sage: f = bessel_I(2, x)
sage: f.diff(x)
1/2*bessel_I(3, x) + 1/2*bessel_I(1, x)

Special identities that bessel_I satisfies:

1.14. Bessel functions

117
Functions, Release 10.3

```python
sage: # needs sage.symbolic
sage: bessel_I(1/2, x)
sqrt(2)*sqrt(1/(pi*x))*sinh(x)
sage: eq = bessel_I(1/2, x) == bessel_I(0.5, x)
sage: eq.test_relation()
True
sage: bessel_I(-1/2, x)
sqrt(2)*sqrt(1/(pi*x))*cosh(x)
sage: eq = bessel_I(-1/2, x) == bessel_I(-0.5, x)
sage: eq.test_relation()
True
```

Examples of asymptotic behavior:

```python
sage: limit(bessel_I(0, x), x=oo)
# needs sage.symbolic
+Infinity
sage: limit(bessel_I(0, x), x=0)
# needs sage.symbolic
1
```

High precision and complex valued inputs:

```python
sage: bessel_I(0, 1).n(128)
# needs sage.symbolic
1.266065877752008335982446252147175376
sage: bessel_I(0, RealField(200)(1))
# needs sage.rings.real_mpfr
1.266065877752008335982446252147175376076703113549622068081
sage: bessel_I(0, ComplexField(200)(0.5+I))
# needs sage.symbolic
0.80644357583493619472428518415019222845373366024179916785502
+ 0.22686958987911161141397453401487525043310874687430711021434*I
```

Visualization (set plot_points to a higher value to get more detail):

```python
sage: plot(bessel_I(1, x), (x, 0, 5), color='blue')
# needs sage.plot sage.symbolic
Graphics object consisting of 1 graphics primitive
sage: complex_plot(bessel_I(1, x), (-5, 5), (-5, 5), plot_points=20)
# needs sage.plot sage.symbolic
Graphics object consisting of 1 graphics primitive
```

ALGORITHM:

Numerical evaluation is handled by the mpmath library. Symbolics are handled by a combination of Maxima and Sage (Ginac/Pynac).

REFERENCES:

- [AS-Bessel]
- [DLMF-Bessel]
- [WP-Bessel]

class `sage.functions.bessel.Function_Bessel_J`

Bases: `BuiltinFunction`
The Bessel J Function, denoted by \(bessel_J(\nu, x) \) or \(J_\nu(x) \). As a Taylor series about \(x = 0 \) it is equal to:

\[
J_\nu(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k + \nu + 1)} \left(\frac{x}{2} \right)^{2k+\nu}
\]

The parameter \(\nu \) is called the order and may be any real or complex number; however, integer and half-integer values are most common. It is defined for all complex numbers \(x \) when \(\nu \) is an integer or greater than zero and it diverges as \(x \to 0 \) for negative non-integer values of \(\nu \).

For integer orders \(\nu = n \) there is an integral representation:

\[
J_n(x) = \frac{1}{\pi} \int_0^\pi \cos(nt - x \sin(t)) \, dt
\]

This function also arises as a special case of the hypergeometric function \(\, _0F_1 \):

\[
J_\nu(x) = \frac{x^n}{2^n\Gamma(\nu + 1)} \, _0F_1 \left(\nu + 1, -\frac{x^2}{4} \right).
\]

EXAMPLES:

```
sage: bessel_J(1.0, 1.0)  # needs mpmath
0.440050585744933
```

```
sage: # needs sage.symbolic
sage: bessel_J(2, I) .n(digits=30)  # needs sage.symbolic
-0.135747669767038281182852569995
sage: bessel_J(1, x)  # needs sage.symbolic
bessel_J(1, x)
```

```
sage: n = var('n')
sage: bessel_J(n, x)  # needs sage.symbolic
bessel_J(n, x)
```

Examples of symbolic manipulation:

```
sage: # needs sage.symbolic
sage: a = bessel_J(pi, bessel_J(1, I)); a
bessel_J(pi, bessel_J(1, I))
sage: N(a, digits=20)
0.00059023706363796717363 - 0.0026098820470081958110*I
sage: f = bessel_J(2, x)
sage: f.diff(x)
-1/2*bessel_J(3, x) + 1/2*bessel_J(1, x)
```

Comparison to a well-known integral representation of \(J_1(1) \):

```
sage: A = numerical_integral(1/pi*cos(x - sin(x)), 0, pi)  # needs sage.symbolic
sage: A[0]  # abs tol 1e-14  # needs sage.symbolic
0.44005058574493355
sage: bessel_J(1.0, 1.0) - A[0] < 1e-15  # needs sage.symbolic
True
```

Integration is supported directly and through Maxima:
Functions, Release 10.3

sage: f = bessel_J(2, x) # needs sage.symbolic
sage: f.integrate(x) # needs sage.symbolic
\frac{1}{24} x^3 \text{hypergeometric}((3/2,), (5/2, 3), -1/4 x^2)

Visualization (set plot_points to a higher value to get more detail):

sage: plot(bessel_J(1, x), (x, 0, 5), color='blue') # needs sage.plot sage.symbolic
Graphics object consisting of 1 graphics primitive
sage: complex_plot(bessel_J(1, x), (-5, 5), (-5, 5), plot_points=20) # needs sage.plot sage.symbolic
Graphics object consisting of 1 graphics primitive

ALGORITHM:

Numerical evaluation is handled by the mpmath library. Symbolics are handled by a combination of Maxima and Sage (Ginac/Pynac).

Check whether the return value is real whenever the argument is real (github issue #10251):

sage: bessel_J(5, 1.5) in RR # needs mpmath
True

REFERENCES:

• [AS-Bessel]
• [DLMF-Bessel]
• [AS-Bessel]

class sage.functions.bessel.Function_Bessel_K
Bases: BuiltinFunction

The Bessel K function, or the modified Bessel function of the second kind.

DEFINITION:

\[K_\nu(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_\nu(x)}{\sin(\nu \pi)} \]

EXAMPLES:

sage: bessel_K(1.0, 1.0) # needs mpmath
0.601907230197235
sage: bessel_K(1, x) # needs sage.symbolic
bessel_K(1, x)
sage: n = var('n')
sage: bessel_K(n, x)
bessel_K(n, x)
sage: bessel_K(2, I).n()
-2.59288617549120 + 0.180489972066962*I

Examples of symbolic manipulation:
sage: # needs sage.symbolic
sage: a = bessel_K(pi, bessel_K(1, I)); a
bessel_K(pi, bessel_K(1, I))
sage: N(a, digits=20)
3.8507583115005220156 + 0.068528298579883425456*I
sage: f = bessel_K(2, x)
sage: f.diff(x)
-1/2*bessel_K(3, x) - 1/2*bessel_K(1, x)
sage: bessel_K(1/2, x)
sqrt(1/2)*sqrt(pi)*e^(-x)/sqrt(x)
sage: bessel_K(1/2, -1)
-I*sqrt(1/2)*sqrt(pi)*e
sage: bessel_K(1/2, 1)
sqrt(1/2)*sqrt(pi)*e^(-1)

Examples of asymptotic behavior:

sage: bessel_K(0, 0.0) # needs mpmath
+infinity
sage: limit(bessel_K(0, x), x=0) # needs sage.symbolic
+Infinity
sage: limit(bessel_K(0, x), x=oo) # needs sage.symbolic
0

High precision and complex valued inputs:

sage: bessel_K(0, 1).n(128) # needs sage.symbolic
0.42102443824070833333562737921260903613621974822666047229897
sage: bessel_K(0, RealField(200)(1)) # needs sage.rings.real_mpfr
0.42102443824070833333562737921260903613621974822666047229897
sage: bessel_K(0, ComplexField(200)(0.5+I)) # needs sage.symbolic
0.0583659790931038640803753116433600481447155161692187818271179
- 0.6764599731334483535184142196073004335768129348518210260256*I

Visualization (set plot_points to a higher value to get more detail):

sage: plot(bessel_K(1,x), (x, 0,5), color='blue') # needs sage.plot sage.symbolic
Graphics object consisting of 1 graphics primitive
sage: complex_plot(bessel_K(1, x), (-5, 5), (-5, 5), plot_points=20) # needs sage.plot sage.symbolic
Graphics object consisting of 1 graphics primitive

ALGORITHM:

Numerical evaluation is handled by the mpmath library. Symbolics are handled by a combination of Maxima and Sage (Ginac/Pynac).

REFERENCES:

- [AS-Bessel]
- [DLMF-Bessel]
Functions, Release 10.3

• [WP-Bessel]

class sage.functions.bessel.Function_Bessel_Y

Bases: BuiltinFunction

The Bessel Y functions, also known as the Bessel functions of the second kind, Weber functions, or Neumann functions.

\(Y_\nu(z) \) is a holomorphic function of \(z \) on the complex plane, cut along the negative real axis. It is singular at \(z = 0 \). When \(z \) is fixed, \(Y_\nu(z) \) is an entire function of the order \(\nu \).

