Chain complexes and homology

Release 10.4

The Sage Development Team

Jul 23, 2024
CONTENTS

1 Chain complexes .. 3
2 Chains and cochains ... 25
3 Morphisms of chain complexes 37
4 Chain homotopies and chain contractions 45
5 Homspaces between chain complexes 55
6 Koszul Complexes .. 59
7 Hochschild Complexes .. 61
8 Homology Groups ... 71
9 Homology and cohomology with a basis 73
10 Algebraic topological model for a cell complex 95
11 Induced morphisms on homology 101
12 Utility Functions for Matrices 107
13 Indices and Tables .. 109

Python Module Index .. 111

Index .. 113
Sage includes some tools for algebraic topology, and in particular computing homology groups.
CHAPTER ONE

CHAIN COMPLEXES

This module implements bounded chain complexes of free R-modules, for any commutative ring R (although the interesting things, like homology, only work if R is the integers or a field).

Fix a ring R. A chain complex over R is a collection of R-modules $\{C_n\}$ indexed by the integers, with R-module maps $d_n : C_n \rightarrow C_{n+1}$ such that $d_{n+1} \circ d_n = 0$ for all n. The maps d_n are called differentials.

One can vary this somewhat: the differentials may decrease degree by one instead of increasing it: sometimes a chain complex is defined with $d_n : C_n \rightarrow C_{n-1}$ for each n. Indeed, the differentials may change dimension by any fixed integer.

Also, the modules may be indexed over an abelian group other than the integers, e.g., \mathbb{Z}^m for some integer $m \geq 1$, in which case the differentials may change the grading by any element of that grading group. The elements of the grading group are generally called degrees, so C_n is the module in degree n and so on.

In this implementation, the ring R must be commutative and the modules C_n must be free R-modules. As noted above, homology calculations will only work if the ring R is either \mathbb{Z} or a field. The modules may be indexed by any free abelian group. The differentials may increase degree by 1 or decrease it, or indeed change it by any fixed amount: this is controlled by the degree_of_differential parameter used in defining the chain complex.

AUTHORS:

• John H. Palmieri (2009-04): initial implementation

```
sage.homology.chain_complex.ChainComplex(data=None, base_ring=None, grading_group=None, degree_of_differential=1, degree=1, check=True)
```

Define a chain complex.

INPUT:

• data – the data defining the chain complex; see below for more details.

The following keyword arguments are supported:

• base_ring – a commutative ring (optional), the ring over which the chain complex is defined. If this is not specified, it is determined by the data defining the chain complex.

• grading_group – a additive free abelian group (optional, default \mathbb{Z}), the group over which the chain complex is indexed.

• degree_of_differential – element of grading_group (default: 1). The degree of the differential.

• degree – alias for degree_of_differential.

• check – boolean (default: True). If True, check that each consecutive pair of differentials are composable and have composite equal to zero.

OUTPUT:

A chain complex.
Warning: Right now, homology calculations will only work if the base ring is either \(\mathbb{Z} \) or a field, so please take this into account when defining a chain complex.

Use data to define the chain complex. This may be in any of the following forms.

1. a dictionary with integers (or more generally, elements of grading_group) for keys, and with data[n] a matrix representing (via left multiplication) the differential coming from degree \(n \). (Note that the shape of the matrix then determines the rank of the free modules \(C_n \) and \(C_{n+1} \).

2. a list/tuple/iterable of the form \([C_0, d_0, C_1, d_1, C_2, d_2, ...]\), where each \(C_i \) is a free module and each \(d_i \) is a matrix, as above. This only makes sense if grading_group is \(\mathbb{Z} \) and degree is 1.

3. a list/tuple/iterable of the form \([r_0, d_0, r_1, d_1, r_2, d_2, ...]\), where \(r_i \) is the rank of the free module \(C_i \) and each \(d_i \) is a matrix, as above. This only makes sense if grading_group is \(\mathbb{Z} \) and degree is 1.

4. a list/tuple/iterable of the form \([d_0, d_1, d_2, ...]\) where each \(d_i \) is a matrix, as above. This only makes sense if grading_group is \(\mathbb{Z} \) and degree is 1.

Note: In fact, the free modules \(C_i \) in case 2 and the ranks \(r_i \) in case 3 are ignored: only the matrices are kept, and from their shapes, the ranks of the modules are determined. (Indeed, if data is a list or tuple, then any element which is not a matrix is discarded; thus the list may have any number of different things in it, and all of the non-matrices will be ignored.) No error checking is done to make sure, for instance, that the given modules have the appropriate ranks for the given matrices. However, as long as check is True, the code checks to see if the matrices are composable and that each appropriate composite is zero.

If the base ring is not specified, then the matrices are examined to determine a ring over which they are all naturally defined, and this becomes the base ring for the complex. If no such ring can be found, an error is raised. If the base ring is specified, then the matrices are converted automatically to this ring when defining the chain complex. If some matrix cannot be converted, then an error is raised.

EXAMPLES:

```
sage: ChainComplex()
Trivial chain complex over Integer Ring

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})

sage: C
Chain complex with at most 2 nonzero terms over Integer Ring

sage: m = matrix(ZZ, 2, 2, [0, 1, 0, 0])
sage: D = ChainComplex([m, m], base_ring=GF(2)); D
Chain complex with at most 3 nonzero terms over Finite Field of size 2

sage: D == loads(dumps(D))
True

sage: D.differential(0)==m, m .is_immutable(), D .differential(0).is_immutable()
(True, False, True)
```

```python
>>> from sage.all import *

>>> ChainComplex()
Trivial chain complex over Integer Ring

>>> C = ChainComplex((Integer(0): matrix(ZZ, Integer(2), Integer(3), [Integer(3), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)])})

>>> C
Chain complex with at most 2 nonzero terms over Integer Ring
```
>>> m = matrix(ZZ, Integer(2), Integer(2), [Integer(0), Integer(1), Integer(0), Integer(0)])

>>> D = ChainComplex([m, m], base_ring=GF(Integer(2))); D
Chain complex with at most 3 nonzero terms over Finite Field of size 2

>>> D == loads(dumps(D))
True

>>> D.differential(Integer(0))==m, m.is Immutable(), D.differential(Integer(0)).isImmutable()
(True, False, True)

Note that when a chain complex is defined in Sage, new differentials may be created: every nonzero module in the chain complex must have a differential coming from it, even if that differential is zero:

sage: IZ = ChainComplex({0: identity_matrix(ZZ, 1)})

sage: diff = IZ.differential() # the differentials in the chain complex
sage: diff[-1], diff[0], diff[1]
([], [1], [])

sage: IZ.differential(1).parent()
Full MatrixSpace of 0 by 1 dense matrices over Integer Ring

sage: mat = ChainComplex({0: matrix(ZZ, 3, 4)}).differential(1)

sage: mat.nrows(), mat.ncols()
(0, 3)

If the matrices are defined over incompatible rings, an error results:
Chain complexes and homology, Release 10.4

```sage
ChainComplex([matrix(GF(125, 'a'), 3, 1), matrix(QQ, 4, 3)])  # needs sage.rings.finite_rings
Traceback (most recent call last):
...
TypeError: no common canonical parent for objects with parents:
'Finite Field in a of size 5^3' and 'Rational Field'
```

```sage
from sage.all import *
ChainComplex([matrix(GF(Integer(125), 'a'), Integer(3), Integer(1)), matrix(QQ, Integer(4), Integer(3))])  # needs sage.rings.finite_rings
Traceback (most recent call last):
...
TypeError: no common canonical parent for objects with parents:
'Finite Field in a of size 5^3' and 'Rational Field'
```

If the base ring is given explicitly but is not compatible with the matrices, an error results:

```sage
ChainComplex([matrix(GF(125, 'a'), 3, 1)], base_ring=QQ)  # needs sage.rings.finite_rings
Traceback (most recent call last):
...
TypeError: unable to convert 0 to a rational
```

```sage
from sage.all import *
ChainComplex([matrix(GF(Integer(125), 'a'), Integer(3), Integer(1))], base_ring=QQ)  # needs sage.rings.finite_rings
Traceback (most recent call last):
...
TypeError: unable to convert 0 to a rational
```

```class sage.homology.chain_complex.ChainComplex_class(grading_group, degree_of_differential, base_ring, differentials)
Bases: Parent
See ChainComplex() for full documentation.
The differentials are required to be in the following canonical form:
- All differentials that are not $0 \times 0$ must be specified (even if they have zero rows or zero columns), and
- Differential that are $0 \times 0$ must not be specified.
- Immutable matrices over the base_ring

This and more is ensured by the assertions in the constructor. The ChainComplex() factory function must ensure that only valid input is passed.

EXAMPLES:
```
```
**Element**

alias of *Chain_class*

**betti (deg=0, base_ring=None)**

The Betti number of the chain complex.

That is, write the homology in this degree as a direct sum of a free module and a torsion module; the Betti number is the rank of the free summand.

**INPUT:**

- **deg** – an element of the grading group for the chain complex or None (default None); if None, then return every Betti number, as a dictionary indexed by degree, or if an element of the grading group, then return the Betti number in that degree
- **base_ring** – a commutative ring (default: the base ring for the chain complex); compute homology with these coefficients – must be either the integers or a field

**OUTPUT:**

The Betti number in degree \( \text{deg} \) – the rank of the free part of the homology module in this degree.

**EXAMPLES:**

```python
>>> from sage.all import *

>>> C = ChainComplex(); C
Trivial chain complex over Integer Ring

>>> D = ChainComplex({0: matrix(ZZ, Integer(2), Integer(3), [Integer(3), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)]))
>>> D
Chain complex with at most 2 nonzero terms over Integer Ring

Element

alias of Chain_class

betti (deg=0, base_ring=None)

The Betti number of the chain complex.

That is, write the homology in this degree as a direct sum of a free module and a torsion module; the Betti number is the rank of the free summand.

INPUT:

- **deg** – an element of the grading group for the chain complex or None (default None); if None, then return every Betti number, as a dictionary indexed by degree, or if an element of the grading group, then return the Betti number in that degree
- **base_ring** – a commutative ring (default: the base ring for the chain complex); compute homology with these coefficients – must be either the integers or a field

OUTPUT:

The Betti number in degree \(\text{deg} \) – the rank of the free part of the homology module in this degree.

EXAMPLES:

```python
sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.betti(0)
2
sage: [C.betti(n) for n in range(5)]
[2, 1, 0, 0, 0]
sage: C.betti()
{0: 2, 1: 1}

sage: D = ChainComplex({0: matrix(GF(5), [[3, 1], [1, 2]])})
sage: D.betti()
{0: 1, 1: 1}
```
cartesian_product (*factors, **kwds)

Return the direct sum (Cartesian product) of self with D.

Let C and D be two chain complexes with differentials ∂_C and ∂_D, respectively, of the same degree (so they must also have the same grading group). The direct sum $S = C \oplus D$ is a chain complex given by $S_i = C_i \oplus D_i$ with differential $\partial = \partial_C \oplus \partial_D$.

INPUT:

• subdivide – (default: False) whether to subdivide the the differential matrices

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: C = ChainComplex([matrix([[y],[x]]), matrix([[x, y]])])
sage: D = ChainComplex([matrix([[x-y]]), matrix([[0],[0]])])
sage: ascii_art(C.cartesian_product(D))

[0 0 0] [ 0 x - y]
[0 0 0] [ x 0]
[-y 0] [ -y 0]

0 <-- C_2 <-------- C_1 <-------------- C_0 <-- 0
```

```
sage: D = ChainComplex({1:matrix([[x-y]])}, degree_of_differential=1)
sage: ascii_art(D)

[x]
[y] [x - y]

0 <-- C_5 <---- C_4 <-- 0 <-- C_2 <-------- C_1 <-- 0
```

```
sage: ascii_art(cartesian_product([C, D]))

[-y]
[0]
[x] [ x y 0]
[y] [ 0 0 x - y]

0 <-- C_5 <---- C_4 <-- 0 <-- C_2 <-------------------- C_1 <----- C_0 <-- 0
```

The degrees of the differentials must agree:

```
sage: C = ChainComplex({1:matrix([[x]])}, degree_of_differential=-1)
sage: D = ChainComplex({1:matrix([[x]])}, degree_of_differential=1)
(continues on next page)"
sage: C.cartesian_product(D)
Traceback (most recent call last):
...  
ValueError: the degrees of the differentials must match

```python
>>> from sage.all import *
>>> C = ChainComplex({Integer(1):matrix([[x]])}, degree_of_differential=-1)
>>> D = ChainComplex({Integer(1):matrix([[x]])}, degree_of_differential=Integer(1))
>>> C.cartesian_product(D)
Traceback (most recent call last):
...
ValueError: the degrees of the differentials must match
```

**degree_of_differential()**

Return the degree of the differentials of the complex

**OUTPUT:**

An element of the grading group.

**EXAMPLES:**

```python
sage: D = ChainComplex({0: matrix(ZZ, 2, 2, [1,0,0,2])})
sage: D.degree_of_differential()
1
```

```python
>>> from sage.all import *
>>> D = ChainComplex({Integer(0): matrix(ZZ, Integer(2), Integer(2), [Integer(1),Integer(0),Integer(0),Integer(2)]))
>>> D.degree_of_differential()
1
```

**differential(dim=None)**

The differentials which make up the chain complex.

**INPUT:**

- `dim` – element of the grading group (default: None); if this is None, return a dictionary of all of the differentials, or if this is a single element, return the differential starting in that dimension

**OUTPUT:**

Either a dictionary of all of the differentials or a single differential (i.e., a matrix).

**EXAMPLES:**

```python
sage: D = ChainComplex({0: matrix(ZZ, 2, 2, [1,0,0,2])})
sage: D.differential(0)
[1 0]
[0 2]
sage: D.differential(-1)
[]
sage: C = ChainComplex({0: identity_matrix(ZZ, 40)})
sage: diff = C.differential()
sage: diff[-1]
40 x 0 dense matrix over Integer Ring (use the '.str()' method to see the...
dual()

The dual chain complex to self.

Since all modules in self are free of finite rank, the dual in dimension n is isomorphic to the original chain complex in dimension n, and the corresponding boundary matrix is the transpose of the matrix in the original complex. This converts a chain complex to a cochain complex and vice versa.

EXAMPLES:

```
sage: C = ChainComplex({2: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0]))
sage: C.degree_of_differential()
1
sage: C.differential(2)
[3 0 0]
[0 0 0]
sage: C.dual().degree_of_differential()
-1
sage: C.dual().differential(3)
[3 0]
[0 0]
[0 0]
```
free_module (degree=None)

Return the free module at fixed degree, or their sum.

INPUT:

• degree – an element of the grading group or None (default).

OUTPUT:

The free module C_n at the given degree n. If the degree is not specified, the sum $\oplus C_n$ is returned.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0]), 1: matrix(ZZ, [0, 1])})
sage: C.free_module()
Ambient free module of rank 6 over the principal ideal domain Integer Ring
sage: C.free_module(0)
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: C.free_module(1)
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: C.free_module(2)
Ambient free module of rank 1 over the principal ideal domain Integer Ring

free_module_rank (degree)

Return the rank of the free module at the given degree.

INPUT:

• degree – an element of the grading group

OUTPUT:

Integer. The rank of the free module C_n at the given degree n.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0]), 1: matrix(ZZ, [0, 1])})
Chain complexes and homology, Release 10.4

sage: [C.free_module_rank(i) for i in range(-2, 5)]
[0, 0, 3, 2, 1, 0, 0]

grading_group()

Return the grading group.

OUTPUT:

The discrete abelian group that indexes the individual modules of the complex. Usually \mathbb{Z}.

EXAMPLES:

sage: G = AdditiveAbelianGroup([0, 3])
sage: C = ChainComplex(grading_group=G, degree=G(vector([1,2])))
sage: C.grading_group()
Additive abelian group isomorphic to $\mathbb{Z} + \mathbb{Z}/3$
sage: C.degree_of_differential()
(1, 2)

sage: from sage.all import *
>>> C = ChainComplex({Integer(0): matrix(ZZ, Integer(2), Integer(3),
˓→[Integer(3), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)]),
˓→Integer(1): matrix(ZZ, [[Integer(0), Integer(1)]]))
>>> [C.free_module_rank(i) for i in range(-Integer(2), Integer(5))]
[0, 0, 3, 2, 1, 0, 0]

homology (deg=None, base_ring=None, generators=False, verbose=False, algorithm='pari')

The homology of the chain complex.

INPUT:

- `deg` – an element of the grading group for the chain complex (default: None); the degree in which to compute homology – if this is None, return the homology in every degree in which the chain complex is possibly nonzero.
- `base_ring` – a commutative ring (default: the base ring for the chain complex); must be either the integers \mathbb{Z} or a field
- `generators` – boolean (default: False); if True, return generators for the homology groups along with the groups. See Issue #6100
- `verbose` – boolean (default: False); if True, print some messages as the homology is computed
- `algorithm` – string (default: 'pari'); the options are:
 - 'auto'
 - 'dhsw'
 - 'pari'
See below for descriptions.

OUTPUT:

If the degree is specified, the homology in degree \deg. Otherwise, the homology in every dimension as a dictionary indexed by dimension.

ALGORITHM:

Over a field, just compute ranks and nullities, thus obtaining dimensions of the homology groups as vector spaces. Over the integers, compute Smith normal form of the boundary matrices defining the chain complex according to the value of `algorithm`. If `algorithm` is 'auto', then for each relatively small matrix, use the standard Sage method, which calls the Pari package. For any large matrix, reduce it using the Dumas, Heckenbach, Saunders, and Welker elimination algorithm [DHSW2003]: see `dhsw_snf()` for details.

'no_chomp' is a synonym for 'auto', maintained for backward-compatibility.

`algorithm` may also be 'pari' or 'dhsw', which forces the named algorithm to be used regardless of the size of the matrices.

As of this writing, 'pari' is the fastest standard option.

Warning: This only works if the base ring is the integers or a field. Other values will return an error.

EXAMPLES:

```python
sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.homology()
{0: Z x Z, 1: Z x C3}
sage: C.homology(deg=1, base_ring=GF(3))
Vector space of dimension 2 over Finite Field of size 3
sage: D = ChainComplex({0: identity_matrix(ZZ, 4), 4: identity_matrix(ZZ, 30)})
˓→
sage: D.homology()
{0: 0, 1: 0, 4: 0, 5: 0}
```

Generators: generators are given as a list of cycles, each of which is an element in the appropriate free module, and hence is represented as a vector. Each summand of the homology is listed separately, with a corresponding generator:

```python
sage: C.homology(1, generators=True)
[(C3, Chain(1:(1, 0))), (Z, Chain(1:{0, 1}))]
```

```python
>>> from sage.all import *
>>> C = ChainComplex({Integer(0): matrix(ZZ, Integer( 2), Integer( 3), →[Integer(3), Integer( 0), Integer( 0), Integer( 0), Integer( 0), Integer( 0)])})
>>> C.homology()  # Vector space of dimension 2 over Finite Field of size 3
>>> D = ChainComplex({Integer(0): identity_matrix(ZZ, Integer( 4)), Integer(4): identity_matrix(ZZ, Integer(30))})
>>> D.homology()  # Vector space of dimension 2 over Finite Field of size 3
```

