
Games
Release 10.2

The Sage Development Team

Dec 06, 2023

CONTENTS

1 Sudoku Puzzles 3

2 Family Games America’s Quantumino solver 13

3 Hexads in S(5, 6, 12) 21

4 Internals 29

5 Indices and Tables 31

Python Module Index 33

Index 35

i

ii

Games, Release 10.2

Sage includes a sophisticated Sudoku solver. It also has a Rubik’s cube solver (see Rubik’s Cube Group).

CONTENTS 1

../groups/sage/groups/perm_gps/cubegroup.html

Games, Release 10.2

2 CONTENTS

CHAPTER

ONE

SUDOKU PUZZLES

This module provides algorithms to solve Sudoku puzzles, plus tools for inputting, converting and displaying various
ways of writing a puzzle or its solution(s). Primarily this is accomplished with the sage.games.sudoku.Sudoku
class, though the legacy top-level sage.games.sudoku.sudoku() function is also available.

AUTHORS:

• Tom Boothby (2008/05/02): Exact Cover, Dancing Links algorithm

• Robert Beezer (2009/05/29): Backtracking algorithm, Sudoku class

class sage.games.sudoku.Sudoku(puzzle, verify_input=True)
Bases: SageObject

An object representing a Sudoku puzzle. Primarily the purpose is to solve the puzzle, but conversions between
formats are also provided.

INPUT:

• puzzle – the first argument can take one of three forms

– list - a Python list with elements of the puzzle in row-major order, where a blank entry is a zero

– matrix - a square Sage matrix over Z

– string - a string where each character is an entry of the puzzle. For two-digit entries, a = 10, b =
11, etc.

• verify_input – default = True, use False if you know the input is valid

EXAMPLES:

sage: a = Sudoku('5...8..49...5...3..673....115..........2.8..........187....415..3.
→˓..2...49..5...3')
sage: print(a)
+-----+-----+-----+
5	8	4 9
	5	3
6 7	3	1
+-----+-----+-----+		
1 5		
	2 8	
		1 8
+-----+-----+-----+		
7	4	1 5
3	2	
4 9	5	3

(continues on next page)

3

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Games, Release 10.2

(continued from previous page)

+-----+-----+-----+
sage: print(next(a.solve()))
+-----+-----+-----+
5 1 3	6 8 7	2 4 9
8 4 9	5 2 1	6 3 7
2 6 7	3 4 9	5 8 1
+-----+-----+-----+		
1 5 8	4 6 3	9 7 2
9 7 4	2 1 8	3 6 5
3 2 6	7 9 5	4 1 8
+-----+-----+-----+		
7 8 2	9 3 4	1 5 6
6 3 5	1 7 2	8 9 4
4 9 1	8 5 6	7 2 3
+-----+-----+-----+

backtrack()

Return a generator which iterates through all solutions of a Sudoku puzzle.

This function is intended to be called from the solve() method when the algorithm='backtrack'
option is specified. However it may be called directly as a method of an instance of a Sudoku puzzle.

At this point, this method calls backtrack_all() which constructs all of the solutions as a list. Then the
present method just returns the items of the list one at a time. Once Cython supports closures and a yield
statement is supported, then the contents of backtrack_all() may be subsumed into this method and the
sage.games.sudoku_backtrack module can be removed.

This routine can have wildly variable performance, with a factor of 4000 observed between the fastest and
slowest 9×9 examples tested. Examples designed to perform poorly for naive backtracking, will do poorly
(such as d below). However, examples meant to be difficult for humans often do very well, with a factor of
5 improvement over the 𝐷𝐿𝑋 algorithm.

Without dynamically allocating arrays in the Cython version, we have limited this function to 16 × 16
puzzles. Algorithmic details are in the sage.games.sudoku_backtrack module.

EXAMPLES:

This example was reported to be very difficult for human solvers. This algorithm works very fast on it, at
about half the time of the DLX solver. [sudoku:escargot]

sage: g = Sudoku('1....7.9..3..2...8..96..5....53..9...1..8...26....4...3......
→˓1..4......7..7...3..')
sage: print(g)
+-----+-----+-----+
1	7	9
3	2	8
9	6	5
+-----+-----+-----+		
5	3	9
1	8	2
6	4	
+-----+-----+-----+		
3		1
4		7
7		3

(continues on next page)

4 Chapter 1. Sudoku Puzzles

Games, Release 10.2

(continued from previous page)

+-----+-----+-----+
sage: print(next(g.solve(algorithm='backtrack')))
+-----+-----+-----+
1 6 2	8 5 7	4 9 3
5 3 4	1 2 9	6 7 8
7 8 9	6 4 3	5 2 1
+-----+-----+-----+		
4 7 5	3 1 2	9 8 6
9 1 3	5 8 6	7 4 2
6 2 8	7 9 4	1 3 5
+-----+-----+-----+		
3 5 6	4 7 8	2 1 9
2 4 1	9 3 5	8 6 7
8 9 7	2 6 1	3 5 4
+-----+-----+-----+

This example has no entries in the top row and a half, and the top row of the solution is 987654321 and there-
fore a backtracking approach is slow, taking about 750 times as long as the DLX solver. [sudoku:wikipedia]

sage: c = Sudoku('..............3.85..1.2.......5.7.....4...1...9.......5......
→˓73..2.1........4...9')
sage: print(c)
+-----+-----+-----+
	3	8 5
1	2	
+-----+-----+-----+		
	5 7	
4		1
9		
+-----+-----+-----+		
5		7 3
2	1	
	4	9
+-----+-----+-----+		
sage: print(next(c.solve(algorithm='backtrack')))		
+-----+-----+-----+		
9 8 7	6 5 4	3 2 1
2 4 6	1 7 3	9 8 5
3 5 1	9 2 8	7 4 6
+-----+-----+-----+		
1 2 8	5 3 7	6 9 4
6 3 4	8 9 2	1 5 7
7 9 5	4 6 1	8 3 2
+-----+-----+-----+		
5 1 9	2 8 6	4 7 3
4 7 2	3 1 9	5 6 8
8 6 3	7 4 5	2 1 9
+-----+-----+-----+

dlx(count_only=False)
Return a generator that iterates through all solutions of a Sudoku puzzle.

5

Games, Release 10.2

INPUT:

• count_only – boolean, default = False. If set to True the generator returned as output will simply
generate None for each solution, so the calling routine can count these.