DEFINITION:

\[
Y_n(z) = \frac{J_\nu(z) \cos(\nu z) - J_{-\nu}(z)}{\sin(\nu z)}
\]

Its derivative with respect to \(z \) is:

\[
\frac{d}{dz} Y_n(z) = \frac{1}{z^n} \left(z^n Y_{n-1}(z) - n z^{n-1} Y_n(z) \right)
\]

EXAMPLES:

```python
sage: bessel_Y(1, x) # needs sage.symbolic
bessel_Y(1, x)
sage: bessel_Y(1.0, 1.0) # needs mpmath
-0.781212821300289
```

```python
sage: # needs sage.symbolic
sage: n = var('n')
sage: bessel_Y(n, x)
bessel_Y(n, x)
sage: bessel_Y(2, I).n() 1.03440456978312 - 0.135747669767038*I
sage: bessel_Y(0, 0).n() -infinity
sage: bessel_Y(0, 1).n(128) 0.088256964215676957982926766023515162828
```

Examples of symbolic manipulation:

```python
sage: # needs sage.symbolic
sage: a = bessel_Y(pi, bessel_Y(1, I)); a
bessel_Y(pi, bessel_Y(1, I))
sage: N(a, digits=20)
4.2059146571791095708 + 21.307914215321993526*I
sage: f = bessel_Y(2, x)
sage: f.diff(x)
-1/2*bessel_Y(3, x) + 1/2*bessel_Y(1, x)
```

High precision and complex valued inputs (see github issue #4230):

```python
sage: bessel_Y(0, 1).n(128) # needs sage.symbolic
0.088256964215676957982926766023515162828
sage: bessel_Y(0, RealField(200)(1)) # needs sage.rings.real_mpfr
0.088256964215676957982926766023515162827817523090675546711044
```

(continues on next page)
Bessel functions

Visualization (set plot_points to a higher value to get more detail):

```
sage: plot(bessel_Y(1, x), (x, 0, 5), color='blue')  # needs sage.plot sage.symbolic
```

```
sage: complex_plot(bessel_Y(1, x), (-5, 5), (-5, 5), plot_points=20)  # needs sage.plot sage.symbolic
```

ALGORITHM:

Numerical evaluation is handled by the mpmath library. Symbolics are handled by a combination of Maxima and Sage (Ginac/Pynac).

REFERENCES:

- [AS-Bessel]
- [DLMF-Bessel]
- [WP-Bessel]

class `sage.functions.bessel.Function_Hankel1`

Bases: `BuiltinFunction`

The Hankel function of the first kind

DEFINITION:

\[H^{(1)}_{\nu}(z) = J_{\nu}(z) + i Y_{\nu}(z) \]

EXAMPLES:

```
sage: hankel1(3, x)  # needs sage.symbolic
```

```
sage: hankel1(3, 4.)  # needs mpmath
0.430171473875622 - 0.182022115953485*I
```

```
sage: latex(hankel1(3, x))  # needs sage.symbolic
```

```
sage: hankel1(3, x).series(x == 2, 10).subs(x=3) .n()  # abs tol 1e-12  # needs sage.symbolic
0.30906272255252 - 0.538541616105032*I
```

REFERENCES:

- [AS-Bessel] see 9.1.6
class sage.functions.bessel.Function_Hankel2

The Hankel function of the second kind

DEFINITION:

\[H_\nu^{(2)}(z) = J_\nu(z) - iY_\nu(z) \]

EXAMPLES:

```python
sage: hankel2(3, x)  # needs sage.symbolic
hankel2(3, x)
sage: hankel2(3, 4.)  # needs mpmath
0.430171473875622 + 0.182022115953485*I
sage: latex(hankel2(3, x))  # needs sage.symbolic
H_3^{(2)}(x)
sage: hankel2(3., x).series(x == 2, 10).subs(x=3).n()  # abs tol 1e-12  # needs sage.symbolic
0.309062682819597 + 0.512591541605234*I
sage: hankel2(3, 3.)  # needs mpmath
0.309062722255252 + 0.538541616105032*I
```

REFERENCES:

• [AS-Bessel] see 9.1.6

class sage.functions.bessel.Function_Struve_H

The Struve functions, solutions to the non-homogeneous Bessel differential equation:

\[x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = \frac{4(x/\pi)^{\alpha+1}}{\sqrt{\pi} \Gamma(\alpha + 1/2)}, \]

\[H_\alpha(x) = y(x) \]

EXAMPLES:

```python
sage: struve_H(-1/2, x)  # needs sage.symbolic
sqrt(2)*sqrt(1/(pi*x))*sin(x)
sage: struve_H(2, x)  # needs sage.symbolic
struve_H(2, x)
sage: struve_H(1/2, pi).n()  # needs sage.symbolic
0.900316316157106
```

REFERENCES:

• [AS-Struve]
• [DLMF-Struve]
• [WP-Struve]
class sage.functions.bessel.Function_Struve_L
Bases: BuiltinFunction

The modified Struve functions.

\[L_\alpha(x) = -i \cdot e^{-i\alpha \pi/2} \cdot H_\alpha(ix) \]

EXAMPLES:

```python
sage: struve_L(2, x)  # needs sage.symbolic
sage: struve_L(2, x)
sage: struve_L(1/2, pi).n()  # needs sage.symbolic
4.76805417696286
sage: diff(struve_L(1, x), x)  # needs sage.symbolic
1/3*x/pi - 1/2*struve_L(2, x) + 1/2*struve_L(0, x)
```

REFERENCES:

• [AS-Struve]
• [DLMF-Struve]
• [WP-Struve]

class sage.functions.bessel.SphericalBesselJ
Bases: BuiltinFunction

The spherical Bessel function of the first kind

DEFINITION:

\[j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n+\frac{1}{2}}(z) \]

EXAMPLES:

```python
sage: spherical_bessel_J(3, 3.)  # needs mpmath
0.152051662030533
sage: spherical_bessel_J(2.,3.)  # rel tol 1e-10  # needs mpmath
0.2986374970757335
sage: spherical_bessel_J(3 + 0.2 * I, 3)  # needs sage.symbolic
0.152051648665037
sage: spherical_bessel_J(4, x).simplify()  # needs sage.symbolic
-((45/x^2 - 105/x^4 - 1)*sin(x) + 5*(21/x^2 - 2)*cos(x)/x)/x
sage: integrate(spherical_bessel_J(1,x)^2,(x,0,oo))  # needs sage.symbolic
1/6*pi
sage: latex(spherical_bessel_J(4, x))
j_{4}(x)
```

REFERENCES:

1.14. Bessel functions 125
Functions, Release 10.3

- [AS-Spherical]
- [DLMF-Bessel]
- [WP-Bessel]

class `sage.functions.bessel.SphericalBesselY`

Bases: `BuiltinFunction`

The spherical Bessel function of the second kind

DEFINITION:

\[y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n+\frac{1}{2}}(z) \]

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: spherical_bessel_Y(3, x)
spherical_bessel_Y(3, x)
sage: spherical_bessel_Y(3 + 0.2 * I, 3)
-0.505215297588210 - 0.0508835883281404*I
sage: spherical_bessel_Y(-3, x).simplify()
((3/x^2 - 1)*sin(x) - 3*cos(x)/x)/x
sage: spherical_bessel_Y(3 + 2 * I, 5 - 0.2 * I)
-0.270205813266440 - 0.615994702714957*I
sage: integrate(spherical_bessel_Y(0, x), x)
-1/2*Ei(I*x) - 1/2*Ei(-I*x)
sage: integrate(spherical_bessel_Y(1,x)^2,(x,0,oo))
-1/6*pi
sage: latex(spherical_bessel_Y(0, x))
y_{0}(x)
```

REFERENCES:

- [AS-Spherical]
- [DLMF-Bessel]
- [WP-Bessel]

class `sage.functions.bessel.SphericalHankel1`

Bases: `BuiltinFunction`

The spherical Hankel function of the first kind

DEFINITION:

\[h_n^{(1)}(z) = \sqrt{\frac{\pi}{2z}} H_{n+\frac{1}{2}}^{(1)}(z) \]

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: spherical_hankel1(3, x)
spherical_hankel1(3, x)
sage: spherical_hankel1(3 + 0.2 * I, 3)
0.201654587512037 - 0.531281544239273*I
sage: spherical_hankel1(1, x).simplify()
-(x + I)*e^(I*x)/x^2
sage: spherical_hankel1(3 + 2 * I, 5 - 0.2 * I)
```

(continues on next page)
1.25375216869913 - 0.518011435921789*I
\begin{verbatim}
sage: integrate(spherical_hankel1(3, x), x)
Ei(-I*x) - 6*gamma(-1, -I*x) - 15*gamma(-2, -I*x) - 15*gamma(-3, -I*x)
sage: latex(spherical_hankel1(3, x))
h_{3}^{(1)}
\end{verbatim}

REFERENCES:
• [AS-Spherical]
• [DLMF-Bessel]
• [WP-Bessel]

class sage.functions.bessel.SphericalHankel2

Bases: BuiltinFunction

The spherical Hankel function of the second kind

DEFINITION:

\[h_{n}^{(2)}(z) = \sqrt{\frac{\pi}{2z}} H_{n+\frac{1}{2}}^{(2)}(z) \]

EXAMPLES:

\begin{verbatim}
sage: spherical_hankel2(3, x)
spherical_hankel2(3, x)
sage: spherical_hankel2(3 + 0.2 * I, 3)
0.099887410855765 + 0.479149050937147*I
sage: spherical_hankel2(1, x).simplify()
-(x - I)*e^(-I*x)/x^2
sage: spherical_hankel2(2, i).simplify()
-e
sage: spherical_hankel2(2, x).simplify()
(-I*x^2 - 3*x + 3*I)*e^(-I*x)/x^3
sage: spherical_hankel2(3 + 2*I, 5 - 0.2*I)
0.0217627632692163 + 0.0224001906110906*I
sage: integrate(spherical_hankel2(3, x), x)
Ei(-I*x) - 6*gamma(-1, I*x) - 15*gamma(-2, I*x) - 15*gamma(-3, I*x)
sage: latex(spherical_hankel2(3, x))
h_{3}^{(2)}(x)
\end{verbatim}

REFERENCES:
• [AS-Spherical]
• [DLMF-Bessel]
• [WP-Bessel]

sage.functions.bessel.spherical_bessel_f(F, n, z)

Numerically evaluate the spherical version, \(f \), of the Bessel function \(F \) by computing \(f_n(z) = \sqrt{\frac{2\pi}{z}} F_{n+\frac{1}{2}}(z) \).

According to Abramowitz & Stegun, this identity holds for the Bessel functions \(J, Y, K, I, H^{(1)}, \) and \(H^{(2)} \).

