<p>	Contents
1 ECL	3
1.1 Library interface to Embeddable Common Lisp (ECL)	3
2 eclib	11
2.1 Sage interface to Cremona's eclib library (also known as mwrank)	11
2.2 Cython interface to Cremona's eclib library (also known as mwrank)	26
2.3 Cremona matrices	28
2.4 Modular symbols using eclib newforms	29
2.5 Cremona modular symbols	31
2.6 Cremona modular symbols	34
3 FLINT	37
3.1 Flint imports	37
3.2 FLINT fmpz_poly class wrapper	37
3.3 FLINT Arithmetic Functions	39
4 Giac	43
4.1 Wrappers for Giac functions	43
5 GMP-ECM	47
5.1 The Elliptic Curve Method for Integer Factorization (ECM)	47
6 GSL	49
6.1 GSL arrays	49
7 lcalc	51
7.1 Rubinstein’s lecalc library	51
8 libSingular	59
8.1 libSingular: Functions	59
8.2 libSingular: Function Factory	67
8.3 libSingular: Conversion Routines and Initialisation	67
8.4 Wrapper for Singular’s Polynomial Arithmetic	68
8.5 libSingular: Options	68
8.6 Wrapper for Singular’s Rings	73
8.7 Singular’s Groebner Strategy Objects	74
9 GAP	79
9.1 Context Managers for LibGAP	79
9.2 Common global functions defined by GAP.	80
9.3 Long tests for GAP	80
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Utility functions for GAP</td>
</tr>
<tr>
<td>9.5</td>
<td>Library Interface to GAP</td>
</tr>
<tr>
<td>9.6</td>
<td>Short tests for GAP</td>
</tr>
<tr>
<td>9.7</td>
<td>GAP element wrapper</td>
</tr>
<tr>
<td>9.8</td>
<td>LibGAP Workspace Support</td>
</tr>
<tr>
<td>10</td>
<td>LinBox</td>
</tr>
<tr>
<td>10.1</td>
<td>Interface between flint matrices and linbox</td>
</tr>
<tr>
<td>11</td>
<td>lrcalc</td>
</tr>
<tr>
<td>11.1</td>
<td>An interface to Anders Buch’s Littlewood-Richardson Calculator lrcalc</td>
</tr>
<tr>
<td>12</td>
<td>mpmath</td>
</tr>
<tr>
<td>12.1</td>
<td>Utilities for Sage-mpmath interaction</td>
</tr>
<tr>
<td>13</td>
<td>NTL</td>
</tr>
<tr>
<td>13.1</td>
<td>Victor Shoup’s NTL C++ Library</td>
</tr>
<tr>
<td>14</td>
<td>PARI</td>
</tr>
<tr>
<td>14.1</td>
<td>Interface between Sage and PARI</td>
</tr>
<tr>
<td>14.2</td>
<td>Convert PARI objects to Sage types</td>
</tr>
<tr>
<td>14.3</td>
<td>Ring of pari objects</td>
</tr>
<tr>
<td>15</td>
<td>PPL</td>
</tr>
<tr>
<td>15.1</td>
<td>Cython wrapper for the Parma Polyhedra Library (PPL)</td>
</tr>
<tr>
<td>16</td>
<td>ratpoints</td>
</tr>
<tr>
<td>16.1</td>
<td>Hyperelliptic Curve Point Finding, via ratpoints (deprecated)</td>
</tr>
<tr>
<td>17</td>
<td>Readline</td>
</tr>
<tr>
<td>17.1</td>
<td>Readline</td>
</tr>
<tr>
<td>18</td>
<td>Symmetrica</td>
</tr>
<tr>
<td>18.1</td>
<td>Symmetrica library</td>
</tr>
<tr>
<td>19</td>
<td>Indices and Tables</td>
</tr>
<tr>
<td>Python Module Index</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
</tbody>
</table>
An underlying philosophy in the development of Sage is that it should provide unified library-level access to the some of the best GPL'd C/C++ libraries. Sage provides access to many libraries which are included with Sage.

The interfaces are implemented via shared libraries and data is moved between systems purely in memory. In particular, there is no interprocess interpreter parsing (e.g., pexpect), since everything is linked together and run as a single process. This is much more robust and efficient than using pexpect.

Each of these interfaces is used by other parts of Sage. For example, eclib is used by the elliptic curves module to compute ranks of elliptic curves and PARI is used for computation of class groups. It is thus probably not necessary for a casual user of Sage to be aware of the modules described in this chapter.
1.1 Library interface to Embeddable Common Lisp (ECL)

class sage.libs.ecl.EclListIterator

 Bases: object

 Iterator object for an ECL list

 This class is used to implement the iterator protocol for EclObject. Do not instantiate this class directly but use
 the iterator method on an EclObject instead. It is an error if the EclObject is not a list.

 EXAMPLES:

 sage: from sage.libs.ecl import *
 sage: I=EclListIterator(EclObject("(1 2 3)"))
 sage: type(I)
 <type 'sage.libs.ecl.EclListIterator'>
 sage: [i for i in I]
 [<ECL: 1>, <ECL: 2>, <ECL: 3>]
 sage: [i for i in EclObject("(1 2 3)")]
 [<ECL: 1>, <ECL: 2>, <ECL: 3>]
 sage: EclListIterator(EclObject("1"))
 Traceback (most recent call last):
 ...
 TypeError: ECL object is not iterable

class sage.libs.ecl.EclObject

 Bases: object

 Python wrapper of ECL objects

 The EclObject forms a wrapper around ECL objects. The wrapper ensures that the data structure pointed to
 is protected from garbage collection in ECL by installing a pointer to it from a global data structure within the
 scope of the ECL garbage collector. This pointer is destroyed upon destruction of the EclObject.

 EclObject() takes a Python object and tries to find a representation of it in Lisp.

 EXAMPLES:

 Python lists get mapped to LISP lists. None and Boolean values to appropriate values in LISP:

 sage: from sage.libs.ecl import *
 sage: EclObject([None,true,false])
 <ECL: (NIL T NIL)>

 Numerical values are translated to the appropriate type in LISP:
Floats in Python are IEEE double, which LISP has as well. However, the printing of floating point types in LISP depends on settings:

```python
sage: a = EclObject(float(10^40))
sage: ecl_eval("(setf *read-default-float-format* 'single-float)")
sage: a
<ECL: 1.d40>
sage: ecl_eval("(setf *read-default-float-format* 'double-float)")
sage: a
<ECL: 1.e40>
```

Tuples are translated to dotted lists:

```python
sage: EclObject((false, true))
<ECL: (NIL . T)>
```

Strings are fed to the reader, so a string normally results in a symbol:

```python
sage: EclObject("Symbol")
<ECL: SYMBOL>
```

But with proper quotation one can construct a lisp string object too:

```python
sage: EclObject("Symbol")
<ECL: "Symbol">
```

EclObjects translate to themselves, so one can mix:

```python
sage: EclObject([1,2,EclObject([3])])
<ECL: (1 2 (3))>
```

Calling an EclObject translates into the appropriate LISP `apply`, where the argument is transformed into an EclObject itself, so one can flexibly apply LISP functions:

```python
sage: car=EclObject("car")
sage: cdr=EclObject("cdr")
sage: car(cdr([1,2,3]))
<ECL: 2>
```

and even construct and evaluate arbitrary S-expressions:

```python
sage: eval=EclObject("eval")
sage: quote=EclObject("quote")
sage: eval([car, [cdr, [quote,[1,2,3]]]])
<ECL: 2>
```

`atomp()`

Return True if self is atomic, False otherwise.

EXAMPLES:
caar()
Return the caar of self

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: L = EclObject([[1,2],[3,4]])
sage: L.car()  # ECL: (1 2)
sage: L.cdr()  # ECL: ((3 4))
sage: L.caar()  # ECL: 1
```  
cadr()
Return the cadr of self

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: L = EclObject([[1,2],[3,4]])
sage: L.car()  # ECL: (1 2)
sage: L.cdr()  # ECL: ((3 4))
sage: L.caar()  # ECL: 1
```  
car()
Return the car of self

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: L = EclObject([[1,2],[3,4]])
sage: L.car()  # ECL: (1 2)
sage: L.cdr()  # ECL: ((3 4))
sage: L.caar()  # ECL: 1
```
cdar()
Return the cdar of self

EXAMPLES:

```sage
from sage.libs.ecl import *
sage: L=EclObject([[1,2],[3,4]])
sage: L.car()
<ECL: (1 2)>
sage: L.cdr()
<ECL: ((3 4))>
sage: L.caar()
<ECL: 1>
sage: L.cadr()
<ECL: (3 4)>
sage: L.cdar()
<ECL: (2)>
sage: L.cddr()
<ECL: NIL>
```

cddr()
Return the cddr of self

EXAMPLES:

```sage
from sage.libs.ecl import *
sage: L=EclObject([[1,2],[3,4]])
sage: L.car()
<ECL: (1 2)>
sage: L.cdr()
<ECL: ((3 4))>
sage: L.caar()
<ECL: 1>
sage: L.cadr()
<ECL: (3 4)>
sage: L.cdar()
<ECL: (2)>
sage: L.cddr()
<ECL: NIL>
```

cdr()
Return the cdr of self

EXAMPLES:

```sage
from sage.libs.ecl import *
sage: L=EclObject([[1,2],[3,4]])
sage: L.car()
<ECL: (1 2)>
```
characterp()
Return True if self is a character, False otherwise.
Strings are not characters.

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: EclObject('"a"').characterp()
False
```

cons (d)
apply cons to self and argument and return the result.

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: a=EclObject(1)
sage: b=EclObject(2)
sage: a.cons(b)
<ECL: (1 . 2)>
```

consp()
Return True if self is a cons, False otherwise. NIL is not a cons.

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: EclObject([]).consp()
False
sage: EclObject([[]]).consp()
True
```

eval()
Evaluate object as an S-Expression

EXAMPLES:

```
sage: from sage.libs.ecl import *
sage: S=EclObject("(+ 1 2)")
sage: S
<ECL: (+ 1 2)>
sage: S.eval()
<ECL: 3>
```

fixnump()
Return True if self is a fixnum, False otherwise.
EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: EclObject(2**3).fixnump()
True
sage: EclObject(2**200).fixnump()
False
```

`listp()`

Return True if self is a list, False otherwise. NIL is a list.

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: EclObject([]).listp()
True
sage: EclObject([[]]).listp()
True
```

`nullp()`

Return True if self is NIL, False otherwise

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: EclObject([]).nullp()
True
sage: EclObject([[]]).nullp()
False
```

`python()`

Convert an EclObject to a python object.

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: L=EclObject([1,2,("three","four")])
sage: L.python()
[1, 2, ('THREE', 'four')]
```

`rplaca(d)`

Destructively replace car(self) with d.

EXAMPLES:

```python
sage: from sage.libs.ecl import *
sage: L=EclObject((1,2))
sage: L
<ECL: (1 . 2)>
sage: a=EclObject(3)
sage: L.rplaca(a)
sage: L
<ECL: (3 . 2)>
```

`rplacd(d)`

Destructively replace cdr(self) with d.

EXAMPLES:
sage: from sage.libs.ecl import *
sage: L=EclObject((1,2))
sage: L
<ECL: (1 . 2)>
sage: a=EclObject(3)
sage: L.rplacd(a)
sage: L
<ECL: (1 . 3)>

symbolp()
Return True if self is a symbol, False otherwise.

EXAMPLES:

sage: from sage.libs.ecl import *
sage: EclObject([]).symbolp()
True
sage: EclObject([]).symbolp()
False

sage.libs.ecl.ecl_eval(s)
Read and evaluate string in Lisp and return the result

EXAMPLES:

sage: from sage.libs.ecl import *
sage: ecl_eval("(defun fibo (n)(cond((= n 0) 0)((= n 1) 1)(T (+ (fibo (- n 1))
˓→(fibo (- n 2))))))")
<ECL: FIBO>
sage: ecl_eval("(mapcar 'fibo '(1 2 3 4 5 6 7))")
<ECL: (1 1 2 3 4 5 6 7)>

sage.libs.ecl.init_ecl()
Internal function to initialize ecl. Do not call.

This function initializes the ECL library for use within Python. This routine should only be called once and importing the ecl library interface already does that, so do not call this yourself.

EXAMPLES:

sage: from sage.libs.ecl import *
At this point, init_ecl() has run. Explicitly executing it gives an error:

sage: init_ecl()
Traceback (most recent call last):
...
RuntimeError: ECL is already initialized

sage.libs.ecl.print_objects()
Print GC-protection list

Diagnostic function. ECL objects that are bound to Python objects need to be protected from being garbage collected. We do this by including them in a doubly linked list bound to the global ECL symbol SAGE-LIST-OF-OBJECTS. Only non-immediate values get included, so small integers do not get linked in. This routine prints the values currently stored.

EXAMPLES:
sage: from sage.libs.ecl import *
sage: a=EclObject("hello")
sage: b=EclObject(10)
sage: c=EclObject("world")
sage: print_objects() #random because previous test runs can have left objects
NIL
WORLD
HELLO

sage.libs.ecl.shutdown_ecl()

Shut down ecl. Do not call.

Given the way that ECL is used from python, it is very difficult to ensure that no ECL objects exist at a particular time. Hence, destroying ECL is a risky proposition.

EXAMPLES:

sage: from sage.libs.ecl import *
sage: shutdown_ecl()

sage.libs.ecl.test_ecl_options()

Print an overview of the ECL options

sage.libs.ecl.test_sigint_before_ecl_sig_on()
2.1 Sage interface to Cremona’s eclib library (also known as mwrank)

This is the Sage interface to John Cremona’s eclib C++ library for arithmetic on elliptic curves. The classes defined in this module give Sage interpreter-level access to some of the functionality of eclib. For most purposes, it is not necessary to directly use these classes. Instead, one can create an EllipticCurve and call methods that are implemented using this module.

Note: This interface is a direct library-level interface to eclib, including the 2-descent program mwrank.

```python
class sage.libs.eclib.interface.mwrank_EllipticCurve(ainvs, verbose=False)
    Bases: sage.structure.sage_object.SageObject

    The mwrank_EllipticCurve class represents an elliptic curve using the Curvedata class from eclib, called here an ‘mwrank elliptic curve’.

    Create the mwrank elliptic curve with invariants ainvs, which is a list of 5 or less integers $a_1, a_2, a_3, a_4,$ and $a_5$.

    If strictly less than 5 invariants are given, then the first ones are set to 0, so, e.g., $[3, 4]$ means $a_1 = a_2 = a_3 = 0$ and $a_4 = 3$, $a_5 = 4$.

    INPUT:
    • ainvs (list or tuple) – a list of 5 or less integers, the coefficients of a nonsingular Weierstrass equation.
    • verbose (bool, default False) – verbosity flag. If True, then all Selmer group computations will be verbose.

    EXAMPLES:

    We create the elliptic curve $y^2 + y = x^3 + x^2 - 2x$:

    ```sage```
 sage: e = mwrank_EllipticCurve([0, 1, 1, -2, 0])
 sage: e.ainvs()
 [0, 1, 1, -2, 0]
    ```
    ```

 This example illustrates that omitted a-invariants default to 0:

    ```sage```
    sage: e = mwrank_EllipticCurve([3, -4])
    sage: e
    y^2 = x^3 + 3*x - 4
    ```
    ```
```
The entries of the input list are coerced to int. If this is impossible, then an error is raised:

```
sage: e = mwrank_EllipticCurve([3, -4.8]); e
Traceback (most recent call last):
...
TypeError: ainvs must be a list or tuple of integers.
```

When you enter a singular model you get an exception:

```
sage: e = mwrank_EllipticCurve([0, 0])
Traceback (most recent call last):
...
ArithmeticError: Invariants (= 0,0,0,0,0) do not describe an elliptic curve.
```

CPS_height_bound()

Return the Cremona-Prickett-Siksek height bound. This is a floating point number \(B \) such that if \(P \) is a point on the curve, then the naive logarithmic height \(h(P) \) is less than \(B + \hat{h}(P) \), where \(\hat{h}(P) \) is the canonical height of \(P \).

Warning: We assume the model is minimal!

EXAMPLES:

```
sage: E = mwrank_EllipticCurve([0, 0, 0, -1002231243161, 0])
sage: E.CPS_height_bound()
14.163198527061496
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: E.CPS_height_bound()
0.0
```

ainvs()

Returns the \(a \)-invariants of this mwrank elliptic curve.

EXAMPLES:

```
sage: E = mwrank_EllipticCurve([0,0,1,-1,0])
sage: E.ainvs()
[0, 0, 1, -1, 0]
```

certain()

Returns True if the last \code{two_descent()} call provably correctly computed the rank. If \code{two_descent()} hasn’t been called, then it is first called by \code{certain()} using the default parameters.

The result is True if and only if the results of the methods \code{rank()} and \code{rank_bound()} are equal.

EXAMPLES:

A 2-descent does not determine \(E(Q) \) with certainty for the curve \(y^2 + y = x^3 - x^2 - 120x - 2183 \):

```
sage: E = mwrank_EllipticCurve([0, -1, 1, -120, -2183])
sage: E.certain()
False
```

(continues on next page)
...
sage: E.certain()
False
sage: E.rank()
0

The previous value is only a lower bound; the upper bound is greater:
sage: E.rank_bound()
2

In fact the rank of E is actually 0 (as one could see by computing the L-function), but Sha has order 4 and the 2-torsion is trivial, so mwrank cannot conclusively determine the rank in this case.

conductor()
Return the conductor of this curve, computed using Cremona’s implementation of Tate’s algorithm.

Note: This is independent of PARI’s.

EXAMPLES:

```python  
sage: E = mwrank_EllipticCurve([1, 1, 0, -6958, -224588])  
sage: E.conductor()  
2310
```

gens()
Return a list of the generators for the Mordell-Weil group.

EXAMPLES:

```python  
sage: E = mwrank_EllipticCurve([0, 0, 1, -1, 0])  
sage: E.gens()  
[[0, -1, 1]]
```

isogeny_class(\texttt{verbose=False})
Returns the isogeny class of this mwrank elliptic curve.

EXAMPLES:

```python  
sage: E = mwrank_EllipticCurve([0, -1, 1, 0, 0])  
sage: E.isogeny_class()  
([[[0, -1, 1, 0, 0], [0, 0, 0, 0, 0], [0, -1, 1, -10, -20], [0, -1, 1, -7820, -263580]], [[0, 5, 0], [5, 0, 5], [0, 5, 0]])
```

rank()
Returns the rank of this curve, computed using \texttt{two_descent()}.
In general this may only be a lower bound for the rank; an upper bound may be obtained using the function \texttt{rank_bound()}. To test whether the value has been proved to be correct, use the method \texttt{certain()}.

EXAMPLES:

```python  
sage: E = mwrank_EllipticCurve([0, -1, 0, -900, -10098])  
sage: E.rank()  
0  
sage: E.certain()  
True
```
```python
sage: E = mwrank_EllipticCurve([0, -1, 1, -929, -10595])
sage: E.rank()
0
sage: E.certain()
False
```

rank_bound()

Returns an upper bound for the rank of this curve, computed using `two_descent()`.

If the curve has no 2-torsion, this is equal to the 2-Selmer rank. If the curve has 2-torsion, the upper bound may be smaller than the bound obtained from the 2-Selmer rank minus the 2-rank of the torsion, since more information is gained from the 2-isogenous curve or curves.

EXAMPLES:

The following is the curve 960D1, which has rank 0, but Sha of order 4:

```python
sage: E = mwrank_EllipticCurve([0, -1, 0, -900, -10098])
sage: E.rank_bound()
0
sage: E.rank()
0
```

In this case the rank was computed using a second descent, which is able to determine (by considering a 2-isogenous curve) that Sha is nontrivial. If we deliberately stop the second descent, the rank bound is larger:

```python
sage: E = mwrank_EllipticCurve([0, -1, 0, -900, -10098])
sage: E.two_descent(second_descent = False, verbose=False)
sage: E.rank_bound()
2
```

In contrast, for the curve 571A, also with rank 0 and Sha of order 4, we only obtain an upper bound of 2:

```python
sage: E = mwrank_EllipticCurve([0, -1, 1, -929, -10595])
sage: E.rank_bound()
2
```

In this case the value returned by `rank()` is only a lower bound in general (though this is correct):

```python
sage: E.rank()
0
sage: E.certain()
False
```

regulator()

Return the regulator of the saturated Mordell-Weil group.

EXAMPLES:

```python
sage: E = mwrank_EllipticCurve([0, 0, 1, -1, 0])
sage: E.regulator()
0.05111140823996884
```

saturate (bound=-1)

Compute the saturation of the Mordell-Weil group at all primes up to `bound`.

INPUT:

...
- **bound** (int, default -1) – Use -1 (the default) to saturate at all primes, 0 for no saturation, or \(n \) (a positive integer) to saturate at all primes up to \(n \).

EXAMPLES:

Since the 2-descent automatically saturates at primes up to 20, it is not easy to come up with an example where saturation has any effect:

```python
sage: E = mwrank_EllipticCurve([0, 0, 0, -1002231243161, 0])
sage: E.gens()
[[-1001107, -4004428, 1]]
sage: E.saturate()
sage: E.gens()
[[-1001107, -4004428, 1]]
```

Check that trac ticket #18031 is fixed:

```python
sage: E = EllipticCurve([0,-1,1,-266,968])
sage: Q1 = E([-1995,3674,125])
sage: Q2 = E([157,1950,1])
sage: E.saturation([Q1,Q2])
([(1 : -27 : 1), (157 : 1950 : 1)], 3, 0.801588644684981)
```

selmer_rank()

Returns the rank of the 2-Selmer group of the curve.

EXAMPLES:

The following is the curve 960D1, which has rank 0, but Sha of order 4. The 2-torsion has rank 2, and the Selmer rank is 3:

```python
sage: E = mwrank_EllipticCurve([0, -1, 0, -900, -10098])
sage: E.selmer_rank()
3
```

Nevertheless, we can obtain a tight upper bound on the rank since a second descent is performed which establishes the 2-rank of Sha:

```python
sage: E.rank_bound()
0
```

To show that this was resolved using a second descent, we do the computation again but turn off second_descent:

```python
sage: E = mwrank_EllipticCurve([0, -1, 0, -900, -10098])
sage: E.two_descent(second_descent = False, verbose=False)
sage: E.rank_bound()
2
```

For the curve 571A, also with rank 0 and Sha of order 4, but with no 2-torsion, the Selmer rank is strictly greater than the rank:

```python
sage: E = mwrank_EllipticCurve([0, -1, 1, -929, -10595])
sage: E.selmer_rank()
2
sage: E.rank_bound()
2
```

In cases like this with no 2-torsion, the rank upper bound is always equal to the 2-Selmer rank. If we ask for the rank, all we get is a lower bound:
sage: E.rank()
0
sage: E.certain()
False

set verbose(\texttt{verbose})

Set the verbosity of printing of output by the \texttt{two_descent()} and other functions.

INPUT:

\begin{itemize}
 \item \texttt{verbose} (int) – if positive, print lots of output when doing 2-descent.
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: E = mwrank_EllipticCurve([0, 0, 1, -1, 0])
sage: E.saturate() # no output
sage: E.gens()
[[0, -1, 1]]
sage: E = mwrank_EllipticCurve([0, 0, 1, -1, 0])
sage: E.set_verbose(1)
sage: E.saturate() # tol 1e-10
Basic pair: I=48, J=-432
disc=255744
2-adic index bound = 2
By Lemma 5.1(a), 2-adic index = 1
2-adic index = 1
One (I,J) pair
Looking for quartics with I = 48, J = -432
Looking for Type 2 quartics:
Trying positive a from 1 up to 1 (square a first...)
(1,0,-6,4,1) --trivial
Trying positive a from 1 up to 1 (...then non-square a)
Finished looking for Type 2 quartics.
Looking for Type 1 quartics:
Trying positive a from 1 up to 2 (square a first...)
(1,0,0,4,4) --nontrivial...(x:y:z) = (1 : 1 : 0)
Point = [0:0:1]
height = 0.0511114082399688402358
Rank of B=im(\epsilon) increases to 1 (The previous point is on the egg)
Exiting search for Type 1 quartics after finding one which is globally soluble.
Mordell rank contribution from B=im(\epsilon) = 1
Selmer rank contribution from B=im(\epsilon) = 0
Sha rank contribution from B=im(\epsilon) = 0
Mordell rank contribution from A=ker(\epsilon) = 0
Selmer rank contribution from A=ker(\epsilon) = 0
Sha rank contribution from A=ker(\epsilon) = 0
Searching for points (bound = 8)...done:
 found points which generate a subgroup of rank 1
 and regulator 0.0511114082399688402358
Processing points found during 2-descent...done:
 now regulator = 0.0511114082399688402358
Saturating (with bound = -1)...done:
 points were already saturated.
\end{verbatim}

silverman_bound()

Return the Silverman height bound. This is a floating point number B such that if P is a point on the curve, then the naive logarithmic height $h(P)$ is less than $B + \hat{h}(P)$, where $\hat{h}(P)$ is the canonical height.
of P.

Warning: We assume the model is minimal!

EXAMPLES:

```plaintext
sage: E = mwrank_EllipticCurve([0, 0, 0, -1002231243161, 0])
sage: E.silverman_bound()
18.29545210468247
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: E.silverman_bound()
6.284833369972403
```

```plaintext
two_descent (verbose=True, selmer_only=False, first_limit=20, second_limit=8, n_aux=-1, second_descent=True)
```

Compute 2-descent data for this curve.

INPUT:

- `verbose` (bool, default True) – print what mwrank is doing.
- `selmer_only` (bool, default False) – selmer_only switch.
- `first_limit` (int, default 20) – bound on $|x| + |z|$ in quartic point search.
- `second_limit` (int, default 8) – bound on $\log \max(|x|,|z|)$, i.e. logarithmic.
- `n_aux` (int, default -1) – (only relevant for general 2-descent when 2-torsion trivial) number of primes used for quartic search. `n_aux=-1` causes default (8) to be used. Increase for curves of higher rank.
- `second_descent` (bool, default True) – (only relevant for curves with 2-torsion, where mwrank uses descent via 2-isogeny) flag determining whether or not to do second descent. Default strongly recommended.

OUTPUT:

Nothing – nothing is returned.

```plaintext
class sage.libs.eclib.interface.mwrank_MordellWeil (curve, verbose=True, pp=1, maxr=999)
```

The `mwrank_MordellWeil` class represents a subgroup of a Mordell-Weil group. Use this class to saturate a specified list of points on an `mwrank_EllipticCurve`, or to search for points up to some bound.

INPUT:

- `curve` (``mwrank_EllipticCurve``) – the underlying elliptic curve.
- `verbose` (bool, default False) – verbosity flag (controls amount of output produced in point searches).
- `pp` (int, default 1) – process points flag (if nonzero, the points found are processed, so that at all times only a \mathbb{Z}-basis for the subgroup generated by the points found so far is stored; if zero, no processing is done and all points found are stored).
- `maxr` (int, default 999) – maximum rank (quit point searching once the points found generate a subgroup of this rank; useful if an upper bound for the rank is already known).

