C/C++ Library Interfaces

Release 10.4

The Sage Development Team

Jul 23, 2024
<table>
<thead>
<tr>
<th></th>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ECL</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>eclib</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>FLINT</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>Giac</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>GMP-ECM</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>GSL</td>
<td>83</td>
</tr>
<tr>
<td>7</td>
<td>lcalc</td>
<td>85</td>
</tr>
<tr>
<td>8</td>
<td>libSingular</td>
<td>95</td>
</tr>
<tr>
<td>9</td>
<td>GAP</td>
<td>129</td>
</tr>
<tr>
<td>10</td>
<td>LinBox</td>
<td>169</td>
</tr>
<tr>
<td>11</td>
<td>lrcalc</td>
<td>171</td>
</tr>
<tr>
<td>12</td>
<td>mpmath</td>
<td>181</td>
</tr>
<tr>
<td>13</td>
<td>NTL</td>
<td>189</td>
</tr>
<tr>
<td>14</td>
<td>PARI</td>
<td>191</td>
</tr>
<tr>
<td>15</td>
<td>Symmetrica</td>
<td>209</td>
</tr>
<tr>
<td>16</td>
<td>Indices and Tables</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Python Module Index</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>227</td>
</tr>
</tbody>
</table>
An underlying philosophy in the development of Sage is that it should provide unified library-level access to the some of the best GPL'd C/C++ libraries. Sage provides access to many libraries which are included with Sage.

The interfaces are implemented via shared libraries and data is moved between systems purely in memory. In particular, there is no interprocess interpreter parsing (e.g., pexpect), since everything is linked together and run as a single process. This is much more robust and efficient than using pexpect.

Each of these interfaces is used by other parts of Sage. For example, eclib is used by the elliptic curves module to compute ranks of elliptic curves and PARI is used for computation of class groups. It is thus probably not necessary for a casual user of Sage to be aware of the modules described in this chapter.
1.1 Library interface to Embeddable Common Lisp (ECL)

class sage.libs.ecl.EclListIterator

Bases: object

Iterator object for an ECL list

This class is used to implement the iterator protocol for EclObject. Do not instantiate this class directly but use the iterator method on an EclObject instead. It is an error if the EclObject is not a list.

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: I=EclListIterator(EclObject("(1 2 3)"))
sage: type(I)
<class 'sage.libs.ecl.EclListIterator'>
sage: [i for i in I]
[ECL: 1], ECL: 2], ECL: 3]
sage: [i for i in EclObject("(1 2 3)")]
[<ECL: 1>, <ECL: 2>, <ECL: 3>]
sage: EclListIterator(EclObject("1"))
Traceback (most recent call last):
  ...
TypeError: ECL object is not iterable
```

```
>>> from sage.all import *
>>> from sage.libs.ecl import *
>>> I=EclListIterator(EclObject("(1 2 3)"))
>>> type(I)
<class 'sage.libs.ecl.EclListIterator'>
>>> [i for i in I]
[ECL: 1], ECL: 2], ECL: 3]
>>> [i for i in EclObject("(1 2 3)")]
[<ECL: 1>, <ECL: 2>, <ECL: 3>]
>>> EclListIterator(EclObject("1"))
Traceback (most recent call last):
  ...
TypeError: ECL object is not iterable
```

class sage.libs.ecl.EclObject

Bases: object

Python wrapper of ECL objects
The EclObject forms a wrapper around ECL objects. The wrapper ensures that the data structure pointed to is protected from garbage collection in ECL by installing a pointer to it from a global data structure within the scope of the ECL garbage collector. This pointer is destroyed upon destruction of the EclObject.

EclObject() takes a Python object and tries to find a representation of it in Lisp.

EXAMPLES:
Python lists get mapped to LISP lists. None and Boolean values to appropriate values in LISP:

```python
sage: from sage.libs.ecl import *
sage: EclObject([None, true, false])
<ECL: (NIL T NIL)>
```

Numerical values are translated to the appropriate type in LISP:

```python
sage: EclObject(1)
<ECL: 1>
sage: EclObject(10**40)
<ECL: 10000000000000000000000000000000000000000>
```

Floats in Python are IEEE double, which LISP has as well. However, the printing of floating point types in LISP depends on settings:

```python
sage: a = EclObject(float(1.234e40))
sage: ecl_eval("(setf \"read-default-float-format\" 'single-float")")
<ECL: SINGLE-FLOAT>
sage: a
1.234d40
sage: ecl_eval("(setf \"read-default-float-format\" 'double-float")")
<ECL: DOUBLE-FLOAT>
sage: a
1.234e40
```

Tuples are translated to dotted lists:
Strings are fed to the reader, so a string normally results in a symbol:

sage: EclObject("Symbol")
<ECL: "Symbol">

But with proper quotation one can construct a lisp string object too:

sage: EclObject('"Symbol")
<ECL: "Symbol">

Or any other object that the Lisp reader can construct:

sage: EclObject('#("I am "just" a "simple" vector")')
<ECL: #("I AM "just" A "simple" VECTOR)>

By means of Lisp reader macros, you can include arbitrary objects:

sage: EclObject([1, 2, '#.(make-hash-table :test #'equal)', 4])
<ECL: (1 2 <hash-table ...> 4)>

Using an optional argument, you can control how strings are handled:

sage: EclObject("String", False)
<ECL: "String">
sage: EclObject('#(I may look like a vector but I am a string)', False)
<ECL: #(I may look like a vector but I am a string)>

1.1. Library interface to Embeddable Common Lisp (ECL)
This also affects strings within nested lists and tuples

```
sage: EclObject([1, 2, "String", 4], False)
<ECL: (1 2 "String" 4)>
```

EclObjects translate to themselves, so one can mix:

```
sage: EclObject([1,2, EclObject([3])])
<ECL: (1 2 (3))>
```

Calling an EclObject translates into the appropriate LISP apply, where the argument is transformed into an EclObject itself, so one can flexibly apply LISP functions:

```
sage: car = EclObject("car")
sage: cdr = EclObject("cdr")
sage: car(cdr([1,2,3]))
<ECL: 2>
```

and even construct and evaluate arbitrary S-expressions:

```
sage: eval=EclObject("eval")
sage: quote=EclObject("quote")
sage: eval([car, [cdr, [quote,[1,2,3]]]])
<ECL: 2>
```

```
atomp()

Return True if self is atomic, False otherwise.

EXAMPLES:
```
```python
sage: from sage.libs.ecl import *
sage: EclObject([]).atomp()
True
sage: EclObject([[]]).atomp()
False
```

```python
>>> from sage.all import *
>>> from sage.libs.ecl import *

>>> EclObject([]).atomp()
True
```

```python
car()
```

Return the car of self

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: L=EclObject([[1,2],[3,4]])
sage: L.car()
<ECL: (1 2)>
sage: L.cdr()
<ECL: ((3 4))>
sage: L.caar()
<ECL: 1>
sage: L.cadr()
<ECL: (3 4)>
sage: L.cdar()
<ECL: (2)>
sage: L.cddr()
<ECL: NIL>
```

```python
cadr()
```

Return the cadr of self

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.libs.ecl import *

>>> L=EclObject([[Integer(1),Integer(2)],[Integer(3),Integer(4)]])

>>> L.car()
<ECL: (1 2)>
```
car()

Return the car of self

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.libs.ecl import *

L = EclObject([[Integer(1), Integer(2)], [Integer(3), Integer(4)]]

sage: L.car()
<ECL: (1 2)>

sage: L.cdr()
<ECL: ((3 4))>

sage: L.caar()
<ECL: 1>

sage: L.cadr()
<ECL: (3 4)>

sage: L.cdar()
<ECL: (2)>

sage: L.cddr()
<ECL: NIL>
```
cdar()
Return the cdar of self

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: L=EclObject([[1,2],[3,4]])
sage: L.car()
<ECL: (1 2)>
sage: L.cdr()
<ECL: ((3 4))>
sage: L.caar()
<ECL: 1>
sage: L.cadr()
<ECL: (3 4)>
sage: L.cdar()
<ECL: (2)>
sage: L.cddr()
<ECL: NIL>
```

```python
```
cdr()

Return the cdr of self

EXAMPLES:

```python
>>> from sage.all import *
>>> from sage.libs.ecl import *
>>> L=EclObject([[Integer(1),Integer(2)],[Integer(3),Integer(4)]])
>>> L.car()
<ECL: (1 2)>
>>> L.cdr()
<ECL: ((3 4))>
>>> L.caar()
<ECL: 1>
>>> L.cadr()
<ECL: (3 4)>
>>> L.cdar()
<ECL: (2)>
>>> L.cddr()
<ECL: NIL>
```
characterp()

Return True if self is a character, False otherwise.

Strings are not characters.

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: EclObject("a").characterp()
False
```

```
>>> from sage.all import *
>>> from sage.libs.ecl import *
>>> EclObject("a").characterp()
False
```

cons(d)

apply cons to self and argument and return the result.

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: a=EclObject(1)
sage: b=EclObject(2)
sage: a.cons(b)
<ECL: (1 . 2)>
```

```
>>> from sage.all import *
>>> from sage.libs.ecl import *
>>> a=EclObject(Integer(1))
>>> b=EclObject(Integer(2))
>>> a.cons(b)
<ECL: (1 . 2)>
```

consp()

Return True if self is a cons, False otherwise. NIL is not a cons.

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: EclObject([]).consp()
False
sage: EclObject([[]]).consp()
True
```

```
>>> from sage.all import *
>>> from sage.libs.ecl import *
>>> EclObject([]).consp()
False
>>> EclObject([[]]).consp()
True
```
eval()

Evaluate object as an S-Expression

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: S=EclObject("(+ 1 2)")
sage: S  
<ECL: (+ 1 2)>
sage: S.eval()  
<ECL: 3>
```

```python
>>> from sage.all import *  
>>> from sage.libs.ecl import *  
>>> S=EclObject("(+ 1 2)")  
>>> S  
<ECL: (+ 1 2)>  
>>> S.eval()  
<ECL: 3>
```

fixnump()

Return True if self is a fixnum, False otherwise

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: EclObject(2**3).fixnump()  
True
sage: EclObject(2**200).fixnump()  
False
```

```python
>>> from sage.all import *  
>>> from sage.libs.ecl import *  
>>> EclObject(Integer(2)**Integer(3)).fixnump()  
True  
>>> EclObject(Integer(2)**Integer(200)).fixnump()  
False
```

listp()

Return True if self is a list, False otherwise. NIL is a list.

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: EclObject([]).listp()  
True
sage: EclObject([[]]).listp()  
True
```

```python
>>> from sage.all import *  
>>> from sage.libs.ecl import *  
>>> EclObject([]).listp()  
True  
>>> EclObject([[]]).listp()  
True
```
nullp()

Return True if self is NIL, False otherwise

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: EclObject([]).nullp()
True
sage: EclObject([[]]).nullp()
False
```

```
>>> from sage.all import *
>>> from sage.libs.ecl import *
>>> EclObject([]).nullp()
False
```

python()

Convert an EclObject to a python object.

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: L = EclObject([1,2,('three','four')])
sage: L.python()
[1, 2, (THREE, 'four')]
```

```
>>> from sage.all import *
>>> from sage.libs.ecl import *
>>> L = EclObject([Integer(1),Integer(2),('three','four')])
>>> L.python()
[1, 2, ('THREE', 'four')]
```

rplaca(d)

Destructively replace car(self) with d.

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: L=EclObject((1,2))
sage: L
<ECL: (1 . 2)>
sage: a=EclObject(3)
sage: L.rplaca(a)
sage: L
<ECL: (3 . 2)>
```

```
>>> from sage.all import *
>>> from sage.libs.ecl import *
>>> L=EclObject((Integer(1),Integer(2)))
>>> L
<ECL: (1 . 2)>
>>> a=EclObject(Integer(3))
>>> L.rplaca(a)
>>> L
<ECL: (3 . 2)>
```
rplacd^{**(d)**}
Destructively replace cdr(self) with d.

EXAMPLES:
```
sage: from sage.libs.ecl import *
sage: L=EclObject((1,2))
sage: L
<ECL: (1 . 2)>
sage: a=EclObject(3)
sage: L.rplacd(a)
sage: L
<ECL: (1 . 3)>
```

symbolp⁽⁾
Return True if self is a symbol, False otherwise.

EXAMPLES:
```
sage: from sage.libs.ecl import *
sage: EclObject([]).symbolp()
True
sage: EclObject([[]]).symbolp()
False
```

sage.libs.ecl.ecl_eval^(s)
Read and evaluate string in Lisp and return the result

EXAMPLES:
```
sage: from sage.libs.ecl import *
sage: ecl_eval("(defun fibo (n) (cond((= n 0) 0)((= n 1) 1)(T (+ (fibo (- n 1))) (fibo (- n 2)))))")
<ECL: FIBO>
sage: ecl_eval("(mapcar 'fibo '(1 2 3 4 5 6 7))")
<ECL: (1 1 2 3 5 8 13)>
```
sage.libs.ecl.init_ecl()

Internal function to initialize ecl. Do not call.

This function initializes the ECL library for use within Python. This routine should only be called once and importing the ecl library interface already does that, so do not call this yourself.

EXAMPLES:

```python
from sage.libs.ecl import *
```

At this point, init_ecl() has run. Explicitly executing it gives an error:

```python
init_ecl()
```

```python
...  
RuntimeError: ECL is already initialized
```

sage.libs.ecl.print_objects()

Print GC-protection list

Diagnostic function. ECL objects that are bound to Python objects need to be protected from being garbage collected. We do this by including them in a doubly linked list bound to the global ECL symbol SAGE-LIST-OF-OBJECTS. Only non-immediate values get included, so small integers do not get linked in. This routine prints the values currently stored.

EXAMPLES:

```python
from sage.libs.ecl import *
```

```python
from sage.all import *
```

```python
from sage.libs.ecl import *
```

```python
from sage.all import *
```

```python
init_ecl()
```

```python
...  
RuntimeError: ECL is already initialized
```

```python
a=EclObject("hello")
```

```python
b=EclObject(10)
```

```python
c=EclObject("world")
```

```python
print_objects() #random because previous test runs can have left objects
```

```python
NIL
```

```python
WORLD
```

```python
HELLO
```

```python
>> from sage.all import *
```

```python
>> from sage.libs.ecl import *
```

```python
>> a=EclObject("hello")
```

```python
>> b=EclObject(Integer(10))
```

```python
>> c=EclObject("world")
```

```python
>> print_objects() #random because previous test runs can have left objects
```

(continues on next page)
sage.libs.ecl.shutdown_ecl()

Shut down ecl. Do not call.

Given the way that ECL is used from python, it is very difficult to ensure that no ECL objects exist at a particular time. Hence, destroying ECL is a risky proposition.

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: shutdown_ecl()
```

```python
>>> from sage.all import *
>>> from sage.libs.ecl import *
>>> shutdown_ecl()
```

sage.libs.ecl.test_ecl_options()

Print an overview of the ECL options

sage.libs.ecl.test_sigint_before_ecl_sig_on()
CHAPTER TWO

ECLIB

2.1 Sage interface to Cremona’s eclib library (also known as mwrank)

This is the Sage interface to John Cremona’s eclib C++ library for arithmetic on elliptic curves. The classes defined in this module give Sage interpreter-level access to some of the functionality of eclib. For most purposes, it is not necessary to directly use these classes. Instead, one can create an EllipticCurve and call methods that are implemented using this module.

Note: This interface is a direct library-level interface to eclib, including the 2-descent program mwrank.

class sage.libs.eclib.interface.mwrank_EllipticCurve (ainvs, verbose=False)

Bases: SageObject

The mwrank_EllipticCurve class represents an elliptic curve using the Curvedata class from eclib, called here an 'mwrank elliptic curve'.

Create the mwrank elliptic curve with invariants ainvs, which is a list of 5 or less integers $a_1, a_2, a_3, a_4,$ and a_5.

If strictly less than 5 invariants are given, then the first ones are set to 0, so, e.g., $[3, 4]$ means $a_1 = a_2 = a_3 = 0$ and $a_4 = 3$, $a_5 = 4$.

INPUT:

- ainvs (list or tuple) – a list of 5 or less integers, the coefficients of a nonsingular Weierstrass equation.
- verbose (bool, default False) – verbosity flag. If True, then all Selmer group computations will be verbose.

EXAMPLES:

We create the elliptic curve $y^2 + y = x^3 + x^2 - 2x$:

```
sage: e = mwrank_EllipticCurve([0, 1, 1, -2, 0])
sage: e.ainvs()
[0, 1, 1, -2, 0]
```

```
>>> from sage.all import *
>>> e = mwrank_EllipticCurve([Integer(0), Integer(1), Integer(1), -Integer(2), Integer(0)])
>>> e.ainvs()
[0, 1, 1, -2, 0]
```

This example illustrates that omitted a-invariants default to 0:
The entries of the input list are coerced to \texttt{int}. If this is impossible, then an error is raised:

```python
sage: e = mwrank_EllipticCurve([3, -4.8]); e
Traceback (most recent call last):
  ...TypeError: ainvs must be a list or tuple of integers.
```

When you enter a singular model you get an exception:

```python
sage: e = mwrank_EllipticCurve([0, 0])
Traceback (most recent call last):
  ...
ArithmeticError: Invariants (= 0,0,0,0,0) do not describe an elliptic curve.
```

\textbf{CPS_height_bound()}

Return the Cremona-Prickett-Siksek height bound. This is a floating point number \(B\) such that if \(P\) is a point on the curve, then the naive logarithmic height \(h(P)\) is less than \(B + \tilde{h}(P)\), where \(\tilde{h}(P)\) is the canonical height of \(P\).

\textbf{Warning:} We assume the model is minimal!

\textbf{EXAMPLES:}

```python
sage: E = mwrank_EllipticCurve([0, 0, -1002231243161, 0])
sage: E.CPS_height_bound()
14.163198527061496
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: E.CPS_height_bound()
0.0
```
a

\texttt{ainvs()}\n
Returns the \(a\)-invariants of this mwrank elliptic curve.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E = mwrank_EllipticCurve([0, 0, 1, -1, 0])
sage: E.ainvs()
[0, 0, 1, -1, 0]
\end{verbatim}

certain()\n
Returns True if the last \texttt{two_descent()} call provably correctly computed the rank. If \texttt{two_descent()} hasn’t been called, then it is first called by \texttt{certain()} using the default parameters.

The result is True if and only if the results of the methods \texttt{rank()} and \texttt{rank_bound()} are equal.

\textbf{EXAMPLES:}

A 2-descent does not determine \(E(\mathbb{Q})\) with certainty for the curve \(y^2 + y = x^3 - x^2 - 120x - 2183\):

\begin{verbatim}
sage: E = mwrank_EllipticCurve([0, -1, 1, -120, -2183])
sage: E.two_descent(False) ...
sage: E.certain()
False
sage: E.rank()
0
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> E = mwrank_EllipticCurve([Integer(0), -Integer(1), Integer(1), -Integer(120), -Integer(2183)])
>>> E.two_descent(False) ...
>>> E.certain()
False
>>> E.rank()
0
\end{verbatim}

The previous value is only a lower bound; the upper bound is greater:

\begin{verbatim}
sage: E.rank_bound()
2
\end{verbatim}
In fact the rank of E is actually 0 (as one could see by computing the L-function), but Sha has order 4 and the 2-torsion is trivial, so mwrank cannot conclusively determine the rank in this case.

conductor()

Return the conductor of this curve, computed using Cremona’s implementation of Tate’s algorithm.

Note: This is independent of PARI’s.

EXAMPLES:

```python
sage: E = mwrank_EllipticCurve([1, 1, 0, -6958, -224588])
sage: E.conductor()
2310
```

```python
>>> from sage.all import *
>>> E = mwrank_EllipticCurve([Integer(1), Integer(1), Integer(0), -Integer(6958), -Integer(224588)])
>>> E.conductor()
2310
```

gens()

Return a list of the generators for the Mordell-Weil group.

EXAMPLES:

```python
sage: E = mwrank_EllipticCurve([0, 0, 1, -1, 0])
sage: E.gens()
[[0, -1, 1]]
```

```python
>>> from sage.all import *
>>> E = mwrank_EllipticCurve([Integer(0), Integer(0), Integer(1), -Integer(1), Integer(0)])
>>> E.gens()
[[0, -1, 1]]
```

isogeny_class(verbos=F alse)

Returns the isogeny class of this mwrank elliptic curve.

EXAMPLES:

```python
sage: E = mwrank_EllipticCurve([0,-1,1,0,0])
sage: E.isogeny_class()
([[[0, -1, 1, 0, 0], [0, -1, 1, -10, -20], [0, -1, 1, -7820, -263580]], [[0, 5, 0], [5, 0, 5], [0, 5, 0]])
```

```python
>>> from sage.all import *
>>> E = mwrank_EllipticCurve([Integer(0),-Integer(1),Integer(1),Integer(0), Integer(0)])
>>> E.isogeny_class()
([[[0, -1, 1, 0, 0], [0, -1, 1, -10, -20], [0, -1, 1, -7820, -263580]], [[0, 5, 0], [5, 0, 5], [0, 5, 0]])
```
rank ()

Returns the rank of this curve, computed using \texttt{two_descent ()}.

In general this may only be a lower bound for the rank; an upper bound may be obtained using the function \texttt{rank_bound ()}. To test whether the value has been proved to be correct, use the method \texttt{certain ()}.

EXAMPLES:

\begin{verbatim}
sage: E = mwrank_EllipticCurve([0, -1, 0, -900, -10098])
sage: E.rank() 0
sage: E.certain() True

>>> from sage.all import *
>>> E = mwrank_EllipticCurve([Integer(0), -Integer(1), Integer(0), -Integer(900), -Integer(10098)])
>>> E.rank() 0
>>> E.certain() True

sage: E = mwrank_EllipticCurve([0, -1, 1, -929, -10595])
sage: E.rank() 0
sage: E.certain() False

>>> from sage.all import *
>>> E = mwrank_EllipticCurve([Integer(0), -Integer(1), Integer(1), -Integer(929), -Integer(10595)])
>>> E.rank() 0
>>> E.certain() False
\end{verbatim}

rank_bound ()

Returns an upper bound for the rank of this curve, computed using \texttt{two_descent ()}.

If the curve has no 2-torsion, this is equal to the 2-Selmer rank. If the curve has 2-torsion, the upper bound may be smaller than the bound obtained from the 2-Selmer rank minus the 2-rank of the torsion, since more information is gained from the 2-isogenous curve or curves.

EXAMPLES:

The following is the curve 960D1, which has rank 0, but Sha of order 4:

\begin{verbatim}
sage: E = mwrank_EllipticCurve([0, -1, 0, -900, -10098])
sage: E.rank_bound() 0
sage: E.rank() 0

>>> from sage.all import *
>>> E = mwrank_EllipticCurve([Integer(0), -Integer(1), Integer(0), -Integer(900), -Integer(10098)])
>>> E.rank_bound() 0
\end{verbatim}

(continues on next page)
In this case the rank was computed using a second descent, which is able to determine (by considering a 2-isogenous curve) that Sha is nontrivial. If we deliberately stop the second descent, the rank bound is larger:

```python
sage: E = mwrank_EllipticCurve([0, -1, 0, -900, -10098])
sage: E.two_descent(second_descent=False, verbose=False)
```

```python
sage: E.rank_bound()
2
```

In contrast, for the curve 571A, also with rank 0 and Sha of order 4, we only obtain an upper bound of 2:

```python
sage: E = mwrank_EllipticCurve([0, -1, 1, -929, -10595])
sage: E.rank_bound()
2
```

In this case the value returned by `rank()` is only a lower bound in general (though this is correct):

```python
sage: E.rank()
0
```

```python
sage: E.certain()
False
```

`regulator()`

Return the regulator of the saturated Mordell-Weil group.

EXAMPLES:

```python
sage: E = mwrank_EllipticCurve([0, 0, 1, -1, 0])
sage: E.regulator()
0.05111140823996884
```

```python
>>> from sage.all import *
```

```python
>>> E = mwrank_EllipticCurve([Integer(0), Integer(0), Integer(1), -Integer(1), -Integer(1)])
```

```python
>>> E.regulator()
```

(continues on next page)
saturate (bound=-1, lower=2)

Compute the saturation of the Mordell-Weil group.

INPUT:
- `bound` (int, default -1) – If -1, saturate at all primes by computing a bound on the saturation index, otherwise saturate at all primes up to the minimum of `bound` and the saturation index bound.
- `lower` (int, default 2) – Only saturate at primes not less than this.

EXAMPLES:

Since the 2-descent automatically saturates at primes up to 20, further saturation often has no effect:

```
sage: E = mwrank_EllipticCurve([0, 0, 0, -1002231243161, 0])
sage: E.gens()
[[[-1001107, -4004428, 1]]
sage: E.saturate()
sage: E.gens()
[[[-1001107, -4004428, 1]]]
```

```
>>> from sage.all import *
>>> E = mwrank_EllipticCurve([Integer(0), Integer(0), Integer(0), -Integer(1002231243161), Integer(0)])
>>> E.gens()
[[[-1001107, -4004428, 1]]
>>> E.saturate()
>>> E.gens()
[[[-1001107, -4004428, 1]]
```

Check that Issue #18031 is fixed:

```
sage: E = EllipticCurve([0,-1,1,-266,968])
sage: Q1 = E([-1995,3674,125])
sage: Q2 = E([157,1950,1])
sage: E.saturation([Q1,Q2])
((1 : -27 : 1), (157 : 1950 : 1)), 3, 0.801588644684981
```

```
>>> from sage.all import *
>>> E = EllipticCurve([Integer(0),-Integer(1),Integer(1),-Integer(266),Integer(968)])
>>> Q1 = E([-Integer(1995),Integer(3674),Integer(125)])
>>> Q2 = E([Integer(157),Integer(1950),Integer(1)])
>>> E.saturation([Q1,Q2])
((1 : -27 : 1), (157 : 1950 : 1)), 3, 0.801588644684981
```

selmer_rank ()

Returns the rank of the 2-Selmer group of the curve.

EXAMPLES:

The following is the curve 960D1, which has rank 0, but Sha of order 4. The 2-torsion has rank 2, and the Selmer rank is 3:

```
sage: E = mwrank_EllipticCurve([0, 0, 0, -1002231243161, 0])
>>> E.regulator()
0.05111140823996884
```
Nevertheless, we can obtain a tight upper bound on the rank since a second descent is performed which establishes the 2-rank of Sha:

```python
sage: E.rank_bound()
0
```

To show that this was resolved using a second descent, we do the computation again but turn off `second_descent`:

```python
sage: E = mwrank_EllipticCurve([0, -1, 0, -900, -10098])
sage: E.two_descent(second_descent = False, verbose=False)
sage: E.rank_bound()
2
```

For the curve 571A, also with rank 0 and Sha of order 4, but with no 2-torsion, the Selmer rank is strictly greater than the rank:

```python
sage: E = mwrank_EllipticCurve([0, -1, 1, -929, -10595])
sage: E.selmer_rank()
2
sage: E.rank_bound()
2
```

In cases like this with no 2-torsion, the rank upper bound is always equal to the 2-Selmer rank. If we ask for the rank, all we get is a lower bound:
set_verbose(\texttt{verbose})
Set the verbosity of printing of output by the \texttt{two_descent()} and other functions.

\textbf{INPUT:}

\begin{itemize}
 \item verbose \texttt{(int)} – if positive, print lots of output when doing 2-descent.
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E = mwrank_EllipticCurve([0, 0, 1, -1, 0])
sage: E.saturate() # no output
sage: E.gens()
[[0, -1, 1]]
sage: E = mwrank_EllipticCurve([0, 0, 1, -1, 0])
sage: E.set_verbose(1)
sage: E.saturate() # tol 1e-10
Basic pair: I=48, J=-432
disc=255744
2-adic index bound = 2
By Lemma 5.1(a), 2-adic index = 1
2-adic index = 1
One (I,J) pair
Looking for quartics with I = 48, J = -432
Looking for Type 2 quartics:
Trying positive a from 1 up to 1 (square a first...)
(1,0,-6,4,1) --trivial
Trying positive a from 1 up to 1 (...then non-square a)
Finished looking for Type 2 quartics.
Looking for Type 1 quartics:
Trying positive a from 1 up to 2 (square a first...)
(1,0,0,4,4) --nontrivial...(x:y:z) = (1 : 1 : 0)
Point = [0:0:1]
 height = 0.0511114082399688402358
Rank of B=im(\epsilon) increases to 1 (The previous point is on the egg)
Exiting search for Type 1 quartics after finding one which is globally \texttt{\rightarrow} soluble.
Mordell rank contribution from B=im(\epsilon) = 1
Selmer rank contribution from B=im(\epsilon) = 1
Sha rank contribution from B=im(\epsilon) = 0
Mordell rank contribution from A=ker(\epsilon) = 0
Selmer rank contribution from A=ker(\epsilon) = 0
Sha rank contribution from A=ker(\epsilon) = 0
Searching for points (bound = 8)...done:
 found points which generate a subgroup of rank 1
 and regulator 0.0511114082399688402358
Processing points found during 2-descent...done:
\end{verbatim}

(continues on next page)
from sage.all import *
E = mwrank_EllipticCurve([Integer(0), Integer(0), Integer(1), -Integer(1),
→ Integer(0)])
E.saturate() # no output
E.gens()
[[0, -1, 1]]
E = mwrank_EllipticCurve([Integer(0), Integer(0), Integer(1), -Integer(1),
→ Integer(0)])
E.set_verbose(Integer(1))
E.saturate() # tol 1e-10
Basic pair: I=48, J=-432
disc=255744
2-adic index bound = 2
By Lemma 5.1(a), 2-adic index = 1
2-adic index = 1
One (I,J) pair
Looking for quartics with I = 48, J = -432
Looking for Type 2 quartics:
Trying positive a from 1 up to 1 (square a first...)
(1,0,-6,4,1) --trivial
Trying positive a from 1 up to 1 (...then non-square a)
Finished looking for Type 2 quartics.
Looking for Type 1 quartics:
Trying positive a from 1 up to 2 (square a first...)
(1,0,0,4,4) --nontrivial...(x:y:z) = (1 : 1 : 0)
Point = [0:0:1]
height = 0.0511114082399688402358
Rank of B=im(eps) increases to 1 (The previous point is on the egg)
Exiting search for Type 1 quartics after finding one which is globally...→soluble.
Mordell rank contribution from B=im(eps) = 1
Selmer rank contribution from B=im(eps) = 1
Sha rank contribution from B=im(eps) = 0
Mordell rank contribution from A=ker(eps) = 0
Selmer rank contribution from A=ker(eps) = 0
Sha rank contribution from A=ker(eps) = 0
Searching for points (bound = 8)...done:
found points which generate a subgroup of rank 1
and regulator 0.0511114082399688402358
Processing points found during 2-descent...done:
now regulator = 0.0511114082399688402358
Saturating (with bound = -1)...done:
points were already saturated.

silverman_bound()

Return the Silverman height bound. This is a floating point number \(B \) such that if \(P \) is a point on the curve, then the naïve logarithmic height \(h(P) \) is less than \(B + \hat{h}(P) \), where \(\hat{h}(P) \) is the canonical height of \(P \).

Warning: We assume the model is minimal!
EXAMPLES:

```python
sage: E = mwrank_EllipticCurve([0, 0, 0, -1002231243161, 0])
sage: E.silverman_bound()
18.29545210468247
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: E.silverman_bound()
6.284833369972403
```

```python
>>> from sage.all import *

>>> E = mwrank_EllipticCurve([Integer(0), Integer(0), Integer(0), -Integer(1002231243161), Integer(0)])
>>> E.silverman_bound()
18.29545210468247
>>> E = mwrank_EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(7), -Integer(6)])
>>> E.silverman_bound()
6.284833369972403
```

```python
two_descent (verbose=True, selmer_only=False, first_limit=20, second_limit=8, n_aux=-1, second_descent=True)
```

 Compute 2-descent data for this curve.

 INPUT:

 - `verbose` (bool, default `True`) – print what mwrank is doing.
 - `selmer_only` (bool, default `False`) – selmer_only switch.
 - `first_limit` (int, default 20) – bound on $|x| + |z|$ in quartic point search.
 - `second_limit` (int, default 8) – bound on $\log \max(|x|, |z|)$, i.e. logarithmic.
 - `n_aux` (int, default -1) – (only relevant for general 2-descent when 2-torsion trivial) number of primes used for quartic search. `n_aux=-1` causes default (8) to be used. Increase for curves of higher rank.
 - `second_descent` (bool, default `True`) – (only relevant for curves with 2-torsion, where mwrank uses descent via 2-isogeny) flag determining whether or not to do second descent. Default strongly recommended.

 OUTPUT:

 Nothing – nothing is returned.

```python
class sage.libs.eclib.interface.mwrank_MordellWeil (curve, verbose=True, pp=1, maxr=999)
```

 Bases: `SageObject`

 The `mwrank_MordellWeil` class represents a subgroup of a Mordell-Weil group. Use this class to saturate a specified list of points on an `mwrank_EllipticCurve`, or to search for points up to some bound.

 INPUT:

 - `curve` (`mwrank_EllipticCurve`) – the underlying elliptic curve.
 - `verbose` (bool, default `False`) – verbosity flag (controls amount of output produced in point searches).
 - `pp` (int, default 1) – process points flag (if nonzero, the points found are processed, so that at all times only a \mathbb{Z}-basis for the subgroup generated by the points found so far is stored; if zero, no processing is done and all points found are stored).
 - `maxr` (int, default 999) – maximum rank (quit point searching once the points found generate a subgroup of this rank; useful if an upper bound for the rank is already known).
EXAMPLES:

```python
sage: E = mwrank_EllipticCurve([1,0,1,4,-6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ
Subgroup of Mordell-Weil group: []
sage: EQ.search(2)
P1 = [0:1:0] is torsion point, order 1
P1 = [1:-1:1] is torsion point, order 2
P1 = [2:2:1] is torsion point, order 3
P1 = [9:23:1] is torsion point, order 6

sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.search(2)
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1
...
P4 = [-91:804:343] = -2*P1 + 2*P2 + 1*P3 (mod torsion)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
```

```python
from sage.all import *
E = mwrank_EllipticCurve([Integer(1),Integer(0),Integer(1),Integer(4),-Integer(6)])
EQ = mwrank_MordellWeil(E)
EQ.search(Integer(2))
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1
...
P4 = [-91:804:343] = -2*P1 + 2*P2 + 1*P3 (mod torsion)
```

Example to illustrate the verbose parameter:

```python
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E, verbose=False)
sage: EQ.search(1)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
sage: EQ = mwrank_MordellWeil(E, verbose=True)
sage: EQ.search(1)
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1
saturating up to 20...Saturation index bound (for points of good reduction) = 3
```
Reducing saturation bound from given value 20 to computed index bound 3
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
Points were proved 2-saturated (max q used = 7)
Checking 3-saturation
Points were proved 3-saturated (max q used = 7)
done
P2 = [-2:3:1] is generator number 2
saturating up to 20...Saturation index bound (for points of good reduction) = 4
Reducing saturation bound from given value 20 to computed index bound 4
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
possible kernel vector = [1,1]
This point may be in 2E(Q): [14:-52:1]
...and it is!
Replacing old generator #1 with new generator [1:-1:1]
Reducing index bound from 4 to 2
Points have successfully been 2-saturated (max q used = 7)
Index gain = 2^1
done, index = 2.
Gained index 2, new generators = [[1:-1:1] [-2:3:1]]
P3 = [-14:25:8] is generator number 3
saturating up to 20...Saturation index bound (for points of good reduction) = 3
Reducing saturation bound from given value 20 to computed index bound 3
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done, index = 1.
P4 = [-1:3:1] = -1*P1 + -1*P2 + -1*P3 (mod torsion)
P4 = [0:2:1] = 2*P1 + 0*P2 + 1*P3 (mod torsion)
P4 = [2:13:8] = -3*P1 + 1*P2 + -1*P3 (mod torsion)
P4 = [1:0:1] = -1*P1 + 0*P2 + 0*P3 (mod torsion)
P4 = [2:0:1] = -1*P1 + 1*P2 + 0*P3 (mod torsion)
P4 = [18:7:8] = -2*P1 + -1*P2 + -1*P3 (mod torsion)
P4 = [3:3:1] = 1*P1 + 0*P2 + 1*P3 (mod torsion)
P4 = [4:6:1] = 0*P1 + -1*P2 + -1*P3 (mod torsion)
P4 = [36:69:64] = 1*P1 + -2*P2 + 0*P3 (mod torsion)
P4 = [68:-25:64] = -2*P1 + -1*P2 + -2*P3 (mod torsion)
P4 = [12:35:27] = 1*P1 + -1*P2 + -1*P3 (mod torsion)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]

>>> from sage.all import *
>>> E = mrank_EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(7),-Integer(6)])
>>> EQ = mrank_MordellWeil(E, verbose=False)
>>> EQ.search(Integer(1))
>>> EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]

>>> EQ = mrank_MordellWeil(E, verbose=True)
>>> EQ.search(Integer(1))
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1
saturating up to 20...Saturation index bound (for points of good reduction) = 3
Reducing saturation bound from given value 20 to computed index bound 3
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
Points were proved 2-saturated (max q used = 7)
Checking 3-saturation
Points were proved 3-saturated (max q used = 7)
done
P2 = [-2:3:1] is generator number 2
saturating up to 20...Saturation index bound (for points of good reduction) = 4
Reducing saturation bound from given value 20 to computed index bound 4
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
possible kernel vector = [1,1]
This point may be in 2E(Q): [14:-52:1]
...and it is
Replacing old generator #1 with new generator [1:-1:1]
Reducing index bound from 4 to 2
Points have successfully been 2-saturated (max q used = 7)
Index gain = 2^1
done, index = 2.
Gained index 2, new generators = [[1:-1:1] [-2:3:1]]
P3 = [-14:25:8] is generator number 3
saturating up to 20...Saturation index bound (for points of good reduction) = 3
Reducing saturation bound from given value 20 to computed index bound 3
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done, index = 1.
P4 = [-1:3:1] = -1*P1 + -1*P2 + -1*P3 (mod torsion)
P4 = [0:2:1] = 2*P1 + 0*P2 + 1*P3 (mod torsion)
P4 = [2:13:8] = -3*P1 + 1*P2 + -1*P3 (mod torsion)
P4 = [1:0:1] = -1*P1 + 0*P2 + 0*P3 (mod torsion)
P4 = [2:0:1] = -1*P1 + 1*P2 + 0*P3 (mod torsion)
P4 = [18:7:8] = -2*P1 + -1*P2 + -1*P3 (mod torsion)
P4 = [3:3:1] = 1*P1 + 0*P2 + 1*P3 (mod torsion)
P4 = [4:6:1] = 0*P1 + -1*P2 + -1*P3 (mod torsion)
P4 = [36:69:64] = 1*P1 + -2*P2 + 0*P3 (mod torsion)
P4 = [68:-25:64] = -2*P1 + -1*P2 + -2*P3 (mod torsion)
P4 = [12:35:27] = 1*P1 + -1*P2 + -1*P3 (mod torsion)
>>> EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]

Example to illustrate the process points (pp) parameter:

```
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E, verbose=False, pp=1)
sage: EQ.search(1); EQ # generators only
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
```
sage: EQ = mwrank_MordellWeil(E, verbose=False, pp=0)
sage: EQ.search(1); EQ
Subgroup of Mordell-Weil group:

\[-3:0:1\], \[-2:3:1\], \[-14:25:8\], \[-1:3:1\],
\[0:2:1\], \[2:13:8\], \[1:0:1\], \[2:0:1\], \[18:7:8\], \[3:3:1\], \[4:6:1\], \[36:69:64\],
\[68:-25:64\], \[12:35:27\]

sage: points()

Return a list of the generating points in this Mordell-Weil group.

OUTPUT:

(list) A list of lists of length 3, each holding the primitive integer coordinates \([x, y, z] \) of a generating point.

EXAMPLES:

sage: E = mwrank_EllipticCurve([0, 0, 1, -7, 6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.search(1)
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1
...
P4 = [12:35:27] = 1*P1 + -1*P2 + -1*P3 (mod torsion)
sage: EQ.points()
[[1, -1, 1], [-2, 3, 1], [-14, 25, 8]]
• saturation_bound (int, default 0) – saturate at primes up to saturation_bound, or at all primes if saturation_bound is -1; when saturation_bound is 0 (the default), do no saturation.

OUTPUT:

None. But note that if the **verbose** flag is set, then there will be some output as a side-effect.

EXAMPLES:

```python
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: E.gens()
[[1, -1, 1], [-2, 3, 1], [-14, 25, 8]]
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.process([[1, -1, 1], [-2, 3, 1], [-14, 25, 8]])
P1 = [1:-1:1] is generator number 1
P2 = [-2:3:1] is generator number 2
P3 = [-14:25:8] is generator number 3
```

```python
>>> from sage.all import *

>>> E = mwrank_EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(7), Integer(6)])

>>> E.gens()
[[1, -1, 1], [-2, 3, 1], [-14, 25, 8]]

>>> EQ = mwrank_MordellWeil(E)