EXAMPLES:
1.15 Exponential integrals

AUTHORS:

- Benjamin Jones (2011-06-12)

This module provides easy access to many exponential integral special functions. It utilizes Maxima’s special functions package and the mpmath library.

REFERENCES:

- [AS1964] Abramowitz and Stegun: Handbook of Mathematical Functions
- Wikipedia article Exponential_integral
- Online Encyclopedia of Special Function: http://algo.inria.fr/esf/index.html
- NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/
- Maxima special functions package
- mpmath library

AUTHORS:

- Benjamin Jones
 Implementations of the classes `Function_exp_integral_*`
- David Joyner and William Stein
 Authors of the code which was moved from special.py and trans.py. Implementation of `exp_int()` (from `sage/functions/special.py`). Implementation of `exponential_integral_1()` (from `sage/functions/transcendental.py`).

class sage.functions.exp_integral.Function_cos_integral

Bases: `BuiltInFunction`

The trigonometric integral $\text{Ci}(z)$ defined by

$$
\text{Ci}(z) = \gamma + \log(z) + \int_{0}^{z} \frac{\cos(t) - 1}{t} \, dt,
$$

where γ is the Euler gamma constant (`euler_gamma` in Sage), see [AS1964] 5.2.1.

EXAMPLES:

```
sage: z = var('z')
```

(continues on next page)
Numerical evaluation for real and complex arguments is handled using mpmath:

\begin{verbatim}
sage: cos_integral(3.0) → needs mpmath
0.119629786008000
\end{verbatim}

The alias \texttt{Ci} can be used instead of \texttt{cos_integral}:

\begin{verbatim}
sage: Ci(3.0) → needs mpmath
0.119629786008000
\end{verbatim}

Compare \texttt{cos_integral(3.0)} to the definition of the value using numerical integration:

\begin{verbatim}
sage: a = numerical_integral((cos(x)-1)/x, 0, 3)[0] → needs sage.symbolic
sage: abs(N(euler_gamma + log(3)) + a - N(cos_integral(3.0))) < 1e-14 → needs sage.symbolic
True
\end{verbatim}

Arbitrary precision and complex arguments are handled:

\begin{verbatim}
sage: N(cos_integral(3), digits=30) → needs sage.symbolic
0.119629786008000327626472281177
sage: cos_integral(ComplexField(100)(3+I)) → needs sage.symbolic
0.078134230477495714401983633057 - 0.37814733904787920181190368789*I
\end{verbatim}

The limit \(\text{Ci}(z) \) as \(z \to \infty \) is zero:

\begin{verbatim}
sage: N(cos_integral(1e23)) → needs mpmath
-3.24053937643003e-24
\end{verbatim}

Symbolic derivatives and integrals are handled by Sage and Maxima:

\begin{verbatim}
sage: # needs sage.symbolic
sage: x = var('x')
sage: f = cos_integral(x)
sage: f.diff(x)
cos(x)/x
sage: f.integrate(x)
x*cos_integral(x) - sin(x)
\end{verbatim}

The Nielsen spiral is the parametric plot of \((\text{Si}(t), \text{Ci}(t))\):
sage: # needs sage.symbolic
sage: t = var('t')
sage: f(t) = sin_integral(t)
sage: g(t) = cos_integral(t)
sage: P = parametric_plot([f, g], (t, 0.5, 20)) # needs sage.plot
sage: show(P, frame=True, axes=False) # needs sage.plot

ALGORITHM:
Numerical evaluation is handled using mpmath, but symbols are handled by Sage and Maxima.

REFERENCES:
- Wikipedia article Trigonometric_integral
- mpmath documentation: ci

class sage.functions.exp_integral.Function_cosh_integral

Bases: BuiltinFunction

The trigonometric integral \(\text{Chi}(z) \) defined by

\[
\text{Chi}(z) = \gamma + \log(z) + \int_0^z \frac{\cosh(t) - 1}{t} dt,
\]

see [AS1964] 5.2.4.

EXAMPLES:

sage: z = var('z') # needs sage.symbolic
sage: cosh_integral(z) # needs sage.symbolic
cosh_integral(z)
sage: cosh_integral(3.0) # needs mpmath
4.96039209476561

Numerical evaluation for real and complex arguments is handled using mpmath:

sage: cosh_integral(1.0) # needs mpmath
0.837866940980208

The alias \(\text{Chi} \) can be used instead of \(\text{cosh_integral} \):

sage: Chi(1.0) # needs mpmath
0.837866940980208

Here is an example from the mpmath documentation:

sage: f(x) = cosh_integral(x) # needs sage.symbolic
sage: find_root(f, 0.1, 1.0) # needs scipy sage.symbolic
0.523822571389...
Compare `cosh_integral(3.0)` to the definition of the value using numerical integration:

```python
sage: a = numerical_integral((cosh(x)-1)/x, 0, 3)[0]  
# needs sage.symbolic
```

```python
sage: abs(N(euler_gamma + log(3)) + a - N(cosh_integral(3.0))) < 1e-14  
# needs sage.symbolic
```

True

Arbitrary precision and complex arguments are handled:

```python
sage: N(cosh_integral(3), digits=30)  
# needs sage.symbolic
4.96039209476560976029791763669
```

```python
sage: cosh_integral(ComplexField(100)(3+I))  
# needs sage.symbolic
3.9096723099686417127843516794 + 3.0547519627014217273323873274*I
```

The limit of \(\text{Chi}(z) \) as \(z \to \infty \) is \(\infty \):

```python
sage: N(cosh_integral(Infinity))  
# needs mpmath
+infinity
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```python
sage: # needs sage.symbolic
sage: x = var('x')
sage: f = cosh_integral(x)
sage: f.diff(x)
cosh(x)/x
```

```python
sage: f.integrate(x)
x*cosh_integral(x) - sinh(x)
```

ALGORITHM:
Numerical evaluation is handled using mpmath, but symbols are handled by Sage and Maxima.

REFERENCES:
• Wikipedia article Trigonometric_integral
• mpmath documentation: chi

class sage.functions.exp_integral.Function_exp_integral
Bases: BuiltinFunction

The generalized complex exponential integral \(\text{Ei}(z) \) defined by

\[\text{Ei}(x) = \int_{-\infty}^{x} \frac{e^t}{t} \, dt \]

for \(x > 0 \) and for complex arguments by analytic continuation, see [AS1964] 5.1.2.

EXAMPLES:
The branch cut for this function is along the negative real axis:

sage: Ei(-3 + 0.1*I) # needs sage.symbolic
-0.0129379427181693 + 3.13993830250942*I
sage: Ei(-3 - 0.1*I) # needs sage.symbolic
-0.0129379427181693 - 3.13993830250942*I

The precision for the result is deduced from the precision of the input. Convert the input to a higher precision explicitly if a result with higher precision is desired:

sage: Ei(RealField(300)(1.1)) # needs sage.rings.real_mpfr
2.19383934395520273677163775426

ALGORITHM: Uses mpmath.

class sage.functions.exp_integral.Function_exp_integral_e
Bases: BuiltinFunction

The generalized complex exponential integral $E_n(z)$ defined by

$$E_n(z) = \int_1^\infty \frac{e^{-zt}}{t^n} \, dt$$

for complex numbers n and z, see [AS1964] 5.1.4.

The special case where $n = 1$ is denoted in Sage by exp_integral_e1.

EXAMPLES:

Numerical evaluation is handled using mpmath:

sage: N(exp_integral_e(1, 1)) # needs sage.symbolic
0.219383934395520
sage: exp_integral_e(1, RealField(100)(1)) # needs sage.symbolic
0.219383934395520273677163775426

We can compare this to PARI’s evaluation of exponential_integral_1():

sage: N(exponential_integral_1(1)) # needs sage.symbolic
0.219383934395520
We can verify one case of [AS1964] 5.1.45, i.e. \(E_n(z) = z^{n-1} \Gamma(1-n, z) \):

```python
sage: N(exp_integral_e(2, 3+I))  # needs sage.symbolic
0.00354575823814662 - 0.00973200528288687*I
```

Maxima returns the following improper integral as a multiple of `exp_integral_e(1, 1)`:

```python
sage: uu = integral(e^(-x)*log(x+1), x, 0, oo); uu
\[ e \cdot \text{exp_integral}_e(1, 1) \]
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```python
sage: exp_integral_e(0, x)  # needs sage.symbolic
\[ e^{-x}/x \]
```

Some special values of `exp_integral_e` can be simplified. [AS1964] 5.1.23:

```python
sage: exp_integral_e(6, 0)
1/5
```

[AS1964] 5.1.24:

```python
sage: f = exp_integral_e(nn, 0)
\[ 1/(nn - 1) \]
```

ALGORITHM:

Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

```python
class sage.functions.exp_integral.Function_exp_integral_el
    Bases: BuiltinFunction

    The generalized complex exponential integral \( E_1(z) \) defined by
    \[
    E_1(z) = \int_z^\infty \frac{e^{-t}}{t} \, dt
    \]
```

1.15. Exponential integrals 133
EXAMPLES:

```python
sage: exp_integral_e1(x) # needs sage.symbolic
exps_integral_e1(x)
sage: exp_integral_e1(1.0) # needs mpmath
0.219383934395520
```

Numerical evaluation is handled using mpmath:

```python
sage: N(exp_integral_e1(1)) # needs sage.symbolic
0.219383934395520
sage: exp_integral_e1(RealField(100)(1)) # needs sage.rings.real_mpfr
0.21938393439552027367716377546
```

We can compare this to PARI's evaluation of `exponential_integral_1()`:

```python
sage: N(exp_integral_e1(2.0)) # needs mpmath
0.0489005107080611
sage: N(exponential_integral_1(2.0)) # needs sage.rings.real_mpfr
0.0489005107080611
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```python
sage: x = var('x')
sage: f = exp_integral_e1(x)
sage: f.diff(x)
-e^(-x)/x
sage: f.integrate(x)
-exp_integral_e(2, x)
```