EXAMPLES:
```python
sage: E = mwrank_EllipticCurve([1,0,1,4,-6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ
Subgroup of Mordell-Weil group: []
sage: EQ.search(2)
P1 = [0:1:0] is torsion point, order 1
P1 = [1:-1:1] is torsion point, order 2
P1 = [2:2:1] is torsion point, order 3
P1 = [9:23:1] is torsion point, order 6

sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.search(2)
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1

...P4 = [-91:804:343] = -2*P1 + 2*P2 + 1*P3 (mod torsion)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
```

Example to illustrate the verbose parameter:

```python
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E, verbose=False)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]

sage: EQ = mwrank_MordellWeil(E, verbose=True)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
```

```python
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E, verbose=True)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
```

```python
sage: EQ = mwrank_MordellWeil(E, verbose=True)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
```
Checking 3-saturation
Points have successfully been 3-saturated (max q used = 13)
Checking 5-saturation
Points have successfully been 5-saturated (max q used = 67)
Checking 7-saturation
Points have successfully been 7-saturated (max q used = 53)
Checking 11-saturation
Points have successfully been 11-saturated (max q used = 73)
Checking 13-saturation
Points have successfully been 13-saturated (max q used = 103)
Checking 17-saturation
Points have successfully been 17-saturated (max q used = 113)
Checking 19-saturation
Points have successfully been 19-saturated (max q used = 47)
done (index = 2).
Gained index 2, new generators = [[1:-1:1] [-2:3:1]]
P3 = [-14:25:8] is generator number 3
saturating up to 20...
Checking 2-saturation
Points have successfully been 2-saturated (max q used = 11)
Checking 3-saturation
Points have successfully been 3-saturated (max q used = 13)
Checking 5-saturation
Points have successfully been 5-saturated (max q used = 71)
Checking 7-saturation
Points have successfully been 7-saturated (max q used = 101)
Checking 11-saturation
Points have successfully been 11-saturated (max q used = 127)
Checking 13-saturation
Points have successfully been 13-saturated (max q used = 151)
Checking 17-saturation
Points have successfully been 17-saturated (max q used = 139)
Checking 19-saturation
Points have successfully been 19-saturated (max q used = 179)
done (index = 1).
P4 = [-1:3:1] = -1 * P1 + -1 * P2 + -1 * P3 (mod torsion)
P4 = [0:2:1] = 2 * P1 + 0 * P2 + 1 * P3 (mod torsion)
P4 = [2:13:8] = -3 * P1 + 1 * P2 + -1 * P3 (mod torsion)
P4 = [1:0:1] = -1 * P1 + 0 * P2 + 0 * P3 (mod torsion)
P4 = [2:0:1] = -1 * P1 + 1 * P2 + 0 * P3 (mod torsion)
P4 = [18:7:8] = -2 * P1 + -1 * P2 + -1 * P3 (mod torsion)
P4 = [3:3:1] = 1 * P1 + 0 * P2 + 1 * P3 (mod torsion)
P4 = [4:6:1] = 0 * P1 + -1 * P2 + -1 * P3 (mod torsion)
P4 = [36:69:64] = 1 * P1 + 0 * P2 + 0 * P3 (mod torsion)
P4 = [68:-25:64] = -2 * P1 + -1 * P2 + -2 * P3 (mod torsion)
P4 = [12:35:27] = 1 * P1 + -1 * P2 + -1 * P3 (mod torsion)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]

Example to illustrate the process points (pp) parameter:

```
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E, verbose=False, pp=1)
sage: EQ.search(1); EQ
# generators only
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
sage: EQ = mwrank_MordellWeil(E, verbose=False, pp=0)
sage: EQ.search(1); EQ
# all points found
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8], [-1:3:1], [-0:1:1], [2:13:8], [1:0:1], [2:0:1], [18:7:8], [3:3:1], [4:6:1], [36:69:64], [12:35:27]]
```

2.1. Sage interface to Cremona’s eclib library (also known as mwrank)
points()
Return a list of the generating points in this Mordell-Weil group.

OUTPUT:
(list) A list of lists of length 3, each holding the primitive integer coordinates \([x, y, z]\) of a generating point.

EXAMPLES:

```sage
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.search(1)
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1
...
P4 = [12:35:27] = 1*P1 + -1*P2 + -1*P3 (mod torsion)
sage: EQ.points()
[[[1, -1, 1], [-2, 3, 1], [-14, 25, 8]]
```

process(v, sat=0)
This function allows one to add points to a `mwrank_MordellWeil` object.

Process points in the list \(v\), with saturation at primes up to \(sat\). If \(sat\) is zero (the default), do no saturation.

INPUT:
- \(v\) (list of 3-tuples or lists of ints or Integers) – a list of triples of integers, which define points on the curve.
- \(sat\) (int, default 0) – saturate at primes up to \(sat\), or at all primes if \(sat\) is zero.

OUTPUT:
None. But note that if the `verbose` flag is set, then there will be some output as a side-effect.

EXAMPLES:

```sage
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.process([[1547, -2967, 343], [2707496766203306, 864581029138191, ˓→2969715140223272], [-13422227300, -49322830557, 12167000000]], sat=20)
P1 = [1547:-2967:343] is generator number 1
...
```
Here the processing was followed by saturation at primes up to 20. Now we prevent this initial saturation:

```
sage: E = mwrack.EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrack.MordellWeil(E)
sage: EQ.process([[1547, -2967, 343], [2707496766203306, 864581029138191, 2969715140223272], [-13422227300, -49322830557, 12167000000]], sat=0)
P1 = [1547,-2967,343] is generator number 1
P2 = [2707496766203306:864581029138191:2969715140223272] is generator number 2
P3 = [-13422227300:-49322830557:12167000000] is generator number 3
sage: EQ.points()
[[-2, 3, 1], [-14, 25, 8], [1, -1, 1]]
```

2.1. Sage interface to Cremona’s eclib library (also known as mwrack)
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done
(True, 1, '[]')

\texttt{rank()}

Return the rank of this subgroup of the Mordell-Weil group.

OUTPUT:

(int) The rank of this subgroup of the Mordell-Weil group.

EXAMPLES:

\begin{verbatim}
sage: E = mwrank_EllipticCurve([0,-1,1,0,0])
sage: E.rank()
0
\end{verbatim}

A rank 3 example:

\begin{verbatim}
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.rank()
0
sage: EQ.regulator()
1.0
\end{verbatim}

The preceding output is correct, since we have not yet tried to find any points on the curve either by searching or 2-descent:

\begin{verbatim}
sage: EQ
Subgroup of Mordell-Weil group: []
\end{verbatim}

Now we do a very small search:

\begin{verbatim}
sage: EQ.search(1)
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1
saturating up to 20...Checking 2-saturation...
P4 = [12:35:27] = 1*P1 + -1*P2 + -1*P3 (mod torsion)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
sage: EQ.rank()
3
sage: EQ.regulator()
0.417143558758384
\end{verbatim}

We do in fact now have a full Mordell-Weil basis.

\texttt{regulator()}

Return the regulator of the points in this subgroup of the Mordell-Weil group.

\textbf{Note:} eclib can compute the regulator to arbitrary precision, but the interface currently returns the output as a float.
OUTPUT:

(float) The regulator of the points in this subgroup.

EXAMPLES:

```sage
sage: E = mwrank_EllipticCurve([0,-1,1,0,0])
sage: E.regulator()
1.0
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: E.regulator()
0.417143558758384
```

saturate *(max_prime=-1, odd_primes_only=False)*

Saturate this subgroup of the Mordell-Weil group.

INPUT:

- **max_prime** (int, default -1) – saturation is performed for all primes up to max_prime. If -1 (the default), an upper bound is computed for the primes at which the subgroup may not be saturated, and this is used; however, if the computed bound is greater than a value set by the eclib library (currently 97) then no saturation will be attempted at primes above this.
- **odd_primes_only** (bool, default False) – only do saturation at odd primes. (If the points have been found via two_descent() they should already be 2-saturated.)

OUTPUT:

(3-tuple) \((ok, index, unsatlist)\) where:

- **ok** (bool) – True if and only if the saturation was provably successful at all primes attempted. If the default was used for max_prime and no warning was output about the computed saturation bound being too high, then True indicates that the subgroup is saturated at all primes.
- **index** (int) – the index of the group generated by the original points in their saturation.
- **unsatlist** (list of ints) – list of primes at which saturation could not be proved or achieved. Increasing the precision should correct this, since it happens when a linear combination of the points appears to be a multiple of \(p\) but cannot be divided by \(p\). (Note that eclib uses floating point methods based on elliptic logarithms to divide points.)

Note: We emphasize that if this function returns True as the first return argument (ok), and if the default was used for the parameter max_prime, then the points in the basis after calling this function are saturated at all primes, i.e., saturating at the primes up to max_prime are sufficient to saturate at all primes. Note that the function might not have needed to saturate at all primes up to max_prime. It has worked out what prime you need to saturate up to, and that prime might be smaller than max_prime.

Note: Currently (May 2010), this does not remember the result of calling search(). So calling search() up to height 20 then calling saturate() results in another search up to height 18.

EXAMPLES:

```sage
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
```

We initialise with three points which happen to be 2, 3 and 5 times the generators of this rank 3 curve. To prevent automatic saturation at this stage we set the parameter sat to 0 (which is in fact the default):
sage: sage: EQ.process([[1547, -2967, 343], [2707496766203306, 864581029138191, -2969715140223272], [-13422227300, -49322830557, 12167000000]], sat=0)
P1 = [1547, -2967, 343] is generator number 1
P2 = [2707496766203306, 864581029138191, -2969715140223272] is generator number 2
P3 = [-13422227300, -49322830557, 12167000000] is generator number 3

sage: sage: EQ
Subgroup of Mordell-Weil group: [[1547, -2967, 343], [2707496766203306, 864581029138191, -2969715140223272], [-13422227300, -49322830557, 12167000000]]

sage: sage: EQ.regulator()
375.4292028825455

Now we saturate at $p = 2$, and gain index 2:

sage: sage: EQ.saturate(2) # points were not 2-saturated
saturating basis...Saturation index bound = 93
WARNING: saturation at primes $p > 2$ will not be done;
...
Gained index 2
New regulator = 93.857...
(False, 2, '[]')

sage: sage: EQ
Subgroup of Mordell-Weil group: [[-2:3:1], [2707496766203306:864581029138191:2969715140223272], [-13422227300:-49322830557:12167000000]]

sage: sage: EQ.regulator()
93.85730072063639

Now we saturate at $p = 3$, and gain index 3:

sage: sage: EQ.saturate(3) # points were not 3-saturated
saturating basis...Saturation index bound = 46
WARNING: saturation at primes $p > 3$ will not be done;
...
Gained index 3
New regulator = 10.428...
(False, 3, '[]')

sage: sage: EQ
Subgroup of Mordell-Weil group: [[-2:3:1], [-14:25:8], [-13422227300:-49322830557:12167000000]]

sage: sage: EQ.regulator()
10.4285889689596

Now we saturate at $p = 5$, and gain index 5:

sage: sage: EQ.saturate(5) # points were not 5-saturated
saturating basis...Saturation index bound = 15
WARNING: saturation at primes $p > 5$ will not be done;
...
Gained index 5
New regulator = 0.417...
(False, 5, '[]')

sage: sage: EQ
Subgroup of Mordell-Weil group: [[-2:3:1], [-14:25:8], [1:-1:1]]

sage: sage: EQ.regulator()
0.417143558758384
Finally we finish the saturation. The output here shows that the points are now provably saturated at all primes:

```
sage: EQ.saturate()  # points are now saturated
saturating basis...Saturation index bound = 3
Checking saturation at [ 2 3 ]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done
(True, 1, '[]')
```

Of course, the `process()` function would have done all this automatically for us:

```
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.process([[1547, -2967, 343], [2707496766203306, 864581029138191, →2969715140223272], [-13422227300, -49322830557, 12167000000]], sat=5)
P1 = [1547:-2967:343] is generator number 1
...
Gained index 5, new generators = [ [-2:3:1] [-14:25:8] [1:-1:1] ]
sage: EQ
Subgroup of Mordell-Weil group: [[-2:3:1], [-14:25:8], [1:-1:1]]
sage: EQ.regulator()
0.417143558758384
```

But we would still need to use the `saturate()` function to verify that full saturation has been done:

```
sage: EQ.saturate()
saturating basis...Saturation index bound = 3
Checking saturation at [ 2 3 ]
Checking 2-saturation
Points were proved 2-saturated (max q used = 11)
Checking 3-saturation
Points were proved 3-saturated (max q used = 13)
done
(True, 1, '[]')
```

Note the output of the preceding command: it proves that the index of the points in their saturation is at most 3, then proves saturation at 2 and at 3, by reducing the points modulo all primes of good reduction up to 11, respectively 13.

```
search( height_limit=18, verbose=False )
Search for new points, and add them to this subgroup of the Mordell-Weil group.

INPUT:

- height_limit (float, default: 18) – search up to this logarithmic height.

Note: On 32-bit machines, this must be < 21.48 else \( \exp(h_{\text{lim}}) > 2^{31} \) and overflows. On 64-bit machines, it must be at most 43.668. However, this bound is a logarithmic bound and increasing it by just 1 increases the running time by (roughly) \( \exp(1.5) = 4.5 \), so searching up to even 20 takes a very long time.

Note: The search is carried out with a quadratic sieve, using code adapted from a version of Michael Stoll’s `ratpoints` program. It would be preferable to use a newer version of `ratpoints`.
```
• `verbose (bool, default False)` – turn verbose operation on or off.

EXEMPLARY:

A rank 3 example, where a very small search is sufficient to find a Mordell-Weil basis:

```python
sage: E = mwrank_EllipticCurve([0,0,1,-7,6])
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.search(1)
P1 = [0:1:0] is torsion point, order 1
P1 = [-3:0:1] is generator number 1
...
P4 = [12:35:27] = 1*P1 + -1*P2 + -1*P3 (mod torsion)
sage: EQ
Subgroup of Mordell-Weil group: [[1:-1:1], [-2:3:1], [-14:25:8]]
```

In the next example, a search bound of 12 is needed to find a non-torsion point:

```python
sage: E = mwrank_EllipticCurve([0, -1, 0, -18392, -1186248])
#1056g4
sage: EQ = mwrank_MordellWeil(E)
sage: EQ.search(11); EQ
P1 = [0:1:0] is torsion point, order 1
P1 = [161:0:1] is torsion point, order 2
Subgroup of Mordell-Weil group: []
sage: EQ.search(12); EQ
P1 = [0:1:0] is torsion point, order 1
P1 = [161:0:1] is torsion point, order 2
P1 = [4413270:10381877:27000] is generator number 1
...
Subgroup of Mordell-Weil group: [[4413270:10381877:27000]]
```

2.2 Cython interface to Cremona’s `eclib` library (also known as `mwrak`

EXEMPLATE:

```python
sage: from sage.libs.eclib.mwrank import _Curvedata, _mw
sage: c = _Curvedata(1,2,3,4,5)
sage: print(c)
[1, 2, 3, 4, 5]
b2 = 9 b4 = 11 b6 = 29 b8 = 35
c4 = -183 c6 = -3429
disc = -10351 (# real components = 1)
#torsion not yet computed
sage: t= _mw(c)
sage: t.search(10)
sage: t
[[1:2:1]]

sage.libs.eclib.mwrank.get_precision()
Returns the working floating point bit precision of mwrank, which is equal to the global NTL real number precision.
OUTPUT:
```
(int) The current precision in bits.

See also set_precision().

EXAMPLES:

```python
sage: mrank_get_precision()
150
```

`sage.libs.eclib.mwrank.initprimes` *(filename, verb=False)*
Initialises mwrank/eclib’s internal prime list.

INPUT:

* filename (string) – the name of a file of primes.
* verb (bool: default False) – verbose or not?

EXAMPLES:

```python
sage: file = os.path.join(SAGE_TMP, 'PRIMES')
sage: with open(file, 'w') as fobj:
....: _ = fobj.write(' '.join([str(p) for p in prime_range(10^7, 10^7+20)]))
sage: mrank_initprimes(file, verb=True)
Computed 78519 primes, largest is 1000253
reading primes from file ...
read extra prime 10000019
finished reading primes from file ...
Extra primes in list: 10000019
```

```python
sage: mrank_initprimes("x" + file, True)
Traceback (most recent call last):
...: IOError: No such file or directory: ...
```

`sage.libs.eclib.mwrank.set_precision`(n)
Sets the working floating point bit precision of mwrank, which is equal to the global NTL real number precision.

NTL real number bit precision. This has a massive effect on the speed of mwrank calculations. The default (used if this function is not called) is \textit{n}=150, but it might have to be increased if a computation fails.

INPUT:

* n – a positive integer: the number of bits of precision.

Warning: This change is global and affects \textit{all} future calls of eclib functions by Sage.

Note: The minimal value to which the precision may be set is 53. Lower values will be increased to 53.

See also get_precision().

EXAMPLES:

```python
sage: from sage.libs.eclib.mwrank import set_precision, get_precision
sage: old_prec = get_precision(); old_prec
150
sage: set_precision(50)
sage: get_precision()
(continues on next page)
```
2.3 Cremona matrices

```python
class sage.libs.eclib.mat.Matrix
    Bases: object
    A Cremona Matrix.

    EXAMPLES:

    sage: M = CremonaModularSymbols(225)
    sage: t = M.hecke_matrix(2)
    sage: type(t)
    <type 'sage.libs.eclib.mat.Matrix'>
    sage: t
    61 x 61 Cremona matrix over Rational Field

    add_scalar(s)
    Return new matrix obtained by adding s to each diagonal entry of self.

    EXAMPLES:

    sage: M = CremonaModularSymbols(23, cuspidal=True, sign=1)
    sage: t = M.hecke_matrix(2); print(t.str())
    [ 0 1]
    [ 1 -1]
    sage: w = t.add_scalar(3); print(w.str())
    [3 1]
    [1 2]

    charpoly(var='x')
    Return the characteristic polynomial of this matrix, viewed as as a matrix over the integers.

    ALGORITHM:
    Note that currently, this function converts this matrix into a dense matrix over the integers, then calls the charpoly algorithm on that, which I think is LinBox’s.

    EXAMPLES:

    sage: M = CremonaModularSymbols(33, cuspidal=True, sign=1)
    sage: t = M.hecke_matrix(2)
    sage: t.charpoly()
x^3 + 3*x^2 - 4
    sage: t.charpoly().factor()
(x - 1) * (x + 2)^2

    ncols()
    Return the number of columns of this matrix.

    EXAMPLES:
```
sage: M = CremonaModularSymbols(1234, sign=1)
sage: t = M.hecke_matrix(3); t.ncols()
156
sage: M.dimension()
156

nrows()
Return the number of rows of this matrix.

EXAMPLES:

sage: M = CremonaModularSymbols(19, sign=1)
sage: t = M.hecke_matrix(13); t
2 x 2 Cremona matrix over Rational Field
sage: t.nrows()
2

sage_matrix_over_ZZ(sparse=True)
Return corresponding Sage matrix over the integers.

INPUT:

• sparse – (default: True) whether the return matrix has a sparse representation

EXAMPLES:

sage: M = CremonaModularSymbols(23, cuspidal=True, sign=1)
sage: t = M.hecke_matrix(2)
sage: s = t.sage_matrix_over_ZZ(); s
[0 1]
[1 -1]
sage: type(s)
<type 'sage.matrix.matrix_integer_sparse.Matrix_integer_sparse'>
sage: s = t.sage_matrix_over_ZZ(sparse=False); s
[0 1]
[1 -1]
sage: type(s)
<type 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>

str()
Return full string representation of this matrix, never in compact form.

EXAMPLES:

sage: M = CremonaModularSymbols(22, sign=1)
sage: t = M.hecke_matrix(13)
sage: t.str()
'[[14 0 0 0 0]
 [0 -4 12 0 8]
 [0 0 -6 4 -6]
 [0 0 0 -4] 0]
 [0 6 2 0 6 -4]
 [0 0 0 0 14]]'

class sage.libs.eclib.mat.MatrixFactory
 Bases: object

2.4 Modular symbols using eclib newforms
class sage.libs.eclib.newforms.ECMODULARSYMBOL
 Bases: object
Modular symbol associated with an elliptic curve, using John Cremona’s newforms class.

EXAMPLES:

```python
sage: from sage.libs.eclib.newforms import ECModularSymbol
sage: E = EllipticCurve('11a')
```

```python
effective modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined by
y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
```

By default, symbols are based at the cusp ∞, i.e. we evaluate \(\{\infty, r\} \):

```python
sage: [M(1/i) for i in range(1,11)]
[2/5, -8/5, -3/5, 7/5, 12/5, 12/5, 7/5, -3/5, -8/5, 2/5]
```

We can also switch the base point to the cusp 0:

```python
sage: [M(1/i, base_at_infinity=False) for i in range(1,11)]
[0, -2, -1, 1, 2, 1, -1, -2, 0]
```

For the minus symbols this makes no difference since \(\{0, \infty\} \) is in the plus space. Note that to evaluate minus symbols the space must be defined with sign 0, which makes both signs available:

```python
sage: M = ECModularSymbol(E,0); M
Modular symbol with sign 0 over Rational Field attached to Elliptic Curve defined by
y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
```

```python
sage: [M(1/i, -1) for i in range(1,11)]
[0, 0, 1, 1, 0, 0, -1, -1, 0, 0]
```

If the ECModularSymbol is created with sign 0 then as well as asking for both + and - symbols, we can also obtain both (as a tuple). However it is more work to create the full modular symbol space:

```python
sage: E = EllipticCurve('11a1')
```

```python
sage: M = ECModularSymbol(E,0); M
Modular symbol with sign 0 over Rational Field attached to Elliptic Curve defined by
y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
```

```python
sage: [M(1/i) for i in range(2,11)]
[[-8/5, 0], [-3/5, 1], [7/5, 1], [12/5, 0], [12/5, 0], [7/5, -1], [-3/5, -1], [-8/5, 0], [2/5, 0]]
```

The curve is automatically converted to its minimal model:

```python
sage: E = EllipticCurve([0,0,0,0,1/4])
```

```python
sage: ECModularSymbol(E)
Modular symbol with sign 1 over Rational Field attached to Elliptic Curve defined by
y^2 + y = x^3 over Rational Field
```

Non-optimal curves are handled correctly in eclib, by comparing the ratios of real and/or imaginary periods:
One non-optimal curve has real period 1/5 that of the optimal one, so plus symbols scale up by a factor of 5 while minus symbols are unchanged:

```
sage: E2 = EllipticCurve('11a2')  # not optimal
sage: E2.period_lattice().basis()
(0.253841860855911, 0.126920930427955 + 1.45881661693850*I)
sage: M2 = ECModularSymbol(E2,0)
sage: M2(0)
[2, 0]
sage: M2(1/3)
[-3, 1]
sage: all((5*M2(r,1)==M1(r,1)) for r in QQ.range_by_height(10))
True
sage: all((M2(r,-1)==M1(r,-1)) for r in QQ.range_by_height(10))
True
```

The other non-optimal curve has real period 5 times that of the optimal one, so plus symbols scale down by a factor of 5; again, minus symbols are unchanged:

```
sage: E3 = EllipticCurve('11a3')  # not optimal
sage: E3.period_lattice().basis()
(6.34604652139777, 3.17302326069888 + 1.45881661693850*I)
sage: M3 = ECModularSymbol(E3,0)
sage: M3(0)
[2/25, 0]
sage: M3(1/3)
[-3/25, 1]
sage: all((5*M3(r,1)==M1(r,1)) for r in QQ.range_by_height(10))
True
sage: all((M3(r,-1)==M1(r,-1)) for r in QQ.range_by_height(10))
True
```

2.5 Cremona modular symbols

```python
class sage.libs.eclib.homspace.ModularSymbols
    Bases: object

    Class of Cremona Modular Symbols of given level and sign (and weight 2).

    EXAMPLES:

    sage: M = CremonaModularSymbols(225)
sage: type(M)
<type 'sage.libs.eclib.homspace.ModularSymbols'>
```

2.5. Cremona modular symbols 31
dimension()
Return the dimension of this modular symbols space.

EXAMPLES:

```
sage: M = CremonaModularSymbols(1234, sign=1)
sage: M.dimension()
156
```

hecke_matrix(p, dual=False, verbose=False)
Return the matrix of the p-th Hecke operator acting on this space of modular symbols.

The result of this command is not cached.

INPUT:
- • p – a prime number
- • dual – (default: False) whether to compute the Hecke operator acting on the dual space, i.e., the transpose of the Hecke operator
- • verbose – (default: False) print verbose output

OUTPUT:
(matrix) If p divides the level, the matrix of the Atkin-Lehner involution \(W_p \) at p; otherwise the matrix of the Hecke operator \(T_p \).

EXAMPLES:

```
sage: M = CremonaModularSymbols(37)
sage: t = M.hecke_matrix(2); t
5 x 5 Cremona matrix over Rational Field
sage: print(t.str())
[ 3 0 0 0 0]
[-1 -1 1 1 0]
[ 0 0 -1 0 1]
[-1 1 0 -1 -1]
[ 0 0 1 0 -1]
sage: t.charpoly().factor()
(x - 3) * x^2 * (x + 2)^2
sage: print(M.hecke_matrix(2, dual=True).str())
[ 3 -1 0 -1 0]
[ 0 -1 0 1 0]
[ 0 1 -1 0 1]
[ 0 1 0 -1 0]
[ 0 0 1 -1 -1]
sage: w = M.hecke_matrix(37); w
5 x 5 Cremona matrix over Rational Field
sage: w.charpoly().factor()
(x - 1)^2 * (x + 1)^3
sage: sw = w.sage_matrix_over_ZZ()
sage: st = t.sage_matrix_over_ZZ()
sage: sw^2 == sw.parent()(1)
True
sage: st*sw == sw*st
True
```

is_cuspidal()
Return whether or not this space is cuspidal.

EXAMPLES:
```python
sage: M = CremonaModularSymbols(1122); M.is_cuspidal()
0
sage: M = CremonaModularSymbols(1122, cuspidal=True); M.is_cuspidal()
1
```

level()

Return the level of this modular symbols space.

EXAMPLES:

```python
sage: M = CremonaModularSymbols(1234, sign=1)
sage: M.level()
1234
```

number_of_cusps()

Return the number of cusps for $\Gamma_0(N)$, where N is the level.

EXAMPLES:

```python
sage: M = CremonaModularSymbols(225)
sage: M.number_of_cusps()
24
```

sign()

Return the sign of this Cremona modular symbols space. The sign is either 0, +1 or -1.

EXAMPLES:

```python
sage: M = CremonaModularSymbols(1122, sign=1); M
Cremona Modular Symbols space of dimension 224 for Gamma_0(1122) of weight 2˓→with sign 1
sage: M.sign()
1
sage: M = CremonaModularSymbols(1122); M
Cremona Modular Symbols space of dimension 433 for Gamma_0(1122) of weight 2˓→with sign 0
sage: M.sign()
0
sage: M = CremonaModularSymbols(1122, sign=-1); M
Cremona Modular Symbols space of dimension 209 for Gamma_0(1122) of weight 2˓→with sign -1
sage: M.sign()
-1
```

sparse_hecke_matrix \((p, dual=False, verbose=False, base_ring='ZZ')\)

Return the matrix of the p-th Hecke operator acting on this space of modular symbols as a sparse Sage matrix over base_ring. This is more memory-efficient than creating a Cremona matrix and then applying `sage_matrix_over_ZZ` with sparse=True.

The result of this command is not cached.

INPUT:

- `p` – a prime number
- `dual` – (default: False) whether to compute the Hecke operator acting on the dual space, i.e., the transpose of the Hecke operator
- `verbose` – (default: False) print verbose output
(matrix) If \(p \) divides the level, the matrix of the Atkin-Lehner involution \(W_p \) at \(p \); otherwise the matrix of the Hecke operator \(T_p \).

EXAMPLES:

```python
sage: M = CremonaModularSymbols(37)
sage: t = M.sparse_hecke_matrix(2); type(t)
<type 'sage.matrix.matrix_integer_sparse.Matrix_integer_sparse'>
sage: print(t)
[ 3 0 0 0 0]
[-1 -1 1 1 0]
[ 0 0 -1 0 1]
[-1 1 0 -1 -1]
[ 0 0 1 0 -1]
sage: M = CremonaModularSymbols(5001)
sage: T = M.sparse_hecke_matrix(2)
sage: U = M.hecke_matrix(2).sage_matrix_over_ZZ(sparse=True)
sage: print(T == U)
True
sage: T = M.sparse_hecke_matrix(2, dual=True)
sage: print(T == U.transpose())
True
sage: T = M.sparse_hecke_matrix(2, base_ring=GF(7))
sage: print(T == U.change_ring(GF(7)))
True
```

This concerns an issue reported on trac ticket #21303:

```python
sage: C = CremonaModularSymbols(45, cuspidal=True, sign=-1)
sage: T2a = C.hecke_matrix(2).sage_matrix_over_ZZ()
sage: T2b = C.sparse_hecke_matrix(2)
sage: print(T2a == T2b)
True
```

2.6 Cremona modular symbols

sage.libs.eclib.constructor.CremonaModularSymbols \((\text{level, sign=0, cuspidal=False, verbose=0})\)

Return the space of Cremona modular symbols with given level, sign, etc.