```python
>>> from sage.all import *
>>> C.homology(Integer(1), generators=True)
[(C3, Chain(1:(1, 0))), (Z, Chain(1:{0, 1}))]
```
Tests for Issue #6100, the Klein bottle with generators:

```python
sage: d0 = matrix(ZZ, 0, 1)
sage: d1 = matrix(ZZ, 1, 3, [[0,0,0]])
sage: d2 = matrix(ZZ, 3, 2, [[1,1], [1,-1], [-1,1]])
sage: C_k = ChainComplex({0:d0, 1:d1, 2:d2}, degree=-1)
sage: C_k.homology(generators=true)
{0: [(Z, Chain(0:(1)))],
 1: [(C2, Chain(1:(0, 1, -1))), (Z, Chain(1:(0, 1, 0)))],
 2: []}
```

From a torus using a field:

```python
sage: T = simplicial_complexes.Torus()  # needs sage.graphs
sage: C_t = T.chain_complex()  # needs sage.graphs
sage: C_t.homology(base_ring=QQ, generators=True)  # needs sage.graphs
{0: [(Vector space of dimension 1 over Rational Field, Chain(0:(0, 0, 0, 0, 0, 0, 1)))],
 1: [(Vector space of dimension 1 over Rational Field, Chain(1:(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1)))],
 2: [(Vector space of dimension 1 over Rational Field, Chain(2:(1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1)))]
```

```python
>>> from sage.all import *
>>> d0 = matrix(ZZ, Integer(0), Integer(1))
>>> d1 = matrix(ZZ, Integer(1), Integer(3), [[Integer(0), Integer(0), Integer(0)]])
>>> d2 = matrix(ZZ, Integer(3), Integer(2), [[Integer(1), Integer(1)], [-Integer(1), Integer(1)], [Integer(1), -Integer(1)]])
>>> C_k = ChainComplex({Integer(0):d0, Integer(1):d1, Integer(2):d2}, degree=Integer(-1))
>>> C_k.homology(generators=true)
{0: [(Z, Chain(0:(1)))],
 1: [(C2, Chain(1:(0, 1, -1))), (Z, Chain(1:(0, 1, 0)))],
 2: []}
```
nonzero_degrees()
Return the degrees in which the module is non-trivial.

See also ordered_degrees().

OUTPUT:
The tuple containing all degrees n (grading group elements) such that the module C_n of the chain is non-trivial.

EXAMPLES:

```
sage: one = matrix(ZZ, [[[1]])
sage: D = ChainComplex({0: one, 2: one, 6:one})
sage: ascii_art(D)
[1] [1] [0] [1]
0 <-- C_7 <-- C_6 <-- 0 ... 0 <-- C_3 <-- C_2 <-- C_1 <-- C_0 <-- 0
sage: D.nonzero_degrees()
(0, 1, 2, 3, 6, 7)
```

ordered_degrees(start=None, exclude_first=False)
Sort the degrees in the order determined by the differential

INPUT:

• start – (default: None) a degree (element of the grading group) or None

• exclude_first – boolean (optional; default: False); whether to exclude the lowest degree – this is a handy way to just get the degrees of the non-zero modules, as the domain of the first differential is zero.

OUTPUT:
If start has been specified, the longest tuple of degrees

• containing start (unless start would be the first and exclude_first=True),

• in ascending order relative to degree_of_differential(), and

• such that none of the corresponding differentials are $0 	imes 0$.

If start has not been specified, a tuple of such tuples of degrees. One for each sequence of non-zero differentials. They are returned in sort order.

EXAMPLES:

```
sage: one = matrix(ZZ, [[[1]])
sage: D = ChainComplex({0: one, 2: one, 6:one})
sage: ascii_art(D)
[1] [1] [0] [1]
0 <-- C_7 <-- C_6 <-- 0 ... 0 <-- C_3 <-- C_2 <-- C_1 <-- C_0 <-- 0
sage: D.ordered_degrees()
((-1, 0, 1, 2, 3), (5, 6, 7))
sage: D.ordered_degrees(exclude_first=True)
((-1, 0, 1, 2, 3),)  
```
random_element()

Return a random element.

EXAMPLES:

```
sage: D = ChainComplex({0: matrix(ZZ, 2, 2, [1,0,0,2])})
sage: D.random_element()  # random output
Chain with 1 nonzero terms over Integer Ring
```

rank (degree, ring=None)

Return the rank of a differential

INPUT:

- degree – an element \(\delta \) of the grading group. Which differential \(d_\delta \) we want to know the rank of
- ring – (optional) a commutative ring \(S \); if specified, the rank is computed after changing to this ring

OUTPUT:

The rank of the differential \(d_\delta \otimes_R S \), where \(R \) is the base ring of the chain complex.

EXAMPLES:

```
sage: C = ChainComplex({0:matrix(ZZ, [2])})
sage: C.differential(0)
[2]
sage: C.rank(0)
1
sage: C.rank(0, ring=GF(2))
0
```
shift (n=1)
Shift this chain complex n times.

INPUT:

• n – an integer (default: 1)

The shift operation is also sometimes called translation or suspension.

To shift a chain complex by n, shift its entries up by n (if it is a chain complex) or down by n (if it is a cochain complex); that is, shifting by 1 always shifts in the opposite direction of the differential. In symbols, if \(C \) is a chain complex and \(C[n] \) is its \(n \)-th shift, then \(C[n]_j = C_{j-n} \). The differential in the shift \(C[n] \) is obtained by multiplying each differential in \(C \) by \((-1)^n\).

Caveat: different sources use different conventions for shifting: what we call \(C[n] \) might be called \(C[-n] \) in some places. See for example. https://ncatlab.org/nlab/show/suspension (which uses \(C[n] \) as we do but acknowledges \(C[-n] \)) or 1.2.8 in [Wei1994] (which uses \(C[-n] \)).

EXAMPLES:

```python
sage: # needs sage.graphs
sage: S1 = simplicial_complexes.Sphere(1).chain_complex()
sage: S1.shift(1).differential(2) == -S1.differential(1)
True
sage: S1.shift(2).differential(3) == S1.differential(1)
True
sage: S1.shift(3).homology(4)
Z
```

For cochain complexes, shifting goes in the other direction. Topologically, this makes sense if we grade the cochain complex for a space negatively:

```python
sage: T = simplicial_complexes.Torus()
sage: co_T = T.chain_complex()._flip_()
sage: co_T.homology()
{-2: Z, -1: Z x Z, 0: Z}
```

(continues on next page)
sage: co_T.degree_of_differential()
1
sage: co_T.shift(2).homology()
{-4: Z, -3: Z x Z, -2: Z}

>>> from sage.all import *

>>> T = simplicial_complexes.Torus()
>>> co_T = T.chain_complex()._flip_()
>>> co_T.homology()
{-2: Z, -1: Z x Z, 0: Z}
>>> co_T.degree_of_differential()
1
>>> co_T.shift(Integer(2)).homology()
{-4: Z, -3: Z x Z, -2: Z}

You can achieve the same result by tensoring (on the left, to get the signs right) with a rank one free module in degree $-n \times \text{deg}$, if deg is the degree of the differential:

sage: C = ChainComplex({-2: matrix(ZZ, 0, 1)})

sage: C.tensor(co_T).homology() # needs sage.graphs
{-4: Z, -3: Z x Z, -2: Z}

>>> from sage.all import *

>>> C = ChainComplex({-Integer(2): matrix(ZZ, Integer(0), Integer(1))})

>>> C.tensor(co_T).homology() # needs sage.graphs
{-4: Z, -3: Z x Z, -2: Z}

tensor (*factors, **kwds)

Return the tensor product of self with D.

Let C and D be two chain complexes with differentials ∂_C and ∂_D, respectively, of the same degree (so they must also have the same grading group). The tensor product $S = C \otimes D$ is a chain complex given by

$$S_i = \bigoplus_{a + b = i} C_a \otimes D_b$$

with differential

$$\partial(x \otimes y) = \partial_C x \otimes y + (-1)^{|a|} |\partial_D| x \otimes \partial_D y$$

for $x \in C_a$ and $y \in D_b$, where $|a|$ is the degree of a and $|\partial_D|$ is the degree of ∂_D.

Warning: If the degree of the differential is even, then this may not result in a valid chain complex.

INPUT:

- **subdivide** – (default: False) whether to subdivide the differential matrices

Todo: Make subdivision work correctly on multiple factors.

EXAMPLES:
```python
sage: R.<x,y,z> = QQ[

sage: C1 = ChainComplex({1:matrix([[x]])}, degree_of_differential=-1)

sage: C2 = ChainComplex({1:matrix([[y]])}, degree_of_differential=-1)

sage: C3 = ChainComplex({1:matrix([[z]])}, degree_of_differential=-1)

sage: ascii_art(C1.tensor(C2))
    [ x]
    [y x]
    [-y]
    0 <-- C_0 <----- C_1 <----- C_2 <-- 0

sage: ascii_art(C1.tensor(C2).tensor(C3))
    [ y x 0 ]
    [ 0 -z -y ]
    [ z y x ]
    0 <-- C_0 <-------- C_1 <----------- C_2 <----- C_3 <-- 0

>>> from sage.all import *

>>> R = QQ['x, y, z']; (x, y, z,) = R._first_ngens(3)

>>> C1 = ChainComplex((Integer(1):matrix([[x]])), degree_of_differential=-Integer(1))

>>> C2 = ChainComplex((Integer(1):matrix([[y]])), degree_of_differential=-Integer(1))

>>> C3 = ChainComplex((Integer(1):matrix([[z]])), degree_of_differential=-Integer(1))

>>> ascii_art(C1.tensor(C2))
    [ x]
    [y x]
    [-y]
    0 <-- C_0 <----- C_1 <----- C_2 <-- 0

>>> ascii_art(C1.tensor(C2).tensor(C3))
    [ y x 0 ]
    [ -z 0 x ]
    [ z y x ]
    0 <-- C_0 <-------- C_1 <----------- C_2 <----- C_3 <-- 0

sage: C = ChainComplex({2:matrix([[-y],[x]]), 1:matrix([[x, y]])},
    degree_of_differential=-1); ascii_art(C)
    [ y]
    [x y]
    0 <-- C_0 <----- C_1 <----- C_2 <-- 0

sage: T = C.tensor(C)

sage: T.differential(1)
[ x y x]

sage: T.differential(2)
[ -y x 0 y 0 0 ]
[ x 0 x 0 y 0 ]
[ 0 -x -y 0 0 -y ]
[ 0 0 0 -x -y x ]

sage: T.differential(3)
[ x y 0 0 ]
[ y 0 -y 0 ]
[ -x 0 0 -y ]
[ 0 y x 0 ]
[ 0 -x 0 x ]
[ 0 0 x y ]

sage: T.differential(4)
[ -y]
[ x]
[ -y]
[ x]
```

>>> from sage.all import *
>>> C = ChainComplex({Integer(2):matrix([[y], [x]]),Integer(1):matrix([[x, -y]])},
... degree_of_differential=Integer(1)); ascii_art(C)
[-y]
[x y]

0 <-- C_0 <------ C_1 <------ C_2 <--- 0

>>> T = C.tensor(C)

>>> T.differential(Integer(1))
[x y x y]

>>> T.differential(Integer(2))
[-y x 0 y 0 0]
[x 0 x 0 y 0]
[0 -x y 0 0 -y]
[0 0 0 -x -y x]

>>> T.differential(Integer(3))
[x y 0 0]
[y 0 -y 0]
[-x 0 0 -y]
[y y 0]
[0 -x 0 x]
[0 0 x y]

>>> T.differential(Integer(4))
[-y]
[x]
[-y]
[x]

The degrees of the differentials must agree:

sage: C1p = ChainComplex({1:matrix([[x]])}, degree_of_differential=1)
sage: C1.tensor(C1p)
Traceback (most recent call last):
...
ValueError: the degrees of the differentials must match

>>> from sage.all import *

>>> C1p = ChainComplex({Integer(1):matrix([[x]])}, degree_of_differential=Integer(1))

>>> C1.tensor(C1p)
Traceback (most recent call last):
...
ValueError: the degrees of the differentials must match

\texttt{torsion_list} (\texttt{max_prime, min_prime}=2)

Look for torsion in this chain complex by computing its mod \(p \) homology for a range of primes \(p \).

INPUT:

\begin{itemize}
 \item \texttt{max_prime} – prime number; search for torsion mod \(p \) for all \(p \) strictly less than this number
 \item \texttt{min_prime} – prime (default: 2); search for torsion mod \(p \) for primes at least as big as this
\end{itemize}

Return a list of pairs \((p, d)\) where \(p \) is a prime at which there is torsion and \(d \) is a list of dimensions in which this torsion occurs.

The base ring for the chain complex must be the integers; if not, an error is raised.

ALGORITHM:
Let C denote the chain complex. Let P equal \max_prime. Compute the mod P homology of C, and use this as the base-line computation: the assumption is that this is isomorphic to the integral homology tensored with \mathbb{F}_P. Then compute the mod p homology for a range of primes p, and record whenever the answer differs from the base-line answer.

EXAMPLES:

```python
sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: C.homology()
{(0: \mathbb{Z} \times \mathbb{Z}, 1: \mathbb{Z} \times \mathbb{C}_3)}
sage: C.torsion_list(11)  # needs sage.rings.finite_rings
[(3, \{1\}]]
sage: C = ChainComplex([matrix(ZZ, 1, 1, [2]), matrix(ZZ, 1, 1), matrix(1, 1)])
sage: C.homology(1)
\mathbb{C}_2
sage: C.homology(3)
\mathbb{C}_3
sage: C.torsion_list(5)  # needs sage.rings.finite_rings
[(2, \{1\}), (3, \{3\})]
```

```python
>>> from sage.all import *
>>> C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])},
base_ring=GF(7))
```
sage: C.category()
Category of chain complexes over Finite Field of size 7

>>> from sage.all import *

>>> C = ChainComplex({Integer(0): matrix(ZZ, Integer(2), Integer(3), [Integer(3), ...
\rightarrow Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)])}, ...
base_ring=GF(Integer(7)))

is_boundary ()

Return whether the chain is a boundary.

OUTPUT:

Boolean. Whether the elements of the chain are in the image of the differentials.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])})
sage: c = C({0: vector([0, 1, 2]), 1: vector([3, 4])})
sage: c.is_boundary()
False

>>> from sage.all import *

>>> C = ChainComplex({Integer(0): matrix(ZZ, Integer(2), Integer(3), ...
\rightarrow Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)])})

is_cycle ()

Return whether the chain is a cycle.

OUTPUT:

Boolean. Whether the elements of the chain are in the kernel of the differentials.

EXAMPLES:
sage: c.is_cycle()
True

>>> from sage.all import *

>>> C = ChainComplex({Integer(0): matrix(ZZ, Integer(2), Integer(3),
 →[Integer(3), Integer(0), Integer(0), Integer(0), Integer(0), Integer(0)])})

>>> c = C({Integer(0): vector([Integer(0), Integer(1), Integer(2)]),
 →Integer(1): vector([Integer(3), Integer(4)])})

>>> c.is_cycle()
True

vector (degree)
Return the free module element in degree.

EXAMPLES:

sage: C = ChainComplex({0: matrix(ZZ, 2, 3, \[3, 0, 0, 0, 0, 0\])})

sage: c = C({0: vector([1, 2, 3]), 1: vector([4, 5])})

sage: c.vector(0)
(1, 2, 3)

sage: c.vector(1)
(4, 5)

sage: c.vector(2)
()
This module implements formal linear combinations of cells of a given cell complex (Chains) and their dual (Cochains). It is closely related to the sage.topology.chain_complex module. The main differences are that chains and cochains here are of homogeneous dimension only, and that they reference their cell complex.

```
class sage.homology.chains.CellComplexReference(cell_complex, degree, cells=None):
    Bases: object
    Auxiliary base class for chains and cochains
    INPUT:
    • cell_complex – The cell complex to reference
    • degree – integer. The degree of the (co)chains
    • cells – tuple of cells or None. Does not necessarily have to be the cells in the given degree, for computational purposes this could also be any collection that is in one-to-one correspondence with the cells. If None, the cells of the complex in the given degree are used.

    EXAMPLES:
    sage: X = simplicial_complexes.Simplex(2)
    sage: from sage.homology.chains import CellComplexReference
    sage: c = CellComplexReference(X, 1)
    sage: c.cell_complex() is X
    True

>>> from sage.all import *
>>> X = simplicial_complexes.Simplex(Integer(2))
>>> from sage.homology.chains import CellComplexReference
>>> c = CellComplexReference(X, Integer(1))
>>> c.cell_complex() is X
True
```

cell_complex()

Return the underlying cell complex

OUTPUT:
A cell complex.

EXAMPLES:

```
sage: X = simplicial_complexes.Simplex(2)
sage: X.n_chains(1).cell_complex() is X
True
```
from sage.all import *
X = simplicial_complexes.Simplex(Integer(2))
X.n_chains(Integer(1)).cell_complex() is X
True

degree()

Return the dimension of the cells

OUTPUT:

Integer. The dimension of the cells.

EXAMPLES:

sage: X = simplicial_complexes.Simplex(2)
sage: X.n_chains(1).degree()
1

class sage.homology.chains.Chains(cell_complex, degree, cells=None, base_ring=None)

Bases: CellComplexReference, CombinatorialFreeModule

Class for the free module of chains in a given degree.

INPUT:

• n_cells – tuple of n-cells, which thus forms a basis for this module
• base_ring – optional (default ZZ)

One difference between chains and cochains is notation. In a simplicial complex, for example, a simplex (0,1,2) is written as “(0,1,2)” in the group of chains but as “\chi_(0,1,2)” in the group of cochains.

Also, since the free modules of chains and cochains are dual, there is a pairing \langle c, z \rangle, sending a cochain c and a chain z to a scalar.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: C_2 = S2.n_chains(1)
sage: C_2_co = S2.n_chains(1, cochains=True)
sage: x = C_2.basis()[Simplex((0,2))]
sage: y = C_2.basis()[Simplex((1,3))]
sage: z = x+2*y
sage: a = C_2_co.basis()[Simplex((1,3))]
sage: b = C_2_co.basis()[Simplex((0,3))]
sage: c = 3*a-2*b
sage: z
(0, 2) + 2*(1, 3)
sage: c
-2*\chi_(0, 3) + 3*\chi_(1, 3)
sage: c.eval(z)
6
class Element

Bases: IndexedFreeModuleElement

boundary()

Return the boundary of the chain

OUTPUT:

The boundary as a chain in one degree lower.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.topology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]])) - 2 * C1(Cube([[0, 1], [0, 0]]))
sage: chain
-2*[0,1] x [0,0] + [1,1] x [0,1]
sage: chain.boundary()
2*[0,0] x [0,0] - 3*[1,1] x [0,0] + [1,1] x [1,1]

is_boundary()

Test whether the chain is a boundary

OUTPUT:

Boolean. Whether the chain is the boundary() of a chain in one degree higher.

EXAMPLES:
sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.topology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: chain.is_boundary()
False

>>> from sage.all import *
>>> square = cubical_complexes.Cube(Integer(2))
>>> C1 = square.n_chains(Integer(1), QQ)
>>> from sage.topology.cubical_complex import Cube
>>> chain = C1(Cube([[Integer(1), Integer(1)], [Integer(0),
→Integer(1)]])) - C1(Cube([[Integer(0), Integer(1)], [Integer(0),
→Integer(0)]]))
>>> chain.is_boundary()
False

is_cycle()
Test whether the chain is a cycle

OUTPUT:
Boolean. Whether the boundary() vanishes.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.topology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: chain.is_cycle()
False

>>> from sage.all import *
>>> square = cubical_complexes.Cube(Integer(2))
>>> C1 = square.n_chains(Integer(1), QQ)
>>> from sage.topology.cubical_complex import Cube
>>> chain = C1(Cube([[Integer(1), Integer(1)], [Integer(0),
→Integer(1)]])) - C1(Cube([[Integer(0), Integer(1)], [Integer(0),
→Integer(0)]]))
>>> chain.is_cycle()
False

to_complex()
Return the corresponding chain complex element

OUTPUT:
An element of the chain complex, see sage.homology.chain_complex.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ)
sage: from sage.topology.cubical_complex import Cube
sage: chain = C1(Cube([[1, 1], [0, 1]]))
sage: chain.to_complex()
Chain(1: (0, 0, 0, 1))
sage: ascii_art(_)
<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>

>>> from sage.all import *

>>> square = cubical_complexes.Cube(Integer(2))

>>> C1 = square.n_chains(Integer(1), QQ)

>>> from sage.topology.cubical_complex import Cube

>>> chain = C1(Cube([[Integer(1), Integer(1)], [Integer(0), Integer(1)]]))

>>> chain.to_complex()
Chain(1:(0, 0, 0, 1))

>>> ascii_art(_)
<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>

```
chain_complex()

Return the chain complex.