ALGORITHM:

Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

```
class sage.functions.exp_integral.Function_log_integral
Bases: BuiltinFunction

The logarithmic integral \( \text{li}(z) \) defined by

\[
\text{li}(x) = \int_0^x \frac{dt}{\ln(t)} = \text{Ei}(\ln(x))
\]

for \( x > 1 \) and by analytic continuation for complex arguments \( z \) (see [AS1964] 5.1.3).

EXAMPLES:

Numerical evaluation for real and complex arguments \( z \) is handled using mpmath:

```
```
Symbolic derivatives and integrals are handled by Sage and Maxima:

```python
sage: # needs sage.symbolic
sage: x = var('x')
sage: f = log_integral(x)
sage: f.diff(x)
1/log(x)
sage: f.integrate(x)
x*log_integral(x) - Ei(2*log(x))
```

Here is a test from the mpmath documentation. There are 1,925,320,391,606,803,968,923 many prime numbers less than 1e23. The value of $\log_integral(1e23)$ is very close to this:

```python
sage: log_integral(1e23) # needs mpmath
1.92532039161405e21
```

ALGORITHM:

Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

REFERENCES:

- Wikipedia article Logarithmic_integral_function
- mpmath documentation: logarithmic-integral

class sage.functions.exp_integral.Function_log_integral_offset
  Bases: BuiltinFunction

The offset logarithmic integral, or Eulerian logarithmic integral, $\text{Li}(x)$ is defined by

$$\text{Li}(x) = \int_2^x \frac{dt}{\ln(t)} = \text{li}(x) - \text{li}(2)$$

for $x \geq 2$.

The offset logarithmic integral should also not be confused with the polylogarithm (also denoted by $\text{Li}(x)$), which is implemented as `sage.functions.log.Function_polylog`.

$\text{Li}(x)$ is identical to $\text{li}(x)$ except that the lower limit of integration is 2 rather than 0 to avoid the singularity at $x = 1$ of

$$\frac{1}{\ln(t)}$$

See `Function_log_integral` for details of $\text{li}(x)$. Thus $\text{Li}(x)$ can also be represented by

$$\text{Li}(x) = \text{li}(x) - \text{li}(2)$$

So we have:
Li(x) is extended to complex arguments z by analytic continuation (see [AS1964] 5.1.3):

\[
\text{sage: } \text{Li}(6.6 + 5.4 \text{i})
\]

# needs sage.symbolic
\[
\text{3.97032201503632 } + \text{ 2.62311237593572 } \text{i}
\]

The function Li is an approximation for the number of primes up to x. In fact, the famous Riemann Hypothesis is

\[
|\pi(x) - \text{Li}(x)| \leq \sqrt{x} \log(x).
\]

For “small” x, Li(x) is always slightly bigger than \(\pi(x)\). However it is a theorem that there are very large values of x (e.g., around \(10^{316}\)), such that \(\exists x : \pi(x) > \text{Li}(x)\). See “A new bound for the smallest x with \(\pi(x) > \text{li}(x)\)”, Bays and Hudson, Mathematics of Computation, 69 (2000) 1285-1296.

**Note:** Definite integration returns a part symbolic and part numerical result. This is because when Li(x) is evaluated it is passed as li(x)-li(2).

**EXAMPLES:**

Numerical evaluation for real and complex arguments is handled using mpmath:

\[
\text{sage: } \text{log_integral_offset}(1\text{e23})
\]

# needs mpmath
\[
1.92532039161405 \text{e23}
\]

Symbolic derivatives are handled by Sage and integration by Maxima:

\[
\text{sage: } \text{li}(4.5) - \text{li}(2.0) - \text{Li}(4.5)
\]

# needs mpmath
0.000000000000000

\[
\frac{d}{dx} \text{log_integral_offset}(x) = -\frac{1}{x}
\]

\[
\int \text{log_integral_offset}(x) \, dx = x \text{log_integral_offset}(x) - \text{li}(x) + C
\]
sage: f.diff(x)
1/log(x)
sage: f.integrate(x)
-x*ln_integral(2) + x*ln_integral(x) - Ei(2*log(x))
sage: Li(x).integrate(x, 2.0, 4.5).n(digits=10)
3.186411697
sage: N(f.integrate(x, 2.0, 3.0))
# abs tol 1e-15
0.601621785860587

ALGORITHM:
Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

REFERENCES:
- Wikipedia article Logarithmic_integral_function
- mpmath documentation: logarithmic-integral

class sage.functions.exp_integral.Function_sin_integral
Bases: BuiltinFunction

The trigonometric integral Si(z) defined by

\[ Si(z) = \int_0^z \frac{\sin(t)}{t} dt, \]

see [AS1964] 5.2.1.

EXAMPLES:
Numerical evaluation for real and complex arguments is handled using mpmath:

sage: sin_integral(0)  # needs mpmath
0
sage: sin_integral(0.0)  # needs mpmath
0.000000000000000
sage: sin_integral(3.0)  # needs mpmath
1.84865252799947
sage: N(sin_integral(3), digits=30)  # needs sage.symbolic
1.84865252799946825639773025111
sage: sin_integral(ComplexField(100)(3+I))  # needs sage.symbolic
2.0277151656451253616038525998 + 0.015210926166954211913653130271*I

The alias Si can be used instead of sin_integral:

sage: Si(3.0)  # needs mpmath
1.84865252799947

The limit of Si(z) as z \to \infty is \pi/2:

sage: N(sin_integral(1e23))  # needs mpmath
(continues on next page)
At 200 bits of precision $\text{Si}(10^{23})$ agrees with $\pi/2$ up to $10^{-24}$:

```
1.57079632679490
```

The exponential sine integral is analytic everywhere:

```
-0.946083070367183
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```
-1.60541297680269
```

Compare values of the functions $\text{Si}(x)$ and $f(x) = (1/2)i \cdot \text{Ei}(-ix) - (1/2)i \cdot \text{Ei}(ix) - \pi/2$, which are both anti-derivatives of $\sin(x)/x$, at some random positive real numbers:

```
True
```

The Nielsen spiral is the parametric plot of $(\text{Si}(t), \text{Ci}(t))$: 

```
ALGORITHM:

Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

REFERENCES:

- Wikipedia article Trigonometric_integral
- mpmath documentation: si

class sage.functions.exp_integral.Function_sinh_integral

Bases: BuiltinFunction

The trigonometric integral Shi(z) defined by

\[\text{Shi}(z) = \int_0^z \frac{\sinh(t)}{t} \, dt, \]

see [AS1964] 5.2.3.

EXAMPLES:

Numerical evaluation for real and complex arguments is handled using mpmath:

```python
sage: sinh_integral(3.0)  # needs mpmath
4.97344047585981

sage: sinh_integral(1.0)  # needs mpmath
1.05725087537573

sage: sinh_integral(-1.0)  # needs mpmath
-1.05725087537573
```

The alias Shi can be used instead of sinh_integral:

```python
sage: Shi(3.0)  # needs mpmath
4.97344047585981
```

Compare sinh_integral(3.0) to the definition of the value using numerical integration:

```python
sage: a = numerical_integral(sinh(x)/x, 0, 3)[0]  # needs sage.symbolic
sage: abs(a - N(sinh_integral(3))) < 1e-14  # needs sage.symbolic
True
```

Arbitrary precision and complex arguments are handled:

```python
sage: N(sinh_integral(3), digits=30)  # needs sage.symbolic
4.97344047585980679771041838252

sage: sinh_integral(ComplexField(100)(3+I))  # needs sage.symbolic
```

(continues on next page)
The limit Shi(z) as z → ∞ is ∞:

```
sage: N(sinh_integral(Infinity))  # needs mpmath
+Infinity
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```
sage: x = var('x')  # needs sage.symbolic
sage: f = sinh_integral(x)  # needs sage.symbolic
sage: f.diff(x)  # needs sage.symbolic
sinh(x)/x
sage: f.integrate(x)  # needs sage.symbolic
x*sinh_integral(x) - cosh(x)
```

Note that due to some problems with the way Maxima handles these expressions, definite integrals can sometimes give unexpected results (typically when using inexact endpoints) due to inconsistent branching:

```
sage: integrate(sinh_integral(x), x, 0, 1/2)  # needs sage.symbolic
-cosh(1/2) + 1/2*sinh_integral(1/2) + 1
sage: integrate(sinh_integral(x), x, 0, 1/2).n()  # correct  # needs sage.symbolic
0.125872409703453
sage: integrate(sinh_integral(x), x, 0, 0.5).n()  # fixed in maxima 5.29.1  # needs sage.symbolic
0.125872409703453
```

ALGORITHM:

Numerical evaluation is handled using mpmath, but symbolic are handled by Sage and Maxima.

REFERENCES:

- Wikipedia article Trigonometric_integral
- mpmath documentation: shi

```
sage.functions.exp_integral.exponential_integral_1(x, n=0)
```

Returns the exponential integral $E_1(x)$. If the optional argument n is given, computes list of the first n values of the exponential integral $E_1(xm)$.

The exponential integral $E_1(x)$ is

$$E_1(x) = \int_x^{\infty} \frac{e^{-t}}{t} \, dt$$

INPUT:

- x – a positive real number
Functions, Release 10.3

- \(n\) – (default: 0) a nonnegative integer; if nonzero, then return a list of values \(E_1(x * m)\) for \(m = 1, 2, 3, \ldots, n\). This is useful, e.g., when computing derivatives of \(L\)-functions.

OUTPUT:

A real number if \(n\) is 0 (the default) or a list of reals if \(n > 0\). The precision is the same as the input, with a default of 53 bits in case the input is exact.

