Graph Theory

Release 10.4

The Sage Development Team
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Graph objects and methods</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Constructors and databases</td>
<td>773</td>
</tr>
<tr>
<td>3</td>
<td>Low-level implementation</td>
<td>1373</td>
</tr>
<tr>
<td>4</td>
<td>Hypergraphs</td>
<td>1505</td>
</tr>
<tr>
<td>5</td>
<td>Libraries of algorithms</td>
<td>1539</td>
</tr>
<tr>
<td>6</td>
<td>Indices and Tables</td>
<td>1959</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>1961</td>
</tr>
<tr>
<td></td>
<td>Python Module Index</td>
<td>1963</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>1965</td>
</tr>
</tbody>
</table>
1.1 Generic graphs (common to directed/undirected)

This module implements the base class for graphs and digraphs, and methods that can be applied on both. Here is what it can do:

Basic Graph operations:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>networkx_graph()</td>
<td>Return a new NetworkX graph from the Sage graph</td>
</tr>
<tr>
<td>igraph_graph()</td>
<td>Return an igraph graph from the Sage graph</td>
</tr>
<tr>
<td>to_dictionary()</td>
<td>Create a dictionary encoding the graph.</td>
</tr>
<tr>
<td>copy()</td>
<td>Return a copy of the graph.</td>
</tr>
<tr>
<td>export_to_file()</td>
<td>Export the graph to a file.</td>
</tr>
<tr>
<td>adjacency_matrix()</td>
<td>Return the adjacency matrix of the (di)graph</td>
</tr>
<tr>
<td>incidence_matrix()</td>
<td>Return an incidence matrix of the (di)graph</td>
</tr>
<tr>
<td>distance_matrix()</td>
<td>Return the distance matrix of the (strongly) connected (di)graph</td>
</tr>
<tr>
<td>weighted_adjacency_matrix()</td>
<td>Return the weighted adjacency matrix of the graph</td>
</tr>
<tr>
<td>kirkhoff_matrix()</td>
<td>Return the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.</td>
</tr>
<tr>
<td>has_loops()</td>
<td>Return whether there are loops in the (di)graph</td>
</tr>
<tr>
<td>allows_loops()</td>
<td>Return whether loops are permitted in the (di)graph</td>
</tr>
<tr>
<td>allow_loops()</td>
<td>Change whether loops are permitted in the (di)graph</td>
</tr>
<tr>
<td>loops()</td>
<td>Return a list of all loops in the (di)graph</td>
</tr>
<tr>
<td>loop_edges()</td>
<td>Return a list of all loops in the (di)graph</td>
</tr>
<tr>
<td>number_of_loops()</td>
<td>Return the number of edges that are loops</td>
</tr>
<tr>
<td>loop_vertices()</td>
<td>Return a list of vertices with loops</td>
</tr>
<tr>
<td>remove_loops()</td>
<td>Remove loops on vertices in vertices.</td>
</tr>
<tr>
<td>has_multiple_edges()</td>
<td>Return whether there are multiple edges in the (di)graph.</td>
</tr>
<tr>
<td>allows_multiple_edges()</td>
<td>Return whether multiple edges are permitted in the (di)graph.</td>
</tr>
<tr>
<td>allow_multiple_edges()</td>
<td>Change whether multiple edges are permitted in the (di)graph.</td>
</tr>
<tr>
<td>multiple_edges()</td>
<td>Return any multiple edges in the (di)graph</td>
</tr>
<tr>
<td>name()</td>
<td>Return or set the graph's name.</td>
</tr>
<tr>
<td>is Immutable()</td>
<td>Return whether the graph is immutable.</td>
</tr>
<tr>
<td>weighted()</td>
<td>Whether the (di)graph is to be considered as a weighted (di)graph.</td>
</tr>
<tr>
<td>antisymmetric()</td>
<td>Test whether the graph is antisymmetric</td>
</tr>
<tr>
<td>density()</td>
<td>Return the density</td>
</tr>
<tr>
<td>order()</td>
<td>Return the number of vertices.</td>
</tr>
<tr>
<td>size()</td>
<td>Return the number of edges.</td>
</tr>
</tbody>
</table>

continues on next page
add_vertex() Create an isolated vertex.
add_vertices() Add vertices to the (di)graph from an iterable container of vertices.
delete_vertex() Delete vertex, removing all incident edges.
delete_vertices() Delete vertices from the (di)graph taken from an iterable container of vertices.
has_vertex() Check if vertex is one of the vertices of this graph.
random_vertex() Return a random vertex of self.
random_vertex_iterator() Return an iterator over random vertices of self.
random_edge() Return a random edge of self.
random_edge_iterator() Return an iterator over random edges of self.
vertex_boundary() Return a list of all vertices in the external boundary of vertices1, intersected with vertices2.
set_vertices() Associate arbitrary objects with each vertex.
set_vertex() Associate an arbitrary object with a vertex.
get_vertex() Retrieve the object associated with a given vertex.
get_vertices() Return a dictionary of the objects associated to each vertex.
vertex_iterator() Return an iterator over the given vertices.
neighbor_iterator() Return an iterator over neighbors of vertex.
vertices() Return a list of the vertices.
neighbors() Return a list of neighbors (in and out if directed) of vertex.
merge_vertices() Merge vertices.
add_edge() Add an edge from u to v.
add_edges() Add edges from an iterable container.
subdivide_edge() Subdivide an edge k times.
subdivide_edges() Subdivide k times edges from an iterable container.
delete_edge() Delete the edge from u to v.
delete_edges() Delete edges from an iterable container.
contract_edge() Contract an edge from u to v.
contract_edges() Contract edges from an iterable container.
delete_multiedge() Delete all edges from u to v.
set_edge_label() Set the edge label of a given edge.
has_edge() Check whether (u, v) is an edge of the (di)graph.
edges() Return a EdgesView of edges.
edge_boundary() Return a list of edges (u,v,l) with u in vertices1.
edge_iterator() Return an iterator over edges.
edges_incident() Return incident edges to some vertices.
edge_label() Return the label of an edge.
edge_labels() Return a list of the labels of all edges in self.
remove_multiple_edges() Remove all multiple edges, retaining one edge for each.
clear() Empty the graph of vertices and edges and removes name, associated objects, and position information.
degree() Return the degree (in + out for digraphs) of a vertex or of vertices.
average_degree() Return the average degree of the graph.
degree_histogram() Return a list, whose ith entry is the frequency of degree i.
degree_iterator() Return an iterator over the degrees of the (di)graph.
degree_sequence() Return the degree sequence of this (di)graph.
random_subgraph() Return random subgraph containing each vertex with probability p.
add_clique() Add a clique to the graph with the given vertices.
add_cycle() Add a cycle to the graph with the given vertices.
add_path() Add a path to the graph with the given vertices.

continues on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>complement()</code></td>
<td>Return the complement of the (di)graph.</td>
</tr>
<tr>
<td><code>line_graph()</code></td>
<td>Return the line graph of the (di)graph.</td>
</tr>
<tr>
<td><code>to_simple()</code></td>
<td>Return a simple version of itself (i.e., undirected and loops and multiple edges are removed).</td>
</tr>
<tr>
<td><code>disjoint_union()</code></td>
<td>Return the disjoint union of self and other.</td>
</tr>
<tr>
<td><code>union()</code></td>
<td>Return the union of self and other.</td>
</tr>
<tr>
<td><code>relabel()</code></td>
<td>Relabel the vertices of self</td>
</tr>
<tr>
<td><code>degree_to_cell()</code></td>
<td>Return the number of edges from vertex to an edge in cell.</td>
</tr>
<tr>
<td><code>subgraph()</code></td>
<td>Return the subgraph containing the given vertices and edges.</td>
</tr>
<tr>
<td><code>is_subgraph()</code></td>
<td>Check whether self is a subgraph of other.</td>
</tr>
</tbody>
</table>

Graph products:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cartesian_product()</code></td>
<td>Return the Cartesian product of self and other.</td>
</tr>
<tr>
<td><code>tensor_product()</code></td>
<td>Return the tensor product, also called the categorical product, of self and other.</td>
</tr>
<tr>
<td><code>lexicographic_product()</code></td>
<td>Return the lexicographic product of self and other.</td>
</tr>
<tr>
<td><code>strong_product()</code></td>
<td>Return the strong product of self and other.</td>
</tr>
<tr>
<td><code>disjunctive_product()</code></td>
<td>Return the disjunctive product of self and other.</td>
</tr>
</tbody>
</table>

Paths and cycles:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>eulerian_orientation()</code></td>
<td>Return a DiGraph which is an Eulerian orientation of the current graph.</td>
</tr>
<tr>
<td><code>eulerian_circuit()</code></td>
<td>Return a list of edges forming an Eulerian circuit if one exists.</td>
</tr>
<tr>
<td><code>minimum_cycle_basis()</code></td>
<td>Return a minimum weight cycle basis of the graph.</td>
</tr>
<tr>
<td><code>cycle_basis()</code></td>
<td>Return a list of cycles which form a basis of the cycle space of self.</td>
</tr>
<tr>
<td><code>all_paths()</code></td>
<td>Return a list of all paths (also lists) between a pair of vertices in the (di)graph.</td>
</tr>
<tr>
<td><code>all_paths_iterator()</code></td>
<td>Return an iterator over the paths of self.</td>
</tr>
<tr>
<td><code>all_simple_paths()</code></td>
<td>Return a list of all the simple paths of self starting with one of the given vertices.</td>
</tr>
<tr>
<td><code>triangles_count()</code></td>
<td>Return the number of triangles in the (di)graph.</td>
</tr>
<tr>
<td><code>shortest_simple_paths()</code></td>
<td>Return an iterator over the simple paths between a pair of vertices.</td>
</tr>
</tbody>
</table>

Linear algebra:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>spectrum()</code></td>
<td>Return a list of the eigenvalues of the adjacency matrix.</td>
</tr>
<tr>
<td><code>eigenvectors()</code></td>
<td>Return the right eigenvectors of the adjacency matrix of the graph.</td>
</tr>
<tr>
<td><code>eigenspaces()</code></td>
<td>Return the right eigenspaces of the adjacency matrix of the graph.</td>
</tr>
</tbody>
</table>

Some metrics:
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster_triangles()</td>
<td>Return the number of triangles for the set nbunch of vertices as a dictionary keyed by vertex.</td>
</tr>
<tr>
<td>clustering_average()</td>
<td>Return the average clustering coefficient.</td>
</tr>
<tr>
<td>clustering_coeff()</td>
<td>Return the clustering coefficient for each vertex in nbunch.</td>
</tr>
<tr>
<td>cluster_transitivity()</td>
<td>Return the transitivity (fraction of transitive triangles) of the graph.</td>
</tr>
<tr>
<td>szeged_index()</td>
<td>Return the Szeged index of the graph.</td>
</tr>
<tr>
<td>katz_centrality()</td>
<td>Return the katz centrality of the vertex u of the graph.</td>
</tr>
<tr>
<td>katz_matrix()</td>
<td>Return the katz matrix of the graph.</td>
</tr>
<tr>
<td>pagerank()</td>
<td>Return the PageRank of the vertices of self.</td>
</tr>
</tbody>
</table>

Automorphism group:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>coarsest_equitable_refinement()</td>
<td>Return the coarsest partition which is finer than the input partition, and equitable with respect to self.</td>
</tr>
<tr>
<td>automorphism_group()</td>
<td>Return the largest subgroup of the automorphism group of the (di)graph whose orbit partition is finer than the partition given.</td>
</tr>
<tr>
<td>is_vertex_transitive()</td>
<td>Return whether the automorphism group of self is transitive within the partition provided</td>
</tr>
<tr>
<td>is_isomorphic()</td>
<td>Test for isomorphism between self and other.</td>
</tr>
<tr>
<td>canonical_label()</td>
<td>Return the canonical graph.</td>
</tr>
<tr>
<td>is_cayley()</td>
<td>Check whether the graph is a Cayley graph.</td>
</tr>
</tbody>
</table>

Graph properties:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>is_eulerian()</td>
<td>Return True if the graph has a (closed) tour that visits each edge exactly once.</td>
</tr>
<tr>
<td>is_planar()</td>
<td>Check whether the graph is planar.</td>
</tr>
<tr>
<td>is_circular_planar()</td>
<td>Check whether the graph is circular planar (outerplanar)</td>
</tr>
<tr>
<td>is_regular()</td>
<td>Return True if this graph is (k-)regular.</td>
</tr>
<tr>
<td>is_chordal()</td>
<td>Check whether the given graph is chordal.</td>
</tr>
<tr>
<td>is_bipartite()</td>
<td>Test whether the given graph is bipartite.</td>
</tr>
<tr>
<td>is_circulant()</td>
<td>Check whether the graph is a circulant graph.</td>
</tr>
<tr>
<td>is_interval()</td>
<td>Check whether the graph is an interval graph.</td>
</tr>
<tr>
<td>is_gallai_tree()</td>
<td>Return whether the current graph is a Gallai tree.</td>
</tr>
<tr>
<td>is_clique()</td>
<td>Check whether a set of vertices is a clique</td>
</tr>
<tr>
<td>is_cycle()</td>
<td>Check whether self is a (directed) cycle graph.</td>
</tr>
<tr>
<td>is_geodetic()</td>
<td>Check whether the input (di)graph is geodetic.</td>
</tr>
<tr>
<td>is_independent_set()</td>
<td>Check whether vertices is an independent set of self</td>
</tr>
<tr>
<td>is_transitively_reduced()</td>
<td>Test whether the digraph is transitively reduced.</td>
</tr>
<tr>
<td>is_equitable()</td>
<td>Check whether the given partition is equitable with respect to self.</td>
</tr>
<tr>
<td>is_self_complementary()</td>
<td>Check whether the graph is self-complementary.</td>
</tr>
</tbody>
</table>

Traversals:
breadth_first_search()
Return an iterator over the vertices in a breadth-first ordering.

depth_first_search()
Return an iterator over the vertices in a depth-first ordering.

lex_BFS()
Perform a lexicographic breadth first search (LexBFS) on the graph.

lex_UP()
Perform a lexicographic UP search (LexUP) on the graph.

lex_DFS()
Perform a lexicographic depth first search (LexDFS) on the graph.

lex_DOWN()
Perform a lexicographic DOWN search (LexDOWN) on the graph.

Distances:

centrality_betweenness()
Return the betweenness centrality

centrality_closeness()
Returns the closeness centrality (1/average distance to all vertices)

distance()
Return the (directed) distance from u to v in the (di)graph

distance_all_pairs()
Return the distances between all pairs of vertices.

distances_distribution()
Return the distances distribution of the (di)graph in a dictionary.

girth()
Return the girth of the graph.

odd_girth()
Return the odd girth of the graph.

shortest_path()
Return a list of vertices representing some shortest path from u to v

shortest_path_length()
Return the minimal length of paths from u to v

shortest_paths()
Return a dictionary associating to each vertex v a shortest path from u to v, if it exists.

shortest_path_lengths()
Return a dictionary of shortest path lengths keyed by targets that are connected by a path from u.

shortest_path_all_pairs()
Compute a shortest path between each pair of vertices.

wiener_index()
Return the Wiener index of the graph.

average_distance()
Return the average distance between vertices of the graph.

Flows, connectivity, trees:

1.1. Generic graphs (common to directed/undirected)
Graph Theory, Release 10.4

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>is_connected()</td>
<td>Test whether the (di)graph is connected.</td>
</tr>
<tr>
<td>connected_components()</td>
<td>Return the list of connected components.</td>
</tr>
<tr>
<td>connected_components_number()</td>
<td>Return the number of connected components.</td>
</tr>
<tr>
<td>connected_components_subgraphs()</td>
<td>Return a list of connected components as graph objects.</td>
</tr>
<tr>
<td>connected_components_vertex()</td>
<td>Return a list of the vertices connected to vertex.</td>
</tr>
<tr>
<td>connected_components_sizes()</td>
<td>Return the sizes of the connected components as a list.</td>
</tr>
<tr>
<td>blocks_and_cut_vertices()</td>
<td>Compute the blocks and cut vertices of the graph.</td>
</tr>
<tr>
<td>blocks_and_cuts_tree()</td>
<td>Compute the blocks-and-cuts tree of the graph.</td>
</tr>
<tr>
<td>is_cut_edge()</td>
<td>Return True if the input edge is a cut-edge or a bridge.</td>
</tr>
<tr>
<td>is_cut_vertex()</td>
<td>Return True if the input vertex is a cut-vertex.</td>
</tr>
<tr>
<td>edge_cut()</td>
<td>Return a minimum edge cut between vertices (s) and (t).</td>
</tr>
<tr>
<td>vertex_cut()</td>
<td>Return a minimum vertex cut between non-adjacent vertices (s) and (t).</td>
</tr>
<tr>
<td>flow()</td>
<td>Return a maximum flow in the graph from (x) to (y).</td>
</tr>
<tr>
<td>nowhere_zero_flow()</td>
<td>Return a (k)-nowhere zero flow of the (di)graph.</td>
</tr>
<tr>
<td>edge_disjoint_paths()</td>
<td>Return a list of edge-disjoint paths between two vertices.</td>
</tr>
<tr>
<td>vertex_disjoint_paths()</td>
<td>Return a list of vertex-disjoint paths between two vertices.</td>
</tr>
<tr>
<td>edge_connectivity()</td>
<td>Return the edge connectivity of the graph.</td>
</tr>
<tr>
<td>vertex_connectivity()</td>
<td>Return the vertex connectivity of the graph.</td>
</tr>
<tr>
<td>transitive_closure()</td>
<td>Compute the transitive closure of a graph and returns it.</td>
</tr>
<tr>
<td>transitive_reduction()</td>
<td>Return a transitive reduction of a graph.</td>
</tr>
<tr>
<td>min_spanning_tree()</td>
<td>Return the edges of a minimum spanning tree.</td>
</tr>
<tr>
<td>spanning_trees_count()</td>
<td>Return the number of spanning trees in a graph.</td>
</tr>
<tr>
<td>dominator_tree()</td>
<td>Returns a dominator tree of the graph.</td>
</tr>
<tr>
<td>connected_subgraph_iterator()</td>
<td>Iterator over the induced connected subgraphs of order at most (k).</td>
</tr>
</tbody>
</table>

Plot/embedding-related methods:
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set_embedding()</code></td>
<td>Set a combinatorial embedding dictionary to <code>_embedding</code> attribute.</td>
</tr>
<tr>
<td><code>get_embedding()</code></td>
<td>Return the attribute <code>_embedding</code> if it exists.</td>
</tr>
<tr>
<td><code>faces()</code></td>
<td>Return the faces of an embedded graph.</td>
</tr>
<tr>
<td><code>genus()</code></td>
<td>Return the number of faces of an embedded graph.</td>
</tr>
<tr>
<td><code>planar_dual()</code></td>
<td>Return the planar dual of an embedded graph.</td>
</tr>
<tr>
<td><code>get_pos()</code></td>
<td>Return the position dictionary</td>
</tr>
<tr>
<td><code>set_pos()</code></td>
<td>Set the position dictionary</td>
</tr>
<tr>
<td><code>layout_planar()</code></td>
<td>Compute a planar layout of the graph using Schnyder’s algorithm.</td>
</tr>
<tr>
<td><code>is_drawn_free_of_edge_crossings()</code></td>
<td>Check whether the position dictionary gives a planar embedding.</td>
</tr>
<tr>
<td><code>latex_options()</code></td>
<td>Return an instance of <code>GraphLatex</code> for the graph.</td>
</tr>
<tr>
<td><code>set_latex_options()</code></td>
<td>Set multiple options for rendering a graph with LaTeX.</td>
</tr>
<tr>
<td><code>layout()</code></td>
<td>Return a layout for the vertices of this graph.</td>
</tr>
<tr>
<td><code>layout_spring()</code></td>
<td>Return a spring layout for this graph</td>
</tr>
<tr>
<td><code>layout_ranked()</code></td>
<td>Return a ranked layout for this graph</td>
</tr>
<tr>
<td><code>layout_extend_randomly()</code></td>
<td>Extend randomly a partial layout</td>
</tr>
<tr>
<td><code>layout_circular()</code></td>
<td>Return a circular layout for this graph</td>
</tr>
<tr>
<td><code>layout_tree()</code></td>
<td>Return an ordered tree layout for this graph</td>
</tr>
<tr>
<td><code>layout_forest()</code></td>
<td>Return an ordered forest layout for this graph</td>
</tr>
<tr>
<td><code>layout_graphviz()</code></td>
<td>Call <code>graphviz</code> to compute a layout of the vertices of this graph.</td>
</tr>
<tr>
<td><code>_circle_embedding()</code></td>
<td>Set some vertices on a circle in the embedding of this graph.</td>
</tr>
<tr>
<td><code>_line_embedding()</code></td>
<td>Set some vertices on a line in the embedding of this graph.</td>
</tr>
<tr>
<td><code>graphplot()</code></td>
<td>Return a <code>GraphPlot</code> object</td>
</tr>
<tr>
<td><code>plot()</code></td>
<td>Return a <code>Graphics</code> object representing the (di)graph.</td>
</tr>
<tr>
<td><code>show()</code></td>
<td>Show the (di)graph.</td>
</tr>
<tr>
<td><code>plot3d()</code></td>
<td>Plot the graph in three dimensions.</td>
</tr>
<tr>
<td><code>show3d()</code></td>
<td>Plot the graph using Tachyon, and shows the resulting plot.</td>
</tr>
<tr>
<td><code>graphviz_string()</code></td>
<td>Return a representation in the <code>dot</code> language.</td>
</tr>
<tr>
<td><code>graphviz_to_file_named()</code></td>
<td>Write a representation in the <code>dot</code> language in a file.</td>
</tr>
</tbody>
</table>

Algorithmically hard stuff:
1.1.1 Methods

```python
class sage.graphs.generic_graph.GenericGraph
    Bases: GenericGraph_pyx

Base class for graphs and digraphs.

    __eq__(other)
        Compare self and other for equality.
        Do not call this method directly. That is, for G.__eq__(H) write G == H.

    Two graphs are considered equal if the following hold:
        • they are either both directed, or both undirected;
        • they have the same settings for loops, multiedges, and weightedness;
```
they have the same set of vertices;

- they have the same (multi)set of arrows/edges, where labels of arrows/edges are taken into account if and only if the graphs are considered weighted. See weighted().

Note that this is not an isomorphism test.

EXAMPLES:

```python
sage: G = graphs.EmptyGraph()
sage: H = Graph()
sage: G == H
True
sage: G.to_directed() == H.to_directed()
True
sage: G = graphs.RandomGNP(8, .9999)
sage: H = graphs.CompleteGraph(8)
sage: G == H  # random - most often true
True
sage: G = Graph({0: [1, 2, 3, 4, 5, 6, 7]})
sage: H = Graph({1: [0], 2: [0], 3: [0], 4: [0], 5: [0], 6: [0], 7: [0]})
sage: G == H
True
sage: G.allow_loops(True)
sage: G == H
False
sage: G = graphs.RandomGNP(9, .3).to_directed()
sage: H = graphs.RandomGNP(9, .3).to_directed()
sage: G == H  # most often false
False
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edge(0, 1)
sage: H = copy(G)
sage: H.add_edge(0, 1)
sage: G == H
False
```

```python
>>> from sage.all import *
>>> G = graphs.EmptyGraph()
>>> H = Graph()
>>> G == H
True
>>> G.to_directed() == H.to_directed()
True
>>> G = graphs.RandomGNP(Integer(8), RealNumber('1.9999'))
>>> H = graphs.CompleteGraph(Integer(8))
>>> G == H  # random - most often true
True
>>> G = Graph({Integer(0): [Integer(1), Integer(2), Integer(3), Integer(4)],...
... Integer(5), Integer(6), Integer(7)]})
>>> H = Graph({Integer(1): [Integer(0)], Integer(2): [Integer(0)],...
... Integer(3): [Integer(0)], Integer(4): [Integer(0)], Integer(5):...
... Integer(0)], Integer(6): [Integer(0)], Integer(7): [Integer(0)]})
>>> G == H
True
>>> G.allow_loops(True)
>>> G == H
False
>>> G = graphs.RandomGNP(Integer(9), RealNumber('1.3')).to_directed()
```
Graph Theory, Release 10.4

>>> H = graphs.RandomGNP(Integer(9), RealNumber('0.3')).to_directed()
>>> G == H # most often false
False
>>> G = Graph(multiedges=True, sparse=True)
>>> G.add_edge(Integer(0), Integer(1))
>>> H = copy(G)
>>> H.add_edge(Integer(0), Integer(1))
>>> G == H
False

Note that graphs must be considered weighted, or Sage will not pay attention to edge label data in equality testing:

```python
sage: foo = Graph(sparse=True)
sage: foo.add_edges([(0, 1, 1), (0, 2, 2)])
sage: bar = Graph(sparse=True)
sage: bar.add_edges([(0, 1, 2), (0, 2, 1)])
sage: foo == bar
True
sage: foo.weighted(True)
>>> foo == bar
False
sage: bar.weighted(True)
>>> foo == bar
False
```

``add_clique`` *(vertices, loops=False)*

Add a clique to the graph with the given vertices.

If the vertices are already present, only the edges are added.

INPUT:

- **vertices** — an iterable container of vertices for the clique to be added, e.g. a list, set, graph, etc.
- **loops** — boolean (default: False); whether to add edges from every given vertex to itself. This is allowed only if the (di)graph allows loops.

EXAMPLES:

```
sage: G = Graph()
sage: G.add_clique(range(4))
```
Graph Theory, Release 10.4

(continued from previous page)

sage: G.is_isomorphic(graphs.CompleteGraph(4))
True
sage: D = DiGraph()
sage: D.add_clique(range(4))
sage: D.is_isomorphic(digraphs.Complete(4))
True
sage: D = DiGraph(loops=True)
sage: D.add_clique(range(4), loops=True)
sage: D.is_isomorphic(digraphs.Complete(4, loops=True))
True
sage: D = DiGraph(loops=False)
sage: D.add_clique(range(4), loops=True)
Traceback (most recent call last):
...
ValueError: cannot add edge from 0 to 0 in graph without loops

>>> from sage.all import *
>>> G = Graph()
>>> G.add_clique(range(Integer(4)))
>>> G.is_isomorphic(graphs.CompleteGraph(Integer(4)))
True
>>> D = DiGraph()
>>> D.add_clique(range(Integer(4)))
>>> D.is_isomorphic(digraphs.Complete(Integer(4)))
True
>>> D = DiGraph(loops=True)
>>> D.add_clique(range(Integer(4)), loops=True)
>>> D.is_isomorphic(digraphs.Complete(Integer(4), loops=True))
True
>>> D = DiGraph(loops=False)
>>> D.add_clique(range(Integer(4)), loops=True)
Traceback (most recent call last):
...
ValueError: cannot add edge from 0 to 0 in graph without loops

If the list of vertices contains repeated elements, a loop will be added at that vertex, even if loops=False:

sage: G = Graph(loops=True)
sage: G.add_clique([1, 1])
sage: G.edges(sort=True)

[(1, 1, None)]

>>> from sage.all import *
>>> G = Graph(loops=True)
>>> G.add_clique([Integer(1), Integer(1)])
>>> G.edges(sort=True)

[(1, 1, None)]

This is equivalent to:

sage: G = Graph(loops=True)
sage: G.add_clique([1], loops=True)
sage: G.edges(sort=True)

[(1, 1, None)]

1.1. Generic graphs (common to directed/undirected)
```python
>>> from sage.all import *
>>> G = Graph(loops=True)
>>> G.add_clique([Integer(1)], loops=True)
>>> G.edges(sort=True)
[(1, 1, None)]
```

`add_cycle` *(vertices)*

Add a cycle to the graph with the given vertices.

If the vertices are already present, only the edges are added.

For digraphs, adds the directed cycle, whose orientation is determined by the list. Adds edges *(vertices[u], vertices[u+1]) and (vertices[-1], vertices[0]).*

INPUT:

- `vertices` – an ordered list of the vertices of the cycle to be added

EXAMPLES:

```python
sage: G = Graph()
sage: G.add_vertices(range(10)); G
Graph on 10 vertices
sage: show(G)  # needs sage.plot
sage: G.add_cycle(list(range(10, 20)))
sage: show(G)  # needs sage.plot
sage: G.add_cycle(list(range(10)))
sage: show(G)  # needs sage.plot
```

```python
sage: D = DiGraph()
sage: D.add_cycle(list(range(4)))
sage: D.edges(sort=True)
[[(0, 1, None), (1, 2, None), (2, 3, None), (3, 0, None)]
```

`add_edge` *(u, v=None, label=None)*

Add an edge from *u* to *v*.

```python
>>> from sage.all import *
>>> G = Graph()
>>> G.add_vertices(range(Integer(10))); G
Graph on 10 vertices
>>> G.show()  # needs sage.plot
```

```python
>>> D = DiGraph()
>>> D.add_cycle(list(range(Integer(4))))
```

INPUT: The following forms are all accepted:

- `G.add_edge(1, 2)`
- `G.add_edge((1, 2))`
- `G.add_edges([(1, 2)])`
- `G.add_edge(1, 2, 'label')`
- `G.add_edge((1, 2, 'label'))`
- `G.add_edges([(1, 2, 'label')])`

WARNING: The following intuitive input results in nonintuitive output:

```
sage: G = Graph()
sage: G.add_edge((1, 2), label)
sage: G.edges(sort=False)
[('label', (1, 2), None)]
```

You must either use the `label` keyword:

```
sage: G = Graph()
sage: G.add_edge((1, 2), label="label")
sage: G.edges(sort=False)
[(1, 2, 'label')]
```

Or use one of these:

```
sage: G = Graph()
sage: G.add_edge(1, 2, 'label')
sage: G.edges(sort=False)
[(1, 2, 'label')]
sage: G = Graph()
sage: G.add_edge((1, 2, 'label'))
sage: G.edges(sort=False)
[(1, 2, 'label')]
```

```python
>>> from sage.all import *

>>> G = Graph()
>>> G.add_edge((Integer(1), Integer(2)), label="label")
>>> G.edges(sort=False)
[(1, 2, 'label')]
```

1.1. Generic graphs (common to directed/undirected)
Vertex name cannot be None, so:

```python
sage: G = Graph()
sage: G.add_edge(None, 4)
sage: G.vertices(sort=True)
[0, 4]
```

```python
>>> from sage.all import *

>>> G = Graph()
>>> G.add_edge(None, Integer(4))
>>> G.vertices(sort=True)
[0, 4]
```

add_edges *(edges, loops=True)*

Add edges from an iterable container.

INPUT:

- edges – an iterable of edges, given either as \((u, v)\) or \((u, v, \text{label})\).
- loops – boolean (default: True); if False, remove all loops \((v, v)\) from the input iterator. If None, remove loops unless the graph allows loops.

EXAMPLES:

```python
sage: G = graphs.DodecahedralGraph()
sage: H = Graph()
sage: H.add_edges(G.edge_iterator()); H
Graph on 20 vertices
sage: G = graphs.DodecahedralGraph().to_directed()
sage: H = DiGraph()
sage: H.add_edges(G.edge_iterator()); H
Digraph on 20 vertices
sage: H.add_edges(iter([]))
sage: H = Graph()
sage: H.add_edges([(0, 1), (0, 2, "label")])
sage: H.edges(sort=True)
[(0, 1, None), (0, 2, 'label')]
```

```python
>>> from sage.all import *

>>> G = graphs.DodecahedralGraph()

>>> H = Graph()

>>> H.add_edges(G.edge_iterator()); H
Graph on 20 vertices

>>> G = graphs.DodecahedralGraph().to_directed()

>>> H = DiGraph()

>>> H.add_edges(G.edge_iterator()); H
Digraph on 20 vertices

>>> H.add_edges(iter([]))

>>> H = Graph()

>>> H.add_edges([(Integer(0), Integer(1)), (Integer(0), Integer(2), "label")])

>>> H.edges(sort=True)
[(0, 1, None), (0, 2, 'label')]
```

We demonstrate the loops argument:
GraphTheory, Release 10.4

sage: H = Graph()
sage: H.add_edges([(0, 0)], loops=False); H.edges(sort=True)
[]
sage: H.add_edges([(0, 0)], loops=None); H.edges(sort=True)
[]
sage: H.add_edges([(0, 0)]); H.edges(sort=True)
Traceback (most recent call last):
...
ValueError: cannot add edge from 0 to 0 in graph without loops
sage: H = Graph(loops=True)
sage: H.add_edges([(0, 0)], loops=False); H.edges(sort=True)
[]
>>> from sage.all import *
>>> H = Graph()
>>> H.add_edges([(Integer(0), Integer(0))], loops=False); H.edges(sort=True)
[]
>>> H.add_edges([(Integer(0), Integer(0))], loops=None); H.edges(sort=True)
[(0, 0, None)]
>>> H.add_edges([(Integer(0), Integer(0))]); H.edges(sort=True)
[(0, 0, None)]

add_path(vertices)
Add a path to the graph with the given vertices.
If the vertices are already present, only the edges are added.
For digraphs, adds the directed path vertices[0], ..., vertices[-1].

INPUT:
• vertices—an ordered list of the vertices of the path to be added

EXAMPLES:

add_path (vertices)
```python
>>> from sage.all import *
>>> G = Graph()
>>> G.add_vertices(range(Integer(10))); G
Graph on 10 vertices
>>> show(G)  # needs sage.plot
>>> G.add_path(list(range(Integer(10), Integer(20))))
>>> show(G)  # needs sage.plot
>>> G.add_path(list(range(Integer(10))))
>>> show(G)  # needs sage.plot
```

```python
sage: D = DiGraph()
sage: D.add_path(list(range(4)))
sage: D.edges(sort=True)
[(0, 1, None), (1, 2, None), (2, 3, None)]
```

```python
>>> from sage.all import *
>>> D = DiGraph()
>>> D.add_path(list(range(Integer(4))))
>>> D.edges(sort=True)
[(0, 1, None), (1, 2, None), (2, 3, None)]
```

add_vertex *(name=None)*

Create an isolated vertex.

If the vertex already exists, then nothing is done.

INPUT:

- `name` – an immutable object (default: None); when no name is specified (default), then the new vertex will be represented by the least integer not already representing a vertex. `name` must be an immutable object (e.g., an integer, a tuple, etc.).

As it is implemented now, if a graph \(G \) has a large number of vertices with numeric labels, then \(G.\)add_vertex() could potentially be slow, if name=None.

OUTPUT:

If name=None, the new vertex name is returned. None otherwise.

EXAMPLES:

```python
sage: G = Graph(); G.add_vertex(); G
0
Graph on 1 vertex
```

```python
>>> from sage.all import *
>>> G = Graph(); G.add_vertex(); G
0
Graph on 1 vertex
```

```python
sage: D = DiGraph(); D.add_vertex(); D
0
Digraph on 1 vertex
```
```python
>>> from sage.all import *
>>> D = DiGraph(); D.add_vertex(); D
Digraph on 1 vertex
```

add_vertices *(vertices)*

Add vertices to the (di)graph from an iterable container of vertices.

Vertices that already exist in the graph will not be added again.

INPUT:

- vertices – iterator container of vertex labels. A new label is created, used and returned in the output list for all `None` values in vertices.

OUTPUT:

Generated names of new vertices if there is at least one `None` value present in vertices. `None` otherwise.

EXAMPLES:

```python
sage: d = {0: [1, 4, 5], 1: [2, 6], 2: [3, 7], 3: [4, 8], 4: [9], 5: [7, 8], 6: [8, 9], 7: [9]}
sage: G = Graph(d)
sage: G.add_vertices([10, 11, 12])
sage: G.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: G.add_vertices(graphs.CycleGraph(25).vertex_iterator())
sage: G.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
sage: G = Graph()
sage: G.add_vertices([1, 2, 3])
sage: G.add_vertices([4, None, None, 5])
[0, 6]
```

```python
>>> from sage.all import *
>>> G = Graph()
>>> G.add_vertices([Integer(1), Integer(2), Integer(3)])
>>> G.add_vertices([Integer(4), Integer(5), Integer(6)])
```

```
1.1. Generic graphs (common to directed/undirected) 17
```
adjacency_matrix(sparse=None, vertices=None, base_ring=None, **kwds)

Return the adjacency matrix of the (di)graph.

By default, the matrix returned is over the integers.

INPUT:

- sparse – boolean (default: None); whether to represent with a sparse matrix
- vertices – list, None, or True (default: None);
 - when a list, the \(i\)-th row and column of the matrix correspond to the \(i\)-th vertex in the ordering of vertices,
 - when None, the \(i\)-th row and column of the matrix correspond to the \(i\)-th vertex in the ordering given by \text{GenericGraph}.vertices() with sort=True.
 - when True, construct an endomorphism of a free module instead of a matrix, where the module’s basis is indexed by the vertices.

If the vertices are not comparable, the keyword vertices must be used to specify an ordering, or a TypeError exception will be raised.

- base_ring – a ring (default: \text{ZZ}); the base ring of the matrix space to use.
- **kwds – other keywords to pass to matrix().

EXAMPLES:

```python
sage: G = graphs.CubeGraph(4)
sage: G.adjacency_matrix()
[ 0  1  0  1  0  0  0  1  0  0  0  0  0  0  0  0]
[ 0  1  0  1  0  0  0  1  0  0  0  0  0  0  0  0]
[ 0  1  0  0  1  0  0  0  1  0  0  0  0  0  0  0]
[ 0  1  0  0  0  0  0  0  0  0  1  0  0  0  0  0]
[ 1  0  0  1  0  1  0  0  1  0  0  1  0  0  0  0]
[ 0  1  1  0  0  0  0  1  0  0  0  1  0  0  0  0]
[ 0  1  0  0  0  0  0  0  0  0  0  1  0  0  0  0]
[ 0  1  0  0  1  0  0  1  0  0  0  0  0  0  1  0]
[ 0  1  0  0  1  0  0  0  1  0  0  0  0  0  0  1]
[ 0  0  1  1  0  0  0  0  0  0  0  0  0  0  0  1]
[ 0  1  0  0  0  0  0  0  1  1  0  1  0  0  0  0]
[ 0  0  1  0  0  0  0  1  0  0  1  0  0  0  0  1]
[ 0  1  0  0  0  1  1  0  0  0  0  0  0  0  0  1]
[ 0  0  1  0  0  0  0  0  0  0  1  1  0  0  0  0]
[ 0  0  1  0  0  0  1  0  0  0  0  1  0  0  0  1]
[ 0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1]
[ 0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1]
[ 0  0  0  0  0  0  0  1  0  0  1  0  1  1  0  1]

>>> from sage.all import *
>>> G = graphs.CubeGraph(Integer(4))
>>> G.adjacency_matrix()
[ 0  1  1  0  1  0  0  0  1  0  0  0  0  0  0  0]
[ 0  0  1  0  1  0  0  0  1  0  0  0  0  0  0  0]
[ 1  0  0  1  0  0  0  1  0  0  1  0  0  0  0  0]
[ 0  1  1  0  0  0  0  1  0  0  0  1  0  0  0  0]
[ 0  1  0  0  1  0  0  1  0  0  0  0  0  0  1  0]
[ 0  0  1  1  0  0  0  1  0  0  0  0  0  0  0  1]
[ 0  0  0  0  0  1  0  0  1  0  0  0  0  0  0  1]
[ 0  0  0  0  0  0  0  0  1  0  0  0  0  0  1  0]
[ 0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  1]
[ 0  0  0  0  0  0  0  0  1  0  0  0  0  0  1  0]
[ 0  0  0  0  0  0  0  0  0  1  1  0  1  0  0  1]
[ 0  0  0  0  0  0  0  0  0  0  0  1  0  1  0  1]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1]
```

(continues on next page)
sage: matrix(GF(2), G) # matrix over GF(2)

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

>>> from sage.all import *

>>> matrix(GF(Integer(2)), G) # matrix over GF(2)

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

sage: D = DiGraph({0: [1, 2, 3], 1: [0, 2], 2: [3],: 3: [4], 4: [0, 5], 5: [1]})

sage: D.adjacency_matrix() # matrix over GF(2)

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

1.1. Generic graphs (common to directed/undirected)
```python
>>> from sage.all import *
>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)],
    Integer(1): [Integer(0), Integer(2)], Integer(2): [Integer(3)],
    Integer(3): [Integer(4)], Integer(4): [Integer(0),
    Integer(5)], Integer(5): [Integer(1)]})
>>> D.adjacency_matrix()
# needs sage.modules
[0 1 1 1 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 1]
[0 1 0 0 0 0]
```

A different ordering of the vertices:
```python
sage: graphs.PathGraph(5).adjacency_matrix( vertices=[2, 4, 1, 3, 0])
# needs sage.modules
[0 0 1 1 0]
[0 0 0 1 0]
[1 1 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
```

A different base ring:
```python
sage: graphs.PathGraph(5).adjacency_matrix( base_ring=RDF)
# needs sage.modules
[0.0 1.0 0.0 0.0 0.0]
[1.0 0.0 1.0 0.0 0.0]
[0.0 1.0 0.0 1.0 0.0]
[0.0 0.0 1.0 0.0 1.0]
[0.0 0.0 0.0 1.0 0.0]
sage: type(_)
# needs sage.modules
<class 'sage.matrix.matrix_real_double_dense.Matrix_real_double_dense'>
```
A different matrix implementation:

```python
sage: graphs.PathGraph(5).adjacency_matrix(sparse=False, # needs numpy sage.modules
.....: implementation='numpy')
[0 1 0 0 0]
[1 0 1 0 0]
[0 1 0 1 0]
[0 0 1 0 1]
[0 0 0 1 0]
sage: type(_)
<class 'sage.matrix.matrix_numpy_integer_dense.Matrix_numpy_integer_dense'>
```

As an immutable matrix:

```python
sage: M = graphs.PathGraph(5).adjacency_matrix(sparse=False, # needs sage.modules
.....: immutable=True); M
[0 1 0 0 0]
[1 0 1 0 0]
[0 1 0 1 0]
[0 0 1 0 1]
[0 0 0 1 0]
sage: M[2, 2] = 1 # needs sage.modules
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead
(i.e., use copy(M) to change a copy of M).
```

(continues on next page)
Creating a module endomorphism:

```
sage: D12 = posets.DivisorLattice(12).hasse_diagram()
sage: phi = D12.adjacency_matrix(vertices=True); phi
```

```
Generic endomorphism of
Free module generated by {1, 2, 3, 4, 6, 12} over Integer Ring
```

```
sage: print(phi._unicode_art_matrix())
```

```
1 2 3 4 6 12
1\[ 0 1 1 0 0 0\\] 
2\[ 0 0 0 1 1 0\\] 
3\[ 0 0 0 0 1 0\\] 
4\[ 0 0 0 0 0 1\\] 
6\[ 0 0 0 0 0 1\\] 
12\[ 0 0 0 0 0 0\\]
```

```
>>> from sage.all import *
```

```
>>> D12 = posets.DivisorLattice(Integer(12)).hasse_diagram()
```

```
>>> phi = D12.adjacency_matrix(vertices=True); phi
```

```
Generic endomorphism of
Free module generated by {1, 2, 3, 4, 6, 12} over Integer Ring
```

```
>>> print(phi._unicode_art_matrix())
```

```
1 2 3 4 6 12
1\[ 0 1 1 0 0 0\\] 
2\[ 0 0 0 1 1 0\\] 
3\[ 0 0 0 0 1 0\\] 
4\[ 0 0 0 0 0 1\\] 
6\[ 0 0 0 0 0 1\\] 
12\[ 0 0 0 0 0 0\\]
```

all_paths \((G, \text{start}, \text{end}, \text{use_multiedges}=\text{False}, \text{report_edges}=\text{False}, \text{labels}=\text{False})\)

Return the list of all paths between a pair of vertices.

If \text{start} is the same vertex as \text{end}, then \([\text{start}]\) is returned – a list containing the 1-vertex, 0-edge path “\text{start}”.

If \(G\) has multiple edges, a path will be returned as many times as the product of the multiplicity of the edges along that path depending on the value of the flag \text{use_multiedges}.

INPUT:

- \text{start} – a vertex of a graph, where to start
- \text{end} – a vertex of a graph, where to end
- \text{use_multiedges} – boolean (default: \text{False}); this parameter is used only if the graph has multiple edges.
 - If \text{False}, the graph is considered as simple and an edge label is arbitrarily selected for
each edge as in \texttt{sage.graphs.generic_graph_GENERICGRAPH.to_simple()} if \texttt{report_edges} is \texttt{True}

- If \texttt{True}, a path will be reported as many times as the edges multiplicities along that path (when
\texttt{report_edges} = \texttt{False} or \texttt{labels} = \texttt{False}), or with all possible combinations of edge
labels (when \texttt{report_edges} = \texttt{True} and \texttt{labels} = \texttt{True})

- \texttt{report_edges} – boolean (default: \texttt{False}); whether to report paths as list of vertices (default) or list
of edges, if \texttt{False} then \texttt{labels} parameter is ignored

- \texttt{labels} – boolean (default: \texttt{False}); if \texttt{False}, each edge is simply a pair \((u, v)\) of vertices.
Otherwise a list of edges along with its edge labels are used to represent the path.

EXAMPLES:

```
sage: eg1 = Graph({0:[1, 2], 1:[4], 2:[3, 4], 4:[5], 5:[6]})
sage: eg1.all_paths(0, 6)
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
sage: eg2 = graphs.PetersenGraph()
sage: sorted(eg2.all_paths(1, 4))
[[1, 0, 4],
 [1, 0, 5, 7, 2, 3, 4],
 [1, 0, 5, 7, 9, 4],
 [1, 0, 5, 7, 9, 6, 8, 3, 4],
 [1, 0, 5, 8, 3, 2, 7, 9, 4],
 [1, 0, 5, 8, 3, 4],
 [1, 0, 5, 8, 6, 9, 4],
 [1, 0, 5, 8, 6, 9, 7, 2, 3, 4],
 [1, 2, 3, 4],
 [1, 2, 3, 8, 5, 0, 4],
 [1, 2, 3, 8, 5, 7, 9, 4],
 [1, 2, 7, 5, 0, 4],
 [1, 2, 7, 5, 8, 3, 4],
 [1, 2, 7, 5, 8, 6, 9, 4],
 [1, 2, 7, 9, 4],
 [1, 2, 7, 9, 6, 8, 3, 4],
 [1, 2, 7, 9, 6, 8, 5, 0, 4],
 [1, 6, 8, 3, 2, 7, 5, 0, 4],
 [1, 6, 8, 3, 2, 7, 9, 4],
 [1, 6, 8, 3, 4],
 [1, 6, 8, 5, 0, 4],
 [1, 6, 8, 5, 7, 2, 3, 4],
 [1, 6, 8, 5, 7, 9, 4],
 [1, 6, 9, 4],
 [1, 6, 9, 7, 2, 3, 4],
 [1, 6, 9, 7, 2, 3, 8, 5, 0, 4],
 [1, 6, 9, 7, 5, 0, 4],
 [1, 6, 9, 7, 5, 8, 3, 4]]
sage: dg = DiGraph({0:[1, 3], 1:[3], 2:[0, 3]})
sage: sorted(dg.all_paths(0, 3))
[[0, 1, 3], [0, 3]]
sage: ug = dg.to_undirected()
sage: sorted(ug.all_paths(0, 3))
[[0, 1, 3], [0, 2, 3], [0, 3]]
sage: g = Graph([(0, 1), (0, 1), (1, 2), (1, 2)], multiedges=True)
```

(continues on next page)
sage: g.all_paths(0, 2, use_multiedges=True)
[[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]

sage: dg = DiGraph({0:[1, 2, 1], 3:[0, 0]}, multiedges=True)
sage: dg.all_paths(3, 1, use_multiedges=True)
[[3, 0, 1], [3, 0, 1], [3, 0, 1], [3, 0, 1]]

sage: g = Graph([(0, 1, 'a'), (0, 1, 'b'), (1, 2, 'c'), (1, 2, 'd')], multiedges=True)
sage: g.all_paths(0, 2, use_multiedges=False)
[[0, 1, 2]]
sage: g.all_paths(0, 2, use_multiedges=True)
[[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]
sage: g.all_paths(0, 2, use_multiedges=True, report_edges=True)
[((0, 1), (1, 2)), ((0, 1), (1, 2)), ((0, 1), (1, 2)), ((0, 1), (1, 2))]
sage: g.all_paths(0, 2, use_multiedges=True, report_edges=True, labels=True)
[((0, 1, 'a'), (1, 2, 'd')), ((0, 1, 'a'), (1, 2, 'd')), ((0, 1, 'a'), (1, 2, 'd')), ((0, 1, 'a'), (1, 2, 'd'))]
sage: g.all_paths(0, 2, use_multiedges=False, report_edges=True, labels=True)
[((0, 1, 'b'), (1, 2, 'd'))]
sage: g.all_paths(0, 2, use_multiedges=False, report_edges=False, labels=True)
[[0, 1, 2]]
sage: g.all_paths(0, 2, use_multiedges=True, report_edges=False, labels=True)
[[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]

>>> from sage.all import *

>>> eg1 = Graph({Integer(0):[Integer(1), Integer(2)], Integer(1):[Integer(4)], Integer(2):[Integer(3), Integer(4)], Integer(4):[Integer(5)], Integer(5):[Integer(6)]})

>>> eg1.all_paths(Integer(0), Integer(6))
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]

>>> eg2 = graphs.PetersenGraph()

>>> sorted(eg2.all_paths(Integer(1), Integer(4)))

(continues on next page)
[1, 6, 8, 3, 2, 7, 9, 4],
[1, 6, 8, 3, 4],
[1, 6, 8, 5, 0, 4],
[1, 6, 8, 5, 7, 2, 3, 4],
[1, 6, 8, 9, 4],
[1, 6, 9, 7, 2, 3, 4],
[1, 6, 9, 7, 2, 3, 8, 5, 0, 4],
[1, 6, 9, 7, 5, 0, 4],
[1, 6, 9, 7, 5, 8, 3, 4]

>>> dg = DiGraph({Integer(0):[Integer(1), Integer(3)],
˓→Integer(1):[Integer(3)], Integer(2):[Integer(0), Integer(3)]})

>>> sorted(dg.all_paths(Integer(0), Integer(3)))
[[0, 1, 3], [0, 3]]

>>> ug = dg.to_undirected()

>>> sorted(ug.all_paths(Integer(0), Integer(3)))
[[0, 1, 3], [0, 2, 3], [0, 3]]

>>> g = Graph([(Integer(0), Integer(1)), (Integer(0), Integer(1)),
˓→(Integer(1), Integer(2)), (Integer(1), Integer(2))], multiedges=True)

>>> g.all_paths(Integer(0), Integer(2), use_multiedges=True)
[[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]

>>> dg = DiGraph({Integer(0):[Integer(1), Integer(2), Integer(1)],
˓→Integer(3):[Integer(0), Integer(0)]}, multiedges=True)

>>> dg.all_paths(Integer(3), Integer(1), use_multiedges=True)
[[3, 0, 1], [3, 0, 1], [3, 0, 1], [3, 0, 1]]

>>> g = Graph([(Integer(0), Integer(1), 'a'), (Integer(0), Integer(1), 'b'),
˓→(Integer(1), Integer(2), 'c'), (Integer(1), Integer(2), 'd')],
˓→multiedges=True)

>>> g.all_paths(Integer(0), Integer(2), use_multiedges=False)
[[0, 1, 2]]

>>> g.all_paths(Integer(0), Integer(2), use_multiedges=True)
[[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]

>>> g.all_paths(Integer(0), Integer(2), use_multiedges=True, report_edges=True)
[[[0, 1], (1, 2)], [[0, 1], (1, 2)], [[0, 1], (1, 2)], [[0, 1], (1, 2)]]

>>> g.all_paths(Integer(0), Integer(2), use_multiedges=True, report_edges=True, labels=True)
[[[0, 1, 'b'], (1, 2, 'd')],
[[0, 1, 'b'], (1, 2, 'c')],
[[0, 1, 'a'], (1, 2, 'd')],
[[0, 1, 'a'], (1, 2, 'c')]]

>>> g.all_paths(Integer(0), Integer(2), use_multiedges=False, report_edges=False, labels=True)

Return an iterator over the paths of self.

1.1. Generic graphs (common to directed/undirected)
The paths are enumerated in increasing length order.

INPUT:

- **starting_vertices** – iterable (default: None); vertices from which the paths must start. If None, then all vertices of the graph can be starting points.
- **ending_vertices** – iterable (default: None); allowed ending vertices of the paths. If None, then all vertices are allowed.
- **simple** – boolean (default: False); if set to True, then only simple paths are considered. Simple paths are paths in which no two arcs share a head or share a tail, i.e. every vertex in the path is entered at most once and exited at most once.
- **max_length** – non negative integer (default: None); the maximum length of the enumerated paths. If set to None, then all lengths are allowed.
- **trivial** – boolean (default: False); if set to True, then the empty paths are also enumerated.
- **use_multiedges** – boolean (default: False); this parameter is used only if the graph has multiple edges.
 - If False, the graph is considered as simple and an edge label is arbitrarily selected for each edge as in `sage.graphs.generic_graph.GenericGraph.to_simple()` if `report_edges` is True
 - If True, a path will be reported as many times as the edges multiplicities along that path (when `report_edges = False` or `labels = False`), or with all possible combinations of edge labels (when `report_edges = True` and `labels = True`)
- **report_edges** – boolean (default: False); whether to report paths as list of vertices (default) or list of edges, if False then labels parameter is ignored
- **labels** – boolean (default: False); if False, each edge is simply a pair \((u, v)\) of vertices. Otherwise a list of edges along with its edge labels are used to represent the path.

OUTPUT:

iterator

AUTHOR:

Alexandre Blondin Masse

EXAMPLES:

```
sage: G = graphs.CompleteGraph(4)
sage: list(G.all_paths_iterator(starting_vertices=[1], ending_vertices=[3], simple=True))
[[1, 3], [1, 0, 3], [1, 2, 3], [1, 0, 2, 3], [1, 2, 0, 3]]
sage: list(G.shortest_simple_paths(1, 3))
[[1, 3], [1, 0, 3], [1, 2, 3], [1, 2, 0, 3], [1, 0, 2, 3]]
sage: pi = G.all_paths_iterator(starting_vertices=[1], ending_vertices=[3])
```

```
sage: for _ in range(6):
   ....:     print(next(pi))
[1, 3]
[1, 0, 3]
[1, 2, 3]
[1, 0, 1, 3]
[1, 0, 2, 3]
[1, 2, 0, 3]
```

```
sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']},
```

(continues on next page)
Graph Theory, Release 10.4 (continued from previous page)

→ loops=True)

sage: pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['d →'], report_edges=True, simple=True)
sage: list(pi)
[[('a', 'b'), ('b', 'c'), ('c', 'd')]]

sage: g = DiGraph([(0, 1, 'a'), (0, 1, 'b'), (1, 2, 'c'), (1, 2, 'd')], multiedges=True)
sage: pi = g.all_paths_iterator(starting_vertices=[0], report_edges=True, labels=True)
sage: for _ in range(6):
 print(next(pi))
[0, 1]
[0, 1]
[0, 1, 2]
[0, 1, 2]
[0, 1, 2]
[0, 1, 2]

sage: list(g.all_paths_iterator(starting_vertices=[0, 1], ending_vertices=[2], use_multiedges=False, report_edges=True, labels=True, simple=True))
[[1, 2], [0, 1, 2]]

1.1. Generic graphs (common to directed/undirected) 27

>>> from sage.all import *
>>> G = graphs.CompleteGraph(Integer(4))
>>> list(G.all_paths_iterator(starting_vertices=Integer(1), ending_vertices=Integer(3), simple=True))
[[1, 3], [1, 0, 3], [1, 2, 3], [1, 0, 2, 3], [1, 2, 0, 3]]
>>> list(G.shortest_simple_paths(Integer(1), Integer(3)))
[[1, 3], [1, 0, 3], [1, 2, 3], [1, 0, 2, 3], [1, 0, 2, 3]]

(continues on next page)
... print(next(pi))
[1, 3]
[1, 0, 3]
[1, 2, 3]
[1, 0, 1, 3]
[1, 0, 2, 3]
[1, 2, 0, 3]

>>> g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']},
 loops=True)
>>> pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['d'],
 report_edges=True, simple=True)
>>> list(pi)
[['(a', 'b'), ('b', 'c'), ('c', 'd')]]

>>> g = DiGraph([(Integer(0), Integer(1), 'a'), (Integer(0), Integer(1), 'b'),
 (Integer(1), Integer(2), 'c'), (Integer(1), Integer(2), 'd')],
 multiedges=True)
>>> pi = g.all_paths_iterator(starting_vertices=[Integer(0)], use_multiedges=True)
>>> for _ in range(Integer(6)):
... print(next(pi))
[0, 1]
[0, 1]
[0, 1, 2]
[0, 1, 2]
[0, 1, 2]

>>> pi = g.all_paths_iterator(starting_vertices=[Integer(0)], use_multiedges=True,
 report_edges=True, labels=True)
>>> for _ in range(Integer(6)):
... print(next(pi))
[(0, 1, 'b')]
[(0, 1, 'a')]
[(0, 1, 'b'), (1, 2, 'd')]
[(0, 1, 'b'), (1, 2, 'c')]
[(0, 1, 'a'), (1, 2, 'd')]
[(0, 1, 'a'), (1, 2, 'c')]

>>> list(g.all_paths_iterator(starting_vertices=[Integer(0), Integer(1)],
 ending_vertices=[Integer(2)], use_multiedges=False,
 report_edges=True, labels=True))
[[[1, 2, 'd')], [(0, 1, 'b'), (1, 2, 'd')]]

>>> list(g.all_paths_iterator(starting_vertices=[Integer(0), Integer(1)],
 ending_vertices=[Integer(2)], use_multiedges=False,
 report_edges=False, labels=True))
[[1, 2], [0, 1, 2]]

>>> list(g.all_paths_iterator(use_multiedges=True, report_edges=False,
 labels=True, max_length=Integer(1)))
[[1, 2], [1, 2], [0, 1], [0, 1]]

>>> list(g.all_paths_iterator(use_multiedges=True, report_edges=True,
 labels=True, max_length=Integer(1)))
[[1, 2, 'd')], [(1, 2, 'c')], [(0, 1, 'b')], [(0, 1, 'a')]]

>>> g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']},
 loops=True)
>>> pi = g.all_paths_iterator()
>>> [len(next(pi)) - Integer(1) for _ in range(Integer(7))]
(continues on next page)
It is possible to precise the allowed starting and/or ending vertices:

```python
def pi = g.all_paths_iterator(starting_vertices=['a'])
def [len(next(pi)) - 1 for _ in range(5)]
[1, 1, 2, 2, 2]
def pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['b', c'])
def for _ in range(5):
... print(next(pi))
['a', 'a', 'a', 'a', 'a', 'b']

>>> from sage.all import *
>>> pi = g.all_paths_iterator(starting_vertices=['a'])
>>> [len(next(pi)) - Integer(1) for _ in range(Integer(5))]
[1, 1, 2, 2, 2]
>>> pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['b'])
>>> for _ in range(Integer(5)):
... print(next(pi))
['a', 'a', 'a', 'a', 'a', 'a', 'b']
```

One may prefer to enumerate only simple paths (see `all_simple_paths()`):

```python
def pi = g.all_paths_iterator(simple=True)
def sorted(list(pi), key=lambda x:(len(x), x))
[['a', 'a'], ['a', 'b'], ['b', 'c'], ['c', 'd'], ['d', 'c'], ['a', 'b', 'c'], ['b', 'c', 'd'], ['c', 'd', 'c'], ['d', 'c', 'd'], ['a', 'b', 'c'], ['b', 'c', 'd']]
def pi = g.all_paths_iterator(simple=True)
def [len(p) - 1 for p in pi]
[1, 1, 1, 1, 2, 2, 2, 2, 3]
```

Or simply bound the length of the enumerated paths:

```python
def pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['b', c', max_length=6])
def sorted(list(pi), key=lambda x:(len(x), x))
```

(continues on next page)
Graph Theory, Release 10.4

(["a", "b"], ["a", "a", "b"], ["a", "b", "c"], ["a", "a", "a", "b"],
["a", "b", "c"], ["a", "a", "a", "a", "b"],
["a", "b", "c", "d"], ["a", "b", "c", "d", "c"],
["a", "a", "a", "b", "c", "d"], ["a", "a", "a", "b", "c", "d", "c"],
["a", "a", "a", "b", "c", "d", "c", "d"], ["a", "a", "a", "b", "c", "d", "c", "d", "c"],
["a", "a", "a", "b", "c", "d", "c", "d", "c", "d"], ["a", "a", "a", "b", "c", "d", "c", "d", "c", "d", "c"])

sage: pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['b',
'c'], max_length=6)
sage: [len(p) - 1 for p in pi]
[1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 6]

By default, empty paths are not enumerated, but it may be parametrized:

sage: pi = g.all_paths_iterator(simple=True, trivial=True)
sage: sorted(list(pi), key=lambda x:(len(x), x))
[['a'], ['b'], ['c'], ['d'], ['a', 'a'], ['a', 'b'], ['b', 'c'],
['c', 'd'], ['d', 'c'], ['a', 'b', 'c'], ['b', 'c', 'd'], ['c', 'd', 'c'], ['a', 'b', 'c', 'd'], ['b', 'c', 'd', 'c'], ['c', 'd', 'c', 'd'], ['a', 'b', 'c', 'd', 'c'],
["a", "b", "c", "d", "c", "d", "c"]]

sage: pi = g.all_paths_iterator(simple=True, trivial=True)
sage: [len(p) - 1 for p in pi]
[0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2]

sage: pi = g.all_paths_iterator(simple=True, trivial=False)
sage: sorted(list(pi), key=lambda x:(len(x), x))
[['a', 'a'], ['a', 'b'], ['b', 'c'], ['c', 'd'], ['d', 'c'],
['a', 'b', 'c'], ['b', 'c', 'd'], ['c', 'd', 'c'], ['d', 'c', 'd'], ['a', 'b', 'c', 'd'],
["a", "b", "c", "d"]]

sage: pi = g.all_paths_iterator(simple=True, trivial=False)
sage: [len(p) - 1 for p in pi]
[1, 1, 1, 1, 1, 2, 2, 2, 2, 2]

>>> from sage.all import *

>>> pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['b',
'c'], max_length=Integer(6))

>>> sorted(list(pi), key=lambda x:(len(x), x))
[['a'], ['b'], ['c'], ['d'], ['a', 'a'], ['a', 'b'], ['b', 'c'],
['c', 'd'], ['d', 'c'], ['a', 'b', 'c'], ['b', 'c', 'd'], ['c', 'd', 'c'], ['a', 'b', 'c', 'd'], ['b', 'c', 'd', 'c']]
Graph Theory, Release 10.4

(continued from previous page)

```python
c, d, c], [d, c, d], [a, b, c, d]
>>> pi = g.all_paths_iterator(simple=True, trivial=True)
>>> [len(p) - Integer(1) for p in pi]
[0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3]
>>> pi = g.all_paths_iterator(simple=True, trivial=False)
>>> sorted(list(pi), key=\lambda x:(len(x), x))
[[a, a, a], [a, b, b], [b, c, c], [c, d, d], [d, c, c],
 [a, b, c, d], [b, c, d, c], [c, d, c, d],
 [a, b, c, d]]
>>> pi = g.all_paths_iterator(simple=True, trivial=False)
>>> [len(p) - Integer(1) for p in pi]
[1, 1, 1, 1, 2, 2, 2, 2, 3]
```

all_simple_paths(starting_vertices=None, ending_vertices=None, max_length=None, trivial=False, use_multiedges=False, report_edges=False, labels=False)

Return a list of all the simple paths of self starting with one of the given vertices.

Simple paths are paths in which no two arcs share a head or share a tail, i.e. every vertex in the path is entered at most once and exited at most once.

INPUT:

- starting_vertices – list (default: None); vertices from which the paths must start. If None, then all vertices of the graph can be starting points.
- ending_vertices – iterable (default: None); allowed ending vertices of the paths. If None, then all vertices are allowed.
- max_length – non negative integer (default: None); the maximum length of the enumerated paths. If set to None, then all lengths are allowed.
- trivial – boolean (default: False); if set to True, then the empty paths are also enumerated.
- use_multiedges – boolean (default: False); this parameter is used only if the graph has multiple edges.
 - If False, the graph is considered as simple and an edge label is arbitrarily selected for each edge as in sage.graphs.generic_graph.GenericGraph.to_simple() if report_edges is True
 - If True, a path will be reported as many times as the edges multiplicities along that path (when report_edges = False or labels = False), or with all possible combinations of edge labels (when report_edges = True and labels = True)
- report_edges – boolean (default: False); whether to report paths as list of vertices (default) or list of edges, if False then labels parameter is ignored
- labels – boolean (default: False); if False, each edge is simply a pair \((u, v)\) of vertices. Otherwise a list of edges along with its edge labels are used to represent the path.

OUTPUT:

- list

Note: Although the number of simple paths of a finite graph is always finite, computing all its paths may take a very long time.

EXAMPLES:
sage: G = graphs.CompleteGraph(4)
sage: G.all_simple_paths([1], [3])
[[[1, 3]], [[1, 0, 3]], [[1, 2, 3]], [[1, 0, 2, 3]], [[1, 2, 0, 3]]]
sage: list(G.shortest_simple_paths(1, 3))
[[[1, 3]], [[1, 0, 3]], [[1, 2, 3]], [[1, 2, 0, 3]], [[1, 0, 2, 3]]]
sage: G.all_simple_paths([0, 1], [2, 3])
[[[1, 2]], [[1, 3]], [[0, 2]], [[0, 3]], [[0, 1, 2]], [[0, 1, 3]], [[0, 2, 3]], [[1, 0, 2]], [[1, 0, 3]], [[1, 2, 3]], [[1, 3, 2]], [[1, 0, 2, 3]], [[1, 0, 3, 2]], [[1, 2, 0, 3]], [[1, 3, 0, 2]], [[0, 1, 2, 3]], [[0, 1, 3, 2]], [[0, 2, 1, 3]], [[0, 3, 1, 2]]]
sage: g = DiGraph({0: [0, 1], 1: [2], 2: [3], 3: [2]}, loops=True)
sage: g.all_simple_paths()
[[3, 2], [2, 3], [1, 2], [0, 0], [0, 1], [0, 1, 2], [1, 2, 3], [2, 3, 2], [3, 2, 3], [0, 1, 2, 3]]
sage: g = DiGraph({(0, 1, 'a'), (0, 1, 'b'), (1, 2, 'c'), (1, 2, 'd')}, multiedges=True)
sage: g.all_simple_paths(starting_vertices=[0], ending_vertices=[2], use_multiedges=False)
[[[0, 1, 2]]]
sage: g.all_simple_paths(starting_vertices=[0], ending_vertices=[2], use_multiedges=True)
[[[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]]
sage: g.all_simple_paths(starting_vertices=[0], ending_vertices=[2], use_multiedges=True, report_edges=True)
[[[0, 1, 'a'], [1, 2, 'b']], [[0, 1, 'b'], [1, 2, 'c']], [[0, 1, 'a'], [1, 2, 'd']], [[0, 1, 'a'], [1, 2, 'c']]]

(continues on next page)
```python
sage: g.all_simple_paths(starting_vertices=[0, 1], ending_vertices=[2], use_multiedges=False, report_edges=True, labels=True)
[[[1, 2, 'd']], [(0, 1, 'b'), (1, 2, 'd')]]

sage: g.all_simple_paths(starting_vertices=[0, 1], ending_vertices=[2], use_multiedges=False, report_edges=False, labels=True)
[[1, 2], [0, 1, 2]]

sage: g.all_simple_paths(use_multiedges=True, report_edges=False, labels=True)
[[1, 2], [1, 2], [0, 1], [0, 1, 2], [0, 1, 2], [0, 1, 2]]

sage: g.all_simple_paths(starting_vertices=[0, 1], ending_vertices=[2], use_multiedges=False, report_edges=True, labels=True, trivial=True)
[[[1, 2, 'd']], [(0, 1, 'b'), (1, 2, 'd')]]
```

```python
>>> from sage.all import *

>>> G = graphs.CompleteGraph(Integer(4))

>>> G.all_simple_paths([Integer(1)], [Integer(3)])
[[[1, 3], [1, 0, 3], [1, 2, 3], [1, 0, 2, 3], [1, 2, 0, 3]]

>>> list(G.shortest_simple_paths(Integer(1), Integer(3)))
[[[1, 3], [1, 0, 3], [1, 2, 3], [1, 2, 0, 3], [1, 0, 2, 3]]

>>> G.all_simple_paths([Integer(0), Integer(1)], [Integer(2), Integer(3)])

[[[1, 2],
  [1, 3],
  [0, 2],
  [0, 3],
  [0, 1, 2],
  [0, 1, 3],
  [0, 2, 3],
  [0, 3, 2],
  [1, 0, 2],
  [1, 0, 3],
  [1, 2, 3],
  [1, 3, 2],
  [1, 0, 2, 3],
  [1, 0, 3, 2],
  [1, 2, 0, 3],
  [1, 3, 0, 2],
  [0, 1, 2, 3],
  [0, 1, 3, 2],
  [0, 2, 1, 3],
  [0, 3, 1, 2]]

>>> g = DiGraph({Integer(0): [Integer(0), Integer(1)], Integer(1):
  [Integer(0), Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(2)]},
  loops=True)

>>> g.all_simple_paths()
[[[3, 2],
  [2, 3],
  [1, 2],
  [0, 0],
  [0, 1],
  [0, 1, 2],
  [1, 2, 3],
  [2, 3, 2],
  [3, 2, 3],
  [0, 1, 2, 3]]

>>> g = DiGraph([[Integer(0), Integer(1), 'a'], (Integer(0), Integer(1), 'b')],
  loops=True)
```

(continues on next page)
One may compute all paths having specific starting and/or ending vertices:

```
sage: g = DiGraph({a: [a, b], b: [c], c: [d], d: [c]}, loops=True)
sage: g.all_simple_paths(starting_vertices=[a])
[[a, a], [a, b], [a, b, c], [a, b, c, d]]
sage: g.all_simple_paths(starting_vertices=[a], ending_vertices=[c])
[[a, b, c]]
sage: g.all_simple_paths(starting_vertices=[a], ending_vertices=[b, c])
[[a, b], [a, b, c]]
```

It is also possible to bound the length of the paths:

```
sage: g = DiGraph({0: [0, 1], 1: [2], 2: [3], 3: [2]}, loops=True)
sage: g.all_simple_paths(max_length=2)
```

(continues on next page)
By default, empty paths are not enumerated, but this can be parametrized:

```python
sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']},
               loops=True)
```

```python
sage: g.all_simple_paths(starting_vertices=['a'], trivial=True)
[[a], [a, a], [a, b], [a, b, c], [a, b, c, d]]
```

```python
sage: g.all_simple_paths(starting_vertices=['a'], trivial=False)
[[a, a], [a, b], [a, b, c], [a, b, c, d]]
```

`allow_loops (new, check=True)`

Change whether loops are permitted in the (di)graph

INPUT:

- `new` — boolean
- `check` — boolean (default: True); whether to remove existing loops from the (di)graph when the new status is False

EXAMPLES:
```python
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0, 0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
```

```python
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges(sort=True)
[]
```

```python
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
```

```python
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0, 0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
```

```python
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges(sort=True)
[]
```

```python
>>> from sage.all import *
>>> G = Graph(loops=True); G
Looped graph on 0 vertices
>>> G.has_loops()
False
>>> G.allows_loops()
True
>>> G.add_edge((Integer(0), Integer(0)))
>>> G.has_loops()
True
>>> G.loops()
[(0, 0, None)]
>>> G.allow_loops(False); G
Graph on 1 vertex
>>> G.has_loops()
False
>>> G.edges(sort=True)
[]
>>> D = DiGraph(loops=True); D
Looped digraph on 0 vertices
```

(continues on next page)
>>> D.has_loops()
False
>>> D.allows_loops()
True
>>> D.add_edge((Integer(0), Integer(0)))
>>> D.has_loops()
True
>>> D.loops()
[(0, 0, None)]
>>> D.allow_loops(False); D
Digraph on 1 vertex
>>> D.has_loops()
False
>>> D.edges(sort=True)
[
allow_multiple_edges (new, check=True, keep_label='any')
Change whether multiple edges are permitted in the (di)graph.

INPUT:

• new – boolean; if True, the new graph will allow multiple edges
• check – boolean (default: True); if True and new is False, we remove all multiple edges from the graph
• keep_label – string (default: 'any'); used only if new is False and check is True. If there are multiple edges with different labels, this variable defines which label should be kept:
 - 'any' – any label
 - 'min' – the smallest label
 - 'max' – the largest label

Warning: 'min' and 'max' only works if the labels can be compared. A TypeError might be raised when working with non-comparable objects.

EXAMPLES:
The standard behavior with undirected graphs:
sage: G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0, 1, 1), (0, 1, 2), (0, 1, 3)])
sage: G.has_multiple_edges()
True
sage: G.multiple_edges(sort=True)
[(0, 1, 1), (0, 1, 2), (0, 1, 3)]

(continues on next page)
sage: G.edges(sort=True)
[(0, 1, 3)]

```python
>>> from sage.all import *
>>> G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices
>>> G.has_multiple_edges()
False
>>> G.allows_multiple_edges()
True
>>> G.add_edges([(Integer(0), Integer(1), Integer(1)), (Integer(0),
   Integer(1), Integer(2)), (Integer(0), Integer(1), Integer(3))])
>>> G.has_multiple_edges()
True
>>> G.multiple_edges(sort=True)
[(0, 1, 1), (0, 1, 2), (0, 1, 3)]
>>> G.allow_multiple_edges(False); G
Graph on 2 vertices
>>> G.has_multiple_edges()
False
>>> G.edges(sort=True)
[(0, 1, 3)]
```

If we ask for the minimum label:

```python
sage: G = Graph([(0, 1, 1), (0, 1, 2), (0, 1, 3)], multiedges=True,
   sparse=True)
sage: G.allow_multiple_edges(False, keep_label='min')
sage: G.edges(sort=True)
[(0, 1, 1)]
```

If we ask for the maximum label:

```python
>>> from sage.all import *
>>> G = Graph([(Integer(0), Integer(1), Integer(1)), (Integer(0),
   Integer(1), Integer(2)), (Integer(0), Integer(1), Integer(3))],
   multiedges=True, sparse=True)
>>> G.allow_multiple_edges(False, keep_label='max')
>>> G.edges(sort=True)
[(0, 1, 3)]
```

The standard behavior with digraphs:
Graph Theory, Release 10.4

\begin{verbatim}
sage: D = DiGraph(multiedges=True, sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0, 1)] * 3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges(sort=True)
[(0, 1, None)]
\end{verbatim}

allows_loops()
Return whether loops are permitted in the (di)graph

EXAMPLES:

\begin{verbatim}
>>> from sage.all import *
>>> D = DiGraph(multiedges=True, sparse=True); D
Multi-digraph on 0 vertices
>>> D.has_multiple_edges()
False
>>> D.allows_multiple_edges()
True
>>> D.add_edges([(Integer(0), Integer(1))] * Integer(3))
>>> D.has_multiple_edges()
True
>>> D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
>>> D.allow_multiple_edges(False); D
Digraph on 2 vertices
>>> D.has_multiple_edges()
False
>>> D.edges(sort=True)
[(0, 1, None)]
\end{verbatim}

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```
sage: G.edges(sort=True)
[]
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0, 0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges(sort=True)
[]
```

```python
from sage.all import *
G = Graph(loops=True); G
Looped graph on 0 vertices
G.has_loops()
False
G.allows_loops()
True
G.add_edge((Integer(0), Integer(0)))
G.has_loops()
True
G.loops()
[(0, 0, None)]
G.allow_loops(False); G
Graph on 1 vertex
G.has_loops()
False
G.edges(sort=True)
[]
```

```python
D = DiGraph(loops=True); D
Looped digraph on 0 vertices
D.has_loops()
False
D.allows_loops()
True
D.add_edge((Integer(0), Integer(0)))
D.has_loops()
True
D.loops()
[(0, 0, None)]
D.allow_loops(False); D
Digraph on 1 vertex
D.has_loops()
False
D.edges(sort=True)
[]
```
allows_multiple_edges()

Return whether multiple edges are permitted in the (di)graph.

EXAMPLES:

```python
sage: G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0, 1)] * 3)
```

```python
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
```

```python
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
```

```python
sage: G.edges(sort=True)
[(0, 1, None)]
```

```python
>>> from sage.all import *
>>> G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices
```

```python
>>> G.has_multiple_edges()
False
```

```python
>>> G.allows_multiple_edges()
True
```

```python
>>> G.add_edges([(Integer(0), Integer(1))] * Integer(3))
```

```python
>>> G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
```

```python
>>> G.allow_multiple_edges(False); G
Graph on 2 vertices
```

```python
>>> G.edges(sort=True)
[(0, 1, None)]
```

(continues on next page)
GraphTheory, Release 10.4

[(0, 1, None)]

```python
>>> D = DiGraph(multiedges=True, sparse=True); D
Multi-digraph on 0 vertices
>>> D.has_multiple_edges()
False
>>> D.allows_multiple_edges()
True
>>> D.add_edges([(Integer(0), Integer(1))] * Integer(3))
>>> D.has_multiple_edges()
True
>>> D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
>>> D.allow_multiple_edges(False); D
Digraph on 2 vertices
>>> D.has_multiple_edges()
False
>>> D.edges(sort=True)
[(0, 1, None)]
```

am(sparse, vertices=None, base_ring=None, **kwds)

Return the adjacency matrix of the (di)graph.

By default, the matrix returned is over the integers.

INPUT:

- **sparse** – boolean (default: None); whether to represent with a sparse matrix
- **vertices** – list, None, or True (default: None);
 - when a list, the \(i\)-th row and column of the matrix correspond to the \(i\)-th vertex in the ordering of vertices,
 - when None, the \(i\)-th row and column of the matrix correspond to the \(i\)-th vertex in the ordering given by `GenericGraph.vertices()` with sort=True.
 - when True, construct an endomorphism of a free module instead of a matrix, where the module's basis is indexed by the vertices.

If the vertices are not comparable, the keyword vertices must be used to specify an ordering, or a `TypeError` exception will be raised.

- **base_ring** – a ring (default: ZZ); the base ring of the matrix space to use.
- ****kwds – other keywords to pass to `matrix()`.

EXAMPLES:

```python
sage: G = graphs.CubeGraph(4)
sage: G.adjacency_matrix()
needs sage.modules
```

```python
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0]
[0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0]
[0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0]
```
```python
>>> from sage.all import *

>>> G = graphs.CubeGraph(Integer(4))

>>> G.adjacency_matrix()

# needs sage.modules

sage: matrix(GF(2), G)  # matrix over GF(2)

# needs sage.modules sage.rings.finite_rings

>>> from sage.all import *

matrix(GF(Integer(2)), G)  # matrix over GF(2)

# needs sage.modules sage.rings.finite_rings
```
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0]
[1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0]
[0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0]
[0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0]
[0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0]
[0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0]
[0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]

sage: D = DiGraph({0: [1, 2, 3], 1: [0, 2], 2: [3],
 : 3: [4], 4: [0, 5], 5: [1]})

sage: D.adjacency_matrix() # needs sage.modules
\[
\begin{pmatrix}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

>>> from sage.all import *

>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)],
 Integer(1): [Integer(0), Integer(2)], Integer(2): [Integer(3)],
 Integer(3): [Integer(4)],
 Integer(4): [Integer(5)], Integer(5): [Integer(1)]})

>>> D.adjacency_matrix() # needs sage.modules
\[
\begin{pmatrix}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

A different ordering of the vertices:

sage: graphs.PathGraph(5).adjacency_matrix(vertices=[2, 4, 1, 3, 0]) # needs sage.modules
\[
\begin{pmatrix}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\]

>>> from sage.all import *

>>> graphs.PathGraph(Integer(5)).adjacency_matrix(vertices=[Integer(2),
 Integer(4),
 Integer(1), Integer(3), Integer(0)]) # needs sage.modules
\[
\begin{pmatrix}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\]
A different base ring:

```python
sage: graphs.PathGraph(5).adjacency_matrix(base_ring=RDF)  # needs sage.modules
[0.0 1.0 0.0 0.0 0.0]
[1.0 0.0 1.0 0.0 0.0]
[0.0 1.0 0.0 1.0 0.0]
[0.0 0.0 1.0 0.0 1.0]
[0.0 0.0 0.0 1.0 0.0]
sage: type(_), # needs sage.modules
<class 'sage.matrix.matrix_real_double_dense.Matrix_real_double_dense'>

>>> from sage.all import *

>>> graphs.PathGraph(Integer(5)).adjacency_matrix(base_ring=RDF)  # needs sage.modules
[0.0 1.0 0.0 0.0 0.0]
[1.0 0.0 1.0 0.0 0.0]
[0.0 1.0 0.0 1.0 0.0]
[0.0 0.0 1.0 0.0 1.0]
[0.0 0.0 0.0 1.0 0.0]
```

A different matrix implementation:

```python
sage: graphs.PathGraph(5).adjacency_matrix(sparse=False, # needs numpy sage.modules
...: implementation='numpy')
[0 1 0 0 0]
[1 0 1 0 0]
[0 1 0 1 0]
[0 0 1 0 1]
[0 0 0 1 0]
sage: type(_), # needs numpy sage.modules
<class 'sage.matrix.matrix_numpy_integer_dense.Matrix_numpy_integer_dense'>

>>> from sage.all import *

>>> graphs.PathGraph(Integer(5)).adjacency_matrix(sparse=False, # needs numpy sage.modules
...: implementation='numpy')
[0 1 0 0 0]
[1 0 1 0 0]
[0 1 0 1 0]
[0 0 1 0 1]
[0 0 0 1 0]
```

As an immutable matrix:

```python
sage: M = graphs.PathGraph(5).adjacency_matrix(sparse=False, # needs sage.modules
...: immutable=True); M
[[0 1 0 0]
 [1 0 1 0]]
```

(continues on next page)
Creating a module endomorphism:

```python
sage: # needs sage.modules
sage: D12 = posets.DivisorLattice(12).hasse_diagram()
sage: phi = D12.adjacency_matrix(vertices=True); phi
Generic endomorphism of
Free module generated by {1, 2, 3, 4, 6, 12} over Integer Ring

sage: print(phi._unicode_art_matrix())
    1 2 3 4 6 12
 1| 0 1 1 0 0 0
 2| 0 0 0 1 1 0
 3| 0 0 0 0 1 0
 4| 0 0 0 0 0 1
 6| 0 0 0 0 0 1
12| 0 0 0 0 0 0

>>> from sage.all import *
>>> # needs sage.modules
>>> D12 = posets.DivisorLattice(Integer(12)).hasse_diagram()
>>> phi = D12.adjacency_matrix(vertices=True); phi
Generic endomorphism of
Free module generated by {1, 2, 3, 4, 6, 12} over Integer Ring

>>> print(phi._unicode_art_matrix())
    1 2 3 4 6 12
 1| 0 1 1 0 0 0
 2| 0 0 0 1 1 0
 3| 0 0 0 0 1 0
 4| 0 0 0 0 0 1
 6| 0 0 0 0 0 1
12| 0 0 0 0 0 0
```

(continued from previous page)

```python
[0 1 0 1 0]
[0 0 1 0 1]
[0 0 0 1 0]
sage: M[2, 2] = 1
# needs sage.modules
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead
(i.e., use copy(M) to change a copy of M).

>>> from sage.all import *
>>> M = graphs.PathGraph(Integer(5)).adjacency_matrix(sparse=False, ...
    # needs sage.modules
...
[0 1 0 0 0]
[1 0 1 0 0]
[0 1 0 1 0]
[0 0 1 0 1]
[0 0 0 1 0]
>>> M[Integer(2), Integer(2)] = Integer(1)
# needs sage.modules
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead
(i.e., use copy(M) to change a copy of M).
```
antisymmetric()

Check whether the graph is antisymmetric.

A graph represents an antisymmetric relation if the existence of a path from a vertex \(x \) to a vertex \(y \) implies that there is not a path from \(y \) to \(x \) unless \(x = y \).

EXAMPLES:

A directed acyclic graph is antisymmetric:

```python
sage: G = digraphs.RandomDirectedGNR(20, 0.5)  # needs networkx
sage: G.antisymmetric()  # needs networkx
True
```  

Loops are allowed:

```python
sage: G.allow_loops(True)  # needs networkx
sage: G.add_edge(0, 0)  # needs networkx
sage: G.antisymmetric()  # needs networkx
True
```  

An undirected graph is never antisymmetric unless it is just a union of isolated vertices (with possible loops):

```python
sage: graphs.RandomGNP(20, 0.5).antisymmetric()  # needs networkx
False
sage: Graph(3).antisymmetric()  
True
sage: Graph([(i, i) for i in range(3)], loops=True).antisymmetric()  
True
sage: DiGraph([(i, i) for i in range(3)], loops=True).antisymmetric()  
True
```  

```python
>>> from sage.all import *
>>> G = digraphs.RandomDirectedGNR(Integer(20), RealNumber('0.5'))  # needs networkx
>>> G.antisymmetric()  # needs networkx
True
```  

```
(continues on next page)
```
GraphTheory, Release 10.4

(continued from previous page)

False
>>> Graph(Integer(3)).antisymmetric()
True
>>> Graph([(i, i) for i in range(Integer(3))], loops=True).antisymmetric()
True
>>> DiGraph([(i, i) for i in range(Integer(3))], loops=True).antisymmetric()
True

automorphism_group *(partition=None, verbosity=0, edge_labels=False, order=False, return_group=True,
 orbits=False, algorithm=None)*

Return the automorphism group of the graph.

With partition this can also return the largest subgroup of the automorphism group of the (di)graph
whose orbit partition is finer than the partition given.

INPUT:

• partition – default is the unit partition, otherwise computes the subgroup of the full automorphism
 group respecting the partition.

• edge_labels – default False, otherwise allows only permutations respecting edge labels.

• order – (default False) if True, compute the order of the automorphism group

• return_group – default True

• orbits – returns the orbits of the group acting on the vertices of the graph

• algorithm – If algorithm = "bliss", the automorphism group is computed using the optional
 package bliss (http://www.tcs.tkk.fi/Software/bliss/index.html). Setting it to "sage" uses Sage’s im-
 plementation. If set to None (default), bliss is used when available.

OUTPUT: The order of the output is group, order, orbits. However, there are options to turn each of these
on or off.

EXAMPLES:

Graphs:

sage: # needs sage.groups
sage: graphs_query = GraphQuery(display_cols=['graph6'], num_vertices=4)
.. code-block::

sage: L = graphs_query.get_graphs_list()

sage: graphs_list.show_graphs(L) #...
 needs sage.plot

sage: for g in L:
 : G = g.automorphism_group()
 : G.order(), G.gens()
 (24, ((2,3), (1,2), (0,1)))
 (4, ((2,3), (0,1)))
 (2, ((1,2),))
 (6, ((1,2), (0,1)))
 (6, ((2,3), (1,2)))
 (8, ((1,2), (0,1) (2,3)))
 (2, ((0,1) (2,3),))
 (2, ((1,2),))
 (8, ((2,3), (0,1) (0,2) (1,3)))
 (4, ((2,3), (0,1)))
 (24, ((2,3), (1,2), (0,1)))

sage: C = graphs.CubeGraph(4)

sage: G = C.automorphism_group()
Multigraphs:

1.1. Generic graphs (common to directed/undirected)
Graph Theory, Release 10.4

sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edge(('a', 'b'))
sage: G.add_edge(('a', 'b'))
sage: G.add_edge(('a', 'b'))

sage: G.automorphism_group() # needs sage.groups
Permutation Group with generators [('a', 'b')]

>>> from sage.all import *

>>> G = Graph(multiedges=True, sparse=True)
>>> G.add_edge(('a', 'b'))
>>> G.add_edge(('a', 'b'))

sage: G.automorphism_group() # needs sage.groups
Permutation Group with generators [('a', 'b')]

Digraphs:

sage: D = DiGraph({ 0:[1], 1:[2], 2:[3], 3:[4], 4:[0] })
sage: D.automorphism_group() # needs sage.groups
Permutation Group with generators [(0,1,2,3,4)]

>>> from sage.all import *

>>> D = DiGraph({ Integer(0):[Integer(1)], Integer(1):[Integer(2)],...

Edge labeled graphs:

sage: G = Graph(sparse=True)
sage: G.add_edges([(0,1, 'a'), (1,2, 'b'), (2,3, 'c'), (3,4, 'b'), (4,0, 'a')])

sage: G.automorphism_group(edge_labels=True) # needs sage.groups
Permutation Group with generators [(1,4)(2,3)]

sage: G.automorphism_group(edge_labels=True, algorithm="bliss") # optional - bliss
Permutation Group with generators [(1,4)(2,3)]

sage: G.automorphism_group(edge_labels=True, algorithm="sage") # needs sage.groups
Permutation Group with generators [(1,4)(2,3)]

>>> from sage.all import *

>>> G = Graph(sparse=True)
>>> G.add_edges([(Integer(0),Integer(1), 'a'), (Integer(1),Integer(2), 'b'),...

(continues on next page)
>>> G.automorphism_group(edge_labels=True, algorithm="bliss") # optional ∼
bless
Permutation Group with generators [(1,4)(2,3)]

>>> G.automorphism_group(edge_labels=True, algorithm="sage")

needs sage.groups
Permutation Group with generators [(1,4)(2,3)]

sage: G = Graph({0 : {1 : 7}})
sage: G.automorphism_group(edge_labels=True)

needs sage.groups
Permutation Group with generators [(0,1)]

sage: # needs sage.groups
sage: foo = Graph(sparse=True)
sage: bar = Graph(sparse=True)
sage: foo.add_edges([(0,1,1), (1,2,2), (2,3,3)])
sage: bar.add_edges([(0,1,1), (1,2,2), (2,3,3)])
sage: foo.automorphism_group(edge_labels=True)
Permutation Group with generators []
sage: foo.automorphism_group()
Permutation Group with generators []
sage: bar.automorphism_group(edge_labels=True)
Permutation Group with generators []

You can also ask for just the order of the group:

sage: G = graphs.PetersenGraph()
sage: G.automorphism_group(return_group=False, order=True) #...

needs sage.groups
120

You can also ask for just the order of the group:

sage: G = graphs.PetersenGraph()
sage: G.automorphism_group(return_group=False, order=True) #...

(continues on next page)
Or, just the orbits (note that each graph here is vertex transitive)

```python
sage: # needs sage.groups
sage: G = graphs.PetersenGraph()
  sage: G.automorphism_group(return_group=False, orbits=True, algorithm='sage')
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]
  sage: orb = G.automorphism_group(partition=[[0], list(range(1,10))],
      ...:   return_group=False, orbits=True, algorithm='sage')
  sage: sorted([sorted(o) for o in orb], key=len)
[[0], [1, 4, 5], [2, 3, 6, 7, 8, 9]]
  sage: C = graphs.CubeGraph(3)
  sage: orb = C.automorphism_group(orbits=True, return_group=False, algorithm='sage')
  sage: [sorted(o) for o in orb]
[['000', '001', '010', '011', '100', '101', '110', '111']]
```

One can also use the faster algorithm for computing the automorphism group of the graph - bliss:

```python
>>> from sage.all import *
  >>> # optional - bliss
  >>> G = graphs.PetersenGraph()
  >>> A1 = G.automorphism_group()  # needs sage.groups
  >>> A2 = G.automorphism_group(algorithm='bliss')  # needs sage.groups
  >>> A1.is_isomorphic(A2)  # needs sage.groups
True
```

(continues on next page)
average_degree()

Return the average degree of the graph.

The average degree of a graph $G = (V, E)$ is equal to $\frac{2|E|}{|V|}$.

EXAMPLES:

The average degree of a regular graph is equal to the degree of any vertex:

```python
sage: g = graphs.CompleteGraph(5)
sage: g.average_degree() == 4
True
```

```python
>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(5))
>>> g.average_degree() == Integer(4)
True
```

The average degree of a tree is always strictly less than 2:

```python
sage: tree = graphs.RandomTree(20)
sage: tree.average_degree() < 2
True
```

```python
>>> from sage.all import *
>>> tree = graphs.RandomTree(Integer(20))
>>> tree.average_degree() < Integer(2)
True
```

For any graph, it is equal to $\frac{2|E|}{|V|}$:

```python
sage: g = graphs.RandomGNP(20, .4)
sage: g.average_degree() == 2 * g.size() / g.order()
True
```

```python
>>> from sage.all import *
>>> g = graphs.RandomGNP(Integer(20), RealNumber('.4'))
>>> g.average_degree() == Integer(2) * g.size() / g.order()
True
```

average_distance(by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return the average distance between vertices of the graph.

Formally, for a graph G this value is equal to

$$\frac{1}{n(n-1)} \sum_{u,v\in G} d(u,v)$$

where $d(u,v)$ denotes the distance between vertices u and v and n is the number of vertices in G.

For more information on the input variables and more examples, we refer to `wiener_index()` and `shortest_path_all_pairs()`, which have very similar input variables.

INPUT:

- by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
- algorithm – string (default: None); one of the algorithms available for method `wiener_index()`
• weight_function – function (default: None); a function that takes as input an edge \((u, v, l) \) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l \), if \(l \) is not None, else 1 as a weight.

• check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge

EXAMPLES:

From [GYLL1993]:

```python
sage: g=graphs.PathGraph(10)
sage: w=lambda x: (x*(x**2 -1)/6)/(x*(x-1)/2)
sage: g.average_distance()==w(10)
True
```

```python
>>> from sage.all import *
>>> g=graphs.PathGraph(Integer(10))
>>> w=lambda x: (x*(x**2 -Integer(1))/Integer(6))/(x*(x-Integer(1))/Integer(2))
>>> g.average_distance()==w(Integer(10))
True
```

Average distance of a circuit:

```python
sage: g = digraphs.Circuit(6)
sage: g.average_distance()
3
```

```python
>>> from sage.all import *
>>> g = digraphs.Circuit(Integer(6))
>>> g.average_distance()
3
```

blocks_and_cut_vertices \((G, \text{algorithm='Tarjan_Boost', sort=False, key=None})\)

Return the blocks and cut vertices of the graph.

In the case of a digraph, this computation is done on the underlying graph.

A cut vertex is one whose deletion increases the number of connected components. A block is a maximal induced subgraph which itself has no cut vertices. Two distinct blocks cannot overlap in more than a single cut vertex.

INPUT:

- algorithm – string (default: "Tarjan_Boost"); the algorithm to use among:
 - "Tarjan_Boost" (default) – Tarjan’s algorithm (Boost implementation)
 - "Tarjan_Sage" – Tarjan’s algorithm (Sage implementation)
- sort – boolean (default: False); whether to sort vertices inside the components and the list of cut vertices currently only available for ""Tarjan_Sage"
- key – a function (default: None); a function that takes a vertex as its one argument and returns a value that can be used for comparisons in the sorting algorithm (we must have sort=True)

OUTPUT: \((B, C)\), where \(B\) is a list of blocks - each is a list of vertices and the blocks are the corresponding induced subgraphs - and \(C\) is a list of cut vertices.

ALGORITHM:
We implement the algorithm proposed by Tarjan in [Tarjan72]. The original version is recursive. We emulate the recursion using a stack.

See also:

- \texttt{blocks_and_cuts_tree()}
- \texttt{sage.graphs.base.boost_graph.blocks_and_cut_vertices()}
- \texttt{is_biconnected()}
- \texttt{bridges()}

EXAMPLES:

We construct a trivial example of a graph with one cut vertex:

```python
sage: from sage.graphs.connectivity import blocks_and_cut_vertices
sage: rings = graphs.CycleGraph(10)
sage: rings.merge_vertices([0, 5])
sage: blocks_and_cut_vertices(rings)
([[0, 1, 4, 2, 3], [0, 6, 9, 7, 8]], [0])
sage: rings.blocks_and_cut_vertices()
([[0, 1, 4, 2, 3], [0, 6, 9, 7, 8]], [0])
sage: B, C = blocks_and_cut_vertices(rings, algorithm="Tarjan\_Sage", sort=True)
sage: B, C
([[0, 1, 2, 3, 4], [0, 6, 7, 8, 9]], [0])
sage: B2, C2 = blocks_and_cut_vertices(rings, algorithm="Tarjan\_Sage", sort=False)
sage: Set(map(Set, B)) == Set(map(Set, B2)) and set(C) == set(C2)
True
```

The Petersen graph is biconnected, hence has no cut vertices:

```python
sage: blocks_and_cut_vertices(graphs.PetersenGraph())
([[0, 1, 4, 5, 2, 6, 3, 7, 8, 9]], [])
```

Decomposing paths to pairs:

```python
>>> from sage.all import *

>>> blocks_and_cut_vertices(graphs.PetersenGraph())
([[0, 1, 4, 5, 2, 6, 3, 7, 8, 9]], [])
```

1.1. Generic graphs (common to directed/undirected)
sage: g = graphs.PathGraph(4) + graphs.PathGraph(5)
sage: blocks_and_cut_vertices(g)
([[2, 3], [1, 2], [0, 1], [7, 8], [6, 7], [5, 6], [4, 5]], [1, 2, 5, 6, 7])

A disconnected graph:
sage: g = Graph({1: {2: 28, 3: 10}, 2: {1: 10, 3: 16}, 4: {}, 5: {6: 3, 7: 10, 8: 4}})
sage: blocks_and_cut_vertices(g)
([[1, 2, 3], [5, 6], [5, 7], [5, 8], [4]], [5])

A directed graph with Boost’s algorithm (Issue #25994):
sage: rings = graphs.CycleGraph(10)
sage: rings.merge_vertices([0, 5])
sage: rings = rings.to_directed()
sage: blocks_and_cut_vertices(rings, algorithm="Tarjan_Boost")
([[0, 1, 4, 2, 3], [0, 6, 9, 7, 8]], [0])

blocks_and_cuts_tree(G)

Return the blocks-and-cuts tree of self.

This new graph has two different kinds of vertices, some representing the blocks (type B) and some other the cut vertices of the graph (type C).

There is an edge between a vertex u of type B and a vertex v of type C if the cut-vertex corresponding to v is in the block corresponding to u.

The resulting graph is a tree, with the additional characteristic property that the distance between two leaves is even. When self is not connected, the resulting graph is a forest.

When self is biconnected, the tree is reduced to a single node of type B.

We referred to [HarPri] and [Gallai] for blocks and cuts tree.

See also:

• blocks_and_cut_vertices()
• \texttt{is_biconnected()}

EXCEPTS:

\begin{verbatim}
sage: from sage.graphs.connectivity import blocks_and_cuts_tree
sage: T = blocks_and_cuts_tree(graphs.KrackhardtKiteGraph()); T
Graph on 5 vertices
sage: T.is_isomorphic(graphs.PathGraph(5))
True
sage: from sage.graphs.connectivity import blocks_and_cuts_tree
sage: T = graphs.KrackhardtKiteGraph().blocks_and_cuts_tree(); T
Graph on 5 vertices
\end{verbatim}

The distance between two leaves is even:

\begin{verbatim}
sage: T = blocks_and_cuts_tree(graphs.RandomTree(40))
sage: T.is_tree()
True
sage: leaves = [v for v in T if T.degree(v) == 1]
sage: all(T.distance(u,v) % 2 == 0 for u in leaves for v in leaves)
True
\end{verbatim}

The tree of a biconnected graph has a single vertex, of type B:

\begin{verbatim}
sage: T = blocks_and_cuts_tree(graphs.PetersenGraph())
sage: T.vertices(sort=True)
[('B', (0, 1, 4, 5, 2, 6, 3, 7, 8, 9))]
\end{verbatim}

\textbf{breadth_first_search}(\texttt{start}, \texttt{ignore_direction=False}, \texttt{distance=None}, \texttt{neighbors=None}, \texttt{report_distance=False}, \texttt{edges=False})

Return an iterator over the vertices in a breadth-first ordering.

INPUT:
- **start** – vertex or list of vertices from which to start the traversal
- **ignore_direction** – boolean (default: False); only applies to directed graphs. If True, searches across edges in either direction.
- **distance** – integer (default: None); the maximum distance from the start nodes to traverse. The start nodes are at distance zero from themselves.
- **neighbors** – function (default: None); a function that inputs a vertex and return a list of vertices. For an undirected graph, neighbors is by default the neighbors() function. For a digraph, the neighbors function defaults to the neighbor_out_iterator() function of the graph.
- **report_distance** – boolean (default: False); if True, reports pairs (vertex, distance) where distance is the distance from the start nodes. If False only the vertices are reported.
- **edges** – boolean (default: False); whether to return the edges of the BFS tree in the order of visit or the vertices (default). Edges are directed in root to leaf orientation of the tree.

Note that parameters edges and report_distance cannot be True simultaneously.

See also:
- **breadth_first_search** – breadth-first search for fast compiled graphs.
- **depth_first_search** – depth-first search for fast compiled graphs.
- **depth_first_search()** – depth-first search for generic graphs.

EXAMPLES:

```python
sage: G = Graph({0: [1], 1: [2], 2: [3], 3: [4], 4: [0]})
sage: list(G.breadth_first_search(0))
[0, 1, 4, 2, 3]
```

```python
>>> from sage.all import *
>>> G = Graph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(1): [Integer(4), Integer(5)], Integer(2): [Integer(5)], Integer(3): [Integer(6)], Integer(4): [Integer(7)], Integer(5): [Integer(7)], Integer(6): [Integer(7)], Integer(7): [Integer(0)]})
>>> list(G.breadth_first_search(Integer(0)))
[0, 1, 2, 3, 4, 5, 6, 7]
>>> list(G.breadth_first_search(Integer(0), ignore_direction=True))
[0, 1, 2, 3, 7, 4, 5, 6]
```

By default, the edge direction of a digraph is respected, but this can be overridden by the ignore_direction parameter:

```python
sage: D = DiGraph({0: [1, 2, 3], 1: [4, 5], 2: [5], 3: [6], 4: [7], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search(0))
[0, 1, 2, 3, 4, 5, 6, 7]
sage: list(D.breadth_first_search(0, ignore_direction=True))
[0, 1, 2, 3, 7, 4, 5, 6]
```

```python
>>> from sage.all import *
>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(1): [Integer(4), Integer(5)], Integer(2): [Integer(5)], Integer(3): [Integer(6)], Integer(4): [Integer(7)], Integer(5): [Integer(7)], Integer(6): [Integer(7)], Integer(7): [Integer(0)]})
>>> list(D.breadth_first_search(Integer(0)))
[0, 1, 2, 3, 4, 5, 6, 7]
>>> list(D.breadth_first_search(Integer(0), ignore_direction=True))
[0, 1, 2, 3, 7, 4, 5, 6]
```
You can specify a maximum distance in which to search. A distance of zero returns the start vertices:

```python
sage: D = DiGraph({0: [1, 2, 3], 1: [4, 5], 2: [5], 3: [6], 5: [7], 6: [7],
    ˓→7: [0]})
sage: list(D.breadth_first_search(0, distance=0))
[0]
sage: list(D.breadth_first_search(0, distance=1))
[0, 1, 2, 3]
```

Multiple starting vertices can be specified in a list:

```python
sage: D = DiGraph({0: [1, 2, 3], 1: [4, 5], 2: [5], 3: [6], 5: [7], 6: [7],
    ˓→7: [0]})
sage: list(D.breadth_first_search([0]))
[0, 1, 2, 3, 4, 5, 6, 7]
sage: list(D.breadth_first_search([0, 6]))
[0, 6, 1, 2, 3, 7, 4, 5]
sage: list(D.breadth_first_search([0, 6], distance=0))
[0, 6]
sage: list(D.breadth_first_search([0, 6], distance=1))
[0, 6, 1, 2, 3, 7]
sage: list(D.breadth_first_search(6, ignore_direction=True, distance=2))
[6, 3, 7, 0, 5]
```

More generally, you can specify a neighbors function. For example, you can traverse the graph backwards by setting neighbors to be the `neighbors_in()` function of the graph:

```python
sage: D = DiGraph({0: [1, 2, 3], 1: [4, 5], 2: [5], 3: [6], 5: [7], 6: [7],
    ˓→7: [0]})
```

(continues on next page)
It is possible (Issue #16470) using the keyword report_distance to get pairs (vertex, distance) encoding the distance from the starting vertices:

```python
sage: G = graphs.PetersenGraph()
sage: list(G.breadth_first_search(0, report_distance=True))
[(0, 0), (1, 1), (4, 1), (5, 1), (2, 2), (6, 2), (3, 2), (9, 2), (7, 2), (8, 2)]
sage: list(G.breadth_first_search(0, report_distance=False))
[0, 1, 4, 5, 2, 6, 3, 9, 7, 8]
```

It is possible (Issue #16470) using the keyword report_distance to get pairs (vertex, distance) encoding the distance from the starting vertices:

```python
sage: G = graphs.PetersenGraph()
sage: list(G.breadth_first_search(0, report_distance=True))
[(0, 0), (1, 1), (4, 1), (5, 1), (2, 2), (6, 2), (3, 2), (9, 2), (7, 2), (8, 2)]
sage: list(G.breadth_first_search(0, report_distance=False))
[0, 1, 4, 5, 2, 6, 3, 9, 7, 8]
```
You can get edges of the BFS tree instead of the vertices using the \texttt{edges} parameter:

\begin{verbatim}
sage: D = DiGraph({1:[2,3], 2:[4], 3:[4], 4:[1], 5:[2,6]})
sage: list(D.breadth_first_search(1, edges=True))
[(1, 2), (1, 3), (2, 4)]
\end{verbatim}

\texttt{canonical_label} \quad (\texttt{partition=None, certificate=False, edge_labels=False, algorithm=None, return_graph=True})

Return the canonical graph.

A canonical graph is the representative graph of an isomorphism class by some canonization function \(c\). If \(G\) and \(H\) are graphs, then \(G \cong c(G)\), and \(c(G) = c(H)\) if and only if \(G \cong H\).

See the \texttt{Wikipedia} article \texttt{Graph_canonization} for more information.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{partition} – if given, the canonical label with respect to this set partition will be computed. The default is the unit set partition.
 \item \texttt{certificate} – boolean (default: False). When set to True, a dictionary mapping from the vertices of the (di)graph to its canonical label will also be returned.
 \item \texttt{edge_labels} – boolean (default: False). When set to True, allows only permutations respecting edge labels.
 \item \texttt{algorithm} – a string (default: None). The algorithm to use; currently available:
 \begin{itemize}
 \item \texttt{'bliss'}: use the optional package bliss (http://www.tcs.tkk.fi/Software/bliss/index.html);
 \item \texttt{'sage'}: always use Sage’s implementation.
 \end{itemize}
 \texttt{Note:} Make sure you always compare canonical forms obtained by the same algorithm.
 \item \texttt{return_graph} – boolean (default: True). When set to False, returns the list of edges of the canonical graph instead of the canonical graph; only available when \texttt{'bliss'} is explicitly set as algorithm.
\end{itemize}

\textbf{EXAMPLES:}
Canonization changes isomorphism to equality:

```
sage: g1 = graphs.GridGraph([2, 3])
sage: g2 = Graph({1: [2, 4], 3: [2, 6], 5: [4, 2, 6]})
sage: g1 == g2
False
sage: g1.is_isomorphic(g2)
True
sage: g1.canonical_label() == g2.canonical_label()
True
```

We can get the relabeling used for canonization:

```
sage: g, c = g1.canonical_label(algorithm='sage', certificate=True)
sage: g
Grid Graph for [2, 3]: Graph on 6 vertices
sage: c
{(0, 0): 3, (0, 1): 4, (0, 2): 2, (1, 0): 0, (1, 1): 5, (1, 2): 1}
```

Multigraphs and directed graphs work too:

```
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edge((0,1))
sage: G.add_edge((0,1))
sage: G.add_edge((0,1))
sage: G.canonical_label()
Multi-graph on 2 vertices
sage: Graph(A?).canonical_label()
Graph on 2 vertices
sage: P = graphs.PetersenGraph()
sage: DP = P.to_directed()
sage: DP.canonical_label(algorithm='sage').adjacency_matrix()  #...
```

(continues on next page)
\begin{verbatim}
>>> from sage.all import *
>>> G = Graph(multiedges=True, sparse=True)
>>> G.add_edge((Integer(0),Integer(1)))
>>> G.add_edge((Integer(0),Integer(1)))
>>> G.add_edge((Integer(0),Integer(1)))
>>> G.canonical_label()
Multi-graph on 2 vertices
>>> Graph('A?').canonical_label()
Graph on 2 vertices
>>> P = graphs.PetersenGraph()
>>> DP = P.to_directed()
>>> DP.canonical_label(algorithm=sage).adjacency_matrix()
needs sage.modules
[0 0 0 0 0 0 1 1 1 1]
[0 0 0 1 0 1 0 0 1 0]
[0 0 1 0 0 1 0 1 0 1]
[0 0 1 0 1 0 0 0 1 0]
[0 0 1 1 0 0 0 1 0 0]
[0 1 0 0 0 1 0 0 1 0]
[0 1 1 0 0 0 0 1 0 0]
[1 0 0 0 1 1 0 0 0 0]
[1 0 1 0 1 0 0 0 0 0]
[1 1 0 1 0 0 0 0 0 0]
\end{verbatim}

Edge labeled graphs:

\begin{verbatim}
sage: G = Graph(sparse=True)
sage: G.add_edges([(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')])
sage: G.canonical_label(edge_labels=True)
Graph on 5 vertices
sage: G.canonical_label(edge_labels=True, algorithm="bliss", certificate=True)
(Graph on 5 vertices, {0: 4, 1: 3, 2: 1, 3: 0, 4: 2})
sage: G.canonical_label(edge_labels=True, algorithm="sage", certificate=True)
(Graph on 5 vertices, {0: 4, 1: 3, 2: 0, 3: 1, 4: 2})
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> G = Graph(sparse=True)
>>> G.add_edges([(Integer(0),Integer(1),'a'),(Integer(1),Integer(2),'b'),
 (Integer(2),Integer(3),'c'),(Integer(3),Integer(4),'b'),
 (Integer(4),Integer(0),'a')])
>>> G.canonical_label(edge_labels=True)
Graph on 5 vertices
>>> G.canonical_label(edge_labels=True, algorithm="bliss", certificate=True)
\end{verbatim}

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

Another example where different canonization algorithms give different graphs:

```python
sage: g = Graph({'a': ['b'], 'c': ['d']})
sage: g_sage = g.canonical_label(algorithm='sage') # optional - bliss
sage: g_bliss = g.canonical_label(algorithm='bliss')

sage: g_sage.edges(sort=True, labels=False)
[(0, 3), (1, 2)]

sage: g_bliss.edges(sort=True, labels=False) # optional - bliss
[(0, 1), (2, 3)]
```

cartesian_product (other)

Return the Cartesian product of self and other.

The Cartesian product of G and H is the graph L with vertex set $V(L)$ equal to the Cartesian product of the vertices $V(G)$ and $V(H)$, and $((u, v), (w, x))$ is an edge iff either (u, w) is an edge of self and $v = x$, or (v, x) is an edge of other and $u = w$.

See also:

- `is_cartesian_product()` – factorization of graphs according to the Cartesian product
- `graph_products` – a module on graph products

categorical_product (other)

Return the tensor product of self and other.

The tensor product of G and H is the graph L with vertex set $V(L)$ equal to the Cartesian product of the vertices $V(G)$ and $V(H)$, and $((u, v), (w, x))$ is an edge iff (u, w) is an edge of self, and (v, x) is an edge of other.

The tensor product is also known as the categorical product and the Kronecker product (referring to the Kronecker matrix product). See the Wikipedia article Kronecker_product.

EXAMPLES:

```python
sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: T = C.tensor_product(Z); T
```
GraphTheory, Release 10.4

(continued from previous page)

Graph on 10 vertices

```python
sage: T.size()
10
sage: T.plot()  # long time
 necesita sage.plot
```

Graphics object consisting of 21 graphics primitives

```python
>>> from sage.all import *

Z = graphs.CompleteGraph(Integer(2))
C = graphs.CycleGraph(Integer(5))
T = C.tensor_product(Z); T
Graph on 10 vertices

sage: T.size()
10
sage: T.plot()  # long time
 necesita sage.plot
```

Graphics object consisting of 21 graphics primitives

```python
D = graphs.DodecahedralGraph()
P = graphs.PetersenGraph()
T = D.tensor_product(P); T
Graph on 200 vertices

sage: T.size()
900
sage: T.plot()  # long time
 necesita sage.plot
```

Graphics object consisting of 1101 graphics primitives

```python
>>> from sage.all import *

D = graphs.DodecahedralGraph()
P = graphs.PetersenGraph()
T = D.tensor_product(P); T
Graph on 200 vertices

sage: T.size()
900
sage: T.plot()  # long time
 necesita sage.plot
```

Graphics object consisting of 1101 graphics primitives

centrality_betweenness (k=None, normalized=True, weight=None, endpoints=False, seed=None, exact=False, algorithm=None)

Return the betweenness centrality.

The betweenness centrality of a vertex is the fraction of number of shortest paths that go through each vertex. The betweenness is normalized by default to be in range (0,1).

Measures of the centrality of a vertex within a graph determine the relative importance of that vertex to its graph. Vertices that occur on more shortest paths between other vertices have higher betweenness than vertices that occur on less.

INPUT:

- `normalized` - boolean (default: True); if set to False, result is not normalized.
- `k` – integer (default: None); if set to an integer, use k node samples to estimate betweenness. Higher values give better approximations. Not available when `algorithm="Sage".`
• **weight** – string (default: None); if set to a string, use that attribute of the nodes as weight. `weight = True` is equivalent to `weight = "weight"`. Not available when `algorithm="Sage"`.

• **endpoints** – boolean (default: False); if set to True it includes the endpoints in the shortest paths count. Not available when `algorithm="Sage"`.

• **exact** – boolean (default: False); whether to compute over rationals or on `double` `C` variables. Not available when `algorithm="NetworkX"`.

• **algorithm** – string (default: None); can be either "Sage" (see `centrality`), "NetworkX" or "None". In the latter case, Sage's algorithm will be used whenever possible.

See also:

- `centrality_degree()`
- `centrality_closeness()`

EXAMPLES:

```python
sage: g = graphs.ChvatalGraph()
sage: g.centrality_betweenness() # abs tol 1e-10
{0: 0.06969696969696969, 1: 0.06969696969696969, 2: 0.06969696969696969, 3: 0.06969696969696969, 4: 0.06969696969696969, 5: 0.06969696969696969, 6: 0.06969696969696969, 7: 0.06969696969696969, 8: 0.06969696969696969, 9: 0.06969696969696969, 10: 0.06969696969696969, 11: 0.06969696969696969}
sage: g.centrality_betweenness(normalized=False) # abs tol 1e-10
{0: 3.833333333333333, 1: 3.833333333333333, 2: 3.333333333333333, 3: 3.333333333333333, 4: 3.833333333333333, 5: 3.833333333333333, 6: 3.333333333333333, 7: 3.333333333333333, 8: 3.333333333333333, 9: 3.333333333333333, 10: 3.333333333333333}
sage: D = DiGraph({Integer(0):[Integer(1),Integer(2),Integer(3)], Integer(1):[Integer(2)], Integer(3):[0,1]})
sage: D.show(figsize=[2,2]) # needs sage.plot
```

```python
>>> from sage.all import *

>>> g = graphs.ChvatalGraph()

>>> g.centrality_betweenness(normalized=False) # abs tol 1e-10
{0: 0.16666666666666666, 1: 0.16666666666666666, 2: 0.0, 3: 0.0}
```

(continues on next page)
... (continued from previous page)

raw text:

```python
>>> D = D.to_undirected()
>>> D.show(figsize=[Integer(2),Integer(2)])  # needs sage.plot
```

```python
D.centrality_betweenness()  # abs tol abs 1e-10
{0: 0.16666666666666666, 1: 0.16666666666666666, 2: 0.0, 3: 0.0}
```

centrality_closeness (vert=None, by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return the closeness centrality of all vertices in `vert`.

In a (strongly) connected graph, the closeness centrality of a vertex \(v \) is equal to the inverse of the average distance between \(v \) and other vertices. If the graph is disconnected, the closeness centrality of \(v \) is multiplied by the fraction of reachable vertices in the graph: this way, central vertices should also reach several other vertices in the graph [OLI2014]. In formulas,

\[
c(v) = \frac{r(v) - 1}{\sum_{w \in R(v)} d(v, w)} \times \frac{r(v) - 1}{n - 1}
\]

where \(R(v) \) is the set of vertices reachable from \(v \), and \(r(v) \) is the cardinality of \(R(v) \).

'Closeness centrality may be defined as the total graph-theoretic distance of a given vertex from all other vertices... Closeness is an inverse measure of centrality in that a larger value indicates a less central actor while a smaller value indicates a more central actor,' [Bor1995].

For more information, see the Wikipedia article Centrality.

INPUT:

- **vert** – the vertex or the list of vertices we want to analyze. If None (default), all vertices are considered.
- **by_weight** – boolean (default: False); if True, the edges in the graph are weighted, and otherwise all edges have weight 1
- **algorithm** – string (default: None); one of the following algorithms:
 - 'BFS': performs a BFS from each vertex that has to be analyzed. Does not work with edge weights.
 - 'NetworkX': the NetworkX algorithm (works only with positive weights).
 - 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive weights).
 - 'Floyd-Warshall-Cython': the Cython implementation of the Floyd-Warshall algorithm. Works only if by_weight==False and all centralities are needed.
 - 'Floyd-Warshall-Python': the Python implementation of the Floyd-Warshall algorithm. Works only if all centralities are needed, but it can deal with weighted graphs, even with negative weights (but no negative cycle is allowed).
 - 'Johnson_Boost': the Johnson algorithm, implemented in Boost (works also with negative weights, if there is no negative cycle).
 - None (default): Sage chooses the best algorithm: 'BFS' if by_weight is False, 'Dijkstra_Boost' if all weights are positive, 'Johnson_Boost' otherwise.
- **weight_function** – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l \) as a weight, if \(l \) is not None, else \(1 \) as a weight.
• check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge.

OUTPUT:

If vert is a vertex, the closeness centrality of that vertex. Otherwise, a dictionary associating to each vertex in vert its closeness centrality. If a vertex has (out)degree 0, its closeness centrality is not defined, and the vertex is not included in the output.

See also:

• centrality_closeness_top_k()
• centrality_degree()
• centrality_betweenness()

EXAMPLES:

Standard examples:

```sage
graphs.ChvatalGraph().centrality_closeness()
{0: 0.61111111111111..., 1: 0.61111111111111..., 2: 0.61111111111111..., 3: 0.61111111111111..., 4: 0.61111111111111..., 5: 0.61111111111111..., 6: 0.61111111111111..., 7: 0.61111111111111..., 8: 0.61111111111111..., 9: 0.61111111111111..., 10: 0.61111111111111..., 11: 0.61111111111111...}
```

```sage:D = DiGraph({0:[1,2,3], 1:[2], 3:[0,1]})
D.show(figsize=[2,2])  # needs sage.plot
D.centrality_closeness(vert=[0,1])
{0: 1.0, 1: 0.3333333333333333}
```

```sage:D = D.to_undirected()
D.show(figsize=[2,2])  # needs sage.plot
D.centrality_closeness()
{0: 1.0, 1: 1.0, 2: 0.75, 3: 0.75}
```

```sage:
from sage.all import *
(graphs.ChvatalGraph()).centrality_closeness()
{0: 0.61111111111111..., 1: 0.61111111111111..., 2: 0.61111111111111..., 3: 0.61111111111111..., 4: 0.61111111111111..., 5: 0.61111111111111..., 6: 0.61111111111111..., 7: 0.61111111111111..., 8: 0.61111111111111..., 9: 0.61111111111111..., 10: 0.61111111111111..., 11: 0.61111111111111...}
```

```sage:D = DiGraph({Integer(0):[Integer(1),Integer(2),Integer(3)], Integer(1):[Integer(2)], Integer(3):[Integer(0),Integer(1)]})
D.show(figsize=[2,2])  # needs sage.plot
D.centrality_closeness(vert=[Integer(0),Integer(1)])
{0: 1.0, 1: 0.3333333333333333}
```

```sage:D = D.to_undirected()
D.show(figsize=[2,2])  # needs sage.plot
D.centrality_closeness()
{0: 1.0, 1: 1.0, 2: 0.75, 3: 0.75}
```
In a (strongly) connected (di)graph, the closeness centrality of \(v \) is inverse of the average distance between \(v \) and all other vertices:

```python
sage: g = graphs.PathGraph(5)
sage: g.centrality_closeness(0)
0.4
sage: dist = g.shortest_path_lengths(0).values()
sage: float(len(dist)-1) / sum(dist)
0.4
sage: d = g.to_directed()
sage: d.centrality_closeness(0)
0.4
sage: dist = d.shortest_path_lengths(0).values()
sage: float(len(dist)-1) / sum(dist)
0.4
```

If a vertex has (out)degree 0, its closeness centrality is not defined:

```python
sage: g = Graph(5)
sage: g.centrality_closeness()
{}
sage: print(g.centrality_closeness(0))
None
```

Weighted graphs:

```python
sage: D = graphs.GridGraph([2,2])
sage: weight_function = lambda e:10
sage: D.centrality_closeness(((0,0),(0,1))) # tol
abs 1e-12
{(0, 0): 0.75, (0, 1): 0.75}
sage: D.centrality_closeness((0,0), weight_function=weight_function) # tol
abs 1e-12
0.075
```
characteristic_polynomial (var='x', laplacian=False)

Return the characteristic polynomial of the adjacency matrix of the (di)graph.

Let G be a (simple) graph with adjacency matrix A. Let I be the identity matrix of dimensions the same as A. The characteristic polynomial of G is defined as the determinant $\det(xI - A)$.

Note: characteristic_polynomial and charpoly are aliases and thus provide exactly the same method.

INPUT:

- x – (default: 'x'); the variable of the characteristic polynomial
- laplacian – boolean (default: False); if True, use the Laplacian matrix

See also:

- kirchhoff_matrix()
- laplacian_matrix()

EXAMPLES:

```python
sage: P = graphs.PetersenGraph()
sage: P.characteristic_polynomial() # needs sage.modules
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
```

```python
sage: P.charpoly() # needs sage.modules
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
```
charpoly (var='x', laplacian=False)

Return the characteristic polynomial of the adjacency matrix of the (di)graph.

Let G be a (simple) graph with adjacency matrix A. Let I be the identity matrix of dimensions the same as A. The characteristic polynomial of G is defined as the determinant $\det(xI - A)$.

Note: characteristic_polynomial and charpoly are aliases and thus provide exactly the same method.

INPUT:
- x – (default: 'x'); the variable of the characteristic polynomial
- laplacian – boolean (default: False); if True, use the Laplacian matrix

See also:
- kirchhoff_matrix()
- laplacian_matrix()

EXAMPLES:

```python
sage: P = graphs.PetersenGraph()
sage: P.characteristic_polynomial()  # needs sage.modules
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
sage: P.charpoly()  # needs sage.modules
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
sage: P.characteristic_polynomial(laplacian=True)  # needs sage.modules
x^10 - 30*x^9 + 390*x^8 - 2880*x^7 + 13305*x^6 - 39882*x^5 + 77640*x^4 - 94800*x^3 + 66000*x^2 - 20000*x

>>> from sage.all import *

>>> P = graphs.PetersenGraph()
>>> P.characteristic_polynomial()  # needs sage.modules
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
>>> P.charpoly()  # needs sage.modules
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
>>> P.characteristic_polynomial(laplacian=True)  # needs sage.modules
x^10 - 30*x^9 + 390*x^8 - 2880*x^7 + 13305*x^6 - 39882*x^5 + 77640*x^4 - 94800*x^3 + 66000*x^2 - 20000*x
```

clear()

Empties the graph of vertices and edges and removes name, associated objects, and position information.

EXAMPLES:

```python
sage: G = graphs.CycleGraph(4)
sage: G.set_vertices({0:'vertex0'})
sage: print(G.order(), G.size())
4 4
```

(continues on next page)
cluster_transitivity()

Return the transitivity (fraction of transitive triangles) of the graph.

Transitivity is the fraction of all existing triangles over all connected triples (triads), $T = \frac{3 \times \text{triangles}}{\text{triples}}$.

See also section “Clustering” in chapter “Algorithms” of [HSS].

EXAMPLES:

```python
sage: graphs.FruchtGraph().cluster_transitivity()  # needs networkx
0.25
```
Graph Theory, Release 10.4

cluster_triangles \(nbunch=None, \text{implementation}=None\)

Return the number of triangles for the set \(\text{nbunch}\) of vertices as a dictionary keyed by vertex.

See also section “Clustering” in chapter “Algorithms” of [HSS].

INPUT:

- \(\text{nbunch}\) – a list of vertices (default: None); the vertices to inspect. If
  ```
  \text{nbunch}=\text{None},
  ```
 returns data for all vertices in the graph.

- \(\text{implementation}\) – string (default: None); one of 'sparse_copy', 'dense_copy',
 'networkx' or None (default). In the latter case, the best algorithm available is used. Note that
 'networkx' does not support directed graphs.

EXAMPLES:

```python
>>> from sage.all import *

# Needs networkx
0.25
```

```python
sage: F = graphs.FruchtGraph()
sage: list(F.cluster_triangles().values())
[1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0]
sage: F.cluster_triangles() 0.25
{0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 0, 9: 1, 10: 1, 11: 0} sage: F.cluster_triangles(nbunch=[0, 1, 2]) {0: 1, 1: 1, 2: 0}
```

```python
d1 = G.cluster_triangles(implementation="networkx")  # Needs networkx
d2 = G.cluster_triangles(implementation="dense_copy")
d3 = G.cluster_triangles(implementation="sparse_copy")
d1 == d2 and d1 == d3  # Needs networkx
True
```

1.1. Generic graphs (common to directed/undirected) 73
clustering_average *(implementation=None)*

Return the average clustering coefficient.

The clustering coefficient of a node i is the fraction of existing triangles containing node i over all possible triangles containing i: $c_i = T(i)/(k_i^2)$ where $T(i)$ is the number of existing triangles through i, and k_i is the degree of vertex i.

A coefficient for the whole graph is the average of the c_i.

See also section “Clustering” in chapter “Algorithms” of [HSS].

INPUT:

- implementation – string (default: None); one of 'boost', 'sparse_copy', 'dense_copy', 'networkx' or None (default). In the latter case, the best algorithm available is used. Note that only 'networkx' supports directed graphs.

EXAMPLES:

```python
sage: (graphs.FruchtGraph()).clustering_average()
1/4
sage: (graphs.FruchtGraph()).clustering_average(implementation='networkx')  # needs networkx
0.25
```

```python
>>> from sage.all import *
>>> (graphs.FruchtGraph()).clustering_average()
1/4
>>> (graphs.FruchtGraph()).clustering_average(implementation='networkx')  # needs networkx
0.25
```

clustering_coeff *(nodes=None, weight=False, implementation=None)*

Return the clustering coefficient for each vertex in *nodes* as a dictionary keyed by vertex.

For an unweighted graph, the clustering coefficient of a node i is the fraction of existing triangles containing node i over all possible triangles containing i: $c_i = T(i)/(k_i^2)$ where $T(i)$ is the number of existing triangles through i, and k_i is the degree of vertex i.

For weighted graphs the clustering is defined as the geometric average of the subgraph edge weights, normalized by the maximum weight in the network.

The value of c_i is assigned 0 if $k_i < 2$.

See also section “Clustering” in chapter “Algorithms” of [HSS].

INPUT:

- nodes – an iterable container of vertices (default: None); the vertices to inspect. By default, returns data on all vertices in graph
- weight – string or boolean (default: False); if it is a string it uses the indicated edge property as weight, weight = True is equivalent to weight = 'weight'
- implementation – string (default: None); one of 'boost', 'sparse_copy', 'dense_copy', 'networkx' or None (default). In the latter case, the best algorithm available is used. Note that only 'networkx' supports directed or weighted graphs, and that 'sparse_copy' and 'dense_copy' do not support node different from None

EXAMPLES:

```python
```
coarsest_equitable_refinement (partition, sparse=True)

Return the coarsest partition which is finer than the input partition, and equitable with respect to self.

A partition is equitable with respect to a graph if for every pair of cells \(C_1, C_2 \) of the partition, the number of edges from a vertex of \(C_1 \) to \(C_2 \) is the same, over all vertices in \(C_1 \).

A partition \(P_1 \) is finer than \(P_2 \) (\(P_2 \) is coarser than \(P_1 \)) if every cell of \(P_1 \) is a subset of a cell of \(P_2 \).
INPUT:

- **partition** – a list of lists
- **sparse** – boolean (default: `False`); whether to use sparse or dense representation - for small graphs, use dense for speed

EXAMPLES:

```python
sage: G = graphs.PetersenGraph()
sage: G.coarsest_equitable_refinement([[0], list(range(1,10))])
[[0], [2, 3, 6, 7, 8, 9], [1, 4, 5]]
sage: G = graphs.CubeGraph(3)
sage: verts = G.vertices(sort=True)
sage: Pi = [verts[:1], verts[1:]]
sage: Pi
[['000'], ['001', '010', '011', '100', '101', '110', '111']]
sage: [sorted(cell) for cell in G.coarsest_equitable_refinement(Pi)]
[['000'], ['011', '101', '110'], ['111'], ['001', '010', '100']]
```

Note that given an equitable partition, this function returns that partition:

```python
sage: P = graphs.PetersenGraph()
sage: prt = [[0], [1, 4, 5], [2, 3, 6, 7, 8, 9]]
sage: P.coarsest_equitable_refinement(prt)
[[0], [1, 4, 5], [2, 3, 6, 7, 8, 9]]
```

```python
>>> from sage.all import *

>>> G = graphs.PetersenGraph()

>>> G.coarsest_equitable_refinement([[Integer(0)], list(range(Integer(1), Integer(10))))])
[[0], [2, 3, 6, 7, 8, 9], [1, 4, 5]]

>>> G = graphs.CubeGraph(Integer(3))

>>> verts = G.vertices(sort=True)

>>> Pi = [verts[:Integer(1)], verts[Integer(1):]]

>>> Pi
[['000'], ['001', '010', '011', '100', '101', '110', '111']]

>>> [sorted(cell) for cell in G.coarsest_equitable_refinement(Pi)]
[['000'], ['011', '101', '110'], ['111'], ['001', '010', '100']]
```

```python
sage: ss = (graphs.WheelGraph(6)).line_graph(labels=False)
sage: prt = [[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]
sage: ss.coarsest_equitable_refinement(prt)
Traceback (most recent call last):
...   TypeError: partition ([[0, 1], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]) is not valid for this graph: vertices are incorrect
```

```python
>>> from sage.all import *

>>> ss = (graphs.WheelGraph(Integer(6))).line_graph(labels=False)
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

>>> prt = [[(Integer(0), Integer(1))], [(Integer(0), Integer(2)), (Integer(1), Integer(2)), (Integer(0), Integer(3)), (Integer(0), Integer(4)), (Integer(1), Integer(4))], [(Integer(2), Integer(3)), (Integer(3), Integer(4))]]
>>> ss.coarsest_equitable_refinement(prt)
Traceback (most recent call last):
...
TypeError: partition ([(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]) is not valid for this graph: vertices are incorrect

sage: ss = (graphs.WheelGraph(5)).line_graph(labels=False)
sage: ss.coarsest_equitable_refinement(prt)
[[(0, 1)], [(1, 2), (1, 4)], [(0, 3)], [(0, 4), (0, 2)], [(2, 3), (3, 4)]]

>>> from sage.all import *

>>> ss = (graphs.WheelGraph(Integer(5))).line_graph(labels=False)
>>> ss.coarsest_equitable_refinement(prt)
[[(0, 1)], [(1, 2), (1, 4)], [(0, 3)], [(0, 4), (0, 2)], [(2, 3), (3, 4)]]

complement()

Return the complement of the (di)graph.

The complement of a graph has the same vertices, but exactly those edges that are not in the original graph. This is not well defined for graphs with multiple edges.

EXAMPLES:

sage: P = graphs.PetersenGraph()
sage: P.plot() # long time # needs sage.plot
Graphics object consisting of 26 graphics primitives
sage: PC = P.complement()
sage: PC.plot() # long time # needs sage.plot
Graphics object consisting of 41 graphics primitives

>>> from sage.all import *

>>> P = graphs.PetersenGraph()
>>> P.plot() # long time # needs sage.plot
Graphics object consisting of 26 graphics primitives
>>> PC = P.complement()
>>> PC.plot() # long time # needs sage.plot
Graphics object consisting of 41 graphics primitives

sage: graphs.TetrahedralGraph().complement().size()
0
sage: graphs.CycleGraph(4).complement().edges(sort=True)
[(0, 2, None), (1, 3, None)]
sage: graphs.CycleGraph(4).complement()
complement(Cycle graph): Graph on 4 vertices
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0, 1)] * 3)

1.1. Generic graphs (common to directed/undirected)
The method is not known to work on graphs with multiedges. Perhaps this method can be updated to handle them, but in the meantime if you want to use it please disallow multiedges using allow_multiple_edges().

```python
>>> from sage.all import *

>>> graphs.TetrahedralGraph().complement().size()
0

>>> graphs.CycleGraph(Integer(4)).complement().edges(sort=True)
[(0, 2, None), (1, 3, None)]

>>> graphs.CycleGraph(Integer(4)).complement()
complement(Cycle graph): Graph on 4 vertices

>>> G = Graph(multiedges=True, sparse=True)

>>> G.add_edges([[(0, 1), (1, 2), (2, 3), (3, 4)] * 3])

>>> G.complement()
Traceback (most recent call last):
...
ValueError: This method is not known to work on graphs with multiedges. Perhaps this method can be updated to handle them, but in the meantime if you want to use it please disallow multiedges using allow_multiple_edges().
```

connected_component_containing_vertex *(G, vertex, sort=None, key=None)*

Return a list of the vertices connected to vertex.

INPUT:

- G – the input graph
- v – the vertex to search for
- sort – boolean (default: None); if True, vertices inside the component are sorted according to the default ordering

As of **Issue #35889**, this argument must be explicitly specified (unless a **key** is given); otherwise a warning is printed and **sort=True** is used. The default will eventually be changed to **False**.

- key – a function (default: None); a function that takes a vertex as its one argument and returns a value that can be used for comparisons in the sorting algorithm (we must have sort=True)

EXAMPLES:

```python
sage: from sage.graphs.connectivity import connected_component_containing_vertex

sage: G = Graph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})

sage: G.connected_component_containing_vertex(0, sort=True)
[0, 1, 2, 3]

sage: G.connected_component_containing_vertex(0, sort=True)
[0, 1, 2, 3]

sage: D = DiGraph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})

sage: D.connected_component_containing_vertex(0, sort=True)
[0, 1, 2, 3]

sage: D.connected_component_containing_vertex(0, sort=True, key=lambda x: -x)
[3, 2, 1, 0]
```
from sage.all import *
from sage.graphs.connectivity import connected_component_containing_vertex
G = Graph({Integer(0): [Integer(1), Integer(3)], Integer(1): [Integer(2)],
 Integer(2): [Integer(3)], Integer(3): [Integer(4),
 Integer(5), Integer(6)],
 Integer(5): [Integer(6)]})
connected_component_containing_vertex(G, Integer(0), sort=True)
[0, 1, 2, 3]
G.connected_component_containing_vertex(Integer(0), sort=True)
[0, 1, 2, 3]
D = DiGraph({Integer(0): [Integer(1), Integer(3)], Integer(1):
 [Integer(2)], Integer(2): [Integer(3)], Integer(4): [Integer(5),
 Integer(6)],
 Integer(5): [Integer(6)]})
connected_component_containing_vertex(D, Integer(0), sort=True)
[0, 1, 2, 3]
connected_component_containing_vertex(D, Integer(0), sort=True,
 key=lambda x: -x)
[3, 2, 1, 0]

connected_components (G, sort=None, key=None)
Return the list of connected components.
This returns a list of lists of vertices, each list representing a connected component. The list is ordered from largest to smallest component.

INPUT:
• G – the input graph
• sort – boolean (default: None); if True, vertices inside each component are sorted according to the default ordering

As of Issue #35889, this argument must be explicitly specified (unless a key is given); otherwise a warning is printed and sort=True is used. The default will eventually be changed to False.

• key – a function (default: None); a function that takes a vertex as its one argument and returns a value that can be used for comparisons in the sorting algorithm (we must have sort=True)

EXAMPLES:

sage: from sage.graphs.connectivity import connected_components
sage: G = Graph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: connected_components(G, sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
sage: G.connected_components(sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
sage: D = DiGraph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: connected_components(D, sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
sage: connected_components(D, sort=True, key=lambda x: -x)
[[3, 2, 1, 0], [4, 5, 6]]

(continues on next page)
connected_components_number \((G)\)

Return the number of connected components.

INPUT:

- \(G\) – the input graph

EXAMPLES:

```
from sage.graphs.connectivity import connected_components_number
sage: G = Graph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: connected_components_number(G)
2
```

```
from sage.all import *
from sage.graphs.connectivity import connected_components_number
sage: G = Graph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: connected_components_number(G)
2
```

connected_components_sizes \((G)\)

Return the sizes of the connected components as a list.

The list is sorted from largest to lower values.

EXAMPLES:

```
from sage.graphs.connectivity import connected_components_sizes
sage: for x in graphs(3):
    ....:     print(connected_components_sizes(x))
[1, 1, 1]
[2, 1]
[3]
[3]
```

(continues on next page)
connected_components_subgraphs \(G\)

Return a list of connected components as graph objects.

EXAMPLES:

```python
sage: from sage.graphs.connectivity import connected_components_subgraphs
sage: G = Graph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: L = connected_components_subgraphs(G)
```

```python
sage: graphs_list.show_graphs(L)  # needs sage.plot
```

```python
sage: D = DiGraph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
```

```python
sage: L = connected_components_subgraphs(D)
```

```python
sage: graphs_list.show_graphs(L)  # needs sage.plot
```

```python
>>> from sage.all import *
>>> from sage.graphs.connectivity import connected_components_subgraphs
>>> G = Graph({Integer(0): [Integer(1), Integer(3)], Integer(1): [Integer(2)],
Integer(2): [Integer(3)], Integer(4): [Integer(5), Integer(6)],...
Integer(5): [Integer(6)]})
>>> L = connected_components_subgraphs(G)
```

```python
>>> graphs_list.show_graphs(L)  # needs sage.plot
```

```python
>>> D = DiGraph({Integer(0): [Integer(1), Integer(3)], Integer(1):...
Integer(2)], Integer(2): [Integer(3)], Integer(4): [Integer(5),...
Integer(6)], Integer(5): [Integer(6)]})
>>> L = connected_components_subgraphs(D)
```

```python
>>> graphs_list.show_graphs(L)  # needs sage.plot
>>> L = D.connected_components_subgraphs()
```

```python
>>> graphs_list.show_graphs(L)
```

(continues on next page)
connected_subgraph_iterator \((G, k=None, \text{vertices_only}=False, \text{edges_only}=False, \text{labels}=False, \text{induced}=True, \text{exactly_k}=False)\)

Return a iterator over the induced connected subgraphs of order at most \(k\).

This method implements a iterator over the induced connected subgraphs of the input (di)graph. An induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and all of the edges connecting pairs of vertices in that subset (Wikipedia article Induced_subgraph).

As for method \texttt{sage.graphs.generic_graph.connected_components()}, edge orientation is ignored. Hence, the directed graph with a single arc \(0 \rightarrow 1\) is considered connected.

INPUT:

- \(G\) – a \texttt{Graph} or a \texttt{DiGraph}; loops and multiple edges are allowed
- \(k\) – (optional) integer; maximum order of the connected subgraphs to report; by default, the method iterates over all connected subgraphs (equivalent to \(k == n\))
- \text{vertices_only} – boolean (default: \text{False}); whether to return (Di)Graph or list of vertices. This parameter is ignored when \text{induced} is \text{True}.
- \text{edges_only} – boolean (default: \text{False}); whether to return (Di)Graph or list of edges. When \text{vertices_only} is \text{True}, this parameter is ignored.
- \text{labels} – boolean (default: \text{False}); whether to return labelled edges or not. This parameter is used only when \text{vertices_only} is \text{False} and \text{edges_only} is \text{True}.
- \text{induced} – boolean (default: \text{True}); whether to return induced connected sub(di)graph only or also non-induced sub(di)graphs. This parameter can be set to \text{False} for simple (di)graphs only.
- \text{exactly_k} – boolean (default: \text{False}); \text{True} if we only return graphs of order \(k\), \text{False} if we return graphs of order at most \(k\).

EXAMPLES:

```python
sage: G = DiGraph([(1, 2), (2, 3), (3, 4), (4, 2)])
sage: list(G.connected_subgraph_iterator())
[Subgraph of (): Digraph on 1 vertex,
 Subgraph of (): Digraph on 2 vertices,
 Subgraph of (): Digraph on 3 vertices,
 Subgraph of (): Digraph on 4 vertices,
 Subgraph of (): Digraph on 3 vertices,
 Subgraph of (): Digraph on 1 vertex,
 Subgraph of (): Digraph on 2 vertices,
 Subgraph of (): Digraph on 3 vertices,
 Subgraph of (): Digraph on 2 vertices,
 Subgraph of (): Digraph on 1 vertex]
sage: list(G.connected_subgraph_iterator(\text{vertices\_only}=\text{True}))
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 4],
 [2], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4], [4]]
sage: list(G.connected_subgraph_iterator(k=2))
[Subgraph of (): Digraph on 1 vertex,
 Subgraph of (): Digraph on 2 vertices,
 Subgraph of (): Digraph on 1 vertex,
 Subgraph of (): Digraph on 2 vertices,
 Subgraph of (): Digraph on 1 vertex]
```
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex
\[
\text{sage: } \text{list}(G.\text{connected_subgraph_iterator}(k=3, \text{vertices_only=True, exactly}_\rightarrow k=True))
\] [[1, 2, 3], [1, 2, 4], [2, 3, 4]]
\[
\text{sage: } \text{list}(G.\text{connected_subgraph_iterator}(k=2, \text{vertices_only=True}))
\] [[1], [1, 2], [2], [2, 3], [2, 4], [3], [3, 4], [4]]
\[
\text{sage: } \text{G} = \text{DiGraph}([[1, 2], (2, 1)])
\]
\[
\text{sage: } \text{list}(G.\text{connected_subgraph_iterator}())
\] [Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex]
\[
\text{sage: } \text{list}(G.\text{connected_subgraph_iterator}(\text{vertices_only=True}))
\] [[1], [1, 2], [2]]
\[
\text{sage: } \text{G} = \text{graphs.\text{CompleteGraph}(3)}
\]
\[
\text{sage: } \text{len}(\text{list}(G.\text{connected_subgraph_iterator}()))
\] 7
\[
\text{sage: } \text{len}(\text{list}(G.\text{connected_subgraph_iterator}(\text{vertices_only=True})))
\] 7
\[
\text{sage: } \text{len}(\text{list}(G.\text{connected_subgraph_iterator}(\text{edges_only=True})))
\] 7
\[
\text{sage: } \text{len}(\text{list}(G.\text{connected_subgraph_iterator}(\text{induced=False})))
\] 10
\[
\text{sage: } \text{G} = \text{DiGraph}([[0, 1], (1, 0), (1, 2), (2, 1)])
\]
\[
\text{sage: } \text{len}(\text{list}(G.\text{connected_subgraph_iterator}()))
\] 6
\[
\text{sage: } \text{len}(\text{list}(G.\text{connected_subgraph_iterator}(\text{vertices_only=True})))
\] 6
\[
\text{sage: } \text{len}(\text{list}(G.\text{connected_subgraph_iterator}(\text{edges_only=True})))
\] 6
\[
\text{sage: } \text{len}(\text{list}(G.\text{connected_subgraph_iterator}(\text{induced=False})))
\] 18

```python
>>> \text{from sage.all import *}

>>> \text{G} = \text{DiGraph}([[\text{Integer}(1), \text{Integer}(2)], \{\text{Integer}(2), \text{Integer}(3),
\text{Integer}(3), \text{Integer}(4), \{\text{Integer}(4), \text{Integer}(2)\}])

>>> \text{list}(G.\text{connected_subgraph_iterator}())
[Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 3 vertices,
Subgraph of (): Digraph on 4 vertices,
Subgraph of (): Digraph on 3 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 3 vertices,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex]

>>> \text{list}(G.\text{connected_subgraph_iterator}(\text{vertices_only=True}))
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 4],
```
[2], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4], [4]

>>> list(G.connected_subgraph_iterator(k=Integer(2)))
[Subgraph of (): Digraph on 1 vertex,
 Subgraph of (): Digraph on 2 vertices,
 Subgraph of (): Digraph on 1 vertex,
 Subgraph of (): Digraph on 2 vertices,
 Subgraph of (): Digraph on 2 vertices,
 Subgraph of (): Digraph on 1 vertex,
 Subgraph of (): Digraph on 2 vertices,
 Subgraph of (): Digraph on 1 vertex]

>>> list(G.connected_subgraph_iterator(k=Integer(3), vertices_only=True, exactly_k=True))
[[1, 2, 3], [1, 2, 4], [2, 3, 4]]

>>> list(G.connected_subgraph_iterator(k=Integer(2), vertices_only=True))
[[1], [1, 2], [2], [2, 3], [2, 4], [3], [3, 4], [4]]

contract_edge (u, v=None, label=None)

Contract an edge from \(u \) to \(v \).

This method returns silently if the edge does not exist.

INPUT: The following forms are all accepted:

- G.contract_edge(1, 2)
- G.contract_edge((1, 2))
- G.contract_edge([1, 2])
- G.contract_edge(1, 2, 'label')
- \texttt{G.contract_edge((1, 2, 'label'))}
- \texttt{G.contract_edge([(1, 2, 'label')])}

EXAMPLES:

```python
sage: G = graphs.CompleteGraph(4)
sage: G.contract_edge((0, 1)); G.edges(sort=True)
[(0, 2, None), (0, 3, None), (2, 3, None)]
```

```python
sage: G = graphs.CompleteGraph(4)
sage: G.allow_loops(True); G.allow_multiple_edges(True)
sage: G.contract_edge((0, 1)); G.edges(sort=True)
[(0, 2, None), (0, 2, None), (0, 3, None), (0, 3, None), (2, 3, None)]
```

```python
sage: G.contract_edge((0, 2)); G.edges(sort=True)
[(0, 0, None), (0, 3, None), (0, 3, None), (0, 3, None)]
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.CompleteGraph(Integer(4))
```

```python
>>> G.contract_edge((Integer(0), Integer(1))); G.edges(sort=True)
[(0, 2, None), (0, 3, None), (2, 3, None)]
```

```python
>>> G = graphs.CompleteGraph(Integer(4))
```

```python
>>> G.allow_loops(True); G.allow_multiple_edges(True)
```

```python
>>> G.contract_edge((Integer(0), Integer(1))); G.edges(sort=True)
[(0, 2, None), (0, 2, None), (0, 3, None), (0, 3, None), (2, 3, None)]
```

```python
>>> G.contract_edge((Integer(0), Integer(2))); G.edges(sort=True)
[(0, 0, None), (0, 3, None), (0, 3, None), (0, 3, None)]
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.CompleteGraph(Integer(4)).to_directed()
```

```python
>>> G.contract_edge(Integer(0), Integer(1)); G.edges(sort=True)
[(0, 0, None), (0, 2, None), (0, 3, None), (2, 0, None), (2, 3, None), (3, 0, None), (3, 2, None)]
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.CompleteGraph(Integer(4)).to_directed()
```

```python
>>> G.contract_edge(Integer(0), Integer(1)); G.edges(sort=True)
[(0, 0, None), (0, 2, None), (0, 3, None), (2, 0, None), (2, 3, None), (3, 0, None), (3, 2, None)]
```

\textbf{contract_edges}(\textit{edges})

Contract edges from an iterable container.

If \textit{e} is an edge that is not contracted but the vertices of \textit{e} are merged by contraction of other edges, then \textit{e} will become a loop.

\textbf{INPUT:}

- \textit{edges} – a list containing 2-tuples or 3-tuples that represent edges
EXAMPLES:

```
sage: G = graphs.CompleteGraph(4)
sage: G.allow_loops(True); G.allow_multiple_edges(True)
sage: G.contract_edges([(0, 1), (1, 2), (0, 2)]); G.edges(sort=True)
[(0, 3, None), (0, 3, None), (0, 3, None)]
sage: G.contract_edges([(1, 3), (2, 3)]); G.edges(sort=True)
[(0, 3, None), (0, 3, None), (0, 3, None)]
sage: G = graphs.CompleteGraph(4)
sage: G.allow_loops(True); G.allow_multiple_edges(True)
sage: G.contract_edges([(0, 1), (1, 2), (0, 2), (1, 3), (2, 3)]); G.
edges(sort=True)
[(0, 0, None)]
```

```
>>> from sage.all import *
>>> G = graphs.CompleteGraph(Integer(4))
>>> G.allow_loops(True); G.allow_multiple_edges(True)
>>> G.contract_edges([(Integer(0), Integer(1)), (Integer(1), Integer(2)),
  (Integer(0), Integer(2))]); G.edges(sort=True)
[(0, 3, None), (0, 3, None), (0, 3, None)]
>>> G.contract_edges([(Integer(1), Integer(3)), (Integer(2), Integer(3))]); G.
edges(sort=True)
[(0, 0, None)]
```

```
sage: D = digraphs.Complete(4)
sage: D.allow_loops(True); D.allow_multiple_edges(True)
sage: D.contract_edges([(0, 1), (1, 0), (0, 2)]); D.edges(sort=True)
[(0, 0, None),
 (0, 0, None),
 (0, 0, None),
 (0, 3, None),
 (0, 3, None),
 (0, 3, None),
 (3, 0, None),
 (3, 0, None),
 (3, 0, None)]
```

```
>>> from sage.all import *
>>> D = digraphs.Complete(Integer(4))
>>> D.allow_loops(True); D.allow_multiple_edges(True)
>>> D.contract_edges([(Integer(0), Integer(1)), (Integer(1), Integer(2)),
  (Integer(0), Integer(2)), (Integer(1), Integer(3)), (Integer(2),
  Integer(3))]); G.edges(sort=True)
[(0, 0, None)]
```

copy (weighted=None, data_structure=None, sparse=None, immutable=None, hash_labels=None)

Change the graph implementation

INPUT:

• weighted – boolean (default: None); weightedness for the copy. Might change the equality class if not None.

• sparse – boolean (default: None): sparse=True is an alias for data_structure="sparse", and sparse=False is an alias for data_structure="dense". Only used when data_structure=None.

• data_structure – string (default: None); one of "sparse", "static_sparse", or "dense". See the documentation of Graph or DiGraph.

• immutable – boolean (default: None); whether to create a mutable/immutable copy. Only used when data_structure=None.
 – immutable=None (default) means that the graph and its copy will behave the same way.
 – immutable=True is a shortcut for data_structure='static_sparse'
 – immutable=False means that the created graph is mutable. When used to copy an immutable graph, the data structure used is "sparse" unless anything else is specified.

• hash_labels – boolean (default: None); whether to include edge labels during hashing of the copy. This parameter defaults to True if the graph is weighted. This parameter is ignored when parameter immutable is not True. Beware that trying to hash unhashable labels will raise an error.

Note: If the graph uses StaticSparseBackend and the _immutable flag, then self is returned rather than a copy (unless one of the optional arguments is used).

OUTPUT:

A Graph object.

Warning: Please use this method only if you need to copy but change the underlying data structure or weightedness. Otherwise simply do copy(g) instead of g.copy().

Warning: If weighted is passed and is not the weightedness of the original, then the copy will not equal the original.

EXAMPLES:

sage: g = Graph({0: [0, 1, 1, 2]}, loops=True, multiedges=True, sparse=True)
sage: g == copy(g)
True
sage: g = DiGraph({0: [0, 1, 1, 2], 1: [0, 1]}, loops=True, multiedges=True, ~sparse=True)
sage: g == copy(g)
True

>>> from sage.all import *
>>> g = Graph({Integer(0): [Integer(0), Integer(1), Integer(1), Integer(2)]},... (continues on next page)
Note that vertex associations are also kept:

```python
sage: d = {0: graphs.DodecahedralGraph(), 1: graphs.FlowerSnark(), 2: graphs.MoebiusKantorGraph(), 3: graphs.PetersenGraph()}
sage: T = graphs.TetrahedralGraph()
sage: T.set_vertices(d)
sage: T2 = copy(T)
sage: T2.get_vertex(0)
Dodecahedron: Graph on 20 vertices
```

Notice that the copy is at least as deep as the objects:

```python
sage: T2.get_vertex(0) is T.get_vertex(0)
False
```

Examples of the keywords in use:

```python
sage: G = graphs.CompleteGraph(9)
sage: H = G.copy()
sage: H == G; H is G
True False
sage: G1 = G.copy(sparse=True)
sage: G1 == G True
sage: G1 is G False
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.CompleteGraph(Integer(9))
(continues on next page)
```
>>> H = G.copy()
>>> H == G; H is G
True False
>>> G1 = G.copy(sparse=True)
>>> G1 == G
True
>>> G1 is G
False
>>> G2 = copy(G)
>>> G2 is G
False

Argument `weighted` affects the equality class:

```
sage: G = graphs.CompleteGraph(5)
sage: H1 = G.copy(weighted=False)
sage: H2 = G.copy(weighted=True)
sage: [G.weighted(), H1.weighted(), H2.weighted()]
[False, False, True]
sage: [G == H1, G == H2, H1 == H2]
[True, False, False]
sage: G.weighted(True)
>>> [G == H1, G == H2, H1 == H2]
[False, True, False]
```

`crossing_number()`

Return the crossing number of the graph.

The crossing number of a graph is the minimum number of edge crossings needed to draw the graph on a plane. It can be seen as a measure of non-planarity; a planar graph has crossing number zero.

See the Wikipedia article Crossing_number for more information.

EXAMPLES:

```
sage: P = graphs.PetersenGraph()
sage: P.crossing_number()
2
```

```
>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> P.crossing_number()
2
```
ALGORITHM:
This is slow brute force implementation: for every \(k \) pairs of edges try adding a new vertex for a crossing
point for them. If the result is not planar in any of those, try \(k + 1 \) pairs.
Computing the crossing number is NP-hard problem.

cycle_basis \((output='vertex')\)
Return a list of cycles which form a basis of the cycle space of self.
A basis of cycles of a graph is a minimal collection of cycles (considered as sets of edges) such that the edge
set of any cycle in the graph can be written as a \(\mathbb{Z}/2\mathbb{Z} \) sum of the cycles in the basis.
See the Wikipedia article Cycle_basics for more information.

INPUT:

- \(output \) – string (default: 'vertex'); whether every cycle is given as a list of vertices (output ==
 'vertex') or a list of edges (output == 'edge')

OUTPUT:
A list of lists, each of them representing the vertices (or the edges) of a cycle in a basis.

ALGORITHM:
Uses the NetworkX library for graphs without multiple edges.
Otherwise, by the standard algorithm using a spanning tree.

EXAMPLES:
A cycle basis in Petersen's Graph

```python
sage: g = graphs.PetersenGraph()
sage: g.cycle_basis()  # needs networkx, random (changes in networkx 3.2)
[[1, 6, 8, 5, 0], [4, 9, 6, 8, 5, 0], [7, 9, 6, 8, 5],
 [4, 3, 8, 5, 0], [1, 2, 3, 8, 5, 0], [7, 2, 3, 8, 5]]
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()  # needs networkx, random (changes in networkx 3.2)
>>> g.cycle_basis()
[[1, 6, 8, 5, 0], [4, 9, 6, 8, 5, 0], [7, 9, 6, 8, 5],
 [4, 3, 8, 5, 0], [1, 2, 3, 8, 5, 0], [7, 2, 3, 8, 5]]
```

One can also get the result as a list of lists of edges:

```python
sage: g.cycle_basis(output='edge')  # needs networkx, random (changes in networkx 3.2)
[[[1, 6, None), (6, 8, None), (8, 5, None), (5, 0, None),
  (0, 1, None)], [[4, 9, None), (9, 6, None), (6, 8, None),
  (8, 5, None), (5, 0, None), (0, 4, None)], [[7, 9, None),
  (9, 6, None), (6, 8, None), (8, 5, None), (5, 7, None)],
 [[4, 3, None), (3, 8, None), (8, 5, None), (5, 0, None),
  (0, 4, None)], [(1, 2, None), (2, 3, None), (3, 8, None),
  (8, 5, None), (5, 0, None), (0, 1, None)], [(7, 2, None),
  (2, 3, None), (3, 8, None), (8, 5, None), (5, 7, None)]]
```
Checking the given cycles are algebraically free:

```
sage: g = graphs.RandomGNP(30, .4)  # needs networkx
sage: basis = g.cycle_basis()  # needs networkx

>>> from sage.all import *  # needs networkx
>>> g = graphs.RandomGNP(Integer(30), RealNumber('.4'))  # needs networkx
>>> basis = g.cycle_basis()  # needs networkx
```

Building the space of (directed) edges over \(\mathbb{Z}/2\mathbb{Z} \). On the way, building a dictionary associating a unique vector to each undirected edge:

```
sage: m = g.size()
sage: edge_space = VectorSpace(FiniteField(2), m)  # needs sage.modules sage.rings.finite_rings
sage: edge_vector = dict(zip(g.edges(labels=False, sort=False),  # needs sage.modules sage.rings.finite_rings
                          edge_space.basis()))
sage: for (u, v), vec in list(edge_vector.items()):
    edge_vector[(v, u)] = vec  # needs sage.modules sage.rings.finite_rings

>>> from sage.all import *  # needs sage.modules sage.rings.finite_rings
>>> m = g.size()
>>> edge_space = VectorSpace(FiniteField(Integer(2)), m)  # needs sage.modules sage.rings.finite_rings
>>> edge_vector = dict(zip(g.edges(labels=False, sort=False),  # needs sage.modules sage.rings.finite_rings
                          edge_space.basis()))
>>> for (u, v), vec in list(edge_vector.items()):
    edge_vector[(v, u)] = vec  # needs sage.modules sage.rings.finite_rings
```

Defining a lambda function associating a vector to the vertices of a cycle:

```
sage: vertices_to_edges = lambda x: zip(x, x[1:] + [x[0]])
sage: cycle_to_vector = lambda x: sum(edge_vector[e] for e in vertices_to_edges(x))
```

1.1. Generic graphs (common to directed/undirected)
Finally checking the cycles are a free set:

```python
sage: basis_as_vectors = [cycle_to_vector(_) for _ in basis]  # needs networkx sage.modules sage.rings.finite_rings
sage: edge_space.span(basis_as_vectors).rank() == len(basis)  # needs networkx sage.modules sage.rings.finite_rings
True

For undirected graphs with multiple edges:

```python
sage: G = Graph([(0, 2, 'a'), (0, 2, 'b'), (0, 1, 'c'), (1, 2, 'd')], multiedges=True)
```
```python
sage: G.cycle_basis()
[[2, 0], [2, 0, 1]]
```
```python
sage: G.cycle_basis(output=edge)
[[(0, 2, 'b'), (2, 0, 'a')], [(1, 2, 'd'), (2, 0, 'a'), (0, 1, 'c')]]
```
```python
sage: H = Graph([(1, 2), (2, 3), (2, 3), (3, 4), (1, 4), ...
 (1, 4), (4, 5), (5, 6), (4, 6), (6, 7)], multiedges=True)
```
```python
sage: H.cycle_basis()
[[4, 1], [3, 2], [4, 1, 2, 3], [6, 4, 5]]
```
```python
```
Disconnected graph:

```python
sage: G.add_cycle(['Hey', 'Wuuhuu', 'Really ?'])
```
```python
sage: [sorted(c) for c in G.cycle_basis()] # needs networkx
[['Hey', 'Really ?', 'Wuuhuu'], [0, 2], [0, 1, 2]]
```
```python
sage: [sorted(c) for c in G.cycle_basis(output='edge')] # needs networkx
```
(continues on next page)
GraphTheory, Release 10.4

(needs networkx)

\[
[(\text{Hey}, \text{Really ?}, \text{None}),
 (\text{Really ?}, \text{Wuuhuu}, \text{None}),
 (\text{Wuuhuu}, \text{Hey}, \text{None})],
 [(0, 2, 'a'), (2, 0, 'b')],
 [(0, 1, 'c'), (1, 2, 'd'), (2, 0, 'b')]
\]

```python
>>> from sage.all import *
>>> G.add_cycle(['Hey', 'Wuuhuu', 'Really ?'])
>>> [sorted(c) for c in G.cycle_basis()]
needs networkx
[[\text{Hey}, \text{Really ?}, \text{Wuuhuu}], [0, 2], [0, 1, 2]]
>>> [sorted(c) for c in G.cycle_basis(output='edge')]
needs networkx
[[\text{Hey}, \text{Really ?}, \text{None}),
 (\text{Really ?}, \text{Wuuhuu}, \text{None}),
 (\text{Wuuhuu}, \text{Hey}, \text{None})],
 [(0, 2, 'a'), (2, 0, 'b')],
 [(0, 1, 'c'), (1, 2, 'd'), (2, 0, 'b')]]
```

Graph that allows multiple edges but does not contain any:

```python
sage: G = graphs.CycleGraph(3)
sage: G.allow_multiple_edges(True)
sage: G.cycle_basis()
[[2, 0, 1]]
```

Not yet implemented for directed graphs:

```python
sage: G = DiGraph([(0, 2, 'a'), (0, 1, 'c'), (1, 2, 'd')])
sage: G.cycle_basis()
Traceback (most recent call last):
 ... NotImplementedError: not implemented for directed graphs
```

**degree** *(vertices=None, labels=False)*

Return the degree (in + out for digraphs) of a vertex or of vertices.

**INPUT:**

- *vertices* – a vertex or an iterable container of vertices (default: None); if *vertices* is a single vertex, returns the number of neighbors of that vertex. If *vertices* is an iterable container of vertices, returns a list of degrees. If *vertices* is None, same as listing all vertices.
• **labels** – boolean (default: False); when True, return a dictionary mapping each vertex in vertices to its degree. Otherwise, return the degree of a single vertex or a list of the degrees of each vertex in vertices.

**OUTPUT:**

• When **vertices** is a single vertex and **labels** is False, returns the degree of that vertex as an integer.

• When **vertices** is an iterable container of vertices (or None) and **labels** is False, returns a list of integers. The *i*-th value is the degree of the *i*-th vertex in the list **vertices**. When **vertices** is None, the *i*-th value is the degree of *i*-th vertex in the ordering list **vertices**. When **vertices** is None, the *i*-th value is the degree of *i*-th vertex in the ordering list **vertices**.

• When **labels** is True, returns a dictionary mapping each vertex in vertices to its degree.

**EXAMPLES:**

```python
sage: P = graphs.PetersenGraph()
sage: P.degree(5)
3

>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> P.degree(Integer(5))
3

sage: K = graphs.CompleteGraph(9)
sage: K.degree()
[8, 8, 8, 8, 8, 8, 8, 8, 8]

>>> from sage.all import *
>>> K = graphs.CompleteGraph(Integer(9))
>>> K.degree()
[8, 8, 8, 8, 8, 8, 8, 8, 8]

sage: D = DiGraph({0: [1, 2, 3], 1: [0, 2], 2: [3], 3: [4], 4: [0, 5], 5: [1]})
sage: D.degree(vertices=[0, 1, 2], labels=True)
{0: 5, 1: 4, 2: 3}
sage: D.degree()
[5, 4, 3, 3, 2]

>>> from sage.all import *
>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)],
Integer(1): [Integer(0), Integer(2)],
Integer(2): [Integer(3)],
Integer(3): [Integer(4)],
Integer(4): [Integer(0), Integer(5)],
Integer(5): [Integer(1)]})
>>> D.degree(vertices=[Integer(0), Integer(1), Integer(2)], labels=True)
{0: 5, 1: 4, 2: 3}
>>> D.degree()
[5, 4, 3, 3, 2]
```

When **vertices=None** and **labels=False**, the *i*-th value of the returned list is the degree of the *i*-th vertex in the list list **vertices**: 

```python
sage: # needs sage.combinat
sage: D = digraphs.DeBruijn(4, 2)
```

(continues on next page)
sage: D.delete_vertex('20')
sage: print(D.degree())
[7, 7, 6, 7, 8, 8, 7, 8, 8, 8, 7, 8, 7, 8, 8, 8, 7, 8]
sage: print(D.degree(vertices=list(D)))
[7, 7, 6, 7, 8, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8]
sage: print(D.degree(vertices=D.vertices(sort=False)))
[7, 7, 6, 7, 8, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8]

>>> from sage.all import *
>>> # needs sage.combinat
>>> D = digraphs.DeBruijn(Integer(4), Integer(2))
>>> D.delete_vertex('20')
>>> print(D.degree())
[7, 7, 6, 7, 8, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8, 7, 8, 7, 8]
>>> print(D.degree(vertices=list(D)))
[7, 7, 6, 7, 8, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8]
>>> print(D.degree(vertices=D.vertices(sort=False)))
[7, 7, 6, 7, 8, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8]

degree_histogram()
Return a list, whose i-th entry is the frequency of degree i.

EXAMPLES:

sage: G = graphs.Grid2dGraph(9, 12)

sage: G.degree_histogram()
[0, 0, 4, 34, 70]

>>> from sage.all import *
>>> G = graphs.Grid2dGraph(Integer(9), Integer(12))
>>> G.degree_histogram()
[0, 0, 4, 34, 70]

sage: G = graphs.Grid2dGraph(9, 12).to_directed()

sage: G.degree_histogram()
[0, 0, 0, 0, 4, 0, 34, 0, 70]

>>> from sage.all import *
>>> G = graphs.Grid2dGraph(Integer(9), Integer(12)).to_directed()
>>> G.degree_histogram()
[0, 0, 0, 0, 4, 0, 34, 0, 70]

degree_iterator (vertices=None, labels=False)
Return an iterator over the degrees of the (di)graph.

In the case of a digraph, the degree is defined as the sum of the in-degree and the out-degree, i.e. the total number of edges incident to a given vertex.

INPUT:

- vertices – a vertex or an iterable container of vertices (default: None): if vertices is a single vertex, the iterator will yield the number of neighbors of that vertex. If vertices is an iterable container of vertices, return an iterator over the degrees of these vertices. If vertices is None, same as listing all vertices.
- labels – boolean (default: False): whether to return an iterator over degrees (labels=False), or over tuples (vertex, degree)
Note: The returned iterator yields values in order specified by \texttt{list(\texttt{vertices})}. When \texttt{vertices} is \texttt{None}, it yields values in the same order as \texttt{list(\texttt{self})}, which might be different from the ordering of the vertices given by \texttt{g.vertices(sort=True)}.

EXAMPLES:

```python
sage: G = graphs.Grid2dGraph(3, 4)
sage: for i in G.degree_iterator():
 print(i)
2
3
3
...
3
2
sage: for i in G.degree_iterator(labels=True):
 print(i)
((0, 0), 2)
((0, 1), 3)
((0, 2), 3)
...
((2, 2), 3)
((2, 3), 2)
```

```python
>>> from sage.all import *
>>> G = graphs.Grid2dGraph(Integer(3), Integer(4))
>>> for i in G.degree_iterator():
... print(i)
2
3
3
...
3
2
>>> for i in G.degree_iterator(labels=True):
... print(i)
((0, 0), 2)
((0, 1), 3)
((0, 2), 3)
...
((2, 2), 3)
((2, 3), 2)
```

```python
sage: D = graphs.Grid2dGraph(2, 4).to_directed()
sage: for i in D.degree_iterator():
 print(i)
4
6
...
6
4
sage: for i in D.degree_iterator(labels=True):
 print(i)
((0, 0), 4)
((0, 1), 6)
```

(continues on next page)
(continued from previous page)

```python
>>> from sage.all import *
>>> D = graphs.Grid2dGraph(Integer(2), Integer(4)).to_directed()
>>> for i in D.degree_iterator():
... print(i)
4
6
...
6
4
>>> for i in D.degree_iterator(labels=True):
... print(i)
((0, 0), 4)
((0, 1), 6)
...
((1, 2), 6)
((1, 3), 4)
```

When vertices=None yields values in the order of list(D):

```python
sage: V = list(D)
sage: D = digraphs.DeBruijn(4, 2) # needs sage.combinat
sage: D.delete_vertex('20') # needs sage.combinat
sage: print(list(D.degree_iterator())) # needs sage.combinat
[7, 7, 6, 7, 8, 8, 7, 8, 8, 7, 8, 8, 7, 8, 8, 7, 8]
sage: print([D.degree(v) for v in D]) # needs sage.combinat
[7, 7, 6, 7, 8, 8, 7, 8, 8, 7, 8, 8, 7, 8, 8, 7, 8]
```

```python
>>> from sage.all import *
>>> V = list(D)
>>> D = digraphs.DeBruijn(Integer(4), Integer(2)) # needs sage.combinat
>>> D.delete_vertex('20') # needs sage.combinat
>>> print(list(D.degree_iterator())) # needs sage.combinat
[7, 7, 6, 7, 8, 8, 7, 8, 8, 7, 8, 8, 7, 8, 8, 7, 8]
>>> print([D.degree(v) for v in D]) # needs sage.combinat
[7, 7, 6, 7, 8, 8, 7, 8, 8, 7, 8, 8, 7, 8, 8, 7, 8]
```

degree_sequence()

Return the degree sequence of this (di)graph.

EXAMPLES:
The degree sequence of an undirected graph:
Graph objects and methods

```python
sage: g = Graph({1: [2, 5], 2: [1, 5, 3, 4], 3: [2, 5], 4: [3], 5: [2, 3]})
sage: g.degree_sequence()
[4, 3, 3, 2, 2]
```

The degree sequence of a digraph:

```python
sage: g = DiGraph({1: [2, 5, 6], 2: [3, 6], 3: [4, 6], 4: [6], 5: [4, 6]})
sage: g.degree_sequence()
[5, 3, 3, 3, 3, 3]
```

Degree sequences of some common graphs:

```python
sage: graphs.PetersenGraph().degree_sequence()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
sage: graphs.HouseGraph().degree_sequence()
[3, 3, 2, 2, 2]
sage: graphs.FlowerSnark().degree_sequence()
```

```python
>>> from sage.all import *
```
>>> cell = G.vertices(sort=True)[:Integer(3)]
>>> G.degree_to_cell('011', cell)
2
>>> G.degree_to_cell('111', cell)
0

sage: D = DiGraph({ 0:[1,2,3], 1:[3,4], 3:[4,5]})
sage: cell = [0,1,2]
sage: D.degree_to_cell(5, cell)
(0, 0)
sage: D.degree_to_cell(3, cell)
(2, 0)
sage: D.degree_to_cell(0, cell)
(0, 2)

>>> from sage.all import *


>>>

delete_edge(u, v=None, label=None)
Delete the edge from u to v.
This method returns silently if vertices or edge does not exist.

INPUT: The following forms are all accepted:
• G.delete_edge( 1, 2 )
• G.delete_edge((1, 2))
• G.delete_edges([(1, 2)])
• G.delete_edge(1, 2, 'label')
• G.delete_edge((1, 2, 'label'))
• G.delete_edges([(1, 2, 'label')])

EXAMPLES:

sage: G = graphs.CompleteGraph(9)
sage: G.size()
36
sage: G.delete_edge( 1, 2 )
sage: G.delete_edge( (3, 4) )
sage: G.delete_edges( [ (5, 6), (7, 8) ] )
sage: G.size()
32

>>> from sage.all import *

(continues on next page)
>>> G.size()
36
>>> G.delete_edge( Integer(1), Integer(2) )
>>> G.delete_edge( (Integer(3), Integer(4)) )
>>> G.delete_edges( [ (Integer(5), Integer(6)), (Integer(7), Integer(8)) ] )
>>> G.size()
32

sage: G.delete_edge( 2, 3, 'label' )
sage: G.delete_edge( (4, 5, 'label') )
sage: G.delete_edges( [ (6, 7, 'label') ] )
sage: G.size()
32
sage: G.has_edge( (4, 5) )  # correct!
True
sage: G.has_edge( (4, 5, 'label') )  # correct!
False

>>> from sage.all import *

>>> C = digraphs.Complete(9)
sage: C.size()
72
>>> C.delete_edge( 1, 2 )
>>> C.delete_edge( (3, 4) )
>>> C.delete_edges( [ (5, 6), (7, 8) ] )
sage: C.size()
68

>>> from sage.all import *

>>> C = digraphs.Complete(Integer(9))
sage: C.size()
72
>>> C.delete_edge( Integer(1), Integer(2) )
>>> C.delete_edge( (Integer(3), Integer(4)) )
>>> C.delete_edges( [ (Integer(5), Integer(6)), (Integer(7), Integer(8)) ] )
>>> C.size()
68

sage: C.delete_edge( 2, 3, 'label' )
sage: C.delete_edge( (4, 5, 'label') )
sage: C.delete_edges( [ (6, 7, 'label') ] )
sage: C.size()  # correct!
68
sage: C.has_edge( (4, 5) )  # correct!
True
delete_edges (edges)
Delete edges from an iterable container.

EXAMPLES:

```
sage: K12 = graphs.CompleteGraph(12)
sage: K4 = graphs.CompleteGraph(4)
sage: K12.size()
66
sage: K12.delete_edges(K4.edge_iterator())
sage: K12.size()
60
```

```
>>> from sage.all import *
>>> K12 = graphs.CompleteGraph(Integer(12))
>>> K4 = graphs.CompleteGraph(Integer(4))
>>> K12.size()
132
>>> K12.delete_edges(K4.edge_iterator())
>>> K12.size()
120
```

delete_multiedge (u, v)
Delete all edges from u to v.

1.1. Generic graphs (common to directed/undirected)
EXAMPLES:

```python
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0, 1), (0, 1), (0, 1), (1, 2), (2, 3)])
sage: G.edges(sort=True)
[(0, 1, None), (0, 1, None), (0, 1, None), (1, 2, None), (2, 3, None)]
sage: G.delete_multiedge(0, 1)
sage: G.edges(sort=True)
[(1, 2, None), (2, 3, None)]
```

```python
>>> from sage.all import *
>>> G = Graph(multiedges=True, sparse=True)
>>> G.add_edges([(Integer(0), Integer(1)), (Integer(0), Integer(1)),
 (Integer(0), Integer(1)), (Integer(1), Integer(2)),
 (Integer(2), Integer(3))])
>>> G.edges(sort=True)
[(0, 1, None), (0, 1, None), (0, 1, None), (1, 2, None), (2, 3, None)]
>>> G.delete_multiedge(Integer(0), Integer(1))
>>> G.edges(sort=True)
[(1, 0, None), (1, 2, None), (2, 3, None)]
```

```python
d = DiGraph(multiedges=True, sparse=True)
d.add_edges([(0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 0, None),
 (1, 2, None), (2, 3, None)])
d.edges(sort=True)
[(0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 0, None), (1, 2, None), (2, 3, None)]
d.delete_multiedge(0, 1)
d.edges(sort=True)
[(1, 0, None), (1, 2, None), (2, 3, None)]
```

```python
>>> from sage.all import *
>>> D = DiGraph(multiedges=True, sparse=True)
>>> D.add_edges([(Integer(0), Integer(1), Integer(1)),
 (Integer(0), Integer(1), Integer(2)),
 (Integer(0), Integer(1), Integer(3)),
 (Integer(1), Integer(0), None),
 (Integer(1), Integer(2), None),
 (Integer(2), Integer(3), None)])
>>> D.edges(sort=True)
[(0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 0, None), (1, 2, None), (2, 3, None)]
>>> D.delete_multiedge(Integer(0), Integer(1))
>>> D.edges(sort=True)
[(1, 0, None), (1, 2, None), (2, 3, None)]
```

```
\textbf{delete_vertex}(\textit{vertex, in_order=False})

Delete vertex, removing all incident edges.

Deleting a non-existent vertex will raise an exception.

INPUT:

- \textit{in_order} – boolean (default: False); if True, this deletes the \textit{i}-th vertex in the sorted list of vertices, i.e. \texttt{G.vertices(sort=True)[i]}

EXAMPLES:

```python
sage: G = Graph(graphs.WheelGraph(9))
sage: G.delete_vertex(0)
sage: G.show() # needs sage.plot
```
```
```
>>> from sage.all import *
>>> G = Graph(graphs.WheelGraph(Integer(9)))
>>> G.delete_vertex(Integer(0))
>>> G.show() # needs sage.plot
sage: D = DiGraph({0: [1, 2, 3, 4, 5], 1: [2], 2: [3], 3: [4], 4: [5], 5: [1]})
sage: D.delete_vertex(0); D
Digraph on 5 vertices
sage: D.vertices(sort=True)
[1, 2, 3, 4, 5]
Traceback (most recent call last):
...
ValueError: vertex (0) not in the graph

>>> from sage.all import *
>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3), Integer(4),
 Integer(5)], Integer(1): [Integer(2)], Integer(2): [Integer(3)],
 Integer(3): [Integer(4)], Integer(4): [Integer(5)], Integer(5):[Integer(1)])})
>>> D.delete_vertex(Integer(0)); D
Digraph on 5 vertices
>>> D.vertices(sort=True)
[1, 2, 3, 4, 5]
>>> D.delete_vertex(Integer(0))
Traceback (most recent call last):
...
ValueError: vertex (0) not in the graph

sage: G = graphs.CompleteGraph(4).line_graph(labels=False)
sage: G.vertices(sort=True)
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
>>> G.delete_vertex(0, in_order=True)
>>> G.vertices(sort=True)
[(0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

sage: G = graphs.PathGraph(5)
sage: G.set_vertices({Integer(0): 'no delete', Integer(1): 'delete'})
sage: G.delete_vertex(Integer(1))
sage: G.get_vertices()
{0: 'no delete', 2: None, 3: None, 4: None}

sage: G.get_pos()
{0: (0, 0), 2: (2, 0), 3: (3, 0), 4: (4, 0)}
>>> from sage.all import *
>>> G = graphs.CompleteGraph(Integer(4)).line_graph(labels=False)
>>> G.vertices(sort=True)
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
>>> G.delete_vertex(Integer(0), in_order=True)
>>> G.vertices(sort=True)
[(0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
>>> G = graphs.PathGraph(Integer(5))
>>> G.set_vertices({Integer(0): 'no delete', Integer(1): 'delete'})
>>> G.delete_vertex(Integer(1))
>>> G.get_vertices()
```

(continues on next page)
delete_vertices\( (\textit{vertices}) \)

Delete vertices from the (di)graph taken from an iterable container of vertices.

Deleting a non-existent vertex will raise an exception, in which case none of the vertices in \textit{vertices} is deleted.

EXAMPLES:

```python
sage: D = DiGraph({0: [1, 2, 3, 4, 5], 1: [2], 2: [3], 3: [4], 4: [5], 5: [1]})
sage: D.delete_vertices([1, 2, 3, 4, 5]); D
Digraph on 1 vertex
sage: D.vertices(sort=False)
[0]
sage: D.delete_vertices([1])
Traceback (most recent call last):
... ValueError: vertex (1) not in the graph
```

density()

Return the density of the (di)graph.

The density of a (di)graph is defined as the number of edges divided by number of possible edges.

In the case of a multigraph, raises an error, since there is an infinite number of possible edges.

EXAMPLES:

```python
sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7, 8], 6: [8, 9], 7: [9]}
sage: G = Graph(d); G.density()
1/3
sage: G = Graph({0: [1, 2], 1: [0]}); G.density()
2/3
sage: G = DiGraph({0: [1, 2], 1: [0]}); G.density()
1/2
```
>>> from sage.all import *
>>> d = {Integer(0): [Integer(1), Integer(4), Integer(5)], Integer(1):
    → [Integer(2), Integer(6)], Integer(2): [Integer(3), Integer(7)], Integer(3):
    → [Integer(4), Integer(8)], Integer(4): [Integer(9)], Integer(5): [Integer(7),
    → Integer(8)], Integer(6): [Integer(8), Integer(9)], Integer(7): [Integer(9)]}
>>> G = Graph(d); G.density()
1/3
>>> G = Graph({Integer(0): [Integer(1), Integer(2)], Integer(1): [Integer(0)]})
→ ); G.density()
2/3
>>> G = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(1): ...
→ [Integer(0)]}); G.density()
1/2

Note that there are more possible edges on a looped graph:

sage: G.allow_loops(True)
sage: G.density()
1/3

>>> from sage.all import *
>>> G.allow_loops(True)
>>> G.density()
1/3

**depth_first_search** *(start, ignore_direction=False, neighbors=None, edges=False)*

Return an iterator over the vertices in a depth-first ordering.

**INPUT:**

- **start** – vertex or list of vertices from which to start the traversal
- **ignore_direction** – boolean (default: False); only applies to directed graphs. If True, searches across edges in either direction.
- **neighbors** – function (default: None); a function that inputs a vertex and return a list of vertices. For an undirected graph, neighbors is by default the `neighbors()` function. For a digraph, the neighbors function defaults to the `neighbor_out_iterator()` function of the graph.
- **edges** – boolean (default: False); whether to return the edges of the DFS tree in the order of visit or the vertices (default). Edges are directed in root to leaf orientation of the tree.

**See also:**

- `breadth_first_search()`
- `breadth_first_search` – breadth-first search for fast compiled graphs.
- `depth_first_search` – depth-first search for fast compiled graphs.

**EXAMPLES:**

sage: G = Graph({0: [1], 1: [2], 2: [3], 3: [4], 4: [0]})
sage: list(G.depth_first_search(0))
[0, 4, 3, 2, 1]
By default, the edge direction of a digraph is respected, but this can be overridden by the `ignore_direction` parameter:

```plaintext
sage: D = DiGraph({0: [1, 2, 3], 1: [4, 5], 2: [5], 3: [6], 5: [7], 6: [7],
 7: [0]})
```

```plaintext
sage: list(D.depth_first_search(0))
[0, 3, 6, 7, 2, 5, 1, 4]
```

```plaintext
sage: list(D.depth_first_search(0, ignore_direction=True))
[0, 7, 6, 3, 5, 2, 1, 4]
```

Multiple starting vertices can be specified in a list:

```plaintext
sage: D = DiGraph({0: [1, 2, 3], 1: [4, 5], 2: [5], 3: [6], 5: [7], 6: [7],
 7: [0]})
```

```plaintext
sage: list(D.depth_first_search([0]))
[0, 3, 6, 7, 2, 5, 1, 4]
```

```plaintext
sage: list(D.depth_first_search([0, 6]))
[0, 3, 6, 7, 2, 5, 1, 4]
```

```plaintext
>>> from sage.all import *
```

```plaintext
>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)],
 Integer(1): [Integer(4), Integer(5)], Integer(2): [Integer(5)], Integer(3):
 [Integer(6)], Integer(5): [Integer(7)], Integer(6): [Integer(7)],
 Integer(7): [Integer(0)])
```

```plaintext
>>> list(D.depth_first_search(Integer(0)))
[0, 3, 6, 7, 2, 5, 1, 4]
```

```plaintext
>>> list(D.depth_first_search(Integer(0), ignore_direction=True))
[0, 7, 6, 3, 5, 2, 1, 4]
```

More generally, you can specify a `neighbors` function. For example, you can traverse the graph backwards by setting `neighbors` to be the `neighbors_in()` function of the graph:

```plaintext
sage: D = digraphs.Path(10)
```

```plaintext
sage: D.add_path([22, 23, 24, 5])
```

```plaintext
sage: D.add_path([5, 33, 34, 35])
```

```plaintext
sage: list(D.depth_first_search(5, neighbors=D.neighbors_in))
[5, 24, 23, 22, 4, 3, 2, 1, 0]
```

```plaintext
sage: list(D.breadth_first_search(5, neighbors=D.neighbors_in))
[5, 4, 24, 3, 23, 2, 22, 1, 0]
```

```plaintext
sage: list(D.depth_first_search(5, neighbors=D.neighbors_out))
[5, 33, 34, 35, 6, 7, 8, 9]
```
\begin{verbatim}
sage: list(D.breadth_first_search(5, neighbors=D.neighbors_out))
[5, 6, 33, 7, 34, 8, 35, 9]

>>> from sage.all import *

>>> D = digraphs.Path(Integer(10))

>>> D.add_path([Integer(22), Integer(23), Integer(24), Integer(5)])

>>> D.add_path([Integer(5), Integer(33), Integer(34), Integer(35)])

>>> list(D.depth_first_search(Integer(5), neighbors=D.neighbors_in))
[5, 24, 23, 22, 4, 3, 2, 1, 0]

>>> list(D.breadth_first_search(Integer(5), neighbors=D.neighbors_in))
[5, 4, 24, 3, 23, 2, 22, 1, 0]

>>> list(D.depth_first_search(Integer(5), neighbors=D.neighbors_out))
[5, 33, 34, 35, 6, 7, 8, 9]

>>> list(D.breadth_first_search(Integer(5), neighbors=D.neighbors_out))
[5, 6, 33, 7, 34, 8, 35, 9]

You can get edges of the DFS tree instead of the vertices using the edges parameter:

sage: D = digraphs.Path(5)

sage: list(D.depth_first_search(2, edges=True))
[(2, 3), (3, 4)]

sage: list(D.depth_first_search(2, edges=True, ignore_direction=True))
[(2, 3), (3, 4), (2, 1), (1, 0)]

\end{verbatim}

\textbf{disjoint_routed_paths} \((pairs, solver, verbose=None, integrality_tolerance=0)\)

Return a set of disjoint routed paths.

Given a set of pairs \((s_i, t_i)\), a set of disjoint routed paths is a set of \(s_i - t_i\) paths which can intersect at their endpoints and are vertex-disjoint otherwise.

\textbf{INPUT}:

- \texttt{pairs} – list of pairs of vertices
- \texttt{solver} – string (default: \texttt{None}); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to \texttt{None}, the default one is used. For more information on MILP solvers and which default solver is used, see the method \texttt{solve} of the class \texttt{MixedIntegerLinearProgram}.
- \texttt{verbose} – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- \texttt{integrality_tolerance} – float; parameter for use with MILP solvers over an inexact base ring; see \texttt{MixedIntegerLinearProgram.get_values()}.

\textbf{EXAMPLES}:

Given a grid, finding two vertex-disjoint paths, the first one from the top-left corner to the bottom-left corner, and the second from the top-right corner to the bottom-right corner is easy:

sage: g = graphs.Grid2dGraph(5, 5)
sage: p1,p2 = g.disjoint_routed_paths({((0, 0), (0, 4)), ((4, 4), (4, 0))})
... # needs sage.numerical.mip

\section{1.1. Generic graphs (common to directed/undirected)}
>>> from sage.all import *

>>> g = graphs.Grid2dGraph(Integer(5), Integer(5))

... p1, p2 = g.disjoint_routed_paths([(0, 0), (4, 4)], (0, 4), (4, 0)])  # needs sage.numerical.mip

Though there is obviously no solution to the problem in which each corner is sending information to the
opposite one:

sage: g = graphs.Grid2dGraph(5, 5)
sage: p1, p2 = g.disjoint_routed_paths([(0, 0), (4, 4)], (0, 4), (4, 0)])  # needs sage.numerical.mip
Traceback (most recent call last):
...
EmptySetError: the disjoint routed paths do not exist

Disjoint Union

\texttt{disjoint} \_union(other, labels='pairs', immutable=None)

Return the disjoint union of self and other.

INPUT:

- \texttt{labels} – string (default: 'pairs'); if set to 'pairs', each element \(v\) in the first graph will
be named \((0, v)\) and each element \(u\) in other will be named \((1, u)\) in the result. If set to
'\texttt{integers}', the elements of the result will be relabeled with consecutive integers.

- \texttt{immutable} – boolean (default: None); whether to create a mutable/immutable disjoint union. immutable=None (default) means that the graphs and their disjoint union will behave the same way.

See also:

- union()
- join()

EXAMPLES:

sage: G = graphs.CycleGraph(3)
sage: H = graphs.CycleGraph(4)
sage: J = G.disjoint_union(H); J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: J.vertices(sort=True)
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3)]
sage: J = G.disjoint_union(H, labels='integers'); J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: j.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6]
sage: (G + H).vertices(sort=True)  # '+'-operator is a shortcut
[0, 1, 2, 3, 4, 5, 6]
>>> from sage.all import *
>>> G = graphs.CycleGraph(Integer(3))
>>> H = graphs.CycleGraph(Integer(4))
>>> J = G.disjoint_union(H); J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
>>> J.vertices(sort=True)
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3)]
>>> J = G.disjoint_union(H, labels='integers'); J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
>>> J.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6]
>>> (G + H).vertices(sort=True)  # '+'-operator is a shortcut
[0, 1, 2, 3, 4, 5, 6]

sage: G = Graph({a: [b]})
sage: G.name("Custom path")
sage: G.name()
'Custom path'
sage: H = graphs.CycleGraph(3)
sage: J = G.disjoint_union(H); J
Custom path disjoint_union Cycle graph: Graph on 5 vertices
sage: J.vertices(sort=True)
[(0, 'a'), (0, 'b'), (1, 0), (1, 1), (1, 2)]

>>> from sage.all import *
>>> G = Graph({a: [b]})
>>> G.name("Custom path")
>>> G.name()
'Custom path'
>>> H = graphs.CycleGraph(Integer(3))
>>> J = G.disjoint_union(H); J
Custom path disjoint_union Cycle graph: Graph on 5 vertices
>>> J.vertices(sort=True)
[(0, 'a'), (0, 'b'), (1, 0), (1, 1), (1, 2)]

**disjunctive_product** (other)

Return the disjunctive product of self and other.

The disjunctive product of $G$ and $H$ is the graph $L$ with vertex set $V(L) = V(G) \times V(H)$, and $((u,v),(w,x))$ is an edge iff either:

- $(u,w)$ is an edge of $G$, or
- $(v,x)$ is an edge of $H$.

**EXAMPLES:**

sage: Z = graphs.CompleteGraph(2)
sage: D = Z.disjunctive_product(Z); D
Graph on 4 vertices
sage: D.plot()  # long time
# needs sage.plot
Graphics object consisting of 11 graphics primitives

>>> from sage.all import *
>>> Z = graphs.CompleteGraph(Integer(2))
>>> D = Z.disjunctive_product(Z); D

(continues on next page)
Graph on 4 vertices

```python
>>> D.plot()
long time
--> needs sage.plot
```

```python
sage: C = graphs.CycleGraph(5)
sage: D = C.disjunctive_product(Z); D
```

Graph on 10 vertices

```python
>>> D.plot()
long time
--> needs sage.plot
```

```python
>>> from sage.all import *
```

```python
>>> C = graphs.CycleGraph(Integer(5))
```

```python
>>> D = C.disjunctive_product(Z); D
```

Graph on 10 vertices

```python
>>> D.plot()
long time
--> needs sage.plot
```

```python
from sage.all import *
```

```python
>>> C = graphs.CycleGraph(Integer(5))
```

```python
>>> D = C.disjunctive_product(Z); D
```

Graph on 10 vertices

```python
>>> D.plot()
long time
--> needs sage.plot
```

```
distance (u, v, by_weight=False, weight_function=None, check_weight=True)
```

Return the (directed) distance from \( u \) to \( v \) in the (di)graph.

The distance is the length of the shortest path from \( u \) to \( v \).

This method simply calls `shortest_path_length()`, with default arguments. For more information, and for more option, we refer to that method.

**INPUT:**

- `by_weight` – boolean (default: False); if False, the graph is considered unweighted, and the distance is the number of edges in a shortest path. If True, the distance is the sum of edge labels (which are assumed to be numbers).

- `weight_function` – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, `by_weight` is automatically set to True. If None and `by_weight` is True, we use the edge label \( l \), if \( l \) is not None, else 1 as a weight.

- `check_weight` – boolean (default: True); whether to check that the weight_function outputs a number for each edge.

**EXAMPLES:**

```python
sage: G = graphs.CycleGraph(9)
sage: G.distance(0, 1)
1
sage: G.distance(0, 4)
4
sage: G.distance(0, 5)
4
sage: G = Graph({0: [], 1: []})
```

```python
sage: G.distance(0, 1)
+Infinity
```

```python
sage: G = Graph({0: [1, 1]: [2: 1], 2: [3: 1], 3: [4: 2], 4: [0: 2]},
 sparse = True)
```

```python
sage: G.plot(edge_labels=True).show() # long time
```

```python
-- needs sage.plot
```

(continues on next page)
distance_all_pairs(by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return the distances between all pairs of vertices.

INPUT:

- by_weight boolean (default: False); if True, the edges in the graph are weighted; if False, all edges have weight 1.
- algorithm – string (default: None); one of the following algorithms:
  - 'BFS': the computation is done through a BFS centered on each vertex successively. Works only if by_weight=False.
  - 'Floyd-Warshall-Cython': the Cython implementation of the Floyd-Warshall algorithm. Works only if by_weight=False.
  - 'Floyd-Warshall-Python': the Python implementation of the Floyd-Warshall algorithm. Works also with weighted graphs, even with negative weights (but no negative cycle is allowed).
  - 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX. It works with weighted graphs, but no negative weight is allowed.
  - 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive weights).
  - 'Johnson_Boost': the Johnson algorithm, implemented in Boost (works also with negative weights, if there is no negative cycle).
  - None (default): Sage chooses the best algorithm: 'BFS' if by_weight is False, 'Dijkstra_Boost' if all weights are positive, 'Floyd-Warshall-Cython' otherwise.
• weight_function – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label 1, if 1 is not None, else 1 as a weight.

• check_weight – boolean (default: True); whether to check that the weight_function outputs a number for each edge.

OUTPUT:
A doubly indexed dictionary

Note: There is a Cython version of this method that is usually much faster for large graphs, as most of the time is actually spent building the final double dictionary. Everything on the subject is to be found in the distances_all_pairs module.

Note: This algorithm simply calls GenericGraph.shortest_path_all_pairs(), and we suggest to look at that method for more information and examples.

EXAMPLES:
The Petersen Graph:

\[
\begin{align*}
\text{sage: } g &= \text{graphs.PetersenGraph()} \\
\text{sage: } \text{print}(g.\text{distance_all_pairs}())
\end{align*}
\]

\[
(0: \{0: 0, 1: 1, 2: 2, 3: 2, 4: 1, 5: 1, 6: 2, 7: 2, 8: 2, 9: 2\}, \\
1: \{0: 1, 1: 0, 2: 1, 3: 2, 4: 2, 5: 2, 6: 1, 7: 2, 8: 2, 9: 2\}, \\
2: \{0: 2, 1: 1, 2: 0, 3: 1, 4: 2, 5: 2, 6: 2, 7: 1, 8: 2, 9: 2\}, \\
3: \{0: 2, 1: 2, 2: 1, 3: 0, 4: 1, 5: 2, 6: 2, 7: 2, 8: 1, 9: 2\}, \\
4: \{0: 1, 1: 2, 2: 2, 3: 1, 4: 0, 5: 2, 6: 2, 7: 2, 8: 2, 9: 1\}, \\
5: \{0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 0, 6: 2, 7: 1, 8: 1, 9: 2\}, \\
6: \{0: 2, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2, 6: 0, 7: 2, 8: 1, 9: 1\}, \\
7: \{0: 2, 1: 2, 2: 1, 3: 2, 4: 2, 5: 1, 6: 2, 7: 0, 8: 2, 9: 1\}, \\
8: \{0: 2, 1: 2, 2: 2, 3: 1, 4: 2, 5: 1, 6: 1, 7: 2, 8: 0, 9: 2\}, \\
9: \{0: 2, 1: 2, 2: 2, 3: 2, 4: 1, 5: 2, 6: 1, 7: 1, 8: 2, 9: 0\})
\]

Testing on Random Graphs:

\[
\begin{align*}
\text{>>> from sage.all import } & \ast \\
\text{>>> g } &= \text{graphs.PetersenGraph()} \\
\text{>>> print}(g.\text{distance_all_pairs}())
\end{align*}
\]

\[
(0: \{0: 0, 1: 1, 2: 2, 3: 2, 4: 1, 5: 1, 6: 2, 7: 2, 8: 2, 9: 2\}, \\
1: \{0: 1, 1: 0, 2: 1, 3: 2, 4: 2, 5: 2, 6: 1, 7: 2, 8: 2, 9: 2\}, \\
2: \{0: 2, 1: 1, 2: 0, 3: 1, 4: 2, 5: 2, 6: 2, 7: 1, 8: 2, 9: 2\}, \\
3: \{0: 2, 1: 2, 2: 2, 3: 1, 4: 0, 5: 2, 6: 2, 7: 2, 8: 2, 9: 2\}, \\
4: \{0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 0, 6: 2, 7: 1, 8: 1, 9: 2\}, \\
5: \{0: 2, 1: 1, 2: 2, 3: 2, 4: 2, 5: 0, 6: 2, 7: 0, 8: 2, 9: 1\}, \\
6: \{0: 2, 1: 2, 2: 1, 3: 2, 4: 2, 5: 1, 6: 2, 7: 0, 8: 2, 9: 1\}, \\
7: \{0: 2, 1: 2, 2: 2, 3: 1, 4: 2, 5: 1, 6: 1, 7: 2, 8: 0, 9: 2\}, \\
8: \{0: 2, 1: 2, 2: 2, 3: 2, 4: 1, 5: 2, 6: 1, 7: 1, 8: 2, 9: 0\})
\]

Testing on Random Graphs:

\[
\begin{align*}
\text{sage: } g &= \text{graphs.RandomGNP}(20, .3) \\
\text{sage: } \text{distances } &= g.\text{distance_all_pairs}() \\
\text{sage: } \text{all}(g.\text{distance}(0,v) == \text{Infinity and } v \text{ not in distances[0]} \text{ or} \\
\text{.....: } g.\text{distance}(0,v) == \text{distances[0][v] for } v \text{ in } g) \\
\text{True}
\end{align*}
\]
>>> from sage.all import *

>>> g = graphs.RandomGNP(Integer(20), RealNumber('0.3'))

>>> distances = g.distance_all_pairs()

>>> all((g.distance(Integer(0), v) == Infinity and v not in

        distances[Integer(0)]) or

       g.distance(Integer(0), v) == distances[Integer(0)][v] for v in g)

True

See also:

- distance_matrix()
- shortest_path_all_pairs()

**distance_matrix** (vertices, base_ring=None, **kwds)

Return the distance matrix of (di)graph.

The (di)graph is expected to be (strongly) connected.

The distance matrix of a (strongly) connected (di)graph is a matrix whose rows and columns are by default (vertices == None) indexed with the positions of the vertices of the (di)graph in the ordering vertices(). When vertices is set, the position of the vertices in this ordering is used. The intersection of row \(i\) and column \(j\) contains the shortest path distance from the vertex at the \(i\)-th position to the vertex at the \(j\)-th position.

Note that even when the vertices are consecutive integers starting from one, usually the vertex is not equal to its index.

**INPUT:**

- vertices – list (default: None); the ordering of the vertices defining how they should appear in the matrix. By default, the ordering given by vertices() is used. Because vertices() only works if the vertices can be sorted, using vertices is useful when working with possibly non-sortable objects in Python 3.
- base_ring – a ring (default: determined from the weights); the base ring of the matrix space to use.
- **kwds – other keywords to pass to the subfunction distance_all_pairs() or to matrix()

**EXAMPLES:**

```python
sage: d = DiGraph({1: [2, 3], 2: [3], 3: [4], 4: [1]})
sage: d.distance_matrix() # needs sage.modules
[0 1 1 2]
[3 0 1 2]
[2 3 0 1]
[1 2 2 0]
sage: d.distance_matrix(vertices=[4, 3, 2, 1]) # needs sage.modules
[0 2 2 1]
[1 0 3 2]
[2 1 0 3]
[2 1 1 0]

sage: G = graphs.CubeGraph(3)
sage: G.distance_matrix() # needs sage.modules
[0 1 1 2 1 2 2 3]
```

(continues on next page)
The well known result of Graham and Pollak states that the determinant of the distance matrix of any tree of order \( n \) is \((-1)^{n-1}(n-1)2^{n-2}\):

```sage```
all(T.distance_matrix().det() == (-1)**(9)*(9)*2**8
... for T in graphs.trees(10))
True
```

See also:

- `distance_all_pairs()` — computes the distance between any two vertices.
**distances_distribution**\((G)\)

Return the distances distribution of the (di)graph in a dictionary.

This method **ignores all edge labels**, so that the distance considered is the topological distance.

**OUTPUT:**

A dictionary \(d\) such that the number of pairs of vertices at distance \(k\) (if any) is equal to 

\[
d[k] \cdot |V(G)| \cdot (|V(G)| - 1).
\]

**Note:** We consider that two vertices that do not belong to the same connected component are at infinite distance, and we do not take the trivial pairs of vertices \((v, v)\) at distance 0 into account. Empty (di)graphs and (di)graphs of order 1 have no paths and so we return the empty dictionary \(\{}\).

**EXAMPLES:**

An empty Graph:

```sage
g = Graph()
g.distances_distribution()
{}
```

```python
>>> from sage.all import *

>>> g = Graph()

{}
```

A Graph of order 1:

```sage
g = Graph()
g.add_vertex(1)
g.distances_distribution()
{}
```

```python
>>> from sage.all import *

>>> g = Graph()

{}
```

A Graph of order 2 without edge:

```sage
g = Graph()
g.add_vertices([1, 2])
g.distances_distribution()
{+Infinity: 1}
```

```python
>>> from sage.all import *

>>> g = Graph()

{}
```

The Petersen Graph:
Graph Theory, Release 10.4

```
sage: g = graphs.PetersenGraph()
sage: g.distances_distribution()
(1: 1/3, 2: 2/3)

>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.distances_distribution()
(1: 1/3, 2: 2/3)
```

A graph with multiple disconnected components:

```
sage: g = graphs.PetersenGraph()
sage: g.add_edge('good','wine')
sage: g.distances_distribution()
(1: 8/33, 2: 5/11, +Infinity: 10/33)

>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.add_edge('good','wine')
>>> g.distances_distribution()
(1: 8/33, 2: 5/11, +Infinity: 10/33)
```

The de Bruijn digraph dB(2,3):

```
sage: D = digraphs.DeBruijn(2,3)
 # needs sage.combinat
sage: D.distances_distribution()
 # needs sage.combinat
(1: 1/4, 2: 11/28, 3: 5/14)

>>> from sage.all import *
>>> D = digraphs.DeBruijn(Integer(2),Integer(3))
 # needs sage.combinat
>>> D.distances_distribution()
 # needs sage.combinat
(1: 1/4, 2: 11/28, 3: 5/14)
```

dominating_set (g, k, independent=1, total=False, connected=False, value_only=False, solver=False, verbose=None, integrality_tolerance=0)

Return a minimum distance-\(k\) dominating set of the graph.

A minimum dominating set \(S\) of a graph \(G\) is a set of its vertices of minimal cardinality such that any vertex of \(G\) is in \(S\) or has one of its neighbors in \(S\). See the Wikipedia article Dominating_set.

A minimum distance-\(k\) dominating set is a set \(S\) of vertices of \(G\) of minimal cardinality such that any vertex of \(G\) is in \(S\) or at distance at most \(k\) from a vertex in \(S\). A distance-0 dominating set is the set of vertices itself, and when \(k\) is the radius of the graph, any vertex dominates all the other vertices.

As an optimization problem, it can be expressed as follows, where \(N^k(u)\) denotes the set of vertices at distance at most \(k\) from \(u\) (the set of neighbors when \(k = 1\)):

\[
\text{Minimize : } \sum_{v \in G} b_v \\
\text{Such that : } \forall v \in G, b_v + \sum_{u \in N^k(v)} b_u \geq 1
\]

\(\forall x \in G, b_x\) is a binary variable
INPUT:

- \( k \) – a non-negative integer (default: 1); the domination distance
- independent – boolean (default: False); when True, computes a minimum independent dominating set, that is a minimum dominating set that is also an independent set (see also independent_set())
- total – boolean (default: False); when True, computes a total dominating set (see the Wikipedia article Dominating_set)
- connected – boolean (default: False); when True, computes a connected dominating set (see Wikipedia article Connected_dominating_set)
- value_only – boolean (default: False); whether to only return the cardinality of the computed dominating set, or to return its list of vertices (default)
- solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:

A basic illustration on a PappusGraph:

```python
sage: g = graphs.PappusGraph()
sage: g.dominating_set(value_only=True) # needs sage.numerical.mip
5
```

```python
>>> from sage.all import *
>>> g = graphs.PappusGraph()
>>> g.dominating_set(value_only=True) # needs sage.numerical.mip
5
```

If we build a graph from two disjoint stars, then link their centers we will find a difference between the cardinality of an independent set and a stable independent set:

```python
sage: g = 2 * graphs.StarGraph(5)
sage: g.add_edge(0, 6)
sage: len(g.dominating_set()) # needs sage.numerical.mip
2
sage: len(g.dominating_set(independent=True)) # needs sage.numerical.mip
6
```

```python
>>> from sage.all import *
>>> g = Integer(2) * graphs.StarGraph(Integer(5))
>>> g.add_edge(Integer(0), Integer(6))
>>> len(g.dominating_set())
2
>>> len(g.dominating_set(independent=True))
(continues on next page)```
The total dominating set of the Petersen graph has cardinality 4:

```python
sage: G = graphs.PetersenGraph()
sage: G.dominating_set(total=True, value_only=True)  # needs sage.numerical.mip
4
```

The dominating set is calculated for both the directed and undirected graphs (modification introduced in Issue #17905):

```python
sage: g = digraphs.Path(3)
sage: g.dominating_set(value_only=True)  # needs sage.numerical.mip
2
sage: g = graphs.PathGraph(3)
sage: g.dominating_set(value_only=True)  # needs sage.numerical.mip
1

>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.dominating_set(total=True, value_only=True)  # needs sage.numerical.mip
4
```

Cardinality of distance-\(k\) dominating sets:

```python
sage: G = graphs.PetersenGraph()
sage: [G.dominating_set(k=k, value_only=True) for k in range(G.radius() + 1)]  # needs sage.numerical.mip
[10, 3, 1]
sage: G = graphs.PathGraph(5)
sage: [G.dominating_set(k=k, value_only=True) for k in range(G.radius() + 1)]  # needs sage.numerical.mip
[5, 2, 1]
```

```python
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> [G.dominating_set(k=k, value_only=True) for k in range(G.radius() + 1)]  # needs sage.numerical.mip
[10, 3, 1]
```
[G.dominating_set(k=k, value_only=True) for k in range(G.radius() + Integer(1))] # needs sage.numerical.mip
[5, 2, 1]

Return an iterator over the minimum distance-\(k \) dominating sets of the graph.

A minimum dominating set \(S \) of a graph \(G \) is a set of its vertices of minimal cardinality such that any vertex of \(G \) is in \(S \) or has one of its neighbors in \(S \). See the Wikipedia article Dominating_set.

A minimum distance-\(k \) dominating set is a set \(S \) of vertices of \(G \) of minimal cardinality such that any vertex of \(G \) is in \(S \) or at distance at most \(k \) from a vertex in \(S \). A distance-0 dominating set is the set of vertices itself, and when \(k \) is the radius of the graph, any vertex dominates all the other vertices.

As an optimization problem, it can be expressed as follows, where \(N^k(u) \) denotes the set of vertices at distance at most \(k \) from \(u \) (the set of neighbors when \(k = 1 \)):

\[
\text{Minimize: } \sum_{v \in G} b_v \\
\text{Such that: } \forall v \in G, b_v + \sum_{u \in N^k(v)} b_u \geq 1 \\
\text{\quad \forall x \in G, } b_x \text{ is a binary variable}
\]

We use constraints generation to iterate over the minimum distance-\(k \) dominating sets. That is, after reporting a solution, we add a constraint to discard it and solve the problem again until no more solution can be found.

INPUT:

- \(k \) – a non-negative integer (default: 1); the domination distance
- \(\text{independent} \) – boolean (default: False); when True, computes minimum independent dominating sets, that is minimum dominating sets that are also independent sets (see also independent_set()
- \(\text{total} \) – boolean (default: False); when True, computes total dominating sets (see the See the Wikipedia article Dominating_set)
- \(\text{connected} \) – boolean (default: False); when True, computes connected dominating sets (see Wikipedia article Connected_dominating_set)
- \(\text{solver} \) – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- \(\text{verbose} \) – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- \(\text{integrality_tolerance} \) – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:

Number of distance-\(k \) dominating sets of a Path graph of order 10:

```
sage: g = graphs.PathGraph(10)
sage: [sum(1 for _ in g.dominating_sets(k=k)) for k in range(11)]  # needs sage.numerical.mip
[1, 13, 1, 13, 25, 2, 4, 6, 8, 10, 10]
```
Graph Theory, Release 10.4

```python
>>> from sage.all import *

>>> g = graphs.PathGraph(Integer(10))

>>> [sum(Integer(1) for _ in g.dominating_sets(k=k)) for k in range(Integer(11))]  # needs sage.numerical.mip
[1, 13, 1, 13, 25, 2, 4, 6, 8, 10, 10]
```

If we build a graph from two disjoint stars, then link their centers we will find a difference between the cardinality of an independent set and a stable independent set:

```python
sage: g = 2 * graphs.StarGraph(5)
sage: g.add_edge(0, 6)

sage: [sum(1 for _ in g.dominating_sets(k=k)) for k in range(11)]  # needs sage.numerical.mip
[1, 1, 2, 12, 12, 12, 12, 12, 12, 12, 12]
```

The total dominating set of the Petersen graph has cardinality 4:

```python
sage: G = graphs.PetersenGraph()
sage: G.dominating_set(total=True, value_only=True)  # needs sage.numerical.mip
4

sage: sorted(G.dominating_sets(k=1))  # needs sage.numerical.mip
[[0, 2, 6], [0, 3, 9], [0, 7, 8], [1, 3, 7], [1, 4, 5], [1, 8, 9], [2, 4, 8], [2, 5, 9], [3, 5, 6], [4, 6, 7]]
```

```python
>>> from sage.all import *

>>> G = graphs.PetersenGraph()

>>> G.dominating_set(total=True, value_only=True)  # needs sage.numerical.mip
4

>>> sorted(G.dominating_sets(k=Integer(1)))  # needs sage.numerical.mip
([0, 2, 6], [0, 3, 9], [0, 7, 8], [1, 3, 7], [1, 4, 5], [1, 8, 9], [2, 4, 8], [2, 5, 9],
 [3, 5, 6],
 [4, 6, 7])
```
Independent distance-\(k \) dominating sets of a Path graph:

```python
sage: # needs sage.numerical.mip
sage: G = graphs.PathGraph(6)

sage: sorted(G.dominating_sets(k=1, independent=True))
[[0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5]]

sage: sorted(G.dominating_sets(k=2, independent=True))
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 1, 5], [0, 2, 3], [0, 2, 4], [0, 2, 5], [0, 3, 4], [0, 3, 5], [0, 4, 5], [1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5]]

sage: sorted(G.dominating_sets(k=3, independent=True))
[[0, 1, 2, 3], [0, 1, 2, 4], [0, 1, 2, 5], [0, 1, 3, 4], [0, 1, 3, 5], [0, 1, 4, 5], [0, 2, 3, 4], [0, 2, 3, 5], [0, 2, 4, 5], [0, 3, 4, 5], [1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 5], [1, 3, 4, 5], [2, 3, 4, 5]]
```

The dominating set is calculated for both the directed and undirected graphs (modification introduced in Issue #17905):

```python
>>> from sage.all import *

>>> # needs sage.numerical.mip

>>> g = digraphs.Path(3)

>>> g.dominating_set(value_only=True)
2

>>> list(g.dominating_sets())
[[0, 1], [0, 2]]

>>> list(g.dominating_sets(k=2))
[[0]]

>>> g = graphs.PathGraph(3)

>>> g.dominating_set(value_only=True)
1

>>> next(g.dominating_sets())
[1]
```

Minimum connected dominating sets of the Petersen graph:
sage: G = graphs.PetersenGraph()
sage: G.dominating_set(total=True, value_only=True)
needs sage.numerical.mip
4
sage: sorted(G.dominating_sets(k=1, connected=True))
needs sage.numerical.mip
[[0, 1, 2, 6],
 [0, 1, 4, 5],
 [0, 3, 4, 9],
 [0, 5, 7, 8],
 [1, 2, 3, 7],
 [1, 6, 8, 9],
 [2, 3, 4, 8],
 [2, 5, 7, 9],
 [3, 5, 6, 8],
 [4, 6, 7, 9]]

Subgraph induced by the dominating set is connected:

sage: all(G.subgraph(vertices=dom).is_connected()
.....: for dom in G.dominating_set(k=1, connected=True))
True

Minimum distance-k connected dominating sets of the Tietze graph:

sage: G = graphs.TietzeGraph()
sage: sorted(G.dominating_sets(k=2, connected=True))
[[0, 9], [1, 0], [2, 3], [4, 3], [5, 6], [7, 6], [8, 0], [10, 3], [11, 6]]
sage: sorted(G.dominating_sets(k=3, connected=True))
[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]]
Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> G = graphs.TietzeGraph()
>>> sorted(G.dominating_sets(k=Integer(2), connected=True))
[[0, 9], [1, 0], [2, 3], [4, 3], [5, 6], [7, 6], [8, 0], [10, 3], [11, 6]]
>>> sorted(G.dominating_sets(k=Integer(3), connected=True))
[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]]
```

dominator_tree\(g, \text{root}, \text{return_dict}=False, \text{reverse}=False\)

Use Boost to compute the dominator tree of \(g\), rooted at \(\text{root}\).

A node \(d\) dominates a node \(n\) if every path from the entry node \(\text{root}\) to \(n\) must go through \(d\). The immediate dominator of a node \(n\) is the unique node that strictly dominates \(n\) but does not dominate any other node that dominates \(n\). A dominator tree is a tree where each node’s children are those nodes it immediately dominates. For more information, see the Wikipedia article Dominator_(graph_theory).

If the graph is connected and undirected, the parent of a vertex \(v\) is:

• the root if \(v\) is in the same biconnected component as the root;
• the first cut vertex in a path from \(v\) to the root, otherwise.

If the graph is not connected, the dominator tree of the whole graph is equal to the dominator tree of the connected component of the root.

If the graph is directed, computing a dominator tree is more complicated, and it needs time \(O(m \log m)\), where \(m\) is the number of edges. The implementation provided by Boost is the most general one, so it needs time \(O(m \log m)\) even for undirected graphs.

INPUT:

• \(g\) – the input Sage (Di)Graph
• \(\text{root}\) – the root of the dominator tree
• \(\text{return_dict}\) – boolean (default: \(False\)); if \(True\), the function returns a dictionary associating to each vertex its parent in the dominator tree. If \(False\) (default), it returns the whole tree, as a Graph or a DiGraph.
• \(\text{reverse}\) – boolean (default: \(False\)); when set to \(True\), computes the dominator tree in the reverse graph

OUTPUT:

The dominator tree, as a graph or as a dictionary, depending on the value of \(\text{return_dict}\). If the output is a dictionary, it will contain \(None\) in correspondence of \(\text{root}\) and of vertices that are not reachable from \(\text{root}\). If the output is a graph, it will not contain vertices that are not reachable from \(\text{root}\).

EXAMPLES:

An undirected grid is biconnected, and its dominator tree is a star (everyone’s parent is the root):

```
sage: g = graphs.GridGraph([2,2]).dominator_tree((0,0))
sage: g.to_dictionary()
{(0, 0): [(0, 1), (1, 0), (1, 1)], (0, 1): [(0, 0)], (1, 0): [(0, 0)], (1, 1): [(0, 0)]}
```
If the graph is made by two 3-cycles C_1, C_2 connected by an edge (v, w), with $v \in C_1, w \in C_2$, the cut vertices are v and w, the biconnected components are C_1, C_2, and the edge (v, w). If the root is in C_1, the parent of each vertex in C_1 is the root, the parent of w is v, and the parent of each vertex in C_2 is w:

```python
sage: G = 2 * graphs.CycleGraph(3)
sage: v = 0
sage: w = 3
sage: G.add_edge(v, w)
sage: G.dominator_tree(1, return_dict=True)
{0: 1, 1: None, 2: 1, 3: 0, 4: 3, 5: 3}
```

An example with a directed graph:

```python
sage: g = digraphs.Circuit(10).dominator_tree(5)
sage: g.to_dictionary()
{0: [1], 1: [2], 2: [3], 3: [4], 4: [], 5: [6], 6: [7], 7: [8], 8: [9], 9: [0]}
sage: g = digraphs.Circuit(10).dominator_tree(5, reverse=True)
sage: g.to_dictionary()
{0: [9], 1: [0], 2: [1], 3: [2], 4: [3], 5: [4], 6: [], 7: [6], 8: [7], 9: [8]}
```

If the output is a dictionary:

```python
sage: graphs.GridGraph([2, 2]).dominator_tree((0, 0), return_dict=True)
{(0, 0): None, (0, 1): (0, 0), (1, 0): (0, 0), (1, 1): (0, 0)}
```

edge_boundary (vertices1, vertices2=None, labels=True, sort=False, key=None)

Return a list of edges (u, v, l) with u in vertices1 and v in vertices2.
If \(\text{vertices2} \) is None, then it is set to the complement of \(\text{vertices1} \).

In a digraph, the external boundary of a vertex \(v \) are those vertices \(u \) with an arc \((v, u)\).

INPUT:

- **labels** – boolean (default: `True`); if False, each edge is a tuple \((u, v)\) of vertices
- **sort** – boolean (default: `False`); whether to sort the result
- **key** – a function (default: `None`); a function that takes an edge as its one argument and returns a value that can be used for comparisons in the sorting algorithm (we must have `sort=True`)

EXAMPLES:

```python
sage: K = graphs.CompleteBipartiteGraph(9, 3)
sage: len(K.edge_boundary([0, 1, 2, 3, 4, 5, 6, 7, 8], [9, 10, 11]))
27
sage: K.size()
27
```

```python
>>> from sage.all import *

>>> K = graphs.CompleteBipartiteGraph(Integer(9), Integer(3)).to_directed()

>>> len(K.edge_boundary([Integer(0), Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6), Integer(7), Integer(8)], [Integer(9), Integer(10), Integer(11)]))
27

>>> K.size()
54
```

Note that the edge boundary preserves direction:

```python
sage: K = graphs.CompleteBipartiteGraph(9, 3).to_directed()

sage: K.edge_boundary([0, 1, 2, 3, 4, 5, 6, 7, 8], sort=True)
[(0, 1, None), (0, 2, None)]

sage: K.edge_boundary([0, 1, 2, 3, 4, 5, 6, 7, 8], labels=False, sort=True)
[(0, 1), (0, 2)]
```

```python
>>> from sage.all import *

>>> D = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(3): [Integer(0)]})

>>> D.edge_boundary([Integer(0)], sort=True)
[(0, 1, None), (0, 2, None)]
```

(continues on next page)
Using the key argument to order multiple edges of incomparable types (see Issue #35903):

```python
>>> D.edge_boundary([Integer(0)], labels=False, sort=True)
[(0, 1), (0, 2)]
```

```python
sage: G = Graph([(1, 'A', 4), (1, 2, 3)])
sage: G.edge_boundary([1], sort=True)
Traceback (most recent call last):
... TypeError: unsupported operand parent(s) for <: 'Integer Ring' and '<class 'str'>'
sage: G.edge_boundary([1], sort=True, key=str)
[('A', 1, 4), (1, 2, 3)]
sage: G.edge_boundary([1], sort=True, key=lambda e:e[2])
[(1, 2, 3), ('A', 1, 4)]
sage: G.edge_boundary([1], labels=False, sort=True, key=lambda e:e[2])
Traceback (most recent call last):
... IndexError: tuple index out of range
```

```python
>>> from sage.all import *
```

```python
>>> G = Graph([(Integer(1), 'A', Integer(4)), (Integer(1), Integer(2),... Integer(3))])
>>> G.edge_boundary([Integer(1)], sort=True)
Traceback (most recent call last):
... TypeError: unsupported operand parent(s) for <: 'Integer Ring' and '<class 'str'>'
>>> G.edge_boundary([Integer(1)], sort=True, key=str)
[('A', 1, 4), (1, 2, 3)]
>>> G.edge_boundary([Integer(1)], sort=True, key=lambda e:e[Integer(2)])
[(1, 2, 3), ('A', 1, 4)]
>>> G.edge_boundary([Integer(1)], labels=False, sort=True, key=lambda e:e[Integer(2)])
Traceback (most recent call last):
... IndexError: tuple index out of range
```

`edge_connectivity` \((G, value_only=True, implementation=None, use_edge_labels=False, vertices=False, solver=None, verbose=0, integrality_tolerance=0.001)\)

Return the edge connectivity of the graph.

For more information, see the Wikipedia article Connectivity_(graph_theory).

Note: When the graph is a directed graph, this method actually computes the strong connectivity, (i.e. a directed graph is strongly \(k\)-connected if there are \(k\) disjoint paths between any two vertices \(u, v\)). If you do not want to consider strong connectivity, the best is probably to convert your `DiGraph` object to a `Graph` object, and compute the connectivity of this other graph.

INPUT:

- `G` – the input Sage (Di)Graph
- `value_only` – boolean (default: True)
 - When set to `True` (default), only the value is returned.
– When set to False, both the value and a minimum vertex cut are returned.

• implementation – string (default: None); selects an implementation:
 – None (default) – selects the best implementation available
 – "boost" – use the Boost graph library (which is much more efficient). It is not available when edge_labels=True, and it is unreliable for directed graphs (see Issue #18753).

"Sage" – use Sage's implementation based on integer linear programming

• use_edge_labels – boolean (default: False)
 – When set to True, computes a weighted minimum cut where each edge has a weight defined by its label. (If an edge has no label, 1 is assumed.). Implies boost = False.
 – When set to False, each edge has weight 1.

• vertices – boolean (default: False)
 – When set to True, also returns the two sets of vertices that are disconnected by the cut. Implies value_only=False.

• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:
A basic application on the PappusGraph:

```python
sage: from sage.graphs.connectivity import edge_connectivity
sage: g = graphs.PappusGraph()
sage: edge_connectivity(g)
3
sage: g.edge_connectivity()
3
```

```python
>>> from sage.all import *
>>> from sage.graphs.connectivity import edge_connectivity
>>> g = graphs.PappusGraph()
>>> edge_connectivity(g)
3
>>> g.edge_connectivity()
3
```

The edge connectivity of a complete graph is its minimum degree, and one of the two parts of the bipartition is reduced to only one vertex. The graph of the cut edges is isomorphic to a Star graph:

```python
sage: g = graphs.CompleteGraph(5)
sage: [ value, edges, [ setA, setB ] ] = edge_connectivity(g,vertices=True)
sage: value
4
sage: len(setA) == 1 or len(setB) == 1
True
```

(continues on next page)
sage: cut = Graph()
sage: cut.add_edges(edges)
sage: cut.is_isomorphic(graphs.StarGraph(4))
True

```python
>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(5))
>>> [value, edges, [setA, setB]] = edge_connectivity(g, vertices=True)
>>> value
4
>>> len(setA) == Integer(1) or len(setB) == Integer(1)
True
>>> cut = Graph()
>>> cut.add_edges(edges)
>>> cut.is_isomorphic(graphs.StarGraph(Integer(4)))
True
```

Even if obviously in any graph we know that the edge connectivity is less than the minimum degree of the graph:

```python
sage: g = graphs.RandomGNP(10,.3)
sage: min(g.degree()) >= edge_connectivity(g)
True
```

If we build a tree then assign to its edges a random value, the minimum cut will be the edge with minimum value:

```python
sage: tree = graphs.RandomTree(10)
sage: for u,v in tree.edge_iterator(labels=None):
...:     tree.set_edge_label(u, v, random())
sage: minimum = min(tree.edge_labels())
```

When `value_only=True` and `implementation="sage"`, this function is optimized for small con-
nectivity values and does not need to build a linear program.

It is the case for graphs which are not connected

```python
sage: g = 2 * graphs.PetersenGraph()
sage: edge_connectivity(g, implementation="sage")
0.0
```

```python
>>> from sage.all import *

>>> g = Integer(2) * graphs.PetersenGraph()

>>> edge_connectivity(g, implementation="sage")
0.0
```

For directed graphs, the strong connectivity is tested through the dedicated function:

```python
sage: g = digraphs.ButterflyGraph(3)

sage: edge_connectivity(g, implementation="sage")
0.0
```

```python
>>> from sage.all import *

>>> g = digraphs.ButterflyGraph(Integer(3))

>>> edge_connectivity(g, implementation="sage")
0.0
```

We check that the result with Boost is the same as the result without Boost:

```python
sage: g = graphs.RandomGNP(15, .3)

sage: (edge_connectivity(g, implementation="boost") == edge_connectivity(g, implementation="sage"))
True
```

```python
>>> from sage.all import *

>>> g = graphs.RandomGNP(Integer(15), RealNumber('.3'))

>>> (edge_connectivity(g, implementation="boost") == edge_connectivity(g, implementation="sage"))
True
```

Boost interface also works with directed graphs:

```python
sage: edge_connectivity(digraphs.Circuit(10), implementation="boost",
vertices=True)
[1, [(0, 1)], [{0}, {1, 2, 3, 4, 5, 6, 7, 8, 9}]]
```

```python
>>> from sage.all import *

>>> edge_connectivity(digraphs.Circuit(Integer(10)), implementation="boost",
vertices=True)
[1, [(0, 1)], [{0}, {1, 2, 3, 4, 5, 6, 7, 8, 9}]]
```

However, the Boost algorithm is not reliable if the input is directed (see Issue #18753):

```python
sage: g = digraphs.Path(3)

sage: edge_connectivity(g)
0.0

sage: edge_connectivity(g, implementation="boost")
1
```

(continues on next page)
sage: g.add_edge(1, 0)
sage: edge_connectivity(g)
0.0
sage: edge_connectivity(g, implementation="boost")
0

```python
>>> from sage.all import *

>>> g = digraphs.Path(Integer(3))

>>> edge_connectivity(g)
1

>>> edge_connectivity(g, implementation="boost")

>>> g.add_edge(Integer(1), Integer(0))

>>> edge_connectivity(g)
0.0

>>> edge_connectivity(g, implementation="boost")
0
```

`edge_cut(s, t, value_only, use_edge_labels=True, vertices=False, algorithm=False, solver='FF', verbose=None, integrality_tolerance=0)`

Return a minimum edge cut between vertices s and t.

A minimum edge cut between two vertices s and t of self is a set A of edges of minimum weight such that the graph obtained by removing A from the graph is disconnected. For more information, see the Wikipedia article [Cut](graph_theory).

INPUT:

- s – source vertex
- t – sink vertex
- `value_only` – boolean (default: True); whether to return only the weight of a minimum cut (True) or a list of edges of a minimum cut (False)
- `use_edge_labels` – boolean (default: False); whether to compute a weighted minimum edge cut where the weight of an edge is defined by its label (if an edge has no label, 1 is assumed), or to compute a cut of minimum cardinality (i.e., edge weights are set to 1)
- `vertices` – boolean (default: False); whether set to True, return a list of edges in the edge cut and the two sets of vertices that are disconnected by the cut

Note: `vertices=True` implies `value_only=False`.

- `algorithm` – string (default: 'FF'); algorithm to use:
 - If `algorithm = "FF"`, a Python implementation of the Ford-Fulkerson algorithm is used
 - If `algorithm = "LP"`, the problem is solved using Linear Programming.
 - If `algorithm = "igraph"`, the igraph implementation of the Goldberg-Tarjan algorithm is used (only available when igraph is installed)
 - If `algorithm = None`, the problem is solved using the default maximum flow algorithm (see `flow()`)
- `solver` – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to `None`, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- `verbose` – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

130 Chapter 1. Graph objects and methods
• **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

Note: The use of Linear Programming for non-integer problems may possibly mean the presence of a (slight) numerical noise.

OUTPUT:

Real number or tuple, depending on the given arguments (examples are given below).

EXAMPLES:

A basic application in the Pappus graph:

```python
sage: g = graphs.PappusGraph()
sage: g.edge_cut(1, 2, value_only=True)
3
```

```python
>>> from sage.all import *
>>> g = graphs.PappusGraph()
>>> g.edge_cut(Integer(1), Integer(2), value_only=True)
3
```

Or on Petersen’s graph, with the corresponding bipartition of the vertex set:

```python
sage: g = graphs.PetersenGraph()
sage: g.edge_cut(0, 3, vertices=True)
[3, [(0, 1, None), (0, 4, None), (0, 5, None)], [[0], [1, 2, 3, 4, 5, 6, 7, 8, 9]]
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.edge_cut(Integer(0), Integer(3), vertices=True)
[3, [(0, 1, None), (0, 4, None), (0, 5, None)], [[0], [1, 2, 3, 4, 5, 6, 7, 8, 9]]
```

If the graph is a path with randomly weighted edges:

```python
sage: g = graphs.PathGraph(15)
sage: for u,v in g.edge_iterator(labels=None):
   ....:   g.set_edge_label(u, v, random())
```

```python
>>> from sage.all import *
>>> g = graphs.PathGraph(Integer(15))
>>> for u,v in g.edge_iterator(labels=None):
...   g.set_edge_label(u, v, random())
```

The edge cut between the two ends is the edge of minimum weight:

```python
sage: minimum = min(g.edge_labels())
sage: minimum == g.edge_cut(0, 14, use_edge_labels=True)
True
sage: [value, e] = g.edge_cut(0, 14, use_edge_labels=True, value_only=False)
sage: g.edge_label(e[0], e[1]) == minimum
True
```
The two sides of the edge cut are obviously shorter paths:

```
sage: value, edges, [set1, set2] = g.edge_cut(0, 14, use_edge_labels=True, vertices=True)
....:             vertices=True)
sage: g.subgraph(set1).is_isomorphic(graphs.PathGraph(len(set1)))
True
sage: g.subgraph(set2).is_isomorphic(graphs.PathGraph(len(set2)))
True
sage: len(set1) + len(set2) == g.order()
True
```

```
>>> from sage.all import *
>>> value, edges, [set1, set2] = g.edge_cut(0, 14, use_edge_labels=True, vertices=True)
>>> g.subgraph(set1).is_isomorphic(graphs.PathGraph(len(set1)))
True
>>> g.subgraph(set2).is_isomorphic(graphs.PathGraph(len(set2)))
True
>>> len(set1) + len(set2) == g.order()
True
```

`edge_disjoint_paths(s, t, algorithm, solver='FF', verbose=None, integrality_tolerance=False)`

Return a list of edge-disjoint paths between two vertices.

The edge version of Menger’s theorem asserts that the size of the minimum edge cut between two vertices \(s \) and \(t \) (the minimum number of edges whose removal disconnects \(s \) and \(t \)) is equal to the maximum number of pairwise edge-independent paths from \(s \) to \(t \).

This function returns a list of such paths.

INPUT:

- `algorithm` — string (default: "FF"): the algorithm to use among:
 - "FF", a Python implementation of the Ford-Fulkerson algorithm
 - "LP", the flow problem is solved using Linear Programming
- `solver` — string (default: None): specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

Only used when `algorithm` is "LP".

- `verbose` — integer (default: 0): sets the level of verbosity. Set to 0 by default, which means quiet.

Only used when `algorithm` is "LP".

- `integrality_tolerance` — float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.
Graph Theory, Release 10.4

Only used when \textit{algorithm} is "LP".

\textbf{Note:} This function is topological: it does not take the eventual weights of the edges into account.

\textbf{EXAMPLES:}

In a complete bipartite graph

\begin{verbatim}
sage: g = graphs.CompleteBipartiteGraph(2, 3)
sage: g.edge_disjoint_paths(0, 1)
[[0, 2, 1], [0, 3, 1], [0, 4, 1]]
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> g = graphs.CompleteBipartiteGraph(Integer(2), Integer(3))
>>> g.edge_disjoint_paths(Integer(0), Integer(1))
[[0, 2, 1], [0, 3, 1], [0, 4, 1]]
\end{verbatim}

\textit{edge_disjoint_spanning_trees} (\textit{k}, \textit{algorithm}, \textit{root}=None, \textit{solver}=None, \textit{verbose}=None, \textit{integrality_tolerance}=0)

Return the desired number of edge-disjoint spanning trees/arborescences.

\textbf{INPUT:}

- \textit{k} – integer; the required number of edge-disjoint spanning trees/arborescences
- \textit{algorithm} – string (default: None); specify the algorithm to use among:
 - "Roskind-Tarjan" – use the algorithm proposed by Roskind and Tarjan [RT1985] for finding edge-disjoint spanning-trees in undirected simple graphs in time $O(m \log m + k^2 n^2)$.
 - "MILP" – use a mixed integer linear programming formulation. This is the default method for directed graphs.
 - None – use "Roskind-Tarjan" for undirected graphs and "MILP" for directed graphs.
- \textit{root} – vertex (default: None); root of the disjoint arborescences when the graph is directed. If set to None, the first vertex in the graph is picked.
- \textit{solver} – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \textit{solve} of the class MixedIntegerLinearProgram.
- \textit{verbose} – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- \textit{integrality_tolerance} – float; parameter for use with MILP solvers over an inexact base ring; see \textit{MixedIntegerLinearProgram.get_values()}.

\textbf{ALGORITHM:}

Mixed Integer Linear Program.

There are at least two possible rewritings of this method which do not use Linear Programming:

- The implementation of a Matroid class and of the Matroid Union Theorem (see section 42.3 of [Sch2003]), applied to the cycle Matroid (see chapter 51 of [Sch2003]).

\textbf{EXAMPLES:}

The Petersen Graph does have a spanning tree (it is connected):
sage: g = graphs.PetersenGraph()
sage: [T] = g.edge_disjoint_spanning_trees(1) # needs sage.numerical.mip
sage: T.is_tree() # needs sage.numerical.mip
True

Though, it does not have 2 edge-disjoint trees (as it has less than $2(|V| - 1)$ edges):

sage: g.edge_disjoint_spanning_trees(2) # needs sage.numerical.mip
Traceback (most recent call last):
...
EmptySetError: this graph does not contain the required number of trees/arborescences

By Edmonds' theorem, a graph which is k-connected always has k edge-disjoint arborescences, regardless of the root we pick:

sage: # needs sage.numerical.mip
sage: g = digraphs.RandomDirectedGNP(11, .3) # reduced from 30 to 11, cf. #32169
sage: k = Integer(g.edge_connectivity())
sage: while not k:
 g = digraphs.RandomDirectedGNP(11, .3)
 k = Integer(g.edge_connectivity())

sage: arborescences = g.edge_disjoint_spanning_trees(k) # long time (up to 15s on sage.math, 2011)
sage: all(a.is_directed_acyclic() for a in arborescences) # long time
True

sage: all(a.is_connected() for a in arborescences) # long time
True

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

... k = Integer(g.edge_connectivity())
>>> arborescences = g.edge_disjoint_spanning_trees(k) # long time (up to
˓→15s on sage.math, 2011)
>>> all(a.is_directed_acyclic() for a in arborescences) # long time
True
>>> all(a.is_connected() for a in arborescences) # long time
True

In the undirected case, we can only ensure half of it:

sage: # needs sage.numerical.mip
sage: g = graphs.RandomGNP(14, .3) # reduced from 30 to 14, see #32169
sage: while not g.is_biconnected():
˓→... g = graphs.RandomGNP(14, .3)
sage: k = Integer(g.edge_connectivity()) // 2
sage: trees = g.edge_disjoint_spanning_trees(k)
sage: all(t.is_tree() for t in trees)
True

>>> from sage.all import *
>>> # needs sage.numerical.mip
>>> g = graphs.RandomGNP(Integer(14), RealNumber('.3')) # reduced from 30 to...
˓→14, see #32169
>>> while not g.is_biconnected():
˓→... g = graphs.RandomGNP(Integer(14), RealNumber('.3'))
>>> k = Integer(g.edge_connectivity()) // Integer(2)
>>> trees = g.edge_disjoint_spanning_trees(k)
>>> all(t.is_tree() for t in trees)
True

Check the validity of the algorithms for undirected graphs:

sage: # needs sage.numerical.mip
sage: g = graphs.RandomGNP(12, .7)
sage: k = Integer(g.edge_connectivity()) // 2
sage: trees = g.edge_disjoint_spanning_trees(k, algorithm="MILP")
sage: all(t.is_tree() for t in trees)
True
sage: all(g.order() == t.size() + 1 for t in trees)
True
sage: trees = g.edge_disjoint_spanning_trees(k, algorithm="Roskind-Tarjan")
sage: all(t.is_tree() for t in trees)
True
sage: all(g.order() == t.size() + Integer(1) for t in trees)
True

>>> from sage.all import *
>>> # needs sage.numerical.mip
>>> g = graphs.RandomGNP(Integer(12), RealNumber('.7'))
>>> k = Integer(g.edge_connectivity()) // Integer(2)
>>> trees = g.edge_disjoint_spanning_trees(k, algorithm="MILP")
>>> all(t.is_tree() for t in trees)
True
>>> all(g.order() == t.size() + Integer(1) for t in trees)
True
>>> trees = g.edge_disjoint_spanning_trees(k, algorithm="Roskind-Tarjan")

(continues on next page)
(continued from previous page)

```python
>>> all(t.is_tree() for t in trees)
True
>>> all(g.order() == t.size() + Integer(1) for t in trees)
True
```

Example of Issue #32169:

```python
sage: d6 = r'|E_S?_hKIH@eos[BSg???Q@FSshGC?hTHUGM?IPug?JOEYCdOzdkQGo'
sage: d6 += r'|ADAAAg?GAQW?[aIswhYyRd?qQb@Dd?\hJTI0H1J_?C_OEIKeC'
sage: d6 += r'@BC?Q??YBfosITEA?IvCU_'
sage: G = DiGraph(d6, format='dig6')
sage: G.edge_connectivity()  # needs sage.numerical.mip
5
```

```python
>>> from sage.all import *
```

```python
>>> d6 = r'|E_S?_hKIH@eos[BSg???Q@FSshGC?hTHUGM?IPug?JOEYCdOzdkQGo'
>>> d6 += r'|ADAAAg?GAQW?[aIswhYyRd?qQb@Dd?\hJTI0H1J_?C_OEIKeC'
>>> d6 += r'@BC?Q??YBfosITEA?IvCU_'
>>> G = DiGraph(d6, format='dig6')
>>> G.edge_connectivity()  # needs sage.numerical.mip
5
```

```python
>>> G.edge_disjoint_spanning_trees(5)  # long time  # needs sage.numerical.mip
[Digraph on 28 vertices, Digraph on 28 vertices, Digraph on 28 vertices, Digraph on 28 vertices, Digraph on 28 vertices]
```

Small cases:

```python
sage: # needs sage.numerical.mip
sage: Graph().edge_disjoint_spanning_trees(0)
[]
```

```python
sage: Graph(1).edge_disjoint_spanning_trees(0)
[]
```

```python
sage: Graph(2).edge_disjoint_spanning_trees(0)
[]
```

```python
sage: Graph([(0, 1)]).edge_disjoint_spanning_trees(0)
[]
```

```python
sage: Graph([(0, 1)]).edge_disjoint_spanning_trees(1)[Graph on 2 vertices]
```

```python
sage: Graph([(0, 1)]).edge_disjoint_spanning_trees(2)
Traceback (most recent call last):
...
EmptySetError: this graph does not contain the required number of trees/arborescences
```
```python
>>> from sage.all import *
>>> # needs sage.numerical.mip
>>> Graph().edge_disjoint_spanning_trees(Integer(0))
[]
>>> Graph(Integer(1)).edge_disjoint_spanning_trees(Integer(0))
[]
>>> Graph(Integer(2)).edge_disjoint_spanning_trees(Integer(0))
[]
>>> Graph([(Integer(0), Integer(1))]).edge_disjoint_spanning_trees(Integer(0))
[]
>>> Graph([(Integer(0), Integer(1))]).edge_disjoint_spanning_trees(Integer(1))
[Graph on 2 vertices]
>>> Graph([(Integer(0), Integer(1))]).edge_disjoint_spanning_trees(Integer(2))
Traceback (most recent call last):
... EmptySetError: this graph does not contain the required number of trees/arborescences
```

edge_iterator (vertices=None, labels=True, ignore_direction=False, sort_vertices=True)

Return an iterator over edges.

The iterator returned is over the edges incident with any vertex given in the parameter `vertices`. If the graph is directed, iterates over edges going out only. If `vertices` is `None`, then returns an iterator over all edges. If `self` is directed, returns outgoing edges only.

INPUT:

- `vertices` – object (default: `None`); a vertex, a list of vertices or `None`
- `labels` – boolean (default: `True`); if `False`, each edge is a tuple `(u, v)` of vertices
- `ignore_direction` – boolean (default: `False`); only applies to directed graphs. If `True`, searches across edges in either direction.
- `sort_vertices` – boolean (default: `True`); only applies to undirected graphs. If `True`, sort the ends of the edges. Not sorting the ends is faster.

Note: It is somewhat safe to modify the graph during iterating.

`vertices` must be specified if modifying the vertices.

Without multiedges, you can safely use this graph to relabel edges or delete some edges. If you add edges, they might later appear in the iterator or not (depending on the internal order of vertices).

In case of multiedges, all arcs from one vertex to another are internally cached. So the iterator will yield them, even if you delete them all after seeing the first one.

EXAMPLES:

```
sage: for i in graphs.PetersenGraph().edge_iterator([0]):
    ....:     print(i)
(0, 1, None)
(0, 4, None)
(0, 5, None)
sage: D = DiGraph({0: [1, 2], 1: [0]})
sage: for i in D.edge_iterator([0]):
    ....:     print(i)
(continues on next page)
```
edge_label \((u, v)\)

Return the label of an edge.

If the graph allows multiple edges, then the list of labels on the edges is returned.

See also:

- `set_edge_label()`
EXAMPLES:

```python
sage: G = Graph({0: {1: 'edgelabel'}})
sage: G.edge_label(0, 1)
'edgelabel'
sage: D = DiGraph({1: {2: 'up'}, 2: {1: 'down'}})
sage: D.edge_label(2, 1)
'down'
```

```python
>>> from sage.all import *

>>> G = Graph({Integer(0): {Integer(1): edgelabel}})
[None, None, None, None, None]
```

```python
>>> G = Graph(multiedges=True)
[None, None, None, None, None]
```

```python
def edge_labels(self):
    """Return a list of the labels of all edges in self."
    The output list is not sorted.

    EXAMPLES:
    >>> G = Graph({0: {1: 'x', 2: 'z', 3: 'a'}, 2: {5: 'out'}}, sparse=True)
    ['x', 'z', 'a', 'out']
    >>> G = DiGraph({0: {1: 'x', 2: 'z', 3: 'a'}, 2: {5: 'out'}}, sparse=True)
    ['x', 'z', 'a', 'out']
```

```python
>>> from sage.all import *
    ...

>>> G = Graph({Integer(0): {Integer(1): edgelabel}})
[None, None, None, None, None]
```

```python
>>> G = Graph(multiedges=True)
[None, None, None, None, None]
```

```python
def edge_polytope(self, backend=None):
    """
```

1.1. Generic graphs (common to directed/undirected) 139
Return the edge polytope of self.

The edge polytope (EP) of a Graph on \(n \) vertices is the polytope in \(\mathbb{Z}^n \) defined as the convex hull of \(e_i + e_j \) for each edge \((i,j)\). Here \(e_1, \ldots, e_n \) denotes the standard basis.

INPUT:

- `backend` -- string or None (default); the backend to use; see `sage.geometry.polyhedron.constructor.Polyhedron()`

EXAMPLES:

The EP of a 4-cycle is a square:

```python
sage: G = graphs.CycleGraph(4)
sage: P = G.edge_polytope(); P
# needs sage.geometry.polyhedron
A 2-dimensional polyhedron in ZZ^4 defined as the convex hull of 4 vertices
```

The EP of a complete graph on 4 vertices is cross polytope:

```python
sage: G = graphs.CompleteGraph(4)
sage: P = G.edge_polytope(); P
# needs sage.geometry.polyhedron
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 6 vertices
```

```python
t sage: P.is_combinatorially_isomorphic(polytopes.cross_polytope(3))
# needs sage.geometry.polyhedron
True
```

The EP of a graph is isomorphic to the subdirect sum of its connected components EPs:

```python
sage: n = randint(3, 6)
sage: G1 = graphs.RandomGNP(n, 0.2)
# needs networkx
sage: n = randint(3, 6)
sage: G2 = graphs.RandomGNP(n, 0.2)
# needs networkx
sage: G = G1.disjoint_union(G2)
# needs networkx
sage: P = G.edge_polytope()
# needs networkx sage.geometry.polyhedron
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
sage: P2 = G2.edge_polytope()  # needs networkx sage.geometry.polyhedron
sage: P.is_combinatorially_isomorphic(P1.subdirect_sum(P2))  # needs networkx sage.geometry.polyhedron
True
```

```python
>>> from sage.all import *
>>> n = randint(Integer(3), Integer(6))
>>> G1 = graphs.RandomGNP(n, RealNumber('0.2'))  # needs networkx
>>> n = randint(Integer(3), Integer(6))
>>> G2 = graphs.RandomGNP(n, RealNumber('0.2'))  # needs networkx
>>> G = G1.disjoint_union(G2)  # needs networkx
>>> P = G.edge_polytope()  # needs networkx sage.geometry.polyhedron
>>> P1 = G1.edge_polytope()  # needs networkx sage.geometry.polyhedron
>>> P2 = G2.edge_polytope()  # needs networkx sage.geometry.polyhedron
>>> P.is_combinatorially_isomorphic(P1.subdirect_sum(P2))  # needs networkx sage.geometry.polyhedron
True
```

All trees on n vertices have isomorphic EPs:

```python
sage: n = randint(4, 10)
sage: G1 = graphs.RandomTree(n)
sage: G2 = graphs.RandomTree(n)
sage: P1 = G1.edge_polytope()  # needs sage.geometry.polyhedron
sage: P2 = G2.edge_polytope()  # needs sage.geometry.polyhedron
sage: P1.is_combinatorially_isomorphic(P2)  # needs sage.geometry.polyhedron
True
```

```python
>>> from sage.all import *
>>> n = randint(Integer(4), Integer(10))
>>> G1 = graphs.RandomTree(n)
>>> G2 = graphs.RandomTree(n)
>>> P1 = G1.edge_polytope()  # needs sage.geometry.polyhedron
>>> P2 = G2.edge_polytope()  # needs sage.geometry.polyhedron
>>> P1.is_combinatorially_isomorphic(P2)  # needs sage.geometry.polyhedron
True
```

However, there are still many different EPs:

```python
sage: len(list(graphs(5)))
34
sage: polys = []
sage: for G in graphs(5):  # needs sage.geometry.polyhedron
          ...
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
needs sage.geometry.polyhedron
....: P = G.edge_polytope()
....: for P1 in polys:
....:     if P.is_combinatorially_isomorphic(P1):
....:         break
....: else:
....:     polys.append(P)

len(polys)  #...
```

```python
from sage.all import *
len(list(graphs(Integer(5))))
34
polys = []
for G in graphs(Integer(5)):
    # needs sage.geometry.polyhedron
    P = G.edge_polytope()
    for P1 in polys:
        if P.is_combinatorially_isomorphic(P1):
            break
    else:
        polys.append(P)
len(polys)  #...
```

edges *(vertices=None, labels=True, sort=False, key=None, ignore_direction=False, sort_vertices=True)*

Return a *EdgesView* of edges.

Each edge is a triple \((u, v, l)\) where \(u\) and \(v\) are vertices and \(l\) is a label. If the parameter *labels* is False then a list of couple \((u, v)\) is returned where \(u\) and \(v\) are vertices.

The returned *EdgesView* is over the edges incident with any vertex given in the parameter *vertices* (all edges if None). If self is directed, iterates over outgoing edges only, unless parameter *ignore_direction* is True in which case it searches across edges in either direction.

INPUT:

- **vertices** – object (default: None); a vertex, a list of vertices or None
- **labels** – boolean (default: True); if False, each edge is simply a pair \((u, v)\) of vertices
- **sort** – boolean (default: False); whether to sort edges according the ordering specified with parameter *key*. If False (default), edges are not sorted. This is the fastest and less memory consuming method for iterating over edges.
- **key** – a function (default: None); a function that takes an edge (a pair or a triple, according to the *labels* keyword) as its one argument and returns a value that can be used for comparisons in the sorting algorithm
- **ignore_direction** – boolean (default: False); only applies to directed graphs. If True, searches across edges in either direction.
- **sort_vertices** – boolean (default: True); only applies to undirected graphs. If True, sort the ends of the edges. Not sorting the ends is faster.

OUTPUT: A *EdgesView*.
Warning: Since any object may be a vertex, there is no guarantee that any two vertices will be comparable, and thus no guarantee how two edges may compare. With default objects for vertices (all integers), or when all the vertices are of the same simple type, then there should not be a problem with how the vertices will be sorted. However, if you need to guarantee a total order for the sorting of the edges, use the key argument, as illustrated in the examples below.

EXAMPLES:

```
sage: graphs.DodecahedralGraph().edges(sort=True)
[(0, 1, None), (0, 10, None), (0, 19, None), (1, 2, None),
 (1, 8, None), (2, 3, None), (2, 6, None), (3, 4, None),
 (3, 19, None), (4, 5, None), (4, 17, None), (5, 6, None),
 (5, 15, None), (6, 7, None), (7, 8, None), (7, 14, None),
 (8, 9, None), (9, 10, None), (9, 13, None), (10, 11, None),
 (11, 12, None), (11, 18, None), (12, 13, None), (12, 16, None),
 (13, 14, None), (14, 15, None), (15, 16, None), (16, 17, None),
 (17, 18, None), (18, 19, None)]
```

```
>>> from sage.all import *
>>>
graphs.DodecahedralGraph().edges(sort=True)
```

```
sage: graphs.DodecahedralGraph().edges(sort=True, labels=False)
[(0, 1), (0, 10), (0, 19), (1, 2), (1, 8), (2, 3), (2, 6), (3, 4),
 (3, 19), (4, 5), (4, 17), (5, 6), (5, 15), (6, 7), (7, 8), (7, 14),
 (8, 9), (9, 10), (9, 13), (10, 11), (11, 12), (11, 18), (12, 13),
 (12, 16), (13, 14), (14, 15), (15, 16), (16, 17), (17, 18),
 (18, 19)]
```

```
>>> from sage.all import *
>>> graphs.DodecahedralGraph().edges(sort=True, labels=False)
```

```
sage: D = graphs.DodecahedralGraph().to_directed()
sage: D.edges(sort=True)
[(0, 1, None), (0, 10, None), (0, 19, None), (1, 0, None),
 (1, 2, None), (1, 8, None), (2, 1, None), (2, 3, None),
 (2, 6, None), (3, 2, None), (3, 4, None), (3, 19, None),
 (4, 3, None), (4, 5, None), (4, 17, None), (5, 4, None),
 (5, 6, None), (5, 15, None), (6, 2, None), (6, 5, None),
 (6, 7, None), (7, 6, None), (7, 8, None), (7, 14, None),
 (8, 1, None), (8, 7, None), (8, 9, None), (9, 8, None),
 (9, 10, None), (9, 13, None), (10, 0, None), (10, 9, None),
 (10, 11, None), (11, 10, None), (11, 12, None), (11, 18, None),
 (18, 19, None)]
```

(continues on next page)
The default is to sort the returned list in the default fashion, as in the above examples. This can be overridden by specifying a key function. This first example just ignores the labels in the third component of the triple:

```
sage: G = graphs.CycleGraph(5)
sage: G.edges(sort=True, key=lambda x: (x[1], -x[0]))
[(0, 1, None), (1, 2, None), (2, 3, None), (3, 4, None), (4, 5, None), (5, 0, None)]
```

```
>>> from sage.all import *
>>> G = graphs.CycleGraph(Integer(5))
>>> G.edges(sort=True, key=lambda x: (x[Integer(1)], -x[Integer(0)]))
[(0, 1, None), (1, 2, None), (2, 3, None), (3, 4, None), (4, 5, None), (5, 0, None)]
```

(continues on next page)
We set the labels to characters and then perform a default sort followed by a sort according to the labels:

```python
sage: G = graphs.CycleGraph(5)
sage: for e in G.edges(sort=False):
    ....:     G.set_edge_label(e[0], e[1], chr(ord('A') + e[0] + 5 * e[1]))

sage: G.edges(sort=True)
[(0, 1, 'F'), (0, 4, 'U'), (1, 2, 'L'), (2, 3, 'R'), (3, 4, 'X')]

sage: G.edges(sort=True, key=lambda x: x[2])
[(0, 1, 'F'), (1, 2, 'L'), (2, 3, 'R'), (0, 4, 'U'), (3, 4, 'X')]
```

We can restrict considered edges to those incident to a given set:

```python
sage: for i in graphs.PetersenGraph().edges(sort=True, vertices=[0]):
    ....:     print(i)
(0, 1, None)
(0, 4, None)
(0, 5, None)

sage: D = DiGraph({0: [1, 2], 1: [0]})
sage: for i in D.edges(sort=True, vertices=[0]):
    ....:     print(i)
(0, 1, None)
(0, 2, None)
```

Ignoring the direction of edges:

```python
sage: D = DiGraph({1: [0], 2: [0]})
sage: D.edges(sort=True, vertices=0)
[]
sage: D.edges(sort=True, vertices=0, ignore_direction=True)
[(1, 0, None), (2, 0, None)]
```
Graph Theory, Release 10.4

Continued from previous page

```
sage: D.edges(sort=True, vertices=[0], ignore_direction=True)
[(1, 0, None), (2, 0, None)]
>>> from sage.all import *

>>> D = DiGraph({Integer(1): [Integer(0)], Integer(2): [Integer(0)]})

>>> D.edges(sort=True, vertices=Integer(0))
[]

>>> D.edges(sort=True, vertices=Integer(0), ignore_direction=True)
[(1, 0, None), (2, 0, None)]

>>> D.edges(sort=True, vertices=[Integer(0)], ignore_direction=True)
[(1, 0, None), (2, 0, None)]
```

Not sorting the ends of the edges:

```
sage: G = Graph()
sage: G = Graph()
sage: G.add_edges([(1,2), [2,3], [0,3]])

sage: list(G.edge_iterator(sort_vertices=False))
[(3, 0, None), (2, 1, None), (3, 2, None)]
```

```
>>> from sage.all import *

>>> G = Graph()

>>> G = Graph()

>>> G.add_edges([(Integer(1),Integer(2)], [Integer(2),Integer(3)], ...
\[Integer(0),Integer(3)]))

>>> list(G.edge_iterator(sort_vertices=False))
[(3, 0, None), (2, 1, None), (3, 2, None)]
```

edges_incident (vertices=None, labels=True, sort=False)

Return incident edges to some vertices.

If vertices is a vertex, then it returns the list of edges incident to that vertex. If vertices is a list of vertices then it returns the list of all edges adjacent to those vertices. If vertices is None, it returns a list of all edges in graph. For digraphs, only lists outward edges.

INPUT:

- **vertices** – object (default: None); a vertex, a list of vertices or None
- **labels** – boolean (default: True); if False, each edge is a tuple \((u, v)\) of vertices
- **sort** – boolean (default: False); if True the returned list is sorted

EXAMPLES:

```
sage: graphs.PetersenGraph().edges_incident([0, 9], labels=False)
[(0, 1), (0, 4), (0, 5), (4, 9), (6, 9), (7, 9)]
sage: D = DiGraph({0: [1]})
sage: D.edges_incident([0])
[(0, 1, None)]
sage: D.edges_incident([1])
[]
```

```
>>> from sage.all import *

>>> graphs.PetersenGraph().edges_incident([Integer(0), Integer(9)],...
\labels=False)
```

(continues on next page)
eigenspaces (laplacian=False)

Return the right eigenspaces of the adjacency matrix of the graph.

INPUT:

- `laplacian` – boolean (default: False); if True, use the
 Laplacian matrix (see kirchhoff_matrix())

OUTPUT:

A list of pairs. Each pair is an eigenvalue of the adjacency matrix of the graph, followed by the vector space that is the eigenspace for that eigenvalue, when the eigenvectors are placed on the right of the matrix.

For some graphs, some of the eigenspaces are described exactly by vector spaces over a NumberField(). For numerical eigenvectors use eigenvectors().

EXAMPLES:

```sage
total: P = graphs.PetersenGraph()
total: P.eigenspaces()  # needs sage.modules sage.rings.number_field
[(3, Vector space of degree 10 and dimension 1 over Rational Field
  User basis matrix:
  [1 1 1 1 1 1 1 1 1 1]),
 (-2, Vector space of degree 10 and dimension 4 over Rational Field
  User basis matrix:
  [ 1 0 0 0 -1 -1 -1 0 1 1]
  [ 0 1 0 0 -1 0 -2 -1 1 2]
  [ 0 0 1 0 -1 1 -1 -2 0 2]
  [ 0 0 0 1 -1 1 0 -1 -1 1]),
 (1, Vector space of degree 10 and dimension 5 over Rational Field
  User basis matrix:
  [ 1 0 0 0 0 1 -1 0 0 -1]
  [ 0 1 0 0 0 -1 1 -1 0 0]
  [ 0 0 1 0 0 0 -1 1 -1 0]
  [ 0 0 0 1 0 0 0 -1 1 -1]
  [ 0 0 0 0 1 -1 0 0 -1 1])
]```

```sage
from sage.all import *
from sage.all import *
P = graphs.PetersenGraph()
P.eigenspaces() # needs sage.modules sage.rings.number_field
[(3, Vector space of degree 10 and dimension 1 over Rational Field
 User basis matrix:
 [1 1 1 1 1 1 1 1 1 1]),
 (-2, Vector space of degree 10 and dimension 4 over Rational Field
 User basis matrix:
 [1 0 0 0 -1 -1 -1 0 1 1]
]```
Eigenspaces for the Laplacian should be identical since the Petersen graph is regular. However, since the output also contains the eigenvalues, the two outputs are slightly different:

```
sage: P.eigenspaces(laplacian=True)  # needs sage.modules sage.rings.number_field
[0, Vector space of degree 10 and dimension 1 over Rational Field
   User basis matrix:
   [1 1 1 1 1 1 1 1 1 1]),
(5, Vector space of degree 10 and dimension 4 over Rational Field
   User basis matrix:
   [1 0 0 0 -1 -1 -1 0 1 1]
   [0 1 0 0 -1 0 -2 -1 1 2]
   [0 0 1 0 -1 1 -1 -2 0 2]
   [0 0 0 1 -1 1 0 -1 -1 1]),
(2, Vector space of degree 10 and dimension 5 over Rational Field
   User basis matrix:
   [1 0 0 0 0 1 -1 0 0 -1]
   [0 1 0 0 0 -1 1 -1 0 0]
   [0 0 1 0 0 0 -1 1 -1 0]
   [0 0 0 1 0 0 0 -1 1 -1]
   [0 0 0 0 1 -1 0 0 -1 1])
```

```bash
>>> from sage.all import *
>>> P.eigenspaces(laplacian=True)  # needs sage.modules sage.rings.number_field
[0, Vector space of degree 10 and dimension 1 over Rational Field
   User basis matrix:
   [1 1 1 1 1 1 1 1 1 1]),
(5, Vector space of degree 10 and dimension 4 over Rational Field
   User basis matrix:
   [1 0 0 0 -1 -1 -1 0 1 1]
   [0 1 0 0 -1 0 -2 -1 1 2]
   [0 0 1 0 -1 1 -1 -2 0 2]
   [0 0 0 1 -1 1 0 -1 -1 1]),
(2, Vector space of degree 10 and dimension 5 over Rational Field
   User basis matrix:
   [1 0 0 0 0 1 -1 0 0 -1]
   [0 1 0 0 0 -1 1 -1 0 0]
   [0 0 1 0 0 0 -1 1 -1 0]
   [0 0 0 1 0 0 0 -1 1 -1]
   [0 0 0 0 1 -1 0 0 -1 1])
```
Notice how one eigenspace below is described with a square root of 2. For the two possible values (positive and negative) there is a corresponding eigenspace:

```python
sage: C = graphs.CycleGraph(8)
sage: C.eigenspaces()  # needs sage.modules sage.rings.number_field
[
  (2, Vector space of degree 8 and dimension 1 over Rational Field
   User basis matrix:
   [1 1 1 1 1 1 1 1]),
  (-2, Vector space of degree 8 and dimension 1 over Rational Field
   User basis matrix:
   [1 -1 1 -1 1 -1 1 -1]),
  (0, Vector space of degree 8 and dimension 2 over Rational Field
   User basis matrix:
   [1 0 -1 0 1 0 -1 0]
   [0 1 0 -1 0 1 0 -1]),
  (a3, Vector space of degree 8 and dimension 2 over
   Number Field in a3 with defining polynomial x^2 - 2
   User basis matrix:
   [1 0 -1 -a3 -1 0 1 a3]
   [0 1 a3 1 0 -1 -a3 -1])
]

>>> from sage.all import *
>>> C = graphs.CycleGraph(Integer(8))
>>> C.eigenspaces()  # needs sage.modules sage.rings.number_field
[
  (2, Vector space of degree 8 and dimension 1 over Rational Field
   User basis matrix:
   [1 1 1 1 1 1 1 1]),
  (-2, Vector space of degree 8 and dimension 1 over Rational Field
   User basis matrix:
   [1 -1 1 -1 1 -1 1 -1]),
  (0, Vector space of degree 8 and dimension 2 over Rational Field
   User basis matrix:
   [1 0 -1 0 1 0 -1 0]
   [0 1 0 -1 0 1 0 -1]),
  (a3, Vector space of degree 8 and dimension 2 over
   Number Field in a3 with defining polynomial x^2 - 2
   User basis matrix:
   [1 0 -1 -a3 -1 0 1 a3]
   [0 1 a3 1 0 -1 -a3 -1])
]
```

A digraph may have complex eigenvalues and eigenvectors. For a 3-cycle, we have:

```python
sage: T = DiGraph({0: [1], 1: [2], 2: [0]})
sage: T.eigenspaces()  # needs sage.modules sage.rings.number_field
[
  (1, Vector space of degree 3 and dimension 1 over Rational Field
   User basis matrix:
   [1 0 0]
   [0 1 0]
   [0 0 1])
]
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

\[
\begin{bmatrix}
1 & 1 & 1 \\
\end{bmatrix},
\]

(a1, Vector space of degree 3 and dimension 1 over Number Field in a1 with defining polynomial \(x^2 + x + 1\)

User basis matrix:

\[
\begin{bmatrix}
1 & a1 & -a1 & -1 \\
\end{bmatrix}
\]

\[
\text{from sage.all import } *
\]

\[
T = DiGraph({Integer(0): [Integer(1)], Integer(1): [Integer(2)],}
\]

\[
\rightarrow \text{Integer(2): [Integer(0)]})
\]

\[
T.eigenspaces() \quad \text{# needs sage.modules sage.rings.number_field}
\]

[(1, Vector space of degree 3 and dimension 1 over Rational Field

User basis matrix:

\[
\begin{bmatrix}
1 & 1 & 1 \\
\end{bmatrix},
\]

(a1, Vector space of degree 3 and dimension 1 over Number Field in a1 with defining polynomial \(x^2 + x + 1\)

User basis matrix:

\[
\begin{bmatrix}
1 & a1 & -a1 & -1 \\
\end{bmatrix}
\]

eigenvectors (laplacian=False)

Return the right eigenvectors of the adjacency matrix of the graph.

INPUT:

- laplacian – boolean (default: False); if True, use the Laplacian matrix (see kirchhoff_matrix())

OUTPUT:

A list of triples. Each triple begins with an eigenvalue of the adjacency matrix of the graph. This is followed by a list of eigenvectors for the eigenvalue, when the eigenvectors are placed on the right side of the matrix. Together, the eigenvectors form a basis for the eigenspace. The triple concludes with the algebraic multiplicity of the eigenvalue.

For some graphs, the exact eigenspaces provided by eigenspaces() provide additional insight into the structure of the eigenspaces.

EXAMPLES:

\[
\text{sage: } P = \text{graphs.PetersenGraph()}
\]

\[
\text{sage: } P.eigenvectors() \quad \text{# needs sage.modules sage.rings.number_field}
\]

[(3, [\n(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) \\
], 1), (-2, [\n(1, 0, 0, -1, -1, -1, 0, 1, 1, 1), \\
(0, 1, 0, -1, 0, -2, -1, 1, 2), \\
(0, 0, 1, 0, -1, -2, 0, 2), \\
(0, 0, 0, 1, -1, 0, -1, -1, 1) \\
], 4), (1, [\n(1, 0, 0, 0, 1, -1, 0, 0, -1), \\
(0, 1, 0, 0, 0, -1, 1, -1, 0), \\
(0, 0, 1, 0, 0, -1, 1, -1, 0), \\
(0, 0, 0, 1, 0, 0, -1, 1, -1), \\
(continues on next page)
Eigenspaces for the Laplacian should be identical since the Petersen graph is regular. However, since the output also contains the eigenvalues, the two outputs are slightly different:
Graph Theory, Release 10.4

```
(0, 0, 0, 1, 0, 0, 0, -1, 1, -1),
(0, 0, 0, 1, -1, 0, 0, -1, 1),
], 5)]
```

```
sage: C = graphs.CycleGraph(8)
sage: C.eigenvectors()  # needs sage.modules sage.rings.number_field
[(2, 
 [  
 (1, 1, 1, 1, 1, 1, 1, 1)  
 ],  
 1),
(-2, 
 [  
 (1, -1, 1, -1, 1, -1, 1, -1)  
 ],  
 1),
(0,  
 [  
 (1, 0, -1, 0, 1, 0, -1, 0),  
 (0, 1, 0, -1, 0, 1, 0, -1)  
 ],  
 2),
(-1.4142135623...,  
 [(1, 0, -1, 1.4142135623..., -1, 0, 1, -1.4142135623...),  
 (0, 1, -1.4142135623..., 1, 0, -1, 1.4142135623..., -1)],  
 2),
```

```
>>> from sage.all import *
```
A digraph may have complex eigenvalues. Previously, the complex parts of graph eigenvalues were being dropped. For a 3-cycle, we have:

```
sage: T = DiGraph({0:[1], 1:[2], 2:[0]})
sage: T.eigenvectors()  # needs sage.modules sage.rings.number_field
[(1, [1, 1, 1], 1),
 (-0.5000000000... - 0.8660254037...*I, [(1, -0.5000000000... - 0.8660254037...*I, -0.5000000000... + 0.8660254037...
 ˓→*I]),
  1),
 (-0.5000000000... + 0.8660254037...*I, [(1, -0.5000000000... + 0.8660254037...*I, -0.5000000000... - 0.8660254037...
 ˓→*I]),
  1)]
```

```
>>> from sage.all import *
>>> T = DiGraph({Integer(0):[Integer(1)], Integer(1):[Integer(2)],...
 ˓→Integer(2):[Integer(0)]})
>>> T.eigenvectors()  # needs sage.modules sage.rings.number_field
[(1, [1, 1, 1], 1),
 (-0.5000000000... - 0.8660254037...*I, [(1, -0.5000000000... - 0.8660254037...*I, -0.5000000000... + 0.8660254037...
 ˓→*I]),
  1),
 (-0.5000000000... + 0.8660254037...*I, [(1, -0.5000000000... + 0.8660254037...*I, -0.5000000000... - 0.8660254037...
 ˓→*I]),
  1)]
```

`eulerian_circuit (return_vertices=False, labels=True, path=False)`

Return a list of edges forming an Eulerian circuit if one exists.

If no Eulerian circuit is found, the method returns `False`.

This is implemented using Hierholzer’s algorithm.

INPUT:

- `return_vertices` – boolean (default: `False`); optionally provide a list of vertices for the path
- `labels` – boolean (default: `True`); whether to return edges with labels (3-tuples)
• **path** – boolean (default: `False`); find an Eulerian path instead

OUTPUT:
either ([`edges`], [`vertices`]) or `[`edges`]` of an Eulerian circuit (or path)

EXAMPLES:

```python
g = graphs.CycleGraph(5)
geulerian_circuit()
[(0, 4, None), (4, 3, None), (3, 2, None), (2, 1, None), (1, 0, None)]

g.eulerian_circuit(labels=False)
[(0, 4), (4, 3), (3, 2), (2, 1), (1, 0)]

from sage.all import *
g = graphs.CycleGraph(Integer(5))
g.eulerian_circuit()
[(0, 4, None), (4, 3, None), (3, 2, None), (2, 1, None), (1, 0, None)]

g.eulerian_circuit(labels=False)
[(0, 4), (4, 3), (3, 2), (2, 1), (1, 0)]

g = graphs.CompleteGraph(7)
edges, vertices = g.eulerian_circuit(return_vertices=True)
vertices
[0, 6, 5, 4, 6, 3, 5, 2, 4, 3, 2, 6, 1, 5, 0, 4, 1, 3, 0, 2, 1, 0]

from sage.all import *
g = graphs.CompleteGraph(Integer(7))
edges, vertices = g.eulerian_circuit(return_vertices=True)
vertices
[0, 6, 5, 4, 6, 3, 5, 2, 4, 3, 2, 6, 1, 5, 0, 4, 1, 3, 0, 2, 1, 0]

g = graphs.CompleteGraph(4).eulerian_circuit()
False

from sage.all import *
graphs.CompleteGraph(Integer(4)).eulerian_circuit()
False

A disconnected graph can be Eulerian:

g = Graph({0: [], 1: [2], 2: [3], 3: [1], 4: []})
geulerian_circuit(labels=False)
[(1, 3), (3, 2), (2, 1)]

from sage.all import *
g = Graph({Integer(0): [], Integer(1): [Integer(2)], Integer(2):...
[
Integer(3)], Integer(3): [Integer(1)], Integer(4): []})
geulerian_circuit(labels=False)
[(1, 3), (3, 2), (2, 1)]

g = DiGraph({0: [1], 1: [2, 4], 2:[3], 3:[1]})
geulerian_circuit(labels=False, path=True)
[(0, 1), (1, 2), (2, 3), (3, 1), (1, 4)]
```
>>> from sage.all import *
>>> g = DiGraph({Integer(0): [Integer(1)], Integer(1): [Integer(2),
 Integer(4)], Integer(2): [Integer(3)], Integer(3): [Integer(1)]})
>>> g.eulerian_circuit(labels=False, path=True)
[(0, 1), (1, 2), (2, 3), (3, 1), (1, 4)]

sage: g = Graph({0:[1,2,3], 1:[2,3], 2:[3,4], 3:[4]})
sage: g.is_eulerian(path=True)
(0, 1)
sage: g.eulerian_circuit(labels=False, path=True)
[(1, 3), (3, 4), (4, 2), (2, 3), (3, 0), (0, 2), (2, 1), (1, 0)]

>>> from sage.all import *
>>> g = Graph({Integer(0): [Integer(1),Integer(2),Integer(3),
 Integer(1): [Integer(2),Integer(3)], Integer(2): [Integer(3),Integer(4)],
 Integer(3): [Integer(4)]:})
>>> g.is_eulerian(path=True)
(0, 1)
>>> g.eulerian_circuit(labels=False, path=True)
[(1, 3), (3, 4), (4, 2), (2, 3), (3, 0), (0, 2), (2, 1), (1, 0)]

eulerian_orientation()

Return a DiGraph which is an Eulerian orientation of the current graph.

An Eulerian graph being a graph such that any vertex has an even degree, an Eulerian orientation of a graph is an orientation of its edges such that each vertex \(v\) verifies \(d^+(v) = d^-(v) = d(v)/2\), where \(d^+\) and \(d^-\) respectively represent the out-degree and the in-degree of a vertex.

If the graph is not Eulerian, the orientation verifies for any vertex \(v\) that \(|d^+(v) - d^-(v)| \leq 1\).

ALGORITHM:

This algorithm is a random walk through the edges of the graph, which orients the edges according to the walk. When a vertex is reached which has no non-oriented edge (this vertex must have odd degree), the walk resumes at another vertex of odd degree, if any.

This algorithm has complexity \(O(n + m)\) for SparseGraph and \(O(n^2)\) for DenseGraph, where \(m\) is the number of edges in the graph and \(n\) is the number of vertices in the graph.

EXAMPLES:

The CubeGraph with parameter 4, which is regular of even degree, has an Eulerian orientation such that \(d^+ = d^-\):

```
sage: g = graphs.CubeGraph(4)
sage: g.degree()
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
sage: o = g.eulerian_orientation()
sage: o.in_degree()
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
sage: o.out_degree()
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
```
Secondly, the Petersen Graph, which is 3 regular has an orientation such that the difference between d^+ and d^- is at most 1:

```python
sage: g = graphs.PetersenGraph()
sage: o = g.eulerian_orientation()
sage: o.in_degree()
[2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
sage: o.out_degree()
[1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
```

export_to_file *(filename, format=None, **kwds)*

Export the graph to a file.

INPUT:

- `filename` – string; a file name
- `format` – string (default: None); select the output format explicitly. If set to None (default), the format is set to be the file extension of `filename`. Admissible formats are: 'adjlist', 'dot', 'edgelist', 'gexf', 'gml', 'graphml', 'multiline_adjlist', 'pajek'.
- All other arguments are forwarded to the subfunction. For more information, see their respective documentation:

```
<table>
<thead>
<tr>
<th>Format</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>'adjlist'</td>
<td>networkx.readwrite.adjlist.write_adjlist()</td>
</tr>
<tr>
<td>'dot'</td>
<td>networkx.readwrite.nx_pydot.write_dot()</td>
</tr>
<tr>
<td>'edgelist'</td>
<td>networkx.readwrite.edgelist.write_edgelist()</td>
</tr>
<tr>
<td>'gexf'</td>
<td>networkx.readwrite.gexf.write_gexf()</td>
</tr>
<tr>
<td>'gml'</td>
<td>networkx.readwrite.gml.write_gml()</td>
</tr>
<tr>
<td>'graphml'</td>
<td>networkx.readwrite.graphml.write_graphml()</td>
</tr>
<tr>
<td>'multiline_adjlist'</td>
<td>networkx.readwrite.multiline_adjlist. write_multiline_adjlist()</td>
</tr>
<tr>
<td>'pajek'</td>
<td>networkx.readwrite.pajek.write_pajek()</td>
</tr>
</tbody>
</table>
```

See also:

- `save()` – save a Sage object to a ‘sobj’ file (preserves all its attributes)

Note: This functions uses the `write_*` functions defined in NetworkX (see `networkx.readwrite`).

EXAMPLES:
Graph Theory, Release 10.4

sage: g = graphs.PetersenGraph()
sage: filename = tmp_filename(ext=".pajek")
sage: g.export_to_file(filename)
˓→needs networkx
sage: import networkx
˓→needs networkx
sage: G_networkx = networkx.read_pajek(filename)
˓→needs networkx
sage: Graph(G_networkx).is_isomorphic(g)
˓→needs networkx
True
sage: filename = tmp_filename(ext=".edgelist")
sage: g.export_to_file(filename, data=False)
˓→needs networkx
sage: h = Graph(networkx.read_edgelist(filename))
˓→needs networkx
sage: g.is_isomorphic(h)
˓→needs networkx
True
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> filename = tmp_filename(ext=".pajek")
>>> g.export_to_file(filename)
˓→needs networkx
>>> import networkx
˓→needs networkx
>>> G_networkx = networkx.read_pajek(filename)
˓→needs networkx
>>> Graph(G_networkx).is_isomorphic(g)
˓→needs networkx
True
>>> filename = tmp_filename(ext=".edgelist")
>>> g.export_to_file(filename, data=False)
˓→needs networkx
>>> h = Graph(networkx.read_edgelist(filename))
˓→needs networkx
>>> g.is_isomorphic(h)
˓→needs networkx
True

#␣
#␣
#␣
#␣

#␣
#␣
#␣

#␣
#␣
#␣
#␣

#␣
#␣
#␣

faces(embedding=None)
Return the faces of an embedded graph.
A combinatorial embedding of a graph is a clockwise ordering of the neighbors of each vertex. From this
information one can define the faces of the embedding, which is what this method returns.
If no embedding is provided or stored as self._embedding, this method will compute the set of faces
from the embedding returned by is_planar() (if the graph is, of course, planar).
Warning: This method is not well defined when the graph is not connected. Indeed, the result may
contain several faces corresponding to the external face.
INPUT:
• embedding – dictionary (default: None); a combinatorial embedding dictionary. Format: {v1:

1.1. Generic graphs (common to directed/undirected)

157


[v2, v3], v2: [v1], v3: [v1]} (clockwise ordering of neighbors at each vertex). If set to None (default) the method will use the embedding stored as self._embedding. If none is stored, the method will compute the set of faces from the embedding returned by is_planar() (if the graph is, of course, planar).

Note: embedding is an ordered list based on the hash order of the vertices of graph. To avoid confusion, it might be best to set the rot_sys based on a 'nice_copy' of the graph.

See also:
- set_embedding()
- get_embedding()
- is_planar()
- planar_dual()

EXAMPLES:

Providing an embedding:

```python
sage: T = graphs.TetrahedralGraph()
sage: T.faces({0: [1, 3, 2], 1: [0, 2, 3], 2: [0, 3, 1], 3: [0, 1, 2]})
[[0, 1], [1, 2], [2, 0]],
[(0, 2), (2, 3), (3, 0)],
[(0, 3), (3, 1), (1, 0)],
[(1, 3), (3, 2), (2, 1)]
```

```python
>>> from sage.all import *
>>> T = graphs.TetrahedralGraph()

>>> T.faces({Integer(0): [Integer(1), Integer(3), Integer(2)], Integer(1):...
˓→[Integer(0), Integer(2), Integer(3)], Integer(2): [Integer(0), Integer(3),...
˓→Integer(1)], Integer(3): [Integer(0), Integer(1), Integer(2)]})
[[0, 1], [1, 2], [2, 0]],
[(0, 2), (2, 3), (3, 0)],
[(0, 3), (3, 1), (1, 0)],
[(1, 3), (3, 2), (2, 1)]
```

With no embedding provided:

```python
sage: graphs.TetrahedralGraph().faces()
[[0, 1], [1, 2], [2, 0]],
[(0, 2), (2, 3), (3, 0)],
[(0, 3), (3, 1), (1, 0)],
[(1, 3), (3, 2), (2, 1)]
```

```python
>>> from sage.all import *

>>> graphs.TetrahedralGraph().faces()
[[0, 1], [1, 2], [2, 0]],
[(0, 2), (2, 3), (3, 0)],
[(0, 3), (3, 1), (1, 0)],
[(1, 3), (3, 2), (2, 1)]
```

With no embedding provided (non-planar graph):
sage: graphs.PetersenGraph().faces()
Traceback (most recent call last):
...
ValueError: no embedding is provided and the graph is not planar

>>> from sage.all import *
>>> graphs.PetersenGraph().faces()
Traceback (most recent call last):
...
ValueError: no embedding is provided and the graph is not planar

feedback_vertex_set (value_only, solver=False, verbose=None, constraint_generation=0,
integrality_tolerance=True)

Return the minimum feedback vertex set of a (di)graph.

The minimum feedback vertex set of a (di)graph is a set of vertices that intersect all of its cycles. Equivalently, a minimum feedback vertex set of a (di)graph is a set S of vertices such that the digraph $G - S$ is acyclic. For more information, see the Wikipedia article Feedback_vertex_set.

INPUT:

- value_only – boolean (default: False); whether to return only the minimum cardinal of a minimum vertex set, or the Set of vertices of a minimal feedback vertex set
- solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- constraint_generation – boolean (default: True); whether to use constraint generation when solving the Mixed Integer Linear Program
- integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

ALGORITHMS:

(Constraint generation)

When the parameter constraint_generation is enabled (default) the following MILP formulation is used to solve the problem:

Minimize : $\sum_{v \in G} b_v$

Such that :

$\forall C \text{ circuits } \subseteq G, \sum_{v \in C} b_v \geq 1$

As the number of circuits contained in a graph is exponential, this LP is solved through constraint generation. This means that the solver is sequentially asked to solve the problem, knowing only a portion of the circuits contained in G, each time adding to the list of its constraints the circuit which its last answer had left intact.

(Another formulation based on an ordering of the vertices)

When the graph is directed, a second (and very slow) formulation is available, which should only be used to
check the result of the first implementation in case of doubt.

\[
\text{Minimize : } \sum_{v \in G} b_v
\]

Such that:

\[
\forall (u, v) \in G, d_u - d_v + nb_u + nb_v \geq 0
\]

\[
\forall u \in G, 0 \leq d_u \leq |G|
\]

A brief explanation:

An acyclic digraph can be seen as a poset, and every poset has a linear extension. This means that in any acyclic digraph the vertices can be ordered with a total order \(<\) in such a way that if \((u, v) \in G\), then \(u < v\). Thus, this linear program is built in order to assign to each vertex \(v\) a number \(d_v \in [0, \ldots, n-1]\) such that if there exists an edge \((u, v) \in G\) then either \(d_u < d_v\) or one of \(u\) or \(v\) is removed. The number of vertices removed is then minimized, which is the objective.

EXAMPLES:

The necessary example:

```python
sage: # needs sage.numerical.mip
sage: g = graphs.PetersenGraph()
sage: fvs = g.feedback_vertex_set()
sage: len(fvs)
3
sage: g.delete_vertices(fvs)
sage: g.is_forest()
True
```

```python
>>> from sage.all import *
>>> # needs sage.numerical.mip
>>> g = graphs.PetersenGraph()
>>> fvs = g.feedback_vertex_set()
>>> len(fvs)
3
>>> g.delete_vertices(fvs)
>>> g.is_forest()
True
```

In a digraph built from a graph, any edge is replaced by arcs going in the two opposite directions, thus creating a cycle of length two. Hence, to remove all the cycles from the graph, each edge must see one of its neighbors removed: a feedback vertex set is in this situation a vertex cover:

```python
sage: # needs sage.numerical.mip
sage: cycle = graphs.CycleGraph(5)
sage: dcycle = DiGraph(cycle)
sage: cycle.vertex_cover(value_only=True)
3
sage: feedback = dcycle.feedback_vertex_set()
sage: len(feedback)
3
sage: u, v = next(cycle.edge_iterator(labels=None))
sage: u in feedback or v in feedback
True
```

```python
>>> from sage.all import *
>>> # needs sage.numerical.mip
```

(continues on next page)
For a circuit, the minimum feedback arc set is clearly 1:

```sage
circuit = digraphs.Circuit(5)
circuit.feedback_vertex_set(value_only=True) == 1  # needs sage.numerical.mip
```

The returned flow is represented by an optimal valuation of the edges. For more information, see the Wikipedia article Max_flow.

As an optimization problem, is can be expressed this way:

\[
\begin{align*}
\text{Maximize: } & \sum_{e \in G.\text{edges}()} w_e b_e \\
\text{Such that: } & \forall v \in G, \sum_{(u,v) \in G.\text{edges}()} b_{(u,v)} \leq 1 \\
& \forall x \in G, b_x \text{ is a binary variable}
\end{align*}
\]

Observe that the integrality of the flow variables is automatic for all available solvers when all capacities are integers.

INPUT:

- x – source vertex
- y – sink vertex
- value_only – boolean (default: True); whether to return only the value of a maximal flow, or to also return a flow graph (a copy of the current graph, such that each edge has the flow using it as a label, the edges without flow being omitted)
- integer – boolean (default: True); whether to compute an optimal solution under the constraint that the flow going through an edge has to be an integer, or without this constraint
- use_edge_labels – boolean (default: False); whether to compute a maximum flow where each edge has a capacity defined by its label (if an edge has no label, capacity 1 is assumed), or to use default edge capacity of 1
• **vertex_bound** – boolean (default: False); when set to True, sets the maximum flow leaving a vertex different from \(x \) to 1 (useful for vertex connectivity parameters)

• **algorithm** – string (default: None); the algorithm to use among:
 - "FF", a Python implementation of the Ford-Fulkerson algorithm (only available when \(\text{vertex_bound} = \text{False} \))
 - "LP", the flow problem is solved using Linear Programming
 - "igraph", the igraph implementation of the Goldberg-Tarjan algorithm is used (only available when \(\text{igraph} \) is installed and \(\text{vertex_bound} = \text{False} \))

When \(\text{algorithm} = \text{None} \) (default), we use LP if \(\text{vertex_bound} = \text{True} \), otherwise, we use igraph if it is available, FF if it is not available.

• **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \(\text{solve} \) of the class \(\text{MixedIntegerLinearProgram} \).

Only useful when \(\text{algorithm} = "\text{LP}" \) is used to solve the flow problem.

• **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

Only useful when \(\text{algorithm} = "\text{LP}" \) is used to solve the flow problem.

• **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see \(\text{MixedIntegerLinearProgram.get_values()} \).

Only useful when \(\text{algorithm} = "\text{LP}" \) and \(\text{integer} = \text{True} \).

Note: Even though the three different implementations are meant to return the same Flow values, they cannot be expected to return the same Flow graphs.

Besides, the use of Linear Programming may possibly mean a (slight) numerical noise.

EXAMPLES:

Two basic applications of the flow method for the \(\text{PappusGraph} \) and the \(\text{ButterflyGraph} \) with parameter 2

```
sage: g=graphs.PappusGraph()
sage: int(g.flow(1,2))
3
```

```
>>> from sage.all import *
>>> g=graphs.PappusGraph()
>>> int(g.flow(Integer(1),Integer(2)))
3
```

```
sage: b=digraphs.ButterflyGraph(2)
sage: int(b.flow(('00', 1), ('00', 2)))
1
```

```
>>> from sage.all import *
>>> b=digraphs.ButterflyGraph(Integer(2))
>>> int(b.flow(('00', Integer(1)), ('00', Integer(2))))
1
```
The flow method can be used to compute a matching in a bipartite graph by linking a source \(s \) to all the vertices of the first set and linking a sink \(t \) to all the vertices of the second set, then computing a maximum \(s-t \) flow.

```python
sage: g = DiGraph()
sage: g.add_edges(('s', i) for i in range(4))
sage: g.add_edges((i, 4 + j) for i in range(4) for j in range(4))
sage: g.add_edges((4 + i, 't') for i in range(4))
[s, flow_graph] = g.flow('s', 't', integer=True, value_only=False)
sage: flow_graph.delete_vertices(['s', 't'])
sage: flow_graph.size()
4
```

The undirected case:

```python
sage: g = Graph()
sage: g.add_edges(('s', i) for i in range(4))
sage: g.add_edges((i, 4 + j) for i in range(4) for j in range(4))
sage: g.add_edges((4 + i, 't') for i in range(4))
[s, flow_graph] = g.flow('s', 't', integer=True, value_only=False)
sage: flow_graph.delete_vertices(['s', 't'])
sage: flow_graph.size()
4
```

```python
>>> from sage.all import *
>>> g = DiGraph()
>>> g.add_edges(('s', i) for i in range(Integer(4)))
>>> g.add_edges((i, Integer(4) + j) for i in range(Integer(4)) for j in
... range(Integer(4)))
>>> g.add_edges((Integer(4) + i, 't') for i in range(Integer(4)))
>>> [cardinal, flow_graph] = g.flow('s', 't', integer=True, value_only=False)
>>> flow_graph.delete_vertices(['s', 't'])
>>> flow_graph.size()
4
```

```python
>>> from sage.all import *
>>> g = Graph()
>>> g.add_edges(('s', i) for i in range(Integer(4)))
>>> g.add_edges((i, Integer(4) + j) for i in range(Integer(4)) for j in
... range(Integer(4)))
>>> g.add_edges((Integer(4) + i, 't') for i in range(Integer(4)))
>>> [cardinal, flow_graph] = g.flow('s', 't', integer=True, value_only=False)
>>> flow_graph.delete_vertices(['s', 't'])
>>> flow_graph.size()
4
```

genus (set_embedding=True, on_embedding=None, minimal=True, maximal=False, circular=None, ordered=True)

Return the minimal genus of the graph.

The genus of a compact surface is the number of handles it has. The genus of a graph is the minimal genus of the surface it can be embedded into. It can be seen as a measure of non-planarity; a planar graph has genus zero.

1.1. Generic graphs (common to directed/undirected) 163
Note: This function uses Euler's formula and thus it is necessary to consider only connected graphs.

INPUT:

- `set_embedding` – boolean (default: `True`); whether or not to store an embedding attribute of the computed (minimal) genus of the graph

- `on_embedding` – two kinds of input are allowed (default: `None`):
 - a dictionary representing a combinatorial embedding on which the genus should be computed. Note that this must be a valid embedding for the graph. The dictionary structure is given by: vertex1: [neighbor1, neighbor2, neighbor3], vertex2: [neighbor] where there is a key for each vertex in the graph and a (clockwise) ordered list of each vertex’s neighbors as values. The value of `on_embedding` takes precedence over a stored `_embedding` attribute if `minimal` is set to `False`.
 - The value `True`, in order to indicate that the embedding stored as `_embedding` should be used (see examples).

- `minimal` – boolean (default: `True`); whether or not to compute the minimal genus of the graph (i.e., testing all embeddings). If `minimal` is `False`, then either `maximal` must be `True` or `on_embedding` must not be `None`. If `on_embedding` is `None`, it will take priority over `minimal`. Similarly, if `maximal` is `True`, it will take priority over `minimal`.

- `maximal` – boolean (default: `False`); whether or not to compute the maximal genus of the graph (i.e., testing all embeddings). If `maximal` is `False`, then either `minimal` must be `True` or `on_embedding` must not be `None`. If `on_embedding` is `None`, it will take priority over `maximal`. However, `maximal` takes priority over the default `minimal`.

- `circular` – list (default: `None`); if `circular` is a list of vertices, the method computes the genus preserving a planar embedding of the this list. If `circular` is defined, `on_embedding` is not a valid option.

- `ordered` – boolean (default: `True`); if `circular` is `True`, then whether or not the boundary order may be permuted (default is `True`, which means the boundary order is preserved)

EXAMPLES:

```python
sage: g = graphs.PetersenGraph()
sage: g.genus() # tests for minimal genus by default
1
sage: g.genus(on_embedding=True, maximal=True) # on_embedding overrides...
    →minimal and maximal arguments
1
sage: g.genus(maximal=True) # setting maximal to True overrides default...
    →minimal=True
3
sage: g.genus(on_embedding=g.get_embedding()) # can also send a valid...
    →combinatorial embedding dict
3
sage: (graphs.CubeGraph(3)).genus()
0
sage: K23 = graphs.CompleteBipartiteGraph(2,3)
sage: K23.genus()
0
sage: K33 = graphs.CompleteBipartiteGraph(3,3)
```

(continues on next page)
Using the circular argument, we can compute the minimal genus preserving a planar, ordered boundary:

```python
sage: cube = graphs.CubeGraph(2)
sage: cube.is_circular_planar()  # True
sage: cube.genus(circular=['01', '10'])  # 0
Traceback (most recent call last):
  ... ValueError: on_embedding is not a valid option when circular is defined
sage: cube.genus(circular=['01', '10'], maximal=True)  # Error
Traceback (most recent call last):
  ... NotImplementedError: cannot compute the maximal genus of a genus respecting a...
```

(continues on next page)
Note: not everything works for multigraphs, looped graphs or digraphs. But the minimal genus is ultimately computable for every connected graph – but the embedding we obtain for the simple graph can’t be easily converted to an embedding of a non-simple graph. Also, the maximal genus of a multigraph does not trivially correspond to that of its simple graph:

```python
>>> cube.genus(circular=['01', '10'], maximal=True)
Traceback (most recent call last):
... 
NotImplementedError: cannot compute the maximal genus of a genus respecting a → boundary
```

We break graphs with cut vertices into their blocks, which greatly speeds up computation of minimal genus. This is not implemented for maximal genus:

```python
>>> from sage.all import *
>>> G = DiGraph({0: [0, 1, 1, 1], 1: [2, 2, 3, 3], 2: [1, 3, 3], 3: [0, 3]})
>>> G.genus()
Traceback (most recent call last):
... 
NotImplementedError: cannot work with embeddings of non-simple graphs
```

```python
>>> G.to_simple().genus()
0
>>> G.genus(set_embedding=False)
0
>>> G.genus(maximal=True, set_embedding=False)
Traceback (most recent call last):
... 
NotImplementedError: cannot compute the maximal genus of a graph with loops → or multiple edges
```

```python
>>> from sage.all import *
>>> G = DiGraph({Integer(0): [Integer(0), Integer(1), Integer(1), Integer(1)], Integer(1): [Integer(2), Integer(2), Integer(3), Integer(3)], Integer(2): [Integer(1), Integer(3), Integer(3)], Integer(3): [Integer(0), Integer(3)]})
>>> G.genus()
Traceback (most recent call last):
... 
NotImplementedError: cannot work with embeddings of non-simple graphs
```

```python
>>> G.to_simple().genus()
0
>>> G.genus(set_embedding=False)
0
>>> G.genus(maximal=True, set_embedding=False)
Traceback (most recent call last):
... 
NotImplementedError: cannot compute the maximal genus of a graph with loops → or multiple edges
```

```python
>>> from sage.all import *
>>> G = graphs.RandomBlockGraph(10, 5)
>>> G.genus()
10
```

```python
>>> from sage.all import *
>>> G = graphs.RandomBlockGraph(Integer(10), Integer(5))
>>> G.genus()
10
```
get_embedding()

Return the stored embedding or None.

If the stored embedding is no longer valid (because of vertex/edge additions) then the stored embedding is discarded and None is returned. In case some vertex/edge has been deleted, the stored embedding is updated accordingly.

EXAMPLES:

```python
sage: G = graphs.PetersenGraph()
sage: G.genus()
1
sage: G.get_embedding()
{0: [1, 4, 5], 1: [0, 2, 6], 2: [1, 3, 7], 3: [2, 4, 8],
  4: [0, 3, 9], 5: [0, 7, 8], 6: [1, 9, 8], 7: [2, 5, 9],
  8: [3, 6, 5], 9: [4, 6, 7]}
```

```python
>>> from sage.all import *

>>> G = graphs.PetersenGraph()

>>> G.genus()
1

>>> G.get_embedding()
{0: [1, 4, 5], 1: [0, 2, 6], 2: [1, 3, 7], 3: [2, 4, 8],
  4: [0, 3, 9], 5: [0, 7, 8], 6: [1, 9, 8], 7: [2, 5, 9],
  8: [3, 6, 5], 9: [4, 6, 7]}
```

Note that the embeddings gets properly modified on vertex or edge deletion:

```python
sage: G.delete_edge(0, 1)
sage: G.delete_vertex(3)
sage: G.get_embedding()
{0: [4, 5],
  1: [2, 6],
  2: [1, 7],
  4: [0, 9],
  5: [0, 7, 8],
  6: [1, 9, 8],
  7: [2, 5, 9],
  8: [6, 5],
  9: [4, 6, 7]}
```

```python
>>> from sage.all import *

>>> G.delete_edge(Integer(0), Integer(1))

>>> G.delete_vertex(Integer(3))

>>> G.get_embedding()
{0: [4, 5],
  1: [2, 6],
  2: [1, 7],
  4: [0, 9],
  5: [0, 7, 8],
  6: [1, 9, 8],
  7: [2, 5, 9],
  8: [6, 5],
  9: [4, 6, 7]}
```

But not under edge addition:
get_pos (dim=2)

Return the position dictionary.

The position dictionary specifies the coordinates of each vertex.

INPUT:

- dim - integer (default: 2); whether to return the position dictionary in the plane (dim == 2) or in the 3-dimensional space

EXAMPLES:

By default, the position of a graph is None:

```python
sage: G = Graph()
sage: G.get_pos()
True
sage: P = G.plot(save_pos=True)  # needs sage.plot
sage: G.get_pos()                # needs sage.plot
{}
```

Some of the named graphs come with a pre-specified positioning:

```python
sage: G = graphs.PetersenGraph()
sage: G.get_pos()
(0: (0.0, 1.0), ...
9: (0.475..., 0.154...))
```

```python
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.get_pos()
(0: (0.0, 1.0), ...
9: (0.475..., 0.154...))
```
Note that the position dictionary is modified on vertex removal:

```python
sage: G.delete_vertex(0)
sage: G.get_pos()
{1: (-0.951..., 0.309...),
 ... 9: (0.475..., 0.154...)}
```

```python
>>> from sage.all import *

>>> G.delete_vertex(Integer(0))
>>> G.get_pos()
{1: (-0.951..., 0.309...),
 ... 9: (0.475..., 0.154...)}
```

But is deleted on vertex addition:

```python
sage: G.add_vertex(0)
sage: G.get_pos() is None
True
```

```python
>>> from sage.all import *

>>> G.add_vertex(Integer(0))
>>> G.get_pos() is None
True
```

`get_vertex(vertex)`

Retrieve the object associated with a given vertex.

If no associated object is found, None is returned.

INPUT:

- `vertex` — the given vertex

EXAMPLES:

```python
sage: d = {0: graphs.DodecahedralGraph(), 1: graphs.FlowerSnark(), 2: graphs.MoebiusKantorGraph(), 3: graphs.PetersenGraph()}
sage: d[2]
Moebius-Kantor Graph: Graph on 16 vertices
sage: T = graphs.TetrahedralGraph()
sage: T.vertices(sort=True)
[0, 1, 2, 3]
sage: T.set_vertices(d)
sage: T.get_vertex(1)
Flower Snark: Graph on 20 vertices
```

```python
>>> from sage.all import *

>>> d = {Integer(0): graphs.DodecahedralGraph(), Integer(1): graphs.FlowerSnark(), Integer(2): graphs.MoebiusKantorGraph(), Integer(3): graphs.PetersenGraph()}

>>> d[Integer(2)]
Moebius-Kantor Graph: Graph on 16 vertices

>>> T = graphs.TetrahedralGraph()

>>> T.vertices(sort=True)
[0, 1, 2, 3]

>>> T.set_vertices(d)
```

(continues on next page)
get_vertices(verts=None)

Return a dictionary of the objects associated to each vertex.

INPUT:

- verts – iterable container of vertices

EXAMPLES:

```python
sage: d = {0: graphs.DodecahedralGraph(), 1: graphs.FlowerSnark(), 2: graphs.MoebiusKantorGraph(), 3: graphs.PetersenGraph()}
sage: T = graphs.TetrahedralGraph()
sage: T.set_vertices(d)
sage: T.get_vertices([1, 2])
{1: Flower Snark: Graph on 20 vertices,
 2: Moebius-Kantor Graph: Graph on 16 vertices}
```

```
>> from sage.all import *

>>> d = {Integer(0): graphs.DodecahedralGraph(), Integer(1): graphs.FlowerSnark(), Integer(2): graphs.MoebiusKantorGraph(), Integer(3): graphs.PetersenGraph()}
>>> T = graphs.TetrahedralGraph()
>>> T.set_vertices(d)
>>> T.get_vertices([Integer(1), Integer(2)])
{1: Flower Snark: Graph on 20 vertices,
 2: Moebius-Kantor Graph: Graph on 16 vertices}
```

girth(certificate=False)

Return the girth of the graph.

The girth is the length of the shortest cycle in the graph (directed cycle if the graph is directed). Graphs without (directed) cycles have infinite girth.

INPUT:

- certificate – boolean (default: False); whether to return (g, c), where g is the girth and c is a list of vertices of a (directed) cycle of length g in the graph, thus providing a certificate that the girth is at most g, or None if g infinite

EXAMPLES:

```python
sage: graphs.TetrahedralGraph().girth()
3
sage: graphs.CubeGraph(3).girth()
4
sage: graphs.PetersenGraph().girth(certificate=True)  # random
(5, [4, 3, 2, 1, 0])
sage: graphs.HeawoodGraph().girth()
6
sage: next(graphs.trees(9)).girth()
+Infinity
```

```
>>> from sage.all import *

>>> graphs.TetrahedralGraph().girth()
```
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> graphs.CubeGraph(Integer(3)).girth()
4
```

```python
>>> graphs.PetersenGraph().girth(certificate=True)  # random
(5, [4, 3, 2, 1, 0])
```

```python
>>> graphs.HeawoodGraph().girth()
6
```

```python
>>> next(graphs.trees(Integer(9))).girth()
+Infinity
```

See also:

- `odd_girth()` – return the odd girth of the graph.

```python
graphics_array_defaults = {'graph_border': True, 'layout': 'circular', 'vertex_labels': False, 'vertex_size': 50}
```

```python
graphplot(**options)
```

Return a `GraphPlot` object.

See `GraphPlot` for more details.

INPUT:

- `**options` – parameters for the `GraphPlot` constructor

EXAMPLES:

Creating a `GraphPlot` object uses the same options as `plot()`:

```python
g = Graph({}, loops=True, multiedges=True, sparse=True)
g.add_edges([(0,0,'a'), (0,0,'b'), (0,1,'c'), (0,1,'d'),
             (0,1,'e'), (0,1,'f'), (0,1,'f'), (2,1,'g'), (2,2,'h')])
GP = g.graphplot(edge_labels=True, color_by_label=True,
                 edge_style='dashed')
GP.plot()
```

```python
# needs sage.plot
GP.set_edges(edge_style='solid')
```

```python
from sage.all import *
g = Graph({}, loops=True, multiedges=True, sparse=True)
g.add_edges([(Integer(0),Integer(0),'a'), (Integer(0),Integer(0),'b'),
             (Integer(0),Integer(1),'c'), (Integer(0),Integer(1),'d'),
             (Integer(0),Integer(1),'e'), (Integer(0),Integer(0),Integer(1),'f'), (Integer(0),
             Integer(1),'f'), (Integer(2),Integer(1),'g'), (Integer(2),Integer(2),'h')])
GP = g.graphplot(edge_labels=True, color_by_label=True,
                 edge_style='dashed')
GP.plot()
```

We can modify the `GraphPlot` object. Notice that the changes are cumulative:

```python
# needs sage.plot
GP.set_edges(edge_style='solid')
```

(continues on next page)
Continued from previous page:

```python
sage: GP.plot()
sage: Graphics object consisting of 22 graphics primitives
sage: GP.set_vertices(talk=True)
sage: GP.plot()
sage: Graphics object consisting of 22 graphics primitives
>>> from sage.all import *
>>> # needs sage.plot
>>> GP.set_edges(edge_style='solid')
>>> GP.plot()
sage: Graphics object consisting of 22 graphics primitives
>>> GP.set_vertices(talk=True)
>>> GP.plot()
sage: Graphics object consisting of 22 graphics primitives
```

`graphviz_string` (labels="string", vertex_labels=True, edge_labels=False, edge_color=None, edge_colors=None, edge_options=(), color_by_label=False, rankdir='down', subgraph_clusters=[], **options)

Return a representation in the dot language.

The dot language is a text based format for graphs. It is used by the software suite graphviz. The specifications of the language are available on the web (see the reference [dotspec]).

INPUT:

- **labels** – string (default: "string"); either "string" or "latex". If labels is "string", latex commands are not interpreted. This option stands for both vertex labels and edge labels.
- **vertex_labels** – boolean (default: True); whether to add the labels on vertices
- **edge_labels** – boolean (default: False); whether to add the labels on edges
- **edge_color** – (default: None); specify a default color for the edges. The color could be one of
 - a name given as a string such as "blue" or "orcid"
 - a HSV sequence in a string such as ",52, ,386, ,22"
 - a hexadecimal code such as "#DA3305"
 - a 3-tuple of floating point (to be interpreted as RGB tuple). In this case the 3-tuple is converted in hexadecimal code.
- **edge_colors** – dictionary (default: None); a dictionary whose keys are colors and values are list of edges. The list of edges need not to be complete in which case the default color is used. See the option edge_color for a description of valid color formats.
- **color_by_label** – a boolean or dictionary or function (default: False); whether to color each edge with a different color according to its label; the colors are chosen along a rainbow, unless they are specified by a function or dictionary mapping labels to colors; this option is incompatible with edge_color and edge_colors. See the option edge_color for a description of valid color formats.
- **edge_options** – a function (or tuple thereof) mapping edges to a dictionary of options for this edge
- **rankdir** – 'left', 'right', 'up', or 'down' (default: 'down', for consistency with graphviz): the preferred ranking direction for acyclic layouts; see the rankdir option of graphviz.
- **subgraph_clusters** – a list of lists of vertices (default: []). From [dotspec]: “If supported, the layout engine will do the layout so that the nodes belonging to the cluster are drawn together, with the entire drawing of the cluster contained within a bounding rectangle. Note that, for good and bad, cluster
subgraphs are not part of the dot language, but solely a syntactic convention adhered to by certain of
the layout engines."

EXAMPLES:

```python
sage: G = Graph({0: {1: None, 2: None}, 1: {0: None, 2: None},
2: {0: None, 1: None, 3: 'foo'}, 3: (2: 'foo')},
sparse=True)
sage: print(G.graphviz_string(edge_labels=True))
graph {
  node_0 [label="0"];  
  node_1 [label="1"];  
  node_2 [label="2"];  
  node_3 [label="3"];  
  node_0 -- node_1;  
  node_0 -- node_2;  
  node_1 -- node_2;  
  node_2 -- node_3 [label="foo"]; }
```

```python
>>> from sage.all import *
>>> G = Graph({Integer(0): {Integer(1): None, Integer(2): None}, Integer(1):
˓→{Integer(0): None, Integer(2): None},
... Integer(2): {Integer(0): None, Integer(1): None, Integer(3):
˓→'foo'}, Integer(3): {Integer(2): 'foo'}},
... sparse=True)
>>> print(G.graphviz_string(edge_labels=True))
graph {
  node_0 [label="0"];  
  node_1 [label="1"];  
  node_2 [label="2"];  
  node_3 [label="3"];  
  node_0 -- node_1;  
  node_0 -- node_2;  
  node_1 -- node_2;  
  node_2 -- node_3 [label="foo"]; }
```

A variant, with the labels in latex, for post-processing with dot2tex:

```python
sage: print(G.graphviz_string(edge_labels=True, labels="latex"))
graph {
  node [shape="plaintext"];  
  node_0 [label="", txlbl="$0$"];  
  node_1 [label="", txlbl="$1$"];  
  node_2 [label="", txlbl="$2$"];  
  node_3 [label="", txlbl="$3$"];  
  node_0 -- node_1;  
  node_0 -- node_2;  
  node_1 -- node_2;  
  node_2 -- node_3 [label="", txlbl="$\texttt{foo}$"]; }
```

```python
>>> from sage.all import *
>>> print(G.graphviz_string(edge_labels=True, labels="latex"))
```

(continues on next page)
Same, with a digraph and a color for edges:

```python
sage: G = DiGraph({0: {1: None, 2: None}, 1: {2: None}, 2: {3: 'foo'}, 3: {}}), sparse=True
sage: print(G.graphviz_string(edge_color="red"))
digraph {
    node_0 [label="0"];  
    node_1 [label="1"];  
    node_2 [label="2"];  
    node_3 [label="3"];  
    edge [color="red"];  
    node_0 -> node_1;  
    node_0 -> node_2;  
    node_1 -> node_2;  
    node_2 -> node_3;  
}
```

A digraph using latex labels for vertices and edges:

```python
sage: # needs sage.symbolic
sage: f(x) = -1 / x
sage: g(x) = 1 / (x + 1)
```

(continues on next page)
sage: G.add_edges((i, f(i), f) for i in (1, 2, 1/2, 1/4))
sage: G.add_edges((i, g(i), g) for i in (1, 2, 1/2, 1/4))

sage: print(G.graphviz_string(labels="latex", edge_labels=True))

digraph {
 node [shape="plaintext"];
 node_10 [label=" ", texlbl="1"];
 node_11 [label=" ", texlbl="2"];
 node_3 [label=" ", texlbl="$-\frac{1}{2}$"];
 node_6 [label=" ", texlbl="$\frac{1}{2}$"];
 node_7 [label=" ", texlbl="$\frac{1}{3}$"];
 node_8 [label=" ", texlbl="$\frac{2}{3}$"];
 node_4 [label=" ", texlbl="$\frac{1}{4}$"];
 node_1 [label=" ", texlbl="-2"];
 node_9 [label=" ", texlbl="$\frac{4}{5}$"];
 node_0 [label=" ", texlbl="-4"];
 node_2 [label=" ", texlbl="-1"];
 node_10 -> node_2 [label=" ", texlbl="$x \ {\mapsto} \ -\frac{1}{x}$"];
 node_10 -> node_6 [label=" ", texlbl="$x \ {\mapsto} \ \frac{1}{x + 1}$"];
 node_11 -> node_3 [label=" ", texlbl="$x \ {\mapsto} \ -\frac{1}{x}$"];
 node_11 -> node_5 [label=" ", texlbl="$x \ {\mapsto} \ \frac{1}{x + 1}$"];
 node_7 -> node_1 [label=" ", texlbl="$x \ {\mapsto} \ -\frac{1}{x}$"];
 node_7 -> node_8 [label=" ", texlbl="$x \ {\mapsto} \ \frac{1}{x + 1}$"];
 node_4 -> node_0 [label=" ", texlbl="$x \ {\mapsto} \ -\frac{1}{x}$"];
 node_4 -> node_9 [label=" ", texlbl="$x \ {\mapsto} \ \frac{1}{x + 1}$"];
}

sage: print(G.graphviz_string(labels="latex", edge_labels=True))

digraph {
 node [shape="plaintext"];
 node_10 [label=" ", texlbl="1"];
 node_11 [label=" ", texlbl="2"];
 node_3 [label=" ", texlbl="$-\frac{1}{2}$"];
 node_6 [label=" ", texlbl="$\frac{1}{2}$"];
 node_7 [label=" ", texlbl="$\frac{1}{3}$"];
 node_8 [label=" ", texlbl="$\frac{2}{3}$"];
 node_4 [label=" ", texlbl="$\frac{1}{4}$"];
 node_1 [label=" ", texlbl="-2"];
 node_9 [label=" ", texlbl="$\frac{4}{5}$"];
 node_0 [label=" ", texlbl="-4"];
 node_2 [label=" ", texlbl="-1"];
 node_10 -> node_2 [color = "#ff0000"];
 node_10 -> node_6 [color = "#00ffff"];
 node_11 -> node_3 [color = "#ff0000"];
 node_11 -> node_5 [color = "#00ffff"];
 node_7 -> node_1 [color = "#ff0000"];
 node_7 -> node_8 [color = "#00ffff"];
 node_4 -> node_0 [color = "#ff0000"];
 node_4 -> node_9 [color = "#00ffff"];
}
```python
sage: print(G.graphviz_string(labels="latex", edge_labels=True))
```

```
digraph {
  node [shape="plaintext"];
  node_10 [label=" ", texlbl="$1$" ];
  node_11 [label=" ", texlbl="$2$" ];
  node_3 [label=" ", texlbl="$-\frac{1}{2}$" ];
  node_6 [label=" ", texlbl="$\frac{1}{2}$" ];
  node_7 [label=" ", texlbl="$\frac{1}{2}$" ];
  node_5 [label=" ", texlbl="$\frac{1}{3}$" ];
  node_8 [label=" ", texlbl="$\frac{1}{3}$" ];
  node_4 [label=" ", texlbl="$\frac{2}{3}$" ];
  node_1 [label=" ", texlbl="$\frac{1}{4}$" ];
  node_9 [label=" ", texlbl="$\frac{4}{5}$" ];
  node_0 [label=" ", texlbl="$-4$" ];
  node_2 [label=" ", texlbl="$-1$" ];
  node_10 -> node_2 [color = "red"];  
  node_10 -> node_6 [color = "blue"];  
  node_11 -> node_5 [color = "red"];  
  node_11 -> node_3 [color = "blue"];  
  node_7 -> node_1 [color = "red"];  
  node_7 -> node_8 [color = "blue"];  
  node_4 -> node_0 [color = "red"];  
  node_4 -> node_9 [color = "blue"];  
}
```

```
>>> from sage.all import *
>>> # needs sage.symbolic

>>> __tmp__=var("x"); f = symbolic_expression(-Integer(1) / x).function(x)
>>> __tmp__=var("x"); g = symbolic_expression(Integer(1) / (x + Integer(1))).function(x)
>>> G = DiGraph()
>>> G.add_edges((i, f(i), f) for i in (Integer(1), Integer(2), Integer(1)/Integer(2), Integer(1)/Integer(4)))
>>> G.add_edges((i, g(i), g) for i in (Integer(1), Integer(2), Integer(1)/Integer(2), Integer(1)/Integer(4)))
>>> print(G.graphviz_string(labels="latex", edge_labels=True))
```

```
digraph {
  node [shape="plaintext"];
  node_10 [label=" ", texlbl="$x \mapsto -\frac{1}{x}$" ];
  node_11 [label=" ", texlbl="$x \mapsto \frac{x}{x+1}$" ];
  node_3 [label=" ", texlbl="$-\frac{1}{2}$" ];
  node_6 [label=" ", texlbl="$\frac{1}{2}$" ];
  node_7 [label=" ", texlbl="$\frac{1}{2}$" ];
  node_5 [label=" ", texlbl="$\frac{1}{3}$" ];
  node_8 [label=" ", texlbl="$\frac{1}{3}$" ];
  node_4 [label=" ", texlbl="$\frac{2}{3}$" ];
  node_1 [label=" ", texlbl="$\frac{1}{4}$" ];
  node_9 [label=" ", texlbl="$\frac{4}{5}$" ];
  node_0 [label=" ", texlbl="$-4$" ];
  node_2 [label=" ", texlbl="$-1$" ];
  node_10 -> node_2 [label=" ", texlbl="x \mapsto -\frac{1}{x}\$" ];
  node_10 -> node_6 [label=" ", texlbl="x \mapsto \frac{x}{x+1}\$" ];
  node_11 -> node_5 [label=" ", texlbl="x \mapsto -\frac{1}{x}\$" ];
  node_11 -> node_3 [label=" ", texlbl="x \mapsto \frac{x}{x+1}\$" ];
  node_7 -> node_1 [label=" ", texlbl="x \mapsto -\frac{1}{x}\$" ];
  node_7 -> node_8 [label=" ", texlbl="x \mapsto \frac{x}{x+1}\$" ];
  node_4 -> node_0 [label=" ", texlbl="x \mapsto -\frac{1}{x}\$" ];
  node_4 -> node_9 [label=" ", texlbl="x \mapsto \frac{x}{x+1}\$" ];
}
```

```
(continues on next page)
```
Graph Theory, Release 10.4

(continued from previous page)

```python
node_10 -> node_6 [label="", texlbl="$x \mapsto \frac{1}{x + 1}$"];
node_11 -> node_3 [label="", texlbl="$x \mapsto -\frac{1}{x}$"];
node_11 -> node_5 [label="", texlbl="$x \mapsto \frac{1}{x + 1}$"];
node_7 -> node_1 [label="", texlbl="$x \mapsto -\frac{1}{x}$"];
node_7 -> node_8 [label="", texlbl="$x \mapsto \frac{1}{x + 1}$"];
node_4 -> node_0 [label="", texlbl="$x \mapsto -\frac{1}{x}$"];
node_4 -> node_9 [label="", texlbl="$x \mapsto \frac{1}{x + 1}$"];
```

```python
>>> print(G.graphviz_string(labels="latex", color_by_label={f: "red", g: "blue"}))
```

1.1. Generic graphs (common to directed/undirected) 177

(continues on next page)
By default graphviz renders digraphs using a hierarchical layout, ranking the vertices down from top to bottom. Here we specify alternative ranking directions for this layout:

```python
sage: D = DiGraph([(1, 2)])
sage: print(D.graphviz_string(rankdir="up"))
digraph {
    rankdir=BT
    node_0 [label="1"];  
    node_1 [label="2"];  
    node_0 -> node_1;
}
sage: print(D.graphviz_string(rankdir="down"))
digraph {
    node_0 [label="1"];  
    node_1 [label="2"];  
    node_0 -> node_1;
}
sage: print(D.graphviz_string(rankdir="left"))
digraph {
    rankdir=RL
    node_0 [label="1"];  
    node_1 [label="2"];  
    node_0 -> node_1;
}
sage: print(D.graphviz_string(rankdir="right"))
digraph {
    rankdir=LR
    node_0 [label="1"];  
    node_1 [label="2"];  
    node_0 -> node_1;
}
```

```python
>>> from sage.all import *
>>> D = DiGraph([(Integer(1), Integer(2))])
>>> print(D.graphviz_string(rankdir="up"))
digraph {
    rankdir=BT
    node_0 [label="1"];  
    node_1 [label="2"];  
    node_0 -> node_1;
}
```

(continues on next page)
Edge-specific options can also be specified by providing a function (or tuple thereof) which maps each edge to a dictionary of options. Valid options are:

- "color"
- "dot" (a string containing a sequence of options in dot format)
- "label" (a string)
- "label_style" ("string" or "latex")
- "edge_string" ("--" or "->")
- "dir" ("forward", "back", "both" or "none")
- "backward" (boolean), instead of defining the edge in the graphviz string as \(u \rightarrow v \), it draws it as \(v \rightarrow u \) [dir=back] and instead of \(u \rightarrow v \) [dir=back] it draws it as \(v \rightarrow u \), this changes the way it is drawn by Graphviz's dot program: vertex \(v \) will be above vertex \(u \) instead of below.

Here we state that the graph should be laid out so that edges starting from 1 are going backward (e.g. going up instead of down):

```sage
def edge_options(data):
    u, v, label = data
    return {"dir":"back"} if u == 1 else {}

sage: G.graphviz_string(edge_options=edge_options)  # random
˓→needs sage.symbolic
digraph {
    node_0 [label="-1"];
    node_1 [label="-1/2"];  
    node_2 [label="1/2"];  
    node_3 [label="-2"];  
    node_4 [label="1/4"];  
    node_5 [label="-4"];  
    node_6 [label="1/3"];  
    node_7 [label="2/3"];  
    node_8 [label="4/5"];  
```

(continues on next page)
We now test all options:

```python
sage: def edge_options(data):
    ...:     u, v, label = data
    ...:     options = {"color": {f: "red", g: "blue"}[label]}
    ...:     if (u,v) == (1/2, -2): options["label"] = "coucou";
    ...:     options["label_style"] = "string"
    ...:     if (u,v) == (1/2, 2/3): options["dot"] = "x=1,y=2"
    ...:     if (u,v) == (1, -1): options["label_style"] = "latex"
    ...:     if (u,v) == (1, 1/2): options["dir"] = "back"
    ...:     return options

sage: print(G.graphviz_string(edge_options=edge_options))  # random  #
←needs sage.symbolic
digraph {
  node_0 [label="-1"];
  node_1 [label="-1/2"];
  node_2 [label="1/2"];
  node_3 [label="-2"];
  node_4 [label="1/4"];
  node_5 [label="-4"];
  node_6 [label="1/3"];
  node_7 [label="2/3"];
  node_8 [label="4/5"];
  node_9 [label="1"];
  node_10 [label="2"];

  node_2 -> node_3;
  node_2 -> node_7;
  node_4 -> node_5;
  node_4 -> node_8;
  node_9 -> node_0 [dir=back];
  node_9 -> node_2 [dir=back];
  node_10 -> node_1;
  node_10 -> node_6;
}
```
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> from sage.all import *

>>> def edge_options(data):
...     u, v, label = data
...     options = {}
...     if (u,v) == (Integer(1)/Integer(2), -Integer(2)): options[l"label"] = "coucou"; options[l"label_style"] = "string"
...     if (u,v) == (Integer(1)/Integer(2), Integer(2)/Integer(3)): options[l"dot"] = "x=1,y=2"
...     if (u,v) == (Integer(1), -Integer(1)): options[l"label_style"] = "latex"
...     if (u,v) == (Integer(1), Integer(1)/Integer(2)): options[l"dir"] = "back"
...     return options

>>> print(G.graphviz_string(edge_options=edge_options))  # random  # needs sage.symbolic
digraph {
    node_0 [label="-1"]; 
    node_1 [label="-1/2"]; 
    node_2 [label="1/2"]; 
    node_3 [label="-2"]; 
    node_4 [label="1/4"]; 
    node_5 [label="-4"]; 
    node_6 [label="1/3"]; 
    node_7 [label="2/3"]; 
    node_8 [label="4/5"]; 
    node_9 [label="1"]; 
    node_10 [label="2"]; 
    node_2 -> node_3 [label="coucou", color = "red"]; 
    node_2 -> node_7 [x=1,y=2, color = "blue"]; 
    node_4 -> node_5 [color = "red"]; 
    node_4 -> node_8 [color = "blue"]; 
    node_9 -> node_0 [label=" ", texlbl="x \ {\to} -\frac{1}{x}\", color= "red"]; 
    node_9 -> node_2 [color = "blue", dir=back]; 
    node_10 -> node_1 [color = "red"]; 
    node_10 -> node_6 [color = "blue"]; ...
```
We test the possible values of the 'dir' edge option:

```python
sage: edges = [(0,1,'a'), (1,2,'b'), (2,3,'c'), (3,4,'d')]

sage: G = DiGraph(edges)

sage: def edge_options(data):
    ...:     u,v,label = data
    ...:     if label == 'a': return {'dir':'forward'}
    ...:     if label == 'b': return {'dir':'back'}
    ...:     if label == 'c': return {'dir':'none'}
    ...:     if label == 'd': return {'dir':'both'}

sage: print(G.graphviz_string(edge_options=edge_options))

digraph {
    node_0 [label="0"];
    node_1 [label="1"];
    node_2 [label="2"];
    node_3 [label="3"];
    node_4 [label="4"];

    node_0 -> node_1;
    node_1 -> node_2 [dir=back];
    node_2 -> node_3 [dir=none];
    node_3 -> node_4 [dir=both];
}
```

We test the same graph and 'dir' edge options but with `backward=True`, which reverses the natural direction each edge wants to be pointing for the layout:

```python
>>> from sage.all import *

>>> edges = [(Integer(0),Integer(1),'a'), (Integer(1),Integer(2),'b'),
           (Integer(2),Integer(3),'c'), (Integer(3),Integer(4),'d')]

>>> G = DiGraph(edges)

>>> def edge_options(data):
    ...:     u,v,label = data
    ...:     if label == 'a': return {'dir':'forward'}
    ...:     if label == 'b': return {'dir':'back'}
    ...:     if label == 'c': return {'dir':'none'}
    ...:     if label == 'd': return {'dir':'both'}

>>> print(G.graphviz_string(edge_options=edge_options))

digraph {
    node_0 [label="0"];
    node_1 [label="1"];
    node_2 [label="2"];
    node_3 [label="3"];
    node_4 [label="4"];

    node_0 -> node_1;
    node_1 -> node_2 [dir=back];
    node_2 -> node_3 [dir=none];
    node_3 -> node_4 [dir=both];
}
```
sage: def edge_options(data):
 ...: u,v,label = data
 ...: if label == 'a': return {'dir':'forward', 'backward':True}
 ...: if label == 'b': return {'dir':'back', 'backward':True}
 ...: if label == 'c': return {'dir':'none', 'backward':True}
 ...: if label == 'd': return {'dir':'both', 'backward':True}

sage: print(G.graphviz_string(edge_options=edge_options))

digraph {
 node_0 [label="0"];
 node_1 [label="1"];
 node_2 [label="2"];
 node_3 [label="3"];
 node_4 [label="4"];

 node_1 -> node_0 [dir=back];
 node_2 -> node_1;
 node_3 -> node_2 [dir=none];
 node_4 -> node_3 [dir=both];
}

>>> from sage.all import *

>>> def edge_options(data):
 ...: u,v,label = data
 ...: if label == 'a': return {'dir':'forward', 'backward':True}
 ...: if label == 'b': return {'dir':'back', 'backward':True}
 ...: if label == 'c': return {'dir':'none', 'backward':True}
 ...: if label == 'd': return {'dir':'both', 'backward':True}

>>> print(G.graphviz_string(edge_options=edge_options))

digraph {
 node_0 [label="0"];
 node_1 [label="1"];
 node_2 [label="2"];
 node_3 [label="3"];
 node_4 [label="4"];

 node_1 -> node_0 [dir=back];
 node_2 -> node_1;
 node_3 -> node_2 [dir=none];
 node_4 -> node_3 [dir=both];
}

graphviz_to_file_named(filename, **options)

Write a representation in the dot language in a file.

The dot language is a plaintext format for graph structures. See the documentation of graphviz_string() for available options.

INPUT:

- filename – the name of the file to write in
- **options – options for the graphviz string

EXAMPLES:

sage: G = Graph({0: {1: None, 2: None}, 1: {0: None, 2: None},
 ...: 2: {0: None, 1: None, 3: 'foo'}, 3: {2: 'foo'}),
 ...: sparse=True)
```python
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(mode="a+t") as f:
    ....:     G.graphviz_to_file_named(f.name, edge_labels=True)
    ....:     print(f.read())
```

```graph
node_0 [label="0"]; node_1 [label="1"]; node_2 [label="2"]; node_3 [label="3"]; node_0 -- node_1; node_0 -- node_2; node_1 -- node_2; node_2 -- node_3 [label="foo"];
```

```python
>>> from sage.all import *

>>> G = Graph({Integer(0): {Integer(1): None, Integer(2): None}, Integer(1): ...
    {Integer(0): None, Integer(2): None}, ...
    Integer(2): {Integer(0): None, Integer(1): None, Integer(3): ...
    {Integer(2): 'foo'}}, Integer(3): {Integer(2): 'foo'}), ...
    sparse=True)
```

```python
>>> import tempfile
>>> with tempfile.NamedTemporaryFile(mode="a+t") as f:
    ....:     G.graphviz_to_file_named(f.name, edge_labels=True)
    ....:     print(f.read())
```

```graph
node_0 [label="0"]; node_1 [label="1"]; node_2 [label="2"]; node_3 [label="3"]; node_0 -- node_1; node_0 -- node_2; node_1 -- node_2; node_2 -- node_3 [label="foo"];
```

greedy_dominating_set *(G, k=1, vertices=None, ordering=None, return_sets=False, closest=False)*

Return a greedy distance-\(k\) dominating set of the graph.

A distance-\(k\) dominating set \(S\) of a graph \(G\) is a set of its vertices of minimal cardinality such that any vertex of \(G\) is in \(S\) or is at distance at most \(k\) from a vertex in \(S\). See the Wikipedia article [Dominating set](https://en.wikipedia.org/wiki/Dominating_set).

When \(G\) is directed, vertex \(u\) can be a dominator of vertex \(v\) if there is a directed path of length at most \(k\) from \(u\) to \(v\).

This method implements a greedy heuristic to find a minimal dominatic set.

INPUT:

- \(G\) – a Graph
- \(k\) – integer (default: 1); the domination distance to consider
- \(vertices\) – iterable container of vertices (default: None); when specified, return a dominating set of the specified vertices only
- \(ordering\) – string (default: None); specify the order in which to consider the vertices
- None – if vertices is None, then consider the vertices in the order given by list(G). Otherwise, consider the vertices in the order of iteration of vertices.
- "degree_min" – consider the vertices by increasing degree
- "degree_max" – consider the vertices by decreasing degree

- return_sets – boolean (default: False); whether to return the vertices of the dominating set only (default), or a dictionary mapping each vertex of the dominating set to the set of vertices it dominates.
- closest – boolean (default: False); whether to attach a vertex to its closest dominator or not. This parameter is use only when return_sets is True.

EXAMPLES:

Dominating sets of a path:

```python
sage: from sage.graphs.domination import greedy_dominating_set
sage: G = graphs.PathGraph(5)

sage: sorted(greedy_dominating_set(G, ordering=None))
[0, 2, 4]

sage: sorted(greedy_dominating_set(G, ordering="degree_min"))
[0, 2, 4]

sage: sorted(greedy_dominating_set(G, ordering="degree_max"))
[1, 3]

sage: sorted(greedy_dominating_set(G, k=2, ordering=None))
[0, 3]

sage: sorted(greedy_dominating_set(G, k=2, ordering="degree_min"))
[0, 4]

sage: sorted(greedy_dominating_set(G, k=2, ordering="degree_max"))
[1, 4]

sage: greedy_dominating_set(G, k=3, ordering="degree_min", return_sets=True, closest=False)
{0: {0, 1, 2, 3}, 4: {4}}

sage: greedy_dominating_set(G, k=3, ordering="degree_min", return_sets=True, closest=True)
{0: {0, 2, 3}, 4: {1, 4}}
```

```python
>>> from sage.all import *

>>> from sage.graphs.domination import greedy_dominating_set
>>> G = graphs.PathGraph(Integer(5))

>>> sorted(greedy_dominating_set(G, ordering=None))
[0, 2, 4]

>>> sorted(greedy_dominating_set(G, ordering="degree_min"))
[0, 2, 4]

>>> sorted(greedy_dominating_set(G, ordering="degree_max"))
[1, 3]

>>> sorted(greedy_dominating_set(G, k=Integer(2), ordering=None))
[0, 3]

>>> sorted(greedy_dominating_set(G, k=Integer(2), ordering="degree_min"))
[0, 4]

>>> sorted(greedy_dominating_set(G, k=Integer(2), ordering="degree_max"))
[1, 4]

>>> greedy_dominating_set(G, k=Integer(3), ordering="degree_min", return_sets=True, closest=False)
{0: {0, 1, 2, 3}, 4: {4}}

>>> greedy_dominating_set(G, k=Integer(3), ordering="degree_min", return_sets=True, closest=True)
{0: {0, 2, 3}, 4: {1, 4}}
```
Asking for a dominating set of a subset of vertices:

```python
sage: from sage.graphs.domination import greedy_dominating_set
sage: from sage.graphs.domination import is_dominating
sage: G = graphs.PetersenGraph()
sage: vertices = {0, 1, 2, 3, 4, 5}
sage: dom = greedy_dominating_set(G, vertices=vertices, return_sets=True)
sage: sorted(dom)
[0, 2]
sage: is_dominating(G, dom, focus=vertices)
True
sage: is_dominating(G, dom)
False
sage: dominated = [u for v in dom for u in dom[v]]
sage: sorted(dominated) == sorted(vertices)
True
```

Influence of the ordering of the vertices on the result:

```python
>>> from sage.all import *
>>> from sage.graphs.domination import greedy_dominating_set
>>> G = graphs.PetersenGraph()
>>> vertices = {Integer(0), Integer(1), Integer(2), Integer(3), Integer(4), Integer(5)}
>>> dom = greedy_dominating_set(G, vertices=vertices, return_sets=True)
>>> sorted(dom)
[0, 2]
>>> is_dominating(G, dom, focus=vertices)
True
>>> is_dominating(G, dom)
False
>>> dominated = [u for v in dom for u in dom[v]]
>>> sorted(dominated) == sorted(vertices)
True
```

Dominating set of a directed graph:

```python
sage: from sage.graphs.domination import greedy_dominating_set
sage: D = digraphs.Path(3)
```
sage: sorted(greedy_dominating_set(D, vertices=[0, 1, 2]))
[0, 2]

```python
>>> from sage.all import *
>>> from sage.graphs.domination import greedy_dominating_set
>>> D = digraphs.Path(Integer(3))
>>> sorted(greedy_dominating_set(D, vertices=[Integer(0), Integer(1), ...
˓→Integer(2)]))
[0, 2]
```

hamiltonian_cycle (algorithm, solver='tsp', constraint_generation=None, verbose=None, verbose_constraints=0, integrality_tolerance=False)

Return a Hamiltonian cycle/circuit of the current graph/digraph.

A graph (resp. digraph) is said to be Hamiltonian if it contains as a subgraph a cycle (resp. a circuit) going through all the vertices.

Computing a Hamiltonian cycle/circuit being NP-Complete, this algorithm could run for some time depending on the instance.

ALGORITHM:

See `traveling_salesman_problem()` for 'tsp' algorithm and `find_hamiltonian()` from `sage.graphs.generic_graph_pyx` for 'backtrack' algorithm.

INPUT:

- algorithm - string (default: 'tsp'); one of 'tsp' or 'backtrack'
- solver - string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- constraint_generation - boolean (default: None); whether to use constraint generation when solving the Mixed Integer Linear Program.
 When `constraint_generation = None`, constraint generation is used whenever the graph has a density larger than 70%.
- verbose - integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- verbose_constraints - boolean (default: False); whether to display which constraints are being generated
- integrality_tolerance - float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

OUTPUT:

If using the 'tsp' algorithm, returns a Hamiltonian cycle/circuit if it exists; otherwise, raises a `EmptySetError` exception. If using the 'backtrack' algorithm, returns a pair (B, P). If B is True then P is a Hamiltonian cycle and if B is False, P is a longest path found by the algorithm. Observe that if B is False, the graph may still be Hamiltonian. The 'backtrack' algorithm is only implemented for undirected graphs.

Warning: The 'backtrack' algorithm may loop endlessly on graphs with vertices of degree 1.

NOTE:
This function, as `is_hamiltonian()`, computes a Hamiltonian cycle if it exists: the user should NOT test for Hamiltonicity using `is_hamiltonian()` before calling this function, as it would result in computing it twice.

The backtrack algorithm is only implemented for undirected graphs.

EXAMPLES:

The Heawood Graph is known to be Hamiltonian

```python
sage: g = graphs.HeawoodGraph()
sage: g.hamiltonian_cycle()  # needs sage.numerical.mip
TSP from Heawood graph: Graph on 14 vertices
```

```python
>>> from sage.all import *

>>> g = graphs.HeawoodGraph()

>>> g.hamiltonian_cycle()  # needs sage.numerical.mip
TSP from Heawood graph: Graph on 14 vertices
```

The Petersen Graph, though, is not

```python
sage: g = graphs.PetersenGraph()
sage: g.hamiltonian_cycle()  # needs sage.numerical.mip
Traceback (most recent call last):
...
EmptySetError: the given graph is not Hamiltonian
```

```python
>>> from sage.all import *

>>> g = graphs.PetersenGraph()

>>> g.hamiltonian_cycle()  # needs sage.numerical.mip
Traceback (most recent call last):
...
EmptySetError: the given graph is not Hamiltonian
```

Now, using the backtrack algorithm in the Heawood graph

```python
sage: G = graphs.HeawoodGraph()
sage: G.hamiltonian_cycle(algorithm='backtrack')
(True, [...])
```

```python
>>> from sage.all import *

>>> G = graphs.HeawoodGraph()

>>> G.hamiltonian_cycle(algorithm='backtrack')
(True, [...])
```

And now in the Petersen graph

```python
sage: G = graphs.PetersenGraph()
sage: B, P = G.hamiltonian_cycle(algorithm='backtrack')
sage: B
False
sage: len(P)
10
```

(continues on next page)
Finally, we test the algorithm in a cube graph, which is Hamiltonian

```
sage: G = graphs.CubeGraph(3)
sage: G.hamiltonian_cycle(algorithm='backtrack')
(True, [...])
```

```
>>> from sage.all import *
>>> G = graphs.CubeGraph(Integer(3))
>>> G.hamiltonian_cycle(algorithm='backtrack')
(True, [...])
```

hamiltonian_path($s, t=None, use_edge_labels=None, maximize=False, algorithm=False, solver='MILP', verbose=None, integrality_tolerance=0)

Return a Hamiltonian path of the current graph/digraph.

A path is Hamiltonian if it goes through all the vertices exactly once. Computing a Hamiltonian path being NP-Complete, this algorithm could run for some time depending on the instance.

When $use_edge_labels == True$, this method returns either a minimum weight hamiltonian path or a maximum weight Hamiltonian path (if maximize == True).

See also:

- longest_path()
- hamiltonian_cycle()

INPUT:

- s – vertex (default: None); if specified, then forces the source of the path (the method then returns a Hamiltonian path starting at s)
- t – vertex (default: None); if specified, then forces the destination of the path (the method then returns a Hamiltonian path ending at t)
- use_edge_labels – boolean (default: False); whether to compute a weighted hamiltonian path where the weight of an edge is defined by its label (a label set to None or {} being considered as a weight of 1), or a non-weighted hamiltonian path
- $maximize$ – boolean (default: False); whether to compute a minimum (default) or a maximum (when $maximize == True$) weight hamiltonian path. This parameter is considered only if $use_edge_labels == True$.
- $algorithm$ – string (default: "MILP"); the algorithm the use among "MILP" and "backtrack"; two remarks on this respect:
While the MILP formulation returns an exact answer, the backtrack algorithm is a randomized heuristic.

The backtrack algorithm does not support edge weighting, so setting use_edge_labels=True will force the use of the MILP algorithm.

- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT:

A subgraph of self corresponding to a (directed if self is directed) hamiltonian path. If no hamiltonian path is found, return None. If use_edge_labels == True, a pair weight, path is returned.

EXAMPLES:

The 3×3-grid has a Hamiltonian path, a hamiltonian path starting from vertex $(0, 0)$ and ending at vertex $(2, 2)$, but no Hamiltonian path starting from $(0, 0)$ and ending at $(0, 1)$:

```python
sage: # needs sage.numerical.mip
sage: g = graphs.Grid2dGraph(3, 3)
sage: g.hamiltonian_path()
Hamiltonian path from 2D Grid Graph for [3, 3]: Graph on 9 vertices
sage: g.hamiltonian_path(s=(0, 0), t=(2, 2))
(8, Hamiltonian path from 2D Grid Graph for [3, 3]: Graph on 9 vertices)
```

```python
sage: g.hamiltonian_path(s=(0, 0), t=(0, 1))
is None
```

```python
sage: g.hamiltonian_path(s=(0, 0), t=(0, 1), use_edge_labels=True)
(8, Hamiltonian path from 2D Grid Graph for [3, 3]: Graph on 9 vertices)
```

```python
sage: g.hamiltonian_path(s=(0, 0), t=(0, 1), use_edge_labels=True)
(0, None)
```

``` python
>>> from sage.all import *
>>> # needs sage.numerical.mip
>>> g = graphs.Grid2dGraph(Integer(3), Integer(3))
>>> g.hamiltonian_path()
Hamiltonian path from 2D Grid Graph for [3, 3]: Graph on 9 vertices
>>> g.hamiltonian_path(s=(Integer(0), Integer(0)), t=(Integer(2), Integer(2)))
(8, Hamiltonian path from 2D Grid Graph for [3, 3]: Graph on 9 vertices)
```

``` python
>>> g.hamiltonian_path(s=(Integer(0), Integer(0)), t=(Integer(0), Integer(1)))
is None
```

``` python
>>> g.hamiltonian_path(s=(Integer(0), Integer(0)), t=(Integer(0), Integer(1)),
                   use_edge_labels=True)
(0, None)
```

has_edge $(u, v=\text{None}, \text{label}=\text{None})$

Check whether (u, v) is an edge of the (di)graph.

INPUT: The following forms are accepted:

- G.has_edge(1, 2)
• `G.has_edge((1, 2))`
• `G.has_edge(1, 2, 'label')`
• `G.has_edge((1, 2, 'label'))`

EXAMPLES:

```
sage: graphs.EmptyGraph().has_edge(9, 2)
False
sage: DiGraph().has_edge(9, 2)
False
sage: G = Graph(sparse=True)
sage: G.add_edge(0, 1, "label")
sage: G.has_edge(0, 1, "different label")
False
sage: G.has_edge(0, 1, "label")
True
```

```python
>>> from sage.all import *
>>> graphs.EmptyGraph().has_edge(Integer(9), Integer(2))
False
>>> DiGraph().has_edge(Integer(9), Integer(2))
False
>>> G = Graph(sparse=True)
>>> G.add_edge(Integer(0), Integer(1), "label")
>>> G.has_edge(Integer(0), Integer(1), "different label")
False
>>> G.has_edge(Integer(0), Integer(1), "label")
True
```

has_loops()

Return whether there are loops in the (di)graph

EXAMPLES:

```
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0, 0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges(sort=True)
[]
```

```
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
```

(continues on next page)
has_multiple_edges \((\text{to}_\text{undirected}=\text{False})\)

Return whether there are multiple edges in the (di)graph.

INPUT:

- \(\text{to}_\text{undirected}=(\text{default: False})\); if True, runs the test on the undirected version of a DiGraph. Otherwise, treats DiGraph edges \((u, v)\) and \((v, u)\) as unique individual edges.
EXAMPLES:

```python
sage: G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0, 1)] * 3)

sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]

sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges(sort=True)
[(0, 1, None)]

sage: D = DiGraph(multiedges=True, sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0, 1)] * 3)

sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]

sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges(sort=True)
[(0, 1, None)]

sage: G = DiGraph({1: {2: h}, 2: {1: g}}, sparse=True)

sage: G.has_multiple_edges()
False
sage: G.has_multiple_edges(to_undirected=True)
True
sage: G.multiple_edges()
[]

sage: G.multiple_edges(to_undirected=True)
[(1, 2, 'h'), (2, 1, 'g')]
```

```python
>>> from sage.all import *

>>> G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices

>>> G.has_multiple_edges()
False

>>> G.allows_multiple_edges()
True

>>> G.add_edges([(Integer(0), Integer(1))] * Integer(3))

>>> G.has_multiple_edges()
True
```

(continues on next page)
>>> G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
>>> G.allow_multiple_edges(False); G
Graph on 2 vertices
>>> G.has_multiple_edges()
False
>>> G.edges(sort=True)
[(0, 1, None)]

>>> D = DiGraph(multiedges=True, sparse=True); D
Multi-digraph on 0 vertices
>>> D.has_multiple_edges()
False
>>> D.allows_multiple_edges()
True
>>> D.add_edges([(Integer(0), Integer(1))]*Integer(3))
>>> D.has_multiple_edges()
True
>>> D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
>>> D.allow_multiple_edges(False); D
Digraph on 2 vertices
>>> D.has_multiple_edges()
False
>>> D.edges(sort=True)
[(0, 1, None)]

>>> G = DiGraph({Integer(1): {Integer(2): h}, Integer(2): {Integer(1): g}})
 , sparse=True)
>>> G.has_multiple_edges()
False
>>> G.has_multiple_edges(to_undirected=True)
True
>>> G.multiple_edges()
[]
>>> G.multiple_edges(to_undirected=True)
[(1, 2, 'h'), (2, 1, 'g')]

A loop is not a multiedge:

sage: g = Graph(loops=True, multiedges=True)
sage: g.add_edge(Integer(0), Integer(0))
sage: g.has_multiple_edges()
False

>>> from sage.all import *
>>> g = Graph(loops=True, multiedges=True)
>>> g.add_edge(Integer(0), Integer(0))
>>> g.has_multiple_edges()
False

 has_vertex (vertex)

Check if vertex is one of the vertices of this graph.

INPUT:

• vertex — the name of a vertex (see add_vertex())
EXAMPLES:

```python
sage: g = Graph({0: [1, 2, 3], 2: [4]}); g
Graph on 5 vertices
sage: 2 in g
True
sage: 10 in g
False
sage: graphs.PetersenGraph().has_vertex(99)
False
```

```python
>>> from sage.all import *

>>> g = Graph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(2): [Integer(4)]}); g
Graph on 5 vertices
>>> Integer(2) in g
True
>>> Integer(10) in g
False
>>> graphs.PetersenGraph().has_vertex(Integer(99))
False
```

```
igraph_graph (vertex_list=None, vertex_attrs={}, edge_attrs={})

Return an igraph graph from the Sage graph.

Optionaly, it is possible to add vertex attributes and edge attributes to the output graph.

Note: This routine needs the optional package igraph to be installed: to do so, it is enough to run sage -i python_igraph. For more information on the Python version of igraph, see http://igraph.org/python/.

INPUT:

- vertex_list – list (default: None); defines a mapping from the vertices of the graph to consecutive integers in (0, \ldots, n-1). Otherwise, the result of :meth:`vertices` will be used instead. Because :meth:`vertices` only works if the vertices can be sorted, using `vertex_list` is useful when working with possibly non-sortable objects in Python 3.

- vertex_attrs – dictionary (default: {}); a dictionary where the key is a string (the attribute name), and the value is an iterable containing in position \(i\) the label of the \(i\)-th vertex in the list `vertex_list` if it is given or in `vertices()` when `vertex_list == None` (see http://igraph.org/python/doc/igraph.Graph-class.html#__init__ for more information)

- edge_attrs – dictionary (default: {}); a dictionary where the key is a string (the attribute name), and the value is an iterable containing in position \(i\) the label of the \(i\)-th edge in the list outputted by `edge_iterator()` (see http://igraph.org/python/doc/igraph.Graph-class.html#__init__ for more information)

Note: In igraph, a graph is weighted if the edge labels have attribute `weight`. Hence, to create a weighted graph, it is enough to add this attribute.

Note: Often, Sage uses its own defined types for integer/floats. These types may not be igraph-compatible (see example below).

1.1. Generic graphs (common to directed/undirected) 195
EXAMPLES:

Standard conversion:

```python
sage: G = graphs.TetrahedralGraph()
sage: H = G.igraph_graph() # optional - python_igraph
sage: H.summary() # optional - python_igraph
'IGRAPH U--- 4 6 -- '
sage: G = digraphs.Path(3)
sage: H = G.igraph_graph() # optional - python_igraph
sage: H.summary() # optional - python_igraph
'IGRAPH D--- 3 2 -- '
```

Adding edge attributes:

```python
sage: G = Graph([(1, 2, 'a'), (2, 3, 'b')])
sage: E = list(G.edge_iterator())
sage: H = G.igraph_graph(edge_attrs={'label': [e[2] for e in E]}) # optional - python_igraph
sage: H.es['label'] # optional - python_igraph
['a', 'b']
```

If edges have an attribute `weight`, the igraph graph is considered weighted:

```python
sage: G = Graph([(1, 2, {'weight': 1}), (2, 3, {'weight': 2})])
sage: E = list(G.edge_iterator())
sage: H = G.igraph_graph(edge_attrs={'weight': [e[2]['weight'] for e in E]}) # optional - python_igraph
sage: H.is_weighted() # optional - python_igraph
True
sage: H.es['weight'] # optional - python_igraph
[1, 2]
```

```python
>>> from sage.all import *
>>> G = graphs.TetrahedralGraph()
>>> H = G.igraph_graph() # optional - python_igraph
>>> H.summary() # optional - python_igraph
'IGRAPH U--- 4 6 -- '
```

```python
>>> G = digraphs.Path(Integer(3))
>>> H = G.igraph_graph() # optional - python_igraph
>>> H.summary() # optional - python_igraph
'IGRAPH D--- 3 2 -- '
```

```python
>>> from sage.all import *
>>> G = Graph([(Integer(1), Integer(2), a), (Integer(2), Integer(3), b)])
>>> E = list(G.edge_iterator())
>>> H = G.igraph_graph(edge_attrs={label: [e[2] for e in E]}) # optional - python_igraph
>>> H.es['label'] # optional - python_igraph
[a, b]
```
Adding vertex attributes:

```python
sage: G = graphs.GridGraph([2, 2])
```

```python
sage: H = G.igraph_graph(vertex_attrs={'name': G.vertices(sort=True)}) # optional - python_igraph
```

```python
sage: H.vs()['name'] # optional - python_igraph
[(0, 0), (0, 1), (1, 0), (1, 1)]
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.GridGraph([Integer(2), Integer(2)])
```

```python
>>> H = G.igraph_graph(vertex_attrs={'name': G.vertices(sort=True)}) # optional - python_igraph
```

```python
>>> H.vs()['name'] == V # optional - python_igraph
True
```

Providing a mapping from vertices to consecutive integers:

```python
sage: G = graphs.GridGraph([2, 2])
```

```python
sage: V = list(G)
```

```python
sage: H = G.igraph_graph(vertex_list=V, vertex_attrs={'name': V}) # optional - python_igraph
```

```python
sage: H.vs()['name'] == V # optional - python_igraph
True
```

Sometimes, Sage integer/floats are not compatible with igraph:

```python
sage: G = Graph([(0, 1, 2)])
```

```python
sage: E = list(G.edge_iterator())
```

```python
sage: H = G.igraph_graph(edge_attrs={'weight': [e[2] for e in E]}) # optional - python_igraph
```

```python
sage: H.is_weighted() # optional - python_igraph
True
```

```python
sage: H.es['weight'] # optional - python_igraph
[1, 2]
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.GridGraph([Integer(2), Integer(2)])
```

```python
>>> E = list(G.edge_iterator())
```

```python
>>> H = G.igraph_graph(edge_attrs={weight: Integer(2) for e in E}) # optional - python_igraph
```

```python
>>> H.is_weighted() # optional - python_igraph
True
```

```python
sage: H.es['weight'] # optional - python_igraph
[1, 2]
```

1.1. Generic graphs (common to directed/undirected)
incidence_matrix (oriented, sparse=None, vertices=True, edges=None, base_ring=None, **kwds)

Return the incidence matrix of the (di)graph.

Each row is a vertex, and each column is an edge. The vertices are ordered as obtained by the method vertices(), except when parameter vertices is given (see below), and the edges as obtained by the method edge_iterator().

If the graph is not directed, then return a matrix with entries in $\{0, 1, 2\}$. Each column will either contain two 1 (at the position of the endpoint of the edge), or one 2 (if the corresponding edge is a loop).

If the graph is directed return a matrix in $\{-1, 0, 1\}$ where $-1$ and $+1$ correspond respectively to the source and the target of the edge. A loop will correspond to a zero column. In particular, it is not possible to recover the loops of an oriented graph from its incidence matrix.

See the Wikipedia article Incidence_matrix for more information.

INPUT:

- oriented – boolean (default: None); when set to True, the matrix will be oriented (i.e. with entries in $-1, 0, 1$) and if set to False the matrix will be not oriented (i.e. with entries in $0, 1, 2$). By default, this argument is inferred from the graph type. Note that in the case the graph is not directed and with the option directed=True, a somewhat random direction is chosen for each edge.

- sparse – boolean (default: True); whether to use a sparse or a dense matrix

- vertices – list, None, or True (default: None);
  - when a list, the $i$-th row of the matrix corresponds to the $i$-th vertex in the ordering of vertices,
  - when None, the $i$-th row of the matrix corresponds to the $i$-th vertex in the ordering given by method vertices(),
  - when True, construct a morphism of free modules instead of a matrix, where the codomain’s basis is indexed by the vertices.

- edges – list, None, or True (default: None);
  - when a list, the $i$-th column of the matrix corresponds to the $i$-th edge in the ordering of edges,
  - when None, the $i$-th column of the matrix corresponds to the $i$-th edge in the ordering given by method edge_iterator(),
– when True, construct a morphism of free modules instead of a matrix, where the domain’s basis is indexed by the edges.

• base_ring – a ring (default: ZZ); the base ring of the matrix space to use.
• **kwds – other keywords to pass to matrix().

EXAMPLES:

```python
sage: G = graphs.PetersenGraph()
sage: G.incidence_matrix() # needs sage.modules
[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 1 0 0 0 0 1]
[0 0 0 0 0 0 0 1 0 0 1 1 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 1 1 0 1]
sage: G.incidence_matrix(oriented=True) # needs sage.modules
[-1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 -1]
[0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1]

sage: G = digraphs.Circulant(4, [1, 3])
sage: G.incidence_matrix() # needs sage.modules
[-1 -1 1 0 0 0 0 0]
[1 0 -1 -1 1 0 0 0]
[0 0 0 1 -1 -1 0 1]
[0 1 0 0 0 0 0 0]

sage: graphs.CompleteGraph(3).incidence_matrix() # needs sage.modules
[1 1 0]
[1 0 1]
[0 1 1]
sage: G = Graph([(0, 0), (0, 1), (0, 1)], loops=True, multiedges=True)
sage: G.incidence_matrix(oriented=False) # needs sage.modules
[2 1 1]
[0 1 1]
```

```python
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.incidence_matrix() # needs sage.modules
[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
```

(continues on next page)
A well known result states that the product of the (oriented) incidence matrix with its transpose of a
(non-oriented graph) is in fact the Kirchhoff matrix:

```
sage: G = graphs.PetersenGraph()
sage: m = G.incidence_matrix(oriented=True) # needs sage.modules
sage: m * m.transpose() == G.kirchhoff_matrix() # needs sage.modules
True

sage: K = graphs.CompleteGraph(3)
sage: m = K.incidence_matrix(oriented=True) # needs sage.modules
sage: m * m.transpose() == K.kirchhoff_matrix() # needs sage.modules
```
GraphTheory, Release 10.4

(continued from previous page)

True

sage: H = Graph([(0, 0), (0, 1), (0, 1)], loops=True, multiedges=True)
sage: m = H.incidence_matrix(oriented=True)  # needs sage.modules
sage: m * m.transpose() == H.kirchhoff_matrix()  # needs sage.modules
True

>>> from sage.all import *

>>> G = graphs.PetersenGraph()
>>> m = G.incidence_matrix(oriented=True)  # needs sage.modules
>>> m * m.transpose() == G.kirchhoff_matrix()  # needs sage.modules
True

>>> K = graphs.CompleteGraph(Integer(3))
>>> m = K.incidence_matrix(oriented=True)  # needs sage.modules
>>> m * m.transpose() == K.kirchhoff_matrix()  # needs sage.modules
True

>>> H = Graph([(Integer(0), Integer(0)), (Integer(0), Integer(1)),
            (Integer(0), Integer(1))], loops=True, multiedges=True)
>>> m = H.incidence_matrix(oriented=True)  # needs sage.modules
>>> m * m.transpose() == H.kirchhoff_matrix()  # needs sage/modules
True

A different ordering of the vertices:

sage: P5 = graphs.PathGraph(5)
sage: P5.incidence_matrix()  # needs sage.modules
[0 1 1 0 0]
[0 0 1 1 0]
[1 1 0 0 0]
[1 0 0 0 0]
[0 0 0 0 1]
sage: P5.incidence_matrix(vertices=[2, 4, 1, 3, 0])  # needs sage.modules
[0 1 1 0 0]
[0 0 1 1 0]
[1 1 0 0 0]
[1 0 0 0 0]

>>> from sage.all import *

>>> P5 = graphs.PathGraph(Integer(5))

(continues on next page)
A different ordering of the edges:

```
sage: E = list(P5.edge_iterator(labels=False))
sage: P5.incidence_matrix(edges=E[::-1]) # needs sage.modules
```

```
[0 0 0 1]
[0 0 1 1]
[0 1 1 0]
[1 1 0 0]
[1 0 0 0]
```

```
sage: P5.incidence_matrix(vertices=[2, 4, 1, 3, 0], edges=E[::-1]) # needs sage.modules
```

```
[0 0 0 1]
[0 0 1 1]
[0 1 1 0]
[1 1 0 0]
[1 0 0 0]
```

A different base ring:

```
sage: P5.incidence_matrix(base_ring=RDF) # needs sage.modules
```

```
[1.0 0.0 0.0 0.0]
[1.0 1.0 0.0 0.0]
[0.0 1.0 1.0 0.0]
[0.0 0.0 1.0 1.0]
[0.0 0.0 0.0 1.0]
```
Creating an immutable matrix:

```
sage: m = P5.incidence_matrix(immutable=True); m # needs sage.modules
[1 0 0 0]
[1 1 0 0]
[0 1 1 0]
[0 0 1 1]
[0 0 0 1]
sage: m[1, 2] = 1 # needs sage.modules
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead (i.e., use copy(M) to change a copy of M).
```

Creating a module morphism:

```
sage: # needs sage.modules
sage: D12 = posets.DivisorLattice(12).hasse_diagram()
sage: phi_VE = D12.incidence_matrix(vertices=True, edges=True); phi_VE
Generic morphism:
From: Free module generated by
 { (1, 2), (1, 3), (2, 4), (2, 6), (3, 6), (4, 12), (6, 12) }
 over Integer Ring
To: Free module generated by { 1, 2, 3, 4, 6, 12 } over Integer Ring
sage: print(phi_VE._unicode_art_matrix())

<table>
<thead>
<tr>
<th>(1, 2) (1, 3) (2, 4) (2, 6) (3, 6) (4, 12) (6, 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
```

(continues on next page)
\begin{verbatim}
>>> from sage.all import *
>>> # needs sage.modules
>>> D12 = posets.DivisorLattice(Integer(12)).hasse_diagram()
>>> phi_VE = D12.incidence_matrix(vertices=True, edges=True); phi_VE
Generic morphism:
   From: Free module generated by
       {(1, 2), (1, 3), (2, 4), (2, 6), (3, 6), (4, 12), (6, 12)}
       over Integer Ring
   To: Free module generated by {1, 2, 3, 4, 6, 12} over Integer Ring
>>> print(phi_VE._unicode_art_matrix())
(1, 2) (1, 3) (2, 4) (2, 6) (3, 6) (4, 12) (6, 12)
|\ 1\ | -1 -1 0 0 0 0 0 |
|\ 2\ | 1 0 -1 -1 0 0 0 |
|\ 3\ | 0 1 0 0 -1 0 0 |
|\ 4\ | 0 0 1 0 0 -1 0 |
|\ 6\ | 0 0 0 1 1 0 -1 |
|\12\ | 0 0 0 0 0 1 1 |
>>> E = phi_VE.domain()
>>> P1 = E.monomial((Integer(2), Integer(4))) + E.monomial((Integer(4),
   Integer(12))); P1
B[(2, 4)] + B[(4, 12)]
>>> P2 = E.monomial((Integer(2), Integer(6))) + E.monomial((Integer(6),
   Integer(12))); P2
B[(2, 6)] + B[(6, 12)]
>>> phi_VE(P1 - P2)
0

\textit{is\_bipartite}(\textit{certificate}=False)

Check whether the graph is bipartite.

Traverse the graph $G$ with breadth-first-search and color nodes.

INPUT:

- \textit{certificate} – boolean (default: False); whether to return a certificate. If set to True, the certificate returned is a proper 2-coloring when $G$ is bipartite, and an odd cycle otherwise.

EXAMPLES:

\begin{verbatim}
sage: graphs.CycleGraph(4).is_bipartite()
True
sage: graphs.CycleGraph(5).is_bipartite()
False
sage: graphs.RandomBipartite(10, 10, 0.7).is_bipartite()  # needs numpy
True
\end{verbatim}
\end{verbatim}
>>> from sage.all import *
>>> graphs.CycleGraph(Integer(4)).is_bipartite()
True
>>> graphs.CycleGraph(Integer(5)).is_bipartite()
False
>>> graphs.RandomBipartite(Integer(10), Integer(10), RealNumber('0.7')).is_bipartite()  # needs numpy
True
A random graph is very rarely bipartite:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_bipartite()
False
sage: false, oddcycle = g.is_bipartite(certificate=True)
sage: len(oddcycle) % 2
1
```

The method works identically with oriented graphs:

```python
sage: g = DiGraph({0: [1, 2, 3], 2: [1], 3: [4]})
sage: g.is_bipartite()
False
sage: false, oddcycle = g.is_bipartite(certificate=True)
sage: len(oddcycle) % 2
1
```

```python
sage: graphs.CycleGraph(4).random_orientation().is_bipartite()
True
sage: graphs.CycleGraph(5).random_orientation().is_bipartite()
False
```

```python
>>> from sage.all import *
>>> g = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)],
 Integer(2): [Integer(1)], Integer(3): [Integer(4)]})
>>> g.is_bipartite()
False
>>> false, oddcycle = g.is_bipartite(certificate=True)
>>> len(oddcycle) % Integer(2)
1
```

```python
sage: graphs.CycleGraph(Integer(4)).random_orientation().is_bipartite()
True
sage: graphs.CycleGraph(Integer(5)).random_orientation().is_bipartite()
False
```

**is_cayley** (return\_group=False, mapping=False, generators=False, allow\_disconnected=False)

Check whether the graph is a Cayley graph.
If none of the parameters are True, return a boolean indicating whether the graph is a Cayley graph. Otherwise, return a tuple containing said boolean and the requested data. If the graph is not a Cayley graph, each of the data will be None.

The empty graph is defined to be not a Cayley graph.

**Note:** For this routine to work on all graphs, the optional package gap_packages needs to be installed: to do so, it is enough to run sage -i gap_packages.

**INPUT:**

- return_group (boolean; False) – If True, return a group for which the graph is a Cayley graph.
- mapping (boolean; False) – If True, return a mapping from vertices to group elements.
- generators (boolean; False) – If True, return the generating set of the Cayley graph.
- allow_disconnected (boolean; False) – If True, disconnected graphs are considered Cayley if they can be obtained from the Cayley construction with a generating set that does not generate the group.

**ALGORITHM:**

For connected graphs, find a regular subgroup of the automorphism group. For disconnected graphs, check that the graph is vertex-transitive and perform the check on one of its connected components. If a simple graph has density over 1/2, perform the check on its complement as its disconnectedness may increase performance.

**EXAMPLES:**

A Petersen Graph is not a Cayley graph:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_cayley() # needs sage.groups
False
```

A Cayley digraph is a Cayley graph:

```python
sage: C7 = groups.permutation.Cyclic(7) # needs sage.groups
sage: S = [(1,2,3,4,5,6,7), (1,3,5,7,2,4,6), (1,5,2,6,3,7,4)]
sage: d = C7.cayley_graph(generators=S) # needs sage.groups
sage: d.is_cayley() # needs sage.groups
True
```
Graphs with loops and multiedges will have identity and repeated elements, respectively, among the generators:

```python
sage: # needs sage.rings.finite_rings
sage: g = Graph(graphs.PaleyGraph(9), loops=True, multiedges=True)
sage: g.add_edges([(u, u) for u in g])
sage: _, S = g.is_cayley(generators=True)
 # needs sage.groups
sage: S # random
 # needs sage.groups
[((),
 (0,2,1)(a,a + 2,a + 1)(2*a,2*a + 2,2*a + 1),
 (0,2,1)(a,a + 2,a + 1)(2*a,2*a + 2,2*a + 1),
 (0,1,2)(a,a + 1,a + 2)(2*a,2*a + 1,2*a + 2),
 (0,1,2)(a,a + 1,a + 2)(2*a,2*a + 1,2*a + 2),
 (0,2*a + 2,a + 1)(1,2*a,a + 2)(2,2*a + 1,a),
 (0,a + 1,2*a + 2)(1,a + 2,2*a)(2,a,2*a + 1)]
```

A Graph $G$ is said to be chordal if it contains no induced hole (a cycle of length at least 4).

Alternatively, chordality can be defined using a Perfect Elimination Order:

A Perfect Elimination Order of a graph $G$ is an ordering $v_1, \ldots, v_n$ of its vertex set such that for all $i$, the neighbors of $v_i$ whose index is greater that $i$ induce a complete subgraph in $G$. Hence, the graph $G$ can be totally erased by successively removing vertices whose neighborhood is a clique (also called simplicial vertices) [FG1965].

(It can be seen that if $G$ contains an induced hole, then it cannot have a perfect elimination order. Indeed, if we write $h_1, \ldots, h_k$ the $k$ vertices of such a hole, then the first of those vertices to be removed would have two non-adjacent neighbors in the graph.)

### 1.1. Generic graphs (common to directed/undirected)

is_chordal (certificate=False, algorithm='B')

Check whether the given graph is chordal.
A Graph is then chordal if and only if it has a Perfect Elimination Order.

INPUT:

• certificate – boolean (default: False); whether to return a certificate.
  – If certificate = False (default), returns True or False accordingly.
  – If certificate = True, returns:
    * (True, peo) when the graph is chordal, where peo is a perfect elimination order of its vertices.
    * (False, Hole) when the graph is not chordal, where Hole (a Graph object) is an induced subgraph of self isomorphic to a hole.

• algorithm – string (default: "B"); the algorithm to choose among "A" or "B". While they will agree on whether the given graph is chordal, they cannot be expected to return the same certificates.

ALGORITHM:

This method implements the algorithm proposed in [RT1975] for the recognition of chordal graphs. The time complexity of this algorithm is $O(n + m)$ for SparseGraph and $O(n^2)$ for DenseGraph. The algorithm works through computing a Lex BFS on the graph, then checking whether the order is a Perfect Elimination Order by computing for each vertex $v$ the subgraph induced by its non-deleted neighbors, then testing whether this graph is complete.

EXAMPLES:

The lexicographic product of a Path and a Complete Graph is chordal

```
sage: g = graphs.PathGraph(5).lexicographic_product(graphs.CompleteGraph(3))
sage: g.is_chordal()
True
```

The same goes with the product of a random lobster (which is a tree) and a Complete Graph

```
sage: grl = graphs.RandomLobster(10, .5, .5) # needs networkx
sage: g = grl.lexicographic_product(graphs.CompleteGraph(3)) # needs networkx
sage: g.is_chordal()
True
```

The disjoint union of chordal graphs is still chordal:

```
```
Let us check the certificate given by Sage is indeed a perfect elimination order:

```
sage: _, peo = g.is_chordal(certificate=True) # needs networkx
sage: for v in peo:
 if not g.subgraph(g.neighbors(v)).is_clique():
 raise ValueError("this should never happen")
... g.delete_vertex(v)
```

Of course, the Petersen Graph is not chordal as it has girth 5:

```
sage: g = graphs.PetersenGraph()
sage: g.girth()
5
sage: g.is_chordal()
False
```

We can even obtain such a cycle as a certificate:

```
sage: _, hole = g.is_chordal(certificate=True)
sage: hole
Subgraph of (Petersen graph): Graph on 5 vertices
sage: hole.is_isomorphic(graphs.CycleGraph(5))
True
```

(continues on next page)
is_circulant (certificate=False)

Check whether the graph is circulant.

For more information, see Wikipedia article Circulant_graph.

INPUT:

- certificate – boolean (default: False); whether to return a certificate for yes-answers (see OUTPUT section)

OUTPUT:

When certificate is set to False (default) this method only returns True or False answers. When certificate is set to True, the method either returns (False, None) or (True, lists_of_parameters) each element of lists_of_parameters can be used to define the graph as a circulant graph.

See the documentation of CirculantGraph() and Circulant() for more information, and the examples below.

See also:

CirculantGraph() – a constructor for circulant graphs.

EXAMPLES:

The Petersen graph is not a circulant graph:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_circulant() # needs sage.groups
False
```

A cycle is obviously a circulant graph, but several sets of parameters can be used to define it:

```python
sage: g = graphs.CycleGraph(5)
sage: g.is_circulant(certificate=True) # needs sage.groups
(True, [(5, [1, 4]), (5, [2, 3])])
```

The same goes for directed graphs:
Graph Theory, Release 10.4

```python
sage: g = digraphs.Circuit(5)
sage: g.is_circulant(certificate=True) # needs sage.groups
(True, [(5, [1]), (5, [3]), (5, [2]), (5, [4])])

>>> from sage.all import *
>>> g = digraphs.Circuit(Integer(5))
>>> g.is_circulant(certificate=True) # needs sage.groups
(True, [(5, [1]), (5, [3]), (5, [2]), (5, [4])])
```

With this information, it is very easy to create (and plot) all possible drawings of a circulant graph:

```python
sage: g = graphs.CirculantGraph(13, [2, 3, 10, 11])
sage: for param in g.is_circulant(certificate=True)[1]: # needs sage.groups
 : graphs.CirculantGraph(*param)
 Circulant graph ([2, 3, 10, 11]): Graph on 13 vertices
 Circulant graph ([1, 5, 8, 12]): Graph on 13 vertices
 Circulant graph ([4, 6, 7, 9]): Graph on 13 vertices

>>> from sage.all import *
>>> g = graphs.CirculantGraph(Integer(13), [Integer(2), Integer(3),
 Integer(10), Integer(11)])
>>> for param in g.is_circulant(certificate=True)[Integer(1)]: # needs sage.groups
 : # needs sage.groups
 : graphs.CirculantGraph(*param)
 Circulant graph ([2, 3, 10, 11]): Graph on 13 vertices
 Circulant graph ([1, 5, 8, 12]): Graph on 13 vertices
 Circulant graph ([4, 6, 7, 9]): Graph on 13 vertices
```

**is_circular_planar** *(on_embedding=None, kuratowski=False, set_embedding=True, boundary=None, ordered=False, set_pos=False)*

Check whether the graph is circular planar (outerplanar)

A graph is circular planar if it has a planar embedding in which all vertices can be drawn in order on a circle. This method can also be used to check the existence of a planar embedding in which the vertices of a specific set (the **boundary**) can be drawn on a circle, all other vertices being drawn inside of the circle. An order can be defined on the vertices of the boundary in order to define how they are to appear on the circle.

**INPUT:**

- **on_embedding** – dictionary (default: None); the embedding dictionary to test planarity on (i.e.: will return True or False only for the given embedding)
- **kuratowski** – boolean (default: False); whether to return a tuple with boolean first entry and the Kuratowski subgraph (i.e. an edge subdivision of $K_5$ or $K_{3,3}$) as the second entry (see OUTPUT below)
- **set_embedding** – boolean (default: True); whether or not to set the instance field variable that contains a combinatorial embedding (clockwise ordering of neighbors at each vertex). This value will only be set if a circular planar embedding is found. It is stored as a Python dict: $v_1$: $[n_1,n_2,n_3]$ where $v_1$ is a vertex and $n_1,n_2,n_3$ are its neighbors.
- **boundary** – list (default: None); an ordered list of vertices that are required to be drawn on the circle, all others being drawn inside of it. It is set to None by default, meaning that all vertices should be drawn on the boundary.
Graph Theory, Release 10.4

- ordered – boolean (default: False); whether or not to consider the order of the boundary. It required boundary to be defined.
- set_pos – boolean (default: False); whether or not to set the position dictionary (for plotting) to reflect the combinatorial embedding. Note that this value will default to False if set_embedding is set to False. Also, the position dictionary will only be updated if a circular planar embedding is found.

OUTPUT:

The method returns True if the graph is circular planar, and False if it is not.

If kuratowski is set to True, then this function will return a tuple, whose first entry is a boolean and whose second entry is the Kuratowski subgraph (i.e. an edge subdivision of \( K_5 \) or \( K_{3,3} \)) isolated by the Boyer-Myrvold algorithm. Note that this graph might contain a vertex or edges that were not in the initial graph. These would be elements referred to below as parts of the wheel and the star, which were added to the graph to require that the boundary can be drawn on the boundary of a disc, with all other vertices drawn inside (and no edge crossings).

ALGORITHM:

This is a linear time algorithm to test for circular planarity. It relies on the edge-addition planarity algorithm due to Boyer-Myrvold. We accomplish linear time for circular planarity by modifying the graph before running the general planarity algorithm.

REFERENCE:

[BM2004]

EXAMPLES:

```python
sage: g439 = Graph({1: [5, 7], 2: [5, 6], 3: [6, 7], 4: [5, 6, 7]})
sage: g439.is_circular_planar(boundary=[1, 2, 3, 4])
False
sage: g439.is_circular_planar(kuratowski=True, boundary=[1, 2, 3, 4])
(False, Kuratowski subgraph of (): Graph on 8 vertices)
sage: g439.is_circular_planar(kuratowski=True, boundary=[1, 2, 3])
(True, None)
sage: g439.get_embedding()
{1: [5, 7],
 2: [6, 5],
 3: [7, 6],
 4: [5, 6, 7],
 5: [2, 4, 1],
 6: [3, 4, 2],
 7: [1, 4, 3]}
```

```python
>>> from sage.all import *

>>> g439 = Graph({Integer(1): [Integer(5), Integer(7)], Integer(2):

 [Integer(5), Integer(6)], Integer(3): [Integer(6), Integer(7)], Integer(4):

 [Integer(5), Integer(6), Integer(7)])}

>>> g439.show() # needs sage.plot
>>> g439.is_circular_planar(boundary=[Integer(1), Integer(2), Integer(3),

 Integer(4)])
False
```

(continues on next page)
> (False, Kuratowski subgraph of (): Graph on 8 vertices)
> >>> g439.is_circular_planar(kuratowski=True, boundary=[Integer(1), Integer(2), Integer(3)]
> (True, None)
> >>> g439.get_embedding()
> {1: [5, 7], 2: [6, 5], 3: [7, 6], 4: [5, 6, 7], 5: [2, 4, 1], 6: [3, 4, 2], 7: [1, 4, 3]}

Order matters:

```python
sage: K23 = graphs.CompleteBipartiteGraph(2, 3)
sage: K23.is_circular_planar(boundary=[0, 1, 2, 3])
True
sage: K23.is_circular_planar(ordered=True, boundary=[0, 1, 2, 3])
False
```

With a different order:

```python
>>> from sage.all import *
>>> K23 = graphs.CompleteBipartiteGraph(Integer(2), Integer(3))
>>> K23.is_circular_planar(boundary=[Integer(0), Integer(1), Integer(2), Integer(3)])
True
>>> K23.is_circular_planar(ordered=True, boundary=[Integer(0), Integer(1), Integer(2), Integer(3)])
False
```

**is_clique** *(vertices=None, directed_clique=False, induced=True, loops=False)*

Check whether a set of vertices is a clique

A clique is a set of vertices such that there is exactly one edge between any two vertices.

**INPUT:**

- `vertices` – a single vertex or an iterable container of vertices (default: None); when set, check whether the set of vertices is a clique, otherwise check whether `self` is a clique
- `directed_clique` – boolean (default: False); if set to False, only consider the underlying undirected graph. If set to True and the graph is directed, only return True if all possible edges in both directions exist.
- `induced` – boolean (default: True); if set to True, check that the graph has exactly one edge between any two vertices. If set to False, check that the graph has at least one edge between any two vertices.
Graph Theory, Release 10.4

- **loops** – boolean (default: False); if set to True, check that each vertex of the graph has a loop, and exactly one if furthermore induced == True. If set to False, check that the graph has no loop when induced == True, and ignore loops otherwise.

**EXAMPLES:**

```
sage: g = graphs.CompleteGraph(4)
sage: g.is_clique([1, 2, 3])
True
sage: g.is_clique()
True
sage: h = graphs.CycleGraph(4)
sage: h.is_clique([1, 2])
True
sage: h.is_clique([1, 2, 3])
False
sage: i = digraphs.Complete(4)
sage: i.delete_edge([0, 1])
sage: i.is_clique(directed_clique=False, induced=True)
False
sage: i.is_clique(directed_clique=False, induced=False)
True
sage: i.is_clique(directed_clique=True)
False
>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(4))
>>> g.is_clique([Integer(1), Integer(2), Integer(3)])
True
>>> g.is_clique()
True
>>> h = graphs.CycleGraph(Integer(4))
>>> h.is_clique([Integer(1), Integer(2)])
True
>>> h.is_clique([Integer(1), Integer(2), Integer(3)])
False
>>> h.is_clique()
False
>>> i = digraphs.Complete(Integer(4))
>>> i.delete_edge([Integer(0), Integer(1)])
>>> i.is_clique(directed_clique=False, induced=True)
False
>>> i.is_clique(directed_clique=False, induced=False)
True
>>> i.is_clique(directed_clique=True)
False
```

**is_connected** ($G$)

Check whether the (di)graph is connected.

Note that in a graph, path connected is equivalent to connected.

**INPUT:**

- **G** – the input graph

**See also:**
• \textit{is\_biconnected()}

EXAMPLES:

```
sage: from sage.graphs.connectivity import \textit{is_connected}
sage: G = Graph({0: [1, 2], 1: [2], 3: [4, 5], 4: [5]})
sage: is_connected(G)
False
sage: G.is_connected()
False
sage: G.add_edge(0, 3)
sage: is_connected(G)
True
sage: D = DiGraph({0: [1, 2], 1: [2], 3: [4, 5], 4: [5]})
sage: is_connected(D)
False
sage: D.add_edge(0, 3)
sage: is_connected(D)
True
sage: D = DiGraph({1: [0], 2: [0]})
sage: is_connected(D)
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.connectivity import is_connected
>>> G = Graph({Integer(0): [Integer(1), Integer(2)], Integer(1): [Integer(2)],
˓→ Integer(3): [Integer(4), Integer(5)], Integer(4): [Integer(5)]})
>>> is_connected(G)
False
>>> G.is_connected()
False
>>> G.add_edge(Integer(0), Integer(3))
>>> is_connected(G)
True
>>> D = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(1): [Integer(2)],
˓→ Integer(3): [Integer(4), Integer(5)], Integer(4): [Integer(5)]})
>>> is_connected(D)
False
>>> D.add_edge(Integer(0), Integer(3))
>>> is_connected(D)
True
>>> D = DiGraph({Integer(1): [Integer(0)], Integer(2): [Integer(0)]})
>>> is_connected(D)
True
```

\textbf{is\_cut\_edge \,(G, \, u, \, v=None, \, label=None)}

Returns True if the input edge is a cut-edge or a bridge.

A cut edge (or bridge) is an edge that when removed increases the number of connected components. This function works with simple graphs as well as graphs with loops and multiedges. In a digraph, a cut edge is an edge that when removed increases the number of (weakly) connected components.

INPUT: The following forms are accepted

- \textit{is\_cut\_edge}(G, 1, 2)
- \textit{is\_cut\_edge}(G, (1, 2))
- \textit{is\_cut\_edge}(G, 1, 2, 'label')
is_cut_edge(G, (1, 2, 'label'))

OUTPUT:

- Returns True if (u,v) is a cut edge, False otherwise

EXAMPLES:

```python
sage: from sage.graphs.connectivity import is_cut_edge
sage: G = graphs.CompleteGraph(4)
sage: is_cut_edge(G, 0, 2)
False
sage: G.is_cut_edge(0, 2)
False

sage: G = graphs.CompleteGraph(4)
sage: G.add_edge((0, 5, 'silly'))
sage: is_cut_edge(G, (0, 5, 'silly'))
True

sage: G = Graph([[0, 1], [0, 2], [3, 4], [4, 5], [3, 5]])
sage: is_cut_edge(G, (0, 1))
True

sage: G = Graph([[0, 1], [0, 2], [1, 1]], loops = True)
sage: is_cut_edge(G, (1, 1))
False

sage: G = digraphs.Circuit(5)
sage: is_cut_edge(G, (0, 1))
False

sage: G = graphs.CompleteGraph(6)
sage: is_cut_edge(G, (0, 7))
Traceback (most recent call last):
 ... ValueError: edge not in graph
```
False

```python
>>> G = digraphs.Circuit(Integer(5))
>>> is_cut_edge(G, (Integer(0), Integer(1)))
False

>>> G = graphs.CompleteGraph(Integer(6))
>>> is_cut_edge(G, (Integer(0), Integer(7)))
Traceback (most recent call last):
... ValueError: edge not in graph
```

**is_cut_vertex** (*G*, *u*, *weak=False*)

Check whether the input vertex is a cut-vertex.

A vertex is a cut-vertex if its removal from the (di)graph increases the number of (strongly) connected components. Isolated vertices or leafs are not cut-vertices. This function works with simple graphs as well as graphs with loops and multiple edges.

**INPUT:**

- *G* – a Sage (Di)Graph
- *u* – a vertex
- *weak* – boolean (default: False); whether the connectivity of directed graphs is to be taken in the weak sense, that is ignoring edges orientations

**OUTPUT:**

Return True if *u* is a cut-vertex, and False otherwise.

**EXAMPLES:**

Giving a LollipopGraph(4,2), that is a complete graph with 4 vertices with a pending edge:

```python
sage: from sage.graphs.connectivity import is_cut_vertex
sage: G = graphs.LollipopGraph(4, 2)
sage: is_cut_vertex(G, 0)
False
sage: is_cut_vertex(G, 3)
True
sage: G.is_cut_vertex(3)
True
```

Comparing the weak and strong connectivity of a digraph:

```python
sage: from sage.graphs.connectivity import is_strongly_connected
sage: D = digraphs.Circuit(6)
```
sage: is_strongly_connected(D)
True
sage: is_cut_vertex(D, 2)
True
sage: is_cut_vertex(D, 2, weak=True)
False

>>> from sage.all import *
>>> from sage.graphs.connectivity import is_strongly_connected
>>>
D = digraphs.Circuit(Integer(6))
>>> is_strongly_connected(D)
True
>>> is_cut_vertex(D, Integer(2))
True
>>> is_cut_vertex(D, Integer(2), weak=True)
False

Giving a vertex that is not in the graph:

sage: G = graphs.CompleteGraph(4)
sage: is_cut_vertex(G, 7)
Traceback (most recent call last):
...
ValueError: vertex (7) is not a vertex of the graph

>>> from sage.all import *
>>> G = graphs.CompleteGraph(Integer(4))
>>> is_cut_vertex(G, Integer(7))
Traceback (most recent call last):
...
ValueError: vertex (7) is not a vertex of the graph

**is_cycle** *(directed_cycle=True)*

Check whether self is a (directed) cycle graph.

We follow the definition provided in [BM2008] for undirected graphs. A cycle on three or more vertices is a simple graph whose vertices can be arranged in a cyclic order so that two vertices are adjacent if they are consecutive in the order, and not adjacent otherwise. A cycle on a vertex consists of a single vertex provided with a loop and a cycle with two vertices consists of two vertices connected by a pair of parallel edges. In other words, an undirected graph is a cycle if it is 2-regular and connected. The empty graph is not a cycle.

For directed graphs, a directed cycle, or circuit, on two or more vertices is a strongly connected directed graph without loops nor multiple edges with has many arcs as vertices. A circuit on a vertex consists of a single vertex provided with a loop.

**INPUT:**

- `directed_cycle` *boolean (default: True)*; if set to True and the graph is directed, only return True if self is a directed cycle graph (i.e., a circuit). If set to False, we ignore the direction of edges and so opposite arcs become multiple (parallel) edges. This parameter is ignored for undirected graphs.

**EXAMPLES:**
**False**

```python
sage: graphs.CycleGraph(5).is_cycle()
True
sage: Graph(((0,1))).is_cycle()
False
sage: Graph(((0, 1), (0, 1)), multiedges=True).is_cycle()
True
sage: Graph(((0, 1), (0, 1), (0, 1)), multiedges=True).is_cycle()
False
sage: Graph().is_cycle()
False
sage: G = Graph(((0, 0)), loops=True)
```

```python
sage: G.is_cycle()
True
```

```python
digraphs.Circuit(3).is_cycle()
```

```python
digraphs.Circuit(2).is_cycle()
```

```python
digraphs.Circuit(2).is_cycle(directed_cycle=False)
```

```python
d = DiGraph(graphs.CycleGraph(3))
```

```python
d.is_cycle()
False
```

```python
d.is_cycle(directed_cycle=False)
False
```

```python
d.edges(sort=True, labels=False)
```

```python
[(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.PetersenGraph()
```

```python
>>> G.is_cycle()
False
```

```python
>>> graphs.CycleGraph(Integer(5)).is_cycle()
True
```

```python
>>> Graph(((Integer(0), Integer(1)))).is_cycle()
False
```

```python
>>> Graph(((Integer(0), Integer(1)), (Integer(0), Integer(1))),
 multiedges=True).is_cycle()
True
```

```python
>>> Graph(((Integer(0), Integer(1)), (Integer(0), Integer(1)),
 (Integer(0),
 Integer(1))), multiedges=True).is_cycle()
False
```

```python
>>> Graph().is_cycle()
False
```

```python
>>> G = Graph(((Integer(0), Integer(0))), loops=True)
```

```python
>>> G.is_cycle()
True
```

```python
digraphs.Circuit(Integer(3)).is_cycle()
```

```python
digraphs.Circuit(Integer(2)).is_cycle()
```

```python
digraphs.Circuit(Integer(2)).is_cycle(directed_cycle=False)
```

```python
>>> D = DiGraph(graphs.CycleGraph(Integer(3)))
```

```python
>>> D.is_cycle()
False
```
is_drawn_free_of_edge_crossings()

Check whether the position dictionary for this graph is set and that position dictionary gives a planar embedding.

This simply checks all pairs of edges that don’t share a vertex to make sure that they don’t intersect.

Note: This function require that _pos attribute is set (Returns False otherwise)

EXAMPLES:

```python
sage: D = graphs.DodecahedralGraph()
sage: pos = D.layout(layout='planar', save_pos=True)
sage: D.is_drawn_free_of_edge_crossings()
True
```

is_equitable(partition, quotient_matrix=False)

Checks whether the given partition is equitable with respect to self.

A partition is equitable with respect to a graph if for every pair of cells C1, C2 of the partition, the number of edges from a vertex of C1 to C2 is the same, over all vertices in C1.

INPUT:

- partition – a list of lists
- quotient_matrix – (default: False) if True, and the partition is equitable, returns a matrix over the integers whose rows and columns represent cells of the partition, and whose i,j entry is the number of vertices in cell j adjacent to each vertex in cell i (since the partition is equitable, this is well defined)

EXAMPLES:

```python
sage: G = graphs.PetersenGraph()
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8],[7]])
False
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8,7]])
True
```

```python
needs sage.modules
[1 2 0]
[1 0 2]
[0 2 1]
```
>>> G.is_equitable([[Integer(0),Integer(4)],[Integer(1),Integer(3),Integer(5), Integer(9)],[Integer(2),Integer(6),Integer(8)],[Integer(7)]]), quotient_matrix=True) # needs sage.modules
[1 2 0]
[1 0 2]
[0 2 1]

sage: ss = (graphs.WheelGraph(6)).line_graph(labels=False)
sage: prt = [[[0, 1]], [[0, 2], (0, 3), (0, 4), (1, 2), (1, 4)], [[2, 3], (3, 4)]]

>>> from sage.all import *

sage: ss.is_equitable(prt)
Traceback (most recent call last):
... TypeError: Partition ([(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]) is not valid for this graph: vertices are incorrect.

>>> from sage.all import *

sage: ss.is_equitable(prt)
Traceback (most recent call last):
... TypeError: Partition ([(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]) is not valid for this graph: vertices are incorrect.

sage: ss = (graphs.WheelGraph(5)).line_graph(labels=False)
sage: ss.is_equitable(prt)
False

>>> from sage.all import *

sage: ss = (graphs.WheelGraph(Integer(5))).line_graph(labels=False)

>>> ss.is_equitable(prt)
False

is_eulerian (path=False)
Check whether the graph is Eulerian.

A graph is Eulerian if it has a (closed) tour that visits each edge exactly once.

INPUT:

• path – boolean (default: False); by default this function finds if the graph contains a closed tour visiting each edge once, i.e. an Eulerian cycle. If you want to test the existence of an Eulerian path, set this argument to True. Graphs with this property are sometimes called semi-Eulerian.
OUTPUT:

True or False for the closed tour case. For an open tour search (path=True) the function returns False if the graph is not semi-Eulerian, or a tuple (u, v) in the other case. This tuple defines the edge that would make the graph Eulerian, i.e. close an existing open tour. This edge may or may not be already present in the graph.

EXAMPLES:

```
sage: graphs.CompleteGraph(4).is_eulerian()
False
sage: graphs.CycleGraph(4).is_eulerian()
True
sage: g = DiGraph({0:[1,2], 1:[2]}); g.is_eulerian()
False
sage: g = DiGraph({0:[2], 1:[3], 2:[0,1], 3:[2]}); g.is_eulerian()
True
sage: g = DiGraph({0:[1], 1:[2], 2:[0], 3:[]}); g.is_eulerian()
True
sage: g = Graph([(1,2), (2,3), (3,1), (4,5), (5,6), (6,4)]); g.is_eulerian()
False
```
```python
g = Graph({0:[1,2,3], 1:[2,3], 2:[3,4], 3:[4]}, multiedges=True)
sage: g.is_eulerian()
False
sage: e = g.is_eulerian(path=True); e
(0, 1)
sage: g.add_edge(e)
sage: g.is_eulerian(path=False)
True
sage: g.is_eulerian(path=True)
False
```

```python
>>> from sage.all import *
>>> g = Graph({Integer(0):[Integer(1),Integer(2),Integer(3)],
 Integer(1):[Integer(2),Integer(3)], Integer(2):[Integer(3),Integer(4)],
 Integer(3):[Integer(4)]}, multiedges=True)
>>> g.is_eulerian()
False
>>> e = g.is_eulerian(path=True); e
(0, 1)
>>> g.add_edge(e)
>>> g.is_eulerian(path=False)
True
>>> g.is_eulerian(path=True)
False
```

**is_gallai_tree()**

Return whether the current graph is a Gallai tree.

A graph is a Gallai tree if and only if it is connected and its 2-connected components are all isomorphic to complete graphs or odd cycles.

A connected graph is not degree-choosable if and only if it is a Gallai tree [ERT1979].

**EXAMPLES:**

A complete graph is, of course, a Gallai Tree:

```python
g = graphs.CompleteGraph(15)
sage: g.is_gallai_tree()
True
```

The Petersen Graph is not:

```python
g = graphs.PetersenGraph()
sage: g.is_gallai_tree()
False
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.is_gallai_tree()
False
```
A Graph built from vertex-disjoint complete graphs linked by one edge to a special vertex $-1$ is a “star-shaped” Gallai tree:

```python
sage: g = 8 * graphs.CompleteGraph(6)
sage: g.add_edges([(-1, c[0]) for c in g.connected_components(sort=False)])
sage: g.is_gallai_tree()
True
```

The `is_gallai_tree(G)` function checks whether the input (di)graph is Gallai.

A graph $G$ is **geodetic** if there exists only one shortest path between every pair of its vertices. This can be checked in time $O(nm)$ for `SparseGraph` and $O(nm + n^2)$ for `DenseGraph` in unweighted (di)graphs with $n$ nodes and $m$ edges. Examples of geodetic graphs are trees, cliques and odd cycles. See the Wikipedia article [Geodetic graph](#) for more details.

(Di)graphs with multiple edges are not considered geodetic.

**INPUT:**

- $G$ — a graph or a digraph

**EXAMPLES:**

Trees, cliques and odd cycles are geodetic:

```python
>>> from sage.all import *
>>> g = Integer(8) * graphs.CompleteGraph(Integer(6))
>>> g.add_edges([(-Integer(1), c[Integer(0)]) for c in g.connected_components(sort=False)])
>>> g.is_gallai_tree()
True
```

Even cycles of order at least 4 are not geodetic:

```python
>>> all(graphs.CycleGraph(n).is_geodetic() for n in range(Integer(4), Integer(17), Integer(2)))
False
```

(continues on next page)
The Petersen graph is geodetic:

```python
sage: P = graphs.PetersenGraph()
sage: P.is_geodetic()
True

>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> P.is_geodetic()
True
```

Grid graphs are not geodetic:

```python
sage: G = graphs.Grid2dGraph(2, 3)
sage: G.is_geodetic()
False

>>> from sage.all import *
>>> G = graphs.Grid2dGraph(Integer(2), Integer(3))
>>> G.is_geodetic()
False
```

This method is also valid for digraphs:

```python
sage: G = DiGraph(graphs.PetersenGraph())
sage: G.is_geodetic()
True
sage: G = digraphs.Path(5)
sage: G.add_path([0, 'a', 'b', 'c', 4])
sage: G.is_geodetic()
False

>>> from sage.all import *
>>> G = DiGraph(graphs.PetersenGraph())
>>> G.is_geodetic()
True
>>> G = digraphs.Path(Integer(5))
>>> G.add_path([Integer(0), 'a', 'b', 'c', Integer(4)])
>>> G.is_geodetic()
False
```

`is_hamiltonian` (solver, constraint_generation=None, verbose=None, verbose_constraints=0, integrality_tolerance=False)

Test whether the current graph is Hamiltonian.

A graph (resp. digraph) is said to be Hamiltonian if it contains as a subgraph a cycle (resp. a circuit) going through all the vertices.

Testing for Hamiltonicity being NP-Complete, this algorithm could run for some time depending on the instance.

ALGORITHM:

See `traveling_salesman_problem()`.
INPUT:

- `solver` – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

- `constraint_generation` (boolean) – whether to use constraint generation when solving the Mixed Integer Linear Program. When `constraint_generation` = None, constraint generation is used whenever the graph has a density larger than 70%.

- `verbose` – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

- `verbose_constraints` – boolean (default: False); whether to display which constraints are being generated

- `integrality_tolerance` – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

OUTPUT:

Returns True if a Hamiltonian cycle/circuit exists, and False otherwise.

NOTE:

This function, as `hamiltonian_cycle` and `traveling_salesman_problem`, computes a Hamiltonian cycle if it exists: the user should NOT test for Hamiltonicity using `is_hamiltonian` before calling `hamiltonian_cycle` or `traveling_salesman_problem` as it would result in computing it twice.

EXAMPLES:

The Heawood Graph is known to be Hamiltonian

```sage
sage: g = graphs.HeawoodGraph()
sage: g.is_hamiltonian() # needs sage.numerical.mip
True
```

The Petergraph, though, is not

```sage
sage: g = graphs.PetersenGraph()
sage: g.is_hamiltonian() # needs sage.numerical.mip
False
```

`is_immutable()`

Check whether the graph is immutable.

EXAMPLES:
sage: G = graphs.PetersenGraph()
sage: G.is_immutable()
False
sage: Graph(G, immutable=True).is_immutable()
True

>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.is_immutable()
False
>>> Graph(G, immutable=True).is_immutable()
True

is_independent_set(vertices=None)

Check whether vertices is an independent set of self.

An independent set is a set of vertices such that there is no edge between any two vertices.

INPUT:

• vertices – a single vertex or an iterable container of vertices (default: None); when set, check whether the given set of vertices is an independent set, otherwise, check whether the set of vertices of self is an independent set

EXAMPLES:
sage: graphs.CycleGraph(4).is_independent_set([1,3])
True
sage: graphs.CycleGraph(4).is_independent_set([1,2,3])
False

>>> from sage.all import *
>>> graphs.CycleGraph(Integer(4)).is_independent_set([Integer(1),Integer(3)])
True
>>> graphs.CycleGraph(Integer(4)).is_independent_set([Integer(1),Integer(2),
˓→Integer(3)])
False

is_interval(certificate=False)

Check whether the graph is an interval graph.

An interval graph is one where every vertex can be seen as an interval on the real line so that there is an edge in the graph iff the corresponding intervals intersects.

See the Wikipedia article Interval_graph for more information.

INPUT:

• certificate – boolean (default: False);

  – When certificate=False, returns True is the graph is an interval graph and False otherwise

  – When certificate=True, returns either (False, None) or (True, d) where d is a dictionary whose keys are the vertices and values are pairs of integers. They correspond to an embedding of the interval graph, each vertex being represented by an interval going from the first of the two values to the second.

ALGORITHM:
Through the use of PQ-Trees.

AUTHOR:
Nathann Cohen (implementation)

EXAMPLES:

```python
sage: g = Graph({1: [2, 3, 4], 4: [2, 3]})
sage: g.is_interval()
True
sage: g.is_interval(certificate=True)
(True, {1: (0, 5), 2: (4, 6), 3: (1, 3), 4: (2, 7)})
```

```python
>>> from sage.all import *
>>> g = Graph((Integer(1): [Integer(2), Integer(3), Integer(4)], Integer(4):... →[Integer(2), Integer(3)]))
>>> g.is_interval()
True
>>> g.is_interval(certificate=True)
(True, {1: (0, 5), 2: (4, 6), 3: (1, 3), 4: (2, 7)})
```

The Petersen Graph is not chordal, so it cannot be an interval graph:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_interval()
False
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.is_interval()
False
```

A chordal but still not an interval graph:

```python
sage: g = Graph({1: [4, 2, 3], 2: [3, 5], 3: [6]})
sage: g.is_interval()
False
```

```python
>>> from sage.all import *
>>> g = Graph((Integer(1): [Integer(4), Integer(2), Integer(3)], Integer(2):... →[Integer(3), Integer(5)], Integer(3): [Integer(6)]))
>>> g.is_interval()
False
```

See also:

- Interval Graph Recognition.
- PQ – implementation of PQ-Trees
- is_chordal()
- IntervalGraph()
- RandomIntervalGraph()
is_isomorphic (other, certificate=False, verbosity=0, edge_labels=False)

Tests for isomorphism between self and other.

INPUT:

- certificate – if True, then output is \((a, b)\), where \(a\) is a boolean and \(b\) is either a map or None
- edge_labels – boolean (default: False); if True allows only permutations respecting edge labels

OUTPUT:

- either a boolean or, if certificate is True, a tuple consisting of a boolean and a map or None

EXAMPLES:

Graphs:

```
sage: from sage.groups.perm_gps.permgroup_named import SymmetricGroup
 # needs sage.groups.sage:
D = graphs.DodecahedralGraph()
sage: E = copy(D)
sage: gamma = SymmetricGroup(20).random_element()
 # needs sage.groups.sage:
E.relabel(gamma)
 # needs sage.groups.sage:
D.is_isomorphic(E)
True

>>> from sage.all import *
>>> from sage.groups.perm_gps.permgroup_named import SymmetricGroup
 # needs sage.groups
>>> D = graphs.DodecahedralGraph()
>>> E = copy(D)
>>> gamma = SymmetricGroup(Integer(20)).random_element()
 # needs sage.groups
>>> E.relabel(gamma)
 # needs sage.groups
>>> D.is_isomorphic(E)
True

sage: D = graphs.DodecahedralGraph()
sage: S = SymmetricGroup(20)
 # needs sage.groups
sage: gamma = S.random_element()
 # needs sage.groups
sage: E = copy(D)
 # needs sage.groups
sage: E.relabel(gamma)
 # needs sage.groups
sage: a,b = D.is_isomorphic(E, certificate=True); a
True
sage: from sage.graphs.generic_graph_pyx import spring_layout_fast
sage: position_D = spring_layout_fast(D)
sage: position_E = {}
 # long time, needs sage.plot
 : position_E[b[vert]] = position_D[vert]
sage: graphics_array([D.plot(pos=spring_layout_fast(D)), E.plot(pos=spring_layout_fast(E))]).show()
```python
>>> from sage.all import *
>>> D = graphs.DodecahedralGraph()
>>> S = SymmetricGroup(Integer(20))  # needs sage.groups
>>> gamma = S.random_element()  # needs sage.groups
>>> E = copy(D)  # needs sage.groups
>>> E.relabel(gamma)  # needs sage.groups
>>> a, b = D.is_isomorphic(E, certificate=True); a
True
>>> from sage.graphs.generic_graph_pyx import spring_layout_fast
>>> position_D = spring_layout_fast(D)
>>> position_E = {}
>>> for vert in position_D:
...    position_E[vert] = position_D[vert]
>>> graphics_array([D.plot(pos=position_D), E.plot(pos=position_E)]).show()  # long time, needs sage.plot
```

```
sage: g=graphs.HeawoodGraph()
sage: g.is_isomorphic(g)
True
```

```
Multigraphs:
```
```python
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edge((0,1,1))
sage: G.add_edge((0,1,2))
sage: G.add_edge((0,1,3))
sage: G.add_edge((0,1,4))
sage: H = Graph(multiedges=True, sparse=True)
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: G.is_isomorphic(H)
True
```
```
Digraphs:

```
 sage: A = DiGraph({ 0 : [1,2] })
 sage: B = DiGraph({ 1 : [0,2] })
 sage: A.is_isomorphic(B, certificate=True)
 (True, {0: 1, 1: 0, 2: 2})

>>> from sage.all import *

>>> A = DiGraph({ Integer(0) : [Integer(1),Integer(2)] })

>>> B = DiGraph({ Integer(1) : [Integer(0),Integer(2)] })

>>> A.is_isomorphic(B, certificate=True)
 (True, {0: 1, 1: 0, 2: 2})
```

Edge labeled graphs:

```
 sage: G = Graph(sparse=True)
 sage: G.add_edges([(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')])
 sage: H = G.relabel([1,2,3,4,0], inplace=False)
 sage: G.is_isomorphic(H, edge_labels=True)
 True

>>> from sage.all import *

>>> G = Graph(sparse=True)

>>> G.add_edges([(Integer(0),Integer(1),'a'),(Integer(1),Integer(2),'b'),
 (Integer(2),Integer(3),'c'),(Integer(3),Integer(4),'b'),(Integer(4),
 Integer(0),'a')])

>>> H = G.relabel([1,2,3,4,0], inplace=False)

>>> G.is_isomorphic(H, edge_labels=True)
 True
```

Edge labeled digraphs:

```
 sage: G = DiGraph()
 sage: G.add_edges([(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')])
 sage: H = G.relabel([1,2,3,4,0], inplace=False)
 sage: G.is_isomorphic(H, edge_labels=True)
 True

>>> from sage.all import *

>>> G = DiGraph()

>>> G.add_edges([(Integer(0),Integer(1),'a'),(Integer(1),Integer(2),'b'),
 (Integer(2),Integer(3),'c'),(Integer(3),Integer(4),'b'),(Integer(4),
 Integer(0),'a')])

>>> H = G.relabel([1,2,3,4,0], inplace=False)

>>> G.is_isomorphic(H, edge_labels=True)
 True
```

```
 is_planar (on_embedding=None, kuratowski=False, set_embedding=False, set_pos=False)

Check whether the graph is planar.

This wraps the reference implementation provided by John Boyer of the linear time planarity algorithm by edge addition due to Boyer Myrvold. (See reference code in planarity).

```
```
Note: The argument on_embedding takes precedence over set_embedding. This means that only the on_embedding combinatorial embedding will be tested for planarity and no _embedding attribute will be set as a result of this function call, unless on_embedding is None.

REFERENCE:
[BM2004]

See also:
- “Almost planar graph”: is_apex()
- “Measuring non-planarity”: genus(), crossing_number()
- planar_dual()
- faces()
- is_polyhedral()

INPUT:
- on_embedding – dictionary (default: None); the embedding dictionary to test planarity on (i.e.: will return True or False only for the given embedding)
- kuratowski – boolean (default: False); whether to return a tuple with boolean as first entry. If the graph is nonplanar, will return the Kuratowski subgraph (i.e. an edge subdivision of K_5 or $K_{3,3}$) as the second tuple entry. If the graph is planar, returns None as the second entry. When set to False, only a boolean answer is returned.
- set_embedding – boolean (default: False); whether to set the instance field variable that contains a combinatorial embedding (clockwise ordering of neighbors at each vertex). This value will only be set if a planar embedding is found. It is stored as a Python dict: v1: [n1, n2, n3] where v1 is a vertex and n1, n2, n3 are its neighbors.
- set_pos – boolean (default: False); whether to set the position dictionary (for plotting) to reflect the combinatorial embedding. Note that this value will default to False if set_emb is set to False. Also, the position dictionary will only be updated if a planar embedding is found.

EXAMPLES:

```
sage: g = graphs.CubeGraph(4)
sage: g.is_planar()
False

>>> from sage.all import *
>>> g = graphs.CubeGraph(Integer(4))
>>> g.is_planar()
False

sage: g = graphs.CircularLadderGraph(4)
sage: g.is_planar(set_embedding=True)
True
sage: g.get_embedding()
{0: [1, 4, 3], 1: [2, 5, 0], 2: [3, 6, 1], 3: [0, 7, 2],
(continues on next page)```
4: [0, 5, 7],
5: [1, 6, 4],
6: [2, 7, 5],
7: [4, 6, 3]}

```python
>>> from sage.all import *
>>> g = graphs.CircularLadderGraph(Integer(4))
>>> g.is_planar(set_embedding=True)
True
>>> g.get_embedding()
{0: [1, 4, 3],
 1: [2, 5, 0],
 2: [3, 6, 1],
 3: [0, 7, 2],
 4: [0, 5, 7],
 5: [1, 6, 4],
 6: [2, 7, 5],
 7: [4, 6, 3]}
```

```python
sage: g = graphs.PetersenGraph()
sage: (g.is_planar(kuratowski=True))[1].adjacency_matrix()
[0 1 0 0 0 1 0 0 0]
[1 0 1 0 0 0 1 0 0]
[0 1 0 1 0 0 0 1 0]
[0 0 1 0 0 0 0 0 1]
[0 0 0 0 0 0 1 1 0]
[1 0 0 0 0 0 1 1 1]
[0 1 0 1 0 0 0 1 0]
[0 0 1 0 1 1 0 0 0]
[0 0 0 1 0 1 1 0 0]
```

```python
sage: k43 = graphs.CompleteBipartiteGraph(4, 3)
sage: result = k43.is_planar(kuratowski=True); result
(False,
Kuratowski subgraph of (Complete bipartite graph of order 4+3): Graph on 6...
vertices)
sage: result[1].is_isomorphic(graphs.CompleteBipartiteGraph(3, 3))
True
```
Multi-edged and looped graphs are partially supported:

```python
sage: G = Graph({0: [1, 1]}, multiedges=True)
sage: G.is_planar()
True
sage: G.is_planar(on_embedding={})
Traceback (most recent call last):
... NotImplementedError: cannot compute with embeddings of multiple-edged or looped graphs
sage: G.is_planar(kuratowski=True)
(True, None)
sage: G.is_planar(set_pos=True)
True
sage: sorted(G.get_pos().items())
[(0, [0, 0]), (1, [0, 1])]
```

Digraphs with multiple edges or loops or pairs of opposite arcs are partially supported (Issue #35152):

```python
sage: D = digraphs.Complete(3)
sage: D.is_planar()
```

(continues on next page)
True

```
sage: D.is_planar(set_pos=True)
True
sage: sorted(D.get_pos().items())
[(0, [0, 1]), (1, [1, 1]), (2, [1, 0])]
sage: D.is_planar(on_embedding={})
Traceback (most recent call last):
...
NotImplementedError: cannot compute with embeddings of digraphs with pairs of opposite arcs
sage: D.is_planar(set_embedding=True)
Traceback (most recent call last):
...
NotImplementedError: cannot compute with embeddings of digraphs with pairs of opposite arcs
sage: D.is_planar(kuratowski=True)
(True, None)
sage: D.allow_multiple_edges(True)
sage: D.add_edges(D.edges(sort=False))
sage: D.allow_loops(True)
sage: D.add_edges((u, u) for u in D)
sage: D.is_planar()
True
sage: D.is_planar(kuratowski=True)
(True, None)
```

>>> from sage.all import *

```python
>>> D = digraphs.Complete(Integer(3))
>>> D.is_planar()
True
>>> D.is_planar(set_pos=True)
True
>>> sorted(D.get_pos().items())
[(0, [0, 1]), (1, [1, 1]), (2, [1, 0])]
>>> D.is_planar(on_embedding={})
Traceback (most recent call last):
...
NotImplementedError: cannot compute with embeddings of multiple-edged or looped graphs
>>> D.is_planar(on_embedding={})
Traceback (most recent call last):
...
NotImplementedError: cannot compute with embeddings of multiple-edged or looped graphs
```
>>> D.is_planar(kuratowski=True)
(True, None)
>>> D.allow_multiple_edges(True)
>>> D.add_edges(D.edges(sort=False))
>>> D.allow_loops(True)
>>> D.add_edges((u, u) for u in D)
>>> D.is_planar()
True
>>> D.is_planar(kuratowski=True)
(True, None)
>>> D.is_planar(set_pos=True)
True
>>> D.is_planar(set_embedding=True)
Traceback (most recent call last):
  ... NotImplementedError: cannot compute with embeddings of multiple-edged or looped graphs
>>> D.is_planar(on_embedding={})
Traceback (most recent call last):
  ... NotImplementedError: cannot compute with embeddings of multiple-edged or looped graphs

sage: G = graphs.CompleteGraph(5)
sage: G = Graph(G, multiedges=True)

sage: G.add_edge(0, 1)
sage: G.is_planar()
False

sage: b, k = G.is_planar(kuratowski=True)
sage: b
False

sage: k.vertices(sort=True)
[0, 1, 2, 3, 4]

>>> from sage.all import *

sage: G = graphs.CompleteGraph(Integer(5))

sage: G = Graph(G, multiedges=True)

sage: G.add_edge(Integer(0), Integer(1))

sage: G.is_planar()
False

sage: b, k = G.is_planar(kuratowski=True)

sage: b
False

sage: k.vertices(sort=True)
[0, 1, 2, 3, 4]

is_regular(k=None)

Check whether this graph is (k-)regular.

INPUT:

• k – integer (default: None); the degree of regularity to check for

EXAMPLES:

sage: G = graphs.HoffmanSingletonGraph()

sage: G.is_regular()
True
sage: G.is_regular(9)
False

```python
>>> from sage.all import *

>>> G = graphs.HoffmanSingletonGraph()

>>> G.is_regular()
True

>>> G.is_regular(Integer(9))
False
```

So the Hoffman-Singleton graph is regular, but not 9-regular. In fact, we can now find the degree easily as follows:

```python
sage: next(G.degree_iterator())
7
```

```python
>>> from sage.all import *

>>> next(G.degree_iterator())
7
```

The house graph is not regular:

```python
sage: graphs.HouseGraph().is_regular()
False
```

```python
>>> from sage.all import *

>>> graphs.HouseGraph().is_regular()
False
```

A graph without vertices is \(k\)-regular for every \(k\):

```python
sage: Graph().is_regular()
True
```

```python
>>> from sage.all import *

>>> Graph().is_regular()
True
```

`is_self_complementary()`

Check whether the graph is self-complementary.

A (di)graph is self-complementary if it is isomorphic to its (di)graph complement. For instance, the path graph \(P_4\) and the cycle graph \(C_5\) are self-complementary.

See also:

- Wikipedia article Self-complementary_graph
- OEIS sequence A000171 for the numbers of self-complementary graphs of order \(n\)
- OEIS sequence A003086 for the numbers of self-complementary digraphs of order \(n\).

EXAMPLES:

The only self-complementary path graph is \(P_4\):
The only self-complementary directed path is $P_2$:

```
sage: digraphs.Path(2).is_self_complementary()
True
digraphs.Path(3).is_self_complementary()
False
```

Every Paley graph is self-complementary:

```
sage: G = graphs.PaleyGraph(9)
needs sage.libs.pari
sage: G.is_self_complementary()
needs sage.libs.pari
True

>>> from sage.all import *
>>> G = graphs.PaleyGraph(Integer(9))
needs sage.libs.pari
>>> G.is_self_complementary()
needs sage.libs.pari
True
```

`is_subgraph` (other, induced=True, up_to_isomorphism=False)
Check whether self is a subgraph of other.

**Warning:** The arguments induced and up_to_isomorphism are set respectively to True and False by default.

**INPUT:**
- other – a Sage (Di)Graph
  - induced – boolean (default: True); if set to True check whether the graph is an induced subgraph of other that is if the vertices of the graph are also vertices of other, and the edges of the graph are equal to the edges of other between the vertices contained in the graph.
  - If set to False tests whether the graph is a subgraph of other that is if all vertices of the graph are also in other and all edges of the graph are also in other.
• `up_to_isomorphism` – boolean (default: False); if set to `True` check whether `other` is a subgraph ignoring the labeling of vertices and edges. Otherwise, vertex and edge labelings must coincide in the copy or induced copy.

OUTPUT:

boolean – `True` iff the graph is a (possibly induced) subgraph of `other`.

See also:

For more advanced search of subgraphs isomorphic to a given graph, you could consider the following methods:

• `subgraph_search()` – find a subgraph isomorphic to `other` inside of the graph
• `subgraph_search_count()` – count the number of such copies
• `subgraph_search_iterator()` – iterator over all the copies of `other` contained in the graph

EXAMPLES:

```python
sage: P = graphs.PetersenGraph()
sage: G = P.subgraph(range(6))
sage: G.is_subgraph(P)
True

sage: H = graphs.CycleGraph(5)
sage: G = graphs.PathGraph(5)
sage: G.is_subgraph(H)
False
sage: G.is_subgraph(H, induced=False)
True
sage: H.is_subgraph(G, induced=False)
False
```

```python
>>> from sage.all import *

>>> P = graphs.PetersenGraph()

>>> G = P.subgraph(range(Integer(6)))

>>> G.is_subgraph(P)
True

>>> H = graphs.CycleGraph(Integer(5))

>>> G = graphs.PathGraph(Integer(5))

>>> G.is_subgraph(H)
False

>>> G.is_subgraph(H, induced=False)
True

>>> H.is_subgraph(G, induced=\False)
False
```

The 4x4 grid contains a path of length 15 and an induced path of length 11:

```python
sage: p11 = graphs.PathGraph(11)

sage: p15 = graphs.PathGraph(15)

sage: g = graphs.Grid2dGraph(4, 4)

sage: p15.is_subgraph(g, induced=False, up_to_isomorphism=True) # needs sage.modules
True

sage: p15.is_subgraph(g, induced=True, up_to_isomorphism=True) # needs sage.modules
False
```

(continues on next page)
is_transitively_reduced()

Check whether the digraph is transitively reduced.

A digraph is transitively reduced if it is equal to its transitive reduction. A graph is transitively reduced if it is a forest.

EXAMPLES:

```sage
d = DiGraph({0: [1], 1: [2], 2: [3]})
sage: d.is_transitively_reduced()
True

d = DiGraph({0: [1, 2], 1: [2]})
sage: d.is_transitively_reduced()
False

d = DiGraph({0: [1, 2], 1: [2], 2: []})
sage: d.is_transitively_reduced()
False
```

```python
>>> from sage.all import *

>>> d = DiGraph({Integer(0): [Integer(1)], Integer(1): [Integer(2)], ...
Integer(2): [Integer(3)]})

>>> d.is_transitively_reduced()
True

>>> d = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(1): ...
[Integer(2)]})

>>> d.is_transitively_reduced()
False

>>> d = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(1): ...
[Integer(2)], Integer(2): []})

>>> d.is_transitively_reduced()
False
```

is_vertex_transitive (partition=None, verbosity=0, edge_labels=False, order=False, return_group=True, orbits=False)
Returns whether the automorphism group of self is transitive within the partition provided, by default the unit partition of the vertices of self (thus by default tests for vertex transitivity in the usual sense).

EXAMPLES:

```python
sage: G = Graph({0:[1],1:[2]})
sage: G.is_vertex_transitive()
False
sage: P = graphs.PetersenGraph()
sage: P.is_vertex_transitive() # needs sage.groups
True
sage: D = graphs.DodecahedralGraph()
sage: D.is_vertex_transitive() # needs sage.groups
True
sage: R = graphs.RandomGNP(2000, .01)
needs networkx
sage: R.is_vertex_transitive()
False
```

From the Sage documentation:

```python
>>> from sage.all import *
>>> G = Graph({Integer(0):[Integer(1)],Integer(1):[Integer(2)]})
>>> G.is_vertex_transitive()
False
>>> P = graphs.PetersenGraph()
>>> P.is_vertex_transitive() # needs sage.groups
True
>>> D = graphs.DodecahedralGraph()
>>> D.is_vertex_transitive() # needs sage.groups
True
>>> R = graphs.RandomGNP(Integer(2000), RealNumber('.01')) # needs networkx
>>> R.is_vertex_transitive() # needs networkx
False
```

**katz_centrality** *(alpha, u=None)*

Return the Katz centrality of vertex u.

Katz centrality of a node is a measure of centrality in a graph network. Katz centrality computes the relative influence of a node within a network. Connections made with distant neighbors are, however penalized by an attenuation factor α.

See the Wikipedia article Katz_centrality for more information.

**INPUT:**

- `alpha` – a nonnegative real number, must be less than the reciprocal of the spectral radius of the graph (the maximum absolute eigenvalue of the adjacency matrix).
- `u` – the vertex whose Katz centrality needs to be measured (default: None)

**OUTPUT:** a list containing the Katz centrality of each vertex if `u=None` otherwise Katz centrality of the vertex `u`.
EXAMPLES:

We compute the Katz centrality of a 4-cycle (note that by symmetry, all 4 vertices have the same centrality)

```sage
sage: G = graphs.CycleGraph(4)
sage: G.katz_centrality(1/20) # needs sage.modules sage.rings.number_field
{0: 1/9, 1: 1/9, 2: 1/9, 3: 1/9}
```

```python
from sage.all import *
G = graphs.CycleGraph(Integer(4))
G.katz_centrality(Integer(1)/Integer(20)) # needs sage.modules sage.rings.number_field
{0: 1/9, 1: 1/9, 2: 1/9, 3: 1/9}
```

Note that in the below example the nodes having indegree 0 also have the Katz centrality value as 0, as these nodes are not influenced by other nodes.

```sage
sage: G = DiGraph({1: [10], 2:[10,11], 3:[10,11], 4:[], 5:[11, 4], 6:[11], ...
 7:[10,11], 8:[10,11], 9:[10], 10:[11, 5, 8], 11:[6]})
sage: G.katz_centrality(.85) # rel tol 1e-14 # needs sage.modules sage.rings.number_field
{1: 0.000000000000000,
 2: 0.000000000000000,
 3: 0.000000000000000,
 4: 16.7319819819820,
 5: 18.6846846846847,
 6: 173.212076941807,
 7: 0.000000000000000,
 8: 18.6846846846847,
 9: 0.000000000000000,
10: 20.9819819819820,
11: 202.778914049184}
```

```python
from sage.all import *
G = DiGraph({Integer(1): [Integer(10)], Integer(2):[Integer(10),
 Integer(11)], Integer(3):[Integer(10), Integer(11)], Integer(4):[]}, ...
 Integer(5):[Integer(11), Integer(4)], Integer(6):[Integer(11)],
 ...
 Integer(7):[Integer(10), Integer(11)],...
 Integer(8):[Integer(10),Integer(11)], Integer(9):[Integer(10)],...
 Integer(10):[Integer(11), Integer(5), Integer(8)], Integer(11):[Integer(6)]})
```

```python
G.katz_centrality(RealNumber(.85)) # rel tol 1e-14 # needs sage.modules sage.rings.number_field
{1: 0.000000000000000,
 2: 0.000000000000000,
 3: 0.000000000000000,
 4: 16.7319819819820,
 5: 18.6846846846847,
 6: 173.212076941807,
 7: 0.000000000000000,
 8: 18.6846846846847,
 9: 0.000000000000000,
10: 20.9819819819820,
11: 202.778914049184}
```

See also:
• *katz_matrix()*

Wikipedia article Katz_centrality

**katz_matrix**(*alpha*, *nonedgesonly*=False, *vertices*=None)

Return the Katz matrix of the graph.

Katz centrality of a node is a measure of centrality in a graph network. Katz centrality computes the relative influence of a node within a network. Connections made with distant neighbors are, however, penalized by an attenuation factor $\alpha$.

Adding the values in the Katz matrix of all columns in a particular row gives the Katz centrality measure of the vertex represented by that particular row. Katz centrality measures influence by taking into account the total number of walks between a pair of nodes.

See the Wikipedia article Katz_centrality for more information.

**INPUT:**

- *alpha* – a nonnegative real number, must be less than the reciprocal of the spectral radius of the graph (the maximum absolute eigenvalue of the adjacency matrix)
- *nonedgesonly* – boolean (default: True); if True, value for each edge present in the graph is set to zero.
- *vertices* – list (default: None); the ordering of the vertices defining how they should appear in the matrix. By default, the ordering given by GenericGraph.vertices() is used.

**OUTPUT:** the Katz matrix of the graph with parameter alpha

**EXAMPLES:**

We find the Katz matrix of an undirected 4-cycle.

```python
sage: G = graphs.CycleGraph(4)
```

```python
sage: G.katz_matrix(1/20) # needs sage.modules sage.rings.number_field
```

```python
[1/198 5/99 1/198 5/99]
[5/99 1/198 5/99 1/198]
[1/198 5/99 1/198 5/99]
[5/99 1/198 5/99 1/198]
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.CycleGraph(Integer(4))
```

```python
>>> G.katz_matrix(Integer(1)/Integer(20)) # needs sage.modules sage.rings.number_field
```

```python
[1/198 5/99 1/198 5/99]
[5/99 1/198 5/99 1/198]
[1/198 5/99 1/198 5/99]
[5/99 1/198 5/99 1/198]
```

We find the Katz matrix of an undirected 4-cycle with all entries other than those which correspond to non-edges zeroed out.

```python
sage: G.katz_matrix(1/20, True) # needs sage.modules sage.rings.number_field
```

```python
[0 0 1/198 0]
[0 0 0 1/198]
[1/198 0 0 0]
[0 1/198 0 0]
```
```python
>>> from sage.all import *

>>> G.katz_matrix(Integer(1)/Integer(20), True)
˓→ # needs sage.modules sage.rings.number_field
[0 0 1/198 0]
[0 0 0 1/198]
[1/198 0 0 0]
[0 1/198 0 0]
```

This will give an error if $\alpha \leq 0$ or $\alpha \geq 1/\text{spectral\_radius} = 1/\max(A.\text{eigenvalues})$.

We find the Katz matrix in a fan on 6 vertices.

