Sage 9.5 Reference Manual: Functions

Release 9.5

The Sage Development Team

Jan 31, 2022
CONTENTS

1 Built-in Functions .. 1
 1.1 Logarithmic Functions .. 1
 1.2 Trigonometric Functions ... 8
 1.3 Hyperbolic Functions .. 19
 1.4 Number-Theoretic Functions 28
 1.5 Error Functions ... 33
 1.6 Piecewise-defined Functions 36
 1.7 Spike Functions .. 47
 1.8 Orthogonal Polynomials .. 49
 1.9 Other functions ... 64
 1.10 Miscellaneous Special Functions 76
 1.11 Hypergeometric Functions 81
 1.12 Jacobi Elliptic Functions 91
 1.13 Airy Functions .. 94
 1.14 Bessel Functions .. 100
 1.15 Exponential Integrals .. 115
 1.16 Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients 127
 1.17 Generalized Functions .. 133
 1.18 Counting Primes .. 137
 1.19 Symbolic Minimum and Maximum 139

2 Indices and Tables ... 141

Python Module Index .. 143

Index ... 145
1.1 Logarithmic Functions

AUTHORS:

- Yoora Yi Tenen (2012-11-16): Add documentation for log() (trac ticket #12113)
- Tomas Kalvoda (2015-04-01): Add exp_polar() (trac ticket #18085)

```python
class sage.functions.log.Function_dilog
    Bases: sage.symbolic.function.GinacFunction

    The dilogarithm function Li_2(z) = \sum_{k=1}^{\infty} z^k / k^2.
    This is simply an alias for polylog(2, z).

    EXAMPLES:
```
\begin{verbatim}
\texttt{sage: latex(dilog(z))}
{\rm Li}_2\left(z\right)
\end{verbatim}

Dilog has a branch point at 1. Sage's floating point libraries may handle this differently from the symbolic package:

\begin{verbatim}
\texttt{sage: dilog(1)}
1/6*\pi^2
\texttt{sage: dilog(1.)}
1.64493406684823
\texttt{sage: dilog(1).n()}
1.64493406684823
\texttt{sage: float(dilog(1))}
1.6449340668482262
\end{verbatim}

\begin{verbatim}
\texttt{class sage.functions.log.Function_exp}

Bases: sage.symbolic.function.GinacFunction

The exponential function, \(\exp(x) = e^x \).

EXAMPLES:

\texttt{sage: exp(-1)}
e^{-1}
\texttt{sage: exp(2)}
e^2
\texttt{sage: exp(2).n(100)}
7.3890560989306502272304274606
\texttt{sage: exp(x^2 + log(x))}
e^{x^2 + \log(x)}
\texttt{sage: exp(x^2 + log(x)).simplify()}
x*e^{x^2}
\texttt{sage: exp(2.5)}
12.1824939607035
\texttt{sage: exp(float(2.5))}
12.182493960703473
\texttt{sage: exp(RDF('2.5'))}
12.182493960703473
\texttt{sage: exp(I*pi/12)}
(1/4*I + 1/4)*sqrt(6) - (1/4*I - 1/4)*sqrt(2)
\end{verbatim}

To prevent automatic evaluation, use the \texttt{hold} parameter:

\begin{verbatim}
\texttt{sage: exp(I*pi,hold=True)}
e^{I*pi}
\texttt{sage: exp(0,hold=True)}
e^0
\end{verbatim}

To then evaluate again, we currently must use Maxima via \texttt{sage.symbolic.expression.Expression.simplify()}:

\begin{verbatim}
\texttt{sage: exp(0,hold=True).simplify()}
1
\end{verbatim}
For the sake of simplification, the argument is reduced modulo the period of the complex exponential function, $2\pi i$:

```python
sage: k = var('k', domain='integer')
sage: exp(2*k*pi*I)
1
sage: exp(log(2) + 2*k*pi*I)
2
```

The precision for the result is deduced from the precision of the input. Convert the input to a higher precision explicitly if a result with higher precision is desired:

```python
t = exp(RealField(100)(2)); t
7.3890560989306502272304274606
sage: t.prec()
100
sage: exp(2).n(100)
7.3890560989306502272304274606
```

class `sage.functions.log.Function_exp_polar`

Bases: `sage.symbolic.function.BuiltinFunction`

Representation of a complex number in a polar form.

INPUT:

- `z` – a complex number $z = a + ib$.

OUTPUT:

A complex number with modulus $\exp(a)$ and argument b.

If $-\pi < b \leq \pi$ then $\exp_polar(z) = \exp(z)$. For other values of b the function is left unevaluated.

EXAMPLES:

The following expressions are evaluated using the exponential function:

```python
sage: exp_polar(pi*I/2)
I
sage: x = var('x', domain='real')
sage: exp_polar(-1/2*I*pi + x)

e^{(-1/2*I*pi + x)}
```

The function is left unevaluated when the imaginary part of the input z does not satisfy $-\pi < \Im(z) \leq \pi$:

```python
sage: exp_polar(2*pi*I)
exp_polar(2*I*pi)
```

This fixes trac ticket #18085:

```
sage: integrate(1/sqrt(1+x^3),x,algorithm='sympy')
```

\[
\frac{1}{3}x\cdot \gamma(1/3)\cdot \text{hypergeometric}((1/3, 1/2), (4/3), -x^3)/\gamma(4/3)
\]

See also:

Examples in Sympy documentation, Sympy source code of exp_polar

REFERENCES:

Wikipedia article Complex_number#Polar_form

class sage.functions.log.Function_harmonic_number

Bases: sage.symbolic.function.BuiltinFunction

Harmonic number function, defined by:

\[
H_n = H_{n,1} = \sum_{k=1}^{n} \frac{1}{k}
\]

\[
H_s = \int_0^1 \frac{1-x^s}{1-x}
\]

See the docstring for Function_harmonic_number_generalized().

This class exists as callback for harmonic_number returned by Maxima.

class sage.functions.log.Function_harmonic_number_generalized

Bases: sage.symbolic.function.BuiltinFunction

Harmonic and generalized harmonic number functions, defined by:

\[
H_n = H_{n,1} = \sum_{k=1}^{n} \frac{1}{k}
\]

\[
H_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m}
\]

They are also well-defined for complex argument, through:

\[
H_s = \int_0^1 \frac{1-x^s}{1-x}
\]

\[
H_{s,m} = \zeta(m) - \zeta(m, s-1)
\]

If called with a single argument, that argument is \(s\) and \(m\) is assumed to be 1 (the normal harmonic numbers \(H_s\)).

ALGORITHM:

Numerical evaluation is handled using the mpmath and FLINT libraries.

REFERENCES:

• Wikipedia article Harmonic_number

EXAMPLES:

Evaluation of integer, rational, or complex argument:

```
sage: harmonic_number(5)
137/60
sage: harmonic_number(3,3)
251/216
sage: harmonic_number(5/2)
-2*log(2) + 46/15
sage: harmonic_number(3.,3)
zeta(3) - 0.0400198661225573
sage: harmonic_number(3,3.)
zeta(3) - 0.0400198661225573
sage: harmonic_number(1+I,5)
harmonic_number(I + 1, 5)
sage: harmonic_number(5,1.+I)
1.57436810798989 - 1.06194728851357*I
```

Solutions to certain sums are returned in terms of harmonic numbers:

```
sage: k=var('k')
sage: sum(1/k^7,k,1,x)
harmonic_number(x, 7)
```

Check the defining integral at a random integer:

```
sage: n=randint(10,100)
sage: bool(SR(integrate((1-x^n)/(1-x),x,0,1)) == harmonic_number(n))
True
```

There are several special values which are automatically simplified:

```
sage: harmonic_number(0)
0
sage: harmonic_number(1)
1
sage: harmonic_number(x,1)
harmonic_number(x)
```

class sage.functions.log.Function_lambert_w
Bases: sage.symbolic.function.BuiltinFunction

The integral branches of the Lambert W function $W_n(z)$.

This function satisfies the equation

$$z = W_n(z)e^{W_n(z)}$$

INPUT:

- n – an integer. $n = 0$ corresponds to the principal branch.
- z – a complex number

If called with a single argument, that argument is z and the branch n is assumed to be 0 (the principal branch).

ALGORITHM:

Numerical evaluation is handled using the mpmath and SciPy libraries.

1.1. Logarithmic Functions
REFERENCES:

- Wikipedia article Lambert_W_function

EXAMPLES:

Evaluation of the principal branch:

```
sage: lambert_w(1.0)
0.567143290409784
sage: lambert_w(-1).n()
-0.318131505204764 + 1.33723570143069*I
sage: lambert_w(-1.5 + 5*I)
1.17418016254171 + 1.10651494102011*I
```

Evaluation of other branches:

```
sage: lambert_w(2, 1.0)
-2.40158510486800 + 10.7762995161151*I
```

Solutions to certain exponential equations are returned in terms of lambert_w:

```
sage: S = solve(e^(5*x)+x==0, x, to_poly_solve=True)
sage: z = S[0].rhs(); z
-1/5*lambert_w(5)
sage: N(z)
-0.265344933048440
```

Check the defining equation numerically at \(z = 5 \):

```
sage: N(lambert_w(5)*exp(lambert_w(5)) - 5)
0.000000000000000
```

There are several special values of the principal branch which are automatically simplified:

```
sage: lambert_w(0)
0
sage: lambert_w(e)
1
sage: lambert_w(-1/e)
-1
```

Integration (of the principal branch) is evaluated using Maxima:

```
sage: integrate(lambert_w(x), x)
(lambert_w(x)^2 - lambert_w(x) + 1)*x/lambert_w(x)
sage: integrate(lambert_w(x), x, 0, 1)
(lambert_w(1)^2 - lambert_w(1) + 1)/lambert_w(1) - 1
sage: integrate(lambert_w(x), x, 0, 1.0)
0.3303661247616807
```

Warning: The integral of a non-principal branch is not implemented, neither is numerical integration using GSL. The `numerical_integral()` function does work if you pass a lambda function:

```
sage: numerical_integral(lambda x: lambert_w(x), 0, 1)
(0.33036612476168054, 3.667800782666048e-15)
```
class sage.functions.log.Function_log1
Bases: sage.symbolic.function.GinacFunction

The natural logarithm of \(x \).
See \(\log() \) for extensive documentation.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \ln(e^2) \\
& 2 \\
\text{sage: } & \ln(2) \\
& \log(2) \\
\text{sage: } & \ln(10) \\
& \log(10)
\end{align*}
\]

class sage.functions.log.Function_log2
Bases: sage.symbolic.function.GinacFunction

Return the logarithm of \(x \) to the given base.
See \(\log() \) for extensive documentation.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{from sage.functions.log import logb} \\
\text{sage: } & \logb(1000,10) \\
& 3
\end{align*}
\]

class sage.functions.log.Function_polylog
Bases: sage.symbolic.function.GinacFunction

The polylog function \(\text{Li}_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s} \).

The first argument is \(s \) (usually an integer called the weight) and the second argument is \(z : \text{polylog}(s, z) \).

This definition is valid for arbitrary complex numbers \(s \) and \(z \) with \(|z| < 1 \). It can be extended to \(|z| \geq 1 \) by the process of analytic continuation, with a branch cut along the positive real axis from 1 to \(+\infty \). A \text{NaN} value may be returned for floating point arguments that are on the branch cut.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{polylog(2.7, 0)} \\
& 0.000000000000000 \\
\text{sage: } & \text{polylog(2, 1)} \\
& 1/6*pi^2 \\
\text{sage: } & \text{polylog(2, -1)} \\
& -1/12*pi^2 \\
\text{sage: } & \text{polylog(3, -1)} \\
& -3/4*zeta(3) \\
\text{sage: } & \text{polylog(2, I)} \\
& I*catalan - 1/48*pi^2 \\
\text{sage: } & \text{polylog(4, 1/2)} \\
& \text{polylog(4, 1/2)} \\
\text{sage: } & \text{polylog(4, 0.5)} \\
& 0.517479061673899 \\
\text{sage: } & \text{polylog(1, x)} \\
& -\log(-x + 1)
\end{align*}
\]
sage: polylog(2,x^2+1)
dilog(x^2 + 1)

sage: f = polylog(4, 1); f
1/90*pi^4

sage: f.n()
1.08232323371114

sage: polylog(4, 2).n()
2.42786280675470 - 0.174371300025453*I

sage: complex(polylog(4,2))
(2.4278628067547032-0.17437130002545306j)

sage: float(polylog(4,0.5))
0.5174790616738993

sage: z = var('z')

sage: polylog(2,z).series(z==0, 5)
1*z + 1/4*z^2 + 1/9*z^3 + 1/16*z^4 + Order(z^5)

sage: loads(dumps(polylog))
polylog

sage: latex(polylog(5, x))
\{\text{Li}_5\}(x)

sage: polylog(x, x)._sympy_()
polylog(x, x)

1.2 Trigonometric Functions

```python
sage: arccos(0.5)  
1.04719755119660

sage: arccos(1/2)  
1/3*pi

sage: arccos(1 + 1.0*I)  
0.904556894302381 - 1.06127506190504*I

sage: arccos(3/4).n(100)  
0.7227342478134156117837735264
```

We can delay evaluation using the hold parameter:

```python
sage: arccos(0,hold=True)  
arccos(0)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:
```python
sage: a = arccos(0, hold=True); a.simplify()
1/2*pi
```

Conjugates of
\[\arccos(x) \]
are equal to \(\arccos(\overline{x}) \), unless on the branch cuts, which run along the real axis outside the interval \([-1, +1]\).

```python
sage: conjugate(arccos(x)) == arccos(conjugate(x))
conjugate(arccos(x))
```

```python
sage: var('y', domain='positive')
y
sage: conjugate(arccos(y))
conjugate(arccos(y))
```

```python
sage: conjugate(arccos(y+I))
conjugate(arccos(y + I))
```

```python
sage: conjugate(arccos(1/16))
arccos(1/16)
```

```python
sage: conjugate(arccos(2))
conjugate(arccos(2))
```

```python
sage: conjugate(arccos(-2))
pi - conjugate(arccos(2))
```

```python
class sage.functions.trig.Function_arccot
Bases: sage.symbolic.function.GinacFunction
The arccotangent function.

EXAMPLES:
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
class sage.functions.trig.Function_arccsc
 Bases: sage.symbolic.function.GinacFunction

The arccosecant function.

EXAMPLES:

```
sage: arccsc(2)
arccsc(2)
sage: RDF(arccsc(2))  # rel tol 1e-15
0.5235987755982988
sage: arccsc(2).n(100)
0.52359877559829887307710723055
sage: float(arccsc(2))
0.52359877559829...
sage: arccsc(1 + I)
arccsc(I + 1)
sage: diff(acsc(x), x)
-1/(sqrt(x^2 - 1)*x)
sage: arccsc(x)._sympy_()
acsc(x)
```

We can delay evaluation using the `hold` parameter:

```
sage: arccsc(1,hold=True)
arccsc(1)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```
sage: a = arccsc(1,hold=True); a.simplify()
1/2*pi
```

class sage.functions.trig.Function_arcsec
 Bases: sage.symbolic.function.GinacFunction

The arcsecant function.

EXAMPLES:

```
sage: arcsec(2)
arccsc(2)
sage: arcsec(2.0)
1.04719755119660
sage: arcsec(2).n(100)
1.0471975511965977461542144611
sage: arcsec(1/2).n(100)
1.3169578969248167086250463473*I
sage: RDF(arcsec(2))  # abs tol 1e-15
1.0471975511965976
sage: arcsec(1 + I)
arccsc(I + 1)
sage: diff(asec(x), x)
-1/(sqrt(x^2 - 1)*x)
sage: arcsec(x)._sympy_()
asec(x)
```
We can delay evaluation using the `hold` parameter:

```python
sage: arcsec(1,hold=True)
arccos(1)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: a = arcsec(1,hold=True); a.simplify()
0
```

class `sage.functions.trig.Function_arcsin`
Bases: `sage.symbolic.function.GinacFunction`
The arcsine function.

EXAMPLES:

```python
sage: arcsin(0.5)
0.523598775598299
sage: arcsin(1/2)
1/6*pi
sage: arcsin(1 + 1.0*I)
0.666239432492515 + 1.06127506190504*I
```

We can delay evaluation using the `hold` parameter:

```python
sage: arcsin(0,hold=True)
arccos(0)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: a = arcsin(0,hold=True); a.simplify()
0
```

\[\text{conjugate(arcsin(x))} = \text{arcsin(conjugate(x))}, \text{unless on the branch cuts which run along the real axis outside the interval } [-1, +1].:\]

```python
sage: conjugate(arcsin(x))
conjugate(arcsin(x))
sage: var('y', domain='positive')
y
sage: conjugate(arcsin(y))
conjugate(arcsin(y))
sage: conjugate(arcsin(y + I))
conjugate(arcsin(y + I))
sage: conjugate(arcsin(1/16))
arccos(1/16)
sage: conjugate(arcsin(2))
conjugate(arcsin(2))
sage: conjugate(arcsin(-2))
-conjugate(arcsin(2))
```

class `sage.functions.trig.Function_arctan`
Bases: `sage.symbolic.function.GinacFunction`
The arctangent function.

EXAMPLES:

```
sage: arctan(1/2)
0.46364760900080615
sage: RDF(arctan(1/2))  # rel tol 1e-15
0.46364760900080615
sage: arctan(1 + I)
arctan(I + 1)
0.46364760900080611621425623146
```

We can delay evaluation using the hold parameter:

```
sage: arctan(0,hold=True)
arctan(0)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```
sage: a = arctan(0,hold=True); a.simplify()
0
```

```
conjugate(arctan(x)) == arctan(conjugate(x)), unless on the branch cuts which run along the imaginary axis outside the interval [-I, +I]:
```

```
sage: conjugate(arctan(x))
conjugate(arctan(x))
sage: var('y', domain='positive')
y
sage: conjugate(arctan(y))
arctan(y)
sage: conjugate(arctan(y+I))
conjugate(arctan(y + I))
sage: conjugate(arctan(1/16))
arctan(1/16)
sage: conjugate(arctan(-2*I))
conjugate(arctan(-2*I))
sage: conjugate(arctan(2*I))
conjugate(arctan(2*I))
sage: conjugate(arctan(I/2))
arctan(-1/2*I)
```

```class sage.functions.trig.Function_arctan2
Bases: sage.symbolic.function.GinacFunction
```

The modified arctangent function.

Returns the arc tangent (measured in radians) of \(y/x \), where unlike \(\arctan(y/x) \), the signs of both \(x \) and \(y \) are considered. In particular, this function measures the angle of a ray through the origin and \((x, y)\), with the positive \(x \)-axis the zero mark, and with output angle \(\theta \) being between \(-\pi < \theta <= \pi\).

Hence, \(\arctan2(y, x) = \arctan(y/x) \) only for \(x > 0 \). One may consider the usual arctan to measure angles of lines through the origin, while the modified function measures rays through the origin.

Note that the \(y \)-coordinate is by convention the first input.
EXAMPLES:

Note the difference between the two functions:

```sage
sage: arctan2(1,-1)
3/4*pi
sage: arctan(1/-1)
-1/4*pi
```

This is consistent with Python and Maxima:

```sage
sage: maxima.atan2(1,-1)
(3*%pi)/4
sage: math.atan2(1,-1)
2.356194490192345
```

More examples:

```sage
sage: arctan2(1,0)
1/2*pi
sage: arctan2(2,3)
arctan(2/3)
sage: arctan2(-1,-1)
-3/4*pi
```

Of course we can approximate as well:

```sage
sage: arctan2(-1/2,1).n(100)
-0.46364760900080611621425623146
sage: arctan2(2,3).n(100)
0.58800260354756755124561108063
```

We can delay evaluation using the `hold` parameter:

```sage
sage: arctan2(-1/2,1,hold=True)
arctan2(-1/2, 1)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```sage
sage: arctan2(-1/2,1,hold=True).simplify()
-arctan(1/2)
```

The function also works with numpy arrays as input:

```sage
sage: import numpy
sage: a = numpy.linspace(1, 3, 3)
sage: b = numpy.linspace(3, 6, 3)
sage: atan2(a, b)
array([0.32175055, 0.41822433, 0.46364761])
sage: atan2(1,a)
array([0.78539816, 0.46364761, 0.32175055])
sage: atan2(a, 1)
array([0.78539816, 1.10714872, 1.24904577])
```
class sage.functions.trig.Function_cos
 Bases: sage.symbolic.function.GinacFunction

 The cosine function.

 EXAMPLES:

 sage: cos(pi)
 -1
 sage: cos(x).subs(x==pi)
 -1
 sage: cos(2).n(100)
 -0.41614683654714238699756822950
 sage: loads(dumps(cos))
 cos
 sage: cos(x)._sympy_()
 cos(x)

 We can prevent evaluation using the hold parameter:

 sage: cos(0,hold=\textbf{True})
 \cos(0)

 To then evaluate again, we currently must use Maxima via \texttt{sage.symbolic.expression.Expression.simplify()}:

 sage: a = cos(0,hold=\textbf{True}); a.simplify()
 1

 If possible, the argument is also reduced modulo the period length 2π, and well-known identities are directly evaluated:

 sage: k = var(\texttt{\textquoteleft}k\textquoteright, \texttt{domain=\textquoteleft}integer\textquoteright)
 sage: cos(1 + 2*k*pi)
 \cos(1)
 sage: cos(k*pi)
 \cos(\pi k)
 sage: cos(pi/3 + 2*k*pi)
 1/2

class sage.functions.trig.Function_cot
 Bases: sage.symbolic.function.GinacFunction

 The cotangent function.

 EXAMPLES:

 sage: cot(pi/4)
 1
 sage: RR(cot(pi/4))
 1.00000000000000
 sage: cot(1/2)
 \cot(1/2)
 sage: cot(0.5)
 1.83048772171245

 (continues on next page)
We can prevent evaluation using the `hold` parameter:

```
sage: cot(pi/4, hold=True)
cot(1/4*pi)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```
sage: a = cot(pi/4, hold=True); a.simplify()
1
```

EXAMPLES:

```
sage: cot(pi/4)
1
sage: cot(x).subs(x==pi/4)
1
sage: cot(pi/7)
cot(1/7*pi)
sage: cot(x)
cot(x)
```

```
sage: n(cot(pi/4), 100)
1.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
sage: float(cot(pi/4))
0.64209261593433001
sage: bool(diff(cot(x), x) == diff(1/tan(x), x))
True
sage: diff(cot(x), x)
-cot(x)^2 - 1
```

```
class sage.functions.trig.Function_csc
Bases: sage.symbolic.function.GinacFunction

The cosecant function.

**EXAMPLES:**

```
sage: csc(pi/4)
sqrt(2)
sage: csc(x).subs(x==pi/4)
sqrt(2)
sage: csc(pi/7)
csc(1/7*pi)
sage: csc(x)
csc(x)
sage: RR(csc(pi/4))
1.41421356237310
sage: n(csc(pi/4), 100)
```
(continues on next page)
1.4142135623730950488016887242
\begin{sage}
float(csc(pi/4))
\end{sage}
1.4142135623730951
\begin{sage}
csc(1/2)
csc(1/2)
\end{sage}
\begin{sage}
csc(0.5)
2.08582964293349
\end{sage}
\begin{sage}
bool(diff(csc(x), x) == diff(1/sin(x), x))
True
\end{sage}
\begin{sage}
diff(csc(x), x)
-cot(x)*csc(x)
\end{sage}
\begin{sage}
latex(csc(x))
\csc\left(x\right)
\end{sage}
\begin{sage}
csc(x)._sympy_()
csc(x)
\end{sage}
We can prevent evaluation using the \texttt{hold} parameter:
\begin{sage}
csc(pi/4,hold=True)
csc(1/4*pi)
\end{sage}
To then evaluate again, we currently must use Maxima via \texttt{sage.symbolic.expression.Expression.simplify()}: 
\begin{sage}
a = csc(pi/4,hold=True); a.simplify()
sqrt(2)
\end{sage}
\begin{class}
sage.functions.trig.Function_sec
\end{class}
Bases: \texttt{sage.symbolic.function.GinacFunction}
The secant function.
\begin{examples}
\end{examples}
\begin{sage}
sec(pi/4)
\end{sage}
sqrt(2)
\begin{sage}
sec(x).subs(x==pi/4)
sqrt(2)
\end{sage}
\begin{sage}
sec(pi/7)
sec(1/7*pi)
\end{sage}
\begin{sage}
sec(x)
sec(x)
\end{sage}
\begin{sage}
RR(sec(pi/4))
1.41421356237310
\end{sage}
\begin{sage}
n(sec(pi/4),100)
1.4142135623730950488016887242
\end{sage}
\begin{sage}
float(sec(pi/4))
1.4142135623730951
\end{sage}
\begin{sage}
sec(1/2)
sec(1/2)
\end{sage}
\begin{sage}
sec(0.5)
1.13949392732455
\end{sage}
We can prevent evaluation using the hold parameter:

```python
sage: sec(pi/4, hold=True)
sec(1/4*pi)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: a = sec(pi/4, hold=True); a.simplify()
sqrt(2)
```

### class `sage.functions.trig.Function_sin`  
Bases: `sage.symbolic.function.GinacFunction`  
The sine function.  

**EXAMPLES:**

```python
sage: sin(0)
0
sage: sin(x).subs(x==0)
0
sage: sin(2).n(100)
0.90929742682568169539601986591
sage: loads(dumps(sin))
sin
sage: sin(x)._sympy_()

sage: sin(x)

sage: sin(0, hold=True)
sin(0)
```

If possible, the argument is also reduced modulo the period length $2\pi$, and well-known identities are directly evaluated:

```python
sage: k = var('k', domain='integer')
sage: sin(1 + 2*k*pi)
```
\[
sin(1)
sage: \sin(k \cdot \pi)
0
\]

class sage.functions.trig.FunctionTan
    Bases: sage.symbolic.function.GinacFunction

The tangent function.

EXAMPLES:

\[
sage: \tan(\pi)
0
sage: \tan(3.1415)
-0.0000926535900581913
sage: \tan(3.1415/4)
0.999953674278156
sage: \tan(\pi/4)
1
sage: \tan(1/2)
tan(1/2)
sage: RR(\tan(1/2))
0.546302489843790
\]

We can prevent evaluation using the hold parameter:

\[
sage: \tan(\pi/4, \text{hold=True})
\tan(1/4 \cdot \pi)
\]

To then evaluate again, we currently must use Maxima via sage.symbolic.expression.Expression.simplify():

\[
sage: a = \tan(\pi/4, \text{hold=True}); a.simplify()
1
\]

If possible, the argument is also reduced modulo the period length \( \pi \), and well-known identities are directly evaluated:

\[
sage: k = \text{var('k', domain='integer')}
sage: \tan(1 + 2 \cdot k \cdot \pi)
\tan(1)
sage: \tan(k \cdot \pi)
0
\]
1.3 Hyperbolic Functions

The full set of hyperbolic and inverse hyperbolic functions is available:

- hyperbolic sine: \( \text{sinh}() \)
- hyperbolic cosine: \( \text{cosh}() \)
- hyperbolic tangent: \( \text{tanh}() \)
- hyperbolic cotangent: \( \text{coth}() \)
- hyperbolic secant: \( \text{sech}() \)
- hyperbolic cosecant: \( \text{csch}() \)
- inverse hyperbolic sine: \( \text{asinh}() \)
- inverse hyperbolic cosine: \( \text{acosh}() \)
- inverse hyperbolic tangent: \( \text{atanh}() \)
- inverse hyperbolic cotangent: \( \text{acoth}() \)
- inverse hyperbolic secant: \( \text{asech}() \)
- inverse hyperbolic cosecant: \( \text{acsch}() \)

REFERENCES:

- Wikipedia article Hyperbolic function
- Wikipedia article Inverse hyperbolic functions

EXAMPLES:

Inverse hyperbolic functions have logarithmic expressions, so expressions of the form \( \exp(c \cdot f(x)) \) simplify:

```
sage: exp(2*atanh(x))
-(x + 1)/(x - 1)
sage: exp(2*acoth(x))
(x + 1)/(x - 1)
sage: exp(2*asinh(x))
(x + sqrt(x^2 + 1))^2
sage: exp(2*acosh(x))
(x + sqrt(x^2 - 1))^2
sage: exp(2*asech(x))
(ssqrt(-x^2 + 1)/x + 1/x)^2
sage: exp(2*acsch(x))
(sqr(t(1/x^2 + 1) + 1/x)^2
```

```
class sage.functions.hyperbolic.Function_arccosh

Bases: sage.symbolic.function.GinacFunction

The inverse of the hyperbolic cosine function.

EXAMPLES:
```
sage: acosh(1/2)
arccosh(1/2)
sage: acosh(1 + I*1.0)
1.06127506190504 + 0.904556894302381*I
sage: float(acosh(2))
1.3169578969248168
sage: cosh(float(acosh(2)))
2.0
sage: acosh(complex(1, 2))  # abs tol 1e-15
(1.5285709194809982+1.1437177404024204j)

Warning: If the input is in the complex field or symbolic (which includes rational and integer input), the output will be complex. However, if the input is a real decimal, the output will be real or NaN. See the examples for details.

sage: acosh(0.5)
NaN
sage: acosh(1/2)
arccosh(1/2)
sage: acosh(1/2).n()
NaN
sage: acosh(CC(0.5))
1.04719755119660*I
sage: acosh(0)
1/2*I*pi
sage: acosh(-1)
I*pi

To prevent automatic evaluation use the hold argument:

sage: acosh(-1, hold=True)
arccosh(-1)

To then evaluate again, use the unhold method:

sage: acosh(-1, hold=True).unhold()
I*pi

conjugate(arccosh(x))==arccosh(conjugate(x)) unless on the branch cut which runs along the real axis from +1 to -inf.:
sage: conjugate(acosh(2))
arccosh(2)
sage: conjugate(acosh(I/2))
arccosh(-1/2*I)

class sage.functions.hyperbolic.Function_arccoth
Bases: sage.symbolic.function.GinacFunction
The inverse of the hyperbolic cotangent function.

EXAMPLES:

sage: acoth(2.0)
0.549306144334055
sage: acoth(2)
1/2*log(3)
sage: acoth(1 + I*1.0)
0.402359478108525 - 0.553574358897045*I
sage: acoth(2).n(200)
0.54930614433405484569762261846126285232374527891137472586735

sage: bool(diff(acoth(x), x) == diff(atanh(x), x))
True
sage: diff(acoth(x), x)
-1/(x^2 - 1)

sage: float(acoth(2))
0.5493061443340549
sage: float(acoth(2).n(53)) # Correct result to 53 bits
0.5493061443340549
sage: float(acoth(2).n(100)) # Compute 100 bits and then round to 53
0.5493061443340549

class sage.functions.hyperbolic.Function_arccsch
Bases: sage.symbolic.function.GinacFunction
The inverse of the hyperbolic cosecant function.

EXAMPLES:

sage: acsch(2.0)
0.481211825059603
sage: acsch(2)
arccsch(2)
sage: acsch(1 + I*1.0)
0.530637530952518 - 0.4522784471051191*I
sage: acsch(1).n(200)
0.5306375309525180932497979230902816032826163541075330

sage: float(acsch(1))
0.881373587019543

sage: diff(acsch(x), x)
-1/(sqrt(x^2 + 1)*x)
sage: latex(acsch(x))
\operatorname{arcsch}(x)

1.3. Hyperbolic Functions
class sage.functions.hyperbolic.Function_arcsech
Bases: sage.symbolic.function.GinacFunction

The inverse of the hyperbolic secant function.

EXAMPLES:

```
sage: asech(0.5)
1.31695789692482
sage: asech(1/2)
arcsech(1/2)
sage: asech(1 + I*1.0)
0.530637530952518 - 1.11851787964371*I
sage: asech(1/2).n(200)
1.316957896924816708625046347307968440269819714675164797685
sage: float(asech(1/2))
1.3169578969248168
sage: diff(asech(x), x)
-1/(sqrt(-x^2 + 1)*x)
```

class sage.functions.hyperbolic.Function_arcsinh
Bases: sage.symbolic.function.GinacFunction

The inverse of the hyperbolic sine function.

EXAMPLES:

```
sage: asinh
arcsinh
sage: asinh(0.5)
0.481211825059603
sage: asinh(1/2)
arcsinh(1/2)
sage: asinh(1 + I*1.0)
1.06127506190504 + 0.666239432492515*I
```

To prevent automatic evaluation use the hold argument:

```
sage: asinh(-2, hold=True)
arcsinh(-2)
```

To then evaluate again, use the unhold method:

```
sage: asinh(-2, hold=True).unhold()
-arcsinh(2)
```

conjugate(asinh(x))==asinh(conjugate(x)) unless on the branch cuts which run along the imaginary axis outside the interval [-I, +I]:

```
sage: conjugate(asinh(x))
conjugate(arcsinh(x))
```
sage: var('y', domain='positive')
y
sage: conjugate(asinh(y))
arcsinh(y)

sage: conjugate(asinh(y+I))
conjugate(arcsinh(y + I))

sage: conjugate(asinh(1/16))
arcsinh(1/16)

sage: conjugate(asinh(I/2))
arcsinh(-1/2*I)

sage: conjugate(asinh(2*I))
conjugate(arcsinh(2*I))

class sage.functions.hyperbolic.Function_arctanh

Bases: sage.symbolic.function.GinacFunction

The inverse of the hyperbolic tangent function.

EXAMPLES:

sage: atanh(0.5)
0.549306144334055

sage: atanh(1/2)
1/2*log(3)

sage: atanh(1 + I*1.0)
0.402359478108525 + 1.01722196789785*I

To prevent automatic evaluation use the hold argument:

sage: atanh(-1/2, hold=True)
arctanh(-1/2)

To then evaluate again, use the unhold method:

sage: atanh(-1/2, hold=True).unhold()
-1/2*log(3)

conjugate(arctanh(x)) == arctanh(conjugate(x)) unless on the branch cuts which run along the real axis outside the interval [-1, +1].

sage: conjugate(arctanh(x))
conjugate(arctanh(x))

sage: var('y', domain='positive')
y

sage: conjugate(arctanh(y))
conjugate(arctanh(y))

sage: conjugate(arctanh(y+I))
conjugate(arctanh(y + I))

sage: conjugate(arctanh(1/16))
1/2*log(17/15)

sage: conjugate(arctanh(I/2))
arctanh(-1/2*I)

sage: conjugate(arctanh(-2*I))
arctanh(2*I)

1.3. Hyperbolic Functions
class sage.functions.hyperbolic.Function_cosh
    Bases: sage.symbolic.function.GinacFunction

The hyperbolic cosine function.

EXAMPLES:

    sage: cosh(pi)
    cosh(pi)
    sage: cosh(3.1415)
    11.5908832931176
    sage: float(cosh(pi))
    11.591953275521519
    sage: RR(cosh(1/2))
    1.12762596520638

    sage: latex(cosh(x))
    \cosh\left(x\right)
    sage: cosh(x)._sympy_()
    cosh(x)

To prevent automatic evaluation, use the hold parameter:

    sage: cosh(arcsinh(x),hold=True)
    cosh(arcsinh(x))

To then evaluate again, use the unhold method:

    sage: cosh(arcsinh(x),hold=True).unhold()
    sqrt(x^2 + 1)

class sage.functions.hyperbolic.Function_coth
    Bases: sage.symbolic.function.GinacFunction

The hyperbolic cotangent function.

EXAMPLES:

    sage: coth(pi)
    coth(pi)
    sage: coth(0)
    Infinity
    sage: coth(pi*I)
    Infinity
    sage: coth(pi*I/2)
    0
    sage: coth(7*pi*I/2)
    0
    sage: coth(8*pi*I/2)
    Infinity
    sage: coth(7.*pi*I/2)
    -I*cot(3.50000000000000*pi)
    sage: coth(3.1415)
    1.00374256795520
    sage: float(coth(pi))
    1.0037418731973213

(continues on next page)
sage: RR(coth(pi))
1.00374187319732
sage: coth(complex(1, 2))  # abs tol 1e-15
(0.8213297974938518+0.17138361290918508j)

sage: bool(diff(coth(x), x) == diff(1/tanh(x), x))
True
sage: diff(coth(x), x)
-1/sinh(x)^2
sage: latex(coth(x))
\coth\left(x\right)

sage: coth(x)._sympy_(x)
coth(x)

class sage.functions.hyperbolic.Function_csch
Bases: sage.symbolic.function.GinacFunction

The hyperbolic cosecant function.

EXAMPLES:

sage: csch(pi)
csch(pi)
sage: csch(3.1415)
0.0865975907592133
sage: float(csch(pi))
0.0865895375300469...
sage: RR(csch(pi))
0.0865895375300470
sage: csch(0)
Infinity
sage: csch(pi*I)
Infinity
sage: csch(pi*I/2)
-I
sage: csch(7*pi*I/2)
I
sage: csch(7.*pi*I/2)
-I*csch(3.50000000000000*pi)

sage: bool(diff(csch(x), x) == diff(1/sinh(x), x))
True
sage: diff(csch(x), x)
-coth(x)*csch(x)

class sage.functions.hyperbolic.Function_sech
Bases: sage.symbolic.function.GinacFunction

The hyperbolic secant function.

EXAMPLES:
Sage: sech(pi)
sech(pi)
Sage: sech(3.1415)
0.0862747018248192
Sage: float(sech(pi))
0.0862667383340544...
Sage: RR(sech(pi))
0.0862667383340544
Sage: sech(0)
1
Sage: sech(pi*I)
-1
Sage: sech(pi*I/2)
Infinity
Sage: sech(7*pi*I/2)
Infinity
Sage: sech(8*pi*I/2)
1
Sage: sech(8.*pi*I/2)
sec(4.00000000000000*pi)
Sage: bool(diff(sech(x), x) == diff(1/cosh(x), x))
True
Sage: diff(sech(x), x)
-sech(x)*tanh(x)
Sage: latex(sech(x))
\operatorname{sech}\left(x\right)
Sage: sech(x)._sympy_()
sech(x)

To prevent automatic evaluation, use the hold parameter:

class sage.functions.hyperbolic.Function_sinh

Bases: sage.symbolic.function.GinacFunction

The hyperbolic sine function.

EXAMPLES:

Sage: sinh(pi)
sinh(pi)
Sage: sinh(3.1415)
11.5476653707437
Sage: float(sinh(pi))
11.54873957257774...
Sage: RR(sinh(pi))
11.548739572577
Sage: latex(sinh(x))
\sinh\left(x\right)
Sage: sinh(x)._sympy_()
sinh(x)
sage: sinh(arccosh(x),hold=True)
    sinh(arccosh(x))

To then evaluate again, use the unhold method:

sage: sinh(arccosh(x),hold=True).unhold()
sqrt(x + 1)*sqrt(x - 1)

**class** sage.functions.hyperbolic.Function_tanh

Bases: sage.symbolic.function.GinacFunction

The hyperbolic tangent function.

**EXAMPLES:**

sage: tanh(pi)
tanh(pi)
sage: tanh(3.1415)
0.996271386633702
sage: float(tanh(pi))
0.99627207622075
sage: tan(3.1415/4)
0.999953674278156
sage: tanh(pi/4)
tanh(1/4*pi)
sage: RR(tanh(1/2))
0.462117157260010

sage: CC(tanh(pi + I*e))
0.99752473197616361034204366446 - 0.0027906876810031453884245163923*I
sage: ComplexField(100)(tanh(pi + I*e))
0.99752473197616360034204366446 - 0.0027906876810031453884245163923*I
sage: CDF(tanh(pi + I*e))  # rel tol 2e-15
0.9975247319761636 - 0.002790687681003147*I

To prevent automatic evaluation, use the hold parameter:

sage: tanh(arcsinh(x),hold=True)
tanh(arcsinh(x))

To then evaluate again, use the unhold method:

sage: tanh(arcsinh(x),hold=True).unhold()
x/sqrt(x^2 + 1)

1.3. Hyperbolic Functions 27
1.4 Number-Theoretic Functions

class sage.functions.transcendental.DickmanRho

Bases: sage.symbolic.function.BuiltinFunction

Dickman’s function is the continuous function satisfying the differential equation

\[ x\rho'(x) + \rho(x - 1) = 0 \]

with initial conditions \( \rho(x) = 1 \) for \( 0 \leq x \leq 1 \). It is useful in estimating the frequency of smooth numbers as asymptotically

\[ \Psi(a, a^{1/s}) \sim a\rho(s) \]

where \( \Psi(a, b) \) is the number of \( b \)-smooth numbers less than \( a \).

ALGORITHM:

Dickman’s function is analytic on the interval \([n, n+1]\) for each integer \( n \). To evaluate at \( n + t, 0 \leq t < 1 \), a power series is recursively computed about \( n+1/2 \) using the differential equation stated above. As high precision arithmetic may be needed for intermediate results the computed series are cached for later use.

Simple explicit formulas are used for the intervals \([0,1]\) and \([1,2]\).

EXAMPLES:

```
sage: dickman_rho(2)
0.306852819440055
sage: dickman_rho(10)
2.77017183772596e-11
sage: dickman_rho(10.00000000000000000000000000000000000000)
2.77017183772595898875812120063434232634e-11
sage: plot(log(dickman_rho(x)), (x, 0, 15))
Graphics object consisting of 1 graphics primitive
```

AUTHORS:

- Robert Bradshaw (2008-09)

REFERENCES:


approximate(x, parent=None)

Approximate using de Bruijn’s formula

\[ \rho(x) \sim \frac{\exp(-\xi + Ei(\xi))}{\sqrt{2\pi x\xi}} \]

which is asymptotically equal to Dickman’s function, and is much faster to compute.

REFERENCES:


EXAMPLES:
power_series\((n, \text{abs\_prec})\)

This function returns the power series about \(n + 1/2\) used to evaluate Dickman’s function. It is scaled such that the interval \([n, n + 1]\) corresponds to \(x\) in \([-1, 1]\).

**INPUT:**

- \(n\) - the lower endpoint of the interval for which this power series holds
- \(\text{abs\_prec}\) - the absolute precision of the resulting power series

**EXAMPLES:**

\[
sage: f = \text{dickman\_rho\_power\_series}(2, 20); f
-9.9376e-8\times^{11} + 3.7722e-7\times^{10} - 1.4684e-6\times^9 + 5.8783e-6\times^8 - 0.
-\times^{7} + 0.00010341\times^6 - 0.00045583\times^5 + 0.0020773\times^4 - 0.0097336\times^3
-3 + 0.045224\times^2 - 0.11891\times + 0.13032
sage: f(-1), f(0), f(1)
(0.30685, 0.13032, 0.048608)
sage: \text{dickman\_rho}(2), \text{dickman\_rho}(2.5), \text{dickman\_rho}(3)
(0.306852819440055, 0.130319561832251, 0.0486083882911316)
\]

class sage.functions.transcendental.Function_HurwitzZeta

Bases: sage.symbolic.function.BuiltinFunction

class sage.functions.transcendental.Function_stieltjes

Bases: sage.symbolic.function.GinacFunction

Stieltjes constant of index \(n\).

\text{stieltjes}(0)\ is\ identical\ to\ the\ Euler-Mascheroni\ constant\ \(\text{sage.symbolic.constants.EulerGamma}\).\ The\ Stieltjes\ constants\ are\ used\ in\ the\ series\ expansions\ of\ \(\zeta(s)\).\n
**INPUT:**

- \(n\) - non-negative integer

**EXAMPLES:**

\[
sage: \_ = \text{var('n')} \n\_\_ = \text{stieltjes}(n) \n\text{stieltjes}(n) \n\_\_\_ = \text{stieltjes}(0) \neuler\_gamma \n\_\_\_\_ = \text{stieltjes}(2) \n\text{stieltjes}(2) \n\_\_\_\_\_ = \text{stieltjes(int(2))} \n\text{stieltjes}(2) \n\_\_\_\_\_\_ = \text{stieltjes(2)}.n(100) \n-0.0096903631928723184845303860352 \n\_\_\_\_\_\_\_ = \text{RealField}(200) \]

(continues on next page)
It is possible to use the hold argument to prevent automatic evaluation:

```python
sage: stieltjes(0, hold=True)
stieltjes(0)
sage: latex(stieltjes(n))
\gamma_{n}
sage: a = loads(dumps(stieltjes(n)))
sage: a.operator() == stieltjes
True
sage: stieltjes(x)._sympy_()
stieltjes(x)
sage: stieltjes(x).subs(x==0)
euler_gamma
```

**class** `sage.functions.transcendental.Function_zeta`

Bases: `sage.symbolic.function.GinacFunction`

Riemann zeta function at s with s a real or complex number.

**INPUT:**

- `s` - real or complex number

If `s` is a real number the computation is done using the MPFR library. When the input is not real, the computation is done using the PARI C library.

**EXAMPLES:**

```python
sage: zeta(x)
zeta(x)
sage: zeta(2)
1/6*pi^2
sage: zeta(2.)
1.64493406684823
sage: RR = RealField(200)
sage: zeta(RR(2))
1.6449340668482264364724151666460251892189499012067984377356
sage: zeta(I)
zeta(I)
sage: zeta(I).n()
0.00330022368532410 - 0.418155449141322*I
sage: zeta(sqrt(2))
zeta(sqrt(2))
sage: zeta(sqrt(2)).n() # rel tol 1e-10
3.02073767948603
```

It is possible to use the hold argument to prevent automatic evaluation:

```python
sage: zeta(2, hold=True)
zeta(2)
```
To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`: 

```
sage: a = zeta(2, hold=True); a.simplify()
1/6*pi^2
```

The Laurent expansion of \( \zeta(s) \) at \( s = 1 \) is implemented by means of the Stieltjes constants:

```
sage: s = SR('s')
sage: zeta(s).series(s==1, 2)
1*(s - 1)^(-1) + euler_gamma + (-stieltjes(1))*(s - 1) + Order((s - 1)^2)
```

Generally, the Stieltjes constants occur in the Laurent expansion of \( \zeta \)-type singularities:

```
sage: zeta(2*s/(s+1)).series(s==1, 2)
2*(s - 1)^(-1) + (euler_gamma + 1) + (-1/2*stieltjes(1))*(s - 1) + Order((s - 1)^2)
```

class `sage.functions.transcendental.Function_zetaderiv`  
Bases: `sage.symbolic.function.GinacFunction`  
Derivatives of the Riemann zeta function.

EXAMPLES:

```
sage: zetaderiv(1, x)
zetaderiv(1, x)
sage: zetaderiv(1, x).diff(x)
zetaderiv(2, x)
sage: var('n')
n
sage: zetaderiv(n,x)
zetaderiv(n, x)
sage: zetaderiv(1, 4).n()
-0.0689112658961254
```

```
sage: import mpmath; mpmath.diff(lambda x: mpmath.zeta(x), 4)
mpf('-0.068911265896125382')
```

`sage.functions.transcendental.hurwitz_zeta(s, x, **kwargs)`  
The Hurwitz zeta function \( \zeta(s, x) \), where \( s \) and \( x \) are complex.

The Hurwitz zeta function is one of the many zeta functions. It is defined as

\[
\zeta(s, x) = \sum_{k=0}^{\infty} (k + x)^{-s}.
\]

When \( x = 1 \), this coincides with Riemann’s zeta function. The Dirichlet L-functions may be expressed as linear combinations of Hurwitz zeta functions.

EXAMPLES:

Symbolic evaluations:

```
sage: hurwitz_zeta(x, 1)
zeta(x)
sage: hurwitz_zeta(4, 3)
1/90*pi^4 - 17/16
sage: hurwitz_zeta(-4, x)
```

(continues on next page)
-1/5*x^5 + 1/2*x^4 - 1/3*x^3 + 1/30*x
sage: hurwitz_zeta(7, -1/2)
127*zeta(7) - 128
sage: hurwitz_zeta(-3, 1)
1/120

Numerical evaluations:

sage: hurwitz_zeta(3, 1/2).n()
8.41439832211716
sage: hurwitz_zeta(11/10, 1/2).n()
12.1038134956837
sage: hurwitz_zeta(3, x).series(x, 60).subs(x=0.5).n()
8.41439832211716
sage: hurwitz_zeta(3, 0.5)
8.41439832211716

REFERENCES:

• Wikipedia article Hurwitz_zeta_function

sage.functions.transcendental.zeta_symmetric(s)
Completed function \( \xi(s) \) that satisfies \( \xi(s) = \xi(1 - s) \) and has zeros at the same points as the Riemann zeta function.

INPUT:

• s - real or complex number

If s is a real number the computation is done using the MPFR library. When the input is not real, the computation is done using the PARI C library.

More precisely,

\[
\xi(s) = \frac{\gamma(s/2 + 1) \ast (s - 1) \ast \pi^{-s/2} \ast \xi(s)}{\Gamma(s/2 + 1)}.
\]

EXAMPLES:

sage: zeta_symmetric(0.7)
0.497580414651127
sage: zeta_symmetric(1-0.7)
0.497580414651127
sage: RR = RealField(200)
sage: zeta_symmetric(RR(0.7))
0.4975804146511269035779107525638385212657443284080589766062
sage: C.<i> = ComplexField()
sage: zeta_symmetric(0.5 + i*14.0)
0.00020129444235258 + 1.49077798716757e-19*I
sage: zeta_symmetric(0.5 + i*14.1)
0.0000489893483255687 + 4.40457132572236e-20*I
sage: zeta_symmetric(0.5 + i*14.2)
-0.0000868931282620101 + 7.11507675693612e-20*I

REFERENCE:

• I copied the definition of \( \xi \) from http://web.viu.ca/pughg/RiemannZeta/RiemannZetaLong.html
1.5 Error Functions

This module provides symbolic error functions. These functions use the mpmathlibrary for numerical evaluation and Maxima, Pynac for symbolics.

The main objects which are exported from this module are:

- \texttt{erf} – The error function
- \texttt{erfc} – The complementary error function
- \texttt{erfi} – The imaginary error function
- \texttt{erfinv} – The inverse error function
- \texttt{fresnel\_sin} – The Fresnel integral \( S(x) \)
- \texttt{fresnel\_cos} – The Fresnel integral \( C(x) \)

AUTHORS:

- Original authors \texttt{erf/error\_fcn} (c) 2006-2014: Karl-Dieter Crisman, Benjamin Jones, Mike Hansen, William Stein, Burcin Erocal, Jeroen Demeyer, W. D. Joyner, R. Andrew Ohana
- Reorganisation in new file, addition of \texttt{erfi/erfinv/erfc} (c) 2016: Ralf Stephan
- Fresnel integrals (c) 2017 Marcelo Forets

REFERENCES:

- [DLMF-Error]
- [WP-Error]

```python
class sage.functions.error.Function_Fresnel_cos
 Bases: sage.symbolic.function.BuiltinFunction
 The cosine Fresnel integral.
 It is defined by the integral
 \[
 C(x) = \int_0^x \cos \left(\frac{\pi t^2}{2} \right) dt
 \]
 for real \(x \). Using power series expansions, it can be extended to the domain of complex numbers. See the Wikipedia article Fresnel_integral.
 INPUT:
 - \(x \) – the argument of the function
 EXAMPLES:

 sage: fresnel_cos(0)
 0
 sage: fresnel_cos(x).subs(x==0)
 0
 sage: x = var('x')
 sage: fresnel_cos(1).n(100)
 0.77989340037682282947420641365
 sage: fresnel_cos(x)._sympy_()
 fresnelc(x)
```

1.5. Error Functions

33
class sage.functions.error.Function_Fresnel_sin
    Bases: sage.symbolic.function.BuiltinFunction

    The sine Fresnel integral.
    It is defined by the integral
    \[ S(x) = \int_0^x \sin \left( \frac{\pi t^2}{2} \right) dt \]
    for real \( x \). Using power series expansions, it can be extended to the domain of complex numbers. See the
    Wikipedia article Fresnel_integral.

    INPUT:
    - \( x \) – the argument of the function

    EXAMPLES:

    sage: fresnel_sin(0)
    0
    sage: fresnel_sin(x).subs(x==0)
    0
    sage: x = var('x')
    sage: fresnel_sin(1).n(100)
    0.43825914739035476607675669662
    sage: fresnel_sin(x)._sympy_()
    fresnels(x)

class sage.functions.error.Function_erf
    Bases: sage.symbolic.function.BuiltinFunction

    The error function.
    The error function is defined for real values as
    \[ \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt. \]
    This function is also defined for complex values, via analytic continuation.

    EXAMPLES:

    We can evaluate numerically:

    sage: erf(2)
    erf(2)
    sage: erf(2).n()
    0.995322265018953
    sage: erf(2).n(100)
    0.99532226501895273416206925637
    sage: erf(ComplexField(100)(2+3j))
    -20.82946142761456839103088452 + 8.6873182714701631444280787545*I

    Basic symbolic properties are handled by Sage and Maxima:

    sage: x = var('x')
    sage: diff(erf(x),x)
    2*e^(-x^2)/sqrt(pi)
    sage: integrate(erf(x),x)
    x*erf(x) + e^(-x^2)/sqrt(pi)
ALGORITHM:
Sage implements numerical evaluation of the error function via the \texttt{erf()} function from mpmath. Symbolics are handled by Sage and Maxima.

REFERENCES:
• Wikipedia article Error_function
• http://mpmath.googlecode.com/svn/trunk/doc/build/functions/expintegrals.html#error-functions

class sage.functions.error.Function_erfc
Bases: sage.symbolic.function.BuiltinFunction
The complementary error function.
The complementary error function is defined by
\[
\frac{2}{\sqrt{\pi}} \int_t^\infty e^{-x^2} dx.
\]

EXAMPLES:

```
sage: erfc(6)
erfc(6)
sage: erfc(6).n()
2.15197367124989e-17
sage: erfc(RealField(100)(1/2))
0.47950012218695346231725334611
sage: 1 - erfc(0.5)
0.520499877813047
sage: erf(0.5)
0.520499877813047
```

class sage.functions.error.Function_erfi
Bases: sage.symbolic.function.BuiltinFunction
The imaginary error function.
The imaginary error function is defined by
\[
erfi(x) = -i \text{erf}(ix).
\]

class sage.functions.error.Function_erfinv
Bases: sage.symbolic.function.BuiltinFunction
The inverse error function.
The inverse error function is defined by:
\[
erfinv(x) = \text{erf}^{-1}(x).
\]
1.6 Piecewise-defined Functions

This module implements piecewise functions in a single variable. See `sage.sets.real_set` for more information about how to construct subsets of the real line for the domains.

EXAMPLES:

```python
sage: f = piecewise([[((0,1), x^3), ([-1,0], -x^2)]]; f
piecewise(x|-->x^3 on (0, 1), x|-->-x^2 on [-1, 0]; x)
sage: 2*f
2*piecewise(x|-->x^3 on (0, 1), x|-->-x^2 on [-1, 0]; x)
sage: f(x=1/2)
1/8
sage: plot(f) # not tested
```

Todo: Implement max/min location and values.

AUTHORS:

- David Joyner (2006-04): initial version
- David Joyner (2006-09): added __eq__, extend_by_zero_to, unextend, convolution, trapezoid, trapezoid_integral_approximation, riemann_sum, riemann_sum_integral_approximation, tangent_line fixed bugs in __mul__, __add__
- David Joyner (2007-03): adding Hann filter for FS, added general FS filter methods for computing and plotting, added options to plotting of FS (eg, specifying rgb values are now allowed). Fixed bug in documentation reported by Pablo De Napoli.
- David Joyner (2007-09): bug fixes due to behaviour of SymbolicArithmetic
- David Joyner (2008-04): fixed docstring bugs reported by J Morrow; added support for Laplace transform of functions with infinite support.
- David Joyner (2008-07): fixed a left multiplication bug reported by C. Boncelet (by defining __rmul__ = __mul__).
- Paul Butler (2009-01): added indefinite integration and default_variable
- Volker Braun (2013): Complete rewrite
- Ralf Stephan (2015): Rewrite of convolution() and other calculus functions; many doctest adaptations
- Eric Gourgoulhon (2017): Improve documentation and user interface of Fourier series

class `sage.functions.piecewise.PiecewiseFunction`

Bases: `sage.symbolic.function.BuiltinFunction`

Piecewise function

EXAMPLES:

```python
sage: var('x, y')
(x, y)
sage: f = piecewise([([(0,1), x^2*y), ([-1,0], -x*y^2)]], var=x); f
piecewise(x|-->x^2*y on (0, 1), x|-->-x*y^2 on [-1, 0]; x)
sage: f(1/2)
1/4*y
```

(continues on next page)
class EvaluationMethods

Bases: object

convolution(parameters, variable, other)

Return the convolution function, \( f \ast g(t) = \int_{-\infty}^{\infty} f(u)g(t-u)du \), for compactly supported \( f, g \).

EXAMPLES:

```python
sage: x = PolynomialRing(QQ, 'x').gen()
sage: f = piecewise([[(0,1),1]]) # example 0
sage: g = f.convolution(f); g
piecewise(x|-->x on (0, 1]; x|-->-x + 2 on (1, 2]; x)
sage: h = f.convolution(g); h
piecewise(x|-->1/2*x^2 on (0, 1], x|-->-x^2 + 3*x - 3/2 on (1, 2], x|-->1/
-2*x^2 - 3*x + 9/2 on (2, 3]; x)
sage: f = piecewise([[(0,1),1],[1,2],2],[2,3],1]) # example 1
sage: g = f.convolution(f)
sage: h = f.convolution(g); h
piecewise(x|-->1/2*x^2 on (0, 1], x|-->2*x^2 - 3*x + 3/2 on (1, 3], x|-->-
-2*x^2 + 21*x - 69/2 on (3, 4], x|-->-5*x^2 + 45*x - 165/2 on (4, 5], x|-->-
-2*x^2 + 15*x - 15/2 on (5, 6], x|-->2*x^2 - 33*x + 273/2 on (6, 8], x|-->-
-1/2*x^2 - 9*x + 81/2 on (8, 9]; x)
sage: f = piecewise([[-1,1],1]) # example 2
sage: g = piecewise([[(0,3),x]])
sage: f.convolution(g)
piecewise(x|-->1/2*x^2 + x + 1 on (-1, 1], x|-->2*x on (1, 2], x|-->-1/
-2*x^2 + x + 4 on (2, 4]; x)
sage: g = piecewise([[(0,3),1],[3,4],2]])
sage: f.convolution(g)
piecewise(x|-->x + 1 on (-1, 1], x|-->2 on (1, 2], x|-->x on (2, 3], x|-->-
-x + 6 on (3, 4], x|-->-2*x + 10 on (4, 5]; x)
```

Check that the bugs raised in trac ticket #12123 are fixed:

```python
sage: f = piecewise([[-2,2],2])
sage: g = piecewise([[0,3,4]])
sage: f.convolution(g)
piecewise(x|-->3/2*x + 3 on (-2, 0], x|-->3 on (0, 2], x|-->-3/2*x + 6 on␣-
-2, 4]; x)
sage: f = piecewise([[-1,1],1])
sage: g = piecewise([[(0,1),x],[1,2],-x + 2]])
sage: f.convolution(g)
piecewise(x|-->1/2*x^2 + x + 1/2 on (-1, 0], x|-->-1/2*x^2 + x + 1/2 on (0,␣-
-2], x|-->1/2*x^2 - 3*x + 9/2 on (2, 3]; x)
```

critical_points(parameters, variable)

Return the critical points of this piecewise function.

EXAMPLES:
```
sage: R.<x> = QQ[]
sage: f1 = x^0
sage: f2 = 10*x - x^2
sage: f3 = 3*x^4 - 156*x^3 + 3036*x^2 - 26208*x
sage: f = piecewise([[0,3],f1],[[3,10],f2],[[10,20],f3])
sage: expected = [5, 12, 13, 14]
sage: all(abs(e-a) < 0.001 for e,a in zip(expected, f.critical_points()))
True
```

**domain** *(parameters, variable)*

Return the domain

OUTPUT:

The union of the domains of the individual pieces as a `RealSet`.

EXAMPLES:

```
sage: f = piecewise([[0,0], sin(x)), ((0,2), cos(x))])
sage: f.domain()
[0, 2)
```

**domains** *(parameters, variable)*

Return the individual domains

See also `expressions()`.

OUTPUT:

The collection of domains of the component functions as a tuple of `RealSet`.

EXAMPLES:

```
sage: f = piecewise([[0,0], sin(x)), ((0,2), cos(x))])
sage: f.domains()
{0}, (0, 2))
```

**end_points** *(parameters, variable)*

Return a list of all interval endpoints for this function.

EXAMPLES:

```
sage: f1(x) = 1
sage: f2(x) = 1-x
sage: f3(x) = x^2-5
sage: f = piecewise([[0,1],f1],[[1,2],f2],[[2,3],f3])
sage: f.end_points()
[0, 1, 2, 3]
sage: f = piecewise([[0,0], sin(x)), ((0,2), cos(x))])
sage: f.end_points()
[0, 2]
```

**expression_at** *(parameters, variable, point)*

Return the expression defining the piecewise function at value

INPUT:

```
• point – a real number.

OUTPUT:

The symbolic expression defining the function value at the given point.

EXAMPLES:

```sage
definition of the function
sage: f = piecewise([[(0,0), sin(x)], ((0,2), cos(x))]); f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.expression_at(0)
sin(x)
sage: f.expression_at(1)
cos(x)
sage: f.expression_at(2)
Traceback (most recent call last):
  ... ValueError: point is not in the domain
```

expressions(parameters, variable)

Return the individual domains

See also domains().

OUTPUT:

The collection of expressions of the component functions.

EXAMPLES:

```sage
definition of the function
sage: f = piecewise([[(0,0), sin(x)], ((0,2), cos(x))]); f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.expressions()
(sin(x), cos(x))
```

extension(parameters, variable, extension, extension_domain=None)

Extend the function

INPUT:

• extension – a symbolic expression
• extension_domain – a RealSet or None (default). The domain of the extension. By default, the entire complement of the current domain.

EXAMPLES:

```sage
definition of the function
sage: f = piecewise([((-1,1), x)]); f
piecewise(x|-->x on (-1, 1); x)
sage: f(3)
Traceback (most recent call last):
  ... ValueError: point 3 is not in the domain
```
fourier_series_cosine_coefficient(parameters, variable, n, L=None)

Return the n-th cosine coefficient of the Fourier series of the periodic function f extending the piecewise-defined function self.

Given an integer $n \geq 0$, the n-th cosine coefficient of the Fourier series of f is defined by

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n\pi x}{L}\right) dx,$$

where L is the half-period of f. For $n \geq 1$, a_n is the coefficient of $\cos(n\pi x/L)$ in the Fourier series of f, while a_0 is twice the coefficient of the constant term $\cos(0x)$, i.e. twice the mean value of f over one period (cf. fourier_series_partial_sum()).

INPUT:
• n – a non-negative integer
• L – (default: None) the half-period of f; if none is provided, L is assumed to be the half-width of the domain of self

OUTPUT:
• the Fourier coefficient a_n, as defined above

EXAMPLES:

A triangle wave function of period 2:

```
sage: f = piecewise([[((0,1), x), ((1,2), 2-x)]])
sage: f.fourier_series_cosine_coefficient(0)
1
sage: f.fourier_series_cosine_coefficient(3)
-4/9/pi^2
```

If the domain of the piecewise-defined function encompasses more than one period, the half-period must be passed as the second argument; for instance:

```
sage: f2 = piecewise([[((0,1), x), ((1,2), 2-x),
                        ....:      ((2,3), x-2), ((3,4), 2-(x-2))]])
sage: bool(f2.restriction((0,2)) == f) # f2 extends f on (0,4)
True
sage: f2.fourier_series_cosine_coefficient(3, 1) # half-period = 1
-4/9/pi^2
```

The default half-period is 2 and one has:

```
sage: f2.fourier_series_cosine_coefficient(3) # half-period = 2
0
```

The Fourier coefficient $-4/(9\pi^2)$ obtained above is actually recovered for $n = 6$:

```
sage: f2.fourier_series_cosine_coefficient(6)
-4/9/pi^2
```

Other examples:
```
sage: f(x) = x^2
sage: f = piecewise([((-1,1),f)])
pi^(-2)
sage: f.fourier_series_cosine_coefficient(2)

sage: f1(x) = -1
sage: f2(x) = 2
sage: f = piecewise([((-pi,pi/2),f1],[(pi/2,pi),f2]])

f.fourier_series_cosine_coefficient(5,pi)
-3/5/pi
```

fourier_series_partial_sum(parameters, variable, N, L=None)

Returns the partial sum up to a given order of the Fourier series of the periodic function \(f \) extending the piecewise-defined function \(\text{self} \).

The Fourier partial sum of order \(N \) is defined as

\[
S_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos \left(\frac{n \pi x}{L} \right) + b_n \sin \left(\frac{n \pi x}{L} \right) \right],
\]

where \(L \) is the half-period of \(f \) and the \(a_n \)'s and \(b_n \)'s are respectively the cosine coefficients and sine coefficients of the Fourier series of \(f \) (cf. `fourier_series_cosine_coefficient()` and `fourier_series_sine_coefficient()`).

INPUT:
- \(N \) – a positive integer; the order of the partial sum
- \(L \) – (default: None) the half-period of \(f \); if none is provided, \(L \) is assumed to be the half-width of the domain of \(\text{self} \)

OUTPUT:
- the partial sum \(S_N(x) \), as a symbolic expression

EXAMPLES:

A square wave function of period 2:

```
sage: f = piecewise([((-1,0), -1), ((0,1), 1)])
sage: f.fourier_series_partial_sum(5)
4/5*sin(5*pi*x)/pi + 4/3*sin(3*pi*x)/pi + 4*sin(pi*x)/pi
```

If the domain of the piecewise-defined function encompasses more than one period, the half-period must be passed as the second argument; for instance:

```
sage: f2 = piecewise([((-1,0), -1), ((0,1), 1),
....: (1,2), -1), ((2,3), 1)])
sage: bool(f2.restriction((-1,1)) == f) # f2 extends f on (-1,3)
True
sage: f2.fourier_series_partial_sum(5, 1) # half-period = 1
4/5*sin(5*pi*x)/pi + 4/3*sin(3*pi*x)/pi + 4*sin(pi*x)/pi
sage: bool(f2.fourier_series_partial_sum(5, 1) ==
....: f.fourier_series_partial_sum(5))
True
```

The default half-period is 2, so that skipping the second argument yields a different result:

```
sage: f2.fourier_series_partial_sum(5) # half-period = 2
4*sin(pi*x)/pi
```

An example of partial sum involving both cosine and sine terms:
sage: f = piecewise([((-1,0), 0), ((0,1/2), 2*x),
 ((1/2,1), 2*(1-x))])
sage: f.fourier_series_partial_sum(5)
-2*cos(2*pi*x)/pi^2 + 4/25*sin(5*pi*x)/pi^2
- 4/9*sin(3*pi*x)/pi^2 + 4*sin(pi*x)/pi^2 + 1/4

fourier_series_sine_coefficient(parameters, variable, n, L=None)

Return the n-th sine coefficient of the Fourier series of the periodic function f extending the piecewise-defined function self.