>>> EQ.process([[1547, -2967, 343], [-13422227300, -49322830557, 12167000000], saturation_bound=20]
P1 = [1547:-2967:343] is generator number 1
...
Gained index 5, new generators = [ [-2:3:1] [-14:25:8] [1:-1:1] ]

sage: EQ.points()
[[1, -1, 1], [-2, 3, 1], [-14, 25, 8]]
```

Example to illustrate the saturation parameter **saturation_bound:

```python
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.process([[1547, -2967, 343], [2707496766203306, 864581029138191],
    296971514023272], [-1422227300, -49322830557, 12167000000], saturation_bound=20)
P1 = [1547:-2967:343] is generator number 1
...
Gained index 5, new generators = [ [-2:3:1] [-14:25:8] [1:-1:1] ]

sage: EQ.points()
[[1, -1, 1], [-2, 3, 1], [-14, 25, 8], [1, -1, 1]]
```

```python
>>> from sage.all import *

>>> E = mwrank_EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(7), Integer(6)])

>>> EQ = mwrank_MordellWeil(E)

>>> EQ.process([[Integer(1547), -Integer(2967), Integer(343)], ...
```

(continues on next page)
\[\text{P1} = [1547:-2967:343] \text{ is generator number 1}\]

\[\text{P2} = [2707496766203306:864581029138191:2969715140223272] \text{ is generator number 2}\]

\[\text{P3} = [-13422227300:-49322830557:12167000000] \text{ is generator number 3}\]

Here the processing was followed by saturation at primes up to 20. Now we prevent this initial saturation:

\[
\text{sage: E = mwrank_EllipticCurve([0,0,1,-7,6])} \\
\text{sage: EQ = mwrank_MordellWeil(E)} \\
\text{sage: EQ.process([[1547,-2967,343], [2707496766203306, 864581029138191,} \\
\text{2969715140223272], [-13422227300, -49322830557, 12167000000]], \text{saturation_bound=0})} \\
\text{P1 = [1547:-2967:343] is generator number 1} \\
\text{P2 = [2707496766203306:864581029138191:2969715140223272] is generator number 2} \\
\text{P3 = [-13422227300:-49322830557:12167000000] is generator number 3} \\
\text{sage: EQ.points()} \\
\text{[[-2, 3, 1], [-14, 25, 8], [1, -1, 1]]} \\
\text{sage: EQ.regulator()} \\
\text{375.42920288254555} \\
\text{sage: EQ.saturate(2)} \# \text{points were not 2-saturated} \\
\text{saturating basis...Saturation index bound (for points of good reduction) = 93} \\
\text{Only p-saturating for p up to given value 2.} \\
\text{The resulting points may not be p-saturated for p between this and the...} \\
\text{computed index bound 93} \\
\text{Tamagawa index primes are [2]...} \\
\text{Checking saturation at [2]} \\
\text{Checking 2-saturation} \\
\text{possible kernel vector = [1,0,0]} \\
\text{This point may be in 2E(Q): [1547:-2967:343]} \\
\text{...and it is} \\
\text{Replacing old generator #1 with new generator [-2:3:1]} \\
\text{Reducing index bound from 93 to 46} \\
\text{Points have successfully been 2-saturated (max q used = 11)} \\
\text{Index gain = 2^1} \\
\text{done} \\
\text{Gained index 2} \\
\text{New regulator = 93.85730072} \\
\text{(True, 2, []')} \\
\text{sage: EQ.points()} \\
\text{[[-2, 3, 1], [2707496766203306, 864581029138191, 2969715140223272], [-13422227300, -49322830557, 12167000000]]} \\
\text{sage: EQ.regulator()} \\
\text{93.85730072063639} \\
\text{sage: EQ.saturate(3)} \# \text{points were not 3-saturated} \\
\text{saturating basis...Saturation index bound (for points of good reduction) = 46} \\
\text{Only p-saturating for p up to given value 3.} \\
\text{The resulting points may not be p-saturated for p between this and the...} \\
\text{computed index bound 46} \\
\text{Tamagawa index primes are [2]...} \\
\text{Checking saturation at [2 3]}

(continues on next page)
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
possible kernel vector = [0,1,0]
This point may be in 3E(Q):
\[\{2707496766203306:864581029138191:2969715140223272\} \]
...and it is!
Replacing old generator #2 with new generator [-14:25:8]
Reducing index bound from 46 to 15
Points have successfully been 3-saturated (max q used = 13)
Index gain = 3^1
done
Gained index 3
New regulator = 10.42858897
(True, 3, '[]')

`sage`: `EQ.points()`
[[-2, 3, 1], [-14, 25, 8], [-13422227300, -49322830557, 12167000000]]

`sage`: `EQ.regulator()`
10.4285889689596

`sage`: `EQ.saturate(5)`
points were not 5-saturated
saturating basis...Saturation index bound (for points of good reduction) = 15
Only p-saturating for p up to given value 5.
The resulting points may not be p-saturated for p between this and the...
→computed index bound 15
Tamagawa index primes are [2]...
Checking saturation at [2 3 5]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
Checking 5-saturation
possible kernel vector = [0,0,1]
This point may be in 5E(Q): [-13422227300:-49322830557:12167000000]
...and it is!
Replacing old generator #3 with new generator [1:-1:1]
Reducing index bound from 15 to 3
Points have successfully been 5-saturated (max q used = 71)
Index gain = 5^1
done
Gained index 5
New regulator = 0.4171435588
(True, 5, '[]')

`sage`: `EQ.points()`
[[-2, 3, 1], [-14, 25, 8], [1, -1, 1]]

`sage`: `EQ.regulator()`
0.417143558758384

`sage`: `EQ.saturate()`
points are now saturated
saturating basis...Saturation index bound (for points of good reduction) = 3
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done
(True, 1, '[]')
>>> from sage.all import *

>>> E = mwrank_EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(7),
 → Integer(6)])

>>> EQ = mwrank_MordellWeil(E)

>>> EQ.process([[Integer(1547), -Integer(2967), Integer(343)],
 → [Integer(2707496766203306), Integer(864581029138191),
 → Integer(2969715140223272)], [-Integer(13422227300), -Integer(49322830557),
 → Integer(12167000000)], saturation_bound=Integer(0))

P1 = [1547:-2967:343] is generator number 1
P2 = [2707496766203306:864581029138191:2969715140223272] is generator number 2
P3 = [-13422227300:-49322830557:12167000000] is generator number 3

>>> EQ.points()
[[1547, -2967, 343], [2707496766203306, 864581029138191, 2969715140223272], [-
 → 13422227300, -49322830557, 12167000000]]

>>> EQ.regulator()
375.4292028825455

>>> EQ.saturate(Integer(2)) # points were not 2-saturated

saturating basis...Saturation index bound (for points of good reduction) = 93
Only p-saturating for p up to given value 2.
The resulting points may not be p-saturated for p between this and the computed index bound 93
Tamagawa index primes are [2]...
Checking saturation at [2]
Checking 2-saturation
possible kernel vector = [1,0,0]
This point may be in 2E(Q): [1547:-2967:343]
...and it is!
Replacing old generator #1 with new generator [-2:3:1]
Reducing index bound from 93 to 46
Points have successfully been 2-saturated (max q used = 11)
Index gain = 2^1

Gained index 2
New regulator = 93.85730072
(True, 2, [])

>>> EQ.points()
[[[-2, 3, 1], [2707496766203306, 864581029138191, 2969715140223272], [-
 → 13422227300, -49322830557, 12167000000]]

>>> EQ.regulator()
93.85730072063639

>>> EQ.saturate(Integer(3)) # points were not 3-saturated

saturating basis...Saturation index bound (for points of good reduction) = 46
Only p-saturating for p up to given value 3.
The resulting points may not be p-saturated for p between this and the computed index bound 46
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
possible kernel vector = [0,1,0]
This point may be in 3E(Q):
...and it is!
Replacing old generator #2 with new generator [-14:25:8]
Reducing index bound from 46 to 15

(continues on next page)
Points have successfully been 3-saturated (max q used = 13)
Index gain = 3^1
done
Gained index 3
New regulator = 10.42858897
(True, 3, '[]')
>>> EQ.points()
[[-2, 3, 1], [-14, 25, 8], [-13422227300, -49322830557, 12167000000]]
>>> EQ.regulator()
10.4285889689596
>>> EQ.saturate(Integer(5)) # points were not 5-saturated
saturating basis...Saturation index bound (for points of good reduction) = 15
Only p-saturating for p up to given value 5.
The resulting points may not be p-saturated for p between this and the...
<=computed index bound 15
Tamagawa index primes are [2]...
Checking saturation at [2 3 5]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
Checking 5-saturation
possible kernel vector = [0,0,1]
This point may be in E(Q):
[-13422227300:-49322830557:12167000000]
...and it is!
Replacing old generator #3 with new generator [1:-1:1]
Reducing index bound from 15 to 3
Points have successfully been 5-saturated (max q used = 71)
Index gain = 5^1
done
Gained index 5
New regulator = 0.4171435588
(True, 5, '[]')
>>> EQ.points()
[[-2, 3, 1], [-14, 25, 8], [1, -1, 1]]
>>> EQ.regulator()
0.417143558758384
>>> EQ.saturate() # points are now saturated
saturating basis...Saturation index bound (for points of good reduction) = 3
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done
(True, 1, '[]')

rank()
Return the rank of this subgroup of the Mordell-Weil group.

OUTPUT:
(int) The rank of this subgroup of the Mordell-Weil group.

EXAMPLES:
A rank 3 example:

```python
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.rank()
0
sage: EQ.regulator()
1.0
```
We do in fact now have a full Mordell-Weil basis.

regulator()

Return the regulator of the points in this subgroup of the Mordell-Weil group.

Note: eclib can compute the regulator to arbitrary precision, but the interface currently returns the output as a float.

OUTPUT:

(float) The regulator of the points in this subgroup.

EXAMPLES:

```sage
E = mwrank_EllipticCurve([0,-1,1,0,0])
sage: E.regulator()
1.0

E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: E.regulator()
0.417143558758384
```

```python
>>> from sage.all import *

>>> E = mwrank_EllipticCurve([Integer(0),-Integer(1),Integer(1),Integer(0), Integer(0)])
>>> E.regulator()
1.0

>>> E = mwrank_EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(7), Integer(6)])
>>> E.regulator()
0.417143558758384
```

saturate(max_prime=-1, min_prime=2)

Satrate this subgroup of the Mordell-Weil group.

INPUT:

- **max_prime**(int, default -1) – If -1 (the default), an upper bound is computed for the primes at which the subgroup may not be saturated, and saturation is performed for all primes up to this bound. Otherwise, the bound used is the minimum of max_prime and the computed bound.

- **min_prime**(int, default 2) – only do saturation at primes no less than this. (For example, if the points have been found via `two_descent()` they should already be 2-saturated so a value of 3 is appropriate.)

OUTPUT:
(3-tuple) \((ok,\ index,\ unsatlist)\) where:

- \(ok\) (bool) – True if and only if the saturation was provably successful at all primes attempted. If the default was used for \(\text{max}_\text{prime}\), then True indicates that the subgroup is saturated at all primes.
- \(\text{index}\) (int) – the index of the group generated by the original points in their saturation.
- \(\text{unsatlist}\) (list of ints) – list of primes at which saturation could not be proved or achieved.

Note: In versions up to v20190909, eclib used floating point methods based on elliptic logarithms to divide points, and did not compute the precision necessary, which could cause failures. Since v20210310, eclib uses exact method based on division polynomials, which should mean that such failures does not happen.

Note: We emphasize that if this function returns True as the first return argument \((ok)\), and if the default was used for the parameter \(\text{max}_\text{prime}\), then the points in the basis after calling this function are saturated at all primes, i.e., saturating at the primes up to \(\text{max}_\text{prime}\) are sufficient to saturate at all primes. Note that the function computes an upper bound for the index of saturation, and does no work for primes greater than this even if \(\text{max}_\text{prime}\) is larger.

EXAMPLES:

```
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
```

```
>>> from sage.all import *
>>> E = mwrank_EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(7),
-> Integer(6)])
>>> EQ = mwrank_MordellWeil(E)
```

We initialise with three points which happen to be 2, 3 and 5 times the generators of this rank 3 curve. To prevent automatic saturation at this stage we set the parameter \(\text{sat}\) to 0 (which is in fact the default):

```
sage: EQ.process([[-13422227300,-49322830557,12167000000],
       -> [2707496766203306,864581029138191,2969715140223272]])
```

```
Subgroup of Mordell-Weil group: [[1547:-2967:343],
   [-13422227300:-49322830557:12167000000]], saturation_bound=0
```

```
P1 = [1547:-2967:343] is generator number 1
P2 = [2707496766203306:864581029138191:2969715140223272] is generator number 2
P3 = [-13422227300:-49322830557:12167000000] is generator number 3
```

```
sage: EQ.regulator()
375.42920288254555
```

```
>>> from sage.all import *
>>> EQ.process([[Integer(1547),-Integer(2967),Integer(343)],
       -> [Integer(2707496766203306),Integer(864581029138191),
       -> Integer(2969715140223272)], [-Integer(13422227300),
       -> -Integer(49322830557),Integer(12167000000)]],
       -> saturation_bound=Integer(0))
```

```
P1 = [1547:-2967:343] is generator number 1
P2 = [2707496766203306:864581029138191:2969715140223272] is generator number 2
```

(continues on next page)
number 2
\[P_3 = [-13422227300:-49322830557:12167000000] \]

is generator number 3

\[\text{EQ} \]

Subgroup of Mordell-Weil group: \[\{ [1547:-2967:343], \ldots \}
\[[-2704796766203306:864581029138192:2969715140223272], [-13422227300:-\]
\[49322830557:12167000000] \]

\[\text{EQ}.\text{regulator}() \]
\[375.42920288254555 \]

Now we saturate at \[p = 2 \], and gain index 2:

\[\text{sage}: \text{EQ}.\text{saturate}(2) \quad \# \text{ points were not 2-saturated} \]

saturating basis...Saturation index bound (for points of good reduction) = 93

Only \(p \)-saturating for \(p \) up to given value 2.

... Gained index 2

New regulator = 93.857...

(True, 2, '[']')

\[\text{sage}: \text{EQ} \]

Subgroup of Mordell-Weil group: \[\{ [-2:3:1], \ldots \}
\[[2704796766203306:864581029138192:2969715140223272], [-13422227300:-\]
\[49322830557:12167000000] \]

\[\text{sage}: \text{EQ}.\text{regulator}() \]
\[93.85730072063639 \]

Now we saturate at \(p = 3 \), and gain index 3:

\[\text{sage}: \text{EQ}.\text{saturate}(3) \quad \# \text{ points were not 3-saturated} \]

saturating basis...Saturation index bound (for points of good reduction) = 46

Only \(p \)-saturating for \(p \) up to given value 3.

... Gained index 3

New regulator = 10.428...

(True, 3, '[']')

\[\text{sage}: \text{EQ} \]

Subgroup of Mordell-Weil group: \[\{ [-2:3:1], [-14:25:8], [-13422227300:-\]
\[49322830557:12167000000] \]

\[\text{sage}: \text{EQ}.\text{regulator}() \]
\[10.4285889689596 \]
Now we saturate at $p = 5$, and gain index 5:

```python
sage: EQ.saturate(5)  # points were not 5-saturated
saturating basis... Saturation index bound (for points of good reduction) = 15
Only p-saturating for p up to given value 5.
...
Gained index 5
New regulator = 0.417...
(True, 5, '[ ]')
```

```
sage: EQ
Subgroup of Mordell-Weil group: [[-2:3:1], [-14:25:8], [1:-1:1]]
```

```python
sage: EQ.regulator()
0.417143558758384
```

Finally we finish the saturation. The output here shows that the points are now provably saturated at all primes:

```python
sage: EQ.saturate()  # points are now saturated
saturating basis... Saturation index bound (for points of good reduction) = 3
Tamagawa index primes are [ 2 ]...
Checking saturation at [ 2 3 ]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done
(True, 1, '[ ]')
```

```python
>>> from sage.all import *

```
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done
(True, 1, '[]')

Of course, the `process()` function would have done all this automatically for us:

```
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.process([[1547, -2967, 343], [2707496766203306, 864581029138191, 2969715140223272], [-13422227300, -49322830557, 12167000000]], saturation_bound=5)
P1 = [1547:-2967:343] is generator number 1...
Gained index 5, new generators = [ [-2:3:1] [-14:25:8] [1:-1:1] ]
sage: EQ
Subgroup of Mordell-Weil group: [[-2:3:1], [-14:25:8], [1:-1:1]]
sage: EQ.regulator()
0.417143558758384
```

But we would still need to use the `saturate()` function to verify that full saturation has been done:

```
sage: EQ.saturate()
saturating basis... Saturation index bound (for points of good reduction) = 3
Tamagawa index primes are [ 2 ]...
Checking saturation at [ 2 3 ]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done
(True, 1, '[]')
```

```bash
>>> from sage.all import *
>>> E = mwrank_EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(7),-Integer(6)])
>>> EQ = mwrank_MordellWeil(E)
>>> EQ.process([[1547, -2967, 343], [2707496766203306, 864581029138191, 2969715140223272], [-13422227300, -49322830557, 12167000000]], saturation_bound=Integer(5))
P1 = [1547:-2967:343] is generator number 1...
Gained index 5, new generators = [ [-2:3:1] [-14:25:8] [1:-1:1] ]
>>> EQ
Subgroup of Mordell-Weil group: [[-2:3:1], [-14:25:8], [1:-1:1]]
>>> EQ.regulator()
0.417143558758384
```
Tamagawa index primes are [2]...
Checking saturation at [2 3]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done
(True, 1, '[]')

Note the output of the preceding command: it proves that the index of the points in their saturation is at most 3, then proves saturation at 2 and at 3, by reducing the points modulo all primes of good reduction up to 11, respectively 13.

search (height_limit=18, verbose=False)

Search for new points, and add them to this subgroup of the Mordell-Weil group.

INPUT:

• height_limit (float, default: 18) – search up to this logarithmic height.

Note: On 32-bit machines, this must be < 21.48 (31 log(2)) else exp(h_{lim}) > 2^{31} and overflows. On 64-bit machines, it must be at most 43.668 (63 log(2)). However, this bound is a logarithmic bound and increasing it by just 1 increases the running time by (roughly) exp(1.5) = 4.5, so searching up to even 20 takes a very long time.

Note: The search is carried out with a quadratic sieve, using code adapted from a version of Michael Stoll’s ratpoints program. It would be preferable to use a newer version of ratpoints.

• verbose (bool, default False) – turn verbose operation on or off.

EXAMPLES:

A rank 3 example, where a very small search is sufficient to find a Mordell-Weil basis:

```python
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.search(1)
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1
...
P4 = [12:35:27] = 1*P1 + -1*P2 + -1*P3 (mod torsion)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
```

```python
>>> from sage.all import *
>>> E = mwrank_EllipticCurve([(Integer(0),Integer(0),Integer(1),-Integer(7),
                                     -Integer(6))])
>>> EQ = mwrank_MordellWeil(E)
>>> EQ.search(Integer(1))
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1
...
P4 = [12:35:27] = 1*P1 + -1*P2 + -1*P3 (mod torsion)
```
In the next example, a search bound of 12 is needed to find a non-torsion point:

```python
sage: E = mwrank_EllipticCurve([0, -1, 0, -18392, -1186248])
#1056g4
sage: EQ = mwrank_MordellWeil(E)

sage: EQ.search(11); EQ
P1 = [0:1:0] is torsion point, order 1
P1 = [161:0:1] is torsion point, order 2
Subgroup of Mordell-Weil group: []

sage: EQ.search(12); EQ
P1 = [0:1:0] is torsion point, order 1
P1 = [161:0:1] is torsion point, order 2
P1 = [4413270:10381877:27000] is generator number 1
...
Subgroup of Mordell-Weil group: [[4413270:10381877:27000]]
```

2.2 Cython interface to Cremona’s eclib library (also known as mwrank)

EXAMPLES:

```python
sage: from sage.libs.eclib.mwrank import _Curvedata, _mw

sage: c = _Curvedata(1,2,3,4,5)

sage: print(c)
[1,2,3,4,5]

b2 = 9  b4 = 11  b6 = 29  b8 = 35

c4 = -183  c6 = -3429
disc = -10351  (# real components = 1)
#torsion not yet computed

sage: t = _mw(c)

sage: t.search(10)

sage: t

[[1:2:1]]
```
```python
>>> from sage.all import *
>>> from sage.libs.eclib.mwrank import _Curvedata, _mw

>>> c = _Curvedata(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5))

>>> print(c)
[1, 2, 3, 4, 5]

b2 = 9  b4 = 11  b6 = 29  b8 = 35

c4 = -183  c6 = -3429
disc = -10351  (# real components = 1)
# torsion not yet computed

>>> t = _mw(c)

>>> t
[[1:2:1]]
```

sage.libs.eclib.mwrank.get_precision()

Return the working floating point bit precision of mwrank, which is equal to the global NTL real number precision.

OUTPUT:

(int) The current precision in bits.

See also `set_precision()`.

EXAMPLES:

```python
sage: mwrank_get_precision()
150
```

sage.libs.eclib.mwrank.initprimes(filename, verb=False)

Initialises mwrank/eclib’s internal prime list.

INPUT:

- filename (string) – the name of a file of primes.
- verb (bool: default False) – verbose or not?

EXAMPLES:

```python
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(mode='w+t') as f:
....:     data = ' '.join(str(p) for p in prime_range(10^7, 10^7 + 20))
....:     _ = f.write(data)
....:     f.flush()
....:     mwrank_initprimes(f.name, verb=True)
Computed 78519 primes, largest is 1000253
reading primes from file ...
read extra prime 10000019
finished reading primes from file ...
Extra primes in list: 10000019
```

(continues on next page)
... OSError: No such file or directory: ...

```python
>>> from sage.all import *
>>> import tempfile
>>> with tempfile.NamedTemporaryFile(mode='w+t') as f:
...     data = ' '.join(str(p) for p in prime_range(Integer(10)**Integer(7),
                      -> Integer(10)**Integer(7) + Integer(20)))
...     _ = f.write(data)
...     f.flush()
...     mwrank_initprimes(f.name, verb=True)
Computed 78519 primes, largest is 1000253
reading primes from file ...
read extra prime 10000019
finished reading primes from file ...
Extra primes in list: 10000019

>>> mwrank_initprimes(f.name, True)
Traceback (most recent call last):
... OSError: No such file or directory: ...
```

`sage.libs.eclib.mwrank.parse_point_list(s)`

Parse a string representing a list of points.

INPUT:

- `s` (string) – string representation of a list of points, for example `['']`, `[['1:2:3']]`, or `[['1:2:3],[4:5:6]]`.

OUTPUT:

(list) a list of triples of integers, for example `[], [[1,2,3]], [[1,2,3],[4,5,6]]`.

EXAMPLES:

```python
sage: from sage.libs.eclib.mwrank import parse_point_list
sage: parse_point_list('[]')
[]
sage: parse_point_list('[['1:2:3']])
[[1, 2, 3]]
sage: parse_point_list('[['1:2:3],[4:5:6]]')
[[1, 2, 3], [4, 5, 6]]
```

`sage.libs.eclib.mwrank.set_precision(n)`

Sets the working floating point bit precision of mwrank, which is equal to the global NTL real number precision.

NTL real number bit precision. This has a massive effect on the speed of mwrank calculations. The default (used if this function is not called) is $n=150$, but it might have to be increased if a computation fails.

INPUT:
• \(n \) – a positive integer: the number of bits of precision.

Warning: This change is global and affects *all* future calls of eclib functions by Sage.

Note: The minimal value to which the precision may be set is 53. Lower values will be increased to 53.

See also *get_precision()*.

EXAMPLES:

```python
sage: from sage.libs.eclib.mwrank import set_precision, get_precision
sage: old_prec = get_precision(); old_prec
150
sage: set_precision(50)
sage: get_precision()
53
sage: set_precision(old_prec)
sage: get_precision()
150
```

```python
>>> from sage.all import *
>>> from sage.libs.eclib.mwrank import set_precision, get_precision
>>> old_prec = get_precision(); old_prec
150
>>> set_precision(Integer(50))
>>> get_precision()
53
>>> set_precision(old_prec)
>>> get_precision()
150
```

2.3 Cremona matrices

class `sage.libs.eclib.mat.Matrix`
Bases: `object`

A Cremona Matrix.

EXAMPLES:

```python
sage: M = CremonaModularSymbols(225)
sage: t = M.hecke_matrix(2)
sage: type(t)
<class 'sage.libs.eclib.mat.Matrix'>
sage: t
61 x 61 Cremona matrix over Rational Field
```

```python
>>> from sage.all import *
>>> M = CremonaModularSymbols(Integer(225))
>>> t = M.hecke_matrix(Integer(2))
>>> type(t)
```

(continues on next page)
add_scalar(s)

Return new matrix obtained by adding s to each diagonal entry of self.

EXAMPLES:

```
sage: M = CremonaModularSymbols(23, cuspidal=True, sign=1)
sage: t = M.hecke_matrix(2); print(t.str())
[ 0 1]
[ 1 -1]
sage: w = t.add_scalar(3); print(w.str())
[3 1]
[1 2]
```

charpoly(var='x')

Return the characteristic polynomial of this matrix, viewed as a matrix over the integers.

ALGORITHM:

Note that currently, this function converts this matrix into a dense matrix over the integers, then calls the charpoly algorithm on that, which I think is LinBox’s.

EXAMPLES:

```
sage: M = CremonaModularSymbols(33, cuspidal=True, sign=1)
sage: t = M.hecke_matrix(2)
sage: t.charpoly()
x^3 + 3*x^2 - 4
sage: t.charpoly().factor()
(x - 1) * (x + 2)^2
```

ncols()

Return the number of columns of this matrix.

EXAMPLES:
sage: M = CremonaModularSymbols(1234, sign=1)
sage: t = M.hecke_matrix(3); t.ncols()
156
sage: M.dimension()
156

>>> from sage.all import *
>>> M = CremonaModularSymbols(Integer(1234), sign=Integer(1))
>>> t = M.hecke_matrix(Integer(3)); t.ncols()
156
>>> M.dimension()
156

nrows()

Return the number of rows of this matrix.

EXAMPLES:

sage: M = CremonaModularSymbols(19, sign=1)
sage: t = M.hecke_matrix(Integer(13)); t
2 x 2 Cremona matrix over Rational Field
sage: t.nrows()
2

>>> from sage.all import *
>>> M = CremonaModularSymbols(Integer(19), sign=Integer(1))
>>> t = M.hecke_matrix(Integer(13)); t
2 x 2 Cremona matrix over Rational Field
>>> t.nrows()
2

sage_matrix_over_ZZ(sparse=True)

Return corresponding Sage matrix over the integers.

INPUT:

• sparse – (default: True) whether the return matrix has a sparse representation

EXAMPLES:

sage: M = CremonaModularSymbols(23, cuspidal=True, sign=1)
sage: t = M.hecke_matrix(2)
sage: s = t.sage_matrix_over_ZZ(); s
[0 1]
[1 -1]
sage: type(s)
<class 'sage.matrix.matrix_integer_sparse.Matrix_integer_sparse'>
sage: s = t.sage_matrix_over_ZZ(sparse=False); s
[0 1]
[1 -1]
sage: type(s)
<class 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>

>>> from sage.all import *
>>> M = CremonaModularSymbols(Integer(23), cuspidal=True, sign=Integer(1))
>>> t = M.hecke_matrix(Integer(2))
>>> s = t.sage_matrix_over_ZZ(); s

(continues on next page)
str()

Return full string representation of this matrix, never in compact form.

EXAMPLES:

```python
sage: M = CremonaModularSymbols(22, sign=1)
sage: t = M.hecke_matrix(13)
sage: t.str()
'[14 0 0 0 0]
[-4 12 0 8 4]
[ 0 -6 4 -6 0]
[ 4 2 0 6 -4]
[ 0 0 0 14]
```

```python
>>> from sage.all import *
>>>
>>> from sage.libs.eclib.newforms import ECModularSymbol
>>>
>>> E = EllipticCurve(11a)
>>> M = ECModularSymbol(E, Integer(1)); M
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
```

```python
By default, symbols are based at the cusp \( \infty \), i.e. we evaluate \( \{ \infty, r \} \):
```
We can also switch the base point to the cusp 0:

```python
sage: [M(1/i, base_at_infinity=False) for i in range(1,11)]
[0, -2, -1, 1, 2, 1, -1, -2, 0]
```

For the minus symbols this makes no difference since \(\{0, \infty\} \) is in the plus space. Note that to evaluate minus symbols the space must be defined with sign 0, which makes both signs available:

```python
sage: M = ECModularSymbol(E,0); M
Modular symbol with sign 0 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [M(1/i, -1) for i in range(1,11)]
[0, 0, 1, 1, 0, 0, -1, -1, 0, 0]
```

If the ECModularSymbol is created with sign 0 then as well as asking for both + and - symbols, we can also obtain both (as a tuple). However it is more work to create the full modular symbol space:

```python
sage: E = EllipticCurve('11a1')
sage: M = ECModularSymbol(E,0); M
Modular symbol with sign 0 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: [M(1/i) for i in range(2,11)]
[[-8/5, 0], [-3/5, 1], [7/5, 1], [12/5, 0], [12/5, 0], [7/5, -1], [-3/5, -1], [-8/5, 0], [2/5, 0]]
```
>>> from sage.all import *

>>> E = EllipticCurve('11a1')
>>> M = ECModularSymbol(E, Integer(0)); M
Modular symbol with sign 0 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

>>> [M(Integer(1)/i) for i in range(Integer(2), Integer(11))]

[-8/5, 0], [-3/5, 1], [7/5, 1], [12/5, 0], [12/5, 0], [7/5, -1], [-3/5, -1], [-8/5, 0], [2/5, 0]

The curve is automatically converted to its minimal model:

```
sage: E = EllipticCurve([0,0,0,0,1/4])
sage: ECModularSymbol(E)
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 over Rational Field
```

```
>>> from sage.all import *

>>> E = EllipticCurve([Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)/Integer(4)])

>>> ECModularSymbol(E)
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined by y^2 + y = x^3 over Rational Field
```

Non-optimal curves are handled correctly in eclib, by comparing the ratios of real and/or imaginary periods:

```
sage: from sage.libs.eclib.newforms import ECModularSymbol

sage: E1 = EllipticCurve('11a1')  # optimal
sage: E1.period_lattice().basis()
(1.26920930427955, 0.634604652139777 + 1.45881661693850*I)
sage: M1 = ECModularSymbol(E1, 0)
sage: M1(0)
[2/5, 0]
sage: M1(Integer(1)/Integer(3))
[-3/5, 1]
```

```
>>> from sage.all import *

>>> from sage.libs.eclib.newforms import ECModularSymbol

>>> E1 = EllipticCurve('11a1')  # optimal

>>> E1.period_lattice().basis()
(1.26920930427955, 0.634604652139777 + 1.45881661693850*I)

>>> M1 = ECModularSymbol(E1, Integer(0))

>>> M1(Integer(0))
[2/5, 0]

>>> M1(Integer(1)/Integer(3))
[-3/5, 1]
```

One non-optimal curve has real period 1/5 that of the optimal one, so plus symbols scale up by a factor of 5 while minus symbols are unchanged:
The other non-optimal curve has real period 5 times that of the optimal one, so plus symbols scale down by a factor of 5; again, minus symbols are unchanged:

```python
sage: E3 = EllipticCurve('11a3') # not optimal
sage: E3.period_lattice().basis()
(6.34604652139777, 3.17302326069888 + 1.45881661693850*I)
sage: M3 = ECModularSymbol(E3,0)
sage: M3(0)
[2/25, 0]
sage: M3(1/3)
[-3/25, 1]
sage: all((5*M3(r,1)==M1(r,1)) for r in QQ.range_by_height(10))
True
sage: all((M3(r,-1)==M1(r,-1)) for r in QQ.range_by_height(10))
True
```

(continues on next page)
2.5 Cremona modular symbols

```python
>>> all((M3(r,-Integer(1))==M1(r,-Integer(1))) for r in QQ.range_by_height(Integer(10)))
True
```

class `sage.libs.eclib.homspace.ModularSymbols`

Bases: `object`

Class of Cremona Modular Symbols of given level and sign (and weight 2).

EXAMPLES:

```python
sage: M = CremonaModularSymbols(225)
sage: type(M)
<class 'sage.libs.eclib.homspace.ModularSymbols'>
```

```python
>>> from sage.all import *
>>> M = CremonaModularSymbols(Integer(225))
>>> type(M)
<class 'sage.libs.eclib.homspace.ModularSymbols'>
```

dimension()

Return the dimension of this modular symbols space.

EXAMPLES:

```python
sage: M = CremonaModularSymbols(1234, sign=1)
sage: M.dimension()
156
```

```python
>>> from sage.all import *
>>> M = CremonaModularSymbols(Integer(1234), sign=Integer(1))
>>> M.dimension()
156
```

hecke_matrix(p, dual=False, verbose=False)

Return the matrix of the p-th Hecke operator acting on this space of modular symbols.

The result of this command is not cached.

INPUT:

- p – a prime number
- **dual** – (default: `False`) whether to compute the Hecke operator acting on the dual space, i.e., the transpose of the Hecke operator
- **verbose** – (default: `False`) print verbose output

OUTPUT:

(matrix) If p divides the level, the matrix of the Atkin-Lehner involution W_p at p; otherwise the matrix of the Hecke operator T_p.

EXAMPLES:
sage: M = CremonaModularSymbols(37)
sage: t = M.hecke_matrix(2); t
5 x 5 Cremona matrix over Rational Field
sage: print(t.str())
[3 0 0 0 0]
[-1 -1 1 1 0]
[0 0 -1 0 1]
[-1 1 0 -1 -1]
[0 0 1 0 -1]
sage: t.charpoly().factor()
(x - 3) * x^2 * (x + 2)^2
sage: print(M.hecke_matrix(2, dual=True).str())
[3 -1 0 -1 0]
[0 -1 0 1 0]
[0 1 -1 0 1]
[0 1 0 -1 0]
[0 0 1 -1 -1]
sage: w = M.hecke_matrix(37); w
5 x 5 Cremona matrix over Rational Field
sage: w.charpoly().factor()
(x - 1)^2 * (x + 1)^3
sage: sw = w.sage_matrix_over_ZZ()
sage: st = t.sage_matrix_over_ZZ()
sage: sw^2 == sw.parent()(1)
True
sage: st*sw == sw*st
True

>>> from sage.all import *

>>> M = CremonaModularSymbols(Integer(37))
>>> t = M.hecke_matrix(Integer(2)); t
5 x 5 Cremona matrix over Rational Field
>>> print(t.str())
[3 0 0 0 0]
[-1 -1 1 1 0]
[0 0 -1 0 1]
[-1 1 0 -1 -1]
[0 0 1 0 -1]

>>> t.charpoly().factor()
(x - 3) * x^2 * (x + 2)^2

>>> print(M.hecke_matrix(Integer(2), dual=True).str())
[3 -1 0 -1 0]
[0 -1 0 1 0]
[0 1 -1 0 1]
[0 1 0 -1 0]
[0 0 1 -1 -1]

>>> w = M.hecke_matrix(Integer(37)); w
5 x 5 Cremona matrix over Rational Field

>>> w.charpoly().factor()
(x - 1)^2 * (x + 1)^3

>>> sw = w.sage_matrix_over_ZZ()

>>> st = t.sage_matrix_over_ZZ()

>>> st*sw == sw*st
True

is_cuspidal()
Return whether or not this space is cuspidal.

EXAMPLES:

```python
sage: M = CremonaModularSymbols(1122); M.is_cuspidal()
sage: M = CremonaModularSymbols(1122, cuspidal=True); M.is_cuspidal()
```

```python
>>> from sage.all import *

>>> M = CremonaModularSymbols(Integer(1122)); M.is_cuspidal()
>>> M = CremonaModularSymbols(Integer(1122), cuspidal=True); M.is_cuspidal()
```

```python
level()
```

Return the level of this modular symbols space.

EXAMPLES:

```python
sage: M = CremonaModularSymbols(1234, sign=1)
sage: M.level()
```

```python
>>> from sage.all import *

>>> M = CremonaModularSymbols(Integer(1234), sign=Integer(1))
>>> M.level()
```

```python
number_of_cusps()
```

Return the number of cusps for \(\Gamma_0(N) \), where \(N \) is the level.

EXAMPLES:

```python
sage: M = CremonaModularSymbols(225)
sage: M.number_of_cusps()
```

```python
>>> from sage.all import *

>>> M = CremonaModularSymbols(Integer(225))
>>> M.number_of_cusps()
```

```python
sign()
```

Return the sign of this Cremona modular symbols space. The sign is either 0, +1 or -1.

EXAMPLES:

```python
sage: M = CremonaModularSymbols(1122, sign=1);
Cremona Modular Symbols space of dimension 224 for Gamma_0(1122) of weight 2...
...
   with sign 1
sage: M.sign()
sage: M = CremonaModularSymbols(1122);
Cremona Modular Symbols space of dimension 433 for Gamma_0(1122) of weight 2...
   with sign 0
```

(continues on next page)
sparse_hecke_matrix \((p, \text{dual}=False, \text{verbose}=False, \text{base_ring}='ZZ') \)

Return the matrix of the \(p \)-th Hecke operator acting on this space of modular symbols as a sparse Sage matrix over base_ring. This is more memory-efficient than creating a Cremona matrix and then applying sage_matrix_over_ZZ with sparse=True.

The result of this command is not cached.

INPUT:

- \(p \) – a prime number
- \text{dual} – (default: False) whether to compute the Hecke operator acting on the dual space, i.e., the transpose of the Hecke operator
- \text{verbose} – (default: False) print verbose output

OUTPUT:

(matrix) If \(p \) divides the level, the matrix of the Atkin-Lehner involution \(W_p \) at \(p \); otherwise the matrix of the Hecke operator \(T_p \).

EXAMPLES:

```
sage: M = CremonaModularSymbols(37)
sage: t = M.sparse_hecke_matrix(2); type(t)
<class 'sage.matrix.matrix_integer_sparse.Matrix_integer_sparse'>
sage: print(t)
[ 3 0 0 0]
[-1 -1 1 0]
[ 0 0 -1 0]
[-1 1 0 -1]
sage: M = CremonaModularSymbols(5001)
```
This concerns an issue reported on Issue #21303:

```python
sage: C = CremonaModularSymbols(45, cuspidal=True, sign=-1)
sage: T2a = C.hecke_matrix(2).sage_matrix_over_ZZ()
sage: T2b = C.sparse_hecke_matrix(2)
sage: print(T2a == T2b)
True

>>> from sage.all import *

>>> C = CremonaModularSymbols(Integer(45), cuspidal=True, sign=Integer(-1))
>>> T2a = C.hecke_matrix(Integer(2)).sage_matrix_over_ZZ()
>>> T2b = C.sparse_hecke_matrix(Integer(2))
>>> print(T2a == T2b)
True
```
2.6 Cremona modular symbols

sage.libs.eclib.constructor.CremonaModularSymbols(level, sign=0, cuspidal=False, verbose=0)

Return the space of Cremona modular symbols with given level, sign, etc.

INPUT:

- `level` – an integer ≥ 2 (at least 2, not just positive!)
- `sign` – an integer either 0 (the default) or 1 or -1.
- `cuspidal` – (default: False); if True, compute only the cuspidal subspace
- `verbose` – (default: False): if True, print verbose information while creating space

EXAMPLES:

```
sage: M = CremonaModularSymbols(43); M
Cremona Modular Symbols space of dimension 7 for Gamma_0(43) of weight 2 with sign 0
sage: M = CremonaModularSymbols(43, sign=1); M
Cremona Modular Symbols space of dimension 4 for Gamma_0(43) of weight 2 with sign 1
sage: M = CremonaModularSymbols(43, cuspidal=True); M
Cremona Cuspidal Modular Symbols space of dimension 6 for Gamma_0(43) of weight 2 with sign 0
sage: M = CremonaModularSymbols(43, cuspidal=True, sign=1); M
Cremona Cuspidal Modular Symbols space of dimension 3 for Gamma_0(43) of weight 2 with sign 1
```

When run interactively, the following command will display verbose output:

```
sage: M = CremonaModularSymbols(43, verbose=1)
After 2-term relations, ngens = 22
ngens = 22
maxnumrel = 32
relation matrix has 704 entries...
Finished 3-term relations: numrel = 16 ( maxnumrel = 32)
reimt has 42 nonzero entries (density = 0.0596591)
Computing kernel...
time to compute kernel = (... seconds)
rk = 7
Number of cusps is 2
ncusps = 2
```

(continues on next page)
About to compute matrix of delta
delta matrix done: size 2x7.
About to compute kernel of delta
done
Finished constructing homspace.

sage: M
Cremona Modular Symbols space of dimension 7 for Gamma_0(43) of weight 2 with...
 ˓→sign 0

```python
>>> from sage.all import *
>>> M = CremonaModularSymbols(Integer(43), verbose=Integer(1))
After 2-term relations, ngens = 22
ngens = 22
maxnumrel = 32
relation matrix has = 704 entries...
Finished 3-term relations: numrel = 16 ( maxnumrel = 32)
relmat has 42 nonzero entries (density = 0.0596591)
Computing kernel...
time to compute kernel = (... seconds)
rk = 7
Number of cusps is 2
ncusps = 2
About to compute matrix of delta
delta matrix done: size 2x7.
About to compute kernel of delta
done
Finished constructing homspace.

sage: M
Cremona Modular Symbols space of dimension 7 for Gamma_0(43) of weight 2 with...
 ˓→sign 0
```

The input must be valid or a `ValueError` is raised:

```python
sage: M = CremonaModularSymbols(-1)
Traceback (most recent call last):
...
ValueError: the level (= -1) must be at least 2
sage: M = CremonaModularSymbols(0)
Traceback (most recent call last):
...
ValueError: the level (= 0) must be at least 2
```

```python
>>> from sage.all import *
>>> M = CremonaModularSymbols(-Integer(1))
Traceback (most recent call last):
...
ValueError: the level (= -1) must be at least 2
>>> M = CremonaModularSymbols(Integer(0))
Traceback (most recent call last):
...
ValueError: the level (= 0) must be at least 2
```

The sign can only be 0 or 1 or -1:

```python
sage: M = CremonaModularSymbols(10, sign = -2)
Traceback (most recent call last):
```
ValueError: sign (= -2) is not supported; use 0, +1 or -1

```python
>>> from sage.all import *

>>> M = CremonaModularSymbols(Integer(10), sign = -Integer(2))
Traceback (most recent call last):
  ...
ValueError: sign (= -2) is not supported; use 0, +1 or -1
```

We do allow -1 as a sign (see Issue #9476):

```python
sage: CremonaModularSymbols(10, sign = -1)
Cremona Modular Symbols space of dimension 0 for Gamma_0(10) of weight 2 with...
  →sign -1

>>> from sage.all import *

>>> CremonaModularSymbols(Integer(10), sign = -Integer(1))
Cremona Modular Symbols space of dimension 0 for Gamma_0(10) of weight 2 with...
  →sign -1
```
3.1 FLINT fmpz_poly class wrapper

AUTHORS:

• William Stein (2007-10-02) update for new flint; add arithmetic and creation of coefficients of arbitrary size.

class sage.libs.flint.fmpz_poly_sage.Fmpz_poly

Bases: SageObject

Construct a new fmpz_poly from a sequence, constant coefficient, or string (in the same format as it prints).

EXAMPLES:

```
sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: Fmpz_poly([1,2,3])
3 1 2 3
sage: Fmpz_poly(5)
1 5
sage: Fmpz_poly(str(Fmpz_poly([3,5,7])))
3 3 5 7
```

```python
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> Fmpz_poly([Integer(1),Integer(2),Integer(3)])
3 1 2 3
>>> Fmpz_poly(Integer(5))
1 5
>>> Fmpz_poly(str(Fmpz_poly([Integer(3),Integer(5),Integer(7)])))
3 3 5 7
```

degree()

The degree of self.

EXAMPLES:

```
sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,2,3]); f
3 1 2 3
sage: f.degree()
2
sage: Fmpz_poly(range(1000)).degree()
999
```

(continues on next page)
sage: Fmpz_poly([2,0]).degree()
0

>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1),Integer(2),Integer(3)]); f
3 1 2 3
>>> f.degree()
2
>>> Fmpz_poly(range(Integer(1000))).degree()
999
>>> Fmpz_poly([Integer(2),Integer(0)]).degree()
0
derivative()
Return the derivative of self.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,2,6])
sage: f.derivative().list() == [2, 12]
True

>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>>
f = Fmpz_poly([Integer(1),Integer(2),Integer(6)])
>>>
f.derivative().list() == [Integer(2), Integer(12)]
True
div_rem(other)
Return self / other, self, % other.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,3,4,5])
sage: g = f^23
sage: g.div_rem(f)[1]
0
sage: g.div_rem(f)[0] - f^22
0
sage: f = Fmpz_poly([1..10])
sage: g = Fmpz_poly([1,3,5])
sage: q, r = f.div_rem(g)
sage: q^f+r
17 1 2 3 4 4 4 10 11 17 18 22 26 30 23 26 18 20
sage: g
3 1 3 5
sage: q^g+r
10 1 2 3 4 5 6 7 8 9 10

>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1),Integer(3),Integer(4),Integer(5)])
(continues on next page)
```python
>>> g = f**Integer(23)
>>> g.div_rem(f)[Integer(1)]
0
>>> g.div_rem(f)[Integer(0)] - f**Integer(22)
0
>>> f = Fmpz_poly((ellipsis_range(Integer(1),Ellipsis,Integer(10))))
>>> g = Fmpz_poly([Integer(1),Integer(3),Integer(5)])
>>> q, r = f.div_rem(g)
>>> q'*r
17 1 2 3 4 4 10 11 17 18 22 26 30 23 26 18 20

left_shift (n)

Left shift self by n.