OUTPUT:

Chain complex, see sage.homology.chain_complex.

EXAMPLES:
```

```
sage: square = cubical_complexes.Cube(2)
sage: CC = square.n_chains(2, QQ).chain_complex(); CC
Chain complex with at most 3 nonzero terms over Rational Field

sage: ascii_art(CC)
<table>
<thead>
<tr>
<th>-1</th>
<th>-1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

0 <-- C_0 <-------------- C_1 <----- C_2 <-- 0
```

```
>>> from sage.all import *

>>> square = cubical_complexes.Cube(Integer(2))

>>> CC = square.n_chains(Integer(2), QQ).chain_complex(); CC
Chain complex with at most 3 nonzero terms over Rational Field

>>> ascii_art(CC)
<table>
<thead>
<tr>
<th>-1</th>
<th>-1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

0 <-- C_0 <-------------- C_1 <----- C_2 <-- 0
```

dual()

Return the cochains.

OUTPUT:

The cochains of the same cells with the same base ring.

EXAMPLES:

```
sage: square = cubical_complexes.Cube(2)
sage: chains = square.n_chains(1, ZZ); chains
Free module generated by \{[0,0] \times [0,1], [0,1] \times [0,0], [0,1] \times [1,1], [1,1] \rightarrow [0,1]\} over Integer Ring
sage: chains.dual()
Free module generated by \{[0,0] \times [0,1], [0,1] \times [0,0], [0,1] \times [1,1], [1,1] \rightarrow [0,1]\} over Integer Ring
sage: type(chains)
<class 'sage.homology.chains.Chains_with_category'>
sage: type(chains.dual())
<class 'sage.homology.chains.Cochains_with_category'>

>>> from sage.all import *
>>> square = cubical_complexes.Cube(Integer(2))
>>> chains = square.n_chains(Integer(1), ZZ); chains
Free module generated by \{[0,0] \times [0,1], [0,1] \times [0,0], [0,1] \times [1,1], [1,1] \rightarrow [0,1]\} over Integer Ring
>>> chains.dual()
Free module generated by \{[0,0] \times [0,1], [0,1] \times [0,0], [0,1] \times [1,1], [1,1] \rightarrow [0,1]\} over Integer Ring
>>> type(chains)
<class 'sage.homology.chains.Chains_with_category'>
>>> type(chains.dual())
<class 'sage.homology.chains.Cochains_with_category'>

class sage.homology.chains.Cochains(cell_complex, degree, cells=None, base_ring=None)

Bases: CellComplexReference, CombinatorialFreeModule

Class for the free module of cochains in a given degree.

INPUT:

- \(n\_cells\) – tuple of \(n\)-cells, which thus forms a basis for this module
- \(base\_ring\) – optional (default \(\mathbb{Z}\))

One difference between chains and cochains is notation. In a simplicial complex, for example, a simplex \((0,1,2)\) is written as “\((0,1,2)\)” in the group of chains but as “\(\chi_{(0,1,2)}\)” in the group of cochains.

Also, since the free modules of chains and cochains are dual, there is a pairing \(\langle c, z \rangle\), sending a cochain \(c\) and a chain \(z\) to a scalar.

EXAMPLES:

sage: S2 = simplicial_complexes.Sphere(2)
sage: C_2 = S2.n_chains(1)
sage: C_2_co = S2.n_chains(1, cochains=True)
sage: x = C_2.basis()[Simplex((0,2))]
sage: y = C_2.basis()[Simplex((1,3))]
sage: z = x+2*y
sage: a = C_2_co.basis()[Simplex((1,3))]
sage: b = C_2_co.basis()[Simplex((0,3))]
sage: c = 3*a-2*b
sage: z
(0, 2) + 2*(1, 3)
sage: c
-2*\chi_{(0, 3)} + 3*\chi_{(1, 3)}
sage: c.eval(z)
6
>>> from sage.all import *

>>> S2 = simplicial_complexes.Sphere(Integer(2))
>>> C_2 = S2.n_chains(Integer(1))
>>> C_2_co = S2.n_chains(Integer(1), cochains=True)

>>> x = C_2.basis()[Simplex({Integer(0), Integer(2)})]
>>> y = C_2.basis()[Simplex({Integer(1), Integer(3)})]

>>> z = x + Integer(2) * y

>>> a = C_2_co.basis()[Simplex({Integer(1), Integer(3)})]
>>> b = C_2_co.basis()[Simplex({Integer(0), Integer(3)})]

>>> c = Integer(3) * a - Integer(2) * b

>>> z
(0, 2) + 2*(1, 3)

>>> c
-2*\chi_{(0, 3)} + 3*\chi_{(1, 3)}

>>> c.eval(z)
6

class Element

Bases: IndexedFreeModuleElement

coboundary()

Return the coboundary of this cochain

OUTPUT:

The coboundary as a cochain in one degree higher.

EXAMPLES:

sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(i, QQ, cochains=True)
sage: from sage.topology.cubical_complex import Cube

sage: cochain = C1(Cube([[1, 1], [0, 1]])) - 2 * C1(Cube([[0, 1], [0, -1]]))
sage: cochain
-2*\chi_{[0,1]} x [0,0] + \chi_{[1,1]} x [0,1]

sage: cochain.coboundary()
-\chi_{[0,1]} x [0,1]

cup_product(cochain)

Return the cup product with another cochain.

INPUT:

• cochain – cochain over the same cell complex

EXAMPLES:
sage: T2 = simplicial_complexes.Torus()

sage: C1 = T2.n_chains(1, base_ring=ZZ, cochains=True)

sage: def l(i, j):
....:     return C1(Simplex([i, j]))

sage: l1 = l(1, 3) + l(1, 4) + l(1, 6) + l(2, 4) - l(4, 5) + l(5, 6)

sage: l2 = l(1, 6) - l(2, 3) - l(2, 5) + l(3, 6) - l(4, 5) + l(5, 6)

The two one-cocycles are cohomology generators:

sage: l1.is_cocycle(), l1.is_coboundary()
(True, False)

sage: l2.is_cocycle(), l2.is_coboundary()
(True, False)

Their cup product is a two-cocycle that is again non-trivial in cohomology:

sage: l12 = l1.cup_product(l2)

sage: l12
\(\chi_{(1, 3, 6)} - \chi_{(2, 4, 5)} - \chi_{(4, 5, 6)}\)

sage: l1.parent().degree(), l2.parent().degree(), l12.parent().degree()
(1, 1, 2)

sage: l12.is_cocycle(), l12.is_coboundary()
(True, False)

\texttt{eval}\texttt{(other)}

Evaluate this cochain on the chain \texttt{other}.

\textbf{INPUT:}

- \texttt{other} – a chain for the same cell complex in the same dimension with the same base ring
OUTPUT: scalar

EXAMPLES:

```
sage: S2 = simplicial_complexes.Sphere(2)
sage: C_2 = S2.n_chains(1)
sage: C_2_co = S2.n_chains(1, cochains=True)
sage: x = C_2.basis()[Simplex((0,2))]
sage: y = C_2.basis()[Simplex((1,3))]
sage: z = x+2*y
sage: a = C_2_co.basis()[Simplex((1,3))]
sage: b = C_2_co.basis()[Simplex((0,3))]
sage: c = 3*a-2*b
sage: z
(0, 2) + 2*(1, 3)
sage: c
-2*\chi_(0, 3) + 3*\chi_(1, 3)
sage: c.eval(z)
6
```

is_coboundary()

Test whether the cochain is a coboundary

OUTPUT:

Boolean. Whether the cochain is the coboundary() of a cochain in one degree lower.

EXAMPLES:

```
sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ, cochains=True)
sage: from sage.topology.cubical_complex import Cube
sage: cochain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: cochain.is_coboundary()
True
```

(continues on next page)
is_cocycle()
Test whether the cochain is a cocycle

OUTPUT:
Boolean. Whether the \texttt{coboundary()} vanishes.

EXAMPLES:

```python
sage: square = cubical_complexes.Cube(2)
sage: C1 = square.n_chains(1, QQ, cochains=True)
sage: from sage.topology.cubical_complex import Cube
sage: cochain = C1(Cube([[1, 1], [0, 1]])) - C1(Cube([[0, 1], [0, 0]]))
sage: cochain.is_cocycle()
True
```

```python
>>> from sage.all import *
```
cochain_complex()
Return the cochain complex.

OUTPUT:
Cochain complex, see sage.homology.chain_complex.
EXAMPLES:

```python
sage: square = cubical_complexes.Cube(2)
sage: C2 = square.n_chains(2, QQ, cochains=True)
sage: C2.cochain_complex()
Chain complex with at most 3 nonzero terms over Rational Field
```

```python
sage: ascii_art(C2.cochain_complex())
[-1 1 0 0]
[-1 0 1 0]
[0 -1 0 1]
[0 0 -1 1]
0 <-- C_2 <------------------ C_1 <------------------ C_0 <-- 0
```

```python
>>> from sage.all import *
>>> square = cubical_complexes.Cube(Integer(2))
>>> C2 = square.n_chains(Integer(2), QQ, cochains=True)
>>> C2.cochain_complex()
Chain complex with at most 3 nonzero terms over Rational Field
```

```python
>>> ascii_art(C2.cochain_complex())
[-1 1 0 0]
[-1 0 1 0]
[0 -1 0 1]
[0 0 -1 1]
0 <-- C_2 <------------------ C_1 <------------------ C_0 <-- 0
```

dual()
Return the chains

OUTPUT:
The chains of the same cells with the same base ring.

EXAMPLES:

```python
sage: square = cubical_complexes.Cube(2)
sage: cochains = square.n_chains(1, ZZ, cochains=True); cochains
Free module generated by {

\([0,0] \times [0,1], [0,1] \times [0,0], [0,1] \times [1,1], [1,1] \times [0,1]\)}
over Integer Ring
```

```python
sage: type(cochains)
```

(continues on next page)
```python
>>> from sage.all import *
>>> square = cubical_complexes.Cube(Integer(2))
>>> cochains = square.n_chains(Integer(1), ZZ, cochains=True); cochains
Free module generated by {[0,0] x [0,1], [0,1] x [0,0], [0,1] x [1,1], [1,1] \rightarrow [0,1]} over Integer Ring
>>> cochains.dual()
Free module generated by {[0,0] x [0,1], [0,1] x [0,0], [0,1] x [1,1], [1,1] \rightarrow [0,1]} over Integer Ring
>>> type(cochains)
<class 'sage.homology.chains.Cochains_with_category'>
>>> type(cochains.dual())
<class 'sage.homology.chains.Chains_with_category'>
```
MORPHISMS OF CHAIN COMPLEXES

AUTHORS:

• Benjamin Antieau <d.ben.antieau@gmail.com> (2009.06)

• Travis Scrimshaw (2012-08-18): Made all simplicial complexes immutable to work with the homset cache.

This module implements morphisms of chain complexes. The input is a dictionary whose keys are in the grading group of the chain complex and whose values are matrix morphisms.

EXAMPLES:

```python
sage: # needs sage.graphs
sage: S = simplicial_complexes.Sphere(1); S
Minimal triangulation of the 1-sphere
sage: C = S.chain_complex()
```

```python
dsage: C.differential()
{0: [], 1: [-1 -1 0]
[1 0 1], 2: []}
sage: f = {0: zero_matrix(ZZ, 3,3), 1: zero_matrix(ZZ,3,3)}
sage: G = Hom(C, C)
sage: x = G(f); x
Chain complex endomorphism of
Chain complex with at most 2 nonzero terms over Integer Ring
```

```python
sage: x._matrix_dictionary
{0: [0 0 0]
[0 0 0],
1: [0 0 0]
[0 0 0]
[0 0 0]}
```

```python
>>> from sage.all import *
>>>
```
Chain complex endomorphism of
Chain complex with at most 2 nonzero terms over Integer Ring

>>> x._matrix_dictionary
{0: [0 0 0]
 [0 0 0]
 [0 0 0],
1: [0 0 0]
 [0 0 0]
 [0 0 0]}

class sage.homology.chain_complex_morphism.ChainComplexMorphism(matrices, C, D, check=True)

Bases: Morphism

An element of this class is a morphism of chain complexes.

dual()

The dual chain map to this one.

That is, the map from the dual of the codomain of this one to the dual of its domain, represented in each
degree by the transpose of the corresponding matrix.

EXAMPLES:

sage: # needs sage.graphs
sage: X = simplicial_complexes.Simplex(1)
sage: Y = simplicial_complexes.Simplex(0)
sage: g = Hom(X,Y)({0:0, 1:0})
sage: f = g.associated_chain_complex_morphism()
sage: f.in_degree(0)
[1 1]
sage: f.dual()
Chain complex morphism:
    From: Chain complex with at most 1 nonzero terms over Integer Ring
    To: Chain complex with at most 2 nonzero terms over Integer Ring

sage: f.dual().in_degree(0)
[1]
[1]
sage: ascii_art(f.domain())
[-1]
[1]
0 <-- C_0 <-------- C_1 <-- 0
sage: ascii_art(f.dual().codomain())
[-1 1]
0 <-- C_1 <-------- C_0 <-- 0

>>> from sage.all import *

>>> X = simplicial_complexes.Simplex(Integer(1))
>>> Y = simplicial_complexes.Simplex(Integer(0))
>>> g = Hom(X,Y)({Integer(0):Integer(0), Integer( 1):Integer(0)})
>>> f = g.associated_chain_complex_morphism()
>>> f.in_degree(Integer(0))
[1 1]
>>> f.dual()
Chain complex morphism:
    From: Chain complex with at most 1 nonzero terms over Integer Ring
    To: Chain complex with at most 2 nonzero terms over Integer Ring

(continues on next page)
in_degree \( (n) \)

The matrix representing this morphism in degree \( n \).

INPUT:

- \( n \) – degree

EXAMPLES:

```python
sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f.in_degree(0)
[1]
```

```python
>>> from sage.all import *
```

```python
>>> C = ChainComplex({Integer(0): identity_matrix(ZZ, Integer(1)))
>>> D = ChainComplex({Integer(0): zero_matrix(ZZ, Integer(1)), Integer(1):
˓→zero_matrix(ZZ, Integer(1)))
>>> f = Hom(C,D)({Integer(0): identity_matrix(ZZ, Integer(1)), Integer(1):
˓→zero_matrix(ZZ, Integer(1)))
>>> f.in_degree(Integer(0))
[1]
```

Note that if the matrix is not specified in the definition of the map, it is assumed to be zero:

```python
sage: f.in_degree(2)
[]
sage: f.in_degree(2).nrows(), f.in_degree(2).ncols()
(1, 0)
sage: C.free_module(2)
Ambient free module of rank 0 over the principal ideal domain Integer Ring
sage: D.free_module(2)
Ambient free module of rank 1 over the principal ideal domain Integer Ring
```

```python
>>> from sage.all import *
```

```python
>>> f.in_degree(Integer(2))
[]
>>> f.in_degree(Integer(2)).nrows(), f.in_degree(Integer(2)).ncols()
(1, 0)
>>> C.free_module(Integer(2))
Ambient free module of rank 0 over the principal ideal domain Integer Ring
>>> D.free_module(Integer(2))
Ambient free module of rank 1 over the principal ideal domain Integer Ring
```
is_identity()  
Return True if this is the identity map.

EXAMPLES:

```python
sage: # needs sage.graphs
sage: S = SimplicialComplex(is_mutable=False)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: x = i.associated_chain_complex_morphism()
sage: x.is_identity()
True
```

is_injective()  
Return True if this map is injective.

EXAMPLES:

```python
sage: # needs sage.graphs
sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: flip = H({0:0, 1:2, 2:1})
sage: flip.associated_chain_complex_morphism().is_injective()
True
```

```python
sage: # needs sage.graphs
sage: pt = simplicial_complexes.Simplex(0)
sage: inclusion = Hom(pt, S1)({0:2})
```

```python
sage: inclusion.associated_chain_complex_morphism().is_injective()
True
```

```python
sage: inclusion.associated_chain_complex_morphism(cochain=True).is_injective()
False
```
**is_surjective()**

Return True if this map is surjective.

**EXAMPLES:**

```python
sage: # needs sage.graphs
sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: flip = H({0:0, 1:2, 2:1})
sage: flip.associated_chain_complex_morphism().is_surjective() # needs sage.graphs
True

sage: # needs sage.graphs
sage: pt = simplicial_complexes.Simplex(0)
sage: inclusion = Hom(pt, S1)({ 0:2})
sage: inclusion.associated_chain_complex_morphism().is_surjective() # needs sage.graphs
False
sage: inclusion.associated_chain_complex_morphism(cochain=True).is_surjective() # needs sage.graphs
True
```

**to_matrix (deg=None)**

The matrix representing this chain map.

If the degree `deg` is specified, return the matrix in that degree; otherwise, return the (block) matrix for the whole chain map.

**INPUT:**

- `deg` – (default: None) the degree

**EXAMPLES:**

```python
sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
sage: f.to_matrix(0)
[1]
sage: f.to_matrix() # needs sage.graphs
[1
1]
[1
1] # needs sage.graphs
```
sage.homology.chain_complex_morphism.

Return True if and only if \( x \) is a chain complex morphism.