Given an integer $n \geq 0$, the n-th sine coefficient of the Fourier series of f is defined by

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L} \right) dx,$$

where L is the half-period of f. The number b_n is the coefficient of $\sin(n \pi x/L)$ in the Fourier series of f (cf. fourier_series_partial_sum()).

INPUT:

• n – a non-negative integer
• L – (default: None) the half-period of f; if none is provided, L is assumed to be the half-width of the domain of self

OUTPUT:

• the Fourier coefficient b_n, as defined above

EXAMPLES:

A square wave function of period 2:

sage: f = piecewise([((-1,0), -1), ((0,1), 1)])
sage: f.fourier_series_sine_coefficient(1)
4/pi
sage: f.fourier_series_sine_coefficient(2)
0
sage: f.fourier_series_sine_coefficient(3)
4/3/pi

If the domain of the piecewise-defined function encompasses more than one period, the half-period must be passed as the second argument; for instance:

sage: f2 = piecewise([((-1,0), -1), ((0,1), 1),
 ((1,2), -1), ((2,3), 1)])
sage: bool(f2.restriction((-1,1)) == f) # f2 extends f on (-1,3)
True
sage: f2.fourier_series_sine_coefficient(1, 1) # half-period = 1
4/pi
sage: f2.fourier_series_sine_coefficient(3, 1) # half-period = 1
4/3/pi

The default half-period is 2 and one has:

sage: f2.fourier_series_sine_coefficient(1) # half-period = 2
0
sage: f2.fourier_series_sine_coefficient(3) # half-period = 2
0

The Fourier coefficients obtained from f are actually recovered for $n = 2$ and $n = 6$ respectively:

```python
sage: f2.fourier_series_sine_coefficient(2)
4/pi
sage: f2.fourier_series_sine_coefficient(6)
4/3/pi
```

The `integral` function is defined as follows:

```python
integral(parameters, variable, x=None, a=None, b=None, definite=False, **kwds)
```

By default, return the indefinite integral of the function. If `definite=True` is given, returns the definite integral.

AUTHOR:
- Paul Butler

EXAMPLES:

```python
sage: f1(x) = 1-x
sage: f = piecewise([(0,1), 1], ((1,2), f1))
```

```python
sage: integral(definite=True)
1/2
```

```python
sage: f1(x) = -1
sage: f2(x) = 2
```

```python
sage: f = piecewise([(0,pi/2), f1], ((pi/2,pi), f2))
```

```python
sage: f.integral(definite=True)
1/2*pi
```

Ensure results are consistent with FTC:

```python
sage: f1(y) = -1
sage: f2(y) = y + 3
sage: f3(y) = -y - 1
sage: f4(y) = y^2 - 1
sage: f5(y) = 3
```

```python
sage: f = piecewise([[-4,-3], f1], [-3,-2], f2, [-2,0], f3, [0,2], f4, [2, 3], f5)
```

```python
sage: F = f.integral(y)
```

```python
sage: F(-3) - F(-4)
-1
sage: F(-1) - F(-3)
1
sage: F(2) - F(0)
2/3
sage: f.integral(y, 0, 2)
2/3
```

(continues on next page)
\[
\begin{align*}
\text{sage: } & F(3) - F(-4) \\
& 19/6 \\
\text{sage: } & f.\text{integral}(y, -4, 3) \\
& 19/6 \\
\text{sage: } & f.\text{integral}(\text{definite} = \text{True}) \\
& 19/6
\end{align*}
\]
\[
\begin{align*}
\text{sage: } & f1(y) = (y+3)^2 \\
\text{sage: } & f2(y) = y+3 \\
\text{sage: } & f3(y) = 3 \\
\text{sage: } & f = \text{piecewise}(\ldots) \\
\text{sage: } & f.\text{integral}() \\
& \text{piecewise}(y|\rightarrow 1/3*y^3 + 3*y^2 + 9*y + 9 \text{ on } (-\infty, -3), y|\rightarrow 1/2*y^2 + 3*y + \ldots -9/2 \text{ on } (-3, 0), y|\rightarrow 3*y + 9/2 \text{ on } (0, +\infty); y)
\end{align*}
\]
\[
\begin{align*}
\text{sage: } & f1(x) = e^{-(\text{abs}(x))} \\
\text{sage: } & f = \text{piecewise}(\ldots) \\
\text{sage: } & \text{result } = f.\text{integral}(\text{definite} = \text{True}) \\
& \ldots \\
\text{sage: } & \text{result} \\
& 2 \\
\text{sage: } & f.\text{integral}() \\
& \text{piecewise}(x|\rightarrow \text{integrate}(e^{-(\text{abs}(x))}, x, x, +\infty) \text{ on } (-\infty, +\infty); x)
\end{align*}
\]
\[
\begin{align*}
\text{sage: } & f = \text{piecewise}(\ldots) \\
\text{sage: } & f.\text{integral}() \\
& \text{piecewise}(x|\rightarrow \text{sin}(x) \text{ on } (0, 5); x)
\end{align*}
\]

items *(parameters, variable)*

Iterate over the pieces of the piecewise function

Note: You should probably use **pieces()** instead, which offers a nicer interface.

OUTPUT:

This method iterates over pieces of the piecewise function, each represented by a pair. The first element is the support, and the second the function over that support.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & f = \text{piecewise}(\ldots) \\
\text{sage: } & \text{for support, function in } f.\text{items():} \\
& \ldots: \quad \text{print('support is } \{\text{0}\}, \text{ function is } \{\text{1}\}'.format(support, function)) \\
& \quad \text{support is } \{\text{0}\}, \text{ function is } \text{sin}(x) \\
& \quad \text{support is } \{\text{0}, 2\}, \text{ function is } \text{cos}(x)
\end{align*}
\]

laplace *(parameters, variable, x='x', s='s')*

Returns the Laplace transform of self with respect to the variable var.

INPUT:

- **x** - variable of self
- **s** - variable of Laplace transform.
We assume that a piecewise function is 0 outside of its domain and that the left-most endpoint of the domain is 0.

EXAMPLES:

```python
sage: x, s, w = var('x, s, w')
sage: f = piecewise([[0,1], [1,2], 1-x])
sage: f.laplace(x, s)
-e^(-s)/s + (s + 1)*e^(-2*s)/s^2 + 1/s - e^(-s)/s^2
sage: f.laplace(x, w)
-e^(-w)/w + (w + 1)*e^(-2*w)/w^2 + 1/w - e^(-w)/w^2
```

```python
sage: y, t = var('y, t')
sage: f = piecewise([[1,2], 1-y])
sage: f.laplace(y, t)
(t + 1)*e^(-2*t)/t^2 - e^(-t)/t^2
```

```python
sage: s = var('s')
sage: t = var('t')
sage: f1(t) = -t
sage: f2(t) = 2
sage: f = piecewise([[0,1], f1], [(1,infinity), f2])
sage: f.laplace(t, s)
(s + 1)*e^(-s)/s^2 + 2*e^(-s)/s - 1/s^2
```

pieces(parameters, variable)

Return the “pieces”.

OUTPUT:

A tuple of piecewise functions, each having only a single expression.

EXAMPLES:

```python
sage: p = piecewise([((-1,0), -x), ([0,1], x)], var=x)
sage: p.pieces()
(piecewise(x|-->-x on (-1, 0); x), piecewise(x|-->x on [0, 1]; x))
```

piecewise_add(parameters, variable, other)

Return a new piecewise function with domain the union of the original domains and functions summed. Undefined intervals in the union domain get function value 0.

EXAMPLES:

```python
sage: f = piecewise([[0,1], 1], [(2,3), x])
sage: g = piecewise([[1/2, 2], x])
sage: f.piecewise_add(g).unextend_zero()
piecewise(x|-->1 on (0, 1/2], x|-->x + 1 on (1/2, 1], x|-->x on (1, 2) ∪ (2, 3); x)
```

restriction(parameters, variable, restricted_domain)

Restrict the domain

INPUT:

• restricted_domain – a `RealSet` or something that defines one.
OUTPUT:

A new piecewise function obtained by restricting the domain.

EXAMPLES:

```python
sage: f = piecewise([((-oo, oo), x)]); f
piecewise(x|-->x on (-oo, +oo); x)
sage: f.restriction([[-1,1], [3,3]])
piecewise(x|-->x on [-1, 1] ∪ {3}; x)
```

\textbf{trapezoid(\textit{parameters}, \textit{variable}, \textit{N})}

Return the piecewise line function defined by the trapezoid rule for numerical integration based on a subdivision of each domain interval into \textit{N} subintervals.

EXAMPLES:

```python
sage: f = piecewise([[(0,0), x^2], [RealSet.open_closed(1,2), 5-x^2]])
sage: f.trapezoid(2)
piecewise(x|-->1/2*x on (0, 1/2), x|-->3/2*x - 1/2 on (1/2, 1), x|-->7/2*x - 5/2 on (1, 3/2), x|-->-7/2*x + 8 on (3/2, 2); x)
sage: f = piecewise([[-1,1], 1-x^2]])
sage: f.trapezoid(4).integral(definite=True)
5/4
```

\textbf{unextend_zero(\textit{parameters}, \textit{variable})}

Remove zero pieces.

EXAMPLES:

```python
sage: f = piecewise([((-1,1), x)]); f
piecewise(x|-->x on (-1, 1); x)
sage: g = f.extension(0); g
piecewise(x|-->x on (-1, 1), x|-->0 on (-oo, -1] ∪ [1, +oo); x)
sage: g(3)
0
sage: h = g.unextend_zero()
sage: bool(h == f)
True
```

\textbf{which_function(\textit{parameters}, \textit{variable}, \textit{point})}

Return the expression defining the piecewise function at value

INPUT:

• \textit{point} – a real number.

OUTPUT:

The symbolic expression defining the function value at the given point.

EXAMPLES:

```python
sage: f = piecewise([[(0,0), sin(x)], ((0,2), cos(x))]); f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: f.expression_at(0)
```

(continues on next page)
```plaintext
sin(x)
sage: f.expression_at(1)
cos(x)
sage: f.expression_at(2)
Traceback (most recent call last):
...
ValueError: point is not in the domain
```

static in_operands(ex)
Return whether a symbolic expression contains a piecewise function as operand

INPUT:
- `ex` – a symbolic expression.

OUTPUT:
Boolean

EXAMPLES:
```plaintext
sage: f = piecewise([[0,0], sin(x)), ((0,2), cos(x))]; f
piecewise(x|-->sin(x) on {0}, x|-->cos(x) on (0, 2); x)
sage: piecewise.in_operands(f)
True
sage: piecewise.in_operands(1+sin(f))
True
sage: piecewise.in_operands(1+sin(0*f))
False
```

static simplify(ex)
Combine piecewise operands into single piecewise function

OUTPUT:
A piecewise function whose operands are not piecewiese if possible, that is, as long as the piecewise variable is the same.

EXAMPLES:
```plaintext
sage: f = piecewise([[0,0], sin(x)), ((0,2), cos(x))]
sage: piecewise.simplify(f)
Traceback (most recent call last):
...
NotImplementedError
```

1.7 Spike Functions

AUTHORS:
- Karl-Dieter Crisman (2009-09): adding documentation and doctests

class `sage.functions.spike_function.SpikeFunction(v, eps=1e-07)`
Bases: `object`
Base class for spike functions.

INPUT:

- v - list of pairs (x, height)
- eps - parameter that determines approximation to a true spike

OUTPUT:

a function with spikes at each point \(x \) in \(v \) with the given height.

EXAMPLES:

```sage
sage: spike_function([(-3,4),(-1,1),(2,3)],0.001)
A spike function with spikes at [-3.0, -1.0, 2.0]
```

Putting the spikes too close together may delete some:

```sage
sage: spike_function(((1,1),(1.01,4)],0.1)
Some overlapping spikes have been deleted.
You might want to use a smaller value for eps.
A spike function with spikes at [1.0]
```

Note this should normally be used indirectly via `spike_function`, but one can use it directly:

```sage
sage: from sage.functions.spike_function import SpikeFunction
sage: S = SpikeFunction([[(0,1),(1,2),(pi,-5)]])
sage: S
A spike function with spikes at [0.0, 1.0, 3.141592653589793]
sage: S.support
[0.0, 1.0, 3.141592653589793]
```

Special fast plot method for spike functions.

EXAMPLES:

```sage
sage: S = spike_function([(-1,1),(1,40)])
sage: P = plot(S)
sage: P[0]
Line defined by 8 points
```

Plot of (absolute values of) Fast Fourier Transform of the spike function with given number of samples.

EXAMPLES:

```sage
sage: S = spike_function([(-3,4),(-1,1),(2,3)]; S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: P = S.plot_fft_abs(8)
sage: P[0]; p.ydata # abs tol 1e-8
[5.0, 5.0, 3.367958691924177, 3.367958691924177, 4.123105625617661, 4.123105625617661, 4.759921664218055, 4.759921664218055]
```

Plot of (absolute values of) Fast Fourier Transform of the spike function with given number of samples.

EXAMPLES:
```python
sage: S = spike_function([(-3,4),(-1,1),(2,3)]); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: P = S.plot_fft_arg(8)
sage: p = P[0]; p.ydata  
# abs tol 1e-8
[0.0, 0.0, -0.211524990023434, -0.211524990023434, 0.244978663126864, 0.244978663126864, -0.149106180027477, -0.149106180027477]
```

vector

Create a sampling vector of the spike function in question.

EXAMPLES:

```python
sage: S = spike_function([(-3,4),(-1,1),(2,3)],0.001); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: S.vector(16)
(4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
```

The Chebyshev polynomial of the first kind arises as a solution to the differential equation

\[(1 - x^2)y'' - xy' + n^2 y = 0\]

and those of the second kind as a solution to

\[(1 - x^2)y'' - 3xy' + n(n + 2)y = 0\].

The Chebyshev polynomials of the first kind are defined by the recurrence relation

\[T_0(x) = 1 \quad T_1(x) = x \quad T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)\].

The Chebyshev polynomials of the second kind are defined by the recurrence relation

\[U_0(x) = 1 \quad U_1(x) = 2x \quad U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)\].

For integers \(m, n\), they satisfy the orthogonality relations

\[
\int_{-1}^{1} T_n(x)T_m(x) \frac{dx}{\sqrt{1-x^2}} = \begin{cases}
0 & : n \neq m \\
\pi & : n = m = 0 \\
\pi/2 & : n = m \neq 0
\end{cases}
\]

and

\[
\int_{-1}^{1} U_n(x)U_m(x) \sqrt{1-x^2} \, dx = \frac{\pi}{2} \delta_{m,n}.
\]

They are named after Pafnuty Chebyshev (alternative transliterations: Tchebyshef or Tschebyscheff).

1.8 Orthogonal Polynomials

- The Chebyshev polynomial of the first kind arises as a solution to the differential equation

\[(1 - x^2)y'' - xy' + n^2 y = 0\]

and those of the second kind as a solution to

\[(1 - x^2)y'' - 3xy' + n(n + 2)y = 0\].

The Chebyshev polynomials of the first kind are defined by the recurrence relation

\[T_0(x) = 1 \quad T_1(x) = x \quad T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)\].

The Chebyshev polynomials of the second kind are defined by the recurrence relation

\[U_0(x) = 1 \quad U_1(x) = 2x \quad U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)\].

For integers \(m, n\), they satisfy the orthogonality relations

\[
\int_{-1}^{1} T_n(x)T_m(x) \frac{dx}{\sqrt{1-x^2}} = \begin{cases}
0 & : n \neq m \\
\pi & : n = m = 0 \\
\pi/2 & : n = m \neq 0
\end{cases}
\]

and

\[
\int_{-1}^{1} U_n(x)U_m(x) \sqrt{1-x^2} \, dx = \frac{\pi}{2} \delta_{m,n}.
\]

They are named after Pafnuty Chebyshev (alternative transliterations: Tchebyshef or Tschebyscheff).
The Hermite polynomials are defined either by
\[H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2} \]
(the “probabilists’ Hermite polynomials”), or by
\[H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} \]
(the “physicists’ Hermite polynomials”). Sage (via Maxima) implements the latter flavor. These satisfy the orthogonality relation
\[\int_{-\infty}^{\infty} H_n(x) H_m(x) e^{-x^2} \, dx = n! 2^n \sqrt{\pi} \delta_{nm} \]
They are named in honor of Charles Hermite.

Each Legendre polynomial \(P_n(x) \) is an \(n \)-th degree polynomial. It may be expressed using Rodrigues’ formula:
\[P_n(x) = (2n)!^{-1} \frac{d^n}{dx^n} [(x^2 - 1)^n]. \]
These are solutions to Legendre’s differential equation:
\[\frac{d}{dx} \left[(1 - x^2) \frac{d}{dx} P(x) \right] + n(n + 1) P(x) = 0. \]
and satisfy the orthogonality relation
\[\int_{-1}^{1} P_m(x) P_n(x) \, dx = \frac{2}{2n + 1} \delta_{mn} \]
The Legendre function of the second kind \(Q_n(x) \) is another (linearly independent) solution to the Legendre differential equation. It is not an “orthogonal polynomial” however.

The associated Legendre functions of the first kind \(P^\ell_m(x) \) can be given in terms of the “usual” Legendre polynomials by
\[P^\ell_m(x) = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_\ell(x) = \frac{(-1)^m}{2^m} (1 - x^2)^{m/2} \frac{d^m}{dx^m} (x^2 - 1)^\ell. \]
Assuming \(0 \leq m \leq \ell \), they satisfy the orthogonality relation:
\[\int_{-1}^{1} P^{(m)}_k P^{(m)}_\ell \, dx = \frac{2(\ell + m)!}{(2\ell + 1)(\ell - m)!} \delta_{k,\ell}, \]
where \(\delta_{k,\ell} \) is the Kronecker delta.
The associated Legendre functions of the second kind \(Q^\ell_m(x) \) can be given in terms of the “usual” Legendre polynomials by
\[Q^\ell_m(x) = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} Q_\ell(x). \]
They are named after Adrien-Marie Legendre.

Laguerre polynomials may be defined by the Rodrigues formula
\[L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (e^{-x} x^n). \]
They are solutions of Laguerre’s equation:

\[xy'' + (1 - x) y' + n y = 0 \]

and satisfy the orthogonality relation

\[\int_0^\infty L_m(x)L_n(x)e^{-x} \, dx = \delta_{mn}. \]

The generalized Laguerre polynomials may be defined by the Rodrigues formula:

\[L_n^{(\alpha)}(x) = \frac{x^{-\alpha}e^x}{n!} \frac{d^n}{dx^n} \left(e^{-x}x^n\alpha \right). \]

(These are also sometimes called the associated Laguerre polynomials.) The simple Laguerre polynomials are recovered from the generalized polynomials by setting \(\alpha = 0 \).

They are named after Edmond Laguerre.

- Jacobi polynomials are a class of orthogonal polynomials. They are obtained from hypergeometric series in cases where the series is in fact finite:

\[P_{n}^{(\alpha,\beta)}(z) = \frac{(\alpha + 1)_n}{n!} \, _2F_1 \left(-n, 1 + \alpha + \beta + n; \alpha + 1; \frac{1-z}{2} \right), \]

where \((\cdot)_n\) is Pochhammer’s symbol (for the rising factorial), (Abramowitz and Stegun p561.) and thus have the explicit expression

\[P_{n}^{(\alpha,\beta)}(z) = \frac{\Gamma(\alpha + n + 1)}{n!\Gamma(\alpha + \beta + n + 1)} \sum_{m=0}^{n} \binom{n}{m} \frac{\Gamma(\alpha + \beta + n + m + 1)}{\Gamma(\alpha + m + 1)} \left(\frac{z - 1}{2} \right)^m. \]

They are named after Carl Jacobi.

- Ultraspherical or Gegenbauer polynomials are given in terms of the Jacobi polynomials \(P_{n}^{(\alpha,\beta)}(x) \) with \(\alpha = \beta = a - 1/2 \) by

\[C_{n}^{(a)}(x) = \frac{\Gamma(a + 1/2)}{\Gamma(2a)} \frac{\Gamma(n + 2a)}{\Gamma(n + a + 1/2)} P_{n}^{(a-1/2,a-1/2)}(x). \]

They satisfy the orthogonality relation

\[\int_{-1}^{1} (1 - x^2)^{a-1/2} C_{m}^{(a)}(x) C_{n}^{(a)}(x) \, dx = \delta_{mn} 2^{1-2a} \pi \frac{\Gamma(n + 2a)}{(n+a)\Gamma^2(a)\Gamma(n+1)}, \]

for \(a > -1/2 \). They are obtained from hypergeometric series in cases where the series is in fact finite:

\[C_{n}^{(a)}(z) = \frac{(2a)_n}{n!} \, _2F_1 \left(-n, 2a + n; a + \frac{1}{2}; \frac{1-z}{2} \right) \]

where \(n! \) is the falling factorial. (See Abramowitz and Stegun p561)

They are named for Leopold Gegenbauer (1849-1903).

For completeness, the Pochhammer symbol, introduced by Leo August Pochhammer, \((x)_n\), is used in the theory of special functions to represent the “rising factorial” or “upper factorial”

\[(x)_n = x(x+1)(x+2) \cdots (x+n-1) = \frac{(x+n-1)!}{(x-1)!}. \]

On the other hand, the “falling factorial” or “lower factorial” is

\[x^\underline{n} = \frac{x!}{(x-n)!}. \]
in the notation of Ronald L. Graham, Donald E. Knuth and Oren Patashnik in their book Concrete Mathematics.

Todo: Implement Zernike polynomials. Wikipedia article Zernike_polynomials

REFERENCES:

• [AS1964]
• Wikipedia article Chebyshev_polynomials
• Wikipedia article Legendre_polynomials
• Wikipedia article Hermite_polynomials
• http://mathworld.wolfram.com/GegenbauerPolynomial.html
• Wikipedia article Jacobi_polynomials
• Wikipedia article Laguerre_polynomials
• Wikipedia article Associated_Legendre_polynomials
• [Koe1999]

AUTHORS:

• David Joyner (2006-06)
• Stefan Reiterer (2010-)
• Ralf Stephan (2015-)

The original module wrapped some of the orthogonal/special functions in the Maxima package “orthopoly” and was written by Barton Willis of the University of Nebraska at Kearney.

class sage.functions.orthogonal_polys.ChebyshevFunction(name, nargs=2, latex_name=None, conversions={})
Bases: sage.functions.orthogonal_polys.OrthogonalFunction
Abstract base class for Chebyshev polynomials of the first and second kind.

EXAMPLES:

```python
sage: chebyshev_T(3,x)
4*x^3 - 3*x
```

class sage.functions.orthogonal_polys.Func_assoc_legendre_P
Bases: sage.symbolic.function.BuiltinFunction
Return the Ferrers function \(P_{\alpha n}(x) \) of first kind for \(x \in (-1, 1) \) with general order \(\alpha \) and general degree \(n \).

Ferrers functions of first kind are one of two linearly independent solutions of the associated Legendre differential equation

\[
(1 - x^2) \frac{d^2 w}{dx^2} - 2x \frac{dw}{dx} + \left(n(n + 1) - \frac{m^2}{1 - x^2} \right) w = 0
\]

on the interval \(x \in (-1, 1) \) and are usually denoted by \(P_{\alpha n}(x) \).

See also:

The other linearly independent solution is called Ferrers function of second kind and denoted by \(Q_{\alpha n}(x) \), see Func_assoc_legendre_Q.
Warning: Ferrers functions must be carefully distinguished from associated Legendre functions which are defined on $\mathbb{C} \setminus (-\infty, 1]$ and have not yet been implemented.

EXAMPpLES:

We give the first Ferrers functions for non-negative integers n and m in the interval $-1 < x < 1$:

```python
sage: for n in range(4):
    ....:     for m in range(n+1):
    ....:         print(f"P_{n}^{{m}}(x) = {gen_legendre_P(n, m, x)}")
```

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>$P_n^m(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$-\sqrt{-x^2 + 1}$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$\frac{3}{2}x^2 - \frac{1}{2}$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>$-3\sqrt{-x^2 + 1}x$</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>$-3x^2 + 3$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>$\frac{5}{2}x^3 - 3\frac{1}{2}x$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$-3\sqrt{-x^2 + 1}(5x^2 - 1)$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$-15(x^2 - 1)x$</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>$-15(-x^2 + 1)^{\frac{3}{2}}$</td>
</tr>
</tbody>
</table>

These expressions for non-negative integers are computed by the Rodrigues-type given in `eval_gen_poly()`. Negative values for n are obtained by the following identity:

$$P_n^{-m}(x) = P_{n-1}^m(x).$$

For n being a non-negative integer, negative values for m are obtained by

$$P_n^{-|m|}(x) = (-1)^{|m|} \frac{(n - |m|)!}{(n + |m|)!} P_n^{|m|}(x),$$

where $|m| \leq n$.

Here are some specific values with negative integers:

```python
sage: gen_legendre_P(-2, -1, x)
1/2*sqrt(-x^2 + 1)
```

```python
sage: gen_legendre_P(2, -2, x)
-1/8*x^2 + 1/8
```

```python
sage: gen_legendre_P(-2, -2, x)
-1/8*(-x^2 + 1)
```

```python
sage: gen_legendre_P(1, -2, x)
0
```

Here are some other random values with floating numbers:

```python
sage: m = var('m'); assume(m, 'integer')
sage: gen_legendre_P(m, m, .2)
0.960000000000000^(1/2)*0.2^m*(-1)^m*factorial(2^m)/(2^m*factorial(m))
sage: gen_legendre_P(.2, m, 0)
sqrt(pi)*2^m/gamma(-1.3)*gamma(-1.3)*gamma(-1.3)
```

REFERENCES:

1.8. Orthogonal Polynomials
• [DLMF-Legendre]

deprecated_function_alias(trac_number, func)

Create an aliased version of a function or a method which raises a deprecation warning message.

If f is a function or a method, write \(g = \text{deprecated_function_alias}(\text{trac_number}, f) \) to make a deprecated aliased version of f.

INPUT:

- trac_number – integer. The trac ticket number where the deprecation is introduced.
- func – the function or method to be aliased

EXAMPLES:

```
sage: from sage.misc.superseded import deprecated_function_alias
dsage: g = deprecated_function_alias(13109, number_of_partitions)
dsage: g(5)
doctest:...: DeprecationWarning: g is deprecated. Please use sage.combinat.partition.number_of_partitions instead.
See http://trac.sagemath.org/13109 for details.
```

This also works for methods:

```
sage: class cls(object):
    def new_meth(self):
        return 42
    old_meth = deprecated_function_alias(13109, new_meth)
sage: cls().old_meth()
doctest:...: DeprecationWarning: old_meth is deprecated. Please use new_meth instead.
See http://trac.sagemath.org/13109 for details.
```

trac ticket #11585:

```
sage: def a(): pass
dsage: b = deprecated_function_alias(13109, a)
dsage: b()
doctest:...: DeprecationWarning: b is deprecated. Please use a instead.
See http://trac.sagemath.org/13109 for details.
```

AUTHORS:

- Florent Hivert (2009-11-23), with the help of Mike Hansen.
- Luca De Feo (2011-07-11), printing the full module path when different from old path

eval_gen_poly(n, m, arg, **kwds)

Return the Ferrers function of first kind \(P_n^m(x) \) for integers \(n > -1, m > -1 \) given by the following Rodrigues-type formula:

\[
P_n^m(x) = (-1)^{m+n} \frac{(1-x^2)^{m/2} \frac{d^{m+n}}{dx^{m+n}}(1-x^2)^n}{2^n n!}.
\]

INPUT:

- n – an integer degree
- m – an integer order
• \(x\) – either an integer or a non-numerical symbolic expression

EXAMPLES:

```python
sage: gen_legendre_P(7,4,x)
3465/2*(13*x^3 - 3*x)*(x^2 - 1)^2
sage: gen_legendre_P(3,1,sqrt(x))
-3/2*(5*x - 1)*sqrt(-x + 1)
```

REFERENCE:

• [DLMF-Legendre], Section 14.7 eq. 10 (https://dlmf.nist.gov/14.7#E10)

`eval_poly`(*args, **kwds)

Deprecated: Use `eval_gen_poly()` instead. See trac ticket #25034 for details.

```python
class sage.functions.orthogonal_polys.Func_assoc_legendre_Q
    Bases: sage.symbolic.function.BuiltinFunction

EXAMPLES:

```python
sage: loads(dumps(gen_legendre_Q))
gen_legendre_Q
sage: maxima(gen_legendre_Q(2,1,3, hold=True))._sage_().simplify_full()
1/4*sqrt(2)*(36*pi - 36*I*log(2) + 25*I)
```

`eval_recursive(n, m, x, **kwds)`

Return the associated Legendre \(Q(n, m, \text{arg})\) function for integers \(n > -1, m > -1\).

EXAMPLES:

```python
sage: gen_legendre_Q(3,4,x)
48/(x^2 - 1)^2
sage: gen_legendre_Q(4,5,x)
-384/((x^2 - 1)^2*sqrt(-x^2 + 1))
sage: gen_legendre_Q(0,1,x)
-1/sqrt(-x^2 + 1)
sage: gen_legendre_Q(0,2,x)
-1/2*((x + 1)^2 - (x - 1)^2)/(x^2 - 1)
sage: gen_legendre_Q(2,2,x).subs(x=2).expand()
9/2*I*pi - 9/2*log(3) + 14/3
```

```python
class sage.functions.orthogonal_polys.Func_chebyshev_T
 Bases: sage.functions.orthogonal_polys.ChebyshevFunction

Chebyshev polynomials of the first kind.

REFERENCE:

• [AS1964] 22.5.31 page 778 and 6.1.22 page 256.

EXAMPLES:

```python
sage: chebyshev_T(5,x)
16*x^5 - 20*x^3 + 5*x
sage: var('k')
k
sage: test = chebyshev_T(k,x)
```

(continues on next page)
\texttt{sage: test}
\texttt{chebyshev_T(k, x)}

\textbf{eval_algebraic}(n, x)
Evaluate \texttt{chebyshev_T} as polynomial, using a recursive formula.

\textbf{INPUT:}
\begin{itemize}
\item \texttt{n} – an integer
\item \texttt{x} – a value to evaluate the polynomial at (this can be any ring element)
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}sage: chebyshev_T.eval_algebraic(5, x) 2*(2*(2*x^2 - 1)*x - x)*(2*x^2 - 1) - x
sage: chebyshev_T(-7, x) - chebyshev_T(7,x) 0
sage: R.<t> = ZZ[]
sage: chebyshev_T.eval_algebraic(-1, t) t
sage: chebyshev_T.eval_algebraic(0, t) 1
sage: chebyshev_T.eval_algebraic(1, t) t
sage: chebyshev_T.eval_algebraic(7^100, 1/2) 1/2
sage: chebyshev_T(7^100, Mod(2,3)) 2
sage: n = 97; x = RIF(pi/2/n)
sage: chebyshev_T(n, cos(x)).contains_zero() True
sage: R.<t> = Zp(2, 8, 'capped-abs')[]
sage: chebyshev_T(10^6+1, t) (2^7 + O(2^8))*t^5 + O(2^8)*t^4 + (2^6 + O(2^8))*t^3 + O(2^8)*t^2 + (1 + 2^6 + \cdots + 0(2^8))*t + O(2^8)
\end{verbatim}

\textbf{eval_formula}(n, x)
Evaluate \texttt{chebyshev_T} using an explicit formula. See [AS1964] 227 (p. 782) for details for the recursions. See also [Koe1999] for fast evaluation techniques.

\textbf{INPUT:}
\begin{itemize}
\item \texttt{n} – an integer
\item \texttt{x} – a value to evaluate the polynomial at (this can be any ring element)
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}sage: chebyshev_T.eval_formula(-1,x) x
sage: chebyshev_T.eval_formula(0,x) 1
sage: chebyshev_T.eval_formula(1,x) x
sage: chebyshev_T.eval_formula(2,0.1) == chebyshev_T._evalf_(2,0.1) True
\end{verbatim}
\texttt{sage}: \texttt{chebyshev}_T.\texttt{eval}_formula(10,x) \\\ 512^x^10 - 1280^x^8 + 1120^x^6 - 400^x^4 + 50^x^2 - 1
\texttt{sage}: \texttt{chebyshev}_T.\texttt{eval}_algebraic(10,x).\texttt{expand()} \\\ 512^x^10 - 1280^x^8 + 1120^x^6 - 400^x^4 + 50^x^2 - 1

\texttt{class} sage.functions.orthogonal_polys.\texttt{Func}_chebyshev_U
\texttt{Bases:} sage.functions.orthogonal_polys.\texttt{ChebyshevFunction}

Class for the Chebyshev polynomial of the second kind.

\texttt{REFERENCE:}
\begin{itemize}
\item [AS1964] 22.8.3 page 783 and 6.1.22 page 256.
\end{itemize}

\texttt{EXAMPLES:}

\begin{verbatim}
sage: R.<t> = QQ[]
sage: chebyshev_U(2,t) 4*t^2 - 1
sage: chebyshev_U(3,t) 8*t^3 - 4*t
\end{verbatim}

\texttt{eval}_algebraic\((n,x)\)

Evaluate \texttt{chebyshev}_U as polynomial, using a recursive formula.