EXAMPLES:

```sage
sage: # needs sage.libs.pari
sage: exponential_integral_1(2)  
0.0489005107080611
sage: exponential_integral_1(2, 4)  # abs tol 1e-18  
[0.0489005107080611, 0.00377935240984891, 0.000360082452162659, 0.0000376656228439245]
```  

ALGORITHM: use the PARI C-library function `eint1`.

REFERENCE:

- See Proposition 5.6.12 of Cohen’s book “A Course in Computational Algebraic Number Theory”.

1.16 Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients

Collection of functions for calculating Wigner 3-\(j\), 6-\(j\), 9-\(j\), Clebsch-Gordan, Racah as well as Gaunt coefficients exactly, all evaluating to a rational number times the square root of a rational number [RH2003].

Please see the description of the individual functions for further details and examples.

AUTHORS:

- Jens Rasch (2009-05-31): updated to sage-4.0

```sage
sage.functions.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3, prec=None)  
Return the Clebsch-Gordan coefficient \(\langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle\).
```  

The reference for this function is [Ed1974].

INPUT:

- \(j_1, j_2, j_3, m_1, m_2, m_3\) – integer or half integer
- \(prec\) – precision, default: None. Providing a precision can drastically speed up the calculation.

OUTPUT:
Rational number times the square root of a rational number (if \(\text{prec=}\text{None}\)), or real number if a precision is given.

EXAMPLES:

```
sage: simplify(clebsch_gordan(3/2,1/2,2, 3/2,1/2,2))  # needs sage.symbolic
1
```

```
sage: clebsch_gordan(1.5,0.5,1, 1.5,-0.5,1)  # needs sage.symbolic
1/2*sqrt(3)
```

```
sage: clebsch_gordan(3/2,1/2,1, -1/2,1/2,0)  # needs sage.symbolic
-sqrt(3)*sqrt(1/6)
```

Note: The Clebsch-Gordan coefficient will be evaluated via its relation to Wigner 3-\(j\) symbols:

\[
\langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle = (-1)^{j_1-j_2+m_3} \sqrt{2j_3+1} \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & -m_3 \end{pmatrix}
\]

See also the documentation on Wigner 3-\(j\) symbols which exhibit much higher symmetry relations than the Clebsch-Gordan coefficient.

AUTHORS:

- Jens Rasch (2009-03-24): initial version

```
sage.functions.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)
```

Return the Gaunt coefficient.

The Gaunt coefficient is defined as the integral over three spherical harmonics:

\[
Y(l_1, l_2, l_3, m_1, m_2, m_3) = \int Y_{l_1,m_1}(\Omega) Y_{l_2,m_2}(\Omega) Y_{l_3,m_3}(\Omega) d\Omega
\]

\[
= \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \times \begin{pmatrix} l_1 & l_2 & l_3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix}
\]

INPUT:

- \(l_1, l_2, l_3, m_1, m_2, m_3\) – integer
- \(\text{prec}\) – precision, default: None. Providing a precision can drastically speed up the calculation.

OUTPUT:

Rational number times the square root of a rational number (if \(\text{prec=}\text{None}\)), or real number if a precision is given.

EXAMPLES:

```
sage: gaunt(1,0,1,1,0,-1)  # needs sage.symbolic
-1/2/sqrt(pi)
```

```
sage: gaunt(1,0,1,1,0,0)
0
```

(continues on next page)
If the sum of the \(l_i \) is odd, the answer is zero, even for Python ints (see github issue #14766):

\[
\text{sage: gaunt(1,2,2,1,0,-1)} \\
0 \\
\text{sage: gaunt(int(1),int(2),int(2),1,0,-1)} \\
0
\]

It is an error to use non-integer values for \(l \) or \(m \):

\[
\text{sage: gaunt(1.2,0,1.2,0,0,0)} \\
\text{Traceback (most recent call last):} \\
\ldots \\
\text{TypeError: Attempt to coerce non-integral RealNumber to Integer} \\
\text{sage: gaunt(1,0,1.1,0,-1.1)} \\
\text{Traceback (most recent call last):} \\
\ldots \\
\text{TypeError: Attempt to coerce non-integral RealNumber to Integer}
\]

ALGORITHM:

This function uses the algorithm of [LdB1982] to calculate the value of the Gaunt coefficient exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [RH2003].

AUTHORS:


```python
sage.functions.wigner.racah (aa, bb, cc, dd, ee, ff, prec=None)
```

Return the Racah symbol \(W(\alpha \alpha, \beta \beta, \gamma \gamma; \varepsilon \varepsilon, f f) \).

INPUT:

- \(aa, \ldots, ff \) – integer or half integer
- \(prec \) – precision, default: None. Providing a precision can drastically speed up the calculation.

OUTPUT:

Rational number times the square root of a rational number (if \(prec=\text{None} \)), or real number if a precision is given.

EXAMPLES:

\[
\text{sage: racah(3,3,3,3,3,3)} \\
\rightarrow \text{needs sage.symbolic} \\
-1/14
\]
Note: The Racah symbol is related to the Wigner 6-\(j\) symbol:

\[
\{j_1 \ j_2 \ j_3 \ j_4 \ j_5 \ j_6 \} = (-1)^{j_1+j_2+j_4+j_6} W(j_1, j_2, j_5; j_4; j_3, j_6)
\]

Please see the 6-\(j\) symbol for its much richer symmetries and for additional properties.

ALGORITHM:

This function uses the algorithm of [Ed1974] to calculate the value of the 6-\(j\) symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [RH2003].

AUTHORS:

• Jens Rasch (2009-03-24): initial version

```python
sage.functions.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3, prec=None)
```

Return the Wigner 3-\(j\) symbol \(\left(\begin{array}{ll} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{array} \right) \).

INPUT:

• \(j_1, j_2, j_3, m_1, m_2, m_3 \) – integer or half integer
 • \(\text{prec} \) – precision, default: None. Providing a precision can drastically speed up the calculation.

OUTPUT:

Rational number times the square root of a rational number (if \(\text{prec}=\text{None} \)), or real number if a precision is given.

EXAMPLES:

```python
sage: wigner_3j(2, 6, 4, 0, 0, 0)  # needs sage.symbolic
sqrt(5/143)
sage: wigner_3j(2, 6, 4, 0, 0, 1)  # needs sage.symbolic
0
sage: wigner_3j(0.5, 0.5, 1, 0.5, -0.5, 0)  # needs sage.symbolic
sqrt(1/6)
sage: wigner_3j(40, 100, 60, -10, 60, -50)  # needs sage.symbolic
95608/18702538494885*sqrt(21082735836735314334364163310/220491455010479533763)
sage: wigner_3j(2500, 2500, 5000, 2488, 2400, -4888, prec=64)  # needs sage.rings.real_mpfr
7.60424456883448589e-12
```

It is an error to have arguments that are not integer or half integer values:

```python
sage: wigner_3j(2.1, 6, 4, 0, 0, 0)
Traceback (most recent call last):
  ...
ValueError: j values must be integer or half integer
sage: wigner_3j(2, 6, 4, 1, 0, -1.1)
Traceback (most recent call last):
  ...
ValueError: m values must be integer or half integer
```
The Wigner 3-j symbol obeys the following symmetry rules:

- invariant under any permutation of the columns (with the exception of a sign change where $J = j_1 + j_2 + j_3$):

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = \begin{pmatrix} j_3 & j_1 & j_2 \\ m_3 & m_1 & m_2 \end{pmatrix} = \begin{pmatrix} j_2 & j_3 & j_1 \\ m_2 & m_3 & m_1 \end{pmatrix}$$

$$= (-1)^J \begin{pmatrix} j_3 & j_2 & j_1 \\ m_3 & m_2 & m_1 \end{pmatrix} = (-1)^J \begin{pmatrix} j_1 & j_3 & j_2 \\ m_1 & m_3 & m_2 \end{pmatrix} = (-1)^J \begin{pmatrix} j_2 & j_1 & j_3 \\ m_2 & m_1 & m_3 \end{pmatrix}$$

- invariant under space inflection, i.e.

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^J \begin{pmatrix} j_1 & j_2 & j_3 \\ -m_1 & -m_2 & -m_3 \end{pmatrix}$$

- symmetric with respect to the 72 additional symmetries based on the work by [Reg1958]

- zero for j_1, j_2, j_3 not fulfilling triangle relation

- zero for $m_1 + m_2 + m_3 \neq 0$

- zero for violating any one of the conditions $j_1 \geq |m_1|, j_2 \geq |m_2|, j_3 \geq |m_3|$

ALGORITHM:

This function uses the algorithm of [Ed1974] to calculate the value of the 3-j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [RH2003].

AUTHORS:

- Jens Rasch (2009-03-24): initial version

sage.functions.wigner.wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None)

Return the Wigner 6-j symbol $\begin{pmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{pmatrix}$.

INPUT:

- j_1, \ldots, j_6 – integer or half integer

- prec – precision, default: None. Providing a precision can drastically speed up the calculation.

OUTPUT:

Rational number times the square root of a rational number (if $\text{prec}=\text{None}$), or real number if a precision is given.