```python
sage: H = Graph([(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (1,2), (2,3), (3,4), (4,5)])
sage: H.katz_matrix(1/10)
˓→ # needs sage.modules sage.rings.number_field
[169/2256 545/4512 25/188 605/4512 25/188 545/4512 →
[485/4512]
[545/4512 7081/297792 4355/37224 229/9024 595/37224 4073/297792 →
[109/9024]
[25/188 4355/37224 172/4653 45/376 125/4653 595/37224 →
[5/376]
[605/4512 229/9024 45/376 337/9024 45/376 229/9024 →
[121/9024]
[25/188 595/37224 125/4653 45/376 172/4653 4355/37224 →
[5/376]
[545/4512 4073/297792 595/37224 229/9024 4355/37224 7081/297792 →
[109/9024]
[97/9024]
```

See also:

- `katz_centrality()`
- Wikipedia article Katz_centrality
**kirchhoff_matrix** *(weighted=None, indegree=True, normalized=False, signless=False, **kwds)*

Return the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.

The Kirchhoff matrix is defined to be $D + M$ if signless and $D - M$ otherwise, where $D$ is the diagonal degree matrix (each diagonal entry is the degree of the corresponding vertex), and $M$ is the adjacency matrix. If normalized is True, then the returned matrix is $D^{-1/2}(D + M)D^{-1/2}$ if signless and $D^{-1/2}(D - M)D^{-1/2}$ otherwise.

(In the special case of DiGraphs, $D$ is defined as the diagonal in-degree matrix or diagonal out-degree matrix according to the value of indegree)

**INPUT:**

- **weighted** – boolean (default: None);
  - If True, the weighted adjacency matrix is used for $M$, and the diagonal matrix $D$ takes into account the weight of edges (replace in definition “degree” by “sum of the incident edges”)
  - Else, each edge is assumed to have weight 1

Default is to take weights into consideration if and only if the graph is weighted.

- **indegree** – boolean (default: True); this parameter is considered only for digraphs.
  - If True, each diagonal entry of $D$ is equal to the in-degree of the corresponding vertex
  - Else, each diagonal entry of $D$ is equal to the out-degree of the corresponding vertex

By default, indegree is set to True

- **normalized** – boolean (default: False);
  - If True, the returned matrix is $D^{-1/2}(D + M)D^{-1/2}$ for signless and $D^{-1/2}(D - M)D^{-1/2}$ otherwise, a normalized version of the Laplacian matrix. More accurately, the normalizing matrix used is equal to $D^{-1/2}$ only for non-isolated vertices. If vertex $i$ is isolated, then diagonal entry $i$ in the matrix is 1, rather than a division by zero
  - Else, the matrix $D + M$ for signless and $D - M$ otherwise is returned

- **signless** – boolean (default: False);
  - If True, $D + M$ is used in calculation of Kirchhoff matrix
  - Else, $D - M$ is used in calculation of Kirchhoff matrix

- **vertices** – list, None, or True (default: None);
  - when a list, the $i$-th row and column of the matrix correspond to the $i$-th vertex in the ordering of vertices,
  - when None, the $i$-th row and column of the matrix correspond to the $i$-th vertex in the ordering given by `GenericGraph.vertices()` with sort=True.
  - when True, construct an endomorphism of a free module instead of a matrix, where the module’s basis is indexed by the vertices.

If the vertices are not comparable, the keyword vertices must be used to specify an ordering, or a TypeError exception will be raised.

Note that any additional keywords will be passed on to either the `adjacency_matrix()` or `weighted_adjacency_matrix()` method.

**AUTHORS:**

- Tom Boothby
- Jason Grout
EXAMPLES:

```python
sage: G = Graph(sparse=True)
sage: G.add_edges([(0, 1, 1), (1, 2, 2), (0, 2, 3), (0, 3, 4)])
sage: M = G.kirchhoff_matrix(weighted=True); M # needs sage.modules
[8 -1 -3 -4]
[-1 3 -2 0]
[-3 -2 5 0]
[-4 0 0 4]
sage: M = G.kirchhoff_matrix(); M # needs sage.modules
[3 -1 -1 -1]
[-1 2 -1 0]
[-1 -1 2 0]
[-1 0 0 1]
sage: M = G.laplacian_matrix(normalized=True); M # needs sage.modules sage.symbolic
[1 -1/6*sqrt(3)*sqrt(2) -1/6*sqrt(3)*sqrt(2) -1/3*sqrt(3)]
[-1/6*sqrt(3)*sqrt(2) 1 -1/2 0]
[-1/6*sqrt(3)*sqrt(2) -1/2 1 0]
[-1/3*sqrt(3) 0 0 1]
sage: M = G.kirchhoff_matrix(weighted=True, signless=True); M # needs sage.modules
[8 1 3 4]
[1 3 2 0]
[3 2 5 0]
[4 0 0 4]
sage: G = Graph({0: [], 1: [2]})
sage: G.laplacian_matrix(normalized=True) # needs sage.modules
[0 0 0]
[0 1 -1]
[0 -1 1]
sage: G.laplacian_matrix(normalized=True, signless=True) # needs sage.modules
[0 0 0]
[0 1 1]
[0 1 1]
```

```python
>>> from sage.all import *
>>> G = Graph(sparse=True)
>>> G.add_edges([(Integer(0), Integer(1), Integer(1)), (Integer(1),
 Integer(2), Integer(2)), (Integer(0), Integer(2), Integer(3)), (Integer(0),
 Integer(3), Integer(4))])
>>> M = G.kirchhoff_matrix(weighted=True); M # needs sage.modules
[8 -1 -3 -4]
[-1 3 -2 0]
[-3 -2 5 0]
[-4 0 0 4]
>>> M = G.kirchhoff_matrix(); M # needs sage.modules
```

(continues on next page)
A weighted directed graph with loops, changing the variable indegree

```
sage: G = DiGraph({1: {1: 2, 2: 3}, 2: {1: 4}}, weighted=True, sparse=True)
sage: G.laplacian_matrix()
needs sage.modules
[4 -3]
[-4 3]
```

```
from sage.all import *

>>> G.laplacian_matrix()
needs sage.modules
[4 -3]
[-4 3]
```

```
sage: G = DiGraph({1: {1: 2, 2: 3}, 2: {1: 4}}, weighted=True, sparse=True)
sage: G.laplacian_matrix(indegree=False)
needs sage.modules
[3 -3]
[-4 4]
```
A different ordering of the vertices (see `adjacency_matrix()` and `weighted_adjacency_matrix()`):

```python
sage: G = Graph(sparse=True)
sage: G.add_edges([(0, 1, 1), (1, 2, 2), (0, 2, 3), (0, 3, 4)])
sage: M = G.kirchhoff_matrix(vertices=[3, 2, 1, 0]); M # needs sage.modules
[1 0 0 -1]
[0 2 -1 -1]
[0 -1 2 -1]
[-1 -1 -1 3]
sage: M = G.kirchhoff_matrix(weighted=True, vertices=[3, 2, 1, 0]); M # needs sage.modules
[4 0 0 -4]
[0 5 -2 -3]
[0 -2 3 -1]
[-4 -3 -1 8]
```

When parameter `immutable=True` is passed, the output matrix is immutable:

```python
sage: G = Graph([(0, 1)])
sage: M = G.kirchhoff_matrix(vertices=[0, 1], immutable=True) # needs sage.modules
sage: M.is_immutable() # needs sage.modules
True
```

(continues on next page)
Creating a module morphism:

```python
sage: # needs sage.modules
sage: G = Graph(sparse=True, weighted=True)
```

```yaml
sage: G.add_edges([('A', 'B', 1), ('B', 'C', 2), ('A', 'C', 3), ('A', 'D', 4)])
```

```python
sage: phi = G.laplacian_matrix(weighted=True, vertices=True); phi
```

Generic endomorphism of
Free module generated by {'A', 'B', 'C', 'D'} over Integer Ring

```python
sage: print(phi._unicode_art_matrix())
```

A	B	C	D
A | 8 | -1| -3| -4
B | -1| 3 | 2 | 0
C | -3| 2 | 5 | 0
D | -4| 0 | 0 | 4
```

```python
>>> from sage.all import *
```

```python
>>> G = Graph(sparse=True, weighted=True)
```

```python
>>> G.add_edges([('A', 'B', Integer(1)), ('B', 'C', Integer(2)), ('A', 'C', Integer(3)), ('A', 'D', Integer(4))])
```

```python
>>> phi = G.laplacian_matrix(weighted=True, vertices=True); phi
```

Generic endomorphism of
Free module generated by {'A', 'B', 'C', 'D'} over Integer Ring

```python
>>> print(phi._unicode_art_matrix())
```

A	B	C	D
A | 8 | -1| -3| -4
B | -1| 3 | 2 | 0
C | -3| 2 | 5 | 0
D | -4| 0 | 0 | 4
```

### kronecker_product (other)

Return the tensor product of `self` and `other`.

The tensor product of `G` and `H` is the graph `L` with vertex set `V(L)` equal to the Cartesian product of the vertices `V(G)` and `V(H)`, and `((u, v), (w, x))` is an edge iff `-(u, w)` is an edge of `self`, and `-(v, x)` is an edge of `other`.

The tensor product is also known as the categorical product and the Kronecker product (referring to the Kronecker matrix product). See the Wikipedia article [Kronecker_product](https://en.wikipedia.org/wiki/Kronecker_product).

**EXAMPLES:**

```python
sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: T = C.tensor_product(Z); T
Graph on 10 vertices
sage: T.size()
10
```

```python
sage: T.plot()
```

Graphics object consisting of 21 graphics primitives
Graph Theory, Release 10.4

```python
>>> from sage.all import *

>>> Z = graphs.CompleteGraph(Integer(2))
>>> C = graphs.CycleGraph(Integer(5))
>>> T = C.tensor_product(Z); T
Graph on 10 vertices

>>> T.size()
10

>>> T.plot() # long time
needs sage.plot
Graphics object consisting of 21 graphics primitives

sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: T = D.tensor_product(P); T
Graph on 200 vertices

sage: T.size()
900

sage: T.plot() # long time
needs sage.plot
Graphics object consisting of 1101 graphics primitives

>>> from sage.all import *

>>> D = graphs.DodecahedralGraph()
>>> P = graphs.PetersenGraph()
>>> T = D.tensor_product(P); T
Graph on 200 vertices

>>> T.size()
900

>>> T.plot() # long time
needs sage.plot
Graphics object consisting of 1101 graphics primitives
```

**laplacian_matrix** *(weighted=None, indegree=True, normalized=False, signless=False, **kwds)*

Return the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.

The Kirchhoff matrix is defined to be \( D + M \) if signless and \( D - M \) otherwise, where \( D \) is the diagonal degree matrix (each diagonal entry is the degree of the corresponding vertex), and \( M \) is the adjacency matrix.

If `normalized` is `True`, then the returned matrix is \( D^{-1/2}(D + M)D^{-1/2} \) if signless and \( D^{-1/2}(D - M)D^{-1/2} \) otherwise.

(In the special case of DiGraphs, \( D \) is defined as the diagonal in-degree matrix or diagonal out-degree matrix according to the value of `indegree`)

**INPUT:**

- `weighted` – boolean (default: `None`);
  - If `True`, the weighted adjacency matrix is used for \( M \), and the diagonal matrix \( D \) takes into account the weight of edges (replace in the definition “degree” by “sum of the incident edges”)
  - Else, each edge is assumed to have weight 1

Default is to take weights into consideration if and only if the graph is weighted.

- `indegree` – boolean (default: `True`); this parameter is considered only for digraphs.
  - If `True`, each diagonal entry of \( D \) is equal to the in-degree of the corresponding vertex
  - Else, each diagonal entry of \( D \) is equal to the out-degree of the corresponding vertex
By default, indegree is set to True

- **normalized** – boolean (default: False);
  - If True, the returned matrix is \(D^{-1/2}(D + M)D^{-1/2}\) for signless and \(D^{-1/2}(D - M)D^{-1/2}\) otherwise, a normalized version of the Laplacian matrix. More accurately, the normalizing matrix used is equal to \(D^{-1/2}\) only for non-isolated vertices. If vertex \(i\) is isolated, then diagonal entry \(i\) in the matrix is 1, rather than a division by zero
  - Else, the matrix \(D + M\) for signless and \(D - M\) otherwise is returned

- **signless** – boolean (default: False);
  - If True, \(D + M\) is used in calculation of Kirchhoff matrix
  - Else, \(D - M\) is used in calculation of Kirchhoff matrix

- **vertices** – list, None, or True (default: None);
  - when a list, the \(i\)-th row and column of the matrix correspond to the \(i\)-th vertex in the ordering of vertices,
  - when None, the \(i\)-th row and column of the matrix correspond to the \(i\)-th vertex in the ordering given by `GenericGraph.vertices()` with `sort=True`.
  - when True, construct an endomorphism of a free module instead of a matrix, where the module’s basis is indexed by the vertices.

If the vertices are not comparable, the keyword `vertices` must be used to specify an ordering, or a `TypeError` exception will be raised.

Note that any additional keywords will be passed on to either the `adjacency_matrix()` or `weighted_adjacency_matrix()` method.

AUTHORS:
- Tom Boothby
- Jason Grout

EXAMPLES:

```python
sage: G = Graph(sparse=True)
sage: G.add_edges([(0, 1, 1), (1, 2, 2), (0, 2, 3), (0, 3, 4)])
sage: M = G.kirchhoff_matrix(weighted=True); M
needs sage.modules
[8 -1 -3 -4]
[-1 3 -2 0]
[-3 -2 5 0]
[-4 0 0 4]
sage: M = G.kirchhoff_matrix(); M
needs sage.modules
[3 -1 -1 -1]
[-1 2 -1 0]
[-1 -1 2 0]
[-1 0 0 1]
sage: M = G.laplacian_matrix(normalized=True); M
needs sage.modules sage.symbolic
[1 -1/6*sqrt(3)*sqrt(2) -1/6*sqrt(3)*sqrt(2) -1/3*sqrt(3)]
[-1/6*sqrt(3)*sqrt(2) 1 -1/2
needs sage.modules
[1/6*sqrt(3)*sqrt(2) 0]
[-1/6*sqrt(3)*sqrt(2) -1/2]
(continues on next page)
```
Graph objects and methods

Graph Theory, Release 10.4

(continued from previous page)

\[
\begin{bmatrix}
0 & \frac{-1}{3}\sqrt{3} & 0 & 0 \\
\frac{1}{3}\sqrt{3} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix}
\]

sage: M = G.kirchhoff_matrix(weighted=True, signless=True); M
# needs sage.modules
\[
\begin{bmatrix}
8 & 1 & 3 & 4 \\
1 & 3 & 2 & 0 \\
3 & 2 & 5 & 0 \\
4 & 0 & 0 & 4
\end{bmatrix}
\]

sage: G = Graph({0: [], 1: [2]})

sage: G.laplacian_matrix(normalized=True)  # ...
# needs sage.modules
\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{bmatrix}
\]

sage: G.laplacian_matrix(normalized=True, signless=True)  # ...
# needs sage.modules
\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}
\]

>>> from sage.all import *

>>> G = Graph(sparse=True)

>>> G.add_edges([(Integer(0), Integer(1), Integer(1)), (Integer(1),...
# needs sage.modules sage.symbolic
\[
\begin{bmatrix}
1 & -1/6\sqrt{3}\sqrt{3} & -1/6\sqrt{3}\sqrt{3} & -1/3\sqrt{3} \\
-1/6\sqrt{3}\sqrt{3} & 1 & -1/2 & 0 \\
-1/3\sqrt{3} & -1/2 & 1 & 0 \\
-1/3\sqrt{3} & 0 & 0 & 1
\end{bmatrix}
\]

>>> M = G.kirchhoff_matrix(weighted=True, signless=True); M  # ...
# needs sage.modules
\[
\begin{bmatrix}
8 & 1 & 3 & 4 \\
1 & 3 & 2 & 0 \\
3 & 2 & 5 & 0 \\
4 & 0 & 0 & 4
\end{bmatrix}
\]
A weighted directed graph with loops, changing the variable `indegree`

```
sage: G = DiGraph({1: {1: 2, 2: 3}, 2: {1: 4}}, weighted=True, sparse=True)
sage: G.laplacian_matrix()
-> needs sage.modules
[4 -3]
[-4 3]
```

A different ordering of the vertices (see `adjacency_matrix()` and `weighted_adjacency_matrix()`):

```
sage: G = Graph(sparse=True)
sage: G.add_edges([(0, 1, 1), (1, 2, 2), (0, 2, 3), (0, 3, 4)])
sage: M = G.kirchhoff_matrix(vertices=[3, 2, 1, 0]); M
-> needs sage.modules
[1 0 0 -1]
[0 2 -1 -1]
[0 -1 2 -1]
[-1 -1 -1 3]
sage: M = G.kirchhoff_matrix(weighted=True, vertices=[3, 2, 1, 0]); M
-> needs sage.modules
```

(continues on next page)
[ 4 0 0 -4]
[ 0 5 -2 -3]
[ 0 -2 3 -1]
[-4 -3 1 8]

```python
>>> from sage.all import *
>>> G = Graph(sparse=True)
>>> G.add_edges([(Integer(0), Integer(1), Integer(1)),
 (Integer(1), Integer(2), Integer(2)), (Integer(0), Integer(2), Integer(3)), (Integer(0), Integer(3), Integer(4))])
>>> M = G.kirchhoff_matrix(vertices=[Integer(3), Integer(2), Integer(1), Integer(0)]); M # needs sage.modules
[1 0 0 -1]
[0 2 -1 -1]
[0 -1 2 -1]
[-1 -1 -1 3]
```

When parameter `immutable=True` is passed, the output matrix is immutable:

```python
sage: G = Graph([(0, 1)])
sage: M = G.kirchhoff_matrix(vertices=[0, 1], immutable=True) # needs sage.modules
sage: M.is_immutable() # needs sage.modules
True
```

Creating a module morphism:

```python
sage: # needs sage.modules
sage: G = Graph(sparse=True, weighted=True)
sage: G.add_edges([('A', 'B', 1), ('B', 'C', 2), ('A', 'C', 3), ('A', 'D', 4)])
sage: phi = G.laplacian_matrix(weighted=True, vertices=True); phi
Generic endomorphism of Free module generated by {'A', 'B', 'C', 'D'} over Integer Ring
sage: print(phi._unicode_art_matrix())
A B C D
A| 8 -1 -3 -4|
B|-1 3 -2 0 |
C|-3 -2 5 0 |
D|-4 0 0 4 |
>>> from sage.all import *
>>> # needs sage.modules
>>> G = Graph(sparse=True, weighted=True)
>>> G.add_edges([('A', 'B', Integer(1)), ('B', 'C', Integer(2)), ('A', 'C', ...
 → Integer(3)), ('A', 'D', Integer(4))])
>>> phi = G.laplacian_matrix(weighted=True, vertices=True); phi
Generic endomorphism of
Free module generated by \{ 'A', 'B', 'C', 'D' \} over Integer Ring
>>> print(phi._unicode_art_matrix())
\[
A B C D \\
A\begin{pmatrix}
8 & -1 & -3 & -4 \\
B\begin{pmatrix}
-1 & 3 & -2 & 0 \\
C\begin{pmatrix}
-3 & -2 & 5 & 0 \\
D\begin{pmatrix}
-4 & 0 & 0 & 4 \\
\right)
\]
\]
\]
\]

latex_options()
Return an instance of GraphLatex for the graph.
Changes to this object will affect the \LaTeX\ version of the graph. For a full explanation of how to use \LaTeX\ to render graphs, see the introduction to the graph_latex\ module.

EXAMPLES:

```
sage: g = graphs.PetersenGraph()
sage: opts = g.latex_options()
sage: opts
LaTeX options for Petersen graph: {}
sage: opts.set_option('tkz_style', 'Classic')  # needs sage.plot
sage: opts
LaTeX options for Petersen graph: {'tkz_style': 'Classic'}
```

```
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> opts = g.latex_options()
>>> opts
LaTeX options for Petersen graph: {}
>>> opts.set_option('tkz_style', 'Classic')  # needs sage.plot
>>> opts
LaTeX options for Petersen graph: {'tkz_style': 'Classic'}
```

layout (layout=None, pos=None, dim=2, save_pos=False, **options)
Return a layout for the vertices of this graph.

INPUT:

- layout – string (default: None); specifies a layout algorithm among "acyclic", "acyclic_dummy", "circular", "ranked", "graphviz", "planar", "spring", "forest" or "tree"
- pos – dictionary (default: None); a dictionary of positions
- dim – integer (default: 2); the number of dimensions of the layout, 2 or 3
- save_pos – boolean (default: False); whether to save the positions
- **options – layout options (see below)
If \texttt{layout} is set, the specified algorithm is used to compute the positions.
Otherwise, if \texttt{pos} is specified, use the given positions.
Otherwise, try to fetch previously computed and saved positions.
Otherwise use the default layout (usually the spring layout).
If \texttt{save_pos = True}, the layout is saved for later use.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: g = digraphs.ButterflyGraph(1)
sage: D2 = g.layout(); D2 # random
{('0', 0): [2.69..., 0.43...],
 ('0', 1): [1.35..., 0.86...],
 ('1', 0): [0.89..., -0.42...],
 ('1', 1): [2.26..., -0.87...]}
sage: g.layout(layout="acyclic_dummy", save_pos=True)
{('0', 0): [0.3..., 0],
 ('0', 1): [0.3..., 1],
 ('1', 0): [0.6..., 0],
 ('1', 1): [0.6..., 1]}
sage: g.get_pos()
{('0', 0): [0.3..., 0],
 ('0', 1): [0.3..., 1],
 ('1', 0): [0.6..., 0],
 ('1', 1): [0.6..., 1]}
sage: D3 = g.layout(dim=3); D3 # random
{('0', 0): [0.68..., 0.50..., -0.24...],
 ('0', 1): [1.02..., -0.02..., 0.93...],
 ('1', 0): [2.06..., -0.49..., 0.23...],
 ('1', 1): [1.74..., 0.01..., -0.92...]}

>>> from sage.all import *

>>> g = digraphs.ButterflyGraph(Integer(1))

>>> D2 = g.layout(); D2 # random
{('0', 0): [2.69..., 0.43...],
 ('0', 1): [1.35..., 0.86...],
 ('1', 0): [0.89..., -0.42...],
 ('1', 1): [2.26..., -0.87...]}

>>> g.layout(layout="acyclic_dummy", save_pos=True)
{('0', 0): [0.3..., 0],
 ('0', 1): [0.3..., 1],
 ('1', 0): [0.6..., 0],
 ('1', 1): [0.6..., 1]}

>>> g.get_pos()
{('0', 0): [0.3..., 0],
 ('0', 1): [0.3..., 1],
 ('1', 0): [0.6..., 0],
 ('1', 1): [0.6..., 1]}

>>> D3 = g.layout(dim=Integer(3)); D3 # random
{('0', 0): [0.68..., 0.50..., -0.24...],
 ('0', 1): [1.02..., -0.02..., 0.93...],
 ('1', 0): [2.06..., -0.49..., 0.23...],
 ('1', 1): [1.74..., 0.01..., -0.92...]}
\end{verbatim}
Some safety tests:

```
sage: sorted(D2.keys()) == sorted(D3.keys()) == sorted(g)
True
sage: isinstance(D2, dict) and isinstance(D3, dict)
True
sage: [c in RDF for c in D2[('0', 0)]]
[True, True]
sage: [c in RDF for c in D3[('0', 0)]]
[True, True, True]
```

Here is the list of all the available layout options (**options**):

```
sage: from sage.all import *
>>> sorted(D2.keys()) == sorted(D3.keys()) == sorted(g)
True
>>> isinstance(D2, dict) and isinstance(D3, dict)
True
>>> [c in RDF for c in D2[('0', Integer(0))]]
[True, True]
>>> [c in RDF for c in D3[('0', Integer(0))]]
[True, True, True]
```

1.1. Generic graphs (common to directed/undirected) 257
option by_component : Whether to do the spring layout by connected component -- a boolean.
option dim : The dimension of the layout -- 2 or 3.
option forest_roots : An iterable specifying which vertices to use as roots for the "layout='forest'" option. If no root is specified for a tree, then one is chosen close to the center of the tree. Ignored unless "layout='forest'"
option heights : A dictionary mapping heights to the list of vertices at this height.
option iterations : The number of times to execute the spring layout algorithm.
option layout : A layout algorithm -- one of : "acyclic", "circular" (plots the graph with vertices evenly distributed on a circle), "ranked", "graphviz", "planar", "spring" (traditional spring layout, using the graph’s current positions as initial positions), or "tree" (the tree will be plotted in levels, depending on minimum distance for the root).
option prog : Which graphviz layout program to use -- one of "circo", "dot", "fdp", "neato", or "twopi".
option save_pos : Whether or not to save the computed position for the graph.
option spring : Use spring layout to finalize the current layout.
option tree_orientation : The direction of tree branches -- 'up', 'down', 'left' or 'right'.
option tree_root : A vertex designation for drawing trees. A vertex of the tree to be used as the root for the "layout='tree'" option. If no root is specified, then one is chosen close to the center of the tree. Ignored unless "layout='tree'"

Some of them only apply to certain layout algorithms. For details, see layout_acyclic(), layout_planar(), layout_circular(), layout_spring(), ...

Warning: unknown optional arguments are silently ignored

Warning: graphviz and dot2tex are currently required to obtain a nice 'acyclic' layout. See layout_graphviz() for installation instructions.

A subclass may implement another layout algorithm "blah", by implementing a method .layout_blah. It may override the default layout by overriding layout_default(), and similarly override the predefined layouts.

Todo: use this feature for all the predefined graphs classes (like for the Petersen graph, ...), rather than systematically building the layout at construction time.

layout_circular(dim=2, center=(0, 0), radius=1, shift=0, angle=0, **options)
Return a circular layout for this graph

INPUT:
- dim -- integer (default: 2); the number of dimensions of the layout, 2 or 3
- center -- tuple (default: (0, 0)); position of the center of the circle
- radius -- (default: 1); the radius of the circle
Graph Theory, Release 10.4

- **shift** – (default: 0): rotation of the circle. A value of \(\text{shift}=1 \) will replace the \(i \)-th element of the list by the \((i-1)\)-th. Non-integer values are admissible, and a value of \(\alpha \) corresponds to a rotation of the circle by an angle of \(\alpha 2\pi/n \) (where \(n \) is the number of vertices set on the circle).

- **angle** – (default: 0): rotate the embedding of all vertices. For instance, when \(\text{angle} == 0 \), the first vertex get position \((\text{center}[0] + \text{radius}, \text{center}[1])\). With a value of \(\pi/2 \), the first vertex get position \((\text{center}[0], \text{center}[1] + \text{radius})\).

- **options** – other parameters not used here

OUTPUT: a dictionary mapping vertices to positions

EXAMPLES:

```python
sage: G = graphs.CirculantGraph(7, [1, 3])

sage: G.layout_circular()
{0: (0.0, 1.0),
 1: (-0.78..., 0.62...),
 2: (-0.97..., -0.22...),
 3: (-0.43..., -0.90...),
 4: (0.43..., -0.90...),
 5: (0.97..., -0.22...),
 6: (0.78..., 0.62...)}

sage: G.plot(layout="circular")

# needs sage.plot
Graphics object consisting of 22 graphics primitives
```

```python
>>> from sage.all import *

>>> G = graphs.CirculantGraph(Integer(7), [Integer(1), Integer(3)])

>>> G.layout_circular()
{0: (0.0, 1.0),
 1: (-0.78..., 0.62...),
 2: (-0.97..., -0.22...),
 3: (-0.43..., -0.90...),
 4: (0.43..., -0.90...),
 5: (0.97..., -0.22...),
 6: (0.78..., 0.62...)}

>>> G.plot(layout="circular")

# needs sage.plot
Graphics object consisting of 22 graphics primitives
```

layout_default *(by_component=True, **options)*

Return a spring layout for this graph.

INPUT:

- **by_components** – boolean (default: True);
- **options** – options for method `spring_layout_fast()`

OUTPUT: a dictionary mapping vertices to positions

EXAMPLES:

```python
sage: g = graphs.LadderGraph(3) #TODO!!!!
sage: g.layout_spring()  # random
{0: [1.0, -0.29...],
 1: [1.64..., 0.30...],
 2: [2.34..., 0.89...],
 3: [1.49..., -0.83...],
```

(continues on next page)
4: [2.14..., -0.30...],
5: [2.80..., 0.22...])

sage: g = graphs.LadderGraph(7)
sage: g.plot(layout="spring")

needs sage.plot

Graphics object consisting of 34 graphics primitives

>>> from sage.all import *

>>> g = graphs.LadderGraph(Integer(3)) # TODO!!!!

>>> g.layout_spring() # random
{0: [1.0, -0.29...],
 1: [1.64..., 0.30...],
 2: [2.34..., 0.89...],
 3: [1.49..., -0.83...],
 4: [2.14..., -0.30...],
 5: [2.80..., 0.22...])

>>> g = graphs.LadderGraph(Integer(7))

>>> g.plot(layout="spring") #...

needs sage.plot

Graphics object consisting of 34 graphics primitives

layout_extend_randomly (pos, dim=2)

Extend randomly a partial layout

INPUT:

• pos – a dictionary mapping vertices to positions

• dim – integer (default: 2); the number of dimensions of the layout, 2 or 3

OUTPUT: a dictionary mapping vertices to positions

The vertices not referenced in pos are assigned random positions within the box delimited by the other vertices.

EXAMPLES:

sage: H = digraphs.ButterflyGraph(1)
sage: pos = {('0', 0): (0, 0), ('1', 1): (1, 1)}
sage: H.layout_extend_randomly(pos) # random
{('0', 0): (0, 0),
 ('0', 1): [0.0446..., 0.332...],
 ('1', 0): [0.1114..., 0.514...],
 ('1', 1): (1, 1)}

sage: xmin, xmax, ymin, ymax = H._layout_bounding_box(pos)
sage: (xmin, ymmin, ymmax = H._layout_bounding_box(pos)
sage: (xmin, ymin) == (0, 0) and (xmax, ymax) == (1, 1)
True

>>> from sage.all import *

>>> H = digraphs.ButterflyGraph(Integer(1))

>>> pos = {('0', Integer(0)): (Integer(0), Integer(0)), ('1', Integer(1)): ...}

>>> H.layout_extend_randomly(pos) # random
{('0', 0): (0, 0),
 ('0', 1): [0.0446..., 0.332...],
 ('1', 0): [0.1114..., 0.514...],
 ('1', 1): (1, 1)}

>>> xmin, xmax, ymin, ymax = H._layout_bounding_box(pos)
>>> (xmin, ymin) == (Integer(0), Integer(0)) and (xmax, ymax) == (Integer(1), Integer(1))
True

layout_forest (tree_orientation='down', forest_roots=None, **options)

Return an ordered forest layout for this graph.

The function relies on layout_tree() to deal with each connected component.

INPUT:

- forest_roots – an iterable of vertices (default: None): the root vertices of the trees in the forest; a vertex is chosen close to the center of each component for which no root is specified in forest_roots or if forest_roots is None
- tree_orientation – string (default: 'down'); the direction in which the tree is growing, can be 'up', 'down', 'left' or 'right'
- **options – other parameters ignored here

EXAMPLES:

sage: p = G.layout_forest()
 Graphics object consisting of 28 graphics primitives

sage: P5 = graphs.PathGraph(5)
sage: H = P5 + P5 + graphs.BalancedTree(2,2)
 Graphics object consisting of 32 graphics primitives

sage: from sage.all import *

>>> layout_graphviz (dim=2, prog='dot', **options)

Call graphviz to compute a layout of the vertices of this graph.

INPUT:
• dim – integer (default: 2); the number of dimensions of the layout, 2 or 3
• prog – one of “dot”, “neato”, “twopi”, “circo”, or “fdp”
• *options – other parameters used by method `graphviz_string()`

EXAMPLES:

```
sage: g = digraphs.ButterflyGraph(2)
sage: g.layout_graphviz() # optional - dot2tex graphviz
{(..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......]}
sage: g.plot(layout="graphviz") # optional - dot2tex graphviz
Graphics object consisting of 29 graphics primitives
```

```
>>> from sage.all import *
>>> g = digraphs.ButterflyGraph(Integer(2))
>>> g.layout_graphviz() # optional - dot2tex graphviz
{(..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......],
 (..., ...): [......]}
```

Note: the actual coordinates are not deterministic

By default, an acyclic layout is computed using `graphviz`'s `dot` layout program. One may specify an alternative layout program:

```
sage: # optional - dot2tex graphviz
sage: g.plot(layout="graphviz", prog="dot")
Graphics object consisting of 29 graphics primitives
sage: g.plot(layout="graphviz", prog="neato")
Graphics object consisting of 29 graphics primitives
sage: g.plot(layout="graphviz", prog="twopi")
Graphics object consisting of 29 graphics primitives
sage: g.plot(layout="graphviz", prog="fdp")
Graphics object consisting of 29 graphics primitives
sage: g = graphs.BalancedTree(5,2) # needs networkx
```

(continues on next page)
Todo: Put here some cool examples showcasing graphviz features.

This requires graphviz and the dot2tex spkg. Here are some installation tips:

- Install graphviz >= 2.14 so that the programs dot, neato, etc. are in your path. The graphviz suite can be downloaded from http://graphviz.org.
- Install dot2tex with sage -i dot2tex

Todo: Use the graphviz functionality of Networkx 1.0 once it will be merged into Sage.

layout_planar (set_embedding=False, on_embedding=None, external_face=None, test=False, circular=False, **options)

Compute a planar layout of the graph using Schnyder’s algorithm.

If set_embedding is set, a new combinatorial embedding is computed for the layout. Otherwise: if on_embedding is provided, then that combinatorial embedding is used for the layout. Otherwise: if a combinatorial embedding is set to the instance field variable of the graph (e.g. using set_embedding()), then that one is used, and if no combinatorial embedding is set, then one is computed.

If the graph is not planar, an error is raised.

INPUT:

- set_embedding – boolean (default: False); whether to set the instance field variable that contains a combinatorial embedding to the combinatorial embedding used for the planar layout (see get_embedding())
- on_embedding – dictionary (default: None); provide a combinatorial embedding
- external_face – a pair (u, v) of vertices (default: None); the external face of the drawing is chosen in such a way that u and v are consecutive vertices in the clockwise traversal of the external face, in particular uv has to be an edge of the graph. If external_face == None, an arbitrary external face is chosen.
- test – boolean (default: False); whether to perform sanity tests along the way
• circular – ignored

EXAMPLES:

```python
sage: g = graphs.PathGraph(10)
sage: g.layout(layout='planar', save_pos=True, test=True)
{0: [0, 8],
 1: [8, 1],
 2: [1, 0],
 3: [7, 1],
 4: [1, 1],
 5: [5, 3],
 6: [2, 3],
 7: [2, 4],
 8: [1, 6],
 9: [2, 5]}
sage: g = graphs.BalancedTree(3, 4)  # needs networkx
sage: pos = g.layout(layout='planar', save_pos=True, test=True)  # needs networkx
sage: pos[0]  # needs networkx
[0, 119]
sage: pos[120]  # needs networkx
[21, 37]
sage: g = graphs.CycleGraph(7)
sage: g.layout(layout='planar', save_pos=True, test=True)
{0: [0, 5], 1: [5, 1], 2: [1, 0], 3: [4, 1], 4: [1, 1], 5: [2, 2], 6: [1, 2]}
sage: g = graphs.CompleteGraph(5)
sage: g.layout(layout='planar', save_pos=True, test=True, set_embedding=True)
Traceback (most recent call last):
... ValueError: Complete graph is not a planar graph
```

```python
>>> from sage.all import *
>>> g = graphs.PathGraph(Integer(10))
>>> g.layout(layout='planar', save_pos=True, test=True)
{0: [0, 8],
 1: [8, 1],
 2: [1, 0],
 3: [7, 1],
 4: [1, 1],
 5: [5, 3],
 6: [2, 3],
 7: [2, 4],
 8: [1, 6],
 9: [2, 5]}
>>> g = graphs.BalancedTree(Integer(3), Integer(4))  # needs networkx
>>> pos = g.layout(layout='planar', save_pos=True, test=True)  # needs networkx
>>> pos[Integer(0)]  # needs networkx
[0, 119]
>>> pos[Integer(120)]  # needs networkx
[21, 37]
```

(continues on next page)
>>> g = graphs.CycleGraph(Integer(7))
>>> g.layout(layout='planar', save_pos=True, test=True)
{0: [0, 5], 1: [5, 1], 2: [1, 0], 3: [4, 1], 4: [1, 1], 5: [2, 2], 6: [1, 2]}

>>> g = graphs.CompleteGraph(Integer(5))
>>> g.layout(layout='planar', save_pos=True, test=True, set_embedding=True)
Traceback (most recent call last):
... ValueError: Complete graph is not a planar graph

Choose the external face of the drawing:

sage: g = graphs.CompleteGraph(4)
sage: g.layout(layout='planar', external_face=(0,1))
{0: [0, 2], 1: [2, 1], 2: [1, 0], 3: [1, 1]}

sage: g.layout(layout='planar', external_face=(3,1))
{0: [2, 1], 1: [0, 2], 2: [1, 1], 3: [1, 0]}

Choose the embedding:

sage: H = graphs.LadderGraph(4)
sage: em = {0:[1,4], 4:[0,5], 1:[5,2,0], 5:[4,6,1],
...: 2:[1,3,6], 6:[7,5,2], 3:[7,2], 7:[3,6]}

sage: p = H.layout_planar(on_embedding=em)

sage: p # random
{2: [8.121320343559642, 1],
3: [2.1213203435596424, 6],
7: [3.1213203435596424, 0],
0: [5.121320343559642, 3],
1: [3.1213203435596424, 5],
4: [4.1213203435596424, 3],
5: [4.121320343559642, 2],
6: [3.1213203435596424, 1],
9: [9.698670612749268, 1],
8: [8.698670612749268, 1],
10: [9.698670612749268, 0]}

Choose the embedding:

sage: H = graphs.LadderGraph(Integer(4))
sage: em = {Integer(0):[Integer(1),Integer(4)], Integer(4):[Integer(0),
... Integer(5)], Integer(1):[Integer(5),Integer(2),Integer(0)],...
... Integer(5):[Integer(4),Integer(6),Integer(1)],
... Integer(2):[Integer(1),Integer(3),Integer(6)],...
... Integer(6):[Integer(7),Integer(5),Integer(2)], Integer(3):[Integer(7),
... Integer(2)], Integer(7):[Integer(3),Integer(6)]}

sage: p = H.layout_planar(on_embedding=em)

sage: p # random
{2: [8.121320343559642, 1],
3: [2.1213203435596424, 6],
7: [3.1213203435596424, 0],
0: [5.121320343559642, 3],
1: [3.1213203435596424, 5],
4: [4.1213203435596424, 3],
5: [4.121320343559642, 2],
6: [3.1213203435596424, 1],
9: [9.698670612749268, 1],
8: [8.698670612749268, 1],
10: [9.698670612749268, 0]}
layout_ranked \((heights=\text{None}, \ dim=2, \ spring=\text{False}, **\text{options})\)

Return a ranked layout for this graph.

INPUT:

- **heights** – dictionary (default: None); a dictionary mapping heights to the list of vertices at this height
- **dim** – integer (default: 2); the number of dimensions of the layout, 2 or 3
- **spring** – boolean (default: False);
- ****options – options for method `spring_layout_fast()`

OUTPUT: a dictionary mapping vertices to positions

Returns a layout computed by randomly arranging the vertices along the given heights

EXAMPLES:

```
sage: g = graphs.LadderGraph(3)
sage: g.layout_ranked(heights={i: (i, i+3) for i in range(3)})  # random
{0: [0.668..., 0],
 1: [0.667..., 1],
 2: [0.677..., 2],
 3: [1.34..., 0],
 4: [1.33..., 1],
 5: [1.33..., 2]}
sage: g = graphs.LadderGraph(7)
sage: g.plot(layout="ranked", heights={i: (i, i+7) for i in range(7)})  # needs sage.plot
Graphics object consisting of 34 graphics primitives
```

```
>>> from sage.all import *
>>> g = graphs.LadderGraph(Integer(3))
>>> g.layout_ranked(heights={i: (i, i+Integer(3)) for i in range(Integer(3))})  # random
{0: [0.668..., 0],
 1: [0.667..., 1],
 2: [0.677..., 2],
 3: [1.34..., 0],
 4: [1.33..., 1],
 5: [1.33..., 2]}
```

```
>>> g = graphs.LadderGraph(Integer(7))
>>> g.plot(layout="ranked", heights={i: (i, i+Integer(7)) for i in...range(Integer(7))})  # needs sage.plot
Graphics object consisting of 34 graphics primitives
```

layout_spring \((by_component=True, **\text{options})\)

Return a spring layout for this graph.

INPUT:
Graph Theory, Release 10.4

- by_components – boolean (default: True);
- **options – options for method spring_layout_fast()

OUTPUT: a dictionary mapping vertices to positions

EXAMPLES:

```
sage: g = graphs.LadderGraph(3)  # TODO!!!!
sage: g.layout_spring()  # random
{0: [1.0, -0.29...],
  1: [1.64..., 0.30...],
  2: [2.34..., 0.89...],
  3: [1.49..., -0.83...],
  4: [2.14..., -0.30...],
  5: [2.80..., 0.22...]}  
sage: g = graphs.LadderGraph(7)
sage: g.plot(layout="spring")  # needs sage.plot
Graphics object consisting of 34 graphics primitives

>>> from sage.all import *
>>> g = graphs.LadderGraph(Integer(3))  # TODO!!!!
>>> g.layout_spring()  # random
{0: [1.0, -0.29...],
  1: [1.64..., 0.30...],
  2: [2.34..., 0.89...],
  3: [1.49..., -0.83...],
  4: [2.14..., -0.30...],
  5: [2.80..., 0.22...]}  
>>> g = graphs.LadderGraph(Integer(7))
>>> g.plot(layout="spring")  # needs sage.plot
Graphics object consisting of 34 graphics primitives
```

layout_tree (tree_orientation='down', tree_root=None, dim=2, **options)

Return an ordered tree layout for this graph.

The graph must be a tree (no non-oriented cycles). In case of doubt whether the graph is connected or not, prefer layout_forest().

INPUT:

- tree_root – a vertex (default: None); the root vertex of the tree. By default (None) a vertex is chosen close to the center of the tree.
- tree_orientation – string (default: 'down'); the direction in which the tree is growing, can be 'up', 'down', 'left' or 'right'
- dim – integer (default: 2); the number of dimensions of the layout, 2 or 3
- **options – other parameters not used here

If the tree has been given a planar embedding (fixed circular order on the set of neighbors of every vertex) using set_embedding, the algorithm will create a layout that respects this embedding.

OUTPUT: a dictionary mapping vertices to positions

EXAMPLES:
sage: G = graphs.RandomTree(80)
sage: G.plot(layout="tree", tree_orientation="right") # needs sage.plot
Graphics object consisting of 160 graphics primitives

sage: T = graphs.RandomLobster(25, 0.3, 0.3) # needs networkx
sage: T.show(layout='tree', tree_orientation='up') # needs networkx sage.plot

sage: G = graphs.HoffmanSingletonGraph()
sage: T = Graph()
sage: T.add_edges(G.min_spanning_tree(starting_vertex=0))
sage: T.show(layout='tree', tree_root=0) # needs sage.plot

sage: G = graphs.BalancedTree(2, 2) # needs networkx
sage: G.layout_tree(tree_root=0) # needs networkx
{0: [1.5, 0],
 1: [2.5, -1],
 2: [0.5, -1],
 3: [3.0, -2],
 4: [2.0, -2],
 5: [1.0, -2],
 6: [0.0, -2]}

sage: G = graphs.BalancedTree(2, 4) # needs networkx
sage: G.plot(layout="tree", tree_root=0, tree_orientation="up") # needs networkx sage.plot
Graphics object consisting of 62 graphics primitives

>>> from sage.all import *
>>> G = graphs.RandomTree(Integer(80))
>>> G.plot(layout="tree", tree_orientation="right") # needs sage.plot
Graphics object consisting of 160 graphics primitives

>>> T = graphs.RandomLobster(Integer(25), RealNumber('0.3'), RealNumber('0.3')) # needs networkx
>>> T.show(layout='tree', tree_orientation='up') # needs networkx sage.plot

>>> G = graphs.HoffmanSingletonGraph()
>>> T = Graph()
>>> T.add_edges(G.min_spanning_tree(starting_vertex=Integer(0)))
>>> T.show(layout='tree', tree_root=Integer(0)) # needs sage.plot

>>> G = graphs.BalancedTree(Integer(2), Integer(2)) # needs networkx
>>> G.layout_tree(tree_root=Integer(0)) # needs networkx
{0: [1.5, 0],
 1: [2.5, -1],
}

(continues on next page)
2: [0.5, -1],
3: [3.0, -2],
4: [2.0, -2],
5: [1.0, -2],
6: [0.0, -2]}

```python
>>> G = graphs.BalancedTree(Integer(2), Integer(4))  # needs networkx
>>> G.plot(layout="tree", tree_root=Integer(0), tree_orientation="up")  # needs networkx sage.plot
Graphics object consisting of 62 graphics primitives
```

Using the embedding when it exists:

```python
sage: T = Graph([(0, 1), (0, 6), (0, 3), (1, 2), (1, 5), (3, 4), (3, 7), (3, 8)])
sage: T.set_embedding({0: [1, 6, 3], 1: [2, 5, 0], 2: [1], 3: [4, 7, 8, 0], ....: 4: [3], 5: [1], 6: [0], 7: [3], 8: [3]})
sage: T.layout_tree()
{0: [2.166..., 0],
 1: [3.5, -1],
 2: [4.0, -2],
 3: [1.0, -1],
 4: [2.0, -2],
 5: [3.0, -2],
 6: [2.0, -1],
 7: [1.0, -2],
 8: [0.0, -2])
sage: T.plot(layout="tree", tree_root=3)  # needs sage.plot
Graphics object consisting of 18 graphics primitives
```

```python
>>> from sage.all import *
```

```python
>>> T = Graph([(Integer(0), Integer(1)), (Integer(0), Integer(6)), ...
  (Integer(0), Integer(3)), (Integer(1), Integer(2)), (Integer(1),
  Integer(5)), (Integer(3), Integer(4)), (Integer(3), Integer(7)),
  (Integer(3), Integer(8))])
>>> T.set_embedding({Integer(0): [Integer(1), Integer(6), Integer(3)],
  Integer(1): [Integer(2), Integer(5), Integer(0)], Integer(2): [Integer(1)],
  Integer(3): [Integer(4), Integer(7), Integer(8), Integer(0)],
  Integer(4): [Integer(3)], Integer(5): [Integer(1)], Integer(6):
  [Integer(0)], Integer(7): [Integer(3)], Integer(8): [Integer(3)]})
>>> T.layout_tree()
{0: [2.166..., 0],
 1: [3.5, -1],
 2: [4.0, -2],
 3: [1.0, -1],
 4: [2.0, -2],
 5: [3.0, -2],
 6: [2.0, -1],
 7: [1.0, -2],
 8: [0.0, -2])
>>> T.plot(layout="tree", tree_root=Integer(3))  # needs sage.plot
Graphics object consisting of 18 graphics primitives
```

`lex_BFS(G, reverse=False, tree=False, initial_vertex=None, algorithm=’fast’)`
Perform a lexicographic breadth first search (LexBFS) on the graph.

INPUT:
- G – a sage graph
- reverse – boolean (default: False); whether to return the vertices in discovery order, or the reverse
- tree – boolean (default: False); whether to return the discovery directed tree (each vertex being linked to the one that saw it for the first time)
- initial_vertex – (default: None); the first vertex to consider
- algorithm – string (default: "fast"); algorithm to use among:
 - "slow" – This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already removed. The vertex of maximal code (according to the lexicographic order) is then removed, and the codes are updated. See for instance [CK2008] for more details. The time complexity of this algorithm as described in [CK2008] is in $O(n + m)$, where n is the number of vertices and m is the number of edges, but our implementation is in $O(n^2)$.
 - "fast" – This algorithm uses the notion of slices to refine the position of the vertices in the ordering. The time complexity of this algorithm is in $O(n + m)$, and our implementation follows that complexity for SparseGraph. For DenseGraph, the complexity is $O(n^2)$. See [HMPV2000] and next section for more details.

ALGORITHM:
The "fast" algorithm is the $O(n + m)$ time algorithm proposed in [HMPV2000], where n is the number of vertices and m is the number of edges. It uses the notion of slices, i.e., subsets of consecutive vertices in the ordering, and iteratively refines the slices by subdividing them into sub-slices to determine the exact position of the vertices in the ordering.

Consider an ordering σ of the vertices. For a vertex v, we define $N_i(v) = \{u|u \in N(v) \text{ and } \sigma(u) < i\}$, that is the subset of neighbors of v appearing before the i-th vertex in the ordering σ. Now, a slice of an ordering σ is a set of consecutive vertices, $S = \{u|i \leq \sigma(u) \leq j\}$, such that for any $u \in S$, we have $N_i(u) = N_i(\sigma^{-1}(i))$ and for any v such that $j < \sigma(v)$, $N_i(v) \neq N_i(\sigma^{-1}(i))$. The head of a slice is the first position of its vertices.

The algorithm starts with a single slice containing all vertices. Then, when the position of the i-th vertex v is fixed, it explores the neighbors of v that have not yet been ordered. Consider a slice S such that $N(x) \cap S \neq \emptyset$. The algorithm will rearrange the ordering of the vertices in S so that the first vertices are the neighbors of v. The sub-slice containing the neighbors of v is assigned a new slice name, and the head of slice S is set to the position of the first vertex of $S \setminus N(v)$ in the ordering σ.

Observe that each arc of the graph can induce the subdivision of a slice. Hence, the algorithm can use up to $m + 1$ different slices.

See also:
- Wikipedia article Lexicographic_breadth-first_search
- lex_DFS() – perform a lexicographic depth first search (LexDFS) on the graph
- lex_UP() – perform a lexicographic UP search (LexUP) on the graph
- lex_DOWN() – perform a lexicographic DOWN search (LexDOWN) on the graph

EXAMPLES:
A Lex BFS is obviously an ordering of the vertices:
sage: g = graphs.CompleteGraph(6)
sage: len(g.lex_BFS()) == g.order()
True

>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(6))
>>> len(g.lex_BFS()) == g.order()
True

Lex BFS ordering of the 3-sun graph:

sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5), (5, 6)])
sage: g.lex_BFS()
[1, 2, 3, 5, 4, 6]

>>> from sage.all import *
>>> g = Graph([(Integer(1), Integer(2)), (Integer(1), Integer(3)), (Integer(2), Integer(3)), (Integer(2), Integer(4)), (Integer(2), Integer(5)), (Integer(3), Integer(5)), (Integer(3), Integer(6)), (Integer(4), Integer(5)), (Integer(5), Integer(6))])
>>> g.lex_BFS()
[1, 2, 3, 5, 4, 6]

The method also works for directed graphs:

sage: G = DiGraph([(1, 2), (2, 3), (1, 3)])
sage: G.lex_BFS(initial_vertex=2, algorithm="slow")
[2, 3, 1]
sage: G.lex_BFS(initial_vertex=2, algorithm="fast")
[2, 3, 1]

>>> from sage.all import *
>>> G = DiGraph([(Integer(1), Integer(2)), (Integer(2), Integer(3)), (Integer(1), Integer(3))])
>>> G.lex_BFS(initial_vertex=Integer(2), algorithm="slow")
[2, 3, 1]
>>> G.lex_BFS(initial_vertex=Integer(2), algorithm="fast")
[2, 3, 1]

For a Chordal Graph, a reversed Lex BFS is a Perfect Elimination Order:

sage: g = graphs.PathGraph(3).lexicographic_product(graphs.CompleteGraph(2))
sage: g.lex_BFS(reverse=True)
[(2, 1), (2, 0), (1, 1), (1, 0), (0, 1), (0, 0)]

>>> from sage.all import *
>>> g = graphs.PathGraph(Integer(3)).lexicographic_product(graphs.CompleteGraph(Integer(2)))
>>> g.lex_BFS(reverse=True)
[(2, 1), (2, 0), (1, 1), (1, 0), (0, 1), (0, 0)]

And the vertices at the end of the tree of discovery are, for chordal graphs, simplicial vertices (their neighborhood is a complete graph):

1.1. Generic graphs (common to directed/undirected)
Graph Theory, Release 10.4

```python
sage: g = graphs.ClawGraph().lexicographic_product(graphs.CompleteGraph(2))
sage: v = g.lex_BFS()[-1]
sage: peo, tree = g.lex_BFS(initial_vertex=v, tree=True)
sage: leaves = [v for v in tree if tree.in_degree(v) == 0]
sage: all(g.subgraph(g.neighbors(v)).is_clique() for v in leaves)
True

>>> from sage.all import *
>>> g = graphs.ClawGraph().lexicographic_product(graphs.CompleteGraph(Integer(2)))
>>> v = g.lex_BFS()[-Integer(1)]
>>> peo, tree = g.lex_BFS(initial_vertex=v, tree=True)
>>> leaves = [v for v in tree if tree.in_degree(v) == Integer(0)]
>>> all(g.subgraph(g.neighbors(v)).is_clique() for v in leaves)
True
```

Different orderings for different traversals:

```python
sage: # needs sage.combinat
sage: G = digraphs.DeBruijn(2,3)
sage: G.lex_BFS(initial_vertex='000', algorithm="fast")
['000', '001', '100', '010', '011', '110', '101', '111']
sage: G.lex_BFS(initial_vertex='000', algorithm="slow")
['000', '001', '100', '010', '011', '110', '101', '111']
sage: G.lex_UP(initial_vertex='000')
['000', '001', '101', '110', '011', '010', '100', '111']
sage: G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']

>>> from sage.all import *
>>> # needs sage.combinat
>>> G = digraphs.DeBruijn(Integer(2),Integer(3))
>>> G.lex_BFS(initial_vertex='000', algorithm="fast")
['000', '001', '100', '010', '011', '110', '101', '111']
>>> G.lex_BFS(initial_vertex='000', algorithm="slow")
['000', '001', '100', '010', '011', '110', '101', '111']
>>> G.lex_UP(initial_vertex='000')
['000', '001', '101', '110', '011', '010', '100', '111']
>>> G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']
```

`lex_DFS(G, reverse=False, tree=False, initial_vertex=None)`

Perform a lexicographic depth first search (LexDFS) on the graph.

INPUT:

- G – a sage graph
- reverse – boolean (default: False); whether to return the vertices in discovery order, or the reverse
- tree – boolean (default: False); whether to return the discovery directed tree (each vertex being linked to the one that saw it for the first time)
- initial_vertex – (default: None); the first vertex to consider
ALGORITHM:

This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already removed. The vertex of maximal code (according to the lexicographic order) is then removed, and the codes are updated. Lex DFS differs from Lex BFS only in the way codes are updated after each iteration.

Time complexity is $O(n + m)$ for SparseGraph and $O(n^2)$ for DenseGraph where n is the number of vertices and m is the number of edges.

See [CK2008] for more details on the algorithm.

See also:

- `lex_BFS()` – perform a lexicographic breadth first search (LexBFS) on the graph
- `lex_UP()` – perform a lexicographic UP search (LexUP) on the graph
- `lex_DOWN()` – perform a lexicographic DOWN search (LexDOWN) on the graph

EXAMPLES:

A Lex DFS is obviously an ordering of the vertices:

```python
sage: g = graphs.CompleteGraph(6)
sage: len(g.lex_DFS()) == g.order()
True
```

Lex DFS ordering of the 3-sun graph:

```python
sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5),
              (5, 6)])
sage: g.lex_DFS()
[1, 2, 3, 5, 6, 4]
```

The method also works for directed graphs:

```python
sage: G = DiGraph([(1, 2), (2, 3), (1, 3)])
sage: G.lex_DFS(initial_vertex=2)
[2, 3, 1]
```
Different orderings for different traversals:

```
sage: # needs sage.combinat
g = digraphs.DeBruijn(2,3)
g.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']
g.lex_DFS(initial_vertex='000')
['000', '001', '100', '010', '101', '110', '011', '111']
g.lex_UP(initial_vertex='000')
['000', '001', '010', '101', '110', '111', '011', '100']
g.lex_DOWN(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']
```

```
>>> from sage.all import *
>>> # needs sage.combinat
>>> G = digraphs.DeBruijn(Integer(2),Integer(3))
>>> G.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']
>>> G.lex_DFS(initial_vertex='000')
['000', '001', '100', '010', '101', '110', '011', '111']
>>> G.lex_UP(initial_vertex='000')
['000', '001', '010', '101', '110', '111', '011', '100']
>>> G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']
```

`lex_DOWN(G, reverse=False, tree=False, initial_vertex=None)`

Perform a lexicographic DOWN search (LexDOWN) on the graph.

INPUT:

- `G` – a sage graph
- `reverse` – boolean (default: False); whether to return the vertices in discovery order, or the reverse
- `tree` – boolean (default: False); whether to return the discovery directed tree (each vertex being linked to the one that saw it for the first time)
- `initial_vertex` – (default: None); the first vertex to consider

ALGORITHM:

This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already removed. The vertex of maximal code (according to the lexicographic order) is then removed, and the codes are updated. During the `i`-th iteration of the algorithm `n – i` is prepended to the codes of all neighbors of the selected vertex that are left in the graph.

Time complexity is $O(n + m)$ for `SparseGraph` and $O(n^2)$ for `DenseGraph` where `n` is the number of vertices and `m` is the number of edges.

See [Mil2017] for more details on the algorithm.

See also:

- `lex_BFS()` – perform a lexicographic breadth first search (LexBFS) on the graph
- `lex_DFS()` – perform a lexicographic depth first search (LexDFS) on the graph
- `lex_UP()` – perform a lexicographic UP search (LexUP) on the graph

EXAMPLES:

A Lex DOWN is obviously an ordering of the vertices:
Graph Theory, Release 10.4

sage: g = graphs.CompleteGraph(6)
sage: len(g.lex_DOWN()) == g.order()
True

>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(6))
>>> len(g.lex_DOWN()) == g.order()
True

Lex DOWN ordering of the 3-sun graph:
sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5), (5, 6)])
sage: g.lex_DOWN()
[1, 2, 3, 4, 6, 5]

>>> from sage.all import *
>>> g = Graph([(Integer(1), Integer(2)), (Integer(1), Integer(3)), (Integer(2), Integer(3)), (Integer(2), Integer(4)), (Integer(2), Integer(5)), (Integer(3), Integer(5)), (Integer(3), Integer(6)), (Integer(4), Integer(5)), (Integer(5), Integer(6))])
>>> g.lex_DOWN()
[1, 2, 3, 4, 6, 5]

The method also works for directed graphs:
sage: G = DiGraph([(1, 2), (2, 3), (1, 3)])
sage: G.lex_DOWN(initial_vertex=2)
[2, 3, 1]

>>> from sage.all import *
>>> G = DiGraph([(Integer(1), Integer(2)), (Integer(2), Integer(3)), (Integer(1), Integer(3))])
>>> G.lex_DOWN(initial_vertex=Integer(2))
[2, 3, 1]

Different orderings for different traversals:
sage: # needs sage.combinat
sage: G = digraphs.DeBruijn(2,3)
sage: G.lex_BFS(initial_vertex=000)
['000', '001', '100', '010', '011', '110', '101', '111']
sage: G.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']
sage: G.lex_UP(initial_vertex='000')
['000', '001', '010', '101', '110', '011', '111', '100']
sage: G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']

>>> from sage.all import *
>>> # needs sage.combinat
>>> G = digraphs.DeBruijn(Integer(2),Integer(3))
>>> G.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']

(continues on next page)
lex_UP \((G, \text{reverse}=False, \text{tree}=False, \text{initial}_\text{vertex}=\text{None})\)

Perform a lexicographic UP search (LexUP) on the graph.

INPUT:

- \(G\) – a sage graph
- \(
\text{reverse} = \text{boolean (default: False); whether to return the vertices in discovery order, or the reverse}
\)
- \(\text{tree} = \text{boolean (default: False); whether to return the discovery directed tree (each vertex being}
\)
- \(\text{linked to the one that saw it for the first time)}\)
- \(\text{initial}_\text{vertex} = \text{(default: None); the first vertex to consider}\)

ALGORITHM:

This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already removed. The vertex of maximal code (according to the lexicographic order) is then removed, and the codes are updated. During the \(i\)-th iteration of the algorithm \(i\) is appended to the codes of all neighbors of the selected vertex that are left in the graph.

Time complexity is \(O(n + m)\) for SparseGraph and \(O(n^2)\) for DenseGraph where \(n\) is the number of vertices and \(m\) is the number of edges.

See [Mil2017] for more details on the algorithm.

See also:

- \(\text{lex}_\text{BFS()}\) – perform a lexicographic breadth first search (LexBFS) on the graph
- \(\text{lex}_\text{DFS()}\) – perform a lexicographic depth first search (LexDFS) on the graph
- \(\text{lex}_\text{DOWN()}\) – perform a lexicographic DOWN search (LexDOWN) on the graph

EXAMPLES:

A Lex UP is obviously an ordering of the vertices:

```python
sage: g = graphs.CompleteGraph(6)
sage: len(g.lex_UP()) == g.order()
True
```

```python
>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(6))
>>> len(g.lex_UP()) == g.order()
True
```

Lex UP ordering of the 3-sun graph:

```python
sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5), (5, 6)])
sage: g.lex_UP()
[1, 2, 4, 5, 6, 3]
```
>>> from sage.all import *

```python
>>> g = Graph([(Integer(1), Integer(2)), (Integer(1), Integer(3)),
            (Integer(2), Integer(3)), (Integer(2), Integer(4)), (Integer(2),
            Integer(5)), (Integer(3), Integer(5)), (Integer(3), Integer(6)),
            (Integer(4), Integer(5)), (Integer(5), Integer(6))])
```

```python
>>> g.lex_UP()
[1, 2, 4, 5, 6, 3]
```

The method also works for directed graphs:

```python
sage: G = DiGraph([(1, 2), (2, 3), (1, 3)])
sage: G.lex_UP(initial_vertex=2)
[2, 3, 1]
```

Different orderings for different traversals:

```python
sage: # needs sage.combinat
sage: G = digraphs.DeBruijn(2, 3)
sage: G.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']
sage: G.lex_DFS(initial_vertex='000')
['000', '001', '100', '010', '101', '110', '011', '111']
sage: G.lex_UP(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']
sage: G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']
```

```python
>>> from sage.all import *
>>> # needs sage.combinat
>>> G = digraphs.DeBruijn(Integer(2), Integer(3))
>>> G.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']
>>> G.lex_DFS(initial_vertex='000')
['000', '001', '100', '010', '101', '110', '011', '111']
>>> G.lex_UP(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']
>>> G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']
```

lexicographic_product (other)

Return the lexicographic product of self and other.

The lexicographic product of G and H is the graph L with vertex set $V(L) = V(G) \times V(H)$, and $(<u, v>, <w, x>)$ is an edge iff:

- (u, w) is an edge of G, or
- $u = w$ and (v, x) is an edge of H.

EXAMPLES:
sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: L = C.lexicographic_product(Z); L
Graph on 10 vertices
sage: L.plot() # long time
\rightarrow
\text{needs sage.plot}
Graphics object consisting of 36 graphics primitives

\textbf{line_graph} (g, labels=True)

Return the line graph of the (di)graph g.

\textbf{INPUT:}

- labels – boolean (default: True); whether edge labels should be taken in consideration. If labels=True, the vertices of the line graph will be triples \((u, v, \text{label})\), and pairs of vertices otherwise.

The line graph of an undirected graph G is an undirected graph H such that the vertices of H are the edges of G and two vertices e and f of H are adjacent if e and f share a common vertex in G. In other words, an edge in H represents a path of length 2 in G.

The line graph of a directed graph G is a directed graph H such that the vertices of H are the edges of G and two vertices e and f of H are adjacent if e and f share a common vertex in G and the terminal vertex of e is the initial vertex of f. In other words, an edge in H represents a (directed) path of length 2 in G.

\textbf{Note:} As a \texttt{Graph} object only accepts hashable objects as vertices (and as the vertices of the line graph are the edges of the graph), this code will fail if edge labels are not hashable. You can also set the argument labels=False to ignore labels.

\textbf{See also:}
• The `line_graph` module.

• `line_graph_forbidden_subgraphs()` – the forbidden subgraphs of a line graph.

• `is_line_graph()` – tests whether a graph is a line graph.

EXAMPLES:

```
sage: g = graphs.CompleteGraph(4)
sage: h = g.line_graph()
sage: h.vertices(sort=True)
[(0, 1, None),
 (0, 2, None),
 (0, 3, None),
 (1, 2, None),
 (1, 3, None),
 (2, 3, None)]
sage: h.am() → # needs sage.modules
[0 1 1 1 0]
[1 0 1 0 1]
[1 1 0 0 1]
[1 1 0 1 1]
[1 0 1 0 1]
[0 1 1 1 0]
sage: h2 = g.line_graph(labels=False)
sage: h2.vertices(sort=True)
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: h2.am() == h.am() → # needs sage.modules
True
sage: g = DiGraph([[1..4], lambda i,j: i < j])
sage: h = g.line_graph()
sage: h.vertices(sort=True)
[(1, 2, None),
 (1, 3, None),
 (1, 4, None),
 (2, 3, None),
 (2, 4, None),
 (3, 4, None)]
sage: h.edges(sort=True)
[((1, 2, None), (2, 3, None), None),
 ((1, 2, None), (2, 4, None), None),
 ((1, 3, None), (3, 4, None), None),
 ((2, 3, None), (3, 4, None), None)]
```

```python
>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(4))
>>> h = g.line_graph()
>>> h.vertices(sort=True)
[(0, 1, None),
 (0, 2, None),
 (0, 3, None),
 (1, 2, None),
 (1, 3, None),
 (2, 3, None)]
>>> h.am() → # needs sage.modules
```
(continues on next page)
```python
>>> h2 = g.line_graph(labels=False)
>>> h2.vertices(sort=True)
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
>>> h2.am() == h.am()
˓→# needs sage.modules
True
>>> g = DiGraph(
    [ellipsis_range(Integer(1), Ellipsis, Integer(4)), lambda i, ...
        j: i < j])
>>> h = g.line_graph()
>>> h.vertices(sort=True)
[(1, 2, None),
 (1, 3, None),
 (1, 4, None),
 (2, 3, None),
 (2, 4, None),
 (3, 4, None)]
>>> h.edges(sort=True)
[((1, 2, None), (2, 3, None), None),
 ((1, 2, None), (2, 4, None), None),
 ((1, 3, None), (3, 4, None), None),
 ((2, 3, None), (3, 4, None), None)]
```

`longest_cycle` *(induced, use_edge_labels=False, solver=False, verbose=None, integrality_tolerance=0)*

Return the longest (induced) cycle of `self`. This method uses an integer linear programming formulation based on subtour elimination constraints to find the longest cycle. This cycle is *elementary* (or *simple*), and so without repeated vertices. When searching for an *induced* cycle (i.e., a cycle without chord), it uses in addition cycle elimination constraints as proposed in [MMRS2022].

We assume that the longest cycle in graph has at least 3 vertices and at least 2 in a digraph. The longest induced cycle as at least 4 vertices in both a graph and a digraph.

Note: Graphs and digraphs with loops or multiple edges are currently not accepted. It is certainly possible to extend the method to accept them.

INPUT:

- `induced` – boolean (default: False); whether to return the longest induced cycle or the longest cycle
- `use_edge_labels` – boolean (default: False); whether to compute a cycle with maximum weight where the weight of an edge is defined by its label (a label set to `None` or `{}` being considered as a weight of 1), or to compute a cycle with the largest possible number of edges (i.e., edge weights are set to 1
- `solver` – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to `None`, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`
- `verbose` – integer (default: 0); sets the level of verbosity; set to 0 by default, which means quiet
• **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`

OUTPUT:

A subgraph of `self` corresponding to a (directed if `self` is directed) longest (induced) cycle. If `use_edge_labels == True`, a pair weight, cycle is returned.

EXAMPLES:

Longest (induced) cycle of a graph:

```python
sage: G = graphs.Grid2dGraph(3, 4)
sage: G.longest_cycle(induced=False)
longest cycle from 2D Grid Graph for [3, 4]: Graph on 12 vertices
sage: G.longest_cycle(induced=True)
longest induced cycle from 2D Grid Graph for [3, 4]: Graph on 10 vertices
```

Longest (induced) cycle in a digraph:

```python
sage: D = digraphs.Circuit(8)
sage: D.add_edge(0, 2)
sage: D.longest_cycle(induced=False)
longest cycle from Circuit: Digraph on 8 vertices
sage: D.longest_cycle(induced=True)
longest induced cycle from Circuit: Digraph on 7 vertices
sage: D.add_edge(1, 0)
```

(continues on next page)
longest cycle from Circuit: Digraph on 0 vertices

>>> D.longest_cycle(induced=True)
longest induced cycle from Circuit: Digraph on 0 vertices

Longest (induced) cycle when considering edge weights:

sage: D = digraphs.Circuit(15)
sage: for u, v in D.edges(labels=False):
....: D.set_edge_label(u, v, 1)
sage: D.add_edge(0, 10, 50)
sage: D.add_edge(11, 1, 1)
sage: D.add_edge(13, 0, 1)
sage: D.longest_cycle(induced=False, use_edge_labels=False)
longest cycle from Circuit: Digraph on 15 vertices

sage: D.longest_cycle(induced=False, use_edge_labels=True)
(55, longest cycle from Circuit: Digraph on 6 vertices)

sage: D.longest_cycle(induced=True, use_edge_labels=False)
longest induced cycle from Circuit: Digraph on 11 vertices

sage: D.longest_cycle(induced=True, use_edge_labels=True)
(54, longest induced cycle from Circuit: Digraph on 5 vertices)

from sage.all import *

>>> D = digraphs.Circuit(Integer(15))

>>> for u, v in D.edges(labels=False):
...
 D.set_edge_label(u, v, Integer(1))

>>> D.add_edge(Integer(0), Integer(10), Integer(50))

>>> D.add_edge(Integer(11), Integer(1), Integer(1))

>>> D.add_edge(Integer(13), Integer(0), Integer(1))

>>> D.longest_cycle(induced=False, use_edge_labels=False)
longest cycle from Circuit: Digraph on 15 vertices

>>> D.longest_cycle(induced=False, use_edge_labels=True)
(55, longest cycle from Circuit: Digraph on 6 vertices)

>>> D.longest_cycle(induced=True, use_edge_labels=False)
longest induced cycle from Circuit: Digraph on 11 vertices

>>> D.longest_cycle(induced=True, use_edge_labels=True)
(54, longest induced cycle from Circuit: Digraph on 5 vertices)

longest_path(s, t=None, use_edge_labels=None, algorithm=False, solver='MILP', verbose=None, integrality_tolerance=0)

Return a longest path of self.

INPUT:

• s – a vertex (default: None); forces the source of the path (the method then returns the longest path starting at s). The argument is set to None by default, which means that no constraint is set upon the first vertex in the path.

This parameter can only be used when algorithm is "MILP".

• t – a vertex (default: None); forces the destination of the path (the method then returns the longest path ending at t). The argument is set to None by default, which means that no constraint is set upon the last vertex in the path.

This parameter can only be used when algorithm is "MILP".

• use_edge_labels – boolean (default: False); whether to compute a path with maximum weight where the weight of an edge is defined by its label (a label set to None or {} being considered as a weight of 1), or to compute a path with the longest possible number of edges (i.e., edge weights are set to 1)
This parameter can only be used when \texttt{algorithm} is "MILP".

\begin{itemize}
 \item \texttt{algorithm} – string (default: "MILP"); the algorithm to use among "MILP", "backtrack" and "heuristic":
 \begin{itemize}
 \item "MILP" returns an exact answer.
 \item "backtrack" is renamed "heuristic" (Issue \#36574).
 \item "heuristic" is a randomized heuristic for finding a long path in an unweighted (di)graph. This heuristic does not take into account parameters \texttt{s,t} and \texttt{use_edge_labels}. An error is raised if these parameters are set.
 \end{itemize}
 \item \texttt{solver} – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \texttt{solve} of the class \texttt{MixedIntegerLinearProgram}.
 \item \texttt{verbose} – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
 \item \texttt{integrality_tolerance} – float; parameter for use with MILP solvers over an inexact base ring; see \texttt{MixedIntegerLinearProgram.get_values}().
\end{itemize}

\textbf{Note:} The length of a path is assumed to be the number of its edges, or the sum of their labels (when \texttt{use_edge_labels == True}).

\textbf{OUTPUT:}

A subgraph of \texttt{self} corresponding to a (directed if \texttt{self} is directed) longest path. If \texttt{use_edge_labels == True}, a pair \texttt{weight, path} is returned.

\textbf{ALGORITHM:}

Mixed Integer Linear Programming (this problem is known to be NP-Hard).

\textbf{EXAMPLES:}

Petersen's graph being hypohamiltonian, it has a longest path of length \(n - 2 \):

\begin{verbatim}
sage: g = graphs.PetersenGraph()
sage: lp = g.longest_path() # needs sage.numerical.mip

sage: lp.order() >= g.order() - 2
needs sage.numerical.mip
True

>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> lp = g.longest_path() # needs sage.numerical.mip

>>> lp.order() >= g.order() - Integer(2) # needs sage.numerical.mip
True
\end{verbatim}

The heuristic totally agrees:

\begin{verbatim}
sage: g = graphs.PetersenGraph()
sage: p = g.longest_path(algorithm="heuristic").edges(sort=True, labels=False)
sage: len(p)
9
\end{verbatim}
Let us compute the longest path on a random graph with random weights, and ensure the resulting graph is indeed a path:

```
sage: g = graphs.RandomGNP(15, 0.3)
sage: for u, v in g.edge_iterator(labels=False):
    ....:     g.set_edge_label(u, v, random())

c
[needs sage.numerical.mip]
sage: lp = g.longest_path()
[needs sage.numerical.mip]
sage: (not lp.is_forest() or not max(lp.degree()) <= 2 or not lp.is_connected())
False
```

(continues on next page)
loop_edges(labels=True)

Return a list of all loops in the (di)graph

INPUT:

- labels – boolean (default: `True`); whether returned edges have labels `((u, v, l))` or not `((u, v))`

EXAMPLES:

```python
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edges([(0, 0), (1, 1), (2, 2), (3, 3), (2, 3)])
```

```python
sage: G.loop_edges()  # without labels
[[(0, 0), (1, 1), (2, 2), (3, 3), (2, 3)]]
```

```python
sage: G.loop_edges(labels=False)  # with labels
[[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
```

```python
sage: G.allows_loops()
True
sage: G.has_loops()
True
sage: G.allow_loops(False)  # or
sage: G.has_loops()
False
```

```python
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0, 0))
```

```python
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
```

```python
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
```

```python
sage: D.edges(sort=True)
[]
```

```python
sage: G = graphs.PetersenGraph()
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
sage: G.loops()
[]

>>> from sage.all import *
>>> G = Graph(loops=True); G
Looped graph on 0 vertices
>>> G.has_loops()
False
>>> G.allows_loops()
True
>>> G.add_edges([(Integer(0), Integer(0)), (Integer(1), Integer(1)),
               (Integer(2), Integer(2)), (Integer(3), Integer(3)), (Integer(2),
               Integer(3))])
>>> G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
>>> G.loop_edges(labels=False)
[(0, 0), (1, 1), (2, 2), (3, 3)]
>>> G.allows_loops()
True
>>> G.has_loops()
True
>>> G.allow_loops(False);
>>> G.has_loops()
False
>>> G.loop_edges()
[]

sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
>>> D.has_loops()
False
>>> D.allows_loops()
True
>>> D.add_edge((Integer(0), Integer(0)))
>>> D.has_loops()
True
>>> D.loops()
[(0, 0, None)]
>>> D.allow_loops(False); D
Digraph on 1 vertex
>>> D.has_loops()
False
>>> D.edges(sort=True)
[]

sage: G = graphs.PetersenGraph()
sage: G.loops()
[]
```

Chapter 1. Graph objects and methods
>>> from sage.all import *
>>> D = DiGraph(Integer(4), loops=True)
>>> D.add_edges([(Integer(0), Integer(0)), (Integer(1), Integer(1)),
 →(Integer(2), Integer(2)), (Integer(3), Integer(3)), (Integer(2),
 →Integer(3))])
>>> D.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]

sage: G = Graph(4, loops=True, multiedges=True, sparse=True)
sage: G.add_edges((i, i) for i in range(4))
sage: G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]

>>> from sage.all import *
>>> G = Graph(Integer(4), loops=True, multiedges=True, sparse=True)
>>> G.add_edges((i, i) for i in range(Integer(4)))
>>> G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]

loop_vertices()
Return a list of vertices with loops

EXAMPLES:

sage: G = Graph({0: [0], 1: [1, 2, 3], 2: [3]}, loops=True)
sage: G.loop_vertices()
[0, 1]

loops(labels=True)
Return a list of all loops in the (di)graph

INPUT:

• labels – boolean (default: True); whether returned edges have labels ((u, v, l)) or not ((u, v))

EXAMPLES:

sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edges([(0, 0), (1, 1), (2, 2), (3, 3)]
sage: G.loop_edges()
(continues on next page)
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]

```python
sage: G.loop_edges(labels=False)
[(0, 0), (1, 1), (2, 2), (3, 3)]

sage: G.allows_loops()
True
sage: G.has_loops()
True
sage: G.allow_loops(False)
False
sage: G.has_loops()
False
```

```python
sage: G.loop_edges()
[]
```

```python
sage: G.edges(sort=True)
[(2, 3, None)]
```

```python
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0, 0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
```

```python
sage: G = Graph(); G
Looped graph on 0 vertices
sage: G.allows_loops()
True
sage: G.allowed_loops(False)
```

```python
sage: from sage.all import *

>>> G = Graph(loops=True); G
Looped graph on 0 vertices
>>> G.has_loops()
False
>>> G.allows_loops()
False
```

```python
>>> G.add_edges([(0, 0), (1, 1), (2, 2), (3, 3), (2, 3)])
```

```python
>>> G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
```

```python
>>> G.loop_edges(labels=False)
[(0, 0), (1, 1), (2, 2), (3, 3)]
```

```python
>>> G.allows_loops()
True
>>> G.has_loops()
True
```

```python
sage: G.allow_loops(False)
```
>>> G.has_loops()
False
>>> G.loop_edges()
[]
>>> G.edges(sort=True)
[(2, 3, None)]

>>> D = DiGraph(loops=True); D
Looped digraph on 0 vertices
>>> D.has_loops()
False
>>> D.allows_loops()
True
>>> D.add_edge((Integer(0), Integer(0)))
>>> D.has_loops()
True
>>> D.loops()
[(0, 0, None)]
>>> D.allow_loops(False); D
Digraph on 1 vertex
>>> D.has_loops()
False
>>> D.edges(sort=True)
[]

sage: D = DiGraph(4, loops=True)
sage: D.add_edges(((0, 0), (1, 1), (2, 2), (3, 3), (2, 3)))
sage: D.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]

>>> from sage.all import *

>>> G = Graph(4, loops=True, multiedges=True, sparse=True)
>>> G.add_edges((i, i) for i in range(4))
>>> G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]

sage: G = Graph(4, loops=True, multiedges=True, sparse=True)
sage: G.add_edges((i, i) for i in range(Integer(4)))

>>> from sage.all import *

>>> G = Graph(Integer(4), loops=True, multiedges=True, sparse=True)
>>> G.add_edges((i, i) for i in range(Integer(4)))

(continues on next page)
Graph Theory, Release 10.4

max_cut (value_only=True, use_edge_labels=False, value_only=False, solver=False, verbose=False, integrality_tolerance=0)

Return a maximum edge cut of the graph.

For more information, see the Wikipedia article Maximum_cut.

INPUT:

- **value_only** – boolean (default: False); whether to return only the size of the maximum edge cut, or to also return the list of edges of the maximum edge cut
- **use_edge_labels** – boolean (default: False); whether to compute a weighted maximum cut where the weight of an edge is defined by its label (if an edge has no label, 1 is assumed), or to compute a cut of maximum cardinality (i.e., edge weights are set to 1)
- **vertices** – boolean (default: False); whether to return the two sets of vertices that are disconnected by the cut. This implies value_only=False.
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- **verbose** – integer (default: 0); set the level of verbosity. Set to 0 by default, which means quiet.
- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:

Quite obviously, the max cut of a bipartite graph is the number of edges, and the two sets of vertices are the two sides:

```python
sage: # needs sage.numerical.mip
sage: g = graphs.CompleteBipartiteGraph(5, 6)
sage: [ value, edges, [ setA, setB ] ] = g.max_cut(vertices=True)
sage: value == 5*6
True
sage: bsetA, bsetB = map(list, g.bipartite_sets())
sage: ((bsetA == setA and bsetB == setB) or (bsetA == setB and bsetB == setA))
True
```

```python
>>> from sage.all import *
>>> # needs sage.numerical.mip
>>> g = graphs.CompleteBipartiteGraph(Integer(5), Integer(6))
>>> [ value, edges, [ setA, setB ] ] = g.max_cut(vertices=True)
>>> value == Integer(5) * Integer(6)
True
>>> bsetA, bsetB = map(list, g.bipartite_sets())
>>> ((bsetA == setA and bsetB == setB) or (bsetA == setB and bsetB == setA))
True
```

The max cut of a Petersen graph:
maximum_leaf_number\((G, \text{solver}=\text{None}, \text{verbose}=0, \text{integrality_tolerance}=0.001)\)

Return the maximum leaf number of the graph.

The maximum leaf number is the maximum possible number of leaves of a spanning tree of \(G\). This is also the cardinality of the complement of a minimum connected dominating set. See the Wikipedia article Connected_dominating_set.

The MLN of a graph with less than 2 vertices is 0, while the MLN of a connected graph with 2 or 3 vertices is 1 or 2 respectively.

INPUT:

- \(G\) – a Graph
- \(\text{solver}\) – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \texttt{solve} of the class \texttt{MixedIntegerLinearProgram}.
- \(\text{verbose}\) – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- \(\text{integrality_tolerance}\) – float; parameter for use with MILP solvers over an inexact base ring; see \texttt{MixedIntegerLinearProgram.get_values()}.

EXAMPLES:

Empty graph:

```python
sage: G = Graph()
sage: G.maximum_leaf_number()
0
```

```python
>>> from sage.all import *
>>> G = Graph()
>>> G.maximum_leaf_number()
0
```

Petersen graph:

```python
sage: G = graphs.PetersenGraph()
sage: G.maximum_leaf_number()
6
```

```python
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.maximum_leaf_number()
6
```
merge_vertices(vertices)

Merge vertices.

This function replaces a set S of vertices by a single vertex v_{new}, such that the edge uv_{new} exists if and only if $3v' \in S : (u, v') \in G$.

The new vertex is named after the first vertex in the list given in argument. If this first name is None, a new vertex is created.

In the case of multigraphs, the multiplicity is preserved.

INPUT:

• vertices – the list of vertices to be merged

Note: If u and v are distinct vertices in vertices, any edges between u and v will be lost.

EXAMPLES:

```python
sage: g = graphs.CycleGraph(3)
sage: g.merge_vertices([0, 1])
sage: g.edges(sort=True)
[(0, 2, None)]

sage: P = graphs.PetersenGraph()
sage: P.merge_vertices([5, 7])
sage: P.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6, 8, 9]
```

>>> from sage.all import *

```python
>>> g = graphs.CycleGraph(Integer(3))
>>> g.merge_vertices([Integer(0), Integer(1)]
>>> g.edges(sort=True)
[(0, 2, None)]

>>> P = graphs.PetersenGraph()
>>> P.merge_vertices([Integer(5), Integer(7)]
>>> P.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6, 8, 9]
```

When the first vertex in vertices is None, a new vertex is created:

```python
sage: g = graphs.CycleGraph(5)
sage: g.merge_vertices([None, 1, 3])
sage: g.edges(sort=True, labels=False)
[(0, 4), (0, 5), (2, 5), (4, 5)]
```

>>> from sage.all import *

```python
>>> g = graphs.CycleGraph(Integer(5))
>>> g.merge_vertices([Integer(1), Integer(3)]
>>> g.edges(sort=True, labels=False)
[(0, 4), (0, 5), (2, 5), (4, 5)]
```

With a Multigraph
sage: g = graphs.CycleGraph(3)
sage: g.allow_multiple_edges(True)
sage: g.merge_vertices([0, 1])
sage: g.edges(sort=True, labels=False)
[(0, 2), (0, 2)]

>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(3))
>>> g.allow_multiple_edges(True)
>>> g.merge_vertices([Integer(0), Integer(1)])
>>> g.edges(sort=True, labels=False)
[(0, 2), (0, 2)]

min_spanning_tree (weight_function=None, algorithm='Prim_Boost', starting_vertex=None, check=False, by_weight=False, check_weight=True)

Return the edges of a minimum spanning tree.
At the moment, no algorithm for directed graph is implemented: if the graph is directed, a minimum spanning tree of the corresponding undirected graph is returned.

We expect all weights of the graph to be convertible to float. Otherwise, an exception is raised.

INPUT:

• algorithm – string (default: "Prim_Boost"); the algorithm to use in computing a minimum spanning tree of G. The following algorithms are supported:
 – "Prim_Boost" – Prim’s algorithm (Boost implementation)
 – "Prim_fringe" – a variant of Prim’s algorithm that ignores the labels on the edges
 – "Prim_edge" – a variant of Prim’s algorithm
 – "Kruskal" – Kruskal’s algorithm
 – "Filter_Kruskal" – a variant of Kruskal’s algorithm [OSS2009]
 – "Kruskal_Boost" – Kruskal’s algorithm (Boost implementation)
 – "Boruvka" – Boruvka’s algorithm
 – NetworkX – uses NetworkX’s minimum spanning tree implementation
• starting_vertex – a vertex (default: None); the vertex from which to begin the search for a minimum spanning tree (available only for Prim_fringe and Prim_edge).
• check – boolean (default: False); whether to first perform sanity checks on the input graph G. If appropriate, check is passed on to any minimum spanning tree functions that are invoked from the current method. See the documentation of the corresponding functions for details on what sort of sanity checks will be performed.
• weight_function – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\), if \(l\) is not None, else 1 as a weight. The weight_function can be used to transform the label into a weight (note that, if the weight returned is not convertible to a float, an error is raised)
• by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
• check_weight – boolean (default: True); whether to check that the weight_function outputs a number for each edge.

1.1. Generic graphs (common to directed/undirected)
OUTPUT:
The edges of a minimum spanning tree of G, if one exists, otherwise returns the empty list.

See also:

- `sage.graphs.spanning_tree.kruskal()`
- `sage.graphs.spanning_tree.filter_kruskal()`
- `sage.graphs.spanning_tree.boruvka()`
- `sage.graphs.base.boost_graph.min_spanning_tree()`

EXAMPLES:

Kruskal’s algorithm:

```python
sage: g = graphs.CompleteGraph(5)
sage: len(g.min_spanning_tree())
4
sage: weight = lambda e: 1 / ((e[0] + 1) * (e[1] + 1))
sage: E = g.min_spanning_tree(weight_function=weight)
sage: T = Graph(E)
sage: set(g) == set(T) and T.order() == T.size() + 1 and T.is_tree()
True
sage: sum(map(weight, E))
5/12
sage: E = g.min_spanning_tree(weight_function=weight, algorithm='Kruskal_Boost')
sage: Graph(E).is_tree(); sum(map(weight, E))
True
5/12
sage: g = graphs.PetersenGraph()
sage: g.allow_multiple_edges(True)
sage: g.add_edges(g.edge_iterator())
sage: T = Graph(g.min_spanning_tree())
sage: set(g) == set(T) and T.order() == T.size() + 1 and T.is_tree()
True
```

```python
>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(5))
>>> len(g.min_spanning_tree())
4
>>> weight = lambda e: Integer(1) / ((e[Integer(0)] + Integer(1)) +
... Integer(1) + Integer(1)))
>>> E = g.min_spanning_tree(weight_function=weight)
>>> T = Graph(E)
>>> set(g) == set(T) and T.order() == T.size() + Integer(1) and T.is_tree()
True
>>> sum(map(weight, E))
5/12
>>> E = g.min_spanning_tree(weight_function=weight, algorithm='Kruskal_Boost')
>>> Graph(E).is_tree(); sum(map(weight, E))
True
5/12
>>> g = graphs.PetersenGraph()
>>> g.allow_multiple_edges(True)
(continues on next page)```
>>> g.add_edges(g.edge_iterator())
>>> T = Graph(g.min_spanning_tree())
>>> set(g) == set(T) and T.order() == T.size() + Integer(1) and T.is_tree()
True

Boruvka’s algorithm:

```python
sage: sorted(g.min_spanning_tree(algorithm='Boruvka'))
[(0, 1, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 8, None), (4, 9, None)]
```

```python
>>> from sage.all import *
>>> sorted(g.min_spanning_tree(algorithm='Boruvka'))
[(0, 1, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 8, None), (4, 9, None)]
```

Prim’s algorithm:

```python
sage: g = graphs.CompleteGraph(5)
sage: for algo in ['Prim_edge', 'Prim_fringe', 'Prim_Boost']:
 ... E = g.min_spanning_tree(algorithm=algo, weight_function=weight)
 ... T = Graph(E)
 ... print(set(g) == set(T) and T.order() == T.size() + Integer(1) and T.is_tree())
 True
 True
 True

>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(5))
>>> for algo in ['Prim_edge', 'Prim_fringe', 'Prim_Boost']:
... E = g.min_spanning_tree(algorithm=algo, weight_function=weight)
... T = Graph(E)
... print(set(g) == set(T) and T.order() == T.size() + Integer(1) and T.is_tree())
 True
 True
 True
```

NetworkX algorithm:

```python
sage: sorted(g.min_spanning_tree(algorithm='NetworkX')) # needs networkx
[(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None)]
```

```python
>>> from sage.all import *
>>> sorted(g.min_spanning_tree(algorithm='NetworkX')) # needs networkx
[(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None)]
```

More complicated weights:

```python
sage: G = Graph([(0, 1, {'name': 'a', 'weight': 1}),
 (0, 2, {'name': 'b', 'weight': 3}),
 (1, 2, {'name': 'b', 'weight': 1})])
```
If the graph is not weighted, edge labels are not considered, even if they are numbers:

```python
sage: g = Graph([(1, 2, 1), (1, 3, 2), (2, 3, 1)])
sage: sorted(g.min_spanning_tree(algorithm='Boruvka'))
[(1, 2, 1), (1, 3, 2)]
```

In order to use weights, we need either to set variable `weighted` to `True`, or to specify a weight function or set by_weight to `True`:

```python
sage: g.weighted(True)
sage: Graph(g.min_spanning_tree()).edges(sort=True)
[(1, 2, 1), (2, 3, 1)]
```

Note that the order of the vertices on each edge is not guaranteed and may differ from an algorithm to the other:
sage: g.weighted(True)
sage: sorted(g.min_spanning_tree())
[(2, 1, 1), (3, 2, 1)]
sage: sorted(g.min_spanning_tree(algorithm='Boruvka'))
[(1, 2, 1), (2, 3, 1)]
sage: Graph(g.min_spanning_tree()).edges(sort=True)
[(1, 2, 1), (2, 3, 1)]

```python
>>> from sage.all import *
```  
```python
>>> g.weighted(True)
```  
```python
>>> sorted(g.min_spanning_tree())
```  
```python
>>> sorted(g.min_spanning_tree(algorithm='Boruvka'))
```  
```python
>>> Graph(g.min_spanning_tree()).edges(sort=True)
```  
minimum_cycle_basis (algorithm=None, weight_function=None, by_weight=False, check_weight=True)

Return a minimum weight cycle basis of the graph.

A cycle basis is a list of cycles (list of vertices forming a cycle) of self. Note that the vertices are not necessarily returned in the order in which they appear in the cycle.

A minimum weight cycle basis is a cycle basis that minimizes the sum of the weights (length for unweighted graphs) of its cycles.

Not implemented for directed graphs and multigraphs.

INPUT:

- algorithm – string (default: None): algorithm to use:
  - If algorithm = "NetworkX", use networkx implementation
  - If algorithm = None, use Sage Cython implementation
- weight_function – function (default: None): a function that takes as input an edge (u, v, l) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label l, if l is not None, else 1 as a weight.
- by_weight – boolean (default: False): if True, the edges in the graph are weighted, otherwise all edges have weight 1
- check_weight – boolean (default: True): whether to check that the weight_function outputs a number for each edge.

EXAMPLES:

```python
sage: g = Graph([(1, 2, 3), (2, 3, 5), (3, 4, 8), (4, 1, 13),: (1, 3, 250), (5, 6, 9), (6, 7, 17), (7, 5, 20)])
sage: sorted(g.minimum_cycle_basis(by_weight=True))
[[[1, 2, 3], [1, 2, 3, 4], [5, 6, 7]]
sage: sorted(g.minimum_cycle_basis(by_weight=False))
[[[1, 2, 3], [1, 3, 4], [5, 6, 7]]
sage: sorted(g.minimum_cycle_basis(by_weight=True, algorithm='NetworkX')) # needs networkx, random (changes in networkx 3.2)
[[[1, 2, 3], [1, 2, 3, 4], [5, 6, 7]]
sage: g.minimum_cycle_basis(by_weight=False, algorithm='NetworkX') # needs networkx, random (changes in networkx 3.2)
```

1.1. Generic graphs (common to directed/undirected) 297
```python
>>> from sage.all import *

>>> g = Graph([(1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (5, 3))

>>> sorted(g.minimum_cycle_basis(by_weight=True))
[[1, 2, 3, 5], [3, 4, 5]]

>>> sorted(g.minimum_cycle_basis(by_weight=False))
[[1, 2, 3, 5], [3, 4, 5]]

sage: sorted(g.minimum_cycle_basis(by_weight=False, algorithm='NetworkX'))
[[1, 2, 3, 5], [3, 4, 5]]

sage: g.minimum_cycle_basis(by_weight=True, algorithm='NetworkX')

needs networkx, random (changes in networkx 3.2)
[[1, 2, 3, 5], [3, 4, 5]]

sage: g.minimum_cycle_basis(by_weight=False, algorithm='NetworkX')

needs networkx, random (changes in networkx 3.2)
[[1, 2, 3, 5], [3, 4, 5]]

See also:

- `cycle_basis`
- Wikipedia article Cycle_basis

multicommodity_flow (terminals, integer, use_edge_labels=True, vertex_bound=False, solver=False, verbose=None, integrality_tolerance=0)

Solve a multicommodity flow problem.

In the multicommodity flow problem, we are given a set of pairs \((s_i, t_i)\), called terminals meaning that \(s_i\) is willing some flow to \(t_i\).

Even though it is a natural generalisation of the flow problem this version of it is NP-Complete to solve when the flows are required to be integer.

For more information, see the **Wikipedia article Multi-commodity_flow_problem**.

INPUT:

- **terminals** - a list of pairs \((s_i, t_i)\) or triples \((s_i, t_i, w_i)\) representing a flow from \(s_i\) to \(t_i\) of intensity \(w_i\). When the pairs are of size 2, an intensity of 1 is assumed.
- **integer** boolean (default: True); whether to require an integer multicommodity flow
• use_edge_labels – boolean (default: False); whether to compute a multicommodity flow where each edge has a capacity defined by its label (if an edge has no label, capacity 1 is assumed), or to use default edge capacity of 1

• vertex_bound – boolean (default: False); whether to require that a vertex can stand at most 1 commodity of flow through it of intensity 1. Terminals can obviously still send or receive several units of flow even though vertex_bound is set to True, as this parameter is meant to represent topological properties.

• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values(). Only useful when parameter integer is True.

ALGORITHM:
(Mixed Integer) Linear Program, depending on the value of integer.

EXAMPLES:
An easy way to obtain a satisfiable multicommodity flow is to compute a matching in a graph, and to consider the paired vertices as terminals

```
sage: g = graphs.PetersenGraph()
sage: matching = [(u,v) for u,v,_ in g.matching()]  # needs networkx
sage: h = g.multicommodity_flow(matching)  # needs networkx
sage: len(h)  # needs networkx
5
```

```
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> matching = [(u,v) for u,v,_ in g.matching()]  # needs networkx
>>> h = g.multicommodity_flow(matching)  # needs networkx
>>> len(h)  # needs networkx
5
```

We could also have considered g as symmetric and computed the multicommodity flow in this version instead. In this case, however edges can be used in both directions at the same time:

```
sage: h = DiGraph(g).multicommodity_flow(matching)  # needs networkx
sage: len(h)  # needs networkx
5
```

```
>>> from sage.all import *
>>> h = DiGraph(g).multicommodity_flow(matching)  # needs networkx
```

(continues on next page)
An exception is raised when the problem has no solution

```python
sage: h = g.multicommodity_flow([(u,v,3) for u,v in matching])  # needs networkx
Traceback (most recent call last):
... EmptySetError: the multicommodity flow problem has no solution
```

```python
>>> from sage.all import *

>>> h = g.multicommodity_flow([(u,v,Integer(3)) for u,v in matching])  # needs networkx
Traceback (most recent call last):
... EmptySetError: the multicommodity flow problem has no solution
```

multiple_edges *(to_undirected=False, labels=True, sort=False, key=None)*

Return any multiple edges in the (di)graph.

INPUT:

- to_undirected – boolean (default: False)
- labels – boolean (default: True); whether to include labels
- sort – boolean (default: False); whether to sort the result
- key – a function (default: None); a function that takes an edge as its one argument and returns a value that can be used for comparisons in the sorting algorithm (we must have sort=True)

EXAMPLES:

```python
sage: G = Graph(multiedges=True, sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0, 1)] * 3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges(sort=True)
[(0, 1, None), (0, 1, None), (0, 1, None)]
```

```python
sage: D = DiGraph(multiedges=True, sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.edges(sort=True)
[(0, 1, None)]
```

(continues on next page)
sage: D.add_edges([(0, 1)] * 3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges(sort=True)
[(0, 1, None), (0, 1, None), (0, 1, None)]

sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges(sort=True)
[(0, 1, None)]

sage: G = DiGraph({1: {2: h}, 2: {1: g}}, sparse=True)
sage: G.has_multiple_edges()
False
sage: G.has_multiple_edges(to_undirected=True)
True
sage: G.multiple_edges()
[]

sage: G.multiple_edges(to_undirected=True, sort=True)
[(1, 2, h), (2, 1, g)]

```python
>>> from sage.all import *
```
False

```python
>>> D.edges(sort=True)
[(0, 1, None)]
```

```python
>>> G = DiGraph({Integer(1): {Integer(2): 'h'}, Integer(2): {Integer(1): 'g'}}
˓→, sparse=True)
```

```python
>>> G.has_multiple_edges()
False
```

```python
>>> G.has_multiple_edges(to_undirected=True)
True
```

```python
>>> G.multiple_edges()
[]
```

```python
>>> G.multiple_edges(to_undirected=True, sort=True)
[(1, 2, 'h'), (2, 1, 'g')]
```

Using the key argument to order multiple edges of incomparable types (see Issue #35903):

```python
sage: G = Graph([('A', 'B', 3), (1, 2, 1), ('A', 'B', 4), (1, 2, 2)],
˓→ multiedges=True)
```

```python
sage: G.multiple_edges(sort=True)
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for <: 'Integer Ring' and '<class
˓→'str'>'
```

```python
sage: G.multiple_edges(labels=False, sort=True, key=str)
[('A', 'B'), ('A', 'B'), (1, 2), (1, 2)]
```

```python
sage: G.multiple_edges(labels=False, sort=True, key=str)
[(1, 2, 1), (1, 2, 2), ('A', 'B', 3), ('A', 'B', 4)]
```

```python
sage: G.multiple_edges(labels=True, sort=True, key=lambda e:e[2])
[(1, 2, 1), (1, 2, 2), ('A', 'B', 3), ('A', 'B', 4)]
```

```python
sage: G.multiple_edges(labels=False, sort=True, key=lambda e:e[Integer(2)])
Traceback (most recent call last):
...
IndexError: tuple index out of range
```

```python
>>> from sage.all import *
```

```python
>>> G = Graph([('A', 'B', Integer(3)), (Integer(1), Integer(2), Integer(1)),
˓→ 'A', 'B', Integer(4)), (Integer(1), Integer(2), Integer(2))],
˓→ multiedges=True)
```

```python
>>> G.multiple_edges(sort=True)
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for <: 'Integer Ring' and '<class
˓→'str'>'
```

```python
>>> G.multiple_edges(labels=False, sort=True, key=str)
[('A', 'B'), ('A', 'B'), (1, 2), (1, 2)]
```

```python
>>> G.multiple_edges(labels=False, sort=True, key=str)
[(1, 2, 1), (1, 2, 2), ('A', 'B', 3), ('A', 'B', 4)]
```

```python
>>> G.multiple_edges(labels=True, sort=True, key=lambda e:e[Integer(2)])
[(1, 2, 1), (1, 2, 2), ('A', 'B', 3), ('A', 'B', 4)]
```

```python
>>> G.multiple_edges(labels=False, sort=True, key=lambda e:e[Integer(2)])
Traceback (most recent call last):
...
IndexError: tuple index out of range
```

multiway_cut(vertices, value_only, use_edge_labels=False, solver=False, verbose=None,
˓→ integrality_tolerance=0)
Return a minimum edge multiway cut.

A multiway cut for a vertex set S in a graph or a digraph G is a set C of edges such that any two vertices u, v in S are disconnected when removing the edges of C from G. (cf. http://www.d.kth.se/~viggo/wwwcompendium/node92.html)

Such a cut is said to be minimum when its cardinality (or weight) is minimum.

INPUT:

- vertices – iterable; the set of vertices
- value_only – boolean (default: False); whether to return only the size of the minimum multiway cut, or to return the list of edges of the multiway cut
- use_edge_labels – boolean (default: False); whether to compute a weighted minimum multiway cut where the weight of an edge is defined by its label (if an edge has no label, 1 is assumed), or to compute a cut of minimum cardinality (i.e., edge weights are set to 1)
- solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:

Of course, a multiway cut between two vertices correspond to a minimum edge cut:

```
sage: g = graphs.PetersenGraph()
sage: g.edge_cut(0,3) == g.multiway_cut([0,3], value_only=True)  # needs sage.numerical.mip
True
```

```
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.edge_cut(Integer(0),Integer(3)) == g.multiway_cut([Integer(0),
   Integer(3)], value_only=True)  # needs sage.numerical.mip
True
```

As Petersen’s graph is 3-regular, a minimum multiway cut between three vertices contains at most 2×3 edges (which could correspond to the neighborhood of 2 vertices):

```
sage: g.multiway_cut([0,3,9], value_only=True) == 2*3  # needs sage.numerical.mip
True
```

```
>>> from sage.all import *
>>> g.multiway_cut([Integer(0),Integer(3),Integer(9)], value_only=True) ==
   Integer(2)*Integer(3)  # needs sage.numerical.mip
True
```

In this case, though, the vertices are an independent set. If we pick instead vertices 0, 9, and 7, we can save 4 edges in the multiway cut:

```
sage: g.multiway_cut([0,7,9], value_only=True) == 2*3 - 1  # needs sage.numerical.mip
True
```
This example, though, does not work in the directed case anymore, as it is not possible in Petersen’s graph to mutualise edges:

```
sage: g = DiGraph(g)
sage: g.multiway_cut([0,7,9], value_only=True) == 3*3  # needs sage.numerical.mip
True
```

Of course, a multiway cut between the whole vertex set contains all the edges of the graph:

```
sage: C = g.multiway_cut(g.vertices(sort=False))  # needs sage.numerical.mip
sage: set(C) == set(g.edges(sort=False))  # needs sage.numerical.mip
True
```

name *(new=None)*

Return or set the graph’s name.

INPUT:

- new – string (default: None); by default (new == None), the method returns the name of the graph. When name is set, the string representation of that object becomes the new name of the (di)graph (new == '' removes any name).

EXAMPLES:

```
sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7, 8], 6: [8, 9], 7: [9]}
sage: G = Graph(d); G
Graph on 10 vertices
sage: G.name("Petersen Graph"); G
Petersen Graph: Graph on 10 vertices
sage: G.name(new=""); G
Graph on 10 vertices
sage: G.name()
''
sage: G.name(42); G
```

(continues on next page)
42: Graph on 10 vertices

```python
sage: G.name()
'42'
```

```python
>>> from sage.all import *

>>> d = {Integer(0): [Integer(1), Integer(4), Integer(5)], Integer(1):
    ...
    →[Integer(2), Integer(6)], Integer(2): [Integer(3), Integer(7)], Integer(3):
    ...
    →[Integer(4), Integer(8)], Integer(4): [Integer(9)], Integer(5): [Integer(7),
    ...
    →Integer(8)], Integer(6): [Integer(8), Integer(9)], Integer(7): [Integer(9)]}
>>> G = Graph(d); G
Graph on 10 vertices

>>> G.name("Petersen Graph"); G
Petersen Graph: Graph on 10 vertices

>>> G.name(new=""); G
Graph on 10 vertices

>>> G.name()

>>> G.name(Integer(42)); G
42: Graph on 10 vertices

>>> G.name()
'42'
```

neighbor_iterator *(vertex, closed=False)*

Return an iterator over neighbors of vertex.

When closed is set to True, the returned iterator also contains vertex.

INPUT:

* vertex—a vertex of self

* closed—a boolean (default: False); whether to return the closed neighborhood of vertex, i.e., including vertex, or the open neighborhood in which vertex is included only if there is a loop on that vertex.

EXAMPLES:

```python
sage: G = graphs.PetersenGraph()
sage: for i in G.neighbor_iterator(0):
    ....:     print(i)
1
4
5
sage: D = G.to_directed()
sage: for i in D.neighbor_iterator(0):
    ....:     print(i)
1
4
5
```

```python
>>> from sage.all import *

>>> G = graphs.PetersenGraph()

>>> for i in G.neighbor_iterator(Integer(0)):
    ...     print(i)
1
4
5
```
neighbors (vertex, closed=False)

Return a list of neighbors (in and out if directed) of vertex.

G[vertex] also works. When closed is set to True, the returned iterator also contains vertex.

INPUT:

- vertex – a vertex of self
- closed – a boolean (default: False); whether to return the closed neighborhood of vertex, i.e., including vertex, or the open neighborhood in which vertex is included only if there is a loop on that vertex.
EXAMPLES:

```python
sage: P = graphs.PetersenGraph()
sage: sorted(P.neighbors(3))
[2, 4, 8]
sage: sorted(P[4])
[0, 3, 9]
sage: sorted(P.neighbors(3, closed=True))
[2, 3, 4, 8]
```

```python
>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> sorted(P.neighbors(Integer(3)))
[2, 4, 8]
>>> sorted(P[Integer(4)])
[0, 3, 9]
>>> sorted(P.neighbors(Integer(3), closed=True))
[2, 3, 4, 8]
```

`networkx_graph(weight_function=None)`

Return a new `NetworkX` graph from the Sage graph.

INPUT:

- `weight_function` – function (default: `None`); a function that takes as input an edge `(u, v, l)` and outputs its weight.

EXAMPLES:

```python
sage: G = graphs.TetrahedralGraph()
sage: N = G.networkx_graph()
# needs networkx
sage: type(N)
# needs networkx
<class 'networkx.classes.graph.Graph'>
```

```python
sage: def weight_fn(e):
....:     return e[2]
sage: G1 = Graph([(1,2,1), (1,3,4), (2,3,3), (3,4,4)])
sage: H = G1.networkx_graph(weight_function=weight_fn)
# needs networkx
sage: H.edges(data=True)
# needs networkx
EdgeDataView([(1, 2, {'weight': 1}), (1, 3, {'weight': 4}), (2, 3, {'weight': 3}), (3, 4, {'weight': 4})])
```

```python
sage: G2 = DiGraph([(1,2,1), (1,3,4), (2,3,3), (3,4,4), (3,4,5)], multiedges=True)
....:     multiedges=True)
sage: H = G2.networkx_graph(weight_function=weight_fn)
# needs networkx
sage: H.edges(data=True)
# needs networkx
OutMultiEdgeDataView([(1, 2, {'weight': 1}), (1, 3, {'weight': 4}), (2, 3, {'weight': 3}), (3, 4, {'weight': 5}), (3, 4, {'weight': 4})])
```

```python
>>> from sage.all import *
>>> G = graphs.TetrahedralGraph()
>>> N = G.networkx_graph()
# (continues on next page)
```
nowhere_zero_flow \((k, \text{solver} = \text{None}, \text{verbose} = \text{None}, \text{integrality_tolerance} = 0) \)

Return a \(k \)-nowhere zero flow of the (di)graph.

A flow on a graph \(G = (V, E) \) is a pair \((D, f)\) such that \(D \) is an orientation of \(G \) and \(f \) is a function on \(E \) satisfying

\[
\sum_{u \in \mathcal{N}_D^-(v)} f(uv) = \sum_{w \in \mathcal{N}_D^+(v)} f(vw), \quad \forall v \in V.
\]

A nowhere zero flow on a graph \(G = (V, E) \) is a flow \((D, f)\) such that \(f(e) \neq 0 \) for every \(e \in E \). For a positive integer \(k \), a \(k \)-flow on a graph \(G = (V, E) \) is a flow \((D, f)\) such that \(f : E \to \mathbb{Z} \) and \(-(k - 1) \leq f(e) \leq k - 1 \) for every \(e \in E \). A \(k \)-flow is positive if \(f(e) > 0 \) for every \(e \in E \). A \(k \)-flow which is nowhere zero is called a \(k \)-nowhere zero flow (or \(k \)-NZF).

The following are equivalent.

- \(G \) admits a positive \(k \)-flow.
- \(G \) admits a \(k \)-NZF.
- Every orientation of \(G \) admits a \(k \)-NZF.

Furthermore, a (di)graph admits a \(k \)-NZF if and only if it is bridgeless and every bridgeless graph admits a 6-NZF [Sey1981]. See the Wikipedia article Nowhere-zero_flow for more details.

ALGORITHM:

If \(\text{self} \) is not directed, we search for a \(k \)-NZF on any orientation of \(\text{self} \) and then build a positive \(k \)-NZF by reverting edges with negative flow.

INPUT:
• k – integer (default: 6); when set to a positive integer ≥ 2, search for a k-nowhere zero flow

• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT:

A digraph with flow values stored as edge labels if a k-nowhere zero flow is found. If self is undirected, the edges of this digraph indicate the selected orientation. If no feasible solution is found, an error is raised.

EXAMPLES:
The Petersen graph admits a (positive) 5-nowhere zero flow, but no 4-nowhere zero flow:

```
sage: g = graphs.PetersenGraph()
sage: h = g.nowhere_zero_flow(k=5)  # needs sage.numerical.mip
sage: sorted(set(h.edge_labels()))  # needs sage.numerical.mip
[1, 2, 3, 4]
sage: h = g.nowhere_zero_flow(k=3)  # needs sage.numerical.mip
Traceback (most recent call last):
  ... EmptySetError: the problem has no feasible solution
```

```
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> h = g.nowhere_zero_flow(k=Integer(5))  # needs sage.numerical.mip
>>> sorted(set(h.edge_labels()))  # needs sage.numerical.mip
[1, 2, 3, 4]
>>> h = g.nowhere_zero_flow(k=Integer(3))  # needs sage.numerical.mip
Traceback (most recent call last):
  ... EmptySetError: the problem has no feasible solution
```

The de Bruijn digraph admits a 2-nowhere zero flow:

```
sage: g = digraphs.DeBruijn(2, 3)  # needs sage.combinat
sage: h = g.nowhere_zero_flow(k=2)  # needs sage.combinat sage.numerical.mip
sage: sorted(set(h.edge_labels()))  # needs sage.combinat sage.numerical.mip
[-1, 1]
```

```
>>> from sage.all import *
>>> g = digraphs.DeBruijn(Integer(2), Integer(3))  # needs sage.combinat
>>> h = g.nowhere_zero_flow(k=Integer(2))
```

(continues on next page)
num_edges()

Return the number of edges.

Note that num_edges() also returns the number of edges in G.

EXAMPLES:

```python
sage: G = graphs.PetersenGraph()
sage: G.size()
15
```

num_faces(embedding=None)

Return the number of faces of an embedded graph.

If no embedding is provided or stored as self._embedding, this method uses Euler’s formula (see the Wikipedia article Euler_characteristic) to determine the number of faces if the graph is planar. If the graph is not planar, an error is raised.

If an embedding is provided or stored as self._embedding, this method calls method faces() to get the list of faces induced by the embedding in each connected component of the graph. Then it returns the sum of size of these lists minus the number of connected components plus one to ensure that the external face is counted only once.

INPUT:

- embedding – dictionary (default: None); a combinatorial embedding dictionary. Format: {v1: [v2,v3], v2: [v1], v3: [v1]} (clockwise ordering of neighbors at each vertex). If set to None (default) the method will use the embedding stored as self._embedding. If none is stored, the method will compute the set of faces from the embedding returned by is_planar() (if the graph is, of course, planar).

EXAMPLES:

```python
sage: T = graphs.TetrahedralGraph()
sage: T.num_faces()
4
```

```python
>>> from sage.all import *
```

```python
>>> T = graphs.TetrahedralGraph()
```

```python
>>> T.num_faces()
4
```

The external face of a disconnected graph is counted only once:

```python
sage: (T + T).num_faces()
7
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
sage: (T + T + T).num_faces()
10
```

```python
>>> from sage.all import *
>>> (T + T).num_faces()
7
>>> (T + T + T).num_faces()
10
```

Trees and forests have a single face:

```python
sage: T = graphs.RandomTree(10)
sage: T.num_faces()
1
sage: (T + T).num_faces()
1
```

```python
>>> from sage.all import *
>>> T = graphs.RandomTree(Integer(10))
>>> T.num_faces()
1
>>> (T + T).num_faces()
1
```

num_verts()

Return the number of vertices.

Note that `len(G)` and `num_verts()` also return the number of vertices in G.

EXAMPLES:

```python
sage: G = graphs.PetersenGraph()
sage: G.order()
10
```

```python
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.order()
10
```

```python
sage: G = graphs.TetrahedralGraph()
sage: len(G)
4
```

```python
>>> from sage.all import *
>>> G = graphs.TetrahedralGraph()
>>> len(G)
4
```

number_of_loops()

Return the number of edges that are loops

EXAMPLES:
sage: G = Graph(4, loops=True)
sage: G.add_edges([(0, 0), (1, 1), (2, 2), (3, 3), (2, 3)])
sage: G.edges(sort=True, labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: G.number_of_loops()
4

>>> from sage.all import *

>>> G = Graph(Integer(4), loops=True)

>>> G.add_edges([(Integer(0), Integer(0)), (Integer(1), Integer(1)),
 (Integer(2), Integer(2)), (Integer(3), Integer(3)), (Integer(2),
 Integer(3))])

>>> G.edges(sort=True, labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]

>>> G.number_of_loops()
4

sage: D = DiGraph(4, loops=True)
sage: D.add_edges([(0, 0), (1, 1), (2, 2), (3, 3), (2, 3)])
sage: D.edges(sort=True, labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: D.number_of_loops()
4

>>> from sage.all import *

>>> D = DiGraph(Integer(4), loops=True)

>>> D.add_edges([(Integer(0), Integer(0)), (Integer(1), Integer(1)),
 (Integer(2), Integer(2)), (Integer(3), Integer(3)), (Integer(2),
 Integer(3))])

>>> D.edges(sort=True, labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]

>>> D.number_of_loops()
4

odd_girth (algorithm='bfs', certificate=False)

Return the odd girth of the graph.

The odd girth is the length of the shortest cycle of odd length in the graph (directed cycle if the graph is
directed). Bipartite graphs have infinite odd girth.

INPUT:

- **algorithm** – string (default: "bfs"); the algorithm to use:
 - "bfs" – BFS-based algorithm
 - any algorithm accepted by charpoly() for computation from the characteristic polynomial (see
 [Har1962] and [Big1993], p. 45)
- **certificate** – boolean (default: False); whether to return \((g, c)\), where \(g\) is the odd girth and
 \(c\) is a list of vertices of a (directed) cycle of length \(g\) in the graph, thus providing a certificate that the odd
girth is at most \(g\), or None if \(g\) is infinite. So far, this parameter is accepted only when algorithm
 = "bfs".

EXAMPLES:

The McGee graph has girth 7 and therefore its odd girth is 7 as well:
Graph Theory, Release 10.4

```
sage: G = graphs.McGeeGraph()  # needs networkx
sage: G.girth()                 # needs networkx
7
sage: G.odd_girth()            # needs networkx
7
```

```
>>> from sage.all import *
>>> G = graphs.McGeeGraph()  # needs networkx
>>> G.girth()                 # needs networkx
7
>>> G.odd_girth()            # needs networkx
7
```

Any complete (directed) graph on more than 2 vertices contains a (directed) triangle and has thus odd girth 3:

```
sage: G = graphs.CompleteGraph(5)
sage: G.odd_girth(certificate=True)  # random
(3, [2, 1, 0])
sage: G = digraphs.Complete(5)
sage: G.odd_girth(certificate=True)  # random
(3, [1, 2, 0])
```

```
>>> from sage.all import *
>>> G = graphs.CompleteGraph(Integer(5)) # random
>>> G.odd_girth(certificate=True)  # random
(3, [2, 1, 0])
>>> G = digraphs.Complete(Integer(5))
>>> G.odd_girth(certificate=True)  # random
(3, [1, 2, 0])
```

Bipartite graphs have no odd cycle and consequently have infinite odd girth:

```
sage: G = graphs.RandomBipartite(6, 6, .5)  # needs numpy
sage: G.odd_girth()                         # needs numpy
+Infinity
sage: G = graphs.Grid2dGraph(3, 4)
sage: G.odd_girth()                         # needs numpy
+Infinity
```

```
>>> from sage.all import *
>>> G = graphs.RandomBipartite(Integer(6), Integer(6), RealNumber('.5'))  # needs numpy
>>> G.odd_girth()                         # needs numpy
+Infinity
>>> G = graphs.Grid2dGraph(Integer(3), Integer(4))
>>> G.odd_girth()                         # needs numpy
+Infinity
```

(continues on next page)
The odd girth of a (directed) graph with loops is 1:

```python
sage: # needs networkx
sage: G = graphs.RandomGNP(10, .5)
sage: G.allow_loops(True)
sage: G.add_edge(0, 0)
sage: G.odd_girth()
1
sage: G = digraphs.RandomDirectedGNP(10, .5)
sage: G.allow_loops(True)
sage: G.add_edge(0, 0)
sage: G.odd_girth()
1
```

See also:

- `girth()` — return the girth of the graph.

order()

Return the number of vertices.

Note that `len(G)` and `num_verts()` also return the number of vertices in G.

EXAMPLES:

```python
sage: G = graphs.PetersenGraph()
sage: G.order()
10

```
Return the PageRank of the vertices of self.

PageRank is a centrality measure earlier used to rank web pages. The PageRank algorithm outputs the probability distribution that a random walker in the graph visits a vertex.

See the Wikipedia article PageRank for more information.

INPUT:

- **alpha** – float (default: 0.85); damping parameter for PageRank. alpha is the click-through probability useful for preventing sinks. The probability at any step, that an imaginary surfer who is randomly clicking on links will continue is a damping factor d.
- **personalization** – dict (default: None); a dictionary keyed by vertices associating to each vertex a value. The personalization can be specified for a subset of the vertices, if not specified a nodes personalization value will be taken as zero. The sum of the values must be nonzero. By default (None), a uniform distribution is used.
- **by_weight** – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
- **weight_function** – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label 1, if 1 is not None, else 1 as a weight.
- **check_weight** – boolean (default: True); whether to check that the weight_function outputs a number for each edge.
- **dangling** – dict (default: None); a dictionary keyed by a vertex the outedge of “dangling” vertices, (i.e., vertices without any outedges) points to and the dict value is the weight of that outedge. By default, dangling vertices are given outedges according to the personalization vector (uniform if not specified). It may be common to have the dangling dict to be the same as the personalization dict.
- **algorithm** – string (default: None); the algorithm to use in computing PageRank of G. The following algorithms are supported:
 - NetworkX – uses NetworkX’s default implementation (Scipy as of 2.6)
 - "Scipy" – uses Scipy’s PageRank algorithm implementation
 - "igraph" – uses igraph’s PageRank algorithm implementation
 - "None" – uses best implementation available

OUTPUT: a dictionary containing the PageRank value of each node

Note: Parameters alpha, by_weight and weight_function are common to all algorithms. Parameters personalization and dangling are used only by algorithms NetworkX, Numpy and Scipy.

EXAMPLES:
sage: G = graphs.CycleGraph(4)
sage: G.pagerank(algorithm="Networkx")
needs networkx
{0: 0.25, 1: 0.25, 2: 0.25, 3: 0.25}
sage: G.pagerank(alpha=0.50, algorithm="igraph")
optional - python_igraph
{0: 0.25, 1: 0.25, 2: 0.25, 3: 0.25}
sage: G = Graph([(1, 2, 40), (2, 3, 50), (3, 4, 60),
....: (1, 4, 70), (4, 5, 80), (5, 6, 20)])
sage: G.pagerank(algorithm="NetworkX")
abs tol 1e-9
needs networkx
{0: 0.16112205885619563,
 1: 0.1619531043247219,
 2: 0.16112205885619563,
 3: 0.2374999999999999,
 4: 0.100546895675278}
sage: G.pagerank(algorithm="NetworkX", by_weight=True)
abs tol 1e-9
needs networkx
{0: 0.16459583718588994,
 1: 0.13977928595154515,
 2: 0.16539840184339605,
 3: 0.3063198690713853,
 4: 0.505390084497706962}
sage: G.pagerank(algorithm="Scipy")
abs tol 1e-9
needs networkx scipy
{0: 0.16112205885619563,
 1: 0.1619531043247219,
 2: 0.16112205885619563,
 3: 0.23749999999999993,
 4: 0.100546895675278}
sage: G.pagerank(algorithm="Scipy", by_weight=True)
abs tol 1e-9
needs networkx scipy
{0: 0.16459583718588994,
 1: 0.13977928595154515,
 2: 0.16539840184339605,
 3: 0.3063198690713853,
 4: 0.505390084497706962}
sage: G.pagerank(algorithm="igraph")
optional - python_igraph
{0: 0.16112198303979128,
 1: 0.16195368558382262,
 2: 0.16112198303979125,
 3: 0.23749999999999993,
 4: 0.10054631441617742}
sage: G.pagerank()
abs tol 1e-9
needs networkx
{0: 0.16112205885619563,
 1: 0.1619531043247219,
 2: 0.16112205885619563,
 3: 0.23749999999999999,
 4: 0.100546895675278}
sage: G.pagerank(by_weight=True) # abs tol 1e-9 #
needs network
(1: 0.1645983718588994,
2: 0.1397792859515415,
3: 0.16539840184339605,
4: 0.3063198690713853,
5: 0.1700057609707141,
6: 0.05390084497706962)

>>> from sage.all import *
>>> G = graphs.CycleGraph(Integer(4))
>>> G.pagerank(algorithm="Networkx") #
needs network
{0: 0.25, 1: 0.25, 2: 0.25, 3: 0.25}
>>> G.pagerank(alpha=RealNumber('0.50'), algorithm="igraph") # abs tol 1e-9, optional - python_igraph
{0: 0.25, 1: 0.25, 2: 0.25, 3: 0.25}

>>> G = Graph([(Integer(1), Integer(2), Integer(40)), (Integer(2), Integer(3), Integer(50)), ...
 (Integer(1), Integer(4), Integer(70)), (Integer(4), Integer(5), Integer(80)), (Integer(5), Integer(6), Integer(20))])
>>> G.pagerank(algorithm="NetworkX") # abs tol 1e-9 #
needs network
{1: 0.16112205885619563,
2: 0.1619531043247219,
3: 0.16112205885619563,
4: 0.2374999999999999,
5: 0.17775588228760858,
6: 0.100546895675278}

>>> G.pagerank(algorithm="NetworkX", by_weight=True) # abs tol 1e-9 #
needs network
{1: 0.16459583718588994,
2: 0.1397792859515415,
3: 0.16539840184339605,
4: 0.3063198690713853,
5: 0.1700057609707141,
6: 0.05390084497706962}

>>> G.pagerank(algorithm="Scipy") # abs tol 1e-9 #
needs network scipy
{1: 0.16112205885619563,
2: 0.1619531043247219,
3: 0.16112205885619563,
4: 0.2374999999999999,
5: 0.17775588228760858,
6: 0.100546895675278}

>>> G.pagerank(algorithm="Scipy", by_weight=True) # abs tol 1e-9 #
needs network scipy
{1: 0.16459583718588994,
2: 0.1397792859515415,
3: 0.16539840184339605,
4: 0.3063198690713853,
5: 0.1700057609707141,
6: 0.05390084497706962}

>>> G.pagerank(algorithm="igraph") # abs tol 1e-9, optional - python_igraph
{1: 0.16112198303979128,
See also:

- Wikipedia article PageRank

planar_dual (embedding=None)

Return the planar dual of an embedded graph.

A combinatorial embedding of a graph is a clockwise ordering of the neighbors of each vertex. From this information one can obtain the dual of a plane graph, which is what the method returns. The vertices of the dual graph correspond to faces of the primal graph.

INPUT:

- embedding – dictionary (default: None); a combinatorial embedding dictionary. Format: \{v1: [v2, v3], v2: [v1], v3: [v1]\} (clockwise ordering of neighbors at each vertex). If set to None (default) the method will use the embedding stored as self._embedding. If none is stored, the method will compute the set of faces from the embedding returned by is_planar() (if the graph is, of course, planar).

EXAMPLES:

sage: C = graphs.CubeGraph(3)
sage: C.planar_dual()
Graph on 6 vertices

sage: graphs.IcosahedralGraph().planar_dual().is_isomorphic(graphs.DodecahedralGraph())
True

```python
>>> from sage.all import *
>>> C = graphs.CubeGraph(Integer(3))
>>> C.planar_dual()
Graph on 6 vertices
>>> graphs.IcosahedralGraph().planar_dual().is_isomorphic(graphs.DodecahedralGraph())
True
```
The planar dual of the planar dual is isomorphic to the graph itself:

```python
sage: g = graphs.BuckyBall()
sage: g.planar_dual().planar_dual().is_isomorphic(g)
True
```

See also:

- `faces()`
- `set_embedding()`
- `get_embedding()`
- `is_planar()`

Todo: Implement the method for graphs that are not 3-vertex-connected, or at least have a faster 3-vertex-connectivity test (Issue #24635).

```
plot(**options)
```

Return a `Graphics` object representing the (di)graph.

INPUT:

- `pos` – an optional positioning dictionary
- `layout` – string (default: None); specifies a kind of layout to use, takes precedence over `pos`
 - 'circular' – plots the graph with vertices evenly distributed on a circle
 - 'spring' – uses the traditional spring layout, using the graph's current positions as initial positions
 - 'tree' – the (di)graph must be a tree. One can specify the root of the tree using the keyword `tree_root`, otherwise a root will be selected at random. Then the tree will be plotted in levels, depending on minimum distance for the root.
- `vertex_labels` – boolean (default: True); whether to print vertex labels
- `edge_labels` – boolean (default: False); whether to print edge labels. If True, the result of `str(l)` is printed on the edge for each label `l`. Labels equal to `None` are not printed (to set edge labels, see `set_edge_label()`).
- `edge_labels_background` – the color of the edge labels background. The default is “white”. To achieve a transparent background use “transparent”.
- `vertex_size` – size of vertices displayed
- `vertex_shape` – the shape to draw the vertices, for example "o" for circle or "s" for square. Whole list is available at https://matplotlib.org/api/markers_api.html. (Not available for multiedge digraphs.)
- `graph_border` – boolean (default: False); whether to include a box around the graph
- `vertex_colors` – dictionary (default: None); optional dictionary to specify vertex colors: each key is a color recognizable by matplotlib, and each corresponding entry is a list of vertices. If a vertex is not listed, it looks invisible on the resulting plot (it doesn’t get drawn).
• **edge_colors** – dictionary (default: None); a dictionary specifying edge colors: each key is a color recognized by matplotlib, and each entry is a list of edges.

• **partition** – a partition of the vertex set (default: None); if specified, plot will show each cell in a different color. **vertex_colors** takes precedence.

• **talk** – boolean (default: False); if True, prints large vertices with white backgrounds so that labels are legible on slides

• **iterations** – integer; how many iterations of the spring layout algorithm to go through, if applicable

• **color_by_label** – a boolean or dictionary or function (default: False); whether to color each edge with a different color according to its label; the colors are chosen along a rainbow, unless they are specified by a function or dictionary mapping labels to colors; this option is incompatible with **edge_color** and **edge_colors**.

• **heights** – dictionary (default: None); if specified, this is a dictionary from a set of floating point heights to a set of vertices

• **edge_style** – keyword arguments passed into the edge-drawing routine. This currently only works for directed graphs, since we pass off the undirected graph to networkx

• **tree_root** – a vertex (default: None); if specified, this vertex is used as the root for the layout="tree" option. Otherwise, then one is chosen at random. Ignored unless layout='tree'.

• **tree_orientation** – string (default: "down"); one of “up” or “down”. If “up” (resp., “down”), then the root of the tree will appear on the bottom (resp., top) and the tree will grow upwards (resp. downwards). Ignored unless layout='tree'.

• **save_pos** – boolean (default: False); save position computed during plotting

Note:

• This method supports any parameter accepted by **sage.plot.graphics.Graphics.show()**.

• See the documentation of the **sage.graphs.graph_plot** module for information and examples of how to define parameters that will be applied to all graph plots.

• Default parameters for this method and a specific graph can also be set through the options mechanism. For more information on this different way to set default parameters, see the help of the options decorator.

• See also the **sage.graphs.graph_latex** module for ways to use LaTeX to produce an image of a graph.

EXAMPLES:

```python
sage: from sage.graphs.graph_plot import graphplot_options
sage: sorted(graphplot_options.items())
[...

sage: from math import sin, cos, pi
sage: P = graphs.PetersenGraph()
sage: d = {"FF0000": [0, 5], "FF9900": [1, 6], "FFFF00": [2, 7],
....: "#0FF00": [3, 8], "#000OFF": [4, 9]}
sage: pos_dict = {}
sage: for i in range(5):
....: x = float(cos(pi/2 + (2*pi)/5*i))
....: y = float(sin(pi/2 + (2*pi)/5*i))
....: pos_dict[i] = [x,y]
```

(continues on next page)
Graph Theory, Release 10.4

```python
sage: for i in range(5, 10):
    ...:     x = float(0.5*cos(pi/2 + (2*pi)/5)*i)
    ...:     y = float(0.5*sin(pi/2 + (2*pi)/5)*i)
    ...:     pos_dict[i] = [x, y]
sage: pl = P.plot(pos=pos_dict, vertex_colors=d)  # needs sage.plot
sage: pl.show()  # needs sage.plot
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_plot import graphplot_options
>>> sorted(graphplot_options.items())
[...
>>> from math import sin, cos, pi
>>> P = graphs.PetersenGraph()
>>> d = {'#FF0000': [Integer(0), Integer(5)], '#FF9900': [Integer(1), Integer(6)], '#FFFF00': [Integer(2), Integer(7)], '#00FF00': [Integer(3), Integer(8)], '#0000FF': [Integer(4), Integer(9)]}
>>> pos_dict = {}
>>> for i in range(Integer(5)):
...     x = float(cos(pi/Integer(2) + ((Integer(2)*pi)/Integer(5))*i))
...     y = float(sin(pi/Integer(2) + ((Integer(2)*pi)/Integer(5))*i))
...     pos_dict[i] = [x, y]
>>> for i in range(Integer(5), Integer(10)):
...     x = float(RealNumber(0.5)*cos(pi/Integer(2) + ((Integer(2)*pi)/Integer(5))*i))
...     y = float(RealNumber(0.5)*sin(pi/Integer(2) + ((Integer(2)*pi)/Integer(5))*i))
...     pos_dict[i] = [x, y]
>>> pl = P.plot(pos=pos_dict, vertex_colors=d)  # needs sage.plot
>>> pl.show()  # needs sage.plot
```

```python
sage: C = graphs.CubeGraph(8)
sage: P = C.plot(vertex_labels=False, vertex_size=0, graph_border=True)  # needs sage.plot
sage: P.show()  # needs sage.plot
```

```python
>>> from sage.all import *
>>> C = graphs.CubeGraph(Integer(8))
>>> P = C.plot(vertex_labels=False, vertex_size=Integer(0), graph_border=True)  # needs sage.plot
>>> P.show()  # needs sage.plot
```

```python
sage: G = graphs.HeawoodGraph()
sage: for u, v, l in G.edges(sort=False):
    ...:     G.set_edge_label(u, v, ('' + str(u) + '' + str(v) + ''))
sage: G.plot(edge_labels=True).show()  # needs sage.plot
```

1.1. Generic graphs (common to directed/undirected)

321
>>> from sage.all import *
>>> G = graphs.HeawoodGraph()
>>> for u, v, l in G.edges(sort=False):
... G.set_edge_label(u, v, '(' + str(u) + ', ' + str(v) + ')')
>>> G.plot(edge_labels=True).show() # needs sage.plot

sage: D = DiGraph({0: [1, 10, 19], 1: [8, 2], 2: [3, 6], 3: [19, 4],
.....: 4: [17, 5], 5: [6, 15], 6: [7], 7: [8, 14],
.....: 8: [9], 9: [10, 13], 10: [11], 11: [12, 18],
.....: 12: [16, 13], 13: [14], 14: [15], 15: [16],
.....: 16: [17, 18], 17: [19], 18: [19]}, sparse=True)
>>> for u, v, l in D.edges(sort=False):
... D.set_edge_label(u, v, '(' + str(u) + ', ' + str(v) + ')')
>>> D.plot(edge_labels=True, layout=circular).show() # needs sage.plot

sage: # needs sage.plot
sage: from sage.plot.colors import rainbow
sage: C = graphs.CubeGraph(5)
sage: R = rainbow(5)
sage: edge_colors = {R[i]: [] for i in range(5)}
>>> for u, v, l in C.edges(sort=False):
... for i in range(5):
... if u[i] != v[i]:
... edge_colors[R[i]].append((u, v, l))
sage: C.plot(vertex_labels=False, vertex_size=0,
.....: edge_colors=edge_colors).show()
... if u[i] != v[i]:
...
edge_colors[R[i]].append((u, v, l))

>>> C.plot(vertex_labels=False, vertex_size=Integer(0),
...
edge_colors=edge_colors).show()

sage: D = graphs.DodecahedralGraph()
sage: Pi = [[6,5,15,14,7], [16,13,8,2,4], [12,17,9,3,1], [0,19,18,10,11]]
sage: D.show(partition=Pi) # needs sage.plot

>>> from sage.all import *
>>> D = graphs.DodecahedralGraph()
>>> Pi = [[Integer(6),Integer(5),Integer(15),Integer(14),Integer(7)],
...
[Integer(16),Integer(13),Integer(8),Integer(2),Integer(4)], [Integer(12),
...
Integer(17),Integer(9),Integer(3),Integer(1)], [Integer(0),Integer(19),
...
Integer(18),Integer(10),Integer(11)]]
>>> D.show(partition=Pi) # needs sage.plot

sage: G = graphs.PetersenGraph()
sage: G.allow_loops(True)
sage: G.add_edge(0, 0)
sage: G.show() # needs sage.plot

>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.allow_loops(True)
>>> G.add_edge(Integer(0), Integer(0))
>>> G.show() # needs sage.plot

sage: D = DiGraph({0: [0, 1], 1: [2], 2: [3]}, loops=True)
sage: D.show() # needs sage.plot

sage: D = DiGraph({Integer(0): [Integer(0), Integer(1)], Integer(1):...
...
[Integer(2)], Integer(2): [Integer(3)]}, loops=True)
>>> D.show() # needs sage.plot

sage: pos = {0: [0.0, 1.5], 1: [-0.8, 0.3], 2: [-0.6, -0.8], 3: [0.6, -0.8],...
...
4: [0.8, 0.3]}
sage: g = Graph({0: [1], 1: [2], 2: [3], 3: [4], 4: [0]})
sage: g.plot(pos=pos, layout='spring', iterations=0) # needs sage.plot

1.1. Generic graphs (common to directed/undirected)


```python
from sage.all import *
pos = {Integer(0): [RealNumber(0.0), RealNumber(1.5)], Integer(1): [-RealNumber(0.8), RealNumber(0.3)], Integer(2): [-RealNumber(0.8)], Integer(3): [RealNumber(0.6), -RealNumber(0.8)], Integer(4): [RealNumber(0.8), RealNumber(0.3)]}
g = Graph({Integer(0): [Integer(1)], Integer(1): [Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(4)], Integer(4): [Integer(0)]})
g.plot(pos=pos, layout='spring', iterations=Integer(0))  # needs sage.plot
```

```
sage: G = Graph()
sage: P = G.plot()  # needs sage.plot
sage: P.axes()  # needs sage.plot
False
sage: G = DiGraph()
sage: P = G.plot()  # needs sage.plot
sage: P.axes()  # needs sage.plot
False
```

```python
from sage.all import *
G = Graph()
P = G.plot()  # needs sage.plot
P.axes()  # needs sage.plot
False
```

```python
G = Graph()
P = G.plot()  # needs sage.plot
P.axes()  # needs sage.plot
False
```

```python
G = Graph()
P = G.plot()  # needs sage.plot
P.axes()  # needs sage.plot
False
```

```
sage: G = graphs.PetersenGraph()
sage: G.get_pos()
{0: (0.0..., 1.0...),
 1: (-0.95..., 0.30...),
 2: (-0.58..., -0.80...),
 3: (0.58..., -0.80...),
 4: (0.95..., 0.30...),
 5: (0.0..., 0.5...),
 6: (-0.47..., 0.15...),
 7: (-0.29..., -0.40...),
 8: (0.29..., -0.40...),
 9: (0.47..., 0.15...)}
sage: P = G.plot(save_pos=True, layout='spring')  # needs sage.plot
```

>>> from sage.all import *

>>> G = graphs.PetersenGraph()

>>> G.get_pos()
{0: (0.0..., 1.0...),
 1: (-0.95..., 0.30...),
 2: (-0.58..., -0.80...),
 3: (0.58..., -0.80...),
 4: (0.95..., 0.30...),
 5: (0.0..., 0.5...),
 6: (-0.47..., 0.15...),
 7: (-0.29..., -0.40...),
 8: (0.29..., -0.40...),
 9: (0.47..., 0.15...)}

>>> P = G.plot(save_pos=True, layout='spring')

The following illustrates the format of a position dictionary:

sage: G.get_pos() # currently random across platforms, see #9593

{0: [1.17..., -0.855...],
 1: [1.81..., -0.0990...],
 2: [1.35..., 0.184...],
 3: [1.51..., 0.644...],
 4: [2.00..., -0.507...],
 5: [0.597..., -0.236...],
 6: [2.04..., 0.687...],
 7: [1.46..., -0.473...],
 8: [0.902..., 0.773...],
 9: [2.48..., -0.119...]}

sage: from sage.all import *

>>> G.get_pos() # currently random across platforms, see #9593

{0: [1.17..., -0.855...],
 1: [1.81..., -0.0990...],
 2: [1.35..., 0.184...],
 3: [1.51..., 0.644...],
 4: [2.00..., -0.507...],
 5: [0.597..., -0.236...],
 6: [2.04..., 0.687...],
 7: [1.46..., -0.473...],
 8: [0.902..., 0.773...],
 9: [2.48..., -0.119...]}

sage: T = list(graphs.trees(7))

sage: t = T[3]

sage: t.plot(heights={0: [0], 1: [4, 5, 1], 2: [2], 3: [3, 6]})

Graphics object consisting of 14 graphics primitives

>>> from sage.all import *

>>> T = list(graphs.trees(Integer(7)))

(continues on next page)
GraphTheory, Release 10.4

(continued from previous page)

```
>>> t = T[Integer(3)]
>>> t.plot(heights={Integer(0): [Integer(0)], Integer(1): [Integer(4), ...
→Integer(5), Integer(1)], Integer(2): [Integer(2)], Integer(3): [Integer(3), ...
→Integer(6)]}))  # needs sage.plot
Graphics object consisting of 14 graphics primitives
```

```
from sage.all import *

>>> T = list(graphs.trees(7))
>>> t = T[3]
```

```
sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.plot(heights={0: [0], 1: [4, 5, 1], 2: [2], 3: [3, 6]}))  #...
→needs sage.plot
Graphics object consisting of 14 graphics primitives
```

```
sage: t.set_edge_label(0, 1, -7)
sage: t.set_edge_label(0, 5, 3)
sage: t.set_edge_label(0, 5, 99)
sage: t.set_edge_label(1, 2, 1000)
sage: t.set_edge_label(3, 2, 'spam')
sage: t.set_edge_label(2, 6, 3/2)
sage: t.set_edge_label(0, 4, 66)
```

```
sage: t.plot(heights={0: [0], 1: [4, 5, 1], 2: [2], 3: [3, 6]},...
→needs sage.plot
....:   edge_labels=True)
Graphics object consisting of 20 graphics primitives
```

```
sage: t.set_edge_label(Integer(0), Integer(1), -Integer(7))
sage: t.set_edge_label(Integer(0), Integer(5), Integer(3))
sage: t.set_edge_label(Integer(0), Integer(5), Integer(99))
sage: t.set_edge_label(Integer(1), Integer(2), Integer(1000))
sage: t.set_edge_label(Integer(3), Integer(2), 'spam')
```

```
sage: t.plot(heights={Integer(0): [Integer(0)], Integer(1): [Integer(4), ...
→Integer(5), Integer(1)], Integer(2): [Integer(2)], Integer(3): [Integer(3), ...
→Integer(6)]),
...  edge_labels=True)
Graphics object consisting of 20 graphics primitives
```

```
sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.plot(layout='tree')  #...
→needs sage.plot
Graphics object consisting of 14 graphics primitives
```

```
sage: T = list(graphs.trees(Integer(7)))
sage: t = T[Integer(3)]
```

```
sage: from sage.all import *

>>> T = list(graphs.trees(Integer(7)))
```

```
sage: T = list(graphs.trees(Integer(7)))
```

```
sage: from sage.all import *
```
Graph Theory, Release 10.4

1.1. Generic graphs (common to directed/undirected) 327

sage: t = DiGraph('JCC???@A??GO??CO??GO??')
sage: t.plot(layout='tree', tree_root=Integer(0), tree_orientation='up') # needs sage.plot
Graphics object consisting of 22 graphics primitives
sage: D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(2): [Integer(1), Integer(4)], Integer(3): [Integer(0)]})
sage: D.plot() # needs sage.plot
Graphics object consisting of 16 graphics primitives
sage: D = DiGraph(multiedges=True, sparse=True)
sage: for i in range(5):
 ... D.add_edge((i, i + 1, 'a'))
 ... D.add_edge((i, i - 1, 'b'))
sage: D.plot(edge_labels=True, edge_colors=D._color_by_label()) # needs sage.plot
Graphics object consisting of 34 graphics primitives
sage: D.plot(edge_labels=True, color_by_label={'a': 'blue', 'b': 'red'}, edge_style=dashed) # needs sage.plot
Graphics object consisting of 34 graphics primitives
sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
sage: g.add_edges([(Integer(0), Integer(0), 'a'), (Integer(0), Integer(0), 'b'), (Integer(0), Integer(1), 'c'), (Integer(0), Integer(1), 'd'), (0, 1, 'e'), (0, 1, 'f'), (2, 1, 'g'), (2, 2, 'h')])
sage: g.plot(edge_labels=True, color_by_label=True, edge_style=dashed) # needs sage.plot
Graphics object consisting of 22 graphics primitives

>>> from sage.all import *
>>> t = DiGraph('JCC???@A??GO??CO??GO??')
>>> t.plot(layout='tree', tree_root=Integer(0), tree_orientation='up') # needs sage.plot
Graphics object consisting of 22 graphics primitives
>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(2): [Integer(1), Integer(4)], Integer(3): [Integer(0)]})
>>> D.plot() # needs sage.plot
Graphics object consisting of 16 graphics primitives
>>> D = DiGraph(multiedges=True, sparse=True)
>>> for i in range(Integer(5)):
 ... D.add_edge((i, i + Integer(1), 'a'))
 ... D.add_edge((i, i - Integer(1), 'b'))
>>> D.plot(edge_labels=True, edge_colors=D._color_by_label()) # needs sage.plot
Graphics object consisting of 34 graphics primitives
>>> D.plot(edge_labels=True, color_by_label={'a': 'blue', 'b': 'red'}, edge_style=dashed) # needs sage.plot
... edge_style='dashed')
Graphics object consisting of 34 graphics primitives
>>> g = Graph({}, loops=True, multiedges=True, sparse=True)
>>> g.add_edges([(Integer(0), Integer(0), 'a'), (Integer(0), Integer(0), 'b'), (Integer(0), Integer(1), 'c'), (Integer(0), Integer(1), 'd'), (Integer(0), Integer(1), 'e'), (Integer(0), Integer(1), 'f'), (Integer(2), Integer(1), 'g'), (Integer(2), Integer(1), 'h')])
(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> g.plot(edge_labels=True, color_by_label=True, edge_style='dashed')  #...
needs sage.plot
Graphics object consisting of 22 graphics primitives
```

```python
sage: # needs sage.modular
sage: S = SupersingularModule(389)
sage: H = S.hecke_matrix(2)
sage: D = DiGraph(H, sparse=True)
sage: P = D.plot()  #...
needs sage.plot
```

```python
>>> from sage.all import *
>>> # needs sage.modular
>>> S = SupersingularModule(Integer(389))
>>> H = S.hecke_matrix(Integer(2))
>>> D = DiGraph(H, sparse=True)
>>> P = D.plot()  #...
needs sage.plot
```

```python
sage: G = Graph({a: [a, b, b, b, e], b: [c, d, e], ...
....: 'c': ['c', 'd', 'd', 'd'], 'd': ['e']}, sparse=True)
sage: G.show(pos={a: [Integer(0), Integer(1)], b: [Integer(1), Integer(1)], ...
....: 'c': [Integer(2), Integer(0)], 'd': [Integer(1), Integer(0)], 'e': [Integer(0), ...
....: Integer(0)]})  # needs sage.plot
```

```python
>>> from sage.all import *
>>> # needs sage.modular
>>> G = Graph({'a': ['a', 'b', 'b', 'b', 'e'], 'b': ['c', 'd', 'e'], ...
....: 'c': ['c', 'd', 'd', 'd'], 'd': ['e']}, sparse=True)
>>> G.show(pos={'a': [Integer(0), Integer(1)], 'b': [Integer(1), Integer(1)], ...
....: 'c': [Integer(2), Integer(0)], 'd': [Integer(1), Integer(0)], 'e': [Integer(0), ...
....: Integer(0)]})  # needs sage.plot
```

plot3d(bgcolor=(1, 1, 1), vertex_colors=None, vertex_size=0.06, vertex_labels=False, edge_colors=None, edge_size=0.02, edge_size2=0.0325, pos3d=None, color_by_label=False, engine='threejs', **kwds)

Plot a graph in three dimensions.

See also the `sage.graphs.graph_latex` module for ways to use LaTeX to produce an image of a graph.

INPUT:

- **bgcolor** – rgb tuple (default: (1, 1, 1))
- **vertex_size** – float (default: 0.06)
- **vertex_labels** – a boolean (default: False); whether to display vertices using text labels instead of spheres
- **vertex_colors** – dictionary (default: None); optional dictionary to specify vertex colors: each key is a color recognizable by tachyon (rgb tuple (default: (1, 0, 0))), and each corresponding entry is a list of vertices. If a vertex is not listed, it looks invisible on the resulting plot (it does not get drawn).
- **edge_colors** – dictionary (default: None); a dictionary specifying edge colors: each key is a color recognized by tachyon (default: (0, 0, 0)), and each entry is a list of edges.
- **color_by_label** – a boolean or dictionary or function (default: False) whether to color each edge with a different color according to its label; the colors are chosen along a rainbow, unless they are specified by a function or dictionary mapping labels to colors; this option is incompatible with `edge_color` and `edge_colors`.
• edge_size – float (default: 0.02)
• edge_size2 – float (default: 0.0325); used for Tachyon sleeves
• pos3d – a position dictionary for the vertices
• layout, iterations, ... – layout options; see layout()
• engine – string (default: 'threejs'); the renderer to use among:
 - 'threejs': interactive web-based 3D viewer using JavaScript and a WebGL renderer
 - 'jmol': interactive 3D viewer using Java
 - 'tachyon': ray tracer generating a static PNG image
• xres – resolution
• yres – resolution
• **kwds – passed on to the rendering engine

EXAMPLES:

```python
sage: G = graphs.CubeGraph(5)
sage: G.plot3d(iterations=500, edge_size=None, vertex_size=0.04)  # long...
Graphics3d Object

>>> from sage.all import *
>>> G = graphs.CubeGraph(Integer(5))
>>> G.plot3d(iterations=Integer(500), edge_size=None, vertex_size=RealNumber('0.04'))  # long time, needs sage.plot
Graphics3d Object
```

We plot a fairly complicated Cayley graph:

```python
sage: A5 = AlternatingGroup(5); A5
Alternating group of order 5!/2 as a permutation group
sage: G = A5.cayley_graph()
sage: G.plot3d(vertex_size=0.03, edge_size=0.01,
           vertex_colors={(1,1,1): list(G)}, bgcolor=(0,0,0),
           color_by_label=True, iterations=200)
Graphics3d Object
```

```python
>>> from sage.all import *

A5 = AlternatingGroup(Integer(5)); A5
Alternating group of order 5!/2 as a permutation group
>>> G = A5.cayley_graph()

>>> G.plot3d(vertex_size=RealNumber('0.03'), edge_size=RealNumber('0.01'),
           vertex_colors={(Integer(1),Integer(1),Integer(1)): list(G)},
           bgcolor=(Integer(0),Integer(0),Integer(0)),
           color_by_label=True, iterations=200)
```

Some Tachyon examples:
sage: D = graphs.DodecahedralGraph()
sage: P3D = D.plot3d(engine='tachyon') # needs sage.plot
sage: P3D.show() # long time # needs sage.plot

>>> from sage.all import *
>>> D = graphs.DodecahedralGraph()
>>> P3D = D.plot3d(engine='tachyon') # needs sage.plot
>>> P3D.show() # long time # needs sage.plot

sage: G = graphs.PetersenGraph()
sage: G.plot3d(engine='tachyon', # long time # needs sage.plot
 vertex_colors={(0,0,1): list(G)}).show()

>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.plot3d(engine='tachyon', # long time # needs sage.plot
 vertex_colors={(Integer(0),Integer(0),Integer(1)): list(G)}).
 show()

sage: C = graphs.CubeGraph(4)
sage: C.plot3d(engine='tachyon', # long time # needs sage.plot
 edge_colors={(0,1,0): C.edges(sort=False)},
 vertex_colors={(1,1,1): list(C)},
 bgcolor=(0,0,0)).show()

>>> from sage.all import *
>>> C = graphs.CubeGraph(Integer(4))
>>> C.plot3d(engine='tachyon', # long time # needs sage.plot
 edge_colors={(Integer(0),Integer(1),Integer(0)): C.
 edges(sort=False)},
 vertex_colors={(Integer(1),Integer(1),Integer(1)): list(C)},
 bgcolor=(Integer(0),Integer(0),Integer(0))).show()

sage: K = graphs.CompleteGraph(3)
sage: K.plot3d(engine='tachyon', # long time # needs sage.plot
 edge_colors={(1,0,0):
 [(0,1,None)],
 (0,1,0):
 [(0,2,None)],
 (0,0,1):
 [(1,2,None)]}).show()

>>> from sage.all import *
>>> K = graphs.CompleteGraph(Integer(3))
>>> K.plot3d(engine='tachyon', # long time # needs sage.plot
 edge_colors={(Integer(1),Integer(0),Integer(0)):
 [(Integer(0),
 Integer(1),None)],
 (Integer(0),Integer(1),Integer(0)):
 [(Integer(0),
 Integer(0),None)],
 (Integer(2),None),

(continues on next page)
A directed version of the dodecahedron

```python
D = DiGraph({0: [1, 10, 19], 1: [8, 2], 2: [3, 6], 3: [19, 4],
    4: [17, 5], 5: [6, 15], 6: [7, 8, 14],
    7: [8, 14], 8: [9], 9: [10, 13], 10: [11], 11: [12, 18],
    12: [16, 13], 13: [14], 14: [15, 16], 15: [16], 16: [17],
    17: [18], 18: [19], 19: []})
```

```
D.plot3d().show()  # long time
```

Streamlined version:

```python
>>> from sage.all import *

P = graphs.PetersenGraph().to_directed()
>>> from sage.plot.colors import rainbow

edge_colors = {R[i]: [e] for i, e in enumerate(P.edge_iterator())}
```

```python
P.plot3d(engine='tachyon', edge_colors=edge_colors).show()  # long time
```

1.1. Generic graphs (common to directed/undirected)
Traceback (most recent call last):
...
NotImplementedError: 3D plotting of multiple edges or loops not implemented

```python
>>> from sage.all import *
>>> G = Graph({'a': ['a', 'b', 'b', 'b', 'e'], 'b': ['c', 'd', 'e'],
...           'c': ['c', 'd', 'd', 'd'], 'd': ['e']}, sparse=True)
>>> G.show3d()
Traceback (most recent call last):
...  
NotImplementedError: 3D plotting of multiple edges or loops not implemented
```

Using the `partition` keyword:

```python
sage: G = graphs.WheelGraph(7)
sage: G.plot3d(partition=[[0], [1, 2, 3, 4, 5, 6]])  # needs sage.plot
Graphics3d Object
```

```python
>>> from sage.all import *
>>> G = graphs.WheelGraph(Integer(7))
>>> G.plot3d(partition=[Integer(0), [Integer(1), Integer(2), Integer(3),
...                        Integer(4), Integer(5), Integer(6)]])  # needs sage.plot
>>> plot
Graphics3d Object
```

See also:

- `plot()`
- `graphviz_string()`

`power(k)`

Return the k-th power graph of `self`.

In the k-th power graph of a graph G, there is an edge between any pair of vertices at distance at most k in G, where the distance is considered in the unweighted graph. In a directed graph, there is an arc from a vertex u to a vertex v if there is a path of length at most k in G from u to v.

INPUT:

- k – integer; the maximum path length for considering edges in the power graph.

OUTPUT:

- The kth power graph based on shortest distances between nodes.

EXAMPLES:

Testing on undirected graphs:

```python
sage: G = Graph([(0, 1), (1, 2), (2, 3), (3, 0), (2, 4), (4, 5)])
sage: PG = G.power(2)
sage: PG.edges(sort=True, labels=False)
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5)]
```
>>> from sage.all import *
>>> G = Graph([(Integer(0), Integer(1)), (Integer(1), Integer(2)),
 → (Integer(2), Integer(3)), (Integer(3), Integer(0)), (Integer(2),
 → (Integer(4)), (Integer(4), Integer(5))])
>>> PG = G.power(Integer(2))
>>> PG.edges(sort=True, labels=False)
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3,→ 4), (4, 5)]

Testing on directed graphs:

sage: G = DiGraph([(0, 1), (1, 2), (2, 3), (3, 0), (2, 4), (4, 5)])
sage: PG = G.power(3)
sage: PG.edges(sort=True, labels=False)
[(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 2), (1, 3), (1, 4), (1, 5), (2,→ 0), (2, 1), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (4, 5)]

random_edge(**kwds)

Return a random edge of self.

INPUT:

* **kwds — arguments to be passed down to the edge_iterator() method

EXAMPLES:

The returned value is an edge of self:

sage: g = graphs.PetersenGraph()
sage: u,v = g.random_edge(labels=False)
sage: g.has_edge(u,v)
True

As the edges() method would, this function returns by default a triple (u, v, l) of values, in which l is the label of edge (u, v):

sage: g.random_edge() # random
(3, 4, None)

sage: g.random_edge() # random
(3, 4, None)
random_edge_iterator(*args, **kwds)

Return an iterator over random edges of self.

The returned iterator enables to amortize the cost of accessing random edges, as can be done with multiple calls to method random_edge().

INPUT:

- *args and **kwds – arguments to be passed down to the edge_iterator() method.

EXAMPLES:

The returned value is an iterator over the edges of self:

```python
sage: g = graphs.PetersenGraph()
sage: it = g.random_edge_iterator()
sage: [g.has_edge(next(it)) for _ in range(5)]
[True, True, True, True, True]
```

As the edges() method would, this function returns by default a triple (u, v, l) of values, in which l is the label of edge (u, v):

```python
sage: print(next(g.random_edge_iterator())) # random
(0, 5, None)
sage: print(next(g.random_edge_iterator(labels=False))) # random
(5, 7)
```

random_subgraph(p, inplace=False)

Return a random subgraph containing each vertex with probability p.

INPUT:

- p – the probability of choosing a vertex
- inplace – boolean (default: False); using inplace=True will simply delete the extra vertices and edges from the current graph. This will modify the graph.

EXAMPLES:

```python
sage: P = graphs.PetersenGraph()
sage: P.random_subgraph(.25)
Subgraph of (Petersen graph): Graph on ... vert...
```

```python
>>> from sage.all import *

>>> P = graphs.PetersenGraph()

>>> P.random_subgraph(RealNumber(.25))
Subgraph of (Petersen graph): Graph on ... vert...
```
random_vertex(**kwds)

Return a random vertex of self.

INPUT:

• **kwds – arguments to be passed down to the vertex_iterator() method

EXAMPLES:
The returned value is a vertex of self:

```
sage: g = graphs.PetersenGraph()
sage: v = g.random_vertex()
sage: v in g
True
```

random_vertex_iterator(*args, **kwds)

Return an iterator over random vertices of self.

The returned iterator enables to amortize the cost of accessing random vertices, as can be done with multiple calls to method random_vertex().

INPUT:

• *args and **kwds – arguments to be passed down to the vertex_iterator() method

EXAMPLES:
The returned value is an iterator over the vertices of self:

```
sage: g = graphs.PetersenGraph()
sage: it = g.random_vertex_iterator()
sage: [next(it) in g for _ in range(5)]
[True, True, True, True, True]
```

relabel(perm=None, inplace=True, return_map=False, check_input=True, complete_partial_function=True, immutable=None)

Relabels the vertices of self

INPUT:

• perm – a function, dictionary, iterable, permutation, or None (default: None)
• inplace – a boolean (default: True)
• return_map – a boolean (default: False)
• check_input (boolean) – whether to test input for correctness. This can potentially be very time-consuming !.
• complete partial function (boolean) – whether to automatically complete the permutation if some elements of the graph are not associated with any new name. In this case, those elements are not relabeled *This can potentially be very time-consuming* !.

• immutable (boolean) – with inplace=False, whether to create a mutable/immutable relabelled copy. immutable=None (default) means that the graph and its copy will behave the same way.

If perm is a function \(f \), then each vertex \(v \) is relabeled to \(f(v) \).

If perm is a dictionary \(d \), then each vertex \(v \) (which should be a key of \(d \)) is relabeled to \(d[v] \).

If perm is a list (or more generally, any iterable) of length \(n \), then the first vertex returned by \(G \).vertices(sort=True) is relabeled to \(l[0] \), the second to \(l[1] \), ...

If perm is a permutation, then each vertex \(v \) is relabeled to \(\text{perm}(v) \).

If perm is None, the graph is relabeled to be on the vertices \{0, 1, ..., \(n - 1 \)\}. This is *not* any kind of canonical labeling, but it is consistent (relabeling twice will give the same result).

If inplace is True, the graph is modified in place and None is returned. Otherwise a relabeled copy of the graph is returned.

If return_map is True a dictionary representing the relabelling map is returned (incompatible with inplace=False).

EXAMPLES:

```python
sage: G = graphs.PathGraph(3)
sage: G.am()  # needs sage.modules
[0 1 0]
[1 0 1]
[0 1 0]

>>> from sage.all import *
>>> G = graphs.PathGraph(Integer(3))
>>> G.am()  # needs sage.modules
[0 1 0]
[1 0 1]
[0 1 0]
```

Relabeling using a dictionary. Note that the dictionary does not define the new label of vertex 0:

```python
sage: G.relabel({1:2, 2:1}, inplace=False).am()  # needs sage.modules
[0 0 1]
[0 0 1]
[1 1 0]

>>> from sage.all import *
>>> G.relabel({Integer(1):Integer(2), Integer(2):Integer(1)}, inplace=False).am()  # needs sage.modules
[0 0 1]
[0 0 1]
[1 1 0]
```

This is because the method automatically “extends” the relabeling to the missing vertices (whose label will not change). Checking that all vertices have an image can require some time, and this feature can be disabled (at your own risk):
Relabeling using a list:

```
sage: G.relabel([0,2,1], inplace=False).am()  
`...`  
```

Relabeling using an iterable:

```
sage: G.relabel(iter((0,2,1)), inplace=False).am()  
`...`  
```

Relabeling using a Sage permutation:

```
sage: G = graphs.PathGraph(3)  
sage: from sage.groups.perm_gps.permgroup_named import SymmetricGroup  
`...`  
sage: S = SymmetricGroup(3)  
`...`  
sage: gamma = S('(1,2)')  
`...`  
sage: G.relabel(gamma, inplace=False).am()  
`...`  
```

(continues on next page)
A way to get a random relabeling:

```sage
def set_random_seed(0) # Results are reproducible
D = DiGraph({1: [2], 3: [4]})
D.relabel(Permutations(D.vertices(sort=True)).random_element())
D.sources()
[1, 4]
```

Relabeling using an injective function:

```sage
G.edges(sort=True)
[[0, 1, None], (1, 2, None)]
H = G.relabel(lambda i: i+10, inplace=False)
```
Relabeling using a non injective function has no meaning:

```python
sage: G.edges(sort=True)
[(0, 1, None), (1, 2, None)]
sage: G.relabel(lambda i: 0, inplace=False)
Traceback (most recent call last):
  ...  
NotImplementedError: Non injective relabeling
```

But this test can be disabled, which can lead to … problems:

```python
sage: G.edges(sort=True)
[(0, 1, None), (1, 2, None)]
sage: G.relabel(lambda i: 0, check_input=False)
sage: G.edges(sort=True)
[]
```

Recovering the relabeling with return_map:

```python
sage: G = graphs.CubeGraph(3)
sage: G.relabel(range(8), return_map=True)
{'000': 0, '001': 1, '010': 2, '011': 3, '100': 4,}
```

(continues on next page)
When no permutation is given, the relabeling is done to integers from 0 to N-1 but in an arbitrary order:

```python
sage: G = graphs.CubeGraph(3)
sage: G.vertices(sort=True)
['000', '001', '010', '011', '100', '101', '110', '111']
sage: G.relabel()
sage: G.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6, 7]
```

In the above case, the mapping is arbitrary but consistent:

```python
sage: map1 = G.relabel(inplace=False, return_map=True)
sage: map2 = G.relabel(inplace=False, return_map=True)
sage: map1 == map2
True
```

```python
sage: G = graphs.PathGraph(3)
sage: G.relabel(lambda i: i+10, return_map=True)
{0: 10, 1: 11, 2: 12}
```

```python
sage: G = graphs.PathGraph(Integer(3))
sage: G.relabel(lambda i: i+Integer(10), return_map=True)
{0: 10, 1: 11, 2: 12}
```
remove_loops *(vertices=None)*

Remove loops on vertices in *vertices*.

If *vertices* is None, removes all loops.

EXAMPLES:

```python
sage: G = Graph(4, loops=True)
sage: G.add_edges([(0, 0), (1, 1), (2, 2), (3, 3), (2, 3)])
sage: G.edges(sort=True, labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: G.remove_loops()
sage: G.edges(sort=True, labels=False)
[(2, 3)]
sage: G.allows_loops()
True
sage: G.has_loops()
False

sage: D = DiGraph(4, loops=True)
sage: D.add_edges([(0, 0), (1, 1), (2, 2), (3, 3), (2, 3)])
sage: D.edges(sort=True, labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: D.remove_loops()
sage: D.edges(sort=True, labels=False)
[(2, 3)]
sage: D.allows_loops()
True
sage: D.has_loops()
False
```

```python
>>> from sage.all import *
>>> G = Graph(Integer(4), loops=True)
>>> G.add_edges([(Integer(0), Integer(0)), (Integer(1), Integer(1)),
               (Integer(2), Integer(2)), (Integer(3), Integer(3)), (Integer(2),
               Integer(3))])
>>> G.edges(sort=True, labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
>>> G.remove_loops()
>>> G.edges(sort=True, labels=False)
[(2, 3)]
>>> G.allows_loops()
True
>>> G.has_loops()
False

>>> D = DiGraph(Integer(4), loops=True)
>>> D.add_edges([(Integer(0), Integer(0)), (Integer(1), Integer(1)),
               (Integer(2), Integer(2)), (Integer(3), Integer(3)), (Integer(2),
               Integer(3))])
>>> D.edges(sort=True, labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
>>> D.remove_loops()
>>> D.edges(sort=True, labels=False)
[(2, 3)]
>>> D.allows_loops()
True
>>> D.has_loops()
False
```

(continues on next page)
remove_multiple_edges()

Remove all multiple edges, retaining one edge for each.

See also:

See also allow_multiple_edges()

EXAMPLES:

```
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0,1), (0,1), (0,1), (0,1), (1,2)])
sage: G.edges(sort=True, labels=False)
[(0, 1), (0, 1), (0, 1), (0, 1), (1, 2)]

>>> from sage.all import *

>>> G = Graph(multiedges=True, sparse=True)

>>> G.add_edges([(Integer(0),Integer(1)), (Integer(0),Integer(1)), ...

˓→(Integer(0),Integer(1)), (Integer(0),Integer(1)), (Integer(1),Integer(2))])

>>> G.edges(sort=True, labels=False)
[(0, 1), (0, 1), (0, 1), (0, 1), (1, 2)]
```

```
sage: G.remove_multiple_edges()
sage: G.edges(sort=True, labels=False)
[(0, 1), (1, 2)]

>>> from sage.all import *

>>> G.remove_multiple_edges()
>>> G.edges(sort=True, labels=False)
[(0, 1), (1, 2)]
```

```
sage: D = DiGraph(multiedges=True, sparse=True)
sage: D.add_edges([(0,1,1), (0,1,2), (0,1,3), (0,1,4), (1,2, None)])
sage: D.edges(sort=True, labels=False)
[(0, 1), (0, 1), (0, 1), (0, 1), (1, 2)]
```

```
>>> from sage.all import *

>>> D = DiGraph(multiedges=True, sparse=True)

>>> D.add_edges([(Integer(0), Integer(1), Integer(1)), (Integer(0), ...

˓→Integer(1), Integer(2)), (Integer(0), Integer(1), Integer(3)), (Integer(0), ...

˓→Integer(1), Integer(4)), (Integer(1), Integer(2), None)])

>>> D.edges(sort=True, labels=False)
[(0, 1), (0, 1), (0, 1), (0, 1), (1, 2)]
```

rooted_product (G, H, root=None)

Return the rooted product of G and H.

The rooted product of two graphs G and H is the graph R defined as follows: take a copy of G and $|V(G)|$ copies of H, and for every vertex g_i of G, identify g_i with the root of the i-th copy of H. Mode formally, let
\[V(G) = \{ g_1, g_2, \ldots, g_n \}, \quad V(H) = \{ h_1, h_2, \ldots, h_m \}, \]
and let \(h_1 \) be the root vertex of \(H \). The vertex set \(V(R) \) is equal to the cartesian product of the sets of vertices \(V(G) \) and \(V(H) \), that is \(V(R) = \{ (g_i, h_j) : g_i \in V(G), h_j \in V(H) \} \). The edge set \(E(R) \) is the union of the edges of a copy of \(G \), that is \(\{(g_i, h_1), (g_j, h_1)\} : (g_i, g_j) \in E(G)\} \) and the edges of the copies of \(H \) for every \(g_i \in V(G) \), that is \(\{((g_i, h_j), (g_i, h_k)) : (h_j, h_k) \in V(H)\} \).

See Wikipedia article Rooted_product_of_graphs for more details.

See also:

- cartesian_product() – return the cartesian product of two graphs
- graph_products – a module on graph products

EXAMPLES:

The rooted product of two trees is a tree:

```
sage: T1 = graphs.RandomTree(7)
sage: T2 = graphs.RandomTree(8)
sage: T = T1.rooted_product(T2)
sage: T.is_tree()
True
```

```
>>> from sage.all import *
>>> T1 = graphs.RandomTree(Integer(7))
>>> T2 = graphs.RandomTree(Integer(8))
>>> T = T1.rooted_product(T2)
>>> T.is_tree()
True
```

The rooted product of \(G \) and \(H \) depends on the selected root in \(H \):

```
sage: G = graphs.CycleGraph(4)
sage: H = graphs.PathGraph(3)
sage: R1 = G.rooted_product(H, root=0)
sage: R2 = G.rooted_product(H, root=1)
sage: R1.is_isomorphic(R2)
False
sage: sorted(R1.degree())
[1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]
sage: sorted(R2.degree())
[1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4]
```

```
>>> from sage.all import *
>>> G = graphs.CycleGraph(Integer(4))
>>> H = graphs.PathGraph(Integer(3))
>>> R1 = G.rooted_product(H, root=Integer(0))
>>> R2 = G.rooted_product(H, root=Integer(1))
>>> R1.is_isomorphic(R2)
False
>>> sorted(R1.degree())
[1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]
>>> sorted(R2.degree())
[1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4]
```

The domination number of the rooted product of any graph \(G \) and a path of order 2 is the order of \(G \):
sage: G = graphs.RandomGNP(20, .3)
sage: P = graphs.PathGraph(2)
sage: R = G.rooted_product(P)
sage: len(R.dominating_set()) == G.order() # needs sage.numerical.mip
True

sage: G = digraphs.RandomDirectedGNP(20, .3)
sage: P = digraphs.Path(2)
sage: R = G.rooted_product(P)
sage: len(R.dominating_set()) == G.order() # needs sage.numerical.mip
True

>>> from sage.all import *

G = graphs.RandomGNP(Integer(20), RealNumber('0.3'))
P = graphs.PathGraph(Integer(2))
R = G.rooted_product(P)
len(R.dominating_set()) == G.order() # needs sage.numerical.mip
True

G = digraphs.RandomDirectedGNP(Integer(20), RealNumber('0.3'))
P = digraphs.Path(Integer(2))
R = G.rooted_product(P)
len(R.dominating_set()) == G.order() # needs sage.numerical.mip
True

The rooted product of two graphs is a subgraph of the cartesian product of the same two graphs:

sage: G = graphs.RandomGNP(6, .4)
sage: H = graphs.RandomGNP(7, .4)
sage: R = G.rooted_product(H)
sage: C = G.cartesian_product(H)
sage: R.is_subgraph(C, induced=False)
True

>>> from sage.all import *

G = graphs.RandomGNP(Integer(6), RealNumber('0.4'))
H = graphs.RandomGNP(Integer(7), RealNumber('0.4'))
R = G.rooted_product(H)
C = G.cartesian_product(H)
R.is_subgraph(C, induced=False)
True

Corner cases:

sage: Graph().rooted_product(Graph())
Rooted product of Graph on 0 vertices and Graph on 0 vertices: Graph on 0 vertices

sage: Graph().rooted_product(Graph(1))
Rooted product of Graph on 1 vertex and Graph on 0 vertices: Graph on 0 vertices

sage: Graph().rooted_product(Graph(1))
Rooted product of Graph on 0 vertices and Graph on 1 vertex: Graph on 0 vertices

sage: Graph(1).rooted_product(Graph())
Rooted product of Graph on 1 vertex and Graph on 0 vertices: Graph on 1 vertex

sage: Graph(1).rooted_product(Graph(1))
Rooted product of Graph on 1 vertex and Graph on 1 vertex: Graph on 1 vertex
set_edge_label \((u, v, l)\)

Set the edge label of a given edge.

Note: There can be only one edge from \(u\) to \(v\) for this to make sense. Otherwise, an error is raised.

INPUT:

- \(u, v\) – the vertices (and direction if digraph) of the edge
- \(l\) – the new label

EXAMPLES:

```python
sage: d = {1: [18, 2], 2: [5, 3], 3: [4, 6], 4: [7, 2], 5: [4],
.....: 6: [13, 12], 7: [18, 8, 10], 8: [6, 9, 10], 9: [6],
.....: 10: [11, 13], 11: [12], 12: [13], 13: [17, 14],
.....: 14: [16, 15], 15: [2], 16: [13], 17: [15, 13], 18: [13]}
sage: SD = DiGraph(d, sparse=True)
sage: SD.set_edge_label(1, 18, 'discrete')
sage: SD.set_edge_label(4, 7, 'discrete')
sage: SD.set_edge_label(2, 5, 'h = 0')
sage: SD.set_edge_label(7, 18, 'h = 0')
sage: SD.set_edge_label(7, 10, 'aut')
sage: SD.set_edge_label(8, 10, 'aut')
sage: SD.set_edge_label(8, 9, 'label')
sage: SD.set_edge_label(8, 6, 'no label')
sage: SD.set_edge_label(13, 17, 'k > h')
sage: SD.set_edge_label(13, 14, 'k = h')
sage: SD.set_edge_label(17, 15, 'v_k finite')
sage: SD.set_edge_label(14, 15, 'v_k m.c.r.')
sage: posn = {1: [3, -3], 2: [0, 2], 3: [0, 13], 4: [3, 9],
.....: 5: [3, 3], 6: [16, 13], 7: [6, 1], 8: [6, 6],
.....: 9: [6, 11], 10: [9, 1], 11: [10, 6], 12: [13, 6],
.....: 13: [16, 2], 14: [10, -6], 15: [0, -10], 16: [14, -6],
.....: 17: [16, -10], 18: [6, -4]}
sage: SD.plot(pos=posn, vertex_size=400, vertex_colors='#FFFFFF',
.....: 'list(range(1,19)))', edge_labels=True).show()  # long time, needs sage.plot
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> import sage

sage: G = graphs.HeawoodGraph()

sage: for u, v, l in G.edges(sort=False):
    ...:     G.set_edge_label(u, v, (u + str(v), u + str(v), v))

sage: G.edges(sort=True)
[(0, 1, '(0,1)'),
 (0, 5, '(0,5)'),
 (0, 13, '(0,13)'),
 ...
 (11, 12, '(11,12)'),
 (12, 13, '(12,13)')]
```

```python
>>> from sage.all import *

>>> G = graphs.HeawoodGraph()

>>> for u, v, l in G.edges(sort=False):
    ...:     G.set_edge_label(u, v, (u + str(v), u + str(v), v))

>>> G.edges(sort=True)
[(0, 1, '(0,1)'),
 (0, 5, '(0,5)'),
 ...
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

\[(0, 13, '(0,13)'),
...
(11, 12, '(11,12)'),
(12, 13, '(12,13)')\]

```python
sage: g = Graph({0: [0, 1, 1, 2]}, loops=True, multiedges=True, sparse=True)
sage: g.set_edge_label(0, 0, 'test')
sage: g.edges(sort=True)
[(0, 0, 'test'), (0, 1, None), (0, 1, None), (0, 2, None)]
sage: g.add_edge(0, 0, 'test2')
sage: g.set_edge_label(0, 0, 'test3')
Traceback (most recent call last):
...
RuntimeError: cannot set edge label, since there are multiple edges from 0 to
...
```

```python
>>> from sage.all import *
>>> g = Graph({Integer(0): [Integer(0), Integer(1), Integer(1), Integer(2)]}, loops=True, multiedges=True, sparse=True)
>>> g.set_edge_label(Integer(0), Integer(0), 'test')
>>> g.edges(sort=True)
[(0, 0, 'test'), (0, 1, None), (0, 1, None), (0, 2, None)]
>>> g.add_edge(Integer(0), Integer(0), 'test2')
>>> g.set_edge_label(Integer(0), Integer(0), 'test3')
Traceback (most recent call last):
...
RuntimeError: cannot set edge label, since there are multiple edges from 0 to...
...
```

```python
sage: dg = DiGraph({0: [1], 1: [0]}, sparse=True)
sage: dg.set_edge_label(0, 1, 5)
sage: dg.set_edge_label(1, 0, 9)
sage: dg.outgoing_edges(1)
[(1, 0, 9)]
sage: dg.incoming_edges(1)
[(0, 1, 5)]
sage: dg.outgoing_edges(0)
[(0, 1, 5)]
sage: dg.incoming_edges(0)
[(1, 0, 9)]
```

```python
>>> from sage.all import *
>>> dg = DiGraph({Integer(0): [Integer(1)], Integer(1): [Integer(0)]}, sparse=True)
>>> dg.set_edge_label(Integer(0), Integer(1), Integer(5))
>>> dg.set_edge_label(Integer(1), Integer(0), Integer(9))
>>> dg.outgoing_edges(Integer(1))
[(1, 0, 9)]
>>> dg.incoming_edges(Integer(1))
[(0, 1, 5)]
>>> dg.outgoing_edges(Integer(0))
[(0, 1, 5)]
>>> dg.incoming_edges(Integer(0))
[(1, 0, 9)]
```
Graph Theory, Release 10.4

```
sage: G = Graph({0: {1: 1}}, sparse=True)
sage: G.num_edges()
1
sage: G.set_edge_label(0, 1, 1)
sage: G.num_edges()
1
```

```python
>>> from sage.all import *
>>> G = Graph({Integer(0): {Integer(1): Integer(1)}}, sparse=True)
>>> G.num_edges()
1
>>> G.set_edge_label(Integer(0), Integer(1), Integer(1))
>>> G.num_edges()
1
```

set_embedding *(embedding)*

Set a combinatorial embedding dictionary to _embedding attribute.

The dictionary `embedding` represents a combinatorial embedding of `self` and is organized as a mapping from vertex labels to list of vertex neighbors in clockwise order.

Parameter `embedding` is error-checked for validity.

Warning: Combinatorial embeddings are defined for simple graphs only (i.e., without loops or multiple edges). Therefore, an error is raised when this method is used for a graph with loops or multiple edges.

INPUT:

- `embedding` – dictionary representing a combinatorial embedding of `self`. Format: “{v1: [v2,v3], v2: [v1], v3: [v1]}” (clockwise ordering of neighbors at each vertex).

EXAMPLES:

```
sage: G = graphs.PetersenGraph()
sage: G.set_embedding({0: [1, 5, 4], 1: [0, 2, 6], 2: [1, 3, 7],
....: 3: [8, 2, 4], 4: [0, 9, 3], 5: [0, 8, 7],
....: 6: [8, 1, 9], 7: [9, 2, 5], 8: [3, 5, 6],
....: 9: [4, 6, 7]})
sage: G.set_embedding({s: [1, 5, 4], 1: [0, 2, 6], 2: [1, 3, 7],
....: 3: [8, 2, 4], 4: [0, 9, 3], 5: [0, 8, 7],
....: 6: [8, 1, 9], 7: [9, 2, 5], 8: [3, 5, 6],
....: 9: [4, 6, 7]})
Traceback (most recent call last):
...:
ValueError: vertices in ['s'] from the embedding do not belong to the graph
```

```
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.set_embedding({Integer(0): [Integer(1), Integer(5), Integer(4)],...
....: Integer(1): [Integer(0), Integer(2), Integer(6)], Integer(2): [Integer(1),...
....: Integer(3), Integer(7)],
....: Integer(3): [Integer(8), Integer(2), Integer(4)], Integer(4): [Integer(0),...
....: Integer(9), Integer(3)], Integer(5): [Integer(0),...
....: Integer(8), Integer(7)],
....: Integer(6): [Integer(8), Integer(1), Integer(9)],...
....: Integer(7): [Integer(9), Integer(2), Integer(5), Integer(8): [Integer(3),...
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> G.set_embedding({
    's': [Integer(1), Integer(5), Integer(4)],
    Integer(1): [Integer(0), Integer(2), Integer(6)],
    Integer(2): [Integer(1), Integer(3), Integer(7)],
    Integer(3): [Integer(8), Integer(2), Integer(4)],
    Integer(4): [Integer(0), Integer(9), Integer(3)],
    Integer(5): [Integer(0), Integer(8), Integer(7)],
    Integer(6): [Integer(8), Integer(1), Integer(9)],
    Integer(7): [Integer(9), Integer(2), Integer(5)],
    Integer(8): [Integer(3), Integer(5), Integer(6)],
    Integer(9): [Integer(4), Integer(6), Integer(7)]})
```
Traceback (most recent call last):
... ValueError: vertices in ['s'] from the embedding do not belong to the graph

set_latex_options (**kwds**)**

Set multiple options for rendering a graph with LaTeX.

INPUT:

- **kwds** – any number of option/value pairs to set many graph latex options at once (a variable number, in any order). Existing values are overwritten, new values are added. Existing values can be cleared by setting the value to None. Possible options are documented at `sage.graphs.graph_latex.GraphLatex.set_option()`.

This method is a convenience for setting the options of a graph directly on an instance of the graph. For a full explanation of how to use LaTeX to render graphs, see the introduction to the `graph_latex` module.

EXAMPLES:

```python
sage: g = graphs.PetersenGraph()
sage: g.set_latex_options(tkz_style='Welsh')  # needs sage.plot
sage: opts = g.latex_options()  # needs sage.plot
sage: opts.get_option('tkz_style')  # needs sage.plot 'Welsh'
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.set_latex_options(tkz_style='Welsh')  # needs sage.plot
>>> opts = g.latex_options()  # needs sage.plot
>>> opts.get_option('tkz_style')  # needs sage.plot 'Welsh'
```

set_pos (pos, **dim=2**)**

Set the position dictionary.

The position dictionary specifies the coordinates of each vertex.

INPUT:

- **pos** – a position dictionary for the vertices of the (di)graph

1.1. Generic graphs (common to directed/undirected) 349
• \text{dim} – integer (default: 2); the number of coordinates per vertex

\textbf{EXAMPLES:}

\begin{verbatim}
sage: G = graphs.PetersenGraph()
sage: G.get_pos()
{0: (..., ...),
 ... 9: (..., ...)}
\end{verbatim}

```python
>>> from sage.all import *

>>> G = graphs.PetersenGraph()

>>> G.get_pos()
{0: (..., ...),
 ... 9: (..., ...)}
```

The method \texttt{get_pos()} check the position dictionary so that invalid positioning are ignored:

```python
sage: G.set_pos(dict(enumerate('abcdefghi')))  
sage: P = G.plot()  # positions are ignored  
  # needs sage.plot
  # needs sage.plot
sage: G.get_pos() is None
True
```

\texttt{set_vertex}(vertex, object)

Associate an arbitrary object with a vertex.

\textbf{INPUT:}

• vertex – which vertex

• object – object to associate to vertex

\textbf{EXAMPLES:}

```python
sage: T = graphs.TetrahedralGraph()
sage: T.vertices(sort=True)
[0, 1, 2, 3]
sage: T.set_vertex(1, graphs.FlowerSnark())
sage: T.get_vertex(1)
Flower Snark: Graph on 20 vertices
sage: T.set_vertex(4, foo)
Traceback (most recent call last):
 ... ValueError: vertex (4) not in the graph
```

```python
>>> from sage.all import *

>>> T = graphs.TetrahedralGraph()
```
Graph Theory, Release 10.4

>>> T.vertices(sort=True)
[0, 1, 2, 3]
>>> T.set_vertex(Integer(1), graphs.FlowerSnark())
>>> T.get_vertex(Integer(1))
Flower Snark: Graph on 20 vertices

set_vertices (vertex_dict)
Associate arbitrary objects with each vertex, via an association dictionary.

INPUT:
• vertex_dict – the association dictionary

EXAMPLES:

sage: d = {0: graphs.DodecahedralGraph(), 1: graphs.FlowerSnark(), 2: graphs.MoebiusKantorGraph(), 3: graphs.PetersenGraph()}
sage: d[2]
Moebius-Kantor Graph: Graph on 16 vertices

shortest_path (u, v, by_weight=False, algorithm=None, weight_function=None, check_weight=True)
Return a list of vertices representing some shortest path from u to v.

If there is no path from u to v, the returned list is empty.

For more information and more examples, see shortest_paths () (the inputs are very similar).

INPUT:
• u, v – the start and the end vertices of the paths
• by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
• algorithm – string (default: None); one of the following algorithms:
 – 'BFS': performs a BFS from u. Does not work with edge weights.
- 'BFS_Bid': performs a BFS from u and from v. Does not work with edge weights.
- 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX. Works only with positive weights.
- 'Dijkstra_Bid_NetworkX': performs a Dijkstra visit from u and from v (NetworkX implementation). Works only with positive weights.
- 'Dijkstra_Bid': a Cython implementation that performs a Dijkstra visit from u and from v. Works only with positive weights.
- 'Bellman-Ford_Boost': the Bellman-Ford algorithm, implemented in Boost. Works also with negative weights, if there is no negative cycle.
- None (default): Sage chooses the best algorithm: 'BFS_Bid' if by_weight is False, 'Dijkstra_Bid' otherwise.

Note: If there are negative weights and algorithm is None, the result is not reliable. This occurs because, for performance reasons, we cannot check whether there are edges with negative weights before running the algorithm. If there are, the user should explicitly input algorithm='Bellman-Ford_Boost'.

- weight_function – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\), if \(l\) is not None, else 1 as a weight.
- check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge.

EXAMPLES:

```
sage: D = graphs.DodecahedralGraph()
sage: D.shortest_path(4, 9)
[4, 17, 16, 12, 13, 9]
sage: D.shortest_path(4, 9, algorithm='BFS')
[4, 3, 2, 1, 8, 9]
sage: D.shortest_path(4, 8, algorithm='Dijkstra_NetworkX')
[4, 3, 2, 1, 8]  # needs networkx
sage: D.shortest_path(4, 8, algorithm='Dijkstra_Bid_NetworkX')
[4, 3, 2, 1, 8]  # needs networkx
sage: D.shortest_path(4, 8, algorithm='Dijkstra_Bid')
[4, 3, 19, 0, 10, 9]
sage: D.shortest_path(5, 5)
[5]
sage: D.delete_edges(D.edges_incident(13))
sage: D.shortest_path(13, 4)
[]
sage: G = Graph({0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}},
            sparse=True)
    ....:
    sage: G.plot(edge_labels=True).show()  # long time  # needs sage.plot
sage: G.shortest_path(0, 3)
[0, 4, 3]
sage: G.shortest_path(0, 3, by_weight=True)
[0, 1, 2, 3]
sage: G.shortest_path(0, 3, by_weight=True, #
```
Todo: Add options to return a path as a list of edges with or without edge labels. This can be useful in (di)graphs with multiple edges.

\texttt{shortest_path_all_pairs} (by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return a shortest path between each pair of vertices.

INPUT:

1.1. Generic graphs (common to directed/undirected)
• **by_weight** – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1

• **algorithm** – string (default: None); one of the following algorithms:
 - 'BFS': the computation is done through a BFS centered on each vertex successively. Works only if by_weight==False.
 - 'Floyd-Warshall-Cython': the Cython implementation of the Floyd-Warshall algorithm. Works only if by_weight==False.
 - 'Floyd-Warshall-Python': the Python implementation of the Floyd-Warshall algorithm. Works also with weighted graphs, even with negative weights (but no negative cycle is allowed).
 - 'Floyd-Warshall_Boost': the Boost implementation of the Floyd-Warshall algorithm. Works also with weighted graphs, even with negative weights (but no negative cycle is allowed).
 - 'Floyd-Warshall_SciPy': the SciPy implementation of the Floyd-Warshall algorithm. Works also with weighted graphs, even with negative weights (but no negative cycle is allowed).
 - 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX. It works with weighted graphs, but no negative weight is allowed.
 - 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive weights).
 - 'Johnson_Boost': the Johnson algorithm, implemented in Boost (works also with negative weights, if there is no negative cycle).
 - None (default): Sage chooses the best algorithm: 'BFS' if by_weight is False, 'Dijkstra_Boost' if all weights are positive, 'Floyd-Warshall_Boost' otherwise.

• **weight_function** – function (default: None); a function that takes as input an edge (u, v, l) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label l, if l is not None, else 1 as a weight.

• **check_weight** – boolean (default: True); if True, we check that the weight_function outputs a number for each edge

OUTPUT:

A tuple (dist, pred). They are both dicts of dicts. The first indicates the length dist[u][v] of the shortest weighted path from u to v. The second is a compact representation of all the paths - it indicates the predecessor pred[u][v] of v in the shortest path from u to v.

Note: Only reachable vertices are present in the dictionaries.

Note: There is a Cython version of this method that is usually much faster for large graphs, as most of the time is actually spent building the final double dictionary. Everything on the subject is to be found in the distances_all_pairs module.

EXAMPLES:

Some standard examples (see shortest_paths() for more examples on how to use the input variables):

```python
sage: G = Graph({0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}}, sparse=True)
sage: G.plot(edge_labels=True).show()  # long time
# needs sage.plot
```
sage: dist, pred = G.shortest_path_all_pairs(by_weight = True)
sage: dist
{0: {0: 0, 1: 1, 2: 2, 3: 3, 4: 2},
 1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3},
 2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 3},
 3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2},
 4: {0: 2, 1: 3, 2: 3, 3: 2, 4: 0}}
sage: pred
{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0},
 1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
 2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},
 3: {0: 1, 1: 2, 2: 3, 3: None, 4: 3},
 4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}}
sage: pred[0]
{0: None, 1: 0, 2: 1, 3: 2, 4: 0}
sage: G = Graph({0: {1: {weight:1}}, 1: {2: {weight:1}}, 2: {3: {weight:
˓→1}},
 3: {4: {weight:2}}, 4: {0: {weight:2}}}, sparse=True)
sage: dist, pred = G.shortest_path_all_pairs(by_weight = True)
sage: dist
{0: {0: 0, 1: 1, 2: 2, 3: 3, 4: 2},
 1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3},
 2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 3},
 3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2},
 4: {0: 2, 1: 3, 2: 3, 3: 2, 4: 0}}
sage: pred
{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0},
 1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
 2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},
 3: {0: 1, 1: 2, 2: 3, 3: None, 4: 3},
 4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}}

>>> from sage.all import *
>>> G = Graph({0: {1: {'weight':1}}, 1: {2: {'weight':1}}, 2: {3: {'weight:
˓→':1}},
 3: {4: {'weight':2}}, 4: {0: {'weight':2}}}, sparse=True)
>>> G.plot(edge_labels=True).show() # long time #
needs sage.plot
>>> dist, pred = G.shortest_path_all_pairs(by_weight = True)
>>> dist
{0: {0: 0, 1: 1, 2: 2, 3: 3, 4: 2},
 1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3},
 2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 3},
 3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2},
 4: {0: 2, 1: 3, 2: 3, 3: 2, 4: 0}}
>>> pred
{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0},
 1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
 2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},
 3: {0: 1, 1: 2, 2: 3, 3: None, 4: 3},
 4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}}
>>> pred[Integer(0)]
{0: None, 1: 0, 2: 1, 3: 2, 4: 0}
>>> G = Graph({0: {1: {'weight':Integer(1)}}, 1: {2: {'weight':Integer(1)}}, 2: {3: {'weight:
˓→':Integer(1)}}, 3: {4: {'weight':Integer(2)}}, 4: {0: {'weight:
˓→':Integer(2)}}}, sparse=True)

(continues on next page)
So for example the shortest weighted path from 0 to 3 is obtained as follows. The predecessor of 3 is
\[\text{pred}[0][3] == 2 \], the predecessor of 2 is \[\text{pred}[0][2] == 1 \], and the predecessor of 1 is
\[\text{pred}[0][1] == 0 \].

```
sage: G = Graph({0: {1: None}, 1: {2: None}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}}, sparse=True)
sage: G.shortest_path_all_pairs()
({0: {0: 0, 1: 1, 2: 2, 3: 2, 4: 1}, 1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3}, 2: {0: 2, 1: 2, 2: 0, 3: 1, 4: 3}, 3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2}, 4: {0: 2, 1: 3, 2: 3, 3: 2, 4: 0}}
```

```
>>> from sage.all import *
```

(continues on next page)
3: {0: 2, 1: 2, 2: 1, 3: 0, 4: 1},
4: {0: 1, 1: 2, 2: 2, 3: 1, 4: 0}),
{0: {0: None, 1: 0, 2: 1, 3: 4, 4: 0},
1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},
3: {0: 4, 1: 2, 2: 3, 3: None, 4: 3},
4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}})
>>> G.shortest_path_all_pairs(weight_function=lambda e: (e[Integer(2)] if e[Integer(2)] is not None else Integer(1)))
({0: {0: 0, 1: 1, 2: 2, 3: 3, 4: 2},
1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 3},
2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 3},
3: {0: 3, 1: 2, 2: 1, 3: 0, 4: 2},
4: {0: 2, 1: 3, 2: 3, 3: 2, 4: 0}),
{0: {0: None, 1: 0, 2: 1, 3: 2, 4: 0},
1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0},
2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3},
3: {0: 1, 1: 2, 2: 3, 3: None, 4: 3},
4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None}})

Checking that distances are equal regardless of the algorithm used:

```python
sage: g = graphs.Grid2dGraph(5,5)
sage: d1, _ = g.shortest_path_all_pairs(algorithm="BFS")
sage: d2, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Cython")
sage: d3, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Python")
sage: d4, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_NetworkX")
# → needs networkx
sage: d5, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_Boost")
# → needs scipy
d6, _ = g.shortest_path_all_pairs(algorithm="Johnson_Boost")
# → needs networkx scipy
d7, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall_Boost")
# → needs scipy
d8, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall_SciPy")
# → needs networkx scipy
```

```python
>>> from sage.all import *
```

```python
>>> g = graphs.Grid2dGraph(Integer(5),Integer(5))
```

```python
>>> d1, _ = g.shortest_path_all_pairs(algorithm="BFS")
>>> d2, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Cython")
>>> d3, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Python")
>>> d4, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_NetworkX")
# → needs networkx
>>> d5, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_Boost")
# → needs scipy
>>> d6, _ = g.shortest_path_all_pairs(algorithm="Johnson_Boost")
# → needs networkx scipy
>>> d7, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall_Boost")
# → needs scipy
>>> d8, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall_SciPy")
# → needs networkx scipy
```

Checking that distances are equal regardless of the algorithm used:

```python
sage: g = digraphs.RandomDirectedGNM(6,12)
```

(continues on next page)
sage: d1, _ = g.shortest_path_all_pairs(algorithm="BFS")
sage: d2, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Cython")
sage: d3, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Python")
sage: d4, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_NetworkX")
ILLED
˓→needs networkx
sage: d5, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_Boost")
sage: d6, _ = g.shortest_path_all_pairs(algorithm="Johnson_Boost")
sage: d7, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall_Boost")
sage: d8, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall_SciPy")
ILED
˓→needs scipy
sage: d1 == d2 == d3 == d4 == d5 == d6 == d7 == d8
True

>>> from sage.all import *
>>> g = digraphs.RandomDirectedGNM(Integer(6), Integer(12))
>>> d1, _ = g.shortest_path_all_pairs(algorithm="BFS")
>>> d2, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Cython")
ILED
˓→needs networkx
>>> d3, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Python")
>>> d4, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_NetworkX")
ILED
˓→needs scipy
>>> d5, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_Boost")
>>> d6, _ = g.shortest_path_all_pairs(algorithm="Johnson_Boost")
>>> d7, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall_Boost")
>>> d8, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall_SciPy")
ILED
˓→needs scipy
>>> d1 == d2 == d3 == d4 == d5 == d6 == d7 == d8
True

Checking that weighted distances are equal regardless of the algorithm used:

sage: g = graphs.CompleteGraph(5)
sage: import random
sage: for v, w in g.edges(labels=False, sort=False):
... g.add_edge(v, w, random.uniform(1, 10))
sage: d1, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Python")
sage: d2, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_NetworkX")
ILED
˓→needs networkx
sage: d3, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_Boost")
sage: d4, _ = g.shortest_path_all_pairs(algorithm="Johnson_Boost")
sage: d5, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall_Boost")
sage: d6, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall_SciPy")
ILED
˓→needs scipy
sage: d1 == d2 == d3 == d4 == d5 == d6
True

>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(5))
>>> import random
>>> for v, w in g.edges(labels=False, sort=False):
... g.add_edge(v, w, random.uniform(Integer(1), Integer(10)))
>>> d1, _ = g.shortest_path_all_pairs(algorithm="Floyd-Warshall-Python")
>>> d2, _ = g.shortest_path_all_pairs(algorithm="Dijkstra_NetworkX")
Checking a random path is valid:

```python
sage: dist, path = g.shortest_path_all_pairs(algorithm="BFS")
sage: u, v = g.random_vertex(), g.random_vertex()
sage: p = [v]
sage: while p[0] is not None:
...:     p.insert(0, path[u][p[0]])
sage: len(p) == dist[u][v] + 2
True
```

Negative weights:

```python
sage: g = DiGraph([(0,1,-2),(1,0,1)], weighted=True)
sage: g.shortest_path_all_pairs(by_weight=True)
Traceback (most recent call last):
...
ValueError: the graph contains a negative cycle
```

Unreachable vertices are not present in the dictionaries:

```python
sage: g = DiGraph([(0,1,1),(1,2,2)])
sage: g.shortest_path_all_pairs(algorithm=Dijkstra_NetworkX)  # needs networkx
({0: {0: 0, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}},
 {0: {0: None, 1: 1, 2: 1}, 1: {1: None, 2: 2}, 2: {2: None}})
sage: g.shortest_path_all_pairs(algorithm=Dijkstra_Boost)  # needs scipy
({0: {0: 0, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}},
 {0: {0: None, 1: 1, 2: 1}, 1: {1: None, 2: 2}, 2: {2: None}})
```

(continues on previous page)
Graph Theory, Release 10.4

{0: {0: None, 1: 0, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}}
sage: g.shortest_path_all_pairs(algorithm='Floyd-Warshall-Python')
{0: {0: 0, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}}
{0: {0: None, 1: 0, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}}
sage: g.shortest_path_all_pairs(algorithm='Floyd-Warshall-Cython')
{0: {0: 0, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}}
{0: {0: None, 1: 0, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}}
sage: g.shortest_path_all_pairs(algorithm='Floyd-Warshall_SciPy')
→ needs scipy
{0: {0: 0.0, 1: 1.0, 2: 2.0}, 1: {1: 0.0, 2: 1.0}, 2: {2: 0.0}}
{0: {0: None, 1: 0, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}}

In order to change the default behavior if the graph is disconnected, we can use default values with dictionaries:

```python
>>> from sage.all import *
>>> g = DiGraph([(Integer(0),Integer(1),Integer(1)),(Integer(1),Integer(2), Integer(2))])
>>> g.shortest_path_all_pairs(algorithm='BFS')
{0: {0: 0, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}}
{0: {0: None, 1: 0, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}}
>>> g.shortest_path_all_pairs(algorithm='Dijkstra_NetworkX')
# → needs networkx
{0: {0: 0, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}}
{0: {0: None, 1: 0, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}}
>>> g.shortest_path_all_pairs(algorithm='Floyd-Warshall-Python')
{0: {0: 0, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}}
{0: {0: None, 1: 0, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}}
>>> g.shortest_path_all_pairs(algorithm='Floyd-Warshall-Cython')
{0: {0: 0, 1: 1, 2: 2}, 1: {1: 0, 2: 1}, 2: {2: 0}}
{0: {0: None, 1: 0, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}}
>>> g.shortest_path_all_pairs(algorithm='Floyd-Warshall_SciPy')
# → needs scipy
{0: {0: 0.0, 1: 1.0, 2: 2.0}, 1: {1: 0.0, 2: 1.0}, 2: {2: 0.0}}
{0: {0: None, 1: 0, 2: 1}, 1: {1: None, 2: 1}, 2: {2: None}}
```

360 Chapter 1. Graph objects and methods
(continued from previous page)

```python
>>> for u, v in itertools.combinations(G.vertex_iterator(), Integer(2)):
...     print("dist({}, {}) = ".format(u,v, d[u].get(v,+Infinity)))
dist(0, 1) = 1
dist(0, 2) = +Infinity
dist(0, 3) = +Infinity
dist(1, 2) = +Infinity
dist(1, 3) = +Infinity
dist(2, 3) = 1
```

shortest_path_length *(u, v, by_weight=False, algorithm=None, weight_function=None, check_weight=True)*

Return the minimal length of a path from *u* to *v*.

If there is no path from *u* to *v*, returns Infinity.

For more information and more examples, we refer to **shortest_path()** and **shortest_paths()**, which have very similar inputs.

INPUT:

- *u, v* – the start and the end vertices of the paths
- *by_weight* – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
- *algorithm* – string (default: None); one of the following algorithms:
 - 'BFS': performs a BFS from *u*. Does not work with edge weights.
 - 'BFS_Bid': performs a BFS from *u* and from *v*. Does not work with edge weights.
 - 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX. Works only with positive weights.
 - 'Dijkstra_Bid_NetworkX': performs a Dijkstra visit from *u* and from *v* (NetworkX implementation). Works only with positive weights.
 - 'Dijkstra_Bid': a Cython implementation that performs a Dijkstra visit from *u* and from *v*. Works only with positive weights.
 - 'Bellman-Ford_Boost': the Bellman-Ford algorithm, implemented in Boost. Works also with negative weights, if there is no negative cycle.
 - None (default): Sage chooses the best algorithm: 'BFS_Bid' if *by_weight* is False, 'Dijkstra_Bid' otherwise.

Note: If there are negative weights and algorithm is None, the result is not reliable. This occurs because, for performance reasons, we cannot check whether there are edges with negative weights before running the algorithm. If there are, the user should explicitly input algorithm='Bellman-Ford_Boost'.

- *weight_function* – function (default: None); a function that takes as input an edge *(u, v, l)* and outputs its weight. If not None, *by_weight* is automatically set to True. If None and *by_weight* is True, we use the edge label *l*, if *i* is not None, else 1 as a weight.
- *check_weight* – boolean (default: True); if True, we check that the weight_function outputs a number for each edge

EXAMPLES:

1.1. Generic graphs (common to directed/undirected)
Standard examples:

```python
sage: D = graphs.DodecahedralGraph()
sage: D.shortest_path_length(4, 9)  # needs networkx
5
sage: D.shortest_path_length(4, 9, algorithm='Dijkstra_NetworkX') # needs networkx
5
sage: D.shortest_path_length(4, 9, algorithm='Dijkstra_Bid_NetworkX') # needs networkx
5
sage: D.shortest_path_length(4, 9, algorithm='Dijkstra_Bid')
5
sage: D.shortest_path_length(4, 9, algorithm='Bellman-Ford_Boost')
5
sage: D.shortest_path_length(5, 5)
0
sage: D.delete_edges(D.edges_incident(13))
sage: D.shortest_path_length(13, 4) +Infinity
sage: G = Graph({0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}},
.....: sparse=True)
sage: G.plot(edge_labels=True).show() # long time # needs sage.plot
sage: G.shortest_path_length(0, 3) 2
sage: G.shortest_path_length(0, 3, by_weight=True)
3
sage: G.shortest_path_length(0, 3, by_weight=True, algorithm='Dijkstra_NetworkX') # needs networkx
3
sage: G.shortest_path_length(0, 3, by_weight=True, algorithm='Dijkstra_Bid_NetworkX') # needs networkx
3
```

```python
>>> from sage.all import *
>>> D = graphs.DodecahedralGraph()
>>> D.shortest_path_length(Integer(4), Integer(9))  # needs networkx
5
>>> D.shortest_path_length(Integer(4), Integer(9), algorithm='BFS')
5
>>> D.shortest_path_length(Integer(4), Integer(9), algorithm='Dijkstra_NetworkX') # needs networkx
5
>>> D.shortest_path_length(Integer(4), Integer(9), algorithm='Dijkstra_Bid_NetworkX') # needs networkx
5
>>> D.shortest_path_length(Integer(4), Integer(9), algorithm='Dijkstra_Bid')
5
>>> D.shortest_path_length(Integer(4), Integer(9), algorithm='Bellman-Ford_Boost')
5
>>> D.shortest_path_length(Integer(5), Integer(5))
0
```

(continues on next page)
Graph Theory, Release 10.4

>>> D.delete_edges(D.edges_incident(Integer(13)))

>>> D.shortest_path_length(Integer(13), Integer(4))
+Infinity

>>> G = Graph({Integer(0): {Integer(1): Integer(1)}, Integer(1): {Integer(2):...
 Weiter
 Integer(1)}, Integer(2): {Integer(3): Integer(1)}, Integer(3): {Integer(4):...
 Weiter
 Integer(2)}, Integer(4): {Integer(0): Integer(2)}},
... sparse=True)

>>> G.plot(edge_labels=True).show() # long time

... needs sage.plot

>>> G.shortest_path_length(Integer(0), Integer(3))
2

>>> G.shortest_path_length(Integer(0), Integer(3), by_weight=True)
3

>>> G.shortest_path_length(Integer(0), Integer(3), by_weight=True,
 Weiter
 # needs networkx
 Weiter
 algorithm='Dijkstra_NetworkX')
3

>>> G.shortest_path_length(Integer(0), Integer(3), by_weight=True,
 Weiter
 # needs networkx
 Weiter
 algorithm='Dijkstra_Bid_NetworkX')
3

If Dijkstra is used with negative weights, usually it raises an error:

sage: G = DiGraph({0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: -2}},
... sparse=True)

sage: G.shortest_path_length(4, 1, by_weight=True, algorithm=None)
Traceback (most recent call last):
... ValueError: the graph contains an edge with negative weight

sage: G.shortest_path_length(4, 1, by_weight=True,
... algorithm='Bellman-Ford_Boost')
-1

>>> from sage.all import *

>>> G = DiGraph({Integer(0): {Integer(1): Integer(1)}, Integer(1):
 Weiter
 {Integer(2): Integer(1)}, Integer(2): {Integer(3): Integer(1)}, Integer(3):
 Weiter
 {Integer(4): Integer(2)}, Integer(4): {Integer(0): -Integer(2)}},
... sparse=True)

>>> G.shortest_path_length(Integer(4), Integer(1), by_weight=True,
... algorithm=None)
Traceback (most recent call last):
... ValueError: the graph contains an edge with negative weight

>>> G.shortest_path_length(Integer(4), Integer(1), by_weight=True,
... algorithm='Bellman-Ford_Boost')
-1

However, sometimes the result may be wrong, and no error is raised:

sage: G = DiGraph([(0,1,1), (1,2,1), (0,3,1000), (3,4,-3000), (4,2,1000)])

sage: G.shortest_path_length(0, 2, by_weight=True,
... algorithm='Bellman-Ford_Boost')
-1000

sage: G.shortest_path_length(0, 2, by_weight=True)
2
```
>>> from sage.all import *

>>> G = DiGraph([(Integer(0),Integer(1),Integer(1)), (Integer(1),Integer(2),
    Integer(1)), (Integer(0),Integer(3),Integer(1000)), (Integer(3),Integer(4),-
    Integer(3000)), (Integer(4),Integer(2),Integer(1000))])

>>> G.shortest_path_length(Integer(0), Integer(2), by_weight=True,
    ... algorithm='Bellman-Ford_Boost')
-1000
>>> G.shortest_path_length(Integer(0), Integer(2), by_weight=True)
2
```

shortest_path_lengths (u, by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return the length of a shortest path from u to any other vertex.

Returns a dictionary of shortest path lengths keyed by targets, excluding all vertices that are not reachable from u.

For more information on the input variables and more examples, we refer to shortest_paths() which has the same input variables.

INPUT:

- u – the starting vertex
- by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
- algorithm – string (default: None); one of the following algorithms:
 - 'BFS': performs a BFS from u. Does not work with edge weights.
 - 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX (works only with positive weights).
 - 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive weights).
 - 'Bellman-Ford_Boost': the Bellman-Ford algorithm, implemented in Boost (works also with negative weights, if there is no negative cycle).
 - None (default): Sage chooses the best algorithm: 'BFS' if by_weight is False, 'Dijkstra_Boost' if all weights are positive, 'Bellman-Ford_Boost' otherwise.
- weight_function – function (default: None); a function that takes as input an edge (u, v, l) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label l, if l is not None, else 1 as a weight.
- check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge

EXAMPLES:

Unweighted case:
```
sage: D = graphs.DodecahedralGraph()
sage: D.shortest_path_lengths(0)
{0: 0, 1: 1, 2: 2, 3: 2, 4: 3, 5: 4, 6: 3, 7: 3, 8: 2, 9: 2, 10: 1, 11: 2, 12: 3, 13: 3, 14: 4, 15: 5, 16: 4, 17: 3, 18: 2, 19: 1}
```
>> from sage.all import *
>>> D = graphs.DodecahedralGraph()
>>> D.shortest_path_lengths(Integer(0))
{0: 0, 1: 1, 2: 2, 3: 2, 4: 3, 5: 4, 6: 3, 7: 3, 8: 2, 9: 2, 10: 1,

Weighted case:

>>> G = Graph({0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}},
........: sparse=True)
>>> G.plot(edge_labels=True).show() # long time
˓→needs sage.plot
>>> G.shortest_path_lengths(0, by_weight=True)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 2}

Using a weight function:

>>> D = DiGraph([(0,1,'weight':1), (1,2,'weight':3), (0,2,'weight':5)
˓→])
>>> weight_function = lambda e: e[2]['weight']
>>> D.shortest_path_lengths(1, algorithm='Dijkstra_NetworkX',
˓→by_weight=False)
{1: 0, 2: 1}
>>> D.shortest_path_lengths(0, weight_function=weight_function)
{0: 0, 1: 1, 2: 4}
>>> D.shortest_path_lengths(1, weight_function=weight_function)
{1: 0, 2: 3}

Negative weights:

>>> D = DiGraph([(0,1,'weight':-1), (1,2,'weight':3), (0,2,'weight':5)
˓→])
(continues on next page)
sage: D.shortest_path_lengths(0, weight_function=weight_function)
{0: 0, 1: -1, 2: 2}

>>> from sage.all import *
>>> D = DiGraph([(Integer(0),Integer(1),{weight:-Integer(1)}), (Integer(1),
→Integer(2),{weight:Integer(3)}), (Integer(0),Integer(2),{weight
→:Integer(5)})])
>>> D.shortest_path_lengths(Integer(0), weight_function=weight_function)
{0: 0, 1: -1, 2: 2}

Negative cycles:

sage: D = DiGraph([(0,1,'weight':-5), (1,2,'weight':3), (2,0,'weight':1)
→])
sage: D.shortest_path_lengths(0, weight_function=weight_function)
Traceback (most recent call last):
...
ValueError: the graph contains a negative cycle

>>> from sage.all import *

>>> D = DiGraph([(Integer(0),Integer(1),{weight:-Integer(5)}), (Integer(1),
→Integer(2),{weight:Integer(3)}), (Integer(2),Integer(0),{weight
→:Integer(1)})])
>>> D.shortest_path_lengths(Integer(0), weight_function=weight_function)
Traceback (most recent call last):
...
ValueError: the graph contains a negative cycle

Checking that distances are equal regardless of the algorithm used:

sage: g = graphs.Grid2dGraph(5,5)
sage: d1 = g.shortest_path_lengths((0,0), algorithm="BFS")
sage: d2 = g.shortest_path_lengths((0,0), algorithm="Dijkstra_NetworkX") # needs networkx
sage: d3 = g.shortest_path_lengths((0,0), algorithm="Dijkstra_Boost")
sage: d4 = g.shortest_path_lengths((0,0), algorithm="Bellman-Ford_Boost")

sage: d1 == d2 == d3 == d4 # needs networkx
True

>>> from sage.all import *

>>> g = graphs.Grid2dGraph(Integer(5),Integer(5))
>>> d1 = g.shortest_path_lengths((Integer(0),Integer(0)), algorithm="BFS")
>>> d2 = g.shortest_path_lengths((Integer(0),Integer(0)), algorithm="Dijkstra_-
→NetworkX") # needs networkx
>>> d3 = g.shortest_path_lengths((Integer(0),Integer(0)), algorithm="Dijkstra_-
→Boost")
>>> d4 = g.shortest_path_lengths((Integer(0),Integer(0)), algorithm="Bellman-
→Ford_Boost")

shortest_paths (u, by_weight=False, algorithm=None, weight_function=None, check_weight=True,
cutoff=None)

Return a dictionary associating to each vertex v a shortest path from u to v, if it exists.
If \(u \) and \(v \) are not connected, vertex \(v \) is not present in the dictionary.

INPUT:
- \(u \) – the starting vertex
- \(\text{by_weight} \) – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
- \(\text{algorithm} \) – string (default: None); one of the following algorithms:
 - 'BFS': performs a BFS from \(u \). Does not work with edge weights.
 - 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX (works only with positive weights).
 - 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive weights).
 - 'Bellman-Ford_Boost': the Bellman-Ford algorithm, implemented in Boost (works also with negative weights, if there is no negative cycle).
 - None (default): Sage chooses the best algorithm: 'BFS' if \(\text{by_weight} \) is False, 'Dijkstra_Boost' if all weights are positive, 'Bellman-Ford_Boost' otherwise.
- \(\text{weight_function} \) – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, \(\text{by_weight} \) is automatically set to True. If None and \(\text{by_weight} \) is True, we use the edge label \(l \), if \(l \) is not None, else 1 as a weight.
- \(\text{check_weight} \) – boolean (default: True); if True, we check that the \(\text{weight_function} \) outputs a number for each edge
- \(\text{cutoff} \) – integer (default: None); integer depth to stop search (used only if \(\text{algorithm}==\text{'BFS'} \))

EXAMPLES:

Standard example:

```python
sage: D = graphs.DodecahedralGraph()
sage: D.shortest_paths(0)
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 19, 3], 4: [0, 19, 3, 4],
  5: [0, 1, 2, 6, 5], 6: [0, 1, 2, 6], 7: [0, 1, 8, 7], 8: [0, 1, 8],
  9: [0, 10, 9], 10: [0, 10], 11: [0, 10, 11], 12: [0, 10, 11, 12],
  13: [0, 10, 9, 13], 14: [0, 1, 8, 7, 14],
  15: [0, 19, 18, 17, 16, 15], 16: [0, 19, 18, 17, 16],
  17: [0, 19, 18, 17], 18: [0, 19, 18], 19: [0, 19]}
```

```python
>>> from sage.all import *
>>> D = graphs.DodecahedralGraph()
>>> D.shortest_paths(Integer(0))
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 19, 3], 4: [0, 19, 3, 4],
  5: [0, 1, 2, 6, 5], 6: [0, 1, 2, 6], 7: [0, 1, 8, 7], 8: [0, 1, 8],
  9: [0, 10, 9], 10: [0, 10], 11: [0, 10, 11], 12: [0, 10, 11, 12],
  13: [0, 10, 9, 13], 14: [0, 1, 8, 7, 14],
  15: [0, 19, 18, 17, 16, 15], 16: [0, 19, 18, 17, 16],
  17: [0, 19, 18, 17], 18: [0, 19, 18], 19: [0, 19]}
```

All these paths are obviously induced graphs:

```python
sage: all(D.subgraph(p).is_isomorphic(graphs.PathGraph(len(p))) for p in D.
  ➜ shortest_paths(0).values())
True
```
>>> from sage.all import *
>>> all(D.subgraph(p).is_isomorphic(graphs.PathGraph(len(p))) for p in D.
˓→shortest_paths(Integer(0)).values())
True

sage: D.shortest_paths(0, cutoff=Integer(2))
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 1, 3], 8: [0, 1, 8],
 9: [0, 9], 10: [0, 10], 11: [0, 11], 18: [0, 18],
 19: [0, 19]}
sage: G = Graph({0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} },␣
˓→sparse=True)
sage: G.plot(edge_labels=True).show() # long time #
˓→needs sage.plot
sage: G.shortest_paths(0, by_weight=True)
{0: [0], 1: [0, 1], 2: [0, 1, 2], 3: [0, 1, 2, 3], 4: [0, 4]}

Weighted shortest paths:

sage: D = DiGraph([(0,1,1),(1,2,3),(0,2,5)])
sage: D.shortest_paths(0)
{0: [0], 1: [0, 1], 2: [0, 2]}
sage: D.shortest_paths(0, by_weight=True)
{0: [0], 1: [0, 1], 2: [0, 1, 2]}

>>> from sage.all import *
>>> D = DiGraph([(Integer(0),Integer(1),{weight:Integer(1)}),(Integer(1),Integer(2),{weight:Integer(3)}),(Integer(0),Integer(2),{weight:
˓→continues on next page)
If the weight function does not match the label:

```python
sage: D.shortest_paths(0, weight_function=lambda e:e[2])
Traceback (most recent call last):
... ValueError: the weight function cannot find the weight of (0, 1, {weight: 1} →)
```

However, if check_weight is set to False, unexpected behavior may occur:

```python
sage: D.shortest_paths(0, algorithm='Dijkstra_NetworkX', # needs networkx
                  weight_function=lambda e:e[2], check_weight=False)
Traceback (most recent call last):
... TypeError: unsupported operand type(s) for +: 'int' and 'dict'
```

Negative weights:

```python
sage: D = DiGraph([(0,1,1),(1,2,-2),(0,2,4)])
sage: D.shortest_paths(0, by_weight=True)
{0: [0], 1: [0, 1], 2: [0, 1, 2]}
```

Negative cycles:

```python
sage: D.add_edge(2,0,0)
sage: D.shortest_paths(0, by_weight=True)
Traceback (most recent call last):
... ValueError: negative cycle exists
```
shortest_simple_paths (source, target, weight_function=None, by_weight=False, check_weight=True, algorithm=None, report_edges=False, labels=False, report_weight=False)

Return an iterator over the simple paths between a pair of vertices.

This method returns an iterator over the simple paths (i.e., without repetition) from source to target. By default (by_weight is False), the paths are reported by increasing number of edges. When by_weight is True, the paths are reported by increasing weights.

In case of weighted graphs negative weights are not allowed.

If source is the same vertex as target, then [[source]] is returned – a list containing the 1-vertex, 0-edge path source.

By default Yen's algorithm [Yen1970] is used for undirected graphs and Feng’s algorithm is used for directed graphs [Feng2014].

The loops and the multiedges if present in the given graph are ignored and only minimum of the edge labels is kept in case of multiedges.

INPUT:

• source – a vertex of the graph, where to start
• target – a vertex of the graph, where to end
• weight_function – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\) as a weight.
• by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
• check_weight – boolean (default: True); whether to check that the weight_function outputs a number for each edge.
• algorithm – string (default: None); the algorithm to use in computing \(k\) shortest paths of self. The following algorithms are supported:
 – "Yen" – Yen's algorithm [Yen1970]
 – "Feng" – an improved version of Yen's algorithm but that works only for directed graphs [Feng2014]
• report_edges – boolean (default: False); whether to report paths as list of vertices (default) or list of edges. When set to False, the labels parameter is ignored.
• labels – boolean (default: False); if False, each edge is simply a pair \((u, v)\) of vertices. Otherwise a list of edges along with its edge labels are used to represent the path.
• report_weight – boolean (default: False); if False, just the path between source and target is returned. Otherwise a tuple of path length and path is returned.
EXAMPLES:

```python
sage: g = DiGraph([(1, 2, 20), (1, 3, 10), (1, 4, 30),
      (2, 5, 20), (3, 5, 10), (4, 5, 30)])

sage: list(g.shortest_simple_paths(1, 5, by_weight=True, algorithm="Yen"))
[[[1, 3, 5]], [[1, 2, 5]], [[1, 4, 5]]]

sage: list(g.shortest_simple_paths(1, 5, algorithm="Yen"))
[[[1, 2, 5]], [[1, 3, 5]], [[1, 4, 5]]]

sage: list(g.shortest_simple_paths(1, 1))
[[[1]]]

sage: list(g.shortest_simple_paths(1, 5, by_weight=True, algorithm="Feng", report_edges=True, report_weight=True, labels=True))

sage: g = Graph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20),
      (3, 5, 10), (4, 5, 30), (1, 6, 100), (5, 6, 5)])

sage: list(g.shortest_simple_paths(1, 6, by_weight=True, algorithm="Yen"))
[[[1, 6]], [[1, 2, 5, 6]], [[1, 3, 5, 6]], [[1, 4, 5, 6]]]

sage: list(g.shortest_simple_paths(1, 6, by_weight=True, report_edges=True, report_weight=True, labels=True))

sage: list(g.shortest_simple_paths(1, 6, report_edges=True, labels=True))
[[[1, 6, 100]], [[1, 2, 5, 6]], [[1, 3, 5, 6]], [[1, 4, 5, 6]]]
```

1.1. Generic graphs (common to directed/undirected)
>>> from sage.all import *

>>> g = DiGraph([(Integer(1), Integer(2), Integer(20)), (Integer(1), Integer(3), Integer(10)), (Integer(1), Integer(4), Integer(30)), ...
... (Integer(2), Integer(5), Integer(20)), (Integer(3), ...
... Integer(5), Integer(10)), (Integer(4), Integer(5), Integer(30))])

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), by_weight=True,
... algorithm="Yen"))
[[[1, 3, 5], [1, 2, 5], [1, 4, 5]]

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), algorithm="Yen"))
[[[1, 2, 5], [1, 3, 5], [1, 4, 5]]

>>> list(g.shortest_simple_paths(Integer(1), Integer(1)))
[[[1]]

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), by_weight=True,
... report_edges=True, report_weight=True,
... labels=True))

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), by_weight=True,
... report_edges=True, report_weight=True,
... labels=True))

>>> list(g.shortest_simple_paths(Integer(1), Integer(6), by_weight=True,
... report_edges=True, report_weight=True,
... labels=True))

>>> from sage.all import *

>>> g = DiGraph([(Integer(1), Integer(2), Integer(20)), (Integer(1), Integer(3), Integer(10)), (Integer(1), Integer(4), Integer(30)), ...
... (Integer(2), Integer(5), Integer(20)), (Integer(3), ...
... Integer(5), Integer(10)), (Integer(4), Integer(5), Integer(30))])

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), by_weight=True,
... report_edges=True, report_weight=True,
... labels=True))

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), by_weight=True,
... report_edges=True, report_weight=True,
... labels=True))

>>> list(g.shortest_simple_paths(Integer(1), Integer(6), by_weight=True,
... report_edges=True, report_weight=True,
... labels=True))

(continues on next page)
show (method='matplotlib', **kwds)

Show the (di)graph.

INPUT:

- method – string (default: "matplotlib"); method to use to display the graph, either "matplotlib", or "js" to visualize it in a browser using d3.js.

- Any other argument supported by the drawing functions:
 - "matplotlib" – see GenericGraph.plot and sage.plot.graphics.Graphics.show()
 - "js" – see gen_html_code()

EXAMPLES:

```
sage: C = graphs.CubeGraph(8)
sage: P = C.plot(vertex_labels=False, vertex_size=0, graph_border=True)  # needs sage.plot
sage: P.show()  # long time (3s on sage.math, 2011), needs sage.plot
```

```
>>> from sage.all import *

>>> C = graphs.CubeGraph(Integer(8))
>>> P = C.plot(vertex_labels=False, vertex_size=Integer(0), graph_border=True)  # needs sage.plot
>>> P.show()  # long time (3s on sage.math, 2011), needs sage.plot
```

show3d(bgcolor=(1, 1, 1), vertex_colors=None, vertex_size=0.06, edge_colors=None, edge_size=0.02, edge_size2=0.0325, pos3d=None, color_by_label=False, engine='threejs', **kwds)

Plot the graph and show the resulting plot.

INPUT:

- bgcolor – rgb tuple (default: (1,1,1))
- vertex_size – float (default: 0.06)
- vertex_labels – a boolean (default: False); whether to display vertices using text labels instead of spheres
- vertex_colors – dictionary (default: None); optional dictionary to specify vertex colors: each key is a color recognizable by tachyon (rgb tuple (default: (1,0,0))), and each corresponding entry is a list of vertices. If a vertex is not listed, it looks invisible on the resulting plot (it doesn’t get drawn).
• edge_colors – dictionary (default: None); a dictionary specifying edge colors: each key is a color recognized by Tachyon (default: (0, 0, 0)), and each entry is a list of edges.

• color_by_label – a boolean or dictionary or function (default: False) whether to color each edge with a different color according to its label; the colors are chosen along a rainbow, unless they are specified by a function or dictionary mapping labels to colors; this option is incompatible with edge_color and edge_colors.

• edge_size – float (default: 0.02)
• edge_size2 – float (default: 0.0325); used for Tachyon sleeves
• pos3d – a position dictionary for the vertices
• layout, iterations, ... – layout options; see layout()
• engine – string (default: 'threejs'); the renderer to use among:
 - 'threejs': interactive web-based 3D viewer using JavaScript and a WebGL renderer
 - 'jmol': interactive 3D viewer using Java
 - 'tachyon': ray tracer generating a static PNG image
• xres – resolution
• yres – resolution
• **kwds – passed on to the rendering engine

EXAMPLES:

```
sage: G = graphs.CubeGraph(5)
sage: G.show3d(iterations=500, edge_size=None, vertex_size=0.04)  # long time, needs sage.plot
```

```ipython
>>> from sage.all import *
>>> G = graphs.CubeGraph(Integer(5))
>>> G.show3d(iterations=Integer(500), edge_size=None, vertex_size=RealNumber(˓→'0.04'))  # long time, needs sage.plot
```

We plot a fairly complicated Cayley graph:

```
sage: A5 = AlternatingGroup(5); A5
Alternating group of order 5!/2 as a permutation group
sage: G = A5.cayley_graph()
```

```ipython
>>> from sage.all import *
>>> A5 = AlternatingGroup(Integer(5)); A5
    # needs sage.groups
>>> G = A5.cayley_graph()
>>> G.show3d(vertex_size=RealNumber('0.03'),  # long time ˓→needs sage.groups sage.plot
....:
....:
....:
....:
....:
....:
....:
    edge_size=0.01, edge_size2=0.02,
    vertex_colors={(1,1,1): list(G)}, bgcolor=(0,0,0),
    color_by_label=True, iterations=200
```
Some Tachyon examples:

```python
sage: D = graphs.DodecahedralGraph()
sage: D.show3d(engine='tachyon') # long time # needs sage.plot
```

```python
>>> from sage.all import *
>>> D = graphs.DodecahedralGraph()
>>> D.show3d(engine='tachyon') # long time # needs sage.plot
```

```python
sage: G = graphs.PetersenGraph()
sage: G.show3d(engine='tachyon', # long time # needs sage.plot
...
....:     vertex_colors={(0,0,1): list(G)})
```

```python
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.show3d(engine='tachyon', # long time # needs sage.plot
...
....:     vertex_colors={(0,0,1): list(G)})
```

```python
sage: C = graphs.CubeGraph(4)
sage: C.show3d(engine='tachyon', # long time # needs sage.plot
...
....:     edge_colors={(0,1,0): C.edges(sort=False)
...
....:     vertex_colors={(1,1,1): list(C)}, bgcolor=(0,0,0))
```

```python
>>> from sage.all import *
>>> C = graphs.CubeGraph(Integer(4))
>>> C.show3d(engine='tachyon', # long time # needs sage.plot
...
....:     edge_colors={(Integer(0),Integer(1),Integer(0)): C.edges(sort=False)
...
....:     vertex_colors={(Integer(1),Integer(1),Integer(1)): list(C)}, bgcolor=(Integer(0),Integer(0),Integer(0)))
```

```python
sage: K = graphs.CompleteGraph(3)
sage: K.show3d(engine='tachyon', # long time # needs sage.plot
...
....:     edge_colors={(1,0,0): [(0, 1, None)],
...
....:     (0, 1, 0): [(0, 2, None)],
...
....:     (0, 0, 1): [(1, 2, None)]})
```

```python
>>> from sage.all import *
>>> K = graphs.CompleteGraph(Integer(3))
>>> K.show3d(engine='tachyon', # long time # needs sage.plot
```
... edge_colors={(Integer(1),Integer(0),Integer(0)): [(Integer(0),... ...

size()

Return the number of edges.

Note that num_edges() also returns the number of edges in G.

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.size()
15

spanning_trees_count(root_vertex=None)

Return the number of spanning trees in a graph.

In the case of a digraph, counts the number of spanning out-trees rooted in root_vertex. Default is to set first vertex as root.

This computation uses Kirchhoff’s Matrix Tree Theorem [1] to calculate the number of spanning trees. For complete graphs on \(n \) vertices the result can also be reached using Cayley's formula: the number of spanning trees are \(\frac{n(n-2)}{2} \).

For digraphs, the augmented Kirchhoff Matrix as defined in [2] is used for calculations. Here the result is the number of out-trees rooted at a specific vertex.

INPUT:

- root_vertex – a vertex (default: None); the vertex that will be used as root for all spanning out-trees if the graph is a directed graph. Otherwise, the first vertex returned by vertex_iterator() is used. This argument is ignored if the graph is not a digraph.

See also:

spanning_trees() – enumerates all spanning trees of a graph

REFERENCES:

- [2] Lih-Hsing Hsu, Cheng-Kuan Lin, “Graph Theory and Interconnection Networks”

AUTHORS:

- Anders Jonsson (2009-10-10)

EXAMPLES:

sage: G = graphs.PetersenGraph()
sage: G.spanning_trees_count()
needs sage.modules
2000

```python
>>> from sage.all import *

G = graphs.PetersenGraph()
>>> G.spanning_trees_count() #...

sage: n = 11
sage: G = graphs.CompleteGraph(n)
sage: ST = G.spanning_trees_count() #...

sage: ST == n ^ (n - 2) #...
True

>>> from sage.all import *

n = Integer(11)
G = graphs.CompleteGraph(n)
ST = G.spanning_trees_count() #...

ST == n ** (n - Integer(2)) # needs sage.modules
True

M = matrix(3, 3, [0, 1, 0, 0, 0, 1, 1, 1, 0])
D = DiGraph(M)
D.spanning_trees_count() 1
D.spanning_trees_count(0) 1
D.spanning_trees_count(2) 2
```

spectral_radius *(G, prec=1e-10)*

Return an interval of floating point number that encloses the spectral radius of this graph

The input graph \(G \) must be *strongly connected*.

INPUT:

- **prec** — (default: \(1e-10 \)) an upper bound for the relative precision of the interval
The algorithm is iterative and uses an inequality valid for non-negative matrices. Namely, if A is a non-negative square matrix with Perron-Frobenius eigenvalue λ then the following inequality is valid for any vector x:

$$\min_i \frac{(Ax)_i}{x_i} \leq \lambda \leq \max_i \frac{(Ax)_i}{x_i}$$

Note: The speed of convergence of the algorithm is governed by the spectral gap (the distance to the second largest modulus of other eigenvalues). If this gap is small, then this function might not be appropriate.

The algorithm is not smart and not parallel! It uses basic interval arithmetic and native floating point arithmetic.

EXAMPLES:

```python
sage: from sage.graphs.base.static_sparse_graph import spectral_radius
sage: G = DiGraph([(0,0),(0,1),(1,0)], loops=True)
sage: phi = (RR(1) + RR(5).sqrt()) / 2
sage: phi # abs tol 1e-14
1.618033988749895
sage: e_min, e_max = spectral_radius(G, 1e-14)
sage: e_min, e_max # abs tol 1e-14
(1.618033988749894, 1.618033988749896)
sage: (e_max - e_min) # abs tol 1e-14
1e-14
sage: e_min < phi < e_max
True
```

This function also works for graphs:

```python
sage: G = Graph([(0,1), (0,2), (1,2), (1,3), (2,4), (3,4)])
sage: e_min, e_max = spectral_radius(G, 1e-14)
sage: e = max(G.adjacency_matrix().charpoly().roots(AA, multiplicity=False)) # needs sage.modules sage.rings.number_field
sage: e_min < e < e_max # needs sage.modules sage.rings.number_field sage.symbolic
True
sage: G.spectral_radius() # abs tol 1e-9
(2.48119430408, 2.4811943041)
```
```python
>>> from sage.all import *
>>>
>>> G = Graph([(Integer(0),Integer(1)), (Integer(0),Integer(2)), (Integer(1),
    → Integer(2)), (Integer(1),Integer(3)), (Integer(2),Integer(4)), (Integer(3),
    → Integer(4))])
>>>
e_min, e_max = spectral_radius(G, RealNumber('1e-14'))
>>>
e = max(G.adjacency_matrix().charpoly().roots(AA, multiplicities=False))
→ # needs sage.modules sage.rings.number_field
>>>
e_min < e < e_max
→ # needs sage.modules sage.rings.number_field
True
>>>
>>> G.spectral_radius()  # abs tol 1e-9
(2.48119430408, 2.4811943041)
```

A larger example:

```python
sage: # needs sage.modules
sage: G = DiGraph()
sage: G.add_edges((i,i+1) for i in range(200))
sage: G.add_edge(200,0)
sage: G.add_edge(1,0)
sage: e_min, e_max = spectral_radius(G, 0.00001)
sage: p = G.adjacency_matrix(sparse=True).charpoly()
sage: p
x^201 - x^199 - 1
sage: r = p.roots(AA, multiplicities=False)[0]
→ # needs sage.rings.number_field
sage: e_min < r < e_max
→ # needs sage.rings.number_field
True
```

A much larger example:

```python
sage: G = DiGraph(100000)
sage: r = list(range(100000))
sage: while not G.is_strongly_connected():
    ....:    shuffle(r)
    ....:    G.add_edges(enumerate(r), loops=False)
sage: spectral_radius(G, 1e-10) # random
(1.9997956006500042, 1.9998043797692782)
```

1.1. Generic graphs (common to directed/undirected) 379
The algorithm takes care of multiple edges:

```
sage: G = DiGraph(2, loops=True, multiedges=True)
sage: G.add_edges([(0, 0), (0, 0), (0, 1), (1, 0)])
sage: spectral_radius(G, RealNumber('1e-14'))  # abs tol 1e-14
(2.414213562373094, 2.414213562373095)
sage: max(G.adjacency_matrix().eigenvalues(AA)) →  # needs sage.modules sage.rings.number_field
2.414213562373095?
```

Some bipartite graphs:

```
sage: G = Graph([(0, 1), (0, 3), (2, 3)])
sage: G.spectral_radius()  # abs tol 1e-10
(1.6180339887253428, 1.6180339887592732)
sage: G = DiGraph([(0, 1), (0, 3), (2, 3), (3, 0), (1, 0), (1, 2)])
sage: G.spectral_radius()  # abs tol 1e-10
(1.5537739740270458, 1.553773974033029)
sage: G = graphs.CompleteBipartiteGraph(1, 3)
sage: G.spectral_radius()  # abs tol 1e-10
(1.7320508075688772, 1.7320508075688774)
```

(continues on next page)
spectrum (laplacian=False)

Return a list of the eigenvalues of the adjacency matrix.

INPUT:

- laplacian – boolean (default: False); if True, use the Laplacian matrix (see kirchhoff_matrix())

OUTPUT:

A list of the eigenvalues, including multiplicities, sorted with the largest eigenvalue first.

See also:

The method spectral_radius() returns floating point approximation of the maximum eigenvalue.

EXAMPLES:

```python
sage: P = graphs.PetersenGraph()
sage: P.spectrum()  # needs sage.modules sage.rings.number_field
[3, 1, 1, 1, 1, -2, -2, -2, -2]
sage: P.spectrum(laplacian=True)  # needs sage.modules sage.rings.number_field
[5, 5, 5, 5, 2, 2, 2, 2, 2, 0]
sage: D = P.to_directed()
sage: D.spectrum()  # needs sage.modules sage.rings.number_field
[2.9032119259..., 1, 1, 1, 1, 0.8060634335..., -1.7092753594..., -2, -2, -2]
```

```python
>>> from sage.all import *
```

```python
sage: P = graphs.PetersenGraph()
sage: P.spectrum()  # needs sage.modules sage.rings.number_field
[3, 1, 1, 1, 1, -2, -2, -2, -2]
sage: P.spectrum(laplacian=True)  # needs sage.modules sage.rings.number_field
[5, 5, 5, 5, 2, 2, 2, 2, 2, 0]
sage: D = P.to_directed()
sage: D.delete_edge(7, 9)
sage: D.spectrum()  # needs sage.modules sage.rings.number_field
[2.9032119259..., 1, 1, 1, 1, 0.8060634335..., -1.7092753594..., -2, -2, -2]
```

```python
sage: C = graphs.CycleGraph(8)
sage: C.spectrum()  # needs sage.modules sage.rings.number_field
[2, 1.4142135623..., 1.4142135623..., 0, 0, -1.4142135623..., -1.4142135623..., -2]
```

```python
>>> from sage.all import *
```

```python
sage: C = graphs.CycleGraph(Integer(8))
sage: C.spectrum()  # needs sage.modules sage.rings.number_field
[2, 1.4142135623..., 1.4142135623..., 0, 0, -1.4142135623..., -1.4142135623..., -2]
```
A digraph may have complex eigenvalues. Previously, the complex parts of graph eigenvalues were being dropped. For a 3-cycle, we have:

```
sage: T = DiGraph({0: [1], 1: [2], 2: [0]})
sage: T.spectrum()  # nothing
[1, -0.5000000000... + 0.8660254037...*I, -0.5000000000... - 0.8660254037...*I]
```

```
>>> from sage.all import *
>>> T = DiGraph({Integer(0): [Integer(1)], Integer(1): [Integer(2)]})
>>> T.spectrum()  # nothing
[1, -0.5000000000... + 0.8660254037...*I, -0.5000000000... - 0.8660254037...*I]
```

```
steiner_tree (vertices, weighted=False, solver=None, verbose=None, integrality_tolerance=0)
```

Return a tree of minimum weight connecting the given set of vertices.

Definition:

Computing a minimum spanning tree in a graph can be done in $n \log(n)$ time (and in linear time if all weights are equal) where $n = V + E$. On the other hand, if one is given a large (possibly weighted) graph and a subset of its vertices, it is NP-Hard to find a tree of minimum weight connecting the given set of vertices, which is then called a Steiner Tree.

See the Wikipedia article Steiner_tree_problem for more information.

INPUT:

- `vertices` – the vertices to be connected by the Steiner Tree.
- `weighted` – boolean (default: False); whether to consider the graph as weighted, and use each edge’s label as a weight, considering `None` as a weight of 1. If `weighted=False` (default) all edges are considered to have a weight of 1.
- `solver` – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- `verbose` – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- `integrality_tolerance` – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

Note:

- This problem being defined on undirected graphs, the orientation is not considered if the current graph is actually a digraph.
- The graph is assumed not to have multiple edges.

ALGORITHM:
Solved through Linear Programming.

COMPLEXITY:

NP-Hard.

Note that this algorithm first checks whether the given set of vertices induces a connected graph, returning one of its spanning trees if \textit{weighted} is set to \texttt{False}, and thus answering very quickly in some cases

EXAMPLES:
The Steiner Tree of the first 5 vertices in a random graph is, of course, always a tree:

\begin{verbatim}
sage: g = graphs.RandomGNP(30, .5)
sage: first5 = g.vertices(sort=True)[:5]
sage: st = g.steiner_tree(first5) # needs sage.numerical.mip
sage: st.is_tree() # needs sage.numerical.mip
True

sage: st
\end{verbatim}

And all the 5 vertices are contained in this tree

\begin{verbatim}
≥≥≥ from sage.all import *
≥≥≥ g = graphs.RandomGNP(Integer(30), RealNumber('0.5'))
≥≥≥ first5 = g.vertices(sort=True)[:Integer(5)]
≥≥≥ st = g.steiner_tree(first5) # needs sage.numerical.mip
≥≥≥ st.is_tree() # needs sage.numerical.mip
True

sage: all(v in st for v in first5) # needs sage.numerical.mip
True

≥≥≥ from sage.all import *
≥≥≥ all(v in st for v in first5) # needs sage.numerical.mip
True
\end{verbatim}

An exception is raised when the problem is impossible, i.e. if the given vertices are not all included in the same connected component:

\begin{verbatim}
sage: g = 2 * graphs.PetersenGraph()
sage: st = g.steiner_tree([5, 15])
Traceback (most recent call last):
...
EmptySetError: the given vertices do not all belong to the same connected component.
\end{verbatim}

\begin{verbatim}
≥≥≥ from sage.all import *
≥≥≥ g = Integer(2) * graphs.PetersenGraph()
≥≥≥ st = g.steiner_tree([Integer(5), Integer(15)])
Traceback (most recent call last):
...
EmptySetError: the given vertices do not all belong to the same connected component.
\end{verbatim}
strong_product *(other)*

Return the strong product of `self` and `other`.

The strong product of G and H is the graph L with vertex set $V(L) = V(G) \times V(H)$, and $((u,v),(w,x))$ is an edge of L iff either:

- (u,w) is an edge of G and $v = x$, or
- (v,x) is an edge of H and $u = w$, or
- (u,w) is an edge of G and (v,x) is an edge of H.

In other words, the edges of the strong product is the union of the edges of the tensor and Cartesian products.

EXAMPLES:

```
sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: S = C.strong_product(Z); S
Graph on 10 vertices
sage: S.plot() # long time
needs sage.plot
Graphics object consisting of 36 graphics primitives
```

```
>>> from sage.all import *

>>> Z = graphs.CompleteGraph(Integer(2))
>>> C = graphs.CycleGraph(Integer(5))
>>> S = C.strong_product(Z); S
Graph on 10 vertices
```

```
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: S = D.strong_product(P); S
Graph on 200 vertices
sage: S.plot() # long time
needs sage.plot
Graphics object consisting of 1701 graphics primitives
```

```
>>> from sage.all import *

>>> D = graphs.DodecahedralGraph()
>>> P = graphs.PetersenGraph()
>>> S = D.strong_product(P); S
Graph on 200 vertices
```

subdivide_edge *(args)*

Subdivide an edge k times.

INPUT:

The following forms are all accepted to subdivide 8 times the edge between vertices 1 and 2 labeled with "my_label".

- `G.subdivide_edge(1, 2, 8)`
• `G.subdivide_edge((1, 2), 8)`
• `G.subdivide_edge((1, 2, "my_label"), 8)`

Note:
- If the given edge is labelled with \(l \), all the edges created by the subdivision will have the same label.
- If no label is given, the label used will be the one returned by the method `edge_label()` on the pair \(u, v \).

EXAMPLES:

Subdividing 5 times an edge in a path of length 3 makes it a path of length 8:

```
sage: g = graphs.PathGraph(3)
sage: edge = next(g.edge_iterator())
sage: g.subdivide_edge(edge, 5)
sage: g.is_isomorphic(graphs.PathGraph(8))
True
```

```python
>>> from sage.all import *
```

```python
>>> g = graphs.PathGraph(Integer(3))
```

```python
>>> edge = next(g.edge_iterator())
```

```python
>>> g.subdivide_edge(edge, Integer(5))
```

```python
>>> g.is_isomorphic(graphs.PathGraph(Integer(8)))
True
```

Subdividing a labelled edge in two ways:

```
sage: g = Graph()
sage: g.add_edge(0, 1, "label1")
sage: g.add_edge(1, 2, "label2")
sage: print(g.edges(sort=True))
[(0, 1, 'label1'), (1, 2, 'label2')]
```

```python
>>> from sage.all import *
```

```python
>>> g = Graph()
```

```python
>>> g.add_edge(Integer(0), Integer(1), "label1")
```

```python
>>> g.add_edge(Integer(1), Integer(2), "label2")
```

```python
>>> print(g.edges(sort=True))
[(0, 1, 'label1'), (1, 2, 'label2')]
```

Specifying the label:

```
sage: g.subdivide_edge(0, 1, "label1", 3)
sage: print(g.edges(sort=True))
[(0, 3, 'label1'), (1, 2, 'label2'), (1, 5, 'label1'), (3, 4, 'label1'), (4, 5, 'label1')]
```

```python
>>> from sage.all import *
```

```python
>>> g.subdivide_edge(Integer(0), Integer(1), "label1", Integer(3))
```

```python
>>> print(g.edges(sort=True))
[(0, 3, 'label1'), (1, 2, 'label2'), (1, 5, 'label1'), (3, 4, 'label1'), (4, 5, 'label1')]
```

The lazy way:
If too many arguments are given, an exception is raised

```python
sage: g.subdivide_edge(0,1,1,1,1,1,1,1)
Traceback (most recent call last):
  ... ValueError: this method takes at most 4 arguments
```

The same goes when the given edge does not exist:

```python
sage: g.subdivide_edge(0, 1, "fake_label", 5)
Traceback (most recent call last):
  ... ValueError: the given edge does not exist
```

See also:

- `subdivide_edges()` – subdivides multiples edges at a time

\[\text{subdivide_edges}(edges, k) \]

Subdivide \(k \) times edges from an iterable container.

For more information on the behaviour of this method, please refer to the documentation of `subdivide_edge()`.

INPUT:

- edges – a list of edges
- k – integer; common length of the subdivisions
Note: If a given edge is labelled with l, all the edges created by its subdivision will have the same label.

EXAMPLES:

If we are given the disjoint union of several paths:

```python
sage: paths = [2, 5, 9]
sage: paths = map(graphs.PathGraph, paths)
sage: g = Graph()
sage: for P in paths:
    ...:     g = g + P
```

```python
>>> from sage.all import *
>>> paths = [Integer(2), Integer(5), Integer(9)]
>>> paths = map(graphs.PathGraph, paths)
>>> g = Graph()
>>> for P in paths:
...     g = g + P
```

Subdividing edges in each of them will only change their lengths:

```python
sage: edges = [next(P.edge_iterator()) for P in g.connected_components_subgraphs()]
sage: k = 6
sage: g.subdivide_edges(edges, k)
```

```python
>>> from sage.all import *
>>> edges = [next(P.edge_iterator()) for P in g.connected_components_subgraphs()]
>>> k = Integer(6)
>>> g.subdivide_edges(edges, k)
```

Let us check this by creating the graph we expect to have built through subdivision:

```python
sage: paths2 = [2 + k, 5 + k, 9 + k]
sage: paths2 = map(graphs.PathGraph, paths2)
sage: g2 = Graph()
sage: for P in paths2:
    ...:     g2 = g2 + P
sage: g.is_isomorphic(g2)
True
```

```python
>>> from sage.all import *
>>> paths2 = [Integer(2) + k, Integer(5) + k, Integer(9) + k]
>>> paths2 = map(graphs.PathGraph, paths2)
>>> g2 = Graph()
>>> for P in paths2:
...     g2 = g2 + P
>>> g.is_isomorphic(g2)
True
```

See also:

- `subdivide_edge()` — subdivides one edge
subgraph (vertices=None, edges=None, inplace=False, vertex_property=None, edge_property=None, algorithm=None, immutable=None)

Return the subgraph containing the given vertices and edges.

If either vertices or edges are not specified, they are assumed to be all vertices or edges. If edges are not specified, returns the subgraph induced by the vertices.

INPUT:

- inplace – boolean (default: False); using inplace=True will simply delete the extra vertices and edges from the current graph. This will modify the graph.
- vertices – a single vertex or an iterable container of vertices, e.g. a list, set, graph, file or numeric array. If not passed (i.e., None), defaults to the entire graph.
- edges – as with vertices, edges can be a single edge or an iterable container of edges (e.g., a list, set, file, numeric array, etc.). By default (edges=None), all edges are assumed and the returned graph is an induced subgraph. In the case of multiple edges, specifying an edge as \((u, v)\) means to keep all edges \((u, v)\), regardless of the label.
- vertex_property – function (default: None); a function that inputs a vertex and outputs a boolean value, i.e., a vertex \(v\) in vertices is kept if vertex_property\((v)\) == True
- edge_property – function (default: None); a function that inputs an edge and outputs a boolean value, i.e., a edge \(e\) in edges is kept if edge_property\((e)\) == True
- algorithm – string (default: None); one of the following:
 - If algorithm="delete" or inplace=True, then the graph is constructed by deleting edges and vertices
 - If algorithm="add", then the graph is constructed by building a new graph from the appropriate vertices and edges. Implies inplace=False.
 - If algorithm=None, then the algorithm is chosen based on the number of vertices in the subgraph.
- immutable – boolean (default: None); whether to create a mutable/immutable subgraph. immutable=None (default) means that the graph and its subgraph will behave the same way.

EXAMPLES:

```
sage: G = graphs.CompleteGraph(9)
sage: H = G.subgraph([0, 1, 2]); H
Subgraph of (Complete graph): Graph on 3 vertices
sage: G
Complete graph: Graph on 9 vertices
sage: J = G.subgraph(edges=[(0, 1)])
sage: J.edges(sort=True, labels=False)
[(0, 1)]
sage: set(J) == set(G)
True
sage: G.subgraph([0, 1, 2], inplace=True); G
Subgraph of (Complete graph): Graph on 3 vertices
sage: G.subgraph() == G
True
```

```python
>>> from sage.all import *
>>> G = graphs.CompleteGraph(Integer(9))
```

(continues on next page)
>>> G
Complete graph: Graph on 9 vertices
>>> J = G.subgraph(edges=[(Integer(0), Integer(1))])
>>> J.edges(sort=True, labels=False)
[(0, 1)]
>>> set(J) == set(G)
True
>>> G.subgraph([Integer(0), Integer(1), Integer(2)], inplace=True); G
Subgraph of (Complete graph): Graph on 3 vertices
>>> G.subgraph() == G
True

sage: D = digraphs.Complete(9)
sage: H = D.subgraph([0, 1, 2]); H
Subgraph of (Complete digraph): Digraph on 3 vertices
sage: H = D.subgraph(edges=[(0, 1), (0, 2)])

sage: H.edges(sort=True, labels=False)
[(0, 1), (0, 2)]
sage: set(H) == set(D)
True
sage: D
Complete digraph: Digraph on 9 vertices
sage: D.subgraph([0, 1, 2], inplace=True); D
Subgraph of (Complete digraph): Digraph on 3 vertices
sage: D.subgraph() == D
True

>>> from sage.all import *

A more complicated example involving multiple edges and labels:

sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0, 1, 'a'), (0, 1, 'b'), (1, 0, 'c'), (0, 2, 'd'), (0, 2, 'e'), (2, 0, 'f'), (1, 2, 'g')])
sage: G.subgraph(edges=[(0, 1, 'a'), (0, 2, 'd'), (0, 2, 'not in graph')]).edges(sort=True)
[(0, 1, 'a')]
sage: J = G.subgraph(vertices=[0, 1], edges=[(0, 1, 'a')])
sage: J.edges(sort=True)
[(0, 1, 'a')]
sage: J.vertices(sort=True)
[0, 1]
sage: G.subgraph(vertices=G) == G
True

>>> from sage.all import *
>>> G = Graph(multiedges=True, sparse=True)
>>> G.add_edges([(Integer(0), Integer(1), 'a'), (Integer(0), Integer(1), 'b'),
 (Integer(1), Integer(0), 'c'), (Integer(0), Integer(2), 'd'), (Integer(0),
 Integer(2), 'e'), (Integer(2), Integer(0), 'f'), (Integer(1), Integer(2), 'g')])
>>> G.subgraph(edges=[(Integer(0), Integer(1)), (Integer(0), Integer(2), d),
 (Integer(0), Integer(2), not in graph)]).edges(sort=True)
[(0, 1, 'a'), (0, 1, 'b'), (0, 1, 'c'), (0, 2, 'd')]
>>> J = G.subgraph(vertices=[Integer(0), Integer(1)], edges=[(Integer(0),
 Integer(1), 'a'), (Integer(0), Integer(2), 'c')])
>>> J.edges(sort=True)
[(0, 1, 'a')]
>>> J.vertices(sort=True)
[0, 1]
>>> G.subgraph(vertices=G) == G
True

sage: D = DiGraph(multiedges=True, sparse=True)
sage: D.add_edges([(0, 1, 'a'), (0, 1, 'b'), (1, 0, 'c'), (0, 2, 'd'), (0, 2,
 'e'), (2, 0, 'f')])
sage: D.subgraph(edges=[(0, 1), (0, 2, d), (0, 2, not in graph)]).
edges(sort=True)
[(0, 1, 'a'), (0, 1, 'b'), (0, 2, 'd')]
>>> H = D.subgraph(vertices=[0, 1], edges=[(0, 1, 'a'), (0, 2, 'c')])
>>> H.edges(sort=True)
[(0, 1, 'a')]
>>> H.vertices(sort=True)
[0, 1]

>>> from sage.all import *
>>> D = DiGraph(multiedges=True, sparse=True)
>>> D.add_edges([(Integer(0), Integer(1), 'a'), (Integer(0), Integer(1), 'b'),
 (Integer(1), Integer(0), 'c'), (Integer(0), Integer(2), 'd'), (Integer(0),
 Integer(2), 'e'), (Integer(2), Integer(0), 'f'), (Integer(1), Integer(2), 'g')])
>>> D.subgraph(edges=[(Integer(0), Integer(1)), (Integer(0), Integer(2), d),
 (Integer(0), Integer(2), not in graph)]).edges(sort=True)
[(0, 1, 'a'), (0, 1, 'b'), (0, 2, 'd')]
>>> H = D.subgraph(vertices=[Integer(0), Integer(1)], edges=[(Integer(0),
 Integer(1), 'a'), (Integer(0), Integer(2), 'c')])
>>> H.edges(sort=True)
[(0, 1, 'a')]
>>> H.vertices(sort=True)
[0, 1]

Using the property arguments:

sage: P = graphs.PetersenGraph()
sage: S = P.subgraph(vertex_property=lambda v: not (v % 2))
sage: S.vertices(sort=True)
[0, 2, 4, 6, 8]
>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> S = P.subgraph(vertex_property=lambda v: not (v % Integer(2)))

sage: C = graphs.CubeGraph(2)
sage: S = C.subgraph(edge_property=(lambda e: e[0][0] == e[1][0]))

sage: C.edges(sort=True)
[['00', '01', None], ('00', '10', None), ('01', '11', None), ('10', '11', None)]
sage: S.edges(sort=True)
[['00', '01', None], ('10', '11', None)]

The algorithm is not specified, then a reasonable choice is made for speed:

sage: g = graphs.PathGraph(1000)
sage: g.subgraph(list(range(10))) # uses the 'add' algorithm
Subgraph of (Path graph): Graph on 10 vertices

subgraph_search (G, induced=False)

Return a copy of G in self.

INPUT:

• G – the (di)graph whose copy we are looking for in self

• induced – boolean (default: False); whether or not to search for an induced copy of G in self

OUTPUT:

If induced=False, return a copy of G in this graph. Otherwise, return an induced copy of G in self. If G is the empty graph, return the empty graph since it is a subgraph of every graph. Now suppose G is not the empty graph. If there is no copy (induced or otherwise) of G in self, we return None.

Note: The vertex labels and the edge labels in the graph are ignored.

See also:

• subgraph_search_count () – counts the number of copies of H inside of G

• subgraph_search_iterator() – iterator over the copies of H inside of G
ALGORITHM:

See the documentation of `SubgraphSearch`.

EXAMPLES:

The Petersen graph contains the path graph P_5:

```python
sage: g = graphs.PetersenGraph()
sage: h1 = g.subgraph_search(graphs.PathGraph(5)); h1
Subgraph of (Petersen graph): Graph on 5 vertices
sage: h1.vertices(sort=True); h1.edges(sort=True, labels=False)
[0, 1, 2, 3, 4]
[(0, 1), (1, 2), (2, 3), (3, 4)]
```

It also contains the claw $K_{1,3}$:

```python
sage: h2 = g.subgraph_search(graphs.ClawGraph()); h2
Subgraph of (Petersen graph): Graph on 4 vertices
sage: h2.vertices(sort=True); h2.edges(sort=True, labels=False)
[0, 1, 4, 5]
[(0, 1), (0, 4), (1, 4)]
```

```python
>>> from sage.all import *
>>> h2 = g.subgraph_search(graphs.ClawGraph()); h2
```

(continues on next page)
Subgraph of (Petersen graph): Graph on 4 vertices

```python
>>> h2.vertices(sort=True); h2.edges(sort=True, labels=False)
[(0, 1), (0, 4), (0, 5)]
```

```python
>>> I2 = g.subgraph_search(graphs.ClawGraph(), induced=True); I2
Subgraph of (Petersen graph): Graph on 4 vertices

```python
>>> I2.vertices(sort=True); I2.edges(sort=True, labels=False)
[(0, 1), (0, 4), (0, 5)]
```

Of course the induced copies are isomorphic to the graphs we were looking for:

```python
sage: I1.is_isomorphic(graphs.PathGraph(5))
True

sage: I2.is_isomorphic(graphs.ClawGraph())
True
```

```python
>>> from sage.all import *
```

```python
sage: I1.is_isomorphic(graphs.PathGraph(Integer(5)))
needs sage.modules
True

sage: I2.is_isomorphic(graphs.ClawGraph())
needs sage.modules
True
```

However, the Petersen graph does not contain a subgraph isomorphic to $K_3$:

```python
sage: g.subgraph_search(graphs.CompleteGraph(3)) is None
is None
needs sage.modules
True
```

```python
>>> from sage.all import *
```

```python
sage: g.subgraph_search(graphs.CompleteGraph(Integer(3))) is None
is None
needs sage.modules
True
```

Nor does it contain a nonempty induced subgraph isomorphic to $P_6$:

```python
sage: g.subgraph_search(graphs.PathGraph(6), induced=True) is None
is None
needs sage.modules
True
```

```python
>>> from sage.all import *
```

```python
sage: g.subgraph_search(graphs.PathGraph(Integer(6)), induced=True) is None
is None
needs sage.modules
True
```

The empty graph is a subgraph of every graph:

```python
sage: g.subgraph_search(graphs.EmptyGraph())
Graph on 0 vertices

sage: g.subgraph_search(graphs.EmptyGraph(), induced=True)
```

(continues on next page)
The subgraph may just have edges missing:

```python
sage: k3 = graphs.CompleteGraph(3); p3 = graphs.PathGraph(3)
sage: k3.relabel(list(abc))
sage: s = k3.subgraph_search(p3)
needs sage.modules
sage: s.edges(sort=True, labels=False)
needs sage.modules
[(['a', 'b'], ('b', 'c'))]
```

Of course, $P_3$ is not an induced subgraph of $K_3$, though:

```python
sage: k3 = graphs.CompleteGraph(3); p3 = graphs.PathGraph(3)
sage: k3.relabel(list(abc))
sage: k3.subgraph_search(p3, induced=True) is None
needs sage.modules
True
```

If the graph has labels, the labels are just ignored:

```python
sage: g.set_vertex(0, 'foo')
sage: c = g.subgraph_search(graphs.PathGraph(5))
needs sage.modules
sage: c.get_vertices()
needs sage.modules
{0: 'foo', 1: None, 2: None, 3: None, 4: None}
```
subgraph_search_count \((G, induced=\text{True})\)

Return the number of labelled occurrences of \(G\) in \(self\).

INPUT:

- \(G\) – the (di)graph whose copies we are looking for in \(self\)
- \(induced\) – boolean (default: \(False\)); whether or not to count induced copies of \(G\) in \(self\)

Note: The vertex labels and the edge labels in the graph are ignored.

ALGORITHM:

See the documentation of \texttt{SubgraphSearch}.

See also:

- \texttt{subgraph_search()} – finds a subgraph isomorphic to \(H\) inside of a graph \(G\)
- \texttt{subgraph_search_iterator()} – iterator over the copies of a graph \(H\) inside of a graph \(G\)

EXAMPLES:

Counting the number of paths \(P_5\) in a PetersenGraph:

```python
sage: g = graphs.PetersenGraph()
sage: g.subgraph_search_count(graphs.PathGraph(5)) # needs sage.modules
240
```

Requiring these subgraphs be induced:

```python
sage: g.subgraph_search_count(graphs.PathGraph(5), induced=\text{True}) # needs sage.modules
120
```

If we define the graph \(T_k\) (the transitive tournament on \(k\) vertices) as the graph on \(\{0, ..., k - 1\}\) such that \(ij \in T_k\) if \(i < j\), how many directed triangles can be found in \(T_5\)? The answer is of course 0:
If we count instead the number of $T_3$ in $T_5$, we expect the answer to be $\binom{5}{3}$:

```
sage: T3 = digraphs.TransitiveTournament(3)
sage: T5.subgraph_search_count(T3)
needs sage.modules
10
```
```
sage: binomial(5, 3)
needs sage.symbolic
10
```
```
sage: T3.is_isomorphic(T5.subgraph(vertices=[0, 1, 2]))
needs sage.modules
True
```

The empty graph is a subgraph of every graph:

```
sage: g.subgraph_search_count(graphs.EmptyGraph())
needs sage.modules
1
```
```
>>> from sage.all import *
>>> g.subgraph_search_count(graphs.EmptyGraph())
needs sage.modules
1
```

If the graph has vertex labels or edge labels, the label is just ignored:

```
sage: g.set_vertex(0, 'foo')
sage: g.subgraph_search_count(graphs.PathGraph(5))
needs sage.modules
240
```
```
>>> from sage.all import *
>>> g.set_vertex(Integer(0), 'foo')
```

(continues on next page)
subgraph_search_iterator \((G, induced=\text{False}, return\_graphs=\text{True})\)

Return an iterator over the labelled copies of \(G\) in \(self\).

**INPUT:**

- \(G\) – the graph whose copies we are looking for in \(self\)
- \(induced\) – boolean (default: \text{False}); whether or not to iterate over the induced copies of \(G\) in \(self\)
- \(return\_graphs\) – boolean (default: \text{True}); whether to return (di)graphs or only the list of vertices of the found (di)graphs

**Note:** The vertex labels and the edge labels in the graph are ignored.

**ALGORITHM:**

See the documentation of \textit{SubgraphSearch}.

**OUTPUT:**

Iterator over the labelled copies of \(G\) in \(self\), as lists or (di)graphs. For each value \((v_1, v_2, \ldots, v_k)\) returned, the first vertex of \(G\) is associated with \(v_1\), the second with \(v_2\), etc.

**Note:** This method works on \texttt{Graph}, \texttt{DiGraph} and \texttt{BipartiteGraph}.

**See also:**

- \texttt{subgraph_search()} – finds a subgraph isomorphic to \(H\) inside of \(G\)
- \texttt{subgraph_search_count()} – counts the number of copies of \(H\) inside of \(G\)

**EXAMPLES:**

Iterating through all the labelled \(P_3\) of \(P_5\):

```python
sage: g = graphs.PathGraph(5)
sage: P3 = graphs.PathGraph(3)
sage: for p in g.subgraph_search_iterator(P3, return_graphs=False): # needs sage.modules
 print(p)
[0, 1, 2]
[1, 2, 3]
[2, 1, 0]
[2, 3, 4]
[3, 2, 1]
[4, 3, 2]
sage: for p in g.subgraph_search_iterator(P3, return_graphs=True): # needs sage.modules
 print(p)
Subgraph of (Path graph)
Subgraph of (Path graph)
Subgraph of (Path graph)
(continues on next page)```

1.1. Generic graphs (common to directed/undirected) 397
Subgraph of (Path graph)
Subgraph of (Path graph)
Subgraph of (Path graph)

```
sage: all(h.is_isomorphic(P3) for h in g.subgraph_search_iterator(P3)) # needs sage.modules
True
```

```python
from sage.all import *
g = graphs.PathGraph(Integer(5))
P3 = graphs.PathGraph(Integer(3))
for p in g.subgraph_search_iterator(P3, return_graphs=False):  # needs sage.modules
    ... print(p)
[0, 1, 2]
[1, 2, 3]
[2, 1, 0]
[2, 3, 4]
[3, 2, 1]
[4, 3, 2]
```

```python
for p in g.subgraph_search_iterator(P3, return_graphs=True):  # needs sage.modules
    ... print(p)
Subgraph of (Path graph)
```

```python
all(h.is_isomorphic(P3) for h in g.subgraph_search_iterator(P3)) # needs sage.modules
True
```

If the graph has vertex labels or edge labels, the label is just ignored:

```
sage: g.set_vertex(0, 'foo')
sage: for p in g.subgraph_search_iterator(P3, return_graphs=False):  # needs sage.modules
    ... print(p)
[0, 1, 2]
[1, 2, 3]
[2, 1, 0]
[2, 3, 4]
[3, 2, 1]
[4, 3, 2]
```

```python
from sage.all import *
g.set_vertex(Integer(0), 'foo')
for p in g.subgraph_search_iterator(P3, return_graphs=False):  # needs sage.modules
    ... print(p)
```

```python
for p in g.subgraph_search_iterator(P3, return_graphs=True):  # needs sage.modules
    ... print(p)
Subgraph of (Path graph)
```
Search for induced subgraphs:

```python
sage: H = graphs.HouseGraph()
sage: P4 = graphs.PathGraph(4)
sage: all(h.is_isomorphic(P4)  # needs sage.modules...
         for h in H.subgraph_search_iterator(P4, induced=True))
True
sage: sum(1 for h in H.subgraph_search_iterator(P4, induced=True))  # needs sage.modules
4
sage: sum(1 for h in H.subgraph_search_iterator(P4, induced=False))  # needs sage.modules
20
```

```bash
>>> from sage.all import *
>>> H = graphs.HouseGraph()
>>> P4 = graphs.PathGraph(Integer(4))
>>> all(h.is_isomorphic(P4)  # needs sage.modules...
         for h in H.subgraph_search_iterator(P4, induced=True))
True
>>> sum(Integer(1) for h in H.subgraph_search_iterator(P4, induced=True))  # needs sage.modules
4
>>> sum(Integer(1) for h in H.subgraph_search_iterator(P4, induced=False))  # needs sage.modules
20
```

Search for subdigraphs:

```python
sage: H = digraphs.Complete(5)
sage: P4 = digraphs.Path(4)
sage: sum(1 for _ in H.subgraph_search_iterator(P4, induced=True))  # needs sage.modules
0
sage: sum(1 for _ in H.subgraph_search_iterator(P4, induced=False))  # needs sage.modules
120
```

```bash
>>> from sage.all import *
>>> H = digraphs.Complete(Integer(5))
>>> P4 = digraphs.Path(Integer(4))
>>> sum(Integer(1) for _ in H.subgraph_search_iterator(P4, induced=True))  # needs sage.modules
0
>>> sum(Integer(1) for _ in H.subgraph_search_iterator(P4, induced=False))  # needs sage.modules
120
```

This method also works for bipartite graphs:

```python
sage: K33 = BipartiteGraph(graphs.CompleteBipartiteGraph(3, 3))
sage: K22 = BipartiteGraph(graphs.CompleteBipartiteGraph(2, 2))
sage: sum(1 for _ in K33.subgraph_search_iterator(K22))  # needs sage.modules
72
```
symmetric_edge_polytope (backend=None)

Return the symmetric edge polytope of self.

The symmetric edge polytope (SEP) of a Graph on \(n \) vertices is the polytope in \(\mathbb{Z}^n \) defined as the convex hull of \(e_i - e_j \) and \(e_j - e_i \) for each edge \((i,j) \). Here \(e_1, \ldots, e_n \) denotes the standard basis.

INPUT:

- backend – string or None (default); the backend to use; see sage.geometry.polyhedron.constructor.Polyhedron()

EXAMPLES:

The SEP of a 4-cycle is a cube:

```
sage: G = graphs.CycleGraph(4)
sage: P = G.symmetric_edge_polytope(); P
# needs sage.geometry.polyhedron
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 8 vertices
sage: P.is_combinatorially_isomorphic(polytopes.cube())
# needs sage.geometry.polyhedron
True
```

The SEP of a complete graph on 4 vertices is a cuboctahedron:

```
sage: G = graphs.CompleteGraph(4)
sage: P = G.symmetric_edge_polytope(); P
# needs sage.geometry.polyhedron
A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 12 vertices
sage: P.is_combinatorially_isomorphic(polytopes.cuboctahedron())
# needs sage.geometry.polyhedron
True
```

(continues on next page)
The SEP of a graph with edges on \(n \) vertices has dimension \(n \) minus the number of connected components:

\[
\text{sage: } n = \text{randint}(5, 12) \\
\text{sage: } G = \text{Graph}() \\
\text{sage: } \textbf{while not } G.\text{num_edges}(): \\
\text{\quad - needs networkx} \\
\text{\quad ..: } G = \text{graphs.Random_GNP}(n, 0.2) \\
\text{sage: } P = G.\text{symmetric_edge_polytope}() \\
\text{\quad - needs networkx sage.geometry.polyhedron} \\
\text{sage: } P.\text{ambient_dim}() == n \\
\text{\quad - needs networkx sage.geometry.polyhedron} \\
\text{True} \\
\text{sage: } P.\text{dim}() == n - G.\text{connected_components_number}() \\
\text{\quad - needs networkx sage.geometry.polyhedron} \\
\text{True}
\]

\[
\text{\textbf{>>> from sage.all import *}} \\
\text{\textbf{>>> n = randint(Integer(5), Integer(12))}} \\
\text{\textbf{>>> G = Graph()}} \\
\text{\textbf{>>> while not } G.\text{num_edges}():} \\
\text{\quad - needs networkx} \\
\text{\quad ..: } G = \text{graphs.Random_GNP}(n, \text{RealNumber('0.2')}) \\
\text{\textbf{>>> P = G.\text{symmetric_edge_polytope}()}} \\
\text{\quad - needs networkx sage.geometry.polyhedron} \\
\text{\textbf{>>> P.\text{ambient_dim}() == n}} \\
\text{\quad - needs networkx sage.geometry.polyhedron} \\
\text{True} \\
\text{\textbf{>>> P.\text{dim}() == n - G.\text{connected_components_number}()}} \\
\text{\quad - needs networkx sage.geometry.polyhedron} \\
\text{True}
\]

The SEP of a graph is isomorphic to the subdirect sum of its connected components SEP’s:

\[
\text{sage: } n = \text{randint}(3, 6) \\
\text{sage: } G1 = \text{graphs.Random_GNP}(n, 0.2) \\
\text{\quad - needs networkx} \\
\text{sage: } n = \text{randint}(3, 6) \\
\text{sage: } G2 = \text{graphs.Random_GNP}(n, 0.2) \\
\text{\quad - needs networkx} \\
\text{sage: } G = G1.\text{disjoint_union}(G2) \\
\text{\quad - needs networkx} \\
\text{sage: } P = G.\text{symmetric_edge_polytope}() \\
\text{\quad - needs networkx sage.geometry.polyhedron} \\
\text{sage: } P1 = G1.\text{symmetric_edge_polytope}() \\
\text{\quad - needs networkx sage.geometry.polyhedron} \\
\text{sage: } P2 = G2.\text{symmetric_edge_polytope}() \\
\text{\quad - needs networkx sage.geometry.polyhedron} \\
\text{sage: } P.\text{is_combinatorially_isomorphic}(P1.\text{subdirect_sum}(P2)) \\
\text{\quad - needs networkx sage.geometry.polyhedron} \\
\text{True}
\]

\[
\text{\textbf{>>> from sage.all import *}} \\
\text{\textbf{>>> n = randint(Integer(3), Integer(6))}}
\]

(continues on next page)
All trees on n vertices have isomorphic SEPs:

```
sage: n = randint(4, 10)
sage: G1 = graphs.RandomTree(n)
sage: G2 = graphs.RandomTree(n)
sage: P1 = G1.symmetric_edge_polytope()  # needs sage.geometry.polyhedron
sage: P2 = G2.symmetric_edge_polytope()  # needs sage.geometry.polyhedron
sage: P1.is_combinatorially_isomorphic(P2)  # needs sage.geometry.polyhedron
True
```

However, there are still many different SEPs:

```
sage: len(list(graphs(5)))
34
sage: polys = []
sage: for G in graphs(5):
    # needs sage.geometry.polyhedron
    P = G.symmetric_edge_polytope()
    for P1 in polys:
        if P.is_combinatorially_isomorphic(P1):
            break
    else:
        polys.append(P)
sage: len(polys)
402
```

(continues on next page)
needs sage.geometry.polyhedron

from sage.all import *

len(list(graphs(Integer(5))))
34

polys = []

for G in graphs(Integer(5)):
 # needs sage.geometry.polyhedron
 P = G.symmetric_edge_polytope()
 for P1 in polys:
 if P.is_combinatorially_isomorphic(P1):
 break
 else:
 polys.append(P)

len(polys)
A non-trivial example of two graphs with isomorphic SEPs:

sage: G1 = graphs.CycleGraph(4)
sage: G1.add_edges([[0, 5], [5, 2], [1, 6], [6, 2]])
sage: G2 = copy(G1)
sage: G1.add_edges([[2, 7], [7, 3]])
sage: G2.add_edges([[0, 7], [7, 3]])
sage: G1.is_isomorphic(G2)
False
sage: P1 = G1.symmetric_edge_polytope()
needs sage.geometry.polyhedron
sage: P2 = G2.symmetric_edge_polytope()
needs sage.geometry.polyhedron
sage: P1.is_combinatorially_isomorphic(P2)
needs combinatorially_isomorphic
True

from sage.all import *

G1 = graphs.CycleGraph(Integer(4))
G1.add_edges([[Integer(0), Integer(5)], [Integer(5), Integer(2)],
 [Integer(1), Integer(6)], [Integer(6), Integer(2)]]
G2 = copy(G1)
G1.add_edges([[Integer(2), Integer(7)], [Integer(7), Integer(3)]])
G2.add_edges([[Integer(0), Integer(7)], [Integer(7), Integer(3)]]
G1.is_isomorphic(G2)
False
P1 = G1.symmetric_edge_polytope()
needs sage.geometry.polyhedron
P2 = G2.symmetric_edge_polytope()
needs sage.geometry.polyhedron
P1.is_combinatorially_isomorphic(P2)
needs sage.geometry.polyhedron

Apparently, gluing two graphs together on a vertex gives isomorphic SEPs:
szeged_index (G, algorithm=None)

Return the Szeged index of the graph G.

Let $G = (V, E)$ be a connected graph, and for any $uv \in E$, let $N_u(uv) = \{ w \in V : d(u, w) < d(v, w) \}$ and $n_u(uv) = |N_u(uv)|$. The Szeged index of G is then defined as $[KRG1996]$

$$\sum_{uv \in E(G)} n_u(uv) \times n_v(uv)$$

See the Wikipedia article Szeged index for more details.

INPUT:

- G – a Sage graph
- algorithm – string (default: None): algorithm to use among:
- "low" – algorithm with time complexity in $O(nm)$ and space complexity in $O(m)$. This implementation is currently valid only for simple (without loops or multiple edges) connected graphs.

- "high" – algorithm with time complexity in $O(nm)$ and space complexity in $O(n^2)$. It cannot be used on graphs with more than $65536 = 2^{16}$ vertices.

By default (None), the "low" algorithm is used for graphs and the "high" algorithm for digraphs.

Note: As the graph is converted to a short_digraph, the complexity for the case algorithm == "high" has an extra $O(m + n)$ for SparseGraph and $O(n^2)$ for DenseGraph. If algorithm == "low", the extra complexity is $O(n + m \log m)$ for SparseGraph and $O(n^2 \log m)$ for DenseGraph (because init_short_digraph is called with sort_neighbors=True).

EXAMPLES:

True for any connected graph [KRG1996]:

```python
sage: from sage.graphs.distances_all_pairs import szeged_index
sage: g = graphs.PetersenGraph()
sage: g.wiener_index() <= szeged_index(g)
```

True for all trees [KRG1996]:

```python
sage: g = Graph()
sage: g.add_edges(graphs.CubeGraph(5).min_spanning_tree())
sage: g.wiener_index() == szeged_index(g)
```

Check that both algorithms return same value:

```python
sage: # long time, needs networkx
sage: G = graphs.RandomBarabasiAlbert(100, 2)
sage: a = szeged_index(G, algorithm='low')
sage: b = szeged_index(G, algorithm='high')
sage: a == b
```

(continues on next page)
The Szeged index of a directed circuit of order \(n \) is \((n - 1)^2\):

\[
\text{sage: } \left[\text{digraphs.Circuit}(n).\text{szeged_index()} \text{ for } n \text{ in range(1, } 8) \right]
\]

\[0, 1, 4, 9, 16, 25, 36\]

\[
\text{sage: } \left[\text{digraphs.Circuit}(n).\text{szeged_index()} \text{ for } n \text{ in range(Integer(1), } \rightarrow \text{Integer(8))} \right]
\]

\[0, 1, 4, 9, 16, 25, 36\]

tensor_product *(other)*

Return the tensor product of \texttt{self} and \texttt{other}.

The tensor product of \(G \) and \(H \) is the graph \(L \) with vertex set \(V(L) \) equal to the Cartesian product of the vertices \(V(G) \) and \(V(H) \), and \((u, v), (w, x)) \) is an edge iff \((u, w) \) is an edge of \(G \), and \((v, x) \) is an edge of \(H \).

The tensor product is also known as the categorical product and the Kronecker product (referring to the Kronecker matrix product). See the Wikipedia article Kronecker product.

EXAMPLES:

\[
\text{sage: } Z = \text{graphs.CompleteGraph}(2)
\]

\[
\text{sage: } C = \text{graphs.CycleGraph}(5)
\]

\[
\text{sage: } T = C\text{.tensor_product}(Z); T
\]

Graph on 10 vertices

\[
\text{sage: } T\text{.size()}
\]

10

\[
\text{sage: } T\text{.plot()} \quad \# \text{long time} \quad \#_{\text{needs sage.plot}}
\]

Graphics object consisting of 21 graphics primitives

\[
\text{sage: } Z = \text{graphs.CompleteGraph}(Integer(2))
\]

\[
\text{sage: } C = \text{graphs.CycleGraph}(Integer(5))
\]

\[
\text{sage: } T = C\text{.tensor_product}(Z); T
\]

Graph on 10 vertices

\[
\text{sage: } T\text{.size()}
\]

10

\[
\text{sage: } T\text{.plot()} \quad \# \text{long time} \quad \#_{\text{needs sage.plot}}
\]

Graphics object consisting of 21 graphics primitives

\[
\text{sage: } D = \text{graphs.DodecahedralGraph}()
\]

\[
\text{sage: } P = \text{graphs.PetersenGraph}()
\]

\[
\text{sage: } T = D\text{.tensor_product}(P); T
\]

Graph on 200 vertices

\[
\text{sage: } T\text{.size()}
\]

900

\[
\text{sage: } T\text{.plot()} \quad \# \text{long time} \quad \#_{\text{needs sage.plot}}
\]

Graphics object consisting of 1101 graphics primitives
```python
>>> from sage.all import *
>>> D = graphs.DodecahedralGraph()
>>> P = graphs.PetersenGraph()
>>> T = D.tensor_product(P); T
Graph on 200 vertices
>>> T.size()
900
>>> T.plot()  # long time

needs sage.plot
```

```python
to_dictionary (edge_labels=False, multiple_edges=False)
```

Return the graph as a dictionary.

INPUT:

- `edge_labels` – boolean (default: False); whether to include edge labels in the output
- `multiple_edges` – boolean (default: False); whether to include multiple edges in the output

OUTPUT:

The output depends on the input:

- If `edge_labels == False` and `multiple_edges == False`, the output is a dictionary associating to each vertex the list of its neighbors.
- If `edge_labels == False` and `multiple_edges == True`, the output is a dictionary the same as previously with one difference: the neighbors are listed with multiplicity.
- If `edge_labels == True` and `multiple_edges == False`, the output is a dictionary associating to each vertex \(u \) a dictionary associating to each vertex \(v \) incident to \(u \) the label of edge \((u, v)\).
- If `edge_labels == True` and `multiple_edges == True`, the output is a dictionary associating to each vertex \(u \) a dictionary associating to each vertex \(v \) incident to \(u \) the list of labels of all edges between \(u \) and \(v \).

Note: When used on directed graphs, the explanations above can be understood by replacing the word “neighbors” by “out-neighbors”

EXAMPLES:

```python
sage: g = graphs.PetersenGraph().to_dictionary()
sage: [(key, sorted(g[key])) for key in g]
[(0, [1, 4, 5]), (1, [0, 2, 6]), (2, [1, 3, 7]), (3, [2, 4, 8]), (4, [0, 3, 9]), (5, [0, 7, 8]), (6, [1, 8, 9]), (7, [2, 5, 9]), (8, [3, 5, 6]), (9, [4, 6, 7])]
sage: graphs.PetersenGraph().to_dictionary(multiple_edges=True)
{0: [1, 4, 5], 1: [0, 2, 6], 2: [1, 3, 7], 3: [2, 4, 8],}
```

(continues on next page)
Graph Theory, Release 10.4

4: [0, 3, 9], 5: [0, 7, 8],
6: [1, 8, 9], 7: [2, 5, 9],
8: [3, 5, 6], 9: [4, 6, 7]}

sage: graphs.PetersenGraph().to_dictionary(edge_labels=True)
{0: {1: None, 4: None, 5: None},
 1: {0: None, 2: None, 6: None},
 2: {1: None, 3: None, 7: None},
 3: {2: None, 4: None, 8: None},
 4: {0: None, 3: None, 9: None},
 5: {0: None, 7: None, 8: None},
 6: {1: None, 8: None, 9: None},
 7: {2: None, 5: None, 9: None},
 8: {3: None, 5: None, 6: None},
 9: {4: None, 6: None, 7: None}}

sage: graphs.PetersenGraph().to_dictionary(edge_labels=True, multiple_edges=True)
{0: {1: [None], 4: [None], 5: [None]},
 1: {0: [None], 2: [None], 6: [None]},
 2: {1: [None], 3: [None], 7: [None]},
 3: {2: [None], 4: [None], 8: [None]},
 4: {0: [None], 3: [None], 9: [None]},
 5: {0: [None], 7: [None], 8: [None]},
 6: {1: [None], 8: [None], 9: [None]},
 7: {2: [None], 5: [None], 9: [None]},
 8: {3: [None], 5: [None], 6: [None]},
 9: {4: [None], 6: [None], 7: [None]}}

from sage.all import *

>> g = graphs.PetersenGraph().to_dictionary()
>> [(key, sorted(g[key])) for key in g]
[(0, [1, 4, 5]),
 (1, [0, 2, 6]),
 (2, [1, 3, 7]),
 (3, [2, 4, 8]),
 (4, [0, 3, 9]),
 (5, [0, 7, 8]),
 (6, [1, 8, 9]),
 (7, [2, 5, 9]),
 (8, [3, 5, 6]),
 (9, [4, 6, 7])]

>> graphs.PetersenGraph().to_dictionary(multiple_edges=True)
{0: [1, 4, 5], 1: [0, 2, 6],
 2: [1, 3, 7], 3: [2, 4, 8],
 4: [0, 3, 9], 5: [0, 7, 8],
 6: [1, 8, 9], 7: [2, 5, 9],
 8: [3, 5, 6], 9: [4, 6, 7]}

>> graphs.PetersenGraph().to_dictionary(edge_labels=True)
{0: {1: None, 4: None, 5: None},
 1: {0: None, 2: None, 6: None},
 2: {1: None, 3: None, 7: None},
 3: {2: None, 4: None, 8: None},
 4: {0: None, 3: None, 9: None},
 5: {0: None, 7: None, 8: None},
 6: {1: None, 8: None, 9: None},
 7: {2: None, 5: None, 9: None},
 8: {3: None, 5: None, 6: None},
 9: {4: None, 6: None, 7: None}}
Graph Theory, Release 10.4

9: {4: None, 6: None, 7: None}

```python
>>> graphs.PetersenGraph().to_dictionary(edge_labels=True, multiple_edges=True)
{0: {1: [None], 4: [None], 5: [None]},
  1: {0: [None], 2: [None], 6: [None]},
  2: {1: [None], 3: [None], 7: [None]},
  3: {2: [None], 4: [None], 8: [None]},
  4: {0: [None], 3: [None], 9: [None]},
  5: {0: [None], 7: [None], 8: [None]},
  6: {1: [None], 8: [None], 9: [None]},
  7: {2: [None], 5: [None], 9: [None]},
  8: {3: [None], 5: [None], 6: [None]},
  9: {4: [None], 6: [None], 7: [None]}}
```

to_simple (to_undirected=True, keep_label='any', immutable=None)

Return a simple version of the self.

In particular, loops and multiple edges are removed, and the graph might optionally be converted to an undirected graph.

INPUT:

- to_undirected – boolean (default: True); if True, the graph is also converted to an undirected graph
- keep_label – string (default: 'any'); if there are multiple edges with different labels, this variable defines which label should be kept:
 - 'any' – any label
 - 'min' – the smallest label
 - 'max' – the largest label

Warning: 'min' and 'max' only works if the labels can be compared. A `TypeError` might be raised when working with non-comparable objects.

- immutable – boolean (default: Non); whether to create a mutable/immutable copy. immutable=None (default) means that the graph and its copy will behave the same way.

EXAMPLES:

```python
sage: G = DiGraph(loops=True, multiedges=True, sparse=True)

sage: G.add_edges([(0, 0, None), (1, 1, None), (2, 2, None),
....: (2, 3, 1), (2, 3, 2), (3, 2, None)])

sage: G.edges(sort=True, labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 2)]

sage: H = G.to_simple()

sage: H.is_directed()
False

sage: H.allows_loops()
False

sage: H.allows_multiple_edges()
False

sage: G.to_simple(to_undirected=False, keep_label='min').edges(sort=True)
```
transitive_closure(loops=True)

Return the transitive closure of the (di)graph.

The transitive closure of a graph \(G \) has an edge \((x, y)\) if and only if there is a path between \(x \) and \(y \) in \(G \).

The transitive closure of any (strongly) connected component of a (di)graph is a complete graph. The transitive closure of a directed acyclic graph is a directed acyclic graph representing the full partial order.

Note: If the (di)graph allows loops, its transitive closure will by default have one loop edge per vertex. This can be prevented by disallowing loops in the (di)graph (self.allow_loops(False)).

EXAMPLES:

```
sage: g = graphs.PathGraph(4)
sage: g.transitive_closure()
Transitive closure of Path graph: Graph on 4 vertices
sage: g.transitive_closure().is_isomorphic(graphs.CompleteGraph(4))
True
sage: g = DiGraph({0: [1, 2], 1: [3], 2: [4, 5]})
sage: g.transitive_closure().edges(sort=True, labels=False)
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 3), (2, 4), (2, 5)]
```
On an immutable digraph:

transitive_reduction()

Return a transitive reduction of a graph.

A transitive reduction \(H \) of \(G \) has a path from \(x \) to \(y \) if and only if there was a path from \(x \) to \(y \) in \(G \). Deleting any edge of \(H \) destroys this property. A transitive reduction is not unique in general. A transitive reduction has the same transitive closure as the original graph.

A transitive reduction of a complete graph is a tree. A transitive reduction of a tree is itself.

EXAMPLES:
```
sage: g = graphs.PathGraph(4)
sage: g.transitive_reduction() == g
True
sage: g = graphs.CompleteGraph(5)
sage: h = g.transitive_reduction(); h.size()
4
sage: g = DiGraph({0: [1, 2], 1: [2, 3, 4, 5], 2: [4, 5]})
sage: g.transitive_reduction().size()
5
```

```
>>> from sage.all import *

>>> g = graphs.PathGraph(Integer(4))
>>> g.transitive_reduction() == g
True

>>> g = graphs.CompleteGraph(Integer(5))

>>> h = g.transitive_reduction(); h.size()
4

>>> g = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(1):...
               ->[Integer(2), Integer(3), Integer(4), Integer(5)],
               Integer(2): [Integer(4),...
               ->Integer(5)])})

>>> g.transitive_reduction().size()
5
```

`traveling_salesman_problem` (use_edge_labels, maximize=False, solver=False,
constraint_generation=None, verbose=None, verbose_constraints=0,
integrality_tolerance=False)

Solve the traveling salesman problem (TSP)

Given a graph (resp. a digraph) \(G \) with weighted edges, the traveling salesman problem consists in finding a Hamiltonian cycle (resp. circuit) of the graph of minimum cost.

This TSP is one of the most famous NP-Complete problems, this function can thus be expected to take some time before returning its result.

INPUT:

- **use_edge_labels** – boolean (default: False); whether to solve the weighted traveling salesman problem where the weight of an edge is defined by its label (a label set to `None` or `{}` being considered as a weight of 1), or the non-weighted version (i.e., the Hamiltonian cycle problem)
- **maximize** – boolean (default: False); whether to compute a minimum (default) or a maximum (when `maximize == True`) weight tour (or Hamiltonian cycle). This parameter is considered only if `use_edge_labels == True`.
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- **constraint_generation** – boolean (default: None); whether to use constraint generation when solving the Mixed Integer Linear Program.

When `constraint_generation = None`, constraint generation is used whenever the graph has a density larger than 70%.

- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- **verbose_constraints** – boolean (default: False); whether to display which constraints are being generated
• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see \texttt{MixedIntegerLinearProgram.get_values()}.

OUTPUT:

A solution to the TSP, as a Graph object whose vertex set is $V(G)$, and whose edges are only those of the solution.

ALGORITHM:

This optimization problem is solved through the use of Linear Programming.

Note: This function is correctly defined for both graph and digraphs. In the second case, the returned cycle is a circuit of optimal cost.

EXAMPLES:

The Heawood graph is known to be Hamiltonian:

```python
sage: g = graphs.HeawoodGraph()
```

```python
sage: tsp = g.traveling_salesman_problem(); tsp
```

```
TSP from Heawood graph: Graph on 14 vertices
```

```python
>>> from sage.all import *
```

```python
>>> g = graphs.HeawoodGraph()
```

```python
>>> tsp = g.traveling_salesman_problem(); tsp
```

```
TSP from Heawood graph: Graph on 14 vertices
```

The solution to the TSP has to be connected:

```python
sage: tsp.is_connected()
```

```
True
```

```python
>>> from sage.all import *
```

```python
>>> tsp.is_connected()
```

```
True
```

It must also be a 2-regular graph:

```python
sage: tsp.is_regular(k=2)
```

```
True
```

```python
>>> from sage.all import *
```

```python
>>> tsp.is_regular(k=Integer(2))
```

```
# needs sage.numerical.mip
True
```

And obviously it is a subgraph of the Heawood graph:

```python
sage: tsp.is_subgraph(g, induced=False)
```

```
True
```

```python
>>> from sage.all import *
```

```python
>>> tsp.is_subgraph(g, induced=False)
```

```
True
```
On the other hand, the Petersen Graph is known not to be Hamiltonian:

```python
sage: g = graphs.PetersenGraph()
sage: tsp = g.traveling_salesman_problem()  #← needs sage.numerical.mip
Traceback (most recent call last):
... EmptySetError: the given graph is not Hamiltonian
```

One easy way to change it is obviously to add to this graph the edges corresponding to a Hamiltonian cycle. If we do this by setting the cost of these new edges to 2, while the others are set to 1, we notice that not all the edges we added are used in the optimal solution

```python
sage: for u, v in g.edge_iterator(labels=None):
    ....:     g.set_edge_label(u, v, 1)

sage: cycle = graphs.CycleGraph(10)
sage: for u,v in cycle.edges(labels=None, sort=False):
    ....:     if not g.has_edge(u, v):
    ....:         g.add_edge(u, v)
    ....:         g.set_edge_label(u, v, 2)

sage: tsp = g.traveling_salesman_problem(use_edge_labels=True)  #← needs sage.numerical.mip
sage: sum(tsp.edge_labels()) < 2 * 10  #← needs sage.numerical.mip
True
```

```python
sage: for u, v in g.edge_iterator(labels=None):
    ...     g.set_edge_label(u, v, Integer(1))

sage: cycle = graphs.CycleGraph(Integer(10))
sage: for u,v in cycle.edges(labels=None, sort=False):
    ...     if not g.has_edge(u, v):
    ...         g.add_edge(u, v)
    ...         g.set_edge_label(u, v, Integer(2))

sage: tsp = g.traveling_salesman_problem(use_edge_labels=True)  #← needs sage.numerical.mip
sage: sum(tsp.edge_labels()) < Integer(2) * Integer(10)  #← needs sage.numerical.mip
True
```
If we pick $1/2$ instead of 2 as a cost for these new edges, they clearly become the optimal solution:

```python
sage: for u, v in cycle.edges(labels=None, sort=False):
    ....:    g.set_edge_label(u,v,1/2)
sage: tsp = g.traveling_salesman_problem(use_edge_labels=True)  # needs sage.numerical.mip
sage: sum(tsp.edge_labels()) == (1/2) * 10  # needs sage.numerical.mip
```

Search for a minimum and a maximum weight Hamiltonian cycle:

```python
sage: # needs sage.numerical.mip
sage: G = Graph([(0, 1, 1), (0, 2, 2), (0, 3, 1), (1, 2, 1), (1, 3, 2), (2, 3, 1)])
sage: tsp = G.traveling_salesman_problem(use_edge_labels=True, maximize=False)
sage: print(sum(tsp.edge_labels()))
4
sage: tsp = G.traveling_salesman_problem(use_edge_labels=True, maximize=True)
sage: print(sum(tsp.edge_labels()))
6
```

```python
>>> from sage.all import *

>>> for u, v in cycle.edges(labels=None, sort=False):
    ....:    g.set_edge_label(u,v,Integer(1)/Integer(2))

>>> tsp = G.traveling_salesman_problem(use_edge_labels=True)  # needs sage.numerical.mip
>>>
```

```
triangles_count (algorithm=None)
```

Return the number of triangles in the (di)graph.

For digraphs, we count the number of directed circuit of length 3.

INPUT:

- `algorithm` - string (default: None); specifies the algorithm to use (note that only 'iter' is available for directed graphs):
- 'sparse_copy' – counts the triangles in a sparse copy of the graph (see sage.graphs.
 base.static_sparse_graph). Calls static_sparse_graph.triangles_count
- 'dense_copy' – counts the triangles in a dense copy of the graph (see sage.graphs.base.
 static_dense_graph). Calls static_dense_graph.triangles_count
- 'matrix' uses the trace of the cube of the adjacency matrix
- 'iter' iterates over the pairs of neighbors of each vertex. No copy of the graph is performed
- None – for undirected graphs, uses "sparse_copy" or "dense_copy" depending on whether
 the graph is stored as dense or sparse. For directed graphs, uses 'iter'.

EXAMPLES:
The Petersen graph is triangle free and thus:

```python
sage: G = graphs.PetersenGraph()
sage: G.triangles_count()
0
```

Any triple of vertices in the complete graph induces a triangle so we have:

```python
sage: G = graphs.CompleteGraph(15)
sage: G.triangles_count() == binomial(15, 3) # needs sage.symbolic
True
```

The 2-dimensional DeBruijn graph of 2 symbols has 2 directed C_3:

```python
sage: G = digraphs.DeBruijn(2,2) # needs sage.combinat
sage: G.triangles_count() # needs sage.combinat
2
```

The directed n-cycle is trivially triangle free for $n > 3$:

```python
sage: G = digraphs.Circuit(10)
sage: G.triangles_count() # (continues on next page)
union (other, immutable=None)

Return the union of self and other.

If the graphs have common vertices, the common vertices will be identified.

If one of the two graphs allows loops (or multiple edges), the resulting graph will allow loops (or multiple edges).

If both graphs are weighted the resulting graph is weighted.

If both graphs are immutable, the resulting graph is immutable, unless requested otherwise.

INPUT:

• immutable – boolean (default: None); whether to create a mutable/immutable union. immutable=None (default) means that the graphs and their union will behave the same way.

See also:

• disjoint_union()
• join()

EXAMPLES:

sage: G = graphs.CycleGraph(3)
sage: H = graphs.CycleGraph(4)
sage: J = G.union(H); J
Graph on 4 vertices
sage: J.vertices(sort=True)
[0, 1, 2, 3]
sage: J.edges(sort=True, labels=False)
[(0, 1), (0, 2), (0, 3), (1, 2), (2, 3)]

vertex_boundary (vertices1, vertices2=None)

Return a list of all vertices in the external boundary of vertices1, intersected with vertices2.

If vertices2 is None, then vertices2 is the complement of vertices1. This is much faster if vertices1 is smaller than vertices2.
The external boundary of a set of vertices is the union of the neighborhoods of each vertex in the set. Note that in this implementation, since `vertices2` defaults to the complement of `vertices1`, if a vertex $v$ has a loop, then `vertex_boundary(v)` will not contain $v$.

In a digraph, the external boundary of a vertex $v$ are those vertices $u$ with an arc $(v, u)$.

**EXAMPLES:**

```python
sage: G = graphs.CubeGraph(4)
sage: l = ['0111', '0000', '0001', '0011', '0010', '0101', '0100', '1111',
 '1101', '1011', '1001']
sage: sorted(G.vertex_boundary([0000, 1111], l))
['0001', '0010', '0100', '0111', '1011', '1101']
```

```python
>>> from sage.all import *

>>> G = graphs.CubeGraph(Integer(4))
>>> l = ['0111', '0000', '0001', '0011', '0010', '0101', '0100', '1111',
 '1101', '1011', '1001']
>>> sorted(G.vertex_boundary('0000', '1111'), l))
['0001', '0010', '0100', '0111', '1011', '1101']
```

```python
sage: D = DiGraph({0: [1, 2], 3: [0]})
sage: D.vertex_boundary([0])
[1, 2]
```

```python
>>> from sage.all import *

>>> D = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(3):
...
 [Integer(0)]})
>>> D.vertex_boundary([Integer(0]])
[1, 2]
```

**vertex_connectivity** ($G$, `value_only=True`, `sets=False`, $k$=`None`, `solver=None`, `verbose=0`, `integrality_tolerance=0.001`)

Return the vertex connectivity of the graph.


**Note:**

- When the graph is directed, this method actually computes the *strong* connectivity, (i.e. a directed graph is strongly $k$-connected if there are $k$ vertex disjoint paths between any two vertices $u, v$). If you do not want to consider strong connectivity, the best is probably to convert your `DiGraph` object to a `Graph` object, and compute the connectivity of this other graph.

- By convention, a complete graph on $n$ vertices is $n - 1$ connected. In this case, no certificate can be given as there is no pair of vertices split by a cut of order $k - 1$. For this reason, the certificates returned in this situation are empty.

**INPUT:**

- $G$ – the input Sage (Di)Graph
- `value_only` – boolean (default: True)
  - When set to True (default), only the value is returned.
  - When set to False, both the value and a minimum vertex cut are returned.
• \texttt{sets} – boolean (default: \texttt{False}); whether to also return the two
  sets of vertices that are disconnected by the cut (implies \texttt{value_only=False})

• \texttt{k} – integer (default: \texttt{None}); when specified, check if the vertex connectivity of the (di)graph is larger
  or equal to \(k\). The method thus outputs a boolean only.

• \texttt{solver} – string (default: \texttt{None}); specify a Mixed Integer Linear Programming (MILP) solver to be
  used. If set to \texttt{None}, the default one is used. For more information on MILP solvers and which default
  solver is used, see the method \texttt{solve} of the class \texttt{MixedIntegerLinearProgram}.

• \texttt{verbose} – integer (default: \texttt{0}); sets the level of verbosity. Set to \texttt{0} by default, which means quiet.

• \texttt{integrality_tolerance} – float; parameter for use with MILP solvers over an inexact base ring;
  see \texttt{MixedIntegerLinearProgram.get_values()}.

EXAMPLES:

A basic application on a \texttt{PappusGraph}:


```
sage: from sage.graphs.connectivity import vertex_connectivity
sage: g = graphs.PappusGraph()
sage: vertex_connectivity(g) # needs sage.numerical.mip
3
sage: g.vertex_connectivity() # needs sage.numerical.mip
3
```

```python
>>> from sage.all import *
>>> g = graphs.PappusGraph()
>>> [value, cut, [setA, setB]] = vertex_connectivity(g, sets=True) # needs sage.numerical.mip
>>> len(setA) == 1 or len(setB) == 1 # needs sage.numerical.mip
True
```

In a grid, the vertex connectivity is equal to the minimum degree, in which case one of the two sets is of
  cardinality 1:

```
sage: g = graphs.GridGraph([3,3])
sage: [value, cut, [setA, setB]] = vertex_connectivity(g, sets=True) # needs sage.numerical.mip
```

```python
>>> g = graphs.GridGraph([Integer(3),Integer(3)])
>>> [value, cut, [setA, setB]] = vertex_connectivity(g, sets=True) # needs sage.numerical.mip
>>> len(setA) == Integer(1) or len(setB) == Integer(1) # needs sage.numerical.mip
True
```

A vertex cut in a tree is any internal vertex:

```
When `value_only = True`, this function is optimized for small connectivity values and does not need to build a linear program.

It is the case for connected graphs which are not connected:

```python
sage: g = 2 * graphs.PetersenGraph()
sage: vertex_connectivity(g)
0
```

Or if they are just 1-connected:

```python
sage: g = graphs.PathGraph(10)
sage: vertex_connectivity(g)
1
```

For directed graphs, the strong connectivity is tested through the dedicated function:

```python
sage: g = digraphs.ButterflyGraph(3)
sage: vertex_connectivity(g)
0
```
A complete graph on 10 vertices is 9-connected:

```
sage: g = graphs.CompleteGraph(10)
sage: vertex_connectivity(g)
   ← # needs sage.numerical.mip
9
```

A complete digraph on 10 vertices is 9-connected:

```
sage: g = DiGraph(graphs.CompleteGraph(10))
sage: vertex_connectivity(g)
   ← # needs sage.numerical.mip
9
```

When parameter \(k\) is set, we only check for the existence of a vertex cut of order at least \(k\):

```
sage: g = graphs.PappusGraph()
sage: vertex_connectivity(g, k=3)
   ← # needs sage.numerical.mip
True
sage: vertex_connectivity(g, k=4)
   ← # needs sage.numerical.mip
False
```

vertex_cut \((s, t, \text{value_only}=\text{True}, \text{vertices}=\text{True}, \text{solver}=\text{False}, \text{verbose}=\text{None}, \text{integrality_tolerance}=0)\)

Return a minimum vertex cut between non-adjacent vertices \(s\) and \(t\) represented by a list of vertices.

A vertex cut between two non-adjacent vertices is a set \(U\) of vertices of \(self\) such that the graph obtained by removing \(U\) from \(self\) is disconnected. For more information, see the Wikipedia article Cut (graph theory).

INPUT:

- \text{value_only} – boolean (default: \text{True}); whether to return only the size of the minimum cut, or to also return the set \(U\) of vertices of the cut
- \text{vertices} – boolean (default: \text{False}); whether to also return the two sets of vertices that are disconnected by the cut. Implies \text{value_only} set to \text{False}.
• **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

• **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

• **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

OUTPUT:
Real number or tuple, depending on the given arguments (examples are given below).

EXAMPLES:
A basic application in the Pappus graph:

```python
sage: g = graphs.PappusGraph()
sage: g.vertex_cut(1, 16, value_only=True)  # needs sage.numerical.mip
3
```

```python
>>> from sage.all import *

>>> g = graphs.PappusGraph()

>>> g.vertex_cut(Integer(1), Integer(16), value_only=True)  # needs sage.numerical.mip
3
```

In the bipartite complete graph $K_{2,8}$, a cut between the two vertices in the size 2 part consists of the other 8 vertices:

```python
sage: g = graphs.CompleteBipartiteGraph(2, 8)
sage: [value, vertices] = g.vertex_cut(0, 1, value_only=False)  # needs sage.numerical.mip
sage: print(value)
8
sage: vertices == list(range(2, 10))  # needs sage.numerical.mip
True
```

```python
>>> from sage.all import *

>>> g = graphs.CompleteBipartiteGraph(Integer(2), Integer(8))

>>> [value, vertices] = g.vertex_cut(Integer(0), Integer(1), value_only=False)  # needs sage.numerical.mip

>>> print(value)  # needs sage.numerical.mip
8

>>> vertices == list(range(Integer(2), Integer(10)))  # needs sage.numerical.mip
True
```

Clearly, in this case the two sides of the cut are singletons:

```python
sage: [value, vertices, [set1, set2]] = g.vertex_cut(0, 1, vertices=True)  # needs sage.numerical.mip
sage: len(set1) == 1  # needs sage.numerical.mip
True
```

(continues on next page)
sage: len(set2) == 1
→ # needs sage.numerical.mip
True

>> from sage.all import *
>> [value, vertices, [set1, set2]] = g.vertex_cut(Integer(0), Integer(1),
→ vertices=True) # needs sage.numerical.mip
>> len(set1) == Integer(1)
→ # needs sage.numerical.mip
True
>> len(set2) == Integer(1)
→ # needs sage.numerical.mip
True

vertex_disjoint_paths \((s, t, solver, verbose=None, integrality_tolerance=0)\)

Return a list of vertex-disjoint paths between two vertices.

The vertex version of Menger's theorem asserts that the size of the minimum vertex cut between two vertices \(s\) and \(t\) (the minimum number of vertices whose removal disconnects \(s\) and \(t\)) is equal to the maximum number of pairwise vertex-independent paths from \(s\) to \(t\).

This function returns a list of such paths.

INPUT:

- \(s, t\) – two vertices of the graph.
- \(solver\) – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \(solve\) of the class \(MixedIntegerLinearProgram\).
- \(verbose\) – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- \(integrality_tolerance\) – float; parameter for use with MILP solvers over an inexact base ring; see \(MixedIntegerLinearProgram.get_values()\).

EXAMPLES:

In a complete bipartite graph

sage: g = graphs.CompleteBipartiteGraph(2, 3)
sage: g.vertex_disjoint_paths(0, 1) # needs sage.numerical.mip
[[0, 2, 1], [0, 3, 1], [0, 4, 1]]

vertex_iterator \((vertices=None, degree=None, vertex_property=None)\)

Return an iterator over the given vertices.

Returns False if not given a vertex, sequence, iterator or None. None is equivalent to a list of every vertex. Note that for \(v\) in \(G\) syntax is allowed.

INPUT:

- \(vertices\) – iterated vertices are these intersected with the vertices of the (di)graph
• degree – a nonnegative integer (default: None); a vertex \(v \) is kept if \(\text{degree}(v) == \text{degree} \)

• vertex_property – function (default: None); a function that inputs a vertex and outputs a boolean value, i.e., a vertex \(v \) is kept if \(\text{vertex_property}(v) == \text{True} \)

EXAMPLES:

```
sage: P = graphs.PetersenGraph()
sage: for v in P.vertex_iterator():
....:    print(v)
0
1
2
...
8
9
```

```
>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> for v in P.vertex_iterator():
...   print(v)
0
1
2
...
8
9
```

```
sage: G = graphs.TetrahedralGraph()
sage: for i in G:
....:    print(i)
0
1
2
3
```

```
>>> from sage.all import *
>>> G = graphs.TetrahedralGraph()
>>> for i in G:
...   print(i)
0
1
2
3
```

```
sage: H = graphs.PathGraph(5)
sage: prop = lambda l: l % 3 == 1
sage: for v in H.vertex_iterator(degree=1, vertex_property=prop):
....:    print(v)
4
```

```
>>> from sage.all import *
>>> H = graphs.PathGraph(Integer(5))
>>> prop = lambda l: l % Integer(3) == Integer(1)
>>> for v in H.vertex_iterator(degree=Integer(1), vertex_property=prop):
...   print(v)
4
```
Note that since the intersection option is available, the vertex_iterator() function is sub-optimal, speed-wise, but note the following optimization:

```
sage: timeit V = P.vertices(sort=False)  # not tested
100000 loops, best of 3: 8.85 [micro]s per loop
sage: timeit V = list(P.vertex_iterator())  # not tested
100000 loops, best of 3: 5.74 [micro]s per loop
```

```
>>> from sage.all import *

>>> timeit V = P.vertices(sort=False)  # not tested
100000 loops, best of 3: 8.85 [micro]s per loop
>>> timeit V = list(P.vertex_iterator())  # not tested
100000 loops, best of 3: 5.74 [micro]s per loop
```

vertices (sort=False, key=None, degree=None, vertex_property=None)

Return a list of the vertices.

INPUT:

- sort – boolean (default: False); whether to sort vertices according the ordering specified with parameter key. If False (default), vertices are not sorted.
- key – a function (default: None); a function that takes a vertex as its one argument and returns a value that can be used for comparisons in the sorting algorithm (we must have sort=True)
- degree – a nonnegative integer (default: None); a vertex v is kept if degree(v) == degree
- vertex_property – function (default: None); a function that inputs a vertex and outputs a boolean value, i.e., a vertex v is kept if vertex_property(v) == True

OUTPUT:

The list of vertices of the (di)graph.

Warning: Since any object may be a vertex, there is no guarantee that any two vertices will be comparable. With default objects for vertices (all integers), or when all the vertices are of the same simple type, then there should not be a problem with how the vertices will be sorted. However, if you need to guarantee a total order for the sorting of the edges, use the key argument, as illustrated in the examples below.

EXAMPLES:

```
sage: P = graphs.PetersenGraph()
sage: P.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

```
>>> from sage.all import *

>>> P = graphs.PetersenGraph()

>>> P.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

If you do not care about sorted output and you are concerned about the time taken to sort, consider the following alternative:

```
sage: # not tested
sage: timeit V = P.vertices(sort=True)
625 loops, best of 3: 3.86 [micro]s per loop
```

(continues on next page)
We illustrate various ways to use a key to sort the list:

\begin{verbatim}
from sage.all import *
H = graphs.HanoiTowerGraph(3, 3, labels=False)
H.vertices(sort=True)
[0, 1, 2, 3, 4, ... 22, 23, 24, 25, 26]
H.vertices(sort=True, key=lambda x: -x)
[26, 25, 24, 23, 22, ... 4, 3, 2, 1, 0]

g = Graph(G)
g.vertices(sort=True)
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), ... (2, 2, 1), (2, 2, 2)]
g.vertices(sort=True, key = lambda x: (x[1], x[2], x[0]))
[(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 0, 1), ... (1, 2, 2), (2, 2, 2)]
\end{verbatim}

The discriminant of a polynomial is a function that returns an integer. We build a graph whose vertices are polynomials, and use the discriminant function to provide an ordering. Note that since functions are first-class objects in Python, we can specify precisely the function from the Sage library that we wish to use as the key:

\begin{verbatim}
sage: # needs sage.libs.flint
t = polygen(QQ, 't')
K = Graph({5*t: [t^2], t^2: [t^2+2], t^2+2: [4*t^2-6], 4*t^2-6: [5*t]})
\end{verbatim}
weighted \(\text{new}=\text{None}\)

Whether the (di)graph is to be considered as a weighted (di)graph.

INPUT:

- new – boolean (default: None); if it is provided, then the weightedness flag is set accordingly. This is not allowed for immutable graphs.

Note: Changing the weightedness flag changes the \(==\)-class of a graph and is thus not allowed for immutable graphs.

Edge weightings can still exist for (di)graphs \(G\) where \(G.weighted()\) is False.

EXAMPLES:

Here we have two graphs with different labels, but \(weighted()\) is False for both, so we just check for the presence of edges:

\[
\begin{align*}
\text{sage: } & \quad G = \text{Graph}\{0: \{1: 'a'\}\}, \text{ sparse=True} \\
\text{sage: } & \quad H = \text{Graph}\{0: \{1: 'b'\}\}, \text{ sparse=True} \\
\text{sage: } & \quad G == H \\
\text{True}
\end{align*}
\]

\[
\begin{align*}
\text{>>> from sage.all import *} \\
\text{>>> G = Graph\{Integer(0): \{Integer(1): 'a'\}\}, sparse=True} \\
\text{>>> H = Graph\{Integer(0): \{Integer(1): 'b'\}\}, sparse=True} \\
\text{>>> G == H} \\
\text{True}
\end{align*}
\]

Now one is weighted and the other is not, and thus the graphs are not equal:

\[
\begin{align*}
\text{sage: } & \quad G.weighted(True) \\
\text{sage: } & \quad H.weighted() \text{ (continues on next page)}
\end{align*}
\]
However, if both are weighted, then we finally compare ‘a’ to ‘b’:

```
sage: H.weighted(True)
sage: G == H
False
```

```
>>> from sage.all import *
>>> G.weighted(True)
>>> H.weighted()
False
>>> G == H
False
```

```
>>> from sage.all import *
>>> H.weighted(True)
>>> G == H
False
```

weighted_adjacency_matrix *(sparse, vertices=True, default_weight=None, base_ring=None, **kwds)*

Return the weighted adjacency matrix of the graph.

By default, each vertex is represented by its position in the list returned by method `vertices()`.

INPUT:

- **sparse** – boolean (default: True); whether to use a sparse or a dense matrix
- **vertices** – list, None, or True (default: None);
 - when a list, the \(i\)-th row and column of the matrix correspond to the \(i\)-th vertex in the ordering of `vertices`.
 - when None, the \(i\)-th row and column of the matrix correspond to the \(i\)-th vertex in the ordering given by `GenericGraph.vertices()` with `sort=True`.
 - when True, construct an endomorphism of a free module instead of a matrix, where the module’s basis is indexed by the vertices.
- **default_weight** – (default: None); specifies the weight to replace any None edge label. When not specified an error is raised if the label of an edge is None.
- **base_ring** – a ring (default: determined from the weights); the base ring of the matrix space to use.
- ****kwds** – other keywords to pass to `matrix()`

EXAMPLES:

```
sage: G = Graph(sparse=True, weighted=True)
sage: G.add_edges([(0, 1, 1), (1, 2, 2), (0, 2, 3), (0, 3, 4)])
sage: M = G.weighted_adjacency_matrix(); M
[0 1 3 4]
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

\[
\begin{bmatrix}
0 & 2 & 0 \\
3 & 2 & 0 \\
4 & 0 & 0 \\
\end{bmatrix}
\]

\sage: H = Graph(data=M, format='weighted_adjacency_matrix', sparse=True) #
\quad \text{needs sage.modules}
\sage: H == G #
\quad \text{needs sage.modules}
True
\sage: G.weighted_adjacency_matrix(vertices=[3, 2, 1, 0]) #
\quad \text{needs sage.modules}
\begin{bmatrix}
0 & 0 & 0 & 4 \\
0 & 0 & 2 & 3 \\
0 & 2 & 0 & 1 \\
4 & 3 & 1 & 0 \\
\end{bmatrix}

>>> from sage.all import *
>>> G = Graph(sparse=True, weighted=True)
>>> G.add_edges([(Integer(0), Integer(1), Integer(1)),
 (Integer(1), Integer(2), Integer(2)),
 (Integer(0), Integer(2), Integer(3)),
 (Integer(0), Integer(3), Integer(4))])
>>> M = G.weighted_adjacency_matrix(); M #
\begin{bmatrix}
0 & 1 & 3 & 4 \\
1 & 0 & 2 & 0 \\
3 & 2 & 0 & 0 \\
4 & 0 & 0 & 0 \\
\end{bmatrix}

>>> H = Graph(data=M, format='weighted_adjacency_matrix', sparse=True) #
\quad \text{needs sage.modules}
>>> H == G #
\quad \text{needs sage.modules}
True
>>> G.weighted_adjacency_matrix(vertices=[Integer(3), Integer(2), Integer(1),
 Integer(0)]) # needs sage.modules
\begin{bmatrix}
0 & 0 & 0 & 4 \\
0 & 0 & 2 & 3 \\
0 & 2 & 0 & 1 \\
4 & 3 & 1 & 0 \\
\end{bmatrix}

Using a different matrix implementation:

\sage: M = G.weighted_adjacency_matrix(sparse=False, base_ring=ZZ, #
\quad \text{needs numpy sage.modules}
\quad \text{implementation='numpy')}); M
\begin{bmatrix}
0 & 1 & 3 & 4 \\
1 & 0 & 2 & 0 \\
3 & 2 & 0 & 0 \\
4 & 0 & 0 & 0 \\
\end{bmatrix}

>>> from sage.all import *
>>> M = G.weighted_adjacency_matrix(sparse=False, base_ring=ZZ, #
\quad \text{needs numpy sage.modules}
\quad \text{implementation='numpy'); M}
\begin{bmatrix}
0 & 1 & 3 & 4 \\
1 & 0 & 2 & 0 \\
3 & 2 & 0 & 0 \\
4 & 0 & 0 & 0 \\
\end{bmatrix}

1.1. Generic graphs (common to directed/undirected) 429
As an immutable matrix:

```sage
M = G.weighted_adjacency_matrix(immutable=True); M
```

```# needs sage.modules
\[
\begin{pmatrix}
0 & 1 & 3 & 4 \\
1 & 0 & 2 & 0 \\
3 & 2 & 0 & 0 \\
4 & 0 & 0 & 0
\end{pmatrix}
\]
```

```sage
M[2, 2] = 1
```

```# needs sage.modules
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead (i.e., use copy(M) to change a copy of M).
```

```>>> from sage.all import *
>>> M = G.weighted_adjacency_matrix(immutable=True); M
```

```# needs sage.modules
>>>
```

Creating a module morphism:

```sage
# needs sage.modules
sage: G = Graph(sparse=True, weighted=True)
sage: G.add_edges([('A', 'B', 1), ('B', 'C', 2), ('A', 'C', 3), ('A', 'D', 4)])
sage: phi = G.weighted_adjacency_matrix(vertices=True); phi
```

```Generic endomorphism of Free module generated by {'A', 'B', 'C', 'D'} over Integer Ring
```

```sage: print(phi._unicode_art_matrix())
```

```A B C D
A\[
0 1 3 4
\]
B\[
1 0 2 0
\]
C\[
3 2 0 0
\]
D\[
4 0 0 0
\]
```

```>>> from sage.all import *
>>> # needs sage.modules
>>> G = Graph(sparse=True, weighted=True)
>>> G.add_edges([('A', 'B', Integer(1)), ('B', 'C', Integer(2)), ('A', 'C', Integer(3)), ('A', 'D', Integer(4))])
>>> phi = G.weighted_adjacency_matrix(vertices=True); phi
```

```Generic endomorphism of Free module generated by {'A', 'B', 'C', 'D'} over Integer Ring
```

```>>>
```

```>>> print(phi._unicode_art_matrix())
```

```A B C D
A\[
0 1 3 4
\]
B\[
1 0 2 0
\]
```

(continues on next page)
wiener_index(by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return the Wiener index of self.

The graph is expected to have no cycles of negative weight.

The Wiener index of a undirected graph G is $W(G) = \frac{1}{2} \sum_{u,v \in G} d(u, v)$ where $d(u, v)$ denotes the distance between vertices u and v (see [KRG1996]).

The Wiener index of a directed graph G is defined as the sum of the distances between each pairs of vertices, i.e., $W(G) = \sum_{u,v \in G} d(u, v)$.

For more information on the input variables and more examples, we refer to shortest_paths() and shortest_path_all_pairs(), which have very similar input variables.

INPUT:

- by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
- algorithm – string (default: None); one of the following algorithms:
 - For by_weight==False only:
 - 'BFS' – the computation is done through a BFS centered on each vertex successively.
 - 'Floyd-Warshall-Cython' – the Cython implementation of the Floyd-Warshall algorithm. Usually slower than 'BFS'.
 - For graphs without negative weights:
 - 'DijkstraBoost': the Dijkstra algorithm, implemented in Boost.
 - 'DijkstraNetworkX': the Dijkstra algorithm, implemented in NetworkX. Usually slower than 'DijkstraBoost'.
 - For graphs with negative weights:
 - 'Bellman-FordBoost': the Bellman-Ford algorithm, implemented in Boost.
 - 'JohnsonBoost': the Johnson algorithm, implemented in Boost.
 - 'Floyd-Warshall-Python' – the Python implementation of the Floyd-Warshall algorithm. Usually slower than 'JohnsonBoost'.
 - None (default): Sage chooses the best algorithm: 'BFS' for unweighted graphs, 'DijkstraBoost' if all weights are positive, 'JohnsonBoost', otherwise.
- weight_function – function (default: None); a function that takes as input an edge (u, v, l) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label 1 as a weight, if 1 is not None, else 1 as a weight.
- check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge.

Note: Some algorithms (e.g., Boost algorithms) use floating point numbers for internal computations. Whenever the solution is integral, we try to convert the returned value to an integer.

EXAMPLES:
Wiener index of complete (di)graphs:
\begin{verbatim}
sage: n = 5
g = graphs.CompleteGraph(n)
sage: g.wiener_index() == (n * (n - 1)) / 2
True
sage: g = digraphs.Complete(n)
sage: g.wiener_index() == n * (n - 1)
True

>>> from sage.all import *

>>> n = Integer(5)

>>> g = graphs.CompleteGraph(n)

>>> g.wiener_index() == (n * (n - Integer(1))) / Integer(2)
True

>>> g = digraphs.Complete(n)

>>> g.wiener_index() == n * (n - Integer(1))
True

Wiener index of circuit digraphs:

sage: n = 7
g = digraphs.Circuit(n)
w = lambda x: (x*x*(x-1))/2
sage: g.wiener_index(algorithm='Dijkstra_Boost') == w(n)
True

>>> from sage.all import *

>>> n = Integer(7)

>>> g = digraphs.Circuit(n)

>>> w = lambda x: (x*x*(x-Integer(1)))/Integer(2)

>>> g.wiener_index(algorithm='Dijkstra_Boost') == w(n)
True

Wiener index of a graph of order 1:

sage: Graph(1).wiener_index()
0

>>> from sage.all import *

>>> Graph(Integer(1)).wiener_index()
0

The Wiener index is not defined on the empty graph:

sage: Graph().wiener_index()
Traceback (most recent call last):
...
ValueError: Wiener index is not defined for the empty graph

>>> from sage.all import *

>>> Graph().wiener_index()
Traceback (most recent call last):
...
ValueError: Wiener index is not defined for the empty graph
\end{verbatim}
Helper function for canonical labeling of edge labeled (di)graphs.

Translates to a bipartite incidence-structure type graph appropriate for computing canonical labels of edge labeled and/or multi-edge graphs. Note that this is actually computationally equivalent to implementing a change on an inner loop of the main algorithm – namely making the refinement procedure sort for each label.

If the graph is a multigraph, it is translated to a non-multigraph, where each instance of multiple edges is converted to a single edge labeled with a list \([\text{[label1, multiplicity]}, \text{[label2, multiplicity]}, \ldots]\) describing how many edges of each label were originally there. Then in either case we are working on a graph without multiple edges. At this point, we create another (partially bipartite) graph, whose left vertices are the original vertices of the graph, and whose right vertices represent the labeled edges. Any unlabeled edges in the original graph are also present in the new graph, and – this is the bipartite aspect – for every labeled edge \(e\) from \(v\) to \(w\) in the original graph, there is an edge between the right vertex corresponding to \(e\) and each of the left vertices corresponding to \(v\) and \(w\). We partition the left vertices as they were originally, and the right vertices by common labels: only automorphisms taking edges to like-labeled edges are allowed, and this additional partition information enforces this on the new graph.

INPUT:

- \(g\) – Graph or DiGraph
- \(\text{partition}\) – list (default: None); a partition of the vertices as a list of lists of vertices. If given, the partition of the vertices is as well relabeled
- \(\text{standard_label}\) – (default: None); edges in \(g\) with this label are preserved in the new graph
- \(\text{return_relabeling}\) – boolean (default: False); whether to return a dictionary containing the relabeling
- \(\text{return_edge_labels}\) – boolean (default: False); whether the different edge_labels are returned (useful if inplace is True)
- \(\text{inplace}\) – boolean (default: False); whether the input (di)graph \(g\) is modified or the return a new (di)graph. Note that attributes of \(g\) are not copied for speed issues, only edges and vertices.
- \(\text{ignore_edge_labels}\) – boolean (default: False); if True, ignore edge labels, so when constructing the new graph, only multiple edges are replaced with vertices. Labels on multiple edges are ignored – only the multiplicity is relevant, so multiple edges with the same multiplicity in the original graph correspond to right vertices in the same partition in the new graph.

OUTPUT:

- if inplace is False: the unlabeled graph without multiple edges
GraphTheory, Release 10.4

- the partition of the vertices
- if `return_relabeling` is True: a dictionary containing the relabeling
- if `return_edge_labels` is True: the list of (former) edge labels is returned

EXAMPLES:

```python
sage: from sage.graphs.generic_graph import graph_isom_equivalent_non_edge_labeled_graph

sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges((0, 1, i) for i in range(10))
sage: G.add_edge(1, 2, 'string')
sage: G.add_edge(2, 123)
sage: graph_isom_equivalent_non_edge_labeled_graph(G, partition=[[0,123],[1,2]])
[Graph on 6 vertices, [[1, 0], [2, 3], [5], [4]]]

sage: g, part = graph_isom_equivalent_non_edge_labeled_graph(G)
sage: g, sorted(part)
(Graph on 6 vertices, [[0, 1, 2, 3], [4], [5]])

sage: g.edges(sort=True)
[(0, 3, None), (1, 4, None), (2, 4, None), (2, 5, None), (3, 5, None)]

sage: g = graph_isom_equivalent_non_edge_labeled_graph(G, standard_label='string', return_edge_labels=True)

sage: g[0]
Graph on 6 vertices
sage: g[0].edges(sort=True)
[[0, 1, 2, 3], [4], [5]]

sage: g[1]
[['string', 1]], [[0, 1], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1], [6, 1], [7, 1], [8, 1], [9, 1]], [[None, 1]]

sage: graph_isom_equivalent_non_edge_labeled_graph(G, inplace=True)
[[[0, 1, 2, 3], [5], [4]]]

sage: G = Graph(multiedges=True, sparse=True)

sage: G.add_edges((0, 1, i) for i in range(10))

sage: G.add_edge(1, 2, 'a')

sage: G.add_edge(1, 3, 'b')

sage: G.add_edge(2, 3, 'b')

sage: graph_isom_equivalent_non_edge_labeled_graph(G)
Graph on 8 vertices

sage: g0 = graph_isom_equivalent_non_edge_labeled_graph(G)

sage: g1 = graph_isom_equivalent_non_edge_labeled_graph(G, ignore_edge_labels=True)

sage: g0
```

(continues on next page)
Graph on 7 vertices, [[0, 1, 2, 3], [4], [5], [6]]
sage: g1

Graph on 7 vertices, [[0, 1, 2, 3], [6], [4, 5]]

from sage.all import *
from sage.graphs.generic_graph import graph_isom_equivalent_non_edge_labeled_graph

G = Graph(multiedges=True, sparse=True)
G.add_edges((Integer(0), Integer(1), i) for i in range(Integer(10)))
G.add_edge(Integer(1), Integer(2), 'string')
G.add_edge(Integer(2), Integer(123))

graph_isom_equivalent_non_edge_labeled_graph(G, partition=[[Integer(0), Integer(123)], [Integer(1), Integer(2)]])

[Graph on 6 vertices, [[1, 0], [2, 3], [5], [4]]]

G, part = graph_isom_equivalent_non_edge_labeled_graph(G)
G, sorted(part)

(Graph on 6 vertices, [[1, 0], [2, 3], [5], [4]])

G.edges(sort=True)
[(0, 3, None), (1, 4, None), (2, 4, None), (2, 5, None), (3, 5, None)]

G = graph_isom_equivalent_non_edge_labeled_graph(G, standard_label='string', ...)
return_edge_labels=True)

G[Integer(0)]
Graph on 6 vertices
G[Integer(0)].edges(sort=True)
[(0, 5, None), (1, 4, None), (2, 3, None), (2, 4, None), (3, 5, None)]

G[Integer(1)]
[[0, 1, 2, 3], [4], [5]]

G[Integer(2)]
[['string', 1]], [[0, 1], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1], [6, 1], [7, 1],
[8, 1], [9, 1]], [[None, 1]]

G = Graph(multiedges=True, sparse=True)
G.add_edges((Integer(0), Integer(1)) for i in range(Integer(10)))
G.add_edge(Integer(1), Integer(2), 'a')
G.add_edge(Integer(1), Integer(3), 'b')
G.add_edge(Integer(2), Integer(3), 'b')

graph_isom_equivalent_non_edge_labeled_graph(G)[Integer(0)]

Graph on 8 vertices

G = Graph(multiedges=True, sparse=True)
G.add_edges((Integer(0), Integer(1), i) for i in range(Integer(5)))
G.add_edges((Integer(0), Integer(2), i+Integer(10)) for i in range(Integer(5)))
G.add_edges((Integer(0), Integer(3)) for i in range(Integer(4)))

g0 = graph_isom_equivalent_non_edge_labeled_graph(G)

(continues on next page)
sage.graphs.generic_graph.tachyon_vertex_plot(g, bgcolor=(1, 1, 1), vertex_colors=None, vertex_size=0.06, pos3d=None, **kwds)

Helper function for plotting graphs in 3d with Tachyon.

Returns a plot containing only the vertices, as well as the 3d position dictionary used for the plot.

INPUT:

- pos3d – a 3D layout of the vertices
- various rendering options

EXAMPLES:

```python
sage: G = graphs.TetrahedralGraph()
sage: from sage.graphs.generic_graph import tachyon_vertex_plot
sage: T, p = tachyon_vertex_plot(G, pos3d=G.layout(dim=3))  # needs sage.plot
sage: type(T)                                               # needs sage.plot
<class 'sage.plot.plot3d.tachyon.Tachyon'>
sage: type(p)                                              # needs sage.plot
<... 'dict'>
```

```python
>>> from sage.all import *
```
<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>convexity_properties()</code></td>
<td>Return a ConvexityProperties object corresponding to self.</td>
</tr>
<tr>
<td><code>has_homomorphism_to()</code></td>
<td>Checks whether there is a homomorphism between two graphs.</td>
</tr>
<tr>
<td><code>independent_set()</code></td>
<td>Return a maximum independent set.</td>
</tr>
<tr>
<td><code>independent_set_of_represenatives()</code></td>
<td>Return an independent set of representatives.</td>
</tr>
<tr>
<td><code>is_perfect()</code></td>
<td>Tests whether the graph is perfect.</td>
</tr>
<tr>
<td><code>matching_polynomial()</code></td>
<td>Computes the matching polynomial of the graph G.</td>
</tr>
<tr>
<td><code>minor()</code></td>
<td>Return the vertices of a minor isomorphic to H in the current graph.</td>
</tr>
<tr>
<td><code>pathwidth()</code></td>
<td>Compute the pathwidth of self (and provides a decomposition)</td>
</tr>
<tr>
<td><code>rank_decomposition()</code></td>
<td>Compute an optimal rank-decomposition of the given graph.</td>
</tr>
<tr>
<td><code>topological_minor()</code></td>
<td>Return a topological H-minor from self if one exists.</td>
</tr>
<tr>
<td><code>treelength()</code></td>
<td>Compute the treelength of G (and provide a decomposition).</td>
</tr>
<tr>
<td><code>treewidth()</code></td>
<td>Compute the treewidth of g (and provide a decomposition).</td>
</tr>
<tr>
<td><code>tutte_polynomial()</code></td>
<td>Return the Tutte polynomial of the graph G.</td>
</tr>
<tr>
<td><code>vertex_cover()</code></td>
<td>Return a minimum vertex cover of self represented by a set of vertices.</td>
</tr>
</tbody>
</table>

Basic methods

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bipartite_color()</code></td>
<td>Return a dictionary with vertices as the keys and the color class as the values.</td>
</tr>
<tr>
<td><code>bipartite_double()</code></td>
<td>Return the (extended) bipartite double of this graph.</td>
</tr>
<tr>
<td><code>bipartite_sets()</code></td>
<td>Return (X, Y) where X and Y are the nodes in each bipartite set of graph G.</td>
</tr>
<tr>
<td><code>graph6_string()</code></td>
<td>Return the graph6 representation of the graph as an ASCII string.</td>
</tr>
<tr>
<td><code>is_directed()</code></td>
<td>Since graph is undirected, returns False.</td>
</tr>
<tr>
<td><code>join()</code></td>
<td>Return the join of self and other.</td>
</tr>
<tr>
<td><code>sparse6_string()</code></td>
<td>Return the sparse6 representation of the graph as an ASCII string.</td>
</tr>
<tr>
<td><code>to_directed()</code></td>
<td>Return a directed version of the graph.</td>
</tr>
<tr>
<td><code>to_undirected()</code></td>
<td>Since the graph is already undirected, simply returns a copy of itself.</td>
</tr>
<tr>
<td><code>write_to_eps()</code></td>
<td>Write a plot of the graph to filename in eps format.</td>
</tr>
</tbody>
</table>

Clique-related methods
Graph Theory

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all_cliques()</code></td>
<td>Iterator over the cliques in graph.</td>
</tr>
<tr>
<td><code>atoms_and_clique_separator()</code></td>
<td>Return the atoms of the decomposition of G by clique minimal separators.</td>
</tr>
<tr>
<td><code>clique_complex()</code></td>
<td>Return the clique complex of self.</td>
</tr>
<tr>
<td><code>clique_maximum()</code></td>
<td>Return the vertex set of a maximal order complete subgraph.</td>
</tr>
<tr>
<td><code>clique_number()</code></td>
<td>Return the order of the largest clique of the graph</td>
</tr>
<tr>
<td><code>clique_polynomial()</code></td>
<td>Return the clique polynomial of self.</td>
</tr>
<tr>
<td><code>cliques_containing_vertex()</code></td>
<td>Return the cliques containing each vertex, represented as a dictionary of lists of lists, keyed by vertex.</td>
</tr>
<tr>
<td><code>cliques_get_clique_bipartite()</code></td>
<td>Return the vertex-clique bipartite graph of self.</td>
</tr>
<tr>
<td><code>cliques_get_max_clique_graph()</code></td>
<td>Return the clique graph.</td>
</tr>
<tr>
<td><code>cliques_maximal()</code></td>
<td>Return the list of all maximal cliques.</td>
</tr>
<tr>
<td><code>cliques_maximum()</code></td>
<td>Return the vertex sets of ALL the maximum complete subgraphs.</td>
</tr>
<tr>
<td><code>cliques_number_of()</code></td>
<td>Return a dictionary of the number of maximal cliques containing each vertex, keyed by vertex.</td>
</tr>
<tr>
<td><code>cliques_vertex_clique_number()</code></td>
<td>Return a dictionary of sizes of the largest maximal cliques containing each vertex, keyed by vertex.</td>
</tr>
<tr>
<td><code>fractional_clique_number()</code></td>
<td>Return the fractional clique number of the graph.</td>
</tr>
</tbody>
</table>

Coloring

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chromatic_index()</code></td>
<td>Return the chromatic index of the graph.</td>
</tr>
<tr>
<td><code>chromatic_number()</code></td>
<td>Return the minimal number of colors needed to color the vertices of the graph.</td>
</tr>
<tr>
<td><code>chromatic_polynomial()</code></td>
<td>Compute the chromatic polynomial of the graph G.</td>
</tr>
<tr>
<td><code>chromatic_quasisymmetric_function()</code></td>
<td>Return the chromatic quasisymmetric function of self.</td>
</tr>
<tr>
<td><code>chromatic_symmetric_function()</code></td>
<td>Return the chromatic symmetric function of self.</td>
</tr>
<tr>
<td><code>coloring()</code></td>
<td>Return the first (optimal) proper vertex-coloring found.</td>
</tr>
<tr>
<td><code>fractional_chromatic_index()</code></td>
<td>Return the fractional chromatic index of the graph.</td>
</tr>
<tr>
<td><code>fractional_chromatic_number()</code></td>
<td>Return the fractional chromatic number of the graph.</td>
</tr>
</tbody>
</table>

Connectivity, orientations, trees

1.2. Undirected graphs 439
Graph Theory, Release 10.4

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>acyclic_orientations()</code></td>
<td>Return an iterator over all acyclic orientations of an undirected graph G.</td>
</tr>
<tr>
<td><code>bounded_outdegree_orientation()</code></td>
<td>Computes an orientation of <code>self</code> such that every vertex v has out-degree less than $b(v)$.</td>
</tr>
<tr>
<td><code>bridges()</code></td>
<td>Return an iterator over the bridges (or cut edges).</td>
</tr>
<tr>
<td><code>cleave()</code></td>
<td>Return the connected subgraphs separated by the input vertex cut.</td>
</tr>
<tr>
<td><code>degree_constrained_subgraph()</code></td>
<td>Returns a degree-constrained subgraph.</td>
</tr>
<tr>
<td><code>ear_decomposition()</code></td>
<td>Return an Ear decomposition of the graph.</td>
</tr>
<tr>
<td><code>gomory_hu_tree()</code></td>
<td>Return a Gomory-Hu tree of <code>self</code>.</td>
</tr>
<tr>
<td><code>is_triconnected()</code></td>
<td>Check whether the graph is triconnected.</td>
</tr>
<tr>
<td><code>minimum_outdegree_orientation()</code></td>
<td>Returns an orientation of <code>self</code> with the smallest possible maximum outdegree.</td>
</tr>
<tr>
<td><code>orientations()</code></td>
<td>Return an iterator over orientations of <code>self</code>.</td>
</tr>
<tr>
<td><code>random_orientation()</code></td>
<td>Return a random orientation of a graph G.</td>
</tr>
<tr>
<td><code>random_spanning_tree()</code></td>
<td>Return a random spanning tree of the graph.</td>
</tr>
<tr>
<td><code>spanning_trees()</code></td>
<td>Return an iterator over all spanning trees of the graph g.</td>
</tr>
<tr>
<td><code>spqr_tree()</code></td>
<td>Return an SPQR-tree representing the triconnected components of the graph.</td>
</tr>
<tr>
<td><code>strong_orientation()</code></td>
<td>Returns a strongly connected orientation of the current graph.</td>
</tr>
<tr>
<td><code>strong_orientations_iterator()</code></td>
<td>Return an iterator over all strong orientations of a graph G.</td>
</tr>
</tbody>
</table>

Distances

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>center()</code></td>
<td>Return the set of vertices in the center of the graph.</td>
</tr>
<tr>
<td><code>centrality_degree()</code></td>
<td>Return the degree centrality of a vertex.</td>
</tr>
<tr>
<td><code>diameter()</code></td>
<td>Return the diameter of the graph.</td>
</tr>
<tr>
<td><code>distance_graph()</code></td>
<td>Return the graph on the same vertex set as the original graph but vertices are adjacent in the returned graph if and only if they are at specified distances in the original graph.</td>
</tr>
<tr>
<td><code>eccentricity()</code></td>
<td>Return the eccentricity of vertex (or vertices) v.</td>
</tr>
<tr>
<td><code>hyperbolicity()</code></td>
<td>Return the hyperbolicity of the graph or an approximation of this value.</td>
</tr>
<tr>
<td><code>periphery()</code></td>
<td>Return the set of vertices in the periphery of the graph.</td>
</tr>
<tr>
<td><code>radius()</code></td>
<td>Return the radius of the graph.</td>
</tr>
</tbody>
</table>

Domination

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_dominating()</code></td>
<td>Check whether <code>dom</code> is a dominating set of G.</td>
</tr>
<tr>
<td><code>is_redundant()</code></td>
<td>Check whether <code>dom</code> has redundant vertices.</td>
</tr>
<tr>
<td><code>minimal_dominating_sets()</code></td>
<td>Return an iterator over the minimal dominating sets of a graph.</td>
</tr>
<tr>
<td><code>private_neighbors()</code></td>
<td>Return the private neighbors of a vertex with respect to other vertices.</td>
</tr>
</tbody>
</table>

Expansion properties
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cheeger_constant()</td>
<td>Return the cheeger constant of the graph.</td>
</tr>
<tr>
<td>edge_isoperimetric_number()</td>
<td>Return the edge-isoperimetric number of the graph.</td>
</tr>
<tr>
<td>vertex_isoperimetric_number()</td>
<td>Return the vertex-isoperimetric number of the graph.</td>
</tr>
</tbody>
</table>

Graph properties

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apex_vertices()</td>
<td>Return the list of apex vertices.</td>
</tr>
<tr>
<td>is_antipodal()</td>
<td>Check whether this graph is antipodal.</td>
</tr>
<tr>
<td>is_apex()</td>
<td>Test if the graph is apex.</td>
</tr>
<tr>
<td>is_arc_transitive()</td>
<td>Check if self is an arc-transitive graph.</td>
</tr>
<tr>
<td>is_asteroidal_triple_free()</td>
<td>Test if the input graph is asteroidal triple-free.</td>
</tr>
<tr>
<td>is_biconnected()</td>
<td>Test if the graph is biconnected.</td>
</tr>
<tr>
<td>is_block_graph()</td>
<td>Return whether this graph is a block graph.</td>
</tr>
<tr>
<td>is_cactus()</td>
<td>Check whether the graph is cactus graph.</td>
</tr>
<tr>
<td>is_cartesian_product()</td>
<td>Test whether the graph is a Cartesian product.</td>
</tr>
<tr>
<td>is_circumscribable()</td>
<td>Test whether the graph is the graph of a circumscribed polyhedron.</td>
</tr>
<tr>
<td>is_cograph()</td>
<td>Check whether the graph is cograph.</td>
</tr>
<tr>
<td>is_comparability()</td>
<td>Tests whether the graph is a comparability graph.</td>
</tr>
<tr>
<td>is_distance_regular()</td>
<td>Test if the graph is distance-regular.</td>
</tr>
<tr>
<td>is_edge_transitive()</td>
<td>Check if self is an edge transitive graph.</td>
</tr>
<tr>
<td>is_even_hole_free()</td>
<td>Tests whether self contains an induced even hole.</td>
</tr>
<tr>
<td>is_forest()</td>
<td>Tests if the graph is a forest, i.e. a disjoint union of trees.</td>
</tr>
<tr>
<td>is_half_transitive()</td>
<td>Check if self is a half-transitive graph.</td>
</tr>
<tr>
<td>is_inscribable()</td>
<td>Test whether the graph is the graph of an inscribed polyhedron.</td>
</tr>
<tr>
<td>is_line_graph()</td>
<td>Check whether the graph g is a line graph.</td>
</tr>
<tr>
<td>is_long_anti-hole_free()</td>
<td>Tests whether the given graph contains an induced subgraph that is isomorphic to the complement of a cycle of length at least 5.</td>
</tr>
<tr>
<td>is_long_cycle_free()</td>
<td>Tests whether g contains an induced cycle of length at least 5.</td>
</tr>
<tr>
<td>is_odd_cycle_free()</td>
<td>Tests whether self contains an induced odd cycle.</td>
</tr>
<tr>
<td>is_overfull()</td>
<td>Tests whether the current graph is overfull.</td>
</tr>
<tr>
<td>is_partial_cube()</td>
<td>Test whether the given graph is a partial cube.</td>
</tr>
<tr>
<td>is_path()</td>
<td>Check whether self is a path.</td>
</tr>
<tr>
<td>is_permutation()</td>
<td>Tests whether the graph is a permutation graph.</td>
</tr>
<tr>
<td>is_polyhedral()</td>
<td>Check whether the graph is the graph of the polyhedron.</td>
</tr>
<tr>
<td>is_prime()</td>
<td>Test whether the current graph is prime.</td>
</tr>
<tr>
<td>is_semi_symmetric()</td>
<td>Check if self is semi-symmetric.</td>
</tr>
<tr>
<td>is_split()</td>
<td>Returns True if the graph is a Split graph, False otherwise.</td>
</tr>
<tr>
<td>is_strongly_regular()</td>
<td>Check whether the graph is strongly regular.</td>
</tr>
<tr>
<td>is_tree()</td>
<td>Tests if the graph is a tree.</td>
</tr>
<tr>
<td>is_triangle_free()</td>
<td>Check whether self is triangle-free</td>
</tr>
<tr>
<td>is_weakly_chordal()</td>
<td>Tests whether the given graph is weakly chordal, i.e., the graph and its complement have no induced cycle of length at least 5.</td>
</tr>
</tbody>
</table>

Leftovers

1.2. Undirected graphs

441
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>antipodal_graph()</td>
<td>Return the antipodal graph of <code>self</code>.</td>
</tr>
<tr>
<td>arboricity()</td>
<td>Return the arboricity of the graph and an optional certificate.</td>
</tr>
<tr>
<td>common_neighbors_matrix()</td>
<td>Return a matrix of numbers of common neighbors between each pairs.</td>
</tr>
<tr>
<td>cores()</td>
<td>Return the core number for each vertex in an ordered list.</td>
</tr>
<tr>
<td>effective_resistance()</td>
<td>Return the effective resistance between nodes <code>i</code> and <code>j</code>.</td>
</tr>
<tr>
<td>effective_resistance_matrix()</td>
<td>Return a matrix whose <code>(i, j)</code> entry gives the effective resistance between vertices <code>i</code> and <code>j</code>.</td>
</tr>
<tr>
<td>folded_graph()</td>
<td>Return the antipodal fold of this graph.</td>
</tr>
<tr>
<td>geodetic_closure()</td>
<td>Return the geodetic closure of the set of vertices <code>S</code> in <code>G</code>.</td>
</tr>
<tr>
<td>has_perfect_matching()</td>
<td>Return whether this graph has a perfect matching. INPUT:</td>
</tr>
<tr>
<td>ihara_zeta_function_inverse()</td>
<td>Compute the inverse of the Ihara zeta function of the graph.</td>
</tr>
<tr>
<td>is_factor_critical()</td>
<td>Check whether this graph is factor-critical.</td>
</tr>
<tr>
<td>kirchhoff_symanzik_polynomial()</td>
<td>Return the Kirchhoff-Symanzik polynomial of a graph.</td>
</tr>
<tr>
<td>least_effective_resistance()</td>
<td>Return a list of pairs of nodes with the least effective resistance.</td>
</tr>
<tr>
<td>lovasz_theta()</td>
<td>Return the value of Lovász theta-function of graph.</td>
</tr>
<tr>
<td>magnitude_function()</td>
<td>Return the magnitude function of the graph as a rational function.</td>
</tr>
<tr>
<td>matching()</td>
<td>Return a maximum weighted matching of the graph represented by the list of its edges.</td>
</tr>
<tr>
<td>maximum_average_degree()</td>
<td>Return the Maximum Average Degree (MAD) of the current graph.</td>
</tr>
<tr>
<td>modular_decomposition()</td>
<td>Return the modular decomposition of the current graph.</td>
</tr>
<tr>
<td>most_common_neighbors()</td>
<td>Return vertex pairs with maximal number of common neighbors.</td>
</tr>
<tr>
<td>perfect_matchings()</td>
<td>Return an iterator over all perfect matchings of the graph.</td>
</tr>
<tr>
<td>seidel_adjacency_matrix()</td>
<td>Return the Seidel adjacency matrix of <code>self</code>.</td>
</tr>
<tr>
<td>seidel_switching()</td>
<td>Return the Seidel switching of <code>self</code> w.r.t. subset of vertices <code>s</code>.</td>
</tr>
<tr>
<td>two_factor_petersen()</td>
<td>Return a decomposition of the graph into 2-factors.</td>
</tr>
<tr>
<td>twograph()</td>
<td>Return the two-graph of <code>self</code>.</td>
</tr>
</tbody>
</table>

Traversals

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lex_M()</td>
<td>Return an ordering of the vertices according the LexM graph traversal.</td>
</tr>
<tr>
<td>maximum_cardinality_search()</td>
<td>Return an ordering of the vertices according a maximum cardinality search.</td>
</tr>
<tr>
<td>maximum_cardinality_search_M()</td>
<td>Return the ordering and the edges of the triangulation produced by MCS-M.</td>
</tr>
</tbody>
</table>

Unsorted

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth()</td>
<td>Compute the bandwidth of an undirected graph.</td>
</tr>
<tr>
<td>cutwidth()</td>
<td>Return the cutwidth of the graph and the corresponding vertex ordering.</td>
</tr>
</tbody>
</table>
1.2. Undirected graphs
1.2.1 Graph Format

Supported formats

Sage Graphs can be created from a wide range of inputs. A few examples are covered here.

- NetworkX dictionary format:

```python
sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 
    5: [7, 8], 6: [8,9], 7: [9]}
sage: G = Graph(d); G
Graph on 10 vertices
sage: G.plot().show()  # or G.show()

>>> from sage.all import *
>>> d = {Integer(0): [Integer(1),Integer(4),Integer(5)], Integer(1):
    →[Integer(2),Integer(6)], Integer(2): [Integer(3),Integer(7)],...
    →Integer(3): [Integer(4),Integer(8)], Integer(4): [Integer(9)], 
    5: [7, 8], 6: [8,9], 7: [9]}
>>> G = Graph(d); G
Graph on 10 vertices
>>> G.plot().show()  # or G.show()

```

- A NetworkX graph:

```python
sage: # needs networkx
sage: import networkx
sage: K = networkx.complete_bipartite_graph(12,7)
sage: G = Graph(K)
sage: G.degree()
[7, 7, 7, 7, 7, 7, 7, 7, 12, 12, 12, 12, 12, 12, 12, 12, 12]

>>> from sage.all import *
>>> # needs networkx
>>> import networkx
>>> K = networkx.complete_bipartite_graph(Integer(12),Integer(7))
>>> G = Graph(K)
>>> G.degree()
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 12, 12, 12, 12, 12, 12, 12, 12]
```

- graph6 or sparse6 format:
Note that the `\` character is an escape character in Python, and also a character used by graph6 strings:

```python
sage: G = Graph('Ihe\n@GUA')
Traceback (most recent call last):
  ... 
RuntimeError: the string (Ihe) seems corrupt: for n = 10, the string is too short
```

In Python, the escaped character `\` is represented by `\:\`:

```python
sage: G = Graph('Ihe\n@GUA')
```

• **adjacency matrix:** In an adjacency matrix, each column and each row represent a vertex. If a 1 shows up in row i, column j, there is an edge (i, j).

```python
sage: M = Matrix([(0,1,0,0,1,1,0,0,0,0), (1,0,1,0,0,0,1,0,0,0), ...
  (0,1,1,0,0,0,1,0,0,0), (0,0,1,1,0,0,0,1,0,0), (1,0,0,1,0,0,0,0,1,1,0), ...
  (0,0,0,1,0,0,1,0,0,0), (0,0,0,1,0,1,0,0,0,1,0), (0,0,0,0,1,1,0,0,0,0,0), ...
  (0,0,0,0,0,0,1,1,0,0,0)])
sage: M
```

(continues on next page)
• incidence matrix: In an incidence matrix, each row represents a vertex and each column represents an edge.

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0
\end{pmatrix}
\]

sage: M = Matrix([[Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(1),
 Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)],
 [Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),
 Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)],
 [Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0),
 Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)],
 [Integer(0), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0),
 Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)],
 [Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),
 Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)],
 [Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),
 Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)],
 [Integer(0), Integer(1), Integer(0), Integer(0), Integer(0), Integer(0),
 Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)],
 [Integer(0), Integer(0), Integer(1), Integer(0), Integer(0), Integer(0),
 Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)],
 [Integer(1), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),
 Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)],
 [Integer(0), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),
 Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)]])

sage: G = Graph(M); G
Graph on 10 vertices

sage: G.plot().show() # or G.show()

˓→ # needs sage.plot

>>> from sage.all import *

>>> # needs sage.modules

>>> M = Matrix(
[(-1, 0, 0, 0, 1, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0),
 (1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0),
 (0, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0),
 (0, 0, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1),
 (0, 0, 0, 1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1)],
continues on next page)
.....: (0, 0, 0, 0, 0, -1, 0, 0, 1, 1, 0, 0, 0, 0, 0),
.....: (0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1, 0, 0, 0, 0),
.....: (0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1, 0, 0),
.....: (0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, 0, 0),
.....: (0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0),

sage: M
[-1 0 0 0 1 0 0 0 0 0 -1 0 0 0 0]
[1 -1 0 0 0 0 0 0 0 0 -1 0 0 0 0]
[0 1 -1 0 0 0 0 0 0 0 0 -1 0 0 0]
[0 0 1 -1 0 0 0 0 0 0 0 0 -1 0 0]
[0 0 0 0 -1 0 0 1 1 0 0 0 0 0 0]
[0 0 0 0 0 -1 0 1 -1 0 0 1 0 0 0]
[0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0]
[0 0 0 0 0 1 -1 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 -1 0 0 0 0 0 1]

sage: G = Graph(M); G
Graph on 10 vertices

sage: G.plot().show() # or G.show()

needs sage.plot

sage: DiGraph(matrix(2, [0,0,-1,1]), format="incidence_matrix")
Traceback (most recent call last):
...
ValueError: there must be two nonzero entries (-1 & 1) per column

>>> from sage.all import *
>>> # needs sage.modules
>>> M = Matrix([(-Integer(1), Integer(0), Integer(0), Integer(0), Integer(1),-Integer(1),
-> Integer(0), Integer(0), Integer(0), Integer(0), -Integer(1),
-> Integer(0), Integer(0), Integer(0), Integer(0), Integer(0))],
... (Integer(1),-Integer(1), Integer(0), Integer(0), Integer(0),-
... Integer(1), Integer(0), Integer(0), Integer(0), Integer(0),-
... Integer(1), Integer(0), Integer(0), Integer(0), Integer(0)),
... (Integer(0), Integer(1),-Integer(1), Integer(0), Integer(0),-
... Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-
... Integer(0), -Integer(1), Integer(0), Integer(0), Integer(0)),
... (Integer(0), Integer(0), Integer(1),-Integer(1), Integer(0),-
... Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-
... Integer(0), Integer(0), Integer(1),-Integer(1), Integer(0)),
... (Integer(0), Integer(0), Integer(0), Integer(1),-Integer(1),-
... Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-
... Integer(0), Integer(0), Integer(0), Integer(1),-Integer(1)),
... (Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-
... Integer(1), Integer(0), Integer(0), Integer(1), Integer(0),-
... Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)),
... (Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-
... Integer(0), Integer(0), Integer(1),-Integer(1), Integer(0),-
... Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)),
... (Integer(0), Integer(0), Integer(0), Integer(0), Integer(0),-
... Integer(0), Integer(0), Integer(0), Integer(1),-Integer(1),-
... Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)),
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
\(\text{Integer}(0), \text{Integer}(0), \text{Integer}(0), \text{Integer}(1)))\)

\[
\begin{pmatrix}
-1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
G = \text{Graph}(M); G
\]

Graph on 10 vertices

\[
\text{G.plot().show()} \quad \# \text{ or } \text{G.show()}
\]

→ \# needs sage.plot

\[
\text{DiGraph(matrix(Integer(2), [Integer(0),Integer(0),-Integer(1),}
\]

Traceback (most recent call last):
...
ValueError: there must be two nonzero entries (-1 & 1) per column

• a list of edges:

\[
\text{sage: } g = \text{Graph([\{(1, 3), (3, 8), (5, 2)\}]); g}
\]

Graph on 5 vertices

\[
\text{>>> from sage.all import *}
\]

\[
\text{>>> g = Graph([\{(Integer(1), Integer(3)), (Integer(3), Integer(8)), (Integer(5),}
\]

\[
\text{Graph on 5 vertices}
\]

• an igraph Graph:

\[
\text{sage: import igraph} \quad \# \text{ optional - python_igraph}
\]

\[
\text{sage: g = Graph(igraph.Graph([\{(1,3),(3,2),(0,2)\}])} \quad \# \text{ optional - python_igraph}
\]

\[
\text{sage: g} \quad \# \text{ optional - python_igraph}
\]

Graph on 4 vertices

\[
\text{>>> from sage.all import *}
\]

\[
\text{>>> import igraph} \quad \# \text{ optional - python_igraph}
\]

\[
\text{>>> g = Graph(igraph.Graph([\{(Integer(1),Integer(3)),(Integer(3),Integer(2)),}
\]

\[
\text{Graph on 4 vertices}
\]
1.2.2 Generators

Use `graphs(n)` to iterate through all non-isomorphic graphs of given size:

```python
sage: for g in graphs(4):
    ....:     print(g.degree_sequence())
[0, 0, 0, 0]
[1, 1, 0, 0]
[2, 1, 1, 0]
[3, 1, 1, 1]
[1, 1, 1, 1]
[2, 2, 1, 1]
[2, 2, 2, 0]
[3, 2, 2, 1]
[2, 2, 2, 2]
[3, 3, 2, 2]
[3, 3, 3, 3]
```

Similarly `graphs()` will iterate through all graphs. The complete graph of 4 vertices is of course the smallest graph with chromatic number bigger than three:

```python
sage: for g in graphs(4):
    ....:     if g.chromatic_number() > 3:
    ....:         break
sage: g.is_isomorphic(graphs.CompleteGraph(4))
True
```

For some commonly used graphs to play with, type:

```python
sage: graphs.[tab]  # not tested
```

and hit `{tab}`. Most of these graphs come with their own custom plot, so you can see how people usually visualize these
graphs.

\begin{lstlisting}[language=Python]
sage: G = graphs.PetersenGraph()
sage: G.plot().show() # or G.show() #← needs sage.plot
sage: G.degree_histogram()
[0, 0, 0, 10]
sage: G.adjacency_matrix() #← needs sage.modules
\begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}

>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.plot().show() # or G.show() #← needs sage.plot
>>> G.degree_histogram()
[0, 0, 0, 10]
>>> G.adjacency_matrix() #← needs sage.modules
\begin{bmatrix}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}

sage: S = G.subgraph([0,1,2,3])
sage: S.plot().show() # or S.show() #← needs sage.plot
sage: S.density()
1/2

>>> from sage.all import *
>>> S = G.subgraph([Integer(0),Integer(1),Integer(2),Integer(3)])
>>> S.plot().show() # or S.show() #← needs sage.plot
>>> S.density()
1/2

sage: G = GraphQuery(display_cols=['graph6'], num_vertices=7, diameter=5)
sage: L = G.get_graphs_list()
sage: graphs_list.show_graphs(L) #← needs sage.plot
\end{lstlisting}
1.2.3 Labels

Each vertex can have any hashable object as a label. These are things like strings, numbers, and tuples. Each edge is given a default label of None, but if specified, edges can have any label at all. Edges between vertices \(u\) and \(v\) are represented typically as \((u, v, l)\), where \(l\) is the label for the edge.

Note that vertex labels themselves cannot be mutable items:

```python
sage: M = Matrix([[0,0], [0,0]])
# needs sage.modules
sage: G = Graph({ 0 : { M : None } })
# needs sage.modules
Traceback (most recent call last):
... TypeError: mutable matrices are unhashable
```

However, if one wants to define a dictionary, with the same keys and arbitrary objects for entries, one can make that association:

```python
sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
```

(continues on next page)

1.2. Undirected graphs 451
1.2.4 Database

There is a database available for searching for graphs that satisfy a certain set of parameters, including number of vertices and edges, density, maximum and minimum degree, diameter, radius, and connectivity. To see a list of all search parameter keywords broken down by their designated table names, type

```
sage: graph_db_info()
...
```

For more details on data types or keyword input, enter

```
sage: GraphQuery?  # not tested
```

The results of a query can be viewed with the show method, or can be viewed individually by iterating through the results

```
sage: Q = GraphQuery(display_cols=['graph6'],num_vertices=7, diameter=5)
sage: Q.show()
Graph6
-----------------
F?ro
F?qqg
F?R0
F@OKg
F@R@o
FA_pW
FEchW
FGC{o
FIAHo
```

```
>>> from sage.all import *
>>> Q = GraphQuery(display_cols=['graph6'],num_vertices=Integer(7),
˓→diameter=Integer(5))
>>> Q.show()
Graph6
-----------------
F?ro
F?qqg
F?R0
F@OKg
F@R@o
FA_pW
FEchW
FGC{o
FIAHo
```
Show each graph as you iterate through the results:

```python
sage: for g in Q:
    # needs sage.plot
    ....:    show(g)
```

```python
>>> from sage.all import *
>>> for g in Q:
    # needs sage.plot
    ...    show(g)
```

1.2.5 Visualization

To see a graph G you are working with, there are three main options. You can view the graph in two dimensions via matplotlib with `show()`.

```python
sage: G = graphs.RandomGNP(15,.3)
sage: G.show()  # needs sage.plot
```

```python
>>> from sage.all import *
>>> G = graphs.RandomGNP(Integer(15),RealNumber('.3'))
>>> G.show()  # needs sage.plot
```

And you can view it in three dimensions via jmol with `show3d()`.

```python
sage: G.show3d()  # needs sage.plot
```

```python
>>> from sage.all import *
>>> G.show3d()  # needs sage.plot
```

Or it can be rendered with \LaTeX. This requires the right additions to a standard \TeX installation. Then standard Sage commands, such as `view(G)` will display the graph, or `latex(G)` will produce a string suitable for inclusion in a \LaTeX document. More details on this are at the `sage.graphs.graph_latex` module.

```python
sage: from sage.graphs.graph_latex import check_tkz_graph
sage: check_tkz_graph()  # random - depends on TeX installation
sage: latex(G)  
\begin{tikzpicture}...
\end{tikzpicture}
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_latex import check_tkz_graph
>>> check_tkz_graph()  # random - depends on TeX installation
>>> latex(G)  
\begin{tikzpicture}...
\end{tikzpicture}
```
1.2.6 Mutability

Graphs are mutable, and thus unusable as dictionary keys, unless \texttt{data_structure=\textquotesingle static_sparse\textquotesingle} is used:

```python
sage: G = graphs.PetersenGraph()
sage: {G:1}[G]
Traceback (most recent call last):
  ...TypeError: This graph is mutable, and thus not hashable.
Create an immutable copy by \texttt{G.copy(immutable=True)}

sage: G Immutable = Graph(G, immutable=True)
sage: G Immutable == G
True
sage: {G Immutable:1}[G Immutable]
1
```

```python
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> {G:Integer(1)}[G]
Traceback (most recent call last):
  ...TypeError: This graph is mutable, and thus not hashable.
Create an immutable copy by \texttt{G.copy(immutable=True)}

>>> G Immutable = Graph(G, immutable=True)
>>> G Immutable == G
True
>>> {G Immutable:Integer(1)}[G Immutable]
1
```

1.2.7 Methods

```python
class sage.graphs.graph.Graph(data=None, pos=None, loops=None, format=None, weighted=None, data_structure='sparse', vertex_labels=True, name=None, multiedges=None, convert_empty_dict_labels_to_None=None, sparse=True, immutable=False, hash_labels=None)
```

Bases: \texttt{GenericGraph}

Undirected graph.

A graph is a set of vertices connected by edges. See the Wikipedia article \texttt{Graph_mathematics} for more information. For a collection of pre-defined graphs, see the \texttt{graph_generators} module.

A \texttt{Graph} object has many methods whose list can be obtained by typing \texttt{g.<tab>} (i.e. hit the \texttt{Tab} key) or by reading the documentation of \texttt{graph}, \texttt{generic_graph}, and \texttt{digraph}.

INPUT:

By default, a \texttt{Graph} object is simple (i.e. no \texttt{loops} nor \texttt{multiple_edges}) and unweighted. This can be easily tuned with the appropriate flags (see below).

- \texttt{data} – can be any of the following (see the \texttt{format} argument):
 1. \texttt{Graph()} – build a graph on 0 vertices.
 2. \texttt{Graph(5)} – return an edgeless graph on the 5 vertices 0,\ldots,4.
 3. \texttt{Graph([list_of_vertices, list_of_edges])} – returns a graph with given vertices/edges.
To bypass auto-detection, prefer the more explicit `Graph([V, E], format='vertices_and_edges')`.

4. `Graph(list_of_edges)` — return a graph with a given list of edges (see documentation of `add_edges()`).
 To bypass auto-detection, prefer the more explicit `Graph(L, format='list_of_edges')`.

5. `Graph((1: [2, 3, 4], 3: [4]))` — return a graph by associating to each vertex the list of its neighbors.
 To bypass auto-detection, prefer the more explicit `Graph(D, format='dict_of_lists')`.

6. `Graph({1: {'a': 2}, 3: {'b': 2}, 2: {'c': 3}})` — return a graph by associating a list of neighbors to each vertex and providing its edge label.
 To bypass auto-detection, prefer the more explicit `Graph(D, format='dict_of_dicts')`.

 For graphs with multiple edges, you can provide a list of labels instead, e.g.: `Graph(({1: ['a1', 'a2'], 3:['b']}, 3: {2:['c']}))`.

7. `Graph(a_symmetric_matrix)` — return a graph with given (weighted) adjacency matrix (see documentation of `adjacency_matrix()`).
 To bypass auto-detection, prefer the more explicit `Graph(M, format='adjacency_matrix')`. To take weights into account, use `format='weighted_adjacency_matrix'` instead.

8. `Graph(a_nonsymmetric_matrix)` — return a graph with given incidence matrix (see documentation of `incidence_matrix()`).
 To bypass auto-detection, prefer the more explicit `Graph(M, format='incidence_matrix')`.

9. `Graph([[V, f]])` — return a graph from a vertex set \(V \) and a symmetric function \(f \). The graph contains an edge \(u, v \) whenever \(f(u, v) \) is True. Example: `Graph([[1..10], lambda x,y: abs(x-y).is_square()])`.

10. `Graph(':I`ES@obGkqegW~')` — return a graph from a graph6 or sparse6 string (see documentation of `graph6_string()` or `sparse6_string()`).

11. `Graph(a_seidel_matrix, format='seidel_adjacency_matrix')` — return a graph with a given Seidel adjacency matrix (see documentation of `seidel_adjacency_matrix()`).

12. `Graph(another_graph)` — return a graph from a Sage (di)graph, pygraphviz graph, NetworkX graph, or igraph graph.

 • `pos` — a positioning dictionary (cf. documentation of `layout()`). For example, to draw 4 vertices on a square:

   ```
   {0: [-1,-1],
   1: [ 1,-1],
   2: [ 1, 1],
   3: [-1, 1]}
   ```

 • `name` — (must be an explicitly named parameter, i.e., `name="complete"`) gives the graph a name

 • `loops` — boolean (default: None); whether to allow loops (ignored if data is an instance of the `Graph` class)

 • `multiedges` — boolean (default: None); whether to allow multiple edges (ignored if data is an instance of the `Graph` class).

 • `weighted` — boolean (default: None); whether graph thinks of itself as weighted or not. See `weighted()`.

1.2. Undirected graphs 455
Graph Theory, Release 10.4

- format – if set to None (default), Graph tries to guess input’s format. To avoid this possibly time-consuming step, one of the following values can be specified (see description above): "int", "graph6", "sparse6", "rule", "list_of_edges", "dict_of_lists", "dict_of_dicts", "adjacency_matrix", "weighted_adjacency_matrix", "seidel_adjacency_matrix", "incidence_matrix", "NX", "igraph".

- sparse – boolean (default: True); sparse=True is an alias for data_structure="sparse", and sparse=False is an alias for data_structure="dense".

- data_structure – one of the following (for more information, see overview)
 - "dense" – selects the dense_graph backend.
 - "sparse" – selects the sparse_graph backend.
 - "static_sparse" – selects the static_sparse_backend (this backend is faster than the sparse backend and smaller in memory, and it is immutable, so that the resulting graphs can be used as dictionary keys).

- immutable – boolean (default: False); whether to create an immutable graph. Note that immutable=True is actually a shortcut for data_structure='static_sparse'. Set to False by default.

- hash_labels – boolean (default: None); whether to include edge labels during hashing. This parameter defaults to True if the graph is weighted. This parameter is ignored if the graph is mutable. Beware that trying to hash unhashable labels will raise an error.

- vertex_labels – boolean (default: True); whether to allow any object as a vertex (slower), or only the integers 0, ..., n – 1, where n is the number of vertices.

- convert_empty_dict_labels_to_None – this argument sets the default edge labels used by NetworkX (empty dictionaries) to be replaced by None, the default Sage edge label. It is set to True iff a NetworkX graph is on the input.

EXAMPLES:

We illustrate the first seven input formats (the other two involve packages that are currently not standard in Sage):

1. An integer giving the number of vertices:

   ```sage
   sage: g = Graph(5); g
   Graph on 5 vertices
   sage: g.vertices(sort=True)
   [0, 1, 2, 3, 4]
   sage: g.edges(sort=False)
   []
   ```

2. A dictionary of dictionaries:

   ```sage
   sage: g = Graph({0:{1:'x',2:'z',3:'a'}, 2:{5:'out'}}); g
   Graph on 5 vertices
   ```
Graph Theory, Release 10.4

>>> from sage.all import *
>>> g = Graph({Integer(0):{Integer(1):x,Integer(2):z,Integer(3):a},
→Integer(2):{Integer(5):out}}); g
Graph on 5 vertices

The labels (‘x’, ‘z’, ‘a’, ‘out’) are labels for edges. For example, ‘out’ is the label for the edge on 2 and 5. Labels can be used as weights, if all the labels share some common parent:

sage: a, b, c, d, e, f = sorted(SymmetricGroup(3))
→ # needs sage.groups
sage: Graph({b: {d: 'c', e: 'p'}, c: {d: 'p', e: 'c'}})
Graph on 4 vertices

>>> from sage.all import *

3. A dictionary of lists:

sage: g = Graph({0:[1,2,3], 2:[4]}); g
Graph on 5 vertices

4. A list of vertices and a function describing adjacencies. Note that the list of vertices and the function must be enclosed in a list (i.e., [list of vertices, function]).

Construct the Paley graph over GF(13).:

sage: g = Graph([GF(13), lambda i,j: i!=j and (i-j).is_square()])
→# needs sage.rings.finite_rings
sage: g.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: g.adjacency_matrix()
[0 1 0 1 1 0 0 0 0 1 1 0 1]
[1 0 1 0 1 1 0 0 0 1 1 0 1]
[0 1 0 1 0 1 1 0 0 0 1 1 0]
[1 0 1 0 1 0 1 1 0 0 0 1 1]
[1 1 0 1 0 1 1 0 0 1 1 0 0]
[0 1 1 0 1 0 1 0 1 1 0 0 0]
[0 0 1 1 0 1 0 1 0 1 1 0 0]
[0 0 0 1 1 0 1 0 1 0 1 1 0]
[0 0 0 0 1 1 0 1 0 1 0 1 1]
[1 1 0 0 0 1 1 0 1 0 1 1 0]
[0 1 1 0 0 0 1 1 0 1 0 1 1]
[1 0 1 1 0 0 0 1 1 0 1 0 1]
Construct the line graph of a complete graph:

```python
sage: g = graphs.CompleteGraph(4)
sage: line_graph = Graph([g.edges(sort=True, labels=False),
    ....: lambda i,j: len(set(i).intersection(set(j)))>0],
    ....: loops=False)
sage: line_graph.vertices(sort=True)
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: line_graph.adjacency_matrix()
[0 1 1 1
 [1 0 1 1
 [1 1 0 1
 [1 1 0 1
 [0 1 1 0
 [0 1 1 1]
```

5. A graph6 or sparse6 string: Sage automatically recognizes whether a string is in graph6 or sparse6 format:
There are also list functions to take care of lists of graphs:

```python
sage: s = ':I`AKGsaOs`cI|Gb~'  
sage: graphs_list.from_sparse6(s)  
[Looped multi-graph on 10 vertices, 
  Looped multi-graph on 10 vertices, 
  Looped multi-graph on 10 vertices]
```
6. A Sage matrix: Note: If format is not specified, then Sage assumes a symmetric square matrix is an adjacency matrix, otherwise an incidence matrix.

• an adjacency matrix:

```python
sage: M = graphs.PetersenGraph().am(); M
# needs sage.modules
[0 1 0 0 1 1 0 0 0 0]
[1 0 1 0 0 0 1 0 0 0]
[0 1 0 1 0 0 1 0 0 0]
[0 0 1 0 1 0 0 0 1 0]
[1 0 0 1 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1]
[0 1 0 0 0 0 0 0 0 1]
[0 0 1 0 1 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0]
[0 0 0 1 0 1 1 0 0]
sage: Graph(M)
# needs sage.modules
Graph on 10 vertices
```

```python
>>> from sage.all import *

>>> M = graphs.PetersenGraph().am(); M
# needs sage.modules
[0 1 0 0 1 1 0 0 0 0]
[1 0 1 0 0 0 1 0 0 0]
[0 1 0 1 0 0 1 0 0 0]
[0 0 1 0 1 0 0 0 1 0]
[1 0 0 1 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1]
[0 1 0 0 0 0 0 0 0 1]
[0 0 1 0 1 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0]
[0 0 0 1 0 1 1 0 0]

>>> Graph(M)
# needs sage.modules
Graph on 10 vertices
```

```python
sage: Graph(matrix([[1,2], [2,4]]), loops=True, sparse=True)
# needs sage.modules
Looped multi-graph on 2 vertices

sage: M = Matrix([[0,1,-1], [1,0,-1/2], [-1,-1/2,0]]); M
# needs sage.modules
[ 0 1 -1]
[ 1 0 -1/2]
[-1 -1/2 0]
sage: G = Graph(M, sparse=True); G
# needs sage.modules
Graph on 3 vertices
```
• an incidence matrix:

```
sage: M = Matrix(6, [-1,0,0,0,1, 1,-1,0,0,0, 0,1,-1,0,0, ␣ ˓→# needs sage.modules ˓→0,0,0,1,-1,0, 0,0,0,1,-1, 0,0,0,0,0]); M
[[-1 0 0 0 1 1]
 [ 1 -1 0 0 0]
 [ 0 1 -1 0 0]
 [ 0 0 1 -1 0]
 [ 0 0 0 1 -1]
 [ 0 0 0 0 0]]
sage: Graph(M) ˓→# needs sage.modules
Graph on 6 vertices
sage: Graph(Matrix([[1],[1],[1]])) ˓→# needs sage.modules
Traceback (most recent call last):
...
ValueError: there must be one or two nonzero entries per column
in an incidence matrix, got entries [1, 1, 1] in column 0
sage: Graph(Matrix([[1],[1],[0]])) ˓→# needs sage.modules
Graph on 3 vertices
sage: M = Matrix([[0,1,-1], [1,0,-1], [-1,-1,0]]); M ␣ ˓→# needs sage.modules
[[0 1 -1]
 [1 0 -1]
 [-1 -1 0]]
sage: Graph(M, sparse=True) ˓→# needs sage.modules
Graph on 3 vertices
```

(continues on next page)
sage: M = Matrix([[0,1,1], [1,0,1], [-1,-1,0]]); M
 # needs sage.modules
[0 1 1]
[1 0 1]
[-1 -1 0]
sage: Graph(M)
 # needs sage.modules
Traceback (most recent call last):
...
ValueError: there must be one or two nonzero entries per column
in an incidence matrix, got entries [1, 1] in column 2

>>> from sage.all import *

>>> M = Matrix(Integer(6), [-Integer(1),Integer(0),Integer(0),Integer(0),
 -Integer(1), Integer(1),-Integer(1),Integer(0),Integer(0),
 -Integer(1),Integer(1),-Integer(1),Integer(0),Integer(0),
 -Integer(0),Integer(1),-Integer(1),Integer(0),Integer(0),Integer(0)],
 [-1 0 0 0 1]
 [1 -1 0 0 0]
 [0 1 -1 0 0]
 [0 0 1 -1]
 [0 0 0 0 0])

>>> Graph(M)
 # needs sage.modules
Graph on 6 vertices

>>> Graph(Matrix([[Integer(-1)], [Integer(1)], [Integer(1)]])
 # needs sage.modules
Traceback (most recent call last):
...
ValueError: there must be one or two nonzero entries per column
in an incidence matrix, got entries [1, 1, 1] in column 0

>>> Graph(Matrix([[Integer(-1)], [Integer(1)], [Integer(0)]])
 # needs sage.modules
Graph on 3 vertices

>>> M = Matrix([[Integer(0),Integer(1),-Integer(1)],
 [Integer(1),0,-Integer(1)],
 [-Integer(1),-Integer(1),0]]); M
 # needs sage.modules
[0 1 -1]
[1 0 -1]
[-1 -1 0]

>>> Graph(M, sparse=True)
 # needs sage.modules
Graph on 3 vertices

>>> M = Matrix([[Integer(0),Integer(1),Integer(1)],
 [Integer(1),0,Integer(1)],
 [-Integer(1),-Integer(1),0]]); M
 # needs sage.modules
[0 1 1]
[1 0 1]
[-1 -1 0]
>>> Graph(M)
˓→ # needs sage.modules
Traceback (most recent call last):
...
ValueError: there must be one or two nonzero entries per column
in an incidence matrix, got entries [1, 1] in column 2

Check that Issue #9714 is fixed:

```python
sage: from sage.all import *
>>> # needs sage.modules
>>> MA = Matrix([\[1,2,0\], \[0,2,0\], \[0,0,1\]])
>>> GA = Graph(MA, format='adjacency_matrix')
>>> MI = GA.incidence_matrix(oriented=False); MI
\[
\begin{bmatrix}
2 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2
\end{bmatrix}
\]
>>> Graph(MI).edges(sort=True, labels=None)
\[
[(0, 0), (0, 1), (0, 1), (1, 1), (1, 1), (2, 2)]
\]
```

```python
sage: M = Matrix([\[[1], [-1]\]])
˓→ # needs sage.modules
\[
\begin{bmatrix}
1 \\
-1
\end{bmatrix}
\]
>>> Graph(M).edges(sort=True)
˓→ # needs sage.modules
\[
[(0, 1, None)]
\]
```
8. List of edges, or labelled edges:

```python
>>> g = Graph([(1, 2, "Peace"), (1, 3, "Love")]); g
```

Graph on 5 vertices

```python
>>> g = Graph([(1, 2, "Peace"), (1, 3, "Love")], loops=True, multiedges=True)
```

```python
[(3, 3, '2')]
```

9. A NetworkX MultiGraph:

```python
sage: import networkx
```

```python
sage: g = networkx.MultiGraph({0:[1,2,3], 2:[4]})
```

Multi-graph on 5 vertices
10. A NetworkX graph:

```python
sage: import networkx
# needs networkx
sage: g = networkx.Graph({0:[1,2,3], 2:[4]})
# needs networkx
sage: DiGraph(g)
DiGraph on 5 vertices
```

```python
>>> from sage.all import *
>>> import networkx
# needs networkx
>>> g = networkx.Graph({Integer(0):[Integer(1),Integer(2),Integer(3)],
Integer(2):[Integer(4)]})
# needs networkx
>>> Graph(g)
Multi-graph on 5 vertices
```

11. An igraph Graph (see also `igraph_graph()`):

```python
sage: import igraph
# optional - python_igraph
sage: g = igraph.Graph([(0, 1), (0, 2)])
# optional - python_igraph
sage: Graph(g)
Graph on 3 vertices
```

```python
>>> from sage.all import *
>>> import igraph
# optional - python_igraph
>>> g = igraph.Graph([(Integer(0), Integer(1)), (Integer(0), Integer(2))], vertex_attrs={name:[a,b,c]})
```

If `vertex_labels` is True, the names of the vertices are given by the vertex attribute 'name', if available:

```python
sage: # optional - python_igraph
sage: g = igraph.Graph([(0,1),(0,2)], vertex_attrs={'name':['a','b','c']})
```

```python
>>> from sage.all import *
>>> # optional - python_igraph
>>> g = igraph.Graph([(Integer(0),Integer(1)),(Integer(0),Integer(2))], vertex_attrs={name:['a','b','c']})
```

(continues on next page)
If the igraph Graph has edge attributes, they are used as edge labels:

```python
sage: g = igraph.Graph([(0, 1), (0, 2)], # optional - python_igraph
                     edge_attrs={name: [a, b], weight: [1, 3]})
```

```python
sage: Graph(g).edges(sort=True) # optional - python_igraph
[(0, 1, {name: a, weight: 1}), (0, 2, {name: b, weight: 3})]
```

When defining an undirected graph from a function \(f \), it is very important that \(f \) be symmetric. If it is not, anything can happen:

```python
sage: f_sym = lambda x,y: abs(x-y) == 1
sage: G_sym = Graph([[4,5,1,5,3,7,2,0], f_sym])
sage: G_sym.is_isomorphic(graphs.PathGraph(8))
True
```

```python
sage: G_nonsym = Graph([[4,6,1,5,3,7,2,0], f_nonsym])
```

```python
sage: G_nonsym.size()
4
```

```python
sage: G_nonsym.is_isomorphic(G_sym)
False
```

```
>> from sage.all import *
```

```python
>> f_sym = lambda x,y: abs(x-y) == Integer(1)
>> f_nonsym = lambda x,y: (x-y) == Integer(1)
>> G_sym = Graph([[4,6,1,5,3,7,2,0], f_sym])
>> G_sym.is_isomorphic(graphs.PathGraph(Integer(8)))
True
```

```python
>> G_nonsym = Graph([[4,6,1,5,3,7,2,0], f_nonsym])
```

```python
>> G_nonsym.size()
4
```

```python
>> G_nonsym.is_isomorphic(G_sym)
False
```

By default, graphs are mutable and can thus not be used as a dictionary key:
When providing the optional arguments `data_structure="static_sparse"` or `immutable=True` (both mean the same), then an immutable graph results:

```python
sage: G_imm = Graph(G, immutable=True)
sage: H_imm = Graph(G, data_structure='static_sparse')
sage: G_imm == H_imm == G
True
eval
```

The function `acyclic_orientations(G)` returns an iterator over all acyclic orientations of an undirected graph G.

ALGORITHM:

The algorithm is based on [Sq1998]. It presents an efficient algorithm for listing the acyclic orientations of a graph. The algorithm is shown to require $O(n)$ time per acyclic orientation generated, making it the most efficient known algorithm for generating acyclic orientations.

The function uses a recursive approach to generate acyclic orientations of the graph. It reorders the vertices and edges of the graph, creating a new graph with updated labels. Then, it iteratively generates acyclic orientations by considering subsets of edges and checking whether they form upsets in a corresponding poset.

INPUT:

- G – an undirected graph.

OUTPUT:

- An iterator over all acyclic orientations of the input graph.

Note: The function assumes that the input graph is undirected and the edges are unlabelled.

EXAMPLES:
To count number acyclic orientations for a graph:

```
sage: g = Graph([(0, 3), (0, 4), (3, 4), (1, 3), (1, 2), (2, 3), (2, 4)])
sage: it = g.acyclic_orientations()
sage: len(list(it))
54
```

Test for arbitrary vertex labels:

```
sage: g_str = Graph([('abc', 'def'), ('ghi', 'def'), ('xyz', 'abc'), ('xyz',
                'uvw'), ('uvw', 'abc'), ('uvw', 'ghi')])
sage: it = g_str.acyclic_orientations()
sage: len(list(it))
42
```

```
>>> from sage.all import *
>>> g_str = Graph([('abc', 'def'), ('ghi', 'def'), ('xyz', 'abc'), ('xyz',
               'uvw'), ('uvw', 'abc'), ('uvw', 'ghi')])
>>> it = g_str.acyclic_orientations()
>>> len(list(it))
42
```

all_cliques *(graph, min_size=0, max_size=0)*

Iterator over the cliques in *graph*.

A clique is an induced complete subgraph. This method is an iterator over all the cliques with size in between *min_size* and *max_size*. By default, this method returns only maximum cliques. Each yielded clique is represented by a list of vertices.

Note: Currently only implemented for undirected graphs. Use `to_undirected()` to convert a digraph to an undirected graph.

INPUT:

- **min_size** – integer (default: 0); minimum size of reported cliques. When set to 0 (default), this method searches for maximum cliques. In such case, parameter `max_size` must also be set to 0.
- **max_size** – integer (default: 0); maximum size of reported cliques. When set to 0 (default), the maximum size of the cliques is unbounded. When `min_size` is set to 0, this parameter must be set to 0.

ALGORITHM:

This function is based on Cliquer [NO2003].

EXAMPLES:

```
sage: G = graphs.CompleteGraph(5)
sage: list(sage.graphs.cliquer.all_cliques(G))
```
sage: list(sage.graphs.cliquer.all_cliques(G, 2, 3))
[[3, 4],
 [2, 3],
 [2, 3, 4],
 [2, 4],
 [1, 2],
 [1, 2, 3],
 [1, 2, 4],
 [1, 3],
 [1, 3, 4],
 [1, 4],
 [0, 1],
 [0, 1, 2],
 [0, 1, 3],
 [0, 1, 4],
 [0, 2],
 [0, 2, 3],
 [0, 2, 4],
 [0, 3],
 [0, 3, 4],
 [0, 4]]
sage: G.delete_edge([1,3])
sage: list(sage.graphs.cliquer.all_cliques(G))
[[0, 2, 3, 4], [0, 1, 2, 4]]

```python
>>> from sage.all import *

>>> G = graphs.CompleteGraph(Integer(5))

>>> list(sage.graphs.cliquer.all_cliques(G))
[[0, 1, 2, 3, 4]]

>>> list(sage.graphs.cliquer.all_cliques(G, Integer(2), Integer(3)))
[[3, 4],
 [2, 3],
 [2, 3, 4],
 [2, 4],
 [1, 2],
 [1, 2, 3],
 [1, 2, 4],
 [1, 3],
 [1, 3, 4],
 [1, 4],
 [0, 1],
 [0, 1, 2],
 [0, 1, 3],
 [0, 1, 4],
 [0, 2],
 [0, 2, 3],
 [0, 2, 4],
 [0, 3],
 [0, 3, 4],
 [0, 4]]

>>> G.delete_edge([Integer(1),Integer(3)])

>>> list(sage.graphs.cliquer.all_cliques(G))
[[0, 2, 3, 4], [0, 1, 2, 4]]
```
Todo: Use the re-entrant functionality of Cliquer [NO2003] to avoid storing all cliques.

antipodal_graph()
Return the antipodal graph of self.

The antipodal graph of a graph G has the same vertex set of G and two vertices are adjacent if their distance in G is equal to the diameter of G.

OUTPUT:
A new graph. self is not touched.

EXAMPLES:

```
sage: G = graphs.JohnsonGraph(10, 5)
sage: G.antipodal_graph()
Antipodal graph of Johnson graph with parameters 10, 5: Graph on 252 vertices

sage: G = graphs.HammingGraph(8, 2)
sage: G.antipodal_graph()
Antipodal graph of Hamming Graph with parameters 8, 2: Graph on 256 vertices
```

The antipodal graph of a disconnected graph is its complement:

```
sage: G = Graph(5)
sage: H = G.antipodal_graph()
sage: H.is_isomorphic(G.complement())
True
```

apex_vertices(k=None)
Return the list of apex vertices.

A graph is apex if it can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph, and a graph may have more than one apex. For instance, in the minimal nonplanar graphs K_5 or $K_{3,3}$, every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex to remove. If the graph is not connected, we say that it is apex if it has at most one non planar connected component and that this component is apex. See the Wikipedia article Apex_graph for more information.

See also:

- `is_apex()`
- `is_planar()`
INPUT:
• \(k \) – integer (default: None); when set to None, the method returns the list of all apex of the graph, possibly empty if the graph is not apex. When set to a positive integer, the method ends as soon as \(k \) apex vertices are found.

OUTPUT:
By default, the method returns the list of all apex of the graph. When parameter \(k \) is set to a positive integer, the returned list is bounded to \(k \) apex vertices.

EXAMPLES:
\(K_5 \) and \(K_{3,3} \) are apex graphs, and each of their vertices is an apex:

```
sage: G = graphs.CompleteGraph(5)
sage: G.apex_vertices()
[0, 1, 2, 3, 4]
sage: G = graphs.CompleteBipartiteGraph(3,3)
sage: G.is_apex()
True
sage: G.apex_vertices()
[0, 1, 2, 3, 4, 5]
sage: G.apex_vertices(k=3)
[0, 1, 2]
```

\(K_5 \) and \(K_{3,3} \) are apex graphs, and each of their vertices is an apex. When adding a universal vertex, the resulting graph is apex and the universal vertex is the unique apex vertex:

```
sage: G = graphs.Grid2dGraph(4,4)
sage: set(G.apex_vertices()) == set(G.vertices(sort=False))
True
sage: G.add_edges([('universal',v) for v in G])
sage: G.apex_vertices()
['universal']
```

A 4
\(4 \times 4 \)-grid is apex and each of its vertices is an apex. When adding a universal vertex, the resulting graph is apex and the universal vertex is the unique apex vertex:

```
sage: G = graphs.Grid2dGraph(Integer(4),Integer(4))
sage: set(G.apex_vertices()) == set(G.vertices(sort=False))
True
sage: G.add_edges([('universal',v) for v in G])
sage: G.apex_vertices()
['universal']
```

The Petersen graph is not apex:
Graph Theory, Release 10.4

```
sage: G = graphs.PetersenGraph()
sage: G.apex_vertices()
[]

>>> from sage.all import *

>>> G = graphs.PetersenGraph()

>>> G.apex_vertices()
[]
```

A graph is apex if all its connected components are apex, but at most one is not planar:

```
sage: M = graphs.Grid2dGraph(3, 3)
sage: K5 = graphs.CompleteGraph(5)
sage: (M+K5).apex_vertices()
[9, 10, 11, 12, 13]
sage: (M+K5+K5).apex_vertices()
[]
```

```

>>> from sage.all import *

>>> M = graphs.Grid2dGraph(Integer(3), Integer(3))

>>> K5 = graphs.CompleteGraph(Integer(5))

>>> (M+K5).apex_vertices()
[9, 10, 11, 12, 13]

>>> (M+K5+K5).apex_vertices()
[]
```

Neighbors of an apex of degree 2 are apex:

```
sage: G = graphs.Grid2dGraph(5, 5)
sage: v = (666, 666)

sage: G.add_path([(1, 1), v, (3, 3)])

sage: G.is_planar()
False

sage: G.degree(v)
2

sage: sorted(G.apex_vertices())
[(1, 1), (2, 2), (3, 3), (666, 666)]

>>> from sage.all import *

>>> G = graphs.Grid2dGraph(Integer(5), Integer(5))

>>> v = (Integer(666), Integer(666))

>>> G.add_path([(Integer(1), Integer(1)), v, (Integer(3), Integer(3))])

>>> G.is_planar()
False

>>> G.degree(v)
2

>>> sorted(G.apex_vertices())
[(1, 1), (2, 2), (3, 3), (666, 666)]
```

```
arboricity (certificate=False)
```

Return the arboricity of the graph and an optional certificate.

The arboricity is the minimum number of forests that covers the graph.

See Wikipedia article Arboricity

INPUT:
• certificate – boolean (default: False); whether to return a certificate.

OUTPUT:

When `certificate = True`, then the function returns \((a, F)\) where \(a\) is the arboricity and \(F\) is a list of \(a\) disjoint forests that partitions the edge set of \(g\). The forests are represented as subgraphs of the original graph.

If `certificate = False`, the function returns just a integer indicating the arboricity.

ALGORITHM:

Represent the graph as a graphical matroid, then apply matroid `sage.matroid.partition()` algorithm from the matroids module.

EXAMPLES:

```python
sage: G = graphs.PetersenGraph()
sage: a, F = G.arboricity(True) # needs sage.modules
sage: a # needs sage.modules
2
sage: all([f.is_forest() for f in F]) # needs sage.modules
True
sage: len(set.union(*[set(f.edges(sort=False)) for f in F])) == G.size() # needs sage.modules
True
```

```python
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> a, F = G.arboricity(True) # needs sage.modules
>>> a # needs sage.modules
2
>>> all([f.is_forest() for f in F]) # needs sage.modules
True
>>> len(set.union(*[set(f.edges(sort=False)) for f in F])) == G.size() # needs sage.modules
True
```

atoms_and_clique_separators \((G, tree=False, rooted_tree=False, separators=False)\)

Return the atoms of the decomposition of \(G\) by clique minimal separators.

Let \(G = (V, E)\) be a graph. A set \(S \subseteq V\) is a clique separator if \(G[S]\) is a clique and the graph \(G \setminus S\) has at least 2 connected components. Let \(C \subseteq V\) be the vertices of a connected component of \(G \setminus S\). The graph \(G[C + S]\) is an atom if it has no clique separator.

This method implements the algorithm proposed in [BPS2010], that improves upon the algorithm proposed in [TY1984], for computing the atoms and the clique minimal separators of a graph. This algorithm is based on the `maximum_cardinality_search_M()` graph traversal and has time complexity in \(O(|V| \cdot |E|)\).

Note: As the graph is converted to a short_digraph (with `sort_neighbors=True`), the complexity has an extra \(O(|V| + |E| \log |E|)\) for `SparseGraph` and \(O(|V|^2 \log |E|)\) for `DenseGraph`.

1.2. Undirected graphs 473
If the graph is not connected, we insert empty separators between the lists of separators of each connected components. See the examples below for more details.

INPUT:

- \(G \) – a Sage graph
- \(\text{tree} \) – boolean (default: False); whether to return the result as a directed tree in which internal nodes are clique separators and leaves are the atoms of the decomposition. Since a clique separator is repeated when its removal partition the graph into 3 or more connected components, vertices are labels by tuples \((i, S)\), where \(S \) is the set of vertices of the atom or the clique separator, and \(0 \leq i \leq |T| \).
- \(\text{rooted_tree} \) – boolean (default: False); whether to return the result as a LabelledRootedTree. When \(\text{tree} \) is True, this parameter is ignored.
- \(\text{separators} \) – boolean (default: False); whether to also return the complete list of separators considered during the execution of the algorithm. When \(\text{tree} \) or \(\text{rooted_tree} \) is True, this parameter is ignored.

OUTPUT:

- By default, return a tuple \((A, S_c)\), where \(A \) is the list of atoms of the graph in the order of discovery, and \(S_c \) is the list of clique separators, with possible repetitions, in the order the separator has been considered.
 - If furthermore \(\text{separators} \) is True, return a tuple \((A, S_h, S_c)\), where \(S_h \) is the list of considered separators of the graph in the order they have been considered.
 - When \(\text{tree} \) is True, format the result as a directed tree.
 - When \(\text{rooted_tree} \) is True and \(\text{tree} \) is False, format the output as a LabelledRootedTree.

EXAMPLES:

Example of [BPS2010]:

```python
sage: G = Graph({a: [b, k], b: [c], c: [d, j, k],
           ....: d: [e, f, j, k], e: [g],
           ....: f: [g, j, k], g: [j, k], h: [i, j],
           ....: i: ['k'], j: ['k']})
sage: atoms, cliques = G.atoms_and_clique_separators()
sage: sorted(sorted(a) for a in atoms)
[['a', 'b', 'c', 'k'], ['c', 'd', 'j', 'k'], ['d', 'e', 'f', 'g', 'j', 'k'], ['h', 'i', 'j', 'k']]
sage: sorted(sorted(c) for c in cliques)
[['c', 'k'], ['d', 'j', 'k'], ['j', 'k']]
sage: T = G.atoms_and_clique_separators(tree=True)
sage: T.is_tree()
True
sage: T.diameter() == len(atoms)
True
sage: all(u[1] in atoms for u in T if T.degree(u) == 1)
True
sage: all(u[1] in cliques for u in T if T.degree(u) != 1)
True
```

```python
>>> from sage.all import *
>>> G = Graph({a: [b, k], b: [c], c: [d, j, k],
           ... d: [e, f, j, k], e: [g],
           ... f: [g, j, k], g: [j, k], h: [i, j],
           ... i: ['k'], j: ['k']})
```

(continues on next page)
A graph without clique separator:

```
sage: G = graphs.CompleteGraph(5)
sage: G.atoms_and_clique_separators()
({0, 1, 2, 3, 4}, [])
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
{0, 1, 2, 3, 4}
```

Graphs with several biconnected components:

```
sage: G = graphs.PathGraph(4)
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
  ______(2)____
 /          /
{2, 3}     ___{1}___
  /          /
  {1, 2} {0, 1}
sage: G = graphs.WindmillGraph(3, 4)
sage: G.atoms_and_clique_separators()
([[0, 1, 2], {0, 3, 4}, {0, 5, 6}, {0, 8, 7}], [{0}, {0}, {0}])
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
  ______{0}______
 /          /
{0, 1, 2}     ______{0}_______
  /          /
  {0, 3, 4}     ___{0}___
  /          /
  {0, 8, 7} {0, 5, 6}
```
When the removal of a clique separator results in $k > 2$ connected components, this separator is repeated $k - 1$ times, but the repetitions are not necessarily contiguous:

```
sage: G = Graph(2)
sage: for i in range(5):
    ....:     G.add_cycle([0, 1, G.add_vertex()])
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
   _____{0, 1}_____  
  /                  /
{0, 1, 4}       _____{0, 1}_____
   /                  /
{0, 1, 2}  _____{0, 1}_____
   /                  /
{0, 1, 3}  _____{0, 1}_____
   /                  /
{0, 1, 5}  _____{0, 1}_____  
```

```
sage: G = graphs.StarGraph(3)
sage: G.subdivide_edges(G.edges(sort=False), 2)
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
   _____(5)_____  
  /                  /
{1, 5}         _____(7)_____
   /                  /
{2, 7}         _____(9)_____
   /                  /
{9, 3}         _____(6)_____  
   /                  /
{6, 7}         _____(4)_____  
   /                  /
{4, 5}         _____(0)_____  
   /                  /
{0, 6}         _____(8)_____
   /                  /
{8, 9}         _____(0)_____  
   /                  /
{0, 8}         _____(0)_____  
```
```python
>>> from sage.all import *
>>> G = Graph(Integer(2))
>>> for i in range(Integer(5)):
...     G.add_cycle([Integer(0), Integer(1), G.add_vertex()])

>>> ascii_art(G.atoms_and_clique_separators(rooted_tree=True))

_________{0, 1}_____
/ /
{0, 1, 4} ________{0, 1}_____
/ /
{0, 1, 2} ______{0, 1}___
/ /
{0, 1, 3} ___{0, 1}
/ /
{0, 1, 5} {0, 1, 6}

>>> G = graphs.StarGraph(Integer(3))
>>> G.subdivide_edges(G.edges(sort=False), Integer(2))

>>> ascii_art(G.atoms_and_clique_separators(rooted_tree=True))

______{5}______
/ /
{1, 5} ______{7}______
/ /
{2, 7} ______{9}_____
/ /
{9, 3} ______{6}_____
/ /
{6, 7} ______{4}_____
/ /
{4, 5} ______{0}_____
/ /
{0, 6} ______{8}_____ 
/ /
{8, 9} __{0}__
/ /
{0, 8} {0, 4}
```

If the graph is not connected, we insert empty separators between the lists of separators of each connected component. For instance, let G be a graph with 3 connected components. The method returns the list $S_c = [S_0, \ldots, S_i, \ldots, S_j, \ldots, S_{k-1}]$ of k clique separators, where i and j are the indexes of the inserted empty separators and $0 \leq i < j < k - 1$. The method also returns the list $A = [A_0, \ldots, A_k]$ of the $k + 1$ atoms, with $k + 1 \geq 3$. The lists of atoms and clique separators of each of the connected components are respectively $[A_0, \ldots, A_i]$ and $[S_0, \ldots, S_{i-1}], [A_{i+1}, \ldots, A_j]$ and $[S_{i+1}, \ldots, S_{j-1}], [A_{j+1}, \ldots, A_k]$ and $[S_{j+1}, \ldots, S_{k-1}]$. One can check that for each connected component, we get one atom more than clique separators:
Graph Theory, Release 10.4

...continued from previous page...

```python
sage: A[j+1:], Sc[j+1:]
([(8, 7), (6, 7)], [(7)])
sage: I = [-1, i, j, len(Sc)]
sage: for i, j in zip(I[:-1], I[1:]):
    print(A[i+1:j+1], Sc[i+1:j])
[(1, 2), {0, 1}] [{1}]
[(4, 5), {3, 4}] [{4}]
[(8, 7), {6, 7}] [{7}]
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))

___________________________(1)
/     /
(1, 2) ______{}_____
/     /
(0, 1) ______{4}_____
/     /
(4, 5) ______{}_____
/     /
(3, 4) _____{7}_____
/     /
(6, 7) ___{8}_____
```

```python
>>> from sage.all import *
>>> G = graphs.PathGraph(Integer(3)) * Integer(3)
>>> A, Sc = G.atoms_and_clique_separators()
>>> A
([(1, 2), {0, 1}], [{1}])
>>> A[i+1:j+1], Sc[i+1:j]
([(4, 5), {3, 4}], [{4}])
>>> A[j+1:], Sc[j+1:]
([(8, 7), {6, 7}], [{7}])
>>> I = [-1, i, j, len(Sc)]
>>> for i, j in zip(I[:-1], I[1:]):
...     print(A[i+1:j+1], Sc[i+1:j])
[(1, 2), {0, 1}] [{1}]
[(4, 5), {3, 4}] [{4}]
[(8, 7), {6, 7}] [{7}]
>>> ascii_art(G.atoms_and_clique_separators(rooted_tree=True))

___________________________(1)
/     /
(1, 2) ______{}_____
/     /
(0, 1) ______{4}_____
/     /
(4, 5) ______{}_____
/     /
(3, 4) _____{7}_____
/     /
(6, 7) ___{8}_____
```
Loops and multiple edges are ignored:

```python
sage: G.allow_loops(True)
sage: G.add_edges([(u, u) for u in G])
sage: G.allow_multiple_edges(True)
sage: G.add_edges(G.edges(sort=False))
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
  ______{1}______
 /               /
{1, 2} _____{}______
  /               /
{0, 1} _____{4}______
    /               /
{4, 5} _____{}______
      /               /
{3, 4} __{7}__
         /               /
{6, 7} {8, 7}
```

We can check that the returned list of separators is valid:

```python
sage: G = graphs.RandomGNP(50, .1)
sage: while not G.is_connected():
    ... G = graphs.RandomGNP(50, .1)
sage: _, separators, _ = G.atoms_and_clique_separators(separators=True)
sage: for S in separators:
    ... H = G.copy()
    ... H.delete_vertices(S)
    ... if H.is_connected():
    ...     raise ValueError("something goes wrong")
```

(continues on next page)
```python
... if H.is_connected():
... raise ValueError("something goes wrong")
```

bandwidth $(G, k=None)$

Compute the bandwidth of an undirected graph.

For a definition of the bandwidth of a graph, see the documentation of the `bandwidth` module.

INPUT:

- G – a graph
- k – integer (default: None); set to an integer value to test whether $bw(G) \leq k$, or to None (default) to compute $bw(G)$

OUTPUT:

When k is an integer value, the function returns either False or an ordering of cost $\leq k$.

When k is equal to None, the function returns a pair `(bw, ordering)`.

See also:

`sage.graphs.generic_graph.GenericGraph.adjacency_matrix()` – return the adjacency matrix from an ordering of the vertices.

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.bandwidth import bandwidth
g: G = graphs.PetersenGraph()
sage: bandwidth(G, 3)
False

(5, [0, 4, 5, 8, 1, 9, 3, 7, 6, 2])
sage: G.adjacency_matrix(vertiexes=[0, 4, 5, 8, 1, 9, 3, 7, 6, 2])
\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
[0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0
\end{bmatrix}
```
sage: G = graphs.ChvatalGraph()
sage: bandwidth(G)
(6, [0, 5, 9, 4, 10, 1, 6, 11, 3, 8, 7, 2])
sage: G.adjacency_matrix(vertiexes=[0, 5, 9, 4, 10, 1, 6, 11, 3, 8, 7, 2])
\[
\begin{bmatrix}
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
[0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0
\end{bmatrix}
```
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.bandwidth import bandwidth
>>> G = graphs.PetersenGraph()
>>> bandwidth(G, Integer(3))
False
>>> bandwidth(G)
(5, [0, 4, 5, 8, 1, 9, 3, 7, 6, 2])
>>> G.adjacency_matrix(vertices=[Integer(0), Integer(4), Integer(5),
 Integer(8), Integer(1), Integer(9), Integer(7), Integer(6),
 Integer(2)])
 # needs sage.modules
[0 1 0 1 0 0 0 0 0 0]
[1 0 0 0 1 1 0 0 0 0]
[1 0 0 1 0 0 0 1 0 0]
[0 0 1 0 0 0 1 0 1 0]
[1 0 0 0 0 0 0 0 1 1]
[0 1 0 0 0 0 0 1 1 0]
[0 1 0 1 0 0 0 0 0 1]
[0 0 1 0 0 1 0 0 0 1]
[0 0 1 1 1 0 0 0 0]
[0 0 0 0 0 1 0 1 1 0]
>>> G = graphs.ChvatalGraph()
>>> bandwidth(G)
(6, [0, 5, 9, 4, 10, 1, 6, 11, 3, 8, 7, 2])
>>> G.adjacency_matrix(vertices=[Integer(0), Integer(5), Integer(9),
 Integer(4), Integer(10), Integer(1), Integer(6), Integer(11), Integer(3),
 Integer(7), Integer(2)])
 # needs sage.modules
[0 0 1 1 0 1 1 0 0 0 0 0]
[0 0 0 1 1 0 1 0 0 0 1 0]
[1 0 0 0 1 0 0 1 1 0 0 0]
[1 1 0 0 0 0 0 0 1 1 0 0]
[0 1 1 0 0 0 1 0 0 1 0 0]
[1 1 0 0 0 0 0 0 0 1 1]
[1 0 0 0 1 0 0 1 0 0 0 1]
[0 1 1 0 0 0 1 0 0 0 1 0]
[0 0 1 1 0 0 0 0 0 0 1 1]
[0 0 0 1 1 0 0 0 0 0 1 1]
[0 0 0 0 0 1 0 1 1 0 0]
[0 0 0 0 0 1 1 0 1 1 0]
```

**bipartite_color()**

Return a dictionary with vertices as the keys and the color class as the values.

Fails with an error if the graph is not bipartite.

**EXAMPLES:**

```python
sage: graphs.CycleGraph(4).bipartite_color()
{0: 1, 1: 0, 2: 1, 3: 0}
sage: graphs.CycleGraph(5).bipartite_color()
Traceback (most recent call last):
...
RuntimeError: Graph is not bipartite.
```

1.2. Undirected graphs 481
bipartite_double(extended=False)

Return the (extended) bipartite double of this graph.

The bipartite double of a graph $G$ has vertex set $\{(v, 0), (v, 1) : v \in G\}$ and for any edge $(u, v)$ in $G$ it has edges $((u, 0), (v, 1))$ and $((u, 1), (v, 0))$. Note that this is the tensor product of $G$ with $K_2$.

The extended bipartite double of $G$ is the bipartite double of $G$ after added all edges $((v, 0), (v, 1))$ for all vertices $v$.

INPUT:

- extended – boolean (default: False); Whether to return the extended bipartite double, or only the bipartite double (default)

OUTPUT:

A graph; self is left untouched.

EXAMPLES:

```python
sage: G = graphs.PetersenGraph()
sage: H = G.bipartite_double()
sage: G == graphs.PetersenGraph() # G is left invariant
True
sage: H.order() == 2 * G.order()
True
sage: H.size() == 2 * G.size()
True
sage: H.is_bipartite()
True
sage: H.bipartite_sets() == (set([v, 0 for v in G]), # not implemented
... set([v, 1 for v in G]))
True
sage: H.is_isomorphic(G.tensor_product(graphs.CompleteGraph(2)))
True
```
Behavior with disconnected graphs:

```python
sage: G1 = graphs.PetersenGraph()
sage: G2 = graphs.HoffmanGraph()
sage: G = G1.disjoint_union(G2)
sage: H = G.bipartite_double()
sage: H1 = G1.bipartite_double()
sage: H2 = G2.bipartite_double()
sage: H.is_isomorphic(H1.disjoint_union(H2))
True
```

See also:


**bipartite_sets()**

Return \((X, Y)\) where \(X\) and \(Y\) are the nodes in each bipartite set of graph \(G\).

Fails with an error if graph is not bipartite.

**EXAMPLES:**

```python
sage: graphs.CycleGraph(4).bipartite_sets()
({0, 2}, {1, 3})
sage: graphs.CycleGraph(5).bipartite_sets()
Traceback (most recent call last):
 ...
RuntimeError: Graph is not bipartite.
```

```python
>>> from sage.all import *

>>> graphs.CycleGraph(Integer(4)).bipartite_sets()
({0, 2}, {1, 3})
>>> graphs.CycleGraph(Integer(5)).bipartite_sets()
Traceback (most recent call last):
 ...
RuntimeError: Graph is not bipartite.
```

**bounded_outdegree_orientation**(bound, solver, verbose=None, integrality_tolerance=False)

Computes an orientation of \(self\) such that every vertex \(v\) has out-degree less than \(b(v)\)

**INPUT:**

- **bound** – Maximum bound on the out-degree. Can be of three different types:
Graph Theory, Release 10.4

• An integer $k$. In this case, computes an orientation whose maximum out-degree is less than $k$.

• A dictionary associating to each vertex its associated maximum out-degree.

• A function associating to each vertex its associated maximum out-degree.

• $\text{solver} -$ string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method $\text{solve}$ of the class $\text{MixedIntegerLinearProgram}$.

• $\text{verbose} -$ integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

• $\text{integrality\_tolerance} -$ float; parameter for use with MILP solvers over an inexact base ring; see $\text{MixedIntegerLinearProgram.get\_values()}$.

OUTPUT:

A DiGraph representing the orientation if it exists. A $\text{ValueError}$ exception is raised otherwise.

ALGORITHM:

The problem is solved through a maximum flow:

Given a graph $G$, we create a DiGraph $D$ defined on $E(G) \cup V(G) \cup \{s, t\}$. We then link $s$ to all of $V(G)$ (these edges having a capacity equal to the bound associated to each element of $V(G)$), and all the elements of $E(G)$ to $t$. We then link each $v \in V(G)$ to each of its incident edges in $G$. A maximum integer flow of value $|E(G)|$ corresponds to an admissible orientation of $G$. Otherwise, none exists.

EXAMPLES:

There is always an orientation of a graph $G$ such that a vertex $v$ has out-degree at most $\lceil \frac{\delta(v)}{2} \rceil$:

```
sage: g = graphs.RandomGNP(40, .4)
sage: b = lambda v: integer_ceil(g.degree(v)/2)
sage: D = g.bounded_outdegree_orientation(b)
sage: all(D.out_degree(v) <= b(v) for v in g)
True
```

Chvatal's graph, being 4-regular, can be oriented in such a way that its maximum out-degree is 2:

```
sage: g = graphs.ChvatalGraph()
sage: D = g.bounded_outdegree_orientation(2)
sage: max(D.out_degree())
2
```

For any graph $G$, it is possible to compute an orientation such that the maximum out-degree is at most the maximum average degree of $G$ divided by 2. Anything less, though, is impossible.
Graph Theory, Release 10.4

sage: g = graphs.RandomGNP(40, .4)  # needs sage.numerical.mip
sage: mad = g.maximum_average_degree()  # needs sage.numerical.mip

Hence this is possible

```python
sage: d = g.bounded_outdegree_orientation(integer_ceil(mad/2)) # needs sage.numerical.mip
```

While this is not:

```python
sage: try:
 g.bounded_outdegree_orientation(integer_ceil(mad/2-1))
 print("Error")
except ValueError:
 pass
```

bridges (G, labels=True)

Return an iterator over the bridges (or cut edges).

A bridge is an edge whose deletion disconnects the undirected graph. A disconnected graph has no bridge.

INPUT:

• labels – boolean (default: True); if False, each bridge is a tuple $(u, v)$ of vertices

EXAMPLES:

```python
sage: from sage.graphs.connectivity import bridges
sage: from sage.graphs.connectivity import is_connected
sage: g = 2 * graphs.PetersenGraph()
sage: g.add_edge(1, 10)
sage: is_connected(g)
True
sage: list(bridges(g))
[(1, 10, None)]
sage: list(g.bridges())
[(1, 10, None)]
```

(continues on next page)
Every edge of a tree is a bridge:

```python
sage: g = graphs.RandomTree(100)
sage: sum(1 for _ in g.bridges()) == 99
True
```

```
>>> from sage.all import *
>>> g = graphs.RandomTree(Integer(100))
>>> sum(Integer(1) for _ in g.bridges()) == Integer(99)
True
```

center (by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return the set of vertices in the center of the graph.

The center is the set of vertices whose eccentricity is equal to the radius of the graph, i.e., achieving the minimum eccentricity.

For more information and examples on how to use input variables, see `shortest_paths()` and `eccentricity()`

INPUT:

- by_weight – boolean (default: False); if True, edge weights are taken into account; if False, all edges have weight 1
- algorithm – string (default: None); see method `eccentricity()` for the list of available algorithms
- weight_function – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\) as a weight, if \(l\) is not None, else 1 as a weight.
- check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge

EXAMPLES:

Is Central African Republic in the center of Africa in graph theoretic sense? Yes:

```python
sage: A = graphs.AfricaMap(continental=True)
sage: sorted(A.center())
['Cameroon', 'Central Africa']
```

```python
>>> from sage.all import *
>>> A = graphs.AfricaMap(continental=True)
>>> sorted(A.center())
['Cameroon', 'Central Africa']
```

Some other graphs. Center can be the whole graph:

```python
sage: G = graphs.DiamondGraph()
sage: G.center()
```

(continues on next page)
centrality_degree \( (v=None) \)

Return the degree centrality of a vertex.

The degree centrality of a vertex \( v \) is its degree, divided by \( |V(G)| - 1 \). For more information, see the Wikipedia article Centrality.

INPUT:

* \( v \) – a vertex (default: None); set to None (default) to get a dictionary associating each vertex with its centrality degree.

See also:

* centrality_closeness()
* centrality_betweenness()

EXAMPLES:

\[
sage: \{ \text{graphs.ChvatalGraph()}.centrality_degree() \}
\]

\[
sage: D = \text{graphs.DiamondGraph()}
\]

\[
sage: D.centrality_degree()
\{0: 2/3, 1: 1, 2: 1, 3: 2/3 \}
\]

\[
sage: D.centrality_degree(v=1)
1
\]

\[
\text{from sage.all import *}
\] 487 1.2. Undirected graphs
cheeger_constant (g)
Return the cheeger constant of the graph.

The Cheeger constant of a graph $G = (V, E)$ is the minimum of $|\partial S|/|\mathrm{Vol}(S)|$ where $\mathrm{Vol}(S)$ is the sum of degrees of element in $S$, $\partial S$ is the edge boundary of $S$ (number of edges with one end in $S$ and one end in $V \setminus S$) and the minimum is taken over all non-empty subsets $S$ of vertices so that $|\mathrm{Vol}(S)| \leq |E|$.

See also:
Alternative but similar quantities can be obtained via the methods edge_isoperimetric_number() and vertex_isoperimetric_number().

EXAMPLES:

sage: graphs.PetersenGraph().cheeger_constant()
1/3

>>> from sage.all import *
>>> graphs.PetersenGraph().cheeger_constant()
1/3

The Cheeger constant of a cycle on $n$ vertices is $1/[n/2]$:

sage: [graphs.CycleGraph(k).cheeger_constant() for k in range(2,10)]
[1, 1, 1/2, 1/2, 1/3, 1/3, 1/4, 1/4]

>>> from sage.all import *
>>> [graphs.CycleGraph(k).cheeger_constant() for k in range(Integer(2),Integer(10))]
[1, 1, 1/2, 1/2, 1/3, 1/3, 1/4, 1/4]

The Cheeger constant of a complete graph on $n$ vertices is $[n/2]/(n - 1)$:

sage: [graphs.CompleteGraph(k).cheeger_constant() for k in range(2,10)]
[1, 1, 2/3, 3/4, 3/5, 2/3, 4/7, 5/8]

>>> from sage.all import *
>>> [graphs.CompleteGraph(k).cheeger_constant() for k in range(Integer(2),Integer(10))]
[1, 1, 2/3, 3/4, 3/5, 2/3, 4/7, 5/8]

For complete bipartite:

sage: [graphs.CompleteBipartiteGraph(i,j).cheeger_constant() for i in range(2,8) for j in range(2, i)]
[3/5, 1/2, 3/5, 5/9, 4/7, 5/9, 1/2, 5/9, 1/2, 5/9]

>>> from sage.all import *
>>> [graphs.CompleteBipartiteGraph(i,j).cheeger_constant() for i in range(Integer(2),Integer(8)) for j in range(Integer(2), i)]
[3/5, 1/2, 3/5, 5/9, 4/7, 5/9, 1/2, 5/9, 1/2, 5/9]

More examples:

sage: G = Graph([(0, 1), (0, 3), (0, 8), (1, 4), (1, 6), (2, 4), (2, 7), (2, 9),
.....:          (3, 6), (3, 8), (4, 9), (5, 6), (5, 7), (5, 8), (7, 9)])

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

sage: G.cheeger_constant()
1/6

sage: G = Graph([(0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (3, 4), (3, 5)])
sage: G.cheeger_constant()
1/2

sage: Graph([[1,2,3,4],[[1,2],[3,4]]]).cheeger_constant()
0

>>> from sage.all import *

>>> G = Graph([(Integer(0), Integer(1)), (Integer(0), Integer(3)), (Integer(0), Integer(8)), (Integer(1), Integer(4)), (Integer(1), Integer(6)), (Integer(2), Integer(4)), (Integer(2), Integer(7)), (Integer(2), Integer(9)), (Integer(3), Integer(6)), (Integer(3), Integer(8)), (Integer(4), Integer(9)), (Integer(5), Integer(6)), (Integer(5), Integer(7)), (Integer(5), Integer(8)), (Integer(7), Integer(9))])

>>> G.cheeger_constant()
1/6

>>> G = Graph([(Integer(0), Integer(1)), (Integer(0), Integer(2)), (Integer(1), Integer(2)), (Integer(1), Integer(3)), (Integer(1), Integer(4)), (Integer(1), Integer(5)), (Integer(2), Integer(3)), (Integer(3), Integer(4)), (Integer(3), Integer(5))])

>>> G.cheeger_constant()
1/2

>>> Graph([[Integer(1),Integer(2),Integer(3),Integer(4)],[[Integer(1), Integer(2)],[Integer(3), Integer(4)]]].cheeger_constant()
0

\textbf{chromatic_index} (\texttt{solver}, \texttt{verbose=\texttt{None}}, \texttt{integrality\_tolerance=0})

Return the chromatic index of the graph.

The chromatic index is the minimal number of colors needed to properly color the edges of the graph.

\textbf{INPUT:}

- \texttt{solver} -- string (default: \texttt{None}); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to \texttt{None}, the default one is used. For more information on MILP solvers and which default solver is used, see the method \texttt{solve} of the class \texttt{MixedIntegerLinearProgram}.

- \texttt{verbose} -- integer (default: \texttt{0}); sets the level of verbosity. Set to \texttt{0} by default, which means quiet.

- \texttt{integrality\_tolerance} -- float; parameter for use with MILP solvers over an inexact base ring; see \texttt{MixedIntegerLinearProgram.get_values()}.  

This method is a frontend for method \texttt{sage.graphs.graph_coloring.edge\_coloring()} that uses a mixed integer-linear programming formulation to compute the chromatic index.

\textbf{See also:}

- Wikipedia article \texttt{Edge\_coloring} for further details on edge coloring

- \texttt{sage.graphs.graph_coloring.edge\_coloring()}

- \texttt{fractional\_chromatic\_index()}

1.2. Undirected graphs 489
• `chromatic_number()`

**EXAMPLES:**

The clique $K_n$ has chromatic index $n$ when $n$ is odd and $n - 1$ when $n$ is even:

```python
sage: graphs.CompleteGraph(4).chromatic_index()
sage: graphs.CompleteGraph(5).chromatic_index()
sage: graphs.CompleteGraph(6).chromatic_index()
```

```python
>>> from sage.all import *
>>> graphs.CompleteGraph(Integer(4)).chromatic_index()
>>> graphs.CompleteGraph(Integer(5)).chromatic_index()
>>> graphs.CompleteGraph(Integer(6)).chromatic_index()
```

The path $P_n$ with $n \geq 2$ has chromatic index 2:

```python
sage: graphs.PathGraph(5).chromatic_index() # needs sage.numerical.mip
2
```

```python
>>> from sage.all import *
>>> graphs.PathGraph(Integer(5)).chromatic_index() # needs sage.numerical.mip
2
```

The windmill graph with parameters $k, n$ has chromatic index $(k - 1)n$:

```python
sage: k,n = 3,4
sage: G = graphs.WindmillGraph(k,n)
sage: G.chromatic_index() == (k-1)*n # needs sage.numerical.mip
True
```

```python
>>> from sage.all import *
>>> k,n = Integer(3),Integer(4)
>>> G = graphs.WindmillGraph(k,n)
>>> G.chromatic_index() == (k-Integer(1))*n # needs sage.numerical.mip
True
```

**chromatic_number**(algorithm, solver='DLX', verbose=None, integrality_tolerance=0)

Return the minimal number of colors needed to color the vertices of the graph.

**INPUT:**

• `algorithm` – string (default: "DLX"); one of the following algorithms:
  - "DLX" (default): the chromatic number is computed using the dancing link algorithm. It is inefficient speedwise to compute the chromatic number through the dancing link algorithm because this algorithm computes all the possible colorings to check that one exists.
– "CP": the chromatic number is computed using the coefficients of the chromatic polynomial. Again, this method is inefficient in terms of speed and it only useful for small graphs.

– "MILP": the chromatic number is computed using a mixed integer linear program. The performance of this implementation is affected by whether optional MILP solvers have been installed (see the MILP module, or Sage’s tutorial on Linear Programming).

– "parallel": all the above algorithms are executed in parallel and the result is returned as soon as one algorithm ends. Observe that the speed of the above algorithms depends on the size and structure of the graph.

• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \texttt{solve} of the class \texttt{MixedIntegerLinearProgram}.

• verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see \texttt{MixedIntegerLinearProgram.get_values()}.

See also:

For more functions related to graph coloring, see the module \texttt{sage.graphs.graph_coloring}.

EXAMPLES:

```python
sage: G = Graph({0: [1, 2, 3], 1: [2]})
sage: G.chromatic_number(algorithm="DLX")
3
sage: G.chromatic_number(algorithm="MILP")
3
sage: G.chromatic_number(algorithm="CP") # needs sage.libs.flint
3
sage: G.chromatic_number(algorithm="parallel")
3
```

```python
>>> from sage.all import *
>>> G = Graph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(1):...
屺Integer(2)]})
>>> G.chromatic_number(algorithm="DLX")
3
>>> G.chromatic_number(algorithm="MILP")
3
>>> G.chromatic_number(algorithm="CP") # needs sage.libs.flint
3
>>> G.chromatic_number(algorithm="parallel")
3
```

A bipartite graph has (by definition) chromatic number 2:

```python
sage: graphs.RandomBipartite(50,50,0.7).chromatic_number()
needs numpy
2
```

```python
>>> from sage.all import *
>>> graphs.RandomBipartite(Integer(50),Integer(50),RealNumber('0.7')).chromatic_number() # needs numpy
2
```
A complete multipartite graph with \( k \) parts has chromatic number \( k \):

```
sage: all(graphs.CompleteMultipartiteGraph([5]*i).chromatic_number() == i
....: for i in range(2, 5))
True
```

The complete graph has the largest chromatic number from all the graphs of order \( n \). Namely its chromatic number is \( n \):

```
sage: all(graphs.CompleteGraph(i).chromatic_number() == i
for i in range(10))
True
```

The Kneser graph with parameters \((n, 2)\) for \( n > 3 \) has chromatic number \( n - 2 \):

```
sage: all(graphs.KneserGraph(i,2).chromatic_number() == i-2
for i in range(4, 6))
True
```

The Flower Snark graph has chromatic index 4 hence its line graph has chromatic number 4:

```
sage: graphs.FlowerSnark().line_graph().chromatic_number()
4
```

```
chromatic_polynomial (G, return_tree_basis=False, algorithm='C', cache=None)
```

Compute the chromatic polynomial of the graph \( G \).