EXAMPLES:

```python
sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,2])
sage: f.left_shift(1).list() == [0,1,2]
True
```

```python
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1),Integer(2)])
>>> f.left_shift(Integer(1)).list() == [Integer(0),Integer(1),Integer(2)]
True
```

list ()

Return self as a list of coefficients, lowest terms first.

EXAMPLES:

```python
sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([2,1,0,-1])
sage: f.list()
[2, 1, 0, -1]
```

```python
>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(2),Integer(1),Integer(0),-Integer(1)])
>>> f.list()
[2, 1, 0, -1]
```

pow_truncate (exp, n)

Return self raised to the power of exp mod x^n.

EXAMPLES:

```python
sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1,2])
sage: f.pow_truncate(10,3)
3 1 20 180
```
```
sage: f.pow_truncate(1000, 3)
3 1 2000 1998000

>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([Integer(1), Integer(2)])
>>> f.pow_truncate(Integer(10), Integer(3))
3 1 20 180
>>> f.pow_truncate(Integer(1000), Integer(3))
3 1 2000 1998000

pseudo_div(other)

pseudo_div_rem(other)

right_shift(n)
Right shift self by n.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1, 2])
sage: f.right_shift(1).list() == [2]
True

truncated(n)
Return the truncation of self at degree n.

EXAMPLES:

sage: from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
sage: f = Fmpz_poly([1, 2])
1 0 45 120 210 252 210 120 45 10 1
sage: g = f**10; g
5 1 10 45 120 210
sage: g.truncate(5)
5 1 10 45 120

>>> from sage.all import *
>>> from sage.libs.flint.fmpz_poly_sage import Fmpz_poly
>>> f = Fmpz_poly([1, 2])
1 0 45 120 210 252 210 120 45 10 1
>>> g = f**Integer(10); g
5 1 10 45 120 210
>>> g.truncate(Integer(5))
5 1 10 45 120 210
3.2 File: sage/libs/flint/fmpq_poly_sage.pyx (starting at line 1)

3.3 FLINT Arithmetic Functions

sage.libs.flint.arith_sage.bell_number(n)

Return the n-th Bell number.

See Wikipedia article Bell_number.

ALGORITHM:

Uses arith_bell_number().

EXAMPLES:

```
sage: from sage.libs.flint.arith_sage import bell_number
sage: [bell_number(i) for i in range(10)]
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147]
sage: bell_number(10)
115975
sage: bell_number(40)
157450588391204931289324344702531067
sage: bell_number(100)
475853912767648336587907688413872078263636968686825611466616334637559114497892442622672724044217756
```

sage.libs.flint.arith_sage.bernoulli_number(n)

Return the n-th Bernoulli number.

See Wikipedia article Bernoulli_number.

EXAMPLES:

```
sage: from sage.libs.flint.arith_sage import bernoulli_number
sage: [bernoulli_number(i) for i in range(10)]
[1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0]
sage: bernoulli_number(10)
5/66
sage: bernoulli_number(40)
-261082718496449122051/13530
sage: bernoulli_number(100)
-94598037819122125295227433069493721872702841533066936133385696204311395415197247711/33330
```
```python
>>> from sage.all import *
>>> from sage.libs.flint.arith_sage import bernoulli_number

[bernoulli_number(i) for i in range(Integer(10))]
[1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0]

>>> bernoulli_number(Integer(10))
5/66

>>> bernoulli_number(Integer(40))
-261082718496449122051/13530

>>> bernoulli_number(Integer(100))
-\rightarrow 9459803781912212529527433069493721872702841533066936133385696204311395415197247711/33330

sage.libs.flint.arith_sage.dedekind_sum(p, q)
Return the Dedekind sum \( s(p, q) \) where \( p \) and \( q \) are arbitrary integers.

See Wikipedia article Dedekind_sum.

EXAMPLES:

```python
>>> from sage.libs.flint.arith_sage import dedekind_sum
sage: dedekind_sum(4, 5)
-1/5
```

```python
>>> from sage.all import *
>>> from sage.libs.flint.arith_sage import dedekind_sum

>>> dedekind_sum(Integer(4), Integer(5))
-1/5
```

sage.libs.flint.arith_sage.euler_number(n)
Return the Euler number of index \( n \).

See Wikipedia article Euler_number.

EXAMPLES:

```python
>>> from sage.libs.flint.arith_sage import euler_number
sage: [euler_number(i) for i in range(8)]
[1, 0, -1, 0, 5, 0, -61, 0]
```

```python
>>> from sage.all import *
>>> from sage.libs.flint.arith_sage import euler_number
>>> [euler_number(i) for i in range(Integer(8))]
[1, 0, -1, 0, 5, 0, -61, 0]
```

sage.libs.flint.arith_sage.harmonic_number(n)
Return the harmonic number \( H_n \).

See Wikipedia article Harmonic_number.

EXAMPLES:

```python
>>> from sage.libs.flint.arith_sage import harmonic_number
sage: n = 500 + randint(0,500)
sage: bool(sum(1/k for k in range(i,n+1)) == harmonic_number(n))
True
```
sage.libs.flint.arith_sage.number_of_partitions \((n)\)

Return the number of partitions of the integer \(n\).

See Wikipedia article Partition (number theory).

EXAMPLES:

```python
sage: from sage.libs.flint.arith_sage import number_of_partitions
sage: number_of_partitions(3)
3
sage: number_of_partitions(10)
42
sage: number_of_partitions(40)
37338
sage: number_of_partitions(100)
190569292
sage: number_of_partitions(100000)

2749351056977569651267751632098635268817342931598005547582031259843021473281149641730550507416607
```

sage.libs.flint.arith_sage.stirling_number_1 \((n, k)\)

Return the unsigned Stirling number of the first kind.

EXAMPLES:

```python
sage: from sage.libs.flint.arith_sage import stirling_number_1
sage: [stirling_number_1(8,i) for i in range(9)]
[0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1]
```

sage.libs.flint.arith_sage.stirling_number_2 \((n, k)\)

Return the Stirling number of the second kind.

EXAMPLES:
3.4 Interface to FLINT’s \texttt{qsieve} function. This used to interact

with an external “QuadraticSieve” program, but its functionality has been absorbed into flint.

\begin{verbatim}
from sage.libs.flint.qsieve_sage import qsieve

\texttt{qsieve(n)}

Factor \textit{n} using the quadratic sieve.

INPUT:

\begin{itemize}
  \item \textit{n} – an integer; neither prime nor a perfect power.
\end{itemize}

OUTPUT:

A list of the factors of \textit{n}. There is no guarantee that the factors found will be prime, or distinct.

EXAMPLES:

\begin{verbatim}
sage: k = 19; n = next_prime(10^k)*next_prime(10^(k+1))
sage: factor(n) # (currently) uses PARI
10000000000000000051 * 100000000000000000039
sage: qsieve(n)
[(10000000000000000051, 1), (100000000000000000039, 1)]
\end{verbatim}
\end{verbatim}

\begin{verbatim}
from sage.all import *

>>> from sage.libs.flint.qsieve_sage import qsieve

>>> k = Integer(19); n = next_prime(Integer(10)**k)*next_prime(Integer(10)**(k+1))

>>> factor(n) # (currently) uses PARI
10000000000000000051 * 100000000000000000039

>>> qsieve(n)
[(10000000000000000051, 1), (100000000000000000039, 1)]
\end{verbatim}

3.5 File: sage/libs/flint/ulong_extras_sage.pyx (starting at line 1)

\texttt{sage.libs.flint.ulong_extras_sage.n_factor_to_list(n, proved)}

A wrapper around \texttt{n_factor}.

EXAMPLES:

\begin{verbatim}
from sage.libs.flint.ulong_extras_sage import n_factor_to_list

sage: n_factor_to_list(60, 20)
[(2, 2), (3, 1), (5, 1)]

sage: n_factor_to_list((10**6).next_prime() + 1, 0)
[(2, 2), (53, 2), (89, 1)]
\end{verbatim}
```python
>>> from sage.all import *
>>> from sage.libs.flint.ulong_extras_sage import n_factor_to_list

```
```
>>> n_factor_to_list(Integer(60), Integer(20))
[(2, 2), (3, 1), (5, 1)]
```
```
>>> n_factor_to_list((Integer(10)**Integer(6)).next_prime() + Integer(1), Integer(0))
[(2, 2), (53, 2), (89, 1)]
```
4.1 Wrappers for Giac functions

We provide a python function to compute and convert to sage a Groebner basis using the giacpy_sage module.

AUTHORS:
- Martin Albrecht (2015-07-01): initial version
- Han Frederic (2015-07-01): initial version

EXAMPLES:

```python
sage: from sage.libs.giac import groebner_basis as gb_giac # random
sage: P = PolynomialRing(QQ, 6, 'x')
sage: I = sage.rings.ideal.Cyclic(P)
sage: B = gb_giac(I.gens()) # random
sage: B
Polynomial Sequence with 45 Polynomials in 6 Variables
```

```python
>>> from sage.all import *
>>> from sage.libs.giac import groebner_basis as gb_giac # random
>>> P = PolynomialRing(QQ, Integer(6), 'x')
>>> I = sage.rings.ideal.Cyclic(P)
>>> B = gb_giac(I.gens()) # random
>>> B
Polynomial Sequence with 45 Polynomials in 6 Variables
```

```python
class sage.libs.giac.GiacSettingsDefaultContext
 Bases: object

 Context preserve libgiac settings.

sage.libs.giac.groebner_basis(gens, proba_epsilon=None, threads=None, prot=False, elim_variables=None, *args, **kwds)
```

Compute a Groebner Basis of an ideal using giacpy_sage. The result is automatically converted to sage.

Supported term orders of the underlying polynomial ring are lex, deglex, degrevlex and block orders with 2 degrevlex blocks.

INPUT:
- `gens` – an ideal (or a list) of polynomials over a prime field of characteristic 0 or p<2^31
- `proba_epsilon` – (default: None) majoration of the probability of a wrong answer when probabilistic algorithms are allowed.
- if `proba_epsilon` is None, the value of `sage.structure.proof.all.polynomial()` is taken. If it is false then the global `giacpy_sage.giacsettings.proba_epsilon` is used.

- if `proba_epsilon` is 0, probabilistic algorithms are disabled.

• threads – (default: None) Maximal number of threads allowed for giac. If None, the global `giacpy_sage.giacsettings.threads` is considered.

• prot – (default: False) if True print detailed informations

• elim_variables – (default: None) a list of variables to eliminate from the ideal.

  - if `elim_variables` is None, a Groebner basis with respect to the term ordering of the parent polynomial ring of the polynomials `gens` is computed.

  - if `elim_variables` is a list of variables, a Groebner basis of the elimination ideal with respect to a `degrevlex` term order is computed, regardless of the term order of the polynomial ring.

OUTPUT:
Polynomial sequence of the reduced Groebner basis.

EXAMPLES:

• threads – (default: None) Maximal number of threads allowed for giac. If None, the global `giacpy_sage.giacsettings.threads` is considered.

• prot – (default: False) if True print detailed informations

• elim_variables – (default: None) a list of variables to eliminate from the ideal.

  - if `elim_variables` is None, a Groebner basis with respect to the term ordering of the parent polynomial ring of the polynomials `gens` is computed.

  - if `elim_variables` is a list of variables, a Groebner basis of the elimination ideal with respect to a `degrevlex` term order is computed, regardless of the term order of the polynomial ring.

OUTPUT:
Polynomial sequence of the reduced Groebner basis.

EXAMPLES:

```sage
from sage.libs.giac import groebner_basis as gb_giac
sage: P = PolynomialRing(GF(previous_prime(2**31)), 6, 'x')
sage: I = sage.rings.ideal.Cyclic(P)
sage: B = gb_giac(I.gens())
...
```

```sage
Polynomial Sequence with 45 Polynomials in 6 Variables
sage: B.is_groebner()
True
```

```sage
>>> from sage.all import *
>>> from sage.libs.giac import groebner_basis as gb_giac
>>> P = PolynomialRing(GF(previous_prime(Integer(2)**Integer(31))), Integer(6), 'x')
>>> I = sage.rings.ideal.Cyclic(P)
>>> B = gb_giac(I.gens())
...
```

```sage
Polyomial Sequence with 45 Polynomials in 6 Variables
```

```sage
>>> B.is_groebner()
True
```

Elimination ideals can be computed by passing `elim_variables`:

```sage
sage: P = PolynomialRing(GF(previous_prime(2**31)), 5, 'x')
sage: I = sage.rings.ideal.Cyclic(P)
sage: B = gb_giac(I.gens(), elim_variables=[P.gen(0), P.gen(2)])
...
sage: B.is_groebner()
True
sage: B.ideal() == I.elimination_ideal([P.gen(0), P.gen(2)])
True
```

```sage
>>> from sage.all import *
>>> P = PolynomialRing(GF(previous_prime(Integer(2)**Integer(31))), Integer(5), 'x')
```
Computationsover QQ can benefit from

• a probabilistic lifting:

```python
sage: P = PolynomialRing(QQ, 5, 'x')
sage: I = ideal([P.random_element(3,7) for j in range(5)])
sage: B1 = gb_giac(I.gens(),1e-16) # long time (1s)
...
sage: sage.structure.proof.all.polynomial(True)
sage: B2 = gb_giac(I.gens()) # long time (4s)
...
sage: B1 == B2 # long time
True
sage: B1.is_groebner() # not tested, too long time (50s)
True
```

• multithreaded operations:

```python
sage: P = PolynomialRing(QQ, 8, 'x')
sage: I = sage.rings.ideal.Cyclic(P)
sage: time B = gb_giac(I.gens(),1e-6,threads=2) # doctest: +SKIP
Time: CPU 168.98 s, Wall: 94.13 s
```

```python
sage: from sage.all import *
```
sage: I = sage.rings.ideal.Katsura(P)
sage: gb_giac(I,prot=True)  # random, long time (3s)
9381383 begin computing basis modulo 535718473
9381501 begin new iteration zmod, number of pairs: 8, base size: 8
... end, basis size 74 prime number 1
G=Vector [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,...
... creating reconstruction #0
...
+++++++ basis size 74
checking pairs for i=0, j=
checking pairs for i=1, j=2,6,12,17,19,24,29,34,39,42,43,48,56,61,64,69,
...
checking pairs for i=72, j=73,
checking pairs for i=73, j=
Number of critical pairs to check 373
+++++++
Successful... check of 373 critical pairs
12380865 end final check
Polynomial Sequence with 74 Polynomials in 8 Variables

sage.libs.giac.local_giacsettings(func)
Decorator to preserve Giac's proba_epsilon and threads settings.

EXAMPLES:

sage: def testf(a,b):
....:    giacsettings.proba_epsilon = a/100
....:    giacsettings.threads = b+2
....:    return (giacsettings.proba_epsilon, giacsettings.threads)
sage: from sage.libs.giac.giac import giacsettings
sage: from sage.libs.giac import local_giacsettings
sage: gporig, gtorig = (giacsettings.proba_epsilon,giacsettings.threads)
sage: gp, gt = local_giacsettings(testf)(giacsettings.proba_epsilon,giacsettings.threads)
sage: gporig == giacsettings.proba_epsilon

(continues on next page)
True

```python
sage: gtorig == giacsettings.threads
True
sage: gp<gporig, gt-gtorig
(True, 2)
```

```python
>>> from sage.all import *
>>> def testf(a,b):
... giacsettings.proba_epsilon = a/Integer(100)
... giacsettings.threads = b+Integer(2)
... return (giacsettings.proba_epsilon, giacsettings.threads)

>>> from sage.libs.giac.giac import giacsettings
>>> from sage.libs.giac import local_giacsettings

>>> gporig, gtorig = (giacsettings.proba_epsilon,giacsettings.threads)

>>> gp, gt = local_giacsettings(testf)(giacsettings.proba_epsilon,giacsettings.threads)

>>> gp<gporig, gt-gtorig
(True, 2)
```
5.1 The Elliptic Curve Method for Integer Factorization (ECM)

Sage includes GMP-ECM, which is a highly optimized implementation of Lenstra’s elliptic curve factorization method. See https://gitlab.inria.fr/zimmerma/ecm for more about GMP-ECM. This file provides a Cython interface to the GMP-ECM library.

AUTHORS:

- Jeroen Demeyer (2012-03-29): signal handling, documentation
- Paul Zimmermann (2011-05-22) – added input/output of sigma

EXAMPLES:

```
sage: from sage.libs.libecm import ecmfactor
def ECMResult(result):
 print(result[0], 'in', result[1])
sage: ECMResult(ecmfactor(999, 0.00))
True in [3, 9, 27, 37, 111, 333, 999] or result[1]
True
sage: ECMResult(ecmfactor(999, 0.00, verbose=True))
Performing one curve with B1=0
Found factor in step 1: ...
True in [3, 9, 27, 37, 111, 333, 999] or result[1]
True
sage: ECMResult(ecmfactor(2^128+1, 1000, sigma=227140902))
(True, 5704689200685129054721, 227140902)
```

```python
>>> from sage.all import *
>>> from sage.libs.libecm import ecmfactor
>>> result = ecmfactor(Integer(999), RealNumber('0.00'))
True
>>> result[Integer(0)]
True
>>> result[Integer(1)] in [Integer(3), Integer(9), Integer(27), Integer(37),...
True
>>> result = ecmfactor(Integer(999), RealNumber('0.00'), verbose=True)
Performing one curve with B1=0
Found factor in step 1: ...
>>> result[Integer(0)]
```

(continues on next page)
True
>>> result[Integer(1)] in [Integer(3), Integer(9), Integer(27), Integer(37),...
→ Integer(111), Integer(333), Integer(999)] or result[Integer(1)]
True
>>> ecmfactor(Integer(2)**Integer(128)+Integer(1), Integer(1000),
→ sigma=Integer(227140902))
(True, 5704689200685129054721, 227140902)

**sage.libs.libecm.ecmfactor**(number, B1, verbose=False, sigma=0)

Try to find a factor of a positive integer using ECM (Elliptic Curve Method). This function tries one elliptic curve.

**INPUT:**

- **number** – positive integer to be factored
- **B1** – bound for step 1 of ECM
- **verbose** (default: False) – print some debugging information

**OUTPUT:**

Either (False, None) if no factor was found, or (True, f) if the factor f was found.

**EXAMPLES:**

[sage]: from sage.libs.libecm import ecmfactor

```python
>>> from sage.all import *
>>> from sage.libs.libecm import ecmfactor
```

This number has a small factor which is easy to find for ECM:

```python
sage: N = 2^167 - 1
sage: factor(N)
2349023 * 7963830476685650737778616296087448490695649
sage: ecmfactor(N, RealNumber(2e5))
(True, 2349023, 1473308225)
```

If a factor was found, we can reproduce the factorization with the same sigma value:

```python
sage: N = 2^167 - 1
sage: ecmfactor(N, RealNumber(2e5), sigma=Integer(1473308225))
(True, 2349023, 1473308225)
```

With a smaller B1 bound, we may or may not succeed:
The following number is a Mersenne prime, so we don't expect to find any factors (there is an extremely small chance that we get the input number back as factorization):

```
sage: N = 2^127 - 1
sage: N.is_prime()
True
sage: ecmfactor(N, 1e3)
(False, None)
```

If we have several small prime factors, it is possible to find a product of primes as factor:

```
sage: N = 2^179 - 1
sage: factor(N)
359 * 1433 * 14894591093600398664569401970954337216664951999121
sage: ecmfactor(N, 1e3) # random
(True, 514447, 3475102204)
```

We can ask for verbose output:

```
sage: N = 12^97 - 1
sage: factor(N)
11 * _
 -4357006235375344605345561005667974000505656966118420894078389027832099599815930778113305073283264
sage: ecmfactor(N, 100, verbose=True)
Performing one curve with B1=100
Found factor in step 1: 11
(True, 11, ...)
sage: ecmfactor(N/11, 100, verbose=True)
Performing one curve with B1=100
Found no factor.
(False, None)
```

(continues on next page)
11 *–435700623537534460534556100566797400005056966111842089407838902783209959981593077811330507328327968191581
>>> ecmfactor(N, Integer(100), verbose=True)
Performing one curve with B1=100
Found factor in step 1: 11
(True, 11, ...)
>>> ecmfactor(N/Integer(11), Integer(100), verbose=True)
Performing one curve with B1=100
Found no factor.
(False, None)
6.1 GSL arrays

class sage.libs.gsl.array.GSLDoubleArray
    Bases: object

    EXAMPLES:

    sage: a = WaveletTransform(128,'daubechies',4)
    sage: for i in range(1, 11):
    ....:     a[i] = 1
    sage: a[:6:2]
    [0.0, 1.0, 1.0]

    >>> from sage.all import *
    >>> a = WaveletTransform(Integer(128),'daubechies',Integer(4))
    >>> for i in range(Integer(1), Integer(11)):
    ...     a[i] = Integer(1)
    >>> a[:Integer(6):Integer(2)]
    [0.0, 1.0, 1.0]
7.1 Rubinstein’s lcalc library

This is a wrapper around Michael Rubinstein’s lcalc. See http://oto.math.uwaterloo.ca/~mrubinst/L_function_public/ CODE/.

AUTHORS:
- Rishikesh (2010): added compute_rank() and hardy_z_function()
- Yann Laigle-Chapuy (2009): refactored
- Rishikesh (2009): initial version

```python
class sage.libs.lcalc.lcalc_Lfunction.Lfunction
 Bases: object

 Initialization of L-function objects. See derived class for details, this class is not supposed to be instantiated directly.

 EXAMPLES:

 sage: from sage.libs.lcalc.lcalc_Lfunction import *
 sage: Lfunction_from_character(DirichletGroup(5)[1])
 L-function with complex Dirichlet coefficients

 >>> from sage.all import *
 >>> from sage.libs.lcalc.lcalc_Lfunction import *
 >>> Lfunction_from_character(DirichletGroup(Integer(5))[Integer(1)])
 L-function with complex Dirichlet coefficients

 compute_rank()

 Computes the analytic rank (the order of vanishing at the center) of of the L-function

 EXAMPLES:

 sage: from sage.libs.lcalc.lcalc_Lfunction import *
 sage: chi = DirichletGroup(5)[2] # This is a quadratic character
 sage: L = Lfunction_from_character(chi, type="int")
 sage: L.compute_rank()
 0

 >>> from sage.all import *
 >>> from sage.libs.lcalc.lcalc_Lfunction import *
 >>> chi = DirichletGroup(Integer(5))[Integer(2)] # This is a quadratic character
```

(continues on next page)
>>> L = Lfunction_from_character(chi, type="int")
>>> L.compute_rank()
0

```python
from sage.libs.lcalc.lcalc_Lfunction import *
E = EllipticCurve([-82,0])
L = Lfunction_from_elliptic_curve(E, number_of_coeffs=40000)
L.compute_rank()
```

3

```python
from sage.all import *
from sage.libs.lcalc.lcalc_Lfunction import *
E = EllipticCurve([-Integer(82),Integer(0)])
L = Lfunction_from_elliptic_curve(E, number_of_coeffs=Integer(40000))
L.compute_rank()
```

3

**find_zeros** \((T1, T2, \text{stepsize})\)

Finds zeros on critical line between \(T1\) and \(T2\) using step size of \(\text{stepsize}\). This function might miss zeros if step size is too large. This function computes the zeros of the \(L\)-function by using change in signs of areal valued function whose zeros coincide with the zeros of \(L\)-function.

Use **find_zeros_via_N()** for slower but more rigorous computation.

**INPUT:**
- \(T1\) – a real number giving the lower bound
- \(T2\) – a real number giving the upper bound
- \(\text{stepsize}\) – step size to be used for the zero search

**OUTPUT:**
- list – A list of the imaginary parts of the zeros which were found.

**EXAMPLES:**

```python
sage: from sage.libs.lcalc.lcalc_Lfunction import *
sage: chi = DirichletGroup(5)[2] # This is a quadratic character
sage: L = Lfunction_from_character(chi, type="int")
```

```python
sage: L.find_zeros(5,15,.1)
[6.64845334472..., 9.83144443288..., 11.9588456260...]
```

```python
sage: L = Lfunction_from_character(chi, type="double")
```

```python
sage: L.find_zeros(1,15,.1)
[6.64845334472..., 9.83144443288..., 11.9588456260...]
```

```python
>>> from sage.all import *
>>> from sage.libs.lcalc.lcalc_Lfunction import *
>>>
chi = DirichletGroup(Integer(5))[Integer(2)] # This is a quadratic character
>>>
```

```python
L = Lfunction_from_character(chi, type="int")
```

```python
L.find_zeros(Integer(5),Integer(15),RealNumber(.1))
[6.64845334472..., 9.83144443288..., 11.9588456260...]
```

```python
L = Lfunction_from_character(chi, type="double")
```

```python
L.find_zeros(Integer(1),Integer(15),RealNumber(.1))
[6.64845334472..., 9.83144443288..., 11.9588456260...]
```
sage: from sage.libs.lcalc.lcalc_Lfunction import *

sage: chi = DirichletGroup(5)[1]
sage: L = Lfunction_from_character(chi, type="complex")

sage: L.find_zeros(-8,8,.1)
[-4.13290370521..., 6.18357819545...

sage: from sage.libs.lcalc.lcalc_Lfunction import *

sage: chi = DirichletGroup(Integer(5))[Integer(1)]

sage: L = Lfunction_from_character(chi, type="complex")

sage: L.find_zeros(-Integer(8),Integer(8),RealNumber(.1))
[-4.13290370521..., 6.18357819545...

sage: from sage.libs.lcalc.lcalc_Lfunction import *

sage: L = Lfunction_Zeta()

sage: L.find_zeros(10,29.1,.1)
[14.1347251417..., 21.0220396387..., 25.0108575801...

sage: from sage.libs.lcalc.lcalc_Lfunction import *

sage: chi = DirichletGroup(5)[2]

# This is a quadratic character

sage: L = Lfunction_from_character(chi, type="int")

sage: L.find_zeros_via_N(3)
[6.64845334472..., 9.83144443288..., 11.9588456260...

sage: L = Lfunction_from_character(chi, type="double")

sage: L.find_zeros_via_N(3)
[6.64845334472..., 9.83144443288..., 11.9588456260...

\textbf{find\_zeros\_via\_N}(\textit{count}=0, \textit{start}=0, \textit{max\_refine}=1025, \textit{rank}=-1)

Find \textit{count} zeros (in order of increasing magnitude) and output their imaginary parts. This function verifies that no zeros are missed, and that all values output are indeed zeros.

If this L-function is self-dual (if its Dirichlet coefficients are real, up to a tolerance of 1e-6), then only the zeros with positive imaginary parts are output. Their conjugates, which are also zeros, are not output.

INPUT:

- \textit{count} – number of zeros to be found
- \textit{start} – (default: 0) how many initial zeros to skip
- \textit{max\_refine} – when some zeros are found to be missing, the step size used to find zeros is refined. \textit{max\_refine} gives an upper limit on when \textit{lcalc} should give up. Use default value unless you know what you are doing.
- \textit{rank} – integer (default: -1) analytic rank of the L-function. If -1 is passed, then we attempt to compute it. (Use default if in doubt)

OUTPUT:

list – A list of the imaginary parts of the zeros that have been found

\textbf{EXAMPLES:}

sage: from sage.libs.lcalc.lcalc_Lfunction import *

sage: chi = DirichletGroup(5)[2] # This is a quadratic character

sage: L = Lfunction_from_character(chi, type="int")

sage: L.find_zeros_via_N(3)
[6.64845334472..., 9.83144443288..., 11.9588456260...

sage: L = Lfunction_from_character(chi, type="double")

sage: L.find_zeros_via_N(3)
[6.64845334472..., 9.83144443288..., 11.9588456260...

7.1. Rubinstein’s lcalc library
>>> from sage.all import *
>>> from sage.libs.lcalc.lcalc_Lfunction import *
>>> chi = DirichletGroup(Integer(5))[Integer(2)] # This is a quadratic character
>>> L = Lfunction_from_character(chi, type="int")
>>> L.find_zeros_via_N(Integer(3))
[6.64845334472..., 9.83144443288..., 11.9588456260...]
>>> L = Lfunction_from_character(chi, type="double")
>>> L.find_zeros_via_N(Integer(3))
[6.64845334472..., 9.83144443288..., 11.9588456260...]

>>> from sage.libs.lcalc.lcalc_Lfunction import *
>>> chi = DirichletGroup(5)[1]
>>> L = Lfunction_from_character(chi, type="complex")
>>> zeros = L.find_zeros_via_N(3)
>>> (zeros[Integer(0)] - (-RealNumber('4.13290370521286'))).abs() < 1e-8
True
>>> (zeros[Integer(1)] - 6.18357819545086).abs() < 1e-8
True
>>> (zeros[Integer(2)] - 8.45722917442320).abs() < 1e-8
True

>>> from sage.all import *
>>> from sage.libs.lcalc.lcalc_Lfunction import *
>>> L = Lfunction_Zeta()
>>> L.find_zeros_via_N(Integer(3))
[14.1347251417..., 21.0220396387..., 25.0108575801...]
value \((s, \text{derivative}=0)\)

Computes the value of the L-function at \(s\)

**INPUT:**

- \(s\) – a complex number
• derivative – integer (default: 0) the derivative to be evaluated
• rotate – (default: False) If True, this returns the value of the Hardy Z-function (sometimes called the Riemann-Siegel Z-function or the Siegel Z-function).

EXAMPLES:

```python
sage: from sage.libs.lcalc.lcalc_Lfunction import *
sage: chi = DirichletGroup(5)[2] # This is a quadratic character
sage: L = Lfunction_from_character(chi, type="int")
sage: (L.value(0.5) - 0.231750947504016).abs() < 1e-8
True
sage: v = L.value(0.2 + 0.4*I)
sage: (v - (0.102558603193 + 0.19084077924*I)).abs() < 1e-8
True
sage: L = Lfunction_from_character(chi, type="double")
sage: (L.value(0.6) - 0.27463355856345).abs() < 1e-8
True
sage: v = L.value(0.6 + I)
sage: (v - (0.362258705721 + 0.43388825062*I)).abs() < 1e-8
True
```

```python
>>> from sage.all import *
>>> from sage.libs.lcalc.lcalc_Lfunction import *
>>> chi = DirichletGroup(Integer(5))[Integer(2)] # This is a quadratic character
>>> L = Lfunction_from_character(chi, type="int")
>>> (L.value(RealNumber('0.5')) - RealNumber('0.231750947504016')).abs() < RealNumber('1e-8')
True
>>> v = L.value(RealNumber('0.2') + RealNumber('0.4')*I)
>>> (v - (RealNumber('0.102558603193') + RealNumber('0.19084077924')*I)).abs() < RealNumber('1e-8')
True
>>> L = Lfunction_from_character(chi, type="double")
>>> (L.value(RealNumber('0.6')) - RealNumber('0.27463355856345')).abs() < RealNumber('1e-8')
True
>>> v = L.value(RealNumber('0.6') + I)
>>> (v - (RealNumber('0.362258705721') + RealNumber('0.43388825062')*I)).abs() < RealNumber('1e-8')
True
```

```python
sage: from sage.libs.lcalc.lcalc_Lfunction import *
sage: chi = DirichletGroup(5)[1]
sage: L = Lfunction_from_character(chi, type="complex")
sage: v = L.value(0.5)
sage: (v - (0.763747880117 + 0.21696476751*I)).abs() < 1e-8
True
sage: v = L.value(0.6 + 5*I)
sage: (v - (0.702723260619 - 1.1078575243*I)).abs() < 1e-8
True
```

```python
>>> from sage.all import *
>>> from sage.libs.lcalc.lcalc_Lfunction import *
>>> chi = DirichletGroup(Integer(5))[Integer(1)]
>>> L = Lfunction_from_character(chi, type="complex")
>>> v = L.value(RealNumber('0.5'))
```

(continues on next page)
>>> (v - (RealNumber('0.763747880117') + RealNumber('0.21696476751')*I)).
˓→ abs() < RealNumber('1e-8')
True

>>> v = L.value(RealNumber('0.6') + Integer(5)*I)
>>> (v - (RealNumber('0.702723260619') - RealNumber('1.10178575243')*I)).
˓→ abs() < RealNumber('1e-8')
True

tsage: from sage.libs.lcalc.lcalc_Lfunction import *
sage: L = Lfunction_Zeta()
sage: (L.value(0.5) + 1.46035450880).abs() < 1e-8
True

tsage: v = L.value(0.4 + 0.5*I)
stsage: (v - (-0.450728958517 - 0.780511403019*I)).abs() < 1e-8
True

>>> from sage.all import *
>>> from sage.libs.lcalc.lcalc_Lfunction import *

>>> L = Lfunction_Zeta()

>>> (L.value(RealNumber('0.5')) + RealNumber('1.46035450880')).abs() <
˓→ RealNumber('1e-8')
True

>>> v = L.value(RealNumber('0.4') + RealNumber('0.5')*I)

>>> (v - (-RealNumber('0.450728958517') - RealNumber('0.780511403019')*I)).abs() < 1e-8
True

class sage.libs.lcalc.lcalc_Lfunction.Lfunction_C

Bases: Lfunction

The Lfunction_C class is used to represent L-functions with complex Dirichlet Coefficients. We assume that L-functions satisfy the following functional equation.

\[ \Lambda(s) = \omega Q^s \overline{\Lambda(1-s)} \]

where

\[ \Lambda(s) = Q^s \left( \prod_{j=1}^{a} \Gamma(\kappa_j s + \gamma_j) \right) L(s) \]

See (23) in arXiv math/0412181

INPUT:

- what_type_L – integer, this should be set to 1 if the coefficients are periodic and 0 otherwise.
- dirichlet_coefficient – List of Dirichlet coefficients of the L-function. Only first \( M \) coefficients are needed if they are periodic.
- period – If the coefficients are periodic, this should be the period of the coefficients.
- Q – See above
- OMEGA – See above
- kappa – List of the values of \( \kappa_j \) in the functional equation
- gamma – List of the values of \( \gamma_j \) in the functional equation
• pole – List of the poles of L-function
• residue – List of the residues of the L-function

Note: If an L-function satisfies \( \Lambda(s) = \omega Q^s \Lambda(k - s) \), by replacing \( s \) by \( s + (k - 1)/2 \), one can get it in the form we need.

class sage.libs.lcalc.lcalc_Lfunction.Lfunction_D
Bases: Lfunction
The Lfunction_D class is used to represent L-functions with real Dirichlet coefficients. We assume that L-functions satisfy the following functional equation.

\[
\Lambda(s) = \omega Q^s \Lambda(1 - \bar{s})
\]

where

\[
\Lambda(s) = Q^s \left( \prod_{j=1}^{a} \Gamma(\kappa_j s + \gamma_j) \right) L(s)
\]

See (23) in arXiv math/0412181

INPUT:
• what_type_L – integer, this should be set to 1 if the coefficients are periodic and 0 otherwise.
• dirichlet_coefficient – List of Dirichlet coefficients of the L-function. Only first \( M \) coefficients are needed if they are periodic.
• period – If the coefficients are periodic, this should be the period of the coefficients.
• Q – See above
• OMEGA – See above
• kappa – List of the values of \( \kappa_j \) in the functional equation
• gamma – List of the values of \( \gamma_j \) in the functional equation
• pole – List of the poles of L-function
• residue – List of the residues of the L-function

Note: If an L-function satisfies \( \Lambda(s) = \omega Q^s \Lambda(k - s) \), by replacing \( s \) by \( s + (k - 1)/2 \), one can get it in the form we need.

class sage.libs.lcalc.lcalc_Lfunction.Lfunction_I
Bases: Lfunction
The Lfunction_I class is used to represent L-functions with integer Dirichlet Coefficients. We assume that L-functions satisfy the following functional equation.

\[
\Lambda(s) = \omega Q^s \Lambda(1 - \bar{s})
\]

where

\[
\Lambda(s) = Q^s \left( \prod_{j=1}^{a} \Gamma(\kappa_j s + \gamma_j) \right) L(s)
\]
INPUT:

• what_type_L – integer, this should be set to 1 if the coefficients are periodic and 0 otherwise.
• dirichlet_coefficient – List of Dirichlet coefficients of the L-function. Only first $M$ coefficients are needed if they are periodic.
• period – If the coefficients are periodic, this should be the period of the coefficients.
• Q – See above
• OMEGA – See above
• kappa – List of the values of $\kappa_j$ in the functional equation
• gamma – List of the values of $\gamma_j$ in the functional equation
• pole – List of the poles of L-function
• residue – List of the residues of the L-function

Note: If an L-function satisfies $\Lambda(s) = \omega Q^s \Lambda(k - s)$, by replacing $s$ by $s + (k - 1)/2$, one can get it in the form we need.

```python
class sage.libs.lcalc.lcalc_Lfunction.Lfunction_Zeta
 Bases: Lfunction

 The Lfunction_Zeta class is used to generate the Riemann zeta function.

sage.libs.lcalc.lcalc_Lfunction.Lfunction_from_character(chi, type='complex')

Given a primitive Dirichlet character, this function returns an lcalc L-function object for the L-function of the character.

INPUT:

• chi – A Dirichlet character
• use_type – string (default: “complex”) type used for the Dirichlet coefficients. This can be “int”, “double” or “complex”.

OUTPUT:

L-function object for chi.

EXAMPLES:

sage: from sage.libs.lcalc.lcalc_Lfunction import Lfunction_from_character
sage: Lfunction_from_character(DirichletGroup(5)[1])
L-function with complex Dirichlet coefficients
sage: Lfunction_from_character(DirichletGroup(5)[2], type="int")
L-function with integer Dirichlet coefficients
sage: Lfunction_from_character(DirichletGroup(5)[2], type="double")
L-function with real Dirichlet coefficients
sage: Lfunction_from_character(DirichletGroup(5)[1], type="int")
Traceback (most recent call last):
... ValueError: For non quadratic characters you must use type="complex"
```
sage.libs.lcalc.lcalc_Lfunction.Lfunction_from_elliptic_curve(E, number_of_coeffs=10000)

Given an elliptic curve E, return an L-function object for the function $L(s, E)$.