OUTPUT:

A generator that iterates over all the solutions.

This function is intended to be called from the solve()method with the algorithm='dlx' option. How-
ever it may be called directly as a method of an instance of a Sudoku puzzle if speed is important and you
do not need automatic conversions on the output (or even just want to count solutions without looking at
them). In this case, inputting a puzzle as a list, with verify_input=False is the fastest way to create a
puzzle.

Or if only one solution is needed it can be obtained with one call to next(), while the existence of a solution
can be tested by catching the StopIteration exception with a try. Calling this particular method returns
solutions as lists, in row-major order. It is up to you to work with this list for your own purposes. If
you want fancier formatting tools, use the solve() method, which returns a generator that creates sage.
games.sudoku.Sudoku objects.

EXAMPLES:

A 9× 9 known to have one solution. We get the one solution and then check to see if there are more or not.

sage: e = Sudoku('4.....8.5.3..........7......2.....6.....8.4......1.......6.3.
→˓7.5..2.....1.4......')
sage: print(next(e.dlx()))
[4, 1, 7, 3, 6, 9, 8, 2, 5, 6, 3, 2, 1, 5, 8, 9, 4, 7, 9, 5, 8, 7, 2, 4, 3, 1,␣
→˓6, 8, 2, 5, 4, 3, 7, 1, 6, 9, 7, 9, 1, 5, 8, 6, 4, 3, 2, 3, 4, 6, 9, 1, 2, 7,␣
→˓5, 8, 2, 8, 9, 6, 4, 3, 5, 7, 1, 5, 7, 3, 2, 9, 1, 6, 8, 4, 1, 6, 4, 8, 7, 5,␣
→˓2, 9, 3]
sage: len(list(e.dlx()))
1

A 9× 9 puzzle with multiple solutions. Once with actual solutions, once just to count.

sage: h = Sudoku('8..6..9.5.............2.31...7318.6.24.....73...........279.1.
→˓.5...8..36..3......')
sage: len(list(h.dlx()))
5
sage: len(list(h.dlx(count_only=True)))
5

A larger puzzle, with multiple solutions, but we just get one.

sage: j = Sudoku('....a..69.3....1d.2...8....e.4....b....5..c.......7.......g...
→˓f....1.e..2.b.8..3.......4.d.....6.........f..7.g..9.a..c...5.....8..f.....1..
→˓e.79.c....b.....2...6.....g.7......84....3.d..a.5....5...7..e...ca.....3.1....
→˓...b......f....4...d..e..g.92.6..8....')
sage: print(next(j.dlx()))
[5, 15, 16, 14, 10, 13, 7, 6, 9, 2, 3, 4, 11, 8, 12, 1, 13, 3, 2, 12, 11, 16, 8,
→˓ 15, 1, 6, 7, 14, 10, 4, 9, 5, 1, 10, 11, 6, 9, 4, 3, 5, 15, 8, 12, 13, 16, 7,
→˓ 14, 2, 9, 8, 7, 4, 12, 2, 1, 14, 10, 5, 16, 11, 6, 3, 15, 13, 12, 16, 4, 1,␣
→˓13, 14, 9, 10, 2, 7, 11, 6, 8, 15, 5, 3, 3, 14, 5, 7, 16, 11, 15, 4, 12, 13,␣
→˓8, 9, 1, 2, 10, 6, 2, 6, 13, 11, 1, 8, 5, 3, 4, 15, 14, 10, 7, 9, 16, 12, 15,␣
→˓9, 8, 10, 2, 6, 12, 7, 3, 16, 5, 1, 4, 14, 13, 11, 8, 11, 3, 15, 5, 10, 4, 2,␣

(continues on next page)

6 Chapter 1. Sudoku Puzzles

Games, Release 10.2

(continued from previous page)

→˓13, 1, 6, 12, 14, 16, 7, 9, 16, 12, 14, 13, 7, 15, 11, 1, 8, 9, 4, 5, 2, 6, 3,
→˓ 10, 6, 2, 10, 5, 14, 12, 16, 9, 7, 11, 15, 3, 13, 1, 4, 8, 4, 7, 1, 9, 8, 3,␣
→˓6, 13, 16, 14, 10, 2, 5, 12, 11, 15, 11, 5, 9, 8, 6, 7, 13, 16, 14, 3, 1, 15,␣
→˓12, 10, 2, 4, 7, 13, 15, 3, 4, 1, 10, 8, 5, 12, 2, 16, 9, 11, 6, 14, 10, 1, 6,
→˓ 2, 15, 5, 14, 12, 11, 4, 9, 7, 3, 13, 8, 16, 14, 4, 12, 16, 3, 9, 2, 11, 6,␣
→˓10, 13, 8, 15, 5, 1, 7]

The puzzle h from above, but purposely made unsolvable with addition in second entry.

sage: hbad = Sudoku('82.6..9.5.............2.31...7318.6.24.....73...........
→˓279.1..5...8..36..3......')
sage: len(list(hbad.dlx()))
0
sage: next(hbad.dlx())
Traceback (most recent call last):
...
StopIteration

A stupidly small puzzle to test the lower limits of arbitrary sized input.

sage: s = Sudoku('.')
sage: print(next(s.solve(algorithm='dlx')))
+-+
|1|
+-+

ALGORITHM:

The DLXCPP solver finds solutions to the exact-cover problem with a “Dancing Links” backtracking algo-
rithm. Given a 0−1 matrix, the solver finds a subset of the rows that sums to the all 1’s vector. The columns
correspond to conditions, or constraints, that must be met by a solution, while the rows correspond to some
collection of choices, or decisions. A 1 in a row and column indicates that the choice corresponding to the
row meets the condition corresponding to the column.

So here, we code the notion of a Sudoku puzzle, and the hints already present, into such a 0 − 1 matrix.
Then the sage.combinat.matrices.dlxcpp.DLXCPP solver makes the choices for the blank entries.

solve(algorithm='dlx')
Return a generator object for the solutions of a Sudoku puzzle.

INPUT:

• algorithm – default = 'dlx', specify choice of solution algorithm. The two possible algorithms are
'dlx' and 'backtrack'.

OUTPUT:

A generator that provides all solutions, as objects of the Sudoku class.