The algorithm used is a recursive one, based on the following observations of Read:

- The chromatic polynomial of a tree on \( n \) vertices is \( x(x-1)^{n-1} \).
- If \( e \) is an edge of \( G \), \( G' \) is the result of deleting the edge \( e \), and \( G'' \) is the result of contracting \( e \), then the chromatic polynomial of \( G \) is equal to that of \( G' \) minus that of \( G'' \).

**INPUT:**

- \( G \) – a Sage graph
- \( return_tree_basis \) – boolean (default: False); not used yet
• **algorithm** – string (default: "C"); the algorithm to use among
  - "C", an implementation in C by Robert Miller and Gordon Royle.
  - "Python", an implementation in Python using caching to avoid recomputing the chromatic polynomial of a graph that has already been seen. This seems faster on some dense graphs.

• **cache** – dictionary (default: None); this parameter is used only for algorithm "Python". It is a dictionary keyed by canonical labelings of graphs and used to cache the chromatic polynomials of the graphs generated by the algorithm. In other words, it avoids computing twice the chromatic polynomial of isometric graphs. One will be created automatically if not provided.

**EXAMPLES:**

```python
sage: graphs.CycleGraph(4).chromatic_polynomial()
x^4 - 4*x^3 + 6*x^2 - 3*x
sage: graphs.CycleGraph(3).chromatic_polynomial()
x^3 - 3*x^2 + 2*x
sage: graphs.CubeGraph(3).chromatic_polynomial()
x^8 - 12*x^7 + 66*x^6 - 214*x^5 + 441*x^4 - 572*x^3 + 423*x^2 - 133*x
sage: graphs.PetersenGraph().chromatic_polynomial()
x^10 - 15*x^9 + 105*x^8 - 455*x^7 + 1353*x^6 - 2861*x^5 + 4275*x^4 - 4305*x^3 + 2606*x^2 - 704*x
sage: graphs.CompleteBipartiteGraph(3,3).chromatic_polynomial()
x^6 - 9*x^5 + 36*x^4 - 75*x^3 + 78*x^2 - 31*x
sage: for i in range(2,7):
 : graphs.CompleteGraph(i).chromatic_polynomial().factor()
 (x - 1) * x
 (x - 2) * (x - 1) * x
 (x - 3) * (x - 2) * (x - 1) * x
 (x - 4) * (x - 3) * (x - 2) * (x - 1) * x
 (x - 5) * (x - 4) * (x - 3) * (x - 2) * (x - 1) * x
sage: graphs.CycleGraph(5).chromatic_polynomial().factor()
(x - 2) * (x - 1) * x * (x^2 - 2*x + 2)
```

> >>> from sage.all import *
> >>> graphs.CycleGraph(Integer(4)).chromatic_polynomial()
x^4 - 4*x^3 + 6*x^2 - 3*x
> >>> graphs.CycleGraph(Integer(3)).chromatic_polynomial()
x^3 - 3*x^2 + 2*x
> >>> graphs.CubeGraph(Integer(3)).chromatic_polynomial()
x^8 - 12*x^7 + 66*x^6 - 214*x^5 + 441*x^4 - 572*x^3 + 423*x^2 - 133*x
> >>> graphs.PetersenGraph().chromatic_polynomial()
x^10 - 15*x^9 + 105*x^8 - 455*x^7 + 1353*x^6 - 2861*x^5 + 4275*x^4 - 4305*x^3 + 2606*x^2 - 704*x
> >>> graphs.CompleteBipartiteGraph(Integer(3),Integer(3)).chromatic_polynomial()
```
```
graphs.CompleteGraph(i).chromatic_polynomial().factor()
(x - 1) * x
(x - 2) * (x - 1) * x
(x - 3) * (x - 2) * (x - 1) * x
(x - 4) * (x - 3) * (x - 2) * (x - 1) * x
(x - 5) * (x - 4) * (x - 3) * (x - 2) * (x - 1) * x

>>> graphs.CycleGraph(Integer(5)).chromatic_polynomial().factor()
(x - 2) * (x - 1) * x * (x^2 - 2*x + 2)

>>> graphs.OctahedralGraph().chromatic_polynomial().factor()
(x - 2) * (x - 1) * x * (x^3 - 9*x^2 + 29*x - 32)

>>> graphs.WheelGraph(Integer(5)).chromatic_polynomial().factor()
(x - 2) * (x - 1) * x * (x^2 - 5*x + 7)

>>> graphs.WheelGraph(Integer(6)).chromatic_polynomial().factor()
(x - 3) * (x - 2) * (x - 1) * x * (x^2 - 4*x + 5)

>>> __tmp__=var("x"); C = symbolic_expression(graphs.LCFGraph(Integer(24),
[Integer(12),Integer(7),-Integer(7)], Integer(8)).chromatic_polynomial() ) .
function(x)
# long time (6s on sage.math, 2011)

>>> C(Integer(2)) # long time
0

By definition, the chromatic number of a graph G is the least integer k such that the chromatic polynomial of
G is strictly positive at k:

sage: G = graphs.PetersenGraph()
sage: P = G.chromatic_polynomial()
sage: min(i for i in range(11) if P(i) > 0) == G.chromatic_number()
True

sage: G = graphs.RandomGNP(10,0.7)
sage: P = G.chromatic_polynomial()
sage: min(i for i in range(11) if P(i) > 0) == G.chromatic_number()
True

>>> from sage.all import *

>>> G = graphs.PetersenGraph()
>>> P = G.chromatic_polynomial()
>>> min(i for i in range(Integer(11)) if P(i) > Integer(0)) == G.chromatic_
number()
True

>>> G = graphs.RandomGNP(Integer(10),RealNumber('0.7'))
>>> P = G.chromatic_polynomial()
>>> min(i for i in range(Integer(11)) if P(i) > Integer(0)) == G.chromatic_
number()
True

Check that algorithms "C" and "Python" return the same results:

sage: G = graphs.RandomGNP(8, randint(1, 9)*0.1)
sage: c = G.chromatic_polynomial(algorithm='C')
sage: p = G.chromatic_polynomial(algorithm='Python')
sage: c == p
True

>>> from sage.all import *

>>> G = graphs.RandomGNP(Integer(8), randint(Integer(1), Integer(7))orum, Integer(1))
Graph Theory, Release 10.4

--> Integer(9)) * RealNumber('0.1'))
>>> c = G.chromatic_polynomial(algorithm='C')
>>> p = G.chromatic_polynomial(algorithm='Python')
>>> c == p
True

chromatic_quasisymmetric_function (t=None, R=None)

Return the chromatic quasisymmetric function of self.

Let \( G \) be a graph whose vertex set is totally ordered. The chromatic quasisymmetric function \( X_G(t) \) was first described in [SW2012]. We use the equivalent definition given in [BC2018]:

\[
X_G(t) = \sum_{\sigma=\{\sigma_1, \ldots, \sigma_n\}} t^{asc(\sigma)} M_{|\sigma_1|, \ldots, |\sigma_n|},
\]

where we sum over all ordered set partitions of the vertex set of \( G \) such that each block \( \sigma_i \) is an independent (i.e., stable) set of \( G \), and where \( asc(\sigma) \) denotes the number of edges \( \{u, v\} \) of \( G \) such that \( u < v \) and \( v \) appears in a later part of \( \sigma \) than \( u \).

INPUT:

• \( t \) – (optional) the parameter \( t \); uses the variable \( t \) in \( \mathbb{Z}[t] \) by default
• \( R \) – (optional) the base ring for the quasisymmetric functions; uses the parent of \( t \) by default

EXAMPLES:

```python
sage: # needs sage.combinat sage.modules
sage: G = Graph([[1, 2, 3], [[1, 3], [2, 3]]])
```

```python
sage: G.chromatic_quasisymmetric_function()
(2*t^2+2*t+2)*M[1, 1, 1] + M[1, 2] + t^2*M[2, 1]
```

```python
sage: G = Graph([[(Integer(1), Integer(2), Integer(3)], [(Integer(1), Integer(3)], [(Integer(2), Integer(3)]]])
```

```python
sage: G.chromatic_quasisymmetric_function()
(2*t^2+2*t+2)*M[1, 1, 1] + M[1, 2] + t^2*M[2, 1]
```

```python
sage: G = graphs.PathGraph(4)
```

```python
sage: XG = G.chromatic_quasisymmetric_function(); XG
(t^3+11*t^2+11*t+1)*M[1, 1, 1, 1] + (3*t^2+3*t)*M[1, 2, 1] + (3*t^2+3*t)*M[2, 1, 1] + (t^2+t)*M[2, 2]
```

```python
sage: G = graphs.CompleteGraph(4)
```

```python
sage: G.chromatic_quasisymmetric_function()
(t^6+3*t^5+5*t^4+6*t^3+5*t^2+3*t+1)*M[1, 1, 1, 1]
```

```python
sage: from sage.all import *
```

```python
sage: G = Graph([[(Integer(1), Integer(2), Integer(3)], [[Integer(1), Integer(3)], [(Integer(2), Integer(3))]])
```

```python
sage: G.chromatic_quasisymmetric_function()
(2*t^2+2*t+2)*M[1, 1, 1] + M[1, 2] + t^2*M[2, 1]
```

```python
sage: G = graphs.PathGraph(Integer(4))
```

```python
sage: XG = G.chromatic_quasisymmetric_function(); XG
(t^3+11*t^2+11*t+1)*M[1, 1, 1, 1] + (3*t^2+3*t)*M[1, 2, 1] + (3*t^2+3*t)*M[2, 1, 1] + (t^2+t)*M[2, 2]
```

```python
sage: XG.to_symmetric_function()
(t^3+11*t^2+11*t+1)*m[1, 1, 1, 1] + (3*t^2+3*t)*m[2, 1, 1] + (t^2+t)*m[2, 2]
```

(continues on next page)
>>> G = graphs.CompleteGraph(Integer(4))
>>> G.chromatic_quasisymmetric_function()
\( (t^6+3t^5+5t^4+6t^3+5t^2+3t+1) * M[1, 1, 1, 1] \)

Not all chromatic quasisymmetric functions are symmetric:

```
>>> G = Graph([[1,2], [1,5], [3,4], [3,5]])
>>> G.chromatic_quasisymmetric_function().is_symmetric()
False
```

```
>>> from sage.all import *
```

```
>>> G = Graph([Integer(1), Integer(2)], [Integer(4)], [Integer(3), Integer(4), [Integer(3), Integer(5)]])
>>> G.chromatic_quasisymmetric_function().is_symmetric()
False
```

We check that at \( t = 1 \), we recover the usual chromatic symmetric function:

```
sage: p = SymmetricFunctions(QQ).p()

>>> G = graphs.CycleGraph(5)
```

```
120*M[1, 1, 1, 1, 1] + 30*M[1, 1, 1, 2] + 30*M[1, 1, 2, 1] + 10*M[1, 2, 1, 1] + 10*M[2, 1, 1, 1] + 10*M[2, 1, 2] + 10*M[2, 2, 1]
```

```
sage: p(XG.to_symmetric_function())
```

```
```

```
```


```python
>>> G = graphs.ClawGraph()
>>> XG = G.chromatic_quasisymmetric_function(t=Integer(1)); XG
24*M[1, 1, 1, 1] + 6*M[1, 1, 2] + 6*M[2, 1, 1] + M[3, 1]

>>> p(XG.to_symmetric_function())
```

**chromatic_symmetric_function** *(R=None)*

Return the chromatic symmetric function of `self`.

Let $G$ be a graph. The chromatic symmetric function $X_G$ was described in [Sta1995], specifically Theorem 2.5 states that

$$X_G = \sum_{F \subseteq E(G)} (-1)^{|F|} p_{\lambda(F)},$$

where $\lambda(F)$ is the partition of the sizes of the connected components of the subgraph induced by the edges $F$ and $p_\mu$ is the powersum symmetric function.

**INPUT:**

- `R` – (optional) the base ring for the symmetric functions; this uses `Z` by default

**ALGORITHM:**

We traverse a binary tree whose leaves correspond to subsets of edges, and whose internal vertices at depth $d$ correspond to a choice of whether to include the $d$-th edge in a given subset. The components of the induced subgraph are incrementally updated using a disjoint-set forest. If the next edge would introduce a cycle to the subset, we prune the branch as the terms produced by the two subtrees cancel in this case.

**EXAMPLES:**

```python
sage: s = SymmetricFunctions(ZZ).s()

sage: G = graphs.CycleGraph(5)
sage: XG = G.chromatic_symmetric_function(); XG

sage: s(XG)
30*s[1, 1, 1, 1, 1] + 10*s[2, 1, 1, 1] + 10*s[2, 2, 1]
```

Not all graphs have a positive Schur expansion:
We show that given a triangle \( \{e_1, e_2, e_3\} \), we have \( X_G = X_{G-e_1} + X_{G-e_2} - X_{G-e_1-e_2} \):

\[
\begin{align*}
sage: & \text{G = graphs.ClawGraph() } \\
sage: & \text{XG = G.chromatic_symmetric_function(); XG} \\
& \text{# needs sage.combinat sage.modules} \\
sage: & \text{s(XG)} \\
& \text{# needs sage.combinat sage.modules} \\
8*s[1, 1, 1, 1] + 5*s[2, 1, 1] - s[2, 2] + s[3, 1] \\
\end{align*}
\]

\[
\begin{align*}
\text{from sage.all import *} \\
\text{G = graphs.ClawGraph()} \\
\text{XG = G.chromatic_symmetric_function(); XG} \\
& \text{# needs sage.combinat sage.modules} \\
\text{s(XG)} \\
& \text{# needs sage.combinat sage.modules} \\
8*s[1, 1, 1, 1] + 5*s[2, 1, 1] - s[2, 2] + s[3, 1] \\
\end{align*}
\]

\[
\begin{align*}
\text{from sage.all import *} \\
\text{# needs sage.combinat sage.modules} \\
\text{G = Graph([[1,2], [1,3], [2,3]])} \\
\text{XG = G.chromatic_symmetric_function()} \\
\text{G1 = copy(G)} \\
\text{G1.delete_edge([1,2])} \\
\text{XG1 = G1.chromatic_symmetric_function()} \\
\text{G2 = copy(G)} \\
\text{G2.delete_edge([1,3])} \\
\text{XG2 = G2.chromatic_symmetric_function()} \\
\text{G3 = copy(G1)} \\
\text{G3.delete_edge([1,3])} \\
\text{XG3 = G3.chromatic_symmetric_function()} \\
\text{XG == XG1 + XG2 - XG3} \\
\text{True} \\
\end{align*}
\]

\[
\begin{align*}
\text{from sage.all import *} \\
\text{# needs sage.combinat sage.modules} \\
\text{G = Graph([[1,2], [1,3], [2,3]])} \\
\text{XG = G.chromatic_symmetric_function()} \\
\text{G1 = copy(G)} \\
\text{G1.delete_edge([1,2])} \\
\text{XG1 = G1.chromatic_symmetric_function()} \\
\text{G2 = copy(G)} \\
\text{G2.delete_edge([1,3])} \\
\text{XG2 = G2.chromatic_symmetric_function()} \\
\text{G3 = copy(G1)} \\
\text{G3.delete_edge([1,3])} \\
\text{XG3 = G3.chromatic_symmetric_function()} \\
\text{XG == XG1 + XG2 - XG3} \\
\text{True} \\
\end{align*}
\]

cleave \((G, \text{cut_vertices=}_\text{None}, \text{virtual_edges=True}, \text{solver=}_\text{None}, \text{verbose=0}, \text{integrality_tolerance=}_0.001)\)

Return the connected subgraphs separated by the input vertex cut.

Given a connected (multi)graph \( G \) and a vertex cut \( X \), this method computes the list of subgraphs of \( G \) induced by each connected component \( c \) of \( G \setminus X \) plus \( X \), i.e., \( G[c \cup X] \).

INPUT:
• **G** – a Graph.

• **cut_vertices** – iterable container of vertices (default: None); a set of vertices representing a vertex cut of **G**. If no vertex cut is given, the method will compute one via a call to `vertex_connectivity()`.

• **virtual_edges** – boolean (default: True); whether to add virtual edges to the sides of the cut or not. A virtual edge is an edge between a pair of vertices of the cut that are not connected by an edge in **G**.

• **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

• **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

• **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

**OUTPUT:** A triple \((S, C, f)\), where

- \(S\) is a list of the graphs that are sides of the vertex cut.
- \(C\) is the graph of the cocycles. For each pair of vertices of the cut, if there exists an edge between them, \(C\) has one copy of each edge connecting them in \(G\) per sides of the cut plus one extra copy. Furthermore, when `virtual_edges == True`, if a pair of vertices of the cut is not connected by an edge in \(G\), then it has one virtual edge between them per sides of the cut.
- \(f\) is the complement of the subgraph of \(G\) induced by the vertex cut. Hence, its vertex set is the vertex cut, and its edge set is the set of virtual edges (i.e., edges between pairs of vertices of the cut that are not connected by an edge in \(G\)). When `virtual_edges == False`, the edge set is empty.

**EXAMPLES:**

If there is an edge between cut vertices:

```python
sage: from sage.graphs.connectivity import cleave
sage: G = Graph(2)
sage: for _ in range(3):
 : G.add_clique([0, 1, G.add_vertex(), G.add_vertex()])
 : S1, C1, f1 = cleave(G, cut_vertices=[0, 1])
 : [g.order() for g in S1]
 : [4, 4, 4]
 : C1.order(), C1.size() (2, 4)
 : f1.vertices(sort=True), f1.edges(sort=True) ([0, 1], [])
```

```python
>>> from sage.all import *
>>> from sage.graphs.connectivity import cleave

>>> G = Graph(Integer(2))
>>> for _ in range(Integer(3)):
... G.add_clique([Integer(0), Integer(1), G.add_vertex(), G.add_vertex()])
>>> S1, C1, f1 = cleave(G, cut_vertices=[Integer(0), Integer(1)])
>>> [g.order() for g in S1]
[4, 4, 4]
>>> C1.order(), C1.size() (2, 4)
>>> f1.vertices(sort=True), f1.edges(sort=True) ([0, 1], [])
```
If `virtual_edges == False` and there is an edge between cut vertices:

```python
sage: G.subgraph([0, 1]).complement() == Graph([[0, 1], []])
True
sage: S2, C2, f2 = cleave(G, cut_vertices=[0, 1], virtual_edges=False)
```

```python
sage: (S1 == S2, C1 == C2, f1 == f2)
(True, True, True)
```

If cut vertices doesn’t have edge between them:

```python
sage: G.delete_edge(0, 1)
```

```python
sage: S1, C1, f1 = cleave(G, cut_vertices=[0, 1])
sage: [g.order() for g in S1]
[4, 4, 4]
sage: C1.order(), C1.size()
(2, 3)
sage: f1.vertices(sort=True), f1.edges(sort=True)
([0, 1], [(0, 1, None)])
```

If `virtual_edges == False` and the cut vertices are not connected by an edge:

```python
sage: G.subgraph([0, 1]).complement() == Graph([[0, 1], []])
False
sage: S2, C2, f2 = cleave(G, cut_vertices=[0, 1], virtual_edges=False)
```

```python
sage: (S1 == S2, C1 == C2, f1 == f2)
(False, False, False)
```

(continues on next page)
If $G$ is a biconnected multigraph:

```python
sage: G = graphs.CompleteBipartiteGraph(2, 3)
sage: G.add_edge(2, 3)
sage: G.allow_multiple_edges(True)
sage: G.add_edges(G.edge_iterator())
sage: G.add_edges([(0, 1), (0, 1), (0, 1)])
sage: S, C, f = cleave(G, cut_vertices=[0, 1])
```

```python
>>> for g in S:
 print(g.edges(sort=True, labels=0))
[(0, 1), (0, 1), (0, 1), (0, 2), (0, 2), (0, 3), (0, 3), (1, 2), (1, 2), (1, 3), (1, 3), (2, 3), (2, 3)]
[(0, 1), (0, 1), (0, 1), (0, 4), (0, 4), (1, 4), (1, 4)]
```

clique_complex()

Return the clique complex of self.

This is the largest simplicial complex on the vertices of self whose 1-skeleton is self.

This is only makes sense for undirected simple graphs.

EXAMPLES:

```python
sage: g = Graph({0:[1,2], 1:[2], 4:[]})
sage: g.clique_complex()
Simplicial complex with vertex set (0, 1, 2, 4) and facets {(4,), (0, 1, 2)}
```

```python
sage: h = Graph({0:[1,2,3,4], 1:[2,3,4], 2:[3]})
sage: x = h.clique_complex()
sage: x
Simplicial complex with vertex set (0, 1, 2, 3, 4) and facets {(0, 1, 4), (0, 1, 2, 3)}
```

(continues on next page)
from sage.all import *

g = Graph({Integer(0):[Integer(1),Integer(2)],Integer(1):[Integer(2)],
           Integer(4):[]})
g.clique_complex()

h = Graph({Integer(0):[Integer(1),Integer(2),Integer(3),Integer(4)],
           Integer(1):[Integer(2),Integer(3),Integer(4)],
           Integer(2):[Integer(3)],Integer(3):[Integer(4)]})
x = h.clique_complex()

i = x.graph()
i==h
>>> True

x==i.clique_complex()
True

clique_maximum (algorithm, solver='Cliquer', verbose=None, integrality_tolerance=0)

Return the vertex set of a maximal order complete subgraph.

INPUT:

- **algorithm** – the algorithm to be used:
  - If algorithm = "Cliquer" (default), wraps the C program Cliquer [NO2003].
  - If algorithm = "MILP", the problem is solved through a Mixed Integer Linear Program. (see MixedIntegerLinearProgram)
  - If algorithm = "mcqd", uses the MCQD solver (http://www.sicmm.org/~konc/maxclique/).
    Note that the MCQD package must be installed.

- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

Parameters **solver** and **verbose** are used only when **algorithm**="MILP".

**Note:** Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an undirected graph.

**ALGORITHM:**

This function is based on Cliquer [NO2003].

**EXAMPLES:**
Using Cliquer (default):

```
sage: C = graphs.PetersenGraph()
sage: C.clique_maximum()
[7, 9]
sage: C = Graph('DJ{')
sage: C.clique_maximum()
[1, 2, 3, 4]
```

Through a Linear Program:

```
sage: len(C.clique_maximum(algorithm="MILP"))
4
>>> from sage.all import *
>>> C = graphs.PetersenGraph()
>>> C.clique_maximum()
[7, 9]
>>> C = Graph('DJ{')
>>> C.clique_maximum()
[1, 2, 3, 4]
```

**clique_number** *(algorithm, cliques='Cliquer', solver=None, verbose=None, integrality_tolerance=0)*

Return the order of the largest clique of the graph

This is also called as the clique number.

**Note:** Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an undirected graph.

**INPUT:**

- **algorithm** – the algorithm to be used:
  - If `algorithm = "Cliquer"`, wraps the C program Cliquer [NO2003].
  - If `algorithm = "networkx"`, uses the NetworkX’s implementation of the Bron and Kerbosch Algorithm [BK1973].
  - If `algorithm = "MILP"`, the problem is solved through a Mixed Integer Linear Program. (see MixedIntegerLinearProgram)
  - If `algorithm = "mcqd"`, uses the MCQD solver (http://insilab.org/maxclique/). Note that the MCQD package must be installed.
- **cliques** – an optional list of cliques that can be input if already computed. Ignored unless algorithm="networkx".
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class MixedIntegerLinearProgram.
- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

ALGORITHM:
This function is based on Clique [NO2003] and [BK1973].

EXAMPLES:

```python
sage: C = Graph('DJ{')
sage: C.clique_number()
4
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
sage: G.show(figsize=[2,2]) # needs sage.plot
sage: G.clique_number()
3
```

```python
>>> from sage.all import *

>>> C = Graph('DJ{')

>>> G = Graph({Integer(0):[Integer(1),Integer(2),Integer(3)],
 Integer(1):[Integer(2)],
 Integer(3):[Integer(0),Integer(1)]})

>>> G.show(figsize=[Integer(2),Integer(2)]) # needs sage.plot

>>> G.clique_number()
3
```

By definition the clique number of a complete graph is its order:

```python
sage: all(graphs.CompleteGraph(i).clique_number() == i for i in range(1,15))
True
```

```python
>>> from sage.all import *

>>> all(graphs.CompleteGraph(i).clique_number() == i for i in range(Integer(1),Integer(15)))
True
```

A non-empty graph without edges has a clique number of 1:

```python
sage: all((i*graphs.CompleteGraph(1)).clique_number() == 1 for i in range(1,15))
True
```

```python
>>> from sage.all import *

>>> all((i*graphs.CompleteGraph(Integer(1))).clique_number() == Integer(1) for i in range(Integer(1),Integer(15)))
True
```

A complete multipartite graph with k parts has clique number k:

```python
sage: all((i*graphs.CompleteMultipartiteGraph(i*[5])).clique_number() == i for i in range(1,6))
True
```
clique_polynomial\( (t=None) \)

Return the clique polynomial of self.

This is the polynomial where the coefficient of \( t^n \) is the number of cliques in the graph with \( n \) vertices. The constant term of the clique polynomial is always taken to be one.

EXAMPLES:

```python
sage: g = Graph()
sage: g.clique_polynomial()
1
sage: g = Graph({0:[1]})
sage: g.clique_polynomial()
t^2 + 2*t + 1
sage: g = graphs.CycleGraph(4)
sage: g.clique_polynomial()
4*t^2 + 4*t + 1
```

cliques_containing_vertex\( (\text{vertices}=None, \text{cliques}=None) \)

Return the cliques containing each vertex, represented as a dictionary of lists of lists, keyed by vertex.

Returns a single list if only one input vertex.

**Note:** Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an undirected graph.

**INPUT:**

- **vertices** – the vertices to inspect (default is entire graph)
- **cliques** – list of cliques (if already computed)

**EXAMPLES:**

```python
sage: # needs NetworkX
sage: C = Graph('DJ{')
sage: C.clique_polynomial()
1
sage: C = graphs.CycleGraph(Integer(4))
sage: C.clique_polynomial()
4*t^2 + 4*t + 1
```

(continues on next page)
3: [[1, 2, 3, 4]],
4: [[0, 4], [1, 2, 3, 4]]
sage: C.cliques_containing_vertex(4)
[[0, 4], [1, 2, 3, 4]]
sage: C.cliques_containing_vertex([0, 1])
{0: [[0, 4], 1: [[1, 2, 3, 4]]}
sage: E = C.cliques_maximal(); E
[[0, 4], [1, 2, 3, 4]]
sage: C.cliques_containing_vertex(cliques=E)
{0: [[0, 4]],
1: [[1, 2, 3, 4]],
2: [[1, 2, 3, 4]],
3: [[1, 2, 3, 4]],
4: [[0, 4], [1, 2, 3, 4]]}
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
sage: G.show(figsize=[2,2])
# needs sage.plot
sage: G.cliques_containing_vertex()
# needs networkx
{0: [[0, 1, 2], [0, 1, 3]],
1: [[0, 1, 2], [0, 1, 3]],
2: [[0, 1, 2]],
3: [[0, 1, 3]]}

```python
>>> from sage.all import *
>>> # needs networkx
>>> C = Graph('DJ{')
>>> C.cliques_containing_vertex()
{0: [[0, 4]],
1: [[1, 2, 3, 4]],
2: [[1, 2, 3, 4]],
3: [[1, 2, 3, 4]],
4: [[0, 4], [1, 2, 3, 4]]}
>>> C.cliques_containing_vertex(Integer(4))
{0: [[0, 4]],
1: [[1, 2, 3, 4]],
2: [[1, 2, 3, 4]],
3: [[1, 2, 3, 4]],
4: [[0, 4], [1, 2, 3, 4]]}
>>> C.cliques_containing_vertex(Integer(0), Integer(1))
{0: [[0, 4]], 1: [[1, 2, 3, 4]]}
>>> E = C.cliques_maximal(); E
[[0, 4], [1, 2, 3, 4]]
>>> C.cliques_containing_vertex(cliques=E)
{0: [[0, 4]],
1: [[1, 2, 3, 4]],
2: [[1, 2, 3, 4]],
3: [[1, 2, 3, 4]],
4: [[0, 4], [1, 2, 3, 4]]}
>>> G = Graph({Integer(0):[Integer(1),Integer(2),Integer(3)],...
 Integer(1):[Integer(2)], Integer(3):[Integer(0),Integer(1)]})
>>> G.show(figsize=[Integer(2),Integer(2)])
needs sage.plot
>>> G.cliques_containing_vertex()
needs networkx
{0: [[0, 1, 2], [0, 1, 3]],
1: [[0, 1, 2], [0, 1, 3]],
2: [[0, 1, 2]],
3: [[0, 1, 3]]}
```
Since each clique of a 2-dimensional grid corresponds to an edge, the number of cliques in which a vertex is involved equals its degree:

```sage
needs networkx
F = graphs.Grid2dGraph(2, 3)
d = F.cliques_containing_vertex()
all(F.degree(u) == len(cliques) for u,cliques in d.items())
True
d = F.cliques_containing_vertex(vertices=[(0, 1)])
list(d)
[(0, 1)]
sorted(sorted(x for x in L) for L in d[(0, 1)])
[[0, 0], [(0, 1), (0, 1)], [(0, 1), (0, 2)], [(0, 1), (1, 1)]
```

### cliques_get_clique_bipartite(**kwds)**

Return the vertex-clique bipartite graph of `self`.

In the returned bipartite graph, the left vertices are the vertices of `self` and the right vertices represent the maximal cliques of `self`. There is an edge from vertex `v` to clique `C` in the bipartite graph if and only if `v` belongs to `C`.

**Note:** Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an undirected graph.

### EXAMPLES:

```sage
CBG = graphs.ChvatalGraph().cliques_get_clique_bipartite(); CBG
Bipartite graph on 36 vertices
CBG.show(figsize=[2,2], vertex_size=20, vertex_labels=False) # needs sage.plot
G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
G.show(figsize=[2,2]) # needs sage.plot
G.cliques_get_clique_bipartite()
Bipartite graph on 6 vertices
G.cliques_get_clique_bipartite().show(figsize=[2,2]) # needs sage.plot
```

```python
from sage.all import *
CBG = graphs.ChvatalGraph().cliques_get_clique_bipartite(); CBG
Bipartite graph on 36 vertices
CBG.show(figsize=[Integer(2),Integer(2)], vertex_size=20, vertex_labels=False) # needs sage.plot
```
cliques_get_max_clique_graph()

Return the clique graph.

Vertices of the result are the maximal cliques of the graph, and edges of the result are between maximal cliques with common members in the original graph.

For more information, see the Wikipedia article Clique_graph.

Note: Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an undirected graph.

EXAMPLES:

```python
sage: MCG = graphs.ChvatalGraph().cliques_get_max_clique_graph(); MCG
Graph on 24 vertices
```

```python
sage: MCG.show(figsize=[2,2], vertex_size=20, vertex_labels=False) # needs sage.plot
```

```python
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
```

```python
sage: G.show(figsize=[2,2]) # needs sage.plot
```

```python
sage: G = Graph({Integer(0):[Integer(1), Integer(2), Integer(3)],...
˓→ Integer(1):[Integer(2)], Integer(3):[Integer(0), Integer(1)]})
```

```python
sage: G.show(figsize=[Integer(2),Integer(2)]) # needs sage.plot
```

cliques_maximal(algorithm='native')

Return the list of all maximal cliques.

Each clique is represented by a list of vertices. A clique is an induced complete subgraph, and a maximal clique is one not contained in a larger one.

INPUT:
• algorithm – can be set to "native" (default) to use Sage's own implementation, or to "NetworkX" to use NetworkX's implementation of the Bron and Kerbosch Algorithm [BK1973].

**Note:** This method sorts its output before returning it. If you prefer to save the extra time, you can call `sage.graphs.independent_sets.IndependentSets` directly.

**Note:** Sage's implementation of the enumeration of maximal independent sets is not much faster than NetworkX (expect a 2x speedup), which is surprising as it is written in Cython. This being said, the algorithm from NetworkX appears to be slightly different from this one, and that would be a good thing to explore if one wants to improve the implementation.

**ALGORITHM:**

This function is based on NetworkX's implementation of the Bron and Kerbosch Algorithm [BK1973].

**EXAMPLES:**

```python
sage: graphs.ChvatalGraph().cliques_maximal()
[[0, 1], [0, 4], [0, 6], [0, 9], [1, 2], [1, 5], [1, 7], [2, 3],
 [2, 6], [2, 8], [3, 4], [3, 7], [3, 9], [4, 5], [4, 8], [5, 10],
 [5, 11], [6, 10], [6, 11], [7, 8], [7, 11], [8, 10], [9, 10], [9, 11]]
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
sage: G.show(figsize=[2, 2]) # needs sage.plot
sage: G.cliques_maximal()
[[0, 1], [0, 2], [0, 1, 3]]
sage: C = graphs.PetersenGraph()
sage: C.cliques_maximal()
[[0, 1], [0, 4], [0, 5], [1, 2], [1, 6], [2, 3], [2, 7], [3, 4],
 [3, 8], [4, 9], [5, 7], [5, 8], [6, 8], [6, 9], [7, 9]]
sage: C = Graph('DJ')
sage: C.cliques_maximal()
[[0, 4], [1, 2, 3, 4]]

>>> from sage.all import *
>>> graphs.ChvatalGraph().cliques_maximal()
[[0, 1], [0, 4], [0, 6], [0, 9], [1, 2], [1, 5], [1, 7], [2, 3],
 [2, 6], [2, 8], [3, 4], [3, 7], [3, 9], [4, 5], [4, 8], [5, 10],
 [5, 11], [6, 10], [6, 11], [7, 8], [7, 11], [8, 10], [9, 10], [9, 11]]
>>> G = Graph({0:1,1:2,2:3})
>>> G.show(figsize=[2, 2]) # needs sage.plot
>>> G.cliques_maximal()
[[0, 1, 2], [0, 1, 3]]
>>> C = graphs.PetersenGraph()
>>> C.cliques_maximal()
[[0, 1], [0, 4], [0, 5], [1, 2], [1, 6], [2, 3], [2, 7], [3, 4],
 [3, 8], [4, 9], [5, 7], [5, 8], [6, 8], [6, 9], [7, 9]]
>>> C = Graph('DJ')
>>> C.cliques_maximal()
[[0, 4], [1, 2, 3, 4]]
```

Comparing the two implementations:
cliques_maximum(graph)

Return the vertex sets of ALL the maximum complete subgraphs.

Returns the list of all maximum cliques, with each clique represented by a list of vertices. A clique is an induced complete subgraph, and a maximum clique is one of maximal order.

Note: Currently only implemented for undirected graphs. Use to_undirected() to convert a digraph to an undirected graph.

ALGORITHM:

This function is based on Cliquer [NO2003].

EXAMPLES:

sage: graphs.ChvatalGraph().cliques_maximum()  # indirect doctest
[[0, 1], [0, 4], [0, 6], [0, 9], [1, 2], [1, 5], [1, 7], [2, 3],
 [2, 6], [2, 8], [3, 4], [3, 7], [3, 9], [4, 5], [4, 8], [5, 10],
 [5, 11], [6, 10], [6, 11], [7, 8], [7, 11], [8, 10], [9, 10], [9, 11]]
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
sage: G.show(figsize=[2,2])  # needs sage.plot
sage: G.cliques_maximum()
[[0, 1, 2], [0, 1, 3]]
sage: C = graphs.PetersenGraph()
sage: C.coloring()  # needed for C cliques
sage: C.cliques_maximum()
[[0, 1], [0, 5], [1, 2], [1, 6], [2, 3], [2, 7], [3, 4],
 [3, 8], [4, 9], [5, 7], [5, 8], [6, 8], [6, 9], [7, 9]]
sage: C = Graph('DJ{')
sage: C.cliques_maximum()
[[1, 2, 3, 4]]

sage: g = graphs.RandomGNP(20,.7)
sage: s1 = Set(map(Set, g.cliques_maximal(algorithm="NetworkX"))) # needs networkx
sage: s2 = Set(map(Set, g.cliques_maximal(algorithm="native")))
sage: s1 == s2 # needs networkx
True

...
cliques_number_of (vertices=None, cliques=None)

Return a dictionary of the number of maximal cliques containing each vertex, keyed by vertex.

This returns a single value if only one input vertex.

Note: Currently only implemented for undirected graphs. Use to_undirected to convert a digraph to an undirected graph.

INPUT:

• vertices – the vertices to inspect (default is entire graph)
• cliques – list of cliques (if already computed)

EXAMPLES:

```python
sage: C = Graph(DJ{})
```

```python
sage: C.cliques_number_of()
{0: 1, 1: 1, 2: 1, 3: 1, 4: 2}
```

```python
sage: E = C.cliques_maximal(); E
[[0, 4], [1, 2, 3, 4]]
```

```python
sage: C.cliques_number_of(cliques=E)
{0: 1, 1: 1, 2: 1, 3: 1, 4: 2}
```

```python
from sage.all import *
```

```python
C = Graph(DJ{})
```

```python
C.cliques_number_of()
{0: 1, 1: 1, 2: 1, 3: 1, 4: 2}
```

```python
E = C.cliques_maximal(); E
[[0, 4], [1, 2, 3, 4]]
```

```python
C.cliques_number_of(cliques=E)
{0: 1, 1: 1, 2: 1, 3: 1, 4: 2}
```
cliques_vertex_clique_number (algorithm='cliquer', vertices=None, cliques=None)

Return a dictionary of sizes of the largest maximal cliques containing each vertex, keyed by vertex.

Returns a single value if only one input vertex.

**Note:** Currently only implemented for undirected graphs. Use to_undirected() to convert a digraph to an undirected graph.

**INPUT:**

- **algorithm** – either cliquer or networkx
  - cliquer – This wraps the C program Cliquer [NO2003].
  - networkx – This function is based on NetworkX's implementation of the Bron and Kerbosch Algorithm [BK1973].
- **vertices** – the vertices to inspect (default is entire graph). Ignored unless algorithm='networkx'.
- **cliques** – list of cliques (if already computed). Ignored unless algorithm='networkx'.

**EXAMPLES:**

```
sage: C = Graph('DJ{')
sage: C.cliques_vertex_clique_number() # needs sage.plot
{0: 2, 1: 4, 2: 4, 3: 4, 4: 4}
sage: E = C.cliques_maximal(); E
[[0, 4], [1, 2, 3, 4]]
sage: C.cliques_vertex_clique_number(cliques=E, algorithm="networkx") # needs networkx
{0: 2, 1: 4, 2: 4, 3: 4, 4: 4}
sage: F = graphs.Grid2dGraph(2,3)
sage: F.cliques_vertex_clique_number(algorithm="networkx") # needs networkx
{(0, 0): 2, (0, 1): 2, (0, 2): 2, (1, 0): 2, (1, 1): 2, (1, 2): 2}
sage: F.cliques_vertex_clique_number(vertices=[(0, 1), (1, 2)]) # needs sage.plot
{(0, 1): 2, (1, 2): 2}
```
GraphTheory, Release 10.4

(continued from previous page)

```python
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
sage: G.show(figsize=[2,2]) # needs sage.plot
sage: G.cliques_vertex_clique_number() # needs sage.plot
{0: 3, 1: 3, 2: 3, 3: 3}
```

```python
>>> from sage.all import *
>>> C = Graph('DJ{')
>>> C.cliques_vertex_clique_number() # needs sage.plot
{0: 2, 1: 4, 2: 4, 3: 4, 4: 4}
>>> E = C.cliques_maximal(); E
[[0, 4], [1, 2, 3, 4]]
>>> C.cliques_vertex_clique_number(cliques=E, algorithm="networkx") # needs networkx
{0: 2, 1: 4, 2: 4, 3: 4, 4: 4}
>>> F = graphs.Grid2dGraph(Integer(2),Integer(3))
>>> F.cliques_vertex_clique_number(algorithm="networkx") # needs networkx
{(0, 0): 2, (0, 1): 2, (0, 2): 2, (1, 0): 2, (1, 1): 2, (1, 2): 2}
>>> F.cliques_vertex_clique_number(vertices=[(Integer(0), Integer(1)), (Integer(1), Integer(2))]) # needs sage.plot
{(0, 1): 2, (1, 2): 2}
>>> G = Graph({Integer(0):[Integer(1),Integer(2),Integer(3)],
Integer(1):[Integer(2), Integer(3)], Integer(3):[Integer(0),Integer(1)]})
>>> G.show(figsize=[Integer(2),Integer(2)]) # needs sage.plot
>>>
```

**coloring** (algorithm, hex_colors='DLX', solver=False, verbose=None, integrality_tolerance=0)

Return the first (optimal) proper vertex-coloring found.

**INPUT:**

- **algorithm** – Select an algorithm from the following supported algorithms:
  - If `algorithm="DLX"` (default), the coloring is computed using the dancing link algorithm.
  - If `algorithm="MILP"`, the coloring is computed using a mixed integer linear program. The performance of this implementation is affected by whether optional MILP solvers have been installed (see the MILP module).
- **hex_colors** – boolean (default: False); if True, return a dictionary which can easily be used for plotting.
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

1.2. Undirected graphs 513
See also:

For more functions related to graph coloring, see the module `sage.graphs.graph_coloring`.

**EXAMPLES:**

```python
sage: G = Graph("Fooba")
sage: P = G.coloring(algorithm="MILP")
sage: Q = G.coloring(algorithm="DLX")
sage: def are_equal_colorings(A, B):
 : return Set(map(Set, A)) == Set(map(Set, B))
sage: are_equal_colorings(P, [[1, 2, 3], [0, 5, 6], [4]])
True
sage: are_equal_colorings(P, Q)
True

sage: # needs sage.plot
sage: G.plot(partition=P)
Graphics object consisting of 16 graphics primitives
sage: G.coloring(hex_colors=True, algorithm="MILP")
{'#0000ff': [4], '#00ff00': [0, 6, 5], '#ff0000': [2, 1, 3]}
sage: H = G.coloring(hex_colors=True, algorithm="DLX"); H
{'#0000ff': [4], '#00ff00': [1, 2, 3], '#ff0000': [0, 5, 6]}
sage: G.plot(vertex_colors=H)
Graphics object consisting of 16 graphics primitives
```

```python
>>> from sage.all import *
>>> G = Graph("Fooba")
>>> P = G.coloring(algorithm="MILP")
>>> Q = G.coloring(algorithm="DLX")
>>> def are_equal_colorings(A, B):
... return Set(map(Set, A)) == Set(map(Set, B))
>>> are_equal_colorings(P, ([Integer(1), Integer(2), Integer(3)], [Integer(0),
... Integer(5), Integer(6)], [Integer(4)]))
True
>>> are_equal_colorings(P, Q)
True

>>> # needs sage.plot
>>> G.plot(partition=P)
Graphics object consisting of 16 graphics primitives
>>> G.coloring(hex_colors=True, algorithm="MILP")
{'#0000ff': [4], '#00ff00': [0, 6, 5], '#ff0000': [2, 1, 3]}
>>> H = G.coloring(hex_colors=True, algorithm="DLX"); H
{'#0000ff': [4], '#00ff00': [1, 2, 3], '#ff0000': [0, 5, 6]}
>>> G.plot(vertex_colors=H)
Graphics object consisting of 16 graphics primitives
```

**common_neighbors_matrix** *(vertices, nonedgesonly=None, base_ring=True, **kwds)*

Return a matrix of numbers of common neighbors between each pairs.

The \((i, j)\) entry of the matrix gives the number of common neighbors between vertices \(i\) and \(j\).

This method is only valid for simple (no loops, no multiple edges) graphs.

**INPUT:**

- `nonedgesonly` – boolean (default: True); if True, assigns 0 value to adjacent vertices.
- `vertices` – list (default: None); the ordering of the vertices defining how they should appear in the matrix. By default, the ordering given by `GenericGraph.vertices()` is used.
1.2. Undirected graphs
• base_ring – a ring (default: None); the base ring of the matrix space to use
• **kwds – other keywords to pass to \texttt{matrix()}

OUTPUT: matrix

EXAMPLES:

The common neighbors matrix for a straight linear 2-tree counting only non-adjacent vertex pairs

\begin{verbatim}
sage: G1 = Graph()
sage: G1.add_edges([(0,1),(0,2),(1,2),(1,3),(3,5),(2,4),(2,3),(3,4),(4,5)])
sage: G1.common_neighbors_matrix(nonedgesonly=True)  # needs sage.modules
[0  0  0  2  1  0]
[0  0  0  0  2  1]
[0  0  0  0  0  2]
[2  0  0  0  0  0]
[1  2  0  0  0  0]
[0  1  2  0  0  0]
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> G1 = Graph()
>>> G1.add_edges([(Integer(0),Integer(1)),(Integer(0),Integer(2)),(Integer(1),Integer(2)),(Integer(1),Integer(3)),(Integer(3),Integer(5)),(Integer(2),Integer(4)),(Integer(2),Integer(3)),(Integer(3),Integer(4)),(Integer(4),Integer(5))])
>>> G1.common_neighbors_matrix(nonedgesonly=True)  # needs sage.modules
[0  0  0  2  1  0]
[0  0  0  0  2  1]
[0  0  0  0  0  2]
[2  0  0  0  0  0]
[1  2  0  0  0  0]
[0  1  2  0  0  0]
\end{verbatim}

We now show the common neighbors matrix which includes adjacent vertices

\begin{verbatim}
sage: G1.common_neighbors_matrix(nonedgesonly=False)  # needs sage.modules
[0  1  1  2  1  0]
[1  0  2  1  2  1]
[1  2  0  2  1  2]
[2  1  2  0  2  1]
[1  2  1  2  0  1]
[0  1  2  0  0  0]
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> G1.common_neighbors_matrix(nonedgesonly=False)  # needs sage.modules
[0  1  1  2  1  0]
[1  0  2  1  2  1]
[1  2  0  2  1  2]
[2  1  2  0  2  1]
[1  2  1  2  0  1]
[0  1  2  1  1  0]
\end{verbatim}

The common neighbors matrix for a fan on 6 vertices counting only non-adjacent vertex pairs

\begin{verbatim}
[0  1  1  2  1  0]
[1  0  2  1  2  1]
[1  2  0  2  1  2]
[2  1  2  0  2  1]
[1  2  1  2  0  1]
[0  1  2  1  1  0]
\end{verbatim}
Let’s define a graph $H$ with the following edges:

```
sage: H = Graph([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(2,3),(3,4),(4,5)])
```

We can obtain its common neighbors matrix using the `common_neighbors_matrix()` method:

```
sage: H.common_neighbors_matrix() # needs sage.modules
[0 0 0 0 0 0 0]
[0 0 2 1 1 1]
[0 0 0 2 1 1]
[0 2 0 0 2 1]
[0 1 2 0 0 1]
[0 1 1 2 0 1]
[0 1 1 1 1 0]
```

### Different base ring:

When we change the base ring to `RDF` (Real Double Field), the common neighbors matrix is computed as follows:

```
sage: H.common_neighbors_matrix(base_ring=RDF) # needs sage.modules
[0.0 0.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 2.0 1.0 1.0 1.0]
[0.0 0.0 0.0 2.0 1.0 1.0]
[0.0 2.0 0.0 0.0 2.0 1.0]
[0.0 1.0 2.0 0.0 0.0 1.0]
[0.0 1.0 1.0 2.0 0.0 1.0]
[0.0 1.0 1.0 1.0 1.0 0.0]
```

For a graph with loops, such as $G$ defined as:

```
sage: G = Graph([(0,0)], loops=True)
```

The `common_neighbors_matrix()` method raises a `ValueError`:

```
sage: G.common_neighbors_matrix() # needs sage.modules
Traceback (most recent call last):
 ... ValueError: This method is not known to work on graphs with loops.
```

### Error handling:

When an error occurs, the method raises a `ValueError` indicating that it is not known to work on graphs with loops.

---

1.2. Undirected graphs
Perhaps this method can be updated to handle them, but in the meantime if you want to use it please disallow loops using allow_loops().

```python
>>> from sage.all import *
>>> G = Graph([(Integer(0), Integer(0))], loops=True)
>>> G.common_neighbors_matrix()
needs sage.modules
Traceback (most recent call last):
... ValueError: This method is not known to work on graphs with loops.
Perhaps this method can be updated to handle them, but in the meantime if you want to use it please disallow loops using allow_loops().
```

See also:

- `most_common_neighbors()` — returns node pairs with most shared neighbors

### `convexity_properties()`

Return a `ConvexityProperties` object corresponding to `self`.

This object contains the methods related to convexity in graphs (convex hull, hull number) and caches useful information so that it becomes comparatively cheaper to compute the convex hull of many different sets of the same graph.

See also:

In order to know what can be done through this object, please refer to module `sage.graphs.convexity_properties`.

**Note:** If you want to compute many convex hulls, keep this object in memory! When it is created, it builds a table of useful information to compute convex hulls. As a result

```python
sage: # needs sage.numerical.mip
sage: g = graphs.PetersenGraph()
sage: g.convexity_properties().hull([1, 3])
[1, 2, 3]
sage: g.convexity_properties().hull([3, 7])
[2, 3, 7]
```

```python
>>> from sage.all import *
>>> # needs sage.numerical.mip
>>> g = graphs.PetersenGraph()
>>> g.convexity_properties().hull([Integer(1), Integer(3)])
[1, 2, 3]
>>> g.convexity_properties().hull([Integer(3), Integer(7)])
[2, 3, 7]
```

is a terrible waste of computations, while

```python
sage: # needs sage.numerical.mip
sage: g = graphs.PetersenGraph()
sage: CP = g.convexity_properties()
sage: CP.hull([1, 3])
```
makes perfect sense.

**cores** (*k=None, with_labels=False*)

Return the core number for each vertex in an ordered list.

(for homomorphisms cores, see the `Graph.has_homomorphism_to()` method)

**DEFINITIONS:**

- **K-cores** in graph theory were introduced by Seidman in 1983 and by Bollbas in 1984 as a method of (destructively) simplifying graph topology to aid in analysis and visualization. They have been more recently defined as the following by Batagelj et al:

  Given a graph \( G \) with vertices set \( V \) and edges set \( E \), the \( k \)-core of \( G \) is the graph obtained from \( G \) by recursively removing the vertices with degree less than \( k \), for as long as there are any.

  This operation can be useful to filter or to study some properties of the graphs. For instance, when you compute the 2-core of graph \( G \), you are cutting all the vertices which are in a tree part of graph. (A tree is a graph with no loops). See the Wikipedia article [K-core].

  [PSW1996] defines a \( k \)-core of \( G \) as the largest subgraph (it is unique) of \( G \) with minimum degree at least \( k \).

- **Core number of a vertex**

  The core number of a vertex \( v \) is the largest integer \( k \) such that \( v \) belongs to the \( k \)-core of \( G \).

- **Degeneracy**

  The *degeneracy* of a graph \( G \), usually denoted \( \delta^*(G) \), is the smallest integer \( k \) such that the graph \( G \) can be reduced to the empty graph by iteratively removing vertices of degree \( \leq k \). Equivalently, \( \delta^*(G) = k - 1 \) if \( k \) is the smallest integer such that the \( k \)-core of \( G \) is empty.

**IMPLEMENTATION:**

This implementation is based on the NetworkX implementation of the algorithm described in [BZ2003].

**INPUT:**

- \( k \) – integer (default: None);
  - If \( k = \) None (default), returns the core number for each vertex.
  - If \( k \) is an integer, returns a pair \( (\text{ordering}, \ \text{core}) \), where \( \text{core} \) is the list of vertices in the \( k \)-core of self, and \( \text{ordering} \) is an elimination order for the other vertices such that each vertex is of degree strictly less than \( k \) when it is to be eliminated from the graph.
• with_labels – boolean (default: False); when set to False, and k = None, the method returns a list whose i th element is the core number of the i th vertex. When set to True, the method returns a dictionary whose keys are vertices, and whose values are the corresponding core numbers.

See also:

• Graph cores is also a notion related to graph homomorphisms. For this second meaning, see Graph.has_homomorphism_to().

• Wikipedia article Degeneracy_(graph_theory)

EXAMPLES:

```python
sage: (graphs.FruchtGraph()).cores()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

sage: (graphs.FruchtGraph()).cores(with_labels=True)
{0: 3, 1: 3, 2: 3, 3: 3, 4: 3, 5: 3, 6: 3, 7: 3, 8: 3, 9: 3, 10: 3, 11: 3}

sage: # needs sage.modules
sage: set_random_seed(0)

sage: a = random_matrix(ZZ, 20, x=2, sparse=True, density=.1)

sage: b = Graph(20)

sage: b.add_edges(a.nonzero_positions(), loops=False)

sage: cores = b.cores(with_labels=True); cores
{0: 3, 1: 3, 2: 3, 3: 3, 4: 2, 5: 2, 6: 3, 7: 1, 8: 3, 9: 3, 10: 3, 11: 3, 12: 3, 13: 3, 14: 2, 15: 3, 16: 3, 17: 3, 18: 3, 19: 3}

sage: [v for v,c in cores.items() if c >= 2] # the vertices in the 2-core
[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
```

Checking the 2-core of a random lobster is indeed the empty set:

```python
>>> from sage.all import *

>>> (graphs.FruchtGraph()).cores()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

>>> (graphs.FruchtGraph()).cores(with_labels=True)
{0: 3, 1: 3, 2: 3, 3: 3, 4: 3, 5: 3, 6: 3, 7: 3, 8: 3, 9: 3, 10: 3, 11: 3}

>>> # needs sage.modules

>>> set_random_seed(Integer(0))

>>> a = random_matrix(ZZ, Integer(20), x=Integer(2), sparse=True,
 density=RealNumber('.1'))

>>> b = Graph(Integer(20))

>>> b.add_edges(a.nonzero_positions(), loops=False)

>>> cores = b.cores(with_labels=True); cores
{0: 3, 1: 3, 2: 3, 3: 3, 4: 2, 5: 2, 6: 3, 7: 1, 8: 3, 9: 3, 10: 3, 11: 3, 12: 3, 13: 3, 14: 2, 15: 3, 16: 3, 17: 3, 18: 3, 19: 3}

>>> [v for v,c in cores.items() if c >= Integer(2)] # the vertices in the 2-core
[0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
```

```python
sage: g = graphs.RandomLobster(20, .5, .5) # needs networkx

sage: ordering, core = g.cores(2) # needs networkx

sage: len(core) == 0 # needs networkx
True
```
```python
>>> from sage.all import *
>>> g = graphs.RandomLobster(Integer(20), RealNumber(.5), RealNumber(.5))
˓→ # needs networkx
>>> ordering, core = g.cores(Integer(2))
˓→ # needs networkx
>>> len(core) == Integer(0)
˓→ # needs networkx
True
```

Checking the core of a bull graph:

```python
sage: G = graphs.BullGraph()
sage: G.cores(with_labels=True)
{0: 2, 1: 2, 2: 2, 3: 1, 4: 1}
sage: G.cores(k=Integer(2))
([3, 4], [0, 1, 2])
```

Graphs with multiple edges:

```python
sage: G.allow_multiple_edges(True)
sage: G.add_edges(G.edges(sort=False))
sage: G.cores(with_labels=True)
{0: 4, 1: 4, 2: 4, 3: 2, 4: 2}
sage: G.cores(k=Integer(2))
([3, 4], [0, 1, 2])
```

```python
>>> from sage.all import *
>>> G.allow_multiple_edges(True)
>>> G.add_edges(G.edges(sort=False))
>>> G.cores(with_labels=True)
{0: 4, 1: 4, 2: 4, 3: 2, 4: 2}
>>> G.cores(k=Integer(4))
([3, 4], [0, 1, 2])
```

cutwidth ($G$, algorithm='exponential', cut_off=0, solver=None, verbose=False, integrality_tolerance=0.001)

Return the cutwidth of the graph and the corresponding vertex ordering.

INPUT:

- G – a Graph or a DiGraph
- algorithm – string (default: "exponential"); algorithm to use among:
  - exponential – Use an exponential time and space algorithm based on dynamic programming. This algorithm only works on graphs with strictly less than 32 vertices.
  - MILP – Use a mixed integer linear programming formulation. This algorithm has no size restriction but could take a very long time.
- cut_off – integer (default: 0); used to stop the search as soon as a solution with width at most cut_off is found, if any. If this bound cannot be reached, the best solution found is returned.

1.2. Undirected graphs 521
• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – boolean (default: False); whether to display information on the computations.

• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT:
A pair (cost, ordering) representing the optimal ordering of the vertices and its cost.

EXAMPLES:
Cutwidth of a Complete Graph:

```
sage: from sage.graphs.graph_decompositions.cutwidth import cutwidth
sage: G = graphs.CompleteGraph(5)
sage: cw,L = cutwidth(G); cw
6
sage: K = graphs.CompleteGraph(6)
sage: cw,L = cutwidth(K); cw
9
sage: cw,L = cutwidth(K+K); cw
9
```

The cutwidth of a $p \times q$ Grid Graph with $p \leq q$ is $p + 1$:

```
sage: from sage.graphs.graph_decompositions.cutwidth import cutwidth
sage: G = graphs.Grid2dGraph(3,3)
sage: cw,L = cutwidth(G); cw
4
sage: G = graphs.Grid2dGraph(3,5)
sage: cw,L = cutwidth(G); cw
4
```

degree_constrained_subgraph (bounds, solver, verbose=None, integrality_tolerance=0)

Returns a degree-constrained subgraph.
Given a graph $G$ and two functions $f, g : V(G) \to \mathbb{Z}$ such that $f \leq g$, a degree-constrained subgraph in $G$ is a subgraph $G' \subseteq G$ such that for any vertex $v \in G$, $f(v) \leq d_{G'}(v) \leq g(v)$.

**INPUT:**
- **bounds** – (default: None); Two possibilities:
  - A dictionary whose keys are the vertices, and values a pair of real values $(\min, \max)$ corresponding to the values $(f(v), g(v))$.
  - A function associating to each vertex a pair of real values $(\min, \max)$ corresponding to the values $(f(v), g(v))$.
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

**OUTPUT:**
- When a solution exists, this method outputs the degree-constrained subgraph as a Graph object.
- When no solution exists, returns `False`.

**Note:**
- This algorithm computes the degree-constrained subgraph of minimum weight.
- If the graph’s edges are weighted, these are taken into account.
- This problem can be solved in polynomial time.

**EXAMPLES:**
Is there a perfect matching in an even cycle?

```
sage: g = graphs.CycleGraph(6)
sage: bounds = lambda x: [1,1]
sage: m = g.degree_constrained_subgraph(bounds=bounds) # needs sage.numerical.mip
sage: m.size() # needs sage.numerical.mip
3
```

```
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(6))
>>> bounds = lambda x: [Integer(1),Integer(1)]
>>> m = g.degree_constrained_subgraph(bounds=bounds) # needs sage.numerical.mip
>>> m.size() # needs sage.numerical.mip
3
```

**diameter** `(by_weight=False, algorithm=None, weight_function=None, check_weight=True)`

Return the diameter of the graph.
The diameter is defined to be the maximum distance between two vertices. It is infinite if the graph is not connected.

For more information and examples on how to use input variables, see `shortest_paths()` and `eccentricity()`

**INPUT:**

- `by_weight` – boolean (default: False); if True, edge weights are taken into account; if False, all edges have weight 1
- `algorithm` – string (default: None); one of the following algorithms:
  - 'BFS': the computation is done through a BFS centered on each vertex successively. Works only if `by_weight==False`.
  - 'Floyd-Warshall-Cython': a Cython implementation of the Floyd-Warshall algorithm. Works only if `by_weight==False` and `v` is None.
  - 'Floyd-Warshall-Python': a Python implementation of the Floyd-Warshall algorithm. Works also with weighted graphs, even with negative weights (but no negative cycle is allowed). However, `v` must be None.
  - 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX. It works with weighted graphs, but no negative weight is allowed.
  - 'DHV' – diameter computation is done using the algorithm proposed in [Dragan2018]. Works only for non-negative edge weights. For more information see method `sage.graphs.distances_all_pairs.diameter_DHV()` and `sage.graphs.base.boost_graph.diameter_DHV()`.
  - 'standard', '2sweep', 'multi-sweep', 'iFUB': these algorithms are implemented in `sage.graphs.distances_all_pairs.diameter()` They work only if `by_weight==False`. See the function documentation for more information.
  - 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive weights).
  - 'Johnson_Boost': the Johnson algorithm, implemented in Boost (works also with negative weights, if there is no negative cycle).
  - None (default): Sage chooses the best algorithm: 'iFUB' for unweighted graphs, 'Dijkstra_Boost' if all weights are positive, 'Johnson_Boost' otherwise.
- `weight_function` – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, `by_weight` is automatically set to True. If None and `by_weight` is True, we use the edge label `l` as a weight, if `l` is not None, else 1 as a weight.
- `check_weight` – boolean (default: True); if True, we check that the `weight_function` outputs a number for each edge

**EXAMPLES:**

The more symmetric a graph is, the smaller (diameter - radius) is:

```python
sage: G = graphs.BarbellGraph(9, 3)
sage: G.radius()
3
sage: G.diameter()
6
```
distance_graph \((\text{dist})\)

Return the graph on the same vertex set as the original graph but vertices are adjacent in the returned graph if and only if they are at specified distances in the original graph.

**INPUT:**

- **dist** – a nonnegative integer or a list of nonnegative integers; specified distance(s) for the connecting vertices. *Infinity* may be used here to describe vertex pairs in separate components.

**OUTPUT:**

The returned value is an undirected graph. The vertex set is identical to the calling graph, but edges of the returned graph join vertices whose distance in the calling graph are present in the input \(\text{dist}\). Loops will only be present if distance 0 is included. If the original graph has a position dictionary specifying locations of vertices for plotting, then this information is copied over to the distance graph. In some instances this layout may not be the best, and might even be confusing when edges run on top of each other due to symmetries chosen for the layout.

**EXAMPLES:**

```python
sage: G = graphs.CompleteGraph(3)
sage: H = G.cartesian_product(graphs.CompleteGraph(2))
sage: K = H.distance_graph(2)
sage: K.am() # needs sage.modules
[0 0 0 1 0 1]
[0 0 1 0 1 0]
[0 1 0 0 1 0]
[0 0 0 0 1 0]
[0 0 0 0 1 0]
[0 0 0 1 0 0]
```

```python
>>> from sage.all import *
>>> G = graphs.CompleteGraph(Integer(3))
>>> H = G.cartesian_product(graphs.CompleteGraph(Integer(2)))
>>> K = H.distance_graph(Integer(2))
>>> K.am() # needs sage.modules
```

(continues on next page)
To obtain the graph where vertices are adjacent if their distance apart is $d$ or less use a `range()` command to create the input, using $d + 1$ as the input to `range`. Notice that this will include distance 0 and hence place a loop at each vertex. To avoid this, use `range(1, d + 1):

```python
sage: G = graphs.OddGraph(4)
sage: d = G.diameter()
sage: n = G.num_verts()
sage: H = G.distance_graph(list(range(d+1)))
sage: H.is_isomorphic(graphs.CompleteGraph(n))
False
sage: H = G.distance_graph(list(range(1,d+1)))
sage: H.is_isomorphic(graphs.CompleteGraph(n))
True
```
The graph of eight-bit strings, adjacent if different in an odd number of bits:

```python
sage: # long time, needs sage.symbolic
sage: G = graphs.CubeGraph(8)
sage: H = G.distance_graph([1,3,5,7])
sage: degrees = [0]*sum([binomial(8,j) for j in [1,3,5,7]])
sage: degrees.append(2**8)
sage: degrees == H.degree_histogram()
True
```

An example of using Infinity as the distance in a graph that is not connected:

```python
sage: G = graphs.CompleteGraph(3)
sage: H = G.disjoint_union(graphs.CompleteGraph(2))
sage: L = H.distance_graph(Infinity)
sage: L.am() # needs sage.modules
[0 0 0 1 1]
[0 0 0 1 1]
[1 1 1 0 0]
[1 1 1 0 0]
sage: L.is_isomorphic(graphs.CompleteBipartiteGraph(3, 2))
True
```

(continues on next page)
AUTHOR:
Rob Beezer, 2009-11-25, Issue #7533

ear_decomposition()
Return an Ear decomposition of the graph.

An ear of an undirected graph $G$ is a path $P$ where the two endpoints of the path may coincide (i.e., form a cycle), but where otherwise no repetition of edges or vertices is allowed, so every internal vertex of $P$ has degree two in $P$.

An ear decomposition of an undirected graph $G$ is a partition of its set of edges into a sequence of ears, such that the one or two endpoints of each ear belong to earlier ears in the sequence and such that the internal vertices of each ear do not belong to any earlier ear.

For more information, see the Wikipedia article Ear_decomposition.

This method implements the linear time algorithm presented in [Sch2013].

OUTPUT:
• A nested list representing the cycles and chains of the ear decomposition of the graph.

EXAMPLES:
Ear decomposition of an outer planar graph of order 13:

```
sage: g = Graph('LlCG{O@?GBOMW?')
sage: g.ear_decomposition()
[[0, 3, 2, 1, 0],
 [0, 7, 4, 3],
 [0, 11, 9, 8, 7],
 [1, 12, 2],
 [3, 6, 5, 4],
 [4, 6],
 [7, 10, 8],
 [7, 11],
 [8, 11]]
```
Ear decomposition of a connected but not biconnected graph:

```
sage: G = Graph()
sage: G.add_cycle([0,1,2])
sage: G.add_edge(0,3)
sage: G.add_cycle([3,4,5,6])
sage: G.ear_decomposition()
[[0, 2, 1, 0], [3, 6, 5, 4, 3]]
```

The ear decomposition of a multigraph with loops is the same as the ear decomposition of the underlying simple graph:

```
sage: g = graphs.BullGraph()
sage: g.allow_multiple_edges(True)
sage: g.add_edges(g.edges(sort=False))
sage: g.allow_loops(True)
sage: u = g.random_vertex()
sage: g.add_edge(u, u)
sage: g
Bull graph: Looped multi-graph on 5 vertices
sage: h = g.to_simple()
sage: g.ear_decomposition() == h.ear_decomposition()
True
```

**eccentricity** *(v=None, by_weight=False, algorithm=None, weight_function=None, check_weight=True, dist_dict=None, with_labels=False)*

Return the eccentricity of vertex (or vertices) v.

The eccentricity of a vertex is the maximum distance to any other vertex.

For more information and examples on how to use input variables, see `shortest_path_all_pairs()`.

1.2. Undirected graphs 529
shortest_path_lengths() and shortest_paths()

**INPUT:**

- `v` – either a single vertex or a list of vertices. If it is not specified, then it is taken to be all vertices.
- `by_weight` – boolean (default: False); if True, edge weights are taken into account; if False, all edges have weight 1
- `algorithm` – string (default: None); one of the following algorithms:
  - 'BFS' – the computation is done through a BFS centered on each vertex successively. Works only if `by_weight==False`.
  - 'DHV' – the computation is done using the algorithm proposed in [Dragan2018]. Works only if `self` has non-negative edge weights and `v` is `None` or `v` should contain all vertices of `self`. For more information see method `sage.graphs.distances_all_pairs.eccentricity()` and `sage.graphs.base.boost_graph.eccentricity_DHV()`.
  - 'Floyd-Warshall-Cython' – a Cython implementation of the Floyd-Warshall algorithm. Works only if `by_weight==False` and `v` is `None` or `v` should contain all vertices of `self`.
  - 'Floyd-Warshall-Python' – a Python implementation of the Floyd-Warshall algorithm. Works also with weighted graphs, even with negative weights (but no negative cycle is allowed). However, `v` must be `None` or `v` should contain all vertices of `self`.
  - 'Dijkstra_NetworkX' – the Dijkstra algorithm, implemented in NetworkX. It works with weighted graphs, but no negative weight is allowed.
  - 'Dijkstra_Boost' – the Dijkstra algorithm, implemented in Boost (works only with positive weights).
  - 'Johnson_Boost' – the Johnson algorithm, implemented in Boost (works also with negative weights, if there is no negative cycle). Works only if `v` is `None` or `v` should contain all vertices of `self`.
  - 'From_Dictionary' – uses the (already computed) distances, that are provided by input variable `dist_dict`.
  - None (default): Sage chooses the best algorithm: 'From_Dictionary' if `dist_dict` is not `None`, 'BFS' for unweighted graphs, 'Dijkstra_Boost' if all weights are positive, 'Johnson_Boost' otherwise.
- `weight_function` – function (default: None); a function that takes as input an edge `(u, v, l)` and outputs its weight. If not None, `by_weight` is automatically set to True. If None and `by_weight` is True, we use the edge label `l` as a weight, if `l` is not None, else 1 as a weight.
- `check_weight` – boolean (default: True); if True, we check that the `weight_function` outputs a number for each edge
- `dist_dict` – a dictionary (default: None); a dict of dicts of distances (used only if `algorithm=='From_Dictionary'`)
- `with_labels` – boolean (default: False); whether to return a list or a dictionary keyed by vertices.

**EXAMPLES:**

```python
sage: G = graphs.KrackhardtKiteGraph()
sage: G.eccentricity()

[4, 4, 4, 4, 3, 3, 2, 3, 4]
```

```python
sage: G.vertices(sort=True)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

```python
sage: G.eccentricity(7)
```

(continues on next page)
Graph Theory, Release 10.4

1.2. Undirected graphs 531

2

sage: G.eccentricity([7, 8, 9])
[2, 3, 4]
sage: G.eccentricity([7, 8, 9], with_labels=True) == {8: 3, 9: 4, 7: 2}
True
sage: G = Graph({0: [], 1: [], 2: [1]})
sage: G.eccentricity()
[+Infinity, +Infinity, +Infinity]
sage: G = Graph({0: []})
sage: G.eccentricity(with_labels=True)
{0: 0}
sage: G = Graph({0: [], 1: []})
sage: G.eccentricity(with_labels=True)
{0: +Infinity, 1: +Infinity}
sage: G = Graph({(0, 1, 1), (1, 2, 1), (0, 2, 3)})
sage: G.eccentricity(algorithm='BFS')
[1, 1, 1]
sage: G.eccentricity(algorithm='Floyd-Warshall-Cython')
[1, 1, 1]
sage: G = Graph({0: []}, algorithm='Dijkstra_NetworkX')
# needs networkx
sage: G.eccentricity(by_weight=True, algorithm='Dijkstra_NetworkX')
[2, 1, 2]
sage: from sage.all import *
>>> from sage.all import *
>>> G = graphs.KrackhardtKiteGraph()
>>> G.eccentricity()
[4, 4, 4, 4, 3, 3, 2, 3, 4]
>>> G.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> G.eccentricity(Integer(7))
2
>>> G.eccentricity([Integer(7), Integer(8), Integer(9)])
[2, 3, 4]
>>> G.eccentricity([Integer(7), Integer(8), Integer(9)], with_labels=True) ==
{Integer(8): Integer(3), Integer(9): Integer(4), Integer(7): Integer(2)}
True
>>> G = Graph({Integer(0): [], Integer(1): [], Integer(2): [Integer(1)]})
>>> G.eccentricity()
[+Infinity, +Infinity, +Infinity]
>>> G = Graph({Integer(0): []})
>>> G.eccentricity(with_labels=True)
{0: 0}
>>> G = Graph({Integer(0): [], Integer(1): []})
>>> G.eccentricity(with_labels=True)
(continues on next page)
edge_isoperimetric_number\( (g) \)

Return the edge-isoperimetric number of the graph.

The edge-isoperimetric number of a graph \( G = (V, E) \) is also sometimes called the isoperimetric number. It is defined as the minimum of \( |\partial S|/|S| \) where \( \partial S \) is the edge boundary of \( S \) (number of edges with one end in \( S \) and one end in \( V \setminus S \)) and the minimum is taken over all subsets of vertices whose cardinality does not exceed half the size \( |V| \) of the graph.

See also:

Alternative but similar quantities can be obtained via the methods `cheeger_constant()` and `vertex_isoperimetric_number()`.

**EXAMPLES:**

The edge-isoperimetric number of a complete graph on \( n \) vertices is \([n/2]\):

```
sage: [graphs.CompleteGraph(n).edge_isoperimetric_number() for n in range(2, 10)]
[1, 2, 2, 3, 3, 4, 4, 5]
```

The edge-isoperimetric constant of a cycle on \( n \) vertices is \( 2/[n/2] \):

```
sage: [graphs.CycleGraph(n).edge_isoperimetric_number() for n in range(2,15)]
[1, 2, 1, 1, 2/3, 2/3, 1/2, 1/2, 2/5, 2/5, 1/3, 1/3, 2/7]
```
In general, for \( d \)-regular graphs the edge-isoperimetric number is \( d \) times larger than the Cheeger constant of the graph:

```sage
g = graphs.RandomRegular(3, 10)
needs networkx
g.edge_isoperimetric_number() == g.cheeger_constant() * 3
needs networkx
True
```

And the edge-isoperimetric constant of a disconnected graph is 0:

```sage
Graph([[1,2,3,4],[[1,2],[3,4]]]).edge_isoperimetric_number()
0
```

**effective_resistance** \((i, j, \text{base\_ring})\)

Return the effective resistance between nodes \( i \) and \( j \).

The resistance distance between vertices \( i \) and \( j \) of a simple connected graph \( G \) is defined as the effective resistance between the two vertices on an electrical network constructed from \( G \) replacing each edge of the graph by a unit (1 ohm) resistor.

See the Wikipedia article Resistance_distance for more information.

**INPUT:**

- \( i, j \) – vertices of the graph
- \( \text{base\_ring} \) – a ring (default: None); the base ring of the matrix space to use

**OUTPUT:** rational number denoting resistance between nodes \( i \) and \( j \)

**EXAMPLES:**

Effective resistances in a straight linear 2-tree on 6 vertices

```sage
needs sage.modules
g = Graph(((0,1), (0,2), (1,2), (1,3), (3,5), (2,4), (2,3), (3,4), (4,5)))
g.effective_resistance((0,1))
34/55

g.effective_resistance((0,3))
49/55

g.effective_resistance((1,4))
9/11
```

(continues on next page)
```python
sage: G.effective_resistance(0,5)
15/11
```

```python
>>> from sage.all import *

>>> G = Graph([(Integer(0),Integer(1)),(Integer(0),Integer(2)),(Integer(1),
 Integer(2)),(Integer(1),Integer(3)),(Integer(3),Integer(5)),(Integer(2),
 Integer(4)),(Integer(2),Integer(3)),(Integer(3),Integer(4)),(Integer(4),
 Integer(5))])

>>> G.effective_resistance(Integer(0),Integer(1))
34/55

>>> G.effective_resistance(Integer(0),Integer(3))
49/55

>>> G.effective_resistance(Integer(1),Integer(4))
9/11

>>> G.effective_resistance(Integer(0),Integer(5))
15/11

Effective resistances in a fan on 6 vertices

```python
sage: # needs sage.modules
sage: H = Graph([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(2,3),(3,4),(4,5)])

sage: H.effective_resistance(1,5)
6/5

sage: H.effective_resistance(1,3)
49/55

sage: H.effective_resistance(1,1)
0
```

```python
>>> from sage.all import *

>>> H = Graph([(Integer(0),Integer(1)),(Integer(0),Integer(2)),(Integer(0),
              Integer(3)),(Integer(0),Integer(4)),(Integer(0),Integer(5)),(Integer(0),
              Integer(6)),(Integer(1),Integer(2)),(Integer(2),Integer(3)),(Integer(3),
              Integer(4)),(Integer(4),Integer(5))])

>>> H.effective_resistance(Integer(1),Integer(5))
6/5

>>> H.effective_resistance(Integer(1),Integer(3))
49/55

>>> H.effective_resistance(Integer(1),Integer(1))
0
```

Using a different base ring:

```python
sage: H.effective_resistance(1, 5, base_ring=RDF) # abs tol 1e-14
# needs numpy sage.modules
1.2000000000000000

sage: H.effective_resistance(1, 1, base_ring=RDF) # needs numpy sage.modules
0.0
```

```python
>>> from sage.all import *

>>> H.effective_resistance(Integer(1), Integer(5), base_ring=RDF) # abs tol...
# needs numpy sage.modules
1.2000000000000000
```

(continues on next page)
See also:

- `effective_resistance_matrix()` – a similar method giving a matrix full of all effective resistances between all nodes
- `least_effective_resistance()` – gives node pairs with least effective resistances
- See Wikipedia article Resistance_distance for more details.

`effective_resistance_matrix`(vertices, nonedgesonly=None, base_ring=True, **kwds)

Return a matrix whose \((i, j)\) entry gives the effective resistance between vertices \(i\) and \(j\).

The resistance distance between vertices \(i\) and \(j\) of a simple connected graph \(G\) is defined as the effective resistance between the two vertices on an electrical network constructed from \(G\) replacing each edge of the graph by a unit (1 ohm) resistor.

By default, the matrix returned is over the rationals.

INPUT:

- `nonedgesonly` – boolean (default: True); if True assign zero resistance to pairs of adjacent vertices.
- `vertices` – list (default: None); the ordering of the vertices defining how they should appear in the matrix. By default, the ordering given by `GenericGraph.vertices()` is used.
- `base_ring` – a ring (default: None); the base ring of the matrix space to use
- `**kwds` – other keywords to pass to `matrix()`

OUTPUT: matrix

EXAMPLES:

The effective resistance matrix for a straight linear 2-tree counting only non-adjacent vertex pairs

```python
g = Graph([(0,1),(0,2),(1,2),(1,3),(3,5),(2,4),(2,3),(3,4),(4,5)])
g.effective_resistance_matrix()  # needs sage.modules

[ 0 0 0 49/55 59/55 15/11]
[ 0 0 0 0 9/11 59/55]
[ 0 0 0 0 0 49/55]
[49/55 0 0 0 0 0]
[59/55 9/11 0 0 0 0]
[15/11 59/55 49/55 0 0 0]
```

```python
from sage.all import *
g = Graph([(Integer(0),Integer(1)),(Integer(0),Integer(2)),(Integer(1),
Integer(2)),(Integer(1),Integer(3)),(Integer(3),Integer(5)),(Integer(2),
Integer(4)),(Integer(2),Integer(3)),(Integer(3),Integer(4)),(Integer(4),
Integer(5))])
g.effective_resistance_matrix()  # needs sage.modules

[ 0 0 0 49/55 59/55 15/11]
[ 0 0 0 0 9/11 59/55]
[ 0 0 0 0 0 49/55]
```

(continues on next page)
The same effective resistance matrix, this time including adjacent vertices

```
sage: G.effective_resistance_matrix(nonedgesonly=False)  # needs sage.modules
[ 0 34/55 34/55 49/55 59/55 15/11]
[34/55 0 26/55 31/55 9/11 59/55]
[34/55 26/55 0 5/11 31/55 49/55]
[49/55 31/55 5/11 0 26/55 34/55]
[59/55 9/11 31/55 26/55 0 34/55]
[15/11 59/55 49/55 34/55 34/55 0]
```

This example illustrates the common neighbors matrix for a fan on 6 vertices counting only non-adjacent vertex pairs

```
sage: H = Graph([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(2,3),(3,4),(4,5)])
sage: H.effective_resistance_matrix()  # needs sage.modules
[ 0 0 0 0 0 0]
[ 0 0 49/55 56/55 6/5 89/55]
[ 0 0 4/5 56/55 81/55]
[ 0 49/55 0 0 49/55 16/11]
[ 0 56/55 4/5 0 0 81/55]
[ 0 6/5 56/55 49/55 0 89/55]
[ 0 89/55 81/55 16/11 81/55 89/55]
```

A different base ring:
graph: H.effective_resistance_matrix(base_ring=RDF)[0, 0].parent()

Real Double Field

>>> from sage.all import *

>>> H.effective_resistance_matrix(base_ring=RDF)[Integer(0), Integer(0)].parent()

Real Double Field

See also:

- least_effective_resistance() – gives node pairs with least effective resistances
- effective_resistance() – computes effective resistance for a single node pair
- See Wikipedia article Resistance_Distance for more details.

folded_graph (check=False)

Return the antipodal fold of this graph.

Given an antipodal graph G let G_d be its distance-d graph. Then the folded graph of G has a vertex for each maximal clique of G_d and two cliques are adjacent if there is an edge in G connecting the two.

See also:

sage.graphs.graph.is_antipodal()

INPUT:

- check – boolean (default: False); whether to check if the graph is antipodal. If check is True and the graph is not antipodal, then return False.

OUTPUT:

This function returns a new graph and self is not touched.

Note: The input is expected to be an antipodal graph. You can check that a graph is antipodal using sage.
graph.is_antipodal().

EXAMPLES:

sage: G = graphs.JohnsonGraph(10, 5)
sage: H = G.folded_graph(); H
Folded Johnson graph with parameters 10,5: Graph on 126 vertices
sage: Gd = G.distance_graph(G.diameter())
sage: all(i == 1 for i in Gd.degree())
True
sage: H.is_distance_regular(True)
([25, 16, None], [None, 1, 4])

>>> from sage.all import *

>>> G = graphs.JohnsonGraph(Integer(10), Integer(5))

>>> H = G.folded_graph(); H
Folded Johnson graph with parameters 10,5: Graph on 126 vertices

>>> Gd = G.distance_graph(G.diameter())

>>> all(i == Integer(1) for i in Gd.degree())
True

(continues on next page)
This method doesn’t check if the graph is antipodal:

```
sage: G = graphs.PetersenGraph()
sage: G.is_antipodal()
False
sage: G.folded_graph()  # some garbage
Folded Petersen graph: Graph on 2 vertices
sage: G.folded_graph(check=True)
False
```

REFERENCES:

fractional_chromatic_index \((G, \text{solver}'PPL', \text{verbose_constraints}=False, \text{verbose}=0) \)

Return the fractional chromatic index of the graph.

The fractional chromatic index is a relaxed version of edge-coloring. An edge coloring of a graph being actually a covering of its edges into the smallest possible number of matchings, the fractional chromatic index of a graph \(G \) is the smallest real value \(\chi_f(G) \) such that there exists a list of matchings \(M_1, \ldots, M_k \) of \(G \) and coefficients \(\alpha_1, \ldots, \alpha_k \) with the property that each edge is covered by the matchings in the following relaxed way

\[
\forall e \in E(G), \sum_{e \in M_i} \alpha_i \geq 1.
\]

For more information, see the Wikipedia article Fractional_coloring.

ALGORITHM:

The fractional chromatic index is computed through Linear Programming through its dual. The LP solved by sage is actually:

Maximize : \(\sum_{e \in E(G)} r_e \)

Such that :

\(\forall M \text{ matching } \subseteq G, \sum_{e \in M} r_e \leq 1 \)

INPUT:

* \(G \) – a graph
* \(\text{solver} \) – (default: "PPL"); specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
Note: The default solver used here is "PPL" which provides exact results, i.e. a rational number, although this may be slower than using other solvers. Be aware that this method may loop endlessly when using some non exact solvers as reported in Issue #23658 and Issue #23798.

- **verbose_constraints** – boolean (default: False); whether to display which constraints are being generated
- **verbose** – integer (default: 0); sets the level of verbosity of the LP solver

EXAMPLES:
The fractional chromatic index of a C_5 is 5/2:

```sage
g = graphs.CycleGraph(5)
g.fractional_chromatic_index() → # needs sage.numerical.mip
5/2
```

```sage
from sage.all import *
g = graphs.CycleGraph(Integer(5))
g.fractional_chromatic_index() → # needs sage.numerical.mip
5/2
```

fractional_chromatic_number (G, solver='PPL', verbose=0, check_components=True, check_bipartite=True)

Return the fractional chromatic number of the graph.

Fractional coloring is a relaxed version of vertex coloring with several equivalent definitions, such as the optimum value in a linear relaxation of the integer program that gives the usual chromatic number. It is also equal to the fractional clique number by LP-duality.

ALGORITHM:
The fractional chromatic number is computed via the usual Linear Program. The LP solved by sage is essentially,

\[
\text{Minimize : } \sum_{I \in \mathcal{I}(G)} x_I
\]

Such that:

\[
\forall v \in V(G), \sum_{I \in \mathcal{I}(G), v \in I} x_v \geq 1
\]

\[
\forall I \in \mathcal{I}(G), x_I \geq 0
\]

where $\mathcal{I}(G)$ is the set of maximal independent sets of G (see Section 2.1 of [CFKPR2010] to know why it is sufficient to consider maximal independent sets). As optional optimisations, we construct the LP on each biconnected component of G (and output the maximum value), and avoid using the LP if G is bipartite (as then the output must be 1 or 2).

Note: Computing the fractional chromatic number can be very slow. Since the variables of the LP are independent sets, in general the LP has size exponential in the order of the graph. In the current implementation a list of all maximal independent sets is created and stored, which can be both slow and memory-hungry.
• G — a graph

• solver – (default: "PPL"); specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

Note: The default solver used here is "PPL" which provides exact results, i.e. a rational number, although this may be slower than using other solvers.

• verbose – integer (default: 0); sets the level of verbosity of the LP solver

• check_components – boolean (default: True); whether the method is called on each biconnected component of G

• check_bipartite – boolean (default: True); whether the graph is checked for bipartiteness. If the graph is bipartite then we can avoid creating and solving the LP.

EXAMPLES:
The fractional chromatic number of a C_5 is $5/2$:

```
sage: g = graphs.CycleGraph(5)
sage: g.fractional_chromatic_number()
˓→ # needs sage.numerical.mip
5/2
```

```from sage.all import *

>>> g = graphs.CycleGraph(Integer(5))
>>> g.fractional_chromatic_number()
˓→ # needs sage.numerical.mip
5/2
```

fractional_clique_number (solver='PPL', verbose=0, check_components=True, check_bipartite=True)

Return the fractional clique number of the graph.

A fractional clique is a nonnegative weight function on the vertices of a graph such that the sum of the weights over any independent set is at most 1. The fractional clique number is the largest total weight of a fractional clique, which is equal to the fractional chromatic number by LP-duality.

ALGORITHM:
The fractional clique number is computed via the Linear Program for fractional chromatic number, see fractional_chromatic_number

INPUT:

• solver – (default: "PPL"); specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

Note: The default solver used here is "PPL" which provides exact results, i.e. a rational number, although this may be slower than using other solvers.

• verbose – integer (default: 0); sets the level of verbosity of the LP solver

• check_components – boolean (default: True); whether the method is called on each biconnected component of G
• check_bipartite – boolean (default: True); whether the graph is checked for bipartiteness. If the graph is bipartite then we can avoid creating and solving the LP.

EXAMPLES:
The fractional clique number of a C_7 is $7/3$:

```python
sage: g = graphs.CycleGraph(7)
sage: g.fractional_clique_number()
7/3
```

```python
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(7))
>>> g.fractional_clique_number()
7/3
```

def geodetic_closure(G, S):
 Return the geodetic closure of the set of vertices S in G.
 The geodetic closure $g(S)$ of a subset of vertices S of a graph G is in [HLT1993] as the set of all vertices that lie on a shortest $u-v$ path for any pair of vertices $u, v \in S$. We assume that $g(\emptyset) = \emptyset$ and that $g(\{u\}) = \{u\}$ for any $u \in G$.

Warning: This operation is not a closure function. Indeed, a closure function must satisfy the property that $f(f(X))$ should be equal to $f(X)$, which is not always the case here. The term `closure` is used here to follow the terminology of the domain. See for instance [HLT1993].

Here, we implement a simple algorithm to determine this set. Roughly, for each vertex $u \in S$, the algorithm first performs a breadth first search from u to get distances, and then identifies the vertices of G lying on a shortest $u-v$ path from u to any $v \in S$ using a reversal traversal from vertices in S. This algorithm has time complexity in $O(|S|(n+m)+(n+m \log m))$ for SparseGraph, $O(|S|(n+m)+n^2 \log m)$ for DenseGraph and space complexity in $O(n+m)$ (the extra log factor is due to `init_short_digraph` being called with `sort_neighbors=True`).

INPUT:
- G – a Sage graph
- S – a subset of vertices of G

EXAMPLES:
The vertices of the Petersen graph can be obtained by a geodetic closure of four of its vertices:

```python
sage: from sage.graphs.convexity_properties import geodetic_closure
sage: G = graphs.PetersenGraph()
sage: geodetic_closure(G, [0, 2, 8, 9])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

```python
>>> from sage.all import *
>>> from sage.graphs.convexity_properties import geodetic_closure
>>> G = graphs.PetersenGraph()
>>> geodetic_closure(G, [Integer(0), Integer(2), Integer(8), Integer(9)])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

The vertices of a 2D grid can be obtained by a geodetic closure of two vertices:
If two vertices belong to different connected components of a graph, their geodetic closure is trivial:

```python
sage: G = Graph([(0, 1), (2, 3)])
sage: geodetic_closure(G, [0, 2])
[0, 2]
```

The geodetic closure does not satisfy the closure function property that $f(f(X))$ should be equal to $f(X)$:

```python
sage: G = graphs.DiamondGraph()
sage: G.subdivide_edge((1, 2), 1)
sage: geodetic_closure(G, geodetic_closure(G, [0, 3]))
[0, 1, 2, 3, 4]
```

The Gomory–Hu tree does not satisfy the closure function property that $f(f(X))$ should be equal to $f(X)$:

```python
sage: G = graphs.DiamondGraph()
sage: G.subdivide_edge((1, 2), 1)
sage: geodetic_closure(G, geodetic_closure(G, [0, 3]))
[0, 1, 2, 3, 4]
```

gomory_hu_tree *(algorithm=None)*

Return a Gomory-Hu tree of self.

Given a tree T with labeled edges representing capacities, it is very easy to determine the maximum flow between any pair of vertices: it is the minimal label on the edges of the unique path between them.

Given a graph G, a Gomory-Hu tree T of G is a tree with the same set of vertices, and such that the maximum flow between any two vertices is the same in G as in T. See the [Wikipedia article Gomory–Hu_tree](https://en.wikipedia.org/wiki/Gomory–Hu_tree). Note that, in general, a graph admits more than one Gomory-Hu tree.

See also 15.4 (Gomory-Hu trees) from [Sch2003].

INPUT:

- **algorithm**—select the algorithm used by the `edge_cut()` method. Refer to its documentation for allowed values and default behaviour.

OUTPUT:
A graph with labeled edges

EXAMPLES:

Taking the Petersen graph:

```sage
g = graphs.PetersenGraph()
t = g.gomory_hu_tree()
```

Obviously, this graph is a tree:

```sage
t.is_tree()
True
```

Note that if the original graph is not connected, then the Gomory-Hu tree is in fact a forest:

```sage
(2*g).gomory_hu_tree().is_forest()
True
(2*g).gomory_hu_tree().is_connected()
False
```

On the other hand, such a tree has lost nothing of the initial graph connectedness:

```sage
all(t.flow(u,v) == g.flow(u,v) for u,v in Subsets(g.vertices(sort=False), 2))
True
```

Just to make sure, we can check that the same is true for two vertices in a random graph:

```sage
g = graphs.RandomGNP(20,.3)
t = g.gomory_hu_tree()
g.flow(0,1) == t.flow(0,1)
True
```

(continues on next page)
GraphTheory, Release 10.4

(continued from previous page)

```python
>>> g.flow(Integer(0),Integer(1)) == t.flow(Integer(0),Integer(1))
True
```

And also the min cut:

```python
sage: g.edge_connectivity() == min(t.edge_labels()) or not g.is_connected()
True
```

```python
>>> from sage.all import *
>>> g.edge_connectivity() == min(t.edge_labels()) or not g.is_connected()
True
```

graph6_string()

Return the graph6 representation of the graph as an ASCII string.

This is only valid for simple (no loops, no multiple edges) graphs on at most $2^{18} - 1 = 262143$ vertices.

Note: As the graph6 format only handles graphs with vertex set \{0, ..., n - 1\}, a **relabelled copy** will be encoded, if necessary.

See also:

- **dig6_string()** – a similar string format for directed graphs

EXAMPLES:

```python
sage: G = graphs.KrackhardtKiteGraph()
sage: G.graph6_string()
'IvUqwK@?G'
```

```python
>>> from sage.all import *
>>> G = graphs.KrackhardtKiteGraph()
>>> G.graph6_string()
'IvUqwK@?G'
```

has_homomorphism_to *(H, core=False, solver=None, integrality_tolerance=0)*

Checks whether there is a homomorphism between two graphs.

A homomorphism from a graph G to a graph H is a function $\phi : V(G) \mapsto V(H)$ such that for any edge $uv \in E(G)$ the pair $\phi(u)\phi(v)$ is an edge of H.

Saying that a graph can be k-colored is equivalent to saying that it has a homomorphism to K_k, the complete graph on k elements.

For more information, see the **Wikipedia article Graph homomorphism**.

INPUT:

- **H** – the graph to which `self` should be sent.
- **core** – boolean (default: False; whether to minimize the size of the mapping’s image (see note below). This is set to False by default.
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

544 Chapter 1. Graph objects and methods
• \texttt{verbose} – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
• \texttt{integrality_tolerance} – float; parameter for use with MILP solvers over an inexact base ring; see \texttt{MixedIntegerLinearProgram.get_values()}.

\textbf{Note:} One can compute the core of a graph (with respect to homomorphism) with this method

\begin{verbatim}
>> from sage.all import *
>> g = graphs.CycleGraph(Integer(10))
>> mapping = g.has_homomorphism_to(g, core=True) # needs sage.numerical.mip
>> print("The size of the core is ".format(len(set(mapping.values())))) # needs sage.numerical.mip
The size of the core is 2
\end{verbatim}

\textbf{OUTPUT:}

This method returns \texttt{False} when the homomorphism does not exist, and returns the homomorphism otherwise as a dictionary associating a vertex of H to a vertex of G.

\textbf{EXAMPLES:}

Is Petersen’s graph 3-colorable:

\begin{verbatim}
>> from sage.all import *
>> P = graphs.PetersenGraph()
>> P.has_homomorphism_to(graphs.CompleteGraph(3)) is not False # needs sage.numerical.mip
True
\end{verbatim}

An odd cycle admits a homomorphism to a smaller odd cycle, but not to an even cycle:

\begin{verbatim}
>> g = graphs.CycleGraph(9)
>> g.has_homomorphism_to(graphs.CycleGraph(5)) is not False # needs sage.numerical.mip
True
>> g.has_homomorphism_to(graphs.CycleGraph(7)) is not False # needs sage.numerical.mip
True
>> g.has_homomorphism_to(graphs.CycleGraph(4)) is not False # needs sage.numerical.mip
False
\end{verbatim}
>>> from sage.all import *

>>> g = graphs.CycleGraph(Integer(9))

>>> g.has_homomorphism_to(graphs.CycleGraph(Integer(5))) is not False
True

>>> g.has_homomorphism_to(graphs.CycleGraph(Integer(7))) is not False
True

>>> g.has_homomorphism_to(graphs.CycleGraph(Integer(4))) is not False
False

needs sage.numerical.mip

\textbf{has_perfect_matching}(\textit{algorithm}, \textit{solver}='Edmonds', \textit{verbose}=None, \textit{integrality_tolerance}=0)

Return whether this graph has a perfect matching. INPUT:

- \textit{algorithm} – string (default: "Edmonds")
 - "Edmonds" uses Edmonds’ algorithm as implemented in NetworkX to find a matching of maximal cardinality, then check whether this cardinality is half the number of vertices of the graph.
 - "LP_matching" uses a Linear Program to find a matching of maximal cardinality, then check whether this cardinality is half the number of vertices of the graph.
 - "LP" uses a Linear Program formulation of the perfect matching problem: put a binary variable \(b[e] \) on each edge \(e \), and for each vertex \(v \), require that the sum of the values of the edges incident to \(v \) is 1.

- \textit{solver} – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \texttt{solve} of the class MixedIntegerLinearProgram.

- \textit{verbose} – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet (only useful when \textit{algorithm} == "LP_matching" or \textit{algorithm} == "LP")

- \textit{integrality_tolerance} – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT:

A boolean.

EXAMPLES:

\begin{verbatim}sage: graphs.PetersenGraph().has_perfect_matching() # needs networkx
True
sage: graphs.WheelGraph(6).has_perfect_matching() # needs networkx
True
sage: graphs.WheelGraph(5).has_perfect_matching() # needs networkx
False
sage: graphs.PetersenGraph().has_perfect_matching(algorithm="LP_matching") # needs sage.numerical.mip
True
sage: graphs.WheelGraph(6).has_perfect_matching(algorithm="LP_matching") # needs sage.numerical.mip
True
sage: graphs.WheelGraph(5).has_perfect_matching(algorithm="LP_matching")
False
\end{verbatim}
Graph theory

We can check if a graph has a perfect matching using the `has_perfect_matching` method. Here are some examples:

```python
sage: graphs.PetersenGraph().has_perfect_matching(algorithm="LP_matching")  # needs sage.numerical.mip
True
sage: graphs.WheelGraph(6).has_perfect_matching(algorithm="LP_matching")  # needs sage.numerical.mip
True
sage: graphs.WheelGraph(5).has_perfect_matching(algorithm="LP_matching")
False
```

We can also use `networkx` to calculate the hyperbolicity of the graph:

```python
>>> from sage.all import *
>>> graphs.PetersenGraph().has_perfect_matching()  # needs networkx
True
>>> graphs.WheelGraph(Integer(6)).has_perfect_matching()  # needs networkx
True
>>> graphs.WheelGraph(Integer(5)).has_perfect_matching()  # needs networkx
False
>>> graphs.PetersenGraph().has_perfect_matching(algorithm="LP_matching")  # needs sage.numerical.mip
True
>>> graphs.WheelGraph(Integer(6)).has_perfect_matching(algorithm="LP_matching")
True
>>> graphs.WheelGraph(Integer(5)).has_perfect_matching(algorithm="LP_matching")
False
```

The `hyperbolicity` method in SageMath is used to calculate the hyperbolicity of a graph. It returns the hyperbolicity of the graph or an approximation of this value.

The hyperbolicity of a graph has been defined by Gromov [Gro1987] as follows: Let a, b, c, d be vertices of the graph, let $S_1 = \text{dist}(a, b) + \text{dist}(b, c)$, $S_2 = \text{dist}(a, c) + \text{dist}(b, d)$, and $S_3 = \text{dist}(a, d) + \text{dist}(b, c)$, and let M_1 and M_2 be the two largest values among S_1, S_2, and S_3. We have $\text{hyp}(a, b, c, d) = |M_1 - M_2|$, and the hyperbolicity of the graph is the maximum over all possible 4-tuples (a, b, c, d) divided by 2. The worst case time complexity is in $O(n^4)$.

See the documentation of `sage.graphs.hyperbolicity` for more information.

INPUT:

- `G` – a connected Graph
- `algorithm` – (default: 'BCCM'); specifies the algorithm to use among:
 - 'basic' is an exhaustive algorithm considering all possible 4-tuples and so have time complexity in $O(n^4)$.

hyperbolicity *(G, algorithm='BCCM', approximation_factor=None, additive_gap=None, verbose=False)*

Return the hyperbolicity of the graph or an approximation of this value.
- 'CCL' is an exact algorithm proposed in [CCL2015]. It considers the 4-tuples in an ordering allowing to cut the search space as soon as a new lower bound is found (see the module’s documentation). This algorithm can be turned into a approximation algorithm.

- 'CCL+FA' or 'CCL+' uses the notion of far-apart pairs as proposed in [Sot2011] to significantly reduce the overall computation time of the 'CCL' algorithm.

- 'BCCM' is an exact algorithm proposed in [BCCM2015]. It improves 'CCL+FA' by cutting several 4-tuples (for more information, see the module’s documentation).

- 'dom' is an approximation with additive constant four. It computes the hyperbolicity of the vertices of a dominating set of the graph. This is sometimes slower than 'CCL' and sometimes faster. Try it to know if it is interesting for you. The additive_gap and approximation_factor parameters cannot be used in combination with this method and so are ignored.

- approximation_factor – (default: None) When the approximation factor is set to some value (larger than 1.0), the function stop computations as soon as the ratio between the upper bound and the best found solution is less than the approximation factor. When the approximation factor is 1.0, the problem is solved optimally. This parameter is used only when the chosen algorithm is 'CCL', 'CCL+FA', or 'BCCM'.

- additive_gap – (default: None) When sets to a positive number, the function stop computations as soon as the difference between the upper bound and the best found solution is less than additive gap. When the gap is 0.0, the problem is solved optimally. This parameter is used only when the chosen algorithm is 'CCL' or 'CCL+FA', or 'BCCM'.

- verbose – (default: False) is a boolean set to True to display some information during execution: new upper and lower bounds, etc.

OUTPUT:

This function returns the tuple (delta, certificate, delta_UB), where:

- delta – the hyperbolicity of the graph (half-integer value).

- certificate – is the list of the 4 vertices for which the maximum value has been computed, and so the hyperbolicity of the graph.

- delta_UB – is an upper bound for delta. When delta == delta_UB, the returned solution is optimal. Otherwise, the approximation factor if delta_UB/delta.

EXAMPLES:

Hyperbolicity of a 3 × 3 grid:

```
sage: from sage.graphs.hyperbolicity import hyperbolicity
sage: G = graphs.Grid2dGraph(3, 3)
sage: L,C,U = hyperbolicity(G, algorithm='BCCM'); L,sorted(C),U
(2, [(0, 0), (0, 2), (2, 0), (2, 2)], 2)
sage: L,C,U = hyperbolicity(G, algorithm='CCL'); L,sorted(C),U
(2, [(0, 0), (0, 2), (2, 0), (2, 2)], 2)
sage: L,C,U = hyperbolicity(G, algorithm='basic'); L,sorted(C),U
(2, [(0, 0), (0, 2), (2, 0), (2, 2)], 2)
```

```
>>> from sage.all import *
>>> from sage.graphs.hyperbolicity import hyperbolicity
>>> G = graphs.Grid2dGraph(Integer(3), Integer(3))
>>> L,C,U = hyperbolicity(G, algorithm='BCCM'); L,sorted(C),U
(2, [(0, 0), (0, 2), (2, 0), (2, 2)], 2)
>>> L,C,U = hyperbolicity(G, algorithm='CCL'); L,sorted(C),U
(2, [(0, 0), (0, 2), (2, 0), (2, 2)], 2)
```

(continues on next page)
Hyperbolicity of a PetersenGraph:

```python
sage: from sage.graphs.hyperbolicity import hyperbolicity
sage: G = graphs.PetersenGraph()
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='BCCM'); L, sorted(C), U
(1/2, [6, 7, 8, 9], 1/2)
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='CCL'); L, sorted(C), U
(1/2, [0, 1, 2, 3], 1/2)
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='CCL+'); L, sorted(C), U
(1/2, [0, 1, 2, 3], 1/2)
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='CCL+FA'); L, sorted(C), U
(1/2, [0, 1, 2, 3], 1/2)
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='basic'); L, sorted(C), U
(1/2, [0, 1, 2, 3], 1/2)
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='dom'); L, U
(0, 1)
```

```python
>>> sorted(C)  # random
[0, 1, 2, 6]
```

Asking for an approximation in a grid graph:

```python
sage: from sage.graphs.hyperbolicity import hyperbolicity
sage: G = graphs.Grid2dGraph(2, 10)
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='CCL', approximation_factor=1.5); L, U
(1, 3/2)
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='CCL+', approximation_factor=1.5); L, U
(1, 1)
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='CCL', approximation_factor=4); L, U
(1, 4)
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='CCL', additive_gap=2); L, U
(1, 3)
```

```python
sage: L, C, U = hyperbolicity(G, algorithm='dom'); L, U
(1, 5)
```
Graph Theory, Release 10.4

>>> from sage.all import *
>>> from sage.graphs.hyperbolicity import hyperbolicity
>>> G = graphs.Grid2dGraph(Integer(2), Integer(10))
>>> L,C,U = hyperbolicity(G, algorithm='CCL', approximation_factor=RealNumber('1.5')); L,U
(1, 3/2)
>>> L,C,U = hyperbolicity(G, algorithm='CCL+', approximation_factor=RealNumber('1.5')); L,U
(1, 1)
>>> L,C,U = hyperbolicity(G, algorithm='CCL', approximation_factor=Integer(4)); L,U
(1, 4)
>>> L,C,U = hyperbolicity(G, algorithm='CCL', additive_gap=Integer(2)); L,U
(1, 3)
>>> L,C,U = hyperbolicity(G, algorithm='dom'); L,U
(1, 5)

Asking for an approximation in a cycle graph:

sage: from sage.graphs.hyperbolicity import hyperbolicity
sage: G = graphs.CycleGraph(10)
sage: L,C,U = hyperbolicity(G, algorithm='CCL', approximation_factor=1.5); L,U
(2, 5/2)
sage: L,C,U = hyperbolicity(G, algorithm='CCL+FA', approximation_factor=1.5); L,U
(2, 5/2)
sage: L,C,U = hyperbolicity(G, algorithm='CCL+FA', additive_gap=Integer(1)); L,U
(2, 5/2)

Comparison of results:

sage: from sage.graphs.hyperbolicity import hyperbolicity
sage: for i in range(10): # long time
... # needs networkx
... G = graphs.RandomBarabasiAlbert(100,2)
... d1,_,_ = hyperbolicity(G, algorithm='basic')
... d2,_,_ = hyperbolicity(G, algorithm='CCL')
... d3,_,_ = hyperbolicity(G, algorithm='CCL+')
... d4,_,_ = hyperbolicity(G, algorithm='CCL+FA')
... d5,_,_ = hyperbolicity(G, algorithm='BCCM')
... u3,_,u3 = hyperbolicity(G, approximation_factor=2)
... if (not d1==d2==d3==d4==d5) or 13>d1 or u3<d1:
... print("That's not good!")

(continues on next page)
sage: import random
sage: random.seed()
sage: for i in range(10): # long time
 n = random.randint(2, 20)
 m = random.randint(0, n*(n-1) / 2)
 G = graphs.RandomGNM(n, m)
 for cc in G.connected_components_subgraphs():
 d1,_,_ = hyperbolicity(cc, algorithm='basic')
 d2,_,_ = hyperbolicity(cc, algorithm='CCL')
 d3,_,_ = hyperbolicity(cc, algorithm='CCL+')
 d4,_,_ = hyperbolicity(cc, algorithm='CCL+FA')
 d5,_,_ = hyperbolicity(cc, algorithm='BCCM')
 l3,_,u3 = hyperbolicity(cc, approximation_factor=2)
 if (not d1==d2==d3==d4==d5) or l3>d1 or u3<d1:
 print("Error in graph ", cc.edges(sort=True))

The hyperbolicity of a graph is the maximum value over all its biconnected components:
>>> from sage.all import *
>>> from sage.graphs.hyperbolicity import hyperbolicity
>>> G = graphs.PetersenGraph() * Integer(2)
>>> G.add_edge(Integer(0), Integer(11))
>>> L,C,U = hyperbolicity(G); L,sorted(C),U
(1/2, [6, 7, 8, 9], 1/2)

ihara_zeta_function_inverse()

Compute the inverse of the Ihara zeta function of the graph.

This is a polynomial in one variable with integer coefficients. The Ihara zeta function itself is the inverse of this polynomial.

See the Wikipedia article Ihara zeta function for more information.

ALGORITHM:

This is computed here as the (reversed) characteristic polynomial of a square matrix of size twice the number of edges, related to the adjacency matrix of the line graph, see for example Proposition 9 in [SS2008] and Def. 4.1 in [Ter2011].

The graph is first replaced by its 2-core, as this does not change the Ihara zeta function.

EXAMPLES:

```
sage: G = graphs.CompleteGraph(4)
sage: factor(G.ihara_zeta_function_inverse())
(2*t - 1) * (t + 1)^2 * (t - 1)^3 * (2*t^2 + t + 1)^3

sage: G = graphs.CompleteGraph(5)
sage: factor(G.ihara_zeta_function_inverse())
(-1) * (3*t - 1) * (t + 1)^5 * (t - 1)^6 * (3*t^2 + t + 1)^4

sage: G = graphs.PetersenGraph()
sage: factor(G.ihara_zeta_function_inverse())
(-1) * (2*t - 1) * (t + 1)^5 * (t - 1)^6 * (2*t^2 + 2*t + 1)^4
* (2*t^2 - t + 1)^5

sage: G = graphs.RandomTree(10)
sage: G.ihara_zeta_function_inverse()
1
```

```Python
>>> from sage.all import *
>>> G = graphs.CompleteGraph(Integer(4))
>>> factor(G.ihara_zeta_function_inverse())
(2*t - 1) * (t + 1)^2 * (t - 1)^3 * (2*t^2 + t + 1)^3

>>> G = graphs.CompleteGraph(Integer(5))
>>> factor(G.ihara_zeta_function_inverse())
(-1) * (3*t - 1) * (t + 1)^5 * (t - 1)^6 * (3*t^2 + t + 1)^4

>>> G = graphs.PetersenGraph()
```
>>> factor(G.ihara_zeta_function_inverse()) # ...
˓→needs sage.libs.pari sage.modules
(-1) * (2*t - 1) * (t + 1)^5 * (t - 1)^6 * (2*t^2 + 2*t + 1)^4
* (2*t^2 - t + 1)^5

>>> G = graphs.RandomTree(Integer(10))
>>> G.ihara_zeta_function_inverse() # ...
˓→needs sage.libs.pari sage.modules
1

REFERENCES:

[HST2001]

independent_set (algorithm, value_only='Cliquer', reduction_rules=False, solver=True, verbose=None,
integrality_tolerance=0)

Return a maximum independent set.

An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an
independent set of maximum cardinality. It induces an empty subgraph.

Equivalently, an independent set is defined as the complement of a vertex cover.

For more information, see the Wikipedia article Independent_set_(graph_theory) and the Wikipedia article
Vertex_cover.

INPUT:

• algorithm – the algorithm to be used
 – If algorithm = "Cliquer" (default), the problem is solved using Cliquer [NO2003].
 (see the Cliquer modules)
 – If algorithm = "MILP", the problem is solved through a Mixed Integer Linear Program.
 (see MixedIntegerLinearProgram)
• If algorithm = "mcqd", uses the MCQD solver (http://www.sicmm.org/~konc/maxclique/). Note
 that the MCQD package must be installed.
• value_only – boolean (default: False); if set to True, only the size of a maximum independent
 set is returned. Otherwise, a maximum independent set is returned as a list of vertices.
• reduction_rules – (default: True); specify if the reductions rules from kernelization must be
 applied as pre-processing or not. See [ACFLSS04] for more details. Note that depending on the instance,
 it might be faster to disable reduction rules.
• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be
 used. If set to None, the default one is used. For more information on MILP solvers and which default
 solver is used, see the method solve of the class MixedIntegerLinearProgram.
• verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring;
 see MixedIntegerLinearProgram.get_values().

Note: While Cliquer/MCAD are usually (and by far) the most efficient implementations, the MILP formulation
sometimes proves faster on very "symmetrical" graphs.

1.2. Undirected graphs 553
EXAMPLES:

Using Cliquer:

```python
sage: C = graphs.PetersenGraph()
sage: C.independent_set()
[0, 3, 6, 7]
```

```python
>>> from sage.all import *
>>> C = graphs.PetersenGraph()
>>> C.independent_set()
[0, 3, 6, 7]
```

As a linear program:

```python
sage: C = graphs.PetersenGraph()
sage: len(C.independent_set(algorithm="MILP"))  # needs sage.numerical.mip
4
```

```python
>>> from sage.all import *
>>> C = graphs.PetersenGraph()
>>> len(C.independent_set(algorithm="MILP"))  # needs sage.numerical.mip
4
```
independent_set_of_representatives *(family, solver=None, verbose=0, integrality_tolerance=0)*

Return an independent set of representatives.

Given a graph G and a family $F = \{F_i : i \in [1, \ldots, k]\}$ of subsets of G.vertices(sort=False), an Independent Set of Representatives (ISR) is an assignment of a vertex $v_i \in F_i$ to each set F_i such that $v_i \neq v_j$ if $i < j$ (they are representatives) and the set $\bigcup_i v_i$ is an independent set in G.

It generalizes, for example, graph coloring and graph list coloring.

(See [ABZ2007] for more information.)

INPUT:

- **family** – A list of lists defining the family F (actually, a Family of subsets of G.vertices(sort=False)).
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT:

- A list whose ith element is the representative of the ith element of the family list. If there is no ISR, None is returned.

EXAMPLES:

For a bipartite graph missing one edge, the solution is as expected:

```python
sage: g = graphs.CompleteBipartiteGraph(3,3)
sage: g.delete_edge(1,4)
sage: g.independent_set_of_representatives([[0,1,2],[3,4,5]])
\rightarrow needs sage.numerical.mip
[1, 4]
```

```python
from sage.all import *
>>> g = graphs.CompleteBipartiteGraph(Integer(3),Integer(3))
>>> g.delete_edge(Integer(1),Integer(4))
>>> g.independent_set_of_representatives([[Integer(0),Integer(1),Integer(2)],
[Integer(3),Integer(4),Integer(5)]])
\rightarrow needs sage.numerical.mip
[1, 4]
```

The Petersen Graph is 3-colorable, which can be expressed as an independent set of representatives problem: take 3 disjoint copies of the Petersen Graph, each one representing one color. Then take as a partition of the set of vertices the family defined by the three copies of each vertex. The ISR of such a family defines a 3-coloring:

```python
sage: # needs sage.numerical.mip
sage: g = 3 * graphs.PetersenGraph()
\rightarrow needs sage.numerical.mip
sage: n = g.order() / 3
sage: f = [[i, i + n, i + 2*n] for i in range(n)]
\rightarrow needs sage.numerical.mip
sage: isr = g.independent_set_of_representatives(f)
\rightarrow needs sage.numerical.mip
sage: c = [integer_floor(i / n) for i in isr]
\rightarrow needs sage.numerical.mip
sage: color_classes = [[] , [] , []]
\rightarrow needs sage.numerical.mip
sage: for v, i in enumerate(c):
\rightarrow needs sage.numerical.mip
```

(continues on next page)
is_antipodal()
Check whether this graph is antipodal.

A graph G of diameter d is said to be antipodal if its distance-d graph is a disjoint union of cliques.

EXAMPLES:

```
sage: G = graphs.JohnsonGraph(10, 5)
sage: G.is_antipodal()
True
sage: H = G.folded_graph()
sage: H.is_antipodal()
False
```

REFERENCES:

is_apex()
Test if the graph is apex.

A graph is apex if it can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph, and a graph may have more than one apex. For instance, in the minimal nonplanar graphs K_5 or $K_{3,3}$, every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex.
to remove. If the graph is not connected, we say that it is apex if it has at most one non planar connected component and that this component is apex. See the Wikipedia article Apex_graph for more information.

See also:

- `apex_vertices()`
- `is_planar()`

EXAMPLES:

K_5 and $K_{3,3}$ are apex graphs, and each of their vertices is an apex:

```python
sage: G = graphs.CompleteGraph(5)
sage: G.is_apex()
True
sage: G = graphs.CompleteBipartiteGraph(3,3)
sage: G.is_apex()
True
```

The Petersen graph is not apex:

```python
sage: G = graphs.PetersenGraph()
sage: G.is_apex()
False
```

A graph is apex if all its connected components are apex, but at most one is not planar:

```python
sage: M = graphs.Grid2dGraph(3,3)
sage: K5 = graphs.CompleteGraph(5)
sage: (M+K5).is_apex()
True
sage: (M+K5+K5).is_apex()
False
```

`is_arc_transitive()`

Check if self is an arc-transitive graph

1.2. Undirected graphs
A graph is arc-transitive if its automorphism group acts transitively on its pairs of adjacent vertices.

Equivalently, if there exists for any pair of edges $uv, u'v' \in E(G)$ an automorphism ϕ_1 of G such that $\phi_1(u) = u'$ and $\phi_1(v) = v'$, as well as another automorphism ϕ_2 of G such that $\phi_2(u) = v'$ and $\phi_2(v) = u'$.

See also:

- Wikipedia article arc-transitive_graph
- `is_edge_transitive()`
- `is_half_transitive()`
- `is_semi_symmetric()`

EXAMPLES:

```python
sage: P = graphs.PetersenGraph()
sage: P.is_arc_transitive()  # needs sage.libs.gap
True
sage: G = graphs.GrayGraph()  # needs networkx
sage: G.is.arc_transitive()  # needs networkx sage.libs.gap
False
```

```python
>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> P.is_arc_transitive()  # needs sage.libs.gap
True
>>> G = graphs.GrayGraph()  # needs networkx
>>> G.is_arc_transitive()  # needs networkx sage.libs.gap
False
```

is_asteroidal_triple_free($G, \text{certificate}=False$)

Test if the input graph is asteroidal triple-free

An independent set of three vertices such that each pair is joined by a path that avoids the neighborhood of the third one is called an asteroidal triple. A graph is asteroidal triple-free (AT-free) if it contains no asteroidal triples. See the module’s documentation for more details.

This method returns `True` is the graph is AT-free and `False` otherwise.

INPUT:

- G – a Graph
- `certificate` – boolean (default: `False`); by default, this method returns `True` if the graph is asteroidal triple-free and `False` otherwise. When `certificate=True`, this method returns in addition a list of three vertices forming an asteroidal triple if such a triple is found, and the empty list otherwise.

EXAMPLES:

The complete graph is AT-free, as well as its line graph:
sage: G = graphs.CompleteGraph(5)
sage: G.is_asteroidal_triple_free()
True
sage: G.is_asteroidal_triple_free(certificate=True)
(True, [])
sage: LG = G.line_graph()
sage: LG.is_asteroidal_triple_free()
True
sage: LLG = LG.line_graph()
sage: LLG.is_asteroidal_triple_free()
False

The PetersenGraph is not AT-free:

sage: from sage.graphs.asteroidal_triples import *
sage: G = graphs.PetersenGraph()
sage: G.is_asteroidal_triple_free()
False
sage: G.is_asteroidal_triple_free(certificate=True)
(False, [0, 2, 6])

is_biconnected()

Test if the graph is biconnected.

A biconnected graph is a connected graph on two or more vertices that is not broken into disconnected pieces by deleting any single vertex.

See also:

- is_connected()
- blocks_and_cut_vertices()
- blocks_and_cuts_tree()
- Wikipedia article Biconnected_graph

1.2. Undirected graphs
is_block_graph()

Return whether this graph is a block graph.

A block graph is a connected graph in which every biconnected component (block) is a clique.

See also:

- Wikipedia article Block_graph for more details on these graphs
- RandomBlockGraph() – generator of random block graphs
- blocks_and_cut_vertices()
- blocks_and_cuts_tree()

EXAMPLES:

```python
sage: G = graphs.RandomBlockGraph(6, 2, kmax=4)
sage: G.is_block_graph()
True
```

```python
>>> from sage.all import *
>>> G = graphs.RandomBlockGraph(6, 2, kmax=Integer(4))
>>> G.is_block_graph()
True
```
Graph Theory, Release 10.4

>>> from sage.graphs.isgci import graph_classes

True

>>> G in graph_classes.Block
True

>>> graphs.CompleteGraph(Integer(4)).is_block_graph()
True

>>> graphs.RandomTree(Integer(6)).is_block_graph()
True

>>> graphs.PetersenGraph().is_block_graph()
False

>>> Graph(Integer(4)).is_block_graph()
False

is_cactus()

Check whether the graph is cactus graph.

A graph is called cactus graph if it is connected and every pair of simple cycles have at most one common vertex.

There are other definitions, see the Wikipedia article Cactus_graph.

EXAMPLES:

sage: g = Graph({1: [2], 2: [3, 4], 3: [4, 5, 6, 7], 8: [3, 5], 9: [6, 7]})
sage: g.is_cactus()
True

sage: c6 = graphs.CycleGraph(6)
sage: naphthalene = c6 + c6
sage: naphthalene.is_cactus() # Not connected
False

sage: naphthalene.merge_vertices([0, 6])
sage: naphthalene.is_cactus()
True

sage: naphthalene.merge_vertices([1, 7])
sage: naphthalene.is_cactus()
False

>>> from sage.all import *

>>> g = Graph({Integer(1): [Integer(2)], Integer(2): [Integer(3), Integer(4)],
 Integer(3): [Integer(4), Integer(5), Integer(6), Integer(7)],
 Integer(8): [Integer(3), Integer(5)], Integer(9): [Integer(6), Integer(7)]})

1.2. Undirected graphs

is_cartesian_product (g, certificate=False, relabeling=False)
Test whether the graph is a Cartesian product.

INPUT:

- `certificate` - boolean (default: False); if `certificate = False` (default) the method only returns `True` or `False` answers. If `certificate = True`, the `True` answers are replaced by the list of the factors of the graph.
- `relabeling` - boolean (default: False); if `relabeling = True` (implies `certificate = True`), the method also returns a dictionary associating to each vertex its natural coordinates as a vertex of a product graph. If g is not a Cartesian product, `None` is returned instead.

See also:

- `sage.graphs.generic_graph.GenericGraph.cartesian_product()`
- `graph_products` - a module on graph products.

Note: This algorithm may run faster whenever the graph’s vertices are integers (see `relabel()`). Give it a try if it is too slow!

EXAMPLES:

The Petersen graph is prime:

```
sage: from sage.graphs.graph_decompositions.graph_products import is_cartesian_product
sage: g = graphs.PetersenGraph()
sage: is_cartesian_product(g)
False
```

```
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.graph_products import is_cartesian_product
>>> g = graphs.PetersenGraph()
>>> is_cartesian_product(g)
False
```

A 2d grid is the product of paths:

```
sage: g = graphs.Grid2dGraph(5, 5)
sage: p1, p2 = is_cartesian_product(g, certificate = True)
sage: p1.is_isomorphic(graphs.PathGraph(5))
True
sage: p2.is_isomorphic(graphs.PathGraph(5))
True
```

```
>>> from sage.all import *
>>> g = graphs.Grid2dGraph(Integer(5), Integer(5))
>>> p1, p2 = is_cartesian_product(g, certificate = True)
>>> p1.is_isomorphic(graphs.PathGraph(Integer(5)))
True
>>> p2.is_isomorphic(graphs.PathGraph(Integer(5)))
True
```

Forgetting the graph’s labels, then finding them back:
sage: g.relabel()
sage: b,D = g.is_cartesian_product(g, relabeling=True)
sage: b
True
sage: D
random isomorphism
{0: (20, 0), 1: (20, 1), 2: (20, 2), 3: (20, 3), 4: (20, 4),
 5: (15, 0), 6: (15, 1), 7: (15, 2), 8: (15, 3), 9: (15, 4),
 10: (10, 0), 11: (10, 1), 12: (10, 2), 13: (10, 3), 14: (10, 4),
 15: (5, 0), 16: (5, 1), 17: (5, 2), 18: (5, 3), 19: (5, 4),
 20: (0, 0), 21: (0, 1), 22: (0, 2), 23: (0, 3), 24: (0, 4)}

And of course, we find the factors back when we build a graph from a product:

sage: g = graphs.PetersenGraph().cartesian_product(graphs.CycleGraph(3))
sage: g1, g2 = is_cartesian_product(g, certificate=True)
sage: any(x.is_isomorphic(graphs.PetersenGraph()) for x in [g1,g2])
True
sage: any(x.is_isomorphic(graphs.CycleGraph(Integer(3))) for x in [g1,g2])
True

is_circumscribable(solver='ppl', verbose=0)

Test whether the graph is the graph of a circumscribed polyhedron.

A polyhedron is circumscribed if all of its facets are tangent to a sphere. By a theorem of Rivin ([HRS1993]),
this can be checked by solving a linear program that assigns weights between 0 and 1/2 on each edge of the
polyhedron, so that the weights on any face add to exactly one and the weights on any non-facial cycle add to
more than one. If and only if this can be done, the polyhedron can be circumscribed.

INPUT:

- solver – (default: "ppl"): specify a Linear Program (LP) solver to be used. If set to None, the
default one is used. For more information on LP solvers and which default solver is used, see the method
 solve of the class MixedIntegerLinearProgram.

- verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:
sage: C = graphs.CubeGraph(3)
sage: C.is_circumscribable() # needs sage.numerical.mip
True

sage: O = graphs.OctahedralGraph()
sage: O.is_circumscribable() # needs sage.numerical.mip
True

sage: TT = polytopes.truncated_tetrahedron().graph()
sage: TT.is_circumscribable() # needs sage.geometry.polyhedron, sage.numerical.mip
False

Stellating in a face of the octahedral graph is not circumscribable:

sage: f = set(flatten(choice(O.faces())))
sage: O.add_edges([[6, i] for i in f])
sage: O.is_circumscribable() # needs sage.numerical.mip
False

See also:

- is_polyhedral()
- is_inscribable()

Todo: Allow the use of other, inexact but faster solvers.
is_cograph()

Check whether the graph is cograph.

A cograph is defined recursively: the single-vertex graph is cograph, complement of cograph is cograph, and disjoint union of two cographs is cograph. There are many other characterizations, see the Wikipedia article Cograph.

EXAMPLES:

```python
sage: graphs.HouseXGraph().is_cograph()
True
```

```python
sage: graphs.HouseGraph().is_cograph()
False
```

```python
>>> from sage.all import *
>>> graphs.HouseXGraph().is_cograph()
True
```

```python
>>> graphs.HouseGraph().is_cograph()
False
```

Todo: Implement faster recognition algorithm, as for instance the linear time recognition algorithm using LexBFS proposed in [Bre2008].

is_comparability

Tests whether the graph is a comparability graph.

INPUT:

- **algorithm** – choose the implementation used to do the test.
 - "greedy" – a greedy algorithm (see the documentation of the comparability module).
 - "MILP" – a Mixed Integer Linear Program formulation of the problem. Beware, for this implementation is unable to return negative certificates! When certificate = True, negative certificates are always equal to None. True certificates are valid, though.

- **certificate** (boolean) – whether to return a certificate. Yes-answers the certificate is a transitive orientation of \(G\), and a no certificates is an odd cycle of sequentially forcing edges.

- **check** (boolean) – whether to check that the yes-certificates are indeed transitive. As it is very quick compared to the rest of the operation, it is enabled by default.

- **solver** – (default: None); Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve() of the class MixedIntegerLinearProgram.

- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

```python
sage: from sage.graphs.comparability import is_comparability
sage: g = graphs.PetersenGraph()
sage: is_comparability(g)
False
```

```python
sage: is_comparability(graphs.CompleteGraph(5), certificate=True)
(True, Digraph on 5 vertices)
```

1.2. Undirected graphs 565
```python
>>> from sage.all import *
>>> from sage.graphs.comparability import is_comparability

>>> g = graphs.PetersenGraph()
>>> is_comparability(g)
False
>>> is_comparability(graphs.CompleteGraph(Integer(5)), certificate=True)

(True, Digraph on 5 vertices)
```

is_directed()

Since graph is undirected, returns False.

EXAMPLES:

```python
sage: Graph().is_directed()
False
```

```python
>>> from sage.all import *

>>> Graph().is_directed()
False
```

is_distance_regular(G, parameters=False)

Test if the graph is distance-regular

A graph G is distance-regular if for any integers j, k the value of $|\{x : d_G(x, u) = j, x \in V(G)\} \cap \{y : d_G(y, v) = j, y \in V(G)\}|$ is constant for any two vertices $u, v \in V(G)$ at distance i from each other. In particular G is regular, of degree b_0 (see below), as one can take $u = v$.

Equivalently a graph is distance-regular if there exist integers b_i, c_i such that for any two vertices u, v at distance i we have

- $b_i = |\{x : d_G(x, u) = i + 1, x \in V(G)\} \cap N_G(v)|$, $0 \leq i \leq d - 1$
- $c_i = |\{x : d_G(x, u) = i - 1, x \in V(G)\} \cap N_G(v)|$, $1 \leq i \leq d$,

where d is the diameter of the graph. For more information on distance-regular graphs, see the Wikipedia article Distance-regular_graph.

INPUT:

- `parameters` – boolean (default: False); if set to True, the function returns the pair (b, c) of lists of integers instead of a boolean answer (see the definition above)

See also:

- `is_regular()`
- `is_strongly_regular()`

EXAMPLES:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_distance_regular()

True
sage: g.is_distance_regular(parameters = True)

([3, 2, None], [None, 1, 1])
```

```python
>>> from sage.all import *

>>> g = graphs.PetersenGraph()
>>> g.is_distance_regular()

(continues on next page)
```
Cube graphs, which are not strongly regular, are a bit more interesting:

\[g \text{.is_distance_regular(parameters = True)}\]

\[
([3, 2, None], [None, 1, 1])
\]

Disconnected graph:

\[g \text{.is_distance_regular()}\]

\[True\]

is_dominating \((G, \text{dom, focus=None})\)

Check whether \(\text{dom}\) is a dominating set of \(G\).

We say that a set \(D\) of vertices of a graph \(G\) dominates a set \(S\) if every vertex of \(S\) either belongs to \(D\) or is adjacent to a vertex of \(D\). Also, \(D\) is a dominating set of \(G\) if it dominates \(V(G)\).

INPUT:

- \(\text{dom}\) – iterable of vertices of \(G\); the vertices of the supposed dominating set.
- \(\text{focus}\) – iterable of vertices of \(G\) (default: None); if specified, this method checks instead if \(\text{dom}\) dominates the vertices in focus.

EXAMPLES:

\[g = \text{graphs.CycleGraph(5)}\]
\[g\text{.is_dominating([0,1], [4, 2])}\]

\[True\]

\[g\text{.is_dominating([0,1])}\]

\[False\]
is_edge_transitive()

Check if self is an edge transitive graph.

A graph is edge-transitive if its automorphism group acts transitively on its edge set.

Equivalently, if there exists for any pair of edges \(uv, u'v' \) in \(E(G) \) an automorphism \(\phi \) of \(G \) such that \(\phi(uv) = u'v' \) (note this does not necessarily mean that \(\phi(u) = u' \) and \(\phi(v) = v' \)).

See also:

- Wikipedia article Edge-transitive_graph
- is_arc_transitive()
- is_half_transitive()
- is_semi_symmetric()

EXAMPLES:

```python
sage: P = graphs.PetersenGraph()
sage: P.is_edge_transitive()  # needs sage.libs.gap
True
sage: C = graphs.CubeGraph(3)
sage: C.is_edge_transitive()  # needs sage.libs.gap
True
sage: G = graphs.GrayGraph()
# needs networkx
sage: G.is_edge_transitive()  # needs networkx sage.libs.gap
True
sage: P = graphs.PathGraph(4)
sage: P.is_edge_transitive()  # needs sage.libs.gap
False
```

```python
>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> P.is_edge_transitive()  # needs sage.libs.gap
True
>>> C = graphs.CubeGraph(Integer(3))
>>> C.is_edge_transitive()  # needs sage.libs.gap
True
>>> G = graphs.GrayGraph()  # needs networkx
>>> G.is_edge_transitive()  # needs networkx sage.libs.gap
True
>>> P = graphs.PathGraph(Integer(4))
>>> P.is_edge_transitive()  # needs sage.libs.gap
False
```

is_even_hole_free *(certificate=False)*

Tests whether self contains an induced even hole.
A Hole is a cycle of length at least 4 (included). It is said to be even (resp. odd) if its length is even (resp. odd).

Even-hole-free graphs always contain a bisimplicial vertex, which ensures that their chromatic number is at most twice their clique number [ACHRS2008].

INPUT:

- `certificate` – boolean (default: False); when `certificate = False`, this method only returns `True` or `False`. If `certificate = True`, the subgraph found is returned instead of `False`.

EXAMPLES:

Is the Petersen Graph even-hole-free

```
sage: g = graphs.PetersenGraph()
sage: g.is_even_hole_free()  # needs sage.modules
False
```

As any chordal graph is hole-free, interval graphs behave the same way:

```
sage: g = graphs.RandomIntervalGraph(20)
sage: g.is_even_hole_free()  # needs sage.modules
True
```

It is clear, though, that a random Bipartite Graph which is not a forest has an even hole:

```
sage: g = graphs.RandomBipartite(10, 10, .5)  # needs numpy
sage: g.is_even_hole_free() and not g.is_forest()  # needs numpy sage.modules
False
```

We can check the certificate returned is indeed an even cycle:
Graph Theory, Release 10.4

```
sage: if not g.is_forest():  # Needs numpy sage.modules
.....:     cycle = g.is_even_hole_free(certificate=True)
.....:     if cycle.order() % 2 == 1:
.....:         print("Error !")
.....:     if not cycle.is_isomorphic(
.....:         graphs.CycleGraph(cycle.order())):
.....:         print("Error !")
....
sage: print("Everything is Fine !")
Everything is Fine !
```

```
>>> from sage.all import *
>>> if not g.is_forest():  # Needs numpy sage.modules
...     cycle = g.is_even_hole_free(certificate=True)
...     if cycle.order() % Integer(2) == Integer(1):
...         print("Error !")
...     if not cycle.is_isomorphic(
...         graphs.CycleGraph(cycle.order())):
...         print("Error !")
...
>>> print("Everything is Fine !")
Everything is Fine !
```

is_factor_critical *(matching, algorithm=None, solver='Edmonds', verbose=None, integrality_tolerance=0)*

Check whether this graph is factor-critical.

A graph of order \(n\) is factor-critical if every subgraph of \(n - 1\) vertices have a perfect matching, hence \(n\) must be odd. See Wikipedia article Factor-critical graph for more details.

This method implements the algorithm proposed in [LR2004] and we assume that a graph of order one is factor-critical. The time complexity of the algorithm is linear if a near perfect matching is given as input (i.e., a matching such that all vertices but one are incident to an edge of the matching). Otherwise, the time complexity is dominated by the time needed to compute a maximum matching of the graph.

INPUT:

- **matching** – (default: None); a near perfect matching of the graph, that is a matching such that all vertices of the graph but one are incident to an edge of the matching. It can be given using any valid input format of `Graph`

 If set to None, a matching is computed using the other parameters.

- **algorithm** – string (default: Edmonds); the algorithm to use to compute a maximum matching of the graph among

 - "Edmonds" selects Edmonds’ algorithm as implemented in NetworkX
 - "LP" uses a Linear Program formulation of the matching problem

- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

- **verbose** – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet (only useful when algorithm == "LP")
• `integrality_tolerance` – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

EXAMPLES:

Odd length cycles and odd cliques of order at least 3 are factor-critical graphs:

```
sage: [graphs.CycleGraph(2*i + 1).is_factor_critical() for i in range(5)]  # needs networkx
[True, True, True, True, True]
sage: [graphs.CompleteGraph(2*i + 1).is_factor_critical() for i in range(5)]  # needs networkx
[True, True, True, True, True]
```

More generally, every Hamiltonian graph with an odd number of vertices is factor-critical:

```
sage: G = graphs.RandomGNP(15, .2)
sage: G.add_path([0..14])
sage: G.add_edge(14, 0)
sage: G.is_hamiltonian()
True
sage: G.is_factor_critical()  # needs networkx
True
```

```
>>> from sage.all import *

>>> [graphs.CycleGraph(Integer(2)*i + Integer(1)).is_factor_critical() for i in range(Integer(5))]  # needs networkx
[True, True, True, True, True]
```

Friendship graphs are non-Hamiltonian factor-critical graphs:

```
sage: [graphs.FriendshipGraph(i).is_factor_critical() for i in range(5)]  # needs networkx
[True, True, True, True, True]
```

```
>>> from sage.all import *

>>> [graphs.FriendshipGraph(i).is_factor_critical() for i in range(Integer(5))]  # needs networkx
[True, True, True, True, True]
```

Bipartite graphs are not factor-critical:
GraphTheory, Release 10.4

```python
sage: G = graphs.RandomBipartite(randint(1, 10), randint(1, 10), .5)  # needs numpy
sage: G.is_factor_critical()  # needs numpy
False

>>> from sage.all import *
>>> G = graphs.RandomBipartite(randint(Integer(1), Integer(10)),
randint(Integer(1), Integer(10)), RealNumber('0.5'))  # needs numpy
>>> G.is_factor_critical()  # needs numpy
False

Graphs with even order are not factor critical:

```python
sage: G = graphs.RandomGNP(10, .5)
sage: G.is_factor_critical()
False

>>> from sage.all import *
>>> G = graphs.RandomGNP(Integer(10), RealNumber('.5'))
>>> G.is_factor_critical()
False
```

One can specify a matching:

```python
sage: F = graphs.FriendshipGraph(4)
sage: M = F.matching() # needs networkx
sage: F.is_factor_critical(matching=M) # needs networkx
True
sage: F.is_factor_critical(matching=Graph(M)) # needs networkx
True
```

```python
>>> from sage.all import *
>>> F = graphs.FriendshipGraph(Integer(4))
>>> M = F.matching() # needs networkx
>>> F.is_factor_critical(matching=M) # needs networkx
True
>>> F.is_factor_critical(matching=Graph(M)) # needs networkx
True
```

**is_forest** (certificate=False, output='vertex')

Tests if the graph is a forest, i.e. a disjoint union of trees.

**INPUT:**

- certificate – boolean (default: False); whether to return a certificate. The method only returns boolean answers when certificate = False (default). When it is set to True, it either answers (True, None) when the graph is a forest or (False, cycle) when it contains a cycle.
- output – either 'vertex' (default) or 'edge'; whether the certificate is given as a list of vertices (output = 'vertex') or a list of edges (output = 'edge').

572 Chapter 1. Graph objects and methods
**EXAMPLES:**

```python
sage: seven_acre_wood = sum(graphs.trees(7), Graph())
sage: seven_acre_wood.is_forest()
True

>>> from sage.all import *
>>> seven_acre_wood = sum(graphs.trees(Integer(7)), Graph())
>>> seven_acre_wood.is_forest()
True
```

With certificates:

```python
sage: g = graphs.RandomTree(30)
sage: g.is_forest(certificate=True)
(True, None)
sage: (2*g + graphs.PetersenGraph() + g).is_forest(certificate=True)
(False, [64, 69, 67, 65, 60])
```

**is_half_transitive()**

Check if self is a half-transitive graph.

A graph is half-transitive if it is both vertex and edge transitive but not arc-transitive.

See also:

- Wikipedia article half-transitive_graph
- `is_edge_transitive()`
- `is_arc_transitive()`
- `is_semi_symmetric()`

**EXAMPLES:**

The Petersen Graph is not half-transitive:

```python
sage: P = graphs.PetersenGraph()
sage: P.is_half_transitive() # needs sage.libs.gap
False
```

```python
>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> P.is_half_transitive() # needs sage.libs.gap
False
```

The smallest half-transitive graph is the Holt Graph:
**is_inscribable**(solver='ppl', verbose=0)  
Test whether the graph is the graph of an inscribed polyhedron.

A polyhedron is inscribed if all of its vertices are on a sphere. This is dual to the notion of circumscribed polyhedron: A Polyhedron is inscribed if and only if its polar dual is circumscribed and hence a graph is inscribable if and only if its planar dual is circumscribable.

**INPUT:**

- **solver** – (default: "ppl"); specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

**EXAMPLES:**

```python
sage: H = graphs.HerschelGraph()
sage: H.is_inscribable() # long time (> 1 sec) #-- needs sage.numerical.mip
False
sage: H.planar_dual().is_inscribable() # long time (> 1 sec) #-- needs sage.numerical.mip
True
sage: C = graphs.CubeGraph(3)
sage: C.is_inscribable() #-- needs sage.numerical.mip
True
```

```python
>>> from sage.all import *

>>> H = graphs.HerschelGraph()
>>> H.is_inscribable() # long time (> 1 sec) #-- needs sage.numerical.mip
False
>>> H.planar_dual().is_inscribable() # long time (> 1 sec) #-- needs sage.numerical.mip
True

>>> C = graphs.CubeGraph(Integer(3))
>>> C.is_inscribable() #-- needs sage.numerical.mip
True
```

Cutting off a vertex from the cube yields an uninscribable graph:
```python
sage: C = graphs.CubeGraph(3)
sage: v = next(C.vertex_iterator())
sage: triangle = [x + v for x in C.neighbors(v)]
sage: C.add_edges(Combinations(triangle, 2))
sage: C.add_edges(zip(triangle, C.neighbors(v)))
sage: C.delete_vertex(v)

needs sage.numerical.mip
False
```

Breaking a face of the cube yields an uninscribable graph:

```python
don C = graphs.CubeGraph(3)
sage: face = choice(C.faces())
sage: C.add_edge([face[0][0], face[2][0]])
sage: C.is_inscribable()

needs sage.numerical.mip
False
```

See also:

- `is_polyhedral`
- `is_circumscribable`

`is_line_graph(g, certificate=False)`

Check whether the graph $g$ is a line graph.

**INPUT:**

- `certificate` (boolean) – whether to return a certificate along with the boolean result. Here is what happens when `certificate = True`:
  - If the graph is not a line graph, the method returns a pair $(b, \text{subgraph})$ where $b$ is $False$ and `subgraph` is a subgraph isomorphic to one of the 9 forbidden induced subgraphs of a line graph.
  - If the graph is a line graph, the method returns a triple $(b, R, isom)$ where $b$ is $True$, $R$ is a graph whose line graph is the graph given as input, and `isom` is a map associating an edge of $R$ to each vertex of the graph.
Note: This method wastes a bit of time when the input graph is not connected. If you have performance in mind, it is probably better to only feed it with connected graphs only.

See also:

- The line_graph module.
- line_graph_forbidden_subgraphs() – the forbidden subgraphs of a line graph.
- line_graph()

EXAMPLES:

A complete graph is always the line graph of a star:

```python
sage: graphs.CompleteGraph(5).is_line_graph()
True
```

```python
>>> from sage.all import *
```

```python
>>> graphs.CompleteGraph(Integer(5)).is_line_graph()
True
```

The Petersen Graph not being claw-free, it is not a line graph:

```python
sage: graphs.PetersenGraph().is_line_graph()
False
```

```python
>>> from sage.all import *
```

```python
>>> graphs.PetersenGraph().is_line_graph()
False
```

This is indeed the subgraph returned:

```python
sage: C = graphs.PetersenGraph().is_line_graph(certificate=True)[1] # needs sage.modules
sage: C.is_isomorphic(graphs.ClawGraph()) # needs sage.modules
True
```

```python
>>> from sage.all import *
```

```python
>>> C = graphs.PetersenGraph().is_line_graph(certificate=True)[Integer(1)] # needs sage.modules
>>> C.is_isomorphic(graphs.ClawGraph()) # needs sage.modules
True
```

The house graph is a line graph:

```python
sage: g = graphs.HouseGraph()
sage: g.is_line_graph()
True
```

```python
>>> from sage.all import *
```

```python
>>> g = graphs.HouseGraph()
>>> g.is_line_graph()
True
```
But what is the graph whose line graph is the house?:

```python
sage: # needs sage.modules
sage: is_line, R, isom = g.is_line_graph(certificate=True)
sage: R.sparse6_string()
(':DaHI~'
sage: R.show() # needs sage.plot
sage: isom
{0: (0, 1), 1: (0, 2), 2: (1, 3), 3: (2, 3), 4: (3, 4)}
```

```python
>>> from sage.all import *
>>> # needs sage.modules
 discharged = True
>>> is_line, R, isom = g.is_line_graph(certificate=True)
>>> R.sparse6_string()
(':DaHI~'
>>> R.show() # needs sage.plot
>>> isom
{0: (0, 1), 1: (0, 2), 2: (1, 3), 3: (2, 3), 4: (3, 4)}
```

`is_long_antihole_free(g, certificate=False)`

Tests whether the given graph contains an induced subgraph that is isomorphic to the complement of a cycle of length at least 5.

**INPUT:**

- `certificate` - boolean (default: `False`).

  Whether to return a certificate. When `certificate = True`, then the function returns
  - `(False, Antihole)` if `g` contains an induced complement of a cycle of length at least 5 returned as `Antihole`.
  - `(True, [])` if `g` does not contain an induced complement of a cycle of length at least 5. For this case it is not known how to provide a certificate.

  When `certificate = False`, the function returns just `True` or `False` accordingly.

**ALGORITHM:**

This algorithm tries to find a cycle in the graph of all induced \( P_4 \)'s of \( g \), where two copies \( P \) and \( P' \) of \( P_4 \) are adjacent if there exists a (not necessarily induced) copy of \( P_5 = u_1 u_2 u_3 u_4 u_5 \) such that \( P = u_1 u_2 u_3 u_4 \) and \( P' = u_2 u_3 u_4 u_5 \).

This is done through a depth-first-search. For efficiency, the auxiliary graph is constructed on-the-fly and never stored in memory.

The run time of this algorithm is \( O(n + m^2) \) for \( 
\text{SparseGraph} \) and \( O(n^2 \log m + m^2) \) for \( 
\text{DenseGraph} \) \cite{NP2007} (where \( n \) is the number of vertices and \( m \) is the number of edges of the graph).

**EXAMPLES:**

The Petersen Graph contains an antihole:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_long_antihole_free()
False
```
Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.is_long_antihole_free()
False
```

The complement of a cycle is an antihole:

```python
sage: g = graphs.CycleGraph(6).complement()
sage: r, a = g.is_long_antihole_free(certificate=True)
sage: r
False
sage: a.complement().is_isomorphic(graphs.CycleGraph(6))
True
```

```python
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(6)).complement()
>>> r, a = g.is_long_antihole_free(certificate=True)
>>> r
False
>>> a.complement().is_isomorphic(graphs.CycleGraph(Integer(6)))
True
```

**is_long_hole_free** *(g, certificate=False)*

Tests whether g contains an induced cycle of length at least 5.

**INPUT:**

- **certificate** – boolean (default: False)
  
  Whether to return a certificate. When certificate = True, then the function returns
  
  - (True, []) if g does not contain such a cycle. For this case, it is not known how to provide a certificate.
  
  - (False, Hole) if g contains an induced cycle of length at least 5. Hole returns this cycle.

  If certificate = False, the function returns just True or False accordingly.

**ALGORITHM:**

This algorithm tries to find a cycle in the graph of all induced $P_4$ of g, where two copies $P$ and $P'$ of $P_4$ are adjacent if there exists a (not necessarily induced) copy of $P_5 = u_1u_2u_3u_4u_5$ such that $P = u_1u_2u_3u_4$ and $P' = u_2u_3u_4u_5$.

This is done through a depth-first-search. For efficiency, the auxiliary graph is constructed on-the-fly and never stored in memory.

The run time of this algorithm is $O(n + m^2)$ for SparseGraph and $O(n^2 + m^2)$ for DenseGraph [NP2007] (where n is the number of vertices and m is the number of edges of the graph).

**EXAMPLES:**

The Petersen Graph contains a hole:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_long_hole_free()
False
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
(continues on next page)"
The following graph contains a hole, which we want to display:

```python
sage: g = graphs.FlowerSnark()
sage: r, h = g.is_long_hole_free(certificate=True)
sage: r
False
sage: Graph(h).is_isomorphic(graphs.CycleGraph(h.order()))
True
```

```
>>> from sage.all import *
>>> g = graphs.FlowerSnark()
>>> r, h = g.is_long_hole_free(certificate=True)
>>> r
False
>>> Graph(h).is_isomorphic(graphs.CycleGraph(h.order()))
True
```

is_odd_hole_free (certificate=False)
Tests whether self contains an induced odd hole.

A Hole is a cycle of length at least 4 (included). It is said to be even (resp. odd) if its length is even (resp. odd).

It is interesting to notice that while it is polynomial to check whether a graph has an odd hole or an odd antihole [CCLSV2005], it is not known whether testing for one of these two cases independently is polynomial too.

INPUT:

- certificate – boolean (default: False); when certificate = False, this method only returns `True` or `False`. If certificate = True, the subgraph found is returned instead of False.

EXAMPLES:

Is the Petersen Graph odd-hole-free

```python
sage: g = graphs.PetersenGraph()
sage: g.is_odd_hole_free()  # needs sage.modules
False
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.is_odd_hole_free()  # needs sage.modules
False
```

Which was to be expected, as its girth is 5

```python
sage: g.girth()
5
```
We can check the certificate returned is indeed a 5-cycle:

```python
sage: cycle = g.is_odd_hole_free(certificate=True)  # needs sage.modules
sage: cycle.is_isomorphic(graphs.CycleGraph(5))  # needs sage.modules
True
```

As any chordal graph is hole-free, no interval graph has an odd hole:

```python
sage: g = graphs.RandomIntervalGraph(20)
sage: g.is_odd_hole_free()  # needs sage.modules
True
```

is_overfull()
Tests whether the current graph is overfull.

A graph G on n vertices and m edges is said to be overfull if:

- n is odd
- It satisfies $2m > (n - 1)\Delta(G)$, where $\Delta(G)$ denotes the maximum degree among all vertices in G.

An overfull graph must have a chromatic index of $\Delta(G) + 1$.

EXAMPLES:

A complete graph of order $n > 1$ is overfull if and only if n is odd:

```python
sage: graphs.CompleteGraph(6).is_overfull()
False
sage: graphs.CompleteGraph(7).is_overfull()
True
sage: graphs.CompleteGraph(1).is_overfull()
False
```

```python
sage: from sage.all import *
>>> g = graphs.CompleteGraph(Integer(6)).is_overfull()
False
```
The claw graph is not overfull:

```
>>> from sage.graphs.graph_coloring import edge_coloring
sage: g = graphs.ClawGraph()
Claw graph: Graph on 4 vertices
eedge_coloring(g, value_only=True) # needs sage.numerical_mip
3
sage: g.is_overfull()
False
```

The Holt graph is an example of an overfull graph:

```
sage: G = graphs.HoltGraph()
sage: G.is_overfull()
True
```

Checking that all complete graphs K_n for even $0 \leq n \leq 100$ are not overfull:

```
sage: def check_overfull_Kn_even(n):
    ...:     i = 0
    ...:     while i <= n:
    ...:         if graphs.CompleteGraph(i).is_overfull():
    ...:             print("A complete graph of even order cannot be overfull.")
    ...:             return
    ...:         i += 2
    ...:     print("Complete graphs of even order up to \$s are not overfull." % n)
...
sage: check_overfull_Kn_even(100)  # long time
Complete graphs of even order up to 100 are not overfull.
```
... i = Integer(0)
...
while i <= n:
...
 if graphs.CompleteGraph(i).is_overfull():
...
 print("A complete graph of even order cannot be overfull.")
...
 return
...
 i += Integer(2)
...
print("Complete graphs of even order up to \$s\$ are not overfull." % n)
...
>>> check_overfull_Kn_even(Integer(100)) # long time
Complete graphs of even order up to 100 are not overfull.

The null graph, i.e. the graph with no vertices, is not overfull:

```python
sage: Graph().is_overfull()
False
sage: graphs.CompleteGraph(0).is_overfull()
False
```

Checking that all complete graphs K_n for odd $1 < n \leq 100$ are overfull:

```python
sage: def check_overfull_Kn_odd(n):
    ...:     i = 3
    ...:     while i <= n:
    ...:         if not graphs.CompleteGraph(i).is_overfull():
    ...:             print("A complete graph of odd order > 1 must be overfull.")
    ...:             return
    ...:         i += 2
    ...:         print("Complete graphs of odd order > 1 up to \$s\$ are overfull." % n)
...
sage: check_overfull_Kn_odd(100)  # long time
Complete graphs of odd order > 1 up to 100 are overfull.
```

The Petersen Graph, though, is not overfull while its chromatic index is $\Delta + 1$:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_overfull()
False
```
sage: from sage.graphs.graph_coloring import edge_coloring
sage: max(g.degree()) + 1 == edge_coloring(g, value_only=True) # needs sage.numerical_mip
True

>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.is_overfull()
False
>>> from sage.graphs.graph_coloring import edge_coloring
>>> max(g.degree()) + Integer(1) == edge_coloring(g, value_only=True) # needs sage.numerical_mip
True

is_partial_cube (G, certificate=False)

Test whether the given graph is a partial cube.

A partial cube is a graph that can be isometrically embedded into a hypercube, i.e., its vertices can be labelled with (0,1)-vectors of some fixed length such that the distance between any two vertices in the graph equals the Hamming distance of their labels.

Originally written by D. Eppstein for the PADS library (http://www.ics.uci.edu/~eppstein/PADS/), see also [Epp2008]. The algorithm runs in $O(n^2)$ time, where n is the number of vertices. See the documentation of partial_cube for an overview of the algorithm.

INPUT:

- certificate – boolean (default: False); this function returns True or False according to the graph, when certificate = False. When certificate = True and the graph is a partial cube, the function returns (True, mapping), where mapping is an isometric mapping of the vertices of the graph to the vertices of a hypercube ((0, 1)-strings of a fixed length). When certificate = True and the graph is not a partial cube, (False, None) is returned.

EXAMPLES:

The Petersen graph is not a partial cube:

sage: g = graphs.PetersenGraph()
sage: g.is_partial_cube()
False

All prisms are partial cubes:

sage: g = graphs.CycleGraph(10).cartesian_product(graphs.CompleteGraph(2))
sage: g.is_partial_cube()
True

sage: g = graphs.CycleGraph(Integer(10)).cartesian_product(graphs.CompleteGraph(Integer(2)))
sage: g.is_partial_cube()
True
is_path()

Check whether *self* is a path.

A connected graph of order \(n \geq 2 \) is a path if it is a tree (see *is_tree()*) with \(n - 2 \) vertices of degree 2 and two of degree 1. By convention, a graph of order 1 without loops is a path, but the empty graph is not a path.

EXAMPLES:

```python
sage: G = graphs.PathGraph(5) sage: G.is_path() True sage: H = graphs.CycleGraph(5) sage: H.is_path() False sage: D = graphs.PathGraph(5).disjoint_union(graphs.CycleGraph(5)) sage: D.is_path() False sage: E = graphs.EmptyGraph() sage: E.is_path() False sage: O = Graph([[1, []]) sage: O.is_path() True sage: O.allow_loops(True) sage: O.add_edge(1, 1) sage: O.is_path() False
```

is_perfect *(certificate=False)*

Tests whether the graph is perfect.

A graph \(G \) is said to be perfect if \(\chi(H) = \omega(H) \) hold for any induced subgraph \(H \subseteq G \) (and so for \(G \) itself, too), where \(\chi(H) \) represents the chromatic number of \(H \), and \(\omega(H) \) its clique number. The Strong Perfect Graph Theorem [CRST2006] gives another characterization of perfect graphs:

A graph is perfect if and only if it contains no odd hole (cycle on an odd number \(k \) of vertices, \(k > 3 \)) nor any odd antihole (complement of a hole) as an induced subgraph.

INPUT:

- *certificate* – boolean (default: False); whether to return a certificate.

OUTPUT:

When *certificate* = False, this function returns a boolean value. When *certificate* = True, it returns a subgraph of \(self \) isomorphic to an odd hole or an odd antihole if any, and None otherwise.

EXAMPLES:

A Bipartite Graph is always perfect

```python
sage: g = graphs.RandomBipartite(8, 4, .5) # needs numpy
sage: g.is_perfect() # needs numpy sage.modules
True
```

```python
>>> from sage.all import *
>>> g = graphs.RandomBipartite(Integer(8), Integer(4), RealNumber('0.5')) # needs numpy
>>> g.is_perfect() # needs numpy sage.modules
True
```

So is the line graph of a bipartite graph:

```python
sage: g = graphs.RandomBipartite(4, 3, 0.7) # needs numpy
sage: g.line_graph().is_perfect() # long time # needs numpy sage.modules
True
```

```python
sage: g = graphs.RandomBipartite(8, 4, .5) # needs numpy
sage: g.is_perfect() # needs numpy sage.modules
True
```
As well as the Cartesian product of two complete graphs:

```
sage: g = graphs.CompleteGraph(3).cartesian_product(graphs.CompleteGraph(3))
sage: g.is_perfect()  
# needs sage.modules
True
```

Interval Graphs, which are chordal graphs, too

```
sage: g = graphs.RandomIntervalGraph(7)  
sage: g.is_perfect()  
# needs sage.modules
True
```

The PetersenGraph, which is triangle-free and has chromatic number 3 is obviously not perfect:

```
sage: g = graphs.PetersenGraph()  
sage: g.is_perfect()  
# needs sage.modules
False
```

We can obtain an induced 5-cycle as a certificate:

```
sage: g.is_perfect(certificate=True)  
# needs sage.modules
Subgraph of (Petersen graph): Graph on 5 vertices
```

(continues on next page)
needs sage.modules
Subgraph of (Petersen graph): Graph on 5 vertices

is_permutation\((g, \text{algorithm='greedy'}, \text{certificate=False}, \text{check=True}, \text{solver=None}, \text{verbose=0}) \)
Tests whether the graph is a permutation graph.

For more information on permutation graphs, refer to the documentation of the comparability module.

INPUT:

- **algorithm** – choose the implementation used for the subcalls to \(\text{is_comparability()} \).
 - "greedy" – a greedy algorithm (see the documentation of the comparability module).
 - "MILP" – a Mixed Integer Linear Program formulation of the problem. Beware, for this implementation is unable to return negative certificates! When \(\text{certificate = True} \), negative certificates are always equal to None. True certificates are valid, though.

- **certificate** (boolean) – whether to return a certificate for the answer given. For True answers the certificate is a permutation, for False answers it is a no-certificate for the test of comparability or co-comparability.

- **check** (boolean) – whether to check that the permutations returned indeed create the expected Permutation graph. Pretty cheap compared to the rest, hence a good investment. It is enabled by default.

- **solver** – (default: None); Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method \(\text{solve()} \) of the class \text{MixedIntegerLinearProgram}.

- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

Note: As the True certificate is a Permutation object, the segment intersection model of the permutation graph can be visualized through a call to Permutation.show.

EXAMPLES:

A permutation realizing the bull graph:

```
sage: from sage.graphs.comparability import is_permutation
g = graphs.BullGraph()
_, certif = is_permutation(g, certificate=True)
h = graphs.PermutationGraph(*certif)
h.is_isomorphic(g)

True
```

```
>>> from sage.all import *
>>> from sage.graphs.comparability import is_permutation
>>> g = graphs.BullGraph()
>>> _, certif = is_permutation(g, certificate=True)
>>> h = graphs.PermutationGraph(*certif)
>>> h.is_isomorphic(g)

True
```

Plotting the realization as an intersection graph of segments:
Graph theory

sage: true, perm = is_permutation(g, certificate=True)
sage: p1 = Permutation([nn+1 for nn in perm[0]])
sage: p2 = Permutation([nn+1 for nn in perm[1]])
sage: p = p2 * p1.inverse()
sage: p.show(representation="braid") # needs sage.plot

is_polyhedral()

Check whether the graph is the graph of the polyhedron.

By a theorem of Steinitz (Satz 43, p. 77 of [St1922]), graphs of three-dimensional polyhedra are exactly the simple 3-vertex-connected planar graphs.

EXAMPLES:

sage: C = graphs.CubeGraph(3)
sage: C.is_polyhedral()
True
sage: K33=graphs.CompleteBipartiteGraph(3, 3)
sage: K33.is_polyhedral()
False
sage: graphs.CycleGraph(17).is_polyhedral()
False
sage: [i for i in range(9) if graphs.CompleteGraph(i).is_polyhedral()]
[4]

See also:

• vertex_connectivity()
• is_planar()
• is_circumscribable()
• is_inscribable()
• Wikipedia article Polyhedral_graph

1.2. Undirected graphs
is_prime\(\text{(algorithm=None)}\)

Test whether the current graph is prime.

A graph is prime if all its modules are trivial (i.e. empty, all of the graph or singletons) – see `modular_decomposition()`. Use the \(O(n^3)\) algorithm of [HM1979].

EXAMPLES:
The Petersen Graph and the Bull Graph are both prime:

```
sage: graphs.PetersenGraph().is_prime()
True
sage: graphs.BullGraph().is_prime()
True
```

Though quite obviously, the disjoint union of them is not:

```
sage: (graphs.PetersenGraph() + graphs.BullGraph()).is_prime()
False
```

is_redundant(\(G, \text{dom}, \text{focus}=\text{None}\))

Check whether \(\text{dom}\) has redundant vertices.

For a graph \(G\) and sets \(D\) and \(S\) of vertices, we say that a vertex \(v \in D\) is redundant in \(S\) if \(v\) has no private neighbor with respect to \(D\) in \(S\). In other words, there is no vertex in \(S\) that is dominated by \(v\) but not by \(D \setminus \{v\}\).

INPUT:

- \(\text{dom}\) – iterable of vertices of \(G\); where we look for redundant vertices.
- \(\text{focus}\) – iterable of vertices of \(G\) (default: \(\text{None}\)); if specified, this method checks instead whether \(\text{dom}\) has a redundant vertex in \(\text{focus}\).

Warning: The assumption is made that \(\text{focus}\) (if provided) does not contain repeated vertices.

EXAMPLES:

```
sage: G = graphs.CubeGraph(3)
sage: G.is_redundant(['000', '101'], ['011'])
True
sage: G.is_redundant(['000', '101'])
False
```

```
is_semi_symmetric()
Check if self is semi-symmetric.

A graph is semi-symmetric if it is regular, edge-transitive but not vertex-transitive.

See also:

• Wikipedia article Semi-symmetric_graph
• is_edge_transitive()
• is_arc_transitive()
• is_half_transitive()

EXAMPLES:
The Petersen graph is not semi-symmetric:

```python
sage: P = graphs.PetersenGraph()
sage: P.is_semi_symmetric() # needs sage.libs.gap
False
```

The Gray graph is the smallest possible cubic semi-symmetric graph:

```python
sage: G = graphs.GrayGraph() # needs networkx
sage: G.is_semi_symmetric() # needs networkx sage.libs.gap
True
```

Another well known semi-symmetric graph is the Ljubljana graph:

```python
sage: L = graphs.LjubljanaGraph() # needs networkx
sage: L.is_semi_symmetric() # needs networkx sage.libs.gap
True
```
Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> L = graphs.LjubljanaGraph() # needs networkx
>>> L.is_semi_symmetric() # needs networkx sage.libs.gap
True
```

**is_split()**

Returns `True` if the graph is a Split graph, `False` otherwise.

A Graph $G$ is said to be a split graph if its vertices $V(G)$ can be partitioned into two sets $K$ and $I$ such that the vertices of $K$ induce a complete graph, and those of $I$ are an independent set.

There is a simple test to check whether a graph is a split graph (see, for instance, the book “Graph Classes, a survey” [BLS1999] page 203):

Given the degree sequence $d_1 \geq \ldots \geq d_n$ of $G$, a graph is a split graph if and only if:

$$\sum_{i=1}^{\omega} d_i = \omega(\omega - 1) + \sum_{i=\omega+1}^{\omega} d_i$$

where $\omega = \max\{i : d_i \geq i - 1\}$.

**EXAMPLES:**

Split graphs are, in particular, chordal graphs. Hence, The Petersen graph cannot be split:

```python
sage: graphs.PetersenGraph().is_split()
False
```

We can easily build some “random” split graph by creating a complete graph, and adding vertices only connected to some random vertices of the clique:

```python
sage: g = graphs.CompleteGraph(10)
sage: sets = Subsets(Set(range(10)))
sage: for i in range(10, 25):
...: g.add_edges([(i,k) for k in sets.random_element()])
sage: g.is_split()
True
```

Another characterisation of split graph states that a graph is a split graph if and only if does not contain the 4-cycle, 5-cycle or $2K_2$ as an induced subgraph. Hence for the above graph we have:

```python
sage: forbidden_subgraphs = [graphs.CycleGraph(4),
...: graphs.CycleGraph(5),
...: graphs.CompleteGraph(2)]
```
is_strongly_regular \( g, \text{parameters}=False \)

Check whether the graph is strongly regular.

A simple graph \( G \) is said to be strongly regular with parameters \((n, k, \lambda, \mu)\) if and only if:

- \( G \) has \( n \) vertices
- \( G \) is \( k \)-regular
- Any two adjacent vertices of \( G \) have \( \lambda \) common neighbors
- Any two non-adjacent vertices of \( G \) have \( \mu \) common neighbors

By convention, the complete graphs, the graphs with no edges and the empty graph are not strongly regular.

See the Wikipedia article Strongly regular graph.

INPUT:

- parameters – boolean (default: False); whether to return the quadruple \((n, k, \lambda, \mu)\). If parameters = False (default), this method only returns True and False answers. If parameters = True, the True answers are replaced by quadruples \((n, k, \lambda, \mu)\). See definition above.

EXAMPLES:

Petersen's graph is strongly regular:

\[
\begin{align*}
\text{sage: } & g = \text{graphs.PetersenGraph()} \\
\text{sage: } & g.is\_strongly\_regular() \\
& \text{True} \\
\text{sage: } & g.is\_strongly\_regular(\text{parameters}=\text{True}) \\
& (10, 3, 0, 1)
\end{align*}
\]

And Clebsch's graph is too:

\[
\begin{align*}
\text{sage: } & g = \text{graphs.ClebschGraph()} \\
\text{sage: } & g.is\_strongly\_regular() \\
\end{align*}
\]
True
sage: g.is_strongly_regular(parameters=True)
(16, 5, 0, 2)

>>> from sage.all import *
>>> g = graphs.ClebschGraph()
>>> g.is_strongly_regular()
True
>>> g.is_strongly_regular(parameters=True)
(16, 5, 0, 2)

But Chvatal’s graph is not:
sage: g = graphs.ChvatalGraph()
sage: g.is_strongly_regular()
False

>>> from sage.all import *
>>> g = graphs.ChvatalGraph()
>>> g.is_strongly_regular()
False

Complete graphs are not strongly regular. (Issue #14297)
sage: g = graphs.CompleteGraph(5)
sage: g.is_strongly_regular()
False

>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(5))
>>> g.is_strongly_regular()
False

Complemetens of complete graphs are not strongly regular:
sage: g = graphs.CompleteGraph(5).complement()
sage: g.is_strongly_regular()
False

>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(5)).complement()
>>> g.is_strongly_regular()
False

The empty graph is not strongly regular:
sage: g = graphs.EmptyGraph()
sage: g.is_strongly_regular()
False

>>> from sage.all import *
>>> g = graphs.EmptyGraph()
>>> g.is_strongly_regular()
False
If the input graph has loops or multiedges an exception is raised:

```python
sage: Graph([(1,1),(2,2)],loops=True).is_strongly_regular()
Traceback (most recent call last):
 ... ValueError: This method is not known to work on graphs with loops. Perhaps this method can be updated to handle them, but in the meantime if you want to use it please disallow loops using allow_loops().
```

```python
sage: Graph([(1,2),(1,2)],multiedges=True).is_strongly_regular()
Traceback (most recent call last):
 ... ValueError: This method is not known to work on graphs with multiedges. Perhaps this method can be updated to handle them, but in the meantime if you want to use it please disallow multiedges using allow_multiple_edges().
```

```python
>>> from sage.all import *

>>> Graph([(Integer(1),Integer(1)),(Integer(2),Integer(2))],loops=True).is_strongly_regular()
Traceback (most recent call last):
 ... ValueError: This method is not known to work on graphs with loops. Perhaps this method can be updated to handle them, but in the meantime if you want to use it please disallow loops using allow_loops().
```

```python
>>> Graph([(Integer(1),Integer(2)),(Integer(1),Integer(2))],multiedges=True).is_strongly_regular()
Traceback (most recent call last):
 ... ValueError: This method is not known to work on graphs with multiedges. Perhaps this method can be updated to handle them, but in the meantime if you want to use it please disallow multiedges using allow_multiple_edges().
```

**is_tree** *(certificate=\text{False}, \text{output}=\text{vertex})*

Tests if the graph is a tree

The empty graph is defined to be not a tree.

**INPUT:**

- **certificate** – boolean (default: \text{False}); whether to return a certificate. The method only returns boolean answers when \text{certificate} = \text{False} (default). When it is set to \text{True}, it either answers \text{(True, None)} when the graph is a tree or \text{(False, cycle)} when it contains a cycle. It returns \text{(False, None)} when the graph is empty or not connected.
- **output** – either \text{'vertex'} (default) or \text{'edge'}; whether the certificate is given as a list of vertices \text{(output = 'vertex')} or a list of edges \text{(output = 'edge')}.

When the certificate cycle is given as a list of edges, the edges are given as \((v_i, v_{i+1}, l)\) where \(v_1, v_2, \ldots, v_n\) are the vertices of the cycles (in their cyclic order).

**EXAMPLES:**

```python
sage: all(T.is_tree() for T in graphs.trees(15))
True
```
With certificates:

```
>>> from sage.all import *
>>> all(T.is_tree() for T in graphs.trees(Integer(15)))
True
```

```
sage: g = graphs.RandomTree(30)
sage: g.is_tree(certificate=True)
(True, None)
sage: g.add_edge(10,-1)
sage: g.add_edge(11,-1)
sage: isit, cycle = g.is_tree(certificate=True)
sage: isit
False
```

```
sage: -1 in cycle
True
```

```
>>> from sage.all import *
>>> g = graphs.RandomTree(Integer(30))
>>> g.is_tree(certificate=True)
(True, None)
```

```
>>> g.add_edge(Integer(10),-Integer(1))
>>> g.add_edge(Integer(11),-Integer(1))
>>> isit, cycle = g.is_tree(certificate=True)
>>> isit
False
```

```
>>> -Integer(1) in cycle
True
```

One can also ask for the certificate as a list of edges:

```
sage: g = graphs.CycleGraph(4)
sage: g.is_tree(certificate=True, output='edge')
(False, [(3, 2, None), (2, 1, None), (1, 0, None), (0, 3, None)])
```

```
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(4))
>>> g.is_tree(certificate=True, output='edge')
(False, [(3, 2, None), (2, 1, None), (1, 0, None), (0, 3, None)])
```

This is useful for graphs with multiple edges:

```
sage: G = Graph([(1, 2, 'a'), (1, 2, 'b')], multiedges=True)
sage: G.is_tree(certificate=True)
(False, [1, 2])
```

```
sage: G.is_tree(certificate=True, output='edge')
(False, [(1, 2, 'b'), (2, 1, 'a')])
```

```
>>> from sage.all import *
>>> G = Graph([(Integer(1), Integer(2), 'a'), (Integer(1), Integer(2), 'b')],
 multiedges=True)
```

```
>>> G.is_tree(certificate=True)
(False, [1, 2])
```

```
>>> G.is_tree(certificate=True, output='edge')
(False, [(1, 2, 'b'), (2, 1, 'a')])
```
is_triangle_free(algorithm='dense_graph', certificate=False)

Check whether self is triangle-free

INPUT:

- algorithm—(default: 'dense_graph') specifies the algorithm to use among:
  - 'matrix' – tests if the trace of the adjacency matrix is positive.
  - 'bitset' – encodes adjacencies into bitsets and uses fastbitset operations to test if the input graph contains a triangle. This method is generally faster than standard matrix multiplication.
  - 'dense_graph' – use the implementation of sage.graphs.base.static_dense_graph

- certificate – boolean (default: False); whether to return a triangle if one is found. This parameter is ignored when algorithm is 'matrix'.

EXAMPLES:

The Petersen Graph is triangle-free:

```
sage: g = graphs.PetersenGraph()
sage: g.is_triangle_free()
True
```

```
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.is_triangle_free()
True
```

or a complete Bipartite Graph:

```
sage: G = graphs.CompleteBipartiteGraph(5,6)
sage: G.is_triangle_free(algorithm='matrix') # needs sage.modules
True
sage: G.is_triangle_free(algorithm='bitset')
True
sage: G.is_triangle_free(algorithm='dense_graph')
True
```

```
>>> from sage.all import *
>>> G = graphs.CompleteBipartiteGraph(Integer(5),Integer(6))
>>> G.is_triangle_free(algorithm='matrix') # needs sage.modules
True
>>> G.is_triangle_free(algorithm='bitset')
True
>>> G.is_triangle_free(algorithm='dense_graph')
True
```

a tripartite graph, though, contains many triangles:

```
sage: G = (3 * graphs.CompleteGraph(5)).complement()
sage: G.is_triangle_free(algorithm='matrix') # needs sage.modules
False
sage: G.is_triangle_free(algorithm='bitset')
```

(continues on next page)
Graph Theory, Release 10.4

Asking for a certificate:

```python
sage: K4 = graphs.CompleteGraph(4)
sage: K4.is_triangle_free(algorithm='dense_graph', certificate=True)
(False, [0, 1, 2])
sage: K4.is_triangle_free(algorithm='bitset', certificate=True)
(False, [0, 1, 2])
```

**is_triconnected** \( G \)

Check whether the graph is triconnected.

A triconnected graph is a connected graph on 3 or more vertices that is not broken into disconnected pieces by deleting any pair of vertices.

**EXAMPLES:**

The Petersen graph is triconnected:

```python
sage: G = graphs.PetersenGraph()
sage: G.is_triconnected()
True
```

But a 2D grid is not:

```python
sage: G = graphs.Grid2dGraph(3, 3)
sage: G.is_triconnected()
False
```

```
(continues on next page)
```
By convention, a cycle of order 3 is triconnected:

```python
sage: G = graphs.CycleGraph(3)
sage: G.is_triconnected()
True
```

But cycles of order 4 and more are not:

```python
sage: [graphs.CycleGraph(i).is_triconnected() for i in range(4, 8)]
[False, False, False, False]
```

Comparing different methods on random graphs that are not always triconnected:

```python
sage: G = graphs.RandomBarabasiAlbert(50, 3)
needs networkx
sage: G.is_triconnected() == G.vertex_connectivity(k=3)
needs networkx
True
```

See also:

- `is_connected()`
- `is_biconnected()`
- `spqr_tree()`
- Wikipedia article SPQR_tree

`is_weakly_chordal(g, certificate=False)`

Tests whether the given graph is weakly chordal, i.e., the graph and its complement have no induced cycle of length at least 5.

**INPUT:**

- `certificate` - Boolean value (default: False) whether to return a certificate. If `certificate = False`, return `True` or `False` according to the graph. If `certificate = True`, return
GRAPH THEORY, RELEASE 10.4

- (False, forbidden_subgraph) when the graph contains a forbidden subgraph H, this graph is returned.
- (True, []) when the graph is weakly chordal.
  For this case, it is not known how to provide a certificate.

ALGORITHM:
This algorithm checks whether the graph \( g \) or its complement contain an induced cycle of length at least 5. Using \( \text{is\_long\_hole\_free()} \) and \( \text{is\_long\_antihole\_free()} \) yields a run time of \( O(n + m^2) \) for \( \text{SparseGraph} \) and \( O(n^2 \log m + m^2) \) for \( \text{DenseGraph} \) (where \( n \) is the number of vertices and \( m \) is the number of edges of the graph).

EXAMPLES:
The Petersen Graph is not weakly chordal and contains a hole:

```python
sage: g = graphs.PetersenGraph()
sage: r, s = g.is_weakly_chordal(certificate=True)
sage: r
False
sage: l = s.order()
sage: s.is_isomorphic(graphs.CycleGraph(l))
True
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> r, s = g.is_weakly_chordal(certificate=True)
>>> r
False
>>> l = s.order()
>>> s.is_isomorphic(graphs.CycleGraph(l))
True
```

\texttt{join}(other, labels='pairs', immutable=None)

Return the join of \texttt{self} and \texttt{other}.

INPUT:

- labels – (defaults to ‘pairs’); if set to ‘pairs’, each element \( v \) in the first graph will be named \( (0, v) \) and each element \( u \) in \texttt{other} will be named \( (1, u) \) in the result. If set to ‘integers’, the elements of the result will be relabeled with consecutive integers.

- immutable – boolean (default: None); whether to create a mutable/immutable join. \texttt{immutable=None} (default) means that the graphs and their join will behave the same way.

See also:

- \texttt{union()}
- \texttt{disjoint\_union()}

EXAMPLES:

```python
sage: G = graphs.CycleGraph(3)
sage: H = Graph(2)
sage: J = G.join(H); J
Cycle graph join : Graph on 5 vertices
sage: J.vertices(sort=True)
```

(continues on next page)
Graph Theory, Release 10.4

[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)]
sage: J = G.join(H, labels='integers'); J
Cycle graph join : Graph on 5 vertices
sage: J.vertices(sort=True)
[0, 1, 2, 3, 4]
sage: J.edges(sort=True)
[(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (1, 2, None), (1, 3,... None), (1, 4, None), (2, 3, None), (2, 4, None)]

from sage.all import *
G = graphs.CycleGraph(Integer(3))
H = Graph(Integer(2))
J = G.join(H); J
Cycle graph join : Graph on 5 vertices
J.vertices(sort=True)
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)]
J = G.join(H, labels='integers'); J
Cycle graph join : Graph on 5 vertices
J.vertices(sort=True)
[0, 1, 2, 3, 4]
J.edges(sort=True)
[(0, 1, None), (0, 2, None), (0, 3, None), (0, 4, None), (1, 2, None), (1, 3,... None), (1, 4, None), (2, 3, None), (2, 4, None)]

G = Graph(3)
G.name("Graph on 3 vertices")
H = Graph(2)
H.name("Graph on 2 vertices")
J = G.join(H); J
Graph on 3 vertices join Graph on 2 vertices: Graph on 5 vertices
J.vertices(sort=True)
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)]
J = G.join(H, labels='integers'); J
Graph on 3 vertices join Graph on 2 vertices: Graph on 5 vertices
J.edges(sort=True)
[(0, 3, None), (0, 4, None), (1, 3, None), (1, 4, None), (2, 3, None), (2, 4,... None)]

from sage.all import *
G = Graph(Integer(3))
G.name("Graph on 3 vertices")
H = Graph(Integer(2))
H.name("Graph on 2 vertices")
J = G.join(H); J
Graph on 3 vertices join Graph on 2 vertices: Graph on 5 vertices
J.vertices(sort=True)
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)]
J = G.join(H, labels='integers'); J
Graph on 3 vertices join Graph on 2 vertices: Graph on 5 vertices
J.edges(sort=True)
[(0, 3, None), (0, 4, None), (1, 3, None), (1, 4, None), (2, 3, None), (2, 4,... None)]

circhhoff_symmanzik_polynomial(name='t')
Return the Kirchhoff-Symanzik polynomial of a graph.

1.2. Undirected graphs 599
This is a polynomial in variables $t_e$ (each of them representing an edge of the graph $G$) defined as a sum over all spanning trees:

$$
\Psi_G(t) = \sum_{T \subseteq V} \prod_{e \in E(T)} t_e
$$

This is also called the first Symanzik polynomial or the Kirchhoff polynomial.

INPUT:

- name – name of the variables (default: 't ')

OUTPUT:

- a polynomial with integer coefficients

ALGORITHM:

This is computed here using a determinant, as explained in Section 3.1 of [Mar2009a].

As an intermediate step, one computes a cycle basis $C$ of $G$ and a rectangular $|C| \times |E(G)|$ matrix with entries in $\{-1, 0, 1\}$, which describes which edge belong to which cycle of $C$ and their respective orientations.

More precisely, after fixing an arbitrary orientation for each edge $e \in E(G)$ and each cycle $C \in C$, one gets a sign for every incident pair (edge, cycle) which is 1 if the orientation coincide and $-1$ otherwise.

EXAMPLES:

For the cycle of length 5:

```
sage: G = graphs.CycleGraph(5)
sage: G.kirchhoff_symanzik_polynomial() # needs networkx sage.modules
\t0 + t1 + t2 + t3 + t4
```

One can use another letter for variables:

```
sage: G = Graph([(0,1,'a'),(0,1,'b'),(0,1,'c')], multiedges=True)
sage: G.kirchhoff_symanzik_polynomial(name='u') # needs networkx sage.modules
\u0 + \u1 + \u2 + \u3 + \u4
```

For the 'coffee bean' graph:

```
sage: G = Graph([(0,1,'a'),(0,1,'b'),(0,1,'c')], multiedges=True)
sage: G.kirchhoff_symanzik_polynomial() # needs networkx sage.modules
\t0*t1 + t0*t2 + t1*t2
```
>>> from sage.all import *
>>> G = Graph([(Integer(0),Integer(1),'a'),(Integer(0),Integer(1),'b'),
    (Integer(0),Integer(1),'c')], multiedges=True)
>>> G.kirchhoff_symanzik_polynomial()  #...
needs networkx sage.modules
 t0*t1 + t0*t2 + t1*t2

For the 'parachute' graph:

sage: G = Graph([(0,2,'a'),(0,2,'b'),(0,1,'c'),(1,2,'d')], multiedges=True)
sage: G.kirchhoff_symanzik_polynomial()  #...
needs networkx sage.modules
 t0*t1 + t0*t2 + t1*t2 + t1*t3 + t2*t3

For the complete graph with 4 vertices:

sage: G = graphs.CompleteGraph(4)
sage: G.kirchhoff_symanzik_polynomial()  #...
needs networkx sage.modules
 t0*t1*t3 + t0*t2*t3 + t1*t2*t3 + t0*t1*t4 + t0*t2*t4 + t1*t2*t4 +
 t1*t3*t4 + t2*t3*t4 + t0*t1*t5 + t0*t2*t5 + t1*t2*t5 + t0*t3*t5 +
 t2*t3*t5 + t0*t4*t5 + t1*t4*t5 + t3*t4*t5

REFERENCES:

[Bro2011]

least_effective_resistance (nonedgesonly=True)

Return a list of pairs of nodes with the least effective resistance.

The resistance distance between vertices $i$ and $j$ of a simple connected graph $G$ is defined as the effective resistance between the two vertices on an electrical network constructed from $G$ replacing each edge of the graph by a unit (1 ohm) resistor.

INPUT:

- nonedgesonly – Boolean (default: True); if true, assign zero resistance to pairs of adjacent vertices

OUTPUT: list

EXAMPLES:

Pairs of non-adjacent nodes with least effective resistance in a straight linear 2-tree on 6 vertices:
Pairs of (adjacent or non-adjacent) nodes with least effective resistance in a straight linear 2-tree on 6 vertices

```
sage: G = Graph(((0,1),(0,2),(1,2),(1,3),(3,5),(2,4),(2,3),(3,4),(4,5))
sage: G.least_effective_resistance() # needs sage.modules
[(1, 4)]
```

```
>>> from sage.all import *
>>> G = Graph(((Integer(0),Integer(1)),(Integer(0),Integer(2)),(Integer(1),
 Integer(2)),(Integer(1),Integer(3)),(Integer(3),Integer(5)),(Integer(2),
 Integer(4)),(Integer(2),Integer(3)),(Integer(3),Integer(4)),(Integer(4),
 Integer(5))))
>>> G.least_effective_resistance() # needs sage.modules
[(1, 4)]
```

Pairs of non-adjacent nodes with least effective resistance in a fan on 6 vertices counting only non-adjacent vertex pairs

```
sage: H = Graph(((0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(2,3),(3,4),(4,5))
sage: H.least_effective_resistance() # needs sage.modules
[(2, 3)]
```

```
>>> from sage.all import *
>>> G = Graph(((Integer(0),Integer(1)),(Integer(0),Integer(2)),(Integer(0),
 Integer(3)),(Integer(0),Integer(4)),(Integer(0),Integer(5)),(Integer(0),
 Integer(6)),(Integer(1),Integer(2)),(Integer(2),Integer(3)),(Integer(3),
 Integer(4))),(Integer(4),Integer(5))))
>>> G.least_effective_resistance() # needs sage.modules
[(2, 3)]
```

See also:

- `effective_resistance_matrix()` – a similar method giving a matrix full of all effective resistances
- `effective_resistance()` – computes effective resistance for a single node pair
- See Wikipedia article Resistance_distance for more details.

**lex_M** (`triangulation=False, labels=False, initial_vertex=None, algorithm=None`)

Return an ordering of the vertices according the LexM graph traversal.

LexM is a lexicographic ordering scheme that is a special type of breadth-first-search. LexM can also produce a triangulation of the given graph. This functionality is implemented in this method. For more details on the algorithms used see Sections 4 (`'lex_M_slow'`) and 5.3 (`'lex_M_fast'`) of [RTL76].
**Note:** This method works only for undirected graphs.

**INPUT:**
- `triangulation` – boolean (default: False); whether to return a list of edges that need to be added in order to triangulate the graph
- `labels` – boolean (default: False); whether to return the labels assigned to each vertex
- `initial_vertex` – (default: None); the first vertex to consider
- `algorithm` – string (default: None); one of the following algorithms:
  - `'lex_M_slow'`: slower implementation of LexM traversal
  - `'lex_M_fast'`: faster implementation of LexM traversal (works only when `labels` is set to False)
  - `None`: Sage chooses the best algorithm: `'lex_M_slow'` if `labels` is set to True, `'lex_M_fast'` otherwise.

**OUTPUT:**
Depending on the values of the parameters `triangulation` and `labels` the method will return one or more of the following (in that order):
- an ordering of vertices of the graph according to LexM ordering scheme
- the labels assigned to each vertex
- a list of edges that when added to the graph will triangulate it

**EXAMPLES:**
LexM produces an ordering of the vertices:

```python
sage: g = graphs.CompleteGraph(6)
sage: ord = g.lex_M(algorithm='lex_M_fast')
sage: len(ord) == g.order()
True
sage: set(ord) == set(g.vertices(sort=False))
True
sage: ord = g.lex_M(algorithm='lex_M_slow')
sage: len(ord) == g.order()
True
sage: set(ord) == set(g.vertices(sort=False))
True
```

```python
>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(6))
>>> ord = g.lex_M(algorithm='lex_M_fast')
>>> len(ord) == g.order()
True
>>> set(ord) == set(g.vertices(sort=False))
True
>>> ord = g.lex_M(algorithm='lex_M_slow')
>>> len(ord) == g.order()
True
>>> set(ord) == set(g.vertices(sort=False))
True
```
Both algorithms produce a valid LexM ordering $\alpha$ (i.e. the neighbors of $\alpha(i)$ in $G[\{\alpha(i), ..., \alpha(n)\}]$ induce a clique):

```
sage: from sage.graphs.traversals import is_valid_lex_M_order
sage: G = graphs.PetersenGraph()
sage: ord, F = G.lex_M(triangulation=True, algorithm='lex_M_slow')
sage: is_valid_lex_M_order(G, ord, F)
True
sage: ord, F = G.lex_M(triangulation=True, algorithm='lex_M_fast')
sage: is_valid_lex_M_order(G, ord, F)
True
```

LexM produces a triangulation of given graph:

```
sage: G = graphs.PetersenGraph()
sage: _, F = G.lex_M(triangulation=True)
sage: H = Graph(F, format='list_of_edges')
sage: H.is_chordal()
True
```

LexM ordering of the 3-sun graph:

```
sage: g = Graph(
[(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5),
(5, 6)])
sage: g.lex_M()
[6, 4, 5, 3, 2, 1]
```

```
>>> from sage.all import *
>>> from sage.graphs.traversals import is_valid_lex_M_order
>>> G = graphs.PetersenGraph()
>>> ord, F = G.lex_M(triangulation=True, algorithm='lex_M_slow')
>>> is_valid_lex_M_order(G, ord, F)
True
>>> ord, F = G.lex_M(triangulation=True, algorithm='lex_M_fast')
>>> is_valid_lex_M_order(G, ord, F)
True
```

```
sage: from sage.graphs.traversals import is_valid_lex_M_order
sage: G = graphs.PetersenGraph()
sage: is_valid_lex_M_order(G, ord, F)
True
```

```
>>> from sage.all import *
>>> from sage.graphs.traversals import is_valid_lex_M_order
>>> G = graphs.PetersenGraph()
>>> _, F = G.lex_M(triangulation=True)
>>> H = Graph(F, format='list_of_edges')
>>> H.is_chordal()
True
```

```
sage: g = Graph(
[(Integer(1), Integer(2)), (Integer(1), Integer(3)), (Integer(2), Integer(3)),
(Integer(2), Integer(4)), (Integer(2), Integer(5)), (Integer(3), Integer(5)),
(Integer(3), Integer(6)), (Integer(4), Integer(5)), (Integer(4), Integer(6))])
```

```
>>> g.lex_M()
[6, 4, 5, 3, 2, 1]
```

```
lovasz_theta (graph)
```

Return the value of Lovász theta-function of graph.

For a graph $G$ this function is denoted by $\theta(G)$, and it can be computed in polynomial time. Mathematically,
its most important property is the following:

\[ \alpha(G) \leq \theta(G) \leq \chi(G) \]

with \( \alpha(G) \) and \( \chi(G) \) being, respectively, the maximum size of an independent set set of \( G \) and the chromatic number of the complement \( \overline{G} \) of \( G \).

For more information, see the Wikipedia article Lovász_number.

Note:
- Implemented for undirected graphs only. Use \texttt{to\_undirected} to convert a digraph to an undirected graph.
- This function requires the optional package \texttt{csdp}, which you can install with \texttt{sage -i csdp}.

EXAMPLES:

\begin{verbatim}
sage: C = graphs.PetersenGraph()
sage: C.lovasz_theta() # optional - csdp
4.0
sage: graphs.CycleGraph(5).lovasz_theta() # optional - csdp
2.236068

>>> from sage.all import *

>>> C = graphs.PetersenGraph()

>>> C.lovasz_theta() # optional - csdp
4.0

>>> graphs.CycleGraph(Integer(5)).lovasz_theta() # optional - csdp
2.236068
\end{verbatim}

\texttt{magnitude\_function()} returns the magnitude function of the graph as a rational function.

This is defined as the sum of all coefficients in the inverse of the matrix \( Z \) whose coefficient \( Z_{i,j} \) indexed by a pair of vertices \((i, j)\) is \( q^d(i, j) \) where \( d \) is the distance function in the graph.

By convention, if the distance from \( i \) to \( j \) is infinite (for two vertices not path connected) then \( Z_{i,j} = 0 \).

The value of the magnitude function at \( q = 0 \) is the cardinality of the graph. The magnitude function of a disjoint union is the sum of the magnitudes functions of the connected components. The magnitude function of a Cartesian product is the product of the magnitudes functions of the factors.

EXAMPLES:

\begin{verbatim}
sage: g = Graph({1:[], 2:[]})
sage: g.magnitude_function() # needs sage.modules
2

sage: g = graphs.CycleGraph(4)
sage: g.magnitude_function() # needs sage.modules
4/(q^2 + 2*q + 1)

sage: g = graphs.CycleGraph(5)
sage: m = g.magnitude_function(); m # needs sage.modules
5/(2*q^2 + 2*q + 1)
\end{verbatim}
One can expand the magnitude as a power series in $q$ as follows:

```python
sage: q = QQ[['q']].gen()
sage: m(q) #...
5 - 10*q + 10*q^2 - 20*q^4 + 40*q^5 - 40*q^6 + ...
```

One can also use the substitution $q = e^{-t}$ to obtain the magnitude function as a function of $t$:

```python
sage: g = graphs.CycleGraph(6)
sage: m = g.magnitude_function()
sage: t = var('t') #...
sage: m(exp(-t)) #...
6/(2*e^(-t) + 2*e^(-2*t) + e^(-3*t) + 1)
```

REFERENCES:

**matching**

```
matching(value_only, algorithm=False, use_edge_labels='Edmonds', solver=False, verbose=None, integrality_tolerance=0)
```

Return a maximum weighted matching of the graph represented by the list of its edges.

For more information, see the Wikipedia article *Matching (graph theory)*.
Given a graph $G$ such that each edge $e$ has a weight $w_e$, a maximum matching is a subset $S$ of the edges of $G$ of maximum weight such that no two edges of $S$ are incident with each other.

As an optimization problem, it can be expressed as:

Maximize : $\sum_{e \in G, \text{edges}()} w_e b_e$

Such that : $\forall v \in G, \sum_{(u,v) \in G, \text{edges}()} b_{(u,v)} \leq 1$

$\forall x \in G, b_x$ is a binary variable

INPUT:

- `value_only` – boolean (default: False): when set to True, only the cardinal (or the weight) of the matching is returned
- `algorithm` – string (default: "Edmonds")
  - "Edmonds" selects Edmonds' algorithm as implemented in NetworkX
  - "LP" uses a Linear Program formulation of the matching problem
- `use_edge_labels` – boolean (default: False)
  - when set to True, computes a weighted matching where each edge is weighted by its label (if an edge has no label, 1 is assumed)
  - when set to False, each edge has weight 1
- `solver` – string (default: None): specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- `verbose` – integer (default: 0); sets the level of verbosity: set to 0 by default, which means quiet (only useful when `algorithm == "LP"`
- `integrality_tolerance` – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

OUTPUT:

- When `value_only`=False (default), this method returns an `EdgesView` containing the edges of a maximum matching of $G$.
- When `value_only`=True, this method returns the sum of the weights (default: 1) of the edges of a maximum matching of $G$. The type of the output may vary according to the type of the edge labels and the algorithm used.

ALGORITHM:

The problem is solved using Edmond's algorithm implemented in NetworkX, or using Linear Programming depending on the value of `algorithm`.

EXAMPLES:

Maximum matching in a Pappus Graph:

```python
sage: g = graphs.PappusGraph()
sage: g.matching(value_only=True)
```

$\rightarrow$ # needs `sage.networkx`
>>> from sage.all import *
>>> g = graphs.PappusGraph()
>>> g.matching(value_only=True)  # needs sage.networkx

Same test with the Linear Program formulation:

sage: g = graphs.PappusGraph()
sage: g.matching(algorithm="LP", value_only=True)  # needs sage.numerical.mip

matching_polynomial \( G, \text{complement=True, name=None} \)

Computes the matching polynomial of the graph \( G \).

If \( p(G, k) \) denotes the number of \( k \)-matchings (matchings with \( k \) edges) in \( G \), then the matching polynomial
is defined as [God1993]:

\[\mu(x) = \sum_{k \geq 0} (-1)^k p(G, k)x^{n-2k}\]

INPUT:

- **complement** – (default: True) whether to use Godsil’s duality theorem to compute the matching polynomial from that of the graphs complement (see ALGORITHM).
- **name** – optional string for the variable name in the polynomial

**Note:** The complement option uses matching polynomials of complete graphs, which are cached. So if you are crazy enough to try computing the matching polynomial on a graph with millions of vertices, you might not want to use this option, since it will end up caching millions of polynomials of degree in the millions.

ALGORITHM:

The algorithm used is a recursive one, based on the following observation [God1993]:

- If \( e \) is an edge of \( G \), \( G' \) is the result of deleting the edge \( e \), and \( G'' \) is the result of deleting each vertex in \( e \), then the matching polynomial of \( G \) is equal to that of \( G' \) minus that of \( G'' \).

  (the algorithm actually computes the *signless* matching polynomial, for which the recursion is the same when one replaces the subtraction by an addition. It is then converted into the matching polynomial and returned)

Depending on the value of complement, Godsil’s duality theorem [God1993] can also be used to compute \( \mu(x) \):

\[\mu(G, x) = \sum_{k \geq 0} p(G, k)\mu(K_n-2k, x)\]

Where \( \overline{G} \) is the complement of \( G \), and \( K_n \) the complete graph on \( n \) vertices.

**EXAMPLES:**

```python
sage: g = graphs.PetersenGraph()
sage: g.matching_polynomial() x^10 - 15*x^8 + 75*x^6 - 145*x^4 + 90*x^2 - 6 sage: g.matching_polynomial(complement=False) x^10 - 15*x^8 + 75*x^6 - 145*x^4 + 90*x^2 - 6 sage: g.matching_polynomial(name='tom') tomt^10 - 15*tom^8 + 75*tom^6 - 145*tom^4 + 90*tom^2 - 6 sage: g = Graph()
sage: L = [graphs.RandomGNP(8, .3) for i in range(1, 6)]
sage: prod([h.matching_polynomial() for h in L]) == sum(L, g).matching_polynomial() # long time (up to 10s on sage.math, 2011) True
```

**Example in Python:**

```python
> from sage.all import *
> g = graphs.PetersenGraph()
> g.matching_polynomial() x^10 - 15*x^8 + 75*x^6 - 145*x^4 + 90*x^2 - 6
> g.matching_polynomial(complement=False) x^10 - 15*x^8 + 75*x^6 - 145*x^4 + 90*x^2 - 6
> g.matching_polynomial(name='tom') tomt^10 - 15*tom^8 + 75*tom^6 - 145*tom^4 + 90*tom^2 - 6
```

(continues on next page)
>>> g = Graph()
>>> L = [graphs.RandomGNP(Integer(8), RealNumber('3')) for i in range(Integer(1), Integer(6))]

>>> prod([h.matching_polynomial() for h in L]) == sum(L, g).matching_polynomial()  # long time (up to 10s on sage.math, 2011)
True

sage: for i in range(1, 12):  # long time (10s on sage.math, 2011)
    ... for t in graphs.trees(i):
        ... if t.matching_polynomial() != t.characteristic_polynomial():
            ... raise RuntimeError('bug for a tree A of size {0}'.format(i))
        ... c = t.complement()
        ... if c.matching_polynomial(complement=False) != c.matching_polynomial():
            ... raise RuntimeError('bug for a tree B of size {0}'.format(i))

sage: from sage.graphs.matchpoly import matching_polynomial
sage: matching_polynomial(graphs.CompleteGraph(0))
1
sage: matching_polynomial(graphs.CompleteGraph(1))
x
sage: matching_polynomial(graphs.CompleteGraph(2))
x^2 - 1
sage: matching_polynomial(graphs.CompleteGraph(3))
x^3 - 3*x
sage: matching_polynomial(graphs.CompleteGraph(4))
x^4 - 6*x^2 + 3
sage: matching_polynomial(graphs.CompleteGraph(5))
x^5 - 10*x^3 + 15*x
sage: matching_polynomial(graphs.CompleteGraph(6))
x^6 - 15*x^4 + 45*x^2 - 15
sage: matching_polynomial(graphs.CompleteGraph(7))
x^7 - 21*x^5 + 105*x^3 - 105*x
sage: matching_polynomial(graphs.CompleteGraph(8))
x^8 - 28*x^6 + 210*x^4 - 420*x^2 + 105
sage: matching_polynomial(graphs.CompleteGraph(9))
x^9 - 36*x^7 + 378*x^5 - 1260*x^3 + 945*x
sage: matching_polynomial(graphs.CompleteGraph(10))
x^10 - 45*x^8 + 630*x^6 - 3150*x^4 + 4725*x^2 - 945
sage: matching_polynomial(graphs.CompleteGraph(11))
x^11 - 55*x^9 + 990*x^7 - 6930*x^5 + 17325*x^3 - 10395*x
sage: matching_polynomial(graphs.CompleteGraph(12))
x^12 - 66*x^10 + 1485*x^8 - 13860*x^6 + 51975*x^4 - 62370*x^2 + 10395
sage: matching_polynomial(graphs.CompleteGraph(13))
x^13 - 78*x^11 + 2145*x^9 - 25740*x^7 + 135135*x^5 - 270270*x^3 + 135135*x
>>> from sage.all import *
>>> from sage.graphs.matchpoly import matching_polynomial

>>> matching_polynomial(graphs.CompleteGraph(Integer(0)))
1
>>> matching_polynomial(graphs.CompleteGraph(Integer(1)))
x
>>> matching_polynomial(graphs.CompleteGraph(Integer(2)))
x^2 - 1
>>> matching_polynomial(graphs.CompleteGraph(Integer(3)))
x^3 - 3*x
>>> matching_polynomial(graphs.CompleteGraph(Integer(4)))
x^4 - 6*x^2 + 3
>>> matching_polynomial(graphs.CompleteGraph(Integer(5)))
x^5 - 10*x^3 + 15*x
>>> matching_polynomial(graphs.CompleteGraph(Integer(6)))
x^6 - 15*x^4 + 45*x^2 - 15
>>> matching_polynomial(graphs.CompleteGraph(Integer(7)))
x^7 - 21*x^5 + 105*x^3 - 105*x
>>> matching_polynomial(graphs.CompleteGraph(Integer(8)))
x^8 - 28*x^6 + 210*x^4 - 420*x^2 + 105
>>> matching_polynomial(graphs.CompleteGraph(Integer(9)))
x^9 - 36*x^7 + 378*x^5 - 1260*x^3 + 945*x
>>> matching_polynomial(graphs.CompleteGraph(Integer(10)))
x^10 - 45*x^8 + 630*x^6 - 3150*x^4 + 4725*x^2 - 945
>>> matching_polynomial(graphs.CompleteGraph(Integer(11)))
x^11 - 55*x^9 + 990*x^7 - 6930*x^5 + 17325*x^3 - 10395*x
>>> matching_polynomial(graphs.CompleteGraph(Integer(12)))
x^12 - 66*x^10 + 1485*x^8 - 13860*x^6 + 51975*x^4 - 62370*x^2 + 10395
>>> matching_polynomial(graphs.CompleteGraph(Integer(13)))
x^13 - 78*x^11 + 2145*x^9 - 25740*x^7 + 135135*x^5 - 270270*x^3 + 135135*x

sage: G = Graph({0:[1,2], 1:[2]})
sage: matching_polynomial(G)
x^3 - 3*x
sage: G = Graph({0:[1,2]})
sage: matching_polynomial(G)
x^3 - 2*x
sage: G = Graph({0:[1], 2:[]})
sage: matching_polynomial(G)
x^3 - x
sage: G = Graph({0:[], 1:[], 2:[]})
sage: matching_polynomial(G)
x^3

>>> from sage.all import *

>>> G = Graph({Integer(0):[Integer(1),Integer(2)], Integer(1):[Integer(2)]})
>>> matching_polynomial(G)
x^3 - 3*x
>>> G = Graph({Integer(0):[Integer(1),Integer(2)]})
>>> matching_polynomial(G)
x^3 - 2*x
>>> G = Graph({Integer(0):[Integer(1)], Integer(2):[]})
>>> matching_polynomial(G)
x^3 - x
>>> G = Graph({Integer(0):[], Integer(1):[], Integer(2):[]})
>>> matching_polynomial(G)
x^3
```python
sage: matching_polynomial(graphs.CompleteGraph(0), complement=False)
1
sage: matching_polynomial(graphs.CompleteGraph(1), complement=False)
x
sage: matching_polynomial(graphs.CompleteGraph(2), complement=False)
x^2 - 1
sage: matching_polynomial(graphs.CompleteGraph(3), complement=False)
x^3 - 3*x
sage: matching_polynomial(graphs.CompleteGraph(4), complement=False)
x^4 - 6*x^2 + 3
sage: matching_polynomial(graphs.CompleteGraph(5), complement=False)
x^5 - 10*x^3 + 15*x
sage: matching_polynomial(graphs.CompleteGraph(6), complement=False)
x^6 - 15*x^4 + 45*x^2 - 15
sage: matching_polynomial(graphs.CompleteGraph(7), complement=False)
x^7 - 21*x^5 + 105*x^3 - 105*x
sage: matching_polynomial(graphs.CompleteGraph(8), complement=False)
x^8 - 28*x^6 + 210*x^4 - 420*x^2 + 105
sage: matching_polynomial(graphs.CompleteGraph(9), complement=False)
x^9 - 36*x^7 + 378*x^5 - 1260*x^3 + 945*x
sage: matching_polynomial(graphs.CompleteGraph(10), complement=False)
x^10 - 45*x^8 + 630*x^6 - 3150*x^4 + 4725*x^2 - 945
sage: matching_polynomial(graphs.CompleteGraph(11), complement=False)
x^11 - 55*x^9 + 990*x^7 - 6930*x^5 + 17325*x^3 - 10395*x
sage: matching_polynomial(graphs.CompleteGraph(12), complement=False)
x^12 - 66*x^10 + 1485*x^8 - 13860*x^6 + 51975*x^4 - 62370*x^2 + 10395
sage: matching_polynomial(graphs.CompleteGraph(13), complement=False)
x^13 - 78*x^11 + 2145*x^9 - 25740*x^7 + 135135*x^5 - 270270*x^3 + 135135*x
```

```python
>>> from sage.all import *

>>> matching_polynomial(graphs.CompleteGraph(Integer(0)), complement=False)
1
>>> matching_polynomial(graphs.CompleteGraph(Integer(1)), complement=False)
x
>>> matching_polynomial(graphs.CompleteGraph(Integer(2)), complement=False)
x^2 - 1
>>> matching_polynomial(graphs.CompleteGraph(Integer(3)), complement=False)
x^3 - 3*x
>>> matching_polynomial(graphs.CompleteGraph(Integer(4)), complement=False)
x^4 - 6*x^2 + 3
>>> matching_polynomial(graphs.CompleteGraph(Integer(5)), complement=False)
x^5 - 10*x^3 + 15*x
>>> matching_polynomial(graphs.CompleteGraph(Integer(6)), complement=False)
x^6 - 15*x^4 + 45*x^2 - 15
>>> matching_polynomial(graphs.CompleteGraph(Integer(7)), complement=False)
x^7 - 21*x^5 + 105*x^3 - 105*x
>>> matching_polynomial(graphs.CompleteGraph(Integer(8)), complement=False)
x^8 - 28*x^6 + 210*x^4 - 420*x^2 + 105
>>> matching_polynomial(graphs.CompleteGraph(Integer(9)), complement=False)
x^9 - 36*x^7 + 378*x^5 - 1260*x^3 + 945*x
>>> matching_polynomial(graphs.CompleteGraph(Integer(10)), complement=False)
x^10 - 45*x^8 + 630*x^6 - 3150*x^4 + 4725*x^2 - 945
>>> matching_polynomial(graphs.CompleteGraph(Integer(11)), complement=False)
x^11 - 55*x^9 + 990*x^7 - 6930*x^5 + 17325*x^3 - 10395*x
>>> matching_polynomial(graphs.CompleteGraph(Integer(12)), complement=False)
x^12 - 66*x^10 + 1485*x^8 - 13860*x^6 + 51975*x^4 - 62370*x^2 + 10395
>>> matching_polynomial(graphs.CompleteGraph(Integer(13)), complement=False)
x^13 - 78*x^11 + 2145*x^9 - 25740*x^7 + 135135*x^5 - 270270*x^3 + 135135*x
```

(continues on next page)
maximum_average_degree (value_only=True, solver=None, verbose=0)

Return the Maximum Average Degree (MAD) of the current graph.

The Maximum Average Degree (MAD) of a graph is defined as the average degree of its densest subgraph. More formally, \( \text{Mad}(G) = \max_{\{H \subseteq G\}} \text{Ad}(H) \), where \( \text{Ad}(G) \) denotes the average degree of \( G \).

This can be computed in polynomial time.

INPUT:

- value_only – boolean (default: True);
  - If value_only=True, only the numerical value of the MAD is returned.
  - Else, the subgraph of \( G \) realizing the MAD is returned.
- solver – (default: None); specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

In any graph, the Mad is always larger than the average degree:

```python
sage: g = graphs.RandomGNP(20,.3)
sage: mad_g = g.maximum_average_degree() # needs sage.numerical.mip
sage: g.average_degree() <= mad_g # needs sage.numerical.mip
True
```

Unlike the average degree, the Mad of the disjoint union of two graphs is the maximum of the Mad of each graphs:

```python
>>> from sage.all import *
>>> g = graphs.RandomGNP(Integer(20),RealNumber('.3'))
>>> mad_g = g.maximum_average_degree() # needs sage.numerical.mip
>>> g.average_degree() <= mad_g # needs sage.numerical.mip
True
```

```python
sage: h = graphs.RandomGNP(20,.3)
sage: mad_h = h.maximum_average_degree() # needs sage.numerical.mip
sage: (g+h).maximum_average_degree() == max(mad_g, mad_h) # needs sage.numerical.mip
True
```

```python
>>> from sage.all import *
>>> h = graphs.RandomGNP(Integer(20),RealNumber('.3'))
>>> mad_h = h.maximum_average_degree() # needs sage.numerical.mip
>>> (g+h).maximum_average_degree() == max(mad_g, mad_h) # needs sage.numerical.mip
```

(continues on next page)
The subgraph of a regular graph realizing the maximum average degree is always the whole graph

```
sage: g = graphs.CompleteGraph(5)
sage: mad_g = g.maximum_average_degree(value_only=False) # needs sage.numerical.mip
sage: g.is_isomorphic(mad_g) # needs sage.numerical.mip
sage: True
```

This also works for complete bipartite graphs

```
>>> from sage.all import *
>>> g = graphs.CompleteBipartiteGraph(3,4)
>>> mad_g = g.maximum_average_degree(value_only=False) # needs sage.numerical.mip
>>> g.is_isomorphic(mad_g) # needs sage.numerical.mip
sage: True
```

maximum_cardinality_search \((G, reverse=False, tree=False, initial_vertex=None)\)

Return an ordering of the vertices according a maximum cardinality search.

Maximum cardinality search (MCS) is a graph traversal introduced in [TY1984]. It starts by assigning an arbitrary vertex (or the specified initial_vertex) of \(G\) the last position in the ordering \(\alpha\). Every vertex keeps a weight equal to the number of its already processed neighbors (i.e., already added to \(\alpha\)), and a vertex of largest such number is chosen at each step \(i\) to be placed in position \(n - i\) in \(\alpha\). This ordering can be computed in time \(O(n + m)\).

Time complexity is \(O(n + m)\) for SparseGraph and \(O(n^2)\) for DenseGraph where \(n\) is the number of vertices and \(m\) is the number of edges.

When the graph is chordal, the ordering returned by MCS is a perfect elimination ordering, like \(\text{lex_BFS}()\). So this ordering can be used to recognize chordal graphs. See [He2006] for more details.

**Note:** The current implementation is for connected graphs only.

**INPUT:**
• $G$ – a Sage graph
• reverse – boolean (default: False); whether to return the vertices in discovery order, or the reverse
• tree – boolean (default: False); whether to also return the discovery directed tree (each vertex being linked to the one that saw it for the first time)
• initial_vertex – (default: None); the first vertex to consider

OUTPUT:
By default, return the ordering $\alpha$ as a list. When tree is True, the method returns a tuple $(\alpha, T)$, where $T$ is a directed tree with the same set of vertices as $G$ and a directed edge from $u$ to $v$ if $u$ was the first vertex to see $v$.

EXAMPLES:
When specified, the initial_vertex is placed at the end of the ordering, unless parameter reverse is True, in which case it is placed at the beginning:

```
sage: G = graphs.PathGraph(4)
sage: G.maximum_cardinality_search(initial_vertex=0)
[3, 2, 1, 0]
sage: G.maximum_cardinality_search(initial_vertex=1)
[0, 3, 2, 1]
sage: G.maximum_cardinality_search(initial_vertex=2)
[0, 1, 3, 2]
sage: G.maximum_cardinality_search(initial_vertex=3)
[0, 1, 2, 3]
sage: G.maximum_cardinality_search(initial_vertex=3, reverse=True)
[3, 2, 1, 0]
```

Returning the discovery tree:

```
sage: G = graphs.PathGraph(4)
sage: _, T = G.maximum_cardinality_search(tree=True, initial_vertex=0)
sage: T.order(), T.size()
(4, 3)
sage: T.edges(labels=False, sort=True)
[(1, 0), (2, 1), (3, 2)]
sage: _, T = G.maximum_cardinality_search(tree=True, initial_vertex=3)
sage: T.edges(labels=False, sort=True)
[(0, 1), (1, 2), (2, 3)]
```

```
>>> from sage.all import *
>>> G = graphs.PathGraph(Integer(4))
>>> G.maximum_cardinality_search(initial_vertex=Integer(0))
[3, 2, 1, 0]
>>> G.maximum_cardinality_search(initial_vertex=Integer(1))
[0, 3, 2, 1]
>>> G.maximum_cardinality_search(initial_vertex=Integer(2))
[0, 1, 3, 2]
>>> G.maximum_cardinality_search(initial_vertex=Integer(3))
[0, 1, 2, 3]
>>> G.maximum_cardinality_search(initial_vertex=Integer(3), reverse=True)
[3, 2, 1, 0]
```
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> _, T = G.maximum_cardinality_search(tree=True, initial_vertex=Integer(0))
>>> T.order(), T.size()
(4, 3)
>>> T.edges(labels=False, sort=True)
[(1, 0), (2, 1), (3, 2)]
>>> _, T = G.maximum_cardinality_search(tree=True, initial_vertex=Integer(3))
>>> T.edges(labels=False, sort=True)
[(0, 1), (1, 2), (2, 3)]
```

**maximum_cardinality_search_M(G, initial_vertex=None)**

Return the ordering and the edges of the triangulation produced by MCS-M.

Maximum cardinality search M (MCS-M) is an extension of MCS (maximum_cardinality_search()) in the same way that Lex-M (lex_M()) is an extension of Lex-BFS (lex_BFS()). That is, in MCS-M when \( u \) receives number \( i \) at step \( n - i + 1 \), it increments the weight of all unnumbered vertices \( v \) for which there exists a path between \( u \) and \( v \) consisting only of unnumbered vertices with weight strictly less than \( w^-(u) \) and \( w^-(v) \), where \( w^- \) is the number of times a vertex has been reached during previous iterations. See [BBHP2004] for the details of this \( O(nm) \) time algorithm.

If \( G \) is not connected, the orderings of each of its connected components are added consecutively. Furthermore, if \( G \) has \( k \) connected components \( C_i \) for \( 0 \leq i < k \), \( X \) contains at least one vertex of \( C_i \) for each \( i \geq 1 \). Hence, \( |X| \geq k - 1 \). In particular, some isolated vertices (i.e., of degree 0) can appear in \( X \) as for such a vertex \( x \), we have that \( G \setminus N(x) = G \) is not connected.

**INPUT:**

- \( G \) – a Sage graph
- \( \text{initial\_vertex} \) – (default: None); the first vertex to consider

**OUTPUT:** a tuple \( (\alpha, F, X) \), where

- \( \alpha \) is the resulting ordering of the vertices. If an initial vertex is specified, it gets the last position in the ordering \( \alpha \).
- \( F \) is the list of edges of a minimal triangulation of \( G \) according \( \alpha \)
- \( X \) is a list of vertices such that for each \( x \in X \), the neighborhood of \( x \) in \( G \) is a separator (i.e., \( G \setminus N(x) \) is not connected). Note that we may have \( N(x) = \emptyset \) if \( G \) is not connected and \( x \) has degree 0.

**EXAMPLES:**

Chordal graphs have a perfect elimination ordering, and so the set \( F \) of edges of the triangulation is empty:

```python
sage: G = graphs.RandomChordalGraph(20)
sage: alpha, F, X = G.maximum_cardinality_search_M(); F
[]
```

```python
>>> from sage.all import *
>>> G = graphs.RandomChordalGraph(Integer(20))
>>> alpha, F, X = G.maximum_cardinality_search_M(); F
[]
```

The cycle of order 4 is not chordal and so the triangulation has one edge:

```python
sage: G = graphs.CycleGraph(4)
sage: alpha, F, X = G.maximum_cardinality_search_M(); len(F)
1
```
The number of edges needed to triangulate of a cycle graph or order $n$ is $n - 3$, independently of the initial vertex:

```python
sage: n = randint(3, 20)
sage: C = graphs.CycleGraph(n)
sage: _, F, X = C.maximum_cardinality_search_M()

sage: len(F) == n - 3
True
sage: _, F, X = C.maximum_cardinality_search_M(initial_vertex=C.random_vertex())

sage: len(F) == n - 3
True
```

When an initial vertex is specified, it gets the last position in the ordering:

```python
sage: G = graphs.PathGraph(4)
sage: G.maximum_cardinality_search_M(initial_vertex=0)
([3, 2, 1, 0], [], [2, 3])

sage: G.maximum_cardinality_search_M(initial_vertex=1)
([3, 2, 0, 1], [], [2, 3])

sage: G.maximum_cardinality_search_M(initial_vertex=2)
([0, 1, 3, 2], [], [0, 1])

sage: G.maximum_cardinality_search_M(initial_vertex=3)
([0, 1, 2, 3], [], [0, 1])
```

When $G$ is not connected, the orderings of each of its connected components are added consecutively, the vertices of the component containing the initial vertex occupying the last positions:
Furthermore, if $G$ has $k$ connected components, $X$ contains at least one vertex per connected component, except for the first one, and so at least $k - 1$ vertices:

```python
sage: for k in range(1, 5):
 _, _, X = Graph(k).maximum_cardinality_search_M()
 if len(X) < k - 1:
 raise ValueError("something goes wrong")
```

In the example of [BPS2010], the triangulation has 3 edges:

```python
sage: G = Graph({'a': ['b', 'k'], 'b': ['c'], 'c': ['d', 'j', 'k'],
 'd': ['e', 'f', 'j', 'k'], 'e': ['g'],
 'f': ['g', 'j', 'k'], 'g': ['j', 'k'], 'h': ['i', 'j'],
 'i': ['j', 'k'], 'j': ['k']})
```

```python
sage: _, F, _ = G.maximum_cardinality_search_M(initial_vertex='a')
```

```python
sage: len(F)
3
```

**minimal_dominating_sets** ($G$, to_dominator=None, work_on_copy=True, k=1)

Return an iterator over the minimal dominating sets of a graph.
INPUT:

- \( G \) – a graph.
- \( \text{to\_dominate} \) – vertex iterable or None (default: None); the set of vertices to be dominated.
- \( \text{work\_on\_copy} \) – boolean (default: True); whether or not to work on a copy of the input graph; if set to False, the input graph will be modified (relabeled).
- \( k \) – a non-negative integer (default: 1); the domination distance

OUTPUT:
An iterator over the inclusion-minimal sets of vertices of \( G \). If \( \text{to\_dominate} \) is provided, return an iterator over the inclusion-minimal sets of vertices that dominate the vertices of \( \text{to\_dominate} \).

ALGORITHM: The algorithm described in [BDHPR2019].

AUTHOR: Jean-Florent Raymond (2019-03-04) – initial version.

EXAMPLES:

```
sage: G = graphs.ButterflyGraph()
sage: ll = list(G.minimal_dominating_sets())
sage: pp = [{0, 1}, {1, 3}, {0, 2}, {2, 3}, {4}]
sage: len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True

sage: ll = list(G.minimal_dominating_sets([0,3]))
sage: pp = [{0}, {3}, {4}]
sage: len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True

sage: ll = list(G.minimal_dominating_sets([4]))
sage: pp = [{4}, {0}, {1}, {2}, {3}]
sage: len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True
```
True

```python
sage: ll = list(graphs.PetersenGraph().minimal_dominating_sets())
sage: pp = [{0, 2, 6},
... {0, 9, 3},
... {0, 8, 7},
... {1, 3, 7},
... {1, 4, 5},
... {8, 1, 9},
... {8, 2, 4},
... {9, 2, 5},
... {3, 5, 6},
... {4, 6, 7},
... {0, 8, 2, 9},
... {0, 3, 6, 7},
... {1, 3, 5, 9},
... {8, 1, 4, 7},
... {2, 4, 5, 6},
... {0, 1, 2, 3, 4},
... {0, 1, 2, 5, 7},
... {0, 1, 4, 6, 9},
... {9, 2, 3, 4, 6},
... {8, 1, 2, 3, 6},
... {1, 2, 9, 6, 7},
... {9, 2, 3, 5, 7},
... {8, 9, 3, 4, 6},
... {8, 9, 5, 6, 7}]
sage: len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True
```

```python
>>> from sage.all import *
>>> ll = list(graphs.PetersenGraph().minimal_dominating_sets())
>>> pp = [{Integer(0), Integer(2), Integer(6)},
... {Integer(0), Integer(9), Integer(3)},
... {Integer(0), Integer(8), Integer(7)},
... {Integer(1), Integer(3), Integer(7)},
... {Integer(1), Integer(4), Integer(5)},
... {Integer(8), Integer(1), Integer(9)},
... {Integer(8), Integer(2), Integer(4)},
... {Integer(9), Integer(2), Integer(5)},
... {Integer(3), Integer(5), Integer(6)},
... {Integer(4), Integer(6), Integer(7)},
... {Integer(0), Integer(8), Integer(2), Integer(9)},
... {Integer(0), Integer(3), Integer(6), Integer(7)},
... {Integer(1), Integer(3), Integer(5), Integer(9)},
... {Integer(8), Integer(1), Integer(4), Integer(7)},
... {Integer(2), Integer(4), Integer(5), Integer(6)},
... {Integer(0), Integer(1), Integer(2), Integer(3), Integer(4)},
... {Integer(0), Integer(1), Integer(2), Integer(5), Integer(7)},
... {Integer(0), Integer(1), Integer(4), Integer(6), Integer(9)},
... {Integer(0), Integer(1), Integer(5), Integer(6), Integer(8)},
... {Integer(0), Integer(3), Integer(4), Integer(5)},
... {Integer(0), Integer(4), Integer(5), Integer(7)},
... {Integer(0), Integer(1), Integer(2), Integer(3), Integer(4)},
... {Integer(0), Integer(1), Integer(2), Integer(5), Integer(7)},
... {Integer(0), Integer(1), Integer(4), Integer(6), Integer(9)},
... {Integer(0), Integer(1), Integer(5), Integer(6), Integer(8)},
... {Integer(0), Integer(3), Integer(4), Integer(5)},
... {Integer(0), Integer(4), Integer(5), Integer(7)}]
```
Listing minimal distance-\(k\) dominating sets:

\[
\begin{align*}
G & = \text{graphs.Grid2dGraph}(2, 3) \\
\text{sage:} & \text{list}(G\text{.minimal_dominating_sets}(k=0)) \\
& \left[\{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)\}\right] \\
\text{sage:} & \text{list}(G\text{.minimal_dominating_sets}(k=1)) \\
& \left[\{(0, 0), (0, 2), (1, 1)\}, \\
& \{(0, 1), (1, 1)\}, \\
& \{(0, 0), (0, 1), (0, 2)\}, \\
& \{(0, 2), (1, 0)\}, \\
& \{(0, 0), (1, 2)\}, \\
& \{(0, 1), (1, 0), (1, 2)\}, \\
& \{(1, 0), (1, 1), (1, 2)\}\right] \\
\text{sage:} & \text{list}(G\text{.minimal_dominating_sets}(k=2)) \\
& \left[\{(0, 0), (1, 2)\}, \\
& \{(0, 2), (1, 2)\}, \\
& \{(1, 0), (1, 2)\}, \\
& \{(0, 1)\}, \\
& \{(0, 0), (0, 2)\}, \\
& \{(0, 2), (1, 0)\}, \\
& \{(0, 0), (1, 0)\}, \\
& \{(1, 1)\}\right] \\
\text{sage:} & \text{list}(G\text{.minimal_dominating_sets}(k=3)) \\
& \left[\{(0, 0)\}, \{(0, 1)\}, \{(0, 2)\}, \{(1, 0)\}, \{(1, 1)\}, \{(1, 2)\}\right]
\end{align*}
\]

\[
\begin{align*}
\text{from sage.all import *} \\
G & = \text{graphs.Grid2dGraph}(\text{Integer}(2), \text{Integer}(3)) \\
\text{list}(G\text{.minimal_dominating_sets}(k=\text{Integer}(0))) \\
& \left[\{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)\}\right] \\
\text{list}(G\text{.minimal_dominating_sets}(k=\text{Integer}(1))) \\
& \left[\{(0, 0), (0, 2), (1, 1)\}, \\
& \{(0, 1), (1, 1)\}, \\
& \{(0, 0), (0, 1), (0, 2)\}, \\
& \{(0, 2), (1, 0)\}, \\
& \{(0, 0), (1, 2)\}, \\
& \{(0, 1), (1, 0), (1, 2)\}, \\
& \{(1, 0), (1, 1), (1, 2)\}\right] \\
\text{list}(G\text{.minimal_dominating_sets}(k=\text{Integer}(2))) \\
& \left[\{(0, 0), (1, 2)\}, \\
& \{(0, 2), (1, 2)\}, \\
& \{(1, 0), (1, 2)\}, \\
& \{(0, 1)\}, \\
& \{(0, 0), (0, 2)\}, \\
& \{(0, 2), (1, 0)\}\right]
\end{align*}
\]
```python
{(0, 0), (1, 0)},
{(1, 1)})

>>> list(G.minimal_dominating_sets(k=Integer(3)))
[{{0, 0}}, {{0, 1}}, {{0, 2}}, {{1, 0}}, {{1, 1}}, {{1, 2}}]
```

When parameter `work_on_copy` is `False`, the input graph is modified (relabeled):

```python
sage: G = Graph([('A', 'B')])
sage: _ = list(G.minimal_dominating_sets(work_on_copy=True))
sage: set(G) == {'A', 'B'}
True
sage: _ = list(G.minimal_dominating_sets(work_on_copy=False))
sage: set(G) == {'A', 'B'}
False
sage: set(G) == {0, 1}
True
```

```
>> from sage.all import *
>> G = Graph([('A', 'B')])
>> _ = list(G.minimal_dominating_sets(work_on_copy=True))
>> set(G) == {'A', 'B'}
True
>> _ = list(G.minimal_dominating_sets(work_on_copy=False))
>> set(G) == {'A', 'B'}
False
>> set(G) == {Integer(0), Integer(1)}
True
```

**minimum_outdegree_orientation**

```
(continue from previous page)

minimum_outdegree_orientation (use_edge_labels, solver=False, verbose=None, integrality_tolerance=0)

Returns an orientation of *self* with the smallest possible maximum outdegree.

Given a Graph *G*, it is polynomial to compute an orientation *D* of the edges of *G* such that the maximum out-degree in *D* is minimized. This problem, though, is NP-complete in the weighted case [AMOZ2006].

INPUT:

- **use_edge_labels** – boolean (default: False)
 - When set to True, uses edge labels as weights to compute the orientation and assumes a weight of 1 when there is no value available for a given edge.
 - When set to False (default), gives a weight of 1 to all the edges.
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

EXAMPLES:

Given a complete bipartite graph *K*_{n,m}, the maximum out-degree of an optimal orientation is $\left\lfloor \frac{nm}{n+m} \right\rfloor$.

```python
sage: g = graphs.CompleteBipartiteGraph(3,4)
sage: o = g.minimum_outdegree_orientation()  

(continues on next page)
```
Graph Theory, Release 10.4

(continued from previous page)

needs sage.numerical.mip

sage: max(o.out_degree()) == integer_ceil((4*3)/(3+4)) # needs sage.numerical.mip
True

>>> from sage.all import *
>>> g = graphs.CompleteBipartiteGraph(Integer(3),Integer(4))
>>> o = g.minimum_outdegree_orientation() # needs sage.numerical.mip
>>> max(o.out_degree()) == integer_ceil((Integer(4)*Integer(3))/(Integer(3)+Integer(4))) # needs sage.numerical.mip
True

minor (H, solver, verbose=None, induced=0, integrality_tolerance=False)

Return the vertices of a minor isomorphic to \(H \) in the current graph.

We say that a graph \(G \) has a \(H \)-minor (or that it has a graph isomorphic to \(H \) as a minor), if for all \(h \in H \), there exist disjoint sets \(S_h \subseteq V(G) \) such that once the vertices of each \(S_h \) have been merged to create a new graph \(G' \), this new graph contains \(H \) as a subgraph.

When parameter induced is True, this method returns an induced minor isomorphic to \(H \), if it exists.

We say that a graph \(G \) has an induced \(H \)-minor (or that it has a graph isomorphic to \(H \) as an induced minor), if \(H \) can be obtained from an induced subgraph of \(G \) by contracting edges. Otherwise, \(G \) is said to be \(H \)-induced minor-free.

For more information, see the Wikipedia article Minor_(graph_theory).

INPUT:

- \(H \) – The minor to find for in the current graph.
- solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().
- induced – boolean (default: False); if True, returns an induced minor isomorphic to \(H \) if it exists, and raises a ValueError otherwise.

OUTPUT:

A dictionary associating to each vertex of \(H \) the set of vertices in the current graph representing it.

ALGORITHM:

Mixed Integer Linear Programming

COMPLEXITY:

Theoretically, when \(H \) is fixed, testing for the existence of a \(H \)-minor is polynomial. The known algorithms are highly exponential in \(H \), though.

Note: This function can be expected to be very slow, especially where the minor does not exist.

EXAMPLES:
Trying to find a minor isomorphic to K_4 in the 4×4 grid:

```python
sage: # needs sage.numerical.mip
sage: g = graphs.GridGraph([4,4])
sage: h = graphs.CompleteGraph(4)
sage: L = g.minor(h)
sage: gg = g.subgraph(flatten(L.values(), max_level = 1))
_ = [gg.merge_vertices(l) for l in L.values() if len(l)>1]
sage: gg.is_isomorphic(h)
True
```

We can also try to prove this way that the Petersen graph is not planar, as it has a K_5 minor:

```python
sage: g = graphs.PetersenGraph()
sage: K5_minor = g.minor(graphs.CompleteGraph(5)) # long time
˓→ needs sage.numerical.mip
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> K5_minor = g.minor(graphs.CompleteGraph(Integer(5))) # long time
˓→ # needs sage.numerical.mip

And even a $K_{3,3}$ minor:

```python
sage: K33_minor = g.minor(graphs.CompleteBipartiteGraph(3,3)) # long time, needs sage.numerical.mip
˓→ from sage.all import *
˓→ # needs sage.numerical.mip
>>> K33_minor = g.minor(graphs.CompleteBipartiteGraph(Integer(3),Integer(3))) # long time, needs sage.numerical.mip

(It is much faster to use the linear-time test of planarity in this situation, though.)

As there is no cycle in a tree, looking for a K_3 minor is useless. This function will raise an exception in this case:

```python
sage: g = graphs.RandomGNP(20, .5)
sage: g = g.subgraph(edges=g.subtree())
sage: g.is_tree()
True
sage: L = g.minor(graphs.CompleteGraph(3)) # needs sage.numerical.mip
Traceback (most recent call last):
...
ValueError: This graph has no minor isomorphic to H!
```
Trying to find an induced minor isomorphic to C_5 in a graph containing an induced C_6:

```python
sage: g = graphs.CycleGraph(6)
sage: for i in range(randint(10, 30)):
    g.add_edge(randint(0, 5), g.add_vertex())
sage: h = graphs.CycleGraph(5)
sage: L = g.minor(h, induced=True)
sage: gg = g.subgraph(flatten(L.values(), max_level=1))
sage: _ = [gg.merge_vertices(l) for l in L.values() if len(l) > 1]
sage: gg.is_isomorphic(h)
True
```

modular_decomposition (algorithm=None, style='tuple')

Return the modular decomposition of the current graph.

A module of an undirected graph is a subset of vertices such that every vertex outside the module is either connected to all members of the module or to none of them. Every graph that has a nontrivial module can be partitioned into modules, and the increasingly fine partitions into modules form a tree. The modular_decomposition function returns that tree, using an $O(n^3)$ algorithm of [HM1979].

INPUT:

- style = string (default: 'tuple'): specifies the output format:
 - 'tuple' - as nested tuples.
 - 'tree' - as LabelledRootedTree.

OUTPUT:

A pair of two values (recursively encoding the decomposition):

- The type of the current module:
 - "PARALLEL"
 - "PRIME"
 - "SERIES"
- The list of submodules (as list of pairs \((\text{type, list})\) recursively...) or the vertex's name if the module is a singleton.

Crash course on modular decomposition:

A module \(M\) of a graph \(G\) is a proper subset of its vertices such that for all \(u \in V(G) - M, v, w \in M\) the relation \(u \sim v \iff u \sim w\) holds, where \(\sim\) denotes the adjacency relation in \(G\). Equivalently, \(M \subset V(G)\) is a module if all its vertices have the same adjacency relations with each vertex outside of the module (vertex by vertex).

Hence, for a set like a module, it is very easy to encode the information of the adjacencies between the vertices inside and outside the module—we can actually add a new vertex \(v_M\) to our graph representing our module \(M\), and let \(v_M\) be adjacent to \(u \in V(G) - M\) if and only if some \(v \in M\) (and hence all the vertices contained in the module) is adjacent to \(u\). We can now independently (and recursively) study the structure of our module \(M\) and the new graph \(G - M + \{v_M\}\), without any loss of information.

Here are two very simple modules:

- A connected component \(C\) (or the union of some—but not all—of them) of a disconnected graph \(G\), for instance, is a module, as no vertex of \(C\) has a neighbor outside of it.

- An anticomponent \(C\) (or the union of some—but not all—of them) of a non-anticonnected graph \(G\), for the same reason (it is just the complement of the previous graph!).

These modules being of special interest, the disjoint union of graphs is called a Parallel composition, and the complement of a disjoint union is called a Series composition. A graph whose only modules are singletons is called Prime.

For more information on modular decomposition, in particular for an explanation of the terms “Parallel,” “Prime” and “Series,” see the Wikipedia article Modular_decomposition.

You may also be interested in the survey from Michel Habib and Christophe Paul entitled “A survey on Algorithmic aspects of modular decomposition” [HP2010].

EXAMPLES:

The Bull Graph is prime:

```python
sage: graphs.BullGraph().modular_decomposition()
(PRIME, [1, 2, 0, 3, 4])
```

```python
>>> from sage.all import *
>>> graphs.BullGraph().modular_decomposition()
(PRIME, [1, 2, 0, 3, 4])
```

The Petersen Graph too:

```python
sage: graphs.PetersenGraph().modular_decomposition()
(PRIME, [1, 4, 5, 0, 2, 6, 3, 7, 8, 9])
```

```python
>>> from sage.all import *
>>> graphs.PetersenGraph().modular_decomposition()
(PRIME, [1, 4, 5, 0, 2, 6, 3, 7, 8, 9])
```

This a clique on 5 vertices with 2 pendant edges, though, has a more interesting decomposition:

```python
sage: g = graphs.CompleteGraph(5)
sage: g.add_edge(0,5)
sage: g.add_edge(0,6)
```

(continues on next page)
We can choose output to be a `LabelledRootedTree`:

```python
sage: g.modular_decomposition(style='tree')
SERIES[0], PARALLEL[5, 6], SERIES[1, 2, 3, 4]]
sage: ascii_art(g.modular_decomposition(style='tree'))
  __SERIES
 / /
0 ___PARALLEL
 / / /
5 6 __SERIES
 / / / 1 2 3 4
```

ALGORITHM:

This function uses the algorithm of M. Habib and M. Maurer [HM1979].

See also:

- `is_prime()` – Tests whether a graph is prime.
- `LabelledRootedTree`.

Note: A buggy implementation of linear time algorithm from [TCHP2008] was removed in Sage 9.7, see Issue #25872.

```python
most_common_neighbors(nonedgesonly=True)
```

Return vertex pairs with maximal number of common neighbors.

This method is only valid for simple (no loops, no multiple edges) graphs with order ≥ 2

INPUT:

- `nonedgesonly` – boolean (default: True); if True, assigns 0 value to adjacent vertices.
OUTPUT: list of tuples of edge pairs

EXAMPLES:
The maximum common neighbor (non-adjacent) pairs for a straight linear 2-tree

```python
sage: G1 = Graph([(0,1), (0,2), (1,2), (1,3), (3,5), (2,4), (2,3), (3,4), (4,5)])
sage: G1.most_common_neighbors()  # needs sage.modules
[(0, 3), (1, 4), (2, 5)]
```

If we include non-adjacent pairs

```python
sage: G1.most_common_neighbors(nonedgesonly=False)  # needs sage.modules
[(0, 3), (1, 2), (1, 4), (2, 3), (2, 5), (3, 4)]
```

The common neighbors matrix for a fan on 6 vertices counting only non-adjacent vertex pairs

```python
sage: H = Graph([(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (1,2), (2,3), (3,4), (4,5)])
sage: H.most_common_neighbors()  # needs sage.modules
[(1, 3), (2, 4), (3, 5)]
```

See also:

- `common_neighbors_matrix()` — a similar method giving a matrix of number of common neighbors

orientations *(data_structure=None, sparse=None)*

Return an iterator over orientations of self.

An orientation of an undirected graph is a directed graph such that every edge is assigned a direction. Hence there are 2^s oriented digraphs for a simple graph with s edges.
INPUT:

- **data_structure** – one of "sparse", "static_sparse", or "dense"; see the documentation of `Graph` or `DiGraph`; default is the data structure of `self`
- **sparse** – boolean (default: `None`); `sparse=True` is an alias for `data_structure="sparse"`, and `sparse=False` is an alias for `data_structure="dense"`. By default (None), guess the most suitable data structure.

Warning: This always considers multiple edges of graphs as distinguishable, and hence, may have repeated digraphs.

See also:

- `strong_orientation()`
- `strong_orientations_iterator()`
- `nauty_directg()`
- `random_orientation()`

EXAMPLES:

```python
sage: G = Graph([[1,2,3], [(1, 2, 'a'), (1, 3, 'b')]])

sage: it = G.orientations()

sage: D = next(it)

sage: D.edges(sort=True)
[(1, 2, 'a'), (1, 3, 'b')]

sage: D = next(it)

sage: D.edges(sort=True)
[(1, 2, 'a'), (3, 1, 'b')]
```

```python
>>> from sage.all import *

>>> G = Graph(((Integer(1), Integer(2), Integer(3)), [(Integer(1), Integer(2), 'a'), (Integer(1), Integer(3), 'b')])), format='vertices_and_edges')

>>> it = G.orientations()

>>> D = next(it)

>>> D.edges(sort=True)
[(1, 2, 'a'), (1, 3, 'b')]

>>> D = next(it)

>>> D.edges(sort=True)
[(1, 2, 'a'), (3, 1, 'b')]
```

pathwidth

`pathwidth(k=None, certificate=False, algorithm='BAB', verbose=False, max_prefix_length=20, max_prefix_number=1000000, solver=None)`

Compute the pathwidth of `self` (and provides a decomposition)

INPUT:

- **k** – integer (default: `None`); the width to be considered. When `k` is an integer, the method checks that the graph has pathwidth ≤ `k`. If `k` is `None` (default), the method computes the optimal pathwidth.
- **certificate** – boolean (default: `False`); whether to return the path-decomposition itself
- **algorithm** – string (default: "BAB"); algorithm to use among:
"BAB" – Use a branch-and-bound algorithm. This algorithm has no size restriction but could take a very long time on large graphs. It can also be used to test if the input graph has pathwidth \(\leq k \), in which case it will return the first found solution with width \(\leq k \).

exponential – Use an exponential time and space algorithm. This algorithm only works on graphs on less than 32 vertices.

MILP – Use a mixed integer linear programming formulation. This algorithm has no size restriction but could take a very long time.

- **verbose** – boolean (default: False); whether to display information on the computations
- **max_prefix_length** – integer (default: 20); limits the length of the stored prefixes to prevent storing too many prefixes. This parameter is used only when \(\text{algorithm} == \text{"BAB"} \).
- **max_prefix_number** – integer (default: \(10^6 \)); upper bound on the number of stored prefixes used to prevent using too much memory. This parameter is used only when \(\text{algorithm} == \text{"BAB"} \).
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

OUTPUT:

Return the pathwidth of `self`. When `k` is specified, it returns `False` when no path-decomposition of width \(\leq k \) exists or `True` otherwise. When `certificate=True`, the path-decomposition is also returned.

See also:

- `Graph.treewidth()` – computes the treewidth of a graph
- `vertex_separation()` – computes the vertex separation of a (di)graph

EXAMPLES:

The pathwidth of a cycle is equal to 2:

```python
sage: g = graphs.CycleGraph(6)
sage: g.pathwidth()
2
sage: pw, decomp = g.pathwidth(certificate=True)
sage: sorted(decomp, key=str)
[{0, 1, 5}, {1, 2, 5}, {2, 3, 4}, {2, 4, 5}]
```

```python
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(6))
>>> g.pathwidth()
2
>>> pw, decomp = g.pathwidth(certificate=True)
>>> sorted(decomp, key=str)
[{0, 1, 5}, {1, 2, 5}, {2, 3, 4}, {2, 4, 5}]
```

The pathwidth of a Petersen graph is 5:

```python
sage: g = graphs.PetersenGraph()
sage: g.pathwidth()
5
sage: g.pathwidth(k=2)
False
sage: g.pathwidth(k=6)
```

(continues on next page)
```
True
sage: g.pathwidth(k=6, certificate=True)
(True, Graph on 5 vertices)

>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.pathwidth()
5
>>> g.pathwidth(k=Integer(2))
False
>>> g.pathwidth(k=Integer(6))
True
>>> g.pathwidth(k=Integer(6), certificate=True)
(True, Graph on 5 vertices)
```

perfect_matchings *(labels=False)*

Return an iterator over all perfect matchings of the graph.

ALGORITHM:

Choose a vertex \(v\), then recurse through all edges incident to \(v\), removing one edge at a time whenever an edge is added to a matching.

INPUT:

- `labels` — boolean (default: False); when True, the edges in each perfect matching are triples (containing the label as the third element), otherwise the edges are pairs.

See also:

`matching()`

EXAMPLES:

```
sage: G=graphs.GridGraph([2,3])
sage: for m in G.perfect_matchings():
    ....:     print(sorted(m))
[(0, 0), (0, 1)], [(0, 2), (1, 2)], [(1, 0), (1, 1)]
[(0, 0), (1, 0)], [(0, 1), (0, 2)], [(1, 1), (1, 2)]
[(0, 0), (1, 0)], [(0, 1), (1, 1)], [(0, 2), (1, 2)]

sage: G = graphs.CompleteGraph(4)
sage: for m in G.perfect_matchings(labels=True):
    ....:     print(sorted(m))
[(0, 1, None), (2, 3, None)]
[(0, 2, None), (1, 3, None)]
[(0, 3, None), (1, 2, None)]

sage: G = Graph([[(1,-1,'a'), [2,-2, 'b'], [1,-2,'x'], [2,-1,'y']]])
sage: sorted(sorted(m) for m in G.perfect_matchings(labels=True))
[[(1, -1, 'y'), [-2, 1, 'x']], [(-1, 2, 'b'), (-1, 1, 'a')]]

sage: G = graphs.CompleteGraph(8)
sage: mpc = G.matching_polynomial().coefficients(sparse=False)[0]  #...
˓→ needs sage.libs.flint
sage: len(list(G.perfect_matchings())) == mpc  #...
˓→ needs sage.libs.flint
```
sage: G = graphs.PetersenGraph().copy(immutable=True)
sage: [sorted(m) for m in G.perfect_matchings()]
[[0, 1), (2, 3), (4, 9), (5, 7), (6, 8)],
[(0, 1), (2, 7), (3, 4), (5, 8), (6, 9)],
[(0, 4), (1, 2), (3, 8), (5, 7), (6, 9)],
[(0, 4), (1, 6), (2, 3), (5, 8), (7, 9)],
[(0, 5), (1, 2), (3, 4), (6, 8), (7, 9)],
[(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]]

sage: list(Graph().perfect_matchings())
[]

>>> from sage.all import *
>>> G=graphs_GridGraph([Integer(2),Integer(3)])
>>> for m in G.perfect_matchings:
... print(sorted(m))

>>> G = graphs.CompleteGraph(Integer(4))
>>> for m in G.perfect_matchings(labels=True):
... print(sorted(m))

>>> G = graphs.CompleteGraph(Integer(8))
>>> mpc = G.matching_polynomial().coefficients(sparse=False)[Integer(0)]
needs sage.libs.flint
>>> len(list(G.perfect_matchings())) == mpc
True

>>> G = graphs.PetersenGraph().copy(immutable=True)
>>> [sorted(m) for m in G.perfect_matchings()]
[[0, 1), (2, 3), (4, 9), (5, 7), (6, 8)],
[(0, 1), (2, 7), (3, 4), (5, 8), (6, 9)],
[(0, 4), (1, 2), (3, 8), (5, 7), (6, 9)],
[(0, 4), (1, 6), (2, 3), (5, 8), (7, 9)],
[(0, 5), (1, 2), (3, 4), (6, 8), (7, 9)],
[(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]]

>>> list(Graph().perfect_matchings())
[]
periphery (by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return the set of vertices in the periphery of the graph.

The periphery is the set of vertices whose eccentricity is equal to the diameter of the graph, i.e., achieving the maximum eccentricity.

For more information and examples on how to use input variables, see shortest_paths() and eccentricity()

INPUT:

• by_weight – boolean (default: False); if True, edge weights are taken into account; if False, all edges have weight 1
• algorithm – string (default: None); see method eccentricity() for the list of available algorithms
• weight_function – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\) as a weight, if \(l\) is not None, else 1 as a weight.
• check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge

EXAMPLES:

```python
sage: G = graphs.DiamondGraph()
sage: G.periphery()
[0, 3]
sage: P = graphs.PetersenGraph()
sage: P.subgraph(P.periphery()) == P
True
sage: S = graphs.StarGraph(19)
sage: S.periphery()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sage: G = Graph()
sage: G.periphery()
[]
sage: G.add_vertex()
0
sage: G.periphery()
[0]
```

```python
>>> from sage.all import *
>>> G = graphs.DiamondGraph()
>>> G.periphery()
[0, 3]
>>> P = graphs.PetersenGraph()
>>> P.subgraph(P.periphery()) == P
True
>>> S = graphs.StarGraph(Integer(19))
>>> S.periphery()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
>>> G = Graph()
```

(continues on next page)
private_neighbors \((G, \text{vertex}, \text{dom})\)

Return the private neighbors of a vertex with respect to other vertices.

A private neighbor of a vertex \(v\) with respect to a vertex subset \(D\) is a closed neighbor of \(v\) that is not dominated by a vertex of \(D \setminus \{v\}\).

INPUT:
- vertex – a vertex of \(G\).
- dom – iterable of vertices of \(G\); the vertices possibly stealing private neighbors from vertex.

OUTPUT:
Return the closed neighbors of \(v\) that are not closed neighbors of any other vertex of \(\text{dom}\).

EXAMPLES:

```
sage: g = graphs.PathGraph(5)
sage: list(g.private_neighbors(1, [1, 3, 4]))
[1, 0]
sage: list(g.private_neighbors(1, [3, 4]))
[1, 0]
sage: list(g.private_neighbors(1, [3, 4, 0]))
[]
```

radius \((by_weight=\text{False}, \text{algorithm}=\text{DHV}, \text{weight_function}=\text{None}, \text{check_weight}=\text{True})\)

Return the radius of the graph.

The radius is defined to be the minimum eccentricity of any vertex, where the eccentricity is the maximum distance to any other vertex. For more information and examples on how to use input variables, see `shortest_paths()` and `eccentricity()`.

INPUT:
- by_weight – boolean (default: False); if True, edge weights are taken into account; if False, all edges have weight 1
• algorithm – string (default: 'DHV').
 – 'DHV' – Radius computation is done using the algorithm proposed in [Dragan2018]. Works for graph with non-negative edge weights. For more information see method sage.graphs.distances_all_pairs.radius_DHV() and sage.graphs.base.boost_graph.radius_DHV().
 – see method eccentricity() for the list of remaining algorithms

• weight_function – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\) as a weight, if \(l\) is not None, else 1 as a weight.

• check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge

EXAMPLES:
The more symmetric a graph is, the smaller (diameter - radius) is:

```python
sage: G = graphs.BarbellGraph(9, 3)
sage: G.radius()
3
sage: G.diameter()
6

>>> from sage.all import *

>>> G = graphs.BarbellGraph(Integer(9), Integer(3))

>>> G.radius()
3

>>> G.diameter()
6

sage: G = graphs.OctahedralGraph()
sage: G.radius()
2
sage: G.diameter()
2

>>> from sage.all import *

>>> G = graphs.OctahedralGraph()

>>> G.radius()
2

>>> G.diameter()
2
```

random_orientation \((G)\)
Return a random orientation of a graph \(G\).

An orientation of an undirected graph is a directed graph such that every edge is assigned a direction. Hence there are \(2^m\) oriented digraphs for a simple graph with \(m\) edges.

INPUT:
• \(G\) – a Graph.

EXAMPLES:
sage: from sage.graphs.orientations import random_orientation
sage: G = graphs.PetersenGraph()
sage: D = random_orientation(G)
sage: D.order() == G.order(), D.size() == G.size()
(True, True)

>>> from sage.all import *
>>> from sage.graphs.orientations import random_orientation
>>> G = graphs.PetersenGraph()
>>> D = random_orientation(G)
>>> D.order() == G.order(), D.size() == G.size()
(True, True)

See also:

- orientations()
- strong_orientation()
- strong_orientations_iterator()
- nauty_directg()

random_spanning_tree (G, output_as_graph=False, by_weight=False, weight_function=None, check_weight=True)

Return a random spanning tree of the graph.

This uses the Aldous-Broder algorithm ([Bro1989], [Ald1990]) to generate a random spanning tree with the uniform distribution, as follows.

Start from any vertex. Perform a random walk by choosing at every step one neighbor uniformly at random. Every time a new vertex j is met, add the edge (i, j) to the spanning tree, where i is the previous vertex in the random walk.

When by_weight is True or a weight function is given, the selection of the neighbor is done proportionally to the edge weights.

INPUT:

- G – an undirected graph
- output_as_graph – boolean (default: False); whether to return a list of edges or a graph
- by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
- weight_function – function (default: None); a function that takes as input an edge (u, v, l) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label l, if l is not None, else 1 as a weight. The weight_function can be used to transform the label into a weight (note that, if the weight returned is not convertible to a float, an error is raised)
- check_weight – boolean (default: True); whether to check that the weight_function outputs a number for each edge.

See also:

spanning_trees_count() and spanning_trees()

EXAMPLES:
```python
sage: G = graphs.TietzeGraph()
sage: G.random_spanning_tree(output_as_graph=True)
Graph on 12 vertices
sage: rg = G.random_spanning_tree(); rg # random
[(0, 9),
 (9, 11),
 (0, 8),
 (8, 7),
 (7, 6),
 (7, 2),
 (2, 1),
 (1, 5),
 (9, 10),
 (5, 4),
 (2, 3)]
sage: Graph(rg).is_tree()
True
```

```python
>>> from sage.all import *
>>> G = graphs.TietzeGraph()
>>> G.random_spanning_tree(output_as_graph=True)
Graph on 12 vertices
>>> rg = G.random_spanning_tree(); rg # random
[(0, 9),
 (9, 11),
 (0, 8),
 (8, 7),
 (7, 6),
 (7, 2),
 (2, 1),
 (1, 5),
 (9, 10),
 (5, 4),
 (2, 3)]
```

```python
>>> Graph(rg).is_tree()
True
```

A visual example for the grid graph:

```python
sage: G = graphs.Grid2dGraph(6, 6)
sage: pos = G.get_pos()
sage: T = G.random_spanning_tree(True)
sage: T.set_pos(pos)
sage: T.show(vertex_labels=False)  # needs sage.plot
```

```python
>>> from sage.all import *
>>> G = graphs.Grid2dGraph(Integer(6), Integer(6))
>>> pos = G.get_pos()
>>> T = G.random_spanning_tree(True)
>>> T.set_pos(pos)
>>> T.show(vertex_labels=False)  # needs sage.plot
```

We can also use edge weights to change the probability of returning a spanning tree:
Graph Theory, Release 10.4

```python
sage: def foo(G, k):
....:     S = set()
....:     for _ in range(k):
....:         E = G.random_spanning_tree(by_weight=True)
....:         S.add(Graph(E).graph6_string())
....:     return S
sage: K3 = graphs.CompleteGraph(3)
sage: for u, v in K3.edges(sort=True, labels=False):
....:     K3.set_edge_label(u, v, randint(1, 2))
sage: foo(K3, 100) == {'BW', 'Bg', 'Bo'}  # random
True
sage: K4 = graphs.CompleteGraph(4)
sage: for u, v in K4.edges(sort=True, labels=False):
....:     K4.set_edge_label(u, v, randint(1, 2))
sage: print(len(foo(K4, 100)))  # random
16

>>> from sage.all import *
>>> def foo(G, k):
...     S = set()
...     for _ in range(k):
...         E = G.random_spanning_tree(by_weight=True)
...         S.add(Graph(E).graph6_string())
...     return S
>>> K3 = graphs.CompleteGraph(Integer(3))
>>> for u, v in K3.edges(sort=True, labels=False):
...     K3.set_edge_label(u, v, randint(Integer(1), Integer(2)))
>>> foo(K3, Integer(100)) == {'BW', 'Bg', 'Bo'}  # random
True
>>> K4 = graphs.CompleteGraph(Integer(4))
>>> for u, v in K4.edges(sort=True, labels=False):
...     K4.set_edge_label(u, v, randint(Integer(1), Integer(2)))
>>> print(len(foo(K4, Integer(100))))  # random
16

Check that the spanning tree returned when using weights is a tree:

```
This function is available as a method of the `Graph` class. See `rank_decomposition`.

INPUT:
- `verbose` – boolean (default: False); whether to display progress information while computing the decomposition

OUTPUT:
A pair `(rankwidth, decomposition_tree)`, where `rankwidth` is a numerical value and `decomposition_tree` is a ternary tree describing the decomposition (cf. the module’s documentation).

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.rankwidth import rank_decomposition
sage: g = graphs.PetersenGraph()
sage: rank_decomposition(g)
(3, Graph on 19 vertices)
```

On more than 32 vertices:

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.rankwidth import rank_decomposition
>>> g = graphs.PetersenGraph()
>>> rank_decomposition(g)
(3, Graph on 19 vertices)
```

The empty graph:

```python
sage: g = Graph()
sage: rank_decomposition(g)
(0, Graph on 0 vertices)
```

`seidel_adjacency_matrix(vertices, base_ring=None, **kwds)`

Return the Seidel adjacency matrix of `self`.

Returns $J - I - 2A$, for A the (ordinary) adjacency matrix of `self`, I the identity matrix, and J the all-1 matrix. It is closely related to `twograph()`.
By default, the matrix returned is over the integers.

INPUT:

- `vertices` – list of vertices (default: None); the ordering of the vertices defining how they should appear in the matrix. By default, the ordering given by `vertices()` is used.
- `base_ring` – a ring (default: None); the base ring of the matrix space to use
- `**kwds` – other keywords to pass to `matrix()`

EXAMPLES:

```
sage: G = graphs.CycleGraph(5)
sage: G = G.disjoint_union(graphs.CompleteGraph(1))
sage: G.seidel_adjacency_matrix().minpoly()
# needs sage.libs.pari sage.modules
x^2 - 5
```

```
>>> from sage.all import *
>>> G = graphs.CycleGraph(Integer(5))
>>> G = G.disjoint_union(graphs.CompleteGraph(Integer(1)))
>>> G.seidel_adjacency_matrix().minpoly()
# needs sage.libs.pari sage.modules
x^2 - 5
```

Selecting the base ring:

```
sage: G.seidel_adjacency_matrix()[0, 0].parent()  # needs sage.modules
Integer Ring
sage: G.seidel_adjacency_matrix(base_ring=RDF)[0, 0].parent()  # needs sage.modules
Real Double Field
```

```
>>> from sage.all import *
>>> G.seidel_adjacency_matrix()[Integer(0), Integer(0)].parent()    # needs sage.modules
Integer Ring
>>> G.seidel_adjacency_matrix(base_ring=RDF)[Integer(0), Integer(0)].parent()    # needs sage.modules
Real Double Field
```

seidel_switching *(s, inplace=True)*

Return the Seidel switching of `self` w.r.t. subset of vertices `s`.

Returns the graph obtained by Seidel switching of `self` with respect to the subset of vertices `s`. This is the graph given by Seidel adjacency matrix DSD, for S the Seidel adjacency matrix of `self`, and D the diagonal matrix with -1s at positions corresponding to s, and 1s elsewhere.

INPUT:

- `s` – a list of vertices of `self`.
- `inplace` – boolean (default: True); whether to do the modification inplace, or to return a copy of the graph after switching.

EXAMPLES:
spanning_trees\((g, \text{labels}=\text{False}) \)

Return an iterator over all spanning trees of the graph \(g \).

A disconnected graph has no spanning tree.

Uses the Read-Tarjan backtracking algorithm [RT1975a].

INPUT:

- \(\text{labels} \) – boolean (default: False); whether to return edges labels in the spanning trees or not

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{G = Graph([[(1,2),(1,2),(1,3),(1,3),(2,3),(1,4)], multiedges=True])} \\
\text{sage: } & \text{len(list(G.spanning_trees()))} \\
\text{sage: } & \text{G.spanning_trees_count()} \\
\end{align*}
\]

(continues on next page)
Graph Theory, Release 10.4

>>> len(list(G.spanning_trees()))
6
>>> G.spanning_trees_count()
˓
→ # needs sage.modules
6

See also:

- `spanning_trees_count()` — counts the number of spanning trees
- `random_spanning_tree()` — returns a random spanning tree

sparse6_string()

Return the sparse6 representation of the graph as an ASCII string.

Only valid for undirected graphs on 0 to 262143 vertices, but loops and multiple edges are permitted.

Note: As the sparse6 format only handles graphs whose vertex set is \{0, ..., n−1\}, a relabelled copy of your graph will be encoded if necessary.

EXAMPLES:

```python
sage: G = graphs.BullGraph()
sage: G.sparse6_string()
':Da@en'
```

```python
>>> from sage.all import *

>>> G = graphs.BullGraph()
>>> G.sparse6_string()
':Da@en'

sage: G = Graph(loops=True, multiedges=True, data_structure="sparse")
sage: Graph(':?', data_structure="sparse") == G
True

>>> from sage.all import *

>>> G = Graph(loops=True, multiedges=True, data_structure="sparse")
>>> Graph(':?', data_structure="sparse") == G
True
```

spqr_tree \((G, \text{algorithm}='\text{Hopcroft_Tarjan}', \text{solver}=None, \text{verbose}=0, \text{integrality_tolerance}=0.001)\)

Return an SPQR-tree representing the triconnected components of the graph.

An SPQR-tree is a tree data structure used to represent the triconnected components of a biconnected (multi)graph and the 2-vertex cuts separating them. A node of a SPQR-tree, and the graph associated with it, can be one of the following four types:

- "S" — the associated graph is a cycle with at least three vertices. "S" stands for **series**.
- "P" — the associated graph is a dipole graph, a multigraph with two vertices and three or more edges. "P" stands for **parallel**.
- "Q" — the associated graph has a single real edge. This trivial case is necessary to handle the graph that has only one edge.
- "R" — the associated graph is a 3-connected graph that is not a cycle or dipole. "R" stands for **rigid**.

642 Chapter 1. Graph objects and methods
This method decomposes a biconnected graph into cycles, cocycles, and 3-connected blocks summed over cocycles, and arranges them as a SPQR-tree. More precisely, it splits the graph at each of its 2-vertex cuts, giving a unique decomposition into 3-connected blocks, cycles and cocycles. The cocycles are dipole graphs with one edge per real edge between the included vertices and one additional (virtual) edge per connected component resulting from deletion of the vertices in the cut. See the Wikipedia article SPQR_tree.

INPUT:

- G – the input graph
- algorithm – string (default: "Hopcroft_Tarjan"); the algorithm to use among:
 - "Hopcroft_Tarjan" (default) – use the algorithm proposed by Hopcroft and Tarjan in [Hopcroft1973] and later corrected by Gutwenger and Mutzel in [Gut2001]. See TriconnectivitySPQR.
 - "cleave" – using method cleave()
- solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT: SPQR-tree a tree whose vertices are labeled with the block's type and the subgraph of three-blocks in the decomposition.

EXAMPLES:

```python
sage: from sage.graphs.connectivity import spqr_tree
sage: G = Graph(2)
sage: for i in range(3):
    ....:     G.add_clique([0, 1, G.add_vertex(), G.add_vertex()])

sage: Tree = spqr_tree(G)

sage: Tree.order()
4

sage: K4 = graphs.CompleteGraph(4)
sage: all([u[1].is_isomorphic(K4) for u in Tree if u[0] == 'R'])
True

sage: from sage.graphs.connectivity import spqr_tree_to_graph
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
True

sage: G = Graph(2)
sage: for i in range(3):
    ....:     G.add_path([0, G.add_vertex(), G.add_vertex(), 1])

sage: Tree = spqr_tree(G)

sage: Tree.order()
4

sage: C4 = graphs.CycleGraph(4)
sage: all([u[1].is_isomorphic(C4) for u in Tree if u[0] == 'S'])
True

sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
True

sage: G.allow_multiple_edges(True)
sage: G.add_edges(G.edge_iterator())
sage: Tree = spqr_tree(G)
```

(continues on next page)
sage: Tree.order()
13
sage: all(u[1].is_isomorphic(C4) for u in Tree if u[0] == 'S')
True
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
True

sage: G = graphs.CycleGraph(6)
sage: Tree = spqr_tree(G)
sage: Tree.order()
1
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
True
sage: G.add_edge(0, 3)
sage: Tree = spqr_tree(G)
sage: Tree.order()
3
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
True
sage: G = Graph('LlcG{O@?GBoMw?'}

sage: T = spqr_tree(G, algorithm="Hopcroft_Tarjan")
sage: G.is_isomorphic(spqr_tree_to_graph(T))
True

sage: T2 = spqr_tree(G, algorithm='cleave') → # needs sage.numerical.mip
sage: G.is_isomorphic(spqr_tree_to_graph(T2)) → # needs sage.numerical.mip
True

sage: G = Graph([(0, 1)], multiedges=True)
sage: T = spqr_tree(G, algorithm='cleave') → # needs sage.numerical.mip
sage: T.vertices(sort=True) → # needs sage.numerical.mip
[('Q', Multi-graph on 2 vertices)]
sage: G.is_isomorphic(spqr_tree_to_graph(T)) → # needs sage.numerical.mip
True
sage: T = spqr_tree(G, algorithm='Hopcroft_Tarjan')

sage: T.vertices(sort=True)
[('Q', Multi-graph on 2 vertices)]
sage: G.add_edge(0, 1)

sage: spqr_tree(G, algorithm='cleave').vertices(sort=True) → # needs sage.numerical.mip
[('P', Multi-graph on 2 vertices)]

sage: from collections import Counter

sage: G = graphs.PetersenGraph()
sage: T = G.spqr_tree(algorithm="Hopcroft_Tarjan")

sage: Counter(u[0] for u in T)
Counter({'R': 1})

sage: T = G.spqr_tree(algorithm='cleave') → # needs sage.numerical.mip
sage: Counter(u[0] for u in T) → # needs sage.numerical.mip
Counter({'R': 1})

(continues on next page)
sage: for u, v in list(G.edges(labels=False, sort=False)):
 : G.add_path([u, G.add_vertex(), G.add_vertex(), v])
sage: T = G.spqr_tree(algorithm="Hopcroft_Tarjan")
sage: sorted(Counter(u[0] for u in T).items())
[('P', 15), ('R', 1), ('S', 15)]
sage: T = G.spqr_tree(algorithm="cleave")
"# needs sage.numerical.mip"
sage: sorted(Counter(u[0] for u in T).items())
[('P', 15), ('R', 1), ('S', 15)]

sage: for u, v in list(G.edges(labels=False, sort=False)):
 : G.add_path([u, G.add_vertex(), G.add_vertex(), v])
sage: T = G.spqr_tree(algorithm="Hopcroft_Tarjan")
sage: sorted(Counter(u[0] for u in T).items())
[('P', 60), ('R', 1), ('S', 75)]
sage: T = G.spqr_tree(algorithm="cleave")
"# long time"
sage: sorted(Counter(u[0] for u in T).items())
"# long time"

>>> from sage.all import *
>>> from sage.graphs.connectivity import spqr_tree
>>> G = Graph(Integer(2))
>>> for i in range(Integer(3)):
... G.add_clique([Integer(0), Integer(1), G.add_vertex(), G.add_vertex()])
>>> Tree = spqr_tree(G)
>>> Tree.order()
4
>>> K4 = graphs.CompleteGraph(Integer(4))
>>> all(u[Integer(1)].is_isomorphic(K4) for u in Tree if u[Integer(0)] == 'R')
True
>>> from sage.graphs.connectivity import spqr_tree_to_graph
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True

>>> G = Graph(Integer(2))
>>> for i in range(Integer(3)):
... G.add_path([Integer(0), G.add_vertex(), G.add_vertex(), Integer(1)])
>>> Tree = spqr_tree(G)
>>> Tree.order()
4
>>> C4 = graphs.CycleGraph(Integer(4))
>>> all(u[Integer(1)].is_isomorphic(C4) for u in Tree if u[Integer(0)] == 'S')
True
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True

>>> G.allow_multiple_edges(True)
>>> G.add_edges(G.edge_iterator())
>>> Tree = spqr_tree(G)
>>> Tree.order()
13
>>> all(u[Integer(1)].is_isomorphic(C4) for u in Tree if u[Integer(0)] == 'S')
True
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True

```python
>>> G = graphs.CycleGraph(Integer(6))
>>> Tree = spqr_tree(G)
>>> Tree.order()
1
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True
>>> G.add_edge(Integer(0), Integer(3))
>>> Tree = spqr_tree(G)
>>> Tree.order()
3
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True

>>> G = Graph('LlCG{O8?GBoMw?
>>> T = spqr_tree(G, algorithm="Hopcroft_Tarjan")
>>> G.is_isomorphic(spqr_tree_to_graph(T))
True
>>> T2 = spqr_tree(G, algorithm='cleave')
→ # needs sage.numerical.mip
>>> G.is_isomorphic(spqr_tree_to_graph(T2))
→ # needs sage.numerical.mip
True

>>> G = Graph([(Integer(0), Integer(1))], multiedges=True)
>>> T = spqr_tree(G, algorithm=cleave)
→ # needs sage.numerical.mip
>>> T.vertices(sort=True)
→ # needs sage.numerical.mip
[(P, Multi-graph on 2 vertices)]
>>> G.is_isomorphic(spqr_tree_to_graph(T))
→ # needs sage.numerical.mip
True
>>> T = spqr_tree(G, algorithm='Hopcroft_Tarjan')
>>> T.vertices(sort=True)
[(Q, Multi-graph on 2 vertices)]
>>> G.add_edge(Integer(0), Integer(1))
>>> spqr_tree(G, algorithm='cleave').vertices(sort=True)
→ # needs sage.numerical.mip
[(P', Multi-graph on 2 vertices)]

>>> from collections import Counter
>>> G = graphs.PetersenGraph()
>>> T = G.spqr_tree(algorithm="Hopcroft_Tarjan")
>>> Counter(u[Integer(0)] for u in T)
Counter({R: 1})
>>> T = G.spqr_tree(algorithm="cleave")
→ # needs sage.numerical.mip
>>> Counter(u[Integer(0)] for u in T)
Counter({R: 1})
>>> for u,v in list(G.edges(labels=False, sort=False)):
...     G.add_path([u, G.add_vertex(), G.add_vertex(), v])
>>> T = G.spqr_tree(algorithm="Hopcroft_Tarjan")
>>> sorted(Counter(u[Integer(0)] for u in T).items())
[['P', 15], ['R', 1], ['S', 15]]
```

(continues on next page)
strong_orientation()

Returns a strongly connected orientation of the current graph.

An orientation of an undirected graph is a digraph obtained by giving an unique direction to each of its edges. An orientation is said to be strong if there is a directed path between each pair of vertices. See also the Wikipedia article Strongly_connected_component.

If the graph is 2-edge-connected, a strongly connected orientation can be found in linear time. If the given graph is not 2-connected, the orientation returned will ensure that each 2-connected component has a strongly connected orientation.

OUTPUT:

A digraph representing an orientation of the current graph.

Note:

- This method assumes the graph is connected.
- This time complexity is $O(n + m)$ for SparseGraph and $O(n^2)$ for DenseGraph.

See also:

- orientations()
- strong_orientations_iterator()
- nauty_directg()
- random_orientation()

EXAMPLES:

For a 2-regular graph, a strong orientation gives to each vertex an out-degree equal to 1:

```
sage: g = graphs.CycleGraph(5)
sage: g.strong_orientation().out_degree()
[1, 1, 1, 1, 1]
```

```python
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(5))
```
The Petersen Graph is 2-edge connected. It then has a strongly connected orientation:

```python
g = graphs.PetersenGraph()
o = g.strong_orientation()
len(o.strongly_connected_components())
1
```

The same goes for the CubeGraph in any dimension

```python
g = graphs.CubeGraph(i)
len(g.strong_orientation().strongly_connected_components()) == Integer(1)
```

A multigraph also has a strong orientation

```python
g = Graph([(1,2),(1,2)], multiedges=True)
g.strong_orientation() 
```

strong_orientations_iterator(G)

Return an iterator over all strong orientations of a graph G.

A strong orientation of a graph is an orientation of its edges such that the obtained digraph is strongly connected (i.e. there exist a directed path between each pair of vertices). According to Robbins’ theorem (see the Wikipedia article Robbins theorem), the graphs that have strong orientations are exactly the 2-edge-connected graphs (i.e., the bridgeless graphs).

ALGORITHM:

It is an adaptation of the algorithm published in [CGMRV16]. It runs in $O(mn)$ amortized time, where m is the number of edges and n is the number of vertices. The amortized time can be improved to $O(m)$ with a more involved method. In this function, first the graph is preprocessed and a spanning tree is generated. Then every orientation of the non-tree edges of the graph can be extended to at least one new strong orientation by orienting properly the edges of the spanning tree (this property is proved in [CGMRV16]). Therefore, this function generates all partial orientations of the non-tree edges and then launches a helper function cor-
responding to the generation algorithm described in [CGMRV16]. In order to avoid trivial symmetries, the
orientation of an arbitrary edge is fixed before the start of the enumeration process.

INPUT:

- G – an undirected graph.

OUTPUT:

- an iterator which will produce all strong orientations of this graph.

Note: Works only for simple graphs (no multiple edges). To avoid symmetries an orientation of an arbitrary
eedge is fixed.

See also:

- `orientations()`
- `strong_orientation()`
- `nauty_directg()`
- `random_orientation()`

EXAMPLES:

A cycle has one possible (non-symmetric) strong orientation:

```
sage: g = graphs.CycleGraph(4)
sage: it = g.strong_orientations_iterator()
sage: len(list(it))
1
```

```
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(4))
>>> it = g.strong_orientations_iterator()
>>> len(list(it))
1
```

A tree cannot be strongly oriented:

```
sage: g = graphs.RandomTree(10)
sage: len(list(g.strong_orientations_iterator()))
0
```

```
>>> from sage.all import *
>>> g = graphs.RandomTree(Integer(10))
>>> len(list(g.strong_orientations_iterator()))
0
```

Neither can be a disconnected graph:

```
sage: g = graphs.CompleteGraph(6)
sage: g.add_vertex(7)
sage: len(list(g.strong_orientations_iterator()))
0
```

1.2. Undirected graphs
to_directed \((\text{data_structure} = \text{None}, \text{sparse} = \text{None}) \)

Return a directed version of the graph.

A single edge becomes two edges, one in each direction.

INPUT:

- data_structure – one of "sparse", "static_sparse", or "dense". See the documentation of Graph or DiGraph.
- sparse – boolean (default: None); sparse=True is an alias for data_structure="sparse", and sparse=False is an alias for data_structure="dense".

EXAMPLES:

```python
sage: graphs.PetersenGraph().to_directed()
Petersen graph: Digraph on 10 vertices
```

```python
>>> from sage.all import *
>>> graphs.PetersenGraph().to_directed()
Petersen graph: Digraph on 10 vertices
```

to_undirected()

Since the graph is already undirected, simply returns a copy of itself.

EXAMPLES:

```python
sage: graphs.PetersenGraph().to_undirected()
Petersen graph: Graph on 10 vertices
```

```python
>>> from sage.all import *
>>> graphs.PetersenGraph().to_undirected()
Petersen graph: Graph on 10 vertices
```

topological_minor \((H, \text{vertices} = \text{False}, \text{solver} = \text{False}, \text{verbose} = \text{None}, \text{integrality_tolerance} = \text{0}) \)

Return a topological \(H \)-minor from \(\text{self} \) if one exists.

We say that a graph \(G \) has a topological \(H \)-minor (or that it has a graph isomorphic to \(H \) as a topological minor), if \(G \) contains a subdivision of a graph isomorphic to \(H \) (i.e. obtained from \(H \) through arbitrary subdivision of its edges) as a subgraph.

For more information, see the Wikipedia article Minor_graph_theory).

INPUT:

- \(H \) – The topological minor to find in the current graph.
- solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \(\text{solve} \) of the class MixedIntegerLinearProgram.
- verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

OUTPUT:
The topological H-minor found is returned as a subgraph M of `self`, such that the vertex v of M that represents a vertex $h \in H$ has h as a label (see `get_vertex` and `set_vertex`), and such that every edge of M has as a label the edge of H it (partially) represents.

If no topological minor is found, this method returns `False`.

ALGORITHM:
Mixed Integer Linear Programming.

COMPLEXITY:
Theoretically, when H is fixed, testing for the existence of a topological H-minor is polynomial. The known algorithms are highly exponential in H, though.

Note: This function can be expected to be *very* slow, especially where the topological minor does not exist. (CPLEX seems to be *much* more efficient than GLPK on this kind of problem)

EXAMPLES:
Petersen’s graph has a topological K_4-minor:

```python
sage: g = graphs.PetersenGraph()
sage: g.topological_minor(graphs.CompleteGraph(4)) # needs sage.numerical.mip
Subgraph of (Petersen graph): Graph on ...
```

And a topological $K_{3,3}$-minor:

```python
sage: g.topological_minor(graphs.CompleteBipartiteGraph(3,3)) # needs sage.numerical.mip
Subgraph of (Petersen graph): Graph on ...
```

And of course, a tree has no topological C_3-minor:

```python
sage: g = graphs.RandomGNP(15,.3)
sage: g = g.subgraph(edges=g.min_spanning_tree())
sage: g.topological_minor(graphs.CycleGraph(3)) # needs sage.numerical.mip
False
```
>>> from sage.all import *
>>> g = graphs.RandomGNP(Integer(15),RealNumber('0.3'))
>>> g = g.subgraph(edges=g.min_spanning_tree())
>>> g.topological_minor(graphs.CycleGraph(Integer(3))) → # needs sage.numerical.mip False

treelength (*G*, *k=None*, certificate=False)

Compute the treelength of *G* (and provide a decomposition).

The *length* of a tree decomposition, as proposed in [DG2006], is the maximum *diameter* in *G* of its bags, where the diameter of a bag *X*ᵢ is the largest distance in *G* between the vertices in *X*ᵢ (i.e., \(\max_{u, v \in X_i} \text{dist}_G(u, v) \)). The *treelength* *tl*(*G*) of a graph *G* is the minimum length among all possible tree decompositions of *G*. See the documentation of the *tree_decomposition* module for more details.

INPUT:

- *G* – a sage Graph
- *k* – integer (default: None); indicates the length to be considered. When *k* is an integer, the method checks that the graph has treelength \(\leq k \). If *k* is None (default), the method computes the optimal treelength.
- certificate – boolean (default: False); whether to also return the tree-decomposition itself

OUTPUT:

G.treelength() returns the treelength of *G*. When *k* is specified, it returns False when no tree-decomposition of length \(\leq k \) exists or True otherwise. When certificate=True, the tree-decomposition is also returned.

ALGORITHM:

This method virtually explores the graph of all pairs *(vertex_cut, connected_component)*, where *vertex_cut* is a vertex cut of the graph of length \(\leq k \), and *connected_component* is a connected component of the graph induced by *G* - *vertex_cut*.

We deduce that the pair *(vertex_cut, connected_component)* is feasible with treelength *k* if *connected_component* is empty, or if a vertex *v* from *vertex_cut* can be replaced with a vertex from *connected_component*, such that the pair *(vertex_cut + v, connected_component - v)* is feasible.

In practice, this method decomposes the graph by its clique minimal separators into atoms, computes the treelength of each of atom and returns the maximum value over all the atoms. Indeed, we have that *tl*(*G*) = \(\max_{X \in A} tl(G[X]) \) where *A* is the set of atoms of the decomposition by clique separators of *G*. When certificate == True, the tree-decompositions of the atoms are connected to each others by adding edges with respect to the clique separators.

See also:

- *treewidth()* computes the treewidth of a graph.
- *path_decomposition()* computes the pathwidth of a graph.
- module *vertex_separation*.
- *atoms_and_clique_separators()*

EXAMPLES:

The PetersenGraph has treelength 2:
sage: G = graphs.PetersenGraph()
sage: G.treelength()
2

```python
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> G.treelength()
2
```

Disconnected graphs have infinite treelength:

```python
sage: G = Graph(2)
sage: G.treelength()
+Infinity
sage: G.treelength(k=+Infinity)
True
sage: G.treelength(k=2)
False
sage: G.treelength(certificate=True)
Traceback (most recent call last):
  ... 
ValueError: the tree decomposition of a disconnected graph is not defined
```

```python
>>> from sage.all import *
>>> G = Graph(Integer(2))
>>> G.treelength()
+Infinity
>>> G.treelength(k=+Infinity)
True
>>> G.treelength(k=Integer(2))
False
>>> G.treelength(certificate=True)
Traceback (most recent call last):
  ... 
ValueError: the tree decomposition of a disconnected graph is not defined
```

Chordal graphs have treelength 1:

```python
sage: G = graphs.RandomChordalGraph(30)
sage: while not G.is_connected():
    ...:
    G = graphs.RandomChordalGraph(30)
sage: G.treelength()
1
```

```python
>>> from sage.all import *
>>> G = graphs.RandomChordalGraph(Integer(30))
>>> while not G.is_connected():
...    G = graphs.RandomChordalGraph(Integer(30))
>>> G.treelength()
1
```

Cycles have treelength $\lceil n/3 \rceil$:

```python
sage: [graphs.CycleGraph(n).treelength() for n in range(3, 11)]
[1, 2, 2, 2, 3, 3, 3, 4]
```

1.2. Undirected graphs
treewidth \((g, k=None, kmin=None, certificate=False, algorithm=None, nice=False) \)

Compute the treewidth of \(g \) (and provide a decomposition).

INPUT:

- \(g \) – a Sage Graph
- \(k \) – integer (default: None); indicates the width to be considered. When \(k \) is an integer, the method checks that the graph has treewidth \(\leq k \). If \(k \) is None (default), the method computes the optimal treewidth.
- \(kmin \) – integer (default: None); when specified, search for a tree-decomposition of width at least \(kmin \). This parameter is useful when the graph can be decomposed into atoms. This parameter is ignored when \(k \) is not None or when \(\text{algorithm} == \text{tdlib} \).
- \(\text{certificate} \) – boolean (default: False); whether to return the tree-decomposition itself.
- \(\text{algorithm} \) – whether to use "sage" or "tdlib" (requires the installation of the sagemath_tdlib: Tree decompositions with tdlib package). The default behaviour is to use 'tdlib' if it is available, and Sage's own algorithm when it is not.
- \(\text{nice} \) – boolean (default: False); whether or not to return the nice tree decomposition, provided \(\text{certificate} \) is True.

OUTPUT:

\(g\.\text{treewidth}() \) returns treewidth of the graph \(g \).

When \(k \) is specified, it returns \text{False} if there is no tree decomposition of width \(\leq k \), and \text{True} otherwise. When \(\text{certificate}=\text{True} \), the tree decomposition is returned.

When \(\text{nice}=\text{True} \), the nice tree decomposition is returned.

ALGORITHM:

This function virtually explores the graph of all pairs \((\text{vertex_cut}, \, \text{cc}) \), where \(\text{vertex_cut} \) is a vertex cut of the graph of cardinality \(\leq k + 1 \), and \(\text{connected_component} \) is a connected component of the graph induced by \(G-\text{vertex_cut} \).

We deduce that the pair \((\text{vertex_cut}, \, \text{cc}) \) is feasible with treewidth \(k \) if \(\text{cc} \) is empty, or if a vertex \(v \) from \(\text{vertex_cut} \) can be replaced with a vertex from \(\text{cc} \), such that the pair \((\text{vertex_cut}+v, \, \text{cc}-v) \) is feasible.

Note: The implementation would be much faster if \(\text{cc} \), the argument of the recursive function, was a bitset. It would also be very nice to not copy the graph in order to compute connected components, for this is really a waste of time.

See also:

\(\text{path_decomposition}() \) computes the pathwidth of a graph. See also the \(\text{vertex_separation} \) module.

EXAMPLES:

The PetersenGraph has treewidth 4:
The PetersenGraph has treewidth 4 (with tdlib):

```python
sage: petersen = graphs.PetersenGraph()
sage: petersen.treewidth(algorithm='tdlib')
# optional - tdlib
4
sage: petersen.treewidth(algorithm='tdlib', certificate=True)  # optional - tdlib
Tree decomposition: Graph on 6 vertices
```

Nice tree decomposition of the PetersenGraph has 28 nodes:

```python
sage: petersen = graphs.PetersenGraph()
sage: petersen.treewidth(algorithm='sage', certificate=True, nice=True)
Nice tree decomposition of Tree decomposition: Graph on 28 vertices
```

The treewidth of a 2-dimensional grid is its smallest side:

```python
sage: graphs.Grid2dGraph(2,5).treewidth()
2
sage: graphs.Grid2dGraph(3,5).treewidth()
3
```
When parameter \texttt{kmin} is specified, the method searches for a tree-decomposition of width at least \texttt{kmin}:

\begin{verbatim}
>>> from sage.all import *

>>> graphs.Grid2dGraph(Integer(2),Integer(5)).treewidth()
2

>>> graphs.Grid2dGraph(Integer(3),Integer(5)).treewidth()
3
\end{verbatim}

\texttt{tutte_polynomial}(G, edge_selector=None, cache=None)

Return the Tutte polynomial of the graph \texttt{G}.

\textbf{INPUT:}

- \texttt{edge_selector} (optional; method) this argument allows the user to specify his own heuristic for selecting edges used in the deletion-contraction recurrence
- \texttt{cache} – (optional; dict) a dictionary to cache the Tutte polynomials generated in the recursive process. One will be created automatically if not provided.

\textbf{EXAMPLES:}

The Tutte polynomial of any tree of order \(n\) is \(x^{n-1}\):

\begin{verbatim}
>>> from sage.all import *

>>> all(T.tutte_polynomial() == x**9 for T in graphs.trees(Integer(10))) # needs sage.symbolic
True
\end{verbatim}

The Tutte polynomial of the Petersen graph is:

\begin{verbatim}
>>> from sage.all import *

>>> all(T.tutte_polynomial() == x**Integer(9) for T in graphs.trees(Integer(10))) # needs sage.symbolic
True
\end{verbatim}

\begin{verbatim}
>>> P = graphs.PetersenGraph()

>>> P.tutte_polynomial()

x^9 + 6*x^8 + 21*x^7 + 56*x^6 + 12*x^5*y + y^6 + 114*x^5 + 70*x^4*y + 30*x^3*y^2 + 15*x^2*y^3 + 10*x*y^4 + 9*y^5 + 170*x^4 + 170*x^3*y + 105*x^2*y^2 + 65*x*y^3 + 35*y^4 + 180*x^3 + 240*x^2*y + 171*x*y^2 + 75*y^3 + 120*x^2 + 168*x*y + 84*y^2 + 36*x + 36*y
\end{verbatim}
The Tutte polynomial of a connected graph G evaluated at $(1,1)$ is the number of spanning trees of G:

```
sage: G = graphs.RandomGNP(10,0.6)
sage: while not G.is_connected():
    ...:     G = graphs.RandomGNP(10,0.6)
sage: G.tutte_polynomial()(Integer(1),Integer(1)) == G.spanning_trees_count()
    
# needs sage.modules
True
```

Given that $T(x, y)$ is the Tutte polynomial of a graph G with n vertices and c connected components, then $(-1)^{n-c}x^cT(1-x, 0)$ is the chromatic polynomial of G.

```
sage: G = graphs.OctahedralGraph()
sage: T = G.tutte_polynomial()
sage: R = PolynomialRing(ZZ, 'x')
sage: R((-Integer(1))**Integer(5)*x*T(Integer(1)-x,Integer(0))).factor()
    
# needs sage.symbolic
(x - 2) * (x - 1) * x * (x^3 - 9*x^2 + 29*x - 32)
sage: G.chromatic_polynomial().factor()
    
# needs sage.libs.flint
(x - 2) * (x - 1) * x * (x^3 - 9*x^2 + 29*x - 32)
```

```
>>> from sage.all import *
>>> G = graphs.OctahedralGraph()
>>> T = G.tutte_polynomial()
>>> R = PolynomialRing(ZZ, 'x')
>>> R((-Integer(1))**Integer(5)*x*T(Integer(1)-x,Integer(0))).factor()
    
# needs sage.symbolic
(x - 2) * (x - 1) * x * (x^3 - 9*x^2 + 29*x - 32)
```

two_factor_petersen (*solver*, *verbose=None*, *integrality_tolerance=0*)

Return a decomposition of the graph into 2-factors.

Petersen’s 2-factor decomposition theorem asserts that any $2r$-regular graph G can be decomposed into 2-factors. Equivalently, it means that the edges of any $2r$-regular graphs can be partitionned in r sets C_1, \ldots, C_r such that for all i, the set C_i is a disjoint union of cycles (a 2-regular graph).

As any graph of maximal degree Δ can be completed into a regular graph of degree $2\lceil \frac{\Delta}{2} \rceil$, this result also
means that the edges of any graph of degree Δ can be partitionned in $r = 2\lceil \frac{\Delta}{2} \rceil$ sets C_1, \ldots, C_r such that for all i, the set C_i is a graph of maximal degree 2 (a disjoint union of paths and cycles).

INPUT:

- `solver` — string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

- `verbose` — integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

- `integrality_tolerance` — float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

EXAMPLES:

The Complete Graph on 7 vertices is a 6-regular graph, so it can be edge-partitionned into 2-regular graphs:

```python
sage: g = graphs.CompleteGraph(7)
sage: classes = g.two_factor_petersen()  # needs sage.numerical.mip
sage: for c in classes:  # needs sage.numerical.mip
...:    gg = Graph()
...:    gg.add_edges(c)
...:    print(max(gg.degree()) <= 2)
True
True
True
sage: Set(set(classes[0])  # needs sage.numerical.mip
       | set(classes[1])
       | set(classes[2])).cardinality() == g.size()
True

>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(7))
>>> classes = g.two_factor_petersen()  # needs sage.numerical.mip
>>> for c in classes:  # needs sage.numerical.mip
...:    gg = Graph()
...:    gg.add_edges(c)
...:    print(max(gg.degree()) <= Integer(2))
True
True
True
>>> Set(set(classes[Integer(0)])  # needs sage.numerical.mip
      | set(classes[Integer(1)])
      | set(classes[Integer(2)])).cardinality() == g.size()
True

sage: g = graphs.CirculantGraph(24, [7, 11])
sage: cl = g.two_factor_petersen()  # needs sage.numerical.mip
sage: g.plot(edge_colors={'black':cl[0], 'red':cl[1]})  # needs sage.numerical.mip sage.plot
Graphics object consisting of 73 graphics primitives
```

658 Chapter 1. Graph objects and methods
twograph()

Return the two-graph of self

Returns the two-graph with the triples \(T = \{ t \in \binom{V}{3} : |(t_1, t_2) \cap E| \text{ odd} \} \) where \(V \) and \(E \) are vertices and edges of self, respectively.

EXAMPLES:

```python
sage: p = graphs.PetersenGraph()
sage: p.twograph()  # needs sage.modules
Incidence structure with 10 points and 60 blocks
sage: p = graphs.chang_graphs()
sage: T8 = graphs.CompleteGraph(8).line_graph()
sage: C = T8.seidel_switching([(0, 1, None), (2, 3, None), (4, 5, None), (6, 7, None)], inplace=False)
sage: T8.twograph() == C.twograph()  # needs sage.modules
True
sage: T8.is_isomorphic(C)
False
```

See also:

- `descendant()` – computes the descendant graph of the two-graph of self at a vertex
- `twograph_descendant()` – ditto, but much faster.

vertex_cover *(algorithm, value_only='Cliquer', reduction_rules=False, solver=True, verbose=None, integrality_tolerance=0)*

Return a minimum vertex cover of self represented by a set of vertices.
A minimum vertex cover of a graph is a set S of vertices such that each edge is incident to at least one element of S, and such that S is of minimum cardinality. For more information, see the Wikipedia article Vertex_cover.

Equivalently, a vertex cover is defined as the complement of an independent set.

As an optimization problem, it can be expressed as follows:

Minimize: $\sum_{v \in G} b_v$

Such that: $\forall (u, v) \in G.edges(), b_u + b_v \geq 1$

$\forall x \in G, b_x$ is a binary variable

INPUT:

- **algorithm** – string (default: "Cliquer"). Indicating which algorithm to use. It can be one of those values.
 - "Cliquer" will compute a minimum vertex cover using the Cliquer package.
 - "MILP" will compute a minimum vertex cover through a mixed integer linear program.
 - "mcqd" will use the MCQD solver (http://www.sicmm.org/~konc/maxclique/). Note that the MCQD package must be installed.
- **value_only** – boolean (default: False); if set to True, only the size of a minimum vertex cover is returned. Otherwise, a minimum vertex cover is returned as a list of vertices.
- **reduction_rules** – (default: True); specify if the reductions rules from kernelization must be applied as pre-processing or not. See [ACFLSS04] for more details. Note that depending on the instance, it might be faster to disable reduction rules.
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:

On the Pappus graph:

```python
sage: g = graphs.PappusGraph()
sage: g.vertex_cover(value_only=True)
9
```

```python
>>> from sage.all import *
>>> g = graphs.PappusGraph()
>>> g.vertex_cover(value_only=True)
9
```

vertex_isoperimetric_number (g)

Return the vertex-isoperimetric number of the graph.

The vertex-isoperimetric number of a graph $G = (V, E)$ is also sometimes called the magnifying constant. It is defined as the minimum of $|N(S)|/|S|$ where $|N(S)|$ is the vertex boundary of S and the minimum is taken over the subsets S of vertices of size at most half of the vertices.
1.2. Undirected graphs
See also:

Alternative but similar quantities can be obtained via the methods `cheeger_constant()` and `edge_isoperimetric_number()`.

EXAMPLES:
The vertex-isoperimetric number of a complete graph on n vertices is $[n/2]/[n/2]$:

```python
sage: [graphs.CompleteGraph(k).vertex_isoperimetric_number() for k in range(2, 16)]
[1, 2, 1, 3/2, 1, 4/3, 1, 5/4, 1, 6/5, 1, 7/6, 1]
```

The vertex-isoperimetric number of a cycle on n vertices is $2/[n/2]$:

```python
sage: [graphs.CycleGraph(k).vertex_isoperimetric_number() for k in range(2, 16)]
[1, 2, 1, 1, 2/3, 2/3, 1/2, 1/2, 2/5, 2/5, 1/3, 1/3, 2/7]
```

And the vertex-isoperimetric number of a disconnected graph is 0:

```python
sage: Graph([[1,2,3],[1,2]]).vertex_isoperimetric_number()
0
```

The vertex-isoperimetric number is independent of edge multiplicity:

```python
sage: G = graphs.CycleGraph(6)
sage: G.vertex_isoperimetric_number()
2/3
sage: G.allow_multiple_edges(True)
sage: G.add_edges(G.edges(sort=False))
sage: G.vertex_isoperimetric_number()
2/3
```

```python
sage: G = graphs.CycleGraph(Integer(6))
sage: G.vertex_isoperimetric_number()
2/3
sage: G.allow_multiple_edges(True)
sage: G.add_edges(G.edges(sort=False))
sage: G.vertex_isoperimetric_number()
2/3
```
write_to_eps *(filename, **options)*

Write a plot of the graph to filename in eps format.

INPUT:

- filename – a string
- **options** – same layout options as *layout*

EXAMPLES:

```python
sage: P = graphs.PetersenGraph()
sage: P.write_to_eps(tmp_filename(ext='.eps'))
```

```python
>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> P.write_to_eps(tmp_filename(ext='.eps'))
```

It is relatively simple to include this file in a LaTeX document. `\usepackage{graphics}` must appear in the preamble, and `\includegraphics{filename}` will include the file. To compile the document to pdf with pdflatex or xelatex the file needs first to be converted to pdf, for example with `ps2pdf filename.eps filename.pdf`.

1.3 Directed graphs

This module implements functions and operations involving directed graphs. Here is what they can do:

Graph basic operations:
Graph Theory, Release 10.4

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lay-out_acyclic_dummy()</td>
<td>Compute a (dummy) ranked layout so that all edges point upward.</td>
</tr>
<tr>
<td>layout_acyclic()</td>
<td>Compute a ranked layout so that all edges point upward.</td>
</tr>
<tr>
<td>reverse()</td>
<td>Return a copy of digraph with edges reversed in direction.</td>
</tr>
<tr>
<td>reverse_edge()</td>
<td>Reverse an edge.</td>
</tr>
<tr>
<td>reverse_edges()</td>
<td>Reverse a list of edges.</td>
</tr>
<tr>
<td>out_degree_sequence()</td>
<td>Return the outdegree sequence.</td>
</tr>
<tr>
<td>out_degree_iterator()</td>
<td>Same as degree_iterator, but for out degree.</td>
</tr>
<tr>
<td>out_degree()</td>
<td>Same as degree, but for out degree.</td>
</tr>
<tr>
<td>in_degree_sequence()</td>
<td>Return the indegree sequence of this digraph.</td>
</tr>
<tr>
<td>in_degree_iterator()</td>
<td>Same as degree_iterator, but for in degree.</td>
</tr>
<tr>
<td>in_degree()</td>
<td>Same as degree, but for in-degree.</td>
</tr>
<tr>
<td>neighbors_out()</td>
<td>Return the list of the out-neighbors of a given vertex.</td>
</tr>
<tr>
<td>neighbor_out_iterator()</td>
<td>Return an iterator over the out-neighbors of a given vertex.</td>
</tr>
<tr>
<td>neighbors_in()</td>
<td>Return the list of the in-neighbors of a given vertex.</td>
</tr>
<tr>
<td>neighbor_in_iterator()</td>
<td>Return an iterator over the in-neighbors of vertex.</td>
</tr>
<tr>
<td>outgoing_edges()</td>
<td>Return a list of edges departing from vertices.</td>
</tr>
<tr>
<td>outgoing_edge_iterator()</td>
<td>Return an iterator over all departing edges from vertices</td>
</tr>
<tr>
<td>incoming_edges()</td>
<td>Return a list of edges arriving at vertices.</td>
</tr>
<tr>
<td>incoming_edge_iterator()</td>
<td>Return an iterator over all arriving edges from vertices</td>
</tr>
<tr>
<td>sources()</td>
<td>Return the list of all sources (vertices without incoming edges) of this digraph.</td>
</tr>
<tr>
<td>sinks()</td>
<td>Return the list of all sinks (vertices without outgoing edges) of this digraph.</td>
</tr>
<tr>
<td>to_undirected()</td>
<td>Return an undirected version of the graph.</td>
</tr>
<tr>
<td>to_directed()</td>
<td>Since the graph is already directed, simply returns a copy of itself.</td>
</tr>
<tr>
<td>is_directed()</td>
<td>Since digraph is directed, returns True.</td>
</tr>
<tr>
<td>dig6_string()</td>
<td>Return the dig6 representation of the digraph as an ASCII string.</td>
</tr>
</tbody>
</table>

Distances:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eccentricity()</td>
<td>Return the eccentricity of vertex (or vertices) v.</td>
</tr>
<tr>
<td>radius()</td>
<td>Return the radius of the DiGraph.</td>
</tr>
<tr>
<td>diameter()</td>
<td>Return the diameter of the DiGraph.</td>
</tr>
<tr>
<td>center()</td>
<td>Return the set of vertices in the center of the DiGraph.</td>
</tr>
<tr>
<td>periphery()</td>
<td>Return the set of vertices in the periphery of the DiGraph.</td>
</tr>
</tbody>
</table>

Paths and cycles:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all_cycles_iterator()</td>
<td>Return an iterator over all the cycles of $self$ starting with one of the given vertices.</td>
</tr>
<tr>
<td>all_simple_cycles()</td>
<td>Return a list of all simple cycles of $self$.</td>
</tr>
</tbody>
</table>

Representation theory:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path_semigroup()</td>
<td>Return the (partial) semigroup formed by the paths of the digraph.</td>
</tr>
<tr>
<td>auslander_reiten_quiver()</td>
<td>Return the Auslander-Reiten quiver of $self$.</td>
</tr>
</tbody>
</table>
Connectivity:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_strongly_connected()</code></td>
<td>Check whether the current DiGraph is strongly connected.</td>
</tr>
<tr>
<td><code>strongly_connected_components_di_graph()</code></td>
<td>Return the digraph of the strongly connected components.</td>
</tr>
<tr>
<td><code>strongly_connected_components_subgraphs()</code></td>
<td>Return the strongly connected components as a list of subgraphs.</td>
</tr>
<tr>
<td><code>strongly_connected_component_containing_vertex()</code></td>
<td>Return the strongly connected component containing a given vertex.</td>
</tr>
<tr>
<td><code>strongly_connected_components()</code></td>
<td>Return the list of strongly connected components.</td>
</tr>
<tr>
<td><code>strong_articulation_points()</code></td>
<td>Return the strong articulation points of this digraph.</td>
</tr>
</tbody>
</table>

Acyclicity:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_directed_acyclic()</code></td>
<td>Check whether the digraph is acyclic or not.</td>
</tr>
<tr>
<td><code>is_transitive()</code></td>
<td>Check whether the digraph is transitive or not.</td>
</tr>
<tr>
<td><code>is_aperiodic()</code></td>
<td>Check whether the digraph is aperiodic or not.</td>
</tr>
<tr>
<td><code>is_tournament()</code></td>
<td>Check whether the digraph is a tournament.</td>
</tr>
<tr>
<td><code>period()</code></td>
<td>Return the period of the digraph.</td>
</tr>
<tr>
<td><code>level_sets()</code></td>
<td>Return the level set decomposition of the digraph.</td>
</tr>
<tr>
<td><code>topological_sort_generator()</code></td>
<td>Return a list of all topological sorts of the digraph if it is acyclic</td>
</tr>
<tr>
<td><code>topological_sort()</code></td>
<td>Return a topological sort of the digraph if it is acyclic</td>
</tr>
</tbody>
</table>

Hard stuff:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>feedback_edge_set()</code></td>
<td>Compute the minimum feedback edge (arc) set of a digraph</td>
</tr>
</tbody>
</table>

Miscellaneous:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>flow_polytope()</code></td>
<td>Compute the flow polytope of a digraph</td>
</tr>
<tr>
<td><code>degree_polynomial()</code></td>
<td>Return the generating polynomial of degrees of vertices in <code>self</code>.</td>
</tr>
<tr>
<td><code>out_branchings()</code></td>
<td>Return an iterator over the out branchings rooted at given vertex in <code>self</code>.</td>
</tr>
<tr>
<td><code>in_branchings()</code></td>
<td>Return an iterator over the in branchings rooted at given vertex in <code>self</code>.</td>
</tr>
</tbody>
</table>
1.3.1 Methods

class sage.graphs.digraph.DiGraph (data=None, pos=None, loops=None, format=None, weighted=None, data_structure='sparse', vertex_labels=True, name=None, multiedges=None, convert_empty_dict_labels_to_None=None, immutable=False, hash_labels=None)

Bases: GenericGraph

Directed graph.

A digraph or directed graph is a set of vertices connected by oriented edges. See also the Wikipedia article Directed graph. For a collection of pre-defined digraphs, see the digraph_generators module.

A DiGraph object has many methods whose list can be obtained by typing g.<tab> (i.e. hit the Tab key) or by reading the documentation of digraph, generic_graph, and graph.

INPUT:

By default, a DiGraph object is simple (i.e. no loops nor multiple edges) and unweighted. This can be easily tuned with the appropriate flags (see below).

• data – can be any of the following (see the format argument):

1. DiGraph() – build a digraph on 0 vertices
2. DiGraph(5) – return an edgeless digraph on the 5 vertices 0,...,4
3. DiGraph([list_of_vertices, list_of_edges]) – return a digraph with given vertices/edges

 To bypass auto-detection, prefer the more explicit DiGraph([V, E], format='vertices_and_edges').

4. DiGraph(list_of_edges) – return a digraph with a given list of edges (see documentation of add_edges()).

 To bypass auto-detection, prefer the more explicit DiGraph(L, format='list_of_edges').

5. DiGraph({1: [2,3,4], 3: [4]}) – return a digraph by associating to each vertex the list of its out-neighbors.

 To bypass auto-detection, prefer the more explicit DiGraph(D, format='dict_of_lists').

6. DiGraph({1: {2: 'a1', 3: 'b'}, 3: {2: 'c'}}) – return a digraph by associating a list of out-neighbors to each vertex and providing its edge label.

 To bypass auto-detection, prefer the more explicit DiGraph(D, format='dict_of_dicts').

For digraphs with multiple edges, you can provide a list of labels instead, e.g.: DiGraph({1: {2: ['a1', 'a2'], 3:['b']}, 3:{2:['c']}}).

7. DiGraph(a_matrix) – return a digraph with given (weighted) adjacency matrix (see documentation of adjacency_matrix()).

 To bypass auto-detection, prefer the more explicit DiGraph(M, format='adjacency_matrix'). To take weights into account, use format='weighted_adjacency_matrix' instead.

8. DiGraph(a_nonsquare_matrix) – return a digraph with given incidence matrix (see documentation of incidence_matrix()).

 To bypass auto-detection, prefer the more explicit DiGraph(M, format='incidence_matrix').
9. `DiGraph([V, f])` – return a digraph with a vertex set \(V \) and an edge \(u, v \) whenever \(f(u, v) \) is True.
 Example: `DiGraph([[1..10], lambda x,y: abs(x - y).is_square()])`

10. `DiGraph('FOC@?OC@_?')` – return a digraph from a dig6 string (see documentation of `dig6_string()`).

11. `DiGraph(another_digraph)` – return a digraph from a Sage (di)graph, pygraphviz digraph, NetworkX digraph, or igraph digraph.

- `pos` – dict (default: None); a positioning dictionary. For example, the spring layout from NetworkX for the 5-cycle is:

```
{0: [-0.81679746, 0.88169588],
 1: [ 0.47294849, 1.125 ],
 2: [ 1.125 , -0.12867615],
 3: [ 0.12743933, -1.125 ],
 4: [-1.125 , -0.50118505]}
```

- `name` – string (default: None); gives the graph a name (e.g., name=”complete”)

- `loops` – boolean (default: None); whether to allow loops (ignored if data is an instance of the DiGraph class)

- `multiedges` – boolean (default: None); whether to allow multiple edges (ignored if data is an instance of the DiGraph class)

- `weighted` – boolean (default: None); whether digraph thinks of itself as weighted or not. See `self.weighted()`.

- `format` – string (default: None); if set to None, `DiGraph` tries to guess input’s format. To avoid this possibly time-consuming step, one of the following values can be specified (see description above): "int", "dig6", "rule", "list_of_edges", "dict_of_lists", "dict_of_dicts", "adjacency_matrix", "weighted_adjacency_matrix", "incidence_matrix", "NX", "igraph".

- `sparse` – boolean (default: True); `sparse=True` is an alias for `data_structure="sparse"`, and `sparse=False` is an alias for `data_structure="dense"`

- `data_structure` – string (default: "sparse"); one of the following (for more information, see `overview`):
 - "dense" – selects the `dense_graph` backend
 - "sparse" – selects the `sparse_graph` backend
 - "static_sparse" – selects the `static_sparse_backend` (this backend is faster than the sparse backend and smaller in memory, and it is immutable, so that the resulting graphs can be used as dictionary keys).

- `immutable` – boolean (default: False); whether to create an immutable digraph. Note that `immutable=True` is actually a shortcut for `data_structure='static_sparse'`.

- `hash_labels` – boolean (default: None); whether to include edge labels during hashing. This parameter defaults to True if the digraph is weighted. This parameter is ignored if the digraph is mutable. Beware that trying to hash unhashable labels will raise an error.

- `vertex_labels` – boolean (default: True); whether to allow any object as a vertex (slower), or only the integers 0, ..., \(n - 1 \), where \(n \) is the number of vertices.

- `convert_empty_dict_labels_to_None` – boolean (default: None); this arguments sets the default edge labels used by NetworkX (empty dictionaries) to be replaced by None, the default Sage edge label. It is set to True iff a NetworkX graph is on the input.
EXAMPLES:

1. A dictionary of dictionaries:

```python
sage: g = DiGraph({0: {1: 'x', 2: 'z', 3: 'a'}, 2: {5: 'out'}}); g
Digraph on 5 vertices
```

The labels ('x', 'z', 'a', 'out') are labels for edges. For example, 'out' is the label for the edge from 2 to 5. Labels can be used as weights, if all the labels share some common parent.

2. A dictionary of lists (or iterables):

```python
sage: g = DiGraph({0: [1, 2, 3], 2: [4]}); g
Digraph on 5 vertices
```

3. A list of vertices and a function describing adjacencies. Note that the list of vertices and the function must be enclosed in a list (i.e., [list of vertices, function]).

We construct a graph on the integers 1 through 12 such that there is a directed edge from \(i\) to \(j\) if and only if \(i\) divides \(j\):

```python
sage: g = DiGraph([[1..12], lambda i,j: i != j and i.divides(j))
sage: g.vertices(sort=True)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: g.adjacency_matrix()  # needs sage.modules

```

(continues on next page)
4. A Sage matrix: Note: If format is not specified, then Sage assumes a square matrix is an adjacency matrix, and a nonsquare matrix is an incidence matrix.

- an adjacency matrix:

```
sage: M = Matrix([[0, 1, 1, 1, 1], [0, 0, 1, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]); M
[0 1 1 1 1]
[0 0 1 0 1]
[0 0 0 0 1]
[0 0 0 0 0]
[0 0 0 0 0]
sage: DiGraph(M)
Digraph on 5 vertices
```

```
sage: M = Matrix([[0,1,-1], [-1,0,-1/2], [1,1/2,0]]); M
[ 0 1 -1]
[ -1 0 -1/2]
[ 1 1/2 0]
sage: G = DiGraph(M, sparse=True, weighted=True); G
Digraph on 3 vertices
```

```
>>> from sage.all import *
```

```
>>> M = Matrix([[Integer(0), Integer(1), Integer(1), Integer(1), Integer(0)],
              [Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)]]); M
[0 1 1 1 0]
[0 0 0 0 0]
[0 0 0 0 1]
[0 0 0 0 0]
[0 0 0 0 0]
```

1.3. Directed graphs 669
5. A dig6 string: Sage automatically recognizes whether a string is in dig6 format, which is a directed version of graph6:

```
sage: D = DiGraph('IRAaDCIOWEOcPWAo')
sage: D
```
(continues on next page)
Digraph on 10 vertices

```
sage: D = DiGraph('IRAaDCIIOEOKcPWAo')
Traceback (most recent call last):
...
RuntimeError: the string (IRAaDCIIOEOKcPWAo) seems corrupt: for n = 10, the...

sage: D = DiGraph("IRAaDCI'OWEOKcPWAo")
Traceback (most recent call last):
...
RuntimeError: the string seems corrupt: valid characters are
?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\[^_Aabcdefghijklmnopqrstuvwxyz{|}~
```

6. A NetworkX MultiDiGraph:

```
>>> from sage.all import *
>>> D = DiGraph('IRAaDCIIOEOKcPWAo')
>>> D
Digraph on 10 vertices

>>> D = DiGraph('IRAaDCIIOEOKcPWAo')
Traceback (most recent call last):
...
RuntimeError: the string (IRAaDCIIOEOKcPWAo) seems corrupt: for n = 10, the...

>>> D = DiGraph("IRAaDCI'OWEOKcPWAo")
Traceback (most recent call last):
...
RuntimeError: the string seems corrupt: valid characters are
?@ABCDEFGHIJKLMNOPQRSTUVWXYZ\[^_Aabcdefghijklmnopqrstuvwxyz{|}~
```

7. A NetworkX digraph:

```
sage: import networkx  # needs networkx
sage: g = networkx.DiGraph({0: [1, 2, 3], 2: [4]})  # needs networkx
sage: DiGraph(g)  # needs networkx
Multi-digraph on 5 vertices
```

(continued on next page)
sage: DiGraph(g)
 # needs networkx
Digraph on 5 vertices

>>> from sage.all import *
>>> import networkx
needs networkx

>>> g = networkx.DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)],
 Integer(2): [Integer(4)]})
needs networkx

>>> DiGraph(g)
 # needs networkx
Digraph on 5 vertices

8. An igraph directed Graph (see also igraph_graph()):

sage: import igraph
optional - python__igraph

sage: g = igraph.Graph([(0,1),(0,2)], directed=True)
optional - python__igraph

sage: DiGraph(g)
optional - python__igraph
Digraph on 3 vertices

>>> from sage.all import *

optional - python__igraph

>>> g = igraph.Graph([(Integer(0),Integer(1)),(Integer(0),Integer(2))],
 directed=True) # optional - python__igraph

>>> DiGraph(g) # optional - python__igraph
Digraph on 3 vertices

If vertex_labels is True, the names of the vertices are given by the vertex attribute 'name', if available:

sage: # optional - python__igraph
sage: g = igraph.Graph([(0,1),(0,2)], directed=True, vertex_attrs={name:'[a
 ->', 'b', 'c']})

sage: DiGraph(g).vertices(sort=True)
['a', 'b', 'c']

sage: g = igraph.Graph([(0,1),(0,2)], directed=True, vertex_attrs={label:'[a
 ->', 'b', 'c']})

sage: DiGraph(g).vertices(sort=True)
[0, 1, 2]

>>> from sage.all import *

optional - python__igraph

>>> g = igraph.Graph([(Integer(0),Integer(1)),(Integer(0),Integer(2))],
 directed=True, vertex_attrs='{name': ['a', 'b', 'c']})

>>> DiGraph(g).vertices(sort=True)
['a', 'b', 'c']

>>> g = igraph.Graph([(Integer(0),Integer(1)),(Integer(0),Integer(2))],
 directed=True, vertex_attrs='{label': ['a', 'b', 'c']})

>>> DiGraph(g).vertices(sort=True)
[0, 1, 2]

If the igraph Graph has edge attributes, they are used as edge labels:
sage: g = igraph.Graph([(0, 1), (0, 2)], directed=True,
optional - python_igraph
...: edge_attrs={name:['a', 'b'], 'weight':[1, 3]})
sage: DiGraph(g).edges(sort=True)
optional - python_igraph
[(0, 1, {'name': 'a', 'weight': 1}), (0, 2, {'name': 'b', 'weight': 3})]

```python
>>> from sage.all import *

>>> g = igraph.Graph([(Integer(0), Integer(1)), (Integer(0), Integer(2))],
#    directed=True,  
#    optional - python_igraph
...: edge_attrs={name:['a', 'b'], 'weight':[Integer(1), ...
#    Integer(3]})

>>> DiGraph(g).edges(sort=True)  
#    optional - python_igraph
[(0, 1, {'name': 'a', 'weight': 1}), (0, 2, {'name': 'b', 'weight': 3})]
```

\textit{all_cycles_iterator} \((\text{starting_vertices}=\text{None}, \text{simple}=\text{False}, \text{rooted}=\text{False}, \text{max_length}=\text{None}, \text{trivial}=\text{False})\)

Return an iterator over all the cycles of self starting with one of the given vertices.

The cycles are enumerated in increasing length order.

\textbf{INPUT:}

- \texttt{starting_vertices} – iterable (default: None); vertices from which the cycles must start. If None, then all vertices of the graph can be starting points. This argument is necessary if \texttt{rooted} is set to True.
- \texttt{simple} – boolean (default: False); if set to True, then only simple cycles are considered. A cycle is simple if the only vertex occurring twice in it is the starting and ending one.
- \texttt{rooted} – boolean (default: False); if set to False, then cycles differing only by their starting vertex are considered the same (e.g. ['a', 'b', 'c', 'a'] and ['b', 'c', 'a', 'b']). Otherwise, all cycles are enumerated.
- \texttt{max_length} – non negative integer (default: None); the maximum length of the enumerated paths. If set to None, then all lengths are allowed.
- \texttt{trivial} – boolean (default: False); if set to True, then the empty paths are also enumerated.

\textbf{OUTPUT:}

iterator

\textbf{See also:}

- \textit{all_simple_cycles()}

\textbf{AUTHOR:}

Alexandre Blondin Masse

\textbf{EXAMPLES:}

```python
sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']},
#    loops=True)
sage: it = g.all_cycles_iterator()
sage: for _ in range(7): print(next(it))
['a', 'a']
['a', 'a', 'a']
['c', 'd', 'c']

(continues on next page)
```
Graph Theory, Release 10.4

>>> from sage.all import *
>>> g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']}, loops=True)
>>> it = g.all_cycles_iterator()
>>> for _ in range(Integer(7)): print(next(it))
['a', 'a']
['a', 'a', 'a']
['c', 'd', 'c']
['a', 'a', 'a', 'a']
['a', 'a', 'a', 'a', 'a']
['c', 'd', 'c', 'd', 'c']
['a', 'a', 'a', 'a', 'a', 'a']

There are no cycles in the empty graph and in acyclic graphs:

sage: g = DiGraph()
sage: it = g.all_cycles_iterator()
sage: list(it)
[]
sage: g = DiGraph({0: [1]})
sage: it = g.all_cycles_iterator()
sage: list(it)
[]

>>> from sage.all import *
>>> g = DiGraph()
>>> it = g.all_cycles_iterator()
>>> list(it)
[]

>>> g = DiGraph({Integer(0): [Integer(1)]})
>>> it = g.all_cycles_iterator()
>>> list(it)
[]

It is possible to restrict the starting vertices of the cycles:

sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']}, loops=True)

sage: it = g.all_cycles_iterator(starting_vertices=['b', 'c'])

sage: for _ in range(3): print(next(it))
['c', 'd', 'c']
['c', 'd', 'c', 'd', 'c']
['c', 'd', 'c', 'd', 'c', 'd', 'c']

>>> g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']}, loops=True)

>>> it = g.all_cycles_iterator(starting_vertices=['b', 'c'])

>>> for _ in range(Integer(3)): print(next(it))
['c', 'd', 'c']

(continues on next page)
Also, one can bound the length of the cycles:

```
sage: it = g.all_cycles_iterator(max_length=3)
sage: list(it)
[[a, a], [a, a, a], [c, d, c],
 [a, a, a, a]]
```

By default, cycles differing only by their starting point are not all enumerated, but this may be parametrized:

```
sage: it = g.all_cycles_iterator(max_length=3, rooted=False)
sage: list(it)
[[a, a], [a, a, a], [c, d, c],
 [a, a, a, a]]
```

```
sage: it = g.all_cycles_iterator(max_length=3, rooted=True)
sage: list(it)
[[a, a], [a, a, a], [c, d, c], [d, c, 'd'],
 [a, a, a, a]]
```

One may prefer to enumerate simple cycles, i.e. cycles such that the only vertex occurring twice in it is the starting and ending one (see also `all_simple_cycles()`):

```
sage: it = g.all_cycles_iterator(simple=True)
sage: list(it)
[[a, a], [c, d, c]]
```

```
sage: g = digraphs.Circuit(4)
sage: list(g.all_cycles_iterator(simple=True))
[[0, 1, 2, 3, 0]]
```

```
sage: it = g.all_cycles_iterator(simple=True)
sage: list(it)
[[a, a], [c, d, c]]
```

```
sage: g = digraphs.Circuit(Integer(4))
sage: list(g.all_cycles_iterator(simple=True))
[[0, 1, 2, 3, 0]]
```

`all_simple_cycles` *(starting_vertices=None, rooted=False, max_length=None, trivial=False)*

1.3. Directed graphs
Return a list of all simple cycles of self.

INPUT:

- **starting_vertices** – iterable (default: None); vertices from which the cycles must start. If None, then all vertices of the graph can be starting points. This argument is necessary if rooted is set to True.
- **rooted** – boolean (default: False); if set to False, then cycles differing only by their starting vertex are considered the same (e.g. ['a', 'b', 'c', 'a'] and ['b', 'c', 'a', 'b']). Otherwise, all cycles are enumerated.
- **max_length** – non negative integer (default: None); the maximum length of the enumerated paths. If set to None, then all lengths are allowed.
- **trivial** – boolean (default: False); if set to True, then the empty paths are also enumerated.

OUTPUT:
list

Note: Although the number of simple cycles of a finite graph is always finite, computing all its cycles may take a very long time.

EXAMPLES:

```
sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']}, loops=True)
sage: g.all_simple_cycles()
[['a', 'a'], ['c', 'd', 'c']]
```

```
>>> from sage.all import *
>>> g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']}, loops=True)
>>> g.all_simple_cycles()
[['a', 'a'], ['c', 'd', 'c']]
```

The directed version of the Petersen graph:

```
sage: g = graphs.PetersenGraph().to_directed()
sage: g.all_simple_cycles(max_length=4)
[[0, 1, 0], [0, 4, 0], [0, 5, 0], [1, 2, 1], [1, 6, 1], [2, 3, 2],
 [2, 7, 2], [3, 4, 3], [3, 8, 3], [4, 9, 4], [5, 7, 5], [5, 8, 5],
 [6, 8, 6], [6, 9, 6], [7, 9, 7]]
sage: g.all_simple_cycles(max_length=6)
[[0, 1, 0], [0, 4, 0], [0, 5, 0], [1, 2, 1], [1, 6, 1], [2, 3, 2],
 [2, 7, 2], [3, 4, 3], [3, 8, 3], [4, 9, 4], [5, 7, 5], [5, 8, 5],
 [6, 8, 6], [6, 9, 6], [7, 9, 7], [0, 1, 2, 3, 4, 0],
 [0, 1, 2, 7, 5, 0], [0, 1, 6, 8, 5, 0], [0, 1, 6, 9, 4, 0],
 [0, 4, 3, 2, 1, 0], [0, 4, 3, 8, 5, 0], [0, 4, 9, 6, 1, 0],
 [0, 4, 9, 7, 5, 0], [0, 5, 7, 9, 4, 0],
 [0, 5, 8, 3, 4, 0], [0, 5, 8, 6, 1, 0], [1, 2, 3, 8, 6, 1],
 [1, 2, 7, 9, 6, 1], [1, 6, 8, 3, 2, 1], [1, 6, 9, 7, 2, 1],
 [2, 3, 4, 9, 7, 2], [2, 3, 8, 5, 7, 2], [2, 7, 5, 8, 3, 2],
 [2, 7, 9, 4, 3, 2], [3, 4, 9, 6, 8, 3], [3, 8, 6, 9, 4, 3],
 [5, 7, 9, 6, 8, 5], [5, 8, 6, 9, 7, 5], [0, 1, 2, 3, 8, 5, 0],
 [0, 1, 2, 7, 9, 4, 0], [0, 1, 6, 8, 3, 4, 0],
 [0, 1, 6, 9, 7, 5, 0], [0, 4, 3, 2, 7, 5, 0],
```

(continues on next page)
The complete graph (without loops) on 4 vertices:

```
sage: g = graphs.CompleteGraph(4).to_directed()
sage: g.all_simple_cycles()
[[0, 1, 0], [0, 2, 0], [0, 3, 0], [1, 2, 1], [1, 3, 1], [2, 3, 2],
 [0, 1, 2, 0], [0, 1, 3, 0], [0, 2, 1, 0], [0, 2, 3, 0],
 [0, 3, 1, 0], [0, 3, 2, 0], [1, 2, 3, 1], [1, 3, 2, 1],
 [0, 1, 2, 3, 0], [0, 2, 1, 3, 0], [0, 1, 3, 2, 0], [0, 2, 3, 1, 0],
 [0, 2, 3, 1, 0], [0, 3, 1, 2, 0], [0, 3, 2, 1, 0]]
```
If the graph contains a large number of cycles, one can bound the length of the cycles, or simply restrict the possible starting vertices of the cycles:

```
sage: g = graphs.CompleteGraph(20).to_directed()
sage: g.all_simple_cycles(max_length=2)
[[0, 16, 0], [0, 1, 0], [0, 17, 0], [0, 2, 0], [0, 18, 0],
 [0, 3, 0], [0, 19, 0], [0, 4, 0], [0, 5, 0], [0, 6, 0], [0, 7, 0],
 [0, 8, 0], [0, 9, 0], [0, 10, 0], [0, 11, 0], [0, 12, 0],
 [0, 13, 0], [0, 14, 0], [0, 15, 0], [1, 16, 1], [1, 17, 1],
 [1, 18, 1], [1, 19, 1], [1, 2, 1], [1, 3, 1], [1, 4, 1], [1, 5, 1],
 [1, 6, 1], [1, 7, 1], [1, 8, 1], [1, 9, 1], [1, 10, 1], [1, 11, 1],
 [1, 12, 1], [1, 13, 1], [1, 14, 1], [1, 15, 1], [2, 16, 2],
 [2, 17, 2], [2, 18, 2], [2, 3, 2], [2, 19, 2], [2, 4, 2],
 [2, 5, 2], [2, 6, 2], [2, 7, 2], [2, 8, 2], [2, 9, 2], [2, 10, 2],
 [2, 11, 2], [2, 12, 2], [2, 13, 2], [2, 14, 2], [2, 15, 2],
 [3, 16, 3], [3, 17, 3], [3, 18, 3], [3, 19, 3], [3, 4, 3],
 [3, 5, 3], [3, 6, 3], [3, 7, 3], [3, 8, 3], [3, 9, 3], [3, 10, 3],
 [3, 11, 3], [3, 12, 3], [3, 13, 3], [3, 14, 3], [3, 15, 3],
 [4, 16, 4], [4, 17, 4], [4, 18, 4], [4, 19, 4], [4, 5, 4],
 [4, 6, 4], [4, 7, 4], [4, 8, 4], [4, 9, 4], [4, 10, 4], [4, 11, 4],
 [4, 12, 4], [4, 13, 4], [4, 14, 4], [4, 15, 4], [5, 16, 5],
 [5, 17, 5], [5, 18, 5], [5, 19, 5], [5, 6, 5], [5, 7, 5],
 [5, 8, 5], [5, 9, 5], [5, 10, 5], [5, 11, 5], [5, 12, 5],
 [5, 13, 5], [5, 14, 5], [5, 15, 5], [5, 16, 6], [6, 17, 6],
 [6, 18, 6], [6, 19, 6], [6, 7, 6], [6, 8, 6], [6, 9, 6],
 [6, 10, 6], [6, 11, 6], [6, 12, 6], [6, 13, 6], [6, 14, 6],
 [6, 15, 6], [7, 16, 7], [7, 17, 7], [7, 18, 7], [7, 19, 7],
 [7, 8, 7], [7, 9, 7], [7, 10, 7], [7, 11, 7], [7, 12, 7],
 [7, 13, 7], [7, 14, 7], [7, 15, 7], [8, 16, 8], [8, 17, 8],
 [8, 18, 8], [8, 19, 8], [8, 9, 8], [8, 10, 8], [8, 11, 8],
 [8, 12, 8], [8, 13, 8], [8, 14, 8], [8, 15, 8], [9, 16, 9],
 [9, 17, 9], [9, 18, 9], [9, 19, 9], [9, 10, 9], [9, 11, 9],
 [9, 12, 9], [9, 13, 9], [9, 14, 9], [9, 15, 9], [10, 16, 10],
 [10, 17, 10], [10, 18, 10], [10, 19, 10], [10, 11, 10],
 [10, 12, 10], [10, 13, 10], [10, 14, 10], [10, 15, 10],
 [11, 16, 11], [11, 17, 11], [11, 18, 11], [11, 19, 11],
 [11, 12, 11], [11, 13, 11], [11, 14, 11], [11, 15, 11],
 [12, 16, 12], [12, 17, 12], [12, 18, 12], [12, 19, 12],
 [12, 13, 12], [12, 14, 12], [12, 15, 12], [13, 16, 13],
 [13, 17, 13], [13, 18, 13], [13, 19, 13], [13, 14, 13],
 [13, 15, 13], [14, 16, 14], [14, 17, 14], [14, 18, 14],
 [14, 19, 14], [14, 15, 14], [15, 16, 15], [15, 17, 15],
 [15, 18, 15], [15, 19, 15], [16, 17, 16], [16, 18, 16],
 [16, 19, 16], [17, 18, 17], [17, 19, 17], [18, 19, 18]]
```

```
sage: g = graphs.CompleteGraph(20).to_directed()
sage: g.all_simple_cycles(max_length=2, starting_vertices=[0])
[[0, 16, 0], [0, 1, 0], [0, 17, 0], [0, 18, 0],
 [0, 3, 0], [0, 19, 0], [0, 4, 0], [0, 2, 0], [0, 5, 0], [0, 6, 0],
 [0, 7, 0], [0, 8, 0], [9, 0, 0], [0, 10, 0], [0, 11, 0],
 [0, 12, 0], [0, 13, 0], [0, 14, 0], [0, 15, 0]]
```

```
>>> from sage.all import *

>>> g = graphs.CompleteGraph(Integer(20)).to_directed()

>>> g.all_simple_cycles(max_length=Integer(2))

(continues on next page)```
Graph Theory, Release 10.4

(continued from previous page)

>>> g = graphs.CompleteGraph(Integer(20)).to_directed()
>>> g.all_simple_cycles(max_length=Integer(2), starting_vertices=[Integer(0)])
[[0, 16, 0], [0, 1, 0], [0, 17, 0], [0, 2, 0], [0, 18, 0],
 [0, 3, 0], [0, 19, 0], [0, 4, 0], [0, 5, 0], [0, 6, 0],
 [0, 7, 0], [0, 8, 0], [0, 9, 0], [0, 10, 0], [0, 11, 0],
 [0, 12, 0], [0, 13, 0], [0, 14, 0], [0, 15, 0]]

One may prefer to distinguish equivalent cycles having distinct starting vertices (compare the following examples):

sage: g = graphs.CompleteGraph(4).to_directed()
sage: g.all_simple_cycles(max_length=2, rooted=False)
[[0, 1, 0], [0, 2, 0], [0, 3, 0], [0, 4, 0], [0, 5, 0], [0, 6, 0],
 [0, 7, 0], [0, 8, 0], [0, 9, 0], [0, 10, 0], [0, 11, 0],
 [0, 12, 0], [0, 13, 0], [0, 14, 0], [0, 15, 0]]

1.3. Directed graphs 679
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> g.all_simple_cycles(max_length=Integer(2), rooted=False)
[[0, 1, 0], [0, 2, 0], [0, 3, 0], [1, 2, 1], [1, 3, 1], [2, 3, 2]]
```

```python
>>> g.all_simple_cycles(max_length=Integer(2), rooted=True)
[[0, 1, 0], [0, 2, 0], [0, 3, 0], [1, 0, 1], [1, 2, 1], [1, 3, 1],
 [2, 0, 2], [2, 1, 2], [2, 3, 2], [3, 0, 3], [3, 1, 3], [3, 2, 3]]
```

**auslander_reiten_quiver()**

Return the Auslander-Reiten quiver of self.

See also:

AuslanderReitenQuiver

**EXAMPLES:**

```python
sage: D = DiGraph([[[1,2,'a'], [1,2,'b']]], multiedges=True)
sage: D.auslander_reiten_quiver()
Auslander-Reiten quiver of Multi-digraph on 2 vertices
```

```python
from sage.all import *

D = DiGraph([[[Integer(1),Integer(2),'a'], [Integer(1),Integer(2),'b']]],...
multiedges=True)
D.auslander_reiten_quiver()
```

**center** (by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return the set of vertices in the center of the DiGraph.

The center is the set of vertices whose eccentricity is equal to the radius of the DiGraph, i.e., achieving the minimum eccentricity.

For more information and examples on how to use input variables, see `shortest_paths()` and `eccentricity()`

**INPUT:**

- by_weight – boolean (default: False); if True, edge weights are taken into account; if False, all edges have weight 1
- algorithm – string (default: None); see method `eccentricity()` for the list of available algorithms
- weight_function – function (default: None); a function that takes as input an edge (u, v, l) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label l as a weight, if l is not None, else 1 as a weight.
- check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge

**EXAMPLES:**

Every vertex is a center in a Circuit-DiGraph:

```python
sage: G = digraphs.Circuit(9)
sage: G.center()
[0, 1, 2, 3, 4, 5, 6, 7, 8]
```
Center can be the whole graph:

```python
sage: G.subgraph(G.center()) == G
True
```

Some other graphs:

```python
sage: G = digraphs.Path(5)
sage: G.center()
[0]
sage: G = DiGraph([(0,1,2), (1,2,3), (2,0,2)])
sage: G.center(by_weight=True)
[2]
```

```python
>>> from sage.all import *
>>> G = digraphs.Path(Integer(5))
>>> G.center()
[0]
>>> G = DiGraph([(Integer(0),Integer(1),Integer(2)), (Integer(1),Integer(2), →Integer(3)), (Integer(2),Integer(0),Integer(2))])
>>> G.center(by_weight=True)
[2]
```

degree_polynomial()
Return the generating polynomial of degrees of vertices in self.
This is the sum

\[ \sum_{v \in G} x^{\text{in}(v)} y^{\text{out}(v)}, \]

where \( \text{in}(v) \) and \( \text{out}(v) \) are the number of incoming and outgoing edges at vertex \( v \) in the digraph \( G \).
Because this polynomial is multiplicative for Cartesian product of digraphs, it is useful to help see if the digraph can be isomorphic to a Cartesian product.

See also:
num_verts() for the value at \((x, y) = (1, 1)\)

EXAMPLES:

```python
sage: G = posets.PentagonPoset().hasse_diagram() #...
→needs sage.modules
sage: G.degree_polynomial() #...
→needs sage.modules
x^2 + 3*x*y + y^2
sage: G = posets.BooleanLattice(4).hasse_diagram()
(continues on next page)```
sage: G.degree_polynomial().factor()
"needs sage.libs.pari"
(x + y)^4

>>> from sage.all import *
>>> G = posets.PentagonPoset().hasse_diagram()
"needs sage.modules"
>>> G.degree_polynomial()
"needs sage.modules"
x^2 + 3*x*y + y^2

>>> G = posets.BooleanLattice(Integer(4)).hasse_diagram()
>>> G.degree_polynomial().factor()
"needs sage.libs.pari"
(x + y)^4

diameter (by_weight=False, algorithm=None, weight_function=None, check_weight=True)

Return the diameter of the DiGraph.

The diameter is defined to be the maximum distance between two vertices. It is infinite if the DiGraph is not strongly connected.

For more information and examples on how to use input variables, see shortest_paths() and eccentricity()

INPUT:

• by_weight – boolean (default: False); if True, edge weights are taken into account; if False, all edges have weight 1

• algorithm – string (default: None); one of the following algorithms:

 - 'BFS': the computation is done through a BFS centered on each vertex successively. Works only if by_weight==False. It computes all the eccentricities and return the maximum value.

 - 'Floyd-Warshall-Cython': a Cython implementation of the Floyd-Warshall algorithm. Works only if by_weight==False. It computes all the eccentricities and return the maximum value.

 - 'Floyd-Warshall-Python': a Python implementation of the Floyd-Warshall algorithm. Works also with weighted graphs, even with negative weights (but no negative cycle is allowed). It computes all the eccentricities and return the maximum value.

 - 'Dijkstra_NetworkX': the Dijkstra algorithm, implemented in NetworkX. It works with weighted graphs, but no negative weight is allowed. It computes all the eccentricities and return the maximum value.

 - 'DiFUB', '2Dsweep': these algorithms are implemented in sage.graphs.distances_all_pairs.diameter() and sage.graphs.base.boost_graph.diameter(). '2Dsweep' returns lower bound on the diameter, while 'DiFUB' returns the exact computed diameter. They also work with negative weight, if there is no negative cycle. See the functions documentation for more information.

 - 'standard': the standard algorithm is implemented in sage.graphs.distances_all_pairs.diameter(). It works only if by_weight==False. See the function documentation for more information. It computes all the eccentricities and return the maximum value.
- 'Dijkstra_Boost': the Dijkstra algorithm, implemented in Boost (works only with positive weights). It computes all the eccentricities and return the maximum value.

- 'Johnson_Boost': the Johnson algorithm, implemented in Boost (works also with negative weights, if there is no negative cycle). It computes all the eccentricities and return the maximum value.

- None (default): Sage chooses the best algorithm: 'DiFUB'.

- weight_function – function (default: None); a function that takes as input an edge \((u, \ v, \ l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\), if \(l\) is not None, else 1 as weight.

- check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge.

EXAMPLES:

```python
sage: # needs sage.combinat
g = digraphs.DeBruijn(5, 4)
sage: g.diameter()
4

sage: g = digraphs.GeneralizedDeBruijn(9, 3)
sage: g.diameter()
2
```

```python
>>> from sage.all import *
>>> # needs sage.combinat

>>> g = digraphs.DeBruijn(Integer(5), Integer(4))

>>> g.diameter()
4

>>> g = digraphs.GeneralizedDeBruijn(Integer(9), Integer(3))

>>> g.diameter()
2
```

dig6_string()

Return the dig6 representation of the digraph as an ASCII string.

This is only valid for single (no multiple edges) digraphs on at most \(2^{18} - 1 = 262143\) vertices.

Note: As the dig6 format only handles graphs with vertex set \(\{0, \ldots, n-1\}\), a relabelled copy will be encoded, if necessary.

See also:

- **graph6_string()** – a similar string format for undirected graphs

EXAMPLES:

```python
sage: D = DiGraph({0: [1, 2], 1: [2], 2: [3], 3: [0]})
sage: D.dig6_string()
'CW' 
```

```python
>>> from sage.all import *

>>> D = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(1):

→[Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(0)]})

(continues on next page)
```
Graph Theory, Release 10.4

```
>>> D.dig6_string()
'CW'_
```

eccentricity \((v=None, \text{by_weight=False}, \text{algorithm=None}, \text{weight_function=None}, \text{check_weight=True}, \text{dist_dict=None}, \text{with_labels=False})\)

Return the eccentricity of vertex (or vertices) \(v\).

The eccentricity of a vertex is the maximum distance to any other vertex.

For more information and examples on how to use input variables, see *shortest_path_all_pairs*, *shortest_path_lengths* and *shortest_paths*.

INPUT:

- \(v\) – either a single vertex or a list of vertices. If it is not specified, then it is taken to be all vertices.
- \(\text{by_weight}\) – boolean (default: False); if True, edge weights are taken into account; if False, all edges have weight 1
- \(\text{algorithm}\) – string (default: None); one of the following algorithms:
 - 'BFS' – the computation is done through a BFS centered on each vertex successively. Works only if \(\text{by_weight}==\text{False}\).
 - 'Floyd-Warshall-Cython' – a Cython implementation of the Floyd-Warshall algorithm. Works only if \(\text{by_weight}==\text{False}\) and \(v\) is None or \(v\) should contain all vertices of \(self\).
 - 'Floyd-Warshall-Python' – a Python implementation of the Floyd-Warshall algorithm. Works also with weighted graphs, even with negative weights (but no negative cycle is allowed). However, \(v\) must be None or \(v\) should contain all vertices of \(self\).
 - 'Dijkstra_NetworkX' – the Dijkstra algorithm, implemented in NetworkX. It works with weighted graphs, but no negative weight is allowed.
 - 'Dijkstra_Boost' – the Dijkstra algorithm, implemented in Boost (works only with positive weights).
 - 'Johnson_Boost' – the Johnson algorithm, implemented in Boost (works also with negative weights, if there is no negative cycle). Works only if \(v\) is None or \(v\) should contain all vertices of \(self\).
 - 'From_Dictionary' – uses the (already computed) distances, that are provided by input variable \(\text{dist_dict}\).
 - None (default): Sage chooses the best algorithm: 'From_Dictionary' if \(\text{dist_dict}\) is not None, 'BFS' for unweighted graphs, 'Dijkstra_Boost' if all weights are positive, 'Johnson_Boost' otherwise.
- \(\text{weight_function}\) – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, \(\text{by_weight}\) is automatically set to True. If None and \(\text{by_weight}\) is True, we use the edge label \(l\), if \(l\) is not None, else 1 as a weight.
- \(\text{check_weight}\) – boolean (default: True); if True, we check that the \(\text{weight_function}\) outputs a number for each edge
- \(\text{dist_dict}\) – a dictionary (default: None); a dict of dicts of distances (used only if \(\text{algorithm}==\text{From_Dictionary}\))
- \(\text{with_labels}\) – boolean (default: False); whether to return a list or a dictionary keyed by vertices.

EXAMPLES:
```python
sage: G = graphs.KrackhardtKiteGraph().to_directed()
sage: G.eccentricity()
[4, 4, 4, 4, 4, 3, 3, 2, 3, 4]
sage: G.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: G.eccentricity(7)
2
sage: G.eccentricity([7, 8, 9])
[2, 3, 4]
sage: G.eccentricity([7, 8, 9], with_labels=True) == {8: 3, 9: 4, 7: 2}
True
sage: G = DiGraph(3)
sage: G.eccentricity(with_labels=True)
{0: +Infinity, 1: +Infinity, 2: +Infinity}
sage: G = DiGraph({0: []})
sage: G.eccentricity(with_labels=True)
{0: 0}
sage: G = DiGraph([(0, 1, 2), (1, 2, 3), (2, 0, 2)])
sage: G.eccentricity(algorithm='Floyd-Warshall-Cython')
[2, 2, 2]
sage: G.eccentricity(algorithm='Floyd-Warshall-Python')
[2, 2, 2]
sage: G.eccentricity(by_weight=True, algorithm='Dijkstra_NetworkX')  # needs networkx
[5, 5, 4]
sage: G.eccentricity(by_weight=True, algorithm='Dijkstra_Boost')
[5, 5, 4]
sage: G.eccentricity(by_weight=True, algorithm='Johnson_Boost')
[5, 5, 4]
sage: G.eccentricity(by_weight=True, algorithm='Floyd-Warshall-Python')
[5, 5, 4]
sage: G.eccentricity(by_weight=True, algorithm='Floyd-Warshall-Python')  # needs networkx
[5, 5, 4]
```

```python
>>> from sage.all import *

```
feedback_edge_set (constraint_generation=True, value_only=False, solver=False, verbose=None, integrality_tolerance=0)

Compute the minimum feedback edge set of a digraph (also called feedback arc set).

The minimum feedback edge set of a digraph is a set of edges that intersect all the circuits of the digraph. Equivalently, a minimum feedback arc set of a DiGraph is a set S of arcs such that the digraph $G - S$ is acyclic. For more information, see the Wikipedia article Feedback_arc_set.

INPUT:

- **value_only** – boolean (default: False)
 - When set to True, only the minimum cardinal of a minimum edge set is returned.
 - When set to False, the Set of edges of a minimal edge set is returned.

- **constraint_generation** – boolean (default: True); whether to use constraint generation when solving the Mixed Integer Linear Program.

- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

ALGORITHM:

This problem is solved using Linear Programming, in two different ways. The first one is to solve the following formulation:

$$\text{Minimize } \sum_{(u,v) \in G} b_{(u,v)}$$

Such that:

$$\forall (u, v) \in G, d_u - d_v + n \cdot b_{(u,v)} \geq 0$$

$$\forall u \in G, 0 \leq d_u \leq |G|$$

An explanation:

An acyclic digraph can be seen as a poset, and every poset has a linear extension. This means that in any acyclic digraph the vertices can be ordered with a total order $<$ in such a way that if $(u, v) \in G$, then $u < v$.

Chapter 1. Graph objects and methods
Thus, this linear program is built in order to assign to each vertex v a number $d_v \in [0, \ldots, n-1]$ such that if there exists an edge $(u,v) \in G$ such that $d_v < d_u$, then the edge (u,v) is removed.

The number of edges removed is then minimized, which is the objective.

(Constraint Generation)

If the parameter constraint_generation is enabled, a more efficient formulation is used:

Minimize : \[\sum_{(u,v) \in G} b_{(u,v)} \]

Such that :

\[\forall C \text{ circuits } \subseteq G, \sum_{uv \in C} b_{(u,v)} \geq 1 \]

As the number of circuits contained in a graph is exponential, this LP is solved through constraint generation. This means that the solver is sequentially asked to solved the problem, knowing only a portion of the circuits contained in G, each time adding to the list of its constraints the circuit which its last answer had left intact.

EXAMPLES:

If the digraph is created from a graph, and hence is symmetric (if uv is an edge, then vu is an edge too), then obviously the cardinality of its feedback arc set is the number of edges in the first graph:

```
sage: cycle = graphs.CycleGraph(5)
sage: dcycle = DiGraph(cycle)
sage: cycle.size()
5
sage: dcycle.feedback_edge_set(value_only=True)  # needs sage.numerical.mip
5
```

And in this situation, for any edge uv of the first graph, uv of vu is in the returned feedback arc set:

```
sage: g = graphs.RandomGNP(5,.3)
sage: while not g.num_edges():
    ....: g = graphs.RandomGNP(5,.3)
sage: dg = DiGraph(g)
sage: feedback = dg.feedback_edge_set()  # needs sage.numerical.mip
sage: u,v,1 = next(g.edge_iterator())
sage: (u,v) in feedback or (v,u) in feedback
True
```

```python
>>> from sage.all import *
>>> cycle = graphs.CycleGraph(Integer(5))
>>> dcycle = DiGraph(cycle)
>>> dcycle.size()
5
>>> dcycle.feedback_edge_set(value_only=True)  # needs sage.numerical.mip
5
```

```python
>>> g = graphs.RandomGNP(Integer(5),RealNumber('.3'))
>>> while not g.num_edges():
...    g = graphs.RandomGNP(Integer(5),RealNumber('.3'))
```

(continues on next page)
flow_polytope (edges=None, ends=None, backend=None)

Return the flow polytope of a digraph.

The flow polytope of a directed graph is the polytope consisting of all nonnegative flows on the graph with a
given set \(S \) of sources and a given set \(T \) of sinks.

A flow on a directed graph \(G \) with a given set \(S \) of sources and a given set \(T \) of sinks means an assignment
of a nonnegative real to each edge of \(G \) such that the flow is conserved in each vertex outside of \(S \) and \(T \),
and there is a unit of flow entering each vertex in \(S \) and a unit of flow leaving each vertex in \(T \). These flows
clearly form a polytope in the space of all assignments of reals to the edges of \(G \).

The polytope is empty unless the sets \(S \) and \(T \) are equinumerous.

By default, \(S \) is taken to be the set of all sources (i.e., vertices of indegree 0) of \(G \), and \(T \) is taken to be the set
of all sinks (i.e., vertices of outdegree 0) of \(G \). If a different choice of \(S \) and \(T \) is desired, it can be specified
using the optional ends parameter.

The polytope is returned as a polytope in \(\mathbb{R}^m \), where \(m \) is the number of edges of the digraph \(self \). The \(k \)-th
coordinate of a point in the polytope is the real assigned to the \(k \)-th edge of \(self \). The order of the edges is
the one returned by \(self.edges(sort=True) \). If a different order is desired, it can be specified using
the optional edges parameter.

The faces and volume of these polytopes are of interest. Examples of these polytopes are the
Chan-Robbins-Yuen polytope and the Pitman-Stanley polytope [PS2002].

INPUT:

* edges – list (default: None); a list of edges of \(self \). If not specified, the list of all edges of \(self \) is
 used with the default ordering of \(self.edges(sort=True) \). This determines which coordinate of
 a point in the polytope will correspond to which edge of \(self \). It is also possible to specify a list which
 contains not all edges of \(self \); this results in a polytope corresponding to the flows which are 0 on all
 remaining edges. Notice that the edges entered here must be in the precisely same format as outputted
 by \(self.edges() \); so, if \(self.edges() \) outputs an edge in the form \((1, 3, None)\), then \((1, 3)\) will not do!

* ends – (default: \((self.sources(), self.sinks())\)) a pair \((S,T)\) of an iterable \(S \) and an
 iterable \(T \).

* backend – string or None (default); the backend to use; see \(sage.geometry.polyhedron.constructor.Polyhedron() \)

Note: Flow polytopes can also be built through the polytopes.<tab> object:

```python
sage: polytopes.flow_polytope(digraphs.Path(5)) # needs sage.geometry.polyhedron
A 0-dimensional polyhedron in \( \mathbb{Q}^4 \) defined as the convex hull of 1 vertex
```

```python
>>> from sage.all import *
>>> polytopes.flow_polytope(digraphs.Path(Integer(5))) ...
```

(continues on next page)
A 0-dimensional polyhedron in \mathbb{Q}^4 defined as the convex hull of 1 vertex

EXAMPLES:

A commutative square:

```python
sage: G = DiGraph({1: [2, 3], 2: [4], 3: [4]})
sage: fl = G.flow_polytope(); fl
```

A 1-dimensional polyhedron in \mathbb{Q}^4 defined as the convex hull of 2 vertices
```
sage: fl.vertices()
```

(A vertex at $(0, 1, 0, 1)$, A vertex at $(1, 0, 1, 0)$)

Using a different order for the edges of the graph:

```python
sage: ordered_edges = G.edges(sort=True, key=lambda x: x[0] - x[1])
sage: fl = G.flow_polytope(edges=ordered_edges); fl
```

A 1-dimensional polyhedron in \mathbb{Q}^4 defined as the convex hull of 2 vertices
```
sage: fl.vertices()
```

(A vertex at $(0, 1, 0, 1)$, A vertex at $(1, 0, 1, 0)$)

A tournament on 4 vertices:

```python
sage: H = digraphs.TransitiveTournament(4)
sage: fl = H.flow_polytope(); fl
```

A 3-dimensional polyhedron in \mathbb{Q}^6 defined as the convex hull of 4 vertices
```
sage: fl.vertices()
```

(continues on next page)
(continued from previous page)

```python
>>> from sage.all import *
>>> H = digraphs.TransitiveTournament(Integer(4))
>>> f1 = H.flow_polytope(); f1

A 3-dimensional polyhedron in QQ^6 defined as the convex hull of 4 vertices

>>> f1.vertices()

(A vertex at (0, 0, 1, 0, 0, 0),
 A vertex at (0, 1, 0, 0, 0, 1),
 A vertex at (1, 0, 0, 0, 1, 0),
 A vertex at (1, 0, 0, 1, 0, 1))
```

Restricting to a subset of the edges:

```python
sage: f1 = H.flow_polytope(edges=[(0, 1, None), (1, 2, None), (2, 3, None), (0, 3, None)]); f1

A 1-dimensional polyhedron in QQ^4 defined as the convex hull of 2 vertices

sage: f1.vertices()

(A vertex at (0, 0, 0, 1), A vertex at (1, 1, 1, 0))
```

Using a different choice of sources and sinks:

```python
sage: f1 = H.flow_polytope(ends=[(1, 0), (3, 0)]); f1

The empty polyhedron in QQ^6

sage: f1 = H.flow_polytope(ends=[(0, 1), (2, 3)]); f1

A 3-dimensional polyhedron in QQ^6 defined as the convex hull of 5 vertices
```

(continues on next page)
A digraph with one source and two sinks:
Graph objects and methods

sage: Y = DiGraph({1: [2], 2: [3, 4]})
sage: Y.flow_polytope() # needs sage.geometry.polyhedron
The empty polyhedron in QQ^3

>>> from sage.all import *
>>> Y = DiGraph({Integer(1): [Integer(2)], Integer(2): [Integer(3),
˓→Integer(4)]})
>>> Y.flow_polytope() # needs sage.geometry.polyhedron
The empty polyhedron in QQ^3

A digraph with one vertex and no edge:

sage: Z = DiGraph({1: []})
sage: Z.flow_polytope() # needs sage.geometry.polyhedron
A 0-dimensional polyhedron in QQ^0 defined as the convex hull of 1 vertex

>>> from sage.all import *
>>> Z = DiGraph({Integer(1): []})
>>> Z.flow_polytope() # needs sage.geometry.polyhedron
A 0-dimensional polyhedron in QQ^0 defined as the convex hull of 1 vertex

A digraph with multiple edges (Issue #28837):

sage: G = DiGraph([(0, 1), (0, 1)], multiedges=True); G
Multi-digraph on 2 vertices
sage: P = G.flow_polytope(); P # needs sage.geometry.polyhedron
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices
sage: P.vertices() # needs sage.geometry.polyhedron
(A vertex at (1, 0), A vertex at (0, 1))
sage: P.lines() # needs sage.geometry.polyhedron()

>>> from sage.all import *
>>> G = DiGraph([(Integer(0), Integer(1)), (Integer(0),Integer(1))],
˓→multiedges=True); G
Multi-digraph on 2 vertices
>>> P = G.flow_polytope(); P # needs sage.geometry.polyhedron
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 2 vertices
>>> P.vertices() # needs sage.geometry.polyhedron
(A vertex at (1, 0), A vertex at (0, 1))
>>> P.lines() # needs sage.geometry.polyhedron()

in_branchings (source, spanning=True)
Return an iterator over the in branchings rooted at given vertex in self.
An in-branching is a directed tree rooted at source whose arcs are directed to source from leaves. An in-branching is spanning if it contains all vertices of the digraph.

If no spanning in branching rooted at source exist, raises ValueError or return non spanning in branching rooted at source, depending on the value of spanning.

INPUT:
- source – vertex used as the source for all in branchings.
- spanning – boolean (default: True); if False return maximum in branching to source. Otherwise, return spanning in branching if exists.

OUTPUT:
An iterator over the in branchings rooted in the given source.

See also:
- `out_branchings()` – iterator over out-branchings rooted at given vertex.
- `spanning_trees()` – returns all spanning trees.
- `spanning_trees_count()` – counts the number of spanning trees.

ALGORITHM:
Recursively computes all in branchings.

At each step:
- 0. clean the graph (see below)
- 1. pick an edge e incoming to source
- 2. find all in branchings that do not contain e by first removing it
- 3. find all in branchings that do contain e by first merging the end vertices of e

Cleaning the graph implies to remove loops and replace multiedges by a single one with an appropriate label since these lead to similar steps of computation.

EXAMPLES:
A bidirectional 4-cycle:

```python
sage: G = DiGraph({1:[2,3], 2:[1,4], 3:[1,4], 4:[2,3]}, format='dict_of_lists →')
sage: list(G.in_branchings(1))
[Digraph on 4 vertices, Digraph on 4 vertices, Digraph on 4 vertices, Digraph on 4 vertices]
```

```python
>>> from sage.all import *
>>> G = DiGraph({Integer(1):[Integer(2),Integer(3)], Integer(2):[Integer(1),
Integer(4)], Integer(3):[Integer(1),Integer(4)], Integer(4):[Integer(2),
Integer(3)]}, format='dict_of_lists')
>>> list(G.in_branchings(Integer(1)))
[Digraph on 4 vertices, Digraph on 4 vertices, Digraph on 4 vertices, Digraph on 4 vertices]
```
With the Petersen graph turned into a symmetric directed graph:

```
sage: G = graphs.PetersenGraph().to_directed()
sage: len(list(G.in_branchings(0)))
2000
```

```
>>> from sage.all import *
>>> G = graphs.PetersenGraph().to_directed()
>>> len(list(G.in_branchings(Integer(0))))
2000
```

With a non connected DiGraph and `spanning = True`:

```
sage: G = graphs.PetersenGraph().to_directed() + graphs.PetersenGraph().to_directed()
sage: G.in_branchings(0)
Traceback (most recent call last):
  ... ValueError: no spanning in branching to vertex (0) exist
```

```
>>> from sage.all import *
>>> G = graphs.PetersenGraph().to_directed() + graphs.PetersenGraph().to_directed()
>>> G.in_branchings(Integer(0))
Traceback (most recent call last):
  ... ValueError: no spanning in branching to vertex (0) exist
```

With a non connected DiGraph and `spanning = False`:

```
sage: g=DiGraph([(1,0), (1,0), (2,1), (3,4)], multiedges=True)
sage: list(g.in_branchings(0, spanning=False))
[DiGraph on 3 vertices, DiGraph on 3 vertices]
```

```
>>> from sage.all import *
>>> g=DiGraph([(Integer(1),Integer(0)), (Integer(1),Integer(0)), (Integer(2), Integer(1)), (Integer(3),Integer(4))], multiedges=True)
>>> list(g.in_branchings(Integer(0), spanning=False))
[DiGraph on 3 vertices, DiGraph on 3 vertices]
```

With multiedges:

```
sage: G = DiGraph({0:[1,1,1], 1:[2,2]}, format='dict_of_lists', multiedges=True)
sage: len(list(G.in_branchings(2)))
6
```

```
>>> from sage.all import *
>>> G = DiGraph({Integer(0):[Integer(1),Integer(1),Integer(1)], ...
  ... Integer(1):[Integer(2),Integer(2)]}, format='dict_of_lists', ...
  ... multiedges=True)
>>> len(list(G.in_branchings(Integer(2))))
6
```

With a DiGraph already being a spanning in branching:
in_degree\ (\text{vertices}=\text{None}, \text{labels}=\text{False})

Same as degree, but for in degree.

EXAMPLES:

```python
sage: D = DiGraph({0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1]})
sage: D.in_degree(0)
2
sage: D.in_degree()
[2, 2, 2, 2, 1, 1]
sage: G = graphs.PetersenGraph().to_directed()
sage: G.in_degree(0)
3
```

in_degree_iterator\ (\text{vertices}=\text{None}, \text{labels}=\text{False})

Same as degree_iterator, but for in degree.

EXAMPLES:

```python
sage: D = graphs.Grid2dGraph(2,4).to_directed()
sage: sorted(D.in_degree_iterator())
[(0, 0), 2, (0, 1), 3, (0, 2), 3, (0, 3), 2, (1, 0), 2, (1, 1), 3, (1, 2), 3, (1, 3), 2]
```
in_degree_sequence()

Return the in-degree sequence.

EXAMPLES:
The in-degree sequences of two digraphs:

sage: g = DiGraph({1: [2, 5, 6], 2: [3, 6], 3: [4, 6], 4: [6], 5: [4, 6]})
sage: g.in_degree_sequence()
[5, 2, 1, 1, 1, 0]

sage: V = [2, 3, 5, 7, 8, 9, 10, 11]
sage: E = [[] , [8, 10], [11], [8, 11], [9], [], [2, 9, 10]]
sage: g = DiGraph(dict(zip(V, E)))
sage: g.in_degree_sequence()
[2, 2, 2, 2, 1, 0, 0, 0]

incoming_edge_iterator (vertices, labels=True)

Return an iterator over all arriving edges from vertices.

INPUT:

- vertices – a vertex or a list of vertices
- labels – boolean (default: True); whether to return edges as pairs of vertices, or as triples containing the labels

EXAMPLES:
sage: D = DiGraph({0: [1, 2, 3], 1: [0, 2], 2: [3], 3: [4], 4: [0, 5], 5: [1]})
sage: for a in D.incoming_edge_iterator([0]):
 : print(a)
 (1, 0, None)
 (4, 0, None)

>>> from sage.all import *
>>> D = DiGraph({Integer(0): [Integer(1),Integer(2),Integer(3)], Integer(1):...
 →[Integer(0),Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(4)],
 → Integer(4): [Integer(0),Integer(5)], Integer(5): [Integer(1)]})
>>> for a in D.incoming_edge_iterator([Integer(0)]):
 ... print(a)
 (1, 0, None)
 (4, 0, None)

incoming_edges (vertices, labels=True)
Return a list of edges arriving at vertices.

INPUT:
- vertices - a vertex or a list of vertices
- labels - boolean (default: True); whether to return edges as pairs of vertices, or as triples containing the labels.

EXAMPLES:
sage: D = DiGraph({0: [1, 2, 3], 1: [0, 2], 2: [3], 3: [4], 4: [0, 5], 5: [1]})
sage: D.incoming_edges([0])
[(1, 0, None), (4, 0, None)]

is_aperiodic()
Return whether the current DiGraph is aperiodic.

A directed graph is aperiodic if there is no integer \(k > 1 \) that divides the length of every cycle in the graph.
See the Wikipedia article Aperiodic_graph for more information.

EXAMPLES:
The following graph has period 2, so it is not aperiodic:
sage: g = DiGraph({0: [1], 1: [0]})
sage: g.is_aperiodic()
False

The following graph has a cycle of length 2 and a cycle of length 3, so it is aperiodic:
GraphTheory, Release 10.4

```
sage: g = DiGraph({0: [1, 4], 1: [2], 2: [0], 4: [0]})
sage: g.is_aperiodic()  
True
```

```
>>> from sage.all import *

>>> g = DiGraph({Integer(0): [Integer(1), Integer(4)], Integer(1): ...
               [Integer(2)], Integer(2): [Integer(0)], Integer(4): [Integer(0)]})

>>> g.is_aperiodic()

True
```

See also:

`period()`

is_directed()

Since digraph is directed, return True.

EXAMPLES:

```
sage: DiGraph().is_directed()  
True
```

```
>>> from sage.all import *

>>> DiGraph().is_directed()

True
```

is_directed_acyclic(certificate=False)

Check whether the digraph is acyclic or not.

A directed graph is acyclic if for any vertex \(v\), there is no directed path that starts and ends at \(v\). Every directed acyclic graph (DAG) corresponds to a partial ordering of its vertices, however multiple dags may lead to the same partial ordering.

INPUT:

- certificate -- boolean (default: False); whether to return a certificate

OUTPUT:

- When `certificate=False`, returns a boolean value.

- When `certificate=True`:
 - If the graph is acyclic, returns a pair `(True, ordering)` where `ordering` is a list of the vertices such that \(u\) appears before \(v\) in `ordering` if \(uv\) is an edge.
 - Else, returns a pair `(False, cycle)` where `cycle` is a list of vertices representing a circuit in the graph.

EXAMPLES:

At first, the following graph is acyclic:

```
sage: D = DiGraph({0:[1, 2, 3], 4:[2, 5], 1:[8], 2:[7], 3:[7], 5:[6,7], 7:[8],
               6:[9], 8:[10], 9:[10]})
sage: D.plot(layout='circular').show()  # needs sage.plot
sage: D.is_directed_acyclic()

True
```

Chapter 1. Graph objects and methods
Adding an edge from 9 to 7 does not change it:

```
sage: D.add_edge(9, 7)
sage: D.is_directed_acyclic()
True
```

Adding an edge from 7 to 4, though, makes a difference:

```
sage: D.add_edge(7, 4)
sage: D.is_directed_acyclic()
False
```

Indeed, it creates a circuit 7, 4, 5:

```
sage: D.is_directed_acyclic(certificate=True)
(False, [7, 4, 5])
```

Checking acyclic graphs are indeed acyclic

```
sage: def random_acyclic(n, p):
....:     g = graphs.RandomGNP(n, p)
```
....: h = DiGraph()
....: h.add_edges(((u, v) if u < v else (v, u)) for u, v in g.edge_iterator(labels=False))
....: return h

sage: all(random_acyclic(100, .2).is_directed_acyclic() # long time
....: for i in range(50))
True

>>> from sage.all import *
>>> def random_acyclic(n, p):
... g = graphs.RandomGNP(n, p)
... h = DiGraph()
... h.add_edges(((u, v) if u < v else (v, u)) for u, v in g.edge_iterator(labels=False))
... return h

>>> all(random_acyclic(Integer(100), RealNumber(.2)).is_directed_acyclic() # long time
... for i in range(Integer(50)))
True

is_strongly_connected(G)

Check whether the current DiGraph is strongly connected.

EXAMPLES:

The circuit is obviously strongly connected:

sage: from sage.graphs.connectivity import is_strongly_connected
sage: g = digraphs.Circuit(5)
sage: is_strongly_connected(g)
True
sage: g.is_strongly_connected()
True

But a transitive triangle is not:

sage: g = DiGraph({0: [1, 2], 1: [2]})
sage: is_strongly_connected(g)
False

sage: g = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(1):...
...

Chapter 1. Graph objects and methods
is_tournament()

Check whether the digraph is a tournament.

A tournament is a digraph in which each pair of distinct vertices is connected by a single arc.

EXAMPLES:

```
sage: g = digraphs.RandomTournament(6)
sage: g.is_tournament()
True
sage: u,v = next(g.edge_iterator(labels=False))
sage: g.add_edge(v, u)
sage: g.is_tournament()
False
sage: g.add_edges([(u, v), (v, u)])
sage: g.is_tournament()
False
```

```python
>>> from sage.all import *
>>> g = digraphs.RandomTournament(Integer(6))
>>> g.is_tournament()
True
>>> u,v = next(g.edge_iterator(labels=False))
>>> g.add_edge(v, u)
>>> g.is_tournament()
False
>>> g.add_edges([(u, v), (v, u)])
>>> g.is_tournament()
False
```

See also:

- Wikipedia article Tournament_(graph_theory)
- RandomTournament()
- TransitiveTournament()

is_transitive *(g, certificate=False)*

Tests whether the digraph is transitive.

A digraph is transitive if for any pair of vertices \(u, v \in G \) linked by a \(uv \)-path the edge \(uv \) belongs to \(G \).

INPUT:

- **certificate** — whether to return a certificate for negative answers.
 - If `certificate = False` (default), this method returns `True` or `False` according to the graph.
 - If `certificate = True`, this method either returns `True` answers or yield a pair of vertices \(uv \) such that there exists a \(uv \)-path in \(G \) but \(uv \not\in G \).

EXAMPLES:

```
sage: digraphs.Circuit(4).is_transitive()
False
sage: digraphs.Circuit(4).is_transitive(certificate=True)
(0, 2)
sage: digraphs.RandomDirectedGNP(30,.2).is_transitive()
```

(continues on next page)
False
sage: D = digraphs.DeBruijn(5, 2) # needs sage.combinat
sage: D.is_transitive() # needs sage.combinat
False
sage: cert = D.is_transitive(certificate=True) # needs sage.combinat
sage: D.has_edge(*cert) # needs sage.combinat
False
sage: bool(D.shortest_path(*cert)) # needs sage.combinat
True
sage: digraphs.RandomDirectedGNP(20,.2).transitive_closure().is_transitive() # needs networkx
True

>>> from sage.all import *

>>> digraphs.Circuit(Integer(4)).is_transitive()
False

>>> digraphs.Circuit(Integer(4)).is_transitive(certificate=True)
(0, 2)

>>> digraphs.RandomDirectedGNP(Integer(30),RealNumber('.2')).is_transitive()
False

>>> D = digraphs.DeBruijn(Integer(5), Integer(2)) # needs sage.combinat

>>> D.is_transitive() # needs sage.combinat
False

>>> cert = D.is_transitive(certificate=True) # needs sage.combinat

>>> D.has_edge(*cert) # needs sage.combinat
False

>>> bool(D.shortest_path(*cert)) # needs sage.combinat
True

>>> digraphs.RandomDirectedGNP(Integer(20),RealNumber('.2')).transitive_closure().is_transitive() # needs networkx
True

layout_acyclic(rankdir='up', **options)

Return a ranked layout so that all edges point upward.

To this end, the heights of the vertices are set according to the level set
decomposition of the graph (see level_sets()).

This is achieved by calling graphviz and dot2tex if available (see layout_graphviz()), and using a
spring layout with fixed vertical placement of the vertices otherwise (see layout_acyclic_dummy() and
layout_ranked()).

Non acyclic graphs are partially supported by graphviz, which then chooses some edges to point down.

INPUT:

- rankdir – string (default: 'up'): indicates which direction the edges should point toward among
'up', 'down', 'left', or 'right'
layout_ranked() or layout_graphviz()

EXAMPLES:

```python
sage: H = DiGraph({0: [1, 2], 1: [3], 2: [3], 3: [], 5: [1, 6], 6: [2, 3]})
```

The actual layout computed depends on whether dot2tex and graphviz are installed, so we don’t test its relative values:

```python
sage: H.layout_acyclic()
{0: [0, 1, 2, 3, 5, 6], 1: [0, 2, 5, 6], 2: [1, 5, 6], 3: [0, 5, 6], 5: [0, 1, 2, 6], 6: [1, 2, 3, 5]}
```

layout_acyclic_dummy *(heights=None, rankdir='up', **options)*

Return a ranked layout so that all edges point upward.

1.3. Directed graphs
To this end, the heights of the vertices are set according to the level set decomposition of the graph (see \texttt{level_sets()}). This is achieved by a spring layout with fixed vertical placement of the vertices otherwise (see \texttt{layout_acyclic_dummy()} and \texttt{layout_ranked()}).

INPUT:

- \texttt{rankdir} – string (default: 'up'); indicates which direction the edges should point toward among 'up', 'down', 'left', or 'right'

- \texttt{**options} – passed down to \texttt{layout_ranked()}

EXAMPLES:

\begin{verbatim}
sage: H = DiGraph({0: [1, 2], 1: [3], 2: [3], 3: [], 5: [1, 6], 6: [2, 3]})
sage: H.layout_acyclic_dummy()
{0: [1.0..., 0], 1: [1.0..., 1], 2: [1.5..., 2], 3: [1.5..., 3], 5: [2.0..., 0], 6: [2.0..., 1]}
sage: H = DiGraph({0: [1]})
sage: H.layout_acyclic_dummy(rankdir='up')
{0: [0.5..., 0], 1: [0.5..., 1]}
sage: H.layout_acyclic_dummy(rankdir='down')
{0: [0.5..., 1], 1: [0.5..., 0]}
sage: H.layout_acyclic_dummy(rankdir='left')
{0: [1, 0.5...], 1: [0, 0.5...]}
sage: H.layout_acyclic_dummy(rankdir='right')
{0: [0, 0.5...], 1: [1, 0.5...]}
>> H = DiGraph({Integer(0): [Integer(1)], Integer(1):...
→[Integer(3)], Integer(2): [Integer(3)], Integer(3): [], Integer(5):...
→[Integer(1), Integer(6)], Integer(6): [Integer(2), Integer(3)]})
>> H.layout_acyclic_dummy()
{0: [1.0..., 0], 1: [1.0..., 1], 2: [1.5..., 2], 3: [1.5..., 3], 5: [2.0..., 0], 6: [2.0..., 1]}
>> H = DiGraph({Integer(0): [Integer(1)]})
>> H.layout_acyclic_dummy(rankdir='up')
{0: [0.5..., 0], 1: [0.5..., 1]}
>> H.layout_acyclic_dummy(rankdir='down')
{0: [0.5..., 1], 1: [0.5..., 0]}
>> H.layout_acyclic_dummy(rankdir='left')
{0: [1, 0.5...], 1: [0, 0.5...]}
>> H.layout_acyclic_dummy(rankdir='right')
{0: [0, 0.5...], 1: [1, 0.5...]}
>> H = DiGraph({Integer(0): [Integer(1)], Integer(1):...
→[Integer(3)], Integer(2): [Integer(3)], Integer(3): [Integer(1)],...
→Integer(5): [Integer(1), Integer(6)], Integer(6): [Integer(2), Integer(3)]})
>> H.layout_acyclic_dummy()
Traceback (most recent call last):
...
ValueError: 'self' should be an acyclic graph
\end{verbatim}

level_sets()
Return the level set decomposition of the digraph.

OUTPUT:

- a list of non empty lists of vertices of this graph

The level set decomposition of the digraph is a list l such that the level $l[i]$ contains all the vertices having all their predecessors in the levels $l[j]$ for $j < i$, and at least one in level $l[i-1]$ (unless $i = 0$).

The level decomposition contains exactly the vertices not occurring in any cycle of the graph. In particular, the graph is acyclic if and only if the decomposition forms a set partition of its vertices, and we recover the usual level set decomposition of the corresponding poset.

EXAMPLES:

```sage
H = DiGraph({0: [1, 2], 1: [3], 2: [3], 3: [], 5: [1, 6], 6: [2, 3]})
H.level_sets()
[[0, 5], [1, 6], [2], [3]]
```
Graph Theory, Release 10.4

(continued from previous page)

>>> H = HasseDiagram({Integer(0): [Integer(1), Integer(2)], Integer(1):...
˓→[Integer(3)], Integer(2): [Integer(4)], Integer(3): [Integer(4)]})
>>> [len(x) for x in H.level_sets()]
[1, 2, 1, 1]

Complexity: $O(n + m)$ in time and $O(n)$ in memory (besides the storage of the graph itself), where n and m are respectively the number of vertices and edges (assuming that appending to a list is constant time, which it is not quite).

neighbor_in_iterator *(vertex)*

Return an iterator over the in-neighbors of vertex.

A vertex u is an in-neighbor of a vertex v if uv in an edge.

EXAMPLES:

sage: D = DiGraph({0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1]})
sage: for a in D.neighbor_in_iterator(0):
 print(a)
1
4

>>> from sage.all import *

sage: D = DiGraph({Integer(0): [Integer(1),Integer(2),Integer(3)], Integer(1):...
˓→[Integer(0),Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(4)],
˓→ Integer(4): [Integer(0),Integer(5)], Integer(5): [Integer(1)]})

>>> for a in D.neighbor_in_iterator(Integer(0)):
 print(a)
1
4

neighbor_out_iterator *(vertex)*

Return an iterator over the out-neighbors of a given vertex.

A vertex u is an out-neighbor of a vertex v if vu in an edge.

EXAMPLES:

sage: D = DiGraph({0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1]})
sage: for a in D.neighbor_out_iterator(0):
 print(a)
1
2
3

>>> from sage.all import *

sage: D = DiGraph({Integer(0): [Integer(1),Integer(2),Integer(3)], Integer(1):...
˓→[Integer(0),Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(4)],
˓→ Integer(4): [Integer(0),Integer(5)], Integer(5): [Integer(1)]})

>>> for a in D.neighbor_out_iterator(Integer(0)):
 print(a)
1
2
3

neighbors_in *(vertex)*

Return the list of the in-neighbors of a given vertex.
A vertex \(u \) is an in-neighbor of a vertex \(v \) if \(uv \) in an edge.

EXAMPLES:

```python
sage: D = DiGraph({0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1]})
sage: D.neighbors_in(0)
[1, 4]
```

```python
>>> from sage.all import *
>>> D = DiGraph({Integer(0): [Integer(1),Integer(2),Integer(3)], Integer(1):
\to [Integer(0),Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(4)],
\to Integer(4): [Integer(0),Integer(5)], Integer(5): [Integer(1)])})
>>> D.neighbors_in(Integer(0))
[1, 4]
```

neighbors_out *(vertex)*

Return the list of the out-neighbors of a given vertex.

A vertex \(u \) is an out-neighbor of a vertex \(v \) if \(vu \) in an edge.

EXAMPLES:

```python
sage: D = DiGraph({0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1]})
sage: D.neighbors_out(0)
[1, 2, 3]
```

```python
>>> from sage.all import *
>>> D = DiGraph({Integer(0): [Integer(1),Integer(2),Integer(3)], Integer(1):
\to [Integer(0),Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(4)],
\to Integer(4): [Integer(0),Integer(5)], Integer(5): [Integer(1)])})
>>> D.neighbors_out(Integer(0))
[1, 2, 3]
```

out_branchings *(source, spanning=True)*

Return an iterator over the out branchings rooted at given vertex in \(\text{self} \).

An out-branching is a directed tree rooted at \(\text{source} \) whose arcs are directed from source to leaves. An out-branching is spanning if it contains all vertices of the digraph.

If no spanning out branching rooted at \(\text{source} \) exist, raises ValueError or return non spanning out branching rooted at \(\text{source} \), depending on the value of \(\text{spanning} \).

INPUT:

- \(\text{source} \) – vertex used as the source for all out branchings.
- \(\text{spanning} \) – boolean (default: \text{True}); if \text{False} return maximum out branching from \(\text{source} \). Otherwise, return spanning out branching if exists.

OUTPUT:

An iterator over the out branchings rooted in the given source.

See also:

- **in_branchings()** – iterator over in-branchings rooted at given vertex.
- **spanning_trees()** – returns all spanning trees.
- **spanning_trees_count()** – counts the number of spanning trees.
ALGORITHM:
Recursively computes all out branchings.

At each step:
0. clean the graph (see below)
1. pick an edge e out of source
2. find all out branchings that do not contain e by first removing it
3. find all out branchings that do contain e by first merging the end vertices of e

Cleaning the graph implies to remove loops and replace multiedges by a single one with an appropriate label since these lead to similar steps of computation.

EXAMPLES:
A bidirectional 4-cycle:

```python
sage: G = DiGraph({1:[2,3], 2:[1,4], 3:[1,4], 4:[2,3]}, format='dict_of_lists')
sage: list(G.out_branchings(1))
[Digraph on 4 vertices,
 Digraph on 4 vertices,
 Digraph on 4 vertices,
 Digraph on 4 vertices]
```

With the Petersen graph turned into a symmetric directed graph:

```python
>>> from sage.all import *
>>> G = graphs.PetersenGraph().to_directed()
>>> len(list(G.out_branchings(0)))
2000
```

With a non connected DiGraph and spanning = True:

```python
sage: G = graphs.PetersenGraph().to_directed() + graphs.PetersenGraph().to_directed()
sage: G.out_branchings(0, spanning=True)
Traceback (most recent call last):
...
ValueError: no spanning out branching from vertex (0) exist
```
>>> from sage.all import *
>>> G = graphs.PetersenGraph().to_directed() + graphs.PetersenGraph().to_directed()
>>> G.out_branchings(Integer(0), spanning=True)
Traceback (most recent call last):
 ...
ValueError: no spanning out branching from vertex (0) exist

With a non connected DiGraph and spanning = False:

```
sage: g=DiGraph([(0,1), (0,1), (1,2), (3,4)],multiedges=True)
sage: list(g.out_branchings(0, spanning=False))
[Digraph on 3 vertices, Digraph on 3 vertices]
```

With multiedges:

```
sage: G = DiGraph({0: [1,1,1], 1: [2,2]}, format='dict_of_lists', multiedges=True)
sage: len(list(G.out_branchings(0)))
6
```

With a DiGraph already being a spanning out branching:

```
sage: G = DiGraph({0: [1,2,3], 1: [2,5], 2: [], 3: [], 4: [], 5: []}, format='dict_of_lists')
sage: next(G.out_branchings(0)) == G
True
```

```
out_degree (vertices=None, labels=False)

Same as degree, but for out degree.

EXAMPLES:

```
sage: D = DiGraph({0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1]})
sage: D.out_degree(vertices=[0, 1, 2], labels=True)
(0: 3, 1: 2, 2: 1)
```

(continues on next page)
sage: D.out_degree()
[3, 2, 1, 1, 2, 1]
sage: D.out_degree(2)
1

```python
>>> from sage.all import *

>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(1): [Integer(0), Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(4)], Integer(4): [Integer(0), Integer(5)], Integer(5): [Integer(1)]})

>>> D.out_degree(vertices=[Integer(0), Integer(1), Integer(2)], labels=True)
{(0: 3, 1: 2, 2: 1)}

>>> D.out_degree()
[3, 2, 1, 1, 2, 1]
```

**out_degree_iterator** *(vertices=None, labels=False)*

Same as degree_iterator, but for out degree.

EXAMPLES:

```python
sage: D = graphs.Grid2dGraph(2,4).to_directed()
sage: sorted(D.out_degree_iterator())
[2, 2, 2, 2, 3, 3, 3, 3]

sage: sorted(D.out_degree_iterator(labels=True))
[(0, 0), 2),
 ((0, 1), 3),
 ((0, 2), 3),
 ((0, 3), 2),
 ((1, 0), 2),
 ((1, 1), 3),
 ((1, 2), 3),
 ((1, 3), 2)]
```

```python
>>> from sage.all import *

>>> D = graphs.Grid2dGraph(Integer(2),Integer(4)).to_directed()

>>> sorted(D.out_degree_iterator())
[2, 2, 2, 2, 3, 3, 3, 3]

>>> sorted(D.out_degree_iterator(labels=True))
[(0, 0), 2),
 ((0, 1), 3),
 ((0, 2), 3),
 ((0, 3), 2),
 ((1, 0), 2),
 ((1, 1), 3),
 ((1, 2), 3),
 ((1, 3), 2)]
```

**out_degree_sequence** ()

Return the outdegree sequence of this digraph.

EXAMPLES:

The outdegree sequences of two digraphs:
```
sage: g = DiGraph({1: [2, 5, 6], 2: [3, 6], 3: [4, 6], 4: [6], 5: [4, 6]})
sage: g.out_degree_sequence()
[3, 2, 2, 2, 1, 0]

>>> from sage.all import *

>>> g = DiGraph({Integer(1): [Integer(2), Integer(5), Integer(6)],
 Integer(2): [Integer(3), Integer(6)],
 Integer(3): [Integer(4), Integer(6)],
 Integer(4): [Integer(6)],
 Integer(5): [Integer(4), Integer(6)]})

>>> g.out_degree_sequence()
[3, 2, 2, 2, 1, 0]
```

```
sage: V = [2, 3, 5, 7, 8, 9, 10, 11]
sage: E = [[] , [8, 10], [11], [8, 11], [9], [], [2, 9, 10]]
sage: g = DiGraph(dict(zip(V, E)))
sage: g.out_degree_sequence()
[3, 2, 2, 1, 1, 0, 0, 0]

>>> from sage.all import *

>>> V = [Integer(2), Integer(3), Integer(5), Integer(7), Integer(8),
 Integer(9), Integer(10), Integer(11)]

>>> E = [[] , [Integer(8), Integer(10)], [Integer(11)], [Integer(8),
 Integer(11)], [Integer(9)], [], [], [Integer(2), Integer(9), Integer(10)]]

>>> g = DiGraph(dict(zip(V, E)))

>>> g.out_degree_sequence()
[3, 2, 2, 1, 1, 0, 0, 0]
```

**outgoing_edge_iterator** (vertices, labels=True)

Return an iterator over all departing edges from vertices.

**INPUT:**

- vertices – a vertex or a list of vertices
- labels – boolean (default: True); whether to return edges as pairs of vertices, or as triples containing the labels.

**EXAMPLES:**

```
sage: D = DiGraph({0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1]})
sage: for a in D.outgoing_edge_iterator([0]):
 print(a)
(0, 1, None)
(0, 2, None)
(0, 3, None)
```

```
>>> from sage.all import *

>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)],
 Integer(1): [Integer(0), Integer(2)],
 Integer(2): [Integer(3)],
 Integer(3): [Integer(4)],
 Integer(4): [Integer(0), Integer(5)],
 Integer(5): [Integer(1)]})

>>> for a in D.outgoing_edge_iterator([Integer(0)]):
 print(a)
(0, 1, None)
(0, 2, None)
(0, 3, None)
```

**outgoing_edges** (vertices, labels=True)

Return a list of edges departing from vertices.
INPUT:

- vertices – a vertex or a list of vertices
- labels - boolean (default: True); whether to return edges as pairs of vertices, or as triples containing the labels.

EXAMPLES:

```python
>>> D = DiGraph({0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1]})
[(0, 1, None), (0, 2, None), (0, 3, None)]
```

The partial semigroup formed by the paths of this quiver.

EXAMPLES:

```python
>>> Q = DiGraph({1: {2: ['a', 'c']}, 2: {3: ['b']}})
Partial semigroup formed by the directed paths of Multi-digraph on 3 vertices
```

The period of a directed graph is the largest integer that divides the length of every cycle in the graph. See the Wikipedia article Aperiodic_graph for more information.

EXAMPLES:

The following graph has period 2:

```python
>>> g = DiGraph({0: [1], 1: [0]})
geriod()
2
```
The following graph has a cycle of length 2 and a cycle of length 3, so it has period 1:

```
sage: g = DiGraph({0: [1, 4], 1: [2], 2: [0], 4: [0]})
sage: g.period()
1
```

Here is an example of computing the period of a digraph which is not strongly connected. By definition, it is the \( \text{gcd}(\) of the periods of its strongly connected components:

```
sage: g = DiGraph({-1: [-2], -2: [-3], -3: [-1], ...
.....: 1: [2], 2: [1]})
sage: g.period()
1
sage: sorted([s.period() for s
.....: in g.strongly_connected_components_subgraphs()])
[2, 3]
```

ALGORITHM:
See the networkX implementation of \texttt{is\_aperiodic}, that is based on breadth first search.

See also:
\texttt{is\_aperiodic()}

\texttt{periphery (by\_weight=False, algorithm=None, weight\_function=None, check\_weight=True)}

Return the set of vertices in the periphery of the DiGraph.

The periphery is the set of vertices whose eccentricity is equal to the diameter of the DiGraph, i.e., achieving the maximum eccentricity.

For more information and examples on how to use input variables, see \texttt{shortest\_paths()} and \texttt{eccentricity()}

INPUT:

\begin{itemize}
\item \texttt{by\_weight} – boolean (default: False); if True, edge weights are taken into account; if False, all edges have weight 1
\end{itemize}
• algorithm – string (default: None); see method \texttt{eccentricity()} for the list of available algorithms
• weight\_function – function (default: None); a function that takes as input an edge \((u, v, 1)\) and outputs its weight. If not None, by\_weight is automatically set to True. If None and by\_weight is True, we use the edge label 1 as a weight, if 1 is not None, else 1 as a weight.
• check\_weight – boolean (default: True); if True, we check that the weight\_function outputs a number for each edge

\textbf{EXAMPLES:}

```python
sage: G = graphs.DiamondGraph().to_directed()
sage: G.periphery()
[0, 3]
sage: P = digraphs.Path(5)
sage: P.periphery()
[1, 2, 3, 4]
sage: G = digraphs.Complete(5)
sage: G.subgraph(G.periphery()) == G
True
```

```python
>>> from sage.all import *
>>> G = graphs.DiamondGraph().to_directed()
>>> G.periphery()
[0, 3]
>>> P = digraphs.Path(Integer(5))
>>> P.periphery()
[1, 2, 3, 4]
>>> G = digraphs.Complete(Integer(5))
>>> G.subgraph(G.periphery()) == G
True
```

\texttt{radius} \textit{(by\_weight=False, algorithm=None, weight\_function=None, check\_weight=True)}

Return the radius of the DiGraph.

The radius is defined to be the minimum eccentricity of any vertex, where the eccentricity is the maximum distance to any other vertex. For more information and examples on how to use input variables, see \texttt{shortest\_paths()} and \texttt{eccentricity()}

\textbf{INPUT:}

• by\_weight – boolean (default: False); if True, edge weights are taken into account; if False, all edges have weight 1
• algorithm – string (default: None); see method \texttt{eccentricity()} for the list of available algorithms
• weight\_function – function (default: None); a function that takes as input an edge \((u, v, 1)\) and outputs its weight. If not None, by\_weight is automatically set to True. If None and by\_weight is True, we use the edge label 1 as a weight, if 1 is not None, else 1 as a weight.
• check\_weight – boolean (default: True); if True, we check that the weight\_function outputs a number for each edge

\textbf{EXAMPLES:}

The more symmetric a DiGraph is, the smaller (diameter - radius) is:
sage: G = graphs.BarbellGraph(9, 3).to_directed()
sage: G.radius()
3
sage: G.diameter()
6

>>> from sage.all import *
>>> G = graphs.BarbellGraph(Integer(9), Integer(3)).to_directed()
>>> G.radius()
3
>>> G.diameter()
6

sage: G = digraphs.Circuit(9)
sage: G.radius()
8
sage: G.diameter()
8

>>> from sage.all import *
>>> G = digraphs.Circuit(Integer(9))
>>> G.radius()
8
>>> G.diameter()
8

reverse (immutable=None)

Return a copy of digraph with edges reversed in direction.

INPUT:

• immutable – boolean (default: None); whether to return an immutable digraph or not. By default (None), the returned digraph has the same setting than self. That is, if self is immutable, the returned digraph also is.

EXAMPLES:

sage: adj = {0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1]}
sage: D = DiGraph(adj)
sage: R = D.reverse(); R
Reverse of (): Digraph on 6 vertices
sage: H = R.reverse()
sage: adj == H.to_dictionary()
True

>>> from sage.all import *
>>> adj = {Integer(0): [Integer(1),Integer(2),Integer(3)], Integer(1):...
    →[Integer(0),Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(4)],
    → Integer(4): [Integer(0),Integer(5)], Integer(5): [Integer(1)]}
>>> D = DiGraph(adj)
>>> R = D.reverse(); R
Reverse of (): Digraph on 6 vertices
>>> H = R.reverse()
>>> adj == H.to_dictionary()
True

1.3. Directed graphs 715
**reverse_edge** \((u, v=None, label=None, inplace=True, multiedges=None)\)

Reverse the edge from \(u\) to \(v\).

**INPUT:**

- **inplace** – boolean (default: True); if False, a new digraph is created and returned as output, otherwise \(self\) is modified.
- **multiedges** – boolean (default: None); how to decide what should be done in case of doubt (for instance when edge \((1, 2)\) is to be reversed in a graph while \((2, 1)\) already exists):
  - If set to True, input graph will be forced to allow parallel edges if necessary and edge \((1, 2)\) will appear twice in the graph.
  - If set to False, only one edge \((1, 2)\) will remain in the graph after \((2, 1)\) is reversed. Besides, the label of edge \((1, 2)\) will be overwritten with the label of edge \((2, 1)\).

The default behaviour (**multiedges** = None) will raise an exception each time a subjective decision (setting **multiedges** to True or False) is necessary to perform the operation.

The following forms are all accepted:

- D.reverse_edge( 1, 2 )
- D.reverse_edge((1, 2))
- D.reverse_edge([1, 2])
- D.reverse_edge( 1, 2, 'label' )
- D.reverse_edge((1, 2, 'label'))
- D.reverse_edge([1, 2, 'label'])
- D.reverse_edge((1, 2), label='label')

**EXAMPLES:**

If **inplace** is True (default value), \(self\) is modified:

```python
sage: D = DiGraph([(0, 1, 2)])
sage: D.reverse_edge(0, 1)
sage: D.edges(sort=True)
[(1, 0, 2)]
```

```python
>>> from sage.all import *
>>> D = DiGraph([(Integer(0), Integer(1) ,Integer(2))])
>>> D.reverse_edge(Integer(0), Integer(1))
>>> D.edges(sort=True)
[(1, 0, 2)]
```

If **inplace** is False, \(self\) is not modified and a new digraph is returned:

```python
sage: D = DiGraph([(0, 1, 2)])
sage: re = D.reverse_edge(0, 1, inplace=False)
sage: re.edges(sort=True)
[(1, 0, 2)]
sage: D.edges(sort=True)
[(0, 1, 2)]
```
```python
>>> from sage.all import *

>>> D = DiGraph([(Integer(0), Integer(1), Integer(2))])

>>> re = D.reverse_edge(Integer(0), Integer(1), inplace=False)

>>> re.edges(sort=True)
[(1, 0, 2)]

>>> D.edges(sort=True)
[(0, 1, 2)]

If multiedges is True, self will be forced to allow parallel edges when and only when it is necessary:

```python
sage: D = DiGraph([(1, 2, 'A'), (2, 1, 'A'), (2, 3, None)])

sage: D.reverse_edge(1, 2, multiedges=True)

sage: D.edges(sort=True)
[(2, 1, 'A'), (2, 1, 'A'), (2, 3, None)]

sage: D.allows_multiple_edges()
True
```

```python
>>> D = DiGraph([(Integer(1), Integer(2), A), (Integer(2), Integer(1), A), (Integer(2), Integer(3), None)])

>>> D.reverse_edge(Integer(1), Integer(2), multiedges=True)

>>> D.edges(sort=True)
[(2, 1, A), (2, 1, A), (2, 3, None)]

>>> D.allows_multiple_edges()
True
```

Even if multiedges is True, self will not be forced to allow parallel edges when it is not necessary:

```python
sage: D = DiGraph( [(1, 2, 'A'), (2, 1, 'A'), (2, 3, None)] )

sage: D.reverse_edge(2, 3, multiedges=True)

sage: D.edges(sort=True)
[(1, 2, A), (2, 1, A), (2, 3, None)]

sage: D.allows_multiple_edges()
False
```

```python
>>> D = DiGraph( [(Integer(1), Integer(2), 'A'), (Integer(2), Integer(1), A), (Integer(2), Integer(3), None)] )

>>> D.reverse_edge(Integer(2), Integer(3), multiedges=True)

>>> D.edges(sort=True)
[(1, 2, A), (2, 1, A), (3, 2, None)]

>>> D.allows_multiple_edges()
False
```

If user specifies multiedges = False, self will not be forced to allow parallel edges and a parallel edge will get deleted:

```python
sage: D = DiGraph( [(1, 2, 'A'), (2, 1, 'A'), (2, 3, None)] )

sage: D.edges(sort=True)
[(1, 2, A), (2, 1, A), (2, 3, None)]

sage: D.reverse_edge(1, 2, multiedges=False)

sage: D.edges(sort=True)
[(2, 1, A), (2, 3, None)]

sage: D.allows_multiple_edges()
False
```

```python
>>> D = DiGraph( [(Integer(1), Integer(2), 'A'), (Integer(2), Integer(1), A), (Integer(1), 'A')]

(continues on next page)
```
Note that in the following graph, specifying multiedges = False will result in overwriting the label of (1, 2) with the label of (2, 1):

\[
\begin{align*}
\text{sage: } & D = \text{DiGraph([(1, 2, 'B'), (2, 1, 'A'), (2, 3, None)])} \\
\text{sage: } & D\text{.edges(sort=True)} \\
& [(1, 2, 'B'), (2, 1, 'A'), (2, 3, None)] \\
\text{sage: } & D\text{.reverse_edge(2, 1, multiedges=False)} \\
\text{sage: } & D\text{.edges(sort=True)} \\
& [(1, 2, A), (2, 3, None)]
\end{align*}
\]

If input edge in digraph has weight/label, then the weight/label should be preserved in the output digraph. User does not need to specify the weight/label when calling function:

\[
\begin{align*}
\text{sage: } & D = \text{DiGraph([[0, 1, 2], [1, 2, 1]], weighted=True)} \\
\text{sage: } & D\text{.reverse_edge(0, 1)} \\
\text{sage: } & D\text{.edges(sort=True)} \\
& [(1, 0, 2), (1, 2, 1)] \\
\text{sage: } & re = D\text{.reverse_edge([1, 2], inplace=False)} \\
\text{sage: } & re\text{.edges(sort=True)} \\
& [(1, 0, 2), (2, 1, 1)]
\end{align*}
\]

If self has multiple copies (parallel edges) of the input edge, only 1 of the parallel edges is reversed:

\[
\begin{align*}
\text{sage: } & D = \text{DiGraph([[(0, 1, '01'), (0, 1, '01'), (0, 1, 'cat'), (1, 2, '12')]], weighted=True, multiedges=True)} \\
\text{sage: } & re = D\text{.reverse_edge([0, 1, '01'], inplace=False)} \\
\text{sage: } & re\text{.edges(sort=True)} \\
& [(0, 1, '01'), (0, 1, 'cat'), (1, 0, '01'), (1, 2, '12')]
\end{align*}
\]
Graph Theory, Release 10.4

```python
>>> from sage.all import *

>>> D = DiGraph([(Integer(0), Integer(1), '01'), (Integer(0), Integer(1), '01 →'), (Integer(0), Integer(1), 'cat'), (Integer(1), Integer(2), '12')], weighted=True, multiedges=True)

>>> re = D.reverse_edge([Integer(0), Integer(1), '01'], inplace=False)

>>> re.edges(sort=True)
[(0, 1, '01'), (0, 1, 'cat'), (1, 0, '01'), (1, 2, '12')]
```

If `self` has multiple copies (parallel edges) of the input edge but with distinct labels and no input label is specified, only 1 of the parallel edges is reversed (the edge that is labeled by the first label on the list returned by `edge_label()`):

```python
sage: D = DiGraph([(0, 1, 'A'), (0, 1, 'B'), (0, 1, 'mouse'), (0, 1, 'cat')], multiedges=True)

sage: D.edge_label(0, 1)
['cat', 'mouse', 'B', 'A']

sage: D.reverse_edge(0, 1)

sage: D.edges(sort=True)
[(0, 1, 'A'), (0, 1, 'B'), (0, 1, 'mouse'), (1, 0, 'cat')]
```

Finally, an exception is raised when Sage does not know how to choose between allowing multiple edges and losing some data:

```python
sage: D = DiGraph([(0, 1, 'A'), (1, 0, 'B')])

sage: D.reverse_edge(0, 1)
Traceback (most recent call last):
...
ValueError: reversing the given edge is about to create two parallel edges but input digraph doesn't allow them - User needs to specify multiedges is True or False.
```

The following syntax is supported, but note that you must use the `label` keyword:

```python
sage: D = DiGraph()

sage: D.add_edge((1, 2), label='label')

sage: D.edges(sort=True)
```

(continues on next page)
reverse_edges (edges, inplace=True, multiedges=None)

Reverse a list of edges.

INPUT:

- edges – a list of edges in the DiGraph.
- inplace – boolean (default: True); if False, a new digraph is created and returned as output, otherwise self is modified.
- multiedges – boolean (default: None); if True, input graph will be forced to allow parallel edges when necessary (for more information see the documentation of reverse_edge())

See also:

reverse_edge() – Reverses a single edge.

EXAMPLES:

If inplace is True (default value), self is modified:

```
sage: D = DiGraph({ 0: [1, 1, 3], 2: [3, 3], 4: [1, 5]}, multiedges=true)
sage: D.reverse_edges([[0, 1], [0, 3]])
sage: D.reverse_edges(((Integer(0), Integer(1)), (Integer(1), Integer(3))))
sage: D.reverse_edges(((Integer(0), Integer(1)), (Integer(1), Integer(3))})
sage: D.edges(sort=True)
[(0, 1, None), (1, 0, None), (2, 3, None), (3, 0, None), (3, 2, None), (4, 1, None), (5, 4, None)]
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> D.reverse_edges([[Integer(0), Integer(1)], [Integer(0), Integer(3)]])
>>> D.reverse_edges([[Integer(2), Integer(3)], (Integer(4), Integer(5))])
>>> D.edges(sort=True)
[(0, 1, None), (1, 0, None), (2, 3, None), (3, 0, None),
 (3, 2, None), (4, 1, None), (5, 4, None)]

If `inplace` is `False`, `self` is not modified and a new digraph is returned:

```python
sage: D = DiGraph([(0, 1, 'A'), (1, 0, 'B'), (1, 2, 'C')])
sage: re = D.reverse_edges([(0, 1), (1, 2)],
.....: inplace=False,
.....: multiedges=True)
sage: re.edges(sort=True)
[(1, 0, A), (1, 0, B), (2, 1, C)]
sage: D.edges(sort=True)
[(0, 1, A), (1, 0, B), (1, 2, C)]
sage: D.allows_multiple_edges()
False
sage: re.allows_multiple_edges()
True
```

If `multiedges` is `True`, `self` will be forced to allow parallel edges when and only when it is necessary:

```python
>>> from sage.all import *
>>> D = DiGraph([(Integer(0), Integer(1), 'A'), (Integer(1), Integer(0), 'B'),
 (Integer(1), Integer(2), 'C')])
>>> re = D.reverse_edges([(Integer(0), Integer(1)), (Integer(1), Integer(2))],
 multiedges=True)
>>> D.edges(sort=True)
[(2, 1, A), (2, 1, A), (3, 2, None)]
>>> D.allows_multiple_edges()
True
```

Even if `multiedges` is `True`, `self` will not be forced to allow parallel edges when it is not necessary:
```python
sage: D = DiGraph([(1, 2, 'A'), (2, 1, 'A'), (2, 3, None)])
sage: D.reverse_edges([(2, 3)], multiedges=True)
sage: D.edges(sort=True)
[(1, 2, 'A'), (2, 1, 'A'), (3, 2, None)]
sage: D.allows_multiple_edges()
False
```

```python
>>> from sage.all import *

>>> D = DiGraph([(Integer(1), Integer(2), 'A'), (Integer(2), Integer(1), 'A'), (Integer(2), Integer(3), None)])
>>> D.reverse_edges([(Integer(2), Integer(3))], multiedges=True)
>>> D.edges(sort=True)
[(1, 2, 'A'), (2, 1, 'A'), (3, 2, None)]
>>> D.allows_multiple_edges()
False
```

If `multiedges` is `False`, `self` will not be forced to allow parallel edges and an edge will get deleted:

```python
sage: D = DiGraph([(1, 2), (2, 1)])

sage: D.edges(sort=True)
[(1, 2, None), (2, 1, None)]

sage: D.reverse_edges([(1, 2)], multiedges=False)

sage: D.edges(sort=True)
[(2, 1, None)]
```

```python
>>> from sage.all import *

>>> D = DiGraph([(Integer(0), Integer(1), 01), (Integer(1), Integer(2), None), (Integer(2), Integer(3), 23)])

```

If input edge in digraph has weight/label, then the weight/label should be preserved in the output digraph. User does not need to specify the weight/label when calling function:

```python
sage: D = DiGraph([(0, 1, 01), (1, 2, 1), (2, 3, 23)], weighted=True)

sage: D.reverse_edges([(0, 1, 01), (1, 2, None), (2, 3, 23)])

sage: D.edges(sort=True)
[(1, 0, 01), (2, 1, 1), (3, 2, 23)]
```

```python
>>> from sage.all import *

>>> D = DiGraph([(Integer(0), Integer(1), '01'), (Integer(1), Integer(2), None), (Integer(2), Integer(3), '23')])

>>> D.reverse_edges([(Integer(0), Integer(1), '01'), (Integer(1), Integer(2), None), (Integer(2), Integer(3), '23')])

>>> D.edges(sort=True)
[(1, 0, '01'), (2, 1, 1), (3, 2, 23)]
```

### sinks()

Return a list of sinks of the digraph.

**OUTPUT:**

- list of the vertices of the digraph that have no edges beginning at them

**EXAMPLES:**
sage: G = DiGraph({1: {3: ['a']}, 2: {3: ['b']}})
sage: G.sinks()
[3]
sage: T = DiGraph({1: {}})
sage: T.sinks()
[1]

\[<<< \text{from sage.all import } * \]
\[<<< \text{G = DiGraph(\{\text{Integer(1): \{Integer(3): ['a']}, Integer(2): \{Integer(3): ['b -->']\}\}}) }\]
\[<<< \text{G.sinks()}\]
[3]
\[<<< \text{T = DiGraph(\{\text{Integer(1): {}\}) }\]
\[<<< \text{T.sinks()}\]
[1]

**sources()**

Return a list of sources of the digraph.

**OUTPUT:**

- list of the vertices of the digraph that have no edges going into them

**EXAMPLES:**

\[sage: G = DiGraph({1: {3: ['a']}, 2: {3: ['b']}})\]
\[sage: G.sources()\]
[1, 2]
\[sage: T = DiGraph({1: {}})\]
\[sage: T.sources()\]
[1]

\[>>> \text{from sage.all import } * \]
\[>>> \text{G = DiGraph(\{\text{Integer(1): \{Integer(3): ['a']}, Integer(2): \{Integer(3): ['b -->']\}\}}) }\]
\[>>> \text{G.sources()}\]
[1, 2]
\[>>> \text{T = DiGraph(\{\text{Integer(1): {}\}) }\]
\[>>> \text{T.sources()}\]
[1]

**strong_articulation_points(G)**

Return the strong articulation points of this digraph.

A vertex is a strong articulation point if its deletion increases the number of strongly connected components.

This method implements the algorithm described in [ILS2012]. The time complexity is dominated by the time complexity of the immediate dominators finding algorithm.

**OUTPUT:** The list of strong articulation points.

**EXAMPLES:**

Two cliques sharing a vertex:

\[sage: \text{from sage.graphs.connectivity import strong_articulation_points}\]
\[sage: D = digraphs.Complete(4)\]
\[sage: D.add_clique([3, 4, 5, 6])\]
\[sage: strong_articulation_points(D)\]

(continues on next page)
sage: D.strong_articulation_points()

Two cliques connected by some arcs:

sage: D = digraphs.Complete(4) * 2
sage: D.add_edges([(0, 4), (7, 3)])

sage: sorted(strong_articulation_points(D))
[0, 3, 4, 7]

sage: D.add_edge(1, 5)

sage: sorted(strong_articulation_points(D))
[3, 7]

sage: D.add_edge(6, 2)

sage: strong_articulation_points(D)
[]

See also:

- `strongly_connected_components()`
- `dominator_tree()`

strongly_connected_component_containing_vertex(G, v)

Return the strongly connected component containing a given vertex

INPUT:

- `G` – the input DiGraph
- `v` – a vertex

EXAMPLES:

In the symmetric digraph of a graph, the strongly connected components are the connected components:
sage: from sage.graphs.connectivity import strongly_connected_component_containing_vertex
sage: g = graphs.PetersenGraph()
sage: d = DiGraph(g)
sage: strongly_connected_component_containing_vertex(d, 0)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: d.strongly_connected_component_containing_vertex(0)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> from sage.all import *
>>> from sage.graphs.connectivity import strongly_connected_component_containing_vertex

>>> g = graphs.PetersenGraph()

>>> d = DiGraph(g)

>>> strongly_connected_component_containing_vertex(d, Integer(0))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> d.strongly_connected_component_containing_vertex(Integer(0))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

sage: g = DiGraph([(0, 1), (1, 0), (1, 2), (2, 3), (3, 2)])
sage: strongly_connected_component_containing_vertex(g, 0)
[0, 1]

>>> from sage.all import *

>>> g = DiGraph([(Integer(0), Integer(1)), (Integer(1), Integer(0)), (Integer(1), Integer(2)), (Integer(2), Integer(3)), (Integer(3), Integer(2))])

>>> strongly_connected_component_containing_vertex(g, Integer(0))
[0, 1]

**strongly_connected_components** \((G)\)

Return the lists of vertices in each strongly connected components (SCCs).

This method implements the Tarjan algorithm to compute the strongly connected components of the digraph. It returns a list of lists of vertices, each list of vertices representing a strongly connected component.

The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent DFSes are conducted on any nodes that have not yet been found). As usual with DFSes, the search visits every node of the graph exactly once, declining to revisit any node that has already been explored. Thus, the collection of search trees is a spanning forest of the graph. The strongly connected components correspond to the subtrees of this spanning forest that have no edge directed outside the subtree.

To recover these components, during the DFS, we keep the index of a node, that is, the position in the DFS tree, and the lowlink: as soon as the subtree rooted at \(v\) has been fully explored, the lowlink of \(v\) is the smallest index reachable from \(v\) passing from descendants of \(v\). If the subtree rooted at \(v\) has been fully explored, and the index of \(v\) equals the lowlink of \(v\), that whole subtree is a new SCC.

For more information, see the Wikipedia article Tarjan%27s_strongly_connected_components_algorithm.

**EXAMPLES:**

sage: from sage.graphs.base.static_sparse_graph import tarjan_strongly_connected_components

sage: tarjan_strongly_connected_components(digraphs.Path(3))
[[2], [1], [0]]
sage: D = DiGraph({ 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] })
sage: D.connected_components(sort=True)

(continues on next page)
### strongly_connected_components_digraph ($G$, $keep_labels=False$)

Return the digraph of the strongly connected components.

The digraph of the strongly connected components of a graph $G$ has a vertex per strongly connected component included in $G$. There is an edge from a component $C_1$ to a component $C_2$ if there is an edge in $G$ from a vertex $u_1 \in C_1$ to a vertex $u_2 \in C_2$.

**INPUT:**

- $G$ – the input DiGraph
- $keep_labels$ – boolean (default: False): when $keep_labels=True$, the resulting digraph has an edge from a component $C_i$ to a component $C_j$ for each edge in $G$ from a vertex $u_i \in C_i$ to a vertex $u_j \in C_j$. Hence the resulting digraph may have loops and multiple edges. However, edges in the result with same source, target, and label are not duplicated (see examples below). When $keep_labels=False$, the return digraph is simple, so without loops nor multiple edges, and edges are unlabelled.

**EXAMPLES:**

Such a digraph is always acyclic:

```python
sage: from sage.stats.distributions import strongly_connected_components_digraph
sage: strongly_connected_components_digraph(D)
```

(continues on next page)
sage: g = digraphs.RandomDirectedGNP(15, .1)
sage: scc_digraph = strongly_connected_components_digraph(g)
sage: scc_digraph.is_directed_acyclic()
True
sage: scc_digraph = g.strongly_connected_components_digraph()

The vertices of the digraph of strongly connected components are exactly the strongly connected components:

sage: g = digraphs.ButterflyGraph(2)
sage: scc_digraph = strongly_connected_components_digraph(g)
sage: g.is_directed_acyclic()
True
sage: V_scc = list(scc_digraph)
sage: all(Set(scc) in V_scc for scc in g.strongly_connected_components())
True

The following digraph has three strongly connected components, and the digraph of those is a TransitiveTournament():

sage: g = DiGraph({0: {1: "01", 2: "02", 3: "03"}, 1: {2: "12"}, 2:{1: "21", →3: "23"}})
sage: scc_digraph = strongly_connected_components_digraph(g)
sage: scc_digraph.is_isomorphic(digraphs.TransitiveTournament(3))
True

By default, the labels are discarded, and the result has no loops nor multiple edges. If keep_labels is True, then the labels are kept, and the result is a multi digraph, possibly with multiple edges and loops.
However, edges in the result with same source, target, and label are not duplicated (see the edges from 0 to the strongly connected component \{1, 2\} below):

```
sage: g = DiGraph({0: {1: "0-12", 2: "0-12", 3: "0-3"}, 1: {2: "1-2", 3: "1-3"}, 2: {1: "2-1", 3: "2-3"}})
sage: g.order(), g.size()
(4, 7)
sage: scc_digraph = strongly_connected_components_digraph(g, keep_labels=True)
sage: (scc_digraph.order(), scc_digraph.size())
(3, 6)
sage: set(g.edge_labels()) == set(scc_digraph.edge_labels())
True
```

**strongly_connected_components_subgraphs** \(G\)

Return the strongly connected components as a list of subgraphs.

**EXAMPLES:**

In the symmetric digraph of a graph, the strongly connected components are the connected components:

```
sage: from sage.graphs.connectivity import strongly_connected_components_subgraphs
sage: g = graphs.PetersenGraph()
sage: d = DiGraph(g)
sage: strongly_connected_components_subgraphs(d)
[Subgraph of (Petersen graph): Digraph on 10 vertices]
sage: d.strongly_connected_components_subgraphs()
[Subgraph of (Petersen graph): Digraph on 10 vertices]
```

```
(continued from previous page)

```python
>>> strongly_connected_components_subgraphs(g)
[Subgraph of (): Digraph on 2 vertices, Subgraph of (): Digraph on 2 vertices]
```

to_directed()

Since the graph is already directed, simply returns a copy of itself.

EXAMPLES:

```python
sage: DiGraph({0: [1, 2, 3], 4: [5, 1]}).to_directed()
Digraph on 6 vertices
```

to_undirected(data_structure=None, sparse=None)

Return an undirected version of the graph.

Every directed edge becomes an edge.

INPUT:

- **data_structure** -- string (default: None): one of "sparse", "static_sparse", or "dense". See the documentation of Graph or DiGraph.

- **sparse** -- boolean (default: None): sparse=True is an alias for data_structure="sparse", and sparse=False is an alias for data_structure="dense".

EXAMPLES:

```python
sage: D = DiGraph({0: [1, 2], 1: [0]})
sage: G = D.to_undirected()
sage: D.edges(sort=True, labels=False)
[(0, 1), (0, 2), (1, 0)]
sage: G.edges(sort=True, labels=False)
[(0, 1), (0, 2)]
```

topological_sort(implementation='default')

Return a topological sort of the digraph if it is acyclic.

If the digraph contains a directed cycle, a TypeError is raised. As topological sorts are not necessarily unique, different implementations may yield different results.

A topological sort is an ordering of the vertices of the digraph such that each vertex comes before all of its successors. That is, if \(u \) comes before \(v \) in the sort, then there may be a directed path from \(u \) to \(v \), but there will be no directed path from \(v \) to \(u \).

1.3. Directed graphs
INPUT:

• implementation – string (default: "default"); either use the default Cython implementation, or the default NetworkX library (implementation = "NetworkX")

See also:

• is_directed_acyclic() – Tests whether a directed graph is acyclic (can also join a certificate – a topological sort or a circuit in the graph).

EXAMPLES:

```python
sage: D = DiGraph({0: [1, 2, 3], 4: [2, 5], 1: [8], 2: [7], 3: [7],
....: 5: [6, 7], 7: [8], 6: [9], 8: [10], 9: [10]})

sage: D.plot(layout='circular').show()   # needs sage.plot

sage: D.topological_sort()
[4, 5, 6, 9, 0, 1, 2, 3, 7, 8, 10]

>>> from sage.all import *

>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)],...
....: integer(4): [Integer(2), Integer(5)], Integer(1): [Integer(5)], Integer(2):...
....: Integer(7), Integer(3): [Integer(7)],...
....: Integer(5): [Integer(6), Integer(7)], Integer(7): [Integer(8)],...
....: Integer(9), Integer(8): [Integer(10)], Integer(9):...
....: [Integer(10)])})

>>> D.plot(layout='circular').show()   # needs sage.plot

>>> D.topological_sort()
[4, 5, 6, 9, 0, 1, 2, 3, 7, 8, 10]

>>> from sage.all import *

>>> s = list(D.topological_sort(implementation="NetworkX")); s  # random  #

[0, 4, 1, 3, 2, 5, 6, 9, 7, 8, 10]

sage: all(s.index(u) < s.index(v)  # needs networkx
....: for u, v in D.edges(sort=False, labels=False))
True

>>> from sage.all import *

>>> s = list(D.topological_sort(implementation="NetworkX")); s  # random  #

[0, 4, 1, 3, 2, 5, 6, 9, 7, 8, 10]

>>> all(s.index(u) < s.index(v)  # needs networkx
....: for u, v in D.edges(sort=False, labels=False))
True
```

(continues on next page)
for u, v in D.edges(sort=False, labels=False))
True

sage: D.add_edge(7, 4)
sage: D.topological_sort()
Traceback (most recent call last):
... TypeError: digraph is not acyclic; there is no topological sort

>>> from sage.all import *
>>> D.add_edge(Integer(7), Integer(4))
>>> D.topological_sort()
Traceback (most recent call last):
... TypeError: digraph is not acyclic; there is no topological sort

topological_sort_generator()

Return an iterator over all topological sorts of the digraph if it is acyclic.

If the digraph contains a directed cycle, a TypeError is raised.

A topological sort is an ordering of the vertices of the digraph such that each vertex comes before all of its successors. That is, if u comes before v in the sort, then there may be a directed path from u to v, but there will be no directed path from v to u. See also topological_sort().

AUTHORS:

• Mike Hansen - original implementation
• Robert L. Miller: wrapping, documentation

REFERENCE:

EXAMPLES:

sage: D = DiGraph({0: [1, 2], 1: [3], 2: [3, 4]})
sage: D.plot(layout='circular').show() # needs sage.plot
sage: list(D.topological_sort_generator()) # needs sage.modules sage.rings.finite_rings
[[0, 1, 2, 3, 4], [0, 2, 1, 3, 4], [0, 2, 1, 4, 3], [0, 2, 4, 1, 3], [0, 1, 2, 4, 3]]

>>> from sage.all import *
>>> D = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(1):...
>>> D.plot(layout='circular').show() # needs sage.plot
>>> list(D.topological_sort_generator()) # needs sage.modules sage.rings.finite_rings
[[0, 1, 2, 3, 4], [0, 2, 1, 3, 4], [0, 2, 1, 4, 3], [0, 2, 4, 1, 3], [0, 1, 2, 4, 3]]
```python
sage: for sort in D.topological_sort_generator():
    # needs sage.modules sage.rings.finite_rings
    ...:     for u, v in D.edge_iterator(labels=False):
    ...:         if sort.index(u) > sort.index(v):
    ...:             print("this should never happen")
```

```python
from sage.all import *
```

```python
sage: for sort in D.topological_sort_generator():
    # needs sage.modules sage.rings.finite_rings
    ...:     for u, v in D.edge_iterator(labels=False):
    ...:         if sort.index(u) > sort.index(v):
    ...:             print("this should never happen")
```

1.4 Bipartite graphs

This module implements bipartite graphs.

AUTHORS:

- Robert L. Miller (2008-01-20): initial version
- Ryan W. Hinton (2010-03-04): overrides for adding and deleting vertices and edges
- Enjeck M. Cleopatra (2022): fixes incorrect partition sets and adds graph creation from graph6 string

class sage.graphs.bipartite_graph.BipartiteGraph(data=None, partition=None, check=True, hash_labels=None, *args, **kwds)

Bases: Graph

Bipartite graph.

INPUT:

- **data** – can be any of the following:
 1. Empty or None (creates an empty graph).
 2. An arbitrary graph.
 3. A reduced adjacency matrix.

 A reduced adjacency matrix contains only the non-redundant portion of the full adjacency matrix for the bipartite graph. Specifically, for zero matrices of the appropriate size, for the reduced adjacency matrix \(H \), the full adjacency matrix is \([[0, H^\top], [H, 0]] \). The columns correspond to vertices on the left, and the rows correspond to vertices on the right.
 4. A file in alist format.

 The alist file format is described at http://www.inference.phy.cam.ac.uk/mackay/codes/alist.html
 5. A graph6 string (see documentation of graph6_string()).
 6. From a NetworkX bipartite graph.
- **partition** – (default: None): a tuple defining vertices of the left and right partition of the graph. Partitions will be determined automatically if partition is None.
- **check** – boolean (default: True): if True, an invalid input partition raises an exception. In the other case offending edges simply won’t be included.
- **loops** – ignored; bipartite graphs cannot have loops
• **multiedges** – boolean (default: None); whether to allow multiple edges

• **weighted** – boolean (default: None); whether graph thinks of itself as weighted or not. See `self.weighted()`

• **hash_labels** – boolean (default: None); whether to include edge labels during hashing. This parameter defaults to `True` if the graph is weighted. This parameter is ignored if the graph is mutable. Beware that trying to hash unhashable labels will raise an error.

Note: All remaining arguments are passed to the `Graph` constructor

EXAMPLES:

1. No inputs or None for the input creates an empty graph:

```python
sage: B = BipartiteGraph()
sage: type(B)
<class 'sage.graphs.bipartite_graph.BipartiteGraph'>
sage: B.order()
0
sage: B == BipartiteGraph(None)
True
```

```python
>>> from sage.all import *
>>> B = BipartiteGraph()
>>> type(B)
<class 'sage.graphs.bipartite_graph.BipartiteGraph'>
>>> B.order()
0
>>> B == BipartiteGraph(None)
True
```

2. From a graph: without any more information, finds a bipartition:

```python
sage: B = BipartiteGraph(graphs.CycleGraph(4))
Traceback (most recent call last):
... ValueError: input graph is not bipartite
sage: G = Graph({0: [5, 6], 1: [4, 5], 2: [4, 6], 3: [4, 5, 6]})
sage: B = BipartiteGraph(G)
sage: B == G
True
sage: B.left
{0, 1, 2, 3}
sage: B.right
{4, 5, 6}
sage: B = BipartiteGraph({0: [5, 6], 1: [4, 5], 2: [4, 6], 3: [4, 5, 6]})
sage: B == G
True
sage: B.left
{0, 1, 2, 3}
sage: B.right
{4, 5, 6}
```

```python
>>> from sage.all import *
>>> B = BipartiteGraph(graphs.CycleGraph(Integer(4)))
(continues on next page)
```
3. If a `Graph` or `DiGraph` is used as data, you can specify a partition using the `partition` argument. Note that if such graph is not bipartite, then Sage will raise an error. However, if one specifies `check=False`, the offending edges are simply deleted (along with those vertices not appearing in either list). We also lump creating one bipartite graph from another into this category:

```python
sage: P = graphs.PetersenGraph()
sage: partition = [list(range(5)), list(range(5, 10))]
sage: B = BipartiteGraph(P, partition)
 Traceback (most recent call last):
   ...TypeError: input graph is not bipartite with respect to the given partition

sage: B = BipartiteGraph(P, partition, check=False)
sage: B.left
{0, 1, 2, 3}
sage: B.right
{4, 5, 6}
sage: B.show()  # needs sage.plot
```

```python
from sage.all import *

P = graphs.PetersenGraph()
partition = [list(range(Integer(5))), list(range(Integer(5), Integer(10)))]

B = BipartiteGraph(P, partition)
 Traceback (most recent call last):
   ...TypeError: input graph is not bipartite with respect to the given partition

B = BipartiteGraph(P, partition, check=False)
B.left
{0, 1, 2, 3, 4}
B.show()
# needs sage.plot
```
sage: G = Graph({0: [5, 6], 1: [4, 5], 2: [4, 6], 3: [4, 5, 6]})
sage: B = BipartiteGraph(G)
sage: B2 = BipartiteGraph(B)
sage: B == B2
True
sage: B3 = BipartiteGraph(G, [list(range(4)), list(range(4, 7))])
sage: B3
Bipartite graph on 7 vertices
sage: B3 == B2
True

>>> from sage.all import *

>>> G = Graph({Integer(0): [Integer(5), Integer(6)], Integer(1): [Integer(4),
Integer(5)], Integer(2): [Integer(4), Integer(6)], Integer(3): [Integer(4),
Integer(5), Integer(6)]})

>>> B = BipartiteGraph(G)

>>> B2 = BipartiteGraph(B)

>>> B == B2
True

>>> B3 = BipartiteGraph(G, [list(range(Integer(4))), list(range(Integer(4),
Integer(7)))])

>>> B3
Bipartite graph on 7 vertices

>>> B3 == B2
True

sage: G = Graph({0: [], 1: [], 2: []})
sage: part = (list(range(2)), [2])
sage: B = BipartiteGraph(G, part)
sage: B2 = BipartiteGraph(B)
sage: B == B2
True

>>> from sage.all import *

>>> G = Graph({Integer(0): [], Integer(1): [], Integer(2): []})

>>> part = (list(range(Integer(2))), [Integer(2)])

>>> B = BipartiteGraph(G, part)

>>> B2 = BipartiteGraph(B)

>>> B == B2
True

sage: d = DiGraph(6)
sage: d.add_edge(0, 1)
sage: part=[[1, 2, 3], [0, 4, 5]]
sage: b = BipartiteGraph(d, part)
sage: b.left
{1, 2, 3}
sage: b.right
{0, 4, 5}

>>> from sage.all import *

>>> d = DiGraph(Integer(6))

>>> d.add_edge(Integer(0), Integer(1))

>>> part=[[Integer(1), Integer(2), Integer(3)], [Integer(0), Integer(4),
Integer(5)]]

>>> b = BipartiteGraph(d, part)
4. From a reduced adjacency matrix:

```python
sage: # needs sage.modules
sage: M = Matrix([[1,1,0,0,0,0,0,0), (1,0,0,1,1,0,0),
  ...
      (0,1,0,1,0,1,0), (1,1,0,1,0,1,0,1)])
```

```python
>>> M
[[1 1 0 0 0 0]
 [1 0 1 0 0]
 [0 1 0 1 0]
 [1 0 1 0 1]

sage: H = BipartiteGraph(M); H
Bipartite graph on 11 vertices
sage: H.edges(sort=True)
[(0, 7, None),
 (0, 8, None),
 (0, 10, None),
 (1, 7, None),
 (1, 9, None),
 (1, 10, None),
 (2, 7, None),
 (3, 8, None),
 (3, 9, None),
 (3, 10, None),
 (4, 8, None),
 (5, 9, None),
 (6, 10, None)]
```

```python
>>> from sage.all import *

>>> # needs sage.modules

>>> M = Matrix([[Integer(1),Integer(1),Integer(1),Integer(0),Integer(0),
   ...
      Integer(0),Integer(0)), (Integer(1),Integer(0),Integer(0),Integer(0),Integer(1),
      Integer(1),Integer(0),Integer(0)),
   ...
      (Integer(0),Integer(1),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0)),
      (Integer(1),Integer(0),Integer(0),Integer(1),Integer(0),Integer(0),Integer(1))])
```

```python
>>> M
[[1 1 0 0 0 0]
 [1 0 1 0 0]
 [0 1 0 1 0]
 [1 0 1 0 1]

>>> H = BipartiteGraph(M); H
Bipartite graph on 11 vertices

>>> H.edges(sort=True)
[(0, 7, None),
 (0, 8, None),
 (0, 10, None),
 (1, 7, None),
 (1, 9, None),
 (1, 10, None),
 (2, 7, None),
 (3, 8, None),
 (3, 9, None),
 (3, 10, None),
 (4, 8, None),
 (5, 9, None),
 (6, 10, None)]
```

(continues on next page)
(3, 9, None),
(3, 10, None),
(4, 8, None),
(5, 9, None),
(6, 10, None)]

sage: M = Matrix([[1, 1, 2, 0, 0],
 (0, 2, 1, 1, 1),
 (0, 1, 2, 1, 1)])
˓→ # needs sage.modules

sage: B = BipartiteGraph(M, multiedges=True, sparse=True)
˓→ # needs sage.modules

sage: B.edges(sort=True)
˓→ # needs sage.modules

[(0, 5, None),
 (1, 5, None),
 (1, 6, None),
 (1, 6, None),
 (1, 7, None),
 (2, 5, None),
 (2, 5, None),
 (2, 6, None),
 (2, 6, None),
 (2, 7, None),
 (2, 7, None),
 (3, 6, None),
 (3, 6, None),
 (3, 7, None),
 (4, 6, None),
 (4, 7, None)]

>>> from sage.all import *

>>> M = Matrix([[Integer(1), Integer(1), Integer(2), Integer(0), Integer(0)],
 (Integer(0), Integer(2), Integer(1), Integer(1), Integer(1)),
 (Integer(0), Integer(1), Integer(2), Integer(1), Integer(1))])
˓→ # needs sage.modules

>>> B = BipartiteGraph(M, multiedges=True, sparse=True)
˓→ # needs sage.modules

>>> B.edges(sort=True)
˓→ # needs sage.modules

[(0, 5, None),
 (1, 5, None),
 (1, 6, None),
 (1, 6, None),
 (1, 7, None),
 (2, 5, None),
 (2, 5, None),
 (2, 6, None),
 (2, 6, None),
 (2, 7, None),
 (2, 7, None),
 (3, 6, None),
 (3, 6, None),
 (3, 7, None),
 (4, 6, None),
 (4, 7, None)]

sage: # needs sage.modules sage.rings.finite_rings

sage: F.<a> = GF(4)

sage: MS = MatrixSpace(F, 2, 3)

sage: M = MS.matrix([[0, 1, a + 1], [a, 1, 1]])

sage: B = BipartiteGraph(M, weighted=True, sparse=True)

(continues on next page)
5. From a list file:

```python
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(mode="w+t") as f:
    ...
    _ = f.write("7 4
    3 4
    3 3 1 3 1 1 1
    2 3 4
    1 2 3 0
    1 4 5 0
    2 4 6 0
    1 2 4 7\n")
    ...
    f.flush()
    ...
    B = BipartiteGraph(f.name)
    sage: B.is_isomorphic(H)  # needs sage.modules
    True
```

6. From a graph6 string:

```python
sage: B = BipartiteGraph('Bo')
sage: B
Bipartite graph on 3 vertices
sage: B.left
{0}
sage: B.right
{1, 2}
```
>>> from sage.all import *
>>> B = BipartiteGraph('Bo')
>>> B
Bipartite graph on 3 vertices
>>> B.left
{0}
>>> B.right
{1, 2}

sage: B = BipartiteGraph('
F?T_
', format='graph6')

sage: B.vertices(sort=True)
[0, 1, 2, 3, 4, 5, 6]

sage: B.edges(sort=True)
[(0, 5, None), (0, 6, None), (1, 4, None), (1, 5, None), (1, 6, None),
 (2, 4, None), (2, 6, None), (3, 4, None), (3, 5, None), (3, 6, None)]

sage: B.left
{0, 1, 2, 3}

sage: B.right
{4, 5, 6}

>>> from sage.all import *

sage: B = BipartiteGraph('Bo', partition=[[0], [1, 2]])

sage: B.left
{0}

sage: B.right
{1, 2}

::

sage: B = BipartiteGraph('Bo', partition=[[0, 1, 2], [3, 4, 5, 6]])

Traceback (most recent call last):
...
TypeError: input graph is not bipartite with respect to the given partition

sage: B = BipartiteGraph('F?T_
', partition=[[0, 1, 2], [3, 4, 5, 6]], check=False)

sage: B.show()

← # needs sage.plot

sage: B = BipartiteGraph('F?T_
', partition=[Integer(0), Integer(1),
 Integer(2), [Integer(3), Integer(4), Integer(5), Integer(6)]])

Traceback (most recent call last):
...
TypeError: input graph is not bipartite with respect to the given partition

sage: B = BipartiteGraph('F?T_
', partition=[Integer(0), Integer(1),
 Integer(2), [Integer(3), Integer(4), Integer(5), Integer(6)]])

(continues on next page)
7. From a NetworkX bipartite graph:

```python
sage: # needs networkx
sage: import networkx
sage: G = graphs.OctahedralGraph()
sage: N = networkx.make_clique_bipartite(G.networkx_graph())
sage: B = BipartiteGraph(N)
```

```
>>> from sage.all import *
>>> # needs networkx
>>> import networkx
>>> G = graphs.OctahedralGraph()
>>> N = networkx.make_clique_bipartite(G.networkx_graph())
>>> B = BipartiteGraph(N)
```

add_edge *(u, v=None, label=None)*

Add an edge from u to v.