EXAMPLES:

```sage
sage: # needs sage.symbolic
sage: wigner_6j(3, 3, 3, 3, 3, 3)
-1/14
sage: wigner_6j(5, 5, 5, 5, 5, 5)
1/52
sage: wigner_6j(6, 6, 6, 6, 6)
309/10868
sage: wigner_6j(8, 8, 8, 8, 8)
-12219/965770
sage: wigner_6j(30, 30, 30, 30, 30, 30)
360821869033479581/87954851694828981714124
sage: wigner_6j(0.5, 0.5, 1, 0.5, 0.5, 1)
(continues on next page)
```
It is an error to have arguments that are not integer or half integer values or do not fulfill the triangle relation:

```
sage: wigner_6j(2.5,2.5,2.5,2.5,2.5,2.5)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
```

```
sage: wigner_6j(0.5,0.5,1.1,0.5,0.5,1.1)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
```

The Wigner 6-\(j\) symbol is related to the Racah symbol but exhibits more symmetries as detailed below.

\[
\begin{vmatrix}
 j_1 & j_2 & j_3 \\
 j_4 & j_5 & j_6 \\
\end{vmatrix}
= (-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4;j_3,j_6)
\]

The Wigner 6-\(j\) symbol obeys the following symmetry rules:

- Wigner 6-\(j\) symbols are left invariant under any permutation of the columns:

 \[
 \begin{vmatrix}
 j_1 & j_2 & j_3 \\
 j_4 & j_5 & j_6 \\
\end{vmatrix}
 = \begin{vmatrix}
 j_3 & j_1 & j_2 \\
 j_6 & j_4 & j_5 \\
\end{vmatrix}
 = \begin{vmatrix}
 j_2 & j_3 & j_1 \\
 j_6 & j_5 & j_4 \\
\end{vmatrix}
 = \begin{vmatrix}
 j_3 & j_2 & j_1 \\
 j_6 & j_5 & j_4 \\
\end{vmatrix}
 = \begin{vmatrix}
 j_2 & j_1 & j_3 \\
 j_6 & j_5 & j_4 \\
\end{vmatrix}
 = \begin{vmatrix}
 j_3 & j_1 & j_2 \\
 j_6 & j_5 & j_4 \\
\end{vmatrix}
\]

- They are invariant under the exchange of the upper and lower arguments in each of any two columns, i.e.

 \[
 \begin{vmatrix}
 j_1 & j_2 & j_3 \\
 j_4 & j_5 & j_6 \\
\end{vmatrix}
 = \begin{vmatrix}
 j_1 & j_5 & j_6 \\
 j_4 & j_2 & j_3 \\
\end{vmatrix}
 = \begin{vmatrix}
 j_4 & j_1 & j_6 \\
 j_2 & j_5 & j_3 \\
\end{vmatrix}
 = \begin{vmatrix}
 j_4 & j_2 & j_6 \\
 j_1 & j_5 & j_3 \\
\end{vmatrix}
 = \begin{vmatrix}
 j_4 & j_5 & j_3 \\
 j_1 & j_2 & j_6 \\
\end{vmatrix}
\]

- additional 6 symmetries [Reg1959] giving rise to 144 symmetries in total
- only non-zero if any triple of \(j\)'s fulfill a triangle relation

ALGORITHM:

This function uses the algorithm of [Ed1974] to calculate the value of the 6-\(j\) symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [RH2003].

```
sage.functions.wigner.wigner_9j(j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, prec=None)
```

Return the Wigner 9-\(j\) symbol

\[
\begin{vmatrix}
 j_1 & j_2 & j_3 \\
 j_4 & j_5 & j_6 \\
 j_7 & j_8 & j_9 \\
\end{vmatrix}
\]

INPUT:

- \(j_1, \ldots, j_9\) – integer or half integer
- \(\text{prec}\) – precision, default: None. Providing a precision can drastically speed up the calculation.
OUTPUT:

Rational number times the square root of a rational number (if \(\text{prec=None} \)), or real number if a precision is given.

EXAMPLES:

A couple of examples and test cases, note that for speed reasons a precision is given:

```
sage: # needs sage.symbolic
sage: wigner_9j(1,1,1, 1,1,1, 1,1,0, \text{prec}=64) \#==1/18
0.0555555555555555555
sage: wigner_9j(1,1,1, 1,1,1, 1,1,1)
0
sage: wigner_9j(1,1,1, 1,1,1, 1,1,2, \text{prec}=64) \#==-1/150
-0.0066666666666666667
sage: wigner_9j(3,3,2, 2,2,2, 1,2,1, \text{prec}=64) \#==157/14700
0.0106802721088435374
sage: wigner_9j(3,3,2, 3,3,2, 3,3,2, \text{prec}=64) \#==3221*i\sqrt{70}/(246960*i\sqrt{105}) - 365/(3528*i\sqrt{70})*i\sqrt{70}/(246960*i\sqrt{105})
0.0094424774665111739
sage: wigner_9j(3,3,2, 3,3,2, 3,3,2, \text{prec}=64) \#==3221*i\sqrt{70}/(246960*i\sqrt{105}) - 365/(3528*i\sqrt{70})*i\sqrt{70}/(246960*i\sqrt{105})
0.0110216678544351364
sage: wigner_9j(100,80,50, 50,100,70, 60,50,100, \text{prec}=1000)*1.0
1.05597798065761e-7
sage: wigner_9j(30,30,10, 30.5,30.5,20, 30.5,30.5,10, \text{prec}=1000)*1.0
-3.41407910055520e-39
sage: wigner_9j(15,15,15, 15,3,15, 15,18,10, \text{prec}=1000)*1.0
0.0000778324613509539
sage: wigner_9j(1.5,1,1.5, 1,1,1, 1.5,1,1.5)
0
```

It is an error to have arguments that are not integer or half integer values or do not fulfill the triangle relation:

```
sage: wigner_9j(0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5,\text{prec}=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
```

ALGORITHM:

This function uses the algorithm of [Ed1974] to calculate the value of the 3-\(j \) symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [RH2003].
1.17 Generalized functions

Sage implements several generalized functions (also known as distributions) such as Dirac delta, Heaviside step functions. These generalized functions can be manipulated within Sage like any other symbolic functions.

AUTHORS:
• Golam Mortuza Hossain (2009-06-26): initial version

EXAMPLES:

Dirac delta function:

\[
\text{sage: } \text{dirac_delta}(x) \\
\text{\# needs sage_symbolic} \\
\text{dirac_delta}(x)
\]

Heaviside step function:

\[
\text{sage: } \text{heaviside}(x) \\
\text{\# needs sage_symbolic} \\
\text{heaviside}(x)
\]

Unit step function:

\[
\text{sage: } \text{unit_step}(x) \\
\text{\# needs sage_symbolic} \\
\text{unit_step}(x)
\]

Signum (sgn) function:

\[
\text{sage: } \text{sgn}(x) \\
\text{\# needs sage_symbolic} \\
\text{sgn}(x)
\]

Kronecker delta function:

\[
\text{sage: } m, n = \text{var}('m,n') \\
\text{\# needs sage_symbolic} \\
\text{sage: } \text{kronecker_delta}(m, n) \\
\text{\# needs sage_symbolic} \\
\text{kronecker_delta}(m, n)
\]

class sage.functions.generalized.FunctionDiracDelta

Bases: BuiltinFunction

The Dirac delta (generalized) function, $\delta(x)$ ($\text{dirac_delta}(x)$).

INPUT:
• x - a real number or a symbolic expression

DEFINITION:
Dirac delta function $\delta(x)$, is defined in Sage as:

$\delta(x) = 0$ for real $x \neq 0$ and \[\int_{-\infty}^{\infty} \delta(x) dx = 1 \]

Its alternate definition with respect to an arbitrary test function $f(x)$ is

\[\int_{-\infty}^{\infty} f(x) \delta(x - a) dx = f(a) \]
EXAMPLES:

```python
sage: # needs sage.symbolic
dirac_delta(1)
0
sage: dirac_delta(0)
dirac_delta(0)
sage: dirac_delta(x)
dirac_delta(x)
sage: integrate(dirac_delta(x), x, -1, 1, algorithm='sympy')  # needs sympy
1
```

REFERENCES:

- Wikipedia article Dirac_delta_function

```python
class sage.functions.generalized.FunctionHeaviside

Bases: GinacFunction

The Heaviside step function, \( H(x) \) (heaviside(x)).

INPUT:

- \( x \) - a real number or a symbolic expression

DEFINITION:

The Heaviside step function, \( H(x) \) is defined in Sage as:

\[
H(x) = 0 \text{ for } x < 0 \text{ and } H(x) = 1 \text{ for } x > 0
\]

See also:

unit_step()

EXAMPLES:

```python
sage: # needs sage.symbolic
heaviside(-1)
0
sage: heaviside(1)
1
sage: heaviside(0)
heaviside(0)
```

REFERENCES:

- Wikipedia article Heaviside_function

```python
class sage.functions.generalized.FunctionKroneckerDelta

Bases: BuiltinFunction

The Kronecker delta function \(\delta_{m,n} \) (kronecker_delta(m, n)).
```
INPUT:

• \( m \) - a number or a symbolic expression
• \( n \) - a number or a symbolic expression

DEFINITION:

Kronecker delta function \( \delta_{m,n} \) is defined as:

\[
\delta_{m,n} = 0 \text{ for } m \neq n \text{ and } \delta_{m,n} = 1 \text{ for } m = n
\]

EXAMPLES:

```
sage: kronecker_delta(1,2)
0
```

```
sage: kronecker_delta(1,1)
1
```

```
sage: m, n = var('m,n')
```

```
sage: kronecker_delta(m, n)
```

REFERENCES:

• Wikipedia article Kronecker_delta

class sage.functions.generalized.FunctionSignum

Bases: BuiltinFunction

The signum or \( \text{sgn} \) function \( \text{sgn}(x) \) (\( \text{sgn}(x) \)).

INPUT:

• \( x \) - a real number or a symbolic expression

DEFINITION:

The \( \text{sgn} \) function, \( \text{sgn}(x) \) is defined as:

\[
\text{sgn}(x) = 1 \text{ for } x > 0, \text{sgn}(x) = 0 \text{ for } x = 0 \text{ and } \text{sgn}(x) = -1 \text{ for } x < 0
\]

EXAMPLES:

```
sage: sgn(-1)
-1
```

```
sage: sgn(1)
1
```

```
sage: sgn(0)
0
```

```
sage: sgn(x)
```

We can also use \( \text{sign} \):