Calling next() on the returned generator just once will find a solution, presuming it exists, otherwise it
will return a StopIteration exception. The generator may be used for iteration or wrapping the generator
with list() will return all of the solutions as a list. Solutions are returned as new objects of the Sudoku
class, so may be printed or converted using other methods in this class.

Generally, the DLX algorithm is very fast and very consistent. The backtrack algorithm is very variable in
its performance, on some occasions markedly faster than DLX but usually slower by a similar factor, with
the potential to be orders of magnitude slower. See the docstrings for the dlx() and backtrack_all()

7

Games, Release 10.2

methods for further discussions and examples of performance. Note that the backtrack algorithm is limited
to puzzles of size 16× 16 or smaller.

EXAMPLES:

This puzzle has 5 solutions, but the first one returned by each algorithm are identical.

sage: h = Sudoku('8..6..9.5.............2.31...7318.6.24.....73...........279.1.
→˓.5...8..36..3......')
sage: h
+-----+-----+-----+
8	6	9 5
	2	3 1
+-----+-----+-----+		
7	3 1 8	6
2 4		7 3
+-----+-----+-----+		
2	7 9	1
5	8	3 6
3		
+-----+-----+-----+		
sage: next(h.solve(algorithm='backtrack'))		
+-----+-----+-----+		
8 1 4	6 3 7	9 2 5
3 2 5	1 4 9	6 8 7
7 9 6	8 2 5	3 1 4
+-----+-----+-----+		
9 5 7	3 1 8	4 6 2
2 4 1	9 5 6	8 7 3
6 3 8	2 7 4	5 9 1
+-----+-----+-----+		
4 6 2	7 9 3	1 5 8
5 7 9	4 8 1	2 3 6
1 8 3	5 6 2	7 4 9
+-----+-----+-----+		
sage: next(h.solve(algorithm='dlx'))		
+-----+-----+-----+		
8 1 4	6 3 7	9 2 5
3 2 5	1 4 9	6 8 7
7 9 6	8 2 5	3 1 4
+-----+-----+-----+		
9 5 7	3 1 8	4 6 2
2 4 1	9 5 6	8 7 3
6 3 8	2 7 4	5 9 1
+-----+-----+-----+		
4 6 2	7 9 3	1 5 8
5 7 9	4 8 1	2 3 6
1 8 3	5 6 2	7 4 9
+-----+-----+-----+

Gordon Royle maintains a list of 48072 Sudoku puzzles that each has a unique solution and exactly 17
“hints” (initially filled boxes). At this writing (May 2009) there is no known 16-hint puzzle with exactly
one solution. [sudoku:royle] This puzzle is number 3000 in his database. We solve it twice.

8 Chapter 1. Sudoku Puzzles

Games, Release 10.2

sage: b = Sudoku('8..6..9.5.............2.31...7318.6.24.....73...........279.1.
→˓.5...8..36..3......')
sage: next(b.solve(algorithm='dlx')) == next(b.solve(algorithm='backtrack'))
True

These are the first 10 puzzles in a list of “Top 95” puzzles, [sudoku:top95] which we use to show that the
two available algorithms obtain the same solution for each.

sage: top =['4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..
→˓2.....1.4......',
....: '52...6.........7.13...........4..8..6......5...........418.........
→˓3..2...87.....',
....: '6.....8.3.4.7.................5.4.7.3..2.....1.6.......2.....5.....
→˓8.6......1....',
....: '48.3............71.2.......7.5....6....2..8.............1.76...3...
→˓..4......5....',
....: '....14....3....2...7..........9...3.6.1.............8.2.....1.4....
→˓5.6.....7.8...',
....: '......52..8.4......3...9...5.1...6..2..7........3.....6...1........
→˓..7.4.......3.',
....: '6.2.5.........3.4..........43...8....1....2........7..5..27........
→˓...81...6.....',
....: '.524.........7.1..............8.2...3.....6...9.5.....1.6.3........
→˓...897........',
....: '6.2.5.........4.3..........43...8....1....2........7..5..27........
→˓...81...6.....',
....: '.923.........8.1...........1.7.4...........658.........6.5.2...4...
→˓..7.....9.....']
sage: p = [Sudoku(top[i]) for i in range(10)]
sage: verify = [next(p[i].solve(algorithm='dlx')) == next(p[i].solve(algorithm=
→˓'backtrack')) for i in range(10)]
sage: verify == [True]*10
True

to_ascii()

Construct an ASCII-art version of a Sudoku puzzle. This is a modified version of the ASCII version of a
subdivided matrix.

EXAMPLES:

sage: s = Sudoku('.4..32....14..3.')
sage: print(s.to_ascii())
+---+---+
| 4| |
|3 2| |
+---+---+
| |1 4|
| |3 |
+---+---+
sage: s.to_ascii()
'+---+---+\n| 4| |\n|3 2| |\n+---+---+\n| |1 4|\n| |3 |\n+---+---+'

to_latex()

Create a string of LATEX code representing a Sudoku puzzle or solution.

9

Games, Release 10.2

EXAMPLES:

sage: s = Sudoku('.4..32....14..3.')
sage: print(s.to_latex())
\begin{array}{|*{2}{*{2}{r}|}}\hline
&4& & \\
3&2& & \\\hline
& &1&4\\
& &3& \\\hline
\end{array}

to_list()

Construct a list representing a Sudoku puzzle, in row-major order.

EXAMPLES:

sage: s = Sudoku('1.......2.9.4...5...6...7...5.9.3.......7.......85..4.7.....6.
→˓..3...9.8...2.....1')
sage: s.to_list()
[1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 9, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7, 0,␣
→˓0, 0, 5, 0, 9, 0, 3, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 8, 5, 0, 0,␣
→˓4, 0, 7, 0, 0, 0, 0, 0, 6, 0, 0, 0, 3, 0, 0, 0, 9, 0, 8, 0, 0, 0, 2, 0, 0, 0,␣
→˓0, 0, 1]

to_matrix()

Construct a Sage matrix over Z representing a Sudoku puzzle.

EXAMPLES:

sage: s = Sudoku('.4..32....14..3.')
sage: s.to_matrix()
[0 4 0 0]
[3 2 0 0]
[0 0 1 4]
[0 0 3 0]

to_string()

Construct a string representing a Sudoku puzzle.

Blank entries are represented as periods, single digits are not converted and two digit entries are converted
to lower-case letters where 10 = a, 11 = b, etc. This scheme limits puzzles to at most 36 symbols.