INPUT:

- u – the tail of an edge.
- v – (default: None); the head of an edge. If v=None, then attempt to understand u as a edge tuple.
- label – (default: None); the label of the edge (u, v).

The following forms are all accepted:

- G.add_edge(1, 2)
- G.add_edge((1, 2))
- G.add_edges([(1, 2)])
- G.add_edge(1, 2, 'label')
- G.add_edge((1, 2, 'label'))
- G.add_edges([(1, 2, 'label')])

See add_edge() for more detail.

This method simply checks that the edge endpoints are in different partitions. If a new vertex is to be created, it will be added to the proper partition. If both vertices are created, the first one will be added to the left partition, the second to the right partition. If both vertices are in the same partition but different connected components, one of the components will be “flipped”, i.e. each vertex will be put into whichever partition it's not currently in. This will allow for the graph to remain bipartite, without changing the edges or vertices.

add_edges *(edges, loops=True)*

Add edges from an iterable container.

INPUT:

- edges – an iterable of edges, given either as (u, v) or (u, v, label).
- loops – ignored
See \texttt{add_edges()} for more detail.

This method simply checks that the edge endpoints are in different partitions. If a new vertex is to be created, it will be added to the proper partition. If both vertices are created, the first one will be added to the left partition, the second to the right partition. If both vertices are in the same partition but different connected components, one of the components will be “flipped”, i.e. each vertex will be put into whichever partition it’s not currently in. This will allow for the graph to remain bipartite, without changing the edges or vertices.

EXAMPLES:

```python
sage: bg = BipartiteGraph()
sage: bg.add_vertices([0, 1, 2], left=[True, False, True])
sage: bg.add_edges([(0, 1), (2, 1)])
Traceback (most recent call last):
... ValueError: the specified set of edges cannot be added while still preserving the bipartition property
```

Loops will raise an error:

```python
sage: bg.add_edges([[0, 3], [3, 3]])
Traceback (most recent call last):
...
ValueError: the specified set of edges cannot be added while still preserving the bipartition property
```

Adding edges is fine as long as there exists a valid bipartition. Otherwise an error is raised without modifying the graph:

```python
>>> from sage.all import *
>>> bg = BipartiteGraph()
>>> bg.add_vertices([Integer(0), Integer(1), Integer(2)], left=[True, False, True])
>>> bg.add_edges([(Integer(0), Integer(1)), (Integer(2), Integer(1))])
>>> bg.add_edges([[Integer(0), Integer(2)]])
Traceback (most recent call last):
...
ValueError: the specified set of edges cannot be added while still preserving the bipartition property
```
```python
sage: G = BipartiteGraph()
sage: G.add_edges([(0, 1), (2, 3)])
sage: G.bipartition()
({0, 2}, {1, 3})
sage: G.add_edges([(0,2), (0,3)])
Traceback (most recent call last):
...
ValueError: the specified set of edges cannot be added while still preserving the bipartition property
sage: G.bipartition()
({0, 2}, {1, 3})
sage: G.edges(labels=False, sort=True)
[(0, 1), (2, 3)]
```

```python
>>> from sage.all import *

>>> G = BipartiteGraph()

>>> G.add_edges([(Integer(0), Integer(1)), (Integer(2), Integer(3))])

>>> G.bipartition()
({0, 2}, {1, 3})

>>> G.add_edges([(Integer(0),Integer(2)), (Integer(0),Integer(3))])
Traceback (most recent call last):
...
ValueError: the specified set of edges cannot be added while still preserving the bipartition property

>>> G.bipartition()
({0, 2}, {1, 3})

>>> G.edges(labels=False, sort=True)
[(0, 1), (2, 3)]
```

add_vertex (name=None, left=False, right=False)

Create an isolated vertex. If the vertex already exists, then nothing is done.

INPUT:

- **name** – (default: None); name of the new vertex. If no name is specified, then the vertex will be represented by the least non-negative integer not already representing a vertex. Name must be an immutable object and cannot be None.
- **left** – boolean (default: False); if True, puts the new vertex in the left partition.
- **right** – boolean (default: False); if True, puts the new vertex in the right partition.

Obviously, `left` and `right` are mutually exclusive.

As it is implemented now, if a graph G has a large number of vertices with numeric labels, then G. `add_vertex()` could potentially be slow, if name is None.

OUTPUT:

- If `name` is None, the new vertex name is returned. None otherwise.

EXAMPLES:

```python
sage: G = BipartiteGraph()
sage: G.add_vertex(left=True)
0
sage: G.add_vertex(right=True)
1
sage: G.vertices(sort=True)
[0, 1]
```

(continues on next page)
\texttt{sage}: G.left
\{0\}
\texttt{sage}: G.right
\{1\}

\begin{verbatim}
>>> from sage.all import *
>>> G = BipartiteGraph()
>>> G.add_vertex(left=True)
0
>>> G.add_vertex(right=True)
1
>>> G.vertices(sort=True)
[0, 1]
>>> G.left
\{0\}
>>> G.right
\{1\}
\end{verbatim}

\textbf{add_vertices (vertices, left=False, right=False)}

Add vertices to the bipartite graph from an iterable container of vertices.

Vertices that already exist in the graph will not be added again.

INPUT:

- \texttt{vertices} – sequence of vertices to add.
- \texttt{left} – (default: False); either \texttt{True} or sequence of same length as \texttt{vertices} with \texttt{True}/False elements.
- \texttt{right} – (default: False); either \texttt{True} or sequence of the same length as \texttt{vertices} with \texttt{True}/False elements.

Only one of \texttt{left} and \texttt{right} keywords should be provided. See the examples below.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: bg = BipartiteGraph()
sage: bg.add_vertices([0, 1, 2], left=True)
sage: bg.add_vertices([3, 4, 5], left=[True, False, True])
sage: bg.add_vertices([6, 7, 8], right=[True, False, True])
sage: bg.add_vertices([9, 10, 11], right=True)
sage: bg.left
\{0, 1, 2, 3, 5, 7\}
sage: bg.right
\{4, 6, 8, 9, 10, 11\}
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> bg = BipartiteGraph()
>>> bg.add_vertices([Integer(0), Integer(1), Integer(2)], left=True)
>>> bg.add_vertices([Integer(3), Integer(4), Integer(5)], left=[True, False, ...]
>>> bg.add_vertices([Integer(6), Integer(7), Integer(8)], right=[True, False, ...]
>>> bg.add_vertices([Integer(9), Integer(10), Integer(11)], right=True)
>>> bg.left
\{0, 1, 2, 3, 5, 7\}
\end{verbatim}
allow_loops (new, check=True)

Change whether loops are permitted in the (di)graph

Note: This method overwrite the allow_loops() method to ensure that loops are forbidden in BipartiteGraph.

INPUT:

• new – boolean

EXAMPLES:

```python
sage: B = BipartiteGraph()
sage: B.allow_loops(True)
Traceback (most recent call last):
... ValueError: loops are not allowed in bipartite graphs
```

bipartition()

Return the underlying bipartition of the bipartite graph.

EXAMPLES:

```python
sage: B = BipartiteGraph(graphs.CycleGraph(4))
sage: B.bipartition()
({0, 2}, {1, 3})
```

canonical_label (partition=None, certificate=False, edge_labels=False, algorithm=None, return_graph=True)

Return the canonical graph.

A canonical graph is the representative graph of an isomorphism class by some canonization function c. If G and H are graphs, then G \cong c(G), and c(G) == c(H) if and only if G \cong H.

See the Wikipedia article Graph_canonization for more information.

INPUT:

• partition – if given, the canonical label with respect to this set partition will be computed. The default is the unit set partition.
• certificate – boolean (default: False). When set to True, a dictionary mapping from the vertices of the (di)graph to its canonical label will also be returned.

• edge_labels – boolean (default: False). When set to True, allows only permutations respecting edge labels.

• algorithm – a string (default: None). The algorithm to use; currently available:
 – 'bliss': use the optional package bliss (http://www.tcs.tkk.fi/Software/bliss/index.html);
 – 'sage': always use Sage's implementation.
 – None (default): use bliss when available and possible

Note: Make sure you always compare canonical forms obtained by the same algorithm.

• return_graph – boolean (default: True). When set to False, returns the list of edges of the canonical graph instead of the canonical graph; only available when 'bliss' is explicitly set as algorithm.

EXAMPLES:

```python
sage: B = BipartiteGraph( [(0, 4), (0, 5), (0, 6), (0, 8), (1, 5),
    ....: (1, 7), (1, 8), (2, 6), (2, 7), (2, 8),
    ....: (3, 4), (3, 7), (3, 8), (4, 9), (5, 9),
    ....: (6, 9), (7, 9) ]

sage: C = B.canonical_label(partition=(B.left, B.right), algorithm='sage')
sage: C
Bipartite graph on 10 vertices
sage: C.left
{0, 1, 2, 3, 4}
sage: C.right
{5, 6, 7, 8, 9}
```

```python
>>> from sage.all import *

>>> B = BipartiteGraph( [(Integer(0), Integer(4)), (Integer(0), Integer(5)),
    ... (Integer(0), Integer(6)), (Integer(0), Integer(8)), (Integer(1),
    ... (Integer(1), Integer(7)), (Integer(1), Integer(8)),
    ... (Integer(2), Integer(6)), (Integer(2), Integer(7)), (Integer(2),
    ... (Integer(3), Integer(4)), (Integer(3), Integer(7)),
    ... (Integer(3), Integer(8)), (Integer(4), Integer(9)), (Integer(5),
    ... (Integer(6), Integer(9)), (Integer(7), Integer(9)]

>>> C = B.canonical_label(partition=(B.left, B.right), algorithm='sage')

>>> C
Bipartite graph on 10 vertices

>>> C.left
{0, 1, 2, 3, 4}

>>> C.right
{5, 6, 7, 8, 9}
```

```python
sage: B = BipartiteGraph( [(0, 4), (0, 5), (0, 6), (0, 8), (1, 5),
    ....: (1, 7), (1, 8), (2, 6), (2, 7), (2, 8),
    ....: (3, 4), (3, 7), (3, 8), (4, 9), (5, 9),
    ....: (6, 9), (7, 9) ]

sage: C, cert = B.canonical_label(partition=(B.left, B.right),
```
Graph Theory, Release 10.4

(continued from previous page)

sage: C
Bipartite graph on 10 vertices
sage: C.left
{0, 1, 2, 3, 4}
sage: C.right
{5, 6, 7, 8, 9}
sage: cert == {0: 3, 1: 0, 2: 1, 3: 2, 4: 5, 5: 7, 6: 6, 7: 8, 8: 9, 9: 4}
True

sage: G = Graph({0: [5, 6], 1: [4, 5], 2: [4, 6], 3: [4, 5, 6]})
sage: B = BipartiteGraph(G)
sage: C = B.canonical_label(partition=(B.left, B.right),
edge_labels=True, algorithm='sage')
sage: C.left
{0, 1, 2, 3}
sage: C.right
{4, 5, 6}
See also:

```python
canonical_label()
```  

```python
complement()
```

Return a complement of this graph.

Given a simple `BipartiteGraph` $G = (L, R, E)$ with vertex set $L \cup R$ and edge set E, this method returns a `Graph` $H = (V, F)$, where $V = L \cup R$ and F is the set of edges of a complete graph of order $|V|$ minus the edges in E.

Warning: This method returns the complement of a bipartite graph $G = (V = L \cup R, E)$ with respect the complete graph of order $|V|$. If looking for the complement with respect the complete bipartite graph $K = (L, R, L \times R)$, use method `complement_bipartite()`.

See also:

```python
complement_bipartite()
```

EXAMPLES:

```python
sage: B = BipartiteGraph({1: [2, 4], 3: [4, 5]})
sage: G = B.complement(); G
Graph on 5 vertices
sage: G.edges(sort=True, labels=False)
[(1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5)]

sage: B.size() + G.size() == graphs.CompleteGraph(B.order()).size()
True
```

```python
>>> from sage.all import *
>>> B = BipartiteGraph({Integer(1): [Integer(2), Integer(4)], Integer(3):...
  →[Integer(4), Integer(5)]})
>>> G = B.complement(); G
Graph on 5 vertices
>>> G.edges(sort=True, labels=False)
[(1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5)]
>>> B.size() + G.size() == graphs.CompleteGraph(B.order()).size()
True
```

```python
complement_bipartite()
```

Return the bipartite complement of this bipartite graph.

Given a simple `BipartiteGraph` $G = (L, R, E)$ with vertex set $L \cup R$ and edge set E, this method returns a `BipartiteGraph` $H = (L \cup R, F)$, where F is the set of edges of a complete bipartite graph between vertex sets L and R minus the edges in E.

See also:

```python
complement()
```

EXAMPLES:

```python
sage: B = BipartiteGraph({0: [1, 2, 3]}) sage: C = B.complement_bipartite() sage: C Bipartite graph on 4 vertices sage: C.is_bipartite() True sage: B.left == C.left and B.right == C.right True sage: C.size() == len(B.left)*len(B.right) - B.size() True sage: G = B.complement() sage: G.is_bipartite() False
```
delete_vertex *(vertex, in_order=False)*

Delete vertex, removing all incident edges.

Deleting a non-existent vertex will raise an exception.

INPUT:

- *vertex* – a vertex to delete.
- *in_order* – boolean (default False); if True, deletes the *i*-th vertex in the sorted list of vertices, i.e. G.vertices(sort=True)[*i*].

EXAMPLES:

```python
sage: B = BipartiteGraph(graphs.CycleGraph(4))
sage: B
Bipartite cycle graph: graph on 4 vertices
sage: B.delete_vertex(0)
sage: B
Bipartite cycle graph: graph on 3 vertices
sage: B.left
{2}
sage: B.edges(sort=True)
[(1, 2, None), (2, 3, None)]
sage: B.delete_vertex(3)
sage: B.right
{1}
sage: B.edges(sort=True)
[(1, 2, None)]
sage: B.delete_vertex(0)
Traceback (most recent call last):...
ValueError: vertex (0) not in the graph
```

```python
>>> from sage.all import *
>>> B = BipartiteGraph(graphs.CycleGraph(Integer(4)))
>>> B
Bipartite cycle graph: graph on 4 vertices
>>> B.delete_vertex(Integer(0))
>>> B
Bipartite cycle graph: graph on 3 vertices
>>> B.left
{2}
>>> B.edges(sort=True)
[(1, 2, None), (2, 3, None)]
>>> B.delete_vertex(Integer(3))
>>> B.right
{1}
>>> B.edges(sort=True)
[(1, 2, None)]
>>> B.delete_vertex(Integer(0))
Traceback (most recent call last):...
ValueError: vertex (0) not in the graph
```

```python
sage: g = Graph({'a': ['b'], 'c': ['b']})
sage: bg = BipartiteGraph(g)  # finds bipartition
sage: bg.vertices(sort=True)
['a', 'b', 'c']
```

(continues on next page)
sage: bg.delete_vertex('a')
sage: bg.edges(sort=True)
[('b', 'c', None)]
sage: bg.vertices(sort=True)
['b', 'c']
sage: bg2 = BipartiteGraph(g)
sage: bg2.delete_vertex(0, in_order=True)
sage: bg2 == bg
True

delete_vertices(vertices)

Remove vertices from the bipartite graph taken from an iterable sequence of vertices.

Deleting a non-existent vertex will raise an exception.

INPUT:

• vertices — a sequence of vertices to remove

EXAMPLES:

sage: B = BipartiteGraph(graphs.CycleGraph(4))
sage: B
Bipartite cycle graph: graph on 4 vertices
sage: B.delete_vertices([0, 3])
sage: B
Bipartite cycle graph: graph on 2 vertices
sage: B.left
(2)
sage: B.right
(1)
sage: B.edges(sort=True)
[(1, 2, None)]
sage: B.delete_vertices([0])
Traceback (most recent call last):
 ...
ValueError: vertex (0) not in the graph

>>> from sage.all import *
>>> B = BipartiteGraph(graphs.CycleGraph(Integer(4)))
>>> B
Bipartite cycle graph: graph on 4 vertices

(continues on next page)
is_bipartite (certificate=False)

Check whether the graph is bipartite.

This method always returns True as first value, plus a certificate when certificate == True.

INPUT:

* certificate – boolean (default: False); whether to return a certificate. If set to True, the certificate returned is a proper 2-coloring of the vertices.

See also:

is_bipartite()

EXAMPLES:

sage: g = BipartiteGraph(graphs.RandomBipartite(3, 3, .5)) # needs numpy
sage: g.is_bipartite() # needs numpy
True
sage: g.is_bipartite(certificate=True) # random # needs numpy
(True, {(0, 0): 0, (0, 1): 0, (0, 2): 0, (1, 0): 1, (1, 1): 1, (1, 2): 1})

>>> from sage.all import *

>>> g = BipartiteGraph(graphs.RandomBipartite(Integer(3), Integer(3),
 RealNumber('0.5')))) # needs numpy

>>> g.is_bipartite() # needs numpy
True

>>> g.is_bipartite(certificate=True) # random # needs numpy
(True, {(0, 0): 0, (0, 1): 0, (0, 2): 0, (1, 0): 1, (1, 1): 1, (1, 2): 1})

load_afile (fname)

Load into the current object the bipartite graph specified in the given file name.

This file should follow David MacKay’s alist format, see http://www.inference.phy.cam.ac.uk/mackay/codes/data.html for examples and definition of the format.

EXAMPLES:
Graph Theory, Release 10.4

1.4. Bipartite graphs

```python
sage: import tempfile
g sage: with tempfile.NamedTemporaryFile(mode="w+t") as f:
....:     _ = f.write("7 4 \n 3 4 \n 3 3 1 3 1 1 1 \n
....:     3 3 4 \n 1 2 4 \n 1 3 4 \n
....:     1 0 0 \n 2 3 4 \n 2 0 0 \n 3 0 0 \n
....:     4 0 0 \n 1 2 3 0 \n 1 4 5 0 \n
....:     2 4 6 0 \n 1 2 4 7 \n")
....:     f.flush()
....:     B = BipartiteGraph()
....:     B2 = BipartiteGraph(f.name)
....:     B.load_afile(f.name)

Bipartite graph on 11 vertices
sage: B.edges(sort=True)
[(0, 7, None),
 (0, 8, None),
 (0, 10, None),
 (1, 7, None),
 (1, 9, None),
 (1, 10, None),
 (2, 7, None),
 (3, 8, None),
 (3, 9, None),
 (3, 10, None),
 (4, 8, None),
 (5, 9, None),
 (6, 10, None)]
sage: B2 == B
True
```

```python
>>> from sage.all import *
>>> import tempfile
>>> with tempfile.NamedTemporaryFile(mode="w+t") as f:
....:     _ = f.write("7 4 \n 3 4 \n 3 3 1 3 1 1 1 \n
....:     3 3 4 \n 1 2 4 \n 1 3 4 \n
....:     1 0 0 \n 2 3 4 \n 2 0 0 \n 3 0 0 \n
....:     4 0 0 \n 1 2 3 0 \n 1 4 5 0 \n
....:     2 4 6 0 \n 1 2 4 7 \n")
....:     f.flush()
....:     B = BipartiteGraph()
....:     B2 = BipartiteGraph(f.name)
....:     B.load_afile(f.name)

Bipartite graph on 11 vertices
>>> B.edges(sort=True)
[(0, 7, None),
 (0, 8, None),
 (0, 10, None),
 (1, 7, None),
 (1, 9, None),
 (1, 10, None),
 (2, 7, None),
 (3, 8, None),
 (3, 9, None),
 (3, 10, None),
 (4, 8, None),
 (5, 9, None),
 (6, 10, None)]
>>> B2 == B
True
```
matching (value_only, algorithm=False, use_edge_labels=None, solver=False, verbose=None, integrality_tolerance=0)

Return a maximum matching of the graph represented by the list of its edges.

Given a graph \(G \) such that each edge \(e \) has a weight \(w_e \), a maximum matching is a subset \(S \) of the edges of \(G \) of maximum weight such that no two edges of \(S \) are incident with each other.

INPUT:

- **value_only** – boolean (default: False): when set to True, only the cardinal (or the weight) of the matching is returned
- **algorithm** – string (default: "Hopcroft-Karp" if use_edge_labels==False, otherwise "Edmonds"): algorithm to use among:
 - "Hopcroft-Karp" selects the default bipartite graph algorithm as implemented in NetworkX
 - "Eppstein" selects Eppstein’s algorithm as implemented in NetworkX
 - "Edmonds" selects Edmonds’ algorithm as implemented in NetworkX
 - "LP" uses a Linear Program formulation of the matching problem
- **use_edge_labels** – boolean (default: False)
 - when set to True, computes a weighted matching where each edge is weighted by its label (if an edge has no label, 1 is assumed); only if algorithm is "Edmonds", "LP"
 - when set to False, each edge has weight 1
- **solver** – string (default: None): specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- **verbose** – integer (default: 0): sets the level of verbosity. Set to 0 by default, which means quiet.
- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

See also:

- Wikipedia article Matching_(graph_theory)
- `matching()`

EXAMPLES:

Maximum matching in a cycle graph:

```python
sage: G = BipartiteGraph(graphs.CycleGraph(10))
sage: G.matching()  # needs networkx
[(0, 1, None), (2, 3, None), (4, 5, None), (6, 7, None), (8, 9, None)]
```

```python
g = BipartiteGraph(graphs.CycleGraph(Integer(10)))
g.matching()  # needs networkx
[(0, 1, None), (2, 3, None), (4, 5, None), (6, 7, None), (8, 9, None)]
```
The size of a maximum matching in a complete bipartite graph using Eppstein:

```python
sage: G = BipartiteGraph(graphs.CompleteBipartiteGraph(4, 5))
sage: G.matching(algorithm="Eppstein", value_only=True)  # needs networkx
4
```

```python
>>> from sage.all import *
>>> G = BipartiteGraph(graphs.CompleteBipartiteGraph(Integer(4),Integer(5)))
>>> G.matching(algorithm="Eppstein", value_only=True)  # needs networkx
4
```

`matching_polynomial (algorithm='Godsil', name=None)`

Compute the matching polynomial.

The matching polynomial is defined as in [God1993], where \(p(G, k) \) denotes the number of \(k \)-matchings (matchings with \(k \) edges) in \(G \):

\[
\mu(x) = \sum_{k \geq 0} (-1)^k p(G, k) x^{n-2k}
\]

INPUT:

- `algorithm` – string (default: "Godsil"); either "Godsil" or "rook"; "rook" is usually faster for larger graphs
- `name` – string (default: None); name of the variable in the polynomial, set to \(x \) when `name` is None

EXAMPLES:

```python
sage: BipartiteGraph(graphs.CubeGraph(3)).matching_polynomial()  # needs sage.libs.flint
x^8 - 12*x^6 + 42*x^4 - 44*x^2 + 9
```

```python
>>> from sage.all import *
>>> BipartiteGraph(graphs.CubeGraph(Integer(3))).matching_polynomial()  # needs sage.libs.flint
x^8 - 12*x^6 + 42*x^4 - 44*x^2 + 9
```

```python
sage: x = polygen(QQ)
sage: g = BipartiteGraph(graphs.CompleteBipartiteGraph(16, 16))
sage: bool(factorial(Integer(16)) * laguerre(Integer(16), x^2) == g.matching_polynomial(algorithm='rook'))
True
```

```python
>>> from sage.all import *
>>> x = polygen(QQ)
>>> g = BipartiteGraph(graphs.CompleteBipartiteGraph(Integer(16), Integer(16)))
>>> bool(factorial(Integer(16)) * laguerre(Integer(16), x**Integer(2)) == g.matching_polynomial(algorithm='rook'))
True
```

Compute the matching polynomial of a line with 60 vertices:
The matching polynomial of a tree is equal to its characteristic polynomial:

```
sage: g = graphs.RandomTree(20)
sage: p = g.characteristic_polynomial()  # needs sage.modules
sage: p == BipartiteGraph(g).matching_polynomial(algorithm='rook')  # needs sage.modules
True
```

perfect_matchings *(labels=False)*

Return an iterator over all perfect matchings of the bipartite graph.

ALGORITHM:

Choose a vertex \(v \) in the right set of vertices, then recurse through all edges incident to \(v \), removing one edge at a time whenever an edge is added to a matching.

INPUT:

- **labels** – boolean (default: False); when True, the edges in each perfect matching are triples (containing the label as the third element), otherwise the edges are pairs.

See also:

- perfect_matchings()
- matching()

EXAMPLES:

```
sage: B = BipartiteGraph({0: [5, 7], 1: [4, 6, 7], 2: [4, 5, 8],
....: 3: [4, 5, 6], 6: [9], 8: [9]})
sage: len(list(B.perfect_matchings()))
6
sage: G = Graph(B.edges(sort=False))
```
```python
sage: len(list(G.perfect_matchings()))
6
```

>>> from sage.all import *

```python
>>> B = BipartiteGraph({Integer(0): [Integer(5), Integer(7)], Integer(1):
...
Integer(4), Integer(6), Integer(7)], Integer(2): [Integer(4), Integer(5),
...
Integer(8)],
...
Integer(3): [Integer(4), Integer(5), Integer(6)],
...
Integer(6): [Integer(9)], Integer(8): [Integer(9)]}

>>> len(list(B.perfect_matchings()))
6
```

```python
>>> G = Graph(B.edges(sort=False))
```

```python
>>> len(list(G.perfect_matchings()))
6
```

The algorithm ensures that for any edge of a perfect matching, the first vertex is on the left set of vertices and the second vertex in the right set:

```python
sage: B = BipartiteGraph({0: [5, 7], 1: [4, 6, 7], 2: [4, 5, 8],
...
3: [4, 5, 6], 6: [9], 8: [9]})
```

```python
sage: m = next(B.perfect_matchings(labels=False))
```

```python
sage: B.left
{0, 1, 2, 3, 9}
```

```python
sage: B.right
{4, 5, 6, 7, 8}
```

```python
sage: sorted(m)
[(0, 7), (1, 4), (2, 5), (3, 6), (9, 8)]
```

```python
sage: all((u in B.left and v in B.right) for u, v in m)
True
```

Multiple edges are taken into account:

```python
sage: B = BipartiteGraph({0: [5, 7], 1: [4, 6, 7], 2: [4, 5, 8],
...
3: [4, 5, 6], 6: [9], 8: [9]})
```

```python
sage: B.allow_multiple_edges(True)
```

```python
sage: B.add_edge(0, 7)
```

```python
sage: len(list(B.perfect_matchings()))
10
```
>>> from sage.all import *
>>> B = BipartiteGraph({Integer(0): [Integer(5), Integer(7)], Integer(1):
˓→[Integer(4), Integer(6), Integer(7)], Integer(2): [Integer(4), Integer(5),
˓→Integer(8)], Integer(3): [Integer(4), Integer(5), Integer(6)], ...
˓→Integer(6): [Integer(9)], Integer(8): [Integer(9)]})
>>> B.allow_multiple_edges(True)
>>> B.add_edge(Integer(0), Integer(7))
>>> len(list(B.perfect_matchings()))
10

Empty graph:

gate: list(BipartiteGraph().perfect_matchings())
[]

>>> from sage.all import *
>>> list(BipartiteGraph().perfect_matchings())
[]

Bipartite graph without perfect matching:

gate: B = BipartiteGraph(graphs.CompleteBipartiteGraph(3, 4))
gate: list(B.perfect_matchings())
[]

>>> from sage.all import *
>>> B = BipartiteGraph(graphs.CompleteBipartiteGraph(Integer(3), Integer(4)))
>>> list(B.perfect_matchings())
[]

Check that the number of perfect matchings of a complete bipartite graph is consistent with the matching polynomial:

gate: B = BipartiteGraph(graphs.CompleteBipartiteGraph(4, 4))
gate: len(list(B.perfect_matchings())) # needs sage.modules
24

gate: B.matching_polynomial(algorithm='rook')(0)
24

>>> from sage.all import *
>>> B = BipartiteGraph(graphs.CompleteBipartiteGraph(Integer(4), Integer(4)))
>>> len(list(B.perfect_matchings())) # needs sage.modules
24
>>> B.matching_polynomial(algorithm='rook')(Integer(0))
24

plot (*args, **kwds)

Override Graph’s plot function, to illustrate the bipartite nature.

EXAMPLES:

gate: B = BipartiteGraph(graphs.CycleGraph(20))
gate: B.plot() # (continues on next page)
needs sage.plot
Graphics object consisting of 41 graphics primitives

>>> from sage.all import *

>>> B = BipartiteGraph(graphs.CycleGraph(Integer(20)))

>>> B.plot() #...

needs sage.plot
Graphics object consisting of 41 graphics primitives

project_left()

Project self onto left vertices. Edges are 2-paths in the original.

EXAMPLES:

```python
sage: B = BipartiteGraph(graphs.CycleGraph(20))
sage: G = B.project_left()
sage: G.order(), G.size()
(10, 10)
```

project_right()

Project self onto right vertices. Edges are 2-paths in the original.

EXAMPLES:

```python
sage: B = BipartiteGraph(graphs.CycleGraph(20))
sage: G = B.project_right()
sage: G.order(), G.size()
(10, 10)
```

reduced_adjacency_matrix *(sparse, base_ring=True, **kwds)*

Return the reduced adjacency matrix for the given graph.

A reduced adjacency matrix contains only the non-redundant portion of the full adjacency matrix for the bipartite graph. Specifically, for zero matrices of the appropriate size, for the reduced adjacency matrix \(H \), the full adjacency matrix is \([[0, H^*], [H, 0]] \).

By default, the matrix returned is over the integers.

INPUT:

- **sparse** – boolean (default: True); whether to return a sparse matrix
- **base_ring** – a ring (default: None); the base ring of the matrix space to use. By default, the base ring is ZZ if the graph is not weighted and otherwise the same ring as the (first) weights.
- ****kwds – other keywords to pass to `matrix()`
EXAMPLES:

Bipartite graphs that are not weighted will return a matrix over ZZ, unless a base ring is specified:

```python
sage: # needs sage.modules
sage: M = Matrix([(1,1,1,0,0,0,0), (1,0,0,1,1,0,0),
               (0,1,0,1,0,1,0), (1,1,0,0,1,0,1)])
sage: B = BipartiteGraph(M)
sage: N = B.reduced_adjacency_matrix(); N
[1 1 0 0 0 0]
[1 0 0 1 1 0]
[0 1 0 1 0 1]
[1 1 0 1 0 1]
sage: N == M
True
sage: N[0,0].parent()
Integer Ring
sage: N2 = B.reduced_adjacency_matrix(base_ring=RDF); N2
[1.0 1.0 1.0 0.0 0.0 0.0 0.0]
[1.0 0.0 0.0 1.0 1.0 0.0 0.0]
[0.0 1.0 0.0 1.0 0.0 1.0 0.0]
[1.0 1.0 0.0 1.0 0.0 0.0 1.0]
sage: N2[0, 0].parent()
Real Double Field

>>> from sage.all import *
>>> # needs sage.modules
>>> M = Matrix([(Integer(1),Integer(1),Integer(1),Integer(0),Integer(0),
               Integer(0),Integer(0)), (Integer(1),Integer(0),Integer(0),Integer(1),
               Integer(1),Integer(0),Integer(0)), ...
               (Integer(0),Integer(1),Integer(1),Integer(0),Integer(1),Integer(0),
               Integer(0)), (Integer(1),Integer(1),Integer(0),Integer(0),Integer(1),
               Integer(0),Integer(0),Integer(1))])
>>> B = BipartiteGraph(M)
>>> N = B.reduced_adjacency_matrix(); N
[1 1 0 0 0 0]
[1 0 0 1 1 0]
[0 1 0 1 0 1]
[1 1 0 1 0 1]
>>> N == M
True
>>> N[Integer(0),Integer(0)].parent()
Integer Ring
>>> N2 = B.reduced_adjacency_matrix(base_ring=RDF); N2
[1.0 1.0 1.0 0.0 0.0 0.0 0.0]
[1.0 0.0 0.0 1.0 1.0 0.0 0.0]
[0.0 1.0 0.0 1.0 0.0 1.0 0.0]
[1.0 1.0 0.0 1.0 0.0 0.0 1.0]
>>> N2[Integer(0), Integer(0)].parent()
Real Double Field
```

Multi-edge graphs also return a matrix over ZZ, unless a base ring is specified:

```python
sage: # needs sage.modules
sage: M = Matrix([(1,1,2,0,0), (0,2,1,1,1), (0,1,2,1,1)])
sage: B = BipartiteGraph(M, multiedges=True, sparse=True)
sage: N = B.reduced_adjacency_matrix()
sage: N == M
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

True

sage: N[0,0].parent()
Integer Ring

sage: N2 = B.reduced_adjacency_matrix(base_ring=RDF)

sage: N2[0, 0].parent()
Real Double Field

>>> from sage.all import *
>>> # needs sage.modules

>>> M = Matrix(
[(Integer(1),Integer(1),Integer(2),Integer(0),Integer(0)),
 (Integer(0),Integer(2),Integer(1),Integer(1),Integer(1)),
 (Integer(0),Integer(1),Integer(2),Integer(1),Integer(1))])

>>> B = BipartiteGraph(M, multiedges=True, sparse=True)

>>> N = B.reduced_adjacency_matrix()

>>> N == M
True

sage: N[0,0].parent()
Integer Ring

sage: N2 = B.reduced_adjacency_matrix(base_ring=RDF)

sage: N2[0, 0].parent()
Real Double Field

Weighted graphs will return a matrix over the ring given by their (first) weights, unless a base ring is specified:

sage: # needs sage.modules sage.rings.finite_rings

sage: F.<a> = GF(4)

sage: MS = MatrixSpace(F, 2, 3)

sage: M = MS.matrix([[Integer(0), Integer(1), a+Integer(1)],
 [a, Integer(1), a]])

sage: B = BipartiteGraph(M, weighted=True, sparse=True)

sage: N = B.reduced_adjacency_matrix(sparse=False)

sage: N == M
True

sage: N[0,0].parent()
Finite Field in a of size 2^2

sage: N2 = B.reduced_adjacency_matrix(base_ring=F)

sage: N2[0, 0].parent()
Finite Field in a of size 2^2

>>> from sage.all import *

>>> # needs sage.modules sage.rings.finite_rings

>>> F = GF(Integer(4), names=('a',)); (a,) = F._first_ngens(1)

>>> MS = MatrixSpace(F, Integer(2), Integer(3))

>>> M = MS.matrix([[Integer(0), Integer(1), a+Integer(1)],
 [a, Integer(1), a]])

>>> B = BipartiteGraph(M, weighted=True, sparse=True)

>>> N = B.reduced_adjacency_matrix(sparse=False)

>>> N == M
True

sage: N[Integer(0),Integer(0)].parent()
Finite Field in a of size 2^2

sage: N2 = B.reduced_adjacency_matrix(base_ring=F)

sage: N2[Integer(0), Integer(0)].parent()
Finite Field in a of size 2^2

save_afile(fname)

Save the graph to file in alist format.

1.4. Bipartite graphs 759
Saves this graph to file in David MacKay's alist format, see http://www.inference.phy.cam.ac.uk/mackay/codes/data.html for examples and definition of the format.

EXAMPLES:

```python
sage: # needs sage.modules
sage: M = Matrix([[1,1,1,0,0,0,0],
              ..
              ..
              ..
              [0,1,0,1,0,1,0],
  (1,1,0,1,0,0,1)])
sage: b = BipartiteGraph(M)
sage: import tempfile
sage: with tempfile.NamedTemporaryFile() as f:
    b.save_afile(f.name)
    b2 = BipartiteGraph(f.name)
sage: b.is_isomorphic(b2)
True
```

```python
>>> from sage.all import *
>>> # needs sage.modules
>>> M = Matrix([[Integer(1),Integer(1),Integer(1),Integer(0),Integer(0),
              ..
              ..
              ..
              [Integer(0),Integer(1),Integer(0)],
  Integer(1),Integer(0),Integer(0),Integer(1),
  Integer(1),Integer(1),Integer(0),Integer(0),Integer(0),Integer(1),
  Integer(1),Integer(1),Integer(0),Integer(0),Integer(1),
  Integer(1),Integer(0),Integer(0),Integer(1)])
>>> M
[1 1 0 0 0 0]
[1 0 1 0 0 0]
[0 1 0 1 0 1]
[1 1 0 1 0 0]
>>> b = BipartiteGraph(M)
>>> import tempfile
>>> with tempfile.NamedTemporaryFile() as f:
    b.save_afile(f.name)
    b2 = BipartiteGraph(f.name)
>>> b.is_isomorphic(b2)
True
```

to_undirected()

Return an undirected Graph (without bipartite constraint) of the given object.

EXAMPLES:

```python
sage: BipartiteGraph(graphs.CycleGraph(6)).to_undirected()
Cycle graph: Graph on 6 vertices
```

```python
>>> from sage.all import *
>>> BipartiteGraph(graphs.CycleGraph(Integer(6))).to_undirected()
Cycle graph: Graph on 6 vertices
```

vertex_cover(algorithm, value_only=`Konig`, reduction_rules=False, solver=True, verbose=None, integrality_tolerance=0)

Return a minimum vertex cover of self represented by a set of vertices.
A minimum vertex cover of a graph is a set S of vertices such that each edge is incident to at least one element of S, and such that S is of minimum cardinality. For more information, see Wikipedia article Vertex_cover.

Equivalently, a vertex cover is defined as the complement of an independent set.

As an optimization problem, it can be expressed as follows:

Minimize: $\sum_{v \in G} b_v$

Such that: $\forall (u, v) \in G.\text{edges}(sort = \text{True}), b_u + b_v \geq 1$

$\forall x \in G, b_x$ is a binary variable

INPUT:

- **algorithm** – string (default: "Konig"); algorithm to use among:
 - "Konig" will compute a minimum vertex cover using Konig's algorithm (Wikipedia article König%27s_theorem_(graph_theory))
 - "Cliquer" will compute a minimum vertex cover using the Cliquer package
 - "MILP" will compute a minimum vertex cover through a mixed integer linear program
 - "mcqd" will use the MCQD solver (http://www.sicmm.org/~konc/maxclique/), and the MCQD package must be installed

- **value_only** – boolean (default: False); if set to True, only the size of a minimum vertex cover is returned. Otherwise, a minimum vertex cover is returned as a list of vertices.

- **reduction_rules** – (default: True); specify if the reductions rules from kernelization must be applied as pre-processing or not. See [ACFLSS04] for more details. Note that depending on the instance, it might be faster to disable reduction rules. This parameter is currently ignored when algorithm == "Konig".

- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:

On the Cycle Graph:

```python
sage: B = BipartiteGraph(graphs.CycleGraph(6))
sage: len(B.vertex_cover())  #... → needs networkx
3
sage: B.vertex_cover(value_only=True)  #... → needs networkx
[3]
```

```python
>>> from sage.all import *
>>> B = BipartiteGraph(graphs.CycleGraph(Integer(6)))
>>> len(B.vertex_cover())  #... → needs networkx
3
>>> B.vertex_cover(value_only=True)  #...
```

(continues on next page)
The two algorithms should return the same result:

```sage
# needs networkx numpy
g = BipartiteGraph(graphs.RandomBipartite(10, 10, .5))
vc1 = g.vertex_cover(algorithm="Konig")
vc2 = g.vertex_cover(algorithm="Cliquer")
len(vc1) == len(vc2)
```

```sage
# needs networkx numpy

from sage.all import *

g = BipartiteGraph(graphs.RandomBipartite(Integer(10), Integer(10), RealNumber(.5)))
vc1 = g.vertex_cover(algorithm="Konig")
vc2 = g.vertex_cover(algorithm="Cliquer")
len(vc1) == len(vc2)
```

1.5 View classes

This module implements views for (di)graphs. A view is a read-only iterable container enabling operations like `for e in E` and `e in E`. It is updated as the graph is updated. Hence, the graph should not be updated while iterating through a view. Views can be iterated multiple times.

Todo:
- View of neighborhood to get open/close neighborhood of a vertex/set of vertices

1.5.1 Classes

```python
class sage.graphs.views.EdgesView
    Bases: object
    EdgesView class.
```

This class implements a read-only iterable container of edges enabling operations like `for e in E` and `e in E`. An `EdgesView` can be iterated multiple times, and checking membership is done in constant time. It avoids the construction of edge lists and so consumes little memory. It is updated as the graph is updated. Hence, the graph should not be updated while iterating through an `EdgesView`.

INPUT:
- `G` – a (di)graph
- `vertices` – list (default: `None`); an iterable container of vertices or `None`. When set, consider only edges incident to specified vertices.
- `vertices2` – list (default: `None`); an iterable container of vertices or `None`. When set, consider only edges incident to specified vertices. More precisely:
- When both vertices and vertices2 are set, consider only edges \((u, v, l)\) with \(u\) in vertices and \(v\) in vertices2.

- When vertices is None and vertices2 is set, consider only edges \((u, v, l)\) with \(v\) in vertices2.

- labels – boolean (default: True); if False, each edge is simply a pair \((u, v)\) of vertices

- ignore_direction – boolean (default: False); only applies to directed graphs. If True, searches across edges in either direction.

- sort – boolean (default: False); whether to sort edges according the ordering specified with parameter key. If False (default), edges are not sorted. This is the fastest and less memory consuming method for iterating over edges.

- key – a function (default: None); a function that takes an edge (a pair or a triple, according to the labels keyword) as its one argument and returns a value that can be used for comparisons in the sorting algorithm. This parameter is ignored when sort = False.

- sort_vertices – boolean (default: True); whether to sort the ends of the edges; not sorting the ends is faster; only applicable to undirected graphs when sort is False

Warning: Since any object may be a vertex, there is no guarantee that any two vertices will be comparable, and thus no guarantee how two edges may compare. With default objects for vertices (all integers), or when all the vertices are of the same simple type, then there should not be a problem with how the vertices will be sorted. However, if you need to guarantee a total order for the sorting of the edges, use the key argument, as illustrated in the examples below.

EXAMPLES:

```python
sage: from sage.graphs.views import EdgesView
sage: G = Graph([(0, 1, 'C'), (0, 2, 'A'), (1, 2, 'B')])

sage: E = EdgesView(G, sort=True); E
\[(0, 1, C), (0, 2, A), (1, 2, B)\]

sage: (1, 2) in E
False

sage: (1, 2, 'B') in E
True

sage: E = EdgesView(G, labels=False, sort=True); E
\[(0, 1), (0, 2), (1, 2)\]

sage: (1, 2) in E
True

sage: (1, 2, 'B') in E
False

sage: [e for e in E]
\[(0, 1), (0, 2), (1, 2)\]
```

```python
>>> from sage.all import *
>>> from sage.graphs.views import EdgesView

>>> G = Graph([(Integer(0), Integer(1), 'C'), (Integer(0), Integer(2), 'A'),
                  (Integer(1), Integer(2), 'B')])

>>> E = EdgesView(G, sort=True); E
\[(0, 1, C), (0, 2, A), (1, 2, B)\]

>>> (Integer(1), Integer(2)) in E
False

>>> (Integer(1), Integer(2), 'B') in E
True
```

(continues on next page)
An `EdgesView` can be iterated multiple times:

```python
sage: G = graphs.CycleGraph(3)
sage: print(E)
[(0, 1), (0, 2), (1, 2)]
sage: print(E)
[(0, 1), (0, 2), (1, 2)]
sage: for e in E:
.... for ee in E:
.... print((e, ee))
((0, 1), (0, 1))
((0, 1), (0, 2))
((0, 1), (1, 2))
((0, 2), (0, 1))
((0, 2), (0, 2))
((0, 2), (1, 2))
((1, 2), (0, 1))
((1, 2), (0, 2))
((1, 2), (1, 2))
```

We can check if a view is empty:

```python
sage: E = EdgesView(graphs.CycleGraph(3), sort=False)
sage: if E:
.... print('not empty')
not empty
sage: E = EdgesView(Graph(), sort=False)
sage: if not E:
```

764 Chapter 1. Graph objects and methods
When `sort` is `True`, edges are sorted by default in the default fashion:

```
sage: G = Graph([(0, 1, 'C'), (0, 2, 'A'), (1, 2, 'B')])
sage: E = EdgesView(G, sort=True); E
[(0, 1, 'C'), (0, 2, 'A'), (1, 2, 'B')]
```

This can be overridden by specifying a key function. This first example just ignores the labels in the third component of the triple:

```
sage: G = Graph([(0, 1, 'C'), (0, 2, 'A'), (1, 2, 'B')])
sage: E = EdgesView(G, sort=True, key=lambda x: (x[1], -x[0])); E
[(0, 1, 'C'), (1, 2, 'B'), (0, 2, 'A')]
```

We can also sort according to the labels:

```
sage: G = Graph([(0, 1, 'C'), (0, 2, 'A'), (1, 2, 'B')])
sage: E = EdgesView(G, sort=True, key=lambda x: x[2]); E
[(0, 2, 'A'), (1, 2, 'B'), (0, 1, 'C')]
```

Not sorting the ends of the vertices:

```
sage: G = Graph()
sage: G.add_edges([(1, 2), [2, 3], [0, 3]])
```

(continues on next page)
sage: E = EdgesView(G, sort=False, sort_vertices=False); E
[(3, 0, None), (2, 1, None), (3, 2, None)]

With a directed graph:

sage: G = digraphs.DeBruijn(2, 2) # needs sage.combinat
sage: E = EdgesView(G, labels=False, sort=True); E # needs sage.combinat
[('00', '00'), ('00', '01'), ('01', '10'), ('01', '11'),
 ('10', '00'), ('10', '01'), ('11', '10'), ('11', '11')]

We can consider only edges incident to a specified set of vertices:

sage: G = graphs.CycleGraph(5)
sage: E = EdgesView(G, vertices=[0, 1], labels=False, sort=True); E
[(0, 1), (0, 4), (1, 2)]

(continued from previous page)
We can ignore the direction of the edges of a directed graph, in which case we search across edges in either direction:

```python
from sage.all import *

G = digraphs.Circuit(Integer(5))
E = EdgesView(G, vertices=[Integer(0), Integer(1)], labels=False, sort=True, ignore_direction=True); E

>>> (Integer(1), Integer(0)) in E
True
```

We can consider only the edges between two specified sets of vertices:

```python
sage: G = Graph([(0, 1), (1, 2)])
sage: E = EdgesView(G, vertices=[0], vertices2=[1], labels=False)
sage: (0, 1) in E and (1, 2) not in E
True
```
sage: EdgesView(D, vertices=[1], vertices2=[0], labels=False)
[]
sage: E = EdgesView(D, vertices=[1], vertices2=[0], labels=False, ignore_direction=True)
sage: (0, 1) in E and (1, 2) not in E
True
sage: E = EdgesView(D, vertices=[0], labels=False)
sage: (0, 1) in E and (1, 2) not in E
True
sage: E = EdgesView(D, vertices2=[1], labels=False)
sage: (0, 1) in E and (1, 2) not in E
True
sage: E = EdgesView(D, vertices2=[1], labels=False, ignore_direction=True)
sage: (0, 1) in E and (1, 2) in E
True

```python
>>> from sage.all import *
>>> G = Graph([(Integer(0), Integer(1)), (Integer(1), Integer(2))])
>>> E = EdgesView(G, vertices=[Integer(0)], vertices2=[Integer(1)], labels=False)
>>> (Integer(0), Integer(1)) in E and (Integer(1), Integer(2)) not in E
True
>>> E = EdgesView(G, vertices=[Integer(0)], labels=False)
>>> (Integer(0), Integer(1)) in E and (Integer(1), Integer(2)) not in E
True
>>> E = EdgesView(G, vertices2=[Integer(1)], labels=False)
>>> (Integer(0), Integer(1)) in E and (Integer(1), Integer(2)) in E
True
>>> D = DiGraph([(Integer(0), Integer(1)), (Integer(1), Integer(2))])
>>> E = EdgesView(D, vertices=[Integer(0)], vertices2=[Integer(1)], labels=False)
>>> (Integer(0), Integer(1)) in E and (Integer(1), Integer(2)) not in E
True
>>> EdgesView(D, vertices=[Integer(1)], vertices2=[Integer(0)], labels=False)
[]
>>> E = EdgesView(D, vertices=[Integer(1)], vertices2=[Integer(0)], labels=False, ignore_direction=True)
>>> (Integer(0), Integer(1)) in E and (Integer(1), Integer(2)) not in E
True
>>> E = EdgesView(D, vertices=[Integer(0)], labels=False)
>>> (Integer(0), Integer(1)) in E and (Integer(1), Integer(2)) not in E
True
>>> E = EdgesView(D, vertices2=[Integer(1)], labels=False)
>>> (Integer(0), Integer(1)) in E and (Integer(1), Integer(2)) not in E
True
>>> E = EdgesView(D, vertices2=[Integer(1)], labels=False, ignore_direction=True)
>>> (Integer(0), Integer(1)) in E and (Integer(1), Integer(2)) in E
True
```

A view is updated as the graph is updated:

```python
sage: G = Graph()
sage: E = EdgesView(G, vertices=[0, 3], labels=False, sort=True); E
[]
sage: G.add_edges([(0, 1), (1, 2)])
sage: E
[(0, 1)]
sage: G.add_edge(2, 3)
```
Hence, the graph should not be updated while iterating through a view:

```
sage: G = Graph([('a', 'b'), ('b', 'c')])
sage: E = EdgesView(G, labels=False, sort=False); E
[(('a', 'b'), ('b', 'c'))]
sage: for u, v in E:
    ....: G.add_edge(u + u, v + v)
  Traceback (most recent call last):
  ...:
  RuntimeError: dictionary changed size during iteration
```

Two `EdgesView` are considered equal if they report either both directed, or both undirected edges, they have the same settings for `ignore_direction`, they have the same settings for `labels`, and they report the same edges in the same order:

```
sage: G = graphs.HouseGraph()
sage: EG = EdgesView(G, sort=False)
sage: H = Graph(EG)
sage: EH = EdgesView(H, sort=False)
sage: EG == EH
True
```
The sum of two \texttt{EdgesView} is a list containing the edges in both \texttt{EdgesView}:

\begin{verbatim}
sage: E1 = EdgesView(Graph([[(0, 1)]]), labels=False, sort=False)
sage: E2 = EdgesView(Graph([[(2, 3)]]), labels=False, sort=False)
sage: E1 + E2
[(0, 1), (2, 3)]
sage: E2 + E1
[(2, 3), (0, 1)]
\end{verbatim}

Recall that a \texttt{EdgesView} is read-only and that this method returns a list:

\begin{verbatim}
sage: E1 += E2
type(E1) is list
True
\end{verbatim}

It is also possible to get the sum a \texttt{EdgesView} with itself \textit{n} times:

\begin{verbatim}
sage: E = EdgesView(Graph([[(0, 1), (2, 3)]], labels=False, sort=True))
sage: E * 3
\end{verbatim}
Recall that a `EdgesView` is read-only and that this method returns a list:

```
sage: E *= 2
type(E) is list
True
```

We can ask for the i-th edge, or a slice of the edges as a list:

```
sage: E = EdgesView(graphs.HouseGraph(), labels=False, sort=True)
sage: E[0]
(0, 1)
sage: E[2]
(1, 3)
sage: E[-1]
(3, 4)
sage: E[1:-1]
[(0, 2), (1, 3), (2, 3), (2, 4)]
sage: E[:1:-1]
[(3, 4), (2, 4), (2, 3), (1, 3), (0, 2), (0, 1)]
```

1.5. View classes
2.1 Common graphs

All graphs in Sage can be built through the graphs object. In order to build a complete graph on 15 elements, one can do:

```python
sage: g = graphs.CompleteGraph(15)
```

To get a path with 4 vertices, and the house graph:

```python
sage: p = graphs.PathGraph(4)
sage: h = graphs.HouseGraph()
```

More interestingly, one can get the list of all graphs that Sage knows how to build by typing `graphs.` in Sage and then hitting Tab.

Basic structures

<table>
<thead>
<tr>
<th>BullGraph</th>
<th>DiamondGraph</th>
<th>HouseXGraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>ButterflyGraph</td>
<td>GemGraph</td>
<td>LadderGraph</td>
</tr>
<tr>
<td>CircularLadderGraph</td>
<td>DartGraph</td>
<td>LollipopGraph</td>
</tr>
<tr>
<td>ClawGraph</td>
<td>ForkGraph</td>
<td>MoebiusLadderGraph</td>
</tr>
<tr>
<td>CycleGraph</td>
<td>DipoleGraph</td>
<td>PathGraph</td>
</tr>
<tr>
<td>CompleteBipartiteGraph</td>
<td>EmptyGraph</td>
<td>StarGraph</td>
</tr>
<tr>
<td>CompleteGraph</td>
<td>Grid2dGraph</td>
<td>TadpoleGraph</td>
</tr>
<tr>
<td>CompleteMultipartiteGraph</td>
<td>GridGraph</td>
<td>ToroidalGrid2dGraph</td>
</tr>
<tr>
<td>CorrelationGraph</td>
<td>HouseGraph</td>
<td>Toroidal16RegularGrid2dGraph</td>
</tr>
</tbody>
</table>

Small Graphs

A small graph is just a single graph and has no parameter influencing the number of edges or vertices.
<table>
<thead>
<tr>
<th>Graph Name</th>
<th>Graph Name</th>
<th>Graph Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balaban10Cage</td>
<td>GolombGraph</td>
<td>MathonStronglyRegularGraph</td>
</tr>
<tr>
<td>Balaban11Cage</td>
<td>GossetGraph</td>
<td>McGGeeGraph</td>
</tr>
<tr>
<td>BidiakisCube</td>
<td>graph_3073</td>
<td>McLaughlinGraph</td>
</tr>
<tr>
<td>BiggsSmithGraph</td>
<td>GrayGraph</td>
<td>MeredithGraph</td>
</tr>
<tr>
<td>BlanusaFirstSnarkGraph</td>
<td>GritsenkoGraph</td>
<td>MoebiusKantorGraph</td>
</tr>
<tr>
<td>BlanusaSecondSnarkGraph</td>
<td>GrotzschGraph</td>
<td>MoserSpindle</td>
</tr>
<tr>
<td>BrinkmannGraph</td>
<td>HallJankoGraph</td>
<td>NauruGraph</td>
</tr>
<tr>
<td>BrouwerHaemersGraph</td>
<td>HarborthGraph</td>
<td>PappusGraph</td>
</tr>
<tr>
<td>BuckyBall</td>
<td>HarriesGraph</td>
<td>PoussinGraph</td>
</tr>
<tr>
<td>CameronGraph</td>
<td>HarriesWongGraph</td>
<td>PerkelGraph</td>
</tr>
<tr>
<td>Cell1600</td>
<td>HeawoodGraph</td>
<td>PetersenGraph</td>
</tr>
<tr>
<td>Cell1120</td>
<td>HerschelGraph</td>
<td>RobertsonGraph</td>
</tr>
<tr>
<td>ChvatalGraph</td>
<td>HigmanSimsGraph</td>
<td>SchlaefliGraph</td>
</tr>
<tr>
<td>ClebschGraph</td>
<td>HoffmanGraph</td>
<td>shortened_00_11_binary_Golay_code_graph</td>
</tr>
<tr>
<td>cocliques_HoffmannSingleton</td>
<td>HoffmanSingletonGraph</td>
<td>shortened_000_111_extended_binary_Golay_code_graph</td>
</tr>
<tr>
<td>ConwaySmith_for_3S7</td>
<td>HoltGraph</td>
<td>ShrikhandeGraph</td>
</tr>
<tr>
<td>CoxeterGraph</td>
<td>HortonGraph</td>
<td>SimsGewirtzGraph</td>
</tr>
<tr>
<td>DesarguesGraph</td>
<td>IoninKharaghani765Graph</td>
<td>SousselierGraph</td>
</tr>
<tr>
<td>DejterGraph</td>
<td>IvanovIvanovFaradjevGraph</td>
<td>SylvesterGraph</td>
</tr>
<tr>
<td>distance_3_doubly_truncated_Golay_code_graph</td>
<td>J2Graph</td>
<td>SzekeresSnarkGraph</td>
</tr>
<tr>
<td>DoubleStarSnark</td>
<td>JankoKharaghaniGraph</td>
<td>ThomsenGraph</td>
</tr>
<tr>
<td>DoublyTruncatedWittGraph</td>
<td>JankoKharaghaniTonchevGraph</td>
<td>TietzeGraph</td>
</tr>
<tr>
<td>DurerGraph</td>
<td>KittellGraph</td>
<td>TruncatedIcosidodecahedralGraph</td>
</tr>
<tr>
<td>DyckGraph</td>
<td>KrackhardtKiteGraph</td>
<td>TruncatedTetrahedralGraph</td>
</tr>
<tr>
<td>EllinghamHorton54Graph</td>
<td>Klein3RegularGraph</td>
<td>TruncatedWittGraph</td>
</tr>
<tr>
<td>EllinghamHorton78Graph</td>
<td>Klein7RegularGraph</td>
<td>Tutte12Cage</td>
</tr>
<tr>
<td>ErreraGraph</td>
<td>LargeWittGraph</td>
<td>TutteCoxeterGraph</td>
</tr>
<tr>
<td>F26AGraph</td>
<td>LeonardGraph</td>
<td>TutteGraph</td>
</tr>
<tr>
<td>FlowerSnark</td>
<td>LjubijanaGraph</td>
<td>U42Graph216</td>
</tr>
<tr>
<td>FolkmanGraph</td>
<td>vanLintSchrijverGraph</td>
<td>U42Graph540</td>
</tr>
<tr>
<td>FosterGraph</td>
<td>LivingstonGraph</td>
<td>WagnerGraph</td>
</tr>
<tr>
<td>FosterGraph3S6</td>
<td>locally_GQ42_distance_transitive_graph</td>
<td>WatkinsSnarkGraph</td>
</tr>
<tr>
<td>FranklinGraph</td>
<td>LocalMcLaughlinGraph</td>
<td>WellsGraph</td>
</tr>
<tr>
<td>FruchtGraph</td>
<td>M22Graph</td>
<td>WienerArayaGraph</td>
</tr>
<tr>
<td>GoldnerHararyGraph</td>
<td>MarkstroemGraph</td>
<td>SuzukiGraph</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Platonic solids (ordered ascending by number of vertices)

<table>
<thead>
<tr>
<th>Graph Name</th>
<th>Graph Name</th>
<th>Graph Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>TetrahedralGraph</td>
<td>HexahedralGraph</td>
<td>DodecahedralGraph</td>
</tr>
<tr>
<td>OctahedralGraph</td>
<td>IcosahedralGraph</td>
<td></td>
</tr>
</tbody>
</table>

Families of graphs
A family of graph is an infinite set of graphs which can be indexed by fixed number of parameters, e.g. two integer parameters. (A method whose name starts with a small letter does not return a single graph object but a graph iterator or a list of graphs or …)

<table>
<thead>
<tr>
<th>AlternatingFormsGraph</th>
<th>FuzzyBallGraph</th>
<th>nauty_genbg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AztecDiamondGraph</td>
<td>GeneralisedDodecagonGraph</td>
<td>NKStarGraph</td>
</tr>
<tr>
<td>BalancedTree</td>
<td>GeneralisedHexagonGraph</td>
<td>NStarGraph</td>
</tr>
<tr>
<td>BarbellGraph</td>
<td>GeneralisedOctagonGraph</td>
<td>OddGraph</td>
</tr>
<tr>
<td>BilinearFormsGraph</td>
<td>GeneralizedPetersenGraph</td>
<td>PaleyGraph</td>
</tr>
<tr>
<td>BubbleSortGraph</td>
<td>GeneralizedSierpinskiGraph</td>
<td>PasechnikGraph</td>
</tr>
<tr>
<td>CaiFurerImmermanGraph</td>
<td>GoethalsSeidelGraph</td>
<td>petersen_family</td>
</tr>
<tr>
<td>chang_graphs</td>
<td>GrassmannGraph</td>
<td>planar_graphs</td>
</tr>
<tr>
<td>CirculantGraph</td>
<td>HalfCube</td>
<td>plantri_gen</td>
</tr>
<tr>
<td>cographs</td>
<td>HammingGraph</td>
<td>quadrangulations</td>
</tr>
<tr>
<td>cospectral_graphs</td>
<td>HanoiTowerGraph</td>
<td>RingedTree</td>
</tr>
<tr>
<td>CubeGraph</td>
<td>HararyGraph</td>
<td>SierpinskiGasketGraph</td>
</tr>
<tr>
<td>CubeConnectedCycle</td>
<td>HermitianFormsGraph</td>
<td>SquaredSkewHadamardMatrixGraph</td>
</tr>
<tr>
<td>distance_regular_graph</td>
<td>HyperStarGraph</td>
<td>SwitchedSquaredSkewHadamardMatrixGraph</td>
</tr>
<tr>
<td>DorogovtsevGoltsev-MendesGraph</td>
<td>JohnsonGraph</td>
<td>strongly_regular_graph</td>
</tr>
<tr>
<td>DoubleGrassmannGraph</td>
<td>KneserGraph</td>
<td>trees</td>
</tr>
<tr>
<td>DoubleOddGraph</td>
<td>LCFGraph</td>
<td>nauty_gentreeg</td>
</tr>
<tr>
<td>EgawaGraph</td>
<td>line_graph_forbidden_subgraphs</td>
<td>triangulations</td>
</tr>
<tr>
<td>FibonacciTree</td>
<td>MathonPseudocyclicMergingGraph</td>
<td>TuranGraph</td>
</tr>
<tr>
<td>FoldedCubeGraph</td>
<td>MathonPseudocyclic-StronglyRegularGraph</td>
<td>UstimenkoGraph</td>
</tr>
<tr>
<td>FriendshipGraph</td>
<td>MuzychukS6Graph</td>
<td>WheelGraph</td>
</tr>
<tr>
<td>fullerenes</td>
<td>MycielskiGraph</td>
<td>WindmillGraph</td>
</tr>
<tr>
<td>FurerGadget</td>
<td>MycielskiStep</td>
<td></td>
</tr>
<tr>
<td>fusenes</td>
<td>nauty_geng</td>
<td></td>
</tr>
</tbody>
</table>

Graphs from classical geometries over finite fields

A number of classes of graphs related to geometries over finite fields and quadrics and Hermitean varieties there.

<table>
<thead>
<tr>
<th>AffineOrthogonalPolar-Graph</th>
<th>SymplecticDualPolarGraph</th>
<th>HaemersGraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>AhrensSzekeresGeneralizedQuadrangleGraph</td>
<td>SymplecticPolarGraph</td>
<td>CossidentePenttilaGraph</td>
</tr>
<tr>
<td>NonisotropicOrthogonalPolarGraph</td>
<td>TaylorTwographDescendentSRG</td>
<td>UnitaryDualPolarGraph</td>
</tr>
<tr>
<td>NonisotropicUnitaryPolarGraph</td>
<td>TaylorTwographSRG</td>
<td>UnitaryPolarGraph</td>
</tr>
<tr>
<td>OrthogonalDualPolarGraph</td>
<td>T2starGeneralizedQuadrangleGraph</td>
<td></td>
</tr>
<tr>
<td>OrthogonalPolarGraph</td>
<td>Nowhere0WordsTwoWeight-CodeGraph</td>
<td></td>
</tr>
</tbody>
</table>
Chessboard Graphs

<table>
<thead>
<tr>
<th>BishopGraph</th>
<th>KnightGraph</th>
<th>RookGraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>KingGraph</td>
<td>QueenGraph</td>
<td></td>
</tr>
</tbody>
</table>

Intersection graphs

These graphs are generated by geometric representations. The objects of the representation correspond to the graph vertices and the intersections of objects yield the graph edges.

<table>
<thead>
<tr>
<th>IntersectionGraph</th>
<th>OrthogonalArrayBlockGraph</th>
<th>ToleranceGraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntervalGraph</td>
<td>PermutationGraph</td>
<td></td>
</tr>
</tbody>
</table>

Random graphs

<table>
<thead>
<tr>
<th>RandomBarabasiAlbert</th>
<th>RandomHolmeKim</th>
<th>RandomShell</th>
</tr>
</thead>
<tbody>
<tr>
<td>RandomBicubicPlanar</td>
<td>RandomChordalGraph</td>
<td>RandomToleranceGraph</td>
</tr>
<tr>
<td>RandomBipartite</td>
<td>RandomIntervalGraph</td>
<td>RandomTree</td>
</tr>
<tr>
<td>RandomRegularBipartite</td>
<td>RandomKTree</td>
<td>RandomTreePowerlaw</td>
</tr>
<tr>
<td>RandomBlockGraph</td>
<td>RandomPartialKTree</td>
<td>RandomTriangulation</td>
</tr>
<tr>
<td>RandomBoundedToleranceGraph</td>
<td>RandomLobster</td>
<td>RandomUnitDiskGraph</td>
</tr>
<tr>
<td>RandomGNM</td>
<td>RandomNewmanWattsStrogatz</td>
<td></td>
</tr>
<tr>
<td>RandomGNP</td>
<td>RandomRegular</td>
<td></td>
</tr>
</tbody>
</table>

Graphs with a given degree sequence

<table>
<thead>
<tr>
<th>DegreeSequence</th>
<th>DegreeSequenceConfigurationModel</th>
<th>DegreeSequenceTree</th>
</tr>
</thead>
<tbody>
<tr>
<td>DegreeSequenceBipartite</td>
<td>DegreeSequenceExpected</td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>WorldMap</th>
<th>AfricaMap</th>
</tr>
</thead>
<tbody>
<tr>
<td>EuropeMap</td>
<td>USAMap</td>
</tr>
</tbody>
</table>

AUTHORS:

- Emily Kirkman (2006-11-12): basic structures, node positioning for all constructors
- Emily Kirkman (2006-11-19): docstrings, examples
- Emily Kirkman (2007-01-16): more basic structures, docstrings
- Emily Kirkman (2007-02-14): added more named graphs
Graph Theory, Release 10.4

- Robert Miller (2007-06-08-11): Platonic solids, random graphs, graphs with a given degree sequence, random directed graphs
- Nathann Cohen (2009-08-12): WorldMap
- Michael Yurko (2009-9-01): added hyperstar, (n,k)-star, n-star, and bubblesort graphs
- Harald Schilly and Yann Laigle-Chapuy (2010-03-24): added Fibonacci Tree
- Jason Grout (2010-06-04): cospectral_graphs
- Edward Scheinerman (2010-08-11): RandomTree
- Ed Scheinerman (2010-08-21): added Grotzsch graph and Mycielski graphs
- Ed Scheinerman (2010-11-15): added RandomTriangulation
- Minh Van Nguyen (2010-11-26): added more named graphs
- Keshav Kini (2011-02-16): added Shrikhande and Dyck graphs
- David Coudert (2012-02-10): new RandomGNP generator
- David Coudert (2012-08-02): added chessboard graphs: Queen, King, Knight, Bishop, and Rook graphs
- Marco Cognetta (2016-03-03): added TuranGraph
- Janmenjaya Panda (2024-05-26): added MoebiusLadderGraph

2.1.1 Functions and methods

class sage.graphs.graph_generators.GraphGenerators
Bases: object

A class consisting of constructors for several common graphs, as well as orderly generation of isomorphism class representatives. See the module’s help for a list of supported constructors.

A list of all graphs and graph structures (other than isomorphism class representatives) in this database is available via tab completion. Type “graphs.” and then hit the Tab key to see which graphs are available.

The docstrings include educational information about each named graph with the hopes that this class can be used as a reference.

For all the constructors in this class (except the octahedral, dodecahedral, random and empty graphs), the position dictionary is filled to override the spring-layout algorithm.

ORDERLY GENERATION:

```
graphs(vertices, property=lambda x: True, augment='edges', size=None)
```

This syntax accesses the generator of isomorphism class representatives. Iterates over distinct, exhaustive representatives.

Also: see the use of the nauty package for generating graphs at the nauty_geng() method.

INPUT:
• **vertices** – a natural number or None to infinitely generate bigger and bigger graphs.

• **property** – (default: lambda x: True) any property to be tested on graphs before generation, but note that in general the graphs produced are not the same as those produced by using the property function to filter a list of graphs produced by using the lambda x: True default. The generation process assumes the property has certain characteristics set by the augment argument, and only in the case of inherited properties such that all subgraphs of the relevant kind (for augment='edges' or augment='vertices') of a graph with the property also possess the property will there be no missing graphs. (The property argument is ignored if degree_sequence is specified.)

• **augment** – (default: 'edges') possible values:
 - 'edges' – augments a fixed number of vertices by adding one edge. In this case, all graphs on exactly \(n=\text{vertices} \) are generated. If for any graph \(G \) satisfying the property, every subgraph, obtained from \(G \) by deleting one edge but not the vertices incident to that edge, satisfies the property, then this will generate all graphs with that property. If this does not hold, then all the graphs generated will satisfy the property, but there will be some missing.

 - 'vertices' – augments by adding a vertex and edges incident to that vertex. In this case, all graphs up to \(n=\text{vertices} \) are generated. If for any graph \(G \) satisfying the property, every subgraph, obtained from \(G \) by deleting one vertex and only edges incident to that vertex, satisfies the property, then this will generate all graphs with that property. If this does not hold, then all the graphs generated will satisfy the property, but there will be some missing.

• **size** – (default: None) the size of the graph to be generated.

• **degree_sequence** – (default: None) a sequence of non-negative integers, or None. If specified, the generated graphs will have these integers for degrees. In this case, property and size are both ignored.

• **loops** – (default: False) whether to allow loops in the graph or not.

• **sparse** – (default: True); whether to use a sparse or dense data structure. See the documentation of `Graph`.

• **copy** (boolean) – If set to True (default) this method makes copies of the graphs before returning them. If set to False the method returns the graph it is working on. The second alternative is faster, but modifying any of the graph instances returned by the method may break the function's behaviour, as it is using these graphs to compute the next ones: only use copy = False when you stick to reading the graphs returned.

EXAMPLES:

Print graphs on 3 or less vertices:

```python
sage: for G in graphs(3, augment='vertices'):
    ....:     print(G)
Graph on 0 vertices
Graph on 1 vertex
Graph on 2 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 2 vertices
Graph on 3 vertices
```

```python
>>> from sage.all import *
>>> for G in graphs(Integer(3), augment='vertices'):
...     print(G)
Graph on 0 vertices
Graph on 1 vertex
Graph on 2 vertices
```

(continues on next page)
Graph on 3 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 2 vertices
Graph on 3 vertices

Print graphs on 3 vertices.

```
sage: for G in graphs(3):
    ....:    print(G)
Graph on 3 vertices
```

Generate all graphs with 5 vertices and 4 edges.

```
sage: L = graphs(5, size=4)
sage: len(list(L))
6
```

Generate all graphs with 5 vertices and up to 4 edges.

```
sage: L = list(graphs(5, lambda G: G.size() <= 4))
sage: len(L)
14
sage: graphs_list.show_graphs(L) # long time
←needs sage.plot
```

Generate all graphs with up to 5 vertices and up to 4 edges.

```
sage: L = list(graphs(5, lambda G: G.size() <= 4, augment='vertices'))
sage: len(L)
31
sage: graphs_list.show_graphs(L) # long time
←needs sage.plot
```

2.1. Common graphs
Generate all graphs with degree at most 2, up to 6 vertices.

```python
sage: property = lambda G: ( max([G.degree(v) for v in G] + [0]) <= 2 )
sage: L = list(graphs(6, property, augment='vertices'))
sage: len(L)
45
```

Generate all bipartite graphs on up to 7 vertices: (see OEIS sequence A033995)

```python
sage: L = list( graphs(7, lambda G: G.is_bipartite(), augment='vertices') )
sage: [len([g for g in L if g.order() == i]) for i in [1..7]]
[1, 2, 3, 7, 13, 35, 88]
```

Generate all bipartite graphs on exactly 7 vertices:

```python
sage: L = list( graphs(7, lambda G: G.is_bipartite()) )
sage: len(L)
88
```

Remember that the property argument does not behave as a filter, except for appropriately inheritable properties:
```python
# sage: property = lambda G: G.is_vertex_transitive()
# sage: len(list(graphs(4, property)))
# ... needs sage.groups
1
# sage: sum(1 for g in graphs(4) if property(g))
# ... needs sage.groups
4

# sage: property = lambda G: G.is_bipartite()
# sage: len(list(graphs(4, property)))
7
# sage: sum(1 for g in graphs(4) if property(g))
7

>>> from sage.all import *

>>> property = lambda G: G.is_vertex_transitive()
>>> len(list(graphs(4), property)))
... # needs sage.groups
1
>>> sum(Integer(1) for g in graphs(4) if property(g))
... # needs sage.groups
4

>>> property = lambda G: G.is_bipartite()
>>> len(list(graphs(4), property)))
7
>>> sum(Integer(1) for g in graphs(4) if property(g))
7
```

Generate graphs on the fly: (see OEIS sequence A000088)

```python
sage: for i in range(7):
....:     print(len(list(graphs(i))))
1
1
2
4
11
34
156
```

Generate all simple graphs, allowing loops: (see OEIS sequence A000666)

```python
sage: L = list(graphs(5, augment='vertices', loops=True))
# long time
sage: for i in [0..5]:
...     print(i, len([g for g in L if g.order() == i]))
```

(continues on next page)
Generate all graphs with a specified degree sequence (see OEIS sequence A002851):

```
sage: for i in [4,6,8]: # long time (4s on sage.math, 2012)
    print((i, len([g for g in graphs(i, degree_sequence=[3]*i) if g.is_connected()])))
(4, 1)
(6, 2)
(8, 5)
sage: for i in [4,6,8]: # long time (7s on sage.math, 2012)
    print((i, len([g for g in graphs(i, augment='vertices', degree_sequence=[3]*i) if g.is_connected()])))
(4, 1)
(6, 2)
(8, 5)
```

```
Make sure that the graphs are really independent and the generator survives repeated vertex removal (Issue #8458):

```python
sage: for G in graphs(3):
 : G.delete_vertex(0)
 : print(G.order())
2
2
2
2
```

```python
>>> from sage.all import *
>>> for G in graphs(Integer(3)):
... G.delete_vertex(Integer(0))
... print(G.order())
2
2
2
2
```

REFERENCE:


**static AffineOrthogonalPolarGraph**(d, q, sign=’+’)

Return the affine polar graph $VO^+(d, q)$, $VO^-(d, q)$ or $VO(d, q)$.

Affine Polar graphs are built from a $d$-dimensional vector space over $F_q$, and a quadratic form which is hyperbolic, elliptic or parabolic according to the value of sign.

Note that $VO^+(d, q)$, $VO^-(d, q)$ are strongly regular graphs, while $VO(d, q)$ is not.

For more information on Affine Polar graphs, see Affine Polar Graphs page of Andries Brouwer’s website.

**INPUT:**

- **d** – integer; $d$ must be even if sign is not None, and odd otherwise
- **q** – integer; a power of a prime number, as $F_q$ must exist
- **sign** – string (default: ”+”); must be equal to ”+”, ”-”, or None to compute (respectively) $VO^+(d, q)$, $VO^-(d, q)$ or $VO(d, q)$

**Note:** The graph $VO^r(d, q)$ is the graph induced by the non-neighbors of a vertex in an Orthogonal Polar Graph $O^r(d + 2, q)$.

**EXAMPLES:**

The *Brouwer–Haemers graph* is isomorphic to $VO^-(4, 3)$:

```python
sage: g = graphs.AffineOrthogonalPolarGraph(4,3,”-“)
...
```

```python
sage: g.is_isomorphic(graphs.BrouwerHaemersGraph())
```

(continues on next page)
Some examples from Brouwer's table or strongly regular graphs:

```python
sage: # needs sage.libs.gap
g = graphs.AffineOrthogonalPolarGraph(6,2,"-"); g
Affine Polar Graph VO^-(6,2): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
(64, 27, 10, 12)

sage: g = graphs.AffineOrthogonalPolarGraph(6,2,"+"); g
Affine Polar Graph VO^+(6,2): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
(64, 35, 18, 20)
```

When sign is None:

```python
sage: # needs sage.libs.gap
g = graphs.AffineOrthogonalPolarGraph(5,2,None); g
Affine Polar Graph VO^-(5,2): Graph on 32 vertices
sage: g.is_strongly_regular(parameters=True)
False

sage: g.is_regular()
True
sage: g.is_vertex_transitive()
True
```

```python
```

```python
```
static **AfricaMap** *(continental=False, year=2018)*

Return African states as a graph of common border.

“African state” here is defined as an independent state having the capital city in Africa. The graph has an edge between those countries that have common land border.

**INPUT:**

- `continental` – boolean (default: `False`); whether to only return states in the continental Africa or all African states
- `year` – integer (default: 2018); reserved for future use

**EXAMPLES:**

```python
sage: Africa = graphs.AfricaMap(); Africa
Africa Map: Graph on 54 vertices
sage: sorted(Africa.neighbors('Libya'))
['Algeria', 'Chad', 'Egypt', 'Niger', 'Sudan', 'Tunisia']
sage: cont_Africa = graphs.AfricaMap(continental=True)
sage: cont_Africa.order()
48
sage: 'Madagaskar' in cont_Africa
False
```

```python
>>> from sage.all import *
>>> Africa = graphs.AfricaMap(); Africa
Africa Map: Graph on 54 vertices
>>> sorted(Africa.neighbors('Libya'))
['Algeria', 'Chad', 'Egypt', 'Niger', 'Sudan', 'Tunisia']
>>> cont_Africa = graphs.AfricaMap(continental=True)
>>> cont_Africa.order()
48
>>> 'Madagaskar' in cont_Africa
False
```

**static AhrensSzekeresGeneralizedQuadrangleGraph** *(q, dual=False)*

Return the collinearity graph of the generalized quadrangle $AS(q)$, or of its dual

Let $q$ be an odd prime power. $AS(q)$ is a generalized quadrangle (Wikipedia article Generalized_quadrangle) of order $(q-1, q+1)$, see 3.1.5 in [PT2009]. Its points are elements of $F_q^3$, and lines are sets of size $q$ of the form

- $\{(\sigma, a, b) \mid \sigma \in F_q\}$
- $\{ (a, \sigma, b) \mid \sigma \in F_q \}$
- $\{ (c\sigma^2 - b\sigma + a, -2c\sigma + b, \sigma) \mid \sigma \in F_q \}$,

where $a, b, c$ are arbitrary elements of $F_q$.

**INPUT:**

- `q` – a power of an odd prime number
- `dual` – boolean (default: `False`); whether to return the collinearity graph of $AS(q)$ or of the dual $AS(q)$ (when `True`)

**EXAMPLES:**
Graph Theory, Release 10.4

sage: g = graphs.AhrensSzekeresGeneralizedQuadrangleGraph(5); g
AS(5); GQ(4, 6): Graph on 125 vertices
sage: g.is_strongly_regular(parameters=True)
(125, 28, 3, 7)
sage: g = graphs.AhrensSzekeresGeneralizedQuadrangleGraph(5, dual=True); g
AS(5)*; GQ(6, 4): Graph on 175 vertices
sage: g.is_strongly_regular(parameters=True)
(175, 30, 5, 5)

>>> from sage.all import *
>>> g = graphs.AhrensSzekeresGeneralizedQuadrangleGraph(Integer(5)); g
AS(5); GQ(4, 6): Graph on 125 vertices
>>> g.is_strongly_regular(parameters=True)
(125, 28, 3, 7)
>>> g = graphs.AhrensSzekeresGeneralizedQuadrangleGraph(Integer(5), dual=True); g
AS(5)*; GQ(6, 4): Graph on 175 vertices
>>> g.is_strongly_regular(parameters=True)
(175, 30, 5, 5)

static AlternatingFormsGraph(n, q)
Return the alternating forms graph with the given parameters.

This builds a graph whose vertices are all \(n \times n\) skew-symmetric matrices over \(GF(q)\) with zero diagonal. Two vertices are adjacent if and only if the difference of the two matrices has rank 2.

This graph is distance-regular with classical parameters \((\lfloor \frac{n^2}{2} \rfloor, q^2, q^2 - 1, q^2 \lceil \frac{n}{2} \rceil - 1)\).

INPUT:

- n – integer
- q – a prime power

EXAMPLES:

```python
sage: G = graphs.AlternatingFormsGraph(5, 2) # long time
sage: G.is_distance_regular(True) # long time
([155, 112, None], [None, 1, 20])
```

```python
>>> from sage.all import *
>>> G = graphs.AlternatingFormsGraph(Integer(5), Integer(2)) # long time
>>> G.is_distance_regular(True) # long time
([155, 112, None], [None, 1, 20])
```

REFERENCES:

static AztecDiamondGraph(n)
Return the Aztec Diamond graph of order \(n\).

See the Wikipedia article Aztec_diamond for more information.

EXAMPLES:

```python
sage: g = graphs.AztecDiamondGraph(2)
Aztec Diamond graph of order 2
```
Graph Theory, Release 10.4

(continued from previous page)

\begin{verbatim}
sage: [graphs.AztecDiamondGraph(i).num_verts() for i in range(8)]
[0, 4, 12, 24, 40, 60, 84, 112]
sage: [graphs.AztecDiamondGraph(i).num_edges() for i in range(8)]
[0, 4, 16, 36, 64, 100, 144, 196]
sage: G = graphs.AztecDiamondGraph(3)
sage: sum(1 for p in G.perfect_matchings())
64
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> graphs.AztecDiamondGraph(Integer(2))
Aztec Diamond graph of order 2
>>> [graphs.AztecDiamondGraph(i).num_verts() for i in range(Integer(8))]
[0, 4, 12, 24, 40, 60, 84, 112]
>>> [graphs.AztecDiamondGraph(i).num_edges() for i in range(Integer(8))]
[0, 4, 16, 36, 64, 100, 144, 196]
>>> G = graphs.AztecDiamondGraph(Integer(3))
>>> sum(Integer(1) for p in G.perfect_matchings())
64
\end{verbatim}

\begin{verbatim}
static Balaban10Cage (embedding=1)

Return the Balaban 10-cage.

The Balaban 10-cage is a 3-regular graph with 70 vertices and 105 edges. See the Wikipedia article Balaban_10-cage.

The default embedding gives a deeper understanding of the graph's automorphism group. It is divided into 4 layers (each layer being a set of points at equal distance from the drawing's center). From outside to inside:

- L1: The outer layer (vertices which are the furthest from the origin) is actually the disjoint union of two cycles of length 10.
- L2: The second layer is an independent set of 20 vertices.
- L3: The third layer is a matching on 10 vertices.
- L4: The inner layer (vertices which are the closest from the origin) is also the disjoint union of two cycles of length 10.

This graph is not vertex-transitive, and its vertices are partitioned into 3 orbits: L2, L3, and the union of L1 of L4 whose elements are equivalent.

INPUT:

- embedding – integer (default: 1); two embeddings are available, and can be selected by setting embedding to be either 1 or 2

EXAMPLES:

\begin{verbatim}
sage: # needs networkx
sage: g = graphs.Balaban10Cage()
sage: g.girth()
10
sage: g.chromatic_number()
2
\end{verbatim}

(continues on next page)
sage: g.diameter()
6
sage: g.is_hamiltonian()  # needs sage.numerical.mip
True
sage: g.show(figsize=[10,10])  # long time  
  # needs sage.plot

>>> from sage.all import *
>>> g = graphs.Balaban11Cage()
>>> g.girth()
10
>>> g.chromatic_number()
2
>>> g.diameter()
6
>>> g.is_hamiltonian()  # needs sage.numerical.mip
True
>>> g.show(figsize=[Integer(10),Integer(10)])  # long time  
  # needs sage.plot

static Balaban11Cage(\texttt{embedding=}1)

Return the Balaban 11-cage.

For more information, see the Wikipedia article Balaban_11-cage.

INPUT:

\begin{itemize}
  \item \texttt{embedding} – integer (default: 1); three embeddings are available, and can be selected by setting \texttt{embedding} to be 1, 2, or 3
    \begin{itemize}
      \item The first embedding is the one appearing on page 9 of the Fifth Annual Graph Drawing Contest report [EMMN1998]. It separates vertices based on their eccentricity (see \texttt{eccentricity()}).
      \item The second embedding has been produced just for Sage and is meant to emphasize the automorphism group’s 6 orbits.
      \item The last embedding is the default one produced by the \texttt{LCFGraph()} constructor.
    \end{itemize}
\end{itemize}

\textbf{Note:} The vertex labeling changes according to the value of \texttt{embedding=}1.

EXEMPLARY:

Basic properties:

sage: g = graphs.Balaban11Cage()
sage: g.order()
112
sage: g.size()
168
sage: g.girth()
11
sage: g.diameter()
8
sage: g.automorphism_group().cardinality()
# needs sage.groups

```python
>>> from sage.all import *

>>> g = graphs.Balaban11Cage()

>>> g.order()
112

>>> g.size()
168

>>> g.girth()
11

>>> g.diameter()
8

>>> g.automorphism_group().cardinality()

needs sage.groups
```

Our many embeddings:

```python
sage: g1 = graphs.Balaban11Cage(embedding=1)

sage: g2 = graphs.Balaban11Cage(embedding=2)

```

```python
sage: g3 = graphs.Balaban11Cage(embedding=3)

```

```python
sage: g1.show(figsize=[10,10]) # long time

```

```python
sage: g2.show(figsize=[10,10]) # long time

```

```python
sage: g3.show(figsize=[10,10]) # long time

```

Proof that the embeddings are the same graph:

```python
sage: g1.is_isomorphic(g2) # g2 and g3 are obviously isomorphic

```

```python
True

```

```python
>>> from sage.all import *

```

```python
>>> g1.is_isomorphic(g2) # g2 and g3 are obviously isomorphic

```

```python
needs networkx
True
```

```

static BalancedTree(r, h)
Return the perfectly balanced tree of height $h \geq 1$, whose root has degree $r \geq 2$.

The number of vertices of this graph is $1 + r + r^2 + \cdots + r^h$, that is, $\frac{r^{h+1}-1}{r-1}$. The number of edges is one less than the number of vertices.

INPUT:

- r – positive integer ≥ 2. The degree of the root node.
- h – positive integer ≥ 1. The height of the balanced tree.

OUTPUT:

The perfectly balanced tree of height $h \geq 1$ and whose root has degree $r \geq 2$.

EXAMPLES:

A balanced tree whose root node has degree $r = 2$, and of height $h = 1$, has order 3 and size 2:

```
sage: G = graphs.BalancedTree(2, 1); G
Balanced tree: Graph on 3 vertices
sage: G.order()
3
sage: G.size()
2
sage: r = 2; h = 1
sage: v = 1 + r
sage: v; v - 1
3
2
```

Plot a balanced tree of height 5, whose root node has degree $r = 3$:

```
sage: G = graphs.BalancedTree(3, 5)
sage: G.plot()  # long time
Graphics object consisting of 728 graphics primitives
```

```
>>> from sage.all import *
>>> G = graphs.BalancedTree(Integer(2), Integer(1)); G
Balanced tree: Graph on 3 vertices
>>> G.order()
3
>>> G.size()
2
>>> r = Integer(2); h = Integer(1)
>>> v = Integer(1) + r
>>> v; v - Integer(1)
3
2
```

```
>>> from sage.all import *
>>> G = graphs.BalancedTree(Integer(3), Integer(5))
>>> G.plot()  # long time
Graphics object consisting of 728 graphics primitives
```

```
```

A tree is bipartite. If its vertex set is finite, then it is planar.
sage: # needs networkx
sage: r = randint(2, 5); h = randint(1, 7)
sage: T = graphs.BalancedTree(r, h)
sage: T.is_bipartite()
True
sage: T.is_planar()
True
sage: v = (r^(h + 1) - 1) / (r - 1)
sage: T.order() == v
True
sage: T.size() == v - 1
True

>>> from sage.all import *
>>> # needs networkx
>>> r = randint(Integer(2), Integer(5)); h = randint(Integer(1), Integer(7))
>>> T = graphs.BalancedTree(r, h)
>>> T.is_bipartite()
True
>>> v = (r**(h + Integer(1)) - Integer(1)) / (r - Integer(1))
>>> T.order() == v
True
>>> T.size() == v - Integer(1)
True

static BarbellGraph($n1$, $n2$)
Returns a barbell graph with $2 \times n1 + n2$ nodes.

The argument $n1$ must be greater than or equal to 2.

A barbell graph is a basic structure that consists of a path graph of order $n2$ connecting two complete graphs of order $n1$ each.

INPUT:

• $n1$ – integer ≥ 2. The order of each of the two complete graphs.
• $n2$ – nonnegative integer. The order of the path graph connecting the two complete graphs.

OUTPUT:

A barbell graph of order $2 \times n1 + n2$. A ValueError is returned if $n1 < 2$ or $n2 < 0$.

PLOTTING:

Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each barbell graph will be displayed with the two complete graphs in the lower-left and upper-right corners, with the path graph connecting diagonally between the two. Thus the $n1$-th node will be drawn at a 45 degree angle from the horizontal right center of the first complete graph, and the $n1 + n2 + 1$-th node will be drawn 45 degrees below the left horizontal center of the second complete graph.

EXAMPLES:

Construct and show a barbell graph $Bar = 4, Bells = 9$:

sage: g = graphs.BarbellGraph(9, 4); g
Barbell graph: Graph on 22 vertices
sage: g.show() # long time
← # needs sage.plot
An $n_1 \geq 2, n_2 \geq 0$ barbell graph has order $2 \times n_1 + n_2$. It has the complete graph on n_1 vertices as a subgraph. It also has the path graph on n_2 vertices as a subgraph.

```
sage: n1 = randint(2, 2*10^2)
sage: n2 = randint(0, 2*10^2)
sage: g = graphs.BarbellGraph(n1, n2)
sage: v = 2*n1 + n2
sage: g.order() == v
True
sage: K_n1 = graphs.CompleteGraph(n1)
sage: P_n2 = graphs.PathGraph(n2)
sage: # needs sage.modules
sage: s_K = g.subgraph_search(K_n1, induced=True)
sage: s_P = g.subgraph_search(P_n2, induced=True)
sage: K_n1.is_isomorphic(s_K)
True
sage: P_n2.is_isomorphic(s_P)
True
```

\[\text{static BidiakisCube}() \]

Return the Bidiakis cube.

For more information, see the \text{Wikipedia article Bidiakis_cube}.

\text{EXAMPLES:}

The Bidiakis cube is a 3-regular graph having 12 vertices and 18 edges. This means that each vertex has a degree of 3:

```
sage: g = graphs.BidiakisCube(); g
Bidiakis cube: Graph on 12 vertices
sage: g.show()  # long time
```

(continues on next page)
2.1. Common graphs

It is a Hamiltonian graph with diameter 3 and girth 4:

```python
sage: g.is_hamiltonian()
True
```

```python
sage: g.diameter()
3
```

```python
sage: g.girth()
4
```

It is a planar graph with characteristic polynomial \((x - 3)(x - 2)(x^4)(x + 1)(x + 2)(x^2 + x - 4)^2\) and chromatic number 3:

```python
sage: g.is_planar()
True
```

```python
sage: char_poly = g.characteristic_polynomial()
```

```python
sage: x = char_poly.parent()('x')
```

```python
sage: char_poly == (x - 3) * (x - 2) * (x^4) * (x + 1) * (x + 2) * (x^2 + x - 4)^2
```

```python
sage: g.chromatic_number()
3
```
>>> from sage.all import *
>>> g.is_planar()
True
>>> char_poly = g.characteristic_polynomial()
→# needs sage.modules
>>> x = char_poly.parent()('x')
→# needs sage.modules
>>> char_poly == (x - Integer(3)) * (x - Integer(2)) * (x**Integer(4)) * (x +
→Integer(1)) * (x + Integer(2)) * (x**Integer(2) + x -
→Integer(4))**Integer(2) # needs sage.modules
True
>>> g.chromatic_number()
→# needs sage.modules
3

\texttt{static BiggsSmithGraph}(\texttt{embedding=1})

Return the Biggs-Smith graph.

For more information, see the Wikipedia article Biggs-Smith_graph.

\textbf{INPUT:}

- \texttt{embedding} – integer (default: 1); two embeddings are available, and can be selected by setting \texttt{embedding} to be 1 or 2

\textbf{EXAMPLES:}

Basic properties:

\begin{verbatim}
sage: # needs networkx
sage: g = graphs.BiggsSmithGraph()
sage: g.order()
102
sage: g.size()
153
sage: g.girth()
9
sage: g.diameter()
7
sage: g.automorphism_group().cardinality() # long time
2448
sage: g.show(figsize=[10, 10]) # long time
→ # needs sage.plot
\end{verbatim}
The other embedding:

```python
sage: graphs.BiggsSmithGraph(embedding=2).show()  # long time
˓→ # needs networkx
```

```python
>>> from sage.all import *

>>> graphs.BiggsSmithGraph(embedding=Integer(2)).show()  # long time
˓→ # needs networkx
```

static BilinearFormsGraph \((d, e, q)\)

Return a bilinear forms graph with the given parameters.

This builds a graph whose vertices are all \(d \times e\) matrices over \(GF(q)\). Two vertices are adjacent if the difference of the two matrices has rank 1.

The graph is distance-regular with classical parameters \((\min(d, e), q, q-1, q^{\max(d, e)}-1)\).

INPUT:

- \(d, e\) – integers; dimension of the matrices
- \(q\) – integer; a prime power

EXAMPLES:

```python
sage: # needs sage.modules
sage: G = graphs.BilinearFormsGraph(3, 3, 2)
sage: G.is_distance_regular(True)
\(([49, 36, 16, None], [None, 1, 6, 28])\)

sage: G = graphs.BilinearFormsGraph(3, 3, 3)
# not tested (20 s)
˓→ # needs sage.rings.finite_rings
sage: G.order()
# not tested (due to above)
19683

sage: G = graphs.BilinearFormsGraph(3, 4, 2)
# long time
˓→ # needs sage.rings.finite_rings
sage: G.is_distance_regular(True)
# long time
˓→ # needs sage.rings.finite_rings
\(([105, 84, 48, None], [None, 1, 6, 28])\)
```

REFERENCES:

static BishopGraph *(dim_list, radius=None, relabel=False)*

Return the d-dimensional Bishop Graph with prescribed dimensions.

The 2-dimensional Bishop Graph of parameters n and m is a graph with nm vertices in which each vertex represents a square in an $n \times m$ chessboard, and each edge corresponds to a legal move by a bishop.

The d-dimensional Bishop Graph with $d \geq 2$ has for vertex set the cells of a d-dimensional grid with prescribed dimensions, and each edge corresponds to a legal move by a bishop in any pairs of dimensions.

The Bishop Graph is not connected.

INPUT:

- **dim_list** – iterable (list, set, dict); provides the dimensions n_1, n_2, \ldots, n_d, with $n_i \geq 1$, of the chessboard
- **radius** – integer (default: None); by setting the radius to a positive integer, one may decrease the power of the bishop to at most radius steps.
- **relabel** – boolean (default: False); indicates whether the vertices must be relabeled as integers

EXAMPLES:

The (n,m)-Bishop Graph is not connected:

```python
sage: G = graphs.BishopGraph([3, 4])
sage: G.is_connected()
False
```

```python
>>> from sage.all import *
>>> G = graphs.BishopGraph([Integer(3), Integer(4)])
>>> G.is_connected()
False
```

The Bishop Graph can be obtained from Knight Graphs:

```python
sage: for d in range(3, 12):  # long time
    H = Graph()
    for r in range(1, d+1):
        B = graphs.BishopGraph([d,d], radius=r)
        H.add_edges( graphs.KnightGraph([d,d], one=r, two=r).edges(sort=False) )
        if not B.is_isomorphic(H):
            print("that's not good!")
```

```python
>>> from sage.all import *
>>> for d in range(Integer(3), Integer(12)):  # long time
    H = Graph()
    for r in range(Integer(1), d+Integer(1)):
        B = graphs.BishopGraph([d,d], radius=r)
        H.add_edges( graphs.KnightGraph([d,d], one=r, two=r).edges(sort=False) )
        if not B.is_isomorphic(H):
            print("that's not good!")
```

static BlanusaFirstSnarkGraph ()

Return the first Blanusa Snark Graph.

The Blanusa graphs are two snarks on 18 vertices and 27 edges. For more information on them, see the Wikipedia article Blanusa_snarks.
See also:

- \texttt{BlanusaSecondSnarkGraph()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: g = graphs.BlanusaFirstSnarkGraph()
sage: g.order()
18
sage: g.size()
27
sage: g.diameter()
4
sage: g.girth()
5
sage: g.automorphism_group().cardinality() # needs sage.groups
8
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> g = graphs.BlanusaFirstSnarkGraph()

>>> g.order()
18

>>> g.size()
27

>>> g.diameter()
4

>>> g.girth()
5

>>> g.automorphism_group().cardinality() # needs sage.groups
8
\end{verbatim}

\textbf{static} \texttt{BlanusaSecondSnarkGraph()}

Return the second Blanusa Snark Graph.

The Blanusa graphs are two snarks on 18 vertices and 27 edges. For more information on them, see the Wikipedia article \texttt{Blanusa_snarks}.

See also:

- \texttt{BlanusaFirstSnarkGraph()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: g = graphs.BlanusaSecondSnarkGraph()
sage: g.order()
18
sage: g.size()
27
sage: g.diameter()
4
sage: g.girth()
5
sage: g.automorphism_group().cardinality() # needs sage.groups
4
\end{verbatim}
static BrinkmannGraph()

Return the Brinkmann graph.

For more information, see the Wikipedia article Brinkmann_graph.

EXAMPLES:

The Brinkmann graph is a 4-regular graph having 21 vertices and 42 edges. This means that each vertex has degree 4:

```
sage: G = graphs.BrinkmannGraph(); G
Brinkmann graph: Graph on 21 vertices
sage: G.show()                       # long time
      # needs sage.plot
sage: G.order()
21
sage: G.size()
42
sage: G.is_regular(4)
True
```

It is an Eulerian graph with radius 3, diameter 3, and girth 5:

```
sage: G.is_eulerian()
True
sage: G.radius()
3
sage: G.diameter()
3
sage: G.girth()
5
```
The Brinkmann graph is also Hamiltonian with chromatic number 4:

```
>>> from sage.all import *

sage: G.is_hamiltonian()
True
sage: G.chromatic_number()
4
```

Its automorphism group is isomorphic to D_7:

```
>>> from sage.all import *

sage: ag = G.automorphism_group()
ag.is_isomorphic(DihedralGroup(7))
True
```

```
static BrouwerHaemersGraph()
Return the Brouwer-Haemers Graph.

The Brouwer-Haemers is the only strongly regular graph of parameters $(81, 20, 1, 6)$. It is build in Sage as the Affine Orthogonal graph $VO^- (6, 3)$. For more information on this graph, see its corresponding page on Andries Brouwer's website.

EXAMPLES:

```
sage: g = graphs.BrouwerHaemersGraph(); g
Brouwer-Haemers: Graph on 81 vertices
```

```
>>> from sage.all import *

>>> g = graphs.BrouwerHaemersGraph(); g
```

```
Brouwer-Haemers: Graph on 81 vertices
```
It is indeed strongly regular with parameters $(81, 20, 1, 6)$:

```
sage: g.is_strongly_regular(parameters=True) # long time
(81, 20, 1, 6)
```

```
>>> from sage.all import *
>>> g.is_strongly_regular(parameters=True) # long time
(81, 20, 1, 6)
```

It has as eigenvalues $20, 2$ and $-7$:

```
sage: set(g.spectrum()) == {20, 2, -7}
True
```

```
>>> from sage.all import *
>>> set(g.spectrum()) == {Integer(20), Integer(2), -Integer(7)}
True
```

**static** **BubbleSortGraph** $(n)$

Returns the bubble sort graph $B(n)$.

The vertices of the bubble sort graph are the set of permutations on $n$ symbols. Two vertices are adjacent if one can be obtained from the other by swapping the labels in the $i$-th and $(i+1)$-th positions for $1 \leq i \leq n-1$. In total, $B(n)$ has order $n!$. Swapping two labels as described previously corresponds to multiplying on the right the permutation corresponding to the node by an elementary transposition in the SymmetricGroup.

The bubble sort graph is the underlying graph of the **permutahedron**.

**INPUT:**

- $n$ – positive integer. The number of symbols to permute.

**OUTPUT:**

The bubble sort graph $B(n)$ on $n$ symbols. If $n < 1$, a **ValueError** is returned.

**EXAMPLES:**

```
sage: g = graphs.BubbleSortGraph(4); g
Bubble sort: Graph on 24 vertices
```

```
sage: g.plot() # long time
```

```
>>> g = graphs.BubbleSortGraph(Integer(4)); g
>>> g.plot() # long time
```

The bubble sort graph on $n = 1$ symbol is the trivial graph $K_1$: 

```
sage: graphs.BubbleSortGraph(1)
Bubble sort: Graph on 1 vertex
```
If $n \geq 1$, then the order of $B(n)$ is $n!$:

```python
sage: n = randint(1, 8)
sage: g = graphs.BubbleSortGraph(n)
sage: g.order() == factorial(n)
True```

See also:

- `permutahedron`

AUTHORS:

- Michael Yurko (2009-09-01)

```python
static BuckyBall()

Return the Bucky Ball graph.

This graph is a 3-regular 60-vertex planar graph. Its vertices and edges correspond precisely to the carbon atoms and bonds in buckminsterfullerene. When embedded on a sphere, its 12 pentagon and 20 hexagon faces are arranged exactly as the sections of a soccer ball.

EXAMPLES:

The Bucky Ball is planar:

```python
sage: g = graphs.BuckyBall()
sage: g.is_planar()
True```

The Bucky Ball can also be created by extracting the 1-skeleton of the Bucky Ball polyhedron, but this is much slower:

```python
sage: # needs sage.geometry.polyhedron sage.groups sage.rings.number_field
sage: g = polytopes.buckyball().vertex_graph()
sage: g.remove_loops()
sage: h = graphs.BuckyBall()
sage: g.is_isomorphic(h)
True```
The graph is returned along with an attractive embedding:

```
sage: g = graphs.BuckyBall() # long time
g.plot(vertex_labels=False, vertex_size=10).show() # long time, needs sage.plot
```

### static BullGraph()

Return a bull graph with 5 nodes.

A bull graph is named for its shape. It's a triangle with horns. See the [Wikipedia article Bull_graph](https://en.wikipedia.org/wiki/Bull_graph) for more information.

**PLOTTING:**

Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the bull graph is drawn as a triangle with the first node (0) on the bottom. The second and third nodes (1 and 2) complete the triangle. Node 3 is the horn connected to 1 and node 4 is the horn connected to node 2.

**EXAMPLES:**

Construct and show a bull graph:

```
sage: g = graphs.BullGraph(); g
Bull graph: Graph on 5 vertices
sage: g.show() # long time, needs sage.plot
```

The bull graph has 5 vertices and 5 edges. Its radius is 2, its diameter 3, and its girth 3. The bull graph is planar with chromatic number 3 and chromatic index also 3:

```
sage: g.order(); g.size() 5 5
sage: g.radius(); g.diameter(); g.girth() 2 3 3
sage: g.chromatic_number() 3
```
The bull graph has chromatic polynomial $x(x - 2)(x - 1)^3$ and Tutte polynomial $x^4 + x^3 + x^2y$. Its characteristic polynomial is $x(x^2 - x - 3)(x^2 + x - 1)$, which follows from the definition of characteristic polynomials for graphs, i.e. $\det(xI - A)$, where $x$ is a variable, $A$ the adjacency matrix of the graph, and $I$ the identity matrix of the same dimensions as $A$:
static ButterflyGraph()

Return the butterfly graph.

Let $C_3$ be the cycle graph on 3 vertices. The butterfly or bowtie graph is obtained by joining two copies of $C_3$ at a common vertex, resulting in a graph that is isomorphic to the friendship graph $F_2$. See the Wikipedia article Butterfly_graph for more information.

See also:

• FriendshipGraph()

EXAMPLES:

The butterfly graph is a planar graph on 5 vertices and having 6 edges:

```
sage: G = graphs.ButterflyGraph(); G
Butterfly graph: Graph on 5 vertices
sage: G.show() # long time
needs sage.plot
sage: G.is_planar()
True
sage: G.order()
5
sage: G.size()
6
```

It has diameter 2, girth 3, and radius 1:

```
sage: G.diameter()
2
sage: G.girth()
3
sage: G.radius()
1
```

```
>>> from sage.all import *
```

```
The butterfly graph is Eulerian, with chromatic number 3:

```
sage: G.is_eulerian()
True
sage: G.chromatic_number()
3
```

```python
>>> from sage.all import *
```
sage: sorted(CFI.edge_iterator(), key=str)
[[(0, ()), (0, (0, 'b')), None),
 (0, (0, 'a'))}, (1, (0, 'a')), None),
 (0, (0, 'b'))}, (1, (0, 'b')), None),
 (0, (0, 1)}}, (0, (0, 'a')), None),
 (0, (0, 1)}}, (0, (1, 'a')), None),
 (0, (1, 'a'))}, (3, (0, 'a')), None),
 (0, (1, 'b'))}, (3, (0, 'b')), None),
 (0, (1, 'b'))}, (3, (0, 'a')), None),
 (0, (1, 'b'))}, (3, (0, 'b')), None),
 (1, ()), (1, (0, 'b')), None),
 (1, ()), (1, (1, 'b')), None),
 (1, ()), (1, (0, 'a')), None),
 (1, (1, 'a'))}, (2, (0, 'b')), None),
 (2, ()), (2, (1, 'b')), None),
 (2, (0, 1)}}, (2, (0, 'a')), None),
 (2, (0, 1)}}, (2, (1, 'a')), None),
 (2, (1, 'a'))}, (3, (1, 'a')), None),
 (2, (1, 'b'))}, (3, (1, 'b')), None),
 (3, ()), (3, (0, 'b')), None),
 (3, ()), (3, (1, 'b')), None),
 (3, ()), (3, (0, 'a')), None),
 (3, (0, 1)}}, (3, (1, 'a')), None)]

>>> from sage.all import *
>>> G = graphs.CycleGraph(Integer(4))
>>> CFI, p = graphs.CaiFurerImmermanGraph(G)

>>> sorted(CFI, key=str)
[[(0, ()), (0, (0, 'a'))}, (0, (0, 'b'))}, (0, (0, 'b'))}, (0, (1, 'a'))}, (0, (0, 'b'))}, (0, (1, 'a'))}, (1, ()), (1, (0, 'a'))}, (1, (0, 'b'))}, (1, (0, 1)}}, (1, (1, 'a'))}, (2, ()), (2, (0, 'a'))}, (2, (0, 'b'))}, (2, (0, 1)}}, (2, (0, 'b'))}, (2, (0, 1)}}, (2, (1, 'a'))}, (2, (1, 'b'))}, (2, (1, 'b'))}, (3, ()), (3, (0, 'a'))}, (3, (0, 0'} b'))}, (3, (0, 'b'))}, (3, (0, 'b'))}, (3, (0, 'b'))}, (3, (0, 1)}}, (3, (1, 'a'))}, (3, (1, 'b'))], None),
 (3, (0, 1)}}, (3, (1, 'a')), None)]

>>> sorted(CFI.edge_iterator(), key=str)
[[(0, ()), (0, (0, 'b'))}, (0, (0, 'a'))}, (0, (0, 'b'))}, (0, (1, 'a'))}, (0, (0, 'b'))}, (0, (1, 'a'))}, (1, ()), (1, (0, 'a'))}, (1, (0, 'b'))}, (1, (0, 1)}}, (1, (1, 'a'))}, (2, ()), (2, (0, 'a'))}, (2, (0, 'b'))}, (2, (0, 1)}}, (2, (0, 'b'))}, (2, (0, 1)}}, (2, (1, 'a'))}, (2, (1, 'b'))}, (2, (1, 'b'))}, (2, (1, 'b'))}, (3, ()), (3, (0, 'a'))}, (3, (0, 'b'))}, (3, (0, 'b'))}, (3, (0, 1)}}, (3, (1, 'a'))}, (3, (1, 'b'))], None),
 (3, (0, 1)}}, (3, (1, 'a')), None)]

(continues on next page)
static CameronGraph()

Return the Cameron graph.

The Cameron graph is strongly regular with parameters $v = 231$, $k = 30$, $\lambda = 9$, $\mu = 3$.

For more information on the Cameron graph, see https://www.win.tue.nl/~aeb/graphs/Cameron.html.

EXAMPLES:

```sage
sage: # needs sage.groups
g = graphs.CameronGraph()
sage: g.order()
231
sage: g.size()
3465
sage: g.is_strongly_regular(parameters=True)  # long time
(231, 30, 9, 3)
```

```python
>>> from sage.all import *

>>> # needs sage.groups
>>> g = graphs.CameronGraph()

>>> g.order()
231

>>> g.size()
3465

>>> g.is_strongly_regular(parameters=True)  # long time
(231, 30, 9, 3)
```

static Cell120()

Return the 120-Cell graph.

This is the adjacency graph of the 120-cell. It has 600 vertices and 1200 edges. For more information, see the Wikipedia article 120-cell.

EXAMPLES:

```sage
sage: # long time, needs sage.rings.number_field
g = graphs.Cell120()
sage: g.size()
1200
sage: g.is_regular(4)
True
sage: g.is_vertex_transitive()
True
```

```python
>>> from sage.all import *

>>> # long time, needs sage.rings.number_field

>>> g = graphs.Cell120()

>>> g.size()
1200

(continues on next page)
static Cell600 (embedding=1)

Return the 600-Cell graph.

This is the adjacency graph of the 600-cell. It has 120 vertices and 720 edges. For more information, see the Wikipedia article 600-cell.

INPUT:

• embedding – integer (default: 1); two different embeddings for a plot

EXAMPLES:

```
sage: # long time, needs sage.rings.number_field
sage: g = graphs.Cell600()
sage: g.size()
720
sage: g.is_regular(12)
True
sage: g.is_vertex_transitive()
True
```

```python
from sage.all import *
```

```
>>> # long time, needs sage.rings.number_field
>>> g = graphs.Cell600()
>>> g.size()
720
>>> g.is_regular(Integer(12))
True
>>> g.is_vertex_transitive()
True
```
Graph Theory, Release 10.4

- **bishop_radius** – integer (default: None); restriction on the bishop-like movements to distance at most `bishop_radius`
- **knight** – boolean (default: True); indicating whether the chess piece is able to move like a knight
- **knight_x** – integer (default: 1); indicates the number on steps the chess piece moves in one dimension when moving like a knight
- **knight_y** – integer (default: 2); indicates the number on steps the chess piece moves in the second dimension when moving like a knight
- **relabel** – boolean (default: False); indicates whether the vertices must be relabeled as integers

**OUTPUT:**
- A Graph build on a $d$-dimensional chessboard with prescribed dimensions, and with edges according given parameters.
- A string encoding the dimensions. This is mainly useful for providing names to graphs.

**EXAMPLES:**

A (2, 2)-King Graph is isomorphic to the complete graph on 4 vertices:

```
sage: G, _ = graphs.ChessboardGraphGenerator([2, 2])
sage: G.is_isomorphic(graphs.CompleteGraph(4))
```

A Rook’s Graph in 2 dimensions is isomorphic to the Cartesian product of 2 complete graphs:

```
sage: G, _ = graphs.ChessboardGraphGenerator([3, 4], rook=True)
sage: G.is_isomorphic((graphs.CompleteGraph(3)).cartesian_product(graphs.CompleteGraph(4)))
```

```
static ChvatalGraph()

Return the Chvatal graph.

Chvatal graph is one of the few known graphs to satisfy Grunbaum’s conjecture that for every m, n, there is an m-regular, m-chromatic graph of girth at least n. For more information, see the Wikipedia article Chvatal_graph.

EXAMPLES:

The Chvatal graph has 12 vertices and 24 edges. It is a 4-regular, 4-chromatic graph with radius 2, diameter 2, and girth 4:
sage: G = graphs.ChvatalGraph(); G
Chvatal graph: Graph on 12 vertices
sage: G.order(); G.size()
12
24
sage: G.degree()
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
sage: G.chromatic_number()
4
sage: G.radius(); G.diameter(); G.girth()
2
2
4

```python
>>> from sage.all import *

>>> G = graphs.ChvatalGraph(); G
Chvatal graph: Graph on 12 vertices

>>> G.order(); G.size()
12
24

>>> G.degree()
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

>>> G.chromatic_number()
4

>>> G.radius(); G.diameter(); G.girth()
2
2
4
```

static CirculantGraph *(n, adjacency)*

Returns a circulant graph with *n* nodes.

A circulant graph has the property that the vertex *i* is connected with the vertices *i + j* and *i − j* for each *j* in adjacency.

INPUT:

- *n* – number of vertices in the graph
- *adjacency* – the list of *j* values

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each circulant graph will be displayed with the first (0) node at the top, with the rest following in a counterclockwise manner.

Filling the position dictionary in advance adds \(O(n)\) to the constructor.

See also:

- *is_circulant()* – checks whether a (di)graph is circulant, and/or returns all possible sets of parameters.

EXAMPLES: Compare plotting using the predefined layout and networkx:

```python
sage: # needs networkx
sage: import networkx
sage: n = networkx.cycle_graph(23)
sage: spring23 = Graph(n)
```

(continues on next page)
We next view many cycle graphs as a Sage graphics array. First we use the CirculantGraph constructor, which fills in the position dictionary:

```python
>>> # needs sage.plot
>>> g = []
>>> j = []
>>> for i in range(9):
...    k = graphs.CirculantGraph(i+4, i+1)
...    g.append(k)
>>> for i in range(3):
...    n = []
...    for m in range(3):
...        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
...    j.append(n)
>>> G = graphics_array(j)
>>> G.show()  # long time
```

Compare to plotting with the spring-layout algorithm:

```python
>>>
```
Passing a 1 into adjacency should give the cycle.

```python
sage: graphs.CirculantGraph(6, 1) == graphs.CycleGraph(6)
True
sage: graphs.CirculantGraph(7, [1, 3]).edges(sort=True, labels=False)
[(0, 1), (0, 3), (0, 4), (0, 6), (1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (2, 6), (3, 4), (3, 6), (4, 5), (5, 6)]
```

```python
>>> from sage.all import *
>>> graphs.CirculantGraph(Integer(6), Integer(1)) == graphs.CycleGraph(Integer(6))
True
>>> graphs.CirculantGraph(Integer(7), [Integer(1), Integer(3)]).edges(sort=True, labels=False)
[(0, 1), (0, 3), (0, 4), (0, 6), (1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (2, 6), (3, 4), (3, 6), (4, 5), (5, 6)]
```
static CircularLadderGraph(n)

Return a circular ladder graph with $2n$ nodes.

A Circular ladder graph is a ladder graph that is connected at the ends, i.e.: a ladder bent around so that top meets bottom. Thus it can be described as two parallel cycle graphs connected at each corresponding node pair.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the circular ladder graph is displayed as an inner and outer cycle pair, with the first n nodes drawn on the inner circle. The first (0) node is drawn at the top of the inner-circle, moving clockwise after that. The outer circle is drawn with the $(n+1)$-th node at the top, then counter-clockwise as well. When $n==2$, we rotate the outer circle by an angle of $\pi/8$ to ensure that all edges are visible (otherwise the 4 vertices of the graph would be placed on a single line).

EXAMPLES:

Construct and show a circular ladder graph with 26 nodes:

```python
sage: g = graphs.CircularLadderGraph(13)
sage: g.show() # long time
```

Create several circular ladder graphs in a Sage graphics array:

```python
g = []
j = []
sage: for i in range(9):
    k = graphs.CircularLadderGraph(i+3)
    g.append(k)
sage: for i in range(3):
    n = []
    for m in range(3):
        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    j.append(n)
sage: G = graphics_array(j) # needs sage.plot
sage: G.show() # long time
```

(continues on next page)
static ClawGraph()

Return a claw graph.

A claw graph is named for its shape. It is actually a complete bipartite graph with \((n_1, n_2) = (1, 3)\).

PLOTTING: See CompleteBipartiteGraph().

EXAMPLES:

Show a Claw graph:

```
sage: (graphs.ClawGraph()).show() # long time
```

Inspect a Claw graph:

```
sage: G = graphs.ClawGraph()
sage: G
Claw graph: Graph on 4 vertices
```

static ClebschGraph()

Return the Clebsch graph.

See the Wikipedia article Clebsch_graph for more information.

EXAMPLES:

```
sage: g = graphs.ClebschGraph()
sage: g.automorphism_group().cardinality() # needs sage.groups
1920
sage: g.girth() # continuous on next page
```
Graph Theory, Release 10.4

(continued from previous page)

```python
sage: g.chromatic_number()
sage: g.diameter()
sage: g.show(figsize=[10, 10])  # long time
```

```
>>> from sage.all import *
>>> g = graphs.ClebschGraph()
>>> g.automorphism_group().cardinality()
1920
>>> g.girth()
sage: g.show(figsize=[Integer(10), Integer(10)])  # long time
```

```python
static CompleteBipartiteGraph(p, q, set_position=True)
```

Return a CompleteBipartiteGraph on \(p + q \) vertices.

A Complete Bipartite Graph is a graph with its vertices partitioned into two groups, \(V_1 = \{0, ..., p-1\} \) and \(V_2 = \{p, ..., p+q-1\} \). Each \(u \in V_1 \) is connected to every \(v \in V_2 \).

INPUT:

- \(p, q \) – number of vertices in each side
- \(\text{set_position} \) – boolean (default True); if set to True, we assign positions to the vertices so that the set of cardinality \(p \) is on the line \(y = 1 \) and the set of cardinality \(q \) is on the line \(y = 0 \).

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each complete bipartite graph will be displayed with the first \(p \) nodes on the top row (at \(y = 1 \)) from left to right. The remaining \(q \) nodes appear at \(y = 0 \), also from left to right. The shorter row (partition with fewer nodes) is stretched to the same length as the longer row, unless the shorter row has 1 node; in which case it is centered. The \(x \) values in the plot are in domain \([0, \max(p, q)]\).

In the Complete Bipartite graph, there is a visual difference in using the spring-layout algorithm vs. the position dictionary used in this constructor. The position dictionary flattens the graph and separates the partitioned nodes, making it clear which nodes an edge is connected to. The Complete Bipartite graph plotted with the spring-layout algorithm tends to center the nodes in \(p \) (see `spring_med` in examples below), thus overlapping its nodes and edges, making it typically hard to decipher.

Filling the position dictionary in advance adds \(O(n) \) to the constructor. Feel free to race the constructors below in the examples section. The much larger difference is the time added by the spring-layout algorithm when plotting. (Also shown in the example below). The spring model is typically described as \(O(n^3) \), as appears to be the case in the NetworkX source code.

EXAMPLES:

Two ways of constructing the complete bipartite graph, using different layout algorithms:

```python
sage: # needs networkx
sage: import networkx
```

(continues on next page)
Compare the plotting:

```sage
t = networkx.complete_bipartite_graph(11, 17)  # needs networkx
s = Graph(t)  # needs networkx
```

Notice here how the spring-layout tends to center the nodes of \(n1 \):

```sage
t.show()  # long time
s.show()  # long time
```

View many complete bipartite graphs with a Sage Graphics Array, with this constructor (i.e., the position dictionary filled):

```sage
g = []
j = []
for i in range(9):
    k = graphs.CompleteBipartiteGraph(i+1, 4)
    g.append(k)
for i in range(3):
    n = []
    for m in range(3):
        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    j.append(n)
```
We compare the plotting with the spring-layout algorithm:

```python
sage: # needs networkx sage.plot
sage: g = []
```

```python
sage: j = []
```

```python
sage: for i in range(9):
    ....:    spr = networkx.complete_bipartite_graph(i+1,4)
    ....:    k = Graph(spr)
    ....:    g.append(k)
```

```python
sage: for i in range(3):
    ....:    n = []
    ....:    for m in range(3):
        ....:        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ....:        j.append(n)
```

```python
sage: G = graphics_array(j)
```

```python
sage: G.show()  # long time
```

```
>>> from sage.all import *
```

```python
>>> g = []
```

```python
>>> j = []
```

```python
>>> for i in range(Integer(9)):  # needs sage.plot
    ....:    k = graphs.CompleteBipartiteGraph(i+Integer(1),Integer(4))
    ....:    g.append(k)
```

```python
>>> for i in range(Integer(3)):  # needs sage.plot
    ....:    n = []
    ....:    for m in range(Integer(3)):
        ....:        n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
    ....:        j.append(n)
```

```python
>>> G = graphics_array(j)
```

```python
>>> G.show()  # long time
```

```python
>>> from sage.all import *  # needs networkx sage.plot
```

```python
>>> g = []
```

```python
>>> j = []
```

```python
>>> for i in range(9):
    ....:    spr = networkx.complete_bipartite_graph(i+1,4)
    ....:    k = Graph(spr)
    ....:    g.append(k)
```

```python
>>> for i in range(3):
    ....:    n = []
    ....:    for m in range(3):
        ....:        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ....:        j.append(n)
```

```python
>>> G = graphics_array(j)
```

```python
>>> G.show()  # long time
```

2.1. Common graphs
Issue #12155:

```python
sage: graphs.CompleteBipartiteGraph(5, 6).complement()
complement(Complete bipartite graph of order 5+6): Graph on 11 vertices
```

```python
>>> from sage.all import *

sage: graphs.CompleteBipartiteGraph(Integer(5), Integer(6)).complement()
complement(Complete bipartite graph of order 5+6): Graph on 11 vertices
```

static CompleteGraph(\(n\))

Return a complete graph on \(n\) nodes.

A Complete Graph is a graph in which all nodes are connected to all other nodes.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each complete graph will be displayed with the first (0) node at the top, with the rest following in a counterclockwise manner.

In the complete graph, there is a big difference visually in using the spring-layout algorithm vs. the position dictionary used in this constructor. The position dictionary flattens the graph, making it clear which nodes an edge is connected to. But the complete graph offers a good example of how the spring-layout works. The edges push outward (everything is connected), causing the graph to appear as a 3-dimensional pointy ball. (See examples below).

EXAMPLES:

We view many Complete graphs with a Sage Graphics Array, first with this constructor (i.e., the position dictionary filled):

```python
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
    k = graphs.CompleteGraph(i+3)
    g.append(k)
sage: for i in range(3):
    n = []
    for m in range(3):
        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    j.append(n)
sage: G = graphics_array(j)
sage: G.show()  # long time
```

```python
>>> from sage.all import *

>>> # needs sage.plot

>>> g = []

>>> j = []

>>> for i in range(Integer(9)):
...     k = graphs.CompleteGraph(i+Integer(3))
...     g.append(k)

>>> for i in range(Integer(3)):
...     n = []
...     for m in range(Integer(3)):
...         n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
...     j.append(n)

>>> G = graphics_array(j)

>>> G.show()  # long time
```
We compare to plotting with the spring-layout algorithm:

```python
sage: # needs networkx sage.plot
sage: import networkx
sage: g = []
sage: j = []
sage: for i in range(9):
    ....:     spr = networkx.complete_graph(i+3)
    ....:     k = Graph(spr)
    ....:     g.append(k)
sage: for i in range(3):
    ....:     n = []
    ....:     for m in range(3):
    ....:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ....:     j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time
```

```python
>>> from sage.all import *
>>> # needs networkx sage.plot
>>> import networkx

>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
...     spr = networkx.complete_graph(i+Integer(3))
...     k = Graph(spr)
...     g.append(k)
>>> for i in range(Integer(3)):
...     n = []
...     for m in range(Integer(3)):
...         n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
...     j.append(n)
>>> G = graphics_array(j)
>>> G.show() # long time
```

Compare the constructors (results will vary):

```python
sage: # needs networkx
sage: import networkx
sage: t = cputime()
```

```python
sage: n = networkx.complete_graph(389); spring389 = Graph(n)
sage: cputime(t) # random
0.59203700000000126
```

```python
sage: t = cputime()
```

```python
sage: posdict389 = graphs.CompleteGraph(389)
sage: cputime(t) # random
0.6680419999999998
```
We compare plotting:

```python
sage: # needs networkx
sage: import networkx
sage: n = networkx.complete_graph(23)
sage: spring23 = Graph(n)
sage: posdict23 = graphs.CompleteGraph(23)
sage: spring23.show()  # long time
˓→ # needs sage.plot
sage: posdict23.show()  # long time
˓→ # needs sage.plot
```

```python
```

```python
>>> from sage.all import *
```

```python
g = graphs.CompleteMultipartiteGraph([5, 6, 8]); g
```

```python
Multipartite Graph with set sizes [5, 6, 8]: Graph on 19 vertices
```

It clearly has a chromatic number of 3:
sage: g.chromatic_number()
3

>>> from sage.all import *
>>> g.chromatic_number()
3

static ConwaySmith_for_3S7()
Return the Conway-Smith graph related to 3Sym(7).
This is a distance-regular graph with intersection array [10, 6, 4, 1; 1, 2, 6, 10].

EXAMPLES:

sage: G = graphs.ConwaySmith_for_3S7()
 → # needs sage.modules sage.rings.finite_rings sage.rings.number_field
sage: G.is_distance_regular(True)
 → # needs sage.modules sage.rings.finite_rings sage.rings.number_field
 ([10, 6, 4, 1, None], [None, 1, 2, 6, 10])

REFERENCES:
A description and construction of this graph can be found in [BCN1989] p. 399.

static CorrelationGraph(seqs, alpha, include_anticorrelation)
Return a correlation graph with a node per sequence in seqs.
Edges are added between nodes where the corresponding sequences have a correlation coefficient greater
than alpha.
If include_anticorrelation is True, then edges are also added between nodes with correlation
coefficient less than -alpha.

INPUT:
• seqs – list of sequences, that is a list of lists
• alpha – float; threshold on the correlation coefficient between two sequences for adding an edge
• include_anticorrelation – boolean; whether to add edges between nodes with correlation
coefficient less than -alpha or not

EXAMPLES:

sage: # needs numpy
sage: from sage.graphs.generators.basic import CorrelationGraph
sage: data = [[1,2,3], [4,5,6], [7,8,9999]]
sage: CG1 = CorrelationGraph(data, 0.9, False)
sage: CG2 = CorrelationGraph(data, 0.9, True)
sage: CG3 = CorrelationGraph(data, 0.1, True)
sage: CG1.edges(sort=False)
[(0, 0, None), (0, 1, None), (1, 1, None), (2, 2, None)]
(continues on next page)
sage: CG2.edges(sort=False)
[(0, 0, None), (0, 1, None), (1, 1, None), (2, 2, None)]
sage: CG3.edges(sort=False)
[(0, 0, None), (0, 1, None), (0, 2, None), (1, 1, None), (1, 2, None), (2, 2, None)]

>>> from sage.all import *

>>> # needs numpy

>>> from sage.graphs.generators.basic import CorrelationGraph

>>> data = [[Integer(1), Integer(2), Integer(3)], [Integer(4), Integer(5), Integer(6)], [Integer(7), Integer(8), Integer(9999)]]

>>> CG1 = CorrelationGraph(data, RealNumber(0.9), False)

>>> CG2 = CorrelationGraph(data, RealNumber(0.9), True)

>>> CG3 = CorrelationGraph(data, RealNumber(0.1), True)

sage: CG1.edges(sort=False)
[(0, 0, None), (0, 1, None), (1, 1, None), (2, 2, None)]

sage: CG2.edges(sort=False)
[(0, 0, None), (0, 1, None), (1, 1, None), (2, 2, None)]

sage: CG3.edges(sort=False)
[(0, 0, None), (0, 1, None), (0, 2, None), (1, 1, None), (1, 2, None), (2, 2, None)]

static CossidentePenttilaGraph(q)

Return the Cossidente-Penttila graph for each odd prime power q. One can partition the points of the $O_6(q)$-generalized hyperoval $GQ(q, q^2)$ into two parts, so that on any of them the induced subgraph of the point graph of the GQ has parameters as above [CP2005].

Directly following the construction in [CP2005] is not efficient, as one then needs to construct the dual $GQ(q^2, q)$. Thus we describe here a more efficient approach that we came up with, following a suggestion by T. Penttila. Namely, this partition is invariant under the subgroup $H = O_6(q^2) < O_6(q)$. We build the appropriate H, which leaves the form $B(X, Y, Z) = XY + Z^2$ invariant, and pick up two orbits of H on the F_q-points. One them is B-isotropic, and we take the representative $(1 : 0 : 0)$. The other one corresponds to the points of $PG(2, q^2)$ that have all the lines on them either missing the conic specified by B, or intersecting the conic in two points. We take $(1 : 1 : e)$ as the representative. It suffices to pick e so that $e^2 + 1$ is not a square in F_{q^2}. Indeed, the conic can be viewed as the union of $\{(0 : 1 : 0)\}$ and $\{(1 : -t^2 : t) | t \in F_{q^2}\}$. The coefficients of a generic line on $(1 : 1 : e)$ are $[1 : -1 - eb : b]$, for $e \neq 1$. Thus, to make sure the intersection with the conic is always even, we need that the discriminant of $1 + (1 + eb)t^2 + tb = 0$ never vanishes, and this is if and only if $e^2 + 1$ is not a square. Further, we need to adjust B, by multiplying it by appropriately chosen ν, so that $(1 : 1 : e)$ becomes isotropic under the relative trace norm $\nu B(X, Y, Z) + (\nu B(X, Y, Z))^9$. The latter is used then to define the graph.

INPUT:

- q – an odd prime power.

EXAMPLES:

For $q = 3$ one gets Sims-Gewirtz graph.

sage: G = graphs.CossidentePenttilaGraph(3) # optional - gap_package_grape
sage: G.is_strongly_regular(parameters=True) # optional - gap_package_grape
(56, 10, 0, 2)
For \(q > 3 \) one gets new graphs.

\[
\begin{align*}
\text{sage: } & \quad G = \text{graphs.CossidentePenttilaGraph(5)} \quad \text{# optional - gap_package_grape} \\
& G.\text{is_strongly_regular(parameters=}\text{True}) \quad \text{# optional - gap_package_grape} \\
& (378, 52, 1, 8)
\end{align*}
\]

\[
\begin{align*}
\text{sage: } & \quad G = \text{graphs.CossidentePenttilaGraph(Integer(5))} \quad \text{# optional - gap_package_grape} \\
& G.\text{is_strongly_regular(parameters=}\text{True}) \quad \text{# optional - gap_package_grape} \\
& (378, 52, 1, 8)
\end{align*}
\]

\[
\begin{align*}
\text{static CoxeterGraph()}
\end{align*}
\]

Return the Coxeter graph.

See the Wikipedia article Coxeter_graph.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \quad g = \text{graphs.CoxeterGraph()} \\
& g.\text{automorphism_group().cardinality()} \quad \text{# needs sage.groups} \\
& 336 \\
& \text{sage: } g.\text{girth()} \\
& 7 \\
& \text{sage: } g.\text{chromatic_number()} \\
& 3 \\
& \text{sage: } g.\text{diameter()} \\
& 4 \\
& \text{sage: } g.\text{show(figsize=[10, 10])} \quad \text{# long time} \\
& \quad \text{# needs sage.plot}
\end{align*}
\]

\[
\begin{align*}
\text{static CubeConnectedCycle}(d)
\end{align*}
\]

Return the cube-connected cycle of dimension \(d \).

The cube-connected cycle of order \(d \) is the \(d \)-dimensional hypercube with each of its vertices replaced by a cycle of length \(d \). This graph has order \(d \times 2^d \). The construction is as follows: Construct vertex \((x, y)\)
for $0 \leq x < 2^d$, $0 \leq y < d$. For each vertex, (x, y), add an edge between it and $(x, (y - 1) \mod d)$, $(x, (y + 1) \mod d)$, and $(x \oplus 2^k, y)$, where \oplus is the bitwise xor operator.

For $d = 1$ and 2, the cube-connected cycle graph contains self-loops or multiple edges between a pair of vertices, but for all other d, it is simple.

INPUT:

- d – The dimension of the desired hypercube as well as the length of the cycle to be placed at each vertex of the d-dimensional hypercube. d must be a positive integer.

EXAMPLES:

The order of the graph is $d \times 2^d$

```
sage: d = 3
sage: g = graphs.CubeConnectedCycle(d)
sage: len(g) == d*2**d
True
```

The diameter of cube-connected cycles for $d > 3$ is $2d + \lfloor \frac{d}{2} \rfloor - 2$

```
sage: d = 4
sage: g = graphs.CubeConnectedCycle(d)
sage: g.diameter() == 2*d+d//2-2
True
```

All vertices have degree 3 when $d > 1$

```
sage: g = graphs.CubeConnectedCycle(5)
sage: all(g.degree(v) == 3 for v in g)
True
```

```
from sage.all import *

>>> d = Integer(3)
>>> g = graphs.CubeConnectedCycle(d)
>>> len(g) == d*2**d
True

>>> from sage.all import *

>>> d = Integer(4)
>>> g = graphs.CubeConnectedCycle(d)
>>> g.diameter() == Integer(2)*d+d//Integer(2)-Integer(2)
True

>>> from sage.all import *

>>> g = graphs.CubeConnectedCycle(Integer(5))
>>> all(g.degree(v) == Integer(3) for v in g)
True
```

```
static CubeGraph (n, embedding=1)
```

Return the n-cube graph, also called the hypercube in n dimensions.

The hypercube in n dimension is build upon the binary strings on n bits, two of them being adjacent if they differ in exactly one bit. Hence, the distance between two vertices in the hypercube is the Hamming distance.

INPUT:

- n – integer; the dimension of the cube graph
embedding – integer (default: 1); two embeddings of the n-cube are available:

- 1: the n-cube is projected inside a regular $2n$-gonal polygon by a skew orthogonal projection. See the Wikipedia article Hypercube for more details.
- 2: orthogonal projection of the n-cube. This orientation shows columns of independent vertices such that the neighbors of a vertex are located in the columns on the left and on the right. The number of vertices in each column represents rows in Pascal’s triangle. See for instance the Wikipedia article 10-cube for more details.
- 3: oblique projection of the n-cube. Oblique projection involves aligning one face parallel to the viewer and projecting at a specified angle, maintaining equal size for edges parallel to one axis while applying fixed foreshortening to others. This method simplifies the representation of a four-dimensional hypercube onto a two-dimensional plane, offering a geometrically consistent visualization.
- None or O: no embedding is provided

EXAMPLES:

The distance between 0100110 and 1011010 is 5, as expected:

```
sage: g = graphs.CubeGraph(7)
sage: g.distance('0100110','1011010')
5
```

```
>>> from sage.all import *

>>> g = graphs.CubeGraph(Integer(7))
>>> g.distance('0100110','1011010')
5
```

Plot several n-cubes in a Sage Graphics Array:

```
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(6):
    ....:     k = graphs.CubeGraph(i+1)
    ....:     g.append(k)
    ...
sage: for i in range(2):
    ....:     n = []
    ....:     for m in range(3):
    ....:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ....:     j.append(n)
    ...
sage: G = graphics_array(j)
sage: G.show(figsize=[6,4])  # long time
```

```
>>> from sage.all import *

>>> # needs sage.plot

>>> g = []

>>> j = []

>>> for i in range(Integer(6)):
    ...
    k = graphs.CubeGraph(i+Integer(1))
    ...
    g.append(k)
    ...

>>> for i in range(Integer(2)):
    ...
    n = []
```

(continues on next page)
... for m in range(Integer(3)):
... n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
... j.append(n)
...
>>> G = graphics_array(j)
>>> G.show(figsize=[Integer(6),Integer(4)]) # long time

Use the plot options to display larger n-cubes:

sage: g = graphs.CubeGraph(9, embedding=1)
sage: g.show(figsize=[12,12], vertex_labels=False, vertex_size=20) # long time, needs sage.plot
sage: g = graphs.CubeGraph(9, embedding=2)
sage: g.show(figsize=[12,12], vertex_labels=False, vertex_size=20) # long time, needs sage.plot
sage: g = graphs.CubeGraph(9, embedding=3)
sage: g.show(figsize=[12,12], vertex_labels=False, vertex_size=20) # long time, needs sage.plot

>>> from sage.all import *
>>> g = graphs.CubeGraph(Integer(9), embedding=Integer(1))
>>> g.show(figsize=[Integer(12),Integer(12)], vertex_labels=False, vertex_size=Integer(20)) # long time, needs sage.plot
>>> g = graphs.CubeGraph(Integer(9), embedding=Integer(2))
>>> g.show(figsize=[Integer(12),Integer(12)], vertex_labels=False, vertex_size=Integer(20)) # long time, needs sage.plot
>>> g = graphs.CubeGraph(Integer(9), embedding=Integer(3))
>>> g.show(figsize=[Integer(12),Integer(12)], vertex_labels=False, vertex_size=Integer(20)) # long time, needs sage.plot

AUTHORS:

• Robert Miller
• David Coudert

static CycleGraph(n)

Return a cycle graph with n nodes.

A cycle graph is a basic structure which is also typically called an n-gon.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each cycle graph will be displayed with the first (0) node at the top, with the rest following in a counterclockwise manner.

The cycle graph is a good opportunity to compare efficiency of filling a position dictionary vs. using the spring-layout algorithm for plotting. Because the cycle graph is very symmetric, the resulting plots should be similar (in cases of small n).

Filling the position dictionary in advance adds $O(n)$ to the constructor.

EXAMPLES:

Compare plotting using the predefined layout and networkx:

sage: # needs networkx sage.plot
sage: import networkx
sage: n = networkx.cycle_graph(23)
We next view many cycle graphs as a Sage graphics array. First we use the `CycleGraph` constructor, which fills in the position dictionary:

```python
>>> from sage.all import *
>>> # needs networkx sage.plot
>>> import networkx
>>> n = networkx.cycle_graph(Integer(23))
>>> spring23 = Graph(n)
>>> posdict23 = graphs.CycleGraph(Integer(23))
>>> spring23.show()  # long time
>>> posdict23.show()  # long time
```

Compare to plotting with the spring-layout algorithm:

```python
>>> from sage.all import *
>>> # needs networkx sage.plot
>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
...   spr = networkx.cycle_graph(i+Integer(3))
...   k = Graph(spr)
...   g.append(k)
>>> for i in range(Integer(3)):
...   n = []
...   for m in range(Integer(3)):
...     n.append(g[3*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
...   j.append(n)
>>> G = graphics_array(j)
>>> G.show()  # long time
```
\begin{verbatim}
sage: for i in range(3):
 n = []
 for m in range(3):
 n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
 j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time

>>> from sage.all import *
>>> # needs networkx sage.plot
>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
 spr = networkx.cycle_graph(i+Integer(3))
 k = Graph(spr)
 g.append(k)
>>> for i in range(Integer(3)):
 n = []
 for m in range(Integer(3)):
 n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
 j.append(n)
>>> G = graphics_array(j)
>>> G.show() # long time
\end{verbatim}

static DartGraph()

Return a dart graph with 5 nodes.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the dart graph is drawn as a dart, with the sharp part on the bottom.

EXAMPLES:

Construct and show a dart graph:

\begin{verbatim}
sage: g = graphs.DartGraph()
sage: g.show() # long time
\end{verbatim}

static DegreeSequence(deg_sequence)

Return a graph with the given degree sequence.

This method raises a NetworkX error if the proposed degree sequence cannot be that of a graph.

Graph returned is the one returned by the Havel-Hakimi algorithm, which constructs a simple graph by connecting vertices of highest degree to other vertices of highest degree, resorting the remaining vertices by degree and repeating the process. See Theorem 1.4 in [CL1996].

INPUT:

- deg_sequence – list of integers with each entry corresponding to the degree of a different vertex

EXAMPLES:
sage: G = graphs.DegreeSequence([3, 3, 3, 3])
 # needs networkx
sage: G.edges(sort=True, labels=False)
 # needs networkx
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

sage: G.show() # long time
 # needs networkx

from sage.all import *

>>> from sage.all import *

sage: G = graphs.DegreeSequence([Integer(3), Integer(3), Integer(3), Integer(3)])
 # needs networkx
sage: G.edges(sort=True, labels=False)
 # needs networkx
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

>>> from sage.all import *

sage: G = graphs.DegreeSequence([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])
 # needs networkx

>>> from sage.all import *

sage: G = graphs.DegreeSequence([4, 4, 4, 4, 4, 4, 4, 4])
 # needs networkx

>>> from sage.all import *

sage: G = graphs.DegreeSequence([1, 2, 3, 4, 3, 2, 3, 2, 1])
 # needs networkx

>>> from sage.all import *

sage: G = graphs.DegreeSequence([1, 2, 3, 4, 3, 2, 3, 2, 1, 1])
 # needs networkx

2.1. Common graphs
static DegreeSequenceBipartite \((s_1, s_2)\)

Return a bipartite graph whose two sets have the given degree sequences.

Given two different sequences of degrees \(s_1\) and \(s_2\), this function returns (if possible) a bipartite graph on sets \(A\) and \(B\) such that the vertices in \(A\) have \(s_1\) as their degree sequence, while \(s_2\) is the degree sequence of the vertices in \(B\).

INPUT:

- \(s_1\) – list of integers corresponding to the degree sequence of the first set of vertices
- \(s_2\) – list of integers corresponding to the degree sequence of the second set of vertices

ALGORITHM:

This function works through the computation of the matrix given by the Gale-Ryser theorem, which is in this case the adjacency matrix of the bipartite graph.

EXAMPLES:

If we are given as sequences \([2, 2, 2, 2, 2]\) and \([5, 5]\) we are given as expected the complete bipartite graph \(K_{2, 5}\):

```sage
sage: g = graphs.DegreeSequenceBipartite([2, 2, 2, 2, 2], [5, 5])  # needs sage.combinat sage.modules
sage: g.is_isomorphic(graphs.CompleteBipartiteGraph(5, 2))  # needs sage.combinat sage.modules
True

>>> from sage.all import *
>>> g = graphs.DegreeSequenceBipartite([Integer(2), Integer(2), Integer(2), Integer(2), Integer(1)], [Integer(5), Integer(5)])  # needs sage.combinat sage.modules
>>> g.is_isomorphic(graphs.CompleteBipartiteGraph(Integer(5), Integer(2)))  # needs sage.combinat sage.modules
True
```

Some sequences being incompatible if, for example, their sums are different, the function raises a `ValueError` when no graph corresponding to the degree sequences exists:

```sage
sage: g = graphs.DegreeSequenceBipartite([2, 2, 2, 2, 1], [5, 5])  # needs sage.combinat sage.modules
Traceback (most recent call last):
... ValueError: there exists no bipartite graph corresponding to the given degree_sequences
```

```sage
>>> from sage.all import *
>>> g = graphs.DegreeSequenceBipartite([Integer(2), Integer(2), Integer(2), Integer(2), Integer(1)], [Integer(5), Integer(5)])  # needs sage.combinat sage.modules
Traceback (most recent call last):
... ValueError: there exists no bipartite graph corresponding to the given degree_sequences
```

static DegreeSequenceConfigurationModel \((deg_sequence, seed=None)\)

Return a random pseudograph with the given degree sequence.
This method raises a NetworkX error if the proposed degree sequence cannot be that of a graph with multiple edges and loops.

One requirement is that the sum of the degrees must be even, since every edge must be incident with two vertices.

INPUT:

- `deg_sequence` – list of integers with each entry corresponding to the expected degree of a different vertex
- `seed` – (optional) a `random.Random` seed or a Python `int` for the random number generator

EXAMPLES:

```python
sage: G = graphs.DegreeSequenceConfigurationModel([1,1])
˓→ # needs networkx
sage: G.adjacency_matrix()
˓→ # needs networkx sage.modules
[0 1]
[1 0]
```

The output is allowed to contain both loops and multiple edges:

```python
sage: # needs networkx

>>> from sage.all import *

Sage: G = graphs.DegreeSequenceConfigurationModel(deg_sequence)
Sage: G.order(), G.size()
(20, 30)
Sage: G.has_loops() or G.has_multiple_edges() # random
True
Sage: G.show()  # long time ˓→ # needs sage.plot
```

REFERENCE:

[New2003]
static DegreeSequenceExpected *(deg_sequence, seed=None)*

Return a random graph with expected given degree sequence.

This method raises a NetworkX error if the proposed degree sequence cannot be that of a graph.

One requirement is that the sum of the degrees must be even, since every edge must be incident with two vertices.

INPUT:

- `deg_sequence` – list of integers with each entry corresponding to the expected degree of a different vertex
- `seed` – (optional) a random.Random seed or a Python int for the random number generator

EXAMPLES:

```sage
sage: G = graphs.DegreeSequenceExpected([1,2,3,2,3]); G
Looped graph on 5 vertices
sage: G.show()  # long time
```

```python
>>> from sage.all import *
>>> G = graphs.DegreeSequenceExpected([Integer(1),Integer(2),Integer(3),Integer(2),Integer(3)]); G
Graph on 9 vertices
```

REFERENCE:

[CL2002]

static DegreeSequenceTree *(deg_sequence)*

Return a tree with the given degree sequence.

This method raises a NetworkX error if the proposed degree sequence cannot be that of a tree.

Since every tree has one more vertex than edge, the degree sequence must satisfy \(\text{len}(\text{deg_sequence}) - \text{sum}(\text{deg_sequence})/2 == 1 \).

INPUT:

- `deg_sequence` – list of integers with each entry corresponding to the expected degree of a different vertex

EXAMPLES:

```sage
sage: G = graphs.DegreeSequenceTree([3,1,3,3,1,1,2,1]); G
Graph on 9 vertices
sage: G.show()  # long time
```

```python
>>> from sage.all import *
>>> G = graphs.DegreeSequenceTree([Integer(3),Integer(1),Integer(3),Integer(3),Integer(1),Integer(1),Integer(2),Integer(1)]); G
Graph on 9 vertices
```
\begin{verbatim}
>>> G.show() # long time
˓→ # needs networkx sage.plot
g = graphs.DejterGraph(); g
˓→ # needs sage.rings.finite_rings
Dejter Graph: Graph on 112 vertices
g.is_regular(k=6)
˓→ # needs sage.rings.finite_rings
True
g.girth()
˓→ # needs sage.rings.finite_rings
4

>>> from sage.all import *
>>> g = graphs.DejterGraph(); g
˓→ # needs sage.rings.finite_rings
Dejter Graph: Graph on 112 vertices
>>> g.is_regular(k=Integer(6))
˓→ # needs sage.rings.finite_rings
True
>>> g.girth()
˓→ # needs sage.rings.finite_rings
4
\end{verbatim}

\textbf{static DejterGraph()}

Return the Dejter graph.

The Dejter graph is obtained from the binary 7-cube by deleting a copy of the Hamming code of length 7. It is 6-regular, with 112 vertices and 336 edges. For more information, see the \texttt{Wikipedia article Dejter_graph}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: D = graphs.DesarguesGraph()
sage: L = graphs.LCFGraph(20, [5, -5, 9, -9], 5)
˓→ # needs networkx
sage: D.is_isomorphic(L)
˓→ # needs networkx
True
sage: D.show() # long time
˓→ # needs sage.plot
\end{verbatim}

\textbf{static DesarguesGraph()}

Return the Desargues graph.

PLOTTING: The layout chosen is the same as on the cover of [Har1994].

\textbf{EXAMPLES:}

\begin{verbatim}
sage: D = graphs.DesarguesGraph()
sage: L = graphs.LCFGraph(Integer(20), [Integer(5), -Integer(5), Integer(9), -Integer(9)], Integer(5))
˓→ # needs networkx
sage: D.is_isomorphic(L)
˓→ # needs networkx
True
sage: D.show() # long time
˓→ # needs sage.plot
\end{verbatim}
static DiamondGraph()

Return a diamond graph with 4 nodes.

A diamond graph is a square with one pair of diagonal nodes connected.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the diamond graph is drawn as a diamond, with the first node on top, second on the left, third on the right, and fourth on the bottom; with the second and third node connected.

EXAMPLES:

Construct and show a diamond graph:

```sage
g = graphs.DiamondGraph()
g.show() \# long time
```

```python
>>> from sage.all import *
>>> g = graphs.DiamondGraph()
>>> g.show() \# needs sage.plot
```

static DipoleGraph(n)

Returns a dipole graph with n edges.

A dipole graph is a multigraph consisting of 2 vertices connected with n parallel edges.

EXAMPLES:

Construct and show a dipole graph with 13 edges:

```sage
g = graphs.DipoleGraph(13); g
Dipole graph: Multi-graph on 2 vertices
g.show() \# long time
```

```python
>>> from sage.all import *
>>> g = graphs.DipoleGraph(Integer(13)); g
Dipole graph: Multi-graph on 2 vertices
```

static DodecahedralGraph()

Return a Dodecahedral graph (with 20 nodes)

The dodecahedral graph is cubic symmetric, so the spring-layout algorithm will be very effective for display. It is dual to the icosahedral graph.

PLOTTING: The Dodecahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, a argument will be added to select the desired layout.

EXAMPLES:

Construct and show a Dodecahedral graph:

```sage
g = graphs.DodecahedralGraph()
g.show() \# long time
```

```python
>>> from sage.all import *
>>> g = graphs.DodecahedralGraph()
>>> g.show() \# needs sage.plot
```
Create several dodecahedral graphs in a Sage graphics array They will be drawn differently due to the use of the spring-layout algorithm:

```

sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
    ....:     k = graphs.DodecahedralGraph()
    ....:     g.append(k)
sage: for i in range(3):
    ....:     n = []
    ....:     for m in range(3):
    ....:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ....:     j.append(n)
sage: G = graphics_array(j)
sage: G.show()  # long time
```

```

sage: # needs sage.plot
sage: g = []
sage: j = []
```

static DoubleGeneralizedPetersenGraph \((n, k) \)

Return a double generalized Petersen graph with \(4n \) nodes.

The double generalized Petersen graphs is a family of graphs proposed in [ZF2012] as a variant of generalized Petersen graphs. The variables \(n, k \) are integers such that \(n > 2 \) and \(0 < k \leq \lfloor (n - 1)/2 \rfloor \).

INPUT:

• \(n \) – the number of nodes is \(4 \times n \)

• \(k \) – integer such that \(0 < k \leq \lfloor (n - 1)/2 \rfloor \) determining how vertices on second and third inner rims are connected

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the double generalized Petersen graphs are displayed as 4 cocentric cycles, with the first \(n \) nodes drawn on the outer circle. The first (0) node is drawn at the top of the outer-circle, moving counterclockwise after that. The second circle is drawn with the (n)th node at the top, then counterclockwise as well. The third cycle is drawn with the (2n)th node at the top, then counterclockwise. And the fourth cycle is drawn with the (3n)th node at the top, then again counterclockwise.

EXAMPLES:

When \(n \) is even the resulting graph will be isomorphic to a double generalized Petersen graph with \(k' = n/2 - k \):

```
sage: g = graphs.DoubleGeneralizedPetersenGraph(10, 2)
sage: g2 = graphs.DoubleGeneralizedPetersenGraph(10, 3)
sage: g.is_isomorphic(g2)
True
```

```
>>> from sage.all import *
>>> g = graphs.DoubleGeneralizedPetersenGraph(Integer(10), Integer(2))
>>> g2 = graphs.DoubleGeneralizedPetersenGraph(Integer(10), Integer(3))
>>> g.is_isomorphic(g2)
True
```

static DoubleGrassmannGraph \((q, e) \)

Return the bipartite double of the distance-\(e \) graph of the Grassmann graph \(J_q(n, e) \).

This graph can also be described as follows: Let \(V \) be the vector space of dimension \(n \) over \(GF(q) \). The vertex set is the set of \(e + 1 \) or \(e \) subspaces of \(V \). Two vertices are adjacent if one subspace is contained in the other.

This graph is distance-transitive.

INPUT:

• \(q \) – a prime power

• \(e \) – integer

EXAMPLES:

```
sage: G = graphs.DoubleGrassmannGraph(2,1)
   # needs sage.modules
sage: G.diameter()
   # needs sage.modules
3
```

(continues on next page)
sage: G.is_distance_regular(True)
\rightarrow # needs sage.modules
([3, 2, 2, None], [None, 1, 1, 3])

>>> from sage.all import *
>>> G = graphs.DoubleGrassmannGraph(Integer(2), Integer(1))
\rightarrow # needs sage.modules
>>> G.diameter()
\rightarrow # needs sage.modules
3

>>> G.is_distance_regular(True)
\rightarrow # needs sage.modules
([3, 2, 2, None], [None, 1, 1, 3])

REFERENCES:

static DoubleOddGraph (n)

Return the double odd graph on $2n + 1$ points.

The graph is obtained using the subsets of size n and $n + 1$ of $1, 2, ..., 2n + 1$ as vertices. Two vertices are adjacent if one is included in the other.

The graph is distance-transitive.

INPUT:

- n – integer; must be greater than 0

EXAMPLES:

sage: G = graphs.DoubleOddGraph(5)
sage: G.is_distance_regular(True)
([6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, None],
 [None, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6])
sage: G = graphs.DoubleOddGraph(3)
sage: G.diameter()
7

sage: G.is_distance_regular(True)
([4, 3, 3, 2, 2, 1, 1, None], [None, 1, 1, 2, 2, 3, 3, 4])

>>> from sage.all import *
>>> G = graphs.DoubleOddGraph(Integer(5))
>>> G.is_distance_regular(True)
([6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, None],
 [None, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6])

REFERENCES:

static DoubleStarSnark ()

Return the double star snark.
The double star snark is a 3-regular graph on 30 vertices. See the Wikipedia article Double-star_snark.

EXAMPLES:

```python
sage: g = graphs.DoubleStarSnark()
sage: g.order()
30
sage: g.size()
45
sage: g.chromatic_number()
3
sage: g.is_hamiltonian()
False
sage: g.automorphism_group().cardinality()
80
sage: g.show()
```

```
>>> from sage.all import *
>>> g = graphs.DoubleStarSnark()
>>> g.order()
30
>>> g.size()
45
>>> g.chromatic_number()
3
>>> g.is_hamiltonian()
False
>>> g.automorphism_group().cardinality()
80
>>> g.show()
```

static DoublyTruncatedWittGraph()

Return the doubly truncated Witt graph.

This builds the truncated Witt graph, then removes all vertices whose codeword start with a 1.

The graph is distance-regular with intersection array [7, 6, 4, 4; 1, 1, 1, 6].

EXAMPLES:

```python
sage: G = graphs.DoublyTruncatedWittGraph()

# needs sage.libs.pari sage.modules
sage: G.is_distance_regular(True)
([7, 6, 4, 4], [None, 1, 1, 1, 6])

>>> from sage.all import *
>>> G = graphs.DoublyTruncatedWittGraph()

# needs sage.libs.pari sage.modules
>>> G.is_distance_regular(True)
([7, 6, 4, 4], [None, 1, 1, 1, 6])
```
REFERENCES:

A description and construction of this graph can be found in [BCN1989] p. 368.

static DurerGraph()

Return the Dürer graph.

For more information, see the Wikipedia article D%C3%BCrer_graph.

EXAMPLES:

The Dürer graph is named after Albrecht Dürer. It is a planar graph with 12 vertices and 18 edges:

```
sage: G = graphs.DurerGraph(); G
Durer graph: Graph on 12 vertices
sage: G.is_planar()
True
sage: G.order()
12
sage: G.size()
18
```

```python
>>> from sage.all import *

>>> G = graphs.DurerGraph(); G
Durer graph: Graph on 12 vertices
>>> G.is_planar()
True
>>> G.order()
12
>>> G.size()
18
```

The Dürer graph has chromatic number 3, diameter 4, and girth 3:

```
sage: G.chromatic_number()
3
sage: G.diameter()
4
sage: G.girth()
3
```

```python
>>> from sage.all import *

>>> G.chromatic_number()
3
>>> G.diameter()
4
>>> G.girth()
3
```

Its automorphism group is isomorphic to D_6:

```
sage: ag = G.automorphism_group() ...
-> # needs sage.groups
sage: ag.is_isomorphic(DihedralGroup(6)) ...
-> # needs sage.groups
True
```

2.1. Common graphs
static DyckGraph()
Return the Dyck graph.

For more information, see the MathWorld article on the Dyck graph or the Wikipedia article Dyck_graph.

EXAMPLES:
The Dyck graph was defined by Walther von Dyck in 1881. It has 32 vertices and 48 edges, and is a cubic graph (regular of degree 3):

```
sage: G = graphs.DyckGraph(); G
Dyck graph: Graph on 32 vertices
sage: G.order()
32
sage: G.size()
48
sage: G.is_regular()
True
sage: G.is_regular(3)
True
```

It is non-planar and Hamiltonian, as well as bipartite (making it a bicubic graph):

```
sage: G.is_planar()
False
sage: G.is_hamiltonian()
# needs sage.numerical.mip
True
sage: G.is_bipartite()
True
```

```
It has radius 5, diameter 5, and girth 6:

```python
sage: G.radius()
5
sage: G.diameter()
5
sage: G.girth()
6
```

Its chromatic number is 2 and its automorphism group is of order 192:

```python
sage: G.chromatic_number()
2
sage: G.automorphism_group().cardinality() # needs sage.groups
192
```

It is a non-integral graph as it has irrational eigenvalues:

```python
sage: G.characteristic_polynomial().factor() # needs sage.libs.pari sage.modules
(x - 3) * (x + 3) * (x - 1)^9 * (x + 1)^9 * (x^2 - 5)^6
```

It is a toroidal graph, and its embedding on a torus is dual to an embedding of the Shrikhande graph \( \text{ShrikhandeGraph} \).

**static EgawaGraph** \( (p, s) \)

Return the Egawa graph with parameters \( p, s \).

Egawa graphs are a peculiar family of graphs devised by Yoshimi Egawa in [Ega1981]. The Shrikhande graph is a special case of this family of graphs, with parameters \( (1, 0) \). All the graphs in this family are not recognizable by 1-WL (Weisfeiler Lehman algorithm of the first order) and 2-WL, that is their orbits are not correctly returned by k-WL for k lower than 3.

Furthermore, all the graphs in this family are distance-regular, but they are not distance-transitive if \( p \neq 0 \).

The Egawa graph with parameters \( (0, s) \) is isomorphic to the Hamming graph with parameters \( (s, 4) \), when the underlying set of the Hamming graph is \([0, 1, 2, 3]\)
INPUT:

• \( p \) – power to which the graph named \( Y \) in the reference provided above will be raised

• \( s \) – power to which the graph named \( X \) in the reference provided above will be raised

OUTPUT:

• \( G \) – The Egawa graph with parameters \((p,s)\)

EXAMPLES:

Every Egawa graph is distance regular.

```python
sage: g = graphs.EgawaGraph(1, 2)
sage: g.is_distance_regular()
True
```

```python
>>> from sage.all import *
>>> g = graphs.EgawaGraph(Integer(1), Integer(2))
>>> g.is_distance_regular()
True
```

An Egawa graph with parameters \((0,s)\) is isomorphic to the Hamming graph with parameters \((s,4)\).

```python
sage: g = graphs.EgawaGraph(0, 4)
sage: g.is_isomorphic(graphs.HammingGraph(4, 4))
True
```

```python
>>> from sage.all import *
>>> g = graphs.EgawaGraph(Integer(0), Integer(4))
>>> g.is_isomorphic(graphs.HammingGraph(Integer(4), Integer(4)))
True
```

**static EllinghamHorton54Graph()**

Return the Ellingham-Horton 54-graph.

For more information, see the Wikipedia article Ellingham-Horton_graph.

EXAMPLES:

This graph is 3-regular:

```python
sage: g = graphs.EllinghamHorton54Graph()
sage: g.is_regular(k=3)
True
```

```python
>>> from sage.all import *
>>> g = graphs.EllinghamHorton54Graph()
>>> g.is_regular(k=Integer(3))
True
```

It is 3-connected and bipartite:

```python
sage: g.vertex_connectivity() # not tested - too long
3
sage: g.is_bipartite()
True
```
It is not Hamiltonian:

```
sage: g.is_hamiltonian() # not tested
False
```

... and it has a nice drawing

```
sage: g.show(figsize=[10, 10]) # not tested - too long
```

```
static EllinghamHorton78Graph()
Return the Ellingham-Horton 78-graph.
For more information, see the Wikipedia article Ellingham%E2%80%93Horton_graph

EXAMPLES:
This graph is 3-regular:
```
sage: g = graphs.EllinghamHorton78Graph()
sage: g.is_regular(k=3)
True
```

It is 3-connected and bipartite:
```
sage: g.vertex_connectivity()  # not tested (too long)
3
sage: g.is_bipartite()
True
```

It is not Hamiltonian:
static EmptyGraph()

Return an empty graph (0 nodes and 0 edges).

This is useful for constructing graphs by adding edges and vertices individually or in a loop.

PLOTTING: When plotting, this graph will use the default spring-layout algorithm, unless a position dictionary is specified.

EXAMPLES:

Add one vertex to an empty graph and then show:

```python
sage: empty1 = graphs.EmptyGraph()
sage: empty1.add_vertex()
0
sage: empty1.show()  # long time
˓→ # needs sage.plot
```

Use for loops to build a graph from an empty graph:

```python
sage: empty2 = graphs.EmptyGraph()
sage: for i in range(5):
      ....:   empty2.add_vertex()  # add 5 nodes, labeled 0-4
0
1
2
3
4
sage: for i in range(3):
      ....:   empty2.add_edge(i, i+1)  # add edges {[0:1],[1:2],[2:3]}
sage: for i in range(4):
      ....:   empty2.add_edge(4, i)  # add edges {[1:4],[2:4],[3:4]}
sage: empty2.show()  # long time
˓→ # needs sage.plot
```
>>> from sage.all import *
>>> empty2 = graphs.EmptyGraph()
>>> for i in range(Integer(5)):
... empty2.add_vertex() # add 5 nodes, labeled 0-4
0
1
2
3
4
>>> for i in range(Integer(3)):
... empty2.add_edge(i,i+Integer(1)) # add edges \{[0:1],[1:2],[2:3]\}
>>> for i in range(Integer(1), Integer(4)):
... empty2.add_edge(Integer(4),i) # add edges \{[1:4],[2:4],[3:4]\}

static ErreraGraph()
Return the Errera graph.

For more information, see the Wikipedia article Errera_graph.

EXAMPLES:
The Errera graph is named after Alfred Errera. It is a planar graph on 17 vertices and having 45 edges:

\begin{verbatim}
sage: G = graphs.ErreraGraph(); G
Errera graph: Graph on 17 vertices
sage: G.is_planar()
True
sage: G.order()
17
sage: G.size()
45
\end{verbatim}

The Errera graph is Hamiltonian with radius 3, diameter 4, girth 3, and chromatic number 4:

\begin{verbatim}
sage: G.is_hamiltonian() # needs sage.numerical.mip
True
sage: G.radius()
3
sage: G.diameter()
4
sage: G.girth()
3
sage: G.chromatic_number()
4
\end{verbatim}
Graph Theory, Release 10.4

```python
>>> from sage.all import *

>>> G.is_hamiltonian()
→ # needs sage.numerical.mip
True

>>> G.radius()
3

>>> G.diameter()
4

>>> G.girth()
3

>>> G.chromatic_number()
4

Each vertex degree is either 5 or 6. That is, if \( f \) counts the number of vertices of degree 5 and \( s \) counts the number of vertices of degree 6, then \( f + s \) is equal to the order of the Errera graph:

```python
sage: D = G.degree_sequence()
sage: D.count(5) + D.count(6) == G.order()
True
```

The automorphism group of the Errera graph is isomorphic to the dihedral group of order 20:

```python
sage: ag = G.automorphism_group()
→ # needs sage.groups
sage: ag.is_isomorphic(DihedralGroup(10))
→ # needs sage.groups
True
```

```python
>>> from sage.all import *

>>> ag = G.automorphism_group()
→ # needs sage.groups

```

```python
static EuropeMap(continental=False, year=2018)
Return European states as a graph of common border.

“European state” here is defined as an independent state having the capital city in Europe. The graph has an edge between those countries that have common land border.

INPUT:

- continental – boolean (default: False); whether to only return states in the continental Europe or all European states
- year – integer (default: 2018); reserved for future use

EXAMPLES:

```
sage: Europe = graphs.EuropeMap(); Europe
Europe Map: Graph on 44 vertices
sage: Europe.neighbors('Ireland')
(continues on next page)
```
```
static F26AGraph()

Return the F26A graph.

The F26A graph is a symmetric bipartite cubic graph with 26 vertices and 39 edges. For more information, see the Wikipedia article F26A_graph.

EXAMPLES:

.. literalinclude:: /usr/share/doc/graphtheory/html/sage/graphs/F26A_graph.py
   :language: python
   :linenos:

2.1. Common graphs
static FibonacciTree(\(n\))

Return the graph of the Fibonacci Tree \(F_i\) of order \(n\).

The Fibonacci tree \(F_i\) is recursively defined as the tree with a root vertex and two attached child trees \(F_{i-1}\) and \(F_{i-2}\), where \(F_1\) is just one vertex and \(F_0\) is empty.

INPUT:

• \(n\) – the recursion depth of the Fibonacci Tree

EXAMPLES:

```python
sage: g = graphs.FibonacciTree(3) # needs sage.libs.pari
sage: g.is_tree() # needs sage.libs.pari
True
```

```python
>>> from sage.all import *

+>>> g = graphs.FibonacciTree(Integer(3)) # needs sage.libs.pari
+>>> g.is_tree() # needs sage.libs.pari
+True
```

```python
sage: l1 = [len(graphs.FibonacciTree(_)) + 1 for _ in range(6)] # needs sage.libs.pari
sage: l2 = list(fibonacci_sequence(2,8)) # needs sage.libs.pari
sage: l1 == l2 # needs sage.libs.pari
True
```

```python
>>> from sage.all import *

+>>> l1 = [len(graphs.FibonacciTree(_)) + Integer(1) for _ in range(Integer(6))] # needs sage.libs.pari
+>>> l2 = list(fibonacci_sequence(Integer(2),Integer(8))) # needs sage.libs.pari
+>>> l1 == l2 # needs sage.libs.pari
+True
```

AUTHORS:

• Harald Schilly and Yann Laigle-Chapuy (2010-03-25)

static FlowerSnark()

Return a Flower Snark.

A flower snark has 20 vertices. It is part of the class of biconnected cubic graphs with edge chromatic number = 4, known as snarks. (i.e.: the Petersen graph). All snarks are not Hamiltonian, non-planar and have Petersen graph graph minors. See the Wikipedia article Flower_snark.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the nodes are drawn 0-14 on the outer circle, and 15-19 in an inner pentagon.

EXAMPLES: Inspect a flower snark:
Graph Theory, Release 10.4

```python
sage: F = graphs.FlowerSnark()
sage: F
Flower Snark: Graph on 20 vertices
sage: F.graph6_string()
'ShCGHC@?GGg@?@?Gp?K??C?CA?G?_G?Cc'
```

```python
>>> from sage.all import *

>>> F = graphs.FlowerSnark()

>>> F
Flower Snark: Graph on 20 vertices

>>> F.graph6_string()
'ShCGHC@?GGg@?@?Gp?K??C?CA?G?_G?Cc'
```

Now show it:

```python
sage: F.show() # long time
← # needs sage.plot
```

```python
>>> from sage.all import *

>>> F.show() # long time
← # needs sage.plot
```

**static FoldedCubeGraph(n)**

Returns the folded cube graph of order $2^{n-1}$.

The folded cube graph on $2^{n-1}$ vertices can be obtained from a cube graph on $2^n$ vertices by merging together opposed vertices. Alternatively, it can be obtained from a cube graph on $2^{n-1}$ vertices by adding an edge between opposed vertices. This second construction is the one produced by this method.

See the [Wikipedia article Folded_cube_graph](http://example.com) for more information.

**EXAMPLES:**

The folded cube graph of order five is the Clebsch graph:

```python
sage: fc = graphs.FoldedCubeGraph(5)
sage: clebsch = graphs.ClebschGraph()
sage: fc.is_isomorphic(clebsch)
True
```

```python
>>> from sage.all import *

>>> fc = graphs.FoldedCubeGraph(Integer(5))

>>> clebsch = graphs.ClebschGraph()

>>> fc.is_isomorphic(clebsch)
True
```

**static FolkmanGraph()**

Return the Folkman graph.

See the [Wikipedia article Folkman_graph](http://example.com).

**EXAMPLES:**

```python
sage: # needs networkx
sage: g = graphs.FolkmanGraph()
sage: g.order()
20
```

(continues on next page)
sage: g.size()
40
sage: g.diameter()
4
sage: g.girth()
4
sage: g.charpoly().factor()
(x - 4) * (x + 4) * x^10 * (x^2 - 6)^4
sage: g.chromatic_number()
2
sage: g.is_eulerian()
True
sage: g.is_hamiltonian()  # needs sage.numerical_mip
True
sage: g.is_vertex_transitive()
False
sage: g.is_bipartite()
True

static ForkGraph()

Return a fork graph with 5 nodes.

A fork graph, sometimes also called chair graph, is 5 vertex tree.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the fork graph is drawn as a fork, with the sharp part on the bottom.

EXAMPLES:

Construct and show a fork graph:
sage: g = graphs.ForkGraph()
sage: g.show()  # long time
˓→ # needs sage.plot

>>> from sage.all import *
>>> g = graphs.ForkGraph()
>>> g.show()  # long time
˓→ # needs sage.plot

**static FosterGraph()**

Return the Foster graph.

See the [Wikipedia article Foster_graph](https://en.wikipedia.org/wiki/Foster_graph).

**EXAMPLES:**

```python
sage: # needs networkx
sage: g = graphs.FosterGraph()
sage: g.order()
90
sage: g.size()
135
sage: g.diameter()
8
sage: g.girth()
10
sage: g.automorphism_group().cardinality()
4320
sage: g.is_hamiltonian() # needs sage.numerical_mip
True
```

```python
>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.FosterGraph()
>>> g.order()
90
>>> g.size()
135
>>> g.diameter()
8
>>> g.girth()
10
>>> g.automorphism_group().cardinality()
4320
>>> g.is_hamiltonian() # needs sage.numerical_mip
True
```

**static FosterGraph3S6()**

Return the Foster graph for $3 \cdot Sym(6)$.

This graph is distance-regular with intersection array $[6, 4, 2, 1; 1, 1, 4, 6]$.

The graph is also distance transitive.

**EXAMPLES:**
sage: G = graphs.FosterGraph3S6()
   # needs sage.libs.gap
sage: G.is_distance_regular(True)
   # needs sage.libs.gap
([6, 4, 2, 1, None], [None, 1, 1, 4, 6])

>>> from sage.all import *
>>> G = graphs.FosterGraph3S6()
   # needs sage.libs.gap
>>> G.is_distance_regular(True)
   # needs sage.libs.gap
([6, 4, 2, 1, None], [None, 1, 1, 4, 6])

REFERENCES:
A description and construction of this graph can be found in [BCN1989] p. 397.

static FranklinGraph()

Return the Franklin graph.

For more information, see the Wikipedia article Franklin_graph.

EXAMPLES:
The Franklin graph is named after Philip Franklin. It is a 3-regular graph on 12 vertices and having 18 edges:

sage: G = graphs.FranklinGraph(); G
Franklin graph: Graph on 12 vertices
sage: G.is_regular(3)
True
sage: G.order()
12
sage: G.size()
18

>>> from sage.all import *
>>> G = graphs.FranklinGraph(); G
Franklin graph: Graph on 12 vertices
>>> G.is_regular(Integer(3))
True
>>> G.order()
12
>>> G.size()
18

The Franklin graph is a Hamiltonian, bipartite graph with radius 3, diameter 3, and girth 4:

sage: G.is_hamiltonian()
   # needs sage.numerical_mip
True
sage: G.is_bipartite()
True
sage: G.radius()
3
sage: G.diameter()
3
sage: G.girth()
4
It is a perfect, triangle-free graph having chromatic number 2:

```python
>>> from sage.all import *

>>> G.is_perfect() # needs sage.numerical_mip
True

>>> G.is_triangle_free()
True

>>> G.chromatic_number()
2
```

### static FriendshipGraph(n)

Return the friendship graph $F_n$.

The friendship graph is also known as the Dutch windmill graph. Let $C_3$ be the cycle graph on 3 vertices. Then $F_n$ is constructed by joining $n \geq 1$ copies of $C_3$ at a common vertex. If $n = 1$, then $F_1$ is isomorphic to $C_3$ (the triangle graph). If $n = 2$, then $F_2$ is the butterfly graph, otherwise known as the bowtie graph. For more information, see the Wikipedia article Friendship_graph.

**INPUT:**

- $n$ – positive integer; the number of copies of $C_3$ to use in constructing $F_n$.

**OUTPUT:**

- The friendship graph $F_n$, obtained from $n$ copies of the cycle graph $C_3$.

**See also:**

- `GraphGenerators.ButterflyGraph()`

**EXAMPLES:**

The first few friendship graphs.

```python
>>> from sage.all import *

>>> G.is_perfect() # needs sage.numerical_mip
True

>>> G.is_triangle_free()
True

>>> G.chromatic_number()
2
```

```python
>>> from sage.all import *

>>> G.is_perfect() # needs sage.numerical_mip
True

>>> G.is_triangle_free()
True

>>> G.chromatic_number()
2
```

(continues on next page)
For $n = 1$, the friendship graph $F_1$ is isomorphic to the cycle graph $C_3$, whose visual representation is a triangle.

```python
sage: G = graphs.FriendshipGraph(1); G
Friendship graph: Graph on 3 vertices
sage: G.show() # long time
```

For $n = 2$, the friendship graph $F_2$ is isomorphic to the butterfly graph, otherwise known as the bowtie graph.

```python
sage: G = graphs.FriendshipGraph(2); G
Friendship graph: Graph on 5 vertices
sage: G.is_isomorphic(graphs.ButterflyGraph())
True
```

If $n \geq 2$, then the friendship graph $F_n$ has $2n + 1$ vertices and $3n$ edges. It has radius 1, diameter 2, girth 3,
and chromatic number 3. Furthermore, \( F_n \) is planar and Eulerian.

```python
sage: n = randint(2, 10^3)
sage: G = graphs.FriendshipGraph(n)
sage: G.order() == 2*n + 1
True
sage: G.size() == 3*n
True
sage: G.radius()
1
sage: G.diameter()
2
sage: G.girth()
3
sage: G.chromatic_number()
3
sage: G.is_planar()
True
sage: G.is_eulerian()
True
```

```python
>>> from sage.all import *

>>> n = randint(Integer(2), Integer(10)**Integer(3))

>>> G = graphs.FriendshipGraph(n)

>>> G.order() == Integer(2)*n + Integer(1)
True

>>> G.size() == Integer(3)*n
True

>>> G.radius()
1

>>> G.diameter()
2

>>> G.girth()
3

>>> G.chromatic_number()
3

>>> G.is_planar()
True

>>> G.is_eulerian()
True
```

**static FruchtGraph()**

Return a Frucht Graph.

A Frucht graph has 12 nodes and 18 edges. It is the smallest cubic identity graph. It is planar and Hamiltonian. See the Wikipedia article Frucht_graph.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the first seven nodes are on the outer circle, with the next four on an inner circle and the last in the center.

EXAMPLES:

```python
sage: FRUCHT = graphs.FruchtGraph()
sage: FRUCHT
Frucht graph: Graph on 12 vertices
sage: FRUCHT.graph6_string()
'KhCKM?_EGK?L'
```

(continues on next page)
sage: (graphs.FruchtGraph()).show() \hspace{1cm} # long time

\[\rightarrow\] \hspace{1cm} \# needs networkx

\[\begin{verbatim}
>>> from sage.all import *

FRUCHT = graphs.FruchtGraph()
FRUCHT
Frucht graph: Graph on 12 vertices
FRUCHT.graph6_string()
'KhCKM?_EGK?L'

\[\rightarrow\] \hspace{1cm} (graphs.FruchtGraph()).show() \hspace{1cm} # long time

\[\rightarrow\] \hspace{1cm} \# needs networkx
\end{verbatim}\]

\textbf{static FurerGadget} (\(k\), \(prefix=None\))

Return a Furer gadget of order \(k\) and their coloring.

Construct the Furer gadget described in [CFI1992], a graph composed by a middle layer of \(2(k - 1)\) nodes and two sets of nodes \((a_0, \ldots, a_{k-1})\) and \((b_0, \ldots, b_{k-1})\). Each node in the middle is connected to either \(a_i\) or \(b_i\), for each \(i\) in \([0,k]\). To read about the complete construction, see [CFI1992]. The returned coloring colors the middle section with one color, and then each pair \((a_i, b_i)\) with another color. Since this method is mainly used to create Furer gadgets for the Cai-Furer-Immerman construction, returning gadgets that don’t always have the same vertex labels is important, that’s why there is a parameter to manually set a prefix to be appended to each vertex label.

\textbf{INPUT:}

- \(k\) – The order of the returned Furer gadget, greater than 0.
- \(prefix\) – Prefix of to be appended to each vertex label, so as to individualise the returned Furer gadget. Must be comparable for equality and hashable.

\textbf{OUTPUT:}

- \(G\) – The Furer gadget of order \(k\)
- \(coloring\) – A list of list of vertices, representing the partition induced by the coloring of \(G\)'s vertices

\textbf{EXAMPLES:}

Furer gadget of order 3, without any prefix.

\[\begin{verbatim}
sage: G, p = graphs.FurerGadget(3)
sage: sorted(G, key=str)
[((), (0, 'a'), (0, 'b'), (0, 1), (0, 2),
  (1, 'a'), (1, 'b'), (1, 2), (2, 'a'), (2, 'b'))
sage: sorted(G.edge_iterator(), key=str)
[(()), ((), (0, 'b'), None), ((0, 1), (1, 'b'), None),
  ((0, 2), (1, 'b'), None), ((0, 1), (0, 'a'), None),
  ((0, 1), (2, 'b'), None), ((0, 'b'), (1, 2), None),
  ((0, 1), (1, 'a'), None), ((0, 1), (1, 'a'), None),
  ((0, 2), (0, 'a'), None), ((0, 2), (2, 'a'), None),
  ((1, 2), (1, 'a'), None), ((1, 2), (2, 'a'), None)]
\end{verbatim}\]
sorted(G.edge_iterator(), key=str)
[(((), (0, 'b')), None), (((), (1, 'b')), None),
(((), (2, 'b')), None), ((0, 'b'), (1, 2), None),
((0, 1), (0, 'a'), None), ((0, 1), (1, 'a'), None),
((0, 1), (2, 'b'), None), ((0, 2), (0, 'a'), None),
((0, 2), (1, 'b'), None), ((0, 2), (2, 'a'), None),
((1, 2), (1, 'a'), None), ((1, 2), (2, 'a'), None))

Furer gadget of order 3, with a prefix.

sage: G, p = graphs.FurerGadget(3, 'Prefix')
sage: sorted(G, key=str)
[('Prefix', ()), ('Prefix', (0, 'a')), ('Prefix', (0, 'b')),
 ('Prefix', (0, 1)), ('Prefix', (0, 2)), ('Prefix', (1, 'a')),
 ('Prefix', (1, 'b')), ('Prefix', (1, 2)), ('Prefix', (2, 'a')),
 ('Prefix', (2, 'b'))]

sage: sorted(G.edge_iterator(), key=str)
[('Prefix', ()), ('Prefix', (0, 'b')), None),
('Prefix', (0, 1)), ('Prefix', (0, 'a')), None),
('Prefix', (0, 1)), ('Prefix', (1, 'a')), None),
('Prefix', (0, 1)), ('Prefix', (2, 'b')), None),
('Prefix', (0, 2)), ('Prefix', (0, 'a')), None),
('Prefix', (0, 2)), ('Prefix', (1, 'b')), None),
('Prefix', (0, 2)), ('Prefix', (2, 'a')), None),
('Prefix', (1, 2)), ('Prefix', (1, 'a')), None),
('Prefix', (1, 2)), ('Prefix', (2, 'a')), None)]

FuzzyBallGraph(partition, q)

Construct a Fuzzy Ball graph with the integer partition partition and q extra vertices.

Let q be an integer and let $m_1, m_2, ..., m_k$ be a set of positive integers. Let $n = q + m_1 + ... + m_k$. The Fuzzy Ball graph with partition $m_1, m_2, ..., m_k$ and q extra vertices is the graph constructed from the graph $G = K_n$ by attaching, for each $i = 1, 2, ..., k$, a new vertex $a_i$ to $m_i$ distinct vertices of $G$.  

2.1. Common graphs
For given positive integers $k$ and $m$ and nonnegative integer $q$, the set of graphs $\text{FuzzyBallGraph}(p, q)$ for all partitions $p$ of $m$ with $k$ parts are cospectral with respect to the normalized Laplacian.

**EXAMPLES:**

```python
sage: F = graphs.FuzzyBallGraph([3, 1], 2)
sage: F.adjacency_matrix(vertices=list(F))
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
```

Pick positive integers $m$ and $k$ and a nonnegative integer $q$. All the FuzzyBallGraphs constructed from partitions of $m$ with $k$ parts should be cospectral with respect to the normalized Laplacian:

```python
sage: m = 4; q = 2; k = 2
sage: g_list = [graphs.FuzzyBallGraph(p, q) for p in Partitions(m, length=k)]
```

```python
>>> from sage.all import *

>>> F = graphs.FuzzyBallGraph([Integer(3), Integer(1)], Integer(2))
```

```python
>>> F.adjacency_matrix(vertices=list(F))
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
```

```python
>>> from sage.all import *

>>> m = Integer(4); q = Integer(2); k = Integer(2)
```

```python
>>> g_list = [graphs.FuzzyBallGraph(p, q) for p in Partitions(m, length=k)]
```

```python
set(g.laplacian_matrix(normalized=True, # long time (7s on sage.math,˓
vertices=list(g)).charpoly()
\begin{align*}
-x^8 - 8\times^7 + 4079/150\times^6 - 68689/1350\times^5 + 610783/10800\times^4 \\
-120877/3240\times^3 + 1351/100\times^2 - 931/450\times \\
\end{align*}
```

**static GemGraph()**

Return a gem graph with 5 nodes.
A gem graph is a fan graph (4,1).

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the gem graph is drawn as a gem, with the sharp part on the bottom.

EXAMPLES:

Construct and show a gem graph:

```
sage: g = graphs.GemGraph()
sage: g.show() # long time
```

```python
>>> from sage.all import *
>>> g = graphs.GemGraph()
>>> g.show() # long time
```

```
static GeneralisedDodecagonGraph (s, t)

Return the point-graph of a generalised dodecagon of order \((s, t)\).

INPUT:

• \(s, t\) – integers; order of the generalised dodecagon

EXAMPLES:

```
sage: # optional - gap_package_atlasrep internet
g = graphs.GemGraph()
sage: G.is_distance_regular(True)
(\([6, 5, 5, 5, 5, 5, None], [None, 1, 1, 1, 1, 1, 6]\))
```

```
H = graphs.GemGraph()
H.order()
23436
```

```
sage: H.is_distance_regular(True) # not tested (6 min)
(\([10, 5, 5, 5, 5, 5, None], [None, 1, 1, 1, 1, 1, 2]\))
```

```
# optional - gap_package_atlasrep internet
G = graphs.GemGraph()
```

```
H = graphs.GemGraph()
H.is_distance_regular(True) # not tested (6 min)
```

Note: This function indirectly uses the GAP's AtlasRep package. Thus you may need an internet connection and the optional Sage's package gap_packages.

REFERENCES:


```
static GeneralisedHexagonGraph (s, t)

Return the point-graph of a generalised hexagon of order \((s, t)\).

INPUT:

2.1. Common graphs
• \( s, t \) – integers; order of the generalised hexagon

**EXAMPLES:**

```python
sage: # needs sage.libs.gap
g = graphs.GeneralisedHexagonGraph(5, 5) # optional - gap_
 --> package_atlasrep internet
g.is_distance_regular(True) # optional - gap_
 --> package_atlasrep internet
((30, 25, 25, None), [None, 1, 1, 6])
sage: G = graphs.GeneralisedHexagonGraph(7, 1)
sage: G.is_distance_regular(True)
((14, 7, 7, None), [None, 1, 1, 2])
sage: graphs.GeneralisedHexagonGraph(1, 1)
Cycle graph: Graph on 6 vertices
```

**Note:** This function uses the GAP’s AtlasRep package to build GHs of order \((q, q), (q, q^3)\) or \((q^3, q)\). For those graphs you need an internet connection and Sage’s optional package gap_packages.

**REFERENCES:**


```python
>>> from sage.all import *
>>> # needs sage.libs.gap
>>> G = graphs.GeneralisedHexagonGraph(Integer(5), Integer(5)) # _
 --> optional - gap_package_atlasrep internet
>>> G.is_distance_regular(True) # optional - gap_
 --> package_atlasrep internet
((30, 25, 25, None), [None, 1, 1, 6])
>>> G = graphs.GeneralisedHexagonGraph(Integer(7), Integer(1))
>>> G.is_distance_regular(True)
((14, 7, 7, None), [None, 1, 1, 2])
>>> graphs.GeneralisedHexagonGraph(Integer(1), Integer(1))
Cycle graph: Graph on 6 vertices
```

**static GeneralisedOctagonGraph** \((s, t)\)

Return the point-graph of a generalised octagon of order \((s, t)\).

**INPUT:**

• \( s, t \) – integers; order of the generalised octagon

**EXAMPLES:**

```python
sage: # needs sage.libs.gap
g = graphs.GeneralisedOctagonGraph(1, 4)
g.is_distance_regular(True)
((5, 4, 4, 4, None), [None, 1, 1, 5])
sage: G = graphs.GeneralisedOctagonGraph(2, 4) # optional - gap_
 --> package_atlasrep internet
G.is_distance_regular(True) # optional - gap_
 --> package_atlasrep internet
((10, 8, 8, None), [None, 1, 1, 5])
sage: G = graphs.GeneralisedOctagonGraph(5, 1)
sage: G.is_distance_regular(True)
((10, 5, 5, None), [None, 1, 1, 2])
```
>>> from sage.all import *
>>> G = graphs.GeneralisedOctagonGraph(Integer(1), Integer(4))
>>> G.is_distance_regular(True)
([5, 4, 4, 4, None], [None, 1, 1, 1, 5])
>>> G = graphs.GeneralisedOctagonGraph(Integer(2), Integer(4))
# optional - gap_package_atlasrep internet
>>> G.is_distance_regular(True) # optional - gap_package_atlasrep internet
([10, 8, 8, 8, None], [None, 1, 1, 1, 5])
>>> G = graphs.GeneralisedOctagonGraph(Integer(5), Integer(1))
>>> G.is_distance_regular(True)
([10, 5, 5, 5, None], [None, 1, 1, 1, 2])

Note: This function uses the GAP’s AtlasRep package to build the graphs of order (2, 4) or (4, 2). For those graphs you need an internet connection and Sage’s optional package gap_packages.

REFERENCES:


static GeneralizedPetersenGraph $(n, k)$

Returns a generalized Petersen graph with $2n$ nodes. The variables $n, k$ are integers such that $n > 2$ and $0 < k \leq \lfloor (n - 1)/2 \rfloor$.

For $k = 1$ the result is a graph isomorphic to the circular ladder graph with the same $n$. The regular Petersen Graph has $n = 5$ and $k = 2$. Other named graphs that can be described using this notation include the Desargues graph and the Möbius-Kantor graph.

INPUT:

* $n$ – the number of nodes is $2 \ast n$.
* $k$ – integer $0 < k \leq \lfloor (n - 1)/2 \rfloor$. Decides how inner vertices are connected.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the generalized Petersen graphs are displayed as an inner and outer cycle pair, with the first $n$ nodes drawn on the outer circle. The first (0) node is drawn at the top of the outer-circle, moving counterclockwise after that. The inner circle is drawn with the (n)th node at the top, then counterclockwise as well.

EXAMPLES: For $k = 1$ the resulting graph will be isomorphic to a circular ladder graph.

```sage
g = graphs.GeneralizedPetersenGraph(13,1)
g2 = graphs.CircularLadderGraph(13)
g.is_isomorphic(g2)
True
```

```sage
g = graphs.GeneralizedPetersenGraph(Integer(13),Integer(1))
g2 = graphs.CircularLadderGraph(Integer(13))
g.is_isomorphic(g2)
True
```

The Desargues graph:

```sage
g = graphs.GeneralizedPetersenGraph(10,3)
g.girth() # optional - gap_packages
```

(continues on next page)
AUTHORS:

- Anders Jonsson (2009-10-15)

static GeneralizedSierpinskiGraph (G, k, stretch=None)

Return the generalized Sierpinski graph of $G$ of dimension $k$.

Generalized Sierpinski graphs have been introduced in [GKP2011] to generalize the notion of Sierpinski graphs [KM1997].

Given a graph $G = (V,E)$ of order $n$ and a parameter $k$, the generalized Sierpinski graph of $G$ of dimension $k$, denoted by $S(G,k)$, can be constructed recursively from $G$ as follows. $S(G,1)$ is isomorphic to $G$. To construct $S(G,k)$ for $k > 1$, copy $n$ times $S(G,k-1)$, once per vertex $u \in V$, and add $u$ at the beginning of the labels of each vertex in the copy of $S(G,k-1)$ corresponding to vertex $u$. Then for any edge $\{u,v\} \in E$, add an edge between vertex $(u,v,\ldots,v)$ and vertex $(v,u,\ldots,u)$.

INPUT:

- $G$ – a sage Graph
- $k$ – integer; the dimension
- $stretch$ – integer (default: None); stretching factor used to determine the positions of the vertices of the output graph. By default (None), this value is set to twice the maximum Euclidean distance between the vertices of $G$. This parameter is used only when the vertices of $G$ have positions.

See also:

- SierpinskiGasketGraph()
- HanoiTowerGraph()

EXAMPLES:

The generalized Sierpinski graph of dimension 1 of any graph $G$ is isomorphic to $G$:

```python
sage: G = graphs.RandomGNP(10, .5)
sage: S = graphs.GeneralizedSierpinskiGraph(G, 1)
sage: S.is_isomorphic(G)
True
```

When $G$ is a clique of order 3, the generalized Sierpinski graphs of $G$ are isomorphic to Hanoi Tower graphs:

```python
>>> from sage.all import *
>>> G = graphs.RandomGNP(Integer(10), RealNumber(.5))
>>> S = graphs.GeneralizedSierpinskiGraph(G, Integer(1))
>>> S.is_isomorphic(G)
True
```
sage: k = randint(1, 5)
sage: S = graphs.GeneralizedSierpinskiGraph(graphs.CompleteGraph(3), k)  # needs sage.modules
sage: H = graphs.HanoiTowerGraph(3, k)
sage: S.is_isomorphic(H)  # needs sage.modules
True

The generalized Sierpinski graph of dimension $k$ of any graph $G$ with $n$ vertices and $m$ edges has $n^k$ vertices and $m \sum_{i=0}^{k-1} n^i$ edges:

sage: # needs sage.modules
sage: n = randint(2, 6)
sage: k = randint(1, 5)
sage: G = graphs.RandomGNP(n, .5)
sage: m = G.size()
sage: S = graphs.GeneralizedSierpinskiGraph(G, k)
sage: S.order() == n**k
True
sage: S.size() == m*sum([n**i for i in range(k)])
True
sage: G = graphs.CompleteGraph(n)
sage: S = graphs.GeneralizedSierpinskiGraph(G, k)
sage: S.order() == n**k
True
sage: S.size() == (n*(n - 1)/2)*sum([n**i for i in range(k)])
True

>>> from sage.all import *
>>> k = randint(Integer(1), Integer(5))
>>> S = graphs.GeneralizedSierpinskiGraph(graphs.CompleteGraph(Integer(3)), k)  # needs sage.modules
>>> H = graphs.HanoiTowerGraph(Integer(3), k)
>>> S.is_isomorphic(H)  # needs sage.modules
True

The positions of the vertices of the output graph are determined from the positions of the vertices of $G$, if any:

2.1. Common graphs 863
Graph Theory, Release 10.4

sage: G = graphs.HouseGraph()
sage: G.get_pos() is not None
True
sage: H = graphs.GeneralizedSierpinskiGraph(G, 2)
← # needs sage.symbolic
sage: H.get_pos() is not None
← # needs sage.symbolic
True
sage: G = Graph([(0, 1)])
sage: G.get_pos() is not None
False
sage: H = graphs.GeneralizedSierpinskiGraph(G, 2)
← # needs sage.symbolic
sage: H.get_pos() is not None
← # needs sage.symbolic
False

>>> from sage.all import *
>>> G = graphs.HouseGraph()
>>> G.get_pos() is not None
True
>>> H = graphs.GeneralizedSierpinskiGraph(G, Integer(2))
← # needs sage.symbolic
>>> H.get_pos() is not None
← # needs sage.symbolic
True
>>> G = Graph([(Integer(0), Integer(1))])
>>> G.get_pos() is not None
False
>>> H = graphs.GeneralizedSierpinskiGraph(G, Integer(2))
← # needs sage.symbolic
>>> H.get_pos() is not None
← # needs sage.symbolic
False

static GoethalsSeidelGraph(k, r)
Returns the graph Goethals-Seidel(k, r).

The graph Goethals-Seidel(k, r) comes from a construction presented in Theorem 2.4 of [GS1970]. It relies on a (v,k)-BIBD with r blocks and a hadamard_matrix() of order r + 1. The result is a sage.graphs.strongly_regular_db.strongly_regular_graph() on v(r + 1) vertices with degree k = (n + r - 1)/2.

It appears under this name in Andries Brouwer's database of strongly regular graphs.

INPUT:

• k, r – integers

See also:

• is_goethals_seidel()

EXAMPLES:

sage: graphs.GoethalsSeidelGraph(3,3)
← # needs sage.combinat.sage.modules
Graph on 28 vertices

(continues on next page)
sage: graphs.GoethalsSeidelGraph(3,3).is_strongly_regular(parameters=True)  
(28, 15, 6, 10)

>>> from sage.all import *
>>> graphs.GoethalsSeidelGraph(Integer(3),Integer(3))  
Graph on 28 vertices

static GoldnerHararyGraph()

Return the Goldner-Harary graph.

For more information, see the Wikipedia article Goldner%E2%80%93Harary_graph.

EXAMPLES:

The Goldner-Harary graph is named after A. Goldner and Frank Harary. It is a planar graph having 11 vertices and 27 edges:

sage: G = graphs.GoldnerHararyGraph(); G
Goldner-Harary graph: Graph on 11 vertices
sage: G.is_planar()
True
sage: G.order()
11
sage: G.size()
27

The Goldner-Harary graph is chordal with radius 2, diameter 2, and girth 3:

sage: G.is_chordal()
True
sage: G.radius()
2
sage: G.diameter()
2
sage: G.girth()
3

(continues on next page)
Its chromatic number is 4 and its automorphism group is isomorphic to the dihedral group $D_6$:

```
sage: G.chromatic_number()
sage: 4
sage: ag = G.automorphism_group() # needs sage.groups
sage: ag.is_isomorphic(DihedralGroup(6)) # needs sage.groups
True
```

```
>>> from sage.all import *
>>> G.chromatic_number()
sage: 4
>>> ag = G.automorphism_group() # needs sage.groups
>>> ag.is_isomorphic(DihedralGroup(Integer(6))) # needs sage.groups
True
```

**static GolombGraph()**

Return the Golomb graph.

See the Wikipedia article **Golomb graph** for more information.

**EXAMPLES:**

The Golomb graph is a planar and Hamiltonian graph with 10 vertices and 18 edges. It has chromatic number 4, diameter 3, radius 2 and girth 3. It can be drawn in the plane as a unit distance graph:

```
sage: G = graphs.GolombGraph(); G # needs sage.symbolic
Golomb graph: Graph on 10 vertices
sage: pos = G.get_pos() # needs sage.symbolic
sage: def dist2(u, v):
.... return (u[0]-v[0])**2 + (u[1]-v[1])**2
sage: all(dist2(pos[u], pos[v]) == 1 for u, v in G.edge_iterator(labels=None)) # needs sage.symbolic
True
```

(continues on next page)
static GossetGraph()

Return the Gosset graph.

The Gosset graph is the skeleton of the Gosset_3_21() polytope. It has with 56 vertices and degree 27. For more information, see the Wikipedia article Gosset_graph.

EXAMPLES:

```
sage: g = graphs.GossetGraph(); g
Gosset Graph: Graph on 56 vertices
sage: g.order(), g.size()
(56, 756)
```

static GrassmannGraph(q, n, input_e)

Return the Grassmann graph with parameters (q, n, e).

This builds the Grassmann graph $J_q(n, e)$. That is, for a vector space $V = F(q)^n$ the output is the graph on the subspaces of dimension $e$ where two subspaces are adjacent if their intersection has dimension $e - 1$.

This graph is distance-regular with classical parameters $(\min(e, n - e), q, q, [n-e+1]_q - 1)$

INPUT:

- q – a prime power
- n, e – integers with $n > e + 1$

EXAMPLES:

```
sage: G = graphs.GrassmannGraph(2, 4, 2) ...

sage: G.is_distance_regular(True) ...
(([18, 8, None], [None, 1, 9])
```

REFERENCES:


static GrayGraph(embedding=1)

Return the Gray graph.

See the Wikipedia article Gray_graph.
INPUT:

- `embedding` – integer (default: 1); two embeddings are available, and can be selected by setting `embedding` to 1 or 2.

EXAMPLES:

```sage
needs networkx
sage: g = graphs.GrayGraph()
sage: g.order()
54
sage: g.size()
81
sage: g.girth()
8
sage: g.diameter()
6
sage: g.show(figsize=[10, 10])
long time
→ # needs sage.plot
sage: graphs.GrayGraph(embedding=2).show(figsize=[10, 10])
long time,
→ needs sage.plot
```

```python
>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.GrayGraph()
>>> g.order()
54
>>> g.size()
81
>>> g.girth()
8
>>> g.diameter()
6
>>> g.show(figsize=[Integer(10), Integer(10)])
long time
→ # needs sage.plot
>>> graphs.GrayGraph(embedding=Integer(2)).show(figsize=[Integer(10),
→ Integer(10)])
long time, needs sage.plot
```

static `Grid2dGraph(p, q, set_positions=True)`

Return a 2-dimensional grid graph with $p \times q$ nodes ($p$ rows and $q$ columns).

A 2d grid graph resembles a 2 dimensional grid. All inner nodes are connected to their 4 neighbors. Outer (non-corner) nodes are connected to their 3 neighbors. Corner nodes are connected to their 2 neighbors.

INPUT:

- `p` and `q` – two positive integers
- `set_positions` – boolean (default: True); whether to set the position of the nodes

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, nodes are labelled in (row, column) pairs with $(0, 0)$ in the top left corner. Edges will always be horizontal and vertical - another advantage of filling the position dictionary.

EXAMPLES:

Construct and show a grid 2d graph Rows = 5, Columns = 7:

```sage
sage: g = graphs.Grid2dGraph(5,7)
sage: g.show()
→ # needs sage.plot
```

2.1. Common graphs 869
static GridGraph(dim_list)

Return an \( n \)-dimensional grid graph.

INPUT:

- **dim_list** – a list of integers representing the number of nodes to extend in each dimension

PLOTTING: When plotting, this graph will use the default spring-layout algorithm, unless a position dictionary is specified.

EXAMPLES:

```python
>>> from sage.all import *

>>> g = graphs.Grid2dGraph(Integer(5), Integer(7))
>>> g.show() # long time

needs sage.plot
```

```python
>>> from sage.all import *

>>> G = graphs.GridGraph([Integer(2), Integer(3), Integer(4)])
>>> G.show() # long time

needs sage.plot
```

```python
sage: C = graphs.CubeGraph(4)
sage: G = graphs.GridGraph([2, 2, 2, 2])
sage: C.show() # long time

needs sage.plot

sage: G.show() # long time

needs sage.plot
```

static GritsenkoGraph()

Return SRG(65, 32, 15, 16) constructed by Gritsenko.

We took the adjacency matrix from O. Gritsenko’s [Gri2021] and extracted orbits of the automorphism group on the edges.

EXAMPLES:

```python
>>> from sage.all import *

>>> C = graphs.CubeGraph(Integer(4))
>>> G = graphs.GridGraph([Integer(2), Integer(2), Integer(2), Integer(2)])
>>> C.show() # long time

needs sage.plot

>>> G.show() # long time

needs sage.plot
```

```python
sage: H = graphs.GritsenkoGraph(); H
Gritsenko strongly regular graph: Graph on 65 vertices

sage: H.is_strongly_regular(parameters=True)
Gritsenko strongly regular graph: Graph on 65 vertices
```

(65, 32, 15, 16)
```python
>>> from sage.all import *
>>> H = graphs.GritsenkoGraph(); H
Gritsenko strongly regular graph: Graph on 65 vertices
>>> H.is_strongly_regular(parameters=True)
(65, 32, 15, 16)
```

**static GrotzschGraph()**

Return the Grötzsch graph.

The Grötzsch graph is an example of a triangle-free graph with chromatic number equal to 4. For more information, see the Wikipedia article [Grötzsch graph](https://en.wikipedia.org/wiki/Grötzsch_graph).

**EXAMPLES:**

The Grötzsch graph is named after Herbert Grötzsch. It is a Hamiltonian graph with 11 vertices and 20 edges:

```python
sage: G = graphs.GrotzschGraph(); G
Grotzsch graph: Graph on 11 vertices
sage: G.is_hamiltonian()
True
sage: G.order()
11
sage: G.size()
20
```

The Grötzsch graph is triangle-free and having radius 2, diameter 2, and girth 4:

```python
sage: G.is_triangle_free()
True
sage: G.radius()
2
sage: G.diameter()
2
sage: G.girth()
4
```

(continues on next page)
Its chromatic number is 4 and its automorphism group is isomorphic to the dihedral group $D_5$:

```python
sage: G.chromatic_number()
4
sage: ag = G.automorphism_group()

needs sage.groups
sage: ag.is_isomorphic(DihedralGroup(5))

needs sage.groups
True
```

```python
from sage.all import *
```

```python
sage: G.chromatic_number()
4

needs sage.groups
sage: ag = G.automorphism_group()

needs sage.groups
sage: ag.is_isomorphic(DihedralGroup(Integer(5)))

True
```

```python
static HaemersGraph(q, hyperoval=None, hyperoval_matching=None, field=None, check_hyperoval=True)
```

Return the Haemers graph obtained from $T_2^*(q^2)$.

Let $q$ be a power of 2. In Sect. 8.A of [BL1984] one finds a construction of a strongly regular graph with parameters $(q^2(q^2 + 2), q^2 + q - 1, q - 2, q)$ from the graph of $T_2^*(q^2)$, constructed by $T2starGeneralizedQuadrangleGraph()$, by redefining adjacencies in the way specified by an arbitrary hyperoval_matching of the points (i.e. partitioning into size two parts) of hyperoval defining $T_2^*(q^2)$.

While [BL1984] gives the construction in geometric terms, it can be formulated, and is implemented, in graph-theoretic ones, of re-adjusting the edges. Namely, $G = T_2^*(q^2)$ has a partition into $q + 2$ independent sets $I_k$ of size $q^2$ each. Each vertex in $I_j$ is adjacent to $q$ vertices from $I_k$. Each $I_k$ is paired to some $I_{k'}$, according to hyperoval_matching. One adds edges $(s, t)$ for $s, t \in I_k$ whenever $s$ and $t$ are adjacent to some $u \in I_{k'}$, and removes all the edges between $I_k$ and $I_{k'}$.

INPUT:

- $q$ – a power of two
- hyperoval_matching – if None (default), pair each $i$-th point of hyperoval with $(i + 1)$-th. Otherwise, specifies the pairing in the format $((i_1, i_1'), (i_2, i_2'), ...)$.
- hyperoval – a hyperoval defining $T_2^*(q^2)$. If None (default), the classical hyperoval obtained from a conic is used. See the documentation of $T2starGeneralizedQuadrangleGraph()$ for more information.
- field – an instance of a finite field of order $q$, must be provided if hyperoval is provided
- check_hyperoval – boolean (default: True); whether to check hyperoval for correctness or not

EXAMPLES:

using the built-in constructions:
sage: # needs sage.combinat sage.rings.finite_rings
sage: g = graphs.HaemersGraph(4); g
Haemers(4): Graph on 96 vertices
sage: g.is_strongly_regular(parameters=True)
(96, 19, 2, 4)

>>> from sage.all import *

>>> # needs sage.combinat sage.rings.finite_rings

>>> g = graphs.HaemersGraph(Integer(4)); g
Haemers(4): Graph on 96 vertices

>>> g.is_strongly_regular(parameters=True)
(96, 19, 2, 4)

supplying your own hyperoval_matching:

sage: # needs sage.combinat sage.rings.finite_rings
sage: g = graphs.HaemersGraph(4, hyperoval_matching=((0,5),(1,4),(2,3))); g
Haemers(4): Graph on 96 vertices

sage: g.is_strongly_regular(parameters=True)
(96, 19, 2, 4)

>>> from sage.all import *

>>> g = graphs.HaemersGraph(Integer(4), hyperoval_matching=((Integer(0), Integer(5)),(Integer(1),Integer(4)),(Integer(2),Integer(3)))); g
Haemers(4): Graph on 96 vertices

>>> g.is_strongly_regular(parameters=True)
(96, 19, 2, 4)

static HalfCube(n)
Return the halved cube in n dimensions.
The graph is distance-regular with classical parameters \( \left\lfloor \frac{n}{2} \right\rfloor, 1, 2, 2^{\left\lfloor \frac{n}{2} \right\rfloor} - 1 \).

INPUT:
- n – integer; must be greater than 2

EXAMPLES:

sage: G = graphs.HalfCube(8)
sage: G.is_distance_regular(True)
([[28, 15, 6, 1, None], [None, 1, 6, 15, 28]])

sage: G = graphs.HalfCube(4)
sage: G.is_distance_regular(True)
([[6, 1, None], [None, 1, 6]])

>>> from sage.all import *

>>> G = graphs.HalfCube(Integer(8))

>>> G.is_distance_regular(True)
([[28, 15, 6, 1, None], [None, 1, 6, 15, 28]])

>>> G = graphs.HalfCube(Integer(4))

>>> G.is_distance_regular(True)
([[6, 1, None], [None, 1, 6]])

REFERENCES:
See [BCN1989] pp. 264, 265 or [VDKT2016] p. 21. This construction can be found on Wikipedia article Halved_cube_graph#Equivalent_constructions

\texttt{static HallJankoGraph (from\_string=True)}

Return the Hall-Janko graph.

For more information on the Hall-Janko graph, see the Wikipedia article Hall-Janko_graph.

The construction used to generate this graph in Sage is by a 100-point permutation representation of the Janko group $\mathbb{J}_2$, as described in version 3 of the ATLAS of Finite Group representations, in particular on the page ATLAS:J2 – Permutation representation on 100 points.

**INPUT:**

- `from_string` – boolean (default: True); whether to build the graph from its sparse6 string or through GAP. The two methods return the same graph though doing it through GAP takes more time.

**EXAMPLES:**

```python
sage: g = graphs.HallJankoGraph()
sage: g.is_regular(36)
True
sage: g.is_vertex_transitive()
needs sage.groups
True
```

```
>>> from sage.all import *
>>> g = graphs.HallJankoGraph()
>>> g.is_regular(Integer(36))
True
>>> g.is_vertex_transitive()
needs sage.groups
True
```

Is it really strongly regular with parameters 14, 12?

```python
sage: nu = set(g.neighbors(0))
sage: for v in range(1, 100):
 if v in nu:
 expected = 14
 else:
 expected = 12
 nv = set(g.neighbors(v))
 nv.discard(0)
 if len(nu & nv) != expected:
 print("Something is wrong here!!!")
 break
```

```python
>>> from sage.all import *
>>> nu = set(g.neighbors(Integer(0)))
>>> for v in range(Integer(1), Integer(100)):
 if v in nu:
 expected = Integer(14)
 else:
 expected = Integer(12)
 nv = set(g.neighbors(v))
 nv.discard(Integer(0))
 if len(nu & nv) != expected:
```

(continues on next page)
print("Something is wrong here!!!")
break

Some other properties that we know how to check:

```python
sage: g.diameter()
2
sage: g.girth()
3
sage: factor(g.characteristic_polynomial())
(x - 36) * (x - 6)^36 * (x + 4)^63
```

```python
>>> from sage.all import *
```

```python
>>> g.diameter()
2
```

```python
>>> g.girth()
3
```

```python
>>> factor(g.characteristic_polynomial())
(x - 36) * (x - 6)^36 * (x + 4)^63
```

**static HammingGraph** *(n, q, X=None)*

Return the Hamming graph with parameters *n*, *q* over *X*.

Hamming graphs are graphs over the cartesian product of *n* copies of *X*, where *q* = |*X*|, where the vertices, labelled with the corresponding tuple in *X*^*n*, are connected if the Hamming distance between their labels is 1. All Hamming graphs are regular, vertex-transitive and distance-regular.

Hamming graphs with parameters *(1, q)* represent the complete graph with *q* vertices over the set *X*.

**INPUT:**

- *n* – power to which *X* will be raised to provide vertices
  for the Hamming graph
- *q* – cardinality of *X*
- *X* – list of labels representing the vertices of the
  underlying graph the Hamming graph will be based on; if *None* (or left unused), the list [0, ..., *q* − 1] will be used

**OUTPUT:**

- *G* – The Hamming graph with parameters *(n, q, X)*

**EXAMPLES:**

Every Hamming graph is distance-regular, regular and vertex-transitive:

```python
sage: g = graphs.HammingGraph(3, 7)
sage: g.is_distance_regular()
True
sage: g.is_regular()
True
sage: g.is_vertex_transitive()
True
```

2.1. Common graphs
A Hamming graph with parameters \((1, q)\) is isomorphic to the Complete graph with parameter \(q\):

```python
sage: g = graphs.HammingGraph(1, 23)
sage: g.is_isomorphic(graphs.CompleteGraph(23))
True
```

If a parameter \(q\) is provided which is not equal to \(X\)’s cardinality, an exception is raised:

```python
sage: X = ['a', 'b', 'c', 'd', 'e']
sage: g = graphs.HammingGraph(2, 3, X)
Traceback (most recent call last):
 ... ValueError: q must be the cardinality of X
```

REFERENCES:
For a more accurate description, see the following wikipedia page: Wikipedia article Hamming_graph

**static HanoiTowerGraph** (pegs, disks, labels=True, positions=True)

Returns the graph whose vertices are the states of the Tower of Hanoi puzzle, with edges representing legal moves between states.

**INPUT:**

- pegs – the number of pegs in the puzzle, 2 or greater
- disks – the number of disks in the puzzle, 1 or greater
- labels – default: True, if True the graph contains more meaningful labels, see explanation below. For large instances, turn off labels for much faster creation of the graph.
- positions – default: True, if True the graph contains layout information. This creates a planar layout for the case of three pegs. For large instances, turn off layout information for much faster creation of the graph.

**OUTPUT:**
The Tower of Hanoi puzzle has a certain number of identical pegs and a certain number of disks, each of a different radius. Initially the disks are all on a single peg, arranged in order of their radii, with the largest on the bottom.

The goal of the puzzle is to move the disks to any other peg, arranged in the same order. The one constraint is that the disks resident on any one peg must always be arranged with larger radii lower down.

The vertices of this graph represent all the possible states of this puzzle. Each state of the puzzle is a tuple with length equal to the number of disks, ordered by largest disk first. The entry of the tuple is the peg where that disk resides. Since disks on a given peg must go down in size as we go up the peg, this totally describes the state of the puzzle.

For example \((2, 0, 0)\) means the large disk is on peg 2, the medium disk is on peg 0, and the small disk is on peg 0 (and we know the small disk must be above the medium disk). We encode these tuples as integers with a base equal to the number of pegs, and low-order digits to the right.

Two vertices are adjacent if we can change the puzzle from one state to the other by moving a single disk. For example, \((2, 0, 0)\) is adjacent to \((2, 0, 1)\) since we can move the small disk off peg 0 and onto (the empty) peg 1. So the solution to a 3-disk puzzle (with at least two pegs) can be expressed by the shortest path between \((0, 0, 0)\) and \((1, 1, 1)\). For more on this representation of the graph, or its properties, see [AD2010].

For greatest speed we create graphs with integer vertices, where we encode the tuples as integers with a base equal to the number of pegs, and low-order digits to the right. So for example, in a 3-peg puzzle with 5 disks, the state \((1, 2, 0, 1, 1)\) is encoded as \(1 \times 3^4 + 2 \times 3^3 + 0 \times 3^2 + 1 \times 3^1 + 1 \times 3^0 = 139\).

For smaller graphs, the labels that are the tuples are informative, but slow down creation of the graph. Likewise computing layout information also incurs a significant speed penalty. For maximum speed, turn off labels and layout and decode the vertices explicitly as needed. The \texttt{sage.rings.integer.Integer.digits()} with the \texttt{padsto} option is a quick way to do this, though you may want to reverse the list that is output.

See also:

- \texttt{GeneralizedSierpinskiGraph()}

PLOTTING:

The layout computed when \texttt{positions = True} will look especially good for the three-peg case, when the graph is known to be planar. Except for two small cases on 4 pegs, the graph is otherwise not planar, and likely there is a better way to layout the vertices.

EXAMPLES:

A classic puzzle uses 3 pegs. We solve the 5 disk puzzle using integer labels and report the minimum number of moves required. Note that \(3^5 - 1\) is the state where all 5 disks are on peg 2.

\begin{verbatim}
sage: H = graphs.HanoiTowerGraph(3, 5, labels=False, positions=False)
sage: H.distance(0, 3^5-1)
31

>>> from sage.all import *
>>> H = graphs.HanoiTowerGraph(Integer(3), Integer(5), labels=False,...
  positions=False)
>>> H.distance(Integer(0), Integer(3)**Integer(5)-Integer(1))
31
\end{verbatim}

A slightly larger instance.
sage: H = graphs.HanoiTowerGraph(4, 6, labels=False, positions=False)
sage: H.num_verts()
4096
sage: H.distance(0, 4^6-1)
17

>>> from sage.all import *
>>> H = graphs.HanoiTowerGraph(Integer(4), Integer(6), labels=False, positions=False)
>>> H.num_verts()
4096
>>> H.distance(Integer(0), Integer(4)**Integer(6)-Integer(1))
17

For a small graph, labels and layout information can be useful. Here we explicitly list a solution as a list of states.

sage: H = graphs.HanoiTowerGraph(3, 3, labels=True, positions=True)
sage: H.shortest_path((0,0,0), (1,1,1))
[(0, 0, 0), (0, 0, 1), (0, 2, 1), (0, 2, 2), (1, 2, 2), (1, 2, 0), (1, 1, 0), (1, 1, 1)]

>>> from sage.all import *
>>> H = graphs.HanoiTowerGraph(Integer(3), Integer(3), labels=True, positions=True)
>>> H.shortest_path((Integer(0),Integer(0),Integer(0)), (Integer(1),Integer(1),Integer(1)))
[(0, 0, 0), (0, 0, 1), (0, 2, 1), (0, 2, 2), (1, 2, 2), (1, 2, 0), (1, 1, 0), (1, 1, 1)]

Some facts about this graph with $p$ pegs and $d$ disks:

- only automorphisms are the “obvious” ones – renumber the pegs.
- chromatic number is less than or equal to $p$
- independence number is $p^{d-1}$

sage: H = graphs.HanoiTowerGraph(3, 4, labels=False, positions=False)
sage: H.automorphism_group().is_isomorphic(SymmetricGroup(3))
# needs sage.groups
True
sage: H.chromatic_number()
3
sage: len(H.independent_set()) == 3^(4-1)
True

>>> from sage.all import *
>>> H = graphs.HanoiTowerGraph(Integer(3), Integer(4), labels=False, positions=False)
>>> H.automorphism_group().is_isomorphic(SymmetricGroup(Integer(3)))
# needs sage.groups
True
>>> H.chromatic_number()
3
>>> len(H.independent_set()) == Integer(3)**(Integer(4)-Integer(1))
True

Chapter 2. Constructors and databases
AUTHOR:

- Rob Beezer, (2009-12-26), with assistance from Su Doree

**static HararyGraph** \((k, n)\)

Returns the Harary graph on \(n\) vertices and connectivity \(k\), where \(2 \leq k < n\).

A \(k\)-connected graph \(G\) on \(n\) vertices requires the minimum degree \(\delta(G) \geq k\), so the minimum number of edges \(G\) should have is \(\lceil kn/2 \rceil\). Harary graphs achieve this lower bound, that is, Harary graphs are minimal \(k\)-connected graphs on \(n\) vertices.

The construction provided uses the method CirculantGraph. For more details, see the book [West2001] or the MathWorld article on Harary graphs.

**EXAMPLES:**

Harary graphs \(H_{k,n}:

```sage
sage: h = graphs.HararyGraph(5,9); h
Harary graph 5, 9: Graph on 9 vertices
sage: h.order()
9
sage: h.size()
23
sage: h.vertex_connectivity()
\# needs sage.numerical.mip
5
```

```python
>>> from sage.all import *
>>>
>>> h = graphs.HararyGraph(Integer(5),Integer(9)); h
Harary graph 5, 9: Graph on 9 vertices
>>> h.order()
9
>>> h.size()
23
>>> h.vertex_connectivity()
\# needs sage.numerical.mip
5
```

**static HarborthGraph**

Return the Harborth Graph.

The Harborth graph has 104 edges and 52 vertices, and is the smallest known example of a 4-regular matchstick graph. For more information, see the Wikipedia article Harborth_graph.

**EXAMPLES:**

```sage
sage: g = graphs.HarborthGraph(); g
Harborth Graph: Graph on 52 vertices
sage: g.is_regular(4)
True
```

```python
>>> from sage.all import *
>>>
>>> g = graphs.HarborthGraph(); g
Harborth Graph: Graph on 52 vertices
>>> g.is_regular(Integer(4))
True
```
**static HarriesGraph** *(embedding=1)*

Return the Harries Graph.

The Harries graph is a Hamiltonian 3-regular graph on 70 vertices. See the [Wikipedia article Harries_graph](https://en.wikipedia.org/wiki/Harries_graph).

The default embedding here is to emphasize the graph’s 4 orbits. This graph actually has a funny construction. The following procedure gives an idea of it, though not all the adjacencies are being properly defined.

1. Take two disjoint copies of a Petersen graph. Their vertices will form an orbit of the final graph.
2. Subdivide all the edges once, to create 15+15=30 new vertices, which together form another orbit.
3. Create 15 vertices, each of them linked to 2 corresponding vertices of the previous orbit, one in each of the two subdivided Petersen graphs. At the end of this step all vertices from the previous orbit have degree 3, and the only vertices of degree 2 in the graph are those that were just created.
4. Create 5 vertices connected only to the ones from the previous orbit so that the graph becomes 3-regular.

**INPUT:**

- `embedding` – integer (default: 1); two embeddings are available, and can be selected by setting `embedding` to 1 or 2

**EXAMPLES:**

```python
sage: # needs networkx
sage: g = graphs.HarriesGraph()
sage: g.order()
70
sage: g.size()
105
sage: g.girth()
10
sage: g.diameter()
6
sage: g.show(figsize=[10, 10]) # long time
˓→ # needs sage.plot
sage: graphs.HarriesGraph(embedding=2).show(figsize=[10, 10]) # long time, needs sage.plot
```

```python
>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.HarriesGraph()
>>> g.order()
70
>>> g.size()
105
>>> g.girth()
10
>>> g.diameter()
6
>>> g.show(figsize=[Integer(10), Integer(10)]) # long time
˓→ # needs sage.plot
>>> graphs.HarriesGraph(embedding=Integer(2)).show(figsize=[Integer(10),␣
˓→Integer(10)]) # long time, needs sage.plot
```

**static HarriesWongGraph** *(embedding=1)*

Return the Harries-Wong Graph.

See the [Wikipedia article Harries-Wong_graph](https://en.wikipedia.org/wiki/Harries-Wong_graph).
About the default embedding:

The default embedding is an attempt to emphasize the graph's 8 (!!!) different orbits. In order to understand this better, one can picture the graph as being built in the following way.

1. One first creates a 3-dimensional cube (8 vertices, 12 edges), whose vertices define the first orbit of the final graph.
2. The edges of this graph are subdivided once, to create 12 new vertices which define a second orbit.
3. The edges of the graph are subdivided once more, to create 24 new vertices giving a third orbit.
4. 4 vertices are created and made adjacent to the vertices of the second orbit so that they have degree 3. These 4 vertices also define a new orbit.
5. In order to make the vertices from the third orbit 3-regular (they all miss one edge), one creates a binary tree on $1 + 3 + 6 + 12$ vertices. The leaves of this new tree are made adjacent to the 12 vertices of the third orbit, and the graph is now 3-regular. This binary tree contributes 4 new orbits to the Harries-Wong graph.

INPUT:

- **embedding** – integer (default: 1); two embeddings are available, and can be selected by setting `embedding` to 1 or 2

EXAMPLES:

```python
sage: # needs networkx
sage: g = graphs.HarriesWongGraph()
sage: g.order()
70
sage: g.size()
105
sage: g.girth()
10
sage: g.diameter()
6
```

```python
sage: orbits = g.automorphism_group(orbits=True)[-1] # long time
sage: g.show(figsize=[15, 15], partition=orbits) # long time
```

```python
from sage.all import *
```

```python
from sage.all import *
```

Alternative embedding:
sage: graphs.HarriesWongGraph(embedding=2).show() # long time
˓→ # needs networkx sage.plot

static HeawoodGraph()
Return a Heawood graph.
The Heawood graph is a cage graph that has 14 nodes. It is a cubic symmetric graph. (See also the Möbius-Kantor graph, MobiusKantorGraph()). It is nonplanar and Hamiltonian. It has diameter 3, radius 3, girth 6, and chromatic number 2. It is 4-transitive but not 5-transitive. See the Wikipedia article Heawood_graph.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the nodes are positioned in a circular layout with the first node appearing at the top, and then continuing counterclockwise.

EXAMPLES:

sage: H = graphs.HeawoodGraph()
sage: H
Heawood graph: Graph on 14 vertices
sage: H.graph6_string()
'MhEGHC@AI?_PC@_G_

static HermitianFormsGraph(n, r)
Return the Hermitian forms graph with the given parameters.
We build a graph whose vertices are all \( n \times n \) Hermitian matrices over \( GF(r^2) \). Two vertices are adjacent if the difference of the two vertices has rank 1.

This graph is distance-regular with classical parameters \((n, -r, -r - 1, -(r^d - 1))\).

INPUT:
• \( n \) – integer
• \( r \) – a prime power

EXAMPLES:

sage: # needs sage.modules sage.rings.finite_rings
sage: G = graphs.HermitianFormsGraph(2, 2)
sage: G.is_distance_regular(True)
([5, 4, None], [None, 1, 2])
(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```
sage: G = graphs.HermitianFormsGraph(3, 3) # not tested (2 min)
sage: G.order() # not tested (because of the above)
19683
```

```python
>>> from sage.all import *
>>> G = graphs.HermitianFormsGraph(Integer(2), Integer(2))
>>> G.is_distance_regular(True)
([5, 4, None], [None, 1, 2])
>>> G = graphs.HermitianFormsGraph(Integer(3), Integer(3)) # not tested
 ← (2 min)
>>> G.order() # not tested (because of the above)
19683
``` 

REFERENCES:

**static HerschelGraph()**

Return the Herschel graph.

For more information, see the Wikipedia article Herschel_graph.

EXAMPLES:
The Herschel graph is named after Alexander Stewart Herschel. It is a planar, bipartite graph with 11 vertices and 18 edges:

```
sage: G = graphs.HerschelGraph(); G
Herschel graph: Graph on 11 vertices
sage: G.is_planar()
True
sage: G.is_bipartite()
True
sage: G.order()
11
sage: G.size()
18
```

```python
>>> from sage.all import *
>>> G = graphs.HerschelGraph(); G
Herschel graph: Graph on 11 vertices
>>> G.is_planar()
True
>>> G.is_bipartite()
True
>>> G.order()
11
>>> G.size()
18
```

The Herschel graph is a perfect graph with radius 3, diameter 4, and girth 4:

```
sage: G.is_perfect()
True
sage: G.radius()
3
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

sage: G.diameter()
4
sage: G.girth()
4

>>> from sage.all import *

>>> G.is_perfect()
True

>>> G.radius()
3

>>> G.diameter()
4

>>> G.girth()
4

Its chromatic number is 2 and its automorphism group is isomorphic to the dihedral group $D_6$:

sage: G.chromatic_number()
2

sage: ag = G.automorphism_group()  # needs sage.groups

sage: ag.is_isomorphic(DihedralGroup(6))  # needs sage.groups
True

static HexahedralGraph()

Return a hexahedral graph (with 8 nodes).

A regular hexahedron is a 6-sided cube. The hexahedral graph corresponds to the connectivity of the vertices of the hexahedron. This graph is equivalent to a 3-cube.

PLOTTING: The Hexahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, a argument will be added to select the desired layout.

EXAMPLES:

Construct and show a Hexahedral graph:

sage: g = graphs.HexahedralGraph()
sage: g.show()  # long time  # needs sage.plot

>>> from sage.all import *

>>> g = graphs.HexahedralGraph()

>>> g.show()  # long time  # needs sage.plot
Create several hexahedral graphs in a Sage graphics array. They will be drawn differently due to the use of the spring-layout algorithm:

```python
sage: # needs sage.plot
g = []
j = []
sage: for i in range(9):
....: k = graphs.HexahedralGraph()
....: g.append(k)
sage: for i in range(3):
....: n = []
....: for m in range(3):
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....: j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time
```

```python
>>> from sage.all import *
>>> # needs sage.plot
>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
... k = graphs.HexahedralGraph()
... g.append(k)
>>> for i in range(Integer(3)):
... n = []
... for m in range(Integer(3)):
... n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
... j.append(n)
>>> G = graphics_array(j)
>>> G.show() # long time
```

**static HigmanSimsGraph**(relabel=True)

Return the Higman–Sims graph.

The Higman–Sims graph is a remarkable strongly regular graph of degree 22 on 100 vertices. For example, it can be split into two sets of 50 vertices each, so that each half induces a subgraph isomorphic to the Hoffman-Singleton graph (`HoffmanSingletonGraph()`). This can be done in 352 ways (see Higman–Sims graph by Andries E. Brouwer, accessed 24 October 2009.)

Its most famous property is that the automorphism group has an index 2 subgroup which is one of the 26 sporadic groups $[HS1968]$. The construction used here follows $[Haf2004]$.

See also the Wikipedia article Higman–Sims graph.

**INPUT:**

- `relabel` – boolean (default: `True`); whether to relabel the vertices with consecutive integers. If `False` the labels are strings that are three digits long. “xyz” means the vertex is in group $x$ (zero through three), pentagon or pentagram $y$ (zero through four), and is vertex $z$ (zero through four) of that pentagon or pentagram. See $[Haf2004]$ for more.

**OUTPUT:**

The Higman–Sims graph.

**EXAMPLES:**

2.1. Common graphs
A split into the first 50 and last 50 vertices will induce two copies of the Hoffman-Singleton graph, and we illustrate another such split, which is obvious based on the construction used:

```python
sage: H = graphs.HigmanSimsGraph()
sage: A = H.subgraph(range(0,50))
sage: B = H.subgraph(range(50,100))
sage: K = graphs.HoffmanSingletonGraph()
sage: K.is_isomorphic(A) and K.is_isomorphic(B)
True
sage: C = H.subgraph(range(25,75))
sage: D = H.subgraph(list(range(0,25))+list(range(75,100)))
sage: K.is_isomorphic(C) and K.is_isomorphic(D)
True
```

The automorphism group contains only one nontrivial proper normal subgroup, which is of index 2 and is simple. It is known as the Higman-Sims group:

```python
sage: H = graphs.HigmanSimsGraph()
sage: G = H.automorphism_group() # needs sage.groups
sage: g = G.order(); g # needs sage.groups
88704000
sage: K = G.normal_subgroups()[1] # needs sage.groups
sage: K.is_simple() # needs sage.groups
True
sage: g//K.order() # needs sage.groups
2
```

(continues on next page)
```
>>> g//K.order()
˓→# needs sage.groups
2
```

AUTHOR:

- Rob Beezer (2009-10-24)

**static HoffmanGraph()**

Return the Hoffman Graph.

See the Wikipedia article Hoffman_graph.

**EXAMPLES:**

```python
sage: g = graphs.HoffmanGraph()
sage: g.is_bipartite()
True
sage: g.is_hamiltonian() # long time
˓→# needs sage.numerical.mip
True
sage: g.radius()
3
sage: g.diameter()
4
sage: g.automorphism_group().cardinality() # needs sage.groups
˓→48
```

```
>>> from sage.all import *
>>> g = graphs.HoffmanGraph()
>>> g.is_bipartite()
True
˓→# needs sage.numerical.mip
True
>>> g.radius()
3
>>> g.diameter()
4
>>> g.automorphism_group().cardinality() # needs sage.groups
˓→48
```

**static HoffmanSingletonGraph()**

Return the Hoffman-Singleton graph.

The Hoffman-Singleton graph is the Moore graph of degree 7, diameter 2 and girth 5. The Hoffman-Singleton theorem states that any Moore graph with girth 5 must have degree 2, 3, 7 or 57. The first three respectively are the pentagon, the Petersen graph, and the Hoffman-Singleton graph. The existence of a Moore graph with girth 5 and degree 57 is still open.

A Moore graph is a graph with diameter $d$ and girth $2d+1$. This implies that the graph is regular, and distance regular.

For more details, see [GR2001] and the Wikipedia article Hoffman-Singleton_graph.

**PLOTTING:** Upon construction, the position dictionary is filled to override the spring-layout algorithm. A novel algorithm written by Tom Boothby gives a random layout which is pleasing to the eye.
EXAMPLES:

```python
sage: HS = graphs.HoffmanSingletonGraph()
sage: Set(HS.degree())
{7}
sage: HS.girth()
5
sage: HS.diameter()
2
sage: HS.num_verts()
50
```

```python
>>> from sage.all import *

>>> HS = graphs.HoffmanSingletonGraph()

>>> Set(HS.degree())
{7}

>>> HS.girth()
5

>>> HS.diameter()
2

>>> HS.num_verts()
50
```

Note that you get a different layout each time you create the graph.

```python
sage: HS.layout()[1] # random
(-0.844..., 0.535...)
sage: HS = graphs.HoffmanSingletonGraph()
sage: HS.layout()[1] # random
(-0.904..., 0.425...)
```

```python
>>> from sage.all import *

>>> HS.layout()[Integer(1)] # random
(-0.844..., 0.535...)

>>> HS = graphs.HoffmanSingletonGraph()

>>> HS.layout()[Integer(1)] # random
(-0.904..., 0.425...)
```

**static HoltGraph()**

Return the Holt graph (also called the Doyle graph).

See the Wikipedia article [Holt_graph](https://en.wikipedia.org/wiki/Holt_graph).

**EXAMPLES:**

```python
sage: g = graphs.HoltGraph(); g
Holt graph: Graph on 27 vertices

sage: g.is_regular()
True

sage: g.is_vertex_transitive()
True

sage: g.chromatic_number()
3

sage: g.is_hamiltonian() # long time
True

sage: g.radius()
```

(continues on next page)
3
sage: g.diameter()
3
sage: g.girth()
5
sage: g.automorphism_group().cardinality()
˓→ # needs sage.groups
54

>>> from sage.all import *
>>> g = graphs.HoltGraph();g
Holt graph: Graph on 27 vertices
>>> g.is_regular()
True
>>> g.is_vertex_transitive()
˓→ # needs sage.groups
True
>>> g.chromatic_number()
3
>>> g.is_hamiltonian()
˓→ # long time
True
>>> g.radius()
3
>>> g.diameter()
3
>>> g.girth()
5
>>> g.automorphism_group().cardinality()
˓→ # needs sage.groups
54

static HortonGraph()
Return the Horton Graph.

The Horton graph is a cubic 3-connected non-hamiltonian graph. For more information, see the Wikipedia article Horton_graph.

EXAMPLES:

sage: # needs networkx
sage: g = graphs.HortonGraph()
sage: g.order()
96
sage: g.size()
144
sage: g.radius()
10
sage: g.diameter()
10
sage: g.girth()
6
sage: g.automorphism_group().cardinality()
96
sage: g.chromatic_number()
2
sage: g.is_hamiltonian()
˓→ # not tested (veeeery long)
### static HouseGraph()

Return a house graph with 5 nodes.

A house graph is named for its shape. It is a triangle (roof) over a square (walls).

**PLOTTING:** Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the house graph is drawn with the first node in the lower-left corner of the house, the second in the lower-right corner of the house. The third node is in the upper-left corner connecting the roof to the wall, and the fourth is in the upper-right corner connecting the roof to the wall. The fifth node is the top of the roof, connected only to the third and fourth.

**EXAMPLES:**

Construct and show a house graph:

```python
sage: g = graphs.HouseGraph()
sage: g.show() # long time
```

### static HouseXGraph()

Return a house X graph with 5 nodes.

A house X graph is a house graph with two additional edges. The upper-right corner is connected to the lower-left. And the upper-left corner is connected to the lower-right.

**PLOTTING:** Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the house X graph is drawn with the first node in the lower-left corner of the house, the second in the lower-right corner of the house. The third node is in the upper-left corner connecting the roof to the wall. The third node is in the upper-right corner connecting the roof to the wall. The fourth is in the upper-right corner connecting the roof to the wall. The fifth node is the top of the roof, connected only to the third and fourth.
wall, and the fourth is in the upper-right corner connecting the roof to the wall. The fifth node is the top of the roof, connected only to the third and fourth.

EXAMPLES:
Construct and show a house X graph:

```sage
sage: g = graphs.HouseXGraph()
sage: g.show() # long time
˓→ # needs sage.plot
```

```sage
>>> from sage.all import *
>>>
g = graphs.HouseXGraph()
>>>
g.show() # long time
˓→ # needs sage.plot
```

```sage
static HyperStarGraph(n, k)
Return the hyper-star graph $\mathcal{H}_S(n, k)$.

The vertices of the hyper-star graph are the set of binary strings of length n which contain k 1s. Two vertices, u and v, are adjacent only if u can be obtained from v by swapping the first bit with a different symbol in another position. For instance, vertex '011100' of $\mathcal{H}_S(6, 3)$ is adjacent to vertices '101100', '110100' and '111000'. See [LKOL2002] for more details.

INPUT:

- n – non-negative integer; length of the binary strings
- k – non-negative integer; number of 1s per binary string

EXAMPLES:

```sage
sage: g = graphs.HyperStarGraph(6, 3)
sage: sorted(g.neighbors('011100'))
["101100", "110100", "111000"]
sage: g.plot()  # long time
˓→ # needs sage.plot
Graphics object consisting of 51 graphics primitives
```

```sage
>>> from sage.all import *
>>>
g = graphs.HyperStarGraph(Integer(6), Integer(3))
>>> sorted(g.neighbors('011100'))
["101100", "110100", "111000"]
>>> g.plot()  # long time
˓→ # needs sage.plot
Graphics object consisting of 51 graphics primitives
```

AUTHORS:

- Michael Yurko (2009-09-01)

```sage
static IGraph(n, j, k)
Return an I-graph with $2n$ nodes.

The I-Graph family as been proposed in [BCMS1988] as a generalization of the generalized Petersen graphs. The variables $n$, $j$, $k$ are integers such that $n > 2$ and $0 < j, k \leq \lfloor (n - 1)/2 \rfloor$. When $j = 1$ the resulting graph is isomorphic to the generalized Petersen graph with the same $n$ and $k$.

INPUT:

- $n$ – the number of nodes is $2 \times n$

2.1. Common graphs
Graph Theory, Release 10.4

- $j$ – integer such that $0 < j \leq \lfloor (n - 1)/2 \rfloor$ determining how outer vertices are connected
- $k$ – integer such that $0 < k \leq \lfloor (n - 1)/2 \rfloor$ determining how inner vertices are connected

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the I-graphs are displayed as an inner and outer cycle pair, with the first $n$ nodes drawn on the outer circle. The first (0) node is drawn at the top of the outer-circle, moving counterclockwise after that. The inner circle is drawn with the (n)th node at the top, then counterclockwise as well.

EXAMPLES:

When $j = 1$ the resulting graph will be isomorphic to a generalized Petersen graph:

```
sage: g = graphs.IGraph(7, 1, 2)
sage: g2 = graphs.GeneralizedPetersenGraph(7, 2)
sage: g.is_isomorphic(g2)
True
```

The IGraph with parameters $(n, j, k)$ is isomorphic to the IGraph with parameters $(n, k, j)$:

```
sage: g = graphs.IGraph(7, 2, 3)
sage: h = graphs.IGraph(7, 3, 2)
sage: g.is_isomorphic(h)
True
```

```
static IcosahedralGraph()

Return an Icosahedral graph (with 12 nodes).

The regular icosahedron is a 20-sided triangular polyhedron. The icosahedral graph corresponds to the connectivity of the vertices of the icosahedron. It is dual to the dodecahedral graph. The icosahedron is symmetric, so the spring-layout algorithm will be very effective for display.

PLOTTING: The Icosahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, a argument will be added to select the desired layout.

EXAMPLES:

Construct and show an Octahedral graph:

```
sage: g = graphs.IcosahedralGraph()
sage: g.show()
```

Create several icosahedral graphs in a Sage graphics array. They will be drawn differently due to the use of the spring-layout algorithm:

```python
>>> from sage.all import *

>>> g = []
>>> j = []
>>> for i in range(9):
...     k = graphs.IcosahedralGraph()
...     g.append(k)
>>> for i in range(3):
...     n = []
...     for m in range(3):
...         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
...     j.append(n)
>>> G = graphics_array(j)
>>> G.show()  # long time
```

static IntersectionGraph \((S) \)

Return the intersection graph of the family \(S \)

The intersection graph of a family \(S \) is a graph \(G \) with \(V(G) = S \) such that two elements \(s_1, s_2 \in S \) are adjacent in \(G \) if and only if \(s_1 \cap s_2 \neq \emptyset \).

INPUT:

- \(S \) – a list of sets/tuples/iterables

Note: The elements of \(S \) must be finite, hashable, and the elements of any \(s \in S \) must be hashable too.

EXAMPLES:

```python
sage: graphs.IntersectionGraph([(1,2,3),(3,4,5),(5,6,7)])
Intersection Graph: Graph on 3 vertices
```
static IntervalGraph (intervals, points_ordered=False)

Return the graph corresponding to the given intervals.

An interval graph is built from a list \((a_i, b_i)\) of intervals: to each interval of the list is associated one vertex, two vertices being adjacent if the two corresponding (closed) intervals intersect.

INPUT:

- intervals – the list of pairs \((a_i, b_i)\) defining the graph.
- points_ordered – states whether every interval \((a_i, b_i)\) of intervals satisfies \(a_i < b_i\). If satisfied then setting points_ordered to True will speed up the creation of the graph.

Note:

- The vertices are named 0, 1, 2, and so on. The intervals used to create the graph are saved with the graph and can be recovered using get_vertex() or get_vertices().

EXAMPLES:

The following line creates the sequence of intervals \((i, i + 2)\) for \(i\) in \([0, ..., 8]\):

```sage
sage: intervals = [(i, i+2) for i in range(9)]
```

In the corresponding graph

```sage
sage: g = graphs.IntervalGraph(intervals)
sage: g.get_vertex(3)
(3, 5)
sage: neigh = g.neighbors(3)
sage: for v in neigh: print(g.get_vertex(v))
(1, 3)
(2, 4)
(4, 6)
(5, 7)
```

The is_interval() method verifies that this graph is an interval graph.
```python
sage: g.is_interval()
True

The intervals in the list need not be distinct.

```python
sage: intervals = [(1,2), (1,2), (2,3), (3,4)]
sage: g = graphs.IntervalGraph(intervals, True)
sage: g.clique_maximum()
[0, 1, 2, 3]
sage: g.get_vertices()
{0: (1, 2), 1: (1, 2), 2: (1, 2), 3: (2, 3), 4: (3, 4)}
```

```python
from sage.all import *
```

```python
>>> intervals = [(Integer(1),Integer(2)), (Integer(1),Integer(2)), (Integer(1),Integer(2)), (Integer(2),Integer(3)), (Integer(3),Integer(4))]
```

```python
>>> g = graphs.IntervalGraph(intervals, True)
```

```python
>>> g.clique_maximum()
[0, 1, 2, 3]
```

```python
>>> g.get_vertices()
{0: (1, 2), 1: (1, 2), 2: (1, 2), 3: (2, 3), 4: (3, 4)}
```

The endpoints of the intervals are not ordered we get the same graph (except for the vertex labels).

```python
sage: rev_intervals = [(2,1), (2,1), (2,1), (3,2), (4,3)]
sage: h = graphs.IntervalGraph(rev_intervals, False)
sage: h.get_vertices()
{0: (2, 1), 1: (2, 1), 2: (2, 1), 3: (3, 2), 4: (4, 3)}
sage: g.edges(sort=True) == h.edges(sort=True)
True
```

```python
from sage.all import *
```

```python
>>> rev_intervals = [(Integer(2),Integer(1)), (Integer(2),Integer(1)), (Integer(3),Integer(2)), (Integer(4),Integer(3))]
```

```python
>>> h = graphs.IntervalGraph(rev_intervals, False)
```

```python
>>> h.get_vertices()
{0: (2, 1), 1: (2, 1), 2: (2, 1), 3: (3, 2), 4: (4, 3)}
```

```python
>>> g.edges(sort=True) == h.edges(sort=True)
True
```

**static IoninKharaghani765Graph()**

Return a \((765, 192, 48, 48)\)-strongly regular graph.

Existence of a strongly regular graph with these parameters was claimed in [IK2003]. Implementing the construction in the latter did not work, however. This function implements the following instructions, shared by Yury Ionin and Hadi Kharaghani.

Let \(A\) be the affine plane over the field \(GF(3) = \{-1, 0, 1\}\). Let

\[
\begin{align*}
\phi_1(x, y) &= x \\
\phi_2(x, y) &= y \\
\phi_3(x, y) &= x + y \\
\phi_4(x, y) &= x - y
\end{align*}
\]
For \( i = 1, 2, 3, 4 \) and \( j \in GF(3) \), let \( L_{i,j} \) be the line in \( A \) defined by \( \phi_i(x, y) = j \). Let \( M \) be the set of all 12 lines \( L_{i,j} \), plus the empty set. Let \( \pi \) be the permutation defined on \( M \) by \( \pi(L_{i,j}) = L_{i,j+1} \) and \( \pi(\emptyset) = \emptyset \), so that \( \pi \) has three orbits of cardinality 3 and one of cardinality 1.

Let \( A = (p_1, \ldots, p_9) \) with \( p_1 = (-1, 1), p_2 = (-1, 0), p_3 = (-1, 1), p_4 = (0, -1), p_5 = (0, 0), p_6 = (0, 1), p_7 = (1, -1), p_8 = (1, 0), p_9 = (1, 1) \). Note that \( p_i \neq p_{10-i} = (0, 0) \). For any subset \( X \) of \( A \), let \( M(X) \) be the \( (0, 1) \)-matrix of order 9 whose \((i, j)\)-entry equals 1 if and only if \( p_{10-i} - p_j \) is not in \( X \). Note that \( M \) is a symmetric matrix.

An \( MF \)-tuple is an ordered quintuple \((X_1, X_2, X_3, X_4, X_5)\) of subsets of \( A \), of which one is the empty set and the other four are pairwise non-parallel lines. Such a quintuple generates the following block matrix:

\[
N(X_1, X_2, X_3, X_4, X_5) = \begin{pmatrix}
M(X_1) & M(X_2) & M(X_3) & M(X_4) & M(X_5) \\
M(X_2) & M(X_3) & M(X_4) & M(X_5) & M(X_1) \\
M(X_3) & M(X_4) & M(X_5) & M(X_1) & M(X_2) \\
M(X_4) & M(X_5) & M(X_1) & M(X_2) & M(X_3) \\
M(X_5) & M(X_1) & M(X_2) & M(X_3) & M(X_4)
\end{pmatrix}
\]

Observe that if \((X_1, X_2, X_3, X_4, X_5)\) is an \( MF \)-tuple, then \( N(X_1, X_2, X_3, X_4, X_5) \) is the symmetric incidence matrix of a symmetric \((45, 12, 3)\)-design.

Let \( F \) be the set of all \( MF \)-tuples and let \( \sigma \) be the following permutation of \( F \):

\[
\sigma((X_1, X_2, X_3, X_4, X_5)) = (X_2, X_3, X_4, X_5, X_1)
\]

\[
\pi((X_1, X_2, X_3, X_4, X_5)) = (\pi(X_1), \pi(X_2), \pi(X_3), \pi(X_4), \pi(X_5))
\]

Observe that \( \sigma \) and \( \pi \) commute, and generate a (cyclic) group \( G \) of order 15. We will from now on identify \( G \) with the (cyclic) multiplicative group of the field \( GF(16) \) equal to \( \{\omega^0, \ldots, \omega^{14}\} \). Let \( W = [w_{ij}] \) be the following matrix of order 17 over \( GF(16) = \{a_1, \ldots, a_16\} \):

\[
w_{ij} = \begin{cases} 
    a_i + a_j & \text{if } 1 \leq i \leq 16, 1 \leq j \leq 16, \\
    1 & \text{if } i = 17, j \neq 17, \\
    1 & \text{if } i \neq 17, j = 17, \\
    0 & \text{if } i = j = 17 
\end{cases}
\]

The diagonal entries of \( W \) are equal to 0, each off-diagonal entry can be represented as \( \omega^k \) with \( 0 \leq k \leq 14 \). Matrix \( W \) is a symmetric \( BGW(17, 16, 15; G) \).

Fix an \( MF \)-tuple \((X_1, X_2, X_3, X_4, X_5)\) and let \( S \) be the block matrix obtained from \( W \) by replacing every diagonal entry of \( W \) by the zero matrix of order 45, and every off-diagonal entry \( \omega^k \) by the matrix \( N(\sigma^k((X_1, X_2, X_3, X_4, X_5))) \) (through the association of \( \omega^k \) with an element of \( G \)). Then \( S \) is a symmetric incidence matrix of a symmetric \((765, 192, 48)\)-design with zero diagonal, and therefore \( S \) is an adjacency matrix of a strongly regular graph with parameters \((765, 192, 48, 48)\).

EXAMPLES:

```python
sage: g = graphs.IoninKharaghani765Graph(); g
Todo: # needs sage.modules sage.rings.finite_rings

Ionin-Kharaghani: Graph on 765 vertices

>>> from sage.all import *
>>> g = graphs.IoninKharaghani765Graph(); g
Todo: # needs sage.modules sage.rings.finite_rings

Ionin-Kharaghani: Graph on 765 vertices
```

static IvanovIvanovFaradjevGraph()

Return the IvanovIvanovFaradjev graph.

EXAMPLES:

```python
sage: G = graphs.IvanovIvanovFaradjevGraph() # optional - internet
sage: G.is_distance_regular(True) # optional - internet
((7, 6, 4, 4, 1, 1, 1, None), [None, 1, 1, 2, 4, 4, 6, 7])
```

REFERENCES:

A description and construction of this graph can be found in [BCN1989] p. 369.

static J2Graph()

Return the distance-transitive graph with automorphism group $J_2$.

EXAMPLES:

```python
sage: G = graphs.J2Graph() # optional - internet
sage: G.is_distance_regular(True) # optional - internet
([10, 8, 8, 2, None], [None, 1, 1, 4, 5])
```

REFERENCES:

A description and construction of this graph can be found in [BCN1989] p. 408.

static JankoKharaghaniGraph(v)

Return a $(936, 375, 150, 150)$-srg or a $(1800, 1029, 588, 588)$-srg.

This function returns a strongly regular graph for the two sets of parameters shown to be realizable in [JK2002]. The paper also uses a construction from [GM1987].

INPUT:

- $v$ -- integer; one of 936 or 1800

EXAMPLES:
```python
sage: g = graphs.JankoKharaghaniGraph(936) # long time
 # needs sage.libs.pari
sage: g.is_strongly_regular(parameters=True) # long time
 # needs sage.libs.pari
(936, 375, 150, 150)

sage: g = graphs.JankoKharaghaniGraph(1800) # not tested (30s)
sage: g.is_strongly_regular(parameters=True) # not tested (30s)
(1800, 1029, 588, 588)
```

```python
>>> from sage.all import *

>>> g = graphs.JankoKharaghaniGraph(Integer(936)) # long time
 # needs sage.libs.pari
>>> g.is_strongly_regular(parameters=True) # long time
 # needs sage.libs.pari
(936, 375, 150, 150)

>>> g = graphs.JankoKharaghaniGraph(Integer(1800)) # not tested (30s)
>>> g.is_strongly_regular(parameters=True) # not tested (30s)
(1800, 1029, 588, 588)
```

**static JankoKharaghaniTonchevGraph()**

Return a $(324, 153, 72, 72)$-strongly regular graph from [JKT2001].

Build the graph using the description given in [JKT2001], taking sets $B_1$ and $B_{163}$ in the text as adjacencies of vertices 1 and 163, respectively, and taking the edge orbits of the group $G$ provided.

**EXAMPLES:**

```python
sage: Gamma = graphs.JankoKharaghaniTonchevGraph() # long time
 # needs sage.libs.gap
sage: Gamma.is_strongly_regular(parameters=True) # long time
 # needs sage.libs.gap
(324, 153, 72, 72)
```

```python
>>> from sage.all import *

>>> Gamma = graphs.JankoKharaghaniTonchevGraph() # long time
 # needs sage.libs.gap
>>> Gamma.is_strongly_regular(parameters=True) # long time
 # needs sage.libs.gap
(324, 153, 72, 72)
```

**static JohnsonGraph($n$, $k$)**

Returns the Johnson graph with parameters $n, k$.

Johnson graphs are a special class of undirected graphs defined from systems of sets. The vertices of the Johnson graph $J(n, k)$ are the $k$-element subsets of an $n$-element set; two vertices are adjacent when they meet in a $(k - 1)$-element set. See the Wikipedia article Johnson graph for more information.

**EXAMPLES:**

The Johnson graph is a Hamiltonian graph:

```python
sage: g = graphs.JohnsonGraph(7, 3)
sage: g.is_hamiltonian() # needs sage.numerical.mip
True
```
Every Johnson graph is vertex transitive:

```python
sage: g = graphs.JohnsonGraph(6, 4)
sage: g.is_vertex_transitive()
needs sage.groups
True
```

The complement of the Johnson graph $J(n, 2)$ is isomorphic to the Kneser Graph $K(n, 2)$. In particular the complement of $J(5, 2)$ is isomorphic to the Petersen graph:

```python
sage: g = graphs.JohnsonGraph(5, 2)
sage: g.complement().is_isomorphic(graphs.PetersenGraph())
True
```

**static KingGraph** ($\texttt{dim\_list}$, $\texttt{radius}$=None, $\texttt{relabel}$=False)

Return the $d$-dimensional King Graph with prescribed dimensions.

The 2-dimensional King Graph of parameters $n$ and $m$ is a graph with $nm$ vertices in which each vertex represents a square in an $n \times m$ chessboard, and each edge corresponds to a legal move by a king.

The $d$-dimensional King Graph with $d \geq 2$ has for vertex set the cells of a $d$-dimensional grid with prescribed dimensions, and each edge corresponds to a legal move by a king in either one or two dimensions.

All 2-dimensional King Graphs are Hamiltonian, biconnected, and have chromatic number 4 as soon as both dimensions are larger or equal to 2.

**INPUT:**

- $\texttt{dim\_list}$ – iterable (list, set, dict); provides the dimensions $n_1, n_2, \ldots, n_d$, with $n_i \geq 1$, of the chessboard
- $\texttt{radius}$ – integer (default: None); by setting the radius to a positive integer, one may increase the power of the king to at least $radius$ steps. When the radius equals the higher size of the dimensions, the resulting graph is a Queen Graph.
- $\texttt{relabel}$ – boolean (default: False); indicates whether the vertices must be relabeled as integers

**EXAMPLES:**

The $(2, 2)$-King Graph is isomorphic to the complete graph on 4 vertices:
Graph Theory, Release 10.4

```sage
sage: G = graphs.QueenGraph([2, 2])
sage: G.is_isomorphic(graphs.CompleteGraph(4))
True
```

```sage
>>> from sage.all import *

G = graphs.QueenGraph([Integer(2), Integer(2)])
G.is_isomorphic(graphs.CompleteGraph(Integer(4)))
True
```

The King Graph with large enough radius is isomorphic to a Queen Graph:

```sage
sage: G = graphs.KingGraph([5, 4], radius=Integer(5))
sage: H = graphs.QueenGraph([4, 5])
sage: G.is_isomorphic(H)
True
```

```sage
>>> from sage.all import *

G = graphs.KingGraph([Integer(5), Integer(4)], radius=Integer(5))
H = graphs.QueenGraph([Integer(4), Integer(5)])
G.is_isomorphic(H)
True
```

Also True in higher dimensions:

```sage
sage: G = graphs.KingGraph([2, 5, 4], radius=Integer(5))
sage: H = graphs.QueenGraph([4, 5, 2])
sage: G.is_isomorphic(H)
True
```

```sage
>>> from sage.all import *

G = graphs.KingGraph([Integer(2), Integer(5), Integer(4)], radius=Integer(5))
H = graphs.QueenGraph([Integer(4), Integer(5), Integer(2)])
G.is_isomorphic(H)
True
```

**static KittellGraph()**

Return the Kittell Graph.

For more information, see the Wolfram page about the Kittel Graph.

**EXAMPLES:**

```sage
sage: g = graphs.KittellGraph()
sage: g.order()
23
sage: g.size()
63
sage: g.radius()
3
sage: g.diameter()
4
sage: g.girth()
3
sage: g.chromatic_number()
4
```
static Klein3RegularGraph()  
Return the Klein 3-regular graph.

The cubic Klein graph has 56 vertices and can be embedded on a surface of genus 3. It is the dual of Klein7RegularGraph(). For more information, see the Wikipedia article Klein_graphs.

EXAMPLES:

```python
sage: g = graphs.Klein3RegularGraph(); g
Klein 3-regular Graph: Graph on 56 vertices
sage: g.order(), g.size()
(56, 84)
sage: g.girth()
7
sage: g.automorphism_group().cardinality() # needs sage.groups
336
sage: g.chromatic_number()
3
```

static Klein7RegularGraph()  
Return the Klein 7-regular graph.

The 7-valent Klein graph has 24 vertices and can be embedded on a surface of genus 3. It is the dual of Klein3RegularGraph(). For more information, see the Wikipedia article Klein_graphs.

EXAMPLES:

```python
sage: g = graphs.Klein7RegularGraph(); g
Klein 7-regular Graph: Graph on 24 vertices
sage: g.order(), g.size()
(24, 84)
sage: g.girth()
7
sage: g.automorphism_group().cardinality() # needs sage.groups
336
sage: g.chromatic_number()
3
```
\begin{verbatim}
>>> from sage.all import *
>>> g = graphs.Klein7RegularGraph(); g
Klein 7-regular Graph: Graph on 24 vertices
>>> g.order(), g.size()
(24, 84)
>>> g.girth()
3
>>> g.automorphism_group().cardinality()
  # needs sage.groups
336
>>> g.chromatic_number()
4

static KneserGraph(n, k)

Returns the Kneser Graph with parameters \( n, k \).

The Kneser Graph with parameters \( n, k \) is the graph whose vertices are the \( k \)-subsets of \([0, 1, \ldots, n - 1]\), and such that two vertices are adjacent if their corresponding sets are disjoint.

For example, the Petersen Graph can be defined as the Kneser Graph with parameters \( 5, 2 \).

EXAMPLES:

\begin{verbatim}
  sage: KG = graphs.KneserGraph(5,2)
  sage: sorted(KG.vertex_iterator(), key=str)
  [{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5},
  {3, 4}, {3, 5}, {4, 5}]
  sage: P = graphs.PetersenGraph()
  sage: P.is_isomorphic(KG)
  True
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> KG = graphs.KneserGraph(Integer(5),Integer(2))
>>> sorted(KG.vertex_iterator(), key=str)
[{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5},
{3, 4}, {3, 5}, {4, 5}]
>>> P = graphs.PetersenGraph()
>>> P.is_isomorphic(KG)
True
\end{verbatim}

static KnightGraph(dim_list, one=1, two=2, relabel=False)

Return the d-dimensional Knight Graph with prescribed dimensions.

The 2-dimensional Knight Graph of parameters \( n \) and \( m \) is a graph with \( nm \) vertices in which each vertex represents a square in an \( n \times m \) chessboard, and each edge corresponds to a legal move by a knight.

The d-dimensional Knight Graph with \( d \geq 2 \) has for vertex set the cells of a d-dimensional grid with prescribed dimensions, and each edge corresponds to a legal move by a knight in any pairs of dimensions.
\end{verbatim}
The \((n,n)\)-Knight Graph is Hamiltonian for even \(n > 4\).

**INPUT:**

- `dim_list` – iterable (list, set, dict); provides the dimensions \(n_1, n_2, \ldots, n_d\), with \(n_i \geq 1\), of the chessboard
- `one` – integer (default: 1); indicates the number of steps in the first dimension
- `two` – integer (default: 2); indicates the number of steps in the second dimension
- `relabel` – boolean (default: False); indicates whether the vertices must be relabeled as integers

**EXAMPLES:**

The \((3,3)\)-Knight Graph has an isolated vertex:

```sage
sage: G = graphs.KnightGraph([3, 3])
sage: G.degree((1,1))
0
```

The \((3,3)\)-Knight Graph minus vertex \((1,1)\) is a cycle of order 8:

```sage
sage: G = graphs.KnightGraph([3, 3])
sage: G.delete_vertex((1,1))
sage: G.is_isomorphic(graphs.CycleGraph(8))
True
```

The \((6,6)\)-Knight Graph is Hamiltonian:

```sage
sage: G = graphs.KnightGraph([6, 6])
sage: G.is_hamiltonian() # needs sage.numerical.mip
True
```

**static KrackhardtKiteGraph()**

Return a Krackhardt kite graph with 10 nodes.

The Krackhardt kite graph was originally developed by David Krackhardt for the purpose of studying social networks (see [Kre2002] and the Wikipedia article Krackhardt_kite_graph). It is used to show the distinction between degree centrality, betweenness centrality, and closeness centrality. For more information read the plotting section below in conjunction with the example.
PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By
convention, the graph is drawn left to right, in top to bottom row sequence of [2, 3, 2, 1, 1, 1] nodes on each
row. This places the fourth node (3) in the center of the kite, with the highest degree. But the fourth node
only connects nodes that are otherwise connected, or those in its clique (i.e.: Degree Centrality). The eighth
(7) node is where the kite meets the tail. It has degree = 3, less than the average, but is the only connection
between the kite and tail (i.e.: Betweenness Centrality). The sixth and seventh nodes (5 and 6) are drawn in
the third row and have degree = 5. These nodes have the shortest path to all other nodes in the graph (i.e.: Closeness Centrality). Please execute the example for visualization.

EXAMPLES:

Construct and show a Krackhardt kite graph

```python
sage: g = graphs.KrackhardtKiteGraph()
sage: g.show() # long time
```

```python
>>> from sage.all import *

```

```python
G = graphs.LCFGraph(Integer(4), [Integer(2),-Integer(2)], Integer(2)) # needs networkx
```

```
static LCFGraph (n, shift_list, repeats)

Return the cubic graph specified in LCF notation.

LCF (Lederberg-Coxeter-Frucht) notation is a concise way of describing cubic Hamiltonian graphs. The
way a graph is constructed is as follows. Since there is a Hamiltonian cycle, we first create a cycle on n nodes.
The variable `shift_list` = [s0, s1, ..., sk−1] describes edges to be created by the following scheme: for
each i ∈ \{0, 1, ..., k − 1\}, connect vertex i to vertex (i + si) (mod n). Then, repeats specifies the
number of times to repeat this process, where on the j-th repeat we connect vertex (i + jk) (mod n) to
vertex (i + jk + si) (mod n).

For more details, see the Wikipedia article LCF notation and [Fru1977], [Gru2003] pp. 357-365, and
[Led1965].

INPUT:

* n – the number of nodes.
* shift_list – a list of integer shifts mod n.
* repeats – the number of times to repeat the process.

EXAMPLES:
The largest cubic nonplanar graph of diameter three:

```python
sage: # needs networkx
sage: G = graphs.LCFGraph(20, [-10,-7,-5,4,-7,-10,-7,4,-7,-10,-7,6,-5,7,-10,-7,5,-6,7], 1)
sage: G.degree()
sage: G.diameter()
3
sage: G.show()                      # long time
```

PLOTTING: LCF Graphs are plotted as an n-cycle with edges in the middle, as described above.
static LadderGraph \((n)\)

Return a ladder graph with \(2 \times n\) nodes.

A ladder graph is a basic structure that is typically displayed as a ladder, i.e.: two parallel path graphs connected at each corresponding node pair.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each ladder graph will be displayed horizontally, with the first \(n\) nodes displayed left to right on the top horizontal line.

EXAMPLES:

Construct and show a ladder graph with 14 nodes:

```
sage: g = graphs.LadderGraph(7)
sage: g.show()                     # long time
˓→ # needs sage.plot
```

```
>>> from sage.all import *
>>> g = graphs.LadderGraph(Integer(7))
>>> g.show()                       # long time
˓→ # needs sage.plot
```

Create several ladder graphs in a Sage graphics array:

```
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
    ....:     k = graphs.LadderGraph(i+2)
    ....:     g.append(k)
sage: for i in range(3):
    ....:     n = []
    ....:     for m in range(3):
    ....:         n.append(g[3*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
    ....:     j.append(n)
sage: G = graphics_array(j)
sage: G.show()                     # long time
```

```
>>> from sage.all import *
>>> # needs sage.plot
>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
    ...     k = graphs.LadderGraph(i+Integer(2))
    ...     g.append(k)
>>> for i in range(Integer(3)):
    ...     n = []
    ...     for m in range(Integer(3)):
    ...         n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
    ...     j.append(n)
>>> G = graphics_array(j)
>>> G.show()                      # long time
```

static LargeWittGraph

Return the large Witt graph.

This is a distance-regular graph with intersection array \([30, 28, 24; 1, 3, 15]\).
EXAMPLES:

```
sage: g = graphs.LargeWittGraph()
    # needs sage.libs.pari sage.modules
sage: g.is_distance_regular(True)
    # needs sage.libs.pari sage.modules
([30, 28, 24, None], [None, 1, 3, 15])
```

REFERENCES:

A description of this graph can be found in [BCN1989] p. 366. This construction is taken from http://mathworld.wolfram.com/LargeWittGraph.html

```
static LeonardGraph()

Return the Leonard graph.

The graph is distance-regular with intersection array [12, 11, 10, 7; 1, 2, 5, 12].

EXAMPLES:
```
```
sage: G = graphs.LeonardGraph()
    # needs sage.combinat sage.modules
sage: G.is_distance_regular(True)
    # needs sage.combinat sage.modules
([12, 11, 10, 7, None], [None, 1, 2, 5, 12])
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
static `LjubljanaGraph` (*embedding=*1)

Return the Ljubljana Graph.

The Ljubljana graph is a bipartite 3-regular graph on 112 vertices and 168 edges. It is not vertex-transitive as it has two orbits which are also independent sets of size 56. See the Wikipedia article Ljubljana_graph.

The default embedding is obtained from the Heawood graph.

INPUT:

- `embedding` – integer (default: 1); two embeddings are available, and can be selected by setting `embedding` to 1 or 2

EXAMPLES:

```python
sage: # needs networkx
sage: g = graphs.LjubljanaGraph()
sage: g.order()
112
sage: g.size()
168
sage: g.girth()
10
sage: g.diameter()
8
sage: g.show(figsize=[10, 10]) # long time
˓→ # needs sage.plot
sage: graphs.LjubljanaGraph(embedding=2).show(figsize=[10, 10]) # long time, needs sage.plot
```

(continues on next page)
static LocalMcLaughlinGraph()

Return the local McLaughlin graph.

The local McLaughlin graph is a strongly regular graph with parameters \((162, 56, 10, 24)\). It can be obtained from \texttt{McLaughlinGraph()} by considering the stabilizer of a point: one of its orbits has cardinality 162.

EXAMPLES:

```python
sage: g = graphs.LocalMcLaughlinGraph(); g # long time, optional - gap_
 # needs sage.plot
Local McLaughlin Graph: Graph on 162 vertices
sage: g.is_strongly_regular(parameters=True) # long time, optional - gap_
 # needs sage.plot
(162, 56, 10, 24)
```

static LollipopGraph\((n1, n2)\)

Returns a lollipop graph with \(n_1 + n_2\) nodes.

A lollipop graph is a path graph (order \(n_2\)) connected to a complete graph (order \(n_1\)). (A barbell graph minus one of the bells).

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the complete graph will be drawn in the lower-left corner with the \(n_1\)-th node at a 45 degree angle above the right horizontal center of the complete graph, leading directly into the path graph.

EXAMPLES:

Construct and show a lollipop graph \(\text{Candy} = 13, \text{Stick} = 4\):

```python
sage: g = graphs.LollipopGraph(13,4); g # long time, optional - gap_
 # needs sage.plot
Lollipop graph: Graph on 17 vertices
sage: g.show() # long time
```

```python
>>> from sage.all import *

sage: g = graphs.LollipopGraph(Integer(13),Integer(4)); g # long time
 # needs sage.plot
Lollipop graph: Graph on 17 vertices
```

2.1. Common graphs
static M22Graph()

Return the M22 graph.

The $M_{22}$ graph is the unique strongly regular graph with parameters $v = 77, k = 16, \lambda = 0, \mu = 4$.

For more information on the $M_{22}$ graph, see https://www.win.tue.nl/~aeb/graphs/M22.html.

EXAMPLES:

```python
sage: # needs sage.groups
sage: g = graphs.M22Graph()
sage: g.order()
77
sage: g.size()
616
sage: g.is_strongly_regular(parameters=True)
(77, 16, 0, 4)
```

static MarkstroemGraph()

Return the Markström Graph.

The Markström Graph is a cubic planar graph with no cycles of length 4 nor 8, but containing cycles of length 16. For more information, see the Wolfram page about the Markström Graph.

EXAMPLES:

```python
sage: g = graphs.MarkstroemGraph()
sage: g.order()
24
sage: g.size()
36
sage: g.is_planar()
True
sage: g.is_regular(3)
True
sage: g.subgraph_search(graphs.CycleGraph(4))
```

```python
... is None ˓→ # needs sage.modules
True
sage: g.subgraph_search(graphs.CycleGraph(8))
... is None ˓→ # needs sage.modules
True
sage: g.subgraph_search(graphs.CycleGraph(16)) ˓→ # needs sage.modules
Subgraph of (Markstroem Graph): Graph on 16 vertices
```

```python
>>> from sage.all import *
>>> # needs sage.groups
>>> g = graphs.MarkstroemGraph()
>>> g.order()
(continues on next page)
```
24
>>> g.size()
36
>>> g.is_planar()
True
>>> g.is_regular(Integer(3))
True
>>> g.subgraph_search(graphs.CycleGraph(Integer(4)))  # needs sage.modules
is None
>>> g.subgraph_search(graphs.CycleGraph(Integer(8)))  # needs sage.modules
is None
>>> g.subgraph_search(graphs.CycleGraph(Integer(16)))  # needs sage.modules
Subgraph of (Markstroem Graph): Graph on 16 vertices

\textbf{static MathonPseudocyclicMergingGraph} (M, t)

Mathon’s merging of classes in a pseudo-cyclic 3-class association scheme

Construct strongly regular graphs from p.97 of [BL1984].

\textbf{INPUT:}

- M – the list of matrices in a pseudo-cyclic 3-class association scheme. The identity matrix must be the first entry.
- t (integer) – the number of the graph, from 0 to 2.

\textbf{See also:}

- \textit{is\_muzychuk\_S6()}

\textbf{static MathonPseudocyclicStronglyRegularGraph} (t, G=None, L=None)

Return a strongly regular graph on \((4t + 1)(4t - 1)^2\) vertices from [Mat1978].

Let \(4t - 1\) be a prime power, and \(4t + 1\) be such that there exists a strongly regular graph \(G\) with parameters \((4t + 1, 2t, t - 1, t)\). In particular, \(4t + 1\) must be a sum of two squares [Mat1978]. With this input, Mathon [Mat1978] gives a construction of a strongly regular graph with parameters \((4\mu + 1, 2\mu, \mu - 1, \mu)\), where \(\mu = t(4t(4t - 1) - 1)\). The construction is optionally parametrised by an a skew-symmetric Latin square of order \(4t + 1\), with entries in \(-2t, \ldots, -1, 0, 1, \ldots, 2t\).

Our implementation follows a description given in [ST1981].

\textbf{INPUT:}

- t – a positive integer
- G – if None (default), try to construct the necessary graph with parameters \((4t + 1, 2t, t - 1, t)\), otherwise use the user-supplied one, with vertices labelled from 0 to \(4t\).
- L – if None (default), construct a necessary skew Latin square, otherwise use the user-supplied one. Here non-isomorphic Latin squares – one constructed from \(Z/9Z\), and the other from \((Z/3Z)^2\) – lead to non-isomorphic graphs.

\textbf{See also:}

- \textit{is\_mathon\_PC\_srg()}

\textbf{2.1. Common graphs}
EXAMPLES:

Using default G and L.

```python
sage: from sage.graphs.generators.families import *
˓→MathonPseudocyclicStronglyRegularGraph
sage: G = MathonPseudocyclicStronglyRegularGraph(1); G
Mathon’s PC SRG on 45 vertices: Graph on 45 vertices
sage: G.is_strongly_regular(parameters=True)
(45, 22, 10, 11)
```

Supplying G and L (constructed from the automorphism group of G). The entries of L can’t be tested directly because there’s some unpredictability in the way that GAP chooses a representative in `NormalSubgroups()`, the function that underlies our own `normal_subgroups()` method:

```python
sage: G = graphs.PaleyGraph(9)
sage: a = G.automorphism_group(partition=[sorted(G)])
sage: it = (x for x in a.normal_subgroups() if x.order() == 9)
sage: subg = next(iter(it))
sage: r = [matrix(libgap.PermutationMat(libgap(z), 9).sage())
 : for z in subg]
sage: ff = list(map(lambda y: (y[0]-1,y[1]-1),
 : Permutation(map(lambda x: 1+r.index(x^-1), r)).cycle_tuples([1:])))
sage: L = sum(i*(r[a]-r[b]) for i,(a,b) in zip(range(1,len(ff)+1), ff))
sage: G.relabel(range(9))
sage: G3x3 = graphs.MathonPseudocyclicStronglyRegularGraph(2, G=G, L=L)
sage: G3x3.is_strongly_regular(parameters=True)
(441, 220, 109, 110)
sage: G9 = graphs.MathonPseudocyclicStronglyRegularGraph(2)
sage: G9.is_strongly_regular(parameters=True)
(441, 220, 109, 110)
```

(continues on next page)

(continues on next page)
... for z in subg]
>>> ff = list(map(lambda y: (y[Integer(0)]-Integer(1),y[Integer(1)]-Integer(1)),
... Permutation(map(lambda x: Integer(1)+r.index(x**-Integer(1)),
... r)).cycle_tuples())[Integer(1);])
>>> L = sum(i*(r[a]-r[b]) for i,(a,b) in zip(range(Integer(1),
... len(ff)+Integer(1)), ff))
>>> G.relabel(range(Integer(9)))
>>> G3x3 = graphs.MathonPseudocyclicStronglyRegularGraph(Integer(2), G=G, L=L)
>>> G3x3.is_strongly_regular(parameters=True)
(441, 220, 109, 110)
>>> G3x3.automorphism_group(algorithm="bliss").order()  # optional - bliss
27
>>> G9 = graphs.MathonPseudocyclicStronglyRegularGraph(Integer(2))
>>> G9.is_strongly_regular(parameters=True)
(441, 220, 109, 110)
>>> G9.automorphism_group(algorithm="bliss").order()  # optional - bliss
9

static MathonStronglyRegularGraph(t)

Return one of Mathon’s graphs on 784 vertices.

INPUT:

• t – integer; the number of the graph, from 0 to 2

EXAMPLES:

sage: from sage.graphs.generators.smallgraphs import MathonStronglyRegularGraph
sage: G = MathonStronglyRegularGraph(0)
sage: G.is_strongly_regular(parameters=True)
(784, 243, 82, 72)

static McGeeGraph(embedding=2)

Return the McGee Graph.

See the Wikipedia article McGee_graph.

INPUT:

• embedding – integer (default: 2); two embeddings are available, and can be selected by setting embedding to 1 or 2

EXAMPLES:

sage: from sage.all import *
# long time, needs sage.libs.gap
>>> from sage.graphs.generators.smallgraphs import MathonStronglyRegularGraph
>>> G = MathonStronglyRegularGraph(0)
>>> G.is_strongly_regular(parameters=True)
(784, 243, 82, 72)
sage: g.size()
36
sage: g.girth()
7
sage: g.diameter()
4
sage: g.show()
˓→ # needs sage.plot
sage: graphs.McGeeGraph(embedding=1).show()  # long time ˓→ # needs sage.plot

static McLaughlinGraph()

Return the McLaughlin Graph.

The McLaughlin Graph is the unique strongly regular graph of parameters (275, 112, 30, 56).

For more information on the McLaughlin Graph, see its web page on Andries Brouwer’s website which gives the definition that this method implements.

Note: To create this graph you must have the gap_packages spkg installed.

EXAMPLES:

sage: g = graphs.McLaughlinGraph()
˓→ design
sage: g.is_strongly_regular(parameters=True)
˓→ design
(275, 112, 30, 56)
sage: set(g.spectrum()) == {112, 2, -28}
˓→ design
True

>>> from sage.all import *
>>> g = graphs.McLaughlinGraph()
˓→ # optional - gap_package_design
>>> g.is_strongly_regular(parameters=True)
˓→ # optional - gap_package_design
(275, 112, 30, 56)
>>> set(g.spectrum()) == {Integer(112), Integer(2), -Integer(28)}
˓→ # optional - gap_package_design
True
**static MeredithGraph()**

Return the Meredith Graph.

The Meredith Graph is a 4-regular 4-connected non-hamiltonian graph. For more information on the Meredith Graph, see the Wikipedia article Meredith_graph.

EXAMPLES:

```
sage: g = graphs.MeredithGraph()
sage: g.is_regular(4)
True
sage: g.order()
70
sage: g.size()
140
sage: g.radius()
7
sage: g.diameter()
8
sage: g.girth()
4
sage: g.chromatic_number()
3
sage: g.is_hamiltonian() # long time
False
```

```
>>> from sage.all import *
>>> g = graphs.MeredithGraph()
>>> g.is_regular(Integer(4))
True
>>> g.order()
70
>>> g.size()
140
>>> g.radius()
7
>>> g.diameter()
8
>>> g.girth()
4
>>> g.chromatic_number()
3
>>> g.is_hamiltonian() # long time
False
```

**static MoebiusKantorGraph()**

Return a Möbius-Kantor graph.

A Möbius-Kantor graph is a cubic symmetric graph. (See also the Heawood graph). It has 16 nodes and 24 edges. It is nonplanar and Hamiltonian. It has diameter 4, girth 6, and chromatic number 2. It is identical to the Generalized Petersen graph, P[8, 3].

For more details, see Möbius-Kantor Graph - from Wolfram MathWorld.

PLOTTING: See the plotting section for the generalized Petersen graphs.

EXAMPLES:
Graph Theory, Release 10.4

```
sage: MK = graphs.MoebiusKantorGraph()
sage: MK
Moebius-Kantor Graph: Graph on 16 vertices
sage: MK.graph6_string()
'OhCGKE?O@?ACAC@I?Q_AS'
sage: (graphs.MoebiusKantorGraph()).show() # long time
˓→ # needs sage.plot
```

```from sage.all import *
MK = graphs.MoebiusKantorGraph()
MK
MK.graph6_string()
'OhCGKE?O@?ACAC@I?Q_AS'
(graphs.MoebiusKantorGraph()).show() # long time
˓→ # needs sage.plot```

`static MoebiusLadderGraph(n)`

Return a Möbius ladder graph with $2n$ nodes

A Möbius ladder graph of order $2n$ is a ladder graph of the same order that is connected at the ends with a single twist, i.e., a ladder graph bent around so that top meets bottom with a single twist. Alternatively, it can be described as a single cycle graph (of order $2n$) with the addition of edges (called *rungs*) joining the antipodal pairs of nodes. Also, note that the Möbius ladder graph `graphs.MoebiusLadderGraph(n)` is precisely the same graph as the circulant graph `graphs.CirculantGraph(2 \times n, \{1, n\})`.

PLOTTING:

Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each Möbius ladder graph will be displayed with the first (0) node at the top, with the rest following in a counterclockwise manner.

INPUT:

- n – a non-negative integer; number of nodes is $2n$

OUTPUT:

- G – a Möbius ladder graph of order $2n$; note that a `ValueError` is returned if $n < 0$

EXAMPLES:

Construct and show a Möbius ladder graph with 26 nodes:

```
sage: g = graphs.MoebiusLadderGraph(13)
sage: g.show()  # long time
˓→ # needs sage.plot
```

```from sage.all import *
g = graphs.MoebiusLadderGraph(Integer(13))
g.show()  # long time
˓→ # needs sage.plot```

Create several Möbius ladder graphs in a Sage graphics array:

```
sage: # needs sage.plots
g = []
j = []
sage: for i in range(9):
(continues on next page)```
....: k = graphs.MoebiusLadderGraph(i+3)
....: g.append(k)
sage: for i in range(3):
....: n = []
....: for m in range(3):
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....: j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time

>>> from sage.all import *
>>> # needs sage.plots
>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
... k = graphs.MoebiusLadderGraph(i+Integer(3))
... g.append(k)
>>> for i in range(Integer(3)):
... n = []
... for m in range(Integer(3)):
... n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
... j.append(n)
>>> G = graphics_array(j)
>>> G.show() # long time

REFERENCES:

• Wikipedia article Möbius_ladder

See also:

LadderGraph(), CircularLadderGraph(), CirculantGraph()

AUTHORS:

• Janmenjaya Panda (2024-05-26)

static MoserSpindle()

Return the Moser spindle.

For more information, see the Wikipedia article Moser_spindle.

EXAMPLES:

The Moser spindle is a planar graph having 7 vertices and 11 edges:

sage: # needs sage.symbolic
sage: G = graphs.MoserSpindle(); G
Moser spindle: Graph on 7 vertices
sage: G.is_planar()
True
sage: G.order()
7
sage: G.size()
11

>>> from sage.all import *
>>> # needs sage.symbolic

(continues on next page)
It is a Hamiltonian graph with radius 2, diameter 2, and girth 3:

```
sage: # needs sage.symbolic
sage: G.is_hamiltonian()        # needs sage.numerical.mip
True
sage: G.radius()
2
sage: G.diameter()
2
sage: G.girth()
3
```

The Moser spindle can be drawn in the plane as a unit distance graph, has chromatic number 4, and its automorphism group is isomorphic to the dihedral group D_4:

```
sage: # needs sage.symbolic
sage: pos = G.get_pos()
sage: all(sum((ui-vi)**2 for ui, vi in zip(pos[u], pos[v])) == 1 for u, v in G.edge_iterator(labels=None))
True
sage: G.chromatic_number()
4
sage: ag = G.automorphism_group()
sage: ag.is_isomorphic(DihedralGroup(4))
True
```

```
>>> ag = G.automorphism_group()
>>> ag.is_isomorphic(DihedralGroup(Integer(4)))
True

\texttt{static MuzychukS6Graph} \((n, d, \text{Phi}='\text{fixed}', \text{Sigma}='\text{fixed}', \text{verbose}=\text{False})\)

Return a strongly regular graph of S6 type from [Muz2007] on \(n^d((n^d - 1)/(n - 1) + 1)\) vertices.

The construction depends upon a number of parameters, two of them, \(n\) and \(d\), mandatory, and \(\Phi\) and \(\Sigma\) mappings defined in [Muz2007]. These graphs have parameters \((mn^d, n^{d-1}(m - 1) - 1, \mu - 2, \mu)\), where \(\mu = \frac{n^{d-1} - 1}{n - 1} n^{d-1} + 1\).

Some details on \(\Phi\) and \(\Sigma\) are as follows. Let \(L\) be the complete graph on \(M := \{0, ..., m - 1\}\) with the matching \(\{(2i, 2i + 1)|i = 0, ..., m/2\}\) removed. Then one arbitrarily chooses injections \(\Phi_i\) from the edges of \(L\) on \(i \in M\) into sets of parallel classes of affine \(d\)-dimensional designs; our implementation uses the designs of hyperplanes in \(d\)-dimensional affine geometries over \(GF(n)\). Finally, for each edge \(ij\) of \(L\) one arbitrarily chooses bijections \(\Sigma_{ij}\) between \(\Phi_i\) and \(\Phi_j\). More details, in particular how these choices lead to non-isomorphic graphs, are in [Muz2007].

INPUT:

- \(n\) (integer) – a prime power
- \(d\) (integer) – must be odd if \(n\) is odd
- \(\Phi\) is an optional parameter of the construction; it must be either
  - 'fixed' – this will generate fixed default \(\Phi_i\), for \(i \in M\), or
  - 'random' – \(\Phi_i\) are generated at random, or
  - A dictionary describing the functions \(\Phi_i\); for \(i \in M\), \(\Phi[(i, T)]\) in \(M\), for each edge \(T\) of \(L\) on \(i\). Also, each \(\Phi_i\) must be injective.
- \(\Sigma\) is an optional parameter of the construction; it must be either
  - 'fixed' – this will generate a fixed default \(\Sigma\), or
  - 'random' – \(\Sigma\) is generated at random.
- \(\text{verbose} (\text{Boolean})\) – default is \(False\). If \(True\), print progress information

See also:

- \(\text{is_muzychuk_S6}()\)

Todo: Implement the possibility to explicitly supply the parameter \(\Sigma\) of the construction.

EXAMPLES:

```sage
needs sage.combinat sage.modules sage.rings.finite_rings
sage: graphs.MuzychukS6Graph(3, 3).is_strongly_regular(parameters=True)
(378, 116, 34, 36)
sage: phi = {(2,(0,2)):0, (1,(1,3)):1, (0,(0,3)):1, (2,(1,2)):1,
 (1,(1,2)):0, (0,(0,2)):0, (3,(0,3)):0, (3,(1,3)):1}
sage: graphs.MuzychukS6Graph(2, 2, Phi=phi).is_strongly_regular(parameters=True)
(16, 5, 0, 2)
```
static MycielskiGraph \((k=1, relabel=True)\)

Returns the \(k\)-th Mycielski Graph.

The graph \(M_k\) is triangle-free and has chromatic number equal to \(k\). These graphs show, constructively, that there are triangle-free graphs with arbitrarily high chromatic number.

The Mycielski graphs are built recursively starting with \(M_0\), an empty graph; \(M_1\), a single vertex graph; and \(M_2\) is the graph \(K_2\). \(M_{k+1}\) is then built from \(M_k\) as follows:

If the vertices of \(M_k\) are \(v_1, \ldots, v_n\), then the vertices of \(M_{k+1}\) are \(v_1, \ldots, v_n, w_1, \ldots, w_n, z\). Vertices \(v_1, \ldots, v_n\) induce a copy of \(M_k\). Vertices \(w_1, \ldots, w_n\) are an independent set. Vertex \(z\) is adjacent to all the \(w_i\)-vertices. Finally, vertex \(w_i\) is adjacent to vertex \(v_j\) if \(v_i\) is adjacent to \(v_j\).

For more details, see the Wikipedia article Mycielskian.

INPUT:

- \(k\) Number of steps in the construction process.
- \(relabel\) Relabel the vertices so their names are the integers \(\text{range}(n)\) where \(n\) is the number of vertices in the graph.

EXAMPLES:

The Mycielski graph \(M_k\) is triangle-free and has chromatic number equal to \(k\).

```python
sage: g = graphs.MycielskiGraph(5)
sage: g.is_triangle_free()
True
sage: g.chromatic_number()
5
```
static **MycielskiStep**\( (g) \)

Perform one iteration of the Mycielski construction.

See the documentation for *MycielskiGraph* which uses this method. We expose it to all users in case they may find it useful.

EXAMPLE. One iteration of the Mycielski step applied to the 5-cycle yields a graph isomorphic to the Grotzsch graph

```python
sage: g = graphs.CycleGraph(5)
sage: h = graphs.MycielskiStep(g)
sage: h.is_isomorphic(graphs.GrotzschGraph())
```

True

static **NKStarGraph**\( (n, k) \)

Returns the \( (n, k) \)-star graph.

The vertices of the \( (n, k) \)-star graph are the set of all arrangements of \( n \) symbols into labels of length \( k \). There are two adjacency rules for the \( (n, k) \)-star graph. First, two vertices are adjacent if one can be obtained from the other by swapping the first symbol with another symbol. Second, two vertices are adjacent if one can be obtained from the other by swapping the first symbol with an external symbol (a symbol not used in the original label).

INPUT:

- \( n \) – integer; number of symbols
- \( k \) – integer; length of the labels of the vertices

EXAMPLES:

```python
sage: g = graphs.NKStarGraph(4,2)
sage: g.plot() # long time
```

Graphics object consisting of 31 graphics primitives

```python
>>> from sage.all import *
>>> g = graphs.NKStarGraph(Integer(4),Integer(2))
>>> g.plot() # long time
```

Graphics object consisting of 31 graphics primitives

REFERENCES:

[CC1995]

AUTHORS:

- Michael Yurko (2009-09-01)

2.1. Common graphs
**static NStarGraph\,(n)**

Returns the \(n\)-star graph.

The vertices of the \(n\)-star graph are the set of permutations on \(n\) symbols. There is an edge between two vertices if their labels differ only in the first and one other position.

**INPUT:**

- \(n\) – integer; number of symbols

**EXAMPLES:**

```
sage: g = graphs.NStarGraph(4)
sage: g.plot() # long time
```

Graphics object consisting of 61 graphics primitives

```
>>> from sage.all import *
>>> g = graphs.NStarGraph(Integer(4))
>>> g.plot() # long time
```

Graphics object consisting of 61 graphics primitives

**REFERENCES:**

[AHK1994]

**AUTHORS:**

- Michael Yurko (2009-09-01)

---

**static NauruGraph\,(\text{embedding}=2)**

Return the Nauru Graph.

See the Wikipedia article Nauru_graph.

**INPUT:**

- \text{embedding} – integer (default: 2); two embeddings are available, and can be selected by setting embedding to 1 or 2

**EXAMPLES:**

```
sage: g = graphs.NauruGraph()
sage: g.order()
24
sage: g.size()
36
sage: g.girth()
6
sage: g.diameter()
4
sage: g.show() # needs sage.plot
```

```
>>> from sage.all import *
>>> g = graphs.NauruGraph()
>>> g.order()
24
```

(continues on next page)
static NonisotropicOrthogonalPolarGraph \( (m, q, \text{sign}='+', \text{perp}=\text{None}) \)

Return the Graph \( NO_{m}^{\pm}(q) \)

Let the vectorspace of dimension \( m \) over \( F_q \) be endowed with a nondegenerate quadratic form \( F \), of type \( \text{sign} \) for \( m \) even.

- \( m \) even: assume further that \( q = 2 \) or 3. Returns the graph of the points (in the underlying projective space) \( x \) satisfying \( F(x) = 1 \), with adjacency given by orthogonality w.r.t. \( F \). Parameter \( \text{perp} \) is ignored.
- \( m \) odd: if \( \text{perp} \) is not \text{None}, then we assume that \( q = 5 \) and return the graph of the points \( x \) satisfying \( F(x) = \pm 1 \) if \( \text{sign} = '+' \), respectively \( F(x) \in \{2, 3\} \) if \( \text{sign} = '-' \), with adjacency given by orthogonality w.r.t. \( F \) (cf. Sect 7.D of [BL1984]). Otherwise return the graph of nongenerate hyperplanes of type \( \text{sign} \), adjacent whenever the intersection is degenerate (cf. Sect. 7.C of [BL1984]). Note that for \( q = 2 \) one will get a complete graph.

For more information, see Sect. 9.9 of [BH2012] and [BL1984]. Note that the page of Andries Brouwer's website uses different notation.

INPUT:

- \( m \) – integer; half the dimension of the underlying vectorspace
- \( q \) – a power of a prime number, the size of the underlying field
- \( \text{sign} \) – string (default: "+"); must be either "+" or "-

EXAMPLES:

\( NO^{-}(4, 2) \) is isomorphic to Petersen graph:

```python
sage: g = graphs.NonisotropicOrthogonalPolarGraph(4,2,'-'); g ˓→ # needs sage.libs.gap
NO^-(4, 2): Graph on 10 vertices
sage: g.is_strongly_regular(parameters=True) ˓→ # needs sage.libs.gap
(10, 3, 0, 1)
```

\( NO^{-}(4, 2) \) and \( NO^{+}(6, 2) \):
\begin{verbatim}
sage: # needs sage.libs.gap
g = graphs.NonisotropicOrthogonalPolarGraph(6, 2, '-'); g
sage: g.is_strongly_regular(parameters=True)
(36, 15, 6, 6)
sage: g = graphs.NonisotropicOrthogonalPolarGraph(6, 2, '+'); g
NO^+(6, 2): Graph on 28 vertices
sage: g.is_strongly_regular(parameters=True)
(28, 15, 6, 10)

>>> from sage.all import *
>>> # needs sage.libs.gap
>>> g = graphs.NonisotropicOrthogonalPolarGraph(Integer(6), Integer(2), '-'); g
>>> g.is_strongly_regular(parameters=True)
(36, 15, 6, 6)
>>> g = graphs.NonisotropicOrthogonalPolarGraph(Integer(6), Integer(2), '+'); g
>>> g.is_strongly_regular(parameters=True)
(28, 15, 6, 10)

\end{verbatim}

\[\text{NO}^+(8, 2):\]
\begin{verbatim}
sage: g = graphs.NonisotropicOrthogonalPolarGraph(8, 2, '+')
# needs sage.libs.gap
sage: g.is_strongly_regular(parameters=True)
(120, 63, 30, 36)

>>> from sage.all import *
>>> # needs sage.libs.gap
>>> g = graphs.NonisotropicOrthogonalPolarGraph(Integer(8), Integer(2), '+')
>>> g.is_strongly_regular(parameters=True)
(120, 63, 30, 36)
\end{verbatim}

Wilbrink’s graphs for \( q = 5: \)
\begin{verbatim}
sage: # needs sage.libs.gap
g = graphs.NonisotropicOrthogonalPolarGraph(5, 5, perp=1)
sage: g.is_strongly_regular(parameters=True) # long time
(325, 60, 15, 10)
sage: g = graphs.NonisotropicOrthogonalPolarGraph(5, 5, '-', perp=1)
sage: g.is_strongly_regular(parameters=True) # long time
(300, 65, 10, 15)

>>> from sage.all import *
>>> # needs sage.libs.gap
>>> g = graphs.NonisotropicOrthogonalPolarGraph(Integer(5), Integer(5),
# perp=Integer(1))
>>> g.is_strongly_regular(parameters=True) # long time
(325, 60, 15, 10)
>>> g = graphs.NonisotropicOrthogonalPolarGraph(Integer(5), Integer(5), '-',
# perp=Integer(1))
>>> g.is_strongly_regular(parameters=True) # long time
(300, 65, 10, 15)
\end{verbatim}

Wilbrink’s graphs:
static NonisotropicUnitaryPolarGraph \((m, q)\)

Return the graph \(NU(m, q)\).

This returns the graph on nonisotropic, with respect to a nondegenerate Hermitean form, points of the \((m - 1)\)-dimensional projective space over \(F_q\), with points adjacent whenever they lie on a tangent (to the set of isotropic points) line. For more information, see Sect. 9.9 of [BH2012] and series C14 in [Hub1975].

**INPUT:**

* m, q – integers; q must be a prime power

**EXAMPLES:**

```python
sage: g = graphs.NonisotropicUnitaryPolarGraph(5,2); g # needs sage.libs.gap
NU(5, 2): Graph on 176 vertices
sage: g.is_strongly_regular(parameters=True) # needs sage.libs.gap
(176, 135, 102, 108)
```

```python
>>> from sage.all import *
>>> g = graphs.NonisotropicUnitaryPolarGraph(Integer(5),Integer(2)); g # needs sage.libs.gap
NU(5, 2): Graph on 176 vertices
>>> g.is_strongly_regular(parameters=True) # needs sage.libs.gap
(176, 135, 102, 108)
```

**static Nowhere0WordsTwoWeightCodeGraph** \((q, \text{hyperoval}=None, \text{field}=None, \text{check_hyperoval}=True)\)
Return the subgraph of nowhere 0 words from two-weight code of projective plane hyperoval.

Let \( q = 2^k \) and \( \Pi = PG(2, q) \). Fix a hyperoval \( O \subset \Pi \). Let \( V = \mathbb{F}_q^3 \) and \( C \) the two-weight 3-dimensional linear code over \( \mathbb{F}_q \) with words \( c(v) \) obtained from \( v \in V \) by computing

\[
c(v) = (\langle v, o_1 \rangle, \ldots, \langle v, o_{q+2} \rangle), o_j \in O.
\]

\( C \) contains \( q(q - 1)^2/2 \) words without 0 entries. The subgraph of the strongly regular graph of \( C \) induced on the latter words is also strongly regular, assuming \( q > 4 \). This is a construction due to A.E.Brouwer [Bro2016], and leads to graphs with parameters also given by a construction in [HHL2009]. According to [Bro2016], these two constructions are likely to produce isomorphic graphs.

**INPUT:**

- \( q \) – a power of two
- \( \text{hyperoval} \) – a hyperoval (i.e. a complete 2-arc; a set of points in the plane meeting every line in 0 or 2 points) in \( PG(2, q) \) over the field \( \text{field} \). Each point of \( \text{hyperoval} \) must be a length 3 vector over \( \text{field} \) with 1st non-0 coordinate equal to 1. By default, \( \text{hyperoval} \) and \( \text{field} \) are not specified, and constructed on the fly. In particular, \( \text{hyperoval} \) we build is the classical one, i.e. a conic with the point of intersection of its tangent lines.
- \( \text{field} \) – an instance of a finite field of order \( q \), must be provided if \( \text{hyperoval} \) is provided.
- \( \text{check_hyperoval} \) – boolean (default: True); whether to check \( \text{hyperoval} \) for correctness or not

**See also:**

- \text{is_nowhere0_twoweight()}

**EXAMPLES:**

using the built-in construction:

\begin{verbatim}
sage: # needs sage.combinat sage.rings.finite_rings
sage: g = graphs.Nowhere0WordsTwoWeightCodeGraph(8); g
Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
sage: g.is_strongly_regular(parameters=True)
(196, 60, 14, 20)
sage: g = graphs.Nowhere0WordsTwoWeightCodeGraph(16) # not tested (long time)
# not tested (long time)
(1800, 728, 268, 312)
\end{verbatim}

supplying your own hyperoval:

\begin{verbatim}
>>> from sage.all import *
>>> # needs sage.combinat sage.rings.finite_rings
>>> g = graphs.Nowhere0WordsTwoWeightCodeGraph(Integer(8)); g
Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
>>> g.is_strongly_regular(parameters=True)
(196, 60, 14, 20)
>>> g = graphs.Nowhere0WordsTwoWeightCodeGraph(Integer(16)) # not tested...
>>> g.is_strongly_regular(parameters=True) # not tested (long time)
(1800, 728, 268, 312)
\end{verbatim}
sage: # needs sage.combinat sage.rings.finite_rings
sage: F = GF(8)
sage: O = [vector(F, (0, 0, 1)), vector(F, (0, 1, 0))] + [vector(F, (1, x^2, x))
      ....:     for x in F]
sage: g = graphs.Nowhere0WordsTwoWeightCodeGraph(8, hyperoval=O, field=F); g
Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
sage: g.is_strongly_regular(parameters=True)
(196, 60, 14, 20)

>>> from sage.all import *
>>>
>>> # needs sage.combinat sage.rings.finite_rings
>>> F = GF(Integer(8))
>>> O = [vector(F, (Integer(0), Integer(0), Integer(1))), vector(F, (Integer(0),
      Integer(1), Integer(0)))) + [vector(F, (Integer(1), x**Integer(2), x))
      ...     for x in F]
>>> g = graphs.Nowhere0WordsTwoWeightCodeGraph(Integer(8), hyperoval=0,
      field=F); g
Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
>>> g.is_strongly_regular(parameters=True)
(196, 60, 14, 20)

static OctahedralGraph()

Return an Octahedral graph (with 6 nodes).

The regular octahedron is an 8-sided polyhedron with triangular faces. The octahedral graph corresponds to the connectivity of the vertices of the octahedron. It is the line graph of the tetrahedral graph. The octahedral is symmetric, so the spring-layout algorithm will be very effective for display.

PLOTTING: The Octahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, a argument will be added to select the desired layout.

EXAMPLES:

Construct and show an Octahedral graph:

```
sage: g = graphs.OctahedralGraph()
sage: g.show() # long time
```

Create several octahedral graphs in a Sage graphics array They will be drawn differently due to the use of the spring-layout algorithm:

```
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
 : k = graphs.OctahedralGraph()
 : g.append(k)
sage: for i in range(3):
 : n = []
 : for m in range(3):
```
Graph Theory, Release 10.4

(continued from previous page)

```python
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....: j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time
```

```python
>>> from sage.all import *
>>> # needs sage.plot
g = []
j = []
>>> for i in range(Integer(9)):
... k = graphs.OctahedralGraph()
... g.append(k)
>>> for i in range(Integer(3)):
... n = []
... for m in range(Integer(3)):
... n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
... j.append(n)
>>> G = graphics_array(j)
>>> G.show() # long time
```

**static OddGraph** \((n)\)

Returns the Odd Graph with parameter \(n\).

The Odd Graph with parameter \(n\) is defined as the Kneser Graph with parameters \(2n - 1, n - 1\). Equivalently, the Odd Graph is the graph whose vertices are the \(n - 1\)-subsets of \([0, 1, \ldots, 2(n - 1)]\), and such that two vertices are adjacent if their corresponding sets are disjoint.

For example, the Petersen Graph can be defined as the Odd Graph with parameter 3.

**EXAMPLES:**

```python
sage: OG = graphs.OddGraph(3)
sage: sorted(OG.vertex_iterator(), key=str)
[{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5},
 {3, 4}, {3, 5}, {4, 5}]
sage: P = graphs.PetersenGraph()
sage: P.is_isomorphic(OG)
True
```

```python
>>> from sage.all import *
>>> # needs sage.plot
>>> OG = graphs.OddGraph(Integer(3))
>>> sorted(OG.vertex_iterator(), key=str)
[{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5},
 {3, 4}, {3, 5}, {4, 5}]
>>> P = graphs.PetersenGraph()
>>> P.is_isomorphic(OG)
True
```

**static OrthogonalArrayBlockGraph** \((k, n, OA=None)\)

Return the graph of an \(OA(k, n)\).

The intersection graph of the blocks of a transversal design with parameters \((k, n)\), or \(TD(k, n)\) for short, is a strongly regular graph (unless it is a complete graph). Its parameters \((v, k', \lambda, \mu)\) are determined by the parameters \(k, n\) via:

\[
v = n^2, \quad k' = k(n - 1), \quad \lambda = (k - 1)(k - 2) + n - 2, \quad \mu = k(k - 1)
\]
As transversal designs and orthogonal arrays (OA for short) are equivalent objects, this graph can also be built from the blocks of an $OA(k, n)$, two of them being adjacent if one of their coordinates match.

For more information on these graphs, see Andries Brouwer’s page on Orthogonal Array graphs.

**Warning:**

- Brouwer’s website uses the notation $OA(n, k)$ instead of $OA(k, n)$
- For given parameters $k$ and $n$ there can be many $OA(k, n)$: the graphs returned are not uniquely defined by their parameters (see the examples below).
- If the function is called only with the parameter $k$ and $n$ the results might be different with two versions of Sage, or even worse: some could not be available anymore.

See also:

`sage.combinat.designs.orthogonal_arrays`

**INPUT:**

- $k, n$ – integers
- $OA$ – An orthogonal array. If set to `None` (default) then `orthogonal_array()` is called to compute an $OA(k, n)$.

**EXAMPLES:**

```python
sage: # needs sage.modules
sage: G = graphs.OrthogonalArrayBlockGraph(5,5); G
OA(5,5): Graph on 25 vertices
sage: G.is_strongly_regular(parameters=True)
(25, 20, 15, 20)
```

```python
>>> from sage.all import *

>>> G = graphs.OrthogonalArrayBlockGraph(Integer(5),Integer(5)); G
OA(5,5): Graph on 25 vertices
```

```python
>>> G.is_strongly_regular(parameters=True)
(25, 20, 15, 20)
```

Two graphs built from different orthogonal arrays are also different:

```python
sage: # needs sage.modules
sage: k = 4; n = 10
sage: OAa = designs.orthogonal_arrays.build(k,n)
sage: OAb = [{(x+1)%n for x in R} for R in OAa]
```

(continues on next page)
As $OAb$ was obtained from $OAa$ by a relabelling the two graphs are isomorphic:

\begin{verbatim}
>>> from sage.all import *
>>> # needs sage.modules
>>> k = Integer(4); n = Integer(10)
>>> OAa = designs.orthogonal_arrays.build(k,n)
>>> OAb = [[(x+Integer(1))%n for x in R] for R in OAa]
>>> set(map(tuple,OAa)) == set(map(tuple,OAb))
False
>>> Ga = graphs.OrthogonalArrayBlockGraph(k, n, OAa)
>>> Gb = graphs.OrthogonalArrayBlockGraph(k, n, OAb)
>>> Ga == Gb
False
\end{verbatim}

But there are examples of $OA(k, n)$ for which the resulting graphs are not isomorphic:

\begin{verbatim}
>>> from sage.all import *
>>> # needs sage.modules
>>> ga0 = [ [0, 0, 1], [0, 1, 3], [0, 2, 0], [0, 3, 2], [1, 0, 3], [1, 1, 1], [1, 2, 2], [1, 3, 0], [2, 0, 0], [2, 1, 2], [2, 2, 1], [2, 3, 3], [3, 0, 2], [3, 1, 3], [3, 2, 1], [3, 3, 0] ]
>>> ga1 = [ [0, 0, 1], [0, 1, 0], [0, 2, 3], [0, 3, 2], [1, 0, 3], [1, 1, 2], [1, 2, 0], [1, 3, 1], [2, 0, 0], [2, 1, 1], [2, 2, 2], [2, 3, 3], [3, 0, 2], [3, 1, 3], [3, 2, 1], [3, 3, 0] ]
>>> g0 = graphs.OrthogonalArrayBlockGraph(3, 4, ga0)
>>> g1 = graphs.OrthogonalArrayBlockGraph(3, 4, ga1)
>>> g0.is_isomorphic(g1)
False
\end{verbatim}

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

... [Integer(2), Integer(0), Integer(0)], [Integer(2), Integer(1), → Integer(2)], [Integer(2), Integer(2), Integer(1)], [Integer(2), Integer(3), → Integer(3)],
... [Integer(3), Integer(0), Integer(0)], [Integer(3), Integer(1), → Integer(0)], [Integer(3), Integer(2), Integer(0)], [Integer(3), Integer(3), → Integer(1)]]

>>> oal = [[Integer(0), Integer(0), Integer(1)], [Integer(0), Integer(1), → Integer(0)], [Integer(0), Integer(2), Integer(3)], [Integer(0), Integer(3), → Integer(2)],
... [Integer(1), Integer(0), Integer(1)], [Integer(1), Integer(1), → Integer(1)], [Integer(1), Integer(2), Integer(0)], [Integer(1), Integer(3), → Integer(2)],
... [Integer(2), Integer(0), Integer(0)], [Integer(2), Integer(1), → Integer(1)], [Integer(2), Integer(2), Integer(2)], [Integer(2), Integer(3), → Integer(3)],
... [Integer(3), Integer(0), Integer(0)], [Integer(3), Integer(1), → Integer(3)], [Integer(3), Integer(2), Integer(1)], [Integer(3), Integer(3), → Integer(0)]]

>>> g0 = graphs.OrthogonalArrayBlockGraph(Integer(3), Integer(4), oal) → # needs sage.modules

>>> g1 = graphs.OrthogonalArrayBlockGraph(Integer(3), Integer(4), oal) → # needs sage.modules

>>> g0.is_isomorphic(g1)
False

But nevertheless isospectral:

```
sage: g0.spectrum()
[9, 1, 1, 1, 1, 1, 1, -3, -3, -3, -3, -3, -3, -3, -3, -3]

sage: g1.spectrum()
[9, 1, 1, 1, 1, 1, 1, -3, -3, -3, -3, -3, -3, -3, -3, -3]
```

Note that the graph $g0$ is actually isomorphic to the affine polar graph $VO^+(4,2)$:

```
sage: graphs.AffineOrthogonalPolarGraph(4,2,'+').is_isomorphic(g0)
True

>>> from sage.all import *

>>> graphs.AffineOrthogonalPolarGraph(Integer(4),Integer(2),'+').is_isomorphic(g0)
True
```

static OrthogonalDualPolarGraph ($e$, $d$, $q$)

Return the dual polar graph on $GO^e(n, q)$ of diameter $d$.
The value of $n$ is determined by $d$ and $e$.

The graph is distance-regular with classical parameters $(d, q, 0, q^e)$.

**INPUT:**

- $e$ – integer; type of the orthogonal polar space to consider; must be $-1, 0$ or $1$.
- $d$ – integer; diameter of the graph
- $q$ – integer; prime power; order of the finite field over which to build the polar space

**EXAMPLES:**

```python
sage: # needs sage.libs.gap
sage: G = graphs.OrthogonalDualPolarGraph(1, 3, 2)
sage: G.is_distance_regular(True)
([7, 6, 4, None], [None, 1, 3, 7])
sage: G = graphs.OrthogonalDualPolarGraph(0, 3, 3) # long time
sage: G.is_distance_regular(True) # long time
([39, 36, 27, None], [None, 1, 4, 13])
sage: G.order() # long time
1120
```

**REFERENCES:**


**static OrthogonalPolarGraph** $(m, q, \text{sign}=')+$

Return the Orthogonal Polar Graph $O^+(m, q)$.

For more information on Orthogonal Polar graphs, see the page of Andries Brouwer's website.

**INPUT:**

- $m, q$ – integers; $q$ must be a prime power
- $\text{sign}$ – string (default: "+"); must be "+" or "-" if $m$ is even, "+" (default) otherwise

**EXAMPLES:**

```python
sage: # needs sage.libs.gap
sage: G = graphs.OrthogonalDualPolarGraph(6, 3, "+"); G
Orthogonal Polar Graph $O^+(6, 3)$: Graph on 130 vertices
sage: G.is_strongly_regular(parameters=True)
(130, 48, 20, 16)
sage: G = graphs.OrthogonalDualPolarGraph(6, 3, "-"); G
Orthogonal Polar Graph $O^-(6, 3)$: Graph on 112 vertices
sage: G.is_strongly_regular(parameters=True)
(112, 30, 2, 10)
```

(continues on next page)
static PaleyGraph(q)

Paley graph with \( q \) vertices

Parameter \( q \) must be the power of a prime number and congruent to 1 mod 4.

EXAMPLES:

sage: G = graphs.PaleyGraph(9); G
Paley graph with parameter 9: Graph on 9 vertices
sage: G.is_regular()
True

>>> from sage.all import *
>>> G = graphs.PaleyGraph(Integer(9)); G
Paley graph with parameter 9: Graph on 9 vertices
>>> G.is_regular()
True
A Paley graph is always self-complementary:

```python
sage: G.is_self_complementary()
˓→ # needs sage.rings.finite_rings
True
```
Graph Theory, Release 10.4

(continued from previous page)

\begin{verbatim}
from sage.all import *

graphs.PasechnikGraph(4).is_strongly_regular(parameters=True)  # long time, needs sage.combinat sage.modules

graphs.PasechnikGraph(9).is_strongly_regular(parameters=True)  # not tested

print(graphs.PasechnikGraph(4).is_strongly_regular(parameters=True))  # needs sage.combinat sage.modules

print(graphs.PasechnikGraph(9).is_strongly_regular(parameters=True))  # long time, needs sage.combinat sage.modules

print(graphs.PasechnikGraph(5).is_strongly_regular(parameters=True))  # long time, needs sage.combinat sage.modules

print(graphs.PasechnikGraph(5).is_strongly_regular(parameters=True))  # not tested

print(graphs.PasechnikGraph(9).is_strongly_regular(parameters=True))  # tested
\end{verbatim}

\begin{verbatim}
static PathGraph(n, pos=None)

Return a path graph with \(n\) nodes.

A path graph is a graph where all inner nodes are connected to their two neighbors and the two end-nodes are connected to their one inner neighbors (i.e.: a cycle graph without the first and last node connected).

INPUT:

\begin{itemize}
  \item \(n\) – number of nodes of the path graph
  \item \(pos\) – string (default: None); indicates the embedding to use between 'circle', 'line' or the default algorithm. See the plotting section below for more detail.
\end{itemize}

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the graph may be drawn in one of two ways: The 'line' argument will draw the graph in a horizontal line (left to right) if there are less than 11 nodes. Otherwise the 'line' argument will append horizontal lines of length 10 nodes below, alternating left to right and right to left. The 'circle' argument will cause the graph to be drawn in a cycle-shape, with the first node at the top and then about the circle in a clockwise manner. By default (without an appropriate string argument) the graph will be drawn as a 'circle' if \(10 < n < 41\) and as a 'line' for all other \(n\).

EXAMPLES: Show default drawing by size: 'line': \(n \leq 10\)

\begin{verbatim}
from sage.all import *

p = graphs.PathGraph(10)
p.show()  # long time

print(p.show())  # needs sage.plot

p = graphs.PathGraph(Integer(10))
p.show()  # long time

print(p.show())  # needs sage.plot
\end{verbatim}

'circle': \(10 < n < 41\)

\begin{verbatim}
sage: q = graphs.PathGraph(25)
sage: q.show()  # long time

print(q.show())  # needs sage.plot
\end{verbatim}

\end{verbatim}

2.1. Common graphs
Overridethedefaultdrawing:

```python
sage: s = graphs.PathGraph(5,'circle')
sage: s.show() # long time
needs sage.plot
```

Override the default drawing:

```python
sage: s = graphs.PathGraph(Integer(5),'circle')
sage: s.show() # long time
needs sage.plot
```

### static PerkelGraph()

Return the Perkel Graph.

The Perkel Graph is a 6-regular graph with 57 vertices and 171 edges. It is the unique distance-regular graph with intersection array $(6, 5, 2; 1, 1, 3)$. For more information, see the Wikipedia article Perkel_graph or https://www.win.tue.nl/~aeb/graphs/Perkel.html.

**EXAMPLES:**

```python
sage: g = graphs.PerkelGraph(); g
Perkel Graph: Graph on 57 vertices
sage: g.is_distance_regular(parameters=True)
\([6, 5, 2, None], [None, 1, 1, 3]\)
```

### static PermutationGraph (second_permutation, first_permutation=None)

Build a permutation graph from one permutation or from two lists.

**Definition:**

If $\sigma$ is a permutation of $\{1, 2, \ldots, n\}$, then the permutation graph of $\sigma$ is the graph on vertex set $\{1, 2, \ldots, n\}$ in which two vertices $i$ and $j$ satisfying $i < j$ are connected by an edge if and only if $\sigma^{-1}(i) > \sigma^{-1}(j)$. A visual way to construct this graph is as follows:

Take two horizontal lines in the euclidean plane, and mark points $1, \ldots, n$ from left to right on the first of them. On the second one, still from left to right, mark $n$ points $\sigma(1), \sigma(2), \ldots, \sigma(n)$. Now,
link by a segment the two points marked with 1, then link together the points marked with 2, and so on. The permutation graph of $\sigma$ is the intersection graph of those segments: there exists a vertex in this graph for each element from 1 to $n$, two vertices $i, j$ being adjacent if the segments $i$ and $j$ cross each other.

The set of edges of the permutation graph can thus be identified with the set of inversions of the inverse of the given permutation $\sigma$.

A more general notion of permutation graph can be defined as follows: If $S$ is a set, and $(a_1, a_2, \ldots, a_n)$ and $(b_1, b_2, \ldots, b_n)$ are two lists of elements of $S$, each of which lists contains every element of $S$ exactly once, then the permutation graph defined by these two lists is the graph on the vertex set $S$ in which two vertices $i$ and $j$ are connected by an edge if and only if the order in which these vertices appear in the list $(a_1, a_2, \ldots, a_n)$ is the opposite of the order in which they appear in the list $(b_1, b_2, \ldots, b_n)$. When $(a_1, a_2, \ldots, a_n) = (1, 2, \ldots, n)$, this graph is the permutation graph of the permutation $(b_1, b_2, \ldots, b_n) \in S_n$. Notice that $S$ does not have to be a set of integers here, but can be a set of strings, tuples, or anything else. We can still use the above visual description to construct the permutation graph, but now we have to mark points $a_1, a_2, \ldots, a_n$ from left to right on the first horizontal line and points $b_1, b_2, \ldots, b_n$ from left to right on the second horizontal line.

INPUT:

- `second_permutation` – the unique permutation/list defining the graph, or the second of the two (if the graph is to be built from two permutations/lists).
- `first_permutation` (optional) – the first of the two permutations/lists from which the graph should be built, if it is to be built from two permutations/lists.

When `first_permutation` is `None` (default), it is set to be equal to `sorted(second_permutation)`, which yields the expected ordering when the elements of the graph are integers.

See also:

- Recognition of Permutation graphs in the `comparability module`.
- Drawings of permutation graphs as intersection graphs of segments is possible through the `show()` method of `Permutation` objects.

The correct argument to use in this case is `show(representation = "braid")`.

- `inversions()`

EXAMPLES:

```
sage: p = Permutations(5).random_element()
sage: PG = graphs.PermutationGraph(p)
sage: edges = PG.edges(sort=True, labels=False)
sage: set(edges) == set(p.inverse().inversions())
True

sage: PG = graphs.PermutationGraph([3,4,5,1,2])
sage: sorted(PG.edges(sort=True))
[(1, 3, None),
 (1, 4, None),
 (1, 5, None),
 (2, 3, None),
 (2, 4, None),
 (2, 5, None)]

sage: PG = graphs.PermutationGraph([3,4,5,1,2], [1,4,2,5,3])
sage: sorted(PG.edges(sort=True))
[(1, 3, None),
 (1, 4, None),
 (1, 5, None),
 (2, 3, None),
 (2, 4, None),
 (2, 5, None)]
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
sage: PG = graphs.PermutationGraph([1,4,2,5,3], [3,4,5,1,2])
sage: sorted(PG.edges(sort=True))
[(1, 3, None),
 (1, 4, None),
 (1, 5, None),
 (2, 3, None),
 (2, 5, None),
 (3, 4, None),
 (3, 5, None)]

sage: PG = graphs.PermutationGraph(Permutation([1,3,2]), Permutation([1,2,3]))
sage: sorted(PG.edges(sort=True))
[(2, 3, None)]

sage: graphs.PermutationGraph([]).edges(sort=True)
[]

sage: graphs.PermutationGraph([], []).edges(sort=True)
[]

sage: PG = graphs.PermutationGraph("graph", "phrag")
sage: sorted(PG.edges(sort=True))
[('a', 'g', None),
 ('a', 'h', None),
 ('a', 'p', None),
 ('g', 'h', None),
 ('g', 'p', None),
 ('g', 'r', None),
 ('h', 'r', None),
 ('p', 'r', None)]
```

```python
>>> from sage.all import *

>>> p = Permutations(Integer(5)).random_element()

>>> PG = graphs.PermutationGraph(p)

>>> edges = PG.edges(sort=True, labels=False)

>>> set(edges) == set(p.inverse().inversions())
True

>>> PG = graphs.PermutationGraph([Integer(3),Integer(4),Integer(5),Integer(1),
 Integer(2)])

>>> sorted(PG.edges(sort=True))
[(1, 3, None),
 (1, 4, None),
 (1, 5, None),
 (2, 3, None),
 (2, 4, None),
 (2, 5, None)]

>>> PG = graphs.PermutationGraph([Integer(3),Integer(4),Integer(5),Integer(1),
 Integer(2)], [Integer(1),Integer(4),Integer(2),Integer(5),Integer(3)])

>>> sorted(PG.edges(sort=True))
[(1, 3, None),
 (1, 4, None),
 (1, 5, None),
 (2, 3, None),
 (2, 4, None),
 (2, 5, None)]]
```

(continues on next page)
static PetersenGraph()

Return the Petersen Graph.

The Petersen Graph is a named graph that consists of 10 vertices and 15 edges, usually drawn as a five-point star embedded in a pentagon.

The Petersen Graph is a common counterexample. For example, it is not Hamiltonian.

PLOTTING: See the plotting section for the generalized Petersen graphs.

EXAMPLES: We compare below the Petersen graph with the default spring-layout versus a planned position dictionary of \((x, y)\) tuples:

```
sage: petersen_spring = Graph({0:[1,4,5], 1:[0,2,6], 2:[1,3,7], ...
....: 3:[2,4,8], 4:[0,3,9], 5:[0,7,8], ...
....: 6:[1,8,9], 7:[2,5,9], 8:[3,5,6], ...
....: 9:[4,6,7])
sage: petersen_spring.show() # long time
```

```
sage: petersen_database = graphs.PetersenGraph()
```

(continues on next page)
static PoussinGraph()

Return the Poussin Graph.

For more information on the Poussin Graph, see its corresponding Wolfram page.

EXAMPLES:

```python
sage: g = graphs.PoussinGraph()
sage: g.order()
15
sage: g.is_planar()
True
```

static QueenGraph(dim_list, radius=None, relabel=False)

Return the $d$-dimensional Queen Graph with prescribed dimensions.

The 2-dimensional Queen Graph of parameters $n$ and $m$ is a graph with $nm$ vertices in which each vertex represents a square in an $n \times m$ chessboard, and each edge corresponds to a legal move by a queen.

The $d$-dimensional Queen Graph with $d >= 2$ has for vertex set the cells of a $d$-dimensional grid with prescribed dimensions, and each edge corresponds to a legal move by a queen in either one or two dimensions.

All 2-dimensional Queen Graphs are Hamiltonian and biconnected. The chromatic number of a $(n, n)$-Queen Graph is at least $n$, and it is exactly $n$ when $n \equiv 1, 5 \mod 6$.

INPUT:

- **dim_list** – iterable (list, set, dict); provides the dimensions $n_1, n_2, \ldots, n_d$, with $n_i \geq 1$, of the chessboard
- **radius** – integer (default: None); by setting the radius to a positive integer, one may reduce the visibility of the queen to at most radius steps. When radius is 1, the resulting graph is a King Graph.
• relabel – boolean (default: False); indicates whether the vertices must be relabeled as integers

**EXAMPLES:**

The (2, 2)-Queen Graph is isomorphic to the complete graph on 4 vertices:

```
sage: G = graphs.QueenGraph([2, 2])
sage: G.is_isomorphic(graphs.CompleteGraph(4))
True
```

```
>>> from sage.all import *
>>> G = graphs.QueenGraph([Integer(2), Integer(2)])
>>> G.is_isomorphic(graphs.CompleteGraph(Integer(4)))
True
```

The Queen Graph with radius 1 is isomorphic to the King Graph:

```
sage: G = graphs.QueenGraph([4, 5], radius=1)
sage: H = graphs.KingGraph([5, 4])
sage: G.is_isomorphic(H)
True
```

```
>>> from sage.all import *
>>> G = graphs.QueenGraph([Integer(4), Integer(5)], radius=Integer(1))
>>> H = graphs.KingGraph([Integer(5), Integer(4)])
>>> G.is_isomorphic(H)
True
```

Also True in higher dimensions:

```
sage: G = graphs.QueenGraph([3, 4, 5], radius=1)
sage: H = graphs.KingGraph([5, 3, 4])
sage: G.is_isomorphic(H)
True
```

```
>>> from sage.all import *
>>> G = graphs.QueenGraph([Integer(3), Integer(4), Integer(5)], ...
radius=Integer(1))
>>> H = graphs.KingGraph([Integer(5), Integer(3), Integer(4)])
>>> G.is_isomorphic(H)
True
```

The Queen Graph can be obtained from the Rook Graph and the Bishop Graph:

```
sage: for d in range(3, 12): # long time
 : for r in range(1, d+1):
 : G = graphs.QueenGraph([d, d], radius=r)
 : H = graphs.RookGraph([d, d], radius=r)
 : B = graphs.BishopGraph([d, d], radius=r)
 : H.add_edges(B.edges(sort=False))
 : if not G.is_isomorphic(H):
 : print("that's not good!")
```

```
>>> from sage.all import *
>>> for d in range(Integer(3), Integer(12)): # long time
... for r in range(Integer(1), d+Integer(1)):
... G = graphs.QueenGraph([d, d], radius=r)
```

(continues on next page)
H = graphs.RookGraph([d,d],radius=r)
B = graphs.BishopGraph([d,d],radius=r)
H.add_edges(B.edges(sort=False))
if not G.is_isomorphic(H):
    print("that's not good!")

**static RandomBarabasiAlbert** *(n, m, seed=None)*

Return a random graph created using the Barabasi-Albert preferential attachment model.

A graph with *m* vertices and no edges is initialized, and a graph of *n* vertices is grown by attaching new vertices each with *m* edges that are attached to existing vertices, preferentially with high degree.

**INPUT:**

- *n* – number of vertices in the graph
- *m* – number of edges to attach from each new node
- *seed* – a random.Random seed or a Python int for the random number generator (default: None)

**EXAMPLES:**

We show the edge list of a random graph on 6 nodes with *m* = 2:

```python
sage: G = graphs.RandomBarabasiAlbert(6,2) → # needs networkx
sage: G.order(), G.size() → # needs networkx
(6, 8)
sage: G.degree_sequence() # random → # needs networkx
[4, 3, 3, 2, 2, 2]
```

We plot a random graph on 12 nodes with *m* = 3:

```python
sage: ba = graphs.RandomBarabasiAlbert(12,3) → # needs networkx
sage: ba.show() # long time → # needs networkx sage.plot
```

We view many random graphs using a graphics array:
When $m = 1$, the generated graph is a tree:

```python
sage: graphs.RandomBarabasiAlbert(6, 1).is_tree() # needs networkx
True
```

```python
>>> from sage.all import *
>>> graphs.RandomBarabasiAlbert(Integer(6), Integer(1)).is_tree() # needs networkx
True
```

### static `RandomBicubicPlanar`($n$, `seed=None`)

Return the graph of a random bipartite cubic map with $3n$ edges.

**INPUT:**

- $n$ – an integer (at least 1)
- `seed` – a `random.Random seed` or a `Python int` for the random number generator (default: `None`)

**OUTPUT:**

a graph with multiple edges (no embedding is provided)

The algorithm used is described in [Sch1999]. This samples a random rooted bipartite cubic map, chosen uniformly at random.

First one creates a random binary tree with $n$ vertices. Next one turns this into a blossoming tree (at random) and reads the contour word of this blossoming tree.
Then one performs a rotation on this word so that this becomes a balanced word. There are three ways to
do that, one is picked at random. Then a graph is build from the balanced word by iterated closure (adding
edges).

In the returned graph, the three edges incident to any given vertex are colored by the integers 0, 1 and 2.

See also:

the auxiliary method `blossoming_contour()`

EXAMPLES:

```sage
needs sage.combinat
sage: n = randint(200, 300)
sage: G = graphs.RandomBicubicPlanar(n)
sage: G.order() == 2*n
True
sage: G.size() == 3*n
True
sage: G.is_bipartite() and G.is_planar() and G.is_regular(3)
True
sage: dic = {'red': [v for v in G.vertices(sort=False) if v[0] == 'n'],
.....: 'blue': [v for v in G.vertices(sort=False) if v[0] != 'n']}
....

sage: G.plot(vertex_labels=False, vertex_size=20, vertex_colors=dic)

needs sage.plot
Graphics object consisting of ... graphics primitives
```

```python
>>> from sage.all import *
>>> # needs sage.combinat
>>> n = randint(Integer(200), Integer(300))
>>> G = graphs.RandomBicubicPlanar(n)
>>> G.order() == Integer(2)*n
True
>>> G.size() == Integer(3)*n
True
>>> G.is_bipartite() and G.is_planar() and G.is_regular(Integer(3))
True
>>> dic = {'red': [v for v in G.vertices(sort=False) if v[Integer(0)] == 'n'],
.....: 'blue': [v for v in G.vertices(sort=False) if v[Integer(0)] != 'n']}
....

>>> G.plot(vertex_labels=False, vertex_size=Integer(20), vertex_colors=dic)

needs sage.plot
Graphics object consisting of ... graphics primitives
```
**static RandomBipartite** \((n1, n2, p, set\_position=False, seed=None)\)

Returns a bipartite graph with \(n1 + n2\) vertices such that any edge from \([n1]\) to \([n2]\) exists with probability \(p\).

**INPUT:**

- \(n1, n2\) – Cardinalities of the two sets
- \(p\) – Probability for an edge to exist
- \(set\_position\) – boolean (default False); if set to True, we assign positions to the vertices so that the set of cardinality \(n1\) is on the line \(y = 1\) and the set of cardinality \(n2\) is on the line \(y = 0\).
- \(seed\) – a random.Random seed or a Python int for the random number generator (default: None)

**EXAMPLES:**

```python
sage: g = graphs.RandomBipartite(5, 2, 0.5) # needs numpy
sage: g.vertices(sort=True) # needs numpy
[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1)]
```

```python
>>> from sage.all import *
>>> g = graphs.RandomBipartite(Integer(5), Integer(2), RealNumber('0.5')) # needs numpy
>>> g.vertices(sort=True)
[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1)]
```

**static RandomBlockGraph** \((m, k, kmax=None, incidence\_structure=False, seed=None)\)

Return a Random Block Graph.

A block graph is a connected graph in which every biconnected component (block) is a clique.

**See also:**

- Wikipedia article Block_graph for more details on these graphs
- is_block_graph() – test if a graph is a block graph
- blocks_and_cut_vertices()
- blocks_and_cuts_tree()
- IncidenceStructure()

**INPUT:**

- \(m\) – integer; number of blocks (at least one).
- \(k\) – integer; minimum number of vertices of a block (at least two).
- \(kmax\) – integer (default: None) By default, each block has \(k\) vertices. When the parameter \(kmax\) is specified (with \(kmax \geq k\)), the number of vertices of each block is randomly chosen between \(k\) and \(kmax\).
- \(incidence\_structure\) – boolean (default: False) when set to True, the incidence structure of the graphs is returned instead of the graph itself, that is the list of the lists of vertices in each block. This is useful for the creation of some hypergraphs.
- \(seed\) – a random.Random seed or a Python int for the random number generator (default: None)
A Graph when `incidence_structure=False` (default), and otherwise an incidence structure.

**EXAMPLES:**

A block graph with a single block is a clique:

```
sage: B = graphs.RandomBlockGraph(1, 4)
sage: B.is_clique()
True
```

```
>>> from sage.all import *
>>> B = graphs.RandomBlockGraph(Integer(1), Integer(4))
>>> B.is_clique()
True
```

A block graph with blocks of order 2 is a tree:

```
sage: B = graphs.RandomBlockGraph(10, 2)
sage: B.is_tree()
True
```

```
>>> from sage.all import *
>>> B = graphs.RandomBlockGraph(Integer(10), Integer(2))
>>> B.is_tree()
True
```

Every biconnected component of a block graph is a clique:

```
sage: B = graphs.RandomBlockGraph(5, 3, kmax=6)
sage: blocks, cuts = B.blocks_and_cut_vertices()
sage: all(B.is_clique(block) for block in blocks)
True
```

```
>>> from sage.all import *
>>> B = graphs.RandomBlockGraph(Integer(5), Integer(3), kmax=Integer(6))
>>> blocks, cuts = B.blocks_and_cut_vertices()
>>> all(B.is_clique(block) for block in blocks)
True
```

A block graph with blocks of order $k$ has $m \times (k - 1) + 1$ vertices:

```
sage: m, k = 6, 4
sage: B = graphs.RandomBlockGraph(m, k)
sage: B.order() == m*(k-1)+1
True
```

```
>>> from sage.all import *
>>> m, k = Integer(6), Integer(4)
>>> B = graphs.RandomBlockGraph(m, k)
>>> B.order() == m*(k-Integer(1))+Integer(1)
True
```

Test recognition methods:
Asking for the incidence structure:

```
sage: m, k = 6, 4
sage: IS = graphs.RandomBlockGraph(m, k, incidence_structure=True)
sage: from sage.combinat.designs.incidence_structures import IncidenceStructure
sage: IncidenceStructure(IS)
\# needs sage.modules
Incidence structure with 19 points and 6 blocks
sage: m*(k-1)+1
19
```

```
>>> from sage.all import *
>>> m, k = Integer(6), Integer(4)
>>> IS = graphs.RandomBlockGraph(m, k, incidence_structure=True)
>>> from sage.combinat.designs.incidence_structures import IncidenceStructure
>>> IncidenceStructure(IS)
\# needs sage.modules
Incidence structure with 19 points and 6 blocks
>>> m*(k-Integer(1))+Integer(1)
19
```

**static RandomBoundedToleranceGraph** *(n, seed=None)*

Return a random bounded tolerance graph.

The random tolerance graph is built from a random bounded tolerance representation by using the function *ToleranceGraph*. This representation is a list \(((l_0, r_0, t_0), (l_1, r_1, t_1), ..., (l_k, r_k, t_k))\) where \(k = n - 1\) and \(I_i = (l_i, r_i)\) denotes a random interval and \(t_i\) a random positive value less than or equal to the length of the interval \(I_i\). The width of the representation is limited to \(n^2 \times 2^n\).

**Note:** The tolerance representation used to create the graph can be recovered using `get_vertex()` or `get_vertices()`.

**INPUT:**

- \(n\) – number of vertices of the random graph.
- `seed` – a random.Random seed or a Python int for the random number generator (default: None)

**EXAMPLES:**

Every (bounded) tolerance graph is perfect. Hence, the chromatic number is equal to the clique number
sage: g = graphs.RandomBoundedToleranceGraph(8)
sage: g.clique_number() == g.chromatic_number()
True

```python
>>> from sage.all import *

>>> g = graphs.RandomBoundedToleranceGraph(Integer(8))

>>> g.clique_number() == g.chromatic_number()
True
```

```python
static RandomChordalGraph (n, algorithm='growing', k=None, l=None, f=None, s=None, seed=None)

Return a random chordal graph of order n.

A Graph G is said to be chordal if it contains no induced hole (a cycle of length at least 4). Equivalently, G is chordal if it has a perfect elimination orderings, if each minimal separator is a clique, or if it is the intersection graphs of subtrees of a tree. See the Wikipedia article Chordal_graph.

This generator implements the algorithms proposed in [SHET2018] for generating random chordal graphs as the intersection graph of n subtrees of a tree of order n.

The returned graph is not necessarily connected.

INPUT:

- **n** – integer; the number of nodes of the graph
- **algorithm** – string (default: "growing"); the choice of the algorithm for randomly selecting n subtrees of a random tree of order n. Possible choices are:
 - "growing" – for each subtree T_i, the algorithm picks a size k_i randomly from $[1, k]$. Then a random node of T is chosen as the first node of T_i. In each of the subsequent $k_i - 1$ iterations, it picks a random node in the neighborhood of T_i and adds it to T_i.
 - "connecting" – for each subtree T_i, it first selects k_i nodes of T, where k_i is a random integer from a Poisson distribution with mean l. T_i is then generated to be the minimal subtree containing the selected k_i nodes. This implies that a subtree will most likely have many more nodes than those selected initially, and this must be taken into consideration when choosing l.
 - "pruned" – for each subtree T_i, it randomly selects a fraction f of the edges on the tree and removes them. The number of edges to delete, say l, is calculated as $\lfloor (n - 1)f \rfloor$, which will leave $l + 1$ subtrees in total. Then, it determines the sizes of the $l + 1$ subtrees and stores the distinct values. Finally, it picks a random size k_i from the set of largest $100(1 - s)\%$ of distinct values, and randomly chooses a subtree with size k_i.
- **k** – integer (default: None); maximum size of a subtree. If not specified (None), the maximum size is set to \sqrt{n}. This parameter is used only when algorithm="growing". See `growing_subtrees()` for more details.
- **l** – a strictly positive real number (default: None); mean of a Poisson distribution. If not specified, the mean in set to $\log_2 n$. This parameter is used only when algorithm="connecting". See `connecting_nodes()` for more details.
- **f** – a rational number (default: None); the edge deletion fraction. This value must be chosen in $[0..1]$. If not specified, this parameter is set to $\frac{1}{n-1}$. This parameter is used only when algorithm="pruned". See `pruned_tree()` for more details.
- **s** – a real number between 0 and 1 (default: None); selection barrier for the size of trees. If not specified, this parameter is set to 0.5. This parameter is used only when algorithm="pruned". See `pruned_tree()` for more details.
- **seed** – a random.Random seed or a Python int for the random number generator (default: None)
EXAMPLES:

```python
sage: from sage.graphs.generators.random import RandomChordalGraph
sage: T = RandomChordalGraph(20, algorithm="growing", k=5)
sage: T.is_chordal()
True
sage: T = RandomChordalGraph(20, algorithm="connecting", l=3)
  # needs numpy
sage: T.is_chordal()
  # needs numpy
True
sage: T = RandomChordalGraph(20, algorithm="pruned", f=1/3, s=.5)
sage: T.is_chordal()
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.generators.random import RandomChordalGraph
>>> T = RandomChordalGraph(Integer(20), algorithm="growing", k=Integer(5))
>>> T.is_chordal()
True
>>> T = RandomChordalGraph(Integer(20), algorithm="connecting", l=Integer(3))
  # needs numpy
>>> T.is_chordal()
  # needs numpy
True
>>> T = RandomChordalGraph(Integer(20), algorithm="pruned", f=Integer(1)/
  Integer(3), s=RealNumber('0.5'))
>>> T.is_chordal()
True
```

See also:

- `growing_subtrees()`
- `connecting_nodes()`
- `pruned_tree()`
- Wikipedia article Chordal graph
- `is_chordal()`
- `IntersectionGraph()`

static RandomGNM(n, m, dense=False, seed=None)

Return a graph randomly picked out of all graphs on n vertices with m edges.

INPUT:

- n – number of vertices.
- m – number of edges.
- dense – whether to use NetworkX’s `dense_gnm_random_graph()` or `gnm_random_graph()`
- seed – a random.RandomSeed or a Python int for the random number generator (default: None)

EXAMPLES:

We show the edge list of a random graph on 5 nodes with 10 edges:
sage: graphs.RandomGNM(5, 10).edges(sort=True, labels=False) # needs networkx
[(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]

We plot a random graph on 12 nodes and 12 edges:

```sage
sage: gnm = graphs.RandomGNM(12, 12)  # needs networkx
sage: gnm.show()  # long time  # needs networkx sage.plot
```

We view many random graphs using a graphics array:

```sage
sage: # needs networkx sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
    ...:     k = graphs.RandomGNM(i+3, i^2-i)
    ...:     g.append(k)

sage: for i in range(3):
    ...:     n = []
    ...:     for m in range(3):
    ...:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ...:     j.append(n)

sage: G = graphics_array(j)
sage: G.show()  # long time
```

```python
>>> from sage.all import *

>>> graphs.RandomGNM(Integer(5), Integer(10)).edges(sort=True, labels=False)  # needs networkx
[(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
```

```python
>>> from sage.all import *

>>> gnm = graphs.RandomGNM(Integer(12), Integer(12))  # needs networkx

>>> gnm.show()  # long time
```

```python
>>> from sage.all import *

>>> g = []

>>> j = []

>>> for i in range(Integer(9)):
    ...:     k = graphs.RandomGNM(i+Integer(3), i**Integer(2)-i)
    ...:     g.append(k)

>>> for i in range(Integer(3)):
    ...:     n = []
    ...:     for m in range(Integer(3)):
    ...:         n.append(g[3*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
    ...:     j.append(n)

>>> G = graphics_array(j)

>>> G.show()  # long time
```

```python
static RandomGNP(n, p, seed=None, fast=True, algorithm='Sage')
```
Returns a random graph on \(n \) nodes. Each edge is inserted independently with probability \(p \).

INPUT:

- \(n \) – number of nodes of the graph
- \(p \) – probability of an edge
- \(\text{seed} \) – a random.Random seed or a Python int for the random number generator (default: None)
- \(\text{fast} \) – boolean set to True (default) to use the algorithm with time complexity in \(O(n + m) \) proposed in [BB2005a]. It is designed for generating large sparse graphs. It is faster than other algorithms for LARGE instances (try it to know whether it is useful for you).
- \(\text{algorithm} \) – By default (algorithm='Sage'), this function uses the algorithm implemented in `sage.graphs.graph_generators_pyx.pyx`. When algorithm='networkx', this function calls the NetworkX function `fast_gnp_random_graph`, unless fast=False, then `gnp_random_graph`. Try them to know which algorithm is the best for you. The fast parameter is not taken into account by the ‘Sage’ algorithm so far.

REFERENCES:

- [ER1959]
- [Gil1959]

PLOTTING: When plotting, this graph will use the default spring-layout algorithm, unless a position dictionary is specified.

EXAMPLES: We show the edge list of a random graph on 6 nodes with probability \(p = .4 \):

```python
sage: set_random_seed(0)
sage: graphs.RandomGNP(6, .4).edges(sort=true, labels=False)
[(0, 3), (1, 2), (2, 3), (2, 4)]
```

We plot a random graph on 12 nodes with probability \(p = .71 \):

```python
sage: gnp = graphs.RandomGNP(12,.71)
sage: gnp.show()                      # long time
```

We view many random graphs using a graphics array:

```python
sage: g = []
sage: j = []
sage: for i in range(9):
    ....:     k = graphs.RandomGNP(i+3,.43)
    ....:     g.append(k)
```

(continues on next page)
```
sage: for i in range(3):
    # needs sage.plot
    ....: n = []
    ....: for m in range(3):
    ....:     n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ....: j.append(n)

sage: G = graphics_array(j)
    # needs sage.plot
sage: G.show()  # long time
    # needs sage.plot
sage: graphs.RandomGNP(4,1)
Complete graph: Graph on 4 vertices
```

```python
sage: G = graphics_array(j)
    # needs sage.plot
sage: G.show()  # long time
    # needs sage.plot
sage: graphs.RandomGNP(Integer(4),Integer(1))
Complete graph: Graph on 4 vertices
```

`static RandomHolmeKim(n, m, p, seed=None)`

Return a random graph generated by the Holme and Kim algorithm for graphs with power law degree distribution and approximate average clustering.

INPUT:

- `n` – number of vertices
- `m` – number of random edges to add for each new node
- `p` – probability of adding a triangle after adding a random edge
- `seed` – a `random.Random` seed or a Python `int` for the random number generator (default: `None`)

From the NetworkX documentation: the average clustering has a hard time getting above a certain cutoff that depends on `m`. This cutoff is often quite low. Note that the transitivity (fraction of triangles to possible triangles) seems to go down with network size. It is essentially the Barabasi-Albert growth model with an extra step that each random edge is followed by a chance of making an edge to one of its neighbors too (and thus a triangle). This algorithm improves on B-A in the sense that it enables a higher average clustering to be attained if desired. It seems possible to have a disconnected graph with this algorithm since the initial `m` nodes may not be all linked to a new node on the first iteration like the BA model.

EXAMPLES:
Graph Theory, Release 10.4

sage: G = graphs.RandomHolmeKim(12, 3, .3) # needs networkx
sage: G.show() # long time
 # needs networkx sage.plot

>>> from sage.all import *
>>> G = graphs.RandomHolmeKim(Integer(12), Integer(3), RealNumber('.3')) # needs networkx
>>> G.show() # long time
 # needs networkx sage.plot

REFERENCE:

[HK2002a]

static RandomIntervalGraph \((n, seed=None)\)

Returns a random interval graph.

An interval graph is built from a list \((a_i, b_i)_{1 \leq i \leq n}\) of intervals: to each interval of the list is associated one vertex, two vertices being adjacent if the two corresponding intervals intersect.

A random interval graph of order \(n\) is generated by picking random values for the \((a_i, b_j)\), each of the two coordinates being generated from the uniform distribution on the interval \([0, 1]\).

This definition follows [BF2001].

Note: The vertices are named 0, 1, 2, and so on. The intervals used to create the graph are saved with the graph and can be recovered using `get_vertex()` or `get_vertices()`.

INPUT:

- \(n\) – integer; the number of vertices in the random graph
- \(seed\) – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

As for any interval graph, the chromatic number is equal to the clique number

sage: g = graphs.RandomIntervalGraph(8)
sage: g.chromatic_number() == g.clique_number()
True

>>> from sage.all import *
>>> g = graphs.RandomIntervalGraph(Integer(8))
>>> g.clique_number() == g.chromatic_number()
True

static RandomKTree \((n, k, seed=None)\)

Return a random \(k\)-tree on \(n\) nodes numbered 0 through \(n-1\).

ALGORITHM:

The algorithm first generates a complete graph on \(k+1\) vertices. Vertices are subsequently generated by randomly choosing one of the existing cliques in the graph, and creating a new clique by replacing one of the vertices in the selected clique with a newly created one.

INPUT:
Graph Theory, Release 10.4

- \(n \) – number of vertices in the \(k \)-tree
- \(k \) – within a clique each vertex is connected to \(k \) vertices. \(k \) also corresponds to the treewidth of the \(k \)-tree
- seed – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

```python
sage: G = graphs.RandomKTree(50, 5)
sage: G.treewidth()
5
sage: G.show()  # not tested
```

```python
>>> from sage.all import *
>>> G = graphs.RandomKTree(Integer(50), Integer(5))
>>> G.treewidth()
5
>>> G.show()   # not tested
```

static RandomLobster \((n, p, q, seed=None)\)

Return a random lobster.

A lobster is a tree that reduces to a caterpillar when pruning all leaf vertices. A caterpillar is a tree that reduces to a path when pruning all leaf vertices \((q = 0)\).

INPUT:

- \(n \) – expected number of vertices in the backbone
- \(p \) – probability of adding an edge to the backbone
- \(q \) – probability of adding an edge (claw) to the arms
- \(seed \) – a random.Random seed or a Python int for the random number generator (default: None).

EXAMPLES:

We check a random graph with 12 backbone nodes and probabilities \(p = 0.7 \) and \(q = 0.3 \):

```python
sage: # needs networkx
sage: G = graphs.RandomLobster(12, 0.7, 0.3)
sage: leaves = [v for v in G.vertices(sort=False) if G.degree(v) == 1]
sage: G.delete_vertices(leaves)  # caterpillar
sage: s = G.degree_sequence()
sage: if G:
....:     if G.num_verts() == 1:
....:         assert s == [0]
....:     else:
....:         assert s[-2:] == [1, 1]
....:         assert all(d == 2 for d in s[:-2])
```

```python
>>> from sage.all import *
>>> # needs networkx
>>> G = graphs.RandomLobster(Integer(12), RealNumber(0.7), RealNumber(0.3))
>>> leaves = [v for v in G.vertices(sort=False) if G.degree(v) == Integer(1)]
>>> G.delete_vertices(leaves)  # caterpillar
>>> leaves = [v for v in G.vertices(sort=False) if G.degree(v) == Integer(1)]
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> G.delete_vertices(leaves)  # path
>>> s = G.degree_sequence()
>>> if G:
...     if G.num_verts() == Integer(1):
...         assert s == [Integer(0)]
...     else:
...         assert s[-Integer(2):] == [Integer(1), Integer(1)]
...         assert all(d == Integer(2) for d in s[:-Integer(2)])
```

```sage
sage: G = graphs.RandomLobster(9, .6, .3)  # needs networkx
sage: G.show()  # long time
# needs networkx
```

```python
>>> from sage.all import *
```

```sage
sage: G = graphs.RandomLobster(Integer(9), RealNumber(.6), RealNumber(.3))  # needs networkx
sage: G.show()  # long time
```

```python
static RandomNewmanWattsStrogatz (n, k, p, seed=None)
Return a Newman-Watts-Strogatz small world random graph on n vertices.
From the NetworkX documentation: first create a ring over n nodes. Then each node in the ring is connected with its k nearest neighbors. Then shortcuts are created by adding new edges as follows: for each edge u − v in the underlying "n-ring with k nearest neighbors"; with probability p add a new edge u − w with randomly-chosen existing node w. In contrast with networkx.watts_strogatz_graph(), no edges are removed.

INPUT:
• n – number of vertices
• k – each vertex is connected to its k nearest neighbors
• p – the probability of adding a new edge for each edge
• seed – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:
We check that the generated graph contains a cycle of order n:

```sage
sage: G = graphs.RandomNewmanWattsStrogatz(7, 2, 0.2)
sage: G.order() 7
sage: C7 = graphs.CycleGraph(7)
sage: G.subgraph_search(C7) Subgraph of (): Graph on 7 vertices
sage: G.diameter() <= C7.diameter() True
```

```python
>>> from sage.all import *
```

```sage
sage: G = graphs.RandomNewmanWattsStrogatz(Integer(7), Integer(2), RealNumber('0.2'))
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> C7 = graphs.CycleGraph(Integer(7))
>>> G.subgraph_search(C7)
Subgraph of (): Graph on 7 vertices
>>> G.diameter() <= C7.diameter()
True
```

```python
sage: G = graphs.RandomNewmanWattsStrogatz(12, 2, .3) # needs networkx
sage: G.show() # long time
needs networkx sage.plot

>>> from sage.all import *

>>> G = graphs.RandomNewmanWattsStrogatz(Integer(12), Integer(2), RealNumber(.3)) # needs networkx
>>> G.show() # long time
needs networkx sage.plot
```

REFERENCE:

[NWS2002]

static RandomPartialKTree \((n, k, x, \text{seed}=\text{None})\)

Return a random partial \(k\)-tree on \(n\) nodes.

A partial \(k\)-tree is defined as a subgraph of a \(k\)-tree. This can also be described as a graph with treewidth at most \(k\).

INPUT:

- \(n\) – number of vertices in the \(k\)-tree
- \(k\) – within a clique each vertex is connected to \(k\) vertices. \(k\) also corresponds to the treewidth of the \(k\)-tree
- \(x\) – how many edges are deleted from the \(k\)-tree
- \(\text{seed}\) – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

```python
sage: G = graphs.RandomPartialKTree(50, 5, 2)
sage: G.treewidth()
5
sage: G.show() # not tested
```

```python
>>> from sage.all import *

>>> G = graphs.RandomPartialKTree(Integer(50), Integer(5), Integer(2))
>>> G.treewidth()
5
>>> G.show() # not tested
```

static RandomRegular \((d, n, \text{seed}=\text{None})\)

Return a random \(d\)-regular graph on \(n\) vertices, or False on failure.

Since every edge is incident to two vertices, \(n \times d\) must be even.

INPUT:

- \(d\) – degree
• `n` – number of vertices
• `seed` – a `random.Random` seed or a Python `int` for the random number generator (default: `None`)

**EXAMPLES:**

We check that a random graph with 8 nodes each of degree 3 is 3-regular:

```python
sage: G = graphs.RandomRegular(3, 8)
 # needs networkx
sage: G.is_regular(k=3)
 # needs networkx
 True
sage: G.degree_histogram()
 # needs networkx
[0, 0, 0, 8]

>>> from sage.all import *
>>> G = graphs.RandomRegular(Integer(3), Integer(8))
 # needs networkx
>>> G.is_regular(k=Integer(3))
 # needs networkx
 True
>>> G.degree_histogram()
 # needs networkx
[0, 0, 0, 8]

sage: G = graphs.RandomRegular(3, 20)
 # needs networkx
sage: if G:
 # random output # long time,
 ...: G.show()

>>> from sage.all import *
>>> G = graphs.RandomRegular(Integer(3), Integer(20))
 # needs networkx
>>> if G:
 # random output # long time,
 ...: G.show()
```

**REFERENCES:**

• [KV2003]
• [SW1999]

```python
def RandomRegularBipartite(n1, n2, d1, set_position=False, seed=None):
 ""
 Return a random regular bipartite graph on `n1 + n2` vertices.

 The bipartite graph has `n1 * d1` edges. Hence, `n2` must divide `n1 * d1`. Each vertex of the set of cardinality `n1`
 has degree `d1` (which can be at most `n2`) and each vertex in the set of cardinality `n2` has degree
 `(n1 * d1)/n2`. The bipartite graph has no multiple edges.

 This generator implements an algorithm inspired by that of [MW1990] for the uniform generation of random
 regular bipartite graphs. It performs well when `d1 = o(n2^{1/3})` or `(n2 - d1 = o(n2^{2/3}))`. In other cases,
 the running time can be huge. Note that the currently implemented algorithm does not generate uniformly
 random graphs.
 ""
```

**INPUT:**
• \( n_1, n_2 \) – number of vertices in each side
• \( d_1 \) – degree of the vertices in the set of cardinality \( n_1 \).
• set_position – boolean (default False); if set to True, we assign positions to the vertices so that the set of cardinality \( n_1 \) is on the line \( y = 1 \) and the set of cardinality \( n_2 \) is on the line \( y = 0 \).
• seed – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

```python
sage: g = graphs.RandomRegularBipartite(4, 6, 3)
sage: g.order(), g.size()
(10, 12)
sage: set(g.degree())
{2, 3}
```

```python
sage: from sage.all import *
>>> g = graphs.RandomRegularBipartite(Integer(4), Integer(6), Integer(3))
>>> g.order(), g.size()
(10, 12)
>>> set(g.degree())
{2, 3}
```

```
static RandomShell(constructor, seed=None)
Return a random shell graph for the constructor given.

INPUT:
• constructor – a list of 3-tuples \((n, m, d)\), each representing a shell, where:
 – \(n \) – the number of vertices in the shell
 – \(m \) – the number of edges in the shell
 – \(d \) – the ratio of inter (next) shell edges to intra shell edges
• seed – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:
```
static RandomToleranceGraph (n, seed=None)

Return a random tolerance graph.

The random tolerance graph is built from a random tolerance representation by using the function `ToleranceGraph()`. This representation is a list \(((l_0, r_0, t_0), (l_1, r_1, t_1), \ldots, (l_k, r_k, t_k))\) where \(k = n - 1\) and \(I_i = (l_i, r_i)\) denotes a random interval and \(t_i\) a random positive value. The width of the representation is limited to \(n^2 * 2^n\).

**Note:** The vertices are named 0, 1, \ldots, \(n - 1\). The tolerance representation used to create the graph is saved with the graph and can be recovered using `get_vertex()` or `get_vertices()`.

**INPUT:**

- \(n\) – number of vertices of the random graph
- `seed` – a random.Random seed or a Python int for the random number generator (default: None)

**EXAMPLES:**

Every tolerance graph is perfect. Hence, the chromatic number is equal to the clique number

```python
sage: g = graphs.RandomToleranceGraph(8)
sage: g.clique_number() == g.chromatic_number()
True
```

```python
>>> from sage.all import *
>>> G = graphs.RandomToleranceGraph((Integer(10),Integer(20),RealNumber('0.8'))),
 (Integer(20),Integer(40),RealNumber('0.8')))
needs networkx
>>> G.order(), G.size()
needs networkx
(30, 52)
```

**static RandomTree (n, seed=None)**

Returns a random tree on \(n\) nodes numbered 0 through \(n - 1\).

By Cayley’s theorem, there are \(n^{n-2}\) trees with vertex set \(\{0, 1, \ldots, n - 1\}\). This constructor chooses one of these uniformly at random.

**ALGORITHM:**

The algorithm works by generating an \((n - 2)\)-long random sequence of numbers chosen independently and uniformly from \{0, 1, \ldots, n - 1\} and then applies an inverse Prüfer transformation.
INPUT:

- n – number of vertices in the tree
- seed – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

```python
sage: G = graphs.RandomTree(10)
sage: G.is_tree()
True
sage: G.show() # long time
 # needs sage.plot
```

```python
>>> from sage.all import *
>>> G = graphs.RandomTree(Integer(10))
>>> G.is_tree()
True
>>> G.show() # long time
 # needs sage.plot
```

**static RandomTreePowerlaw**(n, gamma=3, tries=1000, seed=None)

Return a tree with a power law degree distribution, or False on failure.

From the NetworkX documentation: a trial power law degree sequence is chosen and then elements are swapped with new elements from a power law distribution until the sequence makes a tree (size = order - 1).

INPUT:

- n – number of vertices
- gamma – exponent of power law distribution
- tries – number of attempts to adjust sequence to make a tree
- seed – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

We check that the generated graph is a tree:

```python
sage: G = graphs.RandomTreePowerlaw(10)
 # needs networkx
sage: G.is_tree()
 # needs networkx
True
sage: G.order(), G.size()
 # needs networkx
(10, 9)
```

```python
>>> from sage.all import *
>>> G = graphs.RandomTreePowerlaw(Integer(10))
 # needs networkx
>>> G.is_tree()
 # needs networkx
True
>>> G.order(), G.size()
 # needs networkx
(10, 9)
```
static RandomTriangulation \( (n, \text{set\_position}=\text{False}, k=3, \text{seed}=\text{None}) \)

Return a random inner triangulation of an outer face of degree \( k \) with \( n \) vertices in total.

An inner triangulation is a plane graph all of whose faces (except the outer/unbounded face) are triangles (3-cycles).

**INPUT:**

- \( n \) – the number of vertices of the graph
- \( k \) – the size of the outer face
- \( \text{set\_position} \) – boolean (default False); if set to True, this will compute coordinates for a planar drawing of the graph.
- \( \text{seed} \) – a random.Random seed or a Python int for the random number generator (default: None)

**OUTPUT:**

A random graph chosen uniformly among the inner triangulations of a rooted \( k \)-gon with \( n \) vertices (including the \( k \) vertices from the outer face). This is a planar graph and comes with a combinatorial embedding. The vertices of the root edge are labelled \(-1\) and \(-2\) and the outer face is the face returned by \texttt{Graph.faces()} in which \(-1\) and \(-2\) are consecutive vertices in this order.

Because some triangulations have nontrivial automorphism groups, this may not be equal to the uniform distribution among inner triangulations of unrooted \( k \)-gons.

**ALGORITHM:**

The algorithm is taken from [PS2006], Section 5.

Starting from a planar \( k \)-gonal forest (represented by its contour as a sequence of vertices), one performs local closures, until no one is possible. A local closure amounts to replace in the cyclic contour word a sequence \( \text{in}_1, \text{in}_2, \text{in}_3, \text{lf}, \text{in}_3 \) by \( \text{in}_1, \text{in}_3 \).

At every step of the algorithm, newly created edges are recorded in a graph, which will be returned at the end. The combinatorial embedding is also computed and recorded in the output graph.

**See also:**

\texttt{triangulations()} , \texttt{RandomTwoSphere()}.  

**EXAMPLES:**

\begin{verbatim}
sage: G = graphs.RandomTriangulation(6, True); G
Graph on 6 vertices
sage: G.is_planar()
True
sage: G.girth()
\end{verbatim}
Graph Theory, Release 10.4

(continued from previous page)

sage: G.plot(vertex_size=0, vertex_labels=False) → # needs sage.plot
Graphics object consisting of 13 graphics primitives

sage: H = graphs.RandomTriangulation(7, k=5)
sage: sorted(len(f) for f in H.faces())
[3, 3, 3, 3, 3, 3, 3, 5]

>>> from sage.all import *
>>> G = graphs.RandomTriangulation(Integer(6), True); G
Graph on 6 vertices
>>> G.is_planar()
True
>>> G.girth()
3
>>> G.plot(vertex_size=Integer(0), vertex_labels=False)
→ # needs sage.plot
Graphics object consisting of 13 graphics primitives

>>> H = graphs.RandomTriangulation(Integer(7), k=Integer(5))
>>> sorted(len(f) for f in H.faces())
[3, 3, 3, 3, 3, 3, 3, 5]

static RandomUnitDiskGraph(n, radius=0.1, side=1, seed=None)

Return a random unit disk graph of order n.

A unit disk graph is the intersection graph of a family of unit disks in the Euclidean plane. That is a graph with one vertex per disk of the family and an edge between two vertices whenever they lie within a unit distance of each other. See the Wikipedia article Unit_disk_graph for more details.

INPUT:

• n – number of nodes
• radius – float (default: 0.1); two vertices at distance less than radius are connected by an edge
• side – float (default: 1); indicate the side of the area in which the points are drawn
• seed – seed of the random number generator

EXAMPLES:

When using twice the same seed, the vertices get the same positions:

sage: # needs scipy
sage: from sage.misc.randstate import current_randstate
sage: seed = current_randstate().seed()
sage: G = graphs.RandomUnitDiskGraph(20, radius=.5, side=1, seed=seed)
sage: H = graphs.RandomUnitDiskGraph(20, radius=.2, side=1, seed=seed)
sage: H.is_subgraph(G, induced=False)
True
sage: H.size() <= G.size()
True
sage: Gpos = G.get_pos()
sage: Hpos = H.get_pos()
sage: all(Gpos[u] == Hpos[u] for u in G)
True

962 Chapter 2. Constructors and databases
When the radius is more than $\sqrt{2^{k-1}}$, the graph is a clique:

```python
sage: G = graphs.RandomUnitDiskGraph(10, radius=2, side=1) # needs scipy
sage: G.is_clique() # needs scipy
True
```

```
static RingedTree(k, vertex_labels=True)

Return the ringed tree on k-levels.

A ringed tree of level k is a binary tree with k levels (counting the root as a level), in which all vertices at the same level are connected by a ring.

More precisely, in each layer of the binary tree (i.e. a layer is the set of vertices $[2^i \ldots 2^{i+1} - 1]$) two vertices u, v are adjacent if $u = v + 1$ or if $u = 2^i$ and $v = 2^{i+1} - 1$.

Ringed trees are defined in [CFHM2013].

INPUT:

- `k` – the number of levels of the ringed tree.
- `vertex_labels` (boolean) – whether to label vertices as binary words (default) or as integers.

EXAMPLES:

```python
sage: # needs networkx
sage: G = graphs.RingedTree(5)
```

```
[continues on next page]
static RobertsonGraph()

Return the Robertson graph.

See the Wikipedia article Robertson graph.

EXAMPLES:

```
sage: g = graphs.RobertsonGraph()
sage: g.order()
19
sage: g.size()
38
sage: g.diameter()
3
sage: g.girth()
5
sage: g.charpoly().factor()
(x - 4) * (x - 1)^2 * (x^2 + x - 5) * (x^2 + x - 1) * (x^2 - 3)^2 * (x^2 + x - 4)^2 * (x^2 + x - 3)^2
sage: g.chromatic_number()
3
sage: g.is_hamiltonian() # needs sage.numerical.mip
True
sage: g.is_vertex_transitive()
False
```
static RookGraph(dim_list, radius=None, relabel=False)

Return the $d$-dimensional Rook’s Graph with prescribed dimensions.

The 2-dimensional Rook’s Graph of parameters $n$ and $m$ is a graph with $nm$ vertices in which each vertex represents a square in an $n \times m$ chessboard, and each edge corresponds to a legal move by a rook.

The $d$-dimensional Rook Graph with $d \geq 2$ has for vertex set the cells of a $d$-dimensional grid with prescribed dimensions, and each edge corresponds to a legal move by a rook in any of the dimensions.

The Rook’s Graph for an $n \times m$ chessboard may also be defined as the Cartesian product of two complete graphs $K_n \square K_m$.

INPUT:

- dim_list – iterable (list, set, dict); provides the dimensions $n_1, n_2, \ldots, n_d$, with $n_i \geq 1$, of the chessboard
- radius – integer (default: None); by setting the radius to a positive integer, one may decrease the power of the rook to at most radius steps. When the radius is 1, the resulting graph is a $d$-dimensional grid.
- relabel – boolean (default: False); indicates whether the vertices must be relabeled as integers

EXAMPLES:
The $(n, m)$-Rook’s Graph is isomorphic to the Cartesian product of two complete graphs:

```python
sage: G = graphs.RookGraph([3, 4])
sage: H = (graphs.CompleteGraph(3)).cartesian_product(graphs.CompleteGraph(4))
sage: G.is_isomorphic(H)
True
```

When the radius is 1, the Rook’s Graph is a grid:

```python
>>> from sage.all import *
>>> G = graphs.RookGraph([Integer(3), Integer(4)], radius=1)
>>> H = (graphs.CompleteGraph(Integer(3))).cartesian_product(graphs.CompleteGraph(Integer(4)))
>>> G.is_isomorphic(H)
True
```
>>> from sage.all import *

>>> G = graphs.RookGraph([Integer(3), Integer(3), Integer(4)],
    radius=Integer(1))

>>> H = graphs.GridGraph([Integer(3), Integer(4), Integer(3)])

>>> G.is_isomorphic(H)
True

static RoseWindowGraph(n, a, r)
Return a rose window graph with 2n nodes.

The rose window graphs is a family of tetravalent graphs introduced in [Wilson2008]. The parameters \(n, a\) and \(r\) are integers such that \(n > 2, 1 \leq a, r < n, \text{ and } r \neq n/2\).

INPUT:

- \(n\) – the number of nodes is \(2 \times n\)
- \(a\) – integer such that \(1 \leq a < n\) determining a-spoke edges
- \(r\) – integer such that \(1 \leq r < n\) and \(r \neq n/2\) determining how inner vertices are connected

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the rose window graphs are displayed as an inner and outer cycle pair, with the first \(n\) nodes drawn on the outer circle. The first (0) node is drawn at the top of the outer-circle, moving counterclockwise after that. The inner circle is drawn with the \((n)\)th node at the top, then counterclockwise as well. Vertices in the outer circle are connected in the circular manner, vertices in the inner circle are connected when their label have difference \(r \pmod n\). Vertices on the outer rim are connected with the vertices on the inner rim when they are at the same position and when they are \(a\) apart.

EXAMPLES:
The vertices of a rose window graph have all degree 4:

```sage
G = graphs.RoseWindowGraph(5, 1, 2)
sage: all(G.degree(u) == 4 for u in G)
True
```

```sage
G = graphs.RoseWindowGraph(Integer(5), Integer(1), Integer(2))
sage: all(G.degree(u) == Integer(4) for u in G)
True
```
The smallest rose window graph as parameters (3, 2, 1):

```sage
G = graphs.RoseWindowGraph(3, 2, 1)
sage: all(G.degree(u) == 4 for u in G)
True
```

```sage
G = graphs.RoseWindowGraph(Integer(3), Integer(2), Integer(1))
sage: all(G.degree(u) == Integer(4) for u in G)
True
```

static SchlaefliGraph()
Return the Schlafli graph.

The Schlafli graph is the only strongly regular graphs of parameters \((27, 16, 10, 8)\) (see [GR2001]).

For more information, see the Wikipedia article Schlafli graph.
See also:

\texttt{Graph.is\_strongly\_regular()} – tests whether a graph is strongly regular and/or returns its parameters.

Todo: Find a beautiful layout for this beautiful graph.

EXAMPLES:

Checking that the method actually returns the Schl"aflö graph:

\begin{verbatim}
sage: S = graphs.SchlaefliGraph()
sage: S.is_strongly_regular(parameters=True)
(27, 16, 10, 8)
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> S = graphs.SchlaefliGraph()
>>> S.is_strongly_regular(parameters=True)
(27, 16, 10, 8)
\end{verbatim}

The graph is vertex-transitive:

\begin{verbatim}
sage: S.is_vertex_transitive() ˓→ # needs sage.groups
True
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> S.is_vertex_transitive()
˓→ # needs sage.groups
True
\end{verbatim}

The neighborhood of each vertex is isomorphic to the complement of the Clebsch graph:

\begin{verbatim}
sage: neighborhood = S.subgraph(vertices=S.neighbors(0))
sage: graphs.ClebschGraph().complement().is_isomorphic(neighborhood)
True
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> neighborhood = S.subgraph(vertices=S.neighbors(Integer(0)))
>>> graphs.ClebschGraph().complement().is_isomorphic(neighborhood)
True
\end{verbatim}

\texttt{static ShrikhandeGraph()}

Return the Shrikhande graph.

For more information, see the MathWorld article on the Shrikhande graph or the Wikipedia article Shrikhande.graph.

See also:

\texttt{Graph.is\_strongly\_regular()} – tests whether a graph is strongly regular and/or returns its parameters.

EXAMPLES:

The Shrikhande graph was defined by S. S. Shrikhande in 1959. It has 16 vertices and 48 edges, and is strongly regular of degree 6 with parameters (2, 2):
\texttt{sage}: G = graphs.ShrikhandeGraph(); G
Shrikhande graph: Graph on 16 vertices
\texttt{sage}: G.order()
16
\texttt{sage}: G.size()
48
\texttt{sage}: G.is_regular(6)
True
\texttt{sage}: set([ len([x for x in G.neighbors(i) if x in G.neighbors(j)])
      for i in range(G.order())
      for j in range(i) ])
\{2\}

\texttt{from sage.all import *}
\texttt{G = graphs.ShrikhandeGraph(); G}
Shrikhande graph: Graph on 16 vertices
\texttt{G.order()}
16
\texttt{G.size()}
48
\texttt{G.is_regular(Integer(6))}
True
\texttt{set([ len([x for x in G.neighbors(i) if x in G.neighbors(j)])
      for i in range(G.order())
      for j in range(i) ])
\{2\}

It is non-planar, and both Hamiltonian and Eulerian:

\texttt{sage}: G.is_planar()
False
\texttt{sage}: G.is_hamiltonian()
\texttt{# needs sage.numerical.mip}
True
\texttt{sage}: G.is_eulerian()
True

\texttt{from sage.all import *}
\texttt{G.is_planar()}
False
\texttt{G.is_hamiltonian()}
\texttt{# needs sage.numerical.mip}
True
\texttt{G.is_eulerian()}
True

It has radius 2, diameter 2, and girth 3:

\texttt{sage}: G.radius()
2
\texttt{sage}: G.diameter()
2
\texttt{sage}: G.girth()
3

\texttt{from sage.all import *}
(continues on next page)
It is an integral graph since it has only integral eigenvalues:

```
sage: G.characteristic_polynomial().factor()
(x - 6) * (x - 2)^6 * (x + 2)^9
```

It is a toroidal graph, and its embedding on a torus is dual to an embedding of the Dyck graph (DyckGraph).

### static SierpinskiGasketGraph(n)

Return the Sierpinski Gasket graph of generation $n$.

All vertices but 3 have valence 4.

**INPUT:**

- $n$ – an integer

**OUTPUT:**

a graph $S_n$ with $3(3^{n-1} + 1)/2$ vertices and $3^n$ edges, closely related to the famous Sierpinski triangle fractal. All these graphs have a triangular shape, and three special vertices at top, bottom left and bottom right. These are the only vertices of valence 2, all the other ones having valence 4.

The graph $S_1$ (generation 1) is a triangle.

The graph $S_{n+1}$ is obtained from the disjoint union of three copies $A, B, C$ of $S_n$ by identifying pairs of vertices: the top vertex of $A$ with the bottom left vertex of $B$, the bottom right vertex of $B$ with the top vertex of $C$, and the bottom left vertex of $C$ with the bottom right vertex of $A$.

**See also:**
• **HanoiTowerGraph()**. There is another family of graphs called Sierpinski graphs, where all vertices but 3 have valence 3. They are available using `graphs.HanoiTowerGraph(3, n)`.

• **GeneralizedSierpinskiGraph()**

**EXAMPLES:**

```python
sage: # needs sage.modules
sage: s4 = graphs.SierpinskiGasketGraph(4); s4
Graph on 42 vertices
sage: s4.size()
81
sage: s4.degree_histogram()
[0, 0, 3, 0, 39]
sage: s4.is_hamiltonian()
True
```

```python
>>> from sage.all import *
... # needs sage.modules
... s4 = graphs.SierpinskiGasketGraph(Integer(4)); s4
Graph on 42 vertices
... s4.size()
81
... s4.degree_histogram()
[0, 0, 3, 0, 39]
... s4.is_hamiltonian()
True
```

**REFERENCES:**

[LLWC2011]

**static SimsGewirtzGraph()**

Return the Sims-Gewirtz Graph.

This graph is obtained from the Higman Sims graph by considering the graph induced by the vertices at distance two from the vertices of an (any) edge. It is the only strongly regular graph with parameters \( v = 56 \), \( k = 10 \), \( \lambda = 0 \), \( \mu = 2 \).


See also:

• **HigmanSimsGraph()**.

**EXAMPLES:**

```python
sage: g = graphs.SimsGewirtzGraph(); g
Sims-Gewirtz Graph: Graph on 56 vertices
sage: g.order()
56
sage: g.size()
280
sage: g.is_strongly_regular(parameters = True)
(56, 10, 0, 2)
```
static SousselierGraph()

Return the Sousselier Graph.

The Sousselier graph is a hypohamiltonian graph on 16 vertices and 27 edges. For more information, see Wikipedia article Sousselier_graph or the corresponding French Wikipedia page.

EXAMPLES:

```python
sage: g = graphs.SousselierGraph()
sage: g.order()
16
sage: g.size()
27
sage: g.radius()
2
sage: g.diameter()
3
sage: g.automorphism_group().cardinality() # needs sage.groups
2
sage: g.is_hamiltonian() # needs sage.numerical.mip
False
sage: g.delete_vertex(g.random_vertex())
sage: g.is_hamiltonian() # needs sage.numerical.mip
True
```
static SquaredSkewHadamardMatrixGraph\((n)\)

Pseudo-\(OA(2n, 4n − 1)\)-graph from a skew Hadamard matrix of order \(4n\)

A strongly regular graph with parameters of the orthogonal array graph OrthogonalArrayBlockGraph(), also known as pseudo Latin squares graph \(L_{2n}(4n − 1)\), constructed from a skew Hadamard matrix of order \(4n\), due to Goethals and Seidel, see [BL1984].

See also:

- `is_orthogonal_array_block_graph()`

EXAMPLES:

```python
sage: # needs sage.combinat sage.modules
sage: G = graphs.SquaredSkewHadamardMatrixGraph(4)
sage: G.is_strongly_regular(parameters=True)
(225, 112, 55, 56)
sage: G = graphs.SquaredSkewHadamardMatrixGraph(5)
sage: G.is_strongly_regular(parameters=True) # long time
(361, 180, 89, 90)
sage: G = graphs.SquaredSkewHadamardMatrixGraph(9)
sage: G.is_strongly_regular(parameters=True) # not tested
(1225, 612, 305, 306)
```

static StarGraph\((n)\)

Return a star graph with \(n + 1\) nodes.

A Star graph is a basic structure where one node is connected to all other nodes.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each star graph will be displayed with the first (0) node in the center, the second node (1) at the top, with the rest following in a counterclockwise manner. (0) is the node connected to all other nodes.

The star graph is a good opportunity to compare efficiency of filling a position dictionary vs. using the spring-layout algorithm for plotting. As far as display, the spring-layout should push all other nodes away from the (0) node, and thus look very similar to this constructor’s positioning.

EXAMPLES:

```python
sage: import networkx

>>> from sage.all import *

>>> G = graphs.SquaredSkewHadamardMatrixGraph(Integer(4))
>>> G.is_strongly_regular(parameters=True)
(225, 112, 55, 56)
>>> G = graphs.SquaredSkewHadamardMatrixGraph(Integer(5))
>>> G.is_strongly_regular(parameters=True) # long time
(361, 180, 89, 90)
>>> G = graphs.SquaredSkewHadamardMatrixGraph(Integer(9))
>>> G.is_strongly_regular(parameters=True) # not tested
(1225, 612, 305, 306)
```

Compare the plots:
View many star graphs as a Sage Graphics Array

With this constructor (i.e., the position dictionary filled)

```python
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
 : k = graphs.StarGraph(i+3)
 : g.append(k)
 ...:
 sage: for i in range(3):
 : n = []
 : for m in range(3):
 : n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
 : j.append(n)
 sage: G = graphics_array(j)
sage: G.show() # long time
```

Compared to plotting with the spring-layout algorithm

```python
sage: # needs networkx sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
 : spr = networkx.star_graph(i+3)
 : k = Graph(spr)
 ...:
```

(continues on next page)
Graph Theory, Release 10.4

....:     g.append(k)
sage:     for i in range(3):
....:         n = []
....:         for m in range(3):
....:             n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....:         j.append(n)
sage:     G = graphics_array(j)
sage:     G.show()  
>>> from sage.all import *
>>> # needs networkx sage.plot
>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
....    spr = networkx.star_graph(i+Integer(3))
....    k = Graph(spr)
....    g.append(k)
>>> for i in range(Integer(3)):
....    n = []
....    for m in range(Integer(3)):
....        n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
....    j.append(n)
>>> G = graphics_array(j)
>>> G.show()  

static SuzukiGraph()

Return the Suzuki Graph.

The Suzuki graph has 1782 vertices, and is strongly regular with parameters (1782, 416, 100, 96). Known as S.15 in [Hub1975].

Note: It takes approximately 50 seconds to build this graph. Do not be too impatient.

EXAMPLES:

sage: g = graphs.SuzukiGraph(); g  
Suzuki graph: Graph on 1782 vertices
sage: g.is_strongly_regular(parameters=True)  
(1782, 416, 100, 96)

>>> from sage.all import *
>>> g = graphs.SuzukiGraph(); g  
Suzuki graph: Graph on 1782 vertices
>>> g.is_strongly_regular(parameters=True)  
(1782, 416, 100, 96)

static SwitchedSquaredSkewHadamardMatrixGraph(n)

A strongly regular graph in Seidel switching class of SquaredSkewHadamardMatrixGraph().

A strongly regular graph in the Seidel switching class of the disjoint union of a 1-vertex graph and the one produced by Pseudo-L_{2n}(4n-1)

In this case, the other possible parameter set of a strongly regular graph in the Seidel switching class of the latter graph (see [BH2012]) coincides with the set of parameters of the complement of the graph returned by
this function.

See also:

• \texttt{is\_switch\_skewhad()}

EXAMPLES:

\begin{verbatim}
sage: # needs sage.combinat sage.modules
g = graphs.SwitchedSquaredSkewHadamardMatrixGraph(4)
sage: g.is_strongly_regular(parameters=True)
(226, 105, 48, 49)
sage: from sage.combinat.designs.twographs import twograph_descendant
twograph_descendant(g, 0).is_strongly_regular(parameters=True)
(225, 112, 55, 56)
sage: gc = g.complement()
twograph_descendant(gc, 0).is_strongly_regular(parameters=True)
(225, 112, 55, 56)
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> # needs sage.combinat sage.modules
g = graphs.SwitchedSquaredSkewHadamardMatrixGraph(Integer(4))
g.is_strongly_regular(parameters=True)
(226, 105, 48, 49)
>>> from sage.combinat.designs.twographs import twograph_descendant
twograph_descendant(g, Integer(0)).is_strongly_regular(parameters=True)
(225, 112, 55, 56)
>>> gc = g.complement()
twograph_descendant(gc, Integer(0)).is_strongly_regular(parameters=True)
(225, 112, 55, 56)
\end{verbatim}

\textbf{static SylvesterGraph()}

Return the Sylvester Graph.

This graph is obtained from the Hoffman Singleton graph by considering the graph induced by the vertices at distance two from the vertices of an (any) edge.

For more information on the Sylvester graph, see https://www.win.tue.nl/~aeb/graphs/Sylvester.html.

See also:

• \texttt{HoffmanSingletonGraph()}

EXAMPLES:

\begin{verbatim}
sage: g = graphs.SylvesterGraph(); g
Sylvester Graph: Graph on 36 vertices
sage: g.order()
36
sage: g.size()
90
sage: g.is_regular(k=5)
True
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> # needs sage.combinat sage.modules
g = graphs.SylvesterGraph(); g
Sylvester Graph: Graph on 36 vertices
\end{verbatim}

(continues on next page)
static SymplecticDualPolarGraph \((m, q)\)

Return the Symplectic Dual Polar Graph \(DSp(m, q)\).

For more information on Symplectic Dual Polar graphs, see [BCN1989] and Sect. 2.3.1 of [Coh1981].

INPUT:

- \(m, q\) – integers; \(q\) must be a prime power, and \(m\) must be even

EXAMPLES:

\[
\begin{align*}
sage: & G = graphs.SymplecticDualPolarGraph(6, 3); G \quad \text{# not tested (long time)} \\
& \text{Symplectic Dual Polar Graph } DSp(6, 3): \text{ Graph on 1120 vertices} \\
sage: & G.is_distance_regular(parameters=\text{True}) \quad \text{# not tested (long time)} \\
& ([39, 36, 27, None], [None, 1, 4, 13])
\end{align*}
\]

\[
\begin{align*}
>>> & \text{from sage.all import } * \\
>>> & G = graphs.SymplecticDualPolarGraph(Integer(6), Integer(3)); G \quad \text{# not tested (long time)} \\
& \text{Symplectic Dual Polar Graph } DSp(6, 3): \text{ Graph on 1120 vertices} \\
>>> & G.is_distance_regular(parameters=\text{True}) \quad \text{# not tested (long time)} \\
& ([39, 36, 27, None], [None, 1, 4, 13])
\end{align*}
\]

static SymplecticPolarGraph \((d, q, algorithm=None)\)

Return the Symplectic Polar Graph \(Sp(d, q)\).

The Symplectic Polar Graph \(Sp(d, q)\) is built from a projective space of dimension \(d - 1\) over a field \(F_q\), and a symplectic form \(f\). Two vertices \(u, v\) are made adjacent if \(f(u, v) = 0\).

See the page on symplectic graphs on Andries Brouwer’s website.

INPUT:

- \(d, q\) – integers; note that only even values of \(d\) are accepted by the function.

  - \(algorithm\) – string (default: None); if set to 'gap', then the computation is carried via GAP library interface, computing totally singular subspaces, which is faster for \(q > 3\). Otherwise it is done directly.

EXAMPLES:

Computation of the spectrum of \(Sp(6, 2)\):

\[
\begin{align*}
sage: & g = graphs.SymplecticPolarGraph(6, 2) \\
sage: & g.is_strongly_regular(parameters=\text{True}) \\
& (63, 30, 13, 15) \\
sage: & \text{set}(g.spectrum()) == \{-5, 3, 30\} \quad \text{# needs sage.rings.number_field} \\
& \quad \text{True}
\end{align*}
\]
The parameters of $Sp(4, q)$ are the same as of $O(5, q)$, but they are not isomorphic if $q$ is odd:

```python
sage: G = graphs.SymplecticPolarGraph(4, 3)
sage: G.is_strongly_regular(parameters=True)
(40, 12, 2, 4)
sage: # needs sage.libs.gap
sage: O = graphs.OrthogonalPolarGraph(5, 3)
sage: O.is_strongly_regular(parameters=True)
(40, 12, 2, 4)
sage: O.is_isomorphic(G)
False
sage: S = graphs.SymplecticPolarGraph(6, 4, algorithm="gap") # not tested
" (long time)
sage: S.is_strongly_regular(parameters=True) # not tested
" (long time)
(1365, 340, 83, 85)
```

```
>>> from sage.all import *
>>> G = graphs.SymplecticPolarGraph(Integer(4), Integer(3))
>>> G.is_strongly_regular(parameters=True)
(40, 12, 2, 4)
>>> # needs sage.libs.gap
>>> O = graphs.OrthogonalPolarGraph(Integer(5), Integer(3))
>>> O.is_strongly_regular(parameters=True)
(40, 12, 2, 4)
>>> O.is_isomorphic(G)
False
>>> S = graphs.SymplecticPolarGraph(Integer(6), Integer(4), algorithm="gap") # not tested
" (long time)
>>> S.is_strongly_regular(parameters=True) # not tested
" (long time)
(1365, 340, 83, 85)
```
static T2starGeneralizedQuadrangleGraph (q, dual=False, hyperoval=None, field=None, check_hyperoval=True)

Return the collinearity graph of the generalized quadrangle $T_2^*(q)$, or of its dual

Let $q = 2^k$ and $\Theta = PG(3, q)$. $T_2^*(q)$ is a generalized quadrangle (Wikipedia article Generalized quadrangle) of order $(q - 1, q + 1)$, see 3.1.3 in [PT2009]. Fix a plane $\Pi \subset \Theta$ and a hyperoval $O \subset \Pi$. The points of $T_2^*(q) := T_2^*(O)$ are the points of $\Theta$ outside $\Pi$, and the lines are the lines of $\Theta$ outside $\Pi$ that meet $\Pi$ in a point of $O$.

INPUT:

- $q$ – a power of two
- dual – boolean (default: False); whether to return the graph of $T_2^*(O)$ or of the dual $T_2^*(O)$ (when True)
- hyperoval – a hyperoval (i.e. a complete 2-arc; a set of points in the plane meeting every line in 0 or 2 points) in the plane of points with 0th coordinate 0 in $PG(3, q)$ over the field field. Each point of hyperoval must be a length 4 vector over field with 1st non-0 coordinate equal to 1. By default, hyperoval and field are not specified, and constructed on the fly. In particular, hyperoval we build is the classical one, i.e. a conic with the point of intersection of its tangent lines.
- field – an instance of a finite field of order $q$, must be provided if hyperoval is provided
- check_hyperoval – boolean (default: True); whether to check hyperoval for correctness or not

EXAMPLES:

using the built-in construction:

```
sage: g = graphs.T2starGeneralizedQuadrangleGraph(4); g
T2*(0,4); GQ(3, 5): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
(64, 18, 2, 6)
sage: g = graphs.T2starGeneralizedQuadrangleGraph(4, dual=True); g
T2*(0,4)*; GQ(5, 3): Graph on 96 vertices
sage: g.is_strongly_regular(parameters=True)
(96, 20, 4, 4)
```

```
supplying your own hyperoval:

```
sage: # needs sage.combinat sage.rings.finite_rings
sage: F = GF(4, 'b')

sage: O = vector(F, (0, 0, 0, 1)) + vector(F, (0, 0, 0, 0))

sage: for x in F:
    ....:     O = O + vector(F, (0, x^2, x))

sage: g = graphs.T2starGeneralizedQuadrangleGraph(4, hyperoval=O, field=F); g
T2*(O,4); GQ(3, 5): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
(64, 18, 2, 6)
```

static `TabacjnGraph(n, a, b, r)`

Return a Tabacjn graph with 2\(n\) nodes.

The Tabacjn graphs is a family of pentavalent bicirculants graphs proposed in \[AHKOS2014\] as a generalization of generalized Petersen graphs. The parameters \(n, a, b, r\) are integers such that \(n \geq 3, 1 \leq a, b, r \leq n - 1\), with \(a \neq b\) and \(r \neq n/2\).

INPUT:

- \(n\) – the number of nodes is \(2n\)
- \(a\) – integer such that \(0 < a < n\) and \(a \neq b\), that determines a-spoke edges
- \(b\) – integer such that \(0 < b < n\) and \(b \neq a\), that determines b-spoke edges
- \(r\) – integer such that \(0 < r < n\) and \(r \neq n/2\) determining how inner vertices are connected

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the rose window graphs are displayed as an inner and outer cycle pair, with the first \(n\) nodes drawn on the outer circle. The first (0) node is drawn at the top of the outer-circle, moving counterclockwise after that. The inner circle is drawn with the \((n)\)th node at the top, then counterclockwise as well. Vertices in the outer circle are connected in the circular manner, vertices in the inner circle are connected when their label have difference \(r \mod n\). Vertices on the outer rim are connected with the vertices on the inner rim when they are at the same position and when they are \(a\) and \(b\) apart.

EXAMPLES:

```
sage: G = graphs.TabacjnGraph(3, 1, 2, 1)
sage: G.degree()
[5, 5, 5, 5, 5, 5]
sage: G.is_isomorphic(graphs.CompleteGraph(6))
```

(continues on next page)
Graph Theory, Release 10.4

Graphs:

```python
sage: G = graphs.TabacjnGraph(6, 1, 5, 2)
sage: I = graphs.IcosahedralGraph()
sage: G.is_isomorphic(I)
True
```

```python
>>> from sage.all import *
>>> G = graphs.TabacjnGraph(Integer(3), Integer(1), Integer(2), Integer(1))
>>> G.degree()
[5, 5, 5, 5, 5, 5]
>>> G.is_isomorphic(graphs.CompleteGraph(Integer(6)))
True
>>> G = graphs.TabacjnGraph(Integer(6), Integer(1), Integer(5), Integer(2))
>>> I = graphs.IcosahedralGraph()
>>> G.is_isomorphic(I)
True
```

static `TadpoleGraph` (n1, n2)

Return a tadpole graph with n1 + n2 nodes.

A tadpole graph is a path graph (order n2) connected to a cycle graph (order n1).

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the cycle graph will be drawn in the lower-left corner with the n1-th node at a 45 degree angle above the right horizontal center of the cycle graph, leading directly into the path graph.

EXAMPLES:

Construct and show a tadpole graph Cycle = 13, Stick = 4:

```python
sage: g = graphs.TadpoleGraph(13, 4); g
Tadpole graph: Graph on 17 vertices
sage: g.show() # long time
```

```python
>>> from sage.all import *
>>> g = graphs.TadpoleGraph(Integer(13), Integer(4)); g
Tadpole graph: Graph on 17 vertices
```

static `TaylorTwoGraphDescendantSRG` (q, clique_partition=False)

Return the descendant graph of the Taylor’s two-graph for U3(q), q odd.

This is a strongly regular graph with parameters (v, k, λ, μ) = (q^3, (q^2 + 1)(q - 1)/2, (q - 1)^3/4 - 1, (q^2 + 1)(q - 1)/4) obtained as a two-graph descendant of the Taylor’s two-graph T. This graph admits a partition into cliques of size q, which are useful in `TaylorTwoGraphSRG()`, a strongly regular graph on q^3 + 1 vertices in the Seidel switching class of T, for which we need (q^2 + 1)/2 cliques. The cliques are the q^2 lines on v_0 of the projective plane containing the unital for U3(q), and intersecting the unital (i.e. the vertices of the graph and the point we remove) in q + 1 points. This is all taken from §7E of [BL1984].

INPUT:

- q – a power of an odd prime number
- clique_partition – boolean (default: False); when set to True, return q^2 - 1 cliques of size q with empty pairwise intersection. (Removing all of them leaves a clique, too), and the point removed from the unital.

2.1. Common graphs 981
EXAMPLES:

\begin{verbatim}
sage: # needs sage.rings.finite_rings
g = graphs.TaylorTwographDescendantSRG(3); g
Taylor two-graph descendant SRG: Graph on 27 vertices
sage: g.is_strongly_regular(parameters=True)
(27, 10, 1, 5)
sage: from sage.combinat.designs.twographs import taylor_twograph
sage: T = taylor_twograph(3) # long time
sage: g.is_isomorphic(T.descendant(T.ground_set()[1])) # long time
True
sage: g = graphs.TaylorTwographDescendantSRG(5) # not tested (long time)
sage: g.is_strongly_regular(parameters=True) # not tested (long time)
(125, 52, 15, 26)
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> g = graphs.TaylorTwographDescendantSRG(Integer(3)); g
Taylor two-graph descendant SRG: Graph on 27 vertices
>>> g.is_strongly_regular(parameters=True)
(27, 10, 1, 5)
>>> from sage.combinat.designs.twographs import taylor_twograph
>>> T = taylor_twograph(Integer(3)) # long time
>>> g.is_isomorphic(T.descendant(T.ground_set()[Integer(1)])) # long time
True
>>> g = graphs.TaylorTwographDescendantSRG(Integer(5)) # not tested (long time)
>>> g.is_strongly_regular(parameters=True) # not tested (long time)
(125, 52, 15, 26)
\end{verbatim}

static TaylorTwographSRG(q)

Return a strongly regular graph from the Taylor's two-graph for \(U_3(q), q \text{ odd}\)

This is a strongly regular graph with parameters \((v, k, \lambda, \mu) = (q^3+1, q(q^2+1)/2, (q^2+3)(q-1)/4, (q^2+1)(q+1)/4)\) in the Seidel switching class of Taylor two-graph. Details are in §7E of [BL1984].

INPUT:

- \(q\) – a power of an odd prime number

See also:

- TaylorTwographDescendantSRG()

EXAMPLES:

\begin{verbatim}
sage: t = graphs.TaylorTwographSRG(3); t # needs sage.rings.finite_rings
Taylor two-graph SRG: Graph on 28 vertices
sage: t.is_strongly_regular(parameters=True) # needs sage.rings.finite_rings
(28, 15, 6, 10)
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> t = graphs.TaylorTwographSRG(Integer(3)); t # needs sage.rings.finite_rings
(continues on next page)
\end{verbatim}
Taylor two-graph SRG: Graph on 28 vertices

```python
>>> t.is_strongly_regular(parameters=True)
--> # needs sage.rings.finite_rings
(28, 15, 6, 10)
```

static TetrahedralGraph()

Return a tetrahedral graph (with 4 nodes).

A tetrahedron is a 4-sided triangular pyramid. The tetrahedral graph corresponds to the connectivity of the vertices of the tetrahedron. This graph is equivalent to a wheel graph with 4 nodes and also a complete graph on four nodes. (See examples below).

PLOTTING: The Tetrahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, a argument will be added to select the desired layout.

EXAMPLES:

Construct and show a Tetrahedral graph:

```python
sage: g = graphs.TetrahedralGraph()
sage: g.show()  # long time
--> # needs sage.plot
```

```python
>>> from sage.all import *
>>> g = graphs.TetrahedralGraph()
>>> g.show()  # long time
--> # needs sage.plot
```

The following example requires networkx:

```python
sage: import networkx as NX
```

```python
>>> from sage.all import *
>>> import networkx as NX
```

Compare this Tetrahedral, Wheel(4), Complete(4), and the Tetrahedral plotted with the spring-layout algorithm below in a Sage graphics array:

```python
sage: # needs networkx sage.plot
g = graphs.TetrahedralGraph()
sage: tetra_pos = Graph(NX.tetrahedral_graph())
sage: tetra_spring = Graph(NX.tetrahedral_graph())
sage: wheel = graphs.WheelGraph(4)
sage: complete = graphs.CompleteGraph(4)
sage: g = [tetra_pos, tetra_spring, wheel, complete]
sage: j = []
sage: for i in range(2):
...:     n = []
...:     for m in range(2):
...:         n.append(g[i + m].plot(vertex_size=50, vertex_labels=False))
...:     j.append(n)
sage: G = graphics_array(j)
sage: G.show()  # long time
```
```python
>>> from sage.all import *
>>> # needs networkx sage.plot
>>> tetra_pos = graphs.TetrahedralGraph()
>>> tetra_spring = Graph(NX.tetrahedral_graph())
>>> wheel = graphs.WheelGraph(Integer(4))
>>> complete = graphs.CompleteGraph(Integer(4))
>>> g = [tetra_pos, tetra_spring, wheel, complete]
>>> j = []
>>> for i in range(Integer(2)):
...     n = []
...     for m in range(Integer(2)):
...         n.append(g[i + m].plot(vertex_size=Integer(50), vertex_labels=False))
...     j.append(n)
>>> G = graphics_array(j)
>>> G.show() # long time
```

```
static ThomsenGraph()

Return the Thomsen Graph.

The Thomsen Graph is actually a complete bipartite graph with \((n_1, n_2) = (3, 3)\). It is also called the Utility graph.

PLOTTING: See CompleteBipartiteGraph.

EXAMPLES:

```python
sage: T = graphs.ThomsenGraph()
sage: T
Thomsen graph: Graph on 6 vertices
sage: T.graph6_string()
'EFz_'
sage: (graphs.ThomsenGraph()).show() # long time
```

```python
>>> from sage.all import *
>>> T = graphs.ThomsenGraph()
>>> T
Thomsen graph: Graph on 6 vertices
>>> T.graph6_string()
'EFz_'
```
```
static TietzeGraph()

Return the Tietze Graph.

For more information on the Tietze Graph, see the Wikipedia article Tietze%27s_graph.

EXAMPLES:

```python
sage: g = graphs.TietzeGraph()
sage: g.order()
12
sage: g.size()
18
sage: g.diameter()
3
```
(continues on next page)
static ToleranceGraph(tolrep)

Return the graph generated by the tolerance representation tolrep.

The tolerance representation tolrep is described by the list \(((l_0, r_0, t_0), (l_1, r_1, t_1), \ldots, (l_k, r_k, t_k))\) where \(I_i = (l_i, r_i)\) denotes a closed interval on the real line with \(l_i < r_i\) and \(t_i\) a strictly positive value, called tolerance. This representation generates the tolerance graph with the vertex set \(\{0, 1, \ldots, k\}\) and the edge set \(\{(i, j) : |I_i \cap I_j| \geq \min\{t_i, t_j\}\}\) where \(|I_i \cap I_j|\) denotes the length of the intersection of \(I_i\) and \(I_j\).

INPUT:

- tolrep – list of triples \((l_i, r_i, t_i)\) where \((l_i, r_i)\) denotes a closed interval on the real line and \(t_i\) a positive value.

Note: The vertices are named 0, 1, \ldots, k. The tolerance representation used to create the graph is saved with the graph and can be recovered using get_vertex() or get_vertices().

EXAMPLES:

The following code creates a tolerance representation tolrep, generates its tolerance graph g, and applies some checks:

```python
sage: tolrep = [(1, 4, 3), (1, 2, 1), (2, 3, 1), (0, 3, 3)]
sage: g = graphs.ToleranceGraph(tolrep)
sage: g.get_vertex(3) (0, 3, 3)
sage: neigh = g.neighbors(3)
sage: for v in neigh: print(g.get_vertex(v)) (1, 2, 1) (2, 3, 1)
```
The intervals in the list need not be distinct

```python
sage: tolrep2 = [(0,4,5),(1,2,1),(2,3,1),(0,4,5)]
sage: g2 = graphs.ToleranceGraph(tolrep2)
sage: g2.is_isomorphic(g)
True
```

Real values are also allowed

```python
sage: tolrep = [(0.1,3.3,4.4),(1.1,2.5,1.1),(1.4,4.4,3.3)]
sage: g = graphs.ToleranceGraph(tolrep)
sage: g.is_isomorphic(graphs.PathGraph(3))
True
```

```python
>>> from sage.all import *
>>> tolrep = [(RealNumber('0.1'), RealNumber('3.3'), RealNumber('4.4')),
          (RealNumber('1.1'), RealNumber('2.5'), RealNumber('1.1')),
          (RealNumber('1.4'), RealNumber('4.4'), RealNumber('3.3'))]
>>> g = graphs.ToleranceGraph(tolrep)
>>> g.is_isomorphic(graphs.PathGraph(Integer(3)))
True
```
Return a toroidal 6-regular grid.

The toroidal 6-regular grid is a 6-regular graph on \(p \times q \) vertices and its elements have coordinates \((i, j)\) for \(i \in \{0...p - 1\} \) and \(j \in \{0...q - 1\} \).

Its edges are those of the \texttt{ToroidalGrid2dGraph()}, to which are added the edges between \((i, j)\) and \(((i + 1) \mod p, (j + 1) \mod q)\).

INPUT:

- \(p, q - \text{integers} \)

EXAMPLES:

The toroidal 6-regular grid on 25 elements:

```python
sage: g = graphs.Toroidal6RegularGrid2dGraph(5, 5)
sage: g.is_regular(k=6)
True
sage: g.is_vertex_transitive()
True ˓→ # needs sage.groups
sage: g.line_graph().is_vertex_transitive()
True ˓→ # needs sage.groups
sage: g.automorphism_group().cardinality()
300 ˓→ # needs sage.groups
sage: g.is_hamiltonian()
True ˓→ # needs sage.numerical.mip
```

static ToroidalGrid2dGraph\((p, q)\)

Return a toroidal 2-dimensional grid graph with \(p \times q \) nodes \((p \text{ rows and } q \text{ columns})\).

The toroidal 2-dimensional grid with parameters \(p, q \) is the 2-dimensional grid graph with identical parameters to which are added the edges \(((i, 0), (i, q - 1))\) and \(((0, i), (p - 1, i))\).

EXAMPLES:

The toroidal 2-dimensional grid is a regular graph, while the usual 2-dimensional grid is not
sage: tgrid = graphs.ToroidalGrid2dGraph(8,9)
sage: print(tgrid)
Toroidal 2D Grid Graph with parameters 8,9
sage: grid = graphs.Grid2dGraph(8,9)
sage: grid.is_regular()
False
sage: tgrid.is_regular()
True

>>> from sage.all import *
>>> tgrid = graphs.ToroidalGrid2dGraph(Integer(8),Integer(9))
>>> print(tgrid)
Toroidal 2D Grid Graph with parameters 8,9
>>> grid = graphs.Grid2dGraph(Integer(8),Integer(9))
>>> grid.is_regular()
False
>>> tgrid.is_regular()
True

static TruncatedIcosidodecahedralGraph()
Return the truncated icosidodecahedron.

The truncated icosidodecahedron is an Archimedean solid with 30 square faces, 20 regular hexagonal faces, 12 regular decagonal faces, 120 vertices and 180 edges. For more information, see the Wikipedia article Truncated_icosidodecahedron.

EXAMPLES:
Unfortunately, this graph can not be constructed currently, due to numerical issues:

sage: g = graphs.TruncatedIcosidodecahedralGraph(); g
← # needs sage.geometry.polyhedron sage.groups sage.rings.number_field
Traceback (most recent call last):
... ValueError: *Error: Numerical inconsistency is found. Use the GMP exact arithmetic.
sage: g.order(), g.size() # not tested
← # needs sage.geometry.polyhedron sage.groups sage.rings.number_field
(120, 180)

>>> from sage.all import *
>>> g = graphs.TruncatedIcosidodecahedralGraph(); g
←# needs sage.geometry.polyhedron sage.groups sage.rings.number_field
Traceback (most recent call last):
... ValueError: *Error: Numerical inconsistency is found. Use the GMP exact arithmetic.
>>> g.order(), g.size() # not tested
←# needs sage.geometry.polyhedron sage.groups sage.rings.number_field
(120, 180)

static TruncatedTetrahedralGraph()
Return the truncated tetrahedron.

The truncated tetrahedron is an Archimedean solid with 12 vertices and 18 edges. For more information, see the Wikipedia article Truncated_tetrahedron.

EXAMPLES:
sage: g = graphs.TruncatedTetrahedralGraph(); g
Truncated Tetrahedron: Graph on 12 vertices
sage: g.order(), g.size()
(12, 18)
sage: g.is_isomorphic(polytopes.simplex(3).truncation().graph())
True

static TruncatedWittGraph()
Return the truncated Witt graph.

This builds the large Witt graph, then removes all vertices whose codeword start with a 1.

The graph is distance-regular with intersection array $[15, 14, 12; 1, 1, 9]$.

EXAMPLES:

sage: # long time, needs sage.libs.pari sage.modules
sage: G = graphs.TruncatedWittGraph()
\[
\begin{align*}
&\text{G.is_distance_regular(}\text{True})
\end{align*}
\]
\[
\begin{align*}
&\text{G.is_distance_regular(}\text{True})
\end{align*}
\]

REFERENCES:
A description and construction of this graph can be found in [BCN1989] p. 367.

static TuranGraph(n, r)
Returns the Turan graph with parameters n, r.

Turan graphs are complete multipartite graphs with n vertices and r subsets, denoted $T(n, r)$, with the property that the sizes of the subsets are as close to equal as possible. The graph $T(n, r)$ will have $n \pmod r$ subsets of size $\lfloor n/r \rfloor$ and $r - (n \pmod r)$ subsets of size $\lceil n/r \rceil$. See the Wikipedia article Turan_graph for more information.

INPUT:

- n – integer; the number of vertices in the graph
- r – integer; the number of partitions of the graph

EXAMPLES:
The Turan graph is a complete multipartite graph:
The Turan graph $T(n, r)$ has \(\frac{(r-1)(n^2-s^2)}{2r} + \frac{s(s-1)}{2} \) edges, where \(s = n \mod r \) (Issue #34249):

sage: n = 12
sage: r = 8
sage: g = graphs.TuranGraph(n, r)
sage: def count(n, r):
 s = n % r
 return (r - 1) * (n**2 - s**2) / (2*r) + s*(s - 1)/2
sage: g.size() == count(n, r)
True
sage: n = randint(3, 100)
sage: r = randint(2, n - 1)
sage: g = graphs.TuranGraph(n, r)
sage: g.size() == count(n, r)
True

static Tutte12Cage()

Return the Tutte 12-Cage.

See the Wikipedia article Tutte_12-cage.

EXAMPLES:

sage: # needs networkx
sage: g = graphs.Tutte12Cage()
sage: g.order()
126
sage: g.size()
189

(continues on next page)
static TutteCoxeterGraph (embedding=2)

Return the Tutte-Coxeter graph.

See the Wikipedia article Tutte-Coxeter_graph.

INPUT:

• embedding – integer (default: 2); two embeddings are available, and can be selected by setting embedding to 1 or 2

EXAMPLES:
static TutteGraph()

Return the Tutte Graph.

The Tutte graph is a 3-regular, 3-connected, and planar non-hamiltonian graph. For more information on the Tutte Graph, see the Wikipedia article Tutte_graph.

EXAMPLES:

```python
sage: g = graphs.TutteGraph()
sage: g.order()
46
sage: g.size()
69
sage: g.is_planar()
True
sage: g.vertex_connectivity()  # long time
3
sage: g.girth()
4
sage: g.automorphism_group().cardinality()  # needs sage.groups
3
sage: g.is_hamiltonian()  # needs sage.numerical.mip
False
```

```python
>>> from sage.all import *
```
Build the graph, interpreting the $U_4(2)$-action considered in [CRS2016] as the one on the hyperbolic lines of the corresponding unitary polar space, and then doing the unique merging of the orbitals leading to a graph with the parameters in question.

EXAMPLES:

```python
sage: G = graphs.U42Graph216()  # optional - gap_package_grape
sage: G.is_strongly_regular(parameters=True)  # optional - gap_package_grape
(216, 40, 4, 8)
```

```python
>>> from sage.all import *
>>> G = graphs.U42Graph216()  # optional - gap_package_grape
>>> G.is_strongly_regular(parameters=True)  # optional - gap_package_grape
(216, 40, 4, 8)
```

static U42Graph540()

Return a $(540, 187, 58, 68)$-strongly regular graph from [CRS2016].

Build the graph, interpreting the $U_4(2)$-action considered in [CRS2016] as the action of $U_4(2) = S p_4(3) < U_4(3)$ on the nonsingular, w.r.t. to the Hermitean form stabilised by $U_4(3)$, points of the 3-dimensional projective space over $GF(9)$. There are several possible mergings of orbitals, some leading to non-isomorphic graphs with the same parameters. We found the merging here using [FK1991].

EXAMPLES:

```python
sage: G = graphs.U42Graph540()  # optional - gap_package_grape
sage: G.is_strongly_regular(parameters=True)  # optional - gap_package_grape
(540, 187, 58, 68)
```

```python
>>> from sage.all import *
>>> G = graphs.U42Graph540()  # optional - gap_package_grape
>>> G.is_strongly_regular(parameters=True)  # optional - gap_package_grape
(540, 187, 58, 68)
```

static USAMap (continental=False)

Return states of USA as a graph of common border.

The graph has an edge between those states that have common land border line or point. Hence for example Colorado and Arizona are marked as neighbors, but Michigan and Minnesota are not.

INPUT:

- `continental` – boolean (default: False); whether to exclude Alaska and Hawaii

EXAMPLES:

How many states are neighbor’s neighbor for Pennsylvania:

```python
sage: USA = graphs.USAMap()
sage: distance = USA.shortest_path_lengths('Pennsylvania')
sage: len([n2 for n2, d in distance.items() if d == 2])
7
```

```python
>>> from sage.all import *
>>> USA = graphs.USAMap()
>>> distance = USA.shortest_path_lengths('Pennsylvania')
>>> len([n2 for n2, d in distance.items() if d == Integer(2)])
7
```
Diameter for continental USA:

```python
sage: USAcont = graphs.USAMap(continental=True)
sage: USAcont.diameter()
11
```

```python
>>> from sage.all import *
>>> USAcont = graphs.USAMap(continental=True)
>>> USAcont.diameter()
11
```

static UnitaryDualPolarGraph(\(m, q\))

Return the Dual Unitary Polar Graph \(U(m, q)\).

For more information on Unitary Dual Polar graphs, see [BCN1989] and Sect. 2.3.1 of [Coh1981].

INPUT:

- \(m, q\) – integers; \(q\) must be a prime power

EXAMPLES:

The point graph of a generalized quadrangle (see Wikipedia article Generalized_quadrangle, [PT2009]) of order \((8,4)\):

```python
sage: G = graphs.UnitaryDualPolarGraph(5,2); G  # long time
Unitary Dual Polar Graph DU(5, 2); GQ(8, 4): Graph on 297 vertices
sage: G.is_strongly_regular(parameters=True)  # long time
(297, 40, 7, 5)
```

```python
>>> from sage.all import *
>>> G = graphs.UnitaryDualPolarGraph(Integer(5),Integer(2)); G # long time
Unitary Dual Polar Graph DU(5, 2); GQ(8, 4): Graph on 297 vertices
>>> G.is_strongly_regular(parameters=True) # long time
(297, 40, 7, 5)
```

Another way to get the generalized quadrangle of order \((2,4)\):

```python
sage: G = graphs.UnitaryDualPolarGraph(4,2); G  # needs sage.libs.gap
Unitary Dual Polar Graph DU(4, 2); GQ(2, 4): Graph on 27 vertices
sage: G.is_isomorphic(graphs.OrthogonalPolarGraph(6,2,'-'))  # needs sage.libs.gap
True
```

```python
>>> from sage.all import *
>>> G = graphs.UnitaryDualPolarGraph(Integer(4),Integer(2)); G  # needs sage.libs.gap
Unitary Dual Polar Graph DU(4, 2); GQ(2, 4): Graph on 27 vertices
>>> G.is_isomorphic(graphs.OrthogonalPolarGraph(Integer(6),Integer(2),'-')) # needs sage.libs.gap
True
```

A bigger graph:
static UnitaryPolarGraph \((m, q, \text{algorithm}='gap')\)

Return the Unitary Polar Graph \(U(m, q)\).

For more information on Unitary Polar graphs, see the page of Andries Brouwer's website.

INPUT:

- \(m, q\) – integers; \(q\) must be a prime power
- \text{algorithm} – string (default: "gap"); if set to 'gap' then the computation is carried via GAP library interface, computing totally singular subspaces, which is faster for large examples (especially with \(q > 2\)). Otherwise it is done directly.

EXAMPLES:

\begin{verbatim}
sage: \# needs sage.libs.gap	rsage: G = graphs.UnitaryPolarGraph(4,2); G
Unitary Polar Graph U(4, 2); G

sage: G.is_strongly_regular(parameters=True)
(45, 12, 3, 3)
sage: graphs.UnitaryPolarGraph(5,2).is_strongly_regular(parameters=True)
(165, 36, 3, 9)

sage: graphs.UnitaryPolarGraph(6,2)
not tested (long time)
Unitary Polar Graph U(6, 2): Graph on 693 vertices
\end{verbatim}

static UstimenkoGraph \((m, q)\)

Return the Ustimenko graph with parameters \((m, q)\).

This is the distance 1 or 2 graph of the dual polar graph \(C_{m-1}(q)\). The graph is distance-regular with parameters \((d, q^2, \binom{d}{1}q - 1, \binom{m+1}{1}q - 1)\), where \(\binom{\cdot}{\cdot}_q\) is the \(q\)-binomial coefficient.

INPUT:

- \(m, q\) – integers; \(q\) must be a prime power and \(m > 1\)
EXAMPLES:

```sage
sage: G = graphs.UstimenkoGraph(4, 2)
˓→ # needs sage.libs.gap
sage: G.is_distance_regular(True)
˓→ # needs sage.libs.gap
([70, 32, None], [None, 1, 35])
```

```python
>>> from sage.all import *
>>>
>>> G = graphs.UstimenkoGraph(Integer(4), Integer(2))
>>> G.is_distance_regular(True)
˓→ # needs sage.libs.gap
([70, 32, None], [None, 1, 35])
```

REFERENCES:

static WagnerGraph()

Return the Wagner Graph.

See the Wikipedia article Wagner_graph.

EXAMPLES:

```sage
sage: # needs networkx
sage: g = graphs.WagnerGraph()
sage: g.order()
8
sage: g.size()
12
sage: g.girth()
4
sage: g.diameter()
2
sage: g.show()  # needs sage.plot
```

```python
>>> from sage.all import *
>>>
>>> g = graphs.WagnerGraph()
>>> g.order()
8
>>> g.size()
12
>>> g.girth()
4
>>> g.diameter()
2
>>> g.show()  # needs sage.plot
```

static WatkinsSnarkGraph()

Return the Watkins Snark Graph.

The Watkins Graph is a snark with 50 vertices and 75 edges. For more information, see the Wikipedia article Watkins_snark.

EXAMPLES:
static WellsGraph()

Return the Wells graph.

For more information on the Wells graph (also called Armanios-Wells graph), see this page.

The implementation follows the construction given on page 266 of [BCN1989]. This requires to create intermediate graphs and run a small isomorphism test, while everything could be replaced by a pre-computed list of edges. I believe that it is better to keep “the recipe” in the code, however, as it is quite unlikely that this could become the most time-consuming operation in any sensible algorithm, and …. “preserves knowledge”, which is what open-source software is meant to do.

EXAMPLES:

```python
sage: g = graphs.WellsGraph(); g
Wells graph: Graph on 32 vertices
sage: g.order()
32
sage: g.size()
80
sage: g.girth()
5
sage: g.diameter()
4
sage: g.chromatic_number()
4
sage: g.is_regular(k=5)
True
```

(continues on next page)
4 >>> g.is_regular(k=Integer(5))
True

static WheelGraph \((n) \)

Returns a Wheel graph with \(n \) nodes.

A Wheel graph is a basic structure where one node is connected to all other nodes and those (outer) nodes are connected cyclically.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each wheel graph will be displayed with the first (0) node in the center, the second node at the top, and the rest following in a counterclockwise manner.

With the wheel graph, we see that it doesn’t take a very large \(n \) at all for the spring-layout to give a counter-intuitive display. (See Graphics Array examples below).

EXAMPLES:

We view many wheel graphs with a Sage Graphics Array, first with this constructor (i.e., the position dictionary filled):

```python
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
    ....:   k = graphs.WheelGraph(i+3)
    ....:   g.append(k)
...sage: for i in range(3):
    ....:   n = []
    ....:   for m in range(3):
    ....:       n.append(g[3*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
    ....:   j.append(n)
...sage: G = graphics_array(j)
sage: G.show() # long time
```

```python
>>> from sage.all import *
>>> # needs sage.plot
>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
...   k = graphs.WheelGraph(i+Integer(3))
...   g.append(k)
...for i in range(Integer(3)):
...   n = []
...   for m in range(Integer(3)):
...       n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
...   j.append(n)
...G = graphics_array(j)
>>> G.show() # long time
```

Next, using the spring-layout algorithm:
sage: # needs networkx sage.plot
sage: import networkx
sage: g = []

sage: for i in range(9):
 : spr = networkx.wheel_graph(i+3)
 : k = Graph(spr)
 : g.append(k)

sage: for i in range(3):
 : n = []
 : for m in range(3):
 : n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
 : j.append(n)

sage: G = graphics_array(j)

sage: G.show() # long time

>>> from sage.all import *

>>> # needs networkx sage.plot

>>> import networkx

>>> g = []

>>> j = []

>>> for i in range(Integer(9)):
 : spr = networkx.wheel_graph(i+Integer(3))
 : k = Graph(spr)
 : g.append(k)

>>> for i in range(Integer(3)):
 : n = []
 : for m in range(Integer(3)):
 : n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
 : j.append(n)

>>> G = graphics_array(j)

>>> G.show() # long time

Compare the plotting:

sage: # needs networkx sage.plot

sage: n = networkx.wheel_graph(23)

sage: spring23 = Graph(n)

sage: posdict23 = graphs.WheelGraph(23)

sage: spring23.show() # long time

sage: posdict23.show() # long time

>>> from sage.all import *

>>> # needs networkx sage.plot

>>> n = networkx.wheel_graph(Integer(23))

>>> spring23 = Graph(n)

>>> posdict23 = graphs.WheelGraph(Integer(23))

>>> spring23.show() # long time

>>> posdict23.show() # long time

static WienerArayaGraph()

Return the Wiener-Araya Graph.

2.1. Common graphs
The Wiener-Araya Graph is a planar hypohamiltonian graph on 42 vertices and 67 edges. For more information, see the Wolfram Page on the Wiener-Araya Graph or Wikipedia article Wiener-Araya_graph.

EXAMPLES:

```python
g = graphs.WienerArayaGraph()
g.order()  # 42

g.size()  # 67

g.girth()  # 4

g.is_planar()  # True

g.is_hamiltonian()  # not tested (30s)  # needs sage.numerical.mip

# needs sage.numerical.mip

g.delete_vertex(g.random_vertex())
g.is_hamiltonian()  # True
```

```python
from sage.all import *
g = graphs.WienerArayaGraph()
g.order()  # 42

g.size()  # 67

g.girth()  # 4

g.is_planar()  # True

g.is_hamiltonian()  # not tested (30s)  # needs sage.numerical.mip

# needs sage.numerical.mip

g.delete_vertex(g.random_vertex())
g.is_hamiltonian()  # True
```

```python
g = graphs.WienerArayaGraph()
g.order()  # 42

g.size()  # 67

g.girth()  # 4

g.is_planar()  # True

g.is_hamiltonian()  # not tested (30s)  # needs sage.numerical.mip

# needs sage.numerical.mip

g.delete_vertex(g.random_vertex())
g.is_hamiltonian()  # True
```

static WindmillGraph (k, n)

Return the Windmill graph $Wd(k, n)$.

The windmill graph $Wd(k, n)$ is an undirected graph constructed for $k \geq 2$ and $n \geq 2$ by joining n copies of the complete graph K_k at a shared vertex. It has $(k - 1)n + 1$ vertices and $nk(k - 1)/2$ edges, girth 3 (if $k > 2$), radius 1 and diameter 2. It has vertex connectivity 1 because its central vertex is an articulation point; however, like the complete graphs from which it is formed, it is $(k - 1)$-edge-connected. It is trivially perfect and a block graph.

See also:

- Wikipedia article Windmill_graph
- GraphGenerators.StarGraph()
- GraphGenerators.FriendshipGraph()

EXAMPLES:
The Windmill graph $W_d(2, n)$ is a star graph:

```python
sage: n = 5
sage: W = graphs.WindmillGraph(2, n)
sage: W.is_isomorphic( graphs.StarGraph(n) )
True
```

The Windmill graph $W_d(3, n)$ is the Friendship graph F_n:

```python
sage: n = 5
sage: W = graphs.WindmillGraph(3, n)
sage: W.is_isomorphic( graphs.FriendshipGraph(n) )
True
```

The Windmill graph $W_d(3, 2)$ is the Butterfly graph:

```python
sage: W = graphs.WindmillGraph(3, 2)
sage: W.is_isomorphic( graphs.ButterflyGraph() )
True
```

The Windmill graph $W_d(k, n)$ has chromatic number k:

```python
sage: n,k = 5,6
sage: W = graphs.WindmillGraph(k, n)
sage: W.chromatic_number() == k
True
```

```python
>>> from sage.all import *
>>> n = Integer(5)
>>> W = graphs.WindmillGraph(Integer(2), n)
>>> W.is_isomorphic( graphs.StarGraph(n) )
True
```

```python
>>> from sage.all import *
>>> n = Integer(5)
>>> W = graphs.WindmillGraph(Integer(3), n)
>>> W.is_isomorphic( graphs.FriendshipGraph(n) )
True
```

```python
>>> from sage.all import *
>>> n = Integer(5)
>>> W = graphs.WindmillGraph(Integer(3), Integer(2))
>>> W.is_isomorphic( graphs.ButterflyGraph() )
True
```

```python
>>> from sage.all import *
>>> n,k = Integer(5),Integer(6)
>>> W = graphs.WindmillGraph(k, n)
>>> W.chromatic_number() == k
True
```

static WorldMap()

Return the Graph of all the countries, in which two countries are adjacent in the graph if they have a common boundary.

This graph has been built from the data available in The CIA World Factbook [CIA] (2009-08-21).

The returned graph G has a member $G.gps_coordinates$ equal to a dictionary containing the GPS coordinates of each country’s capital city.
EXAMPLES:

```python
sage: g = graphs.WorldMap()
sage: g.has_edge("France", "Italy")
True
sage: g.gps_coordinates["Bolivia"]
[[17, 'S'], [65, 'W']]
sage: g.connected_component_containing_vertex('Ireland', sort=True)
['Ireland', 'United Kingdom']
```

```python
>>> from sage.all import *
>>> g = graphs.WorldMap()
>>> g.has_edge("France", "Italy")
True
>>> g.gps_coordinates["Bolivia"]
[[17, 'S'], [65, 'W']]
>>> g.connected_component_containing_vertex('Ireland', sort=True)
['Ireland', 'United Kingdom']
```

```
basic = <module 'sage.graphs.generators.basic' from '/home/user/sage-git/src/sage/graphs/generators/basic.py'>

static chang_graphs()
Return the three Chang graphs.

Three of the four strongly regular graphs of parameters (28, 12, 6, 4) are called the Chang graphs. The fourth is the line graph of $K_8$. For more information about the Chang graphs, see the Wikipedia article Chang_graphs or https://www.win.tue.nl/~aeb/graphs/Chang.html.