```
sage: sign(1)
1
```

```
sage: sign(0)
0
```

(continues on next page)
sage: a = AA(-5).nth_root(7)  # needs sage.rings.number_field
sage: sign(a)  # needs sage.rings.number_field
-1

REFERENCES:
- Wikipedia article Sign_function

class sage.functions.generalized.FunctionUnitStep
Bases: GinacFunction
The unit step function, \( u(x) \) (unit_step(x)).

INPUT:
- \( x \) - a real number or a symbolic expression

DEFINITION:
The unit step function, \( u(x) \) is defined in Sage as:
\[
u(x) = 0 \quad \text{for} \quad x < 0 \quad \text{and} \quad u(x) = 1 \quad \text{for} \quad x \geq 0
\]

See also:
heaviside()

EXAMPLES:

sage: # needs sage.symbolic
sage: unit_step(-1)
0
sage: unit_step(1)
1
sage: unit_step(0)
1
sage: unit_step(x)
unit_step(x)
sage: unit_step(-exp(-10000000000000000000))
0

1.18 Counting primes

EXAMPLES:

sage: z = sage.functions.prime_pi.PrimePi()
sage: loads(dumps(z))
prime_pi
sage: loads(dumps(z)) == z
True

AUTHORS:
- R. Andrew Ohana (2009): initial version of efficient prime_pi
Functions, Release 10.3

- R. Andrew Ohana (2011): complete rewrite, ~5x speedup
- Dima Pasechnik (2021): removed buggy cython code, replaced it with calls to primecount/primecountpy spkg

```python
class sage.functions.prime_pi.PrimePi
 Bases: BuiltinFunction

 The prime counting function, which counts the number of primes less than or equal to a given value.

 INPUT:
 • x – a real number
 • prime_bound – (default 0) a real number < 2^32: prime_pi() will make sure to use all the primes up to
 prime_bound (although, possibly more) in computing prime_pi, this can potentially speedup the time
 of computation, at a cost to memory usage.

 OUTPUT:
 integer – the number of primes ≤ x

 EXAMPLES:
```

These examples test common inputs:

```python
sage: # needs sage.symbolic
sage: prime_pi(7)
4
sage: prime_pi(100)
25
sage: prime_pi(1000)
168
sage: prime_pi(100000)
9592
sage: prime_pi(500509)
41581
```

The following test is to verify that github issue #4670 has been essentially resolved:

```python
sage: prime_pi(10^10) # needs sage.symbolic
455052511
```

The prime_pi() function also has a special plotting method, so it plots quickly and perfectly as a step function:

```python
sage: P = plot(prime_pi, 50, 100) # needs sage.plot sage.symbolic
plot (xmin=0, xmax=100, vertical_lines=True, **kwds)

Draw a plot of the prime counting function from xmin to xmax. All additional arguments are passed on to
the line command.

WARNING: we draw the plot of prime_pi as a stairstep function with explicitly drawn vertical lines where
the function jumps. Technically there should not be any vertical lines, but they make the graph look much
better, so we include them. Use the option vertical_lines=False to turn these off.

EXAMPLES:
```
```
sage.functions.prime_pi.\texttt{legendre}_\texttt{phi}(x, a)

Legendre’s formula, also known as the partial sieve function, is a useful combinatorial function for computing the prime counting function (the \texttt{prime}_\texttt{pi} method in Sage). It counts the number of positive integers $\leq x$ that are not divisible by the first a primes.

INPUT:

• x – a real number
• a – a non-negative integer

OUTPUT:

integer – the number of positive integers $\leq x$ that are not divisible by the first a primes

EXAMPLES:

\begin{verbatim}
sage: legendre_phi(100, 0)
100
sage: legendre_phi(29375, 1)
14688
sage: legendre_phi(91753, 5973)
2893
sage: legendre_phi(4215701455, 6450023226)
1
\end{verbatim}

sage.functions.prime_pi.\texttt{partial}_\texttt{sieve}_\texttt{function}(x, a)

Legendre’s formula, also known as the partial sieve function, is a useful combinatorial function for computing the prime counting function (the \texttt{prime}_\texttt{pi} method in Sage). It counts the number of positive integers $\leq x$ that are not divisible by the first a primes.

INPUT:

• x – a real number
• a – a non-negative integer

OUTPUT:

integer – the number of positive integers $\leq x$ that are not divisible by the first a primes

EXAMPLES:

\begin{verbatim}
sage: legendre_phi(100, 0)
100
sage: legendre_phi(29375, 1)
14688
sage: legendre_phi(91753, 5973)
2893
sage: legendre_phi(4215701455, 6450023226)
1
\end{verbatim}
1.19 Symbolic minimum and maximum

Sage provides a symbolic maximum and minimum due to the fact that the Python builtins `max()` and `min()` are not able to deal with variables as users might expect. These functions wait to evaluate if there are variables.

Here you can see some differences:

```
sage: max(x, x^2)
˓→ # needs sage.symbolic
x
sage: max_symbolic(x, x^2)
˓→ # needs sage.symbolic
max(x, x^2)
sage: f(x) = max_symbolic(x, x^2); f(1/2)
˓→ # needs sage.symbolic
1/2
```

This works as expected for more than two entries:

```
sage: # needs sage.symbolic
sage: max(3, 5, x)
5
sage: min(3, 5, x)
3
sage: max_symbolic(3, 5, x)
max(x, 5)
sage: min_symbolic(3, 5, x)
min(x, 3)
```

class sage.functions.min_max.MaxSymbolic

Bases: `MinMax_base`

Symbolic max function.

The Python built-in `max()` function does not work as expected when symbolic expressions are given as arguments. This function delays evaluation until all symbolic arguments are substituted with values.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: max_symbolic(3, 5, x)
˓→ # indirect doctest
max(x, 5)
```

class sage.functions.min_max.MinMax_base

Bases: `BuiltinFunction`

eval_helper (*this_f*, *builtin_f*, *initial_val*, *args*)

EXAMPLES:

```
sage: # needs sage.symbolic
sage: max_symbolic(3, 5, x)  # indirect doctest
max(x, 5)
```
class sage.functions.min_max.MinSymbolic

Bases: MinMax_base

Symbolic min function.

The Python built-in `min()` function does not work as expected when symbolic expressions are given as arguments. This function delays evaluation until all symbolic arguments are substituted with values.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: min_symbolic(3, x)
min(3, x)
sage: min_symbolic(3, x).subs(x=5)
3
sage: min_symbolic(3, 5, x)
min(x, 3)
sage: min_symbolic([3, 5, x])
min(x, 3)
```

Please find extensive developer documentation for creating new functions in Symbolic Calculus, in particular in the section Classes for symbolic functions.
INDICES AND TABLES

- Index
- Module Index
- Search Page
INDEX

A
airy_ai() (in module sage.functions.airy), 108
airy_bi() (in module sage.functions.airy), 110
approximate() (sage.functions.transcendental.DickmanRho method), 30

B
Bessel() (in module sage.functions.bessel), 114

C
ChebyshevFunction (class in sage.functions.orthogonal_polys), 56
clebsch_gordan() (in module sage.functions.wigner), 141
closed_form() (in module sage.functions.hypergeometric), 101
critical_points() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 40

d
deflated() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 95
deprecated_function_alias() (sage.functions.orthogonal_polys.Func_assoc_legendre_P method), 58
DickmanRho (class in sage.functions.transcendental), 30
domain() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 40
domains() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 41

E
eliminate_parameters() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 96
elliptic_eu_f() (in module sage.functions.special), 91
elliptic_j() (in module sage.functions.special), 91
EllipticE (class in sage.functions.special), 87
EllipticEC (class in sage.functions.special), 87
EllipticEU (class in sage.functions.special), 88
EllipticF (class in sage.functions.special), 88
EllipticKC (class in sage.functions.special), 89
EllipticPi (class in sage.functions.special), 89
end_points() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 41
eval_algebraic() (sage.functions.orthogonal_polys.Func_chebyshev_T method), 60
eval_algebraic() (sage.functions.orthogonal_polys.Func_chebyshev_U method), 61
eval_formula() (sage.functions.orthogonal_polys.Func_chebyshev_T method), 61
eval_formula() (sage.functions.orthogonal_polys.Func_chebyshev_U method), 62
eval_formula() (sage.functions.orthogonal_polys.Func_hahn method), 63
eval_formula() (sage.functions.orthogonal_polys.Func_krawtchouk method), 66
eval_formula() (sage.functions.orthogonal_polys.Func_legendre_Q method), 68
eval_formula() (sage.functions.orthogonal_polys.Func_meixner method), 69
eval_formula() (sage.functions.orthogonal_polys.Func_assoc_legendre_P method), 58
eval_formula() (sage.functions.orthogonal_polys.Func_assoc_legendre_Q method), 59
eval_helper() (sage.functions.min_max.MinMax_base method), 154
eval_poly() (sage.functions.orthogonal_polys.Func_assoc_legendre_P method), 59
eval_recursive() (sage.functions.orthogonal_polys.Func_assoc_legendre_Q method), 59