INPUT:

- \(\text{level} \) – an integer \(\geq 2 \) (at least 2, not just positive!)
- \(\text{sign} \) – an integer either 0 (the default) or 1 or -1.
- \(\text{cuspidal} \) – (default: False): if True, compute only the cuspidal subspace
- \(\text{verbose} \) – (default: False): if True, print verbose information while creating space

EXAMPLES:

```python
sage: M = CremonaModularSymbols(43); M
Cremona Modular Symbols space of dimension 7 for Gamma_0(43) of weight 2 with sign 0
sage: M = CremonaModularSymbols(43, sign=1); M
```

(continues on next page)
Cremona Modular Symbols space of dimension 4 for Gamma_0(43) of weight 2 with
→ sign 1

```
sage: M = CremonaModularSymbols(43, cuspidal=True); M
```

```
Cremona Cuspidal Modular Symbols space of dimension 6 for Gamma_0(43) of weight 2
*→* with sign 0
```

```
sage: M = CremonaModularSymbols(43, cuspidal=True, sign=1); M
```

```
Cremona Cuspidal Modular Symbols space of dimension 3 for Gamma_0(43) of weight 2
*→* with sign 1
```

When run interactively, the following command will display verbose output:

```
sage: M = CremonaModularSymbols(43, verbose=1)
```

```
After 2-term relations, ngens = 22
ngens = 22
maxnumrel = 32
relation matrix has = 704 entries...
Finished 3-term relations: numrel = 16 ( maxnumrel = 32)
reimt has 42 nonzero entries (density = 0.0596591)
 Computing kernel...
time to compute kernel = (... seconds)
rk = 7
Number of cusps is 2
ncusps = 2
About to compute matrix of delta
delta matrix done: size 2x7.
About to compute kernel of delta
done
Finished constructing homspace.
```

```
sage: M
```

```
Cremona Modular Symbols space of dimension 7 for Gamma_0(43) of weight 2 with
*→* sign 0
```

The input must be valid or a ValueError is raised:

```
sage: M = CremonaModularSymbols(-1)
```

```
Traceback (most recent call last):
  ... ValueError: the level (= -1) must be at least 2
```

```
sage: M = CremonaModularSymbols(0)
```

```
Traceback (most recent call last):
  ... ValueError: the level (= 0) must be at least 2
```

The sign can only be 0 or 1 or -1:

```
sage: M = CremonaModularSymbols(10, sign = -2)
```

```
Traceback (most recent call last):
  ... ValueError: sign (= -2) is not supported; use 0, +1 or -1
```

We do allow -1 as a sign (see trac ticket #9476):

```
sage: CremonaModularSymbols(10, sign = -1)
```

```
Cremona Modular Symbols space of dimension 0 for Gamma_0(10) of weight 2 with
*→* sign -1
```

2.6. Cremona modular symbols
3.1 Flint imports

sage.libs.flint.flint.free_flint_stack()

3.2 FLINT fmpz_poly class wrapper

AUTHORS:
- William Stein (2007-10-02) update for new flint; add arithmetic and creation of coefficients of arbitrary size.

class sage.libs.flint.fmpz_poly.Fmpz_poly
 Bases: sage.structure.sage_object.SageObject

 Construct a new fmpz_poly from a sequence, constant coefficient, or string (in the same format as it prints).

 EXAMPLES:

 sage: from sage.libs.flint.fmpz_poly import Fmpz_poly
 sage: Fmpz_poly([1,2,3])
 3 1 2 3
 sage: Fmpz_poly(5)
 1 5
 sage: Fmpz_poly(str(Fmpz_poly([3,5,7])))
 3 3 5 7

 degree()
 The degree of self.

 EXAMPLES:

 sage: from sage.libs.flint.fmpz_poly import Fmpz_poly
 sage: f = Fmpz_poly([1,2,3]); f
 3 1 2 3
 sage: f.degree()
 2
 sage: Fmpz_poly(range(1000)).degree()
 999
 sage: Fmpz_poly([2,0]).degree()
 0
derivative()
Return the derivative of self.

EXAMPLES:
```python
sage: from sage.libs.flint.fmpz_poly import Fmpz_poly
sage: f = Fmpz_poly([1,2,6])
sage: f.derivative().list() == [2, 12]
True
```

div_rem(other)
Return self / other, self, % other.

EXAMPLES:
```python
sage: from sage.libs.flint.fmpz_poly import Fmpz_poly
sage: f = Fmpz_poly([1,3,4,5])
sage: g = f^23
sage: g.div_rem(f)[1]
0
sage: g.div_rem(f)[0] - f^22
0
sage: f = Fmpz_poly([1..10])
sage: g = Fmpz_poly([1,3,5])
sage: q, r = f.div_rem(g)
sage: q*f+r
17 1 2 3 4 4 10 11 17 18 22 26 30 23 26 18 20
sage: g
3 1 3 5
sage: q*g+r
10 1 2 3 4 5 6 7 8 9 10
```

left_shift(n)
Left shift self by n.

EXAMPLES:
```python
sage: from sage.libs.flint.fmpz_poly import Fmpz_poly
sage: f = Fmpz_poly([1,2])
sage: f.left_shift(1).list() == [0,1,2]
True
```

list()
Return self as a list of coefficients, lowest terms first.

EXAMPLES:
```python
sage: from sage.libs.flint.fmpz_poly import Fmpz_poly
sage: f = Fmpz_poly([1,2])
sage: f.list() == [1,2]
True
```

pow_truncate(exp, n)
Return self raised to the power of exp mod x^n.

EXAMPLES:
```python
sage: from sage.libs.flint.fmpz_poly import Fmpz_poly
sage: f = Fmpz_poly([1,2])
```
(continues on next page)
\begin{verbatim}
sage: f.pow_truncate(10,3)
sage: f.pow_truncate(1000,3)
sage: f.pow_truncate(1000,3)
\end{verbatim}

\textbf{pseudo_div}(\textit{other})

\textbf{pseudo_div_rem}(\textit{other})

\textbf{right_shift}(\textit{n})

Right shift self by \textit{n}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.libs.flint.fmpz_poly import Fmpz_poly
sage: f = Fmpz_poly([1,2])
sage: f.right_shift(1).list() == [2]
True
\end{verbatim}

\textbf{truncate}(\textit{n})

Return the truncation of self at degree \textit{n}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.libs.flint.fmpz_poly import Fmpz_poly
sage: f = Fmpz_poly([1,1])
sage: g = f**10; g
sage: g.truncate(5)
\end{verbatim}

3.3 \textbf{FLINT Arithmetic Functions}

\textbf{sage.libs.flint.arith.bell_number}(\textit{n})

Return the \textit{n}-th Bell number.

See Wikipedia article Bell_number.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.libs.flint.arith import bell_number
sage: [bell_number(i) for i in range(10)]
sage: bell_number(10)
\end{verbatim}

\textbf{sage.libs.flint.arith.bernoulli_number}(\textit{n})

Return the \textit{n}-th Bernoulli number.

See Wikipedia article Bernoulli_number.

\textbf{EXAMPLES:}
sage: from sage.libs.flint.arith import bernoulli_number
sage: [bernoulli_number(i) for i in range(10)]
[1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0]
sage: bernoulli_number(10)
5/66
sage: bernoulli_number(40)
-261082718496449122051/13530
sage: bernoulli_number(100)
-94598037819122125295227433069493721872702841533066936913385696204311395415197247711
-33330

sage.libs.flint.arith.dedekind_sum(p, q)
Return the Dedekind sum \(s(p, q) \) where \(p \) and \(q \) are arbitrary integers.

See Wikipedia article Dedekind_sum.

EXAMPLES:

sage: from sage.libs.flint.arith import dedekind_sum
sage: dedekind_sum(4, 5)
-1/5

sage.libs.flint.arith.euler_number(n)
Return the Euler number of index \(n \).

See Wikipedia article Euler_number.

EXAMPLES:

sage: from sage.libs.flint.arith import euler_number
sage: [euler_number(i) for i in range(8)]
[1, 0, -1, 0, 5, 0, -61, 0]

sage.libs.flint.arith.harmonic_number(n)
Return the harmonic number \(H_n \).

See Wikipedia article Harmonic_number.

EXAMPLES:

sage: from sage.libs.flint.arith import harmonic_number
sage: n = 500 + randint(0,500)
sage: bool(sum(1/k for k in range(1,n+1)) == harmonic_number(n))
True

sage.libs.flint.arith.number_of_partitions(n)
Return the number of partitions of the integer \(n \).

See Wikipedia article Partition_(number_theory).

EXAMPLES:

sage: from sage.libs.flint.arith import number_of_partitions
sage: number_of_partitions(3)
3
sage: number_of_partitions(10)
42
sage: number_of_partitions(40)
37338
(continues on next page)
sage: number_of_partitions(100)
190569292
sage: number_of_partitions(100000)
274935105697756965126775163209863526881734293159800547582031259843021473281149641731955050741660748234500926285383140459702130713067451062441922731123899702284408609370935531629697851569569892196108480158600569421098519
4.1 Wrappers for Giac functions

We provide a python function to compute and convert to sage a Groebner basis using the giacpy_sage module.

AUTHORS:

• Martin Albrecht (2015-07-01): initial version
• Han Frederic (2015-07-01): initial version

EXAMPLES:

```python
sage: from sage.libs.giac import groebner_basis as gb_giac # optional - giacpy_sage
sage: P = PolynomialRing(QQ, 6, 'x')
sage: I = sage.rings.ideal.Cyclic(P)
sage: B = gb_giac(I.gens()) # optional - giacpy_sage, random
sage: B
# optional - giacpy_sage
Polynomial Sequence with 45 Polynomials in 6 Variables

class sage.libs.giac.GiacSettingsDefaultContext
    Bases: object
    Context preserve libgiac settings.
sage.libs.giac.groebner_basis(gens, proba_epsilon=None, threads=None, prot=False, elim_variables=None, *args, **kwds)
Compute a Groebner Basis of an ideal using giacpy_sage. The result is automatically converted to sage.
Supported term orders of the underlying polynomial ring are lex, deglex, degrevlex and block orders with 2 degrevlex blocks.

INPUT:

• gens - an ideal (or a list) of polynomials over a prime field of characteristic 0 or p<2^31
• proba_epsilon - (default: None) majoration of the probability of a wrong answer when probabilistic algorithms are allowed.
  – if proba_epsilon is None, the value of sage.structure.proof.all.proba() is taken. If it is false then the global giacpy_sage.giacsettings.proba_epsilon is used.
  – if proba_epsilon is 0, probabilistic algorithms are disabled.
• threads - (default: None) Maximal number of threads allowed for giac. If None, the global giacpy_sage.giacsettings.threads is considered.
• prot - (default: False) if True print detailed informations
• `elim_variables` - (default: None) a list of variables to eliminate from the ideal.
  
  - if `elim_variables` is None, a Groebner basis with respect to the term ordering of the parent polynomial ring of the polynomials `gens` is computed.
  
  - if `elim_variables` is a list of variables, a Groebner basis of the elimination ideal with respect to a degrevlex term order is computed, regardless of the term order of the polynomial ring.

OUTPUT:

Polynomial sequence of the reduced Groebner basis.

EXAMPLES:

```python
sage: from sage.libs.giac import groebner_basis as gb_giac
 # optional - giacpy_sage
sage: P = PolynomialRing(GF(previous_prime(2**31)), 6, 'x') # optional - giacpy_sage
sage: I = sage.rings.ideal.Cyclic(P) # optional - giacpy_sage
sage: B = gb_giac(I.gens()); B # optional - giacpy_sage
// Groebner basis computation time ...
Polynomial Sequence with 45 Polynomials in 6 Variables
sage: B.is_groebner() # optional - giacpy_sage
True
```

Elimination ideals can be computed by passing `elim_variables`:

```python
sage: P = PolynomialRing(GF(previous_prime(2**31)), 5, 'x') # optional - giacpy_sage
sage: I = sage.rings.ideal.Cyclic(P) # optional - giacpy_sage
sage: B = gb_giac(I.gens(), elim_variables=[P.gen(0), P.gen(2)]); B # optional - giacpy_sage
// Groebner basis computation time ...
Sage: B.is_groebner() # optional - giacpy_sage
True
Sage: B.ideal() == I.elimination_ideal([P.gen(0), P.gen(2)]) # optional - giacpy_sage
True
```

Computations over QQ can benefit from

• a probabilistic lifting:

```python
sage: P = PolynomialRing(QQ, 5, 'x') # optional - giacpy_sage
sage: I = ideal([P.random_element(3, 7) for j in range(5)]) # optional - giacpy_sage
sage: B1 = gb_giac(I.gens(), 1e-16) # optional - giacpy_sage, long time (1s)
...Running a probabilistic check for the reconstructed Groebner basis.
If successful, error probability is less than 1e-16 ...
Sage: sage.structure.proof.all.polynomial(True) # optional - giacpy_sage
Sage: B2 = gb_giac(I.gens()) # optional - giacpy_sage, long time (4s)
// Groebner basis computation time ...
Sage: B1 == B2 # optional - giacpy_sage
True
```

(continues on next page)
• multi threaded operations:

```python
sage: P = PolynomialRing(QQ, 8, 'x') # optional - giacpy_sage
sage: I = sage.rings.ideal.Cyclic(P) # optional - giacpy_sage
sage: time B = gb_giac(I.gens(),1e-6,threads=2) # doctest: +SKIP
Running a probabilistic check for the reconstructed Groebner basis...
Time: CPU 168.98 s, Wall: 94.13 s
```

You can get detailed information by setting `prot=True`

```python
sage: I = sage.rings.ideal.Katsura(P) # optional - giacpy_sage
sage: gb_giac(I,prot=True) # optional - giacpy_sage, random, long time (3s)
9381383 begin computing basis modulo 535718473
9381501 begin new iteration zmod, number of pairs: 8, base size: 8
...end, basis size 74 prime number 1
G=Vector [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, ...
...creating reconstruction #0
...
++++++++basis size 74
checking pairs for i=0, j=
checking pairs for i=1, j=2,6,12,17,19,24,29,34,39,42,43,48,56,61,64,69,
...
checking pairs for i=72, j=73,
checking pairs for i=73, j=
Number of critical pairs to check 373
+++++++++++++++++++++++++++++++end final check
Polynomial Sequence with 74 Polynomials in 8 Variables
```

`sage.libs.giac.local_giacsettings(func)`
Decorator to preserve Giac’s proba_epsilon and threads settings.

**EXAMPLES:**

```python
sage: def testf(a,b): # optional - giacpy_sage
....: giacsettings.proba_epsilon = a/100
....: giacsettings.threads = b+2
....: return (giacsettings.proba_epsilon, giacsettings.threads)

sage: from giacpy_sage import giacsettings # optional - giacpy_sage
sage: from sage.libs.giac import local_giacsettings # optional - giacpy_sage
sage: gporig, gtorig = (giacsettings.proba_epsilon,giacsettings.threads)
optional - giacpy_sage
sage: gp, gt = local_giacsettings(testf)(giacsettings.proba_epsilon,giacsettings.threads) #
```

4.1. Wrappers for Giac functions
5.1 The Elliptic Curve Method for Integer Factorization (ECM)

Sage includes GMP-ECM, which is a highly optimized implementation of Lenstra’s elliptic curve factorization method. See http://ecm.gforge.inria.fr/ for more about GMP-ECM. This file provides a Cython interface to the GMP-ECM library.

AUTHORS:
- Jeroen Demeyer (2012-03-29): signal handling, documentation
- Paul Zimmermann (2011-05-22) – added input/output of sigma

EXAMPLES:

```python
sage: from sage.libs.libecm import ecmfactor
sage: result = ecmfactor(999, 0.00)
True
sage: result[1] in [3, 9, 27, 37, 111, 333, 999] or result[1]
True
sage: result = ecmfactor(999, 0.00, verbose=True)
Performing one curve with B1=0
Found factor in step 1: ...
True
sage: result[1] in [3, 9, 27, 37, 111, 333, 999] or result[1]
True
sage: ecmfactor(2^128+1,1000,sigma=227140902)
(True, 5704689200685129054721, 227140902)
```

`sage.libs.libecm.ecmfactor(number, B1, verbose=False, sigma=0)`

Try to find a factor of a positive integer using ECM (Elliptic Curve Method). This function tries one elliptic curve.

INPUT:
- `number` – positive integer to be factored
- `B1` – bound for step 1 of ECM
- `verbose` (default: False) – print some debugging information

OUTPUT:
Either (False, None) if no factor was found, or (True, f) if the factor f was found.
EXAMPLES:

```python
sage: from sage.libs.libecm import ecmfactor
```

This number has a small factor which is easy to find for ECM:

```python
sage: N = 2^167 - 1
sage: factor(N)
2349023 * 7963830476685650737778616296087448490695649
sage: ecmfactor(N, 2e5)
(True, 2349023, ...)
```

If a factor was found, we can reproduce the factorization with the same sigma value:

```python
sage: N = 2^167 - 1
sage: ecmfactor(N, 2e5, sigma=1473308225)
(True, 2349023, 1473308225)
```

With a smaller B1 bound, we may or may not succeed:

```python
sage: ecmfactor(N, 1e2) # random
(False, None)
```

The following number is a Mersenne prime, so we don’t expect to find any factors (there is an extremely small chance that we get the input number back as factorization):

```python
sage: N = 2^127 - 1
sage: N.is_prime()
True
sage: ecmfactor(N, 1e3)
(False, None)
```

If we have several small prime factors, it is possible to find a product of primes as factor:

```python
sage: N = 2^179 - 1
sage: ecmfactor(N, 1e3) # random
(True, 514447, 3475102204)
```

We can ask for verbose output:

```python
sage: N = 12^97 - 1
sage: ecmfactor(N, 100, verbose=True)
Performing one curve with B1=100
Found factor in step 1: 11
(True, 11, ...)
```

```python
sage: ecmfactor(N/11, 100, verbose=True)
Performing one curve with B1=100
Found no factor.
(False, None)
```
6.1 GSL arrays

```python
sage: a = WaveletTransform(128,'daubechies',4)
sage: for i in range(1, 11):
 : a[i] = 1
sage: a[:6:2]
[0.0, 1.0, 1.0]
```
7.1 Rubinstein's lcalc library

This is a wrapper around Michael Rubinstein’s lcalc. See http://oto.math.uwaterloo.ca/~mrubinst/L_function_public/ CODE/.

AUTHORS:
• Rishikesh (2010): added compute_rank() and hardy_z_function()
• Yann Laigle-Chapuy (2009): refactored
• Rishikesh (2009): initial version

```python
class sage.libs.lcalc.lcalc_Lfunction.Lfunction
 Bases: object
 Initialization of L-function objects. See derived class for details, this class is not supposed to be instantiated directly.

 EXAMPLES:
 sage: from sage.libs.lcalc.lcalc_Lfunction import *
 sage: Lfunction_from_character(DirichletGroup(5)[1])
 L-function with complex Dirichlet coefficients

 compute_rank()
 Computes the analytic rank (the order of vanishing at the center) of of the L-function
 EXAMPLES:
 sage: chi=DirichletGroup(5)[2] #This is a quadratic character
 sage: from sage.libs.lcalc.lcalc_Lfunction import *
 sage: L=Lfunction_from_character(chi, type="int")
 sage: L.compute_rank()
 0

 find_zeros(T1, T2, stepsize)
 Finds zeros on critical line between T1 and T2 using step size of stepsize. This function might miss zeros if step size is too large. This function computes the zeros of the L-function by using change in signs of areal valued function whose zeros coincide with the zeros of L-function.
 Use find_zeros_via_N() for slower but more rigorous computation.
```
INPUT:

- \( T1 \) – a real number giving the lower bound
- \( T2 \) – a real number giving the upper bound
- \( \text{stepsize} \) – step size to be used for the zero search

OUTPUT:

A list of the imaginary parts of the zeros which were found.

EXAMPLES:

```
sage: from sage.libs.lcalc.lcalc_Lfunction import *
sage: chi=DirichletGroup(5)[2] # This is a quadratic character
sage: L=Lfunction_from_character(chi, type="int")
sage: L.find_zeros(5,15,.1)
[6.64845334472..., 9.83144443288..., 11.9588456260...]
sage: L=Lfunction_from_character(chi, type="double")
sage: L.find_zeros(1,15,.1)
[6.64845334472..., 9.83144443288..., 11.9588456260...]
sage: chi=DirichletGroup(5)[1]
sage: L=Lfunction_from_character(chi, type="complex")
sage: L.find_zeros(-8,8,.1)
[-4.13290370521..., 6.18357819545...]
sage: L=Lfunction_Zeta()
sage: L.find_zeros(10,29.1,.1)
[14.1347251417..., 21.0220396387..., 25.0108575801...]
```

**find_zeros_via_N**

Finds \( count \) number of zeros with positive imaginary part starting at real axis. This function also verifies that all the zeros have been found.

INPUT:

- \( count \) - number of zeros to be found
- \( do_negative \) - (default: False) False to ignore zeros below the real axis.
- \( max_refine \) - when some zeros are found to be missing, the step size used to find zeros is refined. \( max_refine \) gives an upper limit on when lcalc should give up. Use default value unless you know what you are doing.
- \( rank \) - integer (default: -1) analytic rank of the L-function. If -1 is passed, then we attempt to compute it. (Use default if in doubt)
- \( test_explicit_formula \) - integer (default: 0) If nonzero, test the explicit formula for additional confidence that all the zeros have been found and are accurate. This is still being tested, so using the default is recommended.

OUTPUT:

A list of the imaginary parts of the zeros that have been found

EXAMPLES:
sage: from sage.libs.lcalc.lcalc_Lfunction import *
sage: chi=DirichletGroup(5)[2]  # This is a quadratic character
sage: L=Lfunction_from_character(chi, type="int")
sage: L.find_zeros_via_N(3)
[6.64845334472..., 9.83144443288..., 11.9588456260...]
sage: L=Lfunction_from_character(chi, type="double")
sage: L.find_zeros_via_N(3)
[6.64845334472..., 9.83144443288..., 11.9588456260...]
sage: chi=DirichletGroup(5)[1]
sage: L=Lfunction_from_character(chi, type="complex")
sage: L.find_zeros_via_N(3)
[6.18357819545..., 8.45722917442..., 12.6749464170...]
sage: L=Lfunction_Zeta()
sage: L.find_zeros_via_N(3)
[14.1347251417..., 21.0220396387..., 25.0108575801...]

**hardy_z_function** *(s)*

Computes the Hardy Z-function of the L-function at s

**INPUT:**

- s - a complex number with imaginary part between -0.5 and 0.5

**EXAMPLES:**

```python
sage: chi = DirichletGroup(5)[2] # Quadratic character
sage: from sage.libs.lcalc.lcalc_Lfunction import *
sage: L = Lfunction_from_character(chi, type="int")
sage: L.hardy_z_function(0)
0.231750947504...
sage: L.hardy_z_function(.5).imag() # abs tol 1e-15
1.17253174178320e-17
sage: L.hardy_z_function(.4+.3*I)
0.2166144222685... - 0.00408187127850...*I
sage: chi = DirichletGroup(5)[1]
sage: L = Lfunction_from_character(chi, type="complex")
sage: L.hardy_z_function(0)
0.793967590477...
sage: L.hardy_z_function(.5).imag() # abs tol 1e-15
0.000000000000000
sage: E = EllipticCurve([-82,0])
sage: L = Lfunction_from_elliptic_curve(E, number_of_coeffs=40000)
sage: L.hardy_z_function(2.1)
-0.00643179176869...
sage: L.hardy_z_function(2.1).imag() # abs tol 1e-15
-3.9383360115668e-19
```

**value** *(s, derivative=0)*

Computes the value of the L-function at s

**INPUT:**

- s - a complex number
- derivative - integer (default: 0) the derivative to be evaluated
- rotate - (default: False) If True, this returns the value of the Hardy Z-function (sometimes called...
the Riemann-Siegel Z-function or the Siegel Z-function).

EXAMPLES:

```python
sage: chi=DirichletGroup(5)[2] # This is a quadratic character
sage: from sage.libs.lcalc.lcalc_Lfunction import *
sage: L=Lfunction_from_character(chi, type="int")
sage: L.value(.5) # abs tol 3e-15
0.231750947504016 + 5.75329642226136e-18*I
sage: L.value(.2+.4*I)
0.102585603193... + 0.190840777924...*I

sage: L=Lfunction_from_character(chi, type="double")

sage: L.value(.5) # abs tol 3e-15
0.27463335856345 + 6.59869267328199e-18*I
sage: L.value(.6+I)
0.362258705721... + 0.433888250620...*I

sage: chi=DirichletGroup(5)[1]

sage: L=Lfunction_from_character(chi, type="complex")

sage: L.value(.5)
0.763747880117... + 0.216964767518...*I
sage: L.value(.6+5*I)
0.702723260619... - 1.10178575243...*I

sage: L=Lfunction_Zeta()

sage: L.value(.5)
-1.46035450880...

sage: L.value(.4+.5*I)
-0.450728958517... - 0.780511403019...*I
```

class `sage.libs.lcalc.lcalc_Lfunction.Lfunction_C`

Bases: `sage.libs.lcalc.lcalc_Lfunction.Lfunction`

The `Lfunction_C` class is used to represent L-functions with complex Dirichlet coefficients. We assume that L-functions satisfy the following functional equation.

\[
\Lambda(s) = \omega Q^s \Lambda(1 - s)
\]

where

\[
\Lambda(s) = Q^s \left( \prod_{j=1}^{\alpha} \Gamma(\kappa_j s + \gamma_j) \right) L(s)
\]

See (23) in arXiv math/0412181

INPUT:

- `what_type_L` - integer, this should be set to 1 if the coefficients are periodic and 0 otherwise.
- `dirichlet_coefficient` - List of dirichlet coefficients of the L-function. Only first \(M\) coefficients are needed if they are periodic.
- `period` - If the coefficients are periodic, this should be the period of the coefficients.
- `Q` - See above
- `OMEGA` - See above
- `kappa` - List of the values of \(\kappa_j\) in the functional equation
- `gamma` - List of the values of \(\gamma_j\) in the functional equation
• **pole** - List of the poles of L-function
• **residue** - List of the residues of the L-function

**Note:** If an L-function satisfies $\Lambda(s) = \omega Q^s \Lambda(k - s)$, by replacing $s$ by $s + (k - 1)/2$, one can get it in the form we need.

```python
class sage.libs.lcalc.lcalc_Lfunction.Lfunction_D
Bases: sage.libs.lcalc.lcalc_Lfunction.Lfunction

The Lfunction_D class is used to represent L-functions with real Dirichlet coefficients. We assume that L-functions satisfy the following functional equation.

$$\Lambda(s) = \omega Q^s \Lambda(1 - s)$$

where

$$\Lambda(s) = Q^s \left(\prod_{j=1}^{a} \Gamma(\kappa_j s + \gamma_j) \right) L(s)$$

See (23) in arXiv math/0412181

INPUT:

- **what_type_L** - integer, this should be set to 1 if the coefficients are periodic and 0 otherwise.
- **dirichlet_coefficient** - List of dirichlet coefficients of the L-function. Only first M coefficients are needed if they are periodic.
- **period** - If the coefficients are periodic, this should be the period of the coefficients.
- **Q** - See above
- **OMEGA** - See above
- **kappa** - List of the values of κ_j in the functional equation
- **gamma** - List of the values of γ_j in the functional equation
- **pole** - List of the poles of L-function
- **residue** - List of the residues of the L-function

Note: If an L-function satisfies $\Lambda(s) = \omega Q^s \Lambda(k - s)$, by replacing s by $s + (k - 1)/2$, one can get it in the form we need.
```
```
See (23) in arXiv math/0412181

INPUT:

- `what_type_L` - integer, this should be set to 1 if the coefficients are periodic and 0 otherwise.
- `dirichlet_coefficient` - List of dirichlet coefficients of the L-function. Only first M coefficients are needed if they are periodic.
- `period` - If the coefficients are periodic, this should be the period of the coefficients.
- `Q` - See above
- `OMEGA` - See above
- `kappa` - List of the values of κ_j in the functional equation
- `gamma` - List of the values of γ_j in the functional equation
- `pole` - List of the poles of L-function
- `residue` - List of the residues of the L-function

Note: If an L-function satisfies $\Lambda(s) = \omega Q s \Lambda(k - s)$, by replacing s by $s + (k - 1)/2$, one can get it in the form we need.

```python
class sage.libs.lcalc.lcalc_Lfunction.Lfunction_Zeta
    Bases: sage.libs.lcalc.lcalc_Lfunction.Lfunction

    The Lfunction_Zeta class is used to generate the Riemann zeta function.

sage.libs.lcalc.lcalc_Lfunction.Lfunction_from_character(chi, type='complex')
```

Given a primitive Dirichlet character, this function returns an lcalc L-function object for the L-function of the character.

INPUT:

- `chi` - A Dirichlet character
- `use_type` - string (default: “complex”) type used for the Dirichlet coefficients. This can be “int”, “double” or “complex”.

OUTPUT:

L-function object for `chi`.