EXAMPLES: check that we get 4 non-isomorphic s.r.g.'s with the same parameters:

```python
sage: chang_graphs = graphs.chang_graphs()
sage: K8 = graphs.CompleteGraph(8)
sage: T8 = K8.line_graph()
sage: four_srg = chang_graphs + [T8]
sage: for g in four_srg:
 : print(g.is_strongly_regular(parameters=True))
(28, 12, 6, 4)
(28, 12, 6, 4)
(28, 12, 6, 4)
(28, 12, 6, 4)
sage: from itertools import combinations
sage: for g1, g2 in combinations(four_srg, 2):
 : assert not g1.is_isomorphic(g2)
```

```python
>>> from sage.all import *
>>> chang_graphs = graphs.chang_graphs()
>>> K8 = graphs.CompleteGraph(Integer(8))
>>> T8 = K8.line_graph()
>>> four_srg = chang_graphs + [T8]
>>> for g in four_srg:
... print(g.is_strongly_regular(parameters=True))
(28, 12, 6, 4)
(28, 12, 6, 4)
(28, 12, 6, 4)
(28, 12, 6, 4)
>>> from itertools import combinations
```

(continues on next page)
for g1, g2 in combinations(four_srg, Integer(2)):
    assert not g1.is_isomorphic(g2)

Construct the Chang graphs by Seidel switching:

c3c5 = graphs.CycleGraph(3).disjoint_union(graphs.CycleGraph(5))
c8 = graphs.CycleGraph(8)
s = [K8.subgraph_search(c8).edges(sort=False),
     K8.subgraph_search(c3c5).edges(sort=False)]

[chessboard = <module 'sage.graphs.generators.chessboard' from
'/home/user/sage-git/src/sage/graphs/generators/chessboard.py'>
classical_geometries = <module
'sage.graphs.generators.classical_geometries' from
'/home/user/sage-git/src/sage/graphs/generators/classical_geometries.py'>

cocliques_HoffmannSingleton()

Return the graph obtained from the cocliques of the Hoffmann-Singleton graph.

This is a distance-regular graph with intersection array [15, 14, 10, 3; 1, 5, 12, 15].

REFERENCES:

The construction of this graph can be found in [BCN1989] p. 392.
static cographs \((n, \text{as\_graph}=\text{True, immutable}=\text{False})\)

Return an iterator over the cographs of order \(n\).

A cograph is a \(P_4\)-free graph, that is a graph without induced path of order 4. Any cograph may be constructed, starting from the single vertex graph, by a sequence of \texttt{sage.graphs.graph.Graph.join()} and \texttt{sage.graphs.generic_graph.GenericGraph.disjoint_union()} operations. See the Wikipedia article Cograph for more details.

This method implements the generator of all cographs of order \(n\) proposed in [JPD2018]. The algorithm generates one by one every cograph with \(n\) nodes, and each cograph is generated by using its previous cograph. The time to construct the first cograph is \(O(n)\) and the time spent between two consecutive outputs is \(O(n)\). Hence, the overall complexity of the algorithm is \(O(n \times M_n)\), where \(n\) is the number of nodes and \(M_n\) is the total number of cographs with \(n\) nodes (see OEIS sequence A000084).

**INPUT:**

- \(n\) – an integer larger or equal to 1
- \texttt{as\_graph} – boolean (default: \texttt{True}); whether to return graphs or the tree data structure encoding the graph
- \texttt{immutable} – boolean (default: \texttt{False}); whether to return an immutable or a mutable graph. This parameter is used only when \texttt{as\_graph} is \texttt{True}.

**EXAMPLES:**

The output can be either cographs or graphs:

```python
sage: for t in graphs.cographs(3, as_graph=False):
 print(t)
[J (0) (1) (2)]
[J [U (0) (1) (2)]]
[J (0) [U (1) (2)]]
[J [U (0) [J (1) (2)]]]
sage: for g in graphs.cographs(3, as_graph=True):
 print(g.edges(labels=False, sort=True))
[(0, 1), (0, 2), (1, 2)]
[]
[(0, 1), (0, 2)]
[(1, 2)]
```

```python
>>> from sage.all import *
>>> for t in graphs.cographs(Integer(3), as_graph=False):
... print(t)
[J (0) (1) (2)]
[J [U (0) (1) (2)]]
[J (0) [U (1) (2)]]
[J [U (0) [J (1) (2)]]]
>>> for g in graphs.cographs(Integer(3), as_graph=True):
... print(g.edges(labels=False, sort=True))
[(0, 1), (0, 2), (1, 2)]
[]
[(0, 1), (0, 2)]
[(1, 2)]
```

Check that we agree with OEIS sequence A000084:

```python
sage: [sum(1 for _ in graphs.cographs(n, as_graph=False))
 for n in range(1, 8)]
[1, 2, 4, 10, 24, 66, 180]
```
cographs_module = <module 'sage.graphs.cographs' from '/home/user/sage-git/src/sage/graphs/cographs.py'>

cospectral_graphs (vertices, matrix_function=None, graphs=None)

Find all sets of graphs on vertices vertices (with possible restrictions) which are cospectral with respect to a constructed matrix.

INPUT:

• vertices – The number of vertices in the graphs to be tested

• matrix_function – A function taking a graph and giving back a matrix. This defaults to the adjacency matrix. The spectra examined are the spectra of these matrices.

• graphs – One of three things:
  – None (default) – test all graphs having vertices vertices
  – a function taking a graph and returning True or False - test only the graphs on vertices vertices for which the function returns True
  – a list of graphs (or other iterable object) – these graphs are tested for cospectral sets. In this case, vertices is ignored.

OUTPUT:

A list of lists of graphs. Each sublist will be a list of cospectral graphs (lists of cardinality 1 being omitted).

See also:

Graph.is_strongly_regular() – tests whether a graph is strongly regular and/or returns its parameters.

EXAMPLES:

```python
sage: g = graphs.cospectral_graphs(5) # needs sage.modules
sage: sorted(sorted(g.graph6_string() for g in glist) for glist in g) # needs sage.modules
[["Dr?", "Ds_"]]
sage: g[0][1].am().charpoly()==g[0][1].am().charpoly() # needs sage.modules
True
```

There are two sets of cospectral graphs on six vertices with no isolated vertices:
There is one pair of cospectral trees on eight vertices:

```
sage: g = graphs.cospectral_graphs(6, graphs=graphs.trees(8)) # needs sage.modules
sage: sorted(sorted(g.graph6_string() for g in glist) for glist in g)
[[G1PC?C, G1QCC?]]
sage: g[0][1].laplacian_matrix().charpoly()==g[0][1].laplacian_matrix().charpoly()
True
>>> from sage.all import *
```

There are two sets of cospectral graphs (with respect to the Laplacian matrix) on six vertices:

```
sage: g = graphs.cospectral_graphs(6, matrix_function=lambda g: g.laplacian_matrix())
sage: sorted(sorted(g.graph6_string() for g in glist) for glist in g)
[['Edq_', 'ErcG'], ['Exoo', 'EzcG']]
sage: g[0][1].laplacian_matrix().charpoly()==g[0][1].laplacian_matrix().charpoly()
True
```
To find cospectral graphs with respect to the normalized Laplacian, assuming the graphs do not have an isolated vertex, it is enough to check the spectrum of the matrix $D^{-1}A$, where $D$ is the diagonal matrix of vertex degrees, and $A$ is the adjacency matrix. We find two such cospectral graphs (for the normalized Laplacian) on five vertices:

```python
sage: def DinverseA(g):
 A = g.adjacency_matrix().change_ring(QQ)
 for i in range(g.order()):
 A.rescale_row(i, 1 / len(A.nonzero_positions_in_row(i)))
 return A
sage: g = graphs.cospectral_graphs(5, matrix_function=DinverseA, # needs sage.libs.pari sage.modules
 graphs=lambda g: min(g.degree()) > 0)
sage: sorted(sorted(g.graph6_string() for g in glist) for glist in g) # needs sage.modules
[[Dlg, Ds_]]
```

```python
sage: (g[0][1].laplacian_matrix(normalized=True).charpoly() # needs sage.modules sage.symbolic
 == g[0][1].laplacian_matrix(normalized=True).charpoly())
True
```

Return a distance-regular graph with intersection array $[9, 8, 6, 3; 1, 1, 3, 8]$.

**EXAMPLES:**

```
sage: # long time, needs sage.modules sage.rings.finite_rings
sage: G = graphs.distance_3_doubly_truncated_Golay_code_graph()
sage: G.is_distance_regular(True) # long time (due to above)
([9, 8, 6, 3, None], [None, 1, 1, 3, 8])
```

```
>>> from sage.all import *
>>> # long time, needs sage.modules sage.rings.finite_rings
>>> G = graphs.distance_3_doubly_truncated_Golay_code_graph()
>>> G.is_distance_regular(True) # long time (due to above)
([9, 8, 6, 3, None], [None, 1, 1, 3, 8])
```

**ALGORITHM:**

Compute the binary Golay code and truncate it twice. Compute its coset graph. Take a vertex and compute the set of vertices at distance 3 from the vertex chosen. This set constitutes the set of vertices of our distance-regular graph. Moreover we have an edge $(u, v)$ if the coset graph contains such edge.

**REFERENCES:**

Description and construction of this graph are taken from [BCN1989] p. 364.

distance_regular = <module 'sage.graphs.generators.distance_regular' from '/home/user/sage-git/src/sage/graphs/generators/distance_regular.
cpython-310-x86_64-linux-gnu.so'>

**static distance_regular_graph**(arr, existence=False, check=True)

Return a distance-regular graph with the intersection array given.

**INPUT:**

- arr – list; intersection array of the graph
- existence – boolean (optional); instead of building the graph return:
  - True – if a graph with the given intersection array exists;
  - False – if there is no graph with the given intersection array;
  - Unknown – if Sage doesn’t know if such a graph exists.
- check – boolean (default: True); if True, then checks that the result of this function has the given intersection array

**EXAMPLES:**

```
sage: graphs.distance_regular_graph([21,20,16,1,2,12], existence=True)
True
sage: G = graphs.distance_regular_graph([12,11,10,7,1,2,5,12], check=False) # needs sage.combinat sage.modules
sage: G.is_distance_regular(True) # needs sage.combinat sage.modules
([12, 11, 10, 7, None], [None, 1, 2, 5, 12])
```

```
>>> from sage.all import *
>>> graphs.distance_regular_graph([Integer(21),Integer(20),Integer(16),
 Integer(1),Integer(2),Integer(12)], existence=True)
True
```

(continues on next page)
GraphTheory, Release 10.4

(continued from previous page)

```python
>>> G = graphs.distance_regular_graph([Integer(12), Integer(11), Integer(10),
 Integer(7), Integer(1), Integer(2), Integer(5), Integer(12)], check=False)
 # needs sage.combinat sage.modules
>>> G.is_distance_regular(True)
 # needs sage.combinat sage.modules
([12, 11, 10, 7, None], [None, 1, 2, 5, 12])
```

REFERENCES:

See [BCN1989] and [VDKT2016].

```python
families = <module 'sage.graphs.generators.families' from
'/home/user/sage-git/src/sage/graphs/generators/families.py'>

fullerenes(order, ipr=False)

Returns a generator which creates fullerene graphs using the buckygen generator (see [BGM2012]).

INPUT:

- `order` – a positive even integer smaller than or equal to 254. This specifies the number of vertices in
 the generated fullerenes.

- `ipr` – (default: `False`); if `True` only fullerenes that satisfy the Isolated Pentagon Rule are generated.
 This means that no pentagonal faces share an edge.

OUTPUT:

A generator which will produce the fullerene graphs as Sage graphs with an embedding set. These will be
simple graphs: no loops, no multiple edges, no directed edges.

See also:

- `set_embedding()`, `get_embedding()` – get/set methods for embeddings.

EXAMPLES:

There are 1812 isomers of \(C_{60} \), i.e., 1812 fullerene graphs on 60 vertices:

```python
sage: gen = graphs.fullerenes(60)       # optional - buckygen
sage: len(list(gen))                    # optional - buckygen
1812

>>> from sage.all import *
>>> gen = graphs.fullerenes(Integer(60)) # optional - buckygen
>>> len(list(gen))                      # optional - buckygen
1812
```

However, there is only one IPR fullerene graph on 60 vertices: the famous Buckminster Fullerene:

```python
sage: gen = graphs.fullerenes(60, ipr=True) # optional - buckygen
sage: next(gen)                              # optional - buckygen
Graph on 60 vertices
sage: next(gen)                              # optional - buckygen
Traceback (most recent call last):
  ...
StopIteration
```

2.1. Common graphs
The unique fullerene graph on 20 vertices is isomorphic to the dodecahedron graph.

```python
sage: gen = graphs.fullerenes(20)
sage: g = next(gen)
sage: g.is_isomorphic(graphs.DodecahedralGraph())
True
sage: g.get_embedding()
{1: [2, 3, 4],
  2: [1, 5, 6],
  3: [1, 7, 8],
  4: [1, 9, 10],
  5: [2, 10, 11],
  6: [2, 12, 7],
  7: [3, 6, 13],
  8: [3, 14, 9],
  9: [4, 8, 15],
  10: [4, 16, 5],
  11: [5, 17, 12],
  12: [6, 11, 18],
  13: [7, 18, 14],
  14: [8, 13, 19],
  15: [9, 19, 16],
  16: [10, 15, 17],
  17: [11, 16, 20],
  18: [12, 20, 13],
  19: [14, 20, 15],
  20: [17, 19, 18])
sage: g.plot3d(layout='spring')
Graphics3d Object
```
fusenes \((\text{hexagon_count, benzenoids=}False)\)

Returns a generator which creates fusenes and benzenoids using the benzene generator (see [BCH2002]). Fusenes are planar polycyclic hydrocarbons with all bounded faces hexagons. Benzenoids are fusenes that are subgraphs of the hexagonal lattice.

INPUT:

- `hexagon_count` – a positive integer smaller than or equal to 30. This specifies the number of hexagons in the generated benzenoids.
- `benzenoids` – (default: `False`); if `True` only benzenoids are generated.

OUTPUT:

A generator which will produce the fusenes as Sage graphs with an embedding set. These will be simple graphs: no loops, no multiple edges, no directed edges.

See also:

- `set_embedding(), get_embedding()` – get/set methods for embeddings.

EXAMPLES:

There is a unique fusene with 2 hexagons:

```
sage: gen = graphs.fusenes(2) # optional - benzene
sage: len(list(gen)) # optional - benzene
1
```

This fusene is naphthalene \((\text{C}_{10}\text{H}_8)\). In the fusene graph the H-atoms are not stored, so this is a graph on just 10 vertices:

```
sage: gen = graphs.fusenes(2) # optional - benzene
sage: next(gen) # optional - benzene
Graph on 10 vertices
sage: next(gen) # optional - benzene
Traceback (most recent call last):
  ... StopIteration
```
There are 6505 benzenoids with 9 hexagons:

```python
sage: gen = graphs.fusenes(9, benzenoids=True)  # optional - benzene
sage: len(list(gen))  # optional - benzene
6505
```

static graph_3O73()

Return the graph related to the group 3O(7, 3).

This graph is distance-regular with intersection array [117, 80, 24, 1; 1, 12, 80, 117].

The graph is also distance transitive with 3.O(7, 3) as automorphism group.

EXAMPLES:

```python
sage: G = graphs.graph_3O73()  # optional - internet...
-> gap_package_atlasrep
sage: G.is_distance_regular(True)  # optional - internet...
-> gap_package_atlasrep
([[117, 80, 24, 1, None], [None, 1, 12, 80, 117]])
```

REFERENCES:

A description and construction of this graph can be found in [BCN1989] p. 400.

static line_graph_forbidden_subgraphs()

Returns the 9 forbidden subgraphs of a line graph.

See the Wikipedia article Line_graph for more information.

The graphs are returned in the ordering given by the Wikipedia drawing, read from left to right and from top to bottom.

EXAMPLES:
GraphTheory, Release 10.4

sage: graphs.line_graph_forbidden_subgraphs()

[Claw graph: Graph on 4 vertices,
Graph on 6 vertices,
Graph on 6 vertices,
Graph on 5 vertices,
Graph on 6 vertices,
Graph on 6 vertices,
Graph on 6 vertices,
Graph on 6 vertices,
Graph on 5 vertices]

from sage.all import *

graphs.line_graph_forbidden_subgraphs()

[Claw graph: Graph on 4 vertices,
Graph on 6 vertices,
Graph on 6 vertices,
Graph on 5 vertices,
Graph on 6 vertices,
Graph on 6 vertices,
Graph on 6 vertices,
Graph on 6 vertices,
Graph on 5 vertices]

static locally_GQ42_distance_transitive_graph()

Return the unique amply regular graph with $\mu = 6$ which is locally a generalised quadrangle.

This graph is distance-regular with intersection array $[45, 32, 12, 1; 1, 6, 32, 45]$.

This graph is also distance-transitive.

EXAMPLES:

sage: G = graphs.locally_GQ42_distance_transitive_graph() # optional -
internet gap_package_atlasrep
sage: G.is_distance_regular(True) # optional -
internet gap_package_atlasrep
([45, 32, 12, 1, None], [None, 1, 6, 32, 45])

REFERENCES:

A description of this graph can be found in [BCN1989] p.399. This construction is due to Dima Pasechnik.

nauty_genbg (options='', debug=False)

Return a generator which creates bipartite graphs from nauty's genbg program.

INPUT:

- options -- string (default: ""); a string passed to genbg as if it was run at a system command line.
 At a minimum, you must pass the number of vertices you desire in each side. Sage expects the bipartite graphs to be in nauty’s “graph6” format, do not set an option to change this default or results will be unpredictable.
debug – boolean (default: False); if True the first line of geng’s output to standard error is captured and the first call to the generator’s `next()` function will return this line as a string. A line leading with “>A” indicates a successful initiation of the program with some information on the arguments, while a line beginning with “>E” indicates an error with the input.

The possible options, obtained as output of `genbg --help`:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>n1</code></td>
<td>the number of vertices in the first class. We must have <code>n1=1..24</code>.</td>
</tr>
<tr>
<td><code>n2</code></td>
<td>the number of vertices in the second class. We must have <code>n2=0..32</code> and <code>n1+n2=1..32</code>.</td>
</tr>
<tr>
<td><code>min:e:maxe</code></td>
<td>a range for the number of edges. <code><int>:<int></code> means '<int> or more' except in the case 0:0.</td>
</tr>
<tr>
<td><code>res/mod</code></td>
<td>only generate subset <code>res</code> out of subsets 0..<code>mod-1</code></td>
</tr>
<tr>
<td><code>-c</code></td>
<td>only write connected graphs</td>
</tr>
<tr>
<td><code>-z</code></td>
<td>all the vertices in the second class must have different neighbourhoods</td>
</tr>
<tr>
<td><code>-F</code></td>
<td>the vertices in the second class must have at least two neighbours of degree at least 2</td>
</tr>
<tr>
<td><code>-L</code></td>
<td>there is no vertex in the first class whose removal leaves the vertices in the second class unreachable from each other</td>
</tr>
<tr>
<td><code>-Y<int></code></td>
<td>two vertices in the second class must have at least <code><int></code> common neighbours</td>
</tr>
<tr>
<td><code>-Z<int></code></td>
<td>two vertices in the second class must have at most <code><int></code> common neighbours</td>
</tr>
<tr>
<td><code>-A</code></td>
<td>no vertex in the second class has a neighbourhood which is a subset of another vertex's neighbourhood in the second class</td>
</tr>
<tr>
<td><code>-D<int></code></td>
<td>specify an upper bound for the maximum degree. Example: <code>-D6</code>. You can also give separate maxima for the two parts, for example: <code>-D5:6</code></td>
</tr>
<tr>
<td><code>-d<int></code></td>
<td>specify a lower bound for the minimum degree. Again, you can specify it separately for the two parts, for example <code>-d1:2</code></td>
</tr>
<tr>
<td><code>-v</code></td>
<td>display counts by number of edges to stderr</td>
</tr>
<tr>
<td><code>-l</code></td>
<td>canonically label output graphs</td>
</tr>
</tbody>
</table>

Options which cause `genbg` to use an output format different than the `graph6` format are not listed above (`-s`, `-a`) as they will confuse the creation of a Sage graph. Option `-q` which suppress auxiliary output (except from `-v`) should never be used as we are unable to recover the partition of the vertices of the bipartite graph without the auxiliary output. Hence the partition of the vertices of returned bipartite graphs might not respect the requirement.

The `res/mod` option can be useful when using the output in a routine run several times in parallel.

OUTPUT:

A generator which will produce the graphs as `BipartiteGraph`. These will be simple bipartite graphs: no loops, no multiple edges, no directed edges.

EXAMPLES:

The generator can be used to construct bipartite graphs for testing, one at a time (usually inside a loop). Or it can be used to create an entire list all at once if there is sufficient memory to contain it:

```python
sage: gen = graphs.nauty_genbg("1 1")
sage: next(gen)
Bipartite graph on 2 vertices
```
sage: next(gen)
Bipartite graph on 2 vertices
sage: next(gen)
Traceback (most recent call last):
...
StopIteration

>>> from sage.all import *

>>> gen = graphs.nauty_genbg("1 1")

>>> next(gen)
Bipartite graph on 2 vertices

>>> next(gen)
Bipartite graph on 2 vertices

>>> next(gen)
Traceback (most recent call last):
...
StopIteration

Connected bipartite graphs of order 6 with different number of vertices in each side:

sage: gen = graphs.nauty_genbg("1 5 -c")
sage: len(list(gen))
1

sage: gen = graphs.nauty_genbg("2 4 -c")
sage: len(list(gen))
6

sage: gen = graphs.nauty_genbg("3 3 -c")
sage: len(list(gen))
13

Use \texttt{nauty_geng()} instead if you want the list of all bipartite graphs of order \(n\). For instance, the list of all connected bipartite graphs of order 6, which agrees with OEIS sequence A005142:

sage: gen = graphs.nauty_genbg("-b -c 6")
sage: len(list(gen))
17

The \texttt{debug} switch can be used to examine \texttt{genbg}'s reaction to the input in the \texttt{options} string. A message starting with “>A” indicates success and a message starting with “>E” indicates a failure:
sage: gen = graphs.nauty_genbg("2 3", debug=True)
sage: print(next(gen))
> A ... genbg n=2+3 e=0:6 d=0:0 D=3:2
sage: gen = graphs.nauty_genbg("-c2 3", debug=True)
sage: next(gen)
> E Usage: ... genbg [-c -ugs -vq -lzF] [-Z#] [-D#] [-A] [-d#|-d#:] [-D#|-D#:] n1 n2...

>>> from sage.all import *
>>> gen = graphs.nauty_genbg("2 3", debug=True)
>>> print(next(gen))
>>> gen = graphs.nauty_genbg("-c2 3", debug=True)
>>> next(gen)
> E Usage: ... genbg [-c -ugs -vq -lzF] [-Z#] [-D#] [-A] [-d#|-d#:] [-D#|-D#:] n1 n2...

Check that the partition of the bipartite graph is consistent:

sage: gen = graphs.nauty_genbg("3 3")
sage: left = set(range(3))
sage: for g in gen:
..... if g.left != left:
..... raise ValueError('wrong partition')

>>> from sage.all import *
>>> gen = graphs.nauty_genbg("3 3")
>>> left = set(range(Integer(3)))
>>> for g in gen:
... if g.left != left:
... raise ValueError('wrong partition')

nauty_geng (options=", debug=False)

Return a generator which creates graphs from nauty's geng program.

INPUT:

• options – string (default: "); a string passed to geng as if it was run at a system command line. At a minimum, you must pass the number of vertices you desire. Sage expects the graphs to be in nauty's "graph6" format, do not set an option to change this default or results will be unpredictable.

• debug – boolean (default: False); if True the first line of geng's output to standard error is captured and the first call to the generator's next () function will return this line as a string. A line leading with ">A" indicates a successful initiation of the program with some information on the arguments, while a line beginning with ">E" indicates an error with the input.

The possible options, obtained as output of geng --help:

n : the number of vertices
mine:maxe : <int>:<int> a range for the number of edges
 <int>:0 means '<int> or more' except in the case 0:0
res/mod : only generate subset res out of subsets 0..mod-1
-c : only write connected graphs
-C : only write biconnected graphs
-t : only generate triangle-free graphs
-f : only generate 4-cycle-free graphs

(continues on next page)
Options which cause \texttt{geng} to use an output format different than the graph6 format are not listed above (-u, -g, -s, -y, -h) as they will confuse the creation of a Sage graph. The res/mod option can be useful when using the output in a routine run several times in parallel.

OUTPUT:

A generator which will produce the graphs as Sage graphs. These will be simple graphs: no loops, no multiple edges, no directed edges.

See also:

\texttt{Graph.is_strongly_regular()} – tests whether a graph is strongly regular and/or returns its parameters.

EXAMPLES:

The generator can be used to construct graphs for testing, one at a time (usually inside a loop). Or it can be used to create an entire list all at once if there is sufficient memory to contain it.

```python
sage: gen = graphs.nauty_geng("2")
sage: next(gen)
Graph on 2 vertices
sage: next(gen)
Graph on 2 vertices
sage: next(gen)
Traceback (most recent call last):
  ... 
StopIteration
```

```python
>>> from sage.all import *
>>> gen = graphs.nauty_geng("2")
>>> next(gen)
Graph on 2 vertices
>>> next(gen)
Graph on 2 vertices
>>> next(gen)
Traceback (most recent call last):
  ... 
StopIteration
```

A list of all graphs on 7 vertices. This agrees with OEIS sequence A000088.

```python
sage: gen = graphs.nauty_geng("7")
sage: len(list(gen))
1044
```
>>> from sage.all import *
>>> gen = graphs.nauty_geng("7")
>>> len(list(gen))
1044

A list of just the connected graphs on 7 vertices. This agrees with OEIS sequence A001349.

sage: gen = graphs.nauty_geng("7 -c")
sage: len(list(gen))
853

A list of connected degree exactly 2 graphs on 5 vertices.

sage: gen = graphs.nauty_geng("5 -c -d2 -D2")
sage: len(list(gen))
1

The `debug` switch can be used to examine `geng`'s reaction to the input in the `options` string. We illustrate success. (A failure will be a string beginning with “>E”.) Passing the “-q” switch to `geng` will suppress the indicator of a successful initiation, and so the first returned value might be an empty string if `debug` is True:

sage: gen = graphs.nauty_geng("4", debug=True)
sage: print(next(gen))
> A ... geng -d0D3 n=4 e=0-6
sage: gen = graphs.nauty_geng("4 -q", debug=True)
sage: next(gen)

```python
>>> from sage.all import *
>>> gen = graphs.nauty_geng("4", debug=True)
>>> print(next(gen))
> A ... geng -d0D3 n=4 e=0-6
>>> gen = graphs.nauty_geng("4 -q", debug=True)
>>> next(gen)
```

`nauty_genkteeg(\text{options="", debug=False})`

Return a generator which creates all k-trees using nauty..

A k-tree is an undirected graph formed by starting with a complete graph on $k+1$ vertices and then repeatedly add vertices in such a way that each added vertex v has exactly k neighbors U such that, together, the $k+1$ vertices formed by v and U form a clique. See the Wikipedia article K-tree for more details.

INPUT:

- `options` - string (default: "")
 A string passed to `genkteeg` as if it was run at a system command line. At a minimum, you must pass the number of vertices you desire. Sage expects the graphs to be in
nauty’s “graph6” format, do not set an option to change this default or results will be unpredictable.

- **debug** – boolean (default: False); if True the first line of genktreeg’s output to standard error is captured and the first call to the generator’s next() function will return this line as a string. A line leading with “>A” indicates a successful initiation of the program with some information on the arguments, while a line beginning with “>E” indicates an error with the input.

The possible options, obtained as output of genktreeg --help:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>the number of vertices</td>
</tr>
<tr>
<td>-k<int></td>
<td>the value of 'k' (default: 2)</td>
</tr>
<tr>
<td>res/mod</td>
<td>only generate subset res out of subsets 0..mod-1</td>
</tr>
<tr>
<td>-l</td>
<td>canonically label output graphs</td>
</tr>
</tbody>
</table>

Options which cause genktreeg to use an output format different than the graph6 format are not listed above (-u, -s, -h) as they will confuse the creation of a Sage graph. The res/mod option can be useful when using the output in a routine run several times in parallel.

OUTPUT:

A generator which will produce the graphs as Sage graphs. These will be simple graphs: no loops, no multiple edges, no directed edges.

EXAMPLES:

A k-tree is a maximal graph with treewidth k:

```python
sage: # needs nauty
sage: gen = graphs.nauty_genktreeg("10 -k4")
sage: G = next(gen); G
Graph on 10 vertices
sage: G.treewidth()
4
```

```python
>>> from sage.all import *
>>> # needs nauty
>>> gen = graphs.nauty_genktreeg("10 -k4")
>>> G = next(gen); G
Graph on 10 vertices
>>> G.treewidth()
4
```

A list of all 2-trees with 6, 7 and 8 vertices. This agrees with OEIS sequence A054581:

```python
sage: # needs nauty
sage: gen = graphs.nauty_genktreeg("6")
sage: len(list(gen))
5
sage: gen = graphs.nauty_genktreeg("7")
sage: len(list(gen))
12
sage: gen = graphs.nauty_genktreeg("8")
sage: len(list(gen))
39
```

```python
>>> from sage.all import *
>>> # needs nauty
>>> gen = graphs.nauty_genktreeg("6")
>>> len(list(gen))
```

(continues on next page)
The `debug` switch can be used to examine `geng`'s reaction to the input in the `options` string. We illustrate success. (A failure will be a string beginning with “>E”.) Passing the “-q” switch to `geng` will suppress the indicator of a successful initiation, and so the first returned value might be an empty string if `debug` is `True`:

```
sage: gen = graphs.nauty_genktreeg("7", debug=True)  # needs nauty
sage: print(next(gen))                                # needs nauty
>A ...genktreeg k=2 n=7
```

```
>>> from sage.all import *
>>> gen = graphs.nauty_genktreeg("7", debug=True)  # needs nauty
>>> print(next(gen))                                # needs nauty
>A ...genktreeg k=2 n=7
```

static nauty_gentreeg(
`options=''`, `debug=False`)

Return a generator which creates non-isomorphic trees from nauty's `gentreeg` program.

INPUT:

- `options` – string (default: "'"); a string passed to `gentreeg` as if it was run at a system command line. At a minimum, you must pass the number of vertices you desire. Sage expects the graphs to be in nauty's "sparse6" format, do not set an option to change this default or results will be unpredictable.
- `debug` – boolean (default: False); if `True` the first line of `gentreeg`'s output to standard error is captured and the first call to the generator's `next()` function will return this line as a string. A line leading with “>A” indicates a successful initiation of the program with some information on the arguments, while a line beginning with “>E” indicates an error with the input.

The possible options, obtained as output of `gentreeg` `-help`:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>n</code></td>
<td>the number of vertices. Must be in range 1..128</td>
</tr>
<tr>
<td><code>res/mod</code></td>
<td>only generate subset <code>res</code> out of subsets <code>0..mod-1</code></td>
</tr>
<tr>
<td><code>-D<int></code></td>
<td>an upper bound for the maximum degree</td>
</tr>
<tr>
<td><code>-Z<int>\:<int></code></td>
<td>bounds on the diameter</td>
</tr>
<tr>
<td><code>-q</code></td>
<td>suppress auxiliary output</td>
</tr>
</tbody>
</table>

Options which cause `gentreeg` to use an output format different than the `sparse6` format are not listed above (-p, -l, -u) as they will confuse the creation of a Sage graph. The `res/mod` option can be useful when using the output in a routine run several times in parallel.

OUTPUT:

A generator which will produce the graphs as Sage graphs. These will be simple graphs: no loops, no multiple edges, no directed edges.

See also:

trees() – another generator of trees
EXAMPLES:

The generator can be used to construct trees for testing, one at a time (usually inside a loop). Or it can be
used to create an entire list all at once if there is sufficient memory to contain it:

```python
sage: gen = graphs.nauty_gentreeg("4")
sage: next(gen)
Graph on 4 vertices
sage: next(gen)
Graph on 4 vertices
sage: next(gen)
Traceback (most recent call last):
... StopIteration

>>> from sage.all import *
>>> gen = graphs.nauty_gentreeg("4")
>>> next(gen)
Graph on 4 vertices
>>> next(gen)
Graph on 4 vertices
>>> next(gen)
Traceback (most recent call last):
... StopIteration
```

The number of trees on the first few vertex counts. This agrees with OEIS sequence A000055:

```python
sage: [len(list(graphs.nauty_gentreeg(str(i)))) for i in range(1, 15)]
[1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159]

>>> from sage.all import *
>>> [len(list(graphs.nauty_gentreeg(str(i)))) for i in range(Integer(1), Integer(15))]
[1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159]
```

The debug switch can be used to examine gentreeg’s reaction to the input in the options string. We
illustrate success. (A failure will be a string beginning with “>E”.) Passing the “-q” switch to gentreeg
will suppress the indicator of a successful initiation, and so the first returned value might be an empty string
if debug is True:

```python
sage: gen = graphs.nauty_gentreeg("4", debug=True)
sage: print(next(gen))
>A ...gentreeg ...
sage: gen = graphs.nauty_gentreeg("4 -q", debug=True)
sage: next(gen)
```

```python
>>> from sage.all import *
>>> gen = graphs.nauty_gentreeg("4", debug=True)
>>> print(next(gen))
>A ...gentreeg ...
>>> gen = graphs.nauty_gentreeg("4 -q", debug=True)
>>> next(gen)
```

```
static petersen_family (generate=False)
```
Returns the Petersen family

The Petersen family is a collection of 7 graphs which are the forbidden minors of the linklessly embeddable graphs. For more information see the Wikipedia article Petersen_family.

INPUT:

- `generate` (boolean) – whether to generate the family from the $\Delta - Y$ transformations. When set to `False` (default) a hardcoded version of the graphs (with a prettier layout) is returned.

EXAMPLES:

```python
sage: graphs.petersen_family()
[{'name': 'Petersen graph', 'type': 'Graph on 10 vertices', 'is_planar': True},
 {'name': 'Complete graph', 'type': 'Graph on 6 vertices', 'is_planar': True},
 {'name': 'Multipartite Graph with set sizes [3, 3, 1]', 'type': 'Graph on 7 vertices', 'is_planar': True},
 {'name': 'Graph on 8 vertices', 'type': 'Graph on 8 vertices', 'is_planar': True},
 {'name': 'Graph on 9 vertices', 'type': 'Graph on 9 vertices', 'is_planar': True},
 {'name': 'Graph on 7 vertices', 'type': 'Graph on 7 vertices', 'is_planar': True},
 {'name': 'Graph on 8 vertices', 'type': 'Graph on 8 vertices', 'is_planar': True}]
```

```python
>>> from sage.all import *

>>> graphs.petersen_family()
[{'name': 'Petersen graph', 'type': 'Graph on 10 vertices', 'is_planar': True},
 {'name': 'Complete graph', 'type': 'Graph on 6 vertices', 'is_planar': True},
 {'name': 'Multipartite Graph with set sizes [3, 3, 1]', 'type': 'Graph on 7 vertices', 'is_planar': True},
 {'name': 'Graph on 8 vertices', 'type': 'Graph on 8 vertices', 'is_planar': True},
 {'name': 'Graph on 9 vertices', 'type': 'Graph on 9 vertices', 'is_planar': True},
 {'name': 'Graph on 7 vertices', 'type': 'Graph on 7 vertices', 'is_planar': True},
 {'name': 'Graph on 8 vertices', 'type': 'Graph on 8 vertices', 'is_planar': True}]
```

The two different inputs generate the same graphs:

```python
sage: F1 = graphs.petersen_family(generate=False)
sage: F2 = graphs.petersen_family(generate=True)
```

```python
>>> from sage.all import *

>>> F1 = graphs.petersen_family(generate=False)

>>> F2 = graphs.petersen_family(generate=True)
```

```python
sage: F1 = [g.canonical_label().graph6_string() for g in F1]
sage: F2 = [g.canonical_label().graph6_string() for g in F2]
```

```python
sage: set(F1) == set(F2)
```

```
True
```

```
planar_graphs (order, minimum_degree=None, minimum_connectivity=None, exact_connectivity=False, minimum_edges=None, maximum_edges=None, maximum_face_size=None, only_bipartite=False, dual=False)
```

An iterator over connected planar graphs using the plantri generator.
This uses the plantri generator (see [BM2007]) which is available through the optional package plantri.

Note: The non-3-connected graphs will be returned several times, with all its possible embeddings.

INPUT:
- `order` – a positive integer smaller than or equal to 64. This specifies the number of vertices in the generated graphs.
- `minimum_degree` – (default: None); a value \(\geq 1 \) and \(\leq 5 \), or None. This specifies the minimum degree of the generated graphs. If this is `None` and the order is 1, then this is set to 0. If this is `None` and the minimum connectivity is specified, then this is set to the same value as the minimum connectivity. If the minimum connectivity is also equal to `None`, then this is set to 1.
- `minimum_connectivity` – (default: `None`); a value \(\geq 1 \) and \(\leq 3 \), or `None`. This specifies the minimum connectivity of the generated graphs. If this is `None` and the minimum degree is specified, then this is set to the minimum of the minimum degree and 3. If the minimum degree is also equal to `None`, then this is set to 1.
- `exact_connectivity` – (default: `False`); if `True` only graphs with exactly the specified connectivity will be generated. This option cannot be used with `minimum_connectivity=3`, or if the minimum connectivity is not explicitly set.
- `minimum_edges` – integer (default: None); lower bound on the number of edges
- `maximum_edges` – integer (default: None); upper bound on the number of edges
- `maximum_face_size` – integer (default: `None`); upper bound on the size of a face and so on the maximum degree of the dual graph
- `only_bipartite` – (default: `False`); if `True` only bipartite graphs will be generated. This option cannot be used for graphs with a minimum degree larger than 3.
- `dual` – (default: `False`); if `True` return instead the planar duals of the generated graphs.

OUTPUT:
An iterator which will produce all planar graphs with the given number of vertices as Sage graphs with an embedding set. These will be simple graphs (no loops, no multiple edges, no directed edges) unless the option `dual=True` is used.

See also:
- `set_embedding()`, `get_embedding()` – get/set methods for embeddings.

EXAMPLES:
There are 6 planar graphs on 4 vertices:

```python
sage: gen = graphs.planar_graphs(4)  # optional - plantri
sage: len(list(gen))                # optional - plantri
6
```

```python
>>> from sage.all import *
>>> gen = graphs.planar_graphs(Integer(4))  # optional - plantri
>>> len(list(gen))                         # optional - plantri
6
```

Three of these planar graphs are bipartite:
sage: gen = graphs.planar_graphs(4, only_bipartite=True) # optional - plantri
sage: len(list(gen)) # optional - plantri
3

>>> from sage.all import *
>>> gen = graphs.planar_graphs(Integer(4), only_bipartite=True) # optional - plantri
>>> len(list(gen)) # optional - plantri
3

Setting dual=True gives the planar dual graphs:

sage: gen = graphs.planar_graphs(4, dual=True) # optional - plantri
sage: [u for u in list(gen)] # optional - plantri
[Graph on 4 vertices,
 Multi-graph on 3 vertices,
 Multi-graph on 2 vertices,
 Looped multi-graph on 2 vertices,
 Looped multi-graph on 1 vertex,
 Looped multi-graph on 1 vertex]

The cycle of length 4 is the only 2-connected bipartite planar graph on 4 vertices:

sage: l = list(graphs.planar_graphs(4, minimum_connectivity=2, only_bipartite=True)) # optional - plantri
sage: l[0].get_embedding() # optional - plantri
{1: [2, 3],
 2: [1, 4],
 3: [1, 4],
 4: [2, 3]}

There is one planar graph with one vertex. This graph obviously has minimum degree equal to 0:

sage: list(graphs.planar_graphs(1)) # optional - plantri
[Graph on 1 vertex]

(continues on next page)
Specifying lower and upper bounds on the number of edges:

```
sage: len(list(graphs.planar_graphs(4)))
6
sage: len(list(graphs.planar_graphs(4, minimum_edges=4)))
4
sage: len(list(graphs.planar_graphs(4, maximum_edges=4)))
4
sage: len(list(graphs.planar_graphs(4, minimum_edges=4, maximum_edges=4)))
2
```

Specifying the maximum size of a face:

```
sage: len(list(graphs.planar_graphs(4, maximum_face_size=3)))  # optional - plantri
1
sage: len(list(graphs.planar_graphs(4, maximum_face_size=4)))  # optional - plantri
3
```

```
plantri_gen(options='')
```

Iterator over planar graphs created using the plantri generator.

plantri is a (optional) program that generates certain types of graphs that are embedded on the sphere. It
outputs exactly one member of each isomorphism class, using an amount of memory almost independent of
the number of graphs produced. Isomorphisms are defined with respect to the embeddings, so in some cases
outputs may be isomorphic as abstract graphs.

This method allows for passing command directly to plantri, similarly to method nauty_geng(),
provide that the output format is not changed.

INPUT:

- **options** – string (default: " "); a string passed to plantri as if it was run at a system command line.
 At a minimum, you must pass the number of vertices you desire. Sage expects the output of plantri to
 be in “planar code” format, so do not set an option to change this default or results will be unpredictable.

The possible options are:

- `n` : the number of vertices (the only compulsory parameter).
 This number must be in range '3\cdots 64'.
 It can also be given as "nd", where the suffix "d" means "dual", in which case it is converted by adding 4 then
dividing by 2, i.e., `(28+4)/2 = 16`. In the case of
 triangulations, this calculation yields the number of
 faces, which is the number of vertices in the dual cubic
 graph.

- `d` : output the dual instead of the original graph.
 Note that it is applied only at the output stage. All
 other switches refer to the original graph before the dual
 is taken.

- `o` : Normally, one member of each isomorphism class is written.
 If this switch is given, one member of each O-P
 isomorphism class is written.

- `V` : output only graphs with non-trivial group. If -o is
 given the O-P group is used, the full group otherwise.

- `m<int>` : lower bound on the minimum degree. The default is -m3.
 In the dual graph, this means a lower bound on the minimum
 face size.

- `c<int>` : lower bound on the connectivity. The default is -c3.

- `x` : when used in combination with -cN, the connectivity must
 be exactly N rather than at least N.

- `e` : used to specify bounds on the number of edges.
 There are four possible forms:
 - `e<int>` exactly <int> edges
 - `e:<int>` at most <int> edges
 - `e<int>`: at least <int> edges
 - `e<int>:<int>` between <int> and <int> edges

- `f<int>` : upper bound on the size of a face, and so on the maximum
 degree of the dual.

- `b` but not -p : select eulerian triangulations, where "eulerian"
 means that every vertex has even degree.
 This parameter can be used in combination with
 parameters -c and -x.

(continues on next page)
-p but not -b : select general planar simple graphs. This parameter can be used in combination with parameters -m, -c, -x, -e and -f.

-bp or -pb : select general planar simple bipartite graphs. This parameter can be used in combination with parameters -m, -c, -x, -e and -f, except -c4, -m4, -m5 and -f3.

-P<int> : select triangulations of a disk. These are embedded simple graphs with a distinguished "outer" face. The outer face can be of any size (here called the disk size) but the other faces must be triangles. The argument <int> to -P is the disk size. If no argument (or 0) is given, all disk sizes are permitted. This parameter can be used in combination with parameters -m, -c, and -x.

-q : select simple quadrangulations. These are planar simple graphs for which every face has length 4. This parameter can be used in combination with parameters -c and -m.

-A : select Appolonian networks. These are simple planar triangulations that can be formed starting with `K_4` then repeatedly dividing a face into three by addition of a new vertex. They all have minimum degree and connectivity equal to 3.

res/mod : only generate subset res out of subsets 0..mod-1. The set of objects is divided into mod disjoint classes and only the res-th class is generated.

If -b, -q, -p, -P and -A are absent, the graphs found are triangulations only restricted by connectivity and minimum degree. In this case, there is the possibility of connectivity lower than 3.

Other options listed in the plantri guide might cause unpredictable behavior, in particular those changing the output format of plantri as they will confuse the creation of a Sage graph.

OUTPUT:

An iterator which yields the graphs generated by plantri as Sage Graph.

See also:

- `planar_graphs()` – iterator over connected planar graphs using the plantri generator
- `triangulations()` – iterator over connected planar triangulations using the plantri generator
- `quadrangulations()` – iterator over connected planar quadrangulations using the plantri generator

EXAMPLES:

The generator can be used to construct graphs for testing, one at a time (usually inside a loop). Or it can be used to create an entire list all at once if there is sufficient memory to contain it:
An overview of the number of quadrangulations on up to 12 vertices. This agrees with OEIS sequence A113201:

```sage
sage: for i in range(4, 13):  # optional - plantri
    ... cmd = '-qm2c2 {}'.format(i)
    ... L = len(list(graphs.plantri_gen(cmd)))
    ... print("{:2d} {:3d}\n", format(i, L))
4 1
5 1
6 2
7 3
8 9
9 18
10 62
11 198
12 803

platonic_solids = <module 'sage.graphs.generators.platonic_solids' from '/home/user/sage-git/src/sage/graphs/generators/platonic_solids.py'>
```
quadrangulations(order, minimum_degree=None, minimum_connectivity=None, no_nonfacial_quadrangles=False, dual=False)

An iterator over planar quadrangulations using the plantri generator.

This uses the plantri generator (see [BM2007]) which is available through the optional package plantri.

INPUT:

- **order** – a positive integer smaller than or equal to 64. This specifies the number of vertices in the generated quadrangulations.
- **minimum_degree** – default: None; a value ≥ 2 and ≤ 3, or None. This specifies the minimum degree of the generated quadrangulations. If this is None and the minimum connectivity is specified, then this is set to the same value as the minimum connectivity. If the minimum connectivity is also equal to None, then this is set to 2.
- **minimum_connectivity** – default: None; a value ≥ 2 and ≤ 3, or None. This specifies the minimum connectivity of the generated quadrangulations. If this is None and the option no_nonfacial_quadrangles is set to True, then this is set to 3. Otherwise if this is None and the minimum degree is specified, then this is set to the minimum degree. If the minimum degree is also equal to None, then this is set to 3.
- **no_nonfacial_quadrangles** – default: False; if True only quadrangulations with no non-facial quadrangles are generated. This option cannot be used if minimum_connectivity is set to 2.
- **dual** – default: False; if True return instead the planar duals of the generated graphs.

OUTPUT:

An iterator which will produce all planar quadrangulations with the given number of vertices as Sage graphs with an embedding set. These will be simple graphs (no loops, no multiple edges, no directed edges).

See also:

- set_embedding(), get_embedding() – get/set methods for embeddings.

EXAMPLES:

The cube is the only 3-connected planar quadrangulation on 8 vertices:

```python
sage: # optional - plantri
g = graphs.quadrangulations(8, minimum_connectivity=3).
sage: g = next(gen)
sage: g.is_isomorphic(graphs.CubeGraph(3))
True
sage: next(gen)
Traceback (most recent call last):
  ... StopIteration
```

```python
>>> from sage.all import *
>>> # optional - plantri
>>> gen = graphs.quadrangulations(Integer(8), minimum_connectivity=Integer(3))
>>> g = next(gen)
>>> g.is_isomorphic(graphs.CubeGraph(Integer(3)))
True
>>> next(gen)
```

(continues on next page)
An overview of the number of quadrangulations on up to 12 vertices. This agrees with OEIS sequence A113201:

```
sage: for i in range(4,13):                    # optional - plantri
    L = len(list(graphs.quadrangulations(i)))
    print("{:2d} {:3d}".format(i,L))
4 1
5 1
6 2
7 3
8 9
9 18
10 62
11 198
12 803
```

There are 2 planar quadrangulation on 12 vertices that do not have a non-facial quadrangle:

```
sage: [len([g for g in graphs.quadrangulations(12, no_nonfacial_        
        quadrangles=True)])]  # optional - plantri
[2]
```

Setting dual=True gives the planar dual graphs:

```
sage: [len(g for g in graphs.quadrangulations(12, no_nonfacial_        
        quadrangles=True, dual=True)) ]  # optional - plantri
[10, 10]
```
static shortened_000_111_extended_binary_Golay_code_graph()

Return a distance-regular graph with intersection array $[21, 20, 16, 9, 2, 1; 1, 2, 3, 16, 20, 21]$.

EXAMPLES:

```
sage: # long time, needs sage.modules sage.rings.finite_rings
sage: G = graphs.shortened_000_111_extended_binary_Golay_code_graph()  # 25 s
sage: G.is_distance_regular(True)
([21, 20, 16, 9, 2, 1, None], [None, 1, 2, 3, 16, 20, 21])
```

ALGORITHM:

Compute the extended binary Golay code. Compute its subcode whose codewords start with 000 or 111. Remove the first 3 entries from all the codewords from the new linear code and compute its coset graph.

REFERENCES:

Description and construction of this graph can be found in [BCN1989] p. 365.

static shortened_00_11_binary_Golay_code_graph()

Return a distance-regular graph with intersection array $[21, 20, 16, 6, 2, 1; 1, 2, 6, 16, 20, 21]$.

EXAMPLES:

```
sage: # long time, needs sage.modules sage.rings.finite_rings
sage: G = graphs.shortened_00_11_binary_Golay_code_graph()  # 9 s
sage: G.is_distance_regular(True)
([21, 20, 16, 6, 2, 1, None], [None, 1, 2, 6, 16, 20, 21])
```

ALGORITHM:

Compute the binary Golay code. Compute the subcode whose codewords start with 00 or 11. Remove the first two entries from all codewords of the newly found linear code and compute its coset graph.

REFERENCES:

Description and construction of this graph can be found in [BCN1989] p. 365.
static strongly_regular_graph (v, k, l, mu=-1, existence=False, check=True)

Return a \((v, k, \lambda, \mu)\)-strongly regular graph.

This function relies partly on Andries Brouwer's database of strongly regular graphs. See the documentation of `sage.graphs.strongly_regular_db` for more information.

INPUT:

- \(v, k, l, \mu\) – integers – note that \(\mu\), if unspecified, is automatically determined from \(v, k, l\).
- `existence` (boolean; "False") – instead of building the graph, return:
 - `True` – meaning that a \((v, k, \lambda, \mu)\)-strongly regular graph exists.
 - `Unknown` – meaning that Sage does not know if such a strongly regular graph exists (see `sage.misc.unknown`).
 - `False` – meaning that no such strongly regular graph exists.
- `check` – (boolean) Whether to check that output is correct before returning it. As this is expected to be useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to `True` by default.

EXAMPLES:

Petersen's graph from its set of parameters:

```python
sage: graphs.strongly_regular_graph(10,3,0,1,existence=True)  # needs sage.libs.pari
True
sage: graphs.strongly_regular_graph(10,3,0,1)
complement(Johnson graph with parameters 5,2): Graph on 10 vertices
```

Now without specifying \(\mu\):

```python
sage: graphs.strongly_regular_graph(10,3,0)
complement(Johnson graph with parameters 5,2): Graph on 10 vertices
```

An obviously infeasible set of parameters:

```python
sage: graphs.strongly_regular_graph(5,5,5,5,existence=True)
False
sage: graphs.strongly_regular_graph(5,5,5)
Traceback (most recent call last):
... ValueError: There exists no \((5, 5, 5, 5)\)-strongly regular graph
```
A set of parameters proved in a paper to be infeasible:

```
sage: graphs.strongly_regular_graph(324, 57, 0, 12, existence=True) # needs sage.combinat sage.modules
False
```

```
sage: graphs.strongly_regular_graph(324, 57, 0, 12)
# needs sage.combinat sage.modules
Traceback (most recent call last):
...
EmptySetError: Andries Brouwer’s database reports that no (324, 57, 0, 12)-strongly regular graph exists. Comments: &lt;a href="srgtabrefs.html#GavrilyukMakhnev05">Gavrilyuk & Makhnev</a>&gt; ...
```

A set of parameters unknown to be realizable in Andries Brouwer’s database:

```
sage: graphs.strongly_regular_graph(324, 95, 22, 30, existence=True) # needs sage.combinat
Unknown
```

```
sage: graphs.strongly_regular_graph(324, 95, 22, 30)
# needs sage.combinat
Traceback (most recent call last):
...
RuntimeError: Andries Brouwer’s database reports that no (324, 95, 22, 30)-strongly regular graph is known to exist. Comments:
```

(continues on next page)
A large unknown set of parameters (not in Andries Brouwer’s database):

```python
sage: graphs.strongly_regular_graph(1394,175,0,25,existence=True)  # needs sage.combinat
Unknown
sage: graphs.strongly_regular_graph(1394,175,0,25)  # needs sage.combinat
Traceback (most recent call last):
...:
RuntimeError: Sage cannot figure out if a (1394, 175, 0, 25)-strongly regular graph exists.
```

Test the Claw bound (see 3.D of [BL1984]):

```python
sage: graphs.strongly_regular_graph(2058,242,91,20,existence=True)  # needs sage.combinat
False
```

```python
>>> from sage.all import *
```n
```python
>>> graphs.strongly_regular_graph(Integer(2058),Integer(242),Integer(91),Integer(20),existence=True)  # needs sage.combinat
False
```

static trees (vertices)

Returns a generator of the distinct trees on a fixed number of vertices.

INPUT:

- `vertices` — the size of the trees created.

OUTPUT:

A generator which creates an exhaustive, duplicate-free listing of the connected free (unlabeled) trees with `vertices` number of vertices. A tree is a graph with no cycles.

ALGORITHM:

Uses an algorithm that generates each new tree in constant time. See the documentation for, and implementation of, the `sage.graphs.trees` module, including a citation.

EXAMPLES:

We create an iterator, then loop over its elements.
sage: tree_iterator = graphs.trees(7)
sage: for T in tree_iterator:
 print(T.degree_sequence())

[2, 2, 2, 2, 2, 1, 1]
[3, 2, 2, 2, 1, 1, 1]
[3, 2, 2, 2, 1, 1, 1]
[4, 2, 2, 1, 1, 1, 1]
[3, 3, 2, 1, 1, 1, 1]
[3, 3, 2, 1, 1, 1, 1]
[4, 3, 1, 1, 1, 1, 1]
[3, 2, 2, 2, 1, 1, 1]
[4, 2, 2, 1, 1, 1, 1]
[5, 2, 1, 1, 1, 1, 1]
[6, 1, 1, 1, 1, 1, 1]

The number of trees on the first few vertex counts. This is sequence A000055 in Sloane’s OEIS.

sage: [len(list(graphs.trees(i))) for i in range(0, 15)]
[1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159]

triangulations(order, minimum_degree=None, minimum_connectivity=None, exact_connectivity=False, only_eulerian=False, dual=False)

An iterator over connected planar triangulations using the plantrig generator.

This uses the plantrig generator (see [BM2007]) which is available through the optional package plantrig.

INPUT:

- order — a positive integer smaller than or equal to 64. This specifies the number of vertices in the generated triangulations.
- minimum_degree — (default: None); a value \(\geq 3 \) and \(\leq 5 \), or None. This specifies the minimum degree of the generated triangulations. If this is None and the minimum connectivity is specified, then this is set to the same value as the minimum connectivity. If the minimum connectivity is also equal to None, then this is set to 3.
- minimum_connectivity — (default: None); a value \(\geq 3 \) and \(\leq 5 \), or None. This specifies the minimum connectivity of the generated triangulations. If this is None and the minimum degree is
specified, then this is set to the minimum of the minimum degree and 3. If the minimum degree is also equal to None, then this is set to 3.

- **exact_connectivity** – (default: False); if True only triangulations with exactly the specified connectivity will be generated. This option cannot be used with minimum_connectivity=3, or if the minimum connectivity is not explicitly set.

- **only_eulerian** – (default: False); if True only Eulerian triangulations will be generated. This option cannot be used if the minimum degree is explicitly set to anything else than 4.

- **dual** – (default: False); if True return instead the planar duals of the generated graphs.

OUTPUT:

An iterator which will produce all planar triangulations with the given number of vertices as Sage graphs with an embedding set. These will be simple graphs (no loops, no multiple edges, no directed edges).

See also:

- **set_embedding()**, **get_embedding()** – get/set methods for embeddings.
- **RandomTriangulation()** – build a random triangulation.

EXAMPLES:

The unique planar embedding of the K_4 is the only planar triangulations on 4 vertices:

```python
sage: gen = graphs.triangulations(4)  # optional - plantri
sage: [g.get_embedding() for g in gen]  # optional - plantri

[(1: [2, 3, 4], 2: [1, 4, 3], 3: [1, 2, 4], 4: [1, 3, 2])]
```

but, of course, this graph is not Eulerian:

```python
sage: gen = graphs.triangulations(4, only_eulerian=True)  # optional - plantri
sage: len(list(gen))  # optional - plantri
0
```

The unique Eulerian triangulation on 6 vertices is isomorphic to the octahedral graph.

```python
sage: gen = graphs.triangulations(6, only_eulerian=True)  # optional - plantri
sage: g = next(gen)  # optional - plantri
sage: g.is_isomorphic(graphs.OctahedralGraph())  # optional - plantri
True
```

```python
>>> from sage.all import *
>>> gen = graphs.triangulations(Integer(6), only_eulerian=True)  # optional - plantri
>>> g = next(gen)  # optional - plantri
(continues on next page)```
The minimum degree of a triangulation is 3, so the method cannot output a triangle:

```python
sage: list(graphs.triangulations(3))
[]
```

An overview of the number of 5-connected triangulations on up to 22 vertices. This agrees with OEIS sequence A081621:

```python
sage: for i in range(12, 23):
 L = len(list(graphs.triangulations(i, minimum_connectivity=5)))
 print('{:<3d}'.format(i, L))
12 1
13 0
14 1
15 1
16 3
17 4
18 12
19 23
20 71
21 187
22 627
```

The minimum connectivity can be at most the minimum degree:

```python
sage: gen = next(graphs.triangulations(10, minimum_degree=3, minimum_connectivity=5))
Traceback (most recent call last):
```

(continues on next page)
...
ValueError: Minimum connectivity can be at most the minimum degree.

>>> from sage.all import *
>>> gen = next(graphs.triangulations(Integer(10), minimum_degree=Integer(3), ...
... # optional - plantri
... minimum_connectivity=Integer(5)))
Traceback (most recent call last):
...
ValueError: Minimum connectivity can be at most the minimum degree.

There are 5 triangulations with 9 vertices and minimum degree equal to 4 that are 3-connected, but only one of them is not 4-connected:

sage: len([g for g in graphs.triangulations(9, minimum_degree=4, ...
... # optional - plantri
... minimum_connectivity=3)])
5
sage: len([g for g in graphs.triangulations(9, minimum_degree=4, ...
... # optional - plantri
... minimum_connectivity=3, ...
... exact_connectivity=True)])
1

>>> from sage.all import *
>>> len([g for g in graphs.triangulations(Integer(9), minimum_degree=Integer(4), ...
... # optional - plantri
... minimum_connectivity=Integer(3))])
5
>>> len([g for g in graphs.triangulations(Integer(9), minimum_degree=Integer(4), ...
... # optional - plantri
... minimum_connectivity=Integer(3), ...
... exact_connectivity=True)])
1

Setting dual=True gives the planar dual graphs:

sage: [len(g) for g in graphs.triangulations(9, minimum_degree=4, ...
... # optional plantri
... dual=True)]
[14, 14, 14, 14, 14]

>>> from sage.all import *
>>> [len(g) for g in graphs.triangulations(Integer(9), minimum_degree=Integer(4), ...
... # optional plantri
... dual=True)]
[14, 14, 14, 14, 14]

static vanLintSchrijverGraph()

Return the van Lint-Schrijver graph.

The graph is distance-regular with intersection array [6, 5, 5, 4; 1, 1, 2, 6].

EXAMPLES:
Graph Theory, Release 10.4

```python
sage: G = graphs.vanLintSchrijverGraph()
 # needs sage.modules
sage: G.is_distance_regular(True)
 # needs sage.modules
([6, 5, 5, 4, None], [None, 1, 1, 2, 6])
```

```python
>>> from sage.all import *
>>> G = graphs.vanLintSchrijverGraph()
 # needs sage.modules
>>> G.is_distance_regular(True)
 # needs sage.modules
([6, 5, 5, 4, None], [None, 1, 1, 2, 6])
```

REFERENCES:

For a description of this graph see [BCN1989] p. 373.

```
world_map = <module 'sage.graphs.generators.world_map' from
'/home/user/sage-git/src/sage/graphs/generators/world_map.py'>

sage.graphs.graph_generators.canaug_traverse_edge (g, aut_gens, property, dig=False, loops=False, sparse=True)
```

Main function for exhaustive generation. Recursive traversal of a canonically generated tree of isomorph free graphs satisfying a given property.

INPUT:

- `g` – current position on the tree.
- `aut_gens` – list of generators of \(\text{Aut}(g)\), in list notation.
- `property` – check before traversing below `g`.

EXAMPLES:

```python
sage: from sage.graphs.graph_generators import canaug_traverse_edge
sage: G = Graph(3)
sage: list(canaug_traverse_edge(G, [], lambda x: True))
[Graph on 3 vertices, ... Graph on 3 vertices]
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_generators import canaug_traverse_edge
>>> G = Graph(Integer(3))
>>> list(canaug_traverse_edge(G, [], lambda x: True))
[Graph on 3 vertices, ... Graph on 3 vertices]
```

The best way to access this function is through the graphs() iterator:

Print graphs on 3 or less vertices.

```python
sage: for G in graphs(3):
....: print(G)
Graph on 3 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 3 vertices
```

2.1. Common graphs
```python
>>> from sage.all import *
>>> for G in graphs(Integer(3)):
... print(G)
Graph on 3 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 3 vertices
Print digraphs on 3 or less vertices.

```
sage: for G in graphs(3, augment='vertices'):
    print(G)
Graph on 0 vertices
Graph on 1 vertex
Graph on 2 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 2 vertices
Graph on 3 vertices

>>> from sage.all import *
>>> for G in graphs(Integer(3), augment='vertices'):
    print(G)
Graph on 0 vertices
Graph on 1 vertex
Graph on 2 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 3 vertices
Graph on 2 vertices
Graph on 3 vertices

Print digraphs on 2 or less vertices.

sage: for D in digraphs(2, augment='vertices'):
    print(D)
Digraph on 0 vertices
Digraph on 1 vertex
Digraph on 2 vertices
Digraph on 2 vertices

>>> from sage.all import *
>>> for D in digraphs(Integer(2), augment='vertices'):
    print(D)
Digraph on 0 vertices
Digraph on 1 vertex
Digraph on 2 vertices
Digraph on 2 vertices

sage.graphs.graph_generators.check_aut(aut gens, cut vert, n)

Helper function for exhaustive generation.

At the start, check_aut is given a set of generators for the automorphism group, aut gens. We already know we are looking for an element of the auto- morphism group that sends cut vert to n, and check_aut generates these for the canaug_traverse function.

EXAMPLES:

Note that the last two entries indicate that none of the automorphism group has yet been searched - we are starting at the identity [0, 1, 2, 3] and so far that is all we have seen. We return automorphisms mapping 2 to 3:

sage: from sage.graphs.graph_generators import check_aut
sage: list( check_aut( [ [0, 3, 2, 1], [1, 0, 3, 2], [2, 1, 0, 3], 2, 3] )
[[1, 0, 3, 2], [1, 2, 3, 0]]

2.1. Common graphs
sage.graphs.graph_generators.check_aut_edge(aut_gens, cut_edge, i, j, n, dig=False)

Helper function for exhaustive generation.

At the start, check_aut_edge is given a set of generators for the automorphism group, aut_gens. We already know we are looking for an element of the auto-morphism group that sends cut_edge to \{i, j\}, and check_aut generates these for the canaug_traverse function.

EXAMLES:

Note that the last two entries indicate that none of the automorphism group has yet been searched - we are starting at the identity \{0, 1, 2, 3\} and so far that is all we have seen. We return automorphisms mapping 2 to 3:

```
sage: g = digraphs.Circuit(15)
sage: p = digraphs.Circulant(10, [2, 3])
```

More interestingly, one can get the list of all digraphs that Sage knows how to build by typing `digraphs` in Sage and then hitting Tab.

2.2 Common digraphs

All digraphs in Sage can be built through the `digraphs` object. In order to build a circuit on 15 elements, one can do:

```
sage: g = digraphs.Circuit(15)
```
**ButterflyGraph()**
Return a $n$-dimensional butterfly graph.

**Circuit()**
Return the circuit on $n$ vertices.

**Circulant()**
Return a circulant digraph on $n$ vertices from a set of integers.

**Complete()**
Return a complete digraph on $n$ vertices.

**DeBruijn()**
Return the De Bruijn digraph with parameters $k, n$.

**GeneralizedDeBruijn()**
Return the generalized de Bruijn digraph of order $n$ and degree $d$.

**ImaseItoh()**
Return the digraph of Imase and Itoh of order $n$ and degree $d$.

**Kautz()**
Return the Kautz digraph of degree $d$ and diameter $D$.

**nauty_directg()**
Return an iterator yielding digraphs using nauty's `directg` program.

**Paley()**
Return a Paley digraph on $q$ vertices.

**Path()**
Return a directed path on $n$ vertices.

**RandomDirectedAcyclicGraph()**
Return a random (weighted) directed acyclic graph of order $n$.

**RandomDirectedGNC()**
Return a random growing network with copying (GNC) digraph with $n$ vertices.

**RandomDirectedGNM()**
Return a random labelled digraph on $n$ nodes and $m$ arcs.

**RandomDirectedGNP()**
Return a random digraph on $n$ nodes.

**RandomDirectedGNR()**
Return a random growing network (GN) digraph with $n$ vertices.

**RandomDirectedGNR()**
Return a random growing network with redirection (GNR) digraph.

**RandomSemiComplete()**
Return a random semi-complete digraph of order $n$.

**RandomTournament()**
Return a random tournament on $n$ vertices.

**TransitiveTournament()**
Return a transitive tournament on $n$ vertices.

**tournaments_nauty()**
Iterator over all tournaments on $n$ vertices using Nauty.

**AUTHORS:**
- Emily A. Kirkman (2006)
- Michael C. Yurko (2009)
- David Coudert (2012)

### 2.2.1 Functions and methods

```python
class sage.graphs.digraph_generators.DiGraphGenerators
```

**Bases:** object

A class consisting of constructors for several common digraphs, including orderly generation of isomorphism class representatives.

A list of all graphs and graph structures in this database is available via tab completion. Type `digraphs` and then hit Tab to see which digraphs are available.

The docstrings include educational information about each named digraph with the hopes that this class can be used as a reference.

The constructors currently in this class include:

```python
Random Directed Graphs:
- RandomDirectedAcyclicGraph
- RandomDirectedGN
- RandomDirectedGNC
- RandomDirectedGNP
```

(continues on next page)
ORDERLY GENERATION: digraphs(vertices, property=lambda x: True, augment='edges', size=None)

Accesses the generator of isomorphism class representatives [McK1998]. Iterates over distinct, exhaustive representatives.

INPUT:

• vertices – natural number or None to infinitely generate bigger and bigger digraphs.
• property – any property to be tested on digraphs before generation
• augment – choices:
  – 'vertices' – augments by adding a vertex, and edges incident to that vertex. In this case, all digraphs on up to n=vertices are generated. If for any digraph G satisfying the property, every subgraph, obtained from G by deleting one vertex and only edges incident to that vertex, satisfies the property, then this will generate all digraphs with that property. If this does not hold, then all the digraphs generated will satisfy the property, but there will be some missing.
  – 'edges' – augments a fixed number of vertices by adding one edge. In this case, all digraphs on exactly n=vertices are generated. If for any graph G satisfying the property, every subgraph, obtained from G by deleting one edge but not the vertices incident to that edge, satisfies the property, then this will generate all digraphs with that property. If this does not hold, then all the digraphs generated will satisfy the property, but there will be some missing.
• implementation – which underlying implementation to use (see DiGraph?)
• sparse – boolean (default: True); whether to use a sparse or dense data structure. See the documentation of Graph.

EXAMPLES:

Print digraphs on 2 or less vertices:

```
sage: for D in digraphs(2, augment='vertices'):
....: print(D)
Digraph on 0 vertices
Digraph on 1 vertex
Digraph on 2 vertices
```

Families of Graphs:

- Complete  
- DeBruijn  
- GeneralizedDeBruijn  
- Kautz  
- Path  
- ImaseItoh  
- RandomTournament  
- TransitiveTournament  
- tournaments_nauty

- RandomDirectedGNM  
- RandomDirectedGNR  
- RandomTournament  
- RandomSemiComplete
>>> from sage.all import *
>>> for D in digraphs(Integer(2), augment='vertices'):
...    print(D)
Digraph on 0 vertices
Digraph on 1 vertex
Digraph on 2 vertices
Digraph on 2 vertices
Digraph on 2 vertices
Print digraphs on 3 vertices:

sage: for D in digraphs(3):
....:    print(D)
Digraph on 3 vertices
Digraph on 3 vertices
...
Digraph on 3 vertices
Digraph on 3 vertices
Generate all digraphs with 4 vertices and 3 edges:

sage: L = digraphs(4, size=3)
sage: len(list(L))
13

>>> from sage.all import *
>>> L = digraphs(Integer(4), size=Integer(3))
>>> len(list(L))
13

Generate all digraphs with 4 vertices and up to 3 edges:

sage: L = list(digraphs(4, lambda G: G.size() <= 3))
sage: len(L)
20

sage: graphs_list.show_graphs(L)  # long time
˓→needs sage.plot

>>> from sage.all import *
>>> L = list(digraphs(Integer(4), lambda G: G.size() <= Integer(3)))
>>> len(L)
20

>>> graphs_list.show_graphs(L)  # long time
˓→needs sage.plot

Generate all digraphs with degree at most 2, up to 5 vertices:

2.2. Common digraphs
sage: property = lambda G: (max([G.degree(v) for v in G] + [0]) <= 2)
sage: L = list(digraphs(5, property, augment='vertices'))
sage: len(L)
75

>>> from sage.all import *
>>> property = lambda G: (max([G.degree(v) for v in G] + [Integer(0)]) <= Integer(2))
>>> L = list(digraphs(Integer(5), property, augment='vertices'))
>>> len(L)
75

Generate digraphs on the fly (see http://oeis.org/classic/A000273):

sage: for i in range(5):
....:   print(len(list(digraphs(i))))
1
1
3
16
218

>>> from sage.all import *
>>> for i in range(Integer(5)):
...   print(len(list(digraphs(i))))
1
1
3
16
218

**ButterflyGraph** \((n, \text{vertices='strings'})\)

Return a \(n\)-dimensional butterfly graph.

The vertices consist of pairs \((v, i)\), where \(v\) is an \(n\)-dimensional tuple (vector) with binary entries (or a string representation of such) and \(i\) is an integer in \([0..n]\). A directed edge goes from \((v, i)\) to \((w, i + 1)\) if \(v\) and \(w\) are identical except for possibly when \(v[i] \neq w[i]\).

A butterfly graph has \((2^n)(n + 1)\) vertices and \(n2^{n+1}\) edges.

**INPUT:**

- \(n\) – a non negative integer; the dimension of the butterfly graph
- \(\text{vertices} = \text{string} \) (default: 'strings'); specifies whether the vertices are zero-one strings (default) or tuples over GF(2) (\(\text{vertices='vectors'}\))

**EXAMPLES:**

sage: digraphs.ButterflyGraph(2).edges(sort=True, labels=False)
[([[0, 0], [0, 0], [1]),
  ([0, 0], [0, 1], [1]),
  ([0, 1], [0, 0], [2]),
  ([0, 1], [1, 0], [2]),
  ([1, 0], [0, 1], [3]),
  ([1, 0], [1, 1], [3]),
  ([1, 1], [0, 0], [2]),
  ([1, 1], [1, 0], [2]),
  ([0, 0], [0, 1], [1]),
  ([0, 1], [0, 0], [2]),
  ([0, 1], [1, 6], [2]),
  ([0, 1], [1, 7], [2])],
  (continues on next page)
sage: digraphs.ButterflyGraph(2, vertices=vectors).edges(sort=True, labels=False)
[(((0, 0), 0), ((0, 0), 1)),
镏 ((0, 0), 0), ((1, 0), 1)),
镏 ((0, 0), 1), ((0, 0), 2)),
镏 ((0, 1), (0, 1), (1, 1), 1)),
镏 ((0, 1), (0, 1), (0, 2)),
镏 ((0, 1), (1, 0), (1, 1), 1)),
镏 ((0, 1), (1, 0), (1, 2)),
镏 ((1, 0), (0, 0), (1, 0), 1)),
镏 ((1, 0), (1, 0), (1, 2)),
镏 ((1, 1), (0, 0), (0, 1), 1)),
镏 ((1, 1), (0, 1), (1, 0), 1)),
镏 ((1, 1), (0, 1), (1, 1), 1)),
镏 ((1, 1), (0, 1), (1, 2)),
镏 ((1, 1), (1, 0), (1, 0), 1)),
镏 ((1, 1), (1, 1), (1, 0), 1)),
镏 ((1, 1), (1, 1), (1, 2)),
镏 ((1, 1), (1, 1), (1, 2)),
镏 ((1, 1), (1, 1), (1, 2))]

sage: pos = digraphs.ButterflyGraph(2).get_pos()
sage: pos['11', 0]
(0, 0)

>>> from sage.all import *
>>> digraphs.ButterflyGraph(Integer(2)).edges(sort=True, labels=False)
[(((00, 0), (00, 1)),
镏 ((00, 0), (10, 1)),
镏 ((00, 1), (00, 2)),
镏 ((01, 0), (01, 1)),
镏 ((01, 0), (11, 1)),
镏 ((01, 1), (01, 2)),
镏 ((10, 0), (00, 1)),
镏 ((10, 0), (10, 1)),
镏 ((10, 1), (10, 2)),
镏 ((11, 0), (01, 1)),
镏 ((11, 0), (11, 1)),
镏 ((11, 1), (10, 2)),
镏 ((11, 1), (11, 2))]

>>> digraphs.ButterflyGraph(Integer(2), vertices=vectors).edges(sort=True, labels=False)
[(((0, 0), 0), ((0, 0), 1)),
镏 ((0, 0), 0), ((1, 0), 1)),
镏 ((0, 0), 1), ((0, 0), 2)),
镏 ((0, 1), (0, 1), (1, 1), 1)),
镏 ((0, 1), (0, 1), (0, 2)),
镏 ((0, 1), (1, 0), (1, 1), 1)),
镏 ((0, 1), (1, 0), (1, 2)),
镏 ((1, 0), (0, 0), (1, 0), 1)),
镏 ((1, 0), (1, 0), (1, 2)),
镏 ((1, 1), (0, 0), (0, 1), 1)),
镏 ((1, 1), (0, 1), (1, 0), 1)),
镏 ((1, 1), (0, 1), (1, 1), 1)),
镏 ((1, 1), (0, 1), (1, 2)),
镏 ((1, 1), (1, 0), (1, 0), 1)),
镏 ((1, 1), (1, 1), (1, 0), 1)),
镏 ((1, 1), (1, 1), (1, 2)),
镏 ((1, 1), (1, 1), (1, 2))]

(continues on next page)
GraphTheory, Release 10.4

((0, 1), 0), ((0, 1), 1)),
((0, 1), 1), ((0, 0), 2)),
((1, 0), 0), ((0, 0), 1)),
((1, 0), 0), ((1, 0), 1)),
((1, 0), 1), ((1, 0), 2)),
((1, 0), 1), ((1, 1), 2)),
((1, 1), 0), ((0, 1), 1)),
((1, 1), 0), ((1, 1), 1)),
((1, 1), 0), ((1, 0), 2)),
((1, 1), 1), ((1, 1), 2))]

>>> pos = digraphs.ButterflyGraph(Integer(2)).get_pos()
>>> pos['11', Integer(0)]
(0, 0)

Circuit \((n)\)

Return the circuit on \(n\) vertices.

The circuit is an oriented \(CycleGraph()\).

EXAMPLES:

A circuit is the smallest strongly connected digraph:

```python
sage: circuit = digraphs.Circuit(15)
sage: len(circuit.strongly_connected_components()) == 1
True
```

```python
>>> from sage.all import *
>>> circuit = digraphs.Circuit(Integer(15))
>>> len(circuit.strongly_connected_components()) == Integer(1)
True
```

Circulant \((n, \text{integers})\)

Return a circulant digraph on \(n\) vertices from a set of integers.

INPUT:

- \(n\) – integer; number of vertices
- \(\text{integers}\) – iterable container (list, set, etc.) of integers such that there is an edge from \(i\) to \(j\) if and only if \((j - i) \pmod{n}\) is an integer

EXAMPLES:

```python
sage: digraphs.Circulant(13,[3,5,7])
Circulant graph ([3, 5, 7]): Digraph on 13 vertices
```

```python
>>> from sage.all import *
>>> digraphs.Circulant(Integer(13),[Integer(3),Integer(5),Integer(7)])
Circulant graph ([3, 5, 7]): Digraph on 13 vertices
```

Complete \((n, \text{loops=False})\)

Return the complete digraph on \(n\) vertices.

INPUT:

- \(n\) – integer; number of vertices
• loops – boolean (default: False); whether to add loops or not, i.e., edges from \( u \) to itself

See also:

• RandomSemiComplete()
• RandomTournament()

EXAMPLES:

```python
sage: n = 10
sage: G = digraphs.Complete(n); G
Complete digraph: Digraph on 10 vertices
sage: G.size() == n*(n-1)
True
sage: G = digraphs.Complete(n, loops=True); G
Complete digraph with loops: Looped digraph on 10 vertices
sage: G.size() == n*n
True
sage: digraphs.Complete(-1)
Traceback (most recent call last):
 ...
ValueError: the number of vertices cannot be strictly negative
```

```python
>>> from sage.all import *

>>> n = Integer(10)

>>> G = digraphs.Complete(n); G
Complete digraph: Digraph on 10 vertices

>>> G.size() == n*(n-Integer(1))
True

>>> G = digraphs.Complete(n, loops=True); G
Complete digraph with loops: Looped digraph on 10 vertices

>>> G.size() == n*n
True

>>> digraphs.Complete(-Integer(1))
Traceback (most recent call last):
 ...
ValueError: the number of vertices cannot be strictly negative
```

**DeBruijn** \((k, n, \text{vertices=}'strings')\)

Return the De Bruijn digraph with parameters \( k, n \).

The De Bruijn digraph with parameters \( k, n \) is built upon a set of vertices equal to the set of words of length \( n \) from a dictionary of \( k \) letters.

In this digraph, there is an arc \( w_1w_2 \) if \( w_2 \) can be obtained from \( w_1 \) by removing the leftmost letter and adding a new letter at its right end. For more information, see the Wikipedia article De_Bruijn_graph.

**INPUT:**

• \( k \) – two possibilities for this parameter:
  - An integer equal to the cardinality of the alphabet to use, that is, the degree of the digraph to be produced.
  - An iterable object to be used as the set of letters. The degree of the resulting digraph is the cardinality of the set of letters.

• \( n \) – integer; length of words in the De Bruijn digraph when \text{vertices} == 'strings', and also the diameter of the digraph.
• vertices – string (default: 'strings'); whether the vertices are words over an alphabet (default) or integers (vertices='string')

EXAMPLES:
de Bruijn digraph of degree 2 and diameter 2:

```
sage: db = digraphs.DeBruijn(2, 2); db
 # needs sage.combinat
De Bruijn digraph (k=2, n=2): Looped digraph on 4 vertices
sage: db.order(), db.size() # needs sage.combinat
 (4, 8)
sage: db.diameter() # needs sage.combinat
 2
```

Building a de Bruijn digraph on a different alphabet:

```
sage: # needs sage.combinat
sage: g = digraphs.DeBruijn(['a', 'b'], 2)
sage: g.vertices(sort=True)
['aa', 'ab', 'ba', 'bb']
sage: g.is_isomorphic(db)
True
sage: g = digraphs.DeBruijn(['AA', 'BB'], 2)
sage: g.vertices(sort=True)
['AA', 'AA', 'AA', 'BB', 'BB', 'AA', 'BB', 'BB']
sage: g.is_isomorphic(db)
True
```

**GeneralizedDeBruijn** \((n, d)\)

Return the generalized de Bruijn digraph of order \(n\) and degree \(d\).

The generalized de Bruijn digraph was defined in [RPK1980] [RPK1983]. It has vertex set \(V = \{0, 1, ..., n-1\}\) with...
and there is an arc from vertex \( u \in V \) to all vertices \( v \in V \) such that \( v \equiv (u \times d + a) \mod n \) with \( 0 \leq a < d \).

When \( n = d^D \), the generalized de Bruijn digraph is isomorphic to the de Bruijn digraph of degree \( d \) and diameter \( D \).

INPUT:

- \( n \) – integer; number of vertices of the digraph (must be at least one)
- \( d \) – integer; degree of the digraph (must be at least one)

See also:

- \texttt{sage.graphs.generic_graph.GenericGraph.is_circulant()} – checks whether a (di)graph is circulant, and/or returns all possible sets of parameters.

EXAMPLES:

\begin{verbatim}
sage: GB = digraphs.GeneralizedDeBruijn(8, 2)
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> GB = digraphs.GeneralizedDeBruijn(Integer(8), Integer(2))
>>> GB.is_isomorphic(digraphs.DeBruijn(Integer(2), Integer(3)),
... certificate=True) # needs sage.combinat
(True, {0: '000', 1: '001', 2: '010', 3: '011',
... 4: '100', 5: '101', 6: '110', 7: '111'})
\end{verbatim}

\begin{verbatim}
ImaseItoh\((n,d)\)

Return the Imase-Itoh digraph of order \( n \) and degree \( d \).

The Imase-Itoh digraph was defined in [II1983]. It has vertex set \( V = \{0, 1, ..., n - 1\} \) and there is an arc from vertex \( u \in V \) to all vertices \( v \in V \) such that \( v \equiv (-u \times d - a - 1) \mod n \) with \( 0 \leq a < d \).

When \( n = d^D \), the Imase-Itoh digraph is isomorphic to the de Bruijn digraph of degree \( d \) and diameter \( D \). When \( n = d^{D-1}(d + 1) \), the Imase-Itoh digraph is isomorphic to the Kautz digraph [Kau1968] of degree \( d \) and diameter \( D \).

INPUT:

- \( n \) – integer; number of vertices of the digraph (must be greater than or equal to two)
- \( d \) – integer; degree of the digraph (must be greater than or equal to one)

EXAMPLES:

\begin{verbatim}
sage: II = digraphs.ImaseItoh(8, 2)
sage: II.is_isomorphic(digraphs.DeBruijn(2, 3), certificate=True) # needs sage.combinat (True, {0: '010', 1: '011', 2: '000', 3: '001',
... 4: '110', 5: '111', 6: '100', 7: '101'})
\end{verbatim}

\begin{verbatim}
sage: II = digraphs.ImaseItoh(12, 2)
sage: b,D = II.is_isomorphic(digraphs.Kautz(2, 3), certificate=True) # needs sage.combinat
\end{verbatim}
Kautz \((k, D, \text{vertices}='\text{strings}')\)

Return the Kautz digraph of degree \(d\) and diameter \(D\).

The Kautz digraph has been defined in [Kau1968]. The Kautz digraph of degree \(d\) and diameter \(D\) has \(d^D-1(d+1)\) vertices. This digraph is built from a set of vertices equal to the set of words of length \(D\) over an alphabet of \(d+1\) letters such that consecutive letters are different. There is an arc from vertex \(u\) to vertex \(v\) if \(v\) can be obtained from \(u\) by removing the leftmost letter and adding a new letter, distinct from the rightmost letter of \(u\), at the right end.

The Kautz digraph of degree \(d\) and diameter \(D\) is isomorphic to the Imase-Itoh digraph [II1983] of degree \(d\) and order \(d^D-1(d+1)\).

See the Wikipedia article Kautz_graph for more information.

INPUT:

- \(k\) – two possibilities for this parameter. In either case the degree must be at least one:
  - An integer equal to the degree of the digraph to be produced, that is, the cardinality of the alphabet to be used minus one.
  - An iterable object to be used as the set of letters. The degree of the resulting digraph is the cardinality of the set of letters minus one.
- \(D\) – integer; diameter of the digraph, and length of a vertex label when \(\text{vertices} == '\text{strings}'\) (must be at least one)
- \(\text{vertices}\) – string (default: 'strings'); whether the vertices are words over an alphabet (default) or integers (\(\text{vertices}='\text{strings}'\))

EXAMPLES:
sage: # needs sage.combinat
sage: K = digraphs.Kautz(2, 3)

sage: b, D = K.is_isomorphic(digraphs.ImaseItoh(12, 2), certificate=True)

sage: b
True

sage: D
# random isomorphism
{010: 8, '012': 9, '020': 11, '021': 10, '011': 7, '012': 6,
 '120': 5, '121': 4, '201': 1, '202': 0, '210': 2, '212': 3)

sage: K = digraphs.Kautz([1,'a', 'B'], 2)  # needs sage.combinat

sage: K.edges(sort=True)  # needs sage.combinat
[(1B', 'B1', '1'), ('1B', 'Ba', 'a'), ('1a', 'a1', '1'),
 ('1a', 'aB', 'B'), ('1B', '1a', 'a'),
 ('Ba', 'a1', '1'), ('Ba', 'aB', 'B'), ('a1', '1B', 'B'),
 ('a1', '1a', 'a'), ('aB', 'B1', '1'), ('aB', 'Ba', 'a')]

sage: from sage.all import *

>>> K = digraphs.Kautz(Integer(2), Integer(3))

>>> b, D = K.is_isomorphic(digraphs.ImaseItoh(Integer(12), Integer(2)),
   certificate=True)

>>> b
True

>>> D
# random isomorphism
{010: 8, '012': 9, '020': 11, '021': 10, '011': 7, '012': 6,
 '120': 5, '121': 4, '201': 1, '202': 0, '210': 2, '212': 3)

>>> K = digraphs.Kautz([1,'aA', 'BB'], 2)  # needs sage.combinat

>>> K.edges(sort=True)  # needs sage.combinat
[(1,BB, BB,1, 1), (1,BB, BB,aA, aA),
 (1,aA, aA,1, 1), (1,aA, aA,BB, BB),
 (BB,1, 1,BB, BB), ('BB',1, '1,aA, aA'),
 ('BB,aA, aA,1, 1'), ('BB,aA, aA,BB, BB),
 ('aA,1, 1,BB, BB), ('aA,1, '1,aA, aA'),
 ('aA,BB, 'BB,1, 1'), ('aA,BB, 'BB,aA, aA')]

(continues on next page)
Paley \((q)\)

Return a Paley digraph on \(q\) vertices.

Parameter \(q\) must be the power of a prime number and congruent to 3 mod 4.

See also:

- Wikipedia article Paley_graph
- PaleyGraph()

EXAMPLES:

A Paley digraph has \(n \times (n-1)/2\) edges, its underlying graph is a clique, and so it is a tournament:

```
sage: g = digraphs.Paley(7); g
needs sage.rings.finite_rings
Paley digraph with parameter 7: Digraph on 7 vertices
sage: g.size() == g.order() * (g.order() - 1) / 2
needs sage.rings.finite_rings
True
sage: g.to_undirected().is_clique()
needs sage.rings.finite_rings
True
```

A Paley digraph is always self-complementary:

```
sage: g.complement().is_isomorphic(g)
needs sage.rings.finite_rings
True
```

Path \((n)\)

Return a directed path on \(n\) vertices.

INPUT:

- \(n\) – integer; number of vertices in the path

EXAMPLES:
sage: g = digraphs.Path(5)
sage: g.vertices(sort=True)
[0, 1, 2, 3, 4]
sage: g.size()
4
sage: g.automorphism_group().cardinality() #←needs sage.groups
1

>>> from sage.all import *
>>> g = digraphs.Path(Integer(5))
>>> g.vertices(sort=True)
[0, 1, 2, 3, 4]
>>> g.size()
4
>>> g.automorphism_group().cardinality() #←needs sage.groups
1

RandomDirectedAcyclicGraph \((n, p, \text{weight\_max}=\text{None})\)

Return a random (weighted) directed acyclic graph of order \(n\).

The method starts with the sink vertex and adds vertices one at a time. A vertex is connected only to previously defined vertices, and the probability of each possible connection is given by the probability \(p\). The weight of an edge is a random integer between 1 and \(\text{weight\_max}\).

INPUT:

- \(n\) – number of nodes of the graph
- \(p\) – probability of an edge
- \(\text{weight\_max}\) – (default: None); by default, the returned DAG is unweighted. When \(\text{weight\_max}\) is set to a positive integer, edges are assigned a random integer weight between 1 and \(\text{weight\_max}\).

EXAMPLES:

sage: D = digraphs.RandomDirectedAcyclicGraph(5, .5); D
RandomDAG(5, 0.500000000000000): Digraph on 5 vertices
sage: D.is_directed_acyclic()
True
sage: D = digraphs.RandomDirectedAcyclicGraph(5, .5, weight_max=3); D
RandomWeightedDAG(5, 0.500000000000000, 3): Digraph on 5 vertices
sage: D.is_directed_acyclic()
True

>>> from sage.all import *
>>> D = digraphs.RandomDirectedAcyclicGraph(Integer(5), RealNumber(.5)); D
RandomDAG(5, 0.500000000000000): Digraph on 5 vertices
>>> D.is_directed_acyclic()
True
>>> D = digraphs.RandomDirectedAcyclicGraph(Integer(5), RealNumber('.5'),
weight_max=Integer(3)); D
RandomWeightedDAG(5, 0.500000000000000, 3): Digraph on 5 vertices
>>> D.is_directed_acyclic()
True

RandomDirectedGN \((n, \text{kernel}=\text{None}, \text{seed}=\text{None})\)

Return a random growing network (GN) digraph with \(n\) vertices.
The digraph is constructed by adding vertices with a link to one previously added vertex. The vertex to link to is chosen with a preferential attachment model, i.e. probability is proportional to degree. The default attachment kernel is a linear function of degree. The digraph is always a tree, so in particular it is a directed acyclic graph. See [KR2001b] for more details.

INPUT:

- `n` – integer; number of vertices
- `kernel` – the attachment kernel (default: identity function)
- `seed` – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

```python
sage: # needs networkx
dsage: D = digraphs.RandomDirectedGN(25)
sage: D.num_verts()
25
sage: D.num_edges()
24
sage: D.is_connected()
True
sage: D.parent() is DiGraph
True
sage: D.show() # long time
```

```python
>>> from sage.all import *
>>> # needs networkx
>>> D = digraphs.RandomDirectedGN(Integer(25))
>>> D.num_verts()
25
>>> D.num_edges()
24
>>> D.is_connected()
True
>>> D.parent() is DiGraph
True
>>> D.show() # long time
```

```
RandomDirectedGNC (n, seed=None)

Return a random growing network with copying (GNC) digraph with `n` vertices.

The digraph is constructed by adding vertices with a link to one previously added vertex. The vertex to link to is chosen with a preferential attachment model, i.e. probability is proportional to degree. The new vertex is also linked to all of the previously added vertex’s successors. See [KR2005] for more details.

INPUT:

- `n` – integer; number of vertices
- `seed` – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

```python
sage: # needs networkx
dsage: D = digraphs.RandomDirectedGNC(25)
sage: D.is_directed_acyclic()
True
sage: D.topological_sort()
```

(continues on next page)
RandomDirectedGNM \((n, m, \text{loops}=\text{False})\)

Return a random labelled digraph on \(n\) nodes and \(m\) arcs.

INPUT:

- \(n\) – integer; number of vertices
- \(m\) – integer; number of edges
- loops – boolean (default: False); whether to allow loops

PLOTTING: When plotting, this graph will use the default spring-layout algorithm, unless a position dictionary is specified.

EXAMPLES:

```python
sage: D = digraphs.RandomDirectedGNM(10, 5)
sage: D.num_verts()
10
sage: D.num_edges()
5

>>> from sage.all import *
>>> D = digraphs.RandomDirectedGNM(Integer(10), Integer(5))
>>> D.num_verts()
10
>>> D.num_edges()
5
```

With loops:

```python
sage: D = digraphs.RandomDirectedGNM(10, 100, loops = True)
sage: D.num_verts()
10
sage: D.loops()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None), (4, 4, None), (5, 5,...)
    (6, 6, None), (7, 7, None), (8, 8, None), (9, 9, None)]

>>> from sage.all import *
>>> D = digraphs.RandomDirectedGNM(Integer(10), Integer(100), loops = True)
>>> D.num_verts()
10
>>> D.loops()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None), (4, 4, None), (5, 5,...)
    (6, 6, None), (7, 7, None), (8, 8, None), (9, 9, None)]
```
RandomDirectedGNP \((n, p, \text{loops}=False, \text{seed}=None) \)

Return a random digraph on \(n \) nodes.

Each edge is inserted independently with probability \(p \). See [ER1959] and [Gil1959] for more details.

INPUT:

- \(n \) – integer; number of nodes of the digraph
- \(p \) – float; probability of an edge
- \(\text{loops} \) – boolean (default: False); whether the random digraph may have loops
- \(\text{seed} \) – integer (default: None); seed for random number generator

PLOTTING: When plotting, this graph will use the default spring-layout algorithm, unless a position dictionary is specified.

EXAMPLES:

```
sage: D = digraphs.RandomDirectedGNP(10, .2)
sage: D.num_verts()
10
sage: D.parent() is DiGraph
True
```

```
>>> from sage.all import *
>>> D = digraphs.RandomDirectedGNP(Integer(10), RealNumber('0.2'))
>>> D.num_verts()
10
>>> D.parent() is DiGraph
True
```

RandomDirectedGNR \((n, p, \text{seed}=None) \)

Return a random growing network with redirection (GNR) digraph with \(n \) vertices and redirection probability \(p \).

The digraph is constructed by adding vertices with a link to one previously added vertex. The vertex to link to is chosen uniformly. With probability \(p \), the arc is instead redirected to the successor vertex. The digraph is always a tree. See [KR2001b] for more details.

INPUT:

- \(n \) – integer; number of vertices
- \(p \) – redirection probability
- \(\text{seed} \) – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

```
sage: # needs networkx
sage: D = digraphs.RandomDirectedGNR(25, .2)
sage: D.is_directed_acyclic()
True
sage: D.to_undirected().is_tree()
True
sage: D.show() # long time # needs sage.plot
```

1058 Chapter 2. Constructors and databases
RandomSemiComplete \((n)\)
Return a random semi-complete digraph on \(n\) vertices.

A directed graph \(G = (V, E)\) is semi-complete if for any pair of vertices \(u\) and \(v\), there is at least one arc between them.

To generate randomly a semi-complete digraph, we have to ensure, for any pair of distinct vertices \(u\) and \(v\), that with probability \(1/3\) we have only arc \(uv\), with probability \(1/3\) we have only arc \(vu\), and with probability \(1/3\) we have both arc \(uv\) and arc \(vu\). We do so by selecting a random integer \(coin\) in \([1,3]\). When \(coin == 1\) we select only arc \(uv\), when \(coin == 3\) we select only arc \(vu\), and when \(coin == 2\) we select both arcs. In other words, we select arc \(uv\) when \(coin \leq 2\) and arc \(vu\) when \(coin \geq 2\).

INPUT:

- \(n\) – integer; the number of nodes

See also:

- Complete()
- RandomTournament()

EXAMPLES:

```
sage: SC = digraphs.RandomSemiComplete(10); SC
Random Semi-Complete digraph: Digraph on 10 vertices
sage: SC.size() >= binomial(10, 2)  # needs sage.symbolic
True
sage: digraphs.RandomSemiComplete(-1)
Traceback (most recent call last):
... ValueError: the number of vertices cannot be strictly negative
```
For every pair of vertices, the tournament has an edge from i to j with probability $1/2$, otherwise it has an edge from j to i.

INPUT:

- n – integer; number of vertices

EXAMPLES:

```python
sage: T = digraphs.RandomTournament(10); T
Random Tournament: Digraph on 10 vertices
sage: T.size() == binomial(10, 2)  # needs sage.symbolic
True
sage: T.is_tournament()
True
sage: digraphs.RandomTournament(-1)
Traceback (most recent call last):
...
ValueError: the number of vertices cannot be strictly negative
```

```python
>>> from sage.all import *

>>> T = digraphs.RandomTournament(Integer(10)); T
Random Tournament: Digraph on 10 vertices
>>> T.size() == binomial(Integer(10), Integer(2))  # needs sage.symbolic
True
>>> T.is_tournament()
True
>>> digraphs.RandomTournament(-Integer(1))
Traceback (most recent call last):
...
ValueError: the number of vertices cannot be strictly negative
```

See also:

- Wikipedia article Tournament_(graph_theory)
- is_tournament()
- TransitiveTournament()
- Complete()
- RandomSemiComplete()

StronglyRegular (n)

Return a Strongly Regular digraph with n vertices.

The adjacency matrix of the graph is constructed from a skew Hadamard matrix of order $n + 1$. These graphs were first constructed in [Duv1988].

INPUT:

- n – integer, the number of vertices of the digraph.

See also:

- sage.combinat.matrices.hadamard_matrix.skew_hadamard_matrix()
- Paley()
EXAMPLES:

A Strongly Regular digraph satisfies the condition $AJ = JA = kJ$ where A is the adjacency matrix:

```python
sage: # needs sage.combinat sage.modules
sage: g = digraphs.StronglyRegular(7); g
Strongly regular digraph: Digraph on 7 vertices
sage: A = g.adjacency_matrix()*ones_matrix(7)
sage: B = ones_matrix(7)*g.adjacency_matrix()
sage: A == B == A[0, 0]*ones_matrix(7)
True
```

TransitiveTournament(n)

Return a transitive tournament on n vertices.

In this tournament there is an edge from i to j if $i < j$.

See the Wikipedia article Tournament_(graph_theory) for more information.

INPUT:

- n – integer; number of vertices in the tournament

EXAMPLES:

```python
sage: g = digraphs.TransitiveTournament(5)
sage: g.vertices(sort=True)
[0, 1, 2, 3, 4]
sage: g.size()
10
sage: g.automorphism_group().cardinality()  # needs sage.groups
1
```

See also:

- Wikipedia article Tournament_(graph_theory)
- `is_tournament()`
- `is_transitive()`
• RandomTournament()

nauty_directg (graphs, options=", debug=False)

Return an iterator yielding digraphs using nauty's directg program.

Description from directg --help: Read undirected graphs and orient their edges in all possible ways. Edges can be oriented in either or both directions (3 possibilities). Isomorphic directed graphs derived from the same input are suppressed. If the input graphs are non-isomorphic then the output graphs are also.

INPUT:

• graphs — a Graph or an iterable containing Graph. The graph6 string of these graphs is used as an input for directg.

• options — a string passed to directg as if it was run at a system command line. Available options from directg --help:

 -e<int> | -e<int>:<int> specify a value or range of the total number of \(\rightarrow\) arcs
 -o orient each edge in only one direction, never both
 -a only make acyclic orientations (implies -o)
 -f<int> Use only the subgroup that fixes the first <int> vertices setwise
 -V only output graphs with nontrivial groups (including exchange of isolated vertices). The -f option is respected.
 -<int>/<int> Make only a fraction of the orientations: The first integer is the part number (first is 0) and the second is the number of parts. Splitting is done per input graph independently.

• debug — boolean (default: False); if True directg standard error and standard output are displayed.

EXAMPLES:

sage: gen = graphs.nauty_geng("-c 3")
sage: dgs = list(digraphs.nauty_directg(gen))
sage: len(dgs)
13
sage: dgs[0]
Digraph on 3 vertices
sage: dgs[0]._bit_vector()
'001001000'
sage: len(list(digraphs.nauty_directg(graphs.PetersenGraph(), options="-o")))
324

>>> from sage.all import *
>>> gen = graphs.nauty_geng("-c 3")
>>> dgs = list(digraphs.nauty_directg(gen))
>>> len(dgs)
13
>>> dgs[Integer(0)]
Digraph on 3 vertices
>>> dgs[Integer(0)]._bit_vector()
'001001000'
>>> len(list(digraphs.nauty_directg(graphs.PetersenGraph(), options="-o")))
324

Generate non-isomorphic acyclic orientations:
sage: K = graphs.CompleteGraph(4)
sage: all(d.is_directed_acyclic() for d in digraphs.nauty_directg(K, options='->-a'))
True
sage: sum(1 for _ in digraphs.nauty_directg(K, options='->-a'))
1
sage: S = graphs.StarGraph(4)
sage: all(d.is_directed_acyclic() for d in digraphs.nauty_directg(S, options='->-a'))
True
sage: sum(1 for _ in digraphs.nauty_directg(S, options='->-a'))
5

>>> from sage.all import *
>>> K = graphs.CompleteGraph(Integer(4))
>>> all(d.is_directed_acyclic() for d in digraphs.nauty_directg(K, options='->-a'))
True
>>> sum(Integer(1) for _ in digraphs.nauty_directg(K, options='->-a'))
1
>>> S = graphs.StarGraph(Integer(4))
>>> all(d.is_directed_acyclic() for d in digraphs.nauty_directg(S, options='->-a'))
True
>>> sum(Integer(1) for _ in digraphs.nauty_directg(S, options='->-a'))
5

See also:

- `orientations()`
- `strong_orientation()`
- `strong_orientations_iterator()`
- `random_orientation()`

`tournaments_nauty` \((n, \text{min_out_degree}=\text{None}, \text{max_out_degree}=\text{None}, \text{strongly_connected}=\text{False}, \text{debug}=\text{False}, \text{options}=\text{""})\)

Iterator over all tournaments on \(n\) vertices using Nauty.

INPUT:

- \(n\) – integer; number of vertices
- \(\text{min_out_degree}, \text{max_out_degree}\) – integers; if set to \text{None} (default), then the min/max out-degree is not constrained
- \(\text{debug}\) – boolean (default: \text{False}); if \text{True} the first line of \text{genbg}'s output to standard error is captured and the first call to the generator's \text{next}() function will return this line as a string. A line leading with ">A" indicates a successful initiation of the program with some information on the arguments, while a line beginning with ">E" indicates an error with the input.
- \(\text{options}\) – string; anything else that should be forwarded as input to Nauty's \text{genbg}. See its documentation for more information: \url{https://pallini.di.uniroma1.it}.

EXAMPLES:

2.2. Common digraphs
2.3 Common graphs and digraphs generators (Cython)

AUTHORS:
• David Coudert (2012)

sage.graphs.graph_generators_pyx.RandomGNP \(n, p, \text{directed}=False, \text{loops}=False, \text{seed}=None\)

Return a random graph or a digraph on \(n\) nodes.

Each edge is inserted independently with probability \(p\).

INPUT:
• \(n\) – number of nodes of the digraph
• \(p\) – probability of an edge
• \(\text{directed}\) – boolean (default: False); whether the random graph is directed or undirected (default)
• \(\text{loops}\) – boolean (default: False); whether the random digraph may have loops or not. This value is used only when \(\text{directed} == \text{True}\)
• \(\text{seed}\) – a random.Random seed or a Python int for the random number generator (default: None)

REFERENCES:
• [ER1959]
• [Gil1959]

EXAMPLES:
This module implements classes (GraphDatabase, GraphQuery, GenericGraphQuery) for interfacing with the sqlite database graphs.db.

The GraphDatabase class interfaces with the sqlite database graphs.db. It is an immutable database that inherits from SQLDatabase (see sage.databases.sql_db).

The database contains all unlabeled graphs with 7 or fewer nodes. This class will also interface with the optional database package containing all unlabeled graphs with 8 or fewer nodes. The database(s) consists of five tables, and has the structure given by the function graph_db_info(). (For a full description including column data types, create a GraphDatabase instance and call the method get_skeleton()).

AUTHORS:

• Emily A. Kirkman (2008-09-20): first version of interactive queries, cleaned up code and generalized many elements to sage.databases.sql_db.py

• Emily A. Kirkman (2007-07-23): inherits GenericSQLDatabase, also added classes: GraphQuery and GenericGraphQuery

• Emily A. Kirkman (2007-05-11): initial sqlite version

• Emily A. Kirkman (2007-02-13): initial version (non-sqlite)

REFERENCES:

class sage.graphs.graph_database.GenericGraphQuery(query_string, database=None, param_tuple=None)

Bases: SQLQuery

A query for a GraphDatabase.

INPUT:

• query_string – a string representing the SQL query

• database – (default: None); the GraphDatabase instance to query if None then a new instance is created
Graph Theory, Release 10.4

- param_tuple – a tuple of strings (default: None); what to replace question marks in query_string with (optional, but a good idea)

Note: This query class is generally intended for developers and more advanced users. It allows you to execute any query, and so may be considered unsafe.

EXAMPLES:

See `GraphDatabase` class docstrings or enter:

```python
sage: G = GraphDatabase()
sage: G.get_skeleton()
(...

>>> from sage.all import *
>>> G = GraphDatabase()
>>> G.get_skeleton()
(...

to see the underlying structure of the database. Also see `sage.databases.sql_db.SQLQuery` in `sage.databases.sql_db` for more info and a tutorial.

A piece of advice about '?' and param_tuple: it is generally considered safer to query with a '?' in place of each value parameter, and using a second argument (a tuple of strings) in a call to the `sqlite` database. Successful use of the param_tuple argument is exemplified:

```python
sage: G = GraphDatabase()
sage: q = 'select graph_id,graph6,num_vertices,num_edges from graph_data where-
→graph_id<= (?) and num_vertices=(?)'
sage: param = (22,5)
sage: Q = SQLQuery(G, q, param)
sage: Q.show()

<table>
<thead>
<tr>
<th>graph_id</th>
<th>graph6</th>
<th>num_vertices</th>
<th>num_edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>D</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>D</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

```
Graph Database

This class interfaces with the sqlite database graphs.db. It is an immutable database that inherits from SQLDatabase (see sage.databases.sql_db). The display functions and get_graphs_list create their own queries, but it is also possible to query the database by constructing either a SQLQuery.

The database contains all unlabeled graphs with 7 or fewer nodes. This class will also interface with the optional database package containing all unlabeled graphs with 8 or fewer nodes. The database consists of five tables. For a full table and column structure, call graph_db_info().

The tables are associated by the unique primary key graph_id (int).

To query this database, we create a GraphQuery. This can be done directly with the query() method or by initializing one of:

- GenericGraphQuery – allows direct entry of a query string and tuple of parameters. This is the route for more advanced users that are familiar with SQL
- GraphQuery – a wrapper of SQLQuery, a general database/query wrapper of SQLite for new users

REFERENCES:


EXAMPLES:

```python
sage: G = GraphDatabase()
sage: G.get_skeleton()
{'aut_grp': {'aut_grp_size': {'index': True,
 'primary_key': False,
 'sql': 'INTEGER',
 'unique': False},
 'edge_transitive': {'index': True,
 'primary_key': False,
 'sql': 'BOOLEAN',
 'unique': False},
 'graph_id': {'index': False,
 'primary_key': False,
 'sql': 'INTEGER',
 'unique': False},
 'num_fixed_points': {'index': True,
 'primary_key': False,
 'sql': 'INTEGER',
 'unique': False},
 'num_orbits': {'index': True,
 'primary_key': False,
 'sql': 'INTEGER',
 'unique': False},
 'vertex_transitive': {'index': True,
 'primary_key': False,
 'sql': 'BOOLEAN',
 'unique': False},
 'degrees': {'average_degree': {'index': True,
 'primary_key': False,
 'sql': 'REAL',
 'unique': False},
 'degree_sequence': {'index': False,
 'primary_key': False,
 'sql': 'INTEGER',
 'unique': False}},
 'primary_key': False}
```

(continues on next page)
'degrees_sd': {'index': True, 'primary_key': False, 'sql': 'REAL', 'unique': False},
'graph_id': {'index': False, 'primary_key': False, 'sql': 'INTEGER', 'unique': False},
'max_degree': {'index': True, 'primary_key': False, 'sql': 'INTEGER', 'unique': False},
'min_degree': {'index': True, 'primary_key': False, 'sql': 'INTEGER', 'unique': False},
'regular': {'index': True, 'primary_key': False, 'sql': 'BOOLEAN', 'unique': False},
Graph Theory, Release 10.4

(continued from previous page)

primary_key : False,
sql : BOOLEAN ,
unique : False},
planar : { index : True,
primary_key : False,
sql : BOOLEAN ,
unique : False}},
misc : { clique_number : { index : True,
primary_key : False,
sql : INTEGER ,
unique : False},
diameter : { index : True,
primary_key : False,
sql : INTEGER ,
unique : False},
edge_connectivity : { index : True,
primary_key : False,
sql : BOOLEAN ,
unique : False},
girth : { index : True,
primary_key : False,
sql : INTEGER ,
unique : False},
graph_id : { index : False,
primary_key : False,
sql : INTEGER ,
unique : False},
independence_number : { index : True,
primary_key : False,
sql : INTEGER ,
unique : False},
induced_subgraphs : { index : True,
primary_key : False,
sql : TEXT ,
unique : False},
min_vertex_cover_size : { index : True,
primary_key : False,
sql : INTEGER ,
unique : False},
num_components : { index : True,
primary_key : False,
sql : INTEGER ,
unique : False},
num_cut_vertices : { index : True,
primary_key : False,
sql : INTEGER ,
unique : False},
num_spanning_trees : { index : True,
primary_key : False,
sql : INTEGER ,
unique : False},
radius : { index : True,
primary_key : False,
sql : INTEGER ,
unique : False},
vertex_connectivity : { index : True,
primary_key : False,
(continues on next page)

2.4. Graph database

1069


Graph Theory, Release 10.4

>>> from sage.all import *

>>> G = GraphDatabase()

{'aut_grp': {'aut_grp_size': {'index': True,
   'primary_key': False,
   'sql': 'INTEGER',
   'unique': False},
   'edge_transitive': {'index': True,
   'primary_key': False,
   'sql': 'BOOLEAN',
   'unique': False},
   'graph_id': {'index': False,
   'primary_key': False,
   'sql': 'INTEGER',
   'unique': False},
   'num_fixed_points': {'index': True,
   'primary_key': False,
   'sql': 'INTEGER',
   'unique': False},
   'num_orbits': {'index': True,
   'primary_key': False,
   'sql': 'INTEGER',
   'unique': False},
   'vertex_transitive': {'index': True,
   'primary_key': False,
   'sql': 'BOOLEAN',
   'unique': False},
   'degrees': {'average_degree': {'index': True,
   'primary_key': False,
   'sql': 'REAL',
   'unique': False}}}

(continued from previous page)
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Index</th>
<th>Primary Key</th>
<th>SQL</th>
<th>Unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>'sql': 'REAL',</td>
<td></td>
<td>False</td>
<td></td>
<td>False</td>
</tr>
<tr>
<td>'degree_sequence':</td>
<td></td>
<td>False</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'primary_key': False</td>
<td></td>
<td>False</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'sql': 'REAL',</td>
<td></td>
<td>False</td>
<td></td>
<td>False</td>
</tr>
<tr>
<td>'degrees_sd':</td>
<td></td>
<td>True</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'primary_key': False</td>
<td></td>
<td>False</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'sql': 'REAL',</td>
<td></td>
<td>False</td>
<td></td>
<td>False</td>
</tr>
<tr>
<td>'max_degree':</td>
<td></td>
<td>True</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'primary_key': False</td>
<td></td>
<td>False</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'sql': 'TEXT',</td>
<td></td>
<td>True</td>
<td></td>
<td>True</td>
</tr>
<tr>
<td>'eulerian':</td>
<td></td>
<td>False</td>
<td>'sql': 'BOOLEAN',</td>
<td>False</td>
</tr>
<tr>
<td>'primary_key': False</td>
<td></td>
<td>False</td>
<td>'sql': 'BOOLEAN',</td>
<td>False</td>
</tr>
<tr>
<td>'sql': 'TEXT',</td>
<td></td>
<td>True</td>
<td></td>
<td>True</td>
</tr>
<tr>
<td>'graph6':</td>
<td></td>
<td>True</td>
<td>'sql': 'TEXT',</td>
<td>False</td>
</tr>
<tr>
<td>'primary_key': False</td>
<td></td>
<td>False</td>
<td>'sql': 'TEXT',</td>
<td>False</td>
</tr>
<tr>
<td>'sql': 'REAL',</td>
<td></td>
<td>True</td>
<td></td>
<td>True</td>
</tr>
<tr>
<td>'lovasz_number':</td>
<td></td>
<td>False</td>
<td>'sql': 'REAL',</td>
<td>False</td>
</tr>
<tr>
<td>'primary_key': False</td>
<td></td>
<td>False</td>
<td>'sql': 'REAL',</td>
<td>False</td>
</tr>
<tr>
<td>'sql': 'INTEGER',</td>
<td></td>
<td>True</td>
<td></td>
<td>True</td>
</tr>
<tr>
<td>'num_cycles':</td>
<td></td>
<td>True</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'primary_key': False</td>
<td></td>
<td>False</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'sql': 'INTEGER',</td>
<td></td>
<td>True</td>
<td></td>
<td>True</td>
</tr>
<tr>
<td>'num_edges':</td>
<td></td>
<td>True</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'primary_key': False</td>
<td></td>
<td>False</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'sql': 'INTEGER',</td>
<td></td>
<td>True</td>
<td></td>
<td>True</td>
</tr>
<tr>
<td>'num_hamiltonian_cycles':</td>
<td>True</td>
<td>False</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
<tr>
<td>'primary_key': False</td>
<td></td>
<td>False</td>
<td>'sql': 'INTEGER',</td>
<td>False</td>
</tr>
</tbody>
</table>

(continues on next page)
<table>
<thead>
<tr>
<th>Property</th>
<th>Index</th>
<th>Primary Key</th>
<th>SQL</th>
<th>Unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>unique</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>num_vertices</td>
<td>True</td>
<td>False</td>
<td>INTEGER</td>
<td>False</td>
</tr>
<tr>
<td>perfect</td>
<td>False</td>
<td>False</td>
<td>BOOLEAN</td>
<td>False</td>
</tr>
<tr>
<td>planar</td>
<td>False</td>
<td>False</td>
<td>BOOLEAN</td>
<td>False</td>
</tr>
<tr>
<td>clique_number</td>
<td>True</td>
<td>False</td>
<td>INTEGER</td>
<td>False</td>
</tr>
<tr>
<td>diameter</td>
<td>True</td>
<td>False</td>
<td>INTEGER</td>
<td>False</td>
</tr>
<tr>
<td>edge_connectivity</td>
<td>True</td>
<td>False</td>
<td>BOOLEAN</td>
<td>False</td>
</tr>
<tr>
<td>girth</td>
<td>True</td>
<td>False</td>
<td>INTEGER</td>
<td>False</td>
</tr>
<tr>
<td>graph_id</td>
<td>False</td>
<td>False</td>
<td>INTEGER</td>
<td>False</td>
</tr>
<tr>
<td>independence_number</td>
<td>True</td>
<td>False</td>
<td>INTEGER</td>
<td>False</td>
</tr>
<tr>
<td>induced_subgraphs</td>
<td>True</td>
<td>False</td>
<td>TEXT</td>
<td>False</td>
</tr>
<tr>
<td>min_vertex_cover_size</td>
<td>True</td>
<td>False</td>
<td>INTEGER</td>
<td>False</td>
</tr>
<tr>
<td>num_components</td>
<td>True</td>
<td>False</td>
<td>INTEGER</td>
<td>False</td>
</tr>
<tr>
<td>num_cut_vertices</td>
<td>True</td>
<td>False</td>
<td>INTEGER</td>
<td>False</td>
</tr>
<tr>
<td>num_spanning_trees</td>
<td>True</td>
<td>False</td>
<td>INTEGER</td>
<td>False</td>
</tr>
</tbody>
</table>
interactive_query(display_cols, **kwds)

Generate an interact shell to query the database.

**Warning:** This is no longer implemented since the switch to Python3.

This method generates an interact shell that allows the user to manipulate query parameters and see the updated results.

**Todo:** This function could use improvement. Add full options of typical GraphQuery (i.e.: have it accept list input); and update options in interact to make it less annoying to put in operators.

**EXAMPLES:**

```
sage: D = GraphDatabase()
sage: D.interactive_query(display_cols=['graph6', 'num_vertices', 'degree_sequence'], num_edges=5, max_degree=3) # needs sage.symbolic
Traceback (most recent call last):
...
NotImplementedError: not available in Jupyter notebook
```
>>> from sage.all import *
>>> D = GraphDatabase()
>>> D.interactive_query(display_cols=['graph6', 'num_vertices', 'degree_sequence'], num_edges=Integer(5), max_degree=Integer(3))
# needs sage.symbolic
Traceback (most recent call last):
...
NotImplementedError: not available in Jupyter notebook

query (query_dict=None, display_cols=None, **kwds)
Create a GraphQuery on this database.

For full class details, type GraphQuery? and press Shift + Enter.

EXAMPLES:

sage: D = GraphDatabase()

sage: q = D.query(display_cols=['graph6', 'num_vertices', 'degree_sequence'], num_edges=['<=' ', 5])
# needs sage.symbolic
sage: q.show()
# needs sage.symbolic

<table>
<thead>
<tr>
<th>Graph6</th>
<th>Num Vertices</th>
<th>Degree Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>@</td>
<td>1</td>
<td>[0]</td>
</tr>
<tr>
<td>A?</td>
<td>2</td>
<td>[0, 0]</td>
</tr>
<tr>
<td>A_</td>
<td>2</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>B?</td>
<td>3</td>
<td>[0, 0, 0]</td>
</tr>
<tr>
<td>BG</td>
<td>3</td>
<td>[0, 1, 1]</td>
</tr>
<tr>
<td>BW</td>
<td>3</td>
<td>[1, 1, 2]</td>
</tr>
<tr>
<td>Bw</td>
<td>3</td>
<td>[2, 2, 2]</td>
</tr>
<tr>
<td>CB</td>
<td>4</td>
<td>[0, 0, 0, 0]</td>
</tr>
<tr>
<td>C@</td>
<td>4</td>
<td>[0, 0, 1, 1]</td>
</tr>
<tr>
<td>CB</td>
<td>4</td>
<td>[0, 1, 1, 2]</td>
</tr>
<tr>
<td>CF</td>
<td>4</td>
<td>[1, 1, 1, 1]</td>
</tr>
<tr>
<td>CJ</td>
<td>4</td>
<td>[0, 2, 2, 2]</td>
</tr>
<tr>
<td>CK</td>
<td>4</td>
<td>[1, 1, 1, 1]</td>
</tr>
<tr>
<td>CL</td>
<td>4</td>
<td>[1, 1, 2, 2]</td>
</tr>
<tr>
<td>CN</td>
<td>4</td>
<td>[1, 2, 2, 3]</td>
</tr>
<tr>
<td>C]</td>
<td>4</td>
<td>[2, 2, 2, 2]</td>
</tr>
<tr>
<td>C^</td>
<td>4</td>
<td>[2, 2, 3, 3]</td>
</tr>
<tr>
<td>D@?</td>
<td>5</td>
<td>[0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>D@C</td>
<td>5</td>
<td>[0, 0, 0, 1, 1]</td>
</tr>
<tr>
<td>D@K</td>
<td>5</td>
<td>[0, 0, 1, 1, 2]</td>
</tr>
<tr>
<td>D@H</td>
<td>5</td>
<td>[0, 1, 1, 1, 3]</td>
</tr>
<tr>
<td>D@K</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
</tr>
<tr>
<td>D@O</td>
<td>5</td>
<td>[0, 0, 2, 2, 2]</td>
</tr>
<tr>
<td>D@S</td>
<td>5</td>
<td>[0, 1, 1, 1, 1]</td>
</tr>
<tr>
<td>D@[</td>
<td>5</td>
<td>[0, 1, 2, 2, 3]</td>
</tr>
<tr>
<td>D@s</td>
<td>5</td>
<td>[1, 1, 1, 2, 2]</td>
</tr>
<tr>
<td>D@[</td>
<td>5</td>
<td>[1, 1, 2, 2, 3]</td>
</tr>
<tr>
<td>DBW</td>
<td>5</td>
<td>[0, 2, 2, 2, 2]</td>
</tr>
<tr>
<td>DB{</td>
<td>5</td>
<td>[1, 2, 2, 3, 3]</td>
</tr>
<tr>
<td>DBg</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
</tr>
<tr>
<td>DBk</td>
<td>5</td>
<td>[1, 1, 2, 3, 3]</td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[1, 2, 2, 2, 3]</td>
</tr>
<tr>
<td>DK{</td>
<td>5</td>
<td>[1, 2, 2, 2, 3]</td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[2, 2, 2, 2, 2]</td>
</tr>
</tbody>
</table>

(continues on next page)
D_K	5	[1, 1, 1, 1, 2]
D_AK	5	[1, 1, 2, 2, 2]
E?	6	[0, 0, 0, 0, 0, 0]
E?	6	[0, 0, 0, 1, 1, 1]
E?	6	[0, 0, 1, 1, 1, 0]
E?	6	[0, 1, 1, 1, 1, 3]
E?	6	[0, 1, 1, 1, 1, 4]
E?	6	[1, 1, 1, 1, 1, 5]
E?	6	[0, 0, 0, 2, 2, 2]
E?	6	[0, 0, 1, 1, 1, 1]
E?	6	[0, 0, 1, 2, 2, 3]
E?	6	[0, 1, 1, 1, 2, 3]
E?	6	[0, 1, 1, 2, 2, 4]
E?	6	[1, 1, 1, 1, 2, 4]
E?	6	[0, 0, 2, 2, 2, 2]
E?	6	[0, 0, 2, 2, 3, 3]
E?	6	[0, 0, 1, 1, 2, 2]
E?	6	[0, 0, 1, 2, 2, 3]
E?	6	[1, 1, 1, 1, 1, 1]
E?	6	[1, 1, 1, 1, 2, 2]
E?	6	[0, 1, 1, 1, 1, 1]
E?	6	[1, 1, 1, 1, 2, 2]
E?	6	[0, 0, 2, 2, 2, 2]
E?	6	[0, 0, 2, 2, 3, 3]
E?	6	[0, 0, 1, 1, 1, 1]
E?	6	[0, 0, 1, 2, 2, 3]
E?	6	[0, 0, 1, 1, 1, 4]
E?	6	[0, 1, 1, 1, 1, 5]
E?	6	[0, 0, 2, 2, 2, 2]
E?	6	[0, 0, 2, 2, 3, 3]
E?	6	[0, 1, 1, 1, 1, 3]
E?	6	[0, 1, 1, 1, 2, 3]

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

<table>
<thead>
<tr>
<th>Graph6</th>
<th>Num Vertices</th>
<th>Degree Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>[0]</td>
</tr>
<tr>
<td>A'</td>
<td>2</td>
<td>[0, 0]</td>
</tr>
<tr>
<td>A_</td>
<td>2</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>RP</td>
<td>3</td>
<td>[0, 0, 0]</td>
</tr>
<tr>
<td>BG</td>
<td>3</td>
<td>[0, 1, 1]</td>
</tr>
<tr>
<td>BW</td>
<td>3</td>
<td>[1, 1, 2]</td>
</tr>
<tr>
<td>Bw</td>
<td>3</td>
<td>[2, 2, 2]</td>
</tr>
<tr>
<td>C4</td>
<td>4</td>
<td>[0, 0, 0, 0]</td>
</tr>
<tr>
<td>CF</td>
<td>4</td>
<td>[0, 0, 1, 1]</td>
</tr>
<tr>
<td>CB</td>
<td>4</td>
<td>[0, 1, 1, 2]</td>
</tr>
<tr>
<td>CF</td>
<td>4</td>
<td>[1, 1, 1, 3]</td>
</tr>
<tr>
<td>CJ</td>
<td>4</td>
<td>[0, 2, 2, 2]</td>
</tr>
<tr>
<td>CK</td>
<td>4</td>
<td>[1, 1, 1, 2]</td>
</tr>
<tr>
<td>CL</td>
<td>4</td>
<td>[1, 1, 2, 2]</td>
</tr>
<tr>
<td>CN</td>
<td>4</td>
<td>[1, 2, 2, 3]</td>
</tr>
<tr>
<td>C]</td>
<td>4</td>
<td>[2, 2, 2, 2]</td>
</tr>
<tr>
<td>C^</td>
<td>4</td>
<td>[2, 2, 3, 3]</td>
</tr>
<tr>
<td>D[</td>
<td>5</td>
<td>[0, 0, 0, 0, 0]</td>
</tr>
<tr>
<td>DB</td>
<td>5</td>
<td>[0, 0, 0, 1, 1]</td>
</tr>
<tr>
<td>DK</td>
<td>5</td>
<td>[0, 0, 1, 1, 2]</td>
</tr>
<tr>
<td>D[</td>
<td>5</td>
<td>[0, 1, 1, 1, 3]</td>
</tr>
<tr>
<td>D@</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
</tr>
<tr>
<td>D@K</td>
<td>5</td>
<td>[0, 0, 2, 2, 2]</td>
</tr>
<tr>
<td>D@O</td>
<td>5</td>
<td>[0, 1, 1, 1, 1]</td>
</tr>
<tr>
<td>D@S</td>
<td>5</td>
<td>[0, 1, 1, 2, 2]</td>
</tr>
<tr>
<td>D@{</td>
<td>5</td>
<td>[0, 1, 2, 2, 3]</td>
</tr>
<tr>
<td>D@{</td>
<td>5</td>
<td>[1, 1, 1, 2, 3]</td>
</tr>
<tr>
<td>DBW</td>
<td>5</td>
<td>[0, 2, 2, 2, 2]</td>
</tr>
</tbody>
</table>

(continues on next page)
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DB[</td>
<td>5</td>
<td>[0, 2, 2, 3, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBg</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBk</td>
<td>5</td>
<td>[1, 1, 2, 3, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[1, 2, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK[</td>
<td>5</td>
<td>[1, 2, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[2, 2, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_K</td>
<td>5</td>
<td>[1, 1, 1, 1, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_A</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>5</td>
<td>[0, 0, 0, 0, 0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiA</td>
<td>5</td>
<td>[0, 0, 0, 1, 1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiE</td>
<td>5</td>
<td>[0, 0, 0, 1, 1, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DkF</td>
<td>5</td>
<td>[0, 0, 1, 1, 1, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DwG</td>
<td>5</td>
<td>[0, 1, 1, 1, 1, 4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiK</td>
<td>5</td>
<td>[1, 1, 1, 1, 5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[0, 0, 0, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>5</td>
<td>[0, 0, 0, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[0, 0, 1, 1, 1, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DkF</td>
<td>5</td>
<td>[0, 1, 1, 1, 1, 4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiK</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DkF</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiK</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DkF</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiK</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DkF</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiK</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DkF</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiK</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DkF</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiK</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DkF</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiK</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DkF</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DiK</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLo</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>5</td>
<td>[0, 1, 1, 2, 2, 3]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
class sage.graphs.graph_database.GraphQuery (graph_db=None, query_dict=None, display_cols=None, **kwds)

Bases: GenericGraphQuery

A query for an instance of GraphDatabase.

This class nicely wraps the sage.databases.sql_db.SQLQuery class located in sage.databases.sql_db to make the query constraints intuitive and with as many pre-definitions as possible. (i.e.: since it has to be a GraphDatabase, we already know the table structure and types; and since it is immutable, we can treat these as a guarantee).

Note: sage.databases.sql_db.SQLQuery functions are available for GraphQuery. See sage.databases.sql_db for more details.

INPUT:

- graph_db – GraphDatabase (default: None): instance to apply the query to (If None, then a new instance is created)

- query_dict – dict (default: None): a dictionary specifying the query itself. Format is: {'table_name': 'tblname', 'display_cols': [col1, col2], 'expression': [col, operator, value]}. If not None, query_dict will take precedence over all other arguments.

- display_cols – list of strings (default: None): a list of column names (strings) to display in the result when running or showing a query

- kwds – the columns of the database are all keywords. For a database table/column structure dictionary, call graph_db_info(). Keywords accept both single values and lists of length 2. The list allows the user to specify an expression other than equality. Valid expressions are strings, and for numeric values (i.e. Reals and

-----------

<table>
<thead>
<tr>
<th>Class</th>
<th>GraphQuery</th>
<th>GraphQuery</th>
<th>GraphQuery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

1078 Chapter 2. Constructors and databases
Integers) are: ‘=’, ‘,’; ‘=’, ‘='. String values also accept 'regexp' as an expression argument. The only keyword exception to this format is `induced_subgraphs`, which accepts one of the following options:

- `['one_of', String, ..., String]` – will search for graphs containing a subgraph isomorphic to any of the graph6 strings in the list
- `['all_of', String, ..., String]` – will search for graphs containing a subgraph isomorphic to each of the graph6 strings in the list

**EXAMPLES:**

```python
sage: Q = GraphQuery(display_cols=['graph6', 'num_vertices', 'degree_sequence'],
 num_edges=['<=', Integer(5)], min_degree=1)
sage: Q.number_of()
35
sage: Q.show()
```

<table>
<thead>
<tr>
<th>Graph6</th>
<th>Num Vertices</th>
<th>Degree Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_</td>
<td>2</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>BW</td>
<td>3</td>
<td>[1, 1, 2]</td>
</tr>
<tr>
<td>CF</td>
<td>4</td>
<td>[1, 1, 1, 3]</td>
</tr>
<tr>
<td>CK</td>
<td>4</td>
<td>[1, 1, 1, 1]</td>
</tr>
<tr>
<td>CL</td>
<td>4</td>
<td>[1, 1, 2, 2]</td>
</tr>
<tr>
<td>CN</td>
<td>4</td>
<td>[1, 2, 2, 3]</td>
</tr>
<tr>
<td>D?</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
</tr>
<tr>
<td>D@s</td>
<td>5</td>
<td>[1, 1, 2, 2, 4]</td>
</tr>
<tr>
<td>D@{</td>
<td>5</td>
<td>[1, 1, 2, 3, 2]</td>
</tr>
<tr>
<td>DBg</td>
<td>5</td>
<td>[1, 1, 2, 2]</td>
</tr>
<tr>
<td>DBk</td>
<td>5</td>
<td>[1, 1, 2, 3, 3]</td>
</tr>
<tr>
<td>DIk</td>
<td>5</td>
<td>[1, 2, 2, 3]</td>
</tr>
<tr>
<td>D@{</td>
<td>5</td>
<td>[1, 2, 2, 3]</td>
</tr>
<tr>
<td>D_K</td>
<td>5</td>
<td>[1, 1, 1, 1]</td>
</tr>
<tr>
<td>E@K</td>
<td>5</td>
<td>[1, 1, 2, 2]</td>
</tr>
<tr>
<td>E@Bw</td>
<td>6</td>
<td>[1, 1, 1, 1, 5]</td>
</tr>
<tr>
<td>E@Fg</td>
<td>6</td>
<td>[1, 1, 1, 2, 4]</td>
</tr>
<tr>
<td>E@F</td>
<td>6</td>
<td>[1, 1, 1, 2, 2]</td>
</tr>
<tr>
<td>E@NG</td>
<td>6</td>
<td>[1, 1, 1, 1, 3]</td>
</tr>
<tr>
<td>E@FG</td>
<td>6</td>
<td>[1, 1, 1, 2, 2]</td>
</tr>
<tr>
<td>E@WF</td>
<td>6</td>
<td>[1, 1, 1, 2, 3]</td>
</tr>
<tr>
<td>E@QW</td>
<td>6</td>
<td>[1, 1, 2, 2]</td>
</tr>
<tr>
<td>E@YO</td>
<td>6</td>
<td>[1, 1, 2, 2]</td>
</tr>
<tr>
<td>E@K</td>
<td>6</td>
<td>[1, 1, 1, 1, 1]</td>
</tr>
<tr>
<td>E_Cg</td>
<td>6</td>
<td>[1, 1, 1, 2, 2]</td>
</tr>
<tr>
<td>E_Cw</td>
<td>6</td>
<td>[1, 1, 2, 2, 3]</td>
</tr>
<tr>
<td>E_Ko</td>
<td>6</td>
<td>[1, 1, 2, 2, 2]</td>
</tr>
<tr>
<td>F?@</td>
<td>7</td>
<td>[1, 1, 1, 1, 2, 3]</td>
</tr>
<tr>
<td>F@LCG</td>
<td>7</td>
<td>[1, 1, 1, 1, 2, 2]</td>
</tr>
<tr>
<td>F@NN</td>
<td>7</td>
<td>[1, 1, 1, 1, 1, 2]</td>
</tr>
<tr>
<td>F@GN</td>
<td>7</td>
<td>[1, 1, 1, 1, 2, 2]</td>
</tr>
<tr>
<td>F@Bw</td>
<td>7</td>
<td>[1, 1, 1, 1, 1, 4]</td>
</tr>
<tr>
<td>F@Hg</td>
<td>7</td>
<td>[1, 1, 1, 1, 2, 3]</td>
</tr>
<tr>
<td>F@XO</td>
<td>7</td>
<td>[1, 1, 1, 2, 2, 2]</td>
</tr>
</tbody>
</table>
```

```python
>>> from sage.all import *

```

(continues on next page)
35

```python
>>> Q.show()
```

<table>
<thead>
<tr>
<th>Graph6</th>
<th>Num Vertices</th>
<th>Degree Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_</td>
<td>2</td>
<td>[1, 1]</td>
</tr>
<tr>
<td>BW</td>
<td>3</td>
<td>[1, 1, 2]</td>
</tr>
<tr>
<td>CF</td>
<td>4</td>
<td>[1, 1, 1, 3]</td>
</tr>
<tr>
<td>CK</td>
<td>4</td>
<td>[1, 1, 1, 1]</td>
</tr>
<tr>
<td>CL</td>
<td>4</td>
<td>[1, 1, 2, 2]</td>
</tr>
<tr>
<td>CN</td>
<td>4</td>
<td>[1, 2, 2, 3]</td>
</tr>
<tr>
<td>E_</td>
<td>5</td>
<td>[1, 1, 1, 1, 4]</td>
</tr>
<tr>
<td>D@s</td>
<td>5</td>
<td>[1, 1, 1, 2, 3]</td>
</tr>
<tr>
<td>D@{</td>
<td>5</td>
<td>[1, 1, 2, 2, 4]</td>
</tr>
<tr>
<td>DBg</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
</tr>
<tr>
<td>DBk</td>
<td>5</td>
<td>[1, 1, 2, 3, 3]</td>
</tr>
<tr>
<td>D_</td>
<td>5</td>
<td>[1, 2, 2, 3]</td>
</tr>
<tr>
<td>D{</td>
<td>5</td>
<td>[1, 2, 2, 3]</td>
</tr>
<tr>
<td>D_K</td>
<td>5</td>
<td>[1, 1, 1, 1, 2]</td>
</tr>
<tr>
<td>D_K</td>
<td>5</td>
<td>[1, 1, 2, 2, 2]</td>
</tr>
<tr>
<td>E_Bw</td>
<td>6</td>
<td>[1, 1, 1, 1, 1, 5]</td>
</tr>
<tr>
<td>E_Fg</td>
<td>6</td>
<td>[1, 1, 1, 1, 2, 4]</td>
</tr>
<tr>
<td>E_</td>
<td>6</td>
<td>[1, 1, 1, 1, 2, 2]</td>
</tr>
<tr>
<td>E_NG</td>
<td>6</td>
<td>[1, 1, 1, 1, 3, 3]</td>
</tr>
<tr>
<td>E_QG</td>
<td>6</td>
<td>[1, 1, 1, 2, 2, 3]</td>
</tr>
<tr>
<td>E_QN</td>
<td>6</td>
<td>[1, 1, 2, 2, 2]</td>
</tr>
<tr>
<td>E_QW</td>
<td>6</td>
<td>[1, 1, 1, 1, 1, 1]</td>
</tr>
<tr>
<td>E_QYQ</td>
<td>6</td>
<td>[1, 1, 2, 2, 2, 2]</td>
</tr>
<tr>
<td>E_</td>
<td>6</td>
<td>[1, 1, 1, 1, 1, 3]</td>
</tr>
<tr>
<td>E_Cg</td>
<td>6</td>
<td>[1, 1, 1, 1, 2, 2]</td>
</tr>
<tr>
<td>E_Cw</td>
<td>6</td>
<td>[1, 1, 1, 2, 2, 3]</td>
</tr>
<tr>
<td>E_Ko</td>
<td>6</td>
<td>[1, 1, 2, 2, 2, 2]</td>
</tr>
<tr>
<td>F_</td>
<td>7</td>
<td>[1, 1, 1, 1, 1, 2, 3]</td>
</tr>
<tr>
<td>F_LCG</td>
<td>7</td>
<td>[1, 1, 1, 1, 2, 2, 2]</td>
</tr>
<tr>
<td>F_KCGN</td>
<td>7</td>
<td>[1, 1, 1, 1, 1, 1, 2]</td>
</tr>
<tr>
<td>F_KSN</td>
<td>7</td>
<td>[1, 1, 1, 1, 2, 2, 2]</td>
</tr>
<tr>
<td>F_</td>
<td>7</td>
<td>[1, 1, 1, 1, 1, 1, 4]</td>
</tr>
<tr>
<td>F_</td>
<td>7</td>
<td>[1, 1, 1, 1, 1, 2, 3]</td>
</tr>
<tr>
<td>F_</td>
<td>7</td>
<td>[1, 1, 1, 1, 1, 2, 2, 2]</td>
</tr>
</tbody>
</table>

`get_graphs_list()`

Return a list of Sage Graph objects that satisfy the query.

EXAMPLES:

```python
sage: Q = GraphQuery(display_cols=['graph6', 'num_vertices', 'degree_sequence'], num_edges=['<=', 5], min_degree=1)
sage: L = Q.get_graphs_list()
sage: len(L)
sage: len(L)
35
```

```python
>>> from sage.all import *
```

```python
>>> Q = GraphQuery(display_cols=['graph6', 'num_vertices', 'degree_sequence'], num_edges=['<=', Integer(5)], min_degree=Integer(1))
```

(continues on next page)
number_of()

Return the number of graphs in the database that satisfy the query.

EXAMPLES:

```python
sage: Q = GraphQuery(display_cols=['graph6', 'num_vertices', 'degree_sequence
˓→'],num_edges=['<=', 5], min_degree=1)
sage: Q.number_of()
35
```

query_iterator()

Return an iterator over the results list of the GraphQuery.

EXAMPLES:

```python
sage: Q = GraphQuery(display_cols=['graph6'], num_vertices=7, diameter=5)
sage: for g in Q:
    ....:     print(g.graph6_string())
F?p'o
F?qgq
F@]O
F@OKg
F@R@o
FA_pW
FEOhW
FGC{o
FIAHo
sage: Q = GraphQuery(display_cols=['graph6'], num_vertices=Integer(7), ˓→diameter=Integer(5))
sage: it = iter(Q)
sage: while True:
    ....:     try: print(next(it).graph6_string())
    ....:     except StopIteration: break
F?p'o
F?qgq
F@]O
F@OKg
F@R@o
FA_pW
FEOhW
FGC{o
FIAHo
```

```python
>>> from sage.all import *
```
... diameter=Integer(5))
>>> for g in Q:
 ... print(g.graph6_string())
F?pO
F?qg
F@?O
F@OKg
F@Rg
FA_pW
FEOhN
FGC(o
FIAHo

>> Q = GraphQuery(display_cols=['graph6'], num_vertices=Integer(7),
 ... diameter=Integer(5))
>>> it = iter(Q)
>>> while True:
 ... try:
 ... print(next(it).graph6_string())
 ... except StopIteration:
 ... break
F?pO
F?qg
F@?O
F@OKg
F@Rg
FA_pW
FEOhN
FGC(o
FIAHo

show (max_field_size=20, with_picture=False)
Display the results of a query in table format.

INPUT:

• max_field_size – integer (default: 20); width of fields in command prompt version
• with_picture – boolean (default: False); whether or not to display results with a picture of the
 graph (available only in the notebook)

EXAMPLES:

sage: G = GraphDatabase()
sage: Q = GraphQuery(G, display_cols=['graph6', 'num_vertices', 'aut_grp_size'],
 ... num_vertices=4, aut_grp_size=4)
sage: Q.show()
<table>
<thead>
<tr>
<th>Graph6</th>
<th>Num Vertices</th>
<th>Aut Grp Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>C@</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>C^</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

>>> from sage.all import *
>>> G = GraphDatabase()
>>> Q = GraphQuery(G, display_cols=['graph6', 'num_vertices', 'aut_grp_size'],
 ... num_vertices=Integer(4), aut_grp_size=Integer(4))
>>> Q.show()
<table>
<thead>
<tr>
<th>Graph6</th>
<th>Num Vertices</th>
<th>Aut Grp Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>C@</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>C^</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
sage: R = GraphQuery(G, display_cols=['graph6','num_vertices','degree_sequence'], num_vertices=4)
sage: R.show()

<table>
<thead>
<tr>
<th>Graph6</th>
<th>Num Vertices</th>
<th>Degree Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4</td>
<td>[0, 0, 0, 0]</td>
</tr>
<tr>
<td>C@</td>
<td>4</td>
<td>[0, 0, 1, 1]</td>
</tr>
<tr>
<td>CB</td>
<td>4</td>
<td>[0, 1, 1, 2]</td>
</tr>
<tr>
<td>CF</td>
<td>4</td>
<td>[1, 1, 1, 3]</td>
</tr>
<tr>
<td>CJ</td>
<td>4</td>
<td>[0, 2, 2, 2]</td>
</tr>
<tr>
<td>CK</td>
<td>4</td>
<td>[1, 1, 1, 1]</td>
</tr>
<tr>
<td>CL</td>
<td>4</td>
<td>[1, 2, 2, 3]</td>
</tr>
<tr>
<td>CN</td>
<td>4</td>
<td>[2, 2, 2, 2]</td>
</tr>
<tr>
<td>C]</td>
<td>4</td>
<td>[2, 2, 3, 3]</td>
</tr>
<tr>
<td>C~</td>
<td>4</td>
<td>[3, 3, 3, 3]</td>
</tr>
</tbody>
</table>

Show the pictures (in notebook mode only):

sage: S = GraphQuery(G, display_cols=['graph6','aut_grp_size'], num_vertices=4)
sage: S.show(with_picture=True)
Traceback (most recent call last):
 ... Not ImplementedError: Cannot display plot on command line.

>>> from sage.all import *

>>> S = GraphQuery(G, display_cols=['graph6','aut_grp_size'], num_vertices=Integer(4))

>>> S.show(with_picture=True)
Traceback (most recent call last):
 ... Not ImplementedError: Cannot display plot on command line.

Note that pictures can be turned off:

sage: S.show(with_picture=False)

(continues on next page)
```python
>>> from sage.all import *

>>> G.show(with_picture=False)
```

<table>
<thead>
<tr>
<th>Graph6</th>
<th>Aut Grp Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>C?</td>
<td>24</td>
</tr>
<tr>
<td>C@</td>
<td>4</td>
</tr>
<tr>
<td>CB</td>
<td>2</td>
</tr>
<tr>
<td>CF</td>
<td>6</td>
</tr>
<tr>
<td>CJ</td>
<td>6</td>
</tr>
<tr>
<td>CK</td>
<td>8</td>
</tr>
<tr>
<td>CL</td>
<td>2</td>
</tr>
<tr>
<td>CN</td>
<td>2</td>
</tr>
<tr>
<td>CJ</td>
<td>8</td>
</tr>
<tr>
<td>C^</td>
<td>4</td>
</tr>
<tr>
<td>C~</td>
<td>24</td>
</tr>
</tbody>
</table>

Show your own query (note that the output is not reformatted for generic queries):

```
sage: (GenericGraphQuery('select degree_sequence from degrees where max_
˓→degree=2 and min_degree >= 1', G)).show()
degree_sequence
-------------------
211
222
2211
2222
21111
22211
22211
22222
22222
221111
221111
222211
222211
222211
2222211
2222211
2222211
2222211
2222211
2222211
```

(continues on next page)
sage.graphs.graph_database.data_to_degseq(data, graph6=None)

Convert a database integer data type to a degree sequence list.

INPUT:

- `data` – integer data type (one digit per vertex representing its degree, sorted high to low) to be converted to a degree sequence list

- `graph6` – string (default: None); the graph6 identifier is required for all graphs with no edges, so that the correct number of zeros is returned.

EXAMPLES:

```python
sage: from sage.graphs.graph_database import data_to_degseq
sage: data_to_degseq(3221)
[1, 2, 2, 3]
sage: data_to_degseq(0, 'D??')
[0, 0, 0, 0, 0]
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_database import data_to_degseq
>>> data_to_degseq(Integer(3221))
```

(continues on next page)
sage.graphs.graph_database.degseq_to_data(degree_sequence)

Convert a degree sequence list to a sorted (max-min) integer data type.

The input degree sequence list (of Integers) is converted to a sorted (max-min) integer data type, as used for faster access in the underlying database.

INPUT:

• degree_sequence – list of integers; input degree sequence list

EXAMPLES:

```
sage: from sage.graphs.graph_database import degseq_to_data
sage: degseq_to_data([2,2,3,1])
3221
```

sage.graphs.graph_database.graph6_to_plot(graph6)

Return a Graphics object from a graph6 string.

This method constructs a graph from a graph6 string and returns a sage.plot.graphics.Graphics object with arguments preset for the sage.plot.graphics.Graphics.show() method.

INPUT:

• graph6 – a graph6 string

EXAMPLES:

```
sage: from sage.graphs.graph_database import graph6_to_plot
sage: type(graph6_to_plot('D??'))  # needs sage.plot
<class 'sage.plot.graphics.Graphics'>
```

sage.graphs.graph_database.graph_db_info(tablename=None)

Return a dictionary of allowed table and column names.

INPUT:

• tablename – restricts the output to a single table

EXAMPLES:

```
sage: sorted(graph_db_info())
['aut_grp', 'degrees', 'graph_data', 'misc', 'spectrum']
```
```python
>>> from sage.all import *
>>> sorted(graph_db_info())
['aut_grp', 'degrees', 'graph_data', 'misc', 'spectrum']
```

```python
sage: graph_db_info(tablename='graph_data')
['complement_graph6',
 'eulerian',
 'graph6',
 'lovasz_number',
 'num_cycles',
 'num_edges',
 'num_hamiltonian_cycles',
 'num_vertices',
 'perfect',
 'planar']
```

```python
>>> from sage.all import *
>>> graph_db_info(tablename='graph_data')
['complement_graph6',
 'eulerian',
 'graph6',
 'lovasz_number',
 'num_cycles',
 'num_edges',
 'num_hamiltonian_cycles',
 'num_vertices',
 'perfect',
 'planar']
```

```
sage.graphs.graph_database.subgraphs_to_query(subgraphs, db)
```

Return a GraphQuery object required for the induced_subgraphs parameter.

This method constructs and returns a `GraphQuery` object respecting the special input required for the induced_subgraphs parameter.

INPUT:

- subgraphs – list of strings; the list should be of one of the following two formats:
 - ['one_of', String, ..., String] – will search for graphs containing a subgraph isomorphic to any of the graph6 strings in the list
 - ['all_of', String, ..., String] – will search for graphs containing a subgraph isomorphic to each of the graph6 strings in the list
- db – a `GraphDatabase`

Note: This is a helper method called by the `GraphQuery` constructor to handle this special format. This method should not be used on its own because it doesn’t set any display columns in the query string, causing a failure to fetch the data when run.

EXAMPLES:

```python
sage: from sage.graphs.graph_database import subgraphs_to_query
sage: gd = GraphDatabase()
sage: q = subgraphs_to_query(['all_of', 'A?', 'B?', 'C?'], gd)
```

(continues on next page)
2.5 Database of strongly regular graphs

This module manages a database associating to a set of four integers \((v, k, \lambda, \mu)\) a strongly regular graph with these parameters, when one exists.

Using Andries Brouwer’s database of strongly regular graphs, it can also return non-existence results. Note that some constructions are missing, and that some strongly regular graphs that exist in the database cannot be automatically built by Sage. Help us if you know any. An outline of the implementation can be found in [CP2016].

Note: Any missing/incorrect information in the database must be reported to Andries E. Brouwer directly, in order to have a unique and updated source of information.

REFERENCES:
[BL1984]

2.5.1 Functions

sage.graphs.strongly_regular_db.SRG_100_44_18_20()

Return a \((100, 44, 18, 20)\)-strongly regular graph.

This graph is built as a Cayley graph, using the construction for \(\Delta_1\) with group \(H_3\) presented in Table 8.1 of [JK2003]

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import SRG_100_44_18_20
sage: G = SRG_100_44_18_20()
# long time
#...

sage: G.is_strongly_regular(parameters=True)
# long time
#...
```

(continues on next page)
sage.graphs.strongly_regular_db.SRG_100_45_20_20()

Return a (100, 45, 20, 20)-strongly regular graph.

This graph is built as a Cayley graph, using the construction for Γ_3 with group H_3 presented in Table 8.1 of [JK2003].

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import SRG_100_45_20_20
sage: G = SRG_100_45_20_20()
# long time
sage: G.is_strongly_regular(parameters=True)
# long time

>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import SRG_100_45_20_20
>>> G = SRG_100_45_20_20()
# long time
>>> G.is_strongly_regular(parameters=True)
# long time
```

sage.graphs.strongly_regular_db.SRG_105_32_4_12()

Return a (105, 32, 4, 12)-strongly regular graph.

The vertices are the flags of the projective plane of order 4. Two flags (a, A) and (b, B) are adjacent if the point a is on the line B or the point b is on the line A, and $a \neq b$, $A \neq B$. See Theorem 2.7 in [GS1970], and [Coo2006].

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import SRG_105_32_4_12
sage: G = SRG_105_32_4_12(); G
# Aut L(3,4) on flags: Graph on 105 vertices
sage: G.is_strongly_regular(parameters=True)
# Aut L(3,4) on flags: Graph on 105 vertices

>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import SRG_105_32_4_12
>>> G = SRG_105_32_4_12(); G
# Aut L(3,4) on flags: Graph on 105 vertices
>>> G.is_strongly_regular(parameters=True)
# Aut L(3,4) on flags: Graph on 105 vertices
```

sage.graphs.strongly_regular_db.SRG_120_63_30_36()

Return a (120, 63, 30, 36)-strongly regular graph.

It is the distance-2 graph of JohnsonGraph(10, 3).

EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_120_63_30_36
sage: G = SRG_120_63_30_36()

sage: G.is_strongly_regular(parameters=True)
(120, 63, 30, 36)

sage.graphs.strongly_regular_db.SRG_120_77_52_44()

Return a (120, 77, 52, 44)-strongly regular graph.

To build this graph, we first build a $2-(21, 7, 12)$ design, by removing two points from the WittDesign() on 23 points. We then build the intersection graph of blocks with intersection size 3.

EXAMPLES:

sage: from sage.graphs.strongly_regular_db import SRG_120_77_52_44
sage: G = SRG_120_77_52_44()

sage: G.is_strongly_regular(parameters=True)
(120, 77, 52, 44)

sage.graphs.strongly_regular_db.SRG_126_25_8_4()

Return a (126, 25, 8, 4)-strongly regular graph

It is the distance-(1 or 4) graph of JohnsonGraph(9,4).

EXAMPLES:

sage: from sage.graphs.strongly_regular_db import SRG_126_25_8_4
sage: G = SRG_126_25_8_4()

sage: G.is_strongly_regular(parameters=True)
(126, 25, 8, 4)

sage.graphs.strongly_regular_db.SRG_126_50_13_24()

Return a (126, 50, 13, 24)-strongly regular graph

This graph is a subgraph of SRG_175_72_20_36(). This construction, due to Goethals, is given in §10B.(vii) of [BL1984].

EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_126_50_13_24
sage: G = SRG_126_50_13_24(); G
Goethals graph: Graph on 126 vertices
sage: G.is_strongly_regular(parameters=True)
(126, 50, 13, 24)

>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import SRG_126_50_13_24
>>> G = SRG_126_50_13_24(); G
Goethals graph: Graph on 126 vertices
>>> G.is_strongly_regular(parameters=True)
(126, 50, 13, 24)

sage.graphs.strongly_regular_db.SRG_1288_792_476_504()
Return a (1288, 792, 476, 504)-strongly regular graph.
This graph is built on the words of weight 12 in the BinaryGolayCode(). Two of them are then made adjacent if their symmetric difference has weight 12 (cf [BE1992]).

See also:
strongly_regular_from_two_weight_code() – build a strongly regular graph from a two-weight code.

EXAMPLES:

sage: from sage.graphs.strongly_regular_db import SRG_1288_792_476_504
sage: G = SRG_1288_792_476_504()
long time
˓→ needs sage.rings.finite_rings
sage: G.is_strongly_regular(parameters=True)
long time
˓→ needs sage.rings.finite_rings
(1288, 792, 476, 504)

sage.graphs.strongly_regular_db.SRG_144_39_6_12()
Return a (144, 39, 6, 12)-strongly regular graph.
This graph is obtained as an orbit of length 2808 on sets of cardinality 2 (among 2 such orbits) of the group $PGL_3(3)$ acting on the (right) cosets of a subgroup of order 39.

EXAMPLES:

sage: from sage.graphs.strongly_regular_db import SRG_144_39_6_12
sage: G = SRG_144_39_6_12()
˓→ needs sage.libs.gap
sage: G.is_strongly_regular(parameters=True)
˓→ needs sage.libs.gap
(144, 39, 6, 12)
Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import SRG_144_39_6_12
>>> G = SRG_144_39_6_12()
# needs sage.libs.gap
>>> G.is_strongly_regular(parameters=True)
# needs sage.libs.gap
(144, 39, 6, 12)
```

`sage.graphs.strongly_regular_db.SRG_175_72_20_36()`

Return a \((175, 72, 20, 36)\)-strongly regular graph

This graph is obtained from the line graph of `HoffmanSingletonGraph()`. Setting two vertices to be adjacent if their distance in the line graph is exactly 2 yields the graph. For more information, see 10.B.(iv) in [BL1984] and [https://www.win.tue.nl/~aeb/graphs/McL.html].

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import SRG_175_72_20_36
sage: G = SRG_175_72_20_36()
sage: G.is_strongly_regular(parameters=True)
```

```
(175, 72, 20, 36)
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import SRG_176_105_68_54
>>> G = SRG_176_105_68_54()
# optional - gap_package_design
>>> G.is_strongly_regular(parameters=True)
# optional - gap_package_design
(176, 105, 68, 54)
```

`sage.graphs.strongly_regular_db.SRG_176_49_12_14()`

Return a \((176, 49, 12, 14)\)-strongly regular graph.

This graph is built from the symmetric Higman-Sims design. In [Bro1982], it is explained that there exists an involution \(\sigma\) exchanging the points and blocks of the Higman-Sims design, such that each point is mapped on a block that contains it (i.e. \(\sigma\) is a ‘polarity with all universal points’). The graph is then built by making two vertices \(u, v\) adjacent whenever \(v \in \sigma(u)\).

EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_176_49_12_14
sage: G = SRG_176_49_12_14() # long time, optional - gap
 # package_design
sage: G.is_strongly_regular(parameters=True) # long time, optional - gap
 # package_design
(176, 49, 12, 14)

sage: from sage.all import *
>>> from sage.graphs.strongly_regular_db import SRG_176_49_12_14
>>> G = SRG_176_49_12_14() # long time, optional - gap
 # package_design
>>> G.is_strongly_regular(parameters=True) # long time, optional - gap
 # package_design
(176, 49, 12, 14)

sage.graphs.strongly_regular_db.SRG_176_90_38_54()
Return a (176, 90, 38, 54)-strongly regular graph
This graph is obtained from SRG_175_72_20_36() by attaching a isolated vertex and doing Seidel switching with respect to disjoint union of 18 maximum cliques, following a construction by W.Haemers given in Sect.10.B.(vi) of [BL1984].
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_176_90_38_54
sage: G = SRG_176_90_38_54(); G
a Seidel switching of Distance graph for distance 2 in : Graph on 176 vertices
sage: G.is_strongly_regular(parameters=True)
(176, 90, 38, 54)

sage: from sage.all import *
>>> from sage.graphs.strongly_regular_db import SRG_176_90_38_54
>>> G = SRG_176_90_38_54(); G
>>> G.is_strongly_regular(parameters=True)
(176, 90, 38, 54)

sage.graphs.strongly_regular_db.SRG_196_91_42_42()
Return a (196, 91, 42, 42)-strongly regular graph.
This strongly regular graph is built following the construction provided in Corollary 8.2.27 of [IS2006].
EXAMPLES:
sage: from sage.graphs.strongly_regular_db import SRG_196_91_42_42
sage: G = SRG_196_91_42_42()

sage: G.is_strongly_regular(parameters=True)
(196, 91, 42, 42)

sage: from sage.all import *
>>> from sage.graphs.strongly_regular_db import SRG_196_91_42_42
>>> G = SRG_196_91_42_42()
>>> G.is_strongly_regular(parameters=True)
(196, 91, 42, 42)

sage.graphs.strongly_regular_db.SRG_210_99_48_45()
Return a strongly regular graph with parameters (210, 99, 48, 45)

2.5. Database of strongly regular graphs
This graph is from Example 4.2 in [KPRWZ2010]. One considers the action of the symmetric group S_7 on the 210 digraphs isomorphic to the disjoint union of K_1 and the circulant 6-vertex digraph $\text{Circulant}(6,[1,4])$. It has 16 orbitals; the package [FK1991] found a merging of them, explicitly described in [KPRWZ2010], resulting in this graph.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import SRG_210_99_48_45
sage: g = SRG_210_99_48_45()
# needs sage.libs.gap
sage: g.is_strongly_regular(parameters=True)
# needs sage.libs.gap
(210, 99, 48, 45)
```

```
# (continues on next page)
```

sage.graphs.strongly_regular_db.SRG_220_84_38_28()

Return a $(220, 84, 38, 28)$-strongly regular graph.

This graph is obtained from the `intersection_graph()` of a `BIBD_45_9_8()`. This construction appears in VII.11.2 from [DesignHandbook]

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import SRG_220_84_38_28
sage: G = SRG_220_84_38_28()
# needs sage.libs.gap
sage: G.is_strongly_regular(parameters=True)
(220, 84, 38, 28)
```

sage.graphs.strongly_regular_db.SRG_243_110_37_60()

Return a $(243, 110, 37, 60)$-strongly regular graph.

Consider the orthogonal complement of the `TernaryGolayCode()`, which has 243 words. On them we define a graph, in which two words are adjacent whenever their Hamming distance is 9. This construction appears in [GS1975].

Note: A strongly regular graph with the same parameters is also obtained from the database of 2-weight codes.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import SRG_243_110_37_60
sage: G = SRG_243_110_37_60()
# needs sage.modules sage.rings.finite_rings
sage: G.is_strongly_regular(parameters=True)
# (continues on next page)
```

(continues on next page)
sage.graphs.strongly_regular_db.SRG_253_140_87_65()
Return a (253, 140, 87, 65)-strongly regular graph.
To build this graph, we first build the WittDesign() on 23 points which is a \(2 - (23, 7, 21)\) design. We then build the intersection graph of blocks with intersection size 3. Known as S.6 in [Hub1975].

EXAMPLES:

```
sage: from sage.graphs.strongly_regular_db import SRG_253_140_87_65
sage: G = SRG_253_140_87_65()  # optional - gap_package_design
sage: G.is_strongly_regular(parameters=True)  # optional - gap_package_design
(253, 140, 87, 65)
```

sage.graphs.strongly_regular_db.SRG_276_140_58_84()
Return a (276, 140, 58, 84)-strongly regular graph.
The graph is built from McLaughlinGraph(), with an added isolated vertex. We then perform a seidel_switching() on a set of 28 disjoint 5-cliques, which exist by cf. [HT1996].

EXAMPLES:

```
sage: from sage.graphs.strongly_regular_db import SRG_276_140_58_84
sage: g = SRG_276_140_58_84()  # long time, optional - gap_package_design
sage: g.is_strongly_regular(parameters=True)  # long time, optional - gap_package_design
(276, 140, 58, 84)
```

sage.graphs.strongly_regular_db.SRG_280_117_44_52()
Return a strongly regular graph with parameters (280, 117, 44, 52).
This graph is built according to a very pretty construction of Mathon and Rosa [MR1985]:

2.5. Database of strongly regular graphs

1095
The vertices of the graph \(G \) are all partitions of a set of 9 elements into \(\{\{a, b, c\}, \{d, e, f\}, \{g, h, i\}\} \). The cross-intersection of two such partitions \(P = \{P_1, P_2, P_3\} \) and \(P' = \{P'_1, P'_2, P'_3\} \) being defined as \(\{P_i \cap P'_j : 1 \leq i, j \leq 3\} \), two vertices of \(G \) are set to be adjacent if the cross-intersection of their respective partitions does not contain exactly 7 nonempty sets.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import SRG_280_117_44_52
sage: g = SRG_280_117_44_52()
sage: g.is_strongly_regular(parameters=True)
(280, 117, 44, 52)
```

sage.graphs.strongly_regular_db.SRG_280_135_70_60()

Return a strongly regular graph with parameters \((280, 135, 70, 60)\).

This graph is built from the action of \(J_2 \) on the cosets of a \(PGL(2, 9) \)-subgroup.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import SRG_416_100_36_20
sage: g = SRG_416_100_36_20()
# long time, optional - internet
sage: g.is_strongly_regular(parameters=True)
(416, 100, 36, 20)
```

sage.graphs.strongly_regular_db.SRG_416_100_36_20()

Return a \((416, 100, 36, 20)\)-strongly regular graph.

This graph is obtained as an orbit on sets of cardinality 2 (among 2 that exists) of the group \(G_2(4) \). This graph is isomorphic to the subgraph of the from *Suzuki Graph* induced on the neighbors of a vertex. Known as S.14 in [Hub1975].

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import SRG_416_100_36_20
sage: g = SRG_416_100_36_20()
# long time, optional - internet
sage: g.is_strongly_regular(parameters=True)
(416, 100, 36, 20)
```
sage.graphs.strongly_regular_db.SRG_560_208_72_80()

Return a (560, 208, 72, 80)-strongly regular graph

This graph is obtained as the union of 4 orbits of sets of cardinality 2 (among the 13 that exist) of the group \(Sz(8)\).

EXAMPLES:

```
sage: from sage.graphs.strongly_regular_db import SRG_560_208_72_80
sage: g = SRG_560_208_72_80()  # not tested (~2s)  #...
\needs sage.libs.gap
sage: g.is_strongly_regular(parameters=True)  # not tested (~2s)  #...
\needs sage.libs.gap
(560, 208, 72, 80)
```

sage.graphs.strongly_regular_db.SRG_630_85_20_10()

Return a (630, 85, 20, 10)-strongly regular graph

This graph is the line graph of \(pq(5, 18, 2)\); its point graph is \(SRG_{175, 72, 20, 36}\). One selects a subset of 630 maximum cliques in the latter following a construction by W.Haemers given in Sect.10.B.(v) of [BL1984].

EXAMPLES:

```
sage: from sage.graphs.strongly_regular_db import SRG_630_85_20_10
sage: G = SRG_630_85_20_10()  # long time  #...
\needs sage.groups
sage: G.is_strongly_regular(parameters=True)  # long time  #...
\needs sage.groups
(630, 85, 20, 10)
```

sage.graphs.strongly_regular_db.SRG_from_RSHCD(v, k, l, mu, existence=False, check=True)

Return a \((v, k, l, mu)\)-strongly regular graph from a RSHCD

This construction appears in 8.D of [BL1984]. For more information, see regular_symmetric_hadamard_matrix_with_constant_diagonal().

INPUT:

- \(v, k, l, mu\) – integers
• existence (boolean) – whether to return a graph or to test if Sage can build such a graph.
• check (boolean) – whether to check that output is correct before returning it. As this is expected to be useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by default.

EXAMPLES:

some graphs

```python
sage: from sage.graphs.strongly_regular_db import SRG_from_RSHCD
sage: SRG_from_RSHCD(784, 0, 14, 38, existence=True)  # needs sage.combinat sage.modules
False
sage: SRG_from_RSHCD(784, 377, 180, 182, existence=True)  # needs sage.combinat sage.modules
True
sage: SRG_from_RSHCD(144, 65, 28, 30)  # needs sage.combinat sage.modules
Graph on 144 vertices
```

an example with vertex-transitive automorphism group, found during the implementation of the case \(v = 324 \)

```python
sage: G = SRG_from_RSHCD(324,152,70,72)
sage: a = G.automorphism_group()
sage: a.order()
2592
sage: len(a.orbits())
1
```

```python
>>> from sage.all import *
>>> # long time, needs sage.combinat sage.modules
>>> G = SRG_from_RSHCD(Integer(324),Integer(152),Integer(70),Integer(72))
>>> a = G.automorphism_group()
>>> a.order()
2592
>>> len(a.orbits())
1
```

`sage.graphs.strongly_regular_db.apparently_feasible_parameters(n)`

Return a list of a priori feasible parameters \((v, k, \lambda, \mu)\), with \(0 < \mu < k\).

Note that some of those that it returns may also be infeasible for more involved reasons. The condition \(0 < \mu < k\) makes sure we skip trivial cases of complete multipartite graphs and their complements.

INPUT:
• \(n \) (integer) – return all a-priori feasible tuples \((v, k, \lambda, \mu)\) for \(v < n\)

EXAMPIES:

All sets of parameters with \(v < 20\) which pass basic arithmetic tests are feasible:

```python
sage: from sage.graphs.strongly_regular_db import apparently_feasible_parameters
sage: small_feasible = apparently_feasible_parameters(20); small_feasible
{(5, 2, 0, 1),
 (9, 4, 1, 2),
 (10, 3, 0, 1),
 (10, 6, 3, 4),
 (13, 6, 2, 3),
 (15, 6, 1, 3),
 (15, 8, 4, 4),
 (16, 5, 0, 2),
 (16, 6, 2, 2),
 (16, 9, 4, 6),
 (16, 10, 6, 6),
 (17, 8, 3, 4)}
sage: all(graphs.strongly_regular_graph(*x,existence=True) is True)  # needs sage.libs.pari
True
```

But that becomes wrong for \(v < 60\) (because of the non-existence of a \((49, 16, 3, 6)\)-strongly regular graph):

```python
sage: small_feasible = apparently_feasible_parameters(60)
sage: all(graphs.strongly_regular_graph(*x,existence=True) is True)  # needs sage.libs.pari
False
```

(continues on next page)
sage.graphs.strongly_regular_db.eigenmatrix(v, k, l, mu)

Return the first eigenmatrix of a \((v, k, l, mu)\)-strongly regular graph.

The adjacency matrix \(A\) of an s.r.g. commutes with the adjacency matrix \(A' = J - A - I\) of its complement (here \(J\) is all-1 matrix, and \(I\) the identity matrix). Thus, they can be simultaneously diagonalized and so \(A\) and \(A'\) share eigenspaces.

The eigenvalues of \(J\) are \(v\) with multiplicity 1, and 0 with multiplicity \(v-1\). Thus the eigenvalue of \(A'\) corresponding to the 1-dimension \(k\)-eigenspace of \(A\) is \(v-k-1\). Respectively, the eigenvalues of \(A'\) corresponding to \(t\)-eigenspace of \(A\), with \(t\) unequal to \(k\), equals \(-t-1\). The 1st eigenmatrix \(P\) of the C-algebra \(C[A]\) generated by \(A\) encodes this eigenvalue information in its three columns; the 2nd (resp. 3rd) column contains distinct eigenvalues of \(A\) (resp. of \(A'\)), and the 1st column contains the corresponding eigenvalues of \(I\). The matrix \(vP^{-1}\) is called the 2nd eigenvalue matrix of \(C[A]\).

The most interesting feature of \(vP^{-1}\) is that it is the 1st eigenmatrix of the dual of \(C[A]\) if the dual is generated by the adjacency matrix of a strongly regular graph. See [BH2012] and [BI1984] for details.

If the set of parameters is not feasible, or if they correspond to a conference graph, the function returns \texttt{None}.

Its output is stable, assuming that the eigenvalues \(r,s\) used satisfy \(r>s\); this holds for the current implementation of \texttt{eigenvalues()}.

INPUT:

- \(v, k, l, mu\) – integers

EXAMPLES:

Petersen’s graph’s C-algebra does not have a dual coming from an s.r.g.:

```python
sage: from sage.graphs.strongly_regular_db import eigenmatrix
sage: P = eigenmatrix(10,3,0,1); P
\[
\begin{bmatrix}
1 & 3 & 6 \\
1 & 1 & -2 \\
1 & -2 & 1
\end{bmatrix}
\]
```

The line graph of \(K_{3,3}\) is self-dual:

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import eigenmatrix
>>> P = eigenmatrix(Integer(10),Integer(3),Integer(0),Integer(1)); P
\[
\begin{bmatrix}
1 & 3 & 6 \\
1 & 1 & -2 \\
1 & -2 & 1
\end{bmatrix}
\]
```

```python
>>> Integer(10)*P**Integer(1)
\[
\begin{bmatrix}
1 & 5 & 4 \\
1 & 5/3 & -8/3 \\
1 & -5/3 & 2/3
\end{bmatrix}
\]
```
A strongly regular graph with a non-isomorphic dual coming from another strongly regular graph:
Graph Theory, Release 10.4

sage.graphs.strongly_regular_db.is_GQqmqp\((k, l, \mu) \)

Test whether some \(GQ(q - 1, q + 1) \) or \(GQ(q + 1, q - 1) \)-graph is \((v, k, \lambda, \mu) \)-srg.

INPUT:

- \(v, k, l, \mu \) – integers

OUTPUT:

A tuple \(t \) such that \(t[0](*t[1:]) \) builds the requested graph if one exists, and None otherwise.

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: from sage.graphs.strongly_regular_db import is_GQqmqp
sage: t = is_GQqmqp(27,10,1,5); t
(<function AhrensSzekeresGeneralizedQuadrangleGraph at ...>, 3, False)
sage: g = t[0](*t[1:]); g
AS(3); GQ(2, 4): Graph on 27 vertices
sage: g.is_strongly_regular(parameters=True)
(27, 10, 1, 5)
sage: t = is_GQqmqp(45,12,3,3); t
(<function AhrensSzekeresGeneralizedQuadrangleGraph at ...>, 3, True)
sage: g = t[0](*t[1:]); g
AS(3)*; GQ(4, 2): Graph on 45 vertices
sage: g.is_strongly_regular(parameters=True)
(45, 12, 3, 3)
sage: t = is_GQqmqp(16,6,2,2); t
(<function T2starGeneralizedQuadrangleGraph at ...>, 2, True)
sage: g = t[0](*t[1:]); g
T2*(0,2)*; GQ(3, 1): Graph on 16 vertices
sage: g.is_strongly_regular(parameters=True)
(16, 6, 2, 2)
sage: t = is_GQqmqp(64,18,2,6); t
(<function T2starGeneralizedQuadrangleGraph at ...>, 4, False)
sage: g = t[0](*t[1:]); g
T2*(0,4)*; GQ(3, 5): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
(64, 18, 2, 6)
```

(continues on next page)
(<function T2starGeneralizedQuadrangleGraph at ...>, 2, True)

>>> g = t[Integer(0)](*t[Integer(1):]); g
t2*o2*; GQ(3, 1): Graph on 16 vertices

>>> g.is_strongly_regular(parameters=True)
(16, 6, 2, 2)

>>> t = is_GQqmqp(Integer(64),Integer(18),Integer(2),Integer(6)); t
(<function T2starGeneralizedQuadrangleGraph at ...>, 4, False)

>>> g = t[Integer(0)](*t[Integer(1):]); g
t2*o4*; GQ(3, 5): Graph on 64 vertices

>>> g.is_strongly_regular(parameters=True)
(64, 18, 2, 6)

sage.graphs.strongly_regular_db.is_NO_F2(k, l, mu)
Test whether some NO^e,perp(2n,2) graph is (v, k, λ, μ)-strongly regular.

For more information, see sage.graphs.graph_generators.GraphGenerators.
NonisotropicOrthogonalPolarGraph().

INPUT:
• v, k, l, μ – integers

OUTPUT:
A tuple t such that t[0] (*t[1:]) builds the requested graph if one exists, and None otherwise.

EXAMPLES:

sage: from sage.graphs.strongly_regular_db import is_NO_F2
sage: t = is_NO_F2(10, 3, 0, 1); t # needs sage.libs.pari
<function NonisotropicOrthogonalPolarGraph at ...>, 4, 2, '-'

sage: g = t[0](*t[1:]); g # needs sage.libs.pari
NO^-(4, 2): Graph on 10 vertices

sage: g.is_strongly_regular(parameters=True) # needs sage.libs.pari
(10, 3, 0, 1)

sage: from sage.all import *
sage: from sage.graphs.strongly_regular_db import is_NO_F2
sage: t = is_NO_F2(Integer(10), Integer(3), Integer(0), Integer(1)); t # needs sage.libs.pari
<function NonisotropicOrthogonalPolarGraph at ...>, 4, 2, '-'

sage: g = t[Integer(0)](*t[Integer(1):]); g # needs sage.libs.pari
NO^-(4, 2): Graph on 10 vertices

sage: g.is_strongly_regular(parameters=True) # needs sage.libs.pari
(10, 3, 0, 1)

sage.graphs.strongly_regular_db.is_NO_F3(k, l, mu)
Test whether some NO^e,perp(2n,3) graph is (v, k, λ, μ)-strongly regular.

For more information, see sage.graphs.graph_generators.GraphGenerators.
NonisotropicOrthogonalPolarGraph().

INPUT:
• \(v, k, l, \mu\) – integers

OUTPUT:

A tuple \(t\) such that \(t[0] (*t[1:])\) builds the requested graph if one exists, and None otherwise.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import is_NO_F3
sage: t = is_NO_F3(15, 6, 1, 3); t
# needs sage.libs.pari
(<function NonisotropicOrthogonalPolarGraph at ...>, 4, 3, '-')
sage: g = t[0](*t[1:]); g
# needs sage.libs.pari
NO^-(4, 3): Graph on 15 vertices
sage: g.is_strongly_regular(parameters=True)
# needs sage.libs.pari
(15, 6, 1, 3)
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_NO_F3
>>> t = is_NO_F3(Integer(15), Integer(6), Integer(1), Integer(3)); t
# needs sage.libs.pari
(<function NonisotropicOrthogonalPolarGraph at ...>, 4, 3, '-')
>>> g = t[Integer(0)](*t[Integer(1:)]); g
# needs sage.libs.pari
NO^-(4, 3): Graph on 15 vertices
>>> g.is_strongly_regular(parameters=True)
# needs sage.libs.pari
(15, 6, 1, 3)
```

\(sage.\text{graphs.strongly_regular_db.}\text{is_NO_odd}(k, l, \mu)\)

Test whether some \(NO^{e(2n+1,q)}\) graph is \((v, k, \lambda, \mu)\)-strongly regular.

Here \(q > 2\), for in the case \(q = 2\) this graph is complete. For more information, see \(sage.\text{graphs.}\text{graph_generators.}\text{GraphGenerators.}\text{NonisotropicOrthogonalPolarGraph()}\) and Sect. 7.C of [BL1984].

INPUT:

• \(v, k, l, \mu\) – integers

OUTPUT:

A tuple \(t\) such that \(t[0] (*t[1:])\) builds the requested graph if one exists, and None otherwise.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import is_NOodd
sage: t = is_NOodd(120, 51, 18, 24); t
# needs sage.libs.pari
(<function NonisotropicOrthogonalPolarGraph at ...>, 5, 4, '-')
sage: g = t[0](*t[1:]); g
# needs sage.libs.pari
NO^-(5, 4): Graph on 120 vertices
sage: g.is_strongly_regular(parameters=True)
# needs sage.libs.pari
(120, 51, 18, 24)
```
sage.graphs.strongly_regular_db.is_NOodd\((k, l, \mu)\)
Test whether some \(NO^e\text{, perp}(2n+1,5)\) graph is \((v, k, \lambda, \mu)\)-strongly regular.

For more information, see `sage.graphs.graph_generators.GraphGenerators.NonisotropicOrthogonalPolarGraph()` and Sect. 7.D of [BL1984].

INPUT:
- \(v, k, l, \mu\) – integers

OUTPUT:
A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if one exists, and \(None\) otherwise.

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_NOodd
>>> t = is_NOodd(Integer(120), Integer(51), Integer(18), Integer(24)); t ...
# needs sage.libs.pari
(<function NonisotropicOrthogonalPolarGraph at ...>, 5, 4, '-')
>>> g = t[Integer(0)]('t[Integer(1):]); g ...
# needs sage.libs.pari
NO^-(5, 4): Graph on 120 vertices
>>> g.is_strongly_regular(parameters=True) ... # ...
needs sage.libs.pari
(120, 51, 18, 24)
```

sage.graphs.strongly_regular_db.is_NU\((k, l, \mu)\)
Test whether some \(NU(n,q)\)-graph is \((v, k, \lambda, \mu)\)-strongly regular.

Note that \(n>2\); for \(n=2\) there is no s.r.g. For more information, see `sage.graphs.graph_generators.GraphGenerators.NonisotropicUnitaryPolarGraph()` and series C14 in [Hub1975].

INPUT:
- \(v, k, l, \mu\) – integers

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_NU
>>> t = is_NU(Integer(10), Integer(3), Integer(0), Integer(1)); t ...
# needs sage.libs.pari
(<function NonisotropicOrthogonalPolarGraph at ...>, 3, 5, '-', 1)
>>> g = t[0]('t[1:]); g ...
# needs sage.libs.pari
NO^-,perp(3, 5): Graph on 10 vertices
>>> g.is_strongly_regular(parameters=True) ...
# ...
needs sage.libs.pari
(10, 3, 0, 1)
```
OUTPUT:
A tuple t such that $t[0](*t[1:])$ builds the requested graph if one exists, and None otherwise.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import is_NU
sage: t = is_NU(40, 27, 18, 18); t
# needs sage.libs.pari
(<function NonisotropicUnitaryPolarGraph at ...>, 4, 2)
sage: g = t[0](*t[1:]); g
# needs sage.libs.pari
NU(4, 2): Graph on 40 vertices
sage: g.is_strongly_regular(parameters=True)
# needs sage.libs.pari
(40, 27, 18, 18)
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_NU
>>> t = is_NU(Integer(40), Integer(27), Integer(18), Integer(18)); t
# needs sage.libs.pari
[<built-in function SRG_from_RSHCD>, 64, 27, 10, 12]
```

```
sage.graphs.strongly_regular_db.is_RSHCD($v$, $k$, $l$, $mu$)
Test whether some RSHCD graph is $(v, k, \lambda, \mu)$-strongly regular.
For more information, see SRG_from_RSHCD().

INPUT:
• $v$, $k$, $l$, $mu$ – integers

OUTPUT:
A tuple $t$ such that $t[0](*t[1:])$ builds the requested graph if one exists, and None otherwise.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import is_RSHCD
sage: t = is_RSHCD(64,27,10,12); t
needs sage.combinat sage.modules
[<built-in function SRG_from_RSHCD>, 64, 27, 10, 12]
sage: g = t[0](*t[1:]); g
needs sage.combinat sage.modules
Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
needs sage.combinat sage.modules
(64, 27, 10, 12)
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_RSHCD
>>> t = is_RSHCD(Integer(64),Integer(27),Integer(10),Integer(12)); t
needs sage.combinat sage.modules
[<built-in function SRG_from_RSHCD>, 64, 27, 10, 12]
```
sage.graphs.strongly_regular_db.is_affine_polar \((k, l, \mu)\)

Test whether some Affine Polar graph is \((v, k, \lambda, \mu)\)-strongly regular.

For more information, see https://www.win.tue.nl/~aeb/graphs/VO.html.

**INPUT:**

- \(v, k, l, \mu\) – integers

**OUTPUT:**

A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if one exists, and \(None\) otherwise.

**EXAMPLES:**

```python
sage: from sage.graphs.strongly_regular_db import is_affine_polar
sage: t = is_affine_polar(81, 32, 13, 12); t
\(\ldots, 4, 3\)
sage: g = t[0](*t[1:]); g
\(\ldots, 4, 3\)
```

sage.graphs.strongly_regular_db.is_complete_multipartite \((k, l, \mu)\)

Test whether some complete multipartite graph is \((v, k, \lambda, \mu)\)-strongly regular.

Any complete multipartite graph with parts of the same size is strongly regular.

**INPUT:**

- \(v, k, l, \mu\) – integers

**OUTPUT:**
A tuple $t$ such that $t[0](*t[1:])$ builds the requested graph if one exists, and $\text{None}$ otherwise.

**EXAMPLES:**

```python
sage: from sage.graphs.strongly_regular_db import is_complete_multipartite
sage: t = is_complete_multipartite(12, 8, 4, 8); t
<cyfunction is_complete_multipartite.<locals>.CompleteMultipartiteSRG at ...>, 3, 4)
sage: g = t[0](*t[1:]); g
Multipartite Graph with set sizes [4, 4, 4]: Graph on 12 vertices
sage: g.is_strongly_regular(parameters=True)
(12, 8, 4, 8)
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_complete_multipartite
>>> t = is_complete_multipartite(Integer(12), Integer(8), Integer(4), Integer(8)); t
<cyfunction is_complete_multipartite.<locals>.CompleteMultipartiteSRG at ...>, 3, 4)
>>> g = t[Integer(0)](*t[Integer(1:)]); g
Multipartite Graph with set sizes [4, 4, 4]: Graph on 12 vertices
>>> g.is_strongly_regular(parameters=True)
(12, 8, 4, 8)
```

`sage.graphs.strongly_regular_db.is_cossidente_penttila(k, l, mu)`
Test whether some CossidentePenttilaGraph graph is $(v, k, \lambda, \mu)$-strongly regular.

For more information, see `CossidentePenttilaGraph()`.

**INPUT:**

- $v, k, l, \mu$ – integers

**OUTPUT:**

A tuple $t$ such that $t[0](*t[1:])$ builds the requested graph if one exists, and $\text{None}$ otherwise.

**EXAMPLES:**

```python
sage: from sage.graphs.strongly_regular_db import is_cossidente_penttila
sage: t = is_cossidente_penttila(378, 52, 1, 8); t
needs sage.libs.pari
(<function CossidentePenttilaGraph at ...>, 5)
sage: g = t[0](*t[1:]); g
optional - gap_package_design...
Multipartite PenttilaGraph(5): Graph on 378 vertices
sage: g.is_strongly_regular(parameters=True)
optional - gap_package_design...
(378, 52, 1, 8)
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_cossidente_penttila
>>> t = is_cossidente_penttila(Integer(378), Integer(52), Integer(1), Integer(8)); t
needs sage.libs.pari
(<function CossidentePenttilaGraph at ...>, 5)
>>> g = t[Integer(0)](*t[Integer(1:)]); g
optional - gap_package_design, needs sage.libs.pari
Multipartite PenttilaGraph(5): Graph on 378 vertices
```

(continues on next page)
sage.graphs.strongly_regular_db.is_goethals_seidel\((k, l, \mu)\)

Test whether some GoethalsSeidelGraph() graph is \((v, k, \lambda, \mu)\)-strongly regular.

**INPUT:**

- \(v, k, l, \mu\) – integers

**OUTPUT:**

A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if one exists, and \(None\) otherwise.

**EXAMPLES:**

```python
sage: from sage.graphs.strongly_regular_db import is_goethals_seidel
sage: t = is_goethals_seidel(28, 15, 6, 10); t
needs sage.combinat sage.modules
[<function GoethalsSeidelGraph at ...>, 3, 3]
sage: g = t[0](*t[1:]); g
needs sage.combinat sage.modules
Graph on 28 vertices
sage: g.is_strongly_regular(parameters=True)
needs sage.combinat sage.modules
(28, 15, 6, 10)
sage: t = is_goethals_seidel(256, 135, 70, 72); t
needs sage.combinat sage.modules
[<function GoethalsSeidelGraph at ...>, 2, 15]
sage: g = t[0](*t[1:]); g
needs sage.combinat sage.modules
Graph on 256 vertices
sage: g.is_strongly_regular(parameters=True)
needs sage.combinat sage.modules
(256, 135, 70, 72)
sage: t = is_goethals_seidel(5, 5, 5, 5); t
needs sage.combinat sage.modules
```

(continues on next page)
Graph on 256 vertices

```python
>>> g.is_strongly_regular(parameters=True)
needs sage.combinat sage.modules
(256, 135, 70, 72)
```

```python
>>> t = is_goethals_seidel(Integer(5), Integer(5), Integer(5), Integer(5)); t
needs sage.combinat sage.modules
```

```python
sage.graphs.strongly_regular_db.is_haemers(k, l, mu)
```
Test whether some HaemersGraph graph is \((v, k, \lambda, \mu)\)-strongly regular.

For more information, see `HaemersGraph()`.

**INPUT:**

- \(v, k, l, \mu\) – integers

**OUTPUT:**

A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if one exists, and \(\text{None}\) otherwise.

**EXAMPLES:**

```python
sage: from sage.graphs.strongly_regular_db import is_haemers
sage: t = is_haemers(96, 19, 2, 4); t
needs sage.libs.pari
(<function HaemersGraph at ...>, 4)
```

```python
sage: g = t[0](*t[1:]); g
needs sage.libs.pari
Haemers(4): Graph on 96 vertices
sage: g.is_strongly_regular(parameters=True)
needs sage.libs.pari
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_haemers
>>> t = is_haemers(Integer(96), Integer(19), Integer(2), Integer(4)); t
needs sage.libs.pari
```

```python
Haemers(4): Graph on 96 vertices
>>> g = t[0](*t[1:]); g
needs sage.libs.pari
```

```python
sage.graphs.strongly_regular_db.is_johnson(k, l, mu)
```
Test whether some Johnson graph is \((v, k, \lambda, \mu)\)-strongly regular.

**INPUT:**

- \(v, k, l, \mu\) – integers

**OUTPUT:**

A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if one exists, and \(\text{None}\) otherwise.

**EXAMPLES:**

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_haemers
>>> t = is_haemers(Integer(96), Integer(19), Integer(2), Integer(4)); t
needs sage.libs.pari
```

```python
Haemers(4): Graph on 96 vertices
>>> g = t[0](*t[1:]); g
needs sage.libs.pari
```

```python
sage.graphs.strongly_regular_db.is_johnson(k, l, mu)
```
```python
sage: from sage.graphs.strongly_regular_db import is_johnson
sage: t = is_johnson(10, 6, 3, 4); t
(..., 5)
sage: g = t[0](*t[1:]); g
Johnson graph with parameters 5,2: Graph on 10 vertices
sage: g.is_strongly_regular(parameters=True)
(10, 6, 3, 4)
sage: t = is_johnson(5, 5, 5, 5); t
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_johnson
>>> t = is_johnson(Integer(10), Integer(6), Integer(3), Integer(4)); t
(..., 5)
>>> g = t[Integer(0)](*t[Integer(1):]); g
Johnson graph with parameters 5,2: Graph on 10 vertices
>>> g.is_strongly_regular(parameters=True)
(10, 6, 3, 4)
```

```python
sage.graphs.strongly_regular_db.is_mathon_PC_srg(k, l, mu)
Test whether some Mathon’s Pseudocyclic s.r.g. is \((v, k, \lambda, \mu)\)-strongly regular.

INPUT:

- \(v, k, l, \mu\) – integers

OUTPUT:

A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if one exists, and None otherwise.

Todo: The current implementation only gives a subset of all possible graphs that can be obtained using this construction. A full implementation should rely on a database of conference matrices (or, equivalently, on a database of s.r.g.’s with parameters \((4t+1, 2t, t-1, t)\). Currently we make an extra assumption that \(4t+1\) is a prime power. The first case where we miss a construction is \(t = 11\), where we could (recursively) use the graph for \(t = 1\) to construct a graph on 83205 vertices.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import is_mathon_PC_srg
sage: t = is_mathon_PC_srg(45, 22, 10, 11); t
# needs sage.libs.pari (..., 1)
sage: g = t[0](*t[1:]); g
# needs sage.libs.pari
Mathon’s PC SRG on 45 vertices: Graph on 45 vertices
sage: g.is_strongly_regular(parameters=True)
# needs sage.libs.pari
(45, 22, 10, 11)
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_mathon_PC_srg
>>> t = is_mathon_PC_srg(Integer(45), Integer(22), Integer(10), Integer(11)); t
# needs sage.libs.pari
(...) 1
```

(continues on next page)
sage.graphs.strongly_regular_db.is_muzychuk_S6(k, l, mu)
Tests whether some Muzychuk S6 graph is \((v, k, l, mu)\)-strongly regular.

INPUT:
- \(v, k, l, mu\) – integers

OUTPUT:
A tuple \(t\) such that \(t[0](*t[1:])\) builds the required graph if it exists, and None otherwise.

EXAMPLES:

```python
sage: G = t[0](*t[1:]); G
Muzychuk S6 graph with parameters (3,3): Graph on 378 vertices
sage: G.is_strongly_regular(parameters=True)
(378, 116, 34, 36)
```

sage.graphs.strongly_regular_db.is_nowhere0_twoweight(v, k, l, mu)
Test whether some graph of nowhere 0 words is \((v, k, \lambda, \mu)\)-strongly regular.

INPUT:
- \(v, k, l, \mu\) – integers

OUTPUT:
A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if the parameters match, and None otherwise.

EXAMPLES:

```python
sage: graphs.strongly_regular_graph(196, 60, 14, 20) # needs sage.combinat sage.modules
Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
```
sagegraphs.strongly_regular_db.is_orthogonal_array_block_graph(k, l, mu)

Test whether some (pseudo)Orthogonal Array graph is (v, k, λ, μ)-strongly regular.

We know how to construct graphs with parameters of an Orthogonal Array $(OA(m, n))$, also known as Latin squares graphs $L_m(n)$, in several cases where no orthogonal array is known, or even in some cases for which they are known not to exist.

Such graphs are usually called pseudo-Latin squares graphs. Namely, Sage can construct a graph with parameters of an $OA(m, n)$-graph whenever there exists a skew-Hadamard matrix of order $n + 1$, and $m = (n + 1)/2$ or $m = (n - 1)/2$. The construction in the former case is due to Goethals-Seidel [BL1984], and in the latter case due to Pasechnik [Pas1992].

INPUT:

- v, k, l, mu – integers

OUTPUT:

A tuple t such that $t[0](*t[1:])$ builds the requested graph if one exists, and `None` otherwise.

EXAMPLES:

```
sage: # needs sage.combinat sage.modules
sage: from sage.graphs.strongly_regular_db import is_orthogonal_array_block_graph
sage: t = is_orthogonal_array_block_graph(64, 35, 18, 20); t
(..., 5, 8)
sage: g = t[0](*t[1:]); g
OA(5,8): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
(64, 35, 18, 20)
sage: t = is_orthogonal_array_block_graph(225,98,43,42); t
(..., 4)
sage: g = t[0](*t[1:]); g
Pasechnik Graph_4: Graph on 225 vertices
sage: g.is_strongly_regular(parameters=True)
(225, 98, 43, 42)
sage: t = is_orthogonal_array_block_graph(225,112,55,56); t
(..., 4)
sage: g = t[0](*t[1:]); g
skewhad^2_4: Graph on 225 vertices
sage: g.is_strongly_regular(parameters=True)
(225, 112, 55, 56)
sage: t = is_orthogonal_array_block_graph(5,5,5,5); t
#...
sage: # needs sage.combinat sage.modules
```
sage.graphs.strongly_regular_db.is_orthogonal_polar\(k, l, mu\)

Test whether some Orthogonal Polar graph is \((v, k, \lambda, \mu)\)-strongly regular.

For more information, see https://www.win.tue.nl/~aeb/graphs/srghub.html.

INPUT:

- \(v, k, l, mu\) – integers

OUTPUT:

A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if one exists, and None otherwise.

EXAMPLES:

```sage
def is_orthogonal_polar(k, l, mu):
    # needs sage.rings.finite_rings
    Orthogonal Polar Graph O(5, 4): Graph on 85 vertices
    sage: g = is_orthogonal_polar(5, 5, 5);
    # needs sage.rings.finite_rings
    Orthogonal Polar Graph O(5, 5, 5): Graph on 85 vertices
    sage: is_orthogonal_polar(5, 5, 5)
    (85, 20, 3, 5)
```
sage.graphs.strongly_regular_db.is_paley(k, l, mu)

Test whether some Paley graph is (v, k, λ, μ)-strongly regular.

INPUT:

- v, k, l, mu – integers

OUTPUT:

A tuple t such that $t[0](t[1:])$ builds the requested graph if one exists, and None otherwise.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import is_paley
sage: t = is_paley(13,6,2,3); t
(..., 13)
```

```python
sage: g = t[0](t[1:]); g  # needs sage.rings.finite_rings
Paley graph with parameter 13: Graph on 13 vertices
sage: g.is_strongly_regular(parameters=True)  # needs sage.rings.finite_rings
(13, 6, 2, 3)
```

```python
sage: t = is_paley(5,5,5,5); t
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_paley
>>> t = is_paley(Integer(13),Integer(6),Integer(2),Integer(3)); t
>>> g = t[0](t[1:]); g  # needs sage.rings.finite_rings
Paley graph with parameter 13: Graph on 13 vertices
>>> g.is_strongly_regular(parameters=True)  # needs sage.rings.finite_rings
(13, 6, 2, 3)
```

```python
>>> t = is_paley(Integer(5),Integer(5),Integer(5),Integer(5)); t
```

sage.graphs.strongly_regular_db.is_polhill(k, l, mu)

Test whether some graph from [Pol2009] is $(1024, k, \lambda, \mu)$-strongly regular.

Note: This function does not actually explore all strongly regular graphs produced in [Pol2009], but only those on 1024 vertices.

John Polhill offered his help if we attempt to write a code to guess, given (v, k, λ, μ), which of his construction must be applied to find the graph.

INPUT:

- v, k, l, mu – integers

OUTPUT:

A tuple t such that $t[0](t[1:])$ builds the requested graph if the parameters match, and None otherwise.

EXAMPLES:

```python
>>> from sage.graphs.strongly_regular_db import is_polhill
>>> t = is_polhill(13,6,2,3); t
```

```python
sage: g = t[0](t[1:]); g  # needs sage.rings.finite_rings
Paley graph with parameter 13: Graph on 13 vertices
sage: g.is_strongly_regular(parameters=True)  # needs sage.rings.finite_rings
(13, 6, 2, 3)
```
The code snippet demonstrates the use of the `is_polhill` function to check if a given graph is a strongly regular graph with specific parameters. The output shows the construction of graphs based on the parameters provided.

The `is_steiner` function is used to test if a Steiner graph exists with given parameters. The function returns a tuple indicating whether the graph exists and its parameters if it does.

Test whether some Steiner graph is \((v, k, \lambda, \mu)\)-strongly regular.

A Steiner graph is the intersection graph of a Steiner set system. For more information, see https://www.win.tue.nl/~aeb/graphs/S.html.

INPUT:

- \(v, k, \lambda, \mu\) – integers

OUTPUT:

A tuple \(t\) such that \(t[0] (*t[1:])\) builds the requested graph if one exists, and \(None\) otherwise.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import is_steiner
sage: t = is_steiner(26, 15, 8, 9); t
(..., 13, 3)
sage: g = t[0](*t[1:]); g
Intersection Graph: Graph on 26 vertices
sage: g.is_strongly_regular(parameters=True)  # not tested (too long)
(26, 15, 8, 9)
```
sage: t = is_steiner(5,5,5,5); t

```
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_steiner
>>>
t = is_steiner(Integer(26),Integer(15),Integer(8),Integer(9)); t
(..., 13, 3)
```

```
>>> g = t[Integer(0)](*t[Integer(1):]); g
Intersection Graph: Graph on 26 vertices
```

```
>>> g.is_strongly_regular(parameters=True)
(26, 15, 8, 9)
```

```
>>> t = is_steiner(Integer(5),Integer(5),Integer(5),Integer(5)); t
```

sage.graphs.strongly_regular_db.is_switch_OA_srg\((v, k, l, \mu)\)
Test whether some switch OA\((k, n) + *\) is \((v, k, \lambda, \mu)\)-strongly regular.

The "switch\(^*\) OA\((k, n) + *\) graphs appear on Andries Brouwer’s database and are built by adding an isolated vertex
to a OrthogonalArrayBlockGraph(), and a Seidel switching a set of disjoint \(n\)-cocliques.

INPUT:
- \(v, k, l, \mu\) – integers

OUTPUT:
A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if the parameters match, and None otherwise.

EXAMPLES:
```
sage: graphs.strongly_regular_graph(170, 78, 35, 36) # indirect doctest
Graph on 170 vertices
```

```
>>> from sage.all import *
>>> graphs.strongly_regular_graph(Integer(170), Integer(78), Integer(35),
Integer(36)) # indirect doctest # needs sage.combinat sage.modules
Graph on 170 vertices
```

sage.graphs.strongly_regular_db.is_switch_skewhad\((v, k, l, \mu)\)
Test whether some switch skewhad\(^2+\) is \((v, k, \lambda, \mu)\)-strongly regular.

The switch skewhad\(^2+\) graphs appear on Andries Brouwer’s database and are built by adding an isolated vertex
to the complement of SquaredSkewHadamardMatrixGraph(), and a Seidel switching a set of disjoint \(n\)-cocliques.

INPUT:
- \(v, k, l, \mu\) – integers

OUTPUT:
A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if the parameters match, and None otherwise.

EXAMPLES:
```
sage: graphs.strongly_regular_graph(226, 105, 48, 49) #...
```

2.5. Database of strongly regular graphs
sage.graphs.strongly_regular_db.is_taylor_twograph_srg\((k, l, mu)\)

Test whether some Taylor two-graph SRG is \((v, k, \lambda, \mu)\)-strongly regular.

For more information, see §7E of [BL1984].

INPUT:

- \(v, k, l, mu\) – integers

OUTPUT:

A tuple \(t\) such that \(t[0](\ast t[1:])\) builds the requested graph \(TaylorTwographSRG\) if the parameters match, and None otherwise.

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: from sage.graphs.strongly_regular_db import is_taylor_twograph_srg
sage: t = is_taylor_twograph_srg(28, 15, 6, 10); t
(function TaylorTwographSRG at ...>, 3)
```

```python
sage: g = t[0](\ast t[1:]); g
Taylor two-graph SRG: Graph on 28 vertices
```

```python
sage: g.is_strongly_regular(parameters=True)
(28, 15, 6, 10)
```

```python
sage: t = is_taylor_twograph_srg(5, 5, 5, 5); t
(function TaylorTwographSRG at ...>, 3)
```

```python
sage: g = t[0](\ast t[1:]); g
Taylor two-graph SRG: Graph on 28 vertices
```

```python
sage: g.is_strongly_regular(parameters=True)
(28, 15, 6, 10)
```

```python
sage: t = is_taylor_twograph_srg(5, 5, 5, 5); t
(function TaylorTwographSRG at ...>, 3)
```

sage.graphs.strongly_regular_db.is_twograph_descendant_of_srg\((k0, l, mu)\)

Test whether some descendant graph of a s.r.g. is \((v, k_0, \lambda, \mu)\)-s.r.g.

We check whether there can exist \((v + 1, k, \lambda^*, \mu^*)\)-s.r.g. \(G\) so that \(self\) is a descendant graph of the regular two-graph specified by \(G\). Specifically, we must have that \(v + 1 = 2(2k - \lambda^* - \mu^*)\), and \(k_0 = 2(k - \mu^*)\), \(\lambda = k + \lambda^* - 2\mu^*\), \(\mu = k - \mu^*\), which give 2 independent linear conditions, say \(k - \mu^* = \mu\) and \(\lambda^* - \mu^* = \lambda - \mu\). Further, there is a quadratic relation \(2k^2 - (v + 1 + 4\mu)k + 2v\mu = 0\).

If we can construct such \(G\) then we return a function to build a \((v, k_0, \lambda, \mu)\)-s.r.g. For more information, see 10.3 in https://www.win.tue.nl/~aeb/2WF02/spectra.pdf

INPUT:

- \(v, k0, l, mu\) – integers

OUTPUT:

A tuple \(t\) such that \(t[0](\ast t[1:])\) builds the requested graph if one exists and is known, and None otherwise.
EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import is_twograph_descendant_of_srg
sage: t = is_twograph_descendant_of_srg(27, 10, 1, 5); t  # needs sage.rings.finite_rings
(<cyfunction is_twograph_descendant_of_srg.<locals>.la at ...>, 1a at...)
sage: g = t[0](*t[1:]); g  # needs sage.rings.finite_rings
descendant of complement(Johnson graph with parameters 8,2) at {0, 1}: Graph on
27 vertices
sage: g.is_strongly_regular(parameters=True)  # needs sage.rings.finite_rings
(27, 10, 1, 5)
sage: t = is_twograph_descendant_of_srg(5,5,5,5); t
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_unitary_dual_polar
>>> t = is_unitary_dual_polar(297, 40, 7, 5); t
(<function UnitaryDualPolarGraph at ...>, 5, 2)
>>> g = t[0](*t[1:]); g  # needs sage.rings.finite_rings
(Unitary Dual Polar Graph DU(5, 2); GQ(8, 4): Graph on 297 vertices
is_strongly_regular(parameters=True)  # needs sage.rings.finite_rings
(297, 40, 7, 5)
>>> t = is_unitary_dual_polar(5,5,5,5); t
```

sage.graphs.strongly_regular_db.\texttt{is_unitary_dual_polar}(k, l, \mu)

Test whether some Unitary Dual Polar graph is \((v, k, \lambda, \mu)\)-strongly regular.

This must be the U_5(q) on totally isotropic lines. For more information, see https://www.win.tue.nl/~aeb/graphs/srghub.html.

INPUT:

- \(v, k, l, \mu\) – integers

OUTPUT:

A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if one exists, and None otherwise.

EXAMPLES:

```python
sage: # needs sage.libs.pari
sage: from sage.graphs.strongly_regular_db import is_unitary_dual_polar
sage: t = is_unitary_dual_polar(297, 40, 7, 5); t
(<function UnitaryDualPolarGraph at ...>, 5, 2)
sage: g = t[0](*t[1:]); g  # needs sage.rings.finite_rings
Unitary Dual Polar Graph DU(5, 2); GQ(8, 4): Graph on 297 vertices
is_strongly_regular(parameters=True)  # needs sage.rings.finite_rings
(297, 40, 7, 5)
sage: t = is_unitary_dual_polar(5,5,5,5); t
```

```python
>>> from sage.all import *
>>> # needs sage.libs.pari
>>> from sage.graphs.strongly_regular_db import is_unitary_dual_polar
```
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> t = is_unitary_dual_polar(Integer(297), Integer(40), Integer(7), Integer(5));
˓→ t
(<function UnitaryDualPolarGraph at ...>, 5, 2)
>>> g = t[Integer(0)](*t[Integer(1):]); g
Unitary Dual Polar Graph DU(5, 2); GQ(8, 4): Graph on 297 vertices
>>> g.is_strongly_regular(parameters=True)
(297, 40, 7, 5)
>>> t = is_unitary_dual_polar(Integer(5), Integer(5), Integer(5), Integer(5)); t
˓→ needs sage.libs.pari
```

sage.graphs.strongly_regular_db.is_unitary_polar(k, l, mu)

Test whether some Unitary Polar graph is \((v, k, \mu, \lambda)\)-strongly regular.

For more information, see https://www.win.tue.nl/~aeb/graphs/srghub.html.

INPUT:

- \(v, k, 1, \mu\) – integers

OUTPUT:

A tuple \(t\) such that \(t[0](*t[1:])\) builds the requested graph if one exists, and \(\text{None}\) otherwise.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import is_unitary_polar
sage: t = is_unitary_polar(45, 12, 3, 3); t
˓→ needs sage.libs.pari
(<function UnitaryPolarGraph at ...>, 4, 2)
sage: g = t[0](*t[1:]); g
˓→ needs sage.libs.pari
Unitary Polar Graph U(4, 2); GQ(4, 2): Graph on 45 vertices
sage: g.is_strongly_regular(parameters=True)
˓→ needs sage.libs.pari
(45, 12, 3, 3)
```

sage.graphs.strongly_regular_db.latin_squares_graph_parameters(v, k, l, mu)

Check whether \((v, k, l, \mu)\)-strongly regular graph has parameters of an \(L_g(n)\) s.r.g.

Also known as pseudo-OA(n, g) case, i.e. s.r.g. with parameters of an OA(n, g)-graph. Return \(g\) and \(n\), if they exist. See Sect. 9.1 of [BH2012] for details.

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import is_unitary_polar
>>> t = is_unitary_polar(Integer(45), Integer(12), Integer(3), Integer(3)); t
˓→ needs sage.libs.pari
<<function UnitaryPolarGraph at ...>, 4, 2)
>>> g = t[Integer(0)](*t[Integer(1):]); g
˓→ needs sage.libs.pari
Unitary Polar Graph U(4, 2); GQ(4, 2): Graph on 45 vertices
>>> g.is_strongly_regular(parameters=True)
˓→ needs sage.libs.pari
(45, 12, 3, 3)
```
INPUT:
• \(v, k, l, \mu\) -- (integers) parameters of the graph

OUTPUT:
• \((g, n)\) -- parameters of an \(L_g(n)\) graph, or \(None\)

sage.graphs.strongly_regular_db.strongly_regular_from_two_intersection_set(M)
Return a strongly regular graph from a 2-intersection set.

A set of points in the projective geometry \(PG(k, q)\) is said to be a 2-intersection set if it intersects every hyperplane in either \(h_1\) or \(h_2\) points, where \(h_1, h_2 \in NN\).

From a 2-intersection set \(S\) can be defined a strongly-regular graph in the following way:
• Place the points of \(S\) on a hyperplane \(H\) in \(PG(k+1, q)\)
• Define the graph \(G\) on all points of \(PG(k+1, q)\)\(\backslash H\)
• Make two points of \(V(G) = PG(k+1, q)\)\(\backslash H\) adjacent if the line going through them intersects \(S\)

For more information, see e.g. [CD2013] where this explanation has been taken from.

INPUT:
• \(M\) -- a \(|S| \times k\) matrix with entries in \(F_q\) representing the points of the 2-intersection set. We assume that the first non-zero entry of each row is equal to 1, that is, they give points in homogeneous coordinates.

The implementation does not check that \(S\) is actually a 2-intersection set.

EXAMPLES:

sage: from sage.graphs.strongly_regular_db import strongly_regular_from_two_intersection_set
sage: S = Matrix(
[(0,0,1),(0,1,0)] +
[(1,x^2,x) for x in GF(4,'b')])
needs sage.modules sage.rings.finite_rings
sage: g = strongly_regular_from_two_intersection_set(S); g
needs sage.modules sage.rings.finite_rings
two-intersection set in PG(3,4): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
needs sage.modules sage.rings.finite_rings
(64, 18, 2, 6)

sage: from sage.all import *
sage: from sage.graphs.strongly_regular_db import strongly_regular_from_two_intersection_set
sage: S = Matrix(
[(Integer(0),Integer(0),Integer(1)),(Integer(0),Integer(1),
Integer(0))]+
[(Integer(1),x**Integer(2),x) for x in GF(Integer(4),'b')])
needs sage.modules sage.rings.finite_rings
sage: g = strongly_regular_from_two_intersection_set(S); g
needs sage.modules sage.rings.finite_rings
two-intersection set in PG(3,4): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
needs sage.modules sage.rings.finite_rings
(64, 18, 2, 6)

sage.graphs.strongly_regular_db.strongly_regular_from_two_weight_code(L)
Return a strongly regular graph from a two-weight code.

A code is said to be a two-weight code the weight of its nonzero codewords (i.e. their number of nonzero coordinates) can only be one of two integer values \(w_1, w_2\). It is said to be projective if the minimum weight of the
dual code is ≥ 3. A strongly regular graph can be built from a two-weight projective code with weights w_1, w_2 (assuming $w_1 < w_2$) by adding an edge between any two codewords whose difference has weight w_1. For more information, see [LS1981] or [Del1972].

INPUT:

- L – a two-weight linear code, or its generating matrix.

EXAMPLES:

```python
sage: from sage.graphs.strongly_regular_db import strongly_regular_from_two_weight_code
sage: L = ("100022021001111",
        "0100111122000",
        "001021112100011",
        "000110120222220")
sage: L = Matrix(GF(3),[list(l) for l in x])
# needs sage.modules sage.rings.finite_rings
sage: G = strongly_regular_from_two_weight_code(LinearCode(L))
# needs sage.modules sage.rings.finite_rings
sage: G.is_strongly_regular(parameters=True)
# needs sage.modules sage.rings.finite_rings
(81, 50, 31, 30)
```

```python
>>> from sage.all import *
>>> from sage.graphs.strongly_regular_db import strongly_regular_from_two_weight_code
>>> L = ("100022021001111",
      ...
      )
>>> L = Matrix(GF(Integer(3)),[list(l) for l in x])
# needs sage.modules sage.rings.finite_rings
>>> G = strongly_regular_from_two_weight_code(LinearCode(L))
# needs sage.modules sage.rings.finite_rings
>>> G.is_strongly_regular(parameters=True)
# needs sage.modules sage.rings.finite_rings
(81, 50, 31, 30)
```

sage.graphs.strongly_regular_db.strongly_regular_graph($v, k, \lambda, \mu=-1, existence=False, check=True$

Return a (v, k, λ, μ)-strongly regular graph.

This function relies partly on Andries Brouwer’s database of strongly regular graphs. See the documentation of sage.graphs.strongly_regular_db for more information.

INPUT:

- v, k, λ, μ – integers – note that μ, if unspecified, is automatically determined from v, k, λ.

- $existence$ (boolean; "False") – instead of building the graph, return:
 - True – meaning that a (v, k, λ, μ)-strongly regular graph exists.
 - Unknown – meaning that Sage does not know if such a strongly regular graph exists (see sage.misc.unknown).
 - False – meaning that no such strongly regular graph exists.

- $check$ (boolean) Whether to check that output is correct before returning it. As this is expected to be useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

EXAMPLES:

Petersen's graph from its set of parameters:

```sage
graphs.strongly_regular_graph(10, 3, 0, 1, existence=True) # needs sage.libs.pari
```

```sage
graphs.strongly_regular_graph(10, 3, 0, 1)
```

complement(Johnson graph with parameters 5, 2): Graph on 10 vertices

Now without specifying μ:

```sage
graphs.strongly_regular_graph(10, 3, 0)
```

complement(Johnson graph with parameters 5, 2): Graph on 10 vertices

An obviously infeasible set of parameters:

```sage
graphs.strongly_regular_graph(5, 5, 5, 5, existence=True)
```

```sage
graphs.strongly_regular_graph(5, 5, 5, 5)
```

Traceback (most recent call last):
...
ValueError: There exists no (5, 5, 5, 5)-strongly regular graph

A set of parameters proved in a paper to be infeasible:

```sage
graphs.strongly_regular_graph(324, 57, 0, 12, existence=True) # needs sage.combinat sage.modules
```

```sage
graphs.strongly_regular_graph(324, 57, 0, 12)
```

Traceback (most recent call last):
...
EmptySetError: Andries Brouwer's database reports that no (324, 57, 0, 12)-strongly regular graph exists. Comments: Gavrilyuk & Makhnev ...

2.5. Database of strongly regular graphs 1123
A set of parameters unknown to be realizable in Andries Brouwer's database:

```
sage: graphs.strongly_regular_graph(324,95,22,30,existence=True) # needs sage.combinat
Unknown
```

```
sage: graphs.strongly_regular_graph(324,95,22,30)
Traceback (most recent call last):
...
```

 uptime: (324, 95, 22, 30)-strongly regular graph is known to exist.

```
sage: graphs.strongly_regular_graph(1394,175,0,25,existence=True) # needs sage.combinat
Unknown
```

```
sage: graphs.strongly_regular_graph(1394,175,0,25)
Traceback (most recent call last):
...
```

A large unknown set of parameters (not in Andries Brouwer's database):

```
sage: graphs.strongly_regular_graph(1394,175,0,25,existence=True) # needs sage.combinat
Unknown
```

```
sage: graphs.strongly_regular_graph(1394,175,0,25)
Traceback (most recent call last):
...
```

...
RuntimeError: Sage cannot figure out if a (1394, 175, 0, 25)-strongly regular graph exists.

Test the Claw bound (see 3.D of [BL1984]):

```
sage: graphs.strongly_regular_graph(2058,242,91,20,existence=True)
False
```

```
>>> from sage.all import *

>>> graphs.strongly_regular_graph(Integer(2058),Integer(242),Integer(91),Integer(20),existence=True)
False
```

```
sage.graphs.strongly_regular_db.strongly_regular_graph_lazy(v, k, l, mu=-1, existence=False)
```

return a promise to build an \((v, k, l, mu)-srg\)

Return a promise to build an \((v, k, l, mu)-srg\) as a tuple \(t\), with \(t[0]\) a function to evaluate on \(*t[1 :]\).

Input as in strongly_regular_graph(), although without check.

2.6 Database of distance regular graphs

In this module we construct several distance regular graphs and group them in a function that maps intersection arrays to graphs.

For a survey on distance-regular graph see [BCN1989] or [VDKT2016].

EXAMPLES:

```
sage: G = graphs.cocliques_HoffmannSingleton()
sage: G.is_distance_regular()
True
sage: H = graphs.distance_regular_graph([15, 14, 10, 3, 1, 5, 12, 15])
sage: H == G
True
sage: G = graphs.distance_regular_graph([27, 10, 1, 10, 27])
sage: G.is_distance_regular(True)
([27, 10, 1, None], [None, 1, 10, 27])
```

```
>>> from sage.all import *

>>> G = graphs.cocliques_HoffmannSingleton()

>>> G.is_distance_regular()
True

>>> H = graphs.distance_regular_graph([Integer(15), Integer(14), Integer(10),
\-
Integer(3), Integer(1), Integer(5), Integer(12), Integer(15)])

>>> H == G
True

>>> G = graphs.distance_regular_graph([Integer(27), Integer(10), Integer(1),
\-
Integer(1), Integer(10), Integer(27)])

>>> G.is_distance_regular(True)
([27, 10, 1, None], [None, 1, 10, 27])
```

AUTHORS:

2.6. Database of distance regular graphs 1125
• Ivo Maffei (2020-07-28): initial version

`sage.graphs.generators.distance_regular.AlternatingFormsGraph(n, q)`

Return the alternating forms graph with the given parameters.

This builds a graph whose vertices are all \(n \times n \) skew-symmetric matrices over \(GF(q) \) with zero diagonal. Two vertices are adjacent if and only if the difference of the two matrices has rank 2.

This graph is distance-regular with classical parameters \((\lfloor \frac{n}{2} \rfloor, q^2, q^2, q^2(q^2 - 1) - 1) \).

INPUT:

- \(n \) – integer
- \(q \) – a prime power

EXAMPLES:

```python
sage: G = graphs.AlternatingFormsGraph(5, 2)  # long time
sage: G.is_distance_regular(True)  # long time
([[155, 112, None], [None, 1, 20]])
```

```bash
>>> from sage.all import *
>>> G = graphs.AlternatingFormsGraph(Integer(5), Integer(2))  # long time
>>> G.is_distance_regular(True)  # long time
([[155, 112, None], [None, 1, 20]])
```

REFERENCES:

`sage.graphs.generators.distance_regular.BilinearFormsGraph(d, e, q)`

Return a bilinear forms graph with the given parameters.

This builds a graph whose vertices are all \(d \times e \) matrices over \(GF(q) \). Two vertices are adjacent if the difference of the two matrices has rank 1.

The graph is distance-regular with classical parameters \((\min(d, e), q, q - 1, q^{\max(d, e)} - 1) \).

INPUT:

- \(d, e \) – integers; dimension of the matrices
- \(q \) – integer; a prime power

EXAMPLES:

```python
sage: # needs sage.modules
sage: G = graphs.BilinearFormsGraph(3, 3, 2)  # not tested (20 s)
sage: G.is_distance_regular(True)  # not tested (due to above)
```

```bash
19683
```

```python
sage: G = graphs.BilinearFormsGraph(3, 4, 2)  # long time
sage: G.is_distance_regular(True)  # long time
```

```bash
1126 Chapter 2. Constructors and databases
```
```python
>>> from sage.all import *

# needs sage.modules
>>> G = graphs.BilinearFormsGraph(Integer(3), Integer(3), Integer(2))
>>> G.is_distance_regular(True)
([49, 36, 16, None], [None, 1, 6, 28])

# not tested (20 s) # needs sage.rings.finite_rings
>>> G = graphs.BilinearFormsGraph(Integer(3), Integer(4), Integer(2))
# long time # needs sage.rings.finite_rings
>>> G.is_distance_regular(True)
([105, 84, 48, None], [None, 1, 6, 28])
```

REFERENCES:

```python
sage.graphs.generators.distance_regular.ConwaySmith_for_3S7()
```

Return the Conway-Smith graph related to $3S_{ym}(7)$.

This is a distance-regular graph with intersection array \([10, 6, 4, 1; 1, 2, 6, 10]\).

EXAMPLES:

```python
sage: G = graphs.ConwaySmith_for_3S7()
# needs sage.modules sage.rings.finite_rings sage.rings.number_field
sage: G.is_distance_regular(True)
# needs sage.modules sage.rings.finite_rings sage.rings.number_field
```

REFERENCES:
A description and construction of this graph can be found in [BCN1989] p. 399.

```python
sage.graphs.generators.distance_regular.DoubleGrassmannGraph(q, e)
```

Return the bipartite double of the distance-e graph of the Grassmann graph $J_q(n,e)$.

This graph can also be described as follows: Let V be the vector space of dimension n over $GF(q)$. The vertex set is the set of $e + 1$ or e subspaces of V. Two vertices are adjacent if one subspace is contained in the other.

This graph is distance-transitive.

INPUT:
- \(q \) – a prime power
- \(e \) – integer

EXAMPLES:
Graph Theory, Release 10.4

```python
sage: G = graphs.DoubleGrassmannGraph(2,1)  # needs sage.modules
sage: G.diameter()  # needs sage.modules
3
sage: G.is_distance_regular(True)  # needs sage.modules
([3, 2, 2, None], [None, 1, 1, 3])
```

```python
>>> from sage.all import *
>>> G = graphs.DoubleGrassmannGraph(Integer(2),Integer(1))  # needs sage.modules
>>> G.diameter()  # needs sage.modules
3
>>> G.is_distance_regular(True)  # needs sage.modules
([3, 2, 2, None], [None, 1, 1, 3])
```

REFERENCES:

sage.graphs.generators.distance_regular.DoubleOddGraph(n)

Return the double odd graph on $2n + 1$ points.

The graph is obtained using the subsets of size n and $n + 1$ of 1, 2, ..., $2n + 1$ as vertices. Two vertices are adjacent if one is included in the other.

The graph is distance-transitive.

INPUT:

• n – integer; must be greater than 0

EXAMPLES:

```python
sage: G = graphs.DoubleOddGraph(5)
sage: G.is_distance_regular(True)
([(6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, None],
 [None, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6])
sage: G = graphs.DoubleOddGraph(3)
sage: G.diameter()
7
sage: G.is_distance_regular(True)
([(4, 3, 3, 2, 2, 1, 1, None], [None, 1, 1, 2, 2, 3, 3, 4])
```

```python
>>> from sage.all import *
>>> G = graphs.DoubleOddGraph(Integer(5))  # needs sage.modules
>>> G.is_distance_regular(True)
([(6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, None],
 [None, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6])
>>> G = graphs.DoubleOddGraph(Integer(3))
>>> G.diameter()
7
>>> G.is_distance_regular(True)
([(4, 3, 3, 2, 2, 1, 1, None], [None, 1, 1, 2, 2, 3, 3, 4])
```

REFERENCES:
Graph Theory, Release 10.4

`sage.graphs.generators.distance_regular.DoublyTruncatedWittGraph()`

Return the doubly truncated Witt graph.

This builds the truncated Witt graph, then removes all vertices whose codeword start with a 1.

The graph is distance-regular with intersection array \([7, 6, 4, 4; 1, 1, 1, 6]\).

EXAMPLES:

```python
sage: G = graphs.DoublyTruncatedWittGraph()  #...
→ needs sage.libs.pari sage.modules
sage: G.is_distance_regular(True)  #...
→ needs sage.libs.pari sage.modules
([7, 6, 4, 4, None], [None, 1, 1, 1, 6])
```

REFERENCES:

A description and construction of this graph can be found in [BCN1989] p. 368.

`sage.graphs.generators.distance_regular.FosterGraph3S6()`

Return the Foster graph for 3.\(\text{Sym}(6)\).

This graph is distance-regular with intersection array \([6, 4, 2, 1; 1, 1, 4, 6]\).

The graph is also distance transitive.

EXAMPLES:

```python
>>> from sage.all import *  #...
>>> G = graphs.DoublyTruncatedWittGraph()  #...
→ needs sage.libs.pari sage.modules
>>> G.is_distance_regular(True)  #...
→ needs sage.libs.pari sage.modules
([6, 4, 2, 1, None], [None, 1, 1, 4, 6])
```

REFERENCES:

A description and construction of this graph can be found in [BCN1989] p. 397.

`sage.graphs.generators.distance_regular.GeneralisedDodecagonGraph(s, t)`

Return the point-graph of a generalised dodecagon of order \((s, t)\).

INPUT:

- \(s, t\) – integers; order of the generalised dodecagon

EXAMPLES:
Note: This function indirectly uses the GAP’s AtlasRep package. Thus you may need an internet connection and the optional Sage’s package gap_packages.

REFERENCES:

sage.graphs.generators.distance_regular.GeneralisedHexagonGraph(s, t)

Return the point-graph of a generalised hexagon of order (s, t).

INPUT:

• s, t – integers; order of the generalised hexagon

EXAMPLES:
```python
>>> G = graphs.GeneralisedHexagonGraph(Integer(7), Integer(1))
>>> G.is_distance_regular(True)
([14, 7, 7, None], [None, 1, 1, 2])
```

```python
>>> graphs.GeneralisedHexagonGraph(Integer(1), Integer(1))
Cycle graph: Graph on 6 vertices
```

Note: This function uses the GAP’s AtlasRep package to build GHs of order \((q, q), (q, q^3)\) or \((q^3, q)\). For those graphs you need an internet connection and Sage’s optional package `gap_packages`.

REFERENCES:

```
sage.graphs.generators.distance_regular.GeneralisedOctagonGraph(s, t)
```

Return the point-graph of a generalised octagon of order \((s, t)\).

INPUT:
- `s, t` – integers; order of the generalised octagon

EXAMPLES:
```
sage: # needs sage.libs.gap
sage: G = graphs.GeneralisedOctagonGraph(1, 4)
sage: G.is_distance_regular(True)
# optional - gap_package_atlasrep internet
([5, 4, 4, 4, None], [None, 1, 1, 1, 5])
sage: G = graphs.GeneralisedOctagonGraph(2, 4)  # optional - gap_package_atlasrep internet
([10, 8, 8, 8, None], [None, 1, 1, 1, 5])
sage: G = graphs.GeneralisedOctagonGraph(5, 1)
sage: G.is_distance_regular(True)
([10, 5, 5, 5, None], [None, 1, 1, 1, 2])
```

```
>>> from sage.all import *
```
```
>>> G = graphs.GeneralisedOctagonGraph(Integer(1), Integer(4))
>>> G.is_distance_regular(True)  # optional - gap_package_atlasrep internet
([5, 4, 4, 4, None], [None, 1, 1, 1, 5])
>>> G = graphs.GeneralisedOctagonGraph(Integer(2), Integer(4))  # optional - gap_package_atlasrep internet
([10, 8, 8, 8, None], [None, 1, 1, 1, 5])
>>> G = graphs.GeneralisedOctagonGraph(Integer(5), Integer(1))
>>> G.is_distance_regular(True)  # optional - gap_package_atlasrep internet
([10, 5, 5, 5, None], [None, 1, 1, 1, 2])
```

Note: This function uses the GAP’s AtlasRep package to build the graphs of order \((2, 4)\) or \((4, 2)\). For those graphs you need an internet connection and Sage’s optional package `gap_packages`.

REFERENCES:
```
Return the Grassmann graph with parameters \((q, n, e)\).
This builds the Grassmann graph \(J_q(n, e)\). That is, for a vector space \(V = \mathbb{F}(q)^n\) the output is the graph on the subspaces of dimension \(e\) where two subspaces are adjacent if their intersection has dimension \(e - 1\).
This graph is distance-regular with classical parameters \((\min(e, n - e), q, q, [\frac{n-e+1}{2}]_q - 1)\)

**INPUT:**
- \(q\) – a prime power
- \(n, e\) – integers with \(n > e + 1\)

**EXAMPLES:**
```
```
GraphTheory, Release 10.4

2.6. Database of distance regular graphs

See [BCN1989] pp. 264, 265 or [VDKT2016] p. 21. This construction can be found on Wikipedia article Halved_cube_graph#Equivalent_constructions

\texttt{sage.graphs.generators.distance_regular.HermitianFormsGraph}(n, r)

Return the Hermitian forms graph with the given parameters.

We build a graph whose vertices are all $n \times n$ Hermitian matrices over $\text{GF}(r^2)$. Two vertices are adjacent if the difference of the two vertices has rank 1.

This graph is distance-regular with classical parameters $(n, -r, -r - 1, -(r ^d - 1))$.

**INPUT:**

- $n$ – integer
- $r$ – a prime power

**EXAMPLES:**

```python
sage: # needs sage.modules sage.rings.finite_rings
sage: G = graphs.HermitianFormsGraph(2, 2)
```

```python
sage: G.is_distance_regular(True)
```

```python
sage: G = graphs.HermitianFormsGraph(3, 3) # not tested (2 min)
```

```python
sage: G.order() # not tested (bacause of the above)
```

```python
sage: from sage.all import *
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.HermitianFormsGraph(Integer(2), Integer(2))
```

```python
>>> G.is_distance_regular(True) # optional - internet gap_
```

```python
>>> G = graphs.HermitianFormsGraph(Integer(3), Integer(3)) # not tested (2 min)
```

```python
>>> G.order() # not tested (bacause of the above)
```

**REFERENCES:**


\texttt{sage.graphs.generators.distance_regular.IvanovIvanovFaradjevGraph()}

Return the IvanovIvanovFaradjev graph.

The graph is distance-transitive with automorphism group $3.M_{22}$.

**EXAMPLES:**

```python
sage: G = graphs.IvanovIvanovFaradjevGraph() # optional - internet gap_
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.IvanovIvanovFaradjevGraph() # optional - internet gap_
```

```python
>>> G.is_distance_regular(True) # optional - internet gap_
```

```python
>>> G = graphs.IvanovIvanovFaradjevGraph() # optional - internet gap_
```

```python
>>> G.order() # optional - internet gap_
```

```python
```

**REFERENCES:**


"""
REFERENCES:
A description and construction of this graph can be found in [BCN1989] p. 369.
sage.graphs.generators.distance_regular.J2Graph()
Return the distance-transitive graph with automorphism group $J_2$.

EXAMPLES:

```
sage: G = graphs.J2Graph() # optional - internet gap_
 → package_atlasrep
sage: G.is_distance_regular(True) # optional - internet gap_
 → package_atlasrep
([10, 8, 8, 2, None], [None, 1, 1, 4, 5])
```

REFERENCES:
A description and construction of this graph can be found in [BCN1989] p. 408.
sage.graphs.generators.distance_regular.LargeWittGraph()
Return the large Witt graph.

This is a distance-regular graph with intersection array $[30, 28, 24; 1, 3, 15]$.

EXAMPLES:

```
sage: g = graphs.LargeWittGraph() # optional - internet gap_
 → needs sage.libs.pari sage.modules
sage: g.is_distance_regular(True) # optional - internet gap_
 → needs sage.libs.pari sage.modules
([30, 28, 24, None], [None, 1, 3, 15])
```

REFERENCES:
A description of this graph can be found in [BCN1989] p. 366. This construction is taken from http://mathworld.wolfram.com/LargeWittGraph.html
sage.graphs.generators.distance_regular.LeonardGraph()
Return the Leonard graph.

The graph is distance-regular with intersection array $[12, 11, 10, 7; 1, 2, 5, 12]$.

EXAMPLES:
Graph Theory, Release 10.4

sage: G = graphs.LeonardGraph()
    # needs sage.combinat sage.modules
sage: G.is_distance_regular(True)
    # needs sage.combinat sage.modules
    ([12, 11, 10, 7, None], [None, 1, 2, 5, 12])

REFERENCES:
For a description of this graph see [BCN1989] p. 371.

sage.graphs.generators.distance_regular.TruncatedWittGraph()
Return the truncated Witt graph.
This builds the large Witt graph, then removes all vertices whose codeword start with a 1.
The graph is distance-regular with intersection array [15, 14, 12; 1, 1, 9].

EXAMPLES:

sage: # long time, needs sage.libs.pari sage.modules
sage: G = graphs.TruncatedWittGraph()
sage: G.is_distance_regular(True)
    ([15, 14, 12, None], [None, 1, 1, 9])

REFERENCES:
A description and construction of this graph can be found in [BCN1989] p. 367.
sage.graphs.generators.distance_regular.UstimenkoGraph(m, q)
Return the Ustimenko graph with parameters (m, q).
This is the distance 1 or 2 graph of the dual polar graph $C_{m-1}(q)$. The graph is distance-regular with parameters
$(d, q^2, \binom{m}{1}_q - 1, \binom{m+1}{1}_q - 1)$, where $\binom{n}{k}_q$ is the $q$-binomial coefficient.

INPUT:
* m, q – integers; q must be a prime power and $m > 1$

EXAMPLES:

sage: G = graphs.UstimenkoGraph(4, 2)
    # needs sage.libs.gap
sage: G.is_distance_regular(True)
    # needs sage.libs.gap
    ([70, 32, None], [None, 1, 35])

2.6. Database of distance regular graphs 1135
>>> from sage.all import *
>>> G = graphs.UstimenkoGraph(Integer(4), Integer(2))  # needs sage.libs.gap
>>> G.is_distance_regular(True)  # needs sage.libs.gap
([70, 32, None], [None, 1, 35])

REFERENCES:

sage.graphs.generators.distance_regular.cocliques_HoffmannSingleton()
Return the graph obtained from the cocliques of the Hoffmann-Singleton graph.
This is a distance-regular graph with intersection array [15, 14, 10, 3; 1, 5, 12, 15].

EXAMPLES:
sage: G = graphs.cocliques_HoffmannSingleton()
sage: G.is_distance_regular(True)
([15, 14, 10, 3, None], [None, 1, 5, 12, 15])

REFERENCE:
The construction of this graph can be found in [BCN1989] p. 392.

sage.graphs.generators.distance_regular.distance_3_doubly_truncated_Golay_code_graph()
Return a distance-regular graph with intersection array [9, 8, 6, 3; 1, 1, 3, 8].

EXAMPLES:
sage: # long time, needs sage.modules sage.rings.finite_rings
sage: G = graphs.distance_3_doubly_truncated_Golay_code_graph()
sage: G.is_distance_regular(True)  # long time (due to above)
([9, 8, 6, 3, None], [None, 1, 1, 3, 8])

ALGORITHM:
Compute the binary Golay code and truncate it twice. Compute its coset graph. Take a vertex and compute the
set of vertices at distance 3 from the vertex chosen. This set constitutes the set of vertices of our distance-regular
graph. Moreover we have an edge \((u, v)\) if the coset graph contains such edge.

REFERENCE:
Description and construction of this graph are taken from [BCN1989] p. 364.

sage.graphs.generators.distance_regular.distance_regular_graph(arr, existence=False, check=True)
Return a distance-regular graph with the intersection array given.

**INPUT:**

- `arr` – list; intersection array of the graph
- `existence` – boolean (optional); instead of building the graph return:
  - `True` – if a graph with the given intersection array exists;
  - `False` – if there is no graph with the given intersection array;
  - `Unknown` – if Sage doesn’t know if such a graph exists.
- `check` – boolean (default: `True`); if `True`, then checks that the result of this function has the given intersection array

**EXAMPLES:**

```python
sage: graphs.distance_regular_graph([21, 20, 16, 1, 2, 12], existence=True)
True
```

```python
sage: G = graphs.distance_regular_graph([12, 11, 10, 7, 1, 2, 5, 12], check=False) #...
needs sage.combinat sage.modules
sage: G.is_distance_regular(True) #...
needs sage.combinat sage.modules
([12, 11, 10, 7, None], [None, 1, 2, 5, 12])
```

```python
>>> from sage.all import *
>>> G = graphs.distance_regular_graph([Integer(21), Integer(20), Integer(16), Integer(1),
Integer(2), Integer(12)], existence=True) #...
needs sage.combinat sage.modules
>>> G.is_distance_regular(True) #...
needs sage.combinat sage.modules
([12, 11, 10, 7, None], [None, 1, 2, 5, 12])
```

**REFERENCES:**

See [BCN1989] and [VDKT2016].

Graph Theory, Release 10.4

```
sage.graphs.generators.distance_regular.graph_3O73()
```

Return the graph related to the group $3O(7, 3)$.

This graph is distance-regular with intersection array $[117, 80, 24, 1; 1, 12, 80, 117]$.

The graph is also distance transitive with $3.O(7, 3)$ as automorphism group

**EXAMPLES:**

```python
sage: G = graphs.graph_3O73() # optional - internet gap_
package_atlasrep
sage: G.is_distance_regular(True) # optional - internet gap_
package_atlasrep
([117, 80, 24, 1, None], [None, 1, 12, 80, 117])
```

```python
>>> from sage.all import *
>>> G = graphs.graph_3O73() # optional - internet gap_
package_atlasrep
```

(continues on next page)
REFERENCES:

A description and construction of this graph can be found in [BCN1989] p. 400.

REFERENCES:

Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> from sage.graphs.generators.distance_regular import *
>>> graph_with_classical_parameters(Integer(3), Integer(1), Integer(1),
 Integer(3), Integer(1))
Johnson graph with parameters 6,3: Graph on 20 vertices
```

The last parameter is very important as it takes precedence. This function will not check that the other four parameters match the correct family. Use sage.graphs.generators.distance_regular.is_classical_parameters_graph() to check the parameters:

```python
sage: from sage.graphs.generators.distance_regular import *
sage: graph_with_classical_parameters(3, 1, 1, 3, 2)
Hamming Graph with parameters 3,4: Graph on 64 vertices
sage: G = _; G.is_distance_regular(True)
([9, 6, 3, None], [None, 1, 2, 3])
sage: is_classical_parameters_graph([9, 6, 3, 1, 2, 3]) # needs sage.combinat
(3, 1, 0, 3, 2)
```

Two families of graphs are not implemented yet:

```python
>>> from sage.all import *
>>> from sage.graphs.generators.distance_regular import *
>>> graph_with_classical_parameters(Integer(3), Integer(16), Integer(15),
 Integer(511), Integer(17))
Traceback (most recent call last):
... NotImplementedError: Graph would be too big
```

REFERENCES:

2.6. Database of distance regular graphs 1139

`sage.graphs.generators.distance_regular.is_classical_parameters_graph(array)`

Return a tuple of parameters representing the array given. If such no tuple can be produced, it returns `False`.

Given an intersection array, if it represents a family of distance-regular graphs with classical parameters, then this function returns a tuple consisting of the parameters $(d, b, \alpha, \beta)$ and a fourth parameter which is the enum `ClassicalParametersGraph` indicating the family with the given intersection array. If the array doesn’t belong to any classical parameter graph, then this function returns `False`. If the array belongs to a sporadic graph rather than a family of graphs, then the function returns `False`. This is to reduce the overlap with `sage.graphs.generators.distance_regular._sporadic_graph_database`.

**Note:** The array given as an input is expected to be an intersection array. If this is not the case, then some exception may be raised.

**INPUT:**
- `array` – list; an intersection array

**OUTPUT:**
`False` or a tuple $(d, b, \alpha, \beta, \gamma)$.

**EXAMPLES:**

```python
sage: from sage.graphs.generators.distance_regular import is_classical_parameters_graph
sage: G = graphs.HammingGraph(5, 4)
sage: G.is_distance_regular(True)
([15, 12, 9, 6, 3, None], [None, 1, 2, 3, 4, 5])
sage: is_classical_parameters_graph([15, 12, 9, 6, 3, 1, 2, 3, 4, 5]) # needs sage.combinat
(5, 1, 0, 3, 2)
```

```python
>>> from sage.all import *
>>> from sage.graphs.generators.distance_regular import is_classical_parameters_graph
>>> G = graphs.HammingGraph(Integer(5), Integer(4))
>>> G.is_distance_regular(True)
([15, 12, 9, 6, 3, None], [None, 1, 2, 3, 4, 5])
>>> is_classical_parameters_graph([Integer(15), Integer(12), Integer(9),
 Integer(6), Integer(3), Integer(1), Integer(2), Integer(3), Integer(4),
 Integer(5)]) # needs sage.combinat
(5, 1, 0, 3, 2)
```

**REFERENCES:**


`sage.graphs.generators.distance_regular.is_from_GQ_spread(arr)`

Return a pair $(s, t)$ if the graph obtained from a GQ of order $(s, t)$ with a spread has the intersection array passed. We also require that such GQ can be built by Sage. If no such pair exists, then return `False`.

**INPUT:**
- `arr` – list; an intersection array
EXAMPLES:

```python
sage: from sage.graphs.generators.distance_regular import is_from_GQ_spread, graph_from_GQ_spread
 needs sage.libs.pari
sage: is_from_GQ_spread([125, 120, 1, 1, 24, 125]) # needs sage.libs.pari
(5, 25)
sage: G = graph_from_GQ_spread(5, 25) # needs sage.libs.pari
sage: G.is_distance_regular(True) # needs sage.libs.pari
([125, 120, 1, None], [None, 1, 24, 125])
```

```python
>>> from sage.all import *
>>> from sage.graphs.generators.distance_regular import is_from_GQ_spread, graph_from_GQ_spread
>>> is_from_GQ_spread([Integer(125), Integer(120), Integer(1), Integer(1), Integer(24), Integer(125)]) # needs sage.libs.pari
(5, 25)
>>> G = graph_from_GQ_spread(Integer(5), Integer(25)) # needs sage.libs.pari
>>> G.is_distance_regular(True) # needs sage.libs.pari
([125, 120, 1, None], [None, 1, 24, 125])
```

REFERENCES:
The graphs we are looking for are antipodal covers of complete graphs. See [BCN1989] pp. 385, 386 for a discussion on these particular case.

`sage.graphs.generators.distance_regular.is_near_polygon(array)`

Return a tuple of parameters which identify the near polygon graph with the given intersection array. If such tuple doesn’t exist, return False.

Note that array may be the intersection array of a near polygon, but if such graph has diameter less than 3, then this function will return False.

INPUT:
- `array` – list; intersection array

OUTPUT:
The tuple has the form `(id, params)` where `id` is a value of the enum `NearPolygonGraph` which identify a family of graphs and `params` are all parameters needed to construct the final graph.

EXAMPLES:

```python
sage: from sage.graphs.generators.distance_regular import is_near_polygon
 needs sage.combinat
sage: is_near_polygon([7, 6, 6, 5, 5, 4, 1, 1, 2, 2, 3, 3]) # needs sage.combinat
(2, 7)
sage: near_polygon_graph(2, 7)
Odd Graph with parameter 7: Graph on 1716 vertices
sage: _.is_distance_regular(True)
([7, 6, 6, 5, 5, 4, None], [None, 1, 1, 2, 2, 3, 3])
```
```python
>>> from sage.all import *
>>> from sage.graphs.generators.distance_regular import is_near_polygon, near_polygon_graph
>>> is_near_polygon([Integer(7), Integer(6), Integer(6), Integer(5), Integer(5),
 Integer(4), Integer(1), Integer(1), Integer(2), Integer(2), Integer(3),
 Integer(3)]) # needs sage.combinat
(2, 7)
>>> near_polygon_graph(Integer(2), Integer(7))
Odd Graph with parameter 7: Graph on 1716 vertices
>>> _.is_distance_regular(True)
([7, 6, 6, 5, 5, 4, None], [None, 1, 1, 2, 2, 3, 3])
```

REFERENCES:
See [BCN1989] pp. 198-206 for some theory about near polygons as well as a list of known examples.

```
sage.graphs.generators.distance_regular.is_pseudo_partition_graph(arr)
```

Return $(m, a)$ if the intersection array given satisfies: $b_i = (m - i)(1 + a(m - 1 - i))$ for $0 \leq i < d$ $c_i = i(1 + a(i - 1))$ for $0 \leq i < d$ $d = (2d + 2 - m)d(1 + a(d - 1))$ where $d$ is the diameter of the graph.

If such pair $(m, a)$ doesn’t exist or the diameter is less than 3, then this function returns False.

These graphs are called pseudo partition graphs in [BCN1989] chapter 6.3.

INPUT:
- arr – list; intersection array

OUTPUT:
A pair $(m, a)$ of integers or False if such pair doesn’t exist.

```
 sage: from sage.graphs.generators.distance_regular import *
 sage: is_pseudo_partition_graph([36, 25, 16, 1, 4, 18])
 (6, 1)
 sage: pseudo_partition_graph(6, 1) # long time
 Folded Johnson graph with parameters 12,6: Graph on 462 vertices
 sage: _.is_distance_regular(True) # long time
 ([36, 25, 16, None], [None, 1, 4, 18])
```

REFERENCE:

```
sage.graphs.generators.distance_regular.locally_GQ42_distance_transitive_graph()
```

Return the unique amply regular graph with $\mu = 6$ which is locally a generalised quadrangle.

This graph is distance-regular with intersection array $[45, 32, 12, 1; 1, 6, 32, 45]$.

This graph is also distance-transitive.
EXAMPLES:

```python
sage: G = graphs.locally_GQ42_distance_transitive_graph() # optional -...
internet gap_package_atlasrep
sage: G.is_distance_regular(True) # optional -...
internet gap_package_atlasrep
([45, 32, 12, 1, None], [None, 1, 6, 32, 45])
```

```python
>>> from sage.all import *
>>> G = graphs.locally_GQ42_distance_transitive_graph() # optional -...
internet gap_package_atlasrep
>>> G.is_distance_regular(True) # optional -...
internet gap_package_atlasrep
([45, 32, 12, 1, None], [None, 1, 6, 32, 45])
```

REFERENCES:

A description of this graph can be found in [BCN1989] p.399. This construction is due to Dima Pasechnik.

`sage.graphs.generators.distance_regular.near_polygon_graph(family, params)`

Return the near polygon graph with the given parameters.

The input is expected to be the result of the function `sage.graphs.generators.distance_regular.is_near_polygon()`.

INPUT:

- `family` – int; an element of the enum `NearPolygonGraph`.
- `params` – int or tuple; the parameters needed to construct a graph of the family `family`.

EXAMPLES:

```python
sage: from sage.graphs.generators.distance_regular import is_near_polygon, near_polygon_graph
sage: near_polygon_graph(*is_near_polygon(# needs sage.combinat
....: [6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6])))
Bipartite double of Odd graph on a set of 11 elements: Graph on 924 vertices
sage: G=_; G.is_distance_regular(True) # needs sage.combinat
([6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, None], [None, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6])
```

```python
>>> from sage.all import *
>>> from sage.graphs.generators.distance_regular import is_near_polygon, near_polygon_graph
>>> near_polygon_graph(*is_near_polygon(# needs sage.combinat
....: [Integer(6), Integer(5), Integer(5), Integer(4), Integer(4), Integer(3),
 Integer(3), Integer(2), Integer(2), Integer(1), Integer(1), Integer(1),
 Integer(1), Integer(2), Integer(2), Integer(3), Integer(3), Integer(4),
 Integer(4), Integer(5), Integer(5), Integer(6)])
Bipartite double of Odd graph on a set of 11 elements: Graph on 924 vertices
>>> G=_; G.is_distance_regular(True) # needs sage.combinat
([6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, None], [None, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6])
```

REFERENCES:
See [BCN1989] pp. 198-206 for some theory about near polygons as well as a list of known examples.

`sage.graphs.generators.distance_regular.pseudo_partition_graph(m, a)`  
Return a pseudo partition graph with the given parameters.

A graph is a pseudo partition graph if it is distance-regular with diameter at least 3 and whose intersection numbers satisfy:  

\[ b_i = (m - i)(1 + a(m - 1 - i)) \quad \text{for} \quad 0 \leq i < d \]
\[ c_i = i(1 + a(i - 1)) \quad \text{for} \quad 0 \leq i < d \]
\[ d = (2 - m)\overline{d}(1 + a(d - 1)) \]

where \( d \) is the diameter of the graph.

**INPUT:**
- \( m, a \) – integers; parameters of the graph

**EXAMPLES:**

```python
sage: from sage.graphs.generators.distance_regular import *
sage: pseudo_partition_graph(6, 1) # long time
Folded Johnson graph with parameters 12,6: Graph on 462 vertices
```

Not all graphs built with this function are pseudo partition graphs as intended by `sage.graphs.generators.distance_regular.is_pseudo_partition_graph()`, since that function requires the diameter to be at least 3:

```python
sage: from sage.graphs.generators.distance_regular import *
sage: pseudo_partition_graph(3, 1)
Folded Johnson graph with parameters 6,3: Graph on 10 vertices
sage: G=_; G.is_distance_regular(True)
([9, None], [None, 1])
sage: is_pseudo_partition_graph([Integer(9), Integer(1)])
False
```

**REFERENCES:**


`sage.graphs.generators.distance_regular.shortened_000_111_extended_binary_Golay_code_graph()`  
Return a distance-regular graph with intersection array \([21, 20, 16, 9, 2, 1; 1, 2, 3, 16, 20, 21]\).

**EXAMPLES:**

```python
sage: # long time, needs sage.modules sage.rings.finite_rings
sage: G = graphs.shortened_000_111_extended_binary_Golay_code_graph() # 25 s
sage: G.is_distance_regular(True)
([21, 20, 16, 9, 2, 1, None], [None, 1, 2, 3, 16, 20, 21])
```
>>> from sage.all import *
>>> # long time, needs sage.modules sage.rings.finite_rings
>>> G = graphs.shortened_000_111_extended_binary_Golay_code_graph()  # 25 s
>>> G.is_distance_regular(True)
([21, 20, 16, 9, 2, 1, None], [None, 1, 2, 3, 16, 20, 21])

ALGORITHM:
Compute the extended binary Golay code. Compute its subcode whose codewords start with 000 or 111. Remove the first 3 entries from all the codewords from the new linear code and compute its coset graph.

REFERENCES:
Description and construction of this graph can be found in [BCN1989] p. 365.

sage.graphs.generators.distance_regular.shortened_00_11_binary_Golay_code_graph()
Return a distance-regular graph with intersection array [21, 20, 16, 6, 2, 1; 1, 2, 6, 16, 20, 21].

EXAMPLES:

sage: # long time, needs sage.modules sage.rings.finite_rings
sage: G = graphs.shortened_00_11_binary_Golay_code_graph()  # 9 s
sage: G.is_distance_regular(True)
([(21, 20, 16, 6, 2, 1, None), [None, 1, 2, 6, 16, 20, 21])

>>> from sage.all import *
>>> # long time, needs sage.modules sage.rings.finite_rings
>>> G = graphs.shortened_00_11_binary_Golay_code_graph()  # 9 s
>>> G.is_distance_regular(True)
([(21, 20, 16, 6, 2, 1, None), [None, 1, 2, 6, 16, 20, 21])

ALGORITHM:
Compute the binary Golay code. Compute the subcode whose codewords start with 00 or 11. Remove the first two entries from all codewords of the newly found linear code and compute its coset graph.

REFERENCES:
Description and construction of this graph can be found in [BCN1989] p. 365.

sage.graphs.generators.distance_regular.vanLintSchrijverGraph()
Return the van Lint-Schrijver graph.

The graph is distance-regular with intersection array [6, 5, 5, 4; 1, 1, 2, 6].

EXAMPLES:

sage: G = graphs.vanLintSchrijverGraph()  #...
"needs sage.modules"  #...
sage: G.is_distance_regular(True)  #...
"needs sage.modules"  #...
([(6, 5, 5, 4, None), [None, 1, 1, 2, 6])

>>> from sage.all import *
>>> # long time, needs sage.modules sage.rings.finite_rings
>>> G = graphs.vanLintSchrijverGraph()  #...
"needs sage.modules"  #...
>>> G.is_distance_regular(True)  #...
"needs sage.modules"  #...
([(6, 5, 5, 4, None), [None, 1, 1, 2, 6])

2.6. Database of distance regular graphs 1145
REFERENCES:
For a description of this graph see [BCN1989] p. 373.

2.7 Families of graphs derived from classical geometries over finite fields

These include graphs of polar spaces, affine polar graphs, graphs related to Hermitean unitals, graphs on nonisotropic points, etc.
The methods defined here appear in sage.graphs.graph_generators.

sage.graphs.generators.classical_geometries.AffineOrthogonalPolarGraph(d, q, sign='+')

Return the affine polar graph \( VO^+(d, q), VO^-(d, q) \) or \( VO(d, q) \).
Affine Polar graphs are built from a \( d \)-dimensional vector space over \( F_q \), and a quadratic form which is hyperbolic, elliptic or parabolic according to the value of \( \text{sign} \).
Note that \( VO^+(d, q), VO^-(d, q) \) are strongly regular graphs, while \( VO(d, q) \) is not.
For more information on Affine Polar graphs, see Affine Polar Graph page of Andries Brouwer’s website.

INPUT:

- \( d \) – integer; \( d \) must be even if \( \text{sign} \) is not None, and odd otherwise
- \( q \) – integer; a power of a prime number, as \( F_q \) must exist
- \( \text{sign} \) – string (default: "+"); must be equal to "+", "-", or None to compute (respectively) \( VO^+(d, q) \), \( VO^-(d, q) \) or \( VO(d, q) \)

Note: The graph \( VO^+(d, q) \) is the graph induced by the non-neighbors of a vertex in an Orthogonal Polar Graph \( O^+(d + 2, q) \).

EXAMPLES:
The Brouwer–Haemers graph is isomorphic to \( VO^-(4, 3) \):

```python
sage: g = graphs.AffineOrthogonalPolarGraph(4, 3, "-") # Needs sage.libs.gap
sage: g.is_isomorphic(graphs.BrouwerHaemersGraph()) # Needs sage.libs.gap
True
```

```python
>>> from sage.all import *
>>> g = graphs.AffineOrthogonalPolarGraph(Integer(4), Integer(3), "-") # Needs sage.libs.gap
>>> g.is_isomorphic(graphs.BrouwerHaemersGraph()) # Needs sage.libs.gap
True
```

Some examples from Brouwer’s table or strongly regular graphs:
sage: # needs sage.libs.gap
sage: g = graphs.AffineOrthogonalPolarGraph(6,2,"-"); g
Affine Polar Graph VO^-\(6,2\): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
(64, 27, 10, 12)
sage: g = graphs.AffineOrthogonalPolarGraph(6,2,"+"); g
Affine Polar Graph VO^+\(6,2\): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
(64, 35, 18, 20)

>>> from sage.all import *
>>> # needs sage.libs.gap

When \texttt{sign} is None:

sage: # needs sage.libs.gap
sage: g = graphs.AffineOrthogonalPolarGraph(5,2,None); g
Affine Polar Graph VO^-\(5,2\): Graph on 32 vertices
sage: g.is_strongly_regular(parameters=True)
False
sage: g.is_regular()
True
sage: g.is_vertex_transitive()
True

\begin{verbatim}

sage.graphs.generators.classical_geometries.AhrensSzekeresGeneralizedQuadrangleGraph(q, dual=False)

\end{verbatim}

Return the collinearity graph of the generalized quadrangle \(AS(q)\), or of its dual

Let \(q\) be an odd prime power. \(AS(q)\) is a generalized quadrangle (Wikipedia article Generalized_quadrangle) of order \((q - 1, q + 1)\), see 3.1.5 in [PT2009]. Its points are elements of \(F_q^3\), and lines are sets of size \(q\) of the form

- \(\{\sigma, a, b\} \mid \sigma \in F_q\)
- \(\{(a, \sigma, b) \mid \sigma \in F_q\}\)
- \(\{(c\sigma^2 - ba + a, -2c\sigma + b, \sigma) \mid \sigma \in F_q\}\)

where \(a, b, c\) are arbitrary elements of \(F_q\).
INPUT:

- \( q \) – a power of an odd prime number
- \( \text{dual} \) – boolean (default: False); whether to return the collinearity graph of \( AS(q) \) or of the dual \( AS(q) \) (when True)

EXAMPLES:

```python
sage: g = graphs.AhrensSzekeresGeneralizedQuadrangleGraph(5); g
AS(5); GQ(4, 6): Graph on 125 vertices
sage: g.is_strongly_regular(parameters=True)
(125, 28, 3, 7)
```

```python
sage: g = graphs.AhrensSzekeresGeneralizedQuadrangleGraph(5, dual=True); g
AS(5)*; GQ(6, 4): Graph on 175 vertices
sage: g.is_strongly_regular(parameters=True)
(175, 30, 5, 5)
```

```python
>>> from sage.all import *

sage: g = graphs.AhrensSzekeresGeneralizedQuadrangleGraph(Integer(5)); g
AS(5); GQ(4, 6): Graph on 125 vertices
```

```python
sage: g.is_strongly_regular(parameters=True)
(125, 28, 3, 7)
```

```python
sage: g = graphs.AhrensSzekeresGeneralizedQuadrangleGraph(Integer(5), dual=True); g
AS(5)*; GQ(6, 4): Graph on 175 vertices
```

```python
sage: g.is_strongly_regular(parameters=True)
(175, 30, 5, 5)
```

sage.graphs.generators.classical_geometries.CossidentePenttilaGraph \( (q) \)

Return the Cossidente-Penttila \( \left( \left( q^3 + 1 \right) q + 1 / 2, \left( q^2 + 1 \right) q - 1 / 2, \left( q - 3 / 2 \right) q^2 \right) \)-strongly regular graph

For each odd prime power \( q \), one can partition the points of the \( O_6^-(q) \)-generalized quadrangle \( GQ(q, q^2) \) into two parts, so that on any of them the induced subgraph of the point graph of the GQ has parameters as above [CP2005].

Directly following the construction in [CP2005] is not efficient, as one then needs to construct the dual \( GQ(q^2, q) \). Thus we describe here a more efficient approach that we came up with, following a suggestion by T. Penttila. Namely, this partition is invariant under the subgroup \( H = \Omega_3(q^2) \lt O_6^-(q) \). We build the appropriate \( H \), which leaves the form \( B(X, Y, Z) = XY + Z^2 \) invariant, and pick up two orbits of \( H \) on the \( F_q \)-points. One them is \( B \)-isotropic, and we take the representative \( (1 : 0 : 0) \). The other one corresponds to the points of \( PG(2, q^2) \) that have all the lines on them either missing the conic specified by \( B \), or intersecting the conic in two points. We take \( (1 : 1 : e) \) as the representative. It suffices to pick \( e \) so that \( e^2 + 1 \) is not a square in \( F_q^2 \). Indeed, The conic can be viewed as the union of \( \{ (0 : 1 : 0) \} \) and \( \{ (1 : -t^2 : t) | t \in F_q^2 \} \). The coefficients of a generic line on \( (1 : 1 : e) \) are \( [1 : -1 - eb : b] \), for \(-1 \neq eb \). Thus, to make sure the intersection with the conic is always even, we need that the discriminant of \( 1 + (1 + eb)t^2 + tb = 0 \) never vanishes, and this is if and only if \( e^2 + 1 \) is not a square. Further, we need to adjust \( B \), by multiplying it by appropriately chosen \( \nu \), so that \( (1 : 1 : e) \) becomes isotropic under the relative trace norm \( \nu B(X, Y, Z) + (\nu B(X, Y, Z))^q \). The latter is used then to define the graph.

INPUT:

- \( q \) – an odd prime power.

EXAMPLES:

For \( q = 3 \) one gets Sims-Gewirtz graph.

```python
sage: G = graphs.CossidentePenttilaGraph(3) # optional - gap_package_grape
sage: G.is_strongly_regular(parameters=True) # optional - gap_package_grape
(56, 10, 0, 2)
```
```python
>>> from sage.all import *
>>> G = graphs.CossidentePenttilaGraph(Integer(3)) # optional - gap_package_grape
>>> G.is_strongly_regular(parameters=True) # optional - gap_package_grape
(56, 10, 0, 2)
```

For \( q > 3 \) one gets new graphs.

```python
sage: G = graphs.CossidentePenttilaGraph(5) # optional - gap_package_grape
sage: G.is_strongly_regular(parameters=True) # optional - gap_package_grape
(378, 52, 1, 8)
```

Return the Haemers graph obtained from \( T_2^* (q) \)

Let \( q \) be a power of 2. In Sect. 8.A of [BL1984] one finds a construction of a strongly regular graph with parameters \((q^2(q+2), q^2 + q - 1, q - 2, q)\) from the graph of \( T_2^* (q) \), constructed by \sage{graphs.generators.classical_geometries.HaemersGraph(q, hyperoval=None, hyperoval_matching=None, field=None), check_hyperoval=True}\).

While [BL1984] gives the construction in geometric terms, it can be formulated, and is implemented, in graph-theoretic ones, of re-adjusting the edges. Namely, \( G = T_2^* (q) \) has a partition into \( q + 2 \) independent sets \( I_k \) of size \( q^2 \) each. Each vertex in \( I_j \) is adjacent to \( q \) vertices from \( I_k \). Each \( I_k \) is paired to some \( I_{k'} \), according to \texttt{hyperoval\_matching}. One adds edges \((s, t)\) for \( s, t \in I_k \) whenever \( s \) and \( t \) are adjacent to some \( u \in I_{k'} \), and removes all the edges between \( I_k \) and \( I_{k'} \).

INPUT:

- \( q \) – a power of two
- \texttt{hyperoval\_matching} – if None (default), pair each \( i \)-th point of \texttt{hyperoval} with \((i + 1)\)-th. Otherwise, Specifies the pairing in the format \([(i_1, i'_1), (i_2, i'_2), \ldots]\).
- \texttt{hyperoval} – a hyperoval defining \( T_2^* (q) \). If None (default), the classical hyperoval obtained from a conic is used. See the documentation of \sage{graphs.generators.classical_geometries.T2starGeneralizedQuadrangleGraph()}, for more information.
- \texttt{field} – an instance of a finite field of order \( q \), must be provided if \texttt{hyperoval} is provided
- \texttt{check\_hyperoval} – boolean (default: True); whether to check hyperoval for correctness or not

EXAMPLES:

using the built-in constructions:

```python
sage: # needs sage.combinat sage.rings.finite_rings
sage: g = graphs.HaemersGraph(4); g
Haemers(4): Graph on 96 vertices
sage: g.is_strongly_regular(parameters=True)
(96, 19, 2, 4)
```

2.7. Families of graphs derived from classical geometries over finite fields

1149
```python
from sage.all import *

needs sage.combinat sage.rings.finite_rings

g = graphs.HaemersGraph(Integer(4)); g
Haemers(4): Graph on 96 vertices

g.is_strongly_regular(parameters=True)
(96, 19, 2, 4)

supplying your own hyperoval_matching:

sage: # needs sage.combinat sage.rings.finite_rings
sage: g = graphs.HaemersGraph(4, hyperoval_matching=((0,5),(1,4),(2,3))); g
Haemers(4): Graph on 96 vertices
sage: g.is_strongly_regular(parameters=True)
(96, 19, 2, 4)
```

```python
>>> from sage.all import *

needs sage.combinat sage.rings.finite_rings

>>> g = graphs.HaemersGraph(Integer(4), hyperoval_matching=((Integer(0), Integer(5)), (Integer(1), Integer(4)), (Integer(2), Integer(3)))); g
Haemers(4): Graph on 96 vertices

>>> g.is_strongly_regular(parameters=True)
(96, 19, 2, 4)
```

`sage.graphs.generators.classical_geometries.NonisotropicOrthogonalPolarGraph(m, q, sign='+', perp=None)`

Return the Graph $NO_{m}^{-}(q)$

Let the vectorspace of dimension $m$ over $F_q$ be endowed with a nondegenerate quadratic form $F,$ of type $\text{sign}$ for $m$ even.

- $m$ even: assume further that $q = 2$ or $3.$ Returns the graph of the points (in the underlying projective space) $x$ satisfying $F(x) = 1,$ with adjacency given by orthogonality w.r.t. $F.$ Parameter $\text{perp}$ is ignored.

- $m$ odd: if $\text{perp}$ is not None, then we assume that $q = 5$ and return the graph of the points $x$ satisfying $F(x) = \pm 1$ if $\text{sign}=\text{"+"},$ respectively $F(x) \in \{2, 3\}$ if $\text{sign}=\text{"-"},$ with adjacency given by orthogonality w.r.t. $F$ (cf. Sect. 7.D of [BL1984]). Otherwise return the graph of nongenerate hyperplanes of type $\text{sign},$ adjacent whenever the intersection is degenerate (cf. Sect. 7.C of [BL1984]). Note that for $q = 2$ one will get a complete graph.

For more information, see Sect. 9.9 of [BH2012] and [BL1984]. Note that the page of Andries Brouwer’s website uses different notation.

**INPUT:**

- $m$ – integer; half the dimension of the underlying vectorspace
- $q$ – a power of a prime number, the size of the underlying field
- $\text{sign}$ – string (default: "$+"); must be either "$+" or "$-"

**EXAMPLES:**

$NO^{-}(4, 2)$ is isomorphic to Petersen graph:

```python
sage: g = graphs.NonisotropicOrthogonalPolarGraph(4, 2,'-'); g
#...

← needs sage.libs.gap
NO^-(4, 2): Graph on 10 vertices
```

(continues on next page)
sage: g.is_strongly_regular(parameters=True)  # needs sage.libs.gap
(10, 3, 0, 1)

>>> from sage.all import *
>>> g = graphs.NonisotropicOrthogonalPolarGraph(Integer(4),Integer(2),'-'); g  # needs sage.libs.gap
NO^-(4, 2): Graph on 10 vertices
>>> g.is_strongly_regular(parameters=True)  # needs sage.libs.gap
(10, 3, 0, 1)

\(NO^- (6, 2)\) and \(NO^+ (6, 2)\):

sage: # needs sage.libs.gap
sage: g = graphs.NonisotropicOrthogonalPolarGraph(6,2,'-')
(36, 15, 6, 6)

\(NO^+ (8, 2)\):

sage: g = graphs.NonisotropicOrthogonalPolarGraph(8,2,'+'); g  # needs sage.libs.gap
(120, 63, 30, 36)

Wilbrink’s graphs for \(q = 5\):

sage: # needs sage.libs.gap
sage: g = graphs.NonisotropicOrthogonalPolarGraph(5,5,perp=1)
(325, 60, 15, 10)

(continues on next page)
sage: g.is_strongly_regular(parameters=True)  # long time
(300, 65, 10, 15)

>>> from sage.all import *
>>> # needs sage.libs.gap
>>> g = graphs.NonisotropicOrthogonalPolarGraph(Integer(5),Integer(5),
     →perp=Integer(1))
>>> g.is_strongly_regular(parameters=True)  # long time
(325, 60, 15, 10)
>>> g = graphs.NonisotropicOrthogonalPolarGraph(Integer(5),Integer(5),'-',
     →perp=Integer(1))
>>> g.is_strongly_regular(parameters=True)  # long time
(300, 65, 10, 15)

Wilbrink’s graphs:

sage: # needs sage.libs.gap
sage: g = graphs.NonisotropicOrthogonalPolarGraph(5,4,+)
sage: g.is_strongly_regular(parameters=True)  # not tested...
(136, 75, 42, 40)

sage: g = graphs.NonisotropicOrthogonalPolarGraph(5,4,-)
sage: g.is_strongly_regular(parameters=True)  # not tested...
(120, 51, 18, 24)

sage: g = graphs.NonisotropicOrthogonalPolarGraph(7,4,+); g
˓→(long time)
NO+(7, 4): Graph on 2080 vertices
sage: g.is_strongly_regular(parameters=True)  # not tested...
˓→(long time)
(2080, 1071, 558, 544)

sage.graphs.generators.classical_geometries.NonisotropicUnitaryPolarGraph(m,q)

Return the Graph $NU(m, q)$.

This returns the graph on nonisotropic, with respect to a nondegenerate Hermitean form, points of the $(m - 1)$-dimensional projective space over $F_q$, with points adjacent whenever they lie on a tangent (to the set of isotropic points) line. For more information, see Sect. 9.9 of [BH2012] and series C14 in [Hub1975].

INPUT:

• $m, q$ – integers; $q$ must be a prime power

EXAMPLES:
sage: g = graphs.NonisotropicUnitaryPolarGraph(5,2); g
# needs sage.libs.gap
NU(5, 2): Graph on 176 vertices
sage: g.is_strongly_regular(parameters=True)
# needs sage.libs.gap
(176, 135, 102, 108)

>>> from sage.all import *
>>> g = graphs.NonisotropicUnitaryPolarGraph(Integer(5),Integer(2)); g
# needs sage.libs.gap
NU(5, 2): Graph on 176 vertices
>>> g.is_strongly_regular(parameters=True)
# needs sage.libs.gap
(176, 135, 102, 108)

sage.graphs.generators.classical_geometries.Nowhere0WordsTwoWeightCodeGraph(q, hyperoval=None, field=None, check_hyperoval=True)

Return the subgraph of nowhere 0 words from two-weight code of projective plane hyperoval.

Let $q = 2^k$ and $\Pi = PG(2, q)$. Fix a hyperoval $O \subset \Pi$. Let $V = F_q^3$ and $C$ the two-weight 3-dimensional linear code over $F_q$ with words $c(v)$ obtained from $v \in V$ by computing

$$c(v) = (\langle v, o_1 \rangle, \ldots, \langle v, o_{q+2} \rangle), o_j \in O.$$ 

$C$ contains $q(q-1)^2/2$ words without 0 entries. The subgraph of the strongly regular graph of $C$ induced on the latter words is also strongly regular, assuming $q > 4$. This is a construction due to A.E.Brouwer [Bro2016], and leads to graphs with parameters also given by a construction in [HHL2009]. According to [Bro2016], these two constructions are likely to produce isomorphic graphs.

INPUT:

- $q$ – a power of two
- hyperoval – a hyperoval (i.e. a complete 2-arc; a set of points in the plane meeting every line in 0 or 2 points) in $PG(2, q)$ over the field field. Each point of hyperoval must be a length 3 vector over field with 1st non-0 coordinate equal to 1. By default, hyperoval and field are not specified, and constructed on the fly. In particular, hyperoval we build is the classical one, i.e. a conic with the point of intersection of its tangent lines.
- field – an instance of a finite field of order $q$, must be provided if hyperoval is provided.
- check_hyperoval – boolean (default: True); whether to check hyperoval for correctness or not

See also:

- is_nowhere0_twoweight()

EXAMPLES:

using the built-in construction:
```python
sage: # needs sage.combinat sage.rings.finite_rings
sage: g = graphs.Nowhere0WordsTwoWeightCodeGraph(8); g
Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
sage: g.is_strongly_regular(parameters=True)
(196, 60, 14, 20)
sage: g = graphs.Nowhere0WordsTwoWeightCodeGraph(16) # not tested (long time)
sage: g.is_strongly_regular(parameters=True) # not tested (long time)
(1800, 728, 268, 312)
```

supplying your own hyperoval:

```python
sage: # needs sage.combinat sage.rings.finite_rings
sage: F = GF(8)
sage: O = [vector(F,(0,0,1)),vector(F,(0,1,0))]
.....
.....
sage: g = graphs.Nowhere0WordsTwoWeightCodeGraph(8,hyperoval=O,field=F); g
Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
sage: g.is_strongly_regular(parameters=True)
(196, 60, 14, 20)
```

sage.graphs.generators.classical_geometries.OthogonalDualPolarGraph($e,d,q$)

Return the dual polar graph on $GO^e(n,q)$ of diameter $d$.

The value of $n$ is determined by $d$ and $e$.

The graph is distance-regular with classical parameters $(d,q,0,q^e)$.

**INPUT:**

- $e$ – integer; type of the orthogonal polar space to consider; must be $-1, 0$ or $1$.
- $d$ – integer; diameter of the graph
- $q$ – integer; prime power; order of the finite field over which to build the polar space

**EXAMPLES:**

```python
>>> from sage.all import *
>>> # needs sage.combinat sage.rings.finite_rings
>>> g = graphs.Nowhere0WordsTwoWeightCodeGraph(Integer(8)); g
Nowhere0WordsTwoWeightCodeGraph(8): Graph on 196 vertices
>>> g.is_strongly_regular(parameters=True)
(196, 60, 14, 20)
```
sage: # needs sage.libs.gap
sage: G = graphs.OrthogonalDualPolarGraph(1,3,2)
sage: G.is_distance_regular(True)
([7, 6, 4, None], [None, 1, 3, 7])
sage: G = graphs.OrthogonalDualPolarGraph(0,3,3)  # long time
sage: G.is_distance_regular(True)  # long time
([39, 36, 27, None], [None, 1, 4, 13])
sage: G.order()  # long time
1120

>>> from sage.all import *
>>> # needs sage.libs.gap
>>> G = graphs.OrthogonalDualPolarGraph(Integer(1),Integer(3),Integer(2))
>>> G.is_distance_regular(True)  # long time
([7, 6, 4, None], [None, 1, 3, 7])
>>> G = graphs.OrthogonalDualPolarGraph(Integer(0),Integer(3),Integer(3))
→ # long time
>>> G.is_distance_regular(True)  # long time
([39, 36, 27, None], [None, 1, 4, 13])
>>> G.order()  # long time
1120

REFERENCES:

sage.graphs.generators.classical_geometries.OrthogonalPolarGraph(m, q, sign='+')
Return the Orthogonal Polar Graph $O^+(m, q)$.

For more information on Orthogonal Polar graphs, see the page of Andries Brouwer's website.

INPUT:

• m, q – integers; q must be a prime power
• sign – string (default: "+"); must be "+" or "-" if m is even, "+" (default) otherwise

EXAMPLES:
Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> G = graphs.OrthogonalPolarGraph(Integer(6),Integer(3),"+"); G
Orthogonal Polar Graph O^+(6, 3): Graph on 130 vertices
>>> G.is_strongly_regular(parameters=True)
(130, 48, 20, 16)
>>> G = graphs.OrthogonalPolarGraph(Integer(6),Integer(3),"-"'); G
Orthogonal Polar Graph O^-(6, 3): Graph on 112 vertices
>>> G.is_strongly_regular(parameters=True)
(112, 30, 2, 10)
>>> G = graphs.OrthogonalPolarGraph(Integer(5),Integer(3)); G
Orthogonal Polar Graph O(5, 3): Graph on 40 vertices
>>> G.is_strongly_regular(parameters=True)
(40, 12, 2, 4)
>>> G = graphs.OrthogonalPolarGraph(Integer(8),Integer(2),"+"); G
Orthogonal Polar Graph O^+(8, 2): Graph on 135 vertices
>>> G.is_strongly_regular(parameters=True)
(135, 70, 37, 35)
>>> G = graphs.OrthogonalPolarGraph(Integer(8),Integer(2),"-"'); G
Orthogonal Polar Graph O^-(8, 2): Graph on 119 vertices
>>> G.is_strongly_regular(parameters=True)
(119, 54, 21, 27)
```

sage.graphs.generators.classical_geometries.SymplecticDualPolarGraph(m, q)

Return the Symplectic Dual Polar Graph $D_{Sp}(m, q)$.

For more information on Symplectic Dual Polar graphs, see [BCN1989] and Sect. 2.3.1 of [Coh1981].

INPUT:

- $m$, $q$ – integers; $q$ must be a prime power, and $m$ must be even

EXAMPLES:

```python
sage: G = graphs.SymplecticDualPolarGraph(6,3); G # not tested (long time)
Symplectic Dual Polar Graph DSp(6, 3): Graph on 1120 vertices
sage: G.is_distance_regular(parameters=True) # not tested (long time)
([39, 36, 27, None], [None, 1, 4, 13])
```

sage.graphs.generators.classical_geometries.SymplecticPolarGraph(d, q, algorithm=None)

Return the Symplectic Polar Graph $Sp(d, q)$.

The Symplectic Polar Graph $Sp(d, q)$ is built from a projective space of dimension $d - 1$ over a field $F_q$, and a symplectic form $f$. Two vertices $u, v$ are made adjacent if $f(u, v) = 0$.

See the page on symplectic graphs on Andries Brouwer’s website.

INPUT:

- $d$, $q$ – integers; note that only even values of $d$ are accepted by the function.
• algorithm — string (default: None); if set to 'gap', then the computation is carried via GAP library interface, computing totally singular subspaces, which is faster for \( q > 3 \). Otherwise it is done directly.

EXAMPIES:

Computation of the spectrum of \( Sp(6, 2) \):

```
sage: g = graphs.SymplecticPolarGraph(6, 2)
sage: g.is_strongly_regular(parameters=True)
(63, 30, 13, 15)
sage: set(g.spectrum()) == {-5, 3, 30} # needs sage.rings.number_field
True
```

```
>>> from sage.all import *
>>> g = graphs.SymplecticPolarGraph(Integer(6), Integer(2))
>>> g.is_strongly_regular(parameters=True)
(63, 30, 13, 15)
>>> set(g.spectrum()) == {-Integer(5), Integer(3), Integer(30)} # needs sage.rings.number_field
True
```

The parameters of \( Sp(4, q) \) are the same as of \( O(5, q) \), but they are not isomorphic if \( q \) is odd:

```
sage: G = graphs.SymplecticPolarGraph(4, 3)
sage: G.is_strongly_regular(parameters=True)
(40, 12, 2, 4)
```

```
>>> from sage.all import *
>>> G = graphs.SymplecticPolarGraph(Integer(4), Integer(3))
>>> G.is_strongly_regular(parameters=True)
(40, 12, 2, 4)
```

```python
>>> S = graphs.SymplecticPolarGraph(6, 4, algorithm="gap") # not tested
```

2.7. Families of graphs derived from classical geometries over finite fields

1157
Return the collinearity graph of the generalized quadrangle $T_2^*(q)$, or of its dual $T_2^*(O)$.

Let $q = 2^k$ and $\Theta = PG(3, q)$. $T_2^*(q)$ is a generalized quadrangle (Wikipedia article Generalized_quadrangle) of order $(q - 1, q + 1)$, see 3.1.3 in [PT2009]. Fix a plane $\Pi \subset \Theta$ and a hyperoval $O \subset \Pi$. The points of $T_2^*(q) := T_2^*(O)$ are the points of $\Theta$ outside $\Pi$, and the lines are the lines of $\Theta$ outside $\Pi$ that meet $\Pi$ in a point of $O$.

**INPUT:**

- `q` – a power of two
- `dual` – boolean (default: False); whether to return the graph of $T_2^*(O)$ or of the dual $T_2^*(O)$ (when True)
- `hyperoval` – a hyperoval (i.e. a complete 2-arc; a set of points in the plane meeting every line in 0 or 2 points) in the plane of points with 0th coordinate 0 in $PG(3, q)$ over the field `field`. Each point of `hyperoval` must be a length 4 vector over field with 1st non-0 coordinate equal to 1. By default, `hyperoval` and `field` are not specified, and constructed on the fly. In particular, `hyperoval` we build is the classical one, i.e. a conic with the point of intersection of its tangent lines.
- `field` – an instance of a finite field of order `q`, must be provided if `hyperoval` is provided
- `check_hyperoval` – boolean (default: True); whether to check `hyperoval` for correctness or not

**EXAMPLES:**

using the built-in construction:

```python
sage: g = graphs.T2starGeneralizedQuadrangleGraph(4); g
T2*(0,4); GQ(3, 5): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
(64, 18, 2, 6)
```

supplying your own hyperoval:

```python
>>> from sage.all import *
>>> g = graphs.T2starGeneralizedQuadrangleGraph(Integer(4)); g
T2*(0,4); GQ(3, 5): Graph on 64 vertices
>>> g.is_strongly_regular(parameters=True)
(64, 18, 2, 6)
>>> g = graphs.T2starGeneralizedQuadrangleGraph(Integer(4), dual=True); g
T2*(0,4)*; GQ(5, 3): Graph on 96 vertices
>>> g.is_strongly_regular(parameters=True)
(96, 20, 4, 4)
```
sage: # needs sage.combinat sage.rings.finite_rings
sage: F = GF(4, 'b')
sage: O = [vector(F,(0,0,0,1)),vector(F,(0,0,1,0))] + [vector(F, (0,1,x^2,x)) for x in F]
sage: g = graphs.T2starGeneralizedQuadrangleGraph(4, hyperoval=O, field=F); g
T2*(O,4); GQ(3, 5): Graph on 64 vertices
sage: g.is_strongly_regular(parameters=True)
(64, 18, 2, 6)

sage.graphs.generators.classical_geometries.TaylorTwographDescendantSRG(q, clique_partition=False)

Return the descendant graph of the Taylor’s two-graph for $U_3(q)$, $q$ odd.

This is a strongly regular graph with parameters $(v, k, \lambda, \mu) = (q^2, (q^2 + 1)(q - 1)/2, (q - 1)^2/4 - 1, (q^2 + 1)(q - 1)/4)$ obtained as a two-graph descendant of the Taylor's two-graph $T$. This graph admits a partition into cliques of size $q$, which are useful in $TaylorTwographSRG()$, a strongly regular graph on $q^3 + 1$ vertices in the Seidel switching class of $T$, for which we need $(q^2 + 1)/2$ cliques. The cliques are the $q^2$ lines on $v_0$ of the projective plane containing the unital for $U_3(q)$ and intersecting the unital (i.e. the vertices of the graph and the point we remove) in $q + 1$ points. This is all taken from §7E of [BL1984].

INPUT:

- `q` – a power of an odd prime number
- `clique_partition` – boolean (default: False); when set to True, return $q^2 - 1$ cliques of size $q$ with empty pairwise intersection. (Removing all of them leaves a clique, too), and the point removed from the unital.

EXAMPLES:

```python
sage: from sage.all import *
>>> from sage.all import *
>>> # needs sage.combinat sage.rings.finite_rings
>>> F = GF(Integer(4), 'b')
>>> O = [vector(F,(Integer(0),Integer(0),Integer(0),Integer(1))),vector(F,(Integer(0),Integer(0),Integer(1),Integer(0))) + [vector(F, (Integer(0), Integer(1), x**Integer(2), x)) for x in F]
... g = graphs.T2starGeneralizedQuadrangleGraph(Integer(4), hyperoval=O, field=F);
... g
T2*(O,4); GQ(3, 5): Graph on 64 vertices
... g.is_strongly_regular(parameters=True)
(64, 18, 2, 6)
```

2.7. Families of graphs derived from classical geometries over finite fields
sage.graphs.generators.classical_geometries.TaylorTwographSRG(q)

Return a strongly regular graph from the Taylor’s two-graph for \( U_3(q), q \) odd.

This is a strongly regular graph with parameters \((v, k, \lambda, \mu) = (q^3 + 1, q(q^2 + 1)/2, (q^2 + 3)(q - 1)/4, (q^2 + 1)(q + 1)/4)\) in the Seidel switching class of Taylor two-graph. Details are in §7E of [BL1984].

INPUT:
- \( q \) – a power of an odd prime number

See also:
- TaylorTwographDescendantSRG()

EXAMPLES:

sage: t = graphs.TaylorTwographSRG(3); t
Taylor two-graph SRG: Graph on 28 vertices
sage: t.is_strongly_regular(parameters=True)
(28, 15, 6, 10)

sage.graphs.generators.classical_geometries.UnitaryDualPolarGraph(m,q)

Return the Dual Unitary Polar Graph \( U(m, q) \).

For more information on Unitary Dual Polar graphs, see [BCN1989] and Sect. 2.3.1 of [Coh1981].

INPUT:
- \( m, q \) – integers; \( q \) must be a prime power

EXAMPLES:

The point graph of a generalized quadrangle (see Wikipedia article Generalized_quadrangle, [PT2009]) of order (8,4):
sage: G = graphs.UnitaryDualPolarGraph(5,2); G  # long time
needs sage.libs.gap
Unitary Dual Polar Graph DU(5, 2); GQ(8, 4): Graph on 297 vertices
sage: G.is_strongly_regular(parameters=True)  # long time
needs sage.libs.gap
(297, 40, 7, 5)

Another way to get the generalized quadrangle of order (2,4):

sage: G = graphs.UnitaryDualPolarGraph(4,2); G  # long time
needs sage.libs.gap
Unitary Dual Polar Graph DU(4, 2); GQ(2, 4): Graph on 27 vertices
sage: G.is_isomorphic(graphs.OrthogonalPolarGraph(6,2,-))  # long time
needs sage.libs.gap
True

A bigger graph:

sage: G = graphs.UnitaryDualPolarGraph(6,2); G  # not tested (long time)
Unitary Dual Polar Graph DU(6, 2): Graph on 891 vertices
sage: G.is_distance_regular(parameters=True)  # not tested (long time)
([42, 40, 32, None], [None, 1, 5, 21])

sage.graphs.generators.classical_geometries.UnitaryPolarGraph(m, q, algorithm='gap')

Return the Unitary Polar Graph $U(m, q)$.

For more information on Unitary Polar graphs, see the page of Andries Brouwer's website.

INPUT:

- $m$, $q$ – integers; $q$ must be a prime power
- $algorithm$ – string (default: 'gap'); if set to 'gap' then the computation is carried via GAP library interface, computing totally singular subspaces, which is faster for large examples (especially with $q > 2$). Otherwise it is done directly.
### 2.8 Various families of graphs

The methods defined here appear in `sage.graphs.graph_generators`. `sage.graphs.generators.families.AztecDiamondGraph(n)`

Return the Aztec Diamond graph of order $n$.

See the Wikipedia article [Aztec diamond](https://en.wikipedia.org/wiki/Aztec_diamond) for more information.

**EXAMPLES:**

```
>>> from sage.all import *
>>> # needs sage.libs.gap
>>> G = graphs.AztecDiamondGraph(Integer(2)); G
Aztec Diamond graph of order 2

>>> [graphs.AztecDiamondGraph(i).num_verts() for i in range(Integer(8))]
[0, 4, 12, 24, 40, 60, 84, 112]

>>> [graphs.AztecDiamondGraph(i).num_edges() for i in range(Integer(8))]
[0, 4, 16, 36, 64, 100, 144, 196]

>>> G = graphs.AztecDiamondGraph(3)
>>> sum(1 for p in G.perfect_matchings())
64
```

(continues on next page)
sage.graphs.generators.families.BalancedTree\((r, h)\)

Return the perfectly balanced tree of height \(h \geq 1\), whose root has degree \(r \geq 2\).

The number of vertices of this graph is \(1 + r + r^2 + \cdots + r^h\), that is, \(\frac{r^{h+1}-1}{r-1}\). The number of edges is one less than the number of vertices.

**INPUT:**

- \(r\) – positive integer \(\geq 2\). The degree of the root node.
- \(h\) – positive integer \(\geq 1\). The height of the balanced tree.

**OUTPUT:**

The perfectly balanced tree of height \(h \geq 1\) and whose root has degree \(r \geq 2\).

**EXAMPLES:**

A balanced tree whose root node has degree \(r = 2\), and of height \(h = 1\), has order 3 and size 2:

```
sage: G = graphs.BalancedTree(2, 1); G
Balanced tree: Graph on 3 vertices
sage: G.order()
3
sage: G.size()
2
sage: r = 2; h = 1
sage: v = 1 + r
sage: v; v - 1
3
2
```

Plot a balanced tree of height 5, whose root node has degree \(r = 3\):

```
sage: G = graphs.BalancedTree(3, 5)
sage: G.plot() # long time
needs sage.plot
Graphics object consisting of 728 graphics primitives
```
A tree is bipartite. If its vertex set is finite, then it is planar.

- A barbell graph is a basic structure that consists of a path graph of order $n_2$ connecting two complete graphs of order $n_1$ each.

**INPUT:**
- $n_1$ – integer $\geq 2$. The order of each of the two complete graphs.
- $n_2$ – nonnegative integer. The order of the path graph connecting the two complete graphs.

**OUTPUT:**
A barbell graph of order $2 \times n_1 + n_2$. A `ValueError` is returned if $n_1 < 2$ or $n_2 < 0$.

**PLOTTING:**
Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each barbell graph will be displayed with the two complete graphs in the lower-left and upper-right corners, with the path graph connecting diagonally between the two. Thus the $n_1$-th node will be drawn at a 45 degree angle from the horizontal right center of the first complete graph, and the $n_1 + n_2 + 1$-th node will be drawn 45 degrees below the left horizontal center of the second complete graph.
EXAMPLES:

Construct and show a barbell graph \( \text{Bar} = 4, \text{Bells} = 9 \):

```python
g = graphs.BarbellGraph(9, 4); g
Barbell graph: Graph on 22 vertices
```

```
g.show() # long time
˓→needs sage.plot
```

```python
>>> from sage.all import *
>>> g = graphs.BarbellGraph(Integer(9), Integer(4)); g
Barbell graph: Graph on 22 vertices
```

```
g.show() # long time
˓→needs sage.plot
```

An \( n_1 \geq 2, n_2 \geq 0 \) barbell graph has order \( 2 \times n_1 + n_2 \). It has the complete graph on \( n_1 \) vertices as a subgraph. It also has the path graph on \( n_2 \) vertices as a subgraph.

```python
n1 = randint(2, 2*10^2)
n2 = randint(0, 2*10^2)
g = graphs.BarbellGraph(n1, n2)
v = 2*n1 + n2
g.order() == v
True
K_n1 = graphs.CompleteGraph(n1)
P_n2 = graphs.PathGraph(n2)

needs sage.modules
s_K = g.subgraph_search(K_n1, induced=True)
s_P = g.subgraph_search(P_n2, induced=True)
K_n1.is_isomorphic(s_K)
True
P_n2.is_isomorphic(s_P)
True
```

```python
>>> from sage.all import *

>>> n1 = randint(Integer(2), Integer(2)*Integer(10)**Integer(2))

>>> n2 = randint(Integer(0), Integer(2)*Integer(10)**Integer(2))

>>> g = graphs.BarbellGraph(n1, n2)

>>> v = Integer(2)*n1 + n2

>>> g.order() == v
True

>>> K_n1 = graphs.CompleteGraph(n1)

>>> P_n2 = graphs.PathGraph(n2)

needs sage.modules

>>> s_K = g.subgraph_search(K_n1, induced=True)

>>> s_P = g.subgraph_search(P_n2, induced=True)

>>> K_n1.is_isomorphic(s_K)
True

>>> P_n2.is_isomorphic(s_P)
True
```

\[ \text{sage.graphs.generators.families.BubbleSortGraph}(n) \]

Returns the bubble sort graph \( B(n) \).

The vertices of the bubble sort graph are the set of permutations on \( n \) symbols. Two vertices are adjacent if one can be obtained from the other by swapping the labels in the \( i \)-th and \((i+1)\)-th positions for \( 1 \leq i \leq n - 1 \).
total, $B(n)$ has order $n!$. Swapping two labels as described previously corresponds to multiplying on the right the permutation corresponding to the node by an elementary transposition in the \texttt{SymmetricGroup}.

The bubble sort graph is the underlying graph of the \texttt{permutahedron}.

**INPUT:**
- $n$ – positive integer. The number of symbols to permute.

**OUTPUT:**

The bubble sort graph $B(n)$ on $n$ symbols. If $n < 1$, a \texttt{ValueError} is returned.

**EXAMPLES:**

```python
sage: g = graphs.BubbleSortGraph(4); g
Bubble sort: Graph on 24 vertices
sage: g.plot() # long time
needs sage.plot
Graphics object consisting of 61 graphics primitives
```

The bubble sort graph on $n = 1$ symbol is the trivial graph $K_1$:

```python
sage: graphs.BubbleSortGraph(1)
Bubble sort: Graph on 1 vertex
```

If $n \geq 1$, then the order of $B(n)$ is $n!$:

```python
sage: n = randint(1, 8)
sage: g = graphs.BubbleSortGraph(n)
sage: g.order() == factorial(n)
True
```

**See also:**
- \texttt{permutahedron}()

**AUTHORS:**
- Michael Yurko (2009-09-01)
Return the a Cai-Furer-Immermann graph from $G$, possibly a twisted one, and a partition of its nodes.

A Cai-Furer-Immermann graph from/on $G$ is a graph created by applying the transformation described in [CFI1992] on a graph $G$, that is substituting every vertex $v$ in $G$ with a Furur gadget $F(v)$ of order $d$ equal to the degree of the vertex, and then substituting every edge $(v, u)$ in $G$ with a pair of edges, one connecting the two “a” nodes of $F(v)$ and $F(u)$ and the other their two “b” nodes. The returned coloring of the vertices is made by the union of the colorings of each single Furur gadget, individualised for each vertex of $G$. To understand better what these “a” and “b” nodes are, see the documentation on Furur gadgets.

Furthermore, this method can apply what is described in the paper mentioned above as a “twist” on an edge, that is taking only one of the pairs of edges introduced in the new graph and swap two of their extremes, making each edge go from an “a” node to a “b” node. This is only doable if the original graph $G$ is connected.

A CaiFurerImmerman graph on a graph with no balanced vertex separators smaller than $s$ and its twisted version cannot be distinguished by $k$-WL for any $k < s$.

**INPUT:**
- $G$ – An undirected graph on which to construct the Cai-Furer-Immermann graph
- **twisted** – A boolean indicating if the version to construct is a twisted one or not

**OUTPUT:**
- $H$ – The Cai-Furer-Immerman graph on $G$
- **coloring** – A list of list of vertices, representing the partition induced by the coloring on $H$

**EXAMPLES:**
CaiFurerImmerman graph with no balanced vertex separators smaller than 2

```python
sage: G = graphs.CycleGraph(4)
sage: CFI, p = graphs.CaiFurerImmermanGraph(G)
sage: sorted(CFI, key=str)
[(0, ()), (0, (0, 'a')), (0, (0, 'b')), (0, (0, 1)), (0, (1, 'a')), (0, (1, 'b')), (1, ()), (1, (0, 'a')), (1, (0, 'b')), (1, (0, 1)), (1, (1, 'a')), (1, (1, 'b')), (2, ()), (2, (0, 'a')), (2, (0, 'b')), (2, (0, 1)), (2, (1, 'a')), (2, (1, 'b')), (3, ()), (3, (0, 'a')), (3, (0, 'b')), (3, (1, 'a')), (3, (1, 'b'))]
```
Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> G = graphs.CycleGraph(Integer(4))
>>> CFI, p = graphs.CaiFurerImmermanGraph(G)
>>> sorted(CFI, key=str)
[(0, ()), (0, (0, a)), (0, (0, b)), (0, (0, 1)), (0, (1, a)),
 (0, (1, b)), (1, ()), (1, (0, a)), (1, (0, b)), (1, (0, 1)),
 (1, (1, a)), (1, (1, b)), (2, ()), (2, (0, a)), (2, (0, b)),
 (2, (0, 1)), (2, (1, a)), (2, (1, b)), (3, ()), (3, (0, a)),
 (3, (0, b)), (3, (0, 1)), (3, (1, a)), (3, (1, b))]
>>> sorted(CFI.edge_iterator(), key=str)
[((0, ()), (0, (0, b)), None),
 ((0, ()), (0, (1, b)), None),
 ((0, (0, a)), (1, (0, a)), None),
 ((0, (0, b)), (1, (0, b)), None),
 ((0, (0, 1)), (0, (0, a)), None),
 ((0, (0, 1)), (0, (1, a)), None),
 ((0, (1, a)), (3, (0, a)), None),
 ((0, (1, b)), (3, (0, b)), None),
 ((1, ()), (1, (0, b)), None),
 ((1, ()), (1, (1, b)), None),
 ((1, (0, 1)), (1, (0, a)), None),
 ((1, (0, 1)), (1, (1, a)), None),
 ((1, (1, a)), (2, (0, a)), None),
 ((1, (1, b)), (2, (0, b)), None),
 ((2, ()), (2, (0, a)), None),
 ((2, ()), (2, (1, b)), None),
 ((2, (0, 1)), (2, (0, a)), None),
 ((2, (0, 1)), (2, (1, a)), None),
 ((2, (1, a)), (3, (1, a)), None),
 ((2, (1, b)), (3, (1, b)), None),
 ((3, ()), (3, (0, b)), None),
 ((3, ()), (3, (1, b)), None),
 ((3, (0, 1)), (3, (0, a)), None),
 ((3, (0, 1)), (3, (1, a)), None)]
```

`sage.graphs.generators.families.CirculantGraph(n, adjacency)`

Returns a circulant graph with $n$ nodes.

A circulant graph has the property that the vertex $i$ is connected with the vertices $i + j$ and $i - j$ for each $j$ in `adjacency`.

**INPUT:**

- $n$ – number of vertices in the graph
- `adjacency` – the list of $j$ values

**PLOTTING:** Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each circulant graph will be displayed with the first (0) node at the top, with the rest following in a coun-

1168 Chapter 2. Constructors and databases
terclockwise manner.

Filling the position dictionary in advance adds $O(n)$ to the constructor.

See also:

- `is_circulant()` – checks whether a (di)graph is circulant, and/or returns all possible sets of parameters.

EXAMPLES: Compare plotting using the predefined layout and networkx:

```python
sage: # needs networkx
sage: import networkx
sage: n = networkx.cycle_graph(23)
sage: spring23 = Graph(n)
sage: posdict23 = graphs.CirculantGraph(23,2)
sage: spring23.show() # long time
sage: posdict23.show() # long time
```

We next view many cycle graphs as a Sage graphics array. First we use the `CirculantGraph` constructor, which fills in the position dictionary:

```python
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
...: k = graphs.CirculantGraph(i+4, i+1)
...: g.append(k)

sage: for i in range(3):
...: n = []
...: for m in range(3):
...: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
...: j.append(n)

sage: G = graphics_array(j)
sage: G.show() # long time
```

(continues on next page)
Graph Theory, Release 10.4

>>> G = graphics_array(j)
>>> G.show()  # long time

Compare to plotting with the spring-layout algorithm:

```python
sage: # needs networkx sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
...: spr = networkx.cycle_graph(i+3)
...: k = Graph(spr)
...: g.append(k)

sage: for i in range(3):
...: n = []
...: for m in range(3):
...: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
...: j.append(n)

sage: G = graphics_array(j)
>>> G.show() # long time
```

```python
>>> from sage.all import *

>>> # needs networkx sage.plot

>>> g = []
>>> j = []

>>> for i in range(Integer(9)):
... spr = networkx.cycle_graph(i+Integer(3))
... k = Graph(spr)
... g.append(k)

>>> for i in range(Integer(3)):
... n = []
... for m in range(Integer(3)):
... n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
... j.append(n)

>>> G = graphics_array(j)
>>> G.show() # long time
```

Passing a 1 into adjacency should give the cycle.

```python
sage: graphs.CirculantGraph(6,1) == graphs.CycleGraph(6)
True
sage: graphs.CirculantGraph(7,[1,3]).edges(sort=True, labels=False)
[[(0, 1),
 (0, 3),
 (0, 4),
 (0, 6),
 (1, 2),
 (1, 4),
 (1, 5),
 (2, 3),
 (2, 5),
 (2, 6),
 (3, 4),
 (3, 6),
 (4, 5),
 (5, 6)]]
```
Graph Theory, Release 10.4

>>> from sage.all import *
>>> graphs.CirculantGraph(Integer(6), Integer(1)) == graphs.CycleGraph(Integer(6))
True
>>> graphs.CirculantGraph(Integer(7), [Integer(1), Integer(3)]).edges(sort=True, labels=False)
[(0, 1), (0, 3), (0, 4), (0, 6), (1, 2), (1, 4), (1, 5), (2, 3), (2, 5), (2, 6), (3, 4), (3, 6), (4, 5), (5, 6)]

sage.graphs.generators.families.CubeConnectedCycle(d)

Return the cube-connected cycle of dimension \(d\).

The cube-connected cycle of order \(d\) is the \(d\)-dimensional hypercube with each of its vertices replaced by a cycle of length \(d\). This graph has order \(d \times 2^d\). The construction is as follows: Construct vertex \((x, y)\) for \(0 \leq x < 2^d\), \(0 \leq y < d\). For each vertex, \((x, y)\), add an edge between it and \((x, (y - 1) \mod d)\), \((x, (y + 1) \mod d)\), and \((x \oplus 2^y, y)\), where \(\oplus\) is the bitwise xor operator.

For \(d = 1\) and 2, the cube-connected cycle graph contains self-loops or multiple edges between a pair of vertices, but for all other \(d\), it is simple.

INPUT:

- \(d\) – The dimension of the desired hypercube as well as the length of the cycle to be placed at each vertex of the \(d\)-dimensional hypercube. \(d\) must be a positive integer.

EXAMPLES:

The order of the graph is \(d \times 2^d\)

```
sage: d = 3
sage: g = graphs.CubeConnectedCycle(d)
sage: len(g) == d*2**d
True
```

The diameter of cube-connected cycles for \(d > 3\) is \(2d + \left\lfloor \frac{d}{2} \right\rfloor - 2\)

```
sage: d = 4
sage: g = graphs.CubeConnectedCycle(d)
sage: g.diameter() == 2*d+d//2-2
True
```
```python
>>> from sage.all import *
>>> d = Integer(4)
>>> g = graphs.CubeConnectedCycle(d)
>>> g.diameter() == Integer(2)*d+d//Integer(2)-Integer(2)
True
```

All vertices have degree 3 when \(d > 1\)

```python
sage: g = graphs.CubeConnectedCycle(5)
sage: all(g.degree(v) == 3 for v in g)
True
```

```python
>>> from sage.all import *
>>> g = graphs.CubeConnectedCycle(Integer(5))
>>> all(g.degree(v) == Integer(3) for v in g)
True
```

```
sage.graphs.generators.families.CubeGraph(n, embedding=1)
```

Return the \(n\)-cube graph, also called the hypercube in \(n\) dimensions.

The hypercube in \(n\) dimension is build upon the binary strings on \(n\) bits, two of them being adjacent if they differ in exactly one bit. Hence, the distance between two vertices in the hypercube is the Hamming distance.

**INPUT:**

- \(n\) – integer; the dimension of the cube graph
- \(\text{embedding}\) – integer (default: 1); two embeddings of the \(n\)-cube are available:
  - 1: the \(n\)-cube is projected inside a regular \(2n\)-gonal polygon by a skew orthogonal projection. See the Wikipedia article Hypercube for more details.
  - 2: orthogonal projection of the \(n\)-cube. This orientation shows columns of independent vertices such that the neighbors of a vertex are located in the columns on the left and on the right. The number of vertices in each column represents rows in Pascal’s triangle. See for instance the Wikipedia article 10-cube for more details.
  - 3: oblique projection of the \(n\)-cube. Oblique projection involves aligning one face parallel to the viewer and projecting at a specified angle, maintaining equal size for edges parallel to one axis while applying fixed foreshortening to others. This method simplifies the representation of a four-dimensional hypercube onto a two-dimensional plane, offering a geometrically consistent visualization.
  - None or 0: no embedding is provided

**EXAMPLES:**

The distance between 0100110 and 1011010 is 5, as expected:

```python
sage: g = graphs.CubeGraph(7)
sage: g.distance('0100110','1011010')
5
```

Plot several \(n\)-cubes in a Sage Graphics Array:
GraphTheory, Release 10.4

sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(6):
    ....:     k = graphs.CubeGraph(i+1)
    ....:     g.append(k)
    ...
sage: for i in range(2):
    ....:     n = []
    ....:     for m in range(3):
    ....:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ....:     j.append(n)
    ...

sage: G = graphics_array(j)
sage: G.show(figsize=[6,4])  # long time

>>> from sage.all import *
>>> # needs sage.plot
>>> g = []
>>> j = []
>>> for i in range(Integer(6)):
...     k = graphs.CubeGraph(i+Integer(1))
...     g.append(k)
... 
>>> for i in range(Integer(2)):
...     n = []
...     for m in range(Integer(3)):
...         n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
...     j.append(n)
...

>>> G = graphics_array(j)
>>> G.show(figsize=[Integer(6),Integer(4)])  # long time

Use the plot options to display larger $n$-cubes:

sage: g = graphs.CubeGraph(9, embedding=1)

sage: g.show(figsize=[12,12], vertex_labels=False, vertex_size=20)  # long time, needs sage.plot

sage: g = graphs.CubeGraph(9, embedding=2)

sage: g.show(figsize=[12,12], vertex_labels=False, vertex_size=20)  # long time, needs sage.plot

sage: g = graphs.CubeGraph(9, embedding=3)

sage: g.show(figsize=[12,12], vertex_labels=False, vertex_size=20)  # long time, needs sage.plot

>>> from sage.all import *
>>> # needs sage.plot

>>> g = graphs.CubeGraph(Integer(9), embedding=Integer(1))

>>> g.show(figsize=[Integer(12),Integer(12)], vertex_labels=False, vertex_size=20)  # long time, needs sage.plot

>>> g = graphs.CubeGraph(Integer(9), embedding=Integer(2))

>>> g.show(figsize=[Integer(12),Integer(12)], vertex_labels=False, vertex_size=20)  # long time, needs sage.plot

>>> g = graphs.CubeGraph(Integer(9), embedding=Integer(3))

>>> g.show(figsize=[Integer(12),Integer(12)], vertex_labels=False, vertex_size=20)  # long time, needs sage.plot

2.8. Various families of graphs 1173
Graph Theory, Release 10.4

AUTHORS:
- Robert Miller
- David Coudert

`sage.graphs.generators.families.DipoleGraph(n)`
Returns a dipole graph with n edges.

A dipole graph is a multigraph consisting of 2 vertices connected with n parallel edges.

EXAMPLES:
Construct and show a dipole graph with 13 edges:

```sage
g = graphs.DipoleGraph(13); g
Dipole graph: Multi-graph on 2 vertices
sage: g.show()
long time
needs sage.plot
```

```python
>>> from sage.all import *
>> g = graphs.DipoleGraph(Integer(13)); g
Dipole graph: Multi-graph on 2 vertices
>>> g.show()
long time
needs sage.plot
```

`sage.graphs.generators.families.DorogovtsevGoltsevMendesGraph(n)`
Construct the n-th generation of the Dorogovtsev-Goltsev-Mendes graph.

EXAMPLES:

```sage
G = graphs.DorogovtsevGoltsevMendesGraph(8)
#...
G.size()
#...

>>> from sage.all import *
>>> G = graphs.DorogovtsevGoltsevMendesGraph(Integer(8))
needs networkx
>>> G.size()
#...
6561
```

REFERENCE:

`sage.graphs.generators.families.DoubleGeneralizedPetersenGraph(n,k)`
Return a double generalized Petersen graph with \(4n\) nodes.

The double generalized Petersen graphs is a family of graphs proposed in [ZF2012] as a variant of generalized Petersen graphs. The variables \(n, k\) are integers such that \(n > 2\) and \(0 < k \leq \lfloor (n - 1)/2 \rfloor\).

INPUT:
- \(n\) – the number of nodes is \(4 \times n\)
- \(k\) – integer such that \(0 < k \leq \lfloor (n - 1)/2 \rfloor\) determining how vertices on second and third inner rims are connected
Graph Theory, Release 10.4

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the double generalized Petersen graphs are displayed as 4 cocentric cycles, with the first n nodes drawn on the outer circle. The first (0) node is drawn at the top of the outer-circle, moving counterclockwise after that. The second circle is drawn with the (n)th node at the top, then counterclockwise as well. The third cycle is drawn with the (2n)th node at the top, then counterclockwise. And the fourth cycle is drawn with the (3n)th node at the top, then again counterclockwise.

EXAMPLES:

When n is even the resulting graph will be isomorphic to a double generalized Petersen graph with \( k' = n/2 - k \):

```
sage: g = graphs.DoubleGeneralizedPetersenGraph(10, 2)
sage: g2 = graphs.DoubleGeneralizedPetersenGraph(10, 3)
sage: g.is_isomorphic(g2)
True
```

```
>>> from sage.all import *
>>> g = graphs.DoubleGeneralizedPetersenGraph(Integer(10), Integer(2))
>>> g2 = graphs.DoubleGeneralizedPetersenGraph(Integer(10), Integer(3))
>>> g.is_isomorphic(g2)
True
```

sage.graphs.generators.families.EgawaGraph(p, s)

Return the Egawa graph with parameters p, s.

Egawa graphs are a peculiar family of graphs devised by Yoshimi Egawa in [Ega1981]. The Shrikhande graph is a special case of this family of graphs, with parameters (1, 0). All the graphs in this family are not recognizable by 1-WL (Weisfeiler Lehmann algorithm of the first order) and 2-WL, that is their orbits are not correctly returned by k-WL for k lower than 3.

Furthermore, all the graphs in this family are distance-regular, but they are not distance-transitive if \( p \neq 0 \).

The Egawa graph with parameters (0, s) is isomorphic to the Hamming graph with parameters (s, 4), when the underlying set of the Hamming graph is \([0, 1, 2, 3]\)

INPUT:

- \( p \) – power to which the graph named Y in the reference provided above will be raised
- \( s \) – power to which the graph named X in the reference provided above will be raised

OUTPUT:

- \( G \) – The Egawa graph with parameters (p, s)

EXAMPLES:

Every Egawa graph is distance regular.

```
sage: g = graphs.EgawaGraph(1, 2)
sage: g.is_distance_regular()
True
```

```
>>> from sage.all import *
>>> g = graphs.EgawaGraph(Integer(1), Integer(2))
>>> g.is_distance_regular()
True
```

An Egawa graph with parameters (0, s) is isomorphic to the Hamming graph with parameters (s, 4).
sage: g = graphs.EgawaGraph(0, 4)
sage: g.is_isomorphic(graphs.HammingGraph(4,4))
True

```python
>>> from sage.all import *
>>> g = graphs.EgawaGraph(Integer(0), Integer(4))
>>> g.is_isomorphic(graphs.HammingGraph(Integer(4),Integer(4)))
True
```

**sage.graphs.generators.families.FibonacciTree(n)**

Return the graph of the Fibonacci Tree $F_i$ of order $n$.

The Fibonacci tree $F_i$ is recursively defined as the tree with a root vertex and two attached child trees $F_{i-1}$ and $F_{i-2}$, where $F_1$ is just one vertex and $F_0$ is empty.

**INPUT:**

- $n$ – the recursion depth of the Fibonacci Tree

**EXAMPLES:**

```python
sage: g = graphs.FibonacciTree(3) # needs sage.libs.pari
sage: g.is_tree() # needs sage.libs.pari
True
```

```python
>>> from sage.all import *
>>>
g = graphs.FibonacciTree(Integer(3)) # needs sage.libs.pari
>>> g.is_tree() # needs sage.libs.pari
True
```

```python
sage: l1 = [len(graphs.FibonacciTree(_)) + 1 for _ in range(6)] # needs sage.libs.pari
sage: l2 = list(fibonacci_sequence(2,8)) # needs sage.libs.pari
sage: l1 == l2 # needs sage.libs.pari
True
```

```python
>>> from sage.all import *
>>> l1 = [len(graphs.FibonacciTree(_)) + Integer(1) for _ in range(Integer(6))] # needs sage.libs.pari
>>> l2 = list(fibonacci_sequence(Integer(2),Integer(8))) # needs sage.libs.pari
>>> l1 == l2 # needs sage.libs.pari
True
```

**AUTHORS:**

- Harald Schilly and Yann Laigle-Chapuy (2010-03-25)

**sage.graphs.generators.families.FoldedCubeGraph(n)**

Returns the folded cube graph of order $2^{n-1}$. 

1176 Chapter 2. Constructors and databases
The folded cube graph on $2^{n-1}$ vertices can be obtained from a cube graph on $2^n$ vertices by merging together opposed vertices. Alternatively, it can be obtained from a cube graph on $2^{n-1}$ vertices by adding an edge between opposed vertices. This second construction is the one produced by this method.

See the Wikipedia article Folded_cube_graph for more information.

EXAMPLES:

The folded cube graph of order five is the Clebsch graph:

```python
sage: fc = graphs.FoldedCubeGraph(5)
sage: clebsch = graphs.ClebschGraph()
sage: fc.is_isomorphic(clebsch)
True
```

```python
>>> from sage.all import *
>>> fc = graphs.FoldedCubeGraph(Integer(5))
>>> clebsch = graphs.ClebschGraph()
>>> fc.is_isomorphic(clebsch)
True
```

sage.graphs.generators.families.FriendshipGraph($n$)

Return the friendship graph $F_n$.

The friendship graph is also known as the Dutch windmill graph. Let $C_3$ be the cycle graph on 3 vertices. Then $F_n$ is constructed by joining $n \geq 1$ copies of $C_3$ at a common vertex. If $n = 1$, then $F_1$ is isomorphic to $C_3$ (the triangle graph). If $n = 2$, then $F_2$ is the butterfly graph, otherwise known as the bowtie graph. For more information, see the Wikipedia article Friendship_graph.

INPUT:

- $n$ – positive integer; the number of copies of $C_3$ to use in constructing $F_n$.

OUTPUT:

- The friendship graph $F_n$ obtained from $n$ copies of the cycle graph $C_3$.

See also:

- GraphGenerators.ButterflyGraph()

EXAMPLES:

The first few friendship graphs.

```python
sage: # needs sage.plot
sage: A = []; B = []
sage: for i in range(9):
 : g = graphs.FriendshipGraph(i + 1)
 : A.append(g)

sage: for i in range(3):
 : n = []
 : for j in range(3):
 : n.append(A[3*i + j].plot(vertex_size=20, vertex_labels=False))
 : B.append(n)

sage: G = graphics_array(B)
sage: G.show() # long time
```
>>> from sage.all import *
>>> # needs sage.plot
>>> A = []; B = []
>>> for i in range(Integer(9)):
...     g = graphs.FriendshipGraph(i + Integer(1))
...     A.append(g)
>>> for i in range(Integer(3)):
...     n = []
...     for j in range(Integer(3)):
...         n.append(A[Integer(3)*i + j].plot(vertex_size=Integer(20), vertex_labels=False))
...     B.append(n)
>>> G = graphics_array(B)  # long time
>>> G.show()
# long time

For \( n = 1 \), the friendship graph \( F_1 \) is isomorphic to the cycle graph \( C_3 \), whose visual representation is a triangle.

sage: G = graphs.FriendshipGraph(1); G
Friendship graph: Graph on 3 vertices
sage: G.show()  # long time  #...
→ needs sage.plot
sage: G.is_isomorphic(graphs.CycleGraph(3))
True

>>> from sage.all import *
>>> G = graphs.FriendshipGraph(Integer(1)); G
Friendship graph: Graph on 3 vertices
>>> G.is_isomorphic(graphs.ButterflyGraph())
True

For \( n = 2 \), the friendship graph \( F_2 \) is isomorphic to the butterfly graph, otherwise known as the bowtie graph.

sage: G = graphs.FriendshipGraph(2); G
Friendship graph: Graph on 5 vertices
sage: G.is_isomorphic(graphs.ButterflyGraph())
True

>>> from sage.all import *
>>> G = graphs.FriendshipGraph(Integer(2)); G
Friendship graph: Graph on 5 vertices
>>> G.is_isomorphic(graphs.ButterflyGraph())
True

If \( n \geq 2 \), then the friendship graph \( F_n \) has \( 2n + 1 \) vertices and \( 3n \) edges. It has radius 1, diameter 2, girth 3, and chromatic number 3. Furthermore, \( F_n \) is planar and Eulerian.

sage: n = randint(2, 10^3)
sage: G = graphs.FriendshipGraph(n)
sage: G.order() == 2*n + 1
True
sage: G.size() == 3*n
True
sage: G.radius()
1
(continues on next page)
Construct the Furer gadget described in [CFI1992], a graph composed by a middle layer of \( 2(k - 1) \) nodes and two sets of nodes \( (a_0, ..., a_{k-1}) \) and \( (b_0, ..., b_{k-1}) \). Each node in the middle is connected to either \( a_i \) or \( b_i \), for each \( i \) in \( [0,k] \). To read about the complete construction, see [CFI1992]. The returned coloring colors the middle section with one color, and then each pair \( (a_i, b_i) \) with another color. Since this method is mainly used to create Furer gadgets for the Cai-Furer-Immerman construction, returning gadgets that don't always have the same vertex labels is important, that's why there is a parameter to manually set a prefix to be appended to each vertex label.

**INPUT:**

- \( k \) – The order of the returned Furer gadget, greater than 0.
- \( \text{prefix} \) – Prefix of to be appended to each vertex label, so as to individualise the returned Furer gadget. Must be comparable for equality and hashable.

**OUTPUT:**

- \( G \) – The Furer gadget of order \( k \)
- \( \text{coloring} \) – A list of list of vertices, representing the partition induced by the coloring of \( G \)'s vertices

**EXAMPLES:**

Furer gadget of order 3, without any prefix.
Graph Theory, Release 10.4

sage: G, p = graphs.FurerGadget(3)
sage: sorted(G, key=str)
[(), (0, 'a'), (0, 'b'), (0, 1), (0, 2),
 (1, 'a'), (1, 'b'), (1, 2), (2, 'a'), (2, 'b')]
sage: sorted(G.edge_iterator(), key=str)
[((), (0, 'b'), None), ((), (1, 'b'), None),
 ((), (2, 'b'), None), ((0, 0, 'b'), (1, 2), None),
 ((0, 1), (0, 'a'), None), ((0, 1), (1, 'a'), None),
 ((0, 1), (2, 'b'), None), ((0, 2), (0, 'a'), None),
 ((0, 2), (1, 'b'), None), ((0, 2), (2, 'a'), None),
 ((1, 2), (1, 'a'), None), ((1, 2), (2, 'a'), None)]

>>> from sage.all import *

>>> G, p = graphs.FurerGadget(Integer(3))

>>> sorted(G, key=str)
[(), (0, 'a'), (0, 'b'), (0, 1), (0, 2),
 (1, 'a'), (1, 'b'), (1, 2), (2, 'a'), (2, 'b')]

>>> sorted(G.edge_iterator(), key=str)
[((), (0, 'b'), None), ((), (1, 'b'), None),
 ((), (2, 'b'), None), ((0, 0, 'b'), (1, 2), None),
 ((0, 1), (0, 'a'), None), ((0, 1), (1, 'a'), None),
 ((0, 1), (2, 'b'), None), ((0, 2), (0, 'a'), None),
 ((0, 2), (1, 'b'), None), ((0, 2), (2, 'a'), None),
 ((1, 2), (1, 'a'), None), ((1, 2), (2, 'a'), None)]

Furergadget of order 3, with a prefix.

sage: G, p = graphs.FurerGadget(3, 'Prefix')
sage: sorted(G, key=str)
[('Prefix', ()), ('Prefix', (0, 'a')), ('Prefix', (0, 'b')),
 ('Prefix', (0, 1)), ('Prefix', (0, 2)), ('Prefix', (1, 'a')),
 ('Prefix', (1, 'b')), ('Prefix', (1, 2)), ('Prefix', (2, 'a')),
 ('Prefix', (2, 'b'))]
sage: sorted(G.edge_iterator(), key=str)
[('Prefix', ()), ('Prefix', (0, 'b'), None),
 ('Prefix', (0, 'b'), None), ((0, 0, 'b'), (1, 2), None),
 ((0, 1), (0, 'a'), None), ((0, 1), (1, 'a'), None),
 ((0, 1), (2, 'b'), None), ((0, 2), (0, 'a'), None),
 ((0, 2), (1, 'b'), None), ((0, 2), (2, 'a'), None),
 ((1, 2), (1, 'a'), None), ((1, 2), (2, 'a'), None)]

>>> from sage.all import *

>>> G, p = graphs.FurerGadget(Integer(3), 'Prefix')

>>> sorted(G, key=str)
[('Prefix', ()), ('Prefix', (0, 'a')), ('Prefix', (0, 'b')),
 ('Prefix', (0, 1)), ('Prefix', (0, 2)), ('Prefix', (1, 'a')),
 ('Prefix', (1, 'b')), ('Prefix', (1, 2)), ('Prefix', (2, 'a')),
 ('Prefix', (2, 'b'))]

>>> sorted(G.edge_iterator(), key=str)
[('Prefix', ()), ('Prefix', (0, 'b'), None),
 ('Prefix', (0, 'b'), None), ((0, 0, 'b'), (1, 2), None),
 ((0, 1), (0, 'a'), None), ((0, 1), (1, 'a'), None),
 ((0, 1), (2, 'b'), None), ((0, 2), (0, 'a'), None),
 ((0, 2), (1, 'b'), None), ((0, 2), (2, 'a'), None),
 ((1, 2), (1, 'a'), None), ((1, 2), (2, 'a'), None)]

(continues on next page)
sage.graphs.generators.families.FuzzyBallGraph\((\text{partition}, q)\)

Construct a Fuzzy Ball graph with the integer partition \(\text{partition}\) and \(q\) extra vertices.

Let \(q\) be an integer and let \(m_1, m_2, \ldots, m_k\) be a set of positive integers. Let \(n = q + m_1 + \ldots + m_k\). The Fuzzy Ball graph with partition \(m_1, m_2, \ldots, m_k\) and \(q\) extra vertices is the graph constructed from the graph \(G = K_n\) by attaching, for each \(i = 1, 2, \ldots, k\), a new vertex \(a_i\) to \(m_i\) distinct vertices of \(G\).

For given positive integers \(k\) and \(m\) and nonnegative integer \(q\), the set of graphs \(\text{FuzzyBallGraph}(p, q)\) for all partitions \(p\) of \(m\) with \(k\) parts are cospectral with respect to the normalized Laplacian.

**EXAMPLES:**

```python
sage: F = graphs.FuzzyBallGraph([3,1],2)
sage: F.adjacency_matrix(\text{vertices=list(F)})

\[
\begin{pmatrix}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0
\end{pmatrix}
\]
```

```python
>>> from sage.all import *
>>> F = graphs.FuzzyBallGraph([Integer(3),Integer(1)],Integer(2))
>>> F.adjacency_matrix(\text{vertices=list(F)})

\[
\begin{pmatrix}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0
\end{pmatrix}
\]
```

Pick positive integers \(m\) and \(k\) and a nonnegative integer \(q\). All the FuzzyBallGraphs constructed from partitions of \(m\) with \(k\) parts should be cospectral with respect to the normalized Laplacian:

```python
sage: m = 4; q = 2; k = 2
sage: q_list = [graphs.FuzzyBallGraph(p,q) \text{ for p in Partitions(m, length=k)}]
sage: set(q.laplacian_matrix(normalized=True) \text{ for q in q_list})

\[
\begin{pmatrix}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0
\end{pmatrix}
\]
```

(continues on next page)
>>> from sage.all import *

>>> m = Integer(4); q = Integer(2); k = Integer(2)

>>> g_list = [graphs.FuzzyBallGraph(p,q) for p in Partitions(m, length=k)]

sage.graphs.generators.families.GeneralizedPetersenGraph(n, k)

Returns a generalized Petersen graph with \(2n\) nodes. The variables \(n, k\) are integers such that \(n > 2\) and \(0 < k \leq \lfloor (n - 1)/2 \rfloor\).

For \(k = 1\) the result is a graph isomorphic to the circular ladder graph with the same \(n\). The regular Petersen Graph has \(n = 5\) and \(k = 2\). Other named graphs that can be described using this notation include the Desargues graph and the Möbius-Kantor graph.

INPUT:

- \(n\) – the number of nodes is \(2n\).
- \(k\) – integer \(0 < k \leq \lfloor (n - 1)/2 \rfloor\). Decides how inner vertices are connected.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the generalized Petersen graphs are displayed as an inner and outer cycle pair, with the first \(n\) nodes drawn on the outer circle. The first \((0)\) node is drawn at the top of the outer-circle, moving counterclockwise after that. The inner circle is drawn with the \((n)\)th node at the top, then counterclockwise as well.

EXAMPLES: For \(k = 1\) the resulting graph will be isomorphic to a circular ladder graph.
Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> g = graphs.GeneralizedPetersenGraph(Integer(10), Integer(3))
>>> g.girth()
6
>>> g.is_bipartite()
True
```

**AUTHORS:**

- Anders Jonsson (2009-10-15)

`sage.graphs.generators.families.GeneralizedSierpinskiGraph(G, k, stretch=None)`

Return the generalized Sierpinski graph of \( G \) of dimension \( k \).

Generalized Sierpinski graphs have been introduced in [GKP2011] to generalize the notion of Sierpinski graphs [KM1997].

Given a graph \( G = (V, E) \) of order \( n \) and a parameter \( k \), the generalized Sierpinski graph of \( G \) of dimension \( k \), denoted by \( S(G, k) \), can be constructed recursively from \( G \) as follows. \( S(G, 1) \) is isomorphic to \( G \). To construct \( S(G, k) \) for \( k > 1 \), copy \( n \) times \( S(G, k-1) \), once per vertex \( u \in V \), and add \( u \) at the beginning of the labels of each vertex in the copy of \( S(G, k-1) \) corresponding to vertex \( u \). Then for any edge \( \{u, v\} \in E \), add an edge between vertex \((u, v, \ldots, v)\) and vertex \((v, u, \ldots, u)\).

**INPUT:**

- \( G \) – a sage Graph
- \( k \) – integer; the dimension
- \( stretch \) – integer (default: None); stretching factor used to determine the positions of the vertices of the output graph. By default (None), this value is set to twice the maximum Euclidean distance between the vertices of \( G \). This parameter is used only when the vertices of \( G \) have positions.

**See also:**

- `SierpinskiGasketGraph()`
- `HanoiTowerGraph()`

**EXAMPLES:**

The generalized Sierpinski graph of dimension 1 of any graph \( G \) is isomorphic to \( G \):

```
sage: G = graphs.RandomGNP(10, .5)
sage: S = graphs.GeneralizedSierpinskiGraph(G, 1)
sage: S.is_isomorphic(G)
True
```

When \( G \) is a clique of order 3, the generalized Sierpinski graphs of \( G \) are isomorphic to Hanoi Tower graphs:

```
sage: k = randint(1, 5)
sage: S = graphs.GeneralizedSierpinskiGraph(graphs.CompleteGraph(3), k) #...
```

(continues on next page)
The generalized Sierpinski graph of dimension $k$ of any graph $G$ with $n$ vertices and $m$ edges has $n^k$ vertices and $m \sum_{i=0}^{k-1} n^i$ edges:

The positions of the vertices of the output graph are determined from the positions of the vertices of $G$, if any:
Graph Theory, Release 10.4

(continued from previous page)

```
sage: H = graphs.GeneralizedSierpinskiGraph(G, 2) # needs sage.symbolic
sage: H.get_pos() is not None # needs sage.symbolic
True
sage: G = Graph([(0, 1)])
```

```
from sage.all import *
G = graphs.HouseGraph()
```

```
sage: H = graphs.GeneralizedSierpinskiGraph(G, 2) # needs sage.symbolic
sage: H.get_pos() is not None # needs sage.symbolic
False
```

```
sage: H = graphs.GeneralizedSierpinskiGraph(G, 2) # needs sage.symbolic
sage: H.get_pos() is not None # needs sage.symbolic
False
```

```
>>> from sage.all import *
>>> G = graphs.HouseGraph()
>>> G.get_pos() is not None
True
```

```
>>> H = graphs.GeneralizedSierpinskiGraph(G, Integer(2)) # needs sage.symbolic
>>> H.get_pos() is not None
True
```

```
>>> G = Graph([(Integer(0), Integer(1))])
>>> G.get_pos() is not None
False
```

```
>>> H = graphs.GeneralizedSierpinskiGraph(G, Integer(2)) # needs sage.symbolic
>>> H.get_pos() is not None
False
```

sage.graphs.generators.families.GoethalsSeidelGraph\(k, r\)

Returns the graph Goethals-Seidel\((k, r)\).

The graph Goethals-Seidel\((k, r)\) comes from a construction presented in Theorem 2.4 of [GS1970]. It relies on a \((v, k)-\text{BIBD}\) with \(r\) blocks and a \text{hadamard_matrix}() of order \(r + 1\). The result is a sage.graphs.strongly_regular_db.strongly_regular_graph() on \(v(r + 1)\) vertices with degree \(k = (n + r - 1)/2\).

It appears under this name in Andries Brouwer's database of strongly regular graphs.

INPUT:

- \(k, r\) – integers

See also:

- is_goethals_seidel()

EXAMPLES:

```
sage: graphs.GoethalsSeidelGraph(3, 3) # needs sage.combinat sage.modules
Graph on 28 vertices
```

```
sage: graphs.GoethalsSeidelGraph(3, 3).is_strongly_regular(parameters=True) # needs sage.symbolic
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
from sage.all import *

graphs.GoethalsSeidelGraph(Integer(3), Integer(3)) # needs sage.combinat sage.modules
```

Graph on 28 vertices

```python
graphs.GoethalsSeidelGraph(Integer(3), Integer(3)).is_strongly_regular(parameters=True) # needs sage.combinat sage.modules
```

```
sage.graphs.generators.families.HammingGraph(n, q, X=None)

Return the Hamming graph with parameters \(n, q\) over \(X\).

Hamming graphs are graphs over the cartesian product of \(n\) copies of \(X\), where \(q = |X|\), where the vertices, labelled with the corresponding tuple in \(X^n\), are connected if the Hamming distance between their labels is 1. All Hamming graphs are regular, vertex-transitive and distance-regular.

Hamming graphs with parameters \((1, q)\) represent the complete graph with \(q\) vertices over the set \(X\).

INPUT:

- \(n\) – power to which \(X\) will be raised to provide vertices for the Hamming graph
- \(q\) – cardinality of \(X\)
- \(X\) – list of labels representing the vertices of the underlying graph the Hamming graph will be based on; if \(\text{None}\) (or left unused), the list \([0, ..., q - 1]\) will be used

OUTPUT:

- \(G\) – The Hamming graph with parameters \((n, q, X)\)

EXAMPLES:

Every Hamming graph is distance-regular, regular and vertex-transitive:

```python
sage: g = graphs.HammingGraph(3, 7)
sage: g.is_distance_regular()
True
sage: g.is_regular()
True
sage: g.is_vertex_transitive()
#...
```

A Hamming graph with parameters \((1, q)\) is isomorphic to the Complete graph with parameter \(q\):

```python
from sage.all import *

g = graphs.HammingGraph(Integer(3), Integer(7))
g.is_distance_regular()
True
g.is_regular()
True
g.is_vertex_transitive()
#...
```

2.8. Various families of graphs
sage: g = graphs.HammingGraph(1, 23)
sage: g.is_isomorphic(graphs.CompleteGraph(23))
True

>>> from sage.all import *

>>> g = graphs.HammingGraph(Integer(1), Integer(23))

>>> g.is_isomorphic(graphs.CompleteGraph(Integer(23)))
True

If a parameter q is provided which is not equal to X's cardinality, an exception is raised:

sage: X = ['a', 'b', 'c', 'd', 'e']
sage: g = graphs.HammingGraph(2, 3, X)
Traceback (most recent call last):
 ... ValueError: q must be the cardinality of X

>>> from sage.all import *

>>> X = ['a', 'b', 'c', 'd', 'e']

>>> g = graphs.HammingGraph(Integer(2), Integer(3), X)
Traceback (most recent call last):
 ... ValueError: q must be the cardinality of X

REFERENCES:
For a more accurate description, see the following wikipedia page: [Wikipedia article Hamming_graph](https://en.wikipedia.org/wiki/Graph)
sage.graphs.generators.families.HanoiTowerGraph (pegs, disks, labels=True, positions=True)

Returns the graph whose vertices are the states of the Tower of Hanoi puzzle, with edges representing legal moves between states.

INPUT:

- **pegs** – the number of pegs in the puzzle, 2 or greater
- **disks** – the number of disks in the puzzle, 1 or greater
- **labels** – default: True, if True the graph contains more meaningful labels, see explanation below. For large instances, turn off labels for much faster creation of the graph.
- **positions** – default: True, if True the graph contains layout information. This creates a planar layout for the case of three pegs. For large instances, turn off layout information for much faster creation of the graph.

OUTPUT:

The Tower of Hanoi puzzle has a certain number of identical pegs and a certain number of disks, each of a different radius. Initially the disks are all on a single peg, arranged in order of their radii, with the largest on the bottom.

The goal of the puzzle is to move the disks to any other peg, arranged in the same order. The one constraint is that the disks resident on any one peg must always be arranged with larger radii lower down.

The vertices of this graph represent all the possible states of this puzzle. Each state of the puzzle is a tuple with length equal to the number of disks, ordered by largest disk first. The entry of the tuple is the peg where that disk resides. Since disks on a given peg must go down in size as we go up the peg, this totally describes the state of the puzzle.

For example $(2, 0, 0)$ means the large disk is on peg 2, the medium disk is on peg 0, and the small disk is on peg 0 (and we know the small disk must be above the medium disk). We encode these tuples as integers with a base
equal to the number of pegs, and low-order digits to the right.

Two vertices are adjacent if we can change the puzzle from one state to the other by moving a single disk. For example, \((2, 0, 0)\) is adjacent to \((2, 0, 1)\) since we can move the small disk off peg 0 and onto (the empty) peg 1. So the solution to a 3-disk puzzle (with at least two pegs) can be expressed by the shortest path between \((0, 0, 0)\) and \((1, 1, 1)\). For more on this representation of the graph, or its properties, see [AD2010].

For greatest speed we create graphs with integer vertices, where we encode the tuples as integers with a base equal to the number of pegs, and low-order digits to the right. So for example, in a 3-peg puzzle with 5 disks, the state \((1, 2, 0, 1, 1)\) is encoded as \(1 \times 3^4 + 2 \times 3^3 + 0 \times 3^2 + 1 \times 3^1 + 1 \times 3^0 = 139\).

For smaller graphs, the labels that are the tuples are informative, but slow down creation of the graph. Likewise computing layout information also incurs a significant speed penalty. For maximum speed, turn off labels and layout and decode the vertices explicitly as needed. The `sage.rings.integer.Integer.digits()` with the `padsto` option is a quick way to do this, though you may want to reverse the list that is output.

See also:

- `GeneralizedSierpinskiGraph()`

PLOTTING:

The layout computed when `positions = True` will look especially good for the three-peg case, when the graph is known to be planar. Except for two small cases on 4 pegs, the graph is otherwise not planar, and likely there is a better way to layout the vertices.

EXAMPLES:

A classic puzzle uses 3 pegs. We solve the 5 disk puzzle using integer labels and report the minimum number of moves required. Note that \(3^5 - 1\) is the state where all 5 disks are on peg 2.

```plaintext
sage: H = graphs.HanoiTowerGraph(3, 5, labels=False, positions=False)
sage: H.distance(0, 3^5-1)
31
```

A slightly larger instance.

```plaintext
sage: H = graphs.HanoiTowerGraph(4, 6, labels=False, positions=False)
sage: H.num_verts()
4096
sage: H.distance(0, 4^6-1)
17
```

For a small graph, labels and layout information can be useful. Here we explicitly list a solution as a list of states.
Some facts about this graph with p pegs and d disks:

- only automorphisms are the “obvious” ones – renumber the pegs.
- chromatic number is less than or equal to p
- independence number is p^{d-1}

AUTHOR:
- Rob Beezer, (2009-12-26), with assistance from Su Doree

sage.graphs.generators.families.HararyGraph(k,n)

Returns the Harary graph on n vertices and connectivity k, where $2 \leq k < n$.

A k-connected graph G on n vertices requires the minimum degree $\delta(G) \geq k$, so the minimum number of edges G should have is $\lceil kn/2 \rceil$. Harary graphs achieve this lower bound, that is, Harary graphs are minimal k-connected graphs on n vertices.

The construction provided uses the method CirculantGraph. For more details, see the book [West2001] or the MathWorld article on Harary graphs.

EXAMPLES:

Harary graphs $H_{k,n}$:
sage: h = graphs.HararyGraph(5,9); h
Harary graph 5, 9: Graph on 9 vertices
sage: h.order()
9
sage: h.size()
23
sage: h.vertex_connectivity()
needs sage.numerical.mip
5

```python
>>> from sage.all import *
>>> h = graphs.HararyGraph(Integer(5),Integer(9)); h
Harary graph 5, 9: Graph on 9 vertices
>>> h.order()
9
>>> h.size()
23
>>> h.vertex_connectivity()
# needs sage.numerical.mip
5
```

`sage.graphs.generators.families.HyperStarGraph(n,k)`

Return the hyper-star graph $H_S(n, k)$.

The vertices of the hyper-star graph are the set of binary strings of length n which contain k 1s. Two vertices, u and v, are adjacent only if u can be obtained from v by swapping the first bit with a different symbol in another position.

For instance, vertex `'011100'` of $H_S(6, 3)$ is adjacent to vertices `'101100', '110100' and '111000'`. See [LKOL2002] for more details.

INPUT:

- n – non-negative integer; length of the binary strings
- k – non-negative integer; number of 1s per binary string

EXAMPLES:

```python
sage: g = graphs.HyperStarGraph(6,3)
sage: sorted(g.neighbors('011100'))
['101100', '110100', '111000']
sage: g.plot() # long time
# needs sage.plot
```

```python
>>> from sage.all import *
>>> g = graphs.HyperStarGraph(Integer(6),Integer(3))
>>> sorted(g.neighbors('011100'))
['101100', '110100', '111000']
```

AUTHORS:

- Michael Yurko (2009-09-01)

`sage.graphs.generators.families.IGraph(n,j,k)`

Return an I-graph with $2n$ nodes.
The I-Graph family as been proposed in [BCMS1988] as a generalization of the generalized Petersen graphs. The variables n, j, k are integers such that $n > 2$ and $0 < j, k \leq \lfloor (n - 1)/2 \rfloor$. When $j = 1$ the resulting graph is isomorphic to the generalized Petersen graph with the same n and k.

INPUT:

- n – the number of nodes is $2 \times n$
- j – integer such that $0 < j \leq \lfloor (n - 1)/2 \rfloor$ determining how outer vertices are connected
- k – integer such that $0 < k \leq \lfloor (n - 1)/2 \rfloor$ determining how inner vertices are connected

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the I-graphs are displayed as an inner and outer cycle pair, with the first n nodes drawn on the outer circle. The first (0) node is drawn at the top of the outer-circle, moving counterclockwise after that. The inner circle is drawn with the (n)th node at the top, then counterclockwise as well.

EXAMPLES:

When $j = 1$ the resulting graph will be isomorphic to a generalized Petersen graph:

```sage
sage: g = graphs.IGraph(7,1,2)
sage: g2 = graphs.GeneralizedPetersenGraph(7,2)
sage: g.is_isomorphic(g2)
True
```

The IGraph with parameters (n, j, k) is isomorphic to the IGraph with parameters (n, k, j):

```sage
sage: g = graphs.IGraph(7, 2, 3)
sage: h = graphs.IGraph(7, 3, 2)
sage: g.is_isomorphic(h)
True
```

`sage.graphs.generators.families.JohnsonGraph(n, k)`

Returns the Johnson graph with parameters n, k.

Johnson graphs are a special class of undirected graphs defined from systems of sets. The vertices of the Johnson graph $J(n, k)$ are the k-element subsets of an n-element set; two vertices are adjacent when they meet in a $(k - 1)$-element set. See the Wikipedia article Johnson_graph for more information.

EXAMPLES:

The Johnson graph is a Hamiltonian graph:

```sage
sage: g = graphs.JohnsonGraph(7, 3)
sage: g.is_hamiltonian() #...
True
```
>>> from sage.all import *
>>> g = graphs.JohnsonGraph(Integer(7), Integer(3))

Every Johnson graph is vertex transitive:

```python
sage: g = graphs.JohnsonGraph(6, 4)
sage: g.is_vertex_transitive()  #...
→ needs sage.groups
True
```

The complement of the Johnson graph $J(n, 2)$ is isomorphic to the Kneser Graph $K(n, 2)$. In particular the complement of $J(5, 2)$ is isomorphic to the Petersen graph:

```python
sage: g = graphs.JohnsonGraph(5, 2)
sage: g.complement().is_isomorphic(graphs.PetersenGraph())
True
```

```
2.8. Various families of graphs
```

sage.graphs.generators.families.KneserGraph(n, k)

Returns the Kneser Graph with parameters n, k.

The Kneser Graph with parameters n, k is the graph whose vertices are the k-subsets of $[0, 1, \ldots, n-1]$, and such that two vertices are adjacent if their corresponding sets are disjoint.

For example, the Petersen Graph can be defined as the Kneser Graph with parameters 5, 2.

EXAMPLES:

```python
sage: KG = graphs.KneserGraph(5, 2)
sage: sorted(KG.vertex_iterator(), key=str)
[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5),
 (3, 4), (3, 5), (4, 5)]
sage: P = graphs.PetersenGraph()
sage: P.is_isomorphic(KG)
True
```

```python
```
sage.graphs.generators.families.LCFGraph\((n, \text{shift_list}, \text{repeats}) \)

Return the cubic graph specified in LCF notation.

LCF (Lederberg-Coxeter-Fruchte) notation is a concise way of describing cubic Hamiltonian graphs. The way a graph is constructed is as follows. Since there is a Hamiltonian cycle, we first create a cycle on \(n \) nodes. The variable \(\text{shift_list} = [s_0, s_1, ..., s_{k-1}] \) describes edges to be created by the following scheme: for each \(i \in \{0, 1, ..., k-1\} \), connect vertex \(i \) to vertex \((i + s_i) \pmod{n} \). Then, \(\text{repeats} \) specifies the number of times to repeat this process, where on the \(j \)-th repeat we connect vertex \((i + jk) \pmod{n} \) to vertex \((i + jk + s_i) \pmod{n} \).

For more details, see the Wikipedia article LCF notation and [Fru1977], [Gru2003] pp. 357-365, and [Led1965].

INPUT:

- \(n \) – the number of nodes.
- \(\text{shift_list} \) – a list of integer shifts mod \(n \).
- \(\text{repeats} \) – the number of times to repeat the process.

EXAMPLES:

```python
sage: G = graphs.LCFGraph(4, [2, -2], 2)
>>> needs networkx
sage: G.is_isomorphic(graphs.TetrahedralGraph())
>>> needs networkx
True

sage: from sage.all import *
>>> G = graphs.LCFGraph(Integer(4), [Integer(2), -Integer(2)], Integer(2))
# needs networkx
>>> G.is_isomorphic(graphs.TetrahedralGraph())
# needs networkx
True

sage: G = graphs.LCFGraph(20, [10, 7, 4, -4, -7, 10, -4, 7, -7, 4], 2)
# needs networkx
sage: G.is_isomorphic(graphs.DodecahedralGraph())
# needs networkx
True

sage: from sage.all import *
>>> G = graphs.LCFGraph(Integer(20), [Integer(10), Integer(7), Integer(4), -Integer(4), -Integer(7), Integer(10), -Integer(4), Integer(7), -Integer(7), Integer(4)], Integer(2))
# needs networkx
>>> G.is_isomorphic(graphs.DodecahedralGraph())
# needs networkx
True

sage: G = graphs.LCFGraph(14, [5, -5], 7)
# needs networkx
sage: G.is_isomorphic(graphs.HeawoodGraph())
# needs networkx
True

sage: from sage.all import *
>>> G = graphs.LCFGraph(Integer(14), [Integer(5), -Integer(5)], Integer(7))
# needs networkx
>>> G.is_isomorphic(graphs.HeawoodGraph())
#...
```

(continues on next page)
needs networkx

The largest cubic non-planar graph of diameter three:

```plaintext
sage: G = graphs.LCFGraph(20, [-10,-7,-5,4,7,-10,-7,-4,5,7,-10,-7,6,-5,7,-10,-7,5,-6,7], 1)
sage: G.degree()
sage: G.diameter()
3
sage: G.show()  # long time
```

PLOTTING: LCF Graphs are plotted as an \(n \)-cycle with edges in the middle, as described above.

`sage.graphs.generators.families.LollipopGraph(n1, n2)`

Returns a lollipop graph with \(n_1 + n_2 \) nodes.

A lollipop graph is a path graph (order \(n_2 \)) connected to a complete graph (order \(n_1 \)). (A barbell graph minus one of the bells).

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the complete graph will be drawn in the lower-left corner with the \(n_1 \)-th node at a 45 degree angle above the right horizontal center of the complete graph, leading directly into the path graph.

EXAMPLES:

Construct and show a lollipop graph Candy = 13, Stick = 4:

```plaintext
g = graphs.LollipopGraph(13,4); g
Lollipop graph: Graph on 17 vertices
g.show()  # long time
```

```plaintext
>>> from sage.all import *
>>> G = graphs.LCFGraph(Integer(20), [-Integer(10),-Integer(7),-Integer(5),
˓→-Integer(4),Integer(7),-Integer(10),-Integer(7),-Integer(4),Integer(5),
˓→-Integer(7),
˓→-Integer(10),-Integer(7),Integer(6),-Integer(5),
˓→-Integer(7),-Integer(10),-Integer(7),Integer(5),-Integer(6),Integer(7)],...
˓→-Integer(1))
>>> G.degree()
>>> G.diameter()
3
>>> G.show()  # long time
```

2.8. Various families of graphs 1195
sage.graphs.generators.families.MathonPseudocyclicMergingGraph \((M, t)\)

Mathon’s merging of classes in a pseudo-cyclic 3-class association scheme

Construct strongly regular graphs from p.97 of [BL1984].

INPUT:

- \(M\) – the list of matrices in a pseudo-cyclic 3-class association scheme. The identity matrix must be the first entry.
- \(t\) (integer) – the number of the graph, from 0 to 2.

See also:

- `is_muzychuk_S6()`

sage.graphs.generators.families.MathonPseudocyclicStronglyRegularGraph \((t, G=None, L=None)\)

Return a strongly regular graph on \((4t + 1)(4t - 1)^2\) vertices from [Mat1978].

Let \(4t - 1\) be a prime power, and \(4t + 1\) be such that there exists a strongly regular graph \(G\) with parameters \((4t + 1, 2t, t - 1, t)\). In particular, \(4t + 1\) must be a sum of two squares [Mat1978]. With this input, Mathon [Mat1978] gives a construction of a strongly regular graph with parameters \((4\mu + 1, 2\mu, \mu - 1, \mu)\), where \(\mu = t(4t(4t - 1) - 1)\). The construction is optionally parametrised by an a skew-symmetric Latin square of order \(4t + 1\), with entries in \(-2t, ..., -1, 0, 1, ..., 2t\).

Our implementation follows a description given in [ST1981].

INPUT:

- \(t\) – a positive integer
- \(G\) – if None (default), try to construct the necessary graph with parameters \((4t + 1, 2t, t - 1, t)\), otherwise use the user-supplied one, with vertices labelled from 0 to \(4t\).
- \(L\) – if None (default), construct a necessary skew Latin square, otherwise use the user-supplied one. Here non-isomorphic Latin squares – one constructed from \(\mathbb{Z}/9\mathbb{Z}\), and the other from \((\mathbb{Z}/3\mathbb{Z})^2\) – lead to non-isomorphic graphs.

See also:

- `is_mathon_PC_srg()`

EXAMPLES:

Using default \(G\) and \(L\).

```python
sage: from sage.graphs.generators.families import MathonPseudocyclicStronglyRegularGraph
sage: G = MathonPseudocyclicStronglyRegularGraph(1); G
Mathon's PC SRG on 45 vertices: Graph on 45 vertices
sage: G.is_strongly_regular(parameters=True)  # Needs sage.modules sage.rings.finite_rings
(45, 22, 10, 11)
```

```python
>>> from sage.all import *
>>> from sage.graphs.generators.families import MathonPseudocyclicStronglyRegularGraph
(continues on next page)
```

1196 Chapter 2. Constructors and databases
Graph Theory, Release 10.4

Supplying G and L (constructed from the automorphism group of G). The entries of L can’t be tested directly because there’s some unpredictability in the way that GAP chooses a representative in `NormalSubgroups()`, the function that underlies our own `normal_subgroups()` method:

```
sage: # needs sage.groups sage.libs.gap sage.rings.finite_rings
sage: G = graphs.PaleyGraph(9)
sage: a = G.automorphism_group(partition=sorted(G))
sage: it = (x for x in a.normal_subgroups() if x.order() == Integer(9))
sage: subg = next(iter(it))
sage: r = [matrix(libgap.PermutationMat(libgap(z), 9).sage())
      for z in subg]
sage: ff = list(map(lambda y: (y[Integer(0)]-Integer(1), y[Integer(1)]-Integer(1)),
               Permutation(map(lambda x: Integer(1)+r.index(x**-Integer(1)), r)).cycle_tuples()[Integer(1):]))
sage: L = sum(i*(r[a]-r[b]) for i,(a,b) in zip(range(Integer(1),len(ff)+Integer(1)), ff))
```

(continues on next page)
sage.graphs.generators.families.MuzychukS6Graph \((n, d, \text{Phi}='\text{fixed}', \text{Sigma}='\text{fixed}', \text{verbose}=\text{False}) \)

Return a strongly regular graph of S6 type from [Muz2007] on \(n^d((n^d-1)/(n-1)+1) \) vertices.

The construction depends upon a number of parameters, two of them, \(n \) and \(d \), mandatory, and \(\Phi \) and \(\Sigma \) mappings defined in [Muz2007]. These graphs have parameters \((mn^d, n^{d-1}(m-1)-2, \mu, \mu) \), where \(\mu = \frac{n^{d-1}-1}{n-1}n^{d-1} \) and \(m := \frac{n^{d-1}}{n-1}+1 \).

Some details on \(\Phi \) and \(\Sigma \) are as follows. Let \(L \) be the complete graph on \(M := \{0, ..., m-1\} \) with the matching \(\{(2i, 2i+1) | i = 0, ..., m/2\} \) removed. Then one arbitrarily chooses injections \(\Phi_i \) from the edges of \(L \) on \(i \in M \) into sets of parallel classes of affine \(d \)-dimensional designs; our implementation uses the designs of hyperplanes in \(d \)-dimensional affine geometries over \(GF(n) \). Finally, for each edge \(ij \) of \(L \) one arbitrarily chooses bijections \(\Sigma_{ij} \) between \(\Phi_i \) and \(\Phi_j \). More details, in particular how these choices lead to non-isomorphic graphs, are in [Muz2007].

INPUT:

- \(n \) (integer) – a prime power
- \(d \) (integer) – must be odd if \(n \) is odd
- \(\Phi \) is an optional parameter of the construction; it must be either
 - ’fixed’ – this will generate fixed default \(\Phi_i \), for \(i \in M \), or
 - ’random’ – \(\Phi_i \) are generated at random, or
 - A dictionary describing the functions \(\Phi_i \); for \(i \in M \), \(\Phi(i, T) \) in \(M \), for each edge \(T \) of \(L \) on \(i \). Also, each \(\Phi_i \) must be injective.
- \(\Sigma \) is an optional parameter of the construction; it must be either
 - ’fixed’ – this will generate a fixed default \(\Sigma \), or
 - ’random’ – \(\Sigma \) is generated at random.
- \text{verbose} (Boolean) – default is False. If True, print progress information

See also:

\texttt{is_muzychuk_S6()}\n
\textbf{Todo:} Implement the possibility to explicitly supply the parameter \(\Sigma \) of the construction.

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: # needs sage.combinat sage.modules sage.rings.finite_rings
 sage: graphs.MuzychukS6Graph(3, 3).is_strongly_regular(parameters=True)
 (378, 116, 34, 36)
 sage: phi = {(2,(0,2)):0, (1,(1,3)):1, (0,(0,3)):1, (2,(1,2)):1,: (1,(1,2)):0, (0,(0,2)):0, (3,(0,3)):0, (3,(1,3)):1}
 sage: graphs.MuzychukS6Graph(2, 2, Phi=phi).is_strongly_regular(parameters=True)
 (16, 5, 0, 2)
\end{verbatim}
sage.graphs.generators.families.MycielskiGraph (k=1, relabel=True)

Returns the k-th Mycielski Graph.

The graph M_k is triangle-free and has chromatic number equal to k. These graphs show, constructively, that there are triangle-free graphs with arbitrarily high chromatic number.

The Mycielski graphs are built recursively starting with M_0, an empty graph; M_1, a single vertex graph; and M_2 is the graph K_2. M_{k+1} is then built from M_k as follows:

If the vertices of M_k are v_1, \ldots, v_n, then the vertices of M_{k+1} are $v_1, \ldots, v_n, w_1, \ldots, w_n, z$. Vertices v_1, \ldots, v_n induce a copy of M_k. Vertices w_1, \ldots, w_n are an independent set. Vertex z is adjacent to all the w_i-vertices. Finally, vertex w_i is adjacent to vertex v_j iff v_i is adjacent to v_j.

For more details, see the Wikipedia article Mycielskian.

INPUT:

- k Number of steps in the construction process.
- relabel Relabel the vertices so their names are the integers range(n) where n is the number of vertices in the graph.

EXAMPLES:

The Mycielski graph M_k is triangle-free and has chromatic number equal to k.

```python
sage: g = graphs.MycielskiGraph(5)
sage: g.is_triangle_free()
True
sage: g.chromatic_number()
5
```

The graphs M_4 is (isomorphic to) the Grotzsch graph.

```python
sage: g = graphs.MycielskiGraph(4)
sage: g.is_isomorphic(graphs.GrotzschGraph())
True
```
sage.graphs.generators.families.MycielskiStep(g)

Perform one iteration of the Mycielski construction.

See the documentation for MycielskiGraph which uses this method. We expose it to all users in case they may find it useful.

EXAMPLE. One iteration of the Mycielski step applied to the 5-cycle yields a graph isomorphic to the Grotzsch graph

```
sage: g = graphs.CycleGraph(5)
sage: h = graphs.MycielskiStep(g)
sage: h.is_isomorphic(graphs.GrotzschGraph())
True
```

sage.graphs.generators.families.NKStarGraph(n, k)

Returns the \((n, k)\)-star graph.

The vertices of the \((n, k)\)-star graph are the set of all arrangements of \(n\) symbols into labels of length \(k\). There are two adjacency rules for the \((n, k)\)-star graph. First, two vertices are adjacent if one can be obtained from the other by swapping the first symbol with another symbol. Second, two vertices are adjacent if one can be obtained from the other by swapping the first symbol with an external symbol (a symbol not used in the original label).

INPUT:

- \(n\) – integer; number of symbols
- \(k\) – integer; length of the labels of the vertices

EXAMPLES:

```
sage: g = graphs.NKStarGraph(4,2)
sage: g.plot()                           # long time
needs sage.plot
Graphics object consisting of 31 graphics primitives
```

REFERENCES:

[CC1995]

AUTHORS:

- Michael Yurko (2009-09-01)
sage.graphs.generators.families.NStarGraph(n)

Returns the n-star graph.

The vertices of the n-star graph are the set of permutations on n symbols. There is an edge between two vertices if their labels differ only in the first and one other position.

INPUT:

- n – integer; number of symbols

EXAMPLES:

```python
sage: g = graphs.NStarGraph(4)
sage: g.plot() # long time
needs sage.plot
Graphics object consisting of 61 graphics primitives
```

```python
>>> from sage.all import *

>>> g = graphs.NStarGraph(Integer(4))

>>> g.plot() # long time
needs sage.plot
Graphics object consisting of 61 graphics primitives
```

REFERENCES:

[AHK1994]

AUTHORS:

- Michael Yurko (2009-09-01)

sage.graphs.generators.families.OddGraph(n)

Returns the Odd Graph with parameter n.

The Odd Graph with parameter n is defined as the Kneser Graph with parameters $2n - 1$, $n - 1$. Equivalently, the Odd Graph is the graph whose vertices are the $n-1$-subsets of $[0, 1, \ldots, 2(n-1)]$, and such that two vertices are adjacent if their corresponding sets are disjoint.

For example, the Petersen Graph can be defined as the Odd Graph with parameter 3.

EXAMPLES:

```python
sage: OG = graphs.OddGraph(3)
sage: sorted(OG.vertex_iterator(), key=str)
[\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{2, 5\},
 {3, 4\}, \{3, 5\}, \{4, 5\}]
sage: P = graphs.PetersenGraph()
sage: P.is_isomorphic(OG)
True
```

```python
>>> from sage.all import *

>>> OG = graphs.OddGraph(Integer(3))

>>> sorted(OG.vertex_iterator(), key=str)
[\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{2, 5\},
 {3, 4\}, \{3, 5\}, \{4, 5\}]

>>> P = graphs.PetersenGraph()

>>> P.is_isomorphic(OG)
True
```
sage.graphs.generators.families.PaleyGraph\((q)\)

Paley graph with \(q\) vertices

Parameter \(q\) must be the power of a prime number and congruent to 1 mod 4.

EXAMPLES:

```python
sage: G = graphs.PaleyGraph(9); G  # needs sage.rings.finite_rings
Paley graph with parameter 9: Graph on 9 vertices
sage: G.is_regular()  # needs sage.rings.finite_rings
True
```

```
>>> from sage.all import *

>>> G = graphs.PaleyGraph(Integer(9)); G  # needs sage.rings.finite_rings
Paley graph with parameter 9: Graph on 9 vertices
>>> G.is_regular()  # needs sage.rings.finite_rings
True
```

A Paley graph is always self-complementary:

```python
sage: G.is_self_complementary()  # needs sage.rings.finite_rings
True
```

```
>>> from sage.all import *

>>> G.is_self_complementary()  # needs sage.rings.finite_rings
True
```

sage.graphs.generators.families.PasechnikGraph\((n)\)

Pasechnik strongly regular graph on \((4n - 1)^2\) vertices

A strongly regular graph with parameters of the orthogonal array graph OrthogonalArrayBlockGraph(), also known as pseudo Latin squares graph \(L_{2n-1}(4n - 1)\), constructed from a skew Hadamard matrix of order \(4n\) following [Pas1992].

See also:

• `is_orthogonal_array_block_graph()`

EXAMPLES:

```python
sage: graphs.PasechnikGraph(4).is_strongly_regular(parameters=True)  # needs sage.combinat sage.modules
(225, 98, 43, 42)
sage: graphs.PasechnikGraph(5).is_strongly_regular(parameters=True)  # long...
(361, 162, 73, 72)
sage: graphs.PasechnikGraph(9).is_strongly_regular(parameters=True)  # not tested
(1225, 578, 273, 272)
```

```
>>> from sage.all import *

>>> graphs.PasechnikGraph(Integer(4)).is_strongly_regular(parameters=True)  # needs sage.combinat sage.modules
(continues on next page)
```
continued from previous page)

```
(225, 98, 43, 42)
>>> graphs.PasechnikGraph(Integer(5)).is_strongly_regular(parameters=True)    # ...
long time, needs sage.combinat sage.modules
(361, 162, 73, 72)
>>> graphs.PasechnikGraph(Integer(9)).is_strongly_regular(parameters=True)   # not...
tested
(1225, 578, 273, 272)
```

`sage.graphs.generators.families.RingedTree(k, vertex_labels=True)`

Return the ringed tree on k-levels.

A ringed tree of level k is a binary tree with k levels (counting the root as a level), in which all vertices at the same level are connected by a ring.

More precisely, in each layer of the binary tree (i.e. a layer is the set of vertices $[2^i...2^{i+1} - 1]$) two vertices u, v are adjacent if $u = v + 1$ or if $u = 2^i$ and $v = 2^i + 1$.

Ringed trees are defined in [CFHM2013].

INPUT:

- k – the number of levels of the ringed tree.
- `vertex_labels` (boolean) – whether to label vertices as binary words (default) or as integers.

EXAMPLES:

```
sage: # needs networkx
sage: G = graphs.RingedTree(5)
sage: P = G.plot(vertex_labels=False, vertex_size=10) # ...
# needs sage.plot
sage: P.show()                                           # long time
# needs sage.plot
sage: G.vertices(sort=True)
['', '0', '00', '000', '0000', '00001', '001', '0010', '0011', '01',
 '010', '0100', '0101', '011', '0110', '0111', '1', '10', '100',
 '1000', '1001', '101', '1010', '1011', '11', '110', '1100', '1101',
 '111', '1110', '1111']
```

```
>>> from sage.all import *
>>> # needs networkx
>>> G = graphs.RingedTree(Integer(5))
>>> P = G.plot(vertex_labels=False, vertex_size=Integer(10)) ...
# needs sage.plot
>>> P.show()                                           # long time
# needs sage.plot
>>> G.vertices(sort=True)
['', '0', '00', '000', '0000', '00001', '001', '0010', '0011', '01',
 '010', '0100', '0101', '011', '0110', '0111', '1', '10', '100',
 '1000', '1001', '101', '1010', '1011', '11', '110', '1100', '1101',
 '111', '1110', '1111']
```

`sage.graphs.generators.families.RoseWindowGraph(n, a, r)`

Return a rose window graph with $2n$ nodes.

The rose window graphs is a family of tetravalent graphs introduced in [Wilson2008]. The parameters n, a and r are integers such that $n > 2, 1 \leq a, r < n$, and $r \neq n/2$.

2.8. Various families of graphs
INPUT:

- \(n \) – the number of nodes is \(2 \times n \)
- \(a \) – integer such that \(1 \leq a < n \) determining a-spoke edges
- \(r \) – integer such that \(1 \leq r < n \) and \(r \neq n/2 \) determining how inner vertices are connected

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the rose window graphs are displayed as an inner and outer cycle pair, with the first \(n \) nodes drawn on the outer circle. The first (0) node is drawn at the top of the outer-circle, moving counterclockwise after that. The inner circle is drawn with the \((n)\)th node at the top, then counterclockwise as well. Vertices in the outer circle are connected in the circular manner, vertices in the inner circle are connected when their label have difference \(r \) \((\text{mod } n)\). Vertices on the outer rim are connected with the vertices on the inner rim when they are at the same position and when they are \(a \) apart.

EXAMPLES:

The vertices of a rose window graph have all degree 4:

```python
sage: G = graphs.RoseWindowGraph(5, 1, 2)
sage: all(G.degree(u) == 4 for u in G)
True
```

```
>>> from sage.all import *
>>> G = graphs.RoseWindowGraph(Integer(5), Integer(1), Integer(2))
>>> all(G.degree(u) == Integer(4) for u in G)
True
```

The smallest rose window graph as parameters \((3, 2, 1)\):

```python
sage: G = graphs.RoseWindowGraph(3, 2, 1)
sage: all(G.degree(u) == 4 for u in G)
True
```

```python
>>> from sage.all import *
>>> G = graphs.RoseWindowGraph(Integer(3), Integer(2), Integer(1))
>>> all(G.degree(u) == Integer(4) for u in G)
True
```

```
sage.graphs.generators.families.SierpinskiGasketGraph(n)
```

Return the Sierpinski Gasket graph of generation \(n \).

All vertices but 3 have valence 4.

INPUT:

- \(n \) – an integer

OUTPUT:

a graph \(S_n \) with \(3(3^{n-1} + 1)/2 \) vertices and \(3^n \) edges, closely related to the famous Sierpinski triangle fractal. All these graphs have a triangular shape, and three special vertices at top, bottom left and bottom right. These are the only vertices of valence 2, all the other ones having valence 4.

The graph \(S_1 \) (generation 1) is a triangle.

The graph \(S_{n+1} \) is obtained from the disjoint union of three copies A,B,C of \(S_n \) by identifying pairs of vertices: the top vertex of A with the bottom left vertex of B, the bottom right vertex of B with the top vertex of C, and the bottom left vertex of C with the bottom right vertex of A.
2.8. Various families of graphs
See also:

- HanoiTowerGraph(). There is another family of graphs called Sierpinski graphs, where all vertices but 3 have valence 3. They are available using graphs.HanoiTowerGraph(3, n).
- GeneralizedSierpinskiGraph()

EXAMPLES:

```python
sage: # needs sage.modules
sage: s4 = graphs.SierpinskiGasketGraph(4); s4
Graph on 42 vertices
sage: s4.size()
81
sage: s4.degree_histogram()
[0, 0, 3, 0, 39]
sage: s4.is_hamiltonian()
True
```

```python
>>> from sage.all import *
>>> # needs sage.modules
>>> s4 = graphs.SierpinskiGasketGraph(Integer(4)); s4
Graph on 42 vertices
>>> s4.size()
81
>>> s4.degree_histogram()
[0, 0, 3, 0, 39]
>>> s4.is_hamiltonian()
True
```

REFERENCES:

[LLWC2011]

sage.graphs.generators.families.SquaredSkewHadamardMatrixGraph(n)

Pseudo-\(\mathrm{OA}(2n, 4n - 1)\)-graph from a skew Hadamard matrix of order \(4n\)

A strongly regular graph with parameters of the orthogonal array graph OrthogonalArrayBlockGraph(), also known as pseudo Latin squares graph \(L_{2n}(4n - 1)\), constructed from a skew Hadamard matrix of order \(4n\), due to Goethals and Seidel, see [BL1984].

See also:

- is_orthogonal_array_block_graph()

EXAMPLES:

```python
sage: # needs sage.combinat sage.modules
sage: G = graphs.SquaredSkewHadamardMatrixGraph(4)
sage: G.is_strongly_regular(parameters=True)
(225, 112, 55, 56)
sage: G = graphs.SquaredSkewHadamardMatrixGraph(5)
# long time
(361, 180, 89, 90)
sage: G = graphs.SquaredSkewHadamardMatrixGraph(9)
# not tested
(1225, 612, 305, 306)
```
```python
>>> from sage.all import *

>>> G = graphs.SquaredSkewHadamardMatrixGraph(Integer(4))

>>> G.is_strongly_regular(parameters=True)
(225, 112, 55, 56)

>>> G = graphs.SquaredSkewHadamardMatrixGraph(Integer(5))

>>> G.is_strongly_regular(parameters=True)  # long time
(361, 180, 89, 90)

>>> G = graphs.SquaredSkewHadamardMatrixGraph(Integer(9))

>>> G.is_strongly_regular(parameters=True)  # not tested
(1225, 612, 305, 306)
```

sage.graphs.generators.families.SwitchedSquaredSkewHadamardMatrixGraph(n)

A strongly regular graph in the Seidel switching class of `SquaredSkewHadamardMatrixGraph()`.

A strongly regular graph in the Seidel switching class of the disjoint union of a 1-vertex graph and the one produced by Pseudo-L_{2n}(4n-1)

In this case, the other possible parameter set of a strongly regular graph in the Seidel switching class of the latter graph (see [BH2012]) coincides with the set of parameters of the complement of the graph returned by this function.

See also:

- `is_switch_skewhad()`

EXAMPLES:

```python
sage: # needs sage.combinat sage.modules
g = graphs.SwitchedSquaredSkewHadamardMatrixGraph(4)
sage: g.is_strongly_regular(parameters=True)
(226, 105, 48, 49)
sage: from sage.combinat.designs.twographs import twograph_descendant
twograph_descendant(g, 0).is_strongly_regular(parameters=True)
(225, 112, 55, 56)
sage: gc = g.complement()
sage: twograph_descendant(gc, 0).is_strongly_regular(parameters=True)
(225, 112, 55, 56)
```

sage.graphs.generators.families.TabacjnGraph(n, a, b, r)

Return a Tabačjn graph with $2n$ nodes.

The Tabačjn graphs is a family of pentavalent bicirculants graphs proposed in [AHKOS2014] as a generalization of generalized Petersen graphs. The parameters n, a, b, r are integers such that $n \geq 3$, $1 \leq a, b, r \leq n - 1$, with $a \neq b$ and $r \neq n/2$.

INPUT:
• n – the number of nodes is $2 \times n$
• a – integer such that $0 < a < n$ and $a \neq b$, that determines a-spoke edges
• b – integer such that $0 < b < n$ and $b \neq a$, that determines b-spoke edges
• r – integer such that $0 < r < n$ and $r \neq n/2$ determining how inner vertices are connected

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the rose window graphs are displayed as an inner and outer cycle pair, with the first n nodes drawn on the outer circle. The first (0) node is drawn at the top of the outer-circle, moving counterclockwise after that. The inner circle is drawn with the (n)th node at the top, then counterclockwise as well. Vertices in the outer circle are connected in the circular manner, vertices in the inner circle are connected when their label have difference $r \pmod{n}$. Vertices on the outer rim are connected with the vertices on the inner rim when they are at the same position and when they are a and b apart.

EXAMPLES:

```python
sage: G = graphs.TabacjnGraph(3, 1, 2, 1)
sage: G.degree()
[5, 5, 5, 5, 5, 5]
sage: G.is_isomorphic(graphs.CompleteGraph(6))
True
```

```python
>>> from sage.all import *
>>> G = graphs.TabacjnGraph=Integer(3), Integer(1), Integer(2), Integer(1))
>>> G.degree()
[5, 5, 5, 5, 5]
>>> G.is_isomorphic(graphs.CompleteGraph(Integer(6)))
True
```

sage.graphs.generators.families.TadpoleGraph \((n_1, n_2)\)

Return a tadpole graph with \(n_1 + n_2\) nodes.

A tadpole graph is a path graph (order \(n_2\)) connected to a cycle graph (order \(n_1\)).

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the cycle graph will be drawn in the lower-left corner with the \(n_1\)-th node at a 45 degree angle above the right horizontal center of the cycle graph, leading directly into the path graph.

EXAMPLES:

Construct and show a tadpole graph Cycle = 13, Stick = 4:

```python
sage: g = graphs.TadpoleGraph(13, 4); g
Tadpole graph: Graph on 17 vertices
sage: g.show()  # long time
needs sage.plot
```

```python
>>> from sage.all import *
>>> g = graphs.TadpoleGraph=Integer(13), Integer(4)); g
(continues on next page)```
Tadpole graph: Graph on 17 vertices

```python
>>> g.show()

needs sage.plot
```

`sage.graphs.generators.families.TuranGraph(n, r)`

Returns the Turan graph with parameters n, r.

Turan graphs are complete multipartite graphs with n vertices and r subsets, denoted $T(n, r)$, with the property that the sizes of the subsets are as close to equal as possible. The graph $T(n, r)$ will have $n \mod r$ subsets of size $\lfloor n/r \rfloor$ and $r - (n \mod r)$ subsets of size $\lceil n/r \rceil$. See the Wikipedia article Turan_graph for more information.

**INPUT:**

- $n$ – integer; the number of vertices in the graph
- $r$ – integer; the number of partitions of the graph

**EXAMPLES:**

The Turan graph is a complete multipartite graph:

```python
sage: g = graphs.TuranGraph(13, 4)
sage: k = graphs.CompleteMultipartiteGraph([3,3,3,4])
sage: g.is_isomorphic(k)
True
```

The Turan graph $T(n, r)$ has \[
\frac{(r-1)(n^2-s^2)}{2r} + \frac{s(s-1)}{2}
\]
edges, where $s = n \mod r$ (Issue #34249):

```python
sage: n = 12
sage: r = 8
sage: g = graphs.TuranGraph(n, r)
sage: def count(n, r):
... s = n % r
... return (r - 1) * (n**2 - s**2) / (2*r) + s*(s - 1)/2
sage: g.size() == count(n, r)
True
sage: n = randint(3, 100)
sage: r = randint(2, n - 1)
sage: g = graphs.TuranGraph(n, r)
sage: g.size() == count(n, r)
True
```

(continues on next page)
g.size() == count(n, r)
True
>>> n = randint(Integer(3), Integer(100))
>>> r = randint(Integer(2), n - Integer(1))
>>> g = graphs.TuranGraph(n, r)
>>> g.size() == count(n, r)
True

sage.graphs.generators.families.WheelGraph(n)

Returns a Wheel graph with \( n \) nodes.

A Wheel graph is a basic structure where one node is connected to all other nodes and those (outer) nodes are connected cyclically.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each wheel graph will be displayed with the first (0) node in the center, the second node at the top, and the rest following in a counterclockwise manner.

With the wheel graph, we see that it doesn’t take a very large \( n \) at all for the spring-layout to give a counter-intuitive display. (See Graphics Array examples below).

EXAMPLES:

We view many wheel graphs with a Sage Graphics Array, first with this constructor (i.e., the position dictionary filled):

... start of code block...

sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
    ... k = graphs.WheelGraph(i+3)
    ... g.append(k)
... end of code block...
Next, using the spring-layout algorithm:

```python
sage: # needs networkx sage.plot
sage: import networkx
sage: g = []
sage: j = []
sage: for i in range(9):
 : spr = networkx.wheel_graph(i+3)
 : k = Graph(spr)
 : g.append(k)

sage: for i in range(3):
 : n = []
 : for m in range(3):
 : n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
 : j.append(n)

sage: G = graphics_array(j)
sage: G.show() # long time
```

```
>>> from sage.all import *
>>>(continues on next page)
```
sage.graphs.generators.families.WindmillGraph\((k, n)\)

Return the Windmill graph \(W(d, n)\).

The windmill graph \(W(d, n)\) is an undirected graph constructed for \(k \geq 2\) and \(n \geq 2\) by joining \(n\) copies of the complete graph \(K_k\) at a shared vertex. It has \((k - 1)n + 1\) vertices and \(nk(k - 1)/2\) edges, girth 3 (if \(k > 2\)), radius 1 and diameter 2. It has vertex connectivity 1 because its central vertex is an articulation point; however, like the complete graphs from which it is formed, it is \((k - 1)\)-edge-connected. It is trivially perfect and a block graph.

See also:

- Wikipedia article Windmill_graph
- GraphGenerators.StarGraph()
- GraphGenerators.FriendshipGraph()

EXAMPLES:

The Windmill graph \(W(2, n)\) is a star graph:

```python
sage: n = 5
sage: W = graphs.WindmillGraph(2, n)
sage: W.is_isomorphic(graphs.StarGraph(n))
True
```

The Windmill graph \(W(3, n)\) is the Friendship graph \(F_n\):

```python
sage: n = 5
sage: W = graphs.WindmillGraph(3, n)
sage: W.is_isomorphic(graphs.FriendshipGraph(n))
True
```

The Windmill graph \(W(3, 2)\) is the Butterfly graph:

```python
sage: W = graphs.WindmillGraph(3, 2)
sage: W.is_isomorphic(graphs.ButterflyGraph())
True
```
>>> from sage.all import *
>>> W = graphs.WindmillGraph(Integer(3), Integer(2))
>>> W.is_isomorphic( graphs.ButterflyGraph() )
True

The Windmill graph $W_d(k,n)$ has chromatic number $k$:

```sage
n, k = 5, 6
W = graphs.WindmillGraph(k, n)
W.chromatic_number() == k
```

```sage
n, k = Integer(5), Integer(6)
W = graphs.WindmillGraph(k, n)
W.chromatic_number() == k
```

sage.graphs.generators.families.chang_graphs()

Return the three Chang graphs.

Three of the four strongly regular graphs of parameters $(28, 12, 6, 4)$ are called the Chang graphs. The fourth is the line graph of $K_8$. For more information about the Chang graphs, see the Wikipedia article Chang_graphs or https://www.win.tue.nl/~aeb/graphs/Chang.html.

EXAMPLES: check that we get 4 non-isomorphic s.r.g.’s with the same parameters:

```sage
chang_graphs = graphs.chang_graphs()
K8 = graphs.CompleteGraph(8)
T8 = K8.line_graph()
four_srg = chang_graphs + [T8]
for g in four_srg:
 print(g.is_strongly_regular(parameters=True))
```

```sage
from itertools import combinations
for g1, g2 in combinations(four_srg, 2):
 assert not g1.is_isomorphic(g2)
```

Construct the Chang graphs by Seidel switching:
Graph Theory, Release 10.4

```python
sage: c3c5 = graphs.CycleGraph(3).disjoint_union(graphs.CycleGraph(5))
sage: c8 = graphs.CycleGraph(8)
sage: s = [K8.subgraph_search(c8).edges(sort=False),
 # \needs sage.modules
 : [(0, 1, None), (2, 3, None), (4, 5, None), (6, 7, None)],
 : K8.subgraph_search(c3c5).edges(sort=False)]
sage: [T8.seidel_switching(x, inplace=False).is_isomorphic(G)
 # \needs sage.modules
 : for x, G in zip(s, chang_graphs)]
[True, True, True]
```

```python
>>> from sage.all import *
>>> c3c5 = graphs.CycleGraph(Integer(3)).disjoint_union(graphs.CycleGraph(Integer(5)))
>>> c8 = graphs.CycleGraph(Integer(8))
>>> s = [K8.subgraph_search(c8).edges(sort=False),
 # \needs sage.modules
 : [(Integer(0), Integer(1), None), (Integer(2), Integer(3), None), (Integer(4),
 : Integer(5), None), (Integer(6), Integer(7), None)],
 : K8.subgraph_search(c3c5).edges(sort=False)]
>>> [T8.seidel_switching(x, inplace=False).is_isomorphic(G)
 # \needs sage.modules
 : for x, G in zip(s, chang_graphs)]
[True, True, True]
```

sage.graphs.generators.families.line_graph_forbidden_subgraphs()
Returns the 9 forbidden subgraphs of a line graph.

See the Wikipedia article Line_graph for more information.

The graphs are returned in the ordering given by the Wikipedia drawing, read from left to right and from top to bottom.

EXAMPLES:

```python
sage: graphs.line_graph_forbidden_subgraphs()
[Claw graph: Graph on 4 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 5 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 5 vertices]
```

```python
>>> from sage.all import *
>>> graphs.line_graph_forbidden_subgraphs()
[Claw graph: Graph on 4 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 5 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 5 vertices]
```
sage.graphs.generators.families.nauty_gentreeg(options='', debug=False)

Return a generator which creates non-isomorphic trees from nauty'sgentreeg program.

INPUT:

- options – string (default: '' ); a string passed to gentreeg as if it was run at a system command line. At a minimum, you must pass the number of vertices you desire. Sage expects the graphs to be in nauty's "sparse6" format, do not set an option to change this default or results will be unpredictable.

- debug – boolean (default: False ); if True the first line of gentreeg's output to standard error is captured and the first call to the generator's next () function will return this line as a string. A line leading with ">A" indicates a successful initiation of the program with some information on the arguments, while a line beginning with ">E" indicates an error with the input.

The possible options, obtained as output of gentreeg –help:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>the number of vertices. Must be in range 1..128</td>
</tr>
<tr>
<td>res/mod</td>
<td>only generate subset res out of subsets 0..mod-1</td>
</tr>
<tr>
<td>-D&lt;int&gt;</td>
<td>an upper bound for the maximum degree</td>
</tr>
<tr>
<td>-Z&lt;int&gt;:&lt;int&gt;</td>
<td>bounds on the diameter</td>
</tr>
<tr>
<td>-q</td>
<td>suppress auxiliary output</td>
</tr>
</tbody>
</table>

Options which cause gentreeg to use an output format different than the sparse6 format are not listed above (-p, -l, -u) as they will confuse the creation of a Sage graph. The res/mod option can be useful when using the output in a routine run several times in parallel.

OUTPUT:

A generator which will produce the graphs as Sage graphs. These will be simple graphs: no loops, no multiple edges, no directed edges.

See also:

trees() – another generator of trees

EXAMPLES:

The generator can be used to construct trees for testing, one at a time (usually inside a loop). Or it can be used to create an entire list all at once if there is sufficient memory to contain it:

```python
sage: gen = graphs.nauty_gentreeg("4")
sage: next(gen)
Graph on 4 vertices
sage: next(gen)
Graph on 4 vertices
sage: next(gen)
Traceback (most recent call last):
 ... StopIteration
```

```python
>>> from sage.all import *

>>> gen = graphs.nauty_gentreeg("4")

>>> next(gen)
Graph on 4 vertices

>>> next(gen)
Graph on 4 vertices

>>> next(gen)
Traceback (most recent call last):
 ... StopIteration
```
The number of trees on the first few vertex counts. This agrees with OEIS sequence A000055:

```
sage: [len(list(graphs.nauty_gentreeg(str(i)))) for i in range(1, 15)]
[1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159]
```

The debug switch can be used to examine `gentreeg`'s reaction to the input in the options string. We illustrate success. (A failure will be a string beginning with “>E”.) Passing the “-q” switch to `gentreeg` will suppress the indicator of a successful initiation, and so the first returned value might be an empty string if `debug` is `True`:

```
sage: gen = graphs.nauty_gentreeg("4", debug=True)
sage: print(next(gen))
> ...gentreeg ...
sage: gen = graphs.nauty_gentreeg("4 -q", debug=True)
sage: next(gen)
```

`sage.graphs.generators.families.petersen_family(generate=False)`

Returns the Petersen family.

The Petersen family is a collection of 7 graphs which are the forbidden minors of the linklessly embeddable graphs. For more information see the Wikipedia article Petersen_family.

**INPUT:**

- `generate` (boolean) – whether to generate the family from the \( \Delta - Y \) transformations. When set to `False` (default) a hardcoded version of the graphs (with a prettier layout) is returned.

**EXAMPLES:**

```
sage: graphs.petersen_family()
[Petersen graph: Graph on 10 vertices,
 Complete graph: Graph on 6 vertices,
 Multipartite Graph with set sizes [3, 3, 1]: Graph on 7 vertices,
 Graph on 8 vertices,
 Graph on 9 vertices,
 Graph on 7 vertices,
 Graph on 8 vertices]
```

```
>>> from sage.all import *
>>> graphs.petersen_family()
[Petersen graph: Graph on 10 vertices,
 Complete graph: Graph on 6 vertices,
 Multipartite Graph with set sizes [3, 3, 1]: Graph on 7 vertices,
 Graph on 8 vertices,
 (continues on next page)```
The two different inputs generate the same graphs:

```python
sage: F1 = graphs.petersen_family(generate=False)
sage: F2 = graphs.petersen_family(generate=True)  # needs sage.modules
sage: F1 = [g.canonical_label().graph6_string() for g in F1]  # needs sage.modules
sage: F2 = [g.canonical_label().graph6_string() for g in F2]  # needs sage.modules
sage: set(F1) == set(F2)  # needs sage.modules
True
```

```
>>> from sage.all import *
>>> F1 = graphs.petersen_family(generate=False)
>>> F2 = graphs.petersen_family(generate=True)  # needs sage.modules
>>> F1 = [g.canonical_label().graph6_string() for g in F1]  # needs sage.modules
>>> F2 = [g.canonical_label().graph6_string() for g in F2]  # needs sage.modules
>>> set(F1) == set(F2)  # needs sage.modules
True
```

`sage.graphs.generators.families.trees(vertices)`

Returns a generator of the distinct trees on a fixed number of vertices.

INPUT:

- `vertices` – the size of the trees created.

OUTPUT:

A generator which creates an exhaustive, duplicate-free listing of the connected free (unlabeled) trees with `vertices` number of vertices. A tree is a graph with no cycles.

ALGORITHM:

Uses an algorithm that generates each new tree in constant time. See the documentation for, and implementation of, the `sage.graphs.trees` module, including a citation.

EXAMPLES:

We create an iterator, then loop over its elements.

```python
sage: tree_iterator = graphs.trees(7)
sage: for T in tree_iterator:
    print(T.degree_sequence())

[2, 2, 2, 2, 1, 1]
[3, 2, 2, 1, 1, 1]
[3, 2, 2, 1, 1, 1]
[4, 2, 2, 1, 1, 1]
[3, 3, 2, 1, 1, 1]
[3, 3, 2, 1, 1, 1]
[4, 3, 1, 1, 1, 1]
[3, 2, 2, 2, 1, 1]
```
The number of trees on the first few vertex counts. This is sequence A000055 in Sloane's OEIS.

```python
sage: [len(list(graphs.trees(i))) for i in range(0, 15)]
[1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159]
```

2.9 Basic graphs

The methods defined here appear in `sage.graphs.graph_generators`.

`sage.graphs.generators.basic.BullGraph()`

Return a bull graph with 5 nodes.

A bull graph is named for its shape. It’s a triangle with horns. See the Wikipedia article Bull_graph for more information.

PLOTTING:

Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the bull graph is drawn as a triangle with the first node (0) on the bottom. The second and third nodes (1 and 2) complete the triangle. Node 3 is the horn connected to 1 and node 4 is the horn connected to node 2.

EXAMPLES:

Construct and show a bull graph:

```python
sage: g = graphs.BullGraph(); g
Bull graph: Graph on 5 vertices
sage: g.show() # long time
```

→`needs sage.plot`
The bull graph has 5 vertices and 5 edges. Its radius is 2, its diameter 3, and its girth 3. The bull graph is planar with chromatic number 3 and chromatic index also 3:

```
sage: g.order(); g.size()
5 5
sage: g.radius(); g.diameter(); g.girth()
2 3 3
sage: g.chromatic_number()
3
```

The bull graph has chromatic polynomial \(x(x - 2)(x - 1)^3\) and Tutte polynomial \(x^4 + x^3 + x^2y\). Its characteristic polynomial is \(x(x^2 - x - 3)(x^2 + x - 1)\), which follows from the definition of characteristic polynomials for graphs, i.e. \(\det(xI - A)\), where \(x\) is a variable, \(A\) the adjacency matrix of the graph, and \(I\) the identity matrix of the same dimensions as \(A\):

```
sage: # needs sage.libs.flint
sage: chrompoly = g.chromatic_polynomial()
sage: x = chrompoly.parent()('x')
sage: x * (x - 2) * (x - 1)^3 == chrompoly
True

sage: # needs sage.libs.flint sage.modules
sage: charpoly = g.characteristic_polynomial()
sage: M = g.adjacency_matrix(); M
[0 1 1 0 0]
[1 0 1 1 0]
[1 1 0 0 1]
[0 1 0 0 0]
[0 0 1 0 0]
sage: Id = identity_matrix(ZZ, M.nrows())
sage: D = x*Id - M
sage: D.determinant() == charpoly
True
sage: x * (x^2 - x - 3) * (x^2 + x - 1) == charpoly
True
```
sage.graphs.generators.basic.ButterflyGraph()

Return the butterfly graph.

Let C_3 be the cycle graph on 3 vertices. The butterfly or bowtie graph is obtained by joining two copies of C_3 at a common vertex, resulting in a graph that is isomorphic to the friendship graph F_2. See the Wikipedia article Butterfly_graph for more information.

See also:

• FriendshipGraph()

EXAMPLES:
The butterfly graph is a planar graph on 5 vertices and having 6 edges:
It has diameter 2, girth 3, and radius 1:

```python
sage: G.diameter()
2
sage: G.girth()
3
sage: G.radius()
1
```

The butterfly graph is Eulerian, with chromatic number 3:

```python
sage: G.is_eulerian()
True
sage: G.chromatic_number()
3
```

```python
sage: G.is_eulerian()
True
sage: G.chromatic_number()
3
```

`sage.graphs.generators.basic.CircularLadderGraph(n)`

Return a circular ladder graph with $2n$ nodes.

A Circular ladder graph is a ladder graph that is connected at the ends, i.e.: a ladder bent around so that top meets bottom. Thus it can be described as two parallel cycle graphs connected at each corresponding node pair.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the circular ladder graph is displayed as an inner and outer cycle pair, with the first n nodes drawn on the inner circle. The first (0) node is drawn at the top of the inner-circle, moving clockwise after that. The outer circle is drawn with the $(n+1)$-th node at the top, then counterclockwise as well. When $n == 2$, we rotate the outer circle by an angle of $\pi/8$ to ensure that all edges are visible (otherwise the 4 vertices of the graph would be placed on a single line).

EXAMPLES:

Construct and show a circular ladder graph with 26 nodes:

```python
sage: g = graphs.CircularLadderGraph(13)
sage: g.show()  # long time
˓→needs sage.plot
```
Create several circular ladder graphs in a Sage graphics array:

```python
sage: g = []
sage: j = []
sage: for i in range(9):
    ...:     k = graphs.CircularLadderGraph(i+3)
    ...:     g.append(k)

sage: for i in range(3):
    ...:     n = []
    ...:     for m in range(3):
    ...:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ...:     j.append(n)

sage: G = graphics_array(j)

sage: G.show()  # long time
```

sage.graphs.generators.basic.ClawGraph()

Return a claw graph.

A claw graph is named for its shape. It is actually a complete bipartite graph with \((n_1, n_2) = (1, 3)\).

PLOTTING: See `CompleteBipartiteGraph()`.

EXAMPLES:

Show a Claw graph:

```python
sage: (graphs.ClawGraph()).show()  # long time
```

Inspect a Claw graph:

```python
sage: G = graphs.ClawGraph()
sage: G
Claw graph: Graph on 4 vertices
```

```python
>>> from sage.all import *

>>> G = graphs.ClawGraph()

>>> G
Claw graph: Graph on 4 vertices
```

`sage.graphs.generators.basic.CompleteBipartiteGraph`
Return a Complete Bipartite Graph on \(p + q\) vertices.

A Complete Bipartite Graph is a graph with its vertices partitioned into two groups, \(V_1 = \{0, ..., p - 1\}\) and \(V_2 = \{p, ..., p + q - 1\}\). Each \(u \in V_1\) is connected to every \(v \in V_2\).

INPUT:

- \(p, q\) – number of vertices in each side
- `set_position` – boolean (default `True`); if set to `True`, we assign positions to the vertices so that the set of cardinality \(p\) is on the line \(y = 1\) and the set of cardinality \(q\) is on the line \(y = 0\).

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each complete bipartite graph will be displayed with the first \(p\) nodes on the top row (at \(y = 1\)) from left to right. The remaining \(q\) nodes appear at \(y = 0\), also from left to right. The shorter row (partition with fewer nodes) is stretched to the same length as the longer row, unless the shorter row has 1 node; in which case it is centered. The \(x\) values in the plot are in domain \([0, \max(p, q)]\).

In the Complete Bipartite graph, there is a visual difference in using the spring-layout algorithm vs. the position dictionary used in this constructor. The position dictionary flattens the graph and separates the partitioned nodes, making it clear which nodes an edge is connected to. The Complete Bipartite graph plotted with the spring-layout algorithm tends to center the nodes in \(p\) (see `spring_med` in examples below), thus overlapping its nodes and edges, making it typically hard to decipher.

Filling the position dictionary in advance adds \(O(n)\) to the constructor. Feel free to race the constructors below in the examples section. The much larger difference is the time added by the spring-layout algorithm when plotting. (Also shown in the example below). The spring model is typically described as \(O(n^3)\), as appears to be the case in the NetworkX source code.

EXAMPLES:

Two ways of constructing the complete bipartite graph, using different layout algorithms:

```python
sage: # needs networkx
sage: import networkx

sage: n = networkx.complete_bipartite_graph(389, 157)       # long time
sage: spring_big = Graph(n)                              # long time
sage: posdict_big = graphs.CompleteBipartiteGraph(389, 157) # long time

>>> from sage.all import *

>>> import networkx

>>> n = networkx.complete_bipartite_graph(Integer(389), Integer(157))  # long...

>>> spring_big = Graph(n)                   # long time
>>> posdict_big = graphs.CompleteBipartiteGraph(Integer(389), Integer(157)) # long time
```
Compare the plotting:

```
sage: n = networkx.complete_bipartite_graph(11, 17)  # needs networkx
sage: spring_med = Graph(n)  # needs networkx
sage: posdict_med = graphs.CompleteBipartiteGraph(11, 17)
```

```
>>> from sage.all import *

>>> n = networkx.complete_bipartite_graph(Integer(11), Integer(17))  # needs networkx
>>> spring_med = Graph(n)  # needs networkx
>>> posdict_med = graphs.CompleteBipartiteGraph(Integer(11), Integer(17))
```

Notice here how the spring-layout tends to center the nodes of n:

```
sage: spring_med.show()  # long time

sage: posdict_med.show()  # long time
```

```
>>> from sage.all import *

>>> spring_med.show()  # long time

>>> posdict_med.show()  # long time
```

View many complete bipartite graphs with a Sage Graphics Array, with this constructor (i.e., the position dictionary filled):

```
sage: g = []
sage: j = []
sage: for i in range(9):
...     k = graphs.CompleteBipartiteGraph(i+1,4)
...     g.append(k)

sage: for i in range(3):
...     n = []
...     for m in range(3):
...         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
...     j.append(n)

sage: G = graphics_array(j)

sage: G.show()  # long time
```

```
>>> from sage.all import *

>>> g = []

>>> j = []

>>> for i in range(Integer(9)):
...     k = graphs.CompleteBipartiteGraph(i+Integer(1),Integer(4))
...     g.append(k)

>>> for i in range(Integer(3)):
...     n = []
...     for m in range(Integer(3)):
...         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
...     j.append(n)

>>> G = graphics_array(j)

>>> G.show()  # long time
```

(continues on next page)
We compare to plotting with the spring-layout algorithm:

```
sage: # needs networkx sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
    ...:     spr = networkx.complete_bipartite_graph(i+1,4)
    ...:     k = Graph(spr)
    ...:     g.append(k)

sage: for i in range(3):
    ...:     n = []
    ...:     for m in range(3):
    ...:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ...:     j.append(n)
sage: G = graphics_array(j)
sage: G.show()  # long time
```

Issue #12155:

```
sage: graphs.CompleteBipartiteGraph(5,6).complement()
complement(Complete bipartite graph of order 5+6): Graph on 11 vertices
```

Sage graphs generators basic.\texttt{CompleteGraph}(n)

Return a complete graph on \(n \) nodes.

A Complete Graph is a graph in which all nodes are connected to all other nodes.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By con-
vention, each complete graph will be displayed with the first (0) node at the top, with the rest following in a counterclockwise manner.

In the complete graph, there is a big difference visually in using the spring-layout algorithm vs. the position dictionary used in this constructor. The position dictionary flattens the graph, making it clear which nodes an edge is connected to. But the complete graph offers a good example of how the spring-layout works. The edges push outward (everything is connected), causing the graph to appear as a 3-dimensional pointy ball. (See examples below).

EXAMPLES:

We view many Complete graphs with a Sage Graphics Array, first with this constructor (i.e., the position dictionary filled):

```sage
# needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
    ... k = graphs.CompleteGraph(i+3)
    ... g.append(k)
sage: for i in range(3):
    ... n = []
    ... for m in range(3):
    ...     n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ... j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time
```

We compare to plotting with the spring-layout algorithm:

```sage
# needs networkx sage.plot
sage: import networkx
sage: g = []
sage: j = []
sage: for i in range(9):
    ... spr = networkx.complete_graph(i+3)
    ... k = Graph(spr)
    ... g.append(k)
sage: for i in range(3):
    ... n = []
    ... for m in range(3):
    ...     n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ... j.append(n)
sage: G = graphics_array(j)
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
j.append(n)
sage: G = graphics_array(j)
sage: G.show()  # long time
```

```python
>>> from sage.all import *
>>> # needs networkx sage.plot
>>> import networkx
>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
...    spr = networkx.complete_graph(i+Integer(3))
...    k = Graph(spr)
...    g.append(k)
>>> for i in range(Integer(3)):
...    n = []
...    for m in range(Integer(3)):
...        n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
...    j.append(n)
>>> G = graphics_array(j)
>>> G.show()  # long time
```

Compare the constructors (results will vary):

```python
sage: # needs networkx
sage: import networkx
sage: t = cputime()
sage: n = networkx.complete_graph(Integer(389)); spring389 = Graph(n)
sage: cputime(t)  # random
0.59203700000000126
sage: t = cputime()
sage: posdict389 = graphs.CompleteGraph(Integer(389))
sage: cputime(t)  # random
0.6680419999999998
```

```python
>>> from sage.all import *
>>> # needs networkx
>>> import networkx
>>> t = cputime()
>>> n = networkx.complete_graph(Integer(389)); spring389 = Graph(n)
>>> cputime(t)  # random
0.59203700000000126
>>> t = cputime()
>>> posdict389 = graphs.CompleteGraph(Integer(389))
>>> cputime(t)  # random
0.6680419999999998
```

We compare plotting:

```python
sage: # needs networkx
sage: import networkx
sage: t = cputime()
sage: n = networkx.complete_graph(Integer(23))
sage: spring23 = Graph(n)
sage: posdict23 = graphs.CompleteGraph(Integer(23))
sage: spring23.show()  # long time
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

sage: posdict23.show() # long time
˓→needs sage.plot

>>> from sage.all import *
>>> # needs networkx
>>> import networkx
>>> n = networkx.complete_graph(Integer(23))
>>> spring23 = Graph(n)
>>> posdict23 = graphs.CompleteGraph(Integer(23))
>>> spring23.show() # long time
˓→needs sage.plot
>>> posdict23.show() # long time
˓→needs sage.plot

sage.graphs.generators.basic.CompleteMultipartiteGraph(L)

Return a complete multipartite graph.

INPUT:

• L – a list of integers; the respective sizes of the components

PLOTTING: Produce a layout of the vertices so that vertices in the same vertex set are adjacent and clearly separated from vertices in other vertex sets.

This is done by calculating the vertices of an r-gon then calculating the slope between adjacent vertices. We then ‘walk’ around the r-gon placing graph vertices in regular intervals between adjacent vertices of the r-gon.

Makes a nicely organized graph like in this picture: https://commons.wikimedia.org/wiki/File:Turan_13-4.svg

EXAMPLES:

A complete tripartite graph with sets of sizes 5, 6, 8:

sage: g = graphs.CompleteMultipartiteGraph([5, 6, 8]); g
Multiset Graph with set sizes [5, 6, 8]: Graph on 19 vertices

>>> from sage.all import *
>>> g = graphs.CompleteMultipartiteGraph([Integer(5), Integer(6), Integer(8)]); g
Multiset Graph with set sizes [5, 6, 8]: Graph on 19 vertices

It clearly has a chromatic number of 3:

sage: g.chromatic_number()
3

sage.graphs.generators.basic.CorrelationGraph(seqs, alpha, include_anticorrelation)

Return a correlation graph with a node per sequence in seqs.

Edges are added between nodes where the corresponding sequences have a correlation coefficient greater than alpha.

If include_anticorrelation is True, then edges are also added between nodes with correlation coefficient less than \(-\)alpha.

INPUT:
Graph Theory, Release 10.4

• seqs – list of sequences, that is a list of lists
• alpha – float; threshold on the correlation coefficient between two sequences for adding an edge
• include_anticorrelation – boolean; whether to add edges between nodes with correlation coefficient less than −alpha or not

EXAMPLES:

```python
sage: # needs numpy
sage: from sage.graphs.generators.basic import CorrelationGraph
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9999]]
CG1 = CorrelationGraph(data, 0.9, False)
CG2 = CorrelationGraph(data, 0.9, True)
CG3 = CorrelationGraph(data, 0.1, True)
CG1.edges(sort=False)
[(0, 0, None), (0, 1, None), (1, 1, None), (2, 2, None)]
CG2.edges(sort=False)
[(0, 0, None), (0, 1, None), (1, 1, None), (2, 2, None)]
CG3.edges(sort=False)
[(0, 0, None), (0, 1, None), (0, 2, None), (1, 1, None), (1, 2, None), (2, 2, None)]
```

sage.graphs.generators.basic.CycleGraph(n)

Return a cycle graph with n nodes.

A cycle graph is a basic structure which is also typically called an n-gon.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each cycle graph will be displayed with the first (0) node at the top, with the rest following in a counterclockwise manner.

The cycle graph is a good opportunity to compare efficiency of filling a position dictionary vs. using the spring-layout algorithm for plotting. Because the cycle graph is very symmetric, the resulting plots should be similar (in cases of small n).

Filling the position dictionary in advance adds O(n) to the constructor.

EXAMPLES:

Compare plotting using the predefined layout and networkx:

```python
sage: # needs networkx sage.plot
sage: import networkx
```

(continues on next page)
We next view many cycle graphs as a Sage graphics array. First we use the `CycleGraph` constructor, which fills in the position dictionary:

```python
sage: import networkx

sage: for i in range(9):
    ... k = graphs.CycleGraph(i+3)
    ... g.append(k)

sage: for i in range(3):
    ... n = []
    ... for m in range(3):
    ...     n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ... j.append(n)

sage: G = graphics_array(j)

sage: G.show()  # long time
```

Compare to plotting with the spring-layout algorithm:

```python
sage: for i in range(9):
    ... spr = networkx.cycle_graph(i+3)
    ... k = Graph(spr)

sage: G = graphics_array(j)

sage: G.show()  # long time
```
sage.graphs.generators.basic.DartGraph()

Return a dart graph with 5 nodes.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the dart graph is drawn as a dart, with the sharp part on the bottom.

EXAMPLES:

Construct and show a dart graph:

sage.graphs.generators.basic.DiamondGraph()

Return a diamond graph with 4 nodes.

A diamond graph is a square with one pair of diagonal nodes connected.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the diamond graph is drawn as a diamond, with the first node on top, second on the left, third on the right, and fourth on the bottom; with the second and third node connected.

EXAMPLES:

Construct and show a diamond graph:
sage: g = graphs.DiamondGraph()
sage: g.show() # long time
→needs sage.plot

>>> from sage.all import *
>>> g = graphs.DiamondGraph()
>>> g.show() # long time
→needs sage.plot

sage.graphs.generators.basic.Empty_graph

Return an empty graph (0 nodes and 0 edges).
This is useful for constructing graphs by adding edges and vertices individually or in a loop.

PLOTTING: When plotting, this graph will use the default spring-layout algorithm, unless a position dictionary is specified.

EXAMPLES:

Add one vertex to an empty graph and then show:

sage: empty1 = graphs.EmptyGraph()
sage: empty1.add_vertex()
0
sage: empty1.show() # long time
→needs sage.plot

>>> from sage.all import *
>>> empty1 = graphs.EmptyGraph()
>>> empty1.add_vertex()
0
>>> empty1.show() # long time
→needs sage.plot

Use for loops to build a graph from an empty graph:

sage: empty2 = graphs.EmptyGraph()
sage: for i in range(5):
.....: empty2.add_vertex() # add 5 nodes, labeled 0-4
0
1
2
3
4
sage: for i in range(3):
.....: empty2.add_edge(i, i+1) # add edges {0:1, 1:2, 2:3}
sage: for i in range(4):
.....: empty2.add_edge(4, i) # add edges {1:4, 2:4, 3:4}
sage: empty2.show() # long time
→needs sage.plot

>>> from sage.all import *
>>> empty2 = graphs.EmptyGraph()
>>> for i in range(Integer(5)):
....: empty2.add_vertex() # add 5 nodes, labeled 0-4
0
1

(continues on next page)
sage.graphs.generators.basic.ForkGraph()

Return a fork graph with 5 nodes.

A fork graph, sometimes also called chair graph, is a 5 vertex tree.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the fork graph is drawn as a fork, with the sharp part on the bottom.

EXAMPLES:

Construct and show a fork graph:

```
sage: g = graphs.ForkGraph()
sage: g.show() # long time
```

```
>>> from sage.all import *

>>> g = graphs.ForkGraph()
```

sage.graphs.generators.basic.GemGraph()

Return a gem graph with 5 nodes.

A gem graph is a fan graph (4,1).

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the gem graph is drawn as a gem, with the sharp part on the bottom.

EXAMPLES:

Construct and show a gem graph:

```
sage: g = graphs.GemGraph()
sage: g.show() # long time
```

```
>>> from sage.all import *

>>> g = graphs.GemGraph()
```

sage.graphs.generators.basic.Grid2dGraph (p, q, set_positions=True)

Return a 2-dimensional grid graph with \(p \times q \) nodes \((p \text{ rows and } q \text{ columns})\).

A 2d grid graph resembles a 2 dimensional grid. All inner nodes are connected to their 4 neighbors. Outer (non-corner) nodes are connected to their 3 neighbors. Corner nodes are connected to their 2 neighbors.

INPUT:
• p and q – two positive integers
• set_positions – boolean (default: True): whether to set the position of the nodes

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, nodes are labelled in (row, column) pairs with (0, 0) in the top left corner. Edges will always be horizontal and vertical - another advantage of filling the position dictionary.

EXAMPLES:
Construct and show a grid 2d graph Rows = 5, Columns = 7:

```
sage: g = graphs.Grid2dGraph(5,7)
sage: g.show()                      # long time #...
                                 →needs sage.plot
```

```
>>> from sage.all import *
>>> g = graphs.Grid2dGraph(Integer(5),Integer(7))
>>> g.show()                        # long time #...
                                 →needs sage.plot
```

`sage.graphs.generators.basic.GridGraph(dim_list)`

Return an n-dimensional grid graph.

INPUT:

• `dim_list` – a list of integers representing the number of nodes to extend in each dimension

PLOTTING: When plotting, this graph will use the default spring-layout algorithm, unless a position dictionary is specified.

EXAMPLES:

```
sage: G = graphs.GridGraph([2,3,4])
sage: G.show()                      # long time #...
                                 →needs sage.plot
```

```
>>> from sage.all import *
>>> G = graphs.GridGraph([Integer(2),Integer(3),Integer(4)])
>>> G.show()                        # long time #...
                                 →needs sage.plot
```

```
sage: C = graphs.CubeGraph(4)
sage: G = graphs.GridGraph([2,2,2,2])
sage: C.show()                      # long time #...
                                 →needs sage.plot
sage: G.show()                      # long time #...
                                 →needs sage.plot
```

```
>>> from sage.all import *
>>> C = graphs.CubeGraph(Integer(4))
>>> G = graphs.GridGraph([Integer(2),Integer(2),Integer(2),Integer(2)])
>>> C.show()                      # long time #...
                                 →needs sage.plot
>>> G.show()                      # long time #...
                                 →needs sage.plot
```
sage.graphs.generators.basic.HouseGraph()

Return a house graph with 5 nodes.

A house graph is named for its shape. It is a triangle (roof) over a square (walls).

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the house graph is drawn with the first node in the lower-left corner of the house, the second in the lower-right corner of the house. The third node is in the upper-left corner connecting the roof to the wall, and the fourth is in the upper-right corner connecting the roof to the wall. The fifth node is the top of the roof, connected only to the third and fourth.

EXAMPLES:

Construct and show a house graph:

```python
sage: g = graphs.HouseGraph()
sage: g.show()  # long time
```

```python
>>> from sage.all import *
>>> g = graphs.HouseGraph()
>>> g.show()  # long time
```

sage.graphs.generators.basic.HouseXGraph()

Return a house X graph with 5 nodes.

A house X graph is a house graph with two additional edges. The upper-right corner is connected to the lower-left. And the upper-left corner is connected to the lower-right.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the house X graph is drawn with the first node in the lower-left corner of the house, the second in the lower-right corner of the house. The third node is in the upper-left corner connecting the roof to the wall, and the fourth is in the upper-right corner connecting the roof to the wall. The fifth node is the top of the roof, connected only to the third and fourth.

EXAMPLES:

Construct and show a house X graph:

```python
sage: g = graphs.HouseXGraph()
sage: g.show()  # long time
```

```python
>>> from sage.all import *
>>> g = graphs.HouseXGraph()
>>> g.show()  # long time
```

sage.graphs.generators.basic.LadderGraph(n)

Return a ladder graph with $2 \times n$ nodes.

A ladder graph is a basic structure that is typically displayed as a ladder, i.e.: two parallel path graphs connected at each corresponding node pair.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each ladder graph will be displayed horizontally, with the first n nodes displayed left to right on the top horizontal line.

EXAMPLES:
Construct and show a ladder graph with 14 nodes:

```python
sage: g = graphs.LadderGraph(7)
sage: g.show()  # long time
˓→needs sage.plot
```

```python
>>> from sage.all import *
>>> g = graphs.LadderGraph(Integer(7))
>>> g.show()  # long time
˓→needs sage.plot
```

Create several ladder graphs in a Sage graphics array:

```python
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
...:     k = graphs.LadderGraph(i+2)
...:     g.append(k)
sage: for i in range(3):
...:     n = []
...:     for m in range(3):
...:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
...:     j.append(n)
sage: G = graphics_array(j)
sage: G.show()  # long time
```

```python
>>> from sage.all import *
>>> # needs sage.plot
>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
...     k = graphs.LadderGraph(i+Integer(2))
...     g.append(k)
>>> for i in range(Integer(3)):
...     n = []
...     for m in range(Integer(3)):
...         n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
...     j.append(n)
>>> G = graphics_array(j)
>>> G.show()  # long time
```

`sage.graphs.generators.basic.MoebiusLadderGraph(n)`

Return a Möbius ladder graph with $2n$ nodes

A Möbius ladder graph of order $2n$ is a ladder graph of the same order that is connected at the ends with a single twist, i.e., a ladder graph bent around so that top meets bottom with a single twist. Alternatively, it can be described as a single cycle graph (of order $2n$) with the addition of edges (called rungs) joining the antipodal pairs of nodes. Also, note that the Möbius ladder graph `graphs.MoebiusLadderGraph(n)` is precisely the same graph as the circulant graph `graphs.CirculantGraph(2 * n, [1, n])`.

PLOTTING:

Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each Möbius ladder graph will be displayed with the first (0) node at the top, with the rest following in a counterclockwise manner.

INPUT:
• n – a non negative integer; number of nodes is 2n

OUTPUT:

• G – a Möbius ladder graph of order 2n; note that a ValueError is returned if n < 0

EXAMPLES:

Construct and show a Möbius ladder graph with 26 nodes:

```sage
sage: g = graphs.MoebiusLadderGraph(13)
sage: g.show() # long time

>>> from sage.all import *

>>> g = graphs.MoebiusLadderGraph(Integer(13))
>>> g.show() # long time
```

Create several Möbius ladder graphs in a Sage graphics array:

```sage
sage: # needs sage.plots
sage: g = []
sage: j = []
sage: for i in range(9):
    ...:
    k = graphs.MoebiusLadderGraph(i+3)
    ...
    g.append(k)
sage: for i in range(3):
    ...
    n = []
    ...
    for m in range(3):
        ...
        n.append(g[3*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
    ...
    j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time
```

REFERENCES:

• Wikipedia article Möbius ladder

See also:

LadderGraph(), CircularLadderGraph(), CirculantGraph()

AUTHORS:
sage.graphs.generators.basic.PathGraph \((n, \text{pos}=\text{None})\)

Return a path graph with \(n\) nodes.

A path graph is a graph where all inner nodes are connected to their two neighbors and the two end-nodes are connected to their one inner neighbors (i.e.: a cycle graph without the first and last node connected).

INPUT:

- \(n\) – number of nodes of the path graph
- \(\text{pos}\) – string (default: None); indicates the embedding to use between ‘circle’, ‘line’ or the default algorithm.

 See the plotting section below for more detail.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the graph may be drawn in one of two ways: The ‘line’ argument will draw the graph in a horizontal line (left to right) if there are less than 11 nodes. Otherwise the ‘line’ argument will append horizontal lines of length 10 nodes below, alternating left to right and right to left. The ‘circle’ argument will cause the graph to be drawn in a cycle-shape, with the first node at the top and then about the circle in a clockwise manner. By default (without an appropriate string argument) the graph will be drawn as a ‘circle’ if \(10 < n < 41\) and as a ‘line’ for all other \(n\).

EXAMPLES: Show default drawing by size: ‘line’: \(n \leq 10\)

```python
sage: p = graphs.PathGraph(10)
sage: p.show() # long time

>>> from sage.all import *
>>> p = graphs.PathGraph(Integer(10))
>>> p.show() # long time

'circle': \(10 < n < 41\)

```python

```python
sage: q = graphs.PathGraph(25)
sage: q.show() # long time

>>> from sage.all import *
>>> q = graphs.PathGraph(Integer(25))
>>> q.show() # long time

'line': \(n \geq 41\)

```python

```python
sage: r = graphs.PathGraph(55)
sage: r.show() # long time

>>> from sage.all import *
>>> r = graphs.PathGraph(Integer(55))
>>> r.show() # long time

```

Override the default drawing:
sage: s = graphs.PathGraph(5, 'circle')
sage: s.show() # long time
needs sage.plot

>>> from sage.all import *
>>> s = graphs.PathGraph(Integer(5), 'circle')
>>> s.show() # long time
needs sage.plot

sage.graphs.generators.basic.StarGraph(n)

Return a star graph with \(n + 1 \) nodes.

A Star graph is a basic structure where one node is connected to all other nodes.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, each star graph will be displayed with the first (0) node in the center, the second node (1) at the top, with the rest following in a counterclockwise manner. (0) is the node connected to all other nodes.

The star graph is a good opportunity to compare efficiency of filling a position dictionary vs. using the spring-layout algorithm for plotting. As far as display, the spring-layout should push all other nodes away from the (0) node, and thus look very similar to this constructor's positioning.

EXAMPLES:

```python
sage: import networkx

>>> from sage.all import *
>>> import networkx

Compare the plots:

sage: # needs networkx sage.plot
sage: n = networkx.star_graph(23)
sage: spring23 = Graph(n)
sage: posdict23 = graphs.StarGraph(23)
sage: spring23.show()  # long time
sage: posdict23.show()  # long time

>>> from sage.all import *
>>> # needs networkx sage.plot
>>> n = networkx.star_graph(Integer(23))
>>> spring23 = Graph(n)
>>> posdict23 = graphs.StarGraph(Integer(23))
>>> spring23.show()  # long time
>>> posdict23.show()  # long time
```

View many star graphs as a Sage Graphics Array

With this constructor (i.e., the position dictionary filled)

```python
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
....:   k = graphs.StarGraph(i+3)
```

(continues on next page)
sage: for i in range(3):
....: n = []
....: for m in range(3):
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....: j.append(n)

sage: G = graphics_array(j)
sage: G.show() # long time

Compared to plotting with the spring-layout algorithm

sage: # needs networkx sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
....: spr = networkx.star_graph(i+3)
....: k = Graph(spr)
....: g.append(k)
sage: for i in range(3):
....: n = []
....: for m in range(3):
....: n.append(g[3*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
....: j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time

(continues on next page)
sage.graphs.generators.basic.Toroidal6RegularGrid2dGraph\(p, q\)

Return a toroidal 6-regular grid.

The toroidal 6-regular grid is a 6-regular graph on \(p \times q\) vertices and its elements have coordinates \((i, j)\) for \(i \in \{0\ldots p-1\}\) and \(j \in \{0\ldots q-1\}\).

Its edges are those of the \texttt{ToroidalGrid2dGraph()}, to which are added the edges between \((i, j)\) and \(((i + 1)\%p, (j + 1)\%q)\).

\textbf{INPUT:}

\begin{itemize}
 \item \(p, q\) – integers
\end{itemize}

\textbf{EXAMPLES:}

The toroidal 6-regular grid on 25 elements:

```python
sage: g = graphs.Toroidal6RegularGrid2dGraph(5,5)
sage: g.is_regular(k=6) True
sage: g.is_vertex_transitive() #... → needs sage.groups True
sage: g.line_graph().is_vertex_transitive() #... → needs sage.groups True
sage: g.automorphism_group().cardinality() #... → needs sage.groups 300
sage: g.is_hamiltonian() #... → needs sage.numerical.mip True
```

```python
>>> from sage.all import *
>>> g = graphs.Toroidal6RegularGrid2dGraph(Integer(5),Integer(5))
>>> g.is_regular(k=Integer(6)) True
>>> g.is_vertex_transitive() #... → needs sage.groups True
>>> g.line_graph().is_vertex_transitive() #... → needs sage.groups True
>>> g.automorphism_group().cardinality() #... → needs sage.groups 300
>>> g.is_hamiltonian() #... → needs sage.numerical.mip True
```

sage.graphs.generators.basic.ToroidalGrid2dGraph\(p, q\)

Return a toroidal 2-dimensional grid graph with \(p \times q\) nodes \((p\text{ rows and } q\text{ columns})\).

The toroidal 2-dimensional grid with parameters \(p, q\) is the 2-dimensional grid graph with identical parameters to which are added the edges \(((i, 0), (i, q-1))\) and \(((0, i), (p-1, i))\).
EXAMPLES:

The toroidal 2-dimensional grid is a regular graph, while the usual 2-dimensional grid is not

```
sage: tgrid = graphs.ToroidalGrid2dGraph(8,9)
sage: print(tgrid)
Toroidal 2D Grid Graph with parameters 8,9
sage: grid = graphs.Grid2dGraph(8,9)
sage: grid.is_regular()
False
sage: tgrid.is_regular()
True
```

```>>> from sage.all import *
>>> tgrid = graphs.ToroidalGrid2dGraph(Integer(8),Integer(9))
>>> print(tgrid)
Toroidal 2D Grid Graph with parameters 8,9
>>> grid = graphs.Grid2dGraph(Integer(8),Integer(9))
>>> grid.is_regular()
False
>>> tgrid.is_regular()
True
```

2.10 Chessboard graphs

The methods defined here appear in `sage.graphs.graph_generators`.

- `BishopGraph`
- `KingGraph`
- `KnightGraph`
- `QueenGraph`
- `RookGraph`

AUTHORS:

- David Coudert (2012)

`sage.graphs.generators.chessboard.BishopGraph(dim_list, radius=None, relabel=False)`

Return the \(d \)-dimensional Bishop Graph with prescribed dimensions.

The \(d \)-dimensional Bishop Graph with \(d \geq 2 \) has for vertex set the cells of a \(d \)-dimensional grid with prescribed dimensions, and each edge corresponds to a legal move by a bishop.

The Bishop Graph is not connected.

INPUT:

- `dim_list` – iterable (list, set, dict); provides the dimensions \(n_1, n_2, \ldots, n_d \), with \(n_i \geq 1 \), of the chessboard
- `radius` – integer (default: None); by setting the radius to a positive integer, one may decrease the power of the bishop to at most \(\text{radius} \) steps.
- `relabel` – boolean (default: False); indicates whether the vertices must be relabeled as integers
EXAMPLES:

The (n,m)-Bishop Graph is not connected:

```
sage: G = graphs.BishopGraph( [3, 4] )
sage: G.is_connected()
False
```

```
>>> from sage.all import *
>>> G = graphs.BishopGraph( [Integer(3), Integer(4)] )
>>> G.is_connected()
False
```

The Bishop Graph can be obtained from Knight Graphs:

```
sage: for d in range(3,12):   # long time
....:     H = Graph()
....:     for r in range(1,d+1):
....:         B = graphs.BishopGraph([d,d],radius=r)
....:         H.add_edges( graphs.KnightGraph([d,d],one=r,two=r).edges(sort=False) )
....:         if not B.is_isomorphic(H):
....:             print("that's not good!")
```

```
>>> from sage.all import *
>>> for d in range(Integer(3),Integer(12)):  # long time
...     H = Graph()
...     for r in range(Integer(1),d+Integer(1)):
...         B = graphs.BishopGraph([d,d],radius=Integer(r))
...         H.add_edges( graphs.KnightGraph([d,d],one=r,two=r).edges(sort=False) )
...         if not B.is_isomorphic(H):
...             print("that's not good!")
```

```
sage.graphs.generators.chessboard.ChessboardGraphGenerator(dim_list, rook=True,
rook_radius=None, bishop=True,
bishop_radius=None, knight=True, knight_x=1,
knight_y=2, relabel=False)
```

Return a Graph built on a d-dimensional chessboard with prescribed dimensions and interconnections.

This function allows to generate many kinds of graphs corresponding to legal movements on a d-dimensional chessboard: Queen Graph, King Graph, Knight Graphs, Bishop Graph, and many generalizations. It also allows to avoid redundant code.

INPUT:

- `dim_list` – iterable (list, set, dict); provides the dimensions \(n_1, n_2, \ldots, n_d\), with \(n_i \geq 1\), of the chessboard
- `rook` – boolean (default: True); indicates whether the chess piece is able to move as a rook, that is at any distance along a dimension
- `rook_radius` – integer (default: None); restriction on the rook-like movements to distance at most `rook_radius`
- `bishop` – boolean (default: True); indicates whether the chess piece is able to move like a bishop, that is along diagonals
- `bishop_radius` – integer (default: None); restriction on the bishop-like movements to distance at most `bishop_radius`
• knight – boolean (default: True); indicating whether the chess piece is able to move like a knight
• knight_x – integer (default: 1); indicates the number on steps the chess piece moves in one dimension when moving like a knight
• knight_y – integer (default: 2); indicates the number on steps the chess piece moves in the second dimension when moving like a knight
• relabel – boolean (default: False); indicates whether the vertices must be relabeled as integers

OUTPUT:
• A Graph build on a d-dimensional chessboard with prescribed dimensions, and with edges according given parameters.
• A string encoding the dimensions. This is mainly useful for providing names to graphs.

EXAMPLES:
A $(2, 2)$-King Graph is isomorphic to the complete graph on 4 vertices:

```python
sage: G, _ = graphs.ChessboardGraphGenerator( [2, 2] )
sage: G.is_isomorphic( graphs.CompleteGraph(4) )
True
```

A Rook’s Graph in 2 dimensions is isomorphic to the Cartesian product of 2 complete graphs:

```python
sage: G, _ = graphs.ChessboardGraphGenerator([3, 4], rook=True, rook_radius=None,
                                          bishop=False, knight=False)
sage: H = (graphs.CompleteGraph(3)).cartesian_product(graphs.CompleteGraph(4))
sage: G.is_isomorphic(H)
True
```

```
sage.graphs.generators.chessboard.KingGraph(dim_list, radius=None, relabel=False)
```

Return the d-dimensional King Graph with prescribed dimensions.

The 2-dimensional King Graph of parameters n and m is a graph with nm vertices in which each vertex represents a square in an $n \times m$ chessboard, and each edge corresponds to a legal move by a king.

The d-dimensional King Graph with $d \geq 2$ has for vertex set the cells of a d-dimensional grid with prescribed dimensions, and each edge corresponds to a legal move by a king in either one or two dimensions.

All 2-dimensional King Graphs are Hamiltonian, biconnected, and have chromatic number 4 as soon as both dimensions are larger or equal to 2.

INPUT:

• dim_list – iterable (list, set, dict); provides the dimensions n_1, n_2, \ldots, n_d, with $n_i \geq 1$, of the chessboard
• **radius** – integer (default: None); by setting the radius to a positive integer, one may increase the power of the king to at least \(r \) steps. When the radius equals the higher size of the dimensions, the resulting graph is a Queen Graph.

• **relabel** – boolean (default: False); indicates whether the vertices must be relabeled as integers

EXAMPLES:

The \((2, 2)\)-King Graph is isomorphic to the complete graph on 4 vertices:

```python
sage: G = graphs.QueenGraph([2, 2])
sage: G.is_isomorphic(graphs.CompleteGraph(4))
True
```

```python
>>> from sage.all import *
>>> G = graphs.QueenGraph([Integer(2), Integer(2)])
>>> G.is_isomorphic(graphs.CompleteGraph(Integer(4)))
True
```

The King Graph with large enough radius is isomorphic to a Queen Graph:

```python
sage: G = graphs.KingGraph([5, 4], radius=5)
sage: H = graphs.QueenGraph([4, 5])
sage: G.is_isomorphic(H)
True
```

```python
>>> from sage.all import *
>>> G = graphs.KingGraph([Integer(5), Integer(4)], radius=Integer(5))
>>> H = graphs.QueenGraph([Integer(4), Integer(5)])
>>> G.is_isomorphic(H)
True
```

Also True in higher dimensions:

```python
sage: G = graphs.KingGraph([2, 5, 4], radius=5)
sage: H = graphs.QueenGraph([4, 5, 2])
sage: G.is_isomorphic(H)
True
```

```python
>>> from sage.all import *
>>> G = graphs.KingGraph([Integer(2), Integer(5), Integer(4)], radius=Integer(5))
>>> H = graphs.QueenGraph([Integer(4), Integer(5), Integer(2)])
>>> G.is_isomorphic(H)
True
```

`sage.graphs.generators.chessboard.KnightGraph ` \((\text{dim} _\text{list}, \text{one}=1, \text{two}=2, \text{relabel}=False)\)`

Return the d-dimensional Knight Graph with prescribed dimensions.

The 2-dimensional Knight Graph of parameters \(n \) and \(m \) is a graph with \(nm \) vertices in which each vertex represents a square in an \(n \times m \) chessboard, and each edge corresponds to a legal move by a knight.

The d-dimensional Knight Graph with \(d \geq 2 \) has for vertex set the cells of a d-dimensional grid with prescribed dimensions, and each edge corresponds to a legal move by a knight in any pairs of dimensions.

The \((n, n)\)-Knight Graph is Hamiltonian for even \(n \geq 4 \).

INPUT:

- **dim_list** – iterable (list, set, dict); provides the dimensions \(n_1, n_2, \ldots, n_d \), with \(n_i \geq 1 \), of the chessboard

2.10. Chessboard graphs
Graph Theory, Release 10.4

• one–integer (default: 1); indicates the number of steps in the first dimension
• two–integer (default: 2); indicates the number of steps in the second dimension
• relabel–boolean (default: False); indicates whether the vertices must be relabeled as integers

EXAMPLES:
The (3, 3)-Knight Graph has an isolated vertex:

```
sage: G = graphs.KnightGraph( [3, 3] )
sage: G.degree( (1,1) )
0
```

The (3, 3)-Knight Graph minus vertex (1,1) is a cycle of order 8:

```
sage: G = graphs.KnightGraph( [3, 3] )
sage: G.delete_vertex( (1,1) )
sage: G.is_isomorphic( graphs.CycleGraph(8) )
True
```

The (6, 6)-Knight Graph is Hamiltonian:

```
sage: G = graphs.KnightGraph( [6, 6] )
sage: G.is_hamiltonian()  # needs sage.numerical.mip
True
```

sage.graphs.generators.chessboard.QueenGraph(dim_list, radius=None, relabel=False)

Return the d-dimensional Queen Graph with prescribed dimensions.

The 2-dimensional Queen Graph of parameters n and m is a graph with nm vertices in which each vertex represents a square in an $n \times m$ chessboard, and each edge corresponds to a legal move by a queen.