**INPUT:**

- E – An elliptic curve
- number_of_coeffs – integer (default: 10000) The number of coefficients to be used when constructing the L-function object. Right now this is fixed at object creation time, and is not automatically set intelligently.

**OUTPUT:**

L-function object for $L(s, E)$.

**EXAMPLES:**

```python
sage: from sage.libs.lcalc.lcalc_Lfunction import Lfunction_from_elliptic_curve
sage: L = Lfunction_from_elliptic_curve(EllipticCurve('37'))
sage: L
L-function with real Dirichlet coefficients
sage: L.value(0.5).abs() < 1e-8
True
sage: (L.value(0.5, derivative=1) - 0.305999773835200).abs() < 1e-6
True
```
8.1 libSingular: Functions

Sage implements a C wrapper around the Singular interpreter which allows to call any function directly from Sage without string parsing or interprocess communication overhead. Users who do not want to call Singular functions directly, usually do not have to worry about this interface, since it is handled by higher level functions in Sage.

EXAMPLES:

The direct approach for loading a Singular function is to call the function `singular_function()` with the function name as parameter:

```python
sage: from sage.libs.singular.function import singular_function
sage: P.<a,b,c,d> = PolynomialRing(GF(7))

sage: std = singular_function('std')

sage: I = sage.rings.ideal.Cyclic(P)

sage: std(I)
[a + b + c + d,
b^2 + 2*b*d + d^2,
b*c^2 + c^2*d - b*d^2 - d^3,
b*c*d^2 + c^2*d^2 - b*d^3 + c*d^3 - d^4 - 1,
b*d^4 + d^5 - b - d,
c^3*d^2 + c^2*d^3 - c - d,
c^2*d^4 + b*c - b*d + c*d - 2*d^2]
```

If a Singular library needs to be loaded before a certain function is available, use the `lib()` function as shown below:

```python
sage: from sage.libs.singular.function import singular_function, lib
sage: primdecSY = singular_function('primdecSY')
```

(continues on next page)
Traceback (most recent call last):
...
NameError: Singular library function 'primdecSY' is not defined

```python
sage: singular_lib('primdec.lib')
sage: primdecSY = singular_function('primdecSY')
```

```python
>>> from sage.all import *
>>> from sage.libs.singular.function import singular_function, lib as singular_lib

>>> singular_lib('primdec.lib')
>>> primdecSY = singular_function('primdecSY')
```

There is also a short-hand notation for the above:

```python
sage: import sage.libs.singular.function_factory

sage: primdecSY = sage.libs.singular.function_factory.ff.primdec__lib.primdecSY
```

The above line will load “primdec.lib” first and then load the function `primdecSY`.

**AUTHORS:**
- Michael Brickenstein (2009-07): initial implementation, overall design
- Martin Albrecht (2009-07): clean up, enhancements, etc
- Michael Brickenstein (2009-10): extension to more Singular types
- Martin Albrecht (2010-01): clean up, support for attributes
- Simon King (2011-04): include the documentation provided by Singular as a code block
- Burcin Erocal, Michael Brickenstein, Oleksandr Motsak, Alexander Dreyer, Simon King (2011-09): plural support

```python
class sage.libs.singular.function.BaseCallHandler
 Bases: object

 A call handler is an abstraction which hides the details of the implementation differences between kernel and library functions.

class sage.libs.singular.function.Converter
 Bases: SageObject

 A `Converter` interfaces between Sage objects and Singular interpreter objects.

 `ring()`

 Return the ring in which the arguments of this list live.

 EXAMPLES:
```
class sage.libs.singular.function.KernelCallHandler
    Bases: BaseCallHandler

    A call handler is an abstraction which hides the details of the implementation differences between kernel and library functions.

    This class implements calling a kernel function.

    **Note:** Do not construct this class directly, use `singular_function()` instead.

class sage.libs.singular.function.LibraryCallHandler
    Bases: BaseCallHandler

    A call handler is an abstraction which hides the details of the implementation differences between kernel and library functions.

    This class implements calling a library function.

    **Note:** Do not construct this class directly, use `singular_function()` instead.

class sage.libs.singular.function.Resolution
    Bases: object

    A simple wrapper around Singular’s resolutions.

class sage.libs.singular.function.RingWrap
    Bases: object

    A simple wrapper around Singular’s rings.

def characteristic()
    Get characteristic.

    EXAMPLES:
is_commutative()

Determine whether a given ring is commutative.

EXAMPLES:

sage: from sage.libs.singular.function import singular_function
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: ringlist = singular_function("ringlist")
sage: l = ringlist(P)
sage: ring = singular_function("ring")
sage: ring(l, ring=P).is_commutative()
True

ngens()

Get number of generators.

EXAMPLES:

sage: from sage.libs.singular.function import singular_function
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: ringlist = singular_function("ringlist")
sage: l = ringlist(P)
sage: ring = singular_function("ring")
sage: ring(l, ring=P).ngens()
3

npars()

Determine whether a given ring is commutative.

EXAMPLES:

sage: from sage.libs.singular.function import singular_function
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: ringlist = singular_function("ringlist")
sage: l = ringlist(P)
sage: ring = singular_function("ring")
sage: ring(l, ring=P).is_commutative()
True

ngens()

Get number of generators.

EXAMPLES:

sage: from sage.libs.singular.function import singular_function
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: ringlist = singular_function("ringlist")
sage: l = ringlist(P)
sage: ring = singular_function("ring")
sage: ring(l, ring=P).ngens()
3

npars()
Get number of parameters.

EXAMPLES:

```python
sage: from sage.libs.singular.function import singular_function
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: ringlist = singular_function("ringlist")
sage: l = ringlist(P)
sage: ring = singular_function("ring")
sage: ring(l, ring=P).npars()
0
```

ordering_string()

Get Singular string defining monomial ordering.

EXAMPLES:

```python
sage: from sage.libs.singular.function import singular_function
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: ringlist = singular_function("ringlist")
sage: l = ringlist(P)
sage: ring = singular_function("ring")
sage: ring(l, ring=P).ordering_string()
'dp(3),C'
```

par_names()

Get parameter names.

EXAMPLES:

```python
sage: from sage.libs.singular.function import singular_function
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: ringlist = singular_function("ringlist")
sage: l = ringlist(P)
sage: ring = singular_function("ring")
sage: ring(l, ring=P).par_names()
[]
```
var_names()

Get names of variables.

EXAMPLES:

```
sage: from sage.libs.singular.function import singular_function
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: ringlist = singular_function("ringlist")
sage: l = ringlist(P)
sage: ring = singular_function("ring")
sage: ring(l, ring=P).var_names()
['x', 'y', 'z']
```

class sage.libs.singular.function.SingularFunction

Bases: sageObject

The base class for Singular functions either from the kernel or from the library.

class sage.libs.singular.function.SingularKernelFunction

Bases: SingularFunction

EXAMPLES:

```
sage: from sage.libs.singular.function import SingularKernelFunction
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(x, x+1)
sage: f = SingularKernelFunction("std")
sage: f(I)
[1]
```

```
class sage.libs.singular.function.SingularLibraryFunction

Bases: SingularFunction

EXAMPLES:

```python
from sage.libs.singular.function import SingularLibraryFunction
R.<x,y> = PolynomialRing(QQ, order='lex')
I = R.ideal(x, x+1)
f = SingularLibraryFunction("groebner")
f(I)
```

```python
from sage.all import *
from sage.libs.singular.function import SingularLibraryFunction
P.<x,y,z> = QQ[]
M = P**2
all_singular_poly_wrapper([x])
all_singular_poly_wrapper([(x,y)])
all_vectors([M(0), M((x,y))])
```

sage.libs.singular.function.all_singular_poly_wrapper(s)
Tests for a sequence s, whether it consists of singular polynomials.

EXAMPLES:

```python
from sage.libs.singular.function import all_singular_poly_wrapper
P.<x,y,z> = QQ[
all_singular_poly_wrapper([x+1, y])
all_singular_poly_wrapper([x+1, y, 1])
```

sage.libs.singular.function.all_vectors(s)
Check if a sequence s consists of free module elements over a singular ring.

EXAMPLES:

```python
from sage.libs.singular.function import all_vectors
P.<x,y,z> = QQ[]
M = P**2
all_vectors([x])
all_vectors([(x,y)])
all_vectors([M(0), M((x,y))])
```
```python
from sage.lib import *
from sage.libs.singular.function import all_vectors

P = QQ['x, y, z']
(x, y, z) = P._first_ngens(3)
M = P**Integer(2)
all_vectors([x])
False
all_vectors([(x, y)])
False
all_vectors([M(Integer(0)), M((x, y))])
True
all_vectors([M(Integer(0)), M((x, y)), (Integer(0), Integer(0))])
False
```

sage.libs.singular.function.is_sage_wrapper_for_singular_ring (ring)

Check whether wrapped ring arises from Singular or Singular/Plural.

EXAMPLES:

```python
sage: from sage.libs.singular.function import is_sage_wrapper_for_singular_ring
sage: P.<x,y,z> = QQ[]
sage: is_sage_wrapper_for_singular_ring(P)
True
```

```python
A.<x,y,z> = FreeAlgebra(QQ, 3)
P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
```

```python
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
```

```python
sage.libs.singular.function.is_singular_poly_wrapper(p)
```

Check if `p` is some data type corresponding to some singular poly.

EXAMPLES:

```python
sage: from sage.libs.singular.function import is_singular_poly_wrapper
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: is_singular_poly_wrapper(x*y)
True
```

```python
sage: A = FreeAlgebra(QQ, Integer(3), names=('x', 'y', 'z',)); (x, y, z) = A._(*first_ngens(3))
P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: is_singular_poly_wrapper(x*y)
True
```

(continues on next page)
sage.libs.singular.function.lib(name)

Load the Singular library name.

INPUT:

• name – a Singular library name

EXAMPLES:

```python
sage: from sage.libs.singular.function import singular_function
sage: from sage.libs.singular.function import lib as singular_lib
sage: singular_lib('general.lib')
sage: primes = singular_function('primes')
sage: primes(2, 10, ring=GF(127)[x,y,z])
(2, 3, 5, 7)
```

sage.libs.singular.function.list_of_functions(packages=False)

Return a list of all function names currently available.

INPUT:

• packages – include local functions in packages.

EXAMPLES:

```python
sage: from sage.libs.singular.function import list_of_functions
sage: 'groebner' in list_of_functions()
True
```

sage.libs.singular.function.singular_function(name)

Construct a new libSingular function object for the given name.

This function works both for interpreter and built-in functions.

INPUT:

• name – the name of the function

EXAMPLES:
```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: f = 3*x*y + 2*z + 1
sage: g = 2*x + 1/2
sage: I = Ideal([f,g])
```

```python
>>> from sage.all import *
>>> P = PolynomialRing(QQ, names=('x', 'y', 'z',))
>>> (x, y, z,) = P._first_ngens(3)
>>> f = Integer(3)*x*y + Integer(2)*z + Integer(1)
>>> g = Integer(2)*x + Integer(1)/Integer(2)
>>> I = Ideal([f,g])
```

```python
sage: from sage.libs.singular.function import singular_function
sage: std = singular_function("std")
```

```python
sage: std(I)
[3*y - 8*z - 4, 4*x + 1]
sage: size = singular_function("size")
sage: size([Integer(2), Integer(3), Integer(3)])
3
sage: size("sage")
4
sage: size(["hello", "sage"])
2
sage: factorize = singular_function("factorize")
sage: factorize(f)
[[1, 3*x*y + 2*z + 1], (1, 1)]
sage: factorize(f, 1)
[3*x*y + 2*z + 1]
```

```python
>>> from sage.all import *
>>> from sage.libs.singular.function import singular_function
>>> std = singular_function("std")
```

```python
>>> std(I)
[3*y - 8*z - 4, 4*x + 1]
```

```python
>>> size = singular_function("size")
```

```python
>>> size([Integer(2), Integer(3), Integer(3)])
3
```

```python
>>> size("sage")
4
```

```python
>>> size(["hello", "sage"])
2
```

```python
>>> factorize = singular_function("factorize")
```

```python
>>> factorize(f)
[[1, 3*x*y + 2*z + 1], (1, 1)]
```

```python
>>> factorize(f, Integer(1))
[3*x*y + 2*z + 1]
```

We give a wrong number of arguments:

```python
sage: factorize()
Traceback (most recent call last):
  ...  
RuntimeError: error in Singular function call 'factorize':
Wrong number of arguments (got 0 arguments, arity is CMD_12)
sage: factorize(f, 1, 2)
Traceback (most recent call last):
  ...  
```
RuntimeError: error in Singular function call 'factorize':
Wrong number of arguments (got 3 arguments, arity is CMD_12)

```
sage: factorize(f, 1, 2, 3)
```
Traceback (most recent call last):
...

RuntimeError: error in Singular function call 'factorize':
Wrong number of arguments (got 4 arguments, arity is CMD_12)

```
>>> from sage.all import *
>>> factorize()
```
Traceback (most recent call last):
...

RuntimeError: error in Singular function call 'factorize':
Wrong number of arguments (got 0 arguments, arity is CMD_12)

```
>>> factorize(f, Integer(1), Integer(2))
```
Traceback (most recent call last):
...

RuntimeError: error in Singular function call 'factorize':
Wrong number of arguments (got 3 arguments, arity is CMD_12)

```
>>> factorize(f, Integer(1), Integer(2), Integer(3))
```
Traceback (most recent call last):
...

RuntimeError: error in Singular function call 'factorize':
Wrong number of arguments (got 4 arguments, arity is CMD_12)

The Singular function `list` can be called with any number of arguments:

```
sage: singular_list = singular_function("list")
sage: singular_list(2, 3, 6)
[2, 3, 6]
sage: singular_list()
[]
sage: singular_list(1)
[1]
sage: singular_list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

```
>>> from sage.all import *
>>> singular_list = singular_function("list")
>>> singular_list(Integer(2), Integer(3), Integer(6))
[2, 3, 6]
>>> singular_list()
[]
>>> singular_list(Integer(1))
[1]
>>> singular_list(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5),...
  →Integer(6), Integer(7), Integer(8), Integer(9), Integer(10))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

We try to define a non-existing function:

```
sage: number_foobar = singular_function('number_foobar')
```
Traceback (most recent call last):
...

NameError: Singular library function 'number_foobar' is not defined

8.1. `libSingular`: Functions
>>> from sage.all import *
>>> number_foobar = singular_function('number_foobar')
Traceback (most recent call last):
...
NameError: Singular library function 'number_foobar' is not defined

sage: from sage.libs.singular.function import lib as singular_lib
sage: number_e = singular_function('number_e')
67957045707/25000000000
sage: number_e(10r)
2.71828182828000

sage: from sage.all import *
>>> from sage.libs.singular.function import lib as singular_lib
>>>
singular_lib(general.lib)
>>>
number_e = singular_function(number_e)
>>>
number_e(10)
67957045707/25000000000
>>>
RR(number_e(10))
2.71828182828000

sage: singular_lib('primdec.lib')
sage: primdecGTZ = singular_function("primdecGTZ")
[[[y - 8/3*z - 4/3, x + 1/4], [y - 8/3*z - 4/3, x + 1/4]]]
sage: singular_list((1,2,3),3,[1,2,3], ring=P)
[(1, 2, 3), 3, [1, 2, 3]]
sage: ringlist=singular_function("ringlist")
sage: 1 = ringlist(P)
sage: 1[3]().__class__
<class 'sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic'
>}
sage: 1
[0, ['x', 'y', 'z'], [['dp', (1, 1, 1)], ['C', (0,)]], [0]]
sage: ring=singular_function("ring")
sage: ring(1)
<RingWrap>
sage: matrix = Matrix(P,2,2)
sage: matrix.randomize(terms=1)
sage: det = singular_function("det")
sage: det(matrix) == matrix[0, 0] * matrix[1, 1] - matrix[0, 1] * matrix[1, 0]
True
sage: coeffs = singular_function("coeffs")
sage: coeffs(x*y+y+1,y)
[1]
x + 1]
sage: intmat = Matrix(ZZ, 2,2, [100,2,3,4])
sage: det(intmat)
394
sage: random = singular_function("random")
sage: A = random(10,2,3); A.nrows(), max(A.list()) <= 10
(2, True)
sage: A.<x,y,z> = PolynomialRing(QQ)
sage: M=P**3
(continues on next page)
sage: leadcoef = singular_function("leadcoef")
sage: v=M((100*x, 5*y, 10*z*x*y))
sage: leadcoef(v)
10
sage: v = M([x+y, x*y+y*y^3, z])
sage: lead = singular_function("lead")
sage: lead(v)
(0, y^3)
sage: jet = singular_function("jet")
sage: jet(v, 2)
(x + y, x*y, z)
sage: syz = singular_function("syz")
sage: I = P.ideal([x+y, x*y-y, y*2, x**2+1])
sage: M = syz(I)
sage: M
[(-2*y, 2, y + 1, 0), (0, -2, x - 1, 0), (x*y - y, -y + 1, 1, -y), (x^2 + 1, -x - 1, -1, -x)]
sage: singular_lib("mpirimdec.lib")
sage: syz(M)
[(-x - 1, y - 1, 2*x, -2*y)]
sage: GTZmod = singular_function("GTZmod")
sage: GTZmod(M)
[[((-2*y, 2, y + 1, 0), (0, x + 1, 1, -y), (0, -2, x - 1, 0), (x*y - y, -y + 1, 1, -y), (x^2 + 1, -x - 1, -1, -x)), [(0)]]
sage: mres = singular_function("mres")
sage: resolution = mres(M, 0)
sage: resolution
<Resolution>
sage: singular_list(resolution)
[[(x + y, x*y)]
M=syz(I)
doctest...
sage: M
[(x + y, x*y)]
sage: syz(M)
[(0)]
sage: mres(I, 0)
<Resolution>
sage: M=P**3
sage: v=M((100*x, 5*y, 10*y*x*y))
sage: leadcoef(v)
-10
sage: v = M([x+y, x*y+y*y^3, z])
sage: lead(v)
(0, y^3)
sage: jet(v, 2)
(x + y, x*y, x)
sage: l = ringlist(P)
sage: len(l)
8.1. libSingular: Functions 107 (continues on next page)
sage: ring(l)
<noncommutative RingWrap>

sage: I=twostd(I)
sage: l[3]=I
sage: ring(l)
<noncommutative RingWrap>

>>> from sage.all import *

>>> singular_lib(primdec.lib)

>>> primdecGTZ = singular_function("primdecGTZ")

>>> primdecGTZ(I)
[[[y - 8/3*z - 4/3, x + 1/4], [y - 8/3*z - 4/3, x + 1/4]]]

>>> singular_list((Integer(1),Integer(2),Integer(3)),Integer(3),[Integer(1),
 Integer(2),Integer(3)], ring=P)
[(1, 2, 3), 3, [1, 2, 3]]

>>> ringlist=singular_function("ringlist")

>>> 1 = ringlist(P)

>>> 1[Integer(3)].__class__
<class 'sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic'>

>>> 1
[0, ['x', 'y', 'z']], [['dp', (1, 1, 1)], ['C', (0,)]], [0]]

>>> ring=singular_function("ring")

>>> ring(l)
<RingWrap>

>>> matrix = Matrix(P,Integer(2),Integer(2))

>>> matrix.randomize(terms=Integer(1))

>>> det = singular_function("det")

>>> det(matrix) == matrix[Integer(0), Integer(0)] * matrix[Integer(1),
 Integer(1)] - matrix[Integer(0), Integer(1)] * matrix[Integer(1), Integer(0)]
True

>>> coeffs = singular_function("coeffs")

>>> coeffs(x*y+y+Integer(1),y)
[1]
[1]

>>> intmat = Matrix(ZZ,Integer(2),Integer(2), [Integer(100),Integer(2),
 Integer(3),Integer(4)])

>>> det(intmat)
394

>>> random = singular_function("random")

>>> A = random(Integer(10),Integer(2),Integer(3)); A.nrows(), max(A.list()) <= Integer(10)
(2, True)

>>> P = PolynomialRing(QQ, names=('x', 'y', 'z')); (x, y, z) = P._first_ngens(3)

>>> M=P**Integer(3)

>>> leadcoef = singular_function("leadcoef")

>>> v=M([Integer(100)*x,Integer(5)*y,Integer(10)*z*x*y])

>>> leadcoef(v)
10

>>> v = M([x*y,x*y*y**Integer(3),z])

>>> lead = singular_function("lead")

>>> lead(v)
(0, y^3)

>>> jet = singular_function("jet")

>>> jet(v, Integer(2))
Doctest...
8.2 libSingular: Function Factory

AUTHORS:
• Martin Albrecht (2010-01): initial version

```python
class sage.libs.singular.function_factory.SingularFunctionFactory
    Bases: object
    A convenient interface to libsingular functions.
```

8.3 libSingular: Conversion Routines and Initialisation

AUTHOR:
• Martin Albrecht <malb@informatik.uni-bremen.de>
• Miguel Marco <mmarco@unizar.es> (2021): added transcendental extensions over Q

```python
sage.libs.singular.singular.get_resource(id)
```
Return a Singular “resource”.

INPUT:
• id – a single-character string; see https://github.com/Singular/Singular/blob/spielwiese/resources/feResource.cc

OUTPUT:
A string, or None.

EXAMPLES:
```
sage: from sage.libs.singular.singular import get_resource
generate: get_resource('D') # SINGULAR_DATA_DIR
'...

sage: get_resource('i') # SINGULAR_INFO_FILE
'.../singular...

sage: get_resource('?') is None # not defined
True
```

```
>>> from sage.all import *
>>> from sage.libs.singular.singular import get_resource

>>> get_resource('D') # SINGULAR_DATA_DIR
'...

>>> get_resource('i') # SINGULAR_INFO_FILE
'.../singular...

>>> get_resource('?') is None # not defined
True
```

```python
sage.libs.singular.singular.si2sa_resolution(res)
```
Pull the data from Singular resolution res to construct a Sage resolution.

INPUT:
• res – Singular resolution

The procedure is destructive and res is not usable afterward.

EXAMPLES:
sage: from sage.libs.singular.singular import si2sa_resolution
sage: from sage.libs.singular.function import singular_function
sage: module = singular_function("module")

sage: S.<x,y,z,w> = PolynomialRing(QQ)

sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2])

sage: mod = module(I)

sage: r = mres(mod, 0)

sage: si2sa_resolution(r)

\[
\begin{bmatrix}
y & x \\
-z & -y \\
\end{bmatrix}
\begin{bmatrix}
z^2 - y*w & y*z - x*w & y^2 - x*z \\
w & z \\
\end{bmatrix}
\]

sage: from sage.all import *

sage: S = PolynomialRing(QQ, names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = S._first_ngens(4)

sage: I = S.ideal([y*w - z**Integer(2), -x*w + y*z, x*z - y**Integer(2)])

sage: mod = module(I)

sage: r = mres(mod, Integer(0))

sage: si2sa_resolution(r)

\[
\begin{bmatrix}
y & x \\
-z & -y \\
\end{bmatrix}
\begin{bmatrix}
z^2 - y*w & y*z - x*w & y^2 - x*z \\
w & z \\
\end{bmatrix}
\]

sage.libs.singular.singular.si2sa_resolution_graded(res, degrees)

Pull the data from Singular resolution res to construct a Sage resolution.

INPUT:
- res – Singular resolution
- degrees – list of integers or integer vectors

The procedure is destructive, and res is not usable afterward.

EXAMPLES:
8.4 Wrapper for Singular’s Polynomial Arithmetic

AUTHOR:
• Martin Albrecht (2009-07): refactoring

8.5 libSingular: Options

Singular uses a set of global options to determine verbosity and the behavior of certain algorithms. We provide an interface to these options in the most ‘natural’ python-ic way. Users who do not wish to deal with Singular functions directly usually do not have to worry about this interface or Singular options in general since this is taken care of by higher level functions.

We compute a Groebner basis for Cyclic-5 in two different contexts:

```
sage: P.<a,b,c,d,e> = PolynomialRing(GF(127))
sage: I = sage.rings.ideal.Cyclic(P)
sage: import sage.libs.singular.function_factory
sage: std = sage.libs.singular.function_factory.ff.std
```

(continues on next page)
By default, tail reductions are performed:

```python
d, e,) = P._first_ngens(5)
>>> I = sage.rings.ideal.Cyclic(P)
>>> import sage.libs.singular.function_factory

std = sage.libs.singular.function_factory.ff.std
```

By default, tail reductions are performed:

```python
sage: from sage.libs.singular.option import opt, opt_ctx
sage: opt['red_tail']
True
sage: std(I)[-1]
d^2*e^6 + 28*b*c*d + ...
```

If we don’t want this, we can create an option context, which disables this:

```python
sage: with opt_ctx(red_tail=False, red_sb=False):
....:
std(I)[-1]
d^2*e^6 + 8*c^3 + ...
```

However, this does not affect the global state:

```python
sage: opt['red_tail']
True
```

On the other hand, any assignment to an option object will immediately change the global state:

```python
sage: opt['red_tail'] = False
sage: opt['red_tail']
False
sage: opt['red_tail'] = True
sage: opt['red_tail']
True
```

(continues on next page)
Assigning values within an option context, only affects this context:

```
sage: with opt_ctx:
....:   opt['red_tail'] = False
sage: opt['red_tail']
True
```

```python
>>> from sage.all import *
```  
```python
>>> with opt_ctx:
...   opt['red_tail'] = False
>>> opt['red_tail']
True
```

Option contexts can also be safely stacked:

```
sage: with opt_ctx:
....:   opt['red_tail'] = False
....:   print(opt)
....:   with opt_ctx:
....:     opt['red_through'] = False
....:     print(opt)
general options for libSingular (current value 0x00000082)
general options for libSingular (current value 0x00000002)
sage: print(opt)
general options for libSingular (current value 0x02000082)
```

```python
>>> from sage.all import *
```  
```python
>>> with opt_ctx:
...   opt['red_tail'] = False
...   print(opt)
...   with opt_ctx:
...     opt['red_through'] = False
...     print(opt)
general options for libSingular (current value 0x00000082)
general options for libSingular (current value 0x00000002)
```  
```python
>>> print(opt)
general options for libSingular (current value 0x02000082)
```

Furthermore, the integer valued options `deg_bound` and `mult_bound` can be used:

```
sage: R.<x,y> = QQ[]
sage: I = R*[x^3*y^2, x^2*y+1]
sage: opt['deg_bound'] = 2
sage: std(I)
[x^2*y + 1, x^3 + y^2]
sage: opt['deg_bound'] = 0
sage: std(I)
[y^3 - x, x^2*y + 1, x^3 + y^2]
```
```python
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y) = R._first_ngens(2)
>>> I = R*[x**Integer(3)+y**Integer(2),x**Integer(2)*y+Integer(1)]
>>> opt['deg_bound'] = Integer(2)
>>> std(I)
[x^2*y + 1, x^3 + y^2]
>>> opt['deg_bound'] = Integer(0)
>>> std(I)
[y^3 - x, x^2*y + 1, x^3 + y^2]
```

The same interface is available for verbosity options:

```python
sage: from sage.libs.singular.option import opt_verb
sage: opt_verb['not_warn_sb']
False
sage: opt.reset_default() # needed to avoid side effects
sage: opt_verb.reset_default() # needed to avoid side effects
```

AUTHOR:
- Martin Albrecht (2009-08): initial implementation
- Martin Albrecht (2010-01): better interface, verbosity options
- Simon King (2010-07): Python-ic option names; deg_bound and mult_bound

```python
8.5. libSingular: Options
```

```python
class sage.libs.singular.option.LibSingularOptions
    Bases: LibSingularOptions_abstract
    
    Pythonic Interface to libSingular's options.

    Supported options are:
    - `return_sb` or `returnSB` – the functions `syz`, `intersect`, `quotient`, `modulo` return a standard base instead of a generating set if `return_sb` is set. This option should not be used for `lift`.
    - `fast_hc` or `fastHC` – tries to find the highest corner of the staircase (HC) as fast as possible during a standard basis computation (only used for local orderings).
    - `int_strategy` or `intStrategy` – avoids division of coefficients during standard basis computations. This option is ring dependent. By default, it is set for rings with characteristic 0 and not set for all other rings.
    - `lazy` – uses a more lazy approach in std computations, which was used in SINGULAR version before 2-0 (and which may lead to faster or slower computations, depending on the example).
    - `length` – select shorter reducers in std computations.
    - `not_regularity` or `notRegularity` – disables the regularity bound for `res` and `mres`.
    - `not_sugar` or `notSugar` – disables the sugar strategy during standard basis computation.
    - `not_buckets` or `notBuckets` – disables the bucket representation of polynomials during standard basis computations. This option usually decreases the memory usage but increases the computation time. It should only be set for memory-critical standard basis computations.
```

115
• **old_std** or **oldStd** – uses a more lazy approach in std computations, which was used in SINGULAR version before 2-0 (and which may lead to faster or slower computations, depending on the example).

• **prot** – shows protocol information indicating the progress during the following computations: facstd, fglm, groebner, lres, mres, minres, mstd, res, slimgb, sres, std, stdfglm, stdhilb, syz.

• **red_sb** or **redSB** – computes a reduced standard basis in any standard basis computation.

• **red_tail** or **redTail** – reduction of the tails of polynomials during standard basis computations. This option is ring dependent. By default, it is set for rings with global degree orderings and not set for all other rings.

• **red_through** or **redThrough** – for inhomogeneous input, polynomial reductions during standard basis computations are never postponed, but always finished through. This option is ring dependent. By default, it is set for rings with global degree orderings and not set for all other rings.

• **sugar_crit** or **sugarCrit** – uses criteria similar to the homogeneous case to keep more useless pairs.

• **weight_m** or **weightM** – automatically computes suitable weights for the weighted ecart and the weighted sugar method.

In addition, two integer valued parameters are supported, namely:

• **deg_bound** or **degBound** – The standard basis computation is stopped if the total (weighted) degree exceeds **deg_bound**. **deg_bound** should not be used for a global ordering with inhomogeneous input. Reset this bound by setting **deg_bound** to 0. The exact meaning of “degree” depends on the ring ordering and the command: **slimgb** uses always the total degree with weights 1, **std** does so for block orderings, only.

• **mult_bound** or **multBound** – The standard basis computation is stopped if the ideal is zero-dimensional in a ring with local ordering and its multiplicity is lower than **mult_bound**. Reset this bound by setting **mult_bound** to 0.

EXAMPLES:

```
sage: from sage.libs.singular.option import LibSingularOptions
sage: libsingular_options = LibSingularOptions()
sage: libsingular_options
general options for libSingular (current value 0x06000082)
```

```
>>> from sage.all import *
>>> from sage.libs.singular.option import LibSingularOptions
>>> libsingular_options = LibSingularOptions()
>>> libsingular_options
general options for libSingular (current value 0x06000082)
```

Here we demonstrate the intended way of using libSingular options:

```
sage: R.<x,y> = QQ[]
sage: I = R*[x^3+y^2,x^2*y+1]
sage: I.groebner_basis(deg_bound=2)
[x^3 + y^2, x^2*y + 1]
sage: I.groebner_basis()
[x^3 + y^2, x^2*y + 1, y^3 - x]
```

```
>>> from sage.all import *
>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> I = R*[x**Integer(3)+y**Integer(2),x**2*Integer(2)*y+Integer(1)]
(continues on next page)
```
The option \texttt{mult_bound} is only relevant in the local case:

\begin{verbatim}
 sage: from sage.libs.singular.option import opt
 sage: Rlocal.<x,y,z> = PolynomialRing(QQ, order='ds')
 sage: x^2<x
 True
 sage: J = [x^7+y^17+z^6,x^6+y^8+z^7,x^7+y^5+z^8, x^2*y^3+y^2*z^3+x^3*z^2,x^3*y^2+y^3*z^2,x^2*z^3] * Rlocal
 sage: J.groebner_basis(mult_bound=100)
 [x^3*y^2 + y^3*z^2 + x^2*z^3, x^2*y^3 + x^3*z^2 + y^2*z^3, y^5, x^6 + x*y^4*z^5,
 x^4*z^2 - y^4*z^2 - x^2*y*z^3 + x*y^2*z^3, z^6 - x*y^4*z^4 - x^3*y*z^5]
 sage: opt['red_tail'] = True # the previous commands reset opt['red_tail'] to False
 sage: J.groebner_basis()
 [x^3*y^2 + y^3*z^2 + x^2*z^3, x^2*y^3 + x^3*z^2 + y^2*z^3, y^5, x^6, x^4*z^2 - y^4*z^2 - x^2*y*z^3 + x*y^2*z^3,
 z^6, y^4*z^3 - y^3*z^4 - x^2*z^5, x^3*y*z^4 - x^2*y^3*z^4 + x^3*z^5, x^2*y*z^5 + y^3*z^5, x*y^3*z^5]
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> from sage.libs.singular.option import opt
>>> Rlocal = PolynomialRing(QQ, order='ds', names=('x', 'y', 'z',)); (x, y, z,) = Rlocal._first_ngens(3)
>>> x**Integer(2)<x
 True
>>> J = [x**Integer(7)+y**Integer(7)+z**Integer(6), x**Integer(6)+y**Integer(8)+z**Integer(7),
 x**Integer(7)+y**Integer(5)+z**Integer(8), x**Integer(2)*y**Integer(3)+y**Integer(2)*z**Integer(3),
 x**Integer(3)*y**Integer(2)+y**Integer(3)*z**Integer(2)] * Rlocal
>>> J.groebner_basis(mult_bound=Integer(100))
 [x^3*y^2 + y^3*z^2 + x^2*z^3, x^2*y^3 + x^3*z^2 + y^2*z^3, y^5, x^6 + x*y^4*z^5,
 x^4*z^2 - y^4*z^2 - x^2*y*z^3 + x*y^2*z^3, z^6 - x*y^4*z^4 - x^3*y*z^5]
>>> opt['red_tail'] = True # the previous commands reset opt['red_tail'] to False
>>> J.groebner_basis()
 [x^3*y^2 + y^3*z^2 + x^2*z^3, x^2*y^3 + x^3*z^2 + y^2*z^3, y^5, x^6, x^4*z^2 - y^4*z^2 - x^2*y*z^3 + x*y^2*z^3,
 z^6, y^4*z^3 - y^3*z^4 - x^2*z^5, x^3*y*z^4 - x^2*y^3*z^4 + x^3*z^5, x^2*y*z^5 + y^3*z^5, x*y^3*z^5]
\end{verbatim}

\texttt{reset_default}()

Reset libSingular's default options.

EXAMPLES:

\begin{verbatim}
 sage: from sage.libs.singular.option import opt
 sage: opt['red_tail']
 True
 sage: opt['red_tail'] = False
 sage: opt['red_tail']
 False
 sage: opt['deg_bound']
 0
\end{verbatim}

(continues on next page)
sage: opt['deg_bound'] = 2
sage: opt['deg_bound']
2
sage: opt.reset_default()
sage: opt['red_tail']
True
sage: opt['deg_bound']
0

```
>>> from sage.all import *
>>> from sage.libs.singular.option import opt
>>>
>>> opt['red_tail'] = False
>>> opt['red_tail']
False
>>> opt['deg_bound']
0
>>> opt['deg_bound'] = Integer(2)
>>> opt['deg_bound']
2
>>> opt.reset_default()
>>> opt['red_tail']
True
>>> opt['deg_bound']
0
```

class sage.libs.singular.option.LibSingularOptionsContext

Bases: object

Option context

This object localizes changes to options.

EXAMPLES:

```
sage: from sage.libs.singular.option import opt, opt_ctx
sage: opt
general options for libSingular (current value 0x06000082)

>>> from sage.all import *
>>> from sage.libs.singular.option import opt, opt_ctx
>>>
>>> opt
general options for libSingular (current value 0x06000082)

sage: with opt_ctx(redTail=False):
    ....:     print(opt)
    ....:         with opt_ctx(redThrough=False):
    ....:             print(opt)
general options for libSingular (current value 0x04000082)
general options for libSingular (current value 0x04000002)

sage: print(opt)
general options for libSingular (current value 0x06000082)
```

```python
>>> from sage.all import *
>>> with opt_ctx(redTail=False):
...    print(opt)
... with opt_ctx(redThrough=False):
...    print(opt)
general options for libSingular (current value 0x04000082)
general options for libSingular (current value 0x04000002)

>>> print(opt)
general options for libSingular (current value 0x06000082)
```

```python
opt
class sage.libs.singular.option.LibSingularOptions_abstract
    Bases: object
    Abstract Base Class for libSingular options.

    load(value=None)
    EXAMPLES:

    sage: from sage.libs.singular.option import opt as sopt
    sage: bck = sopt.save(); hex(bck[Integer(0)]), bck[Integer(1)], bck[Integer(2)]
    (0x6000082, 0, 0)
    sage: sopt['redTail'] = False
    sage: hex(int(sopt))
    '0x4000082'
    sage: sopt.load(bck)
    sage: sopt['redTail']
    True

    sage: from sage.libs.singular.option import opt as sopt
    sage: bck = sopt.save(); hex(bck[Integer(0)]), bck[Integer(1)], bck[Integer(2)]
    (0x6000082, 0, 0)
    sage: sopt['redTail'] = False
    sage: hex(int(sopt))
    '0x4000082'
    sage: sopt.load(bck)
    sage: sopt['redTail']
    True
```

```python
save()

    Return a triple of integers that allow reconstruction of the options.