EXAMPLES:

```python
sage: # needs sage.graphs
sage: from sage.homology.chain_complex_morphism import is_ChainComplexMorphism
sage: S = simplicial_complexes.Sphere(14)
sage: H = Hom(S, S)
```

```python
sage: i = H.identity() # long time (8s on sage.math, 2011)
sage: S = simplicial_complexes.Sphere(6)
sage: H = Hom(S, S)
```

```python
sage: i = H.identity()
```

```python
sage: x = i.associated_chain_complex_morphism()
sage: x # indirect doctest
Chain complex morphism:
From: Chain complex with at most 7 nonzero terms over Integer Ring
To: Chain complex with at most 7 nonzero terms over Integer Ring
```

```python
sage: is_ChainComplexMorphism(x)
doctest:warning...
DeprecationWarning: The function is_ChainComplexMorphism is deprecated; use isinstance(..., ChainComplexMorphism) instead.
See https://github.com/sagemath/sage/issues/38103 for details.
True
```

```python
>>> from sage.all import *
>>> # needs sage.graphs
>>> from sage.homology.chain_complex_morphism import is_ChainComplexMorphism
>>> S = simplicial_complexes.Sphere(Integer(14))
>>> H = Hom(S, S)
```

```python
>>> i = H.identity() # long time (8s on sage.math, 2011)
>>> S = simplicial_complexes.Sphere(Integer(6))
>>> H = Hom(S, S)
```

```python
>>> i = H.identity()
```

```python
>>> x = i.associated_chain_complex_morphism()
>>> x # indirect doctest
Chain complex morphism:
From: Chain complex with at most 7 nonzero terms over Integer Ring
```
To: Chain complex with at most 7 nonzero terms over Integer Ring

```python
>>> is_ChainComplexMorphism(x)
doctest:warning...
DeprecationWarning: The function is_ChainComplexMorphism is deprecated; use 'isinstance(..., ChainComplexMorphism)' instead.
See https://github.com/sagemath/sage/issues/38103 for details.
True
```
CHAPTER
FOUR

CHAIN HOMOTOPIES AND CHAIN CONTRACTIONS

Chain homotopies are standard constructions in homological algebra: given chain complexes $C$ and $D$ and chain maps $f, g : C \to D$, say with differential of degree $-1$, a chain homotopy $H$ between $f$ and $g$ is a collection of maps $H_n : C_n \to D_{n+1}$ satisfying

$$\partial_D H + H \partial_C = f - g.$$ 

The presence of a chain homotopy defines an equivalence relation (chain homotopic) on chain maps. If $f$ and $g$ are chain homotopic, then one can show that $f$ and $g$ induce the same map on homology.

Chain contractions are not as well known. The papers [MAR2009], [RMA2009], and [PR2015] provide some references. Given two chain complexes $C$ and $D$, a chain contraction is a chain homotopy $H : C \to C$ for which there are chain maps $\pi : C \to D$ (“projection”) and $\iota : D \to C$ (“inclusion”) such that

- $H$ is a chain homotopy between $1_C$ and $\iota \pi$,
- $\pi \iota = 1_D$,
- $\pi H = 0$,
- $H \iota = 0$,
- $HH = 0$.

Such a chain homotopy provides a strong relation between the chain complexes $C$ and $D$; for example, their homology groups are isomorphic.

```python
class sage.homology.chain_homotopy.ChainContraction(matrices, pi, iota):
 Bases: ChainHomotopy
 A chain contraction.
 An algebraic gradient vector field $H : C \to C$ (that is a chain homotopy satisfying $HH = 0$) for which there are chain maps $\pi : C \to D$ (“projection”) and $\iota : D \to C$ (“inclusion”) such that
 - H is a chain homotopy between 1_C and $\iota \pi$,
 - $\pi \iota = 1_D$,
 - $\pi H = 0$,
 - $H \iota = 0$.
 H is defined by a dictionary matrices of matrices.
 INPUT:
 - matrices -- dictionary of matrices, keyed by dimension
 - pi -- a chain map $C \to D$
 - iota -- a chain map $D \to C`
```

45
EXAMPLES:

```python
sage: from sage.homology.chain_homotopy import ChainContraction
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)})
```

The chain complex $C$ is chain homotopy equivalent to $D$, which is just a copy of $Z$ in degree 0, and we construct a chain contraction:

```python
sage: pi = Hom(C,D)({0: identity_matrix(ZZ, 1)})
sage: iota = Hom(D,C)({0: identity_matrix(ZZ, 1)})
```

The chain contraction dual to this one.

This is useful when switching from homology to cohomology.

EXAMPLES:

```python
sage: S2 = simplicial_complexes.Sphere(2)
```

Lifting the degree zero homology class gives a single vertex, but the degree zero cohomology class needs to be detected on every vertex, and vice versa for degree 2.
iota()

The chain map $\iota$ associated to this chain contraction.

EXAMPLES:

```sage
sage: S2 = simplicial_complexes.Sphere(2) # needs sage.graphs
sage: phi, M = S2.algebraic_topological_model(QQ) # needs sage.graphs
sage: phi.iota() # needs sage.graphs
Chain complex morphism:
```

(continues on next page)
From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

```python
>>> from sage.all import *
```

```python
S2 = simplicial_complexes.Sphere(Integer(2)) # needs sage.graphs
>>> phi, M = S2.algebraic_topological_model(QQ) # needs sage.graphs
>>> phi.iota() # needs sage.graphs
```

Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

Lifting the degree zero homology class gives a single vertex:

```python
sage: phi.iota().in_degree(0) # doesn't need sage.graphs
[0]
[0]
[0]
[1]
```

Lifting the degree two homology class gives the signed sum of all of the 2-simplices:

```python
sage: phi.iota().in_degree(Integer(2)) # needs sage.graphs
[-1]
[1]
[-1]
[1]
```

The chain map $\pi$ associated to this chain contraction.

EXAMPLES:

```python
sage: # doesn't need sage.graphs
sage: S2 = simplicial_complexes.Sphere(2)
```
sage: phi, M = S2.algebraic_topological_model(QQ)
sage: phi.pi()
Chain complex morphism:
    From: Chain complex with at most 3 nonzero terms over Rational Field
    To:  Chain complex with at most 3 nonzero terms over Rational Field
sage: phi.pi().in_degree(0)  # Every vertex represents a homology class.
[1 1 1 1]
sage: phi.pi().in_degree(1)  # No homology in degree 1.
[]

>>> from sage.all import *

>>> S2 = simplicial_complexes.Sphere(Integer(2))

>>> phi, M = S2.algebraic_topological_model(QQ)

>>> phi.pi()
Chain complex morphism:
    From: Chain complex with at most 3 nonzero terms over Rational Field
    To:  Chain complex with at most 3 nonzero terms over Rational Field

>>> phi.pi().in_degree(Integer(0))  # Every vertex represents a homology class.
[1 1 1 1]

>>> phi.pi().in_degree(Integer(1))  # No homology in degree 1.
[]

The degree 2 homology generator is detected on a single simplex:

sage: phi.pi().in_degree(2)  # needs sage.graphs
[0 0 0 1]

>>> from sage.all import *

>>> phi.pi().in_degree(Integer(2))  # needs sage.graphs
[0 0 0 1]

class sage.homology.chain_homotopy.ChainHomotopy(matrices, f, g=None)
Bases: Morphism

A chain homotopy.

A chain homotopy $H$ between chain maps $f, g : C \to D$ is a sequence of maps $H_i : C_i \to D_{i+1}$ (if the chain complexes are graded homologically) satisfying

$$\partial_D H + H \partial_C = f - g.$$  

INPUT:

- matrices – dictionary of matrices, keyed by dimension
- $f$ – chain map $C \to D$
- $g$ (optional) – chain map $C \to D$

The dictionary matrices defines $H$ by specifying the matrix defining it in each degree: the entry $m$ corresponding to key $i$ gives the linear transformation $C_i \to D_{i+1}$.

If $f$ is specified but not $g$, then $g$ can be recovered from the defining formula. That is, if $g$ is not specified, then it is defined to be $f - \partial_D H - H \partial_C$.  

49
Note that the degree of the differential on the chain complex $C$ must agree with that for $D$, and those degrees determine the “degree” of the chain homotopy map: if the degree of the differential is $d$, then the chain homotopy consists of a sequence of maps $C_n \to C_{n-d}$. The keys in the dictionary matrices specify the starting degrees.

EXAMPLES:

```python
sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({0: identity_matrix(ZZ, 1)})
sage: D = ChainComplex({0: zero_matrix(ZZ, 1)})
>>> f = Hom(C,D)({0: identity_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
>>> g = Hom(C,D)({0: zero_matrix(ZZ, 1), 1: zero_matrix(ZZ, 1)})
>>> H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: identity_matrix(ZZ, 1)}, f, g)
```

```python
>>> from sage.all import *
>>> C = ChainComplex({Integer(0): identity_matrix(ZZ, Integer(1))})
>>> D = ChainComplex({Integer(0): zero_matrix(ZZ, Integer(1))})
>>> f = Hom(C,D)({Integer(0): identity_matrix(ZZ, Integer(1)), Integer(1): zero_matrix(ZZ, Integer(1))})
>>> g = Hom(C,D)({Integer(0): zero_matrix(ZZ, Integer(1)), Integer(1): zero_matrix(ZZ, Integer(1))})
>>> H = ChainHomotopy({Integer(0): zero_matrix(ZZ, Integer(0), Integer(1)), Integer(1): identity_matrix(ZZ, Integer(1))}, f, g)
```

Note that the maps $f$ and $g$ are stored in the attributes $H._f$ and $H._g$:

```python
sage: H._f
Chain complex morphism:
 From: Chain complex with at most 2 nonzero terms over Integer Ring
 To: Chain complex with at most 2 nonzero terms over Integer Ring
 sage: H._f.in_degree(Integer(0))
[1]
 sage: H._g.in_degree(Integer(0))
[0]
```

A non-example:

```python
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1), 1: zero_matrix(ZZ, 1)}, f, g)
Traceback (most recent call last):
 ... ValueError: the data do not define a valid chain homotopy
```

```python
>>> from sage.all import *
>>> H = ChainHomotopy({Integer(0): zero_matrix(ZZ, Integer(0), Integer(1)), Integer(1): zero_matrix(ZZ, Integer(1))}, f, g)
Traceback (most recent call last):
```

(continues on next page)
... ValueError: the data do not define a valid chain homotopy

dual()

Dual chain homotopy to this one.

That is, if this one is a chain homotopy between chain maps \( f, g : C \to D \), then its dual is a chain homotopy between the dual of \( f \) and the dual of \( g \), from \( D^* \) to \( C^* \). It is represented in each degree by the transpose of the corresponding matrix.

EXAMPLES:

```python
sage: from sage.homology.chain_homotopy import ChainHomotopy
sage: C = ChainComplex({1: matrix(ZZ, 0, 2)}) # one nonzero term in degree 1
sage: D = ChainComplex({0: matrix(ZZ, 0, 1)}) # one nonzero term in degree 0
sage: f = Hom(C, D)({})
sage: H = ChainHomotopy({1: matrix(ZZ, 1, 2, (3,1))}, f, f)
```

```python
sage: H.in_degree(1)
[3 1]
```

```python
sage: H.dual().in_degree(0)
[3]
[1]
```

in_degree(\( n \))

The matrix representing this chain homotopy in degree \( n \).

INPUT:

- \( n \) – degree

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.homology.chain_homotopy import ChainHomotopy
>>> C = ChainComplex({Integer(1): matrix(ZZ, Integer(0), Integer(2))}) # one nonzero term in degree 1
>>> D = ChainComplex({Integer(0): matrix(ZZ, Integer(0), Integer(1))}) # one nonzero term in degree 0
>>> f = Hom(C, D)({})
>>> H = ChainHomotopy({Integer(1): matrix(ZZ, Integer(1), Integer(2), (3,1))}, f, f)
```

```python
>>> H.in_degree(Integer(1))
[3 1]
>>> H.dual().in_degree(Integer(0))
[3]
[1]
```
Chain complexes and homology, Release 10.4

(continued from previous page)

>>> C = ChainComplex({Integer(1): matrix(ZZ, Integer(0), Integer(2)))}) # one nonzero term in degree 1
>>> D = ChainComplex({Integer(0): matrix(ZZ, Integer(0), Integer(1)))}) # one nonzero term in degree 0
>>> f = Hom(C, D)({})
>>> H = ChainHomotopy({Integer(1): matrix(ZZ, Integer(1), Integer(2),
˓→Integer(3),Integer(1)))}, f, f)
>>> H.in_degree(Integer(1))
[3 1]

This returns an appropriately sized zero matrix if the chain homotopy is not defined in degree n:

```
sage: H.in_degree(-3)
[]
```

```python
>>> from sage.all import *
```

```python
>>> H.in_degree(-Integer(3))
[]
```

`is_algebraic_gradient_vector_field()`

An algebraic gradient vector field is a linear map $H : C \to C$ such that $HH = 0$.

(Some authors also require that $H\partial H = H$, whereas some make this part of the definition of “homology gradient vector field. We have made the second choice.) See Molina-Abril and Réal [MAR2009] and Réal and Molina-Abril [RMA2009] for this and related terminology.

See also `is_homology_gradient_vector_field()`.

EXAMPLES:

```
sage: from sage.homology.chain_homotopy import ChainHomotopy
```

```
sage: C = ChainComplex({0: zero_matrix(ZZ, 1), 1: identity_matrix(ZZ, 1)})
```

```
>>> from sage.all import *
```

```
>>> from sage.homology.chain_homotopy import ChainHomotopy
```

```
>>> C = ChainComplex({Integer(0): zero_matrix(ZZ, Integer(1)), Integer(1):...
˓→identity_matrix(ZZ, Integer(1)))})
```

The chain complex $C$ is chain homotopy equivalent to a copy of $Z$ in degree 0. Two chain maps $C \to C$ will be chain homotopic as long as they agree in degree 0.

```
sage: f = Hom(C,C)({0: identity_matrix(ZZ, 1),
˓→1: matrix(ZZ, 1, 1, [3]),
˓→2: matrix(ZZ, 1, 1, [3]))
```

```
sage: g = Hom(C,C)({0: identity_matrix(ZZ, 1),
˓→1: matrix(ZZ, 1, 1, [2]),
˓→2: matrix(ZZ, 1, 1, [2]))
```

```
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1),
˓→1: zero_matrix(ZZ, 1, 1),
˓→2: identity_matrix(ZZ, 1))}, f, g)
```

```
sage: H.is_algebraic_gradient_vector_field()
True
```

```
>>> from sage.all import *
```

```
>>> f = Hom(C,C)({Integer(0): identity_matrix(ZZ, Integer(1)),
˓→Integer(1): matrix(ZZ, Integer(1), Integer(1),...
```

(continues on next page)
A chain homotopy which is not an algebraic gradient vector field:

```python
sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1),
 : 1: zero_matrix(ZZ, 1),
 : 2: identity_matrix(ZZ, 1)}, f, g)

sage: H.is_algebraic_gradient_vector_field()
False
```

`is_homology_gradient_vector_field()`

A homology gradient vector field is an algebraic gradient vector field \( H : C \to C \) (i.e., a chain homotopy satisfying \( HH = 0 \)) such that \( \partial H \partial = \partial \) and \( H \partial H = H \).


See also `is_algebraic_gradient_vector_field()`.

EXAMPLES:

```python
sage: from sage.all import *

sage: H = ChainHomotopy({0: zero_matrix(ZZ, 0, 1),
 : 1: identity_matrix(ZZ, 1),
 : 2: identity_matrix(ZZ, 1)}, f, g)

sage: H.is_homology_gradient_vector_field()
False
```
>>> from sage.all import *
>>> from sage.homology.chain_homotopy import ChainHomotopy

```python
>>> C = ChainComplex((Integer(0): zero_matrix(ZZ, Integer(1)), Integer(1):
˓→identity_matrix(ZZ, Integer(1))))

>>> f = Hom(C,C)(({Integer(0): identity_matrix(ZZ, Integer(1)),
˓→Integer(1): matrix(ZZ, Integer(1), Integer(1),
˓→[Integer(3)]),
˓→Integer(2): matrix(ZZ, Integer(1), Integer(1),
˓→[Integer(3)]))}

>>> g = Hom(C,C)(({Integer(0): identity_matrix(ZZ, Integer(1)),
˓→Integer(1): matrix(ZZ, Integer(1), Integer(1),
˓→[Integer(2)]),
˓→Integer(2): matrix(ZZ, Integer(1), Integer(1),
˓→[Integer(2)]))}

>>> H = ChainHomotopy(({Integer(0): zero_matrix(ZZ, Integer(0), Integer(1)),
˓→Integer(1): zero_matrix(ZZ, Integer(1)),
˓→Integer(2): identity_matrix(ZZ, Integer(1))}, f, g)

>>> H.is_homology_gradient_vector_field()
True
```
CHAPTER FIVE

HOMSPACES BETWEEN CHAIN COMPLEXES

Note that some significant functionality is lacking. Namely, the homspaces are not actually modules over the base ring. It will be necessary to enrich some of the structure of chain complexes for this to be naturally available. On other hand, there are various overloaded operators. __mul__ acts as composition. One can __add__, and one can __mul__ with a ring element on the right.

EXAMPLES:

```
sage: S = simplicial_complexes.Sphere(2)
sage: T = simplicial_complexes.Torus()
sage: C = S.chain_complex(augmented=True, cochain=True)
sage: D = T.chain_complex(augmented=True, cochain=True)
sage: G = Hom(C, D); G
Set of Morphisms
 from Chain complex with at most 4 nonzero terms over Integer Ring
to Chain complex with at most 4 nonzero terms over Integer Ring
in Category of chain complexes over Integer Ring
sage: H = Hom(S,S)
sage: i = H.identity()
sage: x = i.associated_chain_complex_morphism(augmented=True); x
Chain complex morphism:
 From: Chain complex with at most 4 nonzero terms over Integer Ring
 To: Chain complex with at most 4 nonzero terms over Integer Ring
sage: x._matrix_dictionary
{-1: [1],
 0: [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0],
 1: [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]}
```

(continues on next page)
Chain complexes and homology, Release 10.4

(continued from previous page)

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
2: \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix},
\]

sage: S = simplicial_complexes.Sphere(2)
sage: A = Hom(S, S)
sage: i = A.identity()
sage: x = i.associated_chain_complex_morphism(); x
Chain complex morphism:
    From: Chain complex with at most 3 nonzero terms over Integer Ring
    To: Chain complex with at most 3 nonzero terms over Integer Ring
sage: y = x*4
sage: z = y*y
sage: y + z
Chain complex morphism:
    From: Chain complex with at most 3 nonzero terms over Integer Ring
    To: Chain complex with at most 3 nonzero terms over Integer Ring
sage: f = x._matrix_dictionary
sage: C = S.chain_complex()
sage: G = Hom(C, C)
sage: w = G(f)
sage: w == x
True

>>> from sage.all import *

>>> S = simplicial_complexes.Sphere(Integer(2))
>>> T = simplicial_complexes.Torus()
>>> C = S.chain_complex(augmented=True, cochain=True)
>>> D = T.chain_complex(augmented=True, cochain=True)
>>> G = Hom(C, D); G
Set of Morphisms
    from Chain complex with at most 4 nonzero terms over Integer Ring
    to Chain complex with at most 4 nonzero terms over Integer Ring
    in Category of chain complexes over Integer Ring

>>> S = simplicial_complexes.ChessboardComplex(Integer(3), Integer(3))
>>> H = Hom(S,S)
>>> i = H.identity()
>>> x = i.associated_chain_complex_morphism(augmented=True); x
Chain complex morphism:
    From: Chain complex with at most 4 nonzero terms over Integer Ring
    To: Chain complex with at most 4 nonzero terms over Integer Ring
>>> x._matrix_dictionary
{-1: [1],
(continues on next page)
0:  
[1 0 0 0 0 0 0 0 0]  
[0 1 0 0 0 0 0 0 0]  
[0 0 1 0 0 0 0 0 0]  
[0 0 0 1 0 0 0 0 0]  
[0 0 0 0 1 0 0 0 0]  
[0 0 0 0 0 1 0 0 0]  
[0 0 0 0 0 0 1 0 0]  
[0 0 0 0 0 0 0 1 0]  
[0 0 0 0 0 0 0 0 1],

1:  
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]  
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]  
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]  
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]  
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]  
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]  
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]  
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]  
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]  
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]  
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]  
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]  
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]  
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]  
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]  
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]  
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0],

2:  
[1 0 0 0 0 0]  
[0 1 0 0 0 0]  
[0 0 1 0 0 0]  
[0 0 0 1 0]  
[0 0 0 0 1]  

>>> S = simplicial_complexes.Sphere(Integer(2))
>>> A = Hom(S, S)
>>> i = A.identity()
>>> x = i.associated_chain_complex_morphism(); x
Chain complex morphism:
    From: Chain complex with at most 3 nonzero terms over Integer Ring
    To: Chain complex with at most 3 nonzero terms over Integer Ring
>>> y = x*Integer(4)
>>> z = y*y
>>> y + z
Chain complex morphism:
    From: Chain complex with at most 3 nonzero terms over Integer Ring
    To: Chain complex with at most 3 nonzero terms over Integer Ring
>>> f = x._matrix_dictionary
>>> C = S.chain_complex()
>>> G = Hom(C, C)
>>> w = G(f)
>>> w == x
True

\texttt{class \_sage\_homology\_chain\_complex\_homspace.ChainComplexHomspace}(X, Y, category=None, base=None, check=True)
Bases: Homset

Class of homspaces of chain complex morphisms.

EXAMPLES:

```python
sage: T = SimplicialComplex([[1,2,3,4],[7,8,9]])
sage: C = T.chain_complex(augmented=True, cochain=True)
sage: G = Hom(C, C)
sage: G
Set of Morphisms
from Chain complex with at most 5 nonzero terms over Integer Ring
to Chain complex with at most 5 nonzero terms over Integer Ring
in Category of chain complexes over Integer Ring
```

```python
>>> from sage.all import *
>>> from sage.homology.chain_complex_homspace import is_ChainComplexHomspace
>>>
```

sage.homology.chain_complex_homspace.is_ChainComplexHomspace(x)

Return True if and only if x is a morphism of chain complexes.

EXAMPLES:

```python
sage: from sage.homology.chain_complex_homspace import is_ChainComplexHomspace
sage: T = SimplicialComplex([[1,2,3,4],[7,8,9]])
sage: C = T.chain_complex(augmented=True, cochain=True)
sage: G = Hom(C, C)
sage: is_ChainComplexHomspace(G)
doctest:warning...
DeprecationWarning: The function is_ChainComplexHomspace is deprecated; use 'isinstance(..., ChainComplexHomspace)' instead.
See https://github.com/sagemath/sage/issues/38184 for details.
True
```

```python
>>> from sage.all import *
>>> from sage.homology.chain_complex_homspace import is_ChainComplexHomspace
>>>
```

```python
>>> from sage.all import *
>>> from sage.homology.chain_complex_homspace import is_ChainComplexHomspace
```
KOSZUL COMPLEXES

class sage.homology.koszul_complex.KoszulComplex(R, elements):
    Bases: ChainComplex_class, UniqueRepresentation

A Koszul complex.
Let $R$ be a ring and consider $x_1, x_2, \ldots, x_n \in R$. The Koszul complex $K_*(x_1, \ldots, x_n)$ is given by defining a chain complex structure on the exterior algebra $\wedge^n R$ with the basis $e_{i_1} \wedge \cdots \wedge e_{i_n}$. The differential is given by

$$\partial(e_{i_1} \wedge \cdots \wedge e_{i_n}) = \sum_{r=1}^a (-1)^{r-1} x_{i_r} e_{i_1} \wedge \cdots \wedge \hat{e}_{i_r} \wedge \cdots \wedge e_{i_n},$$

where $\hat{e}_{i_r}$ denotes the omitted factor.

Alternatively we can describe the Koszul complex by considering the basic complex $K_{x_i}$

$$0 \to R \xrightarrow{x_i} R \to 0.$$ 

Then the Koszul complex is given by $K_*(x_1, \ldots, x_n) = \bigotimes_i K_{x_i}$.

INPUT:
- $R$ – the base ring
- $elements$ – a tuple of elements of $R$

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: K = KoszulComplex(R, [x,y])
sage: ascii_art(K)
[-y]
[x y] [x]
0 <-- C_0 <------ C_1 <----- C_2 <-- 0
sage: K = KoszulComplex(R, [x,y,z])
sage: ascii_art(K)
[-y -z 0]
[z]
[x 0 -z] [-y]
[x y z] [0 x y] [x]
0 <-- C_0 <-------- C_1 <----------- C_2 <----- C_3 <-- 0
sage: K = KoszulComplex(R, [x+y*z,x+y-z])
sage: ascii_art(K)
[-x - y + z]
[y*z + x x + y - z] [y*z + x]
0 <-- C_0 <---------------------- C_1 <------------- C_2 <-- 0
```
REFERENCES:

- Wikipedia article Koszul_complex
class sage.homology.hochschild_complex.HochschildComplex(A, M)

Bases: UniqueRepresentation, Parent

The Hochschild complex.

Let $A$ be an algebra over a commutative ring $R$ such that $A$ a projective $R$-module, and $M$ an $A$-bimodule. The Hochschild complex is the chain complex given by

$$C_n(A, M) := M \otimes A \otimes^n$$

with the boundary operators given as follows. For fixed $n$, define the face maps

$$f_{n,i}(m \otimes a_1 \otimes \cdots \otimes a_n) =
\begin{cases}
  ma_1 \otimes \cdots \otimes a_n & \text{if } i = 0, \\
  a_n m \otimes a_1 \otimes \cdots \otimes a_{n-1} & \text{if } i = n, \\
  m \otimes a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n & \text{otherwise}.
\end{cases}$$

We define the boundary operators as

$$d_n = \sum_{i=0}^n (-1)^i f_{n,i}.$$ 

The Hochschild homology of $A$ is the homology of this complex. Alternatively, the Hochschild homology can be described by $HH_n(A, M) = \text{Tor}_n^A(A, M)$, where $A^e = A \otimes A^o$ ($A^o$ is the opposite algebra of $A$) is the enveloping algebra of $A$.

Hochschild cohomology is the homology of the dual complex and can be described by $HH^n(A, M) = \text{Ext}_A^n(A, M)$.

Another perspective on Hochschild homology is that $f_{n,i}$ make the family $C_n(A, M)$ a simplicial object in the category of $R$-modules, and the degeneracy maps are

$$s_i(a_0 \otimes \cdots \otimes a_n) = a_0 \otimes \cdots \otimes a_i \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_n$$

The Hochschild homology can also be constructed as the homology of this simplicial module.

REFERENCES:

- Wikipedia article Hochschild_homology
- https://ncatlab.org/nlab/show/Hochschild+cohomology
- [Red2001]
class Element (parent, vectors)

Bases: ModuleElement

A chain of the Hochschild complex.

INPUT:

Can be one of the following:

- A dictionary whose keys are the degree and whose $d$-th value is an element in the degree $d$ module.
- An element in the coefficient module $M$.

EXAMPLES:

```python
sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H(T.an_element())
Chain(0: 2*B[\nu])
sage: H({0: T.an_element()})
Chain(0: 2*B[\nu])
sage: H({1: H.module(1).an_element()})
Chain(1: 2*B[\nu] \# [1, 2, 3] + 2*B[\nu] \# [1, 3, 2] + 3*B[\nu] \# [2, 1, 3])
sage: H({0: H.module(0).an_element(), 3: H.module(3).an_element()})
Chain with 2 nonzero terms over Rational Field
sage: F.<x,y> = FreeAlgebra(ZZ)
sage: H = F.hochschild_complex(F)
sage: H(x + 2*y^2)
Chain(0: F[x] + 2*F[y^2])
sage: H({0: x*y - x})
Chain(0: -F[x] + F[x*y])
sage: H(2)
Chain(0: 2*F[1])
sage: H({0: x - y, 2: H.module(2).basis().an_element()})
Chain with 2 nonzero terms over Integer Ring
```

>>> from sage.all import *
>>> SGA = SymmetricGroupAlgebra(QQ, Integer(3))
>>> T = SGA.trivial_representation()
>>> H = SGA.hochschild_complex(T)
>>> H(T.an_element())
Chain(0: 2*B[\nu])
>>> H({Integer(0): T.an_element()})
Chain(0: 2*B[\nu])
>>> H({Integer(1): H.module(Integer(1)).an_element()})
Chain(1: 2*B[\nu] \# [1, 2, 3] + 2*B[\nu] \# [1, 3, 2] + 3*B[\nu] \# [2, 1, 3])
>>> H({Integer(0): H.module(Integer(0)).an_element(), Integer(3): H.
˓→module(Integer(3)).an_element()})
Chain with 2 nonzero terms over Rational Field

>>> F = FreeAlgebra(ZZ, names=('x', 'y',)); (x, y,) = F._first_ngens(2)
>>> H = F.hochschild_complex(F)
>>> H(x + Integer(2)*y*Integer(2))
Chain(0: F[x] + 2*F[y^2])
>>> H({Integer(0): x*y - x})
Chain(0: -F[x] + F[x*y])
>>> H(Integer(2))
```

(continues on next page)
Chain complexes and homology, Release 10.4

Chain(0: 2*F[1])

Chain with 2 nonzero terms over Integer Ring

vector (degree)

Return the free module element in degree.

EXAMPLES:

sage: F.<x,y> = FreeAlgebra(ZZ)
sage: H = F.hochschild_complex(F)
sage: a = H({0: x -y, 2: H .module(Integer(2)).basis().an_element()})
sage: [a.vector(i) for i in range(3)]

algebra()

Return the defining algebra of self.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.algebra()
Symmetric group algebra of order 3 over Rational Field

boundary (d)

Return the boundary operator in degree d.

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: d1 = H.boundary(1)
sage: z = d1.domain().an_element(); z
2*1 # 1 + 2*1 # x + 3*1 # y
sage: d1(z)
0
sage: d1.matrix()
[0]

(continued on next page)
coboundary (d)

Return the coboundary morphism of degree d.

EXAMPLES:

```
sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: del1 = H.coboundary(1)
sage: z = del1.domain().an_element(); z
2*1 # 1 + 2*1 # x + 3*1 # y
>>> del1(z)
0
```
coefficients()

Return the coefficients of self.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.coefficients()
Trivial representation of Standard permutations of 3 over Rational Field
>>> from sage.all import *
>>> SGA = SymmetricGroupAlgebra(QQ, Integer(3))
>>> T = SGA.trivial_representation()
>>> H = SGA.hochschild_complex(T)
>>> H.coefficients()
Trivial representation of Standard permutations of 3 over Rational Field

cohomology (d)

Return the d-th cohomology group.

EXAMPLES:
sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: H.cohomology(0)
Vector space of dimension 3 over Rational Field
sage: H.cohomology(1)
Vector space of dimension 4 over Rational Field
sage: H.cohomology(2)
Vector space of dimension 6 over Rational Field

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sga: H = SGA.hochschild_complex(T)
sage: H.cohomology(0)
Vector space of dimension 1 over Rational Field
sage: H.cohomology(1)
Vector space of dimension 0 over Rational Field
sage: H.cohomology(2)
Vector space of dimension 0 over Rational Field

>>> from sage.all import *
>>> E = ExteriorAlgebra(QQ, names=('x', 'y',)); (x, y,) = E._first_ngens(2)
>>> H = E.hochschild_complex(E)
>>> H.cohomology(Integer(0))
Vector space of dimension 3 over Rational Field
>>> H.cohomology(Integer(1))
Vector space of dimension 4 over Rational Field
>>> H.cohomology(Integer(2))
Vector space of dimension 6 over Rational Field

>>> SGA = SymmetricGroupAlgebra(QQ, Integer(3))
>>> T = SGA.trivial_representation()
>>> H = SGA.hochschild_complex(T)
>>> H.cohomology(Integer(0))
Vector space of dimension 1 over Rational Field
>>> H.cohomology(Integer(1))
Vector space of dimension 0 over Rational Field
>>> H.cohomology(Integer(2))
Vector space of dimension 0 over Rational Field

When working over general rings (except \(\mathbb{Z} \)) and we can construct a unitriangular basis for the image quotient, we fallback to a slower implementation using (combinatorial) free modules:
sage: R.<x,y> = QQ[]
sage: SGA = SymmetricGroupAlgebra(R, 2)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.cohomology(1)
Free module generated by {} over Multivariate Polynomial Ring in x, y over Rational Field

>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> SGA = SymmetricGroupAlgebra(R, Integer(2))
>>> T = SGA.trivial_representation()
>>> H = SGA.hochschild_complex(T)
>>> H.cohomology(Integer(1))
Free module generated by {} over Multivariate Polynomial Ring in x, y over Rational Field

differential \(d\)

Return the boundary operator in degree \(d\).

EXAMPLES:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: d1 = H.boundary(1)
sage: z = d1.domain().an_element(); z
2*1 \# 1 + 2*1 \# x + 3*1 \# y
sage: d1(z)
0
sage: d1.matrix()
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 2 0 0 -2 0 0 0 0 0 0]

sage: s = SymmetricFunctions(QQ).s()
sage: H = s.hochschild_complex(s)
sage: d1 = H.boundary(1)
sage: x = d1.domain().an_element(); x
sage: d1(x)
0
sage: y = tensor([s.an_element(), s.an_element()])
sage: d1(y)
0
sage: z = tensor([s[2,1] + s[3], s.an_element()])
sage: d1(z)
0

>>> from sage.all import *
>>> E = ExteriorAlgebra(QQ, names=('x', 'y',)); (x, y,) = E._first_ngens(2)
>>> H = E.hochschild_complex(E)
>>> d1 = H.boundary(Integer(1))
>>> z = d1.domain().an_element(); z
2*1 \# 1 + 2*1 \# x + 3*1 \# y
>>> d1(z)
0
>>> d1.matrix()
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
homology \((d)\)

Return the \(d\)-th homology group.

EXAMPLES:

```python
sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: H.homology(0)
Vector space of dimension 3 over Rational Field
sage: H.homology(1)
Vector space of dimension 4 over Rational Field
sage: H.homology(2)
Vector space of dimension 6 over Rational Field

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)
sage: H.homology(0)
Vector space of dimension 1 over Rational Field
sage: H.homology(1)
Vector space of dimension 0 over Rational Field
sage: H.homology(2)
Vector space of dimension 0 over Rational Field
```

```python
from sage.all import *
```

```python
E = ExteriorAlgebra(QQ, names=('x', 'y'))
(x, y) = E._first_ngens(2)
H = E.hochschild_complex(E)
H.homology(0)
Vector space of dimension 3 over Rational Field
H.homology(1)
Vector space of dimension 4 over Rational Field
H.homology(2)
Vector space of dimension 6 over Rational Field
```

```python
SGA = SymmetricGroupAlgebra(QQ, Integer(3))
T = SGA.trivial_representation()
H = SGA.hochschild_complex(T)
H.homology(Integer(0))
```

(continues on next page)
When working over general rings (except \(\mathbb{Z} \)) and we can construct a unitriangular basis for the image quotient, we fall back to a slower implementation using (combinatorial) free modules:

\[
sage: \text{R.<x,y> = QQ[]}
\]
\[
\text{sage: SGA = SymmetricGroupAlgebra(R, 2)}
\]
\[
\text{sage: T = SGA.trivial_representation()}
\]
\[
\text{sage: H = SGA.hochschild_complex(T)}
\]
\[
\text{sage: H.homology(1)}
\]
\[
\text{Free module generated by {} over Multivariate Polynomial Ring in x, y over \(\mathbb{Q} \)}
\]

Return the module in degree \(d \).

EXAMPLES:

\[
\text{sage: SGA = SymmetricGroupAlgebra(QQ, 3)}
\]
\[
\text{sage: T = SGA.trivial_representation()}
\]
\[
\text{sage: H = SGA.hochschild_complex(T)}
\]
\[
\text{sage: H.module(0)}
\]
\[
\text{Trivial representation of Standard permutations of 3 over Rational Field}
\]
\[
\text{sage: H.module(1)}
\]
\[
\text{Trivial representation of Standard permutations of 3 over Rational Field}
\]
\[
\text{# Symmetric group algebra of order 3 over Rational Field}
\]
\[
\text{sage: H.module(2)}
\]
\[
\text{Trivial representation of Standard permutations of 3 over Rational Field}
\]
\[
\text{# Symmetric group algebra of order 3 over Rational Field}
\]

(continues on next page)
trivial_module()

Return the trivial module of self.

EXAMPLES:

```
sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: H = E.hochschild_complex(E)
sage: H.trivial_module()
Free module generated by {} over Rational Field
```

```
>>> from sage.all import *
>>> E = ExteriorAlgebra(QQ, names=('x', 'y',)); (x, y,) = E._first_ngens(2)
>>> H = E.hochschild_complex(E)
>>> H.trivial_module()
Free module generated by {} over Rational Field
```
CHAPTER
EIGHT

HOMOLOGY GROUPS

This module defines a `HomologyGroup()` class which is an abelian group that prints itself in a way that is suitable for homology groups.

`sage.homology.homology_group.HomologyGroup(n, base_ring, invfac=None)`

Abelian group on \(n \) generators which represents a homology group in a fixed degree.

INPUT:

- \(n \) – integer; the number of generators
- \(\text{base_ring} \) – ring; the base ring over which the homology is computed
- \(\text{inv_fac} \) – list of integers; the invariant factors – ignored if the base ring is a field

OUTPUT:

A class that can represent the homology group in a fixed homological degree.

EXAMPLES:

```python
sage: from sage.homology.homology_group import HomologyGroup
sage: G = AbelianGroup(5, [5,5,7,8,9]); G
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
sage: H = HomologyGroup(5, ZZ, [5,5,7,8,9]); H
C5 x C5 x C7 x C8 x C9
sage: AbelianGroup(4)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z
sage: HomologyGroup(4, ZZ)
Z x Z x Z x Z
sage: # needs sage.libs.flint (otherwise timeout)
sage: HomologyGroup(100, ZZ)
Z^100
```

```python
>>> from sage.all import *
>>> from sage.homology.homology_group import HomologyGroup
>>> G = AbelianGroup(Integer(5), [Integer(5),Integer(5),Integer(7),Integer(8),
Integer(9)]); G    # needs sage.groups
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
>>> H = HomologyGroup(Integer(5), ZZ, [Integer(5),Integer(5),Integer(7),
Integer(8),Integer(9)]); H
C5 x C5 x C7 x C8 x C9
>>> AbelianGroup(Integer(4))  
# needs sage.groups
```

(continues on next page)
Chain complexes and homology, Release 10.4

(continued from previous page)

```python
>>> HomologyGroup(Integer(4), ZZ)
Z x Z x Z x Z

>>> # needs sage.libs.flint (otherwise timeout)
>>> HomologyGroup(Integer(100), ZZ)
Z^100
```

class sage.homology.homology_group.HomologyGroup_class(n, invfac)

Bases: AdditiveAbelianGroup_fixed_gens

Discrete Abelian group on n generators. This class inherits from AdditiveAbelianGroup_fixed_gens; see sage.groups.additive_abelian.additive_abelian_group for more documentation. The main difference between the classes is in the print representation.

EXAMPLES:

```python
sage: from sage.homology.homology_group import HomologyGroup
sage: G = AbelianGroup(5, [5,5,7,8,9]); G
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9
sage: H = HomologyGroup(5, ZZ, [5,5,7,8,9]); H
C5 x C5 x C7 x C8 x C9
sage: G == loads(dumps(G))
True

sage: AbelianGroup(4)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z
sage: HomologyGroup(4, ZZ)
Z x Z x Z x Z
sage: HomologyGroup(100, ZZ)
Z^100
```

```python
>>> from sage.all import *
>>> from sage.homology.homology_group import HomologyGroup

>>> G = AbelianGroup(Integer(5), [Integer(5),Integer(5),Integer(7),Integer(8),Integer(9)]); G
Multiplicative Abelian group isomorphic to C5 x C5 x C7 x C8 x C9

>>> H = HomologyGroup(Integer(5), ZZ, [Integer(5),Integer(5),Integer(7),Integer(8),Integer(9)]); H
C5 x C5 x C7 x C8 x C9

>>> G == loads(dumps(G))
True

>>> AbelianGroup(Integer(4))
Multiplicative Abelian group isomorphic to Z x Z x Z x Z

>>> HomologyGroup(Integer(4), ZZ)
Z x Z x Z x Z

>>> HomologyGroup(Integer(100), ZZ)
Z^100
```
CHAPTER NINE

HOMOLOGY AND COHOMOLOGY WITH A BASIS

This module provides homology and cohomology vector spaces suitable for computing cup products and cohomology operations.

REFERENCES:
• [GDR2003]
• [GDR1999]

AUTHORS:
• John H. Palmieri, Travis Scrimshaw (2015-09)

```python
class sage.homology.homology_vector_space_with_basis.CohomologyRing(base_ring, cell_complex, category=None):

    Bases: HomologyVectorSpaceWithBasis

    The cohomology ring.