The d-dimensional Queen Graph with $d \geq 2$ has for vertex set the cells of a d-dimensional grid with prescribed dimensions, and each edge corresponds to a legal move by a queen in either one or two dimensions.

All 2-dimensional Queen Graphs are Hamiltonian and biconnected. The chromatic number of a (n, n)-Queen Graph is at least n, and it is exactly n when $n \equiv 1, 5 \mod 6$.

INPUT:

• dim_list–iterable (list, set, dict); provides the dimensions n_1, n_2, \ldots, n_d, with $n_i \geq 1$, of the chessboard
• radius – integer (default: None); by setting the radius to a positive integer, one may reduce the visibility of the queen to at most radius steps. When radius is 1, the resulting graph is a King Graph.

• relabel – boolean (default: False); indicates whether the vertices must be relabeled as integers

EXAMPILES:

The \((2, 2)\)-Queen Graph is isomorphic to the complete graph on 4 vertices:

```
sage: G = graphs.QueenGraph([2, 2])
sage: G.is_isomorphic(graphs.CompleteGraph(4))
True
```

```
>>> from sage.all import *
>>> G = graphs.QueenGraph([Integer(2), Integer(2)])
>>> G.is_isomorphic(graphs.CompleteGraph(Integer(4)))
True
```

The Queen Graph with radius 1 is isomorphic to the King Graph:

```
sage: G = graphs.QueenGraph([4, 5], radius=1)
sage: H = graphs.KingGraph([5, 4])
sage: G.is_isomorphic(H)
True
```

```
>>> from sage.all import *
>>> G = graphs.QueenGraph([Integer(4), Integer(5)], radius=Integer(1))
>>> H = graphs.KingGraph([Integer(5), Integer(4)])
>>> G.is_isomorphic(H)
True
```

Also True in higher dimensions:

```
sage: G = graphs.QueenGraph([3, 4, 5], radius=1)
sage: H = graphs.KingGraph([5, 3, 4])
sage: G.is_isomorphic(H)
True
```

```
>>> from sage.all import *
>>> G = graphs.QueenGraph([Integer(3), Integer(4), Integer(5)], radius=Integer(1))
>>> H = graphs.KingGraph([Integer(5), Integer(3), Integer(4)])
>>> G.is_isomorphic(H)
True
```

The Queen Graph can be obtained from the Rook Graph and the Bishop Graph:

```
sage: for d in range(3,12): # long time
.....:    for r in range(1,d+1):
.....:       G = graphs.QueenGraph([d,d],radius=r)
.....:       H = graphs.RookGraph([d,d],radius=r)
.....:       B = graphs.BishopGraph([d,d],radius=r)
.....:       H.add_edges(B.edges(sort=False))
.....:       if not G.is_isomorphic(H):
.....:          print("that's not good!")
```

```
>>> from sage.all import *
>>> for d in range(Integer(3),Integer(12)): # long time
    (continues on next page)
```
... for r in range(Integer(1),d+Integer(1)):
... G = graphs.QueenGraph([d,d],radius=r)
... H = graphs.RookGraph([d,d],radius=r)
... B = graphs.BishopGraph([d,d],radius=r)
... H.add_edges(B.edges(sort=False))
... if not G.is_isomorphic(H):
... print("that's not good!")

sage.graphs.generators.chessboard.RookGraph(dim_list, radius=None, relabel=False)

Return the \(d\)-dimensional Rook's Graph with prescribed dimensions.

The 2-dimensional Rook's Graph of parameters \(n\) and \(m\) is a graph with \(nm\) vertices in which each vertex represents a square in an \(n \times m\) chessboard, and each edge corresponds to a legal move by a rook.

The \(d\)-dimensional Rook Graph with \(d \geq 2\) has for vertex set the cells of a \(d\)-dimensional grid with prescribed dimensions, and each edge corresponds to a legal move by a rook in any of the dimensions.

The Rook's Graph for an \(n \times m\) chessboard may also be defined as the Cartesian product of two complete graphs \(K_n \square K_m\).

INPUT:

- `dim_list` – iterable (list, set, dict); provides the dimensions \(n_1, n_2, \ldots, n_d\), with \(n_i \geq 1\), of the chessboard
- `radius` – integer (default: None); by setting the radius to a positive integer, one may decrease the power of the rook to at most `radius` steps. When the radius is 1, the resulting graph is a \(d\)-dimensional grid.
- `relabel` – boolean (default: False); indicates whether the vertices must be relabeled as integers

EXAMPLES:

The \((n, m)\)-Rook's Graph is isomorphic to the Cartesian product of two complete graphs:

```python
sage: G = graphs.RookGraph( [3, 4] )
sage: H = ( graphs.CompleteGraph(3) ).cartesian_product( graphs.CompleteGraph(4) )
sage: G.is_isomorphic( H )
True
```

When the radius is 1, the Rook's Graph is a grid:

```python
sage: G = graphs.RookGraph( [3, 3, 4], radius=1 )
sage: H = graphs.GridGraph( [3, 4, 3] )
sage: G.is_isomorphic( H )
True
```

```python
>>> from sage.all import *
>>> G = graphs.RookGraph( [Integer(3), Integer(4)] )
>>> H = ( graphs.CompleteGraph(Integer(3)) ).cartesian_product( graphs.CompleteGraph(Integer(4)) )
>>> G.is_isomorphic( H )
True
```

```python
>>> from sage.all import *
>>> G = graphs.RookGraph( [Integer(3), Integer(3), Integer(4)], radius=Integer(1) )
>>> H = graphs.GridGraph( [Integer(3), Integer(4), Integer(3)] )
>>> G.is_isomorphic( H )
True
```
2.11 Intersection graphs

The methods defined here appear in `sage.graphs.graph_generators`.

`sage.graphs.generators.intersection.IntersectionGraph(S)`

Return the intersection graph of the family S

The intersection graph of a family S is a graph G with $V(G) = S$ such that two elements $s_1, s_2 \in S$ are adjacent in G if and only if $s_1 \cap s_2 \neq \emptyset$.

INPUT:
- S – a list of sets/tuples/iterables

Note: The elements of S must be finite, hashable, and the elements of any $s \in S$ must be hashable too.

EXAMPLES:

```python
sage: graphs.IntersectionGraph([(1,2,3),(3,4,5),(5,6,7)])
Intersection Graph: Graph on 3 vertices

>>> from sage.all import *
>>> graphs.IntersectionGraph([(Integer(1),Integer(2),Integer(3)),(Integer(3),
˓→Integer(4),Integer(5)),(Integer(5),Integer(6),Integer(7))])
Intersection Graph: Graph on 3 vertices
```

`sage.graphs.generators.intersection.IntervalGraph(intervals, points_ordered=False)`

Return the graph corresponding to the given intervals.

An interval graph is built from a list $(a_i, b_i)_{1 \leq i \leq n}$ of intervals: to each interval of the list is associated one vertex, two vertices being adjacent if the two corresponding (closed) intervals intersect.

INPUT:
- intervals – the list of pairs (a_i, b_i) defining the graph.
- points_ordered – states whether every interval (a_i, b_i) of intervals satisfies $a_i < b_i$. If satisfied then setting points_ordered to True will speed up the creation of the graph.

Note:
- The vertices are named 0, 1, 2, and so on. The intervals used to create the graph are saved with the graph and can be recovered using `get_vertex()` or `get_vertices()`.

EXAMPLES:

The following line creates the sequence of intervals $(i, i + 2)$ for i in $[0, \ldots, 8]$:

```python
sage: intervals = [(i,i+2) for i in range(9)]

>>> from sage.all import *
>>> intervals = [(i,i+Integer(2)) for i in range(Integer(9))]
```

In the corresponding graph
sage: g = graphs.IntervalGraph(intervals)
sage: g.get_vertex(3)
(3, 5)
sage: neigh = g.neighbors(3)
sage: for v in neigh: print(g.get_vertex(v))
(1, 3)
(2, 4)
(4, 6)
(5, 7)

>>> from sage.all import *
>>> g = graphs.IntervalGraph(intervals)
>>> g.get_vertex(Integer(3))
(3, 5)
>>> neigh = g.neighbors(Integer(3))
>>> for v in neigh: print(g.get_vertex(v))
(1, 3)
(2, 4)
(4, 6)
(5, 7)

The is_interval() method verifies that this graph is an interval graph.

sage: g.is_interval()
True

>>> from sage.all import *
>>> g.is_interval()
True

The intervals in the list need not be distinct.

sage: intervals = [(1,2), (1,2), (1,2), (2,3), (3,4)]
sage: g = graphs.IntervalGraph(intervals,True)
sage: g.clique_maximum()
[0, 1, 2, 3]
sage: g.get_vertices()
{0: (1, 2), 1: (1, 2), 2: (1, 2), 3: (2, 3), 4: (3, 4)}

>>> from sage.all import *
>>> intervals = [(Integer(1),Integer(2)), (Integer(1),Integer(2)), (Integer(1),
Integer(2)), (Integer(2),Integer(3)), (Integer(3),Integer(4))]
>>> g = graphs.IntervalGraph(intervals,True)
>>> g.clique_maximum()
[0, 1, 2, 3]
>>> g.get_vertices()
{0: (1, 2), 1: (1, 2), 2: (1, 2), 3: (2, 3), 4: (3, 4)}

The endpoints of the intervals are not ordered we get the same graph (except for the vertex labels).

sage: rev_intervals = [(2,1), (2,1), (2,1), (3,2), (4,3)]
sage: h = graphs.IntervalGraph(rev_intervals,False)
sage: h.get_vertices()
{0: (2, 1), 1: (2, 1), 2: (2, 1), 3: (3, 2), 4: (4, 3)}
sage: g.edges(sort=True) == h.edges(sort=True)
True

Chapter 2. Constructors and databases
```python
>>> from sage.all import *

>>> rev_intervals = [ (Integer(2),Integer(1)), (Integer(2),Integer(1)),
                   (Integer(2),Integer(1)), (Integer(3),Integer(2)), (Integer(4),Integer(3)) ]

>>> h = graphs.IntervalGraph(rev_intervals, False)

>>> h.get_vertices()
{0: (2, 1), 1: (2, 1), 2: (2, 1), 3: (3, 2), 4: (4, 3)}

>>> g.edges(sort=True) == h.edges(sort=True)
True
```

The intersection graph of the blocks of a transversal design with parameters \((k, n)\), or \(TD(k, n)\) for short, is a strongly regular graph (unless it is a complete graph). Its parameters \((v, k', \lambda, \mu)\) are determined by the parameters \(k, n\) via:

\[
v = n^2, \quad k' = (n - 1), \quad \lambda = (k - 1)(k - 2) + n - 2, \quad \mu = k(k - 1)
\]

As transversal designs and orthogonal arrays (OA for short) are equivalent objects, this graph can also be built from the blocks of an \(OA(k, n)\), two of them being adjacent if one of their coordinates match.

For more information on these graphs, see Andries Brouwer’s page on Orthogonal Array graphs.

Warning:

- Brouwer’s website uses the notation \(OA(n, k)\) instead of \(OA(k, n)\).
- For given parameters \(k\) and \(n\) there can be many \(OA(k, n)\): the graphs returned are not uniquely defined by their parameters (see the examples below).
- If the function is called only with the parameter \(k\) and \(n\) the results might be different with two versions of Sage, or even worse: some could not be available anymore.

See also:

`sage.combinat.designs.orthogonal_arrays`

INPUT:

- \(k, n\) – integers
- \(OA\) – An orthogonal array. If set to None (default) then \(orthogonal_array()\) is called to compute an \(OA(k, n)\).

EXAMPLES:

```python
sage: # needs sage.modules
sage: G = graphs.OrthogonalArrayBlockGraph(5,5); G  # needs sage.schemes
OA(5,5): Graph on 25 vertices
sage: G.is_strongly_regular(parameters=True)  # needs sage.schemes
(25, 20, 15, 20)

sage: G = graphs.OrthogonalArrayBlockGraph(4,10); G
OA(4,10): Graph on 100 vertices
sage: G.is_strongly_regular(parameters=True)
(100, 36, 14, 12)
```
Two graphs built from different orthogonal arrays are also different:

```python
sage: # needs sage.modules
sage: k = 4; n = 10
sage: OAa = designs.orthogonal_arrays.build(k,n)
sage: OAb = [(x+1) % n for x in R] for R in OAa]
sage: set(map(tuple,OAa)) == set(map(tuple,OAb))
False
sage: Ga = graphs.OrthogonalArrayBlockGraph(k, n, OAa)
sage: Gb = graphs.OrthogonalArrayBlockGraph(k, n, OAb)
sage: Ga == Gb
False
```

As OAb was obtained from OAa by a relabelling the two graphs are isomorphic:

```python
sage: Ga.is_isomorphic(Gb) #...
True
```

But there are examples of $OA(k, n)$ for which the resulting graphs are not isomorphic:

```python
sage: oaa0 = 
[0, 0, 1], [0, 1, 3], [0, 2, 0], [0, 3, 2],
[1, 0, 3], [1, 1, 1], [1, 2, 2], [1, 3, 0],
[2, 0, 0], [2, 1, 2], [2, 2, 1], [2, 3, 3],
[3, 0, 2], [3, 1, 0], [3, 2, 3], [3, 3, 1]
sage: oaa1 = 
[0, 0, 1], [0, 1, 0], [0, 2, 3], [0, 3, 2],
[1, 0, 3], [1, 1, 2], [1, 2, 0], [1, 3, 1],
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

....: [2, 0, 0], [2, 1, 1], [2, 2, 2], [2, 3, 3],
....: [3, 0, 2], [3, 1, 3], [3, 2, 1], [3, 3, 0]
sage: g0 = graphs.OrthogonalArrayBlockGraph(3, 4, oa0)
needs sage.modules
sage: g1 = graphs.OrthogonalArrayBlockGraph(3, 4, oa1)
needs sage.modules
sage: g0.is_isomorphic(g1)
needs sage.modules
False

>>> from sage.all import *

>>> oa0 = [(Integer(0), Integer(0), Integer(1), [Integer(0), Integer(1),
 Integer(3), Integer(2), Integer(0), Integer(1),
 Integer(2), Integer(1), Integer(3), Integer(2),
 Integer(0), Integer(1), Integer(3), Integer(2),
 Integer(1), Integer(3), Integer(2), Integer(0),
 Integer(1), Integer(3), Integer(2), Integer(1),
 Integer(0), Integer(1), Integer(3), Integer(2),
 Integer(1), Integer(3), Integer(2), Integer(0),
 Integer(1), Integer(3), Inte

sage: g0.spectrum()
needs sage.modules sage.rings.number_field
[9, 1, 1, 1, 1, 1, 1, 1, 1, 1, -3, -3, -3, -3, -3, -3]

(continues on next page)
Note that the graph g_0 is actually isomorphic to the affine polar graph $VO^+(4,2)$:

```python
sage: graphs.AffineOrthogonalPolarGraph(4,2,'+').is_isomorphic(g0) # needs sage.libs.gap sage.modules
True
```

Build a permutation graph from one permutation or from two lists.

Definition:

If σ is a permutation of $\{1, 2, \ldots, n\}$, then the permutation graph of σ is the graph on vertex set $\{1, 2, \ldots, n\}$ in which two vertices i and j satisfying $i < j$ are connected by an edge if and only if $\sigma^{-1}(i) > \sigma^{-1}(j)$. A visual way to construct this graph is as follows:

Take two horizontal lines in the euclidean plane, and mark points $1, \ldots, n$ from left to right on the first of them. On the second one, still from left to right, mark n points $\sigma(1), \sigma(2), \ldots, \sigma(n)$. Now, link by a segment the two points marked with 1, then link together the points marked with 2, and so on. The permutation graph of σ is the intersection graph of those segments: there exists a vertex in this graph for each element from 1 to n, two vertices i, j being adjacent if the segments i and j cross each other.

The set of edges of the permutation graph can thus be identified with the set of inversions of the inverse of the given permutation σ.

A more general notion of permutation graph can be defined as follows: If S is a set, and (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) are two lists of elements of S, each of which lists contains every element of S exactly once, then the permutation graph defined by these two lists is the graph on the vertex set S in which two vertices i and j are connected by an edge if and only if the order in which these vertices appear in the list (a_1, a_2, \ldots, a_n) is the opposite of the order in which they appear in the list (b_1, b_2, \ldots, b_n). When $(a_1, a_2, \ldots, a_n) = (1, 2, \ldots, n)$, this graph is the permutation graph of the permutation $(b_1, b_2, \ldots, b_n) \in S_n$. Notice that S does not have to be a set of integers here, but can be a set of strings, tuples, or anything else. We can still use the above visual description to construct the permutation graph, but now we have to mark points a_1, a_2, \ldots, a_n from left to right on the first horizontal line and points b_1, b_2, \ldots, b_n from left to right on the second horizontal line.

INPUT:

- `second_permutation` – the unique permutation/list defining the graph, or the second of the two (if the graph is to be built from two permutations/lists).
- `first_permutation` (optional) – the first of the two permutations/lists from which the graph should be built, if it is to be built from two permutations/lists.

When `first_permutation` is `None` (default), it is set to be equal to `sorted(second_permutation)`, which yields the expected ordering when the elements of the graph are integers.

See also:

- Recognition of Permutation graphs in the `comparability module`.

```python
sage.graphs.generators.intersection.PermutationGraph(second_permutation,
                                                   first_permutation=None)
```
• Drawings of permutation graphs as intersection graphs of segments is possible through the `show()` method of `Permutation` objects.

The correct argument to use in this case is `show(representation = "braid")`.

• `inversions()`

EXAMPLES:

```python
sage: p = Permutations(5).random_element()
sage: PG = graphs.PermutationGraph(p)
sage: edges = PG.edges(sort=True, labels=False)
sage: set(edges) == set(p.inverse().inversions())
True

sage: PG = graphs.PermutationGraph([3,4,5,1,2])
sage: sorted(PG.edges(sort=True))
[(1, 3, None),
 (1, 4, None),
 (1, 5, None),
 (2, 3, None),
 (2, 4, None),
 (2, 5, None)]

sage: PG = graphs.PermutationGraph([3,4,5,1,2], [1,4,2,5,3])

sage: sorted(PG.edges(sort=True))
[(1, 3, None),
 (1, 4, None),
 (1, 5, None),
 (2, 3, None),
 (2, 5, None),
 (3, 4, None),
 (3, 5, None)]

sage: PG = graphs.PermutationGraph([1,4,2,5,3], [3,4,5,1,2])

sage: sorted(PG.edges(sort=True))
[(1, 3, None),
 (1, 4, None),
 (1, 5, None),
 (2, 3, None),
 (2, 5, None),
 (3, 4, None),
 (3, 5, None)]

sage: PG = graphs.PermutationGraph(Permutation([1,3,2]), Permutation([1,2,3]))

sage: sorted(PG.edges(sort=True))
[(2, 3, None)]

sage: PG = graphs.PermutationGraph("graph", "phrag")

sage: sorted(PG.edges(sort=True))
[('a', 'g', None),
 ('a', 'h', None),
 ('a', 'p', None),
 ('g', 'h', None),
 ('g', 'p', None),

(continues on next page)
```
>>> from sage.all import *
>>> p = Permutations(Integer(5)).random_element()
>>> PG = graphs.PermutationGraph(p)
>>> edges = PG.edges(sort=True, labels=False)
>>> set(edges) == set(p.inverse().inversions())
True

>>> PG = graphs.PermutationGraph([Integer(3), Integer(4), Integer(5), Integer(1),
 Integer(2)])
>>> sorted(PG.edges(sort=True))
[(1, 3, None),
 (1, 4, None),
 (1, 5, None),
 (2, 3, None),
 (2, 4, None),
 (2, 5, None)]

>>> PG = graphs.PermutationGraph([Integer(3), Integer(4), Integer(5), Integer(1),
 Integer(2)], [Integer(1), Integer(4), Integer(2), Integer(5), Integer(3)])
>>> sorted(PG.edges(sort=True))
[(1, 3, None),
 (1, 4, None),
 (1, 5, None),
 (2, 3, None),
 (2, 5, None),
 (3, 4, None),
 (3, 5, None)]

>>> PG = graphs.PermutationGraph(Permutation([Integer(1), Integer(3), Integer(2)]),
 Permutation([Integer(1), Integer(2), Integer(3)]))
>>> sorted(PG.edges(sort=True))
[(2, 3, None)]

>>> graphs.PermutationGraph([]).edges(sort=True)
[]

>>> graphs.PermutationGraph([], []).edges(sort=True)
[]
Graph Theory, Release 10.4

sage.graphs.generators.intersection.ToleranceGraph(tolrep)

Return the graph generated by the tolerance representation tolrep.

The tolerance representation tolrep is described by the list \((l_0, r_0, t_0), (l_1, r_1, t_1), \ldots, (l_k, r_k, t_k)\) where \(I_i = (l_i, r_i)\) denotes a closed interval on the real line with \(l_i < r_i\) and \(t_i\) a strictly positive value, called tolerance. This representation generates the tolerance graph with the vertex set \(\{0, 1, \ldots, k\}\) and the edge set \\({(i, j) : |I_i \cap I_j| \geq \min\{t_i, t_j\}}\) where \(|I_i \cap I_j|\) denotes the length of the intersection of \(I_i\) and \(I_j\).

INPUT:

- tolrep – list of triples \((l_i, r_i, t_i)\) where \((l_i, r_i)\) denotes a closed interval on the real line and \(t_i\) a positive value.

Note: The vertices are named \(0, 1, \ldots, k\). The tolerance representation used to create the graph is saved with the graph and can be recovered using get_vertex() or get_vertices().

EXAMPLES:

The following code creates a tolerance representation tolrep, generates its tolerance graph \(g\), and applies some checks:

```
sage: tolrep = [(1,4,3),(1,2,1),(2,3,1),(0,3,3)]
sage: g = graphs.ToleranceGraph(tolrep)
sage: g.get_vertex(3)
(0, 3, 3)
sage: neigh = g.neighbors(3)
sage: for v in neigh: print(g.get_vertex(v))
(1, 2, 1)
(2, 3, 1)
sage: g.is_interval()
False
sage: g.is_weakly_chordal()
True
```

```
>>> from sage.all import *

>>> tolrep = [(Integer(1),Integer(4),Integer(3)),(Integer(1),Integer(2),Integer(1)),(Integer(2),Integer(3),Integer(1)),(Integer(0),Integer(3),Integer(3))]

>>> g = graphs.ToleranceGraph(tolrep)

>>> g.get_vertex(Integer(3))
(0, 3, 3)

>>> neigh = g.neighbors(Integer(3))

>>> for v in neigh: print(g.get_vertex(v))

(1, 2, 1)
(2, 3, 1)

>>> g.is_interval()
False

>>> g.is_weakly_chordal()
True
```
The intervals in the list need not be distinct

```
sage: tolrp2 = [(0,4,5),(1,2,1),(2,3,1),(0,4,5)]
sage: g2 = graphs.ToleranceGraph(tolrep2)
sage: g2.get_vertices()
{0: (0, 4, 5), 1: (1, 2, 1), 2: (2, 3, 1), 3: (0, 4, 5)}
sage: g2.is_isomorphic(g)
True
```

Real values are also allowed

```
sage: tolrp = [(0.1,3.3,4.4),(1.1,2.5,1.1),(1.4,4.4,3.3)]
sage: g = graphs.ToleranceGraph(tolrep)
sage: g.is_isomorphic(graphs.PathGraph(3))
True
```

2.12 1-skeletons of Platonic solids

The methods defined here appear in `sage.graphs.graph_generators`. `sage.graphs.generators.platonic_solids.DodecahedralGraph()`

Return a Dodecahedral graph (with 20 nodes)

The dodecahedral graph is cubic symmetric, so the spring-layout algorithm will be very effective for display. It is dual to the icosahedral graph.

PLOTTING: The Dodecahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, a argument will be added to select the desired layout.

EXAMPLES:

Construct and show a Dodecahedral graph:

```
sage: g = graphs.DodecahedralGraph()
sage: g.show()  # long time

needs sage.plot
```
Create several dodecahedral graphs in a Sage graphics array. They will be drawn differently due to the use of the spring-layout algorithm:

```python
sage: g = []
sage: j = []
sage: for i in range(9):
    k = graphs.DodecahedralGraph()
    g.append(k)

sage: for i in range(3):
    n = []
    for m in range(3):
        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    j.append(n)

sage: G = graphics_array(j)
sage: G.show()  # long time
```

```
from sage.all import *

g = graphs.DodecahedralGraph()
g.show()  # long time  # needs sage.plot
```

sage.graphs.generators.platonic_solids.HexahedralGraph()

Return a hexahedral graph (with 8 nodes).

A regular hexahedron is a 6-sided cube. The hexahedral graph corresponds to the connectivity of the vertices of the hexahedron. This graph is equivalent to a 3-cube.

PLOTTING: The Hexahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, an argument will be added to select the desired layout.

EXAMPLES:

Construct and show a Hexahedral graph:

```python
sage: g = graphs.HexahedralGraph()
sage: g.show()  # long time  # needs sage.plot
```
Create several hexahedral graphs in a Sage graphics array. They will be drawn differently due to the use of the spring-layout algorithm:

```python
sage: j = []
for i in range(9):
    k = graphs.HexahedralGraph()
    g.append(k)
for i in range(3):
    n = []
    for m in range(3):
        n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    j.append(n)
G = graphics_array(j)
G.show() # long time
```

`sage.graphs.generators.platonic_solids.IcosahedralGraph()`

Return an Icosahedral graph (with 12 nodes).

The regular icosahedron is a 20-sided triangular polyhedron. The icosahedral graph corresponds to the connectivity of the vertices of the icosahedron. It is dual to the dodecahedral graph. The icosahedron is symmetric, so the spring-layout algorithm will be very effective for display.

PLOTTING: The Icosahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotateable, 3-dimensional viewing in the future. In such a case, an argument will be added to select the desired layout.

EXAMPLES:

Construct and show an Octahedral graph:
Create several icosahedral graphs in a Sage graphics array. They will be drawn differently due to the use of the spring-layout algorithm:

```
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
    ....:     k = graphs.IcosahedralGraph()
    ....:     g.append(k)

sage: # needs sage.plot
sage: for i in range(3):
    ....:     n = []
    ....:     for m in range(3):
    ....:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ....:     j.append(n)

sage: G = graphics_array(j)
sage: G.show()  # long time
```

```
sage: # needs sage.plot
sage: g = []

sage: j = []

sage: for i in range(Integer(9)):
    ... k = graphs.IcosahedralGraph()
    ... g.append(k)

sage: # needs sage.plot
sage: for i in range(Integer(3)):
    ... n = []
    ... for m in range(Integer(3)):
    ...     n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
    ... j.append(n)

sage: G = graphics_array(j)

sage: G.show()  # long time
```

```
sage.graphs.generators.platonic_solids.OctahedralGraph()
```

Return an Octahedral graph (with 6 nodes).

The regular octahedron is an 8-sided polyhedron with triangular faces. The octahedral graph corresponds to the connectivity of the vertices of the octahedron. It is the line graph of the tetrahedral graph. The octahedral is symmetric, so the spring-layout algorithm will be very effective for display.

PLOTTING: The Octahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, an argument will be added to select the desired layout.

EXAMPLES:

Construct and show an Octahedral graph:

```
sage: g = graphs.OctahedralGraph()
sage: g.show()  # long time
```
Create several octahedral graphs in a Sage graphics array. They will be drawn differently due to the use of the spring-layout algorithm:

```python
sage: # needs sage.plot
sage: g = []
sage: j = []
sage: for i in range(9):
    ...:     k = graphs.OctahedralGraph()
    ...:     g.append(k)
sage: for i in range(3):
    ...:     n = []
    ...:     for m in range(3):
    ...:         n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
    ...:     j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time
```

sage.graphs.generators.platonic_solids.TetrahedralGraph()

Return a tetrahedral graph (with 4 nodes).

A tetrahedron is a 4-sided triangular pyramid. The tetrahedral graph corresponds to the connectivity of the vertices of the tetrahedron. This graph is equivalent to a wheel graph with 4 nodes and also a complete graph on four nodes. (See examples below).

PLOTTING: The Tetrahedral graph should be viewed in 3 dimensions. We choose to use a planar embedding of the graph. We hope to add rotatable, 3-dimensional viewing in the future. In such a case, a argument will be added to select the desired layout.

EXAMPLES:

Construct and show a Tetrahedral graph:

```python
sage: g = graphs.TetrahedralGraph()
sage: g.show() # long time
```
The following example requires networkx:

```python
>>> from sage.all import *
>>> g = graphs.TetrahedralGraph()
>>> g.show() # long time
needs sage.plot
```

Compare this Tetrahedral, Wheel(4), Complete(4), and the Tetrahedral plotted with the spring-layout algorithm below in a Sage graphics array:

```python
sage: import networkx as NX
# needs networkx sage.plot
sage: tetra_pos = graphs.TetrahedralGraph()
sage: tetra_spring = Graph(NX.tetrahedral_graph())
sage: wheel = graphs.WheelGraph(4)
sage: complete = graphs.CompleteGraph(4)
sage: g = [tetra_pos, tetra_spring, wheel, complete]
sage: j = []
sage: for i in range(2):
...    n = []
...    for m in range(2):
...        n.append(g[i + m].plot(vertex_size=50, vertex_labels=False))
...    j.append(n)

sage: G = graphics_array(j)
# long time
```

```python
>>> from sage.all import *
>>> # needs networkx sage.plot
>>> tetra_pos = graphs.TetrahedralGraph()
>>> tetra_spring = Graph(NX.tetrahedral_graph())
>>> wheel = graphs.WheelGraph(Integer(4))
>>> complete = graphs.CompleteGraph(Integer(4))
>>> g = [tetra_pos, tetra_spring, wheel, complete]
>>> j = []
>>> for i in range(Integer(2)):
...    n = []
...    for m in range(Integer(2)):
...        n.append(g[i + m].plot(vertex_size=Integer(50), vertex_labels=False))
...    j.append(n)

>>> G = graphics_array(j)
# long time
```
2.13 Random graphs

The methods defined here appear in `sage.graphs.graph_generators`.

`sage.graphs.generators.random.RandomBarabasiAlbert(n, m, seed=None)`

Return a random graph created using the Barabasi-Albert preferential attachment model.

A graph with m vertices and no edges is initialized, and a graph of n vertices is grown by attaching new vertices each with m edges that are attached to existing vertices, preferentially with high degree.

INPUT:
- n – number of vertices in the graph
- m – number of edges to attach from each new node
- $seed$ – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:
We show the edge list of a random graph on 6 nodes with $m = 2$:

```
sage: G = graphs.RandomBarabasiAlbert(6, 2)  # needs networkx  
sage: G.order(), G.size()  # needs networkx  
(6, 8)  
sage: G.degree_sequence()  # random  # needs networkx  
[4, 3, 3, 2, 2, 2]
```

```
>>> from sage.all import *  
>>> G = graphs.RandomBarabasiAlbert(Integer(6), Integer(2))  
(...)  
>>> G.order(), G.size()  
(6, 8)  
>>> G.degree_sequence()  
[4, 3, 3, 2, 2, 2]
```

We plot a random graph on 12 nodes with $m = 3$:

```
sage: ba = graphs.RandomBarabasiAlbert(12, 3)  # needs networkx  
sage: ba.show()  # long time  # needs networkx sage.plot
```

```
>>> from sage.all import *  
>>> ba = graphs.RandomBarabasiAlbert(Integer(12), Integer(3))  
(...)  
>>> ba.show()  
(...)
```

We view many random graphs using a graphics array:

```
sage: # needs networkx sage.plot  
sage: g = []  
sage: j = []
```

(continues on next page)
sage: for i in range(1,10):
....: k = graphs.RandomBarabasiAlbert(i+3, 3)
....: g.append(k)
sage: for i in range(3):
....: n = []
....: for m in range(3):
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
....: j.append(n)
sage: G = graphics_array(j)
sage: G.show() # long time

>>> from sage.all import *
>>> # needs networkx sage.plot
>>> g = []
>>> j = []
>>> for i in range(Integer(1),Integer(10)):
... k = graphs.RandomBarabasiAlbert(i+Integer(3), Integer(3))
... g.append(k)
>>> for i in range(Integer(3)):
... n = []
... for m in range(Integer(3)):
... n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_labels=False))
... j.append(n)
>>> G = graphics_array(j)
>>> G.show() # long time

When \(m = 1 \), the generated graph is a tree:

sage: graphs.RandomBarabasiAlbert(6, 1).is_tree() # needs networkx
True

>>> from sage.all import *
>>> # needs networkx
>>> graphs.RandomBarabasiAlbert(Integer(6), Integer(1)).is_tree()
True

```
sage.graphs.generators.random.RandomBicubicPlanar(n, seed=None)
```

Return the graph of a random bipartite cubic map with \(3n \) edges.

INPUT:

\(n \) – an integer (at least 1)

* seed – a \texttt{random.Random} seed or a Python \texttt{int} for the random number generator (default: None)

OUTPUT:

a graph with multiple edges (no embedding is provided)

The algorithm used is described in \cite{Sch1999}. This samples a random rooted bipartite cubic map, chosen uniformly at random.

First one creates a random binary tree with \(n \) vertices. Next one turns this into a blossoming tree (at random) and reads the contour word of this blossoming tree.

Then one performs a rotation on this word so that this becomes a balanced word. There are three ways to do that, one is picked at random. Then a graph is build from the balanced word by iterated closure (adding edges).
In the returned graph, the three edges incident to any given vertex are colored by the integers 0, 1 and 2.

See also:

the auxiliary method `blossoming_contour()`

EXAMPLES:

```python
sage: # needs sage.combinat
sage: n = randint(200, 300)
(sage) sage: G = graphs.RandomBicubicPlanar(n)
True
sage: G.order() == 2*n
True
sage: G.size() == 3*n
True
sage: G.is_bipartite() and G.is_planar() and G.is_regular(3)
True
sage: dic = {'red': [v for v in G.vertices(sort=False) if v[0] == 'n'],
            ....: 'blue': [v for v in G.vertices(sort=False) if v[0] != 'n']}
true
sage: G.plot(vertex_labels=False, vertex_size=20, vertex_colors=dic)  # needs sage.plot
Graphics object consisting of ... graphics primitives
```

```python
>>> from sage.all import *
>>> # needs sage.combinat
>>> n = randint(Integer(200), Integer(300))
>>> G = graphs.RandomBicubicPlanar(n)
>>> G.order() == Integer(2)*n
True
>>> G.size() == Integer(3)*n
True
>>> G.is_bipartite() and G.is_planar() and G.is_regular(Integer(3))
True
>>> dic = {'red': [v for v in G.vertices(sort=False) if v[Integer(0)] == 'n'],
            ....: 'blue': [v for v in G.vertices(sort=False) if v[Integer(0)] != 'n']}
>>> G.plot(vertex_labels=False, vertex_size=Integer(20), vertex_colors=dic)  # needs sage.plot
Graphics object consisting of ... graphics primitives
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```
• \(n_1, n_2 \) – Cardinalities of the two sets
• \(p \) – Probability for an edge to exist
• \(\text{set_position} \) – boolean (default False); if set to True, we assign positions to the vertices so that the set of cardinality \(n_1 \) is on the line \(y = 1 \) and the set of cardinality \(n_2 \) is on the line \(y = 0 \).
• \(\text{seed} \) – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

```python
sage: g = graphs.RandomBipartite(5, 2, 0.5)  # needs numpy
sage: g.vertices(sort=True)  # needs numpy
[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1)]
```

```python
>>> from sage.all import *

sage.graphs.generators.random.RandomBlockGraph \((m, k, kmax=None, incidence_structure=False, seed=None)\)

Return a Random Block Graph.

A block graph is a connected graph in which every biconnected component (block) is a clique.

See also:

• Wikipedia article Block_graph for more details on these graphs
• is_block_graph() – test if a graph is a block graph
• blocks_and_cut_vertices()
• blocks_and_cuts_tree()
• IncidenceStructure()

INPUT:

• \( m \) – integer; number of blocks (at least one).
• \( k \) – integer; minimum number of vertices of a block (at least two).
• \( kmax \) – integer (default: None) By default, each block has \( k \) vertices. When the parameter \( kmax \) is specified (with \( kmax \geq k \)), the number of vertices of each block is randomly chosen between \( k \) and \( kmax \).
• \( \text{incidence\_structure} \) – boolean (default: False) when set to True, the incidence structure of the graphs is returned instead of the graph itself, that is the list of the lists of vertices in each block. This is useful for the creation of some hypergraphs.
• \( \text{seed} \) – a random.Random seed or a Python int for the random number generator (default: None)

OUTPUT:

A Graph when incidence_structure==False (default), and otherwise an incidence structure.

EXAMPLES:

A block graph with a single block is a clique:
A block graph with blocks of order 2 is a tree:

```python
sage: B = graphs.RandomBlockGraph(10, 2)
sage: B.is_tree()
True
```

Every biconnected component of a block graph is a clique:

```python
sage: B = graphs.RandomBlockGraph(5, 3, kmax=6)
sage: blocks, cuts = B.blocks_and_cut_vertices()
sage: all(B.is_clique(block) for block in blocks)
True
```

A block graph with blocks of order \( k \) has \( m \times (k - 1) + 1 \) vertices:

```python
sage: m, k = 6, 4
sage: B = graphs.RandomBlockGraph(m, k)
sage: B.order() == m*(k-1)+1
True
```

Test recognition methods:

```python
sage: B = graphs.RandomBlockGraph(6, 2, kmax=6)
sage: B.is_block_graph()
True
```
From the SageMath library, we can generate a random block graph and check its properties:

```python
>>> from sage.all import *
>>> B = graphs.RandomBlockGraph(Integer(6), Integer(2), kmax=Integer(6))
>>> B.is_block_graph()
True
>>> B in graph_classes.Block
True
```

Asking for the incidence structure:

```python
sage: m, k = 6, 4
sage: IS = graphs.RandomBlockGraph(m, k, incidence_structure=True)
sage: from sage.combinat.designs.incidence_structures import IncidenceStructure
sage: IncidenceStructure(IS)
Incidence structure with 19 points and 6 blocks
sage: m*(k-1)+1
19
```

The `RandomBoundedToleranceGraph` function in SageMath returns a random bounded tolerance graph.

```python
sage.graphs.generators.random.RandomBoundedToleranceGraph(n, seed=None)
```

Return a random bounded tolerance graph.

The random tolerance graph is built from a random bounded tolerance representation by using the function `ToleranceGraph`. This representation is a list \((l_0, r_0, t_0), (l_1, r_1, t_1), \ldots, (l_k, r_k, t_k)\) where \(k = n - 1\) and \(I_i = (l_i, r_i)\) denotes a random interval and \(t_i\) a random positive value less than or equal to the length of the interval \(I_i\). The width of the representation is limited to \(n^2 \cdot 2^n\).

**Note:** The tolerance representation used to create the graph can be recovered using `get_vertex()` or `get_vertices()`.

**INPUT:**
- \(n\) – number of vertices of the random graph.
- `seed` – a random.Random seed or a Python int for the random number generator (default: None)

**EXAMPLES:**

Every (bounded) tolerance graph is perfect. Hence, the chromatic number is equal to the clique number:

```python
sage: g = graphs.RandomBoundedToleranceGraph(8)
sage: g.clique_number() == g.chromatic_number()
True
```

```python
>>> from sage.all import *
>>> g = graphs.RandomBoundedToleranceGraph(Integer(8))
>>> g.clique_number() == g.chromatic_number()
True
```
sage.graphs.generators.random.RandomChordalGraph(n, algorithm='growing', k=None, l=None, f=None, s=None, seed=None)

Return a random chordal graph of order \( n \).

A Graph \( G \) is said to be chordal if it contains no induced hole (a cycle of length at least 4). Equivalently, \( G \) is chordal if it has a perfect elimination orderings, if each minimal separator is a clique, or if it is the intersection graphs of subtrees of a tree. See the Wikipedia article Chordal graph.

This generator implements the algorithms proposed in [SHET2018] for generating random chordal graphs as the intersection graph of \( n \) subtrees of a tree of order \( n \).

The returned graph is not necessarily connected.

INPUT:

- \( n \) – integer; the number of nodes of the graph
- \( \text{algorithm} \) – string (default: "growing"); the choice of the algorithm for randomly selecting \( n \) subtrees of a random tree of order \( n \). Possible choices are:
  - "growing" – for each subtree \( T_i \), the algorithm picks a size \( k_i \) randomly from \([1, k]\). Then a random node of \( T \) is chosen as the first node of \( T_i \). In each of the subsequent \( k_i - 1 \) iterations, it picks a random node in the neighborhood of \( T_i \) and adds it to \( T_i \).
  - "connecting" – for each subtree \( T_i \), it first selects \( k_i \) nodes of \( T \), where \( k_i \) is a random integer from a Poisson distribution with mean \( l \). \( T_i \) is then generated to be the minimal subtree containing the selected \( k_i \) nodes. This implies that a subtree will most likely have many more nodes than those selected initially, and this must be taken into consideration when choosing \( l \).
  - "pruned" – for each subtree \( T_i \), it randomly selects a fraction \( f \) of the edges on the tree and removes them. The number of edges to delete, say \( l \), is calculated as \( \lfloor (n - 1) f \rfloor \), which will leave \( l + 1 \) subtrees in total. Then, it determines the sizes of the \( l + 1 \) subtrees and stores the distinct values. Finally, it picks a random size \( k_i \) from the set of largest \( 100(1 - s)\% \) of distinct values, and randomly chooses a subtree with size \( k_i \).
- \( k \) – integer (default: None); maximum size of a subtree. If not specified (None), the maximum size is set to \( \sqrt{n} \). This parameter is used only when algorithm="growing". See growing_subtrees() for more details.
- \( l \) – a strictly positive real number (default: None); mean of a Poisson distribution. If not specified, the mean is set to \( \log_2 n \). This parameter is used only when algorithm="connecting". See connecting_nodes() for more details.
- \( f \) – a rational number (default: None); the edge deletion fraction. This value must be chosen in \([0,1]\). If not specified, this parameter is set to \( \frac{1}{n-1} \). This parameter is used only when algorithm="pruned". See pruned_tree() for more details.
- \( s \) – a real number between 0 and 1 (default: None); selection barrier for the size of trees. If not specified, this parameter is set to 0.5. This parameter is used only when algorithm="pruned". See pruned_tree() for more details.
- \( \text{seed} \) – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

sage: from sage.graphs.generators.random import RandomChordalGraph
sage: T = RandomChordalGraph(20, algorithm="growing", k=5)
sage: T.is_chordal()
True
sage: T = RandomChordalGraph(20, algorithm="connecting", l=3)
#...
See also:

• `growing_subtrees()`
• `connecting_nodes()`
• `pruned_tree()`
• Wikipedia article Chordal_graph
• `is_chordal()`
• `IntersectionGraph()`

`sage.graphs.generators.random.RandomGNM(n, m, dense=False, seed=None)`

Return a graph randomly picked out of all graphs on \( n \) vertices with \( m \) edges.

**INPUT:**

• \( n \) – number of vertices.
• \( m \) – number of edges.
• `dense` – whether to use NetworkX’s `dense_gnm_random_graph()` or `gnm_random_graph()`
• `seed` – a `random.Random` seed or a Python int for the random number generator (default: None)

**EXAMPLES:**

We show the edge list of a random graph on 5 nodes with 10 edges:

```python
sage: graphs.RandomGNM(5, 10).edges(sort=True, labels=False) # needs networkx
[(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
```

```python
>>> from sage.all import *
>>> graphs.RandomGNM(Integer(5), Integer(10)).edges(sort=True, labels=False) # needs networkx
(...)
```
We plot a random graph on 12 nodes and 12 edges:

```sage
sage: gnm = graphs.RandomGNM(12, 12) # needs networkx
sage: gnm.show() # long time
```

We view many random graphs using a graphics array:

```sage
sage: g = []
sage: j = []
sage: for i in range(9):
 ...: k = graphs.RandomGNM(i+3, i**2-i)
 ...: g.append(k)

sage: for i in range(3):
 ...: n = []
 ...: for m in range(3):
 ...: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
 ...: j.append(n)

sage: G = graphics_array(j)
sage: G.show() # long time
```

```
sage.graphs.generators.random.RandomGNP (n, p, seed=None, fast=True, algorithm='Sage')
```

Returns a random graph on \( n \) nodes. Each edge is inserted independently with probability \( p \).

INPUT:

- \( n \) – number of nodes of the graph
- \( p \) – probability of an edge
- seed – a \code{random.Random} seed or a Python \code{int} for the random number generator (default: None)
• **fast** – boolean set to True (default) to use the algorithm with time complexity in $O(n + m)$ proposed in [BB2005a]. It is designed for generating large sparse graphs. It is faster than other algorithms for LARGE instances (try it to know whether it is useful for you).

• **algorithm** – By default (algorithm='Sage'), this function uses the algorithm implemented in `sage.graphs.graph_generators_pyx.pyx`. When algorithm='networkx', this function calls the NetworkX function `fast_gnp_random_graph`, unless fast=False, then `gnp_random_graph`. Try them to know which algorithm is the best for you. The fast parameter is not taken into account by the ‘Sage’ algorithm so far.

**REFERENCES:**
- [ER1959]
- [Gil1959]

**PLOTTING:** When plotting, this graph will use the default spring-layout algorithm, unless a position dictionary is specified.

**EXAMPLES:** We show the edge list of a random graph on 6 nodes with probability $p = .4$:

```python
sage: set_random_seed(0)
sage: graphs.RandomGNP(6, .4).edges(sort=true, labels=False)
[(0, 3), (1, 2), (2, 3), (2, 4)]
```

We plot a random graph on 12 nodes with probability $p = .71$:

```python
sage: gnp = graphs.RandomGNP(12,.71)
sage: gnp.show() # long time
```

We view many random graphs using a graphics array:

```python
sage: g = []
sage: j = []
sage: for i in range(9):
 : k = graphs.RandomGNP(i+3,.43)
 : g.append(k)

sage: for i in range(3):
 : n = []
 : for m in range(3):
 : n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
 : j.append(n)

sage: G = graphics_array(j)
```

(continues on next page)
Graph Theory, Release 10.4

sage: graphs.RandomGNP(4,1)
Complete graph: Graph on 4 vertices

>>> from sage.all import *
>>> g = []
>>> j = []
>>> for i in range(Integer(9)):
...     k = graphs.RandomGNP(i+Integer(3),RealNumber('.43'))
...     g.append(k)
>>> for i in range(Integer(3)):
...     n = []
...     for m in range(Integer(3)):
...         n.append(g[Integer(3)*i + m].plot(vertex_size=Integer(50), vertex_
labels=False))
...     j.append(n)

G = graphics_array(j)
# needs sage.plot
G.show()  # long time  # needs networkx sage.plot

sage.graphs.generators.random.RandomHolmeKim(n, m, p, seed=None)

Return a random graph generated by the Holme and Kim algorithm for graphs with power law degree distribution
and approximate average clustering.

INPUT:

- n – number of vertices
- m – number of random edges to add for each new node
- p – probability of adding a triangle after adding a random edge
- seed – a random.Random seed or a Python int for the random number generator (default: None)

From the NetworkX documentation: the average clustering has a hard time getting above a certain cutoff that
depends on m. This cutoff is often quite low. Note that the transitivity (fraction of triangles to possible triangles)
seems to go down with network size. It is essentially the Barabasi-Albert growth model with an extra step that
each random edge is followed by a chance of making an edge to one of its neighbors too (and thus a triangle). This
algorithm improves on B-A in the sense that it enables a higher average clustering to be attained if desired. It seems
possible to have a disconnected graph with this algorithm since the initial m nodes may not be all linked to a new
node on the first iteration like the BA model.

EXAMPLES:

sage: G = graphs.RandomHolmeKim(12, 3, .3)  # needs networkx
sage: G.show()  # long time  # needs networkx sage.plot

>>> from sage.all import *
>>> G = graphs.RandomHolmeKim(Integer(12), Integer(3), RealNumber('.3'))  # needs networkx
>>> G.show()  # long time  # needs networkx sage.plot
REFERENCE:

[HK2002a]

sage.graphs.generators.random.RandomIntervalGraph(n, seed=None)

Returns a random interval graph.

An interval graph is built from a list \((a_i, b_i)\) \(1 \leq i \leq n\) of intervals: to each interval of the list is associated one vertex, two vertices being adjacent if the two corresponding intervals intersect.

A random interval graph of order \(n\) is generated by picking random values for the \((a_i, b_j)\), each of the two coordinates being generated from the uniform distribution on the interval \([0, 1]\).

This definition follows [BF2001].

**Note:** The vertices are named 0, 1, 2, and so on. The intervals used to create the graph are saved with the graph and can be recovered using get_vertex() or get_vertices().

**INPUT:**

- \(n\) – integer; the number of vertices in the random graph
- \(seed\) – a random.Random seed or a Python int for the random number generator (default: None)

**EXAMPLES:**

As for any interval graph, the chromatic number is equal to the clique number

```python
sage: g = graphs.RandomIntervalGraph(8)
sage: g.clique_number() == g.chromatic_number()
True
```

```python
>>> from sage.all import *
>>> g = graphs.RandomIntervalGraph(Integer(8))
>>> g.clique_number() == g.chromatic_number()
True
```

sage.graphs.generators.random.RandomKTree(n, k, seed=None)

Return a random \(k\)-tree on \(n\) nodes numbered 0 through \(n - 1\).

**ALGORITHM:**

The algorithm first generates a complete graph on \(k + 1\) vertices. Vertices are subsequently generated by randomly choosing one of the existing cliques in the graph, and creating a new clique by replacing one of the vertices in the selected clique with a newly created one.

**INPUT:**

- \(n\) – number of vertices in the \(k\)-tree
- \(k\) – within a clique each vertex is connected to \(k\) vertices. \(k\) also corresponds to the treewidth of the \(k\)-tree
- \(seed\) – a random.Random seed or a Python int for the random number generator (default: None)

**EXAMPLES:**

```python
sage: G = graphs.RandomKTree(50, 5)
sage: G.treewidth()
5
sage: G.show() # not tested
```
```python
>>> from sage.all import *

>>> G = graphs.RandomKTree(Integer(50), Integer(5))

5

>>> G.treewidth()

>>> G.show() # not tested
```

`sage.graphs.generators.random.RandomLobster(n, p, q, seed=None)`

Return a random lobster.

A lobster is a tree that reduces to a caterpillar when pruning all leaf vertices. A caterpillar is a tree that reduces to a path when pruning all leaf vertices ($q = 0$).

**INPUT:**

- $n$ – expected number of vertices in the backbone
- $p$ – probability of adding an edge to the backbone
- $q$ – probability of adding an edge (claw) to the arms
- $seed$ – a random.Random seed or a Python int for the random number generator (default: None).

**EXAMPLES:**

We check a random graph with 12 backbone nodes and probabilities $p = 0.7$ and $q = 0.3$:

```python
sage: # needs networkx
sage: G = graphs.RandomLobster(12, 0.7, 0.3)

sage: leaves = [v for v in G.vertices(sort=False) if G.degree(v) == 1]
sage: G.delete_vertices(leaves) # caterpillar

sage: leaves = [v for v in G.vertices(sort=False) if G.degree(v) == 1]
sage: G.delete_vertices(leaves) # path

sage: s = G.degree_sequence()

sage: if G:
 ... if G.num_verts() == 1:
 ... assert s == [0]
 ... else:
 ... assert s[-2:] == [1, 1]
 ... assert all(d == 2 for d in s[:-2])
```

```python
>>> from sage.all import *

>>> G = graphs.RandomLobster(Integer(12), RealNumber(0.7), RealNumber(0.3))

>>> leaves = [v for v in G.vertices(sort=False) if G.degree(v) == Integer(1)]

>>> G.delete_vertices(leaves) # caterpillar

>>> leaves = [v for v in G.vertices(sort=False) if G.degree(v) == Integer(1)]

>>> G.delete_vertices(leaves) # path

>>> s = G.degree_sequence()

>>> if G:
 ... if G.num_verts() == Integer(1):
 ... assert s == [Integer(0)]
 ... else:
 ... assert s[-Integer(2):] == [Integer(1), Integer(1)]
 ... assert all(d == Integer(2) for d in s[:-Integer(2)])
```

```python
sage: G = graphs.RandomLobster(9, .6, .3) # needs networkx

sage: G.show() # long time # needs networkx sage.plot
```

1276 Chapter 2. Constructors and databases
sage.graphs.generators.random.RandomNewmanWattsStrogatz \((n, k, p, \text{seed}=\text{None})\)

Return a Newman-Watts-Strogatz small world random graph on \(n\) vertices.

From the NetworkX documentation: first create a ring over \(n\) nodes. Then each node in the ring is connected with its \(k\) nearest neighbors. Then shortcuts are created by adding new edges as follows: for each edge \(u \rightarrow v\) in the underlying \(\text{"n\text{-}ring with k nearest neighbors"}\); with probability \(p\) add a new edge \(u \rightarrow w\) with randomly-chosen existing node \(w\). In contrast with \text{networkx}.watts_strogatz_graph(), no edges are removed.

INPUT:

- \(n\) – number of vertices
- \(k\) – each vertex is connected to its \(k\) nearest neighbors
- \(p\) – the probability of adding a new edge for each edge
- \(\text{seed}\) – a \text{random}.\text{Random} seed or a Python \text{int} for the random number generator (default: \text{None})

EXAMPLES:

We check that the generated graph contains a cycle of order \(n\):

```python
sage: # needs networkx
sage: G = graphs.RandomNewmanWattsStrogatz(7, 2, 0.2)
sage: G.order()
7
sage: C7 = graphs.CycleGraph(7)
sage: G.subgraph_search(C7)
Subgraph of (): Graph on 7 vertices
sage: G.diameter() <= C7.diameter()
True
```

(continues on next page)
REFERENCE:
[NWS2002]
sage.graphs.generators.random.RandomPartialKTree \((n, k, x, seed=None)\)
Return a random partial \(k\)-tree on \(n\) nodes.
A partial \(k\)-tree is defined as a subgraph of a \(k\)-tree. This can also be described as a graph with treewidth at most \(k\).

INPUT:
- \(n\) – number of vertices in the \(k\)-tree
- \(k\) – within a clique each vertex is connected to \(k\) vertices. \(k\) also corresponds to the treewidth of the \(k\)-tree
- \(x\) – how many edges are deleted from the \(k\)-tree
- \(seed\) – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

```python
sage: G = graphs.RandomPartialKTree(50,5,2)
sage: G.treewidth()
5
sage: G.show() # not tested
```

```python
>>> from sage.all import *
>>> G = graphs.RandomPartialKTree(Integer(50),Integer(5),Integer(2))
>>> G.treewidth()
5
>>> G.show() # not tested
```

sage.graphs.generators.random.RandomRegular \((d, n, seed=None)\)
Return a random \(d\)-regular graph on \(n\) vertices, or False on failure.
Since every edge is incident to two vertices, \(n \times d\) must be even.

INPUT:
- \(d\) – degree
- \(n\) – number of vertices
- \(seed\) – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:
We check that a random graph with 8 nodes each of degree 3 is 3-regular:

```python
sage: G = graphs.RandomRegular(3, 8) #...
...
sage: G.is_regular(k=3) #...
True
sage: G.degree_histogram() #...
[0, 0, 0, 8]
```
>>> from sage.all import *

>>> G = graphs.RandomRegular(Integer(3), Integer(8))  # needs networkx

>>> G.is_regular(k=Integer(3))  # needs networkx
True

>>> G.degree_histogram()  # needs networkx

[0, 0, 0, 8]

sage: G = graphs.RandomRegular(3, 20)  # needs networkx

sage: if G:  # random output # long time, needs
....:
    G.show()  # networkx sage.plot

>>> from sage.all import *

>>> G = graphs.RandomRegular(Integer(3), Integer(20))  # needs networkx

>>> if G:  # random output # long time, needs
....:
    G.show()  # networkx sage.plot

REFERENCES:

• [KV2003]
• [SW1999]

sage.graphs.generators.random.RandomRegularBipartite (n1, n2, d1, set_position=False, seed=None)

Return a random regular bipartite graph on \( n_1 + n_2 \) vertices.

The bipartite graph has \( n_1 \ast d_1 \) edges. Hence, \( n_2 \) must divide \( n_1 \ast d_1 \). Each vertex of the set of cardinality \( n_1 \) has degree \( d_1 \) (which can be at most \( n_2 \)) and each vertex in the set of cardinality \( n_2 \) has degree \( (n_1 \ast d_1)/n_2 \). The bipartite graph has no multiple edges.

This generator implements an algorithm inspired by that of [MW1990] for the uniform generation of random regular bipartite graphs. It performs well when \( d_1 = o(n_2^{1/3}) \) or \( (n_2 - d_1 = o(n_2^{1/3})) \). In other cases, the running time can be huge. Note that the currently implemented algorithm does not generate uniformly random graphs.

INPUT:

• \( n_1, n_2 \) – number of vertices in each side
• \( d_1 \) – degree of the vertices in the set of cardinality \( n_1 \).
• \( \text{set\_position} \) – boolean (default False); if set to True, we assign positions to the vertices so that the set of cardinality \( n_1 \) is on the line \( y = 1 \) and the set of cardinality \( n_2 \) is on the line \( y = 0 \).
• \( \text{seed} \) – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

sage: g = graphs.RandomRegularBipartite(4, 6, 3)
sage: g.order(), g.size()
(10, 12)
sage: set(g.degree())
Graph Theory, Release 10.4

(continued from previous page)

\( (2, 3) \)

\[
\begin{align*}
\text{sage: } & \text{graphs.RandomRegularBipartite}(1, 2, 2, \text{set_position=True}).\text{get_pos()} \\
& \{0: (1, 1.0), 1: (0, 0), 2: (2.0, 0.0)\} \\
\text{sage: } & \text{graphs.RandomRegularBipartite}(2, 1, 1, \text{set_position=True}).\text{get_pos()} \\
& \{0: (0, 1), 1: (2.0, 1.0), 2: (1, 0.0)\} \\
\text{sage: } & \text{graphs.RandomRegularBipartite}(2, 3, 3, \text{set_position=True}).\text{get_pos()} \\
& \{0: (0, 1), 1: (3.0, 1.0), 2: (0, 0), 3: (1.5, 0.0), 4: (3.0, 0.0)\} \\
\text{sage: } & \text{graphs.RandomRegularBipartite}(2, 3, 3, \text{set_position=False}).\text{get_pos()}
\end{align*}
\]

```python
>>> from sage.all import *

>>> g = graphs.RandomRegularBipartite(Integer(4), Integer(6), Integer(3))

>>> g.order(), g.size()
(10, 12)

>>> set(g.degree())
{2, 3}

>>> graphs.RandomRegularBipartite(Integer(1), Integer(2), Integer(2), set_position=True).get_pos()
{0: (1, 1.0), 1: (0, 0), 2: (2.0, 0.0)}

{0: (0, 1), 1: (2.0, 1.0), 2: (1, 0.0)}

{0: (0, 1), 1: (3.0, 1.0), 2: (0, 0), 3: (1.5, 0.0), 4: (3.0, 0.0)}

```

sage . graphs . generators . random . RandomShell (constructor, seed=None)

Return a random shell graph for the constructor given.

INPUT:

- **constructor** — a list of 3-tuples \((n, m, d)\), each representing a shell, where:
  - \(n\) — the number of vertices in the shell
  - \(m\) — the number of edges in the shell
  - \(d\) — the ratio of inter (next) shell edges to intra shell edges

- **seed** — a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

```python
\[
\begin{align*}
\text{sage: } & \text{G = graphs.RandomShell}([[10, 20, 0.8], [20, 40, 0.8]]) \\
& \text{# needs networkx} \\
\text{sage: } & \text{G.order()}, \text{G.size()} \\
& \text{# needs networkx} \\
& (30, 52) \\
\text{sage: } & \text{G.show()} \\
& \text{# long time} \\
& \text{# needs networkx sage.plot}
\end{align*}
\]

```
sage.graphs.generators.random.RandomToleranceGraph \( (n, \text{seed}='\text{None}') \)

Return a random tolerance graph.

The random tolerance graph is built from a random tolerance representation by using the function \texttt{ToleranceGraph()}. This representation is a list \(((l_0, r_0), (l_1, r_1), \ldots, (l_k, r_k))\) where \(k = n - 1\) and \(I_i = (l_i, r_i)\) denotes a random interval and \(t_i\) a random positive value. The width of the representation is limited to \(n^2 \cdot 2^n\).

**Note:** The vertices are named 0, 1, \ldots, \(n - 1\). The tolerance representation used to create the graph is saved with the graph and can be recovered using \texttt{get_vertex()} or \texttt{get_vertices()}.

**INPUT:**

- \(n\) – number of vertices of the random graph
- \(\text{seed}\) – a \texttt{random.Random} seed or a Python int for the random number generator (default: \texttt{None})

**EXAMPLES:**

Every tolerance graph is perfect. Hence, the chromatic number is equal to the clique number

```python
sage: g = graphs.RandomToleranceGraph(8)
sage: g.clique_number() == g.chromatic_number()
True
```

```python
>>> from sage.all import *
```  
```python
>>> g = graphs.RandomToleranceGraph(Integer(8))
>>> g.clique_number() == g.chromatic_number()
True
```

sage.graphs.generators.random.RandomTree \( (n, \text{seed}='\text{None}') \)

Returns a random tree on \(n\) nodes numbered 0 through \(n - 1\).

By Cayley’s theorem, there are \(n^{n-2}\) trees with vertex set \(\{0, 1, \ldots, n - 1\}\). This constructor chooses one of these uniformly at random.

**ALGORITHM:**

The algorithm works by generating an \((n - 2)\)-long random sequence of numbers chosen independently and uniformly from \(\{0, 1, \ldots, n - 1\}\) and then applies an inverse Prüfer transformation.

**INPUT:**

- \(n\) – number of vertices in the tree
- \(\text{seed}\) – a \texttt{random.Random} seed or a Python int for the random number generator (default: \texttt{None})

**EXAMPLES:**

```python
sage: G = graphs.RandomTree(10)
sage: G.is_tree()
True
```
sage: G.show()  # long time  
˓→needs sage.plot

>> from sage.all import *
>> G = graphs.RandomTree(Integer(10))
>> G.is_tree()
True
>> G.show()  # long time  
˓→needs sage.plot

sage.graphs.generators.random.RandomTreePowerlaw(n, gamma=3, tries=1000, seed=None)

Return a tree with a power law degree distribution, or False on failure.

From the NetworkX documentation: a trial power law degree sequence is chosen and then elements are swapped
with new elements from a power law distribution until the sequence makes a tree (size = order - 1).

INPUT:

- n – number of vertices
- gamma – exponent of power law distribution
- tries – number of attempts to adjust sequence to make a tree
- seed – a random.Random seed or a Python int for the random number generator (default: None)

EXAMPLES:

We check that the generated graph is a tree:

sage: G = graphs.RandomTreePowerlaw(10, 3)  #...
˓→needs networkx
sage: G.is_tree()  #...
˓→needs networkx
True
sage: G.order(), G.size()  #...
˓→needs networkx
(10, 9)

>> from sage.all import *
>> G = graphs.RandomTreePowerlaw(Integer(10), Integer(3))  ...
˓→ # needs networkx
>> G.is_tree()  #...
˓→needs networkx
True
>> G.order(), G.size()  #...
˓→needs networkx
(10, 9)

sage: G = graphs.RandomTreePowerlaw(15, 2)  #...
˓→needs networkx
sage: if G:  # random output  # long time,...
˓→needs networkx sage.plot
....: G.show()

>> from sage.all import *
>> G = graphs.RandomTreePowerlaw(Integer(15), Integer(2))  ...
(continues on next page)
sage.graphs.generators.random.RandomTriangulation \((n, \text{set\_position=False}, k=3, \text{seed=None})\)

Return a random inner triangulation of an outer face of degree \(k\) with \(n\) vertices in total.

An inner triangulation is a plane graph all of whose faces (except the outer/unbounded face) are triangles (3-cycles).

INPUT:

- \(n\) – the number of vertices of the graph
- \(k\) – the size of the outer face
- \(\text{set\_position}\) – boolean (default False); if set to True, this will compute coordinates for a planar drawing of the graph.
- \(\text{seed}\) – a random.Random seed or a Python int for the random number generator (default: None)

OUTPUT:

A random graph chosen uniformly among the inner triangulations of a rooted \(k\)-gon with \(n\) vertices (including the \(k\) vertices from the outer face). This is a planar graph and comes with a combinatorial embedding. The vertices of the root edge are labelled \(-1\) and \(-2\) and the outer face is the face returned by \texttt{Graph.faces()} in which \(-1\) and \(-2\) are consecutive vertices in this order.

Because some triangulations have nontrivial automorphism groups, this may not be equal to the uniform distribution among inner triangulations of unrooted \(k\)-gons.

ALGORITHM:

The algorithm is taken from [PS2006], Section 5.

Starting from a planar \(k\)-gonal forest (represented by its contour as a sequence of vertices), one performs local closures, until no one is possible. A local closure amounts to replace in the cyclic contour word a sequence \texttt{in1}, \texttt{in2}, \texttt{in3}, \texttt{lf}, \texttt{in3} by \texttt{in1}, \texttt{in3}.

At every step of the algorithm, newly created edges are recorded in a graph, which will be returned at the end. The combinatorial embedding is also computed and recorded in the output graph.

See also:

\texttt{triangulations()}, \texttt{RandomTwoSphere}().

EXAMPLES:

```python
sage: G = graphs.RandomTriangulation(6, True); G
Graph on 6 vertices
sage: G.is_planar()
True
sage: G.girth()
3
sage: G.plot(vertex_size=0, vertex_labels=False) # ...
needs sage.plot
Graphics object consisting of 13 graphics primitives

sage: H = graphs.RandomTriangulation(7, k=5)
sage: sorted(len(f) for f in H.faces())
[3, 3, 3, 3, 3, 3, 3, 5]
```
```python
>>> from sage.all import *
>>> G = graphs.RandomTriangulation(Integer(6), True); G
Graph on 6 vertices
>>> G.is_planar()
True
>>> G.girth()
3
>>> G.plot(vertex_size=Integer(0), vertex_labels=False)
needs sage.plot
Graphics object consisting of 13 graphics primitives
>>> H = graphs.RandomTriangulation(Integer(7), k=Integer(5))
>>> sorted(len(f) for f in H.faces())
[3, 3, 3, 3, 3, 3, 3, 5]
```

```
.. automodule:: sage.graphs.generators.random

sage.graphs.generators.random.RandomUnitDiskGraph (n, radius=0.1, side=1, seed=None)

Return a random unit disk graph of order \(n\).

A unit disk graph is the intersection graph of a family of unit disks in the Euclidean plane. That is a graph with one vertex per disk of the family and an edge between two vertices whenever they lie within a unit distance of each other. See the Wikipedia article Unit_disk_graph for more details.

INPUT:

- \(n\) – number of nodes
- \(radius\) – float (default: 0.1); two vertices at distance less than \(radius\) are connected by an edge
- \(side\) – float (default: 1); indicate the side of the area in which the points are drawn
- \(seed\) – seed of the random number generator

EXAMPLES:

When using twice the same seed, the vertices get the same positions:

```python
sage: # needs scipy
sage: from sage.misc.randstate import current_randstate
sage: seed = current_randstate().seed()

sage: G = graphs.RandomUnitDiskGraph(20, radius=.5, side=1, seed=seed)
sage: H = graphs.RandomUnitDiskGraph(20, radius=.2, side=1, seed=seed)
sage: H.is_subgraph(G, induced=False)
True
sage: H.size() <= G.size()
True
sage: Gpos = G.get_pos()
sage: Hpos = H.get_pos()
sage: all(Gpos[u] == Hpos[u] for u in G)
True
```

(continues on next page)
When the radius is more than $\sqrt{2}\times\text{side}$, the graph is a clique:

```
sage: G = graphs.RandomUnitDiskGraph(10, radius=2, side=1)  # needs scipy
sage: G.is_clique()  # needs scipy
True
```

```
>>> from sage.all import *
```

```
>>> G = graphs.RandomUnitDiskGraph(Integer(10), radius=Integer(2), side=Integer(1))  # needs scipy
```

```
>>> G.is_clique()  # needs scipy
True
```

`sage.graphs.generators.random.blossoming_contour(t, shift=0, seed=None)`

Return a random blossoming of a binary tree t, as a contour word.

This is doing several things simultaneously:

- complete the binary tree, by adding leaves labelled xb,
- add a vertex labelled n at the middle of every inner edge, with a leaf labelled x either on the left or on the right (at random),
- number all vertices (but not leaves) by integers starting from $shift$,
- compute the counter-clockwise contour word of the result.

Initial vertices receive the label i.

This is an auxiliary function, used for the generation of random planar bicubic maps.

INPUT:

- t – a binary tree (non-empty)
- $shift$ – an integer (default 0), used as a starting index

OUTPUT:

contour word of a random blossoming of t

EXAMPLES:

```
sage: from sage.graphs.generators.random import blossoming_contour
sage: print(blossoming_contour(BinaryTrees(1).an_element()))
[(i, 0), (xb,), (i, 0), (xb,), (i, 0)]
```

```
sage: t = BinaryTrees(2).random_element()  # needs sage.combinat
```

```
sage: print(blossoming_contour(t))  # random
```

(continues on next page)
sage.graphs.generators.random.connecting_nodes\((T, l) \)

Return a list of the vertex sets of \(n \) randomly chosen subtrees of \(T \).

This method is part of \texttt{RandomChordalGraph()}.

ALGORITHM:

For each subtree \(T_i \), we first select \(k_i \) nodes of \(T \), where \(k_i \) is a random integer from a Poisson distribution with mean \(l \). \(T_i \) is then generated to be the minimal subtree that contains the selected \(k_i \) nodes. This implies that a subtree will most likely have many more nodes than those selected initially, and this must be taken into consideration when choosing \(l \).

See [SHET2018] for more details.

INPUT:

- \(T \) – a tree
- \(l \) – a strictly positive real number; mean of a Poisson distribution

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.graphs.generators.random import blossoming_contour
>>> print(blossoming_contour(BinaryTrees(Integer(1)).an_element()))
[('i', 0), ('xb',), ('i', 0), ('n', 2), ('i', 1), ('xb',), ('i', 1), ('n', 2), ('x',), ('n', 2), ('i', 0)]

>>> t = BinaryTrees(Integer(2)).random_element()  # random

>>> print(blossoming_contour(t))
[('i', 0), ('xb',), ('i', 0), ('n', 2), ('i', 1), ('xb',), ('i', 1), ('n', 2), ('x',), ('n', 2), ('i', 0)]

>>> w = blossoming_contour(BinaryTrees(Integer(3)).random_element()); len(w)  # needs sage.combinat
21

>>> w.count(('xb',))  # needs sage.combinat
4

>>> w.count(('x',))  # needs sage.combinat
2
```
```python
sage: from sage.graphs.generators.random import connecting_nodes
sage: T = graphs.RandomTree(10)
sage: S = connecting_nodes(T, 5)  # needs numpy
sage: len(S)  # needs numpy
10

sage: from sage.all import *
sage: from sage.graphs.generators.random import connecting_nodes
>> T = graphs.RandomTree(Integer(10))
>> S = connecting_nodes(T, Integer(5))  # needs numpy
>> len(S)  # needs numpy
10
```

`sage.graphs.generators.random.growing_subtrees(T, k)`

Return a list of the vertex sets of `n` randomly chosen subtrees of `T`.

For a tree of order `n`, the collection contains `n` subtrees with maximum order `k` and average order \(\frac{k+1}{2} \).

This method is part of `RandomChordalGraph()`.

ALGORITHM:

For each subtree \(T_i \), the algorithm picks a size \(k_i \) randomly from \([1, k]\). Then a random node of \(T \) is chosen as the first node of \(T_i \). In each of the subsequent \(k_i - 1 \) iterations, it picks a random node in the neighborhood of \(T_i \) and adds it to \(T_i \).

See [SHET2018] for more details.

INPUT:

- `T` – a tree
- `k` – a strictly positive integer; maximum size of a subtree

EXAMPLES:

```python
sage: from sage.graphs.generators.random import growing_subtrees
sage: T = graphs.RandomTree(10)
sage: S = growing_subtrees(T, 5)
sage: len(S)
10

>>> from sage.all import *
>>> from sage.graphs.generators.random import growing_subtrees
>> T = graphs.RandomTree(Integer(10))
>> S = growing_subtrees(T, Integer(5))
>> len(S)
10
```

`sage.graphs.generators.random.pruned_tree(T, f, s)`

Return a list of the vertex sets of `n` randomly chosen subtrees of `T`.

This method is part of `RandomChordalGraph()`.

ALGORITHM:

2.13. Random graphs 1287
For each subtree T_i, it randomly selects a fraction f of the edges on the tree and removes them. The number of edges to delete, say l, is calculated as $\lfloor (n-1)f \rfloor$, which will leave $l+1$ subtrees in total. Then, it determines the sizes of the $l+1$ subtrees and stores the distinct values. Finally, it picks a random size k_i from the set of largest $100(1-s)$% of distinct values, and randomly chooses a subtree with size k_i.

See [SHET2018] for more details.

INPUT:

- T – a tree
- f – a rational number; the edge deletion fraction. This value must be chosen in $[0..1]$.
- s – a real number between 0 and 1; selection barrier for the size of trees

EXAMPLES:

```python
sage: from sage.graphs.generators.random import pruned_tree
sage: T = graphs.RandomTree(11)
sage: S = pruned_tree(T, 1/10, 0.5)
sage: len(S)
11
```

```python
>>> from sage.all import *
>>> from sage.graphs.generators.random import pruned_tree
>>> T = graphs.RandomTree(Integer(11))
>>> S = pruned_tree(T, Integer(1)/Integer(10), RealNumber('0.5'))
>>> len(S)
11
```

2.14 Various small graphs

The methods defined here appear in `sage.graphs.graph_generators`

`sage.graphs.generators.smallgraphs.Balaban10Cage(embedding=1)`

Return the Balaban 10-cage.

The Balaban 10-cage is a 3-regular graph with 70 vertices and 105 edges. See the Wikipedia article Balaban_10-cage.

The default embedding gives a deeper understanding of the graph’s automorphism group. It is divided into 4 layers (each layer being a set of points at equal distance from the drawing’s center). From outside to inside:

- **L1**: The outer layer (vertices which are the furthest from the origin) is actually the disjoint union of two cycles of length 10.
- **L2**: The second layer is an independent set of 20 vertices.
- **L3**: The third layer is a matching on 10 vertices.
- **L4**: The inner layer (vertices which are the closest from the origin) is also the disjoint union of two cycles of length 10.

This graph is not vertex-transitive, and its vertices are partitioned into 3 orbits: L2, L3, and the union of L1 of L4 whose elements are equivalent.

INPUT:

- `embedding` – integer (default: 1); two embeddings are available, and can be selected by setting `embedding` to be either 1 or 2
EXAMPLES:

```sage
# needs networkx
g = graphs.Balaban10Cage()
g.girth()  # 10

g.chromatic_number()  # 2

g.diameter()  # 6

g.is_hamiltonian()  # needs sage.numerical.mip
True

g.show(figsize=[10,10])  # long time
```

```python
>>> from sage.all import *

>>> g = graphs.Balaban10Cage()

>>> g.girth()  # 10

>>> g.chromatic_number()  # 2

>>> g.diameter()  # 6

>>> g.is_hamiltonian()  # needs sage.numerical.mip
True

>>> g.show(figsize=[10,10])  # long time
```

sage.graphs.generators.smallgraphs.Balaban11Cage(embedding=1)

Return the Balaban 11-cage.

For more information, see the Wikipedia article Balaban_11-cage.

INPUT:

- embedding – integer (default: 1); three embeddings are available, and can be selected by setting embedding to be 1, 2, or 3
 - The first embedding is the one appearing on page 9 of the Fifth Annual Graph Drawing Contest report [EMMN1998]. It separates vertices based on their eccentricity (see eccentricity()).
 - The second embedding has been produced just for Sage and is meant to emphasize the automorphism group’s 6 orbits.
 - The last embedding is the default one produced by the LCFGraph() constructor.

Note: The vertex labeling changes according to the value of embedding=1.

EXAMPLES:

Basic properties:

```sage
g = graphs.Balaban11Cage()
g.order()  # 112
```
Our many embeddings:

```
sage: g1 = graphs.Balaban11Cage(embedding=1)
sage: g2 = graphs.Balaban11Cage(embedding=2)  # needs networkx
sage: g3 = graphs.Balaban11Cage(embedding=3)  # needs networkx
sage: g1.show(figsize=[10,10])  # long time  # needs sage.plot
sage: g2.show(figsize=[10,10])  # long time  # needs networkx sage.plot
sage: g3.show(figsize=[10,10])  # long time  # needs networkx sage.plot
```

Proof that the embeddings are the same graph:

```
sage: g1.is_isomorphic(g2)  # g2 and g3 are obviously isomorphic  # needs networkx
True
```
sage.graphs.generators.smallgraphs.BidiakisCube()

Return the Bidiakis cube.

For more information, see the Wikipedia article Bidiakis_cube.

EXAMPLES:
The Bidiakis cube is a 3-regular graph having 12 vertices and 18 edges. This means that each vertex has a degree of 3:

```
sage: g = graphs.BidiakisCube(); g
Bidiakis cube: Graph on 12 vertices

sage: g.show()                      # long time                          #...
needs sage.plot
sage: g.order()                    
12
sage: g.size()                     
18
sage: g.is_regular(3)              
True
```

It is a Hamiltonian graph with diameter 3 and girth 4:

```
sage: g.is_hamiltonian()            
needs sage.numerical.mip
True

sage: g.diameter()                  
3
sage: g.girth()                     
4
```

```
>>> from sage.all import *
>>> g1.is_isomorphic(g2)    # g2 and g3 are obviously isomorphic    #...
needs networkx
True
```
It is a planar graph with characteristic polynomial \((x - 3)(x - 2)(x^4)(x + 1)(x + 2)(x^2 + x - 4)^2\) and chromatic number 3:

```
sage: g.is_planar()
True
sage: char_poly = g.characteristic_polynomial()  # needs sage.modules
sage: x = char_poly.parent()('x')  # needs sage.modules
sage: char_poly == (x - 3) * (x - 2) * (x^4) * (x + 1) * (x + 2) * (x^2 + x - 4)^2
True
sage: g.chromatic_number()  # needs sage.modules
3
```

```
>>> from sage.all import *
>>> g.is_planar()
True
>>> char_poly = g.characteristic_polynomial()  # needs sage.modules
>>> x = char_poly.parent()('x')  # needs sage.modules
>>> char_poly == (x - Integer(3)) * (x - Integer(2)) * (x^Integer(4)) * (x + Integer(1)) * (x + Integer(2)) * (x^Integer(2) + x - Integer(4))^Integer(2)  # needs sage.modules
True
>>> g.chromatic_number()  # needs sage.modules
3
```

```python
sage.graphs.generators.smallgraphs.BiggsSmithGraph(embedding=1)
```

Return the Biggs-Smith graph.

For more information, see the Wikipedia article Biggs-Smith_graph.

INPUT:

- `embedding` – integer (default: 1); two embeddings are available, and can be selected by setting embedding to be 1 or 2

EXAMPLES:

Basic properties:

```python
sage: # needs networkx
sage: g = graphs.BiggsSmithGraph()
sage: g.order()
102
sage: g.size()
153
sage: g.girth()
9
sage: g.diameter()
7
sage: g.automorphism_group().cardinality()  # long time
2448
sage: g.show(figsize=[10, 10])  # long time
```

```
sage: # needs sage.plot
```
>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.BiggsSmithGraph()
>>> g.order()
102
>>> g.size()
153
>>> g.girth()
9
>>> g.diameter()
7
>>> g.automorphism_group().cardinality() # long time
2448
>>> g.show(figsize=[Integer(10), Integer(10)]) # long time ...
˓→ # needs sage.plot

The other embedding:

```
sage: graphs.BiggsSmithGraph(embedding=2).show()  # long time ...
˓→  # needs networkx
```

```

sage.graphs.generators.smallgraphs.BlanusaFirstSnarkGraph()
Return the first Blanusa Snark Graph.

The Blanusa graphs are two snarks on 18 vertices and 27 edges. For more information on them, see the Wikipedia article Blanusa_snarks.

See also:

• BlanusaSecondSnarkGraph().

EXAMPLES:

```
sage: g = graphs.BlanusaFirstSnarkGraph()
sage: g.order()
18
sage: g.size()
27
sage: g.diameter()
4
sage: g.girth()
5
sage: g.automorphism_group().cardinality() #...
˓→ needs sage.groups
8
```

```

```
(continues on next page)
sage.graphs.generators.smallgraphs.BlanusaSecondSnarkGraph()  
Return the second Blanusa Snark Graph.

The Blanusa graphs are two snarks on 18 vertices and 27 edges. For more information on them, see the Wikipedia article Blanusa_snarks.

See also:

- BlanusaFirstSnarkGraph().

Examples:

```python
sage: g = graphs.BlanusaSecondSnarkGraph()
sage: g.order()
18
sage: g.size()
27
sage: g.diameter()
4
sage: g.girth()
5
sage: g.automorphism_group().cardinality() # needs sage.groups
4
```

sage.graphs.generators.smallgraphs.BrinkmannGraph()  
Return the Brinkmann graph.

For more information, see the Wikipedia article Brinkmann_graph.

Examples:

The Brinkmann graph is a 4-regular graph having 21 vertices and 42 edges. This means that each vertex has degree 4:
It is an Eulerian graph with radius 3, diameter 3, and girth 5:

The Brinkmann graph is also Hamiltonian with chromatic number 4:
Its automorphism group is isomorphic to $D_7$:

```python
sage: ag = G.automorphism_group() # needs sage.groups
sage: ag.is_isomorphic(DihedralGroup(7)) # needs sage.groups
True
```

`sage.graphs.generators.smallgraphs.BrouwerHaemersGraph()`

Return the Brouwer-Haemers Graph.

The Brouwer-Haemers is the only strongly regular graph of parameters $(81, 20, 1, 6)$. It is built in Sage as the Affine Orthogonal graph $VO^{-}(6, 3)$. For more information on this graph, see its corresponding page on Andries Brouwer’s website.

EXAMPLES:

```python
sage: g = graphs.BrouwerHaemersGraph(); g # needs sage.modules
Brouwer-Haemers: Graph on 81 vertices
```

It is indeed strongly regular with parameters $(81, 20, 1, 6)$:

```python
sage: g.is_strongly_regular(parameters=True) # long time
(81, 20, 1, 6)
```

Its has as eigenvalues 20, 2 and $-7$:

```python
sage: set(g.spectrum()) == {20, 2, -7}
True
```

(continues on next page)
The Bucky Ball is planar:

```python
sage: g = graphs.BuckyBall()
sage: g.is_planar()
True
```

The Bucky Ball can also be created by extracting the 1-skeleton of the Bucky Ball polyhedron, but this is much slower:

```python
needs sage.geometry.polyhedron sage.groups sage.rings.number_field
sage: g = polytopes.buckyball().vertex_graph()
```

The graph is returned along with an attractive embedding:

```python
sage: g = graphs.BuckyBall() # long time
sage: g.plot(vertex_labels=False, vertex_size=10).show() # long time,
```

The Cameron graph is strongly regular with parameters $v = 231, k = 30, \lambda = 9, \mu = 3$. 

2.14. Various small graphs
For more information on the Cameron graph, see https://www.win.tue.nl/~aeb/graphs/Cameron.html.

EXAMPLES:

```sage
needs sage.groups
sage: g = graphs.CameronGraph()
sage: g.order()
231
sage: g.size()
3465
sage: g.is_strongly_regular(parameters=True) # long time
(231, 30, 9, 3)
```

```python
>>> from sage.all import *

needs sage.groups
>>> g = graphs.CameronGraph()

long time
```

sage.graphs.generators.smallgraphs.Cell120()

Return the 120-Cell graph.

This is the adjacency graph of the 120-cell. It has 600 vertices and 1200 edges. For more information, see the Wikipedia article 120-cell.

EXAMPLES:

```sage
long time, needs sage.rings.number_field
sage: g = graphs.Cell120()
sage: g.size()
1200
sage: g.is_regular(4)
True
sage: g.is_vertex_transitive()
True
```

```python
>>> from sage.all import *

long time, needs sage.rings.number_field

long time
```

sage.graphs.generators.smallgraphs.Cell600(embedding=1)

Return the 600-Cell graph.

This is the adjacency graph of the 600-cell. It has 120 vertices and 720 edges. For more information, see the Wikipedia article 600-cell.

INPUT:

- embedding – integer (default: 1); two different embeddings for a plot
EXAMPLES:

```
sage: # long time, needs sage.rings.number_field
sage: g = graphs.Cell600()
sage: g.size()
720
sage: g.is_regular(12)
True
sage: g.is_vertex_transitive()
True
```

```
>>> from sage.all import *
>>> # long time, needs sage.rings.number_field
>>> g = graphs.Cell600()
>>> g.size()
720
>>> g.is_regular(Integer(12))
True
>>> g.is_vertex_transitive()
True
```

```
sage.graphs.generators.smallgraphs.ChvatalGraph()
Return the Chvatal graph.

Chvatal graph is one of the few known graphs to satisfy Grunbaum’s conjecture that for every \(m, n \), there is an \(m \)-regular, \(m \)-chromatic graph of girth at least \(n \). For more information, see the Wikipedia article Chv%20%5C%20Alatal%20graph.

EXAMPLES:

The Chvatal graph has 12 vertices and 24 edges. It is a 4-regular, 4-chromatic graph with radius 2, diameter 2, and girth 4:

```
sage: G = graphs.ChvatalGraph(); G
Chvatal graph: Graph on 12 vertices
sage: G.order(); G.size()
12
24
sage: G.degree()
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
sage: G.chromatic_number()
4
sage: G.radius(); G.diameter(); G.girth()
2
2
4
```

```
>>> from sage.all import *
>>> G = graphs.ChvatalGraph(); G
Chvatal graph: Graph on 12 vertices
>>> G.order(); G.size()
12
24
>>> G.degree()
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
>>> G.chromatic_number()
4
>>> G.radius(); G.diameter(); G.girth()
```

(continues on next page)
sage.graphs.generators.smallgraphs.ClebschGraph()

Return the Clebsch graph.

See the Wikipedia article Clebsch_graph for more information.

EXAMPLES:

```python
sage: g = graphs.ClebschGraph()
sage: g.automorphism_group().cardinality()                                       # long time
1920
sage: g.girth()
4
sage: g.chromatic_number()
4
sage: g.diameter()
2
sage: g.show(figsize=[10, 10])                                                   # long time
```

sage.graphs.generators.smallgraphs.CoxeterGraph()

Return the Coxeter graph.

See the Wikipedia article Coxeter_graph.

EXAMPLES:

```python
>>> from sage.all import *
>>> g = graphs.ClebschGraph()
>>> g.automorphism_group().cardinality()                                       # long time
336
>>> g.girth()
7
>>> g.chromatic_number()
3
>>> g.diameter()
4
>>> g.show(figsize=[Integer(10), Integer(10)])                                  # long time
```

sage.graphs.generators.smallgraphs.CoxeterGraph()

Return the Coxeter graph.

See the Wikipedia article Coxeter_graph.

EXAMPLES:

```python
sage: g = graphs.CoxeterGraph()
sage: g.automorphism_group().cardinality()                                       # long time
336
sage: g.girth()
7
sage: g.chromatic_number()
3
sage: g.diameter()
4
sage: g.show(figsize=[10, 10])                                                   # long time
```
```python
>>> from sage.all import *
g = graphs.CoxeterGraph()
g.automorphism_group().cardinality()  # needs sage.groups
336
>>> g.girth()
7
>>> g.chromatic_number()
3
>>> g.diameter()
4
>>> g.show(figsize=[Integer(10), Integer(10)])  # long time
# needs sage.plot
```

sage.graphs.generators.smallgraphs.DejterGraph()

Return the Dejter graph.

The Dejter graph is obtained from the binary 7-cube by deleting a copy of the Hamming code of length 7. It is 6-regular, with 112 vertices and 336 edges. For more information, see the Wikipedia article Dejter graph.

EXAMPLES:

```python
sage: g = graphs.DejterGraph(); g  # needs sage.rings.finite_rings
Dejter Graph: Graph on 112 vertices
sage: g.is_regular(k=6)  # needs sage.rings.finite_rings
True
sage: g.girth()  # needs sage.rings.finite_rings
4
```

```python
>>> from sage.all import *
g = graphs.DejterGraph(); g  # needs sage.rings.finite_rings
Dejter Graph: Graph on 112 vertices
>>> g.is_regular(k=Integer(6))  # needs sage.rings.finite_rings
True
>>> g.girth()  # needs sage.rings.finite_rings
4
```

sage.graphs.generators.smallgraphs.DesarguesGraph()

Return the Desargues graph.

PLOTTING: The layout chosen is the same as on the cover of [Har1994].

EXAMPLES:

```python
sage: D = graphs.DesarguesGraph()
sage: L = graphs.LCFGraph(20, [5, -5, 9, -9], 5)  # needs networkx
sage: D.is_isomorphic(L)  # needs networkx
True
sage: D.show()  # long time  # needs sage.plot
```

2.14. Various small graphs
sage.graphs.generators.smallgraphs.DoubleStarSnark()

Return the double star snark.

The double star snark is a 3-regular graph on 30 vertices. See the Wikipedia article Double-star snark.

EXAMPLES:

```
sage: g = graphs.DoubleStarSnark()
sage: g.order()
30
sage: g.size()
45
sage: g.chromatic_number()
3
sage: g.is_hamiltonian()  # needs sage.numerical.mip
False
sage: g.automorphism_group().cardinality()  # needs sage.groups
80
sage: g.show()  # needs sage.plot
```

sage.graphs.generators.smallgraphs.DurerGraph()

Return the Dürer graph.

For more information, see the Wikipedia article Dürer graph.

EXAMPLES:

The Dürer graph is named after Albrecht Dürer. It is a planar graph with 12 vertices and 18 edges:
The Dürer graph has chromatic number 3, diameter 4, and girth 3:

```
sage: G.chromatic_number()
3
sage: G.diameter()
4
sage: G.girth()
3
```

Its automorphism group is isomorphic to D_6:

```
sage: ag = G.automorphism_group()  # needs sage.groups
sage: ag.is_isomorphic(DihedralGroup(6))  # needs sage.groups
True
```

```
sage.graphs.generators.smallgraphs.DyckGraph()
```

Return the Dyck graph.

For more information, see the MathWorld article on the Dyck graph or the Wikipedia article Dyck_graph.

EXAMPLES:
The Dyck graph was defined by Walther von Dyck in 1881. It has 32 vertices and 48 edges, and is a cubic graph (regular of degree 3):

```
sage: G = graphs.DyckGraph(); G
Dyck graph: Graph on 32 vertices
sage: G.order()
32
sage: G.size()
48
sage: G.is_regular()
True
sage: G.is_regular(3)
True
```

It is non-planar and Hamiltonian, as well as bipartite (making it a bicubic graph):

```
sage: G.is_planar()
False
sage: G.is_hamiltonian()  # needs sage.numerical.mip
True
sage: G.is_bipartite()
True
```

It has radius 5, diameter 5, and girth 6:

```
sage: G.radius()
5
sage: G.diameter()
5
sage: G.girth()
6
```

(continues on next page)
Its chromatic number is 2 and its automorphism group is of order 192:

```python
sage: G.chromatic_number()
2
sage: G.automorphism_group().cardinality()  # needs sage.groups
192
```

It is a non-integral graph as it has irrational eigenvalues:

```python
sage: G.characteristic_polynomial().factor()  # needs sage.libs.pari sage.modules
(x - 3) * (x + 3) * (x - 1)^9 * (x + 1)^9 * (x^2 - 5)^6
```

It is a toroidal graph, and its embedding on a torus is dual to an embedding of the Shrikhande graph (ShrikhandeGraph).

sage.graphs.generators.smallgraphs.EllinghamHorton54Graph()

Return the Ellingham-Horton 54-graph.

For more information, see the Wikipedia article Ellingham-Horton_graph.

EXAMPLES:

This graph is 3-regular:

```python
sage: g = graphs.EllinghamHorton54Graph()
sage: g.is_regular(k=3)
True
```

It is 3-connected and bipartite:

```python
sage: g.vertex_connectivity()  # not tested - too long
3
```

(continues on next page)
Graph Theory, Release 10.4

sage

```python
>>> g.is_bipartite()
True
```

```python
>>> from sage.all import *
```

```python
>>> g.vertex_connectivity()
3
```

```python
>>> g.is_bipartite()
True
```

It is not Hamiltonian:

```python
>>> g.is_hamiltonian()
False
```

```python
>>> from sage.all import *
```

```python
>>> g.is_hamiltonian()
False
```

... and it has a nice drawing

```python
>>> g.show(figsize=[10, 10])
```

```python
>>> from sage.all import *
```

```python
>>> g.show(figsize=[Integer(10), Integer(10)])
```

sage.graphs.generators.smallgraphs.EllinghamHorton78Graph()

Return the Ellingham-Horton 78-graph.

For more information, see the Wikipedia article [Ellingham%E2%80%93Horton_graph](https://en.wikipedia.org/wiki/Ellingham%E2%80%93Horton_graph)

EXAMPLES:

This graph is 3-regular:

```python
>>> g = graphs.EllinghamHorton78Graph()
>>> g.is_regular(k=3)
True
```

It is 3-connected and bipartite:

```python
g.vertex_connectivity()
3
```

```python
g.is_bipartite()
True
```

(continues on next page)
It is not Hamiltonian:

```python
sage: g.is_hamiltonian()  # not tested
               →needs sage.numerical.mip
False
```

... and it has a nice drawing

```python
sage: g.show(figsize=[10,10])  # not tested (too long)
```

sage.graphs.generators.smallgraphs.ErreraGraph()

Return the Errera graph.

For more information, see the Wikipedia article Errera_graph.

EXAMPLES:

The Errera graph is named after Alfred Errera. It is a planar graph on 17 vertices and having 45 edges:

```python
sage: G = graphs.ErreraGraph(); G
Errera graph: Graph on 17 vertices
sage: G.is_planar()
True
sage: G.order()
17
sage: G.size()
45
```

The Errera graph is Hamiltonian with radius 3, diameter 4, girth 3, and chromatic number 4:

```python
sage: G.is_hamiltonian()  # ...
               →needs sage.numerical.mip
True
```

(continues on next page)
Each vertex degree is either 5 or 6. That is, if \(f \) counts the number of vertices of degree 5 and \(s \) counts the number of vertices of degree 6, then \(f + s \) is equal to the order of the Errera graph:

\[
\text{sage: } D = G\text{.degree_sequence()}
\]
\[
\text{sage: } D\text{.count(5)} + D\text{.count(6)} == G\text{.order()}
\]

True

The automorphism group of the Errera graph is isomorphic to the dihedral group of order 20:

\[
\text{sage: } ag = G\text{.automorphism_group()}
\]
\[
\text{sage: } ag\text{.is_isomorphic(DihedralGroup}(10))
\]

True

sage\text{.graphs\text{.generators\text{.smallgraphs}}.F26AGraph()}

Return the F26A graph.

The F26A graph is a symmetric bipartite cubic graph with 26 vertices and 39 edges. For more information, see the Wikipedia article F26A_graph.

EXAMPLES:
sage: # needs networkx
sage: g = graphs.F26AGraph(); g
F26A Graph: Graph on 26 vertices
sage: g.order(), g.size()
(26, 39)
sage: g.automorphism_group().cardinality()
78
sage: g.girth()
6
sage: g.is_bipartite()
True
sage: g.characteristic_polynomial().factor()
(x - 3) * (x + 3) * (x^4 - 5*x^2 + 3)^6

sagegraphs.generators.smallgraphs.FlowerSnark()

Return a Flower Snark.

A flower snark has 20 vertices. It is part of the class of biconnected cubic graphs with edge chromatic number = 4, known as snarks. (i.e.: the Petersen graph). All snarks are not Hamiltonian, non-planar and have Petersen graph graph minors. See the Wikipedia article Flower_snark.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the nodes are drawn 0-14 on the outer circle, and 15-19 in an inner pentagon.

EXAMPLES: Inspect a flower snark:

sage: F = graphs.FlowerSnark()
sage: F
Flower Snark: Graph on 20 vertices
sage: F.graph6_string()
'ShCGHc8?GGg8@?GpK??C?CA?G?_G?Cc'

>>> from sage.all import *
>>> # needs networkx
>>> F = graphs.FlowerSnark()
>>> F
Flower Snark: Graph on 20 vertices
>>> F.graph6_string()
'ShCGHc8?GGg8@?GpK??C?CA?G?_G?Cc'

Now show it:
sage: F.show() # long time # needs sage.plot

>>> from sage.all import *

sage.plot

sage.graphs.generators.smallgraphs.FolkmanGraph()

Return the Folkman graph.

See the Wikipedia article Folkman_graph.

EXAMPLES:

sage: # needs networkx
sage: g = graphs.FolkmanGraph()
sage: g.order()
20
sage: g.size()
40
sage: g.diameter()
4
sage: g.girth()
4
sage: g.charpoly().factor()
(x - 4) * (x + 4) * x^10 * (x^2 - 6)^4
sage: g.chromatic_number()
2
sage: g.is_eulerian()
True
sage: g.is_hamiltonian() # needs sage.numerical_mip
True
sage: g.is_vertex_transitive()
False
sage: g.is_bipartite()
True

(continues on next page)
sage.graphs.generators.smallgraphs.FosterGraph()

Return the Foster graph.

See the Wikipedia article Foster_graph.

EXAMPLES:

```
sage: # needs networkx
sage: g = graphs.FosterGraph()
sage: g.order()
90
sage: g.size()
135
sage: g.diameter()
8
sage: g.girth()
10
sage: g.automorphism_group().cardinality()
4320
sage: g.is_hamiltonian()  # needs sage.numerical_mip
True
```

```
>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.FosterGraph()
>>> g.order()
90
>>> g.size()
135
>>> g.diameter()
8
>>> g.girth()
10
>>> g.automorphism_group().cardinality()
4320
>>> g.is_hamiltonian()  # needs sage.numerical_mip
True
```

sage.graphs.generators.smallgraphs.FranklinGraph()

Return the Franklin graph.

For more information, see the Wikipedia article Franklin_graph.

EXAMPLES:

The Franklin graph is named after Philip Franklin. It is a 3-regular graph on 12 vertices and having 18 edges:

```
sage: G = graphs.FranklinGraph(); G
Franklin graph: Graph on 12 vertices
```

(continues on next page)
The Franklin graph is a Hamiltonian, bipartite graph with radius 3, diameter 3, and girth 4:

```
sage: G.is_hamiltonian()  # needs sage.numerical.mip
True
sage: G.is_bipartite()
True
sage: G.radius()
3
sage: G.diameter()
3
sage: G.girth()
4
```

It is a perfect, triangle-free graph having chromatic number 2:

```
sage: G.is_perfect()
True
sage: G.is_triangle_free()
True
sage: G.chromatic_number()
2
```
True
>>> G.is_triangle_free()
True
>>> G.chromatic_number()
2

sage.graphs.generators.smallgraphs.FruchtGraph()

Return a Frucht Graph.

A Frucht graph has 12 nodes and 18 edges. It is the smallest cubic identity graph. It is planar and Hamiltonian. See the Wikipedia article Frucht_graph.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the first seven nodes are on the outer circle, with the next four on an inner circle and the last in the center.

EXAMPLES:

sage: FRUCHT = graphs.FruchtGraph()
sage: FRUCHT
Frucht graph: Graph on 12 vertices
sage: FRUCHT.graph6_string()
'KhCKM?_EGK?L'
sage: (graphs.FruchtGraph()).show() # long time
˓→needs networkx

>>> from sage.all import *

>>> FRUCHT = graphs.FruchtGraph()

>>> FRUCHT
Frucht graph: Graph on 12 vertices

>>> FRUCHT.graph6_string()
'KhCKM?_EGK?L'

>>> (graphs.FruchtGraph()).show() # long time
˓→needs networkx

sage.graphs.generators.smallgraphs.GoldnerHararyGraph()

Return the Goldner-Harary graph.

For more information, see the Wikipedia article Goldner%E2%80%93Harary_graph.

EXAMPLES:

The Goldner-Harary graph is named after A. Goldner and Frank Harary. It is a planar graph having 11 vertices and 27 edges:

sage: G = graphs.GoldnerHararyGraph(); G
Goldner-Harary graph: Graph on 11 vertices
sage: G.is_planar()
True
sage: G.order()
11
sage: G.size()
27

>>> from sage.all import *

>>> G = graphs.GoldnerHararyGraph(); G
Goldner-Harary graph: Graph on 11 vertices

>>> G.is_planar()
True

```python
>>> G.order()
11
>>> G.size()
27
```

The Goldner-Harary graph is chordal with radius 2, diameter 2, and girth 3:

```python
sage: G.is_chordal()
True
sage: G.radius()
2
sage: G.diameter()
2
sage: G.girth()
3
```

Its chromatic number is 4 and its automorphism group is isomorphic to the dihedral group D_6:

```python
sage: G.chromatic_number()
4
sage: ag = G.automorphism_group()
# needs sage.groups
sage: ag.is_isomorphic(DihedralGroup(6))
# needs sage.groups
True
```

```python
>>> from sage.all import *

```

sage.graphs.generators.smallgraphs.GolombGraph()

Return the Golomb graph.

See the Wikipedia article Golomb_graph for more information.

EXAMPLES:

The Golomb graph is a planar and Hamiltonian graph with 10 vertices and 18 edges. It has chromatic number 4, diameter 3, radius 2 and girth 3. It can be drawn in the plane as a unit distance graph:
sage: G = graphs.GolombGraph(); G
needs sage.symbolic
Golomb graph: Graph on 10 vertices
sage: pos = G.get_pos()
needs sage.symbolic
sage: def dist2(u, v):
 : return (u[0]-v[0])**2 + (u[1]-v[1])**2
sage: all(dist2(pos[u], pos[v]) == 1 for u, v in G.edge_iterator(labels=None)) # needs sage.symbolic
True

>>> from sage.all import *
>>> G = graphs.GolombGraph(); G
needs sage.symbolic
Golomb graph: Graph on 10 vertices
>>> pos = G.get_pos()
needs sage.symbolic
>>> def dist2(u, v):
 : return (u[Integer(0)]-v[Integer(0)])**Integer(2) + (u[Integer(1)]-
 v[Integer(1)])**Integer(2)
>>> all(dist2(pos[u], pos[v]) == Integer(1) for u, v in G.edge_iterator(labels=None)) # needs sage.symbolic
True

sage.graphs.generators.smallgraphs.GossetGraph()

Return the Gosset graph.

The Gosset graph is the skeleton of the Gosset_3_21() polytope. It has with 56 vertices and degree 27. For more information, see the Wikipedia article Gosset_graph.

EXAMPLES:

sage: g = graphs.GossetGraph(); g
Gosset Graph: Graph on 56 vertices
sage: g.order(), g.size()
(56, 756)

>>> from sage.all import *
>>> g = graphs.GossetGraph(); g
Gosset Graph: Graph on 56 vertices
>>> g.order(), g.size()
(56, 756)

sage.graphs.generators.smallgraphs.GrayGraph(embedding=1)

Return the Gray graph.

See the Wikipedia article Gray_graph.

INPUT:

- embedding – integer (default: 1); two embeddings are available, and can be selected by setting embedding to 1 or 2

EXAMPLES:

sage: # needs networkx
sage: g = graphs.GrayGraph()
sage: g.order()

(continues on next page)
sage: g.size()
81
sage: g.girth()
8
sage: g.diameter()
6
sage: g.show(figsize=[10, 10]) # long time
needs sage.plot
sage: graphs.GrayGraph(embedding=2).show(figsize=[10, 10]) # long time,
needs sage.plot

sage.graphs.generators.smallgraphs.GritsenkoGraph()

Return SRG(65, 32, 15, 16) constructed by Gritsenko.

We took the adjacency matrix from O. Gritsenko’s [Gri2021] and extracted orbits of the automorphism group on
the edges.

EXAMPLES:

sage: H = graphs.GritsenkoGraph(); H
Gritsenko strongly regular graph: Graph on 65 vertices
sage: H.is_strongly_regular(parameters=True)
(65, 32, 15, 16)

sage.graphs.generators.smallgraphs.GrotzschGraph()

Return the Grötzsch graph.

The Grötzsch graph is an example of a triangle-free graph with chromatic number equal to 4. For more information,
see the Wikipedia article Gr%C3%B6tzsch_graph.
EXAMPLES:

The Grötzsch graph is named after Herbert Grötzsch. It is a Hamiltonian graph with 11 vertices and 20 edges:

```
sage: G = graphs.GrotzschGraph(); G
Grotzsch graph: Graph on 11 vertices
sage: G.is_hamiltonian()  # Needs sage.numerical.mip
True
sage: G.order()
11
sage: G.size()
20
```

```
>>> from sage.all import *

>>> G = graphs.GrotzschGraph(); G
Grotzsch graph: Graph on 11 vertices
>>> G.is_hamiltonian()  # Needs sage.numerical.mip
True
>>> G.order()
11
>>> G.size()
20
```

The Grötzsch graph is triangle-free and having radius 2, diameter 2, and girth 4:

```
sage: G.is_triangle_free()
True
sage: G.radius()
2
sage: G.diameter()
2
sage: G.girth()
4
```

```
>>> from sage.all import *

>>> G.is_triangle_free()
True
>>> G.radius()
2
>>> G.diameter()
2
>>> G.girth()
4
```

Its chromatic number is 4 and its automorphism group is isomorphic to the dihedral group D_5:

```
sage: G.chromatic_number()
4
sage: ag = G.automorphism_group()  # Needs sage.groups
sage: ag.is_isomorphic(DihedralGroup(5))  # Needs sage.groups
True
```

2.14. Various small graphs
Graph Theory, Release 10.4

```
>>> from sage.all import *
>>> G.chromatic_number()
4
>>> ag = G.automorphism_group()  # needs sage.groups
>>> ag.is_isomorphic(DihedralGroup(Integer(5)))  # needs sage.groups
True
```

`sage.graphs.generators.smallgraphs.HallJankoGraph(from_string=True)`

Return the Hall-Janko graph.

For more information on the Hall-Janko graph, see the Wikipedia article Hall-Janko_graph.

The construction used to generate this graph in Sage is by a 100-point permutation representation of the Janko group J_2, as described in version 3 of the ATLAS of Finite Group representations, in particular on the page ATLAS: J2 – Permutation representation on 100 points.

INPUT:

- `from_string` – boolean (default: True); whether to build the graph from its sparse6 string or through GAP. The two methods return the same graph though doing it through GAP takes more time.

EXAMPLES:

```
sage: g = graphs.HallJankoGraph()
sage: g.is_regular(36)
True
```

Is it really strongly regular with parameters 14, 12?

```
sage: nu = set(g.neighbors(0))
sage: for v in range(1, 100):
....:     if v in nu:
....:         expected = 14
....:     else:
....:         expected = 12
....:     nv = set(g.neighbors(v))
....:     nv.discard(0)
....:     if len(nu & nv) != expected:
....:         print("Something is wrong here!!!")
....:         break
```

(continues on next page)
Some other properties that we know how to check:

```python
sage: g.diameter()
2
sage: g.girth()
3
sage: factor(g.characteristic_polynomial())
# needs sage.libs.pari sage.modules
(x - 36) * (x - 6)^36 * (x + 4)^63
```

sage.graphs.generators.smallgraphs.HarborthGraph()

Return the Harborth Graph.

The Harborth graph has 104 edges and 52 vertices, and is the smallest known example of a 4-regular matchstick graph. For more information, see the Wikipedia article Harborth_graph.

EXAMPLES:

```python
sage: g = graphs.HarborthGraph(); g
Harborth Graph: Graph on 52 vertices
sage: g.is_regular(4)
True
```

sage.graphs.generators.smallgraphs.HarriesGraph(embedding=1)

Return the Harries Graph.

The Harries graph is a Hamiltonian 3-regular graph on 70 vertices. See the Wikipedia article Harries_graph.

The default embedding here is to emphasize the graph’s 4 orbits. This graph actually has a funny construction. The following procedure gives an idea of it, though not all the adjacencies are being properly defined.

1. Take two disjoint copies of a Petersen graph. Their vertices will form an orbit of the final graph.
2. Subdivide all the edges once, to create 15+15=30 new vertices, which together form another orbit.
3. Create 15 vertices, each of them linked to 2 corresponding vertices of the previous orbit, one in each of the two subdivided Petersen graphs. At the end of this step all vertices from the previous orbit have degree 3, and the only vertices of degree 2 in the graph are those that were just created.

4. Create 5 vertices connected only to the ones from the previous orbit so that the graph becomes 3-regular.

INPUT:

• embedding – integer (default: 1); two embeddings are available, and can be selected by setting embedding to 1 or 2

EXAMPLES:

```
sage: # needs networkx
g = graphs.HarriesGraph()
sage: g.order()
70
sage: g.size()
105
sage: g.girth()
10
sage: g.diameter()
6
sage: g.show(figsize=[10, 10])  # long time  # needs sage.plot
sage: graphs.HarriesGraph(embedding=2).show(figsize=[10, 10])  # long time,
˓→needs sage.plot
```

```
>>> from sage.all import *
>>> # needs networkx
g = graphs.HarriesGraph()
>>> g.order()
70
>>> g.size()
105
>>> g.girth()
10
>>> g.diameter()
6
>>> g.show(figsize=[Integer(10), Integer(10)])  # long time  # needs sage.plot
˓→
>>> graphs.HarriesGraph(embedding=Integer(2)).show(figsize=[Integer(10), Integer(10)])  # long time, needs sage.plot
```

Return the Harries-Wong Graph.

See the Wikipedia article Harries-Wong_graph.

About the default embedding:

The default embedding is an attempt to emphasize the graph’s 8 (!!!) different orbits. In order to understand this better, one can picture the graph as being built in the following way.

1. One first creates a 3-dimensional cube (8 vertices, 12 edges), whose vertices define the first orbit of the final graph.
2. The edges of this graph are subdivided once, to create 12 new vertices which define a second orbit.
3. The edges of the graph are subdivided once more, to create 24 new vertices giving a third orbit.
4. 4 vertices are created and made adjacent to the vertices of the second orbit so that they have degree 3. These 4 vertices also define a new orbit.

5. In order to make the vertices from the third orbit 3-regular (they all miss one edge), one creates a binary tree on $1 + 3 + 6 + 12$ vertices. The leaves of this new tree are made adjacent to the 12 vertices of the third orbit, and the graph is now 3-regular. This binary tree contributes 4 new orbits to the Harries-Wong graph.

INPUT:

- embedding – integer (default: 1); two embeddings are available, and can be selected by setting embedding to 1 or 2

EXAMPLES:

```python
sage: # needs networkx
sage: g = graphs.HarriesWongGraph()
sage: g.order()
70
sage: g.size()
105
sage: g.girth()
10
sage: g.diameter()
6
sage: orbits = g.automorphism_group(orbits=True)[-1]  # long time
␣
˓→ needs sage.groups
sage: g.show(figsize=[15, 15], partition=orbits)  # long time
˓→ needs sage.groups sage.plot

>>> from sage.all import *

>>> g = graphs.HarriesWongGraph()

>>> g.order()
70

>>> g.size()
105

>>> g.girth()
10

>>> g.diameter()
6

>>> orbits = g.automorphism_group(orbits=True)[-Integer(1)]  # long time
˓→ # needs sage.groups

>>> g.show(figsize=[Integer(15), Integer(15)], partition=orbits)  # long time
˓→ time
˓→ needs sage.groups sage.plot

Alternative embedding:

```python
sage: graphs.HarriesWongGraph(embedding=2).show() # long time
˓→ needs networkx sage.plot
```

```python

>>> from sage.all import *

>>> graphs.HarriesWongGraph(embedding=Integer(2)).show() # long time
˓→ # needs networkx sage.plot

sage.graphs.generators.smallgraphs.HeawoodGraph()

Return a Heawood graph.

The Heawood graph is a cage graph that has 14 nodes. It is a cubic symmetric graph. (See also the Möbius-Kantor graph, MobiusKantorGraph()). It is nonplanar and Hamiltonian. It has diameter 3, radius 3, girth 6, and

2.14. Various small graphs
chromatic number 2. It is 4-transitive but not 5-transitive. See the Wikipedia article Heawood_graph.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the nodes are positioned in a circular layout with the first node appearing at the top, and then continuing counterclockwise.

EXAMPLES:

```python
sage: H = graphs.HeawoodGraph()
sage: H
Heawood graph: Graph on 14 vertices
sage: H.graph6_string()
'MhEGHC@AI?_PC@_G_'
sage: (graphs.HeawoodGraph()).show() # long time

>>> from sage.all import *
>>> H = graphs.HeawoodGraph()
>>> H
Heawood graph: Graph on 14 vertices
>>> H.graph6_string()
'MhEGHC@AI?_PC@_G_'
>>> (graphs.HeawoodGraph()).show() # long time
```

sage.graphs.generators.smallgraphs.HerschelGraph()

Returns the Herschel graph.

For more information, see the Wikipedia article Herschel_graph.

EXAMPLES:

The Herschel graph is named after Alexander Stewart Herschel. It is a planar, bipartite graph with 11 vertices and 18 edges:

```python
sage: G = graphs.HerschelGraph(); G
Herschel graph: Graph on 11 vertices
sage: G.is_planar()
True
sage: G.is_bipartite()
True
sage: G.order()
11
sage: G.size()
18

>>> from sage.all import *
>>> G = graphs.HerschelGraph(); G
Herschel graph: Graph on 11 vertices
>>> G.is_planar()
True
>>> G.is_bipartite()
True
>>> G.order()
11
>>> G.size()
18
```

The Herschel graph is a perfect graph with radius 3, diameter 4, and girth 4:
Its chromatic number is 2 and its automorphism group is isomorphic to the dihedral group D_6:

```python
sage: G.chromatic_number()
2
sage: ag = G.automorphism_group()  # needs sage.groups
sage: ag.is_isomorphic(DihedralGroup(6))  # needs sage.groups
True
```

```python
>>> from sage.all import *
>>> G.is_perfect()
True
>>> G.radius()
3
>>> G.diameter()
4
>>> G.girth()
4
```

sage.graphs.generators.smallgraphs.HigmanSimsGraph (relabel=True)

Return the Higman-Sims graph.

The Higman-Sims graph is a remarkable strongly regular graph of degree 22 on 100 vertices. For example, it can be split into two sets of 50 vertices each, so that each half induces a subgraph isomorphic to the Hoffman-Singleton graph (`HoffmanSingletonGraph()`). This can be done in 352 ways (see Higman-Sims graph by Andries E. Brouwer, accessed 24 October 2009.)

Its most famous property is that the automorphism group has an index 2 subgroup which is one of the 26 sporadic groups [HS1968].

The construction used here follows [Haf2004].

See also the Wikipedia article Higman–Sims graph.

INPUT:

- `relabel` -- boolean (default: True); whether to relabel the vertices with consecutive integers. If False the labels are strings that are three digits long. "xyz" means the vertex is in group x (zero through three), pentagon or pentagram y (zero through four), and is vertex z (zero through four) of that pentagon or pentagram. See [Haf2004] for more.
OUTPUT:

The Higman-Sims graph.

EXAMPLES:

A split into the first 50 and last 50 vertices will induce two copies of the Hoffman-Singleton graph, and we illustrate another such split, which is obvious based on the construction used:

```python
sage: H = graphs.HigmanSimsGraph()
sage: A = H.subgraph(range(0,50))
sage: B = H.subgraph(range(50,100))
sage: K = graphs.HoffmanSingletonGraph()
sage: K.is_isomorphic(A) and K.is_isomorphic(B)
True
sage: C = H.subgraph(range(25,75))
sage: D = H.subgraph(list(range(0,25))+list(range(75,100)))
sage: K.is_isomorphic(C) and K.is_isomorphic(D)
True
```

The automorphism group contains only one nontrivial proper normal subgroup, which is of index 2 and is simple. It is known as the Higman-Sims group:

```python
sage: H = graphs.HigmanSimsGraph()
sage: G = H.automorphism_group() # needs sage.groups
sage: g = G.order(); g
88704000
sage: K = G.normal_subgroups()[1] # needs sage.groups
sage: K.is_simple() # needs sage.groups
True
sage: g//K.order() # needs sage.groups
2
```

(continues on next page)
AUTHOR:

- Rob Beezer (2009-10-24)

sage.graphs.generators.smallgraphs.HoffmanGraph()

Return the Hoffman Graph.

See the Wikipedia article Hoffman_graph.

EXAMPLES:

```python
sage: g = graphs.HoffmanGraph()
sage: g.is_bipartite()
True
sage: g.is_hamiltonian()  # long time
True
sage: g.radius()
3
sage: g.diameter()
4
sage: g.automorphism_group().cardinality()  # needs sage.groups
48
```

sage.graphs.generators.smallgraphs.HoffmanSingletonGraph()

Return the Hoffman-Singleton graph.

The Hoffman-Singleton graph is the Moore graph of degree 7, diameter 2 and girth 5. The Hoffman-Singleton theorem states that any Moore graph with girth 5 must have degree 2, 3, 7 or 57. The first three respectively are the pentagon, the Petersen graph, and the Hoffman-Singleton graph. The existence of a Moore graph with girth 5 and degree 57 is still open.
A Moore graph is a graph with diameter d and girth $2d + 1$. This implies that the graph is regular, and distance regular.

For more details, see [GR2001] and the Wikipedia article Hoffman–Singleton_graph.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. A novel algorithm written by Tom Boothby gives a random layout which is pleasing to the eye.

EXAMPLES:

```python
sage: HS = graphs.HoffmanSingletonGraph()
sage: Set(HS.degree())
{7}
sage: HS.girth()
5
sage: HS.diameter()
2
sage: HS.num_verts()
50
```

Note that you get a different layout each time you create the graph.

```python
sage: HS.layout()[1]  # random
(-0.844..., 0.535...)
sage: HS = graphs.HoffmanSingletonGraph()
sage: HS.layout()[1]  # random
(-0.904..., 0.425...)
```

```python
>>> from sage.all import *

>>> HS = graphs.HoffmanSingletonGraph()

>>> HS.layout()[1]  # random
(-0.844..., 0.535...)

>>> HS = graphs.HoffmanSingletonGraph()

>>> HS.layout()[1]  # random
(-0.904..., 0.425...)
```

```python
sage.graphs.generators.smallgraphs.HoltGraph()

Return the Holt graph (also called the Doyle graph).

See the Wikipedia article Holt_graph.

EXAMPLES:

```python
sage: g = graphs.HoltGraph();g
Holt graph: Graph on 27 vertices
sage: g.is_regular()
True
sage: g.is_vertex_transitive() #...
```

(continues on next page)
$\texttt{needs sage.groups}$

True

$\texttt{sage: g.chromatic_number()}$

3

$\texttt{sage: g.is_hamiltonian()}$  # long time  # needs sage.numerical.mip

True

$\texttt{sage: g.radius()}$

3

$\texttt{sage: g.diameter()}$

3

$\texttt{sage: g.girth()}$

5

$\texttt{sage: g.automorphism_group().cardinality()}$  # needs sage.groups

54

$\texttt{>>> from sage.all import *}$

$\texttt{>>> g = graphs.HoltGraph();g}$

Holt graph: Graph on 27 vertices

$\texttt{>>> g.is_regular()}$

True

$\texttt{>>> g.is_vertex_transitive()}$  # needs sage.groups

True

$\texttt{>>> g.chromatic_number()}$

3

$\texttt{>>> g.is_hamiltonian()}$  # long time  # needs sage.numerical.mip

True

$\texttt{>>> g.radius()}$

3

$\texttt{>>> g.diameter()}$

3

$\texttt{>>> g.girth()}$

5

$\texttt{>>> g.automorphism_group().cardinality()}$  # needs sage.groups

54

sage.graphs.generators.smallgraphs.$\texttt{HortonGraph()}$

Return the Horton Graph.

The Horton graph is a cubic 3-connected non-hamiltonian graph. For more information, see the Wikipedia article Horton_graph.

EXAMPLES:

$\texttt{sage: # needs networkx}$

$\texttt{sage: g = graphs.HortonGraph()}$

$\texttt{sage: g.order()}$

96

$\texttt{sage: g.size()}$

144

$\texttt{sage: g.radius()}$

10

$\texttt{sage: g.diameter()}$

(continues on next page)
Graph Theory, Release 10.4

sage: g.girth()
6
sage: g.automorphism_group().cardinality()
96
sage: g.chromatic_number()
2
sage: g.is_hamiltonian()  # not tested (veeeery long)  
False

>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.HortonGraph()
>>> g.order()
96
>>> g.size()
144
>>> g.radius()
10
>>> g.diameter()
10
>>> g.girth()
6
>>> g.automorphism_group().cardinality()
96
>>> g.chromatic_number()
2
>>> g.is_hamiltonian()  # not tested (veeeery long)  
False

sage.graphs.generators.smallgraphs.IoninKharaghani765Graph()

Return a \((765, 192, 48, 48)\)-strongly regular graph.

Existence of a strongly regular graph with these parameters was claimed in [IK2003]. Implementing the construction in the latter did not work, however. This function implements the following instructions, shared by Yury Ionin and Hadi Kharaghani.

Let \(A\) be the affine plane over the field \(GF(3) = \{-1, 0, 1\}\). Let

\[
\begin{align*}
\phi_1(x, y) &= x \\
\phi_2(x, y) &= y \\
\phi_3(x, y) &= x + y \\
\phi_4(x, y) &= x - y
\end{align*}
\]

For \(i = 1, 2, 3, 4\) and \(j \in GF(3)\), let \(L_{i,j}\) be the line in \(A\) defined by \(\phi_i(x, y) = j\). Let \(M\) be the set of all 12 lines \(L_{i,j}\), plus the empty set. Let \(\pi\) be the permutation defined on \(M\) by \(\pi(L_{i,j}) = L_{i,j+1}\) and \(\pi(\emptyset) = \emptyset\), so that \(\pi\) has three orbits of cardinality 3 and one of cardinality 1.

Let \(A = (p_1, ..., p_9)\) with \(p_1 = (-1, 1), p_2 = (-1, 0), p_3 = (-1, 1), p_4 = (0, -1), p_5 = (0, 0), p_6 = (0, 1), p_7 = (1, -1), p_8 = (1, 0), p_9 = (1, 1)\). Note that \(p_i + p_{10-i} = (0, 0)\). For any subset \(X\) of \(A\), let \(M(X)\) be the \((0,1)\)-matrix of order 9 whose \((i,j)\)-entry equals 1 if and only if \(p_{10-i} - p_j \in X\). Note that \(M\) is a symmetric matrix.

An \(MF\)-tuple is an ordered quintuple \((X_1, X_2, X_3, X_4, X_5)\) of subsets of \(A\), of which one is the empty set and the other four are pairwise non-parallel lines. Such a quintuple generates the following block...
Matrix:

\[
N(X_1, X_2, X_3, X_4, X_5) = \begin{pmatrix}
M(X_1) & M(X_2) & M(X_3) & M(X_4) & M(X_5) \\
M(X_2) & M(X_3) & M(X_4) & M(X_5) & M(X_1) \\
M(X_3) & M(X_4) & M(X_5) & M(X_1) & M(X_2) \\
M(X_4) & M(X_5) & M(X_1) & M(X_2) & M(X_3) \\
M(X_5) & M(X_1) & M(X_2) & M(X_3) & M(X_4)
\end{pmatrix}
\]

Observe that if \((X_1, X_2, X_3, X_4, X_5)\) is an MF-tuple, then \(N(X_1, X_2, X_3, X_4, X_5)\) is the symmetric incidence matrix of a symmetric \((45, 12, 3)\)-design.

Let \(F\) be the set of all MF-tuples and let \(\sigma\) be the following permutation of \(F\):

\[
\sigma(X_1, X_2, X_3, X_4, X_5) = (X_2, X_3, X_4, X_5, X_1)
\]

\[
\pi(X_1, X_2, X_3, X_4, X_5) = (\pi(X_1), \pi(X_2), \pi(X_3), \pi(X_4), \pi(X_5))
\]

Observe that \(\sigma\) and \(\pi\) commute, and generate a (cyclic) group \(G\) of order 15. We will from now on identify \(G\) with the (cyclic) multiplicative group of the field \(GF(16)\) equal to \(\{\omega^0, \ldots, \omega^{14}\}\). Let \(W = [w_{ij}]\) be the following matrix of order 17 over \(GF(16) = \{a_1, \ldots, a_6\}\):

\[
w_{ij} = \begin{cases}
    a_i + a_j & \text{if } 1 \leq i \leq 16, 1 \leq j \leq 16, \\
    1 & \text{if } i = 17, j \neq 17, \\
    0 & \text{if } i = j = 17
\end{cases}
\]

The diagonal entries of \(W\) are equal to 0, each off-diagonal entry can be represented as \(\omega^k\) with \(0 \leq k \leq 14\). Matrix \(W\) is a symmetric \(BGW(17, 16, 15; G)\).

Fix an MF-tuple \((X_1, X_2, X_3, X_4, X_5)\) and let \(S\) be the block matrix obtained from \(W\) by replacing every diagonal entry of \(W\) by the zero matrix of order 45, and every off-diagonal entry \(\omega^k\) by the matrix \(N(\sigma^k(X_1, X_2, X_3, X_4, X_5))\) (through the association of \(\omega^k\) with an element of \(G\)). Then \(S\) is a symmetric incidence matrix of a symmetric \((765, 192, 48)\)-design with zero diagonal, and therefore \(S\) is an adjacency matrix of a strongly regular graph with parameters \((765, 192, 48, 48)\).

EXAMPLES:

```python
sage: g = graphs.IoninKharaghani765Graph(); g
#...

>>> from sage.all import *
>>> g = graphs.IoninKharaghani765Graph(); g
#...

Todo: An update to [IK2003] meant to fix the problem encountered became available 2016/02/24, see http://www.cs.uleth.ca/~hadi/research/IoninKharaghani.pdf

sage.graphs.generators.smallgraphs.JankoKharaghaniGraph(v)

Return a \((936, 375, 150, 150)\)-srg or a \((1800, 1029, 588, 588)\)-srg.

This functions returns a strongly regular graph for the two sets of parameters shown to be realizable in [JK2002]. The paper also uses a construction from [GM1987].

INPUT:

- \(v\) – integer; one of 936 or 1800
EXAMPLES:

```python
sage: g = graphs.JankoKharaghaniGraph(936)  # long time
# needs sage.libs.pari
sage: g.is_strongly_regular(parameters=True)  # long time  # needs sage.libs.pari
(936, 375, 150, 150)

sage: g = graphs.JankoKharaghaniGraph(1800)  # not tested (30s)

sage: g.is_strongly_regular(parameters=True)  # not tested (30s)
(1800, 1029, 588, 588)
```

Return a \((324, 153, 72, 72)\)-strongly regular graph from [JKT2001].

Build the graph using the description given in [JKT2001], taking sets \(B_1\) and \(B_{163}\) in the text as adjacencies of vertices \(1\) and \(163\), respectively, and taking the edge orbits of the group \(G\) provided.

EXAMPLES:

```python
>>> from sage.all import *

>>> g = graphs.JankoKharaghaniTonchevGraph()  # long time  # needs sage.libs.gap

>>> g.is_strongly_regular(parameters=True)  # long time  # needs sage.libs.gap
(324, 153, 72, 72)
```

Return the Kittell Graph.

For more information, see the Wolfram page about the Kittel Graph.

EXAMPLES:

```python
sage: g = graphs.KittellGraph()
sage: g.order()
23
sage: g.size()
63
sage: g.radius()
3
```
sage: g.diameter()
4
sage: g.girth()
3
sage: g.chromatic_number()
4

>>> from sage.all import *

>>> g = graphs.KittellGraph()

>>> g.order()
23

>>> g.size()
63

>>> g.radius()
3

>>> g.diameter()
4

>>> g.girth()
3

>>> g.chromatic_number()
4

sage.graphs.generators.smallgraphs.Klein3RegularGraph()

Return the Klein 3-regular graph.

The cubic Klein graph has 56 vertices and can be embedded on a surface of genus 3. It is the dual of Klein7RegularGraph(). For more information, see the Wikipedia article Klein_graphs.

EXAMPLES:

sage: g = graphs.Klein3RegularGraph(); g
Klein 3-regular Graph: Graph on 56 vertices

sage: g.order(), g.size()
(56, 84)

sage: g.girth()
7

sage: g.automorphism_group().cardinality()
needs sage.groups
336

sage: g.chromatic_number()
3

sage.graphs.generators.smallgraphs.Klein7RegularGraph()

Return the Klein 7-regular graph.

2.14. Various small graphs 1331
The 7-valent Klein graph has 24 vertices and can be embedded on a surface of genus 3. It is the dual of `Klein3RegularGraph()`. For more information, see the Wikipedia article `Klein_graphs`.

EXAMPLES:

```sage
g = graphs.Klein7RegularGraph(); g
Klein 7-regular Graph: Graph on 24 vertices
g.order(), g.size()
(24, 84)
g.girth()
3
g.automorphism_group().cardinality()  # needs sage.groups
336
g.chromatic_number()
4
```

```sage
g = graphs.Klein7RegularGraph(); g
Klein 7-regular Graph: Graph on 24 vertices
g.order(), g.size()
(24, 84)
g.girth()
3
g.automorphism_group().cardinality()  # needs sage.groups
336
g.chromatic_number()
4
```

`sage.graphs.generators.smallgraphs.KrackhardtKiteGraph()`

Return a Krackhardt kite graph with 10 nodes.

The Krackhardt kite graph was originally developed by David Krackhardt for the purpose of studying social networks (see [Kre2002] and the Wikipedia article `Krackhardt_kite_graph`). It is used to show the distinction between degree centrality, betweenness centrality, and closeness centrality. For more information read the plotting section below in conjunction with the example.

PLOTTING: Upon construction, the position dictionary is filled to override the spring-layout algorithm. By convention, the graph is drawn left to right, in top to bottom row sequence of [2, 3, 2, 1, 1, 1] nodes on each row. This places the fourth node (3) in the center of the kite, with the highest degree. But the fourth node only connects nodes that are otherwise connected, or those in its clique (i.e.: Degree Centrality). The eighth (7) node is where the kite meets the tail. It has degree = 3, less than the average, but is the only connection between the kite and tail (i.e.: Betweenness Centrality). The sixth and seventh nodes (5 and 6) are drawn in the third row and have degree = 5. These nodes have the shortest path to all other nodes in the graph (i.e.: Closeness Centrality). Please execute the example for visualization.

EXAMPLES:

Construct and show a Krackhardt kite graph

```sage
g = graphs.KrackhardtKiteGraph()
g.show()  # long time  # needs sage.plot
```

```sage
g = graphs.KrackhardtKiteGraph()
```

(continues on next page)
sage.graphs.generators.smallgraphs.LivingstoneGraph()

Return the Livingstone Graph.

The Livingstone graph is a distance-transitive graph on 266 vertices whose automorphism group is the J_1 group. For more information, see the Wikipedia article Livingstone_graph.

EXAMPLES:

```python
>>> g = graphs.LivingstoneGraph()
```

```python
sage: g.order()
sage: 266
```

```python
sage: g.size()
sage: 1463
```

```python
sage: g.girth()
sage: 5
```

```python
sage: g.is_vertex_transitive()
sage: True
```

```python
sage: g.is_distance_regular()
sage: True
```

sage.graphs.generators.smallgraphs.LjubljanaGraph(\texttt{embedding}=1)

Return the Ljubljana Graph.

The Ljubljana graph is a bipartite 3-regular graph on 112 vertices and 168 edges. It is not vertex-transitive as it has two orbits which are also independent sets of size 56. See the Wikipedia article Ljubljana_graph.

The default embedding is obtained from the Heawood graph.

INPUT:

- \texttt{embedding} – integer (default: 1); two embeddings are available, and can be selected by setting \texttt{embedding} to 1 or 2

EXAMPLES:

```python
>>> from sage.all import *
```

```python
>>> g = graphs.LjubljanaGraph()
```

```python
sage: g.order()
sage: 112
```

```python
sage: g.size()
```

(continues on next page)
sage: g = graphs.LjubljanaGraph(embedding=2)

sage: g.order()
112
sage: g.size()
168
sage: g.girth()
10
sage: g.diameter()
8

sage: g.show(figsize=[Integer(10), Integer(10)])
long time
needs sage.plot

sage: graphs.LjubljanaGraph(embedding=Integer(2)).show(figsize=[Integer(10), Integer(10)])
long time, needs sage.plot

sage.graphs.generators.smallgraphs.LocalMcLaughlinGraph()

Return the local McLaughlin graph.

The local McLaughlin graph is a strongly regular graph with parameters \((162, 56, 10, 24)\). It can be obtained from \texttt{McLaughlinGraph()} by considering the stabilizer of a point: one of its orbits has cardinality 162.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{g = graphs.LocalMcLaughlinGraph(); g} & \text{\# long time, optional - gap_package_design} \\
& \text{Local McLaughlin Graph: Graph on 162 vertices} \\
\text{sage: } & \text{g.is_strongly_regular(parameters=\texttt{True})} & \text{\# long time, optional - gap_package_design} \\
& (162, 56, 10, 24)
\end{align*}
\]

\[
\begin{align*}
\text{from sage.all import } * \\
\text{g = graphs.LocalMcLaughlinGraph(); g} & \text{\# long time, optional - gap_package_design} \\
\text{Local McLaughlin Graph: Graph on 162 vertices} \\
\text{g.is_strongly_regular(parameters=\texttt{True})} & \text{\# long time, optional - gap_package_design} \\
(162, 56, 10, 24)
\end{align*}
\]

sage.graphs.generators.smallgraphs.M22Graph()

Return the M22 graph.

The \(M_{22}\) graph is the unique strongly regular graph with parameters \(v = 77, k = 16, \lambda = 0, \mu = 4\).

For more information on the \(M_{22}\) graph, see \url{https://www.win.tue.nl/~aeb/graphe/M22.html}.

EXAMPLES:
sage: # needs sage.groups
sage: g = graphs.M22Graph()
sage: g.order()
77
sage: g.size()
616
sage: g.is_strongly_regular(parameters=True)
(77, 16, 0, 4)

sage.graphs.generators.smallgraphs.MarkstroemGraph()

Return the Markström Graph.

The Markström Graph is a cubic planar graph with no cycles of length 4 nor 8, but containing cycles of length 16. For more information, see the Wolfram page about the Markström Graph.

EXAMPLES:

sage: g = graphs.MarkstroemGraph()
sage: g.order()
24
sage: g.size()
36
sage: g.is_planar()
True
sage: g.is_regular(3)
True
sage: g.subgraph_search(graphs.CycleGraph(4)) is None
#...
needs sage.modules
True
sage: g.subgraph_search(graphs.CycleGraph(8)) is None
#...
needs sage.modules
True
sage: g.subgraph_search(graphs.CycleGraph(16))
#...
needs sage.modules
Subgraph of (Markstroem Graph): Graph on 16 vertices

...
sage.graphs.generators.smallgraphs.MathonStronglyRegularGraph(t)

Return one of Mathon’s graphs on 784 vertices.

INPUT:

• t – integer; the number of the graph, from 0 to 2

EXAMPLES:

```
sage: # long time, needs sage.libs.gap
sage: from sage.graphs.generators.smallgraphs import MathonStronglyRegularGraph
sage: G = MathonStronglyRegularGraph(0)
sage: G.is_strongly_regular(parameters=True)
(784, 243, 82, 72)
```

sage.graphs.generators.smallgraphs.McGeeGraph(embedding=2)

Return the McGee Graph.

See the Wikipedia article McGee_graph.

INPUT:

• embedding – integer (default: 2); two embeddings are available, and can be selected by setting embedding to 1 or 2

EXAMPLES:

```
sage: # needs networkx
sage: g = graphs.McGeeGraph()
sage: g.order()
24
sage: g.size()
36
sage: g.girth()
7
sage: g.diameter()
4
sage: g.show()  # needs sage.plot
```

Graph Theory, Release 10.4

```
>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.McGeeGraph()
>>> g.order()
24
>>> g.size()
36
>>> g.girth()
7
>>> g.diameter()
4
>>> g.show()

   # needs sage.plot
>>> graphs.McGeeGraph(embedding=Integer(1)).show()  # long time

   # needs sage.plot
```

`sage.graphs.generators.smallgraphs.McLaughlinGraph()`

Return the McLaughlin Graph.

The McLaughlin Graph is the unique strongly regular graph of parameters (275, 112, 30, 56).

For more information on the McLaughlin Graph, see its web page on Andries Brouwer's website which gives the definition that this method implements.

Note: To create this graph you must have the gap_packages spkg installed.

EXAMPLES:
```
sage: g = graphs.McLaughlinGraph()  # optional - gap_package_design
sage: g.is_strongly_regular(parameters=True)  # optional - gap_package_design
(275, 112, 30, 56)

sage: set(g.spectrum()) == {112, 2, -28}  # optional - gap_package_design
True
```

```
>>> from sage.all import *
>>> g = graphs.McLaughlinGraph()  # optional - gap_package_design
>>> g.is_strongly_regular(parameters=True)  # optional - gap_package_design
(275, 112, 30, 56)

>>> set(g.spectrum()) == {Integer(112), Integer(2), -Integer(28)}  # optional - gap_package_design
True
```

`sage.graphs.generators.smallgraphs.MeredithGraph()`

Return the Meredith Graph.

The Meredith Graph is a 4-regular 4-connected non-hamiltonian graph. For more information on the Meredith Graph, see the Wikipedia article Meredith_graph.

EXAMPLES:
```
sage: g = graphs.MeredithGraph()

sage: g.is_regular(4)
True

sage: g.order()
70

sage: g.size()
```

(continues on next page)
sage: g.radius()
7
sage: g.diameter()
8
sage: g.girth()
4
sage: g.chromatic_number()
3
sage: g.is_hamiltonian() # long time
False

>>> from sage.all import *

>>> g = graphs.MeredithGraph()

>>> g.is_regular(Integer(4))
True

>>> g.order()
70

sage: g.is_regular(Integer(4))
True

sage: g.radius()
7

sage: g.is_regular(Integer(4))
True

sage: g.diameter()
8

sage: g.is_regular(Integer(4))
True

sage: g.girth()
4

sage: g.is_regular(Integer(4))
True

sage: g.chromatic_number()
3

sage: g.is_regular(Integer(4))
True

sage: g.is_hamiltonian() # long time
False

sage.graphs.generators.smallgraphs.MoebiusKantorGraph()

Return a Möbius-Kantor Graph.

A Möbius-Kantor graph is a cubic symmetric graph. (See also the Heawood graph). It has 16 nodes and 24 edges. It is nonplanar and Hamiltonian. It has diameter 4, girth 6, and chromatic number 2. It is identical to the Generalized Petersen graph, P[8, 3].

For more details, see Möbius-Kantor Graph - from Wolfram MathWorld.

PLOTTING: See the plotting section for the generalized Petersen graphs.

EXAMPLES:

sage: MK = graphs.MoebiusKantorGraph()
sage: MK
Moebius-Kantor Graph: Graph on 16 vertices
sage: MK.graph6_string()
'OhCGKE?08?ACAC@I?Q_AS'
sage: (graphs.MoebiusKantorGraph()).show() # long time #...
←needs sage.plot

sage: from sage.all import *

sage: MK = graphs.MoebiusKantorGraph()
sage: MK
Moebius-Kantor Graph: Graph on 16 vertices
sage: MK.graph6_string()
'OhCGKE?08?ACAC@I?Q_AS'
sage: (graphs.MoebiusKantorGraph()).show() # long time #...
←needs sage.plot
Moebius-Kantor Graph: Graph on 16 vertices

```python
>>> MK.graph6_string()
'OHCGEQ?@ACAC@I?Q_AS'
```

```python
>>> (graphs.MoebiusKantorGraph()).show() # long time
```

```
˓→needs sage.plot
```

sage.graphs.generators.smallgraphs.MoserSpindle()

Return the Moser spindle.

For more information, see the Wikipedia article Moser_spindle.

EXAMPLES:

The Moser spindle is a planar graph having 7 vertices and 11 edges:

```python
sage: # needs sage.symbolic
sage: G = graphs.MoserSpindle(); G
Moser spindle: Graph on 7 vertices
sage: G.is_planar()
True
sage: G.order()
7
sage: G.size()
11
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.MoserSpindle(); G
Moser spindle: Graph on 7 vertices
```

```python
>>> G.is_planar()
True
```

```python
>>> G.order()
7
```

```python
>>> G.size()
11
```

It is a Hamiltonian graph with radius 2, diameter 2, and girth 3:

```python
sage: # needs sage.symbolic
sage: G.is_hamiltonian() #...
True
sage: G.radius()
2
sage: G.diameter()
2
sage: G.girth()
3
```

```python
>>> from sage.all import *
```

```python
>>> G.is_hamiltonian() #...
True
```

```python
>>> G.radius()
2
```

```python
>>> G.diameter()
```
The Moser spindle can be drawn in the plane as a unit distance graph, has chromatic number 4, and its automorphism group is isomorphic to the dihedral group D_4:

```sage
sage: # needs sage.symbolic
sage: pos = G.get_pos()

sage: all(sum((ui-vi)**Integer(2) for ui, vi in zip(pos[u], pos[v])) == Integer(1) ...
    ... for u, v in G.edge_iterator(labels=None))
True

sage: G.chromatic_number()
4

sage: ag = G.automorphism_group()

sage: ag.is_isomorphic(DihedralGroup(Integer(4)))
True
```

```from sage.all import *

>>> # needs sage.symbolic

>>> all(sum((ui-vi)**Integer(2) for ui, vi in zip(pos[u], pos[v])) == Integer(1) ...
    ... for u, v in G.edge_iterator(labels=None))
True

>>> G.chromatic_number()
4

>>> ag = G.automorphism_group()

>>> ag.is_isomorphic(DihedralGroup(Integer(4)))
True
```

```

sage.graphs.generators.smallgraphs.NauruGraph(embedding=2)

Return the Nauru Graph.

See the Wikipedia article Nauru_graph.

INPUT:

- embedding – integer (default: 2); two embeddings are available, and can be selected by setting embedding to 1 or 2

EXAMPLES:

```sage
g = graphs.NauruGraph()

sage: g.order()
24

sage: g.size()
36

sage: g.girth()
6

sage: g.diameter()
4

sage: g.show() # long time

sage: graphs.NauruGraph(embedding=1).show() # long time
```
```
```python
>>> from sage.all import *
>>> g = graphs.NauruGraph()
>>> g.order()
24
>>> g.size()
36
>>> g.girth()
6
>>> g.diameter()
4
>>> g.show() # needs sage.plot
>>> graphs.NauruGraph(embedding=Integer(1)).show()  # long time
# needs sage.plot
```

`sage.graphs.generators.smallgraphs.PappusGraph()`

Return the Pappus graph, a graph on 18 vertices.

The Pappus graph is cubic, symmetric, and distance-regular.

EXAMPLES:

```python
sage: G = graphs.PappusGraph()
sage: G.show()  # long time
# needs sage.plot
sage: L = graphs.LCFGraph(18, [5,7,-7,7,-7,-5], 3)
# needs networkx
sage: L.show()  # long time
# needs networkx sage.plot
sage: G.is_isomorphic(L)  # needs networkx
True
```

```python
>>> from sage.all import *
>>> G = graphs.PappusGraph()
>>> G.show()  # long time
# needs sage.plot
>>> L = graphs.LCFGraph(Integer(18), [Integer(5),Integer(7),-Integer(7),-Integer(7),-Integer(5)], Integer(3))
# needs networkx
>>> L.show()  # long time
# needs networkx sage.plot
>>> G.is_isomorphic(L)  # needs networkx
True
```

`sage.graphs.generators.smallgraphs.PerkelGraph()`

Return the Perkel Graph.

The Perkel Graph is a 6-regular graph with 57 vertices and 171 edges. It is the unique distance-regular graph with intersection array $(6, 5, 2; 1, 1, 3)$. For more information, see the Wikipedia article Perkel_graph or https://www.win.tue.nl/~aeb/graphs/Perkel.html.

EXAMPLES:

```python
sage: g = graphs.PerkelGraph(); g
Perkel Graph: Graph on 57 vertices
```

(continues on next page)
sage: g.is_distance_regular(parameters=True)
([6, 5, 2, None], [None, 1, 1, 3])

>>> from sage.all import *
>>> g = graphs.PerkelGraph(); g
Perkel Graph: Graph on 57 vertices

sage: g.is_distance_regular(parameters=True)
([6, 5, 2, None], [None, 1, 1, 3])

sage.graphs.generators.smallgraphs.PetersenGraph()

Return the Petersen Graph.

The Petersen Graph is a named graph that consists of 10 vertices and 15 edges, usually drawn as a five-point star embedded in a pentagon.

The Petersen Graph is a common counterexample. For example, it is not Hamiltonian.

PLOTTING: See the plotting section for the generalized Petersen graphs.

EXAMPLES: We compare below the Petersen graph with the default spring-layout versus a planned position dictionary of \((x, y)\) tuples:

sage: petersen_spring = Graph({0:[1,4,5], 1:[0,2,6], 2:[1,3,7],
...: 3:[2,4,8], 4:[0,3,9], 5:[0,7,8],
...: 6:[1,8,9], 7:[2,5,9], 8:[3,5,6],
...: 9:[4,6,7]})
sage: petersen_spring.show() # long time
˓→needs sage.plot

sage: petersen_database = graphs.PetersenGraph()
sage: petersen_database.show() # long time
˓→needs sage.plot

sage.graphs.generators.smallgraphs.PoussinGraph()

Return the Poussin Graph.

For more information on the Poussin Graph, see its corresponding Wolfram page.

EXAMPLES:
sage: g = graphs.PoussinGraph()
sage: g.order()
15
sage: g.is_planar()
True

>>> from sage.all import *
>>> g = graphs.PoussinGraph()
>>> g.order()
15
>>> g.is_planar()
True

sage.graphs.generators.smallgraphs.RobertsonGraph()

Return the Robertson graph.

See the Wikipedia article Robertson_graph.

EXAMPLES:

sage: # needs networkx
sage: g = graphs.RobertsonGraph()
sage: g.order()
19
sage: g.size()
38
sage: g.diameter()
3
sage: g.girth()
5
sage: g.charpoly().factor()
(x - 4) * (x - 1)^2 * (x^2 + x - 5) * (x^2 + x - 1)
* (x^2 - 3)^2 * (x^2 + x - 4)^2 * (x^2 + x - 3)^2
sage: g.chromatic_number()
3
sage: g.is_hamiltonian() # needs sage.numerical.mip
True
sage: g.is_vertex_transitive()
False

>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.RobertsonGraph()
>>> g.order()
19
>>> g.size()
38
>>> g.diameter()
3
>>> g.girth()
5
>>> g.charpoly().factor()
(x - 4) * (x - 1)^2 * (x^2 + x - 5) * (x^2 + x - 1)
* (x^2 - 3)^2 * (x^2 + x - 4)^2 * (x^2 + x - 3)^2
>>> g.chromatic_number()
3

(continues on next page)
sage.graphs.generators.smallgraphs.SchlaefliGraph()

Return the Schläfligraph.

The Schläfligraph is the only strongly regular graphs of parameters \((27, 16, 10, 8)\) (see [GR2001]).

For more information, see the Wikipedia article Schläfli_graph.

See also:
\[\text{Graph.is_strongly_regular()} \] – tests whether a graph is strongly regular and/or returns its parameters.

Todo: Find a beautiful layout for this beautiful graph.

EXAMPLES:

Checking that the method actually returns the Schläfligraph:

```python
sage: S = graphs.SchlaefliGraph()
sage: S.is_strongly_regular(parameters=True)
(27, 16, 10, 8)
```

The graph is vertex-transitive:

```python
sage: S.is_vertex_transitive()  # needs sage.groups
True
```

The neighborhood of each vertex is isomorphic to the complement of the Clebsch graph:

```python
sage: neighborhood = S.subgraph(vertices=S.neighbors(0))
sage: graphs.ClebschGraph().complement().is_isomorphic(neighborhood)
True
```

```python
sage: neighborhood = S.subgraph(vertices=S.neighbors(Integer(0)))
sage: graphs.ClebschGraph().complement().is_isomorphic(neighborhood)
True
```
sage.graphs.generators.smallgraphs.ShrikhandeGraph()

Return the Shrikhande graph.

For more information, see the MathWorld article on the Shrikhande graph or the Wikipedia article Shrikhande_graph.

See also:

Graph.is_strongly_regular() – tests whether a graph is strongly regular and/or returns its parameters.

EXAMPLES:

The Shrikhande graph was defined by S. S. Shrikhande in 1959. It has 16 vertices and 48 edges, and is strongly regular of degree 6 with parameters $(2, 2)$:

```python
sage: G = graphs.ShrikhandeGraph(); G
Shrikhande graph: Graph on 16 vertices
sage: G.order()
16
sage: G.size()
48
sage: G.is_regular(6)
True
sage: set([ len([x for x in G.neighbors(i) if x in G.neighbors(j)])
    ....:     for i in range(G.order())
    ....:     for j in range(i) ])
{2}
```

It is non-planar, and both Hamiltonian and Eulerian:

```python
sage: G.is_planar()
False
sage: G.is_hamiltonian()  # needs sage.numerical.mip
True
sage: G.is_eulerian()
True
```

```python
>>> from sage.all import *
>>> G = graphs.ShrikhandeGraph(); G
Shrikhande graph: Graph on 16 vertices
>>> G.order()
16
>>> G.size()
48
>>> G.is_regular(Integer(6))
True
>>> set([ len([x for x in G.neighbors(i) if x in G.neighbors(j)])
    ...     for i in range(G.order())
    ...     for j in range(i) ])
{2}
```

(continues on next page)
>>> G.is_eulerian()
True

It has radius 2, diameter 2, and girth 3:

```python
sage: G.radius()
2
sage: G.diameter()
2
sage: G.girth()
3
```

>>> from sage.all import *
```python
sage: G.radius()
2
sage: G.diameter()
2
sage: G.girth()
3
```

Its chromatic number is 4 and its automorphism group is of order 192:

```python
sage: G.chromatic_number()
4
sage: G.automorphism_group().cardinality() #...
192
```

>>> from sage.all import *
```python
sage: G.chromatic_number()
4
sage: G.automorphism_group().cardinality() #...
192
```

It is an integral graph since it has only integral eigenvalues:

```python
sage: G.characteristic_polynomial().factor() #...
(x - 6) * (x - 2)^6 * (x + 2)^9
```

>>> from sage.all import *
```python
sage: G.characteristic_polynomial().factor() #...
(x - 6) * (x - 2)^6 * (x + 2)^9
```

It is a toroidal graph, and its embedding on a torus is dual to an embedding of the Dyck graph (`DyckGraph`).

sage.graphs.generators.smallgraphs.SimsGewirtzGraph()

Return the Sims-Gewirtz Graph.

This graph is obtained from the Higman Sims graph by considering the graph induced by the vertices at distance two from the vertices of an (any) edge. It is the only strongly regular graph with parameters $v = 56$, $k = 10$, $\lambda = 0$, $\mu = 2$

For more information on the Sylvester graph, see https://www.win.tue.nl/~aeb/graphs/Sims-Gewirtz.html or its Wikipedia article Gewirtz_graph.
See also:

• HigmanSimsGraph().

EXAMPLES:

```python
sage: g = graphs.SimsGewirtzGraph(); g
Sims-Gewirtz Graph: Graph on 56 vertices
sage: g.order()
56
sage: g.size()
280
sage: g.is_strongly_regular(parameters = True)
(56, 10, 0, 2)
```

```python
>>> from sage.all import *
>>>
g = graphs.SimsGewirtzGraph(); g
Sims-Gewirtz Graph: Graph on 56 vertices
>>> g.order()
56
>>> g.size()
280
>>> g.is_strongly_regular(parameters = True)
(56, 10, 0, 2)
```

```python
sage.graphs.generators.smallgraphs.SousselierGraph()

Return the Sousselier Graph.

The Sousselier graph is a hypohamiltonian graph on 16 vertices and 27 edges. For more information, see Wikipedia article Sousselier_graph or the corresponding French Wikipedia page.

EXAMPLES:

```python
sage: g = graphs.SousselierGraph()
sage: g.order()
16
sage: g.size()
27
sage: g.radius()
2
sage: g.diameter()
3
sage: g.automorphism_group().cardinality() # needs sage.groups
2
sage: g.is_hamiltonian() # needs sage.numerical.mip
False
sage: g.delete_vertex(g.random_vertex())
sage: g.is_hamiltonian() # needs sage.numerical.mip
True
```

```python
>>> from sage.all import *
>>>
g = graphs.SousselierGraph()
```
Graph Theory, Release 10.4

```python
>>> g.size()
27
>>> g.radius()
2
>>> g.diameter()
3
>>> g.automorphism_group().cardinality() # needs sage.groups
2
>>> g.is_hamiltonian() # needs sage.numerical.mip
False
>>> g.delete_vertex(g.random_vertex())
>>> g.is_hamiltonian() # needs sage.numerical.mip
True
```

**sage.graphs.generators.smallgraphs.SuzukiGraph()**

Return the Suzuki Graph.

The Suzuki graph has 1782 vertices, and is strongly regular with parameters \((1782, 416, 100, 96)\). Known as S.15 in [Hub1975].

**Note:** It takes approximately 50 seconds to build this graph. Do not be too impatient.

**EXAMPLES:**

```python
sage: g = graphs.SuzukiGraph(); g # optional internet # not tested
Suzuki graph: Graph on 1782 vertices
sage: g.is_strongly_regular(parameters=True) # optional internet # not tested
(1782, 416, 100, 96)
```

**sage.graphs.generators.smallgraphs.SylvesterGraph()**

Return the Sylvester Graph.

This graph is obtained from the Hoffman Singleton graph by considering the graph induced by the vertices at distance two from the vertices of an (any) edge.

For more information on the Sylvester graph, see https://www.win.tue.nl/~aeb/graphs/Sylvester.html.

**See also:**

- `HoffmanSingletonGraph()`.

**EXAMPLES:**

```python
sage: g = graphs.SylvesterGraph(); g
Sylvester Graph: Graph on 36 vertices
sage: g.order()
1348 Chapter 2. Constructors and databases
```
sage: g.size()
90
sage: g.is_regular(k=5)
True

```python
>>> from sage.all import *

>>> g = graphs.SylvesterGraph(); g
Sylvester Graph: Graph on 36 vertices

>>> g.order()
36

>>> g.size()
90

>>> g.is_regular(k=Integer(5))
True
```

`sage.graphs.generators.smallgraphs.SzekeresSnarkGraph()`

Return the Szekeres Snark Graph.

The Szekeres graph is a snark with 50 vertices and 75 edges. For more information on this graph, see the Wikipedia article Szekeres_snark.

EXAMPLES:

```python
sage: g = graphs.SzekeresSnarkGraph()
sage: g.order()
50

sage: g.size()
75

sage: g.chromatic_number()
3
```

`sage.graphs.generators.smallgraphs.ThomsenGraph()`

Return the Thomsen Graph.

The Thomsen Graph is actually a complete bipartite graph with \((n1, n2) = (3, 3)\). It is also called the Utility graph.

PLOTTING: See CompleteBipartiteGraph.

EXAMPLES:

```python
>>> from sage.all import *

>>> g = graphs.SzekeresSnarkGraph()

>>> g.order()
50

>>> g.size()
75

>>> g.chromatic_number()
3
```
Graph Theory, Release 10.4

```python
sage: (graphs.ThomsenGraph()).show() # long time
˓→needs sage.plot

>>> from sage.all import *
>>>
T = graphs.ThomsenGraph()
>>> T
Thomsen graph: Graph on 6 vertices
>>> T.graph6_string()
'EFz_
>>> (graphs.ThomsenGraph()).show() # long time #...
˓→needs sage.plot
```

```python
sage.graphs.generators.smallgraphs.TietzeGraph()
Return the Tietze Graph.

For more information on the Tietze Graph, see the Wikipedia article Tietze's_graph.

EXAMPLES:

```python
sage: g = graphs.TietzeGraph()
sage: g.order()
12
sage: g.size()
18
sage: g.diameter()
3
sage: g.girth()
3
sage: g.automorphism_group().cardinality()  #...
˓→needs sage.groups
12
sage: g.automorphism_group().is_isomorphic(groups.permutation.Dihedral(6))  #...
˓→needs sage.groups
True
```

```python
>>> from sage.all import *
>>>
>>> g = graphs.TietzeGraph()
>>> g.order()
12
>>> g.size()
18
>>> g.diameter()
3
>>> g.girth()
3
>>> g.automorphism_group().cardinality()  #...
˓→needs sage.groups
12
>>> g.automorphism_group().is_isomorphic(groups.permutation.Dihedral(Integer(6)))  # needs sage.groups
True
```

```python
sage.graphs.generators.smallgraphs.TruncatedIcosidodecahedralGraph()
Return the truncated icosidodecahedron.

The truncated icosidodecahedron is an Archimedean solid with 30 square faces, 20 regular hexagonal faces, 12 regular decagonal faces, 120 vertices and 180 edges. For more information, see the Wikipedia article Truncated_icosi-
```
dodecahedron.

EXAMPLES:

Unfortunately, this graph cannot be constructed currently, due to numerical issues:

```python
sage: g = graphs.TruncatedIcosidodecahedralGraph(); g
# needs sage.geometry.polyhedron sage.groups sage.rings.number_field
Traceback (most recent call last):
... ValueError: *Error: Numerical inconsistency is found. Use the GMP exact

sage: g.order(), g.size() # not tested
# needs sage.geometry.polyhedron sage.groups sage.rings.number_field
(120, 180)
```

```python
>>> from sage.all import *

>>> g = graphs.TruncatedIcosidodecahedralGraph(); g
# needs sage.geometry.polyhedron sage.groups sage.rings.number_field
Traceback (most recent call last):
... ValueError: *Error: Numerical inconsistency is found. Use the GMP exact

>>> g.order(), g.size() # not tested
# needs sage.geometry.polyhedron sage.groups sage.rings.number_field
(120, 180)
```

`sage.graphs.generators.smallgraphs.TruncatedTetrahedralGraph()`

Return the truncated tetrahedron.

The truncated tetrahedron is an Archimedean solid with 12 vertices and 18 edges. For more information, see the Wikipedia article Truncated_tetrahedron.

EXAMPLES:

```python
sage: g = graphs.TruncatedTetrahedralGraph(); g
Truncated Tetrahedron: Graph on 12 vertices
sage: g.order(), g.size()
(12, 18)
```

```python
>>> from sage.all import *

>>> g = graphs.TruncatedTetrahedralGraph(); g
Truncated Tetrahedron: Graph on 12 vertices
>>> g.order(), g.size()
(12, 18)
```

```python
>>> from sage.all import *

>>> g = graphs.TruncatedTetrahedralGraph(); g
Truncated Tetrahedron: Graph on 12 vertices
>>> g.order(), g.size()
(12, 18)
```

`sage.graphs.generators.smallgraphs.Tutte12Cage()`

Return the Tutte 12-Cage.

See the Wikipedia article Tutte_12-cage.

EXAMPLES:
\begin{verbatim}
sage: # needs networkx
sage: g = graphs.Tutte12Cage()
sage: g.order()
126
sage: g.size()
189
sage: g.girth()
12
sage: g.diameter()
6
sage: g.show() # needs sage.plot
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.Tutte12Cage()
>>> g.order()
126
>>> g.size()
189
>>> g.girth()
12
>>> g.diameter()
6
>>> g.show() # needs sage.plot
\end{verbatim}

\begin{verbatim}
sage.graphs.generators.smallgraphs.TutteCoxeterGraph
(\textit{embedding=2})
\end{verbatim}

Return the Tutte-Coxeter graph.

See the Wikipedia article Tutte-Coxeter_graph.

INPUT:

- \texttt{embedding} -- integer (default: 2); two embeddings are available, and can be selected by setting embedding to 1 or 2

EXAMPLES:

\begin{verbatim}
sage: # needs networkx
sage: g = graphs.TutteCoxeterGraph()
sage: g.order()
30
sage: g.size()
45
sage: g.girth()
8
sage: g.diameter()
4
sage: g.show() # needs sage.plot
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.TutteCoxeterGraph()
>>> g.order()
30
\end{verbatim}

(continues on next page)
sage.graphs.generators.smallgraphs.TutteGraph()

Return the Tutte Graph.

The Tutte graph is a 3-regular, 3-connected, and planar non-hamiltonian graph. For more information on the Tutte Graph, see the Wikipedia article Tutte_graph.

EXAMPLES:

```python
sage: g = graphs.TutteGraph()
sage: g.order()
46
sage: g.size()
69
sage: g.is_planar()
True
sage: g.vertex_connectivity()  # long time
3
sage: g.girth()
4
sage: g.automorphism_group().cardinality()  # needs sage.groups
3
sage: g.is_hamiltonian()  # needs sage.numerical.mip
False
```

```python
>>> from sage.all import *

```
\begin{verbatim}
needs sage.numerical.mip
False
\end{verbatim}

\begin{verbatim}
sage: G = graphs.U42Graph216()
\end{verbatim}

\begin{verbatim}
Return a (216,40,4,8)-strongly regular graph from [CRS2016].

Build the graph, interpreting the $U_4(2)$-action considered in [CRS2016] as the one on the hyperbolic lines of the corresponding unitary polar space, and then doing the unique merging of the orbitals leading to a graph with the parameters in question.

EXAMPLES:
\begin{verbatim}
sage: G = graphs.U42Graph216()
optional - gap_package_grape
sage: G.is_strongly_regular(parameters=True) # optional - gap_package_grape
(216, 40, 4, 8)
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> G = graphs.U42Graph216()
optional - gap_package_grape
>>> G.is_strongly_regular(parameters=True) # optional - gap_package_grape
(216, 40, 4, 8)
\end{verbatim}

\begin{verbatim}
sage: G = graphs.U42Graph540()
\end{verbatim}

\begin{verbatim}
Return a (540,187,58,68)-strongly regular graph from [CRS2016].

Build the graph, interpreting the $U_4(2)$-action considered in [CRS2016] as the action of $U_4(2) = Sp_4(3) < U_4(3)$ on the nonsingular, w.r.t. to the Hermitian form stabilised by $U_4(3)$, points of the 3-dimensional projective space over $GF(9)$. There are several possible mergings of orbitals, some leading to non-isomorphic graphs with the same parameters. We found the merging here using [FK1991].

EXAMPLES:
\begin{verbatim}
sage: G = graphs.U42Graph540()
optional - gap_package_grape
sage: G.is_strongly_regular(parameters=True) # optional - gap_package_grape
(540, 187, 58, 68)
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> G = graphs.U42Graph540()
optional - gap_package_grape
>>> G.is_strongly_regular(parameters=True) # optional - gap_package_grape
(540, 187, 58, 68)
\end{verbatim}

\begin{verbatim}
sage: G = graphs.WagnerGraph()
\end{verbatim}

\begin{verbatim}
Return the Wagner Graph.

See the Wikipedia article Wagner_graph.

EXAMPLES:
\begin{verbatim}
sage: G = graphs.WagnerGraph()
sage: G.order()
8
sage: G.size()
12
sage: G.girth()
4
sage: G.diameter()
\end{verbatim}
\end{verbatim}
GraphTheory, Release 10.4

(continued from previous page)

```python
sage: g.show()  #... needs sage.plot
```

```python
>>> from sage.all import *
>>> # needs networkx
>>> g = graphs.WagnerGraph()
>>> g.order()
8
>>> g.size()
12
>>> g.girth()
4
>>> g.diameter()
2
>>> g.show()  #...
```

```python
sage.graphs.generators.smallgraphs.WatkinsSnarkGraph()
```

Return the Watkins Snark Graph.

The Watkins Graph is a snark with 50 vertices and 75 edges. For more information, see the Wikipedia article [Watkins_snark].

EXAMPLES:

```python
sage: g = graphs.WatkinsSnarkGraph()
sage: g.order()
50
sage: g.size()
75
sage: g.chromatic_number()
3
```

```python
>>> from sage.all import *
>>> g = graphs.WatkinsSnarkGraph()
>>> g.order()
50
>>> g.size()
75
>>> g.chromatic_number()
3
```

```python
sage.graphs.generators.smallgraphs.WellsGraph()
```

Return the Wells graph.

For more information on the Wells graph (also called Armanios-Wells graph), see this page.

The implementation follows the construction given on page 266 of [BCN1989]. This requires to create intermediate graphs and run a small isomorphism test, while everything could be replaced by a pre-computed list of edges. I believe that it is better to keep “the recipe” in the code, however, as it is quite unlikely that this could become the most time-consuming operation in any sensible algorithm, and …. “preserves knowledge”, which is what open-source software is meant to do.

EXAMPLES:
sage: g = graphs.WellsGraph(); g
Wells graph: Graph on 32 vertices
sage: g.order()
32
sage: g.size()
80
sage: g.girth()
5
sage: g.diameter()
4
sage: g.chromatic_number()
4
sage: g.is_regular(k=5)
True

>>> from sage.all import *
>>> g = graphs.WellsGraph(); g
Wells graph: Graph on 32 vertices
>>> g.order()
32
>>> g.size()
80
>>> g.girth()
5
>>> g.diameter()
4
>>> g.chromatic_number()
4
>>> g.is_regular(k=Integer(5))
True

sage.graphs.generators.smallgraphs.WienerArayaGraph()

Return the Wiener-Araya Graph.

The Wiener-Araya Graph is a planar hypohamiltonian graph on 42 vertices and 67 edges. For more information, see the Wolfram Page on the Wiener-Araya Graph or Wikipedia article Wiener-Araya_graph.

EXAMPLES:

sage: g = graphs.WienerArayaGraph()
sage: g.order()
42
sage: g.size()
67
sage: g.girth()
4
sage: g.is_planar()
True
sage: g.is_hamiltonian() # not tested (30s) #...
 "needs sage.numerical.mip"
False
sage: g.delete_vertex(g.random_vertex())
sage: g.is_hamiltonian() #...
 "needs sage.numerical.mip"
True
>>> from sage.all import *
>>> g = graphs.WienerArayaGraph()
>>> g.order()
42
>>> g.size()
67
>>> g.girth()
4
>>> g.is_planar()
True
>>> g.is_hamiltonian() # not tested (30s) #
→ needs sage.numerical.mip
False
>>> g.delete_vertex(g.random_vertex())
>>> g.is_hamiltonian() #...
→ needs sage.numerical.mip
True

2.15 Graphs from the World Map

The methods defined here appear in `sage.graphs.graph_generators`.
`sage.graphs.generators.world_map.AfricaMap(continental=False, year=2018)`
Return African states as a graph of common border.
“African state” here is defined as an independent state having the capital city in Africa. The graph has an edge between those countries that have common land border.

INPUT:

• continental – boolean (default: False); whether to only return states in the continental Africa or all African states

• year – integer (default: 2018); reserved for future use

EXAMPLES:

```python
sage: africa = graphs.AfricaMap(); africa
Africa Map: Graph on 54 vertices
sage: sorted(africa.neighbors('Libya'))
['Algeria', 'Chad', 'Egypt', 'Niger', 'Sudan', 'Tunisia']

sage: cont_africa = graphs.AfricaMap(continental=True)
sage: cont_africa.order()
48
sage: 'Madagascar' in cont_africa
False
```
sage.graphs.generators.world_map.EuropeMap\((\text{continental} = \text{False}, \text{year} = \text{2018})\)

Return European states as a graph of common border.

“European state” here is defined as an independent state having the capital city in Europe. The graph has an edge between those countries that have common \textit{land} border.

INPUT:

• \texttt{continental} – boolean (default: \text{False}); whether to only return states in the continental Europe or all European states

• \texttt{year} – integer (default: \text{2018}); reserved for future use

EXAMPLES:

\begin{verbatim}
>>> Europe = graphs.EuropeMap(); Europe
Europe Map: Graph on 44 vertices
>>> Europe.neighbors('Ireland')
['United Kingdom']
>>> cont_Europe = graphs.EuropeMap(continental=True)
>>> cont_Europe.order()
40
>>> 'Iceland' in cont_Europe
False
\end{verbatim}

sage.graphs.generators.world_map.USAMap\((\text{continental} = \text{False})\)

Return states of USA as a graph of common border.

The graph has an edge between those states that have common \textit{land} border line or point. Hence for example Colorado and Arizona are marked as neighbors, but Michigan and Minnesota are not.

INPUT:

• \texttt{continental} – boolean (default: \text{False}); whether to exclude Alaska and Hawaii

EXAMPLES:

How many states are neighbor’s neighbor for Pennsylvania:

\begin{verbatim}
>>> USA = graphs.USAMap()
>>> distance = USA.shortest_path_lengths('Pennsylvania')
\end{verbatim}
sage: len([n2 for n2, d in distance.items() if d == 2])
7

>>> from sage.all import *
>>> USA = graphs.USAMap()
>>> distance = USA.shortest_path_lengths('Pennsylvania')
>>> len([n2 for n2, d in distance.items() if d == Integer(2)])
7

Diameter for continental USA:

sage: USAcont = graphs.USAMap(continental=True)
sage: USAcont.diameter()
11

>>> from sage.all import *
>>> USAcont = graphs.USAMap(continental=True)
>>> USAcont.diameter()
11

sage.graphs.generators.world_map.WorldMap()

Return the Graph of all the countries, in which two countries are adjacent in the graph if they have a common boundary.

This graph has been built from the data available in The CIA World Factbook [CIA] (2009-08-21).

The returned graph G has a member G.gps_coordinates equal to a dictionary containing the GPS coordinates of each country’s capital city.

EXAMPLES:

sage: g = graphs.WorldMap()
sage: g.has_edge("France", "Italy")
True
sage: g.gps_coordinates["Bolivia"]
[[17, 'S'], [65, 'W']]
sage: g.connected_component_containing_vertex('Ireland', sort=True)
['Ireland', 'United Kingdom']

>>> from sage.all import *
>>> g = graphs.WorldMap()
>>> g.has_edge("France", "Italy")
True
>>> g.gps_coordinates["Bolivia"]
[[17, 'S'], [65, 'W']]
>>> g.connected_component_containing_vertex('Ireland', sort=True)
['Ireland', 'United Kingdom']

2.15. Graphs from the World Map 1359
2.16 ISGCI: Information System on Graph Classes and their Inclusions

This module implements an interface to the ISGCI database in Sage.

This database gathers information on graph classes and their inclusions in each other. It also contains information on the complexity of several computational problems.

It is available on the GraphClasses.org website maintained by H.N. de Ridder et al.

2.16.1 How to use it?

Presently, it is possible to use this database through the variables and methods present in the `graph_classes` object. For instance:

```
sage: Trees = graph_classes.Tree
sage: Chordal = graph_classes.Chordal
```

```python
>>> from sage.all import *
##
>>> Trees = graph_classes.Tree
>>> Chordal = graph_classes.Chordal
```

Inclusions

It is then possible to check the inclusion of classes inside of others, if the information is available in the database:

```
sage: Trees <= Chordal
True
```

```python
>>> from sage.all import *
##
>>> Trees <= Chordal
True
```

And indeed, trees are chordal graphs.

The ISGCI database is not all-knowing, and so comparing two classes can return `True`, `False`, or `Unknown` (see the documentation of the Unknown truth value).

An unknown answer to $A \leq B$ only means that ISGCI cannot deduce from the information in its database that A is a subclass of B nor that it is not. For instance, ISGCI does not know at the moment that some chordal graphs are not trees:

```
sage: graph_classes.Chordal <= graph_classes.Tree
Unknown
```

```python
>>> from sage.all import *
##
>>> graph_classes.Chordal <= graph_classes.Tree
Unknown
```
Descriptions

Given a graph class, one can obtain its associated information in the ISGCI database with the `description()` method:

```python
sage: Chordal.description()
Class of graphs : Chordal
id : gc_32
name : chordal

Problems :
3-Colourability : Linear
Clique : Polynomial
Clique cover : Polynomial
```

It is possible to obtain the complete list of the classes stored in ISGCI by calling the `show_all()` method (beware – long output):

```python
sage: graph_classes.show_all()
```

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>gc_309</td>
<td>(K_4) --minor--free</td>
<td>base</td>
</tr>
<tr>
<td>gc_541</td>
<td>(N^*)</td>
<td>base</td>
</tr>
<tr>
<td>gc_215</td>
<td>(N^*) --perfect</td>
<td>base</td>
</tr>
<tr>
<td>gc_5</td>
<td>(P_4) --bipartite</td>
<td>base</td>
</tr>
<tr>
<td>gc_3</td>
<td>(P_4) --brittle</td>
<td>base</td>
</tr>
<tr>
<td>gc_6</td>
<td>(P_4) --comparability</td>
<td>base</td>
</tr>
<tr>
<td>gc_7</td>
<td>(P_4) --extendible</td>
<td>base</td>
</tr>
</tbody>
</table>

(continues on next page)
Until a proper search method is implemented, this lets one find classes which do not appear in \texttt{graph_classes}.*. To retrieve a class of graph from its ISGCI ID one may use the \texttt{get_class()} method:

```python
sage: GC = graph_classes.get_class("gc_5")
sage: GC
$P_4$--bipartite graphs
```

Recognition of graphs

The graph classes represented by the ISGCI database can alternatively be used to access recognition algorithms. For instance, in order to check that a given graph is a tree one has the following options

```python
sage: graphs.PathGraph(5) in graph_classes.Tree
True
```

or:

```python
sage: graphs.PathGraph(5).is_tree()
True
```

Furthermore, all ISGCI graph classes which are defined by the exclusion of a finite sequence of induced subgraphs benefit from a generic recognition algorithm. For instance

```python
sage: g = graphs.PetersenGraph()
sage: g in graph_classes.ClawFree
False
sage: g.line_graph() in graph_classes.ClawFree
True
```

```python
>>> from sage.all import *
>>> graphs.PathGraph(Integer(5)) in graph_classes.Tree
True
```
2.16.2 Predefined classes

`graph_classes` currently predefines the following graph classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Related methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apex</td>
<td><code>is_apex()</code>, <code>apex_vertices()</code></td>
</tr>
<tr>
<td>AT_free</td>
<td><code>is_asteroidal_triple_free()</code></td>
</tr>
<tr>
<td>Biconnected</td>
<td><code>is_biconnected()</code>, <code>blocks_and_cut_vertices()</code>, <code>blocks_and_cuts_tree()</code></td>
</tr>
<tr>
<td>BinaryTrees</td>
<td><code>BalancedTree()</code>, <code>is_tree()</code></td>
</tr>
<tr>
<td>Bipartite</td>
<td><code>BalancedTree()</code>, <code>is_bipartite()</code></td>
</tr>
<tr>
<td>Block</td>
<td><code>is_block_graph()</code>, <code>blocks_and_cut_vertices()</code>, <code>RandomBlockGraph()</code></td>
</tr>
<tr>
<td>Chordal</td>
<td><code>is_chordal()</code></td>
</tr>
<tr>
<td>Claw-Free</td>
<td><code>ClawGraph()</code></td>
</tr>
<tr>
<td>Comparability</td>
<td></td>
</tr>
<tr>
<td>Gallai</td>
<td><code>is_gallai_tree()</code></td>
</tr>
<tr>
<td>Grid</td>
<td><code>Grid2dGraph()</code>, <code>GridGraph()</code></td>
</tr>
<tr>
<td>Interval</td>
<td><code>RandomIntervalGraph()</code>, <code>IntervalGraph()</code>, <code>is_interval()</code></td>
</tr>
<tr>
<td>Line</td>
<td><code>line_graph_forbidden_subgraphs()</code>, <code>is_line_graph()</code></td>
</tr>
<tr>
<td>Modular</td>
<td><code>modular_decomposition()</code></td>
</tr>
<tr>
<td>Outerplanar</td>
<td><code>is_circular_planar()</code></td>
</tr>
<tr>
<td>Perfect</td>
<td><code>is_perfect()</code></td>
</tr>
<tr>
<td>Planar</td>
<td><code>is_planar()</code></td>
</tr>
<tr>
<td>Polyhedral</td>
<td><code>is_polyhedral()</code></td>
</tr>
<tr>
<td>Split</td>
<td><code>is_split()</code></td>
</tr>
<tr>
<td>Tree</td>
<td><code>trees()</code>, <code>is_tree()</code></td>
</tr>
<tr>
<td>UnitDisk</td>
<td><code>IntervalGraph()</code></td>
</tr>
<tr>
<td>UnitInterval</td>
<td><code>is_interval()</code></td>
</tr>
</tbody>
</table>

Or directly from ISGCI

```python
>>> g.line_graph() in graph_classes.ClawFree
True
```

```python
sage: gc = graph_classes.get_class("gc_441")
sage: gc
diamond--free graphs
sage: graphs.PetersenGraph() in gc
True
```

```python
>>> from sage.all import *

>>> gc = graph_classes.get_class("gc_441")
>>> gc
diamond--free graphs
>>> graphs.PetersenGraph() in gc
True
```
2.16.3 Sage’s view of ISGCI

The database is stored by Sage in two ways.

The classes: the list of all graph classes and their properties is stored in a huge dictionary (see `classes()`). Below is what Sage knows of `gc_249`:

```python
sage: graph_classes.classes()['gc_249']  # random
{'problem':
    {'Independent set': 'Polynomial',
     'Treewidth': 'Unknown',
     'Weighted independent set': 'Polynomial',
     'Cliquewidth expression': 'NP-complete',
     'Weighted clique': 'Polynomial',
     'Clique cover': 'Unknown',
     'Domination': 'NP-complete',
     'Clique': 'Polynomial',
     'Colourability': 'NP-complete',
     'Cliquewidth': 'Unbounded',
     '3-Colourability': 'NP-complete',
     'Recognition': 'Linear'},
    'type': 'base',
    'id': 'gc_249',
    'name': 'line'}
```

The class inclusion digraph: Sage remembers the class inclusions through the inclusion digraph (see `inclusion_diagram()`). Its nodes are ID of ISGCI classes:

```python
sage: d = graph_classes.inclusion_diagram()
sage: d.vertices(sort=True)[-10:]
['gc_990', 'gc_991', 'gc_992', 'gc_993', 'gc_994', 'gc_995', 'gc_996', 'gc_997', 'gc_998', 'gc_999']
```

```python
>>> from sage.all import *
>>> graph_classes.classes()['gc_249']  # random
{'problem':
    {'Independent set': 'Polynomial',
     'Treewidth': 'Unknown',
     'Weighted independent set': 'Polynomial',
     'Cliquewidth expression': 'NP-complete',
     'Weighted clique': 'Polynomial',
     'Clique cover': 'Unknown',
     'Domination': 'NP-complete',
     'Clique': 'Polynomial',
     'Colourability': 'NP-complete',
     'Cliquewidth': 'Unbounded',
     '3-Colourability': 'NP-complete',
     'Recognition': 'Linear'},
    'type': 'base',
    'id': 'gc_249',
    'name': 'line'}
```

```python
>>> from sage.all import *
>>> d = graph_classes.inclusion_diagram()
>>> d.vertices(sort=True)[-Integer(10):]
['gc_990', 'gc_991', 'gc_992', 'gc_993', 'gc_994', 'gc_995', 'gc_996', 'gc_997', 'gc_998', 'gc_999']
```
An arc from \(gc_1 \) to \(gc_2 \) means that \(gc_1 \) is a superclass of \(gc_2 \). This being said, not all edges are stored! To ensure that a given class is included in another one, we have to check whether there is in the digraph a path from the first one to the other:

```python
sage: bip_id = graph_classes.Bipartite._gc_id
sage: perfect_id = graph_classes.Perfect._gc_id
sage: d.has_edge(perfect_id, bip_id)
False
sage: d.distance(perfect_id, bip_id)
2
```

Hence bipartite graphs are perfect graphs. We can see how ISGCI obtains this result

```python
sage: p = d.shortest_path(perfect_id, bip_id)
sage: len(p) - 1
2
sage: print(p)  # random
['gc_56', 'gc_76', 'gc_69']
sage: for c in p:
    ... print(graph_classes.get_class(c))
perfect graphs
... bipartite graphs
```

What ISGCI knows is that perfect graphs contain unimodular graph which contain bipartite graphs. Therefore bipartite graphs are perfect!

Note: The inclusion digraph is **NOT ACYCLIC**. Indeed, several entries exist in the ISGCI database which represent the same graph class, for instance Perfect graphs and Berge graphs:

```python
sage: graph_classes.inclusion_digraph().is_directed_acyclic()
False
sage: Berge = graph_classes.get_class("gc_274"); Berge
Berge graphs
sage: Perfect = graph_classes.get_class("gc_56"); Perfect
perfect graphs
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```
sage: Berge <= Perfect
True
sage: Perfect <= Berge
True
sage: Perfect == Berge
True
```

```
>>> from sage.all import *
>>> graph_classes.inclusion_digraph().is_directed_acyclic()
False
>>> Berge = graph_classes.get_class("gc_274"); Berge
Berge graphs
>>> Perfect = graph_classes.get_class("gc_56"); Perfect
perfect graphs
>>> Berge <= Perfect
True
>>> Perfect <= Berge
True
>>> Perfect == Berge
True
```

2.16.4 Information for developers

- The database is loaded not so large, but it is still preferable to only load it on demand. This is achieved through the cached methods `classes()` and `inclusion_digraph()`.
- Upon the first access to the database, the information is extracted from the XML file and stored in the cache of three methods:
 - `sage.graphs.isgci._classes` (dictionary)
 - `sage.graphs.isgci._inclusions` (list of dictionaries)
 - `sage.graphs.isgci._inclusion_digraph` (DiGraph)

Note that the digraph is only built if necessary (for instance if the user tries to compare two classes).

Todo: Technical things:

- Query the database for non-inclusion results so that comparisons can return `False`, and implement strict inclusions.
- Implement a proper search method for the classes not listed in `graph_classes`

See also:

- `sage.graphs.isgci.show_all()`.
- Some of the graph classes appearing in `graph_classes` already have a recognition algorithm implemented in Sage. It would be so nice to be able to write `g in Trees`, `g in Perfect`, `g in Chordal`, ...:-)

Long-term stuff:

- Implement simple accessors for all the information in the ISGCI database (as can be done from the website)
- Implement intersection of graph classes

1366 Chapter 2. Constructors and databases
• Write generic recognition algorithms for specific classes (when a graph class is defined by the exclusion of subgraphs, one can write a generic algorithm checking the existence of each of the graphs, and this method already exists in Sage).

• Improve the performance of Sage’s graph library by letting it take advantage of the properties of graph classes. For example, `Graph.independent_set()` could use the library to detect that a given graph is, say, a tree or a planar graph, and use a specialized algorithm for finding an independent set.

2.16.5 AUTHORS:

• H.N. de Ridder et al. (ISGCI database)

• Nathann Cohen (Sage implementation)

2.16.6 Methods

class `sage.graphs.isgci.GraphClass` (*name*, *gc_id*, *recognition_function=None*)

Bases: `SageObject`, `CachedRepresentation`

An instance of this class represents a Graph Class, matching some entry in the ISGCI database.

EXAMPLES:

Testing the inclusion of two classes:

```
sage: Chordal = graph_classes.Chordal
sage: Trees = graph_classes.Tree
sage: Trees <= Chordal
True
sage: Chordal <= Trees
Unknown
```

```shell
>>> from sage.all import *
>>> Chordal = graph_classes.Chordal
>>> Trees = graph_classes.Tree
>>> Trees <= Chordal
True
>>> Chordal <= Trees
Unknown
```

description()

Print the information of ISGCI about the current class.

EXAMPLES:

```
sage: graph_classes.Chordal.description()
Class of graphs : Chordal
-------------------------
id : gc_32
name : chordal
...
Problems :
---------
3-Colourability : Linear
Clique : Polynomial
```

(continues on next page)
Clique cover : Polynomial
...
Recognition : Linear
...

```python
>>> from sage.all import *

... graph_classes.Chordal.description()

Class of graphs : Chordal
-------------------------
id : gc_32
name : chordal
... Problems :
---------
3-Colourability : Linear
Clique : Polynomial
Clique cover : Polynomial
...
Recognition : Linear
...
```

forbidden_subgraphs()

Return the list of forbidden induced subgraphs defining the class.

If the graph class is not defined by a *finite* list of forbidden induced subgraphs, `None` is returned instead.

EXAMPLES:

```python
sage: graph_classes.Perfect.forbidden_subgraphs()
sage: gc = graph_classes.get_class('gc_62')
sage: gc
claw--free graphs
sage: gc.forbidden_subgraphs()[Graph on 4 vertices]
[Graph on 4 vertices]

sage: gc.forbidden_subgraphs()[0].is_isomorphic(graphs.ClawGraph())
True
```

```python
>>> from sage.all import *

... graph_classes.Perfect.forbidden_subgraphs()

... gc = graph_classes.get_class('gc_62')
... gc
claw--free graphs
... gc.forbidden_subgraphs()
[Graph on 4 vertices]
... gc.forbidden_subgraphs()[Integer(0)].is_isomorphic(graphs.ClawGraph())
True
```

class sage.graphs.isgci.GraphClasses

Bases: UniqueRepresentation

classes()

Return the graph classes, as a dictionary.

Upon the first call, this loads the database from the local XML file. Subsequent calls are cached.

EXAMPLES:
get_class (id)

Return the class corresponding to the given id in the ISGCI database.

INPUT:

• id (string) – the desired class’ ID

See also:

show_all()

EXAMPLES:

With an existing id:

```python
sage: Cographs = graph_classes.get_class("gc_151")
sage: Cographs
cograph graphs
```

With a wrong id:

```python
sage: graph_classes.get_class(-1)
Traceback (most recent call last):
  ...
ValueError: The given class id does not exist in the ISGCI database. Is the db too old? You can update it with graph_classes.update_db().
```
inclusion_digraph()

Return the class inclusion digraph.

Upon the first call, this loads the database from the local XML file. Subsequent calls are cached.

EXAMPLES:

```
sage: g = graph_classes.inclusion_digraph(); g
Digraph on ... vertices

>>> from sage.all import *

>>> g = graph_classes.inclusion_digraph(); g
Digraph on ... vertices
```

inclusions()

Return the graph class inclusions.

OUTPUT:

a list of dictionaries

Upon the first call, this loads the database from the local XML file. Subsequent calls are cached.

EXAMPLES:

```
sage: t = graph_classes.inclusions()
sage: type(t)
<... 'list'>
sage: t[0]
{'sub': 'gc_1', 'super': 'gc_2'}

>>> from sage.all import *

>>> t = graph_classes.inclusions()

>>> type(t)
<... 'list'>

>>> t[Integer(0)]
{'sub': 'gc_1', 'super': 'gc_2'}
```

show_all()

Prints all graph classes stored in ISGCI

EXAMPLES:

```
sage: graph_classes.show_all()

id    | name           | type             |
------------------|-----------------|------------------|

gc_309 | K_4             | minor--free      |
| P_4   | brittle         | base             |
| P_4   | comparability   | base             |
| K_4   | minor--free     | base             |
| P_4   | brittle         | base             |
| P_4   | brittle         | base             |
| P_4   | comparability   | base             |
```

(continues on next page)
from sage.all import *

>>> graph_classes.show_all()

id	name	type
	P_4	extendible

smallgraphs()

Return a dictionary associating a graph to a graph description string.

Upon the first call, this loads the database from the local XML files. Subsequent calls are cached.

EXAMPLES:

```python
sage: t = graph_classes.smallgraphs()
```

```python
sage: t['C_4']
Graph on 8 vertices
```

```python
sage: t['K_3 + e']
Graph on 6 vertices
```

```python
sage: t['fish']
Graph on 6 vertices
```

```python
sage: t['bull']
Graph on 5 vertices
```

update_db()

Updates the ISGCI database by downloading the latest version from internet.

This method downloads the ISGCI database from the website GraphClasses.org. It then extracts the zip file and parses its XML content.

Depending on the credentials of the user running Sage when this command is run, one attempt is made at saving the result in Sage's directory so that all users can benefit from it. If the credentials are not sufficient, the XML file are saved instead in the user's directory (in the SAGE_DB folder).

EXAMPLES:
sage: graph_classes.update_db() # optional - internet
Database downloaded

>>> from sage.all import *
>>> graph_classes.update_db() # optional - internet
Database downloaded
3.1 Overview of (di)graph data structures

This module contains no code, and describes Sage’s data structures for graphs and digraphs. They can be used directly at Cython/C level, or through the Graph and DiGraph classes (except one)

3.1.1 Data structures

Four data structures are natively available for (di)graphs in Sage:

- **sparse_graph** (default) – for sparse (di)graphs, with a $\log(n)$ edge test, and easy enumeration of neighbors. It is the most general-purpose data structure, though it can have a high memory cost in practice.
 - Supports: Addition/removal of edges/vertices, multiple edges, edge labels and loops.

- **dense_graph** – for dense (di)graphs, with a $O(1)$ edge test, and slow enumeration of neighbors.
 - Supports: addition/removal of edges/vertices, and loops.
 - Does not support: multiple edges and edge labels.

- **static_sparse_graph** – for sparse (di)graphs and very intensive computations (at C-level). It is faster than sparse_graph in practice and much lighter in memory.
 - Supports: multiple edges, edge labels and loops
 - Does not support: addition/removal of edges/vertices.

- **static_dense_graph** – for dense (di)graphs and very intensive computations (at C-level). It is mostly a wrapper over bitsets.
 - Supports: addition/removal of edges/vertices, and loops.
 - Does not support: multiple edges and edge labels.

For more information, see the data structures’ respective pages.
3.1.2 The backends

The `Graph` and `DiGraph` objects delegate the storage of vertices and edges to other objects: the graph backends:

```python
sage: Graph()._backend
<sage.graphs.base.sparse_graph.SparseGraphBackend object at ...>
```

A (di)graph backend is a simpler (di)graph class having only the most elementary methods (e.g.: add/remove vertices/edges). Its vertices can be arbitrary hashable objects.

The only backend available in Sage is `CGraphBackend`.

3.1.3 CGraph and CGraphBackend

`CGraphBackend` is the backend of all native data structures that can be used by `Graph` and `DiGraph`. It is extended by:

- `DenseGraphBackend`
- `SparseGraphBackend`
- `StaticSparseBackend`

While a `CGraphBackend` deals with arbitrary (hashable) vertices, it contains a `.cg` attribute of type `CGraph` which only deals with integer vertices.

The `CGraph` data structures available in Sage are:

- `DenseGraph`
- `SparseGraph`
- `StaticSparseCGraph`

See the `c_graph` module for more information.

3.2 Fast compiled graphs

This is a Cython implementation of the base class for sparse and dense graphs in Sage. It is not intended for use on its own. Specific graph types should extend this base class and implement missing functionalities. Whenever possible, specific methods should also be overridden with implementations that suit the graph type under consideration.

For an overview of graph data structures in sage, see `overview`.
3.2.1 Data structure

The class CGraph maintains the following variables:

- cdef int num_verts
- cdef int num_arcs
- cdef int *in_degrees
- cdef int *out_degrees
- cdef bitset_t active_vertices

The bitset active_vertices is a list of all available vertices for use, but only the ones which are set are considered to actually be in the graph. The variables num_verts and num_arcs are self-explanatory. Note that num_verts is the number of bits set in active_vertices, not the full length of the bitset. The arrays in_degrees and out_degrees are of the same length as the bitset.

For more information about active vertices, see the documentation for the method realloc.

```python
class sage.graphs.base.c_graph.CGraph
    Bases: object
    Compiled sparse and dense graphs.

    add_arc(u, v)
    Add arc (u, v) to the graph.
    INPUT:
    • u, v – non-negative integers, must be in self
    EXAMPLES:
    On the CGraph level, this always produces an error, as there are no vertices:

    sage: from sage.graphs.base.c_graph import CGraph
    sage: G = CGraph()
    sage: G.add_arc(0, 1)
    Traceback (most recent call last):
      ... LookupError: vertex (0) is not a vertex of the graph

    >>> from sage.all import *
    >>> from sage.graphs.base.c_graph import CGraph
    >>> G = CGraph()
    >>> G.add_arc(Integer(0), Integer(1))
    Traceback (most recent call last):
      ... LookupError: vertex (0) is not a vertex of the graph

    It works, once there are vertices and add_arc_unsafe() is implemented:

    sage: from sage.graphs.base.dense_graph import DenseGraph
    sage: G = DenseGraph(5)
    sage: G.add_arc(0, 1)
    sage: G.add_arc(4, 7)
    Traceback (most recent call last):
      ... LookupError: vertex (7) is not a vertex of the graph
```

(continues on next page)
sage: G.has_arc(1, 0)
False
sage: G.has_arc(0, 1)
True

sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.add_arc(0,1)
sage: G.add_arc(4,7)
Traceback (most recent call last):
...
LookupError: vertex (7) is not a vertex of the graph
sage: G.has_arc(1,0)
False
sage: G.has_arc(0,1)
True

>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraph
>>> G = DenseGraph(Integer(5))
>>> G.add_arc(Integer(0), Integer(1))
>>> G.add_arc(Integer(4), Integer(7))
Traceback (most recent call last):
...
LookupError: vertex (7) is not a vertex of the graph
>>> G.has_arc(Integer(1), Integer(0))
False
>>> G.has_arc(Integer(0), Integer(1))
True

add_vertex \(k=-1\)

Adds vertex \(k\) to the graph.

INPUT:

- \(k\) – nonnegative integer or \(-1\) (default: \(-1\)); if \(k = -1\), a new vertex is added and the integer used is returned. That is, for \(k = -1\), this function will find the first available vertex that is not in \(self\) and add that vertex to this graph.

OUTPUT:

- \(-1\) – indicates that no vertex was added because the current allocation is already full or the vertex is out of range.
- nonnegative integer – this vertex is now guaranteed to be in the graph.

See also:
• **add_vertex_unsafe** – add a vertex to a graph. This method is potentially unsafe. You should instead use `add_vertex()`.

• **add_vertices** – add a bunch of vertices to a graph

EXAMPLES:

Adding vertices to a sparse graph:

```
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(3, extra_vertices=3)
sage: G.add_vertex(3)
3
sage: G.add_arc(2, 5)
Traceback (most recent call last):
  ... LookupError: vertex (5) is not a vertex of the graph
sage: G.add_arc(1, 3)
sage: G.has_arc(1, 3)
True
sage: G.has_arc(2, 3)
False
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>> G = SparseGraph(Integer(3), extra_vertices=Integer(3))
...```

Adding vertices to a dense graph:

```
sage: from sage.graphs.base.dense_graph import DenseGraph
go: G = DenseGraph(3, extra_vertices=3)
sage: G.add_vertex(3)
3
sage: G.add_arc(2, 5)
Traceback (most recent call last):
 ... LookupError: vertex (5) is not a vertex of the graph
sage: G.add_arc(Integer(1), Integer(3))
sage: G.has_arc(Integer(1), Integer(3))
True
sage: G.has_arc(Integer(2), Integer(3))
False
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraph
...```

(continues on next page)
Repeatedly adding a vertex using \(k = -1 \) will allocate more memory as required:

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
g: G = SparseGraph(3, extra_vertices=0)
sage: G.verts()
[0, 1, 2]
sage: for i in range(10):
    ...: _ = G.add_vertex(-1);
    ...
sage: G.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
```

```python
sage: from sage.all import *
sage: from sage.graphs.base.sparse_graph import SparseGraph
>>> G = SparseGraph(Integer(3), extra_vertices=Integer(0))
>>> G.verts()
[0, 1, 2]
>>> for i in range(Integer(10)):
    ...: _ = G.add_vertex(-Integer(1));
    ...
>>> G.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
```

```python
sage: from sage.graphs.base.dense_graph import DenseGraph
g: G = DenseGraph(3, extra_vertices=0)
sage: G.verts()
[0, 1, 2]
sage: for i in range(12):
    ...: _ = G.add_vertex(-1);
    ...
sage: G.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
```

```python
sage: from sage.all import *
sage: from sage.graphs.base.dense_graph import DenseGraph
>>> G = DenseGraph(Integer(3), extra_vertices=Integer(0))
>>> G.verts()
[0, 1, 2]
>>> for i in range(Integer(12)):
    ...: _ = G.add_vertex(-Integer(1));
    ...
>>> G.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
```

add_vertices(verts)
Add vertices from the iterable `verts`.

INPUT:

- `verts` – an iterable of vertices; value -1 has a special meaning – for each such value an unused vertex name is found, used to create a new vertex and returned.

OUTPUT:

List of generated labels if there is any -1 in `verts`. `None` otherwise.

See also:

- `add_vertex()` – add a vertex to a graph

EXAMPLES:

Adding vertices for sparse graphs:

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: S = SparseGraph(nverts=4, extra_vertices=4)
sage: S.verts()
[0, 1, 2, 3]
sage: S.add_vertices([3, -1, 4, 9])
[5]
sage: S.verts()
[0, 1, 2, 3, 4, 5, 9]
sage: S.realloc(20)
sage: S.verts()
[0, 1, 2, 3, 4, 5, 9]
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>> S = SparseGraph(nverts=Integer(4), extra_vertices=Integer(4))
>>> S.verts()
[0, 1, 2, 3]
>>> S.add_vertices([Integer(3), -Integer(1), Integer(4), Integer(9)])
[5]
>>> S.verts()
[0, 1, 2, 3, 4, 5, 9]
>>> S.realloc(Integer(20))
>>> S.verts()
[0, 1, 2, 3, 4, 5, 9]
```

Adding vertices for dense graphs:

```python
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: D = DenseGraph(nverts=4, extra_vertices=4)
sage: D.verts()
[0, 1, 2, 3]
sage: D.add_vertices([3, -1, 4, 9])
[5]
sage: D.verts()
[0, 1, 2, 3, 4, 5, 9]
sage: Drealloc(20)
sage: D.verts()
[0, 1, 2, 3, 4, 5, 9]
```
all_arcs \((u, v)\)

Gives the labels of all arcs \((u, v)\). An unlabeled arc is interpreted as having label 0.

EXAMPLES:

```
sage: from sage.graphs.base.sparse_graph import SparseGraph
dsage: G = SparseGraph(5)
dsage: G.add_arc_label(1,2,1)
dsage: G.add_arc_label(1,2,2)
dsage: G.add_arc_label(1,2,2)
dsage: G.add_arc_label(1,2,2)
dsage: G.add_arc_label(1,2,3)
dsage: G.add_arc_label(1,2,3)
dsage: G.add_arc_label(1,2,4)
dsage: G.all_arcs(1,2)
[4, 3, 3, 2, 2, 2, 1]
```

```
sage: from sage.all import *
sage: from sage.graphs.base.sparse_graph import SparseGraph
>>>
```

arc_label \((u, v)\)

Retrieves the first label found associated with \((u, v)\).

INPUT:

- \(u, v\) – non-negative integers, must be in self

OUTPUT: one of

- positive integer – indicates that there is a label on \((u, v)\).
- 0 – either the arc \((u, v)\) is unlabeled, or there is no arc at all.

EXAMPLES:

```
sage: from sage.all import *
sage: from sage.graphs.base.sparse_graph import SparseGraph
>>>
```

```
```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.add_arc_label(3,4,7)
sage: G.arc_label(3,4)
7

>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>> G = SparseGraph(Integer(5))
>>> G.add_arc_label(Integer(3),Integer(4),Integer(7))
>>> G.arc_label(Integer(3),Integer(4))
7

To this function, an unlabeled arc is indistinguishable from a non-arc:

```python
sage: G.add_arc_label(1,0)
sage: G.arc_label(1,0)
0
sage: G.arc_label(1,1)
0

>>> from sage.all import *
>>> G.add_arc_label(Integer(1),Integer(0))
>>> G.arc_label(Integer(1),Integer(0))
0
>>> G.arc_label(Integer(1),Integer(1))
0

This function only returns the first label it finds from u to v:

```python
sage: G.add_arc_label(1,2,1)
sage: G.add_arc_label(1,2,2)
sage: G.arc_label(1,2)
2

>>> from sage.all import *
>>> G.add_arc_label(Integer(1),Integer(2),Integer(1))
>>> G.add_arc_label(Integer(1),Integer(2),Integer(2))
>>> G.arc_label(Integer(1),Integer(2))
2
```

**check_vertex**($n$)

Check that $n$ is a vertex of self.

This method is different from `has_vertex()`. The current method raises an error if $n$ is not a vertex of this graph. On the other hand, `has_vertex()` returns a boolean to signify whether or not $n$ is a vertex of this graph.

**INPUT:**
- $n$ – a nonnegative integer representing a vertex

**OUTPUT:**
- Raise an error if $n$ is not a vertex of this graph

See also:
- \texttt{has\_vertex()} – determine whether this graph has a specific vertex

EXAMPLES:

\begin{verbatim}
sage: from sage.graphs.base.sparse_graph import SparseGraph
doctest:...: No output

sage: S = SparseGraph(nverts=10, expected_degree=3, extra_vertices=10)
sage: S.check_vertex(4)
sage: S.check_vertex(12)
Traceback (most recent call last):
  ... LookupError: vertex (12) is not a vertex of the graph
sage: S.check_vertex(24)
Traceback (most recent call last):
  ... LookupError: vertex (24) is not a vertex of the graph
sage: S.check_vertex(-19)
Traceback (most recent call last):
  ... LookupError: vertex (-19) is not a vertex of the graph

sage: from sage.all import *
sage: from sage.graphs.base.sparse_graph import SparseGraph

sage: S = SparseGraph(nverts=Integer(10), expected_degree=Integer(3), extra_vertices=Integer(10))
sage: S.check_vertex(Integer(4))
sage: S.check_vertex(Integer(12))
Traceback (most recent call last):
  ... LookupError: vertex (12) is not a vertex of the graph
sage: S.check_vertex(Integer(24))
Traceback (most recent call last):
  ... LookupError: vertex (24) is not a vertex of the graph
sage: S.check_vertex(-Integer(19))
Traceback (most recent call last):
  ... LookupError: vertex (-19) is not a vertex of the graph

>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph

>>> S = SparseGraph(nverts=Integer(10), expected_degree=Integer(3), extra_vertices=Integer(10))

>>> S.check_vertex(Integer(4))
>>> S.check_vertex(Integer(12))
Traceback (most recent call last):
  ... LookupError: vertex (12) is not a vertex of the graph
>>> S.check_vertex(Integer(24))
Traceback (most recent call last):
  ... LookupError: vertex (24) is not a vertex of the graph
>>> S.check_vertex(-Integer(19))
Traceback (most recent call last):
  ... LookupError: vertex (-19) is not a vertex of the graph

sage: from sage.graphs.base.dense_graph import DenseGraph
sage: D = DenseGraph(nverts=10, extra_vertices=10)
sage: D.check_vertex(4)
sage: D.check_vertex(12)
Traceback (most recent call last):
  ... LookupError: vertex (12) is not a vertex of the graph
sage: D.check_vertex(24)
Traceback (most recent call last):
  ... LookupError: vertex (24) is not a vertex of the graph
sage: D.check_vertex(-19)
Traceback (most recent call last):
  ... LookupError: vertex (-19) is not a vertex of the graph

>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraph

>>> D = DenseGraph(nverts=Integer(10), extra_vertices=Integer(10))

(continues on next page)
current_allocation()

Report the number of vertices allocated.

OUTPUT:

- The number of vertices allocated. This number is usually different from the order of a graph. We may have allocated enough memory for a graph to hold \( n > 0 \) vertices, but the order (actual number of vertices) of the graph could be less than \( n \).

EXAMPLES:

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: S = SparseGraph(nverts=4, extra_vertices=4)
```

```python
sage: S.current_allocation()
8
```

```python
sage: S.add_vertex(6)
6
```

```python
sage: S.current_allocation()
8
```

```python
sage: S.add_vertex(10)
10
```

```python
sage: S.current_allocation()
16
```

```python
sage: S.add_vertex(40)
Traceback (most recent call last):
... RuntimeError: requested vertex is past twice the allocated range: use realloc
```

```python
sage: S.realloc(50)
```

```python
sage: S.add_vertex(40)
40
```

```python
sage: S.current_allocation()
50
```

```python
sage: S.realloc(30)
-1
```

```python
sage: S.current_allocation()
50
```

```python
sage: S.del_vertex(40)
```

```python
sage: S.realloc(30)
```

```python
sage: S.current_allocation()
30
```

```python
>>> from sage.all import *
```

```python
>>> from sage.graphs.base.sparse_graph import SparseGraph
```

The actual number of vertices in a graph might be less than the number of vertices allocated for the graph:

```
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: G = DenseGraph(nverts=3, extra_vertices=2)
sage: order = len(G.verts())
sage: order
3
sage: G.current_allocation()
5
sage: order < G.current_allocation()
True
```

```
>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraph
>>> G = DenseGraph(nverts=Integer(3), extra_vertices=Integer(2))
>>> order = len(G.verts())
>>> order
3
>>> G.current_allocation()
5
>>> order < G.current_allocation()
True
```

```
del_all_arcs(u, v)
```

Delete all arcs from \( u \) to \( v \).

**INPUT:**
• $u$ – integer; the tail of an arc.
• $v$ – integer; the head of an arc.

**EXAMPLES:**

On the **CGraph** level, this always produces an error, as there are no vertices:

```python
sage: from sage.graphs.base.c_graph import CGraph
sage: G = CGraph()
Traceback (most recent call last):
 ...
LookupError: vertex (0) is not a vertex of the graph
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.c_graph import CGraph
>>> G = CGraph()
>>> G.del_all_arcs(Integer(0), Integer(1))
Traceback (most recent call last):
 ...
LookupError: vertex (0) is not a vertex of the graph
```

It works, once there are vertices and **del_arc_unsafe()** is implemented:

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.add_arc_label(0, 1, 0)
sage: G.add_arc_label(0, 1, 1)
sage: G.add_arc_label(0, 1, 2)
sage: G.add_arc_label(0, 1, 3)
sage: G.del_all_arcs(0, 1)
```

```python
sage: G.has_arc(0, 1)
False
sage: G.arc_label(0, 1)
0
```

```python
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: G = DenseGraph(5)
```

```python
sage: G.add_arc(0, 1)
```

```python
sage: G.has_arc(0, 1)
True
```

```python
sage: G.del_all_arcs(0, 1)
```

```python
sage: G.has_arc(0, 1)
False
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>> G = SparseGraph(Integer(5))
```

```python
>>> G.add_arc_label(Integer(0), Integer(1), Integer(0))
>>> G.add_arc_label(Integer(0), Integer(1), Integer(1))
>>> G.add_arc_label(Integer(0), Integer(1), Integer(2))
>>> G.add_arc_label(Integer(0), Integer(1), Integer(3))
```

```python
>>> G.del_all_arcs(Integer(0), Integer(1))
```

```python
>>> G.has_arc(Integer(0), Integer(1))
False
```

```python
>>> G.arc_label(Integer(0), Integer(1))
```

(continues on next page)
0
>>> G.del_all_arcs(Integer(0), Integer(1))

>>> from sage.graphs.base.dense_graph import DenseGraph
>>> G = DenseGraph(Integer(5))
>>> G.add_arc(Integer(0), Integer(1))
>>> G.has_arc(Integer(0), Integer(1))
True
>>> G.del_all_arcs(Integer(0), Integer(1))
>>> G.has_arc(Integer(0), Integer(1))
False

\texttt{del\_arc\_label}(u, v, l)
Delete an arc \((u, v)\) with label \(l\).

\textbf{INPUT:}
- \(u, v\) – non-negative integers, must be in self
- \(l\) – a positive integer label, or zero for no label

\textbf{EXAMPLES:}

```
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.add_arc_label(0, 1, 0)
sage: G.add_arc_label(0, 1, 1)
sage: G.add_arc_label(0, 1, 2)
sage: G.add_arc_label(0, 1, 2)
sage: G.add_arc_label(0, 1, 3)
sage: G.del_arc_label(0, 1, 2)
sage: G.all_arcs(0, 1)
[0, 3, 2, 1]
sage: G.del_arc_label(0, 1, 0)
sage: G.all_arcs(0, 1)
[3, 2, 1]
```

\texttt{del\_vertex}(v)
Delete the vertex \(v\), along with all edges incident to it.

If \(v\) is not in \texttt{self}, fails silently.

\textbf{INPUT:}
• \( v \) – a nonnegative integer representing a vertex

See also:

• `del_vertex_unsafe` – delete a vertex from a graph. This method is potentially unsafe. Use `del_vertex()` instead.

EXAMPLES:

Deleting vertices of sparse graphs:

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(3)
sage: G.add_arc(0, 1)
sage: G.add_arc(0, 2)
sage: G.add_arc(1, 2)
sage: G.add_arc(2, 0)
sage: G.del_vertex(2)
sage: for i in range(2):
 for j in range(2):
 if G.has_arc(i, j):
 print("{} {}").format(i,j))
0 1
sage: G = SparseGraph(3)
sage: G.add_arc(0, 1)
sage: G.add_arc(0, 2)
sage: G.add_arc(1, 2)
sage: G.add_arc(2, 0)
sage: G.del_vertex(1)
sage: for i in range(3):
 for j in range(3):
 if G.has_arc(i, j):
 print("{} {}").format(i,j))
0 2
2 0
```

(continues on next page)
Deleting vertices of dense graphs:

```python
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: G = DenseGraph(4)
sage: G.add_arc(0, 1); G.add_arc(0, 2)
sage: G.add_arc(3, 1); G.add_arc(3, 2)
sage: G.add_arc(1, 2)
sage: G.verts()
[0, 1, 2, 3]
sage: G.del_vertex(3); G.verts()
[0, 1, 2]
sage: for i in range(3):
 for j in range(3):
 if G.has_arc(i, j):
 print("{} {}").format(i, j)
```

0 1
0 2
1 2

If the vertex to be deleted is not in this graph, then fail silently:

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(3)
sage: G.verts()
[0, 1, 2]
sage: G.has_vertex(3)
False
sage: G.del_vertex(3)
sage: G.verts()
[0, 1, 2]
```

(continues on next page)
>> G.verts()
[0, 1, 2]
>> G.has_vertex(Integer(3))
False
>> G.del_vertex(Integer(3))
>> G.verts()
[0, 1, 2]

```
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: G = DenseGraph(5)
sage: G.verts()
[0, 1, 2, 3, 4]
sage: G.has_vertex(6)
False
sage: G.del_vertex(6)
sage: G.verts()
[0, 1, 2, 3, 4]
```

```
>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraph
>>> G = DenseGraph(Integer(5))
>>> G.verts()
[0, 1, 2, 3, 4]
>>> G.has_vertex(Integer(6))
False
>>> G.del_vertex(Integer(6))
>>> G.verts()
[0, 1, 2, 3, 4]
```

has_arc \((u, v)\)
Check if the arc \((u, v)\) is in this graph.

**INPUT:**

- \(u\) – integer; the tail of an arc
- \(v\) – integer; the head of an arc

**OUTPUT:**

- Print a Not Implemented! message. This method is not implemented at the CGraph level. A child class should provide a suitable implementation.

**EXAMPLES:**

On the CGraph this always returns False:

```
sage: from sage.graphs.base.c_graph import CGraph
sage: G = CGraph()
sage: G.has_arc(0, 1)
False
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.c_graph import CGraph
>>> G = CGraph()
>>> G.has_arc(Integer(0), Integer(1))
False
```
It works once has_arc_unsafe is implemented:

```
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: G = DenseGraph(5)
sage: G.add_arc(0, 1)
sage: G.has_arc(1, 0)
False
sage: G.has_arc(0, 1)
True
```

```
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.add_arc_label(0,1)
sage: G.has_arc(1,0)
False
sage: G.has_arc(0,1)
True
```

```>> from sage.all import *
>> from sage.graphs.base.dense_graph import DenseGraph
>> G = DenseGraph(Integer(5))
>> G.add_arc(Integer(0), Integer(1))
>> G.has_arc(Integer(1), Integer(0))
False
>> G.has_arc(Integer(0), Integer(1))
True
```

```>> from sage.graphs.base.sparse_graph import SparseGraph
>> G = SparseGraph(Integer(5))
>> G.add_arc_label(Integer(0),Integer(1))
>> G.has_arc(Integer(1),Integer(0))
False
>> G.has_arc(Integer(0),Integer(1))
True
```

`has_arc_label (u, v, l)`

Indicates whether there is an arc \((u, v)\) with label \(l\).

**INPUT:**

- \(u, v\) – non-negative integers, must be in self
- \(l\) – a positive integer label, or zero for no label

**EXAMPLES:**

```
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.add_arc_label(0,1,0)
sage: G.add_arc_label(0,1,1)
sage: G.add_arc_label(0,1,2)
sage: G.add_arc_label(0,1,2)
sage: G.has_arc_label(0,1,1)
True
sage: G.has_arc_label(0,1,2)
True
sage: G.has_arc_label(0,1,3)
False
```

```1390 Chapter 3. Low-level implementation```
```python
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>> G = SparseGraph(Integer(5))
>>> G.add_arc_label(Integer(0),Integer(1),Integer(0))
>>> G.add_arc_label(Integer(0),Integer(1),Integer(1))
>>> G.add_arc_label(Integer(0),Integer(1),Integer(2))
>>> G.add_arc_label(Integer(0),Integer(1),Integer(2))
True
>>> G.has_arc_label(Integer(0),Integer(1),Integer(1))
True
>>> G.has_arc_label(Integer(0),Integer(1),Integer(2))
True
>>> G.has_arc_label(Integer(0),Integer(1),Integer(3))
False
```

```python
has_vertex(n)
```

Determine whether the vertex \(n \) is in \(\text{self} \).

This method is different from `check_vertex()`. The current method returns a boolean to signify whether or not \(n \) is a vertex of this graph. On the other hand, `check_vertex()` raises an error if \(n \) is not a vertex of this graph.

INPUT:

- \(n \) – a nonnegative integer representing a vertex

OUTPUT:

- True if \(n \) is a vertex of this graph; False otherwise.

See also:

- `check_vertex()` – raise an error if this graph does not contain a specific vertex.

EXAMPLES:

Upon initialization, a `SparseGraph` or `DenseGraph` has the first `nverts` vertices:

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
goog_sage: S = SparseGraph(nverts=10, expected_degree=3, extra_vertices=10)
sage: S.has_vertex(6)
True
goog_sage: S.has_vertex(12)
False
goog_sage: S.has_vertex(24)
False
goog_sage: S.has_vertex(-19)
False
```

```python
sage: S = SparseGraph(nverts=Integer(10), expected_degree=Integer(3), extra_vertices=Integer(10))
True
```

(continues on next page)
>>> S.has_vertex(-Integer(19))
False

sage: from sage.graphs.base.dense_graph import DenseGraph
sage: D = DenseGraph(nverts=10, extra_vertices=10)
sage: D.has_vertex(6)
True
sage: D.has_vertex(12)
False
sage: D.has_vertex(24)
False
sage: D.has_vertex(-19)
False

>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraph

>>> D = DenseGraph(nverts=Integer(10), extra_vertices=Integer(10))

>>> D.has_vertex(Integer(6))
True

>>> D.has_vertex(Integer(12))
False

>>> D.has_vertex(Integer(24))
False

>>> D.has_vertex(-Integer(19))
False

in_neighbors(v)

Return the list of in-neighbors of the vertex v.

INPUT:

• v – integer representing a vertex of this graph

OUTPUT:

• Raise NotImplementedError. This method is not implemented at the CGraph level. A child class should provide a suitable implementation.

Note: Due to the implementation of SparseGraph, this method is much more expensive than out_neighbors_unsafe for SparseGraph's.

EXAMPLES:

On the CGraph level, this always produces an error, as there are no vertices:

sage: from sage.graphs.base.c_graph import CGraph
sage: G = CGraph()
sage: G.in_neighbors(0)
Traceback (most recent call last):
 ...
LookupError: vertex (0) is not a vertex of the graph

>>> from sage.all import *
>>> from sage.graphs.base.c_graph import CGraph

>>> G = CGraph()
It works, once there are vertices and `out_neighbors_unsafe()` is implemented:

```python
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: G = DenseGraph(5)
sage: G.add_arc(0, 1)
sage: G.add_arc(3, 1)
sage: G.add_arc(1, 3)
sage: G.in_neighbors(1)
[0, 3]
sage: G.in_neighbors(3)
[1]
```

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.add_arc(0, 1)
sage: G.add_arc(3, 1)
sage: G.add_arc(1, 3)
sage: G.in_neighbors(1)
[0, 3]
sage: G.in_neighbors(3)
[1]
```

```python
>>> from sage.all import *

>>> from sage.graphs.base.dense_graph import DenseGraph

>>> G = DenseGraph(Integer(5))

>>> G.add_arc(Integer(0), Integer(1))

>>> G.add_arc(Integer(3), Integer(1))

>>> G.add_arc(Integer(1), Integer(3))

>>> G.in_neighbors(Integer(1))

[0, 3]

>>> G.in_neighbors(Integer(3))

[1]
```

```python
>>> from sage.graphs.base.sparse_graph import SparseGraph

>>> G = SparseGraph(Integer(5))

>>> G.add_arc(Integer(0), Integer(1))

>>> G.add_arc(Integer(3), Integer(1))

>>> G.add_arc(Integer(1), Integer(3))

>>> G.in_neighbors(Integer(1))

[0, 3]

>>> G.in_neighbors(Integer(3))

[1]
```

out_neighbors(u)

Return the list of out-neighbors of the vertex `u`.

INPUT:

- `u` – integer representing a vertex of this graph

EXAMPLES:

On the `CGraph` level, this always produces an error, as there are no vertices:
```
sage: from sage.graphs.base.c_graph import CGraph
sage: G = CGraph()
sage: G.out_neighbors(0)
Traceback (most recent call last):
  ...
LookupError: vertex (0) is not a vertex of the graph
```

```
>>> from sage.all import *
>>> from sage.graphs.base.c_graph import CGraph
>>> G = CGraph()
>>> G.out_neighbors(Integer(0))
Traceback (most recent call last):
  ...
LookupError: vertex (0) is not a vertex of the graph
```

It works, once there are vertices and `out_neighbors_unsafe()` is implemented:

```
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: G = DenseGraph(5)
sage: G.add_arc(0, 1)
sage: G.add_arc(1, 2)
sage: G.add_arc(1, 3)
sage: G.out_neighbors(0)
[1]
sage: G.out_neighbors(1)
[2, 3]
```

```
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.add_arc(0,1)
sage: G.add_arc(1,2)
sage: G.add_arc(1,3)
sage: G.out_neighbors(0)
[1]
sage: G.out_neighbors(1)
[2, 3]
```

```
>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraph
>>> G = DenseGraph(Integer(5))
>>> G.add_arc(Integer(0), Integer(1))
>>> G.add_arc(Integer(1), Integer(2))
>>> G.add_arc(Integer(1), Integer(3))
>>> G.out_neighbors(Integer(0))
[1]
>>> G.out_neighbors(Integer(1))
[2, 3]
```

```
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>> G = SparseGraph(Integer(5))
>>> G.add_arc(Integer(0),Integer(1))
>>> G.add_arc(Integer(1),Integer(2))
>>> G.add_arc(Integer(1),Integer(3))
>>> G.out_neighbors(Integer(0))
[1]
>>> G.out_neighbors(Integer(1))
[2, 3]
```
realloc\((total)\)

Reallocation the number of vertices to use, without actually adding any.

INPUT:

- \(total\) – integer; the total size to make the array of vertices

OUTPUT:

- Raise a `NotImplementedError`. This method is not implemented in this base class. A child class should provide a suitable implementation.

See also:

- `realloc` – a realloc implementation for sparse graphs.
- `realloc` – a realloc implementation for dense graphs.

EXAMPLES:

First, note that `realloc()` is implemented for `SparseGraph` and `DenseGraph` differently, and is not implemented at the `CGraph` level:

```python
sage: from sage.graphs.base.c_graph import CGraph
sage: G = CGraph()
sage: G.realloc(20)
Traceback (most recent call last):
  ...  
NotImplementedError
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.c_graph import CGraph
>>> G = CGraph()
>>> G.realloc(Integer(20))
Traceback (most recent call last):
  ...  
NotImplementedError
```

The `realloc` implementation for sparse graphs:

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: S = SparseGraph(nverts=4, extra_vertices=4)
sage: S.current_allocation()
8
sage: S.add_vertex(6)
6
sage: S.current_allocation()
8
sage: S.add_vertex(10)
10
sage: S.current_allocation()
16
sage: S.add_vertex(40)
Traceback (most recent call last):
  ...  
RuntimeError: requested vertex is past twice the allocated range: use realloc
sage: S.realloc(50)
sage: S.add_vertex(40)
40
```

(continues on next page)
sage: S.current_allocation()
50
sage: S.realloc(30)
-1
sage: S.current_allocation()
50
sage: S.del_vertex(40)
sage: S.realloc(30)
sage: S.current_allocation()
30
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>> S = SparseGraph(nverts=Integer(4), extra_vertices=Integer(4))
>>> S.current_allocation()
8
>>> S.add_vertex(Integer(6))
6
>>> S.current_allocation()
8
>>> S.add_vertex(Integer(10))
10
>>> S.current_allocation()
16
>>> S.add_vertex(Integer(40))
Traceback (most recent call last):
...(RuntimeError: requested vertex is past twice the allocated range: use realloc
>>> S.realloc(Integer(50))
>>> S.add_vertex(Integer(40))
40
>>> S.current_allocation()
50
>>> S.realloc(Integer(30))
-1
>>> S.current_allocation()
50
>>> S.del_vertex(Integer(40))
>>> S.realloc(Integer(30))
>>> S.current_allocation()
30

The realloc implementation for dense graphs:

sage: from sage.graphs.base.dense_graph import DenseGraph
sage: D = DenseGraph(nverts=4, extra_vertices=4)
sage: D.current_allocation()
8
sage: D.add_vertex(6)
6
sage: D.current_allocation()
8
sage: D.add_vertex(10)
10
sage: D.current_allocation()
16

(continues on next page)
verts()

Return a list of the vertices in self.

OUTPUT:

• A list of all vertices in this graph

EXAMPLES:
Sage: from sage.graphs.base.sparse_graph import SparseGraph
Sage: S = SparseGraph(nverts=4, extra_vertices=4)
Sage: S.verts()
[0, 1, 2, 3]
Sage: S.add_vertices([3,5,7,9])
Sage: S.verts()
[0, 1, 2, 3, 5, 7, 9]
Sage: S.realloc(20)
Sage: S.verts()
[0, 1, 2, 3, 5, 7, 9]

```python
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>> S = SparseGraph(nverts=Integer(4), extra_vertices=Integer(4))
>>> S.verts()
[0, 1, 2, 3]
>>> S.add_vertices([Integer(3),Integer(5),Integer(7),Integer(9)])
>>> S.verts()
[0, 1, 2, 3, 5, 7, 9]
>>> S.realloc(Integer(20))
>>> S.verts()
[0, 1, 2, 3, 5, 7, 9]
```

Sage: from sage.graphs.base.dense_graph import DenseGraph
Sage: G = DenseGraph(3, extra_vertices=2)
Sage: G.verts()
[0, 1, 2]
Sage: G.del_vertex(0)
Sage: G.verts()
[1, 2]

```python
>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraph
>>> G = DenseGraph(Integer(3), extra_vertices=Integer(2))
>>> G.verts()
[0, 1, 2]
>>> G.del_vertex(Integer(0))
>>> G.verts()
[1, 2]
```

class sage.graphs.base.c_graph.CGraphBackend
Bases: GenericGraphBackend

Base class for sparse and dense graph backends.

```python
sage: from sage.graphs.base.c_graph import CGraphBackend
sage: CGB = CGraphBackend()
```
The appropriate way to use these backends is via Sage graphs:

```
sage: G = Graph(30)
sage: G.add_edges(
            [(0, 1), (0, 3), (4, 5), (9, 23)])
sage: G.edges(sort=True, labels=False)
[(0, 1), (0, 3), (4, 5), (9, 23)]
```

```
from sage.all import *

G = Graph(Integer(30))
G.add_edges(
    [(Integer(0), Integer(1)), (Integer(0), Integer(3)),
     (Integer(4), Integer(5)), (Integer(9), Integer(23))])
G.edges(sort=True, labels=False)
```

This class handles the labels of vertices and edges. For vertices it uses two dictionaries `vertex_labels` and `vertex_ints`. They are just opposite of each other: `vertex_ints` makes a translation from label to integers (that are internally used) and `vertex_labels` make the translation from internally used integers to actual labels. This class tries hard to avoid translation if possible. This will work only if the graph is built on integers from 0 to \(n - 1 \) and the vertices are basically added in increasing order.

See also:

- `SparseGraphBackend` — backend for sparse graphs.
- `DenseGraphBackend` — backend for dense graphs.

`add_edge` \((u, v, l, directed)\)

Add the edge \((u, v)\) to self.

INPUT:

- \(u, v \) — the vertices of the edge
- \(l \) — the edge label
- **directed** — if False, also add \((v, u)\)

Note: The input \(l \) is ignored if the backend does not support labels.

EXAMPIES:
sage: D = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: D.add_edge(0, 1, None, False)
sage: list(D.iterator_edges(range(9), True))
[(0, 1, None)]

>>> from sage.all import *
>>> D = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
>>> D.add_edge(Integer(0), Integer(1), None, False)
>>> list(D.iterator_edges(range(Integer(9)), True))
[(0, 1, None)]

sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: D.add_edge(0, 1, None, False)
sage: list(D.iterator_edges(range(9), True))
[(0, 1, None)]

>>> from sage.all import *
>>> D = sage.graphs.base.dense_graph.DenseGraphBackend(Integer(9))
>>> D.add_edge(Integer(0), Integer(1), None, False)
>>> list(D.iterator_edges(range(Integer(9)), True))
[(0, 1, None)]

add_edges (edges, directed, remove_loops=False)
Add edges from a list.

INPUT:

• edges – the edges to be added; can either be of the form (u, v) or (u, v, l)
• directed – if False, add (v, u) as well as (u, v)
• remove_loops – if True, remove loops

EXAMPLES:

sage: D = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: D.add_edges([[(0, 1), (2, 3), (4, 5), (5, 6)], False])
sage: list(D.iterator_edges(range(9), True))
[(0, 1, None),
 (2, 3, None),
 (4, 5, None),
 (5, 6, None)]

>>> from sage.all import *
>>> D = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
>>> D.add_edges([[(Integer(0), Integer(1)), (Integer(2), Integer(3)),
 (Integer(4), Integer(5)), (Integer(5), Integer(6))], False])
>>> list(D.iterator_edges(range(Integer(9)), True))
[(0, 1, None),
 (2, 3, None),
 (4, 5, None),
 (5, 6, None)]

add_vertex (name)
Add a vertex to self.

INPUT:
• **name** – the vertex to be added (must be hashable). If None, a new name is created.

OUTPUT:

• If **name** = None, the new vertex name is returned. None otherwise.

See also:

• **add_vertices()** – add a bunch of vertices of this graph
 • **has_vertex()** – returns whether or not this graph has a specific vertex

EXAMPLES:

```python
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: D.add_vertex(10)
sage: D.add_vertex([])
```

```
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'
```

```python
>>> from sage.all import *
>>> D = sage.graphs.base.dense_graph.DenseGraphBackend(Integer(9))
>>> D.add_vertex(Integer(10))
>>> D.add_vertex([])
```

```
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'
```

```python
sage: S = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: S.add_vertex(10)
sage: S.add_vertex([])
```

```
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'
```

```python
>>> from sage.all import *
>>> S = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
>>> S.add_vertex(Integer(10))
>>> S.add_vertex([])
```

```
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'
```

add_vertices(*vertices*)

Add vertices to self.

INPUT:

• **vertices** – iterator of vertex labels; a new name is created, used and returned in the output list for all None values in vertices

OUTPUT:

Generated names of new vertices if there is at least one None value present in vertices. None otherwise.

See also:

• **add_vertex()** – add a vertex to this graph
EXAMPLES:

```python
sage: D = sage.graphs.base.sparse_graph.SparseGraphBackend(1)
sage: D.add_vertices([1, 2, 3])
sage: D.add_vertices([None] * 4)
[4, 5, 6, 7]

>>> from sage.all import *
>>> D = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(1))
>>> D.add_vertices([Integer(1), Integer(2), Integer(3)])
>>> D.add_vertices([None] * Integer(4))
[4, 5, 6, 7]

sage: G = sage.graphs.base.sparse_graph.SparseGraphBackend(0)
sage: G.add_vertices([0, 1])
sage: list(G.iterator_verts(None))
[0, 1]
sage: list(G.iterator_edges([0, 1], True))
[]

>>> from sage.all import *
>>> G = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(0))
>>> G.add_vertices([Integer(0), Integer(1)])
>>> list(G.iterator_verts(None))
[0, 1]
>>> list(G.iterator_edges([Integer(0), Integer(1)], True))
[]

sage: import sage.graphs.base.dense_graph
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: D.add_vertices([10, 11, 12])

>>> from sage.all import *
>>> import sage.graphs.base.dense_graph
>>> D = sage.graphs.base.dense_graph.DenseGraphBackend(Integer(9))
>>> D.add_vertices([Integer(10), Integer(11), Integer(12)])
```

bidirectional_dijkstra (*x*, *y*, **weight_function=**`None`, **distance_flag=**`False`)
Return the shortest path or distance from *x* to *y* using a bidirectional version of Dijkstra’s algorithm.

INPUT:
- *x* – the starting vertex in the shortest path from *x* to *y*
- *y* – the end vertex in the shortest path from *x* to *y*
- **weight_function** – function (default: None); a function that inputs an edge (*u*, *v*, 1) and outputs its weight. If None, we use the edge label 1 as a weight, if 1 is not None, else 1 as a weight.
- **distance_flag** – boolean (default: False); when set to True, the shortest path distance from *x* to *y* is returned instead of the path.

OUTPUT:
- A list of vertices in the shortest path from *x* to *y* or distance from *x* to *y* is returned depending upon the value of parameter **distance_flag**

EXAMPLES:
sage: G = Graph(graphs.PetersenGraph())

sage: for (u, v) in G.edges(sort=True, labels=None):
 : G.set_edge_label(u, v, 1)

sage: G.shortest_path(0, 1, by_weight=True)
[0, 1]

sage: G.shortest_path_length(0, 1, by_weight=True)
1

sage: G = DiGraph([(1, 2, {'weight':1}), (1, 3, {'weight':5}), (2, 3, {'weight':1})])

sage: G.shortest_path(1, 3, weight_function=lambda e:e[2]['weight'])
[1, 2, 3]

sage: G.shortest_path_length(1, 3, weight_function=lambda e:e[2]['weight'])
2

>>> from sage.all import *

>>> G = Graph(graphs.PetersenGraph())

>>> for (u, v) in G.edges(sort=True, labels=None):
 : G.set_edge_label(u, v, Integer(1))

>>> G.shortest_path(Integer(0), Integer(1), by_weight=True)
[0, 1]

>>> G.shortest_path_length(Integer(0), Integer(1), by_weight=True)
1

>>> G = DiGraph([(Integer(1), Integer(2), {'weight':Integer(1)}), (Integer(1),
 Integer(3), {'weight':Integer(5)}), (Integer(2), Integer(3), {'weight'
 ->':Integer(1)})])

>>> G.shortest_path(Integer(1), Integer(3), weight_function=lambda e:e[2]['weight'])
[1, 2, 3]

>>> G.shortest_path_length(Integer(1), Integer(3), weight_function=lambda e:e[2]['weight'])
2

bidirectional_dijkstra_special *(x, y, weight_function=None, exclude_vertices=None, exclude_edges=None, include_vertices=None, distance_flag=False, reduced_weight=None)*

Return the shortest path or distance from \(x\) to \(y\) using a bidirectional version of Dijkstra’s algorithm.

This method is an extension of **bidirectional_dijkstra()** method enabling to exclude vertices and/or edges from the search for the shortest path between \(x\) and \(y\).

This method also has **include_vertices** option enabling to include the vertices which will be used to search for the shortest path between \(x\) and \(y\).

INPUT:

- \(x\) – the starting vertex in the shortest path from \(x\) to \(y\)
- \(y\) – the end vertex in the shortest path from \(x\) to \(y\)
- **exclude_vertices** – iterable container (default: None); iterable of vertices to exclude from the graph while calculating the shortest path from \(x\) to \(y\)
- **exclude_edges** – iterable container (default: None); iterable of edges to exclude from the graph while calculating the shortest path from \(x\) to \(y\)
- **include_vertices** – iterable container (default: None); iterable of vertices to consider in the graph while calculating the shortest path from \(x\) to \(y\)
- **weight_function** – function (default: None); a function that inputs an edge \((u, v, l)\) and outputs its weight. If None, we use the edge label \(l\) as a weight, if \(l\) is not None, else 1 as a weight.
• `distance_flag` – boolean (default: `False`); when set to `True`, the shortest path distance from `x` to `y` is returned instead of the path.

• `reduced_weight` – dictionary (default: `None`); a dictionary that takes as input an edge `(u, v)` and outputs its reduced weight.

OUTPUT:

• A list of vertices in the shortest path from `x` to `y` or distance from `x` to `y` is returned depending upon the value of parameter `distance_flag`

EXAMPLES:

```python
sage: G = Graph([(1, 2, 20), (2, 3, 10), (3, 4, 30), (1, 5, 20), (5, 6, 10),
             (6, 4, 50), (4, 7, 5)])
sage: G._backend.bidirectional_dijkstra_special(1, 4, weight_function=lambda e: e[2])
[1, 2, 3, 4]
sage: G._backend.bidirectional_dijkstra_special(1, 4, weight_function=lambda e: e[2],
             exclude_vertices=[2], exclude_edges=[(3, 4)])
[1, 5, 6, 4]
sage: G._backend.bidirectional_dijkstra_special(1, 4, weight_function=lambda e: e[2],
             exclude_vertices=[2, 7])
[1, 5, 6, 4]
sage: G._backend.bidirectional_dijkstra_special(1, 4, weight_function=lambda e: e[2],
             exclude_edges=[(5, 6)])
[1, 2, 3, 4]
sage: G._backend.bidirectional_dijkstra_special(1, 4, weight_function=lambda e: e[2],
             include_vertices=[1, 5, 6, 4])
[1, 5, 6, 4]
```

```python
>>> from sage.all import *
>>> G = Graph([(Integer(1), Integer(2), Integer(20)), (Integer(2), Integer(3),
             Integer(10)), (Integer(3), Integer(4), Integer(30)), (Integer(1),
             Integer(5), Integer(20)), (Integer(5), Integer(6), Integer(10)),
             (Integer(6), Integer(4), Integer(50)), (Integer(4), Integer(7),
             Integer(5))])
>>> G._backend.bidirectional_dijkstra_special(Integer(1), Integer(4), weight_  
             function=lambda e:e[Integer(2)])
[1, 2, 3, 4]
>>> G._backend.bidirectional_dijkstra_special(Integer(1), Integer(4), weight_  
             function=lambda e:e[Integer(2)], exclude_vertices=[Integer(2)], exclude_  
             edges=[(Integer(3), Integer(4))])
[1, 5, 6, 4]
>>> G._backend.bidirectional_dijkstra_special(Integer(1), Integer(4), weight_  
             function=lambda e:e[Integer(2)], exclude_vertices=[Integer(2), Integer(7)])
[1, 5, 6, 4]
>>> G._backend.bidirectional_dijkstra_special(Integer(1), Integer(4), weight_  
             function=lambda e:e[Integer(2)], exclude_edges=[(Integer(5), Integer(6))])
[1, 2, 3, 4]
>>> G._backend.bidirectional_dijkstra_special(Integer(1), Integer(4), weight_  
             function=lambda e:e[Integer(2)], include_vertices=[Integer(1), Integer(5),
             Integer(6), Integer(4)])
[1, 5, 6, 4]
```

breadth_first_search (`v`, `reverse=False`, `ignore_direction=False`, `report_distance=False`, `edges=False`)

Return a breadth-first search from vertex `v`.

INPUT:

1404 Chapter 3. Low-level implementation
• \(v\) – a vertex from which to start the breadth-first search

• reverse – boolean (default: False); this is only relevant to digraphs. If this is a digraph, consider the reversed graph in which the out-neighbors become the in-neighbors and vice versa.

• ignore_direction – boolean (default: False); this is only relevant to digraphs. If this is a digraph, ignore all orientations and consider the graph as undirected.

• report_distance – boolean (default: False); if True, reports pairs \((\text{vertex}, \text{distance})\) where \text{distance} is the distance from the start nodes. If False only the vertices are reported.

• edges – boolean (default: False); whether to return the edges of the BFS tree in the order of visit or the vertices (default). Edges are directed in root to leaf orientation of the tree.

Note that parameters edges and report_distance cannot be True simultaneously.

ALGORITHM:

Below is a general template for breadth-first search.

• Input: A directed or undirected graph \(G = (V, E)\) of order \(n > 0\). A vertex \(s\) from which to start the search. The vertices are numbered from 1 to \(n = |V|\), i.e. \(V = \{1, 2, \ldots, n\}\).

• Output: A list \(D\) of distances of all vertices from \(s\). A tree \(T\) rooted at \(s\).

1. \(Q \leftarrow [s]\) # a queue of nodes to visit
2. \(D \leftarrow [\infty, \infty, \ldots, \infty]\) # \(n\) copies of \(\infty\)
3. \(D[s] \leftarrow 0\)
4. \(T \leftarrow []\)
5. while length\((Q) > 0\) do
 1. \(v \leftarrow \text{dequeue}(Q)\)
 2. for each \(w \in \text{adj}(v)\) do # for digraphs, use out-neighbor set \(\text{adj}(v)\)
 1. if \(D[w] = \infty\) then
 1. \(D[w] \leftarrow D[v] + 1\)
 2. \(\text{enqueue}(Q, w)\)
 3. \(\text{append}(T, vw)\)
6. return \((D, T)\)

See also:

• breadth_first_search – breadth-first search for generic graphs.

• depth_first_search – depth-first search for generic graphs.

• depth_first_search() – depth-first search for fast compiled graphs.

EXAMPLES:

Breadth-first search of the Petersen graph starting at vertex 0:

```
sage: G = Graph(graphs.PetersenGraph())
sage: list(G.breadth_first_search(0))
[0, 1, 4, 5, 2, 6, 3, 9, 7, 8]
```
>>> from sage.all import *
>>> G = Graph(graphs.PetersenGraph())
>>> list(G.breadth_first_search(Integer(0)))
[0, 1, 4, 5, 2, 6, 3, 9, 7, 8]

Visiting European countries using breadth-first search:

```
 sage: G = graphs.EuropeMap(continental=True)
 sage: list(G.breadth_first_search("Portugal"))
 ['Portugal', 'Spain', '...', 'Greece']
```

```
>>> from sage.all import *
>>> G = graphs.EuropeMap(continental=True)
>>> list(G.breadth_first_search("Portugal"))
['Portugal', 'Spain', '...', 'Greece']
```

c_graph()
Return the ._cg and ._cg_rev attributes

Note: The ._cg_rev attribute has been removed and hence None is returned.

EXAMPLES:
```
sage: cg, cg_rev = graphs.PetersenGraph()._backend.c_graph()
sage: cg
<sage.graphs.base.sparse_graph.SparseGraph object at ...>
```

```
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraphBackend

sage: B = SparseGraphBackend(Integer(7))
```

(continues on next page)
del_edge \((u, v, l, \text{directed})\)
Delete edge \((u, v, l)\).

INPUT:

- \(u, v\) – the vertices of the edge
- \(l\) – the edge label
- \(\text{directed}\) – if False, also delete \((v, u, l)\)

Note: The input \(l\) is ignored if the backend does not support labels.

EXAMPLES:

```python
sage: D = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: D.add_edges([(0,1), (2,3), (4,5), (5,6)], False)
sage: list(D.iterator_edges(range(9), True))
[(0, 1, None),
 (2, 3, None),
 (4, 5, None),
 (5, 6, None)]
sage: D.del_edge(0,1,None,True)
sage: list(D.iterator_out_edges(range(9), True))
[(1, 0, None),
 (2, 3, None),
 (3, 2, None),
 (4, 5, None),
 (5, 4, None),
 (5, 6, None),
 (6, 5, None)]
```

```python
from sage.all import *

>>> D = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
>>> D.add_edges([(0,Integer(1)), (2,Integer(3)), (4,Integer(5)), (5,Integer(6))], False)
>>> list(D.iterator_edges(range(Integer(9)), True))
[(0, 1, None),
 (2, 3, None),
 (4, 5, None),
 (5, 6, None)]
>>> D.del_edge(Integer(0),Integer(1),None,True)
>>> list(D.iterator_out_edges(range(Integer(9)), True))
[(1, 0, None),
 (2, 3, None),
 (3, 2, None),
 (4, 5, None),
 (5, 4, None),
 (5, 6, None),
 (6, 5, None)]
```

```python
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: D.add_edges([(0, 1), (2, 3), (4, 5), (5, 6)], False)
```

(continues on next page)
```python
sage: list(D.iterator_edges(range(9), True))
[(0, 1, None),
 (2, 3, None),
 (4, 5, None),
 (5, 6, None)]
sage: D.del_edge(0, 1, None, True)
sage: list(D.iterator_out_edges(range(9), True))
[(1, 0, None),
 (2, 3, None),
 (3, 2, None),
 (4, 5, None),
 (5, 4, None),
 (5, 6, None),
 (6, 5, None)]
```

```python
>>> from sage.all import *
>>> D = sage.graphs.base.dense_graph.DenseGraphBackend(Integer(9))
>>> D.add_edges([(Integer(0), Integer(1)), (Integer(2), Integer(3)),
               (Integer(4), Integer(5)), (Integer(5), Integer(6))], False)
>>> list(D.iterator_edges(range(Integer(9)), True))
[(0, 1, None),
 (2, 3, None),
 (4, 5, None),
 (5, 6, None)]
```

```python
def del_edges(edges, directed=True):
    """Delete edges from a list.
    """

    INPUT:

    - edges -- the edges to be added; can either be of the form (u, v) or (u, v, l)
    - directed -- if False, remove "(v,u)" as well as (u,v)

    EXAMPLES:
```
```
```
>>> list(D.iterator_edges(range(Integer(9)), True))
[]
```

**del_vertex** *(v)*

Delete a vertex in *self*, failing silently if the vertex is not in the graph.

**INPUT:**

• *v* – vertex to be deleted

**See also:**

• **del_vertices()** – delete a bunch of vertices from this graph

**EXAMPLES:**

```
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: D.del_vertex(0)
sage: D.has_vertex(0)
False
```

```
>>> from sage.all import *
>>> D = sage.graphs.base.dense_graph.DenseGraphBackend(Integer(9))
>>> D.del_vertex(Integer(0))
>>> D.has_vertex(Integer(0))
False
```

```
sage: S = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: S.del_vertex(0)
sage: S.has_vertex(0)
False
```

```
>>> from sage.all import *
>>> S = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
>>> S.del_vertex(Integer(0))
>>> S.has_vertex(Integer(0))
False
```

**del_vertices** *(vertices)*

Delete vertices from an iterable container.

**INPUT:**

• *vertices* – iterator of vertex labels

**OUTPUT:**

• Same as for **del_vertex()**.

**See also:**

• **del_vertex()** – delete a vertex of this graph

**EXAMPLES:**

3.2. Fast compiled graphs
```python
sage: import sage.graphs.base.dense_graph
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: D.del_vertices([7, 8])
False
sage: D.has_vertex(7)
False
sage: D.has_vertex(6)
True

>>> from sage.all import *
>>> import sage.graphs.base.dense_graph

D = sage.graphs.base.dense_graph.DenseGraphBackend(Integer(9))
D.del_vertices([Integer(7), Integer(8)])
D.has_vertex(Integer(7))
False
D.has_vertex(Integer(6))
True

sage: D = sage.graphs.base.sparse_graph.SparseGraphBackend(9)

D = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
D.del_vertices([1, 2, 3])
D.has_vertex(1)
False
D.has_vertex(0)
True

>>> from sage.all import *

D = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
D.del_vertices([Integer(1), Integer(2), Integer(3)])
D.has_vertex(Integer(1))
False
D.has_vertex(Integer(0))
True
```

def depth_first_search(v, reverse=False, ignore_direction=False):
    """Return a depth-first search from vertex v."
    INPUT:
    • v – a vertex from which to start the depth-first search
    • reverse – boolean (default: False); this is only relevant to digraphs. If this is a
digraph, consider the reversed graph in which the out-neighbors become the in-neighbors and
vice versa.
    • ignore_direction – boolean (default: False); this is only relevant to digraphs. If this is a
digraph, ignore all orientations and consider the graph as undirected.
    ALGORITHM:
    Below is a general template for depth-first search.
    • Input: A directed or undirected graph $G = (V, E)$ of order $n > 0$. A vertex $s$ from
which to start the search. The vertices are numbered from 1 to $n = |V|$, i.e. $V = \{1, 2, \ldots, n\}$.
    • Output: A list $D$ of distances of all vertices from $s$. A tree $T$ rooted at $s$.

    1. $S \leftarrow [s]$ # a stack of nodes to visit
    2. $D \leftarrow [\infty, \infty, \ldots, \infty]$ # $n$ copies of $\infty$
    3. $D[s] \leftarrow 0$
```
4. $T \leftarrow []$

5. while length(S) > 0 do
 1. $v \leftarrow \text{pop}(S)$
 2. for each $w \in \text{adj}(v)$ do # for digraphs, use out-neighbor set $\text{adj}(v)$
 1. if $D[w] = \infty$ then
 1. $D[w] \leftarrow D[v] + 1$
 2. push(S, w)
 3. append(T, vw)
 6. return (D, T)

See also:

• $\text{breadth_first_search}()$ – breadth-first search for fast compiled graphs.
• $\text{breadth_first_search}$ – breadth-first search for generic graphs.
• $\text{depth_first_search}$ – depth-first search for generic graphs.

EXAMPLES:

Traversing the Petersen graph using depth-first search:

```python
sage: G = Graph(graphs.PetersenGraph())
sage: list(G.depth_first_search(0))
[0, 5, 8, 6, 9, 7, 2, 3, 4, 1]
```

Visiting German cities using depth-first search:

```python
sage: G = Graph({"Mannheim": ["Frankfurt","Karlsruhe"],
               "Frankfurt": ["Mannheim","Wurzburg","Kassel"],
               "Kassel": ["Frankfurt","Munchen"],
               "Munchen": ["Kassel","Nurnberg","Augsburg"],
               "Augsburg": ["Munchen","Karlsruhe"],
               "Karlsruhe": ["Mannheim","Augsburg"],
               "Wurzburg": ["Frankfurt","Erfurt","Nurnberg"],
               "Nurnberg": ["Wurzburg","Stuttgart","Munchen"],
               "Stuttgart": ["Nurnberg"],
               "Erfurt": ["Wurzburg"]})
sage: list(G.depth_first_search("Stuttgart"))
['Stuttgart', 'Nurnberg', ...]
```

(continues on next page)
has_vertex(v)

Check whether v is a vertex of self.

INPUT:

• v – any object

OUTPUT:

• True if v is a vertex of this graph; False otherwise

EXAMPLES:

```python
sage: from sage.graphs.base.sparse_graph import SparseGraphBackend
sage: B = SparseGraphBackend(7)

sage: B.has_vertex(6)
True

sage: B.has_vertex(7)
False
```

in_degree(v)

Return the in-degree of v

INPUT:

• v – a vertex of the graph

EXAMPLES:

```python
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )

sage: D.out_degree(1)
2
```

is_connected()

Check whether the graph is connected.

EXAMPLES:
Petersen’s graph is connected:

```
sage: DiGraph(graphs.PetersenGraph()).is_connected()
True
```

```
>>> from sage.all import *

>>> DiGraph(graphs.PetersenGraph()).is_connected()
True
```

While the disjoint union of two of them is not:

```
sage: DiGraph(2*graphs.PetersenGraph()).is_connected()
False
```

```
>>> from sage.all import *

>>> DiGraph(Integer(2)*graphs.PetersenGraph()).is_connected()
False
```

A graph with non-integer vertex labels:

```
sage: Graph(graphs.CubeGraph(3)).is_connected()
True
```

```
>>> from sage.all import *

>>> Graph(graphs.CubeGraph(Integer(3))).is_connected()
True
```

\texttt{is_directed_acyclic}(\texttt{certificate=False})

Check whether the graph is both directed and acyclic (possibly with a certificate)

INPUT:

- \texttt{certificate} – boolean (default: False); whether to return a certificate

OUTPUT:

When \texttt{certificate=False}, returns a boolean value. When \texttt{certificate=True}:

- If the graph is acyclic, returns a pair (True, ordering) where ordering is a list of the vertices such that \(u \) appears before \(v \) in ordering if \(u, v \) is an edge.
- Else, returns a pair (False, cycle) where cycle is a list of vertices representing a circuit in the graph.

ALGORITHM:

We pick a vertex at random, think hard and find out that if we are to remove the vertex from the graph we must remove all of its out-neighbors in the first place. So we put all of its out-neighbours in a stack, and repeat the same procedure with the vertex on top of the stack (when a vertex on top of the stack has no out-neighbors, we remove it immediately). Of course, for each vertex we only add its outneighbors to the end of the stack once: if for some reason the previous algorithm leads us to do it twice, it means we have found a circuit.

We keep track of the vertices whose out-neighborhood has been added to the stack once with a variable named \texttt{tried}.

There is no reason why the graph should be empty at the end of this procedure, so we run it again on the remaining vertices until none are left or a circuit is found.

\textbf{Note}: The graph is assumed to be directed. An exception is raised if it is not.

3.2. Fast compiled graphs
EXAMPLES:

At first, the following graph is acyclic:

```
sage: D = DiGraph({ 0:[1,2,3], 4:[2,5], 1:[8], 2:[7], 3:[7], 5:[6,7], 7:[8],
                  6:[9], 8:[10], 9:[10] })
sage: D.plot(layout='circular').show() # needs sage.plot
sage: D.is_directed_acyclic()
True
```

Adding an edge from 9 to 7 does not change it:

```
sage: D.add_edge(9,7)
sage: D.is_directed_acyclic()
True
```

We can obtain as a proof an ordering of the vertices such that \(u \) appears before \(v \) if \(uv \) is an edge of the graph:

```
sage: D.is_directed_acyclic(certificate = True)
(True, [4, 5, 6, 9, 0, 1, 2, 3, 7, 8, 10])
```

Adding an edge from 7 to 4, though, makes a difference:

```
sage: D.add_edge(7,4)
sage: D.is_directed_acyclic()
False
```

Indeed, it creates a circuit 7, 4, 5:

```
sage: D.is_directed_acyclic(certificate = True)
(False, [7, 4, 5])
```
Checking acyclic graphs are indeed acyclic

```python
def random_acyclic(n, p):
    g = graphs.RandomGNP(n, p)
    h = DiGraph()
    h.add_edges([ (u,v) if u<v else (v,u) for u,v,_ in g.edges(sort=True) ])
    return h

sage: all( random_acyclic(100, .2).is_directed_acyclic() # long time
          for i in range(50))

True
```

`is_strongly_connected()`
Check whether the graph is strongly connected.

EXAMPLES:
The circuit on 3 vertices is obviously strongly connected:

```python
g = DiGraph({0: [1], 1: [2], 2: [0]})
g.is_strongly_connected()
```

True

But a transitive triangle is not:

```python
g = DiGraph({0: [1,2], 1: [2]})
g.is_strongly_connected()
```

False
Graph Theory, Release 10.4

is_strongly_connected()
False

is_subgraph (other, vertices, ignore_labels=False)
Return whether the subgraph of self induced by vertices is a subgraph of other. If vertices are the vertices of self, return whether self is a subgraph of other.

INPUT:
• other – subclass of CGraphBackend
• vertices – an iterable over the vertex labels
• ignore_labels – boolean (default: False); whether to ignore the labels

EXAMPLES:

```python
sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(4, directed=True)
sage: H = sage.graphs.base.dense_graph.DenseGraphBackend(4, directed=True)
sage: G.add_edges([[0,1],[0,2],[0,3],[1,2]], True)
sage: H.add_edges([[0,1],[0,2],[0,3]], True)
sage: G.is_subgraph(H, range(4))
False
sage: H.is_subgraph(G, range(4))
True
sage: G.is_subgraph(H, [0,1,3])
True
```

Ignore the labels or not:

```python
>>> from sage.all import *
>>> G = sage.graphs.base.dense_graph.DenseGraphBackend(Integer(4),
-_directed=True)
>>> H = sage.graphs.base.dense_graph.DenseGraphBackend(Integer(4),
-_directed=True)
>>> G.add_edges([Integer(0),Integer(1)], [Integer(0),Integer(2)],
-[Integer(3)], [Integer(1),Integer(2)], True)
>>> H.add_edges([Integer(0),Integer(1)], [Integer(0), Integer(2)],
-[Integer(3)], [Integer(1), Integer(2)], True)
>>> G.is_subgraph(H, range(Integer(4)))
False
>>> H.is_subgraph(G, range(Integer(4)))
True
>>> G.is_subgraph(H, [0,1,3])
True
```

```python
>>> G = sage.graphs.base.sparse_graph.SparseGraphBackend(3, directed=True)
>>> G.multiple_edges(True)
>>> H = sage.graphs.base.sparse_graph.SparseGraphBackend(3, directed=True)
>>> H.multiple_edges(True)
>>> G.add_edges([[0,1,'a'], [0,1,'b'], [0,2,'c'], [0,2,'d'], [0,2,'e']],
-True)
>>> H.add_edges([[0,1,'a'], [0,1,'foo'], [0,2,'c'], [0,2,'d'], [0,2,'e']],
-True)
>>> G.is_subgraph(H, range(3))
False
```
Graph Theory, Release 10.4

(continued from previous page)

```python
sage: G.is_subgraph(H, range(3), ignore_labels=True)
True
```

```python
>>> from sage.all import *

```

```python
>>> G = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(3),
   directed=True)

```

```python
>>> G.multiple_edges(True)

```

```python
>>> H = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(3),
   directed=True)

```

```python
>>> H.multiple_edges(True)

```

```python
>>> G.add_edges([[Integer(0), Integer(1), 'a'], [Integer(0), Integer(1), 'b'],
               [Integer(0), Integer(2), 'c'], [Integer(0), Integer(2), 'd'], [Integer(0),
               Integer(2), 'e']], True)

```

```python
>>> H.add_edges([[Integer(0), Integer(1), 'a'], [Integer(0), Integer(1), 'foo'],
               [Integer(0), Integer(2), 'c'], [Integer(0), Integer(2), 'd'], [Integer(0),
               Integer(2), 'e'], [Integer(0), Integer(2), 'e']], True)

```

```python
>>> G.is_subgraph(H, range(Integer(3)))
False
```

```python
>>> G.is_subgraph(H, range(Integer(3)), ignore_labels=True)
True
```

Multiplicities of edges are considered:

```python
sage: G.is_subgraph(H, [0,2])
True

sage: H.is_subgraph(G, [0,2])
False
```

```python
>>> from sage.all import *

```

```python
>>> G.is_subgraph(H, [Integer(0),Integer(2)])
True
```

```python
>>> H.is_subgraph(G, [Integer(0),Integer(2)])
False
```

iterator_edges *(vertices, labels)*

Iterate over the edges incident to a sequence of vertices.

Edges are assumed to be undirected.

Warning: This will try to sort the two ends of every edge.

INPUT:

- vertices—a list of vertex labels
- labels—boolean, whether to return labels as well

EXAMPLES:

```python
sage: G = sage.graphs.base.sparse_graph.SparseGraphBackend(9)

sage: G.add_edge(1,2,3, False)

sage: list(G.iterator_edges(range(9), False))
[(1, 2)]

sage: list(G.iterator_edges(range(9), True))
[(1, 2, 3)]
```

3.2. Fast compiled graphs 1417
>>> from sage.all import *
>>> G = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
>>> G.add_edge(Integer(1), Integer(2), Integer(3), False)
>>> list(G.iterator_edges(range(Integer(9)), False))
[(1, 2)]
>>> list(G.iterator_edges(range(Integer(9)), True))
[(1, 2, 3)]

iterator_in_edges *(vertices, labels)*

Iterate over the incoming edges incident to a sequence of vertices.

INPUT:

- **vertices** – a list of vertex labels
- **labels** – boolean, whether to return labels as well

EXAMPLES:

```sage
sage: G = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: G.add_edge(1, 2, 3, True)
sage: list(G.iterator_in_edges([1], False))
[]
sage: list(G.iterator_in_edges([2], False))
[(1, 2)]
sage: list(G.iterator_in_edges([2], True))
[(1, 2, 3)]
```

iterator_in_nbrs *(v)*

Iterate over the incoming neighbors of *v*.

INPUT:

- **v** – a vertex of this graph

OUTPUT:

- An iterator over the in-neighbors of the vertex *v*

See also:

- **iterator_nbrs()** – returns an iterator over the neighbors of a vertex
- **iterator_out_nbrs()** – returns an iterator over the out-neighbors of a vertex

EXAMPLES:

```sage
sage: P = DiGraph(graphs.PetersenGraph().to_directed())
sage: list(P._backend.iterator_in_nbrs(0))
[1, 4, 5]
```
iterator_nbrs \((v) \)

Iterate over the neighbors of \(v \).

INPUT:

- \(v \) – a vertex of this graph

OUTPUT:

- An iterator over the neighbors the vertex \(v \)

See also:

- \(\text{iterator_in_nbrs}() \) – returns an iterator over the in-neighbors of a vertex
- \(\text{iterator_out_nbrs}() \) – returns an iterator over the out-neighbors of a vertex
- \(\text{iterator_verts}() \) – returns an iterator over a given set of vertices

EXAMPLES:

```python
>>> from sage.all import *
>>> P = DiGraph(graphs.PetersenGraph().to_directed())
>>> list(P._backend.iterator_in_nbrs(Integer(0)))
[1, 4, 5]
```

```python
>>> from sage.all import *
>>> P = Graph(graphs.PetersenGraph())
>>> list(P._backend.iterator_nbrs(0))
[1, 4, 5]
```

iterator_out_edges \((\text{vertices}, \text{labels}) \)

Iterate over the outbound edges incident to a sequence of vertices.

INPUT:

- \(\text{vertices} \) – a list of vertex labels
- \(\text{labels} \) – boolean, whether to return labels as well

EXAMPLES:

```python
sage: G = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: G.add_edge(1,2,3,True)
sage: list(G.iterator_out_edges([2],False))
[]
sage: list(G.iterator_out_edges([1],False))
[(1, 2)]
sage: list(G.iterator_out_edges([1],True))
[(1, 2, 3)]
```
>>> from sage.all import *
>>> G = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
>>> G.add_edge(Integer(1), Integer(2), Integer(3), True)
>>> list(G.iterator_out_edges([Integer(2)], False))
[]
>>> list(G.iterator_out_edges([Integer(1)], False))
[(1, 2)]
>>> list(G.iterator_out_edges([Integer(1)], True))
[(1, 2, 3)]

iterator_out_nbrs *(v)*

Iterate over the outgoing neighbors of *v*.

INPUT:

- *v* – a vertex of this graph

OUTPUT:

- An iterator over the out-neighbors of the vertex *v*

See also:

- **iterator_nbrs()** – returns an iterator over the neighbors of a vertex
- **iterator_in_nbrs()** – returns an iterator over the in-neighbors of a vertex

EXAMPLES:

```python
sage: P = DiGraph(graphs.PetersenGraph().to_directed())
sage: list(P._backend.iterator_out_nbrs(0))
[1, 4, 5]
```

```python
>>> from sage.all import *
>>> P = DiGraph(graphs.PetersenGraph().to_directed())
>>> list(P._backend.iterator_out_nbrs(Integer(0)))
[1, 4, 5]
```

iterator_unsorted_edges *(vertices, labels)*

Iterate over the edges incident to a sequence of vertices.

Edges are assumed to be undirected.

This does not sort the ends of each edge.

INPUT:

- *vertices* – a list of vertex labels
- *labels* – boolean, whether to return labels as well

EXAMPLES:

```python
sage: G = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: G.add_edge(1, 2, 3, False)
sage: list(G.iterator_unsorted_edges(range(9), False))
[(2, 1)]
sage: list(G.iterator_unsorted_edges(range(9), True))
[(2, 1, 3)]
```
```
>>> from sage.all import *
>>> G = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
>>> G.add_edge(Integer(1), Integer(2), Integer(3), False)
>>> list(G.iterator_unsorted_edges(range(Integer(9)), False))
[(2, 1)]
>>> list(G.iterator_unsorted_edges(range(Integer(9)), True))
[(2, 1, 3)]
```

iterator_verts *(verts=None)*

Iterate over the vertices of self intersected with verts.

INPUT:

- verts – an iterable container of objects (default: None)

OUTPUT:

- If verts=None, return an iterator over all vertices of this graph
- If verts is a single vertex of the graph, treat it as the container \([verts]\)
- If verts is a iterable container of vertices, find the intersection of verts with the vertex set of this graph and return an iterator over the resulting intersection

See also:

- iterator_nbrs() – returns an iterator over the neighbors of a vertex.

EXAMPLES:

```
sage: P = Graph(graphs.PetersenGraph())
sage: list(P._backend.iterator_verts(P))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: list(P._backend.iterator_verts())
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: list(P._backend.iterator_verts([Integer(1), Integer(2), Integer(3)]))
[1, 2, 3]
sage: list(P._backend.iterator_verts([Integer(1), Integer(2), Integer(10)]))
[1, 2]
```

loops *(new=None)*

Check whether loops are allowed in this graph.

INPUT:

- new – boolean (default: None); to set or None to get

OUTPUT:
• If \texttt{new=None}, return \texttt{True} if this graph allows self-loops or \texttt{False} if self-loops are not allowed
• If \texttt{new} is a boolean, set the self-loop permission of this graph according to the boolean value of \texttt{new}

EXAMPLES:

\begin{verbatim}
sage: G = Graph()
sage: G._backend.loops() False
sage: G._backend.loops(True)
sage: G._backend.loops() True
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> G = Graph()
>>> G._backend.loops() False
>>> G._backend.loops(True)
>>> G._backend.loops() True
\end{verbatim}

\textbf{num_edges (directed)}
Return the number of edges in \texttt{self}.

INPUT:
• \texttt{directed} – boolean; whether to count \((u, v)\) and \((v, u)\) as one or two edges

OUTPUT:
• If \texttt{directed=True}, counts the number of directed edges in this graph. Otherwise, return the size of this graph.

See also:
• \texttt{num_verts()} – return the order of this graph.

EXAMPLES:

\begin{verbatim}
sage: G = Graph(graphs.PetersenGraph())
sage: G._backend.num_edges(False)
15
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> G = Graph(graphs.PetersenGraph())
>>> G._backend.num_edges(False)
15
\end{verbatim}

\textbf{num_verts()}
Return the number of vertices in \texttt{self}.

OUTPUT:
• The order of this graph.

See also:
• \texttt{num_edges()} – return the number of (directed) edges in this graph.

EXAMPLES:
sage: G = Graph(graphs.PetersenGraph())
sage: G._backend.num_verts()
10

>>> from sage.all import *
>>> G = Graph(graphs.PetersenGraph())
>>> G._backend.num_verts()
10

out_degree(v)
Return the out-degree of v

INPUT:
 • v – a vertex of the graph.

EXAMPLES:

sage: D = DiGraph({ 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] })
sage: D.out_degree(1)
2

>>> from sage.all import *
>>> D = DiGraph({ Integer(0): [Integer(1),Integer(2),Integer(3)],
 Integer(1): [Integer(0),Integer(2)], Integer(2): [Integer(3)],
 Integer(3): [Integer(4)], Integer(4): [Integer(0),Integer(5)], Integer(5): [Integer(1)] })
>>> D.out_degree(Integer(1))
2

relabel(perm, directed)
Relabel the graph according to perm.

INPUT:
 • perm – anything which represents a permutation as v --> perm[v], for example a dict or a list
 • directed – ignored (this is here for compatibility with other backends)

EXAMPLES:

sage: G = Graph(graphs.PetersenGraph())
sage: G._backend.relabel(range(9,-1,-1), False)
sage: G.edges(sort=True)
[(0, 2, None),
 (0, 3, None),
 (0, 5, None),
 (1, 3, None),
 (1, 4, None),
 (1, 6, None),
 (2, 4, None),
 (2, 7, None),
 (3, 8, None),
 (4, 9, None),
 (5, 6, None),
 (5, 9, None),
 (6, 7, None),
 (continues on next page)
shortest_path \((x, y, distance_flag=\text{False}) \)
Return the shortest path or distance from \(x \) to \(y \).

INPUT:
- \(x \) – the starting vertex in the shortest path from \(x \) to \(y \)
- \(y \) – the end vertex in the shortest path from \(x \) to \(y \)
- \(distance_flag \) – boolean (default: False); when set to True, the shortest path distance from \(x \) to \(y \) is returned instead of the path

OUTPUT:
- A list of vertices in the shortest path from \(x \) to \(y \) or distance from \(x \) to \(y \) is returned depending upon the value of parameter \(distance_flag \)

EXAMPLES:

```
sage: G = Graph(graphs.PetersenGraph())
sage: G.shortest_path(0, 1)
[0, 1]
sage: G.shortest_path_length(0, 1)
1
```

shortest_path_all_vertices \((v, cutoff=\text{None}, distance_flag=\text{False}) \)
Return for each reachable vertex \(u \) a shortest \(v-u \) path or distance from \(v \) to \(u \).

INPUT:

• \(v\) — a starting vertex in the shortest path

• \(\text{cutoff}\) — integer (default: \(\text{None}\)); maximal distance of returned paths (longer paths will not be returned), ignored when set to \(\text{None}\)

• \(\text{distance_flag}\) — boolean (default: \(\text{False}\)); when set to \(\text{True}\), each vertex \(u\) connected to \(v\) is mapped to shortest path distance from \(v\) to \(u\) instead of the shortest path in the output dictionary.

OUTPUT:

• A dictionary which maps each vertex \(u\) connected to \(v\) to the shortest path list or distance from \(v\) to \(u\) depending upon the value of parameter \(\text{distance_flag}\)

Note: The weight of edges is not taken into account.

ALGORITHM:

This is just a breadth-first search.

EXAMPLES:

On the Petersen Graph:

```python
sage: g = graphs.PetersenGraph()
sage: paths = g._backend.shortest_path_all_vertices(0)
sage: all((not paths[v] or len(paths[v]) - 1 == g.distance(0, v)) for v in g) True
g._backend.shortest_path_all_vertices(0, distance_flag=True)
{0: 0, 1: 1, 2: 2, 3: 2, 4: 1, 5: 1, 6: 2, 7: 2, 8: 2, 9: 2}
```

On a disconnected graph:

```python
sage: g = 2 * graphs.RandomGNP(20, .3)
sage: paths = g._backend.shortest_path_all_vertices(0)
sage: all((v not in paths and g.distance(0, v) == +Infinity) or len(paths[v]) - 1 == g.distance(0, v) for v in g) True
g._backend.shortest_path_all_vertices(Integer(0), distance_flag=True)
{0: 0, 1: 1, 2: 2, 3: 2, 4: 1, 5: 1, 6: 2, 7: 2, 8: 2, 9: 2}
```

shortest_path_special\(\(x, y, \text{exclude_vertices}=\text{None}, \text{exclude_edges}=\text{None}, \text{distance_flag}=\text{False}\)\)

Return the shortest path or distance from \(x\) to \(y\).

This method is an extension of `shortest_path\(\)` method enabling to exclude vertices and/or edges from the search for the shortest path between \(x\) and \(y\).
INPUT:

- `x` – the starting vertex in the shortest path from `x` to `y`
- `y` – the end vertex in the shortest path from `x` to `y`
- `exclude_vertices` – iterable container (default: None); iterable of vertices to exclude from the graph while calculating the shortest path from `x` to `y`
- `exclude_edges` – iterable container (default: None); iterable of edges to exclude from the graph while calculating the shortest path from `x` to `y`
- `distance_flag` – boolean (default: False); when set to True, the shortest path distance from `x` to `y` is returned instead of the path

OUTPUT:

- A list of vertices in the shortest path from `x` to `y` or distance from `x` to `y` is returned depending upon the value of parameter `distance_flag`

EXAMPLES:

```
sage: G = Graph([(1, 2), (2, 3), (3, 4), (1, 5), (5, 6), (6, 7), (7, 4)])
sage: G._backend.shortest_path_special(1, 4)
[1, 2, 3, 4]
sage: G._backend.shortest_path_special(1, 4, exclude_vertices=[5,7])
[1, 2, 3, 4]
sage: G._backend.shortest_path_special(1, 4, exclude_vertices=[2, 3])
[1, 5, 6, 7, 4]
sage: G._backend.shortest_path_special(1, 4, exclude_vertices=[2], exclude_edges=[(5, 6)])
[]
sage: G._backend.shortest_path_special(1, 4, exclude_vertices=[2], exclude_edges=[(2, 3)])
[1, 5, 6, 7, 4]
```

```python
>>> from sage.all import *

>>> G = Graph([(Integer(1), Integer(2)), (Integer(2), Integer(3)),
            (Integer(3), Integer(4)), (Integer(1), Integer(5)), (Integer(5),
            Integer(6)), (Integer(6), Integer(7)), (Integer(7), Integer(4))])

>>> G._backend.shortest_path_special(Integer(1), Integer(4))
[1, 2, 3, 4]

>>> G._backend.shortest_path_special(Integer(1), Integer(4), exclude_vertices=[Integer(3),Integer(7)])
[1, 2, 3, 4]

>>> G._backend.shortest_path_special(Integer(1), Integer(4), exclude_vertices=[Integer(2), Integer(3)])
[1, 5, 6, 7, 4]

>>> G._backend.shortest_path_special(Integer(1), Integer(4), exclude_vertices=[Integer(2)], exclude_edges=[(Integer(5), Integer(6))])
[]

>>> G._backend.shortest_path_special(Integer(1), Integer(4), exclude_vertices=[Integer(2)], exclude_edges=[(Integer(2), Integer(3))])
[1, 5, 6, 7, 4]
```

`strongly_connected_component_containing_vertex(v)`

Return the strongly connected component containing the given vertex.

INPUT:

- `v` – a vertex
EXAMPLES:

The digraph obtained from the PetersenGraph has an unique strongly connected component:

```python
>>> from sage.all import *
>>> g = DiGraph(graphs.PetersenGraph())
>>> g.strongly_connected_component_containing_vertex(Integer(0))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

In the Butterfly DiGraph, each vertex is a strongly connected component:

```python
>>> from sage.all import *
>>> g = digraphs.ButterflyGraph(3)
>>> all([v] == g.strongly_connected_component_containing_vertex(v) for v in g)
True
```

```
subgraph_given_vertices (other, vertices)
```

Initialize other to be the subgraph of self with given vertices.

INPUT:

- `other` -- a (mutable) subclass of `CGraphBackend`
- `vertices` -- a list of vertex labels

EXAMPLES:

Make a dense copy:

```python
>>> G = sage.graphs.base.dense_graph.DenseGraphBackend(9, directed=True)
>>> G.loops(True)
>>> G.add_edges([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [7, 8], [3, 3]], True)
>>> H = sage.graphs.base.dense_graph.DenseGraphBackend(0, directed=True)
>>> H.loops(True)
>>> G.subgraph_given_vertices(H, range(9))
```

(continues on next page)
H.loops(True)
G.subgraph_given_vertices(H, range(Integer(9)))
list(H.iterator_out_edges(list(range(Integer(9))), False)) == list(G.
\rightarrow iterator_out_edges(list(range(Integer(9))), False))
True

Make a sparse copy:

\begin{verbatim}
from sage.all import *
H = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(0),
\rightarrow directed=True)
H.loops(True)
G.subgraph_given_vertices(H, range(9))
sorted(list(H.iterator_out_edges(list(range(9)), False))) ==
\rightarrow sorted(list(G.iterator_out_edges(list(range(9)), False)))
True
\end{verbatim}

Initialize a proper subgraph:

\begin{verbatim}
H = sage.graphs.base.sparse_graph.SparseGraphBackend(0, directed=True)
H.loops(True)
G.subgraph_given_vertices(H, [2,3,4,5])
list(H.iterator_out_edges(list(range(9)), False))
[(2, 3), (3, 3), (3, 4), (4, 5)]
\end{verbatim}

Loops are removed, if the other graph does not allow loops:

\begin{verbatim}
H = sage.graphs.base.sparse_graph.SparseGraphBackend(0, directed=True)
H.loops(False)
G.subgraph_given_vertices(H, [2,3,4,5])
list(H.iterator_out_edges(list(range(9)), False))
[(2, 3), (3, 3), (3, 4), (4, 5)]
\end{verbatim}
Multiple edges and labels are copied:

```python
>>> from sage.all import *

>>> G = sage.graphs.base.sparse_graph.SparseGraphBackend(4, directed=False)
>>> G.multiple_edges(True)
>>> G.add_edges([(0,1,'a'), (1,2,'b'), (2,3,'c'), (0,1,'d')], False)
>>> H = sage.graphs.base.sparse_graph.SparseGraphBackend(0, directed=False)
>>> H.multiple_edges(True)
>>> list(G.iterator_out_edges(range(4), False))

[(2, 3), (3, 4), (4, 5)]
```

Multiple edges are removed, if the other graph does not allow them:

```python
>>> H = sage.graphs.base.sparse_graph.SparseGraphBackend(0, directed=False)
>>> H.multiple_edges(False)
>>> G.subgraph_given_vertices(H, [0,1,2])
>>> list(G.iterator_edges(range(4), True))

[(0, 1, 'a'), (0, 1, 'd'), (1, 2, 'b')]
```

Labels are removed, if the other graph does not allow them:

```python
>>> H = sage.graphs.base.dense_graph.DenseGraphBackend(0, directed=False)
>>> G.subgraph_given_vertices(H, [0,1,2])
>>> list(G.iterator_edges(range(4), True))

[(0, 1, None), (1, 2, None)]
```

3.2. Fast compiled graphs 1429
A directed subgraph of an undirected graph is taken by initializing with edges in both directions:

```python
sage: G = sage.graphs.base.sparse_graph.SparseGraphBackend(4, directed=True)
sage: G.loops(True)
sage: G.multiple_edges(True)
sage: G.add_edges([[0,1,'a'], [1,2,'b'], [2,3,'c'], [0,1,'d'], [2,2,'e']], False)
sage: H = sage.graphs.base.sparse_graph.SparseGraphBackend(0, directed=True)
sage: H.multiple_edges(True)
sage: H.loops(True)
sage: G.subgraph_given_vertices(H, [0,1])
sage: list(H.iterator_out_edges(list(range(4)), True))
[(0, 1, 'a'),
 (0, 1, 'd'),
 (1, 0, 'a'),
 (1, 0, 'd'),
 (1, 2, 'b'),
 (2, 1, 'b'),
 (2, 2, 'e')]
```

An undirected subgraph of a directed graph is not defined:

```python
sage: G = sage.graphs.base.sparse_graph.SparseGraphBackend(4, directed=True)
sage: G.add_edges([[0,1,'a'], [1,2,'b'], [2,3,'c']], False)
sage: H = sage.graphs.base.sparse_graph.SparseGraphBackend(0, directed=False)
sage: G.subgraph_given_vertices(H, [0,1,2])
Traceback (most recent call last):
...
ValueError: cannot obtain an undirected subgraph of a directed graph
```

(continues on next page)
>>> H = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(0),...
→directed=False)

>>> G.subgraph_given_vertices(H, [Integer(0),Integer(1),Integer(2)])
Traceback (most recent call last):
...
ValueError: cannot obtain an undirected subgraph of a directed graph

class sage.graphs.base.c_graph.Search_iterator
 Bases: object

 An iterator for traversing a (di)graph.

 This class is commonly used to perform a depth-first or breadth-first search. The class does not build all at once in memory the whole list of visited vertices. The class maintains the following variables:

 • graph – a graph whose vertices are to be iterated over.
 • direction – integer; this determines the position at which vertices to be visited are removed from the list. For breadth-first search (BFS), element removal follow a first-in first-out (FIFO) protocol, as signified by the value direction=0. We use a queue to maintain the list of vertices to visit in this case. For depth-first search (DFS), element removal follow a last-in first-out (LIFO) protocol, as signified by the value direction=-1. In this case, we use a stack to maintain the list of vertices to visit.
 • stack – a list of vertices to visit, used only when direction=-1
 • queue – a queue of vertices to visit, used only when direction=0
 • seen – a list of vertices that are already visited
 • test_out – boolean; whether we want to consider the out-neighbors of the graph to be traversed. For undirected graphs, we consider both the in- and out-neighbors. However, for digraphs we only traverse along out-neighbors.
 • test_in – boolean; whether we want to consider the in-neighbors of the graph to be traversed. For undirected graphs, we consider both the in- and out-neighbors.

 EXAMPLES:

 sage: g = graphs.PetersenGraph()
 sage: list(g.breadth_first_search(0))
 [0, 1, 4, 5, 2, 6, 3, 9, 7, 8]

 >>> from sage.all import *
 >>> g = graphs.PetersenGraph()
 >>> list(g.breadth_first_search(Integer(0)))
 [0, 1, 4, 5, 2, 6, 3, 9, 7, 8]

3.3 Fast sparse graphs

For an overview of graph data structures in sage, see overview.
3.3.1 Usage Introduction

```
sage: from sage.graphs.base.sparse_graph import SparseGraph

>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph

Sparse graphs are initialized as follows:

sage: S = SparseGraph(nverts = 10, expected_degree = 3, extra_vertices = 10)

This example initializes a sparse graph with room for twenty vertices, the first ten of which are in the graph. In general, the first \texttt{nverts} are “active.” For example, see that 9 is already in the graph:

```
sage: S.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: S.add_vertex(9)
9
sage: S.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

But 10 is not, until we add it:

```
sage: S.add_vertex(10)
10
sage: S.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

You can begin working with unlabeled arcs right away as follows:

```
sage: S.add_arc(0,1)
sage: S.add_arc(1,2)
sage: S.add_arc(1,0)
sage: S.has_arc(7,3)
False
sage: S.has_arc(0,1)
True
sage: S.in_neighbors(1)
(continues on next page)
```
Sparse graphs support multiple edges and labeled edges, but requires that the labels be positive integers (the case label = 0 is treated as no label).

```python
>>> from sage.all import *
>>> S.add_arc(Integer(0),Integer(1))
>>> S.add_arc(Integer(1),Integer(2))
>>> S.add_arc(Integer(1),Integer(0))
>>> S.has_arc(Integer(7),Integer(3))
False
>>> S.has_arc(Integer(0),Integer(1))
True
>>> S.in_neighbors(Integer(1))
[0]
>>> S.out_neighbors(Integer(1))
[0, 2]
>>> S.del_all_arcs(Integer(0),Integer(1))
>>> S.all_arcs(Integer(0),Integer(1))
[]
>>> S.all_arcs(Integer(1),Integer(2))
[0]
>>> S.del_vertex(Integer(7))
>>> S.all_arcs(Integer(7),Integer(3))
Traceback (most recent call last):
 ... LookupError: vertex (7) is not a vertex of the graph
```
Graph Theory, Release 10.4

Note that \texttt{arc\_label} only returns the first edge label found in the specified place, and this can be in any order (if you want all arc labels, use \texttt{all\_arcs}):\[
\begin{align*}
\text{sage: } S\text{.add\_arc\_label(0,1,1)} \\
\text{sage: } S\text{.arc\_label(0,1)} \\
\text{sage: } S\text{.all\_arcs(0,1)} \\
\end{align*}
\]

\[
\begin{align*}
\text{[0, 1]}
\end{align*}
\]

>>> \text{from sage.all import *} \\
>>> S\text{.add\_arc\_label(Integer(0),Integer(1),Integer(1))} \\
>>> S\text{.arc\_label(Integer(0),Integer(1))} \\
>>> S\text{.all\_arcs(Integer(0),Integer(1))} \\
\]

\[
\begin{align*}
\text{[0, 1]}
\end{align*}
\]

Zero specifies only that there is no labeled arc:

\[
\begin{align*}
\text{sage: } S\text{.arc\_label(1,2)} \\
\end{align*}
\]

\[
\begin{align*}
0
\end{align*}
\]

>>> \text{from sage.all import *} \\
>>> S\text{.arc\_label(Integer(1),Integer(2))} \\
\]

\[
\begin{align*}
0
\end{align*}
\]

So do not be fooled:

\[
\begin{align*}
\text{sage: } S\text{.all\_arcs(1,2)} \\
\text{sage: } S\text{.add\_arc(1,2)} \\
\text{sage: } S\text{.arc\_label(1,2)} \\
\end{align*}
\]

\[
\begin{align*}
\text{[0]} \\
\text{0}
\end{align*}
\]

>>> \text{from sage.all import *} \\
>>> S\text{.all\_arcs(Integer(1),Integer(2))} \\
>>> S\text{.add\_arc(Integer(1),Integer(2))} \\
>>> S\text{.arc\_label(Integer(1),Integer(2))} \\
\]

\[
\begin{align*}
\text{[0]} \\
\text{0}
\end{align*}
\]

Instead, if you work with unlabeled edges, be sure to use the right functions:

\[
\begin{align*}
\text{sage: } T = \text{SparseGraph(nverts = 3, expected\_degree = 2)} \\
\text{sage: } T\text{.add\_arc(0,1)} \\
\text{sage: } T\text{.add\_arc(1,2)} \\
\text{sage: } T\text{.add\_arc(2,0)} \\
\text{sage: } T\text{.has\_arc(0,1)} \\
\text{True}
\end{align*}
\]

\[
\begin{align*}
\text{True}
\end{align*}
\]

>>> \text{from sage.all import *} \\
>>> T = \text{SparseGraph(nverts = Integer(3), expected\_degree = Integer(2))} \\
>>> T\text{.add\_arc(Integer(0),Integer(1))} \\
>>> T\text{.add\_arc(Integer(1),Integer(2))} \\
>>> T\text{.add\_arc(Integer(2),Integer(0))} \\
>>> T\text{.has\_arc(Integer(0),Integer(1))} \\
\text{True}
\]
Sparse graphs are by their nature directed. As of this writing, you need to do operations in pairs to treat the undirected case (or use a backend or a Sage graph):

```
sage: T.has_arc(1,0)
False

>>> from sage.all import *
>>> T.has_arc(Integer(1),Integer(0))
False
```

Multiple unlabeled edges are also possible:

```
sage: for _ in range(10): S.add_arc(5,4)
sage: S.all_arcs(5,4)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

>>> from sage.all import *
>>> for _ in range(Integer(10)): S.add_arc(Integer(5),Integer(4))

S.all_arcs(Integer(5),Integer(4))
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

The curious developer is encouraged to check out the unsafe functions, which do not check input but which run in pure C.

### 3.3.2 Underlying Data Structure

The class `SparseGraph` contains the following variables which are inherited from `CGraph` (for explanation, refer to the documentation there):

```
cdef int num_verts
cdef int num_arcs
cdef int *in_degrees
cdef int *out_degrees
cdef bitset_t active_vertices
```

It also contains the following variables:

```
cdef int hash_length
cdef int hash_mask
cdef SparseGraphBTNode **vertices
cdef SparseGraphBTNode **vertices_rev
cdef bint _directed
```

For each vertex $u$, a hash table of length `hash_length` is instantiated. An arc $(u, v)$ is stored at $u \times \text{hash_length} + \text{hash}(v)$ of the array `vertices`, where `hash` should be thought of as an arbitrary but fixed hash function which takes values in $0 \leq \text{hash} < \text{hash_length}$. Each address may represent different arcs, say $(u, v_1)$ and $(u, v_2)$ where `hash(v1) == hash(v2)`. Thus, a binary tree structure is used at this step to speed access to individual arcs, whose nodes (each of which represents a pair $(u, v)$) are instances of the following type:

```
cdef struct SparseGraphBTNode:
 int vertex
 int number
 SparseGraphLLNode *labels
 SparseGraphBTNode *left
 SparseGraphBTNode *right
```
Which range of the vertices array the root of the tree is determined in determines \( u \), and vertex stores \( v \). The integer number stores only the number of unlabeled arcs from \( u \) to \( v \).

Currently, labels are stored in a simple linked list, whose nodes are instances of the following type:

```python
cdef struct SparseGraphLLNode:
 int label
 int number
 SparseGraphLLNode *next
```

The int label must be a positive integer, since 0 indicates no label, and negative numbers indicate errors. The int number is the number of arcs with the given label.

TODO: Optimally, edge labels would also be represented by a binary tree, which would help performance in graphs with many overlapping edges. Also, a more efficient binary tree structure could be used, although in practice the trees involved will usually have very small order, unless the degree of vertices becomes significantly larger than the expected degree given, because this is the size of each hash table. Indeed, the expected size of the binary trees is \( \frac{\text{actual degree}}{\text{expected degree}} \). Ryan Dingman, e.g., is working on a general-purpose Cython-based red black tree, which would be optimal for both of these uses.

```python
class sage.graphs.base.sparse_graph.SparseGraph
 Bases: CGraph
 Compiled sparse graphs.
```

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
```

Sparse graphs are initialized as follows:

```python
sage: S = SparseGraph(nverts = 10, expected_degree = 3, extra_vertices = 10)
```

```python
>>> from sage.all import *
>>> S = SparseGraph(nverts = Integer(10), expected_degree = Integer(3), extra_vertices = Integer(10))
```

**INPUT:**

- \( nverts \) – non-negative integer, the number of vertices.
- \( \text{expected_degree} \) – non-negative integer (default: 16), expected upper bound on degree of vertices.
- \( \text{extra_vertices} \) – non-negative integer (default: 0), how many extra vertices to allocate.
- \( \text{verts} \) – optional list of vertices to add
- \( \text{arcs} \) – optional list of arcs to add

The first \( nverts \) are created as vertices of the graph, and the next \( \text{extra_vertices} \) can be freely added without reallocation. See top level documentation for more details. The input \( \text{verts} \) and \( \text{arcs} \) are mainly for use in pickling.

**add_arc_label** \((u, v, l=0)\)

Add arc \((u, v)\) to the graph with label \( l \).

**INPUT:**
Graph Theory, Release 10.4

- \(u, v\) – non-negative integers, must be in self
- \(l\) – a positive integer label, or zero for no label

**EXAMPLES:**

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.add_arc_label(0,1)
sage: G.add_arc_label(4,7)
Traceback (most recent call last):
 ... LookupError: vertex (7) is not a vertex of the graph
sage: G.has_arc(1,0)
False
sage: G.has_arc(0,1)
True
sage: G.add_arc_label(1,2,2)
sage: G.arc_label(1,2)
2
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>>
G = SparseGraph(Integer(5))
>>> G.add_arc_label(Integer(0),Integer(1))
>>> G.add_arc_label(Integer(4),Integer(7))
Traceback (most recent call last):
 ... LookupError: vertex (7) is not a vertex of the graph
>>> G.has_arc(Integer(1),Integer(0))
False
>>> G.has_arc(Integer(0),Integer(1))
True
>>> G.add_arc_label(Integer(1),Integer(2),Integer(2))
>>> G.arc_label(Integer(1),Integer(2))
2
```

**in_degree** \((v)\)

Returns the in-degree of \(v\)

**INPUT:**

- \(v\) – integer

**EXAMPLES:**

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
(sage: G.add_arc(0,1)
(sage: G.add_arc(1,2)
(sage: G.add_arc(1,3)
(sage: G.in_degree(0)
0
(sage: G.in_degree(1)
1
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>>
G = SparseGraph(Integer(5))
```
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> G.add_arc(Integer(0),Integer(1))
>>> G.add_arc(Integer(1),Integer(2))
>>> G.add_arc(Integer(1),Integer(3))
>>> G.in_degree(Integer(0))
0
>>> G.in_degree(Integer(1))
1
```

**is_directed()**

Return whether the graph is directed.

**EXAMPLES:**

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.is_directed()
True
sage: G = SparseGraph(5, directed=False)
sage: G.is_directed()
False
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>> G = SparseGraph(Integer(5))
>>> G.is_directed()
True
>>> G = SparseGraph(Integer(5), directed=False)
>>> G.is_directed()
False
```

**out_degree(u)**

Returns the out-degree of `v`

**INPUT:**

- `u` — integer

**EXAMPLES:**

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: G = SparseGraph(5)
sage: G.add_arc(0,1)
sage: G.add_arc(1,2)
sage: G.add_arc(1,3)
sage: G.out_degree(0)
1
sage: G.out_degree(1)
2
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph
>>> G = SparseGraph(Integer(5))
>>> G.add_arc(Integer(0),Integer(1))
>>> G.add_arc(Integer(1),Integer(2))
>>> G.add_arc(Integer(1),Integer(3))
>>> G.out_degree(Integer(0))
1
```

(continues on next page)
reallocate

Reallocate the number of vertices to use, without actually adding any.

**INPUT:**

- total – integer, the total size to make the array

Returns -1 and fails if reallocation would destroy any active vertices.

**EXAMPLES:**

```python
sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: S = SparseGraph(nverts=4, extra_vertices=4)
sage: S.current_allocation()
8
sage: S.add_vertex(6)
6
sage: S.current_allocation()
8
sage: S.add_vertex(10)
10
sage: S.current_allocation()
16
sage: S.add_vertex(40)
Traceback (most recent call last):
... RuntimeError: requested vertex is past twice the allocated range: use realloc
sage: S.realloc(50)
sage: S.add_vertex(40)
40
sage: S.current_allocation()
50
sage: S.realloc(30)
-1
sage: S.current_allocation()
50
sage: S.del_vertex(40)
sage: S.realloc(30)
sage: S.current_allocation()
30
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.sparse_graph import SparseGraph

S = SparseGraph(nverts=Integer(4), extra_vertices=Integer(4))
```

```python
>>> S.current_allocation()
8
>>> S.add_vertex(Integer(6))
6
>>> S.current_allocation()
8
>>> S.add_vertex(Integer(10))
10
>>> S.current_allocation()
16
```
from sage.all import *

s = Graph(30, sparse=True)
s.add_edges([(0,1), (0,3), (4,5), (9,23)])
s.edges(sort=True, labels=False)

>>> from sage.all import *
>>> G = Graph(Integer(30), sparse=True)
>>> G.add_edges([(Integer(0), Integer(1)), (Integer(0), Integer(3)), (Integer(4), Integer(5)), (Integer(9), Integer(23))])

Note that Sage graphs using the backend are more flexible than SparseGraphs themselves. This is because SparseGraphs (by design) do not deal with Python objects:

s = G.add_vertex((0,1,2))
s = sorted(list(G), key=lambda x: (isinstance(x, tuple), x))

sage: from sage.graphs.base.sparse_graph import SparseGraph
sage: SG = SparseGraph(30)

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
sage: SG.add_vertex((0,1,2))
Traceback (most recent call last):
...
TypeError: an integer is required
```

```python
>>> from sage.all import *

>>> G.add_vertex((Integer(0),Integer(1),Integer(2)))

>>> sorted(list(G),

... key=lambda x: (isinstance(x, tuple), x))

[0,
...
29,
(0, 1, 2)]
```

```python
>>> from sage.graphs.base.sparse_graph import SparseGraph

>>> SG = SparseGraph(Integer(30))

>>> SG.add_vertex((Integer(0),Integer(1),Integer(2)))

Traceback (most recent call last):
...
TypeError: an integer is required
```

**get_edge_label** *(u, v)*

Return the edge label for *(u, v)*.

**INPUT:**

* u, v – the vertices of the edge

**EXAMPLES:**

```python
sage: D = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: D.add_edges([(0,1,1), (2,3,2), (4,5,3), (5,6,2)], False)
sage: list(D.iterator_edges(range(9), True))
[(0, 1, 1), (2, 3, 2), (4, 5, 3), (5, 6, 2)]
sage: D.get_edge_label(3,2)
2
```

```python
>>> from sage.all import *

>>> D = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))

>>> D.add_edges([(Integer(0),Integer(1),Integer(1)), (Integer(2),Integer(3),
...
→ Integer(2)), (Integer(4),Integer(5),Integer(3)), (Integer(5),Integer(6),
→ Integer(2))], False)

>>> list(D.iterator_edges(range(Integer(9)), True))
[(0, 1, 1), (2, 3, 2), (4, 5, 3), (5, 6, 2)]

>>> D.get_edge_label(Integer(3),Integer(2))
2
```

**has_edge** *(u, v, l)*

Returns whether this graph has edge *(u, v)* with label *l*. If *l* is **None**, return whether this graph has an edge *(u, v)* with any label.

**INPUT:**

* u, v – the vertices of the edge

* l – the edge label, or **None**

**EXAMPLES:**

3.3. Fast sparse graphs 1441
Graph Theory, Release 10.4

```python
sage: D = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: D.add_edges([(0,1), (2,3), (4,5), (5,6)], False)
sage: D.has_edge(0,1, None)
True
```

```python
>>> from sage.all import *
```

```python
>>> D = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
```

```python
>>> D.add_edges([(Integer(0),Integer(1)), (Integer(2),Integer(3)), (Integer(4),Integer(5)), (Integer(5),Integer(6))], False)
```

```python
>>> D.has_edge(Integer(0),Integer(1),None)
True
```

**multiple_edges** *(new)*

Get/set whether or not `self` allows multiple edges.

**INPUT:**

- `new` – boolean (to set) or `None` (to get)

**EXAMPLES:**

```python
sage: G = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: G.multiple_edges(True)
sage: G.multiple_edges(None)
```

```python
True
```

```python
False
```

```python
sage: G.add_edge(0,1,0,True)
sage: G.add_edge(0,1,0,True)
```

```python
list(G.iterator_out_edges(range(9), True))
```

```python
[(0, 1, 0)]
```

```python
>>> from sage.all import *
```

```python
>>> G = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
```

```python
>>> G.multiple_edges(True)
```

```python
>>> G.multiple_edges(None)
```

```python
True
```

```python
False
```

```python
>>> G.add_edge(Integer(0),Integer(1),Integer(0),True)
```

```python
>>> G.add_edge(Integer(0),Integer(1),Integer(0),True)
```

```python
list(G.iterator_out_edges(range(Integer(9)), True))
```

```python
[(0, 1, 0)]
```

**set_edge_label** *(u, v, l, directed)*

Label the edge `(u, v)` by `l`.

**INPUT:**

- `u, v` – the vertices of the edge
- `l` – the edge label
- `directed` – if `False`, also set `(v, u)` with label `l`

**EXAMPLES:**

```python
sage: G.set_edge_label(0, 1, 0, True)
sage: G.set_edge_label(0, 1, 0, True)
```

```python
list(G.iterator_out_edges(range(9), True))
```

```python
[(0, 1, 0)]
```
3.4 Fast dense graphs

For an overview of graph data structures in sage, see overview.

3.4.1 Usage Introduction

Dense graphs are initialized as follows:

```python
sage: from sage.graphs.base.dense_graph import DenseGraph

>>> from sage.all import *

>>> D = DenseGraph(nverts=10, extra_vertices=10)
```

This example initializes a dense graph with room for twenty vertices, the first ten of which are in the graph. In general, the first nverts are “active.” For example, see that 9 is already in the graph:

```python
sage: D.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: D.add_vertex(9)
9
sage: D.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```
But 10 is not, until we add it:

```python
sage: D.add_vertex(10)
10
sage: D.verts()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

You can begin working right away as follows:

```python
sage: D.add_arc(0, 1)
sage: D.add_arc(1, 2)
sage: D.add_arc(1, 0)
sage: D.has_arc(7, 3)
False
sage: D.has_arc(0, 1)
True
sage: D.in_neighbors(1)
[0]
sage: D.out_neighbors(1)
[0, 2]
sage: D.del_all_arcs(0, 1)
sage: D.has_arc(0, 1)
False
sage: D.has_arc(1, 2)
True
sage: D.del_vertex(7)
sage: D.has_arc(7, 3)
False
```

(continues on next page)
Dense graphs do not support multiple or labeled edges.

```python
sage: T = DenseGraph(nverts=3, extra_vertices=2)
sage: T.add_arc(0, 1)
sage: T.add_arc(1, 2)
sage: T.add_arc(2, 0)
sage: T.has_arc(0, 1)
True
```

```python
>>> from sage.all import *
```
3.4.2 Underlying Data Structure

The class DenseGraph contains the following variables which are inherited from CGraph (for explanation, refer to the documentation there):

```c
 cdef int num_verts
 cdef int num_arcs
 cdef int *in_degrees
 cdef int *out_degrees
 cdef bitset_t active_vertices
```

It also contains the following variables:

```c
 cdef binary_matrix_t edges
```

**Note:** As the edges are stored as the adjacency matrix of the graph, enumerating the edges of the graph has complexity $O(n^2)$ and enumerating the neighbors of a vertex has complexity $O(n)$ (where $n$ in the size of the bitset active_vertices). So, the class DenseGraph should be used for graphs such that the number of edges is close to the square of the number of vertices.

```python
class sage.graphs.base.dense_graph.DenseGraph
 Bases: CGraph
 Compiled dense graphs.

 sage: from sage.graphs.base.dense_graph import DenseGraph

 >>> from sage.all import *
 >>> from sage.graphs.base.dense_graph import DenseGraph

 Dense graphs are initialized as follows:

 sage: D = DenseGraph(nverts=10, extra_vertices=10)

 >>> from sage.all import *
 >>> D = DenseGraph(nverts=Integer(10), extra_vertices=Integer(10))

 INPUT:

 • `nverts` – non-negative integer; the number of vertices
 • `extra_vertices` – non-negative integer (default: 10); how many extra vertices to allocate
 • `verts` – list (default: None); optional list of vertices to add
 • `arcs` – list (default: None); optional list of arcs to add
 • `directed` – boolean (default: None); whether the graph is directed

 The first `nverts` are created as vertices of the graph, and the next `extra_vertices` can be freely added without reallocation. See top level documentation for more details. The input `verts` and `arcs` are mainly for use in pickling.

 `complement()`
 Replace the graph with its complement
```
Note: Assumes that the graph has no loop.

EXAMPLES:

```
sage: from sage.graphs.base.dense_graph import DenseGraph
g = DenseGraph(5)
sage: g.add_arc(0, 1)
sage: g.has_arc(0, 1)
True
g.complement()
sage: g.has_arc(0, 1)
False
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraph
>>> G = DenseGraph(Integer(5))
>>> G.add_arc(Integer(0), Integer(1))
>>> G.has_arc(Integer(0), Integer(1))
True
>>> G.complement()
>>> G.has_arc(Integer(0), Integer(1))
False
```

`realloc(total_verts)`

Reallocate the number of vertices to use, without actually adding any.

INPUT:

- `total` – integer; the total size to make the array

Returns -1 and fails if reallocation would destroy any active vertices.

EXAMPLES:

```
sage: from sage.graphs.base.dense_graph import DenseGraph
d = DenseGraph(nverts=4, extra_vertices=4)
sage: d.current_allocation()
8
sage: d.add_vertex(6)
6
sage: d.current_allocation()
8
sage: d.add_vertex(10)
10
sage: d.current_allocation()
16
sage: d.add_vertex(40)
Traceback (most recent call last):
...
RuntimeError: requested vertex is past twice the allocated range: use realloc
```
sage: D.current_allocation()
50
sage: D.del_vertex(40)
sage: D.realloc(30)
sage: D.current_allocation()
30

>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraph
>>> D = DenseGraph(nverts=Integer(4), extra_vertices=Integer(4))
>>> D.current_allocation()
8
>>> D.add_vertex(Integer(6))
6
>>> D.current_allocation()
8
>>> D.add_vertex(Integer(10))
10
>>> D.current_allocation()
16
>>> D.add_vertex(Integer(40))
Traceback (most recent call last):
  ...  RuntimeError: requested vertex is past twice the allocated range: use realloc
>>> D.realloc(Integer(50))
>>> D.add_vertex(Integer(40))
40
>>> D.current_allocation()
50
>>> D.realloc(Integer(30))
-1
>>> D.current_allocation()
50
>>> D.del_vertex(Integer(40))
>>> D.realloc(Integer(30))
>>> D.current_allocation()
30

class sage.graphs.base.dense_graph.DenseGraphBackend

Bases: CGraphBackend

Backend for Sage graphs using DenseGraphs.

sage: from sage.graphs.base.dense_graph import DenseGraphBackend

>>> from sage.all import *
>>> from sage.graphs.base.dense_graph import DenseGraphBackend

This class is only intended for use by the Sage Graph and DiGraph class. If you are interested in using a DenseGraph, you probably want to do something like the following example, which creates a Sage Graph instance which wraps a DenseGraph object:

sage: G = Graph(30, sparse=False)
sage: G.add_edges([(0, 1), (0, 3), (4, 5), (9, 23)])
sage: G.edges(sort=True, labels=False)
[(0, 1), (0, 3), (4, 5), (9, 23)]
Note that Sage graphs using the backend are more flexible than DenseGraphs themselves. This is because DenseGraphs (by design) do not deal with Python objects:

```python
sage: G.add_vertex((0, 1, 2))
sage: sorted(list(G),
...: key=lambda x: (isinstance(x, tuple), x))
[0, ...
... 29, (0, 1, 2)]
sage: from sage.graphs.base.dense_graph import DenseGraph
sage: DG = DenseGraph(30)
sage: DG.add_vertex((0, 1, 2))
Traceback (most recent call last):
... TypeError: an integer is required
```
get_edge_label $(u, v)$
Return the edge label for $(u, v)$.
Always None, since dense graphs do not support edge labels.

INPUT:
- $u, v$ – the vertices of the edge

EXAMPLES:

```python
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: D.add_edges([(0, 1), (2, 3, 7), (4, 5), (5, 6)], False)
sage: list(D.iterator_edges(range(9), True))
[(0, 1, None),
 (2, 3, None),
 (4, 5, None),
 (5, 6, None)]
sage: D.del_edge(0, 1, None, True)
sage: list(D.iterator_out_edges(range(9), True))
[(1, 0, None),
 (2, 3, None),
 (3, 2, None),
 (4, 5, None),
 (5, 4, None),
 (5, 6, None),
 (6, 5, None)]
sage: D.get_edge_label(2, 3)
sage: D.get_edge_label(2, 4)
Traceback (most recent call last):
 ...
LookupError: (2, 4) is not an edge of the graph
```
Graph theory, Release 10.4

(continued from previous page)

[(1, 0, None),
 (2, 3, None),
 (3, 2, None),
 (4, 5, None),
 (5, 4, None),
 (5, 6, None),
 (6, 5, None)]

>>> D.get_edge_label(Integer(2), Integer(3))
>>> D.get_edge_label(Integer(2), Integer(4))
Traceback (most recent call last):
... LookupError: (2, 4) is not an edge of the graph

\textbf{has\_edge}(u, v, l)

Check whether this graph has edge $\langle u, v \rangle$.

\textbf{Note:} The input $l$ is for consistency with other backends.

\textbf{INPUT:}

\begin{itemize}
  \item $u, v$ -- the vertices of the edge
  \item $l$ -- the edge label (ignored)
\end{itemize}

\textbf{EXAMPLES:}

```
\begin{verbatim}
sage: D = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: D.add_edges([[(0, 1), (2, 3), (4, 5), (5, 6)], False])
sage: D.has_edge(0, 1, None)
True
```
```
\begin{verbatim}
>>> from sage.all import *
>>> D = sage.graphs.base.dense_graph.DenseGraphBackend(Integer(9))
>>> D.add_edges([[(Integer(0), Integer(1)), (Integer(2), Integer(3)),
 (Integer(4), Integer(5)), (Integer(5), Integer(6))], False])
>>> D.has_edge(Integer(0), Integer(1), None)
True
```
```
\begin{verbatim}
>>> import sage.graphs.base.dense_graph
sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: G.multiple_edges(True)
Traceback (most recent call last):
... NotImplementedError: dense graphs do not support multiple edges
sage: G.multiple_edges(None)
False
```
```
\begin{verbatim}
>>> import sage.graphs.base.dense_graph
sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: G.multiple_edges(True)
Traceback (most recent call last):
... NotImplementedError: dense graphs do not support multiple edges
sage: G.multiple_edges(None)
False
```

\textbf{multiple\_edges}(new)

Get/set whether or not self allows multiple edges.

\textbf{INPUT:}

\begin{itemize}
  \item new -- boolean (to set) or None (to get)
\end{itemize}

\textbf{EXAMPLES:}

```
\begin{verbatim}
sage: import sage.graphs.base.dense_graph
sage: G = sage.graphs.base.dense_graph.DenseGraphBackend(9)
sage: G.multiple_edges(True)
Traceback (most recent call last):
... NotImplementedError: dense graphs do not support multiple edges
sage: G.multiple_edges(None)
False
```
```
3.4. Fast dense graphs

1451
set_edge_label \((u, v, l, directed)\)

Label the edge \((u, v)\) by \(l\).

INPUT:

- \(u, v\) - the vertices of the edge
- \(l\) - the edge label
- \(directed\) - if False, also set \((v, u)\) with label \(l\)

EXAMPLES:

```python
>>> from sage.all import *
>>> import sage.graphs.base.dense_graph

G = sage.graphs.base.dense_graph.DenseGraphBackend(Integer(9))

G.set_edge_label(Integer(1), Integer(2), 'a', True)
Traceback (most recent call last):
... Not ImplementedError: dense graphs do not support edge labels
```

3.5 Static dense graphs

This module gathers everything which is related to static dense graphs, i.e.:

- The vertices are integer from 0 to \(n - 1\)
- No labels on vertices/edges
- No multiple edges
- No addition/removal of vertices

This being said, it is technically possible to add/remove edges. The data structure does not mind at all.

It is all based on the binary matrix data structure described in `data_structures/binary_matrix.pxd`, which is almost a copy of the bitset data structure. The only difference is that it differentiates the rows (the vertices) instead of storing the whole data in a long bitset, and we can use that.

For an overview of graph data structures in sage, see `overview`.
3.5.1 Index

Cython functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dense_graph_init</code></td>
<td>Fill a binary matrix with the information from a Sage (di)graph.</td>
</tr>
</tbody>
</table>

Python functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_strongly_regular()</code></td>
<td>Check whether the graph is strongly regular</td>
</tr>
<tr>
<td><code>is_triangle_free()</code></td>
<td>Check whether G is triangle free</td>
</tr>
<tr>
<td><code>triangles_count()</code></td>
<td>Return the number of triangles containing v, for every v</td>
</tr>
<tr>
<td><code>connected_subgraph_iterator()</code></td>
<td>Iterator over the induced connected subgraphs of order at most k</td>
</tr>
</tbody>
</table>

3.5.2 Functions

`sage.graphs.base.static_dense_graph.connected_full_subgraphs(G, edges_only=False, labels=False, min_edges=None, max_edges=None)`

Return an iterator over the connected subgraphs of G with same vertex set.

This method implements a iterator over the connected subgraphs of the input (di)graph with the same ground set of vertices. That is, it iterates over every subgraph $H = (V_H, E_H)$ of $G = (V, E)$ such that $V_H = V$, $E_H \subseteq E$ and H is connected. Hence, this method may yield a huge number of graphs.

When the input (di)graph G is not connected, this method returns nothing.

As for method `sage.graphs.generic_graph.connected_components()`, edge orientation is ignored. Hence, the directed graph with a single arc $0 \rightarrow 1$ is considered connected.

INPUT:

- G – a `Graph` or a `DiGraph`; loops and multiple edges are not allowed
- `edges_only` – boolean (default: False); whether to return (Di)Graph or list of vertices
- `labels` – boolean (default: False); whether to return labelled edges or not. This parameter is used only when `edges_only` is `True`.
- `min_edges` – integer (default: `None`); minimum number of edges of reported subgraphs. By default (`None`), this lower bound will be set to $n - 1$.
- `max_edges` – integer (default: `None`); maximum number of edges of reported subgraphs. By default (`None`), this lower bound will be set to the number of edges of the input (di)graph.

Note: Roughly, this method explores all possible subsets of neighbors of each vertex, which represents a huge number of subsets. We have thus chosen to limit the degree of the vertices of the graphs that can be considered, even if the graph has a single connected subgraph (e.g., a tree). It is therefore recommended to call this method on biconnected components, as done in `connected_subgraph_iterator()`.

EXAMPLES:

The complete graph of order 3 has 4 connected subgraphs:
sage: from sage.graphs.base.static_dense_graph import connected_full_subgraphs
sage: G = graphs.CompleteGraph(3)
sage: len(list(connected_full_subgraphs(G)))
4

A cycle of order 5 has 6 connected subgraphs:

sage: from sage.graphs.base.static_dense_graph import connected_full_subgraphs
sage: G = graphs.CycleGraph(5)

sage: len(list(connected_full_subgraphs(G)))
6

The House graph has 18 connected subgraphs of order 5:

sage: from sage.graphs.base.static_dense_graph import connected_full_subgraphs
sage: G = graphs.HouseGraph()
sage: L = list(connected_full_subgraphs(G))
sage: len(L)
18
sage: all(g.order() == 5 for g in L) # True
sage: all(g.is_connected() for g in L) # True
sage: F = frozenset(frozenset(g.edges(sort=False, labels=False)) for g in L)
sage: len(F)
18

Specifying bounds on the number of edges:
```
sage: from sage.graphs.base.static_dense_graph import connected_full_subgraphs
sage: G = graphs.HouseGraph()
sage: [g.size() for g in connected_full_subgraphs(G)]
[6, 5, 5, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4]
sage: [g.size() for g in connected_full_subgraphs(G, max_edges=4)]
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
sage: [g.size() for g in connected_full_subgraphs(G, min_edges=6)]
[6]
sage: [g.size() for g in connected_full_subgraphs(G, min_edges=5, max_edges=5)]
[5, 5, 5, 5, 5, 5]
```

Asking for edges only:
```
sage: from sage.graphs.base.static_dense_graph import connected_full_subgraphs
sage: G = Graph([(0, 1, "01"), (0, 2, "02"), (1, 2, "12")])
sage: it = connected_full_subgraphs(G, edges_only=True)
sage: next(it)
[(0, 1), (0, 2), (1, 2)]
sage: next(it)
[(0, 1), (0, 2)]
sage: it = connected_full_subgraphs(G, edges_only=True, labels=True)
sage: next(it)
[(0, 1, '01'), (0, 2, '02'), (1, 2, '12')]
sage: next(it)
[(0, 1, '01'), (0, 2, '02')]
```

Subgraphs of a digraph:
```
sage: from sage.graphs.base.static_dense_graph import connected_full_subgraphs
sage: G = Graph([(Integer(0), Integer(1), "01"), (Integer(0), Integer(2), "02"),
             (Integer(1), Integer(2), "12")])
sage: it = connected_full_subgraphs(G, edges_only=True)
sage: next(it)
[(0, 1), (0, 2), (1, 2)]
sage: next(it)
[(0, 1), (0, 2)]
sage: it = connected_full_subgraphs(G, edges_only=True, labels=True)
sage: next(it)
[(0, 1, '01'), (0, 2, '02'), (1, 2, '12')]
sage: next(it)
[(0, 1, '01'), (0, 2, '02')]
```
Return an iterator over the induced connected subgraphs of order at most k.

This method implements an iterator over the induced connected subgraphs of the input (di)graph. An induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and all of the edges connecting pairs of vertices in that subset (Wikipedia article Induced_subgraph).

As for method `sage.graphs.generic_graph.connected_components()`, edge orientation is ignored. Hence, the directed graph with a single arc $0 \to 1$ is considered connected.

INPUT:

- G – a *Graph* or a *DiGraph*; loops and multiple edges are allowed
- k – (optional) integer; maximum order of the connected subgraphs to report; by default, the method iterates over all connected subgraphs (equivalent to $k == \text{n}$)
- `vertices_only` – boolean (default: `False`); whether to return (Di)Graph or list of vertices. This parameter is ignored when `induced` is `True`.
- `edges_only` – boolean (default: `False`); whether to return (Di)Graph or list of edges. When `vertices_only` is `True`, this parameter is ignored.
- `labels` – boolean (default: `False`); whether to return labelled edges or not. This parameter is used only when `vertices_only` is `False` and `edges_only` is `True`.
- `induced` – boolean (default: `True`); whether to return induced connected sub(di)graph only or also non-induced sub(di)graphs. This parameter can be set to `False` for simple (di)graphs only.
- `exactly_k` – boolean (default: `False`); `True` if we only return graphs of order k, `False` if we return graphs of order at most k.

EXAMPLES:

```python
g = DiGraph([(1, 2), (2, 3), (3, 4), (4, 2)])
g.list(G.connected_subgraph_iterator())
```

(continues on next page)
Subgraph of (): Digraph on 3 vertices,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex

\[\text{sage: } \text{list}(\text{G}.\text{connected_subgraph_iterator}(\text{vertices_only=}\text{True}))\]
\[[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 4], [2], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4], [4]]\]

\[\text{sage: } \text{list}(\text{G}.\text{connected_subgraph_iterator}(k=2))\]

\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]

\[\text{sage: } \text{list}(\text{G}.\text{connected_subgraph_iterator}(k=3, \text{vertices_only=}\text{True, exactly_k=}\text{True}))\]
\[[[1, 2, 3], [1, 2, 4], [2, 3, 4]]\]

\[\text{sage: } \text{list}(\text{G}.\text{connected_subgraph_iterator}(k=2, \text{vertices_only=}\text{True}))\]
\[[[1], [1, 2], [2, 3], [2, 4], [3, 4], [4]]\]

\[\text{sage: } \text{G} = \text{DiGraph}([[1, 2], (2, 1)])\]
\[\text{sage: } \text{list}(\text{G}.\text{connected_subgraph_iterator()})\]
\[[[1, 2], [1, 2, 3], [1, 2, 4], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4], [4]]\]

\[\text{sage: } \text{list}(\text{G}.\text{connected_subgraph_iterator}(\text{vertices_only=}\text{True}))\]
\[[[1], [1, 2], [2]]\]

\[\text{sage: } \text{G} = \text{graphs}.\text{CompleteGraph}(3)\]
\[\text{sage: } \text{len}(\text{list}(\text{G}.\text{connected_subgraph_iterator}()))\]
7

\[\text{sage: } \text{len}(\text{list}(\text{G}.\text{connected_subgraph_iterator}(\text{vertices_only=}\text{True})))\]
7

\[\text{sage: } \text{len}(\text{list}(\text{G}.\text{connected_subgraph_iterator}(\text{edges_only=}\text{True})))\]
7

\[\text{sage: } \text{len}(\text{list}(\text{G}.\text{connected_subgraph_iterator}(\text{induced=}\text{False})))\]
10

\[\text{sage: } \text{G} = \text{DiGraph}([[0, 1], (1, 0), (1, 2), (2, 1)])\]
\[\text{sage: } \text{len}(\text{list}(\text{G}.\text{connected_subgraph_iterator()})\]
6

\[\text{sage: } \text{len}(\text{list}(\text{G}.\text{connected_subgraph_iterator}(\text{vertices_only=}\text{True})))\]
6

\[\text{sage: } \text{len}(\text{list}(\text{G}.\text{connected_subgraph_iterator}(\text{edges_only=}\text{True})))\]
6

\[\text{sage: } \text{len}(\text{list}(\text{G}.\text{connected_subgraph_iterator}(\text{induced=}\text{False})))\]
18

\[\text{>>> from sage.all import *}\]
\[\text{>>> G = DiGraph([((Integer(1), Integer(2)), (Integer(2), Integer(3)), (Integer(3), Integer(4)), (Integer(4), Integer(2)))]\]
\[\text{>>> list}(\text{G}.\text{connected_subgraph_iterator()})\]
\[[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
\[\text{Subgraph of (): Digraph on 2 vertices,}\]
\[\text{Subgraph of (): Digraph on 1 vertex,}\]
Subgraph of (): Digraph on 3 vertices,
Subgraph of (): Digraph on 4 vertices,
Subgraph of (): Digraph on 3 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 3 vertices,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex

>>> list(G.connected_subgraph_iterator(vertices_only=True))
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 4], [2], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4], [4]]

Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex

>>> list(G.connected_subgraph_iterator(k=Integer(2)))

Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex

>>> list(G.connected_subgraph_iterator(k=Integer(3), vertices_only=True, exactly_k=True))

Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex

>>> G = DiGraph({(Integer(0), Integer(1)), (Integer(1), Integer(0)), (Integer(1), Integer(2)), (Integer(2), Integer(1))})

Subgraph of (): Digraph on 1 vertex,
Subgraph of (): Digraph on 2 vertices,
Subgraph of (): Digraph on 1 vertex

>>> list(G.connected_subgraph_iterator(vertices_only=True))
[[1], [1, 2], [2]]

sage.graphs.base.static_dense_graph.is_strongly_regular(g, parameters=False)
Check whether the graph is strongly regular.

A simple graph G is said to be strongly regular with parameters (n, k, λ, μ) if and only if:

- G has n vertices
- G is k-regular
- Any two adjacent vertices of G have λ common neighbors
- Any two non-adjacent vertices of G have μ common neighbors

By convention, the complete graphs, the graphs with no edges and the empty graph are not strongly regular.

See the Wikipedia article Strongly regular graph.

INPUT:

- parameters – boolean (default: False); whether to return the quadruple (n, k, λ, μ). If parameters = False (default), this method only returns True and False answers. If parameters = True, the True answers are replaced by quadruples (n, k, λ, μ). See definition above.

EXAMPLES:

Petersen’s graph is strongly regular:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_strongly_regular()
True
sage: g.is_strongly_regular(parameters=True)
(10, 3, 0, 1)
```

And Clebsch’s graph is too:

```python
>>> from sage.all import *
>>> g = graphs.ClebschGraph()
>>> g.is_strongly_regular()
True
>>> g.is_strongly_regular(parameters=True)
(16, 5, 0, 2)
```

But Chvatal’s graph is not:

```python
sage: g = graphs.ChvatalGraph()
sage: g.is_strongly_regular()
False
```
```python
>>> from sage.all import *

>>>

g = graphs.ChvatalGraph()
g.is_strongly_regular()
False

Complete graphs are not strongly regular. (Issue #14297)

```sage```
g = graphs.CompleteGraph(5)
g.is_strongly_regular()
False
```

```python
>>> from sage.all import *

>>>

g = graphs.CompleteGraph(Integer(5))
g.is_strongly_regular()
False

Complementes of complete graphs are not strongly regular:

```sage```
g = graphs.CompleteGraph(5).complement()
g.is_strongly_regular()
False
```

```python
>>> from sage.all import *

>>>

g = graphs.CompleteGraph(Integer(5)).complement()
g.is_strongly_regular()
False

The empty graph is not strongly regular:

```sage```
g = graphs.EmptyGraph()
g.is_strongly_regular()
False
```

```python
>>> from sage.all import *

>>>

g = graphs.EmptyGraph()
g.is_strongly_regular()
False

If the input graph has loops or multiedges an exception is raised:

```sage```
Graph([(1,1),(2,2)],loops=True).is_strongly_regular()
Traceback (most recent call last):
...
ValueError: This method is not known to work on graphs with loops. Perhaps this method can be updated to handle them, but in the meantime if you want to use it please disallow loops using allow_loops().
```

```sage```
Graph([(1,2),(1,2)],multiedges=True).is_strongly_regular()
Traceback (most recent call last):
...
ValueError: This method is not known to work on graphs with multiedges. Perhaps this method can be updated to handle them, but in the meantime if you want to use it please disallow multiedges using allow_multiple_edges().
```
Graph Theory, Release 10.4

sage.graphs.base.static_dense_graph.is_triangle_free(G, certificate=False)

Check whether G is triangle free.

INPUT:

- G – a Sage graph
- certificate – boolean (default: False); whether to return a triangle if one is found

EXAMPLES:

```
sage: from sage.graphs.base.static_dense_graph import is_triangle_free
sage: is_triangle_free(graphs.PetersenGraph())
True
sage: K4 = graphs.CompleteGraph(4)
sage: is_triangle_free(K4)
False
sage: b, certif = is_triangle_free(K4, certificate=True)
sage: K4.subgraph(certif).is_clique()
True
```
3.6 Static sparse graphs

3.6.1 What is the point?

This class implements a Cython (di)graph structure made for efficiency. The graphs are static, i.e. no add/remove vertex/edges methods are available, nor can they easily or efficiently be implemented within this data structure.

The data structure, however, is made to save the maximum amount of computations for graph algorithms whose main operation is to list the out-neighbours of a vertex (which is precisely what BFS, DFS, distance computations and the flow-related stuff waste their life on).

The code contained in this module is written C-style. The purpose is efficiency and simplicity.

For an overview of graph data structures in sage, see overview.

Author:

• Nathann Cohen (2011)

3.6.2 Data structure

The data structure is actually pretty simple and compact. short_digraph has five fields:

• \(n \) (int); the number of vertices in the graph
• \(m \) (int); the number of edges in the graph
• \(\text{edges} \) (uint32_t *); array whose length is the number of edges of the graph
• \(\text{neighbors} \) (uint32_t **); this array has size \(n + 1 \), and describes how the data of edges should be read: the neighbors of vertex \(i \) are the elements of \(\text{edges} \) addressed by \(\text{neighbors}[i] \ldots \text{neighbors}[i+1]-1 \). The element \(\text{neighbors}[n] \), which corresponds to no vertex (they are numbered from 0 to \(n - 1 \)) is present so that it remains easy to enumerate the neighbors of vertex \(n - 1 \): the last of them is the element addressed by \(\text{neighbors}[n]-1 \).
• *edge_labels* (list); this cython list associates a label to each edge of the graph. If a given edge is represented by edges[i], this its associated label can be found at edge_labels[i]. This object is usually NULL, unless the call to init_short_digraph explicitly requires the labels to be stored in the data structure.

In the example given above, vertex 0 has 2,3,5,7,8 and 9 as out-neighbors, but not 4, which is an out-neighbour of vertex 1. Vertex \(n-1 \) has 2, 5, 8 and 9 as out-neighbors. neighbors[n] points toward the cell immediately after the end of edges, hence outside of the allocated memory. It is used to indicate the end of the outneighbors of vertex \(n-1 \)

Iterating over the edges

This is the one thing to have in mind when working with this data structure:

```python
cdef list_edges(short_digraph g):
    cdef int i, j
    for i in range(g.n):
        for j in range(g.neighbors[i+1]-g.neighbors[i]):
            print("There is an edge from {} to {}").format(i, g.neighbors[i][j])
```

Advantages

Two great points:

- The neighbors of a vertex are C types, and are contiguous in memory.
- Storing such graphs is incredibly cheaper than storing Python structures.

Well, I think it would be hard to have anything more efficient than that to enumerate out-neighbors in sparse graphs! :-)

3.6.3 Technical details

- When creating a short_digraph from a Graph or DiGraph named G, the \(i \)th vertex corresponds by default to list(G)[i]. Using optional parameter vertex_list, you can specify the order of the vertices. Then \(i \)th vertex will corresponds to vertex_list[i].

- Some methods return `bitset_t` objects when lists could be expected. There is a very useful `bitset_list` function for this kind of problems :-)

- When the edges are labelled, most of the space taken by this graph is taken by edge labels. If no edge is labelled then this space is not allocated, but if any edge has a label then a (possibly empty) label is stored for each edge, which can double the memory needs.

- The data structure stores the number of edges, even though it appears that this number can be reconstructed with g.neighbors[n]-g.neighbors[0]. The trick is that not all elements of the g.edges array are necessarily used : when an undirected graph contains loops, only one entry of the array of size \(2m \) is used to store it, instead of the expected two. Storing the number of edges is the only way to avoid an uselessly costly computation to obtain the number of edges of an undirected, looped, AND labelled graph (think of several loops on the same vertex with different labels).

- The codes of this module are well documented, and many answers can be found directly in the code.
3.6.4 Cython functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>init_short_digraph(short_digraph g, G, edge_labelled, vertex_list, sort_neighbors)</td>
<td>Initialize short_digraph g from a Sage (Di)Graph.</td>
</tr>
<tr>
<td>int n_edges(short_digraph g)</td>
<td>Return the number of edges in g</td>
</tr>
<tr>
<td>int out_degree(short_digraph g, int i)</td>
<td>Return the out-degree of vertex i in g</td>
</tr>
<tr>
<td>has_edge(short_digraph g, int u, int v)</td>
<td>Test the existence of an edge.</td>
</tr>
<tr>
<td>edge_label(short_digraph g, int * edge)</td>
<td>Return the label associated with a given edge</td>
</tr>
<tr>
<td>init_empty_copy(short_digraph dst, short_digraph src)</td>
<td>Allocate dst so that it can contain as many vertices and edges as src.</td>
</tr>
<tr>
<td>init_reverse(short_digraph dst, short_digraph src)</td>
<td>Initialize dst to a copy of src with all edges in the opposite direction.</td>
</tr>
<tr>
<td>free_short_digraph(short_digraph g)</td>
<td>Free the resources used by g</td>
</tr>
</tbody>
</table>

Connectivity

- **can_be_reached_from**

 Assuming bitset_t reached has size at least $g.n$, this method updates reached so that it represents the set of vertices that can be reached from src in g.

- **strongly_connected_component_containing_vertex**

 Assuming bitset_t reached has size at least $g.n$, this method updates scc so that it represents the vertices of the strongly connected component containing v in g. The variable $g_{reversed}$ is assumed to represent the reverse of g.

- **tarjan_strongly_connected_components_C**

 Assuming scc is already allocated and has size at least $g.n$, this method computes the strongly connected components of g, and outputs in scc[v] the number of the strongly connected component containing v. It returns the number of strongly connected components.

- **strongly_connected_components_digraph_C**

 Assuming nscc and scc are the outputs of tarjan_strongly_connected_components_C on g, this routine sets output to the strongly connected component digraph of g, that is, the vertices of output are the strongly connected components of g (numbers are provided by scc), and output contains an arc $(C1,C2)$ if g has an arc from a vertex in $C1$ to a vertex in $C2$.

1464 Chapter 3. Low-level implementation
3.6.5 What is this module used for?

It is for instance used in the `sage.graphs.distances_all_pairs` module, and in the `strongly_connected_components()` method.

3.6.6 Python functions

These functions are available so that Python modules from Sage can call the Cython routines this module implements (as they cannot directly call methods with C arguments).

```python
sage.graphs.base.static_sparse_graph.spectral_radius(G, prec=1e-10)
```

Return an interval of floating point number that encloses the spectral radius of this graph.

The input graph \(G \) must be strongly connected.

INPUT:

- `prec` – (default 1e-10) an upper bound for the relative precision of the interval

The algorithm is iterative and uses an inequality valid for non-negative matrices. Namely, if \(A \) is a non-negative square matrix with Perron-Frobenius eigenvalue \(\lambda \) then the following inequality is valid for any vector \(x \)

\[
\min_i \frac{(Ax)_i}{x_i} \leq \lambda \leq \max_i \frac{(Ax)_i}{x_i}
\]

Note: The speed of convergence of the algorithm is governed by the spectral gap (the distance to the second largest modulus of other eigenvalues). If this gap is small, then this function might not be appropriate.

The algorithm is not smart and not parallel! It uses basic interval arithmetic and native floating point arithmetic.

EXAMPLES:

```python
sage: from sage.graphs.base.static_sparse_graph import spectral_radius

sage: G = DiGraph([(0,0),(0,1),(1,0)], loops=True)
sage: phi = (RR(1) + RR(5).sqrt() ) / 2
sage: phi # abs tol 1e-14
1.618033988749895
sage: e_min, e_max = spectral_radius(G, 1e-14)
sage: e_min, e_max # abs tol 1e-14
(1.618033988749894, 1.618033988749896)
sage: (e_max - e_min) # abs tol 1e-14
1e-14
sage: e_min < phi < e_max
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.static_sparse_graph import spectral_radius

>>> G = DiGraph([(Integer(0),Integer(0)),(Integer(0),Integer(1)),(Integer(1), Integer(0))], loops=True)
>>> phi = (RR(Integer(1)) + RR(Integer(5)).sqrt() ) / Integer(2)
>>> phi # abs tol 1e-14
1.618033988749895
>>> e_min, e_max = spectral_radius(G, RealNumber('1e-14'))
>>> e_min, e_max # abs tol 1e-14
```

(continues on next page)
This function also works for graphs:

```
sage: G = Graph([[0,1],[0,2],[1,2],[1,3],[2,4],[3,4]])
sage: e_min, e_max = spectral_radius(G, 1e-14)
sage: e = max(G.adjacency_matrix().charpoly().roots(AA, multiplicities=False))  #...
    # needs sage.modules sage.rings.number_field
sage: e_min < e < e_max  #...
    # needs sage.modules sage.rings.number_field sage.symbolic
True
```

A larger example:

```
sage: # needs sage.modules
sage: G = DiGraph()
sage: G.add_edges((i,i+1) for i in range(200))
sage: G.add_edge(200,0)
sage: G.add_edge(1,0)
sage: e_min, e_max = spectral_radius(G, 0.00001)
sage: p = G.adjacency_matrix(sparse=True).charpoly()
sage: p
x^201 - x^199 - 1
sage: r = p.roots(AA, multiplicities=False)[0]  #...
    # needs sage.rings.number_field
sage: e_min < r < e_max  #...
    # needs sage.rings.number_field
True
```

(continues on next page)
```python
>>> e_min, e_max = spectral_radius(G, RealNumber('0.00001'))
>>> p = G.adjacency_matrix(sparse=True).charpoly()
>>> p
x^201 - x^199 - 1
>>> r = p.roots(AA, multiplicities=False)[Integer(0)]
→ # needs sage.rings.number_field
>>> e_min < r < e_max
→ needs sage.rings.number_field
True
```

A much larger example:

```python
sage: G = DiGraph(100000)
sage: r = list(range(100000))
sage: while not G.is_strongly_connected():
    ...:    shuffle(r)
    ...:    G.add_edges(enumerate(r), loops=False)
sage: spectral_radius(G, 1e-10) # random
(1.9997956006500042, 1.9998043797692782)
```

The algorithm takes care of multiple edges:

```python
sage: G = DiGraph(2,loops=True,multiedges=True)
sage: G.add_edges([(0,0),(0,0),(0,1),(1,0)])
sage: spectral_radius(G, 1e-14) # abs tol 1e-14
(2.414213562373094, 2.414213562373095)
sage: max(G.adjacency_matrix().eigenvalues(AA))
→ needs sage.modules sage.rings.number_field
2.414213562373095?
```

Some bipartite graphs:

```python
sage: G = Graph([(0,1),(0,3),(2,3)])
sage: G.spectral_radius() # abs tol 1e-10
(1.6180339887253428, 1.6180339887592732)
sage: G = DiGraph([(0,1),(0,3),(2,3),(3,0),(1,0),(1,2)])
```
sage: G.spectral_radius() # abs tol 1e-10
(1.5537739740270458, 1.553773974033029)
sage: G = graphs.CompleteBipartiteGraph(1, 3)
sage: G.spectral_radius() # abs tol 1e-10
(1.7320508075688772, 1.7320508075688774)

>>> from sage.all import *
>>> G = Graph([(Integer(0), Integer(1)), (Integer(0), Integer(3)), (Integer(2), Integer(3))])
>>> G.spectral_radius() # abs tol 1e-10
(1.6180339887253428, 1.6180339887592732)

>>> G = DiGraph([(Integer(0), Integer(1)), (Integer(0), Integer(3)), (Integer(2), Integer(3)), (Integer(3), Integer(0)), (Integer(1), Integer(0)), (Integer(1), Integer(2))])
>>> G.spectral_radius() # abs tol 1e-10
(1.5537739740270458, 1.553773974033029)

>>> G = graphs.CompleteBipartiteGraph(Integer(1), Integer(3))
>>> G.spectral_radius() # abs tol 1e-10
(1.7320508075688772, 1.7320508075688774)

sage.graphs.base.static_sparse_graph.strongly_connected_components_digraph(G)
Return the digraph of the strongly connected components (SCCs).

This routine is used to test strongly_connected_components_digraph_C, but it is not used by the Sage digraph. It outputs a pair \([g_scc, scc]\), where \(g_scc\) is the SCC digraph of \(g\), \(scc\) is a dictionary associating to each vertex \(v\) the number of the SCC of \(v\), as it appears in \(g_scc\).

EXAMPLES:

sage: from sage.graphs.base.static_sparse_graph import strongly_connected_components_digraph
sage: strongly_connected_components_digraph(digraphs.Path(3))
(Digraph on 3 vertices, {0: 2, 1: 1, 2: 0})
sage: strongly_connected_components_digraph(DiGraph(4))
(Digraph on 4 vertices, {0: 0, 1: 1, 2: 2, 3: 3})

>>> from sage.all import *
>>> from sage.graphs.base.static_sparse_graph import strongly_connected_components_digraph
>>>

sage.graphs.base.static_sparse_graph.tarjan_strongly_connected_components(G)
Return the list of vertices in each strongly connected components (SCCs).

This method implements the Tarjan algorithm to compute the strongly connected components of the digraph. It returns a list of lists of vertices, each list of vertices representing a strongly connected component.

The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent DFSes are conducted on any nodes that have not yet been found). As usual with DFSes, the search visits every node of the graph exactly once, declining to revisit any node that has already been explored. Thus, the collection
of search trees is a spanning forest of the graph. The strongly connected components correspond to the subtrees of this spanning forest that have no edge directed outside the subtree.

To recover these components, during the DFS, we keep the index of a node, that is, the position in the DFS tree, and the lowlink: as soon as the subtree rooted at \(v \) has been fully explored, the lowlink of \(v \) is the smallest index reachable from \(v \) passing from descendants of \(v \). If the subtree rooted at \(v \) has been fully explored, and the index of \(v \) equals the lowlink of \(v \), then whole subtree is a new SCC.

For more information, see the Wikipedia article Tarjan%27s_strongly_connected_components_algorithm.

EXAMPLES:

```python
sage: from sage.graphs.base.static_sparse_graph import tarjan_strongly_connected_components
dsage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] )
dsage: D.connected_components(sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
dsage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] )
dsage: D.strongly_connected_components()
[[3], [2], [1], [0], [6], [5], [4]]
dsage: D.add_edge([2,0])
dsage: D.strongly_connected_components()
[[3], [0, 1, 2], [6], [5], [4]]
dsage: D = DiGraph( [a,b], [b,c], [c, d], [d, b], [c, e] )
dsage: [sorted(scc) for scc in D.strongly_connected_components()]
[['e'], ['b', 'c', 'd'], ['a']]
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.static_sparse_graph import tarjan_strongly_connected_components

>>> D = DiGraph( { Integer(0) : [Integer(1), Integer(3)], Integer(1) :
                            [Integer(2)], Integer(2) : [Integer(3)], Integer(4) : [Integer(5), Integer(6)],
                            Integer(5) : [Integer(6)] )
>>> D.connected_components(sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
>>> D = DiGraph( { Integer(0) : [Integer(1), Integer(3)], Integer(1) :
                            [Integer(2)], Integer(2) : [Integer(3)], Integer(4) : [Integer(5), Integer(6)],
                            Integer(5) : [Integer(6)] )
>>> D.strongly_connected_components()
[[3], [2], [1], [0], [6], [5], [4]]
>>> D.add_edge([Integer(2),Integer(0)])
>>> D.strongly_connected_components()
[[3], [0, 1, 2], [6], [5], [4]]
>>> D = DiGraph( [('a','b'), ('b','c'), ('c', 'd'), ('d', 'b'), ('c', 'e')] )
>>> [sorted(scc) for scc in D.strongly_connected_components()]
[['e'], ['b', 'c', 'd'], ['a']]
```

\[\text{sage.graphs.base.static_sparse_graph.triangles_count}(G)\]

Return the number of triangles containing \(v \), for every \(v \).

INPUT:

- \(G \) – a graph

EXAMPLES:
3.7 Static sparse graph backend

This module implement a immutable sparse graph backend using the data structure from \texttt{sage.graphs.base.static_sparse_graph}. It supports both directed and undirected graphs, as well as vertex/edge labels, loops and multiple edges. As it uses a very compact C structure it should be very small in memory.

As it is a sparse data structure, you can expect it to be very efficient when you need to list the graph’s edge, or those incident to a vertex, but an adjacency test can be much longer than in a dense data structure (i.e. like in \texttt{sage.graphs.base.static_dense_graph}).

For an overview of graph data structures in sage, see \texttt{overview}.

3.7.1 Two classes

This module implements two classes

- \texttt{StaticSparseCGraph} extends \texttt{CGraph} and is a Cython class that manages the definition/deallocation of the \texttt{short_digraph} structure. It does not know anything about labels on vertices.

- \texttt{StaticSparseBackend} extends \texttt{CGraphBackend} and is a Python class that does know about vertex labels and contains an instance of \texttt{StaticSparseCGraph} as an internal variable. The input/output of its methods are labeled vertices, which it translates to integer id before forwarding them to the \texttt{StaticSparseCGraph} instance.

3.7.2 Classes and methods

\texttt{class sage.graphs.base.static_sparse_backend.StaticSparseBackend}

\texttt{Bases: CGraphBackend}

A graph \texttt{backend} for static sparse graphs.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: D = sage.graphs.base.sparse_graph.SparseGraphBackend(9)
sage: D.add_edge(0, 1, None, False)
sage: list(D.iterator_edges(range(9), True))
[(0, 1, None)]
\end{verbatim}
```python
>>> from sage.all import *
>>> D = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9))
>>> D.add_edge(Integer(0), Integer(1), None, False)
>>> list(D.iterator_edges(range(Integer(9)), True))
[(0, 1, None)]

sage: from sage.graphs.base.static_sparse_backend import StaticSparseBackend
sage: g = StaticSparseBackend(graphs.PetersenGraph())
sage: list(g.iterator_edges([Integer(0)], Integer(1)))
[(0, 1, None), (0, 4, None), (0, 5, None)]

>>> from sage.all import *
>>> from sage.graphs.base.static_sparse_backend import StaticSparseBackend
>>>
>>> g = StaticSparseBackend(graphs.PetersenGraph())
>>>
>>> list(g.iterator_edges([Integer(0)], Integer(1)))
[(0, 1, None), (0, 4, None), (0, 5, None)]

sage: # needs sage.combinat
sage: g = DiGraph(digraphs.DeBruijn(4, 3), data_structure="static_sparse")
>>> gi = DiGraph(g, data_structure="static_sparse")
>>> gi.edges(sort=True)[0]
('000', '000', '0')
>>> sorted(gi.edges_incident('111'))
[('111', '110', '0'), ('111', '111', '1'), ('111', '112', '2'), ('111', '113', '3')]
>>> set(g.edges(sort=False)) == set(gi.edges(sort=False))
# needs sage.combinat
True

>>> from sage.all import *
>>> # needs sage.combinat
>>> g = DiGraph(digraphs.DeBruijn(Integer(4), Integer(3)), data_structure="static_sparse")
>>> gi = DiGraph(g, data_structure="static_sparse")
>>> gi.edges(sort=True)[Integer(0)]
('000', '000', '0')
>>> sorted(gi.edges_incident('111'))
[('111', '110', '0'), ('111', '111', '1'), ('111', '112', '2'), ('111', '113', '3')]
>>> set(g.edges(sort=False)) == set(gi.edges(sort=False))
# needs...

sage: g = graphs.PetersenGraph()
>>> gi = Graph(g, data_structure="static_sparse")
>>> g == gi
True
>>> set(g.edges(sort=False)) == set(gi.edges(sort=False))
True
```

3.7. Static sparse graph backend
```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> gi = Graph(g, data_structure="static_sparse")
>>> g == gi
True
>>> set(g.edges(sort=False)) == set(gi.edges(sort=False))
True

sage: gi = Graph({0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}}, data_structure="static_sparse")
sage: (0, 4, 2) in gi.edges(sort=False)
True
sage: gi.has_edge(0, 4)
True

>>> from sage.all import *
>>> gi = Graph({Integer(0): {Integer(1): Integer(1)}, Integer(1): {Integer(2):...
˓→Integer(1)}, Integer(2): {Integer(3): Integer(1)}, Integer(3): {Integer(4):...
˓→Integer(2)}, Integer(4): {Integer(0): Integer(2)}}, data_structure="static_sparse")
>>> (Integer(0), Integer(4), Integer(2)) in gi.edges(sort=False)
True
>>> gi.has_edge(Integer(0), Integer(4))
True

sage: G = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:
˓→{6:25, 7:24}})
sage: GI = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:
˓→{6:25, 7:24}}, data_structure="static_sparse")
sage: G == GI
True
```

Graph Theory, Release 10.4
```python
>>> d = G.diameter()
>>> H = G.distance_graph(list(range(d + Integer(1))))
>>> HI = Graph(H, data_structure="static_sparse")
>>> HI.size() == len(HI.edges(sort=False))
True

```
add_vertices (vertices)
Set edge label. No way.

allows_loops (value=None)
Return whether the graph allows loops

INPUT:

• value – only useful for compatibility with other graph backends, where this method can be used to define this boolean. This method raises an exception if value is not equal to None.

degree (v, directed)
Return the degree of a vertex

INPUT:

• v – a vertex
• directed – boolean; whether to take into account the orientation of this graph in counting the degree of v

EXAMPLES:

sage: g = Graph(graphs.PetersenGraph(), data_structure="static_sparse")

sage: g.degree(0)
3

>>> from sage.all import *
>>> g = Graph(graphs.PetersenGraph(), data_structure="static_sparse")

>>> g.degree(Integer(0))
3

Issue #17225 about the degree of a vertex with a loop:

sage: Graph({0: [0]}, immutable=True).degree(0)
2
sage: Graph({0: [0], 1: [0, 1, 1, 1]}, immutable=True).degree(1)
7
```python
>>> from sage.all import *
>>> Graph({Integer(0): [Integer(0)]}, immutable=True).degree(Integer(0))
2
>>> Graph({Integer(0): [Integer(0)], Integer(1): [Integer(0), Integer(1),
  Integer(1), Integer(1)]}, immutable=True).degree(Integer(1))
7
```

del_edge (*u, v, l, directed*)

Set edge label. No way.

del_vertex (*v*)

Removal of vertices is not available on an immutable graph.

EXAMPLES:

```python
sage: g = DiGraph(graphs.PetersenGraph(), data_structure="static_sparse")
sage: g.delete_vertex(1)
Traceback (most recent call last):
  ... ValueError: graph is immutable; please change a copy instead (use function...
  ... copy())
sage: g.delete_vertices([1,2,3])
Traceback (most recent call last):
  ... ValueError: graph is immutable; please change a copy instead (use function...
  ... copy())
```

```python
>>> from sage.all import *
>>> g = DiGraph(graphs.PetersenGraph(), data_structure="static_sparse")
>>> g.delete_vertex(Integer(1))
Traceback (most recent call last):
  ... ValueError: graph is immutable; please change a copy instead (use function...
  ... copy())
>>> g.delete_vertices([Integer(1),Integer(2),Integer(3)])
Traceback (most recent call last):
  ... ValueError: graph is immutable; please change a copy instead (use function...
  ... copy())
```

get_edge_label (*u, v*)

Return the edge label for (*u, v*).

INPUT:

- *u, v* – two vertices

has_edge (*u, v, l*)

Return whether this graph has edge (*u, v*) with label *l*. If *l* is None, return whether this graph has an edge (*u, v*) with any label.

INPUT:

- *u, v* – two vertices
- *l* – a label

3.7. Static sparse graph backend
has_vertex(v)
Test if the vertex belongs to the graph

INPUT:

• v – a vertex (or not?)

in_degree(v)
Return the in-degree of a vertex

INPUT:

• v – a vertex

EXAMPLES:

```
sage: g = DiGraph(graphs.PetersenGraph(), data_structure="static_sparse")
sage: g.in_degree(0)
3
```

```
>>> from sage.all import *
>>> g = DiGraph(graphs.PetersenGraph(), data_structure="static_sparse")
>>> g.in_degree(Integer(0))
3
```

iterator_edges($\text{vertices}, labels$)
Iterate over the graph’s edges.

INPUT:

• vertices – list; only returns the edges incident to at least one vertex of vertices
• labels – boolean; whether to return edge labels too

iterator_in_edges($\text{vertices}, labels$)
Iterate over the incoming edges incident to a sequence of vertices.

INPUT:

• vertices – a list of vertices
• labels – whether to return labels too

iterator_in_nbrs(v)
Iterate over the in-neighbors of a vertex

INPUT:

• v – a vertex

EXAMPLES:

```
sage: g = DiGraph(graphs.PetersenGraph(), data_structure="static_sparse")
sage: g.neighbors_in(0)
[1, 4, 5]
```

```
>>> from sage.all import *
>>> g = DiGraph(graphs.PetersenGraph(), data_structure="static_sparse")
>>> g.neighbors_in(Integer(0))
[1, 4, 5]
```
iterator_nbrs(v)

Iterate over the neighbors of a vertex

INPUT:

- v – a vertex

EXAMPLES:

```
sage: g = Graph(graphs.PetersenGraph(), data_structure="static_sparse")
sage: g.neighbors(0)
[1, 4, 5]
```

```
>>> from sage.all import *

>>> g = Graph(graphs.PetersenGraph(), data_structure="static_sparse")

>>> g.neighbors(Integer(0))
[1, 4, 5]
```

iterator_out_edges(vertices, labels)

Iterate over the outbound edges incident to a sequence of vertices.

INPUT:

- vertices – a list of vertices
- labels – whether to return labels too

iterator_out_nbrs(v)

Iterate over the out-neighbors of a vertex

INPUT:

- v – a vertex

EXAMPLES:

```
sage: g = DiGraph(graphs.PetersenGraph(), data_structure="static_sparse")
sage: g.neighbors_out(0)
[1, 4, 5]
```

```
>>> from sage.all import *

>>> g = DiGraph(graphs.PetersenGraph(), data_structure="static_sparse")

>>> g.neighbors_out(Integer(0))
[1, 4, 5]
```

iterator_unsorted_edges(vertices, labels)

Iterate over the graph’s edges.

INPUT:

- vertices – list; only returns the edges incident to at least one vertex of vertices
- labels – boolean; whether to return edge labels too

iterator_verts(vertices)

Iterate over the vertices

INPUT:

- vertices – a list of objects; the method will only return the elements of the graph which are contained in vertices. It’s not very efficient. If vertices is equal to None, all the vertices are returned.
multiple_edges *(value=None)*

Return whether the graph allows multiple edges

INPUT:

- **value** – only useful for compatibility with other graph backends, where this method can be used to define this boolean. This method raises an exception if value is not equal to None.

num_edges *(directed)*

Return the number of edges

INPUT:

- **directed** – boolean; whether to consider the graph as directed or not.

num_verts *

Return the number of vertices

out_degree *(v)*

Return the out-degree of a vertex

INPUT:

- **v** – a vertex

EXAMPLES:

```python
sage: g = DiGraph(graphs.PetersenGraph(), data_structure="static_sparse")
sage: g.out_degree(0)
3
```

```python
>>> from sage.all import *
>>> g = DiGraph(graphs.PetersenGraph(), data_structure="static_sparse")
>>> g.out_degree(Integer(0))
3
```

relabel *(perm, directed)*

Relabel the graphs’ vertices. No way.

set_edge_label *(u, v, l, directed)*

Set edge label. No way.

class `sage.graphs.base.static_sparse_backend.StaticSparseCGraph`

Bases: `CGraph`

`CGraph` class based on the sparse graph data structure *static sparse graphs.*

add_vertex *(k)*

Add a vertex to the graph. No way.

del_vertex *(k)*

Remove a vertex from the graph. No way.

has_arc *(u, v)*

Test if uv is an edge of the graph

INPUT:

- **u, v** – integers
has_vertex \((v) \)
Test if a vertex belongs to the graph

INPUT:
• \(n \) – an integer

in_degree \((u) \)
Return the in-degree of a vertex

INPUT:
• \(u \) – a vertex

in_neighbors \((u) \)
Return the in-neighbors of a vertex

INPUT:
• \(u \) – a vertex

out_degree \((u) \)
Return the out-degree of a vertex

INPUT:
• \(u \) – a vertex

out_neighbors \((u) \)
List the out-neighbors of a vertex

INPUT:
• \(u \) – a vertex

verts ()
Returns the list of vertices

3.8 Backends for Sage (di)graphs

This module implements `GenericGraphBackend` (the base class for backends).

Any graph backend must redefine the following methods (for which `GenericGraphBackend` raises a `NotImplementedError`)

3.8. Backends for Sage (di)graphs 1479
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_edge()</td>
<td>Add an edge ((u, v)) to self, with label (l).</td>
</tr>
<tr>
<td>add_edges()</td>
<td>Add a sequence of edges to self.</td>
</tr>
<tr>
<td>add_vertex()</td>
<td>Add a labelled vertex to self.</td>
</tr>
<tr>
<td>add_vertices()</td>
<td>Add labelled vertices to self.</td>
</tr>
<tr>
<td>degree()</td>
<td>Return the total number of vertices incident to (v).</td>
</tr>
<tr>
<td>in_degree()</td>
<td>Return the in-degree of (v).</td>
</tr>
<tr>
<td>out_degree()</td>
<td>Return the out-degree of (v).</td>
</tr>
<tr>
<td>del_edge()</td>
<td>Delete the edge ((u, v)) with label (l).</td>
</tr>
<tr>
<td>del_vertex()</td>
<td>Delete a labelled vertex in self.</td>
</tr>
<tr>
<td>del_vertices()</td>
<td>Delete labelled vertices in self.</td>
</tr>
<tr>
<td>get_edge_label()</td>
<td>Return the edge label of ((u, v)).</td>
</tr>
<tr>
<td>has_edge()</td>
<td>True if self has an edge ((u, v)) with label (l).</td>
</tr>
<tr>
<td>has_vertex()</td>
<td>True if self has a vertex with label (v).</td>
</tr>
<tr>
<td>iterator_edges()</td>
<td>Iterate over the edges incident to a sequence of vertices.</td>
</tr>
<tr>
<td>iterator_in_edges()</td>
<td>Iterate over the incoming edges incident to a sequence of vertices.</td>
</tr>
<tr>
<td>iterator_out_edges()</td>
<td>Iterate over the outbound edges incident to a sequence of vertices.</td>
</tr>
<tr>
<td>iterator_nbrs()</td>
<td>Iterate over the vertices adjacent to (v).</td>
</tr>
<tr>
<td>iterator_in_nbrs()</td>
<td>Iterate over the in-neighbors of vertex (v).</td>
</tr>
<tr>
<td>iterator_out_nbrs()</td>
<td>Iterate over the out-neighbors of vertex (v).</td>
</tr>
<tr>
<td>iterator_verts()</td>
<td>Iterate over the vertices (v) with labels in verts.</td>
</tr>
<tr>
<td>loops()</td>
<td>Get/set whether or not self allows loops.</td>
</tr>
<tr>
<td>multiple_edges()</td>
<td>Get/set whether or not self allows multiple edges.</td>
</tr>
<tr>
<td>name()</td>
<td>Get/set name of self.</td>
</tr>
<tr>
<td>num_edges()</td>
<td>The number of edges in self.</td>
</tr>
<tr>
<td>num_verts()</td>
<td>The number of vertices in self.</td>
</tr>
<tr>
<td>relabel()</td>
<td>Relabel the vertices of self by a permutation.</td>
</tr>
<tr>
<td>set_edge_label()</td>
<td>Label the edge ((u, v)) by (l).</td>
</tr>
</tbody>
</table>

For an overview of graph data structures in Sage, see [overview](#).

3.8.1 Classes and methods

```python
class sage.graphs.base.graph_backends.GenericGraphBackend
    Bases: SageObject

    A generic wrapper for the backend of a graph.

    Various graph classes use extensions of this class. Note, this graph has a number of placeholder functions, so the doctests are rather silly.
```

add_edge\((u, v, l, \text{directed})\)

Add an edge \((u, v)\) to \text{self}, with label \(l\).

If \text{directed} is True, this is interpreted as an arc from \(u\) to \(v\).

INPUT:

- \(u, v\) – vertices
- \(l\) – edge label
- \(\text{directed}\) – boolean
add_edges *(edges, directed)*
Add a sequence of edges to self.
If directed is True, these are interpreted as arcs.

INPUT:
- *edges* – list/iterator of edges to be added
- *directed* – boolean

add_vertex *(name)*
Add a labelled vertex to self.

INPUT:
- *name* – vertex label

OUTPUT:
If name=None, the new vertex name is returned, None otherwise.

add_vertices *(vertices)*
Add labelled vertices to self.

INPUT:
- *vertices* – iterator of vertex labels; a new label is created, used and returned in the output list for all None values in vertices

OUTPUT:
Generated names of new vertices if there is at least one None value present in vertices. None otherwise.

EXAMPLES:
```
sage: G = sage.graphs.base.graph_backends.GenericGraphBackend()
sage: G.add_vertices([1,2,3])
Traceback (most recent call last):
... Not Implemented Error
```
```
>>> from sage.all import *
>>> G = sage.graphs.base.graph_backends.GenericGraphBackend()
>>> G.add_vertices([Integer(1),Integer(2),Integer(3)])
Traceback (most recent call last):
... Not Implemented Error
```

degree *(v, directed)*
Return the total number of vertices incident to v.

INPUT:
- *v* – a vertex label
- *directed* – boolean

OUTPUT:
degree of v
\textbf{del_edge}(u, v, l, directed)
Delete the edge \((u, v)\) with label \(l\).

\textbf{INPUT:}
\begin{itemize}
 \item \(u, v\) – vertices
 \item \(l\) – edge label
 \item \texttt{directed} – boolean
\end{itemize}

\textbf{del_vertex}(v)
Delete a labelled vertex in \texttt{self}.

\textbf{INPUT:}
\begin{itemize}
 \item \(v\) – vertex label
\end{itemize}

\textbf{del_vertices}(vertices)
Delete labelled vertices in \texttt{self}.

\textbf{INPUT:}
\begin{itemize}
 \item \texttt{vertices} – iterator of vertex labels
\end{itemize}

\textbf{get_edge_label}(u, v)
Return the edge label of \((u, v)\).

\textbf{INPUT:}
\begin{itemize}
 \item \(u, v\) – vertex labels
\end{itemize}

\textbf{OUTPUT:}
\texttt{label of }(u, v)

\textbf{has_edge}(u, v, l)
Check whether \texttt{self} has an edge \((u, v)\) with label \(l\).

\textbf{INPUT:}
\begin{itemize}
 \item \(u, v\) – vertex labels
 \item \(l\) – label
\end{itemize}

\textbf{OUTPUT:}
\texttt{boolean}

\textbf{has_vertex}(v)
Check whether \texttt{self} has a vertex with label \(v\).

\textbf{INPUT:}
\begin{itemize}
 \item \(v\) – vertex label
\end{itemize}

\textbf{OUTPUT:}
\texttt{boolean}

\textbf{in_degree}(v)
Return the in-degree of \(v\)

\textbf{INPUT:}
\begin{itemize}
 \item \(v\) – a vertex label
\end{itemize}
iterator_edges (*vertices, labels*)
Iterate over the edges incident to a sequence of vertices.

Edges are assumed to be undirected.

This method returns an iterator over the edges \((u, v)\) such that either \(u\) or \(v\) is in *vertices* and the edge \((u, v)\) is in *self*.

INPUT:
- *vertices* – a list of vertex labels
- *labels* – boolean

OUTPUT:
a generator which yields edges, with or without labels depending on the labels parameter.

iterator_in_edges (*vertices, labels*)
Iterate over the incoming edges incident to a sequence of vertices.

This method returns an iterator over the edges \((u, v)\) such that \(v\) is in *vertices* and the edge \((u, v)\) is in *self*.

INPUT:
- *vertices* – a list of vertex labels
- *labels* – boolean

OUTPUT:
a generator which yields edges, with or without labels depending on the labels parameter.

iterator_in_nbrs (*v*)
Iterate over the in-neighbors of vertex \(v\).

This method returns an iterator over the vertices \(u\) such that the edge \((u, v)\) is in *self* (that is, predecessors of \(v\)).

INPUT:
- *v* – vertex label

OUTPUT:
a generator which yields vertex labels

iterator_nbrs (*v*)
Iterate over the vertices adjacent to \(v\).

This method returns an iterator over the vertices \(u\) such that either the edge \((u, v)\) or the edge \((v, u)\) is in *self* (that is, neighbors of \(v\)).

INPUT:
- *v* – vertex label

OUTPUT:
a generator which yields vertex labels
iterator_out_edges *(vertices, labels)*

Iterate over the outbound edges incident to a sequence of vertices.

This method returns an iterator over the edges \((v, u)\) such that \(v\) is in \(\text{vertices}\) and the edge \((v, u)\) is in \(\text{self}\).

INPUT:
- \(\text{vertices}\) – a list of vertex labels
- \(\text{labels}\) – boolean

OUTPUT:
- a generator which yields edges, with or without labels depending on the \(\text{labels}\) parameter.

iterator_out_nbrs *(v)*

Iterate over the out-neighbors of \(v\).

This method returns an iterator over the vertices \(u\) such that the edge \((v, u)\) is in \(\text{self}\) (that is, successors of \(v\)).

INPUT:
- \(v\) – vertex label

OUTPUT:
- a generator which yields vertex labels

iterator_verts *(verts)*

Iterate over the vertices \(v\) with labels in \(verts\).

INPUT:
- \(verts\) – vertex labels

OUTPUT:
- a generator which yields vertices

loops *(new=None)*

Get/set whether or not \(\text{self}\) allows loops.

INPUT:
- \(new\) – can be a boolean (in which case it sets the value) or \(None\), in which case the current value is returned. It is set to \(None\) by default.

multiple_edges *(new=None)*

Get/set whether or not \(\text{self}\) allows multiple edges.

INPUT:
- \(new\) – can be a boolean (in which case it sets the value) or \(None\), in which case the current value is returned. It is set to \(None\) by default.

name *(new=None)*

Get/set name of \(\text{self}\).

INPUT:
- \(new\) – can be a string (in which case it sets the value) or \(None\), in which case the current value is returned. It is set to \(None\) by default.
num_edges \((directed)\)
Return the number of edges in \texttt{self}

\textbf{INPUT:}
\begin{itemize}
 \item directed – boolean
\end{itemize}

num_verts ()
Return the number of vertices in \texttt{self}

out_degree \((v)\)
Return the out-degree of \(v\)

\textbf{INPUT:}
\begin{itemize}
 \item v – a vertex label
\end{itemize}

relabel \((perm, directed)\)
Relabel the vertices of \texttt{self} by a permutation.

\textbf{INPUT:}
\begin{itemize}
 \item perm – permutation
 \item directed – boolean
\end{itemize}

set_edge_label \((u, v, l, directed)\)
Label the edge \((u, v)\) by \(l\).

\textbf{INPUT:}
\begin{itemize}
 \item u, v – vertices
 \item l – edge label
 \item directed – boolean
\end{itemize}

\texttt{sage.graphs.base.graph_backends.unpickle_graph_backend} \((directed, vertices, edges, kwds)\)
Return a backend from its pickled data

This method is defined because Python’s pickling mechanism can only build objects from a pair \((f, \texttt{args})\) by running \(f(*\texttt{args})\). In particular, there is apparently no way to define a \(**\texttt{kwargs}\) (i.e. define the value of keyword arguments of \(f\)), which means that one must know the order of all arguments of \(f\) (here, \(f\) is \texttt{Graph} or \texttt{DiGraph}).

As a consequence, this means that the order cannot change in the future, which is something we cannot swear.

\textbf{INPUT:}
\begin{itemize}
 \item directed – boolean
 \item vertices – list of vertices
 \item edges – list of edges
 \item kwds – any dictionary whose keywords will be forwarded to the graph constructor
\end{itemize}

This function builds a \texttt{Graph} or \texttt{DiGraph} from its data, and returns the _backend attribute of this object.

\textbf{EXAMPLES:}
\begin{verbatim}
sage: from sage.graphs.base.graph_backends import unpickle_graph_backend
sage: b = unpickle_graph_backend(0, [0, 1, 2, 3], [(0, 3, 'label'), (0, 0, 1)], { 'loops': True})
sage: b
\end{verbatim}
3.9 Interface to run Boost algorithms

Wrapper for a Boost graph. The Boost graphs are Cython C++ variables, and they cannot be converted to Python objects: as a consequence, only functions defined with cdef are able to create, read, modify, and delete these graphs.

A very important feature of Boost graph library is that all object are generic: for instance, adjacency lists can be stored using different data structures, and (most of) the functions work with all implementations provided. This feature is implemented in our interface using fused types: however, Cython's support for fused types is still experimental, and some features are missing. For instance, there cannot be nested generic function calls, and no variable can have a generic type, apart from the arguments of a generic function.

All the input functions use pointers, because otherwise we might have problems with delete().

Basic Boost Graph operations:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clustering_coeff()</td>
<td>Return the clustering coefficient of all vertices in the graph.</td>
</tr>
<tr>
<td>edge_connectivity()</td>
<td>Return the edge connectivity of the graph.</td>
</tr>
<tr>
<td>dominator_tree()</td>
<td>Return a dominator tree of the graph.</td>
</tr>
<tr>
<td>bandwidth_heuristics()</td>
<td>Use heuristics to approximate the bandwidth of the graph.</td>
</tr>
<tr>
<td>min_spanning_tree()</td>
<td>Compute a minimum spanning tree of a (weighted) graph.</td>
</tr>
<tr>
<td>shortest_paths()</td>
<td>Use Dijkstra or Bellman-Ford algorithm to compute the single-source shortest paths.</td>
</tr>
<tr>
<td>johnson_shortest_paths()</td>
<td>Use Johnson algorithm to compute the all-pairs shortest paths.</td>
</tr>
<tr>
<td>floyd_warshall_shortest_paths()</td>
<td>Use Floyd-Warshall algorithm to compute the all-pairs shortest paths.</td>
</tr>
<tr>
<td>johnson_closeness_centrality()</td>
<td>Use Johnson algorithm to compute the closeness centrality of all vertices.</td>
</tr>
<tr>
<td>blocks_and_cut_vertices()</td>
<td>Use Tarjan's algorithm to compute the blocks and cut vertices of the graph.</td>
</tr>
<tr>
<td>min_cycle_basis()</td>
<td>Return a minimum weight cycle basis of the input graph.</td>
</tr>
</tbody>
</table>
3.9.1 Functions

sage.graphs.base.boost_graph.bandwidth_heuristics\(g, \text{algorithm='cuthill_mckee'}\)

Use Boost heuristics to approximate the bandwidth of the input graph.

The bandwidth \(bw(M)\) of a matrix \(M\) is the smallest integer \(k\) such that all non-zero entries of \(M\) are at distance \(k\) from the diagonal. The bandwidth \(bw(g)\) of an undirected graph \(g\) is the minimum bandwidth of the adjacency matrix of \(g\), over all possible relabellings of its vertices (for more information, see the `bandwidth` module).

Unfortunately, exactly computing the bandwidth is NP-hard (and an exponential algorithm is implemented in SageMath in routine `bandwidth()`). Here, we implement two heuristics to find good orderings: Cuthill-McKee, reverse Cuthill-McKee (also known as RCM) and King.

This function works only in undirected graphs, and its running time is \(O(md_{\text{max}} \log d_{\text{max}})\) for the Cuthill-McKee ordering, and \(O(md_{\text{max}}^2 \log d_{\text{max}})\) for the King ordering, where \(m\) is the number of edges, and \(d_{\text{max}}\) is the maximum degree in the graph.

INPUT:

- \(g\) – the input Sage graph
- \text{algorithm} – string (default: `cuthill_mckee`); the heuristic used to compute the ordering among `cuthill_mckee`, `reverse_cuthill_mckee` and `king`

OUTPUT:

A pair \([\text{bandwidth}, \text{ordering}]\), where \text{ordering} is the ordering of vertices, \text{bandwidth} is the bandwidth of that specific ordering (which is not necessarily the bandwidth of the graph, because this is a heuristic).

EXAMPLES:

```python
sage: from sage.graphs.base.boost_graph import bandwidth_heuristics
sage: bandwidth_heuristics(graphs.PathGraph(10))
(1, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
sage: bandwidth_heuristics(graphs.GridGraph([3,3]))
(3, [(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2)])
sage: bandwidth_heuristics(graphs.GridGraph([3,3]), algorithm='reverse_cuthill_mckee')
(3, [(2, 2), (1, 2), (2, 1), (0, 2), (1, 1), (2, 0), (0, 1), (1, 0), (0, 0)])
sage: bandwidth_heuristics(graphs.GridGraph([3,3]), algorithm='king')
(3, [(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2)])
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.boost_graph import bandwidth_heuristics
>>> bandwidth_heuristics(graphs.PathGraph(Integer(10)))
(1, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> bandwidth_heuristics(graphs.GridGraph([Integer(3), Integer(3)]))
(3, [(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2)])
>>> bandwidth_heuristics(graphs.GridGraph([Integer(3), Integer(3)]), algorithm='reverse_cuthill_mckee')
(3, [(2, 2), (1, 2), (2, 1), (0, 2), (1, 1), (2, 0), (0, 1), (1, 0), (0, 0)])
>>> bandwidth_heuristics(graphs.GridGraph([Integer(3), Integer(3)]), algorithm='king')
(3, [(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2)])
```

sage.graphs.base.boost_graph.blocks_and_cut_vertices\(g\)

Compute the blocks and cut vertices of the graph.

This method uses the implementation of Tarjan’s algorithm available in the Boost library.

INPUT:
Graph Theory, Release 10.4

- \(g \) – the input Sage graph

OUTPUT:

A 2-dimensional vector with \(m+1 \) rows (\(m \) is the number of biconnected components), where each of the first \(m \) rows correspond to vertices in a block, and the last row is the list of cut vertices.

See also:

- sage.graphs.generic_graph.GenericGraph.blocks_and_cut_vertices()

EXAMPLES:

```python
sage: from sage.graphs.base.boost_graph import blocks_and_cut_vertices
sage: g = graphs.KrackhardtKiteGraph()

>>> blocks_and_cut_vertices(g)
([[[8, 9], [7, 8], [0, 1, 2, 3, 5, 4, 6, 7]], [8, 7]])

sage: G = Graph([(0,1,{'name':'a','weight':1}), (0,2,{'name':'b','weight':3}), (1,→2,{'name':'b','weight':1})])

>>> blocks_and_cut_vertices(G)
([[[0, 1, 2]]], [])
```

sage.graphs.base.boost_graph.clustering_coeff (\(g \), \(\text{vertices=}\text{None} \))

Compute the clustering coefficient of the input graph, using Boost.

See also:

sage.graphs.generic_graph.GenericGraph.clustering_coeff()

INPUT:

- \(g \) – the input Sage Graph
- \(\text{vertices} \) – list (default: None); the list of vertices to analyze (if None, compute the clustering coefficient of all vertices)

OUTPUT: a pair (average_clustering_coefficient, clust_of_v), where average_clustering_coefficient is the average clustering of the vertices in variable vertices, clust_of_v is a dictionary that associates to each vertex its clustering coefficient. If \(\text{vertices} \) is None, all vertices are considered.

EXAMPLES:

Computing the clustering coefficient of a clique:

```python
sage: from sage.graphs.base.boost_graph import clustering_coeff
sage: g = graphs.CompleteGraph(5)
```
sage: clustering_coeff(g)
(1.0, {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0})
sage: clustering_coeff(g, vertices = [0,1,2])
(1.0, {0: 1.0, 1: 1.0, 2: 1.0})

```python
>>> from sage.all import *
>>> from sage.graphs.base.boost_graph import clustering_coeff

>>> g = graphs.CompleteGraph(Integer(5))
>>> clustering_coeff(g)
(1.0, {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0})
>>> clustering_coeff(g, vertices = [Integer(0),Integer(1),Integer(2)])
(1.0, {0: 1.0, 1: 1.0, 2: 1.0})
```

Of a non-clique graph with triangles:

```python
sage: g = graphs.IcosahedralGraph()
sage: clustering_coeff(g, vertices=[1,2,3])
(0.5, {1: 0.5, 2: 0.5, 3: 0.5})
```

```python
>>> from sage.all import *

>>> g = graphs.IcosahedralGraph()
>>> clustering_coeff(g, vertices=[Integer(1),Integer(2),Integer(3)])
(0.5, {1: 0.5, 2: 0.5, 3: 0.5})
```

With labels:

```python
sage: g.relabel(list("abcdefghiklm"))
sage: clustering_coeff(g, vertices="abde")
(0.5, {'a': 0.5, 'b': 0.5, 'd': 0.5, 'e': 0.5})
```

```python
>>> from sage.all import *

>>> g.relabel(list("abcdefghiklm"))

>>> clustering_coeff(g, vertices="abde")
(0.5, {'a': 0.5, 'b': 0.5, 'd': 0.5, 'e': 0.5})
```

`sage.graphs.base.boost_graph.diameter` *(G, algorithm=None, source=None, weight_function=None, check_weight=True)*

Return the diameter of \(G \).

This method returns Infinity if the digraph is not strongly connected. It can also quickly return a lower bound on the diameter using the 2Dsweep scheme.

INPUT:

- \(G \) – the input sage digraph.
- \(\text{algorithm} \) – string (default: None); specifies the algorithm to use among:
 - '2Dsweep' – Computes lower bound on the diameter of a weighted directed graph using the weighted version of the algorithm proposed in [Broder2000]. See the code's documentation for more details.
 - 'DiFUB' – Computes the diameter of a weighted directed graph using the weighted version of the algorithm proposed in [CGLM2012]. See the code's documentation for more details.
- \(\text{source} \) – (default: None) vertex from which to start the computation. If \(\text{source}\) = None, an arbitrary vertex of the graph is chosen. Raise an error if the initial vertex is not in \(G \).
• weight_function – function (default: None); a function that associates a weight to each edge. If None (default), the weights of G are used, if G.weighted()==True, otherwise all edges have weight 1.

• check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge.

EXAMPLES:

```python
sage: from sage.graphs.base.boost_graph import diameter
sage: G = DiGraph(((0, 1, 2), (1, 0, -1)))
```

sage: diameter(G, algorithm='DiFUB')
```
1.0
```n
sage: diameter(G, algorithm='DiFUB', weight_function=lambda e:e[2])
```

```python
2.0
```n
sage: G = DiGraph(((0, 1, -1), (1, 0, 2)))
```

sage: diameter(G, algorithm='DiFUB', weight_function=lambda e:e[2])
```

```python
2.0
```n

sage.graphs.base.boost_graph.diameter_DHV (g, weight_function=None, check_weight=True)

Return the diameter of weighted graph $g$.

This method computes the diameter of undirected graph using the algorithm proposed in [Dragan2018].

This method returns Infinity if graph is not connected.

**INPUT:**

- $g$ – the input Sage graph

- weight_function – function (default: None); a function that associates a weight to each edge. If None (default), the weights of $g$ are used, if $g$.weighted()==True, otherwise all edges have weight 1.

- check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge

**EXAMPLES:**

```python
sage: from sage.graphs.base.boost_graph import diameter_DHV
sage: G = graphs.ButterflyGraph()
```

sage: diameter_DHV(G)
```
2.0
```n
```
sage.graphs.base.boost_graph.dominator_tree(g, root, return_dict=False, reverse=False)

Use Boost to compute the dominator tree of g, rooted at $root$.

A node d dominates a node n if every path from the entry node $root$ to n must go through d. The immediate dominator of a node n is the unique node that strictly dominates n but does not dominate any other node that dominates n. A dominator tree is a tree where each node’s children are those nodes it immediately dominates. For more information, see the Wikipedia article Dominator (graph_theory).

If the graph is connected and undirected, the parent of a vertex v is:

- the root if v is in the same biconnected component as the root;
- the first cut vertex in a path from v to the root, otherwise.

If the graph is not connected, the dominator tree of the whole graph is equal to the dominator tree of the connected component of the root.

If the graph is directed, computing a dominator tree is more complicated, and it needs time $O(m \log m)$, where m is the number of edges. The implementation provided by Boost is the most general one, so it needs time $O(m \log m)$ even for undirected graphs.

INPUT:

- g – the input Sage (Di)Graph
- $root$ – the root of the dominator tree
- $return_dict$ – boolean (default: False); if True, the function returns a dictionary associating to each vertex its parent in the dominator tree. If False (default), it returns the whole tree, as a Graph or a DiGraph.
- $reverse$ – boolean (default: False); when set to True, computes the dominator tree in the reverse graph

OUTPUT:

The dominator tree, as a graph or as a dictionary, depending on the value of $return_dict$. If the output is a dictionary, it will contain None in correspondence of $root$ and of vertices that are not reachable from $root$. If the output is a graph, it will not contain vertices that are not reachable from $root$.

EXAMPLES:

An undirected grid is biconnected, and its dominator tree is a star (everyone’s parent is the root):

```python
sage: g = graphs.GridGraph([2,2]).dominator_tree((0,0))
sage: g.to_dictionary()
{(0, 0): [(0, 1), (1, 0), (1, 1)], (0, 1): [(0, 0)], (1, 0): [(0, 0)], (1, 1): [(0, 0)]}
```

If the graph is made by two 3-cycles C_1, C_2 connected by an edge (v, w), with $v \in C_1$, $w \in C_2$, the cut vertices are v and w, the biconnected components are C_1, C_2, and the edge (v, w). If the root is in C_1, the parent of each vertex in C_1 is the root, the parent of w is v, and the parent of each vertex in C_2 is w:

```python
sage: G = 2 * graphs.CycleGraph(3)
sage: v = 0
sage: w = 3
```
sage: G.add_edge(v,w)
sage: G.dominator_tree(1, return_dict=True)
(0: 1, 1: None, 2: 1, 3: 0, 4: 3, 5: 3)

```
>>> from sage.all import *
>>> G = Integer(2) * graphs.CycleGraph(Integer(3))
>>> v = Integer(0)
>>> w = Integer(3)
>>> G.add_edge(v,w)
>>> G.dominator_tree(Integer(1), return_dict=True)
(0: 1, 1: None, 2: 1, 3: 0, 4: 3, 5: 3)
```

An example with a directed graph:

```
sage: g = digraphs.Circuit(10).dominator_tree(5)
sage: g.to_dictionary()
(0: [1], 1: [2], 2: [3], 3: [4], 4: [1], 5: [6], 6: [7], 7: [8], 8: [9], 9: [0])
sage: g = digraphs.Circuit(10).dominator_tree(5, reverse=True)
```

If the output is a dictionary:

```
sage: graphs.GridGraph([2,2]).dominator_tree((0,0), return_dict=True)
{(0, 0): None, (0, 1): (0, 0), (1, 0): (0, 0), (1, 1): (0, 0)}
```

```
>>> from sage.all import *
>>> graphs.GridGraph([Integer(2),Integer(2)]).dominator_tree((Integer(0),
Integer(0)), return_dict=True)
{(0, 0): None, (0, 1): (0, 0), (1, 0): (0, 0), (1, 1): (0, 0)}
```

sage.graphs.base.boost_graph.eccentricity_DHV (g, vertex_list=None, weight_function=None, check_weight=True)

Return the vector of eccentricities using the algorithm of [Dragan2018].

The array returned is of length n, and by default its i-th component is the eccentricity of the i-th vertex in g.

vertices(sort=True), if vertex_list is None, otherwise ecc[i] is the eccentricity of vertex vertex_list[i].

The algorithm proposed in [Dragan2018] is based on the observation that for all nodes $v, w \in V$, we have $\max(ecc[v] - d(v, w), d(v, w)) \leq ecc[w] \leq ecc[v] + d(v, w)$. Also the algorithm iteratively improves upper and lower bounds on the eccentricity of each vertex until no further improvements can be done.

INPUT:

- g – the input Sage graph.
- vertex_list – list (default: None): a list of n vertices specifying a mapping from $(0,\ldots,n-1)$ to vertex labels in g. When set, ecc[i] is the eccentricity of vertex vertex_list[i]. When vertex_list
is None, ecc[1] is the eccentricity of vertex g.vertices(sort=True)[1].

- `weight_function` – function (default: None); a function that associates a weight to each edge. If None (default), the weights of g are used, if g.weighted()==True, otherwise all edges have weight 1.

- `check_weight` – boolean (default: True); if True, we check that the weight_function outputs a number for each edge.

EXAMPLES:

```python
sage: from sage.graphs.base.boost_graph import eccentricity_DHV
sage: G = graphs.BullGraph()
sage: eccentricity_DHV(G)
[2.0, 2.0, 2.0, 3.0, 3.0]
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.boost_graph import eccentricity_DHV
>>> G = graphs.BullGraph()
>>> eccentricity_DHV(G)
[2.0, 2.0, 2.0, 3.0, 3.0]
```

`sage.graphs.base.boost_graph.edge_connectivity(g)`

Compute the edge connectivity of the input graph, using Boost.

OUTPUT: a pair (ec, edges), where ec is the edge connectivity, edges is the list of edges in a minimum cut.

See also:

`sage.graphs.generic_graph.GenericGraph.edge_connectivity()`

EXAMPLES:

Computing the edge connectivity of a clique:

```python
sage: from sage.graphs.base.boost_graph import edge_connectivity
sage: g = graphs.CompleteGraph(5)
sage: edge_connectivity(g)
(4, [(0, 1), (0, 2), (0, 3), (0, 4)])
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.boost_graph import edge_connectivity
>>> g = graphs.CompleteGraph(Integer(5))
>>> edge_connectivity(g)
(4, [(0, 1), (0, 2), (0, 3), (0, 4)])
```

Vertex-labeled graphs:

```python
sage: from sage.graphs.base.boost_graph import edge_connectivity
sage: g = graphs.GridGraph([2,2])
sage: edge_connectivity(g)
(2, [(0, 1), (0, 1), (0, 0), (1, 0)]
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.boost_graph import edge_connectivity
>>> g = graphs.GridGraph([Integer(2),Integer(2)])
>>> edge_connectivity(g)
(2, [(0, 1), (0, 1), (0, 0), (1, 0)])
```
Use Floyd-Warshall algorithm to solve the all-pairs-shortest-paths.

This routine outputs the distance between each pair of vertices and the predecessors matrix (depending on the values of boolean distances and predecessors) using a dictionary of dictionaries. This method should be preferred only if the graph is dense. If the graph is sparse the much faster johnson_shortest_paths should be used.

The time-complexity is $O(n^3 + nm)$, where n is the number of nodes and m the number of edges. The factor nm in the complexity is added only when predecessors is set to True.

INPUT:

- g – the input Sage graph
- weight_function – function (default: None); a function that associates a weight to each edge. If None (default), the weights of g are used, if g.weighted()==True, otherwise all edges have weight 1.
- distances – boolean (default: True); whether to return the dictionary of shortest distances
- predecessors – boolean (default: False); whether to return the predecessors matrix

OUTPUT:

Depending on the input, this function return the dictionary of predecessors, the dictionary of distances, or a pair of dictionaries (distances, predecessors) where distance[u][v] denotes the distance of a shortest path from u to v and predecessors[u][v] indicates the predecessor of w on a shortest path from u to v.

EXAMPLES:

Undirected graphs:

```python
sage: from sage.graphs.base.boost_graph import floyd_warshall_shortest_paths
sage: g = Graph([(0,1,1),(1,2,2),(1,3,4),(2,3,1)], weighted=True)
sage: floyd_warshall_shortest_paths(g)
{0: {0: 0, 1: 1, 2: 3, 3: 4},
 1: {0: 1, 1: 0, 2: 2, 3: 3},
 2: {0: 3, 1: 2, 2: 0, 3: 1},
 3: {0: 4, 1: 3, 2: 1, 3: 0}}
sage: expected = {0: {0: None, 1: 0, 2: 1, 3: 2},
               ...: 1: {0: 1, 1: None, 2: 1, 3: 2},
               ...: 2: {0: 1, 1: 2, 2: None, 3: 2},
               ...: 3: {0: 1, 1: 2, 2: 3, 3: None}}
sage: floyd_warshall_shortest_paths(g, distances=False, predecessors=True) ==
expected
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.boost_graph import floyd_warshall_shortest_paths
>>> g = Graph([(Integer(0),Integer(1),Integer(1)),(Integer(1),Integer(2),
           Integer(2)),(Integer(1),Integer(3),Integer(4)),(Integer(2),Integer(3),
           Integer(1))], weighted=True)
>>> floyd_warshall_shortest_paths(g)
{0: {0: 0, 1: 1, 2: 3, 3: 4},
 1: {0: 1, 1: 0, 2: 2, 3: 3},
 2: {0: 3, 1: 2, 2: 0, 3: 1},
 3: {0: 4, 1: 3, 2: 1, 3: 0}}
>>> expected = {Integer(0): {Integer(0): None, Integer(1): Integer(0),
              Integer(2): Integer(1), Integer(3): Integer(2)},
              ...: Integer(1): {Integer(0): None, Integer(1): None, Integer(2): Integer(1),
              Integer(3): Integer(2), Integer(4): Integer(3)},
              Integer(4): Integer(2)},
```

(continues on next page)
Directed graphs:

```python
sage: g = DiGraph([(0,1,1),(1,2,-2),(1,3,4),(2,3,1)], weighted=True)
sage: floyd_warshall_shortest_paths(g)
{0: {0: 0, 1: 1, 2: -1, 3: 0},
 1: {1: 0, 2: -2, 3: -1},
 2: {2: 0, 3: 1},
 3: {3: 0}}
sage: g = DiGraph([(1,2,3),(2,3,2),(1,4,1),(4,2,1)], weighted=True)
sage: floyd_warshall_shortest_paths(g, distances=False, predecessors=True)
{1: {1: None, 2: 4, 3: 2, 4: 1},
 2: {2: None, 3: 2},
 3: {3: None},
 4: {2: 4, 3: 2, 4: None}}
```

sage.graphs.base.boost_graph.johnson_closeness_centrality(g, weight_function=None)

Use Johnson algorithm to compute the closeness centralty of all vertices.

This routine is preferable to johnson_shortest_paths() because it does not create a doubly indexed dictionary of distances, saving memory.

The time-complexity is $O(mn \log n)$, where n is the number of nodes and m is the number of edges.

INPUT:

- g – the input Sage graph

 - **weight_function** – function (default: None): a function that associates a weight to each edge. If None (default), the weights of g are used, if g.weighted()==True, otherwise all edges have weight 1.

OUTPUT:
A dictionary associating each vertex \(v \) to its closeness centrality.

EXAMPLES:

Undirected graphs:

```python
from sage.graphs.base.boost_graph import johnson_closeness_centrality

# Undirected graph example
sage: g = Graph([(0,1,1),(1,2,2),(1,3,4),(2,3,1)], weighted=True)
sage: johnson_closeness_centrality(g)
{0: 0.375, 1: 0.5, 2: 0.5, 3: 0.375}
```

```python
# Directed graph example
sage: g = DiGraph([(0,1,1),(1,2,-2),(1,3,4),(2,3,1)], weighted=True)
sage: johnson_closeness_centrality(g)
{0: inf, 1: -0.4444444444444444, 2: 0.3333333333333333}
```

Directed graphs:

```python
from sage.graphs.base.boost_graph import johnson_closeness_centrality

# Undirected graph example
sage: g = Graph([(Integer(0),Integer(1),Integer(1)),(Integer(1),Integer(2),Integer(2)),(Integer(1),Integer(3),Integer(4)),(Integer(2),Integer(3),Integer(1))], weighted=True)
sage: johnson_closeness_centrality(g)
{0: 0.375, 1: 0.5, 2: 0.5, 3: 0.375}
```

```python
# Directed graph example
sage: g = DiGraph([(Integer(0),Integer(1),Integer(1)),(Integer(1),Integer(2),-Integer(2)),(Integer(1),Integer(3),Integer(4)),(Integer(2),Integer(3),-Integer(1))], weighted=True)
sage: johnson_closeness_centrality(g)
{0: inf, 1: -0.4444444444444444, 2: 0.3333333333333333}
```

sage.graphs.base.boost_graph.johnson_shortest_paths(g, weight_function=None, distances=True, predecessors=False)

Use Johnson algorithm to solve the all-pairs-shortest-paths.

This routine outputs the distance between each pair of vertices and the predecessors matrix (depending on the values of boolean distances and predecessors) using a dictionary of dictionaries. It works on all kinds of graphs, but it is designed specifically for graphs with negative weights (otherwise there are more efficient algorithms, like Dijkstra).

The time-complexity is \(O(mn \log n) \), where \(n \) is the number of nodes and \(m \) is the number of edges.

INPUT:

- \(g \) – the input Sage graph

- weight_function – function (default: None); a function that associates a weight to each edge. If None (default), the weights of \(g \) are used, if \(g.weighted()==True \), otherwise all edges have weight 1.

- distances – boolean (default: True); whether to return the dictionary of shortest distances

- predecessors – boolean (default: False); whether to return the predecessors matrix

OUTPUT:

Depending on the input, this function return the dictionary of predecessors, the dictionary of distances, or a pair of dictionaries (distances, predecessors) where distance[u][v] denotes the distance of a shortest path from \(u \) to \(v \) and predecessors[u][v] indicates the predecessor of \(w \) on a shortest path from \(u \) to \(v \).
EXAMPLES:

Undirected graphs:

```
sage: from sage.graphs.base.boost_graph import johnson_shortest_paths
sage: g = Graph([(0, 1, 1), (1, 2, 2), (1, 3, 4), (2, 3, 1)], weighted=True)
sage: johnson_shortest_paths(g)
{0: {0: 0, 1: 1, 2: 3, 3: 4},
 1: {0: 1, 1: 0, 2: 2, 3: 3},
 2: {0: 3, 1: 2, 2: 0, 3: 1},
 3: {0: 4, 1: 3, 2: 1, 3: 0})
sage: expected = {0: {0: None, 1: 0, 2: 1, 3: 2},
               1: {0: 1, 1: None, 2: 1, 3: 2},
               2: {0: 1, 1: 2, 2: None, 3: 2},
               3: {0: 1, 1: 2, 2: 3, 3: None}}
sage: johnson_shortest_paths(g, distances=False, predecessors=True) == expected
True
```

```
>>> from sage.all import *
>>> from sage.graphs.base.boost_graph import johnson_shortest_paths
>>> g = Graph([(Integer(0), Integer(1), Integer(1)), (Integer(1), Integer(2), -Integer(2)),
              (Integer(1), Integer(3), Integer(4)), (Integer(2), Integer(3), Integer(1))], weighted=True)
>>> johnson_shortest_paths(g)
{0: {0: None, 1: None, 2: 3, 3: 4},
 1: {0: 1, 1: None, 2: 2, 3: 3},
 2: {0: 3, 1: 2, 2: 0, 3: 1},
 3: {0: 4, 1: 3, 2: 1, 3: 0})
>>> expected = {Integer(0): {Integer(0): None, Integer(1): Integer(0),
                            Integer(2): Integer(1), Integer(3): Integer(0),
                            Integer(4): None},
              Integer(1): {Integer(0): None, Integer(1): Integer(0),
                            Integer(2): Integer(1), Integer(3): Integer(0),
                            Integer(4): Integer(1),
                            Integer(5): Integer(2),
                            Integer(6): None},
              Integer(2): {Integer(0): None, Integer(1): Integer(0),
                            Integer(2): Integer(1), Integer(3): Integer(0),
                            Integer(4): Integer(1),
                            Integer(5): Integer(2),
                            Integer(6): Integer(3),
                            Integer(7): None},
              Integer(3): {Integer(0): None, Integer(1): Integer(0),
                            Integer(2): Integer(1), Integer(3): Integer(0),
                            Integer(4): Integer(1),
                            Integer(5): Integer(2),
                            Integer(6): Integer(3),
                            Integer(7): None}}
>>> johnson_shortest_paths(g, distances=False, predecessors=True) == expected
True
```

Directed graphs:

```
sage: g = DiGraph([(0, 1, 1), (1, 2, -2), (1, 3, 4), (2, 3, 1)], weighted=True)
sage: johnson_shortest_paths(g)
{0: {0: 0, 1: 1, 2: -1, 3: 0},
 1: {0: 1, 2: -2, 3: -1},
 2: {0: 3, 1: 2},
 3: {3: 0})
sage: g = DiGraph([(1, 2, 3), (2, 3, 2), (1, 4, 1), (4, 2, 1)], weighted=True)
sage: johnson_shortest_paths(g, distances=False, predecessors=True)
{1: {1: None, 2: 4, 3: 2, 4: 1},
 2: {2: None, 3: 2},
 3: {3: None},
 4: {2: 4, 3: 2, 4: None})
```
sage.graphs.base.boost_graph.min_cycle_basis(g_sage, weight_function=None, by_weight=False)
Return a minimum weight cycle basis of the input graph g_sage.
A cycle basis is a list of cycles (list of vertices forming a cycle) of g_sage. Note that the vertices are not necessarily returned in the order in which they appear in the cycle.
A minimum weight cycle basis is a cycle basis that minimizes the sum of the weights (length for unweighted graphs) of its cycles.
Not implemented for directed graphs and multigraphs.
INPUT:
• g_sage – a Sage Graph
• weight_function – function (default: None); a function that takes as input an edge (u, v, l) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, the weights of g_sage are used, if g_sage.weighted()==True, otherwise all edges have weight 1.
• by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
EXAMPLES:

sage: g = Graph([(1, 2, 3), (2, 3, 5), (3, 4, 8), (4, 1, 13), (1, 3, 250), (5, 6, 9), (6, 7, 17), (7, 5, 20)])
sage: sorted(g.minimum_cycle_basis(by_weight=True))
[[1, 2, 3], [1, 2, 3, 4], [5, 6, 7]]
sage: sorted(g.minimum_cycle_basis())
[[1, 2, 3], [1, 3, 4], [5, 6, 7]]

See also:
sage.graphs.base.boost_graph.min_spanning_tree\((g, weight_function=None, algorithm='Kruskal') \)

Use Boost to compute the minimum spanning tree of the input graph.

INPUT:
- \(g \) – the input Sage graph
- \(weight_function \) – function (default: None); a function that inputs an edge \(e \) and outputs its weight. An edge has the form \((u, v, l) \), where \(u \) and \(v \) are vertices, \(l \) is a label (that can be of any kind). The weight_function can be used to transform the label into a weight (see the example below). In particular:
 - if \(weight_function \) is not None, the weight of an edge \(e \) is \(weight_function(e) \);
 - if \(weight_function \) is None (default) and \(g \) is weighted (that is, \(g.weighted() == True \)), for each edge \(e=(u, v, l) \), we set weight 1;
 - if \(weight_function \) is None and \(g \) is not weighted, we set all weights to 1 (hence, the output can be any spanning tree).

Note that, if the weight is not convertible to a number with function float(), an error is raised (see tests below).
- \(algorithm \) – string (default: 'Kruskal'); the algorithm to use among 'Kruskal' and 'Prim'

OUTPUT:
The edges of a minimum spanning tree of \(g \), if one exists, otherwise the empty list.

See also:
- \(sage.graphs.generic_graph.GenericGraph.min_spanning_tree() \)

EXAMPLES:

```
sage: from sage.graphs.base.boost_graph import min_spanning_tree
sage: min_spanning_tree(graphs.PathGraph(4))
[(0, 1, None), (1, 2, None), (2, 3, None)]
```

```
sage: G = Graph([(0,1,{name:a,weight:1}), (0,2,{name:b,weight:3}), (1,˓→2,{name:b,weight:1})])
sage: min_spanning_tree(G, weight_function=lambda e: e[2][weight])
[(0, 1, {name: 'a', 'weight': 1}), (1, 2, {'name': 'b', 'weight': 1})]
```

```
>>> from sage.all import *
>>> from sage.graphs.base.boost_graph import min_spanning_tree
>>> min_spanning_tree(graphs.PathGraph(Integer(4)))
[(0, 1, None), (1, 2, None), (2, 3, None)]
```

```
>>> G = Graph([(Integer(0),Integer(1),{'name':'a','weight':Integer(1)}), ˓→(Integer(0),Integer(2),{'name':'b','weight':Integer(3)}), (Integer(1), ˓→Integer(2),{'name':'b','weight':Integer(1)})])
>>> min_spanning_tree(G, weight_function=lambda e: e[Integer(2)][weight])
[(0, 1, {'name': 'a', 'weight': 1}), (1, 2, {'name': 'b', 'weight': 1})]
```

sage.graphs.base.boost_graph.radius_DHV\((g, weight_function=None, check_weight=True) \)

Return the radius of weighted graph \(g \).

This method computes the radius of undirected graph using the algorithm given in [Dragan2018].
This method returns Infinity if graph is not connected.

INPUT:

- `g` – the input Sage graph
- `weight_function` – function (default: None); a function that associates a weight to each edge. If None (default), the weights of `g` are used, if `g.weighted()==True`, otherwise all edges have weight 1.
- `check_weight` – boolean (default: True); if True, we check that the `weight_function` outputs a number for each edge.

EXAMPLES:

```python
sage: from sage.graphs.base.boost_graph import radius_DHV
sage: G = Graph([(0,1,1), (1,2,1), (0,2,3)])
sage: radius_DHV(G)
1.0
sage: G = graphs.PathGraph(7)
sage: radius_DHV(G) == G.radius(algorithm=Dijkstra_Boost)
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.base.boost_graph import radius_DHV
>>> G = Graph([(Integer(0),Integer(1),Integer(1)), (Integer(1),Integer(2), Integer(1)), (Integer(0),Integer(2),Integer(3))])
>>> radius_DHV(G)
1.0
>>> G = graphs.PathGraph(Integer(7))
>>> radius_DHV(G) == G.radius(algorithm='Dijkstra_Boost')
True
```

sage.graphs.base.boost_graph.shortest_paths (`g`, `start`, `weight_function=None`, `algorithm=None`)

Compute the shortest paths from `start` to all other vertices.

This routine outputs all shortest paths from node `start` to any other node in the graph. The input graph can be weighted: if the algorithm is Dijkstra, no negative weights are allowed, while if the algorithm is Bellman-Ford, negative weights are allowed, but there must be no negative cycle (otherwise, the shortest paths might not exist).

However, Dijkstra algorithm is more efficient: for this reason, we suggest to use Bellman-Ford only if necessary (which is also the default option). Note that, if the graph is undirected, a negative edge automatically creates a negative cycle: for this reason, in this case, Dijkstra algorithm is always better.

The running-time is \(O(n \log n + m) \) for Dijkstra algorithm and \(O(mn) \) for Bellman-Ford algorithm, where \(n \) is the number of nodes and \(m \) is the number of edges.

INPUT:

- `g` – the input Sage graph
- `start` – the starting vertex to compute shortest paths
- `weight_function` – function (default: None); a function that associates a weight to each edge. If None (default), the weights of `g` are used, if `g.weighted()==True`, otherwise all edges have weight 1.
- `algorithm` – string (default: None); one of the following algorithms:
 - `'Dijkstra', 'Dijkstra_Boost'`: the Dijkstra algorithm implemented in Boost (works only with positive weights)
 - `'Bellman-Ford', 'Bellman-Ford_Boost'`: the Bellman-Ford algorithm implemented in Boost (works also with negative weights, if there is no negative cycle)
OUTPUT:

A pair of dictionaries \((\text{distances},\ \text{predecessors})\) such that, for each vertex \(v\), \(\text{distances}[v]\) is the distance from \text{start} to \(v\), \(\text{predecessors}[v]\) is the last vertex in a shortest path from \text{start} to \(v\).

EXAMPLES:

Undirected graphs:

```python
sage: from sage.graphs.base.boost_graph import shortest_paths
sage: g = Graph([[(0,1),1],[(1,2),2],[(1,3),4],[(2,3),1]], weighted=True)
sage: shortest_paths(g, 1)
({0: 1, 1: 0, 2: 2, 3: 3}, {0: 1, 1: None, 2: 1, 3: 2})
sage: g = graphs.GridGraph([2,2])
sage: shortest_paths(g,(0,0),weight_function=lambda e:2)
({(0, 0): 0, (0, 1): 2, (1, 0): 2, (1, 1): 4},
{(0, 0): None, (0, 1): (0, 0), (1, 0): (0, 0), (1, 1): (0, 1)})
```

Directed graphs:

```python
sage: g = DiGraph([[(0,1),1],[(1,2),2],[(1,3),4],[(2,3),1]], weighted=True)
sage: shortest_paths(g, 1)
({1: 0, 2: 2, 3: 3}, {1: None, 2: 1, 3: 2})
```

```python
sage.graphs.base.boost_graph.shortest_paths_from_vertices(g, vertex_list=None, order=None, weight_function=None, algorithm=None)
```

Compute the shortest paths to all vertices from each vertex in \text{vertex_list}.

The input graph can be weighted: if the algorithm is Dijkstra, no negative weights are allowed, while if the algorithm is Bellman-Ford, negative weights are allowed, but there must be no negative cycle (otherwise, the shortest paths might not exist).

However, Dijkstra algorithm is more efficient: for this reason, we suggest to use Bellman-Ford only if necessary (which is also the default option).

The running-time for each vertex is \(O(n \log n + m)\) for Dijkstra algorithm and \(O(mn)\) for Bellman-Ford algorithm, where \(n\) is the number of nodes and \(m\) is the number of edges.
INPUT:

- \texttt{g} – the input Sage graph
- \texttt{vertex_list} – list (default: None); list of vertices to compute shortest paths from. By default (None), compute shortest paths from all vertices.
- \texttt{order} – list (default: None); order of vertices of \texttt{g}
- \texttt{weight_function} – function (default: None); a function that associates a weight to each edge. If None (default), the weights of \texttt{g} are used, if \texttt{g.weighted()==True}, otherwise all edges have weight 1.
- \texttt{algorithm} – string (default: None); one of the following algorithms:
 - 'Dijkstra', 'Dijkstra_Boost' – the Dijkstra algorithm implemented in Boost (works only with positive weights)
 - 'Bellman-Ford', 'Bellman-Ford_Boost' – the Bellman-Ford algorithm implemented in Boost (works also with negative weights, if there is no negative cycle)

OUTPUT:

The type of output depends on the input. More precisely -

- A pair of dictionaries of list (distances, predecessors), when \texttt{order} is not None, such that for each vertex \texttt{v} in \texttt{vertex_list}, \texttt{distances}[\texttt{v}][i] store the shortest distance between \texttt{v} and \texttt{order[i]} and \texttt{predecessors}[\texttt{v}][i] store the last vertex in the shortest path from \texttt{v} to \texttt{order[i]}.

- A pair of dictionaries of dictionaries (distances, predecessors) such that for each vertex \texttt{v} in \texttt{vertex_list}, \texttt{distances}[\texttt{v}] store the shortest distances of all the other vertices from \texttt{v}, \texttt{predecessors[v]} store the last vertices in the shortest path from \texttt{v} to all the other vertices.

EXAMPLES:

Undirected graphs:

```python
sage: from sage.graphs.base.boost_graph import shortest_paths_from_vertices
sage: g = Graph([(0,1,1),(1,2,2),(1,3,4),(2,3,1)], weighted=True)
```

```python
sage: shortest_paths_from_vertices(g,[1,2])
({1: {0: 1.0, 1: 0.0, 2: 2.0, 3: 3.0}, 2: {0: 3.0, 1: 2.0, 2: 0.0, 3: 1.0]},
 {1: {0: 1, 1: None, 2: 1, 3: 2}, 2: {0: 1, 1: 2, 2: None, 3: 2}})
```

```python
>>> from sage.all import *
```

```python
>>> g = Graph([(Integer(0),Integer(1),Integer(1)),(Integer(1),Integer(2),-1),(Integer(2),Integer(0),2),(Integer(2),Integer(3),1)], weighted=True)
```

```python
>>> shortest_paths_from_vertices(g,Integer(1),Integer(2))
({1: {0: 1.0, 1: 0.0, 2: 2.0, 3: 3.0}, 2: {0: 3.0, 1: 2.0, 2: 0.0, 3: 1.0}},
 {1: {0: 1, 1: None, 2: 1, 3: 2}, 2: {0: 1, 1: 2, 2: None, 3: 2}})
```

Directed graphs:

```python
sage: g = DiGraph([(0,1,1),(1,2,-1),(2,0,2),(2,3,1)], weighted=True)
```

```python
sage: shortest_paths_from_vertices(g,1)
({1: {0: 0.0, 1: 0.0, 2: -1.0, 3: 0.0}}, {1: {0: 2, 1: None, 2: 1, 3: 2}})
```

```python
sage: shortest_paths_from_vertices(g, 1, [0,1,2,3])
({1: [1.0, 0.0, -1.0, 0.0]}, {1: [2, None, 1, 2]})
```

(continues on next page)
Return the Wiener index of the graph.

The Wiener index of an undirected graph G is defined as $W(G) = \frac{1}{2} \sum_{u,v \in G} d(u,v)$ where $d(u,v)$ denotes the distance between vertices u and v (see [KRG1996]).

The Wiener index of a directed graph G is defined as the sum of the distances between each pair of vertices, $W(G) = \sum_{u,v \in G} d(u,v)$.

INPUT:

- g – the input Sage graph
- algorithm – string (default: None); one of the following algorithms:
 - 'Dijkstra', 'Dijkstra Boost': the Dijkstra algorithm implemented in Boost (works only with positive weights)
 - 'Bellman-Ford', 'Bellman-Ford Boost': the Bellman-Ford algorithm implemented in Boost (works also with negative weights, if there is no negative cycle)
- weight_function – function (default: None); a function that associates a weight to each edge. If None (default), the weights of g are used, if $g.weighted()==True$, otherwise all edges have weight 1.
- check_weight – boolean (default: True); if True, we check that the weight_function outputs a number for each edge.

EXAMPLES:

```sage
sage: from sage.graphs.base.boost_graph import wiener_index
sage: g = Graph([(0,1,9), (1,2,7), (2,3,4), (3,0,3)])
sage: wiener_index(g) 8.0
sage: g.weighted(True)
sage: wiener_index(g) 41.0
```

Wiener index of circuit digraphs:

```sage
sage: n = 10
sage: g = digraphs.Circuit(n)
sage: w = lambda x: (x*x*(x-1))/2
sage: wiener_index(g) == w(n)
True
```

Wiener index of a graph of order 1:

```sage
sage: wiener_index(Graph(1))
0
```
The Wiener index is not defined on the empty graph:

```python
sage: wiener_index(Graph())
Traceback (most recent call last):
  ...  
ValueError: Wiener index is not defined for the empty graph
```
4.1 Hypergraph generators

This module implements generators of hypergraphs. All hypergraphs can be built through the `hypergraphs` object. For instance, to build a complete 3-uniform hypergraph on 5 points, one can do:

```
sage: H = hypergraphs.CompleteUniform(5, 3)
```

```
>>> from sage.all import *

>>> H = hypergraphs.CompleteUniform(Integer(5), Integer(3))
```

To enumerate hypergraphs with certain properties up to isomorphism, one can use method `nauty()`, which calls Brendan McKay’s Nauty (http://cs.anu.edu.au/~bdm/nauty/):

```
sage: list(hypergraphs.nauty(2, 2, connected=True))
[[(0,), (0, 1)]]
```

```
>>> from sage.all import *

>>> list(hypergraphs.nauty(Integer(2), Integer(2), connected=True))
[[(0,), (0, 1)]]
```

This module contains the following hypergraph generators

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nauty()</code></td>
<td>Enumerate hypergraphs up to isomorphism using Nauty.</td>
</tr>
<tr>
<td><code>CompleteUniform()</code></td>
<td>Return the complete k-uniform hypergraph on n points.</td>
</tr>
<tr>
<td><code>UniformRandomUniform()</code></td>
<td>Return a uniformly sampled k-uniform hypergraph on n points with m hyperedges.</td>
</tr>
</tbody>
</table>

4.1.1 Functions and methods

```
class sage.graphs.hypergraph_generators.HypergraphGenerators

   Bases: object

   A class consisting of constructors for common hypergraphs.

   BinomialRandomUniform(n, k, p)
       Return a random $k$-uniform hypergraph on $n$ points, in which each edge is inserted independently with probability $p$.
       - $n$ – number of nodes of the graph
```
• \(k\) – uniformity
• \(p\) – probability of an edge

Examples:

```python
sage: hypergraphs.BinomialRandomUniform(50, 3, 1).num_blocks()  # needs numpy
19600
sage: hypergraphs.BinomialRandomUniform(50, 3, 0).num_blocks()  # needs numpy
0
```

```python
>>> from sage.all import *
>>> hypergraphs.BinomialRandomUniform(Integer(50), Integer(3), Integer(1)).
num_blocks()  # needs numpy
19600
>>> hypergraphs.BinomialRandomUniform(Integer(50), Integer(3), Integer(0)).
num_blocks()  # needs numpy
0
```

CompleteUniform \((n, k)\)

Return the complete \(k\)-uniform hypergraph on \(n\) points.

Input:

• \(k, n\) – nonnegative integers with \(k \leq n\)

Examples:

```python
sage: h = hypergraphs.CompleteUniform(5, 2); h
Incidence structure with 5 points and 10 blocks
sage: len(h.packing())  # needs sage.numerical.mip
2
```

```python
>>> from sage.all import *
>>> h = hypergraphs.CompleteUniform(Integer(5), Integer(2)); h
Incidence structure with 5 points and 10 blocks
>>> len(h.packing())  # needs sage.numerical.mip
2
```

UniformRandomUniform \((n, k, m)\)

Return a uniformly sampled \(k\)-uniform hypergraph on \(n\) points with \(m\) hyperedges.

• \(n\) – number of nodes of the graph
• \(k\) – uniformity
• \(m\) – number of edges

Examples:

```python
sage: H = hypergraphs.UniformRandomUniform(52, 3, 17)
sage: H
Incidence structure with 52 points and 17 blocks
sage: H.is_connected()
False
```
Graph Theory, Release 10.4

```python
>>> from sage.all import *

>>> H = hypergraphs.UniformRandomUniform(Integer(52), Integer(3), Integer(17))

>>> H
Incidence structure with 52 points and 17 blocks

>>> H.is_connected()
False
```

nauty *(number_of_sets, number_of_vertices, multiple_sets=False, vertex_min_degree=None, vertex_max_degree=None, set_max_size=None, set_min_size=None, regular=False, uniform=False, max_intersection=None, connected=False, debug=False, options="")*

Enumerate hypergraphs up to isomorphism using Nauty.

INPUT:

- `number_of_sets` – integer, at most 64 minus `number_of_vertices`
- `number_of_vertices` – integer, at most 30
- `multiple_sets` – boolean (default: False); whether to allow several sets of the hypergraph to be equal.
- `vertex_min_degree, vertex_max_degree` – integers (default: None); define the maximum and minimum degree of an element from the ground set (i.e. the number of sets which contain it).
- `set_min_size, set_max_size` – integers (default: None); define the maximum and minimum size of a set.
- `regular` – integers (default: False); if set to an integer value \(k\), requires the hypergraphs to be \(k\)-regular. It is actually a shortcut for the corresponding min/max values.
- `uniform` – integers (default: False); if set to an integer value \(k\), requires the hypergraphs to be \(k\)-uniform. It is actually a shortcut for the corresponding min/max values.
- `max_intersection` – integers (default: None); constraints the maximum cardinality of the intersection of two sets from the hypergraphs.
- `connected` – boolean (default: False); whether to require the hypergraphs to be connected.
- `debug` – boolean (default: False); if True the first line of genbgL’s output to standard error is captured and the first call to the generator’s next() function will return this line as a string. A line leading with “>A” indicates a successful initiation of the program with some information on the arguments, while a line beginning with “>E” indicates an error with the input.
- `options` – string (default: "") – anything else that should be forwarded as input to Nauty’s genbgL.

See its documentation for more information: http://cs.anu.edu.au/~bdm/nauty/.

Note: For genbgL the first class elements are vertices, and second class elements are the hypergraph's sets.

OUTPUT:

A tuple of tuples.

EXAMPLES:

Small hypergraphs:

```
sage: list(hypergraphs.nauty(4, 2))
[[((), (0,)), (1,)), (0, 1))]```
>>> from sage.all import *
>>> list(hypergraphs.nauty(Integer(4), Integer(2))
[(()), (0,), (1,), (0, 1))]

Only connected ones:

sage: list(hypergraphs.nauty(2, 2, connected=True))
[(()), (0, 1))]

>>> from sage.all import *
>>> list(hypergraphs.nauty(Integer(2), Integer(2), connected=True))
[(()), (0, 1))]

Non-empty sets only:

sage: list(hypergraphs.nauty(3, 2, set_min_size=1))
[(()), (1,), (0, 1))]

>>> from sage.all import *
>>> list(hypergraphs.nauty(Integer(3), Integer(2), set_min_size=Integer(1)))
[(()), (1,), (0, 1))]

The Fano Plane, as the only 3-uniform hypergraph with 7 sets and 7 vertices:

sage: fano = next(hypergraphs.nauty(7, 7, uniform=3, max_intersection=1))
sage: print(fano)
((0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 5), (2, 4, 5), (2, 3, 6), (1, 4, 6))

>>> from sage.all import *
>>> fano = next(hypergraphs.nauty(Integer(7), Integer(7), uniform=Integer(3), →max_intersection=Integer(1)))
>>> print(fano)
((0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 5), (2, 4, 5), (2, 3, 6), (1, 4, 6))

The Fano Plane, as the only 3-regular hypergraph with 7 sets and 7 vertices:

sage: fano = next(hypergraphs.nauty(7, 7, regular=3, max_intersection=1))
sage: print(fano)
((0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 5), (2, 4, 5), (2, 3, 6), (1, 4, 6))

>>> from sage.all import *
>>> fano = next(hypergraphs.nauty(Integer(7), Integer(7), regular=Integer(3), →max_intersection=Integer(1)))
>>> print(fano)
((0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 5), (2, 4, 5), (2, 3, 6), (1, 4, 6))
4.2 Incidence structures (i.e. hypergraphs, i.e. set systems)

An incidence structure is specified by a list of points, blocks, or an incidence matrix \((1,2)\). `IncidenceStructure` instances have the following methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>automorphism_group()</code></td>
<td>Return the subgroup of the automorphism group of the incidence graph which respects the P B partition. It is (isomorphic to) the automorphism group of the block design, although the degrees differ.</td>
</tr>
<tr>
<td><code>block_sizes()</code></td>
<td>Return the set of block sizes.</td>
</tr>
<tr>
<td><code>blocks()</code></td>
<td>Return the list of blocks.</td>
</tr>
<tr>
<td><code>canonical_label()</code></td>
<td>Return a canonical label for the incidence structure.</td>
</tr>
<tr>
<td><code>coloring()</code></td>
<td>Compute a (weak) (k)-coloring of the hypergraph.</td>
</tr>
<tr>
<td><code>complement()</code></td>
<td>Return the complement of the incidence structure.</td>
</tr>
<tr>
<td><code>copy()</code></td>
<td>Return a copy of the incidence structure.</td>
</tr>
<tr>
<td><code>degree()</code></td>
<td>Return the degree of a point (p) (or a set of points).</td>
</tr>
<tr>
<td><code>degrees()</code></td>
<td>Return the degree of all sets of given size, or the degree of all points.</td>
</tr>
<tr>
<td><code>dual()</code></td>
<td>Return the dual of the incidence structure.</td>
</tr>
<tr>
<td><code>edge_coloring()</code></td>
<td>Compute a proper edge-coloring.</td>
</tr>
<tr>
<td><code>ground_set()</code></td>
<td>Return the ground set (i.e. the list of points).</td>
</tr>
<tr>
<td><code>incidence_graph()</code></td>
<td>Return the incidence graph of the incidence structure.</td>
</tr>
<tr>
<td><code>incidence_matrix()</code></td>
<td>Return the incidence matrix (A) of the design. (A) is a ((v \times b)) matrix defined by: (A[i,j] = 1) if (i) is in block (B_j) and 0 otherwise.</td>
</tr>
<tr>
<td><code>induced_substructure()</code></td>
<td>Return the substructure induced by a set of points.</td>
</tr>
<tr>
<td><code>intersection_graph()</code></td>
<td>Return the intersection graph of the incidence structure.</td>
</tr>
<tr>
<td><code>is_berge_cyclic()</code></td>
<td>Check whether <code>self</code> is a Berge-Cyclic uniform hypergraph.</td>
</tr>
<tr>
<td><code>is_connected()</code></td>
<td>Test whether the design is connected.</td>
</tr>
<tr>
<td><code>is_generalized_quadrangle()</code></td>
<td>Test if the incidence structure is a generalized quadrangle.</td>
</tr>
<tr>
<td><code>is_isomorphic()</code></td>
<td>Return whether the two incidence structures are isomorphic.</td>
</tr>
<tr>
<td><code>is_regular()</code></td>
<td>Test whether the incidence structure is (r)-regular.</td>
</tr>
<tr>
<td><code>is_resolvable()</code></td>
<td>Test whether the hypergraph is resolvable.</td>
</tr>
<tr>
<td><code>is_simple()</code></td>
<td>Test whether this design is simple (i.e. no repeated block).</td>
</tr>
<tr>
<td><code>is_spread()</code></td>
<td>Check whether the input is a spread for <code>self</code>.</td>
</tr>
<tr>
<td><code>is_t_design()</code></td>
<td>Test whether <code>self</code> is a (t - (v,k,l)) design.</td>
</tr>
<tr>
<td><code>is_uniform()</code></td>
<td>Test whether the incidence structure is (k)-uniform</td>
</tr>
<tr>
<td><code>isomorphic_substructures_iterator()</code></td>
<td>Iterates over all copies of (H_2) contained in <code>self</code>.</td>
</tr>
<tr>
<td><code>num_blocks()</code></td>
<td>Return the number of blocks.</td>
</tr>
<tr>
<td><code>num_points()</code></td>
<td>Return the size of the ground set.</td>
</tr>
<tr>
<td><code>packing()</code></td>
<td>Return a maximum packing</td>
</tr>
<tr>
<td><code>rank()</code></td>
<td>Return the rank of the hypergraph (the maximum size of a block).</td>
</tr>
<tr>
<td><code>relabel()</code></td>
<td>Relabel the ground set</td>
</tr>
<tr>
<td><code>trace()</code></td>
<td>Return the trace of a set of points.</td>
</tr>
</tbody>
</table>

REFERENCES:

AUTHORS:

- Peter Dobcsanyi and David Joyner (2007-2008)

---

1. Block designs and incidence structures from wikipedia, Wikipedia article Block_design Wikipedia article Incidence_structure
This is a significantly modified form of part of the module block_design.py (version 0.6) written by Peter Dobcsanyi peter@designtheory.org.

- Vincent Delecroix (2014): major rewrite

4.2.1 Methods

class sage.combinat.designs.incidence_structures.IncidenceStructure(points=None, blocks=None, incidence_matrix=None, name=None, check=True, copy=True):

Bases: object

A base class for incidence structures (i.e. hypergraphs, i.e. set systems)

An incidence structure (i.e. hypergraph, i.e. set system) can be defined from a collection of blocks (i.e. sets, i.e. edges), optionally with an explicit ground set (i.e. point set, i.e. vertex set). Alternatively they can be defined from a binary incidence matrix.

INPUT:

- points – (i.e. ground set, i.e. vertex set) the underlying set. If points is an integer $v$, then the set is considered to be $\{0, ..., v-1\}$.

  **Note:** The following syntax, where points is omitted, automatically defines the ground set as the union of the blocks:

```python
sage: sorted(H.ground_set())
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]
```

- blocks – (i.e. edges, i.e. sets) the blocks defining the incidence structure. Can be any iterable.
- incidence_matrix – a binary incidence matrix. Each column represents a set.
- name (a string, such as “Fano plane”).
- check – whether to check the input
- copy – (use with caution) if set to False then blocks must be a list of lists of integers. The list will not be copied but will be modified in place (each block is sorted, and the whole list is sorted). Your blocks object will become the IncidenceStructure instance’s internal data.

EXAMPLES:

An incidence structure can be constructed by giving the number of points and the list of blocks:
Graph Theory, Release 10.4

```
sage: IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]])
Incidence structure with 7 points and 7 blocks
```

```
>>> from sage.all import *
>>> IncidenceStructure(Integer(7), [[Integer(0),Integer(1),Integer(2)],
 -> [Integer(0),Integer(3),Integer(4)],[Integer(0),Integer(5),Integer(6)],
 -> [Integer(1),Integer(3),Integer(5)],[Integer(1),Integer(4),Integer(6)],
 -> [Integer(2),Integer(3),Integer(6)],[Integer(2),Integer(4),Integer(5)]])
Incidence structure with 7 points and 7 blocks
```

Only providing the set of blocks is sufficient. In this case, the ground set is defined as the union of the blocks:

```
sage: IncidenceStructure([[1,2,3],[2,3,4]])
Incidence structure with 4 points and 2 blocks
```

```
>>> from sage.all import *
>>> IncidenceStructure([[Integer(1),Integer(2),Integer(3)],[Integer(2),Integer(3),
 -> Integer(4)]]))
Incidence structure with 4 points and 2 blocks
```

Or by its adjacency matrix (a \{0, 1\}-matrix in which rows are indexed by points and columns by blocks):

```
sage: m = matrix([[0,1,0],[0,0,1],[1,0,1],[1,1,1]]) # needs sage.modules
sage: IncidenceStructure(m) # needs sage.modules
Incidence structure with 4 points and 3 blocks
```

```
>>> from sage.all import *
>>> m = matrix([[Integer(0),Integer(1),Integer(0)],[Integer(0),Integer(0),
 -> Integer(1)],[Integer(1),Integer(0),Integer(1)],[Integer(1),Integer(1),
 -> Integer(1)]]) # needs sage.modules
>>> IncidenceStructure(m) # needs sage.modules
Incidence structure with 4 points and 3 blocks
```

The points can be any (hashable) object:

```
sage: V = [(0,'a'),(0,'b'),(1,'a'),(1,'b')]
sage: B = [(V[0],V[1],V[2]), (V[1],V[2]), (V[0],V[2])]
sage: I = IncidenceStructure(V, B)
sage: I.ground_set()
[(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')]
sage: I.blocks()
[(0, 'a'), (0, 'b'), (1, 'a'), (0, 'a'), (1, 'a'), (0, 'b'), (1, 'a')]
```

```
>>> from sage.all import *
>>> V = [(Integer(0),'a'),(Integer(0),'b'),(Integer(1),'a'),(Integer(1),'b')]
>>> B = [(V[Integer(0)],V[Integer(1)],V[Integer(2)]), (V[Integer(1)],V[Integer(2)]),
 -> (V[Integer(0)],V[Integer(2)])]
>>> I = IncidenceStructure(V, B)
>>> I.ground_set()
[(0, 'a'), (0, 'b'), (1, 'a'), (0, 'a'), (1, 'a'), (0, 'b'), (1, 'a')]
>>> I.blocks()
[[(0, 'a'), (0, 'b'), (1, 'a'), (0, 'a'), (1, 'a'), (0, 'b'), (1, 'a')]]
```

4.2. Incidence structures (i.e. hypergraphs, i.e. set systems) 1511
The order of the points and blocks does not matter as they are sorted on input (see Issue #11333):

```python
sage: A = IncidenceStructure([0,1,2], [[0],[0,2]])
sage: B = IncidenceStructure([1,0,2], [[0],[2,0]])
sage: B == A
True
```

```python
sage: C = BlockDesign(2, [[0], [1,0]])
sage: D = BlockDesign(2, [[0,1], [0]])
sage: C == D
True
```

If you care for speed, you can set `copy` to `False`, but in that case, your input must be a list of lists and the ground set must be $0, ..., v-1$:

```python
sage: blocks = [[0,1],[2,0],[1,2]] # a list of lists of integers
sage: I = IncidenceStructure(3, blocks, copy=False)
sage: I._blocks is blocks
True
```

```python
from sage.all import *
>>> A = IncidenceStructure([Integer(0),Integer(1),Integer(2)], [[Integer(0)], [Integer(0),Integer(2)]])
>>> B = IncidenceStructure([Integer(1),Integer(0),Integer(2)], [[Integer(0)], [Integer(2),Integer(0)]])
>>> B == A
True
>>> C = BlockDesign(Integer(2), [[Integer(0)], [Integer(1),Integer(0)]])
>>> D = BlockDesign(Integer(2), [[Integer(0),Integer(1)], [Integer(0)]])
>>> C == D
True
```

`automorphism_group()`

Return the subgroup of the automorphism group of the incidence graph which respects the P B partition. It is (isomorphic to) the automorphism group of the block design, although the degrees differ.

**EXAMPLES:**

```python
sage: # needs sage.groups sage.rings.finite_rings
sage: P = designs.DesarguesianProjectivePlaneDesign(2); P
(7,3,1)-Balanced Incomplete Block Design
sage: G = P.automorphism_group()
sage: G.is_isomorphic(PGL(3,2))
True
sage: G
Permutation Group with generators [...]
sage: G.cardinality()
168
```
Graph Theory, Release 10.4

```python
>>> from sage.all import *
needs sage.groups sage.rings.finite_rings
>>> P = designs.DesarguesianProjectivePlaneDesign(Integer(2)); P
(7,3,1)-Balanced Incomplete Block Design
>>> G = P.automorphism_group()
>>> G.is_isomorphic(PGL(Integer(3),Integer(2)))
True
>>> G
Permutation Group with generators [...]
>>> G.cardinality()
168
```

A non self-dual example:

```python
sage: IS = IncidenceStructure(list(range(4)), [[0,1,2,3],[1,2,3]])
needs sage.groups
sage: IS.automorphism_group().cardinality()
6
needs sage.groups sage.modules
```

Examples with non-integer points:

```python
sage: I = IncidenceStructure('abc', ('ab','ac','bc'))
needs sage.groups
sage: I.automorphism_group() # Permutation Group with generators [('b','c'), ('a','b')]
```

```python
>>> from sage.all import *
>>> I = IncidenceStructure('abc', ('ab','ac','bc'))
>>> I.automorphism_group() # Permutation Group with generators [('b','c'), ('a','b')]
```

```python
block_sizes()
Return the set of block sizes.
EXAMPLES:
```
Graph Theory, Release 10.4

```python
sage: BD = IncidenceStructure(8, [[0, 1, 3], [1, 4, 5, 6], [1, 2], [5, 6, 7]])
sage: BD.block_sizes()
[3, 2, 4, 3]
sage: BD = IncidenceStructure(7, [[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6], [2, 4, 5]])
sage: BD.block_sizes()
[3, 3, 3, 3, 3, 3, 3]

>>> from sage.all import *
>>> BD = IncidenceStructure(Integer(8), [[Integer(0), Integer(1), Integer(3)],
→[Integer(1), Integer(4), Integer(5), Integer(6)], [Integer(1), Integer(2)],
→[Integer(5), Integer(6), Integer(7)]])
>>> BD.block_sizes()
[3, 2, 4, 3]
>>> BD = IncidenceStructure(Integer(7), [[Integer(0), Integer(1), Integer(2)],
→[Integer(0), Integer(3), Integer(4)], [Integer(0), Integer(5), Integer(6)],
→[Integer(1), Integer(3), Integer(5)], [Integer(1), Integer(4), Integer(6)],
→[Integer(2), Integer(3), Integer(6)], [Integer(2), Integer(4), Integer(5)]])
>>> BD.block_sizes()
[3, 3, 3, 3, 3, 3, 3]

blocks()

Return the list of blocks.