EXAMPLES:

```
sage: from sage.libs.lcalc.lcalc_Lfunction import Lfunction_from_character
sage: Lfunction_from_character(DirichletGroup(5)[1])
L-function with complex Dirichlet coefficients
sage: Lfunction_from_character(DirichletGroup(5)[2], type="int")
L-function with integer Dirichlet coefficients
sage: Lfunction_from_character(DirichletGroup(5)[2], type="double")
L-function with real Dirichlet coefficients
sage: Lfunction_from_character(DirichletGroup(5)[1], type="int")
Traceback (most recent call last):
... ValueError: For non quadratic characters you must use type="complex"
```

sage.libs.lcalc.lcalc_Lfunction.Lfunction_from_elliptic_curve(E, number_of_coeffs=10000)

Given an elliptic curve E, return an L-function object for the function $L(s, E)$.
INPUT:

- E - An elliptic curve
- number_of_coeffs - integer (default: 10000) The number of coefficients to be used when constructing the L-function object. Right now this is fixed at object creation time, and is not automatically set intelligently.

OUTPUT:

L-function object for $L(s, E)$.

EXAMPLES:

```python
sage: from sage.libs.lcalc.lcalc_Lfunction import Lfunction_from_elliptic_curve
sage: L = Lfunction_from_elliptic_curve(EllipticCurve('37'))
```

```
sage: L
L-function with real Dirichlet coefficients
sage: L.value(0.5).abs() < 1e-15  # "noisy" zero on some platforms (see #9615)
True
sage: L.value(0.5, derivative=1)
0.305999...
```
8.1 libSingular: Functions

Sage implements a C wrapper around the Singular interpreter which allows to call any function directly from Sage without string parsing or interprocess communication overhead. Users who do not want to call Singular functions directly, usually do not have to worry about this interface, since it is handled by higher level functions in Sage.

AUTHORS:

- Michael Brickenstein (2009-07): initial implementation, overall design
- Martin Albrecht (2009-07): clean up, enhancements, etc.
- Michael Brickenstein (2009-10): extension to more Singular types
- Martin Albrecht (2010-01): clean up, support for attributes
- Simon King (2011-04): include the documentation provided by Singular as a code block.
- Burcin Erocal, Michael Brickenstein, Oleksandr Motsak, Alexander Dreyer, Simon King (2011-09) plural support

EXAMPLES:

The direct approach for loading a Singular function is to call the function `singular_function()` with the function name as parameter:

```python
sage: from sage.libs.singular.function import singular_function
sage: P.<a,b,c,d> = PolynomialRing(GF(7))
sage: std = singular_function('std')
sage: I = sage.rings.ideal.Cyclic(P)
sage: std(I)
[a + b + c + d,
b^2 + 2*b*d + d^2,
b*c^2 + c^2*d - b*d^2 - d^3,
b*c*d^2 + c^2*d^2 - b*d^3 + c*d^3 - d^4 - 1,
b*d^4 + d^5 - b - d,
c^3*d^2 + c^2*d^3 - c - d,
c^2*d^4 + b*c - b*d + c*d - 2*d^2]
```

If a Singular library needs to be loaded before a certain function is available, use the `lib()` function as shown below:

```python
sage: from sage.libs.singular.function import singular_function, lib as singular_lib
sage: primdecSY = singular_function('primdecSY')
Traceback (most recent call last):
...
NameError: Singular library function 'primdecSY' is not defined
```
There is also a short-hand notation for the above:

```python
sage: import sage.libs.singular.function_factory
sage: primdecSY = sage.libs.singular.function_factory.ff.primdec__lib.primdecSY
```

The above line will load “primdec.lib” first and then load the function `primdecSY`.

```python
class sage.libs.singular.function.BaseCallHandler
    Bases: object
    A call handler is an abstraction which hides the details of the implementation differences between kernel and library functions.

class sage.libs.singular.function.Converter
    Bases: sage.structure.sage_object.SageObject
    A Converter interfaces between Sage objects and Singular interpreter objects.

    ring()
    Return the ring in which the arguments of this list live.

    EXAMPLES:
    sage: from sage.libs.singular.function import Converter
    sage: P.<a,b,c> = PolynomialRing(GF(127))
    sage: Converter([a,b,c],ring=P).ring()
    Multivariate Polynomial Ring in a, b, c over Finite Field of size 127

class sage.libs.singular.function.KernelCallHandler
    Bases: sage.libs.singular.function.BaseCallHandler
    A call handler is an abstraction which hides the details of the implementation differences between kernel and library functions.

    This class implements calling a kernel function.

    Note: Do not construct this class directly, use `singular_function()` instead.

class sage.libs.singular.function.LibraryCallHandler
    Bases: sage.libs.singular.function.BaseCallHandler
    A call handler is an abstraction which hides the details of the implementation differences between kernel and library functions.

    This class implements calling a library function.

    Note: Do not construct this class directly, use `singular_function()` instead.

class sage.libs.singular.function.Resolution
    Bases: object
    A simple wrapper around Singular’s resolutions.
class sage.libs.singular.function.RingWrap
    Bases: object

A simple wrapper around Singular's rings.

characteristic()
    Get characteristic.

    EXAMPLES:

    sage: from sage.libs.singular.function import singular_function
    sage: P.<x,y,z> = PolynomialRing(QQ)
    sage: ringlist = singular_function("ringlist")
    sage: l = ringlist(P)
    sage: ring = singular_function("ring")
    sage: ring(l, ring=P).characteristic()
    0

is_commutative()
    Determine whether a given ring is commutative.

    EXAMPLES:

    sage: from sage.libs.singular.function import singular_function
    sage: P.<x,y,z> = PolynomialRing(QQ)
    sage: ringlist = singular_function("ringlist")
    sage: l = ringlist(P)
    sage: ring = singular_function("ring")
    sage: ring(l, ring=P).is_commutative()
    True

ngens()
    Get number of generators.

    EXAMPLES:

    sage: from sage.libs.singular.function import singular_function
    sage: P.<x,y,z> = PolynomialRing(QQ)
    sage: ringlist = singular_function("ringlist")
    sage: l = ringlist(P)
    sage: ring = singular_function("ring")
    sage: ring(l, ring=P).ngens()
    3

npars()
    Get number of parameters.

    EXAMPLES:

    sage: from sage.libs.singular.function import singular_function
    sage: P.<x,y,z> = PolynomialRing(QQ)
    sage: ringlist = singular_function("ringlist")
    sage: l = ringlist(P)
    sage: ring = singular_function("ring")
    sage: ring(l, ring=P).npars()
    0

ordering_string()
    Get Singular string defining monomial ordering.

    EXAMPLES:
par_names()  
Get parameter names.

EXAMPLES:

```python
sage: from sage.libs.singular.function import singular_function
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: ringlist = singular_function("ringlist")
sage: l = ringlist(P)
sage: ring = singular_function("ring")
sage: ring(l, ring=P).par_names()
[]
```

var_names()  
Get names of variables.

EXAMPLES:

```python
sage: from sage.libs.singular.function import singular_function
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: ringlist = singular_function("ringlist")
sage: l = ringlist(P)
sage: ring = singular_function("ring")
sage: ring(l, ring=P).var_names()
['x', 'y', 'z']
```

class sage.libs.singular.function.SingularFunction

The base class for Singular functions either from the kernel or from the library.

class sage.libs.singular.function.SingularKernelFunction

Bases: sage.libs.singular.function.SingularFunction

EXAMPLES:

```python
sage: from sage.libs.singular.function import SingularKernelFunction
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(x, x+1)
sage: f = SingularKernelFunction("std")
sage: f(I)
[1]
```

class sage.libs.singular.function.SingularLibraryFunction

Bases: sage.libs.singular.function.SingularFunction

EXAMPLES:

```python
sage: from sage.libs.singular.function import SingularLibraryFunction
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(x, x+1)
```
sage: \texttt{f = SingularLibraryFunction("groebner")}
sage: f(I)

\begin{verbatim}
sage.libs.singular.function.all_singular_poly_wrapper(s)
Tests for a sequence \(s\), whether it consists of singular polynomials.
\end{verbatim}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.libs.singular.function import all_singular_poly_wrapper
sage: P.<x,y,z> = QQ[]
sage: all_singular_poly_wrapper([x+1, y])
True
sage: all_singular_poly_wrapper([x+1, y, 1])
False
\end{verbatim}

sage: \texttt{all_vectors(s)}
Checks if a sequence \(s\) consists of free module elements over a singular ring.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.libs.singular.function import all_vectors
sage: P.<x,y,z> = QQ[

\textbf{is_sage_wrapper_for_singular_ring}(\texttt{ring})
Check whether wrapped ring arises from Singular or Singular/Plural.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.libs.singular.function import is_sage_wrapper_for_singular_ring
sage: P.<x,y,z> = QQ[

\textbf{is_singular_poly_wrapper}(\texttt{p})
Checks if \(p\) is some data type corresponding to some singular poly.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.libs.singular.function import is_singular_poly_wrapper
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: P = A.g_algebra(relations={y*x:-x*y}, order = 'lex')
sage: is_singular_poly_wrapper(P)
True
\end{verbatim}
sage.libs.singular.function.lib(name)
Load the Singular library name.

INPUT:

- name – a Singular library name

EXAMPLES:

```python
sage: from sage.libs.singular.function import singular_function
sage: from sage.libs.singular.function import lib as singular_lib
sage: singular_lib('general.lib')
sage: primes = singular_function('primes')
sage: primes(2,10, ring=GF(127)['x,y,z'])
(2, 3, 5, 7)
```

sage.libs.singular.function.list_of_functions(packages=False)
Return a list of all function names currently available.

INPUT:

- packages – include local functions in packages.

EXAMPLES:

```python
sage: from sage.libs.singular.function import list_of_functions
sage: 'groebner' in list_of_functions()
True
```

sage.libs.singular.function.singular_function(name)
Construct a new libSingular function object for the given name.

This function works both for interpreter and built-in functions.

INPUT:

- name – the name of the function

EXAMPLES:

```python
sage: P.<x,y,z> = PolynomialRing(QQ)
sage: f = 3*x*y + 2*z + 1
sage: g = 2*x + 1/2
sage: I = Ideal([f,g])
sage: from sage.libs.singular.function import singular_function
sage: std = singular_function("std")
sage: std(I)
[[3*y - 8*z - 4, 4*x + 1]]
sage: size = singular_function("size")
sage: size([2, 3, 3])
3
sage: size("sage")
4
sage: size(["hello", "sage"])
2
sage: factorize = singular_function("factorize")
sage: factorize(f)
[[[1, 3*x*y + 2*z + 1], (1, 1)]
sage: factorize(f, 1)
[[3*x*y + 2*z + 1]
```


We give a wrong number of arguments:

```python
sage: factorize()
Traceback (most recent call last):
...
RuntimeError: error in Singular function call 'factorize':
Wrong number of arguments (got 0 arguments, arity code is 303)
sage: factorize(f, 1, 2)
Traceback (most recent call last):
...
RuntimeError: error in Singular function call 'factorize':
Wrong number of arguments (got 3 arguments, arity code is 303)
sage: factorize(f, 1, 2, 3)
Traceback (most recent call last):
...
RuntimeError: error in Singular function call 'factorize':
Wrong number of arguments (got 4 arguments, arity code is 303)
```

The Singular function `list` can be called with any number of arguments:

```python
sage: singular_list = singular_function("list")
sage: singular_list(2, 3, 6)
[2, 3, 6]
sage: singular_list()
[]
sage: singular_list(1)
[1]
sage: singular_list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

We try to define a non-existing function:

```python
sage: number_foobar = singular_function('number_foobar')
Traceback (most recent call last):
...
NameError: Singular library function 'number_foobar' is not defined
```

```python
sage: from sage.libs.singular.function import lib as singular_lib
sage: singular_lib('general.lib')
```

```python
sage: number_e = singular_function('number_e')
sage: number_e(10r)
67957045707/25000000000
sage: RR(number_e(10r))
2.71828182828000
sage: singular_lib('primdec.lib')
```

```python
sage: primdecGTZ = singular_function("primdecGTZ")
sage: primdecGTZ(I)
[[[y - 8/3*z - 4/3, x + 1/4], [y - 8/3*z - 4/3, x + 1/4]]]
sage: singular_list((1,2,3),3,[1,2,3], ring=P)
[(1, 2, 3), 3, [1, 2, 3]]
sage: ringlist=singular_function("ringlist")
sage: l = ringlist(P)
sage: l[3].__class__
<class 'sage.rings.polynomial.multi_polynomial_sequence.PolynomialSequence_generic'>
sage: l
```

(continues on next page)
.. code-block:: python

    [0, ['x', 'y', 'z'], [[0, 1, 1], [0, 0, 0], [0]]]
    sage: ring=singular_function("ring")
    sage: ring(1)
    <RingWrap>
    sage: matrix = Matrix(P, 2, 2)
    sage: matrix.randomize(terms=1)
    sage: det = singular_function("det")
    sage: det(matrix)
    -3/5*x*y*z
    sage: coeffs = singular_function("coeffs")
    sage: coeffs(x*y+y+1, y)
    [1]
    [x + 1]
    sage: intmat = Matrix(ZZ, 2, 2, [100, 2, 3, 4])
    sage: det(intmat)
    394
    sage: random = singular_function("random")
    sage: A = random(10, 2, 3); A.nrows(), max(A.list()) <= 10
    (2, True)
    sage: P.<x, y, z> = PolynomialRing(QQ)
    sage: M = P.<x, y, z> = PolynomialRing(QQ)
    sage: leadcoef = singular_function("leadcoef")
    sage: leadcoef(v)
    (0, y^3)
    sage: jet = singular_function("jet")
    sage: jet(v, 2)
    (x + y, x*y, z)
    sage: syz = singular_function("syz")
    sage: I = P.ideal([x*y, x+y, y^2, x*y+1])
    sage: M = syz(I)
    sage: M
    [(-2*y, 2, y + 1, 0), (0, -2, x - 1, 0), (x*y - y, -y + 1, 1, -y), (x*y - y, -y + 1, 1, -y), (x^2 + 1, -x - 1, -1, -x)]
    sage: singular_lib("mprimdec.lib")
    sage: syz(M)
    [(-x - 1, y - 1, 2*x, -2*y)]
    sage: GTZmod = singular_function("GTZmod")
    sage: GTZmod(M)
    [[[-2*y, 2, y + 1, 0], (0, x + 1, 1, -y), (0, -2, x - 1, 0), (x*y - y, -y + 1, 1, -y), (x^2 + 1, -x - 1, 1, -x), (x^2 + 1, -x - 1, 1, -x)]]
    sage: mres = singular_function("mres")
    sage: resolution = mres(M, 0)
    sage: resolution
    <Resolution>
    sage: singular_list(resolution)
    [[(-2*y, 2, y + 1, 0), (0, -2, x - 1, 0), (x*y - y, -y + 1, 1, -y), (x^2 + 1, -x - 1, -1, -x)], [(-x - 1, 1, 0, 2*x, -2*y), [0]]]
    sage: A.<x, y> = FreeAlgebra(QQ, 2)
    sage: P.<x, y> = A.g_algebra({y*x:-x*y})
    sage: I = Sequence([x*y, x+y], check=False, immutable=True)
    sage: twostd = singular_function("twostd")

(continues on previous page)
sage: twostd(I)
[x + y, y^2]
sage: M=syz(I)
doctest...
sage: M
[(x + y, x*y)]
sage: syz(M)
[(0)]
sage: mres(I, 0)
<Resolution>
sage: M=P**3
sage: v=M((100*x,5*y,10*y+x*y))
sage: leadcoef(v)
-10
sage: v = M([x+y,x*y+y**3,x])
sage: lead(v)
(0, y^3)
sage: jet(v, 2)
(x + y, x*y, x)
sage: l = ringlist(P)
sage: len(l)
6
sage: ring(l)
<noncommutative RingWrap>
sage: I=twostd(I)
sage: I[3]=I
sage: ring(l)
<noncommutative RingWrap>

8.2 libSingular: Function Factory

AUTHORS:

- Martin Albrecht (2010-01): initial version

class sage.libs.singular.function_factory.SingularFunctionFactory
Bases: object

A convenient interface to libsingular functions.

trait_names()

EXAMPLES:

sage: import sage.libs.singular.function_factory
sage: "groebner" in sage.libs.singular.function_factory.ff.trait_names()
True

8.3 libSingular: Conversion Routines and Initialisation

AUTHOR:

- Martin Albrecht <malb@informatik.uni-bremen.de>
8.4 Wrapper for Singular’s Polynomial Arithmetic

AUTHOR:

- Martin Albrecht (2009-07): refactoring

8.5 libSingular: Options

Singular uses a set of global options to determine verbosity and the behavior of certain algorithms. We provide an interface to these options in the most ‘natural’ python-ic way. Users who do not wish to deal with Singular functions directly usually do not have to worry about this interface or Singular options in general since this is taken care of by higher level functions.

We compute a Groebner basis for Cyclic-5 in two different contexts:

```python
sage: P.<a,b,c,d,e> = PolynomialRing(GF(127))
sage: I = sage.rings.ideal.Cyclic(P)
sage: import sage.libs.singular.function_factory
sage: std = sage.libs.singular.function_factory.ff.std
```

By default, tail reductions are performed:

```python
sage: from sage.libs.singular.option import opt, opt_ctx
sage: opt['red_tail']
True
sage: std(I)[-1]
d^2*e^6 + 28*b*c*d + ...
```

If we don’t want this, we can create an option context, which disables this:

```python
sage: with opt_ctx(red_tail=False, red_sb=False):
 :
 std(I)[-1]
d^2*e^6 + 8*c^3 + ...
```

However, this does not affect the global state:

```python
sage: opt['red_tail']
True
```

On the other hand, any assignment to an option object will immediately change the global state:

```python
sage: opt['red_tail'] = False
sage: opt['red_tail']
False
sage: opt['red_tail'] = True
sage: opt['red_tail']
True
```

Assigning values within an option context, only affects this context:

```python
sage: with opt_ctx:
 :
 opt['red_tail'] = False
sage: opt['red_tail']
True
```
Option contexts can also be safely stacked:

```python
sage: with opt_ctx:
 : opt['red_tail'] = False
 : print(opt)
 : with opt_ctx:
 : opt['red_through'] = False
 : print(opt)
```

general options for libSingular (current value 0x00000002)

```python
sage: print(opt)
```

```plaintext
general options for libSingular (current value 0x00000082)
```

Furthermore, the integer valued options `deg_bound` and `mult_bound` can be used:

```python
sage: R.<x,y> = QQ[]
sage: I = R*[x^3+y^2,x^2*y+1]
sage: opt['deg_bound'] = 2
sage: std(I)
[x^2*y + 1, x^3 + y^2]
sage: opt['deg_bound'] = 0
sage: std(I)
[y^3 - x, x^2*y + 1, x^3 + y^2]
```

The same interface is available for verbosity options:

```python
sage: from sage.libs.singular.option import opt_verb
sage: opt_verb['not_warn_sb']
False
sage: opt.reset_default() # needed to avoid side effects
sage: opt_verb.reset_default() # needed to avoid side effects
```

AUTHOR:

- Martin Albrecht (2009-08): initial implementation
- Martin Albrecht (2010-01): better interface, verbosity options
- Simon King (2010-07): Python-ic option names; `deg_bound` and `mult_bound`

```python
class sage.libs.singular.option.LibSingularOptions
Bases: sage.libs.singular.option.LibSingularOptions_abstract
```

Pythonic Interface to libSingular’s options.

Supported options are:

- `return_sb` or `returnSB` - the functions `syz`, `intersect`, `quotient`, `modulo` return a standard base instead of a generating set if `return_sb` is set. This option should not be used for `lift`.
- `fast_hc` or `fastHC` - tries to find the highest corner of the staircase (HC) as fast as possible during a standard basis computation (only used for local orderings).
- `int_strategy` or `intStrategy` - avoids division of coefficients during standard basis computations. This option is ring dependent. By default, it is set for rings with characteristic 0 and not set for all other rings.
- `lazy` - uses a more lazy approach in std computations, which was used in SINGULAR version before 2.0 (and which may lead to faster or slower computations, depending on the example).
- `length` - select shorter reducers in std computations.
Sage Reference Manual: C/C++ Library Interfaces, Release 9.0

- **not_regularity** or **notRegulararity** - disables the regularity bound for \( \text{res} \) and \( \text{mres} \).
- **not_sugar** or **notSugar** - disables the sugar strategy during standard basis computation.
- **not_buckets** or **notBuckets** - disables the bucket representation of polynomials during standard basis computations. This option usually decreases the memory usage but increases the computation time. It should only be set for memory-critical standard basis computations.
- **old_std** or **oldStd** - uses a more lazy approach in std computations, which was used in SINGULAR version before 2-0 (and which may lead to faster or slower computations, depending on the example).
- **prot** - shows protocol information indicating the progress during the following computations: \( \text{facstd} \), \( \text{fglm} \), \( \text{groebner} \), \( \text{lres} \), \( \text{mres} \), \( \text{minres} \), \( \text{mstd} \), \( \text{res} \), \( \text{slimgb} \), \( \text{sres} \), \( \text{std} \), \( \text{stdfglm} \), \( \text{stdhilb} \), \( \text{syz} \).
- **red_sb** or **redSB** - computes a reduced standard basis in any standard basis computation.
- **red_tail** or **redTail** - reduction of the tails of polynomials during standard basis computations. This option is ring dependent. By default, it is set for rings with global degree orderings and not set for all other rings.
- **red_through** or **redThrough** - for inhomogenous input, polynomial reductions during standard basis computations are never postponed, but always finished through. This option is ring dependent. By default, it is set for rings with global degree orderings and not set for all other rings.
- **sugar_crit** or **sugarCrit** - uses criteria similar to the homogeneous case to keep more useless pairs.
- **weight_m** or **weightM** - automatically computes suitable weights for the weighted ecart and the weighted sugar method.

In addition, two integer valued parameters are supported, namely:

- **deg_bound** or **degBound** - The standard basis computation is stopped if the total (weighted) degree exceeds \( \text{deg_bound} \). \( \text{deg_bound} \) should not be used for a global ordering with inhomogeneous input. Reset this bound by setting \( \text{deg_bound} \) to 0. The exact meaning of “degree” depends on the ring ordering and the command: \( \text{slimgb} \) uses always the total degree with weights 1, \( \text{std} \) does so for block orderings, only.
- **mult_bound** or **multBound** - The standard basis computation is stopped if the ideal is zero-dimensional in a ring with local ordering and its multiplicity is lower than \( \text{mult_bound} \). Reset this bound by setting \( \text{mult_bound} \) to 0.

**EXAMPLES:**

```python
sage: from sage.libs.singular.option import LibSingularOptions
sage: libsingular_options = LibSingularOptions()
sage: libsingular_options
general options for libSingular (current value 0x06000082)
```

Here we demonstrate the intended way of using libSingular options:

```python
sage: R.<x,y> = QQ[]
sage: I = R*[x^3+y^2,x^2*y+1]
sage: I.groebner_basis(deg_bound=2)
\[x^3 + y^2, x^2*y + 1\]
sage: I.groebner_basis()
\[x^3 + y^2, x^2*y + 1, y^3 - x\]
```

The option \( \text{mult_bound} \) is only relevant in the local case:
```python
sage: from sage.libs.singular.option import opt
sage: Rlocal.<x,y,z> = PolynomialRing(QQ, order='ds')
sage: x^2<x
True
sage: J = [x^7+y^7+z^6, x^6+y^8+z^7, x^7+y^5+z^8, x^2*y^3+y^2*z^3+x^3*z^2, x^3+y^2+y^→3*z^2+x^2*z^3]*Rlocal
sage: J.groebner_basis(mult_bound=100)
[x^3*y^2 + y^3*z^2 + x^2*z^3, x^2*y^3 + x^3*z^2 + y^2*z^3, y^5, x^6 + x*y^4*z^5,
→x^4*z^2 - y^4*z^2 - x^2*y*z^3 + x*y^2*z^3, z^6 - x*y^4*z^4 - x^3*y*z^5]
sage: opt['red_tail'] = True # the previous commands reset opt['red_tail'] to False
sage: J.groebner_basis()
[x^3*y^2 + y^3*z^2 + x^2*z^3, x^2*y^3 + x^3*z^2 + y^2*z^3, y^5, x^6, x^4*z^2 - y^→4*z^2 - x^2*y*z^3 + x*y^2*z^3, z^6, y^4*z^3 - y^3*z^4 - x^2*z^5, x^3*y*z^4-x^→2*y^2*z^4 + x*y^3*z^4, x^3*z^5, x^2*y*z^5 + y^3*z^5, x*y^3*z^5]
```

```python
reset_default()
Reset libSingular’s default options.

EXAMPLES:
```
```python
class sage.libs.singular.option.LibSingularOptionsContext
Bases: object
Option context
This object localizes changes to options.

EXAMPLES:
```
```python
sage: from sage.libs.singular.option import opt, opt_ctx
sage: opt
general options for libSingular (current value 0x06000082)
sage: with opt_ctx(redTail=False):
 print(opt)
 with opt_ctx(redThrough=False):
 print(opt)
 opt.reset_default()
 print(opt)
 opt['deg_bound'] = 2
 print(opt)
 opt['deg_bound'] = 0
 print(opt)
```

8.5. **libSingular**: Options

71


```python
sage: print(opt)
general options for libSingular (current value 0x06000082)
```

**opt**

class `sage.libs.singular.option.LibSingularOptions_abstract`

Bases: object

Abstract Base Class for libSingular options.

**load** *(value=None)*

EXAMPLES:

```python
sage: from sage.libs.singular.option import opt as sopt
sage: bck = sopt.save(); hex(bck[0]), bck[1], bck[2]
('0x6000082', 0, 0)
sage: sopt['redTail'] = False
sage: hex(int(sopt))
'0x4000082'
sage: sopt.load(bck)
sage: sopt['redTail']
True
```

**save** *

Return a triple of integers that allow reconstruction of the options.

EXAMPLES:

```python
sage: from sage.libs.singular.option import opt
sage: opt['deg_bound']
0
sage: opt['red_tail']
True
sage: s = opt.save()
sage: opt['deg_bound'] = 2
sage: opt['red_tail'] = False
sage: opt['deg_bound']
2
sage: opt['red_tail']
False
sage: opt.load(s)
sage: opt['deg_bound']
0
sage: opt['red_tail']
True
sage: opt.reset_default() # needed to avoid side effects
```

**class** `sage.libs.singular.option.LibSingularVerboseOptions`

Bases: `sage.libs.singular.option.LibSingularOptions_abstract`

Pythonic Interface to libSingular’s verbosity options.

Supported options are:

- **mem** - shows memory usage in square brackets.
- **yacc** - Only available in debug version.
- **redefine** - warns about variable redefinitions.
- **reading** - shows the number of characters read from a file.
• loadLib or load_lib - shows loading of libraries.
• debugLib or debug_lib - warns about syntax errors when loading a library.
• loadProc or load_proc - shows loading of procedures from libraries.
• defRes or def_res - shows the names of the syzygy modules while converting resolution to list.
• usage - shows correct usage in error messages.
• imap or imap - shows the mapping of variables with the fetch and imap commands.
• notWarnSB or not_warn_sb - do not warn if a basis is not a standard basis
• contentSB or content_sb - avoids to divide by the content of a polynomial in std and related algorithms. Should usually not be used.
• cancelunit - avoids to divide polynomials by non-constant units in std in the local case. Should usually not be used.