\texttt{INPUT:}
\begin{itemize}
\item \texttt{n} – an integer
\item \texttt{x} – a value to evaluate the polynomial at (this can be any ring element)
\end{itemize}

\texttt{EXAMPLES:}

\begin{verbatim}
sage: chebyshev_U.eval_algebraic(5,x) -2^((2*x + 1)*(2*x - 1)*x - 4^((2*x^2 - 1)*x)*(2*x + 1)*(2*x - 1))
sage: parent(chebyshev_U(3, Mod(8,9))) Ring of integers modulo 9
sage: parent(chebyshev_U(3, Mod(1,9))) Ring of integers modulo 9
sage: chebyshev_U(-3,x) + chebyshev_U(1,x) 0
sage: chebyshev_U(-1,Mod(5,8)) 0
sage: parent(chebyshev_U(-1,Mod(5,8))) Ring of integers modulo 8
sage: R.<t> = ZZ[]
sage: chebyshev_U.eval_algebraic(-2, t) -1
sage: chebyshev_U.eval_algebraic(-1, t) 0
sage: chebyshev_U.eval_algebraic(0, t) 1
sage: chebyshev_U.eval_algebraic(1, t) 2*t
sage: n = 97; x = RIF(pi/n)
\end{verbatim}
sage: chebyshev_U(n-1, cos(x)).contains_zero()
True
sage: R.<t> = Zp(2, 6, 'capped-abs')[]
sage: chebyshev_U(10^6+1, t)
(2 + O(2^6))*t + O(2^6)

eval_formula\((n, x)\)
Evaluate \(\text{chebyshev}_U\) using an explicit formula.

See [AS1964] 227 (p. 782) for details on the recursions. See also [Koe1999] for the recursion formulas.

INPUT:
- \(n\) – an integer
- \(x\) – a value to evaluate the polynomial at (this can be any ring element)

EXAMPLES:

sage: chebyshev_U.eval_formula(10, x)
1024*x^10 - 2304*x^8 + 1792*x^6 - 560*x^4 + 60*x^2 - 1
sage: chebyshev_U.eval_formula(-2, x)
-1
sage: chebyshev_U.eval_formula(-1, x)
0
sage: chebyshev_U.eval_formula(0, x)
1
sage: chebyshev_U.eval_formula(1, x)
2*x
sage: chebyshev_U.eval_formula(2, 0.1) == chebyshev_U._evalf_(2, 0.1)
True

class `sage.functions.orthogonal_polys.Func_gen_laguerre`

Bases: `sage.functions.orthogonal_polys.OrthogonalFunction`

REFERENCE:

class `sage.functions.orthogonal_polys.Func_hermite`

Bases: `sage.symbolic.function.GinacFunction`

Returns the Hermite polynomial for integers \(n > -1\).

REFERENCE:
- [AS1964] 22.5.40 and 22.5.41, page 779.

EXAMPLES:

sage: x = PolynomialRing(QQ, 'x').gen()
sage: hermite(2, x)
4*x^2 - 2
sage: hermite(3, x)
8*x^3 - 12*x
sage: hermite(3, 2)
40
sage: S.<y> = PolynomialRing(RR)
sage: hermite(3,y)
8.00000000000000*y^3 - 12.0000000000000*y
sage: R.<x,y> = QQ[]
sage: hermite(3,y^2)
8*y^6 - 12*y^2
sage: w = var('w')
sage: hermite(3,2*w)
64*w^3 - 24*w
sage: hermite(5,3.1416)
5208.69733891963
sage: hermite(5,RealField(100)(pi))
5208.6167627118104649470287166

Check that trac ticket #17192 is fixed:

sage: x = PolynomialRing(QQ, 'x').gen()
sage: hermite(-1,x)
Traceback (most recent call last):
 ... RuntimeWarning: hermite_eval: The index n must be a nonnegative integer
sage: hermite(-7,x)
Traceback (most recent call last):
 ... RuntimeWarning: hermite_eval: The index n must be a nonnegative integer
sage: m,x = SR.var('m,x')
sage: hermite(m, x).diff(m)
Traceback (most recent call last):
 ... RuntimeWarning: derivative w.r.t. to the index is not supported yet

class sage.functions.orthogonal_polys.Func_jacobi_P
Bases: sage.functions.orthogonal_polys.OrthogonalFunction

Return the Jacobi polynomial \(P_n^{(a,b)}(x) \) for integers \(n > -1 \) and \(a \) and \(b \) symbolic or \(a > -1 \) and \(b > -1 \). The Jacobi polynomials are actually defined for all \(a \) and \(b \). However, the Jacobi polynomial weight \((1-x)^a(1+x)^b \) isn’t integrable for \(a \leq -1 \) or \(b \leq -1 \).

REFERENCE:

- Table on page 789 in [AS1964].

EXAMPLES:

sage: x = PolynomialRing(QQ, 'x').gen()
sage: jacobi_P(2,0,0,x)
3/2*x^2 - 1/2
sage: jacobi_P(2,1,2,1.2)
5.01000000000000

class sage.functions.orthogonal_polys.Func_laguerre

1.8. Orthogonal Polynomials
Bases: `sage.functions.orthogonal_polys.OrthogonalFunction`

REFERENCE:


```python
class sage.functions.orthogonal_polys.Func_legendre_P
    Bases: sage.symbolic.function.GinacFunction

EXAMPLES:

sage: legendre_P(4, 2.0)
55.3750000000000
sage: legendre_P(1, x)
x
sage: legendre_P(4, x+1)
35/8*(x + 1)^4 - 15/4*(x + 1)^2 + 3/8
sage: legendre_P(1/2, I+1.)
1.05338240025858 + 0.359890322109665*I
sage: legendre_P(0, SR(1)).parent()
Symbolic Ring
sage: legendre_P(0, 0)
1
sage: legendre_P(1, x)
x
sage: legendre_P(4, 2.)
55.3750000000000
sage: legendre_P(5.5,1.00001)
1.00017875754114
sage: legendre_P(1/2, I+1).n()
1.0533824002585801 + 0.35989032210966539*I
sage: legendre_P(1/2, I+1).n(59)
1.05338240025858017863095883
sage: legendre_P(42, RR(12345678))
2.66314881466753e309
sage: legendre_P(42, Reals(20)(12345678))
2.6632e309
sage: legendre_P(201/2, 0).n()
0.0561386178630179
sage: legendre_P(201/2, 0).n(100)
0.056138617863017877699963095883
sage: R.<x> = QQ[]
sage: legendre_P(4,x)
35/8*x^4 - 15/4*x^2 + 3/8
sage: legendre_P(10000,x).coefficient(x,1)
0
sage: var('t,x')
(t, x)
sage: legendre_P(-5,t)
35/8*t^4 - 15/4*t^2 + 3/8
sage: legendre_P(4, x+1)
35/8*(x + 1)^4 - 15/4*(x + 1)^2 + 3/8
```

(continues on next page)
sage: legendre_P(4, sqrt(2))
83/8
sage: legendre_P(4, I*e)
35/8*e^4 + 15/4*e^2 + 3/8

sage: n = var('n')
sage: derivative(legendre_P(n, x), x)
(n*x*legendre_P(n, x) - n*legendre_P(n - 1, x))/(x^2 - 1)
sage: derivative(legendre_P(3, x), x)
15/2*x^2 - 3/2
sage: derivative(legendre_P(n, x), n)
Traceback (most recent call last):
 ... RuntimeWarning: derivative w.r.t. to the index is not supported yet

class sage.functions.orthogonal_polys.Func_legendre_Q
Bases: sage.symbolic.function.BuiltinFunction

EXAMPLES:

sage: loads(dumps(legendre_Q))
legendre_Q
sage: maxima(legendre_Q(20,x, hold=True))._sage_().coefficient(x,10)
-29113619535/131072*log(-(x + 1)/(x - 1))

eval_formula(n, arg, **kwds)
 Return expanded Legendre Q(n, arg) function expression.

REFERENCE:
 • TM. Dunster, Legendre and Related Functions, https://dlmf.nist.gov/14.7#E2

EXAMPLES:

sage: legendre_Q.eval_formula(1, x)
1/2*x*(log(x + 1) - log(-x + 1)) - 1
sage: legendre_Q.eval_formula(2, x).expand().collect(log(1+x)).collect(log(1-x))
1/4*(3*x^2 - 1)*log(x + 1) - 1/4*(3*x^2 - 1)*log(-x + 1) - 3/2*x
sage: legendre_Q.eval_formula(20, x).coefficient(x, 10)
-29113619535/131072*log(x + 1) + 29113619535/131072*log(-x + 1)
sage: legendre_Q(0, 2)
-1/2*I*pi + 1/2*log(3)
sage: legendre_Q(0, 2.)
0.549306144334055 - 1.57079632679490*I

eval_recursive(n, arg, **kwds)
 Return expanded Legendre Q(n, arg) function expression.

EXAMPLES:

sage: legendre_Q.eval_recursive(2, x)
3/4*x^2*(log(x + 1) - log(-x + 1)) - 3/2*x - 1/4*log(x + 1) + 1/4*log(-x + 1)
sage: legendre_Q.eval_recursive(20, x).expand().coefficient(x, 10)
-29113619535/131072*log(x + 1) + 29113619535/131072*log(-x + 1)
class sage.functions.orthogonal_polys.Func_ultraspherical

Bases: sage.symbolic.function.GinacFunction

Return the ultraspherical (or Gegenbauer) polynomial gegenbauer(n,a,x),

\[C_n^a(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k \Gamma(n - k + a)}{\Gamma(a) k!(n - 2k)!} (2x)^{n-2k}. \]

When \(n \) is a nonnegative integer, this formula gives a polynomial in \(z \) of degree \(n \), but all parameters are permitted to be complex numbers. When \(a = 1/2 \), the Gegenbauer polynomial reduces to a Legendre polynomial.

Computed using Pynac.

For numerical evaluation, consider using the mpmath library, as it also allows complex numbers (and negative \(n \) as well); see the examples below.

REFERENCE:

• [AS1964] 22.5.27

EXAMPLES:

```python
sage: ultraspherical(8, 101/11, x)
795972057547264/214358881*x^8 - 62604543852032/19487171*x^6...
```

```python
sage: ultraspherical(2,3/2,x)
15/2*x^2 - 3/2
```

```python
sage: ultraspherical(1,1,x)
2*x
```

```python
sage: gegenbauer(3,2,t)
32*t^3 - 12*t
```

```python
sage: x = SR.var('x')
sage: n = ZZ.random_element(5, 5001)
sage: a = QQ.random_element().abs() + 5
sage: s = ( (n+1)*ultraspherical(n+1,a,x)
    ....: - 2*x*(n+a)*ultraspherical(n,a,x)
    ....: + (n+2*a-1)*ultraspherical(n-1,a,x) )
sage: s.expand().is_zero()
True
```

```python
sage: ultraspherical(5,9/10,3.1416)
6949.55439044240
```

```python
sage: a,n = SR.var('a,n')
sage: gegenbauer(10,a,x).expand().coefficient(x,2)
1/12*a^6 + 5/4*a^5 + 85/12*a^4 + 75/4*a^3 + 137/6*a^2 + 10*a
```

```python
sage: ex = gegenbauer(100,a,x)
sage: (ex.subs(a==55/98) - gegenbauer(100,55/98,x)).is_trivial_zero()```

(continues on next page)
True

\begin{verbatim}
sage: gegenbauer(2, -3, x)
12*x^2 + 3
sage: gegenbauer(120, -99/2, 3)
165450237260857068211268753017832849861923493372493824
sage: gegenbauer(5, 9/2, x)
21879/8*x^5 - 6435/4*x^3 + 1287/8*x
sage: gegenbauer(15, 3/2, 5)
3903412392243800
sage: derivative(gegenbauer(n, a, x), x)
2*a*gegenbauer(n - 1, a + 1, x)
sage: derivative(gegenbauer(3, a, x), x)
4*(a + 2)*(a + 1)*a*x^2 - 2*(a + 1)*a
sage: derivative(gegenbauer(n, a, x), a)
Traceback (most recent call last):
... RuntimeError: derivative w.r.t. to the second index is not supported yet
\end{verbatim}

Numerical evaluation with the mpmath library:

\begin{verbatim}
sage: from mpmath import gegenbauer as gegenbauer_mp
sage: mp.pretty = True; mp.dps=25
sage: gegenbauer_mp(-7, 0.5, 0.3)
0.1291811875
sage: gegenbauer_mp(2+3j, -0.75, -1000j)
(-5038991.358609026523401901 + 9414549.285447104177860806j)
\end{verbatim}

\textbf{class} sage.functions.orthogonal_polys.\texttt{OrthogonalFunction}(\textit{name}, \textit{nargs}=2, \textit{latex_name}=None, \textit{conversions}={})

Bases: sage.symbolic.function.BuiltinFunction

Base class for orthogonal polynomials.

This class is an abstract base class for all orthogonal polynomials since they share similar properties. The evaluation as a polynomial is either done via maxima, or with pynac.

Convention: The first argument is always the order of the polynomial, the others are other values or parameters where the polynomial is evaluated.

def \texttt{eval\_formula}(*\textit{args})
Evaluate this polynomial using an explicit formula.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.functions.orthogonal_polys import OrthogonalFunction
sage: P = OrthogonalFunction('testo_P')
sage: P.eval_formula(1, 2.0)
Traceback (most recent call last):
... NotImplementedError: no explicit calculation of values implemented
\end{verbatim}
1.9 Other functions

class sage.functions.other.Function_Order
    Bases: sage.symbolic.function.GinacFunction

    The order function.
    This function gives the order of magnitude of some expression, similar to $O$-terms.

    See also:

    Order(), big_oh

    EXAMPLES:

    sage: x = SR('x')
    sage: x.Order()
    Order(x)
    sage: (x^2 + x).Order()
    Order(x^2 + x)

class sage.functions.other.Function_abs
    Bases: sage.symbolic.function.GinacFunction

    The absolute value function.

    EXAMPLES:

    sage: var('x y')
    (x, y)
    sage: abs(x)
    abs(x)
    sage: abs(x^2 + y^2)
    abs(x^2 + y^2)
    sage: abs(-2)
    2
    sage: sqrt(x^2)
    sqrt(x^2)
    sage: abs(sqrt(x))
    sqrt(abs(x))
    sage: complex(abs(3*I))
    (3+0j)
    sage: f = sage.functions.other.Function_abs()
    sage: latex(f)
    \mathrm{abs}
    sage: latex(abs(x))
    \left| x \right|
    sage: abs(x)._sympy_()
    Abs(x)

    Test pickling:

    sage: loads(dumps(abs(x)))
    abs(x)
class sage.functions.other.Function_arg

Bases: sage.symbolic.function.BuiltinFunction

The argument function for complex numbers.

EXAMPLES:

```
sage: arg(3+i)
arctan(1/3)
sage: arg(-1+i)
3/4*pi
sage: arg(2+2*i)
1/4*pi
sage: arg(2+x)
arg(x + 2)
sage: arg(2.0+i+x)
arg(x + 2.00000000000000 + 1.00000000000000*I)
sage: arg(-3)
pi
sage: arg(3)
0
sage: arg(0)
0

sage: latex(arg(x))
\{\text{arg}\left(x \right)\}
```

```
sage: maxima(arg(x))
atan2(0,_SAGE_VAR_x)
sage: maxima(arg(2+i))
atan(1/2)
sage: maxima(arg(sqrt(2)+i))
atan(1/sqrt(2))
sage: arg(x)._sympy_()
arg(x)
```

```
sage: arg(2+i)
arctan(1/2)
sage: arg(sqrt(2)+i)
arg(sqrt(2) + I)
sage: arg(sqrt(2)+i).simplify()
arctan(1/2*sqrt(2))
```

class sage.functions.other.Function_binomial

Bases: sage.symbolic.function.GinacFunction

Return the binomial coefficient

\[ \binom{x}{m} = \frac{x(x-1)\cdots(x-m+1)}{m!} \]

which is defined for \( m \in \mathbb{Z} \) and any \( x \). We extend this definition to include cases when \( x-m \) is an integer but \( m \) is not by

\[ \binom{x}{m} = \binom{x}{x-m} \]

If \( m < 0 \), return 0.
INPUT:

- \( x, m \) - numbers or symbolic expressions. Either \( m \) or \( x-m \) must be an integer, else the output is symbolic.

OUTPUT: number or symbolic expression (if input is symbolic)

EXAMPLES:

```
sage: binomial(5,2)
10
sage: binomial(2,0)
1
sage: binomial(1/2, 0)
1
sage: binomial(3,-1)
0
sage: binomial(20,10)
184756
sage: binomial(-2, 5)
-6
sage: binomial(RealField()('2.5'), 2)
1.87500000000000
sage: n=var('n'); binomial(n,2)
1/2*(n - 1)*n
sage: n=var('n'); binomial(n,n)
1
sage: n=var('n'); binomial(n,n-1)
n
sage: binomial(2^100, 2^100)
1
```

```
sage: k, i = var('k,i')
sage: binomial(k,i)
binomial(k, i)
```

We can use a hold parameter to prevent automatic evaluation:

```
sage: SR(5).binomial(3, hold=True)
binaryomial(5, 3)
sage: SR(5).binomial(3, hold=True).simplify()
10
```

**class** `sage.functions.other.Function_cases`

Bases: `sage.symbolic.function.GinacFunction`

Formal function holding \((\text{condition}, \text{expression})\) pairs.

Numbers are considered conditions with zero being False. A true condition marks a default value. The function is not evaluated as long as it contains a relation that cannot be decided by Pynac.

EXAMPLES:

```
sage: ex = cases([[x==0, pi], (True, 0)]); ex
cases(((x == 0, pi), (1, 0)))
sage: ex.subs(x==0)
pi
```
sage: ex.subs(x==2)
0
sage: ex + 1
cases(((x == 0, pi), (1, 0))) + 1
sage: _.subs(x==0)
pi + 1

The first encountered default is used, as well as the first relation that can be trivially decided:

sage: cases(((True, pi), (True, 0)))
pi
sage: _ = var('y')
sage: ex = cases(((x==0, pi), (y==1, 0))); ex
cases(((x == 0, pi), (y == 1, 0)))
sage: ex.subs(x==0)
pi
sage: ex.subs(x==0, y==1)
pi

class sage.functions.other.Function_ceil
    Bases: sage.symbolic.function.BuiltinFunction

The ceiling function.

The ceiling of \( x \) is computed in the following manner.

1. The \( x.ceil() \) method is called and returned if it is there. If it is not, then Sage checks if \( x \) is one of Python’s native numeric data types. If so, then it calls and returns \( \text{Integer}(\text{math.ceil}(x)) \).

2. Sage tries to convert \( x \) into a RealIntervalField with 53 bits of precision. Next, the ceilings of the endpoints are computed. If they are the same, then that value is returned. Otherwise, the precision of the RealIntervalField is increased until they do match up or it reaches bits of precision.

3. If none of the above work, Sage returns a Expression object.

EXAMPLES:

sage: a = ceil(2/5 + x)
sage: a
ceil(x + 2/5)
sage: a(x=4)
5
sage: a(x=4.0)
5
sage: ZZ(a(x=3))
4
sage: a = ceil(x^3 + x + 5/2); a
ceil(x^3 + x + 5/2)
sage: a.simplify()
ceil(x^3 + x + 1/2) + 2
sage: a(x=2)
13

1.9. Other functions
sage: ceil(sin(8)/sin(2))
2

sage: ceil(5.4)
6
sage: type(ceil(5.4))
<class 'sage.rings.integer.Integer'>

sage: ceil(factorial(50)/exp(1))
1118719610782480504630258070757734324011354208865721592720336801
sage: ceil(SR(10^50 + 10^(-50)))
100000000000000000000000000000000000000000000000001
sage: ceil(SR(10^50 - 10^(-50)))
100000000000000000000000000000000000000000000000000

Small numbers which are extremely close to an integer are hard to deal with:

sage: ceil((33^100 + 1)^(1/100))
Traceback (most recent call last):
... ValueError: cannot compute ceil(...) using 256 bits of precision

This can be fixed by giving a sufficiently large bits argument:

sage: ceil((33^100 + 1)^(1/100), bits=500)
Traceback (most recent call last):
... ValueError: cannot compute ceil(...) using 512 bits of precision
sage: ceil((33^100 + 1)^(1/100), bits=1000)
34

sage: ceil(sec(e))
-1

sage: latex(ceil(x))
\left \lceil x \right \rceil
sage: ceil(x)._sympy_()
ceiling(x)

sage: import numpy
sage: a = numpy.linspace(0,2,6)

sage: ceil(a)
array([0., 1., 1., 2., 2., 2.])

Test pickling:

sage: loads(dumps(ceil))
ceil

class sage.functions.other.Function_conjugate
Bases: sage.symbolic.function.GinacFunction

Returns the complex conjugate of the input.
It is possible to prevent automatic evaluation using the `hold` parameter:

```python
sage: conjugate(I, hold=True)
conjugate(I)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: conjugate(I, hold=True).simplify()
-I
```

class `sage.functions.other.Function_crootof`

Bases: `sage.symbolic.function.BuiltinFunction`

Formal function holding \((\text{polynomial}, \text{index})\) pairs.

The expression evaluates to a floating point value that is an approximation to a specific complex root of the polynomial. The ordering is fixed so you always get the same root.

The functionality is imported from SymPy, see http://docs.sympy.org/latest/_modules/sympy/polys/rootoftools.html

EXAMPLES:

```python
sage: c = complex_root_of(x^6 + x + 1, 1); c
c = complex_root_of(x^6 + x + 1, 1)
sage: c.n()
-0.790667188814418 + 0.300506920309552*I
sage: c.n(100)
-0.79066718881441764498509281847 + 0.30050692030955162512001002521*I
sage: (c^6 + c + 1).n(100) < 1e-25
True
```

class `sage.functions.other.Function_elementof`

Bases: `sage.symbolic.function.BuiltinFunction`

Formal set membership function that is only accessible internally.

This function is called to express a set membership statement, usually as part of a solution set returned by `solve()`. See `sage.sets.set.Set` and `sage.sets.real_set.RealSet` for possible set arguments.

EXAMPLES:

```python
sage: from sage.functions.other import element_of
sage: element_of(x, SR(ZZ))
element_of(x, Integer Ring)
sage: element_of(sin(x), SR(QQ))
element_of(sin(x), Rational Field)
sage: element_of(x, SR(RealSet.open_closed(0,1)))
element_of(x, (0, 1])
sage: element_of(x, SR(Set([4,6,8])))
element_of(x, {8, 4, 6})
```

class `sage.functions.other.Function_factorial`

Bases: `sage.symbolic.function.GinacFunction`

Returns the factorial of \(n\).

INPUT:
• \( n \) - a non-negative integer, a complex number (except negative integers) or any symbolic expression

OUTPUT: an integer or symbolic expression

EXAMPLES:

```python
sage: factorial(0)
1
sage: factorial(4)
24
sage: factorial(10)
3628800
sage: factorial(6) == 6*5*4*3*2
True

sage: x = SR.var('x')
sage: f = factorial(x + factorial(x)); f
factorial(x + factorial(x))
sage: f(x=3)
362880
sage: factorial(x)^2
factorial(x)^2
```

To prevent automatic evaluation use the `hold` argument:

```python
sage: factorial(5, hold=True)
factorial(5)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```python
sage: factorial(5, hold=True).simplify()
120
```

We can also give input other than nonnegative integers. For other nonnegative numbers, the `sage.functions.gamma.gamma()` function is used:

```python
sage: factorial(1/2)
1/2*sqrt(pi)
sage: factorial(3/4)
gamma(7/4)
sage: factorial(2.3)
2.68343738195577
```

But negative input always fails:

```python
sage: factorial(-32)
Traceback (most recent call last):
...
ValueError: factorial only defined for non-negative integers
```

And very large integers remain unevaluated:

```python
sage: factorial(2**64)
factorial(18446744073709551616)
```

(continues on next page)
class sage.functions.other.Function_floor

The floor function.

The floor of \( x \) is computed in the following manner.

1. The \( x.floor() \) method is called and returned if it is there. If it is not, then Sage checks if \( x \) is one of Python's native numeric data types. If so, then it calls and returns \( \text{Integer(math.floor}(x)) \).

2. Sage tries to convert \( x \) into a \text{RealIntervalField} with 53 bits of precision. Next, the floors of the endpoints are computed. If they are the same, then that value is returned. Otherwise, the precision of the \text{RealIntervalField} is increased until they do match up or it reaches \( \text{bits} \) of precision.

3. If none of the above work, Sage returns a symbolic \text{Expression} object.

EXAMPLES:

```python
sage: floor(5.4)
5
sage: type(floor(5.4))
<class 'sage.rings.integer.Integer'>
sage: var('x')
x
sage: a = floor(5.4 + x); a
floor(x + 5.40000000000000)
```

```python
sage: a.simplify()
floor(x + 0.400000000000004) + 5
sage: a(x=2)
7
sage: floor(cos(8) / cos(2))
0
sage: floor(log(4) / log(2))
2
sage: a = floor(5.4 + x); a
floor(x + 5.40000000000000)
```

```python
sage: a.subs(x==2)
7
sage: floor(log(2^(3/2)) / log(2) + 1/2)
2
sage: floor(log(2^(-3/2)) / log(2) + 1/2)
-1
```

```python
sage: floor(factorial(50)/exp(1))
11188719610782480504630258070757734324011354208865721592720336800
sage: floor(SR(10^50 + 10^(-50)))
99
```

```python
sage: floor(int(10^50))
1000
```
Small numbers which are extremely close to an integer are hard to deal with:

```python
sage: floor((33^100 + 1)^(1/100))
Traceback (most recent call last):
 ...
ValueError: cannot compute floor(...) using 256 bits of precision
```

This can be fixed by giving a sufficiently large \texttt{bits} argument:

```python
sage: floor((33^100 + 1)^(1/100), bits=500)
Traceback (most recent call last):
 ...
ValueError: cannot compute floor(...) using 512 bits of precision
sage: floor((33^100 + 1)^(1/100), bits=1000)
 33
```

```python
sage: import numpy
sage: a = numpy.linspace(0,2,6)
sage: floor(a)
array([0., 0., 0., 1., 1., 2.])
sage: floor(x)._sympy_()
floor(x)
```

Test pickling:

```python
sage: loads(dumps(floor))
floor
```

\textbf{class} \texttt{sage.functions.other.Function_frac}

\texttt{Bases: sage.symbolic.function.BuiltinFunction}

The fractional part function \{x\}.

\texttt{frac(x)} is defined as \{x\} = x - \lfloor x \rfloor.

\textbf{EXAMPLES:}

```python
sage: frac(5.4)
0.400000000000000
sage: type(frac(5.4))
<class 'sage.rings.real_mpfr.RealNumber'>
sage: frac(456/123)
29/41
sage: var('x')
x
sage: a = frac(5.4 + x); a
frac(x + 5.40000000000000)
sage: frac(cos(8)/cos(2))
\cos(8)/\cos(2)
sage: latex(frac(x))
\operatorname{frac}(x)
sage: frac(x)._sympy_()
frac(x)
```

Test pickling:
class sage.functions.other.Function_imag_part
Bases: sage.symbolic.function.GinacFunction

Returns the imaginary part of the (possibly complex) input.

It is possible to prevent automatic evaluation using the hold parameter:

```sage
ing_part(I, hold=True)
ing_part(I)
```

To then evaluate again, we currently must use Maxima via `sage.symbolic.expression.Expression.simplify()`:

```sage
ing_part(I, hold=True).simplify()
1
```

class sage.functions.other.Function_limit
Bases: sage.symbolic.function.BuiltinFunction

Placeholder symbolic limit function that is only accessible internally.

This function is called to create formal wrappers of limits that Maxima can’t compute:

```sage
a = lim(exp(x^2)*(1-erf(x)), x=infinity); a
-lim((erf(x) - 1)*e^(x^2), x, +Infinity)
```

EXAMPLES:

```sage
from sage.functions.other import symbolic_limit as slimit
slimit(1/x, x, +oo)
limit(1/x, x, +Infinity)
var('minus,plus')
(minus, plus)
slimit(1/x, x, +oo)
limit(1/x, x, +Infinity)
slimit(1/x, x, 0, plus)
limit(1/x, x, 0, plus)
slimit(1/x, x, 0, minus)
limit(1/x, x, 0, minus)
```

class sage.functions.other.Function_prod
Bases: sage.symbolic.function.BuiltinFunction

Placeholder symbolic product function that is only accessible internally.

EXAMPLES:

```sage
from sage.functions.other import symbolic_product as sprod
r = sprod(x, x, 1, 10); r
product(x, x, 1, 10)
```

class sage.functions.other.Function_real_nth_root
Bases: sage.symbolic.function.BuiltinFunction

1.9. Other functions
Real $n$-th root function $x^{\frac{1}{n}}$.

The function assumes positive integer $n$ and real number $x$.

EXAMPLES:

```sage
sage: real_nth_root(2, 3)
2^(1/3)
sage: real_nth_root(-2, 3)
-2^(1/3)
sage: real_nth_root(8, 3)
2
sage: real_nth_root(-8, 3)
-2
sage: real_nth_root(-2, 4)
Traceback (most recent call last):
 ...ValueError: no real nth root of negative real number with even n
```

For numeric input, it gives a numerical approximation.

```sage
sage: real_nth_root(2., 3)
1.25992104989487
sage: real_nth_root(-2., 3)
-1.25992104989487
```

Some symbolic calculus:

```sage
sage: f = real_nth_root(x, 5)^3
sage: f
real_nth_root(x^3, 5)
sage: f.diff()
3/5*x^2*real_nth_root(x^(-12), 5)
sage: result = f.integrate(x)
...result
integrate((abs(x)^3)^(1/5)*sgn(x^3), x)
sage: _.diff()
(abs(x)^3)^(1/5)*abs(x^3)^(-1/5)*sgn(x^3)
```

```class``` sage.functions.other.Function_real_part

Bases: sage.symbolic.function.GinacFunction

Returns the real part of the (possibly complex) input.

It is possible to prevent automatic evaluation using the `hold` parameter:

```sage
sage: real_part(I,hold=True)
real_part(I)
```

To then evaluate again, we currently must use Maxima via ```sage.symbolic.expression.Expression.simplify()```:

```sage
sage: real_part(I,hold=True).simplify()
0
```
EXAMPLES:

```python
sage: z = 1+2*I
sage: real(z)
1
sage: real(5/3)
5/3
sage: a = 2.5
sage: real(a)
2.50000000000000
sage: type(real(a))
<class 'sage.rings.real_mpfr.RealLiteral'>
sage: real(1.0r)
1.0
sage: real(complex(3, 4))
3.0
```

Sage can recognize some expressions as real and accordingly return the identical argument:

```python
sage: SR.var('x', domain='integer').real_part()
x
sage: SR.var('x', domain='integer').imag_part()
0
sage: real_part(sin(x)+x)
x + sin(x)
sage: real_part(x*exp(x))
x*e^x
sage: imag_part(sin(x)+x)
0
sage: real_part(real_part(x))
x
sage: forget()
```

```python
class sage.functions.other.Function_sqrt
    Bases: object

class sage.functions.other.Function_sum
    Bases: sage.symbolic.function.BuiltinFunction

    Placeholder symbolic sum function that is only accessible internally.
```

EXAMPLES:

```python
sage: from sage.functions.other import symbolic_sum as ssum
sage: r = ssum(x, x, 1, 10); r
sum(x, x, 1, 10)
sage: r.unhold()
55
```
1.10 Miscellaneous Special Functions

AUTHORS:
- David Joyner (2006-13-06): initial version
- David Joyner (2006-30-10): bug fixes to pari wrappers of Bessel functions, hypergeometric_U
- Eviatar Bach (2013): making elliptic integrals symbolic

This module provides easy access to many of Maxima and PARI’s special functions.

Maxima’s special functions package (which includes spherical harmonic functions, spherical Bessel functions (of the 1st and 2nd kind), and spherical Hankel functions (of the 1st and 2nd kind)) was written by Barton Willis of the University of Nebraska at Kearney. It is released under the terms of the General Public License (GPL).

Support for elliptic functions and integrals was written by Raymond Toy. It is placed under the terms of the General Public License (GPL) that governs the distribution of Maxima.

Next, we summarize some of the properties of the functions implemented here.

- **Spherical harmonics:** Laplace’s equation in spherical coordinates is:
\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2} = 0.
\]

Note that the spherical coordinates θ and ϕ are defined here as follows: θ is the colatitude or polar angle, ranging from $0 \leq \theta \leq \pi$ and ϕ the azimuth or longitude, ranging from $0 \leq \phi < 2\pi$.

The general solution which remains finite towards infinity is a linear combination of functions of the form
\[
r^{-1-\ell} \cos(m\phi) P_{\ell}^{m}(\cos \theta)
\]
and
\[
r^{-1-\ell} \sin(m\phi) P_{\ell}^{m}(\cos \theta)
\]
where P_{ℓ}^{m} are the associated Legendre polynomials, and with integer parameters $\ell \geq 0$ and m from 0 to ℓ. Put in another way, the solutions with integer parameters $\ell \geq 0$ and $-\ell \leq m \leq \ell$, can be written as linear combinations of:
\[
U_{\ell,m}(r, \theta, \phi) = r^{-1-\ell}Y_{\ell}^{m}(\theta, \phi)
\]
where the functions Y are the spherical harmonic functions with parameters ℓ, m, which can be written as:
\[
Y_{\ell}^{m}(\theta, \phi) = (-1)^m \sqrt{\frac{(2\ell + 1)(\ell - m)!}{4\pi (\ell + m)!}} e^{im\phi} P_{\ell}^{m}(\cos \theta).
\]

The spherical harmonics obey the normalisation condition
\[
\int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} Y_{\ell}^{m} Y_{\ell'}^{m'} * d\Omega = \delta_{\ell\ell'} \delta_{mm'}
\]
\[
d\Omega = \sin \theta \, d\phi \, d\theta.
\]
The incomplete elliptic integrals (of the first kind, etc.) are:

\[
\int_0^\phi \frac{1}{\sqrt{1 - m \sin(x)^2}} \, dx,
\]

\[
\int_0^\phi \sqrt{1 - m \sin(x)^2} \, dx,
\]

\[
\int_0^\phi \frac{\sqrt{1 - mt^2}}{\sqrt{1 - t^2}} \, dx,
\]

\[
\int_0^\phi \frac{1}{\sqrt{1 - m \sin(x)^2 \sqrt{1 - n \sin(x)^2}}} \, dx,
\]

and the complete ones are obtained by taking \(\phi = \pi/2 \).