EXAMPLES:

```python
sage: BD = IncidenceStructure(7, [[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6], [2, 4, 5]])
sage: BD.blocks()
[[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6], [2, 4, 5]]
```

```python
>>> from sage.all import *
>>> BD = IncidenceStructure(Integer(7), [[Integer(0), Integer(1), Integer(2)],
→[Integer(0), Integer(3), Integer(4)], [Integer(0), Integer(5), Integer(6)],
→[Integer(1), Integer(3), Integer(5)], [Integer(1), Integer(4), Integer(6)],
→[Integer(2), Integer(3), Integer(6)], [Integer(2), Integer(4), Integer(5)]])
>>> BD.blocks()
[[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6], [2, 4, 5]]
```

canonical_label()

Return a canonical label for the incidence structure.

A canonical label is relabeling of the points into integers \(\{0, \ldots, n - 1\}\) such that isomorphic incidence structures are relabelled to equal objects.

EXAMPLES:

```python
# needs sage.schemes
sage: fano1 = designs.balanced_incomplete_block_design(7,3)
sage: fano2 = designs.projective_plane(2)
sage: fano1 == fano2
False
sage: fano1.relabel(fano1.canonical_label())
sage: fano2.relabel(fano2.canonical_label())
sage: fano1 == fano2
True
```
```python
>>> from sage.all import *
>>> # needs sage.schemes
>>> fano1 = designs.balanced_incomplete_block_design(Integer(7),Integer(3))
>>> fano2 = designs.projective_plane(Integer(2))
>>> fano1 == fano2
False
>>> fano1.relabel(fano1.canonical_label())
>>> fano2.relabel(fano2.canonical_label())
>>> fano1 == fano2
True
```

coloring \((k, \text{solver}=\text{None}, \text{verbose}=\text{None}, \text{integrality_tolerance}=0) \)

Compute a (weak) \(k \)-coloring of the hypergraph

A weak coloring of a hypergraph \(\mathcal{H} \) is an assignment of colors to its vertices such that no set is monochromatic.

INPUT:

- \(k \) (integer) – compute a coloring with \(k \) colors if an integer is provided, otherwise returns an optimal coloring (i.e. with the minimum possible number of colors).
- \(\text{solver} \) – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \text{solve} \text{of} the class \text{MixedIntegerLinearProgram}.
- \(\text{verbose} \) – non-negative integer (default: 0). Set the level of verbosity you want from the linear program solver. Since the problem is \(NP \)-complete, its solving may take some time depending on the graph. A value of 0 means that there will be no message printed by the solver.
- \(\text{integrality_tolerance} \) – parameter for use with MILP solvers over an inexact base ring; see \text{MixedIntegerLinearProgram.get_values}().

EXAMPLES:
The Fano plane has chromatic number 3:
```
sage: len(designs.steiner_triple_system(7).coloring())  # needs sage.numerical.mip
3
```
```
>>> from sage.all import *
>>> len(designs.steiner_triple_system(Integer(7)).coloring())  # needs sage.numerical.mip
3
```
One admissible 3-coloring:
```
sage: designs.steiner_triple_system(7).coloring()  # not tested  # needs sage.numerical.mip
[[0, 2, 5, 1], [4, 3], [6]]
```
```
>>> from sage.all import *
>>> designs.steiner_triple_system(Integer(7)).coloring()  # not tested  # needs sage.numerical.mip
[[0, 2, 5, 1], [4, 3], [6]]
```
The chromatic number of a graph is equal to the chromatic number of its 2-uniform corresponding hypergraph:

4.2. Incidence structures (i.e. hypergraphs, i.e. set systems)
```sage
g = graphs.PetersenGraph()
sage: H = IncidenceStructure(g.edges(sort=True, labels=False))
3
sage: len(g.coloring())
3
sage: len(H.coloring())
# needs sage.numerical.mip
3
```

```sage
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> H = IncidenceStructure(g.edges(sort=True, labels=False))
>>> len(g.coloring())
3
>>> len(H.coloring())
# needs sage.numerical.mip
3
```

complement(uniform=False)

Return the complement of the incidence structure.

Two different definitions of “complement” are made available, according to the value of uniform.

INPUT:

- uniform (boolean) –
 - if set to False (default), returns the incidence structure whose blocks are the complements of all blocks of the incidence structure.
 - If set to True and the incidence structure is k-uniform, returns the incidence structure whose blocks are all k-sets of the ground set that do not appear in self.

EXAMPLES:

The complement of a BalancedIncompleteBlockDesign is also a 2-design:

```sage
bibd = designs.balanced_incomplete_block_design(13, 4)
# needs sage.schemes
sage: bibd.is_t_design(return_parameters=True)
# needs sage.schemes
(True, (2, 13, 4, 1))
sage: bibd.complement().is_t_design(return_parameters=True)
# needs sage.schemes
(True, (2, 13, 9, 6))
```

```sage
>>> from sage.all import *
>>> bibd = designs.balanced_incomplete_block_design(Integer(13), Integer(4))
# needs sage.schemes
>>> bibd.is_t_design(return_parameters=True)
# needs sage.schemes
(True, (2, 13, 4, 1))
>>> bibd.complement().is_t_design(return_parameters=True)
# needs sage.schemes
(True, (2, 13, 9, 6))
```

The “uniform” complement of a graph is a graph:
```python
sage: g = graphs.PetersenGraph()
sage: G = IncidenceStructure(g.edges(sort=True, labels=False))
sage: H = G.complement(uniform=True)
sage: h = Graph(H.blocks())
sage: g == h
False
sage: g == h.complement()
True
```

copy ()

Return a copy of the incidence structure.

EXAMPLES:

```python
sage: IS = IncidenceStructure([[1,2,3,"e"],name="Test"]
sage: IS
Incidence structure with 4 points and 1 blocks
sage: copy(IS)
Incidence structure with 4 points and 1 blocks
sage: [1, 2, 3, 'e'] in copy(IS)
True
sage: copy(IS)._name
'Test'
```

```python
>>> from sage.all import *
>>> IS = IncidenceStructure([[Integer(1),Integer(2),Integer(3),"e"],name="Test")
>>> IS
Incidence structure with 4 points and 1 blocks
>>> copy(IS)
Incidence structure with 4 points and 1 blocks
>>> [Integer(1), Integer(2), Integer(3), 'e'] in copy(IS)
True
>>> copy(IS)._name
'Test'
```

degree *(p=None, subset=False)*

Return the degree of a point `p` (or a set of points).

The degree of a point (or set of points) is the number of blocks that contain it.

INPUT:

- `p` – a point (or a set of points) of the incidence structure.
- `subset` (boolean) – whether to interpret the argument as a set of point (subset=True) or as a point (subset=False, default).

EXAMPLES:

4.2. Incidence structures (i.e. hypergraphs, i.e. set systems)
Graph Theory, Release 10.4

sage: designs.steiner_triple_system(9).degree(3)
4
sage: designs.steiner_triple_system(9).degree({1,2},subset=True)
1

```python
default
>>> from sage.all import *

>>> designs.steiner_triple_system(Integer(9)).degree(Integer(3))
4

>>> designs.steiner_triple_system(Integer(9)).degree({Integer(1),Integer(2)},
˓
subset=True)
1
```

degrees (`size=None`)

Return the degree of all sets of given size, or the degree of all points.

The degree of a point (or set of point) is the number of blocks that contain it.

INPUT:

- `size` (integer) – return the degree of all subsets of points of cardinality `size`. When `size=None`, the function outputs the degree of all points.

Note: When `size=None` the output is indexed by the points. When `size=1` it is indexed by tuples of size 1. This is the same information, stored slightly differently.

OUTPUT:

A dictionary whose values are degrees and keys are either:

- the points of the incidence structure if `size=None` (default)
- the subsets of size `size` of the points stored as tuples

EXAMPLES:

```python
sage: IncidenceStructure([[1,2,3],[1,4]]).degrees(2)
{(1, 2): 1, (1, 3): 1, (1, 4): 1, (2, 3): 1, (2, 4): 0, (3, 4): 0}
```

```python
>>> from sage.all import *

>>> IncidenceStructure([[Integer(1),Integer(2),Integer(3)],[Integer(1),
˓
Integer(4)]]).degrees(Integer(2))
{(1, 2): 1, (1, 3): 1, (1, 4): 1, (2, 3): 1, (2, 4): 0, (3, 4): 0}
```

In a Steiner triple system, all pairs have degree 1:

```python
sage: S13 = designs.steiner_triple_system(13)
sage: all(v == 1 for v in S13.degrees(2).values())
True
```

```python
>>> from sage.all import *

>>> S13 = designs.steiner_triple_system(Integer(13))
>>> all(v == Integer(1) for v in S13.degrees(Integer(2)).values())
True
```

dual (`algorithm=None`)

Return the dual of the incidence structure.

INPUT:
• `algorithm` -- whether to use Sage's implementation (algorithm=None, default) or use GAP's (algorithm="gap").

Note: The `algorithm="gap"` option requires GAP's Design package (included in the `gap_packages` Sage spkg).

EXAMPLES:

The dual of a projective plane is a projective plane:

```python
sage: PP = designs.DesarguesianProjectivePlaneDesign(4)  # needs sage.rings.finite_rings
sage: PP.dual().is_t_design(return_parameters=True)  # needs sage.modules sage.rings.finite_rings
(True, (2, 21, 5, 1))
```

```python
>>> from sage.all import *
>>> PP = designs.DesarguesianProjectivePlaneDesign(Integer(4))  # needs sage.rings.finite_rings
>>> PP.dual().is_t_design(return_parameters=True)  # needs sage.modules sage.rings.finite_rings
(True, (2, 21, 5, 1))
```

REFERENCE:

- Leonard Soicher, Design package manual

edge_coloring()

Compute a proper edge-coloring.

A proper edge-coloring is an assignment of colors to the sets of the incidence structure such that two sets with non-empty intersection receive different colors. The coloring returned minimizes the number of colors.

OUTPUT:

A partition of the sets into color classes.

EXAMPLES:

```python
sage: H = Hypergraph([[1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6]]); H
Incidence structure with 6 points and 4 blocks
sage: C = H.edge_coloring()
sage: C  # random
[[[3, 4, 5]], [[2, 3, 4]], [[4, 5, 6], [1, 2, 3]]]
```

```python
>>> from sage.all import *
>>> H = Hypergraph([[Integer(1), Integer(2), Integer(3)], [Integer(2), Integer(3), Integer(4)], [Integer(3), Integer(4), Integer(5)], [Integer(4), Integer(5), Integer(6)]]); H
Incidence structure with 6 points and 4 blocks
>>> C = H.edge_coloring()
>>> C  # random
[[[3, 4, 5]], [[2, 3, 4]], [[4, 5, 6], [1, 2, 3]]]
```

4.2. Incidence structures (i.e. hypergraphs, i.e. set systems) 1519
ground_set()

Return the ground set (i.e. the list of points).

EXAMPLES:

```sage
sage: IncidenceStructure(3, [[0,1],[0,2]]).ground_set()
[0, 1, 2]
```

```python
>>> from sage.all import *
>>> IncidenceStructure(Integer(3), [[Integer(0),Integer(1)], [Integer(0), Integer(2)]]).ground_set()
[0, 1, 2]
```

incidence_graph (labels=False)

Return the incidence graph of the incidence structure

A point and a block are adjacent in this graph whenever they are incident.

INPUT:

- labels (boolean) – whether to return a graph whose vertices are integers, or labelled elements.
 - **labels is False** (default) – in this case the first vertices of the graphs are the elements of `ground_set()` and appear in the same order. Similarly, the following vertices represent the elements of `blocks()`, and appear in the same order.
 - **labels is True**, the points keep their original labels, and the blocks are `Set` objects.

Note that the labelled incidence graph can be incorrect when blocks are repeated, and on some (rare) occasions when the elements of `ground_set()` mix `Set()` and non-`Set` objects.

EXAMPLES:

```sage
sage: BD = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],...
    ....: [1,4,6],[2,3,6],[2,4,5]])

sage: BD.incidence_graph()  # needs sage.modules
Bipartite graph on 14 vertices

sage: A = BD.incidence_matrix()  # needs sage.modules
sage: Graph(block_matrix([[A*0, A], ...
    ....: [A.transpose(),A*0]])) == BD.incidence_graph()
True
```

```python
>>> from sage.all import *

>>> BD = IncidenceStructure(Integer(7), [[Integer(0),Integer(1),Integer(2)],...
    ... [Integer(0),Integer(3),Integer(4)], [Integer(0),Integer(5),Integer(6)],...
    ... [Integer(1),Integer(3),Integer(5)],...
    ... [Integer(1),Integer(4),Integer(6)],...
    ... [Integer(2),Integer(3),Integer(6)], [Integer(2),Integer(4),Integer(5)]])

>>> BD.incidence_graph()  # needs sage.modules
Bipartite graph on 14 vertices

>>> A = BD.incidence_matrix()  # needs sage.modules

>>> Graph(block_matrix([[A*Integer(0), A],...
    ... [A.transpose(),A*Integer(0)]])) == BD.incidence_graph()
(continues on next page)```
incidence_matrix()

Return the incidence matrix $A$ of the design. $A$ is a $(v \times b)$ matrix defined by: $A[i, j] = 1$ if $i$ is in block $B_j$ and 0 otherwise.

EXAMPLES:

```
sage: BD = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],
...: [1,4,6],[2,3,6],[2,4,5]])
sage: BD.block_sizes()
[3, 3, 3, 3, 3, 3, 3]
sage: BD.incidence_matrix()
needs sage.modules
[1 1 1 0 0 0 0]
[1 0 0 1 1 0 0]
[1 0 0 0 0 1 1]
[0 1 0 1 0 1 0]
[0 1 0 1 0 1 0]
[0 0 1 1 0 1 1]
[0 0 1 0 1 1 0]
sage: I = IncidenceStructure('abc', ('ab','abc','ac','c'))
sage: I.incidence_matrix()
needs sage.modules
[1 1 1 0]
[1 1 0 0]
[0 1 1 1]
```

```>>> from sage.all import *
>>> BD = IncidenceStructure(Integer(7), [[Integer(0),Integer(1),Integer(2)],
...: [Integer(0),Integer(3),Integer(4)],[Integer(0),Integer(5),Integer(6)],
...: [Integer(1),Integer(3),Integer(5)],
...: [Integer(2),Integer(4),Integer(6)]])
>>> BD.block_sizes()
[3, 3, 3, 3, 3, 3, 3]
>>> BD.incidence_matrix()
needs sage.modules
[1 1 1 0 0 0 0]
[1 0 0 1 1 0 0]
[1 0 0 0 0 1 1]
[0 1 0 1 0 1 0]
[0 1 0 1 0 1 0]
[0 0 1 1 0 1 1]
[0 0 1 0 1 1 0]
>>> I = IncidenceStructure('abc', ('ab','abc','ac','c'))
>>> I.incidence_matrix()
needs sage.modules
[1 1 1 0]
[1 1 0 0]
[0 1 1 1]
```

induced_substructure(points)

Return the substructure induced by a set of points.

4.2. Incidence structures (i.e. hypergraphs, i.e. set systems)
The substructure induced in $\mathcal{H}$ by a set $X \subseteq V(\mathcal{H})$ of points is the incidence structure $\mathcal{H}_X$ defined on $X$ whose sets are all $S \in \mathcal{H}$ such that $S \subseteq X$.

**INPUT:**

- points – a set of points.

**Note:** This method goes over all sets of self before building a new IncidenceStructure (which involves some relabelling and sorting). It probably should not be called in a performance-critical code.

**EXAMPLES:**

A Fano plane with one point removed:

```python
sage: F = designs.steiner_triple_system(7)
sage: F.induced_substructure([0..5])
Incidence structure with 6 points and 4 blocks
```

```python
>>> from sage.all import *
>>> F = designs.steiner_triple_system(Integer(7))
>>> F.induced_substructure((ellipsis_range(Integer(0),Ellipsis,Integer(5))))
Incidence structure with 6 points and 4 blocks
```

**intersection_graph** *(sizes=None)*

Return the intersection graph of the incidence structure.

The vertices of this graph are the blocks() of the incidence structure. Two of them are adjacent if the size of their intersection belongs to the set sizes.

**INPUT:**

- sizes – a list/set of integers. For convenience, setting sizes to 5 has the same effect as sizes=[5]. When set to None (default), behaves as sizes=PositiveIntegers().

**EXAMPLES:**

The intersection graph of a balanced_incomplete_block_design() is a strongly regular graph (when it is not trivial):

```python
sage: BIBD = designs.balanced_incomplete_block_design(19,3)
sage: G = BIBD.intersection_graph(1)
sage: G.is_strongly_regular(parameters=True)
(57, 24, 11, 9)
```

```python
>>> from sage.all import *
>>> BIBD = designs.balanced_incomplete_block_design(Integer(19),Integer(3))
>>> G = BIBD.intersection_graph(Integer(1))
>>> G.is_strongly_regular(parameters=True)
(57, 24, 11, 9)
```

**is_berge_cyclic()**

Check whether self is a Berge-Cyclic uniform hypergraph.

A $k$-uniform Berge cycle (named after Claude Berge) of length $\ell$ is a cyclic list of distinct $k$-sets $F_1, \ldots, F_\ell$, $\ell > 1$, and distinct vertices $C = \{v_1, \ldots, v_\ell\}$ such that for each $1 \leq i \leq \ell$, $F_i$ contains $v_i$ and $v_{i+1}$ (where $v_{\ell+1} = v_1$).

A uniform hypergraph is Berge-cyclic if its incidence graph is cyclic. It is called “Berge-acyclic” otherwise.
For more information, see [Fag1983] and Wikipedia article Hypergraph.

EXAMPLES:

```python
sage: Hypergraph(5, [[1, 2, 3], [2, 3, 4]]).is_berge_cyclic() # needs sage.modules
True
sage: Hypergraph(6, [[1, 2, 3], [3, 4, 5]]).is_berge_cyclic() # needs sage.modules
False
```

```python
>>> from sage.all import *
>>> Hypergraph(Integer(5), [[Integer(1), Integer(2), Integer(3)], [Integer(2),
Integer(3), Integer(4)]]).is_berge_cyclic() # needs sage.modules
True
>>> Hypergraph(Integer(6), [[Integer(1), Integer(2), Integer(3)], [Integer(3),
Integer(4), Integer(5)]]).is_berge_cyclic() # needs sage.modules
False
```

**is_connected()**

Test whether the design is connected.

EXAMPLES:

```python
sage: IncidenceStructure(3, [[0,1],[0,2]]).is_connected()
True
sage: IncidenceStructure(4, [[0,1],[2,3]]).is_connected()
False
```

```python
>>> from sage.all import *
>>> IncidenceStructure(Integer(3), [[Integer(0),Integer(1)], [Integer(0),
Integer(2)]]).is_connected()
True
>>> IncidenceStructure(Integer(4), [[Integer(0),Integer(1)], [Integer(2),
Integer(3)]]).is_connected()
False
```

**is_generalized_quadrangle**(verbose=False, parameters=False)

Test if the incidence structure is a generalized quadrangle.

An incidence structure is a generalized quadrangle iff (see [BH2012], section 9.6):

- two blocks intersect on at most one point.
- For every point \( p \) not in a block \( B \), there is a unique block \( B' \) intersecting both \( \{ p \} \) and \( B \)

It is a **regular** generalized quadrangle if furthermore:

- it is \( s + 1 \)-**uniform** for some positive integer \( s \).
- it is \( t + 1 \)-**regular** for some positive integer \( t \).

For more information, see the Wikipedia article Generalized_quadrangle.

Note: Some references (e.g. [PT2009] or Wikipedia article Generalized_quadrangle) only allow **regular** generalized quadrangles. To use such a definition, see the parameters optional argument described below, or the methods **is_regular()** and **is_uniform()**.
INPUT:

- `verbose` (boolean) – whether to print an explanation when the instance is not a generalized quadrangle.
- `parameters` (boolean; False) – if set to True, the function returns a pair \((s,t)\) instead of True answers. In this case, \(s\) and \(t\) are the integers defined above if they exist (each can be set to False otherwise).

EXAMPLES:

```python
sage: h = designs.CremonaRichmondConfiguration() # needs networkx
sage: h.is_generalized_quadrangle() # needs networkx
True

>>> from sage.all import *
>>> h = designs.CremonaRichmondConfiguration() # needs networkx
>>> h.is_generalized_quadrangle() # needs networkx
True

This is actually a regular generalized quadrangle:

```python
sage: h.is_generalized_quadrangle(parameters=True)  # needs networkx
(2, 2)

>>> from sage.all import *
>>> h.is_generalized_quadrangle(parameters=True)  # needs networkx
(2, 2)
```

`is_isomorphic` \((other, certificate=False)\)

Return whether the two incidence structures are isomorphic.

INPUT:

- `other` – an incidence structure.
- `certificate` (boolean) – whether to return an isomorphism from `self` to `other` instead of a boolean answer.

EXAMPLES:

```python
sage: fan1 = designs.balanced_incomplete_block_design(7,3)
sage: fano2 = designs.projective_plane(2)
sage: fan1.is_isomorphic(fano2)  # needs sage.schemes
True

sage: fan1.is_isomorphic(fano2,certificate=True)
{0: 0, 1: 1, 2: 2, 3: 6, 4: 4, 5: 3, 6: 5}
```

```python
>>> from sage.all import *
>>> fan1 = designs.balanced_incomplete_block_design(Integer(7),Integer(3))
>>> fano2 = designs.projective_plane(Integer(2))
>>> fan1.is_isomorphic(fano2)  # needs sage.schemes
True
```

(continues on next page)
is_regular \((r=None) \)

Test whether the incidence structure is \(r \)-regular.

An incidence structure is said to be \(r \)-regular if all its points are incident with exactly \(r \) blocks.

INPUT:
- \(r \) (integer)

OUTPUT:
If \(r \) is defined, a boolean is returned. If \(r \) is set to \(\text{None} \) (default), the method returns either \(\text{False} \) or the integer \(r \) such that the incidence structure is \(r \)-regular.

Warning: In case of 0-regular incidence structure, beware that if not \(\text{H.is_regular()} \) is a satisfied condition.

EXAMPLES:

```python
sage: designs.balanced_incomplete_block_design(7,3).is_regular()  # needs sage.schemes
3
sage: designs.balanced_incomplete_block_design(7,3).is_regular(r=3)  # needs sage.schemes
True
sage: designs.balanced_incomplete_block_design(7,3).is_regular(r=4)  # needs sage.schemes
False
```

```python
>>> from sage.all import *

from sage.all import *

>>> designs.balanced_incomplete_block_design(Integer(7),Integer(3)).is_regular()  # needs sage.schemes
3
>>> designs.balanced_incomplete_block_design(Integer(7),Integer(3)).is_regular(r=Integer(3))  # needs sage.schemes
True
>>> designs.balanced_incomplete_block_design(Integer(7),Integer(3)).is_regular(r=Integer(4))  # needs sage.schemes
False
```

is_resolvable \((\text{certificate, solver=False, verbose=None, check=0, integrality_tolerance=True}) \)

Test whether the hypergraph is resolvable

A hypergraph is said to be resolvable if its sets can be partitionned into classes, each of which is a partition of the ground set.

Note: This problem is solved using an Integer Linear Program, and GLPK (the default LP solver) has been reported to be very slow on some instances. If you hit this wall, consider installing a more powerful MILP solver (CPLEX, Gurobi, ...).
• **certificate** (boolean) – whether to return the classes along with the binary answer (see examples below).

• **solver** – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

• **verbose** – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

• **check** (boolean) – whether to check that output is correct before returning it. As this is expected to be useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by default.

• **integrality_tolerance** – parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

EXAMPLES:

Some resolvable designs:

```python
sage: TD = designs.transversal_design(2,2,resolvable=True)
sage: TD.is_resolvable()
True

sage: AG = designs.AffineGeometryDesign(3,1,GF(2))
# needs sage.combinat
sage: AG.is_resolvable()
# needs sage.combinat
True

>>> from sage.all import *
>>> TD = designs.transversal_design(Integer(2),Integer(2),resolvable=True)
>>> TD.is_resolvable()
True

>>> AG = designs.AffineGeometryDesign(Integer(3),Integer(1),GF(Integer(2)))
# needs sage.combinat
>>> AG.is_resolvable()
# needs sage.combinat
True
```

Their classes:

```python
sage: b, cls = TD.is_resolvable(True)
sage: b
True

sage: cls # random
[[[0, 3], [1, 2]], [[1, 3], [0, 2]]]

sage: # needs sage.combinat
sage: b, cls = AG.is_resolvable(True)
sage: b
True

sage: cls # random
[[[6, 7], [4, 5], [0, 1], [2, 3]],
 [[5, 7], [0, 4], [3, 6], [1, 2]],
 [[0, 2], [4, 7], [1, 3], [5, 6]],
 [[3, 4], [0, 7], [1, 5], [2, 6]],
 [[3, 7], [1, 6], [0, 5], [2, 4]]
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> from sage.all import *
>>> b, cls = TD.is_resolvable(True)
>>> b
True
>>> cls # random
[[[0, 3], [1, 2]], [[1, 3], [0, 2]]]

# needs sage.combinat
>>> b, cls = AG.is_resolvable(True)
>>> b
True
>>> cls # random
[[[6, 7], [4, 5], [0, 1], [2, 3]],
 [[5, 7], [0, 4], [3, 6], [1, 2]],
 [[0, 2], [4, 7], [1, 3], [5, 6]],
 [[3, 4], [0, 7], [1, 5], [2, 6]],
 [[3, 7], [1, 6], [0, 5], [2, 4]],
 [[0, 6], [2, 7], [1, 4], [3, 5]],
 [[4, 6], [0, 3], [2, 5], [1, 7]]]
```

A non-resolvable design:

```python
sage: Fano = designs.balanced_incomplete_block_design(7,3)  #...
→ needs sage.schemes
sage: Fano.is_resolvable()  #...
→ needs sage.schemes
False
sage: Fano.is_resolvable(True)  #...
→ needs sage.schemes
(False, [])
```

```python
>>> from sage.all import *
>>> Fano = designs.balanced_incomplete_block_design(Integer(7),Integer(3))  #...
→ needs sage.schemes
```

```python
is_simple()
Test whether this design is simple (i.e. no repeated block).

EXAMPLES:

```python
sage: IncidenceStructure(3, [[0,1],[1,2],[0,2]]).is_simple()
True
sage: IncidenceStructure(3, [[0],[0]]).is_simple()
False
sage: V = [(0,'a'),(0,'b'),(1,'a'),(1,'b')]
sage: B = [[V[0],V[1]], [V[1],V[2]]]
```
Graph Theory, Release 10.4

sage: I = IncidenceStructure(V, B)
sage: I.is_simple()
True
sage: I2 = IncidenceStructure(V, B*2)
sage: I2.is_simple()
False

is_spread (spread)
Check whether the input is a spread for self.
A spread of an incidence structure \((P, B)\) is a subset of \(B\) which forms a partition of \(P\).

INPUT:
• spread – iterable; defines the spread

EXAMPLES:

sage: E = IncidenceStructure([[1, 2, 3], [4, 5, 6], [1, 5, 6]])
sage: E.is_spread([[1, 2, 3], [4, 5, 6]])
True
sage: E.is_spread([[1, 2, 3, 4, 5, 6]])
Traceback (most recent call last):
...  
TypeError: 'sage.rings.integer.Integer' object is not iterable
sage: E.is_spread([[1, 2, 3, 4], [5, 6]])
Order of blocks or of points within each block doesn’t matter:

```python
sage: E = IncidenceStructure([[1, 2, 3], [4, 5, 6], [1, 5, 6]])
sage: E.is_spread([[5, 6, 4], [3, 1, 2]])
True

>>> from sage.all import *
>>> E = IncidenceStructure([[Integer(1), Integer(2), Integer(3)], [Integer(4), Integer(5), Integer(6)], [Integer(1), Integer(5), Integer(6)]])
>>> E.is_spread([[Integer(5), Integer(6), Integer(4)], [Integer(3), Integer(1), Integer(2)]])
True
```

`is_t_design(t=None, v=None, k=None, l=None, return_parameters=False)`

Test whether `self` is a $t-(v,k,l)$ design.

A $t-(v,k,\lambda)$ (sometimes called $t$-design for short) is a block design in which:

- the underlying set has cardinality $v$
- the blocks have size $k$
- each $t$-subset of points is covered by $\lambda$ blocks

**INPUT:**

- $t, v, k, l$ (integers) – their value is set to `None` by default. The function tests whether the design is a $t-(v,k,l)$ design using the provided values and guesses the others. Note that $l$ cannot be specified if $t$ is not.
- `return_parameters` (boolean) – whether to return the parameters of the $t$-design. If set to `True`, the function returns a pair `(boolean_answer, (t,v,k,l))`.

**EXAMPLES:**

```python
sage: fano_blocks = [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]
sage: BD = IncidenceStructure(7, fano_blocks)
sage: BD.is_t_design()
True
sage: BD.is_t_design(return_parameters=True)
(True, (2, 7, 3, 1))
sage: BD.is_t_design(2, 7, 3, 1)
True
sage: BD.is_t_design(1, 7, 3, 3)
True
sage: BD.is_t_design(0, 7, 3, 7)
True
sage: BD.is_t_design(0, 6, 3, 7) or BD.is_t_design(0, 7, 4, 7) or BD.is_t_design(0, 7, 3, 8)
False

sage: BD = designs.AffineGeometryDesign(3, 1, GF(2))
needs sage.combinat
sage: BD.is_t_design(1)
```

(continues on next page)
Steiner triple and quadruple systems are other names for $2-(v,3,1)$ and $3-(v,4,1)$ designs:

```
sage: S3_9 = designs.steiner_triple_system(9)
sage: S3_9.is_t_design(2,9,3,1)
True
	sage: blocks = designs.steiner_quadruple_system(8)
sage: S4_8 = IncidenceStructure(8, blocks)
sage: S4_8.is_t_design(3,8,4,1)
True
	sage: blocks = designs.steiner_quadruple_system(14)
sage: S4_14 = IncidenceStructure(14, blocks)
sage: S4_14.is_t_design(3,14,4,1)
True
```

```bash
>>> from sage.all import *
```

```python
>>> S3_9 = designs.steiner_triple_system(Integer(9))
>>> S3_9.is_t_design(Integer(2),Integer(9),Integer(3),Integer(1))
```

True

```python
>>> blocks = designs.steiner_quadruple_system(Integer(8))
>>> S4_8 = IncidenceStructure(Integer(8), blocks)
>>> S4_8.is_t_design(Integer(3), Integer(8), Integer(4), Integer(1))
True

>>> blocks = designs.steiner_quadruple_system(Integer(14))
>>> S4_14 = IncidenceStructure(Integer(14), blocks)
>>> S4_14.is_t_design(Integer(3), Integer(14), Integer(4), Integer(1))
True
```

Some examples of Witt designs that need the gap database:

```python
sage: # optional - gap_package_design
sage: BD = designs.WittDesign(9)
sage: BD.is_t_design(2, 9, 3, 1)
True
sage: W12 = designs.WittDesign(12)
sage: W12.is_t_design(5, 12, 6, 1)
True
sage: W12.is_t_design(4)
True
```

```python
>>> from sage.all import *
>>> # optional - gap_package_design

>>> BD = designs.WittDesign(Integer(9))
>>> BD.is_t_design(Integer(2), Integer(9), Integer(3), Integer(1))
True
>>> W12 = designs.WittDesign(Integer(12))
>>> W12.is_t_design(Integer(5), Integer(12), Integer(6), Integer(1))
True
>>> W12.is_t_design(Integer(4))
True
```

Further examples:

```python
sage: D = IncidenceStructure(4, [[], []])
sage: D.is_t_design(return_parameters=\texttt{True})
(True, (0, 4, 0, 2))
sage: D = IncidenceStructure(4, [[0, 1], [0, 2], [0, 3]])
sage: D.is_t_design(return_parameters=\texttt{True})
(True, (0, 4, 2, 3))
sage: D = IncidenceStructure(4, [[0], [1], [2], [3]])
sage: D.is_t_design(return_parameters=\texttt{True})
(True, (1, 4, 1, 1))
sage: D = IncidenceStructure(4, [[0, 1], [2, 3]])
sage: D.is_t_design(return_parameters=\texttt{True})
(True, (1, 4, 2, 1))
sage: D = IncidenceStructure(4, [list(range(4))])
sage: D.is_t_design(return_parameters=\texttt{True})
(True, (4, 4, 4, 1))
```

4.2. Incidence structures (i.e. hypergraphs, i.e. set systems)
is_uniform (k=None)

Test whether the incidence structure is k-uniform

An incidence structure is said to be k-uniform if all its blocks have size k.

INPUT:

• k (integer)

OUTPUT:

If k is defined, a boolean is returned. If k is set to None (default), the method returns either False or the integer k such that the incidence structure is k-uniform.

Warning: In case of 0-uniform incidence structure, beware that if not H.is_uniform() is a satisfied condition.

EXAMPLES:

```python
sage: designs.balanced_incomplete_block_design(7,3).is_uniform()# needs sage.schemes 3
sage: designs.balanced_incomplete_block_design(7,3).is_uniform(k=3)# needs sage.schemes True
sage: designs.balanced_incomplete_block_design(7,3).is_uniform(k=4)# needs sage.schemes False

>>> from sage.all import *
>>> designs.balanced_incomplete_block_design(Integer(7),Integer(3)).is_uniform() # needs sage.schemes 3
```
isomorphic_substructures_iterator\((H2, \text{induced=False})\)

Iterates over all copies of \(H2\) contained in \(self\).

A hypergraph \(H_1\) contains an isomorphic copy of a hypergraph \(H_2\) if there exists an injection \(f : V(H_2) \rightarrow V(H_1)\) such that for any set \(S_2 \in E(H_2)\) the set \(S_1 = f(S_2)\) belongs to \(E(H_1)\).

It is an \textit{induced} copy if no other set of \(E(H_1)\) is contained in \(f(V(H_2))\), i.e. \(|E(H_2)| = \{S : S \in E(H_1) \text{ and } f(V(H_2))\}\).

This function lists all such injections. In particular, the number of copies of \(H\) in itself is equal to the size of its automorphism group.

See \texttt{subhypergraph_search} for more information.

INPUT:

- \(H2\) an \texttt{IncidenceStructure} object.

- \texttt{induced} (boolean) – whether to require the copies to be induced. Set to \texttt{False} by default.

EXAMPLES:

How many distinct \(C_5\) in Petersen’s graph?

```
sage: P = graphs.PetersenGraph()
sage: C = graphs.CycleGraph(5)
sage: IP = IncidenceStructure(P.edges(sort=True, labels=False))
sage: IC = IncidenceStructure(C.edges(sort=True, labels=False))
sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC))
120
```

As the automorphism group of \(C_5\) has size 10, the number of distinct unlabelled copies is 12. Let us check that all functions returned correspond to an actual \(C_5\) subgraph:

```
sage: for f in IP.isomorphic_substructures_iterator(IC):
 : assert all(P.has_edge(f[x],f[y]) for x,y in C.edges(sort=True,
 : #labels=True))
```

```
>>> from sage.all import *
>>> P = graphs.PetersenGraph()
>>> C = graphs.CycleGraph(Integer(5))
>>> IP = IncidenceStructure(P.edges(sort=True, labels=False))
>>> IC = IncidenceStructure(C.edges(sort=True, labels=False))
>>> sum(Integer(1) for _ in IP.isomorphic_substructures_iterator(IC))
120
```

The number of induced copies, in this case, is the same:
They begin to differ if we make one vertex universal:

```python
sage: P.add_edges([(0, x) for x in P], loops=False)
sage: IP = IncidenceStructure(P.edges(sort=True, labels=False))
sage: IC = IncidenceStructure(C.edges(sort=True, labels=False))
sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC))
420
sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC, induced=True))
60
>>> from sage.all import *
>>> P.add_edges([(Integer(0), x) for x in P], loops=False)
>>> IP = IncidenceStructure(P.edges(sort=True, labels=False))
>>> IC = IncidenceStructure(C.edges(sort=True, labels=False))
>>> sum(Integer(1) for _ in IP.isomorphic_substructures_iterator(IC))
420
>>> sum(Integer(1) for _ in IP.isomorphic_substructures_iterator(IC, induced=True))
60
```

The number of copies of $H$ in itself is the size of its automorphism group:

```python
sage: H = designs.projective_plane(3) # needs sage.schemes
sage: sum(1 for _ in H.isomorphic_substructures_iterator(H)) # needs sage.schemes
5616
sage: H.automorphism_group().cardinality() # needs sage.groups sage.schemes
5616
>>> from sage.all import *
>>> H = designs.projective_plane(Integer(3)) # needs sage.schemes
>>> sum(Integer(1) for _ in H.isomorphic_substructures_iterator(H)) # needs sage.schemes
5616
>>> H.automorphism_group().cardinality() # needs sage.groups sage.schemes
5616
```

**num_blocks()**

Return the number of blocks.

**EXAMPLES:**

```python
sage: designs.DesarguesianProjectivePlaneDesign(2).num_blocks()
7
```
num_points()
Return the size of the ground set.

EXAMPLES:

```python
sage: designs.DesarguesianProjectivePlaneDesign(2).num_points()
7
sage: B = IncidenceStructure(4, [[0,1], [0,2], [0,3], [1,2], [1,2,3]])
sage: B.num_points()
4
```

packing (solver, verbose=None, integrality_tolerance=0)
Return a maximum packing

A maximum packing in a hypergraph is a collection of disjoint sets/blocks of maximal cardinality. This problem is NP-complete in general, and in particular on 3-uniform hypergraphs. It is solved here with an Integer Linear Program.

For more information, see the Wikipedia article Packing_in_a_hypergraph.

INPUT:

- solver = (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- verbose = integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.
- integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

EXAMPLES:

```python
sage: P = IncidenceStructure([[1,2], [3,4], [2,3]]).packing()
```

Graph Theory, Release 10.4

(continued from previous page)

```python
sage: sorted(sorted(b) for b in P) # needs sage.numerical.mip
[[1, 2], [3, 4]]
```

```python
sage: len(designs.steiner_triple_system(9).packing()) # needs sage.numerical.mip
3
```

```python
>>> from sage.all import *

>>> P = IncidenceStructure([[Integer(1),Integer(2)], [Integer(3), Integer(4)],
 [Integer(2), Integer(3)]]).packing() # needs sage.numerical.mip
>>> sorted(sorted(b) for b in P) # needs sage.numerical.mip
[[1, 2], [3, 4]]
```

```python
>>> len(designs.steiner_triple_system(Integer(9)).packing()) # needs sage.numerical.mip
3
```

rank()

Return the rank of the hypergraph (the maximum size of a block).

EXAMPLES:

```python
sage: h = Hypergraph(8, [[0,1,3], [1,4,5,6], [1,2]])
sage: h.rank()
4
```

```python
>>> from sage.all import *

>>> h = Hypergraph(Integer(8), [[Integer(0), Integer(1), Integer(3)],
 [Integer(1), Integer(4), Integer(5), Integer(6)],
 [Integer(1), Integer(2)]])

>>> h.rank()
4
```

relabel(perm=None, inplace=True)

Relabel the ground set

INPUT:

• perm – can be one of
  - a dictionary – then each point \( p \) (which should be a key of \( d \)) is relabeled to \( d[p] \)
  - a list or a tuple of length \( n \) – the first point returned by `ground_set()` is relabeled to \( l[0] \), the second to \( l[1] \), ...
  - None – the incidence structure is relabeled to be on \( \{0, 1, \ldots, n-1\} \) in the ordering given by `ground_set()`
  - inplace – If True then return a relabeled graph and does not touch `self` (default is False).

EXAMPLES:

```python
sage: # needs sage.schemes
designs

sage: TD = designs.transversal_design(5,5)
sage: TD.relabel({i: chr(97+i) for i in range(25)})
sage: TD.ground_set()
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y']
```

(continues on next page)
Relabel to integer points:

```python
sage: TD.relabel() # needs sage.schemes
sage: TD.blocks()[:3] # needs sage.schemes
[[0, 5, 10, 15, 20], [0, 6, 12, 18, 24], [0, 7, 14, 16, 23]]
```

**trace** (*points, min_size=1, multiset=True*)

Return the trace of a set of points.

Given an hypergraph \( H \), the trace of a set \( X \) of points in \( H \) is the hypergraph whose blocks are all non-empty \( S \cap X \) where \( S \in H \).

**INPUT:**

- *points* — a set of points.
- *min_size* (integer; default 1) — minimum size of the sets to keep. By default all empty sets are discarded, i.e. *min_size*=1.
- *multiset* (boolean; default True) — whether to keep multiple copies of the same set.

**Note:** This method goes over all sets of *self* before building a new *IncidenceStructure* (which involves some relabelling and sorting). It probably should not be called in a performance-critical code.

**EXAMPLES:**

A Baer subplane of order 2 (i.e. a Fano plane) in a projective plane of order 4:

```python
sage: # needs sage.schemes
sage: P4 = designs.projective_plane(4)
sage: F = designs.projective_plane(2)
sage: for x in Subsets(P4.ground_set(), 7):
```
....:  if P4.trace(x, min_size=2).is_isomorphic(F):
....:    break
sage: subplane = P4.trace(x, min_size=2); subplane
Incidence structure with 7 points and 7 blocks
sage: subplane.is_isomorphic(F)
True

>>> from sage.all import *
>>> # needs sage.schemes
>>> P4 = designs.projective_plane(Integer(4))
>>> F = designs.projective_plane(Integer(2))
>>> for x in Subsets(P4.ground_set(), Integer(7)):
...    if P4.trace(x, min_size=Integer(2)).is_isomorphic(F):
...      break
>>> subplane = P4.trace(x, min_size=Integer(2)); subplane
Incidence structure with 7 points and 7 blocks
>>> subplane.is_isomorphic(F)
True
CHAPTER FIVE

LIBRARIES OF ALGORITHMS

5.1 Graph coloring

This module gathers all methods related to graph coloring. Here is what it can do:

**Proper vertex coloring**

- `all_graph_colorings()` Compute all n-colorings a graph
- `first_coloring()` Return the first vertex coloring found
- `number_of_n_colorings()` Compute the number of n-colorings of a graph
- `numbers_of_colorings()` Compute the number of colorings of a graph
- `chromatic_number()` Return the chromatic number of the graph
- `vertex_coloring()` Compute vertex colorings and chromatic numbers

**Fractional relaxations**

- `fractional_chromatic_number()` Return the fractional chromatic number of the graph
- `fractional_chromatic_index()` Return the fractional chromatic index of the graph

**Other colorings**

- `grundy_coloring()` Compute Grundy numbers and Grundy colorings
- `b_coloring()` Compute b-chromatic numbers and b-colorings
- `edge_coloring()` Compute chromatic index and edge colorings
- `round_robin()` Compute a round-robin coloring of the complete graph on n vertices
- `linear_arboricity()` Compute the linear arboricity of the given graph
- `acyclic_edge_coloring()` Compute an acyclic edge coloring of the current graph

AUTHORS:

- Tom Boothby (2008-02-21): Initial version
- Carlo Hamalainen (2009-03-28): minor change: switch to C++ DLX solver
5.1.1 Methods

class sage.graphs.graph_coloring.Test

Bases: object

This class performs randomized testing for all_graph_colorings().

Since everything else in this file is derived from all_graph_colorings(), this is a pretty good randomized tester for the entire file. Note that for a graph \( G \), \( G\text{.chromatic_polynomial}() \) uses an entirely different algorithm, so we provide a good, independent test.

random (tests=1000)

Call self.random_all_graph_colorings().

In the future, if other methods are added, it should call them, too.

random_all_graph_colorings (tests=2)

Verify the results of all_graph_colorings() in three ways:

1. all colorings are unique
2. number of m-colorings is \( P(m) \) (where \( P \) is the chromatic polynomial of the graph being tested)
3. colorings are valid – that is, that no two vertices of the same color share an edge.

sage.graphs.graph_coloring.acyclic_edge_coloring (g, hex_colors=False, value_only=False, k=0, solver=None, verbose=0, integrality_tolerance=0.001)

Compute an acyclic edge coloring of the current graph.

An edge coloring of a graph is a assignment of colors to the edges of a graph such that:

- the coloring is proper (no adjacent edges share a color)
- For any two colors \( i, j \), the union of the edges colored with \( i \) or \( j \) is a forest.

The least number of colors such that such a coloring exists for a graph \( G \) is written \( \chi'_a(G) \), also called the acyclic chromatic index of \( G \).

It is conjectured that this parameter cannot be too different from the obvious lower bound \( \Delta(G) \leq \chi'_a(G) \), \( \Delta(G) \) being the maximum degree of \( G \), which is given by the first of the two constraints. Indeed, it is conjectured that \( \Delta(G) \leq \chi'_a(G) \leq \Delta(G) + 2 \).

INPUT:

- hex_colors – boolean (default: False):
  - If hex_colors = True, the function returns a dictionary associating to each color a list of edges (meant as an argument to the edge_colors keyword of the plot method).
  - If hex_colors = False (default value), returns a list of graphs corresponding to each color class.
- value_only – boolean (default: False):
  - If value_only = True, only returns the acyclic chromatic index as an integer value
  - If value_only = False, returns the color classes according to the value of hex_colors
- k – integer; the number of colors to use.
  - If \( k > 0 \), computes an acyclic edge coloring using \( k \) colors.
  - If \( k = 0 \) (default), computes a coloring of \( G \) into \( \Delta(G) + 2 \) colors, which is the conjectured general bound.
- If k = None, computes a decomposition using the least possible number of colors.

- solver -- string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

- verbose -- integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

- integrality_tolerance -- float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

ALGORITHM:
Linear Programming

EXAMPLES:
The complete graph on 8 vertices cannot be acyclically edge-colored with less $\Delta + 1$ colors, but it can be colored with $\Delta + 2 = 9$:

```python
sage: from sage.graphs.graph_coloring import acyclic_edge_coloring
sage: g = graphs.CompleteGraph(8)
sage: colors = acyclic_edge_coloring(g) # needs sage.numerical.mip
```

Each color class is of course a matching

```python
sage: all(max(gg.degree()) <= 1 for gg in colors) # needs sage.numerical.mip
True
```

These matchings being a partition of the edge set:

```python
sage: all(any(gg.has_edge(e) for gg in colors) for e in g.edge_iterator(labels=False)) # needs sage.numerical.mip
True
```

Besides, the union of any two of them is a forest
If one wants to acyclically color a cycle on 4 vertices, at least 3 colors will be necessary. The function raises an exception when asked to color it with only 2:

```
sage: g = graphs.CycleGraph(4)
sage: acyclic_edge_coloring(g, k=2) # needs sage.numerical.mip
Traceback (most recent call last):
... ValueError: this graph cannot be colored with the given number of colors
```

The optimal coloring gives us 3 classes:

```
sage: colors = acyclic_edge_coloring(g, k=None) # needs sage.numerical.mip
sage: len(colors) # needs sage.numerical.mip
3
```

```
sage.graphs.graph_coloring.all_graph_colorings(G, n, count_only=False, hex_colors=False, vertex_color_dict=False, color_classes=False) # needs sage.numerical.mip
```

Compute all $n$-colorings of a graph.

This method casts the graph coloring problem into an exact cover problem, and passes this into an implementation of the Dancing Links algorithm described by Knuth (who attributes the idea to Hitotumatu and Noshita).

INPUT:

- $G$ – a graph
- $n$ – a positive integer; the number of colors
- count_only – boolean (default: False); when set to True, it returns 1 for each coloring and ignores other parameters
• `hex_colors` – boolean (default: False); when set to False, colors are labeled [0, 1, ..., \(n-1\)], otherwise the RGB Hex labeling is used

• `vertex_color_dict` – boolean (default: False); when set to True, it returns a dictionary `{vertex: color}`, otherwise it returns a dictionary `{color: [list of vertices]}`

• `color_classes` – boolean (default: False); when set to True, the method returns only a list of the color classes and ignores parameters `hex_colors` and `vertex_color_dict`

**Warning:** This method considers only colorings using exactly \(n\) colors, even if a coloring using fewer colors can be found.

The construction works as follows. Columns:

- The first \(|V|\) columns correspond to a vertex – a 1 in this column indicates that this vertex has a color.
- After those \(|V|\) columns, we add \(n \times |E|\) columns – a 1 in these columns indicate that a particular edge is incident to a vertex with a certain color.

Rows:

- For each vertex, add \(n\) rows; one for each color \(c\). Place a 1 in the column corresponding to the vertex, and a 1 in the appropriate column for each edge incident to the vertex, indicating that that edge is incident to the color \(c\).
- If \(n > 2\), the above construction cannot be exactly covered since each edge will be incident to only two vertices (and hence two colors) - so we add \(n \times |E|\) rows, each one containing a 1 for each of the \(n \times |E|\) columns. These get added to the cover solutions “for free” during the backtracking.

Note that this construction results in \(n \times |V| + 2 \times n \times |E| + n \times |E|\) entries in the matrix. The Dancing Links algorithm uses a sparse representation, so if the graph is simple, \(|E| \leq |V|^2\) and \(n \leq |V|\), this construction runs in \(O(|V|^3)\) time. Back-conversion to a coloring solution is a simple scan of the solutions, which will contain \(|V| + (n - 2) \times |E|\) entries, so runs in \(O(|V|^3)\) time also. For most graphs, the conversion will be much faster – for example, a planar graph will be transformed for 4-coloring in linear time since \(|E| = O(|V|)\).

REFERENCES:

http://www-cs-staff.stanford.edu/~uno/papers/dancing-color.ps.gz

EXAMPLES:

```python
sage: from sage.graphs.graph_coloring import all_graph_colorings
sage: G = Graph({0: [1, 2, 3], 1: [2]})
sage: n = 0
sage: for C in all_graph_colorings(G, 3, hex_colors=True):
 #...
 parts = [C[k] for k in C]
 for P in parts:
 l = len(P)
 for i in range(l):
 for j in range(i + 1, l):
 if G.has_edge(P[i], P[j]):
 raise RuntimeError("Coloring Failed.")
 n += 1
sage: print("G has \$s\ 3-colorings." % n) #...
G has 12 3-colorings.
```
```python
>>> from sage.all import *
>>> from sage.graphs.graph_coloring import all_graph_colorings

>>> G = Graph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(1): ...
 → [Integer(2)]})

>>> n = Integer(0)

>>> for C in all_graph_colorings(G, Integer(3), hex_colors=True):
 # needs sage.plot
 parts = [C[k] for k in C]
 for P in parts:
 l = len(P)
 for i in range(l): # for j in range(i + Integer(1), l):
 if G.has_edge(P[i], P[j]):
 raise RuntimeError("Coloring Failed.")
 n += Integer(1)

>>> print("G has %s 3-colorings." % n) # needs sage.plot
G has 12 3-colorings.
```

 sage.graphs.graph_coloring.b_coloring (g, k, value_only=True, solver=None, verbose=0, integrality_tolerance=0.001)

Compute b-chromatic numbers and b-colorings.

This function computes a b-coloring with at most \( k \) colors that maximizes the number of colors, if such a coloring exists.

Definition:

Given a proper coloring of a graph \( G \) and a color class \( C \) such that none of its vertices have neighbors in all the other color classes, one can eliminate color class \( C \) assigning to each of its elements a missing color in its neighborhood.

Let a \( b \)-vertex be a vertex with neighbors in all other colorings. Then, one can repeat the above procedure until a coloring is obtained where every color class contains a \( b \)-vertex, in which case none of the color classes can be eliminated with the same idea. So, one can define a b-coloring as a proper coloring where each color class has a \( b \)-vertex.

In the worst case, after successive applications of the above procedure, one get a proper coloring that uses a number of colors equal to the b-chromatic number of \( G \) (denoted \( \chi_b(G) \)): the maximum \( k \) such that \( G \) admits a b-coloring with \( k \) colors.

A useful upper bound for calculating the b-chromatic number is the following. If \( G \) admits a b-coloring with \( k \) colors, then there are \( k \) vertices of degree at least \( k - 1 \) (the \( b \)-vertices of each color class). So, if we set \( m(G) = \max \{ k | \text{there are } k \text{ vertices of degree at least } k - 1 \} \), we have that \( \chi_b(G) \leq m(G) \).

**Note:** This method computes a b-coloring that uses at **MOST** \( k \) colors. If this method returns a value equal to \( k \), it cannot be assumed that \( k \) is equal to \( \chi_b(G) \). Meanwhile, if it returns any value \( k' < k \), this is a certificate that the Grundy number of the given graph is \( k' \).

As \( \chi_b(G) \leq m(G) \), it can be assumed that \( \chi_b(G) = k \) if \texttt{b_coloring}(g, k) returns \( k \) when \( k = m(G) \).

**INPUT:**

- \( k \) – integer; maximum number of colors
- \texttt{value_only} – boolean (default: \texttt{True}); when set to \texttt{True}, only the number of colors is returned. Otherwise, the pair \( (\text{nb_colors}, \text{coloring}) \) is returned, where \texttt{coloring} is a dictionary associating its color (integer) to each vertex of the graph.
• **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

• **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

• **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

### ALGORITHM:

Integer Linear Program.

### EXAMPLES:

The b-chromatic number of a $P_5$ is equal to 3:

```python
sage: from sage.graphs.graph_coloring import b_coloring
go = graphs.PathGraph(5)
b_coloring(g, 5) # needs sage.numerical.mip
3
```

The b-chromatic number of the Petersen Graph is equal to 3:

```python
sage: g = graphs.PetersenGraph()
b_coloring(g, 5) # needs sage.numerical.mip
3
```

It would have been sufficient to set the value of $k$ to 4 in this case, as $4 = m(G)$.

```python
sage.graphs.graph_coloring.chromatic_number(G)
```

Return the chromatic number of the graph.

The chromatic number is the minimal number of colors needed to color the vertices of the graph $G$.

### EXAMPLES:

```python
sage: from sage.graphs.graph_coloring import chromatic_number
g = Graph({0: [1, 2, 3], 1: [2]})
chromatic_number(G)
3
sage: G = graphs.PetersenGraph()
G.chromatic_number()
3
```
Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> from sage.graphs.graph_coloring import chromatic_number

G = Graph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(1):
 →[Integer(2)])
>>> chromatic_number(G)
3

G = graphs.PetersenGraph()
>>> G.chromatic_number()
3
```

`sage.graphs.graph_coloring.edge_coloring(g, value_only=False, vizing=False, hex_colors=False, solver=None, verbose=0, integrality_tolerance=0.001)`

Compute chromatic index and edge colorings.

**INPUT:**
- `g` – a graph.
- `value_only` – boolean (default: False):
  - When set to True, only the chromatic index is returned
  - When set to False, a partition of the edge set into matchings is returned if possible
- `vizing` – boolean (default: False):
  - When set to True, finds an edge coloring using the algorithm described at [MG1992]. This always results in a coloring with \( \Delta + 1 \) colors, where \( \Delta \) is equal to the maximum degree in the graph, even if one of the colors is empty, for the sake of consistency.
  - When set to False, tries to find a \( \Delta \)-edge-coloring using Mixed Integer Linear Programming (MILP). If impossible, returns a \( (\Delta + 1) \)-edge-coloring. Please note that determining if the chromatic index of a graph equals \( \Delta \) is computationally difficult, and could take a long time.
- `hex_colors` – boolean (default: False); when set to True, the partition returned is a dictionary whose keys are colors and whose values are the color classes (ideal for plotting)
- `solver` – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- `verbose` – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- `integrality_tolerance` – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

**OUTPUT:**

In the following, \( \Delta \) is equal to the maximum degree in the graph \( g \).
- If `vizing=True` and `value_only=False`, return a partition of the edge set into \( \Delta + 1 \) matchings.
- If `vizing=False` and `value_only=True`, return the chromatic index.
- If `vizing=False` and `value_only=False`, return a partition of the edge set into the minimum number of matchings.
- If `vizing=True` and `value_only=True`, should return something, but mainly you are just trying to compute the maximum degree of the graph, and this is not the easiest way. By Vizing’s theorem, a graph has a chromatic index equal to \( \Delta \) or to \( \Delta + 1 \).
Note: In a few cases, it is possible to find very quickly the chromatic index of a graph, while it remains a tedious job to compute a corresponding coloring. For this reason, value_only = True can sometimes be much faster, and it is a bad idea to compute the whole coloring if you do not need it!

See also:

- Wikipedia article Edge_coloring for further details on edge coloring
- chromatic_index()
- fractional_chromatic_index()
- chromatic_number()
- sage.graphs.graph_coloring.vertex_coloring()

EXAMPLES:

The Petersen graph has chromatic index 4:

```python
sage: from sage.graphs.graph_coloring import edge_coloring
sage: g = graphs.PetersenGraph()
sage: edge_coloring(g, value_only=True, solver='GLPK')
4
sage: color_classes = edge_coloring(g, value_only=False, solver='GLPK')
sage: len(color_classes)
4
sage: len(set(frozenset(e) for C in color_classes for e in C)) == g.size()
True
sage: all(g.has_edge(e) for C in color_classes for e in C)
True
sage: all(len(Graph(C).matching()) == len(C) for C in color_classes) # needs networkx
True
sage: color_classes = edge_coloring(g, value_only=False, solver='GLPK')
```

(continues on next page)
Graph Theory, Release 10.4

...  
hex_colors=True, solver='GLPK')

>>> sorted(color_classes.keys())
['#00ffff', '#7f00ff', '#7ff000', '#ff0000']

Complete graphs are colored using the linear-time round-robin coloring:

```python
sage: from sage.graphs.graph_coloring import edge_coloring
sage: len(edge_coloring(graphs.CompleteGraph(20)))
˓→ needs sage.numerical.mip
19
```

The chromatic index of a non connected graph is the maximum over its connected components:

```python
sage: g = graphs.CompleteGraph(4) + graphs.CompleteGraph(10)

sage: edge_coloring(g, value_only=True)
˓→ needs sage.numerical.mip
9
```

`sage.graphs.graph_coloring.first_coloring(G, n=0, hex_colors=False)`

Return the first vertex coloring found.

If a natural number \(n\) is provided, returns the first found coloring with at least \(n\) colors. That is, \(n\) is a lower bound on the number of colors to use.

INPUT:

- \(n\) – integer (default: 0); the minimal number of colors to try
- `hex_colors` – boolean (default: False); when set to True, the partition returned is a dictionary whose keys are colors and whose values are the color classes (ideal for plotting)

EXAMPLES:

```python
sage: from sage.graphs.graph_coloring import first_coloring

sage: G = Graph({0: [1, 2, 3], 1: [2]})

sage: sorted(first_coloring(G, 3))
[[0], [1, 3], [2]]
```
sage.graphs.graph_coloring.format_coloring(\(data, value\_only=False, hex\_colors=False,\)
vertex_color_dict=False)\)

Helper method for vertex and edge coloring methods.

INPUT:

- \(data\) – either a number when \(value\_only\) is \(True\) or a list of color classes
- \(value\_only\) – boolean (default: \(False\)); when set to \(True\), it simply returns \(data\)
- \(hex\_colors\) – boolean (default: \(False\)); when set to \(False\), colors are labeled [0, 1, ..., \(n-1\)], otherwise the RGB Hex labeling is used
- \(vertex\_color\_dict\) – boolean (default: \(False\)); when set to \(True\), it returns a dictionary \{vertex: color\}, otherwise it returns a dictionary \{color: [list of vertices]\}

EXAMPLES:

```python
sage: from sage.graphs.graph_coloring import format_coloring
sage: color_classes = [['a', 'b'], ['c'], ['d']]
sage: format_coloring(color_classes, value_only=True)
[['a', 'b'], ['c'], ['d']]
sage: format_coloring(len(color_classes), value_only=True)
3
sage: format_coloring(color_classes, value_only=False)
{0: ['a', 'b'], 1: ['c'], 2: ['d']}
sage: format_coloring(color_classes, value_only=False, hex_colors=True)
{'#0000ff': ['d'], '#00ff00': ['c'], '#ff0000': ['a', 'b']}
sage: format_coloring(color_classes, value_only=False, hex_colors=False, vertex_color_dict=True)
{a: 0, b: 0, c: 1, d: 2}
sage: format_coloring(color_classes, value_only=False, hex_colors=False, vertex_color_dict=True)
{a: '#ff0000', b: '#ff0000', c: '#00ff00', d: '#0000ff'}
```

sage.graphs.graph_coloring.fractional_chromatic_index(\(G, solver=ppl,\)
voice constraints=False, verbose=0)\)

5.1. Graph coloring 1549
Return the fractional chromatic index of the graph.

The fractional chromatic index is a relaxed version of edge-coloring. An edge coloring of a graph being actually a covering of its edges into the smallest possible number of matchings, the fractional chromatic index of a graph $G$ is the smallest real value $\chi_f(G)$ such that there exists a list of matchings $M_1, \ldots, M_k$ of $G$ and coefficients $\alpha_1, \ldots, \alpha_k$ with the property that each edge is covered by the matchings in the following relaxed way

$$\forall e \in E(G), \sum_{e \in M_i} \alpha_i \geq 1.$$ 

For more information, see the Wikipedia article Fractional_coloring.

**ALGORITHM:**

The fractional chromatic index is computed through Linear Programming through its dual. The LP solved by sage is actually:

Maximize : $\sum_{e \in E(G)} r_e$

Such that:

$\forall M$ matching $\subseteq G, \sum_{e \in M} r_e \leq 1$

**INPUT:**

- $G$ – a graph
- $\text{solver}$ – (default: "PPL"); specify a Linear Program (LP) solver to be used. If set to $\text{None}$, the default one is used. For more information on LP solvers and which default solver is used, see the method $\text{solve}$ of the class $\text{MixedIntegerLinearProgram}$.

**Note:** The default solver used here is "PPL" which provides exact results, i.e. a rational number, although this may be slower than using other solvers. Be aware that this method may loop endlessly when using some non-exact solvers as reported in Issue #23658 and Issue #23798.

- $\text{verbose_constraints}$ – boolean (default: False); whether to display which constraints are being generated
- $\text{verbose}$ – integer (default: 0); sets the level of verbosity of the LP solver

**EXAMPLES:**

The fractional chromatic index of a $C_5$ is $5/2$:

```
sage: g = graphs.CycleGraph(5)
sage: g.fractional_chromatic_index()
5/2
```

```
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(5))
>>> g.fractional_chromatic_index()
5/2
```
Return the fractional chromatic number of the graph.

Fractional coloring is a relaxed version of vertex coloring with several equivalent definitions, such as the optimum value in a linear relaxation of the integer program that gives the usual chromatic number. It is also equal to the fractional clique number by LP-duality.

**ALGORITHM:**

The fractional chromatic number is computed via the usual Linear Program. The LP solved by sage is essentially,

\[
\text{Minimize: } \sum_{I \in \mathcal{I}(G)} x_I
\]

Such that:

\[
\forall v \in V(G), \sum_{I \in \mathcal{I}(G), v \in I} x_v \geq 1
\]

\[
\forall I \in \mathcal{I}(G), x_I \geq 0
\]

where \(\mathcal{I}(G)\) is the set of maximal independent sets of \(G\) (see Section 2.1 of [CFKPR2010] to know why it is sufficient to consider maximal independent sets). As optional optimisations, we construct the LP on each biconnected component of \(G\) (and output the maximum value), and avoid using the LP if \(G\) is bipartite (as then the output must be 1 or 2).

**Note:** Computing the fractional chromatic number can be very slow. Since the variables of the LP are independent sets, in general the LP has size exponential in the order of the graph. In the current implementation a list of all maximal independent sets is created and stored, which can be both slow and memory-hungry.

**INPUT:**

- \(G\) – a graph
- \(\text{solver} – \) (default: "PPL"); specify a Linear Program (LP) solver to be used. If set to \texttt{None}, the default one is used. For more information on LP solvers and which default solver is used, see the method \texttt{solve} of the class \texttt{MixedIntegerLinearProgram}.

**Note:** The default solver used here is "PPL" which provides exact results, i.e. a rational number, although this may be slower than using other solvers.

- \(\text{verbose} – \) integer (default: 0); sets the level of verbosity of the LP solver
- \(\text{check_components} – \) boolean (default: True); whether the method is called on each biconnected component of \(G\)
- \(\text{check_bipartite} – \) boolean (default: True); whether the graph is checked for bipartiteness. If the graph is bipartite then we can avoid creating and solving the LP.

**EXAMPLES:**

The fractional chromatic number of a \(C_5\) is \(5/2\):

```python
sage: g = graphs.CycleGraph(5)
```

```python
sage: g.fractional_chromatic_number()
```

# needs sage.numerical.mip

5/2
sage.graphs.graph_coloring.grundy_coloring(g, value_only=True, solver=None, verbose=0, integrality_tolerance=0.001)

Compute Grundy numbers and Grundy colorings.

The method computes the worst-case of a first-fit coloring with less than \( k \) colors.

Definition:

A first-fit coloring is obtained by sequentially coloring the vertices of a graph, assigning them the smallest color not already assigned to one of its neighbors. The result is clearly a proper coloring, which usually requires much more colors than an optimal vertex coloring of the graph, and heavily depends on the ordering of the vertices.

The number of colors required by the worst-case application of this algorithm on a graph \( G \) is called the Grundy number, written \( \Gamma(G) \).

Equivalent formulation:

Equivalently, a Grundy coloring is a proper vertex coloring such that any vertex colored with \( i \) has, for every \( j < i \), a neighbor colored with \( j \). This can define a Linear Program, which is used here to compute the Grundy number of a graph.

\[ \Gamma(G) \leq \Delta(G) + 1 \]

\[ \Gamma(G) = k \text{ if } \text{grundy_coloring}(g, k) \text{ returns } k \text{ when } k = \Delta(G) + 1. \]

INPUT:

- \( k \) – integer; maximum number of colors
- \( \text{value_only} \) – boolean (default: True); when set to True, only the number of colors is returned. Otherwise, the pair \( (\text{nb_colors}, \text{coloring}) \) is returned, where \( \text{coloring} \) is a dictionary associating its color (integer) to each vertex of the graph.
- \( \text{solver} \) – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \text{solve} of the class MixedIntegerLinearProgram.
- \( \text{verbose} \) – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- \( \text{integrality_tolerance} \) – float; parameter for use with MILP solvers over an inexact base ring; see \text{MixedIntegerLinearProgram.get_values()}.  

ALGORITHM:

Integer Linear Program.

EXAMPLES:

The Grundy number of a \( P_4 \) is equal to 3:
sage: from sage.graphs.graph_coloring import grundy_coloring
sage: g = graphs.PathGraph(4)

# needs sage.numerical.mip
3

>>> from sage.all import *
>>> from sage.graphs.graph_coloring import grundy_coloring
>>> g = graphs.PathGraph(Integer(4))
>>> grundy_coloring(g, Integer(4)) # needs sage.numerical.mip
3

The Grundy number of the PetersenGraph is equal to 4:

sage: g = graphs.PetersenGraph()

# needs sage.numerical.mip
4

>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> grundy_coloring(g, Integer(5)) # needs sage.numerical.mip
4

It would have been sufficient to set the value of $k$ to 4 in this case, as $4 = \Delta(G) + 1$.

sage.graphs.graph_coloring.linear_arboricity(g, plus_one=None, hex_colors=False, value_only=False, solver=None, verbose=0, integrality_tolerance=0.001)

Compute the linear arboricity of the given graph.

The linear arboricity of a graph $G$ is the least number $la(G)$ such that the edges of $G$ can be partitioned into linear forests (i.e. into forests of paths).

Obviously, $la(G) \geq \lceil \frac{\Delta(G)}{2} \rceil$.

It is conjectured in [Aki1980] that $la(G) \leq \lceil \frac{\Delta(G)+1}{2} \rceil$.

INPUT:

- plus_one - integer (default: None); whether to use $\lceil \frac{\Delta(G)}{2} \rceil$ or $\lceil \frac{\Delta(G)+1}{2} \rceil$ colors.
  - If 0, computes a decomposition of $G$ into $\lceil \frac{\Delta(G)}{2} \rceil$ forests of paths
  - If 1, computes a decomposition of $G$ into $\lceil \frac{\Delta(G)+1}{2} \rceil$ colors, which is the conjectured general bound.
  - If plus_one = None (default), computes a decomposition using the least possible number of colors.
- hex_colors - boolean (default: False):
  - If hex_colors = True, the function returns a dictionary associating to each color a list of edges (meant as an argument to the edge_colors keyword of the plot method).
  - If hex_colors = False (default value), returns a list of graphs corresponding to each color class.
- value_only - boolean (default: False):
If `value_only = True`, only returns the linear arboricity as an integer value.

If `value_only = False`, returns the color classes according to the value of `hex_colors`.

- **solver** – string (default: None): specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

- **verbose** – integer (default: 0): sets the level of verbosity. Set to 0 by default, which means quiet.

- **integrality_tolerance** – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

**ALGORITHM:**
Linear Programming

**COMPLEXITY:**
NP-Hard

**EXAMPLES:**

Obviously, a square grid has a linear arboricity of 2, as the set of horizontal lines and the set of vertical lines are an admissible partition:

```python
sage: from sage.graphs.graph_coloring import linear_arboricity
sage: g = graphs.Grid2dGraph(4, 4) # needs sage.numerical.mip
sage: g1, g2 = linear_arboricity(g) # needs sage.numerical.mip
```

Each graph is of course a forest:

```python
sage: g1.is_forest() and g2.is_forest() # needs sage.numerical.mip
True
```

Of maximum degree 2:

```python
sage: max(g1.degree()) <= 2 and max(g2.degree()) <= 2 # needs sage.numerical.mip
True
```
Which constitutes a partition of the whole edge set:

```python
sage: all((g1.has_edge(e) or g2.has_edge(e))
 # needs sage.numerical.mip
 for e in g.edge_iterator(labels=None))
True
```

```python
>>> from sage.all import *
>>> all((g1.has_edge(e) or g2.has_edge(e))
 # needs sage.numerical.mip
 for e in g.edge_iterator(labels=None))
True
```

**sage.graphs.graph_coloring.number_of_n_colorings** \((G, n)\)

Compute the number of \(n\)-colorings of a graph.

**INPUT:**

- \(G\) – a graph

- \(n\) – a positive integer; the number of colors

**EXAMPLES:**

```python
sage: from sage.graphs.graph_coloring import number_of_n_colorings
sage: G = Graph({0: [1, 2, 3], 1: [2]})
sage: number_of_n_colorings(G, 3)
12
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_coloring import number_of_n_colorings
>>> G = Graph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(1):
 # needs sage.numerical.mip
 [Integer(2)]})
>>> number_of_n_colorings(G, Integer(3))
12
```

**sage.graphs.graph_coloring.numbers_of_colorings** \((G)\)

Compute the number of colorings of a graph.

Return the number of \(n\)-colorings of the graph \(G\) for all \(n\) from 0 to \(|V|\).

**EXAMPLES:**

```python
sage: from sage.graphs.graph_coloring import numbers_of_colorings
sage: G = Graph({0: [1, 2, 3], 1: [2]})
sage: numbers_of_colorings(G)
[0, 0, 0, 12, 24]
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_coloring import numbers_of_colorings
>>> G = Graph({Integer(0): [Integer(1), Integer(2), Integer(3)], Integer(1):
 # needs sage.numerical.mip
 [Integer(2)]})
>>> numbers_of_colorings(G)
[0, 0, 0, 12, 24]
```

**sage.graphs.graph_coloring.round_robin** \((n)\)

Compute a round-robin coloring of the complete graph on \(n\) vertices.
A round-robin coloring of the complete graph $G$ on $2n$ vertices ($V = [0, \ldots, 2n - 1]$) is a proper coloring of its edges such that the edges with color $i$ are all the $(i + j, i - j)$ plus the edge $(2n - 1, i)$.

If $n$ is odd, one obtain a round-robin coloring of the complete graph through the round-robin coloring of the graph with $n + 1$ vertices.

**INPUT:**

- $n$ – the number of vertices in the complete graph

**OUTPUT:**

- A `CompleteGraph()` with labelled edges such that the label of each edge is its color.

**EXAMPLES:**

```python
sage: from sage.graphs.graph_coloring import round_robin
sage: round_robin(3).edges(sort=True)
[(0, 1, 2), (0, 2, 1), (1, 2, 0)]
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_coloring import round_robin
>>> round_robin(Integer(3)).edges(sort=True)
[(0, 1, 2), (0, 2, 1), (1, 2, 0)]
```

```python
sage: round_robin(4).edges(sort=True)
[(0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 2, 0), (1, 3, 1), (2, 3, 2)]
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_coloring import round_robin
>>> round_robin(Integer(4)).edges(sort=True)
[(0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 2, 0), (1, 3, 1), (2, 3, 2)]
```

For higher orders, the coloring is still proper and uses the expected number of colors:

```python
sage: g = round_robin(9)
sage: sum(Set(e[2] for e in g.edges_incident(v)).cardinality() for v in g) == 2 * g.size() True
sage: Set(e[2] for e in g.edge_iterator()).cardinality()
9
```

```python
>>> from sage.all import *
>>> g = round_robin(Integer(9))
>>> sum(Set(e[Integer(2)] for e in g.edges_incident(v)).cardinality() for v in g) == Integer(2) * g.size() True
>>> Set(e[Integer(2)] for e in g.edge_iterator()).cardinality()
9
```

```python
sage: g = round_robin(10)
sage: sum(Set(e[2] for e in g.edges_incident(v)).cardinality() for v in g) == 2 * g.size() True
sage: Set(e[2] for e in g.edge_iterator()).cardinality()
9
```

```python
>>> from sage.all import *
>>> g = round_robin(Integer(10))
```

(continues on next page)
\begin{verbatim}
>>> sum(Set(e[Integer(2)] for e in g.edges_incident(v)).cardinality() for v in g) → Integer(2) * g.size()
True
>>> Set(e[Integer(2)] for e in g.edge_iterator()).cardinality()
9
\end{verbatim}

\texttt{sage.graphs.graph_coloring.vertex_coloring} ($g, k=\text{None}, \text{value\_only}=\text{False}, \text{hex\_colors}=\text{False},$
\text{solver}=\text{None}, \text{verbose}=0,$\text{integrality\_tolerance}=0.001$)

Compute Vertex colorings and chromatic numbers.

This function can compute the chromatic number of the given graph or test its $k$-colorability.

See the Wikipedia article \texttt{Graph\_coloring} for further details on graph coloring.

**INPUT:**

- $g$ – a graph.
- $k$ – integer (default: None); tests whether the graph is $k$-colorable. The function returns a partition of the vertex set in $k$ independent sets if possible and False otherwise.
- \text{value\_only} – boolean (default: False):
  - When set to True, only the chromatic number is returned.
  - When set to False (default), a partition of the vertex set into independent sets is returned if possible.
- \text{hex\_colors} – boolean (default: False); when set to True, the partition returned is a dictionary whose keys are colors and whose values are the color classes (ideal for plotting).
- \text{solver} – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class \texttt{MixedIntegerLinearProgram}.
- \text{verbose} – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- \text{integrality\_tolerance} – float; parameter for use with MILP solvers over an inexact base ring; see \texttt{MixedIntegerLinearProgram.get\_values()}.

**OUTPUT:**

- If $k=\text{None}$ and \text{value\_only}=\text{False}, then return a partition of the vertex set into the minimum possible of independent sets.
- If $k=\text{None}$ and \text{value\_only}=\text{True}, return the chromatic number.
- If $k$ is set and \text{value\_only}=\text{None}, return False if the graph is not $k$-colorable, and a partition of the vertex set into $k$ independent sets otherwise.
- If $k$ is set and \text{value\_only}=\text{True}, test whether the graph is $k$-colorable, and return True or False accordingly.

**EXAMPLES:**

\begin{verbatim}
sage: from sage.graphs.graph_coloring import vertex_coloring
sage: g = graphs.PetersenGraph()
sage: vertex_coloring(g, value_only=\text{True})
→ needs \texttt{sage.numerical.mip}
3
\end{verbatim}
>>> from sage.all import *
>>> from sage.graphs.graph_coloring import vertex_coloring
>>>
g = graphs.PetersenGraph()
>>> vertex_coloring(g, value_only=True) # needs sage.numerical.mip

5.2 Interface with Cliquer (clique-related problems)

This module defines functions based on Cliquer, an exact branch-and-bound algorithm developed by Patric R. J. O스tegren and written by Sampo Niskanen.

AUTHORS:
• Nathann Cohen (2009-08-14): Initial version
• Jeroen Demeyer (2011-05-06): Make cliquer interruptible (Issue #11252)
• Nico Van Cleemput (2013-05-27): Handle the empty graph (Issue #14525)

REFERENCE:
[NO2003]

5.2.1 Methods

sage.graphs.cliquer.all_cliques(graph, min_size=0, max_size=0)

Iterator over the cliques in graph.

A clique is an induced complete subgraph. This method is an iterator over all the cliques with size in between min_size and max_size. By default, this method returns only maximum cliques. Each yielded clique is represented by a list of vertices.

Note: Currently only implemented for undirected graphs. Use to_undirected() to convert a digraph to an undirected graph.

INPUT:
• min_size – integer (default: 0); minimum size of reported cliques. When set to 0 (default), this method searches for maximum cliques. In such case, parameter max_size must also be set to 0.
• max_size – integer (default: 0); maximum size of reported cliques. When set to 0 (default), the maximum size of the cliques is unbounded. When min_size is set to 0, this parameter must be set to 0.

ALGORITHM:
This function is based on Cliquer [NO2003].

EXAMPLES:

sage: G = graphs.CompleteGraph(5)
sage: list(sage.graphs.cliquer.all_cliques(G))
[[0, 1, 2, 3, 4]]
sage: list(sage.graphs.cliquer.all_cliques(G, 2, 3))
[[3, 4],
(continues on next page)
\[ \{2, 3\}, \{2, 3, 4\}, \{2, 4\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3\}, \{1, 3, 4\}, \{1, 4\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 4\}, \{0, 2\}, \{0, 2, 3\}, \{0, 2, 4\}, \{0, 3\}, \{0, 3, 4\}, \{0, 4\} \]

sage: G.delete_edge([1,3])
sage: list(sage.graphs.cliquer.all_cliques(G))
\[
\{0, 2, 3, 4\}, \{0, 1, 2, 4\}
\]

>>> from sage.all import *
>>> G = graphs.CompleteGraph(Integer(5))
>>> list(sage.graphs.cliquer.all_cliques(G))
\[
\{0, 1, 2, 3, 4\}
\]

>>> list(sage.graphs.cliquer.all_cliques(G, Integer(2), Integer(3)))
\[
\{2, 3\}, \{2, 3, 4\}, \{2, 4\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3\}, \{1, 3, 4\}, \{1, 4\}, \{0, 1\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 4\}, \{0, 2\}, \{0, 2, 3\}, \{0, 2, 4\}, \{0, 3\}, \{0, 3, 4\}, \{0, 4\}\]

>>> G.delete_edge([Integer(1),Integer(3)])

Todo: Use the re-entrant functionality of Cliquer [NO2003] to avoid storing all cliques.

sage.graphs.cliquer.all_max_clique(graph)
Return the vertex sets of ALL the maximum complete subgraphs.

Returns the list of all maximum cliques, with each clique represented by a list of vertices. A clique is an induced complete subgraph, and a maximum clique is one of maximal order.

**Note:** Currently only implemented for undirected graphs. Use `to_undirected()` to convert a digraph to an undirected graph.

**ALGORITHM:**

This function is based on Cliquer [NO2003].

**EXAMPLES:**

```python
sage: graphs.ChvatalGraph().cliques_maximum() # indirect doctest
[[0, 1], [0, 4], [0, 6], [0, 9], [1, 2], [1, 5], [1, 7], [2, 3], [2, 6], [2, 8], [3, 4], [3, 7], [3, 9], [4, 5], [4, 8], [5, 10], [5, 11], [6, 10], [6, 11], [7, 8], [7, 11], [8, 10], [9, 10], [9, 11]]
```

```python
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
sage: G.show(figsize=[2,2]) # needs sage.plot
sage: G.cliques_maximum() # indirect doctest
[[0, 1, 2], [0, 1, 3]]
```

```python
sage: G = Graph({0:1,1:2,2:3,3:0})
sage: G.show(figsize=[2,2]) # needs sage.plot
sage: G.cliques_maximum() # indirect doctest
[[0, 1, 2], [0, 1, 3]]
```

```python
sage: G = graphs.PetersenGraph()
sage: G.cliques_maximum() # indirect doctest
[[0, 1], [0, 4], [0, 5], [1, 2], [1, 6], [2, 3], [2, 7], [3, 4], [3, 8], [4, 9], [4, 10], [5, 7], [5, 8], [5, 9], [6, 10], [6, 11], [7, 8], [7, 9], [8, 10], [9, 10], [9, 11]]
```

```python
sage: C = graphs.PetersenGraph()
sage: C.cliques_maximum() # indirect doctest
[[0, 1], [0, 4], [0, 5], [1, 2], [1, 6], [2, 3], [2, 7], [3, 4], [3, 8], [4, 9], [4, 10], [5, 7], [5, 8], [5, 9], [6, 10], [6, 11], [7, 8], [7, 9], [8, 10], [9, 10], [9, 11]]
```

```python
sage: C = Graph(DJ{)
sage: C.cliques_maximum() # indirect doctest
[[1, 2, 3, 4]]
```

```python
>>> from sage.all import *
>>> graphs.ChvatalGraph().cliques_maximum() # indirect doctest
[[0, 1], [0, 4], [0, 6], [0, 9], [1, 2], [1, 5], [1, 7], [2, 3], [2, 6], [2, 8], [3, 4], [3, 7], [3, 9], [4, 5], [4, 8], [5, 10], [5, 11], [6, 10], [6, 11], [7, 8], [7, 11], [8, 10], [9, 10], [9, 11]]
```

```python
>>> G = Graph({Integer(0):[Integer(1),Integer(2),Integer(3)],
 Integer(1):[Integer(2), Integer(3)],[Integer(0),Integer(1)]})
>>> G.show(figsize=[Integer(2),Integer(2)]) # needs sage.plot
```

```python
sage.graphs.cliquer.cliquer_number(graph)
```

Return the size of the largest clique of the graph (clique number).

**Note:** Currently only implemented for undirected graphs. Use `to_undirected()` to convert a digraph to an undirected graph.
EXAMPLES:

```python
sage: C = Graph('DJ()')
4
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
needs sage.plot
sage: G.show(figsize=[2,2])
3
```

```
>>> from sage.all import *
>>> C = Graph('DJ()')
>>> C.clique_number()
4
>>> G = Graph({Integer(0):[Integer(1),Integer(2),Integer(3)],...
needs sage.plot
>>> G.show(figsize=[Integer(2),Integer(2)])
>>> G.clique_number()
3
```

```python
sage.graphs.cliquer.max_clique(graph)
```

Return the vertex set of a maximum complete subgraph.

**Note:** Currently only implemented for undirected graphs. Use `to_undirected()` to convert a digraph to an undirected graph.

EXAMPLES:

```python
sage: C = graphs.PetersenGraph()
sage: from sage.graphs.cliquer import max_clique
sage: max_clique(C)
[7, 9]
```

```
>>> from sage.all import *
>>> C = graphs.PetersenGraph()
>>> from sage.graphs.cliquer import max_clique
>>> max_clique(C)
[7, 9]
```

### 5.3 Centrality

This module is meant for all functions related to centrality in networks.

- `centrality_betweenness()` Return the centrality betweenness of $G$
- `centrality_closeness()` Return the k most closeness central vertices of $G$
- `centrality_closeness_top_k()` Return an estimation of the closeness centrality of $G$.
5.3.1 Functions

`sage.graphs.centrality.centrality_betweenness(G, exact=False, normalize=True)`

Return the centrality betweenness of $G$

The centrality betweenness of a vertex $v \in G$ is defined by:

$$c(v) = \sum_{s \neq v \neq t} \frac{\#\{\text{shortest } st \text{- paths containing } v\}}{\#\{\text{shortest } st \text{- paths}\}}$$

For more information, see the Wikipedia article Betweenness_centrality.

**INPUT:**
- $G$ – a (di)graph
- `exact` – boolean (default: False); whether to compute over rationals or on double C variables.
- `normalize` – boolean (default: True); whether to renormalize the values by dividing them by $\left(\frac{n-1}{2}\right)$ (for graphs) or $2\left(\frac{n-1}{2}\right)$ (for digraphs).

**ALGORITHM:**
To compute $c(v)$, we fix $s$ and define $c_s(v)$ as the centrality of $v$ due to $s$, obtained from the formula above by running the sum over $t$ only. We obtain $c(v) = \sum_{s \neq v} c_s(v)$.

For every vertex $s$, we compute the value of $c_s(v)$ for all $v$, using the following remark (see [Brandes01]):

Let $v_1, \ldots, v_k$ be the out-neighbors of $v$ such that $\text{dist}(s, v_i) = \text{dist}(s, v) + 1$. Then

$$c_s(v) = \sum_{1 \leq i \leq k} c_s(v_i) \frac{\#\{\text{shortest } sv_i \text{- paths}\}}{\#\{\text{shortest } sv \text{- paths}\}}$$

The number of shortest paths between $s$ and every other vertex can be computed with a slightly modified BFS. While running this BFS we can also store the list of the vertices $v_1, \ldots, v_k$ associated with each $v$.

**EXAMPLES:**

```python
sage: from sage.graphs.centrality import centrality_betweenness
sage: centrality_betweenness(digraphs.Circuit(6))
(0: 0.5, 1: 0.5, 2: 0.5, 3: 0.5, 4: 0.5, 5: 0.5)
sage: centrality_betweenness(graphs.CycleGraph(6))
(0: 0.2, 1: 0.2, 2: 0.2, 3: 0.2, 4: 0.2, 5: 0.2)
```

```python
>>> from sage.all import *
>>> from sage.graphs.centrality import centrality_betweenness
>>> centrality_betweenness(digraphs.Circuit(Integer(6)))
(0: 0.5, 1: 0.5, 2: 0.5, 3: 0.5, 4: 0.5, 5: 0.5)
>>> centrality_betweenness(graphs.CycleGraph(Integer(6)))
(0: 0.2, 1: 0.2, 2: 0.2, 3: 0.2, 4: 0.2, 5: 0.2)
```

Exact computations:

```python
sage: graphs.PetersenGraph().centrality_betweenness(exact=True)
(0: 1/12, 1: 1/12, 2: 1/12, 3: 1/12, 4: 1/12, 5: 1/12, 6: 1/12, 7: 1/12, 8: 1/12,...
→ 9: 1/12)
```
sage.graphs.centrality.centrality_closeness_random_k(G, k=1)

Return an estimation of the closeness centrality of $G$.

The algorithm first randomly selects a set $S$ of $k$ vertices. Then it computes shortest path distances from each vertex in $S$ (using Dijkstra for weighted graph and breadth-first-search (BFS) for unweighted graph) and uses this knowledge to estimate the closeness centrality of all vertices.

For more information, see [EDI2014].

INPUT:

- $G$ – an undirected connected Graph
- $k$ – integer (default: 1); number of random nodes to choose

OUTPUT:

A dictionary associating to each vertex its estimated closeness centrality.

EXAMPLES:

Estimation of the closeness centrality of the Petersen Graph when $k==n$:

```python
sage: from sage.graphs.centrality import centrality_closeness_random_k
sage: G = graphs.PetersenGraph()
sage: centrality_closeness_random_k(G, 10)
{0: 0.6, 1: 0.6, 2: 0.6, 3: 0.6, 4: 0.6, 5: 0.6, 6: 0.6, 7: 0.6, 8: 0.6, 9: 0.6}
```

sage.graphs.centrality.centrality_closeness_top_k(G, k=1, verbose=0)

Compute the $k$ vertices with largest closeness centrality.
The algorithm is based on performing a breadth-first-search (BFS) from each vertex, and to use bounds in order
to cut these BFSes as soon as possible. If $k$ is small, it is much more efficient than computing all centralities with `centrality_closeness()`. Conversely, if $k$ is close to the number of nodes, the running-time is approximately the same (it might even be a bit longer, because more computations are needed).

For more information, see [BCM15]. The algorithm does not work on weighted graphs.

**INPUT:**
- $G$ – a Sage Graph or DiGraph;
- $k$ – integer (default: 1); the algorithm will return the $k$ vertices with largest closeness centrality. This value should be between 1 and the number of vertices with positive (out)degree, because the closeness centrality is not defined for vertices with (out)degree 0. If $k$ is bigger than this value, the output will contain all vertices of positive (out)degree.
- `verbose` – integer (default: 0); define how “verbose” the algorithm should be. If 0, nothing is printed, if 1, we print only the performance ratio at the end of the algorithm, if 2, we print partial results every 1000 visits, if 3, we print partial results after every visit.

**OUTPUT:**
An ordered list of $k$ pairs ($closv, v$), where $v$ is one of the $k$ most central vertices, and $closv$ is its closeness centrality. If $k$ is bigger than the number of vertices with positive (out)degree, the list might be smaller.

**EXAMPLES:**

```sage
from sage.graphs.centrality import centrality_closeness_top_k
g = graphs.PathGraph(10)
centrality_closeness_top_k(g, 4, 1)
Final performance ratio: 0.7111111111111111...
[(0.36, 5),
 (0.36, 4),
 (0.3333333333333333, 6),
 (0.3333333333333333, 3)]

g = digraphs.Path(10)
centrality_closeness_top_k(g, 5, 1)
Final performance ratio: 0.4222222222222222...
[(0.2, 0),
 (0.19753086419753085, 1),
 (0.1944444444444444, 2),
 (0.19047619047619047, 3),
 (0.18518518518518517, 4)]
```

```sage
from sage.all import *
from sage.graphs.centrality import centrality_closeness_top_k
g = graphs.PathGraph(Integer(10))
centrality_closeness_top_k(g, Integer(4), Integer(1))
Final performance ratio: 0.7111111111111111...
[(0.36, 5),
 (0.36, 4),
 (0.3333333333333333, 6),
 (0.3333333333333333, 3)]

g = digraphs.Path(Integer(10))
centrality_closeness_top_k(g, Integer(5), Integer(1))
Final performance ratio: 0.4222222222222222...
[(0.2, 0),
 (0.19753086419753085, 1),
 (0.1944444444444444, 2),

(continues on next page)
5.4 Asteroidal triples

This module contains the following function:

\[\text{is_asteroidal_triple_free()}\]

Test if the input graph is asteroidal triple-free

5.4.1 Definition

Three independent vertices of a graph form an asteroidal triple if every two of them are connected by a path avoiding the neighborhood of the third one. A graph is asteroidal triple-free (AT-free, for short) if it contains no asteroidal triple [LB1962].

Use `graph_classes.AT_free.description()` to get some known properties of AT-free graphs, or visit this page.

5.4.2 Algorithm

This module implements the Straightforward algorithm recalled in [Koh2004] and due to [LB1962] for testing if a graph is AT-free or not. This algorithm has time complexity in \(O(n^3)\) and space complexity in \(O(n^2)\).

This algorithm uses the connected structure of the graph, stored into a \(n \times n\) matrix \(M\). This matrix is such that \(M[u][v] = 0\) if \(v \in (\{u\} \cup N(u))\), and otherwise \(M[u][v]\) is the unique identifier (a strictly positive integer) of the connected component of \(G \setminus (\{u\} \cup N(u))\) to which \(v\) belongs. This connected structure can be computed in time \(O(n(n + m))\) using \(n\) BFS.

Now, a triple \(u, v, w \in V\) is an asteroidal triple if and only if it satisfies \(M[u][v] = M[u][w]\) and \(M[v][u] = M[v][w]\) and \(M[w][u] = M[w][v]\), assuming all these values are positive. Indeed, if \(M[u][v] = M[u][w]\), \(v\) and \(w\) are in the same connected component of \(G \setminus (\{u\} \cup N(u))\), and so there is a path between \(v\) and \(w\) avoiding the neighborhood of \(u\). The algorithm iterates over all triples.

5.4.3 Functions

\[\text{sage.graphs.asteroidal_triples.is_asteroidal_triple_free}(G, \text{certificate}=False)\]

Test if the input graph is asteroidal triple-free

An independent set of three vertices such that each pair is joined by a path that avoids the neighborhood of the third one is called an asteroidal triple. A graph is asteroidal triple-free (AT-free) if it contains no asteroidal triples. See the module’s documentation for more details.

This method returns True if the graph is AT-free and False otherwise.

INPUT:

- G – a Graph
• certificate – boolean (default: False); by default, this method returns True if the graph is asteroidal triple-free and False otherwise. When certificate==True, this method returns in addition a list of three vertices forming an asteroidal triple if such a triple is found, and the empty list otherwise.

EXAMPLES:
The complete graph is AT-free, as well as its line graph:

```
sage: G = graphs.CompleteGraph(5)
sage: G.is_asteroidal_triple_free()
True
sage: G.is_asteroidal_triple_free(certificate=True)
(True, [])
sage: LG = G.line_graph()
sage: LG.is_asteroidal_triple_free()
True
sage: LLG = LG.line_graph()
sage: LLG.is_asteroidal_triple_free()
False
```

```
>>> from sage.all import *
>>> from sage.graphs.asteroidal_triples import *

>>> G = graphs.CompleteGraph(Integer(5))
>>> G.is_asteroidal_triple_free()
True
>>> G.is_asteroidal_triple_free(certificate=True)
(True, [])
>>> LG = G.line_graph()
>>> LG.is_asteroidal_triple_free()
True
>>> LLG = LG.line_graph()
>>> LLG.is_asteroidal_triple_free()
False
```

The PetersenGraph is not AT-free:

```
sage: from sage.graphs.asteroidal_triples import *
sage: G = graphs.PetersenGraph()
sage: G.is_asteroidal_triple_free()
False
sage: G.is_asteroidal_triple_free(certificate=True)
(False, [0, 2, 6])
```

```
>>> from sage.all import *
>>> from sage.graphs.asteroidal_triples import *

>>> G = graphs.PetersenGraph()
>>> G.is_asteroidal_triple_free()
False
>>> G.is_asteroidal_triple_free(certificate=True)
(False, [0, 2, 6])
```
5.5 Independent sets

This module implements the IndependentSets class which can be used to:

- List the independent sets (or cliques) of a graph
- Count them (which is obviously faster)
- Test whether a set of vertices is an independent set

It can also be restricted to focus on (inclusionwise) maximal independent sets. See the documentation of IndependentSets for actual examples.

5.5.1 Classes and methods

```
class sage.graphs.independent_sets.IndependentSets

Bases: object

The set of independent sets of a graph.

For more information on independent sets, see the Wikipedia article Independent_set_(graph_theory).

INPUT:

- G – a graph
- maximal – boolean (default: False); whether to only consider (inclusionwise) maximal independent sets.
- complement – boolean (default: False); whether to consider the graph’s complement (i.e. cliques instead of independent sets).

ALGORITHM:

The enumeration of independent sets is done naively: given an independent set, this implementation considers all ways to add a new vertex to it (while keeping it an independent set), and then creates new independent sets from all those that were created this way.

The implementation, however, is not recursive.

Note: This implementation of the enumeration of maximal independent sets is not much faster than NetworkX’, which is surprising as it is written in Cython. This being said, the algorithm from NetworkX appears to be slightly different from this one, and that would be a good thing to explore if one wants to improve the implementation.

A simple generalization can also be done without too much modifications: iteration through independent sets with given size bounds (minimum and maximum number of vertices allowed).

EXAMPLES:

Listing all independent sets of the Claw graph:
```
sage: from sage.graphs.independent_sets import IndependentSets
sage: g = graphs.ClawGraph()
sage: I = IndependentSets(g)
sage: list(I)
[[0], [1], [1, 2], [1, 2, 3], [1, 3], [2], [2, 3], [3], []]
```
>>> from sage.all import *
>>> from sage.graphs.independent_sets import IndependentSets

>>> g = graphs.ClawGraph()
>>> I = IndependentSets(g)
>>> list(I)
[[0], [1], [1, 2], [1, 2, 3], [1, 3], [2], [2, 3], [3], []]

Count them:

sage: I.cardinality()
9

List only the maximal independent sets:

sage: Im = IndependentSets(g, maximal=True)
sage: list(Im)
[[0], [1, 2, 3]]

And count them:

sage: Im.cardinality()
2

One can easily count the number of independent sets of each cardinality:

sage: g = graphs.PetersenGraph()
sage: number_of = [0] * g.order()
sage: for x in IndependentSets(g):
....:     number_of[len(x)] += 1
sage: number_of
[1, 10, 30, 30, 5, 0, 0, 0, 0, 0]

It is also possible to define an iterator over all independent sets of a given cardinality. Note, however, that Sage will generate them all, to return only those that satisfy the cardinality constraints. Getting the list of independent sets of size 4 in this way can thus take a very long time:
Given a subset of the vertices, it is possible to test whether it is an independent set:

```
sage: g = graphs.DurerGraph()
sage: I = IndependentSets(g)
sage: [0, 2] in I
True
sage: [0, 3, 5] in I
False
```

If an element of the subset is not a vertex, then an error is raised:

```
sage: [0, 'a', 'b', 'c'] in I
Traceback (most recent call last):
 ... ValueError: a is not a vertex of the graph
```

```cardinality()```

Compute and return the number of independent sets.

5.6 Cographs

A cograph is a \(P_4 \)-free graph, that is a graph without induced path of order 4. Any cograph may be constructed, starting from the single vertex graph, by a sequence of join and disjoint union operations. See the Wikipedia article Cograph for more details on this graph class, and OEIS sequence A000084 to know the number of cographs of order \(n \geq 1 \).

This module implements the following methods concerning cographs:

```
cographs() Return an iterator over the cographs of order \( n \).```

5.6. Cographs 1569
5.6.1 Methods

class sage.graphs.cographs.CoTree(name='root')

    Bases: object

    Generic cotree node.

    This data structure is used for the generation of cographs in \texttt{cographs()}. 

    \textbf{add_child}(\textit{node})

    Add cotree \textit{node} in the list of children of \textit{self}.

    INPUT:

    \begin{itemize}
    \item \textit{node} – a CoTree
    \end{itemize}

    \textbf{EXAMPLES:}

    \begin{verbatim}
    sage: from sage.graphs.cographs import CoTree
    sage: T = CoTree(J)
    sage: T.add_child(CoTree(1))
    sage: T
    [ J ( 1 ) ]
    \end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> from sage.graphs.cographs import CoTree
>>> T = CoTree('J')
>>> T.add_child(CoTree(1))
>>> T
[ J ( 1 ) ]
\end{verbatim}

\textbf{copy_tree}(\textit{T})

Make \textit{T} a copy of \textit{self}.

INPUT:

\begin{itemize}
\item \textit{T} – a CoTree
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: from sage.graphs.cographs import CoTree
 sage: T = CoTree('J')
 sage: T.add_child(CoTree(1))
 sage: T.add_child(CoTree(2))
 sage: T
 [ J ( 1 ) ( 2 ) ]
 sage: B = CoTree('U')
 sage: T.copy_tree(B)
 sage: B
 [ U ( 1 ) ( 2 ) ]
 \end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> from sage.graphs.cographs import CoTree
>>> T = CoTree('J')
>>> T.add_child(CoTree(1))
>>> T.add_child(CoTree(2))
>>> T
[ J ( 1 ) ( 2 ) ]
>>> B = CoTree('U')
\end{verbatim}

(continues on next page)
reset_info()  
Reset parameter info from all nodes of self.

EXAMPLES:

```python
sage: from sage.graphs.cographs import CoTree
game: T = CoTree(1)
sage: B = CoTree(2)
sage: T.add_child(B)
sage: C = CoTree(3)
sage: T.reset_info()
sage: C.info = 'info'
sage: C.info is None
```

```python
True
```

```python
sage: from sage.all import *
sage: from sage.graphs.cographs import CoTree
>>> T = CoTree(Integer(1))
>>> B = CoTree(Integer(2))
>>> T.add_child(B)
>>> C = CoTree(Integer(3))
>>> B.add_child(C)
```

```python
>>> C.info = 'info'
```

```python
```

```python
sage.graphs.cographs.change_label(tree, status, counter)
```

Set the names of the nodes of tree.

This is a helper method to method `cographs()`.

The input tree is such that each node has as label its number of children. This method changes the label of each node so that a parallel node is labeled ‘U’, a series node is labeled ‘J’ and a leaf node gets a unique number.

INPUT:

- `tree` -- the tree to relabel
- `status` -- boolean; used to detect series (True) and parallel (False) internal nodes
- `counter` -- list; the first integer of the list is used to assign a unique number to the leaves of the tree

EXAMPLES:

```python
sage: next(graphs.cographs(4, as_graph=True)).vertices() # indirect doctest
[0, 1, 2, 3]
```

```python
>>> from sage.all import *
```
sage.graphs.cographs.cographs(n, as_graph=True, immutable=False)

Return an iterator over the cographs of order \( n \).

A cograph is a \( P_4 \)-free graph, that is a graph without induced path of order 4. Any cograph may be constructed, starting from the single vertex graph, by a sequence of sage.graphs.graph.Graph.join() and sage.graphs.generic_graph.GenericGraph.disjoint_union() operations. See the Wikipedia article Cograph for more details.

This method implements the generator of all cographs of order \( n \) proposed in [JPD2018]. The algorithm generates one by one every cotree with \( n \) nodes, and each cotree is generated by using its previous cotree. The time to construct the first cotree is \( O(n) \) and the time spent between two consecutive outputs is \( O(n) \). Hence, the overall complexity of the algorithm is \( O(n \times M_n) \), where \( n \) is the number of nodes and \( M_n \) is the total number of cographs with \( n \) nodes (see OEIS sequence A000084).

INPUT:

- \( n \) – an integer larger or equal to 1
- as_graph – boolean (default: True); whether to return graphs or the tree data structure encoding the graph
- immutable – boolean (default: False); whether to return an immutable or a mutable graph. This parameter is used only when as_graph is True.

EXAMPLES:

The output can be either cotrees or graphs:

```
sage: for t in graphs.cographs(3, as_graph=False):
 : print(t)
[J { 0 } { 1 } { 2 }]
[J [U { 0 } { 1 } { 2 }]]
[J { 0 } [U { 1 } { 2 }]]
[J [U { 0 } [J { 1 } { 2 }]]]
sage: for g in graphs.cographs(3, as_graph=True):
 : print(g.edges(labels=False, sort=True))
[(0, 1), (0, 2), (1, 2)]
[]
[(0, 1), (0, 2)]
[(1, 2)]
```

Check that we agree with OEIS sequence A000084:

```
sage: [sum(1 for _ in graphs.cographs(n, as_graph=False))
 : for n in range(1, 8)]
[1, 2, 4, 10, 24, 66, 180]
```
sage.graphs.cographs.find_pivot($T$)
Search for a pivot node in $T$.
This is a helper method to method <code>cographs()</code>.
A node in $T$ is a pivot if it is not a leaf, it does not induce a maximum partition and it is the first such node in the inverse postorder traversal.

**INPUT:**
- $T$ – a CoTree

**EXAMPLES:**

```python
sage: next(graphs.cographs(3, as_graph=True)).vertices() # indirect doctest
[0, 1, 2]
```

sage.graphs.cographs.next_tree($T$)
Check if there is another tree after $T$.
This is a helper method to method <code>cographs()</code>.
This method returns <code>True</code> if there is a tree after $T$, and if so it modifies the input tree $T$ that becomes the next tree.

**INPUT:**
- $T$ – a CoTree

**EXAMPLES:**

```python
sage: next(graphs.cographs(3, as_graph=True)).vertices() # indirect doctest
[0, 1, 2]
```

sage.graphs.cographs.rebuild_node($u, P$)
Replace the subtree rooted at $u$ by a subtree induced by partition $P$.
This is a helper method to method <code>cographs()</code>.

**INPUT:**
- $u$ – a CoTree
- $P$ – a partition encoding the new structure of the children of $u$

**EXAMPLES:**

```python
>>> from sage.all import *
... for n in range(Integer(1), Integer(8))
[1, 2, 4, 10, 24, 66, 180]
```
```python
sage: next(graphs.cographs(3, as_graph=True)).vertices() # indirect doctest
[0, 1, 2]
```

```python
>>> from sage.all import *
>>> next(graphs.cographs(Integer(3), as_graph=True)).vertices() # indirect doctest
[0, 1, 2]
```

```python
sage.graphs.cographs.tree_to_graph(tree, immutable=False)
```

Return the cograph represented by tree.

This is a helper method to method `cographs()`.

**EXAMPLES:**

```python
sage: for t in graphs.cographs(3, as_graph=True): # indirect doctest
....:
 print(t.edges(labels=False, sort=True))
[(0, 1), (0, 2), (1, 2)]
[]
[(0, 1), (0, 2)]
[(1, 2)]
```

```python
>>> from sage.all import *
>>> for t in graphs.cographs(Integer(3), as_graph=True): # indirect doctest
... print(t.edges(labels=False, sort=True))
[(0, 1), (0, 2), (1, 2)]
[]
[(0, 1), (0, 2)]
[(1, 2)]
```

### 5.7 Comparability and permutation graphs

This module implements method related to Wikipedia article *Comparability_graph* and Wikipedia article *Permutation_graph*, that is, for the moment, only recognition algorithms.

Most of the information found here can also be found in [ST1994] or [Sha1997].

The following methods are implemented in this module:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_comparability_MILP()</code></td>
<td>Tests whether the graph is a comparability graph (MILP)</td>
</tr>
<tr>
<td><code>greedy_is_comparability()</code></td>
<td>Tests whether the graph is a comparability graph (greedy algorithm)</td>
</tr>
<tr>
<td><code>greedy_is_comparability_with_certificate()</code></td>
<td>Tests whether the graph is a comparability graph and returns certificates (greedy algorithm)</td>
</tr>
<tr>
<td><code>is_comparability()</code></td>
<td>Tests whether the graph is a comparability graph</td>
</tr>
<tr>
<td><code>is_permutation()</code></td>
<td>Tests whether the graph is a permutation graph.</td>
</tr>
<tr>
<td><code>is_transitive()</code></td>
<td>Tests whether the digraph is transitive.</td>
</tr>
</tbody>
</table>

**Author:**

- Nathann Cohen 2012-04
5.7.1 Graph classes

Comparability graphs

A graph is a comparability graph if it can be obtained from a poset by adding an edge between any two elements that are comparable. Co-comparability graph are complements of such graphs, i.e. graphs built from a poset by adding an edge between any two incomparable elements.

For more information on comparability graphs, see the Wikipedia article Comparability_graph.

Permutation graphs

Definitions:

• A permutation \( \pi = \pi_1\pi_2\ldots\pi_n \) defines a graph on \( n \) vertices such that \( i \sim j \) when \( \pi \) reverses \( i \) and \( j \) (i.e. when \( i < j \) and \( \pi_j < \pi_i \)). A graph is a permutation graph whenever it can be built through this construction.

• A graph is a permutation graph if it can be built from two parallel lines are the intersection graph of segments intersecting both lines.

• A graph is a permutation graph if it is both a comparability graph and a co-comparability graph.

For more information on permutation graphs, see the Wikipedia article Permutation_graph.

5.7.2 Recognition algorithm for comparability graphs

Greedy algorithm

This algorithm attempts to build a transitive orientation of a given graph \( G \), that is an orientation \( D \) such that for any directed \( uv \)-path of \( D \) there exists in \( D \) an edge \( uv \). This already determines a notion of equivalence between some edges of \( G \) :

In \( G \), two edges \( uv \) and \( uv' \) (incident to a common vertex \( u \)) such that \( vv' \notin G \) need necessarily be oriented the same way (that is that they should either both leave or both enter \( u \)). Indeed, if one enters \( G \) while the other leaves it, these two edges form a path of length two, which is not possible in any transitive orientation of \( G \) as \( vv' \notin G \).

Hence, we can say that in this case a directed edge \( uv \) is equivalent to a directed edge \( uv' \) (to mean that if one belongs to the transitive orientation, the other one must be present too) in the same way that \( vu \) is equivalent to \( v'u \). We can thus define equivalence classes on oriented edges, to represent set of edges that imply each other. We can thus define \( C^G_{uv} \) to be the equivalence class in \( G \) of the oriented edge \( uv \).

Of course, if there exists a transitive orientation of a graph \( G \), then no edge \( uv \) implies its contrary \( vu \), i.e. it is necessary to ensure that \( \forall uv \in G, vu \notin C^G_{uv} \). The key result on which the greedy algorithm is built is the following (see [ST1994]):

**Theorem** – The following statements are equivalent :

• \( G \) is a comparability graph

• \( \forall uv \in G, vu \notin C^G_{uv} \)

• The edges of \( G \) can be partitioned into \( B_1,\ldots, B_k \) where \( B_i \) is the equivalence class of some oriented edge in \( G - B_1 - \cdots - B_{i-1} \)

Hence, ensuring that a graph is a comparability graph can be done by checking that no equivalence class is contradictory. Building the orientation, however, requires to build equivalence classes step by step until an orientation has been found for all of them.

Mixed Integer Linear Program

A MILP formulation is available to check the other methods for correction. It is easily built :
To each edge are associated two binary variables (one for each possible direction). We then ensure that each triangle is transitively oriented, and that each pair of incident edges \( uv, u'v' \) such that \( vv' \notin G \) do not create a 2-path.

Here is the formulation:

Maximize : Nothing
Such that :
\[
\forall uv \in G \\
\cdot o_{uv} + o_{vu} = 1 \\
\forall u \in G, \forall v, v' \in N(v) \text{ such that } vv' \notin G \\
\cdot o_{uv} + o_{u'v} - o_{v'u} \leq 1 \\
\cdot o_{uv} + o_{v'u} - o_{v'v} \leq 1 \\
\forall u \in G, \forall v, v' \in N(v) \text{ such that } vv' \in G \\
\cdot o_{uv} + o_{u'v} \leq 1 \\
\cdot o_{uv} + o_{v'u} \leq 1 \\
o_{uv} \text{ is a binary variable}
\]

**Note:** The MILP formulation is usually much slower than the greedy algorithm. This MILP has been implemented to check the results of the greedy algorithm that has been implemented to check the results of a faster algorithm which has not been implemented yet.

### 5.7.3 Certificates

**Comparability graphs**

The *yes*-certificates that a graph is a comparability graphs are transitive orientations of it. The *no*-certificates, on the other hand, are odd cycles of such graph. These odd cycles have the property that around each vertex \( v \) of the cycle its two incident edges must have the same orientation (toward \( v \), or outward \( v \)) in any transitive orientation of the graph. This is impossible whenever the cycle has odd length. Explanations are given in the “Greedy algorithm” part of the previous section.

**Permutation graphs**

Permutation graphs are precisely the intersection of comparability graphs and co-comparability graphs. Hence, negative certificates are precisely negative certificates of comparability or co-comparability. Positive certificates are a pair of permutations that can be used through \( \text{PermutationGraph()} \) (whose documentation says more about what these permutations represent).

### 5.7.4 Implementation details

**Test that the equivalence classes are not self-contradictory**

This is done by a call to \( \text{Graph.is_bipartite()} \), and here is how:

Around a vertex \( u \), any two edges \( uv, u'v' \) such that \( vv' \notin G \) are equivalent. Hence, the equivalence class of edges around a vertex are precisely the connected components of the complement of the graph induced by the neighbors of \( u \).

In each equivalence class (around a given vertex \( u \)), the edges should all have the same orientation, i.e. all should go toward \( u \) at the same time, or leave it at the same time. To represent this, we create a graph with vertices for all equivalent classes around all vertices of \( G \), and link \((v, C)\) to \((u, C')\) if \( u \in C \) and \( v \in C' \).
A bipartite coloring of this graph with colors 0 and 1 tells us that the edges of an equivalence class $C$ around $u$ should be directed toward $u$ if $(u, C)$ is colored with 0, and outward if $(u, C)$ is colored with 1.

If the graph is not bipartite, this is the proof that some equivalence class is self-contradictory!

**Note:** The greedy algorithm implemented here is just there to check the correction of more complicated ones, and it is reaaaaaaaaaaallllly bad whenever you look at it with performance in mind.

### 5.7.5 Methods

```python
sage.graphs.comparability.greedy_is_comparability(g, no_certificate=False, equivalence_class=False)
```

Tests whether the graph is a comparability graph (greedy algorithm)

This method only returns no-certificates.

To understand how this method works, please consult the documentation of the `comparability module`

**INPUT:**

- `no_certificate` – whether to return a no-certificate when the graph is not a comparability graph. This certificate is an odd cycle of edges, each of which implies the next. It is set to `False` by default.

- `equivalence_class` – whether to return an equivalence class if the graph is a comparability graph.

**OUTPUT:**

- If the graph is a comparability graph and `no_certificate = False`, this method returns `True` or `(True, an_equivalence_class)` according to the value of `equivalence_class`.

- If the graph is not a comparability graph, this method returns `False` or `(False, odd_cycle)` according to the value of `no_certificate`.

**EXAMPLES:**

The Petersen Graph is not transitively orientable:

```python
sage: from sage.graphs.comparability import greedy_is_comparability as is_comparability
sage: g = graphs.PetersenGraph()
sage: is_comparability(g)
False
sage: is_comparability(g, no_certificate=True)
(False, [2, 1, 0, 4, 3, 2])
```

But the Bull graph is:
sage: g = graphs.BullGraph()
sage: is_comparability(g)
True

>>> from sage.all import *
>>> g = graphs.BullGraph()
>>> is_comparability(g)
True

sage.graphs.comparability.greedy_is_comparability_with_certificate(g, certificate=False)

Tests whether the graph is a comparability graph and returns certificates (greedy algorithm).

This method can return certificates of both yes and no answers.

To understand how this method works, please consult the documentation of the comparability module.

**INPUT:**

- certificate (boolean) – whether to return a certificate. Yes-answers the certificate is a transitive orientation of \( G \), and a no certificates is an odd cycle of sequentially forcing edges.

**EXAMPLES:**

The 5-cycle or the Petersen Graph are not transitively orientable:

sage: from sage.graphs.comparability import greedy_is_comparability_with_certificate
sage: is_comparability(graphs.CycleGraph(5), certificate=True)
(False, [2, 1, 0, 4, 3, 2])
sage: g = graphs.PetersenGraph()
sage: is_comparability(g)
False
sage: is_comparability(g, certificate=True)
(False, [2, 1, 0, 4, 3, 2])

But the Bull graph is:

sage: g = graphs.BullGraph()
sage: is_comparability(g)
True
sage: is_comparability(g, certificate=True)
(True, Digraph on 5 vertices)

sage: is_comparability(g, certificate=True)[1].is_transitive()
True
>>> from sage.all import *
>>> g = graphs.BullGraph()
>>> is_comparability(g)
True
>>> is_comparability(g, certificate = True)
(True, Digraph on 5 vertices)
>>> is_comparability(g, certificate = True)[Integer(1)].is_transitive()
True

sage.graphs.comparability.is_comparability(g, algorithm='greedy', certificate=False, check=True, solver=None, verbose=0)

Tests whether the graph is a comparability graph

INPUT:

- **algorithm** – choose the implementation used to do the test.
  - "greedy" – a greedy algorithm (see the documentation of the `comparability module`).
  - "MILP" – a Mixed Integer Linear Program formulation of the problem. Beware, for this implementation is unable to return negative certificates! When `certificate = True`, negative certificates are always equal to None. True certificates are valid, though.

- **certificate** (boolean) – whether to return a certificate. Yes-answers the certificate is a transitive orientation of $G$, and a no certificates is an odd cycle of sequentially forcing edges.

- **check** (boolean) – whether to check that the yes-certificates are indeed transitive. As it is very quick compared to the rest of the operation, it is enabled by default.

- **solver** – (default: None); Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method `solve()` of the class `MixedIntegerLinearProgram`.

- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

EXAMPLES:

```python
sage: from sage.graphs.comparability import is_comparability
sage: g = graphs.PetersenGraph()
(5, Digraph on 5 vertices)
```

- **sage.graphs.comparability.is_comparability_MILP** (g, certificate=False, solver=None, verbose=0)

Tests whether the graph is a comparability graph (MILP)

INPUT:

- **certificate** (boolean) – whether to return a certificate for yes instances. This method cannot return negative certificates.
• **solver** – (default: None): Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method `solve()` of the class `MixedIntegerLinearProgram`.

• **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

**EXAMPLES:**

The 5-cycle or the Petersen Graph are not transitively orientable:

```python
sage: from sage.graphs.comparability import is_comparability_MILP as is_comparability
sage: is_comparability(graphs.CycleGraph(5), certificate=True)
(False, None)
sage: g = graphs.PetersenGraph()
sage: is_comparability(g, certificate=True)
(False, None)
```

But the Bull graph is:

```python
sage: g = graphs.BullGraph()
sage: is_comparability(g)
True
sage: is_comparability(g, certificate=True)
(True, Digraph on 5 vertices)
```

```python
sage: is_comparability_MILP(g, algorithm='greedy', certificate=False, check=True, solver=None, verbose=0)
```

`sage.graphs.comparability.is_permutation`
Tests whether the graph is a permutation graph.

For more information on permutation graphs, refer to the documentation of the `comparability module`.

**INPUT:**

- **algorithm** – choose the implementation used for the subcalls to `is_comparability()`.
  - "greedy" – a greedy algorithm (see the documentation of the `comparability module`).
  - "MILP" – a Mixed Integer Linear Program formulation of the problem. Beware, for this implementation is unable to return negative certificates! When `certificate = True`, negative certificates are always equal to `None`. True certificates are valid, though.

- **certificate** (boolean) – whether to return a certificate for the answer given. For `True` answers the certificate is a permutation, for `False` answers it is a no-certificate for the test of comparability or co-comparability.

- **check** (boolean) – whether to check that the permutations returned indeed create the expected Permutation graph. Pretty cheap compared to the rest, hence a good investment. It is enabled by default.

- **solver** – (default: `None`): Specify a Linear Program (LP) solver to be used. If set to `None`, the default one is used. For more information on LP solvers and which default solver is used, see the method `solve()` of the class `MixedIntegerLinearProgram`.

- **verbose** – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

**Note:** As the `True` certificate is a `Permutation` object, the segment intersection model of the permutation graph can be visualized through a call to `Permutation.show`.

**EXAMPLES:**

A permutation realizing the bull graph:

```python
sage: from sage.graphs.comparability import is_permutation
sage: g = graphs.BullGraph()
sage: _, certif = is_permutation(g, certificate=True)

sage: h = graphs.PermutationGraph(*certif)
sage: h.is_isomorphic(g)
True
```

Plotting the realization as an intersection graph of segments:

```python
sage: true, perm = is_permutation(g, certificate=True)
sage: p1 = Permutation([nn+1 for nn in perm[0]])
sage: p2 = Permutation([nn+1 for nn in perm[1]])
sage: p = p2 * p1.inverse()
sage: p.show(representation="braid")
```

5.7. Comparability and permutation graphs 1581
sage.graphs.comparability.is_transitive(g, certificate=False)
Tests whether the digraph is transitive.
A digraph is transitive if for any pair of vertices \( u, v \in G \) linked by a \( uv \)-path the edge \( uv \) belongs to \( G \).

INPUT:

- certificate – whether to return a certificate for negative answers.
  - If \( \text{certificate} = \text{False} \) (default), this method returns True or False according to the graph.
  - If \( \text{certificate} = \text{True} \), this method either returns True answers or yield a pair of vertices \( uv \) such that there exists a \( uv \)-path in \( G \) but \( uv \notin G \).

EXAMPLES:

```python
sage: digraphs.Circuit(4).is_transitive()
False
sage: digraphs.Circuit(4).is_transitive(certificate=True)
(0, 2)
sage: digraphs.RandomDirectedGNP(30,.2).is_transitive()
False
sage: D = digraphs.DeBruijn(5, 2)
needs sage.combinat
sage: D.is_transitive()
needs sage.combinat
False
sage: cert = D.is_transitive(certificate=True)
needs sage.combinat
sage: D.has_edge(*cert)
needs sage.combinat
False
sage: bool(D.shortest_path(*cert))
needs sage.combinat
True
sage: digraphs.RandomDirectedGNP(20,.2).transitive_closure().is_transitive()
needs networkx
True
```
5.8 Line graphs

This module gather everything which is related to line graphs. Right now, this amounts to the following functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>line_graph()</code></td>
<td>Return the line graph of a given graph</td>
</tr>
<tr>
<td><code>is_line_graph()</code></td>
<td>Check whether a graph is a line graph</td>
</tr>
<tr>
<td><code>root_graph()</code></td>
<td>Return the root graph corresponding to the given graph</td>
</tr>
</tbody>
</table>

Author:

- Nathann Cohen (01-2013), `root_graph()` method and module documentation. Written while listening to Nina Simone “I wish I knew how it would feel to be free”. Crazy good song. And “Prendre ta douleur”, too.
- David Coudert (10-2018), use maximal cliques iterator in `root_graph()`, and use `root_graph()` instead of forbidden subgraph search in `is_line_graph()` (Issue #26444).

5.8.1 Definition

Given a graph $G$, the line graph $L(G)$ of $G$ is the graph such that

\[
\begin{align*}
V(L(G)) &= E(G) \\
E(L(G)) &= \{ (e, e') : \text{ and } e, e' \text{ have a common endpoint in } G \}
\end{align*}
\]

The definition is extended to directed graphs. In this situation, there is an arc $(e, e')$ in $L(G)$ if the destination of $e$ is the origin of $e'$.

For more information, see the Wikipedia article Line_graph.

5.8.2 Root graph

A graph whose line graph is $LG$ is called the root graph of $LG$. The root graph of a (connected) graph is unique ([Whi1932], [Har1969]), except when $LG = K_3$, as both $L(K_3)$ and $L(K_{1,3})$ are equal to $K_3$.

Here is how we can “see” $G$ by staring (very intently) at $LG$:

A graph $LG$ is the line graph of $G$ if there exists a collection $(S_v)_{v \in G}$ of subsets of $V(LG)$ such that:

- Every $S_v$ is a complete subgraph of $LG$.
- Every $v \in LG$ belongs to exactly two sets of the family $(S_v)_{v \in G}$.  

5.8. Line graphs
• Any two sets of \((S_v)_{v \in G}\) have at most one common element.
• For any edge \((u, v) \in LG\) there exists a set of \((S_v)_{v \in G}\) containing both \(u\) and \(v\).

In this family, each set \(S_v\) represent a vertex of \(G\), and contains “the set of edges incident to \(v\) in \(G\)”. Two elements \(S_v, S_{v'}\) have a nonempty intersection whenever \(vv'\) is an edge of \(G\).

Hence, finding the root graph of \(LG\) is the job of finding this collection of sets.

In particular, what we know for sure is that a maximal clique \(S\) of size \(2\) or \(\geq 4\) in \(LG\) corresponds to a vertex of degree \(|S|\) in \(G\), whose incident edges are the elements of \(S\) itself.

The main problem lies with maximal cliques of size \(3\), i.e. triangles. Those we have to split into two categories, \(even\) and \(odd\) triangles:

A triangle \(\{e_1, e_2, e_3\} \subseteq V(LG)\) is said to be an \(odd\) triangle if there exists a vertex \(e \in V(G)\) incident to exactly one or all of \(\{e_1, e_2, e_3\}\), and it is said to be \(even\) otherwise.

The very good point of this definition is that an inclusionwise maximal clique which is an odd triangle will always correspond to a vertex of degree \(3\) in \(G\), while an even triangle could result from either a vertex of degree \(3\) in \(G\) or a triangle in \(G\). And in order to build the root graph we obviously have to decide \(which\).

Beineke proves in [Bei1970] that the collection of sets we are looking for can be easily found. Indeed it turns out that it is the union of:

1. The family of all maximal cliques of \(LG\) of size \(2\) or \(\geq 4\), as well as all odd triangles.

2. The family of all pairs of adjacent vertices which appear in exactly one maximal clique which is an even triangle.

There are actually four special cases to which the decomposition above does not apply, i.e. graphs containing an edge which belongs to exactly two even triangles. We deal with those independently.

• The \(Complete\) graph \(K_3\).
• The \(Diamond\) graph – the line graph of \(K_{1,3}\) plus an edge.
• The \(Wheel\) graph on \(4 + 1\) vertices – the line graph of the \(Diamond\) graph
• The \(Octahedron\) – the line graph of \(K_4\).

This decomposition turns out to be very easy to implement :-)
If the graph is a line graph, the method returns a triple \((b, R, \text{isom})\) where \(b\) is True, \(R\) is a graph whose line graph is the graph given as input, and \(\text{isom}\) is a map associating an edge of \(R\) to each vertex of the graph.

**Note:** This method wastes a bit of time when the input graph is not connected. If you have performance in mind, it is probably better to only feed it with connected graphs only.

**See also:**

- The `line_graph` module.
- `line_graph_forbidden_subgraphs()` – the forbidden subgraphs of a line graph.
- `line_graph()`

**EXAMPLES:**

A complete graph is always the line graph of a star:

```
sage: graphs.CompleteGraph(5).is_line_graph()
True
```

```
>>> from sage.all import *

>>> graphs.CompleteGraph(Integer(5)).is_line_graph()
True
```

The Petersen Graph not being claw-free, it is not a line graph:

```
sage: graphs.PetersenGraph().is_line_graph()
False
```

```
>>> from sage.all import *

>>> graphs.PetersenGraph().is_line_graph()
False
```

This is indeed the subgraph returned:

```
sage: C = graphs.PetersenGraph().is_line_graph(certificate=True)[1] # needs sage.modules

sage: C.is_isomorphic(graphs.ClawGraph()) # needs sage.modules
True
```

```
>>> from sage.all import *

>>> C = graphs.PetersenGraph().is_line_graph(certificate=True)[Integer(1)] # needs sage.modules

>>> C.is_isomorphic(graphs.ClawGraph()) # needs sage.modules
True
```

The house graph is a line graph:

```
sage: g = graphs.HouseGraph()
sage: g.is_line_graph()
True
```
But what is the graph whose line graph is the house?:

```
sage: # needs sage.modules
sage: is_line, R, isom = g.is_line_graph(certificate=True)
's:DaHI~
sage: R.show()
Needs sage.plot
sage: isom
{0: (0, 1), 1: (0, 2), 2: (1, 3), 3: (2, 3), 4: (3, 4)}
```

```
sage.graphs.line_graph.line_graph(g, labels=True)
Return the line graph of the (di)graph g.

INPUT:

- labels - boolean (default: True); whether edge labels should be taken in consideration. If labels=True, the vertices of the line graph will be triples (u,v,label), and pairs of vertices otherwise.

The line graph of an undirected graph G is an undirected graph H such that the vertices of H are the edges of G and two vertices e and f of H are adjacent if e and f share a common vertex in G. In other words, an edge in H represents a path of length 2 in G.

The line graph of a directed graph G is a directed graph H such that the vertices of H are the edges of G and two vertices e and f of H are adjacent if e and f share a common vertex in G and the terminal vertex of e is the initial vertex of f. In other words, an edge in H represents a (directed) path of length 2 in G.

Note: As a Graph object only accepts hashable objects as vertices (and as the vertices of the line graph are the edges of the graph), this code will fail if edge labels are not hashable. You can also set the argument labels=False to ignore labels.

See also:

- The line_graph module.
- line_graph_forbidden_subgraphs() – the forbidden subgraphs of a line graph.
- is_line_graph() – tests whether a graph is a line graph.

EXAMPLES:
sage: g = graphs.CompleteGraph(4)
sage: h = g.line_graph()
sage: h.vertices(sort=True)
[(0, 1, None),
 (0, 2, None),
 (0, 3, None),
 (1, 2, None),
 (1, 3, None),
 (2, 3, None)]
sage: h.am() #...
\[\begin{array}{cccccc}
 0 & 1 & 1 & 1 & 1 & 0 \\
 1 & 0 & 1 & 1 & 0 & 1 \\
 1 & 1 & 0 & 0 & 1 & 1 \\
 1 & 1 & 0 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 & 0 & 1 \\
 0 & 1 & 1 & 1 & 1 & 0 \\
\end{array}\]
sage: h2 = g.line_graph(labels=False)
sage: h2.vertices(sort=True)
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: h2.am() == h.am() #...
True
sage: g = DiGraph([[1..4], lambda i,j: i < j])
sage: h = g.line_graph()
sage: h.vertices(sort=True)
[(1, 2, None),
 (1, 3, None),
 (1, 4, None),
 (2, 3, None),
 (2, 4, None),
 (3, 4, None)]
sage: h.edges(sort=True)
[((1, 2, None), (2, 3, None), None),
 ((1, 2, None), (2, 4, None), None),
 ((1, 3, None), (3, 4, None), None),
 ((2, 3, None), (3, 4, None), None)]

>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(4))
>>> h = g.line_graph()
>>> h.vertices(sort=True)
[(0, 1, None),
 (0, 2, None),
 (0, 3, None),
 (1, 2, None),
 (1, 3, None),
 (2, 3, None)]
>>> h.am() #...
\[\begin{array}{cccccc}
 0 & 1 & 1 & 1 & 1 & 0 \\
 1 & 0 & 1 & 1 & 0 & 1 \\
 1 & 1 & 0 & 0 & 1 & 1 \\
 1 & 1 & 0 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 & 0 & 1 \\
 0 & 1 & 1 & 1 & 1 & 0 \\
\end{array}\]

(continues on next page)
```python
>>> h2.vertices(sort=True)
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
>>> h2.am() == h.am()
˓→ needs sage.modules
True
>>> g = DiGraph([(ellipsis_range(Integer(1),Ellipsis,Integer(4))), lambda i,j: i --> j])
>>> h = g.line_graph()
>>> h.vertices(sort=True)
[(1, 2, None),
 (1, 3, None),
 (1, 4, None),
 (2, 3, None),
 (2, 4, None),
 (3, 4, None)]
>>> h.edges(sort=True)
[((1, 2, None), (2, 3, None), None),
 ((1, 2, None), (2, 4, None), None),
 ((1, 3, None), (3, 4, None), None),
 ((2, 3, None), (3, 4, None), None)]
```

`sage.graphs.line_graph.root_graph(g, verbose=False)`

Return the root graph corresponding to the given graph `g`.

See the documentation of `sage.graphs.line_graph` to know how it works.

INPUT:

- `g` – a graph
- `verbose` – boolean (default: `False`); display some information about what is happening inside of the algorithm.

Warning: This code assumes that `g` is a line graph, and is a connected, undirected graph without multiple edges.

5.9 Spanning trees

This module is a collection of algorithms on spanning trees. Also included in the collection are algorithms for minimum spanning trees. See the book [JNC2010] for descriptions of spanning tree algorithms, including minimum spanning trees.

See also:

- `GenericGraph.min_spanning_tree`

Todo:

- Parallel version of Boruvka's algorithm.
5.9.1 Methods

`sage.graphs.spanning_tree.boruvka(G, by_weight=True, weight_function=None, check_weight=True, check=False)`

Minimum spanning tree using Boruvka's algorithm.

This function assumes that we can only compute minimum spanning trees for undirected graphs. Such graphs can be weighted or unweighted, and they can have multiple edges (since we are computing the minimum spanning tree, only the minimum weight among all \((u, v)\)-edges is considered, for each pair of vertices \(u, v\)).

INPUT:

- \(G\) – an undirected graph.
- \(by_weight\) – boolean (default: True); if True, the edges in the graph are weighted; if False, all edges have weight 1.
- \(weight_function\) – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, \(by_weight\) is automatically set to True. If None and \(by_weight\) is True, we use the edge label \(l\), if \(l\) is not None, else 1 as a weight.
- \(check_weight\) – boolean (default: False); whether to check that the \(weight_function\) outputs a number for each edge
- \(check\) – boolean (default: False); whether to first perform sanity checks on the input graph \(G\). Default: \(check=False\). If we toggle \(check=True\), the following sanity checks are first performed on \(G\) prior to running Boruvka's algorithm on that input graph:
 - Is \(G\) the null graph or graph on one vertex?
 - Is \(G\) disconnected?
 - Is \(G\) a tree?

By default, we turn off the sanity checks for performance reasons. This means that by default the function assumes that its input graph is connected, and has at least one vertex. Otherwise, you should set \(check=True\) to perform some sanity checks and preprocessing on the input graph.

OUTPUT:

The edges of a minimum spanning tree of \(G\), if one exists, otherwise returns the empty list.

See also:

- `min_spanning_tree()`

EXAMPLES:

An example from pages 727–728 in [Sah2000]:

```
sage: from sage.graphs.spanning_tree import boruvka
sage: G = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:
    \rightarrow{6:25, 7:24}})
sage: G.weighted(True)
sage: E = boruvka(G, check=True); E
[(1, 6, 10), (2, 7, 14), (3, 4, 12), (4, 5, 22), (5, 6, 25), (2, 3, 16)]
sage: boruvka(G, by_weight=True)
[(1, 6, 10), (2, 7, 14), (3, 4, 12), (4, 5, 22), (5, 6, 25), (2, 3, 16)]
sage: sorted(boruvka(G, by_weight=False))
[(1, 2, 28), (1, 6, 10), (2, 3, 16), (2, 7, 14), (3, 4, 12), (4, 5, 22)]
```
```python
>>> from sage.all import *
>>> from sage.graphs.spanning_tree import boruvka

G = Graph({Integer(1):{Integer(2):Integer(28), Integer(6):Integer(10)},
    Integer(3):{Integer(3):Integer(16), Integer(7):Integer(14)}, Integer(4):
    {Integer(4):Integer(12), Integer(4):{Integer(5):Integer(22),
    Integer(7):Integer(18)}, Integer(7):Integer(18)}, Integer(5):{Integer(6):Integer(25),
    Integer(7):Integer(24)})

G.weighted(True)

E = boruvka(G, check=True); E
[(1, 6, 10), (2, 7, 14), (3, 4, 12), (4, 5, 22), (5, 6, 25), (2, 3, 16)]

boruvka(G, by_weight=True)
[(1, 6, 10), (2, 7, 14), (3, 4, 12), (4, 5, 22), (5, 6, 25), (2, 3, 16)]

sorted(boruvka(G, by_weight=False))
[(1, 2, 28), (1, 6, 10), (2, 3, 16), (2, 7, 14), (3, 4, 12), (4, 5, 22)]
```

An example with custom edge labels:

```python
sage: G = Graph([[[0,1,1],[1,2,1],[2,0,10]], weighted=True)
sage: weight = lambda e:3-e[0]-e[1]
sage: boruvka(G, weight_function=lambda e:3-e[0]-e[1], by_weight=True)
[(0, 2, 10), (1, 2, 1)]

sage: boruvka(G, weight_function=lambda e:float(1/e[2]), by_weight=True)
[(0, 2, 10), (0, 1, 1)]
```

An example of disconnected graph with check disabled:

```python
sage: from sage.graphs.spanning_tree import boruvka
sage: G = Graph({1:{2:28}, 3:{4:16}}, weighted=True)
sage: boruvka(G, check=False)
[]
```

```python
sage: from sage.all import *
>>> from sage.graphs.spanning_tree import boruvka

G = Graph({Integer(1):{Integer(2):Integer(28)}, Integer(3):
    {Integer(4):Integer(12), Integer(4):{Integer(5):Integer(22),
    Integer(7):Integer(18)}, Integer(7):Integer(18)}, Integer(5):{Integer(6):Integer(25),
    Integer(7):Integer(24)})

G.weighted(True)

E = boruvka(G, check=True); E
[(1, 6, 10), (2, 7, 14), (3, 4, 12), (4, 5, 22), (5, 6, 25), (2, 3, 16)]

boruvka(G, by_weight=True)
[(1, 6, 10), (2, 7, 14), (3, 4, 12), (4, 5, 22), (5, 6, 25), (2, 3, 16)]

sorted(boruvka(G, by_weight=False))
[(1, 2, 28), (1, 6, 10), (2, 3, 16), (2, 7, 14), (3, 4, 12), (4, 5, 22)]
```

An example of disconnected graph with check disabled:

```python
sage: from sage.graphs.spanning_tree import boruvka
sage: G = Graph({1:{2:28}, 3:{4:16}}, weighted=True)
sage: boruvka(G, check=False)
[]
```

```python
sage: from sage.all import *
>>> from sage.graphs.spanning_tree import boruvka

G = Graph({Integer(1):{Integer(2):Integer(28)}, Integer(3):
    {Integer(4):Integer(12), Integer(4):{Integer(5):Integer(22),
    Integer(7):Integer(18)}, Integer(7):Integer(18)}, Integer(5):{Integer(6):Integer(25),
    Integer(7):Integer(24)})

G.weighted(True)

E = boruvka(G, check=True); E
[(1, 6, 10), (2, 7, 14), (3, 4, 12), (4, 5, 22), (5, 6, 25), (2, 3, 16)]

boruvka(G, by_weight=True)
[(1, 6, 10), (2, 7, 14), (3, 4, 12), (4, 5, 22), (5, 6, 25), (2, 3, 16)]

sorted(boruvka(G, by_weight=False))
[(1, 2, 28), (1, 6, 10), (2, 3, 16), (2, 7, 14), (3, 4, 12), (4, 5, 22)]
```

sage.graphs.spanning_tree.edge_disjoint_spanning_trees(G, k, by_weight=False,
 weight_function=None, check_weight=True)

Return k edge-disjoint spanning trees of minimum cost.

This method implements the Roskind-Tarjan algorithm for finding k minimum-cost edge-disjoint spanning trees in simple undirected graphs [RT1985]. When edge weights are taken into account, the algorithm ensures that the sum
of the weights of the returned spanning trees is minimized. The time complexity of the algorithm is in \(O(k^2n^2)\) for the unweighted case and otherwise in \(O(m \log m + k^2n^2)\).

This method raises an error if the graph does not contain the requested number of spanning trees.

INPUT:

- \(G\) – a simple undirected graph
- \(k\) – the requested number of edge-disjoint spanning trees
- \(by_weight\) – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
- \(weight_function\) – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, \(by_weight\) is automatically set to True. If None and \(by_weight\) is True, we use the edge label \(l\), if \(l\) is not None, else 1 as a weight.
- \(check_weight\) – boolean (default: True); if True, we check that the \(weight_function\) outputs a number for each edge

EXAMPLES:

Example from [RT1985]:

```python
sage: from sage.graphs.spanning_tree import edge_disjoint_spanning_trees
sage: G = Graph({a: [b, c, d, e], b: [c, e], c: [d], d: [e]})
sage: F = edge_disjoint_spanning_trees(G, 2)
sage: F
[Graph on 5 vertices, Graph on 5 vertices]
sage: [f.is_tree() for f in F]
[True, True]
```

This method raises an error if the graph does not contain the required number of trees:

```python
sage: edge_disjoint_spanning_trees(G, 3)
Traceback (most recent call last):
... EmptySetError: this graph does not contain the required number of trees/
\rightarrow arborescences
```

```python
>>> from sage.all import *
>>> from sage.graphs.spanning_tree import edge_disjoint_spanning_trees
>>> G = Graph({a: [b, c, d, e], b: [c, e], c: [d], d: [e]})
>>> F = edge_disjoint_spanning_trees(G, Integer(3))
>>> F
[Graph on 5 vertices, Graph on 5 vertices]
```

```python
>>> [f.is_tree() for f in F]
[True, True]
```

A clique of order \(n\) has \([n/2]\) edge disjoint spanning trees:
sage: for n in range(1, 10):
 ...: g = graphs.CompleteGraph(n)
 ...: F = edge_disjoint_spanning_trees(g, n//2)

>>> from sage.all import *
>>> for n in range(Integer(1), Integer(10)):
... g = graphs.CompleteGraph(n)
... F = edge_disjoint_spanning_trees(g, n//Integer(2))

The sum of the weights of the returned spanning trees is minimum:

sage: g = graphs.CompleteGraph(5)
sage: for u, v in g.edges(sort=True, labels=False):
 ...: g.set_edge_label(u, v, 1)
sage: g.set_edge_label(0, 1, 33)
sage: g.set_edge_label(1, 3, 33)
sage: F = edge_disjoint_spanning_trees(g, 2, by_weight=True)
sage: sum(F[0].edge_labels()) + sum(F[1].edge_labels())
8

sage.graphs.spanning_tree.filter_kruskal(G, threshold=10000, by_weight=True,
weight_function=None, check_weight=True, check=False)

Minimum spanning tree using Filter Kruskal algorithm.

This function implements the variant of Kruskal’s algorithm proposed in [OSS2009]. Instead of directly sorting
the whole set of edges, it partitions it in a similar way to quicksort and filter out edges that connect vertices of the
same tree to reduce the cost of sorting.

This function assumes that we can only compute minimum spanning trees for undirected graphs. Such graphs can
be weighted or unweighted, and they can have multiple edges (since we are computing the minimum spanning tree,
only the minimum weight among all \((u, v)\)-edges is considered, for each pair of vertices \(u, v\)).

INPUT:

- **G** – an undirected graph
- **threshold** – integer (default: 10000); maximum number of edges on
 which to run kruskal algorithm. Above that value, edges are partitioned into sets of size at most
 threshold
- **by_weight** – boolean (default: True); if True, the edges in the graph are weighted; if False, all edges
 have weight 1.
- **weight_function** – function (default: None); a function that takes as input an edge \((u, v, l)\) and
 outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is
 True, we use the edge label 1, if 1 is not None, else 1 as a weight.
• check_weight – boolean (default: False); whether to check that the weight_function outputs a number for each edge

• check – boolean (default: False); whether to first perform sanity checks on the input graph G. Default: check=False. If we toggle check=True, the following sanity checks are first performed on G prior to running Kruskal’s algorithm on that input graph:
 – Is G the null graph?
 – Is G disconnected?
 – Is G a tree?
 – Does G have self-loops?
 – Does G have multiple edges?

OUTPUT:
The edges of a minimum spanning tree of G, if one exists, otherwise returns the empty list.

See also:

• sage.graphs.generic_graph.GenericGraph.min_spanning_tree()
• Wikipedia article Kruskal%27s_algorithm
• kruskal()
• filter_kruskal_iterator()

EXAMPLES:

```python
sage: from sage.graphs.spanning_tree import filter_kruskal
sage: G = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:
               →{6:25, 7:24}})
sage: G.weighted(True)
sage: filter_kruskal(G, check=True)
[(1, 6, 10), (3, 4, 12), (2, 7, 14), (2, 3, 16), (4, 5, 22), (5, 6, 25)]

sage: filter_kruskal(Graph(2), check=True)
[]
```

```plaintext
>>> from sage.all import *
>>> from sage.graphs.spanning_tree import filter_kruskal

>>> G = Graph({Integer(1):{Integer(2):Integer(28), Integer(6):Integer(10)},
              →Integer(2):{Integer(3):Integer(16), Integer(7):Integer(14)}, Integer(3):
              →{Integer(4):Integer(12)}, Integer(4):{Integer(5):Integer(22),
              →Integer(7):Integer(18)}, Integer(5):{Integer(6):Integer(25),
              →Integer(7):Integer(24)})

>>> G.weighted(True)

>>> filter_kruskal(G, check=True)
[(1, 6, 10), (3, 4, 12), (2, 7, 14), (2, 3, 16), (4, 5, 22), (5, 6, 25)]

>>> filter_kruskal(Graph(Integer(2)), check=True)
[]
```

sage.graphs.spanning_tree.filter_kruskal_iterator(G, threshold=10000, by_weight=True, weight_function=None, check_weight=True, check=False)

Return an iterator implementation of Filter Kruskal’s algorithm.
Graph Theory, Release 10.4

INPUT:

- \(G \) – an undirected graph
- \(\text{threshold} \) – integer (default: 10000); maximum number of edges on which to run kruskal algorithm. Above that value, edges are partitioned into sets of size at most \(\text{threshold} \)
- \(\text{by_weight} \) – boolean (default: True); if True, the edges in the graph are weighted; if False, all edges have weight 1.
- \(\text{weight_function} \) – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, \(\text{by_weight} \) is automatically set to True. If None and \(\text{by_weight} \) is True, we use the edge label 1, if 1 is not None, else 1 as a weight.
- \(\text{check_weight} \) – boolean (default: False); whether to check that the \(\text{weight_function} \) outputs a number for each edge
- \(\text{check} \) – boolean (default: False); whether to first perform sanity checks on the input graph \(G \). Default: \(\text{check}=\text{False} \). If we toggle \(\text{check}=\text{True} \), the following sanity checks are first performed on \(G \) prior to running Kruskal’s algorithm on that input graph:
 - Is \(G \) the null graph?
 - Is \(G \) disconnected?
 - Is \(G \) a tree?
 - Does \(G \) have self-loops?
 - Does \(G \) have multiple edges?

OUTPUT:

The edges of a minimum spanning tree of \(G \), one by one.

See also:

- \texttt{sage.graphs.generic_graph.GenericGraph.min_spanning_tree()}
- Wikipedia article Kruskal’s algorithm
- \texttt{kruskal()}
- \texttt{filter_kruskal()}

EXAMPLES:

The edges of a minimum spanning tree of \(G \), if one exists, otherwise returns the empty list.

\[
\begin{align*}
\textit{sage: } & \texttt{from sage.graphs.spanning_tree import filter_kruskal_iterator} \\
\textit{sage: } & \texttt{G = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:} \\
& \hspace{10em} {6:25, 7:24}}) \\
\textit{sage: } & \texttt{G.weighted(True)} \\
\textit{sage: } & \texttt{list(filter_kruskal_iterator(G, threshold=3, check=True))} \\
& [(1, 6, 10), (3, 4, 12), (2, 7, 14), (2, 3, 16), (4, 5, 22), (5, 6, 25)]
\end{align*}
\]

\[
\begin{align*}
\textit{>>> from sage.all import } * \\
\textit{>>> from sage.graphs.spanning_tree import filter_kruskal_iterator} \\
\textit{>>> G = Graph({Integer(1):{Integer(2):Integer(28), Integer(6):Integer(10)},} \\
& \hspace{10em} {Integer(2):{Integer(3):Integer(16), Integer(7):Integer(14)}, Integer(3):} \\
& \hspace{20em} {Integer(4):Integer(12), Integer(4):{Integer(5):Integer(22),} \\
& \hspace{30em} {Integer(7):Integer(18)}, Integer(5):{Integer(6):Integer(25),} \\
& \hspace{40em} ...}
\end{align*}
\]

(continues on next page)
The weights of the spanning trees returned by \texttt{kruskal_iterator()} and \texttt{filter_kruskal_iterator()} are the same:

```python
sage: # needs networkx
sage: from sage.graphs.spanning_tree import kruskal_iterator
sage: G = graphs.RandomBarabasiAlbert(50, 2)
```

```python
def __init__(self, G, by_weight=True, weight_function=None, check_weight=False, check=False):
    Minimum spanning tree using Kruskal\'s algorithm.
```

This function assumes that we can only compute minimum spanning trees for undirected graphs. Such graphs can be weighted or unweighted, and they can have multiple edges (since we are computing the minimum spanning tree, only the minimum weight among all (u, v)-edges is considered, for each pair of vertices u, v).

INPUT:

- \texttt{G} – an undirected graph
- \texttt{by_weight} – boolean (default: True); if True, the edges in the graph are weighted; if False, all edges have weight 1.
- \texttt{weight_function} – function (default: None); a function that takes as input an edge (u, v, l) and outputs its weight. If not None, \texttt{by_weight} is automatically set to True. If None and \texttt{by_weight} is True, we use the edge label l, if l is not None, else 1 as a weight.
- \texttt{check_weight} – boolean (default: False); whether to check that the weight_function outputs a number for each edge
- \texttt{check} – boolean (default: False); whether to first perform sanity checks on the input graph \texttt{G}. Default: \texttt{check=False}. If we toggle \texttt{check=True}, the following sanity checks are first performed on \texttt{G} prior to running Kruskal\'s algorithm on that input graph:
 - Is \texttt{G} the null graph?
 - Is \texttt{G} disconnected?

5.9. Spanning trees
– Is G a tree?
– Does G have self-loops?
– Does G have multiple edges?

By default, we turn off the sanity checks for performance reasons. This means that by default the function assumes that its input graph is connected, and has at least one vertex. Otherwise, you should set `check=True` to perform some sanity checks and preprocessing on the input graph. If G has multiple edges or self-loops, the algorithm still works, but the running-time can be improved if these edges are removed. To further improve the runtime of this function, you should call it directly instead of using it indirectly via `sage.graphs.generic_graph.GenericGraph.min_spanning_tree()`.

OUTPUT:
The edges of a minimum spanning tree of G, if one exists, otherwise returns the empty list.

See also:

• `sage.graphs.generic_graph.GenericGraph.min_spanning_tree()`
• `kruskal_iterator()`
• `filter_kruskal()` and `filter_kruskal_iterator()`

EXAMPLES:
An example from pages 727–728 in [Sah2000].

```
sage: from sage.graphs.spanning_tree import kruskal
    →{6:25, 7:24}})
sage: G.weighted(True)
sage: E = kruskal(G, check=True); E
[(1, 6, 10), (3, 4, 12), (2, 7, 14), (2, 3, 16), (4, 5, 22), (5, 6, 25)]
```

Variants of the previous example.

```
sage: H = Graph(G.edges(sort=True, labels=False))
sage: kruskal(H, check=True)
[(1, 2, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 4, None), (4, 5,...
    →None)]
sage: G.allow_loops(True)
sage: G.allow_multiple_edges(True)
sage: G
Looped multi-graph on 7 vertices
sage: for i in range(20):
    ....: u = randint(1, 7)
    ....: v = randint(1, 7)
```

(continues on next page)
....: w = randint(0, 20)
....: G.add_edge(u, v, w)
sage: H = copy(G)
sage: H
Looped multi-graph on 7 vertices
sage: def sanitize(G):
....: G.allow_loops(False)
....: G.allow_multiple_edges(False, keep_label='min')
sage: sanitize(H)
sage: H
Graph on 7 vertices
sage: sum(e[2] for e in kruskal(G, check=True)) == sum(e[2] for e in kruskal(H,...
˓→check=True))
True

>>> from sage.all import *
>>> H = Graph(G.edges(sort=True, labels=False))
>>> kruskal(H, check=True)
[(1, 2, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 4, None), (4, 5,...
˓→None)]
>>> G.allow_loops(True)
>>> G.allow_multiple_edges(True)
>>> G
Looped multi-graph on 7 vertices
>>> for i in range(Integer(20)):
... u = randint(Integer(1), Integer(7))
... v = randint(Integer(1), Integer(7))
... w = randint(Integer(0), Integer(20))
... G.add_edge(u, v, w)
>>> H = copy(G)
>>> H
Looped multi-graph on 7 vertices
>>> def sanitize(G):
... G.allow_loops(False)
... G.allow_multiple_edges(False, keep_label='min')
>>> sanitize(H)
>>> H
Graph on 7 vertices
>>> sum(e[Integer(2)] for e in kruskal(G, check=True)) == sum(e[Integer(2)] for e...
˓→in kruskal(H, check=True))
True

An example from pages 599–601 in [GT2001].

sage: G = Graph({"SFO":{"BOS":2704, "ORD":1846, "DFW":1464, "LAX":337},
....: "BOS":{"ORD":867, "JFK":187, "MIA":1258},
....: "ORD":{"PVD":849, "JFK":740, "BWI":621, "DFW":802},
....: "DFW":{"JFK":1391, "MIA":1121, "LAX":1235},
....: "LAX":{"MIA":2342},
....: "PVD":{"JFK":144},
....: "JFK":{"MIA":1090, "BWI":184},
....: "BWI":{"MIA":946}})
sage: G.weighted(True)
sage: kruskal(G, check=True)
[("JFK", "PVD", 144),
 ("BWI", "JFK", 184),
 ("MIA", "BWI", 184),
 ("MIA", "DFW", 802),
 ("JFK", "BWI", 621),
 ("DFW", "JFK", 1391),
 ("LAX", "MIA", 2342),
 ("LAX", "DFW", 1235),
 ("MIA", "ORD", 1258),
 ("ORD", "BOS", 2704),
 ("BOS", "DFW", 1464),
 ("JFK", "MIA", 1090),
 ("JFK", "ORD", 867),
 ("PVD", "JFK", 740),
 ("BWI", "MIA", 946),
 ("MIA", "LAX", 1121),
 ("LAX", "MIA", 2342)}

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> from sage.all import *

>>> G = Graph({"SFO":{"BOS":Integer(2704), "ORD":Integer(1846), "DFW":Integer(1464), "LAX":Integer(337), "JFK":Integer(187), "MIA":Integer(1258), "ORD":Integer(867), "BWI":Integer(621), "DFW":Integer(802), "BWI":Integer(946), "DFW":Integer(1235), ...
```

An example from pages 568–569 in [CLRS2001].

```python
sage: G = Graph({"a":{"b":4, "h":8}, "b":{"c":8, "h":11}, 
.....: "d":("e":9, "f":14), 
.....: "g":("i":6, "h":{"i":7})
```

```python
sage: G.weighted(True)
```

```python
sage: T = Graph(kruskal(G, check=True), format='list_of_edges')
```

```python
sage: sum(T.edge_labels())
37
```

```python
sage: T.is_tree()
```

True

An example with custom edge labels:

```python
>>> from sage.all import *

```
sage: G = Graph([[0,1,1],[1,2,1],[2,0,10]], weighted=True)
sage: weight = lambda e:3-e[0]-e[1]
sage: sorted(kruskal(G, check=True))
[(0, 1, 1), (1, 2, 1)]
sage: sorted(kruskal(G, weight_function=weight, check=True))
[(0, 2, 10), (1, 2, 1)]
sage: sorted(kruskal(G, weight_function=weight, check=False))
[(0, 2, 10), (1, 2, 1)]

>>> from sage.all import *
>>> G = Graph([[Integer(0),Integer(1),Integer(1)],[Integer(1),Integer(2),
 →Integer(1)], [Integer(0),Integer(10)]], weighted=True)
>>> weight = lambda e:Integer(3)-e[Integer(0)]-e[Integer(1)]
>>> sorted(kruskal(G, check=True))
[(0, 1, 1), (1, 2, 1)]
>>> sorted(kruskal(G, weight_function=weight, check=True))
[(0, 2, 10), (1, 2, 1)]
>>> sorted(kruskal(G, weight_function=weight, check=False))
[(0, 2, 10), (1, 2, 1)]

sage.graphs.spanning_tree.kruskal_iterator(G, by_weight=True, weight_function=None,
check_weight=False, check=False)

Return an iterator implementation of Kruskal algorithm.

INPUT:

- G – an undirected graph
- by_weight – boolean (default: True); if True, the edges in the graph are weighted; if False, all edges have weight 1.
- weight_function – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\), if \(l\) is not None, else 1 as a weight.
- check_weight – boolean (default: False); whether to check that the weight_function outputs a number for each edge
- check – boolean (default: False); whether to first perform sanity checks on the input graph G. Default: check=False. If we toggle check=True, the following sanity checks are first performed on G prior to running Kruskal’s algorithm on that input graph:
 - Is G the null graph?
 - Is G disconnected?
 - Is G a tree?
 - Does G have self-loops?
 - Does G have multiple edges?

By default, we turn off the sanity checks for performance reasons. This means that by default the function assumes that its input graph is connected, and has at least one vertex. Otherwise, you should set check=True to perform some sanity checks and preprocessing on the input graph. If G has multiple edges or self-loops, the algorithm still works, but the running-time can be improved if these edges are removed. To further improve the runtime of this function, you should call it directly instead of using it indirectly via sage.graphs.generic_graph.GenericGraph.min_spanning_tree().

OUTPUT:
The edges of a minimum spanning tree of G, one by one.

See also:

kruskal()

EXAMPLES:

```python
sage: from sage.graphs.spanning_tree import kruskal_iterator
sage: G = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:
→{6:25, 7:24}})
```

```python
sage: G.weighted(True)
```

```python
sage: next(kruskal_iterator(G, check=True))
```

(1, 6, 10)

```python
>>> from sage.all import *
```

```python
>>> from sage.graphs.spanning_tree import kruskal_iterator
```

```python
>>> G = Graph({Integer(1): {Integer(2): Integer(28), Integer(6): Integer(10)}, ...
→Integer(2): {Integer(3): Integer(16), Integer(7): Integer(14)}, Integer(3):
→{Integer(4): Integer(12)}, Integer(4): {Integer(5): Integer(22), ...
→Integer(7): Integer(18)}, Integer(5): {Integer(6): Integer(25), ...
→Integer(7): Integer(24)})
```

```python
>>> G.weighted(True)
```

```python
>>> next(kruskal_iterator(G, check=True))
```

(1, 6, 10)

`sage.graphs.spanning_tree.kruskal_iterator_from_edges(edges, union_find, by_weight=True, weight_function=None, check_weight=False)`

Return an iterator implementation of Kruskal algorithm on list of edges.

INPUT:

- `edges` – list of edges
- `union_find` – a `DisjointSet_of_hashables` encoding a forest
- `by_weight` – boolean (default: `True`); if `True`, the edges in the graph are weighted; if `False`, all edges have weight 1.
- `weight_function` – function (default: `None`); a function that takes as input an edge (u, v, l) and outputs its weight. If `None`, `by_weight` is automatically set to `True`. If `None` and `by_weight` is `True`, we use the edge label l, if l is not `None`, else 1 as a weight.
- `check_weight` – boolean (default: `False`); whether to check that the `weight_function` outputs a number for each edge

OUTPUT:

The edges of a minimum spanning tree of G, one by one.

See also:

- *kruskal()*
- *filter_kruskal()*

EXAMPLES:
sage: from sage.graphs.spanning_tree import kruskal_iterator_from_edges

sage: G.weighted(True)
sage: union_set = DisjointSet(G)
sage: next(kruskal_iterator_from_edges(G.edges(sort=False), union_set, by_weight=G.weighted()))
(1, 6, 10)

>>> from sage.all import *
>>> from sage.graphs.spanning_tree import kruskal_iterator_from_edges
>>> G = Graph((Integer(1),{Integer(2):Integer(28), Integer(6):Integer(10)},...
− Integer(2):{Integer(3):Integer(16), Integer(7):Integer(14)}, Integer(3):
− {Integer(4):Integer(12)}, Integer(4):{Integer(5):Integer(22)},...
→ Integer(7):{Integer(18)}, Integer(5):{Integer(6):Integer(25)},...
→ Integer(7):{Integer(24)}))

sage: G.weighted(True)

sage: union_set = DisjointSet(G)
sage: next(kruskal_iterator_from_edges(G.edges(sort=False), union_set, by_weight=G.weighted()))
(1, 6, 10)

Check that the method is robust to incomparable vertices:

sage: G = Graph((1, 2, 10), (1, 'a', 1), ('a', 'b', 1), ('b', 2, 1))
sage: union_set = DisjointSet(G)
sage: E = list(kruskal_iterator_from_edges(G.edges(sort=False), union_set, by_weight=True))
sage: sum(w for _, _, w in E)
3

>>> from sage.all import *
>>> G = Graph((Integer(1), {Integer(2): Integer(10}), {Integer(1), 'a',...
−→ Integer(1), ('a', 'b', Integer(1), ('b', Integer(2), Integer(1))])

sage: union_set = DisjointSet(G)

sage: E = list(kruskal_iterator_from_edges(G.edges(sort=False), union_set, by_weight=True))

sage: sum(w for _, _, w in E)
3

sage.graphs.spanning_tree.random_spanning_tree(G, output_as_graph=False, by_weight=False, weight_function=None, check_weight=True)

Return a random spanning tree of the graph.

This uses the Aldous-Broder algorithm ([Bro1989], [Ald1990]) to generate a random spanning tree with the uniform distribution, as follows.

Start from any vertex. Perform a random walk by choosing at every step one neighbor uniformly at random. Every time a new vertex \(j \) is met, add the edge \((i, j)\) to the spanning tree, where \(i \) is the previous vertex in the random walk.

When by_weight is True or a weight function is given, the selection of the neighbor is done proportionally to the edge weights.

INPUT:

• G – an undirected graph
• output_as_graph – boolean (default: False): whether to return a list of edges or a graph
Graph Theory, Release 10.4

- **by_weight** – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
- **weight_function** – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\), if \(l\) is not None, else 1 as a weight. The weight_function can be used to transform the label into a weight (note that, if the weight returned is not convertible to a float, an error is raised)
- **check_weight** – boolean (default: True); whether to check that the weight_function outputs a number for each edge.

See also:

spanning_trees_count() and *spanning_trees()*

EXAMPLES:

```python
sage: G = graphs.TietzeGraph()
sage: G.random_spanning_tree(output_as_graph=True)
Graph on 12 vertices
sage: rg = G.random_spanning_tree(); rg # random
[(0, 9),
 (9, 11),
 (0, 8),
 (8, 7),
 (7, 6),
 (7, 2),
 (2, 1),
 (1, 5),
 (9, 10),
 (5, 4),
 (2, 3)]
sage: Graph(rg).is_tree()
True
```

```python
>>> from sage.all import *
>>> G = graphs.TietzeGraph()
>>> G.random_spanning_tree(output_as_graph=True)
Graph on 12 vertices
>>> rg = G.random_spanning_tree(); rg # random
[(0, 9),
 (9, 11),
 (0, 8),
 (8, 7),
 (7, 6),
 (7, 2),
 (2, 1),
 (1, 5),
 (9, 10),
 (5, 4),
 (2, 3)]
>>> Graph(rg).is_tree()
True
```

A visual example for the grid graph:

```python
sage: G = graphs.Grid2dGraph(6, 6)
sage: pos = G.get_pos()
(continues on next page)
```
sage: T = G.random_spanning_tree(True)
sage: T.set_pos(pos)
sage: T.show(vertex_labels=False) # needs sage.plot

>>> from sage.all import *
>>> G = graphs.Grid2dGraph(Integer(6), Integer(6))
>>> pos = G.get_pos()
>>> T = G.random_spanning_tree(True)
>>> T.set_pos(pos)
>>> T.show(vertex_labels=False) # needs sage.plot

We can also use edge weights to change the probability of returning a spanning tree:

sage: def foo(G, k):
....: S = set()
....: for _ in range(k):
....: E = G.random_spanning_tree(by_weight=True)
....: S.add(Graph(E).graph6_string())
....: return S
sage: foo(K3, 100) == {'B\text{W}', 'Bg', 'Bo'} # random
True
sage: foo(K4, 100) == {'B\text{W}', 'Bg', 'Bo'} # random
True

Check that the spanning tree returned when using weights is a tree:

sage: # needs networkx
sage: G = graphs.RandomBarabasiAlbert(50, 2)
sage: for u, v in G.edge_iterator(labels=False):
....: G.set_edge_label(u, v, randint(1, 10))
sage: T = G.random_spanning_tree(by_weight=True, output_as_graph=True)
sage: T.is_tree()
True

```python
>>> from sage.all import *
>>> # needs networkx
>>> G = graphs.RandomBarabasiAlbert(Integer(50), Integer(2))
>>> for u, v in G.edge_iterator(labels=False):
...     G.set_edge_label(u, v, randint(Integer(1), Integer(10)))
>>> T = G.random_spanning_tree(by_weight=True, output_as_graph=True)
>>> T.is_tree()
True
```

```
sage.graphs.spanning_tree.spanning_trees(g, labels=False)
```

Return an iterator over all spanning trees of the graph \(g \).

A disconnected graph has no spanning tree.

Uses the Read-Tarjan backtracking algorithm [RT1975a].

INPUT:

- `labels` – boolean (default: False); whether to return edges labels in the spanning trees or not

EXAMPLES:

```
sage: G = Graph([(1,2),(1,2),(1,3),(1,3),(2,3),(1,4)], multiedges=True)
sage: len(list(G.spanning_trees()))
8

sage: G.spanning_trees_count()
# needs sage.modules
˓→8

sage: G = Graph([(Integer(1),Integer(2)),(Integer(1),Integer(2)),(Integer(1),Integer(3)),(Integer(1),Integer(3)),(Integer(2),Integer(3)),(Integer(2),Integer(3))], multiedges=True)
sage: len(list(G.spanning_trees()))
8

sage: G.spanning_trees_count()
# needs sage.modules
˓→8
```

```
>>> from sage.all import *
>>> # needs networkx
>>> G = Graph([(Integer(1),Integer(2)),(Integer(1),Integer(2)),(Integer(1),Integer(3)),(Integer(1),Integer(3)),(Integer(2),Integer(3)),(Integer(2),Integer(3))], multiedges=True)
>>> len(list(G.spanning_trees()))
8

>>> G.spanning_trees_count()
˓→8
```

See also:
• `spanning_trees_count()` – counts the number of spanning trees
• `random_spanning_tree()` – returns a random spanning tree

5.10 PQ-Trees

This module implements PQ-Trees, a data structure use to represent all permutations of the columns of a matrix which satisfy the *consecutive ones property*:

A binary matrix satisfies the *consecutive ones property* if the 1s are contiguous in each of its rows (or equivalently, if no row contains the regexp pattern `1*0`).

Alternatively, one can say that a sequence of sets $S_1, ..., S_n$ satisfies the *consecutive ones property* if for any x the indices of the sets containing x is an interval of $[1, n]$.

This module is used for the recognition of Interval Graphs (see `is_interval()`).

P-tree and Q-tree

- A P-tree with children $c_1, ..., c_k$ (which can be P-trees, Q-trees, or actual sets of points) indicates that all $k!$ permutations of the children are allowed.

 Example: $\{1, 2\}, \{3, 4\}, \{5, 6\}$ (disjoint sets can be permuted in any way)

- A Q-tree with children $c_1, ..., c_k$ (which can be P-trees, Q-trees, or actual sets of points) indicates that only two permutations of its children are allowed: $c_1, ..., c_k$ or $c_k, ..., c_1$.

 Example: $\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 6\}$ (only two permutations of these sets have the *consecutive ones property*).

Computation of all possible orderings

1. In order to compute all permutations of a sequence of sets $S_1, ..., S_k$ satisfying the *consecutive ones property*, we initialize T as a P-tree whose children are all the $S_1, ..., S_k$, thus representing the set of all $k!$ permutations of them.

2. We select some element x and update the data structure T to restrict the permutations it describes to those that keep the occurrences of x on an interval of $[1, ..., k]$. This will result in a new P-tree whose children are:
 - all c_x sets S_i which do not contain x.
 - a new P-tree whose children are the c_x sets S_i containing x.

 This describes the set of all $c_x! \times \bar{c}_x!$ permutations of $S_1, ..., S_k$ that keep the sets containing x on an interval.

3. We take a second element x' and update the data structure T to restrict the permutations it describes to those that keep x' on an interval of $[1, ..., k]$. The sets $S_1, ..., S_k$ belong to 4 categories:
 - The family S_{00} of sets which do not contain any of x, x'.
 - The family S_{01} of sets which contain x' but do not contain x.
 - The family S_{10} of sets which contain x but do not contain x'.
 - The family S_{11} of sets which contain x' and x'.

 With these notations, the permutations of $S_1, ..., S_k$ which keep the occurrences of x and x' on an interval are of two forms:
 - $<\text{some sets } S_{00}>, <\text{sets from } S_{10}>, <\text{sets from } S_{11}>, <\text{sets from } S_{01}>, <\text{other sets from } S_{00}>$
 - $<\text{some sets } S_{00}>, <\text{sets from } S_{01}>, <\text{sets from } S_{11}>, <\text{sets from } S_{10}>, <\text{other sets from } S_{00}>$

 These permutations can be modeled with the following PQ-tree:
• A P-tree whose children are:
 – All sets from S_{00}
 – A Q-tree whose children are:
 * A P-tree with whose children are the sets from S_{10}
 * A P-tree with whose children are the sets from S_{11}
 * A P-tree with whose children are the sets from S_{01}

4. One at a time, we update the data structure with each element until they are all exhausted, or until we reach a proof that no permutation satisfying the consecutive ones property exists.

Using these two types of tree, and exploring the different cases of intersection, it is possible to represent all the possible permutations of our sets satisfying our constraints, or to prove that no such ordering exists. This is the whole purpose of this module, and is explained with more details in many places, for example in the following document from Hajiaghayi [Haj2000].

Authors:
Nathann Cohen (initial implementation)

5.10.1 Methods and functions

```python
class sage.graphs.pq_trees.P(seq)
Bases: PQ

A P-Tree is a PQ-Tree whose children can be permuted in any way.

For more information, see the documentation of sage.graphs.pq_trees.

_cardinality_()

Return the number of orderings allowed by the structure.

See also:

_orderings_() – iterate over all admissible orderings

EXAMPLES:

```
orderings()

Iterate over all orderings of the sets allowed by the structure.

See also:

cardinality() — return the number of orderings

EXAMPLES:

sage: from sage.graphs.pq_trees import P, Q
sage: p = P([[2, 4], [1, 2], [0, 8], [0, 5]])
 sage: for o in p.orderings():
 : print(o)
 ({2, 4}, {1, 2}, {0, 8}, {0, 5})
 ({2, 4}, {1, 2}, {0, 5}, {0, 8})
 ({2, 4}, {0, 8}, {1, 2}, {0, 5})
 ({2, 4}, {0, 8}, {0, 5}, {1, 2})
 ...

set_contiguous(v)

Updates self so that the sets containing v are contiguous for any admissible permutation of its subtrees.

INPUT:

• v — an element of the ground set

OUTPUT:

According to the cases:

• (EMPTY, ALIGNED) if no set of the tree contains an occurrence of v
• (FULL, ALIGNED) if all the sets of the tree contain v
• (PARTIAL, ALIGNED) if some (but not all) of the sets contain v, all of which are aligned to the right of the ordering at the end when the function ends
• (PARTIAL, UNALIGNED) if some (but not all) of the sets contain v, though it is impossible to align them all to the right

In any case, the sets containing v are contiguous when this function ends. If there is no possibility of doing so, the function raises a ValueError exception.

EXAMPLES:

Ensuring the sets containing 0 are continuous:
```python
from sage.graphs.pq_trees import P, Q
p = P([[0,3], [1,2], [2,3], [2,4], [4,0], [2,8], [2,9]])
p.set_contiguous(0)
print(p)
('P', [{1, 2}, {2, 3}, {2, 4}, {8, 2}, {9, 2}, ('P', [{0, 3}, {0, 4}]))

from sage.all import *
from sage.graphs.pq_trees import P, Q
p = P([[Integer(0),Integer(3)], [Integer(1),Integer(2)], [Integer(2),
       Integer(3)], [Integer(2),Integer(4)], [Integer(4),Integer(0)],[Integer(2),
       Integer(8)], [Integer(2),Integer(9)]]
)p.set_contiguous(Integer(0))
(1, True)
print(p)
('P', [{1, 2}, {2, 3}, {2, 4}, {8, 2}, {9, 2}, ('P', [{0, 3}, {0, 4}]))

Impossible situation:

p = P([[0,1], [1,2], [2,3], [3,0]])
p.set_contiguous(0)
(1, True)
p.set_contiguous(1)
(1, True)
p.set_contiguous(2)
(1, True)
p.set_contiguous(3)
Traceback (most recent call last):
... ValueError: Impossible

from sage.all import *
p = P([[Integer(0),Integer(1)], [Integer(1),Integer(2)], [Integer(2),
       Integer(3)], [Integer(3),Integer(0)]]
p.set_contiguous(Integer(0))
(1, True)
p.set_contiguous(Integer(1))
(1, True)
p.set_contiguous(Integer(2))
(1, True)
p.set_contiguous(Integer(3))
Traceback (most recent call last):
... ValueError: Impossible
```

```
class sage.graphs.pq_trees.PQ(seq)

Bases: object

PQ-Trees

This class should not be instantiated by itself: it is extended by P and Q. See the documentation of sage.graphs.pq_trees for more information.

AUTHOR: Nathann Cohen

flatten()

Returns a flattened copy of self
```
If self has only one child, we may as well consider its child’s children, as self encodes no information. This method recursively “flattens” trees having only on PQ-tree child, and returns it.

EXAMPLES:

```python
sage: from sage.graphs.pq_trees import P, Q
sage: p = Q([P([[2,4], [2,8], [2,9]])])
sage: p.flatten()
('P', [(2, 4), (8, 2), (9, 2)])
```

```python
>>> from sage.all import *
>>> from sage.graphs.pq_trees import P, Q
>>> p = Q([P([[Integer(2),Integer(4)]], [Integer(2),Integer(8)], [Integer(2), Integer(9)]))
>>> p.flatten()
('P', [(2, 4), (8, 2), (9, 2)])
```

number_of_children()

Returns the number of children of self

EXAMPLES:

```python
sage: from sage.graphs.pq_trees import P, Q
sage: p = Q([[1,2], [2,3], P([[2,4], [2,8], [2,9]])])
sage: p.number_of_children()
3
```

```python
>>> from sage.all import *
>>> from sage.graphs.pq_trees import P, Q
>>> p = Q([[Integer(1),Integer(2)], [Integer(2),Integer(3)], P([[Integer(2), Integer(4)]], [Integer(2),Integer(8)], [Integer(2),Integer(9)]))
>>> p.number_of_children()
3
```

ordering()

Returns the current ordering given by listing the leaves from left to right.

EXAMPLES:

```python
sage: from sage.graphs.pq_trees import P, Q
sage: p = Q([[1,2], [2,3], P([[2,4], [2,8], [2,9]])])
sage: p.ordering()
[(1, 2), (2, 3), (2, 4), (8, 2), (9, 2)]
```

```python
>>> from sage.all import *
>>> from sage.graphs.pq_trees import P, Q
>>> p = Q([[Integer(1),Integer(2)], [Integer(2),Integer(3)], P([[Integer(2), Integer(4)]], [Integer(2),Integer(8)], [Integer(2),Integer(9)]))
>>> p.ordering()
[(1, 2), (2, 3), (2, 4), (8, 2), (9, 2)]
```

reverse()

Recursively reverses self and its children

EXAMPLES:
```python
sage: from sage.graphs.pq_trees import P, Q
sage: p = Q([[(1, 2), (2, 3), (2, 4), (8, 2), (9, 2)]])
sage: p.ordering()
[[(1, 2), (2, 3), (2, 4), (8, 2), (9, 2)]]
sage: p.reverse()
sage: p.ordering()
[[(8, 2), (9, 2), (2, 4), (2, 3), (1, 2)]]
```

```python
>>> from sage.all import *
>>> from sage.graphs.pq_trees import P, Q
>>> p = Q([[Integer(1), Integer(2)], [Integer(2), Integer(3)], [Integer(2), Integer(4)], [Integer(2), Integer(8)], [Integer(2), Integer(9)]]))
>>> p.ordering()
[[(1, 2), (2, 3), (2, 4), (8, 2), (9, 2)]]
>>> p.reverse()
>>> p.ordering()
[[(9, 2), (8, 2), (2, 4), (2, 3), (1, 2)]]
```

def simplify(v, left=False, right=False):
 """Returns a simplified copy of self according to the element v"

 If self is a partial P-tree for v, we would like to restrict the permutations of its children to permutations keeping the children containing v contiguous. This function also "locks" all the elements not containing v inside a P-tree, which is useful when one want to keep the elements containing v on one side (which is the case when this method is called).

 INPUT:
 - left, right – booleans; whether v is aligned to the right or to the left
 - v – an element of the ground set

 OUTPUT:

 If self is a Q-Tree, the sequence of its children is returned. If self is a P-tree, 2 P-tree are returned, namely the two P-tree defined above and restricting the permutations, in the order implied by left, right (if right = True, the second P-tree will be the one gathering the elements containing v, if left=True, the opposite).

 Note: This method is assumes that self is partial for v, and aligned to the side indicated by left, right.

 EXAMPLES:

 A P-Tree

    ```python
    sage: from sage.graphs.pq_trees import P, Q
    sage: p = P([[2, 4], [1, 2], [0, 8], [0, 5]])
    sage: p.simplify(0, right = True)
    ([('P', [[2, 4], [1, 2]]), ('P', [[0, 8], [0, 5]])])
    ```

    ```python
    >>> from sage.all import *
    >>> from sage.graphs.pq_trees import P, Q
    >>> p = P([[Integer(2), Integer(4)], [Integer(1), Integer(2)], [Integer(0), Integer(5)]])
    >>> p.simplify(Integer(0), right = True)
    ([('P', [[2, 4], [1, 2]]), ('P', [[0, 8], [0, 5]])])
    ```
```
A Q-Tree

```python
sage: q = Q([[2,4], [1,2], [0,8], [0,5]])
sage: q.simplify(0, right = True)
{(2, 4), {1, 2}, {0, 8}, {0, 5}}
```

```python
>>> from sage.all import *
``` ```python
>>> q = Q([[Integer(2),Integer(4)], [Integer(1),Integer(2)], [Integer(0),
,Integer(8)], [Integer(0),Integer(5)]]))
>>> q.simplify(Integer(0), right = True)
{(2, 4), {1, 2}, {0, 8}, {0, 5}}
```

```python
class sage.graphs.pq_trees.Q(seq)

Bases: PQ

A Q-Tree is a PQ-Tree whose children are ordered up to reversal

For more information, see the documentation of `sage.graphs.pq_trees`.

`cardinality()`

Return the number of orderings allowed by the structure.

See also:

`orderings()` – iterate over all admissible orderings

EXAMPLES:

```python
sage: from sage.graphs.pq_trees import P, Q
sage: q = Q([[0,3], [1,2], [2,3], [2,4], [4,0],[2,8], [2,9]])
sage: q.cardinality()
2
```

```python
>>> from sage.all import *
``` ```python
>>> from sage.graphs.pq_trees import P, Q
>>> q = Q([[Integer(0),Integer(3)], [Integer(1),Integer(2)], [Integer(2),
,Integer(3)], [Integer(2),Integer(4)], [Integer(4),Integer(0)],[Integer(2),
,Integer(8)], [Integer(2),Integer(9)]]))
>>> q.cardinality()
2
```

`orderings()`

Iterates over all orderings of the sets allowed by the structure

See also:

`cardinality()` – return the number of orderings

EXAMPLES:

```python
sage: from sage.graphs.pq_trees import P, Q
sage: q = Q([[2,4], [1,2], [0,8], [0,5]])
```

```python
for o in q.orderings():
....: print(o)
{(2, 4), {1, 2}, {0, 8}, {0, 5}}
{(0, 5), {0, 8}, {1, 2}, {2, 4}}
```

(continues on next page)
set_contiguous(v)

Updates self so that the sets containing v are contiguous for any admissible permutation of its subtrees.

INPUT:
- v – an element of the ground set

OUTPUT:
According to the cases:
- (EMPTY, ALIGNED) if no set of the tree contains an occurrence of v
- (FULL, ALIGNED) if all the sets of the tree contain v
- (PARTIAL, ALIGNED) if some (but not all) of the sets contain v, all of which are aligned to the right of the ordering at the end when the function ends
- (PARTIAL, UNALIGNED) if some (but not all) of the sets contain v, though it is impossible to align them all to the right

In any case, the sets containing v are contiguous when this function ends. If there is no possibility of doing so, the function raises a ValueError exception.

EXAMPLES:
Ensuring the sets containing 0 are continuous:

```
sage: from sage.graphs.pq_trees import P, Q
sage: q = Q([[2,3], Q([[3,0],[3,1]]), Q([[4,0],[4,5]])])
sage: q.set_contiguous(0)
(1, False)
```

Impossible situation:

```
sage: p = Q([[0,1],[1,2],[2,0]])
sage: p.set_contiguous(0)
Traceback (most recent call last):
...
ValueError: Impossible```
sage.graphs.pq_trees.reorder_sets(sets)
Reorders a collection of sets such that each element appears on an interval.

Given a collection of sets \( C = S_1, ..., S_k \) on a ground set \( X \), this function attempts to reorder them in such a way that \( \forall x \in X \) and \( i < j \) with \( x \in S_i, S_j \), then \( x \in S_l \) for every \( i < l < j \) if it exists.

INPUT:

- sets - a list of instances of list, Set or set

ALGORITHM:
PQ-Trees

EXAMPLES:
There is only one way (up to reversal) to represent contiguously the sequence of sets \( \{i - 1, i, i + 1\} \):

```python
sage: from sage.graphs.pq_trees import reorder_sets
sage: seq = [Set([i-1,i,i+1]) for i in range(1,15)]
```

We apply a random permutation:

```python
sage: p = Permutations(len(seq)).random_element()
sage: seq = [seq[p(i+1)-1] for i in range(len(seq))]
sage: ordered = reorder_sets(seq)
sage: if not 0 in ordered[0]:
 ordered = ordered.reverse()
```

```python
>>> from sage.all import *
>>> from sage.graphs.pq_trees import reorder_sets
>>> seq = [Set([i-Integer(1),i,i+Integer(1)]) for i in range(Integer(1),-Integer(15))]

... print(ordered)
[\{0, 1, 2\}, \{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}, \{4, 5, 6\}, \{5, 6, 7\},
\{8, 6, 7\}, \{8, 9, 7\}, \{8, 9, 10\}, \{9, 10, 11\}, \{10, 11, 12\},
\{11, 12, 13\}, \{12, 13, 14\}, \{13, 14, 15\}]
```
5.11 Generation of trees

This is an implementation of the algorithm for generating trees with $n$ vertices (up to isomorphism) in constant time per tree described in [WROM1986].

AUTHORS:

- Ryan Dingman (2009-04-16): initial version

```python
class sage.graphs.trees.TreeIterator
 Bases: object

 This class iterates over all trees with n vertices (up to isomorphism).

 EXAMPLES:
 >>> from sage.all import *
 >>> from sage.graphs.trees import TreeIterator
 >>> def check_trees(n):
 ... trees = []
 ... for t in TreeIterator(n):
 ... if not t.is_tree():
 ... return False
 ... if t.num_verts() != n:
 ... return False
 ... if t.num_edges() != n - 1:
 ... return False
 ... for tree in trees:
 ... if tree.is_isomorphic(t):
 ... return False
 ... trees.append(t)
 ... return True
 >>> check_trees(Integer(10))
 True
```
5.12 Matching polynomial

This module contains the following methods:

<table>
<thead>
<tr>
<th>matching_polynomial()</th>
<th>Computes the matching polynomial of a given graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete_poly()</td>
<td>Compute the matching polynomial of the complete graph on $n$ vertices.</td>
</tr>
</tbody>
</table>

AUTHORS:

- Robert Miller, Tom Boothby - original implementation

REFERENCE:

[God1993]

5.12.1 Methods

`sage.graphs.matchpoly.complete_poly(n)`

Compute the matching polynomial of the complete graph on $n$ vertices.

**INPUT:**

- $n$ – order of the complete graph

**Todo:** This code could probably be made more efficient by using FLINT polynomials and being written in Cython, using an array of fmpz_poly_t pointers or something… Right now just about the whole complement optimization is written in Python, and could be easily sped up.

**EXAMPLES:**

```python
sage: from sage.graphs.matchpoly import complete_poly
sage: f = complete_poly(10)
sage: f
x^10 - 45*x^8 + 630*x^6 - 3150*x^4 + 4725*x^2 - 945
sage: f = complete_poly(20)
sage: f[8]
1309458150
sage: f = complete_poly(1000)
sage: len(str(f))
406824
```
sage.graphs.matchpoly.matching_polynomial(G, complement=True, name=None)

Computes the matching polynomial of the graph $G$.

If $p(G, k)$ denotes the number of $k$-matchings (matchings with $k$ edges) in $G$, then the matching polynomial is defined as [God1993]:

$$
\mu(x) = \sum_{k \geq 0} (-1)^k p(G, k) x^{n-2k}
$$

INPUT:

- complement – (default: True) whether to use Godsil’s duality theorem to compute the matching polynomial from that of the graphs complement (see ALGORITHM).
- name – optional string for the variable name in the polynomial

Note: The complement option uses matching polynomials of complete graphs, which are cached. So if you are crazy enough to try computing the matching polynomial on a graph with millions of vertices, you might not want to use this option, since it will end up caching millions of polynomials of degree in the millions.

ALGORITHM:
The algorithm used is a recursive one, based on the following observation [God1993]:

- If $e$ is an edge of $G$, $G'$ is the result of deleting the edge $e$, and $G''$ is the result of deleting each vertex in $e$, then the matching polynomial of $G$ is equal to that of $G'$ minus that of $G''$.

(the algorithm actually computes the signless matching polynomial, for which the recursion is the same when one replaces the subtraction by an addition. It is then converted into the matching polynomial and returned)

Depending on the value of complement, Godsil’s duality theorem [God1993] can also be used to compute $\mu(x)$:

$$
\mu(G, x) = \sum_{k \geq 0} p(G, k) \mu(K_{n-2k}, x)
$$

Where $\overline{G}$ is the complement of $G$, and $K_n$ the complete graph on $n$ vertices.

EXAMPLES:

- sage: g = graphs.PetersenGraph()
sage: g.matching_polynomial()
x^10 - 15*x^8 + 75*x^6 - 145*x^4 + 90*x^2 - 6

- sage: g.matching_polynomial(complement=False)
x^10 - 15*x^8 + 75*x^6 - 145*x^4 + 90*x^2 - 6

- sage: g.matching_polynomial(name='tom')
(continued from previous page)

\[\text{tom}^{10} - 15\text{tom}^8 + 75\text{tom}^6 - 145\text{tom}^4 + 90\text{tom}^2 - 6\]

```python
sage: g = Graph()
sage: L = [graphs.RandomGNP(8, .3) for i in range(1, 6)]
sage: prod([h.matching_polynomial() for h in L]) == sum(L, g).matching_polynomial() # long time (up to 10s on sage.math, 2011)
True
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.matching_polynomial()
\text{x}^{10} - 15\text{x}^8 + 75\text{x}^6 - 145\text{x}^4 + 90\text{x}^2 - 6
>>> g.matching_polynomial(complement=False)
\text{x}^{10} - 15\text{x}^8 + 75\text{x}^6 - 145\text{x}^4 + 90\text{x}^2 - 6
>>> g.matching_polynomial(name=tom)
tom^{10} - 15*tom^8 + 75*tom^6 - 145*tom^4 + 90*tom^2 - 6
>>> g = Graph()
>>> L = [graphs.RandomGNP(Integer(8), RealNumber('.3')) for i in range(Integer(1), Integer(6))]
>>> prod([h.matching_polynomial() for h in L]) == sum(L, g).matching_polynomial() # long time (up to 10s on sage.math, 2011)
True
```

```python
sage: for i in range(1, 12): # long time (10s on sage.math, 2011)
 for t in graphs.trees(i):
 if t.matching_polynomial() != t.characteristic_polynomial():
 raise RuntimeError('bug for a tree A of size {0}'.format(i))
 c = t.complement()
 if c.matching_polynomial(complement=False) != c.matching_polynomial():
 raise RuntimeError('bug for a tree B of size {0}'.format(i))

sage: from sage.graphs.matchpoly import matching_polynomial
sage: matching_polynomial(graphs.CompleteGraph(0))
1
sage: matching_polynomial(graphs.CompleteGraph(1))
x
sage: matching_polynomial(graphs.CompleteGraph(2))
x^2 - 1
sage: matching_polynomial(graphs.CompleteGraph(3))
x^3 - 3*x
sage: matching_polynomial(graphs.CompleteGraph(4))
x^4 - 6*x^2 + 3
sage: matching_polynomial(graphs.CompleteGraph(5))
x^5 - 10*x^3 + 15*x
sage: matching_polynomial(graphs.CompleteGraph(6))
x^6 - 15*x^4 + 45*x^2 - 15
```

(continues on next page)
```python
sage: matching_polynomial(graphs.CompleteGraph(7))
x^7 - 21*x^5 + 105*x^3 - 105*x
sage: matching_polynomial(graphs.CompleteGraph(8))
x^8 - 28*x^6 + 210*x^4 - 420*x^2 + 105
sage: matching_polynomial(graphs.CompleteGraph(9))
x^9 - 36*x^7 + 378*x^5 - 1260*x^3 + 945*x
sage: matching_polynomial(graphs.CompleteGraph(10))
x^10 - 45*x^8 + 630*x^6 - 3150*x^4 + 4725*x^2 - 945
sage: matching_polynomial(graphs.CompleteGraph(11))
x^11 - 55*x^9 + 990*x^7 - 6930*x^5 + 17325*x^3 - 10395*x
sage: matching_polynomial(graphs.CompleteGraph(12))
x^12 - 66*x^10 + 1485*x^8 - 13860*x^6 + 51975*x^4 - 62370*x^2 + 10395
sage: matching_polynomial(graphs.CompleteGraph(13))
x^13 - 78*x^11 + 2145*x^9 - 25740*x^7 + 135135*x^5 - 270270*x^3 + 135135*x

sage: G = Graph({0:[1,2], 1:[2]})
sage: matching_polynomial(G)
x^3 - 3*x
sage: G = Graph({0:[1], 2:[]})
sage: matching_polynomial(G)
x^3 - x
sage: G = Graph({0:[], 1:[], 2:[]})
```

(continues from previous page)...
sage: matching_polynomial(G)
\texttt{x}^3

\begin{verbatim}
>>> from sage.all import *

>>> G = Graph({Integer(0):[Integer(1), Integer(2)], Integer(1):[Integer(2)]})
>>> matching_polynomial(G)
\texttt{x}^3 - 3*\texttt{x}

>>> G = Graph({Integer(0):[Integer(1), Integer(2)]})
>>> matching_polynomial(G)
\texttt{x}^3 - 2*\texttt{x}

>>> G = Graph({Integer(0):[Integer(1)], Integer(2):[]})
>>> matching_polynomial(G)
\texttt{x}^3 - \texttt{x}

>>> G = Graph({Integer(0):[], Integer(1):[], Integer(2):[]})
>>> matching_polynomial(G)
\texttt{x}^3

sage: matching_polynomial(graphs.CompleteGraph(0), complement=False)
1

sage: matching_polynomial(graphs.CompleteGraph(1), complement=False)
x

sage: matching_polynomial(graphs.CompleteGraph(2), complement=False)
x^2 - 1

sage: matching_polynomial(graphs.CompleteGraph(3), complement=False)
x^3 - 3*x

sage: matching_polynomial(graphs.CompleteGraph(4), complement=False)
x^4 - 6*x^2 + 3

sage: matching_polynomial(graphs.CompleteGraph(5), complement=False)
x^5 - 10*x^3 + 15*x

sage: matching_polynomial(graphs.CompleteGraph(6), complement=False)
x^6 - 15*x^4 + 45*x^2 - 15

sage: matching_polynomial(graphs.CompleteGraph(7), complement=False)
x^7 - 21*x^5 + 105*x^3 - 105*x

sage: matching_polynomial(graphs.CompleteGraph(8), complement=False)
x^8 - 28*x^6 + 210*x^4 - 420*x^2 + 105

sage: matching_polynomial(graphs.CompleteGraph(9), complement=False)
x^9 - 36*x^7 + 378*x^5 - 1260*x^3 + 945*x

sage: matching_polynomial(graphs.CompleteGraph(10), complement=False)
x^10 - 45*x^8 + 630*x^6 - 3150*x^4 + 4725*x^2 - 945

sage: matching_polynomial(graphs.CompleteGraph(11), complement=False)
x^11 - 55*x^9 + 990*x^7 - 6930*x^5 + 17325*x^3 - 10395*x

sage: matching_polynomial(graphs.CompleteGraph(12), complement=False)
x^12 - 66*x^10 + 1485*x^8 - 13860*x^6 + 51975*x^4 - 62370*x^2 + 10395

sage: matching_polynomial(graphs.CompleteGraph(13), complement=False)
x^13 - 78*x^11 + 2145*x^9 - 25740*x^7 + 135135*x^5 - 270270*x^3 + 135135*x
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> matching_polynomial(graphs.CompleteGraph(Integer(0)), complement=False)
1

>>> matching_polynomial(graphs.CompleteGraph(Integer(1)), complement=False)
x

>>> matching_polynomial(graphs.CompleteGraph(Integer(2)), complement=False)
x^2 - 1

>>> matching_polynomial(graphs.CompleteGraph(Integer(3)), complement=False)
x^3 - 3*x

>>> matching_polynomial(graphs.CompleteGraph(Graph(4)), complement=False)
\end{verbatim}
Graph Theory, Release 10.4

(continued from previous page)

\[ x^4 - 6x^2 + 3 \]

>>> matching_polynomial(graphs.CompleteGraph(Integer(5)), complement=False)
\[ x^5 - 10x^3 + 15x \]

>>> matching_polynomial(graphs.CompleteGraph(Integer(6)), complement=False)
\[ x^6 - 15x^4 + 45x^2 - 15 \]

>>> matching_polynomial(graphs.CompleteGraph(Integer(7)), complement=False)
\[ x^7 - 21x^5 + 105x^3 - 105x \]

>>> matching_polynomial(graphs.CompleteGraph(Integer(8)), complement=False)
\[ x^8 - 28x^6 + 210x^4 - 420x^2 + 105 \]

>>> matching_polynomial(graphs.CompleteGraph(Integer(9)), complement=False)
\[ x^9 - 36x^7 + 378x^5 - 1260x^3 + 945x \]

>>> matching_polynomial(graphs.CompleteGraph(Integer(10)), complement=False)
\[ x^{10} - 45x^8 + 630x^6 - 3150x^4 + 4725x^2 - 945 \]

>>> matching_polynomial(graphs.CompleteGraph(Integer(11)), complement=False)
\[ x^{11} - 55x^9 + 990x^7 - 6930x^5 + 17325x^3 - 10395x \]

>>> matching_polynomial(graphs.CompleteGraph(Integer(12)), complement=False)
\[ x^{12} - 66x^{10} + 1485x^8 - 13860x^6 + 51975x^4 - 62370x^2 + 10395 \]

>>> matching_polynomial(graphs.CompleteGraph(Integer(13)), complement=False)
\[ x^{13} - 78x^{11} + 2145x^9 - 25740x^7 + 135135x^5 - 270270x^3 + 135135x \]

\section{5.13 Genus}

This file contains a moderately-optimized implementation to compute the genus of simple connected graph. It runs about a thousand times faster than the previous version in Sage, not including asymptotic improvements.

The algorithm works by enumerating combinatorial embeddings of a graph, and computing the genus of these via the Euler characteristic. We view a combinatorial embedding of a graph as a pair of permutations \( v, e \) which act on a set \( B \) of \( 2|E(G)| \) “darts”. The permutation \( e \) is an involution, and its orbits correspond to edges in the graph. Similarly, The orbits of \( v \) correspond to the vertices of the graph, and those of \( f = ve \) correspond to faces of the embedded graph.

The requirement that the group \( < v, e > \) acts transitively on \( B \) is equivalent to the graph being connected. We can compute the genus of a graph by

\[ 2 - 2g = V - E + F \]

where \( E, V, \) and \( F \) denote the number of orbits of \( e, v, \) and \( f \) respectively.

We make several optimizations to the naive algorithm, which are described throughout the file.

class sage.graphs.genus.simple_connected_genus_backtracker

Bases: object

A class which computes the genus of a DenseGraph through an extremely slow but relatively optimized algorithm. This is “only” exponential for graphs of bounded degree, and feels pretty snappy for 3-regular graphs. The generic runtime is

\[ |V(G)| \prod_{v \in V(G)} (deg(v) - 1)! \]

which is \( 2^{|V(G)|} \) for 3-regular graphs, and can achieve \( n(n - 1)!n \) for the complete graph on \( n \) vertices. We can handily compute the genus of \( K_6 \) in milliseconds on modern hardware, but \( K_7 \) may take a few days. Don’t bother with \( K_8 \), or any graph with more than one vertex of degree 10 or worse, unless you can find an a priori lower bound on the genus and expect the graph to have that genus.

\section*{Warning:}
THIS MAY SEGFAULT OR HANG ON:

- DISCONNECTED GRAPHS
- DIRECTED GRAPHS
- LOOPED GRAPHS
- MULTIGRAPHS

EXAMPLES:

```python
sage: import sage.graphs.genus
sage: G = graphs.CompleteGraph(6)
sage: G = Graph(G, sparse=False)
sage: bt = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[0])
sage: bt.genus() #long time
1
sage: bt.genus(cutoff=1)
1
sage: G = graphs.PetersenGraph()
```

```python
sage: G = Graph(G, sparse=False)
sage: bt = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[0])
sage: bt.genus()
1
```

```python
sage: G = graphs.FlowerSnark()
```

```python
sage: G = Graph(G, sparse=False)
```

```python
sage: bt = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[0])
sage: bt.genus()
2
```

```python
>>> from sage.all import *
>>> import sage.graphs.genus
```

```python
>>> G = graphs.CompleteGraph(Integer(6))
```

```python
>>> G = Graph(G, sparse=False)
```

```python
>>> bt = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[Integer(0)])
```

```python
>>> bt.genus() #long time
1
```

```python
>>> bt.genus(cutoff=Integer(1))
1
```

```python
>>> G = graphs.PetersenGraph()
```

```python
>>> G = Graph(G, sparse=False)
```

```python
>>> bt = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[Integer(0)])
```

```python
>>> bt.genus()
1
```

```python
>>> G = graphs.FlowerSnark()
```

```python
>>> G = Graph(G, sparse=False)
```

```python
>>> bt = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[Integer(0)])
```

```python
>>> bt.genus()
2
```

```python
genus (style=1, cutoff=0, record_embedding=False)
```
Compute the minimal or maximal genus of self’s graph.

Note, this is a remarkably naive algorithm for a very difficult problem. Most interesting cases will take millennia to finish, with the exception of graphs with max degree 3.

INPUT:

- **style** – integer (default: 1); find minimum genus if 1, maximum genus if 2
- **cutoff** – integer (default: 0); stop searching if search style is 1 and genus ≤ cutoff, or if style is 2 and genus ≥ cutoff. This is useful where the genus of the graph has a known bound.
- **record_embedding** – boolean (default: False); whether or not to remember the best embedding seen. This embedding can be retrieved with `self.get_embedding()`.

OUTPUT:

the minimal or maximal genus for self’s graph.

EXAMPLES:

```python
sage: import sage.graphs.genus
sage: G = Graph(graphs.CompleteGraph(5), sparse=False)
...
2
sage: E = gb.get_embedding()
...

sage: gb.genus(record_embedding=False)
1
sage: gb.get_embedding() == E
True
sage: G = Graph(sparse=False)
...
0
```

```python
>>> from sage.all import *
>>> import sage.graphs.genus
>>> G = Graph(graphs.CompleteGraph(Integer(5)), sparse=False)
>>> gb = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_˓→graph()[Integer(0)])
>>> gb.genus(cutoff=Integer(2), record_embedding=True)
2
>>> E = gb.get_embedding()
>>> gb.genus(record_embedding=False)
1
>>> gb.get_embedding() == E
True
>>> gb.genus(style=Integer(2), cutoff=Integer(5))
3
>>> G = Graph(sparse=False)
>>> gb = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_˓→graph()[Integer(0)])
>>> gb.genus()
0
```
**get_embedding()**

Return an embedding for the graph.

If `min_genus_backtrack` has been called with `record_embedding = True`, then this will return the first minimal embedding that we found. Otherwise, this returns the first embedding considered.

**EXAMPLES:**

```python
sage: import sage.graphs.genus
sage: G = Graph(graphs.CompleteGraph(5), sparse=False)
sage: gb = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[0])
sage: gb.genus(record_embedding=True)
1
sage: gb.get_embedding()
{0: [1, 2, 3, 4], 1: [0, 2, 3, 4], 2: [0, 1, 4, 3], 3: [0, 2, 1, 4], 4: [0, 3, 1, 2]}
```

```python
sage: G = Graph(sparse=False)
sage: G.add_edge(0, 1)
sage: gb = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[0])
sage: gb.get_embedding()
{0: [1], 1: [0]}
```

```python
sage: G = Graph(sparse=False)
sage: gb = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[0])
sage: gb.get_embedding()
{}```

```python
>>> from sage.all import *
>>> import sage.graphs.genus

>>> G = Graph(graphs.CompleteGraph(Integer(5)), sparse=False)

>>> gb = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[Integer(0)])

>>> gb.genus(record_embedding=True)
1

>>> gb.get_embedding()
{0: [1, 2, 3, 4], 1: [0, 2, 3, 4], 2: [0, 1, 4, 3], 3: [0, 2, 1, 4], 4: [0, 3, 1, 2]}

>>> G = Graph(sparse=False)

>>> G.add_edge(Integer(0), Integer(1))

>>> gb = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[Integer(0)])

>>> gb.get_embedding()
{0: [1], 1: [0]}
```

```python
sage.graphs.genus.simple_connected_graph_genus(G, set_embedding=False, check=True, minimal=True)
```

Compute the genus of a simple connected graph.

Warning:
THIS MAY SEGFAULT OR HANG ON:

- DISCONNECTED GRAPHS
- DIRECTED GRAPHS
- LOOPED GRAPHS
- MULTIGRAPHS

DO NOT CALL WITH `check = False` UNLESS YOU ARE CERTAIN.

EXAMPLES:

```python
sage: import sage.graphs.genus
sage: from sage.graphs.genus import simple_connected_graph_genus as genus
sage: [genus(g) for g in graphs(6) if g.is_connected()].count(1)
13
sage: G = graphs.FlowerSnark()
sage: genus(G)  # see [1]
2
sage: G = graphs.BubbleSortGraph(4)
sage: genus(G)
0
sage: G = graphs.OddGraph(3)
sage: genus(G)
1
```

```python
>>> from sage.all import *
>>> import sage.graphs.genus
>>> from sage.graphs.genus import simple_connected_graph_genus as genus
>>> [genus(g) for g in graphs(Integer(6)) if g.is_connected()].count(Integer(1))
13
>>> G = graphs.FlowerSnark()
>>> genus(G)  # see [1]
2
>>> G = graphs.BubbleSortGraph(Integer(4))
>>> genus(G)
0
>>> G = graphs.OddGraph(Integer(3))
>>> genus(G)
1
```

REFERENCES:

[1] http://www.springerlink.com/content/0776127h0r7548v7/

5.14 Lovász theta-function of graphs

AUTHORS:

- Dima Pasechnik (2015-06-30): Initial version

REFERENCE:

[Lov1979]
5.14.1 Functions

`sage.graphs.lovasz_theta.lovasz_theta(graph)`

Return the value of Lovász theta-function of graph.

For a graph G this function is denoted by $\theta(G)$, and it can be computed in polynomial time. Mathematically, its most important property is the following:

$$\alpha(G) \leq \theta(G) \leq \chi(\overline{G})$$

with $\alpha(G)$ and $\chi(\overline{G})$ being, respectively, the maximum size of an independent set set of G and the chromatic number of the complement \overline{G} of G.

For more information, see the Wikipedia article Lovász_number.

Note:

- Implemented for undirected graphs only. Use `to_undirected` to convert a digraph to an undirected graph.
- This function requires the optional package csdp, which you can install with `sage -i csdp`.

EXAMPLES:

```python
sage: C = graphs.PetersenGraph()
sage: C.lovasz_theta() # optional - csdp
4.0
sage: graphs.CycleGraph(5).lovasz_theta() # optional - csdp
2.236068
```

```python
from sage.all import *
C = graphs.PetersenGraph()
C.lovasz_theta() # optional - csdp
graphs.CycleGraph(Integer(5)).lovasz_theta() # optional - csdp
```

5.15 Schnyder’s algorithm for straight-line planar embeddings

A module for computing the (x,y) coordinates for a straight-line planar embedding of any connected planar graph with at least three vertices. Uses Walter Schnyder’s Algorithm from [Sch1990].

AUTHORS:

- Jonathan Bober, Emily Kirkman (2008-02-09) – initial version

```python
class sage.graphs.schnyder.TreeNode(parent=None, children=None, label=None):
    Bases: object

    A class to represent each node in the trees used by _realizer and _compute_coordinates when finding a planar geometric embedding in the grid.

    Each tree node is doubly linked to its parent and children.

    INPUT:

    - `parent` – the parent TreeNode of self
```

```python
```
• children – a list of TreeNode children of self
• label – the associated realizer vertex label

EXAMPLES:

```python
sage: from sage.graphs.schnyder import TreeNode
sage: tn = TreeNode(label=5)
sage: tn2 = TreeNode(label=2, parent=tn)
sage: tn3 = TreeNode(label=3)
sage: tn.append_child(tn3)
sage: tn.compute_number_of_descendants()
2
sage: tn.number_of_descendants
2
sage: tn3.number_of_descendants
1
sage: tn.compute_depth_of_self_and_children()
```

append_child(child)
Add a child to list of children.

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.graphs.schnyder import TreeNode
>>> tn = TreeNode(label=Integer(5))
>>> tn2 = TreeNode(label=Integer(2), parent=tn)
>>> tn3 = TreeNode(label=Integer(3))
>>> tn.append_child(tn3)
>>> tn.compute_number_of_descendants()
2
>>> tn.number_of_descendants
2
>>> tn3.number_of_descendants
1
>>> tn.compute_depth_of_self_and_children()
>>> tn3.depth
2
```
```python
>>> from sage.all import *
>>> from sage.graphs.schnyder import TreeNode
>>> tn = TreeNode(label=Integer(5))
>>> tn2 = TreeNode(label=Integer(2), parent=tn)
>>> tn3 = TreeNode(label=Integer(3))
>>> tn.append_child(tn3)
>>> tn.compute_number_of_descendants()
2
>>> tn.number_of_descendants
2
>>> tn3.number_of_descendants
1
>>> tn.compute_depth_of_self_and_children()
>>> tn3.depth
2
```

compute_depth_of_self_and_children()

Computes the depth of self and all descendants.

For each TreeNode, sets result as attribute `self.depth`

EXAMPLES:

```python
sage: from sage.graphs.schnyder import TreeNode
sage: tn = TreeNode(label=5)
```

```python
sage: tn2 = TreeNode(label=2, parent=tn)
```

```python
sage: tn3 = TreeNode(label=3)
```

```python
sage: tn.append_child(tn3)
```

```python
sage: tn.compute_number_of_descendants()
2
```

```python
sage: tn.number_of_descendants
2
```

```python
sage: tn3.number_of_descendants
1
```

```python
sage: tn.compute_depth_of_self_and_children()
```

```python
sage: tn3.depth
2
```

```python
>>> from sage.all import *
>>> from sage.graphs.schnyder import TreeNode
>>> tn = TreeNode(label=Integer(5))
>>> tn2 = TreeNode(label=Integer(2), parent=tn)
>>> tn3 = TreeNode(label=Integer(3))
>>> tn.append_child(tn3)
>>> tn.compute_number_of_descendants()
2
>>> tn.number_of_descendants
2
>>> tn3.number_of_descendants
1
>>> tn.compute_depth_of_self_and_children()
>>> tn3.depth
2
```

compute_number_of_descendants()

Computes the number of descendants of self and all descendants.

For each TreeNode, sets result as attribute `self.number_of_descendants`

5.15. Schnyder's algorithm for straight-line planar embeddings
EXAMPLES:

```python
sage: from sage.graphs.schnyder import TreeNode
sage: tn = TreeNode(label=5)
```

```python
sage: tn2 = TreeNode(label=2, parent=tn)
```

```python
sage: tn3 = TreeNode(label=3)
```

```python
sage: tn.append_child(tn3)
```

```python
sage: tn.compute_number_of_descendants()
2
```

```python
sage: tn.number_of_descendants
2
```

```python
sage: tn3.number_of_descendants
1
```

```python
sage: tn.compute_depth_of_self_and_children()
```

```python
>>> from sage.all import *
>>> from sage.graphs.schnyder import TreeNode

>>> tn = TreeNode(label=Integer(5))

>>> tn2 = TreeNode(label=Integer(2), parent=tn)

>>> tn3 = TreeNode(label=Integer(3))

>>> tn.append_child(tn3)

>>> tn.compute_number_of_descendants()
2

>>> tn.number_of_descendants
2

>>> tn3.number_of_descendants
1

>>> tn.compute_depth_of_self_and_children()
```

```python
sage.graphs.schnyder.minimal_schnyder_wood (graph, root_edge=None, minimal=True, check=True)
```

Return the minimal Schnyder wood of a planar rooted triangulation.

INPUT:

- graph – a planar triangulation, given by a graph with an embedding.
- root_edge – a pair of vertices (default is from \(-1\) to \(-2\)) The third boundary vertex is then determined using the orientation and will be labelled \(-3\).
- minimal – boolean (default \(True\)), whether to return a minimal or a maximal Schnyder wood.
- check – boolean (default \(True\)), whether to check if the input is a planar triangulation

OUTPUT:

A planar graph, with edges oriented and colored. The three outer edges of the initial graph are removed. For the three outer vertices the list of the neighbors stored in the combinatorial embedding is in the order of the incident edges between the two incident (and removed) outer edges, and not a cyclic shift of it.

The algorithm is taken from [Bre2000] (section 4.2).

EXAMPLES:

```python
sage: from sage.graphs.schnyder import minimal_schnyder_wood
sage: g = Graph([(0, -1), (0, -2), (0, -3), (-1, -2), (-2, -3),
            ....: (-3, -1)], format='list_of_edges')
```
A larger example:

```python
sage: g = Graph([(0,-1),(0,2),(0,1),(0,-3),(-1,-3),(-1,2),
                ... : (-1, -2), (1,2), (1,-3), (2,-2), (1,-2), (-2,-3)],
                format='list_of_edges')
sage: g.set_embedding({-1:[-2,0,-3],-2:[-3,0,-1],
                ... : -3:[-1,0,-2],0:[-1,-2,-3]})
sage: newg = minimal_schnyder_wood(g)
sage: newg.edges(sort=True, key=lambda e:(str(e[0]),str(e[1])))
[(0, -1, 'green'),
 (0, -3, 'red'),
 (0, 2, 'blue'),
 (1, -2, 'blue'),
 (1, -3, 'red'),
 (1, 0, 'green'),
 (2, -1, 'green'),
 (2, -2, 'blue'),
 (2, 1, 'red')]
sage: newg2 = minimal_schnyder_wood(g, minimal=False)
sage: newg2.edges(sort=True, key=lambda e:(str(e[0]),str(e[1])))
[(0, -1, 'green'),
 (0, -3, 'red'),
 (0, 1, 'blue'),
 (1, -2, 'blue'),
 (1, -3, 'red'),
 (1, 2, 'green'),
 (2, -1, 'green'),
 (2, -2, 'blue'),
 (2, 0, 'red')]
```
>>> from sage.all import *
>>> g = Graph([(Integer(0), -Integer(1)), (Integer(0), Integer(2)), (Integer(0), -Integer(3)), (Integer(1), -Integer(2))], format='list_of_edges')
>>> g.set_embedding({-Integer(1):[-Integer(2), Integer(2), Integer(0), -Integer(3)], -Integer(2):[-Integer(3), Integer(1), Integer(2), -Integer(1)], -Integer(3):[-Integer(1), Integer(0), Integer(1), -Integer(2)], Integer(0):[Integer(1), Integer(2), Integer(3), Integer(0)], Integer(1):[Integer(2), Integer(3), Integer(0), Integer(1)], Integer(2):[Integer(1), -Integer(2), Integer(1), Integer(0)]})
>>> newg = minimal_schnyder_wood(g)
>>> newg.edges(sort=True, key=lambda e:(str(e[Integer(0)]), str(e[Integer(1)])))

[(0, -1, 'green'),
(0, -3, 'red'),
(0, 2, 'blue'),
(1, -2, 'blue'),
(1, -3, 'red'),
(1, 0, 'green'),
(2, -1, 'green'),
(2, -2, 'blue'),
(2, 1, 'red')]

>>> newg2 = minimal_schnyder_wood(g, minimal=False)
>>> newg2.edges(sort=True, key=lambda e:(str(e[Integer(0)]), str(e[Integer(1)])))

[(0, -1, 'green'),
(0, -3, 'red'),
(0, 1, 'blue'),
(1, -2, 'blue'),
(1, -3, 'red'),
(1, 2, 'green'),
(2, -1, 'green'),
(2, -2, 'blue'),
(2, 0, 'red')]

5.16 Wrapper for Boyer’s (C) planarity algorithm

sage.graphs.planarity.is_planar(g, kuratowski=False, set_pos=False, set_embedding=False)

Check whether g is planar using Boyer's planarity algorithm.

If kuratowski is False, returns True if g is planar, False otherwise. If kuratowski is True, returns a tuple, first entry is a boolean (whether or not the graph is planar) and second entry is a Kuratowski subgraph, i.e. an edge subdivision of K_5 or $K_{3,3}$ (if not planar) or None (if planar). Also, will set an _embedding attribute for the graph g if set_embedding is set to True.

INPUT:

- kuratowski – boolean (default: False); when set to True, return a tuple of a boolean and either None or a Kuratowski subgraph (i.e. an edge subdivision of K_5 or $K_{3,3}$). When set to False, returns True if g is planar, False otherwise.
- set_pos – boolean (default: False); whether to use Schnyder’s algorithm to determine and set positions
- set_embedding – boolean (default: False); whether to record the combinatorial embedding returned (see get_embedding())
EXAMPLES:

```python
sage: G = graphs.DodecahedralGraph()
sage: from sage.graphs.planarity import is_planar
sage: is_planar(G)
True
sage: Graph('@').is_planar()
True
```

>>> from sage.all import *
>>> G = graphs.DodecahedralGraph()
>>> from sage.graphs.planarity import is_planar
>>> is_planar(G)
True
>>> Graph('@').is_planar()
True

5.17 Graph traversals

This module implements the following graph traversals

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lex_BFS()</code></td>
<td>Perform a lexicographic breadth first search (LexBFS) on the graph.</td>
</tr>
<tr>
<td><code>lex_DFS()</code></td>
<td>Perform a lexicographic depth first search (LexDFS) on the graph.</td>
</tr>
<tr>
<td><code>lex_UP()</code></td>
<td>Perform a lexicographic UP search (LexUP) on the graph.</td>
</tr>
<tr>
<td><code>lex_DOWN()</code></td>
<td>Perform a lexicographic DOWN search (LexDOWN) on the graph.</td>
</tr>
<tr>
<td><code>lex_M()</code></td>
<td>Return an ordering of the vertices according the LexM graph traversal.</td>
</tr>
<tr>
<td><code>lex_M_slow()</code></td>
<td>Return an ordering of the vertices according the LexM graph traversal.</td>
</tr>
<tr>
<td><code>lex_M_fast()</code></td>
<td>Return an ordering of the vertices according the LexM graph traversal.</td>
</tr>
<tr>
<td><code>maximum_cardinality_search()</code></td>
<td>Return an ordering and the edges of the triangulation produced by MCS-M.</td>
</tr>
</tbody>
</table>

5.17.1 Methods

`sage.graphs.traversals.is_valid_lex_M_order(G, alpha, F)`

Check whether the ordering alpha and the triangulation F are valid for G.

Given the graph $G = (V, E)$ with vertex set V and edge set E, and the set F of edges of a triangulation of G, let $H = (V, E \cup F)$. By induction one can see that for every $i \in \{1, \ldots, n - 1\}$ the neighbors of $\alpha(i)$ in $H[\{\alpha(i), \ldots, \alpha(n)\}]$ induce a clique. The ordering α is a perfect elimination ordering of H, so H is chordal. See [RTL76] for more details.

INPUT:

- **G** – a Graph
- **alpha** – list; an ordering of the vertices of G
- **F** – an iterable of edges given either as (u, v) or $(u, v, label)$, the edges of the triangulation of G
Perform a lexicographic breadth first search (LexBFS) on the graph.

INPUT:
- \(G \) – a sage graph
- `reverse` – boolean (default: False); whether to return the vertices in discovery order, or the reverse
- `tree` – boolean (default: False); whether to return the discovery directed tree (each vertex being linked to the one that saw it for the first time)
- `initial_vertex` – (default: None); the first vertex to consider
- `algorithm` – string (default: "fast"); algorithm to use among:
 - "slow" – This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already removed. The vertex of maximal code (according to the lexicographic order) is then removed, and the codes are updated. See for instance [CK2008] for more details. The time complexity of this algorithm as described in [CK2008] is in \(O(n + m) \), where \(n \) is the number of vertices and \(m \) is the number of edges, but our implementation is in \(O(n^2) \).
 - "fast" – This algorithm uses the notion of slices to refine the position of the vertices in the ordering. The time complexity of this algorithm is in \(O(n + m) \), and our implementation follows that complexity for `SparseGraph`. For `DenseGraph`, the complexity is \(O(n^2) \). See [HMPV2000] and next section for more details.

ALGORITHM:
The "fast" algorithm is the \(O(n + m) \) time algorithm proposed in [HMPV2000], where \(n \) is the number of vertices and \(m \) is the number of edges. It uses the notion of slices, i.e., subsets of consecutive vertices in the ordering, and iteratively refines the slices by subdividing them into sub-slices to determine the exact position of the vertices in the ordering.

Consider an ordering \(\sigma \) of the vertices. For a vertex \(v \), we define \(N_i(v) = \{ u | u \in N(v) \text{ and } \sigma(u) < i \} \), that is the subset of neighbors of \(v \) appearing before the \(i \)-th vertex in the ordering \(\sigma \). Now, a slice of an ordering \(\sigma \) is a set of consecutive vertices, \(S = \{ u | i \leq \sigma(u) \leq j \} \), such that for any \(u \in S \), we have \(N_i(u) = N_i(\sigma^{-1}(i)) \) and for any \(v \) such that \(j < \sigma(v) \), \(N_i(v) \neq N_i(\sigma^{-1}(i)) \). The head of a slice is the first position of its vertices.

The algorithm starts with a single slice containing all vertices. Then, when the position of the \(i \)-th vertex \(v \) is fixed, it explores the neighbors of \(v \) that have not yet been ordered. Consider a slice \(S \) such that \(N(x) \cap S \neq \emptyset \). The algorithm will rearrange the ordering of the vertices in \(S \) so that the first vertices are the neighbors of \(v \). The sub-slice containing the neighbors of \(v \) is assigned a new slice name, and the head of slice \(S \) is set to the position of the first vertex of \(S \setminus N(v) \) in the ordering \(\sigma \).

Observe that each arc of the graph can induce the subdivision of a slice. Hence, the algorithm can use up to \(m + 1 \) different slices.

See also:
- Wikipedia article Lexicographic_breadth-first_search
- `lex_DFS()` – perform a lexicographic depth first search (LexDFS) on the graph
- `lex_UP()` – perform a lexicographic UP search (LexUP) on the graph
- `lex_DOWN()` – perform a lexicographic DOWN search (LexDOWN) on the graph

EXAMPLES:
A Lex BFS is obviously an ordering of the vertices:
Graph Theory, Release 10.4

sage: g = graphs.CompleteGraph(6)
sage: len(g.lex_BFS()) == g.order()
True

>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(6))
>>> len(g.lex_BFS()) == g.order()
True

Lex BFS ordering of the 3-sun graph:

sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5), (5, 6)])
sage: g.lex_BFS()
[1, 2, 3, 5, 4, 6]

The method also works for directed graphs:

sage: G = DiGraph([(1, 2), (2, 3), (1, 3)])
sage: G.lex_BFS(initial_vertex=2, algorithm="slow")
[2, 3, 1]
sage: G.lex_BFS(initial_vertex=2, algorithm="fast")
[2, 3, 1]

For a Chordal Graph, a reversed Lex BFS is a Perfect Elimination Order:

sage: g = graphs.PathGraph(3).lexicographic_product(graphs.CompleteGraph(2))
sage: g.lex_BFS(reverse=True)
[(2, 1), (2, 0), (1, 1), (1, 0), (0, 1), (0, 0)]

And the vertices at the end of the tree of discovery are, for chordal graphs, simplicial vertices (their neighborhood is a complete graph):

5.17. Graph traversals
sage: g = graphs.ClawGraph().lexicographic_product(graphs.CompleteGraph(2))
sage: v = g.lex_BFS()[-1]

sage: peo, tree = g.lex_BFS(initial_vertex = v, tree=True)

sage: leaves = [v for v in tree if tree.in_degree(v) ==0]

sage: all(g.subgraph(g.neighbors(v)).is_clique() for v in leaves)
True

Different orderings for different traversals:

sage: # needs sage.combinat
sage: G = digraphs.DeBruijn(2,3)

sage: G.lex_BFS(initial_vertex='000', algorithm="fast")
['000', '001', '100', '010', '011', '110', '101', '111']

sage: G.lex_BFS(initial_vertex='000', algorithm="slow")
['000', '001', '100', '010', '011', '110', '101', '111']

sage: G.lex_UP(initial_vertex='000')
['000', '001', '010', '101', '110', '111', '011', '100']

sage: G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '111', '101']

sage: from sage.all import *

sage: G = digraphs.DeBruijn(Integer(2),Integer(3))

sage: G.lex_BFS(initial_vertex='000', algorithm="fast")
['000', '001', '100', '010', '011', '110', '101', '111']

sage: G.lex_BFS(initial_vertex='000', algorithm="slow")
['000', '001', '100', '010', '011', '110', '101', '111']

sage: G.lex_UP(initial_vertex='000')
['000', '001', '010', '101', '110', '111', '011', '100']

sage: G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '111', '101']

sage.graphs.traversals.lex_DFS(G, reverse=False, tree=False, initial_vertex=None)

Perform a lexicographic depth first search (LexDFS) on the graph.

INPUT:

- G – a sage graph
- reverse – boolean (default: False); whether to return the vertices in discovery order, or the reverse
- tree – boolean (default: False); whether to return the discovery directed tree (each vertex being linked to the one that saw it for the first time)
- initial_vertex – (default: None); the first vertex to consider

ALGORITHM:
This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already removed. The vertex of maximal code (according to the lexicographic order) is then removed, and the codes are updated. Lex DFS differs from Lex BFS only in the way codes are updated after each iteration.

Time complexity is $O(n+m)$ for SparseGraph and $O(n^2)$ for DenseGraph where n is the number of vertices and m is the number of edges.

See [CK2008] for more details on the algorithm.

See also:

- `lex_BFS()` – perform a lexicographic breadth first search (LexBFS) on the graph
- `lex_UP()` – perform a lexicographic UP search (LexUP) on the graph
- `lex_DOWN()` – perform a lexicographic DOWN search (LexDOWN) on the graph

EXAMPLES:

A Lex DFS is obviously an ordering of the vertices:

```
sage: g = graphs.CompleteGraph(6)
sage: len(g.lex_DFS()) == g.order()
True
```

Lex DFS ordering of the 3-sun graph:

```
sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5), (5, 6)])
sage: g.lex_DFS()
[1, 2, 3, 5, 6, 4]
```

The method also works for directed graphs:

```
sage: G = DiGraph([(1, 2), (2, 3), (1, 3)])
sage: G.lex_DFS(initial_vertex=2)
[2, 3, 1]
```

Different orderings for different traversals:
sage: # needs sage.combinat
gsage: G = digraphs.DeBruijn(2, 3)
gsage: G.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']
gsage: G.lex_DFS(initial_vertex='000')
['000', '001', '100', '010', '101', '110', '011', '111']
gsage: G.lex_UP(initial_vertex='000')
['000', '001', '010', '101', '111', '011', '100']
gsage: G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '010', '110', '111', '101']

>>> from sage.all import *

>>> # needs sage.combinat

>>> G = digraphs.DeBruijn(Integer(2), Integer(3))

>>> G.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']

>>> G.lex_DFS(initial_vertex='000')
['000', '001', '100', '010', '101', '110', '011', '111']

>>> G.lex_UP(initial_vertex='000')
['000', '001', '010', '101', '111', '011', '100']

>>> G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '010', '110', '111', '101']

sage.graphs.traversals.lex_DOWN(G, reverse=False, tree=False, initial_vertex=None)

Perform a lexicographic DOWN search (LexDOWN) on the graph.

INPUT:

- `G` – a sage graph
- `reverse` – boolean (default: False); whether to return the vertices in discovery order, or the reverse
- `tree` – boolean (default: False); whether to return the discovery directed tree (each vertex being linked to the one that saw it for the first time)
- `initial_vertex` – (default: None); the first vertex to consider

ALGORITHM:

This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already removed. The vertex of maximal code (according to the lexicographic order) is then removed, and the codes are updated. During the \(i\)-th iteration of the algorithm \(n - i\) is prepended to the codes of all neighbors of the selected vertex that are left in the graph.

Time complexity is \(O(n + m)\) for `SparseGraph` and \(O(n^2)\) for `DenseGraph` where \(n\) is the number of vertices and \(m\) is the number of edges.

See [Mil2017] for more details on the algorithm.

See also:

- `lex_BFS()` – perform a lexicographic breadth first search (LexBFS) on the graph
- `lex_DFS()` – perform a lexicographic depth first search (LexDFS) on the graph
- `lex_UP()` – perform a lexicographic UP search (LexUP) on the graph

EXAMPLES:

A Lex DOWN is obviously an ordering of the vertices:
sage: g = graphs.CompleteGraph(6)
sage: len(g.lex_DOWN()) == g.order()
True

>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(6))
>>> len(g.lex_DOWN()) == g.order()
True

Lex DOWN ordering of the 3-sun graph:

sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6),
(4, 5), (5, 6)])
sage: g.lex_DOWN()
[1, 2, 3, 4, 6, 5]

>>> from sage.all import *
>>> g = Graph([(Integer(1), Integer(2)), (Integer(1), Integer(3)), (Integer(2),
Integer(3)), (Integer(2), Integer(4)), (Integer(2), Integer(5)), (Integer(3),
Integer(5)), (Integer(3), Integer(6)), (Integer(4), Integer(5)), (Integer(5),
Integer(6))])
>>> g.lex_DOWN()
[1, 2, 3, 4, 6, 5]

The method also works for directed graphs:

sage: G = DiGraph([(1, 2), (2, 3), (1, 3)])
sage: G.lex_DOWN(initial_vertex=2)
[2, 3, 1]

>>> from sage.all import *
>>> G = DiGraph([(Integer(1), Integer(2)), (Integer(2), Integer(3)), (Integer(1),
Integer(3))])
>>> G.lex_DOWN(initial_vertex=Integer(2))
[2, 3, 1]

Different orderings for different traversals:

sage: # needs sage.combinat
sage: G = digraphs.DeBruijn(2,3)
sage: G.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']
sage: G.lex_DFS(initial_vertex='000')
['000', '001', '100', '010', '101', '110', '011', '111']
sage: G.lex_UP(initial_vertex='000')
['000', '001', '010', '101', '110', '011', '100']
sage: G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']

>>> from sage.all import *
>>> # needs sage.combinat
>>> G = digraphs.DeBruijn(Integer(2),Integer(3))

(continues on next page)
sage.graphs.traversals.lex_M(self, triangulation=False, labels=False, initial_vertex=None, algorithm=None)

Return an ordering of the vertices according the LexM graph traversal.

LexM is a lexicographic ordering scheme that is a special type of breadth-first-search. LexM can also produce a triangulation of the given graph. This functionality is implemented in this method. For more details on the algorithms used see Sections 4 ('lex_M_slow') and 5.3 ('lex_M_fast') of [RTL76].

Note: This method works only for undirected graphs.

INPUT:

- triangulation – boolean (default: False); whether to return a list of edges that need to be added in order to triangulate the graph
- labels – boolean (default: False); whether to return the labels assigned to each vertex
- initial_vertex – (default: None); the first vertex to consider
- algorithm – string (default: None); one of the following algorithms:
 - 'lex_M_slow': slower implementation of LexM traversal
 - 'lex_M_fast': faster implementation of LexM traversal (works only when labels is set to False)
 - None: Sage chooses the best algorithm: 'lex_M_slow' if labels is set to True, 'lex_M_fast' otherwise.

OUTPUT:

Depending on the values of the parameters triangulation and labels the method will return one or more of the following (in that order):

- an ordering of vertices of the graph according to LexM ordering scheme
- the labels assigned to each vertex
- a list of edges that when added to the graph will triangulate it

EXAMPLES:

LexM produces an ordering of the vertices:

```python
sage: g = graphs.CompleteGraph(6)
sage: ord = g.lex_M(algorithm='lex_M_fast')
sage: len(ord) == g.order()
True
sage: set(ord) == set(g.vertices(sort=False))
True
sage: ord = g.lex_M(algorithm='lex_M_slow')
sage: len(ord) == g.order()
True
sage: set(ord) == set(g.vertices(sort=False))
True
```
Both algorithms produce a valid LexM ordering α (i.e. the neighbors of $\alpha(i)$ in $G[\{\alpha(i), ..., \alpha(n)\}]$ induce a clique):

```python
sage: from sage.graphs.traversals import is_valid_lex_M_order
sage: G = graphs.PetersenGraph()
```

```python
sage: ord, F = G.lex_M(triangulation=True, algorithm='lex_M_slow')
```

```python
sage: is_valid_lex_M_order(G, ord, F)
```

True

```python
sage: ord, F = G.lex_M(triangulation=True, algorithm='lex_M_fast')
```

```python
sage: is_valid_lex_M_order(G, ord, F)
```

True

LexM produces a triangulation of given graph:

```python
sage: G = graphs.PetersenGraph()
```

```python
sage: _, F = G.lex_M(triangulation=True)
```

```python
sage: H = Graph(F, format='list_of_edges')
```

```python
sage: H.is_chordal()
```

True

LexM ordering of the 3-sun graph:

```python
sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5), ...
               (5, 6)])
```

```python
sage: g.lex_M()
```

[6, 4, 5, 3, 2, 1]
GraphTheory, Release 10.4

```python
>>> from sage.all import *

>>> g = Graph([(Integer(1), Integer(2)), (Integer(1), Integer(3)), (Integer(2),
            Integer(3)), (Integer(2), Integer(4)), (Integer(2), Integer(5)), (Integer(3),
            Integer(5)), (Integer(3), Integer(6)), (Integer(4), Integer(5)), (Integer(5),
            Integer(6))])

>> g.lex_M()
[6, 4, 5, 3, 2, 1]
```

sage.graphs.traversals.lex_M_fast (G, triangulation=False, initial_vertex=None)

Return an ordering of the vertices according the LexM graph traversal.

LexM is a lexicographic ordering scheme that is a special type of breadth-first-search. This function implements the algorithm described in Section 5.3 of [RTL76].

Note that instead of using labels 1, 2, ..., k and adding 1/2, we use labels 2, 4, ..., k and add 1, thus avoiding to use floats or rationals.

Note: This method works only for undirected graphs.

INPUT:

- G – a sage graph
- triangulation – boolean (default: False); whether to return the triangulation of given graph produced by the method
- initial_vertex – (default: None); the first vertex to consider

OUTPUT:

This method will return an ordering of the vertices of G according to the LexM ordering scheme. Furthermore, if triangulation is set to True the method also returns a list of edges F such that when added to G the resulting graph is a triangulation of G.

EXAMPLES:

A LexM ordering is obviously an ordering of the vertices:

```python
sage: from sage.graphs.traversals import lex_M_fast
sage: g = graphs.CompleteGraph(6)

sage: len(lex_M_fast(g)) == g.order()
True
```

LexM ordering of the 3-sun graph:

```python
sage: from sage.graphs.traversals import lex_M_fast
sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5),
            (5, 6)])

sage: lex_M_fast(g)
[6, 4, 5, 3, 2, 1]
```
LexM produces a triangulation of given graph:

```python
sage: from sage.graphs.traversals import lex_M_fast
sage: G = graphs.PetersenGraph()
sage: _, F = lex_M_fast(G, triangulation=True)
sage: H = G.copy()
sage: H.add_edges(F)
sage: H.is_chordal()
True
```

`sage.graphs.traversals.lex_M_slow(G, triangulation=False, labels=False, initial_vertex=None)`

Return an ordering of the vertices according the LexM graph traversal.

LexM is a lexicographic ordering scheme that is a special type of breadth-first-search. This function implements the algorithm described in Section 4 of [RTL76].

During the search, the vertices are numbered from \(n \) to 1. Let \(\alpha(i) \) denote the vertex numbered \(i \) and let \(\alpha^{-1}(u) \) denote the number assigned to \(u \). Each vertex \(u \) also has a label, denoted by \(label(u) \), consisting of a list of numbers selected from \([1, n]\) and ordered in decreasing order. Given two labels \(L_1 = [p_1, p_2, \ldots, p_k] \) and \(L_1 = [q_1, q_2, \ldots, q_l] \), we define \(L_1 < L_2 \) if, for some \(j, p_i = q_i \) for \(i = 1, \ldots, j - 1 \) and \(p_j < q_j \), or if \(p_i = q_i \) for \(i = 1, \ldots, k \) and \(k < l \). Observe that this is exactly how Python compares two lists.

Note: This method works only for undirected graphs.

INPUT:
- \(G \) – a sage graph
- \(\text{triangulation} \) – boolean (default: False); whether to return the triangulation of the graph produced by the method
- \(\text{labels} \) – boolean (default: False); whether to return the labels assigned to each vertex
- \(\text{initial_vertex} \) – (default: None); the first vertex to consider. If not specified, an arbitrary vertex is chosen.

OUTPUT:
Depending on the values of the parameters \(\text{triangulation} \) and \(\text{labels} \) the method will return one or more of the following (in that order):
• the ordering of vertices of G
• the labels assigned to each vertex
• a list of edges that when added to G will produce a triangulation of G

EXAMPLES:

A LexM ordering is obviously an ordering of the vertices:

```
sage: from sage.graphs.traversals import lex_M_slow
sage: g = graphs.CompleteGraph(6)
sage: len(lex_M_slow(g)) == g.order()
True
```

LexM ordering and label assignments on the vertices of the 3-sun graph:

```
sage: from sage.graphs.traversals import lex_M_slow
sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5),
             (5, 6)])
sage: lex_M_slow(g, labels=True)
([6, 4, 5, 3, 2, 1],
 {1: [], 2: [5], 3: [5, 4], 4: [4, 2], 5: [4, 3], 6: [3, 2]})
```

LexM produces a triangulation of given graph:

```
sage: from sage.graphs.traversals import lex_M_slow
sage: G = graphs.PetersenGraph()
sage: _, F = lex_M_slow(G, triangulation=True)
sage: H = G.copy()
sage: H.add_edges(F)
sage: H.is_chordal()
True
```
sage.graphs.traversals.lex_UP \((G, \text{reverse=False}, \text{tree=False}, \text{initial_vertex=None}) \)

Perform a lexicographic UP search (LexUP) on the graph.

INPUT:

- \(G \) – a sage graph
- \(\text{reverse} \) – boolean (default: False); whether to return the vertices in discovery order, or the reverse
- \(\text{tree} \) – boolean (default: False); whether to return the discovery directed tree (each vertex being linked to the one that saw it for the first time)
- \(\text{initial_vertex} \) – (default: None); the first vertex to consider

ALGORITHM:

This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already removed. The vertex of maximal code (according to the lexicographic order) is then removed, and the codes are updated. During the \(i \)-th iteration of the algorithm \(i \) is appended to the codes of all neighbors of the selected vertex that are left in the graph.

Time complexity is \(O(n+m) \) for SparseGraph and \(O(n^2) \) for DenseGraph where \(n \) is the number of vertices and \(m \) is the number of edges.

See [Mil2017] for more details on the algorithm.

See also:

- \(\text{lex_BFS()} \) – perform a lexicographic breadth first search (LexBFS) on the graph
- \(\text{lex_DFS()} \) – perform a lexicographic depth first search (LexDFS) on the graph
- \(\text{lex_DOWN()} \) – perform a lexicographic DOWN search (LexDOWN) on the graph

EXAMPLES:

A Lex UP is obviously an ordering of the vertices:

```python
sage: g = graphs.CompleteGraph(6)
sage: len(g.lex_UP()) == g.order()
True
```

```python
>>> from sage.all import *
>>> g = graphs.CompleteGraph(Integer(6))
>>> len(g.lex_UP()) == g.order()
True
```

Lex UP ordering of the 3-sun graph:

```python
sage: g = Graph([(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5), ...
→(5, 6)])
sage: g.lex_UP()
[1, 2, 4, 5, 6, 3]
```

```python
>>> from sage.all import *
>>> g = Graph([(Integer(1), Integer(2)), (Integer(1), Integer(3)), (Integer(2),...
→Integer(3)), (Integer(2), Integer(4)), (Integer(2), Integer(5)), (Integer(3),...
→Integer(5)), (Integer(3), Integer(6)), (Integer(4), Integer(5)), (Integer(5),...
→Integer(6))])
>>> g.lex_UP()
[1, 2, 4, 5, 6, 3]
```

5.17. Graph traversals 1643
The method also works for directed graphs:

```
sage: G = DiGraph([(1, 2), (2, 3), (1, 3)])
sage: G.lex_UP(initial_vertex=2)
[2, 3, 1]
```

```python
>>> from sage.all import *

>>> G = DiGraph([(Integer(1), Integer(2)), (Integer(2), Integer(3)), (Integer(1),
          Integer(3))])

>>> G.lex_UP(initial_vertex=Integer(2))
[2, 3, 1]
```

Different orderings for different traversals:

```
sage: # needs sage.combinat
g = digraphs.DeBruijn(2,3)
sage: G.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']
sage: G.lex_DFS(initial_vertex='000')
['000', '001', '100', '010', '101', '110', '011', '111']
sage: G.lex_UP(initial_vertex='000')
['000', '001', '100', '011', '110', '111', '101', '100']
sage: G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']
```

Different orderings for different traversals:

```python
>>> from sage.all import *

>>> G = digraphs.DeBruijn(Integer(2),Integer(3))

>>> G.lex_BFS(initial_vertex='000')
['000', '001', '100', '010', '011', '110', '101', '111']

>>> G.lex_DFS(initial_vertex='000')
['000', '001', '100', '010', '101', '110', '011', '111']

>>> G.lex_UP(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']

>>> G.lex_DOWN(initial_vertex='000')
['000', '001', '100', '011', '010', '110', '111', '101']
```

```
sage.graphs.traversals.maximum_cardinality_search(G, reverse=False, tree=False,
                initial_vertex=None)
```

Return an ordering of the vertices according to a maximum cardinality search.

Maximum cardinality search (MCS) is a graph traversal introduced in [TY1984]. It starts by assigning an arbitrary vertex (or the specified initial_vertex) of G the last position in the ordering α. Every vertex keeps a weight equal to the number of its already processed neighbors (i.e., already added to α), and a vertex of largest such number is chosen at each step i to be placed in position $n - i$ in α. This ordering can be computed in time $O(n + m)$.

Time complexity is $O(n+m)$ for SparseGraph and $O(n^2)$ for DenseGraph where n is the number of vertices and m is the number of edges.

When the graph is chordal, the ordering returned by MCS is a perfect elimination ordering, like `lex_BFS()`. So this ordering can be used to recognize chordal graphs. See [He2006] for more details.

Note: The current implementation is for connected graphs only.

INPUT:

- G – a Sage graph
• reverse – boolean (default: False); whether to return the vertices in discovery order, or the reverse

• tree – boolean (default: False); whether to also return the discovery directed tree (each vertex being linked to the one that saw it for the first time)

• initial_vertex – (default: None); the first vertex to consider

OUTPUT:

By default, return the ordering α as a list. When tree is True, the method returns a tuple (α, T), where T is a directed tree with the same set of vertices as G and a directed edge from u to v if u was the first vertex to see v.

EXAMPLES:

When specified, the initial_vertex is placed at the end of the ordering, unless parameter reverse is True, in which case it is placed at the beginning:

```
sage: G = graphs.PathGraph(4)
sage: G.maximum_cardinality_search(initial_vertex=0)
[3, 2, 1, 0]
sage: G.maximum_cardinality_search(initial_vertex=1)
[0, 3, 2, 1]
sage: G.maximum_cardinality_search(initial_vertex=2)
[0, 1, 3, 2]
sage: G.maximum_cardinality_search(initial_vertex=3)
[0, 1, 2, 3]
sage: G.maximum_cardinality_search(initial_vertex=3, reverse=True)
[3, 2, 1, 0]
```

Returning the discovery tree:

```
sage: G = graphs.PathGraph(4)
sage: _, T = G.maximum_cardinality_search(tree=True, initial_vertex=0)
sage: T.order(), T.size()
(4, 3)
sage: T.edges(labels=False, sort=True)
[(1, 0), (2, 1), (3, 2)]
sage: _, T = G.maximum_cardinality_search(tree=True, initial_vertex=3)
sage: T.edges(labels=False, sort=True)
[(0, 1), (1, 2), (2, 3)]
```

```
>>> from sage.all import *

>>> G = graphs.PathGraph(Integer(4))

>>> G.minimum_cardinality_search(initial_vertex=Integer(0))
[3, 2, 1, 0]

>>> G.minimum_cardinality_search(initial_vertex=Integer(1))
[0, 3, 2, 1]

>>> G.minimum_cardinality_search(initial_vertex=Integer(2))
[0, 1, 3, 2]

>>> G.minimum_cardinality_search(initial_vertex=Integer(3))
[0, 1, 2, 3]

>>> G.minimum_cardinality_search(initial_vertex=Integer(3), reverse=True)
[3, 2, 1, 0]
```

(continues on next page)
>>> T.edges(labels=False, sort=True)
[(1, 0), (2, 1), (3, 2)]

>>> T = G.maximum_cardinality_search(tree=True, initial_vertex=Integer(3))
>>> T.edges(labels=False, sort=True)
[(0, 1), (1, 2), (2, 3)]

sage.graphs.traversals.maximum_cardinality_search_M(G, initial_vertex=None)

Return the ordering and the edges of the triangulation produced by MCS-M.

Maximum cardinality search M (MCS-M) is an extension of MCS (maximum_cardinality_search()) in the same way that Lex-M (lex_M()) is an extension of Lex-BFS (lex_BFS()). That is, in MCS-M when u receives number i at step $n - i + 1$, it increments the weight of all unnumbered vertices v for which there exists a path between u and v consisting only of unnumbered vertices with weight strictly less than $w^-(u)$ and $w^-(v)$, where w^- is the number of times a vertex has been reached during previous iterations. See [BBHP2004] for the details of this $O(nm)$ time algorithm.

If G is not connected, the orderings of each of its connected components are added consecutively. Furthermore, if G has k connected components C_i for $0 \leq i < k$, X contains at least one vertex of C_i for each $i \geq 1$. Hence, $|X| \geq k - 1$. In particular, some isolated vertices (i.e., of degree 0) can appear in X as for such a vertex x, we have that $G \setminus N(x) = G$ is not connected.

INPUT:
- G – a Sage graph
- initial_vertex – (default: None); the first vertex to consider

OUTPUT: a tuple (α, F, X), where
- α is the resulting ordering of the vertices. If an initial vertex is specified, it gets the last position in the ordering α.
- F is the list of edges of a minimal triangulation of G according α.
- X is a list of vertices such that for each $x \in X$, the neighborhood of x in G is a separator (i.e., $G \setminus N(x)$ is not connected). Note that we may have $N(x) = \emptyset$ if G is not connected and x has degree 0.

EXAMPLES:

Chordal graphs have a perfect elimination ordering, and so the set F of edges of the triangulation is empty:

```
sage: G = graphs.RandomChordalGraph(20)
sage: alpha, F, X = G.maximum_cardinality_search_M(); F
[]
```

```
>>> from sage.all import *
>>> G = graphs.RandomChordalGraph(Integer(20))
>>> alpha, F, X = G.maximum_cardinality_search_M(); F
[]
```

The cycle of order 4 is not chordal and so the triangulation has one edge:

```
sage: G = graphs.CycleGraph(4)
sage: alpha, F, X = G.maximum_cardinality_search_M(); len(F)
1
```

```
>>> from sage.all import *
>>> G = graphs.CycleGraph(Integer(4))
```
The number of edges needed to triangulate a cycle graph or order n is $n - 3$, independently of the initial vertex:

```python
sage: n = randint(3, 20)
sage: C = graphs.CycleGraph(n)
sage: _, F, X = C.maximum_cardinality_search_M()
sage: len(F) == n - 3
True
sage: _, F, X = C.maximum_cardinality_search_M(initial_vertex=C.random_vertex())
sage: len(F) == n - 3
True
```

When an initial vertex is specified, it gets the last position in the ordering:

```python
sage: G = graphs.PathGraph(4)
sage: G.maximum_cardinality_search_M(initial_vertex=0)
([3, 2, 1, 0], [], [2, 3])
sage: G.maximum_cardinality_search_M(initial_vertex=1)
([3, 2, 0, 1], [], [2, 3])
sage: G.maximum_cardinality_search_M(initial_vertex=2)
([0, 1, 3, 2], [], [0, 1])
sage: G.maximum_cardinality_search_M(initial_vertex=3)
([0, 1, 2, 3], [], [0, 1])
```

When G is not connected, the orderings of each of its connected components are added consecutively, the vertices of the component containing the initial vertex occupying the last positions:

```python
sage: G = graphs.CycleGraph(4) * 2
sage: G maximum_cardinality_search_M(0)
[5, 4, 6, 7, 2, 3, 1, 0]
sage: G maximum_cardinality_search_M(initial_vertex=7)
[2, 1, 3, 0, 5, 6, 4, 7]
```

5.17. Graph traversals
Furthermore, if \(G \) has \(k \) connected components, \(X \) contains at least one vertex per connected component, except for the first one, and so at least \(k - 1 \) vertices:

```python
sage: for k in range(1, 5):
    ...:_, _, X = Graph(k).maximum_cardinality_search_M()
    ...: if len(X) < k - 1:
    ...:     raise ValueError("something goes wrong")
```

In the example of [BPS2010], the triangulation has 3 edges:

```python
sage: G = Graph({"a": ["b", "k"], "b": ["c"], "c": ["d", "j", "k"],
    ...: "d": ["e", "f", "j", "k"], "e": ["g"],
    ...: "f": ["g", "j", "k"], "g": ["j", "k"], "h": ["i", "j"],
    ...: "i": ["k"], "j": ["k"]})
```

```python
sage: len(F)
3
```
5.18 Graph plotting

(For \LaTeX{} drawings of graphs, see the graph_latex{} module.)

All graphs have an associated Sage graphics object, which you can display:

```sage
g = graphs.WheelGraph(15)
p = g.plot()
p.show()  # long time
```

```python
from sage.all import *
G = graphs.WheelGraph(Integer(15))
P = G.plot()
P.show()  # long time
```

When plotting a graph created using Sage's `Graph` command, node positions are determined using the spring-layout algorithm. Special graphs available from `graphs.*` have preset positions. For example, compare the two plots of the Petersen graph, as obtained using `Graph` or as obtained from that database:

```sage
petersen_spring = Graph('I\'ES@obGkqeW-')
petersen_spring.show()  # long time
```
All constructors in this database (except some random graphs) prefill the position dictionary, bypassing the spring-layout positioning algorithm.

Plot options

Here is the list of options accepted by `plot()` and the constructor of `GraphPlot`. Those two functions also accept all options of `sage.plot.graphics.Graphics.show()`.
5.18. Graph plotting
layout
A layout algorithm – one of: “acyclic”, “circular” (plots the graph with vertices evenly distributed on a circle), “ranked”, “graphviz”, “planar”, “spring” (traditional spring layout, using the graph's current positions as initial positions), or “tree” (the tree will be plotted in levels, depending on minimum distance for the root).

iterations
The number of times to execute the spring layout algorithm.

heights
A dictionary mapping heights to the list of vertices at this height.

spring
Use spring layout to finalize the current layout.

tree_root
A vertex designation for drawing trees. A vertex of the tree to be used as the root for the layout='tree' option. If no root is specified, then one is chosen close to the center of the tree. Ignored unless layout='tree'.

forest_roots
An iterable specifying which vertices to use as roots for the layout='forest' option. If no root is specified for a tree, then one is chosen close to the center of the tree. Ignored unless layout='forest'.

tree_orientation
The direction of tree branches – ‘up’, ‘down’, ‘left’ or ‘right’.

save_pos
Whether or not to save the computed position for the graph.

dim
The dimension of the layout – 2 or 3.

prog
Which graphviz layout program to use – one of “circo”, “dot”, “fdp”, “neato”, or “twopi”.

by_component
Whether to do the spring layout by connected component – a boolean.

pos
The position dictionary of vertices.

vertex_labels
Vertex labels to draw. This can be True/False to indicate whether to print the vertex string representation of not, a dictionary keyed by vertices and associating to each vertex a label string, or a function taking as input a vertex and returning a label string.

vertex_color
Default color for vertices not listed in vertex_colors dictionary.

vertex_colors
A dictionary specifying vertex colors: each key is a color recognizable by matplotlib, and each corresponding value is a list of vertices.

vertex_size
The size to draw the vertices.

vertex_shape
The shape to draw the vertices. Currently unavailable for Multi-edged DiGraphs.

edge_labels
Whether or not to draw edge labels.

edge_style
The linestyle of the edges. It should be one of “solid”, “dashed”, “dotted”, “dashdot”, or “-”, “--”, “:”, “.-”, respectively.

edge_thickness
The thickness of the edges.

edge_color
The default color for edges not listed in edge_colors.

edge_colors
A dictionary specifying edge colors: each key is a color recognized by matplotlib, and each corresponding value is a list of edges.

color_by_label
Whether to color the edges according to their labels. This also accepts a function or dictionary mapping labels to colors.

partition
A partition of the vertex set. If specified, plot will show each cell in a different color; vertex_colors takes precedence.

loop_size
The radius of the smallest loop.

dist
The distance between multiedges.

max_dist
The max distance range to allow multiedges.

talk
Whether to display the vertices in talk mode (larger and white).

graph_border
Whether or not to draw a frame around the graph.

edge_labels_background
The color of the background of the edge labels.

Default options
This module defines two dictionaries containing default options for the plot() and show() methods. These two dictionaries are sage.graphs.graph_plot.DEFAULT_PLOT_OPTIONS and sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS, respectively.
Obviously, these values are overruled when arguments are given explicitly.

Here is how to define the default size of a graph drawing to be \((6, 6)\). The first two calls to \texttt{show()} use this option, while the third does not (a value for \texttt{figsize} is explicitly given):

```python
sage: import sage.graphs.graph_plot
sage: sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS['figsize'] = (6, 6)
sage: graphs.PetersenGraph().show()  # long time
sage: graphs.ChvatalGraph().show()  # long time
sage: graphs.PetersenGraph().show(figsize=(4, 4))  # long time
```

We can now reset the default to its initial value, and now display graphs as previously:

```python
sage: sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS['figsize'] = (4, 4)
sage: graphs.PetersenGraph().show()  # long time
sage: graphs.ChvatalGraph().show()  # long time
```

Note:

- While \texttt{DEFAULT_PLOT_OPTIONS} affects both \texttt{G.show()} and \texttt{G.plot()}, settings from \texttt{DEFAULT_SHOW_OPTIONS} only affects \texttt{G.show()}.

- In order to define a default value permanently, you can add a couple of lines to Sage’s startup scripts. Example:

```python
sage: import sage.graphs.graph_plot
sage: sage.graphs.graph_plot.DEFAULT_SHOW_OPTIONS['figsize'] = (4, 4)
```

Index of methods and functions

<table>
<thead>
<tr>
<th>Method/Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{GraphPlot.set_pos()}</td>
<td>Set the position plotting parameters for this GraphPlot.</td>
</tr>
<tr>
<td>\texttt{GraphPlot.set_vertices()}</td>
<td>Set the vertex plotting parameters for this GraphPlot.</td>
</tr>
<tr>
<td>\texttt{GraphPlot.set_edges()}</td>
<td>Set the edge (or arrow) plotting parameters for the GraphPlot object.</td>
</tr>
<tr>
<td>\texttt{GraphPlot.plot()}</td>
<td>Return a graphics object representing the (di)graph.</td>
</tr>
<tr>
<td>\texttt{GraphPlot.layout_tree()}</td>
<td>Compute a nice layout of a tree.</td>
</tr>
</tbody>
</table>
class sage.graphs.graph_plot.GraphPlot (graph, options)
Bases: SageObject

Return a GraphPlot object, which stores all the parameters needed for plotting (Di)Graphs.

A GraphPlot has a plot and show function, as well as some functions to set parameters for vertices and edges. This constructor assumes default options are set. Defaults are shown in the example below.

EXAMPLES:

```python
sage: from sage.graphs.graph_plot import GraphPlot
sage: options = {
....: 'vertex_size': 200,
....: 'vertex_labels': True,
....: 'layout': None,
....: 'edge_style': 'solid',
....: 'edge_color': 'black',
....: 'edge_colors': None,
....: 'edge_labels': False,
....: 'iterations': 50,
....: 'tree_orientation': 'down',
....: 'heights': None,
....: 'graph_border': False,
....: 'talk': False,
....: 'color_by_label': False,
....: 'partition': None,
....: 'dist': .075,
....: 'max_dist': 1.5,
....: 'loop_size': .075,
....: 'edge_labels_background': 'transparent'}

sage: g = Graph({0: [1, 2], 2: [3], 4: [0, 1]})

sage: GP = GraphPlot(g, options)
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_plot import GraphPlot

>>> options = {
... 'vertex_size': Integer(200),
... 'vertex_labels': True,
... 'layout': None,
... 'edge_style': 'solid',
... 'edge_color': 'black',
... 'edge_colors': None,
... 'edge_labels': False,
... 'iterations': Integer(50),
... 'tree_orientation': 'down',
... 'heights': None,
... 'graph_border': False,
... 'talk': False,
... 'color_by_label': False,
... 'partition': None,
... 'dist': RealNumber('.075'),
... 'max_dist': RealNumber('1.5'),
... 'loop_size': RealNumber('.075'),
... 'edge_labels_background': 'transparent'}

>>> g = Graph({Integer(0): [Integer(1), Integer(2)], Integer(2): [Integer(3), Integer(4): [Integer(0), Integer(1)]}

>>> GP = GraphPlot(g, options)
```

```python
layout_tree (root, orientation)
```
Compute a nice layout of a tree.

INPUT:

- root – the root vertex.
- orientation – whether to place the root at the top or at the bottom:
 - orientation="down" – children are placed below their parent
 - orientation="top" – children are placed above their parent

EXAMPLES:

```python
sage: from sage.graphs.graph_plot import GraphPlot
sage: G = graphs.HoffmanSingletonGraph()
sage: T = Graph()
sage: T.add_edges(G.min_spanning_tree(starting_vertex=0))
sage: T.show(layout='tree', tree_root=0)  # indirect doctest
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_plot import GraphPlot
>>> G = graphs.HoffmanSingletonGraph()
>>> T = Graph()
>>> T.add_edges(G.min_spanning_tree(starting_vertex=Integer(0)))
>>> T.show(layout='tree', tree_root=Integer(0))  # indirect doctest
```

plot(**kwds***)

Return a graphics object representing the (di)graph.

INPUT:

The options accepted by this method are to be found in the documentation of the `sage.graphs.graph_plot` module, and the `show()` method.

Note: See the module's documentation for information on default values of this method.

We can specify some pretty precise plotting of familiar graphs:

```python
sage: from math import sin, cos, pi
sage: P = graphs.PetersenGraph()
sage: d = {'#FF0000': [0, 5], '#FF9900': [1, 6], '#FFFF00': [2, 7],
       '#00FF00': [3, 8], '#0000FF': [4, 9]}

sage: pos_dict = {}

sage: for i in range(5):
    ....:     x = float(cos(pi/2 + ((2*pi)/5)*i))
    ....:     y = float(sin(pi/2 + ((2*pi)/5)*i))
    ....:     pos_dict[i] = [x, y]

sage: for i in range(5, 10):
    ....:     x = float(0.5*cos(pi/2 + ((2*pi)/5)*i))
    ....:     y = float(0.5*sin(pi/2 + ((2*pi)/5)*i))
    ....:     pos_dict[i] = [x, y]

sage: pl = P.graphplot(pos=pos_dict, vertex_colors=d)
sage: pl.show()
```
Here are some more common graphs with typical options:
The options for plotting also work with directed graphs:
sage: D = DiGraph({
 : 0: [1, 10, 19], 1: [8, 2], 2: [3, 6], 3: [19, 4],
 : 4: [17, 5], 5: [6, 15], 6: [7], 7: [8, 14], 8: [9],
 : 9: [10, 13], 10: [11, 12, 18], 12: [16, 13],
 : 13: [14], 14: [15], 15: [16], 16: [17], 17: [18],
 : 18: [19, 19: []])

sage: for u, v, l in D.edges(sort=True):
 : D.set_edge_label(u, v, f({u}, {v}))

sage: D.graphplot(edge_labels=True, layout='circular').show()
Chapter 5. Libraries of algorithms
With the `partition` option, we can separate out same-color groups of vertices:

```
sage: D = graphs.DodecahedralGraph()
sage: Pi = [[6, 5, 15, 14, 7], [16, 13, 8, 2, 4],
        ....:   [12, 17, 9, 3, 1], [0, 19, 18, 10, 11]]
sage: D.show(partition=Pi)
```

Loops are also plotted correctly:

```
sage: G = graphs.PetersenGraph()
sage: G.allow_loops(True)
sage: G.add_edge(0,0)
sage: G.show()
```
```
>>> G.allow_loops(True)
>>> G.add_edge(Integer(0), Integer(0))
>>> G.show()
```

```
```sage
D = DiGraph({0:[0,1], 1:[2], 2:[3]}, loops=True)
D.show()
D.show(edge_colors={(0, 1, 0): [(0, 1, None), (1, 2, None)],
....: (0, 0, 0): [(2, 3, None)]})
```

```
```sage
from sage.all import *
D = DiGraph({Integer(0):[Integer(0), Integer(1)], Integer(1):[Integer(2)],
....: Integer(2):[Integer(3)]}, loops=True)
D.show()
D.show(edge_colors={(Integer(0), Integer(1), Integer(0)): [(Integer(0),
....: Integer(1), None), (Integer(1), Integer(2), None)],
....: (Integer(0), Integer(0), Integer(0)): [(Integer(2),
....: Integer(3), None)]})
```

More options:
```
sage: pos = {0: [0, 0, 1.5], 1: [-0.8, 0.3], 2: [-0.6, -0.8],
....: 3:[0.6, -0.8], 4:[0.8, 0.3])
sage: g = Graph({0: [1], 1: [2], 2: [3], 3: [4], 4: [0]})
```
sage: g.graphplot(pos=pos, layout='spring', iterations=0).plot()
Graphics object consisting of 11 graphics primitives

>>> from sage.all import *

>>> pos = {Integer(0): [RealNumber('0.0'), RealNumber('1.5')], Integer(1): [-RealNumber('0.8'), RealNumber('0.3')], Integer(2): [-RealNumber('0.6'), -RealNumber('0.8')], ...
 Integer(3): [RealNumber('0.6'), -RealNumber('0.8')],...
 Integer(4): [RealNumber('0.8'), RealNumber('0.3')],

>>> g = Graph({Integer(0): [Integer(1)], Integer(1): [Integer(2)],...
 Integer(2): [Integer(3)], Integer(3): [Integer(4)], Integer(4):...
 [Integer(0)]})

>>> g.graphplot(pos=pos, layout='spring', iterations=Integer(0)).plot()
Graphics object consisting of 11 graphics primitives

sage: G = Graph()
sage: P = G.graphplot().plot()
sage: P.axes()
False

sage: G = DiGraph()
sage: P = G.graphplot().plot()
sage: P.axes()
False

5.18. Graph plotting
We can plot multiple graphs:

```python
from sage.all import *
G = Graph()
P = G.graphplot().plot()
P.axes()  # False
G = DiGraph()
P = G.graphplot().plot()
P.axes()  # False
```

```python
T = list(graphs.trees(7))
t = T[3]
t.graphplot(heights={0: [0], 1: [4, 5, 1], ...
2: [2], 3: [3, 6]})
.plot()
```

```python
T = list(graphs.trees(Integer(7)))
t = T[Integer(3)]
t.graphplot(heights={Integer(0): [Integer(0)], Integer(1): [Integer(4), ...
Integer(5), Integer(1)], ...
Integer(2): [Integer(2)], Integer(3): [Integer(3), ...
Integer(6)]})
.plot()
```

```python
T = list(graphs.trees(7))
t = T[3]
t.graphplot(heights={0: [0], 1: [4, 5, 1], ...
2: [2], 3: [3, 6]},
edge_labels=True).
```

```python
t.set_edge_label(0, 1, -7)
t.set_edge_label(0, 5, 3)
t.set_edge_label(0, 5, 99)
t.set_edge_label(1, 2, 1000)
t.set_edge_label(3, 2, 'spam')
t.set_edge_label(2, 6, 3/2)
t.set_edge_label(0, 4, 66)
t.graphplot(heights={0: [0], 1: [4, 5, 1], ...
2: [2], 3: [3, 6]},
edge_labels=True)
```

(continues on next page)
5.18. Graph plotting
from sage.all import *

>>> t.set_edge_label(Integer(0), Integer(1), -Integer(7))
>>> t.set_edge_label(Integer(0), Integer(5), Integer(3))
>>> t.set_edge_label(Integer(0), Integer(5), Integer(99))
>>> t.set_edge_label(Integer(1), Integer(2), Integer(1000))
>>> t.set_edge_label(Integer(3), Integer(2), 'spam')
>>> t.set_edge_label(Integer(2), Integer(6), Integer(3)/Integer(2))

sage: T = list(graphs.trees(7))
sage: t = T[3]
sage: t.graphplot(layout='tree').show()
The tree layout is also useful:

```
sage: t = DiGraph('JCC??@A??GO??CO??GO??')
sage: t.graphplot(layout='tree', tree_root=0,
  ....:    tree_orientation="up"
  ....: ).show()
```

```
>>> from sage.all import *
>>> t = DiGraph('JCC??@A??GO??CO??GO??')
>>> t.graphplot(layout='tree', tree_root=Integer(0),
  ...    tree_orientation="up"
  ... ).show()
```

More examples:

```
sage: D = DiGraph({0:[1,2,3], 2:[1,4], 3:[0]})
sage: D.graphplot().show()
```
5.18. Graph plotting
```python
>>> from sage.all import *
>>> D = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(3)],
               Integer(2): [Integer(1), Integer(4)], Integer(3): [Integer(0)]})
>>> D.graphplot().show()
```

```python
sage: D = DiGraph(multiedges=True, sparse=True)
sage: for i in range(5):
    ....:     D.add_edge((i, i + 1, 'a'))
    ....:     D.add_edge((i, i - 1, 'b'))
```

```python
sage: D.graphplot(edge_labels=True,
               ... edge_colors=D._color_by_label()).plot()
```

```python
>>> from sage.all import *
>>> D = DiGraph(multiedges=True, sparse=True)
>>> for i in range(Integer(5)):
    ...     D.add_edge((i, i + Integer(1), 'a'))
    ...     D.add_edge((i, i - Integer(1), 'b'))
```

```python
>>> D.graphplot(edge_labels=True,
               ... edge_colors=D._color_by_label()).plot()
```

Graphics object consisting of 34 graphics primitives
```
5.18. Graph plotting
The `edge_style` option may be provided in the short format too:
```python
sage: g.graphplot(edge_labels=True,
 color_by_label=True,
 edge_style='--').plot()
Graphics object consisting of 22 graphics primitives
```

```python
>>> from sage.all import *

>>> g.graphplot(edge_labels=True,
 color_by_label=True,
 edge_style='--').plot()
Graphics object consisting of 22 graphics primitives
```

**set_edges(**edge_options**)

Set edge plotting parameters for the GraphPlot object.

This function is called by the constructor but can also be called to update the edge options of an existing GraphPlot object. Note that the changes are cumulative.

EXAMPLES:

```python
sage: g = Graph(loops=True, multiedges=True, sparse=True)
sage: g.add_edges([(0, 0, 'a'), (0, 0, 'b'), (0, 1, 'c'),
 (0, 1, 'd'), (0, 1, 'e'), (0, 1, 'f'),
 (0, 1, 'f'), (2, 1, 'g'), (2, 2, 'h')])
sage: GP = g.graphplot(vertex_size=100, edge_labels=True,
 color_by_label=True, edge_style=dashed)
sage: GP.set_edges(edge_style=solid)
sage: GP.plot()
Graphics object consisting of 22 graphics primitives
```

```python
>>> from sage.all import *

>>> g = Graph(loops=True, multiedges=True, sparse=True)

>>> g.add_edges([(Integer(0), Integer(0), 'a'), (Integer(0), Integer(0), 'b'),
 (Integer(0), Integer(1), 'c'),
 (Integer(0), Integer(1), 'd'), (Integer(0), Integer(1), 'e'),
 (Integer(0), Integer(1), 'f'),
 (Integer(0), Integer(1), 'f'), (Integer(2), Integer(1), 'g'),
 (Integer(2), Integer(2), 'h')])

>>> GP = g.graphplot(vertex_size=Integer(100), edge_labels=True,
 color_by_label=True, edge_style='dashed')

>>> GP.set_edges(edge_style='solid')

>>> GP.plot()
```

```python
sage: GP.set_edges(edge_color=black)
sage: GP.plot()
```

```python
>>> from sage.all import *

>>> GP.set_edges(edge_color=black)

>>> GP.plot()
```

```python
sage: d = DiGraph(loops=True, multiedges=True, sparse=True)
sage: d.add_edges([(0, 0, 'a'), (0, 0, 'b'), (0, 1, 'c'),
 (0, 1, 'd'), (0, 1, 'e'), (0, 1, 'f'),
 (0, 1, 'f'), (2, 1, 'g'), (2, 2, 'h')])
```

(continues on next page)
5.18. Graph plotting
Graph Theory, Release 10.4

(continued from previous page)

```python
....: (0, 1, 'd'), (0, 1, 'e'), (0, 1, 'f'),
....: (0, 1, 'f'), (2, 1, 'g'), (2, 2, 'h'))
sage: GP = d.graphplot(vertex_size=100, edge_labels=True,
....: color_by_label=True, edge_style='dashed')
sage: GP.set_edges(edge_style='solid')
sage: GP.plot()
Graphics object consisting of 24 graphics primitives
```

```python
>>> from sage.all import *
>>> d = DiGraph(loops=True, multiedges=True, sparse=True)
>>> d.add_edges([(Integer(0), Integer(0), 'a'), (Integer(0), Integer(0), 'b'),
 (Integer(0), Integer(1), 'c'),
 (Integer(0), Integer(1), 'd'), (Integer(0), Integer(1), 'e'),
 (Integer(0), Integer(1), 'f'),
 (Integer(0), Integer(1), 'f'), (Integer(2), Integer(1), 'g'),
 (Integer(2), Integer(1), 'h'))]
>>> GP = d.graphplot(vertex_size=Integer(100), edge_labels=True,
 color_by_label=True, edge_style='dashed')
>>> GP.set_edges(edge_style='solid')
>>> GP.plot()
Graphics object consisting of 24 graphics primitives
```
```python
sage: GP.set_edges(edge_color='black')
sage: GP.plot()
Graphics object consisting of 24 graphics primitives
```

```python
>>> from sage.all import *
>>> GP.set_edges(edge_color='black')
>>> GP.plot()
Graphics object consisting of 24 graphics primitives
```

**set_pos()**

Set the position plotting parameters for this GraphPlot.

**EXAMPLES:**

This function is called implicitly by the code below:

```python
sage: g = Graph({0: [1, 2], 2: [3], 4: [0, 1]})
sage: g.graphplot(save_pos=True, layout='circular') # indirect doctest
GraphPlot object for Graph on 5 vertices
```

```python
>>> from sage.all import *
>>> g = Graph({Integer(0): [Integer(1), Integer(2)], Integer(2): [Integer(3)],
 Integer(4): [Integer(0), Integer(1)]})
```

(continues on next page)
The following illustrates the format of a position dictionary, but due to numerical noise we do not check the values themselves:

\[
\begin{align*}
\text{sage: } & \text{g.get_pos()} \\
& \{0: (0.0, 1.0), \\
& 1: (-0.951..., 0.309...), \\
& 2: (-0.587..., -0.809...), \\
& 3: (0.587..., -0.809...), \\
& 4: (0.951..., 0.309...)}
\end{align*}
\]

\[
\begin{align*}
\text{from sage.all import } * \\
\text{g.get_pos()} \\
& \{0: (0.0, 1.0), \\
& 1: (-0.951..., 0.309...), \\
& 2: (-0.587..., -0.809...), \\
& 3: (0.587..., -0.809...), \\
& 4: (0.951..., 0.309...)}
\end{align*}
\]

\[
\begin{align*}
\text{sage: } & \text{T = list(graphs.trees(7))} \\
\text{sage: } & \text{t = T[3]} \\
\text{sage: } & \text{t.plot(heights={0: [0], 1: [4, 5, 1], 2: [2], 3: [3, 6]})}
\end{align*}
\]

Graphics object consisting of 14 graphics primitives

\[
\begin{align*}
\text{from sage.all import } * \\
\text{T = list(graphs.trees(Integer(7)))} \\
\text{t = T[Integer(3)]} \\
\text{t.plot(heights={Integer(0): [Integer(0)], Integer(1): [Integer(4), Integer(5), Integer(1)], Integer(2): [Integer(2)], Integer(3): [Integer(3), Integer(6)]}}
\end{align*}
\]

Graphics object consisting of 14 graphics primitives

**set_vertices(**vertex_options**)

Set the vertex plotting parameters for this GraphPlot.

This function is called by the constructor but can also be called to make updates to the vertex options of an existing GraphPlot object. Note that the changes are cumulative.

**EXAMPLES:**

\[
\begin{align*}
\text{sage: } & \text{g = Graph({}, loops=\text{True}, multiedges=\text{True}, sparse=\text{True})} \\
\text{sage: } & \text{g.add_edges([\{0, 0, 'a'\}, \{0, 0, 'b'\}, \{0, 1, 'c'\}, \\
& \text{....} \{0, 1, 'd'\}, \{0, 1, 'e'\}, \{0, 1, 'f'\}, \\
& \text{....} \{0, 1, 'g'\}, \{2, 2, 'h'\}])} \\
\text{sage: } & \text{GP = g.graphplot(vertex_size=100, edge_labels=\text{True}, \\
& \text{....} \text{color_by_label=\text{True}, edge_style='dashed')} \\
\text{sage: } & \text{GP.set_vertices(talk=\text{True})} \\
\text{sage: } & \text{GP.plot()} \\
\text{Graphics object consisting of 22 graphics primitives} \\
\text{sage: } & \text{GP.set_vertices(vertex_color='green', vertex_shape='^')} \\
\text{sage: } & \text{GP.plot()} \\
\text{Graphics object consisting of 22 graphics primitives}
\end{align*}
\]
5.18. Graph plotting
```python
>>> from sage.all import *

>>> g = Graph({}, loops=True, multiedges=True, sparse=True)
>>> g.add_edges([(Integer(0), Integer(0), 'a'), (Integer(0), Integer(0), 'b'),
 (Integer(0), Integer(1), 'c'),
 ... (Integer(3), Integer(0), 'd'), (Integer(0), Integer(1), 'e'),
 ... (Integer(0), Integer(1), 'f'), (Integer(2), Integer(1), 'g'),
 ... (Integer(2), Integer(2), 'h'))]

GP = g.graphplot(vertex_size=Integer(100), edge_labels=True,
 ... color_by_label=True, edge_style='dashed')

GP.set_vertices(talk=True)
GP.plot()

Graphics object consisting of 22 graphics primitives

GP.set_vertices(vertex_color=green, vertex_shape='^')
GP.plot()

Graphics object consisting of 22 graphics primitives

Vertex labels are flexible:

g = graphs.PathGraph(4)
g.plot(vertex_labels=False)

Graphics object consisting of 4 graphics primitives
```
5.18. Graph plotting
```python
>>> from sage.all import *

>>> g = graphs.PathGraph(Integer(4))
>>> g.plot(vertex_labels=False)
Graphics object consisting of 4 graphics primitives

sage: g = graphs.PathGraph(4)
sage: g.plot(vertex_labels=True)
Graphics object consisting of 8 graphics primitives

>>> from sage.all import *

>>> g = graphs.PathGraph(Integer(4))
>>> g.plot(vertex_labels=True)
Graphics object consisting of 8 graphics primitives

sage: g = graphs.PathGraph(4)
 sage: g.plot(vertex_labels=dict(zip(g, ['+', '-', '/', '*'])))
 Graphics object consisting of 8 graphics primitives

>>> from sage.all import *

>>> g = graphs.PathGraph(Integer(4))
>>> g.plot(vertex_labels=dict(zip(g, ['+', '-', '/', '*'])))
Graphics object consisting of 8 graphics primitives

sage: g = graphs.PathGraph(4)
```

This code snippet demonstrates the use of the SageMath library to work with graphs, specifically creating a path graph with 4 vertices and plotting it with different vertex labels. The example shows how to import necessary functions, create a graph object, and plot it with various configurations for vertex labels.
5.18. Graph plotting
Chapter 5. Libraries of algorithms
sage: g = graphs.PathGraph(4)
sage: g.plot(vertex_labels=lambda x: str(x % 2))
Graphics object consisting of 8 graphics primitives

>>> from sage.all import *
>>> g = graphs.PathGraph(Integer(4))
>>> g.plot(vertex_labels=lambda x: str(x % Integer(2)))
Graphics object consisting of 8 graphics primitives

5.18. Graph plotting

show (**kwds)

Show the (di)graph associated with this GraphPlot object.

INPUT:

This method accepts all parameters of sage.plot.graphics.Graphics.show().

Note:

• See the module's documentation for information on default values of this method.
• Any options not used by plot will be passed on to the show() method.

EXAMPLES:
5.19 Graph plotting in Javascript with d3.js

This module implements everything that can be used to draw graphs with d3.js in Sage.

On Python’s side, this is mainly done by wrapping a graph’s edges and vertices in a structure that can then be used in the javascript code. This javascript code is then inserted into a .html file to be opened by a browser.

In the browser, the displayed page contains at the bottom right a menu that allows to save the picture under the svg file format.

What Sage feeds javascript with is a “graph” object with the following content:
• **vertices** – each vertex is a dictionary defining:
  - **name** – The vertex’s label
  - **group** – the vertex’ color (integer)

The ID of a vertex is its index in the vertex list.

• **edges** – each edge is a dictionary defining:
  - **source** – the ID (int) of the edge’s source
  - **target** – the ID (int) of the edge’s destination
  - **color** – the edge’s color (integer)
  - **value** – thickness of the edge
  - **strength** – the edge’s strength in the automatic layout
  - **color** – color (hexadecimal code)
  - **curve** – distance from the barycenter of the two endpoints and the center of the edge. It defines the curve of the edge, which can be useful for multigraphs.

• **pos** – a list whose $i$th element is a dictionary defining the position of the $i$th vertex

It also contains the definition of some numerical/boolean variables whose definition can be found in the documentation of `show()` : \texttt{directed, charge, link_distance, link_strength, gravity, vertex_size, edge_thickness}.

**Warning:** Since the d3js package is not standard yet, the javascript is fetched from d3js.org website by the browser. If you want to avoid that (e.g. to protect your privacy or by lack of internet connection), you can install the d3js package for offline use by running \texttt{sage -i d3js} from the command line.

**Todo:**

• Add tooltip like in \texttt{http://bl.ocks.org/bentwonk/2514276}.

• Add a zoom through scrolling (\texttt{http://bl.ocks.org/mbostock/3681006}).

**Authors:**


• Thierry Monteil (June 2014): allow offline use of d3.js provided by d3js spkg.

### 5.19.1 Functions

\texttt{gen_html_code}(G, vertex_labels=True, edge_labels=False, vertex_partition=[], vertex_colors=None, edge_partition=[], force_spring_layout=False, charge=-120, link_distance=30, link_strength=2, gravity=0.04, vertex_size=7, edge_thickness=4)

Create a .html file showing the graph using d3.js.

This function returns the name of the .html file. If you want to visualize the actual graph use \texttt{show()}.  

5.19.1 Graph plotting in Javascript with d3.js
INPUT:

- **G** – the graph
- **vertex_labels** – boolean (default: False); whether to display vertex labels
- **edge_labels** – boolean (default: False); whether to display edge labels
- **vertex_partition** – list (default: []); a list of lists representing a partition of the vertex set. Vertices are then colored in the graph according to the partition
- **vertex_colors** – dict (default: None); a dictionary representing a partition of the vertex set. Keys are colors (ignored) and values are lists of vertices. Vertices are then colored in the graph according to the partition
- **edge_partition** – list (default: []); same as vertex_partition, with edges instead
- **force_spring_layout** – boolean (default: False); whether to take previously computed position of nodes into account if there is one, or to compute a spring layout
- **vertex_size** – integer (default: 7); the size of a vertex' circle
- **edge_thickness** – integer (default: 4); thickness of an edge
- **charge** – integer (default: -120); the vertices' charge. Defines how they repulse each other. See https://github.com/mbostock/d3/wiki/Force-Layout for more information
- **link_distance** – integer (default: 30); see https://github.com/mbostock/d3/wiki/Force-Layout for more information
- **link_strength** – integer (default: 2); see https://github.com/mbostock/d3/wiki/Force-Layout for more information
- **gravity** – float (default: 0.04); see https://github.com/mbostock/d3/wiki/Force-Layout for more information

**Warning:** Since the d3js package is not standard yet, the javascript is fetched from d3js.org website by the browser. If you want to avoid that (e.g. to protect your privacy or by lack of internet connection), you can install the d3js package for offline use by running `sage -i d3js` from the command line.

EXAMPLES:

```
sage: graphs.RandomTree(50).show(method="js") # optional - internet
sage: g = graphs.PetersenGraph()
sage: g.show(method="js", vertex_partition=g.coloring()) # optional - internet
sage: graphs.DodecahedralGraph().show(method="js", force_spring_layout=True) # optional - internet
sage: graphs.DodecahedralGraph().show(method="js") # optional - internet
sage: # needs sage.combinat
sage: g = digraphs.DeBruijn(2, 2)
sage: g.allow_multiple_edges(True)
sage: g.add_edge("10", "10", "a")
```

(continues on next page)
sage: g.add_edge("10", "10", "b")
sage: g.add_edge("10", "10", "c")
sage: g.add_edge("10", "10", "d")
sage: g.add_edge("01", "11", "1")

sage: g.show(method="js", vertex_labels=True, edge_labels=True,
˓→optional - internet
....:    link_distance=200, gravity=.05, charge=-500,
....:    edge_partition=[[("11", "12", "2"), ("21", "21", "a")],
....:    edge_thickness=4)

>>> from sage.all import *
>>> graphs.RandomTree(Integer(50)).show(method="js")
˓→optional - internet

>>> g = graphs.PetersenGraph()
>>> g.show(method="js", vertex_partition=g.coloring())
˓→optional - internet

>>> graphs.DodecahedralGraph().show(method="js",
˓→optional - internet
...      force_spring_layout=True)

>>> graphs.DodecahedralGraph().show(method="js")
˓→optional - internet

>>> # needs sage.combinat
>>> g = digraphs.DeBruijn(Integer(2), Integer(2))
>>> g.allow_multiple_edges(True)
>>> g.add_edge("10", "10", "a")
>>> g.add_edge("10", "10", "b")
>>> g.add_edge("10", "10", "c")
>>> g.add_edge("10", "10", "d")
>>> g.add_edge("01", "11", "1")

5.20 Tree decompositions

This module implements tree-decomposition methods.

A tree-decomposition of a graph $G = (V, E)$ is a pair $(X, T)$, where $X = \{X_1, X_2, \ldots, X_t\}$ is a family of subsets of $V$, usually called bags, and $T$ is a tree of order $t$ whose nodes are the subsets $X_i$ satisfying the following properties:

- The union of all sets $X_i$ equals $V$. That is, each vertex of the graph $G$ is associated with at least one tree node.
- For every edge $(v, w)$ in the graph, there is a subset $X_i$ that contains both $v$ and $w$. That is, each edge of the graph $G$ appears in a tree node.
- The nodes associated with vertex $v \in V$ form a connected subtree of $T$. That is, if $X_i$ and $X_j$ both contain a vertex $v \in V$, then all nodes $X_k$ of the tree in the (unique) path between $X_i$ and $X_j$ contain $v$ as well, and we have $X_i \cap X_j \subseteq X_k$. 

5.20. Tree decompositions
The width of a tree decomposition is the size of the largest set $X_i$ minus one, i.e., $\max_{X_i \in \mathcal{X}} |X_i| - 1$, and the treewidth $tw(G)$ of a graph $G$ is the minimum width among all possible tree decompositions of $G$. Observe that, the size of the largest set is diminished by one in order to make the treewidth of a tree equal to one.

The length of a tree decomposition, as proposed in [DG2006], is the maximum diameter in $G$ of its bags, where the diameter of a bag $X_i$ is the largest distance in $G$ between the vertices in $X_i$ (i.e., $\max_{u, v \in X_i} \text{dist}_G(u, v)$). The treelength $tl(G)$ of a graph $G$ is the minimum length among all possible tree decompositions of $G$.

While deciding whether a graph has treelength 1 can be done in linear time (equivalent to deciding if the graph is chordal), deciding if it has treelength at most $k$ for any fixed constant $k \leq 2$ is NP-complete [Lokshtanov2009].

Treewidth and treelength are different measures of tree-likeness. In particular, trees have treewidth and treelength 1:

```python
sage: T = graphs.RandomTree(20)
sage: T.treewidth()
1
sage: T.treelength()
1
```

The treewidth of a cycle is 2 and its treelength is $\lceil n/3 \rceil$:

```python
sage: [graphs.CycleGraph(n).treewidth() for n in range(3, 11)]
[2, 2, 2, 2, 2, 2, 2, 2]
sage: [graphs.CycleGraph(n).treelength() for n in range(3, 11)]
[1, 2, 2, 2, 3, 3, 3, 4]
```

The treewidth of a clique is $n - 1$ and its treelength is 1:

```python
sage: [graphs.CompleteGraph(n).treewidth() for n in range(3, 11)]
[2, 3, 4, 5, 6, 7, 8, 9]
sage: [graphs.CompleteGraph(n).treelength() for n in range(3, 11)]
[1, 1, 1, 1, 1, 1, 1, 1]
```

See also:
- Wikipedia article Tree_decomposition
- Wikipedia article Treewidth

This module contains the following methods
**5.20.1 Methods**

```python
class sage.graphs.graph_decompositions.tree_decomposition.TreelengthConnected
 Bases: object

 Compute the treelength of a connected graph (and provide a decomposition).

 This class implements an algorithm for computing the treelength of a connected graph that virtually explores the graph of all pairs (vertex_cut, connected_component), where vertex_cut is a vertex cut of the graph of length ≤ k, and connected_component is a connected component of the graph induced by G - vertex_cut.

 We deduce that the pair (vertex_cut, connected_component) is feasible with treelength k if connected_component is empty, or if a vertex v from vertex_cut can be replaced with a vertex from connected_component, such that the pair (vertex_cut + v, connected_component - v) is feasible.

 INPUT:
 • G – a sage Graph
 • k – integer (default: None); indicates the length to be considered. When k is an integer, the method checks that the graph has treelength ≤ k. If k is None (default), the method computes the optimal treelength.
 • certificate – boolean (default: False); whether to also compute the tree-decomposition itself

 OUTPUT:

 TreelengthConnected(G) returns the treelength of G. When k is specified, it returns False when no tree-decomposition of length ≤ k exists or True otherwise. When certificate=True, the tree-decomposition is also returned.

 EXAMPLES:

 A clique has treelength 1:
```

```bash
sage: from sage.graphs.graph_decompositions.tree_decomposition import
 TreelengthConnected
sage: TC = TreelengthConnected(graphs.CompleteGraph(3)), certificate=True)
```

(continues on next page)
A cycle has treelength $\lceil n/3 \rceil$:

```python
sage: TreelengthConnected(graphs.CycleGraph(6)).get_length()
2
sage: TreelengthConnected(graphs.CycleGraph(7)).get_length()
3
sage: TreelengthConnected(graphs.CycleGraph(7), k=3).is_less_than_k()
True
sage: TreelengthConnected(graphs.CycleGraph(7), k=2).is_less_than_k()
False
```

### get_length()

Return the length of the tree decomposition.

**EXAMPLES:**

```python
from sage.graphs.graph_decompositions.tree_decomposition import TreelengthConnected
sage: G = graphs.CycleGraph(4)
sage: TreelengthConnected(G).get_length()
2
sage: TreelengthConnected(G, k=2).get_length()
2
sage: TreelengthConnected(G, k=1).get_length()
Traceback (most recent call last):
 ... ValueError: no tree decomposition with length <= 1 was found
```
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import *
>>> TreelengthConnected
>>> G = graphs.CycleGraph(Integer(4))
>>> TreelengthConnected(G).get_length()
2
>>> TreelengthConnected(G, k=Integer(2)).get_length()
2
>>> TreelengthConnected(G, k=Integer(1)).get_length()
Traceback (most recent call last):
...   ValueError: no tree decomposition with length <= 1 was found

get_tree_decomposition()
Return the tree-decomposition.

EXAMPLES:

sage: from sage.graphs.graph_decompositions.tree_decomposition import *
>>> G = graphs.CycleGraph(4)
>>> TreelengthConnected(G, certificate=True).get_tree_decomposition()
Tree decomposition of Cycle graph: Graph on 2 vertices
>>> G.diameter()
2
>>> TreelengthConnected(G, k=2, certificate=True).get_tree_decomposition()
Tree decomposition of Cycle graph: Graph on 1 vertex
>>> TreelengthConnected(G, k=1, certificate=True).get_tree_decomposition()
Traceback (most recent call last):
...   ValueError: no tree decomposition with length <= 1 was found

is_less_than_k()
Return whether a tree decomposition with length at most \( k \) was found.

EXAMPLES:

sage: from sage.graphs.graph_decompositions.tree_decomposition import *
>>> G = graphs.CycleGraph(4)
>>> TreelengthConnected(G, k=Integer(2), certificate=True).get_tree_decomposition()
Tree decomposition of Cycle graph: Graph on 1 vertex
>>> TreelengthConnected(G, k=Integer(1), certificate=True).get_tree_decomposition()
Traceback (most recent call last):
...   ValueError: no tree decomposition with length <= 1 was found

(continues on next page)
```python
sage: TreelengthConnected(G, k=1).is_less_than_k()
False
sage: TreelengthConnected(G, k=2).is_less_than_k()
True
sage: TreelengthConnected(G).is_less_than_k()
Traceback (most recent call last):
 ...
ValueError: parameter 'k' has not been specified
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import
 TreelengthConnected
>>> G = graphs.CycleGraph(Integer(4))
>>> TreelengthConnected(G, k=Integer(1)).is_less_than_k()
False
>>> TreelengthConnected(G, k=Integer(2)).is_less_than_k()
True
>>> TreelengthConnected(G).is_less_than_k()
Traceback (most recent call last):
 ...
ValueError: parameter 'k' has not been specified
```

```
sage.graphs.graph_decompositions.tree_decomposition.is_valid_tree_decomposition(G, T)
```

Check whether $T$ is a valid tree-decomposition for $G$.

**INPUT:**

- $G$ – a sage Graph
- $T$ – a tree decomposition, i.e., a tree whose vertices are the bags (subsets of vertices) of the decomposition

**EXAMPLES:**

```python
sage: from sage.graphs.graph_decompositions.tree_decomposition import is_valid_tree_decomposition
sage: K = graphs.CompleteGraph(4)
sage: T = Graph()
sage: T.add_vertex(Set(K))
sage: is_valid_tree_decomposition(K, T)
True
sage: G = graphs.RandomGNP(10, 0.2)
sage: T = G.treewidth(certificate=True)
sage: is_valid_tree_decomposition(G, T)
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import is_valid_tree_decomposition
>>> K = graphs.CompleteGraph(Integer(4))
>>> T = Graph()
>>> T.add_vertex(Set(K))
>>> is_valid_tree_decomposition(K, T)
True
>>> G = graphs.RandomGNP(Integer(10), RealNumber('0.2'))
```

(continues on next page)
The union of the bags is the set of vertices of $G$:

```
sage: G = graphs.PathGraph(4)
sage: T = G.treewidth(certificate=True)
sage: _ = G.add_vertex()
sage: is_valid_tree_decomposition(G, T)
False
```

Each edge of $G$ is contained in a bag:

```
sage: G = graphs.PathGraph(4)
sage: T = G.treewidth(certificate=True)
sage: G.add_edge(0, 3)
sage: is_valid_tree_decomposition(G, T)
False
```

The bags containing a vertex $v$ form a subtree of $T$:

```
sage: G = graphs.PathGraph(4)
sage: X1, X2, X3 = Set([0, 1]), Set([1, 2]), Set([2, 3])
sage: T = Graph([(X1, X3), (X3, X2)])
sage: is_valid_tree_decomposition(G, T)
False
```

```
sage.graphs.graph_decompositions.tree_decomposition.label_nice_tree_decomposition(nice_TD, root, directed=False)
```

Return a nice tree decomposition with nodes labelled accordingly.
INPUT:

- `nice_TD` – a nice tree decomposition
- `root` – the root of the nice tree decomposition
- `directed` – boolean (default: `False`): whether to return the nice tree decomposition as a directed graph rooted at vertex `root` or as an undirected graph

OUTPUT:

A nice tree decomposition with nodes labelled.

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition, label_nice_tree_decomposition
sage: claw = graphs.CompleteBipartiteGraph(1, 3)
sage: claw_TD = claw.treewidth(certificate=True)
sage: nice_TD = make_nice_tree_decomposition(claw, claw_TD)
sage: root = sorted(nice_TD.vertices())[0]
sage: label_TD = label_nice_tree_decomposition(nice_TD, root, directed=True)
sage: label_TD.name()
'Labelled Nice tree decomposition of Tree decomposition'
sage: for node in sorted(label_TD): # random
 print(node, label_TD.get_vertex(node))
(0, {}) forget
(1, {0}) forget
(2, {0, 1}) intro
(3, {0}) forget
(4, {0, 3}) intro
(5, {0}) forget
(6, {0, 2}) intro
(7, {2}) intro
(8, {}) leaf
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition, label_nice_tree_decomposition
>>> claw = graphs.CompleteBipartiteGraph(Integer(1), Integer(3))
>>> claw_TD = claw.treewidth(certificate=True)
>>> nice_TD = make_nice_tree_decomposition(claw, claw_TD)
>>> root = sorted(nice_TD.vertices())[Integer(0)]
>>> label_TD = label_nice_tree_decomposition(nice_TD, root, directed=True)
>>> label_TD.name()
'Labelled Nice tree decomposition of Tree decomposition'
>>> for node in sorted(label_TD): # random
 print(node, label_TD.get_vertex(node))
(0, {}) forget
(1, {0}) forget
(2, {0, 1}) intro
(3, {0}) forget
(4, {0, 3}) intro
(5, {0}) forget
(6, {0, 2}) intro
(7, {2}) intro
(8, {}) leaf
```

`sage.graphs.graph_decompositions.tree_decomposition.length_of_tree_decomposition(G, T, check=True)`
Return the length of the tree decomposition $T$ of $G$.

The length of a tree decomposition, as proposed in [DG2006], is the maximum diameter in $G$ of its bags, where the diameter of a bag $X_i$ is the largest distance in $G$ between the vertices in $X_i$ (i.e., $\max_{u, v \in X_i} \text{dist}_G(u, v)$). See the documentation of the \texttt{tree_decomposition} module for more details.

INPUT:

- $G$ – a graph
- $T$ – a tree-decomposition for $G$
- \text{check} – boolean (default: True); whether to check that the tree-decomposition $T$ is valid for $G$

EXAMPLES:

Trees and cliques have treelength 1:

\begin{verbatim}
from sage.graphs.graph_decompositions.tree_decomposition import length_of_tree_decomposition

g = graphs.CompleteGraph(5)
tl, T = g.treelength(certificate=True)
print(length_of_tree_decomposition(g, T, check=True))

1

g = graphs.RandomTree(20)
tl, T = g.treelength(certificate=True)
print(length_of_tree_decomposition(g, T, check=True))

1
\end{verbatim}

The Petersen graph has treelength 2:

\begin{verbatim}
g = graphs.PetersenGraph()
tl, T = g.treelength(certificate=True)
print(length_of_tree_decomposition(g, T))

2
\end{verbatim}
When a tree-decomposition has a single bag containing all vertices of a graph, the length of this tree-decomposition is the diameter of the graph:

```
sage: G = graphs.Grid2dGraph(2, 5)
sage: G.treelength()
2
sage: G.diameter()
5
sage: T = Graph({Set(G): []})
sage: length_of_tree_decomposition(G, T)
5
```

```
>>> from sage.all import *
>>> G = graphs.PetersenGraph()
>>> t1, T = G.treelength(certificate=True)
>>> t1
2
>>> length_of_tree_decomposition(G, T)
2
```

sage.graphs.graph_decompositions.tree_decomposition.make_nice_tree_decomposition(graph, tree_decomp)

Return a *nice* tree decomposition (TD) of the TD `tree_decomp`.


A *nice* TD $NT$ is a rooted tree with four types of nodes:

- **Leaf** nodes have no children and bag size 1;
- **Introduce** nodes have one child: If $v \in NT$ is an introduce node and $w \in NT$ its child, then $Bag(v) = Bag(w) \cup \{x\}$, where $x$ is the introduced node;
- **Forget** nodes have one child: If $v \in NT$ is a forget node and $w \in NT$ its child, then $Bag(v) = Bag(w) \setminus \{x\}$, where $x$ is the forgotten node;
- **Join** nodes have two children, both identical to the parent.

**INPUT:**

- *graph* – a Sage graph
- *tree_decomp* – a tree decomposition

**OUTPUT:**

A nice tree decomposition.
Warning: This method assumes that the vertices of the input tree $t_{ree\_d\_e\_c\_o\_m\_p}$ are hashable and have attribute is\_superset, e.g., frozenset or Set\_object\_enumerated\_with\_category.

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
sage: petersen = graphs.PetersenGraph()
sage: petersen_TD = petersen.treewidth(certificate=True)
sage: make_nice_tree_decomposition(petersen, petersen_TD)
Nice tree decomposition of Tree decomposition: Graph on 28 vertices
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
>>> petersen = graphs.PetersenGraph()
>>> petersen_TD = petersen.treewidth(certificate=True)
>>> make_nice_tree_decomposition(petersen, petersen_TD)
Nice tree decomposition of Tree decomposition: Graph on 28 vertices
```

```python
sage: from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
sage: cherry = graphs.CompleteBipartiteGraph(1, 2)
sage: cherry_TD = cherry.treewidth(certificate=True)
sage: make_nice_tree_decomposition(cherry, cherry_TD)
Nice tree decomposition of Tree decomposition: Graph on 7 vertices
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
>>> cherry = graphs.CompleteBipartiteGraph(Integer(1), Integer(2))
>>> cherry_TD = cherry.treewidth(certificate=True)
>>> make_nice_tree_decomposition(cherry, cherry_TD)
Nice tree decomposition of Tree decomposition: Graph on 7 vertices
```

```python
sage: from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
sage: bip_one_four = graphs.CompleteBipartiteGraph(1, 4)
sage: bip_one_four_TD = bip_one_four.treewidth(certificate=True)
sage: make_nice_tree_decomposition(bip_one_four, bip_one_four_TD)
Nice tree decomposition of Tree decomposition: Graph on 15 vertices
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
>>> bip_one_four = graphs.CompleteBipartiteGraph(Integer(1), Integer(4))
>>> bip_one_four_TD = bip_one_four.treewidth(certificate=True)
>>> make_nice_tree_decomposition(bip_one_four, bip_one_four_TD)
Nice tree decomposition of Tree decomposition: Graph on 15 vertices
```

Check that Issue #36843 is fixed:

```python
sage: from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
```

(continues on next page)
sage: triangle = graphs.CompleteGraph(3)
sage: triangle_TD = triangle.treewidth(certificate=True)
sage: make_nice_tree_decomposition(triangle, triangle_TD)
Nice tree decomposition of Tree decomposition: Graph on 7 vertices

>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
>>> triangle = graphs.CompleteGraph(Integer(3))
>>> triangle_TD = triangle.treewidth(certificate=True)
>>> make_nice_tree_decomposition(triangle, triangle_TD)
Nice tree decomposition of Tree decomposition: Graph on 7 vertices

sage: from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
sage: graph = graphs.CompleteBipartiteGraph(2, 5)

sage: from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
>>> graph = graphs.CompleteBipartiteGraph(Integer(2), Integer(5))
>>> graph_TD = graph.treewidth(certificate=True)
>>> make_nice_tree_decomposition(graph, graph_TD)
Nice tree decomposition of Tree decomposition: Graph on 25 vertices

sage: from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
>>> empty_graph = graphs.EmptyGraph()

sage: from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
>>> empty_graph = graphs.EmptyGraph()
>>> tree_decomp = empty_graph.treewidth(certificate=True)
>>> len(make_nice_tree_decomposition(empty_graph, tree_decomp))
0

sage: from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
sage: singleton = graphs.CompleteGraph(1)

sage: from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
>>> singleton = graphs.CompleteGraph(Integer(1))
>>> tree_decomp = singleton.treewidth(certificate=True)
>>> make_nice_tree_decomposition(singleton, tree_decomp)
Nice tree decomposition of Tree decomposition: Graph on 3 vertices

sage: from sage.graphs.graph_decompositions.tree_decomposition import make_nice_tree_decomposition
sage: an_edge = graphs.CompleteGraph(2)
sage: tree_decomp = an_edge.treewidth(certificate=True)
sage: make_nice_tree_decomposition(an_edge, tree_decomp)
Nice tree decomposition of Tree decomposition: Graph on 5 vertices

sage.graphs.graph_decompositions.tree_decomposition.reduced_tree_decomposition(T)
Return a reduced tree-decomposition of \( T \).
We merge all edges between two sets \( S \) and \( S' \) where \( S \) is a subset of \( S' \). To do so, we use a simple union-find data structure to record merge operations and the good sets.

**Warning:** This method assumes that the vertices of the input tree \( T \) are hashable and have attribute `issuperset`, e.g., `frozenset` or `Set_objectEnumerated`.

**INPUT:**
- \( T \) – a tree-decomposition

**EXAMPLES:**

sage: from sage.graphs.graph_decompositions.tree_decomposition import reduced_tree_decomposition
sage: from sage.graphs.graph_decompositions.tree_decomposition import is_valid_tree_decomposition
sage: G = graphs.PathGraph(3)
sage: T = Graph()
sage: T.add_path([Set([0]), Set([0, 1]), Set([1]), Set([1, 2]), Set([2])])
sage: T.order()
5
sage: is_valid_tree_decomposition(G, T)
True
sage: T2 = reduced_tree_decomposition(T)
sage: is_valid_tree_decomposition(G, T2)
True
sage: T2.order()
2

>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.tree_decomposition import reduced_tree_decomposition
(continues on next page)
>>> from sage.graphs.graph_decompositions.tree_decomposition import is_valid_tree_decomposition
>>> G = graphs.PathGraph(Integer(3))
>>> T = Graph()
>>> T.add_path([Set([Integer(0)]), Set([Integer(0), Integer(1)]),
              Set([Integer(1)]), Set([Integer(1), Integer(2)]), Set([Integer(2)])])
>>> T.order()
5
>>> is_valid_tree_decomposition(G, T)
True
>>> T2 = reduced_tree_decomposition(T)
>>> is_valid_tree_decomposition(G, T2)
True
>>> T2.order()
2

sage.graphs.graph_decompositions.tree_decomposition.treelength(G, k=None, certificate=False)

Compute the treelength of $G$ (and provide a decomposition).

The length of a tree decomposition, as proposed in [DG2006], is the maximum diameter in $G$ of its bags, where the diameter of a bag $X_i$ is the largest distance in $G$ between the vertices in $X_i$ (i.e., $\max_{u,v \in X_i} \text{dist}_G(u, v)$). The treelength $tl(G)$ of a graph $G$ is the minimum length among all possible tree decompositions of $G$. See the documentation of the tree_decomposition module for more details.

INPUT:

- $G$ – a sage Graph
- $k$ – integer (default: None); indicates the length to be considered. When $k$ is an integer, the method checks that the graph has treelength $\leq k$. If $k$ is None (default), the method computes the optimal treelength.
- certificate – boolean (default: False); whether to also return the tree-decomposition itself

OUTPUT:

$G$.treelength() returns the treelength of $G$. When $k$ is specified, it returns False when no tree-decomposition of length $\leq k$ exists or True otherwise. When certificate=True, the tree-decomposition is also returned.

ALGORITHM:

This method virtually explores the graph of all pairs (vertex_cut, connected_component), where vertex_cut is a vertex cut of the graph of length $\leq k$, and connected_component is a connected component of the graph induced by $G - \text{vertex\_cut}$.

We deduce that the pair (vertex_cut, connected_component) is feasible with treelength $k$ if connected_component is empty, or if a vertex $v$ from vertex_cut can be replaced with a vertex from connected_component, such that the pair (vertex_cut + v, connected_component - v) is feasible.

In practice, this method decomposes the graph by its clique minimal separators into atoms, computes the treelength of each of atom and returns the maximum value over all the atoms. Indeed, we have that $tl(G) = \max_{X \in A} tl(G[X])$ where $A$ is the set of atoms of the decomposition by clique separators of $G$. When certificate == True, the tree-decompositions of the atoms are connected to each others by adding edges with respect to the clique separators.

See also:

- $\text{treewidth()}$ computes the treewidth of a graph.
• `path_decomposition()` computes the pathwidth of a graph.

• module `vertex_separation`.

• `atoms_and_clique_separators()`

EXAMPLES:

The PetersenGraph has treelength 2:

```python
sage: G = graphs.PetersenGraph()
sage: G.treelength()
2
```

Disconnected graphs have infinite treelength:

```python
sage: G = Graph(2)
sage: G.treelength()
+Infinity
```

Chordal graphs have treelength 1:

```python
sage: G = graphs.RandomChordalGraph(30)
sage: while not G.is_connected():
....: G = graphs.RandomChordalGraph(30)
sage: G.treelength()
1
```

(continues on next page)
Cycles have treelength \([n/3]\):

\[
\text{sage: } [\text{graphs.CycleGraph}(n).\text{treelength()} \text{ for } n \text{ in range}(3, 11)]
\]

\[ [1, 2, 2, 2, 3, 3, 3, 4] \]

\[
\text{sage: } [\text{graphs.CycleGraph}(n).\text{treelength()} \text{ for } n \text{ in range}(\text{Integer}(3), \text{Integer}(11))] 
\]

\[ [1, 2, 2, 2, 3, 3, 3, 4] \]

sage.graphs.graph_decompositions.tree_decomposition.treelength_lowerbound(G)

Return a lower bound on the treelength of \(G\).

See [DG2006] for more details.

INPUT:

- \(G\) – a sage Graph

EXAMPLES:

\[
\text{sage: } \text{from sage.graphs.graph_decompositions.tree_decomposition import treelength_lowerbound} \\
\text{sage: } G = \text{graphs.PetersenGraph()} \\
\text{sage: } \text{treelength_lowerbound}(G) \\
1 \\
\text{sage: } G.\text{treelength()} \\
2 \\
\text{sage: } G = \text{graphs.CycleGraph}(5) \\
\text{sage: } \text{treelength_lowerbound}(G) \\
2 \\
\text{sage: } G.\text{treelength()} \\
2 \\
\]

\[
\text{sage: } \text{from sage.all import } * \\
\text{sage: } \text{from sage.graphs.graph_decompositions.tree_decomposition import treelength_lowerbound} \\
\text{sage: } G = \text{graphs.PetersenGraph()} \\
\text{sage: } \text{treelength_lowerbound}(G) \\
1 \\
\text{sage: } G.\text{treelength()} \\
2 \\
\text{sage: } G = \text{graphs.CycleGraph}(\text{Integer}(5)) \\
\text{sage: } \text{treelength_lowerbound}(G) \\
2 \\
\text{sage: } G.\text{treelength()} \\
2 \\
\]

sage.graphs.graph_decompositions.tree_decomposition.treewidth(g, k=None, kmin=None, certificate=False, algorithm=None, nice=False)

Compute the treewidth of \(g\) (and provide a decomposition).

INPUT:
Graph Theory, Release 10.4

• g – a Sage Graph

• k – integer (default: None): indicates the width to be considered. When k is an integer, the method checks that the graph has treewidth \( \leq k \). If k is None (default), the method computes the optimal treewidth.

• kmin – integer (default: None); when specified, search for a tree-decomposition of width at least kmin. This parameter is useful when the graph can be decomposed into atoms. This parameter is ignored when k is not None or when algorithm == 'tdlib'.

• certificate – boolean (default: False); whether to return the tree-decomposition itself.

• algorithm – whether to use "sage" or "tdlib" (requires the installation of the sagemath_tdlib: Tree decompositions with tdlib package). The default behaviour is to use ‘tdlib’ if it is available, and Sage’s own algorithm when it is not.

• nice – boolean (default: False); whether or not to return the nice tree decomposition, provided certificate is True.

OUTPUT:

g.treewidth() returns treewidth of the graph g.

When k is specified, it returns False if there is not tree decomposition of width \( \leq k \), and True otherwise.

When certificate=True, the tree decomposition is returned.

When nice=True, the nice tree decomposition is returned.

ALGORITHM:

This function virtually explores the graph of all pairs \((\text{vertex} \_\text{cut}, \text{cc})\), where \text{vertex} \_\text{cut} is a vertex cut of the graph of cardinality \( \leq k + 1 \), and \text{connected} \_\text{component} is a connected component of the graph induced by \(G - \text{vertex} \_\text{cut}\).

We deduce that the pair \((\text{vertex} \_\text{cut}, \text{cc})\) is feasible with treewidth \(k\) if \text{cc} is empty, or if a vertex \(v\) from \text{vertex} \_\text{cut} can be replaced with a vertex from \text{cc}, such that the pair \((\text{vertex} \_\text{cut}+v, \text{cc}-v)\) is feasible.

Note: The implementation would be much faster if \text{cc}, the argument of the recursive function, was a bitset. It would also be very nice to not copy the graph in order to compute connected components, for this is really a waste of time.

See also:

path_decomposition() computes the pathwidth of a graph. See also the vertex_separation module.

EXAMPLES:
The Petersen Graph has treewidth 4:

```python
sage: petersen = graphs.PetersenGraph()
sage: petersen.treewidth(algorithm='sage')
4
sage: petersen.treewidth(algorithm='sage', certificate=True)
Tree decomposition: Graph on 6 vertices
```

```python
>>> from sage.all import *
>>> petersen = graphs.PetersenGraph()
>>> petersen.treewidth(algorithm='sage')
4
>>> petersen.treewidth(algorithm='sage', certificate=True)
Tree decomposition: Graph on 6 vertices
```
The PetersenGraph has treewidth 4 (with \texttt{tdlib}):

```python
sage: petersen = graphs.PetersenGraph()
sage: petersen.treewidth(algorithm='tdlib') # optional - tdlib
4
sage: petersen.treewidth(algorithm='tdlib', certificate=True) # optional - tdlib
Tree decomposition: Graph on 6 vertices
```

Nice tree decomposition of the PetersenGraph has 28 nodes:

```python
sage: petersen = graphs.PetersenGraph()
sage: petersen.treewidth(algorithm='sage', certificate=True, nice=True)
Nice tree decomposition of Tree decomposition: Graph on 28 vertices
sage: petersen.treewidth(algorithm='tdlib', certificate=True, nice=True) # optional - tdlib
Nice tree decomposition of Tree decomposition: Graph on 28 vertices
```

The treewidth of a 2-dimensional grid is its smallest side:

```python
sage: graphs.Grid2dGraph(2,5).treewidth()
2
sage: graphs.Grid2dGraph(3,5).treewidth()
3
```

When parameter \texttt{kmin} is specified, the method searches for a tree-decomposition of width at least \texttt{kmin}:

```python
sage: g = graphs.PetersenGraph()
sage: g.treewidth()
4
sage: g.treewidth(kmin=2, algorithm='sage')
4
sage: g.treewidth(kmin=g.order(), certificate=True, algorithm='sage')
Tree decomposition: Graph on 1 vertex
```
Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.treewidth()
4
>>> g.treewidth(kmin=Integer(2), algorithm='sage')
4
>>> g.treewidth(kmin=g.order(), certificate=True, algorithm='sage')
Tree decomposition: Graph on 1 vertex
```

sage.graphs.graph_decompositions.tree_decomposition.width_of_tree_decomposition(G, T, check=True)

Return the width of the tree decomposition $T$ of $G$.

The width of a tree-decomposition is the size of the largest bag minus 1. The empty graph and a graph of order 1 have treewidth 0.

INPUT:

- $G$ – a sage Graph
- $T$ – a tree-decomposition for $G$
- check – boolean (default: True); whether to check that the tree-decomposition $T$ is valid for $G$

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.tree_decomposition import width_of_tree_decomposition
sage: G = graphs.PathGraph(3)
sage: T = G.treewidth(certificate=True)
sage: width_of_tree_decomposition(G, T, check=True)
1
```

5.21 Vertex separation

This module implements several algorithms to compute the vertex separation of a digraph and the corresponding ordering of the vertices. It also implements tests functions for evaluation the width of a linear ordering.

Given an ordering $v_1, \cdots, v_n$ of the vertices of $V(G)$, its cost is defined as:

$$c(v_1, \ldots, v_n) = \max_{1 \leq i \leq n} c'(\{v_1, \ldots, v_i\})$$

Where

$$c'(S) = |N^+_G(S)\setminus S|$$

The vertex separation of a digraph $G$ is equal to the minimum cost of an ordering of its vertices.
Vertex separation and pathwidth

The vertex separation is defined on a digraph, but one can obtain from a graph $G$ a digraph $D$ with the same vertex set, and in which each edge $uv$ of $G$ is replaced by two edges $uv$ and $vu$ in $D$. The vertex separation of $D$ is equal to the pathwidth of $G$, and the corresponding ordering of the vertices of $D$, also called a layout, encodes an optimal path-decomposition of $G$. This is a result of Kinnersley [Kin1992] and Bodlaender [Bod1998].

This module contains the following methods

<table>
<thead>
<tr>
<th>method</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pathwidth()</code></td>
<td>Compute the pathwidth of <code>self</code> (and provides a decomposition)</td>
</tr>
<tr>
<td><code>path_decomposition()</code></td>
<td>Return the pathwidth of the given graph and the ordering of the vertices resulting in a corresponding path decomposition</td>
</tr>
<tr>
<td><code>vertex_separation()</code></td>
<td>Return an optimal ordering of the vertices and its cost for vertex-separation</td>
</tr>
<tr>
<td><code>vertex_separation_exp()</code></td>
<td>Compute the vertex separation of $G$ using an exponential time and space algorithm</td>
</tr>
<tr>
<td><code>vertex_separation_MILP()</code></td>
<td>Compute the vertex separation of $G$ and the optimal ordering of its vertices using an MILP formulation</td>
</tr>
<tr>
<td><code>vertex_separation_BAB()</code></td>
<td>Compute the vertex separation of $G$ and the optimal ordering of its vertices using a branch and bound algorithm</td>
</tr>
<tr>
<td><code>lower_bound()</code></td>
<td>Return a lower bound on the vertex separation of $G$</td>
</tr>
<tr>
<td><code>is_valid_ordering()</code></td>
<td>Test if the linear vertex ordering $L$ is valid for (di)graph $G$</td>
</tr>
<tr>
<td><code>width_of_path_decomposition()</code></td>
<td>Return the width of the path decomposition induced by the linear ordering $L$ of the vertices of $G$</td>
</tr>
<tr>
<td><code>linear_ordering_to_path_decomposition()</code></td>
<td>Return the path decomposition encoded in the ordering $L$</td>
</tr>
</tbody>
</table>

5.21.1 Exponential algorithm for vertex separation

In order to find an optimal ordering of the vertices for the vertex separation, this algorithm tries to save time by computing the function $c'(S)$ at most once for each of the sets $S \subseteq V(G)$. These values are stored in an array of size $2^n$ where reading the value of $c'(S)$ or updating it can be done in constant (and small) time.

Assuming that we can compute the cost of a set $S$ and remember it, finding an optimal ordering is an easy task. Indeed, we can think of the sequence $v_1, \ldots, v_n$ of vertices as a sequence of sets $\{v_1\}, \{v_1, v_2\}, \ldots, \{v_1, \ldots, v_n\}$, whose cost is precisely $\max c'(\{v_1\}), c'(\{v_1, v_2\}), \ldots, c'(\{v_1, \ldots, v_n\})$. Hence, when considering the digraph on the $2^n$ sets $S \subseteq V(G)$ where there is an arc from $S$ to $S'$ if $S' = S \cap \{v\}$ for some $v$ (that is, if the sets $S$ and $S'$ can be consecutive in a sequence), an ordering of the vertices of $G$ corresponds to a path from $\emptyset$ to $\{v_1, \ldots, v_n\}$. In this setting, checking whether there exists an ordering of cost less than $k$ can be achieved by checking whether there exists a directed path $\emptyset$ to $\{v_1, \ldots, v_n\}$ using only sets of cost less than $k$. This is just a depth-first-search, for each $k$.

Lazy evaluation of $c'$

In the previous algorithm, most of the time is actually spent on the computation of $c'(S)$ for each set $S \subseteq V(G)$ – i.e. $2^n$ computations of neighborhoods. This can be seen as a huge waste of time when noticing that it is useless to know that the value $c'(S)$ for a set $S$ is less than $k$ if all the paths leading to $S$ have a cost greater than $k$. For this reason, the value of $c'(S)$ is computed lazily during the depth-first search. Explanation:

When the depth-first search discovers a set $S$ of size less than $k$, the costs of its out-neighbors (the potential sets that could follow it in the optimal ordering) are evaluated. When an out-neighbor is found that has a cost smaller than $k$, the depth-first search continues with this set, which is explored with the hope that it could lead to a path toward $\{v_1, \ldots, v_n\}$. On the other hand, if an out-neighbor has a cost larger than $k$ it is useless to attempt to build a cheap sequence going though this set, and the exploration stops there. This way, a large number of sets will never be evaluated and a lot of computational time is saved this way.
Besides, some improvement is also made by “improving” the values found by \( c' \). Indeed, \( c'(S) \) is a lower bound on the cost of a sequence containing the set \( S \), but if all out-neighbors of \( S \) have a cost of \( c'(S) + 5 \) then one knows that having \( S \) in a sequence means a total cost of at least \( c'(S) + 5 \). For this reason, for each set \( S \) we store the value of \( c'(S) \), and replace it by \( \max(c'(S), \min_{\text{next}}) \) (where \( \min_{\text{next}} \) is the minimum of the costs of the out-neighbors of \( S \)) once the costs of these out-neighbors have been evaluated by the algorithm.

**Note:** Because of its current implementation, this algorithm only works on graphs on less than 32 vertices. This can be changed to 64 if necessary, but 32 vertices already require 4GB of memory. Running it on 64 bits is not expected to be doable by the computers of the next decade: \(-D\)

### Lower bound on the vertex separation

One can obtain a lower bound on the vertex separation of a graph in exponential time but small memory by computing once the cost of each set \( S \). Indeed, the cost of a sequence \( v_1, \ldots, v_n \) corresponding to sets \( \{v_1\}, \{v_1, v_2\}, \ldots, \{v_1, \ldots, v_n\} \) is

\[
\max c'(\{v_1\}), c'(\{v_1, v_2\}), \ldots, c'(\{v_1, \ldots, v_n\}) \geq \max c'_1, \ldots, c'_n
\]

where \( c_i \) is the minimum cost of a set \( S \) on \( i \) vertices. Evaluating the \( c_i \) can take time (and in particular more than the previous exact algorithm), but it does not need much memory to run.

#### 5.21.2 MILP formulation for the vertex separation

We describe below a mixed integer linear program (MILP) for determining an optimal layout for the vertex separation of \( G \), which is an improved version of the formulation proposed in [SP2010]. It aims at building a sequence \( S_t \) of sets such that an ordering \( v_1, \ldots, v_n \) of the vertices correspond to \( S_0 = \{v_1\}, S_2 = \{v_1, v_2\}, \ldots, S_{n-1} = \{v_1, \ldots, v_n\} \).

**Variables:**
- \( y_v^t \) – Variable set to 1 if \( v \in S_t \), and 0 otherwise. The order of \( v \) in the layout is the smallest \( t \) such that \( y_v^t = 1 \).
- \( u_v^t \) – Variable set to 1 if \( v \not\in S_t \) and \( v \) has an in-neighbor in \( S_t \). It is set to 0 otherwise.
- \( x_v^t \) – Variable set to 1 if either \( v \in S_t \) or if \( v \) has an in-neighbor in \( S_t \). It is set to 0 otherwise.
- \( z \) – Objective value to minimize. It is equal to the maximum over all step \( t \) of the number of vertices such that \( u_v^t = 1 \).

**MILP formulation:**

Minimize:

\[
z
\]

Such that:

\[
x_v^t - y_v^t \leq u_v^t & \quad \forall v \in V, 0 \leq t \leq n - 1
\]

\[
y_v^t \leq y_v^{t+1} & \quad \forall v \in V, 0 \leq t \leq n - 2
\]

\[
y_v^t \leq x_w^t & \quad \forall v \in V, \forall w \in N^+(v), 0 \leq t \leq n - 1
\]

\[
\sum_{v \in V} y_v^t = t + 1 & \quad 0 \leq t \leq n - 1
\]

\[
x_v^t - y_v^t \leq u_v^t & \quad \forall v \in V, 0 \leq t \leq n - 1
\]

\[
\sum_{v \in V} u_v^t \leq z & \quad 0 \leq t \leq n - 1
\]

\[
0 \leq x_v^t \leq 1 & \quad \forall v \in V, 0 \leq t \leq n - 1
\]

\[
0 \leq u_v^t \leq 1 & \quad \forall v \in V, 0 \leq t \leq n - 1
\]

\[
y_v^t \in \{0, 1\} & \quad \forall v \in V, 0 \leq t \leq n - 1
\]

\[
0 \leq z \leq n & \quad \forall v \in V
\]
The vertex separation of $G$ is given by the value of $z$, and the order of vertex $v$ in the optimal layout is given by the smallest $t$ for which $y^t_v == 1$.

### 5.21.3 Branch and Bound algorithm for the vertex separation

We describe below the principle of a branch and bound algorithm (BAB) for determining an optimal ordering for the vertex separation of $G$, as proposed in [CMN2014].

**Greedy steps:**

Let us denote $\mathcal{L}(S)$ the set of all possible orderings of the vertices in $S$, and let $\mathcal{L}_P(S) \subseteq \mathcal{L}(S)$ be the orderings starting with a prefix $P$. Let also $c(L)$ be the cost of the ordering $L \in \mathcal{L}(V)$ as defined above.

Given a digraph $D = (V, A)$, a set $S \subset V$, and a prefix $P$, it has been proved in [CMN2014] that $\min_{L \in \mathcal{L}_P(V)} c(L) = \min_{L \in \mathcal{L}_P+P}(V) c(L)$ holds in two (non exhaustive) cases:

\[
\begin{align*}
&\text{or } \begin{cases} 
N^+(v) \subseteq S \cup N^+(S) \\
v \in N^+(S) \text{ and } N^+(v) \setminus (S \cup N^+(S)) = \{w\}
\end{cases}
\end{align*}
\]

In other words, if we find a vertex $v$ satisfying the above conditions, the best possible ordering with prefix $P$ has the same cost as the best possible ordering with prefix $P + v$. So we can greedily extend the prefix with vertices satisfying the conditions which results in a significant reduction of the search space.

**The algorithm:**

Given the current prefix $P$ and the current upper bound $UB$ (either an input upper bound or the cost of the best solution found so far), apply the following steps:

- Extend the prefix $P$ into a prefix $P'$ using the greedy steps as described above.
- Sort the vertices $v \in V \setminus P'$ by increasing values of $|N^+(P + v)|$, and prune the vertices with a value larger or equal to $UB$. Let $\Delta$ be the resulting sorted list.
- Repeat with prefix $P' + v$ for all $v \in \Delta$ and keep the best found solution.

If a lower bound is passed to the algorithm, it will stop as soon as a solution with cost equal to that lower bound is found.

**Storing prefixes:**

If for a prefix $P$ we have $c(P) < \min_{L \in \mathcal{L}_P(V)} c(L) = C$, then for any permutation $P'$ of $P$ we have $\min_{L \in \mathcal{L}_{P'}(V)} c(L) \geq C$.

Thus, given such a prefix $P$ there is no need to explore any of the orderings starting with one of its permutations. To do so, we store $P$ (as a set of vertices) to cut branches later. See [CMN2014] for more details.

Since the number of stored sets can get very large, one can control the maximum length and the maximum number of stored prefixes.

### 5.21.4 Authors

- Nathann Cohen (2011-10): Initial version and exact exponential algorithm
- David Coudert (2012-04): MILP formulation and tests functions
- David Coudert (2015-01): BAB formulation and tests functions
5.21.5 Methods

`sage.graphs.graph_decompositions.vertex_separation.is_valid_ordering(G, L)`

Test if the linear vertex ordering $L$ is valid for (di)graph $G$.

A linear ordering $L$ of the vertices of a (di)graph $G$ is valid if all vertices of $G$ are in $L$, and if $L$ contains no other vertex and no duplicated vertices.

**INPUT:**
- $G$ – a Graph or a DiGraph.
- $L$ – an ordered list of the vertices of $G$.

**OUTPUT:**
Returns `True` if $L$ is a valid vertex ordering for $G$, and `False` otherwise.

**EXAMPLES:**
Path decomposition of a cycle:

```
sage: from sage.graphs.graph_decompositions import vertex_separation
tsage: G = graphs.CycleGraph(6)
tsage: L = G.vertices(sort=True)
tsage: vertex_separation.is_valid_ordering(G, L)
True
tsage: vertex_separation.is_valid_ordering(G, [1,2])
False
```

```
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions import vertex_separation
>>> G = graphs.CycleGraph(Integer(6))
>>> L = G.vertices(sort=True)
>>> vertex_separation.is_valid_ordering(G, L)
True
>>> vertex_separation.is_valid_ordering(G, [Integer(1),Integer(2)])
False
```

`sage.graphs.graph_decompositions.vertex_separation.linear_ordering_to_path_decomposition(G, L)`

Return the path decomposition encoded in the ordering $L$.

**INPUT:**
- $G$ – a Graph
- $L$ – a linear ordering for $G$

**OUTPUT:**
A path graph whose vertices are the bags of the path decomposition.

**EXAMPLES:**
The bags of an optimal path decomposition of a path-graph have two vertices each:
Graph Theory, Release 10.4

(continued from previous page)

```python
sage: pw, L = vertex_separation(g, algorithm = "BAB"); pw
1
sage: h = linear_ordering_to_path_decomposition(g, L)
sage: sorted(h, key=str)

[{0, 1}, {1, 2}, {2, 3}, {3, 4}]

sage: sorted(h.edge_iterator(labels=None), key=str)

[({0, 1}, {1, 2}), ({1, 2}, {2, 3}), ({2, 3}, {3, 4})]
```

Giving a non-optimal linear ordering:

```python
sage: g = graphs.PathGraph(5)
sage: L = [1, 4, 0, 2, 3]
sage: from sage.graphs.graph_decompositions.vertex_separation import width_of_path_decomposition
sage: width_of_path_decomposition(g, L)
3
sage: h = linear_ordering_to_path_decomposition(g, L)

sage: h.vertices(sort=True)

[{0, 2, 3, 4}, {0, 1, 2}]
```

The bags of the path decomposition of a cycle have three vertices each:

```python
sage: g = graphs.CycleGraph(6)
sage: pw, L = vertex_separation(g, algorithm = "BAB"); pw
2
sage: h = linear_ordering_to_path_decomposition(g, L)
sage: sorted(h, key=str)

[{0, 1, 5}, {1, 2, 5}, {2, 3, 4}, {2, 4, 5}]

sage: sorted(h.edge_iterator(labels=None), key=str)

[({0, 1, 5}, {1, 2, 5}), ({1, 2, 5}, {2, 4, 5}), ({2, 4, 5}, {2, 3, 4})]
```
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(6))
>>> pw, L = vertex_separation(g, algorithm = "BAB"); pw
2
>>> h = linear_ordering_to_path_decomposition(g, L)
>>> sorted(h, key=str)
[{0, 1, 5}, {1, 2, 5}, {2, 3, 4}, {2, 4, 5}]
>>> sorted(h.edge_iterator(labels=None), key=str)
[({0, 1, 5}, {1, 2, 5}), ({1, 2, 5}, {2, 4, 5}), ({2, 4, 5}, {2, 3, 4})]

sage.graphs.graph_decompositions.vertex_separation.lower_bound(G)

Return a lower bound on the vertex separation of $G$.

INPUT:

• $G$ – a Graph or a DiGraph

OUTPUT:

A lower bound on the vertex separation of $D$ (see the module’s documentation).

Note: This method runs in exponential time but has no memory constraint.

EXAMPLES:

On a circuit:

sage: from sage.graphs.graph_decompositions.vertex_separation import lower_bound
sage: g = digraphs.Circuit(6)
sage: lower_bound(g)
1

sage.graphs.graph_decompositions.vertex_separation.path_decomposition(G, algorithm='BAB', cut_off=None, upper_bound=None, verbose=False, max_prefix_length=20, max_prefix_number=1000000)

Return the pathwidth of the given graph and the ordering of the vertices resulting in a corresponding path decomposition.

INPUT:

• $G$ – a Graph
Graph Theory, Release 10.4

- **algorithm** – string (default: "BAB"); algorithm to use among:
  - "BAB" – Use a branch-and-bound algorithm. This algorithm has no size restriction but could take a very long time on large graphs. It can also be used to test is the input (d)graph has vertex separation at most upper_bound or to return the first found solution with vertex separation less or equal to a cut_off value.
  - exponential – Use an exponential time and space algorithm. This algorithm only works of graphs on less than 32 vertices.
  - MILP – Use a mixed integer linear programming formulation. This algorithm has no size restriction but could take a very long time.

- **upper_bound** – integer (default: None); parameter used by the "BAB" algorithm. If specified, the algorithm searches for a solution with width < upper_bound. It helps cutting branches. However, if the given upper bound is too low, the algorithm may not be able to find a solution.

- **cut_off** – integer (default: None); parameter used by the "BAB" algorithm. This bound allows us to stop the search as soon as a solution with width at most cut_off is found, if any. If this bound cannot be reached, the best solution found is returned, unless a too low upper_bound is given.

- **verbose** – boolean (default: False); whether to display information on the computations

- **max_prefix_length** – integer (default: 20); limits the length of the stored prefixes to prevent storing too many prefixes. This parameter is used only when algorithm="BAB".

- **max_prefix_number** – integer (default: 10**6); upper bound on the number of stored prefixes used to prevent using too much memory. This parameter is used only when algorithm="BAB".

**OUTPUT:**
A pair `(cost, ordering)` representing the optimal ordering of the vertices and its cost.

**See also:**
- `Graph.treewidth()` – computes the treewidth of a graph

**EXAMPLES:**
The pathwidth of a cycle is equal to 2:

```python
sage: from sage.graphs.graph_decompositions.vertex_separation import path_decomposition
sage: g = graphs.CycleGraph(6)
sage: pw, L = path_decomposition(g, algorithm="BAB"); pw
2
sage: pw, L = path_decomposition(g, algorithm="exponential"); pw
2
sage: pw, L = path_decomposition(g, algorithm="MILP"); pw # needs sage.numerical.mip
2
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.vertex_separation import path_decomposition
>>> g = graphs.CycleGraph(Integer(6))
>>> pw, L = path_decomposition(g, algorithm="BAB"); pw
2
>>> pw, L = path_decomposition(g, algorithm="exponential"); pw
2
>>> pw, L = path_decomposition(g, algorithm="MILP"); pw
```

(continues on next page)
needs sage.numerical.mip

sage.graphs.graph_decompositions.vertex_separation.pathwidth(self, k=None, certificate=False, algorithm='BAB', verbose=False, max_prefix_length=20, max_prefix_number=1000000, solver=None)

Compute the pathwidth of self (and provides a decomposition)

INPUT:

- **k** – integer (default: None); the width to be considered. When k is an integer, the method checks that the graph has pathwidth \( \leq k \). If k is None (default), the method computes the optimal pathwidth.
- **certificate** – boolean (default: False); whether to return the path-decomposition itself
- **algorithm** – string (default: "BAB"); algorithm to use among:
  - "BAB" – Use a branch-and-bound algorithm. This algorithm has no size restriction but could take a very long time on large graphs. It can also be used to test if the input graph has pathwidth \( \leq k \), in which case it will return the first found solution with width \( \leq k \) if certificate==True.
  - exponential – Use an exponential time and space algorithm. This algorithm only works on graphs on less than 32 vertices.
  - MILP – Use a mixed integer linear programming formulation. This algorithm has no size restriction but could take a very long time.
- **verbose** – boolean (default: False); whether to display information on the computations
- **max_prefix_length** – integer (default: 20); limits the length of the stored prefixes to prevent storing too many prefixes. This parameter is used only when algorithm="BAB".
- **max_prefix_number** – integer (default: \(10^6\)); upper bound on the number of stored prefixes used to prevent using too much memory. This parameter is used only when algorithm="BAB".
- **solver** – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

OUTPUT:

Return the pathwidth of self. When k is specified, it returns False when no path-decomposition of width \( \leq k \) exists or True otherwise. When certificate=True, the path-decomposition is also returned.

See also:

- **Graph.treewidth()** – computes the treewidth of a graph
- **vertex_separation()** – computes the vertex separation of a (di)graph

EXAMPLES:

The pathwidth of a cycle is equal to 2:
The pathwidth of a Petersen graph is 5:

```python
sage: g = graphs.PetersenGraph()
sage: g.pathwidth()
5
sage: g.pathwidth(k=Integer(2))
False
sage: g.pathwidth(k=Integer(6))
True
sage: g.pathwidth(k=Integer(6), certificate=True)
(True, Graph on 5 vertices)
```

Return an optimal ordering of the vertices and its cost for vertex-separation.

sage.graphs.graph_decompositions.vertex_separation.vertex_separation(G, algorithm='BAB', cut_off=None, upper_bound=None, verbose=False, max_prefix_length=20, max_prefix_number=1000000, solver=None, integrality_tolerance=0.001)
INPUT:

- G – a Graph or a DiGraph
- algorithm – string (default: "BAB"); algorithm to use among:
  - "BAB" – Use a branch-and-bound algorithm. This algorithm has no size restriction but could take a very long time on large graphs. It can also be used to test is the input (di)graph has vertex separation at most upper_bound or to return the first found solution with vertex separation less or equal to a cut_off value.
  - exponential – Use an exponential time and space algorithm. This algorithm only works of graphs on less than 32 vertices.
  - MILP – Use a mixed integer linear programming formulation. This algorithm has no size restriction but could take a very long time.
- upper_bound – integer (default: None); parameter used by the "BAB" algorithm. If specified, the algorithm searches for a solution with width < upper_bound. It helps cutting branches. However, if the given upper bound is too low, the algorithm may not be able to find a solution.
- cut_off – integer (default: None); parameter used by the "BAB" algorithm. This bound allows us to stop the search as soon as a solution with width at most cut_off is found, if any. If this bound cannot be reached, the best solution found is returned, unless a too low upper_bound is given.
- verbose – boolean (default: False); whether to display information on the computations
- max_prefix_length – integer (default: 20); limits the length of the stored prefixes to prevent storing too many prefixes. This parameter is used only when algorithm=="BAB".
- max_prefix_number – integer (default: 10**6); upper bound on the number of stored prefixes used to prevent using too much memory. This parameter is used only when algorithm=="BAB".
- solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT:

A pair (cost, ordering) representing the optimal ordering of the vertices and its cost.

EXAMPLES:

Comparison of methods:

```python
sage: from sage.graphs.graph_decompositions.vertex_separation import vertex_separation

sage: # needs sage.combinat
g = digraphs.DeBruijn(2,3)
sage: vs,L = vertex_separation(g, algorithm="BAB"); vs
2
sage: vs,L = vertex_separation(g, algorithm="exponential"); vs
2
sage: vs,L = vertex_separation(g, algorithm="MILP"); vs
needs sage.numerical.mip
2

sage: g = graphs.Grid2dGraph(3,3)
sage: vs,L = vertex_separation(g, algorithm="BAB"); vs
```
sage: vs,L = vertex_separation(G, algorithm="exponential"); vs
sage: vs,L = vertex_separation(G, algorithm="MILP"); vs

# needs sage.numerical.mip

>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.vertex_separation import vertex_separation
>>> # needs sage.combinat
>>> G = digraphs.DeBruijn(Integer(2), Integer(3))
>>> vs,L = vertex_separation(G, algorithm="BAB"); vs
>>> vs,L = vertex_separation(G, algorithm="exponential"); vs
>>> vs,L = vertex_separation(G, algorithm="MILP"); vs

# needs sage.numerical.mip

>>> G = graphs.Grid2dGraph(Integer(3), Integer(3))
>>> vs,L = vertex_separation(G, algorithm="BAB"); vs
>>> vs,L = vertex_separation(G, algorithm="exponential"); vs
>>> vs,L = vertex_separation(G, algorithm="MILP"); vs

# needs sage.numerical.mip

Digraphs with multiple strongly connected components:

sage: from sage.graphs.graph_decompositions.vertex_separation import vertex_separation
sage: D = digraphs.Path(8)

sage: print(vertex_separation(D))
(0, [7, 6, 5, 4, 3, 2, 1, 0])

sage: D = digraphs.RandomDirectedAcyclicGraph(10, .5)

sage: vs,L = vertex_separation(D); vs
0

sage: K4 = DiGraph( graphs.CompleteGraph(4) )

sage: D = K4+K4
sage: D.add_edge(0, 4)

sage: print(vertex_separation(D))
(3, [4, 5, 6, 7, 0, 1, 2, 3])

sage: D = K4+K4+K4
sage: D.add_edge(0, 8)
sage: D.add_edge(0, 10)

sage: print(vertex_separation(D))
(3, [10, 11, 8, 9, 4, 5, 6, 7, 0, 1, 2, 3])

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```
(0, [7, 6, 5, 4, 3, 2, 1, 0])
>>> D = digraphs.RandomDirectedAcyclicGraph(Integer(10), RealNumber('0.5'))
>>> vs, L = vertex_separation(D); vs
0
>>> K4 = DiGraph(graphs.CompleteGraph(Integer(4)))
>>> D = K4+K4
>>> D.add_edge(Integer(0), Integer(4))
>>> print(vertex_separation(D))
(3, [4, 5, 6, 7, 0, 1, 2, 3])
>>> D = K4+K4+K4
>>> D.add_edge(Integer(0), Integer(4))
>>> D.add_edge(Integer(0), Integer(8))
>>> print(vertex_separation(D))
(3, [10, 11, 8, 9, 4, 5, 6, 7, 0, 1, 2, 3])

Using a specific MILP solver:
```
sage: from sage.graphs.graph_decompositions.vertex_separation import vertex_separation
sage: G = graphs.PetersenGraph()
sage: vs, L = vertex_separation(G, algorithm="MILP", solver="SCIP"); vs #
optional - pyscipopt, needs sage.numerical.mip
5
```

sage.graphs.graph_decompositions.vertex_separation.vertex_separation_BAB(G,
cut_off=None,
upper_bound=None,
max_prefix_length=20,
max_prefix_number=1000000,
verbose=False)

Branch and Bound algorithm for the vertex separation.

This method implements the branch and bound algorithm for the vertex separation of directed graphs and the pathwidth of undirected graphs proposed in [CMN2014]. The implementation is valid for both Graph and DiGraph. See the documentation of the vertex_separation module.

INPUT:

- `G` – a Graph or a DiGraph.
- `cut_off` – integer (default: None); bound to consider in the branch and bound algorithm. This allows us to stop the search as soon as a solution with width at most `cut_off` is found, if any. If this bound cannot be reached, the best solution found is returned, unless a too low `upper_bound` is given.
Graph Theory, Release 10.4

• upper_bound – integer (default: \texttt{None}); if specified, the algorithm searches for a solution with width < upper_bound. It helps cutting branches. However, if the given upper bound is too low, the algorithm may not be able to find a solution.

• max_prefix_length – integer (default: 20); limits the length of the stored prefixes to prevent storing too many prefixes

• max_prefix_number – integer (default: 10^6); upper bound on the number of stored prefixes used to prevent using too much memory

• verbose – boolean (default: False); display some information when set to \texttt{True}

OUTPUT:

• width – the computed vertex separation

• seq – an ordering of the vertices of width width

EXAMPLES:

The algorithm is valid for the vertex separation:

\begin{verbatim}
sage: from sage.graphs.graph_decompositions import vertex_separation as VS
sage: D = digraphs.RandomDirectedGNP(15, .2)
sage: vb, seqb = VS.vertex_separation_BAB(D)
sage: vd, seqd = VS.vertex_separation_exp(D)
sage: vb == vd
True
sage: vb == VS.width_of_path_decomposition(D, seqb)
True
\end{verbatim}

The vertex separation of a $N \times N$ grid is N:

\begin{verbatim}
sage: from sage.graphs.graph_decompositions import vertex_separation as VS
sage: G = graphs.Grid2dGraph(4,4)
sage: vs, seq = VS.vertex_separation_BAB(G); vs
4
sage: vs == VS.width_of_path_decomposition(G, seq)
True
\end{verbatim}

The vertex separation of a $N \times M$ grid with $N < M$ is N:
The vertex separation of circuit of order \(N \geq 2 \) is 1:

```python
sage: from sage.graphs.graph_decompositions import vertex_separation as VS
sage: D = digraphs.Circuit(10)
sage: vs, seq = VS.vertex_separation_BAB(D); vs
1
sage: vs == VS.width_of_path_decomposition(D, seq)
True
```

The vertex separation of cycle of order \(N \geq 3 \) is 2:

```python
sage: G = graphs.CycleGraph(10)
sage: vs, seq = VS.vertex_separation_BAB(G); vs
2
```

The vertex separation of MycielskiGraph(5) is 10:

```python
sage: G = graphs.MycielskiGraph(5)
sage: vs, seq = VS.vertex_separation_BAB(G); vs
10
```
Searching for any solution with width less or equal to \texttt{cut_off}:

```python
from sage.graphs.graph_decompositions import vertex_separation as VS
G = graphs.MycielskiGraph(5)
VS.vertex_separation_BAB(G, cut_off=11)[0] <= 11
True
VS.vertex_separation_BAB(G, cut_off=10)[0] <= 10
True
VS.vertex_separation_BAB(G, cut_off=9)[0] <= 9
False
```

Testing for the existence of a solution with width strictly less than \texttt{upper_bound}:

```python
from sage.graphs.graph_decompositions import vertex_separation as VS
G = graphs.MycielskiGraph(5)
vs, seq = VS.vertex_separation_BAB(G, upper_bound=11); vs
10
vs, seq = VS.vertex_separation_BAB(G, upper_bound=10); vs
-1
vs, seq = VS.vertex_separation_BAB(G, cut_off=11, upper_bound=10); vs
-1
```

Changing the parameters of the prefix storage:

```python
from sage.graphs.graph_decompositions import vertex_separation as VS
G = graphs.MycielskiGraph(5)
vs, seq = VS.vertex_separation_BAB(G, max_prefix_length=0); vs
10
vs, seq = VS.vertex_separation_BAB(G, max_prefix_number=5); vs
10
vs, seq = VS.vertex_separation_BAB(G, max_prefix_number=0); vs
10
```
sage.graphs.graph_decompositions.vertex_separation.vertex_separation_MILP (G, integrality=False, solver=None, verbose=0, integrality_tolerance=0.001)

Compute the vertex separation of G and the optimal ordering of its vertices using an MILP formulation.

This function uses a mixed integer linear program (MILP) for determining an optimal layout for the vertex separation of G. This MILP is an improved version of the formulation proposed in [SP2010]. See the module’s documentation for more details on this MILP formulation.

INPUT:

- G – a Graph or a DiGraph
 - integrality – boolean (default: False); specify if variables x^i_v and u^i_v must be integral or if they can be relaxed. This has no impact on the validity of the solution, but it is sometimes faster to solve the problem using binary variables only.
 - solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
 - verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
 - integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT:

A pair $(\text{cost}, \text{ordering})$ representing the optimal ordering of the vertices and its cost.

EXAMPLES:

Vertex separation of a De Bruijn digraph:

```python
sage: from sage.combinat import vertex_separation
sage: G = digraphs.DeBruijn(2,3)
sage: vs, L = vertex_separation.vertex_separation_MILP(G); vs
2
```
The vertex separation of a circuit is 1:

\[
\text{sage: from sage.graphs.graph_decompositions import vertex_separation} \\
\text{sage: G = digraphs.Circuit(6)} \\
\text{sage: vs, L = vertex_separation.vertex_separation_MILP(G); vs} \\
\text{\# needs sage.numerical.mip} \\
\text{1}
\]

sage.graphs.graph_decompositions.vertex_separation.vertex_separation_exp\((G, \text{verbose}=False)\)

Return an optimal ordering of the vertices and its cost for vertex-separation.

INPUT:

- \(G\) – a Graph or a DiGraph
- \(\text{verbose}\) – boolean (default: False); whether to display information on the computations

OUTPUT:

A pair \((\text{cost}, \text{ordering})\) representing the optimal ordering of the vertices and its cost.

Note: Because of its current implementation, this algorithm only works on graphs on less than 32 vertices. This can be changed to 54 if necessary, but 32 vertices already require 4GB of memory.

EXAMPLES:

The vertex separation of a circuit is equal to 1:
sage: g = digraphs.Circuit(6)
sage: vertex_separation_exp(g)
(1, [0, 1, 2, 3, 4, 5])

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.vertex_separation import vertex_separator_exp
>>> g = digraphs.Circuit(Integer(6))
>>> vertex_separator_exp(g)
(1, [0, 1, 2, 3, 4, 5])
```

sage.graphs.graph_decompositions.vertex_separation.width_of_path_decomposition(G, L)

Return the width of the path decomposition induced by the linear ordering L of the vertices of G.

If G is an instance of Graph, this function returns the width $pw_L(G)$ of the path decomposition induced by the linear ordering L of the vertices of G. If G is a DiGraph, it returns instead the width $vs_L(G)$ of the directed path decomposition induced by the linear ordering L of the vertices of G, where

$$
vs_L(G) = \max_{0 \leq i < |V|-1} |N^+(L[i:]) \setminus L[i:]| \\
pw_L(G) = \max_{0 \leq i < |V|-1} |N(L[i:]) \setminus L[i:]|
$$

INPUT:

- G – a Graph or a DiGraph
- L – a linear ordering of the vertices of G

EXAMPLES:

Path decomposition of a cycle:

```python
sage: from sage.graphs.graph_decompositions import vertex_separator
sage: G = graphs.CycleGraph(6)
sage: L = G.vertices(sort=True)
sage: vertex_separator.width_of_path_decomposition(G, L)
2
```

Directed path decomposition of a circuit:

```python
sage: from sage.graphs.graph_decompositions import vertex_separator
sage: G = digraphs.Circuit(6)
sage: L = G.vertices(sort=True)
sage: vertex_separator.width_of_path_decomposition(G, L)
1
```

5.21. Vertex separation
5.22 Rank Decompositions of graphs

This module wraps C code from Philipp Klaus Krause computing an optimal rank-decomposition.

Definitions:

Given a graph G and a subset $S \subseteq V(G)$ of vertices, the rank-width of S in G, denoted $rw_G(S)$, is equal to the rank in $GF(2)$ of the $|S| \times (|V| - |S|)$ matrix of the adjacencies between the vertices of S and $V \setminus S$. By definition, $rw_G(S)$ is equal to $rw_G(S)$ where S is the complement of S in $V(G)$.

A rank-decomposition of G is a tree whose n leaves are the elements of $V(G)$, and whose internal nodes have degree 3. In a tree, any edge naturally corresponds to a bipartition of the vertex set: indeed, the removal of any edge splits the tree into two connected components, thus splitting the set of leaves (i.e. vertices of G) into two sets. Hence we can define for any edge $e \in E(G)$ a width equal to the value $rw_G(S)$ or $rw_G(S)$, where S, \overline{S} is the bipartition obtained from e. The rank-width associated to the whole decomposition is then set to the maximum of the width of all the edges it contains.

A rank-decomposition is said to be optimal for G if it is the decomposition achieving the minimal rank-width.

RW – The original source code:

RW is a program that calculates rank-width and rank-decompositions. It is based on ideas from:

- “Computing rank-width exactly” by Sang-il Oum [Oum2009]
- “Sopra una formula numerica” by Ernesto Pascal
- “Generation of a Vector from the Lexicographical Index” by B.P. Buckles and M. Lybanon [BL1977]
- “Fast additions on masked integers” by Michael D. Adams and David S. Wise [AW2006]

OUTPUT:

The rank decomposition is returned as a tree whose vertices are subsets of $V(G)$. Its leaves, corresponding to the vertices of G are sets of 1 elements, i.e. singletons.

The internal nodes are sets of the decomposition. This way, it is easy to deduce the bipartition associated to an edge from the tree. Indeed, two adjacent vertices of the tree are comparable sets: they yield the bipartition obtained from the smaller of the two and its complement.
```python
sage: g = graphs.PetersenGraph()
sage: rw, tree = g.rank_decomposition()
sage: u = Set([8, 9, 3, 7])
sage: v = Set([8, 9])
sage: tree.has_edge(u,v)
True
sage: m = min(u,v)
sage: bipartition = (m, Set(g.vertices(sort=False)) - m)
sage: bipartition
{(8, 9), (0, 1, 2, 3, 4, 5, 6, 7)}
```

```
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> rw, tree = g.rank_decomposition()
>>> u = Set([Integer(8), Integer(9), Integer(3), Integer(7)])
>>> v = Set([Integer(8), Integer(9)])
>>> tree.has_edge(u,v)
True
>>> m = min(u,v)
>>> bipartition = (m, Set(g.vertices(sort=False)) - m)
>>> bipartition
{(8, 9), (0, 1, 2, 3, 4, 5, 6, 7)}
```

Warning:
- The current implementation cannot handle graphs of ≥ 32 vertices.
- A bug that has been reported upstream make the code crash immediately on instances of size 30. If you experience this kind of bug please report it to us, what we need is some information on the hardware you run to know where it comes from!

EXAMPLES:

```python
sage: g = graphs.PetersenGraph()
sage: g.rank_decomposition()
(3, Graph on 19 vertices)
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.rank_decomposition()
(3, Graph on 19 vertices)
```

AUTHORS:
- Philipp Klaus Krause: Implementation of the C algorithm
- Nathann Cohen: Interface with Sage and documentation

5.22. Rank Decompositions of graphs
5.22.1 Methods

`sage.graphs.graph_decompositions.rankwidth.mkgraph(num_vertices)`

Return the graph corresponding to the current rank-decomposition.

(This function is for internal use)

EXAMPLES:

```
sage: from sage.graphs.graph_decompositions.rankwidth import rank_decomposition
sage: g = graphs.PetersenGraph()
sage: rank_decomposition(g)
(3, Graph on 19 vertices)
```

`sage.graphs.graph_decompositions.rankwidth.rank_decomposition(G, verbose=False)`

Compute an optimal rank-decomposition of the given graph.

This function is available as a method of the `Graph` class. See `rank_decomposition`.

INPUT:

- `verbose` – boolean (default: False); whether to display progress information while computing the decomposition

OUTPUT:

A pair `(rankwidth, decomposition_tree)`, where `rankwidth` is a numerical value and `decomposition_tree` is a ternary tree describing the decomposition (cf. the module’s documentation).

EXAMPLES:

```
sage: from sage.graphs.graph_decompositions.rankwidth import rank_decomposition
sage: g = graphs.PetersenGraph()
sage: rank_decomposition(g)
(3, Graph on 19 vertices)
```

On more than 32 vertices:

```
sage: g = graphs.RandomGNP(40, .5)
sage: rank_decomposition(g)
Traceback (most recent call last):
  ... RuntimeError: the rank decomposition cannot be computed on graphs of >= 32−→vertices
```
5.23 Bandwidth of undirected graphs

5.23.1 Definition

The bandwidth $bw(M)$ of a matrix M is the smallest integer k such that all non-zero entries of M are at distance k from the diagonal. The bandwidth $bw(G)$ of an undirected graph G is the minimum bandwidth of the adjacency matrix of G, over all possible relabellings of its vertices.

Path spanner: alternatively, the bandwidth measures how tightly a path represents the distance of a graph G. Indeed, if the vertices of G can be ordered as $v_1, ..., v_n$ in such a way that $k \times d_G(v_i, v_j) \geq |i - j|$ then $bw(G) \leq k$.

Proof: for all $v_i \sim v_j$ (i.e. $d_G(v_i, v_j) = 1$), the constraint ensures that $k \geq |i - j|$, meaning that adjacent vertices are at distance at most k in the path ordering. That alone is sufficient to ensure that $bw(G) \leq k$.

As a byproduct, we obtain that $k \times d_G(v_i, v_j) \geq |i - j|$ in general: let $v_{s_0}, ..., v_{s_k}$ be the vertices of a shortest (v_i, v_j)-path. We have:

$$k \times d_G(v_i, v_j) = k \times d_G(v_i, v_{s_0}) + k \times d_G(v_{s_0}, v_{s_1}) + \cdots + k \times d_G(v_{s_{k-1}}, v_{s_k}) + k \times d_G(v_{s_k}, v_j)$$

$$\geq |v_i - v_{s_0}| + |v_{s_0} - v_{s_1}| + \cdots + |v_{s_{k-1}} - v_{s_k}| + |v_{s_k} - v_j|$$

$$\geq |v_i - v_j|$$

5.23.2 Satisfiability of a partial assignment

Let us suppose that the first i vertices $v_1, ..., v_i$ of G have already been assigned positions $p_1, ..., p_i$ in an ordering of $V(G)$ of bandwidth $\leq k$. Where can v_{i+1} appear?

Because of the previous definition, p_{i+1} must be at distance at most $k \times d_G(v_i, v_{i+1})$ from p_i, and in general at distance at most $k \times d_G(v_j, v_{i+1})$ from p_j. Each range is an interval of $\{1, ..., n\} \setminus \{p_1, ..., p_i\}$, and because the intersection of two intervals is again an interval we deduce that in order to satisfy all these constraints simultaneously p_j must belong to an interval defined from this partial assignment.

Applying this rule to all non-assigned vertices, we deduce that each of them must be assigned to a given interval of $\{1, ..., n\}$. Note that this can also be extended to the already assigned vertices, by saying that v_j with $j < i$ must be assigned within the interval $[p_j, p_j]$.

5.23. Bandwidth of undirected graphs

1731
This problem is not always satisfiable, e.g. 5 vertices cannot all be assigned to the elements of $[10, 13]$. This is a matching problem which, because all admissible sets are intervals, can be solved quickly.

5.23.3 Solving the matching problem

Let n points v_1, \ldots, v_n be given, along with two functions $m, M : [n] \mapsto [n]$. Is there an ordering p_1, \ldots, p_n of them such that $m(v_i) \leq p_i \leq M(v_i)$? This is equivalent to Hall’s bipartite matching theorem, and can in this specific case be solved by the following algorithm:

- Consider all vertices v sorted increasingly according to $M(v)$
- For each of them, assign to v the smallest position in $[m(v), M(v)]$ which has not been assigned yet. If there is none, the assignment problem is not satisfiable.

Note that the latest operation can be performed with very few bitset operations (provided that $n < 64$).

5.23.4 The algorithm

This section contains totally subjective choices, that may be changed in the hope to get better performances.

- Try to find a satisfiable ordering by filling positions, one after the other (and not by trying to find each vertex’ position)
- Fill the positions in this order: $0, n - 1, 1, n - 2, 3, n - 3, \ldots$

Note: There is some symmetry to break as the reverse of a satisfiable ordering is also a satisfiable ordering.

5.23.5 This module contains the following methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth()</td>
<td>Compute the bandwidth of an undirected graph</td>
</tr>
<tr>
<td>bandwidth_heuristics()</td>
<td>Use Boost heuristics to approximate the bandwidth of the input graph</td>
</tr>
</tbody>
</table>

5.23.6 Functions

sage.graphs.graph_decompositions.bandwidth.bandwidth($G, k=None$)

Compute the bandwidth of an undirected graph.

For a definition of the bandwidth of a graph, see the documentation of the bandwidth module.

INPUT:

- G – a graph
- k – integer (default: `None`); set to an integer value to test whether $bw(G) \leq k$, or to `None` (default) to compute $bw(G)$

OUTPUT:

When k is an integer value, the function returns either `False` or an ordering of cost $\leq k$.
When k is equal to `None`, the function returns a pair `(bw, ordering)`. 1732 Chapter 5. Libraries of algorithms
See also:

`sage.graphs.generic_graph.GenericGraph.adjacency_matrix()` – return the adjacency matrix from an ordering of the vertices.

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.bandwidth import bandwidth
sage: G = graphs.PetersenGraph()
```

```python
sage: bandwidth(G,3)
False
```

```python
sage: bandwidth(G)
(5, [0, 4, 5, 8, 1, 9, 3, 7, 6, 2])
```

```python
sage: G.adjacency_matrix(vertices=[0, 4, 5, 8, 1, 9, 3, 7, 6, 2])
```

```python
[0 1 1 0 1 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0]
[0 0 1 0 0 0 1 0 1 0]
[1 0 0 0 0 0 0 1 1 0]
[0 1 0 0 0 0 1 1 0 0]
[0 1 0 1 0 0 0 0 0 1]
[0 0 1 0 0 1 0 0 0 1]
[0 0 0 1 1 1 0 0 0 0]
[0 0 0 0 1 0 1 1 0 0]
```

```python
sage: G = graphs.ChvatalGraph()
```

```python
sage: bandwidth(G)
(6, [0, 5, 9, 4, 10, 1, 6, 11, 3, 8, 7, 2])
```

```python
sage: G.adjacency_matrix(vertices=[0, 5, 9, 4, 10, 1, 6, 11, 3, 8, 7, 2])
```

```python
[0 0 1 1 0 1 1 0 0 0 0 0]
[0 0 0 1 1 1 0 1 0 0 0 0]
[1 0 0 0 1 0 0 1 1 0 0 0]
[1 1 0 0 0 0 0 1 1 0 0 0]
[0 1 1 0 0 0 1 0 1 0 0 0]
[1 1 0 0 0 0 0 0 0 1 1 0]
[0 0 1 0 0 0 1 0 0 0 1 0]
[0 0 0 0 1 0 0 0 0 0 0 1]
[0 0 0 1 1 1 0 0 0 0 1 1]
[0 0 0 0 0 1 0 1 1 1 0 0]
[0 0 0 0 0 1 0 1 1 0 0 0]
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.bandwidth import bandwidth
```

```python
>>> G = graphs.PetersenGraph()
```

```python
>>> bandwidth(G,Integer(3))
False
```

```python
>>> bandwidth(G)
(5, [0, 4, 5, 8, 1, 9, 3, 7, 6, 2])
```

```python
>>> G.adjacency_matrix(vertices=[Integer(0), Integer(4), Integer(5), Integer(8), ...
```

```python
  Integer(1), Integer(9), Integer(3), Integer(7), Integer(6), Integer(2)])
```

```python
[0 1 1 0 1 0 0 0 0 0]
[1 0 0 0 1 1 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0]
[0 0 1 0 0 0 1 0 1 0]
[1 0 0 0 0 0 0 1 1 0]
```

(continues on next page)
5.24 Cutwidth

This module implements several algorithms to compute the cutwidth of a graph and the corresponding ordering of the vertices. It also implements tests functions for evaluation the width of a linear ordering (or layout).

Given an ordering v_1, \ldots, v_n of the vertices of $V(G)$, its cost is defined as:

$$c(v_1, \ldots, v_n) = \max_{1 \leq i \leq n-1} c'(\{v_1, \ldots, v_i\})$$

Where

$$c'(S) = |\{(u, w) \in E(G) \mid u \in S \text{ and } w \in V(G) \setminus S\}|$$

The cutwidth of a graph G is equal to the minimum cost of an ordering of its vertices.

This module contains the following methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cutwidth()</td>
<td>Return the cutwidth of the graph and the corresponding vertex ordering.</td>
</tr>
<tr>
<td>cutwidth_dyn()</td>
<td>Compute the cutwidth of G using an exponential time and space algorithm</td>
</tr>
<tr>
<td></td>
<td>based on dynamic programming.</td>
</tr>
<tr>
<td>cutwidth_MILP()</td>
<td>Compute the cutwidth of G and the optimal ordering of its vertices using</td>
</tr>
<tr>
<td></td>
<td>an MILP formulation</td>
</tr>
<tr>
<td>width_of_cut_decompo-</td>
<td></td>
</tr>
<tr>
<td>sition()</td>
<td>Return the width of the cut decomposition induced by the linear ordering L</td>
</tr>
<tr>
<td></td>
<td>of the vertices of G</td>
</tr>
</tbody>
</table>
5.24.1 Exponential algorithm for cutwidth

In order to find an optimal ordering of the vertices for the vertex separation, this algorithm tries to save time by computing the function \(c'(S) \) at most once for each of the sets \(S \subseteq V(G) \). These values are stored in an array of size \(2^n \) where reading the value of \(c'(S) \) or updating it can be done in constant time.

Assuming that we can compute the cost of a set \(S \) and remember it, finding an optimal ordering is an easy task. Indeed, we can think of the sequence \(v_1, \ldots, v_n \) of vertices as a sequence of sets \(\{v_1\}, \{v_1, v_2\}, \ldots, \{v_1, \ldots, v_n\} \), whose cost is precisely \(\max c'(\{v_1\}), c'(\{v_1, v_2\}), \ldots, c'(\{v_1, \ldots, v_n\}) \). Hence, when considering the digraph on the \(2^n \) sets \(S \subseteq V(G) \) where there is an arc from \(S \) to \(S' \) if \(S' = S \cap \{v\} \) for some \(v \) (that is, if the sets \(S \) and \(S' \) can be consecutive in a sequence), an ordering of the vertices of \(G \) corresponds to a path from \(\emptyset \) to \(\{v_1, \ldots, v_n\} \). In this setting, checking whether there exists a ordering of cost less than \(k \) can be achieved by checking whether there exists a directed path \(\emptyset \) to \(\{v_1, \ldots, v_n\} \) using only sets of cost less than \(k \). This is just a depth-first-search, for each \(k \).

Lazy evaluation of \(c' \)

In the previous algorithm, most of the time is actually spent on the computation of \(c'(S) \) for each set \(S \subseteq V(G) \) – i.e. \(2^n \) computations of neighborhoods. This can be seen as a huge waste of time when noticing that it is useless to know that the value \(c'(S) \) for a set \(S \) is less than \(k \) if all the paths leading to \(S \) have a cost greater than \(k \). For this reason, the value of \(c'(S) \) is computed lazily during the depth-first search. Explanation:

When the depth-first search discovers a set of size less than \(k \), the costs of its out-neighbors (the potential sets that could follow it in the optimal ordering) are evaluated. When an out-neighbor is found that has a cost smaller than \(k \), the depth-first search continues with this set, which is explored with the hope that it could lead to a path toward \(\{v_1, \ldots, v_n\} \). On the other hand, if an out-neighbor has a cost larger than \(k \) it is useless to attempt to build a cheap sequence going though this set, and the exploration stops there. This way, a large number of sets will never be evaluated and a lot of computational time is saved this way.

Besides, some improvement is also made by “improving” the values found by \(c' \). Indeed, \(c'(S) \) is a lower bound on the cost of a sequence containing the set \(S \), but if all out-neighbors of \(S \) have a cost of \(c'(S) + 5 \) then one knows that having \(S \) in a sequence means a total cost of at least \(c'(S) + 5 \). For this reason, for each set \(S \) we store the value of \(c'(S) \), and replace it by \(\max(c'(S), \min_{\text{next}}) \) (where \(\min_{\text{next}} \) is the minimum of the costs of the out-neighbors of \(S \)) once the costs of these out-neighbors have been evaluated by the algorithm.

This algorithm and its implementation are very similar to \texttt{sage.graphs.graph_decompositions.vertex_separation.vertex_separation_exp()}. The main difference is in the computation \(c'(S) \). See the vertex separation module’s documentation for more details on this algorithm.

Note: Because of its current implementation, this algorithm only works on graphs on strictly less than 32 vertices. This can be changed to 64 if necessary, but 32 vertices already require 4GB of memory.

5.24.2 MILP formulation for the cutwidth

We describe a mixed integer linear program (MILP) for determining an optimal layout for the cutwidth of \(G \).

Variables:

- \(x^k_v \) – Variable set to 1 if vertex \(v \) is placed in the ordering at position \(i \) with \(i \leq k \), and 0 otherwise.
- \(y^k_{u,v} \) – Variable set to 1 if one of \(u \) or \(v \) is at a position \(i \leq k \) and the other is at a position \(j > k \), and so we have to count edge \(uv \) at position \(k \). Otherwise, \(y^k_{u,v} = 0 \). The value of \(y^k_{u,v} \) is a xor of the values of \(x^k_u \) and \(x^k_v \).
- \(z \) – Objective value to minimize. It is equal to the maximum over all position \(k \) of the number of edges with one extremity at position at most \(k \) and the other at position strictly more than \(k \), that is \(\sum_{uv \in E} y^k_{u,v} \).

MILP formulation:
Minimize:

\[z \]

Subject to:

\[\sum_{i=0}^{k-1} x_v^i \leq k \cdot x_v^k \quad \forall v \in V, k \in [1, n-1] \]
\[x_v^n = 1 \quad \forall v \in V \]
\[\sum_{v \in V} x_v^k = k + 1 \quad \forall k \in [0, n-1] \]
\[x_u^k - x_v^k \leq y_{u,v}^k \quad \forall uv \in E, k \in [0, n-1] \]
\[x_v^k - x_u^k \leq y_{u,v}^k \quad \forall uv \in E, k \in [0, n-1] \]
\[\sum_{u \in E} y_{u,v}^k \leq z \quad \forall k \in [0, n-1] \]
\[0 \leq z \leq |E| \]

Constraints (1)-(3) ensure that all vertices have a distinct position. Constraints (4)-(5) force variable \(y_{u,v}^k \) to 1 if the edge is in the cut. Constraint (6) count the number of edges starting at position at most \(k \) and ending at a position strictly larger than \(k \).

This formulation corresponds to method cutwidth_MILP().

5.24.3 Authors

- David Coudert (2015-06): Initial version

5.24.4 Methods

`sage.graphs.graph_decompositions.cutwidth.cutwidth(G, algorithm='exponential', cut_off=0, solver=None, verbose=False, integrality_tolerance=0.001)`

Return the cutwidth of the graph and the corresponding vertex ordering.

INPUT:

- \(G \) – a Graph or a DiGraph
- \texttt{algorithm} – string (default: "exponential"); algorithm to use among:
 - \texttt{exponential} – Use an exponential time and space algorithm based on dynamic programming. This algorithm only works on graphs with strictly less than 32 vertices.
 - \texttt{MILP} – Use a mixed integer linear programming formulation. This algorithm has no size restriction but could take a very long time.
- \texttt{cut_off} – integer (default: 0); used to stop the search as soon as a solution with width at most \texttt{cut_off} is found, if any. If this bound cannot be reached, the best solution found is returned.
- \texttt{solver} – string (default: \texttt{None}); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to \texttt{None}, the default one is used. For more information on MILP solvers and which default solver is used, see the method \texttt{solve} of the class \texttt{MixedIntegerLinearProgram}.
- \texttt{verbose} – boolean (default: \texttt{False}); whether to display information on the computations.
• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT:
A pair \((\text{cost}, \text{ordering})\) representing the optimal ordering of the vertices and its cost.

EXAMPLES:

Cutwidth of a Complete Graph:

```python
sage: from sage.graphs.graph_decompositions.cutwidth import cutwidth
sage: G = graphs.CompleteGraph(5)
sage: cw, L = cutwidth(G); cw
6
sage: K = graphs.CompleteGraph(6)
sage: cw, L = cutwidth(K); cw
9
sage: cw, L = cutwidth(K+K); cw
9
```

The cutwidth of a \(p \times q\) Grid Graph with \(p \leq q\) is \(p + 1\):

```python
sage: from sage.graphs.graph_decompositions.cutwidth import cutwidth
sage: G = graphs.Grid2dGraph(3, 3)
sage: cw, L = cutwidth(G); cw
4
sage: G = graphs.Grid2dGraph(3, 5)
sage: cw, L = cutwidth(G); cw
4
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.cutwidth import cutwidth
>>> G = graphs.Grid2dGraph(Integer(3), Integer(3))
>>> cw, L = cutwidth(G); cw
4
>>> G = graphs.Grid2dGraph(Integer(3), Integer(5))
>>> cw, L = cutwidth(G); cw
4
```

`sage.graphs.graph_decompositions.cutwidth.cutwidth_MILP(G, lower_bound=0, solver=None, verbose=0, integrality_tolerance=0.001)`

MILP formulation for the cutwidth of a Graph.

This method uses a mixed integer linear program (MILP) for determining an optimal layout for the cutwidth of \(G\). See the module's documentation for more details on this MILP formulation.
INPUT:

- \(G \) – a Graph
- \(\text{lower_bound} \) – integer (default: 0); the algorithm searches for a solution with cost larger or equal to \(\text{lower_bound} \). If the given bound is larger than the optimal solution the returned solution might not be optimal. If the given bound is too high, the algorithm might not be able to find a feasible solution.
- \(\text{solver} \) – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method \text{solve} of the class \text{MixedIntegerLinearProgram}.
- \(\text{verbose} \) – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- \(\text{integrality_tolerance} \) – float; parameter for use with MILP solvers over an inexact base ring; see \text{MixedIntegerLinearProgram.get_values}.

OUTPUT:

A pair \((\text{cost}, \text{ordering})\) representing the optimal ordering of the vertices and its cost.

EXAMPLES:

Cutwidth of a Cycle graph:

```python
sage: from sage.graphs.graph_decompositions import cutwidth
sage: G = graphs.CycleGraph(5)
sage: cw, L = cutwidth.cutwidth_MILP(G); cw
2
sage: cw == cutwidth.width_of_cut_decomposition(G, L)
True
sage: cwe, Le = cutwidth.cutwidth_dyn(G); cwe
2
```

Cutwidth of a Complete graph:

```python
sage: from sage.graphs.graph_decompositions import cutwidth
sage: G = graphs.CompleteGraph(4)
sage: cw, L = cutwidth.cutwidth_MILP(G); cw
4
sage: cw == cutwidth.width_of_cut_decomposition(G, L)
True
sage: cwe, Le = cutwidth.cutwidth_dyn(G); cwe
4
```
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions import cutwidth
>>> G = graphs.CompleteGraph(Integer(4))
>>> cw, L = cutwidth.cutwidth_MILP(G); cw
needs sage.numerical.mip
4
>>> cw == cutwidth.width_of_cut_decomposition(G, L) # needs sage.numerical.mip
True

Cutwidth of a Path graph:

sage: from sage.graphs.graph_decompositions import cutwidth
sage: G = graphs.PathGraph(3)
sage: cw, L = cutwidth.cutwidth_MILP(G); cw
needs sage.numerical.mip
1
sage: cw == cutwidth.width_of_cut_decomposition(G, L) # needs sage.numerical.mip
True

sage.graphs.graph_decompositions.cutwidth.cutwidth_dyn(G, lower_bound=0)
Dynamic programming algorithm for the cutwidth of a Graph.

This function uses dynamic programming algorithm for determining an optimal layout for the cutwidth of G. See the module’s documentation for more details on this method.

INPUT:

- G – a Graph
- lower_bound – integer (default: 0); the algorithm returns immediately if it finds a solution lower or equal to lower_bound (in which case it may not be optimal).

OUTPUT:

A pair (cost, ordering) representing the optimal ordering of the vertices and its cost.

Note: Because of its current implementation, this algorithm only works on graphs on strictly less than 32 vertices. This can be changed to 63 if necessary, but 32 vertices already require 4GB of memory.

sage.graphs.graph_decompositions.cutwidth.width_of_cut_decomposition(G, L)
Return the width of the cut decomposition induced by the linear ordering L of the vertices of G.

If G is an instance of Graph, this function returns the width $cw_L(G)$ of the cut decomposition induced by the linear ordering L of the vertices of G.

$$ cw_L(G) = \max_{0 \leq i < |V|-1} |\{(u, w) \in E(G) \mid u \in L[:i] \text{ and } w \in V(G) \setminus L[:i]\}| $$
INPUT:

- G – a Graph
- L – a linear ordering of the vertices of G

EXAMPLES:

Cut decomposition of a Cycle graph:

```sage
def from sage.graphs.graph_decompositions import cutwidth
def G = graphs.CycleGraph(6)
def L = G.vertices(sort=False)
cutwidth.width_of_cut_decomposition(G, L)
2
```

>>> from sage.all import *
>>> from sage.graphs.graph_decompositions import cutwidth
>>> G = graphs.CycleGraph(Integer(6))
>>> L = G.vertices(sort=False)
>>> cutwidth.width_of_cut_decomposition(G, L)
2

Cut decomposition of a Path graph:

```sage
def from sage.graphs.graph_decompositions import cutwidth
def P = graphs.PathGraph(6)
cutwidth.width_of_cut_decomposition(P, [0, 1, 2, 3, 4, 5])
1
cutwidth.width_of_cut_decomposition(P, [5, 0, 1, 2, 3, 4])
2
cutwidth.width_of_cut_decomposition(P, [0, 2, 4, 1, 3, 5])
5
```

>>> from sage.all import *
>>> from sage.graphs.graph_decompositions import cutwidth
>>> P = graphs.PathGraph(Integer(6))
>>> cutwidth.width_of_cut_decomposition(P, [Integer(0), Integer(1), Integer(2),
Integer(3), Integer(4), Integer(5)])
1
>>> cutwidth.width_of_cut_decomposition(P, [Integer(5), Integer(0), Integer(1),
Integer(2), Integer(3), Integer(4)])
2
>>> cutwidth.width_of_cut_decomposition(P, [Integer(0), Integer(2), Integer(4),
Integer(1), Integer(3), Integer(5)])
5

5.25 Products of graphs

This module gathers everything related to graph products. At the moment it contains an implementation of a recognition algorithm for graphs that can be written as a Cartesian product of smaller ones.

Author:

- Nathann Cohen (May 2012 – coded while watching the election of Francois Hollande on TV)
5.25.1 Cartesian product of graphs – the recognition problem

First, a definition:

Definition The Cartesian product of two graphs G and H, denoted $G \square H$, is a graph defined on the pairs $(g, h) \in V(G) \times V(H)$.

Two elements $(g, h), (g', h') \in V(G \square H)$ are adjacent in $G \square H$ if and only if:

- $g = g'$ and $hh' \in H$; or
- $h = h'$ and $gg' \in G$

Two remarks follow:

1. The Cartesian product is commutative
2. Any edge uv of a graph $G_1 \square \cdots \square G_k$ can be given a color i corresponding to the unique index i such that u_i and v_i differ.

The problem that is of interest to us in the present module is the following:

Recognition problem Given a graph G, can we guess whether there exist graphs G_1, \ldots, G_k such that $G = G_1 \square \cdots \square G_k$?

This problem can actually be solved, and the resulting factorization is unique. What is explained below can be found in the book *Handbook of Product Graphs* [HIK2011].

Everything is actually based on simple observations. Given a graph G, finding out whether G can be written as the product of several graphs can be attempted by trying to color its edges according to some rules. Indeed, if we are to color the edges of G in such a way that each color class represents a factor of G, we must ensure several things.

Remark 1 In any cycle of G no color can appear exactly once.

Indeed, if only one edge uv of a cycle were labelled with color i, it would mean that:

1. The only difference between u and v lies in their i th coordinate
2. It is possible to go from u to v by changing only coordinates different from the i th

A contradiction indeed.

That means that, for instance, the edges of a triangle necessarily have the same color.

Remark 2 If two consecutive edges u_1u_2 and u_2u_3 have different colors, there necessarily exists a unique vertex u_4 different from u_2 and incident to both u_1 and u_3.

In this situation, opposed edges necessarily have the same colors because of the previous remark.
1st criterion: As a corollary, we know that:

1. If two vertices \(u, v \) have a unique common neighbor \(x \), then \(ux \) and \(xv \) have the same color.
2. If two vertices \(u, v \) have more than two common neighbors \(x_1, \ldots, x_k \) then all edges between the \(x_i \) and the vertices of \(u, v \) have the same color. This is also a consequence of the first remark.

2nd criterion: If two edges \(uv \) and \(u'v' \) of the product graph \(G \square H \) are such that \(d(u, u') + d(v, v') \neq d(u, v') + d(v, u') \) then the two edges \(uv \) and \(u'v' \) necessarily have the same color.

This is a consequence of the fact that for any two vertices \(u, v \) of \(G \square H \) (where \(u = (u_G, u_H) \) and \(v = (v_G, v_H) \)), we have \(d(u, v) = d_G(u_G, v_G) + d_H(u_H, v_H) \). Indeed, a shortest path from \(u \) to \(v \) in \(G \square H \) contains the information of a shortest path from \(u_G \) to \(v_G \) in \(G \), and a shortest path from \(u_H \) to \(v_H \) in \(H \).

The algorithm

The previous remarks tell us that some edges are in some way equivalent to some others, i.e. that their colors are equal. In order to compute the coloring we are looking for, we therefore build a graph on the edges of a graph \(G \), linking two edges whenever they are found to be equivalent according to the previous remarks.

All that is left to do is to compute the connected components of this new graph, as each of them representing the edges of a factor. Of course, only one connected component indicates that the graph has no factorization.

Then again, please refer to [HIK2011] for any technical question.

To Do

This implementation is made at Python level, and some parts of the algorithm could be rewritten in Cython to save time. Especially when enumerating all pairs of edges and computing their distances. This can easily be done in C with the functions from the \(\text{sage.graphs.distances_all_pairs} \) module.
5.25.2 Methods

`sage.graphs.graph_decompositions.graph_products.is_cartesian_product` *(g, certificate=False, relabeling=False)*

Test whether the graph is a Cartesian product.

INPUT:

- `certificate` – boolean (default: False); if `certificate = False` (default) the method only returns True or False answers. If `certificate = True`, the True answers are replaced by the list of the factors of the graph.
- `relabeling` – boolean (default: False); if `relabeling = True` (implies `certificate = True`), the method also returns a dictionary associating to each vertex its natural coordinates as a vertex of a product graph. If `g` is not a Cartesian product, `None` is returned instead.

See also:

- `sage.graphs.generic_graph.GenericGraph.cartesian_product()`
- `graph_products` – a module on graph products.

Note: This algorithm may run faster whenever the graph’s vertices are integers (see `relabel()`). Give it a try if it is too slow!

EXAMPLES:

The Petersen graph is prime:

```sage
from sage.graphs.graph_decompositions.graph_products import is_cartesian_product
g = graphs.PetersenGraph()
is_cartesian_product(g)
False
```

A 2d grid is the product of paths:

```sage
g = graphs.Grid2dGraph(5, 5)
p1, p2 = is_cartesian_product(g, certificate=True)
p1.is_isomorphic(graphs.PathGraph(5))
True
p2.is_isomorphic(graphs.PathGraph(5))
True
```

(continues on next page)
Forgetting the graph’s labels, then finding them back:

```python
sage: g.relabel()
sage: b, D = g.is_cartesian_product(g, relabeling=True)
sage: b
True
sage: D
# random isomorphism
{0: (20, 0), 1: (20, 1), 2: (20, 2), 3: (20, 3), 4: (20, 4),
  5: (15, 0), 6: (15, 1), 7: (15, 2), 8: (15, 3), 9: (15, 4),
  10: (10, 0), 11: (10, 1), 12: (10, 2), 13: (10, 3), 14: (10, 4),
  15: (5, 0), 16: (5, 1), 17: (5, 2), 18: (5, 3), 19: (5, 4),
  20: (0, 0), 21: (0, 1), 22: (0, 2), 23: (0, 3), 24: (0, 4)}
```

And of course, we find the factors back when we build a graph from a product:

```python
sage: g = graphs.PetersenGraph().cartesian_product(graphs.CycleGraph(3))
sage: g1, g2 = is_cartesian_product(g, certificate=True)
sage: any( x.is_isomorphic(graphs.PetersenGraph()) for x in [g1,g2] )
True
sage: any( x.is_isomorphic(graphs.CycleGraph(Integer(3))) for x in [g1,g2] )
True
```

sage.graphs.graph_decompositions.graph_products.rootted_product

Return the rooted product of G and H. The rooted product of two graphs G and H is the graph R defined as follows: take a copy of G and $|V(G)|$ copies of H, and for every vertex g_i of G, identify g_i with the root of the i-th copy of H. Mode formally, let $V(G) = \{g_1, g_2, \ldots, g_n\}$, $V(H) = \{h_1, h_2, \ldots, h_m\}$, and let h_1 be the root vertex of H. The vertex set $V(R)$ is equal to the cartesian product of the sets of vertices $V(G)$ and $V(H)$, that is $V(R) = \{(g_i, h_j) : g_i \in V(G), h_j \in V(H)\}$. The edge set $E(R)$ is the union of the edges of a copy of G, that is $\{(g_i, h_j), (g_j, h_1) : (g_i, g_j) \in E(G)\}$, and the edges of the copies of H for every $g_i \in V(G)$, that is $\{(g_i, h_j), (g_i, h_k) : (h_j, h_k) \in V(H)\}$.

1744 Chapter 5. Libraries of algorithms
See Wikipedia article Rooted_product_of_graphs for more details.

See also:

- cartesian_product() – return the cartesian product of two graphs
- graph_products – a module on graph products

EXAMPLES:

The rooted product of two trees is a tree:

```sage
t1 = graphs.RandomTree(7)
t2 = graphs.RandomTree(8)
t = t1.rooted_product(t2)
t.is_tree()
True
```

```python
>>> from sage.all import *
>>> t1 = graphs.RandomTree(Integer(7))
>>> t2 = graphs.RandomTree(Integer(8))
>>> t = t1.rooted_product(t2)
>>> t.is_tree()
True
```

The rooted product of G and H depends on the selected root in H:

```sage
g = graphs.CycleGraph(4)
h = graphs.PathGraph(3)
r1 = g.rooted_product(h, root=0)
r2 = g.rooted_product(h, root=1)
r1.is_isomorphic(r2)
False
```

```python
>>> g = graphs.CycleGraph(Integer(4))
>>> h = graphs.PathGraph(Integer(3))
>>> r1 = g.rooted_product(h, root=Integer(0))
>>> r2 = g.rooted_product(h, root=Integer(1))
>>> r1.is_isomorphic(r2)
False
```

The domination number of the rooted product of any graph G and a path of order 2 is the order of G:

```sage
g = graphs.RandomGNP(20, .3)
p = graphs.PathGraph(2)
r = g.rooted_product(p)
len(r.dominating_set()) == g.order()
True
```

(continues on next page)
The rooted product of two graphs is a subgraph of the cartesian product of the same two graphs:

```python
sage: G = graphs.RandomGNP(6, .4)
sage: H = graphs.RandomGNP(7, .4)
sage: R = G.rooted_product(H)
sage: C = G.cartesian_product(H)
sage: R.is_subgraph(C, induced=False)
True
```

Corner cases:

```python
sage: Graph().rooted_product(Graph())
Rooted product of Graph on 0 vertices and Graph on 0 vertices: Graph on 0 vertices
sage: Graph().rooted_product(Graph(1))
Rooted product of Graph on 0 vertices and Graph on 1 vertex: Graph on 0 vertices
sage: Graph(1).rooted_product(Graph())
Rooted product of Graph on 0 vertices and Graph on 0 vertices: Graph on 0 vertices
sage: Graph(1).rooted_product(Graph(1))
Rooted product of Graph on 1 vertex and Graph on 0 vertices: Graph on 0 vertices
sage: Graph(1).rooted_product(Graph(1))
Rooted product of Graph on 1 vertex and Graph on 1 vertex: Graph on 1 vertex
```

The rooted product of two graphs is a subgraph of the cartesian product of the same two graphs:

```python
>>> from sage.all import *
>>> G = graphs.RandomGNP(Integer(20), RealNumber('.3'))
>>> P = graphs.PathGraph(Integer(2))
>>> R = G.rooted_product(P)
>>> len(R.dominating_set()) == G.order()  # needs sage.numerical.mip
True
```

Corner cases:

```python
>>> from sage.all import *
>>> G = graphs.RandomGNP(Integer(20), RealNumber('.3'))
>>> P = graphs.Path(Integer(2))
>>> R = G.rooted_product(P)
>>> len(R.dominating_set()) == G.order()  # needs sage.numerical.mip
True
```
5.26 Modular Decomposition

This module implements the function for computing the modular decomposition of undirected graphs.

```python
class sage.graphs.graph_decompositions.modular_decomposition.Node(node_type)
    Bases: object
    Node class stores information about the node type, node split and index of the node in the parent tree.

    Node type can be PRIME, SERIES, PARALLEL, NORMAL or FOREST. Node split can be NO_SPLIT, LEFT_SPLIT, RIGHT_SPLIT or BOTH_SPLIT. A node is split in the refinement phase and the split used is propagated to the ancestors.

    • node_type – is of type NodeType and specifies the type of node
    • node_split – is of type NodeSplit and specifies the type of splits which have occurred in the node and its descendants
    • index_in_root – specifies the index of the node in the forest obtained after promotion phase
    • comp_num – specifies the number given to nodes in a (co)component before refinement
    • is_separated – specifies whether a split has occurred with the node as the root

has_left_split() Check whether self has LEFT_SPLIT.

EXAMPLES:

sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: node = Node(NodeType.PRIME)
sage: node.set_node_split(NodeSplit.LEFT_SPLIT)
sage: node.has_left_split()
True
sage: node = Node(NodeType.PRIME)
sage: node.set_node_split(NodeSplit.BOTH_SPLIT)
sage: node.has_left_split()
True
```

```python
>>> from sage.all import *
```
EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: node = Node(NodeType.PRIME)
sage: node.set_node_split(NodeSplit.RIGHT_SPLIT)
sage: node.has_right_split()
True
sage: node = Node(NodeType.PRIME)
sage: node.set_node_split(NodeSplit.BOTH_SPLIT)
sage: node.has_right_split()
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import *
>>> node = Node(NodeType.PRIME)
>>> node.set_node_split(NodeSplit.RIGHT_SPLIT)
>>> node.has_right_split()
True
```

`set_node_split(node_split)`

Add `node_split` to the node split of `self`.

LEFT_SPLIT and *RIGHT_SPLIT* can exist together in `self` as *BOTH_SPLIT*.

INPUT:

- `node_split` – `node_split` to be added to `self`

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: node = Node(NodeType.PRIME)
sage: node.set_node_split(NodeSplit.LEFT_SPLIT)
sage: node.node_split == NodeSplit.LEFT_SPLIT
True
sage: node.set_node_split(NodeSplit.RIGHT_SPLIT)
sage: node.node_split == NodeSplit.BOTH_SPLIT
True
sage: node = Node(NodeType.PRIME)
sage: node.set_node_split(NodeSplit.BOTH_SPLIT)
sage: node.node_split == NodeSplit.BOTH_SPLIT
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import *
>>> node = Node(NodeType.PRIME)
>>> node.set_node_split(NodeSplit.LEFT_SPLIT)
>>> node.node_split == NodeSplit.LEFT_SPLIT
True
>>> node.set_node_split(NodeSplit.RIGHT_SPLIT)
>>> node.node_split == NodeSplit.BOTH_SPLIT
True
>>> node = Node(NodeType.PRIME)
>>> node.set_node_split(NodeSplit.BOTH_SPLIT)
(continues on next page)```
node.node_split == NodeSplit.BOTH_SPLIT
True

class sage.graphs.graph_decompositions.modular_decomposition.NodeSplit(value)
Bases: Enum

Enumeration class used to specify the split that has occurred at the node or at any of its descendants.

NodeSplit is defined for every node in modular decomposition tree and is required during the refinement and promotion phase of modular decomposition tree computation. Various node splits defined are

- **LEFT_SPLIT** – indicates a left split has occurred
- **RIGHT_SPLIT** – indicates a right split has occurred
- **BOTH_SPLIT** – indicates both left and right split have occurred
- **NO_SPLIT** – indicates no split has occurred

BOTH_SPLIT = 3
LEFT_SPLIT = 1
NO_SPLIT = 0
RIGHT_SPLIT = 2

class sage.graphs.graph_decompositions.modular_decomposition.NodeType(value)
Bases: IntEnum

NodeType is an enumeration class used to define the various types of nodes in modular decomposition tree.

The various node types defined are

- **PARALLEL** – indicates the node is a parallel module
- **SERIES** – indicates the node is a series module
- **PRIME** – indicates the node is a prime module
- **FOREST** – indicates a forest containing trees
- **NORMAL** – indicates the node is normal containing a vertex

FOREST = -1
NORMAL = 3
PARALLEL = 2
PRIME = 0
SERIES = 1

class sage.graphs.graph_decompositions.modular_decomposition.VertexPosition(value)
Bases: Enum

Enumeration class used to define position of a vertex w.r.t source in modular decomposition.

For computing modular decomposition of connected graphs a source vertex is chosen. The position of vertex is w.r.t this source vertex. The various positions defined are

- **LEFT_OF_SOURCE** – indicates vertex is to left of source and is a neighbour of source vertex
Graph Theory, Release 10.4

- RIGHT_OF_SOURCE – indicates vertex is to right of source and is connected to but not a neighbour of source vertex
- SOURCE – indicates vertex is source vertex

LEFT_OF_SOURCE = -1
RIGHT_OF_SOURCE = 1
SOURCE = 0

sage.graphs.graph_decompositions.modular_decomposition.children_node_type(module, node_type)

Check whether the node type of the children of module is node_type.

INPUT:

- module – module which is tested
- node_type – input node_type

EXAMPLES:

```
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: g = graphs.OctahedralGraph()
sage: tree_root = modular_decomposition(g)
sage: print_md_tree(modular_decomposition(g))
SERIES
PARALLEL
 0
 5
PARALLEL
 1
 4
PARALLEL
 2
 3
sage: children_node_type(tree_root, NodeType.SERIES)
False
sage: children_node_type(tree_root, NodeType.PARALLEL)
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import *
>>> g = graphs.OctahedralGraph()
>>> tree_root = modular_decomposition(g)
>>> print_md_tree(modular_decomposition(g))
SERIES
PARALLEL
 0
 5
PARALLEL
 1
 4
PARALLEL
 2
 3
>>> children_node_type(tree_root, NodeType.SERIES)
(continues on next page)```
False
>>> children_node_type(tree_root, NodeType.PARALLEL)
True

sage.graphs.graph_decompositions.modular_decomposition.create_normal_node(vertex)

Return a normal node with no children

INPUT:
 • vertex – vertex number

OUTPUT:
A node object representing the vertex with node_type set as NodeType.NORMAL

EXAMPLES:

```
sage: from sage.graphs.graph_decompositions.modular_decomposition import create_normal_node
sage: node = create_normal_node(2)
sage: node
NORMAL [2]
```

```
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import create_normal_node
>>> node = create_normal_node(Integer(2))
>>> node
NORMAL [2]
```

sage.graphs.graph_decompositions.modular_decomposition.create_parallel_node()

Return a parallel node with no children

OUTPUT:
A node object with node_type set as NodeType.PARALLEL

EXAMPLES:

```
sage: from sage.graphs.graph_decompositions.modular_decomposition import create_parallel_node
sage: node = create_parallel_node()
sage: node
PARALLEL []
```

```
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import create_parallel_node
>>> node = create_parallel_node()
>>> node
PARALLEL []
```

sage.graphs.graph_decompositions.modular_decomposition.create_prime_node()

Return a prime node with no children

OUTPUT:
A node object with node_type set as NodeType.PRIME

5.26. Modular Decomposition
EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.modular_decomposition import create_prime_node
sage: node = create_prime_node()
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import create_prime_node
>>> node = create_prime_node()
```

```python
sage.graphs.graph_decompositions.modular_decomposition.create_series_node()
```

Return a series node with no children

OUTPUT:

A node object with node_type set as NodeType.SERIES

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.modular_decomposition import create_series_node
sage: node = create_series_node()
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import create_series_node
>>> node = create_series_node()
```

```python
sage.graphs.graph_decompositions.modular_decomposition.either_connected_or_not_connected(v, vertices_in_module, graph)
```

Check whether \(v \) is connected or disconnected to all vertices in the module.

INPUT:

- \(v \) – vertex tested
- \(\text{vertices}_\text{in}_\text{module} \) – list containing vertices in the module
- \(\text{graph} \) – graph to which the vertices belong

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
```

```python
sage: g = graphs.OctahedralGraph()
```

```python
sage: print_md_tree(modular_decomposition(g))
SERIES
PARALLEL
```
sage: either_connected_or_not_connected(2, [1, 4], g)
True
sage: either_connected_or_not_connected(2, [3, 4], g)
False

Check that two modular decomposition trees are the same.

Verify that the structure of the trees is the same. Two leaves are equivalent if they represent the same vertex, two internal nodes are equivalent if they have the same nodes type and the same number of children and there is a matching between the children such that each pair of children is a pair of equivalent subtrees.

EXAMPLES:

sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: t1 = nested_tuple_to_tree((NodeType.SERIES, 1, 2,
 : (NodeType.PARALLEL, 3, 4)))
sage: t2 = nested_tuple_to_tree((NodeType.SERIES,
 : (NodeType.PARALLEL, 4, 3), 2, 1))
sage: equivalent_trees(t1, t2)
True

(continues on next page)
Graph Theory, Release 10.4

sage.graphs.graph_decompositions.modular_decomposition.form_module(index, other_index, tree_root, graph)

Forms a module out of the modules in the module pair.

Let M_1 and M_2 be the input modules. Let V be the set of vertices in these modules. Suppose x is a neighbor of subset of the vertices in V but not all the vertices and x does not belong to V. Then the set of modules also include the module which contains x. This process is repeated until a module is formed and the formed module if subset of V is returned.

INPUT:
- `index` – first module in the module pair
- `other_index` – second module in the module pair
- `tree_root` – modular decomposition tree which contains the modules in the module pair
- `graph` – graph whose modular decomposition tree is created

OUTPUT:
- `[module_formed, vertices]` where `module_formed` is `True` if module is formed else `False` and `vertices` is a list of vertices included in the formed module

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: g = graphs.HexahedralGraph()
sage: tree_root = modular_decomposition(g)
sage: form_module(0, 2, tree_root, g)
[False, {0, 1, 2, 3, 4, 5, 6, 7}]
```

```python
>>> from sage.all import *

>>> from sage.graphs.graph_decompositions.modular_decomposition import *

>>> g = graphs.HexahedralGraph()

>>> tree_root = modular_decomposition(g)

>>> form_module(Integer(0), Integer(2), tree_root, g)
[False, {0, 1, 2, 3, 4, 5, 6, 7}]
```

sage.graphs.graph_decompositions.modular_decomposition.gamma_classes(graph)

Partition the edges of the graph into Gamma classes.

Two distinct edges are Gamma related if they share a vertex but are not part of a triangle. A Gamma class of edges is a collection of edges such that any edge in the class can be reached from any other by a chain of Gamma related edges (that are also in the class).

The two important properties of the Gamma class

- The vertex set corresponding to a Gamma class is a module
- If the graph is not fragile (neither it or its complement is disconnected) then there is exactly one class that visits all the vertices of the graph, and this class consists of just the edges that connect the maximal strong modules of that graph.
EXAMPLES:

The gamma_classes of the octahedral graph are the three 4-cycles corresponding to the slices through the center of the octahedron:

```python
sage: from sage.graphs.graph_decompositions.modular_decomposition import gamma_classes
sage: g = graphs.OctahedralGraph()
sage: sorted(gamma_classes(g), key=str)
[frozenset({0, 1, 4, 5}), frozenset({0, 2, 3, 5}), frozenset({1, 2, 3, 4})]
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import gamma_classes
>>>
g = graphs.OctahedralGraph()
>>>
sorted(gamma_classes(g), key=str)
[frozenset({0, 1, 4, 5}), frozenset({0, 2, 3, 5}), frozenset({1, 2, 3, 4})]
```

`sage.graphs.graph_decompositions.modular_decomposition.get_module_type(graph)`

Return the module type of the root of the modular decomposition tree of graph.

INPUT:

- graph – input sage graph

OUTPUT:

`PRIME` if graph is `PRIME`, `PARALLEL` if graph is `PARALLEL` and `SERIES` if graph is of type `SERIES`

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.modular_decomposition import get_module_type
sage: g = graphs.HexahedralGraph()
sage: get_module_type(g)
PRIME
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import get_module_type
>>>
g = graphs.HexahedralGraph()
>>>
get_module_type(g)
PRIME
```

`sage.graphs.graph_decompositions.modular_decomposition.get_vertices(component_root)`

Compute the list of vertices in the (co)component

INPUT:

- component_root – root of the (co)component whose vertices need to be returned as a list

OUTPUT:

list of vertices in the (co)component

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: forest = Node(NodeType.FOREST)
```

(continues on next page)
Compute the modular decomposition by the algorithm of Habib and Maurer

Compute the modular decomposition of the given graph by the algorithm of Habib and Maurer [HM1979]. If the graph is disconnected or its complement is disconnected return a tree with a PARALLEL or SERIES node at the root and children being the modular decomposition of the subgraphs induced by the components. Otherwise, the root is PRIME and the modules are identified by having identical neighborhoods in the gamma class that spans the vertices of the subgraph (exactly one is guaranteed to exist). The gamma classes only need to be computed once, as the algorithm computes the the classes for the current root and each of the submodules. See also [BM1983] for an equivalent algorithm described in greater detail.

INPUT:

- **graph** – the graph for which modular decomposition tree needs to be computed
- **g_classes** – dictionary (default: None); a dictionary whose values are the gamma classes of the graph, and whose keys are a frozenset of the vertices corresponding to the class. Used internally.

OUTPUT:

The modular decomposition tree of the graph.

EXAMPLES:

The Icosahedral graph is Prime:
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: print_md_tree(habib_maurer_algorithm(graphs.IcosahedralGraph()))
PRIME
 3
 4
 7
 9
 11
 1
 5
 8
 2
 6
 10

>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import *
>>> print_md_tree(habib_maurer_algorithm(graphs.IcosahedralGraph()))
PRIME
 3
 4
 7
 9
 11
 1
 5
 8
 2
 6
 10

The Octahedral graph is not Prime:

sage: print_md_tree(habib_maurer_algorithm(graphs.OctahedralGraph()))
SERIES
PARALLEL
 0
 5
PARALLEL
 1
 4
PARALLEL
 2
 3

>>> from sage.all import *
>>> print_md_tree(habib_maurer_algorithm(graphs.OctahedralGraph()))
SERIES
PARALLEL
 0
 5
PARALLEL
 1
 4
PARALLEL

(continues on next page)
Tetrahedral Graph is Series:

```
sage: print_md_tree(habib_maurer_algorithm(graphs.TetrahedralGraph()))
SERIES
0
1
2
3
```

Modular Decomposition tree containing both parallel and series modules:

```
sage: d = {2:[4,3,5], 1:[4,3,5], 5:[3,2,1,4], 3:[1,2,5], 4:[1,2,5]}
sage: g = Graph(d)
sage: print_md_tree(habib_maurer_algorithm(g))
SERIES
PARALLEL
  1
  2
PARALLEL
  3
  4
  5
```

Graph from Marc Tedder implementation of modular decomposition:

```
sage: d = {1:[5,4,3,24,6,7,8,9,2,10,11,12,13,14,16,17], 2:[1],
       ....:  3:[24,9,1], 4:[5,24,9,1], 5:[4,24,9,1], 6:[7,8,9,1],
       ....:  7:[6,8,9,1], 8:[6,7,9,1], 9:[6,7,8,5,4,3,1], 10:[1],
       ....:  11:[12,1], 12:[11,1], 13:[14,16,17,1], 14:[13,17,1],
```
GraphTheory, Release 10.4

(continued from previous page)

```python
>>> from sage.all import *

>>> d = {Integer(1): [Integer(5), Integer(4), Integer(3), Integer(24), Integer(6),
Integer(7), Integer(8), Integer(9), Integer(10), Integer(11), Integer(12),
Integer(13), Integer(14), Integer(15), Integer(16), Integer(17),
Integer(2): [Integer(1)],
Integer(3): [Integer(24), Integer(9), Integer(11)], Integer(4): [Integer(5),
Integer(24), Integer(9), Integer(11)], Integer(5): [Integer(4), Integer(24),
Integer(9), Integer(11)], Integer(6): [Integer(7), Integer(8), Integer(9),
Integer(1)],
Integer(7): [Integer(6), Integer(8), Integer(9), Integer(1)],
Integer(8): [Integer(6), Integer(7), Integer(9), Integer(1)],
Integer(9): [Integer(6), Integer(7), Integer(8), Integer(1)],
Integer(10): [Integer(1)],
Integer(11): [Integer(12), Integer(11)], Integer(12): [Integer(11),
Integer(13), Integer(14), Integer(15), Integer(16), Integer(17),
Integer(18), Integer(11)],
Integer(14): [Integer(13), Integer(15), Integer(16), Integer(17),
Integer(18), Integer(11)],
Integer(16): [Integer(13), Integer(14), Integer(15),
Integer(17), Integer(18), Integer(11)],
Integer(17): [Integer(13), Integer(14), Integer(15),
Integer(16), Integer(18), Integer(11)],
Integer(18): [Integer(17),
Integer(24): [Integer(5), Integer(4), Integer(3),
Integer(1)]}

>>> g = Graph(d)

>>> test_modular_decomposition(habib_maurer_algorithm(g), g)
True
```

Graph from the Wikipedia article Modular_decomposition:

```python
sage: d2 = {1: [2, 3, 4], 2: [1, 4, 5, 6, 7], 3: [1, 4, 5, 6, 7], 4: [1, 2, 3, 5, 6, 7],
5: [2, 3, 4, 6, 7], 6: [2, 3, 4, 5, 8, 9, 10, 11],
7: [2, 3, 4, 5, 8, 9, 10, 11], 8: [6, 7, 9, 10, 11], 9: [6, 7, 8, 10, 11],
10: [6, 7, 8, 9], 11: [6, 7, 8, 9]}

sage: g = Graph(d2)

sage: test_modular_decomposition(habib_maurer_algorithm(g), g)
True
```

Tetrahedral Graph is Series:

```python
>>> from sage.all import *

>>> d2 = {Integer(1): [Integer(2), Integer(3), Integer(4)], Integer(2): [Integer(1),
Integer(4), Integer(5), Integer(6), Integer(7)],
Integer(3): [Integer(1), Integer(4),
Integer(5), Integer(6), Integer(7)],
Integer(4): [Integer(1), Integer(2), Integer(3),
Integer(5), Integer(6), Integer(7)],
Integer(5): [Integer(2), Integer(3), Integer(4), Integer(6),
Integer(7)],
Integer(6): [Integer(2), Integer(3), Integer(4), Integer(5), Integer(8),
Integer(9),
Integer(10),
Integer(11)],
Integer(7): [Integer(2), Integer(3), Integer(4), Integer(5), Integer(8),
Integer(9),
Integer(10),
Integer(11)],
Integer(8): [Integer(6), Integer(7),
Integer(9),
Integer(10),
Integer(11)],
Integer(9): [Integer(6), Integer(7),
Integer(8),
Integer(10),
Integer(11)],
Integer(10): [Integer(6), Integer(7),
Integer(8),
Integer(9)],
Integer(11): [Integer(6), Integer(7),
Integer(8),
Integer(9)]}

>>> g = Graph(d2)

>>> test_modular_decomposition(habib_maurer_algorithm(g), g)
True
```

5.26. Modular Decomposition
Module Decomposition tree containing both parallel and series modules:

```
sage: d = {2:[4,3,5], 1:[4,3,5], 5:[3,2,1,4], 3:[1,2,5], 4:[1,2,5]}
sage: g = Graph(d)
sage: print_md_tree(habib_maurer_algorithm(g))
```

```
SERIES
PARALLEL
1
2
PARALLEL
3
4
5
```

```
>>> from sage.all import *
>>> print_md_tree(habib_maurer_algorithm(graphs.TetrahedralGraph()))
SERIES
0
1
2
3
```

```
sage.graphs.graph_decompositions.modular_decomposition.md_tree_to_graph(root)
Create a graph having the given MD tree.
For the prime nodes we use that every path of length 4 or more is prime.

TODO: accept a function that generates prime graphs as a parameter and use that in the prime nodes.

EXAMPLES:
```
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: tup1 = (NodeType.PRIME, 1, (NodeType.SERIES, 2, 3),: (NodeType.PARALLEL, 4, 5), 6)```
sage: tree1 = nested_tuple_to_tree(tup1)
sage: g1 = md_tree_to_graph(tree1)
sage: g2 = Graph({1: [2, 3], 2: [1, 3, 4, 5], 3: [1, 2, 4, 5], 4: [2, 3, 6], 5: [2, 3, 6], 6: [4, 5]})
sage: g1.is_isomorphic(g2)
True

>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import *

>>> tup1 = (NodeType.PRIME, Integer(1), (NodeType.SERIES, Integer(2), Integer(3)), ...
 (NodeType.PARALLEL, Integer(4), Integer(5)), Integer(6))

>>> tree1 = nested_tuple_to_tree(tup1)

>>> g1 = md_tree_to_graph(tree1)

>>> g1.is_isomorphic(g2)
True

sage.graphs.graph_decompositions.modular_decomposition.modular_decomposition (graph,
g_classes=None)

Compute the modular decomposition by the algorithm of Habib and Maurer

Compute the modular decomposition of the given graph by the algorithm of Habib and Maurer [HM1979]. If the graph is disconnected or its complement is disconnected return a tree with a PARALLEL or SERIES node at the root and children being the modular decomposition of the subgraphs induced by the components. Otherwise, the root is PRIME and the modules are identified by having identical neighborhoods in the gamma class that spans the vertices of the subgraph (exactly one is guaranteed to exist). The gamma classes only need to be computed once, as the algorithm computes the the classes for the current root and each of the submodules. See also [BM1983] for an equivalent algorithm described in greater detail.

INPUT:

• graph – the graph for which modular decomposition tree needs to be computed

• g_classes – dictionary (default: None); a dictionary whose values are the gamma classes of the graph, and whose keys are a frozenset of the vertices corresponding to the class. Used internally.

OUTPUT:

The modular decomposition tree of the graph.

EXAMPLES:

The Icosahedral graph is Prime:

sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: print_md_tree(habib_maurer_algorithm(graphs.IcosahedralGraph()))
PRIME
3
4
7
9
11
1
5

(continues on next page)
The Octahedral graph is not Prime:

```python
sage: print_md_tree(habib_maurer_algorithm(graphs.OctahedralGraph()))
SERIES
PARALLEL
0
5
PARALLEL
1
4
PARALLEL
2
3
```

Tetrahedral Graph is Series:

```python
sage: print_md_tree(habib_maurer_algorithm(graphs.TetrahedralGraph()))
SERIES
0
1
```
>>> from sage.all import *
>>> print_md_tree(habib_maurer_algorithm(graphs.TetrahedralGraph()))
SERIES
0
1
2
3

Modular Decomposition tree containing both parallel and series modules:

```python
sage: d = {2:[4,3,5], 1:[4,3,5], 5:[3,2,1,4], 3:[1,2,5], 4:[1,2,5]}
sage: g = Graph(d)
sage: print_md_tree(habib_maurer_algorithm(g))
SERIES
PARALLEL
  1
PARALLEL
  3
  4
  5
```

Graph from Marc Tedder implementation of modular decomposition:

```python
sage: d = {1:[5,4,3,24,6,7,8,9,2,10,11,12,13,14,16,17], 2:[1], ....:  3:[24,9,1], 4:[5,24,9,1], 5:[4,24,9,1], 6:[7,8,9,1], ....:  7:[6,8,9,1], 8:[6,7,9,1], 9:[6,7,8,5,4,3,1], 10:[1], ....:  11:[12,1], 12:[11,1], 13:[14,16,17,1], 14:[13,17,1], ....:  16:[13,17,1], 17:[13,14,16,18,1], 18:[17], 24:[5,4,3,1]}
sage: g = Graph(d)
sage: test_modular_decomposition(habib_maurer_algorithm(g), g)
True
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

from sage.all import *

>>> d2 = {Integer(1):[Integer(2),Integer(3),Integer(4)], Integer(2):[Integer(1), Integer(4),Integer(5),Integer(6),Integer(7)], Integer(3):[Integer(1),Integer(4), Integer(5),Integer(6),Integer(7)], Integer(4):[Integer(1),Integer(2),Integer(3), Integer(5),Integer(6),Integer(7)], Integer(5):[Integer(2),Integer(3),Integer(4),Integer(6),Integer(7)],...
>>> g = Graph(d2)
>>> test_modular_decomposition(habib_maurer_algorithm(g), g)
True

Tetrahedral Graph is Series:

sage: print_md_tree(habib_maurer_algorithm(graphs.TetrahedralGraph()))
SERIES
0
1
2
3
from sage.all import *
print_md_tree(habib_maurer_algorithm(graphs.TetrahedralGraph()))

SERIES
0
1
2
3

Modular Decomposition tree containing both parallel and series modules:

sage: d = {2:[4,3,5], 1:[4,3,5], 5:[3,2,1,4], 3:[1,2,5], 4:[1,2,5]}
sage: g = Graph(d)
sage: print_md_tree(habib_maurer_algorithm(g))

SERIES
PARALLEL
1
2
PARALLEL
3
4
5

sage.graphs.graph_decompositions.modular_decomposition.nested_tuple_to_tree(nest)
Turn a tuple representing the modular decomposition into a tree.

INPUT:
* nest – a nested tuple of the form returned by tree_to_nested_tuple()

OUTPUT:
The root node of a modular decomposition tree.

EXAMPLES:
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import *

>>> tree = (NodeType.SERIES, Integer(1), Integer(2), (NodeType.PARALLEL, Integer(3), Integer(4)))

>>> print_md_tree(nested_tuple_to_tree(tree))

SERIES
1
2
PARALLEL
3
4

sage.graphs.graph_decompositions.modular_decomposition.permute_decomposition(*args, **kwargs)

Check that a graph and its permuted relabeling have the same modular decomposition.

We generate a `trials` random graphs and then generate an isomorphic graph by relabeling the original graph.
We then verify

EXAMPLES:

```sage
>>> from sage.graphs.graph_decompositions.modular_decomposition import *

>>> permute_decomposition(30, habib_maurer_algorithm, 10, 0.5)
```

sage.graphs.graph_decompositions.modular_decomposition.print_md_tree(root)

Print the modular decomposition tree

INPUT:

- `root` – root of the modular decomposition tree

EXAMPLES:

```sage
>>> from sage.graphs.graph_decompositions.modular_decomposition import *

>>> print_md_tree(modular_decomposition(graphs.IcosahedralGraph()))
```
from sage.all import *
from sage.graphs.graph_decompositions.modular_decomposition import *
print_md_tree(modular_decomposition(graphs.IcosahedralGraph()))

Create a random MD tree.

INPUT:
 • max_depth – the maximum depth of the tree.
 • max_fan_out – the maximum number of children a node can have (must be >=4 as a prime node must have at least 4 vertices).
 • leaf_probability – the probability that a subtree is a leaf

EXAMPLES:

sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: set_random_seed(0)
sage: tree_to_nested_tuple(random_md_tree(2, 5, 0.5))
(PRIME, [0, 1, (PRIME, [2, 3, 4, 5, 6]), 7, (PARALLEL, [8, 9, 10])])

sage.graphs.graph_decompositions.modular_decomposition.random_md_tree(max_depth,
max_fan_out,
leaf_probability)

Verify that we can recreate a random MD tree.

We create a random MD tree, then create a graph having that decomposition, then find a modular decomposition for that graph, and verify that the two modular decomposition trees are equivalent.

EXAMPLES:

sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: recreate_decomposition(3, habib_maurer_algorithm, 4, 6, 0.5,
....: verbose=False)
sage.graphs.graph_decompositions.modular_decomposition.relabel_tree(root, perm)

Relabel the leaves of a tree according to a dictionary

INPUT:

- **root** – the root of the tree
- **perm** – a function, dictionary, list, permutation, or None representing the relabeling. See `relabel()` for description of the permutation input.

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: tuple_tree = (NodeType.SERIES, 1, 2, (NodeType.PARALLEL, 3, 4))
sage: tree = nested_tuple_to_tree(tuple_tree)
sage: print_md_tree(relabel_tree(tree, (4,3,2,1)))
SERIES
  4
  3
PARALLEL
  2
  1
```

sage.graphs.graph_decompositions.modular_decomposition.test_gamma_modules(*args, **kwargs)

Verify that the vertices of each gamma class of a random graph are modules of that graph.

INPUT:

- **trials** – the number of trials to run
- **vertices** – the size of the graph to use
- **prob** – the probability that any given edge is in the graph. See `RandomGNP()` for more details.
- **verbose** – print information on each trial.