EXAMPLES:

sage: b = matrix(ZZ, 9, 9, [[0,0,0,0,1,0,9,0,0], [8,0,0,4,0,0,0,0,0], [2,0,0,0,
→˓0,0,0,0,0], [0,7,0,0,3,0,0,0,0], [0,0,0,0,0,0,2,0,4], [0,0,0,0,0,0,0,5,8], [0,
→˓6,0,0,0,0,1,3,0], [7,0,0,2,0,0,0,0,0], [0,0,0,8,0,0,0,0,0]])
sage: Sudoku(b).to_string()
'....1.9..8..4.....2.........7..3..........2.4.......58.6....13.7..2........8...
→˓..'

sage.games.sudoku.sudoku(m)

Solves Sudoku puzzles described by matrices.

INPUT:

• m - a square Sage matrix over Z, where zeros are blank entries

10 Chapter 1. Sudoku Puzzles

Games, Release 10.2

OUTPUT:

A Sage matrix over Z containing the first solution found, otherwise None.

This function matches the behavior of the prior Sudoku solver and is included only to replicate that behavior. It
could be safely deprecated, since all of its functionality is included in the Sudoku class.

EXAMPLES:

An example that was used in previous doctests.

sage: A = matrix(ZZ,9,[5,0,0, 0,8,0, 0,4,9, 0,0,0, 5,0,0, 0,3,0, 0,6,7, 3,0,0, 0,0,
→˓1, 1,5,0, 0,0,0, 0,0,0, 0,0,0, 2,0,8, 0,0,0, 0,0,0, 0,0,0, 0,1,8, 7,0,0, 0,0,4,␣
→˓1,5,0, 0,3,0, 0,0,2, 0,0,0, 4,9,0, 0,5,0, 0,0,3])
sage: A
[5 0 0 0 8 0 0 4 9]
[0 0 0 5 0 0 0 3 0]
[0 6 7 3 0 0 0 0 1]
[1 5 0 0 0 0 0 0 0]
[0 0 0 2 0 8 0 0 0]
[0 0 0 0 0 0 0 1 8]
[7 0 0 0 0 4 1 5 0]
[0 3 0 0 0 2 0 0 0]
[4 9 0 0 5 0 0 0 3]
sage: sudoku(A)
[5 1 3 6 8 7 2 4 9]
[8 4 9 5 2 1 6 3 7]
[2 6 7 3 4 9 5 8 1]
[1 5 8 4 6 3 9 7 2]
[9 7 4 2 1 8 3 6 5]
[3 2 6 7 9 5 4 1 8]
[7 8 2 9 3 4 1 5 6]
[6 3 5 1 7 2 8 9 4]
[4 9 1 8 5 6 7 2 3]

Using inputs that are possible with the Sudoku class, other than a matrix, will cause an error.

sage: sudoku('.4..32....14..3.')
Traceback (most recent call last):
...
ValueError: sudoku function expects puzzle to be a matrix, perhaps use the Sudoku␣
→˓class

11

Games, Release 10.2

12 Chapter 1. Sudoku Puzzles

CHAPTER

TWO

FAMILY GAMES AMERICA’S QUANTUMINO SOLVER

This module allows to solve the Quantumino puzzle made by Family Games America (see also this video on Youtube).
This puzzle was left at the dinner room of the Laboratoire de Combinatoire Informatique Mathématique in Montreal
by Franco Saliola during winter 2011.

The solution uses the dancing links code which is in Sage and is based on the more general code available in the module
sage.combinat.tiling. Dancing links were originally introduced by Donald Knuth in 2000 (arXiv cs/0011047).
In particular, Knuth used dancing links to solve tilings of a region by 2D pentaminos. Here we extend the method for
3D pentaminos.

This module defines two classes :

• sage.games.quantumino.QuantuminoState class, to represent a state of the Quantumino game, i.e. a solu-
tion or a partial solution.

• sage.games.quantumino.QuantuminoSolver class, to find, enumerate and count the number of solutions of
the Quantumino game where one of the piece is put aside.

AUTHOR:

• Sébastien Labbé, April 28th, 2011

DESCRIPTION (from [1]):

” Pentamino games have been taken to a whole different level; a 3-D level, with this colorful creation!
Using the original pentamino arrangements of 5 connected squares which date from 1907, players are
encouraged to “think inside the box” as they try to fit 16 of the 17 3-D pentamino pieces inside the playing
perimeters. Remove a different piece each time you play for an entirely new challenge! Thousands of
solutions to be found! Quantumino hands-on educational tool where players learn how shapes can be
transformed or arranged into predefined shapes and spaces. Includes: 1 wooden frame, 17 wooden blocks,
instruction booklet. Age: 8+ “

EXAMPLES:

Here are the 17 wooden blocks of the Quantumino puzzle numbered from 0 to 16 in the following 3d picture. They
will show up in 3D in your default (=Jmol) viewer:

sage: from sage.games.quantumino import show_pentaminos
sage: show_pentaminos()
Graphics3d Object

To solve the puzzle where the pentamino numbered 12 is put aside:

sage: from sage.games.quantumino import QuantuminoSolver
sage: s = next(QuantuminoSolver(12).solve()) # long time (10 s)
sage: s # long time (<1s)
Quantumino state where the following pentamino is put aside :

(continues on next page)

13

http://familygamesamerica.com/mainsite/consumers/productview.php?pro_id=274&search=quantumino
http://www.youtube.com/watch?v=jX_VKzakZi8
../../../../../../html/en/reference/combinat/sage/combinat/tiling.html#module-sage.combinat.tiling
https://arxiv.org/abs/cs/0011047

Games, Release 10.2

(continued from previous page)

Polyomino: [(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1)], Color: blue
sage: s.show3d() # long time (<1s)
Graphics3d Object

To remove the frame:

sage: s.show3d().show(frame=False) # long time (<1s)

To solve the puzzle where the pentamino numbered 7 is put aside:

sage: s = next(QuantuminoSolver(7).solve()) # long time (10 s)
sage: s # long time (<1s)
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (1, 0, 0)], Color: orange
sage: s.show3d() # long time (<1s)
Graphics3d Object

The solution is iterable. This may be used to explicitly list the positions of each pentamino:

sage: for p in s: p # long time (<1s)
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...