REFERENCES:

- Wikipedia article Spherical_harmonics
- Wikipedia article Helmholtz_equation
- Online Encyclopedia of Special Function http://algo.inria.fr/esf/index.html

AUTHORS:

- David Joyner and William Stein

Added 16-02-2008 (wdj): optional calls to scipy and replace all ‘#random’ by ‘...’ (both at the request of William Stein)

Warning: SciPy’s versions are poorly documented and seem less accurate than the Maxima and PARI versions; typically they are limited by hardware floats precision.

class sage.functions.special.EllipticE

Bases: sage.symbolic.function.BuiltinFunction

Return the incomplete elliptic integral of the second kind:

\[E(\varphi \mid m) = \int_0^\varphi \sqrt{1 - m \sin(x)^2} \, dx. \]

EXAMPLES:

```
sage: z = var("z")
sage: elliptic_e(z, 1)
elliptic_e(z, 1)
sage: # this is still wrong: must be abs(sin(z)) + 2*round(z/pi)
sage: elliptic_e(z, 1).simplify()
2*round(z/pi) + sin(z)
sage: elliptic_e(z, 0)
z
sage: elliptic_e(0.5, 0.1)  # abs tol 2e-15
0.498011394498832
sage: elliptic_e(1/2, 1/10).n(200)
0.4980113944988315331154610406...
```

See also:
• Taking $\varphi = \pi/2$ gives `elliptic_ec()`.
• Taking $\varphi = \arcsin(sn(u, m))$ gives `elliptic_eu()`.

REFERENCES:
• Wikipedia article Elliptic_integral#Incomplete_elliptic_integral_of_the_second_kind
• Wikipedia article Jacobi_elliptic_functions

class sage.functions.special.EllipticEC
Bases: sage.symbolic.function.BuiltinFunction

Return the complete elliptic integral of the second kind:

$$ E(m) = \int_{0}^{\pi/2} \sqrt{1 - m \sin^2 x} \, dx. $$

EXAMPLES:

```sage
sage: elliptic_ec(0.1)
1.53075763689776
sage: elliptic_ec(x).diff()
1/2*(elliptic_ec(x) - elliptic_kc(x))/x
```

See also:
• `elliptic_e()`.

REFERENCES:
• Wikipedia article Elliptic_integral#Complete_elliptic_integral_of_the_second_kind

class sage.functions.special.EllipticEU
Bases: sage.symbolic.function.BuiltinFunction

Return Jacobi’s form of the incomplete elliptic integral of the second kind:

$$ E(u, m) = \int_{0}^{u} \frac{dn(x, m)^2}{\sqrt{1 - m x^2}} dx = \int_{0}^{\tau} \frac{\sqrt{1 - m \tau^2}}{\sqrt{1 - x^2}} dx. $$

where $\tau = sn(u, m)$.

Also, `elliptic_eu(u, m) = elliptic_e(asin(sn(u,m)),m)`.

EXAMPLES:

```sage
sage: elliptic_eu (0.5, 0.1)
0.496054551286597
```

See also:
• `elliptic_e()`.

REFERENCES:
• Wikipedia article Elliptic_integral#Incomplete_elliptic_integral_of_the_second_kind
• Wikipedia article Jacobi_elliptic_functions
class sage.functions.special.EllipticF

Bases: sage.symbolic.function.BuiltinFunction

Return the incomplete elliptic integral of the first kind.

\[F(\varphi \mid m) = \int_0^{\varphi} \frac{dx}{\sqrt{1 - m \sin(x)^2}}. \]

Taking \(\varphi = \pi/2 \) gives `elliptic_kc()`.

EXAMPLES:

```
sage: z = var("z")
sage: elliptic_f(z, 0)
z
sage: elliptic_f(z, 1).simplify()
log(tan(1/4*pi + 1/2*z))
sage: elliptic_f(0.2, 0.1)
0.200132506747543
```

See also:

- `elliptic_e()`.

REFERENCES:

- Wikipedia article Elliptic_integral#Incomplete_elliptic_integral_of_the_first_kind

class sage.functions.special.EllipticKC

Bases: sage.symbolic.function.BuiltinFunction

Return the complete elliptic integral of the first kind:

\[K(m) = \int_0^{\pi/2} \frac{dx}{\sqrt{1 - m \sin(x)^2}}. \]

EXAMPLES:

```
sage: elliptic_kc(0.5)
1.85407467730137
```

See also:

- `elliptic_f()`.
- `elliptic_ec()`.

REFERENCES:

- Wikipedia article Elliptic_integral#Complete_elliptic_integral_of_the_first_kind
- Wikipedia article Elliptic_integral#Incomplete_elliptic_integral_of_the_first_kind

class sage.functions.special.EllipticPi

Bases: sage.symbolic.function.BuiltinFunction

Return the incomplete elliptic integral of the third kind:

\[\Pi(n, t, m) = \int_0^t \frac{dx}{(1 - n \sin(x)^2)\sqrt{1 - m \sin(x)^2}}. \]

INPUT:
• n – a real number, called the “characteristic”
• t – a real number, called the “amplitude”
• m – a real number, called the “parameter”

EXAMPLES:

```python
sage: N(elliptic_pi(1, pi/4, 1))
1.14779357469632
```

Compare the value computed by Maxima to the definition as a definite integral (using GSL):

```python
sage: elliptic_pi(0.1, 0.2, 0.3)
0.200665068220979
sage: numerical_integral(1/(1-0.1*sin(x)^2)/sqrt(1-0.3*sin(x)^2), 0.0, 0.2)
(0.2006650682209791, 2.227829789769088e-15)
```

REFERENCES:

• Wikipedia article Elliptic_integral#Incomplete_elliptic_integral_of_the_third_kind

class sage.functions.special.SphericalHarmonic
Bases: sage.symbolic.function.BuiltinFunction

Returns the spherical harmonic function $Y_{n}^{m}(\theta, \phi)$.

For integers $n > -1, |m| \leq n$, simplification is done automatically. Numeric evaluation is supported for complex n and m.

EXAMPLES:

```python
sage: x, y = var('x, y')
sage: spherical_harmonic(3, 2, x, y)
1/8*sqrt(30)*sqrt(7)*cos(x)*e^(2*I*y)*sin(x)^2/sqrt(pi)
sage: spherical_harmonic(3, 2, 1, 2)
1/8*sqrt(30)*sqrt(7)*cos(1)*e^(4*I)*sin(1)^2/sqrt(pi)
sage: spherical_harmonic(3 + I, 2., 1, 2)
-0.351154337307488 - 0.415562233975369*I
sage: latex(spherical_harmonic(3, 2, x, y, hold=True))
Y_{3}^{2}(x, y)
```

sage.functions.special.elliptic_eu_f(u, m)

Internal function for numeric evaluation of elliptic_eu, defined as $E(\text{am}(u, m)|m)$, where E is the incomplete elliptic integral of the second kind and am is the Jacobi amplitude function.

EXAMPLES:

```python
sage: from sage.functions.special import elliptic_eu_f
sage: elliptic_eu_f(0.5, 0.1)
mpf('0.49605455128659691')
```

sage.functions.special.elliptic_j(z, prec=53)

Returns the elliptic modular j-function evaluated at z.

INPUT:

• z (complex) – a complex number with positive imaginary part.
• prec (default: 53) – precision in bits for the complex field.

OUTPUT:
(complex) The value of $j(z)$.

ALGORITHM:
Calls the pari function ellj().

AUTHOR:
John Cremona

EXAMPLES:

```sage
elliptic_j(CC(i))
1728.00000000000
sage: elliptic_j(sqrt(-2.0))
8000.00000000000
sage: z = ComplexField(100)(1,sqrt(11))/2
sage: elliptic_j(z)
-32768.000...
```

```sage
tau = (1 + sqrt(-163))/2
-sqrt(163)^(1/3)
```

This example shows the need for higher precision than the default one of the ComplexField, see trac ticket #28355:

```sage
-sqrt(163)^(1/3)
```

1.11 Hypergeometric Functions

This module implements manipulation of infinite hypergeometric series represented in standard parametric form (as pFq functions).

AUTHORS:
• Fredrik Johansson (2010): initial version
• Eviatar Bach (2013): major changes

EXAMPLES:
Examples from trac ticket #9908:
\begin{verbatim}
from sage import maxima
sage: maxima('integrate(bessel_j(2, x), x)').sage()
l/24*x^3*hypergeometric((3/2,), (5/2, 3), -1/4*x^2)
sage: sum(((2*I)^x/(x^3 + 1)*(1/4)^x), x, 0, oo)
hypergeometric((1, 1, -1/2*I*sqrt(3) - 1/2, 1/2*I*sqrt(3) - 1/2),
(2, -1/2*I*sqrt(3) + 1/2, 1/2*I*sqrt(3) + 1/2), 1/2*I
sage: sum((-1)^x/((2*x + 1)*factorial(2*x + 1)), x, 0, oo)
hypergeometric((1/2,), (3/2, 3/2), -1/4)

Simplification (note that simplify_full does not yet call simplify_hypergeometric):

sage: hypergeometric([-2], [], x).simplify_hypergeometric()
x^2 - 2*x + 1
sage: hypergeometric([], [], x).simplify_hypergeometric()
e^x
sage: a = hypergeometric(hypergeometric([], [], x), [],
....: hypergeometric([], [], x))
1/((-e^x + 1)^e^x)
sage: a.simplify_hypergeometric(algorithm='sage')
1/((-e^x + 1)^e^x)

Equality testing:

sage: bool(hypergeometric([], [], x).derivative(x) ==
....: hypergeometric([], [], x)) # diff(e^x, x) == e^x
True
sage: bool(hypergeometric([], [], x) == hypergeometric([], [1], x))
False

Computing terms and series:

sage: var('z')
z
sage: hypergeometric([], [], z).series(z, 0)
Order(1)
sage: hypergeometric([], [], z).series(z, 1)
1 + Order(z)
sage: hypergeometric([], [], z).series(z, 2)
1 + 1*z + Order(z^2)
sage: hypergeometric([], [], z).series(z, 3)
1 + 1*z + 1/2*z^2 + Order(z^3)
sage: hypergeometric([-2], [], z).series(z, 3)
1 + (-2)*z + 1*z^2
sage: hypergeometric([-2], [], z).series(z, 6)
1 + (-2)*z + 1*z^2
sage: hypergeometric([-2], [], z).series(z, 6).is_terminating_series()
True
sage: hypergeometric([-2], [], z).series(z, 2)
1 + (-2)*z + Order(z^2)
sage: hypergeometric([-2], [], z).series(z, 2).is_terminating_series()
False
\end{verbatim}
sage: hypergeometric([1], [], z).series(z, 6)
1 + 1*z + 1*z^2 + 1*z^3 + 1*z^4 + 1*z^5 + Order(z^6)
sage: hypergeometric([1/2], -z^2/4).series(z, 11)
1 + (-1/2)*z^2 + 1/24*z^4 + (-1/720)*z^6 + 1/40320*z^8 +...
(-1/3628800)*z^10 + Order(z^11)
sage: hypergeometric([1], [5], x).series(x, 5)
1 + 1/5*x + 1/30*x^2 + 1/210*x^3 + 1/1680*x^4 + Order(x^5)
sage: sum(hypergeometric([1, 2], [3], 1/3).terms(6)).n()
1.29788359788360
sage: hypergeometric([1, 2], [3, 1/3], x).n()
1.29837194594696
sage: hypergeometric([], [], x).series(x, 20)(x=1).n() == e.n()
True

Plotting:

sage: f(x) = hypergeometric([1, 1], [3, 3, 3], x)
sage: plot(f, x, -30, 30)
Graphics object consisting of 1 graphics primitive
sage: g(x) = hypergeometric([x], [], 2)
sage: complex_plot(g, (-1, 1), (-1, 1))
Graphics object consisting of 1 graphics primitive

Numeric evaluation:

sage: hypergeometric([1], [], 1/10).n() # geometric series
1.11111111111111
sage: hypergeometric([1], [], 1).n() # e
2.71828182845905
sage: hypergeometric([1], [], 3., hold=True)
hypergeometric((), (), 3.00000000000000)
sage: hypergeometric([1, 2, 3], [4, 5, 6], 1/2).n()
1.02573619590134
sage: hypergeometric([1, 2, 3], [4, 5, 6], 1/2).n(digits=30)
1.02573619590133865036584139535
sage: hypergeometric([5 - 3*I], [3/2, 2 + I, sqrt(2)], 4 + I).n()
5.52605111678803 - 7.86331357527540*I
sage: hypergeometric((10, 10), (50,), 2.)
-1705.75733163554 - 356.749986056024*I

Conversions:

sage: maxima(hypergeometric([1, 1, 1], [3, 3, 3], x))
hypergeometric([1,1,1],[3,3,3],_SAGE_VAR_x)
sage: hypergeometric((5, 4), (4, 4), 3)._sympy_()
hyper((5, 4), (4, 4), 3)
sage: hypergeometric((5, 4), (4, 4), 3)._mathematica_init_()
'HypergeometricPFQ[{5,4},{4,4},3]'

Arbitrary level of nesting for conversions:

1.11. Hypergeometric Functions
The confluent hypergeometric functions can arise as solutions to second-order differential equations (example from here):

```
sage: var('m')
m
sage: y = function('y')(x)
sage: desolve(diff(y, x, 2) + 2*x*diff(y, x) - 4*m*y, y,
      ...:     contrib_ode=true, ivar=x)
[y(x) == _K1*hypergeometric_M(-m, 1/2, -x^2) +...
 _K2*hypergeometric_U(-m, 1/2, -x^2)]
```

Series expansions of confluent hypergeometric functions:

```
sage: hypergeometric_M(2, 2, x).series(x, 3)
1 + 1*x + 1/2*x^2 + Order(x^3)
sage: hypergeometric_U(2, 2, x).series(x == 3, 100).subs(x=1).n() # known bug (see...
0.403652637676806
sage: hypergeometric_U(2, 2, 1).n()
0.403652637676806
```

class sage.functions.hypergeometric.Hypergeometric

Bases: sage.symbolic.function.BuiltinFunction

Represent a (formal) generalized infinite hypergeometric series.

It is defined as

\[
P_\nu F_\lambda(a_1, \ldots, a_p; b_1, \ldots, b_q; z) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{z^n}{n!},
\]

where \((x)_n\) is the rising factorial.

class EvaluationMethods

Bases: object

deflated(a, b, z)

Rewrite as a linear combination of functions of strictly lower degree by eliminating all parameters
\(a[i]\) and \(b[j]\) such that \(a[i] = b[i] + m\) for nonnegative integer \(m\).

EXAMPLES:

```
sage: x = hypergeometric([6, 1], [3, 4, 5], 10)
sage: y = x.deflated()
sage: y
1/252*hypergeometric((4,), (7, 8), 10) + 1/12*hypergeometric((3,), (6, 7), 10) +
  1/2*hypergeometric((2,), (5, 6), 10)
```
+ hypergeometric((1,), (4, 5), 10)
sage: x.n(); y.n()
2.87893612686782
2.87893612686782

sage: x = hypergeometric([6, 7], [3, 4, 5], 10)
sage: y = x.deflated()
sage: y
25/27216*hypergeometric((,), (11,), 10)
+ 25/648*hypergeometric((,), (10,), 10)
+ 265/504*hypergeometric((,), (9,), 10)
+ 181/63*hypergeometric((,), (8,), 10)
+ 19/3*hypergeometric((,), (7,), 10)
+ 5*hypergeometric((,), (6,), 10)
+ hypergeometric((,), (5,), 10)
sage: x.n(); y.n()
63.0734110716969
63.0734110716969

eliminate_parameters(a, b, z)
Eliminate repeated parameters by pairwise cancellation of identical terms in a and b.

EXAMPLES:

sage: hypergeometric([1, 1, 2, 5], [5, 1, 4], 1/2).eliminate_parameters()
hypergeometric((1, 2), (4,), 1/2)
sage: hypergeometric([x], [x], x).eliminate_parameters()
hypergeometric((,), (,), x)
sage: hypergeometric((5, 4), (4, 4), 3).eliminate_parameters()
hypergeometric((5,), (4,), 3)

is_absolutely_convergent(a, b, z)
Determine whether self converges absolutely as an infinite series. False is returned if not all terms are finite.

EXAMPLES:

Degree giving infinite radius of convergence:

sage: hypergeometric([2, 3], [4, 5], 6).is_absolutely_convergent()
True
sage: hypergeometric([2, 3], [-4, 5], 6).is_absolutely_convergent() # undefined
False
sage: (hypergeometric([2, 3], [-4, 5], Infinity)
8.0).is_absolutely_convergent()) # undefined
False

Ordinary geometric series (unit radius of convergence):

sage: hypergeometric([1], [], 1/2).is_absolutely_convergent()
True
Degree \(p = q + 1 \) (unit radius of convergence):

\[
\begin{align*}
sage: & \text{hypergeometric([2, 3], [4], 6).is_absolutely_convergent()} \\
& \text{False} \\
sage: & \text{hypergeometric([2, 3], [4], 1).is_absolutely_convergent()} \\
& \text{False} \\
sage: & \text{hypergeometric([2, 3], [5], 1).is_absolutely_convergent()} \\
& \text{False} \\
sage: & \text{hypergeometric([2, 3], [6], 1).is_absolutely_convergent()} \\
& \text{True} \\
sage: & \text{hypergeometric([-2, 3], [4],} \\
& \text{....: 5).is_absolutely_convergent()} \\
& \text{True} \\
sage: & \text{hypergeometric([2, -3], [4],} \\
& \text{....: 5).is_absolutely_convergent()} \\
& \text{True} \\
sage: & \text{hypergeometric([2, -3], [-4],} \\
& \text{....: 5).is_absolutely_convergent()} \\
& \text{True} \\
sage: & \text{hypergeometric([2, -3], [-1],} \\
& \text{....: 5).is_absolutely_convergent()} \\
& \text{False}
\end{align*}
\]

Degree giving zero radius of convergence:

\[
\begin{align*}
sage: & \text{hypergeometric([1, 2, 3], [4], 2).is_absolutely_convergent()} \\
& \text{False} \\
sage: & \text{hypergeometric([1, 2, 3], [4], 1/2).is_absolutely_convergent()} \\
& \text{False} \\
sage: & \text{(hypergeometric([1, 2, -3], [4], 1/2)} \\
& \text{....: .is_absolutely_convergent())} \quad \text{# polynomial} \\
& \text{True}
\end{align*}
\]

is_terminating\((a, b, z)\)

Determine whether the series represented by self terminates after a finite number of terms.

This happens if any of the numerator parameters are nonnegative integers (with no preceding nonnegative denominator parameters), or \(z = 0 \).

If terminating, the series represents a polynomial of \(z \).

EXAMPLES:
```python
sage: hypergeometric([1, 2], [3, 4], x).is_terminating()
False
sage: hypergeometric([1, -2], [3, 4], x).is_terminating()
True
sage: hypergeometric([1, -2], [], x).is_terminating()
True
```

is_termwise_finite\((a, b, z)\)
Determine whether all terms of self are finite.

Any infinite terms or ambiguous terms beyond the first zero, if one exists, are ignored.

Ambiguous cases (where a term is the product of both zero and an infinity) are not considered finite.

EXAMPLES:

```python
sage: hypergeometric([2], [3, 4], 5).is_termwise_finite()
True
sage: hypergeometric([2], [-3, 4], 5).is_termwise_finite()
False
sage: hypergeometric([-2], [-3, 4], 5).is_termwise_finite()
True
sage: hypergeometric([-3], [-3, 4],
...: 5).is_termwise_finite()  # ambiguous
False
sage: hypergeometric([0], [-1], 5).is_termwise_finite()
True
sage: hypergeometric([0], [0],
...: 5).is_termwise_finite()  # ambiguous
False
sage: hypergeometric([1], [2], Infinity).is_termwise_finite()
False
sage: (hypergeometric([0], [0], Infinity)
...: .is_termwise_finite())  # ambiguous
False
sage: (hypergeometric([0], [], Infinity)
...: .is_termwise_finite())  # ambiguous
False
```

sorted_parameters\((a, b, z)\)
Return with parameters sorted in a canonical order.

EXAMPLES:

```python
sage: hypergeometric([2, 1, 3], [5, 4],
...: 1/2).sorted_parameters()
hypergeometric((1, 2, 3), (4, 5), 1/2)
```

terms\((a, b, z, n=None)\)
Generate the terms of self (optionally only \(n\) terms).

EXAMPLES:

```python
sage: list(hypergeometric([-2, 1], [3, 4], x).terms())
[1, -1/6*x, 1/120*x^2]
```

(continues on next page)
sage: list(hypergeometric([-2, 1], [3, 4], x).terms(2))
[1, -1/6*x]
sage: list(hypergeometric([-2, 1], [3, 4], x).terms(0))
[]

class sage.functions.hypergeometric.Hypergeometric_M
Bases: sage.symbolic.function.BuiltinFunction

The confluent hypergeometric function of the first kind, \(y = M(a, b, z) \), is defined to be the solution to Kummer’s differential equation

\[
zy'' + (b - z)y' - ay = 0.
\]

This is not the same as Kummer’s \(U \)-hypergeometric function, though it satisfies the same DE that \(M \) does.

Warning: In the literature, both are called “Kummer confluent hypergeometric” functions.

EXAMPLES:

sage: hypergeometric_M(1, 1, 1)
hypergeometric_M(1, 1, 1)
sage: hypergeometric_M(1, 1, 1.)
2.71828182845905
sage: hypergeometric_M(1, 1, 1.).n(70)
2.7182818284590452354
sage: hypergeometric_M(1, 1, 1).simplify_hypergeometric()
\(e \)
sage: hypergeometric_M(1, 1/2, x).simplify_hypergeometric()
\((-I*sqrt(pi)*x*erf(I*sqrt(-x))*e^x + sqrt(-x))/sqrt(-x)\)
sage: hypergeometric_M(1, 3/2, 1).simplify_hypergeometric()
\(1/2*sqrt(pi)*erf(1)*e \)

class EvaluationMethods
Bases: object

generalized\((a, b, z)\)

Return as a generalized hypergeometric function.

EXAMPLES:

sage: var('a b z')
(a, b, z)
sage: hypergeometric_M(a, b, z).generalized()
hypergeometric((a,), (b,), z)

class sage.functions.hypergeometric.Hypergeometric_U
Bases: sage.symbolic.function.BuiltinFunction

The confluent hypergeometric function of the second kind, \(y = U(a, b, z) \), is defined to be the solution to Kummer’s differential equation

\[
zy'' + (b - z)y' - ay = 0.
\]

This satisfies \(U(a, b, z) \sim z^{-a} \), as \(z \to \infty \), and is sometimes denoted \(z^{-a} F_0(a, 1 + a - b; ; -1/z) \). This is not the same as Kummer’s \(M \)-hypergeometric function, denoted sometimes as \(_1F_1(\alpha, \beta, z) \), though it satisfies the same DE that \(U \) does.
Warning: In the literature, both are called “Kummer confluent hypergeometric” functions.

EXAMPLES:

```python
sage: hypergeometric_U(1, 1, 1)
hypergeometric_U(1, 1, 1)
sage: hypergeometric_U(1, 1, 1.)
0.596347362323194
sage: hypergeometric_U(1, 1, 1).n(70)
0.59634736232319407434
sage: hypergeometric_U(10^4, 1/3, 1).n()
6.60377008885811e-35745
sage: hypergeometric_U(2 + I, 2, 1).n()
0.183481989942099 - 0.458685959185190*I
sage: hypergeometric_U(1, 3, x).simplify_hypergeometric()
(x + 1)/x^2
sage: hypergeometric_U(1, 2, 2).simplify_hypergeometric()
1/2
```

class EvaluationMethods

Bases: object

generalized(a, b, z)

Return in terms of the generalized hypergeometric function.

EXAMPLES:

```python
sage: var('a b z')
(a, b, z)
sage: hypergeometric_U(a, b, z).generalized()
hypergeometric(((a, a - b + 1), (), -1/z)/z^a
sage: hypergeometric_U(1, 3, 1/2).generalized()
2*hypergeometric((1, -1), (), -2)
sage: hypergeometric_U(3, I, 2).generalized()
1/8*hypergeometric((3, -I + 4), (), -1/2)
```

`sage.functions.hypergeometric.closed_form(hyp)`

Try to evaluate hyp in closed form using elementary (and other simple) functions.

It may be necessary to call `Hypergeometric.deflated()` first to find some closed forms.

EXAMPLES:

```python
sage: from sage.functions.hypergeometric import closed_form
sage: var('a b c z')
(a, b, c, z)
sage: closed_form(hypergeometric([[1], [], 1 + z]))
1/4*sinh(4)
sage: closed_form(hypergeometric([[], [1/2], 4]))
cosh(4)
sage: closed_form(hypergeometric([[], [3/2], 4]))
1/4*sinh(4)
```

(continues on next page)
sage: closed_form(hypergeometric([], [5/2], 4))
3/16*cosh(4) - 3/64*sinh(4)
sage: closed_form(hypergeometric([], [-3/2], 4))
19/3*cosh(4) - 4*sinh(4)
sage: closed_form(hypergeometric([-3, 1], [var('a')], z))
-3*z/a + 6*z^2/((a + 1)*a) - 6*z^3/((a + 2)*(a + 1)*a) + 1
sage: closed_form(hypergeometric([-3, 1/3], [-4], z))
7/162*z^3 + 1/9*z^2 + 1/4*z + 1
sage: closed_form(hypergeometric([], [], z))
e^z
sage: closed_form(hypergeometric([a], [], z))
1/((-z + 1)^a)
sage: closed_form(hypergeometric([1, 1], [1, 1], z))
(z - 1)^(-2)
sage: closed_form(hypergeometric([2, 3], [1], x))
-1/(x - 1)^3 + 3*x/(x - 1)^4
sage: closed_form(hypergeometric([1/2], [3/2], -5))
1/10*sqrt(5)*sqrt(pi)*erf(sqrt(5))
sage: closed_form(hypergeometric([2], [5], 3))
4
sage: closed_form(hypergeometric([2], [5], 5))
48/625*e^5 + 612/625
sage: closed_form(hypergeometric([1, 7/2], [3/2], z))
1/5*z^2/(-z + 1)^5/2 + 2/3*z/(-z + 1)^3/2 + 1/sqrt(-z + 1)
sage: closed_form(hypergeometric([1/2, 1], [2], z))
-2*(sqrt(-z - 1) - 1)/z
sage: closed_form(hypergeometric([1, 1], [2], z))
-log(-z + 1)/z
sage: closed_form(hypergeometric([1, 1], [3], z))
-2*((z - 1)*log(-z + 1)/z - 1)/z
sage: closed_form(hypergeometric([1, 1], [2, 2], x))
hypergeometric((1, 1, 1), (2, 2), x)

sage.functions.hypergeometric.rational_param_as_tuple(x)
Utility function for converting rational \(\binom{p}{q} \) parameters to tuples (which mpmath handles more efficiently).

EXAMPLES:

sage: from sage.functions.hypergeometric import rational_param_as_tuple
sage: rational_param_as_tuple(1/2)
(1, 2)
sage: rational_param_as_tuple(3)
3
sage: rational_param_as_tuple(pi)
pi
1.12 Jacobi Elliptic Functions

This module implements the 12 Jacobi elliptic functions, along with their inverses and the Jacobi amplitude function. Jacobi elliptic functions can be thought of as generalizations of both ordinary and hyperbolic trig functions. There are twelve Jacobian elliptic functions. Each of the twelve corresponds to an arrow drawn from one corner of a rectangle to another.

Each of the corners of the rectangle are labeled, by convention, s, c, d, and n. The rectangle is understood to be lying on the complex plane, so that s is at the origin, c is on the real axis, and n is on the imaginary axis. The twelve Jacobian elliptic functions are then pq(x), where p and q are one of the letters s, c, d, n.

The Jacobian elliptic functions are then the unique doubly-periodic, meromorphic functions satisfying the following three properties:

1. There is a simple zero at the corner p, and a simple pole at the corner q.
2. The step from p to q is equal to half the period of the function pq(x); that is, the function pq(x) is periodic in the direction pq, with the period being twice the distance from p to q. pq(x) is periodic in the other two directions as well, with a period such that the distance from p to one of the other corners is a quarter period.
3. If the function pq(x) is expanded in terms of x at one of the corners, the leading term in the expansion has a coefficient of 1. In other words, the leading term of the expansion of pq(x) at the corner p is x; the leading term of the expansion at the corner q is 1/x, and the leading term of an expansion at the other two corners is 1.

We can write

\[pq(x) = \frac{pr(x)}{qr(x)} \]

where p, q, and r are any of the letters s, c, d, n, with the understanding that ss = cc = dd = nn = 1.

Let

\[u = \int_0^\phi \frac{d\theta}{\sqrt{1 - m \sin^2 \theta}}, \]

then the Jacobi elliptic function sn(u) is given by

\[\text{sn} \ u = \sin \phi \]

and cn(u) is given by

\[\text{cn} \ u = \cos \phi \]

and

\[\text{dn} \ u = \sqrt{1 - m \sin^2 \phi}. \]

To emphasize the dependence on m, one can write sn(u|m) for example (and similarly for cn and dn). This is the notation used below.

For a given k with 0 < k < 1 they therefore are solutions to the following nonlinear ordinary differential equations:
• $\text{sn}(x;k)$ solves the differential equations
\[
\frac{d^2 y}{dx^2} + (1 + k^2)y - 2k^2y^3 = 0 \quad \text{and} \quad \left(\frac{dy}{dx}\right)^2 = (1 - y^2)(1 - k^2y^2).
\]

• $\text{cn}(x;k)$ solves the differential equations
\[
\frac{d^2 y}{dx^2} + (1 - 2k^2)y + 2k^2y^3 = 0 \quad \text{and} \quad \left(\frac{dy}{dx}\right)^2 = (1 - y^2)(1 - k^2 + k^2y^2).
\]

• $\text{dn}(x;k)$ solves the differential equations
\[
\frac{d^2 y}{dx^2} - (2 - k^2)y + 2y^3 = 0 \quad \text{and} \quad \left(\frac{dy}{dx}\right)^2 = y^2(1 - k^2 - y^2).
\]

If $K(m)$ denotes the complete elliptic integral of the first kind (named elliptic_kc in Sage), the elliptic functions $\text{sn}(x|m)$ and $\text{cn}(x|m)$ have real periods $4K(m)$, whereas $\text{dn}(x|m)$ has a period $2K(m)$. The limit $m \to 0$ gives $K(0) = \pi/2$ and trigonometric functions: $\text{sn}(x|0) = \sin x$, $\text{cn}(x|0) = \cos x$, $\text{dn}(x|0) = 1$. The limit $m \to 1$ gives $K(1) \to \infty$ and hyperbolic functions: $\text{sn}(x|1) = \tanh x$, $\text{cn}(x|1) = \text{sech} x$, $\text{dn}(x|1) = \text{sech} x$.

REFERENCES:

• Wikipedia article Jacobi’s_elliptic_functions
• [KS2002]

AUTHORS:

• David Joyner (2006): initial version
• Eviatar Bach (2013): complete rewrite, new numerical evaluation, and addition of the Jacobi amplitude function

```python
class sage.functions.jacobi.InverseJacobi(kind)
    Bases: sage.symbolic.function.BuiltinFunction
    Base class for the inverse Jacobi elliptic functions.

class sage.functions.jacobi.Jacobi(kind)
    Bases: sage.symbolic.function.BuiltinFunction
    Base class for the Jacobi elliptic functions.

class sage.functions.jacobi.JacobiAmplitude
    Bases: sage.symbolic.function.BuiltinFunction
    The Jacobi amplitude function $\text{am}(x|m) = \int_0^x \text{dn}(t|m)dt$ for $-K(m) \leq x \leq K(m)$, $F(\text{am}(x|m)|m) = x$.

sage.functions.jacobi.inverse_jacobi(kind, x, m, **kwargs)
    The inverses of the 12 Jacobi elliptic functions. They have the property that
    $\text{pq}(\text{arcpq}(x|m)|m) = \text{pq}(\text{pq}^{-1}(x|m)|m) = x$.

INPUT:

• kind -- a string of the form 'pq', where p, q are in c, d, n, s
• x -- a real number
• m -- a real number; note that $m = k^2$, where $k$ is the elliptic modulus

EXAMPLES:
```
sage: jacobi('dn', inverse_jacobi('dn', 3, 0.4), 0.4)
3.00000000000000
sage: inverse_jacobi('dn', 10, 1/10).n(digits=50)
2.4777362679042732962391232988240759001423661683*I
sage: inverse_jacobi('dn', 10, 1/10).
0.0999892750039819...

sage: inverse_jacobi_dn(x, m).
arcsech(x)
sage: inverse_jacobi_dn(1, 3)
0
sage: m = var('m')
sage: z = inverse_jacobi_dn(x, m).series(x, 4).subs(x=0.1, m=0.7)
0.0999892750039819...
sage: jacobi_dn(z, 0.7)
0.470750473655657
sage: inverse_jacobi('sn', x, 0.47, 0.5)
0.499999911466555
sage: P = plot(inverse_jacobi('sn', x, 0.5), 0, 1)

sage.functions.jacobi.inverse_jacobi_f(kind, x, m)
Internal function for numerical evaluation of a continuous complex branch of each inverse Jacobi function, as
described in [Tee1997]. Only accepts real arguments.

sage.functions.jacobi.jacobi(kind, z, m, **kwargs)
The 12 Jacobi elliptic functions.