    EXAMPLES:

    sage: from sage.libs.singular.option import opt
    sage: opt['deg_bound']
    0
    sage: opt['red_tail']
    True
    sage: s = opt.save()
    sage: opt['deg_bound'] = 2
    sage: opt['red_tail'] = False
    sage: opt['deg_bound']
    2
    (continues on next page)
```
class sage.libs.singular.option.LibSingularVerboseOptions
Bases: LibSingularOptions_abstract

Pythonic Interface to libSingular’s verbosity options.

Supported options are:

• **mem** – shows memory usage in square brackets.
• **yacc** – Only available in debug version.
• **redefine** – warns about variable redefinitions.
• **reading** – shows the number of characters read from a file.
• **loadLib** or **load_lib** – shows loading of libraries.
• **debugLib** or **debug_lib** – warns about syntax errors when loading a library.
• **loadProc** or **load_proc** – shows loading of procedures from libraries.
• **defRes** or **def_res** – shows the names of the syzygy modules while converting resolution to list.
• **usage** – shows correct usage in error messages.
• **imap** or **imap** – shows the mapping of variables with the fetch and imap commands.
• **notWarnSB** or **not_warn_sb** – do not warn if a basis is not a standard basis
• **contentSB** or **content_sb** – avoids to divide by the content of a polynomial in std and related algorithms. Should usually not be used.
• cancelunit – avoids to divide polynomials by non-constant units in std in the local case. Should usually not be used.

EXAMPLES:

```python
sage: from sage.libs.singular.option import LibSingularVerboseOptions
sage: libsingular_verbose = LibSingularVerboseOptions()
sage: libsingular_verbose
verbosity options for libSingular (current value 0x00002851)
```

```python
>>> from sage.all import *
>>> from sage.libs.singular.option import LibSingularVerboseOptions
>>>
>>> libsingular_verbose = LibSingularVerboseOptions()
>>>
>>> libsingular_verbose
verbosity options for libSingular (current value 0x00002851)
```

`reset_default()`

Return to libSingular’s default verbosity options

EXAMPLES:

```python
sage: from sage.libs.singular.option import opt_verb
sage: opt_verb['not_warn_sb']
False
sage: opt_verb['not_warn_sb'] = True
sage: opt_verb['not_warn_sb']
True
sage: opt_verb.reset_default()
sage: opt_verb['not_warn_sb']
False
```

```python
>>> from sage.all import *
>>> from sage.libs.singular.option import opt_verb
>>>
>>> opt_verb['not_warn_sb']
False
>>>
>>> opt_verb['not_warn_sb'] = True
>>> opt_verb['not_warn_sb']
True
>>> opt_verb.reset_default()
>>> opt_verb['not_warn_sb']
False
```

8.6 Wrapper for Singular’s Rings

AUTHORS:

- Martin Albrecht (2009-07): initial implementation
- Kwankyu Lee (2010-06): added matrix term order support
- Miguel Marco (2021): added transcendental extensions over Q

```python
sage.libs.singular.ring.currRing_wrapper()
```

Returns a wrapper for the current ring, for use in debugging ring_refcount_dict.

EXAMPLES:
sage: from sage.libs.singular.ring import currRing_wrapper
sage: currRing_wrapper()
The ring pointer ...

>>> from sage.all import *
>>> from sage.libs.singular.ring import currRing_wrapper
>>> currRing_wrapper()
The ring pointer ...

sage.libs.singular.ring.poison_currRing(frame, event, arg)
Poison the currRing pointer.
This function sets the currRing to an illegal value. By setting it as the python debug hook, you can poison the currRing before every evaluated Python command (but not within Cython code).

INPUT:

• frame, event, arg – the standard arguments for the CPython debugger hook. They are not used.

OUTPUT:

Returns itself, which ensures that poison_currRing() will stay in the debugger hook.

EXAMPLES:

sage: previous_trace_func = sys.gettrace() # None if no debugger running
sage: from sage.libs.singular.ring import poison_currRing
sage: sys.settrace(poison_currRing)

sage: sys.gettrace()
<built-in function poison_currRing>

sage: sys.settrace(previous_trace_func) # switch it off again

>>> from sage.all import *
>>> from sage.libs.singular.ring import poison_currRing
>>> sys.settrace(poison_currRing)
>>> sys.gettrace()
<built-in function poison_currRing>
>>> sys.settrace(previous_trace_func) # switch it off again

sage.libs.singular.ring.print_currRing()
Print the currRing pointer.

EXAMPLES:

sage: from sage.libs.singular.ring import print_currRing
sage: print_currRing() # random output
DEBUG: currRing == 0x7fc6fa6ec480

sage: from sage.libs.singular.ring import poison_currRing
sage: _ = poison_currRing(None, None, None)
sage: print_currRing()
DEBUG: currRing == 0x0

>>> from sage.all import *
>>> from sage.libs.singular.ring import print_currRing
>>> print_currRing() # random output
DEBUG: currRing == 0x7fc6fa6ec480

(continues on next page)
class sage.libs.singular.ring.ring_wrapper_Py

Bases: object

Python object wrapping the ring pointer.

This is useful to store ring pointers in Python containers.

You must not construct instances of this class yourself, use wrap_ring() instead.

EXAMPLES:

sage: from sage.libs.singular.ring import ring_wrapper_Py
sage: ring_wrapper_Py
<class 'sage.libs.singular.ring.ring_wrapper_Py'>

8.7 Singular’s Groebner Strategy Objects

AUTHORS:

• Martin Albrecht (2009-07): initial implementation
• Michael Brickenstein (2009-07): initial implementation
• Hans Schoenemann (2009-07): initial implementation

class sage.libs.singular.groebner_strategy.GroebnerStrategy

Bases: SageObject

This object provides functions for normal form computations and other functions for Groebner basis computation.

ALGORITHM:

Uses Singular via libSINGULAR

ideal ()

Return the ideal this strategy object is defined for.

EXAMPLES:

sage: from sage.libs.singular.groebner_strategy import GroebnerStrategy
sage: P.<x,y,z> = PolynomialRing(GF(32003))
sage: I = Ideal([x + z, y + z])
sage: strat = GroebnerStrategy(I)
sage: strat.ideal()
normal_form \((p) \)

Compute the normal form of \(p \) with respect to the generators of this object.

EXAMPLES:

```
sage: from sage.libs.singular.groebner_strategy import GroebnerStrategy
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: I = Ideal([x + z, y + z])
sage: strat = GroebnerStrategy(I)
sage: strat.normal_form(x*y)  # indirect doctest
z^2
sage: strat.normal_form(x + 1)
-z + 1
```

ring()

Return the ring this strategy object is defined over.

EXAMPLES:

```
sage: from sage.libs.singular.groebner_strategy import GroebnerStrategy
sage: P.<x,y,z> = PolynomialRing(GF(32003))
sage: I = Ideal([x + z, y + z])
sage: strat = GroebnerStrategy(I)
sage: strat.ring()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 32003
```
class sage.libs.singular.groebner_strategy.NCGroebnerStrategy

Bases: sage_object

This object provides functions for normal form computations and other functions for Groebner basis computation.

ALGORITHM:

Uses Singular via libSINGULAR

ideal()

Return the ideal this strategy object is defined for.

EXAMPLES:

sage: from sage.libs.singular.groebner_strategy import NCGroebnerStrategy
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: I = H.ideal([y**2, x**2, z**2-H.one()])
sage: strat = NCGroebnerStrategy(I)
sage: strat.ideal() == I
True

normal_form(p)

Compute the normal form of p with respect to the generators of this object.

EXAMPLES:

sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: JL = H.ideal([x^3, y^3, z^3 - 4*z])
sage: JT = H.ideal([x^3, y^3, z^3 - 4*z], side='twosided')
sage: from sage.libs.singular.groebner_strategy import NCGroebnerStrategy
sage: SL = NCGroebnerStrategy(JL.std())
sage: ST = NCGroebnerStrategy(JT.std())
sage: SL.normal_form(x*y^2)
x*y^2
sage: ST.normal_form(x*y^2)
y*z
>>> from sage.all import *
>>> A = FreeAlgebra(QQ, Integer(3), names=('x', 'y', 'z')); (x, y, z,) = A._first_ngens(3)
>>> H = A.g_algebra({y*x:x*y-z, z*x:x*z+Integer(2)*x, z*y:y*z-Integer(2)*y},
˓→names=('x', 'y', 'z')); (x, y, z,) = H._first_ngens(3)
>>> JL = H.ideal([x**Integer(3), y**Integer(3), z**Integer(3) - Integer(4)*z])
>>> JT = H.ideal([x**Integer(3), y**Integer(3), z**Integer(3) - Integer(4)*z],
˓→side='twosided')
>>> from sage.libs.singular.groebner_strategy import NCGroebnerStrategy
>>> SL = NCGroebnerStrategy(JL.std())
>>> ST = NCGroebnerStrategy(JT.std())
>>> SL.normal_form(x*y**Integer(2))
x*y^2
>>> ST.normal_form(x*y**Integer(2))
y*z

ring()
Return the ring this strategy object is defined over.

EXAMPLES:

sage: from sage.libs.singular.groebner_strategy import NCGroebnerStrategy
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: I = H.ideal([y^2, x^2, z^2-H.one()])
sage: strat = NCGroebnerStrategy(I)
sage: strat.ring() is H
True

sage.libs.singular.groebner_strategy.unpickle_GroebnerStrategy0(I)
EXAMPLES:

sage: from sage.libs.singular.groebner_strategy import GroebnerStrategy
sage: P.<x,y,z> = PolynomialRing(GF(32003))
sage: I = Ideal([x + z, y + z])
sage: strat = GroebnerStrategy(I)
sage: loads(dumps(strat)) == strat # indirect doctest
True

(continues on next page)
sage.libs.singular.groebner_strategy.unpickle_NCGroebnerStrategy0(I)

EXAMPLES:

```python
from sage.libs.singular.groebner_strategy import NCGroebnerStrategy
A.<x,y,z> = FreeAlgebra(QQ, 3)
H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
I = H.ideal([y^2, x^2, z^2-H.one()])
strat = NCGroebnerStrategy(I)
loads(dumps(strat)) == strat  # indirect doctest
```

```python
from sage.all import *
from sage.libs.singular.groebner_strategy import NCGroebnerStrategy
A = FreeAlgebra(QQ, Integer(3), names=('x', 'y', 'z'))
(x, y, z) = A._first_ngens(3)
H = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
(x, y, z) = H._first_ngens(3)
I = H.ideal([y**2, x**2, z**2-H.one()])
strat = NCGroebnerStrategy(I)
loads(dumps(strat)) == strat  # indirect doctest
```

8.7. Singular's Groebner Strategy Objects
9.1 Context Managers for LibGAP

This module implements a context manager for global variables. This is useful since the behavior of GAP is sometimes controlled by global variables, which you might want to switch to a different value for a computation. Here is an example how you are suppose to use it from your code. First, let us set a dummy global variable for our example:

```sage
libgap.set_global('FooBar', 123)
```

Then, if you want to switch the value momentarily you can write:

```sage
with libgap.global_context('FooBar', 'test'):
    print(libgap.get_global('FooBar'))
```

Afterward, the global variable reverts to the previous value:

```sage
print(libgap.get_global('FooBar'))
```

The value is reset even if exceptions occur:

```sage
with libgap.global_context('FooBar', 'test'):
    print(libgap.get_global('FooBar'))
    raise ValueError(libgap.get_global('FooBar'))
```

```sage
Traceback (most recent call last):
...
ValueError: test
```

```sage
print(libgap.get_global('FooBar'))
```
class sage.libs.gap.context_managers.GlobalVariableContext (variable, value)

 Context manager for GAP global variables.

 It is recommended that you use the sage.libs.gap.libgap.Gap.global_context() method and not construct objects of this class manually.

 INPUT:

 • variable -- string. The variable name.
 • value -- anything that defines a GAP object.

 EXAMPLES:

 sage: libgap.set_global('FooBar', 1)
sage: with libgap.global_context('FooBar', 2):
 : print(libgap.get_global('FooBar'))
 2
 sage: libgap.get_global('FooBar')
 1

 >>> from sage.all import *
 >>> libgap.set_global('FooBar', Integer(1))
 >>> with libgap.global_context('FooBar', Integer(2)):
 ... print(libgap.get_global('FooBar'))
 2
 >>> libgap.get_global('FooBar')
 1

9.2 Common global functions defined by GAP.

9.3 Long tests for GAP

These stress test the garbage collection inside GAP

sage.libs.gap.test_long.test_loop_1()

 EXAMPLES:

 sage: from sage.libs.gap.test_long import test_loop_1
 sage: test_loop_1() # long time (up to 25s on sage.math, 2013)
9.4 Utility functions for GAP

exception sage.libs.gap.util.GAPError
 Bases: ValueError
 Exceptions raised by the GAP library

class sage.libs.gap.util.ObjWrapper
 Bases: object
 Wrapper for GAP master pointers

 EXAMPLES:

sage: from sage.libs.gap.util import ObjWrapper
sage: x = ObjWrapper()
sage: y = ObjWrapper()
sage: x == y
True

sage: from sage.libs.gap.util import ObjWrapper
>>> x == y
True

sage.libs.gap.util.get_owned_objects()
 Helper to access the refcount dictionary from Python code

9.4 Utility functions for GAP
9.5 Library Interface to GAP

This module implements a fast C library interface to GAP. To use it, you simply call `libgap` (the parent of all `GapElement` instances) and use it to convert Sage objects into GAP objects.

EXAMPLES:

```python
sage: a = libgap(10)
sage: a
10
sage: type(a)  # random output
<class 'sage.libs.gap.element.GapElement_Integer'>
sage: a*a
100
sage: timeit('a*a')  # random output
625 loops, best of 3: 898 ns per loop
```

Compared to the expect interface this is >1000 times faster:

```python
sage: b = gap('10')
sage: timeit('b*b')  # random output; long time
125 loops, best of 3: 2.05 ms per loop
```

If you want to evaluate GAP commands, use the `Gap.eval()` method:

```python
sage: libgap.eval('List([1..10], i->i^2)')
[ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 ]
```

not to be confused with the `libgap` call, which converts Sage objects to GAP objects, for example strings to strings:

```python
sage: libgap('List([1..10], i->i^2)')
"List([1..10], i->i^2)"
sage: type(_)
<class 'sage.libs.gap.element.GapElement_String'>
```
You can usually use the `sage()` method to convert the resulting GAP element back to its Sage equivalent:

```python
sage: a.sage()
10
sage: type(_)
<class 'sage.rings.integer.Integer'>
```

```python
sage: libgap.eval('5/3 + 7*E(3)').sage()
# needs sage.rings.number_field
7*zeta3 + 5/3
```

```python
gens_of_group = libgap.AlternatingGroup(4).GeneratorsOfGroup()
generators = gens_of_group.sage()
# a Sage list of Sage permutations!
[[2, 3, 1], [1, 3, 4, 2]]
generators = PermutationGroup(generators).cardinality()  # computed in Sage
12
generators = libgap.AlternatingGroup(4).Size()  # computed in GAP
12
```

We can also specify which group in Sage the permutations should consider themselves as elements of when converted to Sage:

```python
sage: A4 = groups.permutation.Alternating(4)
sage: generators = gens_of_group.sage(parent=A4); generators
[(1,2,3), (2,3,4)]
sage: all(gen.parent() is A4 for gen in generators)
True
```

```python
>>> from sage.all import *
>>> a.sage()
10
>>> type(_)
<class 'sage.rings.integer.Integer'>
```
So far, the following GAP data types can be directly converted to the corresponding Sage datatype:

1. GAP booleans `true / false` to Sage booleans `True / False`. The third GAP boolean value `fail` raises a `ValueError`.
2. GAP integers to Sage integers.
3. GAP rational numbers to Sage rational numbers.
4. GAP cyclotomic numbers to Sage cyclotomic numbers.
5. GAP permutations to Sage permutations.
6. The GAP containers `List` and `rec` are converted to Sage containers `list` and `dict`. Furthermore, the `sage()` method is applied recursively to the entries.

Special support is available for the GAP container classes. GAP lists can be used as follows:

```sage
lst = libgap([1,5,7]); lst
```

```
[ 1, 5, 7 ]
```

```sage
type(lst)
```

```
<class 'sage.libs.gap.element.GapElement_List'>
```

```sage
len(lst)
```

```
3
```

```sage
lst[0]
```

```
1
```

```sage
[x^2 for x in lst ]
```

```
[1, 25, 49]
```

```sage
type(_[0])
```

```
<class 'sage.libs.gap.element.GapElement_Integer'>
```

Note that you can access the elements of GAP `List` objects as you would expect from Python (with indexing starting at 0), but the elements are still of type `GapElement`. The other GAP container type are records, which are similar to Python dictionaries. You can construct them directly from Python dictionaries:

```sage
libgap({'a':123, 'b':456})
```

```sage
rec( a := 123, b := 456 )
```
Or get them as results of computations:

```python
gap = libgap.eval('rec(a:=123, b:=456, Sym3:=SymmetricGroup(3))')
gap['Sym3'].Sym([1 .. 3])
dict(gap)
```

The output is a Sage dictionary whose keys are Sage strings and whose Values are instances of `GapElement()`. So, for example, `gap['a']` is not a Sage integer. To recursively convert the entries into Sage objects, you should use the `sage()` method:

```python
gap = gap.sage()
gap['Sym3'].sage()
```

Now `gap['a']` is a Sage integer. We have not implemented the conversion of the GAP symmetric group to the Sage symmetric group yet, so you end up with a `NotImplementedError` exception object. The exception is returned and not raised so that you can work with the partial result.

While we don’t directly support matrices yet, you can convert them to Gap List of Lists. These lists are then easily converted into Sage using the recursive expansion of the `sage()` method:

```python
M = gap.eval('BlockMatrix([[1,1,[[1, 2],[ 3, 4]], [1,2:[[9,10],[11,12]]],[2,2,[[5, 6],[ 7, 8]]]],2,2)')
M.List()  # returns a GAP List of Lists
M.List().sage()  # returns a Sage list of lists
matrix(ZZ, _)
```
>>> from sage.all import *
>>> M = libgap.eval('BlockMatrix([[1,2],[3,4]], [1,2],[[9,10],[11,12]], [2,3,4],[[5,6],[7,8]]),2,2')
>>> M
<block matrix of dimensions (2*2)x(2*2)>

>>> M.List() # returns a GAP List of Lists
[[1, 2, 9, 10], [3, 4, 11, 12], [0, 0, 5, 6], [0, 0, 7, 8]]

>>> M.List().sage() # returns a Sage list of lists
[[1, 2, 9, 10], [3, 4, 11, 12], [0, 0, 5, 6], [0, 0, 7, 8]]

>>> matrix(ZZ, _)
[[1 2 9 10]
 [3 4 11 12]
 [0 0 5 6]
 [0 0 7 8]]

9.5.1 Using the GAP C library from Cython

Todo: Expand the following text

We are using the GAP API provided by the GAP project since GAP 4.10.

AUTHORS:

- Volker Braun (2012-08-28, GAP/Singular workshop): update to gap-4.5.5, make it ready for public consumption.
- Dima Pasechnik (2018-09-18, GAP Days): started the port to native libgap API

class sage.libs.gap.libgap.Gap

 Bases: Parent

 The libgap interpreter object.

 Note: This object must be instantiated exactly once by the libgap. Always use the provided libgap instance, and never instantiate Gap manually.

EXAMPLES:

sage: libgap.eval('SymmetricGroup(4)')
Sym([1..4])

>>> from sage.all import *
>>> libgap.eval('SymmetricGroup(4)')
Sym([1..4])

Element
 alias of GapElement
collect()

Manually run the garbage collector

EXAMPLES:

```
sage: a = libgap(123)
sage: del a
sage: libgap.collect()

>>> from sage.all import *
>>> a = libgap(Integer(123))
>>> del a
>>> libgap.collect()
```

count_GAP_objects()

Return the number of GAP objects that are being tracked by GAP.

OUTPUT:
An integer

EXAMPLES:

```
sage: libgap.count_GAP_objects() # random output
5

>>> from sage.all import *
>>> libgap.count_GAP_objects() # random output
5
```

eval(gap_command)

Evaluate a gap command and wrap the result.

INPUT:
- gap_command – a string containing a valid gap command without the trailing semicolon.

OUTPUT:
A GapElement.

EXAMPLES:

```
sage: libgap.eval('0')
0
sage: libgap.eval('"string"')
"string"

>>> from sage.all import *
>>> libgap.eval('0')
0
>>> libgap.eval('"string"')
"string"
```

function_factory(function_name)

Return a GAP function wrapper

This is almost the same as calling `libgap.eval(function_name)`, but faster and makes it obvious in your code that you are wrapping a function.
INPUT:

• function_name – string. The name of a GAP function.

OUTPUT:

A function wrapper \texttt{GapElement_Function} for the GAP function. Calling it from Sage is equivalent to calling the wrapped function from GAP.

EXAMPLES:

```
sage: libgap.function\_factory('Print')
<Gap function "Print">
```

```
from sage.all import *
libgap.function\_factory('Print')
<Gap function "Print">
```

\texttt{get_global}(\texttt{variable})

Get a GAP global variable

INPUT:

• variable – string. The variable name.

OUTPUT:

A \texttt{GapElement} wrapping the GAP output. A \texttt{ValueError} is raised if there is no such variable in GAP.

EXAMPLES:

```
sage: libgap.set\_global('FooBar', 1)
sage: libgap.get\_global('FooBar')
1
sage: libgap.unset\_global('FooBar')
sage: libgap.get\_global('FooBar')
NULL
```

```
from sage.all import *
libgap.set\_global('FooBar', Integer(1))
libgap.get\_global('FooBar')
1
libgap.unset\_global('FooBar')
libgap.get\_global('FooBar')
NULL
```

\texttt{global_context}(\texttt{variable}, \texttt{value})

Temporarily change a global variable

INPUT:

• variable – string. The variable name.
• value – anything that defines a GAP object.

OUTPUT:

A context manager that sets/reverts the given global variable.

EXAMPLES:
C/C++ Library Interfaces, Release 10.4

```
sage: libgap.set_global('FooBar', 1)
sage: with libgap.global_context('FooBar', 2):
    ..:     print(libgap.get_global('FooBar'))
2
sage: libgap.get_global('FooBar')
1

```
set_seed(seed=None)

Reseed the standard GAP pseudo-random sources with the given seed.

Uses a random seed given by `current_randstate().ZZ_seed()` if `seed=None`. Otherwise the seed should be an integer.

EXAMPLES:

```
sage: libgap.set_seed(0)
0
sage: [libgap.Random(1, 10) for i in range(5)]
[2, 3, 3, 4, 2]
```

```
>>> from sage.all import *
```

```
>>> libgap.set_seed(Integer(0))
0
```

```
>>> [libgap.Random(Integer(1), Integer(10)) for i in range(Integer(5))]
[2, 3, 3, 4, 2]
```

show()

Return statistics about the GAP owned object list

This includes the total memory allocated by GAP as returned by `libgap.eval('TotalMemoryAllocated()')`, as well as garbage collection / object count statistics as returned by `\`libgap.eval('GasmanStatistics')`, and finally the total number of GAP objects held by Sage as `GapElement` instances.

The value `livekb + deadkb` will roughly equal the total memory allocated for GAP objects (see `libgap.eval('TotalMemoryAllocated()')`).

Note: Slight complication is that we want to do it without accessing libgap objects, so we don’t create new GapElements as a side effect.

EXAMPLES:

```
sage: a = libgap(123)
sage: b = libgap(456)
sage: c = libgap(789)
sage: del b
sage: libgap.collect()
sage: libgap.show()  # random output
{\'gasman_stats\': {\'full\': {\'cumulative\': 110,
  \'deadbags\': 321400,
  \'deadkb\': 12967,
  \'freekb\': 15492,
  \'livebags\': 396645,
  \'livekb\': 37730,
  \'time\': 110,
  \'totalkb\': 65536},
  \'nfull\': 1,
  \'npartial\': 1},
```

(continues on next page)
unset_global (variable)
Remove a GAP global variable

INPUT:
- variable – string. The variable name.

EXAMPLES:

```python
sage: libgap.set_global('FooBar', 1)
sage: libgap.get_global('FooBar')
1
sage: libgap.unset_global('FooBar')
sage: libgap.get_global('FooBar')
NULL
```

zero()
Return (integer) zero in GAP.

OUTPUT:
A GapElement.

EXAMPLES:

```python
sage: libgap.zero()
0
```
9.6 Short tests for GAP

sage.libs.gap.test.test_write_to_file()

Test that libgap can write to files

See Issue #16502, Issue #15833.

EXAMPLES:

```python
sage: from sage.libs.gap.test import test_write_to_file
sage: test_write_to_file()
```

9.7 GAP element wrapper

This document describes the individual wrappers for various GAP elements. For general information about GAP, you should read the `libgap` module documentation.

```python
class sage.libs.gap.element.GapElement
    Bases: RingElement

Wrapper for all Gap objects.
```

Note: In order to create `GapElements` you should use the `libgap` instance (the parent of all Gap elements) to convert things into `GapElement`. You must not create `GapElement` instances manually.

EXAMPLES:

```python
sage: libgap(0)
0
```

If Gap finds an error while evaluating, a `GAPError` exception is raised:

```python
sage: libgap.eval('1/0')
Traceback (most recent call last):
... 
GAPError: Error, Rational operations: <divisor> must not be zero
```
>>> from sage.all import *
>>> libgap.eval('1/0')
Traceback (most recent call last):
...
GAPError: Error, Rational operations: <divisor> must not be zero

Also, a GAPError is raised if the input is not a simple expression:

```python
sage: libgap.eval('1; 2; 3')
Traceback (most recent call last):
...
GAPError: can only evaluate a single statement
```

```
[deepcopy (mut)]

Return a deep copy of this Gap object

Note that this is the same thing as calling StructuralCopy but much faster.

INPUT:
  
  • mut – (boolean) whether to return a mutable copy

EXAMPLES:

```
sage: a = libgap([[0,1],[2,3]])
sage: b = a.deepcopy(1)
sage: b[0,0] = 5
sage: a
[[0, 1], [2, 3]]
sage: b
[[5, 1], [2, 3]]
sage: l = libgap([Integer(0),Integer(1)])
sage: l.deepcopy(0).IsMutable()
false
sage: l.deepcopy(1).IsMutable()
true
```

```python
>>> from sage.all import *
>>> a = libgap([[Integer(0),Integer(1)],[Integer(2),Integer(3)]])
>>> b = a.deepcopy(Integer(1))
>>> b[Integer(0),Integer(0)] = Integer(5)
>>> a
[[0, 1], [2, 3]]
>>> b
[[5, 1], [2, 3]]

>>> l = libgap([Integer(0),Integer(1)])
>>> l.deepcopy(Integer(0)).IsMutable()
false
>>> l.deepcopy(Integer(1)).IsMutable()
true
```
is_bool()
Return whether the wrapped GAP object is a GAP boolean.

OUTPUT:
Boolean.

EXAMPLES:

```
sage: libgap(True).is_bool()
True

>>> from sage.all import *
>>> libgap(True).is_bool()
True
```

is_function()
Return whether the wrapped GAP object is a function.

OUTPUT:
Boolean.

EXAMPLES:

```
sage: a = libgap.eval("NormalSubgroups")
sage: a.is_function()
True
sage: a = libgap(2/3)
sage: a.is_function()
False

>>> from sage.all import *
>>> a = libgap.eval("NormalSubgroups")
>>> a.is_function()
True
>>> a = libgap(Integer(2)/Integer(3))
>>> a.is_function()
False
```

is_list()
Return whether the wrapped GAP object is a GAP List.

OUTPUT:
Boolean.

EXAMPLES:

```
sage: libgap.eval('[1, 2, 3]').is_list()
True
sage: libgap.eval('3/2').is_list()
False

>>> from sage.all import *
>>> libgap.eval('[1, 2, 3]').is_list()
True
>>> libgap.eval('3/2').is_list()
False
```
is_permutation()

Return whether the wrapped GAP object is a GAP permutation.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: perm = libgap.PermList(libgap([1, 5, 2, 3, 4])); perm
(2,5,4,3)
sage: perm.is_permutation()
True
sage: libgap('this is a string').is_permutation()
False
```

is_record()

Return whether the wrapped GAP object is a GAP record.

OUTPUT:

Boolean.

EXAMPLES:

```python
>>> from sage.all import *

>>> perm = libgap.PermList(libgap([Integer(1), Integer(5), Integer(2),
-Integer(3), Integer(4)])); perm
(2,5,4,3)
>>> perm.is_permutation()
True
>>> libgap('this is a string').is_permutation()
False
```  

is_string()

Return whether the wrapped GAP object is a GAP string.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: libgap('this is a string').is_string()
True

>>> from sage.all import *

>>> libgap('this is a string').is_string()
True
```
\texttt{sage()} \hspace{1cm}

Return the Sage equivalent of the \texttt{GapElement}.

EXAMPLES:

\begin{verbatim}
sage: libgap(1).sage()
1
sage: type(_)
<class 'sage.rings.integer.Integer'>
sage: libgap(3/7).sage()
3/7
sage: type(_)
<class 'sage.rings.rational.Rational'>
sage: libgap.eval('5 + 7*E(3)').sage()
7*\zeta_3 + 5
sage: libgap(Infinity).sage()
+Infinity
sage: libgap(-Infinity).sage()
-Infinity
sage: libgap(True).sage()
True
sage: libgap(False).sage()
False
sage: type(_)
<... 'bool'>
sage: libgap('this is a string').sage()
'this is a string'
sage: type(_)
<... 'str'>
sage: x = libgap.Integers.Indeterminate("x")
sage: p = x^2 - 2*x + 3
sage: p.sage()
x^2 - 2*x + 3
sage: p.sage().parent()
Univariate Polynomial Ring in x over Integer Ring
sage: p = x^-2 + 3*x
sage: p.sage()
x^-2 + 3*x
sage: p.sage().parent()
Univariate Laurent Polynomial Ring in x over Integer Ring
sage: p = (3 * x^2 + x) / (x^2 - 2)
sage: p.sage()
(3*x^2 + x)/(x^2 - 2)
sage: p.sage().parent()
Fraction Field of Univariate Polynomial Ring in x over Integer Ring

>>> from sage.all import *

(continues on next page)\end{verbatim}
... type(_)
<class 'sage.rings.integer.Integer'>

>>> libgap(Integer(3)/Integer(7)).sage()
3/7
>>> type(_)
<class 'sage.rings.rational.Rational'>

>>> libgap.eval('5 + 7*E(3)').sage()
7*zeta3 + 5

>>> libgap(Infinity).sage()
+Infinity
>>> libgap(-Infinity).sage()
-Infinity

... b = libgap(True)
sage: type(b)
<... 'bool'>

... x = libgap.Integers.Indeterminate("x")

... p = x**Integer(2) - Integer(2)*x + Integer(3)
... p.sage()
x^2 - 2*x + 3

... p = x**-Integer(2) + Integer(3)*x
... p.sage()
x^-2 + 3*x

... p = (Integer(3) * x**Integer(2) + x) / (x**Integer(2) - Integer(2))
... p.sage()
(3*x^2 + x)/(x^2 - 2)

... p.sage().parent()
Fraction Field of Univariate Polynomial Ring in x over Integer Ring

class sage.libs.gap.element.GapElement_Boolean

Bases: GapElement

Derived class of GapElement for GAP boolean values.

EXAMPLES:

sage: b = libgap(True)
sage: type(b)
>>> from sage.all import *

b = libgap(True)

>>> type(b)
<class 'sage.libs.gap.element.GapElement_Boolean'>

\textbf{sage()}

Return the Sage equivalent of the \textit{GapElement}

\textbf{OUTPUT:}

A Python boolean if the values is either true or false. GAP booleans can have the third value \texttt{Fail}, in which case a \texttt{ValueError} is raised.

\textbf{EXAMPLES:}

sage: b = libgap.eval('true'); b
true

sage: type(_)
<class 'sage.libs.gap.element.GapElement_Boolean'>

sage: b.sage()
True

sage: type(_)
<... 'bool'>

sage: libgap.eval('fail')
fail

sage: _.sage()
Traceback (most recent call last):
...
ValueError: the GAP boolean value "fail" cannot be represented in Sage

>>> from sage.all import *

>>> b = libgap.eval('true'); b
true

>>> type(_)
<class 'sage.libs.gap.element.GapElement_Boolean'>

>>> b.sage()
True

>>> type(_)
<... 'bool'>

>>> libgap.eval('fail')
fail

>>> _.sage()
Traceback (most recent call last):
...
ValueError: the GAP boolean value "fail" cannot be represented in Sage

\textbf{class sage.libs.gap.element.GapElement_Cyclotomic}

\textbf{Bases:} \texttt{GapElement}

Derived class of \texttt{GapElement} for GAP universal cyclotomics.

\textbf{EXAMPLES:}
```python
sage: libgap.eval('E(3)')
E(3)
sage: type(_)
<class 'sage.libs.gap.element.GapElement_Cyclotomic'>
>>> from sage.all import *
>>> libgap.eval('E(3)')
E(3)
>>> type(_)
<class 'sage.libs.gap.element.GapElement_Cyclotomic'>
```

**sage (ring=None)**

Return the Sage equivalent of the `GapElement_Cyclotomic`.

**INPUT:**

- `ring` – a Sage cyclotomic field or None (default). If not specified, a suitable minimal cyclotomic field will be constructed.

**OUTPUT:**

A Sage cyclotomic field element.

**EXAMPLES:**

```python
sage: n = libgap.eval('E(3)')
sage: n.sage()
zeta3
sage: parent(_)
Cyclotomic Field of order 3 and degree 2
sage: n.sage(ring=CyclotomicField(6))
zeta6 - 1
sage: libgap.E(3).sage(ring=CyclotomicField(3))
zeta3
sage: libgap.E(3).sage(ring=CyclotomicField(6))
zeta6 - 1
```

```python
>>> from sage.all import *
>>> n = libgap.eval('E(3)')
>>> n.sage()
zeta3
>>> parent(_)
Cyclotomic Field of order 3 and degree 2
>>> n.sage(ring=CyclotomicField(Integer(6)))
zeta6 - 1
>>> libgap.E(Integer(3)).sage(ring=CyclotomicField(Integer(3)))
zeta3
>>> libgap.E(Integer(3)).sage(ring=CyclotomicField(Integer(6)))
zeta6 - 1
```

```python
class sage.libs.gap.element.GapElement_FiniteField
 Bases: GapElement
Derived class of GapElement for GAP finite field elements.
```
EXAMPLES:

```python
sage: libgap.eval('Z(5)^2')
Z(5)^2
sage: type(_)
<class 'sage.libs.gap.element.GapElement_FiniteField'>
```

```python
>>> from sage.all import *

>>> libgap.eval('Z(5)^2')
Z(5)^2

>>> type(_)
<class 'sage.libs.gap.element.GapElement_FiniteField'>
```

**lift()**

Return an integer lift.

OUTPUT:

The smallest positive *GapElement_Integer* that equals *self* in the prime finite field.

EXAMPLES:

```python
sage: n = libgap.eval('Z(5)^2')
sage: n.lift()
4
sage: type(_)
<class 'sage.libs.gap.element.GapElement_Integer'>
```

```python
sage: n = libgap.eval('Z(25)')
sage: n.lift()
Traceback (most recent call last):
 TypeError: not in prime subfield
```

```python
>>> from sage.all import *

>>> n = libgap.eval('Z(5)^2')

>>> n.lift()
4

>>> type(_)
<class 'sage.libs.gap.element.GapElement_Integer'>

>>> n = libgap.eval('Z(25)')

>>> n.lift()
Traceback (most recent call last):
 TypeError: not in prime subfield
```

**sage** (*ring=None, var='a')

Return the Sage equivalent of the *GapElement_FiniteField*.

INPUT:

- *ring* — a Sage finite field or None (default). The field to return *self* in. If not specified, a suitable finite field will be constructed.

OUTPUT:

A Sage finite field element. The isomorphism is chosen such that the Gap `PrimitiveRoot()` maps to the Sage `multiplicative_generator()`.

EXAMPLES:
```python
c sage: n = libgap.eval('2(25)^2')
sage: n.sage()
a + 3
sage: parent(_)
Finite Field in a of size 5^2
sage: n.sage(ring=GF(5))
Traceback (most recent call last):
...
ValueError: the given ring is incompatible ...
```

```python
c >>> from sage.all import *
c >>> n = libgap.eval('2(25)^2')
c >>> n.sage()
a + 3
>>> parent(_)
Finite Field in a of size 5^2
>>> n.sage(ring=GF(Integer(5)))
Traceback (most recent call last):
...
ValueError: the given ring is incompatible ...
```

```python
class sage.libs.gap.element.GapElement_Float
 Bases: GapElement

 Derived class of GapElement for GAP floating point numbers.

 EXAMPLES:
```
```python
c sage: i = libgap(123.5)
sage: type(i)
<class 'sage.libs.gap.element.GapElement_Float'>
sage: RDF(i)
123.5
sage: float(i)
123.5
```
```python
c >>> from sage.all import *
c >>> i = libgap(RealNumber('123.5'))
c >>> type(i)
<class 'sage.libs.gap.element.GapElement_Float'>
c >>> RDF(i)
123.5
c >>> float(i)
123.5
c
```
```python
c sage (ring=None)

 Return the Sage equivalent of the GapElement_Float

 - ring – a floating point field or None (default). If not specified, the default Sage RDF is used.

 OUTPUT:

 A Sage double precision floating point number

 EXAMPLES:
```
```python
sage: a = libgap.eval("Float(3.25)").sage()
sage: a
3.25
sage: parent(a)
Real Double Field

>>> from sage.all import *
>>> a = libgap.eval("Float(3.25)").sage()
>>> a
3.25
>>> parent(a)
Real Double Field

class sage.libs.gap.element.GapElement_Function

Bases: GapElement

Derived class of GapElement for GAP functions.

EXAMPLES:

```python
sage: f = libgap.Cycles
sage: type(f)
<class 'sage.libs.gap.element.GapElement_Function'>

>>> from sage.all import *

```python
>>> f = libgap.Cycles
```python
>>> type(f)
<class 'sage.libs.gap.element.GapElement_Function'>

class sage.libs.gap.element.GapElement_Integer

Bases: GapElement

Derived class of GapElement for GAP integers.

EXAMPLES:

```python
sage: i = libgap(123)
sage: type(i)
<class 'sage.libs.gap.element.GapElement_Integer'>
sage: ZZ(i)
123

>>> from sage.all import *

```python
```python
>>> i = libgap(Integer(123))
```python
```python
>>> type(i)
<class 'sage.libs.gap.element.GapElement_Integer'>
```python
```python
>>> ZZ(i)
123

is_C_int()

Return whether the wrapped GAP object is a immediate GAP integer.

An immediate integer is one that is stored as a C integer, and is subject to the usual size limits. Larger integers are stored in GAP as GMP integers.

OUTPUT:

Boolean.
EXAMPLES:

```python
sage: n = libgap(1)
sage: type(n)
<class 'sage.libs.gap.element.GapElement_Integer'>
sage: n.is_C_int()
True
sage: n.IsInt()
true

sage: N = libgap(2^130)
sage: type(N)
<class 'sage.libs.gap.element.GapElement_Integer'>
sage: N.is_C_int()
False
sage: N.IsInt()
true
```

```python
>>> from sage.all import *

>>> n = libgap(Integer(1))

>>> type(n)
<class 'sage.libs.gap.element.GapElement_Integer'>

>>> n.is_C_int()
True

>>> N = libgap(Integer(2)**Integer(130))

>>> type(N)
<class 'sage.libs.gap.element.GapElement_Integer'>

>>> N.is_C_int()
False
```

`sage (ring=None)`

Return the Sage equivalent of the `GapElement_Integer`

- `ring` – Integer ring or None (default). If not specified, a the default Sage integer ring is used.

OUTPUT:

A Sage integer

EXAMPLES:

```python
sage: libgap([ 1, 3, 4 ]).sage()
[1, 3, 4]
sage: all( x in ZZ for x in _ )
True

sage: libgap(132).sage(ring=IntegerModRing(13))
2
sage: parent(_)
Ring of integers modulo 13
```

```python
>>> from sage.all import *

>>> libgap([ Integer(1), Integer(3), Integer(4) ]).sage()
(continues on next page)
```
from sage.all import *

n = libgap.eval('One(ZmodnZ(123)) * 13')
n.lift()
13

>>> from sage.all import *
>>> n = libgap.eval('One(ZmodnZ(123)) * 13')
>>> n.lift()
13
>>> type(_)
<class 'sage.libs.gap.element.GapElement_Integer'>

sage (ring=None)

Return the Sage equivalent of the GapElement_IntegerMod

INPUT:

• ring – Sage integer mod ring or None (default). If not specified, a suitable integer mod ring is used automatically.

OUTPUT:
A Sage integer modulo another integer.

EXAMPLES:

```python
sage: n = libgap.eval('One(ZmodnZ(123)) * 13')
sage: n.sage()
13
sage: parent(_)  
Ring of integers modulo 123
```

```python
>>> from sage.all import *

>>> n = libgap.eval('One(ZmodnZ(123)) * 13')
>>> n.sage()
13
>>> parent(_)
Ring of integers modulo 123
```

```python
class sage.libs.gap.element.GapElement_List
Bases: GapElement

Derived class of GapElement for GAP Lists.

**Note:** Lists are indexed by 0..len(l) − 1, as expected from Python. This differs from the GAP convention where lists start at 1.

EXAMPLES:

```python
sage: lst = libgap.SymmetricGroup(3).List(); lst
[() , (1,3) , (1,2,3) , (2,3) , (1,3,2) , (1,2)]
sage: type(lst)
<class 'sage.libs.gap.element.GapElement_List'>
sage: len(lst)
6
sage: lst[3]
(2,3)
```

```python
>>> from sage.all import *

>>> lst = libgap.SymmetricGroup(Integer(3)).List(); lst
[() , (1,3) , (1,2,3) , (2,3) , (1,3,2) , (1,2)]

>>> type(lst)
<class 'sage.libs.gap.element.GapElement_List'>

>>> len(lst)
6

>>> lst[Integer(3)]
(2,3)
```

We can easily convert a Gap List object into a Python list:

```python
sage: list(lst)
[() , (1,3) , (1,2,3) , (2,3) , (1,3,2) , (1,2)]
sage: type(_)
<... 'list'>
```

```python
>>> from sage.all import *

>>> list(lst)
[() , (1,3) , (1,2,3) , (2,3) , (1,3,2) , (1,2)]
```

(continues on next page)
Range checking is performed:

```python
sage: lst[10]
Traceback (most recent call last):
 ...
IndexError: index out of range.
```

```python
>>> from sage.all import *

>>> lst[Integer(10)]
Traceback (most recent call last):
 ...
IndexError: index out of range.
```

`matrix (ring=None)`

Return the list as a matrix.

GAP does not have a special matrix data type, they are just lists of lists. This function converts a GAP list of lists to a Sage matrix.

**OUTPUT:**

A Sage matrix.