EXAMPLES:

```python
sage: from sage.libs.singular.option import LibSingularVerboseOptions
sage: libsingular_verbose = LibSingularVerboseOptions()
sage: libsingular_verbose
verbosity options for libSingular (current value 0x00002851)

reset_default()

Return to libSingular's default verbosity options

EXAMPLES:

```python
sage: from sage.libs.singular.option import opt_verb
sage: opt_verb['not_warn_sb']
False
sage: opt_verb['not_warn_sb'] = True
True
sage: opt_verb.reset_default()
False
```

8.6 Wrapper for Singular’s Rings

AUTHORS:

• Martin Albrecht (2009-07): initial implementation
• Kwankyu Lee (2010-06): added matrix term order support

sage.libs.singular.ring.currRing_wrapper()

Returns a wrapper for the current ring, for use in debugging ring_refcount_dict.

EXAMPLES:

```python
sage: from sage.libs.singular.ring import currRing_wrapper
sage: currRing_wrapper()
The ring pointer ...
```
Sage Reference Manual: C/C++ Library Interfaces, Release 9.0

sage.libs.singular.ring.poison_currRing(frame, event, arg)
Poison the currRing pointer.

This function sets the currRing to an illegal value. By setting it as the python debug hook, you can poison the currRing before every evaluated Python command (but not within Cython code).

INPUT:

• frame, event, arg – the standard arguments for the CPython debugger hook. They are not used.

OUTPUT:

Returns itself, which ensures that poison_currRing() will stay in the debugger hook.

EXAMPLES:

```python
sage: previous_trace_func = sys.gettrace()  # None if no debugger running
sage: from sage.libs.singular.ring import poison_currRing
sage: sys.settrace(poison_currRing)
```

```python
sage: sys.gettrace()
<built-in function poison_currRing>
```

```python
sage: sys.settrace(previous_trace_func)  # switch it off again
```

sage.libs.singular.ring.print_currRing()
Print the currRing pointer.

EXAMPLES:

```python
sage: from sage.libs.singular.ring import print_currRing
sage: print_currRing()  # random output
DEBUG: currRing == 0x7fc6fa6ec480
```

```python
sage: from sage.libs.singular.ring import print_currRing
sage: print_currRing()  # switch it off again
```

```python
class sage.libs.singular.ring.ring_wrapper_Py
Bases: object
Python object wrapping the ring pointer.
This is useful to store ring pointers in Python containers.
You must not construct instances of this class yourself, use wrap_ring() instead.

EXAMPLES:

```python
sage: from sage.libs.singular.ring import ring_wrapper_Py
sage: ring_wrapper_Py
<type 'sage.libs.singular.ring.ring_wrapper_Py'>
```

8.7 Singular’s Groebner Strategy Objects

AUTHORS:

• Martin Albrecht (2009-07): initial implementation
• Michael Brickenstein (2009-07): initial implementation
• Hans Schoenemann (2009-07): initial implementation
class sage.libs.singular.groebner_strategy.GroebnerStrategy
  Bases: sage.structure.sage_object.SageObject

This object provides functions for normal form computations and other functions for Groebner basis computation.

ALGORITHM:
Uses Singular via libSINGULAR

ideal()
  Return the ideal this strategy object is defined for.

EXAMPLES:

```
sage: from sage.libs.singular.groebner_strategy import GroebnerStrategy
groebner_strategy = GroebnerStrategy()
sage: ideal = groebner_strategy.ideal()
sage: ideal
Ideal (x + z, y + z) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 32003
```

normal_form(p)
  Compute the normal form of p with respect to the generators of this object.

EXAMPLES:

```
sage: from sage.libs.singular.groebner_strategy import GroebnerStrategy
groebner_strategy = GroebnerStrategy()
sage: normal_form = groebner_strategy.normal_form()
sage: normal_form(x*y)
sage: normal_form(x + 1)
```

ring()
  Return the ring this strategy object is defined over.

EXAMPLES:

```
sage: from sage.libs.singular.groebner_strategy import GroebnerStrategy
groebner_strategy = GroebnerStrategy()
sage: ring = groebner_strategy.ring()
sage: ring
Multivariate Polynomial Ring in x, y, z over Finite Field of size 32003
```

class sage.libs.singular.groebner_strategy.NCGroebnerStrategy
  Bases: sage.structure.sage_object.SageObject

This object provides functions for normal form computations and other functions for Groebner basis computation.

ALGORITHM:
Uses Singular via libSINGULAR

8.7. Singular’s Groebner Strategy Objects 75
ideal()

Return the ideal this strategy object is defined for.

EXAMPLES:

```
sage: from sage.libs.singular.groebner_strategy import NCGroebnerStrategy
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: I = H.ideal([y^2, x^2, z^2-H.one()])
sage: strat = NCGroebnerStrategy(I)
sage: strat.ideal() == I
True
```

normal_form(p)

Compute the normal form of p with respect to the generators of this object.

EXAMPLES:

```
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: JL = H.ideal([x^3, y^3, z^3 - 4*z])
sage: JT = H.ideal([x^3, y^3, z^3 - 4*z], side='twosided')
sage: from sage.libs.singular.groebner_strategy import NCGroebnerStrategy
sage: SL = NCGroebnerStrategy(JL.std())
sage: ST = NCGroebnerStrategy(JT.std())
sage: SL.normal_form(x*y^2)
x*y^2
sage: ST.normal_form(x*y^2)
y*z
```

ring()

Return the ring this strategy object is defined over.

EXAMPLES:

```
sage: from sage.libs.singular.groebner_strategy import NCGroebnerStrategy
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
sage: H.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: I = H.ideal([y^2, x^2, z^2-H.one()])
sage: strat = NCGroebnerStrategy(I)
sage: strat.ring() is H
True
```

sage.libs.singular.groebner_strategy unpickle_GroebnerStrategy0(I)

EXAMPLES:

```
sage: from sage.libs.singular.groebner_strategy import GroebnerStrategy
sage: P.<x,y,z> = PolynomialRing(GF(32003))
sage: I = Ideal([x + z, y + z])
sage: strat = GroebnerStrategy(I)
sage: loads(dumps(strat)) == strat # indirect doctest
True
```

sage.libs.singular.groebner_strategy unpickle_NCGroebnerStrategy0(I)

EXAMPLES:

```
sage: from sage.libs.singular.groebner_strategy import NCGroebnerStrategy
sage: A.<x,y,z> = FreeAlgebra(QQ, 3)
```
sage: R.<x,y,z> = A.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y})
sage: I = H.ideal([y^2, x^2, z^2-H.one()])
sage: strat = NCGroebnerStrategy(I)
sage: loads(dumps(strat)) == strat  # indirect doctest
True
9.1 Context Managers for LibGAP

This module implements a context manager for global variables. This is useful since the behavior of GAP is sometimes controlled by global variables, which you might want to switch to a different value for a computation. Here is an example how you are supposed to use it from your code. First, let us set a dummy global variable for our example:

```
sage: libgap.set_global('FooBar', 123)
```

Then, if you want to switch the value momentarily you can write:

```
sage: with libgap.global_context('FooBar', 'test'):
 : print(libgap.get_global('FooBar'))

test
```

Afterward, the global variable reverts to the previous value:

```
sage: print(libgap.get_global('FooBar'))

123
```

The value is reset even if exceptions occur:

```
sage: with libgap.global_context('FooBar', 'test'):
 : print(libgap.get_global('FooBar'))
 : raise ValueError(libgap.get_global('FooBar'))

Traceback (most recent call last):
...
ValueError: test
sage: print(libgap.get_global('FooBar'))

123
```

class sage.libs.gap.context_managers.GlobalVariableContext (variable, value)

Context manager for GAP global variables.

It is recommended that you use the `sage.libs.gap.libgap.Gap.global_context()` method and not construct objects of this class manually.

INPUT:

- variable – string. The variable name.
- value – anything that defines a GAP object.

EXAMPLES:
sage: libgap.set_global('FooBar', 1)
sage: with libgap.global_context('FooBar', 2):
    print(libgap.get_global('FooBar'))
2
sage: libgap.get_global('FooBar')
1

9.2 Common global functions defined by GAP.

9.3 Long tests for GAP

These stress test the garbage collection inside GAP

sage.libs.gap.test_long.test_loop_1()

EXAMPLES:

sage: from sage.libs.gap.test_long import test_loop_1
sage: test_loop_1() # long time (up to 25s on sage.math, 2013)

sage.libs.gap.test_long.test_loop_2()

EXAMPLES:

sage: from sage.libs.gap.test_long import test_loop_2
sage: test_loop_2() # long time (10s on sage.math, 2013)

sage.libs.gap.test_long.test_loop_3()

EXAMPLES:

sage: from sage.libs.gap.test_long import test_loop_3
sage: test_loop_3() # long time (31s on sage.math, 2013)

9.4 Utility functions for GAP

exception sage.libs.gap.util.GAPError
    Bases: ValueError

Exceptions raised by the GAP library

class sage.libs.gap.util.ObjWrapper
    Bases: object

Wrapper for GAP master pointers

EXAMPLES:

sage: from sage.libs.gap.util import ObjWrapper
sage: x = ObjWrapper()

sage: y = ObjWrapper()

sage: x == y
True

sage.libs.gap.util.gap_root()

Find the location of the GAP root install which is stored in the gap startup script.
EXAMPLES:

```
sage: from sage.libs.gap.util import gap_root
gap_root() # random output
'/home/vbraun/opt/sage-5.3.rc0/local/gap/latest'
```

```
sage.libs.gap.util.get_owned_objects()
Helper to access the refcount dictionary from Python code
```

9.5 Library Interface to GAP

This module implements a fast C library interface to GAP. To use it, you simply call `libgap` (the parent of all `GapElement` instances) and use it to convert Sage objects into GAP objects.

EXAMPLES:

```
sage: a = libgap(10)
sage: a
10
sage: type(a)
<type 'sage.libs.gap.element.GapElement_Integer'>
sage: a*a
100
sage: timeit('a*a') # random output
625 loops, best of 3: 898 ns per loop
```

Compared to the expect interface this is >1000 times faster:

```
sage: b = gap('10')
sage: timeit('b*b') # random output; long time
125 loops, best of 3: 2.05 ms per loop
```

If you want to evaluate GAP commands, use the `Gap.eval()` method:

```
sage: libgap.eval('List([1..10], i->i^2)')
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
```

not to be confused with the `libgap` call, which converts Sage objects to GAP objects, for example strings to strings:

```
sage: libgap('List([1..10], i->i^2)')
"List([1..10], i->i^2)"
sage: type(_)
<type 'sage.libs.gap.element.GapElement_String'>
```

You can usually use the `sage()` method to convert the resulting GAP element back to its Sage equivalent:

```
sage: a.sage()
10
sage: type(_)
<type 'sage.rings.integer.Integer'>
sage: libgap.eval('5/3 + 7*E(3)').sage()
7*zeta3 + 5/3
sage: generators = gens_of_group.sage()
```

(continues on next page)
We can also specify which group in Sage the permutations should consider themselves as elements of when converted to Sage:

```
sage: A4 = groups.permutation.Alternating(4)
sage: generators = gens_of_group.sage(parent=A4); generators
[(1,2,3), (2,3,4)]
sage: all(gen.parent() is A4 for gen in generators)
True
```

So far, the following GAP data types can be directly converted to the corresponding Sage datatype:

1. GAP booleans `true`/`false` to Sage booleans `True`/`False`. The third GAP boolean value `fail` raises a `ValueError`.
2. GAP integers to Sage integers.
3. GAP rational numbers to Sage rational numbers.
4. GAP cyclotomic numbers to Sage cyclotomic numbers.
5. GAP permutations to Sage permutations.
6. The GAP containers `List` and `rec` are converted to Sage containers `list` and `dict`. Furthermore, the `sage()` method is applied recursively to the entries.

Special support is available for the GAP container classes. GAP lists can be used as follows:

```
sage: lst = libgap([1,5,7]); lst
[1, 5, 7]
sage: type(lst)
<type 'sage.libs.gap.element.GapElement_List'>
sage: len(lst)
3
sage: lst[0]
1
sage: [x^2 for x in lst]
[1, 25, 49]
sage: type(_[0])
<type 'sage.libs.gap.element.GapElement_Integer'>
```

Note that you can access the elements of GAP `List` objects as you would expect from Python (with indexing starting at 0), but the elements are still of type `GapElement`. The other GAP container type are records, which are similar to Python dictionaries. You can construct them directly from Python dictionaries:

```
sage: rec = libgap({'a':123, 'b':456})
rec(a := 123, b := 456)
```

Or get them as results of computations:

```
sage: rec = libgap.eval('rec(a=123, b=456, Sym3=SymmetricGroup(3))')
sage: rec['Sym3']
```

(continues on next page)
The output is a Sage dictionary whose keys are Sage strings and whose Values are instances of `GapElement()`. So, for example, `rec['a']` is not a Sage integer. To recursively convert the entries into Sage objects, you should use the `sage()` method:

```python
sage: rec.sage()
{'Sym3': NotImplementedError('cannot construct equivalent Sage object'...), 'a': 123, 'b': 456}
```

Now `rec['a']` is a Sage integer. We have not implemented the conversion of the GAP symmetric group to the Sage symmetric group yet, so you end up with a `NotImplementedError` exception object. The exception is returned and not raised so that you can work with the partial result.

While we don’t directly support matrices yet, you can convert them to Gap List of Lists. These lists are then easily converted into Sage using the recursive expansion of the `sage()` method:

```python
sage: M = libgap.eval('BlockMatrix([[1,1,[[1, 2], [3, 4]], [1,2,[[9,10],[11,12]]],', '->[2,2,[[5, 6],[7,8]]]],2,2)')
sage: M
<block matrix of dimensions (2*2)x(2*2)>
sage: M.List() # returns a GAP List of Lists
[[1, 2, 9, 10], [3, 4, 11, 12], [0, 0, 5, 6], [0, 0, 7, 8]]
sage: M.List().sage() # returns a Sage list of lists
[[1, 2, 9, 10], [3, 4, 11, 12], [0, 0, 5, 6], [0, 0, 7, 8]]
sage: matrix(ZZ, _)
[1 2 9 10]
[3 4 11 12]
[0 0 5 6]
[0 0 7 8]
```

### 9.5.1 Using the GAP C library from Cython

**Todo:** Expand the following text

We are using the GAP API provided by the GAP project since GAP 4.10.

**AUTHORS:**

- Volker Braun (2012-08-28, GAP/Singular workshop): update to gap-4.5.5, make it ready for public consumption.
- Dima Pasechnik (2018-09-18, GAP Days): started the port to native libgap API

```python
class sage.libs.gap.libgap.Gap
 Bases: sage.structure.parent.Parent

 The libgap interpreter object.
```
Note: This object must be instantiated exactly once by the libgap. Always use the provided libgap instance, and never instantiate Gap manually.

EXAMPLES:

```python
sage: libgap.eval('SymmetricGroup(4)')
Sym([1 .. 4])
```

Element

alias of `sage.libs.gap.element.GapElement`

collect()

Manually run the garbage collector

EXAMPLES:

```python
sage: a = libgap(123)
sage: del a
sage: libgap.collect()
```

count_GAP_objects()

Return the number of GAP objects that are being tracked by GAP.

OUTPUT:

An integer

EXAMPLES:

```python
sage: libgap.count_GAP_objects() # random output
5
```

eval(gap_command)

Evaluate a gap command and wrap the result.

INPUT:

- gap_command – a string containing a valid gap command without the trailing semicolon.

OUTPUT:

A GapElement.

EXAMPLES:

```python
sage: libgap.eval('0')
0
sage: libgap.eval('"string"')
"string"
```

function_factory(function_name)

Return a GAP function wrapper

This is almost the same as calling `libgap.eval(function_name)`, but faster and makes it obvious in your code that you are wrapping a function.

INPUT:

- function_name – string. The name of a GAP function.
A function wrapper `GapElement_Function` for the GAP function. Calling it from Sage is equivalent to calling the wrapped function from GAP.

**EXAMPLES:**

```python
sage: libgap.function_factory('Print')
<Gap function "Print">
```

`get_global` *(variable)*

Get a GAP global variable

**INPUT:**

- `variable` – string. The variable name.

**OUTPUT:**

A `GapElement` wrapping the GAP output. A `ValueError` is raised if there is no such variable in GAP.

**EXAMPLES:**

```python
sage: libgap.set_global('FooBar', 1)
sage: libgap.get_global('FooBar')
1
sage: libgap.unset_global('FooBar')
sage: libgap.get_global('FooBar')
Traceback (most recent call last):
 ...
GAPError: Error, VAL_GVAR: No value bound to FooBar
```

`global_context` *(variable, value)*

Temporarily change a global variable

**INPUT:**

- `variable` – string. The variable name.
- `value` – anything that defines a GAP object.

**OUTPUT:**

A context manager that sets/reverts the given global variable.

**EXAMPLES:**

```python
sage: libgap.set_global('FooBar', 1)
sage: with libgap.global_context('FooBar', 2):
 print(libgap.get_global('FooBar'))
2
sage: libgap.get_global('FooBar')
1
```

`load_package` *(pkg)*

If loading fails, raise a `RuntimeError` exception.

`mem` ()

Return information about GAP memory usage

This method is deprecated and is a no-op. Use `Gap.show()` to display memory-usage and bag count statistics from GASMAN.
one()
Return (integer) one in GAP.

EXAMPLES:

```python
sage: libgap.one()
1
sage: parent(_)
C library interface to GAP
```

set_global(variable, value)
Set a GAP global variable

INPUT:

- variable – string. The variable name.
- value – anything that defines a GAP object.

EXAMPLES:

```python
sage: libgap.set_global('FooBar', 1)
sage: libgap.get_global('FooBar')
1
sage: libgap.unset_global('FooBar')
sage: libgap.get_global('FooBar')
Traceback (most recent call last):
 ...
GAPError: Error, VAL_GVAR: No value bound to FooBar
```

set_seed(seed=None)
Reseed the standard GAP pseudo-random sources with the given seed.

Uses a random seed given by `current_randstate().ZZ_seed()` if `seed=None`. Otherwise the seed should be an integer.

EXAMPLES:

```python
sage: libgap.set_seed(0)
0
sage: [libgap.Random(1, 10) for i in range(5)]
[2, 3, 3, 4, 2]
```

show()
Return statistics about the GAP owned object list

This includes the total memory allocated by GAP as returned by `libgap.eval('TotalMemoryAllocated()')`, as well as garbage collection / object count statistics as returned by `libgap.eval('GasmanStatistics')`, and finally the total number of GAP objects held by Sage as `GapElement` instances.

The value `livekb + deadkb` will roughly equal the total memory allocated for GAP objects (see `libgap.eval('TotalMemoryAllocated()')`).

**Note:** Slight complication is that we want to do it without accessing libgap objects, so we don’t create new GapElements as a side effect.

EXAMPLES:
sage: a = libgap(123)
sage: b = libgap(456)
sage: c = libgap(789)
sage: del b
sage: libgap.collect()
sage: libgap.show()  # random output
{'gasman_stats': {'full': {'cumulative': 110, 'deadbags': 321400, 'deadkb': 12967, 'freekb': 15492, 'livebags': 396645, 'livekb': 37730, 'time': 110, 'totalkb': 65536}, 'nfull': 1, 'npartial': 1}, 'nelements': 23123, 'total_alloc': 3234234}

unset_global (variable)
Remove a GAP global variable

INPUT:

• variable – string. The variable name.

EXAMPLES:

sage: libgap.set_global('FooBar', 1)
sage: libgap.get_global('FooBar')
1
sage: libgap.unset_global('FooBar')
sage: libgap.get_global('FooBar')
Traceback (most recent call last):
...  
GAPError: Error, VAL_GVAR: No value bound to FooBar

zero()
Return (integer) zero in GAP.

OUTPUT:

A GapElement.

EXAMPLES:

sage: libgap.zero()
0

9.6 Short tests for GAP

sage.libs.gap.test.test_write_to_file()
Test that libgap can write to files

See trac ticket #16502, trac ticket #15833.

EXAMPLES:
9.7 GAP element wrapper

This document describes the individual wrappers for various GAP elements. For general information about GAP, you should read the libgap module documentation.

```python
sage: from sage.libs.gap.test import test_write_to_file
sage: test_write_to_file()
```

```python
class sage.libs.gap.element.GapElement
 Bases: sage.structure.element.RingElement

 Wrapper for all Gap objects.

 Note: In order to create GapElements you should use the libgap instance (the parent of all Gap elements) to convert things into GapElement. You must not create GapElement instances manually.
```

```python
EXAMPLES:

```python
sage: libgap(0)
0
```

If Gap finds an error while evaluating, a GAPError exception is raised:

```python
sage: libgap.eval('1/0')
Traceback (most recent call last):
...
GAPError: Error, Rational operations: <divisor> must not be zero
```

Also, a GAPError is raised if the input is not a simple expression:

```python
sage: libgap.eval('1; 2; 3')
Traceback (most recent call last):
...
GAPError: can only evaluate a single statement
```

deepcopy *(mut)*

Return a deepcopy of this Gap object

Note that this is the same thing as calling StructuralCopy but much faster.

INPUT:

- **mut** - (boolean) wheter to return an mutable copy

EXAMPLES:

```python
sage: a = libgap([[0,1],[2,3]])
sage: b = a.deepcopy(1)
sage: b[0,0] = 5
sage: a
[[0, 1], [2, 3]]
sage: b
[[5, 1], [2, 3]]
sage: l = libgap([0,1])
```

(continues on next page)
Sage Reference Manual: C/C++ Library Interfaces, Release 9.0

(continued from previous page)

```python
sage: 1.deepcopy(0).IsMutable()
false
sage: 1.deepcopy(1).IsMutable()
true
```

is_bool()

Return whether the wrapped GAP object is a GAP boolean.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: libgap(True).is Bool()
True
```

is_function()

Return whether the wrapped GAP object is a function.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: a = libgap.eval("NormalSubgroups")
sage: a.is_function()
True
sage: a = libgap(2/3)
sage: a.is_function()
False
```

is_list()

Return whether the wrapped GAP object is a GAP List.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: libgap.eval('[[1, 2, a, 5]]').is_list()
True
sage: libgap.eval('3/2').is_list()
False
```

is_permutation()

Return whether the wrapped GAP object is a GAP permutation.

OUTPUT:

Boolean.

EXAMPLES:

```python
sage: perm = libgap.PermList( libgap([1,5,2,3,4]) ); perm
(2,5,4,3)
sage: perm.is_permutation()
True
```
is_permutation()
Return whether the wrapped GAP object is a permutation.
OUTPUT:
Boolean.
EXAMPLES:
```
sage: libgap('this is a string').is_permutation()  
False  
```

is_record()
Return whether the wrapped GAP object is a GAP record.
OUTPUT:
Boolean.
EXAMPLES:
```
sage: libgap.eval('[1, 2,,, 5]').is_record()  
False  
sage: libgap.eval('rec(a:=1, b:=3)').is_record()  
True  
```

is_string()
Return whether the wrapped GAP object is a GAP string.
OUTPUT:
Boolean.
EXAMPLES:
```
sage: libgap('this is a string').is_string()  
True  
```

sage()
Return the Sage equivalent of the GapElement
EXAMPLES:
```
sage: libgap(1).sage()  
1  
sage: type(_)  
<type 'sage.rings.integer.Integer'>  
sage: libgap(3/7).sage()  
3/7  
sage: type(_)  
<type 'sage.rings.rational.Rational'>  
sage: libgap.eval('5 + 7*E(3)').sage()  
7*zeta3 + 5  
sage: libgap(Infinity).sage()  
+Infinity  
sage: libgap(-Infinity).sage()  
-Infinity  
sage: libgap(True).sage()  
True  
sage: libgap(False).sage()  
False  
sage: type(_)  
<... 'bool'>  
```
sage: libgap('this is a string').sage()
'this is a string'
sage: type(_)
<... 'str'>
sage: x = libgap.eval('Indeterminate(Integers, "x")')
sage: p = x^2 - 2*x + 3
sage: p.sage()
x^2 - 2*x + 3
sage: p.sage().parent()
Univariate Polynomial Ring in x over Integer Ring
sage: p = x^-2 + 3*x
sage: p.sage()
x^-2 + 3*x
sage: p.sage().parent()
Univariate Laurent Polynomial Ring in x over Integer Ring
sage: p = (3 * x^2 + x) / (x^2 - 2)
sage: p.sage()
(3*x^2 + x)/(x^2 - 2)
sage: p.sage().parent()
Fraction Field of Univariate Polynomial Ring in x over Integer Ring

class sage.libs.gap.element.GapElement_Boolean
Bases: sage.libs.gap.element.GapElement

Derived class of GapElement for GAP boolean values.

EXAMPLES:

sage: b = libgap(True)
sage: type(b)
<type 'sage.libs.gap.element.GapElement_Boolean'>
sage()
Return the Sage equivalent of the GapElement

OUTPUT:
A Python boolean if the values is either true or false. GAP booleans can have the third value Fail, in
which case a ValueError is raised.

EXAMPLES:

sage: b = libgap.eval('true'); b
true
sage: type(_)
<type 'sage.libs.gap.element.GapElement_Boolean'>
sage: b.sage()
True
sage: type(_)
<... 'bool'>
sage: libgap.eval('fail')
fail
sage: _._sage()
Traceback (most recent call last):
...
ValueError: the GAP boolean value "fail" cannot be represented in Sage

class sage.libs.gap.element.GapElement_Cyclotomic
 Bases: sage.libs.gap.element.GapElement

Derived class of GapElement for GAP universal cyclotomics.

EXAMPLES:

sage: libgap.eval('E(3)')
E(3)
sage: type(_)
<type 'sage.libs.gap.element.GapElement_Cyclotomic'>

sage (ring=\texttt{None})
Return the Sage equivalent of the \texttt{GapElement_Cyclotomic}.

INPUT:

- \texttt{ring} – a Sage cyclotomic field or \texttt{None} (default). If not specified, a suitable minimal cyclotomic field will be constructed.

OUTPUT:

A Sage cyclotomic field element.

EXAMPLES:

sage: n = libgap.eval('E(3)')
sage: n.sage()
zeta3
sage: parent(_)
Cyclotomic Field of order 3 and degree 2
sage: n.sage(ring=CyclotomicField(6))
zeta6 - 1
sage: libgap.E(3).sage(ring=CyclotomicField(3))
zeta3
sage: libgap.E(3).sage(ring=CyclotomicField(6))
zeta6 - 1

class sage.libs.gap.element.GapElement_FiniteField
 Bases: sage.libs.gap.element.GapElement

Derived class of GapElement for GAP finite field elements.

EXAMPLES:

sage: libgap.eval('Z(5)^2')
Z(5)^2
sage: type(_)
<type 'sage.libs.gap.element.GapElement_FiniteField'>

\texttt{lift()} \hspace{1cm} Return an integer lift.

OUTPUT:
The smallest positive \texttt{GapElement_Integer} that equals \texttt{self} in the prime finite field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: n = libgap.eval('Z(5)^2')
sage: n.lift()
4
sage: type(_)
<type 'sage.libs.gap.element.GapElement_Integer'>
sage: n = libgap.eval('Z(25)')
sage: n.lift()
Traceback (most recent call last):
 TypeError: not in prime subfield
\end{verbatim}

\texttt{sage}(\texttt{ring=None, var='a'})

Return the Sage equivalent of the \texttt{GapElement_FiniteField}.

\textbf{INPUT:}

\begin{itemize}
 \item ring – a Sage finite field or \texttt{None} (default). The field to return \texttt{self} in. If not specified, a suitable finite field will be constructed.
\end{itemize}

\textbf{OUTPUT:}

An Sage finite field element. The isomorphism is chosen such that the \texttt{GapPrimitiveRoot()} maps to the Sage \texttt{multiplicative_generator()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: n = libgap.eval('Z(25)^2')
sage: n.sage()
a + 3
sage: parent(_)
Finite Field in a of size 5^2
sage: n.sage(ring=GF(5))
Traceback (most recent call last):
 ...
 ValueError: the given ring is incompatible ...
\end{verbatim}

\texttt{class \texttt{sage.libs.gap.element.GapElement_Float}}

\texttt{Bases: sage.libs.gap.element.GapElement}

Derived class of \texttt{GapElement} for GAP floating point numbers.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: i = libgap(123.5)
sage: type(i)
<type 'sage.libs.gap.element.GapElement_Float'>
sage: RDF(i)
123.5
sage: float(i)
123.5
\end{verbatim}

\texttt{sage}(\texttt{ring=\texttt{None})}

Return the Sage equivalent of the \texttt{GapElement_Float}

\begin{itemize}
 \item ring – a floating point field or \texttt{None} (default). If not specified, the default Sage RDF is used.
\end{itemize}
OUTPUT:

A Sage double precision floating point number

EXAMPLES:

```markdown
sage: a = libgap.eval("Float(3.25)").sage()
sage: a
3.25
sage: parent(a)
Real Double Field
```

class sage.libs.gap.element.GapElement_Function

Bases: sage.libs.gap.element.GapElement

Derived class of GapElement for GAP functions.

EXAMPLES:

```markdown
sage: f = libgap.Cycles
sage: type(f)
<type 'sage.libs.gap.element.GapElement_Function'>
```

class sage.libs.gap.element.GapElement_Integer

Bases: sage.libs.gap.element.GapElement

Derived class of GapElement for GAP integers.

EXAMPLES:

```markdown
sage: i = libgap(123)
sage: type(i)
<type 'sage.libs.gap.element.GapElement_Integer'>
sage: ZZ(i)
123
```

is_C_int()

Return whether the wrapped GAP object is a immediate GAP integer.

An immediate integer is one that is stored as a C integer, and is subject to the usual size limits. Larger
integers are stored in GAP as GMP integers.