INPUT:
- kind – a string of the form 'pq', where p, q are in c, d, n, s
- z – a complex number
- m – a complex number; note that m = k^2, where k is the elliptic modulus

EXAMPLES:

sage: jacobi('sn', 1, 1)
tanh(1)
sage: jacobi('cd', 1, 1/2)
jacobi_cd(1, 1/2)
sage: RDF(jacobi('cd', 1, 1/2))
0.7240097216593705

sage: (RDF(jacobi('cn', 1, 1/2)), RDF(jacobi('dn', 1, 1/2)),
(0.595976576721407, 0.8231610016315962, 0.7240097216593705)
sage: jsn = jacobi('sn', x, 1)
sage: P = plot(jsn, 0, 1)
sage.functions.jacobi.jacobi_am_f(x, m)

Internal function for numeric evaluation of the Jacobi amplitude function for real arguments. Procedure described in [Eh2013].

1.13 Airy Functions

This module implements Airy functions and their generalized derivatives. It supports symbolic functionality through Maxima and numeric evaluation through mpmath and scipy.

Airy functions are solutions to the differential equation \(f''(x) - x f(x) = 0 \).

Four global function symbols are immediately available, please see

- \(\texttt{airy_ai()} \): for the Airy \(\text{Ai} \) function
- \(\texttt{airy_ai_prime()} \): for the first differential of the Airy \(\text{Ai} \) function
- \(\texttt{airy_bi()} \): for the Airy \(\text{Bi} \) function
- \(\texttt{airy_bi_prime()} \): for the first differential of the Airy \(\text{Bi} \) function

AUTHORS:

- Oscar Gerardo Lazo Arjona (2010): initial version
- Douglas McNeil (2012): rewrite

EXAMPLES:

Verify that the Airy functions are solutions to the differential equation:

```
sage: diff(airy_ai(x), x, 2) - x * airy_ai(x)
0
sage: diff(airy_bi(x), x, 2) - x * airy_bi(x)
0
```

class sage.functions.airy.FunctionAiryAiGeneral

Bases: sage.symbolic.function.BuiltinFunction

The generalized derivative of the Airy \(\text{Ai} \) function

INPUT:

- \(\alpha \) – Return the \(\alpha \)-th order fractional derivative with respect to \(z \). For \(\alpha = n = 1, 2, 3, \ldots \) this gives the derivative \(\text{Ai}^{(n)}(z) \), and for \(\alpha = -n = -1, -2, -3, \ldots \) this gives the \(n \)-fold iterated integral.

\[
\begin{align*}
 f_0(z) &= \text{Ai}(z) \\
 f_n(z) &= \int_0^z f_{n-1}(t) dt
\end{align*}
\]

- \(x \) – The argument of the function

EXAMPLES:

```
sage: from sage.functions.airy import airy_ai_general
sage: x, n = var('x n')
sage: airy_ai_general(-2, x)
airy_ai(-2, x)
sage: derivative(airy_ai_general(-2, x), x)
```
airy_ai(-1, x)
sage: airy_ai_general(n, x)
airy_ai(n, x)
sage: derivative(airy_ai_general(n, x), x)
airy_ai(n + 1, x)

class sage.functions.airy.FunctionAiryAiPrime
 Bases: sage.symbolic.function.BuiltinFunction
 The derivative of the Airy Ai function; see `airy_ai()` for the full documentation.
 EXAMPLES:
sage: x, n = var('x n')
sage: airy_ai_prime(x)
airy_ai_prime(x)
sage: airy_ai_prime(0)
-1/3*3^(2/3)/gamma(1/3)
sage: airy_ai_prime(x)._sympy_()
airyaiprime(x)

class sage.functions.airy.FunctionAiryAiSimple
 Bases: sage.symbolic.function.BuiltinFunction
 The class for the Airy Ai function.
 EXAMPLES:
sage: from sage.functions.airy import airy_ai_simple
sage: f = airy_ai_simple(x); f
airy_ai(x)
sage: airy_ai_simple(x)._sympy_()
airyai(x)

class sage.functions.airy.FunctionAiryBiGeneral
 Bases: sage.symbolic.function.BuiltinFunction
 The generalized derivative of the Airy Bi function.
 INPUT:
 • alpha – Return the α-th order fractional derivative with respect to z. For α = n = 1, 2, 3, ... this gives the derivative Bi^(n)(z), and for α = −n = −1, −2, −3, ... this gives the n-fold iterated integral.

 \[f_0(z) = Bi(z) \]
 \[f_n(z) = \int_0^z f_{n-1}(t) dt \]

 • x – The argument of the function
 EXAMPLES:
sage: from sage.functions.airy import airy_bi_general
sage: x, n = var('x n')
sage: airy_bi_general(-2, x)
airy_bi(-2, x)
sage: derivative(airy_bi_general(-2, x), x)
airy_bi(-1, x)
sage: airy_bi_general(n, x)
airy_bi(n, x)
sage: derivative(airy_bi_general(n, x), x)
airy_bi(n + 1, x)

class sage.functions.airy.FunctionAiryBiPrime
 Bases: sage.symbolic.function.BuiltinFunction
 The derivative of the Airy Bi function; see airy_bi() for the full documentation.
 EXAMPLES:
 sage: x, n = var('x n')
 sage: airy_bi_prime(x)
airy_bi_prime(x)
sage: airy_bi_prime(0)
3^(1/6)/gamma(1/3)
sage: airy_bi_prime(x)._sympy_()
airybiprime(x)

class sage.functions.airy.FunctionAiryBiSimple
 Bases: sage.symbolic.function.BuiltinFunction
 The class for the Airy Bi function.
 EXAMPLES:
 sage: from sage.functions.airy import airy_bi_simple
 sage: f = airy_bi_simple(x); f
airy_bi(x)
sage: f._sympy_()
airybi(x)

sage.functions.airy.airy_ai(alpha=None, hold_derivative=True, **kwds)
The Airy Ai function

 The Airy Ai function $Ai(x)$ is (along with $Bi(x)$) one of the two linearly independent standard solutions to the
 Airy differential equation $f''(x) - xf(x) = 0$. It is defined by the initial conditions:

 $Ai(0) = \frac{1}{2^{2/3} \Gamma\left(\frac{2}{3}\right)}$,
 $Ai'(0) = -\frac{1}{2^{1/3} \Gamma\left(\frac{1}{3}\right)}$.

 Another way to define the Airy Ai function is:

 \[Ai(x) = \frac{1}{\pi} \int_0^\infty \cos \left(\frac{1}{3} t^3 + xt\right) dt. \]

 INPUT:

 • $alpha$ – Return the $alpha$-th order fractional derivative with respect to x. For $alpha = n = 1, 2, 3, \ldots$ this gives
 the derivative $Ai^{(n)}(z)$, and for $alpha = -n = -1, -2, -3, \ldots$ this gives the n-fold iterated integral.
\[\begin{align*}
 f_0(z) &= \text{Ai}(z) \\
 f_n(z) &= \int_0^z \! f_{n-1}(t)\,dt
\end{align*}\]

- `x` – The argument of the function
- `hold_derivative` – Whether or not to stop from returning higher derivatives in terms of \(\text{Ai}(x)\) and \(\text{Ai}'(x)\)

See also:

`airy_bi()`

EXAMPLES:

```
sage: n, x = var('n x')
sage: airy_ai(x)
airy_ai(x)
```

It can return derivatives or integrals:

```
sage: airy_ai(2, x)
airy_ai(2, x)
sage: airy_ai(1, x, hold_derivative=False)
airy_ai_prime(x)
```

```
sage: airy_ai(2, x, hold_derivative=False)
x*airy_ai(x)
sage: airy_ai(-2, x, hold_derivative=False)
airy_ai(-2, x)
sage: airy_ai(n, x)
airy_ai(n, x)
```

It can be evaluated symbolically or numerically for real or complex values:

```
sage: airy_ai(0)
\frac{1}{3}\sqrt[3]{3}/\Gamma\left(\frac{2}{3}\right)
```

```
sage: airy_ai(0.0)
0.355028053887817
```

```
sage: airy_ai(I)
airy_ai(I)
```

```
sage: airy_ai(1.0*I)
0.331493305432141 - 0.317449858968444*I
```

The functions can be evaluated numerically either using mpmath, which can compute the values to arbitrary precision, and scipy:

```
sage: airy_ai(2).n(prec=100)
0.034924130423274379135322080792
```

```
sage: airy_ai(2).n(algorithm='mpmath', prec=100)
0.034924130423274379135322080792
```

```
sage: airy_ai(2).n(algorithm='scipy')  # rel tol 1e-10
0.03492413042327323
```

And the derivatives can be evaluated:

```
sage: airy_ai(1, 0)
\frac{-1}{3}\sqrt[3]{3^{2/3}}/\Gamma\left(\frac{1}{3}\right)
```

(continues on next page)
The Airy Bi function $\text{Bi}(x)$ is (along with $\text{Ai}(x)$) one of the two linearly independent standard solutions to the Airy differential equation $f''(x) - xf(x) = 0$. It is defined by the initial conditions:

$$
\text{Bi}(0) = \frac{1}{3^{1/6} \Gamma\left(\frac{2}{3}\right)},
$$

$$
\text{Bi}'(0) = \frac{3^{1/6}}{\Gamma\left(\frac{1}{3}\right)}.
$$

Another way to define the Airy Bi function is:

$$
\text{Bi}(x) = \frac{1}{\pi} \int_0^\infty \left[\exp\left(\frac{xt}{3} - t^3/3\right) + \sin\left(\frac{xt}{3} + \frac{1}{3}t^3\right) \right] dt.
$$

INPUT:

- **alpha** – Return the α-th order fractional derivative with respect to x. For $\alpha = n = 1, 2, 3, \ldots$ this gives the derivative $\text{Bi}^{(n)}(z)$, and for $\alpha = -n = -1, -2, -3, \ldots$ this gives the n-fold iterated integral.

$$
\begin{align*}
 f_0(z) &= \text{Bi}(z), \\
 f_n(z) &= \int_0^z f_{n-1}(t) dt
\end{align*}
$$

- **x** – The argument of the function

- **hold_derivative** – Whether or not to stop from returning higher derivatives in terms of $\text{Bi}(x)$ and $\text{Bi}'(x)$

See also:

- `airy_ai()`

EXAMPLES:

```python
sage: n, x = var('n x')
sage: airy_bi(x)
airy_bi(x)
```

It can return derivatives or integrals:
It can be evaluated symbolically or numerically for real or complex values:

```
sage: airy_bi(0)
1/3*3^(5/6)/gamma(2/3)
sage: airy_bi(0.0)
0.614926627446001
sage: airy_bi(I)
airy_bi(I)
sage: airy_bi(1.0*I)
0.648858208330395 + 0.344958634768048*I
```

The functions can be evaluated numerically using mpmath, which can compute the values to arbitrary precision, and scipy:

```
sage: airy_bi(2).n(prec=100)
3.298094999782147102806044252
sage: airy_bi(2).n(algorithm='mpmath', prec=100)
3.298094999782147102806044252
sage: airy_bi(2).n(algorithm='scipy')  # rel tol 1e-10
3.298094999782134
```

And the derivatives can be evaluated:

```
sage: airy_bi(1, 0)
3^(1/6)/gamma(1/3)
sage: airy_bi(1, 0.0)
0.448288357353826
```

Plots:

```
sage: plot(airy_bi(x), (x, -10, 5)) + plot(airy_bi_prime(x),
....: (x, -10, 5), color='red')
Graphics object consisting of 2 graphics primitives
```

REFERENCES:

- Abramowitz, Milton; Stegun, Irene A., eds. (1965), “Chapter 10”
- Wikipedia article Airy_function
1.14 Bessel Functions

This module provides symbolic Bessel and Hankel functions, and their spherical versions. These functions use the mpmath library for numerical evaluation and Maxima, GiNaC, Pynac for symbolics.

The main objects which are exported from this module are:

- \texttt{bessel_J(n, x)} – The Bessel J function
- \texttt{bessel_Y(n, x)} – The Bessel Y function
- \texttt{bessel_I(n, x)} – The Bessel I function
- \texttt{bessel_K(n, x)} – The Bessel K function
- \texttt{Bessel(\ldots)} – A factory function for producing Bessel functions of various kinds and orders
- \texttt{hankel1(nu, z)} – The Hankel function of the first kind
- \texttt{hankel2(nu, z)} – The Hankel function of the second kind
- \texttt{struve_H(nu, z)} – The Struve function
- \texttt{struve_L(nu, z)} – The modified Struve function
- \texttt{spherical_bessel_J(n, z)} – The Spherical Bessel J function
- \texttt{spherical_bessel_Y(n, z)} – The Spherical Bessel J function
- \texttt{spherical_hankel1(n, z)} – The Spherical Hankel function of the first kind
- \texttt{spherical_hankel2(n, z)} – The Spherical Hankel function of the second kind

Bessel functions, first defined by the Swiss mathematician Daniel Bernoulli and named after Friedrich Bessel, are canonical solutions \(y(x) \) of Bessel’s differential equation:

\[
\frac{d^2 y}{dx^2} + \frac{dy}{dx} + (x^2 - \nu^2) y = 0,
\]

for an arbitrary complex number \(\nu \) (the order).

- In this module, \(J_\nu \) denotes the unique solution of Bessel’s equation which is non-singular at \(x = 0 \). This function is known as the Bessel Function of the First Kind. This function also arises as a special case of the hypergeometric function \(_0F_1 \):

\[
J_\nu(x) = \frac{x^n}{2^n \Gamma(n + 1)} _0F_1(n + 1, -\frac{x^2}{4}).
\]

- The second linearly independent solution to Bessel’s equation (which is singular at \(x = 0 \)) is denoted by \(Y_\nu \) and is called the Bessel Function of the Second Kind:

\[
Y_\nu(x) = \frac{J_\nu(x) \cos(\pi \nu) - J_{-\nu}(x)}{\sin(\pi \nu)}.
\]

- There are also two commonly used combinations of the Bessel J and Y Functions. The Bessel I Function, or the Modified Bessel Function of the First Kind, is defined by:

\[
I_\nu(x) = i^{-\nu} J_\nu(ix).
\]

The Bessel K Function, or the Modified Bessel Function of the Second Kind, is defined by:

\[
K_\nu(x) = \frac{\pi}{2} \left(\frac{I_{-\nu}(x) - I_\nu(x)}{\sin(\pi \nu)} \right).
\]

We should note here that the above formulas for Bessel Y and K functions should be understood as limits when \(\nu \) is an integer.
• It follows from Bessel’s differential equation that the derivative of $J_n(x)$ with respect to x is:

$$\frac{d}{dx} J_n(x) = \frac{1}{x^n} (x^n J_{n-1}(x) - n x^{n-1} J_n(x))$$

• Another important formulation of the two linearly independent solutions to Bessel’s equation are the Hankel functions $H^{(1)}_\nu(x)$ and $H^{(2)}_\nu(x)$, defined by:

$$H^{(1)}_\nu(x) = J_\nu(x) + i Y_\nu(x)$$

$$H^{(2)}_\nu(x) = J_\nu(x) - i Y_\nu(x)$$

where i is the imaginary unit (and J_ν and Y_ν are the usual J- and Y-Bessel functions). These linear combinations are also known as Bessel functions of the third kind; they are also two linearly independent solutions of Bessel’s differential equation. They are named for Hermann Hankel.

• When solving for separable solutions of Laplace’s equation in spherical coordinates, the radial equation has the form:

$$x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} + [x^2 - n(n + 1)]y = 0.$$

The spherical Bessel functions j_n and y_n, are two linearly independent solutions to this equation. They are related to the ordinary Bessel functions J_n and Y_n by:

$$j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+1/2}(x),$$

$$y_n(x) = \sqrt{\frac{\pi}{2x}} Y_{n+1/2}(x) = (-1)^{n+1} \sqrt{\frac{\pi}{2x}} J_{-n-1/2}(x).$$

EXAMPLES:

Evaluate the Bessel J function symbolically and numerically:

```
sage: bessel_J(0, x)
bessel_J(0, x)
sage: bessel_J(0, 0)
1
sage: bessel_J(0, x).diff(x)
-1/2*bessel_J(1, x) + 1/2*bessel_J(-1, x)
sage: N(bessel_J(0, 0), digits = 20)
1.0000000000000000000
sage: find_root(bessel_J(0,x), 0, 5)
2.404825557695774
```

Plot the Bessel J function:

```
sage: f(x) = Bessel(0)(x); f
x |--> bessel_J(0, x)
sage: plot(f, (x, 1, 10))
```

Graphics object consisting of 1 graphics primitive

Visualize the Bessel Y function on the complex plane (set plot_points to a higher value to get more detail):
Evaluate a combination of Bessel functions:

\[
\text{sage: } f(x) = \text{bessel_J}(1, x) - \text{bessel_Y}(0, x) \\
\text{sage: } f(\pi) \\
\text{sage: } f(\pi).n() \\
\approx -0.0437509653365599 \\
\text{sage: } f(\pi).n(digits=50) \\
-0.043750965336559909054985168023342675387737118378169
\]

Symbolically solve a second order differential equation with initial conditions \(y(1) = a\) and \(y'(1) = b\) in terms of Bessel functions:

\[
\text{sage: } y = \text{function('y')(x)} \\
\text{sage: } a, b = \text{var('a, b')} \\
\text{sage: } \text{diffeq} = x^2\text{diff}(y, x, x) + x\text{diff}(y, x) + x^2y == 0 \\
\text{sage: } f = \text{desolve}(\text{diffeq}, y, [1, a, b]); f \\
(a*bessel_Y(1, 1) + b*bessel_Y(0, 1))*bessel_J(0, x)/(bessel_J(0, 1)*bessel_Y(1, 1) - bessel_J(1, 1)*bessel_Y(0, 1)) - (a*bessel_J(1, 1) + b*bessel_J(0, 1))*bessel_Y(0, x)/(bessel_J(0, 1)*bessel_Y(1, 1) - bessel_J(1, 1)*bessel_Y(0, 1))
\]

For more examples, see the docstring for \texttt{Bessel()}.
where order can be any integer and T must be one of the strings ‘I’, ‘J’, ‘K’, or ‘Y’.

See the EXAMPLES below.

EXAMPLES:

Construction of Bessel functions with various orders and types:

```python
sage: Bessel()
bessel_J
sage: Bessel(1)(x)
bessel_J(1, x)
sage: Bessel(1, 'Y')(x)
bessel_Y(1, x)
sage: Bessel(-2, 'Y')(x)
bessel_Y(-2, x)
sage: Bessel(typ='K')
bessel_K
sage: Bessel(0, typ='I')(x)
bessel_I(0, x)
```

Evaluation:

```python
sage: f = Bessel(1)
sage: f(3.0)
0.339058958525936
sage: f(3)
bessel_J(1, 3)
sage: f(3).n(digits=50)
0.33905895852593645892551459720647889697308041819801
sage: g = Bessel(typ='J')
sage: g(1,3)
bessel_J(1, 3)
sage: g(2, 3+I).n()
0.634160370148554 + 0.0253384000032695*I
sage: abs(numerical_integral(1/pi*cos(3*sin(x)), 0.0, pi)[0] - Bessel(0, 'J')(3.0))
\to 1e-15
True
```

Symbolic calculus:

```python
sage: f(x) = Bessel(0, 'J')(x)
sage: derivative(f, x)
x |--> -1/2*bessel_J(1, x) + 1/2*bessel_J(-1, x)
sage: derivative(f, x, x)
x |--> 1/4*bessel_J(2, x) - 1/2*bessel_J(0, x) + 1/4*bessel_J(-2, x)
```

Verify that \(J_0\) satisfies Bessel’s differential equation numerically using the `test_relation()` method:

```python
sage: y = bessel_J(0, x)
sage: diffeq = x^2*derivative(y,x,x) + x*derivative(y,x) + x^2*y == 0
sage: diffeq.test_relation(proof=False)
True
```

Conversion to other systems:
\begin{verbatim}
sage: x,y = var('x,y')
sage: f = maxima(Bessel(typ='K')(x,y))
sage: f.derivative('_SAGE_VAR_x')
(%pi*csc(%pi*_SAGE_VAR_x) *('diff(bessel_i(-_SAGE_VAR_x,_SAGE_VAR_y),_SAGE_VAR_x,1)˓→'diff(bessel_i(_SAGE_VAR_x,_SAGE_VAR_y),_SAGE_VAR_x,1)))/2 -%pi*bessel_k(_SAGE_˓→VAR_x,_SAGE_VAR_y)*cot(%pi*_SAGE_VAR_x)
sage: f.derivative('_SAGE_VAR_y')
-(bessel_k(_SAGE_VAR_x+1,_SAGE_VAR_y)+bessel_k(_SAGE_VAR_x-1, _SAGE_VAR_y))/2
\end{verbatim}

Compute the particular solution to Bessel's Differential Equation that satisfies $y(1) = 1$ and $y'(1) = 1$, then verify the initial conditions and plot it:

\begin{verbatim}
sage: y = function('y')(x)
sage: diffy = x^2*diff(y,x,x) + x*diff(y,x) + x^2*y == 0
sage: f = desolve(diffy, y, [1, 1, 1]); f
(bessel_Y(1, 1) + bessel_Y(0, 1))*bessel_J(0, x)/(bessel_J(0, 1)*bessel_Y(1, 1) - bessel_J(1, 1)*bessel_Y(0, 1)) - (bessel_J(1, 1) + bessel_J(0, 1))*bessel_Y(0, x)/(bessel_J(0, 1)*bessel_Y(1, 1) - bessel_J(1, 1)*bessel_Y(0, 1))
sage: f.subs(x=1).n() # numerical verification
1.00000000000000
sage: fp = f.diff(x)
sage: fp.subs(x=1).n() 1.00000000000000
sage: f.subs(x=1).simplify_full() # symbolic verification
1
sage: fp = f.diff(x)
sage: fp.subs(x=1).simplify_full() 1
sage: plot(f, (x,0,5))
Graphics object consisting of 1 graphics primitive
\end{verbatim}

Plotting:

\begin{verbatim}
sage: f(x) = Bessel(0)(x); f
x |--> bessel_J(0, x)
sage: plot(f, (x, 1, 10))
Graphics object consisting of 1 graphics primitive
sage: plot([Bessel(i, 'J') for i in range(5)], 2, 10)
Graphics object consisting of 5 graphics primitives
sage: G = Graphics()
sage: G += sum([plot(Bessel(i), 0, 4*pi, rgbcolor=hue(sin(pi*i/10))) for i in˓→range(5)])
sage: show(G)
\end{verbatim}

A recreation of Abramowitz and Stegun Figure 9.1:

\begin{verbatim}
sage: G = plot(Bessel(0, 'J'), 0, 15, color='black')
sage: G += plot(Bessel(0, 'Y'), 0, 15, color='black')
\end{verbatim}
sage: G += plot(Bessel(1, 'J'), 0, 15, color='black', linestyle='dotted')
sage: G += plot(Bessel(1, 'Y'), 0, 15, color='black', linestyle='dotted')
sage: show(G, ymin=-1, ymax=1)

class sage.functions.bessel.Function_Bessel_I
Bases: sage.symbolic.function.BuiltinFunction

The Bessel I function, or the Modified Bessel Function of the First Kind.

DEFINITION:

\[I_\nu(x) = i^{-\nu} J_\nu(ix) \]

EXAMPLES:

sage: var('x')
sage: bessel_I(1, x)
bessel_I(1, x)
sage: bessel_I(1.0, 1.0)
0.565159103992485
sage: n = var('n')
sage: bessel_I(n, x)
bessel_I(n, x)
sage: bessel_I(2, I).n()
-0.114903484931900

Examples of symbolic manipulation:

sage: a = bessel_I(pi, bessel_I(1, I))
sage: N(a, digits=20)
0.00026073272117205890524 - 0.0011528954889080572268*I

sage: f = bessel_I(2, x)
sage: f.diff(x)
1/2*bessel_I(3, x) + 1/2*bessel_I(1, x)

Special identities that bessel_I satisfies:

sage: eq = bessel_I(1/2, x) == bessel_I(0.5, x)
sage: eq.test_relation()
True

sage: eq = bessel_I(-1/2, x) == bessel_I(-0.5, x)
sage: eq.test_relation()
True

Examples of asymptotic behavior:

sage: limit(bessel_I(0, x), x=oo)
+Infinity
sage: limit(bessel_I(0, x), x=0)
1
High precision and complex valued inputs:

```
sage: bessel_I(0, 1).n(128)
1.2660658777520083355982446252147175376
sage: bessel_I(0, RealField(200)(1))
1.2660658777520083355982446252147175376076703113549622068081
sage: bessel_I(0, ComplexField(200)(0.5+I))
0.80644357583493619472428518415019284573366024179916785502 + 0.˓
→2268695898791116114139745340148752504331087467430711021434*I
```

Visualization (set plot_points to a higher value to get more detail):

```
sage: plot(bessel_I(1,x), (x,0,5), color='blue')
Graphics object consisting of 1 graphics primitive
sage: complex_plot(bessel_I(1, x), (-5, 5), (-5, 5), plot_points=20)
Graphics object consisting of 1 graphics primitive
```

ALGORITHM:

Numerical evaluation is handled by the mpmath library. Symbolics are handled by a combination of Maxima and Sage (Ginac/Pynac).

REFERENCES:

- [AS-Bessel]
- [DLMF-Bessel]
- [WP-Bessel]

class `sage.functions.bessel.Function_Bessel_J`

Bases: `sage.symbolic.function.BuiltinFunction`

The Bessel J Function, denoted by \(bessel_J(\nu, x) \) or \(J_\nu(x) \). As a Taylor series about \(x = 0 \) it is equal to:

\[
J_\nu(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k + \nu + 1)} \left(\frac{x}{2} \right)^{2k+\nu}
\]

The parameter \(\nu \) is called the order and may be any real or complex number; however, integer and half-integer values are most common. It is defined for all complex numbers \(x \) when \(\nu \) is an integer or greater than zero and it diverges as \(x \to 0 \) for negative non-integer values of \(\nu \).

For integer orders \(\nu = n \) there is an integral representation:

\[
J_n(x) = \frac{1}{\pi} \int_0^\pi \cos(nt - x \sin(t)) \, dt
\]

This function also arises as a special case of the hypergeometric function \(_0F_1\):

\[
J_\nu(x) = \frac{x^n}{2^n \Gamma(n+1)} _0F_1 \left(\nu + 1, -\frac{x^2}{4} \right).
\]

EXAMPLES:

```
sage: bessel_J(1.0, 1.0)
0.440050585744933
sage: bessel_J(2, I).n(digits=30)
-0.135747669767038281182852569995
```

(continues on next page)
Examples of symbolic manipulation:

```python
sage: a = bessel_J(pi, bessel_J(1, I)); a
bessel_J(pi, bessel_J(1, I))
sage: N(a, digits=20)
0.00059023706363796717363 - 0.0026098820470081958110*I
sage: f = bessel_J(2, x)
sage: f.diff(x)
-1/2*bessel_J(3, x) + 1/2*bessel_J(1, x)
```

Comparison to a well-known integral representation of $J_1(1)$:

```python
sage: A = numerical_integral(1/pi*cos(x - sin(x)), 0, pi)
sage: A[0]
# abs tol 1e-14
0.44005058574493355
sage: bessel_J(1.0, 1.0) - A[0] < 1e-15
True
```

Integration is supported directly and through Maxima:

```python
sage: f = bessel_J(2, x)
sage: f.integrate(x)
1/24*x^3*hypergeometric([3/2,], [5/2, 3], -1/4*x^2)
sage: m = maxima(bessel_J(2, x))
sage: m.integrate(x)
(hypergeometric([3/2],[5/2,3],_SAGE_VAR_x^2/4)*_SAGE_VAR_x^3)/24
```

Visualization (set plot_points to a higher value to get more detail):

```python
sage: plot(bessel_J(1,x), (x,0,5), color='blue')
Graphics object consisting of 1 graphics primitive
sage: complex_plot(bessel_J(1, x), (-5, 5), (-5, 5), plot_points=20)
Graphics object consisting of 1 graphics primitive
```

ALGORITHM:

Numerical evaluation is handled by the mpmath library. Symbolics are handled by a combination of Maxima and Sage (Ginac/Pynac).

Check whether the return value is real whenever the argument is real (trac ticket #10251):

```python
sage: bessel_J(5, 1.5) in RR
True
```

REFERENCES:

- [AS-Bessel]
- [DLMF-Bessel]
class sage.functions.bessel.Function_Bessel_K

Bases: sage.symbolic.function.BuiltinFunction

The Bessel K function, or the modified Bessel function of the second kind.

DEFINITION:

\[K_\nu(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_\nu(x)}{\sin(\nu \pi)} \]

EXAMPLES:

```python
sage: bessel_K(1, x)
bessel_K(1, x)
sage: bessel_K(1.0, 1.0)
0.601907230197235
sage: n = var('n')
sage: bessel_K(n, x)
bessel_K(n, x)
sage: bessel_K(2, I).n()
-2.59288617549120 + 0.180489972066962*I
```

Examples of symbolic manipulation:

```python
sage: a = bessel_K(pi, bessel_K(1, I)); a
bessel_K(pi, bessel_K(1, I))
sage: N(a, digits=20)
3.8507583115005220156 + 0.068528298579883425456*I
sage: f = bessel_K(2, x)
sage: f.diff(x)
-1/2*bessel_K(3, x) - 1/2*bessel_K(1, x)
sage: bessel_K(1/2, x)
sqrt(1/2)*sqrt(pi)*e^(-x)/sqrt(x)
sage: bessel_K(1/2, -1)
-I*sqrt(1/2)*sqrt(pi)*e
sage: bessel_K(1/2, 1)
sqrt(1/2)*sqrt(pi)*e^(-1)
```

Examples of asymptotic behavior:

```python
sage: bessel_K(0, 0.0)
+infinity
sage: limit(bessel_K(0, x), x=0)
+Infinity
sage: limit(bessel_K(0, x), x=oo)
0
```

High precision and complex valued inputs:

```python
sage: bessel_K(0, 1).n(128)
0.42102443824070833333562737921260903614
sage: bessel_K(0, RealField(200)(1))
```

(continues on next page)
Visualization (set plot_points to a higher value to get more detail):

```
sage: plot(bessel_K(1, x), (x, 0, 5), color='blue')
Graphics object consisting of 1 graphics primitive
sage: complex_plot(bessel_K(1, x), (-5, 5), (-5, 5), plot_points=20)
Graphics object consisting of 1 graphics primitive
```

ALGORITHM:

Numerical evaluation is handled by the mpmath library. Symbolics are handled by a combination of Maxima and Sage (Ginac/Pynac).

REFERENCES:

• [AS-Bessel]
• [DLMF-Bessel]
• [WP-Bessel]

1.14. Bessel Functions

class `sage.functions.bessel.Function_Bessel_Y`
Bases: `sage.symbolic.function.BuiltinFunction`

The Bessel Y functions, also known as the Bessel functions of the second kind, Weber functions, or Neumann functions.

$Y_\nu(z)$ is a holomorphic function of z on the complex plane, cut along the negative real axis. It is singular at $z = 0$. When z is fixed, $Y_\nu(z)$ is an entire function of the order ν.

DEFINITION:

$$Y_n(z) = \frac{J_\nu(z) \cos(\nu z) - J_{-\nu}(z)}{\sin(\nu z)}$$

Its derivative with respect to z is:

$$\frac{d}{dz} Y_n(z) = \frac{1}{z^n} (z^n Y_{n-1}(z) - n z^{n-1} Y_n(z))$$

EXAMPLES:

```
sage: bessel_Y(1, x)
bessel_Y(1, x)
sage: bessel_Y(1.0, 1.0)
-0.781212821300289
sage: n = var('n')
sage: bessel_Y(n, x)
bessel_Y(n, x)
sage: bessel_Y(2, I).n()
1.63440456978312 - 0.135747669767038*I
sage: bessel_Y(0, 0).n()-infinity
sage: bessel_Y(0, 1).n(128)
0.088256964215676957982926766023515162828
```
Examples of symbolic manipulation:

```
sage: a = bessel_Y(pi, bessel_Y(1, I)); a
bessel_Y(pi, bessel_Y(1, I))
sage: N(a, digits=20)
4.2059146571791095708 + 21.307914215321993526*I

sage: f = bessel_Y(2, x)
sage: f.diff(x)
-1/2*bessel_Y(3, x) + 1/2*bessel_Y(1, x)
```

High precision and complex valued inputs (see trac ticket #4230):

```
sage: bessel_Y(0, 1).n(128)
0.088256964215676957982926766023515162828

sage: bessel_Y(0, RealField(200)(1))
0.08825696421567695798292676602351516282781752309067546711044

sage: bessel_Y(0, ComplexField(200)(0.5+I))
0.077763160184438051408593468823822433235010300228009867784073 + 1.
˓→01423360499160691526446776828283264415793143951288411739*I
```

Visualization (set plot_points to a higher value to get more detail):

```
sage: plot(bessel_Y(1,x), (x,0,5), color='blue')
Graphics object consisting of 1 graphics primitive

sage: complex_plot(bessel_Y(1, x), (-5, 5), (-5, 5), plot_points=20)
Graphics object consisting of 1 graphics primitive
```

ALGORITHM:

Numerical evaluation is handled by the mpmath library. Symbolics are handled by a combination of Maxima and Sage (Ginac/Pynac).