**EXAMPLES:**

```python
sage: F = libgap.GF(4)
sage: a = F.PrimitiveElement()
sage: m = libgap([[a,a**0],[0*a,a**2]]); m
[[Z(2^2), Z(2)^0],
 [0*Z(2), Z(2^2)^2]]
sage: m.IsMatrix()
true
```

```python
sage: matrix(m)
[a 1]
[0 a + 1]
```

```python
sage: F = libgap.GF(Integer(4))
```

```python
>>> F = libgap.GF(Integer(4))
```
[ [ Z(2^2), Z(2)^0 ],
   [ 0*Z(2), Z(2^2)^2 ] ]

>>> m.IsMatrix()
true

>>> matrix(m)
[ a 1]
[ 0 a + 1]

>>> matrix(GF(Integer(4), 'B'), m)
[ B 1]
[ 0 B + 1]

>>> M = libgap.eval('SL(2,GF(5))').GeneratorsOfGroup()[Integer(1)]

>>> M.IsMatrix()
true

>>> M.matrix()
[4 1]
[4 0]

`sage(**kwds)`

Return the Sage equivalent of the `GapElement`

**OUTPUT:**

A Python list.

**EXAMPLES:**

```sage
sage: libgap([1, 3, 4]).sage()
[1, 3, 4]
sage: all(x in ZZ for x in _)
True
```

```sage
>>> from sage.all import *

>>> libgap([Integer(1), Integer(3), Integer(4)]).sage()
[1, 3, 4]

>>> all(x in ZZ for x in _)
True
```

`vector(ring=None)`

Return the list as a vector.

GAP does not have a special vector data type, they are just lists. This function converts a GAP list to a Sage vector.

**OUTPUT:**

A Sage vector.

**EXAMPLES:**

```sage
sage: F = libgap.GF(4)
sage: a = F.PrimitiveElement()
sage: m = libgap([0*a, a, a^3, a^2]); m
[0*Z(2), Z(2^2), Z(2)^0, Z(2^2)^2]
```
sage: type(m)
<class 'sage.libs.gap.element.GapElement_List'>
sage: m[3]
Z(2^2)^2
sage: vector(m)
(0, a, 1, a + 1)
sage: vector(GF(4,'B'), m)
(0, B, 1, B + 1)

>>> from sage.all import *
>>> F = libgap.GF(Integer(4))
>>> a = F.PrimitiveElement()
>>> m = libgap([Integer(0)*a, a, a**Integer(3), a**Integer(2)]); m
[ 0*Z(2), Z(2^2), Z(2)^0, Z(2^2)^2 ]
>>> type(m)
<class 'sage.libs.gap.element.GapElement_List'>
>>> m[Integer(3)]
Z(2^2)^2
>>> vector(m)
(0, a, 1, a + 1)
>>> vector(GF(Integer(4),'B'), m)
(0, B, 1, B + 1)

class sage.libs.gap.element.GapElement_MethodProxy
Bases: GapElement_Function

Helper class returned by GapElement.__getattr__.

Derived class of GapElement for GAP functions. Like its parent, you can call instances to implement function call syntax. The only difference is that a fixed first argument is prepended to the argument list.

EXAMPLES:

sage: lst = libgap([])
sage: lst.Add
<Gap function "Add">
sage: type(_)
<class 'sage.libs.gap.element.GapElement_MethodProxy'>
sage: lst.Add(Integer(1))
sage: lst
[ 1 ]

>>> from sage.all import *
>>> lst = libgap([])
>>> lst.Add
<Gap function "Add">
>>> type(_)
<class 'sage.libs.gap.element.GapElement_MethodProxy'>
>>> lst.Add(Integer(1))
>>> lst
[ 1 ]

class sage.libs.gap.element.GapElement_Permutation
Bases: GapElement

Derived class of GapElement for GAP permutations.
Note: Permutations in GAP act on the numbers starting with 1.

EXAMPLES:

```sage
perm = libgap.eval('(1,5,2)(4,3,8)')
type(perm)
<class 'sage.libs.gap.element.GapElement_Permutation'>
```

```python
>>> from sage.all import *

perm = libgap.eval('(1,5,2)(4,3,8)')
type(perm)
<class 'sage.libs.gap.element.GapElement_Permutation'>
```

**sage** *(parent=None)*

Return the Sage equivalent of the *GapElement*

If the permutation group is given as parent, this method is *much* faster.

EXAMPLES:

```sage
perm_gap = libgap.eval('(1,5,2)(4,3,8)'); perm_gap
(1,5,2)(3,8,4)
type(perm)
<class 'sage.combinat.permutation.StandardPermutations_all_with_category.element_class'>

perm_gap.sage(PermutationGroup([(1,2),(1,2,3,4,5,6,7,8)]))
(1,5,2)(3,8,4)
type(_)
<class 'sage.groups.perm_gps.permgroup_element.PermutationGroupElement'>
```

```python
>>> from sage.all import *

perm_gap = libgap.eval('(1,5,2)(4,3,8)'); perm_gap
(1,5,2)(3,8,4)
perm_gap.sage()
[5, 1, 8, 3, 2, 6, 7, 4]
type(_)
<class 'sage.combinat.permutation.StandardPermutations_all_with_category.element_class'>

perm_gap.sage(PermutationGroup([(Integer(1),Integer(2)),(Integer(1),
Integer(2),Integer(3),Integer(4),Integer(5),Integer(6),Integer(7),
Integer(8))]))
(1,5,2)(3,8,4)
type(_)
<class 'sage.groups.perm_gps.permgroup_element.PermutationGroupElement'>
```

**class** `sage.libs.gap.element.GapElement_Rational`

**Bases:** *GapElement*

Derived class of GapElement for GAP rational numbers.

EXAMPLES:

```sage
r = libgap(123/456)
type(r)
<class 'sage.libs.gap.element.GapElement_Rational'>
```
>>> from sage.all import *
>>> r = libgap(Integer(123)/Integer(456))
>>> type(r)
<class 'sage.libs.gap.element.GapElement_Rational'>

`sage (ring=None)`

Return the Sage equivalent of the `GapElement`.

**INPUT:**

- `ring` – the Sage rational ring or None (default). If not specified, the rational ring is used automatically.

**OUTPUT:**

A Sage rational number.

**EXAMPLES:**

```sage
r = libgap(123/456); r
41/152
sage: type(_)
<class 'sage.libs.gap.element.GapElement_Rational'>
sage: r.sage()
41/152
sage: type(_)
<class 'sage.rings.rational.Rational'>
```

```python
>>> from sage.all import *
>>> r = libgap(Integer(123)/Integer(456)); r
41/152
>>> type(_)
<class 'sage.libs.gap.element.GapElement_Rational'>
>>> r.sage()
41/152
>>> type(_)
<class 'sage.rings.rational.Rational'>
```

**class** `sage.libs.gap.element.GapElement_Record`

**Bases:** `GapElement`

Derived class of `GapElement` for GAP records.

**EXAMPLES:**

```sage
rec = libgap.eval(rec(a:=123, b:=456))
len(rec)
2
rec['a']
123
```

```python
>>> from sage.all import *
>>> rec = libgap.eval('rec(a:=123, b:=456)')
>>> len(rec)
2
```
We can easily convert a Gap rec object into a Python dict:

```
sage: dict(rec)
{'a': 123, 'b': 456}
sage: type(_)
<... 'dict'>
```

Range checking is performed:

```
sage: rec['no_such_element']
Traceback (most recent call last):
...
GAPError: Error, Record Element: '<rec>.no_such_element' must have an assigned → value
```

```
>>> from sage.all import *

>>> dict(rec)
{'a': 123, 'b': 456}
>>> type(_)
<... 'dict'>
```

```
record_name_to_index(name)
Convert string to GAP record index.

INPUT:
 • py_name – a python string.

OUTPUT:
A UInt, which is a GAP hash of the string. If this is the first time the string is encountered, a new integer is returned(!)

EXAMPLES:

```
sage: rec = libgap.eval('rec(first:=123, second:=456)')
sage: rec.record_name_to_index('first')  # random output
1812
sage: rec.record_name_to_index('no_such_name')  # random output
3776
```
```
```
```
sage()

Return the Sage equivalent of the \texttt{GapElement}

EXAMPLES:

\begin{verbatim}
sage: libgap.eval('rec(a:=1, b:=2)').sage()
{'a': 1, 'b': 2}
sage: all( isinstance(key, str) and val in ZZ for key, val in _.items() )
True
sage: rec = libgap.eval('rec(a:=123, b:=456, Sym3:=SymmetricGroup(3))')
sage: rec.sage()
{'Sym3': NotImplementedError('cannot construct equivalent Sage object...'),
 'a': 123,
 'b': 456}
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> libgap.eval('rec(a:=1, b:=2)').sage()
{'a': 1, 'b': 2}

>>> all( isinstance(key, str) and val in ZZ for key, val in _.items() )
True

>>> rec = libgap.eval('rec(a:=123, b:=456, Sym3:=SymmetricGroup(3))')

>>> rec.sage()
{'Sym3': NotImplementedError('cannot construct equivalent Sage object...'),
 'a': 123,
 'b': 456}
\end{verbatim}

\texttt{class} \texttt{sage.libs.gap.element.GapElement_RecordIterator}

\texttt{Bases: object}

\texttt{Iterator} for \texttt{GapElement_Record}

Since Cython does not support generators yet, we implement the older iterator specification with this auxiliary class.

INPUT:

\begin{itemize}
\item \texttt{rec} – the \texttt{GapElement_Record} to iterate over.
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: rec = libgap.eval('rec(a:=123, b:=456)')
sage: sorted(rec)
[('a', 123), ('b', 456)]
sage: dict(rec)
{'a': 123, 'b': 456}
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> rec = libgap.eval('rec(a:=123, b:=456)')

>>> sorted(rec)
[('a', 123), ('b', 456)]

>>> dict(rec)
{'a': 123, 'b': 456}
\end{verbatim}

\texttt{class} \texttt{sage.libs.gap.element.GapElement_Ring}

\texttt{Bases: GapElement}

Derived class of \texttt{GapElement} for GAP rings (parents of ring elements).

EXAMPLES:
sage: i = libgap(ZZ)
sage: type(i)
<class 'sage.libs.gap.element.GapElement_Ring'>

>>> from sage.all import *
>>> i = libgap(ZZ)
>>> type(i)
<class 'sage.libs.gap.element.GapElement_Ring'>

ring_cyclotomic()
Construct an integer ring.

EXAMPLES:

sage: libgap.CyclotomicField(6).ring_cyclotomic()
Cyclotomic Field of order 3 and degree 2

>>> from sage.all import *
>>> libgap.CyclotomicField(Integer(6)).ring_cyclotomic()
Cyclotomic Field of order 3 and degree 2

ring_finite_field(var='a')
Construct an integer ring.

EXAMPLES:

sage: libgap.GF(3,2).ring_finite_field(var='A')
Finite Field in A of size 3^2

>>> from sage.all import *
>>> libgap.GF(Integer(3),Integer(2)).ring_finite_field(var='A')
Finite Field in A of size 3^2

ring_integer()
Construct the Sage integers.

EXAMPLES:

sage: libgap.eval(Integers).ring_integer()
Integer Ring

>>> from sage.all import *
>>> libgap.eval(Integers).ring_integer()
Integer Ring

ring_integer_mod()
Construct a Sage integer mod ring.

EXAMPLES:

sage: libgap.eval('ZmodnZ(15)').ring_integer_mod()
Ring of integers modulo 15

>>> from sage.all import *
>>> libgap.eval('ZmodnZ(15)').ring_integer_mod()
Ring of integers modulo 15
**ring_polynomial()**

Construct a polynomial ring.

**EXAMPLES:**

```
sage: B = libgap(QQ['x'])
sage: B.ring_polynomial()
Univariate Polynomial Ring in x over Rational Field

sage: B = libgap(ZZ['x','y'])
sage: B.ring_polynomial()
Multivariate Polynomial Ring in x, y over Integer Ring
```

**ring_rational()**

Construct the Sage rationals.

**EXAMPLES:**

```
sage: libgap.eval(Rationals).ring_rational()
Rational Field

>>> from sage.all import *

>>> libgap.eval(Rationals).ring_rational()
Rational Field
```

**sage(****kws**ds)**

Return the Sage equivalent of the *GapElement_Ring*.

**INPUT:**

- **kws**ds – keywords that are passed on to the *ring_* method.

**OUTPUT:**

A Sage ring.

**EXAMPLES:**

```
sage: libgap.eval('Integers').sage()
Integer Ring

sage: libgap.eval('Rationals').sage()
Rational Field

sage: libgap.eval('ZmodnZ(15)').sage()
Ring of integers modulo 15

sage: libgap.GF(3,2).sage(var='A')
Finite Field in A of size 3^2
```

(continues on next page)
sage: libgap.CyclotomicField(6).sage()
Cyclotomic Field of order 3 and degree 2

sage: libgap(QQ['x','y']).sage()
Multivariate Polynomial Ring in x, y over Rational Field

>>> from sage.all import *
>>> libgap.eval('Integers').sage()
Integer Ring

>>> libgap.eval('Rationals').sage()
Rational Field

>>> libgap.eval('ZmodnZ(15)').sage()
Ring of integers modulo 15

>>> libgap.GF(Integer(3),Integer(2)).sage(var='A')
Finite Field in A of size 3^2

>>> libgap.CyclotomicField(Integer(6)).sage()
Cyclotomic Field of order 3 and degree 2

>>> libgap(QQ['x','y']).sage()
Multivariate Polynomial Ring in x, y over Rational Field

class sage.libs.gap.element.GapElement_String

Bases: GapElement

Derived class of GapElement for GAP strings.

EXAMPLES:

sage: s = libgap('string')
sage: type(s)
<class 'sage.libs.gap.element.GapElement_String'>
sage: s
"string"
sage: print(s)
string

>>> from sage.all import *
>>> s = libgap('string')
>>> type(s)
<class 'sage.libs.gap.element.GapElement_String'>
>>> s
"string"
>>> print(s)
string

sage()

Convert this GapElement_String to a Python string.

OUTPUT:

A Python string.

EXAMPLES:
9.8 LibGAP Workspace Support

The single purpose of this module is to provide the location of the libgap saved workspace and a time stamp to invalidate saved workspaces.

sage.libs.gap.saved_workspace.timestamp()

Return a time stamp for (lib)gap

OUTPUT:

Float. Unix timestamp of the most recently changed GAP/LibGAP file(s). In particular, the timestamp increases whenever a gap package is added.

EXAMPLES:

sage: from sage.libs.gap.saved_workspace import timestamp
sage: timestamp()  # random output
1406642467.25684
sage: type(timestamp())
<... 'float'>

sage.libs.gap.saved_workspace.workspace(name='workspace')

Return the filename of the gap workspace and whether it is up to date.

INPUT:
• name – string. A name that will become part of the workspace filename.

OUTPUT:
Pair consisting of a string and a boolean. The string is the filename of the saved libgap workspace (or that it should have if it doesn't exist). The boolean is whether the workspace is up-to-date. You may use the workspace file only if the boolean is True.

EXAMPLES:

```python
sage: from sage.libs.gap.saved_workspace import workspace
sage: ws, up_to_date = workspace()
sage: ws
'/.../gap/libgap-workspace-...'
sage: isinstance(up_to_date, bool)
True
```

```python
>>> from sage.all import *
>>> from sage.libs.gap.saved_workspace import workspace
>>> ws, up_to_date = workspace()
>>> ws
'/.../gap/libgap-workspace-...'
>>> isinstance(up_to_date, bool)
True
```
10.1 Interface between flint matrices and linbox

This module only contains C++ code (and the interface is fully C compatible). It basically contains what used to be in the LinBox source code under interfaces/sage/linbox-sage.C written by M. Albrecht and C. Pernet. The functions available are:

- `void linbox_fmpz_mat_mul(fmpz_mat_t C, fmpz_mat_t A, fmpz_mat_t B);` set C to be the result of the multiplication $A \times B$
- `void linbox_fmpz_mat_charpoly(fmpz_poly_t cp, fmpz_mat_t A);` set cp to be the characteristic polynomial of the square matrix $A$
- `void linbox_fmpz_mat_minpoly(fmpz_poly_t mp, fmpz_mat_t A);` set mp to be the minimal polynomial of the square matrix $A$
- `size_t linbox_fmpz_mat_rank(fmpz_mat_t A);` return the rank of the matrix $A$
- `void linbox_fmpz_mat_det(fmpz_t det, fmpz_mat_t A);` set det to the determinant of the square matrix $A$
11.1 An interface to Anders Buch’s Littlewood-Richardson Calculator 
lrcalc

The “Littlewood-Richardson Calculator” is a C library for fast computation of Littlewood-Richardson (LR) coefficients and products of Schubert polynomials. It handles single LR coefficients, products of and coproducts of Schur functions, skew Schur functions, and fusion products. All of the above are achieved by counting LR (skew)-tableaux (also called Yamanouchi (skew)-tableaux) of appropriate shape and content by iterating through them. Additionally, lrcalc handles products of Schubert polynomials.

The web page of lrcalc is http://sites.math.rutgers.edu/~asbuch/lrcalc/.

The following describes the Sage interface to this library.

EXAMPLES:

```sage
sage: import sage.libs.lrcalc.lrcalc as lrcalc

>>> from sage.all import *
>>> import sage.libs.lrcalc.lrcalc as lrcalc

Compute a single Littlewood-Richardson coefficient:

sage: lrcalc.lrcoef([3,2,1],[2,1],[2,1])
2

>>> from sage.all import *
>>> lrcalc.lrcoef([Integer(3),Integer(2),Integer(1)],[Integer(2),Integer(1)],[Integer(2),Integer(1)])
2

Compute a product of Schur functions; return the coefficients in the Schur expansion:

sage: lrcalc.mult([2,1], [2,1])
{(2, 2, 1, 1): 1,
 (2, 2, 2): 1,
 (3, 1, 1, 1): 1,
 (3, 2, 1): 2,
 (3, 3): 1,
 (4, 1, 1): 1,
 (4, 2): 1)
```
Same product, but include only partitions with at most 3 rows. This corresponds to computing in the representation ring of $\text{gl}(3)$:

```python
sage: lrcalc.mult([2,1], [2,1], 3)
{[2, 2, 2]: 1, [3, 2, 1]: 2, [3, 3]: 1, [4, 1, 1]: 1, [4, 2]: 1}
```

We can also compute the fusion product, here for $\text{sl}(3)$ and level 2:

```python
sage: lrcalc.mult([3,2,1], [3,2,1], 3, 2)
{[4, 4, 4]: 1, [5, 4, 3]: 1}
```

Compute the expansion of a skew Schur function:

```python
sage: lrcalc.skew([3,2,1], [2,1])
{[1, 1, 1]: 1, [2, 1]: 2, [3]: 1}
```

Compute the coproduct of a Schur function:

```python
sage: lrcalc.coprod([3,2,1])
{([1, 1, 1], [2, 1]): 1, ([2, 1], [2, 1]): 2, ([2, 1], [3]): 1, ([2, 1, 1], [1, 1]): 1, ([2, 1, 1], [2]): 1, ([2, 2], [1, 1]): 1, ([2, 2], [2]): 1, ([2, 2, 1], [1]): 1, ([3, 1], [1, 1]): 1, ([3, 1], [2]): 1, ([3, 1, 1], [1]): 1, ([3, 2], [1]): 1, ([3, 2, 1], []): 1}
```
Multiply two Schubert polynomials:

```
sage: lrcalc.mult_schubert([4,2,1,3], [1,4,2,5,3])
{[4, 5, 1, 3, 2]: 1,
 [5, 3, 1, 4, 2]: 1,
 [5, 4, 1, 2, 3]: 1,
 [6, 2, 1, 4, 3, 5]: 1}

>>> from sage.all import *
>>>
lrcalc.mult_schubert([Integer(4),Integer(2),Integer(1),Integer(3)], [Integer(1), Integer(4),Integer(2),Integer(5),Integer(3)])
{[4, 5, 1, 3, 2]: 1,
 [5, 3, 1, 4, 2]: 1,
 [5, 4, 1, 2, 3]: 1,
 [6, 2, 1, 4, 3, 5]: 1}
```

Same product, but include only permutations of 5 elements in the result. This corresponds to computing in the cohomology ring of $F(5)$:

```
sage: lrcalc.mult_schubert([4,2,1,3], [1,4,2,5,3], 5)
{[4, 5, 1, 3, 2]: 1,
 [5, 3, 1, 4, 2]: 1,
 [5, 4, 1, 2, 3]: 1}

>>> from sage.all import *
>>>
lrcalc.mult_schubert([Integer(4),Integer(2),Integer(1),Integer(3)], [Integer(1), Integer(4),Integer(2),Integer(5),Integer(3)], Integer(5))
{[4, 5, 1, 3, 2]: 1, [5, 3, 1, 4, 2]: 1, [5, 4, 1, 2, 3]: 1}
```

List all Littlewood-Richardson tableaux of skew shape $\mu/\nu$; in this example $\mu = [3, 2, 1]$ and $\nu = [2, 1]$. Specifying a third entry $M' = \text{maxrows}$ restricts the alphabet to $\{1, 2, \ldots, M\}$:

```
sage: list(lrcalc.lrskew([3,2,1],[2,1]))
[[[None, None, 1], [None, 1], [1]], [[None, None, 1], [None, 1], [2]],
 [[None, None, 1], [None, 2], [1]], [[None, None, 1], [None, 2], [3]]]

sage: list(lrcalc.lrskew([3,2,1],[2,1],maxrows=2))
[[[None, None, 1], [None, 1], [1]], [[None, None, 1], [None, 1], [2]],
 [[None, None, 1], [None, 2], [1]]]
```

```
>>> from sage.all import *
>>>
list(lrcalc.lrskew([Integer(3),Integer(2),Integer(1)], [Integer(2),Integer(1)])[1])
(continues on next page)
```
Todo: Use this library in the \texttt{SymmetricFunctions} code, to make it easy to apply it to linear combinations of Schur functions.

See also:
\begin{itemize}
  \item \texttt{lrcoef()}
  \item \texttt{mult()}
  \item \texttt{coprod()}
  \item \texttt{skew()}
  \item \texttt{lrskew()}
  \item \texttt{mult\_schubert()}
\end{itemize}

\textbf{Underlying algorithmic in lrcalc}

Here is some additional information regarding the main low-level C-functions in \texttt{lrcalc}. Given two partitions \texttt{outer} and \texttt{inner} with \texttt{inner} contained in \texttt{outer}, the function:

\begin{verbatim}
skewtab *st_new(vector *outer, vector *inner, vector *conts, int maxrows)
\end{verbatim}

constructs and returns the (lexicographically) first LR skew tableau of shape \texttt{outer / inner}. Further restrictions can be imposed using \texttt{conts} and \texttt{maxrows}.

Namely, the integer \texttt{maxrows} is a bound on the integers that can be put in the tableau. The name is chosen because this will limit the partitions in the output of \texttt{skew()} or \texttt{mult()} to partitions with at most this number of rows.

The vector \texttt{conts} is the content of an empty tableau(!). More precisely, this vector is added to the usual content of a tableau whenever the content is needed. This affects which tableaux are considered LR tableaux (see \texttt{mult()} below). \texttt{conts} may also be the \texttt{NULL} pointer, in which case nothing is added.

The other function:

\begin{verbatim}
int *st_next(skewtab *st)
\end{verbatim}

computes in place the (lexicographically) next skew tableau with the same constraints, or returns 0 if \texttt{st} is the last one.

For a first example, see the \texttt{skew()} function code in the \texttt{lrcalc} source code. We want to compute a skew Schur function, so create a skew LR tableau of the appropriate shape with \texttt{st_new} (with \texttt{conts = NULL}), then iterate through all the LR tableaux with \texttt{st_next()}. For each skew tableau, we use that \texttt{st->conts} is the content of the skew tableau, find this shape in the \texttt{res} hash table and add one to the value.

For a second example, see \texttt{mult(vector *sh1, vector *sh2, maxrows)}. Here we call \texttt{st_new()} with the shape \texttt{sh1 / (0)} and use \texttt{sh2} as the \texttt{conts} argument. The effect of using \texttt{sh2} in this way is that \texttt{st_next} will iterate through semistandard tableaux $T$ of shape \texttt{sh1} such that the following tableau:
is a LR skew tableau, and st->conts contains the content of the combined tableaux.

More generally, st_new(outer, inner, conts, maxrows) and st_next can be used to compute the Schur expansion of the product $S_{\text{outer/inner}} * S_{\text{conts}}$, restricted to partitions with at most maxrows rows.

AUTHORS:

• Mike Hansen (2010): core of the interface
• Anne Schilling, Nicolas M. Thiéry, and Anders Buch (2011): fusion product, iterating through LR tableaux, finalization, documentation

sage.libs.lrcalc.lrcalc.coprod(part, all=0)

Compute the coproduct of a Schur function.

Return a linear combination of pairs of partitions representing the coproduct of the Schur function given by the partition part.

INPUT:

• part – a partition
• all – an integer

If all is non-zero then all terms are included in the result. If all is zero, then only pairs of partitions (part1, part2) for which the weight of part1 is greater than or equal to the weight of part2 are included; the rest of the coefficients are redundant because Littlewood-Richardson coefficients are symmetric.

EXAMPLES:

```python
sage: from sage.libs.lrcalc.lrcalc import coprod
sage: sorted(coprod([2,1]).items())
[(([1, 1], [1]), 1), ([2], [1]), ([2, 1], [])]
```

```python
>>> from sage.all import *
>>> from sage.libs.lrcalc.lrcalc import coprod
>>> sorted(coprod([Integer(2),Integer(1)]).items())
[(([1, 1], [1]), 1), ([2], [1]), ([2, 1], [])]
```

sage.libs.lrcalc.lrcalc.lrcoef(outer, inner1, inner2)

Compute a single Littlewood-Richardson coefficient.

Return the coefficient of outer in the product of the Schur functions indexed by inner1 and inner2.

INPUT:

• outer – a partition (weakly decreasing list of non-negative integers)
• inner1 – a partition
• inner2 – a partition
Note: This function converts its inputs into \texttt{Partition()}’s. If you don’t need these checks and your inputs are valid, then you can use \texttt{lrcoef\_unsafe()}.

EXAMPLES:

```
sage: from sage.libs.lrcalc.lrcalc import lrcoef
sage: lrcoef([3,2,1], [2,1], [2,1])
2
sage: lrcoef([3,3], [2,1], [2,1])
1
sage: lrcoef([2,1,1,1,1], [2,1], [2,1])
0
```

```
>>> from sage.all import *
>>> from sage.libs.lrcalc.lrcalc import lrcoef
>>> lrcoef([Integer(3),Integer(2),Integer(1)], [Integer(2),Integer(1)], [Integer(2),Integer(1)])
2
>>> lrcoef([Integer(3),Integer(3)], [Integer(2),Integer(1)], [Integer(2),Integer(1)])
1
>>> lrcoef([Integer(2),Integer(1),Integer(1),Integer(1),Integer(1)], [Integer(2),Integer(1)], [Integer(2),Integer(1)])
0
```

sage.libs.lrcalc.lrcalc.\texttt{lrcoef\_unsafe}(outer, inner1, inner2)

Compute a single Littlewood-Richardson coefficient.

Return the coefficient of outer in the product of the Schur functions indexed by inner1 and inner2.

INPUT:

- outer – a partition (weakly decreasing list of non-negative integers)
- inner1 – a partition
- inner2 – a partition

Warning: This function does not do any check on its input. If you want to use a safer version, use \texttt{lrcoef()}.

EXAMPLES:

```
sage: from sage.libs.lrcalc.lrcalc import lrcoefUnsafe
sage: lrcoefUnsafe([3,2,1], [2,1], [2,1])
2
sage: lrcoefUnsafe([3,3], [2,1], [2,1])
1
sage: lrcoefUnsafe([2,1,1,1,1], [2,1], [2,1])
0
```

```
>>> from sage.all import *
>>> from sage.libs.lrcalc.lrcalc import lrcoefUnsafe
>>> lrcoefUnsafe([Integer(3),Integer(2),Integer(1)], [Integer(2),Integer(1)], [Integer(2),Integer(1)])
2
```

(continues on next page)
sage.libs.lrcalc.lrcalc.lrskew(outer, inner, weight=None, maxrows=-1)

Iterate over the skew LR tableaux of shape outer / inner.

INPUT:

- outer – a partition
- inner – a partition
- weight – a partition (optional)
- maxrows – a positive integer (optional)

OUTPUT: an iterator of SkewTableau

Specifying maxrows = M restricts the alphabet to \{1, 2, \ldots, M\}.

Specifying weight returns only those tableaux of given content/weight.

EXAMPLES:

```python
sage: from sage.libs.lrcalc.lrcalc import lrskew
sage: for st in lrskew([3,2,1],[2]):
 : st.pp()
 . . 1
 1 1
 2
 . . 1
 1 2
 2
 . . 1
 1 2
 3

sage: for st in lrskew([3,2,1],[2], maxrows=2):
 : st.pp()
 . . 1
 1 1
 2
 . . 1
 1 2
 2

sage: list(lrskew([3,2,1],[2], weight=[3,1]))
[[[None, None, 1], [1, 1], [2]]]
```

```python
>>> from sage.all import *

>>> from sage.libs.lrcalc.lrcalc import lrskew

>>> for st in lrskew([Integer(3),Integer(2),Integer(1)], [Integer(2)],
 ...
 [Integer(1)]):
 st.pp()
 . . 1
 1 1
 1 1
```

(continues on next page)
for st in lrskew([Integer(3), Integer(2), Integer(1)], [Integer(2)], ...
˓→maxrows=Integer(2)):
  ...
  st.pp()
  ...
  1
  1
  2
  1
  2

list(lrskew([Integer(3), Integer(2), Integer(1)], [Integer(2)], ...
˓→weight=[Integer(3), Integer(1)]))
[[[None, None, 1], [1, 1], [2]]]

sage.libs.lrcalc.lrcalc.mult(part1, part2, maxrows=None, level=None, quantum=None)

Compute a product of two Schur functions.

Return the product of the Schur functions indexed by the partitions part1 and part2.

INPUT:

- part1 – a partition
- part2 – a partition
- maxrows – (optional) an integer
- level – (optional) an integer
- quantum – (optional) an element of a ring

If maxrows is specified, then only partitions with at most this number of rows are included in the result.

If both maxrows and level are specified, then the function calculates the fusion product for sl(maxrows) of the given level.

If quantum is set, then this returns the product in the quantum cohomology ring of the Grassmannian. In particular, both maxrows and level need to be specified.

EXAMPLES:

sage: from sage.libs.lrcalc.lrcalc import mult
sage: mult([2], [])
{(2): 1}
sage: sorted(mult([2], [2]).items())
[((2, 2), 1), ((3, 1), 1), ((4), 1)]
sage: sorted(mult([2, 1], [2, 1]).items())
[((2, 2, 1, 1), 1), ((2, 2, 2), 1), ((3, 1, 1, 1), 1),
 ((3, 2, 1, 2), ((3, 3), 1), ((4, 1, 1), 1), ((4, 2), 1)]
sage: sorted(mult([2, 1], [2, 1], maxrows=2).items())
[((3, 3), 1), ((4, 2), 1)]
sage: mult([2, 1], [3, 2, 1], 3)
\begin{verbatim}
{{[3, 3, 3]: 1, [4, 3, 2]: 2, [4, 4, 1]: 1, [5, 2, 2]: 1, [5, 3, 1]: 1}
sage: mult([2,1],[2,1],3)
{{[2, 2, 2]: 1, [3, 2, 1]: 2, [3, 3]: 1, [4, 1, 1]: 1}
sage: mult([2,1],[2,1],None,3)
Traceback (most recent call last):
  ... ValueError: maxrows needs to be specified if you specify the level
\end{verbatim}

The quantum product:

sage: q = polygen(QQ, 'q')
sage: sorted(mult([1],[2,1], 2, 2, quantum=q).items())
[([], q), ([2, 2], 1)]
sage: sorted(mult([2,1],[2,1], 2, 2, quantum=q).items())
[([], q), ([2], q)]
sage: mult([2,1],[2,1], quantum=q)
Traceback (most recent call last):
  ... ValueError: missing parameters maxrows or level

\begin{verbatim}
sage.libs.lrcalc.lrcalc.mult_schubert(w1, w2, rank=0)
Compute a product of two Schubert polynomials.

Return a linear combination of permutations representing the product of the Schubert polynomials indexed by the permutations \(w_1\) and \(w_2\).

INPUT:

- \(w_1\) – a permutation
- \(w_2\) – a permutation
- \(rank\) – an integer

If \(rank\) is non-zero, then only permutations from the symmetric group \(S(rank)\) are included in the result.

EXAMPLES:

sage: from sage.libs.lrcalc.lrcalc import mult_schubert
sage: result = mult_schubert([3, 1, 5, 2, 4], [3, 5, 2, 1, 4])
sage: sorted(result.items())
[(5, 4, 6, 1, 2, 3), 1], (5, 6, 3, 1, 2, 4), 1),
([5, 7, 2, 1, 3, 4, 6], 1), (6, 3, 5, 1, 2, 4), 1),
([6, 4, 3, 1, 2, 5], 1), (6, 5, 2, 1, 3, 4), 1),
([7, 3, 4, 1, 2, 5, 6], 1), ([7, 4, 2, 1, 3, 5, 6], 1)]

>>> from sage.all import *
>>> from sage.libs.lrcalc.lrcalc import mult_schubert
>>> result = mult_schubert([Integer(3), Integer(1), Integer(5), Integer(2),
                           Integer(4)], [Integer(3), Integer(5), Integer(2), Integer(1), Integer(4)])
>>> sorted(result.items())
[(5, 4, 6, 1, 2, 3), 1], (5, 6, 3, 1, 2, 4), 1),
([5, 7, 2, 1, 3, 4, 6], 1), (6, 3, 5, 1, 2, 4), 1),
([6, 4, 3, 1, 2, 5], 1), (6, 5, 2, 1, 3, 4), 1),
([7, 3, 4, 1, 2, 5, 6], 1), ([7, 4, 2, 1, 3, 5, 6], 1)]
\end{verbatim}

sage.libs.lrcalc.lrcalc.skew(outer, inner, maxrows=-1)

Compute the Schur expansion of a skew Schur function.

11.1. An interface to Anders Buch’s Littlewood-Richardson Calculator lrcalc 179
Return a linear combination of partitions representing the Schur function of the skew Young diagram \( \text{outer} / \text{inner} \), consisting of boxes in the partition \( \text{outer} \) that are not in \( \text{inner} \).

**INPUT:**
- \( \text{outer} \) – a partition
- \( \text{inner} \) – a partition
- \( \text{maxrows} \) – an integer or None

If \( \text{maxrows} \) is specified, then only partitions with at most this number of rows are included in the result.

**EXAMPLES:**

```python
sage: from sage.libs.lrcalc.lrcalc import skew
sage: sorted(skew([2,1],[1]).items())
[([1, 1], 1), ([2], 1)]
```

```python
>>> from sage.all import *
>>> from sage.libs.lrcalc.lrcalc import skew
>>> sorted(skew([Integer(2),Integer(1)],[Integer(1)]).items())
[([1, 1], 1), ([2], 1)]
```
12.1 Utilities for Sage-mpmath interaction

Also patches some mpmath functions for speed

sage.libs.mpmath.utils.bitcount(n)

Bitcount of a Sage Integer or Python int/long.

EXAMPLES:

```python
sage: from mpmath.libmp import bitcount
sage: bitcount(0)
0
sage: bitcount(1)
1
sage: bitcount(100)
7
sage: bitcount(-100)
7
sage: bitcount(2r)
2
sage: bitcount(2L)
2
```

```python
>>> from sage.all import *
>>> from mpmath.libmp import bitcount
>>> bitcount(Integer(0))
0
>>> bitcount(Integer(1))
1
>>> bitcount(Integer(100))
7
>>> bitcount(-Integer(100))
7
>>> bitcount(2)
2
>>> bitcount(2)
2
```

sage.libs.mpmath.utils.call(func, *args, **kwargs)

Call an mpmath function with Sage objects as inputs and convert the result back to a Sage real or complex number.

By default, a RealNumber or ComplexNumber with the current working precision of mpmath (mpmath.mp.prec) will be returned.
If \( \text{prec} = n \) is passed among the keyword arguments, the temporary working precision will be set to \( n \) and the result will also have this precision.

If \( \text{parent} = P \) is passed, \( P.prec() \) will be used as working precision and the result will be coerced to \( P \) (or the corresponding complex field if necessary).

Arguments should be Sage objects that can be coerced into RealField or ComplexField elements. Arguments may also be tuples, lists or dicts (which are converted recursively), or any type that mpmath understands natively (e.g. Python floats, strings for options).

**EXAMPLES:**

```python
sage: import sage.libs.mpmath.all as a
sage: a.mp.prec = 53
sage: a.call(a.erf, 3+4*I)
-120.1869913950797 - 27.7503372936239*I
sage: a.call(a.polylog, 2, 1/3+4/5*I)
0.153548951541433 + 0.87511412499637*I
sage: a.call(a.barnesg, 3+4*I)
-0.0006763759322342445 - 0.000442236140124728*I
sage: a.call(a.barnesg, -4)
0.00000000000000000
sage: a.call(a.polylog, 2, [2,3], [4,5], 1/3)
1.1073578162508
sage: a.call(a.polylog, 2, [2,3], [4,(2,3)], 1/3)
1.95762943509305
sage: a.call(a.quad, a.erf, [0,1])
0.486064958112256
sage: a.call(a.gamma, infinity)
+infinity
sage: a.call(a.polylog, 2, 1/2, parent=RR)
2.467401100273984 - 2.17758609030360*I
sage: a.call(a.polylog, 2, 1/2, parent=RealField(100))
0.582240526465012
sage: a.call(a.polylog, 2, 1/2, parent=CC)
0.582240526465012
sage: type(_)
<class 'sage.rings.complex_mpfr.ComplexNumber'>
sage: a.call(a.polylog, 2, 1/2, parent=RDF)
0.5822405264650125
sage: type(_)
<class 'sage.rings.real_double.RealDoubleElement'>
```
>>> from sage.all import *
>>> import sage.libs.mpmath.all as a

a.mp.prec = Integer(53)

a.call(a.erf, Integer(3)+Integer(4)*I)
-120.186991395079 - 27.7503372936239*I

a.call(a.polylog, Integer(2), Integer(1)/Integer(3)+Integer(4)/Integer(5)*I)
0.15354851541433 + 0.875114412499637*I

a.call(a.barnesg, Integer(3)+Integer(4)*I)
-0.0000676375932234244 - 0.0000442236140124728*I

a.call(a.barnesg, -Integer(4))
0.000000000000000

a.call(a.hyper, [Integer(2),Integer(3)], [Integer(4),Integer(5)], Integer(1)/
\rightarrow Integer(3))
1.0703578162508

a.call(a.hyper, [Integer(2),Integer(3)], [Integer(4),(Integer(2),Integer(3))],
\rightarrow Integer(1)/Integer(3))
1.95762943509305

a.call(a.quad, a.erf, [Integer(0),Integer(1)])
0.486064985121256

a.call(a.gammainc, Integer(3)+Integer(4)*I, Integer(2)/Integer(3), Integer(1)-
\rightarrow pi*I, prec=Integer(100))
-274.18877130777160922270612331 + 101.59521032382593402947725236*I

x = (Integer(3)+Integer(4)*I).n(Integer(100))
y = (Integer(2)/Integer(3)).n(Integer(100))
z = (Integer(1)-pi*I).n(Integer(100))

a.call(a.gammainc, x, y, z, prec=Integer(100))
-274.18877130777160922270612331 + 101.59521032382593402947725236*I

a.call(a.erf, infinity)
1.00000000000000

a.call(a.erf, -infinity)
-1.00000000000000

a.call(a.gamma, infinity)
+infinity

a.call(a.polylog, Integer(2), Integer(1)/Integer(2), parent=RR)
0.582240526465012

a.call(a.polylog, Integer(2), Integer(2), parent=RR)
2.467401100272324 - 2.1775860930360*I

a.call(a.polylog, Integer(2), Integer(1)/Integer(2),
\rightarrow parent=RealField(Integer(100))
0.5822405264650125090265632016

a.call(a.polylog, Integer(2), Integer(2), parent=RealField(Integer(100)))
2.4674011002723396547086227500 - 2.177586093036021305006888982*I

a.call(a.polylog, Integer(2), Integer(1)/Integer(2), parent=CC)
0.582240526465012

a.call(a.polylog, Integer(2), Integer(1)/Integer(2), parent=RDF)
0.5822405264650125

a.call(a.polylog, Integer(2), Integer(1)/Integer(2), parent=RR)

Check that Issue #11885 is fixed:

sage: a.call(a.ei, 1.0r, parent=float)
1.895117816359366

(continues on next page)
Check that Issue #14984 is fixed:

```python
sage: a.call(a.log, -1.0r, parent=float)
3.141592653589793j
```

`sage.libs.mpmath.utils.from_man_exp(man, exp, prec=0, rnd='d')`
Create normalized mpf value tuple from mantissa and exponent.

With prec > 0, rounds the result in the desired direction if necessary.