To get all the solutions, use the iterator returned by the solve method. Note that finding the first solution is the most
time consuming because it needs to create the complete data to describe the problem:

sage: it = QuantuminoSolver(7).solve()
sage: next(it) # not tested (10s)
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (1, 0, 0)], Color: orange
sage: next(it) # not tested (0.001s)
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (1, 0, 0)], Color: orange
sage: next(it) # not tested (0.001s)
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (1, 0, 0)], Color: orange

To get the solution inside other boxes:

14 Chapter 2. Family Games America’s Quantumino solver

Games, Release 10.2

sage: s = next(QuantuminoSolver(7, box=(4,4,5)).solve()) # not tested (2s)
sage: s.show3d() # not tested (<1s)

sage: s = next(QuantuminoSolver(7, box=(2,2,20)).solve()) # not tested (1s)
sage: s.show3d() # not tested (<1s)

If there are no solution, a StopIteration error is raised:

sage: next(QuantuminoSolver(7, box=(3,3,3)).solve())
Traceback (most recent call last):
...
StopIteration

The implementation allows a lot of introspection. From the TilingSolver object, it is possible to retrieve the rows
that are passed to the DLX solver and count them. It is also possible to get an instance of the DLX solver to play with
it:

sage: q = QuantuminoSolver(0)
sage: T = q.tiling_solver()
sage: T
Tiling solver of 16 pieces into a box of size 80
Rotation allowed: True
Reflection allowed: False
Reusing pieces allowed: False
sage: rows = T.rows() # not tested (10 s)
sage: len(rows) # not tested (but fast)
5484
sage: x = T.dlx_solver() # long time (10 s)
sage: x # long time (fast)
Dancing links solver for 96 columns and 5484 rows

REFERENCES:

• [1] Family Games America’s Quantumino

• [2] Quantumino - How to Play on Youtube

• [3] Knuth, Donald (2000). Dancing links. arXiv cs/0011047.

class sage.games.quantumino.QuantuminoSolver(aside, box=(5, 8, 2))
Bases: SageObject

Return the Quantumino solver for the given box where one of the pentamino is put aside.

INPUT:

• aside - integer, from 0 to 16, the aside pentamino

• box - tuple of size three (optional, default: (5,8,2)), size of the box

EXAMPLES:

sage: from sage.games.quantumino import QuantuminoSolver
sage: QuantuminoSolver(9)
Quantumino solver for the box (5, 8, 2)
Aside pentamino number: 9
sage: QuantuminoSolver(12, box=(5,4,4))

(continues on next page)

15

../../../../../../html/en/reference/combinat/sage/combinat/tiling.html#sage.combinat.tiling.TilingSolver
http://familygamesamerica.com/mainsite/consumers/productview.php?pro_id=274&search=quantumino
http://www.youtube.com/watch?v=jX_VKzakZi8
https://arxiv.org/abs/cs/0011047
../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Games, Release 10.2

(continued from previous page)

Quantumino solver for the box (5, 4, 4)
Aside pentamino number: 12

number_of_solutions()

Return the number of solutions.

OUTPUT:

integer

EXAMPLES:

sage: from sage.games.quantumino import QuantuminoSolver
sage: QuantuminoSolver(4, box=(3,2,2)).number_of_solutions()
0

This computation takes several days:

sage: QuantuminoSolver(0).number_of_solutions() # not tested
??? hundreds of millions ???

solve(partial=None)
Return an iterator over the solutions where one of the pentamino is put aside.

INPUT:

• partial - string (optional, default: None), whether to include partial (incomplete) solutions. It can
be one of the following:

– None - include only complete solution

– 'common' - common part between two consecutive solutions

– 'incremental' - one piece change at a time

OUTPUT:

iterator of QuantuminoState

EXAMPLES:

Get one solution:

sage: from sage.games.quantumino import QuantuminoSolver
sage: s = next(QuantuminoSolver(8).solve()) # long time (9s)
sage: s # long time (fast)
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0)], Color:␣
→˓yellow
sage: s.show3d() # long time (< 1s)
Graphics3d Object

The explicit solution:

sage: for p in s: p # long time (fast)
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...

(continues on next page)

16 Chapter 2. Family Games America’s Quantumino solver

Games, Release 10.2

(continued from previous page)

Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...
Polyomino: [(...), (...), (...), (...), (...)], Color: ...

Enumerate the solutions:

sage: it = QuantuminoSolver(0).solve()
sage: next(it) # not tested
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 0)], Color:␣
→˓deeppink
sage: next(it) # not tested
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 0)], Color:␣
→˓deeppink

With the partial solutions included, one can see the evolution between consecutive solutions (an animation
would be better):

sage: it = QuantuminoSolver(0).solve(partial='common')
sage: next(it).show3d() # not tested (2s)
sage: next(it).show3d() # not tested (< 1s)
sage: next(it).show3d() # not tested (< 1s)

Generalizations of the game inside different boxes:

sage: next(QuantuminoSolver(7, (4,4,5)).solve()) # long time (2s)
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (1, 0, 0)], Color:␣
→˓orange
sage: next(QuantuminoSolver(7, (2,2,20)).solve()) # long time (1s)
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 2, 1), (1, 0, 0)], Color:␣
→˓orange
sage: next(QuantuminoSolver(3, (2,2,20)).solve()) # long time (1s)
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 0, 0), (1, 0, 1)], Color: green

If the volume of the box is not 80, there is no solution:

sage: next(QuantuminoSolver(7, box=(3,3,9)).solve())
Traceback (most recent call last):

(continues on next page)

17

Games, Release 10.2

(continued from previous page)

...
StopIteration

If the box is too small, there is no solution:

sage: next(QuantuminoSolver(4, box=(40,2,1)).solve())
Traceback (most recent call last):
...
StopIteration

tiling_solver()

Return the Tiling solver of the Quantumino Game where one of the pentamino is put aside.

EXAMPLES:

sage: from sage.games.quantumino import QuantuminoSolver
sage: QuantuminoSolver(0).tiling_solver()
Tiling solver of 16 pieces into a box of size 80
Rotation allowed: True
Reflection allowed: False
Reusing pieces allowed: False
sage: QuantuminoSolver(14).tiling_solver()
Tiling solver of 16 pieces into a box of size 80
Rotation allowed: True
Reflection allowed: False
Reusing pieces allowed: False
sage: QuantuminoSolver(14, box=(5,4,4)).tiling_solver()
Tiling solver of 16 pieces into a box of size 80
Rotation allowed: True
Reflection allowed: False
Reusing pieces allowed: False

class sage.games.quantumino.QuantuminoState(pentos, aside, box=(5, 8, 2))
Bases: SageObject

A state of the Quantumino puzzle.