REFERENCES:

- [AS-Bessel]
- [DLMF-Bessel]
- [WP-Bessel]

```python
class sage.functions.bessel.Function_Hankel1

Bases: sage.symbolic.function.BuiltinFunction

The Hankel function of the first kind

DEFINITION:

\[ H^{(1)}_\nu(z) = J_\nu(z) + iY_\nu(z) \]

EXAMPLES:

```
sage: hankel1(3, x)
hankel1(3, x)
sage: hankel1(3, 4.)
0.430171473875622 - 0.182022115953485*I
sage: latex(hankel1(3, x))
H_{3}^{(1)}(x)
```
```
Class `sage.functions.bessel.Function_Hankel2`

Bases: `sage.symbolic.function.BuiltinFunction`

The Hankel function of the second kind

Definition:

\[H^{(2)}_{\nu}(z) = J_{\nu}(z) - i Y_{\nu}(z) \]

Examples:

```python
sage: hankel2(3, x)
```

```latex
H_{3}^{(2)}(x)
```

```python
sage: hankel2(3, x).series(x == 2, 10).subs(x=3).n()  # abs tol 1e-12
0.309062682819597 + 0.512591541605234*I
```

```python
sage: hankel2(3, 3.)
0.309062722255252 + 0.538541616105032*I
```

References:

- [AS-Bessel] see 9.1.6

Class `sage.functions.bessel.Function_Struve_H`

Bases: `sage.symbolic.function.BuiltinFunction`

The Struve functions, solutions to the non-homogeneous Bessel differential equation:

\[
x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2) y = \frac{4(x^{\alpha+1})}{\sqrt{\pi}} \Gamma(\alpha + \frac{1}{2}),
\]

\[H_\alpha(x) = y(x) \]

Examples:

```python
sage: struve_H(-1/2,x)
sqrt(2)*sqrt(1/(pi*x))*sin(x)
```

```python
sage: struve_H(2,x)
```

```python
sage: struve_H(1/2,pi).n()  # abs tol 1e-12
0.900316316157106
```

References:

class sage.functions.bessel.Function_Struve_L
Bases: sage.symbolic.function.BuiltinFunction

The modified Struve functions.

\[L_\alpha(x) = -i \cdot e^{-\frac{i\alpha\pi}{2}} \cdot H_\alpha(ix) \]

EXAMPLES:

```
sage: struve_L(2,x)
struve_L(2, x)
sage: struve_L(1/2,pi).n()
4.76805417696286
sage: diff(struve_L(1,x),x)
1/3*x/pi - 1/2*struve_L(2, x) + 1/2*struve_L(0, x)
```

REFERENCES:

• [AS-Struve]
• [DLMF-Struve]
• [WP-Struve]

class sage.functions.bessel.SphericalBesselJ
Bases: sage.symbolic.function.BuiltinFunction

The spherical Bessel function of the first kind

\[j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+\frac{1}{2}}(x) \]

EXAMPLES:

```
sage: spherical_bessel_J(3, x)
spherical_bessel_J(3, x)
sage: spherical_bessel_J(3 + 0.2*I, 3)
0.150770999183897 - 0.0260662466510632*I
sage: spherical_bessel_J(3, x).series(x == 2).subs(x=3).n()
0.152051648665037
sage: spherical_bessel_J(3, 3.)
0.152051662030533
sage: spherical_bessel_J(4, x).simplify()
-((45/x^2 - 105/x^4 - 1)*sin(x) + 5*(21/x^2 - 2)*cos(x)/x)/x
sage: integrate(spherical_bessel_J(1,x)^2,(x,0,oo))
1/6*pi
sage: latex(spherical_bessel_J(4, x))
j_{4}(x)
```

REFERENCES:

• [AS-Spherical]
class sage.functions.bessel.SphericalBesselY
Bases: sage.symbolic.function.BuiltinFunction

The spherical Bessel function of the second kind

DEFINITION:
\[y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n+\frac{1}{2}}(z) \]

EXAMPLES:

```python
sage: spherical_bessel_Y(3, x)
spherical_bessel_Y(3, x)
sage: spherical_bessel_Y(3 + 0.2 * I, 3)
-0.505215297588210 - 0.0508835883281404*I
sage: spherical_bessel_Y(-3, x).simplify()
((3/x^2 - 1)*sin(x) - 3*cos(x)/x)/x
sage: spherical_bessel_Y(3 + 2 * I, 5 - 0.2 * I)
-0.270205813266440 - 0.615994702714957*I
sage: integrate(spherical_bessel_Y(0, x), x)
-1/2*Ei(I*x) - 1/2*Ei(-I*x)
```

REFERENCES:

• [AS-Spherical]
• [DLMF-Bessel]
• [WP-Bessel]

class sage.functions.bessel.SphericalHankel1
Bases: sage.symbolic.function.BuiltinFunction

The spherical Hankel function of the first kind

DEFINITION:
\[h^{(1)}_n(z) = \sqrt{\frac{\pi}{2z}} H^{(1)}_{n+\frac{1}{2}}(z) \]

EXAMPLES:

```python
sage: spherical_hankel1(3, x)
spherical_hankel1(3, x)
sage: spherical_hankel1(3 + 0.2 * I, 3)
0.201654587512037 - 0.531281544239273*I
sage: spherical_hankel1(1, x).simplify()
-(x + I)*e^(I*x)/x^2
sage: spherical_hankel1(3 + 2 * I, 5 - 0.2 * I)
1.25375216869913 - 0.518011435921789*I
sage: integrate(spherical_hankel1(3, x), x)
```

(continues on next page)
Ei(I*x) - 6*gamma(-1, -I*x) - 15*gamma(-2, -I*x) - 15*gamma(-3, -I*x)

\texttt{sage: latex(spherical_hankel1(3, x))}
\texttt{h_{3}^{(1)}(x)}

REFERENCES:

- [AS-Spherical]
- [DLMF-Bessel]
- [WP-Bessel]

\texttt{class sage.functions.bessel.SphericalHankel2}

\texttt{Bases: sage.symbolic.function.BuiltinFunction}

The spherical Hankel function of the second kind

\textbf{DEFINITION:}

\[h_{n}^{(2)}(z) = \sqrt{\frac{\pi}{2z}} H_{n+\frac{1}{2}}^{(2)}(z) \]

\textbf{EXAMPLES:}

\texttt{sage: spherical_hankel2(3, x)}
\texttt{spherical_hankel2(3, x)}
\texttt{sage: spherical_hankel2(3 + 0.2*I, 3)}
\texttt{0.0998874108557565 + 0.479149050937147*I}
\texttt{sage: spherical_hankel2(1, x).simplify()}
\texttt{-(x - I)*e^{(-I*x)/x^2}}
\texttt{sage: spherical_hankel2(2,i).simplify()}
\texttt{-e}
\texttt{sage: spherical_hankel2(2,x).simplify()}
\texttt{(-I*x^2 - 3*x + 3*I)*e^{(-I*x)/x^3}}
\texttt{sage: spherical_hankel2(3 + 2*I, 5 - 0.2*I)}
\texttt{0.0217627632692163 + 0.0224001906110906*I}
\texttt{sage: integrate(spherical_hankel2(3, x), x)}
\texttt{Ei(-I*x) - 6*gamma(-1, -I*x) - 15*gamma(-2, -I*x) - 15*gamma(-3, -I*x)}
\texttt{sage: latex(spherical_hankel2(3, x))}
\texttt{h_{3}^{(2)}(x)}

REFERENCES:

- [AS-Spherical]
- [DLMF-Bessel]
- [WP-Bessel]

\texttt{sage.functions.bessel.spherical_bessel_f}(F, n, z)

Numerically evaluate the spherical version, \(f \), of the Bessel function \(F \) by computing \(f_{n}(z) = \sqrt{\frac{\pi}{2z}} F_{n+\frac{1}{2}}(z) \).

According to Abramowitz & Stegun, this identity holds for the Bessel functions \(J, Y, K, I, H^{(1)}, \) and \(H^{(2)} \).

\textbf{EXAMPLES:}

\texttt{sage: from sage.functions.bessel import spherical_bessel_f}
\texttt{sage: spherical_bessel_f('besselj', 3, 4)}
\texttt{mpf('0.22924385795503024')}
sage: spherical_bessel_f('hankel1', 3, 4)
mpc(real='0.22924385795503024', imag='-0.21864196590306359')

1.15 Exponential Integrals

AUTHORS:

• Benjamin Jones (2011-06-12)

This module provides easy access to many exponential integral special functions. It utilizes Maxima’s special functions package and the mpmath library.

REFERENCES:

• [AS1964] Abramowitz and Stegun: Handbook of Mathematical Functions
• Wikipedia article Exponential_integral
• Online Encyclopedia of Special Function: http://algo.inria.fr/esf/index.html
• NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov/
• Maxima special functions package
• mpmath library

AUTHORS:

• Benjamin Jones

 Implementations of the classes Function_exp_integral_*.

• David Joyner and William Stein

 Authors of the code which was moved from special.py and trans.py. Implementation of exp_int() (from sage/functions/special.py). Implementation of exponential_integral_1() (from sage/functions/transcendental.py).

class sage.functions.exp_integral.Function_cos_integral
Bases: sage.symbolic.function.BuiltinFunction

The trigonometric integral \(\text{Ci}(z) \) defined by

\[
\text{Ci}(z) = \gamma + \log(z) + \int_0^z \frac{\cos(t) - 1}{t} \, dt,
\]

where \(\gamma \) is the Euler gamma constant (euler_gamma in Sage), see [AS1964] 5.2.1.

EXAMPLES:

sage: z = var('z')
sage: cos_integral(z)
cos_integral(z)
sage: cos_integral(3.0)
0.119629786008000
sage: cos_integral(0)
cos_integral(0)
sage: N(cos_integral(0))
-infinity
Numerical evaluation for real and complex arguments is handled using mpmath:

```python
sage: cos_integral(3.0)
0.11962978608000
```

The alias Ci can be used instead of cos_integral:

```python
sage: Ci(3.0)
0.11962978608000
```

Compare cos_integral(3.0) to the definition of the value using numerical integration:

```python
sage: a = numerical_integral((cos(x)-1)/x, 0, 3)[0]
sage: abs(N(euler_gamma + log(3)) + a - N(cos_integral(3.0))) < 1e-14
True
```

Arbitrary precision and complex arguments are handled:

```python
sage: N(cos_integral(3), digits=30)
0.119629786008000327626472281177
sage: cos_integral(ComplexField(100)(3+I))
0.078134230477495714401983633057 - 0.37814733904787920181190368789*I
```

The limit $\text{Ci}(z)$ as $z \to \infty$ is zero:

```python
sage: N(cos_integral(1e23))
-3.24053937643003e-24
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```python
sage: x = var('x')
sage: f = cos_integral(x)
sage: f.diff(x)
cos(x)/x
sage: f.integrate(x)
x*cos_integral(x) - sin(x)
```

The Nielsen spiral is the parametric plot of $(\text{Si}(t), \text{Ci}(t))$:

```python
sage: t=var('t')
sage: f(t) = sin_integral(t)
sage: g(t) = cos_integral(t)
sage: P = parametric_plot([f, g], (t, 0.5 ,20))
sage: show(P, frame=True, axes=False)
```

ALGORITHM:

Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

REFERENCES:

- Wikipedia article Trigonometric_integral
- mpmath documentation: ci

```python
class sage.functions.exp_integral.Function_cosh_integral
Bases: sage.symbolic.function.BuiltinFunction
```

Chapter 1. Built-in Functions
The trigonometric integral \(\text{Chi}(z) \) defined by
\[
\text{Chi}(z) = \gamma + \log(z) + \int_0^z \frac{\cosh(t) - 1}{t} \, dt,
\]
see [AS1964] 5.2.4.

EXAMPLES:

```python
sage: z = var('z')
sage: cosh_integral(z)  
cosh_integral(z)
sage: cosh_integral(3.0)  
4.96039209476561
```

Numerical evaluation for real and complex arguments is handled using mpmath:

```python
sage: cosh_integral(1.0)  
0.837866940980208
```

The alias \(\text{Chi} \) can be used instead of \(\text{cosh_integral} \):

```python
sage: Chi(1.0)  
0.837866940980208
```

Here is an example from the mpmath documentation:

```python
sage: f(x) = cosh_integral(x)
sage: find_root(f, 0.1, 1.0)  
0.523822571389...
```

Compare \(\text{cosh_integral}(3.0) \) to the definition of the value using numerical integration:

```python
sage: a = numerical_integral((cosh(x)-1)/x, 0, 3)[0]
sage: abs(N(euler_gamma + log(3)) + a - N(cosh_integral(3.0))) < 1e-14  
True
```

Arbitrary precision and complex arguments are handled:

```python
sage: N(cosh_integral(3), digits=30)  
4.96039209476560976029791763669
sage: cosh_integral(ComplexField(100)(3+I))  
3.9096723099686417127843516794 + 3.0547519627014217273323873274*I
```

The limit of \(\text{Chi}(z) \) as \(z \to \infty \) is \(\infty \):

```python
sage: N(cosh_integral(Infinity))  
+infinity
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```python
sage: x = var('x')
sage: f = cosh_integral(x)
sage: f.diff(x)  
cosh(x)/x
```

(continues on next page)
ALGORITHM:
Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

REFERENCES:
- Wikipedia article Trigonometric_integral
- mpmath documentation: chi

class sage.functions.exp_integral.Function_exp_integral
Bases: sage.symbolic.function.BuiltinFunction

The generalized complex exponential integral \(Ei(z) \) defined by
\[
Ei(x) = \int_{-\infty}^{x} \frac{e^t}{t} \, dt
\]
for \(x > 0 \) and for complex arguments by analytic continuation, see [AS1964] 5.1.2.

EXAMPLES:

```python
sage: Ei(10)
Ei(10)
sage: Ei(10r)
Ei(10r)
sage: Ei(1.3)
2.72139888023202
sage: Ei(10)
Ei(10)
sage: Ei(1.3r)
2.7213988802320235
```

The branch cut for this function is along the negative real axis:

```python
sage: Ei(-3 + 0.1*I)
-0.0129379427181693 + 3.13993830250942*I
```

The precision for the result is deduced from the precision of the input. Convert the input to a higher precision explicitly if a result with higher precision is desired:

```python
sage: Ei(RealField(300)(1.1))
2.11867382795634028235837873423380762149711273759163970471949902090327541763352339357795426
```

ALGORITHM: Uses mpmath.

class sage.functions.exp_integral.Function_exp_integral_e
Bases: sage.symbolic.function.BuiltinFunction
The generalized complex exponential integral $E_n(z)$ defined by

$$E_n(z) = \int_1^\infty \frac{e^{-zt}}{t^n} \, dt$$

for complex numbers n and z, see [AS1964] 5.1.4.

The special case where $n = 1$ is denoted in Sage by `exp_integral_e1`.

EXAMPLES:

Numerical evaluation is handled using mpmath:

```python
sage: N(exp_integral_e(1,1))
0.219383934395520
sage: exp_integral_e(1, RealField(100)(1))
0.21938393439552027367716377546
```

We can compare this to PARI's evaluation of `exponential_integral_1()`:

```python
sage: N(exponential_integral_1(1))
0.219383934395520
```

We can verify one case of [AS1964] 5.1.45, i.e. $E_n(z) = z^{n-1} \Gamma(1 - n, z)$:

```python
sage: N(exp_integral_e(2, 3+I))
0.00354575823814662 - 0.00973200528288687*I
sage: N((3+I)*gamma(-1, 3+I))
0.00354575823814662 - 0.00973200528288687*I
```

Maxima returns the following improper integral as a multiple of `exp_integral_e(1,1)`:

```python
sage: uu = integral(e^(-x)*log(x+1),x,0,oo)
sage: uu
e*exp_integral_e(1, 1)
sage: uu.n(digits=30)
0.596347362323194074341078499369
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```python
sage: x = var('x')
sage: f = exp_integral_e(2,x)
sage: f.diff(x)
-exp_integral_e(1, x)
sage: f.integrate(x)
-exp_integral_e(3, x)
sage: f = exp_integral_e(-1,x)
sage: f.integrate(x)
Ei(-x) - gamma(-1, x)
```

Some special values of `exp_integral_e` can be simplified. [AS1964] 5.1.23:

```python
sage: exp_integral_e(0,x)
e^(-x)/x
```

1.15. Exponential Integrals
\[\frac{1}{5} \]

```python
sage: exp_integral_e(6, 0)
sage: nn = var('nn')
sage: assume(nn > 1)
sage: f = exp_integral_e(nn, 0)
sage: f.simplify()
1/(nn - 1)
```

ALGORITHM:
Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

class `sage.functions.exp_integral.Function_exp_integral_e1`

Bases: `sage.symbolic.function.BuiltinFunction`

The generalized complex exponential integral \(E_1(z) \) defined by

\[
E_1(z) = \int_z^{\infty} \frac{e^{-t}}{t} \, dt
\]

see [AS1964] 5.1.4.

EXAMPLES:

```python
sage: exp_integral_e1(x)
exp_integral_e1(x)
sage: exp_integral_e1(1.0)
0.219383934395520
```

Numerical evaluation is handled using mpmath:

```python
sage: N(exp_integral_e1(1))
0.219383934395520
sage: exp_integral_e1(RealField(100)(1))
0.21938393439552027367716377546
```

We can compare this to PARI’s evaluation of `exponential_integral_1()`:

```python
sage: N(exp_integral_e1(2.0))
0.0489005107080611
sage: N(exponential_integral_1(2.0))
0.0489005107080611
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```python
sage: x = var('x')
sage: f = exp_integral_e1(x)
sage: f.diff(x)
-e^(-x)/x
sage: f.integrate(x)
-exp_integral_e(2, x)
```

ALGORITHM:
Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.
class sage.functions.exp_integral.Function_log_integral

Bases: sage.symbolic.function.BuiltinFunction

The logarithmic integral \(li(z) \) defined by

\[
li(x) = \int_0^x \frac{dt}{\ln(t)} = \text{Ei}(\ln(x))
\]

for \(x > 1 \) and by analytic continuation for complex arguments \(z \) (see [AS1964] 5.1.3).

EXAMPLES:

Numerical evaluation for real and complex arguments is handled using mpmath:

```
sage: N(log_integral(3))
2.16358859466719
sage: N(log_integral(3), digits=30)
2.16358859466719197287692236735
sage: log_integral(ComplexField(100)(3+I))
2.2879892769816826157078450911 + 0.87232935488528370139883806779*I
sage: log_integral(0)
0
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```
sage: x = var('x')
sage: f = log_integral(x)
sage: f.diff(x)
1/log(x)
sage: f.integrate(x)
x*log_integral(x) - Ei(2*log(x))
```

Here is a test from the mpmath documentation. There are 1,925,320,391,606,803,968,923 many prime numbers less than 1e23. The value of \(\log_integral(1e23) \) is very close to this:

```
sage: log_integral(1e23)
1.92532039161405e21
```

ALGORITHM:

Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

REFERENCES:

• Wikipedia article Logarithmic_integral_function
• mpmath documentation: logarithmic-integral

class sage.functions.exp_integral.Function_log_integral_offset

Bases: sage.symbolic.function.BuiltinFunction

The offset logarithmic integral, or Eulerian logarithmic integral, \(Li(x) \) is defined by

\[
Li(x) = \int_2^x \frac{dt}{\ln(t)} = li(x) - li(2)
\]

for \(x \geq 2 \).

The offset logarithmic integral should also not be confused with the polylogarithm (also denoted by \(Li(x) \)), which is implemented as \sage.functions.log.Function_polylog\.
Li(x) is identical to li(x) except that the lower limit of integration is 2 rather than 0 to avoid the singularity at $x = 1$ of

$$\frac{1}{\ln(t)}$$

See Function_log_integral for details of li(x). Thus Li(x) can also be represented by

$$\text{Li}(x) = \text{li}(x) - \text{li}(2)$$

So we have:

```
sage: li(4.5)-li(2.0)-Li(4.5)
0.000000000000000
```

Li(x) is extended to complex arguments z by analytic continuation (see [AS1964] 5.1.3):

```
sage: Li(6.6+5.4*I)
3.97032201503632 + 2.62311237593572*I
```

The function Li is an approximation for the number of primes up to x. In fact, the famous Riemann Hypothesis is

$$|\pi(x) - \text{Li}(x)| \leq \sqrt{x} \log(x).$$

For “small” x, Li(x) is always slightly bigger than $\pi(x)$. However it is a theorem that there are very large values of x (e.g., around 10^{316}), such that $\exists x : \pi(x) > \text{Li}(x)$. See “A new bound for the smallest x with $\pi(x) > \text{li}(x)$”, Bays and Hudson, Mathematics of Computation, 69 (2000) 1285-1296.

Note: Definite integration returns a part symbolic and part numerical result. This is because when Li(x) is evaluated it is passed as li(x)-li(2).

EXAMPLES:

Numerical evaluation for real and complex arguments is handled using mpmath:

```
sage: N(log_integral_offset(3))
1.11842481454970
sage: N(log_integral_offset(3), digits=30)
1.11842481454969918803233347815
sage: log_integral_offset(ComplexField(100)(3+I))
1.2428254968641898308632562019 + 0.87232935488528370139883806779*I
sage: log_integral_offset(2)
0
```

Here is a test from the mpmath documentation. There are 1,925,320,391,606,803,968,923 prime numbers less than $1e23$. The value of log_integral_offset($1e23$) is very close to this:
Symbolic derivatives are handled by Sage and integration by Maxima:

```
sage: x = var('x')
sage: f = log_integral_offset(x)
sage: f.diff(x)
1/log(x)
sage: f.integrate(x)
-x*log_integral(2) + x*log_integral(x) - Ei(2*log(x))
sage: Li(x).integrate(x,2.0,4.5)
-2.5*log_integral(2) + 5.799321147411334
sage: N(f.integrate(x,2.0,3.0))  # abs tol 1e-15
0.601621785860587
```

ALGORITHM:
Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

REFERENCES:
• Wikipedia article Logarithmic_integral_function
• mpmath documentation: logarithmic-integral

class `sage.functions.exp_integral.Function_sin_integral`

Bases: `sage.symbolic.function.BuiltinFunction`

The trigonometric integral \(\text{Si}(z) \) defined by

\[
\text{Si}(z) = \int_0^z \frac{\sin(t)}{t} \, dt,
\]

see [AS1964] 5.2.1.

EXAMPLES:
Numerical evaluation for real and complex arguments is handled using mpmath:

```
sage: sin_integral(0)
0
sage: sin_integral(0.0)
0.000000000000000
sage: sin_integral(3.0)
1.84865252799947
sage: N(sin_integral(3), digits=30)
1.84865252799946825639773025111
sage: sin_integral(ComplexField(100)(3+I))
2.0277151656451253616038525998 + 0.01521092616695421193653130271*I
```

The alias \(\text{Si} \) can be used instead of \(\text{sin_integral} \):

```
sage: Si(3.0)
1.84865252799947
```

The limit of \(\text{Si}(z) \) as \(z \to \infty \) is \(\pi/2 \):
At 200 bits of precision Si(10^{23}) agrees with $\pi/2$ up to 10^{-24}:

```
sage: sin_integral(RealField(200)(1e23))
1.5707963267948966192313288218697837425815368604836679189519
sage: N(pi/2, prec=200)
1.5707963267948966192313216916397514420985846996875529104875
```

The exponential sine integral is analytic everywhere:

```
sage: sin_integral(-1.0)
-0.946083070367183
sage: sin_integral(-2.0)
-1.60541297680269
sage: sin_integral(-1e23)
-1.57079632679490
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```
sage: x = var('x')
sage: f = sin_integral(x)
sage: f.diff(x)
sin(x)/x
sage: f.integrate(x)
x*sin_integral(x) + cos(x)
sage: integrate(sin(x)/x, x)
-1/2*I*Ei(-I*x) + 1/2*I*Ei(I*x) - pi/2
```

Compare values of the functions Si(x) and f(x) = (1/2)i · Ei(−ix) − (1/2)i · Ei(ix) − $\pi/2$, which are both anti-derivatives of $\sin(x)/x$, at some random positive real numbers:

```
sage: f(x) = 1/2*I*Ei(-I*x) - 1/2*I*Ei(I*x) - pi/2
sage: g(x) = sin_integral(x)
sage: R = [ abs(RDF.random_element()) for i in range(100) ]
sage: all(abs(f(x) - g(x)) < 1e-10 for x in R)
True
```

The Nielsen spiral is the parametric plot of (Si(t), Ci(t)):

```
sage: x = var('x')
sage: f(x) = sin_integral(x)
sage: g(x) = cos_integral(x)
sage: P = parametric_plot([f, g], (x, 0.5 ,20))
sage: show(P, frame=True, axes=False)
```

ALGORITHM:

Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

REFERENCES:
The trigonometric integral Shi(z) defined by
\[
Shi(z) = \int_0^z \frac{\sinh(t)}{t} \, dt,
\]
see [AS1964] 5.2.3.

EXAMPLES:

Numerical evaluation for real and complex arguments is handled using mpmath:

```sage
sage: sinh_integral(3.0)
4.97344047585981
sage: sinh_integral(1.0)
1.05725087537573
sage: sinh_integral(-1.0)
-1.05725087537573
```

The alias `Shi` can be used instead of `sinh_integral`:

```sage
sage: Shi(3.0)
4.97344047585981
```

Compare `sinh_integral(3.0)` to the definition of the value using numerical integration:

```sage
sage: a = numerical_integral(sinh(x)/x, 0, 3)[0]
sage: abs(a - N(sinh_integral(3))) < 1e-14
True
```

Arbitrary precision and complex arguments are handled:

```sage
sage: N(sinh_integral(3), digits=30)
4.97344047585980679771041838252
sage: sinh_integral(ComplexField(100)(3+I))
3.9134623660329374406788354078 + 3.0427678212908839256360163759*I
```

The limit `Shi(z)` as `z \to \infty` is `\infty`:

```sage
sage: N(sinh_integral(Infinity))
+infinity
```

Symbolic derivatives and integrals are handled by Sage and Maxima:

```sage
sage: x = var('x')
sage: f = sinh_integral(x)
sage: f.diff(x)
sinh(x)/x
sage: f.integrate(x)
x* sinh_integral(x) - cosh(x)
```

1.15. Exponential Integrals
Note that due to some problems with the way Maxima handles these expressions, definite integrals can sometimes give unexpected results (typically when using inexact endpoints) due to inconsistent branching:

\[
\text{sage: integrate(sinh_integral(x), x, 0, 1/2)} \\
-\cosh(1/2) + 1/2*\sinh_integral(1/2) + 1
\]

\[
\text{sage: integrate(sinh_integral(x), x, 0, 1/2).n()} \quad \# \text{correct} \\
0.125872409703453
\]

\[
\text{sage: integrate(sinh_integral(x), x, 0, 0.5).n()} \quad \# \text{fixed in maxima 5.29.1} \\
0.125872409703453
\]

ALGORITHM:
Numerical evaluation is handled using mpmath, but symbolics are handled by Sage and Maxima.

REFERENCES:
- Wikipedia article Trigonometric_integral
- mpmath documentation: shi

\[
\text{sage.functions.exp_integral.exponential_integral_1(x, n=0)}
\]

Returns the exponential integral $E_1(x)$. If the optional argument n is given, computes list of the first n values of the exponential integral $E_1(xm)$.

The exponential integral $E_1(x)$ is

\[
E_1(x) = \int_x^\infty \frac{e^{-t}}{t} \, dt
\]

INPUT:
- x – a positive real number
- n – (default: 0) a nonnegative integer; if nonzero, then return a list of values $E_1(xm)$ for $m = 1, 2, 3, \ldots, n$.
 This is useful, e.g., when computing derivatives of L-functions.

OUTPUT:
A real number if n is 0 (the default) or a list of reals if $n > 0$. The precision is the same as the input, with a default of 53 bits in case the input is exact.

EXAMPLES:

\[
\text{sage: exponential_integral_1(2)} \\
0.0489005107080611
\]

\[
\text{sage: exponential_integral_1(2, 4)} \quad \# \text{abs tol 1e-18} \\
[0.0489005107080611, 0.00377935240984891, 0.003600082452162659, 0.0000376656228439245]
\]

\[
\text{sage: exponential_integral_1(40, 5)} \\
[0.000000000000000, 2.22854325868847e-37, 6.33732515501151e-55, 2.02336191509997e-72, 6.88522610630764e-90]
\]

\[
\text{sage: exponential_integral_1(0)} \\
+\infty
\]

\[
\text{sage: r = exponential_integral_1(RealField(150)(1))} \\
\text{sage: r} \\
0.2193839343952027367716377546012164903104729
\]

\[
\text{sage: parent(r)} \\
\text{Real Field with 150 bits of precision}
\]

\[
\text{sage: exponential_integral_1(RealField(150)(1))} \\
3.6835977616820321802351926205081189876552201e-46
\]
ALGORITHM: use the PARI C-library function `eint1`.

REFERENCE:
• See Proposition 5.6.12 of Cohen’s book “A Course in Computational Algebraic Number Theory”.

1.16 Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients

Collection of functions for calculating Wigner 3-j, 6-j, 9-j, Clebsch-Gordan, Racah as well as Gaunt coefficients exactly, all evaluating to a rational number times the square root of a rational number [RH2003].

Please see the description of the individual functions for further details and examples.

AUTHORS:
• Jens Rasch (2009-03-24): initial version for Sage
• Jens Rasch (2009-05-31): updated to sage-4.0

```
sage.functions.wigner.clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3, prec=None)
```

Return the Clebsch-Gordan coefficient \(\langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle \).

The reference for this function is [Ed1974].

INPUT:
• \(j_1, j_2, j_3, m_1, m_2, m_3 \) – integer or half integer
• \(\text{prec} \) – precision, default: None. Providing a precision can drastically speed up the calculation.

OUTPUT:
Rational number times the square root of a rational number (if \(\text{prec} = \text{None} \)), or real number if a precision is given.

EXAMPLES:

```
sage: simplify(clebsch_gordan(3/2,1/2,2, 3/2,1/2,2))
1
sage: clebsch_gordan(1.5,0.5,1, 1.5,-0.5,1)
1/2*sqrt(3)
sage: clebsch_gordan(3/2,1/2,1, -1/2,1/2,0)
-sqrt(3)*sqrt(1/6)
```

Note: The Clebsch-Gordan coefficient will be evaluated via its relation to Wigner 3-j symbols:

\[
\langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle = (-1)^{j_1-j_2+m_3} \sqrt{2j_3 + 1} \left(\begin{array}{ccc} j_1 & j_2 & j_3 \\
 m_1 & m_2 & -m_3 \end{array} \right)
\]

See also the documentation on Wigner 3-j symbols which exhibit much higher symmetry relations than the Clebsch-Gordan coefficient.

AUTHORS:
• Jens Rasch (2009-03-24): initial version

```
sage.functions.wigner.gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None)
```

Return the Gaunt coefficient.
The Gaunt coefficient is defined as the integral over three spherical harmonics:

\[Y(l_1, l_2, l_3, m_1, m_2, m_3) = \int Y_{l_1, m_1}(\Omega) Y_{l_2, m_2}(\Omega) Y_{l_3, m_3}(\Omega) \, d\Omega \]

\[= \frac{\sqrt{(2l_1 + 1)(2l_2 + 1)(2l_3 + 1)}}{4\pi} \times \binom{l_1}{m_1} \binom{l_2}{m_2} \binom{l_3}{m_3} \]

INPUT:
- \(l_1, l_2, l_3, m_1, m_2, m_3 \) – integer
- \(\text{prec} \) – precision, default: None. Providing a precision can drastically speed up the calculation.

OUTPUT:
Rational number times the square root of a rational number (if \(\text{prec} = \text{None} \)), or real number if a precision is given.

EXAMPLES:

```python
sage: gaunt(1,0,1,1,0,-1)
-1/2/sqrt(pi)
sage: gaunt(1,0,1,1,0,0)
0
sage: gaunt(29,29,34,10,-5,-5)
1821867940156/215552371055153321*sqrt(22134)/sqrt(pi)
sage: gaunt(20,20,49,10,-1,0)
28384508378959800/74029560764440771/sqrt(pi)
sage: gaunt(12,15,5,2,3,-5)
91/124062*sqrt(36890)/sqrt(pi)
sage: gaunt(10,10,12,9,3,-12)
-98/62031*sqrt(6279)/sqrt(pi)
sage: gaunt(1000,1000,1200,9,3,-12).n(64)
0.00689500421922113448
```

If the sum of the \(l_i \) is odd, the answer is zero, even for Python ints (see trac ticket #14766):

```python
sage: gaunt(1,2,2,1,0,-1)
0
sage: gaunt(int(1),int(2),int(2),1,0,-1)
0
```

It is an error to use non-integer values for \(l \) or \(m \):

```python
sage: gaunt(1.2,0,1.2,0,0,0)
Traceback (most recent call last):
...
TypeError: Attempt to coerce non-integral RealNumber to Integer
sage: gaunt(1,0,1.1,0,-1.1)
Traceback (most recent call last):
...
TypeError: Attempt to coerce non-integral RealNumber to Integer
```
This function uses the algorithm of [LdB1982] to calculate the value of the Gaunt coefficient exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [RH2003].

AUTHORS:

• Jens Rasch (2009-03-24): initial version for Sage

\texttt{sage.functions.wigner.racah(aa, bb, cc, dd, ee, ff, prec=None)}

Return the Racah symbol $W(aa, bb, cc, dd; ee, ff)$.

INPUT:

• $aa, ..., ff$ – integer or half integer

• $prec$ – precision, default: $None$. Providing a precision can drastically speed up the calculation.