**EXAMPLES:**

```python
sage: from mpmath.libmp import from_man_exp
sage: from_man_exp(-6, -1)
(1, 3, 0, 2)
sage: from_man_exp(-6, -1, 'd')
(1, 1, 1, 1)
sage: from_man_exp(-6, -1, 'u')
(1, 1, 2, 1)
```

`sage.libs.mpmath.utils.isqrt(n)`
Square root (rounded to floor) of a Sage Integer or Python int/long. The result is a Sage Integer.

**EXAMPLES:**

```python
sage: from mpmath.libmp import isqrt
sage: isqrt(0)
0
sage: isqrt(100)
10
sage: isqrt(10)
3
sage: isqrt(10r)
3
sage: isqrt(10L)
3
```
```python
0
>>> isqrt(Integer(100))
10
>>> isqrt(Integer(10))
3
>>> isqrt(10)
3
>>> isqrt(10)
3
```

`sage.libs.mpmath.utils.mpmath_to_sage(x, prec)`

Convert any mpmath number (mpf or mpc) to a Sage RealNumber or ComplexNumber of the given precision.

**EXAMPLES:**

```python
sage: import sage.libs.mpmath.all as a
sage: a.mpmath_to_sage(a.mpf('2.5'), 53)
2.50000000000000
sage: a.mpmath_to_sage(a.mpc('2.5', '-3.5'), 53)
2.50000000000000 - 3.50000000000000*I
sage: a.mpmath_to_sage(a.mpf('inf'), 53)
+infinity
sage: a.mpmath_to_sage(a.mpf('-inf'), 53)
-infinity
sage: a.mpmath_to_sage(a.mpf('nan'), 53)
NaN
sage: a.mpmath_to_sage(a.mpf('0'), 53)
0.000000000000000
```

```python
>>> from sage.all import *
>>> import sage.libs.mpmath.all as a

>>> a.mpmath_to_sage(a.mpf('2.5'), Integer(53))
2.50000000000000
>>> a.mpmath_to_sage(a.mpc('2.5', '-3.5'), Integer(53))
2.50000000000000 - 3.50000000000000*I
>>> a.mpmath_to_sage(a.mpf('inf'), Integer(53))
+infinity
>>> a.mpmath_to_sage(a.mpf('-inf'), Integer(53))
-infinity
>>> a.mpmath_to_sage(a.mpf('nan'), Integer(53))
NaN
>>> a.mpmath_to_sage(a.mpf('0'), Integer(53))
0.000000000000000
```

A real example:

```python
sage: RealField(100)(pi)
3.1415926535897932384626433833
sage: t = RealField(100)(pi)._mpmath_(); t
mpf('3.1415926535897932')
sage: a.mpmath_to_sage(t, 100)
3.1415926535897932384626433833
```

```python
>>> from sage.all import *
>>> RealField(Integer(100))(pi)
3.1415926535897932384626433833
```

(continues on next page)
We can ask for more precision, but the result is undefined:

```python
sage: a.mpmath_to_sage(t, 140) # random
3.141592653589793238462643383279333156440
sage: ComplexField(140)(pi)
3.1415926535897932384626433832795028841972
```

A complex example:

```python
sage: ComplexField(100)([0, pi])
3.1415926535897932384626433833*I
sage: t = ComplexField(100)([0, pi])._mpmath_(); t
mpc(real=0.0, imag=3.1415926535897932)
sage: sage.libs.mpmath.all.mpmath_to_sage(t, 100)
3.1415926535897932384626433833*I
```

Again, we can ask for more precision, but the result is undefined:

```python
sage: sage.libs.mpmath.all.mpmath_to_sage(t, 140) # random
3.1415926535897932384626433832795028841972*I
sage: ComplexField(Integer(140))(0, pi)
3.1415926535897932384626433832795028841972*I
```

sage.libs.mpmath.utils.normalize(sign, man, exp, bc, prec, rnd)

Create normalized mpf value tuple from full list of components.

EXAMPLES:

```python
sage: from mpmath.libmp import normalize
sage: normalize(0, 4, 5, 3, 53, 'n')
(0, 1, 7, 1)
```
sage.libs.mpmath.utils.sage_to_mpmath(x, prec)

Convert any Sage number that can be coerced into a RealNumber or ComplexNumber of the given precision into
an mpmath mpf or mpc. Integers are currently converted to int.

Lists, tuples and dicts passed as input are converted recursively.

EXAMPLES:

```python
def example_usage():
 import sage.libs.mpmath.all as a
 a.mp.dps = 15
 print(a.sage_to_mpmath(2/3, 53))
 print(a.sage_to_mpmath(2./3, 53))
 print(a.sage_to_mpmath(3+4*I, 53))
 print(a.sage_to_mpmath(1+pi, 53))
 print(a.sage_to_mpmath(infinity, 53))
 print(a.sage_to_mpmath(-infinity, 53))
 print(a.sage_to_mpmath(NaN, 53))
 print(a.sage_to_mpmath(0, 53))
```

(continues on next page)
>>> a.sage_to_mpmath([[RealNumber('0.5'), RealNumber('1.5')], Integer(53))
[mpf('0.5'), mpf('1.5')]
>>> a.sage_to_mpmath((RealNumber('0.5'), RealNumber('1.5')), Integer(53))
(mpf('0.5'), mpf('1.5'))
>>> a.sage_to_mpmath({'n':RealNumber('0.5')}, Integer(53))
{'n': mpf('0.5')}
13.1 Victor Shoup’s NTL C++ Library

Sage provides an interface to Victor Shoup’s C++ library NTL. Features of this library include incredibly fast arithmetic with polynomials and asymptotically fast factorization of polynomials.
14.1 Interface between Sage and PARI

14.1.1 Guide to real precision in the PARI interface

In the PARI interface, “real precision” refers to the precision of real numbers, so it is the floating-point precision. This is a non-trivial issue, since there are various interfaces for different things.

Internal representation and conversion between Sage and PARI

Real numbers in PARI have a precision associated to them, which is always a multiple of the CPU wordsize. So, it is a multiple of 32 or 64 bits. When converting from Sage to PARI, the precision is rounded up to the nearest multiple of the wordsize:

```
sage: x = 1.0
sage: x.precision()
53
sage: pari(x)
1.00000000000000
sage: pari(x).bitprecision()
64

>>> from sage.all import *
>>> x = RealNumber('1.0')
>>> x.precision()
53
>>> pari(x)
1.00000000000000
>>> pari(x).bitprecision()
64
```

With a higher precision:

```
sage: x = RealField(100).pi()
sage: x.precision()
100
sage: pari(x).bitprecision()
128
```
When converting back to Sage, the precision from PARI is taken:

```
sage: x = RealField(100).pi()
sage: y = pari(x).sage()
sage: y
3.1415926535897932384626433832793333156
sage: parent(y)
Real Field with 128 bits of precision
```

So `pari(x).sage()` is definitely not equal to `x` since it has 28 bogus bits.

Therefore, some care must be taken when juggling reals back and forth between Sage and PARI. The correct way of avoiding this is to convert `pari(x).sage()` back into a domain with the right precision. This has to be done by the user (or by Sage functions that use PARI library functions). For instance, if we want to use the PARI library to compute \( \sqrt{\pi} \) with a precision of 100 bits:

```
sage: # needs sage.symbolic
sage: R = RealField(100)
sage: s = R(pi); s
3.1415926535897932384626433833
sage: p = pari(s).sqrt()
sage: x = p.sage(); x
wow, more digits than I expected!
1.7724538509055160272981674833410973484
sage: x.prec()
has precision 'improved' from 100 to 128?
128
sage: x == RealField(128)(pi).sqrt() # sadly, no!
False
sage: R(x) # x should be brought back to precision 100
1.7724538509055160272981674833
sage: R(x) == s.sqrt() # True
True
```

(continues on next page)
Output precision for printing

Even though PARI reals have a precision, not all significant bits are printed by default. The maximum number of digits when printing a PARI real can be set using the methods `Pari.set_real_precision_bits()` or `Pari.set_real_precision()`.

We create a very precise approximation of π and see how it is printed in PARI:

```python
sage: pi = pari(RealField(1000).pi())
```

The default precision is 15 digits:

```python
sage: pi
3.14159265358979
```

With a different precision:

```python
sage: _ = pari.set_real_precision(50)
sage: pi
3.1415926535897932384626433832795028841971693993751
```

Back to the default:

```python
sage: _ = pari.set_real_precision(15)
sage: pi
3.14159265358979
```
Input precision for function calls

When we talk about precision for PARI functions, we need to distinguish three kinds of calls:

1. Using the string interface, for example `pari("sin(1)")`.
2. Using the library interface with exact inputs, for example `pari(1).sin()`.
3. Using the library interface with inexact inputs, for example `pari(1.0).sin()`.

In the first case, the relevant precision is the one set by the methods `Pari.set_real_precision_bits()` or `Pari.set_real_precision()`:

```
sage: pari.set_real_precision_bits(150)
sage: pari("sin(1)")
0.84147098480789650665250232163029899622563061
sage: pari.set_real_precision_bits(53)
sage: pari("sin(1)")
0.841470984807897
```

In the second case, the precision can be given as the argument `precision` in the function call, with a default of 53 bits. The real precision set by `Pari.set_real_precision_bits()` or `Pari.set_real_precision()` is irrelevant.

```
>>> from sage.all import *

>>> pari.set_real_precision_bits(Integer(180))
>>> pari("sin(1)")
0.84147098480789650665250232163029899622563061
>>> pari.set_real_precision_bits(Integer(40))
>>> pari("sin(1)")
0.841470984807897
>>> pari("sin(1)")
0.841470984807897
```

In the third case, the precision is determined only by the inexact inputs and the `precision` argument is ignored:

```
sage: s = pari(1).sin(precision=180).sage(); print(s); print(parent(s))
0.84147098480789650665250232163029899622563060798371065673
Real Field with 192 bits of precision
sage: s = pari(1).sin(precision=40).sage(); print(s); print(parent(s))
0.84147098480789650665250232163029899622563060798371065673
Real Field with 64 bits of precision
sage: s = pari(1).sin().sage(); print(s); print(parent(s))
0.84147098480789650665250232163029899622563060798371065673
Real Field with 64 bits of precision
```

```
>>> from sage.all import *

>>> s = pari(Integer(1)).sin(precision=Integer(180)).sage(); print(s);
---print(parent(s))
0.84147098480789650665250232163029899622563060798371065673
Real Field with 192 bits of precision
>>> s = pari(Integer(1)).sin(precision=Integer(40)).sage(); print(s); print(parent(s))
0.84147098480789650665250232163029899622563060798371065673
Real Field with 64 bits of precision
>>> s = pari(Integer(1)).sin().sage(); print(s); print(parent(s))
0.84147098480789650665250232163029899622563060798371065673
Real Field with 64 bits of precision
```

In the third case, the precision is determined only by the inexact inputs and the `precision` argument is ignored:
Elliptic curve functions

An elliptic curve given with exact $a$-invariants is considered an exact object. Therefore, you should set the precision for each method call individually:

```python
sage: e = pari([0, 0, 0, -82, 0]).ellinit()

sage: eta1 = e.elleta(precision=50)[0]

sage: eta1.sage()
3.6054636014326520859158205642077267748 # 64-bit
3.60546360143265208591582056420772677481026899659802474544380641429820491740 # 32-bit

sage: eta1 = e.elleta(precision=150)[0]

sage: eta1.sage()
3.60546360143265208591582056420772677481026899659802474544380641429820491740 # 64-bit
3.60546360143265208591582056420772677481026899659802474544380641429820491740 # 32-bit
```

14.2 Convert PARI objects to Sage types

`sage.libs.pari.convert_sage.gen_to_sage(z, locals=None)`

Convert a PARI gen to a Sage/Python object.

**INPUT:**
- `z` - PARI gen
- `locals` - optional dictionary used in fallback cases that involve `sage_eval`

**OUTPUT:**
One of the following depending on the PARI type of $z$

- a **Integer** if $z$ is an integer (type `t_INT`)
- a **Rational** if $z$ is a rational (type `t_FRAC`)
- a **RealNumber** if $z$ is a real number (type `t_REAL`). The precision will be equivalent.
- a **NumberFieldElement_quadratic** or a **ComplexNumber** if $z$ is a complex number (type `t_COMPLEX`). The former is used when the real and imaginary parts are integers or rationals and the latter when they are floating point numbers. In that case the precision will be the maximal precision of the real and imaginary parts.
- a Python list if $z$ is a vector or a list (type `t_VEC`, `t_COL`)
- a Python string if $z$ is a string (type `t_STR`)
- a Python list of Python integers if $z$ is a small vector (type `t_VECSMALL`)
- a matrix if $z$ is a matrix (type `t_MAT`)
- a **padic element** (type `t_PADIC`)
- an **Infinity** if $z$ is an infinity (type `t_INF`)

**EXAMPLES:**

```python
sage: from sage.libs.pari.convert_sage import gen_to_sage
```

```python
>>> from sage.all import *
```

```python
>>> from sage.libs.pari.convert_sage import gen_to_sage
```

Converting an integer:

```python
sage: z = pari('12'); z
12
sage: z.type()
't_INT'
sage: a = gen_to_sage(z); a
12
sage: a.parent()
Integer Ring
```

```python
sage: gen_to_sage(pari('7^42'))
311973482284542371301330321821976049
```

```python
>>> from sage.all import *
```

```python
>>> z = pari('12'); z
12
>>> z.type()
't_INT'
>>> a = gen_to_sage(z); a
12
>>> a.parent()
Integer Ring
```

```python
>>> gen_to_sage(pari('7^42'))
311973482284542371301330321821976049
```

Converting a rational number:
sage: z = pari('389/17'); z
389/17
sage: z.type()
't_FRAC'
sage: a = gen_to_sage(z); a
389/17
sage: a.parent()
Rational Field

sage: gen_to_sage(pari('5^30 / 3^50 '))
931322574615478515625/717897987691852588770249

>>> from sage.all import *

>>> z = pari('389/17'); z
389/17
>>> z.type()
't_FRAC'
>>> a = gen_to_sage(z); a
389/17
>>> a.parent()
Rational Field

>>> gen_to_sage(pari('5^30 / 3^50 '))
931322574615478515625/717897987691852588770249

Converting a real number:

sage: pari.set_real_precision(70)
15
sage: z = pari('1.234'); z
1.234000000000000000000000000000000000000000000000000000000000000000000000000
sage: a = gen_to_sage(z); a
#...

"needs sage.rings.real_mpfr"
1.234000000000000000000000000000000000000000000000000000000000000000000000000

sage: a.parent()
#...

"needs sage.rings.real_mpfr"
Real Field with 256 bits of precision

sage: pari.set_real_precision(15)
70
sage: a = gen_to_sage(pari('1.234')); a
#...

"needs sage.rings.real_mpfr"
1.234000000000000000000000000000000000000000000000000000000000000000000000000

sage: a.parent()
#...

"needs sage.rings.real_mpfr"
Real Field with 64 bits of precision

>>> from sage.all import *

>>> pari.set_real_precision(Integer(70))
15

>>> z = pari('1.234'); z
1.234000000000000000000000000000000000000000000000000000000000000000000000000

>>> a = gen_to_sage(z); a
#...

"needs sage.rings.real_mpfr"
1.234000000000000000000000000000000000000000000000000000000000000000000000000

>>> a.parent()
#...

"needs sage.rings.real_mpfr"
Real Field with 256 bits of precision

(continues on next page)
```python
>>> pari.set_real_precision(Integer(15))
70
>>> a = gen_to_sage(pari('1.234')); a
needs sage.rings.real_mpfr
1.234000000000000
>>> a.parent()
needs sage.rings.real_mpfr
Real Field with 64 bits of precision
```

For complex numbers, the parent depends on the PARI type:

```python
sage: z = pari('(3+I)'); z
3 + I
sage: z.type()
't_COMPLEX'
```

```python
sage: a = gen_to_sage(z); a
needs sage.rings.number_field
i + 3
sage: a.parent()
needs sage.rings.number_field
Number Field in i with defining polynomial x^2 + 1 with i = 1*I
```

```python
sage: z = pari('(3+I)/2'); z
3/2 + 1/2*I
sage: a = gen_to_sage(z); a
needs sage.rings.number_field
1/2*i + 3/2
sage: a.parent()
needs sage.rings.number_field
Number Field in i with defining polynomial x^2 + 1 with i = 1*I
```

```python
sage: z = pari('1.0 + 2.0*I'); z
1.00000000000000 + 2.00000000000000*I
sage: a = gen_to_sage(z); a
needs sage.rings.real_mpfr
1.00000000000000000 + 2.00000000000000000*I
sage: a.parent()
needs sage.rings.real_mpfr
Complex Field with 64 bits of precision
```

```python
sage: z = pari('1 + 1.0*I'); z
1 + 1.00000000000000*I
sage: a = gen_to_sage(z); a
needs sage.rings.real_mpfr
1.00000000000000000 + 1.00000000000000000*I
sage: a.parent()
needs sage.rings.real_mpfr
Complex Field with 64 bits of precision
```

```python
sage: z = pari('1.0 + 1*I'); z
1.00000000000000 + I
sage: a = gen_to_sage(z); a
needs sage.rings.real_mpfr
1.00000000000000000 + 1.00000000000000000*I
sage: a.parent()
needs sage.rings.real_mpfr
Complex Field with 64 bits of precision
```
```python
>>> from sage.all import *

>>> z = pari('(3+I)'); z
3 + I

>>> z.type()
't_COMPLEX'

>>> a = gen_to_sage(z); a
#...

needs sage.rings.number_field

i + 3

>>> a.parent()
#...

needs sage.rings.number_field

Number Field in i with defining polynomial x^2 + 1 with i = 1*I

>>> z = pari('(3+I)/2'); z
3/2 + 1/2*I

>>> a = gen_to_sage(z); a
#...

needs sage.rings.number_field

1/2*i + 3/2

>>> a.parent()
#...

needs sage.rings.number_field

Number Field in i with defining polynomial x^2 + 1 with i = 1*I

>>> z = pari('1.0 + 2.0*I'); z
1.00000000000000 + 2.00000000000000*I

>>> a = gen_to_sage(z); a
#...

needs sage.rings.real_mpfr

1.00000000000000000 + 2.00000000000000000*I

>>> a.parent()
#...

needs sage.rings.real_mpfr

Complex Field with 64 bits of precision

>>> z = pari('1.0 + 1.0*I'); z
1.00000000000000 + 1.00000000000000*I

>>> a = gen_to_sage(z); a
#...

needs sage.rings.real_mpfr

1.00000000000000000 + 1.00000000000000000*I

>>> a.parent()
#...

needs sage.rings.real_mpfr

Complex Field with 64 bits of precision

>>> z = pari('1.0 + 1*I'); z
1.00000000000000000 + I

>>> a = gen_to_sage(z); a
#...

needs sage.rings.real_mpfr

1.00000000000000000 + 1.00000000000000000*I

>>> a.parent()
#...

needs sage.rings.real_mpfr

Complex Field with 64 bits of precision

Converting polynomials:

```
sage: f = pari('(2/3)*x^3 + x - 5/7 + y')
sage: f.type()
't_POL'
sage: R.<x,y> = QQ[]
sage: gen_to_sage(f, {'x': x, 'y': y})
2/3*x^3 + x + y - 5/7
```

(continues on next page)
sage: parent(gen_to_sage(f, {x: x, 'y': y}))
Multivariate Polynomial Ring in x, y over Rational Field

sage: # needs sage.symbolic
sage: x,y = SR.var('x,y')
sage: gen_to_sage(f, {'x': x, 'y': y})
2/3*x^3 + x + y - 5/7
sage: parent(gen_to_sage(f, {'x': x, 'y': y}))
Symbolic Ring

sage: gen_to_sage(f)
Traceback (most recent call last):
...'
NameError: name 'x' is not defined

>>> from sage.all import *
>>> f = pari((2/3)*x^3 + x - 5/7 + y)
>>> f.type()
't_POL'

>>> R = QQ['x, y']; (x, y,) = R._first_ngens(2)
>>> gen_to_sage(f, {'x': x, 'y': y})
2/3*x^3 + x + y - 5/7
>>> parent(gen_to_sage(f, {'x': x, 'y': y}))
Multivariate Polynomial Ring in x, y over Rational Field

>>> # needs sage.symbolic
>>> x,y = SR.var('x,y')
>>> gen_to_sage(f, {'x': x, 'y': y})
2/3*x^3 + x + y - 5/7
>>> parent(gen_to_sage(f, {'x': x, 'y': y}))
Symbolic Ring

>>> gen_to_sage(f)
Traceback (most recent call last):
...'
NameError: name 'x' is not defined

Converting vectors:

sage: # needs sage.rings.number_field sage.rings.real_mpfr
sage: z1 = pari('[[-3, 2.1, 1+I]]; z1
[-3, 2.10000000000000, 1 + I]
sage: z2 = pari('[1.0*I, [1,2]]~'); z2
[1.00000000000000*I, [1, 2]]~
sage: z1.type(), z2.type()
('t_VEC', 't_COL')
sage: a1 = gen_to_sage(z1)
sage: a2 = gen_to_sage(z2)
sage: type(a1), type(a2)
<... 'list'>, <... 'list'>
sage: [parent(b) for b in a1]
[Integer Ring,
Real Field with 64 bits of precision,
Number Field in i with defining polynomial x^2 + 1 with i = 1*I]
sage: [parent(b) for b in a2]
>> from sage.all import *
>> # needs sage.rings.number_field sage.rings.real_mpfr
>> z1 = pari('[-3, 2.1, 1+I]'); z1
[-3, 2.10000000000000, 1 + I]
>> z2 = pari('[[1.0*I, [1,2]]~]'); z2
[1.00000000000000*I, [1, 2]]~
>> z1.type(), z2.type()
('t_VEC', 't_COL')
>> a1 = gen_to_sage(z1)
>> a2 = gen_to_sage(z2)
>> type(a1), type(a2)
(<... 'list'>, <... 'list'>)
>> [parent(b) for b in a1]
[Integer Ring, Real Field with 64 bits of precision, Number Field in i with defining polynomial x^2 + 1 with i = 1*I]
>> [parent(b) for b in a2]
[Complex Field with 64 bits of precision, <... 'list'>]

>> z = pari('Vecsmall([1,2,3,4])')
>> z.type()
't_VECSMALL'
>> a = gen_to_sage(z); a
[1, 2, 3, 4]
>> type(a)
<... 'list'>
>> [parent(b) for b in a]
[<... 'int'>, <... 'int'>, <... 'int'>, <... 'int'>]

Matrices:

>> from sage.all import *
>> # needs sage.modules
>> a = gen_to_sage(z); a
[1 2]
[3 4]
>> a.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

>> from sage.all import *
>> z = pari('[1,2;3,4]')

(continues on next page)
Conversion of p-adics:

```python
sage: # needs sage.rings.padics
sage: z = pari('569 + O(7^8)'); z
2 + 4*7 + 4*7^2 + 7^3 + O(7^8)
sage: a = gen_to_sage(z); a
2 + 4*7 + 4*7^2 + 7^3 + O(7^8)
sage: a.parent()
7-adic Field with capped relative precision 8
```

Conversion of infinities:

```python
sage: gen_to_sage(pari('oo'))
+Infinity
sage: gen_to_sage(pari('-oo'))
-Infinity
```

Conversion of strings:

```python
sage: s = pari('"foo"').sage(); s
'foo'
sage: type(s)
<class 'str'>
```

```python
>>> from sage.all import *

```

```python
sage.libs.pari.convert_sage.new_gen_from_integer(self)
```
sage.libs.pari.convert_sage.new_gen_from_rational(self)

sage.libs.pari.convert_sage pari_divisors_small(self)

Return the list of divisors of this number using PARI divisorsu.

See also:

This method is better used through sage.rings.integer.Integer.divisors().

EXAMPLES:

```python
sage: from sage.libs.pari.convert_sage import pari_divisors_small
sage: pari_divisors_small(4)
[1, 2, 4]
```

```python
>>> from sage.all import *
>>> from sage.libs.pari.convert_sage import pari_divisors_small
>>> pari_divisors_small(Integer(4))
[1, 2, 4]

The integer must fit into an unsigned long:

```python
sage: pari_divisors_small(-4)
Traceback (most recent call last):
 ...AssertionError
sage: pari_divisors_small(2**65)
Traceback (most recent call last):
 ...AssertionError
```

sage.libs.pari.convert_sage.pari_is_prime(p)

Return whether p is a prime.

The caller must ensure that p.value fits in a long.

EXAMPLES:

```python
sage: from sage.libs.pari.convert_sage import pari_is_prime
sage: pari_is_prime(2)
True
sage: pari_is_prime(3)
True
sage: pari_is_prime(1)
False
sage: pari_is_prime(4)
False
```
Its recommended to use `sage.rings.integer.Integer.is_prime()`, which checks overflow. The following is incorrect, because the number does not fit into a long:

```python
sage: pari_is_prime(2**64 + 2)
True
```

```python
>>> from sage.all import *
>>> pari_is_prime(Integer(2)**Integer(64) + Integer(2))
True
```

`sage.libs.pari.convert_sage.pari_is_prime_power(q, get_data)`

Return whether `q` is a prime power.

The caller must ensure that `q.value` fits in a long.

**OUTPUT:**

If `get_data` return a tuple of the prime and the exponent. Otherwise return a boolean.

**EXAMPLES:**

```python
from sage.libs.pari.convert_sage import pari_is_prime_power

sage: pari_is_prime_power(2, False)
True

sage: pari_is_prime_power(2, True)
(2, 1)

sage: pari_is_prime_power(4, False)
True

sage: pari_is_prime_power(4, True)
(2, 2)

sage: pari_is_prime_power(6, False)
False

sage: pari_is_prime_power(6, True)
(6, 0)
```

(continues on next page)
Its recommended to use `sage.rings.integer.Integer.is_prime_power()`, which checks overflow. The following is incorrect, because the number does not fit into a long:

```python
from sage.all import *

sage: pari_is_prime_power(2**64 + 2, False)
True
```

```python
sage.libs.pari.convert_sage.pari_maxprime()

Return to which limit PARI has computed the primes.

EXAMPLES:

```python
from sage.libs.pari.convert_sage import pari_maxprime
sage: a = pari_maxprime()
sage: res = prime_range(2, 2*a)
sage: b = pari_maxprime()
sage: b >= 2*a
True
```

```python
sage.libs.pari.convert_sage.pari_prime_range(c_start, c_stop, py_ints=False)

Return a list of all primes between start and stop - 1, inclusive.

See also:

`sage.rings.fast_arith.prime_range()`

```python
sage.libs.pari.convert_sage.set_integer_from_gen(self, x)

EXAMPLES:

```python
[Integer(pari(x)) for x in [1, 2^60, 2., GF(3)(1), GF(9,'a')(2)]]
# needs sage.rings.finite_rings
[1, 1152921504606846976, 2, 1, 2]
sage: Integer(pari(2.1)) # indirect doctest
Traceback (most recent call last):
... TypeError: Attempt to coerce non-integral real number to an Integer
```

```python
[Integer(pari(x)) for x in [Integer(1), Integer(2)**Integer(60), RealNumber('2.'), GF(Integer(3))(Integer(1)), GF(Integer(9),'a')(Integer(2))]]
# needs sage.rings.finite_rings
[1, 1152921504606846976, 2, 1, 2]
```
>>> Integer(pari(RealNumber('2.1'))) # indirect doctest
Traceback (most recent call last):
...TypeError: Attempt to coerce non-integral real number to an Integer

sage.libs.pari.convert_sage.set_rational_from_gen(self, x)

EXAMPLES:

sage: [Rational(pari(x)) for x in [1, 1/2, 2^60, 2., GF(3)(1), GF(9, 'a')(2)]] # indirect doctest
[1, 1/2, 1152921504606846976, 2, 1, 2]
sage: Rational(pari(2.1)) # indirect doctest
Traceback (most recent call last):
...TypeError: Attempt to coerce non-integral real number to an Integer

>>> from sage.all import *
>>> [Rational(pari(x)) for x in [Integer(1), Integer(1)/Integer(2),
 Integer(2)**Integer(60), RealNumber('2.'), GF(Integer(3))(Integer(1)),
 GF(Integer(9), 'a')(Integer(2))]] # indirect doctest
[1, 1/2, 1152921504606846976, 2, 1, 2]

14.3 Ring of pari objects

AUTHORS:

• Simon King (2011-08-24): Use UniqueRepresentation, element_class and proper initialisation of elements.

class sage.rings.pari_ring.Pari(x, parent=None)
Bases: RingElement

Element of Pari pseudo-ring.

class sage.rings.pari_ring.PariRing
Bases: Singleton, Parent

EXAMPLES:

sage: R = PariRing(); R
Pseudoring of all PARI objects.
sage: loads(R.dumps()) is R
True

>>> from sage.all import *
>>> R = PariRing(); R
Pseudoring of all PARI objects.
>>> loads(R.dumps()) is R
True
Element
alias of \textit{Pari}

\texttt{characteristic()}

\texttt{is_field(proof=True)}

\texttt{random_element(x=None, y=None, distribution=None)}

Return a random integer in Pari.

\textbf{Note:} The given arguments are passed to \texttt{ZZ.random_element(...)}.

\textbf{INPUT:}

- \texttt{x, y} – optional integers, that are lower and upper bound for the result. If only \texttt{x} is provided, then the result is between 0 and \texttt{x} − 1, inclusive. If both are provided, then the result is between \texttt{x} and \texttt{y} − 1, inclusive.

- \texttt{distribution} – optional string, so that \texttt{ZZ} can make sense of it as a probability distribution.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = PariRing()
sage: R.random_element().parent() is R
True
sage: R(5) <= R.random_element(5,13) < R(13)
True
sage: R.random_element(distribution="1/n").parent() is R
True
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> R = PariRing()
>>> R.random_element().parent() is R
True
>>> R(Integer(5)) <= R.random_element(Integer(5),Integer(13)) < R(Integer(13))
True
>>> R.random_element(distribution="1/n").parent() is R
True
\end{verbatim}

\texttt{zeta()}

Return -1.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = PariRing()
sage: R.zeta()
-1
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> R = PariRing()
>>> R.zeta()
-1
\end{verbatim}
15.1 Symmetrica library

\texttt{sage.libs.symmetrica.symmetrica.\texttt{bdg_symmetrica}(part, perm)}

Calculates the irreducible matrix representation \(D^{\text{part}}(\text{perm}) \), whose entries are of integral numbers.

\textbf{REFERENCE: H. Boerner:}

\texttt{sage.libs.symmetrica.symmetrica.\texttt{chartafel_symmetrica}(n)}

you enter the degree of the symmetric group, as \texttt{INTEGER} object and the result is a \texttt{MATRIX} object: the character table of the symmetric group of the given degree.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: symmetrica.chartafel(3)}
\begin{bmatrix}
 1 & 1 & 1 \\
-1 & 0 & 2 \\
 1 & -1 & 1 \\
\end{bmatrix}
\texttt{sage: symmetrica.chartafel(4)}
\begin{bmatrix}
 1 & 1 & 1 & 1 \\
-1 & 0 & -1 & 1 & 3 \\
 0 & -1 & 2 & 0 & 2 \\
 1 & 0 & -1 & -1 & 3 \\
-1 & 1 & 1 & -1 & 1 \\
\end{bmatrix}
\end{verbatim}

\begin{verbatim}
\texttt{>>> from sage.all import *} \\
\texttt{>>> symmetrica.chartafel(Integer(3))}
\begin{bmatrix}
 1 & 1 & 1 \\
-1 & 0 & 2 \\
 1 & -1 & 1 \\
\end{bmatrix}
\texttt{>>> symmetrica.chartafel(Integer(4))}
\begin{bmatrix}
 1 & 1 & 1 & 1 \\
-1 & 0 & -1 & 1 & 3 \\
 0 & -1 & 2 & 0 & 2 \\
 1 & 0 & -1 & -1 & 3 \\
-1 & 1 & 1 & -1 & 1 \\
\end{bmatrix}
\end{verbatim}

\texttt{sage.libs.symmetrica.symmetrica.\texttt{charvalue_symmetrica}(irred, cls, table=None)}

you enter a \texttt{PARTITION} object part, labelling the irreducible character, you enter a \texttt{PARTITION} object class, labeling the class or class may be a \texttt{PERMUTATION} object, then result becomes the value of that character on that class or permutation. Note that the table may be \texttt{NULL}, in which case the value is computed, or it may be taken from a precalculated character table.
FIXME: add table parameter

EXAMPLES:

```python
sage: n = 3
sage: m = matrix([[symmetrica.charvalue(irred, cls) for cls in Partitions(n)] for irred in Partitions(n)]); m
[ 1 1 1]
[-1 0 2]
[ 1 -1 1]
sage: m == symmetrica.chartafel(n)
True
sage: n = 4
sage: m = matrix([[symmetrica.charvalue(irred, cls) for cls in Partitions(n)] for irred in Partitions(n)])
sage: m == symmetrica.chartafel(n)
True
```

```python
>>> from sage.all import *
>>> n = Integer(3)
>>> m = matrix([[symmetrica.charvalue(irred, cls) for cls in Partitions(n)] for irred in Partitions(n)]); m
[ 1 1 1]
[-1 0 2]
[ 1 -1 1]
>>> m == symmetrica.chartafel(n)
True
>>> n = Integer(4)
>>> m = matrix([[symmetrica.charvalue(irred, cls) for cls in Partitions(n)] for irred in Partitions(n)])
>>> m == symmetrica.chartafel(n)
True
```

sage.libs.symmetrica.symmetrica.compute_elmsym_with_alphabet_symmetrica(n, length, alphabet='x')

computes the expansion of a elementary symmetric function labeled by a INTEGER number as a POLYNOM erg. The object number may also be a PARTITION or a ELM_SYM object. The INTEGER length specifies the length of the alphabet. Both routines are the same.

EXAMPLES:

```python
sage: a = symmetrica.compute_elmsym_with_alphabet(2,2); a
x0*x1
sage: a.parent()
Multivariate Polynomial Ring in x0, x1 over Integer Ring
sage: a = symmetrica.compute_elmsym_with_alphabet([2],2); a
x0*x1
sage: symmetrica.compute_elmsym_with_alphabet([3,2])
0
sage: symmetrica.compute_elmsym_with_alphabet([3,2,1,2])
```

```python
>>> from sage.all import *
>>> a = symmetrica.compute_elmsym_with_alphabet(Integer(2),Integer(2)); a
x0*x1
>>> a.parent()
```

(continues on next page)
Multivariate Polynomial Ring in x0, x1 over Integer Ring
>>> a = symmetrica.compute_elmsym_with_alphabet([Integer(2)],Integer(2)); a
x0*x1
>>> symmetrica.compute_elmsym_with_alphabet(Integer(3),Integer(2))
0
>>> symmetrica.compute_elmsym_with_alphabet([Integer(3),Integer(2),Integer(1)],
 ˓→Integer(2))
0

sage.libs.symmetrica.symmetrica.compute_homsym_with_alphabet_symmetrica(n, length,
 ˓→alphabet='x')
computes the expansion of a homogeneous(=complete) symmetric function labeled by a INTEGER number as a
POLYNOM erg. The object number may also be a PARTITION or a HOM_SYM object. The INTEGER laenge
specifies the length of the alphabet. Both routines are the same.

EXAMPLES:
sage: symmetrica.compute_homsym_with_alphabet(3,1,'x')
x^3
sage: symmetrica.compute_homsym_with_alphabet([2,1],1,'x')
x^3
sage: symmetrica.compute_homsym_with_alphabet([2,1],2,'x')
x0^3 + 2*x0^2*x1 + 2*x0*x1^2 + x1^3
sage: symmetrica.compute_homsym_with_alphabet([2,1],2,'a,b')
a^3 + 2*a^2*b + 2*a*b^2 + b^3
sage: symmetrica.compute_homsym_with_alphabet([2,1],2,'x').parent()
Multivariate Polynomial Ring in x0, x1 over Integer Ring

>>> from sage.all import *

from sage.all import *
>>> symmetrica.compute_homsym_with_alphabet(Integer(3),Integer(1),'x')
x^3
>>> symmetrica.compute_homsym_with_alphabet([Integer(2),Integer(1)],Integer(1),'x ˓→')
x^3
>>> symmetrica.compute_homsym_with_alphabet([Integer(2),Integer(1)],Integer(2),'x ˓→
 ˓→')
x0^3 + 2*x0^2*x1 + 2*x0*x1^2 + x1^3
>>> symmetrica.compute_homsym_with_alphabet([Integer(2),Integer(1)],Integer(2),'a,
 ˓→b')
a^3 + 2*a^2*b + 2*a*b^2 + b^3
>>> symmetrica.compute_homsym_with_alphabet([Integer(2),Integer(1)],Integer(2),'x ˓→
 ˓→').parent()
Multivariate Polynomial Ring in x0, x1 over Integer Ring

sage.libs.symmetrica.symmetrica.compute_monomial_with_alphabet_symmetrica(n, length,
 ˓→alphabet='x')
computes the expansion of a monomial symmetric function labeled by a PARTITION number as a POLYNOM
erg. The INTEGER laenge specifies the length of the alphabet.

EXAMPLES:
computes the expansion of a power symmetric function labeled by a INTEGER label or by a PARTITION label or a POW_SYM label as a POLYNOM erg. The INTEGER laeng specifies the length of the alphabet.

EXAMPLES:

```python
sage: symmetrica.compute_powsym_with_alphabet([2],2,a,b)
a^2 + b^2
sage: symmetrica.compute_powsym_with_alphabet([2,1],2,a,b)
a^3 + a^2*b + a*b^2 + b^3
```
sage.libs.symmetrica.symmetrica\texttt{.compute_schur_with_alphabet_det_symmetrica}(part, length, alphabet='x')

EXAMPLES:

\begin{verbatim}
 sage: symmetrica.compute_schur_with_alphabet_det(2,2)
x0^2 + x0*x1 + x1^2
 sage: symmetrica.compute_schur_with_alphabet_det([2],2)
x0^2 + x0*x1 + x1^2
 sage: symmetrica.compute_schur_with_alphabet_det(Partition([2]),2)
x0^2 + x0*x1 + x1^2
 sage: symmetrica.compute_schur_with_alphabet_det(Partition([2]),2,'y')
y0^2 + y0*y1 + y1^2
 sage: symmetrica.compute_schur_with_alphabet_det(Partition([2]),2,'a,b')
a^2 + a*b + b^2
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> symmetrica.compute_schur_with_alphabet_det(Integer(2),Integer(2))
x0^2 + x0*x1 + x1^2
>>> symmetrica.compute_schur_with_alphabet_det([Integer(2)],Integer(2))
x0^2 + x0*x1 + x1^2
>>> symmetrica.compute_schur_with_alphabet_det(Partition([Integer(2)]),Integer(2))
x0^2 + x0*x1 + x1^2
>>> symmetrica.compute_schur_with_alphabet_det(Partition([Integer(2)]),Integer(2),\texttt{'y'})
y0^2 + y0*y1 + y1^2
>>> symmetrica.compute_schur_with_alphabet_det(Partition([Integer(2)]),Integer(2),\texttt{'a,b'})
a^2 + a*b + b^2
\end{verbatim}

sage.libs.symmetrica.symmetrica\texttt{.compute_schur_with_alphabet_symmetrica}(part, length, alphabet='x')

Computes the expansion of a schurfunction labeled by a partition PART as a POLYNOM erg. The INTEGER length specifies the length of the alphabet.

EXAMPLES:

\begin{verbatim}
 sage: symmetrica.compute_schur_with_alphabet(2,2)
x0^2 + x0*x1 + x1^2
 sage: symmetrica.compute_schur_with_alphabet([2],2)
x0^2 + x0*x1 + x1^2
 sage: symmetrica.compute_schur_with_alphabet(Partition([2]),2)
x0^2 + x0*x1 + x1^2
 sage: symmetrica.compute_schur_with_alphabet(Partition([2]),2,'y')
y0^2 + y0*y1 + y1^2
 sage: symmetrica.compute_schur_with_alphabet(Partition([2]),2,'a,b')
a^2 + a*b + b^2
 sage: symmetrica.compute_schur_with_alphabet([2,1],1,'x')

0
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *

>>> symmetrica.compute_schur_with_alphabet(Integer(2),Integer(2))
\end{verbatim}
x0^2 + x0*x1 + x1^2
>>> symmetrica.compute_schur_with_alphabet([Integer(2)],Integer(2))
0

sage.libs.symmetrica.symmetrica.dimension_schur_symmetrica(s)
you enter a SCHUR object a, and the result is the dimension of the corresponding representation of the symmetric

group sn.

sage.libs.symmetrica.symmetrica.dimension_symmetrization_symmetrica(n, part)
computes the dimension of the degree of a irreducible representation of the GL_n, n is a INTEGER object, labeled
by the PARTITION object a.

sage.libs.symmetrica.symmetrica.divdiff_perm_schubert_symmetrica(perm, a)
Returns the result of applying the divided difference operator \(\delta_i \) to a where a is either a permutation or a Schubert

polynomial over QQ.

EXAMPLES:

```python
sage: symmetrica.divdiff_perm_schubert([2,3,1], [3,2,1])
X[2, 1]
sage: symmetrica.divdiff_perm_schubert([3,1,2], [3,2,1])
X[1, 3, 2]
sage: symmetrica.divdiff_perm_schubert([3,2,4,1], [3,2,1])
Traceback (most recent call last):
... ValueError: cannot apply \( \delta_{[3, 2, 4, 1]} \) to a (= [3, 2, 1])
```