OUTPUT:

Boolean.

EXAMPLES:

```markdown
sage: n = libgap(1)
sage: type(n)
<type 'sage.libs.gap.element.GapElement_Integer'>
sage: n.is_C_int()
True
sage: n.IsInt()
true
sage: N = libgap(2^130)
sage: type(N)
<type 'sage.libs.gap.element.GapElement_Integer'>
sage: N.is_C_int()
False
```
sage: N.IsInt()
true

sage (ring=None)
Return the Sage equivalent of the GapElement_Integer

 • ring – Integer ring or None (default). If not specified, a the default Sage integer ring is used.

OUTPUT:
A Sage integer

EXAMPLES:

sage: libgap([1, 3, 4]).sage()
[1, 3, 4]
sage: all(x in ZZ for x in _)
True
sage: libgap(132).sage(ring=IntegerModRing(13))
2
sage: parent(_)
Ring of integers modulo 13

class sage.libs.gap.element.GapElement_IntegerMod
Bases: sage.libs.gap.element.GapElement

Derived class of GapElement for GAP integers modulo an integer.

EXAMPLES:

sage: n = IntegerModRing(123)(13)
sage: i = libgap(n)
sage: type(i)
<type 'sage.libs.gap.element.GapElement_IntegerMod'>

lift ()
Return an integer lift.

OUTPUT:
A GapElement_Integer that equals self in the integer mod ring.

EXAMPLES:

sage: n = libgap.eval('One(ZmodnZ(123)) * 13')
sage: n.lift()
13
sage: type(_)
<type 'sage.libs.gap.element.GapElement_Integer'>

sage (ring=None)
Return the Sage equivalent of the GapElement_IntegerMod

INPUT:

 • ring – Sage integer mod ring or None (default). If not specified, a suitable integer mod ringa is used automatically.

OUTPUT:
A Sage integer modulo another integer.

EXAMPLES:

```python
sage: n = libgap.eval('One(ZmodnZ(123)) * 13
sage: n.sage()
13
sage: parent(_)
Ring of integers modulo 123
```

class sage.libs.gap.element.GapElement_List

Bases: sage.libs.gap.element.GapElement

Derived class of GapElement for GAP Lists.

Note: Lists are indexed by 0..len(l) – 1, as expected from Python. This differs from the GAP convention where lists start at 1.

EXAMPLES:

```python
sage: lst = libgap.SymmetricGroup(3).List(); lst
[ (), (1,3), (1,2,3), (2,3), (1,3,2), (1,2) ]
sage: type(lst)
<type 'sage.libs.gap.element.GapElement_List'>
sage: len(lst)
6
sage: lst[3]
(2,3)
```

We can easily convert a Gap List object into a Python list:

```python
sage: list(lst)
[(), (1,3), (1,2,3), (2,3), (1,3,2), (1,2)]
sage: type(_)
<... 'list'>
```

Range checking is performed:

```python
sage: lst[10]  
Traceback (most recent call last):  
...  IndexError: index out of range.
```

matrix (ring=None)

Return the list as a matrix.

GAP does not have a special matrix data type, they are just lists of lists. This function converts a GAP list of lists to a Sage matrix.

OUTPUT:

A Sage matrix.

EXAMPLES:

```python
sage: F = libgap.GF(4)
sage: a = F.PrimitiveElement()
sage: m = libgap([[a,a^0],[0*a,a^2]]); m
```
\[[\begin{array}{cc} Z(2^2), & Z(2)^0 \\ 0*Z(2), & Z(2^2)^2 \end{array} \]\]

\[
sage: m.IsMatrix()
true
\]

\[
sage: matrix(m)
\begin{array}{cc}
a & 1 \\
0 & a+1
\end{array}
\]

\[
sage: matrix(GF(4,'B'), m)
\begin{array}{cc}
B & 1 \\
0 & B+1
\end{array}
\]

\[
sage: M = libgap.eval('SL(2,GF(5))').GeneratorsOfGroup()[1]
\]

\[
sage: type(M)
<type 'sage.libs.gap.element.GapElement_List'>
\]

\[
sage: M[0][0]
Z(5)^2
\]

\[
sage: M.IsMatrix()
true
\]

\[
sage: M.matrix()
\begin{array}{cc}
4 & 1 \\
4 & 0
\end{array}
\]

\[
\textbf{sage (**kwds)}
\]

Return the Sage equivalent of the \textit{GapElement}

\textbf{OUTPUT:}

A Python list.

\textbf{EXAMPLES:}

\[
sage: libgap([1, 3, 4]).sage()
[1, 3, 4]
\]

\[
sage: all(x in ZZ for x in _)
True
\]

\[
\textbf{vector (ring=\text{None})}
\]

Return the list as a vector.

GAP does not have a special vector data type, they are just lists. This function converts a GAP list to a Sage vector.

\textbf{OUTPUT:}

A Sage vector.

\textbf{EXAMPLES:}

\[
sage: F = libgap.GF(4)
sage: a = F.PrimitiveElement()
sage: m = libgap([0*a, a, a^3, a^2]); m
\begin{array}{cccc}
0*Z(2), & Z(2^2), & Z(2)^0, & Z(2^2)^2 \\
0*Z(2), & Z(2^2), & Z(2)^0, & Z(2^2)^2 \\
\end{array}
\]

\[
sage: type(m)
<type 'sage.libs.gap.element.GapElement_List'>
\]

\[
sage: m[3]
Z(2^2)^2
\]

\[
sage: vector(m)
(0, a, 1, a + 1)
\]
class sage.libs.gap.element.GapElement_MethodProxy
Bases: sage.libs.gap.element.GapElement_Function

Helper class returned by GapElement.__getattr__.

Derived class of GapElement for GAP functions. Like its parent, you can call instances to implement function call syntax. The only difference is that a fixed first argument is prepended to the argument list.

EXAMPLES:

```
sage: lst = libgap([])
sage: lst.Add
<Gap function "Add">
sage: type(_)
<type 'sage.libs.gap.element.GapElement_MethodProxy'>
sage: lst.Add(1)
sage: lst
[ 1 ]
```

class sage.libs.gap.element.GapElement_Permutation
Bases: sage.libs.gap.element.GapElement

Derived class of GapElement for GAP permutations.

Note: Permutations in GAP act on the numbers starting with 1.

EXAMPLES:

```
sage: perm = libgap.eval('(1,5,2)(4,3,8)'); perm
(1,5,2)(3,8,4)
sage: perm.sage()
[5, 1, 8, 3, 2, 6, 7, 4]
sage: type(_)
<class 'sage.combinat.permutation.StandardPermutations_all_with_category.element_class'>
sage: perm.sage(PermutationGroup([(1,2),(1,2,3,4,5,6,7,8)]))
(1,5,2)(3,8,4)
sage: type(_)
<type 'sage.groups.perm_gps.permgroup_element.PermutationGroupElement'>
```

class sage.libs.gap.element.GapElement_Rational
Bases: sage.libs.gap.element.GapElement

Derived class of GapElement for GAP rational numbers.

```
sage: vector(GF(4,'B'), m)
(0, B, 1, B + 1)
```
EXAMPLES:

```python
definition:
sage: r = libgap(123/456)
sage: type(r)
<type 'sage.libs.gap.element.GapElement_Rational'>
```

sage (ring=None)

Return the Sage equivalent of the *GapElement*.

INPUT:
- `ring` – the Sage rational ring or `None` (default). If not specified, the rational ring is used automatically.

OUTPUT:
A Sage rational number.

EXAMPLES:

```python
definition:
sage: r = libgap(123/456); r
41/152
sage: type(_)
<type 'sage.libs.gap.element.GapElement_Rational'>
sage: r.sage()
41/152
sage: type(_)
<type 'sage.rings.rational.Rational'>
```

class sage.libs.gap.element.GapElement_Record

Bases: `sage.libs.gap.element.GapElement`

Derived class of GapElement for GAP records.

EXAMPLES:

```python
definition:
sage: rec = libgap.eval('rec(a:=123, b:=456)')
sage: type(rec)
<type 'sage.libs.gap.element.GapElement_Record'>
sage: len(rec)
2
sage: rec['a']
123
```

We can easily convert a Gap `rec` object into a Python `dict`:

```python
definition:
sage: dict(rec)
{'a': 123, 'b': 456}
sage: type(_)
<... 'dict'>
```

Range checking is performed:

```python
definition:
sage: rec['no_such_element']
Traceback (most recent call last):
  ...
GAPError: Error, Record Element: '<rec>.no_such_element' must have an assigned...
```

record_name_to_index (name)

Convert string to GAP record index.
INPUT:

- py_name – a python string.

OUTPUT:

A UInt, which is a GAP hash of the string. If this is the first time the string is encountered, a new integer is returned(!)

EXAMPLES:

```
sage: rec = libgap.eval('rec(first:=123, second:=456)')
sage: rec.record_name_to_index('first')  # random output
1812L
sage: rec.record_name_to_index('no_such_name')  # random output
3776L
```

`sage()`

Return the Sage equivalent of the GapElement

EXAMPLES:

```
sage: libgap.eval('rec(a:=1, b:=2)').sage()
{'a': 1, 'b': 2}
sage: all( isinstance(key,str) and val in ZZ for key,val in _.items() )
True
sage: rec = libgap.eval('rec(a:=123, b:=456, Sym3:=SymmetricGroup(3))')
sage: rec.sage()  
{'Sym3': NotImplementedError('cannot construct equivalent Sage object'...),
 'a': 123,
 'b': 456}
```

```
class sage.libs.gap.element.GapElement_RecordIterator
Bases: object

Iterator for GapElement_Record

Since Cython does not support generators yet, we implement the older iterator specification with this auxiliary class.

INPUT:

- rec – the GapElement_Record to iterate over.

EXAMPLES:

```
sage: rec = libgap.eval('rec(a:=123, b:=456)')
sage: sorted(rec)
[('a', 123), ('b', 456)]
sage: dict(rec)
{'a': 123, 'b': 456}
```
```
class sage.libs.gap.element.GapElement_Ring
Bases: sage.libs.gap.element.GapElement

Derived class of GapElement for GAP rings (parents of ring elements).

EXAMPLES:

```
```plaintext
sage: i = libgap(ZZ)
sage: type(i)
<type 'sage.libs.gap.element.GapElement_Ring'>

ring_cyclotomic()
Construct an integer ring.

EXAMPLES:
```plaintext
sage: libgap.CyclotomicField(6).ring_cyclotomic()
Cyclotomic Field of order 3 and degree 2
```

ring_finite_field(var='a')
Construct an integer ring.

EXAMPLES:
```plaintext
sage: libgap.GF(3,2).ring_finite_field(var='A')
Finite Field in A of size 3^2
```

ring_integer()
Construct the Sage integers.

EXAMPLES:
```plaintext
sage: libgap.eval('Integers').ring_integer()
Integer Ring
```

ring_integer_mod()
Construct a Sage integer mod ring.

EXAMPLES:
```plaintext
sage: libgap.eval('ZmodnZ(15)').ring_integer_mod()
Ring of integers modulo 15
```

ring_polynomial()
Construct a polynomial ring.

EXAMPLES:
```plaintext
sage: B = libgap(QQ['x'])
sage: B.ring_polynomial()
Univariate Polynomial Ring in x over Rational Field

sage: B = libgap(ZZ['x','y'])
sage: B.ring_polynomial()
Multivariate Polynomial Ring in x, y over Integer Ring
```

ring_rational()
Construct the Sage rationals.

EXAMPLES:
```plaintext
sage: libgap.eval('Rationals').ring_rational()
Rational Field
```

sage(**kwds)
Return the Sage equivalent of the GapElement_Ring.
```
INPUT:

- **kwds** – keywords that are passed on to the `ring_` method.

OUTPUT:

A Sage ring.

EXAMPLES:

```python
sage: libgap.eval('Integers').sage()
Integer Ring

sage: libgap.eval('Rationals').sage()
Rational Field

sage: libgap.eval('ZmodnZ(15)').sage()
Ring of integers modulo 15

sage: libgap.GF(3,2).sage(var='A')
Finite Field in A of size 3^2

sage: libgap.CyclotomicField(6).sage()
Cyclotomic Field of order 3 and degree 2

sage: libgap(QQ['x','y']).sage()
Multivariate Polynomial Ring in x, y over Rational Field
```

class `sage.libs.gap.element.GapElement_String`

**Bases:** `sage.libs.gap.element.GapElement`

Derived class of `GapElement` for GAP strings.

**EXAMPLES:**

```python
sage: s = libgap('string')
sage: type(s)
<type 'sage.libs.gap.element.GapElement_String'>
sage: s
"string"
sage: print(s)
string

sage()

Convert this `GapElement_String` to a Python string.

OUTPUT:

A Python string.

EXAMPLES:

```python
sage: s = libgap.eval("string"); s
"string"
sage: type(_)
<type 'sage.libs.gap.element.GapElement_String'>
sage: str(s)
'\"string\'
sage: s.sage()
'\"string\'
```

9.8 LibGAP Workspace Support

The single purpose of this module is to provide the location of the libgap saved workspace and a time stamp to invalidate saved workspaces.

```
sage.libs.gap.saved_workspace.timestamp()
```

Return a time stamp for (lib)gap

OUTPUT:

Float. Unix timestamp of the most recently changed GAP/LibGAP file(s). In particular, the timestamp increases whenever a gap package is added.

EXAMPLES:

```
sage: from sage.libs.gap.saved_workspace import timestamp
sage: timestamp()
# random output
1406642467.25684
sage: type(timestamp())
<type 'float'>
```

```
sage.libs.gap.saved_workspace.workspace(name='workspace')
```

Return the filename of the gap workspace and whether it is up to date.

INPUT:

- name – string. A name that will become part of the workspace filename.

OUTPUT:

Pair consisting of a string and a boolean. The string is the filename of the saved libgap workspace (or that it should have if it doesn’t exist). The boolean is whether the workspace is up-to-date. You may use the workspace file only if the boolean is True.

EXAMPLES:

```
sage: from sage.libs.gap.saved_workspace import workspace
sage: ws, up_to_date = workspace()
sage: ws
'/.../gap/libgap-workspace-...'  
sage: isinstance(up_to_date, bool)
True
```
10.1 Interface between flint matrices and linbox

This module only contains C++ code (and the interface is fully C compatible). It basically contains what used to be in the LinBox source code under interfaces/sage/linbox-sage.C written by M. Albrecht and C. Pernet. The functions available are:

- `void linbox_fmpz_mat_mul(fmpz_mat_t C, fmpz_mat_t A, fmpz_mat_t B);` set C to be the result of the multiplication $A \times B$
- `void linbox_fmpz_mat_charpoly(fmpz_poly_t cp, fmpz_mat_t A);` set cp to be the characteristic polynomial of the square matrix A
- `void linbox_fmpz_mat_minpoly(fmpz_poly_t mp, fmpz_mat_t A);` set mp to be the minimal polynomial of the square matrix A
- `size_t linbox_fmpz_mat_rank(fmpz_mat_t A);` return the rank of the matrix A
- `void linbox_fmpz_mat_det(fmpz_t det, fmpz_mat_t A);` set det to the determinant of the square matrix A
11.1 An interface to Anders Buch’s Littlewood-Richardson Calculator

`lrcalc`

The “Littlewood-Richardson Calculator” is a C library for fast computation of Littlewood-Richardson (LR) coefficients and products of Schubert polynomials. It handles single LR coefficients, products of and coproducts of Schur functions, skew Schur functions, and fusion products. All of the above are achieved by counting LR (skew)-tableaux (also called Yamanouchi (skew)-tableaux) of appropriate shape and content by iterating through them. Additionally, `lrcalc` handles products of Schubert polynomials.

The web page of `lrcalc` is http://sites.math.rutgers.edu/~asbuch/lrcalc/.

The following describes the Sage interface to this library.

EXAMPLES:

```python
sage: import sage.libs.lrcalc.lrcalc as lrcalc
```

Compute a single Littlewood-Richardson coefficient:

```python
sage: lrcalc.lrcoef([3,2,1],[2,1],[2,1])
2
```

Compute a product of Schur functions; return the coefficients in the Schur expansion:

```python
sage: lrcalc.mult([2,1], [2,1])
{[2, 2, 2]: 1, [3, 2, 1]: 2, [3, 3]: 1, [4, 1, 1]: 1, [4, 2]: 1}
```

Same product, but include only partitions with at most 3 rows. This corresponds to computing in the representation ring of gl(3):

```python
sage: lrcalc.mult([2,1], [2,1], 3)
{[2, 2, 2]: 1, [3, 2, 1]: 2, [3, 3]: 1, [4, 1, 1]: 1, [4, 2]: 1}
```

We can also compute the fusion product, here for sl(3) and level 2:

```python
sage: lrcalc.mult([3,2,1], [3,2,1], 3, 2)
{[4, 4, 4]: 1, [5, 4, 3]: 1}
```
Compute the expansion of a skew Schur function:

```
sage: lrcalc.skew([3,2,1],[2,1])
{{[1, 1, 1]: 1, [2, 1]: 2, [3]: 1}}
```

Compute the coproduct of a Schur function:

```
sage: lrcalc.coprod([3,2,1])
{([1, 1, 1], [2, 1]): 1, ([2, 1], [2, 1]): 2, ([2, 1], [3]): 1, ([2, 1, 1], [1, 1]): 1, ([2, 1, 1], [2]): 1, ([2, 2], [1, 1]): 1, ([2, 2], [2]): 1, ([2, 2, 1], [1]): 1, ([3, 1], [1, 1]): 1, ([3, 1], [2]): 1, ([3, 1, 1], [1]): 1, ([3, 2], [1]): 1, ([3, 2, 1], [1]): 1}
```

Multiply two Schubert polynomials:

```
sage: lrcalc.mult_schubert([4,2,1,3], [1,4,2,5,3])
{[4, 5, 1, 3, 2]: 1, [5, 3, 1, 4, 2]: 1, [5, 4, 1, 2, 3]: 1, [6, 2, 1, 4, 3, 5]: 1}
```

Same product, but include only permutations of 5 elements in the result. This corresponds to computing in the cohomology ring of \(\text{Fl}(5) \):

```
sage: lrcalc.mult_schubert([4,2,1,3], [1,4,2,5,3], 5)
{[4, 5, 1, 3, 2]: 1, [5, 3, 1, 4, 2]: 1, [5, 4, 1, 2, 3]: 1}
```

List all Littlewood-Richardson tableaux of skew shape \(\mu/\nu \); in this example \(\mu = [3,2,1] \) and \(\nu = [2,1] \). Specifying a third entry \texttt{maxrows} restricts the alphabet to \{1,2,...,\texttt{maxrows}\}:

```
sage: list(lrcalc.lrskew([3,2,1],[2,1]))
[[[None, None, 1], [None, 1], [1]], [[None, None, 1], [None, 1], [2]],
 [[None, None, 1], [None, 2], [1]], [[None, None, 1], [None, 2], [3]]]
```

```
sage: list(lrcalc.lrskew([3,2,1],[2,1],maxrows=2))
[[[None, None, 1], [None, 1], [1]], [[None, None, 1], [None, 1], [2]], [[None, None, 1], [None, 2], [1]]]
```

Todo: use this library in the \texttt{SymmetricFunctions} code, to make it easy to apply it to linear combinations of Schur functions.

See also:

- \texttt{lrcoef()}
- \texttt{mult()}
- \texttt{coprod()}
• skew()
• lrskew()
• mult_schubert()

Underlying algorithmic in lrcalc

Here is some additional information regarding the main low-level C-functions in lrcalc. Given two partitions outer and inner with inner contained in outer, the function:

```c
skewtab *st_new(vector *outer, vector *inner, vector *conts, int maxrows)
```

constructs and returns the (lexicographically) first LR skew tableau of shape outer / inner. Further restrictions can be imposed using conts and maxrows.

Namely, the integer maxrows is a bound on the integers that can be put in the tableau. The name is chosen because this will limit the partitions in the output of skew() or mult() to partitions with at most this number of rows.

The vector conts is the content of an empty tableau(!). More precisely, this vector is added to the usual content of a tableau whenever the content is needed. This affects which tableaux are considered LR tableaux (see mult() below). conts may also be the NULL pointer, in which case nothing is added.

The other function:

```c
int *st_next(skewtab *st)
```

computes in place the (lexicographically) next skew tableau with the same constraints, or returns 0 if st is the last one.

For a first example, see the skew() function code in the lrcalc source code. We want to compute a skew Schur function, so create a skew LR tableau of the appropriate shape with st_new(with conts = NULL), then iterate through all the LR tableaux with st_next(). For each skew tableau, we use that st->conts is the content of the skew tableau, find this shape in the res hash table and add one to the value.

For a second example, see mult(vector *sh1, vector *sh2, maxrows). Here we call st_new() with the shape sh1 / (0) and use sh2 as the conts argument. The effect of using sh2 in this way is that st_next will iterate through semistandard tableaux T of shape sh1 such that the following tableau:

```
111111
22222 <--- minimal tableau of shape sh2
333
*****
++T++
****
**
```

is a LR skew tableau, and st->conts contains the content of the combined tableaux.

More generally, st_new(outer, inner, conts, maxrows) and st_next can be used to compute the Schur expansion of the product S_(outer/inner) * S_conts, restricted to partitions with at most maxrows rows.

AUTHORS:

• Mike Hansen (2010): core of the interface
• Anne Schilling, Nicolas M. Thiéry, and Anders Buch (2011): fusion product, iterating through LR tableaux, finalization, documentation

11.1. An interface to Anders Buch’s Littlewood-Richardson Calculator lrcalc
Sage Reference Manual: C/C++ Library Interfaces, Release 9.0

sage.libs.lrcalc.lrcalc.coprod \((part, all=0) \)
Compute the coproduct of a Schur function.

Return a linear combination of pairs of partitions representing the coproduct of the Schur function given by the partition \(part \).

INPUT:
- \(part \) – a partition.
- \(all \) – an integer.

If \(all \) is non-zero then all terms are included in the result. If \(all \) is zero, then only pairs of partitions \((part1, part2) \) for which the weight of \(part1 \) is greater than or equal to the weight of \(part2 \) are included; the rest of the coefficients are redundant because Littlewood-Richardson coefficients are symmetric.

EXAMPLES:

```python
sage: from sage.libs.lrcalc.lrcalc import coprod
sage: sorted(coprod([2,1]).items())
[(([1, 1], [1]), 1), ([2], [1]), ([2, 1], []), ([2, 1], []), ([2, 1], [])]
```

sage.libs.lrcalc.lrcalc.lrcoef \((outer, inner1, inner2) \)
Compute a single Littlewood-Richardson coefficient.

Return the coefficient of \(outer \) in the product of the Schur functions indexed by \(inner1 \) and \(inner2 \).

INPUT:
- \(outer \) – a partition (weakly decreasing list of non-negative integers).
- \(inner1 \) – a partition.
- \(inner2 \) – a partition.

Note: This function converts its inputs into `Partition`’s. If you don’t need these checks and your inputs are valid, then you can use `lrcoef_unsafe()`.

EXAMPLES:

```python
sage: from sage.libs.lrcalc.lrcalc import lrcoef
sage: lrcoef([3,2,1], [2,1], [2,1])
2
sage: lrcoef([3,3], [2,1], [2,1])
1
sage: lrcoef([2,1,1,1,1], [2,1], [2,1])
0
```

sage.libs.lrcalc.lrcalc.lrcoef_unsafe \((outer, inner1, inner2) \)
Compute a single Littlewood-Richardson coefficient.

Return the coefficient of \(outer \) in the product of the Schur functions indexed by \(inner1 \) and \(inner2 \).

INPUT:
- \(outer \) – a partition (weakly decreasing list of non-negative integers).
- \(inner1 \) – a partition.
- \(inner2 \) – a partition.
Warning: This function does not do any check on its input. If you want to use a safer version, use \texttt{lrcoef()}.

EXAMPLES:

```
sage: from sage.libs.lrcalc.lrcalc import lrcoef_unsafe
sage: lrcoef_unsafe([3,2,1], [2,1], [2,1])
2
sage: lrcoef_unsafe([3,3], [2,1], [2,1])
1
sage: lrcoef_unsafe([2,1,1,1,1], [2,1], [2,1])
0
```

\texttt{lr.lib.lrcalc.lrske}\texttt{w}(\texttt{outer, inner, weight=}}\texttt{None, maxrows=0})

Iterate over the skew LR tableaux of shape \texttt{outer / inner}.

INPUT:

- \texttt{outer} – a partition
- \texttt{inner} – a partition
- \texttt{weight} – a partition (optional)
- \texttt{maxrows} – an integer (optional)

OUTPUT: an iterator of \texttt{SkewTableau}

Specifying \texttt{maxrows} restricts the alphabet to \{1,2,...,\texttt{maxrows}\}.

Specifying \texttt{weight} returns only those tableaux of given content/weight.

EXAMPLES:

```
sage: from sage.libs.lrcalc.lrske\texttt{w} import lrskew
sage: for st in lrskew([3,2,1], [2]):
    ....:     st.pp()
    . . 1
    1 1
    2
    . . 1
    1 2
    2
    . . 1
    1 2
    3
sage: for st in lrskew([3,2,1], [2], maxrows=2):
    ....:     st.pp()
    . . 1
    1 1
    2
    . . 1
    1 2
    2

sage: list(lrskew([3,2,1], [2], weight=[3,1]))
[[[None, None, 1], [1, 1], [2]]]
```

11.1. An interface to Anders Buch's Littlewood-Richardson Calculator \texttt{lrcalc}
sage.libs.lrcalc.lrcalc.mult\((\text{part1}, \text{part2}, \text{maxrows}=\text{None}, \text{level}=\text{None}, \text{quantum}=\text{None}) \)

Compute a product of two Schur functions.

Return the product of the Schur functions indexed by the partitions \(\text{part1} \) and \(\text{part2} \).

INPUT:

- \(\text{part1} \) – a partition
- \(\text{part2} \) – a partition
- \(\text{maxrows} \) – (optional) an integer
- \(\text{level} \) – (optional) an integer
- \(\text{quantum} \) – (optional) an element of a ring

If \(\text{maxrows} \) is specified, then only partitions with at most this number of rows are included in the result.

If both \(\text{maxrows} \) and \(\text{level} \) are specified, then the function calculates the fusion product for \(\mathfrak{sl}(\text{maxrows}) \) of the given level.

If \(\text{quantum} \) is set, then this returns the product in the quantum cohomology ring of the Grassmannian. In particular, both \(\text{maxrows} \) and \(\text{level} \) need to be specified.

EXAMPLES:

```python
sage: from sage.libs.lrcalc.lrcalc import mult
sage: mult([2],[])
{(2): 1}
sage: sorted(mult([2],[2]).items())
[(\[2, 2\], 1), (\[3, 1\], 1), (\[4\], 1)]
sage: sorted(mult([2],[2]).items())
[(\[2, 2\], 1), (\[3, 1\], 1), (\[4\], 1)]
sage: sorted(mult([2],[2],maxrows=2).items())
[(\[3, 3\], 1), (\[4, 2\], 1)]
sage: mult([2],[2],[3])
sage: mult([2],[2],[3])
sage: mult([2],[2],None,3)
Traceback (most recent call last):
...
ValueError: maxrows needs to be specified if you specify the level
```

The quantum product::

```python
sage: q = polygen(QQ, 'q')
sage: sorted(mult([1],[2], 2, quantum=q).items())
[(\[1, q\], 1), (\[2, q\], 1)]
sage: sorted(mult([2],[2], 2, quantum=q).items())
[(\[1, q\], q), (\[2, q\], q)]
sage: mult([2],[2], quantum=q)
Traceback (most recent call last):
...
ValueError: missing parameters maxrows or level
```

sage.libs.lrcalc.lrcalc.mult_schubert\((\text{w1}, \text{w2}, \text{rank}=0) \)

Compute a product of two Schubert polynomials.
Return a linear combination of permutations representing the product of the Schubert polynomials indexed by the permutations \(w_1\) and \(w_2\).

INPUT:
- \(w_1\) – a permutation.
- \(w_2\) – a permutation.
- \(\text{rank}\) – an integer.

If \(\text{rank}\) is non-zero, then only permutations from the symmetric group \(S(\text{rank})\) are included in the result.