OUTPUT:

Rational number times the square root of a rational number (if $prec=None$), or real number if a precision is given.

EXAMPLES:

\begin{verbatim}
sage: racah(3,3,3,3,3,3)
-1/14
\end{verbatim}

\textbf{Note:} The Racah symbol is related to the Wigner 6-j symbol:

$$
\begin{vmatrix}
 j_1 & j_2 & j_3 \\
 j_4 & j_5 & j_6
\end{vmatrix} = (-1)^{j_1+j_2+j_4+j_5} W(j_1, j_2, j_5; j_3, j_6)
$$

Please see the 6-j symbol for its much richer symmetries and for additional properties.

ALGORITHM:

This function uses the algorithm of [Ed1974] to calculate the value of the 6-j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [RH2003].

AUTHORS:

• Jens Rasch (2009-03-24): initial version

\texttt{sage.functions.wigner.wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3, prec=None)}

Return the Wigner 3-j symbol $\left(\begin{array}{c} j_1 \\ j_2 \\ j_3 \\ \end{array} \right)_{m_1, m_2, m_3}$.

INPUT:

• $j_1, j_2, j_3, m_1, m_2, m_3$ – integer or half integer

• $prec$ – precision, default: $None$. Providing a precision can drastically speed up the calculation.

OUTPUT:

Rational number times the square root of a rational number (if $prec=None$), or real number if a precision is given.

EXAMPLES:
It is an error to have arguments that are not integer or half integer values:

```
sage: wigner_3j(2.1, 6, 4, 0, 0, 0)
Traceback (most recent call last):
  ...  
ValueError: j values must be integer or half integer
sage: wigner_3j(2, 6, 4, 1, 0, -1.1)
Traceback (most recent call last):
  ...  
ValueError: m values must be integer or half integer
```

The Wigner 3-\(j\) symbol obeys the following symmetry rules:

- invariant under any permutation of the columns (with the exception of a sign change where \(J = j_1 + j_2 + j_3\)):

\[
\begin{align*}
\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} &= \begin{pmatrix} j_3 & j_1 & j_2 \\ m_3 & m_1 & m_2 \end{pmatrix} = \begin{pmatrix} j_2 & j_3 & j_1 \\ m_2 & m_3 & m_1 \end{pmatrix} \\
&= (-1)^J \begin{pmatrix} j_3 & j_2 & j_1 \\ m_3 & m_2 & m_1 \end{pmatrix} = (-1)^J \begin{pmatrix} j_1 & j_3 & j_2 \\ m_1 & m_3 & m_2 \end{pmatrix} = (-1)^J \begin{pmatrix} j_2 & j_1 & j_3 \\ m_2 & m_1 & m_3 \end{pmatrix}
\end{align*}
\]

- invariant under space inflection, i.e.

\[
\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^J \begin{pmatrix} j_1 & j_2 & j_3 \\ -m_1 & -m_2 & -m_3 \end{pmatrix}
\]

- symmetric with respect to the 72 additional symmetries based on the work by [Reg1958]
- zero for \(j_1, j_2, j_3\) not fulfilling triangle relation
- zero for \(m_1 + m_2 + m_3 \neq 0\)
- zero for violating any one of the conditions \(j_1 \geq |m_1|, j_2 \geq |m_2|, j_3 \geq |m_3|\)

ALGORITHM:

This function uses the algorithm of [Ed1974] to calculate the value of the 3-\(j\) symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [RH2003].

AUTHORS:

- Jens Rasch (2009-03-24): initial version

```
sage.functions.wigner.wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None)
```

Return the Wigner 6-\(j\) symbol \(\begin{pmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{pmatrix}\).
• \(j_1, \ldots, j_6 \) – integer or half integer
• \(\text{prec} \) – precision, default: \text{None}. Providing a precision can drastically speed up the calculation.

OUTPUT:
Rational number times the square root of a rational number (if \(\text{prec}=\text{None} \)), or real number if a precision is given.

EXAMPLES:

```
sage: wigner_6j(3,3,3,3,3,3)
-1/14
sage: wigner_6j(5,5,5,5,5,5)
1/52
sage: wigner_6j(6,6,6,6,6,6)
309/10868
sage: wigner_6j(8,8,8,8,8,8)
-12219/965770
sage: wigner_6j(30,30,30,30,30,30)
36082186869033479581/87954851694828981714124
sage: wigner_6j(0.5,0.5,1,0.5,0.5,1)
1/6
sage: wigner_6j(200,200,200,200,200,200, prec=1000)*1.0
0.000155903212413242
```

It is an error to have arguments that are not integer or half integer values or do not fulfill the triangle relation:

```
sage: wigner_6j(2.5,2.5,2.5,2.5,2.5,2.5)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
sage: wigner_6j(0.5,0.5,1.1,0.5,0.5,1.1)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
```

The Wigner 6-\(j \) symbol is related to the Racah symbol but exhibits more symmetries as detailed below.

\[
\begin{bmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{bmatrix} = (-1)^{j_1+j_2+j_4+j_5} W(j_1, j_2, j_4; j_3, j_5)
\]

The Wigner 6-\(j \) symbol obeys the following symmetry rules:

- **Wigner 6-\(j \) symbols are left invariant under any permutation of the columns:**
 \[
 \begin{bmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{bmatrix} = \begin{bmatrix} j_3 & j_1 & j_2 \\ j_6 & j_4 & j_5 \end{bmatrix} = \begin{bmatrix} j_2 & j_3 & j_1 \\ j_5 & j_6 & j_4 \end{bmatrix}
 = \begin{bmatrix} j_3 & j_2 & j_1 \\ j_6 & j_5 & j_4 \end{bmatrix} = \begin{bmatrix} j_1 & j_3 & j_2 \\ j_4 & j_6 & j_5 \end{bmatrix} = \begin{bmatrix} j_2 & j_1 & j_3 \\ j_4 & j_5 & j_6 \end{bmatrix}

 \]

- **They are invariant under the exchange of the upper and lower arguments in each of any two columns, i.e.**
 \[
 \begin{bmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{bmatrix} = \begin{bmatrix} j_1 & j_5 & j_3 \\ j_4 & j_2 & j_6 \end{bmatrix} = \begin{bmatrix} j_4 & j_2 & j_6 \\ j_1 & j_5 & j_3 \end{bmatrix} = \begin{bmatrix} j_4 & j_5 & j_3 \\ j_1 & j_2 & j_6 \end{bmatrix} = \begin{bmatrix} j_4 & j_5 & j_3 \\ j_1 & j_2 & j_6 \end{bmatrix}
 \]
• additional 6 symmetries [Reg1959] giving rise to 144 symmetries in total
• only non-zero if any triple of j’s fulfill a triangle relation

ALGORITHM:
This function uses the algorithm of [Ed1974] to calculate the value of the 6-j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [RH2003].

```
sage.functions.wigner.wigner_9j(j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, prec=None)
```

Return the Wigner 9-j symbol

```
\begin{aligned}
  & j_1 & j_2 & j_3 \\
  & j_4 & j_5 & j_6 \\
  & j_7 & j_8 & j_9 \\
\end{aligned}
```

INPUT:

• j_1, \ldots, j_9 – integer or half integer

• prec – precision, default: None. Providing a precision can drastically speed up the calculation.

OUTPUT:

Rational number times the square root of a rational number (if $\text{prec}=\text{None}$), or real number if a precision is given.

EXAMPLES:

A couple of examples and test cases, note that for speed reasons a precision is given:

```
sage: wigner_9j(1,1,1, 1,1,1, 1,1,0 ,prec=64) # ==1/18
0.0555555555555555555

sage: wigner_9j(1,1,1, 1,1,1, 1,1,1,)
0

sage: wigner_9j(1,1,1, 1,1,1, 1,1,2 ,prec=64) # ==1/18
0.0555555555555555556

sage: wigner_9j(1,2,1, 2,2,2, 1,2,1 ,prec=64) # ==-1/150
-0.0066666666666666667

sage: wigner_9j(3,3,2, 2,2,2, 3,3,2 ,prec=64) # ==157/14700
0.0106802721088435374

sage: wigner_9j(3,3,2, 3,3,2, 3,3,2 ,prec=64)
# ==3221*sqrt(70)/(246960*sqrt(105)) -
  \rightarrow 365/(3528*sqrt(70)*sqrt(105))
0.00944247746651111739

sage: wigner_9j(3,3,1, 3.5,3.5,2, 3.5,3.5,1 ,prec=64) # ==3221*sqrt(70)/(246960*sqrt(105)) -
  \rightarrow 365/(3528*sqrt(70)*sqrt(105))
0.0110216678544351364

sage: wigner_9j(100,80,50, 50,100,70, 60,50,100 ,prec=1000)*1.0
1.05597798065761e-7

sage: wigner_9j(30,30,10, 30.5,30.5,20, 30.5,30.5,10 ,prec=1000)*1.0 #
==((8994680186359968990/95103769817469)*sqrt(1/6822815895969947295))
0.00003258416949408828

sage: wigner_9j(64,62.5,114.5, 61.5,61,112.5, 113.5,110.5,60, prec=1000)*1.0
-3.41407910055520e-39

sage: wigner_9j(15,15,15, 15,3,15, 15,18,10, prec=1000)*1.0
-0.0000778324615309539

sage: wigner_9j(1.5,1.5, 1.5,1.5, 1.5,1.5)
0
```

It is an error to have arguments that are not integer or half integer values or do not fulfill the triangle relation:
ALGORITHM:

This function uses the algorithm of [Ed1974] to calculate the value of the 3-j symbol exactly. Note that the formula contains alternating sums over large factorials and is therefore unsuitable for finite precision arithmetic and only useful for a computer algebra system [RH2003].

1.17 Generalized Functions

Sage implements several generalized functions (also known as distributions) such as Dirac delta, Heaviside step functions. These generalized functions can be manipulated within Sage like any other symbolic functions.

AUTHORS:
- Golam Mortuza Hossain (2009-06-26): initial version

EXAMPLES:

Dirac delta function:

```sage
dirac_delta(x)
dirac_delta(x)
```

Heaviside step function:

```sage
heaviside(x)
heaviside(x)
```

Unit step function:

```sage
unit_step(x)
unit_step(x)
```

Signum (sgn) function:

```sage
sgn(x)
sgn(x)
```

Kronecker delta function:

```sage
m,n=var('m,n')
sage: kronecker_delta(m,n)
sage: kronecker_delta(m, n)
```
class sage.functions.generalized.FunctionDiracDelta
 Bases: sage.symbolic.function.BuiltinFunction

The Dirac delta (generalized) function, \(\delta(x) \) (dirac_delta(x)).

INPUT:

- \(x \) - a real number or a symbolic expression

DEFINITION:

Dirac delta function \(\delta(x) \), is defined in Sage as:

\[
\delta(x) = 0 \text{ for real } x \neq 0 \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(x) \, dx = 1
\]

Its alternate definition with respect to an arbitrary test function \(f(x) \) is

\[
\int_{-\infty}^{\infty} f(x) \delta(x - a) \, dx = f(a)
\]

EXAMPLES:

```python
sage: dirac_delta(1)
0
sage: dirac_delta(0)
dirac_delta(0)
sage: dirac_delta(x)
dirac_delta(x)
sage: integrate(dirac_delta(x), x, -1, 1, algorithm='sympy')
1
```

REFERENCES:

- Wikipedia article Dirac_delta_function

class sage.functions.generalized.FunctionHeaviside
 Bases: sage.symbolic.function.GinacFunction

The Heaviside step function, \(H(x) \) (heaviside(x)).

INPUT:

- \(x \) - a real number or a symbolic expression

DEFINITION:

The Heaviside step function, \(H(x) \) is defined in Sage as:

\[
H(x) = 0 \text{ for } x < 0 \quad \text{and} \quad H(x) = 1 \text{ for } x > 0
\]

See also:

`unit_step()`

EXAMPLES:

```python
sage: heaviside(-1)
0
sage: heaviside(1)
1
sage: heaviside(0)
heaviside(0)
sage: heaviside(x)
heaviside(x)
```

(continues on next page)
heaviside(-1/2)
0
heaviside(exp(-1000000000000000000000))
1

REFERENCES:
- Wikipedia article Heaviside_function

class sage.functions.generalized.FunctionKroneckerDelta
Bases: sage.symbolic.function.BuiltinFunction
The Kronecker delta function $\delta_{m,n}$ ($\text{kronecker_delta}(m, n)$).

INPUT:
- m - a number or a symbolic expression
- n - a number or a symbolic expression

DEFINITION:
Kronecker delta function $\delta_{m,n}$ is defined as:
$$\delta_{m,n} = 0 \text{ for } m \neq n \text{ and } \delta_{m,n} = 1 \text{ for } m = n$$

EXAMPLES:
kronecker_delta(1,2)
kronecker_delta(1,1)
kronecker_delta(m,n)

REFERENCES:
- Wikipedia article Kronecker_delta

class sage.functions.generalized.FunctionSignum
Bases: sage.symbolic.function.BuiltinFunction
The signum or sgn function $\text{sgn}(x)$ ($\text{sgn}(x)$).

INPUT:
- x - a real number or a symbolic expression

DEFINITION:
The sgn function, $\text{sgn}(x)$ is defined as:
$$\text{sgn}(x) = 1 \text{ for } x > 0, \text{sgn}(x) = 0 \text{ for } x = 0 \text{ and } \text{sgn}(x) = -1 \text{ for } x < 0$$

EXAMPLES:
sgn(-1)
sgn(1)
We can also use sign:

```markdown
sage: sign(1)
1
sage: sign(0)
0
sage: a = AA(-5).nth_root(7)
sage: sign(a)
-1
```

REFERENCES:

- Wikipedia article Sign_function

```python
class sage.functions.generalized.FunctionUnitStep
Bases: sage.symbolic.function.GinacFunction

The unit step function, \( u(x) \) (unit_step(x)).

INPUT:

- \( x \) - a real number or a symbolic expression

DEFINITION:

The unit step function, \( u(x) \) is defined in Sage as:

\[
u(x) = 0 \text{ for } x < 0 \text{ and } u(x) = 1 \text{ for } x \geq 0
\]

See also:

heaviside()

EXAMPLES:

```markdown
sage: unit_step(-1)
0
sage: unit_step(1)
1
sage: unit_step(0)
1
sage: unit_step(x)
unit_step(x)
sage: unit_step(-exp(-100000000000000000000))
0
```
1.18 Counting Primes

AUTHORS:

- R. Andrew Ohana (2009): initial version of efficient prime_pi
- R. Andrew Ohana (2011): complete rewrite, ~5x speedup
- Dima Pasechnik (2021): removed buggy cython code, replaced it with calls to primecount/primecountpy spkg

EXAMPLES:

```python
sage: z = sage.functions.prime_pi.PrimePi()
sage: loads(dumps(z))
prime_pi
sage: loads(dumps(z)) == z
True
```

```python
class sage.functions.prime_pi.PrimePi
 Bases: sage.symbolic.function.BuiltinFunction

 The prime counting function, which counts the number of primes less than or equal to a given value.

 INPUT:

 - `x` - a real number
 - `prime_bound` - (default 0) a real number < 2^32, `prime_pi` will make sure to use all the primes up to `prime_bound` (although, possibly more) in computing `prime_pi`, this can potentially speedup the time of computation, at a cost to memory usage.

 OUTPUT:

 integer – the number of primes ≤ x

 EXAMPLES:

 These examples test common inputs:

    ```python
    sage: prime_pi(7)
    4
    sage: prime_pi(100)
    25
    sage: prime_pi(1000)
    168
    sage: prime_pi(10000)
    9592
    sage: prime_pi(500509)
    41581
    ```

 The following test is to verify that trac ticket #4670 has been essentially resolved:

    ```python
    sage: prime_pi(10^10)
    455052511
    ```

 The `prime_pi` function also has a special plotting method, so it plots quickly and perfectly as a step function:

    ```python
    sage: P = plot(prime_pi, 50, 100)
    ```
plot($xmin=0, xmax=100, vertical_lines=True, **kwds$)

Draw a plot of the prime counting function from $xmin$ to $xmax$. All additional arguments are passed on to the line command.

WARNING: we draw the plot of prime_pi as a stairstep function with explicitly drawn vertical lines where the function jumps. Technically there should not be any vertical lines, but they make the graph look much better, so we include them. Use the option vertical_lines=False to turn these off.

EXAMPLES:

```
sage: plot(prime_pi, 1, 100)
Graphics object consisting of 1 graphics primitive
sage: prime_pi.plot(1, 51, thickness=2, vertical_lines=False)
Graphics object consisting of 16 graphics primitives
```

sage.functions.prime_pi.legendre_phi(x, a)

Legendre’s formula, also known as the partial sieve function, is a useful combinatorial function for computing the prime counting function (the prime_pi method in Sage). It counts the number of positive integers $\leq x$ that are not divisible by the first a primes.

INPUT:

• x – a real number
• a – a non-negative integer

OUTPUT:

integer – the number of positive integers $\leq x$ that are not divisible by the first a primes

EXAMPLES:

```
sage: legendre_phi(100, 0)
100
sage: legendre_phi(29375, 1)
14688
sage: legendre_phi(91753, 5973)
2893
sage: legendre_phi(4215701455, 6450023226)
1
```

sage.functions.prime_pi.partial_sieve_function(x, a)

Legendre’s formula, also known as the partial sieve function, is a useful combinatorial function for computing the prime counting function (the prime_pi method in Sage). It counts the number of positive integers $\leq x$ that are not divisible by the first a primes.

INPUT:

• x – a real number
• a – a non-negative integer

OUTPUT:

integer – the number of positive integers $\leq x$ that are not divisible by the first a primes

EXAMPLES:

```
sage: legendre_phi(100, 0)
100
sage: legendre_phi(29375, 1)
```

(continues on next page)
1.19 Symbolic Minimum and Maximum

Sage provides a symbolic maximum and minimum due to the fact that the Python builtin max and min are not able to deal with variables as users might expect. These functions wait to evaluate if there are variables.

Here you can see some differences:

```python
sage: max(x, x^2)
x
sage: max_symbolic(x, x^2)
max(x, x^2)
sage: f(x) = max_symbolic(x, x^2); f(1/2)
1/2
```

This works as expected for more than two entries:

```python
sage: max(3, 5, x)
5
sage: min(3, 5, x)
3
sage: max_symbolic(3, 5, x)
max(x, 5)
sage: min_symbolic(3, 5, x)
min(x, 3)
```

```python
class sage.functions.min_max.MaxSymbolic
    Bases: sage.functions.min_max.MinMax_base

    Symbolic max function.

    The Python builtin max function doesn’t work as expected when symbolic expressions are given as arguments. This function delays evaluation until all symbolic arguments are substituted with values.

    EXAMPLES:

    ```python
 sage: max_symbolic(3, x)
 max(3, x)
sage: max_symbolic(3, x).subs(x=5)
 5
 sage: max_symbolic(3, 5, x)
 max(x, 5)
sage: max_symbolic([3, 5, x])
 max(x, 5)
    ```
```
eval_helper(this_f, builtin_f, initial_val, args)

EXAMPLES:

```
sage: max_symbolic(3, 5, x)  # indirect doctest
type: max(x, 5)
sage: max_symbolic([5.0r])  # indirect doctest
5.0
```

class sage.functions.min_max.MinSymbolic

Bases: sage.functions.min_max.MinMax_base

Symbolic min function.

The Python builtin min function doesn’t work as expected when symbolic expressions are given as arguments. This function delays evaluation until all symbolic arguments are substituted with values.

EXAMPLES:

```
sage: min_symbolic(3, x)
type: min(x, 3)
sage: min_symbolic(3, x).subs(x=5)
3
```

Please find extensive developer documentation for creating new functions in Symbolic Calculus, in particular in the section Classes for symbolic functions.
INDICES AND TABLES

- Index
- Module Index
- Search Page
f
sage.functions.airy, 94
sage.functions.bessel, 100
sage.functions.error, 33
sage.functions.exp_integral, 115
sage.functions.generalized, 133
sage.functions.hyperbolic, 19
sage.functions.hypergeometric, 81
sage.functions.jacobi, 91
sage.functions.log, 1
sage.functions.min_max, 139
sage.functions.orthogonal_polys, 49
sage.functions.other, 64
sage.functions.piecewise, 36
sage.functions.prime_pi, 137
sage.functions.special, 76
sage.functions.spike_function, 47
sage.functions.transcendental, 28
sage.functions.trig, 8
sage.functions.wigner, 127
INDEX

A
airy_ai() (in module sage.functions.airy), 96
airy_bi() (in module sage.functions.airy), 98
approximate() (sage.functions.transcendental.DickmanRho method), 28

B
Bessel() (in module sage.functions.bessel), 102

C
ChebyshevFunction (class in sage.functions.orthogonal_polys), 52
clebsch_gordan() (in module sage.functions.wigner), 127
closed_form() (in module sage.functions.hypergeometric), 89
convolution() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 37
critical_points() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 37

D
deflated() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 84
deprecated_function_alias() (sage.functions.orthogonal_polys.Func_assoc_legendre_P method), 54
DickmanRho (class in sage.functions.transcendental), 28
domain() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 38

E
elliptic_eu_f() (in module sage.functions.special), 80
elliptic_j() (in module sage.functions.special), 80
EllipticE (class in sage.functions.special), 77
EllipticEC (class in sage.functions.special), 78
EllipticEU (class in sage.functions.special), 78
EllipticF (class in sage.functions.special), 78
EllipticKC (class in sage.functions.special), 79
EllipticPi (class in sage.functions.special), 79
end_points() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 38
eval_algebraic() (sage.functions.orthogonal_polys.Func_chebyshev_T method), 56
eval_algebraic() (sage.functions.orthogonal_polys.Func_chebyshev_U method), 56
eval_formula() (sage.functions.orthogonal_polys.Func_chebyshev_T method), 57
eval_formula() (sage.functions.orthogonal_polys.Func_chebyshev_U method), 56
eval_formula() (sage.functions.orthogonal_polys.Func_chebyshev_T method), 58
eval_formula() (sage.functions.orthogonal_polys.Func_chebyshev_U method), 58
eval_formula() (sage.functions.orthogonal_polys.Func_legendre_Q method), 63
eval_formula() (sage.functions.orthogonal_polys.Func_assoc_legendre_P method), 54
eval_formula() (sage.functions.orthogonal_polys.Func_assoc_legendre_Q method), 55
eval_helper() (sage.functions.min_max.MinMax_base method), 139
eval_helper() (sage.functions.orthogonal_polys.Func_assoc_legendre_P method), 55
eval_recursive() (sage.functions.orthogonal_polys.Func_assoc_legendre_P method), 55
eval_recursive() (sage.functions.orthogonal_polys.Func_assoc_legendre_Q method), 61
exponential_integral_1() (in module sage.functions.exp_integral), 126
expression_at() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 38
expressions() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 39

F
fourier_series_cosine_coefficient() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 40
fourier_series_partial_sum()
(sage.functions.piecewise.PiecewiseFunction.EvaluationMethods)

fourier_series_sine_coefficient()
(sage.functions.piecewise.PiecewiseFunction.EvaluationMethods)

Func_assoc_legendre_P
(sage.functions.orthogonal_polys)

Func_assoc_legendre_Q
(sage.functions.orthogonal_polys)

Func_chebyshev_T
(sage.functions.orthogonal_polys)

Func_chebyshev_U
(sage.functions.orthogonal_polys)

Func_gen_laguerre
(sage.functions.orthogonal_polys)

Func_hermite
(sage.functions.orthogonal_polys)

Func_jacobi_P
(sage.functions.orthogonal_polys)

Func_legendre_P
(sage.functions.orthogonal_polys)

Func_laguerre
(sage.functions.orthogonal_polys)

Func_legendsre_P
(sage.functions.orthogonal_polys)

Func_legendsre_Q
(sage.functions.orthogonal_polys)

Func_ultraspherical
(sage.functions.orthogonal_polys)

Function_abs
(sage.functions.orthogonal_polys)

Function_arccos
(sage.functions.orthogonal_polys)

Function_arccosh
(sage.functions.orthogonal_polys)

Function_arccot
(sage.functions.orthogonal_polys)

Function_arccoth
(sage.functions.orthogonal_polys)

Function_arccsc
(sage.functions.orthogonal_polys)

Function_arccsch
(sage.functions.orthogonal_polys)

Function_arccsec
(sage.functions.orthogonal_polys)

Function_arccsech
(sage.functions.orthogonal_polys)

Function_arcsin
(sage.functions.orthogonal_polys)

Function_arcsinh
(sage.functions.orthogonal_polys)

Function_arctan
(sage.functions.orthogonal_polys)

Function_arctan2
(sage.functions.orthogonal_polys)

Function_arctanh
(sage.functions.orthogonal_polys)

Function_arg
(sage.functions.orthogonal_polys)

Function_Bessel_I
(sage.functions.bessel)

Function_Bessel_J
(sage.functions.bessel)

Function_Bessel_K
(sage.functions.bessel)

Function_Bessel_Y
(sage.functions.bessel)

Function_binomial
(sage.functions.other)

Function_cases
(sage.functions.other)

Function_ceil
(sage.functions.other)

Function_conjugate
(sage.functions.other)

Function_cosh
(sage.functions.hyperbolic)

Function_cosh_integral
(sage.functions.exp_integral)

Function_cot
(sage.functions.trig)

Function_coth
(sage.functions.hyperbolic)

Function_crootof
(sage.functions.hyperbolic)

Function_csc
(sage.functions.trig)

Function_csc_h
(sage.functions.hyperbolic)

Function_crootof
(sage.functions.hyperbolic)

Function_csc_h
(sage.functions.hyperbolic)

Function_csch
(sage.functions.hyperbolic)

Function_csch_integral
(sage.functions.exp_integral)

Function_erf
(sage.functions.error)

Function_erfc
(sage.functions.error)

Function_erfni
(sage.functions.error)

Function_exp
(sage.functions.exp_integral)

Function_exp_integral
(sage.functions.exp_integral)

Function_exp_integral_e
(sage.functions.exp_integral)

Function_exp_integral_e1
(sage.functions.exp_integral)

Function_exp_polar
(sage.functions.exp_integral)

Function_factorial
(sage.functions.hyperbolic)

Function_floor
(sage.functions.hyperbolic)

Function_frac
(sage.functions.hyperbolic)

Function_Fresnel_cos
(sage.functions.error)

Function_Fresnel_sin
(sage.functions.error)

Function_Fourier_series
(sage.functions.piecewise)

Function_Hankel1
(sage.functions.bessel)

Function_Hankel2
(sage.functions.bessel)

Function_Harmonic_number
(sage.functions.hyperbolic)

Function_HurwitzZeta
(sage.functions.transcendental)

Function_imag_part
(sage.functions.hyperbolic)

Function_lambert_w
(sage.functions.hyperbolic)

Function_limit
(sage.functions.hyperbolic)

Function_log
(sage.functions.hyperbolic)

Function_log1
(sage.functions.hyperbolic)

Function_log2
(sage.functions.hyperbolic)

Function_log_integral
(sage.functions.exp_integral)
Function_log_integral_offset (class in sage.functions.exp_integral), 121
Function_Order (class in sage.functions.other), 64
Function_polylog (class in sage.functions.log), 7
Function_prod (class in sage.functions.other), 73
Function_real_nth_root (class in sage.functions.other), 73
Function_real_part (class in sage.functions.other), 74
Function_sec (class in sage.functions.trig), 16
Function_sech (class in sage.functions.hyperbolic), 25
Function_sin (class in sage.functions.trig), 17
Function_sin_integral (class in sage.functions.exp_integral), 123
Function_sinh (class in sage.functions.hyperbolic), 26
Function_sinh_integral (class in sage.functions.exp_integral), 125
Function_sqrt (class in sage.functions.other), 75
Function_stieltjes (class in sage.functions.transcendental), 29
Function_Struve_H (class in sage.functions.bessel),
111
Function_Struve_L (class in sage.functions.bessel),
112
Function_sum (class in sage.functions.other), 75
Function_tan (class in sage.functions.trig), 18
Function_tanh (class in sage.functions.hyperbolic), 27
Function_zeta (class in sage.functions.transcendental),
30
Function_zetaderiv (class in sage.functions.transcendental), 31
FunctionAiryAiGeneral (class in sage.functions.airy),
94
FunctionAiryAiPrime (class in sage.functions.airy), 95
FunctionAiryAISimple (class in sage.functions.airy),
95
FunctionAiryBiGeneral (class in sage.functions.airy),
95
FunctionAiryBiPrime (class in sage.functions.airy), 96
FunctionAiryBiSimple (class in sage.functions.airy),
96
FunctionDiracDelta (class in sage.functions.generalized), 133
FunctionHeaviside (class in sage.functions.generalized), 134
FunctionKroneckerDelta (class in sage.functions.generalized), 135
FunctionSignum (class in sage.functions.generalized), 135
FunctionUnitStep (class in sage.functions.generalized), 136

generalized() (sage.functions.hypergeometric.Hypergeometric_M.EvaluationMethods method), 88

H

Hurwitz_zeta() (in module sage.functions.transcendental), 31
Hypergeometric (class in sage.functions.hypergeometric), 84
Hypergeometric.EvaluationMethods (class in sage.functions.hypergeometric), 84
Hypergeometric_M (class in sage.functions.hypergeometric), 88
Hypergeometric_M.EvaluationMethods (class in sage.functions.hypergeometric), 88
Hypergeometric_U (class in sage.functions.hypergeometric), 88
Hypergeometric_U.EvaluationMethods (class in sage.functions.hypergeometric), 89

I

in_operands() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 47
integral() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 43
inverse_jacobi() (in module sage.functions.jacobi),
92
inverse_jacobi_f() (in module sage.functions.jacobi), 93
InversionJacobi (class in sage.functions.jacobi), 92
is_absolutely_convergent() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 85
is_terminating() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 86
is_termwise_finite() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 87
items() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 44

J

Jacobi (class in sage.functions.jacobi), 92
jacobi() (in module sage.functions.jacobi), 93
jacobi_am() (in module sage.functions.jacobi), 93
JacobiAmplitude (class in sage.functions.jacobi), 92

L

laplace() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 44
legendre_phi() (in module sage.functions.prime_pi), 138
MaxSymbolic (class in sage.functions.min_max), 139
MinMax_base (class in sage.functions.min_max), 139
MinSymbolic (class in sage.functions.min_max), 140

module
sage.functions.airy, 94
sage.functions.bessel, 100
sage.functions.error, 33
sage.functions.exp_integral, 115
sage.functions.generalized, 133
sage.functions.hyperbolic, 19
sage.functions.hypergeometric, 81
sage.functions.jacobi, 91
sage.functions.log, 1
sage.functions.min_max, 139
sage.functions.orthogonal_polys, 49
sage.functions.other, 64
sage.functions.piecewise, 36
sage.functions.prime_pi, 137
sage.functions.special, 76
sage.functions.spike_function, 47
sage.functions.transcendental, 28
sage.functions.trig, 8
sage.functions.wigner, 127

OrthogonalFunction (class in sage.functions.orthogonal_polys), 63

partial_sieve_function() (in module sage.functions.prime_pi), 138
pieces() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 45
piecewise_add() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 45
PiecewiseFunction (class in sage.functions.piecewise), 36
PiecewiseFunction.EvaluationMethods (class in sage.functions.piecewise), 37
plot() (sage.functions.prime_pi.PrimePi method), 137
plot() (sage.functions.spike_function.SpikeFunction method), 48
plot_fft_abs() (sage.functions.spike_function.SpikeFunction method), 48
plot_fft_arg() (sage.functions.spike_function.SpikeFunction method), 48
power_series() (sage.functions.transcendental.DickmanRho method), 29
PrimePi (class in sage.functions.prime_pi), 137

rational_param_as_tuple() (in module sage.functions.hypergeometric), 90
restriction() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 45

S
sage.functions.airy module, 94
sage.functions.bessel module, 100
sage.functions.error module, 33
sage.functions.exp_integral module, 115
sage.functions.generalized module, 133
sage.functions.hyperbolic module, 19
sage.functions.hypergeometric module, 81
sage.functions.jacobi module, 91
sage.functions.log module, 1
sage.functions.min_max module, 139
sage.functions.orthogonal_polys module, 49
sage.functions.other module, 64
sage.functions.piecewise module, 36
sage.functions.prime_pi module, 137
sage.functions.special module, 76
sage.functions.spike_function module, 47
sage.functions.transcendental module, 28
sage.functions.trig module, 8
sage.functions.wigner module, 127
simplify() (sage.functions.piecewise.PiecewiseFunction static method), 47
sorted_parameters() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 87
spherical_bessel_f() (in module sage.functions.bessel), 114
SphericalBesselJ (class in sage.functions.bessel), 112
SphericalBesselY (class in sage.functions.bessel), 113
SphericalHankel1 (class in sage.functions.bessel), 113
SphericalHankel2 (class in sage.functions.bessel), 114
SphericalHarmonic (class in sage.functions.special), 80
spike_function (in module sage.functions.spike_function), 49
SpikeFunction (class in sage.functions.spike_function), 47
T
terms() (sage.functions.hypergeometric.Hypergeometric.EvaluationMethods method), 87
trapezoid() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 46
U
unextend_zero() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 46
V
vector() (sage.functions.spike_function.SpikeFunction method), 49
W
which_function() (sage.functions.piecewise.PiecewiseFunction.EvaluationMethods method), 46
wigner_3j() (in module sage.functions.wigner), 129
wigner_6j() (in module sage.functions.wigner), 130
wigner_9j() (in module sage.functions.wigner), 132
Z
zeta_symmetric() (in module sage.functions.transcendental), 32