<table>
<thead>
<tr>
<th>Function</th>
<th>(sage.functions.orthogonal_polys.Func_meixner method), 69</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponential_integral_1()</td>
<td>(in module sage.functions.exp_integral), 140</td>
</tr>
<tr>
<td>expression_at()</td>
<td>(sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 41</td>
</tr>
<tr>
<td>expressions()</td>
<td>(sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 41</td>
</tr>
<tr>
<td>extension()</td>
<td>(sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 42</td>
</tr>
<tr>
<td>fourier_series_cosine_coefficient()</td>
<td>(sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 42</td>
</tr>
<tr>
<td>fourier_series_sine_coefficient()</td>
<td>(sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 44</td>
</tr>
<tr>
<td>Func_assoc_legendre_P</td>
<td>(class in sage.functions.orthogonal_polys), 57</td>
</tr>
<tr>
<td>Func_assoc_legendre_Q</td>
<td>(class in sage.functions.orthogonal_polys), 59</td>
</tr>
<tr>
<td>Func_chebyshev_T</td>
<td>(class in sage.functions.orthogonal_polys), 60</td>
</tr>
<tr>
<td>Func_chebyshev_U</td>
<td>(class in sage.functions.orthogonal_polys), 61</td>
</tr>
<tr>
<td>Func_gen_laguerre</td>
<td>(class in sage.functions.orthogonal_polys), 63</td>
</tr>
<tr>
<td>Func_hahn</td>
<td>(class in sage.functions.orthogonal_polys), 63</td>
</tr>
<tr>
<td>Func_hermite</td>
<td>(class in sage.functions.orthogonal_polys), 64</td>
</tr>
<tr>
<td>Func_jacobi_P</td>
<td>(class in sage.functions.orthogonal_polys), 65</td>
</tr>
<tr>
<td>Func_krawtchouk</td>
<td>(class in sage.functions.orthogonal_polys), 65</td>
</tr>
<tr>
<td>Func_laguerre</td>
<td>(class in sage.functions.orthogonal_polys), 67</td>
</tr>
<tr>
<td>Func_legendre_P</td>
<td>(class in sage.functions.orthogonal_polys), 67</td>
</tr>
<tr>
<td>Func_legendre_Q</td>
<td>(class in sage.functions.orthogonal_polys), 67</td>
</tr>
<tr>
<td>Func_meixner</td>
<td>(class in sage.functions.orthogonal_polys), 69</td>
</tr>
<tr>
<td>Func_ultraspherical</td>
<td>(class in sage.functions.orthogonal_polys), 70</td>
</tr>
<tr>
<td>Function_abs</td>
<td>(class in sage.functions.other), 72</td>
</tr>
<tr>
<td>Function_arccos</td>
<td>(class in sage.functions.trig), 9</td>
</tr>
<tr>
<td>Function_arccosh</td>
<td>(class in sage.functions.hyperbolic), 21</td>
</tr>
<tr>
<td>Function_arccoth</td>
<td>(class in sage.functions.hyperbolic), 22</td>
</tr>
<tr>
<td>Function_arccsc</td>
<td>(class in sage.functions.trig), 10</td>
</tr>
<tr>
<td>Function_arccsch</td>
<td>(class in sage.functions.hyperbolic), 23</td>
</tr>
<tr>
<td>Function_arccsec</td>
<td>(class in sage.functions.trig), 11</td>
</tr>
<tr>
<td>Function_arccsech</td>
<td>(class in sage.functions.hyperbolic), 23</td>
</tr>
<tr>
<td>Function_arcsin</td>
<td>(class in sage.functions.trig), 12</td>
</tr>
<tr>
<td>Function_arcsinh</td>
<td>(class in sage.functions.hyperbolic), 24</td>
</tr>
<tr>
<td>Function_arctan</td>
<td>(class in sage.functions.trig), 12</td>
</tr>
<tr>
<td>Function_arctan2</td>
<td>(class in sage.functions.trig), 13</td>
</tr>
<tr>
<td>Function_arctan2h</td>
<td>(class in sage.functions.hyperbolic), 24</td>
</tr>
<tr>
<td>Function_arg</td>
<td>(class in sage.functions.other), 74</td>
</tr>
<tr>
<td>Function_Bessel_I</td>
<td>(class in sage.functions.bessel), 117</td>
</tr>
<tr>
<td>Function_Bessel_J</td>
<td>(class in sage.functions.bessel), 118</td>
</tr>
<tr>
<td>Function_Bessel_K</td>
<td>(class in sage.functions.bessel), 120</td>
</tr>
<tr>
<td>Function_Bessel_Y</td>
<td>(class in sage.functions.bessel), 122</td>
</tr>
<tr>
<td>Function_binomial</td>
<td>(class in sage.functions.other), 74</td>
</tr>
<tr>
<td>Function_cases</td>
<td>(class in sage.functions.other), 75</td>
</tr>
<tr>
<td>Function_cel1</td>
<td>(class in sage.functions.other), 76</td>
</tr>
<tr>
<td>Function_conjugate</td>
<td>(class in sage.functions.other), 77</td>
</tr>
<tr>
<td>Function_cos</td>
<td>(class in sage.functions.trig), 15</td>
</tr>
<tr>
<td>Function_cos_integral</td>
<td>(class in sage.functions.exp_integral), 128</td>
</tr>
<tr>
<td>Function_cosh</td>
<td>(class in sage.functions.hyperbolic), 25</td>
</tr>
<tr>
<td>Function_cosh_integral</td>
<td>(class in sage.functions.exp_integral), 130</td>
</tr>
<tr>
<td>Function_cot</td>
<td>(class in sage.functions.trig), 15</td>
</tr>
<tr>
<td>Function_coth</td>
<td>(class in sage.functions.hyperbolic), 26</td>
</tr>
<tr>
<td>Function_crootof</td>
<td>(class in sage.functions.other), 78</td>
</tr>
<tr>
<td>Function_csc</td>
<td>(class in sage.functions.trig), 16</td>
</tr>
<tr>
<td>Function_csch</td>
<td>(class in sage.functions.hyperbolic), 27</td>
</tr>
<tr>
<td>Function_dilog</td>
<td>(class in sage.functions.log), 1</td>
</tr>
<tr>
<td>Function_elementof</td>
<td>(class in sage.functions.other), 78</td>
</tr>
<tr>
<td>Function_erf</td>
<td>(class in sage.functions.error), 36</td>
</tr>
<tr>
<td>Function_erfc</td>
<td>(class in sage.functions.error), 37</td>
</tr>
<tr>
<td>Function_erfi</td>
<td>(class in sage.functions.error), 38</td>
</tr>
<tr>
<td>Function_erfinv</td>
<td>(class in sage.functions.error), 38</td>
</tr>
<tr>
<td>Function_exp</td>
<td>(class in sage.functions.log), 2</td>
</tr>
<tr>
<td>Function_exp_integral</td>
<td>(class in sage.functions.exp_integral), 131</td>
</tr>
<tr>
<td>Function_exp_integral_e</td>
<td>(class in sage.functions.exp_integral), 132</td>
</tr>
</tbody>
</table>
Function static method), 49
integral() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 47
inverse_jacobi() (in module sage.functions.jacobi), 104
inverse_jacobi_f() (in module sage.functions.jacobi), 104
InverseJacobi (class in sage.functions.jacobi), 103
is_absolutely_convergent() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 96
is_terminating() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 98
is_termwise_finite() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 98
items() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 47
Jacobi (class in sage.functions.jacobi), 103
jacobi() (in module sage.functions.jacobi), 105
jacobi_am_f() (in module sage.functions.jacobi), 105
JacobiAmplitude (class in sage.functions.jacobi), 104
laplace() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 47
legendre_phi() (in module sage.functions.prime_pi), 153
MaxSymbolic (class in sage.functions.min_max), 154
MinMax_base (class in sage.functions.min_max), 154
MinSymbolic (class in sage.functions.min_max), 155
module
sage.functions.airy, 105
sage.functions.bessel, 112
sage.functions.error, 35
sage.functions.exp_integral, 128
sage.functions.generalized, 148
sage.functions.hyperbolic, 20
sage.functions.hypergeometric, 92
sage.functions.jacobi, 102
sage.functions.log, 1
sage.functions.min_max, 154
sage.functions.orthogonal_polys, 52
sage.functions.other, 72
sage.functions.piecewise, 38
sage.functions.prime_pi, 151
sage.functions.special, 85
sage.functions.spike_function, 50
sage.functions.transcendental, 30
sage.functions.trig, 9
sage.functions.wigner, 141
OrthogonalFunction (class in sage.functions.orthogonal_polys), 72
partial_sieve_function() (in module sage.functions.prime_pi), 153
pieces() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 47
piecewise_add() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 48
PiecewiseFunction (class in sage.functions.piecewise), 39
PiecewiseFunction.EvaluationMethods (class in sage.functions.piecewise), 39
plot() (sage.functions.prime_pi.PrimePi method), 152
plot() (sage.functions.spike_function.SpikeFunction method), 50
plot_fft_abs() (sage.functions.spike_function.SpikeFunction method), 51
plot_fft_arg() (sage.functions.spike_function.SpikeFunction method), 51
power_series() (sage.functions.transcendental.DickmanRho method), 31
PrimePi (class in sage.functions.prime_pi), 152
racah() (in module sage.functions.wigner), 143
rational_param_as_tuple() (in module sage.functions.hypergeometric), 102
restriction() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 48
sage.functions.airy module, 105
sage.functions.bessel module, 112
sage.functions.error module, 35
sage.functions.exp_integral module, 128
sage.functions.generalized module, 148
sage.functions.hyperbolic module, 20
sage.functions.hypergeometric module, 92
sage.functions.jacobi
module, 102
sage.functions.log
 module, 1
sage.functions.min_max
 module, 154
sage.functions.orthogonal_polys
 module, 52
sage.functions.other
 module, 72
sage.functions.piecewise
 module, 38
sage.functions.prime_pi
 module, 151
sage.functions.special
 module, 85
sage.functions.spike_function
 module, 50
sage.functions.transcendental
 module, 30
sage.functions.trig
 module, 9
sage.functions.wigner
 module, 141
simplify() (sage.functions.piecewise.PiecewiseFunction static method), 49
spherical_bessel_f() (in module sage.functions.bessel), 127
SphericalBesselJ (class in sage.functions.bessel), 125
SphericalBesselY (class in sage.functions.bessel), 126
SphericalHankel1 (class in sage.functions.bessel), 126
SphericalHankel2 (class in sage.functions.bessel), 127
SphericalHarmonic (class in sage.functions.special), 90
spike_function (in module sage.functions.spike_function), 51
SpikeFunction (class in sage.functions.spike_function), 50

T
trapezoid() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 48

U
unextend_zero() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method),