Note: This is not intended to be created directly by the user, but instead via the cohomology ring of a cell complex.
```

INPUT:
• `base_ring` – must be a field
• `cell_complex` – the cell complex whose homology we are computing
• `category` – (optional) a subcategory of modules with basis

EXAMPLES:

```python
sage: CP2 = simplicial_complexes.ComplexProjectivePlane()
sage: H = CP2.cohomology_ring(QQ)
sage: H.basis(2)
Finite family {(2, 0): h^{2,0}}
sage: x = H.basis(2)[2,0]

>>> from sage.all import *
>>> CP2 = simplicial_complexes.ComplexProjectivePlane()
>>> H = CP2.cohomology_ring(QQ)
>>> H.basis(Integer(2))
Finite family {(2, 0): h^{2,0}}
>>> x = H.basis(Integer(2))[Integer(2),Integer(0)]
```
The product structure is the cup product:

```
sage: x.cup_product(x)
-h^{4,0}
sage: x * x
-h^{4,0}
```

```
>>> from sage.all import *

>>> x.cup_product(x)
-h^{4,0}

>>> x * x
-h^{4,0}
```

```python
class Element
    Bases: Element

cup_product(self, other)

    Return the cup product of this element and other.

    Algorithm: see González-Díaz and Réal [GDR2003], p. 88. Given two cohomology classes, lift them to cocycle representatives via the chain contraction for this complex, using to_cycle(). In the sum of their dimensions, look at all of the homology classes $\gamma$: lift each of those to a cycle representative, apply the Alexander-Whitney diagonal map to each cell in the cycle, evaluate the two cocycles on these factors, and multiply. The result is the value of the cup product cocycle on this homology class. After this has been done for all homology classes, since homology and cohomology are dual, one can tell which cohomology class corresponds to the cup product.

    See also:

    * CohomologyRing.product_on_basis()

    EXAMPLES:

    ```python
 sage: RP3 = simplicial_complexes.RealProjectiveSpace(3)
 sage: H = RP3.cohomology_ring(GF(2))
 sage: c = H.basis()[1,0]
 sage: c.cup_product(c)
h^{2,0}
 sage: c * c * c
h^{3,0}
    ```

    ```python
 >>> from sage.all import *

 >>> RP3 = simplicial_complexes.RealProjectiveSpace(Integer(3))

 >>> H = RP3.cohomology_ring(GF(Integer(2)))

 >>> c = H.basis()[Integer(1),Integer(0)]

 >>> c.cup_product(c)
h^{2,0}
 >>> c * c * c
h^{3,0}
    ```

    We can also take powers:

    ```python
 sage: RP2 = simplicial_complexes.RealProjectivePlane()
 sage: a = RP2.cohomology_ring(GF(2)).basis()[1,0]
 sage: a**0
h^{0,0}
 sage: a**1
h^{1,0}
    ```
```

(continues on next page)
A non-connected example:

```python
sage: K = cubical_complexes.Torus().disjoint_union(cubical_complexes.Sphere(2))
sage: a, b = K.cohomology_ring(QQ).basis(2)
sage: a**0
h^{0,0} + h^{0,1}
```

one()

The multiplicative identity element.

EXAMPLES:

```python
sage: H = simplicial_complexes.Torus().cohomology_ring(QQ)
sage: H.one()
h^{0,0}
sage: all(H.one() * x == x == x * H.one() for x in H.basis())
True
```

product_on_basis(li, ri)

The cup product of the basis elements indexed by li and ri in this cohomology ring.

INPUT:

- li, ri – index of a cohomology class
See also:

CohomologyRing.Element.cup_product() – the documentation for this method describes the algorithm.

EXAMPLES:

```python
sage: RP3 = simplicial_complexes.RealProjectiveSpace(3)
sage: H = RP3.cohomology_ring(GF(2))
sage: c = H.basis()[1,0]
sage: c.cup_product(c).cup_product(c) # indirect doctest
h^{3,0}

sage: T = simplicial_complexes.Torus()
sage: x,y = T.cohomology_ring(QQ).basis(1)
sage: x.cup_product(y)
-h^{2,0}
sage: x.cup_product(x)
0

sage: one = T.cohomology_ring(QQ).basis()[0,0]
sage: x.cup_product(one)
h^{1,0}
sage: one.cup_product(y) == y
True

sage: x.cup_product(y) + y.cup_product(x)
0

>>> from sage.all import *

>>> RP3 = simplicial_complexes.RealProjectiveSpace(Integer(3))

>>> H = RP3.cohomology_ring(GF(Integer(2)))

>>> c = H.basis()[1,0]

>>> c.cup_product(c).cup_product(c) # indirect doctest
h^{3,0}

>>> T = simplicial_complexes.Torus()

>>> x,y = T.cohomology_ring(QQ).basis(Integer(1))

>>> x.cup_product(y)
-h^{2,0}

>>> x.cup_product(x)
0

>>> one = T.cohomology_ring(QQ).basis()[Integer(0),Integer(0)]

>>> x.cup_product(one)
h^{1,0}

>>> one.cup_product(y) == y
True

>>> x.cup_product(y) + y.cup_product(x)
0
```

This also works with cubical complexes:

```python
sage: T = cubical_complexes.Torus()
sage: x,y = T.cohomology_ring(QQ).basis(1)
```

(continues on next page)
sage: x.cup_product(y)
h^{2,0}
sage: x.cup_product(x)
0

>>> from sage.all import *
>>> T = cubical_complexes.Torus()
>>> x, y = T.cohomology_ring(QQ).basis(Integer(1))
>>> x.cup_product(y)
h^{2,0}
>>> x.cup_product(x)
0

Δ-complexes:

sage: T_d = delta_complexes.Torus()
sage: a, b = T_d.cohomology_ring(QQ).basis(1)
sage: a.cup_product(b)
h^{2,0}
sage: b.cup_product(a)
-h^{2,0}
sage: RP2 = delta_complexes.RealProjectivePlane()
sage: w = RP2.cohomology_ring(GF(2)).basis()[1,0]
sage: w.cup_product(w)
h^{2,0}

>>> from sage.all import *
>>> T_d = delta_complexes.Torus()
>>> a, b = T_d.cohomology_ring(QQ).basis(Integer(1))
>>> a.cup_product(b)
h^{2,0}
>>> b.cup_product(a)
-h^{2,0}
>>> RP2 = delta_complexes.RealProjectivePlane()
>>> w = RP2.cohomology_ring(GF(Integer(2))).basis()[Integer(1),Integer(0)]
>>> w.cup_product(w)
h^{2,0}

and simplicial sets:

sage: from sage.topology.simplicial_set_examples import RealProjectiveSpace
sage: RP5 = RealProjectiveSpace(5)
 # needs sage.groups
sage: x = RP5.cohomology_ring(GF(2)).basis()[1,0]
 # needs sage.groups
sage: x**4
 # needs sage.groups
h^{4,0}

>>> from sage.all import *
>>> from sage.topology.simplicial_set_examples import RealProjectiveSpace
>>> RP5 = RealProjectiveSpace(Integer(5))
 # needs sage.groups
>>> x = RP5.cohomology_ring(GF(Integer(2))).basis()[Integer(1),Integer(0)]
 # needs sage.groups
(continues on next page)
A non-connected example:

```python
sage: K = cubical_complexes.Torus().disjoint_union(cubical_complexes.Torus())
sage: a,b,c,d = K.cohomology_ring(QQ).basis(1)
sage: x,y = K.cohomology_ring(QQ).basis(0)
sage: a.cup_product(x) == a
True
sage: a.cup_product(y)
0
```

```
from sage.all import *
K = cubical_complexes.Torus().disjoint_union(cubical_complexes.Torus())
a,b,c,d = K.cohomology_ring(QQ).basis(Integer(1))
x,y = K.cohomology_ring(QQ).basis(Integer(0))
a.cup_product(x) == a
True
a.cup_product(y)
0
```

class `sage.homology.homology_vector_space_with_basis.CohomologyRing_mod2` (`base_ring`, `cell_complex`)

Bases: `CohomologyRing`

The mod 2 cohomology ring.

Based on `CohomologyRing`, with Steenrod operations included.

Note: This is not intended to be created directly by the user, but instead via the cohomology ring of a cell complex.

Todo: Implement Steenrod operations on (co)homology at odd primes, and thereby implement this class over \(\mathbf{F}_p \) for any \(p \).

INPUT:
- `base_ring` – must be the field \(\mathbf{GF}(2) \)
- `cell_complex` – the cell complex whose homology we are computing

EXAMPLES:

Mod 2 cohomology operations are defined on both the left and the right:

```python
sage: CP2 = simplicial_complexes.ComplexProjectivePlane()
sage: Hmod2 = CP2.cohomology_ring(GF(2))
sage: y = Hmod2.basis(2)[2,0]
sage: y.Sq(2)
```

\[h^{4,0} \]
```sage
# needs sage.groups
sage: Y = simplicial_sets.RealProjectiveSpace(6).suspension()
sage: H_Y = Y.cohomology_ring(GF(2))
sage: b = H_Y.basis()[2,0]
sage: b.Sq(1)
h^{3,0}
sage: b.Sq(2)
0
sage: c = H_Y.basis()[4,0]
sage: c.Sq(1)
h^{5,0}
sage: c.Sq(2)
h^{6,0}
sage: c.Sq(3)
h^{7,0}
sage: c.Sq(4)
0
>>> from sage.all import *
>>> CP2 = simplicial_complexes.ComplexProjectivePlane()
>>> Hmod2 = CP2.cohomology_ring(GF(Integer(2)))
>>> y = Hmod2.basis(Integer(2))[Integer(2),Integer(0)]
>>> y.Sq(Integer(2))
h^{4,0}
```

Cohomology can be viewed as a left module over the Steenrod algebra, and also as a right module:

```sage
# needs sage.groups
sage: RP4 = simplicial_sets.RealProjectiveSpace(4)
sage: H = RP4.cohomology_ring(GF(2))
sage: x = H.basis()[1,0]
sage: Sq(0,1) * x
h^{4,0}
sage: Sq(3) * x
0
sage: x * Sq(3)
h^{4,0}
```

>>> from sage.all import *
>>> # needs sage.groups
>>> RP4 = simplicial_sets.RealProjectiveSpace(Integer(4))
>>> H = RP4.cohomology_ring(GF(Integer(2)))
>>> x = H.basis()[Integer(1),Integer(0)]
>>> Sq(Integer(0),Integer(1)) * x
h^{4,0}
>>> Sq(Integer(3)) * x
0
>>> x * Sq(Integer(3))

This cohomology operation is only defined in characteristic 2. Odd primary Steenrod operations are not implemented.

Algorithm: see González-Díaz and Réal [GDR1999], Corollary 3.2.

EXAMPLES:

```python
sage: RP2 = simplicial_complexes.RealProjectiveSpace(2)
sage: x = RP2.cohomology_ring(GF(2)).basis()[1,0]
sage: x.Sq(1)
h^{2,0}

sage: K = RP2.suspension()
sage: K.set_immutable()
sage: y = K.cohomology_ring(GF(2)).basis()[2,0]
sage: y.Sq(1)
h^{3,0}

sage: # long time
sage: # needs sage.groups
sage: RP4 = simplicial_complexes.RealProjectiveSpace(4)
sage: H = RP4.cohomology_ring(GF(2))
sage: x = H.basis()[1,0]
sage: y = H.basis()[2,0]
sage: z = H.basis()[3,0]
sage: x.Sq(1) == y
True
sage: z.Sq(1)
h^{4,0}
```
This calculation is much faster with simplicial sets (on one machine, 20 seconds with a simplicial complex, 4 ms with a simplicial set).

steenrod_module_map (deg_domain, deg_codomain, side='left')

Return a component of the module structure map $A \otimes H \to H$, where H is this cohomology ring and A is the Steenrod algebra.

INPUT:

- **deg_domain** – the degree of the domain in the cohomology ring
- **deg_codomain** – the degree of the codomain in the cohomology ring
- **side** – (default 'left') whether we are computing the action as a left module action or a right module

We will write this with respect to the left action; for the right action, just switch all of the the tensors. Writing m for `deg_domain` and n for `deg_codomain`, this returns $A^{n-m} \otimes H^{m} \to H^{n}$, one single component of the map making H into an A-module.
Warning: This is only implemented in characteristic two. The main implementation is only for simplicial complexes and simplicial sets; cubical complexes are converted to simplicial complexes first. Note that this converted complex may be large and so computations may be slow. There is no implementation for Δ-complexes.

ALGORITHM:

Use the Milnor basis for the truncated Steenrod algebra A, and for cohomology, use the basis with which it is equipped. For each pair of basis elements a and h, compute the product $a \otimes h$, and use this to assemble a matrix defining the action map via multiplication on the appropriate side. That is, if `side` is 'left', return a matrix suitable for multiplication on the left, etc.

EXAMPLES:

```sage
# needs sage.groups
sage: RP4 = simplicial_sets.RealProjectiveSpace(4)
sage: H = RP4.cohomology_ring(GF(2))
sage: H.steenrod_module_map(1, 2)
[1]
sage: H.steenrod_module_map(1, 3)
[0]
sage: H.steenrod_module_map(1, 4, 'left')
[1 0]
sage: H.steenrod_module_map(1, 4, 'right')
[1]
```

```sage
from sage.all import *
```

```sage
# needs sage.groups
RP4 = simplicial_sets.RealProjectiveSpace(Integer(4))
H = RP4.cohomology_ring(GF(Integer(2)))
H.steenrod_module_map(Integer(1), Integer(2))
[1]
```

```sage
from sage.all import *
```

```sage
RP3 = simplicial_sets.RealProjectiveSpace(3)
K = RP3.product(RP3)
H = K.cohomology_ring(GF(2))
H
```

Cohomology ring of $\text{RP}^3 \times \text{RP}^3$ over Finite Field of size 2

```sage
from sage.all import *
```

```sage
RP3 = simplicial_sets.RealProjectiveSpace(Integer(3))
K = RP3.product(RP3)
H = K.cohomology_ring(GF(Integer(2)))
H
```

Cohomology ring of $\text{RP}^3 \times \text{RP}^3$ over Finite Field of size 2
There is one column for each element $a \otimes b$, where a is a basis element for the Steenrod algebra and b is a basis element for the cohomology algebra. There is one row for each basis element of the cohomology algebra. Unfortunately, the chosen basis for this truncated polynomial algebra is not the monomial basis:

```
sage: x1, x2 = H.basis(1)
sage: x1 * x1
h^{2,0} + h^{2,1}
sage: x2 * x2
h^{2,2}
sage: x1 * x2
h^{2,0}
sage: H.steenrod_module_map(1, 2)
[1 0]
[1 0]
[0 1]
sage: H.steenrod_module_map(1, 3, 'left')
[0 0]
[0 0]
[0 0]
[0 0]
sage: H.steenrod_module_map(1, 3, 'right')
[0 0 0 0]
[0 0 0 0]
sage: H.steenrod_module_map(2, 3)
[0 0 0]
[1 1 0]
[0 0 0]
[0 0 0]
```

```python
>>> from sage.all import *

```
class sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis(base_ring, cell_complex, cohomology=False, category=None)

Bases: CombinatorialFreeModule

Homology (or cohomology) vector space.

This provides enough structure to allow the computation of cup products and cohomology operations. See the class CohomologyRing (which derives from this) for examples.

It also requires field coefficients (hence the “VectorSpace” in the name of the class).

Note: This is not intended to be created directly by the user, but instead via the methods homology_with_bas-

sis() and cohomology_ring() for the class of cell complexes.

INPUT:

- base_ring – must be a field
- cell_complex – the cell complex whose homology we are computing
- cohomology – (default: False) if True, return the cohomology as a module
- category – (optional) a subcategory of modules with basis

EXAMPLES:

Homology classes are denoted by $h_{d,i}$ where d is the degree of the homology class and i is their index in the list of basis elements in that degree. Cohomology classes are denoted $h^{1,0}$:

```
sage: RP2 = cubical_complexes.RealProjectivePlane()
sage: RP2.homology_with_basis(GF(2))
Homology module of Cubical complex with 21 vertices and 81 cubes
over Finite Field of size 2
sage: RP2.cohomology_ring(GF(2))
Cohomology ring of Cubical complex with 21 vertices and 81 cubes
over Finite Field of size 2
sage: simplicial_complexes.Torus().homology_with_basis(QQ)
Homology module of Minimal triangulation of the torus
over Rational Field
```