Used to represent an solution or a partial solution of the Quantumino puzzle.

INPUT:

• pentos - list of 16 3d pentamino representing the (partial) solution

• aside - 3d polyomino, the unused 3D pentamino

• box - tuple of size three (optional, default: (5,8,2)), size of the box

EXAMPLES:

sage: from sage.games.quantumino import pentaminos, QuantuminoState
sage: p = pentaminos[0]
sage: q = pentaminos[5]
sage: r = pentaminos[11]
sage: S = QuantuminoState([p,q], r)
sage: S
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 2, 0)], Color: darkblue

18 Chapter 2. Family Games America’s Quantumino solver

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Games, Release 10.2

sage: from sage.games.quantumino import QuantuminoSolver
sage: next(QuantuminoSolver(3).solve()) # not tested (1.5s)
Quantumino state where the following pentamino is put aside :
Polyomino: [(0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 0, 0), (1, 0, 1)], Color: green

list()

Return the list of 3d polyomino making the solution.

EXAMPLES:

sage: from sage.games.quantumino import pentaminos, QuantuminoState
sage: p = pentaminos[0]
sage: q = pentaminos[5]
sage: r = pentaminos[11]
sage: S = QuantuminoState([p,q], r)
sage: L = S.list()
sage: L[0]
Polyomino: [(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 0)], Color:␣
→˓deeppink
sage: L[1]
Polyomino: [(0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (2, 0, 1)], Color: red

show3d(size=0.85)
Return the solution as a 3D Graphic object.

OUTPUT:

3D Graphic Object

EXAMPLES:

sage: from sage.games.quantumino import QuantuminoSolver
sage: s = next(QuantuminoSolver(0).solve()) # not tested (1.5s)
sage: G = s.show3d() # not tested (<1s)
sage: type(G) # not tested
<class 'sage.plot.plot3d.base.Graphics3dGroup'>

To remove the frame:

sage: G.show(frame=False) # not tested

To see the solution with Tachyon viewer:

sage: G.show(viewer='tachyon', frame=False) # not tested

sage.games.quantumino.show_pentaminos(box=(5, 8, 2))
Show the 17 3-D pentaminos included in the game and the 5× 8× 2 box where 16 of them must fit.

INPUT:

• box – tuple of size three (optional, default: (5,8,2)), size of the box

OUTPUT:

3D Graphic object

EXAMPLES:

19

Games, Release 10.2

sage: from sage.games.quantumino import show_pentaminos
sage: show_pentaminos() # not tested (1s)

To remove the frame do:

sage: show_pentaminos().show(frame=False) # not tested (1s)

20 Chapter 2. Family Games America’s Quantumino solver

CHAPTER

THREE

HEXADS IN S(5, 6, 12)

This module completes a 5-element subset of a 12-set 𝑋 into a hexad in a Steiner system 𝑆(5, 6, 12) using Curtis and
Conway’s “kitten method”. The labeling is either the “modulo 11” labeling or the “shuffle” labeling.

The main functions implemented in this file are Minimog.blackjack_move() and Minimog.find_hexad().

Enter blackjack_move? for help to play blackjack (i.e., the rules of the game), or find_hexad? for help finding
hexads of 𝑆(5, 6, 12) in the shuffle labeling.

This picture is the kitten in the “shuffle” labeling:

6

9

10 8

7 2 5

9 4 11 9

10 8 3 10 8

1 0

The corresponding MINIMOG is:

+—–+—–+—–+—–+
| 6 | 3 | 0 | 9 |
+—–+—–+—–+—–+
| 5 | 2 | 7 | 10 |
+—–+—–+—–+—–+
| 4 | 1 | 8 | 11 |
+—–+—–+—–+—–+

which is specified by the global variable minimog_shuffle.

See the docstrings for Minimog.find_hexad() and Minimog.blackjack_move() for further details and examples.

AUTHOR:

David Joyner (2006-05)

REFERENCES:

• [Cu1984]

21

Games, Release 10.2

• [Co1984]

• [CS1986]

• [KR2001]

Some details are also online at: https://www.permutationpuzzles.org/hexad/

class sage.games.hexad.Minimog(type='shuffle')
Bases: object

This implements the Conway/Curtis minimog idea for describing the Steiner triple system 𝑆(5, 6, 12).

EXAMPLES:

sage: from sage.games.hexad import *
sage: Minimog(type="shuffle")
Minimog of type shuffle
sage: M = Minimog(type = "modulo11")
sage: M.minimog
[0 3 +Infinity 2]
[5 9 8 10]
[4 1 6 7]

blackjack_move(L0)
Perform a blackjack move.

INPUT:

• L0 – a list of cards of length 6, taken from {0, 1, ..., 11}

MATHEMATICAL BLACKJACK

Mathematical blackjack is played with 12 cards, labeled 0, ..., 11 (for example: king, ace, 2, 3, . . . , 10, jack,
where the king is 0 and the jack is 11). Divide the 12 cards into two piles of 6 (to be fair, this should be done
randomly). Each of the 6 cards of one of these piles are to be placed face up on the table. The remaining
cards are in a stack which is shared and visible to both players. If the sum of the cards face up on the table
is less than 21 then no legal move is possible so you must shuffle the cards and deal a new game. (Conway
calls such a game * = 0|0, where 0 = |; in this game the first player automatically wins.)

• Players alternate moves.

• A move consists of exchanging a card on the table with a lower card from the other pile.

• The player whose move makes the sum of the cards on the table under 21 loses.

The winning strategy (given below) for this game is due to Conway and Ryba. There is a Steiner system
𝑆(5, 6, 12) of hexads in the set {0, 1, ..., 11}. This Steiner system is associated to the MINIMOG of in the
“shuffle numbering” rather than the “modulo 11 labeling”.

Proposition ([KR2001]) For this Steiner system, the winning strategy is to choose a move which is a hexad
from this system.