EXAMPLES:

```python
sage: from sage.libs.lrcalc.lrcalc import mult_schubert
sage: result = mult_schubert([3, 1, 5, 2, 4], [3, 5, 2, 1, 4])
sage: sorted(result.items())
```

```plaintext`
[( [5, 4, 6, 1, 2, 3], 1), ([5, 6, 3, 1, 2, 4], 1),
 ( [5, 7, 2, 1, 3, 4, 6], 1), ([6, 3, 5, 1, 2, 4], 1),
 ( [6, 4, 3, 1, 2, 5], 1), ([6, 5, 2, 1, 3, 4], 1),
 ( [7, 3, 4, 1, 2, 5, 6], 1), ([7, 4, 2, 1, 3, 5, 6], 1)]
```

`sage.libs.lrcalc.lrcalc.skew(outer, inner, maxrows=0)`

Compute the Schur expansion of a skew Schur function.

Return a linear combination of partitions representing the Schur function of the skew Young diagram \(\text{outer} / \text{inner}\), consisting of boxes in the partition \(\text{outer}\) that are not in \(\text{inner}\).

INPUT:
- \(\text{outer}\) – a partition.
- \(\text{inner}\) – a partition.
- \(\text{maxrows}\) – an integer or \(\text{None}\).

If \(\text{maxrows}\) is specified, then only partitions with at most this number of rows are included in the result.

EXAMPLES:

```python
sage: from sage.libs.lrcalc.lrcalc import skew
sage: sorted(skew([2,1],[1]).items())
```

```plaintext`
[((1, 1), 1), ([2, 1), 1])
```

`sage.libs.lrcalc.lrcalc.test_iterable_to_vector(it)`

A wrapper function for the cdef function `iterable_to_vector` and `vector_to_list`, to test that they are working correctly.

EXAMPLES:

```python
sage: from sage.libs.lrcalc.lrcalc import test_iterable_to_vector
sage: x = test_iterable_to_vector([3,2,1]); x
[3, 2, 1]
```

`sage.libs.lrcalc.lrcalc.test_skewtab_to_SkewTableau(outer, inner)`

A wrapper function for the cdef function `skewtab_to_SkewTableau` for testing purposes.

It constructs the first LR skew tableau of shape \(\text{outer}/\text{inner}\) as an `lrcalcskewtab`, and converts it to a `SkewTableau`.

EXAMPLES:
```python
sage: from sage.libs.lrcalc.lrcalc import test_skewtab_to_SkewTableau
sage: test_skewtab_to_SkewTableau([3,2,1],[])
[[1, 1, 1], [2, 2], [3]]
```

```python
sage: test_skewtab_to_SkewTableau([4,3,2,1],[1,1]).pp()
 1 1 1
 2 2
1 3
2
```
12.1 Utilities for Sage-mpmath interaction

Also patches some mpmath functions for speed

```python
sage.libs.mpmath.utils.bitcount(n)
```

Bitcount of a Sage Integer or Python int/long.

EXAMPLES:

```python
sage: from mpmath.libmp import bitcount
sage: bitcount(0)
0
sage: bitcount(1)
1
sage: bitcount(100)
7
sage: bitcount(-100)
7
sage: bitcount(2r)
2
sage: bitcount(2L)
2
```

```python
sage.libs.mpmath.utils.call(func, *args, **kwargs)
```

Call an mpmath function with Sage objects as inputs and convert the result back to a Sage real or complex number.

By default, a RealNumber or ComplexNumber with the current working precision of mpmath (mpmath.mp.prec) will be returned.

If prec=n is passed among the keyword arguments, the temporary working precision will be set to n and the result will also have this precision.

If parent=P is passed, P.prec() will be used as working precision and the result will be coerced to P (or the corresponding complex field if necessary).

Arguments should be Sage objects that can be coerced into RealField or ComplexField elements. Arguments may also be tuples, lists or dicts (which are converted recursively), or any type that mpmath understands natively (e.g. Python floats, strings for options).

EXAMPLES:

```python
sage: import sage.libs.mpmath.all as a
sage: a.mp.prec = 53
```
sage: a.call(a.erf, 3+4*I)
-120.186991395079 - 27.7503372936239*I

sage: a.call(a.polylog, 2, 1/3+4/5*I)
0.153548951541433 + 0.87514412499637*I

sage: a.call(a.barnesg, 3+4*I)
-0.0006763759322344 - 0.000042236140124728*I

sage: a.call(a.barnesg, -4)
0.000000000000000

sage: a.call(a.hyper, [2,3], [4,5], 1/3)
1.0703578162508

sage: a.call(a.hyper, [2,3], [4,(2,3)], 1/3)
1.9576293509305

sage: a.call(a.quad, a.erf, [0,1])
0.486064958112256

sage: a.call(a.gammainc, 3+4*I, 2/3, 1-pi*I, prec=100)
-271.188711307716902270612331 + 101.59521032382593402947725236*I

sage: a.call(a.gamma, infinity)
+infinity

sage: a.call(a.polylog, 2, 1/2, parent=RR)
0.582240526465012

sage: a.call(a.polylog, 2, 1/2, parent=RealField(100))
0.58224052646501250590265632016

sage: a.call(a.polylog, 2, 1/2, parent=RealField(100))
2.467401100272339547086227500 - 2.177586090303602130506888982*I

sage: a.call(a.polylog, 2, 1/2, parent=CC)

sage: type(_)
<type 'sage.rings.complex_number.ComplexNumber'>

sage: a.call(a.polylog, 2, 1/2, parent=RDF)
0.5822405264650125

sage: type(_)
<type 'sage.rings.real_double.RealDoubleElement'>

Check that trac ticket #11885 is fixed:

sage: a.call(a.ei, 1.0r, parent=float)
1.8951178163559366

Check that trac ticket #14984 is fixed:

sage: a.call(a.log, -1.0r, parent=float)
3.141592653589793j

sage.libs.mpmath.util.from_man_exp(man, exp, prec=0, rnd='d')
Create normalized mpf value tuple from mantissa and exponent.

With prec > 0, rounds the result in the desired direction if necessary.
EXAMPLES:

```
sage: from mpmath.libmp import from_man_exp
sage: from_man_exp(-6, -1)
(1, 3, 0, 2)
sage: from_man_exp(-6, -1, 1, 'd')
(1, 1, 1, 1)
sage: from_man_exp(-6, -1, 1, 'u')
(1, 1, 2, 1)
```

```
sage.libs.mpmath.utils.isqrt(n)
Square root (rounded to floor) of a Sage Integer or Python int/long. The result is a Sage Integer.

EXAMPLES:
```
sage: from mpmath.libmp import isqrt
sage: isqrt(0)
0
sage: isqrt(100)
10
sage: isqrt(10)
3
sage: isqrt(10r)
3
sage: isqrt(10L)
3
```

```
sage.libs.mpmath.utils.mpmath_to_sage(x, prec)
Convert any mpmath number (mpf or mpc) to a Sage RealNumber or ComplexNumber of the given precision.

EXAMPLES:
```
sage: import sage.libs.mpmath.all as a
sage: a.mpmath_to_sage(a.mpf('2.5'), 53)
2.50000000000000000000000000000000000000000000000000000000000000000
sage: a.mpmath_to_sage(a.mpc('2.5','-3.5'), 53)
2.50000000000000000000000000000000000000000000000000000000000000000e+0+3.50000000000000000000000000000000000000000000000000000000000000000e-1*I
sage: a.mpmath_to_sage(a.mpf('inf'), 53)
+infinity
sage: a.mpmath_to_sage(a.mpf('-inf'), 53)
-infinity
sage: a.mpmath_to_sage(a.mpf('nan'), 53)
NaN
sage: a.mpmath_to_sage(a.mpf('0'), 53)
0.00000000000000000000000000000000000000000000000000000000000000000
```

A real example:

```
sage: RealField(100)(pi)
3.1415926535897932384626433833
sage: t = RealField(100)(pi)._mpmath_(); t
mpf('3.1415926535897932384626433833')
sage: a.mpmath_to_sage(t, 100)
3.1415926535897932384626433833
```

We can ask for more precision, but the result is undefined:
A complex example:

```python
sage: ComplexField(100)([0, pi])
3.1415926535897932384626433833*I
sage: t = ComplexField(100)([0, pi])._mpmath_(); t
mpc(real='0.0', imag='3.1415926535897932')
sage: sage.libs.mpmath.all.mpmath_to_sage(t, 100)
3.1415926535897932384626433833*I
```

Again, we can ask for more precision, but the result is undefined:

```python
sage: sage.libs.mpmath.all.mpmath_to_sage(t, 140) # random
3.1415926535897932384626433832793333156440*I
sage: ComplexField(140)([0, pi])
3.1415926535897932384626433832795028841972*I
```

`sage.libs.mpmath.utils.normalize(sign, man, exp, bc, prec, rnd)`
Create normalized mpf value tuple from full list of components.

EXAMPLES:

```python
sage: from mpmath.libmp import normalize
sage: normalize(0, 4, 5, 3, 53, 'n')
(0, 1, 7, 1)
```

`sage.libs.mpmath.utils.sage_to_mpmath(x, prec)`
Convert any Sage number that can be coerced into a `RealNumber` or `ComplexNumber` of the given precision into an mpmath `mpf` or `mpc`. Integers are currently converted to int.

Lists, tuples and dicts passed as input are converted recursively.

EXAMPLES:

```python
sage: import sage.libs.mpmath.all as a
sage: a.mp.dps = 15
sage: print(a.sage_to_mpmath(2/3, 53))
0.666666666666667
sage: print(a.sage_to_mpmath(2./3, 53))
0.666666666666667
sage: print(a.sage_to_mpmath(3+4*I, 53))
(3.0 + 4.0j)
sage: print(a.sage_to_mpmath(1+pi, 53))
4.14159265358979
sage: a.sage_to_mpmath(infinity, 53)
mpf('+inf')
sage: a.sage_to_mpmath(-infinity, 53)
mpf('-inf')
sage: a.sage_to_mpmath(NaN, 53)
mpf('nan')
sage: a.sage_to_mpmath(0, 53)
0
sage: a.sage_to_mpmath([0.5, 1.5], 53)
[mpf('0.5'), mpf('1.5')]
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sage: a.sage_to_mpmath((0.5, 1.5), 53)</td>
<td>Returns a tuple of MPF objects for the given float values.</td>
</tr>
<tr>
<td>sage: a.sage_to_mpmath((mpf('0.5'), mpf('1.5')))</td>
<td>Converts Sage float objects to MPF objects.</td>
</tr>
<tr>
<td>sage: a.sage_to_mpmath({'n':0.5}, 53)</td>
<td>Converts a dictionary with a float key to an MPF object.</td>
</tr>
<tr>
<td>{'n': mpf('0.5')}</td>
<td>Represents the result of the conversion.</td>
</tr>
</tbody>
</table>
13.1 Victor Shoup’s NTL C++ Library

Sage provides an interface to Victor Shoup’s C++ library NTL. Features of this library include incredibly fast arithmetic with polynomials and asymptotically fast factorization of polynomials.
14.1 Interface between Sage and PARI

14.1.1 Guide to real precision in the PARI interface

In the PARI interface, “real precision” refers to the precision of real numbers, so it is the floating-point precision. This is a non-trivial issue, since there are various interfaces for different things.

Internal representation and conversion between Sage and PARI

Real numbers in PARI have a precision associated to them, which is always a multiple of the CPU wordsize. So, it is a multiple of 32 or 64 bits. When converting from Sage to PARI, the precision is rounded up to the nearest multiple of the wordsize:

```python
sage: x = 1.0
sage: x.precision()
53
sage: pari(x)
1.00000000000000
sage: pari(x).bitprecision()
64
```

With a higher precision:

```python
sage: x = RealField(100).pi()
sage: x.precision()
100
sage: pari(x).bitprecision()
128
```

When converting back to Sage, the precision from PARI is taken:

```python
sage: x = RealField(100).pi()
sage: y = pari(x).sage()
sage: y
3.1415926535897932384626433832793233.convert(digits=50)
sage: parent(y)
Real Field with 128 bits of precision
```

So `pari(x).sage()` is definitely not equal to `x` since it has 28 bogus bits.

Therefore, some care must be taken when juggling reals back and forth between Sage and PARI. The correct way of avoiding this is to convert `pari(x).sage()` back into a domain with the right precision. This has to be done by
the user (or by Sage functions that use PARI library functions). For instance, if we want to use the PARI library to compute \(\sqrt{\pi} \) with a precision of 100 bits:

```python
sage: R = RealField(100)
sage: s = R(pi); s
3.1415926535897932384626433833
sage: p = pari(s).sqrt()
```

```python
sage: x = p.sage(); x # wow, more digits than I expected!
1.7724538509055160272981674833410973484
```

```python
sage: x.prec() # has precision 'improved' from 100 to 128?
128
```

```python
sage: x == RealField(128)(pi).sqrt() # sadly, no!
False
```

```python
sage: R(x) # x should be brought back to precision 100
1.7724538509055160272981674833
```

```python
sage: R(x) == s.sqrt() # True
```

Output precision for printing

Even though PARI reals have a precision, not all significant bits are printed by default. The maximum number of digits when printing a PARI real can be set using the methods `Pari.set_real_precision_bits()` or `Pari.set_real_precision()`.

We create a very precise approximation of \(\pi \) and see how it is printed in PARI:

```python
sage: pi = pari(RealField(1000).pi())
```

The default precision is 15 digits:

```python
sage: pi
3.14159265358979
```

With a different precision:

```python
sage: _ = pari.set_real_precision(50)
sage: pi
3.1415926535897932384626433832795028841971693993751
```

Back to the default:

```python
sage: _ = pari.set_real_precision(15)
sage: pi
3.14159265358979
```

Input precision for function calls

When we talk about precision for PARI functions, we need to distinguish three kinds of calls:

1. Using the string interface, for example `pari("\sin(1)")`.
2. Using the library interface with exact inputs, for example `pari(1).sin()`.
3. Using the library interface with inexact inputs, for example `pari(1.0).sin()`.

In the first case, the relevant precision is the one set by the methods `Pari.set_real_precision_bits()` or `Pari.set_real_precision()`:
Sage Reference Manual: C/C++ Library Interfaces, Release 9.0

In the second case, the precision can be given as the argument `precision` in the function call, with a default of 53 bits. The real precision set by `Pari.set_real_precision_bits()` or `Pari.set_real_precision()` is irrelevant.

In these examples, we convert to Sage to ensure that PARI’s real precision is not used when printing the numbers. As explained before, this artificially increases the precision to a multiple of the wordsize.

In the third case, the precision is determined only by the inexact inputs and the `precision` argument is ignored:

Elliptic curve functions

An elliptic curve given with exact \(a\)-invariants is considered an exact object. Therefore, you should set the precision for each method call individually:

14.2 Convert PARI objects to Sage types

`sage.libs.pari.convert_sage.gen_to_sage(z, locals=None)`

Convert a PARI gen to a Sage/Python object.

INPUT:

- \(z\) – PARI gen
• locals – optional dictionary used in fallback cases that involve sage_eval()

OUTPUT:

One of the following depending on the PARI type of z

- a Integer if z is an integer (type t_INT)
- a Rational if z is a rational (type t_FRAC)
- a RealNumber if z is a real number (type t_REAL). The precision will be equivalent.
- a NumberFieldElement_quadratic or a ComplexNumber if z is a complex number (type t_COMPLEX). The former is used when the real and imaginary parts are integers or rationals and the latter when they are floating point numbers. In that case The precision will be the maximal precision of the real and imaginary parts.
- a Python list if z is a vector or a list (type t_VEC, t_COL)
- a Python string if z is a string (type t_STR)
- a Python list of Python integers if z is a small vector (type t_VECSMALL)
- a matrix if z is a matrix (type t_MAT)
- a padic element (type t_PADIC)
- a Infinity if z is an infinity (type t_INF)

EXAMPLES:

```
sage: from sage.libs.pari.convert_sage import gen_to_sage
```

Converting an integer:

```
sage: z = pari('12'); z
12
sage: z.type()
't_INT'
sage: a = gen_to_sage(z); a
12
sage: a.parent()
Integer Ring
sage: gen_to_sage(pari('7^42'))
311973482284542371301330321821976049
```

Converting a rational number:

```
sage: z = pari('389/17'); z
389/17
sage: z.type()
't_FRAC'
sage: a = gen_to_sage(z); a
389/17
sage: a.parent()
Rational Field
sage: gen_to_sage(pari('5^30 / 3^50'))
931322574615478515625/717897987691852588770249
```

Converting a real number:
Sage: pari.set_real_precision(70)
15
Sage: z = pari('1.234'); z
1.23400
Sage: a = gen_to_sage(z); a
1.23400
Sage: a.parent()
Real Field with 256 bits of precision
Sage: pari.set_real_precision(15)
70
Sage: a = gen_to_sage(pari('1.234')); a
1.23400000000000000
Sage: a.parent()
Real Field with 64 bits of precision

For complex numbers, the parent depends on the PARI type:

Sage: z = pari('(3+I)'); z
3 + I
Sage: z.type()
't_COMPLEX'
Sage: a = gen_to_sage(z); a
i + 3
Sage: a.parent()
Number Field in i with defining polynomial x^2 + 1 with i = 1*I
Sage: z = pari('(3+I)/2'); z
3/2 + 1/2*I
Sage: a = gen_to_sage(z); a
1/2*i + 3/2
Sage: a.parent()
Number Field in i with defining polynomial x^2 + 1 with i = 1*I
Sage: z = pari('1.0 + 2.0*I'); z
1.00000000000000 + 2.00000000000000*I
Sage: a = gen_to_sage(z); a
1.00000000000000000 + 2.00000000000000000*I
Sage: a.parent()
Complex Field with 64 bits of precision

Converting polynomials:

Sage: f = pari('(2/3)*x^3 + x - 5/7 + y')
Sage: f.type()
't_POL'
Sage: R.<x,y> = QQ[]
Sage: gen_to_sage(f, {'x': x, 'y': y})
2/3*x^3 + x + y - 5/7
Sage: parent(gen_to_sage(f, {'x': x, 'y': y}))
Multivariate Polynomial Ring in x, y over Rational Field
Sage: x,y = SR.var('x,y')
Sage: gen_to_sage(f, {'x': x, 'y': y})
2/3*x^3 + x + y - 5/7
Sage: parent(gen_to_sage(f, {'x': x, 'y': y}))
Symbolic Ring
Sage Reference Manual: C/C++ Library Interfaces, Release 9.0

(continued from previous page)

```
sage: gen_to_sage(f)
Traceback (most recent call last):
...
NameError: name 'x' is not defined
```

Converting vectors:

```
sage: z1 = pari('[-3, 2.1, 1+I]'); z1
[-3, 2.10000000000000, 1 + I]
sage: z2 = pari('[[1.0+I, [1,2]]~]'); z2
[1.00000000000000+I, [1, 2]]~
sage: z1.type(), z2.type()
('t_VEC', 't_COL')
sage: a1 = gen_to_sage(z1)
sage: a2 = gen_to_sage(z2)
sage: type(a1), type(a2)
(<... 'list'>, <... 'list'>)
sage: [parent(b) for b in a1]
[<... 'int'>, <... 'int'>, <... 'int'>, <... 'int'>]
sage: [parent(b) for b in a2]
[<... 'int'>, <... 'int'>, <... 'int'>, <... 'int'>]
```

Matrices:

```
sage: z = pari('[[1,2;3,4]]')
sage: z.type()
't_MAT'
sage: a = gen_to_sage(z); a
[1, 2]
[3 4]
sage: a.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
```

Conversion of p-adics:

```
sage: z = pari('569 + O(7^8)'); z
2 + 4*7 + 4*7^2 + 7^3 + O(7^8)
sage: a = gen_to_sage(z); a
2 + 4*7 + 4*7^2 + 7^3 + O(7^8)
sage: a.parent()
7-adic Field with capped relative precision 8
```

Conversion of infinities:

```
```

Chapter 14. PARI
Conversion of strings:

```python
sage: s = pari('"foo"').sage(); s
'foo'
sage: type(s)
<type 'str'>
```

14.3 Ring of pari objects

AUTHORS:

- Simon King (2011-08-24): Use UniqueRepresentation, element_class and proper initialisation of elements.

class `sage.rings.pari_ring.Pari(x, parent=None)`

Bases: `sage.structure.element.RingElement`

Element of Pari pseudo-ring.

class `sage.rings.pari_ring.PariRing`

Bases: `sage.misc.fast_methods.Singleton, sage.rings.ring.Ring`

EXAMPLES:

```python
sage: R = PariRing(); R
Pseudoring of all PARI objects.
sage: loads(R.dumps()) is R
True
```

Element alias of `Pari`

characteristic()

is_field (proof=True)

random_element (x=None, y=None, distribution=None)

 Return a random integer in Pari.

Note: The given arguments are passed to \texttt{ZZ.random_element(...)}.

INPUT:

- \texttt{x, y} – optional integers, that are lower and upper bound for the result. If only \texttt{x} is provided, then the result is between 0 and \texttt{x} – 1, inclusive. If both are provided, then the result is between \texttt{x} and \texttt{y} – 1, inclusive.
- \texttt{distribution} – optional string, so that \texttt{ZZ} can make sense of it as a probability distribution.

EXAMPLES:
```python
sage: R = PariRing()
sage: R.random_element()
-8
sage: R.random_element(5,13)
12
sage: [R.random_element(distribution="1/n") for _ in range(10)]
[0, 1, -1, 2, 1, -95, -1, -2, -12, 0]
```

zeta()

Return -1.

EXAMPLES:

```python
sage: R = PariRing()
sage: R.zeta()
-1
```
15.1 Cython wrapper for the Parma Polyhedra Library (PPL)

The Parma Polyhedra Library (PPL) is a library for polyhedral computations over \(\mathbb{Q} \). This interface tries to reproduce the C++ API as faithfully as possible in Cython/Sage. For example, the following C++ excerpt:

```cpp
Variable x(0);
Variable y(1);
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
C_Polyhedron poly_from_constraints(cs);
```

translates into:

```
sage: from sage.libs.ppl import Variable, Constraint_System, C_Polyhedron
doctest:warning
...
DeprecationWarning: The Sage wrappers around ppl are now superseded by the standalone
˓→pplpy.
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x >= 0)
sage: cs.insert(x <= 3)
sage: cs.insert(y >= 0)
sage: cs.insert(y <= 3)
sage: poly_from_constraints = C_Polyhedron(cs)
```

The same polyhedron constructed from generators:

```
sage: from sage.libs.ppl import Variable, Generator_System, C_Polyhedron, point
sage: gs = Generator_System()
sage: gs.insert(point(0*x + 0*y))
sage: gs.insert(point(0*x + 3*y))
sage: gs.insert(point(3*x + 0*y))
sage: gs.insert(point(3*x + 3*y))
sage: poly_from_generators = C_Polyhedron(gs)
```

Rich comparisons test equality/inequality and strict/non-strict containment:
As we see above, the library is generally easy to use. There are a few pitfalls that are not entirely obvious without consulting the documentation, in particular:

- There are no vectors used to describe `Generator` (points, closure points, rays, lines) or `Constraint` (strict inequalities, non-strict inequalities, or equations). Coordinates are always specified via linear polynomials in `Variable`.

- All coordinates of rays and lines as well as all coefficients of constraint relations are (arbitrary precision) integers. Only the generators `point()` and `closure_point()` allow one to specify an overall divisor of the otherwise integral coordinates. For example:

```python
sage: from sage.libs.ppl import Variable, point
sage: x = Variable(0); y = Variable(1)
sage: p = point( 2*x+3*y, 5 ); p
point(2/5, 3/5)
sage: p.coefficient(x)
2
sage: p.coefficient(y)
3
sage: p.divisor()
5
```

- PPL supports (topologically) closed polyhedra (`C_Polyhedron`) as well as not necessarily closed polyhedra (`NNC_Polyhedron`). Only the latter allows closure points (=points of the closure but not of the actual polyhedron) and strict inequalities (`>` and `<`).

The naming convention for the C++ classes is that they start with `PPL_`, for example, the original `Linear_Expression` becomes `PPL_Linear_Expression`. The Python wrapper has the same name as the original library class, that is, just `Linear_Expression`. In short:

- If you are using the Python wrapper (if in doubt: that's you), then you use the same names as the PPL C++ class library.

- If you are writing your own Cython code, you can access the underlying C++ classes by adding the prefix `PPL_`.

Finally, PPL is fast. For example, here is the permutahedron of 5 basis vectors:

```python
sage: from sage.libs.ppl import Variable, Generator_System, point, C_Polyhedron
sage: basis = list(range(5))
sage: x = [ Variable(i) for i in basis ]
sage: gs = Generator_System()
sage: for coeff in Permutations(basis):
....:     gs.insert(point( sum( (coeff[i]+1)*x[i] for i in basis ) ))
sage: C_Polyhedron(gs)
A 4-dimensional polyhedron in QQ^5 defined as the convex hull of 120 points
```

The same computation with cddlib which is slightly slower:
```python
sage: basis = list(range(5))
sage: gs = [ tuple(coeff) for coeff in Permutations(basis) ]
sage: Polyhedron(vertices=gs, backend='cdd')
A 4-dimensional polyhedron in QQ^5 defined as the convex hull of 120 vertices
```

DIFFERENCES VS. C++

Since Python and C++ syntax are not always compatible, there are necessarily some differences. The main ones are:

- The `Linear_Expression` also accepts an iterable as input for the homogeneous coefficients.
- `Polyhedron` and its subclasses as well as `Generator_System` and `Constraint_System` can be set immutable via a `set_immutable()` method. This is the analog of declaring a C++ instance `const`. All other classes are immutable by themselves.

AUTHORS:

- Volker Braun (2010-10-08): initial version.
- Risan (2012-02-19): extension for MIP_Problem class
- Vincent Klein (2017-12-21): Deprecate this module. Future change should be done in the standalone package pplpy (https://github.com/videlec/pplpy).

```python
class sage.libs.ppl.C_Polyhedron
    Bases: sage.libs.ppl.Polyhedron

    Wrapper for PPL's `C_Polyhedron` class.

    An object of the class `C_Polyhedron` represents a topologically closed convex polyhedron in the vector space. See `NNC_Polyhedron` for more general (not necessarily closed) polyhedra.

    When building a closed polyhedron starting from a system of constraints, an exception is thrown if the system contains a strict inequality constraint. Similarly, an exception is thrown when building a closed polyhedron starting from a system of generators containing a closure point.

    INPUT:

    - `arg` – the defining data of the polyhedron. Any one of the following is accepted:
      - A non-negative integer. Depending on `degenerate_element`, either the space-filling or the empty polytope in the given dimension `arg` is constructed.
      - A `Constraint_System`.
      - A `Generator_System`.
      - A single `Constraint`.
      - A single `Generator`.
      - A `C_Polyhedron`.
    - `degenerate_element` – string, either 'universe' or 'empty'. Only used if `arg` is an integer.

    OUTPUT:

    A `C_Polyhedron`.

    EXAMPLES:
```
A 2-dimensional polyhedron in \mathbb{Q}^2 defined as the convex hull of 1 point, 1 ray, and 1 line

```
sage: cs = Constraint_System()
sage: cs.insert( x >= 0 )
sage: cs.insert( y >= 0 )
sage: C_Polyhedron(cs)
```

A 2-dimensional polyhedron in \mathbb{Q}^2 defined as the convex hull of 1 point, 2 rays

```
sage: C_Polyhedron( point(x+y) )
```

A 0-dimensional polyhedron in \mathbb{Q}^2 defined as the convex hull of 1 point

```
sage: gs = Generator_System()
sage: gs.insert( point(-x-y) )
sage: gs.insert( ray(x) )
sage: C_Polyhedron(gs)
```

A 1-dimensional polyhedron in \mathbb{Q}^2 defined as the convex hull of 1 point, 1 ray

The empty and universe polyhedra are constructed like this:

```
sage: C_Polyhedron(3, 'empty')
The empty polyhedron in $\mathbb{Q}^3$
sage: C_Polyhedron(3, 'empty').constraints()
Constraint_System [0==0]
sage: C_Polyhedron(3, 'universe')
The space-filling polyhedron in $\mathbb{Q}^3$
sage: C_Polyhedron(3, 'universe').constraints()
Constraint_System {}
```

Note that, by convention, the generator system of a polyhedron is either empty or contains at least one point. In particular, if you define a polyhedron via a non-empty `Generator_System` it must contain a point (at any position). If you start with a single generator, this generator must be a point:

```
sage: C_Polyhedron( ray(x) )
Traceback (most recent call last):
  ... ValueError: PPL::C_Polyhedron::C_Polyhedron(gs):
*this is an empty polyhedron and
the non-empty generator system gs contains no points.
```

```python
class sage.libs.ppl.Constraint
Bases: object

Wrapper for PPL's Constraint class.