```python
>>> from sage.all import *
>>> RP2 = cubical_complexes.RealProjectivePlane()
>>> RP2.homology_with_basis(GF(Integer(2)))
Homology module of Cubical complex with 21 vertices and 81 cubes
over Finite Field of size 2
>>> RP2.cohomology_ring(GF(Integer(2)))
Cohomology ring of Cubical complex with 21 vertices and 81 cubes
over Finite Field of size 2
>>> simplicial_complexes.Torus().homology_with_basis(QQ)
```

(continues on next page)
Homology module of Minimal triangulation of the torus over Rational Field

To access a basis element, use its degree and index (0 or 1 in the 1st cohomology group of a torus):

```
sage: H = simplicial_complexes.Torus().cohomology_ring(QQ)
sage: H.basis(1)
Finite family {(1, 0): h^{1,0}, (1, 1): h^{1,1})
sage: x = H.basis()[1,0]; x
h^{1,0}
sage: y = H.basis()[1,1]; y
h^{1,1}
sage: 2*x-3*y
2*h^{1,0} - 3*h^{1,1}
```

You can compute cup products of cohomology classes:

```
sage: x.cup_product(y)
-h^{2,0}
sage: y.cup_product(x)
h^{2,0}
sage: x.cup_product(x)
0
```

This works with simplicial, cubical, and Δ-complexes, and also simplicial sets:

```
sage: Torus_c = cubical_complexes.Torus()
sage: H = Torus_c.cohomology_ring(GF(2))
sage: x, y = H.basis(1)
sage: x.cup_product(x)
0
```

(continues on next page)
sage: H = Klein_d.cohomology_ring(GF(2))
sage: u, v = sorted(H.basis(1))
sage: u.cup_product(u)
h^{2,0}
sage: u.cup_product(v)
0
sage: v.cup_product(v)
h^{2,0}

An isomorphism between the rings for the cubical model and the Δ-complex model can be obtained by sending x to $u + v$, y to v.

sage: # needs sage.groups
sage: X = simplicial_sets.RealProjectiveSpace(6)
sage: H_X = X.cohomology_ring(GF(2))
sage: a = H_X.basis()[1,0]
sage: a**6
h^{6,0}
sage: a**7
0

All products of positive-dimensional elements in a suspension should be zero:

sage: Y = X.suspension()
sage: H_Y = Y.cohomology_ring(GF(2))
sage: b = H_Y.basis()[2,0]
sage: b**2
0
sage: B = sorted(H_Y.basis())[1:

[h^{2,0}, h^{3,0}, h^{4,0}, h^{5,0}, h^{6,0}, h^{7,0}]
sage: import itertools
elements = [a*b for (a,b) in itertools.combinations(B, 2)]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The basis elements in the simplicial complex case have been chosen differently; apply the change of basis $x \mapsto a + b$, $y \mapsto b$ to see the same product structure.

sage: Klein_s = simplicial_complexes.KleinBottle()
sage: H = Klein_s.cohomology_ring(GF(2))
sage: a,b = H.basis(1)
sage: a.cup_product(a)
0
sage: a.cup_product(b)
h^{2,0}
sage: (a+b).cup_product(a+b)
h^{2,0}
sage: b.cup_product(b)
h^{2,0}

class Element
Bases: IndexedFreeModuleElement
eval (other)
Evaluate \texttt{self} at \texttt{other}.

INPUT:

- \texttt{other} – an element of the dual space; if \texttt{self} is an element of cohomology in dimension \(n\), then \texttt{other} should be an element of homology in dimension \(n\), and vice versa

This just calls the \texttt{eval()} method on the representing chains and cochains.

EXAMPLES:

```python
sage: T = simplicial_complexes.Torus()
sage: homology = T.homology_with_basis(QQ)
sage: cohomology = T.cohomology_ring(QQ)
sage: a1, a2 = homology.basis(1)
sage: alpha1, alpha2 = cohomology.basis(1)
sage: a1.to_cycle()
(0, 3) - (0, 6) + (3, 6)
sage: alpha1.to_cycle()
-\chi_{(1, 3)} - \chi_{(1, 4)} - \chi_{(2, 3)} - \chi_{(2, 4)} - \chi_{(2, 5)} + \chi_{(3, 6)}
sage: a1.eval(alpha1)
1
sage: alpha2.to_cycle()
\chi_{(1, 3)} + \chi_{(1, 4)} + \chi_{(1, 6)} + \chi_{(2, 4)} - \chi_{(4, 5)} + \chi_{(5, 6)}
sage: alpha2.eval(a1)
0
sage: (2 * alpha2).eval(a1 + a2)
2
```

```python
>>> from sage.all import *
>>> T = simplicial_complexes.Torus()
>>> homology = T.homology_with_basis(QQ)
>>> cohomology = T.cohomology_ring(QQ)
>>> a1, a2 = homology.basis(Integer(1))
>>> alpha1, alpha2 = cohomology.basis(Integer(1))
>>> a1.to_cycle()
(0, 3) - (0, 6) + (3, 6)
>>> alpha1.to_cycle()
-\chi_{(1, 3)} - \chi_{(1, 4)} - \chi_{(2, 3)} - \chi_{(2, 4)} - \chi_{(2, 5)} + \chi_{(3, 6)}
>>> a1.eval(alpha1)
1
>>> alpha2.to_cycle()
\chi_{(1, 3)} + \chi_{(1, 4)} + \chi_{(1, 6)} + \chi_{(2, 4)} - \chi_{(4, 5)} + \chi_{(5, 6)}
>>> alpha2.eval(a1)
0
>>> (Integer(2) * alpha2).eval(a1 + a2)
2
```

\texttt{to_cycle()}

(Co)cyclerepresentativeofthishomogeneous(co)homologyclass.

EXAMPLES:

```python
sage: S2 = simplicial_complexes.Sphere(2)
sage: H = S2.homology_with_basis(QQ)
```
Chains are written as linear combinations of simplices σ. Cochains are written as linear combinations of characteristic functions χ_σ for those simplices:

```python
sage: S2.cohomology_ring(QQ).basis()[2,0].to_cycle()
\chi_{(1, 2, 3)}
sage: S2.cohomology_ring(QQ).basis()[0,0].to_cycle()
\chi_{(0,)} + \chi_{(1,)} + \chi_{(2,)} + \chi_{(3,)}
```

```python
>>> from sage.all import *

>>> RP2 = simplicial_complexes.ProjectivePlane()
```

basis ($d=None$)

Return (the degree d homogeneous component of) the basis of this graded vector space.

INPUT:

- d – (optional) the degree

EXAMPLES:

```python
sage: RP2 = simplicial_complexes.ProjectivePlane()
sage: H = RP2.homology_with_basis(QQ)
sage: H.basis()
Finite family {(0, 0): h_{0,0}}
sage: H.basis(0)
Finite family {(0, 0): h_{0,0}}
sage: H.basis(1)
Finite family {}
sage: H.basis(2)
Finite family {}
```

```python
>>> from sage.all import *

>>> RP2 = simplicial_complexes.ProjectivePlane()
```

(continues on next page)
complex()

The cell complex whose homology is being computed.

EXAMPLES:

```python
sage: H = simplicial_complexes.Simplex(2).homology_with_basis(QQ)
sage: H.complex()
The 2-simplex
```

contraction()

The chain contraction associated to this homology computation.

That is, to work with chain representatives of homology classes, we need the chain complex C associated to the cell complex H of its homology (with trivial differential), chain maps $\pi : C \to H$ and $\iota : H \to C$, and a chain contraction ϕ giving a chain homotopy between 1_C and $\iota \circ \pi$.

OUTPUT: ϕ

See `ChainContraction` for information about chain contractions, and see `algebraic_topological_model()` for the construction of this particular chain contraction ϕ.

EXAMPLES:

```python
sage: H = simplicial_complexes.Simplex(2).homology_with_basis(QQ)
sage: H.contraction()
Chain homotopy between:
  Chain complex endomorphism of Chain complex with at most 3 nonzero terms over Rational Field
  and Chain complex endomorphism of Chain complex with at most 3 nonzero terms over Rational Field
```

From the chain contraction, one can also recover the maps π and ι:

```python
sage: phi = H.contraction()
sage: phi.pi()
Chain complex morphism:
  From: Chain complex with at most 3 nonzero terms over Rational Field
  To: Chain complex with at most 1 nonzero terms over Rational Field
sage: phi.iota()
Chain complex morphism:
  From: Chain complex with at most 3 nonzero terms over Rational Field
  To: Chain complex with at most 1 nonzero terms over Rational Field
```
From: Chain complex with at most 1 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

>>> from sage.all import *

>>> phi = H.contraction()

>>> phi.pi()
Chain complex morphism:
 From: Chain complex with at most 3 nonzero terms over Rational Field
 To: Chain complex with at most 1 nonzero terms over Rational Field

>>> phi.iota()
Chain complex morphism:
 From: Chain complex with at most 1 nonzero terms over Rational Field
 To: Chain complex with at most 3 nonzero terms over Rational Field

degree_on_basis \(i \)

Return the degree of the basis element indexed by \(i \).

EXAMPLES:

```
sage: H = simplicial_complexes.Torus().homology_with_basis(GF(7))
sage: H.degree_on_basis((2,0))
2
```

```
>>> from sage.all import *

>>> H = simplicial_complexes.Torus().homology_with_basis(GF(Integer(7)))

>>> H.degree_on_basis((Integer(2),Integer(0)))
2
```

dual ()

Return the dual space.

If self is homology, return the cohomology ring. If self is cohomology, return the homology as a vector space.

EXAMPLES:

```
sage: T = simplicial_complexes.Torus()
sage: hom = T.homology_with_basis(GF(2))
sage: coh = T.cohomology_ring(GF(2))
sage: hom.dual() is coh
True
sage: coh.dual() is hom
True
```

```
>>> from sage.all import *

>>> T = simplicial_complexes.Torus()

>>> hom = T.homology_with_basis(GF(Integer(2)))

>>> coh = T.cohomology_ring(GF(Integer(2)))

>>> hom.dual() is coh
True

>>> coh.dual() is hom
True
class sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis_mod2(base_ring, cell_complex, category=None):

    Bases: HomologyVectorSpaceWithBasis

    Homology vector space mod 2.

    Based on HomologyVectorSpaceWithBasis, with Steenrod operations included.

    Note: This is not intended to be created directly by the user, but instead via the method homology_with_basis() for the class of cell complexes.

Todo: Implement Steenrod operations on (co)homology at odd primes, and thereby implement this class over $\mathbf{F}_p$ for any $p$.

INPUT:

- base_ring – must be the field GF(2)
- cell_complex – the cell complex whose homology we are computing
- category – (optional) a subcategory of modules with basis

This does not include the cohomology argument present for HomologyVectorSpaceWithBasis: use CohomologyRing_mod2 for cohomology.

EXAMPLES:

Mod 2 cohomology operations are defined on both the left and the right:

```
sage: # needs sage.groups
sage: RP4 = simplicial_sets.RealProjectiveSpace(5)
sage: H = RP4.homology_with_basis(GF(2))
sage: x4 = H.basis()[4,0]
sage: x4 * Sq(1)
h_{3,0}
sage: Sq(1) * x4
h_{3,0}
sage: Sq(2) * x4
h_{2,0}
sage: Sq(3) * x4
h_{1,0}
sage: Sq(0,1) * x4
h_{1,0}
sage: x4 * Sq(0,1)
h_{1,0}
sage: Sq(3) * x4
h_{1,0}
sage: x4 * Sq(3)
0
```

```python
>>> from sage.all import *
>>> # needs sage.groups
```
class Element

Bases: Element

sage.homology.homology_vector_space_with_basis.is_GF2(R)

Return True iff R is isomorphic to the field \( \mathbb{F}_2 \).

EXAMPLES:

```python
class Element

Bases: Element

sage.homology.homology_vector_space_with_basis.is_GF2(R)

Return True iff R is isomorphic to the field \(\mathbb{F}_2 \).

EXAMPLES:

```
INPUT:

- \( k \) – non-negative integer
- \( i_{k+1} \) – the positive integer \( i_{k+1} \)
- \( S_{k+1} \) – the integer \( S(k + 1) \)

EXAMPLES:

```
sage: from sage.homology.homology_vector_space_with_basis import sum_indices
sage: sum_indices(1, 3, 3)
[[1, 0], [2, 1]]
sage: sum_indices(0, 4, 2)
[[2]]
```

```
>>> from sage.all import *
>>> from sage.homology.homology_vector_space_with_basis import sum_indices

>>> sum_indices(Integer(1), Integer(3), Integer(3))
[[1, 0], [2, 1]]

>>> sum_indices(Integer(0), Integer(4), Integer(2))
[[2]]
```
This file contains two functions, `algebraic_topological_model()` and `algebraic_topological_model_delta_complex()`. The second works more generally: for all simplicial, cubical, and \( \Delta \)-complexes. The first only works for simplicial and cubical complexes, but it is faster in those cases.

AUTHORS:
- John H. Palmieri (2015-09)

sage.homology.algebraic_topological_model.algebraic_topological_model\( (K, base\_ring=None)\)

Algebraic topological model for cell complex \( K \) with coefficients in the field `base_ring`.

INPUT:
- \( K \) – either a simplicial complex or a cubical complex
- `base_ring` – coefficient ring; must be a field

OUTPUT: a pair \( (\phi, M) \) consisting of
- chain contraction \( \phi \)
- chain complex \( M \)

This construction appears in a paper by Pilarczyk and Réal [PR2015]. Given a cell complex \( K \) and a field \( F \), there is a chain complex \( C \) associated to \( K \) with coefficients in \( F \). The algebraic topological model for \( K \) is a chain complex \( M \) with trivial differential, along with chain maps \( \pi : C \to M \) and \( \iota : M \to C \) such that
- \( \pi \iota = 1_M \), and
- there is a chain homotopy \( \phi \) between \( 1_C \) and \( \iota \pi \).

In particular, \( \pi \) and \( \iota \) induce isomorphisms on homology, and since \( M \) has trivial differential, it is its own homology, and thus also the homology of \( C \). Thus \( \iota \) lifts homology classes to their cycle representatives.

The chain homotopy \( \phi \) satisfies some additional properties, making it a chain contraction:
- \( \phi \iota = 0 \),
- \( \pi \phi = 0 \),
- \( \phi \iota = 0 \).

Given an algebraic topological model for \( K \), it is then easy to compute cup products and cohomology operations on the cohomology of \( K \), as described in [GDR2003] and [PR2015].

Implementation details: the cell complex \( K \) must have an \( n\_cells() \) method from which we can extract a list of cells in each dimension. Combining the lists in increasing order of dimension then defines a filtration of the complex: a list of cells in which the boundary of each cell consists of cells earlier in the list. This is required
by Pilarczyk and Réal's algorithm. There must also be a `chain_complex()` method, to construct the chain complex $C$ associated to this chain complex.

In particular, this works for simplicial complexes and cubical complexes. It doesn't work for $\Delta$-complexes, though: the list of their $n$-cells has the wrong format.

Note that from the chain contraction $\phi$, one can recover the chain maps $\pi$ and $\iota$ via $\phi.pi()$ and $\phi.iota()$. Then one can recover $C$ and $M$ from, for example, $\phi.pi().domain()$ and $\phi.pi().codomain()$, respectively.

**EXAMPLES:**

```python
>>> from sage.all import *
>>> from sage.homology.algebraic_topological_model import algebraic_topological_model

>>> RP2 = simplicial_complexes.RealProjectivePlane()
>>> phi, M = algebraic_topological_model(RP2, GF(Integer(2)))
>>> M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
 1: Vector space of dimension 1 over Finite Field of size 2,
 2: Vector space of dimension 1 over Finite Field of size 2}

>>> T = cubical_complexes.Torus()
>>> phi, M = algebraic_topological_model(T, QQ)
>>> M.homology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 2 over Rational Field,
 2: Vector space of dimension 1 over Rational Field}
```

If you want to work with cohomology rather than homology, just dualize the outputs of this function:

```python
>>> M.dual().homology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 2 over Rational Field,
 2: Vector space of dimension 1 over Rational Field}
>>> phi.dual()
Chain homotopy between:
 Chain complex endomorphism of
 Chain complex with at most 3 nonzero terms over Rational Field
 and Chain complex morphism:
 From: Chain complex with at most 3 nonzero terms over Rational Field
 To: Chain complex with at most 3 nonzero terms over Rational Field
```
In degree 0, the inclusion of the homology $M$ into the chain complex $C$ sends the homology generator to a single vertex:

```
sage: K = simplicial_complexes.Simplex(2)
sage: phi, M = algebraic_topological_model(K, QQ)
sage: phi.iota().in_degree(0)
[0]
[0]
[1]
```

In cohomology, though, one needs the dual of every degree 0 cell to detect the degree 0 cohomology generator:

```
sage: phi.dual().iota().in_degree(0)
[1]
[1]
[1]
```

```
from sage.all import *
>>> M.dual().homology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 2 over Rational Field,
 2: Vector space of dimension 1 over Rational Field}
>>> M.dual().degree_of_differential()
1
>>> phi.dual()
Chain homotopy between:
 Chain complex endomorphism of
 Chain complex with at most 3 nonzero terms over Rational Field
 and Chain complex morphism:
 From: Chain complex with at most 3 nonzero terms over Rational Field
 To: Chain complex with at most 3 nonzero terms over Rational Field

sage.homology.algebraic_topological_model.algebraic_topological_model_delta_complex(K, base_ring)

Algebraic topological model for cell complex K with coefficients in the field $base_ring$.

This has the same basic functionality as `algebraic_topological_model()`, but it also works for Δ-complexes. For simplicial and cubical complexes it is somewhat slower, though.

INPUT:

- K – a simplicial complex, a cubical complex, or a Δ-complex
- $base_ring$ – coefficient ring; must be a field
OUTPUT: a pair \((\phi, M)\) consisting of

- chain contraction \(\phi\)
- chain complex \(M\)

See `algebraic_topological_model()` for the main documentation. The difference in implementation between the two: this uses matrix and vector algebra. The other function does more of the computations “by hand” and uses cells (given as simplices or cubes) to index various dictionaries. Since the cells in \(\Delta\)-complexes are not as nice, the other function does not work for them, while this function relies almost entirely on the structure of the associated chain complex.

EXAMPLES:

```python
sage: from sage.homology.algebraic_topological_model import algebraic_topological_model
sage: RP2 = simplicial_complexes.RealProjectivePlane()
sage: phi, M = AT_model(RP2, GF(2))
sage: M.homology()
{0: Vector space of dimension 1 over Finite Field of size 2,
 1: Vector space of dimension 1 over Finite Field of size 2,
 2: Vector space of dimension 1 over Finite Field of size 2}
```

```python
sage: T = delta_complexes.Torus()
sage: phi, M = AT_model(T, QQ)
sage: M.homology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 2 over Rational Field,
 2: Vector space of dimension 1 over Rational Field}
```

If you want to work with cohomology rather than homology, just dualize the outputs of this function:

```python
sage: M.dual().homology()
{0: Vector space of dimension 1 over Rational Field,
 1: Vector space of dimension 2 over Rational Field,
 2: Vector space of dimension 1 over Rational Field}
sage: M.dual().degree_of_differential()
1
```

Chain homotopy between:

- Chain complex endomorphism of Chain complex with at most 3 nonzero terms over...
 - Rational Field
and Chain complex morphism:
From: Chain complex with at most 3 nonzero terms over Rational Field
To: Chain complex with at most 3 nonzero terms over Rational Field

```python
>>> from sage.all import *

>>> M.dual().homology()
{0: Vector space of dimension 1 over Rational Field,
  1: Vector space of dimension 2 over Rational Field,
  2: Vector space of dimension 1 over Rational Field}

>>> M.dual().degree_of_differential()
1

>>> phi.dual()
Chain homotopy between:
  Chain complex endomorphism of Chain complex with at most 3 nonzero terms over...
  and Chain complex morphism:
  From: Chain complex with at most 3 nonzero terms over Rational Field
  To:  Chain complex with at most 3 nonzero terms over Rational Field

In degree 0, the inclusion of the homology $M$ into the chain complex $C$ sends the homology generator to a single vertex:

```sage
K = delta_complexes.Simplex(2)
sage: phi, M = AT_model(K, QQ)

sage: phi.iota().in_degree(0)

```

```python
[0]
[0]
[1]
```

In cohomology, though, one needs the dual of every degree 0 cell to detect the degree 0 cohomology generator:

```python
>>> from sage.all import *

>>> K = delta_complexes.Simplex(Integer(2))

>>> phi, M = AT_model(K, QQ)

>>> phi.iota().in_degree(Integer(0))

```

```python
[1]
[1]
[1]
```

```python
>>> from sage.all import *

>>> phi.dual().iota().in_degree(Integer(0))

```

```python
[1]
[1]
[1]
```
Chapter 10. Algebraic topological model for a cell complex
INDUCED MORPHISMS ON HOMOLOGY

This module implements morphisms on homology induced by morphisms of simplicial complexes. It requires working with field coefficients.