EXAMPLES:

sage: M = Minimog(type="modulo11")
sage: M.blackjack_move([0, 2, 3, 6, 1, 10])
'6 --> 5. The total went from 22 to 21.'
sage: M = Minimog(type="shuffle")

(continues on next page)

22 Chapter 3. Hexads in S(5, 6, 12)

https://www.permutationpuzzles.org/hexad/

Games, Release 10.2

(continued from previous page)

sage: M.blackjack_move([0, 2, 4, 6, 7, 11])
'4 --> 3. The total went from 30 to 29.'

Is this really a hexad?

sage: M.find_hexad([11, 2, 3, 6, 7])
([0, 2, 3, 6, 7, 11], ['square 9', 'picture 1'])

So, yes it is, but here is further confirmation:

sage: M.blackjack_move([0, 2, 3, 6, 7, 11])
This is a hexad.
There is no winning move, so make a random legal move.
[0, 2, 3, 6, 7, 11]

Now, suppose player 2 replaced the 11 by a 9. Your next move:

sage: M.blackjack_move([0, 2, 3, 6, 7, 9])
'7 --> 1. The total went from 27 to 21.'

You have now won. Sage will even tell you so:

sage: M.blackjack_move([0, 2, 3, 6, 1, 9])
'No move possible. Shuffle the deck and redeal.'

AUTHOR:

David Joyner (2006-05)

REFERENCES: [CS1986], [KR2001]

find_hexad(pts)
Find a hexad of some type.

INPUT:

• pts – a list S of 5 elements of MINIMOG

OUTPUT:

hexad containing 𝑆 ∪ {𝑥0} of some type

Note: The 3 “points at infinity” are {MINIMOG[0][2], MINIMOG[2][1], MINIMOG[0][0]}.

Theorem ([Cu1984], [Co1984]): Each hexads is of exactly one of the following types:

0. {3 “points at infinity”} union {any line},

1. the union of any two (distinct) parallel lines in the same picture,

2. one “point at infinity” union a cross in the corresponding picture, or

3. two “points at infinity” union a square in the picture corresponding to the omitted point at infinity.

More precisely, there are 132 such hexads (12 of type 0, 12 of type 1, 54 of type 2, and 54 of type 3). They
form a Steiner system of type (5, 6, 12).

EXAMPLES:

23

Games, Release 10.2

sage: from sage.games.hexad import *
sage: M = Minimog(type="shuffle")
sage: M.find_hexad([0, 1, 2, 3, 4])
([0, 1, 2, 3, 4, 11], ['square 2', 'picture 6'])
sage: M.find_hexad([1, 2, 3, 4, 5])
([1, 2, 3, 4, 5, 6], ['square 8', 'picture 0'])
sage: M.find_hexad([2, 3, 4, 5, 8])
([2, 3, 4, 5, 8, 11], ['lines (1, 2)', 'picture 1'])
sage: M.find_hexad([0, 1, 2, 4, 6])
([0, 1, 2, 4, 6, 8], ['line 1', 'picture 1'])
sage: M = Minimog(type="modulo11")
sage: M.find_hexad([1, 2, 3, 4, SR(infinity)]) # random (machine dependent?)␣
→˓order
([+Infinity, 2, 3, 4, 1, 10], ['square 8', 'picture 0'])

AUTHOR:

David Joyner (2006-05)

REFERENCES: [Cu1984], [Co1984]

find_hexad0(pts)
Find a hexad of type 0.

INPUT:

• pts – a set of 2 distinct elements of MINIMOG, but not including the “points at infinity”

OUTPUT:

hexad containing pts and of type 0 (the 3 points “at infinity” union a line)

Note: The 3 points “at infinity” are {MINIMOG[0][2], MINIMOG[2][1], MINIMOG[0][0]}.

EXAMPLES:

sage: from sage.games.hexad import *
sage: M = Minimog(type="shuffle")
sage: M.find_hexad0(set([2, 4]))
([0, 1, 2, 4, 6, 8], ['line 1', 'picture 1'])

find_hexad1(pts)
Find a hexad of type 1.

INPUT:

• pts – a set of 5 distinct elements of MINIMOG

OUTPUT:

hexad containing pts and of type 1 (union of 2 parallel lines – no points “at infinity”)

Note: The 3 points “at infinity” are {MINIMOG[0][2], MINIMOG[2][1], MINIMOG[0][0]}.

EXAMPLES:

24 Chapter 3. Hexads in S(5, 6, 12)

Games, Release 10.2

sage: from sage.games.hexad import *
sage: M = Minimog(type="shuffle")
sage: M.find_hexad1(set([2, 3, 4, 5, 8]))
([2, 3, 4, 5, 8, 11], ['lines (1, 2)', 'picture 1'])

find_hexad2(pts, x0)
Find a hexad of type 2.

INPUT:

• pts – a list S of 4 elements of MINIMOG, not including any “points at infinity”

• x0 – in {MINIMOG[0][2], MINIMOG[2][1], MINIMOG[0][0]}

OUTPUT:

hexad containing 𝑆 ∪ {𝑥0} of type 2

EXAMPLES:

sage: from sage.games.hexad import *
sage: M = Minimog(type="shuffle")
sage: M.find_hexad2([2, 3, 4, 5], 1)
([], [])

The above output indicates that there is no hexad of type 2 containing {2, 3, 4, 5}. However, there is one
containing {2, 3, 4, 8}:

sage: M.find_hexad2([2, 3, 4, 8], 0)
([0, 2, 3, 4, 8, 9], ['cross 12', 'picture 0'])

find_hexad3(pts, x0, x1)
Find a hexad of type 3.

INPUT:

• pts – a list of 3 elements of MINIMOG, not including any “points at infinity”

• x0, x1 – in {MINIMOG[0][2], MINIMOG[2][1], MINIMOG[0][0]}

OUTPUT:

hexad containing pts union {x0, x1} of type 3 (square at picture of “omitted point at infinity”)

EXAMPLES:

sage: from sage.games.hexad import *
sage: M = Minimog(type="shuffle")
sage: M.find_hexad3([2, 3, 4], 0, 1)
([0, 1, 2, 3, 4, 11], ['square 2', 'picture 6'])

print_kitten()

This simply prints the “kitten” (expressed as a triangular diagram of symbols).