```python
>>> from sage.all import *

>>> symmetrica.divdiff_perm_schubert([Integer(2),Integer(3),Integer(1)],-
                                   [Integer(3),Integer(2),Integer(1)])
X[2, 1]
>>> symmetrica.divdiff_perm_schubert([Integer(3),Integer(1),Integer(2)],-
                                   [Integer(3),Integer(2),Integer(1)])
X[1, 3, 2]
>>> symmetrica.divdiff_perm_schubert([Integer(3),Integer(2),Integer(4),-
                                     Integer(1)], [Integer(3),Integer(2),Integer(4)])
Traceback (most recent call last):
... ValueError: cannot apply \( \delta_{[3, 2, 4, 1]} \) to a (= [3, 2, 1])
```

sage.libs.symmetrica.symmetrica.divdiff_schubert_symmetrica(i, a)
Returns the result of applying the divided difference operator \(\delta_i \) to a where a is either a permutation or a Schubert

polynomial over QQ.

EXAMPLES:
sage: symmetrica.divdiff_schubert(1, [3,2,1])
X[2, 3, 1]
sage: symmetrica.divdiff_schubert(2, [3,2,1])
X[3, 1, 2]
sage: symmetrica.divdiff_schubert(3, [3,2,1])
Traceback (most recent call last):
 ...
ValueError: cannot apply \delta_{3} to a (= [3, 2, 1])

>>> from sage.all import *

>>> symmetrica.divdiff_schubert(Integer(1), [Integer(3),Integer(2),Integer(1)])
X[2, 3, 1]
>>> symmetrica.divdiff_schubert(Integer(2), [Integer(3),Integer(2),Integer(1)])
X[3, 1, 2]
>>> symmetrica.divdiff_schubert(Integer(3), [Integer(3),Integer(2),Integer(1)])
Traceback (most recent call last):
 ...
ValueError: cannot apply \delta_{3} to a (= [3, 2, 1])

sage.libs.symmetrica.symmetrica.gupta_nm_symmetrica(n, m)
this routine computes the number of partitions of n with maximal part m. The result is erg. The input n,m must be INTEGER objects. The result is freed first to an empty object. The result must be a different from m and n.
sage.libs.symmetrica.symmetrica.gupta_tafel_symmetrica(max)
it computes the table of the above values. The entry n,m is the result of gupta_nm. mat is freed first. max must be an INTEGER object, it is the maximum weight for the partitions. max must be different from result.
sage.libs.symmetrica.symmetrica.hall_littlewood_symmetrica(part)
computes the so called Hall Littlewood Polynomials, i.e. a SCHUR object, whose coefficient are polynomials in one variable. The method, which is used for the computation is described in the paper: A.O. Morris The Characters of the group GL(n,q) Math Zeitschr 81, 112-123 (1963)
sage.libs.symmetrica.symmetrica.kostka_number_symmetrica(shape, content)
computes the kostka number, i.e. the number of tableaux of given shape, which is a PARTITION object, and of given content, which also is a PARTITION object, or a VECTOR object with INTEGER entries. The result is an INTEGER object, which is freed to an empty object at the beginning. The shape could also be a SKEWPARTITION object, then we compute the number of skewtableaux of the given shape.

EXAMPLES:

sage: symmetrica.kostka_number([2,1],[1,1,1])
2
sage: symmetrica.kostka_number([1,1,1],[1,1,1])
1
sage: symmetrica.kostka_number([3],[1,1,1])
1

>>> from sage.all import *

>>> symmetrica.kostka_number([Integer(2),Integer(1),Integer(1),Integer(1)])
2
>>> symmetrica.kostka_number([Integer(1),Integer(1),Integer(1),Integer(1),Integer(1)])
1
>>> symmetrica.kostka_number([Integer(3),Integer(1),Integer(1),Integer(1),Integer(1)])
1
sage.libs.symmetrica.symmetrica.kostka_tab_symmetrica(\texttt{shape}, \texttt{content})

computes the list of tableaux of given shape and content. \texttt{shape} is a \texttt{PARTITION} object or a \texttt{SKEWPARTITION} object and \texttt{content} is a \texttt{PARTITION} object or a \texttt{VECTOR} object with \texttt{INTEGER} entries, the result becomes a \texttt{LIST} object whose entries are the computed \texttt{TABLEAUX} object.

EXAMPLES:

\begin{verbatim}
sage: symmetrica.kostka_tab([3],[1,1,1])
[[[1, 2, 3]]]
sage: symmetrica.kostka_tab([2,1],[1,1,1])
[[[1, 2], [3]], [[1, 3], [2]]]
sage: symmetrica.kostka_tab([1,1,1],[1,1,1])
[[[1], [2], [3]]]
sage: symmetrica.kostka_tab([[2,2,1],[1,1]],[1,1,1])
[[[None, 1], [None, 2], [3]],
[[None, 1], [None, 3], [2]],
[[None, 2], [None, 3], [1]]]
sage: symmetrica.kostka_tab([[2,2],[1]],[1,1,1])
[[[None, 1], [2, 3]], [[None, 2], [1, 3]]]
\end{verbatim}

\begin{verbatim}
>>> from sage.all import *
>>> symmetrica.kostka_tab([Integer(3)],[Integer(1),Integer(1),Integer(1)])
[[[1, 2, 3]]]
>>> symmetrica.kostka_tab([Integer(2),Integer(1)],[Integer(1),Integer(1),
Integer(1)])
[[[1, 2], [3]], [[1, 3], [2]]]
>>> symmetrica.kostka_tab([Integer(1),Integer(1),Integer(1)],[Integer(1),
Integer(1)])
[[[1], [2], [3]]]
>>> symmetrica.kostka_tab([Integer(2),Integer(2),Integer(1)],[Integer(1),
Integer(1),Integer(1)])
[[[None, 1], [None, 2], [3]],
[[None, 1], [None, 3], [2]],
[[None, 2], [None, 3], [1]]]
>>> symmetrica.kostka_tab([Integer(2),Integer(2)],[Integer(1)])
[[[None, 1], [2, 3]], [[None, 2], [1, 3]]]
\end{verbatim}

sage.libs.symmetrica.symmetrica.kostka_tafel_symmetrica(\texttt{n})

Returns the table of Kostka numbers of weight \texttt{n}.

EXAMPLES:

\begin{verbatim}
sage: symmetrica.kostka_tafel(1)
[1]
sage: symmetrica.kostka_tafel(2)
[1 0]
[1 1]
sage: symmetrica.kostka_tafel(3)
[1 0 0]
[1 1 0]
[1 2 1]
sage: symmetrica.kostka_tafel(4)
[1 0 0 0 0]
[1 1 0 0 0]
\end{verbatim}
You enter the INTEGER objects, say a and b, and res becomes a MATRIX object, the character table of $S_b \wr S_a$, co becomes a VECTOR object of class orders and cl becomes a VECTOR object of the class labels.

EXAMPLES:

```python
sage: (a,b,c) = symmetrica.kranztafel(2,2)
sage: a
[ 1 -1  1 -1  1]
[ 1  1  1  1]
[-1  1 -1  1]
[ 0  0  2  0 -2]
[ 0  0  0  0 -2]
sage: b
[-1 -1  1  1  1]
[ 1  1 -1  1  1]
[ 1  1  1  1  1]
[ 1  1  1  1  1]
[ 1  1  1  1  1]
```

(continues on next page)
sage.libs.symmetrica.symmetrica.mult_schubert_schubert_symmetrica(a, b)

Multiplies the Schubert polynomials a and b.

EXAMPLES:

sage: symmetrica.mult_schubert_schubert([3,2,1], [3,2,1])
X[5, 3, 1, 2, 4]

sage.libs.symmetrica.symmetrica.mult_schubert_variable_symmetrica(a, i)

Returns the product of a and x_i. Note that indexing with i starts at 1.

EXAMPLES:
sage: symmetrica.mult_schubert_variable([3,2,1], 2)
X[3, 2, 4, 1]
sage: symmetrica.mult_schubert_variable([3,2,1], 4)
X[3, 2, 1, 4, 6, 5] - X[3, 2, 1, 5, 4]

>>> from sage.all import *

sage: symmetrica.mult_schubert_variable([Integer(3),Integer(2),Integer(1)],
→Integer(2))
X[3, 2, 4, 1]
sage: symmetrica.mult_schubert_variable([Integer(3),Integer(2),Integer(1)],
→Integer(4))
X[3, 2, 1, 4, 6, 5] - X[3, 2, 1, 5, 4]

sage.libs.symmetrica.symmetrica.mult_schur_schur_symmetrica(s1, s2)
sage.libs.symmetrica.symmetrica.ndg_symmetrica(part, perm)
sage.libs.symmetrica.symmetrica.newtrans_symmetrica(perm)
computes the decomposition of a schubert polynomial labeled by the permutation perm, as a sum of Schur function.

FIXME!
sage.libs.symmetrica.symmetrica.odd_to_strict_part_symmetrica(part)
implements the bijection between partitions with odd parts and strict partitions. input is a VECTOR type partition, the result is a partition of the same weight with different parts.

sage.libs.symmetrica.symmetrica.odg_symmetrica(part, perm)
Calculates the irreducible matrix representation D^part(perm), which consists of real numbers.

REFERENCE: G. James/ A. Kerber:
sage.libs.symmetrica.symmetrica.outerproduct_schur_symmetrica(parta, partb)
you enter two PARTITION objects, and the result is a SCHUR object, which is the expansion of the product of the two schur functions, labeled by the two PARTITION objects parta and partb. Of course this can also be interpreted as the decomposition of the outer tensor product of two irreducible representations of the symmetric group.

EXAMPLES:
sage: symmetrica.outerproduct_schur([2],[2])

>>> from sage.all import *

sage: symmetrica.outerproduct_schur([Integer(2)],[Integer(2)])

sage.libs.symmetrica.symmetrica.part_part_skewschur_symmetrica(outer, inner)
Return the skew Schur function s_(outer/inner).

EXAMPLES:
sage: symmetrica.part_part_skewschur([3,2,1],[2,1])
s[1, 1, 1] + 2*s[2, 1] + s[3]

>>> from sage.all import *

sage: symmetrica.part_part_skewschur([Integer(3),Integer(2),Integer(1)],[Integer(2),
→Integer(1)])
s[1, 1, 1] + 2*s[2, 1] + s[3]
sage.libs.symmetrica.symmetrica.plethysm_symmetrica(outer, inner)

computes the q-core of a PARTITION object part. This is the remaining partition (=res) after removing of all hooks of length d (= INTEGER object). The result may be an empty object, if the whole partition disappears.

sage.libs.symmetrica.symmetrica.q_core_symmetrica(part, d)

computes the q-core of a PARTITION object part. This is the remaining partition (=res) after removing of all hooks of length d (= INTEGER object). The result may be an empty object, if the whole partition disappears.

sage.libs.symmetrica.symmetrica.random_partition_symmetrica(n)

Returns a random partition p of the entered weight w. w must be an INTEGER object, p becomes a PARTITION object. Type of partition is VECTOR. It uses the algorithm of Nijenhuis and Wilf, p.76

sage.libs.symmetrica.symmetrica.scalarproduct_schubert_symmetrica(a, b)

EXAMPLES:

```
sage: symmetrica.scalarproduct_schubert([3,2,1], [3,2,1])
X[1, 3, 5, 2, 4]
sage: symmetrica.scalarproduct_schubert([3,2,1], [2,1,3])
X[1, 2, 4, 3]
```

```
>>> from sage.all import *
>>> symmetrica.scalarproduct_schubert([Integer(3),Integer(2),Integer(1)],
       →[Integer(3),Integer(2),Integer(1)])
X[1, 3, 5, 2, 4]
>>> symmetrica.scalarproduct_schubert([Integer(3),Integer(2),Integer(1)],
       →[Integer(2),Integer(1),Integer(3)])
X[1, 2, 4, 3]
```

sage.libs.symmetrica.symmetrica.scalarproduct_schur_symmetrica(s1, s2)

sage.libs.symmetrica.symmetrica.schur_schur_plet_symmetrica(outer, inner)

sage.libs.symmetrica.symmetrica.sdg_symmetrica(part, perm)

Calculates the irreducible matrix representation $D^\text{part}(\text{perm})$, which consists of rational numbers.

REFERENCE: G. James/ A. Kerber:

sage.libs.symmetrica.symmetrica.specht_dg_symmetrica(part, perm)

sage.libs.symmetrica.symmetrica.strict_to_odd_part_symmetrica(part)

implements the bijection between strict partitions and partitions with odd parts. input is a VECTOR type partition, the result is a partition of the same weight with only odd parts.

sage.libs.symmetrica.symmetrica.t_ELMSYM_HOMSYM_symmetrica(elmsym)

sage.libs.symmetrica.symmetrica.t_ELMSYM_MONOMIAL_symmetrica(elmsym)

sage.libs.symmetrica.symmetrica.t_ELMSYM_POWSYM_symmetrica(elmsym)

sage.libs.symmetrica.symmetrica.t_ELMSYM_SCHUR_symmetrica(elmsym)

sage.libs.symmetrica.symmetrica.t_HOMSYM_ELMSYM_symmetrica(homsym)

sage.libs.symmetrica.symmetrica.t_HOMSYM_MONOMIAL_symmetrica(homsym)

sage.libs.symmetrica.symmetrica.t_HOMSYM_POWSYM_symmetrica(homsym)
sage.libs.symmetrica.symmetrica.t_HOMSYM_SCHUR_symmetrica(homsym)
sage.libs.symmetrica.symmetrica.t_MONOMIAL_ELMSYM_symmetrica(monomial)
sage.libs.symmetrica.symmetrica.t_MONOMIAL_HOMSYM_symmetrica(monomial)
sage.libs.symmetrica.symmetrica.t_MONOMIAL_POWSYM_symmetrica(monomial)
sage.libs.symmetrica.symmetrica.t_MONOMIAL_SCHUR_symmetrica(monomial)
sage.libs.symmetrica.symmetrica.t_POLYNOM_ELMSYM_symmetrica(p)
 Converts a symmetric polynomial with base ring QQ or ZZ into a symmetric function in the elementary basis.
sage.libs.symmetrica.symmetrica.t_POLYNOM_MONOMIAL_symmetrica(p)
 Converts a symmetric polynomial with base ring QQ or ZZ into a symmetric function in the monomial basis.
sage.libs.symmetrica.symmetrica.t_POLYNOM_POWER_symmetrica(p)
 Converts a symmetric polynomial with base ring QQ or ZZ into a symmetric function in the power sum basis.
sage.libs.symmetrica.symmetrica.t_POLYNOM_SCHUBERT_symmetrica(a)
 Converts a multivariate polynomial a to a Schubert polynomial.

EXAMPLES:

```
sage: R.<x1,x2,x3> = QQ[]
sage: w0 = x1^2*x2
sage: symmetrica.t_POLYNOM_SCHUBERT(w0)
x[3, 2, 1]
```

```
>>> from sage.all import *
>>> R = QQ['x1, x2, x3']; (x1, x2, x3,) = R._first_ngens(3)
>>> w0 = x1^Integer(2)*x2
>>> symmetrica.t_POLYNOM_SCHUBERT(w0)
x[3, 2, 1]
```

sage.libs.symmetrica.symmetrica.t_POLYNOM_SCHUR_symmetrica(p)
 Converts a symmetric polynomial with base ring QQ or ZZ into a symmetric function in the Schur basis.
sage.libs.symmetrica.symmetrica.t_POWSYM_ELMSYM_symmetrica(powsym)
sage.libs.symmetrica.symmetrica.t_POWSYM_HOMSYM_symmetrica(powsym)
sage.libs.symmetrica.symmetrica.t_POWSYM_MONOMIAL_symmetrica(powsym)
sage.libs.symmetrica.symmetrica.t_POWSYM_SCHUR_symmetrica(powsym)
sage.libs.symmetrica.symmetrica.t_SCHUBERT_POLYNOM_symmetrica(a)
 Converts a Schubert polynomial to a ‘regular’ multivariate polynomial.

EXAMPLES:

```
sage: symmetrica.t_SCHUBERT_POLYNOM([3,2,1])
x0^2*x1
```

```
>>> from sage.all import *
>>> symmetrica.t_SCHUBERT_POLYNOM([Integer(3),Integer(2),Integer(1)])
x0^2*x1
```
sage.libs.symmetrica.symmetrica.t_SCHUR_ELMSYM_symmetrica(schur)
sage.libs.symmetrica.symmetrica.t_SCHUR_HOMSYM_symmetrica(schur)
sage.libs.symmetrica.symmetrica.t_SCHUR_MONOMIAL_symmetrica(schur)
sage.libs.symmetrica.symmetrica.t_SCHUR_POWSYM_symmetrica(schur)
sage.libs.symmetrica.symmetrica.test_integer(x)

Tests functionality for converting between Sage's integers and symmetrica's integers.

EXAMPLES:

```
sage: from sage.libs.symmetrica.symmetrica import test_integer
tsage: test_integer(1)
1
sage: test_integer(-1)
-1
sage: test_integer(2^33)
8589934592
sage: test_integer(-2^33)
-8589934592
sage: test_integer(2^100)
1267650600228229401496703205376
sage: test_integer(-2^100)
-1267650600228229401496703205376
sage: for i in range(100):
    ....:     if test_integer(2^i) != 2^i:
    ....:         print("Failure at \{\}").format(i))
```

```
>>> from sage.all import *
>>> from sage.libs.symmetrica.symmetrica import test_integer
>>> test_integer(Integer(1))
1
>>> test_integer(-Integer(1))
-1
>>> test_integer(Integer(2)**Integer(33))
8589934592
>>> test_integer(-Integer(2)**Integer(33))
-8589934592
>>> test_integer(Integer(2)**Integer(100))
1267650600228229401496703205376
>>> test_integer(-Integer(2)**Integer(100))
-1267650600228229401496703205376
>>> for i in range(Integer(100)):
    ...     if test_integer(Integer(2)**i) != Integer(2)**i:
    ...         print("Failure at \{\}").format(i))
```
INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.libs.ecl, 3
sage.libs.eclib.constructor, 59
sage.libs.eclib.homspace, 54
sage.libs.eclib.interface, 17
sage.libs.eclib.mat, 47
sage.libs.eclib.mwrank, 44
sage.libs.eclib.newforms, 50
sage.libs.flint.arith_sage, 67
sage.libs.flint.fmpq_poly_sage, 67
sage.libs.flint.fmpz_poly_sage, 63
sage.libs.flint.qsieve_sage, 70
sage.libs.flint.ulong_extras_sage, 70
sage.libs.gap.context_managers, 129
sage.libs.gap.element, 142
sage.libs.gap_functions, 130
sage.libs.gap.libgap, 132
sage.libs.gap.saved_workspace, 166
sage.libs.gap.test, 142
sage.libs.gap.test_long, 130
sage.libs.gap_util, 131
sage.libs.giac, 73
sage.libs.gsl.array, 83
sage.libs.lcalc.lcalc_Lfunction, 85
sage.libs.libecm, 79
sage.libs.liebox.linbox_flint_interface, 169
sage.libs.lrcalc.lrcalc, 171
sage.libs.mpmath.utils, 181
sage.libsntl.all, 189
sage.libs.pari, 191
sage.libs.pari.convert_sage, 195
sage.libs.singular.function, 95
sage.libs.singular.function_factory, 110
sage.libs.singular.groebner_strategy, 123
sage.libs.singular.option, 112
sage.libs.singular.polynomial, 112
sage.libs.singular.ring, 121
sage.libs.singular.singular, 110
sage.libs.symmetrica.symmetrica, 209
INDEX

A

add_scalar() (sage.libs.eclib.mat.Matrix method), 48
ainvs() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 19
all_singular_poly_wrapper() (in module sage.libs.singular.function), 101
all_vectors() (in module sage.libs.singular.function), 101
atomp() (sage.libs.ecl.EclObject method), 6

B

BaseCallHandler (class in sage.libs.singular.function), 96
bdg_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
bell_number() (in module sage.libs.flint.arith_sage), 67
bernoulli_number() (in module sage.libs.flint.arith_sage), 67
bitcount() (in module sage.libs.mpmath.utils), 181

C

caar() (sage.libs.ecl.EclObject method), 7
cadr() (sage.libs.ecl.EclObject method), 7
call() (in module sage.libs.mpmath.utils), 181
car() (sage.libs.ecl.EclObject method), 8
cdar() (sage.libs.ecl.EclObject method), 9
cddr() (sage.libs.ecl.EclObject method), 9
cdr() (sage.libs.ecl.EclObject method), 10
certain() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 19
characteristic() (sage.libs.singular.function.RingWrap method), 97
characteristicp() (sage.rings.pari_ring.PariRing method), 207
characterpoly() (sage.libs.eclib.mat.Matrix method), 48
chartafel_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
charvalue_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
collect() (sage.libs.gap.libgap.Gap method), 136
compute_elmsym_with_alphabet_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
compute_homssym_with_alphabet_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
compute_monomial_with_alphabet_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
compute_powsym_with_alphabet_symmetrica() (in module sage.libs.symmetrica.symmetrica), 212
compute_rank() (sage.libs.interval.Interval method), 85
compute_schur_with_alphabet_det_symmetrica() (in module sage.libs.symmetrica.symmetrica), 212
compute_schur_with_alphabet_symmetrica() (in module sage.libs.symmetrica.symmetrica), 213
conductor() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 20
ccons() (sage.libs.ecl.EclObject method), 11
consp() (sage.libs.ecl.EclObject method), 11
Converter (class in sage.libs.singular.function), 96
coprod() (in module sage.libs.lrcalc.lrcalc), 175
count_GAP_objects() (sage.libs.gap.libgap.Gap method), 137
CPS_height_bound() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 18
CremonaModularSymbols() (in module sage.libs.eclib.constructor), 59
currRing_wrapper() (in module sage.libs.singular.function), 121

d
dedekind_sum() (in module sage.libs.flint.arith_sage), 68
deepcopy() (sage.libs.gap.element.GapElement method), 143
degree() (sage.libs.flint.fmpz_poly_sage.Fmpz_poly method), 63
derivative() (sage.libs.flint.fmpz_poly_sage.Fmpz_poly
method), 64
dimension() (sage.libs.eclib.homspace.ModularSym-
bools method), 54
dimension_schur_symmetrica() (in module
sage.libs.symmetrica.symmetrica), 214
dimension_symmetrization_symmetrica() (in module
sage.libs.symmetrica.symmetrica), 214
div_rem() (sage.libs.flint.fmpz_poly_sage.Fmpz_poly
method), 64
divdiff_perm_schubert_symmetrica() (in module
sage.libs.symmetrica.symmetrica), 214
divdiff_schubert_symmetrica() (in module
sage.libs.symmetrica.symmetrica), 214
ecl_eval() (in module sage.libs.ecl), 14
EclListIterator (class in sage.libs.ecl), 3
EclObject (class in sage.libs.ecl), 3
ecmfactor() (in module sage.libs.libecm), 80
ECModularSymbol (class in sage.libs.eclib.newforms),
50
Element (sage.libs.gap.libgap.Gap attribute), 136
Element (sage.rings.pari_ring.PariRing attribute), 206
euler_number() (in module sage.libs.flint.arith_sage),
68
eval() (sage.libs.ecl.EclObject method), 11
eval() (sage.libs.gap.libgap.Gap method), 137
find_zeros() (sage.libs.lcalc.lcalc_Lfunction.Lfunc-
tion method), 86
find_zeros_via_N() (sage.libs.lcalc.lcalc_Lfunc-
tion.function method), 87
fixnump() (sage.libs.ecl.EclObject method), 12
Fmpz_poly (class in sage.libs.flint.fmpz_poly), 63
from_man_exp() (in module sage.libs.mpmath.utils),
184
function_factory() (sage.libs.gap.libgap.Gap
method), 137
Gap (class in sage.libs.gap.libgap), 136
GapElement (class in sage.libs.gap.libgap), 142
GapElement_Boolen (class in sage.libs.gap.libgap),
147
GapElement_Cyclotomic (class in sage.libs.gap.lib-
gap), 148
GapElement_FiniteField (class in sage.libs.gap.lib-
gap), 149
GapElement_Float (class in sage.libs.gap.libgap),
151
GapElement_Function (class in sage.libs.gap.lib-
gap), 152
GapElement_Integer (class in sage.libs.gap.libgap),
152
GapElement_IntegerMod (class in sage.libs.gap.lib-
gap), 154
GapElement_List (class in sage.libs.gap.libgap), 155
GapElement_MethodProxy (class in sage.libs.gap.lib-
gap), 158
GapElement_Permutation (class in sage.libs.gap.lib-
gap), 158
GapElement_Rational (class in sage.libs.gap.libgap),
159
GapElement_Record (class in sage.libs.gap.libgap),
160
GapElement_RecordIterator (class in
sage.libs.gap.libgap), 162
get_global() (sage.libs.eclib.mwrank.Gap method), 20
gens() (sage.libs.eclib.interface.mwrank_EllipticCurve
method), 195
globals() (sage.libs.eclib.interface.mwrank.EllipticCurve
method), 195
hardy_z_function() (sage.libs.lcalc.lcalc_Lfunc-
tion.Lfunction method), 88
harmonic_number() (in module sage.libs.flint.arith_sage),
68
GiacSettingsDefaultContext (class in
sage.libs.giac), 73
global_context() (sage.libs.gap.libgap.Gap method), 138
GroebnerStrategy (class in sage.libs.singular.groeb-
ner_strategy), 123
GSLDoubleArray (class in sage.libs.gsl.array), 83
gupta_nm_symmetrica() (in module sage.libs.sym-
metrica.symmetrica), 215
gupta_tafel_symmetrica() (in module sage.libs.symmetrica.symmetrica), 215
hall_littlewood_symmetrica() (in module
sage.libs.symmetrica.symmetrica), 215
hardy_z_function() (sage.libs.lcalc.lcalc_Lfunc-
tion.Lfunction method), 88
harmonic_number() (in module sage.libs.flint.arith_sage), 68
hecke_matrix() (sage.libs.clib.homspace.ModularSymbols method), 54

ideal() (sage.libs.singular.groebner_strategy.GroebnerStrategy method), 123

init_ecl() (in module sage.libs.ecl), 15

initprimes() (in module sage.libs.eclib.mwrank), 45

is_bool() (sage.libs.gap.element.GapElement method), 143

is_C_int() (sage.libs.gap.element.GapElement_Integer method), 152

is_commutative() (sage.libs.singular.function.RingWrap method), 98

is_cuspidal() (sage.libs.eclib.homspace.ModularSymbols method), 55

is_field() (sage.rings.pari_ring.PariRing method), 207

is_function() (sage.libs.gap.element.GapElement method), 144

is_list() (sage.libs.gap.element.GapElement method), 144

is_permutation() (sage.libs.gap.element.GapElement method), 144

is_record() (sage.libs.gap.element.GapElement method), 145

is_sage_wrapper_for_singular_ring() (in module sage.libs.singular.function), 102

is_singular_poly_wrapper() (in module sage.libs.singular.function), 102

is_string() (sage.libs.gap.element.GapElement method), 145

isogeny_class() (sage.libs.eclib.interface.mwrank.EllipticCurve method), 20

isqrt() (in module sage.libs.mpmath.utils), 184

K

KernelCallHandler (class in sage.libs.singular.function), 97

kostka_number_symmetrica() (in module sage.libs.symmetrica.symmetrica), 215

kostka_tab_symmetrica() (in module sage.libs.symmetrica.symmetrica), 215

kostka_tafel_symmetrica() (in module sage.libs.symmetrica.symmetrica), 216

kranztafel_symmetrica() (in module sage.libs.symmetrica.symmetrica), 217

L

left_shift() (sage.libs.flint.fmpz_poly_sage.Fmpz_poly method), 65

level() (sage.libs.eclib.homspace.ModularSymbols method), 56

Lfunction (class in sage.libs.lcalc.lcalc_Lfunction), 85

Lfunction_C (class in sage.libs.lcalc.lcalc_Lfunction), 91

Lfunction_D (class in sage.libs.lcalc.lcalc_Lfunction), 92

Lfunction_from_character() (in module sage.libs.lcalc.lcalc_Lfunction), 93

Lfunction_from_elliptic_curve() (in module sage.libs.lcalc.lcalc_Lfunction), 94

Lfunction_I (class in sage.libs.lcalc.lcalc_Lfunction), 92

Lfunction_Zeta (class in sage.libs.lcalc.lcalc_Lfunction), 93

ld() (in module sage.libs.singular.function), 103

LibraryCallHandler (class in sage.libs.singular.function), 97

lib() (in module sage.libs.eclib.homspace), 54

load() (in module sage.libs.singular.option), 115

load_package() (in module sage.libs.gap.libgap.Gap), 139

local_giacsettings() (in module sage.libs.giac), 76

lrcoef() (in module sage.libs.lrcalc.lrcalc), 175

lrcoef_unsafe() (in module sage.libs.lrcalc.lrcalc), 176

lrskew() (in module sage.libs.lrcalc.lrcalc), 177

M

Matrix (class in sage.libs.eclib.mat), 47

matrix() (sage.libs.gap.element.GapElement_List method), 156

MatrixFactory (class in sage.libs.eclib.mat), 50

ModularSymbols (class in sage.libs.eclib.homspace), 54

module sage.libs.ecl, 3
sage.libs.eclib.constructor, 59
sage.libs.eclib.homspace, 54
sage.libs.eclib.interface, 17
sage.libs.eclib.mat, 47
sage.libs.eclib.mwrank, 44
sage.libs.eclib.newforms, 50
sage.libs.flint.arith_sage, 67
sage.libs.flint.fmpq_poly_sage, 67
sage.libs.flint.fmpz_poly_sage, 63
sage.libs.flint.qsieve_sage, 70
sage.libs.flint.ulong_extras_sage, 70
sage.libs.gap.context_managers, 129
sage.libs.gap.element, 142
sage.libs.gap.gap_functions, 130
sage.libs.gap.libgap, 132
sage.libs.gap.saved_workspace, 166
sage.libs.gap.test, 142
sage.libs.gap.test_long, 130
sage.libs.gap.util, 131
sage.libs.giac, 73
sage.libs.gsl.array, 83
sage.libs.lcalc.lcalc_Lfunction, 85
sage.libs.libecm, 83
sage.libs.linbox.linbox_flint_interface, 169
sage.libs.lrcalc.lrcalc, 171
sage.libs.mpmath.utils, 181
sage.libsntl.all, 189
sage.libs.pari, 191
sage.libs.pari.convert_sage, 195
sage.libs.singular.function, 95
sage.libs.singular.function_factory, 110
sage.libs.singular.groebner_strategy, 123
sage.libs.singular.option, 112
sage.libs.singular.polynomial, 112
sage.libs.singular.ring, 121
sage.libs.symmetrica.symmetrica, 209
sage.rings.pari_ring, 206
mpmath_to_sage() (in module sage.libs.mpmath_utils), 185
mult() (in module sage.libs.lcalc.lcalc), 178
mult_monomial_monomial_symmetrica() (in module sage.libs.singular.symmetrica), 209
mult_schubert() (in module sage.libs.lcalc.lcalc), 179
mult_schubert_schubert_symmetrica() (in module sage.libs.singular.symmetrica), 218
mult_schur_schur_symmetrica() (in module sage.libs.singular.symmetrica), 219
mwrank_EllipticCurve (class in sage.libs.eclib.interface), 17
mwrank_MordellWeil (class in sage.libs.eclib.interface), 27

N
n_factor_to_list() (in module sage.libs.flint.ulong_extras_sage), 70
NCGroebnerStrategy (class in sage.libs.singular.groebner_strategy), 125
ncols() (sage.libs.eclib.mat.Matrix method), 48
ndg_symmetrica() (in module sage.libs.singular.symmetrica), 219
new_gen_from_integer() (in module sage.libs.pari.convert_sage), 202
new_gen_from_rational() (in module sage.libs.pari.convert_sage), 203
newtrans_symmetrica() (in module sage.libs.singular.symmetrica), 219
ngens() (sage.libs.singular.function.RingWrap method), 98
normal_form() (sage.libs.singular.groebner_strategy.GroebnerStrategy method), 124
normal_form() (sage.libs.singular.groebner_strategy.NCGroebnerStrategy method), 125
normalize() (in module sage.libs.mpmath.utils), 186
npars() (sage.libs.singular.function.RingWrap method), 98
nrows() (sage.libs.eclib.mat.Matrix method), 49
nullp() (sage.libs.ec.EcObject method), 12
number_of_cusps() (sage.libs.eclib.homspace.ModularSymbols method), 56
number_of_partitions() (in module sage.libs.flint.arith_sage), 69

O
ObjWrapper (class in sage.libs.gap.util), 131
odd_to_strict_part_symmetrica() (in module sage.libs.singular.symmetrica), 219
odg_symmetrica() (in module sage.libs.singular.symmetrica), 219
one() (sage.libs.gap.libgap.Gap method), 139
opt (sage.libs.singular.option.LibSingularOptionsContext attribute), 119
ordering_string() (sage.libs.singular.function.RingWrap method), 99
outerproduct_schur_symmetrica() (in module sage.libs.singular.symmetrica), 219

P
par_names() (sage.libs.singular.function.RingWrap method), 99
Pari (class in sage.rings.pari_ring), 206
pari_divisors_small() (in module sage.libs.pari.convert_sage), 203
pari_is_prime() (in module sage.libs.pari.convert_sage), 203
pari_is_prime_power() (in module sage.libs.pari.convert_sage), 204
pari_maxprime() (in module sage.libs.pari.convert_sage), 205
pari_prime_range() (in module sage.libs.pari.convert_sage), 205
PariRing (class in sage.rings.pari_ring), 206
parse_point_list() (in module sage.libs.singular.function), 46
part_part_skewschur_symmetrica() (in module sage.libs.singular.function), 219
plethysm_symmetrica() (in module sage.libs.singular.function), 219
points() (sage.libs.eclib.interface.mwrank_MordellWeil method), 31
poison_currRing() (in module sage.libs.singular.function), 122
pow_truncate() (sage.libs.fmpz_poly_sage.Fmpz_poly method), 65
print_currRing() (in module sage.libs.singular.function), 122
print_objects() (in module sage.libs.ecl, 15
process() (sage.libs.eclib.interface.mwrank_MordellWeil method), 31
pseudo_div() (sage.libs.fmpz_poly_sage.Fmpz_poly method), 66
pseudo_div_rem() (sage.libs.fmpz_poly_sage.Fmpz_poly method), 66
python() (sage.libs.ecl.EclObject method), 13
Q
q_core_symmetrica() (in module sage.libs.symmetrica.symmetrica), 220
qsieve() (in module sage.libs.flint.qsieve_sage), 70
R
random_element() (sage.rings.pari_ring.PariRing method), 207
random_partition_symmetrica() (in module sage.libs.symmetrica.symmetrica), 220
rank() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 20
rank() (sage.libs.eclib.interface.mwrank_MordellWeil method), 36
rank_bound() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 21
record_name_to_index() (sage.libs.gap.element.GapElement_Record method), 161
regulator() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 22
regulator() (sage.libs.eclib.interface.mwrank_MordellWeil method), 38
reset_default() (sage.libs.singular.option.LibSingularOptions method), 117
reset_default() (sage.libs.singular.option.LibSingularVerboseOptions method), 121
Resolution (class in sage.libs.singular.function), 97
right_shift() (sage.libs.fmpz_poly_sage.Fmpz_poly method), 66
ring() (sage.libs.singular.function.Converter method), 96
ring() (sage.libs.singular.groebner_strategy.GroebnerStrategy method), 124
ring() (sage.libs.singular.groebner_strategy.NCGroebnerStrategy method), 126
ring_cyclotomic() (sage.libs.gap.element.GapElement_Ring method), 163
ring_finite_field() (sage.libs.gap.element.GapElement_Ring method), 163
ring_integer() (sage.libs.gap.element.GapElement_Ring method), 163
ring_integer_mod() (sage.libs.gap.element.GapElement_Ring method), 163
ring_polynomial() (sage.libs.gap.element.GapElement_Ring method), 163
ring_rational() (sage.libs.gap.element.GapElement_Ring method), 164
ring_rational_wrap() (class in sage.libs.singular.function), 123
rplaca() (sage.libs.ecl.EclObject method), 13
rplacd() (sage.libs.ecl.EclObject method), 13
S
sage() (sage.libs.gap.element.GapElement method), 145
sage() (sage.libs.gap.element.GapElement_Boolean method), 148
sage() (sage.libs.gap.element.GapElement_Cyclotomic method), 149
sage() (sage.libs.gap.element.GapElement_FiniteField method), 150
sage() (sage.libs.gap.element.GapElement_Float method), 151
sage() (sage.libs.gap.element.GapElement_Integer method), 153
sage() (sage.libs.gap.element.GapElement_IntegerMod method), 154
sage() (sage.libs.gap.element.GapElement_List method), 157
sage() (sage.libs.gap.element.GapElement_Permutation method), 159
sage() (sage.libs.gap.element.GapElement_Rational
method), 160
sage() (sage.libs.gap.element.GapElement_Record
method), 161
sage() (sage.libs.gap.element.GapElement_Ring
method), 164
sage() (sage.libs.gap.element.GapElement_String
method), 165
sage_matrix_over_ZZ() (sage.libs.eclib.mat.Matrix
method), 49
sage_to_mpmath() (in module sage.libs.mpmath.utils), 187
sage.libs.ecl
module, 3
sage.libs.eclib.constructor
module, 59
sage.libs.eclib.homspace
module, 54
sage.libs.eclib.interface
module, 17
sage.libs.eclib.mat
module, 47
sage.libs.eclib.mwrank
module, 44
sage.libs.eclib.newforms
module, 50
sage.libs.flint.arith_sage
module, 67
sage.libs.flint.fmpq_poly_sage
module, 67
sage.libs.flint.fmpz_poly_sage
module, 63
sage.libs.flint.qsieve_sage
module, 70
sage.libs.flint.ulong_extras_sage
module, 70
sage.libs.gap.context_managers
module, 129
sage.libs.gap.element
module, 142
sage.libs.gap.gap_functions
module, 130
sage.libs.gap.libgap
module, 132
sage.libs.gap.saved_workspace
module, 166
sage.libs.gap.test
module, 142
sage.libs.gap.test_long
module, 130
sage.libs.gap.util
module, 131
sage.libs.giac
module, 73
sage.libs.gsl.array
module, 83
sage.libs.lcalc.lcalc_Lfunction
module, 85
sage.libs.libecm
module, 79
sage.libs.linbox.linbox_flint_interface
module, 169
sage.libs.lrcalc.lrcalc
module, 171
sage.libs.mpmath.utils
module, 181
sage.libs.ntl.all
module, 189
sage.libs.pari
module, 191
sage.libs.pari.convert_sage
module, 195
sage.libs.singular.function
module, 95
sage.libs.singular.function_factory
module, 110
sage.libs.singular.groebner_strategy
module, 123
sage.libs.singular.option
module, 112
sage.libs.singular.polynomial
module, 112
sage.libs.singular.ring
module, 121
sage.libs.singular.singular
module, 110
sage.libs.symmetrica.symmetrica
module, 209
sage.rings.pari_ring
module, 206
saturate() (sage.libs.eclib.interface.mwrank_Elliptic-
Curve method), 23
saturate() (sage.libs.eclib.interface.mwrank_Mordell-
Weil method), 38
save() (sage.libs.singular.option.LibSingularOptions_ab-
stract method), 119
scalarproduct_schubert_symmetrica() (in module
sage.libs.symmetrica.symmetrica), 220
scalarproduct_schur_symmetrica() (in module
sage.libs_symmetrica.symmetrica), 220
schur_schur_plet_symmetrica() (in module
sage.libs.symmetrica.symmetrica), 220
sdg_symmetrica() (in module sage.libs_symmetrica.
symmetrica), 220
search() (sage.libs.eclib.interface.mwrank_MordellWeil
method), 43
Index
test_loop_3() (in module sage.libs.gap.test_long), 131

test_sigint_before_ecl_sig_on() (in module sage.libs.ecl), 16

test_write_to_file() (in module sage.libs.gap.test), 142
timestamp() (in module sage.libs.gap.saved_workspace), 166

truncate() (sage.libs.flint.fmpz_poly_sage.Fmpz_poly method), 66
two_descent() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 27

U

unpickle_GroebnerStrategy0() (in module sage.libs.singular.groebner_strategy), 126
unpickle_NCGroebnerStrategy0() (in module sage.libs.singular.groebner_strategy), 127
unset_global() (sage.libs.gap.libgap.Gap method), 141

V

value() (sage.libs.lcalc.lcalc_Lfunction.Lfunction method), 89
var_names() (sage.libs.singular.function.RingWrap method), 100
vector() (sage.libs.gap.element.GapElement_List method), 157

W

workspace() (in module sage.libs.gap.saved_workspace), 166

Z

zero() (sage.libs.gap.libgap.Gap method), 141
zeta() (sage.rings.pari_ring.PariRing method), 207