See InducedHomologyMorphism for documentation.

AUTHORS:

• John H. Palmieri (2015.09)

class sage.homology.homology_morphism.InducedHomologyMorphism(map, base_ring=None, cohomology=False)

Bases: Morphism

An element of this class is a morphism of (co)homology groups induced by a map of simplicial complexes. It requires working with field coefficients.

INPUT:

• map – the map of simplicial complexes
• base_ring – a field (default: QQ)
• cohomology – boolean (default: False). If True, return the induced map in cohomology rather than homology.

Note: This is not intended to be used directly by the user, but instead via the method induced_homology_morphism().

EXAMPLES:

```
sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: f = H({0:0, 1:2, 2:1}) # f switches two vertices
sage: f_star = f.induced_homology_morphism(QQ, cohomology=True)
sage: f_star
Graded algebra endomorphism of
Cohomology ring of Minimal triangulation of the 1-sphere over Rational Field
Defn: induced by:
 Simplicial complex endomorphism of Minimal triangulation of the 1-sphere
 Defn: 0 |--> 0
 1 |--> 2
 2 |--> 1
sage: f_star.to_matrix(1)
[-1]
sage: f_star.to_matrix()
(continues on next page)
```
Since \((0, 2) - (0, 5) + (2, 5)\) is a cycle representing a homology class in the torus, we can define a map \(S^1 \rightarrow T\) inducing an inclusion on \(H_1\):

```python
sage: H = Hom(S1, T)

sage: g = Hom(S1, T)(\{(0:0, 1:2, 2:5)\})

sage: g_star = g.induced_homology_morphism(QQ)
```

(continues on next page)
We can evaluate such a map on (co)homology classes:

```python
sage: H = S1.homology_with_basis(QQ)
sage: a = H.basis()[[1,0]]
sage: g_star(a)
-h_{1,0}
```

```python
sage: T = S1.product(S1, is_mutable=False)
sage: diag = Hom(S1,T).diagonal_morphism()
sage: b,c = list(T.cohomology_ring().basis(1))
sage: diag_c = diag.induced_homology_morphism(cohomology=True)
sage: diag_c(b)
h^{1,0}
sage: diag_c(c)
h^{1,0}
```

(continued on next page)
base_ring()  
The base ring for this map.

EXAMPLES:

```python
sage: K = simplicial_complexes.Simplex(2)
sage: H = Hom(K, K)
sage: id = H.identity()
sage: id.induced_homology_morphism(QQ).base_ring()
Rational Field
sage: id.induced_homology_morphism(GF(13)).base_ring()
Finite Field of size 13
```

is_identity()  
Return True if this is the identity map on (co)homology.

EXAMPLES:

```python
sage: S1 = simplicial_complexes.Sphere(1)
sage: H = Hom(S1, S1)
sage: flip = H({0:0, 1:2, 2:1})
sage: flip.induced_homology_morphism(QQ).is_identity()
False
sage: flip.induced_homology_morphism(GF(2)).is_identity()
True
sage: rotate = H({0:1, 1:2, 2:0})
sage: rotate.induced_homology_morphism(QQ).is_identity()
True
```

```python
>>> from sage.all import *
```
is_injective()  
Return True if this map is injective on (co)homology.

EXAMPLES:

```
sage: S1 = simplicial_complexes.Sphere(1)
sage: K = simplicial_complexes.Simplex(2)
sage: H = Hom(S1, K)
sage: f = H({0:0, 1:1, 2:2})
sage: f.induced_homology_morphism().is_injective()
False
sage: f.induced_homology_morphism(cohomology=True).is_injective()
True
```

```
>>> from sage.all import *
>>> S1 = simplicial_complexes.Sphere(Integer(1))
>>> K = simplicial_complexes.Simplex(Integer(2))
>>> H = Hom(S1, K)
>>> f = H({Integer(0):Integer(0), Integer(1):Integer(1),
 Integer(2):Integer(2)})
>>> f.induced_homology_morphism().is_injective()
False
```

is_surjective()  
Return True if this map is surjective on (co)homology.

EXAMPLES:

```
sage: S1 = simplicial_complexes.Sphere(1)
sage: K = simplicial_complexes.Simplex(2)
sage: H = Hom(S1, K)
sage: f = H({0:0, 1:1, 2:2})
sage: f.induced_homology_morphism().is_surjective()
True
sage: f.induced_homology_morphism(cohomology=True).is_surjective()
False
```

```
>>> from sage.all import *
>>> S1 = simplicial_complexes.Sphere(Integer(1))
>>> K = simplicial_complexes.Simplex(Integer(2))
>>> H = Hom(S1, K)
```
to_matrix \,(deg=None)\)

The matrix for this map.

If degree \,deg\, is specified, return the matrix just in that degree; otherwise, return the block matrix representing the entire map.

INPUT:

\begin{itemize}
\item deg – (default: None) the degree
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: S1 = simplicial_complexes.Sphere(1)
sage: S1_b = S1.barycentric_subdivision()
sage: S1_b.set_immutable()
sage: d = {(0,): 0, (0,1): 1, (1,): 2, (1,2): 0, (2,): 1, (0,2): 2}
sage: f = Hom(S1_b, S1)(d)
sage: h = f.induced_homology_morphism(QQ)
sage: h.to_matrix(1)
[2]
sage: h.to_matrix()
[1 0]
[0 0]
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> S1 = simplicial_complexes.Sphere(Integer(1))
>>> S1_b = S1.barycentric_subdivision()
>>> S1_b.set_immutable()
>>> d = {(Integer(0),): Integer(0), (Integer(0),Integer(1)): Integer(1),
      (Integer(1),): Integer(2), (Integer(1),Integer(2)): Integer(0), (Integer(2),
      Integer(1),): Integer(0), (Integer(0),Integer(2)): Integer(2)}
>>> f = Hom(S1_b, S1)(d)
>>> h = f.induced_homology_morphism(QQ)
>>> h.to_matrix(Integer(1))
[2]
>>> h.to_matrix()
[1 0]
[0 0]
\end{verbatim}
UTILITY FUNCTIONS FOR MATRICES

The actual computation of homology groups ends up being linear algebra with the differentials thought of as matrices. This module contains some utility functions for this purpose.

`sage.homology.matrix_utils.dhsw_snf(mat, verbose=False)`
Preprocess a matrix using the “Elimination algorithm” described by Dumas et al. [DHSW2003], and then call `elementary_divisors` on the resulting (smaller) matrix.

**Note:** ‘snf’ stands for ‘Smith Normal Form’.

**INPUT:**
- `mat` – an integer matrix, either sparse or dense.
(They use the transpose of the matrix considered here, so they use rows instead of columns.)

**ALGORITHM:**
Go through `mat` one column at a time. For each column, add multiples of previous columns to it until either
- it’s zero, in which case it should be deleted.
- its first nonzero entry is 1 or -1, in which case it should be kept.
- its first nonzero entry is something else, in which case it is deferred until the second pass.

Then do a second pass on the deferred columns.

At this point, the columns with 1 or -1 in the first entry contribute to the rank of the matrix, and these can be counted and then deleted (after using the 1 or -1 entry to clear out its row). Suppose that there were $N$ of these.

The resulting matrix should be much smaller; we then feed it to Sage’s `elementary_divisors` function, and prepend $N$ 1’s to account for the rows deleted in the previous step.

**EXAMPLES:**

```python
sage: from sage.homology.matrix_utils import dhsw_snf
sage: mat = matrix(ZZ, 3, 4, range(12))
sage: dhsw_snf(mat)
[1, 4, 0]
sage: mat = random_matrix(ZZ, 20, 20, x=-1, y=2)
sage: mat.elementary_divisors() == dhsw_snf(mat)
True
```

```python
>>> from sage.all import *
>>> from sage.homology.matrix_utils import dhsw_snf
>>> mat = matrix(ZZ, Integer(3), Integer(4), range(Integer(12)))
(continues on next page)
```
\begin{verbatim}
>>> dhsw_snf(mat)
[1, 4, 0]
>>> mat = random_matrix(ZZ, Integer(20), Integer(20), x=-Integer(1), y=Integer(2))
>>> mat.elementary_divisors() == dhsw_snf(mat)
True
\end{verbatim}
INDICES AND TABLES

- Index
- Module Index
- Search Page
h
sage.homology.algebraic_topological_model, 95
sage.homology.chain_complex, 3
sage.homology.chain_complex_homspace, 55
sage.homology.chain_complex_morphism, 37
sage.homology.chain_homotopy, 45
sage.homology.chains, 25
sage.homology.hochschild_complex, 61
sage.homology.homology_group, 71
sage.homology.homology_morphism, 101
sage.homology.homology_vector_space_with_basis, 73
sage.homology.koszul_complex, 59
sage.homology.matrix_utils, 107
A

algebra() (sage.homology.hochschild_complex.HochschildComplex method), 63
algebraic_topological_model() (in module sage.homology.algebraic_topological_model), 95
algebraic_topological_model_delta_complex() (in module sage.homology.algebraic_topological_model), 97

B

base_ring() (sage.homology.homology_morphism.InducedHomologyMorphism method), 104
basis() (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis method), 89
betti() (sage.homology.chain_complex.ChainComplex_class method), 7
boundary() (sage.homology.chains.Chains.Element method), 27
boundary() (sage.homology.hochschild_complex.HochschildComplex method), 63

cartesian_product() (sage.homology.chain_complex.ChainComplex_class method), 7
cell_complex() (sage.homology.chains.CellComplexReference method), 25
CellComplexReference (class in sage.homology.chains), 25
Chain_class (class in sage.homology.chain_complex), 21
chain_complex() (sage.homology.chains.Chains method), 29
ChainComplex() (in module sage.homology.chain_complex), 3
ChainComplex_class (class in sage.homology.chain_complex), 6
ChainComplexHomspace (class in sage.homology.chain_complex_homspace), 57
ChainComplexMorphism (class in sage.homology.chain_complex_morphism), 38

ChainContraction (class in sage.homology.chain_homotopy), 45
ChainHomotopy (class in sage.homology.chain_homotopy), 49
Chains (class in sage.homology.chains), 26
Chains.Element (class in sage.homology.chains), 27
coboundary() (sage.homology.chains.Cochains.Element method), 31
coboundary() (sage.homology.hochschild_complex.HochschildComplex method), 64
cochain_complex() (sage.homology.chains.Cochains method), 35
Cochains (class in sage.homology.chains), 30
Cochains.Element (class in sage.homology.chains), 31
coefficients() (sage.homology.hochschild_complex.HochschildComplex method), 65
cohomology() (sage.homology.hochschild_complex.HochschildComplex method), 66
CohomologyRing (class in sage.homology.homology_vector_space_with_basis), 73
CohomologyRing_mod2 (class in sage.homology.homology_vector_space_with_basis), 78
CohomologyRing_mod2.Element (class in sage.homology.homology_vector_space_with_basis), 80
CohomologyRing.Element (class in sage.homology.homology_vector_space_with_basis), 74
cup_product() (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis method), 90
cup_product() (sage.homology.chains.Cochains.Element method), 31
cup_product() (sage.homology.homology_vector_space_with_basis.CohomologyRing.Element method), 74

degree() (sage.homology.chains.CellComplexReference method), 26
degree_of_differential()  (sage.homology.chain_complex.ChainComplex_class method), 9
degree_on_basis()  (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis method), 9
dhsw_snf()  (in module sage.homology.matrix_utils), 107
differential()  (sage.homology.chain_complex.ChainComplex_class method), 9
differential()  (sage.homology.hochschild_complex.HochschildComplex method), 67
dual()  (sage.homology.chain_complex_morphism.ChainComplexMorphism method), 38
dual()  (sage.homology.chain_complex.ChainComplex_class method), 10
dual()  (sage.homology.chain_homotopy.ChainHomotopy method), 46
dual()  (sage.homology.chain_homotopy.ChainHomotopy method), 51
dual()  (sage.homology.chains.Chains method), 29
dual()  (sage.homology.chains.Cochains method), 35
dual()  (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis method), 91

E
Element  (sage.homology.chain_complex.ChainComplex_class attribute), 7
eval()  (sage.homology.chains.Cochains.Element method), 32
eval()  (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis.Element method), 87

F
free_module()  (sage.homology.chain_complex.ChainComplex_class method), 11
free_module_rank()  (sage.homology.chain_complex.ChainComplex_class method), 11

G
grading_group()  (sage.homology.chain_complex.ChainComplex_class method), 12

H
HochschildComplex  (class in sage.homology.hochschild_complex), 61
HochschildComplex.Element  (class in sage.homology.hochschild_complex), 61
homology()  (sage.homology.chain_complex.ChainComplex_class method), 12
homology()  (sage.homology.hochschild_complex.ChainComplex_class method), 68
HomologyGroup()  (in module sage.homology.homology_group), 71
HomologyGroup_class  (class in sage.homology.homology_group), 72
HomologyVectorSpaceWithBasis  (class in sage.homology.homology_vector_space_with_basis), 83
HomologyVectorSpaceWithBasis_mod2  (class in sage.homology.homology_vector_space_with_basis), 91

I
in_degree()  (sage.homology.chain_complex_morphism.ChainComplexMorphism method), 39

is_algebraic_gradient_vector_field()  (sage.homology.chain_homotopy.ChainHomotopy method), 47
is_boundary()  (sage.homology.chain_complex.Chain_class method), 22
is_boundary()  (sage.homology.chains.Chains.Element method), 27
is_ChainComplexMorphism()  (in module sage.homology.chain_complex_homspase), 58
is_CoChainComplexMorphism()  (in module sage.homology.chain_complex_homspase), 42
is_coboundary()  (sage.homology.chains.Cochains.Element method), 33
is_cocycle()  (sage.homology.chains.Cochains.Element method), 34
is_cycle()  (sage.homology.chain_complex.Chain_class method), 22
is_cycle()  (sage.homology.chains.Chains.Element method), 28
is_GF2()  (in module sage.homology.homology_vector_space_with_basis), 93
is_homology_gradient_vector_field()  (sage.homology.chain_homotopy.ChainHomotopy method), 53
is_identity()  (sage.homology.chain_complex_morphism.ChainComplexMorphism method), 39
is_identity()  (sage.homology.homology_morphism.InducedHomologyMorphism method),
is_injective() (sage.homology.chain_complex_morphism.ChainComplexMorphism method), 40
is_injective() (sage.homology.homology_morphism.InducedHomologyMorphism method), 104
is_surjective() (sage.homology.chain_complex_morphism.ChainComplexMorphism method), 40
is_surjective() (sage.homology.homology_morphism.InducedHomologyMorphism method), 105

K
KoszulComplex (class in sage.homology.koszul_complex), 59

M
module
sage.homology.algebraic_topological_model module, 95
sage.homology.chain_complex module, 3
sage.homology.chain_complex_homspace module, 55
sage.homology.chain_complex_morphism module, 37
sage.homology.chain_homotopy module, 45
sage.homology.chains module, 25
sage.homology.hochschild_complex module, 61
sage.homology.homology_group module, 71
sage.homology.homology_morphism module, 101
sage.homology.homology_vector_space_with_basis module, 73
sage.homology.koszul_complex module, 59
sage.homology.matrix_utils module, 107
sage.homology.hochschild_complex.HochschildComplex method), 69

N
nonzero_degrees() (sage.homology.chain_complex.ChainComplex_class method), 14

O
one() (sage.homology.homology_vector_space_with_basis.CohomologyRing method), 75
ordered_degrees() (sage.homology.chain_complex.ChainComplex_class method), 15

P
pi() (sage.homology.chain_homotopy.ChainContraction method), 48

product_on_basis() (sage.homology.homology_vector_space_with_basis.CohomologyRing method), 75

R
random_element() (sage.homology.chain_complex.ChainComplex_class method), 16
rank() (sage.homology.chain_complex.ChainComplex_class method), 16

S
sage.homology.algebraic_topological_model module, 95
sage.homology.chain_complex module, 3
sage.homology.chain_complex_homspace module, 55
sage.homology.chain_complex_morphism module, 37
sage.homology.chain_homotopy module, 45
sage.homology.chains module, 25
sage.homology.hochschild_complex module, 61
sage.homology.homology_group module, 71
sage.homology.homology_morphism module, 101
sage.homology.homology_vector_space_with_basis module, 73
sage.homology.koszul_complex module, 59
sage.homology.matrix_utils module, 107
shift() (sage.homology.chain_complex.ChainComplex_class method), 17
Sq() (sage.homology.homology_vector_space_with_basis.CohomologyRing_mod2.Element method), 80
steenrod_module_map() (sage.homology.homology_vector_space_with_basis.CohomologyRing_mod2 method), 81

T
tensor() (sage.homology.chain_complex.ChainComplex_class method), 18
to_complex() (sage.homology.chains.Chains.Element method), 28
to_complex() (sage.homology.chains.Cochains.Element method), 34

to_cycle() (sage.homology.homology_vector_space_with_basis.HomologyVectorSpaceWithBasis.Element method), 88

to_matrix() (sage.homology.chain_complex_morphism.ChainComplexMorphism method), 41

to_matrix() (sage.homology.homology_morphism.InducedHomologyMorphism method), 106

torsion_list() (sage.homology.chain_complex.ChainComplex_class method), 20

trivial_module() (sage.homology.hochschild_complex.HochschildComplex method), 70

V

vector() (sage.homology.chain_complex.Chain_class method), 23

vector() (sage.homology.hochschild_complex.HochschildComplex.Element method), 63