EXAMPLES:

sage: from sage.games.hexad import *
sage: M = Minimog("shuffle")
sage: M.print_kitten()

(continues on next page)

25

Games, Release 10.2

(continued from previous page)

0

8
9 10
5 11 3

8 2 4 8
9 10 7 9 10

6 1
sage: M = Minimog("modulo11")
sage: M.print_kitten()

+Infinity

6
2 10
5 7 3

6 9 4 6
2 10 8 2 10

0 1

sage.games.hexad.picture_set(A, L)
This is needed in the Minimog.find_hexad() function below.

EXAMPLES:

sage: from sage.games.hexad import *
sage: M = Minimog(type="shuffle")
sage: picture_set(M.picture00, M.cross[2])
{5, 7, 8, 9, 10}
sage: picture_set(M.picture02, M.square[7])
{2, 3, 5, 8}

sage.games.hexad.view_list(L)
This provides a printout of the lines, crosses and squares of the MINIMOG, as in Curtis’ paper [Cu1984].

EXAMPLES:

sage: from sage.games.hexad import *
sage: M = Minimog(type="shuffle")
sage: view_list(M.line[1])

[0 0 0]
[1 1 1]
[0 0 0]
sage: view_list(M.cross[1])

[1 1 1]
[0 0 1]
[0 0 1]
sage: view_list(M.square[1])

[0 0 0]
(continues on next page)

26 Chapter 3. Hexads in S(5, 6, 12)

Games, Release 10.2

(continued from previous page)

[1 1 0]
[1 1 0]

27

Games, Release 10.2

28 Chapter 3. Hexads in S(5, 6, 12)

CHAPTER

FOUR

INTERNALS

4.1 This module contains Cython code for a backtracking algorithm
to solve Sudoku puzzles.

Once Cython implements closures and the yield keyword is possible, this can be moved into the sage.games.sudoku
module, as part of the Sudoku.backtrack method, and this module can be banned.

sage.games.sudoku_backtrack.backtrack_all(n, puzzle)
A routine to compute all the solutions to a Sudoku puzzle.

INPUT:

• n - the size of the puzzle, where the array is an 𝑛2 × 𝑛2 grid

• puzzle - a list of the entries of the puzzle (1-based), in row-major order

OUTPUT:

A list of solutions, where each solution is a (1-based) list similar to puzzle.

ALGORITHM:

We traverse a search tree depth-first. Each level of the tree corresponds to a location in the grid, listed in row-
major order. At each location we maintain a list of the symbols which may be used in that location as follows.

A location has “peers”, which are the locations in the same row, column or box (sub-grid). As symbols are chosen
(or fixed initially) at a location, they become ineligible for use at a peer. We track this in the available array
where at each location each symbol has a count of how many times it has been made ineligible. As this counter
transitions between 0 and 1, the number of eligible symbols at a location is tracked in the card array. When
the number of eligible symbols at any location becomes 1, then we know that must be the symbol employed in
that location. This then allows us to further update the eligible symbols at the peers of that location. When the
number of the eligible symbols at any location becomes 0, then we know that we can prune the search tree.

So at each new level of the search tree, we propagate as many fixed symbols as we can, placing them into a two-
ended queue (fixed and fixed_symbol) that we process until it is empty or we need to prune. All this recording
of ineligible symbols and numbers of eligible symbols has to be unwound as we backup the tree, though.

The notion of propagating singleton cells forward comes from an essay by Peter Norvig [sudoku:norvig].

29

Games, Release 10.2

30 Chapter 4. Internals

CHAPTER

FIVE

INDICES AND TABLES

• Index

• Module Index

• Search Page

31

../genindex.html
../py-modindex.html
../search.html

Games, Release 10.2

32 Chapter 5. Indices and Tables

PYTHON MODULE INDEX

g
sage.games.hexad, 21
sage.games.quantumino, 13
sage.games.sudoku, 3
sage.games.sudoku_backtrack, 29

33

Games, Release 10.2

34 Python Module Index

INDEX

B
backtrack() (sage.games.sudoku.Sudoku method), 4
backtrack_all() (in module

sage.games.sudoku_backtrack), 29
blackjack_move() (sage.games.hexad.Minimog

method), 22

D
dlx() (sage.games.sudoku.Sudoku method), 5

F
find_hexad() (sage.games.hexad.Minimog method), 23
find_hexad0() (sage.games.hexad.Minimog method),

24
find_hexad1() (sage.games.hexad.Minimog method),

24
find_hexad2() (sage.games.hexad.Minimog method),

25
find_hexad3() (sage.games.hexad.Minimog method),

25

L
list() (sage.games.quantumino.QuantuminoState

method), 19

M
Minimog (class in sage.games.hexad), 22
module

sage.games.hexad, 21
sage.games.quantumino, 13
sage.games.sudoku, 3
sage.games.sudoku_backtrack, 29

N
number_of_solutions()

(sage.games.quantumino.QuantuminoSolver
method), 16

P
picture_set() (in module sage.games.hexad), 26

print_kitten() (sage.games.hexad.Minimog method),
25

Q
QuantuminoSolver (class in sage.games.quantumino),

15
QuantuminoState (class in sage.games.quantumino), 18

S
sage.games.hexad

module, 21
sage.games.quantumino

module, 13
sage.games.sudoku

module, 3
sage.games.sudoku_backtrack

module, 29
show3d() (sage.games.quantumino.QuantuminoState

method), 19
show_pentaminos() (in module

sage.games.quantumino), 19
solve() (sage.games.quantumino.QuantuminoSolver

method), 16
solve() (sage.games.sudoku.Sudoku method), 7
Sudoku (class in sage.games.sudoku), 3
sudoku() (in module sage.games.sudoku), 10

T
tiling_solver() (sage.games.quantumino.QuantuminoSolver

method), 18
to_ascii() (sage.games.sudoku.Sudoku method), 9
to_latex() (sage.games.sudoku.Sudoku method), 9
to_list() (sage.games.sudoku.Sudoku method), 10
to_matrix() (sage.games.sudoku.Sudoku method), 10
to_string() (sage.games.sudoku.Sudoku method), 10

V
view_list() (in module sage.games.hexad), 26

35

	Sudoku Puzzles
	Family Games America’s Quantumino solver
	Hexads in S(5, 6, 12)
	Internals
	This module contains Cython code for a backtracking algorithm to solve Sudoku puzzles.

	Indices and Tables
	Python Module Index
	Index