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import *
>>> tuple_tree = (NodeType.SERIES, Integer(1), Integer(2), (NodeType.PARALLEL, Integer(3), Integer(4)))
>>> tree = nested_tuple_to_tree(tuple_tree)
>>> print_md_tree(relabel_tree(tree, (Integer(4),Integer(3),Integer(2),Integer(1))))
SERIES
  4
  3
PARALLEL
  2
  1
```
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: test_gamma_modules(3, 7, 0.5)

>>> from sage.all import *
>>> from sage.graphs.graph_decompositions.modular_decomposition import *
>>> test_gamma_modules(Integer(3), Integer(7), RealNumber('0.5'))

test_maximal_modules(tree_root, graph)

Test the maximal nature of modules in a modular decomposition tree.

Suppose the module $M = [M_1, M_2, \ldots, n]$ is the input modular decomposition tree. Algorithm forms pairs like $(M_1, M_2), (M_1, M_3), \ldots, (M_1, M_n); (M_2, M_3), (M_2, M_4), \ldots, (M_2, M_n); \ldots$ and so on and tries to form a module using the pair. If the module formed has same type as M and is of type SERIES or PARALLEL then the formed module is not considered maximal. Otherwise it is considered maximal and M is not a modular decomposition tree.

INPUT:
- tree_root – modular decomposition tree whose modules are tested for maximal nature
- graph – graph whose modular decomposition tree is tested

OUTPUT:
True if all modules at first level in the modular decomposition tree are maximal in nature

EXAMPLES:

```sage
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: g = graphs.HexahedralGraph()
sage: test_maximal_modules(modular_decomposition(g), g)
True
```

Test the input modular decomposition tree using recursion.

INPUT:
- tree_root – root of the modular decomposition tree to be tested
- graph – graph whose modular decomposition tree needs to be tested

OUTPUT:
True if input tree is a modular decomposition else False

EXAMPLES:

```sage
sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: g = graphs.HexahedralGraph()
sage: test_modular_decomposition(modular_decomposition(g), g)
True
```
sage.graphs.graph_decompositions.modular_decomposition.test_module(module, graph)
Test whether input module is actually a module

INPUT:
• module – module which needs to be tested
• graph – input sage graph which contains the module

OUTPUT:
True if input module is a module by definition else False

EXAMPLES:

sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: g = graphs.HexahedralGraph()
sage: tree_root = modular_decomposition(g)
sage: test_module(tree_root, g)
True
sage: test_module(tree_root.children[0], g)
True

sage.graphs.graph_decompositions.modular_decomposition.tree_to_nested_tuple(root)
Convert a modular decomposition tree to a nested tuple.

INPUT:
• root – the root of the modular decomposition tree

OUTPUT:
A tuple whose first element is the type of the root of the tree and whose subsequent nodes are either vertex labels in the case of leaves or tuples representing the child subtrees.

EXAMPLES:

sage: from sage.graphs.graph_decompositions.modular_decomposition import *
sage: g = graphs.OctahedralGraph()
sage: tree_to_nested_tuple(modular_decomposition(g))
(SERIES, [(PARALLEL, [0, 5]), (PARALLEL, [1, 4]), (PARALLEL, [2, 3])])

(continues on next page)
5.27 Decomposition by clique minimal separators

This module implements methods related to the decomposition of a graph by clique minimal separators. See [TY1984] and [BPS2010] for more details on the algorithms.

5.27.1 Methods

sage.graphs.graph_decompositions.clique_separators.atoms_and_clique_separators(G, tree=False, rooted_tree=False, separators=False)

Return the atoms of the decomposition of G by clique minimal separators.

Let $G = (V, E)$ be a graph. A set $S \subset V$ is a clique separator if $G[S]$ is a clique and the graph $G \setminus S$ has at least 2 connected components. Let $C \subset V$ be the vertices of a connected component of $G \setminus S$. The graph $G[C + S]$ is an atom if it has no clique separator.

This method implements the algorithm proposed in [BPS2010], that improves upon the algorithm proposed in [TY1984], for computing the atoms and the clique minimal separators of a graph. This algorithm is based on the maximum_cardinality_search_M() graph traversal and has time complexity in $O(|V| \cdot |E|)$.

Note: As the graph is converted to a short_digraph (with sort_neighbors=True), the complexity has an extra $O(|V| + |E| \log |E|)$ for SparseGraph and $O(|V|^2 \log |E|)$ for DenseGraph.

If the graph is not connected, we insert empty separators between the lists of separators of each connected components. See the examples below for more details.

INPUT:

- G – a Sage graph
- tree – boolean (default: False); whether to return the result as a directed tree in which internal nodes are clique separators and leaves are the atoms of the decomposition. Since a clique separator is repeated when its removal partition the graph into 3 or more connected components, vertices are labels by tuples (i, S), where S is the set of vertices of the atom or the clique separator, and $0 \leq i \leq |T|$.
- rooted_tree – boolean (default: False); whether to return the result as a LabelledRootedTree. When tree is True, this parameter is ignored.
- separators – boolean (default: False); whether to also return the complete list of separators considered during the execution of the algorithm. When tree or rooted_tree is True, this parameter is ignored.

OUTPUT:

- By default, return a tuple (A, S_c), where A is the list of atoms of the graph in the order of discovery, and S_c is the list of clique separators, with possible repetitions, in the order the separator has been considered. If
Furthermore, if separators is True, return a tuple \((A, S_h, S_c)\), where \(S_c\) is the list of considered separators of the graph in the order they have been considered.

- **When tree is True**, format the result as a directed tree.
- **When rooted_tree is True and tree is False**, format the output as a `LabelledRootedTree`.

EXAMPLES:

Example of [BPS2010]:

```python
sage: G = Graph({a: [b, k], b: [c], c: [d, j, k],
              ...: d: [e, f, j, k], e: [g],
              ...: f: [g, j, k], g: [j, k], h: [i, j],
              ...: i: [k], j: [k]})
```

```python
sage: atoms, cliques = G.atoms_and_clique_separators()
```

```python
sage: sorted(sorted(a) for a in atoms)
[['a', 'b', 'c', 'k'], ['c', 'd', 'j', 'k'], ['d', 'e', 'f', 'g', 'j', 'k'], ['h', 'i', 'j', 'k']]

sage: sorted(sorted(c) for c in cliques)
[['c', 'k'], ['d', 'j', 'k'], ['j', 'k']]
```

```python
t = G.atoms_and_clique_separators(tree=True)
```

```python
t.is_tree()
True
```

```python
t.diameter() == len(atoms)
True
```

```python
all(u[1] in atoms for u in t if t.degree(u) == 1)
True
```

```python
all(u[1] in cliques for u in t if t.degree(u) != 1)
True
```

```python
>>> from sage.all import *
```

```python
>>> G = Graph({a: [b, k], b: [c], c: [d, j, k],
              ...: d: [e, f, j, k], e: [g],
              ...: f: [g, j, k], g: [j, k], h: [i, j],
              ...: i: [k], j: [k]})
```

```python
>>> atoms, cliques = G.atoms_and_clique_separators()
```

```python
>>> sorted(sorted(a) for a in atoms)
[['a', 'b', 'c', 'k'], ['c', 'd', 'j', 'k'], ['d', 'e', 'f', 'g', 'j', 'k'], ['h', 'i', 'j', 'k']]

>>> sorted(sorted(c) for c in cliques)
[['c', 'k'], ['d', 'j', 'k'], ['j', 'k']]
```

```python
>>> T = G.atoms_and_clique_separators(tree=True)
```

```python
>>> T.is_tree()
True
>>> T.diameter() == len(atoms)
True
>>> all(u[Integer(1)] in atoms for u in T if T.degree(u) == Integer(1))
True
>>> all(u[Integer(1)] in cliques for u in T if T.degree(u) != Integer(1))
True
```

A graph without clique separator:
Graph Theory, Release 10.4

```python
sage: G = graphs.CompleteGraph(5)
sage: G.atoms_and_clique_separators()
(((0, 1, 2, 3, 4)], [])
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
(0, 1, 2, 3, 4)
```

Graphs with several biconnected components:

```python
sage: G = graphs.PathGraph(4)
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
___{2}___
/       /
{2, 3} ___{1}___
/       /
{1, 2} {0, 1}
sage: G = graphs.WindmillGraph(3, 4)
sage: G.atoms_and_clique_separators()
(((0, 1, 2), {0, 3, 4}, {0, 5, 6}, {0, 8, 7}), [[0], [0], [0]])
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
________{0}________
/       /
{0, 1, 2} _______{0}______
/       /
{0, 3, 4} ____{0}___
/       /
{0, 8, 7} {0, 5, 6}
```

```python
>>> from sage.all import *

>>> G = graphs.CompleteGraph(Integer(5))

>>> G.atoms_and_clique_separators()
(((0, 1, 2, 3, 4)], [])

>>> ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
(0, 1, 2, 3, 4)
```

When the removal of a clique separator results in \(k > 2 \) connected components, this separator is repeated \(k - 1 \).
times, but the repetitions are not necessarily contiguous:

```sage
G = Graph(2)
sage: for i in range(5):
    ....:     G.add_cycle([0, 1, G.add_vertex()])
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
    ______{0, 1}_____
    /                  /
    {0, 1, 4} ________{0, 1}_____
    /                  /
    {0, 1, 2} ________{0, 1}_____
    /                  /
    {0, 1, 3} ________{0, 1}_____
    /                  /
    {0, 1, 5} {0, 1, 6}

G = graphs.StarGraph(3)
sage: G = graphs.StarGraph(3)
sage: G.subdivide_edges(G.edges(sort=False), 2)
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
    ______{5}_____
    /                  /
    {1, 5} ______{7}_____
    /                  /
    {2, 7} ______{9}_____
    /                  /
    {9, 3} ______{6}_____
    /                  /
    {6, 7} ______{4}_____
    /                  /
    {4, 5} ______{0}_____
    /                  /
    {0, 6} ______{8}_____
    /                  /
    {8, 9} ______{0}_____
    /                  /
    {0, 8} {0, 4}
```

```sage
>>> from sage.all import *

>>> G = Graph(Integer(2))

>>> for i in range(Integer(5)):
    ....:     G.add_cycle([Integer(0), Integer(1), G.add_vertex()])

>>> ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
    ______{0, 1}_____
    /                  /
    {0, 1, 4} ________{0, 1}_____
    /                  /
    {0, 1, 2} ________{0, 1}_____
    /                  /
    {0, 1, 3} ________{0, 1}_____
    /                  /
    {0, 1, 5} {0, 1, 6}

>>> G = graphs.StarGraph(Integer(3))

>>> G.subdivide_edges(G.edges(sort=False), Integer(2))

>>> ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
    ______{5}_____
    /                  /
    {1, 5} ______{7}_____
```

(continues on next page)
If the graph is not connected, we insert empty separators between the lists of separators of each connected components. For instance, let G be a graph with 3 connected components. The method returns the list $S_c = [S_0, \cdots, S_i, \cdots, S_j, \cdots, S_{k-1}]$ of k clique separators, where i and j are the indexes of the inserted empty separators and $0 \leq i < j < k-1$. The method also returns the list $A = [A_0, \ldots, A_k]$ of the $k+1$ atoms, with $k+1 \geq 3$. The lists of atoms and clique separators of each of the connected components are respectively $[A_0, \ldots, A_i]$ and $[S_0, \ldots, S_i-1]$, $[A_{i+1}, \ldots, A_j]$ and $[S_i+1, \ldots, S_{j-1}]$, and $[A_{j+1}, \ldots, A_k]$ and $[S_{j+1}, \ldots, S_{k-1}]$. One can check that for each connected component, we get one atom more than clique separators:

```python
sage: G = graphs.PathGraph(3) * 3
sage: A, Sc = G.atoms_and_clique_separators()
sage: A
[[1, 2], [0, 1], [4, 5], [3, 4], [8, 7], [6, 7]]
sage: Sc
[(1), (), (4), (), (7)]
```

5.27. Decomposition by clique minimal separators

(continued from previous page)
>>> from sage.all import *
>>> G = graphs.PathGraph(Integer(3)) * Integer(3)
>>> A, Sc = G.atoms_and_clique_separators()

>>> A
[[{1}, {}, {4}, {3}, {7}], [{0, 1}, {4, 5}, {3, 4}, {8, 7}, {6, 7}]]

>>> Sc
[{1}, {}, {4}, {}, {7}]

>>> i, j = [i for i, s in enumerate(Sc) if not s]

>>> i, j
(1, 3)

>>> A[i+Integer(1):j+Integer(1)], Sc[i+Integer(1):j]
([{1, 2}, {0, 1}], [{1}])

>>> A[j+Integer(1):], Sc[j+Integer(1):]
([{4, 5}, {3, 4}], [{4}])

>>> I = [-Integer(1), i, j, len(Sc)]

>>> for i, j in zip(I[:-Integer(1)], I[Integer(1):]):
... print(A[i+Integer(1):j+Integer(1)], Sc[i+Integer(1):j])

\{{1, 2}, \{0, 1\}\} \{{1}\}
\{{4, 5}, \{3, 4\}\} \{{4}\}
\{{8, 7}, \{6, 7\}\} \{{7}\}

Loops and multiple edges are ignored:

sage: G.allow_loops(True)
\textcolor{red}{sage: G.add_edges([\{(u, u) \text{ for } u \text{ in } G\}])}
\textcolor{red}{sage: G.allow_multiple_edges(True)}
\textcolor{red}{sage: G.add_edges(G.edges(sort=False))}

sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))

\textcolor{red}{______\{1\}______}
\textcolor{red}{/ /
\textcolor{red}{(1, 2) \textcolor{red}{_____\{1\}______}
\textcolor{red}{/ /
\textcolor{red}{\{0, 1\} \textcolor{red}{_____\{4\}______}
\textcolor{red}{/ /
\textcolor{red}{\{4, 5\} \textcolor{red}{_____\{3\}______}
\textcolor{red}{/ /
\textcolor{red}{\{3, 4\} \textcolor{red}{_____\{7\}______}
\textcolor{red}{/ /
\textcolor{red}{\{6, 7\} \textcolor{red}{(8, 7)}}

(continues on next page)
We can check that the returned list of separators is valid:

```python
sage: G = graphs.RandomGNP(50, .1)
sage: while not G.is_connected():
    ...:     G = graphs.RandomGNP(50, .1)
for S in separators:
    ...:     H = G.copy()
    ...:     H.delete_vertices(S)
    ...:     if H.is_connected():
    ...:         raise ValueError("something goes wrong")
```

Return a `LabelledRootedTree` of atoms and cliques.

The atoms are the leaves of the tree and the cliques are the internal vertices. The number of atoms is the number of cliques plus one.

EXAMPLES:

```python
sage: G = graphs.PathGraph(5)
sage: ascii_art(G.atoms_and_clique_separators(rooted_tree=True))
   ____{3}____
  /    /
{3, 4}  ____{2}____
  /    /
{2, 3}  ____{1}____
   /    /
{0, 1}  (1, 2)
```
sage.graphs.graph_decompositions.clique_separators.make_tree(\texttt{atoms, cliques})

Return a tree of atoms and cliques.

The atoms are the leaves of the tree and the cliques are the internal vertices. The number of atoms is the number of cliques plus one.

As a clique may appear several times in the list \texttt{cliques}, vertices are numbered by pairs \((i, S)\), where \(0 \leq i < |\texttt{atoms}| + |\texttt{cliques}|\) and \(S\) is either an atom or a clique.

The root of the tree is the only vertex with even or null degree, i.e., 0 if \texttt{cliques} is empty and 2 otherwise. When \texttt{cliques} is not empty, other internal vertices (each of which is a clique) have degree 3, and the leaves (vertices of degree 1) are the atoms.

INPUT:

- \texttt{atoms} – list of atoms
- \texttt{cliques} – list of cliques

EXAMPLES:

```python
sage: from sage.graphs.graph_decompositions.clique_separators import make_tree
sage: G = graphs.Grid2dGraph(2, 4)
sage: A, Sc = G.atoms_and_clique_separators()
sage: T = make_tree(A, Sc)
sage: all(u[1] in A for u in T if T.degree(u) == 1)
True
sage: all(u[1] in Sc for u in T if T.degree(u) != 1)
True
```
5.28 Convexity properties of graphs

This class gathers the algorithms related to convexity in a graph. It implements the following methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConvexityProperties.hull()</td>
<td>Return the convex hull of a set of vertices</td>
</tr>
<tr>
<td>ConvexityProperties.hull_number()</td>
<td>Compute the hull number of a graph and a corresponding generating set</td>
</tr>
<tr>
<td>geodetic_closure()</td>
<td>Return the geodetic closure of a set of vertices</td>
</tr>
<tr>
<td>is_geodetic()</td>
<td>Check whether the input (di)graph is geodetic</td>
</tr>
</tbody>
</table>

Some of these methods can be used through the `ConvexityProperties` object returned by `Graph.convexity_properties()`.

5.28.1 Methods

class sage.graphs.convexity_properties.ConvexityProperties

Bases: object

This class gathers the algorithms related to convexity in a graph.

Definitions

A set \(S \subseteq V(G) \) of vertices is said to be convex if for all \(u, v \in S \) the set \(S \) contains all the vertices located on a shortest path between \(u \) and \(v \). Alternatively, a set \(S \) is said to be convex if the distances satisfy \(\forall u, v \in S, \forall w \in V \setminus S : d_G(u, w) + d_G(w, v) > d_G(u, v) \).

The convex hull \(h(S) \) of a set \(S \) of vertices is defined as the smallest convex set containing \(S \).

It is a closure operator, as trivially \(S \subseteq h(S) \) and \(h(h(S)) = h(S) \).

What this class contains

As operations on convex sets generally involve the computation of distances between vertices, this class’ purpose is to cache that information so that computing the convex hulls of several different sets of vertices does not imply recomputing several times the distances between the vertices.

In order to compute the convex hull of a set \(S \) it is possible to write the following algorithm:

For any pair \(u, v \) of elements in the set \(S \), and for any vertex \(w \) outside of it, add \(w \) to \(S \) if \(d_G(u, w) + d_G(w, v) = d_G(u, v) \). When no vertex can be added anymore, the set \(S \) is convex.

The distances are not actually that relevant. The same algorithm can be implemented by remembering for each pair \(u, v \) of vertices the list of elements \(w \) satisfying the condition, and this is precisely what this class remembers, encoded as bitsets to make storage and union operations more efficient.

Note:

- This class is useful if you compute the convex hulls of many sets in the same graph, or if you want to compute the hull number itself as it involves many calls to `hull()`
- Using this class on non-connected graphs is a waste of space and efficiency! If your graph is disconnected, the best for you is to deal independently with each connected component, whatever you are doing.

Possible improvements

When computing a convex set, all the pairs of elements belonging to the set \(S \) are enumerated several times.
• There should be a smart way to avoid enumerating pairs of vertices which have already been tested. The cost of each of them is not very high, so keeping track of those which have been tested already may be too expensive to gain any efficiency.

• The ordering in which they are visited is currently purely lexicographic, while there is a Poset structure to exploit. In particular, when two vertices \(u, v \) are far apart and generate a set \(h(\{u, v\}) \) of vertices, all the pairs of vertices \(u', v' \in h(\{u, v\}) \) satisfy \(h(\{u', v'\}) \subseteq h(\{u, v\}) \), and so it is useless to test the pair \(u', v' \) when both \(u \) and \(v \) where present.

• The information cached is for any pair \(u, v \) of vertices the list of elements \(z \) with \(d_G(u, w) + d_G(w, v) = d_G(u, v) \). This is not in general equal to \(h(\{u, v\}) \)!

Nothing says these recommendations will actually lead to any actual improvements. There are just some ideas remembered while writing this code. Trying to optimize may well lead to lost in efficiency on many instances.

EXAMPLES:

```python
sage: from sage.graphs.convexity_properties import ConvexityProperties
sage: g = graphs.PetersenGraph()
sage: CP = ConvexityProperties(g)
sage: CP.hull([1, 3])
[1, 2, 3]
```

```python
>>> from sage.all import *
>>> from sage.graphs.convexity_properties import ConvexityProperties
>>> g = graphs.PetersenGraph()
>>> CP = ConvexityProperties(g)
>>> CP.hull([Integer(1), Integer(3)])
[1, 2, 3]
```

hull *(vertices)*

Return the convex hull of a set of vertices.

INPUT:

- vertices – A list of vertices.

EXAMPLES:

```python
sage: from sage.graphs.convexity_properties import ConvexityProperties
sage: g = graphs.PetersenGraph()
sage: CP = ConvexityProperties(g)
sage: CP.hull([1, 3])
[1, 2, 3]
```

```python
>>> from sage.all import *
>>> from sage.graphs.convexity_properties import ConvexityProperties
>>> g = graphs.PetersenGraph()
>>> CP = ConvexityProperties(g)
>>> CP.hull([Integer(1), Integer(3)])
[1, 2, 3]
```
hull_number *(value_only=True, verbose=False)*

Compute the hull number and a corresponding generating set.

The hull number $h_n(G)$ of a graph G is the cardinality of a smallest set of vertices S such that $h(S) = V(G)$.

INPUT:

- `value_only` – boolean (default: True); whether to return only the hull number (default) or a minimum set whose convex hull is the whole graph
- `verbose` – boolean (default: False); whether to display information on the LP

COMPLEXITY:

This problem is NP-Hard [HLT1993], but seems to be of the “nice” kind. Update this comment if you fall on hard instances :-)

ALGORITHM:

This is solved by linear programming.

As the function $h(S)$ associating to each set S its convex hull is a closure operator, it is clear that any set S_C of vertices such that $h(S_C) = V(G)$ must satisfy $S_C \subseteq C$ for any proper convex set $C \subseteq V(G)$. The following formulation is hence correct

Minimize : $\sum_{v \in G} b_v$

Such that :

$\forall C \subseteq V(G)$ a proper convex set

$\sum_{v \in V(G) \setminus C} b_v \geq 1$

Of course, the number of convex sets – and so the number of constraints – can be huge, and hard to enumerate, so at first an incomplete formulation is solved (it is missing some constraints). If the answer returned by the LP solver is a set S generating the whole graph, then it is optimal and so is returned. Otherwise, the constraint corresponding to the set $h(S)$ can be added to the LP, which makes the answer S infeasible, and another solution computed.

This being said, simply adding the constraint corresponding to $h(S)$ is a bit slow, as these sets can be large (and the corresponding constraint a bit weak). To improve it a bit, before being added, the set $h(S)$ is “greedily enriched” to a set S' with vertices for as long as $h(S') \neq V(G)$. This way, we obtain a set S' with $h(S) \subseteq h(S') \subseteq V(G)$, and the constraint corresponding to $h(S')$ – which is stronger than the one corresponding to $h(S)$ – is added.

This can actually be seen as a hitting set problem on the complement of convex sets.

EXAMPLES:

The Hull number of Petersen’s graph:

```python
sage: from sage.graphs.convexity_properties import ConvexityProperties
g = graphs.PetersenGraph()
sage: CP = ConvexityProperties(g)
sage: CP.hull_number() # needs sage.numerical.mip
3
sage: generating_set = CP.hull_number(value_only=False) # needs sage.numerical.mip
sage: CP.hull(generating_set) # needs sage.numerical.mip
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```
GraphTheory, Release 10.4

```python
>>> from sage.all import *
>>> from sage.graphs.convexity_properties import ConvexityProperties

>>> g = graphs.PetersenGraph()
>>> CP = ConvexityProperties(g)

>>> CP.hull_number()
# needs sage.numerical.mip

3

>>> generating_set = CP.hull_number(value_only=False)
# needs sage.numerical.mip

>>> CP.hull(generating_set)
# needs sage.numerical.mip

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

sage.graphs.convexity_properties.geodetic_closure(G, S)

Return the geodetic closure of the set of vertices S in G.

The geodetic closure \(g(S) \) of a subset of vertices \(S \) of a graph \(G \) is in \[HT1993\] as the set of all vertices that lie on a shortest \(u - v \) path for any pair of vertices \(u, v \in S \). We assume that \(g(\emptyset) = \emptyset \) and that \(g\{u\} = \{u\} \) for any \(u \) in \(G \).

Warning: This operation is not a closure function. Indeed, a closure function must satisfy the property that \(f(f(X)) \) should be equal to \(f(X) \), which is not always the case here. The term closure is used here to follow the terminology of the domain. See for instance \[HT1993\].

Here, we implement a simple algorithm to determine this set. Roughly, for each vertex \(u \in S \), the algorithm first performs a breadth first search from \(u \) to get distances, and then identifies the vertices of \(G \) lying on a shortest path from \(u \) to any \(v \in S \) using a reversal traversal from vertices in \(S \). This algorithm has time complexity in \(O(|S|(n + m) + (n + m \log m)) \) for SparseGraph, \(O(|S|(n + m) + n^2 \log m) \) for DenseGraph and space complexity in \(O(n + m) \) (the extra log factor is due to `init_short_digraph` being called with `sort_neighbors=True`).

INPUT:

- \(G \) – a Sage graph
- \(S \) – a subset of vertices of \(G \)

EXAMPLES:

The vertices of the Petersen graph can be obtained by a geodetic closure of four of its vertices:

```python
sage: from sage.graphs.convexity_properties import geodetic_closure
sage: G = graphs.PetersenGraph()
```

```python
sage: geodetic_closure(G, [0, 2, 8, 9])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

The vertices of a 2D grid can be obtained by a geodetic closure of two vertices:

```python
sage: G = graphs.Grid2dGraph(4, 4)
```

```python
sage: c = G.geodetic_closure([(0, 0), (3, 3)])
(continues on next page)```
If two vertices belong to different connected components of a graph, their geodetic closure is trivial:

```python
sage: G = Graph([(0, 1), (2, 3)])
sage: geodetic_closure(G, [0, 2])
[0, 2]
```

The geodetic closure does not satisfy the closure function property that $f(f(X))$ should be equal to $f(X)$:

```python
sage: G = graphs.DiamondGraph()
sage: G.subdivide_edge((1, 2), 1)
sage: geodetic_closure(G, [0, 3])
[0, 1, 2, 3]
sage: geodetic_closure(G, geodetic_closure(G, [0, 3]))
[0, 1, 2, 3, 4]
```

sage.graphs.convexity_properties.is_geodetic(G)
Check whether the input (di)graph is geodetic.

A graph $G$ is geodetic if there exists only one shortest path between every pair of its vertices. This can be checked in time $O(nm)$ for SparseGraph and $O(nm + n^2)$ for DenseGraph in unweighted (di)graphs with $n$ nodes and $m$ edges. Examples of geodetic graphs are trees, cliques and odd cycles. See the Wikipedia article Geodetic graph for more details.

(Di)graphs with multiple edges are not considered geodetic.

INPUT:

- $G$ – a graph or a digraph

EXAMPLES:

Trees, cliques and odd cycles are geodetic:

```python
sage: T = graphs.RandomTree(20)
sage: T.is_geodetic()
True
```
True

```
sage: all(graphs.CompleteGraph(n).is_geodetic() for n in range(8))
True
```

```
sage: all(graphs.CycleGraph(n).is_geodetic() for n in range(3, 16, 2))
True
```

```
from sage.all import *

T = graphs.RandomTree(Integer(20))

T.is_geodetic()

all(graphs.CompleteGraph(n).is_geodetic() for n in range(Integer(8)))

all(graphs.CycleGraph(n).is_geodetic() for n in range(Integer(3), Integer(16), Integer(2)))
```

Even cycles of order at least 4 are not geodetic:

```
sage: all(graphs.CycleGraph(n).is_geodetic() for n in range(4, 17, 2))
False
```

```
from sage.all import *

all(graphs.CycleGraph(n).is_geodetic() for n in range(Integer(4), Integer(17), Integer(2)))
```

The Petersen graph is geodetic:

```
sage: P = graphs.PetersenGraph()
sage: P.is_geodetic()
True
```

```
from sage.all import *

P = graphs.PetersenGraph()
P.is_geodetic()
```

Grid graphs are not geodetic:

```
sage: G = graphs.Grid2dGraph(2, 3)
sage: G.is_geodetic()
False
```

```
from sage.all import *

G = graphs.Grid2dGraph(Integer(2), Integer(3))
G.is_geodetic()
```

This method is also valid for digraphs:

```
sage: G = DiGraph(graphs.PetersenGraph())
sage: G.is_geodetic()
True
```

```
sage: G = digraphs.Path(5)
sage: G.add_path([0, 'a', 'b', 'c', 4])
```
5.29 Weakly chordal graphs

This module deals with everything related to weakly chordal graphs. It currently contains the following functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_long_hole_free()</code></td>
<td>Tests whether $g$ contains an induced cycle of length at least 5.</td>
</tr>
<tr>
<td><code>is_long_anti-hole_free()</code></td>
<td>Tests whether $g$ contains an induced anticycle of length at least 5.</td>
</tr>
<tr>
<td><code>is_weakly_chordal()</code></td>
<td>Tests whether $g$ is weakly chordal.</td>
</tr>
</tbody>
</table>

Author:
- Birk Eisermann (initial implementation)
- Nathann Cohen (some doc and optimization)
- David Coudert (remove recursion)

5.29.1 Methods

`sage.graphs.weakly_chordal.is_long_antihole_free(g, certificate=False)`

Tests whether the given graph contains an induced subgraph that is isomorphic to the complement of a cycle of length at least 5.

INPUT:
- `certificate` – boolean (default: False)

Whether to return a certificate. When `certificate = True`, then the function returns

- `(False, Antihole)` if $g$ contains an induced complement of a cycle of length at least 5 returned as Antihole.
- `(True, [])` if $g$ does not contain an induced complement of a cycle of length at least 5. For this case it is not known how to provide a certificate.

When `certificate = False`, the function returns just True or False accordingly.

ALGORITHM:
This algorithm tries to find a cycle in the graph of all induced $P_4'$ of $g$, where two copies $P$ and $P'$ of $P_4'$ are adjacent if there exists a (not necessarily induced) copy of $P_5 = u_1u_2u_3u_4u_5$ such that $P = u_1u_2u_3u_4$ and $P' = u_2u_3u_4u_5$. 
This is done through a depth-first-search. For efficiency, the auxiliary graph is constructed on-the-fly and never stored in memory.

The run time of this algorithm is $O(n + m^2)$ for SparseGraph and $O(n^2 \log m + m^2)$ for DenseGraph [NP2007] (where $n$ is the number of vertices and $m$ is the number of edges of the graph).

EXAMPLES:

The Petersen Graph contains an antihole:

```
sage: g = graphs.PetersenGraph()
sage: g.is_long_antihole_free()
False
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.is_long_antihole_free()
False
```

The complement of a cycle is an antihole:

```
sage: g = graphs.CycleGraph(6).complement()
sage: r, a = g.is_long_antihole_free(certificate=True)
sage: r
False
```

```
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(6)).complement()
>>> r, a = g.is_long_antihole_free(certificate=True)
>>> r
False
```

```
sage: a.complement().is_isomorphic(graphs.CycleGraph(6))
True
```

```
sage: a.complement().is_isomorphic(graphs.CycleGraph(Integer(6)))
True
```

```
sage.graphs.weakly_chordal.is_long_hole_free(g, certificate=False)
Tests whether g contains an induced cycle of length at least 5.

INPUT:

- certificate – boolean (default: False)
 Whether to return a certificate. When certificate == True, then the function returns
 - (True, []) if g does not contain such a cycle. For this case, it is not known how to provide a certificate.
 - (False, Hole) if g contains an induced cycle of length at least 5. Hole returns this cycle.
 If certificate == False, the function returns just True or False accordingly.

ALGORITHM:

This algorithm tries to find a cycle in the graph of all induced P_4 of g, where two copies P and P' of P_4 are adjacent if there exists a (not necessarily induced) copy of $P_5 = u_1u_2u_3u_4u_5$ such that $P = u_1u_2u_3u_4$ and $P' = u_2u_3u_4u_5$.

This is done through a depth-first-search. For efficiency, the auxiliary graph is constructed on-the-fly and never stored in memory.
The run time of this algorithm is $O(n + m^2)$ for SparseGraph and $O(n^2 + m^2)$ for DenseGraph [NP2007] (where n is the number of vertices and m is the number of edges of the graph).

EXAMPLES:
The Petersen Graph contains a hole:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_long_hole_free()
False
```

```python
>>> from sage.all import *

>>> g = graphs.PetersenGraph()

>>> g.is_long_hole_free()
False
```

The following graph contains a hole, which we want to display:

```python
sage: g = graphs.FlowerSnark()
sage: r,h = g.is_long_hole_free(certificate=True)
sage: r
False

sage: Graph(h).is_isomorphic(graphs.CycleGraph(h.order()))
True
```

```python
>>> from sage.all import *

>>> g = graphs.FlowerSnark()

>>> r,h = g.is_long_hole_free(certificate=True)

>>> r
False

>>> Graph(h).is_isomorphic(graphs.CycleGraph(h.order()))
True
```

`sage.graphs.weakly_chordal.is_weakly_chordal(g, certificate=False)`

Tests whether the given graph is weakly chordal, i.e., the graph and its complement have no induced cycle of length at least 5.

INPUT:

- certificate – Boolean value (default: False) whether to return a certificate. If certificate = False, return True or False according to the graph. If certificate = True, return
 - (False, forbidden_subgraph) when the graph contains a forbidden subgraph H, this graph is returned.
 - (True, []) when the graph is weakly chordal.

For this case, it is not known how to provide a certificate.

ALGORITHM:

This algorithm checks whether the graph g or its complement contain an induced cycle of length at least 5.

Using `is_long_hole_free()` and `is_long_antihole_free()` yields a run time of $O(n + m^2)$ for SparseGraph and $O(n^2 \log m + m^2)$ for DenseGraph (where n is the number of vertices and m is the number of edges of the graph).

EXAMPLES:
The Petersen Graph is not weakly chordal and contains a hole:
5.30 Distances/shortest paths between all pairs of vertices

This module implements a few functions that deal with the computation of distances or shortest paths between all pairs of vertices.

Efficiency: Because these functions involve listing many times the (out)-neighborhoods of (di)-graphs, it is useful in terms of efficiency to build a temporary copy of the graph in a data structure that makes it easy to compute quickly. These functions also work on large volume of data, typically dense matrices of size n^2, and are expected to return corresponding dictionaries of size n^2, where the integers corresponding to the vertices have first been converted to the vertices’ labels. Sadly, this last translating operation turns out to be the most time-consuming, and for this reason it is also nice to have a Cython module, and version of these functions that return C arrays, in order to avoid these operations when they are not necessary.

Memory cost: The methods implemented in the current module sometimes need large amounts of memory to return their result. Storing the distances between all pairs of vertices in a graph on 1500 vertices as a dictionary of dictionaries takes around 200MB, while storing the same information as a C array requires 4MB.

5.30.1 The module’s main function

The C function `all_pairs_shortest_path_BFS` actually does all the computations, and all the others (except for `Floyd_Warshall`) are just wrapping it. This function begins with copying the graph in a data structure that makes it fast to query the out-neighbors of a vertex, then starts one Breadth First Search per vertex of the (di)graph.

What can this function compute?

- The matrix of predecessors.

 This matrix P has size n^2, and is such that vertex $P[u, v]$ is a predecessor of v on a shortest uv-path. Hence, this matrix efficiently encodes the information of a shortest uv-path for any $u, v \in G$: indeed, to go from u to v you should first find a shortest $uP[u, v]$-path, then jump from $P[u, v]$ to v as it is one of its outneighbors. Apply recursively and find out what the whole path is.

- The matrix of distances.

 This matrix has size n^2 and associates to any uv the distance from u to v.

- The vector of eccentricities.
This vector of size \(n \) encodes for each vertex \(v \) the distance to vertex which is furthest from \(v \) in the graph. In particular, the diameter of the graph is the maximum of these values.

What does it take as input?

- \(gg \) a (Di)Graph.
- unsigned short * predecessors – a pointer toward an array of size \(n^2 \cdot \text{sizeof}(\text{unsigned short}) \). Set to NULL if you do not want to compute the predecessors.
- unsigned short * distances – a pointer toward an array of size \(n^2 \cdot \text{sizeof}(\text{unsigned short}) \). The computation of the distances is necessary for the algorithm, so this value can not be set to NULL.
- int * eccentricity – a pointer toward an array of size \(n \cdot \text{sizeof}(\text{int}) \). Set to NULL if you do not want to compute the eccentricity.

Technical details

- The vertices are encoded as 1, ..., \(n \) as they appear in the ordering of \(G.\text{vertices}(\text{sort}=\text{True}) \), unless another ordering is specified by the user.
- Because this function works on matrices whose size is quadratic compared to the number of vertices when computing all distances or predecessors, it uses short variables to store the vertices’ names instead of long ones to divide by 2 the size in memory. This means that only the diameter/eccentricities can be computed on a graph of more than 65536 nodes. For information, the current version of the algorithm on a graph with \(65536 = 2^{16} \) nodes creates in memory 2 tables on \(2^{32} \) short elements (2 bytes each), for a total of \(2^{34} \) bytes or 8 gigabytes. In order to support larger sizes, we would have to replace shorts by 32-bits int or 64-bits int, which would then require respectively 16GB or 32GB.
- In the C version of these functions, infinite distances are represented with \(<\text{unsigned short}> -1 = 65535\) for unsigned short variables, and by INT32_MAX otherwise. These case happens when the input is a disconnected graph, or a non-strongly-connected digraph.
- A memory error is raised when data structures allocation failed. This could happen with large graphs on computers with low memory space.

Warning: The function `all_pairs_shortest_path_BFS` has no reason to be called by the user, even though he would be writing his code in Cython and look for efficiency. This module contains wrappers for this function that feed it with the good parameters. As the function is inlined, using those wrappers actually saves time as it should avoid testing the parameters again and again in the main function’s body.

AUTHOR:

- Nathann Cohen (2011)
- David Coudert (2014) – 2sweep, multi-sweep and iFUB for diameter computation

5.30.2 Functions

`sage.graphs.distances_all_pairs.antipodal_graph(G)`

Return the antipodal graph of \(G \).

The antipodal graph of a graph \(G \) has the same vertex set of \(G \) and two vertices are adjacent if their distance in \(G \) is equal to the diameter of \(G \).

This method first computes the eccentricity of all vertices and determines the diameter of the graph. Then, it for each vertex \(u \) with eccentricity the diameter, it computes BFS distances from \(u \) and add an edge in the antipodal graph for each vertex \(v \) at diameter distance from \(u \) (i.e., for each antipodal vertex).
The drawback of this method is that some BFS distances may be computed twice, one time to determine the eccentricities and another time is the vertex has eccentricity equal to the diameter. However, in practice, this is much more efficient. See the documentation of method `c_eccentricity_DHV()`.

EXAMPLES:

The antipodal graph of a grid graph has only 2 edges:

```python
sage: from sage.graphs.distances_all_pairs import antipodal_graph
sage: G = graphs.Grid2dGraph(5, 5)
sage: A = antipodal_graph(G)
sage: A.order(), A.size()
(25, 2)
```

```python
>>> from sage.all import *
>>> from sage.graphs.distances_all_pairs import antipodal_graph
>>> G = graphs.Grid2dGraph(Integer(5), Integer(5))
>>> A = antipodal_graph(G)
>>> A.order(), A.size()
(25, 2)
```

The antipodal graph of a disjoint union of cliques is its complement:

```python
sage: from sage.graphs.distances_all_pairs import antipodal_graph
sage: G = graphs.CompleteGraph(3) * 3
sage: A = antipodal_graph(G)
sage: A.is_isomorphic(G.complement())
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.distances_all_pairs import antipodal_graph
>>> G = graphs.CompleteGraph(Integer(3)) * Integer(3)
>>> A = antipodal_graph(G)
>>> A.is_isomorphic(G.complement())
True
```

The antipodal graph can also be constructed as the `sage.graphs.generic_graph.distance_graph()` for diameter distance:

```python
sage: from sage.graphs.distances_all_pairs import antipodal_graph
sage: G = graphs.RandomGNP(10, .2)
sage: A = antipodal_graph(G)
sage: B = G.distance_graph(G.diameter())
sage: A.is_isomorphic(B)
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.distances_all_pairs import antipodal_graph
>>> G = graphs.RandomGNP(Integer(10), RealNumber('.2'))
>>> A = antipodal_graph(G)
>>> B = G.distance_graph(G.diameter())
>>> A.is_isomorphic(B)
True
```

`sage.graphs.distances_all_pairs.diameter(G, algorithm=None, source=None)`

Return the diameter of G.

Chapter 5. Libraries of algorithms
This method returns Infinity if the (di)graph is not connected. It can also quickly return a lower bound on the diameter using the 2sweep, 2Dsweep and multi-sweep schemes.

INPUT:

- **algorithm** – string (default: None); specifies the algorithm to use among:
 - 'standard' – Computes the diameter of the input (di)graph as the largest eccentricity of its vertices. This is the classical algorithm with time complexity in $O(nm)$.
 - '2sweep' – Computes a lower bound on the diameter of an unweighted undirected graph using 2 BFS, as proposed in [MLH2008]. It first selects a vertex v that is at largest distance from an initial vertex source using BFS. Then it performs a second BFS from v. The largest distance from v is returned as a lower bound on the diameter of G. The time complexity of this algorithm is linear in the size of G.
 - '2Dsweep' – Computes lower bound on the diameter of an unweighted directed graph using directed version of 2sweep as proposed in [Broder2000]. If the digraph is not strongly connected, the returned value is infinity.
 - 'DHV' – Computes diameter of unweighted undirected graph using the algorithm proposed in [Dragan2018].
 - 'multi-sweep' – Computes a lower bound on the diameter of an unweighted undirected graph using several iterations of the 2sweep algorithms [CGHLM2013]. Roughly, it first uses 2sweep to identify two vertices u and v that are far apart. Then it selects a vertex w that is at same distance from u and v. This vertex w will serve as the new source for another iteration of the 2sweep algorithm that may improve the current lower bound on the diameter. This process is repeated as long as the lower bound on the diameter is improved.
 - 'iFUB' – The iFUB (iterative Fringe Upper Bound) algorithm, proposed in [CGILM2010], computes the exact value of the diameter of an unweighted undirected graph. It is based on the following observation:

 The diameter of the graph is equal to the maximum eccentricity of a vertex. Let v be any vertex, and let V be partitioned into $A \cup B$ where:

 $d(v, a) \leq i, \forall a \in A$

 $d(v, b) \geq i, \forall b \in B$

 As all vertices from A are at distance $\leq 2i$ from each other, a vertex $a \in A$ with eccentricity $ecc(a) > 2i$ is at distance $ecc(a)$ from some vertex $b \in B$.

 Consequently, if we have already computed the maximum eccentricity m of all vertices in B and if $m > 2i$, then we do not need to compute the eccentricity of the vertices in A.

 Starting from a vertex v obtained through a multi-sweep computation (which refines the 4sweep algorithm used in [CGHLM2013]), we compute the diameter by computing the eccentricity of all vertices sorted decreasingly according to their distance to v, and stop as allowed by the remark above. The worst case time complexity of the iFUB algorithm is $O(nm)$, but it can be very fast in practice.
 - 'DiFUB' – The directed version of iFUB (iterative Fringe Upper Bound) algorithm. See the code’s documentation and [CGLM2012] for more details. If the digraph is not strongly connected, the returned value is infinity.
 - **source** – (default: None) vertex from which to start the first BFS. If source==None, an arbitrary vertex of the graph is chosen. Raise an error if the initial vertex is not in G. This parameter is not used when algorithm=='standard'.

Note: As the graph is first converted to a short_digraph, all complexity have an extra $O(m + n)$ for SparseGraph and $O(n^2)$ for DenseGraph.
EXAMPLES:

```python
sage: from sage.graphs.distances_all_pairs import diameter
sage: G = graphs.PetersenGraph()
sage: diameter(G, algorithm='iFUB')
2
sage: G = Graph({0: [], 1: [], 2: [1]})
sage: diameter(G, algorithm='iFUB')
+Infinity
sage: G = digraphs.Circuit(6)
sage: diameter(G, algorithm='2Dsweep')
5
sage: G = graphs.PathGraph(7).to_directed()
sage: diameter(G, algorithm='DiFUB')
6
```

Although max() is usually defined as -Infinity, since the diameter will never be negative, we define it to be zero:

```python
sage: G = graphs.EmptyGraph()
sage: diameter(G, algorithm='iFUB')
0
```

Comparison of exact algorithms for graphs:

```python
sage: # needs networkx
sage: G = graphs.RandomBarabasiAlbert(100, 2)
sage: d1 = diameter(G, algorithm='standard')
sage: d2 = diameter(G, algorithm='iFUB')
sage: d3 = diameter(G, algorithm='iFUB', source=G.random_vertex())
sage: d4 = diameter(G, algorithm='DHV')
sage: if d1 != d2 or d1 != d3 or d1 != d4: print("Something goes wrong!")
```

```python
>>> from sage.all import *
```
d3 = diameter(G, algorithm='iFUB', source=G.random_vertex())

if d1 != d2 or d1 != d3 or d1 != d4: print("Something goes wrong!")

Comparison of lower bound algorithms:

sage: lb2 = diameter(G, algorithm='2sweep') # needs networkx
sage: lbm = diameter(G, algorithm='multi-sweep') # needs networkx
sage: if not (lb2 <= lbm and lbm <= d3): print("Something goes wrong!")) # needs networkx

Comparison of exact algorithms for digraphs:

sage: D = DiGraph(graphs.RandomBarabasiAlbert(50, 2))
sage: d1 = diameter(D, algorithm='standard')
sage: d2 = diameter(D, algorithm='DiFUB')
sage: d3 = diameter(D, algorithm='DiFUB', source=D.random_vertex())

sage: from sage.all import *

5.30. Distances/shortest paths between all pairs of vertices
sage.graphs.distances_all_pairs.distances_and_predecessors_all_pairs(G)

Return the matrix of distances in G and the matrix of predecessors.

Distances: the matrix \(M \) returned is of length \(n^2 \), and the distance between vertices \(u \) and \(v \) is \(M[u, v] \). The integer corresponding to a vertex is its index in the list \(G.vertices(sort=True) \).

Predecessors: the matrix \(P \) returned has size \(n^2 \), and is such that vertex \(P[u, v] \) is a predecessor of \(v \) on a shortest \(uv \)-path. Hence, this matrix efficiently encodes the information of a shortest \(uv \)-path for any \(u, v \in G \): indeed, to go from \(u \) to \(v \) you should first find a shortest \(uP[u, v] \)-path, then jump from \(P[u, v] \) to \(v \) as it is one of its outneighbors.

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.graphs.distances_all_pairs import distances_all_pairs
>>> g = graphs.PetersenGraph()
>>> distances_all_pairs(g)
{(0: {0: 0, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2, 6: 0, 7: 2, 8: 2, 9: 2},
  1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 2, 5: 2, 6: 1, 7: 2, 8: 2, 9: 2},
  2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 2, 5: 2, 6: 2, 7: 1, 8: 2, 9: 2},
  3: {0: 2, 1: 2, 2: 1, 3: 0, 4: 1, 5: 2, 6: 2, 7: 2, 8: 1, 9: 2},
  4: {0: 1, 1: 2, 2: 2, 3: 1, 4: 0, 5: 2, 6: 2, 7: 2, 8: 2, 9: 1},
  5: {0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 0, 6: 2, 7: 1, 8: 1, 9: 2},
  6: {0: 2, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2, 6: 0, 7: 2, 8: 1, 9: 1},
  7: {0: 2, 1: 2, 2: 1, 3: 2, 4: 2, 5: 1, 6: 2, 7: 0, 8: 2, 9: 1},
  8: {0: 2, 1: 2, 2: 2, 3: 1, 4: 2, 5: 1, 6: 1, 7: 2, 8: 0, 9: 2},
  9: {0: 2, 1: 2, 2: 2, 3: 2, 4: 1, 5: 2, 6: 1, 7: 1, 8: 2, 9: 0})
```
```python
>>> from sage.all import *
>>> from sage.graphs.distances_all_pairs import distances_and_predecessors_all_pairs

>>> g = graphs.PetersenGraph()

>>> distances_and_predecessors_all_pairs(g)

{(0: {0: 0, 1: 1, 2: 2, 3: 2, 4: 1, 5: 1, 6: 2, 7: 2, 8: 2, 9: 2},
  1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 2, 5: 2, 6: 1, 7: 2, 8: 2, 9: 2},
  2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 2, 5: 2, 6: 2, 7: 1, 8: 2, 9: 2},
  3: {0: 2, 1: 2, 2: 1, 3: 0, 4: 1, 5: 2, 6: 2, 7: 2, 8: 1, 9: 2},
  4: {0: 1, 1: 2, 2: 2, 3: 1, 4: 0, 5: 2, 6: 2, 7: 2, 8: 2, 9: 1},
  5: {0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 0, 6: 2, 7: 1, 8: 1, 9: 2},
  6: {0: 2, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2, 6: 0, 7: 2, 8: 1, 9: 1},
  7: {0: 2, 1: 2, 2: 1, 3: 2, 4: 2, 5: 1, 6: 2, 7: 0, 8: 2, 9: 1},
  8: {0: 2, 1: 2, 2: 2, 3: 1, 4: 2, 5: 1, 6: 1, 7: 2, 8: 0, 9: 2},
  9: {0: 2, 1: 2, 2: 2, 3: 2, 4: 1, 5: 2, 6: 1, 7: 1, 8: 2, 9: 0}),

{0: {0: None, 1: 0, 2: 1, 3: 4, 4: 0, 5: 0, 6: 1, 7: 5, 8: 5, 9: 4},
  1: {0: 1, 1: None, 2: 1, 3: 2, 4: 0, 5: 0, 6: 1, 7: 2, 8: 6, 9: 6},
  2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3, 5: 7, 6: 1, 7: 2, 8: 3, 9: 7},
  3: {0: 4, 1: 2, 2: 3, 3: None, 4: 3, 5: 8, 6: 8, 7: 2, 8: 3, 9: 4},
  4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None, 5: 0, 6: 9, 7: 9, 8: 3, 9: 4},
  5: {0: 5, 1: 0, 2: 7, 3: 8, 4: 0, 5: None, 6: 8, 7: 5, 8: 5, 9: 7},
  6: {0: 1, 1: 6, 2: 1, 3: 8, 4: 9, 5: 8, 6: None, 7: 9, 8: 6, 9: 6},
  7: {0: 5, 1: 2, 2: 7, 3: 2, 4: 9, 5: 7, 6: 9, 7: None, 8: 5, 9: 7},
  8: {0: 5, 1: 6, 2: 3, 3: 8, 4: 3, 5: 8, 6: 8, 7: 5, 8: None, 9: 6},
  9: {0: 4, 1: 6, 2: 7, 3: 4, 4: 9, 5: 7, 6: 9, 7: 9, 8: 6, 9: None}}
```

`sage.graphs.distances_all_pairs.distances_distribution(G)`

Return the distances distribution of the (di)graph in a dictionary.

This method ignores all edge labels, so that the distance considered is the topological distance.

OUTPUT:

A dictionary `d` such that the number of pairs of vertices at distance `k` (if any) is equal to `d[k] · |V(G)| · (|V(G)| − 1)`.

Note: We consider that two vertices that do not belong to the same connected component are at infinite distance, and we do not take the trivial pairs of vertices `(v, v)` at distance 0 into account. Empty (di)graphs and (di)graphs of order 1 have no paths and so we return the empty dictionary `{}`.

EXAMPLES:

An empty Graph:

```python
sage: g = Graph()

sage: g.distances_distribution()

{}}
```

A Graph of order 1:

```python
>>> from sage.all import *
>>> g = Graph()

>>> g.distances_distribution()

{}}
```

5.30. Distances/shortest paths between all pairs of vertices 1795
sage: g = Graph()
sage: g.add_vertex(1)
sage: g.distances_distribution()
()

>>> from sage.all import *
>>> g = Graph()
>>> g.add_vertex(Integer(1))
>>> g.distances_distribution()
{}

A Graph of order 2 without edge:

sage: g = Graph()
 sage: g.add_vertices([1,2])
 sage: g.distances_distribution()
{+Infinity: 1}

>>> from sage.all import *
>>> g = Graph()
>>> g.add_vertices([Integer(1),Integer(2)])
>>> g.distances_distribution()
{+Infinity: 1}

The Petersen Graph:

sage: g = graphs.PetersenGraph()
 sage: g.distances_distribution()
{1: 1/3, 2: 2/3}

>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.distances_distribution()
{1: 1/3, 2: 2/3}

A graph with multiple disconnected components:

sage: g = graphs.PetersenGraph()
 sage: g.add_edge('good','wine')
 sage: g.distances_distribution()
{1: 8/33, 2: 5/11, +Infinity: 10/33}

>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.add_edge('good','wine')
>>> g.distances_distribution()
{1: 8/33, 2: 5/11, +Infinity: 10/33}

The de Bruijn digraph dB(2,3):

sage: D = digraphs.DeBruijn(2,3) #...
 ➔ needs sage.combinat
sage: D.distances_distribution() #...
 ➔ needs sage.combinat
{1: 1/4, 2: 11/28, 3: 5/14}
sage.graphs.distances_all_pairs.eccentricity(G, algorithm='standard', vertex_list=None)

Return the vector of eccentricities in G.

The array returned is of length n, and its i-th component is the eccentricity of the ith vertex in G.

INPUT:

- G – a Graph or a DiGraph.
- `algorithm` – string (default: 'standard'); name of the method used to compute the eccentricity of the vertices.
 - 'standard' – Computes eccentricity by performing a BFS from each vertex.
 - 'bounds' – Computes eccentricity using the fast algorithm proposed in [TK2013] for undirected graphs.
 - 'DHV' – Computes all eccentricities of undirected graph using the algorithm proposed in [Dragan2018].
- `vertex_list` – list (default: None); a list of n vertices specifying a mapping from $(0, \ldots, n-1)$ to vertex labels in G. When set, ecc[i] is the eccentricity of vertex vertex_list[i]. When vertex_list is None, ecc[i] is the eccentricity of vertex G.vertices(sort=True)[i].

EXAMPLES:

```python
sage: from sage.graphs.distances_all_pairs import eccentricity
sage: g = graphs.PetersenGraph()
sage: eccentricity(g)
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
sage: g.add_edge(0, g.add_vertex())
sage: V = list(g)
sage: eccentricity(g, vertex_list=V)
[2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3]
sage: eccentricity(g, vertex_list=V[::-1])
[3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2]
```
INPUT:

- \(gg \) – the graph on which to work.
- \(\text{paths} \) – boolean (default: True); whether to return the dictionary of shortest paths
- \(\text{distances} \) – boolean (default: False); whether to return the dictionary of distances

OUTPUT:

Depending on the input, this function return the dictionary of paths, the dictionary of distances, or a pair of dictionaries \((\text{distances}, \text{paths})\) where \(\text{distance}[u][v]\) denotes the distance of a shortest path from \(u\) to \(v\) and \(\text{paths}[u][v]\) denotes an inneighbor \(w\) of \(v\) such that \(\text{dist}(u, v) = 1 + \text{dist}(u, w)\).

Warning: Because this function works on matrices whose size is quadratic compared to the number of vertices, it uses short variables instead of long ones to divide by 2 the size in memory. This means that the current implementation does not run on a graph of more than 65536 nodes (this can be easily changed if necessary, but would require much more memory. It may be worth writing two versions). For information, the current version of the algorithm on a graph with \(65536 = 2^{16}\) nodes creates in memory 2 tables on \(2^{32}\) short elements (2bytes each), for a total of \(2^{34}\) bytes or 16 gigabytes. Let us also remember that if the memory size is quadratic, the algorithm runs in cubic time.

Note: When \(\text{paths} = \text{False}\) the algorithm saves roughly half of the memory as it does not have to maintain the matrix of predecessors. However, setting \(\text{distances} = \text{False}\) produces no such effect as the algorithm can not run without computing them. They will not be returned, but they will be stored while the method is running.

EXAMPLES:

Shortest paths in a small grid

```python
sage: g = graphs.Grid2dGraph(2,2)
sage: from sage.graphs.distances_all_pairs import floyd_warshall
sage: print(floyd_warshall(g))
{(0, 0): {(0, 0): None, (0, 1): (0, 0), (1, 0): (0, 0), (1, 1): (0, 1)},
 (0, 1): {(0, 1): None, (0, 0): (0, 1), (1, 0): (0, 0), (1, 1): (0, 1)},
 (1, 0): {(1, 0): None, (0, 0): (1, 0), (0, 1): (0, 0), (1, 1): (1, 0)},
 (1, 1): {(1, 1): None, (0, 0): (0, 1), (0, 1): (1, 1), (1, 0): (1, 1)}}
```

Checking the distances are correct

```python
sage: g = graphs.Grid2dGraph(5,5)
sage: dist, path = floyd_warshall(g, distances=True)
sage: all(dist[u][v] == g.distance(u, v) for u in g for v in g)
True
```
>>> from sage.all import *

>>> g = graphs.Grid2dGraph(Integer(5), Integer(5))

>>> dist, path = floyd_warshall(g, distances=True)

>>> all(dist[u][v] == g.distance(u, v) for u in g for v in g)
True

Checking a random path is valid

```
sage: u, v = g.random_vertex(), g.random_vertex()
sage: p = [v]
sage: while p[0] is not None:
    ....:     p.insert(0, path[u][p[0]])
sage: len(p) == dist[u][v] + 2
True
```

Distances for all pairs of vertices in a diamond:

```
sage: g = graphs.DiamondGraph()
sage: floyd_warshall(g, paths=False, distances=True)
{(0: {0: 0, 1: 1, 2: 1, 3: 2}), 1: {0: 1, 1: 0, 2: 1, 3: 1}, 2: {0: 1, 1: 1, 2: 0, 3: 1}, 3: {0: 2, 1: 1, 2: 1, 3: 0})
```

```
sage: g = graphs.DiamondGraph()
sage: floyd_warshall(g, paths=False, distances=True)
{(0: {0: 0, 1: 1, 2: 1, 3: 2}), 1: {0: 1, 1: 0, 2: 1, 3: 1}, 2: {0: 1, 1: 1, 2: 0, 3: 1}, 3: {0: 2, 1: 1, 2: 1, 3: 0})
```

```
sage: g = graphs.DiamondGraph()
sage: floyd_warshall(g, paths=False, distances=True)
{(0: {0: 0, 1: 1, 2: 1, 3: 2}), 1: {0: 1, 1: 0, 2: 1, 3: 1}, 2: {0: 1, 1: 1, 2: 0, 3: 1}, 3: {0: 2, 1: 1, 2: 1, 3: 0})
```

```
sage: g = graphs.DiamondGraph()
sage: floyd_warshall(g, paths=False, distances=True)
{(0: {0: 0, 1: 1, 2: 1, 3: 2}), 1: {0: 1, 1: 0, 2: 1, 3: 1}, 2: {0: 1, 1: 1, 2: 0, 3: 1}, 3: {0: 2, 1: 1, 2: 1, 3: 0})
```

```
sage: g = graphs.DiamondGraph()
sage: floyd_warshall(g, paths=False, distances=True)
{(0: {0: 0, 1: 1, 2: 1, 3: 2}), 1: {0: 1, 1: 0, 2: 1, 3: 1}, 2: {0: 1, 1: 1, 2: 0, 3: 1}, 3: {0: 2, 1: 1, 2: 1, 3: 0})
```

```
sage: g = graphs.DiamondGraph()
sage: floyd_warshall(g, paths=False, distances=True)
{(0: {0: 0, 1: 1, 2: 1, 3: 2}), 1: {0: 1, 1: 0, 2: 1, 3: 1}, 2: {0: 1, 1: 1, 2: 0, 3: 1}, 3: {0: 2, 1: 1, 2: 1, 3: 0})
```

\texttt{sage.graphs.distances_all_pairs.is_distance_regular}(\texttt{G, parameters=False})

Test if the graph is distance-regular

A graph G is distance-regular if for any integers j, k the value of $|\{x: d_G(x, u) = j, x \in V(G)\} \cap \{y: d_G(y, v) = j, y \in V(G)\}|$ is constant for any two vertices $u, v \in V(G)$ at distance i from each other. In particular G is regular, of degree b_0 (see below), as one can take $u = v$.

Equivalently a graph is distance-regular if there exist integers b_i, c_i such that for any two vertices u, v at distance i we have

- $b_i = |\{x: d_G(x, u) = i + 1, x \in V(G)\} \cap N_G(v)|$, $0 \leq i \leq d - 1$
- $c_i = |\{x: d_G(x, u) = i - 1, x \in V(G)\} \cap N_G(v)|$, $1 \leq i \leq d$

where d is the diameter of the graph. For more information on distance-regular graphs, see the Wikipedia article \texttt{Distance-regular_graph}.

INPUT:
• parameters – boolean (default: False); if set to True, the function returns the pair \((b, c)\) of lists of integers instead of a boolean answer (see the definition above)

See also:

• is_regular()
• is_strongly_regular()

EXAMPLES:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_distance_regular()
True
sage: g.is_distance_regular(parameters = True)
([3, 2, None], [None, 1, 1])

>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.is_distance_regular(parameters = True)
([3, 2, None], [None, 1, 1])
```

Cube graphs, which are not strongly regular, are a bit more interesting:

```python
sage: graphs.CubeGraph(4).is_distance_regular()
True
sage: graphs.OddGraph(5).is_distance_regular()
True
```

Disconnected graph:

```python
sage: (2*graphs.CubeGraph(4)).is_distance_regular()
True
```

```
from sage.all import *

>>> graphs.CubeGraph(Integer(4)).is_distance_regular()
True
```

sage.graphs.distances_all_pairs.radius_DHV \((G)\)

Return the radius of unweighted graph \(G\).

This method computes the radius of unweighted undirected graph using the algorithm given in [Dragan2018].

This method returns Infinity if graph is not connected.

EXAMPLES:

```python
sage: from sage.graphs.distances_all_pairs import radius_DHV
sage: G = graphs.PetersenGraph()
sage: radius_DHV(G)
```
sage: G = graphs.RandomGNP(20, 0.3)
sage: from sage.graphs.distances_all_pairs import eccentricity
de
sage: radius_DHV(G) == min(eccentricity(G, algorithm='bounds'))
True

>>> from sage.all import *

>>> from sage.graphs.distances_all_pairs import radius_DHV

>>> G = graphs.PetersenGraph()

>>> radius_DHV(G)
2

>>> from sage.graphs.distances_all_pairs import eccentricity

>>> radius_DHV(G) == min(eccentricity(G, algorithm='bounds'))
True

sage.graphs.distances_all_pairs.shortest_path_all_pairs(G)

Return the matrix of predecessors in G.

The matrix P returned has size n^2, and is such that vertex $P[u, v]$ is a predecessor of v on a shortest uv-path. Hence, this matrix efficiently encodes the information of a shortest uv-path for any $u, v \in G$; indeed, to go from u to v you should first find a shortest $uP[u, v]$-path, then jump from $P[u, v]$ to v as it is one of its outneighbors.

EXAMPLES:

```python
sage: from sage.graphs.distances_all_pairs import shortest_path_all_pairs
sage: g = graphs.PetersenGraph()
sage: shortest_path_all_pairs(g)
{0: {0: None, 1: 0, 2: 1, 3: 4, 4: 0, 5: 0, 6: 1, 7: 5, 8: 5, 9: 4},
  1: {0: 1, 1: None, 2: 1, 3: 4, 4: 0, 5: 0, 6: 1, 7: 2, 8: 6, 9: 6},
  2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3, 5: 7, 6: 1, 7: 2, 8: 3, 9: 7},
  3: {0: 4, 1: 2, 2: 3, 3: None, 4: 3, 5: 8, 6: 8, 7: 2, 8: 3, 9: 4},
  4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None, 5: 0, 6: 9, 7: 9, 8: 3, 9: 4},
  5: {0: 5, 1: 0, 2: 7, 3: 8, 4: 0, 5: None, 6: 8, 7: 5, 8: 5, 9: 7},
  6: {0: 1, 1: 6, 2: 1, 3: 8, 4: 9, 5: 8, 6: None, 7: 9, 8: 6, 9: 6},
  7: {0: 5, 1: 2, 2: 7, 3: 2, 4: 9, 5: 7, 6: 9, 7: None, 8: 5, 9: 7},
  8: {0: 5, 1: 6, 2: 3, 3: 8, 4: 3, 5: 8, 6: 8, 7: 5, 8: None, 9: 6},
  9: {0: 4, 1: 6, 2: 7, 3: 4, 4: 9, 5: 7, 6: 9, 7: 9, 8: 6, 9: None}}
```

```
>>> from sage.all import *

>>> from sage.graphs.distances_all_pairs import shortest_path_all_pairs

>>> g = graphs.PetersenGraph()

>>> shortest_path_all_pairs(g)
{0: {0: None, 1: 0, 2: 1, 3: 4, 4: 0, 5: 0, 6: 1, 7: 5, 8: 5, 9: 4},
  1: {0: 1, 1: None, 2: 1, 3: 4, 4: 0, 5: 0, 6: 1, 7: 2, 8: 6, 9: 6},
  2: {0: 1, 1: 2, 2: None, 3: 2, 4: 3, 5: 7, 6: 1, 7: 2, 8: 3, 9: 7},
  3: {0: 4, 1: 2, 2: 3, 3: None, 4: 3, 5: 8, 6: 8, 7: 2, 8: 3, 9: 4},
  4: {0: 4, 1: 0, 2: 3, 3: 4, 4: None, 5: 0, 6: 9, 7: 9, 8: 3, 9: 4},
  5: {0: 5, 1: 0, 2: 7, 3: 8, 4: 0, 5: None, 6: 8, 7: 5, 8: 5, 9: 7},
  6: {0: 1, 1: 6, 2: 1, 3: 8, 4: 9, 5: 8, 6: None, 7: 9, 8: 6, 9: 6},
  7: {0: 5, 1: 2, 2: 7, 3: 2, 4: 9, 5: 7, 6: 9, 7: None, 8: 5, 9: 7},
  8: {0: 5, 1: 6, 2: 3, 3: 8, 4: 3, 5: 8, 6: 8, 7: 5, 8: None, 9: 6},
  9: {0: 4, 1: 6, 2: 7, 3: 4, 4: 9, 5: 7, 6: 9, 7: 9, 8: 6, 9: None}}
```

sage.graphs.distances_all_pairs.szeged_index(G, algorithm=None)

Return the Szeged index of the graph G.

5.30. Distances/shortest paths between all pairs of vertices 1801
Let $G = (V, E)$ be a connected graph, and for any $uv \in E$, let $N_u(uv) = \{w \in V : d(u, w) < d(v, w)\}$ and $n_u(uv) = |N_u(uv)|$. The Szeged index of G is then defined as [KRG1996]

\[
\sum_{uv \in E(G)} n_u(uv) \times n_v(uv)
\]

See the Wikipedia article Szeged_index for more details.

INPUT:
- G – a Sage graph
- `algorithm` – string (default: None); algorithm to use among:
 - "low" – algorithm with time complexity in $O(nm)$ and space complexity in $O(m)$. This implementation is currently valid only for simple (without loops or multiple edges) connected graphs.
 - "high" – algorithm with time complexity in $O(nm)$ and space complexity in $O(n^2)$. It cannot be used on graphs with more than $65536 = 2^{16}$ vertices.

By default (None), the "low" algorithm is used for graphs and the "high" algorithm for digraphs.

Note: As the graph is converted to a short_digraph, the complexity for the case `algorithm == "high"` has an extra $O(m+n)$ for SparseGraph and $O(n^2)$ for DenseGraph. If `algorithm == "low"`, the extra complexity is $O(n+m \log m)$ for SparseGraph and $O(n^2 \log m)$ for DenseGraph (because `init_short_digraph` is called with `sort_neighbors=True`).

EXAMPLES:

True for any connected graph [KRG1996]:

```python
sage: from sage.graphs.distances_all_pairs import szeged_index
sage: g = graphs.PetersenGraph()
sage: g.wiener_index() <= szeged_index(g)
```

True for all trees [KRG1996]:

```python
sage: g = Graph()
sage: g.add_edges(graphs.CubeGraph(5).min_spanning_tree())
sage: g.wiener_index() == szeged_index(g)
```

Check that both algorithms return same value:
Graph Theory, Release 10.4

The Szeged index of a directed circuit of order \(n \) is \((n - 1)^2\):

```sage
sage: [digraphs.Circuit(n).szeged_index() for n in range(1, 8)]
[0, 1, 4, 9, 16, 25, 36]
```

sage.graphs.distances_all_pairs.wiener_index(G)
Return the Wiener index of the graph.

The Wiener index of an undirected graph \(G \) is defined as \(W(G) = \frac{1}{2} \sum_{u,v \in G} d(u,v) \) where \(d(u, v) \) denotes the distance between vertices \(u \) and \(v \) (see [KRG1996]).

The Wiener index of a directed graph \(G \) is defined as the sum of the distances between each pairs of vertices, \(W(G) = \sum_{u,v \in G} d(u,v) \).

EXAMPLES:
From [GYLL1993], cited in [KRG1996]:

```sage
sage: g=graphs.PathGraph(10)
sage: w=lambda x: (x*(x*x -1)/6)
sage: g.wiener_index()==w(10)
True
```

Wiener index of complete (di)graphs:

```sage
sage: n = 5
sage: g = graphs.CompleteGraph(n)
sage: g.wiener_index() == (n * (n - 1)) / 2
True
sage: g = digraphs.Complete(n)
sage: g.wiener_index() == n * (n - 1)
True
```
```python
>>> from sage.all import *
>>> n = Integer(5)
>>> g = graphs.CompleteGraph(n)
>>> g.wiener_index() == (n * (n - Integer(1))) / Integer(2)
True
>>> g = digraphs.Complete(n)
>>> g.wiener_index() == n * (n - Integer(1))
True
```

Wiener index of a graph of order 1:

```
sage: Graph(1).wiener_index()
0
```

```
>>> from sage.all import *
>>> Graph(Integer(1)).wiener_index()
0
```

The Wiener index is not defined on the empty graph:

```
sage: Graph().wiener_index()
Traceback (most recent call last):
  ...
ValueError: Wiener index is not defined for the empty graph
```

```
>>> from sage.all import *
>>> Graph().wiener_index()
Traceback (most recent call last):
  ...
ValueError: Wiener index is not defined for the empty graph
```

5.31 LaTeX options for graphs

This module provides a class to hold, manipulate and employ various options for rendering a graph in LaTeX, in addition to providing the code that actually generates a LaTeX representation of a (combinatorial) graph.

AUTHORS:

- Rob Beezer (2009-05-20): \texttt{GraphLatex} class
- Fidel Barerra Cruz (2009-05-20): \texttt{tkz-graph} commands to render a graph
- Nicolas M. Thiéry (2010-02): \texttt{dot2tex/graphviz} interface
- Rob Beezer (2010-05-29): Extended range of \texttt{tkz-graph} options
5.31.1 LaTeX Versions of Graphs

Many mathematical objects in Sage have LaTeX representations, and graphs are no exception. For a graph \(g \), the command `view(g)`, issued at the Sage command line or in the notebook, will create a graphic version of \(g \). Similarly, `latex(g)` will return a (long) string that is a representation of the graph in LaTeX. Other ways of employing LaTeX in Sage, such as `%latex` in a notebook cell, or the Typeset checkbox in the notebook, will handle \(g \) appropriately.

Support through the `tkz-graph` package is by Alain Matthes, the author of `tkz-graph`, whose work can be found at https://www.ctan.org/pkg/tkz-graph.

The range of possible options for customizing the appearance of a graph are carefully documented at `sage.graphs.graph_latex.GraphLatex.set_option()`. As a broad overview, the following options are supported:

- **Pre-built Styles**: the pre-built styles of the tkz-graph package provide nice drawings quickly
- **Dimensions**: can be specified in natural units, then uniformly scaled after design work
- **Vertex Colors**: the perimeter and fill color for vertices can be specified, including on a per-vertex basis
- **Vertex Shapes**: may be circles, shaded spheres, rectangles or diamonds, including on a per-vertex basis
- **Vertex Sizes**: may be specified as minimums, and will automatically sized to contain vertex labels, including on a per-vertex basis
- **Vertex Labels**: can use latex formatting, and may have their colors specified, including on a per-vertex basis
- **Vertex Label Placement**: can be interior to the vertex, or external at a configurable location
- **Edge Colors**: a solid color with or without a second color down the middle, on a per-edge basis
- **Edge Thickness**: can be set, including on a per-edge basis
- **Edge Labels**: can use latex formatting, and may have their colors specified, including on a per-edge basis
- **Edge Label Placement**: can be to the left, right, above, below, inline, and then sloped or horizontal
- **Digraph Edges**: are slightly curved, with arrowheads
• Loops: may be specified by their size, and with a direction equaling one of the four compass points

To use LaTeX in Sage you of course need a working TeX installation and it will work best if you have the \texttt{dvipng} and \texttt{magick} utilities. For graphs you need the \texttt{tkz-graph.sty} and \texttt{tkz-berge.sty} style files of the tkz-graph package. TeX, dvipng, and convert should be widely available through package managers or installers. You may need to install the tkz-graph style files in the appropriate locations, a task beyond the scope of this introduction. Primary locations for these programs are:

• TeX: \url{http://ctan.org/}
• \texttt{dvipng}: \url{http://sourceforge.net/projects/dvipng/}
• \texttt{magick}: \url{http://www.imagemagick.org} (the ImageMagick suite)
• \texttt{tkz-graph}: \url{https://www.ctan.org/pkg/tkz-graph}

Customizing the output is accomplished in several ways. Suppose \(g \) is a graph, then \(g.set\text{_}latex\text{_}options() \) can be used to efficiently set or modify various options. Setting individual options, or querying options, can be accomplished by first using a command like \texttt{opts = g.latex\text{_}options()} to obtain a \texttt{sage.graphs.graph\text{_}latex.GraphLatex} object which has several methods to set and retrieve options.

Here is a minimal session demonstrating how to use these features. The following setup should work in the notebook or at the command-line:

```
sage: H = graphs.HeawoodGraph()
sage: H.set\text{\_}latex\text{\_}options(  
    graphic\_size=(5,5),  
    vertex\_size=0.2,  
    edge\_thickness=0.04,  
    edge\_color='green',  
    vertex\_color='green',  
    vertex\_label\_color='red'
  )
```

At this point, \texttt{view(H)} should call \texttt{pdflatex} to process the string created by \texttt{latex(H)} and then display the resulting graphic.

To use this image in a LaTeX document, you could of course just copy and save the resulting graphic. However, the \texttt{latex()} command will produce the underlying LaTeX code, which can be incorporated into a standalone LaTeX document:

```
sage: from sage\text{\_}all import *  
>>> H = graphs.HeawoodGraph()  
>>> H.set\text{\_}latex\text{\_}options(  
...    graphic\_size=(Integer(5),Integer(5)),  
...    vertex\_size=RealNumber('0.2'),  
...    edge\_thickness=RealNumber('0.04'),  
...    edge\_color='green',  
...    vertex\_color='green',  
...    vertex\_label\_color='red'
...  )
```

```bash
$ from sage\text{\_}graphs\text{\_}graph\text{\_}latex import check\_tkz\_graph
$ check\_tkz\_graph()  # random - depends on TeX installation
$ latex(H)
\begin{tikzpicture}  
\definecolor{cv0}{rgb}{0.0,0.502,0.0}  
\definecolor{cfv0}{rgb}{1.0,1.0,1.0}  
\definecolor{clv0}{rgb}{1.0,0.0,0.0}
```

(continues on next page)
5.31. \LaTeX{} options for graphs

(continues from previous page)
\definecolor{cv10v11}{rgb}{0.0,0.502,0.0}
\definecolor{cv11v12}{rgb}{0.0,0.502,0.0}
\definecolor{cv12v13}{rgb}{0.0,0.502,0.0}
\begin{tikzpicture}
 \Vertex[style={minimum size=0.2cm,draw=cv0,fill=cfv0,text=clv0,shape=circle},LabelOut=false,L=\hbox{0},x=2.5cm,y=5.0cm]{v0}
 \Vertex[style={minimum size=0.2cm,draw=cv1,fill=cfv1,text=clv1,shape=circle},LabelOut=false,L=\hbox{1},x=1.3874cm,y=4.7524cm]{v1}
 \Vertex[style={minimum size=0.2cm,draw=cv2,fill=cfv2,text=clv2,shape=circle},LabelOut=false,L=\hbox{2},x=0.4952cm,y=4.0587cm]{v2}
 \Vertex[style={minimum size=0.2cm,draw=cv3,fill=cfv3,text=clv3,shape=circle},LabelOut=false,L=\hbox{3},x=0.0cm,y=3.0563cm]{v3}
 \Vertex[style={minimum size=0.2cm,draw=cv4,fill=cfv4,text=clv4,shape=circle},LabelOut=false,L=\hbox{4},x=0.0cm,y=1.9437cm]{v4}
 \Vertex[style={minimum size=0.2cm,draw=cv5,fill=cfv5,text=clv5,shape=circle},LabelOut=false,L=\hbox{5},x=0.4952cm,y=0.9413cm]{v5}
 \Vertex[style={minimum size=0.2cm,draw=cv6,fill=cfv6,text=clv6,shape=circle},LabelOut=false,L=\hbox{6},x=1.3874cm,y=0.2476cm]{v6}
 \Vertex[style={minimum size=0.2cm,draw=cv7,fill=cfv7,text=clv7,shape=circle},LabelOut=false,L=\hbox{7},x=2.5cm,y=0.0cm]{v7}
 \Vertex[style={minimum size=0.2cm,draw=cv8,fill=cfv8,text=clv8,shape=circle},LabelOut=false,L=\hbox{8},x=3.6126cm,y=0.2476cm]{v8}
 \Vertex[style={minimum size=0.2cm,draw=cv9,fill=cfv9,text=clv9,shape=circle},LabelOut=false,L=\hbox{9},x=4.5048cm,y=0.9413cm]{v9}
 \Vertex[style={minimum size=0.2cm,draw=cv10,fill=cfv10,text=clv10,shape=circle},LabelOut=false,L=\hbox{10},x=4.5048cm,y=1.9437cm]{v10}
 \Vertex[style={minimum size=0.2cm,draw=cv11,fill=cfv11,text=clv11,shape=circle},LabelOut=false,L=\hbox{11},x=5.0cm,y=1.9437cm]{v11}
 \Vertex[style={minimum size=0.2cm,draw=cv12,fill=cfv12,text=clv12,shape=circle},LabelOut=false,L=\hbox{12},x=5.0cm,y=3.0563cm]{v12}
 \Vertex[style={minimum size=0.2cm,draw=cv13,fill=cfv13,text=clv13,shape=circle},LabelOut=false,L=\hbox{13},x=3.6126cm,y=4.7524cm]{v13}

 \Edge[lw=0.04cm,style={color=cv0v1,}](v0)(v1)
 \Edge[lw=0.04cm,style={color=cv0v5,}](v0)(v5)
 \Edge[lw=0.04cm,style={color=cv0v13,}](v0)(v13)
 \Edge[lw=0.04cm,style={color=cv1v2,}](v1)(v2)
 \Edge[lw=0.04cm,style={color=cv1v10,}](v1)(v10)
 \Edge[lw=0.04cm,style={color=cv2v3,}](v2)(v3)
 \Edge[lw=0.04cm,style={color=cv2v7,}](v2)(v7)
 \Edge[lw=0.04cm,style={color=cv3v4,}](v3)(v4)
 \Edge[lw=0.04cm,style={color=cv3v12,}](v3)(v12)
 \Edge[lw=0.04cm,style={color=cv4v5,}](v4)(v5)
 \Edge[lw=0.04cm,style={color=cv4v9,}](v4)(v9)
 \Edge[lw=0.04cm,style={color=cv5v6,}](v5)(v6)
 \Edge[lw=0.04cm,style={color=cv5v11,}](v5)(v11)
 \Edge[lw=0.04cm,style={color=cv6v7,}](v6)(v7)
 \Edge[lw=0.04cm,style={color=cv6v11,}](v6)(v11)
 \Edge[lw=0.04cm,style={color=cv7v8,}](v7)(v8)
 \Edge[lw=0.04cm,style={color=cv8v9,}](v8)(v9)
 \Edge[lw=0.04cm,style={color=cv8v13,}](v8)(v13)
 \Edge[lw=0.04cm,style={color=cv9v10,}](v9)(v10)
 \Edge[lw=0.04cm,style={color=cv10v11,}](v10)(v11)
 \Edge[lw=0.04cm,style={color=cv11v12,}](v11)(v12)
 \Edge[lw=0.04cm,style={color=cv12v13,}](v12)(v13)
\end{tikzpicture}
>>> from sage.all import *
>>> from sage.graphs.graph_latex import check_tkz_graph
>>> check_tkz_graph()
random - depends on TeX installation

latex(H)
\begin{tikzpicture}
\definecolor{cv0}{rgb}{0.0,0.502,0.0}
\definecolor{cfv0}{rgb}{1.0,1.0,1.0}
\definecolor{clv0}{rgb}{1.0,0.0,0.0}
\definecolor{cv1}{rgb}{0.0,0.502,0.0}
\definecolor{cfv1}{rgb}{1.0,1.0,1.0}
\definecolor{clv1}{rgb}{1.0,0.0,0.0}
\definecolor{cv2}{rgb}{0.0,0.502,0.0}
\definecolor{cfv2}{rgb}{1.0,1.0,1.0}
\definecolor{clv2}{rgb}{1.0,0.0,0.0}
\definecolor{cv3}{rgb}{1.0,0.0,0.0}
\definecolor{cfv3}{rgb}{1.0,1.0,1.0}
\definecolor{clv3}{rgb}{1.0,0.0,0.0}
\definecolor{cv4}{rgb}{0.0,0.502,0.0}
\definecolor{cfv4}{rgb}{1.0,1.0,1.0}
\definecolor{clv4}{rgb}{1.0,0.0,0.0}
\definecolor{cv5}{rgb}{0.0,0.502,0.0}
\definecolor{cfv5}{rgb}{1.0,1.0,1.0}
\definecolor{clv5}{rgb}{1.0,0.0,0.0}
\definecolor{cv6}{rgb}{0.0,0.502,0.0}
\definecolor{cfv6}{rgb}{1.0,1.0,1.0}
\definecolor{clv6}{rgb}{1.0,0.0,0.0}
\definecolor{cv7}{rgb}{0.0,0.502,0.0}
\definecolor{cfv7}{rgb}{1.0,1.0,1.0}
\definecolor{clv7}{rgb}{1.0,0.0,0.0}
\definecolor{cv8}{rgb}{0.0,0.502,0.0}
\definecolor{cfv8}{rgb}{1.0,1.0,1.0}
\definecolor{clv8}{rgb}{1.0,0.0,0.0}
\definecolor{cv9}{rgb}{0.0,0.502,0.0}
\definecolor{cfv9}{rgb}{1.0,1.0,1.0}
\definecolor{clv9}{rgb}{1.0,0.0,0.0}
\definecolor{cv10}{rgb}{0.0,0.502,0.0}
\definecolor{cfv10}{rgb}{1.0,1.0,1.0}
\definecolor{clv10}{rgb}{1.0,0.0,0.0}
\definecolor{cv11}{rgb}{0.0,0.502,0.0}
\definecolor{cfv11}{rgb}{1.0,1.0,1.0}
\definecolor{clv11}{rgb}{1.0,0.0,0.0}
\definecolor{cv12}{rgb}{0.0,0.502,0.0}
\definecolor{cfv12}{rgb}{1.0,1.0,1.0}
\definecolor{clv12}{rgb}{1.0,0.0,0.0}
\definecolor{cv13}{rgb}{0.0,0.502,0.0}
\definecolor{cfv13}{rgb}{1.0,1.0,1.0}
\definecolor{clv13}{rgb}{1.0,0.0,0.0}
\definecolor{cv0v1}{rgb}{0.0,0.502,0.0}
\definecolor{cv0v5}{rgb}{0.0,0.502,0.0}
\definecolor{cv0v13}{rgb}{0.0,0.502,0.0}
\definecolor{cv1v2}{rgb}{0.0,0.502,0.0}
\definecolor{cv1v10}{rgb}{0.0,0.502,0.0}
\definecolor{cv2v3}{rgb}{0.0,0.502,0.0}
\definecolor{cv2v7}{rgb}{0.0,0.502,0.0}
\definecolor{cv3v4}{rgb}{0.0,0.502,0.0}
\definecolor{cv3v12}{rgb}{0.0,0.502,0.0}
\definecolor{cv4v5}{rgb}{0.0,0.502,0.0}
(continues on next page)
EXAMPLES:

This example illustrates switching between the built-in styles when using the tkz_graph format:

```python
sage: g = graphs.PetersenGraph()
sage: g.set_latex_options(tkz_style='Classic')
sage: from sage.graphs.graph_latex import check_tkz_graph
sage: check_tkz_graph()  # random - depends on TeX installation
sage: latex(g)
\begin{tikzpicture}
\GraphInit[vstyle=Classic]
...
\end{tikzpicture}
sage: opts = g.latex_options()
sage: opts
LaTeX options for Petersen graph: {tkz_style: Classic}
sage: g.set_latex_options(tkz_style = 'Art')
sage: opts.get_option('tkz_style')
'Art'
sage: opts
LaTeX options for Petersen graph: {tkz_style: 'Art'}
sage: latex(g)
\begin{tikzpicture}
\GraphInit[vstyle=Art]
...
\end{tikzpicture}
```

```python
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> g.set_latex_options(tkz_style='Classic')
>>> from sage.graphs.graph_latex import check_tkz_graph
>>> check_tkz_graph()  # random - depends on TeX installation
>>> latex(g)
\begin{tikzpicture}
\GraphInit[vstyle=Classic]
...
\end{tikzpicture}
>>> opts = g.latex_options()
>>> opts
LaTeX options for Petersen graph: {'tkz_style': 'Classic'}
>>> g.set_latex_options(tkz_style = 'Art')
>>> opts.get_option('tkz_style')
'Art'
>>> opts
LaTeX options for Petersen graph: {'tkz_style': 'Art'}
>>> latex(g)
\begin{tikzpicture}
\GraphInit[vstyle=Art]
...
```

(continues on next page)
This example illustrates using the optional dot2tex module:

```
sage: g = graphs.PetersenGraph()
sage: g.set_latex_options(format='dot2tex', prog='neato')
sage: from sage.graphs.graph_latex import check_tkz_graph
sage: check_tkz_graph()  # random - depends on TeX installation
sage: latex(g)  # optional - dot2tex graphviz
\begin{tikzpicture}[>=latex,line join=bevel,]
... 
\end{tikzpicture}
```

Among other things, this supports the flexible `edge_options` option (see `sage.graphs.generic_graph.GenericGraph.graphviz_string()`); here we color in red all edges touching the vertex 0:

```
sage: g = graphs.PetersenGraph()
sage: g.set_latex_options(format='dot2tex', edge_options=lambda u_v_label: {'color': "red"} if u_v_label[0] == 0 else {})
sage: latex(g)  # optional - dot2tex graphviz
\begin{tikzpicture}[>=latex,line join=bevel,]
... 
\end{tikzpicture}
```

5.3.1.2 GraphLatex class and functions

```python
class sage.graphs.graph_latex.GraphLatex(graph, **options)
```

A class to hold, manipulate and employ options for converting a graph to LaTeX.

This class serves two purposes. First it holds the values of various options designed to work with the tkz-graph LaTeX package for rendering graphs. As such, a graph that uses this class will hold a reference to it. Second, this class contains the code to convert a graph into the corresponding LaTeX constructs, returning a string.

EXAMPLES:
```python
sage: from sage.graphs.graph_latex import GraphLatex
sage: opts = GraphLatex(graphs.PetersenGraph())
```

LaTeX options for Petersen graph: {}

```python
sage: g = graphs.PetersenGraph()
sage: opts = g.latex_options()
```

```python
g == loads(dumps(g))
```

True

```python
>>> from sage.all import *
>>> from sage.graphs.graph_latex import GraphLatex
```

```python
>>> opts = GraphLatex(graphs.PetersenGraph())
```

LaTeX options for Petersen graph: {}

```python
>>> g = graphs.PetersenGraph()
>>> opts = g.latex_options()
```

```python
g == loads(dumps(g))
```

True

```python
dot2tex_picture()
dot2tex to construct a string of LaTeX commands representing a graph as a tikzpicture.

EXAMPLES:
```
sage: g = digraphs.ButterflyGraph(1)
sage: from sage.graphs.graph_latex import check_tkz_graph
sage: check_tkz_graph() # random - depends on TeX installation
sage: print(g.latex_options().dot2tex_picture()) # optional - dot2tex...
```

```latex
\begin{tikzpicture}[>=latex,line join=bevel,]
\node (node_...) at (...bp,...bp) [draw,draw=none] {$\left(...\right)$};
\draw [black,->] (node_...) ..controls (...bp,...bp) and (...bp,...bp)

(continues on next page)
```

5.31. LaTeX options for graphs 1813
We make sure Issue #13624 is fixed:

```python
sage: G = DiGraph()
sage: G.add_edge(3333, 88, my_label)
sage: G.set_latex_options(edge_labels=True)
```

```latex
\begin{tikzpicture}
\node (node_...) at (...bp,...bp) [draw,draw=none] {$...$};
\node (node_...) at (...bp,...bp) [draw,draw=none] {$...$};
\draw [black,->] (node_...) ..controls (...bp,...bp) and (...bp,...bp) ...
\end{tikzpicture}
```

Check that Issue #25120 is fixed:

```python
sage: G = Graph([(0,1)])
sage: G.set_latex_options(edge_colors = {(0,1): red})
```

```latex
\begin{tikzpicture}
\node (node_0) at (0,...bp) [draw,draw=none] {0};
\node (node_1) at (1,...bp) [draw,draw=none] {1};
\draw [red,] (node_0) .. controls (...bp,...bp) and (...bp,...bp) ...
\end{tikzpicture}
```
>>> from sage.all import *
>>> G = Graph([(Integer(0),Integer(1))])
>>> G.set_latex_options(edge_colors = {(Integer(0),Integer(1)): 'red'})
>>> print(G.latex_options().dot2tex_picture())
# optional - dot2tex graphviz
\begin{tikzpicture}
... \draw [red,] (node_0) ... (node_1);
... \end{tikzpicture}

Note: There is a lot of overlap between what \texttt{tkz_picture} and \texttt{dot2tex} do. It would be best to merge them! \texttt{dot2tex} probably can work without \texttt{graphviz} if layout information is provided.

\textbf{get\_option}(\texttt{option\_name})

Return the current value of the named option.

\textbf{INPUT:}

\begin{itemize}
\item \texttt{option\_name} – the name of an option
\end{itemize}

\textbf{OUTPUT:}

If the name is not present in \texttt{__graphlatex\_options} it is an error to ask for it. If an option has not been set then the default value is returned. Otherwise, the value of the option is returned.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: g = graphs.PetersenGraph()
sage: opts = g.latex_options()
sage: opts.set_option('tkz\_style', 'Art')
sage: opts.get_option('tkz\_style')
'Art'
sage: opts.set_option('tkz\_style')
sage: opts.get_option('tkz\_style') == "Custom"
True
sage: opts.get_option('bad\_name')
Traceback (most recent call last):
... ValueError: bad\_name is not a Latex option for a graph.
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> g = graphs.PetersenGraph()
>>> opts = g.latex_options()
>>> opts.set_option('tkz\_style', 'Art')
>>> opts.get_option('tkz\_style')
'Art'
>>> opts.set_option('tkz\_style')
>>> opts.get_option('tkz\_style') == "Custom"
True
>>> opts.get_option('bad\_name')
Traceback (most recent call last):
... ValueError: bad\_name is not a Latex option for a graph.
\end{verbatim}
latex()

Return a string in LaTeX representing a graph.

This is the command that is invoked by sage.graphs.generic_graph.GenericGraph._latex_ for a graph, so it returns a string of LaTeX commands that can be incorporated into a LaTeX document unmodified. The exact contents of this string are influenced by the options set via the methods sage.graphs.generic_graph.GenericGraph.set_latex_options(), set_option(), and set_options().

By setting the format option different packages can be used to create the latex version of a graph. Supported packages are tkz-graph and dot2tex.

EXAMPLES:

```python
sage: from sage.graphs.graph_latex import check_tkz_graph
sage: check_tkz_graph() # random - depends on TeX installation
sage: g = graphs.CompleteGraph(2)
sage: opts = g.latex_options()
sage: print(opts.latex())
\begin{tikzpicture}
\definecolor{cv0}{rgb}{0.0,0.0,0.0}
\definecolor{cfv0}{rgb}{1.0,1.0,1.0}
\definecolor{clv0}{rgb}{0.0,0.0,0.0}
\definecolor{cv1}{rgb}{0.0,0.0,0.0}
\definecolor{cfv1}{rgb}{1.0,1.0,1.0}
\definecolor{clv1}{rgb}{0.0,0.0,0.0}
\definecolor{cv0v1}{rgb}{0.0,0.0,0.0}
\% \Vertex[style={minimum size=1.0cm,draw=cv0,fill=cfv0,text=clv0,shape=circle},LabelOut=false,L=0,x=2.5cm,y=5.0cm]{v0}
\Vertex[style={minimum size=1.0cm,draw=cv1,fill=cfv1,text=clv1,shape=circle},LabelOut=false,L=1,x=2.5cm,y=0.0cm]{v1}
\Edge[lw=0.1cm,style={color=cv0v1,}](v0)(v1)
\end{tikzpicture}
```

```bash
>>> from sage.all import *
>>> from sage.graphs.graph_latex import check_tkz_graph
>>> check_tkz_graph() # random - depends on TeX installation
>>> g = graphs.CompleteGraph(Integer(2))
>>> opts = g.latex_options()
>>> print(opts.latex())
\begin{tikzpicture}
\definecolor{cv0}{rgb}{0.0,0.0,0.0}
\definecolor{cfv0}{rgb}{1.0,1.0,1.0}
\definecolor{clv0}{rgb}{0.0,0.0,0.0}
\definecolor{cv1}{rgb}{0.0,0.0,0.0}
\definecolor{cfv1}{rgb}{1.0,1.0,1.0}
\definecolor{clv1}{rgb}{0.0,0.0,0.0}
\definecolor{cv0v1}{rgb}{0.0,0.0,0.0}
\% \Vertex[style={minimum size=1.0cm,draw=cv0,fill=cfv0,text=clv0,shape=circle},LabelOut=false,L=0,x=2.5cm,y=5.0cm]{v0}
\Vertex[style={minimum size=1.0cm,draw=cv1,fill=cfv1,text=clv1,shape=circle},LabelOut=false,L=1,x=2.5cm,y=0.0cm]{v1}
\% \Edge[lw=0.1cm,style={color=cv0v1,}](v0)(v1)
\end{tikzpicture}
```
We check that Issue #22070 is fixed:

```python
sage: edges = [(i,(i+1)%3,a) for i,a in enumerate('abc')]
sage: G_with_labels = DiGraph(edges)
sage: C = [[0,1], [2]]
sage: kwds = dict(subgraph_clusters=C,color_by_label=True, prog='dot', format='dot2tex')
sage: opts = G_with_labels.latex_options()
sage: opts.set_options(edge_labels=True, **kwds) # optional - dot2tex graphviz

sage: latex(G_with_labels) # optional - dot2tex graphviz
```

(continues on next page)
set_option(option_name, option_value=None)

Set, modify, clear a LaTeX option for controlling the rendering of a graph.

The possible options are documented here, because ultimately it is this routine that sets the values. However, the `sage.graphs.generic_graph.GenericGraph.set_latex_options()` method is the easiest way to set options, and allows several to be set at once.

INPUT:

- **option_name** – a string for a latex option contained in the list `sage.graphs.graph_latex.GraphLatex._graphlatex_options`. A `ValueError` is raised if the option is not allowed.
- **option_value** – a value for the option. If omitted, or set to `None`, the option will use the default value.

The output can be either handled internally by Sage, or delegated to the external software `dot2tex` and `graphviz`. This is controlled by the option **format**:

- **format** – string (default: 'tkz_graph'); either 'dot2tex' or 'tkz_graph'.

If **format** is 'dot2tex', then all the LaTeX generation will be delegated to `dot2tex` (which must be installed).

For `tkz_graph`, the possible option names, and associated values are given below. This first group allows you to set a style for a graph and specify some sizes related to the eventual image. (For more information consult the documentation for the tkz-graph package.)

- **tkz_style** – string (default: 'Custom'); the name of a pre-defined tkz-graph style such as 'Shade', 'Art', 'Normal', 'Dijkstra', 'Welsh', 'Classic', and 'Simple', or the string 'Custom'. Using one of these styles alone will often give a reasonably good drawing with minimal effort. For a custom appearance set this to 'Custom' and use the options described below to override the default values.
- **units** – string (default: 'cm'); a natural unit of measurement used for all dimensions. Possible values are: 'in', 'mm', 'cm', 'pt', 'em', 'ex'.
- **scale** – float (default: 1.0); a dimensionless number that multiplies every linear dimension. So you can design at sizes you are accustomed to, then shrink or expand to meet other needs. Though fonts do not scale.
- **graphic_size** – tuple (default: (5, 5)); overall dimensions (width, length) of the bounding box around the entire graphic image.
- **margins** – 4-tuple (default: (0, 0, 0, 0)); portion of graphic given over to a plain border as a tuple of four numbers: (left, right, top, bottom). These are subtracted from the graphic_size to create the area left for the vertices of the graph itself. Note that the processing done by Sage will trim the graphic down to the minimum possible size, removing any border. So this is only useful if you use the latex string in a latex document.
If not using a pre-built style the following options are used, so the following defaults will apply. It is not possible to begin with a pre-built style and modify it (other than editing the latex string by hand after the fact).

- `vertex_color` — (default: 'black'); a single color to use as the default for outline of vertices. For the sphere shape this color is used for the entire vertex, which is drawn with a 3D shading. Colors must be specified as a string recognized by the matplotlib library: a standard color name like 'red', or a hex string like '#2D87A7', or a single character from the choices 'rgbcmykw'. Additionally, a number between 0 and 1 will create a grayscale value. These color specifications are consistent throughout the options for a `tikzpicture`.

- `vertex_colors` — a dictionary whose keys are vertices of the graph and whose values are colors. These will be used to color the outline of vertices. See the explanation above for the `vertex_color` option to see possible values. These values need only be specified for a proper subset of the vertices. Specified values will supersede a default value.

- `vertex_fill_color` — (default: 'white'); a single color to use as the default for the fill color of vertices. See the explanation above for the `vertex_color` option to see possible values. This color is ignored for the sphere vertex shape.

- `vertex_fill_colors` — a dictionary whose keys are vertices of the graph and whose values are colors. These will be used to fill the interior of vertices. See the explanation above for the `vertex_color` option to see possible values. These values need only be specified for a proper subset of the vertices. Specified values will supersede a default value.

- `vertex_shape` — string (default: 'circle'); specifies the shape of the vertices. Allowable values are 'circle', 'sphere', 'rectangle', 'diamond'. The sphere shape has a 3D look to its coloring and is uses only one color, that specified by `vertex_color` and `vertex_colors`, which are normally used for the outline of the vertex.

- `vertex_shapes` — a dictionary whose keys are vertices of the graph and whose values are shapes. See `vertex_shape` for the allowable possibilities.

- `vertex_size` — float (default: 1.0); the minimum size of a vertex as a number. Vertices will expand to contain their labels if the labels are placed inside the vertices. If you set this value to zero the vertex will be as small as possible (up to tkz-graph’s “inner sep” parameter), while still containing labels. However, if labels are not of a uniform size, then the vertices will not be either.

- `vertex_sizes` — a dictionary of sizes for some of the vertices.

- `vertex_labels` — boolean (default: True); determine whether or not to display the vertex labels. If False subsequent options about vertex labels are ignored.

- `vertex_labels_math` — boolean (default: True); when True, if a label is a string that begins and ends with dollar signs, then the string will be rendered as a latex string. Otherwise, the label will be automatically subjected to the `latex()` method and rendered accordingly. If False the label is rendered as its textual representation according to the `_repr` method. Support for arbitrarily-complicated mathematics is not especially robust.

- `vertex_label_color` — (default: 'black'); a single color to use as the default for labels of vertices. See the explanation above for the `vertex_color` option to see possible values.

- `vertex_label_colors` — a dictionary whose keys are vertices of the graph and whose values are colors. These will be used for the text of the labels of vertices. See the explanation above for the `vertex_color` option to see possible values. These values need only be specified for a proper subset of the vertices. Specified values will supersede a default value.

- `vertex_label_placement` — (default: 'center'); if 'center' the label is centered in the interior of the vertex and the vertex will expand to contain the label. Giving instead a pair of numbers...
will place the label exterior to the vertex at a certain distance from the edge, and at an angle to the positive x-axis, similar in spirit to polar coordinates.

- **vertex_label_placements** – a dictionary of placements indexed by the vertices. See the explanation for `vertex_label_placement` for the possible values.

- **edge_color** – (default: 'black'); a single color to use as the default for an edge. See the explanation above for the `vertex_color` option to see possible values.

- **edge_colors** – a dictionary whose keys are edges of the graph and whose values are colors. These will be used to color the edges. See the explanation above for the `vertex_color` option to see possible values. These values need only be specified for a proper subset of the vertices. Specified values will supersede a default value.

- **edge_fills** – boolean (default: False); whether an edge has a second color running down the middle. This can be a useful effect for highlighting edge crossings.

- **edge_fill_color** – (default: 'black'); a single color to use as the default for the fill color of an edge. The boolean switch `edge_fills` must be set to True for this to have an effect. See the explanation above for the `vertex_color` option to see possible values.

- **edge_fill_colors** – a dictionary whose keys are edges of the graph and whose values are colors. These will be used for the text of the labels of edges. See the explanation above for the `vertex_color` option to see possible values. These values need only be specified for a proper subset of the vertices. Specified values will supersede a default value.

- **edge_thickness** – float (default: 0.1); specifies the width of the edges. Note that tkz-graph does not interpret this number for loops.

- **edge_thickesses** – a dictionary of thicknesses for some of the edges of a graph. These values need only be specified for a proper subset of the vertices. Specified values will supersede a default value.

- **edge_labels** – boolean (default: False); determine if edge labels are shown. If False subsequent options about edge labels are ignored.

- **edge_labels_math** – boolean (default: True); control how edge labels are rendered. Read the explanation for the `vertex_labels_math` option, which behaves identically. Support for arbitrarily-complicated mathematics is not especially robust.

- **edge_label_color** – (default: 'black'); a single color to use as the default for labels of edges. See the explanation above for the `vertex_color` option to see possible values.

- **edge_label_colors** – a dictionary whose keys are edges of the graph and whose values are colors. These will be used for the text of the labels of edges. See the explanation above for the `vertex_color` option to see possible values. These values need only be specified for a proper subset of the vertices. Specified values will supersede a default value. Note that labels must be used for this to have any effect, and no care is taken to ensure that label and fill colors work well together.

- **edge_label_sloped** – boolean (default: True); specifies how edge labels are placed. False results in a horizontal label, while True means the label is rotated to follow the direction of the edge it labels.

- **edge_label_slopes** – a dictionary of booleans, indexed by some subset of the edges. See the edge_label_sloped option for a description of sloped edge labels.

- **edge_label_placement** – (default: 0.50); either a number between 0.0 and 1.0, or one of: 'above', 'below', 'left', 'right'. These adjust the location of an edge label along an edge. A number specifies how far along the edge the label is located. 'left' and 'right' are conveniences. 'above' and 'below' move the label off the edge itself while leaving it near the midpoint of the edge. The default value of 0.50 places the label on the midpoint of the edge.

- **edge_label_placements** – a dictionary of edge placements, indexed by the edges. See the edge_label_placement option for a description of the allowable values.
• loop_placement – (default: (3.0, 'NO')); determine how loops are rendered. the first element of the pair is a distance, which determines how big the loop is and the second element is a string specifying a compass point (North, South, East, West) as one of 'NO', 'SO', 'EA', 'WE'.

• loop_placements – a dictionary of loop placements. See the loop_placements option for the allowable values. While loops are technically edges, this dictionary is indexed by vertices.

For the 'dot2tex' format, the possible option names and associated values are given below:

• prog – string; the program used for the layout. It must be a string corresponding to one of the software of the graphviz suite: 'dot', 'neato', 'twopi', 'circo' or 'fdp'.

• edge_labels – boolean (default: False); whether to display the labels on edges.

• edge_colors – a color; can be used to set a global color to the edge of the graph.

• color_by_label – boolean (default: False); colors the edges according to their labels.

• subgraph_clusters – (default: []) a list of lists of vertices, if supported by the layout engine, nodes belonging to the same cluster subgraph are drawn together, with the entire drawing of the cluster contained within a bounding rectangle.

OUTPUT:

There are none. Success happens silently.

EXAMPLES:

Set, then modify, then clear the tkz_style option, and finally show an error for an unrecognized option name:

```sage
sage: g = graphs.PetersenGraph()
sage: opts = g.latex_options()
sage: opts
LaTeX options for Petersen graph: {}
sage: opts.set_option('tkz_style', 'Art')
sage: opts
LaTeX options for Petersen graph: {'tkz_style': 'Art'}
sage: opts.set_option('tkz_style', 'Simple')
sage: opts
LaTeX options for Petersen graph: {'tkz_style': 'Simple'}
sage: opts.set_option('tkz_style')
sage: opts
LaTeX options for Petersen graph: {}
sage: opts.set_option('bad_name', 'nonsense')
Traceback (most recent call last):
 ... ValueError: bad_name is not a LaTeX option for a graph.
```

```python
>>> from sage.all import *

>>> g = graphs.PetersenGraph()

>>> opts = g.latex_options()

>>> opts
LaTeX options for Petersen graph: {}

>>> opts.set_option('tkz_style', 'Art')

>>> opts
LaTeX options for Petersen graph: {'tkz_style': 'Art'}

>>> opts.set_option('tkz_style', 'Simple')

>>> opts
LaTeX options for Petersen graph: {'tkz_style': 'Simple'}

>>> opts
LaTeX options for Petersen graph: {}

>>> opts.set_option('tkz_style')
```

(continues on next page)
See `sage.graphs.generic_graph.GenericGraph.layout_graphviz()` for installation instructions for graphviz and dot2tex. Furthermore, pgf \( \geq 2.00 \) should be available inside LaTeX's tree for LaTeX compilation (e.g. when using `view`). In case your LaTeX distribution does not provide it, here are short instructions:

- download pgf from http://sourceforge.net/projects/pgf/
- unpack it in `/usr/share/texmf/tex/generic` (depends on your system)
- clean out remaining pgf files from older version
- run `texhash`

### set_options(**kwds)**

Set several LaTeX options for a graph all at once.

INPUT:

- `kwds` – any number of option/value pairs to set many graph latex options at once (a variable number, in any order). Existing values are overwritten, new values are added. Existing values can be cleared by setting the value to `None`. Errors are raised in the `set_option()` method.

#### EXAMPLES:

```python
sage: g = graphs.PetersenGraph()
sage: opts = g.latex_options()
sage: opts.set_options(tkz_style='Welsh')
sage: opts.get_option('tkz_style')
'Welsh'
```

```python
from sage.all import *

>>> g = graphs.PetersenGraph()
>>> opts = g.latex_options()
>>> opts.set_options(tkz_style='Welsh')
>>> opts.get_option('tkz_style')
'Welsh'
```

### tkz_picture() **

Return a string of LaTeX commands representing a graph as a `tikzpicture`.

This routine interprets the graph’s properties and the options in `_options` to render the graph with commands from the `tkz-graph` LaTeX package.

This requires that the LaTeX optional packages `tkz-graph` and `tkz-berge` be installed. You may also need a current version of the pgf package. If the `tkz-graph` and `tkz-berge` packages are present in the system’s TeX installation, the appropriate `\usepackage{}` commands will be added to the LaTeX preamble as part of the initialization of the graph. If these two packages are not present, then this command will return a warning on its first use, but will return a string that could be used elsewhere, such as a LaTeX document.

For more information about `tkz-graph` you can visit `https://www.ctan.org/pkg/tkz-graph`.

#### EXAMPLES:
With a pre-built \texttt{tkz-graph} style specified, the \LaTeX{} representation will be relatively simple.

```
sage: from sage.graphs.graph_latex import check_tkz_graph
sage: check_tkz_graph() # random - depends on TeX installation
sage: g = graphs.CompleteGraph(3)
sage: opts = g.latex_options()
sage: g.set_latex_options(tkz_style='Art')
sage: print(opts.tkz_picture())
\begin{tikzpicture}
\GraphInit[vstyle=Art]
\Vertex[L=\hbox{0},x=2.5cm,y=5.0cm]{v0}
\Vertex[L=\hbox{1},x=0.0cm,y=0.0cm]{v1}
\Vertex[L=\hbox{2},x=5.0cm,y=0.0cm]{v2}
\Edge[](v0)(v1)
\Edge[](v0)(v2)
\Edge[](v1)(v2)
\end{tikzpicture}
```

Setting the style to “Custom” results in various configurable aspects set to the defaults, so the string is more involved.

```
sage: from sage.graphs.graph_latex import check_tkz_graph
sage: check_tkz_graph() # random - depends on TeX installation
sage: g = graphs.CompleteGraph(3)
sage: opts = g.latex_options()
sage: g.set_latex_options(tkz_style='Custom')
sage: print(opts.tkz_picture())
\begin{tikzpicture}
\definecolor{cv0}{rgb}{0.0,0.0,0.0}
\definecolor{cfv0}{rgb}{1.0,1.0,1.0}
\definecolor{clv0}{rgb}{0.0,0.0,0.0}
\definecolor{cv1}{rgb}{0.0,0.0,0.0}
\definecolor{cfv1}{rgb}{1.0,1.0,1.0}
\definecolor{clv1}{rgb}{0.0,0.0,0.0}
\definecolor{cv2}{rgb}{0.0,0.0,0.0}
\end{tikzpicture}
```

(continues on next page)
See the introduction to the `graph_latex` module for more information on the use of this routine.

`sage.graphs.graph_latex.check_tkz_graph()`

Check if the proper LaTeX packages for the `tikzpicture` environment are installed in the user's environment,
and issue a warning otherwise.

The warning is only issued on the first call to this function. So any doctest that illustrates the use of the tkz-graph packages should call this once as having random output to exhaust the warnings before testing output.

See also sage.misc.latex.Latex.check_file()

sage.graphs.graph_latex.have_tkz_graph()

Return True if the proper LaTeX packages for the \texttt{tikzpicture} environment are installed in the user’s environment, namely \texttt{tikz,tkz-graph} and \texttt{tkz-berge}.

The result is cached.

See also sage.misc.latex.Latex.has_file()

sage.graphs.graph_latex.setup_latex_preamble()

Add appropriate \texttt{\usepackage{...}}, and other instructions to the latex preamble for the packages that are needed for processing graphs(\texttt{tikz,tkz-graph,tkz-berge}), if available in the \LaTeX{} installation.

See also sage.misc.latex.Latex.add_package_to_preamble_if_available().

EXAMPLES:

```
sage: sage.graphs.graph_latex.setup_latex_preamble()
```

```
>>> from sage.all import *
>>> sage.graphs.graph_latex.setup_latex_preamble()
```

### 5.32 Graph editor widget

This module adds an interface to \texttt{phitigra}, a graph editor widget for Jupyter and JupyterLab. The \texttt{phitigra} optional package should be installed on your Sage installation.

**AUTHORS:**

- Radoslav Kirov (2009): initial editor for use with the old sage notebook
- Jean-Florent Raymond (2022-04-12): replacement with the \texttt{phitigra} package

sage.graphs.graph_editor.graph_editor(graph=None, **display_options)

Return a graph editor widget.

The graph editor widget can be displayed with Jupyter or JupyterLab. It is provided by the \texttt{phitigra} optional package, see \url{https://github.com/jfraymond/phitigra} for details about the possible options (changing the width/height of the canvas, the default size and color of vertices, etc.).

**INPUT:**

- **graph** – a graph to edit (default: None)
- **display_options** – options for the widget

**EXAMPLES:**

```
sage: e = graph_editor() # optional - phitigra
sage: e.show() # not tested
```

```
>>> from sage.all import *
>>> e = graph_editor() # optional - phitigra
>>> e.show() # not tested
```
Opening an existing graph:

```python
sage: G = graphs.RandomGNP(10, 0.5)
sage: e = graph_editor(G) # optional - phitigra
sage: e.show() # not tested

>>> from sage.all import *
>>> G = graphs.RandomGNP(Integer(10), RealNumber('0.5'))
>>> e = graph_editor(G) # optional - phitigra
>>> e.show() # not tested
```

Retrieving a copy of the drawn graph:

```python
sage: G = graphs.RandomGNP(10, 0.5)
sage: e = graph_editor(G)
sage: H = e.get_graph() # optional - phitigra
sage: H == G and not H is G # optional - phitigra
True

>>> from sage.all import *
>>> G = graphs.RandomGNP(Integer(10), RealNumber('0.5'))
>>> e = graph_editor(G)
>>> H = e.get_graph() # optional - phitigra
>>> H == G and not H is G # optional - phitigra
True
```

Using different display options:

```python
sage: e = graph_editor(graphs.PetersenGraph(), width=300, height=300, #...
 default_radius=12, default_vertex_color='orange',
 default_edge_color='#666', show_vertex_labels=False)
sage: e.show() # not tested

>>> from sage.all import *
>>> e = graph_editor(graphs.PetersenGraph(), width=Integer(300), #...
 default_radius=Integer(12), default_vertex_color='orange',
 default_edge_color='#666', show_vertex_labels=False)
>>> e.show() # not tested
```

**Note:** The editor does not support multigraphs.
5.33 Lists of graphs

AUTHORS:
- Robert L. Miller (2007-02-10): initial version
- Emily A. Kirkman (2007-02-13): added show functions (to_graphs_array and show_graphs)

sage.graphs.graph_list.from_graph6(data)
Return a list of Sage Graphs, given a list of graph6 data.

INPUT:
- data – can be a string, a list of strings, or a file stream

EXAMPLES:

```python
sage: l = ['N@?N@UGAGG?qG1KCMO', 'XsGGWOW?CC?C@HQKhqOjYKC_uHWGX?P~ →qIKA`OA@SAOEcEA??']
sage: graphs_list.from_graph6(l)
[Graph on 15 vertices, Graph on 25 vertices]
```

sage.graphs.graph_list.from_sparse6(data)
Return a list of Sage Graphs, given a list of sparse6 data.

INPUT:
- data – can be a string, a list of strings, or a file stream

EXAMPLES:

```python
from sage.all import *
>>> g1 = ':P_`cBaC_ACd`C`_BC\ABBHaEH_@BF_@CHIK_0BCEHKL_BIKM_BFGHI'
>>> g2 = ':f`??KO?_OOSCGE_?QWONBDO@G0JBD0?_SSJdApOIG`?og_UKEbq`?SKF'
>>> g2 += 'g@[CCBA`p_0WMFp8gw]Qaa@xEMHdb0hMCBcbQ@EClEcA@KVKFPOwo{PIDQ'
>>> g2 += '{KIEC0PKVKEW_MNKgPwwcRKOOWSKIGCqIbWt??_WJFCahNwzEba`x0'
>>> g2 += 'u}[MPPPkYNoG00KHHDBPs|??gMKbEcAHKgTLErqA?A@G{kVLErs?GD'
>>> g2 += 'BA@XCs\NggWDOJIDbHh8?A@AF'
>>> graphs_list.from_sparse6([g1, g2])
[Looped multi-graph on 17 vertices, Looped multi-graph on 39 vertices]
```

sage.graphs.graph_list.from_whatever(data)
Return a list of Sage Graphs, given a list of whatever kind of data.

INPUT:
• data – can be a string, a list/iterable of strings, or a readable file-like object

EXAMPLES:

```
sage: 1 = ['N@?N@UGAGG?gGlKCMO', ':P_`cBaC_ACd`C_@BC`ABDHaEH_@BF_@CHIK_@BCEHKL_ ...
˓→BIKM_BFGHI']
sage: graphs_list.from_whatever(1)
[Graph on 15 vertices, Looped multi-graph on 17 vertices]
sage: graphs_list.from_whatever('
'.join(1))
[Graph on 15 vertices, Looped multi-graph on 17 vertices]

>>> from sage.all import *
>>> 1 = ['N@?N@UGAGG?gGlKCMO', ':P_`cBaC_ACd`C_@BC`ABDHaEH_@BF_@CHIK_@BCEHKL_
˓→BIKM_BFGHI']
>>> graphs_list.from_whatever(1)
[Graph on 15 vertices, Looped multi-graph on 17 vertices]
>>> graphs_list.from_whatever('
'.join(1))
[Graph on 15 vertices, Looped multi-graph on 17 vertices]
```

This example happens to be a mix a sparse and non-sparse graphs, so we don’t explicitly put a .g6 or .s6 extension, which implies just one or the other:

```
sage: filename = tmp_filename()
sage: with open(filename, 'w') as fobj:
 : _ = fobj.write('
'.join(l))
sage: with open(filename) as fobj:
 : graphs_list.from_whatever(fobj)
[Graph on 15 vertices, Looped multi-graph on 17 vertices]
```

```
>>> from sage.all import *
>>> filename = tmp_filename()
>>> with open(filename, 'w') as fobj:
... _ = fobj.write('
'.join(l))
>>> with open(filename) as fobj:
... graphs_list.from_whatever(fobj)
[Graph on 15 vertices, Looped multi-graph on 17 vertices]
```

```
sage.graphs.graph_list.show_graphs(graph_list, **kwds)

Show a maximum of 20 graphs from graph_list in a sage graphics array.

If more than 20 graphs are given in the list argument, then it will display one graphics array after another with each containing at most 20 graphs.

Note that to save the image output from the notebook, you must save each graphics array individually. (There will be a small space between graphics arrays).

INPUT:

• graph_list – a Python list of Sage Graphs

GRAPH PLOTTING: Defaults to circular layout for graphs. This allows for a nicer display in a small area and takes much less time to compute than the spring-layout algorithm for many graphs.

EXAMPLES: Create a list of graphs:

```
sage: glist = []
sage: glist.append(graphs.CompleteGraph(6))
sage: glist.append(graphs.CompleteBipartiteGraph(4, 5))
sage: glist.append(graphs.BarbellGraph(7, 4))
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
sage: glist.append(graphs.CycleGraph(15))
sage: glist.append(graphs.DiamondGraph())
sage: glist.append(graphs.GemGraph())
sage: glist.append(graphs.DartGraph())
sage: glist.append(graphs.ForkGraph())
sage: glist.append(graphs.HouseGraph())
sage: glist.append(graphs.HouseXGraph())
sage: glist.append(graphs.KrackhardtKiteGraph())
sage: glist.append(graphs.LadderGraph(5))
sage: glist.append(graphs.LollipopGraph(5, 6))
sage: glist.append(graphs.PathGraph(15))
sage: glist.append(graphs.PetersenGraph())
sage: glist.append(graphs.StarGraph(17))
sage: glist.append(graphs.WheelGraph(9))
```

```python
>>> from sage.all import *
```

```python
>>> glist = []
```

```python
sage: len(glist)
17
```

```python
>>> from sage.all import *
```

```python
>>> len(glist)
17
```

```
Check that length is <= 20:
```

```python
sage: len(glist)
17
```

```python
>>> from sage.all import *
```

```python
>>> len(glist)
17
```

```
Show the graphs in a graphics array:
```

```python
sage: graphs_list.show_graphs(glist)  # needs sage.plot
```

```python
>>> from sage.all import *
```

```python
>>> graphs_list.show_graphs(glist)  # needs sage.plot
```

```
Example where more than one graphics array is used:
```

5.33. Lists of graphs 1829
sage: gq = GraphQuery(display_cols=['graph6'], num_vertices=5)
sage: g = gq.get_graphs_list()
sage: len(g)
34
sage: graphs_list.show_graphs(g) # needs sage.plot

>>> from sage.all import *
>>> gq = GraphQuery(display_cols=['graph6'], num_vertices=Integer(5))
>>> g = gq.get_graphs_list()
>>> len(g)
34
>>> graphs_list.show_graphs(g) # needs sage.plot

See the .plot() or .show() documentation for an individual graph for options, all of which are available from to_graphics_array():

sage: glist = []
sage: for _ in range(10): # needs networkx
....: glist.append(graphs.RandomLobster(41, .3, .4))
sage: graphs_list.show_graphs(glist, layout='spring', vertex_size=Integer(20)) # needs sage.plot

sage.graphs.graph_list.to_graph6 (graphs, file=None, output_list=False)
Convert a list of Sage graphs to a single string of graph6 graphs.
If file is specified, then the string will be written quietly to the file. If output_list is True, then a list of strings will be returned, one string per graph.

INPUT:
• graphs – a Python list of Sage Graphs
• file – (optional) a file stream to write to (must be in 'w' mode)
• output_list – boolean (default: False): whether to return a string (when set to True) or a list of strings. This parameter is ignored if file gets specified

EXAMPLES:

sage: l = [graphs.DodecahedralGraph(), graphs.PetersenGraph()]
sage: graphs_list.to_graph6(l)
'ShCHGD@?K?_@?@?C_GGG@??cG?G?GK_?C\nIheA@GUao

>>> from sage.all import *
>>> l = [graphs.DodecahedralGraph(), graphs.PetersenGraph()]
sage.graphs.graph_list.to_graphics_array(graph_list, **kwds)

Draw all graphs in a graphics array

INPUT:

• graph_list – a Python list of Sage Graphs

GRAPH PLOTTING:

Defaults to circular layout for graphs. This allows for a nicer display in a small area and takes much less time to compute than the spring-layout algorithm for many graphs.

EXAMPLES:

```
sage: glist = []
sage: for i in range(999):
    ....:     glist.append(graphs.RandomGNP(6, .45))

sage: garray = graphs_list.to_graphics_array(glist)  # needs sage.plot
sage: garray.nrows(), garray.ncols()  # needs sage.plot
(250, 4)
```

```
>>> from sage.all import *

>>> glist = []
>>> for _ in range(Integer(999)):  # needs networkx
    ....:     glist.append(graphs.RandomLobster(Integer(41), RealNumber(.3), RealNumber(.4)))

>>> graphs_list.to_graphics_array(glist, layout=spring, vertex_size=Integer(20))  # needs networkx sage.plot
Graphics Array of size 3 x 4
```

See the .plot() or .show() documentation for an individual graph for options, all of which are available from to_graphics_array():

```
sage: glist = []
sage: for _ in range(10):  # needs networkx
    ....:     glist.append(graphs.RandomLobster(41, .3, .4))

glist = graphs_list.to_graphics_array(glist, layout='spring', vertex_size=20)  # needs networkx sage.plot
Graphics Array of size 3 x 4
```

```
>>> from sage.all import *

>>> glist = []
>>> for _ in range(Integer(10)):  # needs networkx
    ....:     glist.append(graphs.RandomLobster(Integer(41), RealNumber('0.3'), RealNumber('0.4')))

>>> graphs_list.to_graphics_array(glist, layout='spring', vertex_size=20)  # needs networkx sage.plot
Graphics Array of size 3 x 4
```
sage.graphs.graph_list.to_sparse6(graphs, file=None, output_list=False)

Convert a list of Sage graphs to a single string of sparse6 graphs.

If file is specified, then the string will be written quietly to the file. If output_list is True, then a list of strings will be returned, one string per graph.

INPUT:

- graphs – a Python list of Sage Graphs
- file – (optional) a file stream to write to (must be in ‘w’ mode)
- output_list – boolean (default: False); whether to return a string (when set to True) or a list of strings. This parameter is ignored if file gets specified

EXAMPLES:

```
sage: l = [graphs.DodecahedralGraph(), graphs.PetersenGraph()]
sage: graphs_list.to_sparse6(l)
':S_a`_bcDeFg_HijhKfLdMkNcOjP_BQ
:IAES@obGkqegW~
```

5.34 Functions for reading/building graphs/digraphs

This module gathers functions needed to build a graph from any other data.

Note: This is an internal module of Sage. All features implemented here are made available to end-users through the constructors of Graph and DiGraph.

Note that because they are called by the constructors of Graph and DiGraph, most of these functions modify a graph inplace.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>from_adjacency_matrix()</td>
<td>Fill G with the data of an adjacency matrix.</td>
</tr>
<tr>
<td>from_dict_of_dicts()</td>
<td>Fill G with the data of a dictionary of dictionaries.</td>
</tr>
<tr>
<td>from_dict_of_lists()</td>
<td>Fill G with the data of a dictionary of lists.</td>
</tr>
<tr>
<td>from_dig6()</td>
<td>Fill G with the data of a dig6 string.</td>
</tr>
<tr>
<td>from_graph6()</td>
<td>Fill G with the data of a graph6 string.</td>
</tr>
<tr>
<td>from_incidence_matrix()</td>
<td>Fill G with the data of an incidence matrix.</td>
</tr>
<tr>
<td>from_networkx_graph()</td>
<td>Fill G with the data of a NetworkX (di)graph.</td>
</tr>
<tr>
<td>from_oriented_incidence_matrix()</td>
<td>Fill G with the data of an oriented incidence matrix.</td>
</tr>
<tr>
<td>from_seidel_adjacency_matrix()</td>
<td>Fill G with the data of a Seidel adjacency matrix.</td>
</tr>
<tr>
<td>from_sparse6()</td>
<td>Fill G with the data of a sparse6 string.</td>
</tr>
</tbody>
</table>
5.34.1 Functions

sage.graphs.graph_input.from_adjacency_matrix(G, M, loops=False, multiedges=False, weighted=False)

Fill G with the data of an adjacency matrix.

INPUT:

- G – a Graph or DiGraph
- M – an adjacency matrix
- loops, multiedges, weighted – booleans (default: False); whether to consider the graph as having loops, multiple edges, or weights

EXAMPLES:

```python
sage: from sage.graphs.graph_input import from_adjacency_matrix
sage: g = Graph()
sage: from_adjacency_matrix(g, graphs.PetersenGraph().adjacency_matrix())
# needs sage.modules
sage: g.is_isomorphic(graphs.PetersenGraph())
# needs sage.modules
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_input import from_adjacency_matrix
>>> g = Graph()
>>> from_adjacency_matrix(g, graphs.PetersenGraph().adjacency_matrix())
# needs sage.modules
>>> g.is_isomorphic(graphs.PetersenGraph())
# needs sage.modules
True
```

sage.graphs.graph_input.from_dict_of_dicts(G, M, loops=False, multiedges=False, weighted=False, convert_empty_dict_labels_to_None=False)

Fill G with the data of a dictionary of dictionaries.

INPUT:

- G – a graph
- M – a dictionary of dictionaries
- loops, multiedges, weighted – booleans (default: False); whether to consider the graph as having loops, multiple edges, or weights
- convert_empty_dict_labels_to_None – booleans (default: False); whether to adjust for empty dicts instead of None in NetworkX default edge labels

EXAMPLES:

```python
sage: from sage.graphs.graph_input import from_dict_of_dicts
sage: g = Graph()
sage: from_dict_of_dicts(g, graphs.PetersenGraph().to_dictionary(edge_labels=True))
sage: g.is_isomorphic(graphs.PetersenGraph())
True
```
```python
>>> from sage.all import *
>>> from sage.graphs.graph_input import from_dict_of_dicts
>>> g = Graph()
>>> from_dict_of_dicts(g, graphs.PetersenGraph().to_dictionary(edge_labels=True))
>>> g.is_isomorphic(graphs.PetersenGraph())
True
```

The resulting order of vertices is unspecified but deterministic:

```python
sage: from sage.graphs.graph_input import from_dict_of_dicts
sage: g = Graph()
sage: from_dict_of_dicts(g, {i: {} for i in range(99, 90, -1)})
sage: g.vertices(sort=False)
[99, 98, 97, 96, 95, 94, 93, 92, 91]
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_input import from_dict_of_dicts
>>> g = Graph()
>>> from_dict_of_dicts(g, {i: [] for i in range(Integer(99), Integer(90), -Integer(1))})
>>> g.vertices(sort=False)
[99, 98, 97, 96, 95, 94, 93, 92, 91]
```

`sage.graphs.graph_input.from_dict_of_lists(G, D, loops=False, multiedges=False, weighted=False)`

Fill G with the data of a dictionary of lists.

INPUT:

- G — a `Graph` or `DiGraph`
- D — a dictionary of lists
- loops, multiedges, weighted — booleans (default: False); whether to consider the graph as having loops, multiple edges, or weights

EXAMPLES:

```python
sage: from sage.graphs.graph_input import from_dict_of_lists
sage: g = Graph()
sage: from_dict_of_lists(g, graphs.PetersenGraph().to_dictionary())
>>> g.is_isomorphic(graphs.PetersenGraph())
True
```

The resulting order of vertices is unspecified but deterministic:

```python
sage: from sage.graphs.graph_input import from_dict_of_lists
sage: g = Graph()
sage: from_dict_of_lists(g, {i: [] for i in range(99, 90, -1)})
sage: g.vertices(sort=False)
[99, 98, 97, 96, 95, 94, 93, 92, 91]
```
sage.graphs.graph_input.from_dict_of_lists(G, {i: [] for i in range(Integer(99), Integer(90), -Integer(1))})

sage.graphs.graph_input.from_dig6(G, dig6_string)
Fill G with the data of a dig6 string.

INPUT:

• G – a graph

• dig6_string – a dig6 string

EXAMPLES:

```python
sage: from sage.graphs.graph_input import from_dig6
sage: g = DiGraph()

sage: from_dig6(g, digraphs.Circuit(10).dig6_string())
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_input import from_dig6
>>> g = DiGraph()

>>> from_dig6(g, digraphs.Circuit(Integer(10)).dig6_string())
```

sage.graphs.graph_input.from_graph6(G, g6_string)
Fill G with the data of a graph6 string.

INPUT:

• G – a graph

• g6_string – a graph6 string

EXAMPLES:

```python
sage: from sage.graphs.graph_input import from_graph6
sage: g = Graph()

sage: from_graph6(g, IheA@GUAo)
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_input import from_graph6

>>> from_graph6(g, IheA@GUAo)
```

sage.graphs.graph_input.from_incidence_matrix(G, M, loops=False, multiedges=False, weighted=False)
Fill G with the data of an incidence matrix.
INPUT:

- G – a graph
- M – an incidence matrix
- loops, multiedges, weighted – booleans (default: False); whether to consider the graph as having loops, multiple edges, or weights

EXAMPLES:

```python
sage: from sage.graphs.graph_input import from_incidence_matrix
sage: g = Graph()
sage: from_incidence_matrix(g, graphs.PetersenGraph().incidence_matrix())  # needs sage.modules
sage: g.is_isomorphic(graphs.PetersenGraph())  # needs sage.modules
True

>>> from sage.all import *
>>> from sage.graphs.graph_input import from_incidence_matrix
>>> g = Graph()
>>> from_incidence_matrix(g, graphs.PetersenGraph().incidence_matrix())  # needs sage.modules
>>> g.is_isomorphic(graphs.PetersenGraph())  # needs sage.modules
True
```

```python
sage: from networkx_graph import from_networkx_graph
```

Fill G with the data of a NetworkX (di)graph.

INPUT:

- G – a `Graph` or `DiGraph`
- g – a NetworkX Graph, MultiGraph, DiGraph or MultiDiGraph
- weighted – boolean (default: None); whether graph thinks of itself as weighted or not. See weighted().
- loops – boolean (default: None); whether to allow loops
- multiedges – boolean (default: None); whether to allow multiple edges
- convert_empty_dict_labels_to_None – boolean (default: None); whether to replace the default edge labels used by NetworkX (empty dictionaries) by None, the default Sage edge label. When set to False, empty dictionaries are not converted to None.

EXAMPLES:

Feeding a `Graph` with a NetworkX Graph:

```python
sage: # needs networkx
sage: from sage.graphs.graph_input import from_networkx_graph
sage: import networkx
sage: G = Graph()
sage: gnx = networkx.Graph()
sage: gnx.add_edge(0, 1)
sage: from_networkx_graph(G, gnx, weighted=None, loops=None, multiedges=None, convert_empty_dict_labels_to_None=None)
```
Feeding a `Graph` with a NetworkX `MultiGraph`:

```python
sage: # needs networkx
sage: G = Graph()
sage: gnx = networkx.MultiGraph()
sage: _ = gnx.add_edge(0, 1)
sage: _ = gnx.add_edge(0, 1)
sage: from_networkx_graph(G, gnx)

sage: G.edges(sort=True, labels=False)
[(0, 1), (0, 1)]
```

When feeding a `Graph` `G` with a NetworkX `DiGraph` `D`, `G` has one edge `(u, v)` whenever `D` has arc `(u, v)` or `(v, u)` or both:

```python
sage: # needs networkx
sage: G = Graph()
sage: D = networkx.DiGraph()
sage: _ = D.add_edge(0, 1)
sage: from_networkx_graph(G, D)

sage: G.edges(sort=True, labels=False)
[(0, 1)]
```
When feeding a Graph G with a NetworkX MultiDiGraph D, the number of edges between u and v in G is the maximum between the number of arcs (u, v) and the number of arcs (v, u) in D:

```
sage: # needs networkx
sage: G = Graph()
sage: D = networkx.MultiDiGraph()
sage: _ = D.add_edge(0, 1)
sage: _ = D.add_edge(1, 0)
sage: D.edges()
OutMultiEdgeDataView([(0, 1), (1, 0)])
sage: from_networkx_graph(G, D)
sage: G.edges(sort=True, labels=False)
[(0, 1), (0, 1)]
```

Feeding a DiGraph with a NetworkX DiGraph:

```
sage: # needs networkx
sage: from sage.graphs.graph_input import from_networkx_graph
sage: import networkx
sage: G = DiGraph()
sage: gnx = networkx.DiGraph()
sage: _ = gnx.add_edge(0, 1)
sage: _ = gnx.add_edge(1, 2)
sage: _ = gnx.add_edge(1, 0)
sage: gnx.edges()
OutMultiEdgeDataView([(0, 1), (1, 0), (1, 2)])
sage: from_networkx_graph(G, D)
sage: G.edges(sort=True, labels=False)
[(0, 1), (0, 1)]
```
sage: from_networkx_graph(G, gnx)
sage: G.edges(sort=True, labels=False)
 [(0, 1), (1, 2)]

Feeding a DiGraph with a NetworkX MultiDiGraph:

```python
sage: # needs networkx
sage: G = DiGraph()
sage: gnx = networkx.MultiDiGraph()
sage: _ = gnx.add_edge(0, 1)
sage: _ = gnx.add_edge(0, 1)
sage: from_networkx_graph(G, gnx)
sage: G.edges(sort=True, labels=False)
    [(0, 1), (0, 1)]
```

When feeding a DiGraph G with a NetworkX Graph H, G has both arcs (u, v) and (v, u) if G has edge (u, v):

```python
sage: # needs networkx
sage: G = DiGraph()
sage: H = networkx.Graph()
sage: _ = H.add_edge(0, 1)
sage: from_networkx_graph(G, H)
sage: G.edges(labels=False, sort=True)
    [(0, 1), (1, 0)]
```
When feeding a DiGraph G with a NetworkX MultiGraph H, G has k arcs (u, v) and k arcs (v, u) if H has k edges (u, v), unless parameter multiedges is set to False:

```
sage: # needs networkx
sage: G = DiGraph()
sage: H = networkx.MultiGraph()
sage: _ = H.add_edge(0, 1)
sage: _ = H.add_edge(0, 1)
sage: _ = H.add_edge(0, 1)
sage: H.edges()
MultiEdgeDataView([(0, 1), (0, 1), (0, 1)])
sage: from_networkx_graph(G, H)
sage: G.edges(labels=False, sort=True)
[(0, 1), (0, 1), (0, 1), (1, 0), (1, 0), (1, 0)]
sage: G = DiGraph()
sage: from_networkx_graph(G, H, multiedges=False)
sage: G.edges(labels=False, sort=True)
[(0, 1), (1, 0)]
```

Fill G with the data of an oriented incidence matrix.

An oriented incidence matrix is the incidence matrix of a directed graph, in which each non-loop edge corresponds to a $+1$ and a -1, indicating its source and destination.

INPUT:

- G – a DiGraph
- M – an incidence matrix
• loops, multiedges, weighted – booleans (default: False); whether to consider the graph as having loops, multiple edges, or weights

Note: weighted is currently ignored.

EXAMPLES:

```python
sage: from sage.graphs.graph_input import from_oriented_incidence_matrix
sage: g = DiGraph()
sage: im = digraphs.Circuit(10).incidence_matrix() # needs sage.modules
sage: from_oriented_incidence_matrix(g, im) # needs sage.modules
sage: g.is_isomorphic(digraphs.Circuit(10)) # needs sage.modules
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_input import from_oriented_incidence_matrix
>>> g = DiGraph()
>>> im = digraphs.Circuit(Integer(10)).incidence_matrix() # needs sage.modules
>>> from_oriented_incidence_matrix(g, im) # needs sage.modules
>>> g.is_isomorphic(digraphs.Circuit(Integer(10))) # needs sage.modules
True
```

```
sage.graphs.graph_input.from_seidel_adjacency_matrix(G, M)
```

Fill G with the data of a Seidel adjacency matrix.

INPUT:

• G – a graph

• M – a Seidel adjacency matrix

EXAMPLES:

```python
sage: from sage.graphs.graph_input import from_seidel_adjacency_matrix
sage: g = Graph()
sage: sam = graphs.PetersenGraph().seidel_adjacency_matrix() # needs sage.modules
sage: from_seidel_adjacency_matrix(g, sam) # needs sage.modules
sage: g.is_isomorphic(graphs.PetersenGraph()) # needs sage.modules
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.graph_input import from_seidel_adjacency_matrix
>>> g = Graph()
>>> sam = graphs.PetersenGraph().seidel_adjacency_matrix() # needs sage.modules
>>> from_seidel_adjacency_matrix(g, sam) # needs sage.modules
>>> g.is_isomorphic(graphs.PetersenGraph()) # needs sage.modules
True
```

(continues on next page)
sage.graphs.graph_input.from_sparse6(G, g6_string)

Fill G with the data of a sparse6 string.

INPUT:

- G – a graph
- g6_string – a sparse6 string

EXAMPLES:

```python
sage: from sage.graphs.graph_input import from_sparse6
g = Graph()
sage: from_sparse6(g, ':I`ES@obGkqegW~')
g.is_isomorphic(graphs.PetersenGraph())

True
```

5.35 Hyperbolicity

Definition:

The hyperbolicity δ of a graph G has been defined by Gromov [Gro1987] as follows (we give here the so-called 4-points condition):

Let a, b, c, d be vertices of the graph, let S_1, S_2 and S_3 be defined by

\[
S_1 = \text{dist}(a, b) + \text{dist}(d, c)
\]
\[
S_2 = \text{dist}(a, c) + \text{dist}(b, d)
\]
\[
S_3 = \text{dist}(a, d) + \text{dist}(b, c)
\]

and let M_1 and M_2 be the two largest values among $S_1, S_2,$ and S_3. We define $hyp(a, b, c, d) = M_1 - M_2$, and the hyperbolicity $\delta(G)$ of the graph is the maximum of hyp over all possible 4-tuples (a, b, c, d) divided by 2. That is, the graph is said δ-hyperbolic when

\[
\delta(G) = \frac{1}{2} \max_{a,b,c,d \in V(G)} hyp(a, b, c, d)
\]

(note that $hyp(a, b, c, d) = 0$ whenever two elements among a, b, c, d are equal)

Some known results:

- Trees and cliques are 0-hyperbolic
- $n \times n$ grids are $n - 1$-hyperbolic
- Cycles are approximately $n/4$-hyperbolic
• Chordal graphs are ≤ 1-hyperbolic

Besides, the hyperbolicity of a graph is the maximum over all its biconnected components.

Algorithms and complexity:

The time complexity of the naive implementation (i.e. testing all 4-tuples) is $O(n^4)$, and an algorithm with time complexity $O(n^{3.69})$ has been proposed in [FIV2012]. This remains very long for large-scale graphs, and much harder to implement.

Several improvements over the naive algorithm have been proposed and are implemented in the current module.

• Another upper bound on $hyp(a, b, c, d)$ has been proved in [CCL2015]. It is used to design an algorithm with worse case time complexity in $O(n^4)$ but that behaves much better in practice. Assume that $S_1 = dist(a, b) + dist(c, d)$ is the largest sum among S_1, S_2, S_3. We have

$S_2 + S_3 = dist(a, c) + dist(b, d) + dist(a, d) + dist(b, c)$

$= [dist(a, c) + dist(b, c)] + [dist(a, d) + dist(b, d)]$

$\geq dist(a, b) + dist(a, b)$

$\geq 2 dist(a, b)$

Now, since S_1 is the largest sum, we have

$hyp(a, b, c, d) = S_1 - \max\{S_2, S_3\}$

$\leq S_1 - S_2 + S_3 \leq S_1 - \frac{S_2 + S_3}{2} \leq S_1 - dist(a, b)$

$= dist(c, d)$

We obtain similarly that $hyp(a, b, c, d) \leq dist(a, b)$. Consequently, in the implementation of the ‘CCL’ algorithm, we ensure that S_1 is larger than S_2 and S_3 using an ordering of the pairs by decreasing lengths. Then, we use the best value h found so far to stop exploration as soon as $dist(a, b) \leq h$.

The worst case time complexity of this algorithm is $O(n^4)$, but it performs very well in practice since it cuts the search space. This algorithm can be turned into an approximation algorithm since at any step of its execution we maintain an upper and a lower bound. We can thus stop execution as soon as a multiplicative approximation factor or an additive one is proven.

• The notion of “far-apart pairs” has been introduced in [Sot2011] to further reduce the number of 4-tuples to consider. We say that the pair (a, b) is far-apart if for every w in $V \setminus \{a, b\}$ we have

$dist(w, a) + dist(a, b) > dist(w, b)$ and $dist(w, b) + dist(a, b) > dist(w, a)$

Determining the set of far-apart pairs can be done in time $O(nm)$ using BFS. Now, it is proved in [Sot2011] that there exists two far-apart pairs (a, b) and (c, d) satisfying $\delta(G) = hyp(a, b, c, d)/2$. For instance, the $n \times m$-grid has only two far-apart pairs, and so computing its hyperbolicity is immediate once the far-apart pairs are found. The ‘CCL+FA’ or ‘CCL4+’ algorithm improves the ‘CCL’ algorithm since it uses far-apart pairs.

• This algorithm was further improved in [BCCM2015]: instead of iterating twice over all pairs of vertices, in the “inner” loop, we cut several pairs by exploiting properties of the underlying graph.

Todo:

• Add exact methods for the hyperbolicity of chordal graphs

• Add method for partitioning the graph with clique separators
This module contains the following functions

At Python level:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hyperbolicity()</code></td>
<td>Return the hyperbolicity of the graph or an approximation of this value.</td>
</tr>
<tr>
<td><code>hyperbolicity_distribution()</code></td>
<td>Return the hyperbolicity distribution of the graph or a sampling of it.</td>
</tr>
</tbody>
</table>

AUTHORS:

- David Coudert (2012): initial version, exact and approximate algorithm, distribution, sampling
- David Coudert (2014): improved exact algorithm using far-apart pairs
- Michele Borassi (2015): cleaned the code and implemented the new algorithm
- Karan Desai (2016): fixed minor typo in documentation

5.35.1 Methods

`sage.graphs.hyperbolicity.hyperbolicity(G, algorithm='BCCM', approximation_factor=None, additive_gap=None, verbose=False)`

Return the hyperbolicity of the graph or an approximation of this value.

The hyperbolicity of a graph has been defined by Gromov [Gro1987] as follows: Let a, b, c, d be vertices of the graph, let $S_1 = \text{dist}(a, b) + \text{dist}(b, c)$, $S_2 = \text{dist}(a, c) + \text{dist}(b, d)$, and $S_3 = \text{dist}(a, d) + \text{dist}(b, c)$, and let M_1 and M_2 be the two largest values among S_1, S_2, and S_3. We have $\text{hyp}(a, b, c, d) = |M_1 - M_2|$, and the hyperbolicity of the graph is the maximum over all possible 4-tuples (a, b, c, d) divided by 2. The worst case time complexity is in $O(n^4)$.

See the documentation of `sage.graphs.hyperbolicity` for more information.

INPUT:

- G – a connected Graph
- `algorithm` – (default: 'BCCM'); specifies the algorithm to use among:
 - 'basic' is an exhaustive algorithm considering all possible 4-tuples and so have time complexity in $O(n^4)$.
 - 'CCL' is an exact algorithm proposed in [CCL2015]. It considers the 4-tuples in an ordering allowing to cut the search space as soon as a new lower bound is found (see the module’s documentation). This algorithm can be turned into a approximation algorithm.
 - 'CCL+FA' or 'CCL+' uses the notion of far-apart pairs as proposed in [Sot2011] to significantly reduce the overall computation time of the 'CCL' algorithm.
 - 'BCCM' is an exact algorithm proposed in [BCCM2015]. It improves 'CCL+FA' by cutting several 4-tuples (for more information, see the module’s documentation).
 - 'dom' is an approximation with additive constant four. It computes the hyperbolicity of the vertices of a dominating set of the graph. This is sometimes slower than 'CCL' and sometimes faster. Try it to know if it is interesting for you. The `additive_gap` and `approximation_factor` parameters cannot be used in combination with this method and so are ignored.
• **approximation_factor** – (default: None) When the approximation factor is set to some value (larger than 1.0), the function stops computations as soon as the ratio between the upper bound and the best found solution is less than the approximation factor. When the approximation factor is 1.0, the problem is solved optimally. This parameter is used only when the chosen algorithm is 'CCL', 'CCL+FA', or 'BCCM'.

• **additive_gap** – (default: None) When set to a positive number, the function stops computations as soon as the difference between the upper bound and the best found solution is less than additive gap. When the gap is 0.0, the problem is solved optimally. This parameter is used only when the chosen algorithm is 'CCL' or 'CCL+FA', or 'BCCM'.

• **verbose** – (default: False) is a boolean set to True to display some information during execution: new upper and lower bounds, etc.

OUTPUT:

This function returns the tuple `(delta, certificate, delta_UB)`, where:

- **delta** – the hyperbolicity of the graph (half-integer value).
- **certificate** – is the list of the 4 vertices for which the maximum value has been computed, and so the hyperbolicity of the graph.
- **delta_UB** – is an upper bound for **delta**. When **delta** == **delta_UB**, the returned solution is optimal. Otherwise, the approximation factor if **delta_UB/delta**.

EXAMPLES:

Hyperbolicity of a 3×3 grid:

```python
sage: from sage.graphs.hyperbolicity import hyperbolicity
sage: G = graphs.Grid2dGraph(3, 3)
sage: L, C, U = hyperbolicity(G, algorithm='BCCM'); L, sorted(C), U
(2, [(0, 0), (0, 2), (2, 0), (2, 2)], 2)
sage: L, C, U = hyperbolicity(G, algorithm='CCL'); L, sorted(C), U
(2, [(0, 0), (0, 2), (2, 0), (2, 2)], 2)
sage: L, C, U = hyperbolicity(G, algorithm='basic'); L, sorted(C), U
(2, [(0, 0), (0, 2), (2, 0), (2, 2)], 2)
```

Hyperbolicity of a PetersenGraph:

```python
sage: from sage.graphs.hyperbolicity import hyperbolicity
sage: G = graphs.PetersenGraph()
sage: L, C, U = hyperbolicity(G, algorithm='BCCM'); L, sorted(C), U
(1/2, [6, 7, 8, 9], 1/2)
sage: L, C, U = hyperbolicity(G, algorithm='CCL'); L, sorted(C), U
(1/2, [0, 1, 2, 3], 1/2)
sage: L, C, U = hyperbolicity(G, algorithm='CCL+'); L, sorted(C), U
(1/2, [0, 1, 2, 3], 1/2)
sage: L, C, U = hyperbolicity(G, algorithm='CCL+FA'); L, sorted(C), U
(1/2, [0, 1, 2, 3], 1/2)
```

(continues on next page)
sage: \(L, C, U = \text{hyperbolicity}(G, \text{algorithm} = \text{'basic'}); L, \text{sorted}(C), U\)
\((1/2, [0, 1, 2, 3], 1/2)\)
sage: \(L, C, U = \text{hyperbolicity}(G, \text{algorithm} = \text{'dom'}); L, U\)
\((0, 1)\)
sage: \text{sorted}(C) # random
\([0, 1, 2, 6]\)

Asking for an approximation in a grid graph:

sage: \text{from sage.graphs.hyperbolicity import hyperbolicity}
sage: \(G = \text{graphs.Grid2dGraph}(2, 10)\)
sage: \(L, C, U = \text{hyperbolicity}(G, \text{algorithm} = \text{'CCL'}, \text{approximation_factor} = 1.5); L, U\)
\((1, 3/2)\)
sage: \(L, C, U = \text{hyperbolicity}(G, \text{algorithm} = \text{'CCL+'}, \text{approximation_factor} = 1.5); L, U\)
\((1, 1)\)
sage: \(L, C, U = \text{hyperbolicity}(G, \text{algorithm} = \text{'CCL'}, \text{approximation_factor} = 4); L, U\)
\((1, 4)\)
sage: \(L, C, U = \text{hyperbolicity}(G, \text{algorithm} = \text{'CCL'}, \text{additive_gap} = 2); L, U\)
\((1, 3)\)
sage: \(L, C, U = \text{hyperbolicity}(G, \text{algorithm} = \text{'dom'}); L, U\)
\((1, 5)\)
Asking for an approximation in a cycle graph:

```
sage: from sage.graphs.hyperbolicity import hyperbolicity
sage: G = graphs.CycleGraph(10)
sage: L,C,U = hyperbolicity(G, algorithm='CCL', approximation_factor=1.5); L,U
(2, 5/2)
sage: L,C,U = hyperbolicity(G, algorithm='CCL+FA', approximation_factor=1.5); L,U
(2, 5/2)
sage: L,C,U = hyperbolicity(G, algorithm='CCL+FA', additive_gap=1); L,U
(2, 5/2)
```

Comparison of results:

```
sage: for i in range(10):  # long time  # needs networkx
    G = graphs.RandomBarabasiAlbert(100,2)
    d1,_,_ = hyperbolicity(G, algorithm='basic')
    d2,_,_ = hyperbolicity(G, algorithm='CCL')
    d3,_,_ = hyperbolicity(G, algorithm='CCL+')
    d4,_,_ = hyperbolicity(G, algorithm='CCL+FA')
    d5,_,_ = hyperbolicity(G, algorithm='BCCM')
    if (not d1==d2==d3==d4==d5) or 13>d1 or u3<d1:
        print("That's not good!")
```

```
sage: import random
sage: for i in range(10):  # long time  # needs networkx
    n = random.randint(2, 20)
    m = random.randint(0, n*(n-1) / 2)
    G = graphs.RandomGNM(n, m)
    cc = G.connected_components_subgraphs():
    d1,_,_ = hyperbolicity(cc, algorithm='basic')
    d2,_,_ = hyperbolicity(cc, algorithm='CCL')
    d3,_,_ = hyperbolicity(cc, algorithm='CCL+')
    d4,_,_ = hyperbolicity(cc, algorithm='CCL+FA')
    d5,_,_ = hyperbolicity(cc, algorithm='BCCM')
    if (not d1==d2==d3==d4==d5) or 13>d1 or u3<d1:
        print("Error in graph ", cc.edges(sort=True))
```

[continues on next page]
The hyperbolicity of a graph is the maximum value over all its biconnected components:

```python
sage: from sage.graphs.hyperbolicity import hyperbolicity
g = graphs.PetersenGraph() * 2
g.add_edge(0, 11)
L, C, U = hyperbolicity(g)
(1/2, [6, 7, 8, 9], 1/2)
```

Return the hyperbolicity distribution of the graph or a sampling of it.

The hyperbolicity of a graph has been defined by Gromov [Gro1987] as follows: Let \(a, b, c, d \) be vertices of the graph, let \(S_1 = \text{dist}(a, b) + \text{dist}(b, c) \), \(S_2 = \text{dist}(a, c) + \text{dist}(b, d) \), and \(S_3 = \text{dist}(a, d) + \text{dist}(b, c) \), and let \(M_1 \) and \(M_2 \) be the two largest values among \(S_1, S_2, \) and \(S_3 \). We have \(\text{hyp}(a, b, c, d) = |M_1 - M_2| \), and the hyperbolicity of the graph is the maximum over all possible 4-tuples \((a, b, c, d) \) divided by 2.

The computation of the hyperbolicity of each 4-tuple, and so the hyperbolicity distribution, takes time in \(O(n^4) \).
INPUT:

- \(G \) – a Graph.
- \texttt{algorithm} – (default: 'sampling') When algorithm is 'sampling', it returns the distribution of the hyperbolicity over a sample of \(\text{sampling_size} \) 4-tuples. When algorithm is 'exact', it computes the distribution of the hyperbolicity over all 4-tuples. Be aware that the computation time can be HUGE.
- \texttt{sampling_size} – (default: \(10^6 \)) number of 4-tuples considered in the sampling. Used only when \texttt{algorithm} == 'sampling'.

OUTPUT:

- \texttt{hdict} – A dictionary such that \(\text{hdict}[i] \) is the number of 4-tuples of hyperbolicity \(i \).

EXAMPLES:

Exact hyperbolicity distribution of the Petersen Graph:

```python
sage: from sage.graphs.hyperbolicity import hyperbolicity_distribution
sage: G = graphs.PetersenGraph()
```

```python
def how_many_four_tuplets_hyperbolicity(G, algorithm='exact')
```
5.36.1 Definition

Given a graph G, with n vertices and m edges and $k(G)$ connected components we define the Tutte polynomial of G as

$$\sum_H (x-1)^{k(H)-c} (y-1)^{k(H) - |E(H)| - n}$$

where the sum ranges over all induced subgraphs H of G.

5.36.2 Functions

```python
class sage.graphs.tutte_polynomial.Ear(graph, end_points, interior, is_cycle):
    Bases: object

    An ear is a sequence of vertices
    Here is the definition from [HPR2010]:
    An ear in a graph is a path $v_1 - v_2 - \cdots - v_n - v_{n+1}$ where $d(v_1) > 2$, $d(v_{n+1}) > 2$ and $d(v_2) = d(v_3) = \cdots = d(v_n) = 2$.
    A cycle is viewed as a special ear where $v_1 = v_{n+1}$ and the restriction on the degree of this vertex is lifted.

    INPUT:
    static find_ear(g)
    Finds the first ear in a graph.

    EXAMPLES:
    sage: G = graphs.PathGraph(4)
    sage: G.add_edges([(0,4),(0,5),(3,6),(3,7)])
    sage: from sage.graphs.tutte_polynomial import Ear
    sage: E = Ear.find_ear(G)
    sage: E.s
    3
    sage: E.unlabeled_edges
    [(0, 1), (1, 2), (2, 3)]
    sage: E.vertices
    [0, 1, 2, 3]
```

```python
>>> from sage.all import *
>>> G = graphs.PathGraph(Integer(4))
>>> G.add_edges([(Integer(0),Integer(4)),(Integer(0),Integer(5)),(Integer(3),Integer(6)),(Integer(3),Integer(7))])
>>> from sage.graphs.tutte_polynomial import Ear
>>> E = Ear.find_ear(G)
>>> E.s
3
>>> E.unlabeled_edges
[(0, 1), (1, 2), (2, 3)]
>>> E.vertices
[0, 1, 2, 3]
```

```python
removed_from(*args, **kwargs)
A context manager which removes the ear from the graph $G$.

EXAMPLES:
```
Graph Theory, Release 10.4

```python
sage: G = graphs.PathGraph(4)
sage: G.add_edges([(0,4), (0,5), (3,6), (3,7)])
sage: len(G.edges(sort=True))
7
sage: from sage.graphs.tutte_polynomial import Ear
sage: E = Ear.find_ear(G)
sage: with E.removed_from(G) as Y:
....:     G.edges(sort=True)
[(0, 4, None), (0, 5, None), (3, 6, None), (3, 7, None)]
sage: len(G.edges(sort=True))
7
```

```python
>>> from sage.all import *

G = graphs.PathGraph(Integer(4))
G.add_edges([(Integer(0),Integer(4)), (Integer(0),Integer(5)), (Integer(3), Integer(6)), (Integer(3),Integer(7))])
len(G.edges(sort=True))
7
```

property s

Returns the number of distinct edges in this ear.

EXAMPLES:

```python
sage: G = graphs.PathGraph(4)
sage: G.add_edges([(0,4), (0,5), (3,6), (3,7)])
sage: from sage.graphs.tutte_polynomial import Ear
sage: E = Ear(G, [0,3], [1,2], False)
sage: E.s
3
```

```python
>>> from sage.all import *

G = graphs.PathGraph(Integer(4))
G.add_edges([(Integer(0),Integer(4)), (Integer(0),Integer(5)), (Integer(3), Integer(6)), (Integer(3),Integer(7))])
```

unlabeled_edges()

Returns the edges in this ear.

EXAMPLES:

```python
sage: G = graphs.PathGraph(4)
sage: G.add_edges([(0,4), (0,5), (3,6), (3,7)])
sage: from sage.graphs.tutte_polynomial import Ear
sage: E = Ear(G, [0,3], [1,2], False)
```
sage: E.unlabeled_edges
[(0, 1), (1, 2), (2, 3)]

```python
>>> from sage.all import *

>>> G = graphs.PathGraph(Integer(4))

>>> G.add_edges([(Integer(0),Integer(4)),(Integer(0),Integer(5)),(Integer(3),
→Integer(6)),(Integer(3),Integer(7))])

>>> from sage.graphs.tutte_polynomial import Ear

>>> E = Ear(G,[Integer(0),Integer(3)],[Integer(1),Integer(2)],False)

>>> E.unlabeled_edges
[(0, 1), (1, 2), (2, 3)]
```

property vertices

Returns the vertices of this ear.

EXAMPLES:

```python
sage: G = graphs.PathGraph(4)
sage: G.add_edges([(0,4),(0,5),(3,6),(3,7)])
sage: from sage.graphs.tutte_polynomial import Ear
sage: E = Ear(G,[0,3],[1,2],False)
sage: E.vertices
[0, 1, 2, 3]
```

Class Docstrings

class sage.graphs.tutte_polynomial.EdgeSelection

Bases: object

class sage.graphs.tutte_polynomial.MaximizeDegree

Bases: EdgeSelection

class sage.graphs.tutte_polynomial.MinimizeDegree

Bases: EdgeSelection

class sage.graphs.tutte_polynomial.MinimizeSingleDegree

Bases: EdgeSelection

class sage.graphs.tutte_polynomial.VertexOrder(order)

Bases: EdgeSelection

EXAMPLES:

```python
sage: from sage.graphs.tutte_polynomial import VertexOrder
sage: A = VertexOrder([4,6,3,2,1,7])

sage: A.order
[4, 6, 3, 2, 1, 7]

sage: A.inverse_order
{1: 4, 2: 3, 3: 2, 4: 0, 6: 1, 7: 5}
```
```python
>>> from sage.all import *
>>> from sage.graphs.tutte_polynomial import VertexOrder

A = VertexOrder([Integer(4), Integer(6), Integer(3), Integer(2), Integer(1),
                 Integer(7)])

A.order
[4, 6, 3, 2, 1, 7]

A.inverse_order
{1: 4, 2: 3, 3: 2, 4: 0, 6: 1, 7: 5}
```

`sage.graphs.tutte_polynomial.contracted_edge(*args, **kwds)`
Delete the first vertex in the edge, and make all the edges that went from it go to the second vertex.

EXAMPLES:

```python
from sage.graphs.tutte_polynomial import contracted_edge
G = Graph(multiedges=True)
G.add_edges([(0, 1, 'a'), (1, 2, 'b'), (0, 3, 'c')])
G.edges(sort=True)
[(0, 1, 'a'), (0, 3, 'c'), (1, 2, 'b')]
with contracted_edge(G,(0,1)) as Y:
    G.edges(sort=True); G.vertices(sort=True)
[(1, 2, 'b'), (1, 3, 'c')]
[1, 2, 3]
G.edges(sort=True)
[(0, 1, 'a'), (0, 3, 'c'), (1, 2, 'b')]
```

`sage.graphs.tutte_polynomial.edge_multiplicities(G)`
Return the dictionary of multiplicities of the edges in the graph G.

EXAMPLES:

```python
from sage.graphs.tutte_polynomial import edge_multiplicities
G = Graph({1: [2, 2, 3], 2: [2], 3: [4, 4], 4: [2, 2, 2]})
sorted(edge_multiplicities(G).items())
[((1, 2), 2), ((1, 3), 1), ((2, 2), 1), ((2, 4), 3), ((3, 4), 1)]
```
sage.graphs.tutte_polynomial.removed_edge(*args, **kwds)

A context manager which removes an edge from the graph \(G \) and restores it upon exiting.

EXAMPLES:

```python
sage: from sage.graphs.tutte_polynomial import removed_edge
sage: G = Graph()
sage: G.add_edge(0,1)
sage: G.edges(sort=True)
[(0, 1, None)]
sage: with removed_edge(G,(0,1)) as Y:
    ....: G.edges(sort=True); G.vertices(sort=True)
    []
    [0, 1]
sage: G.edges(sort=True)
[(0, 1, None)]
```

sage.graphs.tutte_polynomial.removed_loops(*args, **kwds)

A context manager which removes all the loops in the graph \(G \). It yields a list of the loops, and restores the loops upon exiting.

EXAMPLES:

```python
sage: from sage.graphs.tutte_polynomial import removed_loops
sage: G = Graph(multiedges=True, loops=True)
sage: G.add_edges([(0,1,'a'),(1,2,'b'),(0,0,'c')])
sage: G.edges(sort=True)
[(0, 0, c), (0, 1, a), (1, 2, b)]
sage: with removed_loops(G) as Y:
    ....: G.edges(sort=True); G.vertices(sort=True); Y
    [(0, 1, 'a'), (1, 2, 'b')]
    [0, 1, 2]
    [(0, 0, 'c')]  
sage: G.edges(sort=True)
[(0, 0, 'c'), (0, 1, 'a'), (1, 2, 'b')]
```

(continues on next page)
Graph Theory, Release 10.4

... G.edges(sort=True); G.vertices(sort=True); Y
[(0, 1, 'a'), (1, 2, 'b')]
[0, 1, 2]
[(0, 0, 'c')]
>>> G.edges(sort=True)
[(0, 0, 'c'), (0, 1, 'a'), (1, 2, 'b')]

sage.graphs.tutte_polynomial.removed_multiedge(*args, **kwds)
A context manager which removes an edge with multiplicity from the graph G and restores it upon exiting.

EXAMPLES:

sage: from sage.graphs.tutte_polynomial import removed_multiedge
sage: G = Graph(multiedges=True)
sage: G.add_edges([(0,1,'a'),(0,1,'b')])
sage: G.edges(sort=True)
[(0, 1, 'a'), (0, 1, 'b')]
sage: with removed_multiedge(G,(0,1)) as Y:
 ...
 G.edges(sort=True)
 []
sage: G.edges(sort=True)
[(0, 1, 'a'), (0, 1, 'b')]

sage.graphs.tutte_polynomial.tutte_polynomial(G, edge_selector=None, cache=None)
Return the Tutte polynomial of the graph G.

INPUT:

- edge_selector (optional; method) this argument allows the user to specify his own heuristic for selecting edges used in the deletion contraction recurrence
- cache – (optional; dict) a dictionary to cache the Tutte polynomials generated in the recursive process. One will be created automatically if not provided.

EXAMPLES:

The Tutte polynomial of any tree of order n is x^{n-1}:

sage: all(T.tutte_polynomial() == x**9 for T in graphs.trees(10))
True

>>> from sage.all import *
>>> all(T.tutte_polynomial() == x**Integer(9) for T in graphs.trees(Integer(10)))
True
The Tutte polynomial of the Petersen graph is:

```
sage: P = graphs.PetersenGraph()
sage: P.tutte_polynomial()
x^9 + 6*x^8 + 21*x^7 + 56*x^6 + 12*x^5*y + y^6 + 114*x^5 + 70*x^4*y + 30*x^3*y^2 + 15*x^2*y^3 + 10*x*y^4 + 9*y^5 + 170*x^4 + 170*x^3*y + 105*x^2*y^2 + 65*x*y^3 + 35*y^4 + 180*x^3 + 240*x^2*y + 171*x*y^2 + 75*y^3 + 120*x^2 + 168*x*y + 84*y^2 + 36*x + 36*y
```

The Tutte polynomial of a connected graph G evaluated at $(1,1)$ is the number of spanning trees of G:

```
sage: G = graphs.RandomGNP(10,0.6)
sage: while not G.is_connected():
    G = graphs.RandomGNP(10,0.6)
sage: G.tutte_polynomial()(1,1) == G.spanning_trees_count() # needs sage.modules
True
```

Given that $T(x,y)$ is the Tutte polynomial of a graph G with n vertices and c connected components, then $(-1)^{n-c}x^cT(1-x,0)$ is the chromatic polynomial of G.

```
sage: G = graphs.OctahedralGraph()
sage: T = G.tutte_polynomial()
sage: R = PolynomialRing(ZZ, x)
sage: R((-1)**5*x*T(1-x,0)).factor() # needs sage.symbolic
(x - 2) * (x - 1) * x * (x^3 - 9*x^2 + 29*x - 32)
sage: G.chromatic_polynomial().factor() # needs sage.libs.flint
(x - 2) * (x - 1) * x * (x^3 - 9*x^2 + 29*x - 32)
```

```
sage.graphs.tutte_polynomial.underlying_graph(G)

Given a graph $G$ with multi-edges, returns a graph where all the multi-edges are replaced with a single edge.

**EXAMPLES:**

```python
sage: from sage.graphs.tutte_polynomial import underlying_graph
sage: G = Graph(multiedges=True)
sage: G.add_edges([(0, 1, 'a'), (0, 1, 'b')])
sage: G.edges(sort=True)
[(0, 1, 'a'), (0, 1, 'b')]
sage: underlying_graph(G).edges(sort=True)
[(0, 1, None)]
```

5.37 Partial cubes

The code in this module that recognizes partial cubes is originally from the PADS library by David Eppstein, which is available at http://www.ics.uci.edu/~eppstein/PADS/ under the MIT license. It has a quadratic runtime and has been described in [Epp2008].

For more information on partial cubes, see the Wikipedia article Partial cube.

5.37.1 Recognition algorithm

**Definitions**

A **partial cube** is an isometric subgraph $G$ of a $\text{CubeGraph}()$ (of possibly high dimension). Consequently, the vertices of $G$ can be labelled with binary sequences in such a way that the distance between two vertices $u, v \in G$ is the Hamming distance between their labels.

**Tokens** and their **action**: in the terminology of [Epp2008], a token represents a transition of the form:

*switch the $k$-th bit of the binary string from 0 to 1*

Each token can be matched with a 'reversed' token that performs the same switch in the opposite direction. Alternatively, a token can be seen as a set of disjoint (directed) edges of $G$, corresponding to the transitions. When a vertex $v \in G$ is the source of such an edge, it is said that the token **acts** on $v$. 
Observations

**Shortest paths:** in a hypercube, a shortest path between two vertices uses each token at most once. Furthermore, it cannot use both a token and its reverse.

**Cycles:** a cycle in a partial cube is necessarily even, as hypercubes are bipartite. If an edge $e$ of a cycle $C$ belongs to a token $T$, then the edge opposite to $e$ in $C$ belongs to the reverse of $T$.

**Incident edges:** all $2d_G(v)$ arcs incident to a given vertex belong to as many different tokens.

Algorithm

**Labeling:** Iteratively, the algorithm selects a vertex $v \in G$, which is naturally associated to $2d(v)$ tokens. It then performs a breadth-first search from $v$, applying the previous observation on cycles to attribute a token to some of the edges it meets. None of the edges whose token remains undecided after this step can belong to one of those $2d(v)$ tokens, by virtue of the observation on shortest paths.

The labeled edges can then be simplified (contracted) if the previous step did not lead to a contradiction, and the procedure is applied again until the graph is contracted to a single vertex and all edges are labeled.

A partial cube is correctly labeled at this step, but some other graphs can also satisfy the procedure.

**Checking the labeling:** once all tokens are defined and the vertices are labeled with a binary string, we check that they define an isometric subgraph of the hypercube. To ensure that the distance $d(v_0, u)$ is what we expect for any vertex $u$, it is sufficient to find, for any vertex $u$, a neighbor $n_u$ of $u$ whose Hamming distance with $v_0$ is strictly less than the Hamming distance between $u$ and $v_0$. Here is the algorithm used to check the labeling:

- For an initial vertex $v$, run a BFS starting from $v$, and associate to every other vertex $u$ a token that brings $u$ closer to $v$. This yields shortest paths from every vertex to $v$.
- Assuming that the information is computed (and correct) for $v$, it is easy to update it for a neighbor $v'$ of $v$. Indeed, if we write $T$ the token that turns $v$ into $v'$, only the vertices which were associated with the reverse of $T$ need to select a new neighbour. All others can remain as they were previously.

With this second observation, one can efficiently check that the distance between all pairs of vertices are what they should be. In the implementation, the sequence of the sources $(v, v', ...)$ is given by a depth-first search.

5.37.2 Functions

`sage.graphs.partial_cube.breadth_first_level_search(G, start)`

Generate a sequence of dictionaries, each mapping the vertices at distance $i$ from `start` to the set of their neighbours at distance $i+1$.

Originally written by D. Eppstein for the PADS library (http://www.ics.uci.edu/~eppstein/PADS/).

**INPUT:**

- $G$ – a graph to perform the search on.
- `start` – vertex or list of vertices from which to start the traversal.

**EXAMPLES:**

```python
sage: H = digraphs.DeBruijn(3,2) # ...
needs sage.combinat
sage: list(sage.graphs.partial_cube.breadth_first_level_search(H, '00')) # ...
needs sage.combinat
[{'00': {'01', '02'}},]
```
(continues on next page)
sage.graphs.partial_cube.depth_first_traversal(G, start)

Generate a sequence of triples (v, w, edgetype) for DFS of graph G.

Originally written by D. Eppstein for the PADS library (http://www.ics.uci.edu/~eppstein/PADS/).

**INPUT:**

- G – a graph to perform the search on.
- start – vertex or list of vertices from which to start the traversal.

**OUTPUT:**

- a generator of triples (v, w, edgetype), where edgetype is True if the algorithm is progressing via the edge vw, or False if the algorithm is backtracking via the edge wv.

**EXAMPLES:**

```python
sage: H = digraphs.DeBruijn(3,2) # needs sage.combinat

sage: t = list(sage.graphs.partial_cube.depth_first_traversal(H, '00')) # needs sage.combinat

sage: len(t) # needs sage.combinat
16
```
Graph Theory, Release 10.4

sage.graphs.partial_cube.is_partial_cube(G, certificate=False)
Test whether the given graph is a partial cube.

A partial cube is a graph that can be isometrically embedded into a hypercube, i.e., its vertices can be labelled with (0,1)-vectors of some fixed length such that the distance between any two vertices in the graph equals the Hamming distance of their labels.

Originally written by D. Eppstein for the PADS library (http://www.ics.uci.edu/~eppstein/PADS/), see also [Epp2008]. The algorithm runs in $O(n^2)$ time, where $n$ is the number of vertices. See the documentation of partial_cube for an overview of the algorithm.

INPUT:

• certificate – boolean (default: False); this function returns True or False according to the graph, when certificate = False. When certificate = True and the graph is a partial cube, the function returns (True, mapping), where mapping is an isometric mapping of the vertices of the graph to the vertices of a hypercube ((0, 1)-strings of a fixed length). When certificate = True and the graph is not a partial cube, (False, None) is returned.

EXAMPLES:

The Petersen graph is not a partial cube:

```python
sage: g = graphs.PetersenGraph()
sage: g.is_partial_cube()
False
```

```python
>>> from sage.all import *

>>> g = graphs.PetersenGraph()

>>> g.is_partial_cube()
False
```

All prisms are partial cubes:

```python
sage: g = graphs.CycleGraph(10).cartesian_product(graphs.CompleteGraph(2))
sage: g.is_partial_cube()
True
```

```python
>>> from sage.all import *

>>> g = graphs.CycleGraph(Integer(10)).cartesian_product(graphs.CompleteGraph(Integer(2)))

>>> g.is_partial_cube()
True
```

5.38 Path enumeration

This module is meant for all functions related to path enumeration in graphs.
**5.38.1 Functions**

`sage.graphs.pathEnumeration.all_paths(G, start, end, use_multiedges=False, report_edges=False, labels=False)`

Return the list of all paths between a pair of vertices. If `start` is the same vertex as `end`, then `[[start]]` is returned – a list containing the 1-vertex, 0-edge path “start”.

If `G` has multiple edges, a path will be returned as many times as the product of the multiplicities of the edges along that path depending on the value of the flag `use_multiedges`.

**INPUT:**

- `start` – a vertex of a graph, where to start
- `end` – a vertex of a graph, where to end
- `use_multiedges` – boolean (default: `False`); this parameter is used only if the graph has multiple edges.
  - If `False`, the graph is considered as simple and an edge label is arbitrarily selected for each edge as in `sage.graphs.generic_graph.GenericGraph.to_simple()` if `report_edges` is `True`
  - If `True`, a path will be reported as many times as the edges multiplicities along that path (when `report_edges = False` or `labels = False`), or with all possible combinations of edge labels (when `report_edges = True` and `labels = True`)
- `report_edges` – boolean (default: `False`); whether to report paths as list of vertices (default) or list of edges, if `False` then `labels` parameter is ignored
- `labels` – boolean (default: `False`); if `False`, each edge is simply a pair `(u, v)` of vertices. Otherwise a list of edges along with its edge labels are used to represent the path.

**EXAMPLES:**

```
sage: eg1 = Graph({0:[1, 2], 1:[4], 2:[3, 4], 4:[5], 5:[6]})
sage: eg1.all_paths(0, 6)
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
```

(continues on next page)
sage: dg = DiGraph({0:[1, 3], 1:[3], 2:[0, 3]})
sage: sorted(dg.all_paths(0, 3))
[[0, 1, 3], [0, 3]]
sage: ug = dg.to_undirected()
sage: sorted(ug.all_paths(0, 3))
[[0, 1, 3], [0, 2, 3], [0, 3]]
sage: g = Graph([(0, 1), (0, 1), (1, 2), (1, 2), (1, 2)], multiedges=True)
sage: g.all_paths(0, 2, use_multiedges=True)
[[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]
sage: dg = DiGraph({0:[1, 2, 1], 3:[0, 0], multiedges=True})
sage: dg.all_paths(3, 1, use_multiedges=True)
[[3, 0, 1], [3, 0, 1], [3, 0, 1], [3, 0, 1]]
sage: g = Graph([(0, 1, 'a'), (0, 1, 'b'), (1, 2, 'c'), (1, 2, 'd')], multiedges=True)
sage: g.all_paths(0, 2, use_multiedges=False)
[[0, 1, 2]]
sage: g.all_paths(0, 2, use_multiedges=True)
[[0, 1, 2], [0, 1, 2], [0, 1, 2]]
sage: g.all_paths(0, 2, use_multiedges=True, report_edges=True)
[[[0, 1], (1, 2)], [[0, 1], (1, 2)], [[0, 1], (1, 2)], [[0, 1], (1, 2)]]
sage: g.all_paths(0, 2, use_multiedges=True, report_edges=True, labels=True)
[[0, 1, 'b'], (1, 2, 'd')], [[0, 1, 'b'], (1, 2, 'd')], [[0, 1, 'b'], (1, 2, 'd')], [[0, 1, 'b'], (1, 2, 'd')]]
sage: g.all_paths(0, 2, use_multiedges=False, report_edges=True, labels=True)
[[0, 1, 'b'], (1, 2, 'd')]
sage: g.all_paths(0, 2, use_multiedges=False, report_edges=False, labels=True)
[[0, 1, 2]]
sage: g.all_paths(0, 2, use_multiedges=True, report_edges=False, labels=True)
[[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]

>>> from sage.all import *

>>> eg1 = Graph({Integer(0): [Integer(1), Integer(2)], Integer(1): [Integer(4)],
                   Integer(2): [Integer(3), Integer(4)], Integer(4): [Integer(5)]})

>>> eg1.all_paths(Integer(0), Integer(6))

>>> eg2 = graphs.PetersenGraph()

>>> sorted(eg2.all_paths(Integer(1), Integer(4)))

>>> dg = DiGraph({Integer(0): [Integer(1), Integer(2), Integer(1)], ...

5.38. Path enumeration 1863
sage.graphs.path_enumeration.all_paths_iterator (self, starting_vertices=None, ending_vertices=None, simple=False, max_length=None, trivial=False, use_multiedges=False, report_edges=False, labels=False)

Return an iterator over the paths of self.

The paths are enumerated in increasing length order.

INPUT:

- **starting_vertices** – iterable (default: None); vertices from which the paths must start. If None, then all vertices of the graph can be starting points.

- **ending_vertices** – iterable (default: None); allowed ending vertices of the paths. If None, then all vertices are allowed.

- **simple** – boolean (default: False); if set to True, then only simple paths are considered. Simple paths are paths in which no two arcs share a head or share a tail, i.e. every vertex in the path is entered at most once and exited at most once.

- **max_length** – non negative integer (default: None); the maximum length of the enumerated paths. If set to None, then all lengths are allowed.

- **trivial** – boolean (default: False); if set to True, then the empty paths are also enumerated.

- **use_multiedges** – boolean (default: False); this parameter is used only if the graph has multiple edges.

  - If False, the graph is considered as simple and an edge label is arbitrarily selected for each edge as in \texttt{sage.graphs.generic_graph.GenericGraph.to_simple()} if \texttt{report_edges} is True
- If True, a path will be reported as many times as the edges multiplicities along that path (when report_edges = False or labels = False), or with all possible combinations of edge labels (when report_edges = True and labels = True)

- report_edges – boolean (default: False); whether to report paths as list of vertices (default) or list of edges, if False then labels parameter is ignored

- labels – boolean (default: False); if False, each edge is simply a pair (u, v) of vertices. Otherwise a list of edges along with its edge labels are used to represent the path.

OUTPUT:

iterator

AUTHOR:

Alexandre Blondin Masse

EXAMPLES:

```python
sage: G = graphs.CompleteGraph(4)
sage: list(G.all_paths_iterator(starting_vertices=[1], ending_vertices=[3],
→simple=True))
[[1, 3], [1, 0, 3], [1, 2, 3], [1, 0, 2, 3], [1, 2, 0, 3]]
sage: list(G.shortest_simple_paths(1, 3))
[[1, 3], [1, 0, 3], [1, 2, 3], [1, 0, 2, 3], [1, 2, 0, 3]]
sage: pi = G.all_paths_iterator(starting_vertices=[1], ending_vertices=[3])
sage: for _ in range(6):
....: print(next(pi))
[1, 3]
[1, 0, 3]
[1, 2, 3]
[1, 0, 1, 3]
[1, 0, 2, 3]
[1, 2, 0, 3]
sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']},
→loops=True)
sage: pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['d'],
→report_edges=True, simple=True)
sage: list(pi)
[['a', 'b'], ('b', 'c'), ('c', 'd')]
sage: g = DiGraph(((0, 1, 'a'), (0, 1, 'b'), (1, 2, 'c'), (1, 2, 'd')),
→multiedges=True)
sage: pi = g.all_paths_iterator(starting_vertices=[0], use_multiedges=True)
sage: for _ in range(6):
....: print(next(pi))
[0, 1]
[0, 1]
[0, 1, 2]
[0, 1, 2]
[0, 1, 2]
[0, 1, 2]
sage: pi = g.all_paths_iterator(starting_vertices=[0], use_multiedges=True,
→report_edges=True, labels=True)
sage: for _ in range(6):
....: print(next(pi))
[(0, 1, 'b')]
[(0, 1, 'a')]
```

(continues on next page)
[(0, 1, 'b'), (1, 2, 'd')]
[(0, 1, 'b'), (1, 2, 'c')]
[(0, 1, 'a'), (1, 2, 'd')]
[(0, 1, 'a'), (1, 2, 'c')]
sage: list(g.all_paths_iterator(starting_vertices=[0, 1], ending_vertices=[2],
˓→use_multiedges=False, report_edges=True, labels=True, simple=True))

[[(1, 2, 'd')], [(0, 1, 'b'), (1, 2, 'd')]]
sage: list(g.all_paths_iterator(starting_vertices=[0, 1], ending_vertices=[2],
˓→use_multiedges=False, report_edges=False, labels=True))

[[1, 2], [0, 1, 2]]
sage: list(g.all_paths_iterator(use_multiedges=True, report_edges=False,
˓→labels=True, max_length=1))

[[1, 2], [1, 2], [0, 1], [0, 1]]
sage: list(g.all_paths_iterator(use_multiedges=True, report_edges=True,
˓→labels=True, max_length=1))

[[1, 2, 'd']], [(1, 2, 'c')], [(0, 1, 'b')], [(0, 1, 'a')]
sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']},
˓→loops=True)
sage: pi = g.all_paths_iterator()
sage: [len(next(pi)) - 1 for _ in range(7)]

[1, 1, 1, 1, 1, 2, 2]

>>> from sage.all import *
>>>
>>> G = graphs.CompleteGraph(Integer(4))
>>> list(G.all_paths_iterator(starting_vertices=[Integer(1)], ending_vertices=[Integer(3)], simple=True))

[[1, 3], [1, 0, 3], [1, 2, 3], [1, 0, 2, 3], [1, 2, 0, 3]]
>>> list(G.shortest_simple_paths(Integer(1), Integer(3)))

[[1, 3], [1, 0, 3], [1, 2, 3], [1, 0, 2, 3], [1, 2, 0, 3]]
>>> pi = G.all_paths_iterator(starting_vertices=[Integer(1)], ending_vertices=[Integer(3)])

>>> for _ in range(Integer(6)):
...    print(next(pi))

[1, 3]
[1, 0, 3]
[1, 2, 3]
[1, 0, 1, 3]
[1, 0, 2, 3]
[1, 2, 0, 3]

>>> g = DiGraph({0: [0, 1], 1: [2], 2: [3], 3: [2]}, loops=True)
>>> pi = g.all_paths_iterator(starting_vertices=[0], ending_vertices=[3],
˓→use_multiedges=True)

>>> list(pi)

[((0, 1, 'b'), ('b', 'c'), ('c', 'd'))]

>>> g = DiGraph({0: [1, 2], 1: [2], 2: [0, 3], 3: [0, 2]}, multiedges=True)
>>> pi = g.all_paths_iterator(starting_vertices=[0], use_multiedges=True)

>>> for _ in range(Integer(6)):
...    print(next(pi))

[0, 1]
[0, 1]
[0, 1, 2]
It is possible to precise the allowed starting and/or ending vertices:

```python
sage: pi = g.all_paths_iterator(starting_vertices=['a'])
sage: [len(next(pi)) - 1 for _ in range(5)]
[1, 1, 2, 2, 2]
sage: pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['b'])
sage: for _ in range(5):
 : print(next(pi))
['a', 'b']
['a', 'a', 'b']
['a', 'a', 'a', 'b']
['a', 'a', 'a', 'a', 'b']
['a', 'a', 'a', 'a', 'a', 'b']
```

```
>>> from sage.all import *
```

```
>>> pi = g.all_paths_iterator(starting_vertices=['a'])
>>> [len(next(pi)) - Integer(1) for _ in range(Integer(5))]
[1, 1, 1, 1, 2, 2]
```

```
>>> pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['b'])
>>> for _ in range(Integer(5)):
 : print(next(pi))
['a', 'b']
['a', 'a', 'b']
['a', 'a', 'a', 'b']
['a', 'a', 'a', 'a', 'b']
```
One may prefer to enumerate only simple paths (see \texttt{all_simple_paths()}):

```python
sage: pi = g.all_paths_iterator(simple=True)
sage: sorted(list(pi), key=lambda x:(len(x), x))
[['a', 'a', 'a', 'a', 'b'], ['a', 'a', 'a', 'a', 'a', 'b'],
 ['a', 'a', 'b', 'c'], ['a', 'a', 'a', 'b', 'c'], ['a', 'a', 'a', 'b', 'c', 'd'], ['a', 'a', 'a', 'b', 'c', 'd', 'c'], ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'c', 'd', 'c'], ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'c', 'd', 'c'], ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'c', 'd', 'c', 'd'], ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'c', 'd', 'c', 'd', 'c'],]
```

Or simply bound the length of the enumerated paths:

```python
sage: pi = g.all_paths_iterator(starting_vertices=['a'], ending_vertices=['b', 'c'], max_length=6)
sage: sorted(list(pi), key=lambda x:(len(x), x))
[['a', 'b'], ['a', 'a', 'b'], ['a', 'b', 'c'], ['a', 'a', 'a', 'b'], ['a', 'a', 'a', 'a', 'b'], ['a', 'a', 'a', 'a', 'a', 'b'], ['a', 'a', 'b', 'c'], ['a', 'a', 'a', 'b', 'c'], ['a', 'a', 'a', 'a', 'b', 'c'], ['a', 'a', 'a', 'a', 'a', 'b', 'c'], ['a', 'a', 'a', 'a', 'a', 'a', 'b', 'c'], ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'c'], ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'c'], ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'c', 'd'], ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'c', 'd', 'c'], ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'c', 'd', 'c', 'd'], ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'c', 'd', 'c', 'd', 'c'],]
```

(continues on next page)
By default, empty paths are not enumerated, but it may be parametrized:

```
sage: pi = g.all_paths_iterator(simple=True, trivial=True)
sage: sorted(list(pi), key=lambda x:(len(x), x))
[['a'], ['b'], ['c'], ['d'], ['a', 'a'], ['a', 'b'], ['b', 'c'],
 ['c', 'd'], ['d', 'c'], ['a', 'b', 'c'], ['b', 'c', 'd'],
 ['c', 'd', 'c'], ['d', 'c', 'd'], ['a', 'b', 'c', 'd']]
sage: pi = g.all_paths_iterator(simple=True, trivial=False)
sage: sorted(list(pi), key=lambda x:(len(x), x))
[['a', 'a'], ['a', 'b'], ['b', 'c'], ['c', 'd'], ['d', 'c'], ['a', 'b', 'c', 'd']]
sage: pi = g.all_paths_iterator(simple=True, trivial=False)
sage: [len(p) - 1 for p in pi]
[1, 1, 1, 1, 2, 2, 2, 3]
```

```
sage: from sage.all import *
sage: pi = g.all_paths_iterator(simple=True, trivial=True)
sage: sorted(list(pi), key=lambda x:(len(x), x))
[['a'], ['b'], ['c'], ['d'], ['a', 'a'], ['a', 'b'], ['b', 'c'],
 ['c', 'd'], ['d', 'c'], ['a', 'b', 'c'], ['b', 'c', 'd'],
 ['c', 'd', 'c'], ['d', 'c', 'd'], ['a', 'b', 'c', 'd']]
sage: pi = g.all_paths_iterator(simple=True, trivial=False)
sage: sorted(list(pi), key=lambda x:(len(x), x))
[['a', 'a'], ['a', 'b'], ['b', 'c'], ['c', 'd'], ['d', 'c'], ['a', 'b', 'c', 'd']]
sage: [len(p) - 1 for p in pi]
[1, 1, 1, 2, 2, 2, 3]
```

sage.graphs.path_enumeration.all_simple_paths (self, starting_vertices=None, ending_vertices=None, max_length=None, trivial=False, use_multiedges=False, report_edges=False, labels=False)

Return a list of all the simple paths of self starting with one of the given vertices.

Simple paths are paths in which no two arcs share a head or share a tail, i.e. every vertex in the path is entered at most once and exited at most once.

INPUT:

- **starting_vertices** – list (default: None); vertices from which the paths must start. If None, then all vertices of the graph can be starting points.

- **ending_vertices** – iterable (default: None); allowed ending vertices of the paths. If None, then all vertices are allowed.
• **max_length** – non-negative integer (default: None); the maximum length of the enumerated paths. If set to None, then all lengths are allowed.

• **trivial** – boolean (default: False); if set to True, then the empty paths are also enumerated.

• **use_multiedges** – boolean (default: False); this parameter is used only if the graph has multiple edges.
  - If False, the graph is considered as simple and an edge label is arbitrarily selected for each edge as in `sage.graphs.generic_graph.GenericGraph.to_simple()` if `report_edges` is True
  - If True, a path will be reported as many times as the edges multiplicities along that path (when `report_edges = False` or `labels = False`), or with all possible combinations of edge labels (when `report_edges = True` and `labels = True`)

• **report_edges** – boolean (default: False); whether to report paths as list of vertices (default) or list of edges, if False then `labels` parameter is ignored

• **labels** – boolean (default: False); if False, each edge is simply a pair `(u, v)` of vertices. Otherwise a list of edges along with its edge labels are used to represent the path.

**OUTPUT:**

list

**Note:** Although the number of simple paths of a finite graph is always finite, computing all its paths may take a very long time.

**EXAMPLES:**

```python
sage: G = graphs.CompleteGraph(4)
sage: G.all_simple_paths([1], [3])
[[[1, 3], [1, 0, 3], [1, 2, 3], [1, 0, 2, 3], [1, 2, 0, 3]]
sage: list(G.shortest_simple_paths(1, 3))
[[[1, 3], [1, 0, 3], [1, 2, 3], [1, 2, 0, 3], [1, 0, 2, 3]]
sage: G.all_simple_paths([0, 1], [2, 3])
[[[1, 2],
 [1, 3],
 [0, 2],
 [0, 3],
 [0, 1, 2],
 [0, 1, 3],
 [0, 2, 3],
 [0, 3, 2],
 [1, 0, 2],
 [1, 0, 3],
 [1, 2, 3],
 [1, 3, 2],
 [1, 0, 2, 3],
 [1, 0, 3, 2],
 [1, 2, 0, 3],
 [1, 3, 0, 2],
 [0, 1, 2, 3],
 [0, 1, 3, 2],
 [0, 2, 1, 3],
 [0, 3, 1, 2]]

sage: g = DiGraph({0: [0, 1], 1: [2], 2: [3], 3: [2]}, loops=True)
sage: g.all_simple_paths()
```

(continues on next page)
sage: g = DiGraph([(0, 1, a), (0, 1, b), (1, 2,c), (1, 2,d)], multiedges=True)
sage: g.all_simple_paths(starting_vertices=[0], ending_vertices=[2], use_multiedges=False)
[[0, 1, 2]]
sage: g.all_simple_paths(starting_vertices=[0], ending_vertices=[2], use_multiedges=True)
[[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]
sage: g.all_simple_paths(starting_vertices=[0], ending_vertices=[2], use_multiedges=True, report_edges=True)
[[1, 2, d], [0, 1, b, 1, 2, d]]
sage: g.all_simple_paths(starting_vertices=[0], ending_vertices=[2], use_multiedges=True, report_edges=True, labels=True)
[[0, 1, a, 1, 2, c], [0, 1, a, 1, 2, d]]
sage: g.all_simple_paths(starting_vertices=[0, 1], ending_vertices=[2], use_multiedges=False, report_edges=True)
[[1, 2], [0, 1, 2]]
sage: g.all_simple_paths(starting_vertices=[0, 1], ending_vertices=[2], use_multiedges=False, report_edges=False, labels=True)
[[1, 2], [1, 3], [0, 2], [0, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [0, 3, 2], [1, 0, 2]]

>>> from sage.all import *

>>> G = graphs.CompleteGraph(Integer(4))

>>> G.all_simple_paths([Integer(1)], [Integer(3)])

[[1, 3], [1, 0, 3], [1, 2, 3], [1, 0, 2, 3], [1, 2, 0, 3]]

>>> list(G.shortest_simple_paths(Integer(1), Integer(3)))

[[1, 3], [1, 0, 3], [1, 2, 3], [1, 2, 0, 3], [1, 0, 2, 3]]

>>> G.all_simple_paths([Integer(0), Integer(1)], [Integer(2), Integer(3)])

[[1, 2], [1, 3], [0, 2], [0, 3], [0, 1, 2], [0, 1, 3], [0, 2, 3], [0, 3, 2], [1, 0, 2]]
Onemaycomputeallpathshavingspecificstartingand/orendingvertices:
sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']},
               loops=True)
sage: g.all_simple_paths(starting_vertices=['a'])
[['a', 'a'], ['a', 'b'], ['a', 'b', 'c'], ['a', 'b', 'c', 'd']]
sage: g.all_simple_paths(starting_vertices=['a'], ending_vertices=['c'])
[['a', 'b', 'c']]
sage: g.all_simple_paths(starting_vertices=['a'], ending_vertices=['b', 'c'])
[['a', 'b'], ['a', 'b', 'c']]

It is also possible to bound the length of the paths:

sage: g = DiGraph({0: [0, 1], 1: [2], 2: [3], 3: [2]}, loops=True)
sage: g.all_simple_paths(max_length=2)
[[3, 2], [2, 3], [1, 2], [0, 0], [0, 1], [0, 1, 2], [1, 2, 3], [2, 3, 2], [3, 2, 3]]

By default, empty paths are not enumerated, but this can be parametrized:

sage: g = DiGraph({'a': ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']},
               loops=True)
sage: g.all_simple_paths(starting_vertices=['a'], trivial=True)
[['a'], ['a', 'a'], ['a', 'b'], ['a', 'b', 'c'], ['a', 'b', 'c', 'd']]
Graph Theory, Release 10.4

```python
>>> from sage.all import *
>>> g = DiGraph({"a": ['a', 'b'], 'b': ['c'], 'c': ['d'], 'd': ['c']}, loops=True)
>>> g.all_simple_paths(starting_vertices=['a'], trivial=True)
[['a'], ['a', 'a'], ['a', 'b'], ['a', 'b', 'c'], ['a', 'b', 'c', 'd']]
>>> g.all_simple_paths(starting_vertices=['a'], trivial=False)
[['a', 'a'], ['a', 'b'], ['a', 'b', 'c'], ['a', 'b', 'c', 'd']]
```

sage.graphs.pathEnumeration.\texttt{feng\_k\_shortest\_simple\_paths}(self, source, target, 
weight_function=None, 
by_weight=False, 
check_weight=True, 
report_edges=False, 
labels=False, 
report_weight=False)

Return an iterator over the simple paths between a pair of vertices in increasing order of weights.

Works only for directed graphs.

For unweighted graphs, paths are returned in order of increasing number of edges.

In case of weighted graphs, negative weights are not allowed.

If source is the same vertex as target, then \{'\text{source}'\} is returned – a list containing the 1-vertex, 0-edge path source.

The loops and the multiedges if present in the given graph are ignored and only minimum of the edge labels is kept in case of multiedges.

INPUT:

- source – a vertex of the graph, where to start
- target – a vertex of the graph, where to end
- weight_function – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\) as a weight.
- by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
- check_weight – boolean (default: True); whether to check that the weight\_function outputs a number for each edge
- report_edges – boolean (default: False); whether to report paths as list of vertices (default) or list of edges, if False then labels parameter is ignored
- labels – boolean (default: False); if False, each edge is simply a pair \((u, v)\) of vertices. Otherwise a list of edges along with its edge labels are used to represent the path.
- report_weight – boolean (default: False); if False, just the path between source and target is returned. Otherwise a tuple of path length and path is returned.

ALGORITHM:

This algorithm can be divided into two parts. Firstly, it determines the shortest path from source to target. Then, it determines all the other \(k\)-shortest paths. This algorithm finds the deviations of previous shortest paths to determine the next shortest paths. This algorithm finds the candidate paths more efficiently using a node classification technique. At first the candidate path is separated by its deviation node as prefix and suffix. Then the algorithm classify the nodes as red, yellow and green. A node on the prefix is assigned a red color, a node that can reach \(t\) (the destination node) through a shortest path without visiting a red node is assigned a green color, and
all other nodes are assigned a yellow color. When searching for the suffix of a candidate path, all green nodes are bypassed, and Dijkstra's algorithm is applied to find an all-yellow-node subpath. Since on average the number of yellow nodes is much smaller than \( n \), this algorithm has a much lower average-case running time.

Time complexity is \( O(kn(m + n \log n)) \) where \( n \) is the number of vertices and \( m \) is the number of edges and \( k \) is the number of shortest paths needed to find. Its average running time is much smaller as compared to Yen's algorithm.

See [Feng2014] for more details on this algorithm.

**EXAMPLES:**

```python
sage: from sage.graphs.path_enumeration import feng_k_shortest_simple_paths
g = DiGraph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20), (3, 5, 10), (4, 5, 30)])
sage: list(feng_k_shortest_simple_paths(g, 1, 5, by_weight=True))
[[[1, 4, 30], (4, 5, 30)], [1, 2, 5], [1, 4, 5]]
sage: list(feng_k_shortest_simple_paths(g, 1, 5))[[[1, 4, 5], [1, 3, 5], [1, 2, 5]]]
sage: list(feng_k_shortest_simple_paths(g, 1, 1))
[[[1]]]
sage: list(feng_k_shortest_simple_paths(g, 1, 5, report_edges=True, labels=True, by_weight=True))
[[[1, 4, 30], (4, 5, 30)], [1, 2, 5], [1, 4, 5]]
sage: list(feng_k_shortest_simple_paths(g, 1, 5))
[[[1, 4, 5], [1, 3, 5], [1, 2, 5]]]
sage: list(feng_k_shortest_simple_paths(g, 1, 1))
[[[1]]]
sage: from sage.graphs.path_enumeration import feng_k_shortest_simple_paths
g = DiGraph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20), (3, 5, 10), (4, 5, 30), (1, 6, 100), (5, 6, 5)])
sage: list(feng_k_shortest_simple_paths(g, 1, 6, by_weight=True))
[[[1, 4, 30], (4, 5, 30)], [1, 2, 5, 6], [1, 4, 5, 6], [1, 6]]
sage: list(feng_k_shortest_simple_paths(g, 1, 6))
[[[1, 6], [1, 4, 5, 6], [1, 3, 5, 6], [1, 2, 5, 6]]]
sage: list(feng_k_shortest_simple_paths(g, 1, 6, report_edges=True, labels=True, by_weight=True))
[[[25], [[1, 3, 10], (3, 5, 10)], (5, 6, 5)],
 [45, [[1, 2, 20], (2, 5, 20)], (5, 6, 5)],
 [65, [[1, 4, 30], (4, 5, 30)], (5, 6, 5)],
 [100, [[1, 6, 100]]]]
sage: list(feng_k_shortest_simple_paths(g, 1, 6, report_edges=True, labels=True, report_weight=True))
[[[1], [[1, 6, 100]]],
 [3, [[1, 4, 30], (4, 5, 30)], (5, 6, 5)],
 [3, [[1, 3, 10], (3, 5, 10)], (5, 6, 5)],
 [3, [[1, 2, 20], (2, 5, 20)], (5, 6, 5)]]
sage: from sage.graphs.path_enumeration import feng_k_shortest_simple_paths
g = DiGraph([(1, 2, 5), (2, 3, 0), (1, 4, 2), (4, 5, 1), (5, 3, 0)])
sage: list(feng_k_shortest_simple_paths(g, 1, 3, by_weight=True))
[[[1, 4, 5, 3], [1, 2, 3]],[[1, 5, 3], [1, 2, 3]]]
sage: list(feng_k_shortest_simple_paths(g, 1, 3))
[[[1, 2, 3], [1, 5, 3]]]
sage: list(feng_k_shortest_simple_paths(g, 1, 3, report_weight=True))
[[[2], [1, 2, 3]], (3, [1, 4, 5, 3])]
```
(continues on next page)
sage: list(feng_k_shortest_simple_paths(g, 1, 3, report_weight=True, report_edges=True, labels=True))
[(2, [(1, 2), (2, 3)]), (3, [(1, 4), (4, 5), (5, 3)])]
sage: list(feng_k_shortest_simple_paths(g, 1, 3, report_weight=True, report_edges=True, by_weight=True))
[(3, [(1, 4), (4, 5), (5, 3)]), (5, [(1, 2), (2, 3)])]
sage: list(feng_k_shortest_simple_paths(g, 1, 3, report_weight=True, report_edges=True, labels=True, by_weight=True))
[(3, [(1, 4, 2), (4, 5, 1), (5, 3, 0)]), (5, [(1, 2, 5), (2, 3, 0)])]

>>> from sage.all import *
>>> from sage.graphs.path_enumeration import feng_k_shortest_simple_paths

>>> g = DiGraph([(Integer(1), Integer(2), Integer(20)), (Integer(1), Integer(3), Integer(10)), (Integer(1), Integer(4), Integer(30)), (Integer(2), Integer(5), Integer(20)), (Integer(3), Integer(5), Integer(10)), (Integer(4), Integer(5), Integer(30))])

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(5), by_weight=True))
[[[1, 3, 5], [1, 2, 5], [1, 4, 5]]]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(5)))
[[[1, 4, 5], [1, 3, 5], [1, 2, 5]]]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(1)))
[[[1]]]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(5), report_edges=True, labels=True))
[[[1, 4, 30], [1, 3, 10], [1, 2, 20], [2, 5, 20]]]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(5), report_edges=True, by_weight=True))
[[[1, 3, 10], [1, 2, 20], [2, 5, 20], [1, 4, 30], [4, 5, 30]]]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(5), report_edges=True, labels=True, by_weight=True, report_weight=True))
[(20, [(1, 3, 10), (3, 5, 10), (5, 6, 5)]), (40, [(1, 2, 20), (2, 5, 20), (5, 6, 5)]), (60, [(1, 4, 30), (4, 5, 30)])]

>>> from sage.graphs.path_enumeration import feng_k_shortest_simple_paths

>>> g = DiGraph([(Integer(1), Integer(2), Integer(20)), (Integer(1), Integer(3), Integer(10)), (Integer(1), Integer(4), Integer(30)), (Integer(2), Integer(5), Integer(20)), (Integer(3), Integer(5), Integer(10)), (Integer(4), Integer(5), Integer(30)), (Integer(1), Integer(6), Integer(100)), (Integer(5), Integer(6), Integer(5))])

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(6), by_weight=True))
[[[1, 3, 5, 6], [1, 2, 5, 6], [1, 4, 5, 6], [1, 6]]]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(6)))
[[[1, 6], [1, 4, 5, 6], [1, 3, 5, 6], [1, 2, 5, 6]]]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(6), report_edges=True, labels=True))
[[[25, [(1, 3, 10), (3, 5, 10), (5, 6, 5)]), (45, [(1, 2, 20), (2, 5, 20), (5, 6, 5)]), (65, [(1, 4, 30), (4, 5, 30), (5, 6, 5)]), (100, [(1, 6, 100)])]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(6), report_edges=True, labels=True, report_weight=True))
[(1, [(1, 6, 100)]), (3, [(1, 4, 30), (4, 5, 30), (5, 6, 5)]), (3, [(1, 3, 10), (3, 5, 10), (5, 6, 5)])]
Graph Theory, Release 10.4

(continued from previous page)

>>> from sage.graphs.path_enumeration import feng_k_shortest_simple_paths

>>> g = DiGraph(((Integer(1), Integer(2), Integer(5)), (Integer(2), Integer(3), Integer(0)), (Integer(1), Integer(4), Integer(2)), (Integer(4), Integer(5), Integer(1)), (Integer(5), Integer(3), Integer(0))])

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(3), by_weight=True))
[[1, 4, 5, 3], [1, 2, 3]]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(3)))
[[1, 2, 3], [1, 4, 5, 3]]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(3), report_weight=True))
[(2, [1, 2, 3]), (3, [1, 4, 5, 3])]

>>> list(feng_k_shortest_simple_paths(g, Integer(1), Integer(3), report_weight=True, report_edges=True))
[(2, [1, 2, 3]), (3, [1, 4, 5, 3])]

sage.graphs.path_enumeration.shortest_simple_paths(self, source, target, weight_function=None, by_weight=False, check_weight=True, algorithm=None, report_edges=False, report_weight=False)

Return an iterator over the simple paths between a pair of vertices.

This method returns an iterator over the simple paths (i.e., without repetition) from source to target. By default (by_weight is False), the paths are reported by increasing number of edges. When by_weight is True, the paths are reported by increasing weights.

In case of weighted graphs negative weights are not allowed.

If source is the same vertex as target, then [[source]] is returned – a list containing the 1-vertex, 0-edge path source.

By default Yen's algorithm [Yen1970] is used for undirected graphs and Feng's algorithm is used for directed graphs [Feng2014].

The loops and the multiedges if present in the given graph are ignored and only minimum of the edge labels is kept in case of multiedges.

INPUT:

• source – a vertex of the graph, where to start

• target – a vertex of the graph, where to end

• weight_function – function (default: None); a function that takes as input an edge (u, v, l) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label l as a weight.

• by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1

• check_weight – boolean (default: True); whether to check that the weight_function outputs a number for each edge.

5.38. Path enumeration
• **algorithm** – string (default: None); the algorithm to use in computing \( k \) shortest paths of self. The following algorithms are supported:
  - "Yen" – Yen’s algorithm [Yen1970]
  - "Feng" – an improved version of Yen’s algorithm but that works only for directed graphs [Feng2014]

• **report_edges** – boolean (default: False); whether to report paths as list of vertices (default) or list of edges. When set to False, the labels parameter is ignored.

• **labels** – boolean (default: False); if False, each edge is simply a pair \((u, v)\) of vertices. Otherwise a list of edges along with its edge labels are used to represent the path.

• **report_weight** – boolean (default: False); if False, just the path between source and target is returned. Otherwise a tuple of path length and path is returned.

**EXAMPLES:**

```python
g = DiGraph([(1, 2, 20), (1, 3, 10), (1, 4, 30),
 (2, 5, 20), (3, 5, 10), (4, 5, 30)])
g = Graph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20),
 (3, 5, 10), (4, 5, 30), (1, 6, 100), (5, 6, 5)])
g = DiGraph([(1, 3, 10), (1, 4, 30), (2, 5, 20),
 (3, 5, 10), (4, 5, 30), (1, 6, 100), (5, 6, 5)])
g = Graph([(1, 3, 10), (1, 4, 30), (2, 5, 20),
 (3, 5, 10), (4, 5, 30), (1, 6, 100), (5, 6, 5)])
g = DiGraph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20),
 (3, 5, 10), (4, 5, 30), (5, 6, 5)])
g = Graph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20),
 (3, 5, 10), (4, 5, 30), (5, 6, 5)])
g = DiGraph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20),
 (3, 5, 10), (4, 5, 30), (5, 6, 5)])
g = Graph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20),
 (3, 5, 10), (4, 5, 30), (5, 6, 5)])
g = DiGraph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20),
 (3, 5, 10), (4, 5, 30), (5, 6, 5)])
g = Graph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20),
 (3, 5, 10), (4, 5, 30), (5, 6, 5)])
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

\[
(65, [(1, 4, 30), (4, 5, 30), (5, 6, 5)]),
(100, [(1, 6, 100)])
\]

sage: list(g.shortest_simple_paths(1, 6, by_weight=True,
....: report_edges=True, labels=True))
[[(1, 3, 10), (3, 5, 10), (5, 6, 5)],
 [(1, 2, 20), (2, 5, 20), (5, 6, 5)],
 [(1, 4, 30), (4, 5, 30), (5, 6, 5)],
 [(1, 6, 100)]]

sage: list(g.shortest_simple_paths(1, 6, report_edges=True, labels=True))
[[(1, 6, 100)],
 [(1, 2, 20), (2, 5, 20), (5, 6, 5)],
 [(1, 3, 10), (3, 5, 10), (5, 6, 5)],
 [(1, 4, 30), (4, 5, 30), (5, 6, 5)]]

>>> from sage.all import *

>>> g = DiGraph([(Integer(1), Integer(2), Integer(20)), (Integer(1), Integer(3), Integer(10)), (Integer(1), Integer(4), Integer(30)), (Integer(2), Integer(5), Integer(20)), (Integer(3), Integer(5), Integer(10)), (Integer(4), Integer(5), Integer(30))])

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), by_weight=True, algorithm="Yen"))
[[1, 3, 5], [1, 2, 5], [1, 4, 5]]

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), algorithm="Yen"))
[[1, 6], [1, 2, 5, 6], [1, 3, 5, 6], [1, 4, 5, 6]]

>>> list(g.shortest_simple_paths(Integer(1), Integer(1)))
[[1]]

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), by_weight=True, report_edges=True, report_weight=True, labels=True))
[(20, [(1, 3), (3, 5)]), (40, [(1, 2), (2, 5)]), (60, [(1, 4), (4, 5)])]

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), by_weight=True, report_edges=True, report_weight=True))
[[20, [(1, 3), (3, 5)]], (40, [(1, 2), (2, 5)]), (60, [(1, 4), (4, 5)])]

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), report_edges=True, report_weight=True))
[[[1, 3], [3, 5]], [(1, 2), [2, 5]], [(1, 4), [4, 5]]]

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), by_weight=True, algorithm="Feng", report_edges=True, report_weight=True, labels=True))
[(20, [(1, 3), (3, 5)]), (40, [(1, 2), (2, 5)]), (60, [(1, 4), (4, 5)])]

>>> list(g.shortest_simple_paths(Integer(1), Integer(5), by_weight=True, algorithm="Feng", report_edges=True, labels=True))
[[20, [(1, 3), (3, 5)]], (40, [(1, 2), (2, 5)]), (60, [(1, 4), (4, 5)])]

>>> g = Graph([(Integer(1), Integer(2), Integer(20)), (Integer(1), Integer(3), Integer(10)), (Integer(1), Integer(4), Integer(30)), (Integer(2), Integer(5), Integer(20)), (Integer(3), Integer(5), Integer(10)), (Integer(4), Integer(5), Integer(30)), (Integer(1), Integer(6), Integer(100)), (Integer(5), Integer(6), Integer(5))])

>>> list(g.shortest_simple_paths(Integer(1), Integer(6), by_weight=True))
[[4, 3, 5, 6], [1, 2, 5, 6], [1, 4, 5, 6], [1, 6]]

>>> list(g.shortest_simple_paths(Integer(1), Integer(6), algorithm="Yen"))
[[1, 6], [1, 2, 5, 6], [1, 3, 5, 6], [1, 4, 5, 6]]

(continues on next page)
sage.graphs.path_enumeration.yen_k_shortest_simple_paths (self, source, target, weight_function=None, by_weight=False, check_weight=True, report_edges=False, report_weight=False, labels=False)

Return an iterator over the simple paths between a pair of vertices in increasing order of weights.

For unweighted graphs paths are returned in order of increasing number of edges.

In case of weighted graphs negative weights are not allowed.

If source is the same vertex as target, then [[source]] is returned – a list containing the 1-vertex, 0-edge path source.

The loops and the multiedges if present in the given graph are ignored and only minimum of the edge labels is kept in case of multiedges.

INPUT:

- source – a vertex of the graph, where to start
- target – a vertex of the graph, where to end
- weight_function – function (default: None); a function that takes as input an edge \((u, v, l)\) and outputs its weight. If not None, by_weight is automatically set to True. If None and by_weight is True, we use the edge label \(l\) as a weight.
- by_weight – boolean (default: False); if True, the edges in the graph are weighted, otherwise all edges have weight 1
• check_weight – boolean (default: True); whether to check that the weight_function outputs a number for each edge

• report_edges – boolean (default: False); whether to report paths as list of vertices (default) or list of edges, if False then labels parameter is ignored

• labels – boolean (default: False); if False, each edge is simply a pair \( (u, v) \) of vertices. Otherwise a list of edges along with its edge labels are used to represent the path.

• report_weight – boolean (default: False); if False, just the path between source and target is returned. Otherwise a tuple of path length and path is returned.

ALGORITHM:

This algorithm can be divided into two parts. Firstly, it determines a shortest path from source to target. Then, it determines all the other \( k \)-shortest paths. This algorithm finds the deviations of previous shortest paths to determine the next shortest paths.

Time complexity is \( O(kn(m + n \log n)) \) where \( n \) is the number of vertices and \( m \) is the number of edges and \( k \) is the number of shortest paths needed to find.

See [Yen1970] and the Wikipedia article Yen%27s_algorithm for more details on the algorithm.

EXAMPLES:

\[
\text{sage: from sage.graphs.path_enumeration import yen_k_shortest_simple_paths}
\text{sage: g = DiGraph([(1, 2, 20), (1, 3, 10), (1, 4, 30), (2, 5, 20), (3, 5, 10), (4, 5, 30)])}
\text{sage: list(yen_k_shortest_simple_paths(g, 1, 5, by_weight=True, report_edges=True, report_weight=True, labels=True))}
\text{[[20, [(1, 3, 10), (3, 5, 10)]], (40, [(1, 2, 20), (2, 5, 20)]), (60, [(1, 4, 30), (4, 5, 30)])}
\text{sage: list(yen_k_shortest_simple_paths(g, 1, 5, report_edges=True, report_weight=True))}
\text{[[2, [(1, 2), (2, 5)]], (2, [(1, 3), (3, 5)]), (2, [(1, 4), (4, 5)])]}
\text{sage: list(yen_k_shortest_simple_paths(g, 1, 5, report_edges=True))}
\text{[[1], [1], [1]]}
\]

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```
[(1, [(1, 6, 100)]),
 (3, [(1, 2, 20), (2, 5, 20), (5, 6, 5)]),
 (3, [(1, 3, 10), (3, 5, 10), (5, 6, 5)]),
 (3, [(1, 4, 30), (4, 5, 30), (5, 6, 5)]))
```

```
sage: list(yen_k_shortest_simple_paths(g, 1, 6, report_edges=True, report_weight=True, labels=True, by_weight=True))

```

```
[(25, [(1, 3, 10), (3, 5, 10), (5, 6, 5)]),
 (45, [(1, 2, 20), (2, 5, 20), (5, 6, 5)]),
 (65, [(1, 4, 30), (4, 5, 30), (5, 6, 5)]),
 (100, [(1, 6, 100)])]
```

```
sage: list(yen_k_shortest_simple_paths(g, 1, 6, report_edges=True, labels=True, by_weight=True))

```

```
[(25, [(1, 3, 10), (3, 5, 10), (5, 6, 5)]),
 (45, [(1, 2, 20), (2, 5, 20), (5, 6, 5)]),
 (65, [(1, 4, 30), (4, 5, 30), (5, 6, 5)]),
 (100, [(1, 6, 100)])]
```

```
sage: list(yen_k_shortest_simple_paths(g, 1, 6, report_edges=True, labels=True))

```

```
[(1, 3, 10), (3, 5, 10), (5, 6, 5)],
 [(1, 2, 20), (2, 5, 20), (5, 6, 5)],
 [(1, 4, 30), (4, 5, 30), (5, 6, 5)],
 [(1, 6, 100)]
```

```
from sage.all import *
from sage.graphs.pathEnumeration import yen_k_shortest_simple_paths
```

```
>>> from sage.all import *
>>> from sage.graphs.pathEnumeration import yen_k_shortest_simple_paths

```

```
>>> g = DiGraph([(Integer(1), Integer(2), Integer(20)), (Integer(1), Integer(3), Integer(10)), (Integer(1), Integer(4), Integer(30)), (Integer(2), Integer(5), Integer(20)), (Integer(3), Integer(5), Integer(10)), (Integer(4), Integer(5), Integer(30)), (Integer(1), Integer(6), Integer(100)), (Integer(5), Integer(6), Integer(5))])
```

```
>>> list(yen_k_shortest_simple_paths(g, Integer(1), Integer(5), by_weight=True))

```

```
[(2, [(1, 2), (2, 5)])],
 [(2, [(1, 3), (3, 5)]), (2, [(1, 4), (4, 5)])]
```

```
>>> list(yen_k_shortest_simple_paths(g, Integer(1), Integer(5), report_edges=True, report_weight=True))

```

```
[(2, [(1, 2), (2, 5)]), (2, [(1, 3), (3, 5)]), (2, [(1, 4), (4, 5)])]
```

```
>>> list(yen_k_shortest_simple_paths(g, Integer(1), Integer(5), report_edges=True, labels=True))

```

```
[(1, [(1, 6, 100)]),
 (3, [(1, 2, 20), (2, 5, 20), (5, 6, 5)]),
 (3, [(1, 3, 10), (3, 5, 10), (5, 6, 5)]),
 (3, [(1, 4, 30), (4, 5, 30), (5, 6, 5)]))
```

```
sage: list(yen_k_shortest_simple_paths(g, 1, 6, report_edges=True, labels=True, by_weight=True))

```

```
[(25, [(1, 3, 10), (3, 5, 10), (5, 6, 5)]),
 (45, [(1, 2, 20), (2, 5, 20), (5, 6, 5)]),
 (65, [(1, 4, 30), (4, 5, 30), (5, 6, 5)]),
 (100, [(1, 6, 100)])]
```

```
sage: list(yen_k_shortest_simple_paths(g, 1, 6, report_edges=True, labels=True))

```

```
[(25, [(1, 3, 10), (3, 5, 10), (5, 6, 5)]),
 (45, [(1, 2, 20), (2, 5, 20), (5, 6, 5)]),
 (65, [(1, 4, 30), (4, 5, 30), (5, 6, 5)]),
 (100, [(1, 6, 100)])]
```

(continues on next page)
5.39 GenericGraph Cython functions

AUTHORS:

• Robert L. Miller (2007-02-13): initial version
• Robert W. Bradshaw (2007-03-31): fast spring layout algorithms
• Nathann Cohen: exhaustive search

class sage.graphs.generic_graph_pyx.GenericGraph_pyx
    Bases: SageObject

class sage.graphs.generic_graph_pyx.SubgraphSearch
    Bases: object

This class implements methods to exhaustively search for copies of a graph \( H \) in a larger graph \( G \).

It is possible to look for induced subgraphs instead, and to iterate or count the number of their occurrences.

ALGORITHM:

The algorithm is a brute-force search. Let \( V(H) = \{ h_1, \ldots, h_k \} \). It first tries to find in \( G \) a possible representative of \( h_1 \), then a representative of \( h_2 \) compatible with \( h_1 \), then a representative of \( h_3 \) compatible with the first two, etc.

This way, most of the time we need to test far less than \( k! \binom{|V(G)|}{k} \) subsets, and hope this brute-force technique can sometimes be useful.
**Note:** This algorithm does not take vertex/edge labels into account.

**cardinality()**

Returns the number of labelled subgraphs of $G$ isomorphic to $H$.

**Note:** This method counts the subgraphs by enumerating them all! Hence it probably is not a good idea to count their number before enumerating them :-)

**EXAMPLES:**

Counting the number of labelled $P_3$ in $P_5$:

```python
sage: from sage.graphs.generic_graph_pyx import SubgraphSearch
sage: g = graphs.PathGraph(5)
sage: h = graphs.PathGraph(3)
sage: S = SubgraphSearch(g, h) # needs sage.modules
sage: S.cardinality() # needs sage.modules
6
```

```python
>>> from sage.all import *
>>> from sage.graphs.generic_graph_pyx import SubgraphSearch
>>>
>>> G = Graph()
>>> G.add_cycle(['A', 1, 2, 3, ('a', 1)])
>>> H = Graph()
>>> H.add_path("xyz")
>>> S = SubgraphSearch(G, H) # needs sage.modules
>>> S.cardinality() # needs sage.modules
10
```

Check that the method is working even when vertices or edges are of incomparable types (see Issue #35904):

```python
sage: from sage.graphs.generic_graph_pyx import SubgraphSearch
sage: G = Graph()
sage: G.add_cycle(['A', Integer(1), Integer(2), Integer(3), ('a', Integer(1))])
sage: H = Graph()
sage: H.add_path("xyz")
sage: S = SubgraphSearch(G, H) # needs sage.modules
sage: S.cardinality() # needs sage.modules
10
```

(continues on next page)
sage.graphs.generic_graph_pyx.binary_string_from_dig6(s, n)

A helper function for the dig6 format.

INPUT:

- \( s \) – a graph6 string
- \( n \) – the length of the binary string encoded by \( s \).

EXAMPLES:

```python
sage: from sage.graphs.generic_graph_pyx import binary_string_from_dig6
sage: d6 = ?????_@?CG??B??@OG7C?G7??GO??W8a??CO??OACC?OA??G??O??????'
sage: d6 += 'CAOGO??????A??G7?GR?C_o' ??g???A_C?OG??OG?IA????_QO8EG??'
sage: d6 += 'C????G@??GO7??_?O?W????P????AG??B?????7???GG??A?@?aC_G'
sage: d6 += 'A@??O??_A????O82?_O????GQ8@G8?C?'
```

```python
>>> from sage.all import *
>>> from sage.graphs.generic_graph_pyx import binary_string_from_dig6
>>> d6 = ?????_@?CG??B??@OG7C?G7??GO??W8a??CO??OACC?OA??G??O??????'
>>> d6 += 'CAOGO??????A??G7?GR?C_o' ??g???A_C?OG??OG?IA????_QO8EG??'
>>> d6 += 'C????G@??GO7??_?O?W????P????AG??B?????7???GG??A?@?aC_G'
>>> d6 += 'A@??O??_A????O82?_O????GQ8@G8?C?'
```

```
>>> from sage.all import *
>>> from sage.graphs.generic_graph_pyx import binary_string_from_dig6
>>> d6 += '???I??Q??O?_@??O???????'
>>> binary_string_from_dig6(d6, Integer(32))
```

```
>>> from sage.all import *
>>> from sage.graphs.generic_graph_pyx import binary_string_from_dig6
>>> d6 = '?????_@?CG??B??@OG7C?G7??GO??W8a??CO??OACC?OA??G??O??????'
>>> d6 += 'CAOGO??????A??G7?GR?C_o' ??g???A_C?OG??OG?IA????_QO8EG??'
>>> d6 += 'C????G@??GO7??_?O?W????P????AG??B?????7???GG??A?@?aC_G'
>>> d6 += '@A??O??_A????O82?_O????GQ8@G8?C?'
>>> binary_string_from_dig6(d6, Integer(63))
```

```
>>> from sage.all import *
>>> from sage.graphs.generic_graph_pyx import binary_string_from_dig6
>>> d6 += '???I??Q??O?_@??O???????'
>>> binary_string_from_dig6(d6, Integer(32))
```
sage.graphs.generic_graph_pyx.binary_string_from_graph6(s, n)

Decode a binary string from its graph6 representation.

This helper function is the inverse of $R$ from [McK2015].

**INPUT:**

- $s$ – a graph6 string
- $n$ – the length of the binary string encoded by $s$

**EXAMPLES:**

```python
sage: from sage.graphs.generic_graph_pyx import binary_string_from_graph6
sage: g6 = ?????_@?CG??B??@OG?C?G???GO??W@a???CO???OACC?OA?P@G??O?????
sage: g6 += CAOGO??????A??G?GR?C?_oA???g???A_C?OG??O?G_IA????_QO@EG???
sage: g6 += O??C?_?C@?G???@?_??AC?AO?a???O?????A?_Dw?H???__O@AAOAACd?_
sage: g6 += C??G?G@??GO?_???O@?_O??W??@P???AG??B?????G??GG??A??@?aC_G
sage: g6 += @A??O??_?A?????O@Z?_@M????GQ@_G@?C?

.. code-block:: python

 sage: binary_string_from_graph6(g6, 63)
 → 0000000000000000000000100000000001000000001000010000000000110000000000000101000000100001000000100000000001000000000000000100000000000000010000000000000000000000000000000000

>>> from sage.all import *
>>> from sage.graphs.generic_graph_pyx import binary_string_from_graph6
>>> g6 = ?????_@?CG??B??@OG?C?G???GO??W@a???CO???OACC?OA?P@G??O?????
>>> g6 += CAOGO??????A??G?GR?C?_oA???g???A_C?OG??O?G_IA????_QO@EG???
>>> g6 += O??C?_?C@?G???@?_??AC?AO?a???O?????A?_Dw?H???__O@AAOAACd?_
>>> g6 += C??G?G@??GO?_???O@?_O??W??@P???AG??B?????G??GG??A??@?aC_G
>>> g6 += @A??O??_?A?????O@Z?_@M????GQ@_G@?C?

>>> binary_string_from_graph6(g6, Integer(63))

.. code-block:: python

 → 000000000000000000000100000000001000000001000010000000000110000000000000101000000100001000000100000000001000000000000000100000000000000010000000000000000000000000000000000

>>> g6 += ??I?J??Q??O?_@@??@??????

>>> binary_string_from_graph6(g6, Integer(32))

.. code-block:: python

 → 000000000000000000000100000000001000000001000010000000000110000000000000101000000100001000000100000000001000000000000000100000000000000010000000000000000000000000000000000

```

Sage: sage.graphs.generic_graph_pyx.binary_string_to_graph6(x)

Transform a binary string into its graph6 representation.
This helper function is named \( R \) in [McK2015].

**INPUT:**
- \( x \) – a binary string.

**EXAMPLES:**

```python
sage: from sage.graphs.generic_graph_pyx import binary_string_to_graph6
sage: binary_string_to_graph6('110111010110110010111000001100000001000000001')
'vUqwK@?G'
```

```python
>>> from sage.all import *
>>> from sage.graphs.generic_graph_pyx import binary_string_to_graph6
>>> binary_string_to_graph6('110111010110110010111000001100000001000000001')
'vUqwK@?G'
```

```python
sage.graphs.generic_graph_pyx.find_hamiltonian(G, max_iter=100000, reset_bound=30000, backtrack_bound=1000, find_path=False)
```

Randomized backtracking for finding Hamiltonian cycles and paths.

**ALGORITHM:**

A path \( P \) is maintained during the execution of the algorithm. Initially the path will contain an edge of the graph. Every 10 iterations the path is reversed. Every \( \text{reset\_bound} \) iterations the path will be cleared and the procedure is restarted. Every \( \text{backtrack\_bound} \) steps we discard the last five vertices and continue with the procedure. The total number of steps in the algorithm is controlled by \( \text{max\_iter} \). If a Hamiltonian cycle or Hamiltonian path is found it is returned. If the number of steps reaches \( \text{max\_iter} \) then a longest path is returned. See **OUTPUT** for more details.

**INPUT:**

- \( G \) – graph
- \( \text{max\_iter} \) – maximum number of iterations
- \( \text{reset\_bound} \) – number of iterations before restarting the procedure
- \( \text{backtrack\_bound} \) – number of iterations to elapse before discarding the last 5 vertices of the path.
- \( \text{find\_path} \) – (default: False) if set to True, will search a Hamiltonian path; if False, will search for a Hamiltonian cycle

**OUTPUT:**

A pair \((B, P)\), where \( B \) is a Boolean and \( P \) is a list of vertices.

- If \( B \) is True and \( \text{find\_path} \) is False, \( P \) represents a Hamiltonian cycle.
- If \( B \) is True and \( \text{find\_path} \) is True, \( P \) represents a Hamiltonian path.
- If \( B \) is False, then \( P \) represents the longest path found during the execution of the algorithm.

**Warning:** May loop endlessly when run on a graph with vertices of degree 1.

**EXAMPLES:**

For demonstration purposes we fix a random seed:
First we try the algorithm in the Dodecahedral graph, which is Hamiltonian, so we are able to find a Hamiltonian cycle and a Hamiltonian path:

```python
sage: from sage.graphs.generic_graph_pyx import find_hamiltonian as fh
sage: G=graphs.DodecahedralGraph()
sage: fh(G)
(True, [12, 11, 10, 9, 13, 14, 15, 5, 4, 3, 2, 6, 7, 8, 1, 0, 19, 18, 17, 16])
sage: fh(G,find_path=True)
(True, [10, 0, 19, 3, 4, 5, 15, 16, 17, 18, 11, 12, 13, 9, 8, 1, 2, 6, 7, 14])
```

Another test, now in the Möbius-Kantor graph which is also Hamiltonian, as in our previous example, we are able to find a Hamiltonian cycle and path:

```python
sage: G=graphs.MoebiusKantorGraph()
sage: fh(G)
(True, [15, 10, 2, 3, 4, 5, 13, 8, 11, 14, 6, 7, 0, 1, 9, 12])
sage: fh(G,find_path=True)
(True, [10, 15, 7, 6, 5, 4, 12, 9, 14, 11, 3, 2, 1, 0, 8, 13])
```

Now, we try the algorithm on a non Hamiltonian graph, the Petersen graph. This graph is known to be hypohamiltonian, so a Hamiltonian path can be found:

```python
sage: G=graphs.PetersenGraph()
sage: fh(G)
(False, [9, 4, 0, 1, 6, 8, 5, 7, 2, 3])
sage: fh(G,find_path=True)
(True, [7, 2, 1, 0, 5, 8, 6, 9, 4, 3])
```

We now show the algorithm working on another known hypohamiltonian graph, the generalized Petersen graph
with parameters 11 and 2:

```python
sage: G=graphs.GeneralizedPetersenGraph(11,2)
sage: fh(G)
(False, [7, 8, 9, 10, 0, 1, 2, 3, 14, 12, 21, 19, 17, 6, 5, 4, 15, 13, 11, 20, 18, -> 16])
sage: fh(G,find_path=True)
(True, [2, 1, 12, 21, 10, 0, 11, 13, 15, 17, 19, 8, 7, 6, 5, 4, 3, 14, 16, 18, 20, -> 9])
```

Finally, an example on a graph which does not have a Hamiltonian path:

```python
sage: G = graphs.HyperStarGraph(5, 2)
sage: G.order()
10
sage: b, P = fh(G,find_path=False)
sage: b, len(P)
(False, 9)
sage: b, P = fh(G,find_path=True)
sage: b, len(P)
(False, 9)
```

The method can also be used for directed graphs:

```python
sage: G = DiGraph([(0, 1), (1, 2), (2, 3)])
sage: fh(G)
(False, [0, 1, 2, 3])
sage: G = G.reverse()
sage: fh(G)
(False, [3, 2, 1, 0])
sage: G = DiGraph()
sage: G.add_cycle([0, 1, 2, 3, 4, 5])
sage: b, P = fh(G)
sage: b, len(P)
(True, 6)
```
```python
>>> from sage.all import *
>>> G = DiGraph(((Integer(0), Integer(1)), (Integer(1), Integer(2)), (Integer(2), Integer(3))))
>>> fh(G)
(False, [0, 1, 2, 3])
>>> G = G.reverse()
>>> fh(G)
(False, [3, 2, 1, 0])
>>> G = DiGraph()
>>> G.add_cycle([Integer(0), Integer(1), Integer(2), Integer(3), Integer(4), Integer(5)])
>>> b, P = fh(G)
>>> b, len(P)
(True, 6)
```

```

sage.graphs.generic_graph_pyx.int_to_binary_string(n)
A quick python int to binary string conversion.

INPUT:
• n (integer)

EXAMPLES:

sage: sage.graphs.generic_graph_pyx.int_to_binary_string(389)
'110000101'
sage: Integer(389).binary()
'110000101'
sage: sage.graphs.generic_graph_pyx.int_to_binary_string(2007)
'11111010111'
```

```

sage.graphs.generic_graph_pyx.layout_split(layout_function, G, **options)
Grapheachcomponentof Gseparatelywithlayout_function, placingthemadjacenttoeachother.

Thisisdonebecauseseverallayoutmethodsnethed inoutgraphtobec connected. For instance, on adisconnected

digraph, the spring layout will push components further and furtherfrom each otherwithout bound, resultinginvety
tight clumpsforeach component.

Note: If the axis are scaled to fit the plot in a square, thehorizontal distance may end upbeing “squished” due
tothesizeveral adjacent components.

EXAMPLES:

sage: G = graphs.DodecahedralGraph()
sage: for i in range(10): G.add_cycle(list(range(100*i, 100*i+3)))
sage: from sage.graphs.generic_graph_pyx import layout_split, spring_layout_fast
sage: D = layout_split(spring_layout_fast, G); D # random
[0: [0.77..., 0.06...],
```

(continues on next page)
>>> from sage.all import *
>>> G = graphs.DodecahedralGraph()
>>> for i in range(Integer(10)): G.add_cycle(list(range(Integer(100)*i, Integer(100)*i+Integer(3))))

>>> from sage.graphs.generic_graph_pyx import layout_split, spring_layout_fast
>>> D = layout_split(spring_layout_fast, G); D

AUTHOR:
Robert Bradshaw

sage.graphs.generic_graph_pyx.length_and_string_from_graph6(s)
Return a pair (length, graph6_string) from a graph6 string of unknown length.
This helper function is the inverse of \( N \) from [McK2015].

INPUT:
  - \( s \) – a graph6 string describing a binary vector (and encoding its length).

EXAMPLES:

```
sage: from sage.graphs.generic_graph_pyx import length_and_string_from_graph6
```

5.39. GenericGraph Cython functions 1891
sage.graphs.generic_graph_pyx.small_integer_to_graph6(n)

Encode a small integer (i.e. a number of vertices) as a graph6 string.

This helper function is named \( N \) [McK2015].

INPUT:

• \( n \) (integer)

EXAMPLES:

```
sage: from sage.graphs.generic_graph_pyx import small_integer_to_graph6
sage: small_integer_to_graph6(13)
'L'
sage: small_integer_to_graph6(136)
'~?AG'
```

sage.graphs.generic_graph_pyx.spring_layout_fast(G, iterations=50, dim=2, vpos=None, rescale=True, height=False, by_component=False, **options)

Spring force model layout

This function primarily acts as a wrapper around run_spring(), converting to and from raw C types.

This kind of speed cannot be achieved by naive Cythonification of the function alone, especially if we require a function call (let alone an object creation) every time we want to add a pair of doubles.

INPUT:

• by_component – a boolean

EXAMPLES:

```
sage: G = graphs.DodecahedralGraph()
sage: for i in range(10): G.add_cycle(list(range(100*i, 100*i+3)))
sage: from sage.graphs.generic_graph_pyx import spring_layout_fast
sage: pos = spring_layout_fast(G)
sage: pos[0] # random
[0.00..., 0.03...]
sage: sorted(pos.keys()) == sorted(G)
True
```
```python
>>> from sage.all import *
>>> G = graphs.DodecahedralGraph()
>>> for i in range(Integer(10)): G.add_cycle(list(range(Integer(100)*i, Integer(100)*i+Integer(3))))
>>> from sage.graphs.generic_graph_pyx import spring_layout_fast
>>> pos = spring_layout_fast(G)
>>> pos[Integer(0)] # random
[0.00..., 0.03...]
>>> sorted(pos.keys()) == sorted(G)
True
```

With `split=True`, each component of G is laid out separately, placing them adjacent to each other. This is done because on a disconnected graph, the spring layout will push components further and further from each other without bound, resulting in very tight clumps for each component.

If the axis are scaled to fit the plot in a square, the horizontal distance may end up being “squished” due to the several adjacent components.

```python
sage: G = graphs.DodecahedralGraph()
sage: for i in range(10): G.add_cycle(list(range(100*i, 100*i+3)))
sage: from sage.graphs.generic_graph_pyx import spring_layout_fast
sage: pos = spring_layout_fast(G, by_component = True)
sage: pos[0] # random
[2.21..., -0.00...]
sage: len(pos) == G.order()
True
```

`sage.graphs.generic_graph_pyx.transitive_reduction_acyclic(G)`

Return the transitive reduction of an acyclic digraph.

INPUT:

- `G` – an acyclic digraph.

EXAMPLES:

```python
sage: from sage.graphs.generic_graph_pyx import transitive_reduction_acyclic
sage: G = posets.BooleanLattice(4).hasse_diagram()
sage: G == transitive_reduction_acyclic(G.transitive_closure())
True
```

```python
>>> from sage.all import *
>>> from sage.graphs.generic_graph_pyx import transitive_reduction_acyclic
>>> G = posets.BooleanLattice(Integer(4)).hasse_diagram()
>>> G == transitive_reduction_acyclic(G.transitive_closure())
True
```
5.40 Orientations

This module implements several methods to compute orientations of undirected graphs subject to specific constraints (e.g., acyclic, strongly connected, etc.). It also implements some iterators over all these orientations.

This module contains the following methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>strong_orientations_iterator()</code></td>
<td>Return an iterator over all strong orientations of a graph $G$</td>
</tr>
<tr>
<td><code>random_orientation()</code></td>
<td>Return a random orientation of a graph $G$</td>
</tr>
</tbody>
</table>

5.40.1 Authors

- Kolja Knauer, Petru Valicov (2017-01-10) – initial version

5.40.2 Methods

`sage.graphs.orientations.acyclic_orientations(G)`

Return an iterator over all acyclic orientations of an undirected graph $G$.

**ALGORITHM:**

The algorithm is based on [Sq1998]. It presents an efficient algorithm for listing the acyclic orientations of a graph. The algorithm is shown to require $O(n)$ time per acyclic orientation generated, making it the most efficient known algorithm for generating acyclic orientations.

The function uses a recursive approach to generate acyclic orientations of the graph. It reorders the vertices and edges of the graph, creating a new graph with updated labels. Then, it iteratively generates acyclic orientations by considering subsets of edges and checking whether they form upsets in a corresponding poset.

**INPUT:**

- $G$ – an undirected graph.

**OUTPUT:**

- An iterator over all acyclic orientations of the input graph.

**Note:** The function assumes that the input graph is undirected and the edges are unlabelled.

**EXAMPLES:**

To count number acyclic orientations for a graph:

```python
sage: g = Graph([(0, 3), (0, 4), (3, 4), (1, 3), (1, 2), (2, 3), (2, 4)])
sage: it = g.acyclic_orientations()
sage: len(list(it))
54
```

```python
>>> from sage.all import *
>>> g = Graph([(Integer(0), Integer(3)), (Integer(0), Integer(4)), (Integer(3),...
 (Integer(4)), (Integer(1), Integer(3)), (Integer(1), Integer(2)), (Integer(2),...
 (Integer(3)), (Integer(2), Integer(4))])
```

(continues on next page)
Test for arbitrary vertex labels:

```python
sage: g_str = Graph([('abc', 'def'), ('ghi', 'def'), ('xyz', 'abc'), ('xyz', 'uvw'),
 ('uvw', 'abc'), ('uvw', 'ghi')])
sage: it = g_str.acyclic_orientations()
sage: len(list(it))
42
```

`sage.graphs.orientations.random_orientation(G)`

Return a random orientation of a graph $G$.

An orientation of an undirected graph is a directed graph such that every edge is assigned a direction. Hence there are $2^m$ oriented digraphs for a simple graph with $m$ edges.

**INPUT:**

- $G$ – a Graph.

**EXAMPLES:**

```python
>>> from sage.all import *
>>> g_str = Graph([('abc', 'def'), ('ghi', 'def'), ('xyz', 'abc'), ('xyz', 'uvw'),
 ('uvw', 'abc'), ('uvw', 'ghi')])
>>> it = g_str.acyclic_orientations()
>>> len(list(it))
42
```

See also:

- `orientations()`
- `strong_orientation()`
- `strong_orientations_iterator()`
- `nauty_directg()`

`sage.graphs.orientations.strong_orientations_iterator(G)`

Return an iterator over all strong orientations of a graph $G$. 
A strong orientation of a graph is an orientation of its edges such that the obtained digraph is strongly connected (i.e., there exist a directed path between each pair of vertices). According to Robbins' theorem (see the Wikipedia article Robbins_theorem), the graphs that have strong orientations are exactly the 2-edge-connected graphs (i.e., the bridgeless graphs).

ALGORITHM:

It is an adaptation of the algorithm published in [CGMRV16]. It runs in $O(mn)$ amortized time, where $m$ is the number of edges and $n$ is the number of vertices. The amortized time can be improved to $O(m)$ with a more involved method. In this function, first the graph is preprocessed and a spanning tree is generated. Then every orientation of the non-tree edges of the graph can be extended to at least one new strong orientation by orienting properly the edges of the spanning tree (this property is proved in [CGMRV16]). Therefore, this function generates all partial orientations of the non-tree edges and then launches a helper function corresponding to the generation algorithm described in [CGMRV16]. In order to avoid trivial symmetries, the orientation of an arbitrary edge is fixed before the start of the enumeration process.

INPUT:

- $G$ – an undirected graph.

OUTPUT:

- an iterator which will produce all strong orientations of this graph.

Note: Works only for simple graphs (no multiple edges). To avoid symmetries an orientation of an arbitrary edge is fixed.

See also:

- orientations()
- strong_orientation()
- nauty_directg()
- random_orientation()

EXAMPLES:

A cycle has one possible (non-symmetric) strong orientation:

```sage
g = graphs.CycleGraph(4)
```

```sage
it = g.strong_orientations_iterator()
sage: len(list(it))
```

```sage
1
```

```python
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(4))
>>> it = g.strong_orientations_iterator()
>>> len(list(it))
```

```python
1
```

A tree cannot be strongly oriented:

```sage
g = graphs.RandomTree(10)
sage: len(list(g.strong_orientations_iterator()))
```

```sage
0
```
>>> from sage.all import *
>>> g = graphs.RandomTree(Integer(10))
>>> len(list(g.strong_orientations_iterator()))
0

Neither can be a disconnected graph:

sage: g = graphs.CompleteGraph(6)
sage: g.add_vertex(7)
sage: len(list(g.strong_orientations_iterator()))
0

5.41 Connectivity related functions

This module implements the connectivity based functions for graphs and digraphs. The methods in this module are also available as part of GenericGraph, DiGraph or Graph classes as aliases, and these methods can be accessed through this module or as class methods. Here is what the module can do:

For both directed and undirected graphs:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>is_connected()</td>
<td>Check whether the (di)graph is connected</td>
</tr>
<tr>
<td>connected_components()</td>
<td>Return the list of connected components</td>
</tr>
<tr>
<td>connected_components_number()</td>
<td>Return the number of connected components</td>
</tr>
<tr>
<td>connected_components_subgraphs()</td>
<td>Return a list of connected components as graph objects.</td>
</tr>
<tr>
<td>connected_component_containing_vertex()</td>
<td>Return a list of the vertices connected to vertex.</td>
</tr>
<tr>
<td>connected_components_sizes()</td>
<td>Return the sizes of the connected components as a list.</td>
</tr>
<tr>
<td>blocks_and_cut_vertices()</td>
<td>Return the blocks and cut vertices of the graph.</td>
</tr>
<tr>
<td>blocks_and_cut_tree()</td>
<td>Return the blocks-and-cuts tree of the graph.</td>
</tr>
<tr>
<td>is_cut_edge()</td>
<td>Return True if the input edge is a cut-edge or a bridge.</td>
</tr>
<tr>
<td>is_cut_vertex()</td>
<td>Check whether the input vertex is a cut-vertex.</td>
</tr>
<tr>
<td>edge_connectivity()</td>
<td>Return the edge connectivity of the graph.</td>
</tr>
<tr>
<td>vertex_connectivity()</td>
<td>Return the vertex connectivity of the graph.</td>
</tr>
</tbody>
</table>

For DiGraph:
GraphTheory, Release 10.4

**is_strongly_connected()**
Check whether the current DiGraph is strongly connected.

**strongly_connected_components_di_graph()**
Return the digraph of the strongly connected components.

**strongly_connected_components_subgraphs()**
Return the strongly connected components as a list of subgraphs.

**strongly_connected_component_containing_vertex()**
Return the strongly connected component containing a given vertex.

**strong_articulation_points()**
Return the strong articulation points of this digraph.

**For undirected graphs:**

**bridges()**
Returns an iterator over the bridges (or cut edges) of given undirected graph.

**cleave()**
Return the connected subgraphs separated by the input vertex cut.

**is_triconnected()**
Check whether the graph is triconnected.

**spqr_tree()**
Return a SPQR-tree representing the triconnected components of the graph.

**spqr_tree_to_graph()**
Return the graph represented by the SPQR-tree $T$.

### 5.4.1 Methods

**class** `sage.graphs.connectivity.TriconnectivitySPQR`

**Bases:** object

Decompose a graph into triconnected components and build SPQR-tree.

This class implements the algorithm proposed by Hopcroft and Tarjan in [Hopcroft1973], and later corrected by Gutwenger and Mutzel in [Gut2001], for finding the triconnected components of a biconnected graph. It then organizes these components into a SPQR-tree. See the: wikipedia:`SPQR` tree.

A SPQR-tree is a tree data structure used to represent the triconnected components of a biconnected (multi)graph and the 2-vertex cuts separating them. A node of a SPQR-tree, and the graph associated with it, can be one of the following four types:

- **"S"** – the associated graph is a cycle with at least three vertices. "S" stands for series and is also called a polygon.
- **"P"** – the associated graph is a dipole graph, a multigraph with two vertices and three or more edges. "P" stands for parallel and the node is called a bond.
- **"Q"** – the associated graph has a single real edge. This trivial case is necessary to handle the graph that has only one edge.
- **"R"** – the associated graph is a 3-vertex-connected graph that is not a cycle or dipole. "R" stands for rigid.

The edges of the tree indicate the 2-vertex cuts of the graph.

**INPUT:**

- **G** – graph; if $G$ is a DiGraph, the computation is done on the underlying Graph (i.e., ignoring edge orientation)
- **check** – boolean (default: True); indicates whether $G$ needs to be tested for biconnectivity
See also:

- `sage.graphs.connectivity.spqr_tree()`
- `is_biconnected()`
- Wikipedia article SPQR_tree

EXAMPLES:

Example from the Wikipedia article SPQR_tree:

```python
sage: from sage.graphs.connectivity import TriconnectivitySPQR
sage: from sage.graphs.connectivity import spqr_tree_to_graph
sage: G = Graph([(1, 2), (1, 4), (1, 8), (1, 12), (3, 4), (2, 3),
 ...: (2, 13), (3, 13), (4, 7), (5, 6), (5, 8), (5, 7), (6, 7),
 ...: (8, 11), (8, 9), (8, 12), (9, 10), (9, 11), (9, 12), (10, 12)])
```

```python
tric = TriconnectivitySPQR(G)
T = tric.get_spqr_tree()
G.is_isomorphic(spqr_tree_to_graph(T))
True
```

An example from [Hopcroft1973]:

```python
sage: G = Graph([(1, 2), (1, 4), (1, 8), (1, 12), (1, 13), (2, 3),
 ...: (2, 13), (3, 4), (3, 13), (4, 7), (5, 6), (5, 7), (5, 8),
 ...: (6, 7), (8, 9), (8, 11), (8, 12), (9, 10), (9, 11), (9, 12),
 ...: (10, 11), (10, 12)])
```

```python
tric = TriconnectivitySPQR(G)
T = tric.get_spqr_tree()
G.is_isomorphic(spqr_tree_to_graph(T))
True
```

`sage: G.print_triconnected_components()
Triconnected: [(8, 9, None), (9, 12, None), (9, 11, None), (8, 11, None), (10, 11, None), (9, 10, None), (10, 12, None), (8, 12, 'newVEdge0'), (8, 12, 'newVEdge1')]
Bond: [(8, 12, None), (8, 12, 'newVEdge0'), (8, 12, 'newVEdge1')]
Polygon: [(6, 7, None), (5, 6, None), (7, 5, 'newVEdge2')]
Bond: [(7, 5, 'newVEdge2'), (5, 7, 'newVEdge3'), (5, 7, None)]
Polygon: [(5, 7, 'newVEdge3'), (4, 7, None), (5, 4, 'newVEdge4')]
Bond: [(5, 4, 'newVEdge4'), (4, 5, 'newVEdge5'), (4, 5, None)]
Polygon: [(4, 5, 'newVEdge5'), (5, 8, None), (1, 4, 'newVEdge9'), (1, 8, (continues on next page)

5.41. Connectivity related functions 1899


```python
from sage.all import *

G = Graph([(1, 2), (1, 4), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5),
 (4, 6), (5, 7), (5, 8), (5, 14), (6, 8), (7, 14), (8, 9), (8, 10),
 (8, 11), (8, 12), (9, 10), (10, 13), (10, 14), (10, 15), (10, 16),
 (11, 12), (11, 13), (12, 13), (14, 15), (14, 16), (15, 16)])

T = TriconnectivitySPQR(G).get_spqr_tree()
G.is_isomorphic(spqr_tree_to_graph(T))
True
```

An example from [Gut2001]:

```python
sage: G = Graph([(1, 2), (1, 4), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5),
 (4, 6), (5, 7), (5, 8), (5, 14), (6, 8), (7, 14), (8, 9), (8, 10),
 (8, 11), (8, 12), (9, 10), (10, 13), (10, 14), (10, 15), (10, 16),
 (11, 12), (11, 13), (12, 13), (14, 15), (14, 16), (15, 16)])

sage: T = TriconnectivitySPQR(G).get_spqr_tree()
sage: G.is_isomorphic(spqr_tree_to_graph(T))
True
```
An example with multi-edges and accessing the triconnected components:

```python
sage: G = Graph([(1, 2), (1, 5), (1, 5), (2, 3), (2, 3), (3, 4), (4, 5)], multiedges=True)
sage: tric = TriconnectivitySPQR(G)
sage: T = tric.get_spqr_tree()
sage: G.is_isomorphic(spqr_tree_to_graph(T))
True

sage: tric.print_triconnected_components()
Bond: [(1, 5, None), (1, 5, None), (1, 5, newVEdge0)]
Bond: [(2, 3, None), (2, 3, None), (2, 3, newVEdge1)]
Polygon: [(4, 5, None), (1, 5, newVEdge0), (3, 4, None), (2, 3, newVEdge1), (1, 2, None)]
```

An example of a triconnected graph:

```python
sage: G = Graph([('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')])
sage: T = TriconnectivitySPQR(G).get_spqr_tree()
sage: print(T.vertices(sort=True))
[(R, Multi-graph on 4 vertices)]
sage: G.is_isomorphic(spqr_tree_to_graph(T))
True
```

(continues on next page)
An example of a directed graph with multi-edges:

```
sage: G = DiGraph([(1, 2), (2, 3), (3, 4), (4, 5), (1, 5), (5, 1)])
sage: tric = TriconnectivitySPQR(G)
sage: tric.print_triconnected_components()
Bond: [(1, 5, None), (5, 1, None), (1, 5, newVEdge0)]
Polygon: [(4, 5, None), (1, 5, newVEdge0), (3, 4, None), (2, 3, None), (1, 2, None)]
```

```
>>> from sage.all import *
>>> G = DiGraph([(Integer(1), Integer(2)), (Integer(2), Integer(3)), (Integer(3), Integer(4)), (Integer(4), Integer(5)), (Integer(1), Integer(5)), (Integer(5), Integer(1))])
>>> tric = TriconnectivitySPQR(G)
>>> tric.print_triconnected_components()
Bond: [(1, 5, None), (5, 1, None), (1, 5, newVEdge0)]
Polygon: [(4, 5, None), (1, 5, newVEdge0), (3, 4, None), (2, 3, None), (1, 2, None)]
```

Edge labels are preserved by the construction:

```
sage: G = Graph([(0, 1, '01'), (0, 4, '04'), (1, 2, '12'), (1, 5, '15'), ...
 (2, 3, '23'), (2, 6, '26'), (3, 7, '37'), (4, 5, '45'), ...
 (5, 6, '56'), (6, 7, '67')])
```

```
>>> from sage.all import *
>>> G = Graph([(Integer(0), Integer(1), '01'), (Integer(0), Integer(4), '04'), ...
 (Integer(1), Integer(2), '12'), (Integer(1), Integer(5), '15'), ...
 (Integer(2), Integer(3), '23'), (Integer(2), Integer(6), '26'), (Integer(3), ...
 (Integer(4), Integer(5), '45'), ...
 (Integer(5), Integer(6), '56'), (Integer(6), Integer(7), '67')])
```

```
get_spqr_tree()
Return an SPQR-tree representing the triconnected components of the graph.

An SPQR-tree is a tree data structure used to represent the triconnected components of a biconnected
(multi)graph and the 2-vertex cuts separating them. A node of a SPQR-tree, and the graph associated with
it, can be one of the following four types:

• "S" – the associated graph is a cycle with at least three vertices. "S" stands for series.
• "P" – the associated graph is a dipole graph, a multitgraph with two vertices and three or more edges.
 "P" stands for parallel.
• "Q" – the associated graph has a single real edge. This trivial case is necessary to handle the graph that has only one edge.

• "R" – the associated graph is a 3-connected graph that is not a cycle or dipole. "R" stands for rigid.

The edges of the tree indicate the 2-vertex cuts of the graph.

OUTPUT:

SPQR-tree a tree whose vertices are labeled with the block’s type and the subgraph of three-blocks in the decomposition.

EXAMPLES:

```python
sage: from sage.graphs.connectivity import TriconnectivitySPQR
sage: G = Graph(2)
sage: for i in range(3):
    ....:     G.add_clique([0, 1, G.add_vertex(), G.add_vertex()])
sage: tric = TriconnectivitySPQR(G)
sage: Tree = tric.get_spqr_tree()
```

```python
sage: K4 = graphs.CompleteGraph(4)
sage: all(u[1].is_isomorphic(K4) for u in Tree if u[0] == 'R')
```

```python
sage: True
```

```python
sage: from sage.graphs.connectivity import spqr_tree_to_graph
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
```

```python
True
```

```python
sage: G = Graph(2)
```

```python
sage: for i in range(3):
    ....:     G.add_path([0, G.add_vertex(), G.add_vertex(), 1])
```

```python
sage: tric = TriconnectivitySPQR(G)
sage: Tree = tric.get_spqr_tree()
```

```python
sage: C4 = graphs.CycleGraph(4)
sage: all(u[1].is_isomorphic(C4) for u in Tree if u[0] == 'S')
```

```python
sage: True
```

```python
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
```

```python
True
```

```python
sage: G.allow_multiple_edges(True)
```

```python
sage: G.add_edges(G.edge_iterator())
```

```python
sage: tric = TriconnectivitySPQR(G)
sage: Tree = tric.get_spqr_tree()
```

```python
sage: C4 = graphs.CycleGraph(4)
sage: all(u[1].is_isomorphic(C4) for u in Tree if u[0] == 'S')
```

```python
sage: True
```

```python
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
```

```python
True
```

```python
sage: G = graphs.CycleGraph(6)
```

```python
sage: tric = TriconnectivitySPQR(G)
sage: Tree = tric.get_spqr_tree()
```

```python
sage: Tree.order()
```

```python
1
```

```python
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
```

```python
True
```

```python
sage: G.add_edge(0, 3)
```

```python
sage: tric = TriconnectivitySPQR(G)
sage: Tree = tric.get_spqr_tree()
sage: Tree.order()
```

```python
3
```

```python
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
```

```python
(continues on next page)
```
True

```python
sage: G = Graph([(0, 1)], multiedges=True)
sage: tric = TriconnectivitySPQR(G)
sage: Tree = tric.get_spqr_tree()
sage: Tree.vertices(sort=True)
[('Q', Multi-graph on 2 vertices)]
sage: G.add_edge(0, 1)
sage: Tree = TriconnectivitySPQR(G).get_spqr_tree()
sage: Tree.vertices(sort=True)
[('P', Multi-graph on 2 vertices)]
```

```python
>>> from sage.all import *
>>> from sage.graphs.connectivity import TriconnectivitySPQR
>>> G = Graph(Integer(2))
>>> for i in range(Integer(3)):
...     G.add_clique([Integer(0), Integer(1), G.add_vertex(), G.add_vertex()])
>>> tric = TriconnectivitySPQR(G)
>>> Tree = tric.get_spqr_tree()
>>> K4 = graphs.CompleteGraph(Integer(4))
>>> all(u[Integer(1)].is_isomorphic(K4) for u in Tree if u[Integer(0)] == R)
True
>>> from sage.graphs.connectivity import spqr_tree_to_graph
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True
```

```python
>>> G = Graph(Integer(2))
>>> for i in range(Integer(3)):
...     G.add_path([Integer(0), G.add_vertex(), G.add_vertex(), Integer(1)])
>>> tric = TriconnectivitySPQR(G)
>>> Tree = tric.get_spqr_tree()
>>> C4 = graphs.CycleGraph(Integer(4))
>>> all(u[Integer(1)].is_isomorphic(C4) for u in Tree if u[Integer(0)] == S)
True
```

```python
>>> G.allow_multiple_edges(True)
>>> G.add_edges(G.edge_iterator())
>>> tric = TriconnectivitySPQR(G)
>>> Tree = tric.get_spqr_tree()
>>> all(u[Integer(1)].is_isomorphic(C4) for u in Tree if u[Integer(0)] == S)
True
```

```python
>>> G = graphs.CycleGraph(Integer(6))
>>> tric = TriconnectivitySPQR(G)
>>> Tree = tric.get_spqr_tree()
>>> Tree.order()
1
```

(continues on next page)
get_triconnected_components()

Return the triconnected components as a list of tuples.

Each component is represented as a tuple of the type of the component and the list of edges of the component.

EXAMPLES:

```sage
def triconnected_components(G):
    # Implementation

# Example usage
G = Graph([(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11)])
print(triconnected_components(G))
```

print_triconnected_components()

Print the type and list of edges of each component.

EXAMPLES:

An example from [Hopcroft1973]:

```sage
def print_triconnected_components(G):
    # Implementation

# Example usage
G = Graph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11)])
print(print_triconnected_components(G))
```
Graph Theory, Release 10.4

(continued from previous page)

```
..: (10, 11), (10, 12))
sage: tric = TriconnectivitySPQR(G)
sage: T = tric.get_spqr_tree()
sage: G.is_isomorphic(spqr_tree_to_graph(T))
True
sage: tric.print_triconnected_components()
Triconnected: [(8, 9, None), (9, 12, None), (9, 11, None), (8, 11, None), (10, 11, None), (9, 10, None), (10, 12, None), (8, 12, 'newVEdge0'), (8, 12, 'newVEdge1')] Bond: [(6, 7, None), (5, 6, None), (7, 5, 'newVEdge2')] Polygon: [(5, 7, 'newVEdge3'), (4, 7, None), (5, 4, 'newVEdge4')] Bond: [(5, 4, 'newVEdge5'), (4, 5, 'newVEdge5'), (4, 5, None)] Polygon: [(4, 5, 'newVEdge5'), (5, 8, None), (1, 4, 'newVEdge9'), (1, 8, 'newVEdge10')] Triconnected: [(1, 2, None), (2, 13, None), (1, 13, None), (3, 13, None), (2, 3, None), (1, 3, 'newVEdge7')] Polygon: [(1, 3, 'newVEdge7'), (3, 4, None), (1, 4, 'newVEdge8')] Bond: [(1, 4, None), (1, 4, 'newVEdge8'), (1, 4, 'newVEdge9')] Bond: [(1, 8, None), (1, 8, 'newVEdge10'), (1, 8, 'newVEdge11')] Polygon: [(8, 12, 'newVEdge1'), (1, 8, 'newVEdge11'), (1, 12, None)]
```

```
sage.graphs.connectivity.blocks_and_cut_vertices(G, algorithm='Tarjan_Boost', sort=False, key=None)

Return the blocks and cut vertices of the graph.

In the case of a digraph, this computation is done on the underlying graph.

A cut vertex is one whose deletion increases the number of connected components. A block is a maximal induced subgraph which itself has no cut vertices. Two distinct blocks cannot overlap in more than a single cut vertex.

INPUT:

- **algorithm** – string (default: "Tarjan_Boost"); the algorithm to use among:
  - "Tarjan_Boost" (default) – Tarjan’s algorithm (Boost implementation)
  - "Tarjan_Sage" – Tarjan’s algorithm (Sage implementation)

- **sort** – boolean (default: False): whether to sort vertices inside the components and the list of cut vertices currently only available for ""Tarjan_Sage"

- **key** – a function (default: None); a function that takes a vertex as its one argument and returns a value that can be used for comparisons in the sorting algorithm (we must have sort=True)

OUTPUT: (B, C), where B is a list of blocks - each is a list of vertices and the blocks are the corresponding induced subgraphs - and C is a list of cut vertices.

ALGORITHM:

We implement the algorithm proposed by Tarjan in [Tarjan72]. The original version is recursive. We emulate the recursion using a stack.

See also:

- blocks_and_cuts_tree()
- sage.graphs.base.boost_graph.blocks_and_cut_vertices()
- is_biconnected()
- bridges()

EXAMPLES:

We construct a trivial example of a graph with one cut vertex:

```python
sage: from sage.graphs.connectivity import blocks_and_cut_vertices
sage: rings = graphs.CycleGraph(10)
sage: rings.merge_vertices([0, 5])
sage: blocks_and_cut_vertices(rings)
([0, 1, 4, 2, 3], [0, 6, 9, 7, 8], [0])
sage: rings.blocks_and_cut_vertices()
([0, 1, 4, 2, 3], [0, 6, 9, 7, 8], [0])
```

```python
sage: B, C = blocks_and_cut_vertices(rings, algorithm="Tarjan_Sage", sort=True)
sage: B, C
([0, 1, 2, 3, 4], [0, 6, 7, 8, 9], [0])
```

```python
sage: B2, C2 = blocks_and_cut_vertices(rings, algorithm="Tarjan_Sage", sort=False)
sage: set(map(set, B)) == set(map(set, B2)) and set(C) == set(C2)
True
```
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> rings.merge_vertices([Integer(0), Integer(5)])
>>> blocks_and_cut_vertices(rings)
([(0, 1, 2, 3), [0, 6, 9, 7, 8]], [0])
>>> rings.blocks_and_cut_vertices()
([(0, 1, 2, 3), [0, 6, 9, 7, 8]], [0])
>>> B, C = blocks_and_cut_vertices(rings, algorithm="Tarjan_Sage", sort=True)
```  
```python
>>> B, C
([(0, 1, 4, 2, 3), [0, 6, 9, 7, 8]], [0])
>>> B2, C2 = blocks_and_cut_vertices(rings, algorithm="Tarjan_Sage", sort=False)
>>> Set(map(Set, B)) == Set(map(Set, B2)) and set(C) == set(C2)
```

The Petersen graph is biconnected, hence has no cut vertices:

```python
sage: blocks_and_cut_vertices(graphs.PetersenGraph())
([(0, 1, 4, 5, 2, 6, 3, 7, 8, 9)], [])
```  
```python
>>> from sage.all import *
```  
```python
>>> blocks_and_cut_vertices(graphs.PetersenGraph())
([(0, 1, 4, 5, 2, 6, 3, 7, 8, 9)], [])
```

Decomposing pathstopairs:

```python
sage: g = graphs.PathGraph(4) + graphs.PathGraph(5)
sage: blocks_and_cut_vertices(g)
([(2, 3), [1, 2], [0, 1], [7, 8], [6, 7], [5, 6], [4, 5]], [1, 2, 5, 6, 7])
```  
```python
>>> from sage.all import *
```  
```python
>>> g = graphs.PathGraph(Integer(4)) + graphs.PathGraph(Integer(5))
>>> blocks_and_cut_vertices(g)
([(2, 3), [1, 2], [0, 1], [7, 8], [6, 7], [5, 6], [4, 5]], [1, 2, 5, 6, 7])
```

A disconnected graph:

```python
sage: g = Graph({1: {2: 28, 3: 10}, 2: {1: 10, 3: 16}, 4: {}, 5: {6: 3, 7: 10, 8: 4}})
sage: blocks_and_cut_vertices(g)
([(1, 2, 3), [5, 6], [5, 7], [5, 8], [4]], [5])
```  
```python
>>> from sage.all import *
```  
```python
>>> g = Graph({Integer(1): {Integer(2): Integer(28), Integer(3): Integer(10)}, ...
... Integer(2): {Integer(1): Integer(10), Integer(3): Integer(16)}, Integer(4): {}, ...
... Integer(5): {Integer(3): Integer(3), Integer(7): Integer(10), Integer(8): ...
... Integer(4)})
```  
```python
>>> blocks_and_cut_vertices(g)
([(1, 2, 3), [5, 6], [5, 7], [5, 8], [4]], [5])
```

A directed graph with Boost's algorithm (Issue #25994):

```python
sage: rings = graphs.CycleGraph(10)
sage: rings.merge_vertices([0, 5])
sage: rings = rings.to_directed()
sage: blocks_and_cut_vertices(rings, algorithm="Tarjan_Boost")
([(0, 1, 4, 2, 3), [0, 6, 9, 7, 8]], [0])
```
sage.graphs.connectivity.blocks_and_cut_vertices \(G\)

Return the blocks-and-cuts tree of \(self\).

This new graph has two different kinds of vertices, some representing the blocks (type B) and some other the cut vertices of the graph (type C).

There is an edge between a vertex \(u\) of type B and a vertex \(v\) of type C if the cut-vertex corresponding to \(v\) is in the block corresponding to \(u\).

The resulting graph is a tree, with the additional characteristic property that the distance between two leaves is even. When \(self\) is not connected, the resulting graph is a forest.

When \(self\) is biconnected, the tree is reduced to a single node of type B.

We referred to [HarPri] and [Gallai] for blocks and cuts tree.

See also:

- \(blocks_and_cut_vertices()\)
- \(is_biconnected()\)

EXAMPLES:

```python
sage: from sage.graphs.connectivity import blocks_and_cuts_tree
sage: T = blocks_and_cuts_tree(graphs.KrackhardtKiteGraph()); T
Graph on 5 vertices
sage: T.is_isomorphic(graphs.PathGraph(5))
True

sage: from sage.graphs.connectivity import blocks_and_cuts_tree
sage: T = graphs.KrackhardtKiteGraph().blocks_and_cuts_tree(); T
Graph on 5 vertices
```

The distance between two leaves is even:

```python
sage: T = blocks_and_cuts_tree(graphs.RandomTree(40))
sage: T.is_tree()
True
sage: leaves = [v for v in T if T.degree(v) == 1]
sage: all(T.distance(u,v) % 2 == 0 for u in leaves for v in leaves)
True
```
```
>>> from sage.all import *
>>> T = blocks_and_cuts_tree(graphs.RandomTree(Integer(40)))
>>> T.is_tree()
True
>>> leaves = [v for v in T if T.degree(v) == Integer(1)]
>>> all(T.distance(u,v) % Integer(2) == Integer(0) for u in leaves for v in leaves)
True
```

The tree of a biconnected graph has a single vertex, of type $B$:

```
sage: T = blocks_and_cuts_tree(graphs.PetersenGraph())
sage: T.vertices(sort=True)
[('B', (0, 1, 4, 5, 2, 6, 3, 7, 8, 9))]
```

`sage.graphs.connectivity.bridges(G, labels=True)`

Return an iterator over the bridges (or cut edges).

A bridge is an edge whose deletion disconnects the undirected graph. A disconnected graph has no bridge.

INPUT:

- `labels` – boolean (default: True); if False, each bridge is a tuple $(u, v)$ of vertices

EXAMPLES:

```
sage: from sage.graphs.connectivity import bridges
sage: from sage.graphs.connectivity import is_connected
sage: g = 2 * graphs.PetersenGraph()
sage: g.add_edge(1, 10)
sage: is_connected(g)
True
sage: list(bridges(g))
[(1, 10, None)]
sage: list(g.bridges())
[(1, 10, None)]
```

Every edge of a tree is a bridge:
sage: g = graphs.RandomTree(100)
sage: sum(1 for _ in g.bridges()) == 99
True

>>> from sage.all import *

>>> g = graphs.RandomTree(Integer(100))

>>> sum(Integer(1) for _ in g.bridges()) == Integer(99)
True

sage.graphs.connectivity.cleave(G, cut_vertices=None, virtual_edges=True, solver=None, verbose=0, integrality_tolerance=0.001)

Return the connected subgraphs separated by the input vertex cut.

Given a connected (multi)graph $G$ and a vertex cut $X$, this method computes the list of subgraphs of $G$ induced by each connected component $c$ of $G \setminus X$ plus $X$, i.e., $G[c \cup X]$.

INPUT:

- $G$ – a Graph.
- cut_vertices – iterable container of vertices (default: None); a set of vertices representing a vertex cut of $G$. If no vertex cut is given, the method will compute one via a call to vertex_connectivity().
- virtual_edges – boolean (default: True); whether to add virtual edges to the sides of the cut or not. A virtual edge is an edge between a pair of vertices of the cut that are not connected by an edge in $G$.
- solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT: A triple $(S, C, f)$, where

- $S$ is a list of the graphs that are sides of the vertex cut.
- $C$ is the graph of the cocycles. For each pair of vertices of the cut, if there exists an edge between them, $C$ has one copy of each edge connecting them in $G$ per sides of the cut plus one extra copy. Furthermore, when virtual_edges == True, if a pair of vertices of the cut is not connected by an edge in $G$, then it has one virtual edge between them per sides of the cut.
- $f$ is the complement of the subgraph of $G$ induced by the vertex cut. Hence, its vertex set is the vertex cut, and its edge set is the set of virtual edges (i.e., edges between pairs of vertices of the cut that are not connected by an edge in $G$). When virtual_edges == False, the edge set is empty.

EXAMPLES:

If there is an edge between cut vertices:
If `virtual_edges == False` and there is an edge between cut vertices:

```python
sage: G.subgraph([0, 1]).complement() == Graph([[0, 1], []])
True
sage: S2, C2, f2 = cleave(G, cut_vertices=[0, 1], virtual_edges=False)
sage: (S1 == S2, C1 == C2, f1 == f2)
(True, True, True)
```
If $G$ is a biconnected multigraph:

```python
sage: G = graphs.CompleteBipartiteGraph(2, 3)
sage: G.add_edge(2, 3)
sage: G.allow_multiple_edges(True)
sage: G.add_edges(G.edge_iterator())
sage: G.add_edges([(0, 1), (0, 1), (0, 1)])
sage: S, C, f = cleave(G, cut_vertices=[0, 1])
sage: for g in S:
 print(g.edges(sort=True, labels=0))
[(0, 1), (0, 1), (0, 1), (0, 2), (0, 2), (0, 3), (0, 3), (1, 2), (1, 2), (1, 3),
 (1, 3), (2, 3), (2, 3)]
```

```python
>>> from sage.all import *

>>> G = graphs.CompleteBipartiteGraph(Integer(2), Integer(3))
>>> G.add_edge(Integer(2), Integer(3))
>>> G.allow_multiple_edges(True)
>>> G.add_edges(G.edge_iterator())
>>> G.add_edges([(Integer(0), Integer(1), (Integer(0), Integer(1)), (Integer(0), Integer(1)), (Integer(0), Integer(1))])

>>> S, C, f = cleave(G, cut_vertices=[Integer(0), Integer(1)])

>>> for g in S:
 print(g.edges(sort=True, labels=Integer(0)))
[(0, 1), (0, 1), (0, 1), (0, 2), (0, 2), (0, 3), (0, 3), (1, 2), (1, 2), (1, 3),
 (1, 3), (2, 3), (2, 3)]
```

`sage.graphs.connectivity.connected_component_containing_vertex(G, vertex, sort=None, key=None)`
Return a list of the vertices connected to vertex.

**INPUT:**

- \( G \) – the input graph
- \( v \) – the vertex to search for
- \( sort \) – boolean (default: None); if True, vertices inside the component are sorted according to the default ordering

As of Issue #35889, this argument must be explicitly specified (unless a key is given); otherwise a warning is printed and sort=True is used. The default will eventually be changed to False.

- \( key \) – a function (default: None); a function that takes a vertex as its one argument and returns a value that can be used for comparisons in the sorting algorithm (we must have sort=True)

**EXAMPLES:**

```python
sage: from sage.graphs.connectivity import connected_component_containing_vertex
sage: G = Graph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: connected_component_containing_vertex(G, 0, sort=True)
[0, 1, 2, 3]
sage: G.connected_component_containing_vertex(0, sort=True)
[0, 1, 2, 3]
sage: D = DiGraph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: connected_component_containing_vertex(D, 0, sort=True)
[0, 1, 2, 3]
sage: connected_component_containing_vertex(D, 0, sort=True, key=lambda x: -x)
[3, 2, 1, 0]
```

```python
>>> from sage.all import *
>>> from sage.graphs.connectivity import connected_component_containing_vertex
>>> G = Graph({Integer(0): [Integer(1), Integer(3)], Integer(1): [Integer(2)],
 Integer(2): [Integer(3)], Integer(4): [Integer(5), Integer(6)], Integer(5):
 [Integer(6)]})
>>> connected_component_containing_vertex(G, Integer(0), sort=True)
[0, 1, 2, 3]
>>> G.connected_component_containing_vertex(Integer(0), sort=True)
[0, 1, 2, 3]
>>> D = DiGraph({Integer(0): [Integer(1), Integer(3)], Integer(1): [Integer(2)],
 Integer(2): [Integer(3)], Integer(4): [Integer(5), Integer(6)], Integer(5):
 [Integer(6)]})
>>> connected_component_containing_vertex(D, Integer(0), sort=True)
[0, 1, 2, 3]
>>> connected_component_containing_vertex(D, Integer(0), sort=True, key=lambda x: -x)
[3, 2, 1, 0]
```

**sage.graphs.connectivity.connected_components \((G, sort=None, key=None)\)**

Return the list of connected components.

This returns a list of lists of vertices, each list representing a connected component. The list is ordered from largest to smallest component.

**INPUT:**

- \( G \) – the input graph
- \( sort \) – boolean (default: None); if True, vertices inside each component are sorted according to the default ordering
As of Issue #35889, this argument must be explicitly specified (unless a key is given); otherwise a warning is printed and sort=True is used. The default will eventually be changed to False.

- **key** – a function (default: None); a function that takes a vertex as its one argument and returns a value that can be used for comparisons in the sorting algorithm (we must have sort=True)

### EXAMPLES:

```python
sage: from sage.graphs.connectivity import connected_components
sage: G = Graph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: connected_components(G, sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
sage: G.connected_components(sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
sage: D = DiGraph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
```

```python
sage: connected_components(D, sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
sage: connected_components(D, sort=True, key=lambda x: -x)
[[3, 2, 1, 0], [6, 5, 4]]
```

```python
>>> from sage.all import *
>>> from sage.graphs.connectivity import connected_components
>>> G = Graph({Integer(0): [Integer(1), Integer(3)], Integer(1): [Integer(2)], Integer(2): [Integer(3)], Integer(4): [Integer(5), Integer(6)], Integer(5): [Integer(6)]})
```

```python
>>> connected_components(G, sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
```

```python
>>> G.connected_components(sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
```

```python
>>> D = DiGraph({Integer(0): [Integer(1), Integer(3)], Integer(1): [Integer(2)], Integer(2): [Integer(3)], Integer(4): [Integer(5), Integer(6)], Integer(5): [Integer(6)]})
```

```python
>>> connected_components(D, sort=True)
[[0, 1, 2, 3], [4, 5, 6]]
```

```python
>>> connected_components(D, sort=True, key=lambda x: -x)
[[3, 2, 1, 0], [6, 5, 4]]
```

### sage.graphs.connectivity.connected_components_number(G)

Return the number of connected components.

**INPUT:**

- **G** – the input graph

**EXAMPLES:**

```python
sage: from sage.graphs.connectivity import connected_components_number
sage: G = Graph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
```

```python
sage: connected_components_number(G)
2
```

```python
sage: G.connected_components_number()
2
```

```python
sage: D = DiGraph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
```

```python
sage: connected_components_number(D)
2
```

```python
>>> from sage.all import *
>>> from sage.graphs.connectivity import connected_components_number
```

(continues on next page)
Graph Theory, Release 10.4

(continued from previous page)

```python
>>> G = Graph({Integer(0): [Integer(1), Integer(3)], Integer(1): [Integer(2)], ... Integer(2): [Integer(3)], Integer(4): [Integer(5), Integer(6)], Integer(5): ... Integer(6)])
>>> connected_components_number(G)
2
>>> G.connected_components_number()
2
>>> D = DiGraph({Integer(0): [Integer(1), Integer(3)], Integer(1): [Integer(2)], ... Integer(2): [Integer(3)], Integer(4): [Integer(5), Integer(6)], Integer(5): ... Integer(6)})
>>> connected_components_number(D)
2
```

`sage.graphs.connectivity.connected_components_sizes(G)`

Return the sizes of the connected components as a list.

The list is sorted from largest to lower values.

EXAMPLES:

```
sage: from sage.graphs.connectivity import connected_components_sizes
sage: for x in graphs(3):
 : print(connected_components_sizes(x))
[1, 1, 1]
[2, 1]
[3]
[3]
```

```
sage: for x in graphs(3):
 : print(x.connected_components_sizes())
[1, 1, 1]
[2, 1]
[3]
[3]
```

```
>>> from sage.all import *
>>> from sage.graphs.connectivity import connected_components_sizes
>>> for x in graphs(Integer(3)):
... print(connected_components_sizes(x))
[1, 1, 1]
[2, 1]
[3]
[3]
>>> for x in graphs(Integer(3)):
... print(x.connected_components_sizes())
[1, 1, 1]
[2, 1]
[3]
[3]
```

`sage.graphs.connectivity.connected_components_subgraphs(G)`

Return a list of connected components as graph objects.

EXAMPLES:

```
sage: from sage.graphs.connectivity import connected_components_subgraphs
sage: G = Graph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: L = connected_components_subgraphs(G)
```

(continues on next page)
Sage: graphs_list.show_graphs(L)  #...
  → needs sage.plot
sage: D = DiGraph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: L = connected_components_subgraphs(D)
sage: graphs_list.show_graphs(L)  #...
  → needs sage.plot
sage: L = D.connected_components_subgraphs()
sage: graphs_list.show_graphs(L)  #...
  → needs sage.plot

>>> from sage.all import *
>>> from sage.graphs.connectivity import connected_components_subgraphs

>>> G = Graph({Integer(0): [Integer(1), Integer(3)], Integer(1): [Integer(2)],...
  → Integer(2): [Integer(3)], Integer(4): [Integer(5), Integer(6)], Integer(5):...
  → [Integer(6)])
>>> L = connected_components_subgraphs(G)
>>> graphs_list.show_graphs(L)  #...
  → needs sage.plot
>>> D = DiGraph({Integer(0): [Integer(1), Integer(3)], Integer(1): [Integer(2)],...
  → Integer(2): [Integer(3)], Integer(4): [Integer(5), Integer(6)], Integer(5):...
  → [Integer(6)])
>>> L = connected_components_subgraphs(D)
>>> graphs_list.show_graphs(L)  #...
  → needs sage.plot
>>> L = D.connected_components_subgraphs()
>>> graphs_list.show_graphs(L)  #...
  → needs sage.plot

sage.graphs.connectivity.edge_connectivity(G, value_only=True, implementation=None,
  use_edge_labels=False, vertices=False, solver=None, verbose=0, integrality_tolerance=0.001)

Return the edge connectivity of the graph.

For more information, see the Wikipedia article Connectivity_(graph_theory).

Note: When the graph is a directed graph, this method actually computes the strong connectivity, (i.e. a directed graph is strongly k-connected if there are k disjoint paths between any two vertices u, v). If you do not want to consider strong connectivity, the best is probably to convert your DiGraph object to a Graph object, and compute the connectivity of this other graph.

INPUT:

• G – the input Sage (Di)Graph
• value_only – boolean (default: True)
  – When set to True (default), only the value is returned.
  – When set to False, both the value and a minimum vertex cut are returned.
• implementation – string (default: None); selects an implementation:
  – None (default) – selects the best implementation available
  – "boost" – use the Boost graph library (which is much more efficient). It is not available when edge_labels=True, and it is unreliable for directed graphs (see Issue #18753).
"Sage" – use Sage's implementation based on integer linear programming

- `use_edge_labels` – boolean (default: False)
  - When set to True, computes a weighted minimum cut where each edge has a weight defined by its label. (If an edge has no label, 1 is assumed.) Implies `boost=False`.
  - When set to False, each edge has weight 1.

- `vertices` – boolean (default: False)
  - When set to True, also returns the two sets of vertices that are disconnected by the cut. Implies `value_only=False`.

- `solver` – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.

- `verbose` – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

- `integrality_tolerance` – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

**EXAMPLES:**

A basic application on the PappusGraph:

```python
sage: from sage.graphs.connectivity import edge_connectivity
sage: g = graphs.PappusGraph()
sage: edge_connectivity(g)
3
sage: g.edge_connectivity()
3
```

The edge connectivity of a complete graph is its minimum degree, and one of the two parts of the bipartition is reduced to only one vertex. The graph of the cut edges is isomorphic to a Star graph:

```python
sage: g = graphs.CompleteGraph(5)
sage: [value, edges, [setA, setB]] = edge_connectivity(g, vertices=True)
sage: value
4
sage: len(setA) == 1 or len(setB) == 1
True
sage: cut = Graph()
sage: cut.add_edges(edges)
sage: cut.is_isomorphic(graphs.StarGraph(4))
True
```

```python
>>> from sage.all import *

>>> g = graphs.CompleteGraph(Integer(5))

>>> [value, edges, [setA, setB]] = edge_connectivity(g, vertices=True)
(continues on next page)
```
Even if obviously in any graph we know that the edge connectivity is less than the minimum degree of the graph:

```sage
g = graphs.RandomGNP(10,.3)
min(g.degree()) >= edge_connectivity(g)
True
```

If we build a tree then assign to its edges a random value, the minimum cut will be the edge with minimum value:

```sage
tree = graphs.RandomTree(10)
for u,v in tree.edge_iterator(labels=None):
 tree.set_edge_label(u, v, random())
minimum = min(tree.edge_labels())
edge_connectivity(tree, value_only=False, use_edge_labels=True)
```

When `value_only=True` and `implementation="sage"`, this function is optimized for small connectivity values and does not need to build a linear program.

It is the case for graphs which are not connected

```sage
g = 2 * graphs.PetersenGraph()
edge_connectivity(g, implementation="sage")
0.0
```

```
>> value
4
>>> len(setA) == Integer(1) or len(setB) == Integer(1)
True
>>> cut = Graph()
>>> cut.add_edges(edges)
>>> cut.is_isomorphic(graphs.StarGraph(Integer(4)))
True
```
For directed graphs, the strong connectivity is tested through the dedicated function:

```python
sage: g = digraphs.ButterflyGraph(3)
sage: edge_connectivity(g, implementation="sage")
0.0
```

We check that the result with Boost is the same as the result without Boost:

```python
sage: g = graphs.RandomGNP(15, .3)
sage: (edge_connectivity(g, implementation="boost")
 == edge_connectivity(g, implementation="sage"))
True
```

Boost interface also works with directed graphs:

```python
sage: edge_connectivity(digraphs.Circuit(10), implementation="boost",
 vertices=True)
[1, [(0, 1)], [{0}, {1, 2, 3, 4, 5, 6, 7, 8, 9}]]
```

However, the Boost algorithm is not reliable if the input is directed (see Issue #18753):

```python
sage: g = digraphs.Path(3)
sage: edge_connectivity(g)
0.0
sage: g.add_edge(1, 0)
sage: edge_connectivity(g)
1
```

(continues on next page)
sage.graphs.connectivity.is_connected(G)

Check whether the (di)graph is connected.

Note that in a graph, path connected is equivalent to connected.

INPUT:

• G – the input graph

See also:

• is_biconnected()

EXAMPLES:

sage: from sage.graphs.connectivity import is_connected
sage: G = Graph({0: [1, 2], 1: [2], 3: [4, 5], 4: [5]})
sage: is_connected(G)
False
sage: G.is_connected()
False
sage: G.add_edge(0, 3)
sage: is_connected(G)
True
sage: D = DiGraph({0: [1, 2], 1: [2], 3: [4, 5], 4: [5]})
sage: is_connected(D)
False
sage: D.add_edge(0, 3)
sage: is_connected(D)
True
sage: D = DiGraph({1: [0], 2: [0]})
sage: is_connected(D)
True

(continues on next page)
sage.graphs.connectivity.is_cut_edge(G, u=None, v=None, label=None)

Returns True if the input edge is a cut-edge or a bridge.

A cut edge (or bridge) is an edge that when removed increases the number of connected components. This function works with simple graphs as well as graphs with loops and multiedges. In a digraph, a cut edge is an edge that when removed increases the number of (weakly) connected components.

INPUT: The following forms are accepted
- is_cut_edge(G, 1, 2)
- is_cut_edge(G, (1, 2))
- is_cut_edge(G, 1, 2, 'label')
- is_cut_edge(G, (1, 2, 'label'))

OUTPUT:
- Returns True if (u,v) is a cut edge, False otherwise

EXAMPLES:

```
sage: from sage.graphs.connectivity import is_cut_edge
sage: G = graphs.CompleteGraph(4)
sage: is_cut_edge(G, 0, 2)
False
sage: G = Graph([[0,1],[0,2],[3,4],[4,5],[3,5]])
```

```
sage: is_cut_edge(G, (0,1))
True
```

```
sage: G = digraphs.Circuit(5)
sage: is_cut_edge(G, (0,1))
False
```

```
sage: G = graphs.CompleteGraph(6)
sage: is_cut_edge(G, (0,7))
Traceback (most recent call last):
```
sage.graphs.connectivity.is_cut_vertex(G, u, weak=False)

Check whether the input vertex is a cut-vertex.

A vertex is a cut-vertex if its removal from the (di)graph increases the number of (strongly) connected components. Isolated vertices or leafs are not cut-vertices. This function works with simple graphs as well as graphs with loops and multiple edges.

INPUT:

• G – a Sage (Di)Graph
• u – a vertex
• weak – boolean (default: False); whether the connectivity of directed graphs is to be taken in the weak sense, that is ignoring edges orientations

OUTPUT:

Return True if u is a cut-vertex, and False otherwise.

EXAMPLES:

Giving a LollipopGraph(4,2), that is a complete graph with 4 vertices with a pending edge:
Comparing the weak and strong connectivity of a digraph:

```python
sage: from sage.graphs.connectivity import is_strongly_connected
sage: D = digraphs.Circuit(6)
sage: is_strongly_connected(D)
True
sage: is_cut_vertex(D, 2)
True
sage: is_cut_vertex(D, 2, weak=True)
False
```

Giving a vertex that is not in the graph:

```python
sage: G = graphs.CompleteGraph(4)
sage: is_cut_vertex(G, 7)
Traceback (most recent call last):
... ValueError: vertex (7) is not a vertex of the graph
```

```
>>> from sage.all import *
>>> from sage.graphs.connectivity import is_strongly_connected

>>> D = digraphs.Circuit(Integer(6))

>>> is_strongly_connected(D)
True

>>> is_cut_vertex(D, Integer(2))
True

>>> is_cut_vertex(D, Integer(2), weak=True)
False
```

```
>>> from sage.all import *
>>> from sage.graphs.connectivity import is_strongly_connected

>>> G = graphs.CompleteGraph(Integer(4))

>>> is_cut_vertex(G, Integer(7))
Traceback (most recent call last):
... ValueError: vertex (7) is not a vertex of the graph

```

```
sage.graphs.connectivity.is_strongly_connected(G)

Check whether the current DiGraph is strongly connected.
```
EXAMPLES:

The circuit is obviously strongly connected:

```
sage: from sage.graphs.connectivity import is_strongly_connected
sage: g = digraphs.Circuit(5)
True
sage: g.is_strongly_connected()
True
```

``` >>> from sage.all import * >>> from sage.graphs.connectivity import is_strongly_connected >>> g = digraphs.Circuit(Integer(5)) >>> is_strongly_connected(g) True >>> g.is_strongly_connected() True ```

But a transitive triangle is not:

``` sage: g = DiGraph({0: [1, 2], 1: [2]}) sage: is_strongly_connected(g) False ```

``` >>> from sage.all import * >>> g = DiGraph({Integer(0): [Integer(1), Integer(2)], Integer(1): [Integer(2)]}) >>> is_strongly_connected(g) False ```

`sage.graphs.connectivity.is_triconnected(G)`

Check whether the graph is triconnected.

A triconnected graph is a connected graph on 3 or more vertices that is not broken into disconnected pieces by deleting any pair of vertices.

EXAMPLES:

The Petersen graph is triconnected:

```
sage: G = graphs.PetersenGraph()
sage: G.is_triconnected()
True
```

``` >>> from sage.all import * >>> G = graphs.PetersenGraph() >>> G.is_triconnected() True ```

But a 2D grid is not:

```
sage: G = graphs.Grid2dGraph(3, 3)
sage: G.is_triconnected()
False
```

``` >>> from sage.all import * >>> G = graphs.Grid2dGraph(Integer(3), Integer(3)) ```
By convention, a cycle of order 3 is triconnected:

```python
sage: G = graphs.CycleGraph(3)
sage: G.is_triconnected()
True
```

But cycles of order 4 and more are not:

```python
sage: [graphs.CycleGraph(i).is_triconnected() for i in range(4, 8)]
[False, False, False, False]
```

Comparing different methods on random graphs that are not always triconnected:

```python
sage: G = graphs.RandomBarabasiAlbert(50, 3)
# needs networkx
sage: G.is_triconnected() == G.vertex_connectivity(k=3)
# needs networkx
True
```

See also:

- `is_connected()`
- `is_biconnected()`
- `spqr_tree()`
- `Wikipedia article SPQR_tree`

```
sage.graphs.connectivity.spqr_tree(G, algorithm='Hopcroft_Tarjan', solver=None, verbose=0, integrality_tolerance=0.001)
```

Return an SPQR-tree representing the triconnected components of the graph.

An SPQR-tree is a tree data structure used to represent the triconnected components of a biconnected (multi)graph and the 2-vertex cuts separating them. A node of a SPQR-tree, and the graph associated with it, can be one of the following four types:
• "S" – the associated graph is a cycle with at least three vertices. "S" stands for series.

• "P" – the associated graph is a dipole graph, a multigraph with two vertices and three or more edges. "P" stands for parallel.

• "Q" – the associated graph has a single real edge. This trivial case is necessary to handle the graph that has only one edge.

• "R" – the associated graph is a 3-connected graph that is not a cycle or dipole. "R" stands for rigid.

This method decomposes a biconnected graph into cycles, cocycles, and 3-connected blocks summed over cocycles, and arranges them as an SPQR-tree. More precisely, it splits the graph at each of its 2-vertex cuts, giving a unique decomposition into 3-connected blocks, cycles and cocycles. The cocycles are dipole graphs with one edge per real edge between the included vertices and one additional (virtual) edge per connected component resulting from deletion of the vertices in the cut. See the Wikipedia article SPQR_tree.

INPUT:

• G – the input graph

 algorithm – string (default: "Hopcroft_Tarjan"); the algorithm to use among:

 - "Hopcroft_Tarjan" (default) – use the algorithm proposed by Hopcroft and Tarjan in [Hopcroft1973] and later corrected by Gutwenger and Mutzel in [Gut2001]. See TriconnectivitySPQR.

 - "cleave" – using method cleave()

 solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

 verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

 integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

OUTPUT: SPQR-tree a tree whose vertices are labeled with the block’s type and the subgraph of three-blocks in the decomposition.

EXAMPLES:

```python
sage: from sage.graphs.connectivity import spqr_tree
sage: G = Graph(2)
for i in range(3):
    G.add_clique([0, 1, G.add_vertex(), G.add_vertex()])
sage: Tree = spqr_tree(G)
sage: Tree.order()
4
sage: K4 = graphs.CompleteGraph(4)
sage: all(u[1].is_isomorphic(K4) for u in Tree if u[0] == 'R')
True
sage: from sage.graphs.connectivity import spqr_tree_to_graph
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
True
sage: G = Graph(2)
for i in range(3):
    G.add_path([0, G.add_vertex(), G.add_vertex(), 1])
sage: Tree = spqr_tree(G)
sage: Tree.order()
4
```
sage: C4 = graphs.CycleGraph(4)
sage: all(u[1].is_isomorphic(C4) for u in Tree if u[0] == 'S')
True
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
True
sage: G.allow_multiple_edges(True)

sage: G.add_edges(G.edge_iterator())

sage: Tree = spqr_tree(G)
sage: Tree.order()
13

sage: all(u[1].is_isomorphic(C4) for u in Tree if u[0] == 'S')
True
sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
True

sage: G = graphs.CycleGraph(6)
sage: Tree = spqr_tree(G)
sage: Tree.order()
1

sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
True
sage: G.add_edge(0, 3)

sage: Tree = spqr_tree(G)
sage: Tree.order()
3

sage: G.is_isomorphic(spqr_tree_to_graph(Tree))
True

sage: G = Graph(['L1CG(0@?GB0Mw?)'])
sage: T = spqr_tree(G, algorithm="Hopcroft_Tarjan")

sage: G.is_isomorphic(spqr_tree_to_graph(T))
True

sage: T2 = spqr_tree(G, algorithm='cleave')
needs sage.numerical.mip
sage: G.is_isomorphic(spqr_tree_to_graph(T2))
needs sage.numerical.mip
True

sage: G = Graph([(0, 1)], multiedges=True)

sage: T = spqr_tree(G, algorithm='cleave')
needs sage.numerical.mip
sage: T.vertices(sort=True)
needs sage.numerical.mip
[('Q', Multi-graph on 2 vertices)]

sage: G.is_isomorphic(spqr_tree_to_graph(T))
needs sage.numerical.mip
True

sage: T = spqr_tree(G, algorithm='Hopcroft_Tarjan')

sage: T.vertices(sort=True)
[('Q', Multi-graph on 2 vertices)]

sage: G.add_edge(0, 1)

sage: spqr_tree(G, algorithm='cleave').vertices(sort=True)
needs sage.numerical.mip
[('P', Multi-graph on 2 vertices)]

sage: from collections import Counter

(continues on next page)
sage: G = graphs.PetersenGraph()
sage: T = G.spqr_tree(algorithm="Hopcroft_Tarjan")
sage: Counter(u[0] for u in T)
Counter({R: 1})
sage: T = G.spqr_tree(algorithm="cleave") # needs sage.numerical.mip
sage: Counter(u[0] for u in T)
Counter({R: 1})
sage: for u,v in list(G.edges(labels=False, sort=False)):
 ...: G.add_path([u, G.add_vertex(), G.add_vertex(), v])
sage: T = G.spqr_tree(algorithm="Hopcroft_Tarjan")
sage: sorted(Counter(u[0] for u in T).items())
[(P, 15), (R, 1), (S, 15)]
sage: T = G.spqr_tree(algorithm="cleave") # long time # needs sage.numerical.mip
sage: sorted(Counter(u[0] for u in T).items()) # long time # needs sage.numerical.mip
[(P, 60), (R, 1), (S, 75)]

>>> from sage.all import *
>>> from sage.graphs.connectivity import spqr_tree
>>> G = Graph(Integer(2))
>>> for i in range(Integer(3)):
... G.add_clique([Integer(0), Integer(1), G.add_vertex(), G.add_vertex()])
>>> Tree = spqr_tree(G)
>>> Tree.order()
4
>>> K4 = graphs.CompleteGraph(Integer(4))
>>> all(u[Integer(1)].is_isomorphic(K4) for u in Tree if u[Integer(0)] == 'R')
True
>>> from sage.graphs.connectivity import spqr_tree_to_graph
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True

>>> G = Graph(Integer(2))
>>> for i in range(Integer(3)):
... G.add_path([Integer(0), G.add_vertex(), G.add_vertex(), Integer(1)])
>>> Tree = spqr_tree(G)
>>> Tree.order()
4
>>> C4 = graphs.CycleGraph(Integer(4))
>>> all(u[Integer(1)].is_isomorphic(C4) for u in Tree if u[Integer(0)] == 'S')
True
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True

5.41. Connectivity related functions 1929
>>> G.allow_multiple_edges(True)
>>> G.add_edges(G.edge_iterator())
>>> Tree = spqr_tree(G)
>>> Tree.order()
13
>>> all(u[Integer(1)].is_isomorphic(C4) for u in Tree if u[Integer(0)] == 'S')
True
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True

>>> G = graphs.CycleGraph(Integer(6))
>>> Tree = spqr_tree(G)
>>> Tree.order()
1
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True
>>> G.add_edge(Integer(0), Integer(3))
>>> Tree = spqr_tree(G)
>>> Tree.order()
3
>>> G.is_isomorphic(spqr_tree_to_graph(Tree))
True

>>> G = Graph('L1CGQ@?GBoMw?')
>>> T = spqr_tree(G, algorithm="Hopcroft_Tarjan")
>>> G.is_isomorphic(spqr_tree_to_graph(T))
True
>>> T2 = spqr_tree(G, algorithm='cleave')
needs sage.numerical.mip
>>> G.is_isomorphic(spqr_tree_to_graph(T2))
needs sage.numerical.mip
True

>>> G = Graph([(Integer(0), Integer(1))], multiedges=True)
>>> T = spqr_tree(G, algorithm='cleave')
needs sage.numerical.mip
>>> T.vertices(sort=True)
needs sage.numerical.mip
[('Q', Multi-graph on 2 vertices)]
>>> G.is_isomorphic(spqr_tree_to_graph(T))
needs sage.numerical.mip
True
>>> T = spqr_tree(G, algorithm='Hopcroft_Tarjan')
>>> T.vertices(sort=True)
[('Q', Multi-graph on 2 vertices)]
>>> G.add_edge(Integer(0), Integer(1))
>>> spqr_tree(G, algorithm='cleave').vertices(sort=True)
needs sage.numerical.mip
[('P', Multi-graph on 2 vertices)]

>>> from collections import Counter
>>> G = graphs.PetersenGraph()
>>> T = G.spqr_tree(algorithm="Hopcroft_Tarjan")
>>> Counter(u[Integer(0)] for u in T)
Counter({'R': 1})
>>> T = G.spqr_tree(algorithm="cleave")
Graph Theory, Release 10.4

sage.graphs.connectivity.spqr_tree_to_graph(T)

Return the graph represented by the SPQR-tree T.

The main purpose of this method is to test spqr_tree().

INPUT:

- T – a SPQR tree as returned by spqr_tree().

OUTPUT: a (multi) graph

EXAMPLES:

Wikipedia article SPQR_tree reference paper example:

```python
from sage.graphs.connectivity import spqr_tree
from sage.graphs.connectivity import spqr_tree_to_graph
from sage.graphs.connectivity import *

G = Graph([(1, 2), (1, 4), (1, 8), (1, 12), (3, 4), (2, 3), ...
    (2, 13), (3, 13), (4, 5), (4, 7), (5, 6), (5, 8), (5, 7), (6, 7),
    (8, 11), (8, 9), (8, 12), (9, 10), (9, 11), (9, 12), (10, 12)])
T = spqr_tree(G)
H = spqr_tree_to_graph(T)
H.is_isomorphic(G)
True
```

(continues on next page)
A small multigraph

```python
sage: G = Graph([(0, 2), (0, 2), (1, 3), (2, 3)], multiedges=True)
sage: for i in range(3):
    ...:     G.add_clique([0, 1, G.add_vertex(), G.add_vertex()])
sage: for i in range(3):
    ...:     G.add_clique([2, 3, G.add_vertex(), G.add_vertex()])
sage: T = spqr_tree(G)
sage: H = spqr_tree_to_graph(T)
sage: H.is_isomorphic(G)
True
```

`sage.graphs.connectivity.strong_articulation_points(G)`

Return the strong articulation points of this digraph.

A vertex is a strong articulation point if its deletion increases the number of strongly connected components. This method implements the algorithm described in [ILS2012]. The time complexity is dominated by the time complexity of the immediate dominators finding algorithm.

OUTPUT: The list of strong articulation points.

EXAMPLES:

Two cliques sharing a vertex:

```python
from sage.graphs.connectivity import *
D = digraphs.Complete(4)
D.add_clique([3, 4, 5, 6])
strong_articulation_points(D)
[3]
```

(continues on next page)
Two cliques connected by some arcs:

```python
sage: D = digraphs.Complete(4) * 2
sage: D.add_edges([(0, 4), (7, 3)])
```

```python
sage: sorted(strong_articulation_points(D))
[0, 3, 4, 7]
```

```python
sage: D.add_edge(1, 5)
```

```python
sage: sorted(strong_articulation_points(D))
[3, 7]
```

```python
sage: D.add_edge(6, 2)
```

```python
sage: strong_articulation_points(D)
[]
```

```python
from sage.all import *
```

```python
D = digraphs.Complete(Integer(4)) * Integer(2)
```

```python
D.add_edges([(Integer(0), Integer(4)), (Integer(7), Integer(3))])
```

```python
sorted(strong_articulation_points(D))
[0, 3, 4, 7]
```

```python
D.add_edge(Integer(1), Integer(5))
```

```python
sorted(strong_articulation_points(D))
[3, 7]
```

```python
D.add_edge(Integer(6), Integer(2))
```

```python
strong_articulation_points(D)
[]
```

See also:

- `strongly_connected_components()`
- `dominator_tree()`

`sage.graphs.connectivity.strongly_connected_component_containing_vertex(G, v)`

Return the strongly connected component containing a given vertex

INPUT:

- `G` - the input DiGraph
- `v` - a vertex

EXAMPLES:

In the symmetric digraph of a graph, the strongly connected components are the connected components:
```python
>>> from sage.all import *
>>> from sage.graphs.connectivity import strongly_connected_component_containing_vertex
>>> g = graphs.PetersenGraph()
>>> d = DiGraph(g)
>>> strongly_connected_component_containing_vertex(d, Integer(0))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> d.strongly_connected_component_containing_vertex(Integer(0))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: g = DiGraph([(0, 1), (1, 0), (1, 2), (2, 3), (3, 2)])
sage: strongly_connected_component_containing_vertex(g, 0)
[0, 1]
>>> from sage.all import *
>>> from sage.graphs.connectivity import strongly_connected_components_digraph
>>> g = DiGraph([(Integer(0), Integer(1)), (Integer(1), Integer(0)), (Integer(1), Integer(2)), (Integer(2), Integer(3)), (Integer(3), Integer(2))])
>>> strongly_connected_component_containing_vertex(g, Integer(0))
[0, 1]
```

`sage.graphs.connectivity.strongly_connected_components_digraph(G, keep_labels=False)`

Return the digraph of the strongly connected components

The digraph of the strongly connected components of a graph G has a vertex per strongly connected component included in G. There is an edge from a component C_1 to a component C_2 if there is an edge in G from a vertex $u_1 \in C_1$ to a vertex $u_2 \in C_2$.

INPUT:

- `G` – the input DiGraph
- `keep_labels` – boolean (default: False); when `keep_labels=True`, the resulting digraph has an edge from a component C_i to a component C_j for each edge in G from a vertex $u_i \in C_i$ to a vertex $u_j \in C_j$. Hence the resulting digraph may have loops and multiple edges. However, edges in the result with same source, target, and label are not duplicated (see examples below). When `keep_labels=False`, the return digraph is simple, so without loops nor multiple edges, and edges are unlabelled.

EXAMPLES:

Such a digraph is always acyclic:

```python
sage: from sage.graphs.connectivity import strongly_connected_components_digraph
sage: g = digraphs.RandomDirectedGNP(15, .1)
sage: scc_digraph = strongly_connected_components_digraph(g)
True
sage: scc_digraph = g.strongly_connected_components_digraph()
True
```

(continues on next page)
>> scc_digraph.is_directed_acyclic()
True

The vertices of the digraph of strongly connected components are exactly the strongly connected components:

```python
sage: g = digraphs.ButterflyGraph(2)
sage: scc_digraph = strongly_connected_components_digraph(g)
sage: g.is_directed_acyclic()
True
sage: V_scc = list(scc_digraph)
sage: all(Set(scc) in V_scc for scc in g.strongly_connected_components())
True
```

```python
>>> from sage.all import *

>>> g = digraphs.ButterflyGraph(Integer(2))
>>> scc_digraph = strongly_connected_components_digraph(g)
>>> g.is_directed_acyclic()
True
>>> V_scc = list(scc_digraph)
>>> all(Set(scc) in V_scc for scc in g.strongly_connected_components())
True
```

The following digraph has three strongly connected components, and the digraph of those is a TransitiveTournament():

```python
sage: g = DiGraph({0: {1: "0-12", 2: "0-12", 3: "0-3"}, 1: {2: "12", 3: "23"}})
sage: g.order(), g.size()
(4, 7)
sage: scc_digraph = strongly_connected_components_digraph(g, keep_labels=True)
sage: scc_digraph.order(), scc_digraph.size()
(3, 6)
sage: set(g.edge_labels()) == set(scc_digraph.edge_labels())
True
```

By default, the labels are discarded, and the result has no loops nor multiple edges. If keep_labels is True, then the labels are kept, and the result is a multi digraph, possibly with multiple edges and loops. However, edges in the result with same source, target, and label are not duplicated (see the edges from 0 to the strongly connected component \{1, 2\} below):

```python
sage: g = DiGraph({0: {1: "0-12", 2: "0-12", 3: "0-3"}, 1: {2: "1-2", 3: "1-3"},
                2: {1: "2-1", 3: "2-3"}})
sage: g.order(), g.size()
(4, 7)
sage: scc_digraph = strongly_connected_components_digraph(g, keep_labels=True)
sage: (scc_digraph.order(), scc_digraph.size())
(3, 6)
sage: set(g.edge_labels()) == set(scc_digraph.edge_labels())
True
```
```python
>>> from sage.all import *

>>> g = DiGraph({Integer(0): {Integer(1): "0-12", Integer(2): "0-12", Integer(3): "0-3"},
               {Integer(1): "2-1", Integer(3): "2-3"}})

>>> g.order(), g.size()
(4, 7)

>>> scc_digraph = strongly_connected_components_digraph(g, keep_labels=True)

>>> (scc_digraph.order(), scc_digraph.size())
(3, 6)

>>> set(g.edge_labels()) == set(scc_digraph.edge_labels())
True
```

```python
sage.graphs.connectivity.strongly_connected_components_subgraphs(G)
```

Return the strongly connected components as a list of subgraphs.

EXAMPLES:

In the symmetric digraph of a graph, the strongly connected components are the connected components:

```python
sage: from sage.graphs.connectivity import strongly_connected_components_subgraphs
sage: g = graphs.PetersenGraph()
sage: d = DiGraph(g)
sage: strongly_connected_components_subgraphs(d)
[Subgraph of (Petersen graph): Digraph on 10 vertices]

sage: d.strongly_connected_components_subgraphs()
[Subgraph of (Petersen graph): Digraph on 10 vertices]
```

```python
sage: g = DiGraph([(0, 1), (1, 0), (1, 2), (2, 3), (3, 2)])

sage: strongly_connected_components_subgraphs(g)
[Subgraph of (): Digraph on 2 vertices, Subgraph of (): Digraph on 2 vertices]
```

```python
sage: g = DiGraph([(Integer(0), Integer(1)), (Integer(1), Integer(0)), (Integer(1),
               Integer(2)), (Integer(2), Integer(3)), (Integer(3), Integer(2))])

sage: strongly_connected_components_subgraphs(g)
[Subgraph of (): Digraph on 2 vertices, Subgraph of (): Digraph on 2 vertices]
```

```python
sage.graphs.connectivity.vertex_connectivity(G, value_only=True, sets=False, k=None, solver=None, verbose=0, integrality_tolerance=0.001)
```

Return the vertex connectivity of the graph.

For more information, see the Wikipedia article Connectivity_(graph_theory) and the Wikipedia article K-vertex-connected_graph.

Note:
• When the graph is directed, this method actually computes the strong connectivity, (i.e. a directed graph is strongly k-connected if there are k vertex disjoint paths between any two vertices u, v). If you do not want to consider strong connectivity, the best is probably to convert your DiGraph object to a Graph object, and compute the connectivity of this other graph.

• By convention, a complete graph on n vertices is n − 1 connected. In this case, no certificate can be given as there is no pair of vertices split by a cut of order k − 1. For this reason, the certificates returned in this situation are empty.

INPUT:

• G – the input Sage (Di)Graph

 • value_only – boolean (default: True)
 – When set to True (default), only the value is returned.
 – When set to False, both the value and a minimum vertex cut are returned.

 • sets – boolean (default: False); whether to also return the two sets of vertices that are disconnected by the cut (implies value_only=False)

 • k – integer (default: None); when specified, check if the vertex connectivity of the (di)graph is larger or equal to k. The method thus outputs a boolean only.

 • solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.

 • verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.

 • integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:

A basic application on a PappusGraph:

```
sage: from sage.graphs.connectivity import vertex_connectivity
sage: g = graphs.PappusGraph()
sage: vertex_connectivity(g)
˓→ # needs sage.numerical.mip
3
sage: g.vertex_connectivity()
˓→ # needs sage.numerical.mip
3
```

```
>>> from sage.all import *
>>> from sage.graphs.connectivity import vertex_connectivity
>>> g = graphs.PappusGraph()
>>> vertex_connectivity(g)  # needs sage.numerical.mip
3
>>> g.vertex_connectivity()  # needs sage.numerical.mip
3
```

In a grid, the vertex connectivity is equal to the minimum degree, in which case one of the two sets is of cardinality 1:
A vertex cut in a tree is any internal vertex:

```python
sage: tree = graphs.RandomTree(15)
sage: val, [cut_vertex] = vertex_connectivity(tree, value_only=False)
    " needs sage.numerical.mip
sage: tree.degree(cut_vertex) > 1
    " needs sage.numerical.mip
True
```

When `value_only = True`, this function is optimized for small connectivity values and does not need to build a linear program.

It is the case for connected graphs which are not connected:

```python
sage: g = 2 * graphs.PetersenGraph()
sage: vertex_connectivity(g)
    " needs sage.numerical.mip
0
```

Or if they are just 1-connected:

```python
sage: g = graphs.PathGraph(10)
sage: vertex_connectivity(g)
    " needs sage.numerical.mip
1
```
For directed graphs, the strong connectivity is tested through the dedicated function:

```python
sage: g = digraphs.ButterflyGraph(3)
sage: vertex_connectivity(g)
# needs sage.numerical.mip
0
```

A complete graph on 10 vertices is 9-connected:

```python
sage: g = graphs.CompleteGraph(10)
sage: vertex_connectivity(g)
# needs sage.numerical.mip
9
```

A complete digraph on 10 vertices is 9-connected:

```python
sage: g = DiGraph(graphs.CompleteGraph(10))
sage: vertex_connectivity(g)
# needs sage.numerical.mip
9
```

When parameter k is set, we only check for the existence of a vertex cut of order at least k:

```python
sage: g = graphs.PappusGraph()
sage: vertex_connectivity(g, k=3)
# needs sage.numerical.mip
True
sage: vertex_connectivity(g, k=4)
# needs sage.numerical.mip
False
```
5.42 Edge connectivity

This module implements methods for computing the edge-connectivity of graphs and digraphs. It also implements methods to extract k edge-disjoint spanning trees from a $2k$ edge-connected graph or a k edge-connected digraph.

Todo:

- Implement the tree-packing algorithms proposed in [Gabow1995] and [BHKP2008]
- Extend to digraphs with multiple edges
- Extend to weighted digraphs

```python
class sage.graphs.edge_connectivity.GabowEdgeConnectivity
    Bases: object
    Gabow's algorithm for finding the edge connectivity of digraphs.
    This class implements the algorithm proposed in [Gabow1995] for finding the edge connectivity of a directed graph and $k$ edge disjoint spanning trees if the digraph is $k$ edge connected.

    Warning: Multiple edges are currently not supported. The current implementation act as if the digraph is simple and so the return results might not be correct. We therefore raise an error if the digraph has multiple edges.

    INPUT:
    - $D$ – a DiGraph

    EXAMPLES:
    A random $d$-regular digraph is $d$-edge-connected:
```

```
GraphTheory,Release10.4

>>> from sage.all import *
>>> from sage.graphs.edge_connectivity import GabowEdgeConnectivity
>>> D = DiGraph(graphs.RandomRegular(Integer(6), Integer(50)))  # needs networkx
>>> while not D.is_strongly_connected():  # needs networkx
...    D = DiGraph(graphs.RandomRegular(Integer(6), Integer(50)))
>>> GabowEdgeConnectivity(D).edge_connectivity()  # needs networkx
6

A complete digraph with $n$ vertices is $n - 1$-edge-connected:

```
sage: from sage.graphs.edge_connectivity import GabowEdgeConnectivity
sage: D = DiGraph(digraphs.Complete(10))
sage: GabowEdgeConnectivity(D, use_rec=True).edge_connectivity()
9
```

Check that we get the same result when with and without the DFS-based speed-up initialization proposed in [GKLP2021]:

```
sage: # needs networkx
sage: G = graphs.RandomBarabasiAlbert(100, 2)
sage: D = DiGraph(G)
sage: ec1 = GabowEdgeConnectivity(D,
 ...: dfs_preprocessing=False).edge_connectivity()
sage: ec2 = GabowEdgeConnectivity(D,
 ...: dfs_preprocessing=True).edge_connectivity()
sage: ec3 = GabowEdgeConnectivity(D, dfs_preprocessing=True,
 ...: use_rec=True).edge_connectivity()
sage: ec1 == ec2 and ec2 == ec3
True
```

```
G

edge_connectivity()
 Return the edge connectivity of the digraph.

EXAMPLES:
```
sage: from sage.graphs.edge_connectivity import GabowEdgeConnectivity
sage: D = digraphs.Complete(5)
sage: GabowEdgeConnectivity(D).edge_connectivity()
4

edge_disjoint_spanning_trees()
Iterator over the edge disjoint spanning trees.

EXAMPLES:

sage: from sage.graphs.edge_connectivity import GabowEdgeConnectivity
sage: D = digraphs.Complete(5)
sage: GabowEdgeConnectivity(D).edge_disjoint_spanning_trees()
Traceback (most recent call last):
... 
NotImplementedError: this method has not been implemented yet

5.43 Domination

This module implements methods related to the notion of domination in graphs, and more precisely:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dominating_set()</td>
<td>Return a minimum distance-( k ) dominating set of the graph.</td>
</tr>
<tr>
<td>dominating_sets()</td>
<td>Return an iterator over the minimum distance-( k ) dominating sets of the graph.</td>
</tr>
<tr>
<td>minimal_dominating_sets()</td>
<td>Return an iterator over the minimal dominating sets of a graph.</td>
</tr>
<tr>
<td>is_dominating()</td>
<td>Check whether a set of vertices dominates a graph.</td>
</tr>
<tr>
<td>is_redundant()</td>
<td>Check whether a set of vertices has redundant vertices (with respect to domination).</td>
</tr>
<tr>
<td>private_neighbors()</td>
<td>Return the private neighbors of a vertex with respect to other vertices.</td>
</tr>
<tr>
<td>greedy_dominating_set()</td>
<td>Return a greedy distance-( k ) dominating set of the graph.</td>
</tr>
<tr>
<td>maximum_leaf_number()</td>
<td>Return the maximum leaf number of the graph.</td>
</tr>
</tbody>
</table>

EXAMPLES:

We compute the size of a minimum dominating set of the Petersen graph:
Graph Theory, Release 10.4

We enumerate the minimal dominating sets of the 5-star graph:

\[
\text{sage: } g = \text{graphs.StarGraph}(5) \\
\text{sage: } \text{list}(g.\text{minimal_dominating_sets}()) \\
[\{0\}, \{1, 2, 3, 4, 5\}]
\]

Now only those that dominate the middle vertex:

\[
\text{sage: } \text{list}(g.\text{minimal_dominating_sets([0])}) \\
[\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}]
\]

Now the minimal dominating sets of the 5-path graph:

\[
\text{sage: } g = \text{graphs.PathGraph}(5) \\
\text{sage: } \text{list}(g.\text{minimal_dominating_sets}()) \\
[\{0, 2, 4\}, \{1, 4\}, \{0, 3\}, \{1, 3\}]
\]

We count the minimal dominating sets of the Petersen graph:

\[
\text{sage: } \text{sum}(1 \text{ for } _\_ \text{ in } \text{graphs.PetersenGraph()}.\text{minimal_dominating_sets}()) \\
27
\]

5.43. Domination 1943


## 5.43.1 Methods

```python
dominating_set(g, k, independent=False, connected=False, total=False, value_only=False, solver=None, verbose=None, integrality_tolerance=0)
```

Return a minimum distance-\(k\) dominating set of the graph.

A minimum dominating set \(S\) of a graph \(G\) is a set of its vertices of minimal cardinality such that any vertex of \(G\) is in \(S\) or has one of its neighbors in \(S\). See the Wikipedia article Dominating_set.

A minimum distance-\(k\) dominating set is a set \(S\) of vertices of \(G\) of minimal cardinality such that any vertex of \(G\) is in \(S\) or at distance at most \(k\) from a vertex in \(S\). A distance-0 dominating set is the set of vertices itself, and when \(k\) is the radius of the graph, any vertex dominates all the other vertices.

As an optimization problem, it can be expressed as follows, where \(N^k(u)\) denotes the set of vertices at distance at most \(k\) from \(u\) (the set of neighbors when \(k = 1\)):

Minimize : \(\sum_{v \in G} b_v\)

Such that : \(\forall v \in G, b_v + \sum_{u \in N^k(v)} b_u \geq 1\)

\(\forall x \in G, b_x\) is a binary variable

**INPUT:**

- \(k\) – a non-negative integer (default: 1); the domination distance
- `independent` – boolean (default: False); when True, computes a minimum independent dominating set, that is a minimum dominating set that is also an independent set (see also `independent_set()`)
- `total` – boolean (default: False); when True, computes a total dominating set (see the See the Wikipedia article Dominating_set)
- `connected` – boolean (default: False); when True, computes a connected dominating set (see Wikipedia article Connected_dominating_set)
- `value_only` – boolean (default: False); whether to only return the cardinality of the computed dominating set, or to return its list of vertices (default)
- `solver` – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method `solve` of the class `MixedIntegerLinearProgram`.
- `verbose` – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
- `integrality_tolerance` – float; parameter for use with MILP solvers over an inexact base ring; see `MixedIntegerLinearProgram.get_values()`.

**EXAMPLES:**

A basic illustration on a PappusGraph:

```python
g = graphs.PappusGraph() #...
g.dominating_set(value_only=True) # needs sage.numerical.mip
```

```python
>>> from sage.all import *
>>> g = graphs.PappusGraph()
```

(continues on next page)
If we build a graph from two disjoint stars, then link their centers we will find a difference between the cardinality of an independent set and a stable independent set:

```python
sage: g = 2 * graphs.StarGraph(5)
sage: g.add_edge(0, 6)
sage: len(g.dominating_set()) # needs sage.numerical.mip
2
sage: len(g.dominating_set(independent=True)) # needs sage.numerical.mip
6
```

The total dominating set of the Petersen graph has cardinality 4:

```python
sage: G = graphs.PetersenGraph()
sage: G.dominating_set(total=True, value_only=True) # needs sage.numerical.mip
4
```

The dominating set is calculated for both the directed and undirected graphs (modification introduced in Issue #17905):

```python
sage: g = digraphs.Path(3)
sage: g.dominating_set(value_only=True) # needs sage.numerical.mip
2
sage: g = graphs.PathGraph(3)
sage: g.dominating_set(value_only=True) # needs sage.numerical.mip
1
```

(continues on next page)
Cardinality of distance-$k$ dominating sets:

```python
>>> G = graphs.PetersenGraph()
>>> [G.dominating_set(k=k, value_only=True) for k in range(G.radius() + 1)] # needs sage.numerical.mip
[10, 3, 1]
```

```python
>>> from sage.all import *
```

```python
>>> G = graphs.PetersenGraph()
>>> [G.dominating_set(k=k, value_only=True) for k in range(G.radius() + 1)] # needs sage.numerical.mip
[5, 2, 1]
```

```
sage.graphs.domination.dominating_sets(g, k, independent=1, total=False, connected=False, solver=False, verbose=None, integrality_tolerance=0)
```

Return an iterator over the minimum distance-$k$ dominating sets of the graph.

A minimum dominating set $S$ of a graph $G$ is a set of its vertices of minimal cardinality such that any vertex of $G$ is in $S$ or has one of its neighbors in $S$. See the Wikipedia article Dominating set.

A minimum distance-$k$ dominating set is a set $S$ of vertices of $G$ of minimal cardinality such that any vertex of $G$ is in $S$ or at distance at most $k$ from a vertex in $S$. A distance-0 dominating set is the set of vertices itself, and when $k$ is the radius of the graph, any vertex dominates all the other vertices.

As an optimization problem, it can be expressed as follows, where $N^k(u)$ denotes the set of vertices at distance at most $k$ from $u$ (the set of neighbors when $k = 1$):

Minimize : $\sum_{v \in G} b_v$

Such that : $\forall v \in G, b_v + \sum_{u \in N^k(v)} b_u \geq 1$

$\forall x \in G, b_x$ is a binary variable

We use constraints generation to iterate over the minimum distance-$k$ dominating sets. That is, after reporting a solution, we add a constraint to discard it and solve the problem again until no more solution can be found.

INPUT:

- $k$ – a non-negative integer (default: 1); the domination distance
- independent – boolean (default: False); when True, computes minimum independent dominating sets, that is minimum dominating sets that are also independent sets (see also `independent_set()`)

1946 Chapter 5. Libraries of algorithms
• total – boolean (default: False); when True, computes total dominating sets (see the Wikipedia article Dominating_set)
• connected – boolean (default: False); when True, computes connected dominating sets (see Wikipedia article Connected_dominating_set)
• solver – string (default: None); specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
• verbose – integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.
• integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values().

EXAMPLES:
Number of distance-\(k\) dominating sets of a Path graph of order 10:

```python
sage: g = graphs.PathGraph(10)
sage: [sum(1 for _ in g.dominating_sets(k=k)) for k in range(11)]
[1, 13, 1, 13, 25, 2, 4, 6, 8, 10, 10]
```

If we build a graph from two disjoint stars, then link their centers we will find a difference between the cardinality of an independent set and a stable independent set:

```python
sage: g = 2 * graphs.StarGraph(5)
sage: g.add_edge(0, 6)
sage: [sum(1 for _ in g.dominating_sets(k=k)) for k in range(11)]
[1, 1, 2, 12, 12, 12, 12, 12, 12, 12, 12]
```

The total dominating set of the Petersen graph has cardinality 4:

```python
sage: G = graphs.PetersenGraph()
sage: G.dominating_set(total=True, value_only=True)
4
sage: sorted(G.dominating_sets(k=1))
[[0, 2, 6],
 [0, 3, 9],
 [0, 7, 8],
 [1, 3, 7],
 [1, 4, 5],
 ...]
```

(continues on next page)
\[\{1, 8, 9\},
\{2, 4, 8\},
\{2, 5, 9\},
\{3, 5, 6\},
\{4, 6, 7\}\]

```python
from sage.all import *

G = graphs.PetersenGraph()
G.dominating_set(total=True, value_only=True) # needs sage.numerical.mip

G.dominating_sets(k=Integer(1)) # needs sage.numerical.mip
```

Independent distance-\(k\) dominating sets of a Path graph:

```python
sage: G = graphs.PathGraph(6)
sage: sorted(G.dominating_sets(k=1, independent=True))
[[1, 4]]
sage: sorted(G.dominating_sets(k=2, independent=True))
[[0, 3], [0, 4], [0, 5], [1, 3], [1, 4], [1, 5], [2, 4], [2, 5]]
sage: sorted(G.dominating_sets(k=3, independent=True))
[[2], [3]]
```

The dominating set is calculated for both the directed and undirected graphs (modification introduced in Issue #17905):

```python
sage: g = digraphs.Path(3)
sage: g.dominating_set(value_only=True)
2
sage: list(g.dominating_sets())
[[0], [1], [0, 2]]
sage: list(g.dominating_sets(k=2))
[[0]]
```
Minimum connected dominating sets of the Petersen graph:

```
sage: G = graphs.PetersenGraph()
sage: G.dominating_set(total=True, value_only=True) # needs sage.numerical.mip
4
sage: sorted(G.dominating_sets(k=Integer(1), connected=True)) # needs sage.numerical.mip
[[0, 1, 2, 6],
 [0, 1, 4, 5],
 [0, 3, 4, 9],
 [0, 5, 7, 8],
 [1, 2, 3, 7],
 [1, 6, 8, 9],
 [2, 3, 4, 8],
 [2, 5, 7, 9],
 [3, 5, 6, 8],
 [4, 6, 7, 9]]
```
Subgraph induced by the dominating set is connected:

```python
sage: G = graphs.PetersenGraph()
sage: all(G.subgraph(vertices=dom).is_connected()
....: for dom in G.dominating_set(k=1, connected=True))
True

>>> from sage.all import *
>>> G = graphs.PetersenGraph()
... for dom in G.dominating_set(k=Integer(1), connected=True))
True
```

Minimum distance-k connected dominating sets of the Tietze graph:

```python
sage: G = graphs.TietzeGraph()
sage: sorted(G.dominating_sets(k=2, connected=True))
[[0, 9], [1, 0], [2, 3], [4, 3], [5, 6], [7, 6], [8, 0], [10, 3], [11, 6]]
sage: sorted(G.dominating_sets(k=3, connected=True))
[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]]
```

```python
>>> from sage.all import *
>>> G = graphs.TietzeGraph()
... sorted(G.dominating_sets(k=Integer(2), connected=True))
[[0, 9], [1, 0], [2, 3], [4, 3], [5, 6], [7, 6], [8, 0], [10, 3], [11, 6]]
>>> sorted(G.dominating_sets(k=Integer(3), connected=True))
[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]]
```

```
sage.graphs.domination.greedy_dominating_set(G, k=1, vertices=None, ordering=None, return_sets=False, closest=False)
```

Return a greedy distance-\(k\) dominating set of the graph.

A distance-\(k\) dominating set \(S\) of a graph \(G\) is a set of its vertices of minimal cardinality such that any vertex of \(G\) is in \(S\) or is at distance at most \(k\) from a vertex in \(S\). See the Wikipedia article Dominating set.

When \(G\) is directed, vertex \(u\) can be a dominator of vertex \(v\) if there is a directed path of length at most \(k\) from \(u\) to \(v\).

This method implements a greedy heuristic to find a minimal dominatic set.

**INPUT:**

- \(G\) – a Graph
- \(k\) – integer (default: 1); the domination distance to consider
- \(\text{vertices}\) – iterable container of vertices (default: None); when specified, return a dominating set of the specified vertices only
- \(\text{ordering}\) – string (default: None); specify the order in which to consider the vertices
  - None - if \(\text{vertices}\) is None, then consider the vertices in the order given by \(\text{list}(G)\). Otherwise, consider the vertices in the order of iteration of \(\text{vertices}\).
  - "degree_min" – consider the vertices by increasing degree
  - "degree_max" – consider the vertices by decreasing degree
• \texttt{return\_sets} – boolean (default: \texttt{False}); whether to return the vertices of the dominating set only (default), or a dictionary mapping each vertex of the dominating set to the set of vertices it dominates.

• \texttt{closest} – boolean (default: \texttt{False}); whether to attach a vertex to its closest dominator or not. This parameter is use only when \texttt{return\_sets} \texttt{is} \texttt{True}.

**EXAMPLES:**

Dominating sets of a path:

```
sage: from sage.graphs.domination import greedy_dominating_set
greedy_dominating_set(G, ordering=None)

sage: sorted(greedy_dominating_set(G, ordering="degree_min"))
[0, 2, 4]
sage: sorted(greedy_dominating_set(G, ordering="degree_max"))
[1, 3]
sage: sorted(greedy_dominating_set(G, k=2, ordering=None))
[0, 3]
sage: sorted(greedy_dominating_set(G, k=2, ordering="degree_min"))
[0, 4]
sage: sorted(greedy_dominating_set(G, k=2, ordering="degree_max"))
[1, 4]
sage: greedy_dominating_set(G, k=3, ordering="degree_min", return_sets=True, closest=False)
{0: {0, 1, 2, 3}, 4: {4}}
sage: greedy_dominating_set(G, k=3, ordering="degree_min", return_sets=True, closest=True)
{0: {0, 2, 3}, 4: {1, 4}}
```

Asking for a dominating set of a subset of vertices:

```
sage: from sage.graphs.domination import greedy_dominating_set
sage: from sage.graphs.domination import is_dominating
sage: G = graphs.PetersenGraph()
sage: vertices = {0, 1, 2, 3, 4, 5}
```
Influence of the ordering of the vertices on the result:

```
sage: from sage.graphs.domination import greedy_dominating_set
sage: G = graphs.StarGraph(4)
sage: greedy_dominating_set(G, vertices=[0, 1, 2, 3, 4])
[0]
sage: sorted(greedy_dominating_set(G, vertices=[1, 2, 3, 4, 0]))
[1, 2, 3, 4]
```

Dominating set of a directed graph:

```
sage: from sage.graphs.domination import greedy_dominating_set
sage: D = digraphs.Path(3)
sage: sorted(greedy_dominating_set(D, vertices=[0, 1, 2]))
[0, 2]
```
sage.graphs.domination.is_dominating(G, dom, focus=None)

Check whether dom is a dominating set of G.

We say that a set \( D \) of vertices of a graph \( G \) dominates a set \( S \) if every vertex of \( S \) either belongs to \( D \) or is adjacent to a vertex of \( D \). Also, \( D \) is a dominating set of \( G \) if it dominates \( V(G) \).

INPUT:
- \( \text{dom} \) – iterable of vertices of \( G \); the vertices of the supposed dominating set.
- \( \text{focus} \) – iterable of vertices of \( G \) (default: None); if specified, this method checks instead if \( \text{dom} \) dominates the vertices in focus.

EXAMPLES:

```python
sage: g = graphs.CycleGraph(5)
sage: g.is_dominating([0, 1], [4, 2])
True
sage: g.is_dominating([0, 1])
False
```

sage.graphs.domination.is_redundant(G, dom, focus=None)

Check whether \( \text{dom} \) has redundant vertices.

For a graph \( G \) and sets \( D \) and \( S \) of vertices, we say that a vertex \( v \in D \) is redundant in \( S \) if \( v \) has no private neighbor with respect to \( D \) in \( S \). In other words, there is no vertex in \( S \) that is dominated by \( v \) but not by \( D \setminus \{v\} \).

INPUT:
- \( \text{dom} \) – iterable of vertices of \( G \); where we look for redundant vertices.
- \( \text{focus} \) – iterable of vertices of \( G \) (default: None); if specified, this method checks instead whether \( \text{dom} \) has a redundant vertex in focus.

Warning: The assumption is made that \( \text{focus} \) (if provided) does not contain repeated vertices.

EXAMPLES:

```python
>>> from sage.all import *
>>> g = graphs.CycleGraph(Integer(5))
>>> g.is_dominating([Integer(0), Integer(1)], [Integer(4), Integer(2)])
True
>>> g.is_dominating([Integer(0), Integer(1)])
False
```
sage.graphs.dominion.*

Return the maximum leaf number of the graph.

The maximum leaf number is the maximum possible number of leaves of a spanning tree of $G$. This is also the cardinality of the complement of a minimum connected dominating set. See the Wikipedia article Connected_dominating_set.

The MLN of a graph with less than 2 vertices is 0, while the MLN of a connected graph with 2 or 3 vertices is 1 or 2 respectively.

INPUT:

- $G$ – a Graph
- solver – string (default: None): specify a Mixed Integer Linear Programming (MILP) solver to be used. If set to None, the default one is used. For more information on MILP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
- verbose – integer (default: 0): sets the level of verbosity. Set to 0 by default, which means quiet.
- integrality_tolerance – float; parameter for use with MILP solvers over an inexact base ring; see MixedIntegerLinearProgram.get_values.

EXAMPLES:

Empty graph:

```
sage: G = Graph()
sage: G.maximum_leaf_number()
0
```

Petersen graph:

```
sage: G = graphs.PetersenGraph()
sage: G.maximum_leaf_number()
6
```

sage.graphs.dominion.*

Return an iterator over the minimal dominating sets of a graph.

```
sage: G = graphs.PetersenGraph()
sage: G.minimal_dominating_sets() # doctest: +NORMALIZE_WHITESPACE
[[0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9]]
```
INPUT:

- \( G \) – a graph.
- \( \text{to\_dominate} \) – vertex iterable or None (default: None); the set of vertices to be dominated.
- \( \text{work\_on\_copy} \) – boolean (default: True); whether or not to work on a copy of the input graph; if set to False, the input graph will be modified (relabeled).
- \( k \) – a non-negative integer (default: 1); the domination distance

OUTPUT:

An iterator over the inclusion-minimal sets of vertices of \( G \). If \( \text{to\_dominate} \) is provided, return an iterator over the inclusion-minimal sets of vertices that dominate the vertices of \( \text{to\_dominate} \).

ALGORITHM: The algorithm described in [BDHPR2019].

AUTHOR: Jean-Florent Raymond (2019-03-04) – initial version.

EXAMPLES:

```python
sage: G = graphs.ButterflyGraph()
sage: ll = list(G.minimal_dominating_sets())
sage: pp = [{0, 1}, {1, 3}, {0, 2}, {2, 3}, {4}]
sage: len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True

sage: ll = list(G.minimal_dominating_sets([0, 3]))
sage: pp = [{0}, {3}, {4}]
sage: len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True

sage: ll = list(G.minimal_dominating_sets([4]))
sage: pp = [{4}, {0}, {1}, {2}, {3}]
sage: len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True

>>> from sage.all import *
>>> G = graphs.ButterflyGraph()
>>> ll = list(G.minimal_dominating_sets())
>>> pp = [{Integer(0), Integer(1)}, {Integer(1), Integer(3)}, {Integer(0), Integer(2), Integer(3)}, {Integer(4)}]
>>> len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True

>>> ll = list(G.minimal_dominating_sets([Integer(0), Integer(3)]))
>>> pp = [{Integer(0)}, {Integer(1)}, {Integer(3)}]
>>> len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True

>>> ll = list(G.minimal_dominating_sets([Integer(4)]))
>>> pp = [{Integer(4)}]
>>> len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True

>>> ll = list(graphs.PetersenGraph().minimal_dominating_sets())
>>> pp = [{0, 2, 6},
.....: {0, 9, 3},
.....: {0, 8, 7},
```

(continues on next page)
\[ \{1, 3, 7\}, \{1, 4, 5\}, \{8, 1, 9\}, \{8, 2, 4\}, \{9, 2, 5\}, \{3, 5, 6\}, \{4, 6, 7\}, \{0, 8, 2, 9\}, \{0, 3, 6, 7\}, \{1, 3, 5, 9\}, \{8, 1, 4, 7\}, \{2, 4, 5, 6\}, \{0, 1, 2, 3, 4\}, \{0, 1, 2, 5, 7\}, \{0, 1, 4, 6, 9\}, \{0, 1, 5, 6, 8\}, \{0, 1, 4, 5, 7\}, \{0, 8, 3, 4, 5\}, \{0, 9, 4, 5, 7\}, \{8, 1, 2, 3, 6\}, \{1, 2, 9, 6, 7\}, \{8, 2, 3, 5, 7\}, \{8, 9, 3, 4, 6\}, \{8, 9, 5, 6, 7\}\]

```
sage: len(ll) == len(pp) and all(x in pp for x in ll) and all(x in ll for x in pp)
True
```
Listing minimal distance-$k$ dominating sets:

```
sage: G = graphs.Grid2dGraph(2, 3)
sage: list(G.minimal_dominating_sets(k=0))
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

sage: list(G.minimal_dominating_sets(k=1))
[(0, 0), (0, 2), (1, 1),
 (0, 1), (1, 0),
 (0, 0), (0, 1),
 (0, 2), (1, 0),
 (0, 0), (1, 0),
 (1, 0), (1, 1),
 (1, 2)]

sage: list(G.minimal_dominating_sets(k=2))
[(0, 0), (1, 2),
 (0, 2), (1, 2),
 (1, 0), (1, 2),
 (0, 1), (1, 0),
 (0, 0), (0, 2),
 (0, 2), (1, 0),
 (0, 0), (1, 0),
 (1, 0), (1, 1),
 (1, 2)]

sage: list(G.minimal_dominating_sets(k=3))
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]
```

When parameter work_on_copy is False, the input graph is modified (reabeled):

```
>>> from sage.all import *

>>> G = graphs.Grid2dGraph(Integer(2), Integer(3))
>>> list(G.minimal_dominating_sets(k=Integer(0)))
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

>>> list(G.minimal_dominating_sets(k=Integer(1)))
[(0, 0), (0, 2), (1, 1),
 (0, 1), (1, 0),
 (0, 0), (0, 1),
 (0, 2), (1, 0),
 (0, 0), (1, 2),
 (0, 1), (1, 0),
 (1, 0), (1, 1),
 (1, 2)]

>>> list(G.minimal_dominating_sets(k=Integer(2)))
[(0, 0), (1, 2),
 (0, 2), (1, 2),
 (1, 0), (1, 2),
 (0, 0), (0, 1),
 (0, 2), (1, 0),
 (0, 0), (1, 0),
 (1, 1)]

>>> list(G.minimal_dominating_sets(k=Integer(3)))
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]
```

5.43. Domination
sage: set(G) == {'A', 'B'}
True
sage: _ = list(G.minimal_dominating_sets(work_on_copy=False))

sage: set(G) == {'A', 'B'}
False
sage: set(G) == {0, 1}
True

>>> from sage.all import *
>>> G = Graph([('A', 'B')])

>>> _ = list(G.minimal_dominating_sets(work_on_copy=True))

>>> set(G) == {'A', 'B'}
True

>>> _ = list(G.minimal_dominating_sets(work_on_copy=False))

>>> set(G) == {'A', 'B'}
False

>>> set(G) == {Integer(0), Integer(1)}
True

sage.graphs.domination.private_neighbors(G, vertex, dom)

Return the private neighbors of a vertex with respect to other vertices.

A private neighbor of a vertex \(v\) with respect to a vertex subset \(D\) is a closed neighbor of \(v\) that is not dominated by a vertex of \(D \setminus \{v\}\).

**INPUT:**

- vertex – a vertex of \(G\).
- dom – iterable of vertices of \(G\); the vertices possibly stealing private neighbors from vertex.

**OUTPUT:**

Return the closed neighbors of vertex that are not closed neighbors of any other vertex of dom.

**EXAMPLES:**

sage: g = graphs.PathGraph(5)
sage: list(g.private_neighbors(1, [1, 3, 4]))
[1, 0]

sage: list(g.private_neighbors(1, [3, 4]))
[1, 0]

sage: list(g.private_neighbors(1, [3, 4, 0]))
[]

>>> from sage.all import *
>>> g = graphs.PathGraph(Integer(5))

>>> list(g.private_neighbors(Integer(1), [Integer(1), Integer(3), Integer(4)]))
[1, 0]

>>> list(g.private_neighbors(Integer(1), [Integer(3), Integer(4)]))
[1, 0]

>>> list(g.private_neighbors(Integer(1), [Integer(3), Integer(4), Integer(0)]))
[]
INDICES AND TABLES

- Index
- Module Index
- Search Page
C
sage.combinat.designs.incidence_structures, 1509

g
sage.graphs.asteroidal_triples, 1565
sage.graphs.base.boost_graph, 1486
sage.graphs.base.c_graph, 1374
sage.graphs.base.dense_graph, 1443
sage.graphs.base.graph_backends, 1479
sage.graphs.base.overview, 1373
sage.graphs.base.sparse_graph, 1431
sage.graphs.base.static_dense_graph, 1452
sage.graphs.base.static_sparse_backend, 1470
sage.graphs.base.static_sparse_graph, 1462
sage.graphs.bipartite_graph, 732
sage.graphs.centrality, 1561
sage.graphs.cliquer, 1558
sage.graphs.cographs, 1569
sage.graphs.comparability, 1574
sage.graphs.connectivity, 1897
sage.graphs.convexity_properties, 1779
sage.graphs.digraph, 663
sage.graphs.digraph_generators, 1042
sage.graphs.distances_all_pairs, 1788
sage.graphs.domination, 1942
sage.graphs.edge_connectivity, 1940
sage.graphs.generators.basic, 1218
sage.graphs.generators.chessboard, 1242
sage.graphs.generators.classical_geometries, 1146
sage.graphs.generators.distance_regular, 1125
sage.graphs.generators.families, 1162
sage.graphs.generators.intersection, 1249
sage.graphs.generators.platonic_solids, 1258
sage.graphs.generators.random, 1264
sage.graphs.generators.smallgraphs, 1288
sage.graphs.generators.world_map, 1357
sage.graphs.generic_graph, 1
sage.graphs.generic_graph_pyx, 1883
sage.graphs.genus, 1620
sage.graphs.graph, 437
sage.graphs.graph_coloring, 1539
sage.graphs.graph_database, 1065
sage.graphs.graph_decompositions.bandwidth, 1731
sage.graphs.graph_decompositions.clique_separators, 1771
sage.graphs.graph_decompositions.cutwidth, 1734
sage.graphs.graph_decompositions.graph_products, 1740
sage.graphs.graph_decompositions.modular_decomposition, 1747
sage.graphs.graph_decompositions.rankwidth, 1728
sage.graphs.graph_decompositions.tree_decomposition, 1691
sage.graphs.graph_decompositions.vertex_separation, 1709
sage.graphs.graph_editor, 1825
sage.graphs.graph_generators, 773
sage.graphs.graph_generators_pyx, 1064
sage.graphs.graph_input, 1832
sage.graphs.graph_latex, 1804
sage.graphs.graph_list, 1827
sage.graphs.graph_plot, 1649
sage.graphs.graph_plot_js, 1688
sage.graphs.hyperbolicity, 1842
sage.graphs.hypergraph_generators, 1505
sage.graphs.independent_sets, 1567
sage.graphs.isgci, 1360
sage.graphs.line_graph, 1583
sage.graphs.lovasz_theta, 1624
sage.graphs.matchpoly, 1615
sage.graphs.orientations, 1894
sage.graphs.partial_cube, 1857
sage.graphs.path Enumeration, 1860

1963
sage.graphs.planarity, 1630
sage.graphs.pq_trees, 1605
sage.graphs.schnyder, 1625
sage.graphs.spanning_tree, 1588
sage.graphs.strongly_regular_db, 1088
sage.graphs.traversals, 1631
sage.graphs.trees, 1614
sage.graphs.tutte_polynomial, 1849
sage.graphs.views, 762
sage.graphs.weakly_chordal, 1785
Non-alphabetical

__eq__() (sage.graphs.generic_graph.GenericGraph method), 8

acyclic_edge_coloring() (in module sage.graphs.graph_coloring), 1540
acyclic_orientations() (in module sage.graphs.orientations), 1894
acyclic_orientations() (sage.graphs.graph.Graph method), 467
add_arc() (sage.graphs.base.c_graph.CGraph method), 1375
add_arc_label() (sage.graphs.base.sparse_graph.SparseGraph method), 1436
add_child() (sage.graphs.cographs.CoTree method), 1570
add_clique() (sage.graphs.generic_graph.GenericGraph method), 10
add_cycle() (sage.graphs.generic_graph.GenericGraph method), 12
add_edge() (sage.graphs.base.c_graph.CGraphBackend method), 1399
add_edge() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1480
add_edge() (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1473
add_edge() (sage.graphs.bipartite_graph.BipartiteGraph method), 740
add_edge() (sage.graphs.bipartite_graph.BipartiteGraph method), 740
add_edges() (sage.graphs.generic_graph.GenericGraph method), 14
add_path() (sage.graphs.generic_graph.GenericGraph method), 15
add_vertex() (sage.graphs.base.c_graph.CGraph method), 1376
add_vertex() (sage.graphs.base.c_graph.CGraphBackend method), 1400
add_vertex() (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1473
add_vertex() (sage.graphs.base.static_sparse_backend.StaticSparseCGraph method), 1478
add_vertex() (sage.graphs.bipartite_graph.BipartiteGraph method), 742
add_vertex() (sage.graphs.generic_graph.GenericGraph method), 16
add_vertices() (sage.graphs.base.c_graph.CGraph method), 1378
add_vertices() (sage.graphs.base.c_graph.CGraphBackend method), 1401
add_vertices() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1481
add_vertices() (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1474
add_vertices() (sage.graphs.bipartite_graph.BipartiteGraph method), 743
add_vertices() (sage.graphs.generic_graph.GenericGraph method), 17
adjacency_matrix() (sage.graphs.generic_graph.GenericGraph method), 17

AffineOrthogonalPolarGraph() (in module sage.graphs.generators.classical_geometries), 1146
AffineOrthogonalPolarGraph() (sage.graphs.graph_generators.GraphGenerators static method), 783
AfricaMap() (in module sage.graphs.generators.world_map), 1357
AfricaMap() (sage.graphs.graph_generators.Graph-
BuckyBall() (in module sage.graphs.generators.smallgraphs), 1297
BuckyBall() (sage.graphs.graph_generators.GraphGenerators static method), 801
BuckeyBall() (in module sage.graphs.generators.basic), 1218
BuckeyBall() (sage.graphs.graph_generators.GraphGenerators static method), 802
ButterflyGraph() (in module sage.graphs.generators.basic), 1220
ButterflyGraph() (sage.graphs.digraph_generators.DiGraphGenerators method), 1046
ButterflyGraph() (sage.graphs.graph_generators.GraphGenerators static method), 804
c_graph() (sage.graphs.base.c_graph.CGraphBackend method), 1406
CaiFurerImmermanGraph() (in module sage.graphs.generators.families), 1166
CaiFurerImmermanGraph() (sage.graphs.graph_generators.GraphGenerators static method), 805
CameronGraph() (in module sage.graphs.generators.smallgraphs), 1297
CameronGraph() (sage.graphs.graph_generators.GraphGenerators static method), 807
canaug_traverse_edge() (in module sage.graphs.graph_generators), 1039
canaug_traverse_vert() (in module sage.graphs.graph_generators), 1040
canonical_label() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1514
canonical_label() (sage.graphs.bipartite_graph.BipartiteGraph method), 744
canonical_label() (sage.graphs.generic_graph.GenercGraph method), 61
cardinality() (sage.graphs.generic_graph_pyx.SubgraphSearch method), 1884
cardinality() (sage.graphs.independent_sets.IndependentSets method), 1569
cardinality() (sage.graphs.pq_trees.P method), 1606
cardinality() (sage.graphs.pq_trees.Q method), 1611
cartesian_product() (sage.graphs.generic_graph.GenercGraph method), 64
categorical_product() (sage.graphs.generic_graph.GenercGraph method), 64
Cell1120() (in module sage.graphs.generators.smallgraphs), 1298
Cell1120() (sage.graphs.graph_generators.GraphGenerators static method), 807
Cell1600() (in module sage.graphs.generators.smallgraphs), 1298
Cell1600() (sage.graphs.graph_generators.GraphGenerators static method), 808
center() (sage.graphs.digraph.DiGraph method), 680
center() (sage.graphs.graph.Graph method), 486
centrality_betweenness() (in module sage.graphs.centrality), 1562
centrality_betweenness() (sage.graphs.generic_graph.GenercGraph method), 65
centrality_closeness() (sage.graphs.generic_graph.GenercGraph method), 67
centrality_closeness_random_k() (in module sage.graphs.centrality), 1563
centrality_closeness_top_k() (in module sage.graphs.centrality), 1563
centrality_degree() (sage.graphs.graph.Graph method), 487
CGraph (class in sage.graphs.base.c_graph), 1375
CGraphBackend (class in sage.graphs.base.c_graph), 1398
chang_graphs() (in module sage.graphs.generators.families), 1213
chang_graphs() (sage.graphs.graph_generators.GraphGenerators static method), 1002
change_label() (in module sage.graphs.cographs), 1571
characteristic_polynomial() (sage.graphs.generic_graph.GenercGraph method), 70
charpoly() (sage.graphs.generic_graph.GenercGraph method), 70
check_aut() (in module sage.graphs.graph_generators), 1041
check_aut_edge() (in module sage.graphs.graph_generators), 1042
check_tkz_graph() (in module sage.graphs.graph_latex), 1824
check_vertex() (sage.graphs.base.c_graph.CGraph method), 1381
cheeger_constant() (sage.graphs.graph.Graph method), 487
chessboard (sage.graphs.graph_generators.GraphGenerators attribute), 1003
ChessboardGraphGenerator() (in module sage.graphs.generators.chessboard), 1243
ChessboardGraphGenerator() (sage.graphs.graph_generators.GraphGenerators static method), 808
children_node_type() (in module
Index 1969
complement() (sage.graphs.generic_graph.GenericGraph method), 77
complement_bipartite() (sage.graphs.bipartite_graph.BipartiteGraph method), 747
Complete() (sage.graphs.digraph_generators.DiGraphGenerators method), 1048
complete_poly() (in module sage.graphs.matchpoly), 1615
CompleteBipartiteGraph() (in module sage.graphs.generators.basic), 1223
CompleteBipartiteGraph() (sage.graphs.graph_generators.GraphGenerators static method), 815
CompleteGraph() (in module sage.graphs.generators.basic), 1225
CompleteGraph() (sage.graphs.graph_generators.GraphGenerators static method), 818
CompleteMultipartiteGraph() (in module sage.graphs.generators.basic), 1228
CompleteMultipartiteGraph() (sage.graphs.graph_generators.GraphGenerators static method), 820
CompleteUniform() (sage.graphs.hypergraph_generators.HypergraphGenerators method), 1506
compute_depth_of_self_and_children() (sage.graphs.schnyder.TreeNode method), 1627
compute_number_of_descendants() (sage.graphs.schnyder.TreeNode method), 1627
connected_component_containing_vertex() (in module sage.graphs.connectivity), 1913
connected_component_containing_vertex() (sage.graphs.generic_graph.GenericGraph method), 78
connected_components() (in module sage.graphs.connectivity), 1914
connected_components() (sage.graphs.generic_graph.GenericGraph method), 79
connected_components_number() (in module sage.graphs.connectivity), 1915
connected_components_number() (sage.graphs.generic_graph.GenericGraph method), 80
connected_components_sizes() (in module sage.graphs.connectivity), 1916
connected_components_sizes() (sage.graphs.generic_graph.GenericGraph method), 80
connected_components_subgraphs() (in module sage.graphs.connectivity), 1916
connected_components_subgraphs() (sage.graphs.generic_graph.GenericGraph method), 81
connected_full_subgraphs() (in module sage.graphs.base.static_dense_graph), 1453
connected_subgraph_iterator() (in module sage.graphs.base.static_dense_graph), 1456
connected_subgraph_iterator() (sage.graphs.generic_graph.GenericGraph method), 82
connecting_nodes() (in module sage.graphs.generators.random), 1286
contract_edge() (sage.graphs.generic_graph.GenericGraph method), 84
contract_edges() (sage.graphs.generic_graph.GenericGraph method), 85
contracted_edge() (in module sage.graphs.tutte_polynomial), 1853
convexity_properties() (sage.graphs.graph.Graph method), 518
ConvexityProperties (class in sage.graphs.convexity_properties), 1779
ConwaySmith_for_3S7() (in module sage.graphs.generators.distance_regular), 1127
ConwaySmith_for_3S7() (sage.graphs.graph_generators.GraphGenerators static method), 821
copy() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1517
copy() (sage.graphs.generic_graph.GenericGraph method), 86
copy_tree() (sage.graphs.cographs.CoTree method), 1570
cores() (sage.graphs.graph.Graph method), 519
CorrelationGraph() (in module sage.graphs.generators.basic), 1228
CorrelationGraph() (sage.graphs.graph_generators.GraphGenerators static method), 821
cospectral_graphs() (sage.graphs.graph_generators.GraphGenerators method), 1005
CossidentePenttilaGraph() (in module sage.graphs.generators.classical_geometries), 1148
CossidentePenttilaGraph() (sage.graphs.graph_generators.GraphGenerators static method), 822
CoTree (class in sage.graphs.cographs), 1570
CoxeterGraph() (in module sage.graphs.generators.smallgraphs), 1300
CoxeterGraph() (sage.graphs.graph_generators.GraphGenerators static method), 823
create_normal_node() (in module sage.graphs.graph_decompositions.modular_decomposition), 1751
create_parallel_node() (in module sage.graphs.graph_decompositions.modular_decomposition), 1751
create_prime_node() (in module sage.graphs.graph_decompositions.modular_decomposition), 1751
create_series_node() (in module sage.graphs.graph_decompositions.modular_decomposition), 1752
crossing_number()
   (sage.graphs.generic_graph.GenericGraph method), 89
CubeConnectedCycle() (in module sage.graphs.generators.families), 1171
CubeConnectedCycle() (sage.graphs.graph_generators.GraphGenerators static method), 823
CubeGraph() (in module sage.graphs.generators.families), 1172
CubeGraph() (sage.graphs.graph_generators.GraphGenerators static method), 824
current_allocation()
   (sage.graphs.base.c_graph.CGraph method), 1383
cutwidth() (in module sage.graphs.graph_decompositions.cutwidth), 1736
cutwidth() (sage.graphs.graph method), 521
cutwidth_dyn() (in module sage.graphs.graph_decompositions.cutwidth), 1739
cutwidth_MILP() (in module sage.graphs.graph_decompositions.cutwidth), 1737
cycle_basis() (sage.graphs.generic_graph.GenericGraph method), 90
CycleGraph() (in module sage.graphs.generators.basic), 1229
CycleGraph() (sage.graphs.graph_generators.GraphGenerators static method), 826
dgree_constrained_subgraph() (sage.graphs.graph.Graph method), 522
degree_histogram() (sage.graphs.generic_graph.GenericGraph method), 95
degree_iterator() (sage.graphs.generic_graph.GenericGraph method), 95
degree_polynomial() (sage.graphs.digraph.DiGraph method), 681
degree_sequence (sage.graphs.graph generators.GraphGenerators attribute), 1007
degree_sequence()
   (sage.graphs.generic_graph.GenericGraph method), 97
degree_to_cell() (sage.graphs.generic_graph.GenericGraph method), 98
degrees () (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1518
DegreeSequence() (sage.graphs.graph_generators.GraphGenerators static method), 828
DegreeSequenceBipartite() (sage.graphs.graph_generators.GraphGenerators static method), 829
DegreeSequenceConfigurationModel() (sage.graphs.graph_generators.GraphGenerators static method), 830
DegreeSequenceExpected() (sage.graphs.graph_generators.GraphGenerators static method), 831
DegreeSequenceTree() (sage.graphs.graph_generators.GraphGenerators static method), 832
degseq_to_data () (in module sage.graphs.graph_database), 1086
DejterGraph() (in module sage.graphs.generators.smallgraphs), 1301
DejterGraph() (sage.graphs.graph_generators.GraphGenerators static method), 833
del_all_arcs() (sage.graphs.graph_generators.GraphGenerators static method), 834
del_all_arcs() (sage.graphs.base.c_graph.CGraph method), 1384
del_arc_label() (sage.graphs.base.c_graph.CGraph method), 1386
del_edge() (sage.graphs.base.c_graph.CGraphBackend method), 1407
del_edge() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1481
del_edge() (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1475
del_edges() (sage.graphs.base.c_graph.CGraphBackend method), 1408
del_vertex() (sage.graphs.base.c_graph.CGraphBackend method), 1409

data_to_degseq() (in module sage.graphs.graph_database), 1085
DeBruijn() (sage.graphs.digraph_generators.DiGraphGenerators method), 1049
degree() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1517
degree() (sage.graphs.base.c_graph.CGraphBackend method), 1406
degree() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1481
degree() (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1474
degree() (sage.graphs.generic_graph.GenericGraph method), 93

D
DartGraph() (in module sage.graphs.generators.basic), 1231
DartGraph() (sage.graphs.graph_generators.GraphGenerators static method), 828
data_to_degseq() (in module sage.graphs.graph_database), 1085
DeBruijn() (sage.graphs.digraph_generators.DiGraphGenerators method), 1049
degree() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1517
degree() (sage.graphs.base.c_graph.CGraphBackend method), 1406
degree() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1481
degree() (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1474
degree() (sage.graphs.generic_graph.GenericGraph method), 93
degree_constrained_subgraph() (sage.graphs.graph.Graph method), 522
degree_histogram() (sage.graphs.generic_graph.GenericGraph method), 95
degree_iterator() (sage.graphs.generic_graph.GenericGraph method), 95
degree_polynomial() (sage.graphs.digraph.DiGraph method), 681
degree_sequence (sage.graphs.graph generators.GraphGenerators attribute), 1007
degree_sequence()
   (sage.graphs.generic_graph.GenericGraph method), 97
degree_to_cell() (sage.graphs.generic_graph.GenericGraph method), 98
degrees () (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1518
DegreeSequence() (sage.graphs.graph_generators.GraphGenerators static method), 828
DegreeSequenceBipartite() (sage.graphs.graph_generators.GraphGenerators static method), 829
DegreeSequenceConfigurationModel() (sage.graphs.graph_generators.GraphGenerators static method), 830
DegreeSequenceExpected() (sage.graphs.graph_generators.GraphGenerators static method), 831
DegreeSequenceTree() (sage.graphs.graph_generators.GraphGenerators static method), 832
degseq_to_data () (in module sage.graphs.graph_database), 1086
DejterGraph() (in module sage.graphs.generators.smallgraphs), 1301
DejterGraph() (sage.graphs.graph_generators.GraphGenerators static method), 833
del_all_arcs() (sage.graphs.graph_generators.GraphGenerators static method), 834
del_all_arcs() (sage.graphs.base.c_graph.CGraph method), 1384
del_arc_label() (sage.graphs.base.c_graph.CGraph method), 1386
del_edge() (sage.graphs.base.c_graph.CGraphBackend method), 1407
del_edge() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1481
del_edge() (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1475
del_edges() (sage.graphs.base.c_graph.CGraphBackend method), 1408
del_vertex() (sage.graphs.base.c_graph.CGraphBackend method), 1409

Index 1971
del_vertex() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1482

del_vertex() (sage.graphs.base.static_sparse_backends.StaticSparseBackend method), 1475

del_vertex() (sage.graphs.base.static_sparse_backends.StaticSparseCGraph method), 1478

del_vertices() (sage.graphs.base.c_graph.CGraphBackend method), 1409

del_vertices() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1482

delete_edge() (sage.graphs.generic_graph.GenericGraph method), 99

delete_edges() (sage.graphs.generic_graph.GenericGraph method), 101

delete_multiedge() (sage.graphs.generic_graph.GenericGraph method), 101

delete_vertex() (sage.graphs.bipartite_graph.BipartiteGraph method), 747

delete_vertex() (sage.graphs.generic_graph.GenericGraph method), 102

delete_vertices() (sage.graphs.bipartite_graph.BipartiteGraph method), 749

delete_vertices() (sage.graphs.generic_graph.GenericGraph method), 104

DenseGraph (class in sage.graphs.base.dense_graph), 1446

DenseGraphBackend (class in sage.graphs.base.dense_graph), 1448

density() (sage.graphs.generic_graph.GenericGraph method), 104

death_first_search() (sage.graphs.base.c_graph.CGraphBackend method), 1410

depth_first_search() (sage.graphs.generic_graph.GenericGraph method), 105

depth_first_traversal() (in module sage.graphs.partial_cube), 1859

DesarguesGraph() (in module sage.graphs.generators.smallgraphs), 1301

DesarguesGraph() (sage.graphs.graph_generators.GraphGenerators static method), 833
description() (sage.graphs.isgci.GraphClass method), 1367

diameter() (in module sage.graphs.base.boost_graph), 1489
diameter() (in module sage.graphs.distsances_all_pairs), 1790

diameter() (sage.graphs.digraph.DiGraph method), 682
diameter() (sage.graphs.graph.Graph method), 523
diameter_DHV() (in module sage.graphs.base.boost_graph), 1490

DiamondGraph() (in module sage.graphs.graph_generators.GraphGenerators basic), 1231

DiamondGraph() (sage.graphs.graph_generators.GraphGenerators static method), 833
dig6_string() (sage.graphs.digraph.DiGraph method), 683

DiGraph (class in sage.graphs.digraph), 666

DiGraphGenerators (class in sage.graphs.digraph_generators), 1043

DipoleGraph() (in module sage.graphs.graph Generators static method), 834
disjoint_routed_paths() (sage.graphs.generic_graph.GenericGraph method), 107
disjoint_union() (sage.graphs.generic_graph.GenericGraph method), 108
disjunctive_product() (sage.graphs.generic_graph.GenericGraph method), 109
distance() (sage.graphs.generic_graph.GenericGraph method), 110
distance_3_doubly_truncated_Golay_code_graph() (sage.graphs.graph Generators static method), 1007
distance_all_pairs() (in module sage.graphs.graph Generators, distance_regular), 1136
distance_regular (sage.graphs.graph generators.GraphGenerators attribute), 1008
distance_regular_graph() (in module sage.graphs.graph Generators, distance_regular), 1136
distance_regular_graph() (sage.graphs.graph generators.GraphGenerators static method), 1008
distances_all_pairs() (in module sage.graphs.distances_all_pairs), 1793
distances_and_predecessors_all_pairs() (in module sage.graphs.distances_all_pairs), 1794
distances_distribution() (in module sage.graphs.distances_all_pairs), 1795
edge_multiplicities() (in module sage.graphs.tutte_polynomial), 1853
edge_polytope() (sage.graphs.generic_graph.GenericGraph method), 139
dges() (sage.graphs.generic_graph.GenericGraph method), 142
dges_incident() (sage.graphs.generic_graph.GenericGraph method), 146
EdgeSelection (class in sage.graphs.tutte_polynomial), 1852
EdgesView (class in sage.graphs.views), 762
effective_resistance() (sage.graphs.graph.Graph method), 533
effective_resistance_matrix() (sage.graphs.graph.Graph method), 535
EgawaGraph() (in module sage.graphs.generators.families), 1175
EgawaGraph() (sage.graphs.graph_generators.GraphGenerators static method), 841
eigenmatrix() (in module sage.graphs.strongly_regular_db), 1100
eigenspaces() (sage.graphs.generic_graph.GenericGraph method), 147
eigenvectors() (sage.graphs.generic_graph.GenericGraph method), 150
either_connected_or_not_connected() (in module sage.graphs.graph_decompositions.modular_decomposition), 1752
EllinghamHorton54Graph() (in module sage.graphs.generators.smallgraphs), 1305
EllinghamHorton54Graph() (sage.graphs.graph_generators.GraphGenerators static method), 842
EllinghamHorton78Graph() (in module sage.graphs.generators.smallgraphs), 1306
EllinghamHorton78Graph() (sage.graphs.graph_generators.GraphGenerators static method), 843
EmptyGraph() (in module sage.graphs.generators.basic), 1232
EmptyGraph() (sage.graphs.graph_generators.GraphGenerators static method), 844
equivalent_trees() (in module sage.graphs.graph_decompositions.modular_decomposition), 1753
ErreraGraph() (in module sage.graphs.generators.smallgraphs), 1307
ErreraGraph() (sage.graphs.graph_generators.GraphGenerators static method), 845
eulerian_circuit() (sage.graphs.generic_graph.GenericGraph method), 153
eulerian_orientation() (sage.graphs.generic_graph.GenericGraph method), 155
EuropeMap() (in module sage.graphs.generators.world_map), 1358
EuropeMap() (sage.graphs.graph_generators.GraphGenerators static method), 846
export_to_file() (sage.graphs.generic_graph.GenericGraph method), 156

F
F26AGraph() (in module sage.graphs.generators.smallgraphs), 1308
F26AGraph() (sage.graphs.graph_generators.GraphGenerators static method), 847
faces() (sage.graphs.generic_graph.GenericGraph method), 157
families (sage.graphs.graph_generators.GraphGenerators attribute), 1009
feedback_edge_set() (sage.graphs.digraph.DiGraph method), 686
feedback_vertex_set() (sage.graphs.graph.Graph.GenericGraph method), 159
feng_k_shortest_simple_paths() (in module sage.graphs.path_enumeration), 1874
FibonacciTree() (in module sage.graphs.generators.families), 1176
FibonacciTree() (sage.graphs.graph_generators.GraphGenerators static method), 847
filter_kruskal() (in module sage.graphs.spanning_tree), 1592
filter_kruskal_iterator() (in module sage.graphs.spanning_tree), 1593
find_ear() (sage.graphs.tutte_polynomial.Ear static method), 1593
find_hamiltonian() (in module sage.graphs.graph_coloring), 1573
first_coloring() (in module sage.graphs.graph_coloring), 1587
flatten() (sage.graphs.pq_trees.PQ method), 1608
flow() (sage.graphs.generic_graph.GenericGraph method), 161
flow_polytope() (sage.graphs.digraph.DiGraph method), 688
FlowerSnark() (in module sage.graphs.generators.smallgraphs), 1309
FlowerSnark() (sage.graphs.graph_generators.GraphGenerators static method), 848
floyd_warshall() (in module sage.graphs.distances_all_pairs), 1797
floyd_warshall_shortest_paths() (in module sage.graphs.base.boost_graph), 1493
folded_graph() (sage.graphs.graph.Graph method), 537
HararyGraph() (sage.graphs.graph_generators GraphGenerators static method), 879
HarborthGraph() (in module sage.graphs.generators smallgraphs), 1319
HarborthGraph() (sage.graphs.graph_generators GraphGenerators static method), 879
HarriesGraph() (in module sage.graphs.generators smallgraphs), 1319
HarriesGraph() (sage.graphs.graph_generators GraphGenerators static method), 879
HarriesWongGraph() (in module sage.graphs.generators smallgraphs), 1320
HarriesWongGraph() (sage.graphs.graph_generators GraphGenerators static method), 880
has_arc() (sage.graphs.base_c_graph.CGraph method), 1389
has_arc() (sage.graphs.base.static_sparse_backend.StaticSparseCGraph method), 1478
has_arc_label() (sage.graphs.base_c_graph.CGraph method), 1390
has_edge() (sage.graphs.base.dense_graph.DenseGraphBackend method), 1451
has_edge() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1482
has_edge() (sage.graphs.base.sparse_graph.SparseGraphBackend method), 1441
has_edge() (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1475
has_edge() (sage.graphs.generic_graph.GenericGraph method), 190
has_homomorphism_to() (sage.graphs.graph.Graph method), 544
has_left_split() (sage.graphs.graph_decompositions.modular_decomposition.Node method), 1747
has_loops() (sage.graphs.generic_graph.GenericGraph method), 191
has_multiple_edges() (sage.graphs.generic_graph.GenericGraph method), 192
has_perfect_matching() (sage.graphs.graph.Graph method), 546
has_right_split() (sage.graphs.graph_decompositions.modular_decomposition.Node method), 1747
has_vertex() (sage.graphs.base_c_graph.CGraph method), 1391
has_vertex() (sage.graphs.base_graph_backends.GenericGraphBackend method), 1452
has_vertex() (sage.graphs.base_graph_backends.GenericGraphBackend method), 1482
has_vertex() (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1475
has_vertex() (sage.graphs.base.static_sparse_backend.StaticSparseCGraph method), 1478
has_vertex() (sage.graphs.generic_graph.GenericGraph method), 194
have_tkz_graph() (in module sage.graphs.graph_latex), 1825
HeawoodGraph() (in module sage.graphs.generators smallgraphs), 1321
HeawoodGraph() (sage.graphs.graph_generators GraphGenerators static method), 882
HermitianFormsGraph() (in module sage.graphs.generators.distance_regular), 1133
HermitianFormsGraph() (sage.graphs.graph_generators GraphGenerators static method), 882
HerschelGraph() (in module sage.graphs.generators smallgraphs), 1322
HerschelGraph() (sage.graphs.graph_generators GraphGenerators static method), 883
HexahedralGraph() (in module sage.graphs.generators.platonic_solids), 1259
HexahedralGraph() (sage.graphs.graph_generators GraphGenerators static method), 884
HigmanSimsGraph() (in module sage.graphs.generators smallgraphs), 1323
HigmanSimsGraph() (sage.graphs.graph_generators GraphGenerators static method), 885
HoffmanGraph() (in module sage.graphs.generators smallgraphs), 1325
HoffmanGraph() (sage.graphs.graph_generators GraphGenerators static method), 887
HoffmanSingletonGraph() (in module sage.graphs.generators smallgraphs), 1325
HoffmanSingletonGraph() (sage.graphs.graph_generators GraphGenerators static method), 887
HoltGraph() (in module sage.graphs.generators smallgraphs), 1327
HoltGraph() (sage.graphs.graph_generators GraphGenerators static method), 889
HortonGraph() (in module sage.graphs.generators smallgraphs), 1327
HortonGraph() (sage.graphs.graph_generators GraphGenerators static method), 889
HouseGraph() (in module sage.graphs.generators basic), 1234
HouseGraph() (sage.graphs.graph_generators GraphGenerators static method), 890
HouseXGraph() (in module sage.graphs.generators basic), 1235
HouseXGraph() (sage.graphs.graph_generators GraphGenerators static method), 890
hull() (sage.graphs.convexity_properties.ConvexityProperties method), 1780
hull_number() (sage.graphs.convexity_properties.ConvexityProperties method), 1780
hyperbolicity() (in module sage.graphs.hyperbolicity), 1844
hyperbolicity() (sage.graphs.graph.Graph method), 547
hyperbolicity_distribution() (in module sage.graphs.hyperbolicity), 1844
HypergraphGenerators (class in sage.graphs.hypergraph_generators), 1505
HyperStarGraph() (in module sage.graphs.graph_generators.families), 1191
HyperStarGraph() (sage.graphs.graph Generators static method), 891

I
IcosahedralGraph() (in module sage.graphs.generators.families.platonic_solids), 1260
IcosahedralGraph() (sage.graphs.graph_generators.GraphGenerators static method), 892
IGraph() (in module sage.graphs.generators.families), 1191
IGraph() (sage.graphs.graph_generators.GraphGenerators static method), 891
igraph_graph() (sage.graphs.generic_graph.GenericGraph method), 195
ihara_zeta_function_inverse() (sage.graphs.digraph_generators.DiGraphGenerators method), 1051
inclusion_digraph() (sage.graphs.isgci.GraphClasses method), 1370
inclusions() (sage.graphs.isgci.GraphClasses method), 1370
incoming_edge_iterator() (sage.graphs.digraph.DiGraph method), 696
incoming_edges() (sage.graphs.digraph.DiGraph method), 697
independent_set() (sage.graphs.graph.Graph method), 553
independent_set_of_representatives() (sage.graphs.graph.Graph method), 554
IndependentSets (class in sage.graphs.independent_sets), 1567
induced_substructure() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1521
int_to_binary_string() (in module sage.graphs.generic_graph_pyx), 1890
interactive_query() (sage.graphs.graph_database.GraphDatabase method), 1073
intersection (sage.graphs.graph_generators.GraphGenerators attribute), 1012
intersection_graph() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1522
IntersectionGraph() (in module sage.graphs.graph_generators.intersection), 1249
IntersectionGraph() (sage.graphs.graph_generators.GraphGenerators static method), 893
IntervalGraph() (in module sage.graphs.graph_generators.intersection), 1249
IntervalGraph() (sage.graphs.graph_generators.GraphGenerators static method), 894
 IoninKharaghani765Graph() (in module sage.graphs.generators.smallgraphs), 1328
IoninKharaghani765Graph() (sage.graphs.graph_generators.GraphGenerators static method), 895
is_affine_polar() (in module sage.graphs.strongly_regular_db), 1107
is_antipodal() (sage.graphs.graph.Graph method), 556
is_aperiodic() (sage.graphs.digraph.DiGraph method), 697
is_apex() (sage.graphs.graph.Graph method), 556
is_arc_transitive() (sage.graphs.graph.Graph method), 557
is_asteroidal_triple_free() (in module sage.graphs.asteroidal_triples), 1565
is_asteroidal_triple_free() (sage.graphs.graph.Graph method), 558
is_berge_cyclic() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1522
is_biconnected() (sage.graphs.graph.Graph method), 559
is_bipartite() (sage.graphs.bipartite_graph.BipartiteGraph method), 750
is_bipartite() (sage.graphs.generic_graph.GenericGraph method), 204
is_block_graph() (sage.graphs.graph.Graph method), 560
is_cactus() (sage.graphs.graph.Graph method), 561
is_cartesian_product() (in module sage.graphs.graph_decompositions.graph_products), 1743
is_cartesian_product() (sage.graphs.graph.Graph method), 561
is_cayley() (sage.graphs.generic_graph.GenericGraph method), 205
is_chordal() (sage.graphs.generic_graph.GenericGraph method), 207
is_circulant() (sage.graphs.generic_graph.GenericGraph method), 210
is_circular_planar() (sage.graphs.generic_graph.GenericGraph method), 211
is_circumscribable() (sage.graphs.graph.Graph method), 563
is_classical_parameters_graph() (in module sage.graphs.generators.distance_regular), 1140
is_clique() (sage.graphs.generic_graph.GenericGraph method), 213
is_cograph() (sage.graphs.graph.Graph method), 564
is_comparability() (in module sage.graphs.comparability), 1579
is_comparability() (sage.graphs.graph.Graph method), 565
is_comparability_MILP() (in module sage.graphs.comparability), 1579
is_complete_multipartite() (in module sage.graphs.strongly_regular_db), 1107
is_connected() (in module sage.graphs.connectivity), 1921
is_connected() (in module sage.graphs.connectivity), 1523
is_connected() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1523
is_connected() (sage.graphs.generic_graph.GenericGraph method), 1412
is_connected() (sage.graphs.strongly_regular_db), 1108
is_cut_edge() (module sage.graphs.connectivity), 1922
is_cut_edge() (sage.graphs.generic_graph.GenericGraph method), 215
is_cut_vertex() (module sage.graphs.connectivity), 1923
is_cut_vertex() (sage.graphs.generic_graph.GenericGraph method), 217
is_cycle() (sage.graphs.generic_graph.GenericGraph method), 218
is_directed() (sage.graphs.base.sparse_graph.SparseGraph method), 1438
is_directed() (sage.graphs.digraph.DiGraph method), 698
is_directed() (sage.graphs.graph.Graph method), 566
is_directed_acyclic() (sage.graphs.base.c_graph.CGraphBackend method), 1413
is_directed_acyclic() (sage.graphs.digraph.DiGraph method), 698
is_distance_regular() (in module sage.graphs.distances_all_pairs), 1953
is_distance_regular() (sage.graphs.graph.Graph method), 1799
is_distance_regular() (sage.graphs.graph.Graph method), 566
is_dominating() (module sage.graphs.dominations), 1953
is_dominating() (sage.graphs.graph.Graph method), 567
is_drawn_free_of_edge_crossings() (sage.graphs.generic_graph.GenericGraph method), 220
is_edge_transitive() (sage.graphs.graph.Graph method), 567
is_equitable() (sage.graphs.generic_graph.GenericGraph method), 220
is_eulerian() (sage.graphs.generic_graph.GenericGraph method), 221
is_even_hole_free() (sage.graphs.graph.Graph method), 568
is_factor_critical() (sage.graphs.graph.Graph method), 570
is_forest() (sage.graphs.graph.Graph method), 572
is_from_GQ_spread() (module sage.graphs.generators.distance_regular), 1140
is_gallai_tree() (sage.graphs.generic_graph.GenericGraph method), 223
is_generalized_quadrangle() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1953
is_graph_isomorphism() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1523
is_graph_isomorphism() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1922
is_geodetic() (in module sage.graphs.convexity_properties), 1783
is_geodetic() (sage.graphs.generic_graph.GenericGraph method), 224
is_goethals_seidel() (in module sage.graphs.strongly_regular_db), 1109
is_GQmpq() (in module sage.graphs.strongly_regular_db), 1109
is_haemers() (in module sage.graphs.strongly_regular_db), 1102
is_half_transitive() (sage.graphs.graph.Graph method), 573
is_hamiltonian() (sage.graphs.generic_graph.GenericGraph method), 226
is_independent_set() (sage.graphs.strongly_regular_db method), 227
is_inscribable() (sage.graphs.graph.Graph method), 574
is_interval() (sage.graphs.generic_graph.GenericGraph method), 227
is_isomorphic() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1524
is_isomorphic() (sage.graphs.generic_graph.GenericGraph method), 228
is_johnson() (in module sage.graphs.strongly_regular_db), 1110
is_less_than_k() (sage.graphs.graph_decompositions.tree_decomposition.TreeLengthConnected method), 1695
is_line_graph() (in module sage.graphs.line_graph), 1584
is_line_graph() (sage.graphs.graph.Graph method), 575
is_long_antihole_free() (in module sage.graphs.weakly_chordal), 1785
is_long_antihole_free() (sage.graphs.graph.Graph method), 577
is_long_hole_free() (in module sage.graphs.weakly_chordal), 1786
is_long_hole_free() (sage.graphs.graph.Graph method), 578
is_mathon_PC_srg() (in module sage.graphs.strongly_regular_db), 1111
is_muzychuk_S6() (in module sage.graphs.strongly_regular_db), 1112
is_near_polygon() (in module sage.graphs.generators.distance_regular), 1141
is_NO_F2() (in module sage.graphs.strongly_regular_db), 1103
is_NOF3() (in module sage.graphs.strongly_regular_db), 1103
is_NOodd() (in module sage.graphs.strongly_regular_db), 1104
is_NOPerp_F5() (in module sage.graphs.strongly_regular_db), 1105
is_nowhere_twoweight() (in module sage.graphs.strongly_regular_db), 1112
is_NU() (in module sage.graphs.strongly_regular_db), 1105
is_odd_hole_free() (sage.graphs.graph.Graph method), 579
is_orthogonal_array_block_graph() (in module sage.graphs.strongly_regular_db), 1113
is_orthogonal_polar() (in module sage.graphs.strongly_regular_db), 1114
is_overfull() (sage.graphs.graph.Graph method), 580
is_paley() (in module sage.graphs.strongly_regular_db), 1115
is_partial_cube() (in module sage.graphs.partial_cube), 1859
is_partial_cube() (sage.graphs.graph.Graph method), 583
is_path() (sage.graphs.graph.Graph method), 583
is_perfect() (sage.graphs.graph.Graph method), 584
is_permutation() (in module sage.graphs.comparability), 1580
is_permutation() (sage.graphs.graph.Graph method), 586
is_planar() (in module sage.graphs.planarity), 1630
is_planar() (sage.graphs.generic_graph.GenericGraph method), 231
is_polhill() (in module sage.graphs.strongly_regular_db), 1115
is_polyhedral() (sage.graphs.graph.Graph method), 587
is_prime() (sage.graphs.graph.Graph method), 587
is_pseudo_partition_graph() (in module sage.graphs.generators.distance_regular), 1142
is_redundant() (in module sage.graphs.domination), 1953
is_redundant() (sage.graphs.graph.Graph method), 588
is_regular() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1525
is_regular() (sage.graphs.generic_graph.GenericGraph method), 236
is_resolvable() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1525
is_RSHCD() (in module sage.graphs.strongly_regular_db), 1106
is_self_complementary()
(sage.graphs.generic_graph.GenericGraph method), 237
is_semi_symmetric() (sage.graphs.graph.Graph method), 589
is_simple() (sage.combinat.desigs.inci-
dence_structures.IncidenceStructure method), 1527
is_split() (sage.graphs.graph.Graph method), 590
is_spread() (sage.combinat.desigs.inci-
dence_structures.IncidenceStructure method), 1528
is_steiner() (in module sage.graphs.strongly_regu-
lar_db), 1116
is_strongly_connected() (in module sage.graphs.connectivity), 1924
is_strongly_connected() (sage.graphs.base.c_graph.CGraphBackend method), 1415
is_strongly_connected() (sage.graphs.digraph.DiGraph method), 700
is_strongly_regular() (in module sage.graphs.base.static_dense_graph), 1458
is_subgraph() (sage.graphs.generic_graph.GenericGraph method), 238
is_t_design() (sage.combinat.desigs.inci-
dence_structures.IncidenceStructure method), 1529
is_taylor_twograph_srg() (in module sage.graphs.strongly_regular_db), 1118
is_uniorm() (sage.combinat.designs.inci-
dence_structures.IncidenceStructure method), 1532
is_unitary_dual_polar() (in module sage.graphs.strongly_regular_db), 1119
is_unitary_polar() (in module sage.graphs.strongly_regular_db), 1120
is_valid_lex_M_order() (in module sage.graphs.traversals), 1631
is_valid_ordering() (in module sage.graphs.graph_decompositions.vertex_separation), 1713
is_valid_tree_decomposition() (in module sage.graphs.graph_decompositions.tree_decom-
position), 1696
is_vertex_transitive() (sage.graphs.generic_graph.GenericGraph method), 240
is_weakly_chordal() (in module sage.graphs.weakly_chordal), 1787
is_weakly_chordal() (sage.graphs.graph.Graph method), 597
isomorphic_substructures_iterator() (sage.combinat.desigs.inci-
dence_structures.IncidenceStructure method), 1533
isomorphism_substructures_iterator() (sage.combinat.desigs.inci-
dence_structures.IncidenceStructure method), 1533
iterator_edges() (sage.graphs.base.c_graph.CGraphBackend method), 1417
iterator_edges() (sage.graphs.base.graph_back-
ends.GenericGraphBackend method), 1482
iterator_edges() (sage.graphs.base.static_sparse_back-
end.StaticSparseBackend method), 1476
iterator_in_edges() (sage.graphs.base.c_graph.CGraphBackend method), 1418
is_transitively_reduced() (sage.combinat.desigs.inci-
dence_structures.IncidenceStructure method), 1533
is_transitively_reduced() (sage.graphs.generic_graph.GenericGraph method), 240
is_triconnected() (in module sage.graphs.connectivity), 1925
is_triconnected() (sage.graphs.graph.Graph method), 596
is_twograph_descendant_of_srg() (in module sage.graphs.strongly_regular_db), 1118
iterator_out_edges()
    (sage.graphs.base.c_graph.CGraphBackend method), 1419
iterator_out_edges()
    (sage.graphs.base.graph_backends.GenericGraphBackend method), 1483
iterator_out_edges()
    (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1477
iterator_out_nbrs()
    (sage.graphs.base.c_graph.CGraphBackend method), 1420
iterator_out_nbrs()
    (sage.graphs.base.graph_backends.GenericGraphBackend method), 1484
iterator_out_nbrs()
    (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1477
iterator_unsorted_edges()
    (sage.graphs.base.c_graph.CGraphBackend method), 1420
iterator_unsorted_edges()
    (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1477
iterator_verts()
    (sage.graphs.base.c_graph.CGraphBackend method), 1421
iterator_verts()
    (sage.graphs.base.graph_backends.GenericGraphBackend method), 1484
iterator_verts()
    (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1477
IvanovIvanovFaradjevGraph()
    (in module sage.graphs.generators.distance_regular), 1133
IvanovIvanovFaradjevGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 896
J
J2Graph()
    (in module sage.graphs.generators.distance_regular), 1134
J2Graph()
    (sage.graphs.graph_generators.GraphGenerators static method), 897
JankoKharaghaniGraph()
    (in module sage.graphs.generators.smallgraphs), 1329
JankoKharaghaniGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 897
JankoKharaghaniTonchevGraph()
    (in module sage.graphs.generators.smallgraphs), 1330
JankoKharaghaniTonchevGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 898
johnson_closeness_centrality()
    (in module sage.graphs.base.boost_graph), 1495
johnson_shortest_paths()
    (in module sage.graphs.base.boost_graph), 1496
JohnsonGraph()
    (in module sage.graphs.generators.families), 1192
JohnsonGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 898
join()
    (sage.graphs.graph.Graph method), 598
K
katz_centrality()
    (sage.graphs.generic_graph.GenericGraph method), 241
katz_matrix()
    (sage.graphs.generic_graph.GenericGraph method), 243
Kautz()
    (sage.graphs.digraph_generators.DiGraphGenerators method), 1052
KingGraph()
    (in module sage.graphs.generators.chessboard), 1244
KingGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 899
kirchhoff_matrix()
    (sage.graphs.generic_graph.GenericGraph method), 244
kirchhoff_symanzik_polynomial()
    (sage.graphs.graph.Graph method), 599
KittellGraph()
    (in module sage.graphs.generators.chessboard), 1244
KittellGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 900
Klein3RegularGraph()
    (in module sage.graphs.generators.smallgraphs), 1331
Klein3RegularGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 901
Klein7RegularGraph()
    (in module sage.graphs.generators.smallgraphs), 1331
Klein7RegularGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 901
KneserGraph()
    (in module sage.graphs.generators.families), 1193
KneserGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 902
KnightGraph()
    (in module sage.graphs.generators.chessboard), 1245
KnightGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 902
KrackhardtKiteGraph()
    (in module sage.graphs.generators.smallgraphs), 1332
KrackhardtKiteGraph()
    (sage.graphs.graph_generators.GraphGenerators static method), 903
kronecker_product()
    (sage.graphs.generic_graph.GenericGraph method), 249
kruskal()
    (in module sage.graphs.spanning_tree), 1595
kruskal_iterator()
    (in module sage.graphs.spanning_tree), 1599

kruskal_iterator_from_edges() (in module sage.graphs.spanning_tree), 1600

label_nice_tree_decomposition() (in module sage.graphs.graph_decompositions.tree_decomposition), 1697
LadderGraph() (in module sage.graphs.generators.basic), 1235
LadderGraph() (sage.graphs.graph_generators.GraphGenerators static method), 905
laplacian_matrix()
  (sage.graphs.generic_graph.GenericGraph method), 250
LargeWittGraph() (in module sage.graphs.generators.distance_regular), 1134
LargeWittGraph() (sage.graphs.graph_generators.GraphGenerators static method), 906
latex() (sage.graphs.graph_latex.GraphLatex method), 1815
latex_options() (sage.graphs.generic_graph.GenericGraph method), 255
latin_squares_graph_parameters() (in module sage.graphs.strongly_regular_db), 1120
layout() (sage.graphs.generic_graph.GenericGraph method), 255
layout_acyclic() (sage.graphs.digraph.DiGraph method), 702
layout_acyclic_dummy() (sage.graphs.digraph.DiGraph method), 703
layout_circular()
  (sage.graphs.generic_graph.GenericGraph method), 258
layout_default() (sage.graphs.generic_graph.GenericGraph method), 259
layout_extend_randomly()
  (sage.graphs.generic_graph.GenericGraph method), 260
layout_forest() (sage.graphs.generic_graph.GenericGraph method), 261
layout_graphviz()
  (sage.graphs.generic_graph.GenericGraph method), 261
layout_planar() (sage.graphs.generic_graph.GenericGraph method), 263
layout_ranked() (sage.graphs.generic_graph.GenericGraph method), 266
layout_split()
  (in module sage.graphs.generic_graph_pxy), 1890
layout_spring()
  (sage.graphs.generic_graph.GenericGraph method), 266
layout_tree()
  (sage.graphs.graph_plot.GraphPlot method), 1654
LCFGraph() (in module sage.graphs.generators.families), 1193
LCFGraph() (sage.graphs.graph_generators.GraphGenerators static method), 904
least_effective_resistance()
  (sage.graphs.graph(Graph method), 601
LEFT_OF_SOURCE
  (sage.graphs.graph_decompositions.modular_decomposition.VertexPosition attribute), 1750
LEFT_SPLIT (sage.graphs.graph_decompositions.modular_decomposition.NodeSplit attribute), 1749
length_and_string_from_graph6() (in module sage.graphs.generic_graph_pxy), 1891
length_of_tree_decomposition() (in module sage.graphs.graph_decompositions.tree_decomposition), 1698
LeonardGraph() (in module sage.graphs.generators.distance_regular), 1134
LeonardGraph()
  (sage.graphs.graph_generators.GraphGenerators static method), 907
level_sets() (sage.graphs.digraph.DiGraph method), 704
lex_BFS()
  (in module sage.graphs.traversals), 1631
lex_BFS()
  (sage.graphs.generic_graph.GenericGraph method), 269
lex_DFS()
  (in module sage.graphs.traversals), 1634
lex_DFS()
  (sage.graphs.generic_graph.GenericGraph method), 272
lex_DOWN()
  (in module sage.graphs.traversals), 1636
lex_DOWN()
  (sage.graphs.generic_graph.GenericGraph method), 274
lex_M()
  (in module sage.graphs.traversals), 1638
lex_M()
  (sage.graphs.graph.Graph method), 602
lex_M_fast()
  (in module sage.graphs.traversals), 1640
lex_M_slow()
  (in module sage.graphs.traversals), 1641
lex_UP()
  (in module sage.graphs.traversals), 1642
lex_UP()
  (sage.graphs.generic_graph.GenericGraph method), 276
lexicographic_product()
  (sage.graphs.generic_graph.GenericGraph method), 277
line_graph()
  (in module sage.graphs.line_graph), 1586
line_graph()
  (sage.graphs.generic_graph.GenericGraph method), 278
line_graph_forbidden_subgraphs() (in module sage.graphs.generators.families), 1214
line_graph_forbidden_subgraphs()
  (sage.graphs.graph_generators.GraphGenerators static method), 1012
linear_arboricity()
  (in module sage.graphs.graph_coloring), 1553
linear_ordering_to_path_decomposition() (in module sage.graphs.graph_decompositions.vertex_separation), 1713
LivingstoneGraph() (in module sage.graphs.generators.smallgraphs), 1333
LivingstoneGraph() (sage.graphs.graph_generators.GraphGenerators static method), 907
LjubljanaGraph() (in module sage.graphs.generators.smallgraphs), 1333
LjubljanaGraph() (sage.graphs.graph_generators.GraphGenerators static method), 908
load_afile() (sage.graphs.bipartite_graph.BipartiteGraph method), 750
locally_GQ42_distance_transitive_graph() (in module sage.graphs.generators.distance_regular), 1142
locally_GQ42_distance_transitive_graph() (sage.graphs.graph_generators.GraphGenerators static method), 1013
LocalMcLaughlinGraph() (in module sage.graphs.generators.smallgraphs), 1334
LocalMcLaughlinGraph() (sage.graphs.graph_generators.GraphGenerators static method), 909
LollipopGraph() (in module sage.graphs.generators.families), 1195
LollipopGraph() (sage.graphs.graph_generators.GraphGenerators static method), 909
longest_cycle() (sage.graphs.generic_graph.GenericGraph method), 280
longest_path() (sage.graphs.generic_graph.GenericGraph method), 282
loop_edges() (sage.graphs.generic_graph.GenericGraph method), 285
loop_vertices() (sage.graphs.generic_graph.GenericGraph method), 287
loops() (sage.graphs.base.c_graph.CGraphBackend method), 1421
loops() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1484
loops() (sage.graphs.generic_graph.GenericGraph method), 287
lovasz_theta() (in module sage.graphs.lovasz_theta), 1625
lovasz_theta() (sage.graphs.graph.Graph method), 604
lower_bound() (in module sage.graphs.graph_decompositions.vertex_separation), 1715

M
M22Graph() (in module sage.graphs.generators.smallgraphs), 1334
M22Graph() (sage.graphs.graph_generators.GraphGenerators static method), 909
magnitude_function() (sage.graphs.graph.Graph method), 605
make_labelled_rooted_tree() (in module sage.graphs.graph_decompositions.clique_separators), 1777
make_nice_tree_decomposition() (in module sage.graphs.graph_decompositions.tree_decomposition), 1700
make_tree() (in module sage.graphs.graph_decompositions.clique_separators), 1778
MarkstroemGraph() (in module sage.graphs.generators.smallgraphs), 1335
MarkstroemGraph() (sage.graphs.graph_generators.GraphGenerators static method), 910
matching() (sage.graphs.bipartite_graph.BipartiteGraph method), 752
matching() (sage.graphs.graph.Graph method), 606
matching_polynomial() (in module sage.graphs.matchpoly), 1616
matching_polynomial() (sage.graphs.bipartite_graph.BipartiteGraph method), 753
matching_polynomial() (sage.graphs.graph.Graph method), 608
MathonPseudocyclicMergingGraph() (in module sage.graphs.generators.families), 1195
MathonPseudocyclicMergingGraph() (sage.graphs.graph_generators.GraphGenerators static method), 911
MathonPseudocyclicStronglyRegularGraph() (in module sage.graphs.generators.families), 1196
MathonPseudocyclicStronglyRegularGraph() (sage.graphs.graph_generator.GraphGenerators static method), 911
MathonStronglyRegularGraph() (in module sage.graphs.generators.smallgraphs), 1336
MathonStronglyRegularGraph() (sage.graphs.graph_generators.GraphGenerators static method), 913
max_clique() (in module sage.graphs.cliquer), 1561
max_cut() (sage.graphs.generic_graph.GenericGraph method), 290
MaximizeDegree (class in sage.graphs.tutte_polynomial), 1852
maximum_average_degree() (sage.graphs.graph.Graph method), 613
maximum_cardinality_search() (in module sage.graphs.traversals), 1644
maximum_cardinality_search() (sage.graphs.graph.Graph method), 614
maximum_cardinality_search_M() (in module sage.graphs.traversals), 1646
maximum_cardinality_search_M() (sage.graphs.graph.Graph method), 616
Graph Theory, Release 10.4

maximal_leaf_number() (in module sage_graphs.domination), 1954
maximal_leaf_number() (sage_graphs.generic_graph.GenericGraph method), 291
McGeeGraph() (in module sage_graphs.generators.smallgraphs), 1336
McGeeGraph() (sage_graphs.graph_generators.GraphGenerators static method), 913
McLaughlinGraph() (in module sage_graphs.generators.smallgraphs), 1337
McLaughlinGraph() (sage_graphs.graph_generators.GraphGenerators static method), 914
md_tree_to_graph() (in module sage_graphs.graph_decompositions.modular_decomposition), 1760
MeredithGraph() (in module sage_graphs.generators.smallgraphs), 1337
MeredithGraph() (sage_graphs.graph_generators.GraphGenerators static method), 914
merge_vertices() (sage_graphs.generic_graph.GenericGraph method), 291
min_cycle_basis() (in module sage_graphs.base.boost_graph), 1498
min_spanning_tree() (in module sage_graphs.base.boost_graph), 1499
min_spanning_tree() (sage_graphs.generic_graph.GenericGraph method), 293
minimal_dominating_sets() (in module sage_graphs.domination), 1954
minimal_dominating_sets() (sage_graphs.graph.Graph method), 618
minimal_schnyder_wood() (in module sage_graphs.schnyder), 1628
MinimizeDegree (class in sage_graphs.tutte_polynomial), 1852
MinimizeSingleDegree (class in sage_graphs.tutte_polynomial), 1852
minimum_cycle_basis() (sage_graphs.generic_graph.GenericGraph method), 297
minimum_outdegree_orientation() (sage_graphs.graph.Graph method), 622
minor() (sage_graphs.graph.Graph method), 623
mkgraph() (in module sage_graphs.graph_decompositions.rankwidth), 1730
modular_decomposition() (in module sage_graphs.graph_decompositions.modular_decomposition), 1761
modular_decomposition() (sage_graphs.graph.Graph method), 625
module
    sage.combinat.designs.inci-
dence_structures, 1509
sage_graphs.asteroidal_triples, 1565
sage_graphs.base.boost_graph, 1486
sage_graphs.base.c_graph, 1374
sage_graphs.base.dense_graph, 1443
sage_graphs.base.graph_backends, 1479
sage_graphs.base.overview, 1373
sage_graphs.base.sparse_graph, 1431
sage_graphs.base.static_dense_graph, 1452
sage_graphs.base.static_sparse_backend, 1470
sage_graphs.base.static_sparse_graph, 1462
sage_graphs.bipartite_graph, 732
sage_graphs.centrality, 1561
sage_graphs.clique, 1558
sage_graphs.cographs, 1569
sage_graphs.comparability, 1574
sage_graphs.connectivity, 1897
sage_graphs.convexity_properties, 1779
sage_graphs.digraph, 663
sage_graphs.digraph_generators, 1042
sage_graphs.distances_all_pairs, 1788
sage_graphs.domination, 1942
sage_graphs.edge_connectivity, 1940
sage_graphs.generators.basic, 1218
sage_graphs.generators.chessboard, 1242
sage_graphs.generators.classical_geometries, 1146
sage_graphs.generators.distance_regular, 1125
sage_graphs.generators.families, 1162
sage_graphs.generators.intersection, 1249
sage_graphs.generators.platonic_solids, 1258
sage_graphs.generators.random, 1264
sage_graphs.generators.smallgraphs, 1288
sage_graphs.generators.world_map, 1357
sage_graphs.generic_graph, 1
sage_graphs.generic_graph_pyx, 1883
sage_graphs.genus, 1620
sage_graphs.graph, 437
sage_graphs.graph_coloring, 1539
sage_graphs.graph_database, 1065
nauty_genktreeg()  (sage.graphs.graph_generators.GraphGenerators method), 1018
nauty_gentreeg()  (in module sage.graphs.graph_generators.families), 1214
nauty_gentreeg()  (sage.graphs.graph_generators.GraphGenerators static method), 1020
near_polygon_graph()  (in module sage.graphs.generators.distance_regular), 1143
neighbor_in_iterator()  (sage.graphs.digraph.DiGraph method), 706
neighbor_iterator()  (sage.graphs.generic_graph.GenericGraph method), 305
neighbor_out_iterator()  (sage.graphs.digraph.DiGraph method), 706
neighbors()  (sage.graphs.generic_graph.GenericGraph method), 306
neighbors_in()  (sage.graphs.digraph.DiGraph method), 706
neighbors_out()  (sage.graphs.digraph.DiGraph method), 707
nested_tuple_to_tree()  (in module sage.graphs.graph_decompositions.modular_decomposition), 1765
networkx_graph()  (sage.graphs.generic_graph.GenericGraph method), 307
next_tree()  (sage.graphs.graph_decompositions.modular_decomposition), 1749
NKStarGraph()  (in module sage.graphs.graph_decompositions), 1200
NKStarGraph()  (sage.graphs.graph_generators.GraphGenerators static method), 921
NO_SPLIT  (sage.graphs.graph_decompositions.modular_decomposition.NodeSplit attribute), 1749
Node  (class in sage.graphs.graph_decompositions.modular_decomposition), 1747
NodeSplit  (class in sage.graphs.graph_decompositions.modular_decomposition), 1749
NodeType  (class in sage.graphs.graph_decompositions.modular_decomposition), 1749
NonisotropicOrthogonalPolarGraph()  (in module sage.graphs.generators.classical_geometries), 1150
NonisotropicOrthogonalPolarGraph()  (sage.graphs.graph_generators.GraphGenerators static method), 923
NonisotropicUnitaryPolarGraph()  (in module sage.graphs.generators.classical_geometries), 1152
NonisotropicUnitaryPolarGraph()  (sage.graphs.graph_generators.GraphGenerators static method), 925
NORMAL  (sage.graphs.graph_decompositions.modular_decomposition.NodeType attribute), 1749
Nowhere0WordsTwoWeightCodeGraph()  (in module sage.graphs.generators.classical_geometries), 1153
Nowhere0WordsTwoWeightCodeGraph()  (sage.graphs.graph_generators.GraphGenerators static method), 925
nowhere_zero_flow()  (sage.graphs.generic_graph.GenericGraph method), 308
NStarGraph()  (in module sage.graphs.graph_generators.families), 1200
NStarGraph()  (sage.graphs.graph_generators.GraphGenerators static method), 922
num_blocks()  (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1534
num_edges()  (sage.graphs.base.c_graph.CGraphBackend method), 1422
num_edges()  (sage.graphs.base.graph_backends.GenericGraphBackend method), 1484
num_edges()  (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1478
num_edges()  (sage.graphs.generic_graph.GenericGraph method), 310
num_faces()  (sage.graphs.generic_graph.GenericGraph method), 310
num_points()  (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1535
num_verts()  (sage.graphs.base.c_graph.CGraphBackend method), 1422
num_verts()  (sage.graphs.base.graph_backends.GenericGraphBackend method), 1485
num_verts()  (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1478
num_verts()  (sage.graphs.generic_graph.GenericGraph method), 311
number_of()  (sage.graphs.graph_database.GraphQuery method), 1081
number_of_children()  (sage.graphs.pq_trees.PQ method), 1609
number_of_loops()  (sage.graphs.generic_graph.GenericGraph method), 311
number_of_n_colorings()  (in module sage.graphs.graph_coloring), 1555
numbers_of_colorings()  (in module sage.graphs.graph_coloring), 1555
O
OctahedralGraph()  (in module sage.graphs.generators.platonic_solids), 1261
OctahedralGraph()  (sage.graphs.graph_generators.GraphGenerators static method), 927
odd_girth()  (sage.graphs.generic_graph.GenericGraph method), 312
OddGraph() (in module sage.graphs.generators.families), 1201
OddGraph() (sage.graphs.graph_generators.GraphGenerators static method), 928
order() (sage.graphs.generic_graph.GenericGraph method), 314
ordering() (sage.graphs.pq_trees.PQ method), 1609
orderings() (sage.graphs.pq_trees.P method), 1607
orderings() (sage.graphs.pq_trees.Q method), 1611
orientations() (sage.graphs.graph.Graph method), 628
OrthogonalArrayBlockGraph() (in module sage.graphs.generators.intersection), 1251
OrthogonalArrayBlockGraph() (sage.graphs.graph_generators.GraphGenerators static method), 928
OrthogonalDualPolarGraph() (in module sage.graphs.generators.classical_geometries), 1154
OrthogonalDualPolarGraph() (sage.graphs.graph_generators.GraphGenerators static method), 931
OrthogonalPolarGraph() (in module sage.graphs.generators.classical_geometries), 1155
OrthogonalPolarGraph() (sage.graphs.graph_generators.GraphGenerators static method), 932
out_branchings() (sage.graphs.digraph.DiGraph method), 707
out_degree() (sage.graphs.base.c_graph.CGraphBackend method), 1423
out_degree() (sage.graphs.base.c_graph.CGraph method), 1423
out_degree() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1485
out_degree() (sage.graphs.base.sparse_graph.SparseGraph method), 1438
out_degree() (sage.graphs.base.static_sparse_backend.StaticSparseBackend method), 1478
out_degree() (sage.graphs.base.static_sparse_backend.StaticSparseCGraph method), 1479
out_degree() (sage.graphs.digraph.DiGraph method), 709
out_degree_iterator() (sage.graphs.digraph.DiGraph method), 710
out_degree_sequence() (sage.graphs.digraph.DiGraph method), 710
out_neighbors() (sage.graphs.base.c_graph.CGraph method), 1393
out_neighbors() (sage.graphs.base.static_sparse_backend.StaticSparseCGraph method), 1479
outgoing_edge_iterator() (sage.graphs.digraph.DiGraph method), 711
outgoing_edges() (sage.graphs.digraph.DiGraph method), 711

P
P (class in sage.graphs.pq_trees), 1606
packing() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1535
pagerank() (sage.graphs.generic_graph.GenericGraph method), 315
Paley() (sage.graphs.digraph_generators.DiGraphGenerators method), 1054
PaleyGraph() (in module sage.graphs.generators.families), 1201
PaleyGraph() (sage.graphs.graph_generators.GraphGenerators static method), 933
PappusGraph() (in module sage.graphs.generators.smallgraphs), 1341
PappusGraph() (sage.graphs.graph_generators.GraphGenerators static method), 934
PARALLEL (sage.graphs.graph_decompositions.modular_decomposition.NodeType attribute), 1749
PasechnikGraph() (in module sage.graphs.generators.families), 1202
PasechnikGraph() (sage.graphs.graph_generators.GraphGenerators static method), 934
Path() (sage.graphs.digraph_generators.DiGraphGenerators method), 1054
path_decomposition() (in module sage.graphs.graph_decompositions.vertex_separation), 1715
path_semigroup() (sage.graphs.digraph.DiGraph method), 712
PathGraph() (in module sage.graphs.generators.basic), 1238
PathGraph() (sage.graphs.graph_generators.GraphGenerators static method), 935
pathwidth() (in module sage.graphs.graph_decompositions.vertex_separation), 1717
pathwidth() (sage.graphs.graph.Graph method), 629
perfect_matchings() (sage.graphs.bipartite_graph.BipartiteGraph method), 754
perfect_matchings() (sage.graphs.graph.Graph method), 631
period() (sage.graphs.digraph.DiGraph method), 712
periphery() (sage.graphs.digraph.DiGraph method), 713
periphery() (sage.graphs.graph.Graph method), 633
PerkelGraph() (in module sage.graphs.generators.smallgraphs), 1341
PerkelGraph() (sage.graphs.graph_generators.GraphGenerators static method), 936
PermutationGraph() (in module sage.graphs.generators.intersection), 1254
PermutationGraph() (sage.graphs.graph_generators.GraphGenerators static method), 936
permute_decomposition() (in module sage.graphs.graph_decompositions.modu-
lar_decomposition), 1766
petersen_family() (in module sage.graphs.generators.families), 1216
petersen_family() (sage.graphs.graph_generators.GraphGenerators static method), 1021
PetersenGraph() (in module sage.graphs.generators.smallgraphs), 1342
PetersenGraph() (sage.graphs.graph_generators.GraphGenerators static method), 939
planar_dual() (sage.graphs.generic_graph.GenericGraph method), 318
planar_graphs() (sage.graphs.graph_generators.GraphGenerators method), 1022
plantri_gen() (sage.graphs.graph_generators.GraphGenerators method), 1025
platonic_solids (sage.graphs.graph_generators.GraphGenerators attribute), 1028
plot() (sage.graphs.bipartite_graph.BipartiteGraph method), 756
plot() (sage.graphs.generic_graph.GenericGraph method), 319
plot() (sage.graphs.graph_plot.GraphPlot method), 1655
plot3d() (sage.graphs.generic_graph.GenericGraph method), 328
PoussinGraph() (in module sage.graphs.generators.chessboard), 1246
PoussinGraph() (sage.graphs.graph_generators.GraphGenerators static method), 940
PetersenGraph() (in module sage.graphs.generators.smallgraphs), 1342
PetersenGraph() (sage.graphs.graph_generators.GraphGenerators static method), 1021
power() (sage.graphs.generic_graph.GenericGraph method), 332
PQ (class in sage.graphs.pq_trees), 1608
PRIME (sage.graphs.graph_decompositions.modular_decomposition.NodeType attribute), 1749
print_md_tree() (in module sage.graphs.graph_decompositions.modular_decomposition), 1766
print_triconnected_components() (sage.graphs.connectivity.TriconnectedComponents method), 1905
private_neighbors() (in module sage.graphs.domination), 1958
private_neighbors() (sage.graphs.graph.Graph method), 634
project_left() (sage.graphs.bipartite_graph.BipartiteGraph method), 757
project_right() (sage.graphs.bipartite_graph.BipartiteGraph method), 757
pruned_tree() (in module sage.graphs.generators.random), 1287
pseudo_partition_graph() (in module sage.graphs.generators.distance_regular), 1144
quadrangulations() (sage.graphs.graph_generators.GraphGenerators method), 1029
QueenGraph() (in module sage.graphs.generators.chessboard), 1246
QueenGraph() (sage.graphs.graph_generators.GraphGenerators static method), 940
query() (sage.graphs.graph_database.GraphDatabase method), 1074
query_iterator() (sage.graphs.graph_database.GraphQuery method), 1081
radius() (sage.graphs.digraph.DiGraph method), 714
radius() (sage.graphs.graph.Graph method), 634
radius_DHV() (in module sage.graphs.base.boost_graph), 1499
radius_DHV() (in module sage.graphs.distances_all_pairs), 1800
random (sage.graphs.graph_generators.GraphGenerators attribute), 1030
random() (sage.graphs.graph_coloring.Test method), 1540
random_all_graph_colorings() (sage.graphs.graph_coloring.Test method), 1540
random_edge() (sage.graphs.generic_graph.GenericGraph method), 333
random_edge_iterator() (sage.graphs.generic_graph.GenericGraph method), 333
random_md_tree() (in module sage.graphs.graph_decompositions.modular_decomposition), 1767
random_orientation() (in module sage.graphs.orientations), 1895
random_orientation() (sage.graphs.graph.Graph method), 635
random_spanning_tree() (in module sage.graphs.spanning_tree), 1601
random_spanning_tree() (sage.graphs.graph.Graph method), 636
random_subgraph() (sage.graphs.generic_graph.GenericGraph method), 334
random_vertex() (sage.graphs.generic_graph.GenericGraph method), 334
random_vertex_iterator() (sage.graphs.generic_graph.GenericGraph method), 335
RandomBarabasiAlbert() (in module sage.graphs.generators.random), 1264
RandomBarabasiAlbert() (sage.graphs.graph_generators.GraphGenerators static method), 942
RandomBicubicPlanar() (in module sage.graphs.generators.random), 1265

Q (class in sage.graphs.pq_trees), 1611

Q
RandomBicubicPlanar() (sage.graphs.graph_generators.GraphGenerators static method), 943
RandomBipartite() (in module sage.graphs.generators.random), 1266
RandomBipartite() (sage.graphs.graph_generators.GraphGenerators static method), 944
RandomBlockGraph() (in module sage.graphs.generators.random), 1267
RandomBlockGraph() (sage.graphs.graph_generators.GraphGenerators static method), 945
RandomBoundedToleranceGraph() (in module sage.graphs.generators.random), 1269
RandomBoundedToleranceGraph() (sage.graphs.graph_generators.GraphGenerators static method), 947
RandomChordalGraph() (in module sage.graphs.generators.random), 1269
RandomChordalGraph() (sage.graphs.graph_generators.GraphGenerators static method), 948
RandomDirectedAcyclicGraph() (sage.graphs.digraph_generators.DiGraphGenerators method), 1055
RandomDirectedGN() (sage.graphs.digraph_generators.DiGraphGenerators method), 1055
RandomDirectedGNC() (sage.graphs.digraph_generators.DiGraphGenerators method), 1056
RandomDirectedGNM() (sage.graphs.digraph_generators.DiGraphGenerators method), 1057
RandomDirectedGNP() (sage.graphs.digraph_generators.DiGraphGenerators method), 1057
RandomDirectedGNR() (sage.graphs.digraph_generators.DiGraphGenerators method), 1058
RandomGNM() (in module sage.graphs.generators.random), 1271
RandomGNM() (sage.graphs.graph_generators.GraphGenerators static method), 949
RandomGNP() (in module sage.graphs.generators.random), 1272
RandomGNP() (in module sage.graphs.graph_generators.random), 1064
RandomGNP() (sage.graphs.graph_generators.GraphGenerators static method), 950
RandomHolmeKim() (in module sage.graphs.generators.random), 1274
RandomHolmeKim() (sage.graphs.graph_generators.GraphGenerators static method), 952
RandomIntervalGraph() (in module sage.graphs.generators.random), 1275
RandomIntervalGraph() (sage.graphs.graph_generators.GraphGenerators static method), 953
RandomKTree() (in module sage.graphs.generators.random), 1275
RandomKTree() (sage.graphs.graph_generators.GraphGenerators static method), 953
RandomLobster() (in module sage.graphs.generators.random), 1276
RandomLobster() (sage.graphs.graph_generators.GraphGenerators static method), 954
RandomNewmanWattsStrogatz() (in module sage.graphs.generators.random), 1277
RandomNewmanWattsStrogatz() (sage.graphs.graph_generators.GraphGenerators static method), 955
RandomPartialKTree() (in module sage.graphs.generators.random), 1278
RandomPartialKTree() (sage.graphs.graph_generators.GraphGenerators static method), 956
RandomRegular() (in module sage.graphs.generators.random), 1278
RandomRegular() (sage.graphs.graph_generators.GraphGenerators static method), 956
RandomRegularBipartite() (in module sage.graphs.generators.random), 1279
RandomRegularBipartite() (sage.graphs.graph_generators.GraphGenerators static method), 957
RandomSemiComplete() (sage.graphs.digraph_generators.DiGraphGenerators method), 1059
RandomShell() (in module sage.graphs.generators.random), 1280
RandomShell() (sage.graphs.graph_generators.GraphGenerators static method), 958
RandomToleranceGraph() (in module sage.graphs.generators.random), 1281
RandomToleranceGraph() (sage.graphs.graph_generators.GraphGenerators static method), 959
RandomTournament() (sage.graphs.digraph_generators.DiGraphGenerators method), 1059
RandomTree() (in module sage.graphs.generators.random), 1281
RandomTree() (sage.graphs.graph_generators.GraphGenerators static method), 959
RandomTreePowerlaw() (in module sage.graphs.generators.random), 1282
RandomTreePowerlaw() (sage.graphs.graph_generators.GraphGenerators static method), 960
RandomTriangle() (in module sage.graphs.generators.random), 1283
RandomTriangle() (sage.graphs.graph_generators.GraphGenerators static method), 961
RandomUnitDiskGraph() (in module sage.graphs.generators.random), 1284
RandomUnitDiskGraph() (sage.graphs.graph_generators.GraphGenerators static method), 962
rank() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1536
rank_decomposition() (in module sage.graphs.graph_decompositions.rankwidth),
rank_decomposition() (sage.graphs.graph.Graph method), 638
reallocate() (sage.graphs.base.c_graph.CGraph method), 1394
reallocate() (sage.graphs.base.dense_graph.DenseGraph method), 1447
reallocate() (sage.graphs.base.sparse_graph.SparseGraph method), 1439
rebuild_node() (in module sage.graphs.cographs), 1573
recreate_decomposition() (in module sage.graphs.graph_decompositions.modular_decomposition), 1767
reduced_adjacency_matrix() (sage.graphs.bipartite_graph.BipartiteGraph method), 757
reduced_tree_decomposition() (in module sage.graphs.graph_decompositions.tree_decomposition), 1703
relabel() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1536
relabel() (sage.graphs.base.c_graph.CGraphBackend method), 1423
relabel() (sage.graphs.base.graph_backends.GenericGraphBackend method), 1485
relabel() (in module sage.graphs.generic_graph.GenericGraph method), 335
relabel_tree() (in module sage.graphs.graph_decompositions.modular_decomposition), 1768
remove_loops() (sage.graphs.generic_graph.GenericGraph method), 340
remove_multiple_edges() (sage.graphs.generic_graph.GenericGraph method), 342
removed_edge() (in module sage.graphs.tutte_polynomial), 1853
removed_from() (sage.graphs.tutte_polynomial.Ear method), 1850
removed_loops() (in module sage.graphs.tutte_polynomial), 1854
removed_multiedge() (in module sage.graphs.tutte_polynomial), 1855
reorder_sets() (in module sage.graphs.pq_trees), 1613
reset_info() (sage.graphs.cographs.CoTree method), 1571
reverse() (sage.graphs.digraph.DiGraph method), 715
reverse() (sage.graphs.pq_trees.PQ method), 1609
reverse_edge() (sage.graphs.digraph.DiGraph method), 715
reverse_edges() (sage.graphs.digraph.DiGraph method), 720

S
s (sage.graphs.tutte_polynomial.Ear property), 1851
sage.combinat.designs.incidence_structures module, 1509
sage.graphs.asteroidal_triples module, 1565
sage.graphs.base.boost_graph module, 1486
sage.graphs.base.c_graph module, 1486
sage.graphs.base.dense_graph module, 1443
sage.graphs.base.graph_backends module, 1479
sage.graphs.base.overview module, 1373
sage.graphs.base.sparse_graph module, 1431
sage.graphs.base.static_dense_graph module, 1431
sage.graphs.base.static_sparse_backend module, 1470
sage.graphs.base.static_sparse_graph
SRG_120_63_30_36() (in sage.graphs.strongly_regular_db), 1089
SRG_120_77_52_44() (in sage.graphs.strongly_regular_db), 1090
SRG_126_25_8_4() (in sage.graphs.strongly_regular_db), 1090
SRG_126_50_13_24() (in sage.graphs.strongly_regular_db), 1090
SRG_144_39_6_12() (in sage.graphs.strongly_regular_db), 1091
SRG_175_72_20_36() (in sage.graphs.strongly_regular_db), 1092
SRG_176_49_12_14() (in sage.graphs.strongly_regular_db), 1092
SRG_176_90_38_54() (in sage.graphs.strongly_regular_db), 1093
SRG_176_105_68_54() (in sage.graphs.strongly_regular_db), 1092
SRG_196_91_42_42() (in sage.graphs.strongly_regular_db), 1093
SRG_210_99_48_45() (in sage.graphs.strongly_regular_db), 1093
SRG_220_84_38_28() (in sage.graphs.strongly_regular_db), 1094
SRG_220_84_38_28() (in sage.graphs.strongly_regular_db), 1094
SRG_243_110_37_60() (in sage.graphs.strongly_regular_db), 1095
SRG_253_140_87_65() (in sage.graphs.strongly_regular_db), 1095
SRG_276_140_58_84() (in sage.graphs.strongly_regular_db), 1096
SRG_280_117_44_52() (in sage.graphs.strongly_regular_db), 1095
SRG_280_135_70_60() (in sage.graphs.strongly_regular_db), 1096
SRG_416_100_36_20() (in sage.graphs.strongly_regular_db), 1096
SRG_560_208_72_80() (in sage.graphs.strongly_regular_db), 1097
SRG_630_85_20_10() (in sage.graphs.strongly_regular_db), 1097
SRG_1288_792_476_504() (in sage.graphs.strongly_regular_db), 1091
SRG_from_RSHCD() (in sage.graphs.strongly_regular_db), 1097
StarGraph() (in module sage.graphs.generators.basic), 1239
StarGraph() (sage.graphs.graph_generators.GraphGenerators static method), 973
StaticSparseBackend (class in sage.graphs.base.static_sparse_backend), 1470
StaticSparseCGraph (class in sage.graphs.base.static_sparse_backend), 1478
steiner_tree() (sage.graphs.generic_graph.GenericGraph method), 382
module strongly_connected_component_containing_vertex() (in module sage.graphs.connectivity), 1933
module strongly_connected_components_digraph() (sage.graphs.digraph.DiGraph method), 724
module strongly_connected_components_digraph() (sage.graphs.digraph.DiGraph method), 725
module strongly_connected_components_digraph() (sage.graphs.digraph.DiGraph method), 726
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 728
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 736
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 743
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 749
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 755
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 761
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 767
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 773
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 779
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 785
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 791
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 797
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 803
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 809
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 815
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 821
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 827
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 833
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 839
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 845
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 851
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 857
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 863
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 869
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 875
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 881
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 887
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 893
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 899
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 905
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 911
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 917
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 923
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 929
module strongly_connected_components_subgraphs() (sage.graphs.digraph.DiGraph method), 935
StronglyRegular() (sage.graphs.digraph_generators.DiGraphGenerators method), 1060
subdivide_edge() (sage.graphs.generic_graph.GenericGraph method), 384
subdivide_edges()
(sage.graphs.generic_graph.GenericGraph method), 386
subgraph() (sage.graphs.generic_graph.GenericGraph method), 387
subgraph_given_vertices()
(sage.graphs.base.c_graph.CGraphBackend method), 1427
subgraph_search()
(sage.graphs.generic_graph.GenericGraph method), 391
subgraph_search_count()
(sage.graphs.generic_graph.GenericGraph method), 395
subgraph_search_iterator()
(sage.graphs.generic_graph.GenericGraph method), 397
subgraphs_to_query() (in module sage.graphs.graph_database), 1087
SubgraphSearch
class (in module sage.graphs.generic_graph_pyx), 1883
SuzukiGraph() (module sage.graphs.generators.smallgraphs), 1348
SuzukiGraph()
(sage.graphs.graph_generators.GraphGenerators static method), 975
SwitchedSquaredSkewHadamardMatrixGraph()
(module sage.graphs.generators.families), 1207
SwitchedSquaredSkewHadamardMatrixGraph()
(sage.graphs.graph_generators.GraphGenerators static method), 975
SylvesterGraph() (module sage.graphs.generators.families), 1207
SylvesterGraph()
(sage.graphs.graph_generators.GraphGenerators static method), 975
SylvesterGraph()
(sage.graphs.graph_generators.GraphGenerators static method), 975
Symmetric_edge_polytope()
(sage.graphs.generic_graph.GenericGraph method), 400
SymplecticDualPolarGraph()
(module sage.graphs.generators.classical_geometries), 1156
SymplecticDualPolarGraph()
(sage.graphs.graph_generators.GraphGenerators static method), 977
SymplecticPolarGraph()
(module sage.graphs.generators.classical_geometries), 1156
SymplecticPolarGraph()
(sage.graphs.graph_generators.GraphGenerators static method), 977
Szeged_index() (module sage.graphs.distsances_all_pairs), 1801
Szeged_index() (sage.graphs.generic_graph.GenericGraph method), 404
SzekeressNarkGraph() (module sage.graphs.generators.smallgraphs), 1349
SzekeressNarkGraph()
(sage.graphs.graph_generators.GraphGenerators static method), 978
T
T2starGeneralizedQuadrangleGraph()
(module sage.graphs.generators.classical_geometries), 1157
T2starGeneralizedQuadrangleGraph()
(sage.graphs.graph_generators.GraphGenerators static method), 979
TabcjnGraph() (module sage.graphs.generators.families), 1207
TabcjnGraph()
(sage.graphs.graph_generators.GraphGenerators static method), 980
tachyon_vertex_plot() (module sage.graphs.generic_graph), 437
TadpoleGraph() (module sage.graphs.generators.families), 1208
TadpoleGraph()
(sage.graphs.graph_generators.GraphGenerators static method), 981
tarjan_strongly_connected_components() (module sage.graphs.base.static_sparse_graph), 1468
TaylorTwographDescendantSRG()
(module sage.graphs.generators.classical_geometries), 1159
TaylorTwographDescendantSRG()
(sage.graphs.graph_generators.GraphGenerators static method), 981
TaylorTwographSRG()
(module sage.graphs.generators.classical_geometries), 1160
TaylorTwographSRG()
(sage.graphs.graph_generators.GraphGenerators static method), 982
tensor_product() (sage.graphs.generic_graph.GenericGraph method), 406
Test
class (sage.graphs.graph_coloring), 1540
test_gamma_modules() (module sage.graphs.graph_decompositions.modular_decomposition), 1768
test_maximal_modules() (module sage.graphs.graph_decompositions.modular_decomposition), 1769
test_modular_decomposition() (module sage.graphs.graph_decompositions.modular_decomposition), 1769
test_module() (module sage.graphs.graph_decompositions.modular_decomposition), 1770
Tetrahedral1Graph()
(module sage.graphs.generators.platonic_solids), 1262
TetrahedralGraph() (sage.graphs.graph_generators.GraphGenerators static method), 983
ThomsonGraph() (in module sage.graphs.generators.smallgraphs), 1349
ThomsonGraph() (sage.graphs.graph_generators.GraphGenerators static method), 984
TietzeGraph() (in module sage.graphs.generators.smallgraphs), 1350
TietzeGraph() (sage.graphs.graph_generators.GraphGenerators static method), 984
tkz_picture() (sage.graphs.graph_latex.GraphLatex method), 1822
to_dictionary() (sage.graphs.generic_graph.GenericGraph method), 407
to_directed() (sage.graphs.digraph.DiGraph method), 650
to_graph6() (in module sage.graphs.graph_list), 1830
to.graphics.array() (in module sage.graphs.graph_list), 1831
to_simple() (sage.graphs.generic_graph.GenericGraph method), 409
to_sparse6() (in module sage.graphs.graph_list), 1831
to_undirected() (sage.graphs.bipartite_graph.BipartiteGraph method), 760
to_undirected() (sage.graphs.digraph.DiGraph method), 729
to_undirected() (sage.graphs.graph.Graph method), 650
ToleranceGraph() (in module sage.graphs.generators.intersection), 1257
ToleranceGraph() (sage.graphs.graph_generators.GraphGenerators static method), 985
topological_minor() (sage.graphs.graph.Graph method), 650
topological_sort() (sage.graphs.digraph.DiGraph method), 729
topological_sort_generator() (sage.graphs.digraph.DiGraph method), 731
Toroidal6RegularGrid2dGraph() (in module sage.graphs.generators.basic), 1241
Toroidal6RegularGrid2dGraph() (sage.graphs.graph_generators.GraphGenerators static method), 986
ToroidalGrid2dGraph() (in module sage.graphs.generators.basic), 1241
ToroidalGrid2dGraph() (sage.graphs.graph_generators.GraphGenerators static method), 987
tournaments_nauty() (sage.graphs.digraph_generators.DiGraphGenerators method), 1063
trace() (sage.combinat.designs.incidence_structures.IncidenceStructure method), 1537
transitive_closure() (sage.graphs.generic_graph.GenericGraph method), 410
transitive_reduction() (sage.graphs.generic_graph.GenericGraph method), 411
transitive_reduction_acyclic() (in module sage.graphs.generic_graph_pxy), 1893
TransitiveTournament() (sage.graphs.digraph_generators.DiGraphGenerators method), 1061
traveling_salesman_problem() (sage.graphs.generic_graph.GenericGraph method), 412
tree_to_graph() (in module sage.graphs.cographs), 1574
tree_to_nested_tuple() (in module sage.graphs.graph_decompositions.modular_decomposition), 1770
TreeTournament (class in sage.graphs.trees), 1614
treelength() (in module sage.graphs.graph_decompositions.tree_decomposition), 1704
treelength() (sage.graphs.graph.Graph method), 652
treelength_lowerbound() (in module sage.graphs.graph_decompositions.tree_decomposition), 1706
TreedConnected (class in sage.graphs.graph_decompositions.tree_decomposition), 1693
TreeNode (class in sage.graphs.schnyder), 1625
trees() (in module sage.graphs.generators.families), 1217
trees() (sage.graphs.graph_generators.GraphGenerators static method), 1034
treewidth() (in module sage.graphs.graph_decompositions.tree_decomposition), 1706
treewidth() (sage.graphs.graph.Graph method), 654
triangles_count() (in module sage.graphs.base.static_dense_graph), 1461
triangles_count() (in module sage.graphs.base.static_sparse_graph), 1469
triangles_count() (sage.graphs.generic_graph.GenericGraph method), 415
triangulations() (sage.graphs.graph_generators.GraphGenerators method), 1035
TriconnectivitySPQR (class in sage.graphs.connectivity), 1898
TruncatedIcosidodecahedralGraph() (in module sage.graphs.generators.smallgraphs), 1350
TruncatedIcosidodecahedralGraph() (sage.graphs.graph_generators.GraphGenerators static method), 988
TruncatedTetrahedralGraph() (in module sage.graphs.generators.smallgraphs), 1351
TruncatedTetrahedralGraph() (sage.graphs.graph_generators.GraphGenerators static method), 988
TruncatedWittGraph() (in module sage.graphs.generators.distance_regular), 1135
TruncatedWittGraph() (sage.graphs.graph_generators.GraphGenerators static method), 989
TuranGraph() (in module sage.graphs.generators.families), 1209
TuranGraph() (sage.graphs.graph_generators.GraphGenerators static method), 989
Tutte12Cage() (in module sage.graphs.generators.smallgraphs), 1351
Tutte12Cage() (sage.graphs.graph_generators.GraphGenerators static method), 990
TutteCoxeterGraph() (in module sage.graphs.generators.smallgraphs), 1352
TutteCoxeterGraph() (sage.graphs.graph_generators.GraphGenerators static method), 991
TutteGraph() (in module sage.graphs.generators.families), 1353
TutteGraph() (sage.graphs.graph_generators.GraphGenerators static method), 992
tutte_polynomial() (in module sage.graphs.tutte_polynomial), 1855
tutte_polynomial() (sage.graphs.Graph method), 656
TutteCoxeterGraph() (in module sage.graphs.generators.smallgraphs), 1354
U
U42Graph216() (in module sage.graphs.generators.smallgraphs), 1354
U42Graph216() (sage.graphs.graph_generators.GraphGenerators static method), 992
U42Graph540() (in module sage.graphs.generators.smallgraphs), 1354
U42Graph540() (sage.graphs.graph_generators.GraphGenerators static method), 993
underlying_graph() (in module sage.graphs.tutte_polynomial), 1856
UniformRandomUniform() (sage.graphs.hypergraph_generators.HypergraphGenerators method), 1506
union() (sage.graphs.generic_graph.GenericGraph method), 417
UnitaryDualPolarGraph() (in module sage.graphs.generators.classical_geometries), 1160
UnitaryDualPolarGraph() (sage.graphs.graph_generators.GraphGenerators static method), 994
UnitaryPolarGraph() (in module sage.graphs.generators.classical_geometries), 1161
UnitaryPolarGraph() (sage.graphs.graph_generators.GraphGenerators static method), 995
unlabeled_edges() (sage.graphs.tutte_polynomial.Ear method), 1851
unpickle_graph_backend() (in module sage.graphs.base.graph_backends), 1485
update_db() (sage.graphs.isgci.GraphClasses method), 1371
USMap() (in module sage.graphs.generators.world_map), 1358
USMap() (sage.graphs.graph_generators.GraphGenerators static method), 993
UstimenkoGraph() (in module sage.graphs.generators.distance_regular), 1135
UstimenkoGraph() (sage.graphs.graph_generators.GraphGenerators static method), 995
vanLintSchrijverGraph() (in module sage.graphs.generators.distance_regular), 1145
vanLintSchrijverGraph() (sage.graphs.graph_generators.GraphGenerators static method), 1038
vertex_boundary() (sage.graphs.generic_graph.GenericGraph method), 417
vertex_coloring() (in module sage.graphs.graph_coloring), 1557
vertex_coloring() (in module sage.graphs.connectivity), 1936
vertex_connectivity() (sage.graphs.generic_graph.GenericGraph method), 418
vertex_cover() (sage.graphs.bipartite_graph.BipartiteGraph method), 760
vertex_cover() (sage.graphs.graph.Graph method), 659
vertex_cut() (sage.graphs.generic_graph.GenericGraph method), 421
vertex_disjoint_paths() (sage.graphs.generic_graph.GenericGraph method), 423
vertex_isoperimetric_number() (sage.graphs.generic_graph.GenericGraph method), 660
vertex_iterator() (sage.graphs.generic_graph.GenericGraph method), 423
vertex_separation() (in module sage.graphs.graph_decompositions.vertex_separation), 1718
vertex_separation_BAB() (in module
sage.graphs.graph_decompositions.vertex_separation, 1721

vertex_separation_exp() (in module sage.graphs.graph_decompositions.vertex_separation), 1726

vertex_separation_MILP() (in module sage.graphs.graph_decompositions.vertex_separation), 1725

VertexOrder (class in sage.graphs.tutte_polynomial), 1852

VertexPosition (class in sage.graphs.graph_decompositions.modular_decomposition), 1749

vertices (sage.graphs.tutte_polynomial.Ear property), 1852

vertices() (sage.graphs.generic_graph.GenericGraph method), 425

verts() (sage.graphs.base.c_graph.CGraph method), 1397

verts() (sage.graphs.base.static_sparse_backend.StaticSparseCGraph method), 1479

W

WagnerGraph() (in module sage.graphs.generators.smallgraphs), 1354

WagnerGraph() (sage.graphs.graph_generators.GraphGenerators static method), 996

WatkinsSnarkGraph() (in module sage.graphs.graph_generators.smallgraphs), 1355

WatkinsSnarkGraph() (sage.graphs.graph_generators.GraphGenerators static method), 996

weighted() (sage.graphs.generic_graph.GenericGraph method), 427

weighted_adjacency_matrix() (sage.graphs.generic_graph.GenericGraph method), 428

WellsGraph() (in module sage.graphs.generators.smallgraphs), 1355

WellsGraph() (sage.graphs.graph_generators.GraphGenerators static method), 997

WheelGraph() (in module sage.graphs.generators.families), 1210

WheelGraph() (sage.graphs.graph_generators.GraphGenerators static method), 998

width_of_cut_decomposition() (in module sage.graphs.graph_decompositions.cutwidth), 1739

width_of_path_decomposition() (in module sage.graphs.graph_decompositions.vertex_separation), 1727

width_of_tree_decomposition() (in module sage.graphs.graph_decompositions.tree_decomposition), 1709

wiener_index() (in module sage.graphs_distances_all_pairs), 1803

wiener_index() (sage.graphs.generic_graph.GenericGraph method), 431

WienerArayaGraph() (in module sage.graphs.generators.smallgraphs), 1356

WienerArayaGraph() (sage.graphs.graph_generators.GraphGenerators static method), 999

WindmillGraph() (in module sage.graphs.generators.families), 1212

WindmillGraph() (sage.graphs.graph_generators.GraphGenerators static method), 1000

world_map (sage.graphs.graph_generators.GraphGenerators attribute), 1039

WorldMap() (in module sage.graphs.generators.world_map), 1359

WorldMap() (sage.graphs.graph_generators.GraphGenerators static method), 1001

write_to_eps() (sage.graphs.graph.Graph method), 662

Y

yen_k_shortest_simple_paths() (in module sage.graphs.path_enumeration), 1880