An object of the class `Constraint` is either:

- an equality $\sum_{i=0}^{n-1} a_i x_i + b = 0$
- a non-strict inequality $\sum_{i=0}^{n-1} a_i x_i + b \geq 0$
- a strict inequality $\sum_{i=0}^{n-1} a_i x_i + b > 0$

where $n$ is the dimension of the space, $a_i$ is the integer coefficient of variable $x_i$, and $b_i$ is the integer inhomogeneous term.

INPUT/OUTPUT:

You construct constraints by writing inequalities in `Linear_Expression`. Do not attempt to manually construct constraints.

EXAMPLES:
```python
sage: from sage.libs.ppl import Constraint, Variable, Linear_Expression
sage: x = Variable(0)
sage: y = Variable(1)
sage: 5*x-2*y > x+y-1
4*x0-3*x1+1>0
sage: 5*x-2*y >= x+y-1
4*x0-3*x1+1>=0
sage: 5*x-2*y == x+y-1
4*x0-3*x1+1==0
sage: 5*x-2*y <= x+y-1
-4*x0+3*x1-1>=0
sage: x > 0
x0>0
```

Special care is needed if the left hand side is a constant:

```python
sage: 0 == 1 # watch out!
False
sage: Linear_Expression(0) == 1
-1==0
```

**OK()**
Check if all the invariants are satisfied.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: ineq = (3*x+2*y+1 >= 0)
sage: ineq.OK()
True
```

**ascii_dump()**
Write an ASCII dump to stderr.

**EXAMPLES:**

```python
sage: sage_cmd = 'from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: e = (3*x+2*y+1 > 0)
sage: e.ascii_dump()
```

```bash
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd],
 →timeout=100) # long time, indirect doctest
sage: print(err)
long time py2
size 4 1 3 2 -1 > (NNC)
```

... DeprecationWarning: The Sage wrappers around ppl are now superseded by the standalone pplpy.
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.

... size 4 1 3 2 -1 > (NNC)
```

```bash
sage: print(err)    # long time py3
size 4 1 3 2 -1 > (NNC)
```

... DeprecationWarning: The Sage wrappers around ppl are now superseded by the standalone pplpy.
```

(continues on next page)
coefficient ($v$)
Return the coefficient of the variable $v$.

**INPUT:**

- $v$ - a `Variable`.

**OUTPUT:**
An integer.

**EXAMPLES:**

```sage
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: ineq = (3*x+1 > 0)
sage: ineq.coefficient(x)
3
```

coefficients ()
Return the coefficients of the constraint.

See also `coefficient ()`.

**OUTPUT:**
A tuple of integers of length `space_dimension ()`.

**EXAMPLES:**

```sage
sage: from sage.libs.ppl import Variable
sage: x = Variable(0); y = Variable(1)
sage: ineq = (3*x+5*y+1 == 0); ineq
3*x0+5*x1-1==0
sage: ineq.coefficients()
(3, 5)
```

inhomogeneous_term ()
Return the inhomogeneous term of the constraint.

**OUTPUT:**
Integer.

**EXAMPLES:**

```sage
sage: from sage.libs.ppl import Variable
sage: y = Variable(1)
sage: ineq = (10+y > 9)
sage: ineq
x1+1>0
sage: ineq.inhomogeneous_term()
1
```

is_equality ()
Test whether `self` is an equality.

**OUTPUT:**
Boolean. Returns `True` if and only if `self` is an equality constraint.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).is_equality()
True
sage: (x>=0).is_equality()
False
sage: (x>0).is_equality()
False
```

### isEquivalentTo(c)

Test whether `self` and `c` are equivalent.

**INPUT:**

- `c` – a `Constraint`.

**OUTPUT:**

Boolean. Returns `True` if and only if `self` and `c` are equivalent constraints.

Note that constraints having different space dimensions are not equivalent. However, constraints having different types may nonetheless be equivalent, if they both are tautologies or inconsistent.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: x = Variable(0)
sage: y = Variable(1)
sage: (x>0).is_equivalent_to(Linear_Expression(0)<x)
True
sage: (x>0).is_equivalent_to(0*y<x)
False
sage: (0*x>1).is_equivalent_to(0*x==-2)
True
```

### isInconsistent()

Test whether `self` is an inconsistent constraint, that is, always false.

An inconsistent constraint can have either one of the following forms:

- an equality: \(\sum_0 x_i + b = 0\) with \(b \neq 0\),
- a non-strict inequality: \(\sum_0 x_i + b \geq 0\) with \(b < 0\), or
- a strict inequality: \(\sum_0 x_i + b > 0\) with \(b \leq 0\).

**OUTPUT:**

Boolean. Returns `True` if and only if `self` is an inconsistent constraint.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==1).is_inconsistent()
False
sage: (0*x>=1).is_inconsistent()
True
```
**is_inequality()**

Test whether `self` is an inequality.

**OUTPUT:**

Boolean. Returns `True` if and only if `self` is an inequality constraint, either strict or non-strict.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).is_inequality()
False
sage: (x>=0).is_inequality()
True
sage: (x>0).is_inequality()
True
```

**is_nonstrict_inequality()**

Test whether `self` is a non-strict inequality.

**OUTPUT:**

Boolean. Returns `True` if and only if `self` is an non-strict inequality constraint.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).is_nonstrict_inequality()
False
sage: (x>=0).is_nonstrict_inequality()
True
sage: (x>0).is_nonstrict_inequality()
False
```

**is_strict_inequality()**

Test whether `self` is a strict inequality.

**OUTPUT:**

Boolean. Returns `True` if and only if `self` is an strict inequality constraint.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).is_strict_inequality()
False
sage: (x>=0).is_strict_inequality()
False
sage: (x>0).is_strict_inequality()
True
```

**is_tautological()**

Test whether `self` is a tautological constraint.

A tautology can have either one of the following forms:

- an equality: \( \sum 0x_i + 0 = 0 \),
- a non-strict inequality: \( \sum 0x_i + b \geq 0 \) with \( b \geq 0 \), or
• a strict inequality: $\sum 0x_i + b > 0$ with $b > 0$.

OUTPUT:

Boolean. Returns True if and only if self is a tautological constraint.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).is_tautological()
False
sage: (0*x>=0).is_tautological()
True
```

`space_dimension()`

Return the dimension of the vector space enclosing self.

OUTPUT:

Integer.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: (x>=0).space_dimension()
1
sage: (y==1).space_dimension()
2
```

type()

Return the constraint type of self.

OUTPUT:

String. One of 'equality', 'nonstrict_inequality', or 'strict_inequality'.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: (x==0).type()
'equality'
sage: (x>=0).type()
'nonstrict_inequality'
sage: (x>0).type()
'strict_inequality'
```

---

**class sage.libs.ppl.Constraint_System**

Bases: sage.libs.ppl._mutable_or_immutable

Wrapper for PPL's Constraint_System class.

An object of the class Constraint_System is a system of constraints, i.e., a multiset of objects of the class Constraint. When inserting constraints in a system, space dimensions are automatically adjusted so that all the constraints in the system are defined on the same vector space.

EXAMPLES:
sage: from sage.libs.ppl import Constraint_System, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System( 5*x-2*y > 0 )
sage: cs.insert( 6*x<3*y )
sage: cs.insert( x >= 2*x-7*y )
sage: cs
Constraint_System {5*x0-2*x1>0, -2*x0+x1>0, -x0+7*x1>=0}
OK()
Check if all the invariants are satisfied.

EXAMPLES:

sage: from sage.libs.ppl import Variable, Constraint_System
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System( 3*x+2*y+1 <= 10 )
sage: cs.OK()
True

ascii_dump()
Write an ASCII dump to stderr.

EXAMPLES:

sage: sage_cmd = 'from sage.libs.ppl import Constraint_System, Variable\n\n'.format
sage: sage_cmd += 'x = Variable(0)\n'.format
sage: sage_cmd += 'y = Variable(1)\n'.format
sage: sage_cmd += 'cs = Constraint_System( 3*x > 2*y+1 )\n'.format
sage: sage_cmd += 'cs.ascii_dump()\n'.format
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd],
                     timeout=100) # long time, indirect doctest
sage: print(err) # long time py2
DeprecationWarning: The Sage wrappers around ppl are now superseded by the standalone pplpy.
... topology NOT_NECESSARILY_CLOSED
1 x 2 SPARSE (sorted)
index_first_pending 1
size 4 -1 3 -2 -1 > (NNC)
sage: print(err) # long time py3
DeprecationWarning: The Sage wrappers around ppl are now superseded by the standalone pplpy.
... topology NOT_NECESSARILY_CLOSED
1 x 2 SPARSE (sorted)
index_first_pending 1
size 4 -1 3 -2 -1 > (NNC)

clear()
Removes all constraints from the constraint system and sets its space dimension to 0.

EXAMPLES:
```sage
from sage.libs.ppl import Variable, Constraint_System

x = Variable(0)
cs = Constraint_System(x>0)
cs
Constraint_System {x0>0}
cs.clear()
cs
Constraint_System {}
```

**empty()**

Return True if and only if self has no constraints.

**OUTPUT:**

Boolean.

**EXAMPLES:**

```sage
from sage.libs.ppl import Variable, Constraint_System, point
x = Variable(0)
cs = Constraint_System()
cs.empty()
True
cs.insert(x>0)
cs.empty()
False
```

**has_equalities()**

Tests whether self contains one or more equality constraints.

**OUTPUT:**

Boolean.

**EXAMPLES:**

```sage
from sage.libs.ppl import Variable, Constraint_System
x = Variable(0)
cs = Constraint_System()
cs.insert(x>=0)
cs.insert(x<0)
cs.has_equalities()
False
cs.insert(x==0)
cs.has_equalities()
True
```

**has_strict_inequalities()**

Tests whether self contains one or more strict inequality constraints.

**OUTPUT:**

Boolean.

**EXAMPLES:**

```sage
from sage.libs.ppl import Variable, Constraint_System
x = Variable(0)
cs = Constraint_System()
cs.insert(x>=0)
cs.insert(x>0)
cs.insert(x<0)
cs.has_strict_inequalities()
False
cs.insert(x==0)
cs.has_strict_inequalities()
False
cs.has_strict_inequalities()
False
```

(continues on next page)
sage: cs.insert( x==-1 )
sage: cs.has_strict_inequalities()
False
sage: cs.insert( x>0 )
sage: cs.has_strict_inequalities()
True

\texttt{insert}(c)
Insert \(c\) into the constraint system.

\textbf{INPUT}:

\begin{itemize}
\item \(c\) - a \textit{Constraint}.
\end{itemize}

\textbf{EXAMPLES}:

\begin{verbatim}
sage: from sage.libs.ppl import Variable, Constraint_System
sage: x = Variable(0)
sage: cs = Constraint_System()
sage: cs.insert( x>0 )
sage: cs
Constraint_System \{x0>0\}
\end{verbatim}

\texttt{space_dimension}()
Return the dimension of the vector space enclosing \texttt{self}.

\textbf{OUTPUT}:

Integer.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: from sage.libs.ppl import Variable, Constraint_System
sage: x = Variable(0)
sage: cs = Constraint_System( x>0 )
sage: cs.space_dimension()
1
\end{verbatim}

\textbf{class} \texttt{sage.libs.ppl.Constraint_System_iterator}
Bases: object

Wrapper for PPL's \texttt{Constraint_System::const_iterator} class.

\textbf{EXAMPLES}:

\begin{verbatim}
sage: from sage.libs.ppl import Variable, Constraint_System_iterator
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System( 5*x < 2*y )
sage: cs.insert( 6*x-3*y==0 )
sage: cs.insert( x >= 2*x-7*y )
sage: next(Constraint_System_iterator(cs))
-5*x0+2*x1>0
sage: list(cs)
[-5*x0+2*x1>0, 2*x0-x1==0, -x0+7*x1>=0]
\end{verbatim}

\textbf{class} \texttt{sage.libs.ppl.Generator}
Bases: object
Wrapper for PPL's \texttt{Generator} class.

An object of the class \texttt{Generator} is one of the following:

- a line $\ell = (a_0, \ldots, a_{n-1})^T$
- a ray $r = (a_0, \ldots, a_{n-1})^T$
- a point $p = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^T$
- a closure point $c = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^T$

where $n$ is the dimension of the space and, for points and closure points, $d$ is the divisor.

**INPUT/OUTPUT:**

Use the helper functions \texttt{line()}, \texttt{ray()}, \texttt{point()}, and \texttt{closure_point()} to construct generators. Analogous class methods are also available, see \texttt{Generator.line()}, \texttt{Generator.ray()}, \texttt{Generator.point()}, \texttt{Generator.closure_point()}. Do not attempt to construct generators manually.

**Note:** The generators are constructed from linear expressions. The inhomogeneous term is always silently discarded.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Generator, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: Generator.line(5*x-2*y)
line(5, -2)
sage: Generator.ray(5*x-2*y)
ray(5, -2)
sage: Generator.point(5*x-2*y, 7)
point(5/7, -2/7)
sage: Generator.closure_point(5*x-2*y, 7)
closure_point(5/7, -2/7)
```

\texttt{OK()} 

Check if all the invariants are satisfied.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: e = 3*x+2*y+1
sage: e.OK()
True
```

\texttt{ascii_dump()}

Write an ASCII dump to stderr.

**EXAMPLES:**

```python
sage: sage_cmd = 'from sage.libs.ppl import Linear_Expression, Variable,
\n\n→point
sage: sage_cmd += 'x = Variable(0)\n' sage: sage_cmd += 'y = Variable(1)\n' sage: sage_cmd += 'p = point(3*x+2*y)\n' sage: sage_cmd += 'p.ascii_dump()\n'
```

(continues on next page)
```python
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd],
 timeout=100) # long time, indirect doctest
sage: print(err) # long time py2
/... DeprecationWarning: The Sage wrappers around ppl are now superseded by the standalone pplpy.
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.
...
size 3 1 3 2 P (C)
sage: print(err) # long time py3
size 3 1 3 2 P (C)
/... DeprecationWarning: The Sage wrappers around ppl are now superseded by the standalone pplpy.
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.
...
```

closure_point(expression=0, divisor=1)

Construct a closure point.

A closure point is a point of the topological closure of a polyhedron that is not a point of the polyhedron itself.

**INPUT:**

- expression – a `Linear_Expression` or something convertible to it (`Variable` or integer).
- divisor – an integer.

**OUTPUT:**

A new `Generator` representing the point.

Raises a `ValueError` if `divisor==0`.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Generator, Variable
sage: y = Variable(1)
sage: Generator.closure_point(2*y+7, 3)
closure_point(0/3, 2/3)
sage: Generator.closure_point(y+7, 3)
closure_point(0/3, 1/3)
sage: Generator.closure_point(7, 3)
closure_point()
sage: Generator.closure_point(0, 0)
Traceback (most recent call last):
...
ValueError: PPL::closure_point(e, d):
d == 0.
```

coefficient(v)

Return the coefficient of the variable `v`.

**INPUT:**

- v – a `Variable`.

**OUTPUT:**
An integer.

EXAMPLES:

```python
c sage: from sage.libs.ppl import Variable, line
c sage: x = Variable(0)
c sage: line = line(3*x+1)
c sage: line
line(1)
c sage: line.coefficient(x)
1
```

**coefficients()**

Return the coefficients of the generator.

See also **coefficient()**.

OUTPUT:

A tuple of integers of length `space_dimension()`.

EXAMPLES:

```python
c sage: from sage.libs.ppl import Variable, point
c sage: x = Variable(0); y = Variable(1)
c sage: p = point(3*x+5*y+1, 2); p
point(3/2, 5/2)
c sage: p.coefficients()
(3, 5)
```

**divisor()**

If `self` is either a point or a closure point, return its divisor.

OUTPUT:

An integer. If `self` is a ray or a line, raises `ValueError`.

EXAMPLES:

```python
c sage: from sage.libs.ppl import Generator, Variable
c sage: x = Variable(0)
c sage: y = Variable(1)
c sage: point = Generator.point(2*x-y+5)
c sage: point.divisor()
1
c sage: line = Generator.line(2*x-y+5)
c sage: line.divisor()
Traceback (most recent call last):
...
ValueError: PPL::Generator::divisor(): *this is neither a point nor a closure point.
```

**is_closure_point()**

Test whether `self` is a closure point.

OUTPUT:

Boolean.

EXAMPLES:
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)

sage: line(x).is_closure_point()
False
sage: ray(x).is_closure_point()
False
sage: point(x, 2).is_closure_point()
False
sage: closure_point(x, 2).is_closure_point()
True

**is_equivalent_to** (g)

Test whether `self` and `g` are equivalent.

**INPUT:**

- `g` — a *Generator*.

**OUTPUT:**

Boolean. Returns True if and only if `self` and `g` are equivalent generators. Note that generators having different space dimensions are not equivalent.

**EXAMPLES:**

```sage
sage: from sage.libs.ppl import Generator, Variable, point, line
sage: x = Variable(0)
sage: y = Variable(1)
sage: point(2*x, 2).is_equivalent_to(point(x))
True
sage: point(2*x+0*y, 2).is_equivalent_to(point(x))
False
sage: line(4*x).is_equivalent_to(line(x))
True
```

**is_line**()

Test whether `self` is a line.

**OUTPUT:**

Boolean.

**EXAMPLES:**

```sage
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).is_line()
True
sage: ray(x).is_line()
False
sage: point(x, 2).is_line()
False
sage: closure_point(x, 2).is_line()
False
```

**is_line_or_ray**()

Test whether `self` is a line or a ray.

**OUTPUT:**

Boolean.
EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).is_line_or_ray()
True
sage: ray(x).is_line_or_ray()
True
sage: point(x,2).is_line_or_ray()
False
sage: closure_point(x,2).is_line_or_ray()
False
```

**is_point()**

Test whether `self` is a point.

**OUTPUT:**

Boolean.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).is_point()
False
sage: ray(x).is_point()
False
sage: point(x,2).is_point()
True
sage: closure_point(x,2).is_point()
False
```

**is_ray()**

Test whether `self` is a ray.

**OUTPUT:**

Boolean.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).is_ray()
False
sage: ray(x).is_ray()
True
sage: point(x,2).is_ray()
False
sage: closure_point(x,2).is_ray()
False
```

**line(expression)**

Construct a line.

**INPUT:**

- expression – a `Linear_Expression` or something convertible to it (Variable or integer).

**OUTPUT:**
A new `Generator` representing the line.

Raises a `ValueError` if the homogeneous part of `expression` represents the origin of the vector space.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Generator, Variable
sage: y = Variable(1)
sage: Generator.line(2*y) # line(0, 1)
sage: Generator.line(y) # line(0, 1)
sage: Generator.line(1) # Traceback (most recent call last):
 ... ValueError: PPL::line(e):
 e == 0, but the origin cannot be a line.
```

**point**

Construct a point.

**INPUT:**

- `expression` – a `Linear_Expression` or something convertible to it (`Variable` or integer).
- `divisor` – an integer.

**OUTPUT:**

A new `Generator` representing the point.

Raises a `ValueError` if `divisor==0`.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Generator, Variable
sage: y = Variable(1)
sage: Generator.point(2*y+7, 3) # point(0/3, 2/3)
sage: Generator.point(y+7, 3) # point(0/3, 1/3)
sage: Generator.point(7, 3) # point()
```

**ray**

Construct a ray.

**INPUT:**

- `expression` – a `Linear_Expression` or something convertible to it (`Variable` or integer).

**OUTPUT:**

A new `Generator` representing the ray.

Raises a `ValueError` if the homogeneous part of `expression` represents the origin of the vector space.
EXAMPLES:

```python
sage: from sage.libs.ppl import Generator, Variable
sage: y = Variable(1)
sage: Generator.ray(2*y)
ray(0, 1)
sage: Generator.ray(y)
ray(0, 1)
sage: Generator.ray(1)
Traceback (most recent call last):
 ... ValueError: PPL::ray(e): e == 0, but the origin cannot be a ray.
```

**space_dimension()**

Return the dimension of the vector space enclosing `self`.

**OUTPUT:**

Integer.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, point
sage: x = Variable(0)
sage: y = Variable(1)
sage: point(x).space_dimension()
1
sage: point(y).space_dimension()
2
```

**type()**

Return the generator type of `self`.

**OUTPUT:**

String. One of 'line', 'ray', 'point', or 'closure_point'.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, point, closure_point, ray, line
sage: x = Variable(0)
sage: line(x).type()
'line'
sage: ray(x).type()
'ray'
sage: point(x,2).type()
'point'
sage: closure_point(x,2).type()
'closure_point'
```

class `sage.libs.ppl.Generator_System`

Bases: `sage.libs.ppl._mutable_or_immutable`

Wrapper for PPL's `Generator_System` class.

An object of the class `Generator_System` is a system of generators, i.e., a multiset of objects of the class Generator (lines, rays, points and closure points). When inserting generators in a system, space dimensions are automatically adjusted so that all the generators in the system are defined on the same vector space. A system of generators which is meant to define a non-empty polyhedron must include at least one point: the reason is
that lines, rays and closure points need a supporting point (lines and rays only specify directions while closure points only specify points in the topological closure of the NNC polyhedron).

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Generator_System, Variable, line, ray, point,
 \(\rightarrow\) closure_point
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System(line(5*x-2*y))
sage: gs.insert(ray(6*x-3*y))
sage: gs.insert(point(2*x-7*y, 5))
sage: gs.insert(closure_point(9*x-1*y, 2))
sage: gs
Generator_System {line(5, -2), ray(2, -1), point(2/5, -7/5), closure_point(9/2, -1/2)}
```

**OK()**

Check if all the invariants are satisfied.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, Generator_System, point
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System(point(3*x+2*y+1))
sage: gs.OK()
True
```

**ascii_dump()**

Write an ASCII dump to stderr.

**EXAMPLES:**

```python
sage: sage_cmd = 'from sage.libs.ppl import Generator_System, point,
 \(\rightarrow\)Variable
sage: sage_cmd += 'x = Variable(0)\n'
sage: sage_cmd += 'y = Variable(1)\n'
sage: sage_cmd += 'gs = Generator_System(point(3*x+2*y+1))\n'
sage: sage_cmd += 'gs.ascii_dump()\n'
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd],
 \(\rightarrow\)timeout=100) # long time, indirect doctest
sage: print(err) # long time py2
... DeprecationWarning: The Sage wrappers around ppl are now superseded by the standalone pplpy.
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.
```

(continues on next page)
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.
...

**clear()**

Removes all generators from the generator system and sets its space dimension to 0.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, Generator_System, point
sage: x = Variable(0)
sage: gs = Generator_System(point(3*x)); gs
Generator_System {point(3/1)}
sage: gs.clear()
sage: gs
Generator_System {}
```

**empty()**

Return True if and only if self has no generators.

**OUTPUT:**

Boolean.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, Generator_System, point
sage: x = Variable(0)
sage: gs = Generator_System()
sage: gs.empty()
True
sage: gs.insert(point(-3*x))
sage: gs.empty()
False
```

**insert(g)**

Insert g into the generator system.

The number of space dimensions of self is increased, if needed.

**INPUT:**

• g – a Generator.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, Generator_System, point
sage: x = Variable(0)
sage: gs = Generator_System(point(3*x))
sage: gs.insert(point(-3*x))
sage: gs
Generator_System {point(3/1), point(-3/1)}
```

**space_dimension()**

Return the dimension of the vector space enclosing self.

**OUTPUT:**

Integer.

**EXAMPLES:**

```python
```
```python
sage: from sage.libs.ppl import Variable, Generator_System, point
sage: x = Variable(0)
sage: gs = Generator_System(point(3*x))
sage: gs.space_dimension()
1
```

class `sage.libs.ppl.Generator_System_iterator`

Bases: object

Wrapper for PPL's `Generator_System::const_iterator` class.

EXAMPLES:

```python
sage: from sage.libs.ppl import Generator_System, Variable, line, ray, point, closure_point, Generator_System_iterator
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System(line(5*x-2*y))
sage: gs.insert(ray(6*x-3*y))
sage: gs.insert(point(2*x-7*y, 5))
sage: gs.insert(closure_point(9*x-1*y, 2))
sage: next(Generator_System_iterator(gs))
line(5, -2)
sage: list(gs)
[line(5, -2), ray(2, -1), point(2/5, -7/5), closure_point(9/2, -1/2)]
```

class `sage.libs.ppl.Linear_Expression`

Bases: object

Wrapper for PPL's `PPL_Linear_Expression` class.

**INPUT:**

The constructor accepts zero, one, or two arguments.

If there are two arguments `Linear_Expression(a,b)`, they are interpreted as

- `a` – an iterable of integer coefficients, for example a list.
- `b` – an integer. The inhomogeneous term.

A single argument `Linear_Expression(arg)` is interpreted as

- `arg` – something that determines a linear expression. Possibilities are:
  - a `Variable`: The linear expression given by that variable.
  - a `Linear_Expression`: The copy constructor.
  - an integer: Constructs the constant linear expression.

No argument is the default constructor and returns the zero linear expression.

**OUTPUT:**

A `Linear_Expression`

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: Linear_Expression([1,2,3,4],5)
x0+2*x1+3*x2+4*x3+5
sage: Linear_Expression(10)
```

(continues on next page)
10
sage: Linear_Expression()
0
sage: Linear_Expression(10).inhomogeneous_term()
10
sage: x = Variable(123)
sage: expr = x+1; expr
x123+1
sage: expr.OK()
True
sage: expr.coefficient(x)
1
sage: expr.coefficient( Variable(124) )
0

OK()
Check if all the invariants are satisfied.

EXAMPLES:

```
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: e = 3*x+2*y+1
sage: e.OK()
True
```

\textit{all\_homogeneous\_terms\_are\_zero}()
Test if \texttt{self} is a constant linear expression.

OUTPUT:
Boolean.

EXAMPLES:

```
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: Linear_Expression(10).all_homogeneous_terms_are_zero()
True
```

\textit{ascii\_dump}()
Write an ASCII dump to stderr.

EXAMPLES:

```
sage: sage_cmd = 'from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: e = 3*x+2*y+1
sage: e.ascii_dump()
```

```
long time, indirect doctest
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd],
 STDMETHODCALLTYPE=timeout=100) # long time py2
sage: print(err) # long time py2
/... DeprecationWarning: The Sage wrappers around ppl are now superseded by
...... the standalone pplpy.
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.
```

(continues on next page)
... size 3 1 3 2
sage: print(err)  # long time py3
size 3 1 3 2/... DeprecationWarning: The Sage wrappers around ppl are now
˓superseded by the standalone pplpy.
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.
...

**coefficient** *(v)*

Return the coefficient of the variable *v*.

**INPUT:**

- *v* — a *Variable*.

**OUTPUT:**

An integer.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: e = 3*x+1
sage: e.coefficient(x)
3
```

**coefficients()**

Return the coefficients of the linear expression.

**OUTPUT:**

A tuple of integers of length *space_dimension()*.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0); y = Variable(1)
sage: e = 3*x+5*y+1
sage: e.coefficients()
(3, 5)
```

**inhomogeneous_term()**

Return the inhomogeneous term of the linear expression.

**OUTPUT:**

Integer.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: Linear_Expression(10).inhomogeneous_term()
10
```

**is_zero()**

Test if *self* is the zero linear expression.

**OUTPUT:**

Boolean.
EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Linear_Expression
sage: Linear_Expression(0).is_zero()
True
sage: Linear_Expression(10).is_zero()
False
```

`space_dimension()`

Return the dimension of the vector space necessary for the linear expression.

OUTPUT:

Integer.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: (x+y+1).space_dimension()
2
sage: (x+y).space_dimension()
2
sage: (y+1).space_dimension()
2
sage: (x +1).space_dimension()
2
sage: (y+1-y).space_dimension()
2
```

class sage.libs.ppl.MIP_Problem

Bases: sage.libs.ppl._mutable_or_immutable

wrapper for PPL’s MIP_Problem class

An object of the class MIP_Problem represents a Mixed Integer (Linear) Program problem.

INPUT:

- `dim` – integer
- `args` – an array of the defining data of the MIP_Problem. For each element, any one of the following is accepted:
  - A `Constraint_System`
  - A `Linear_Expression`

OUTPUT:

A `MIP_Problem`.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x >= 0)
sage: cs.insert(y >= 0)
sage: cs.insert(3 * x + 5 * y <= 10)
```
sage: m = MIP_Problem(2, cs, x + y)
sage: m.optimal_value()
10/3
sage: m.optimizing_point()
point(10/3, 0/3)

OK()
Check if all the invariants are satisfied.

OUTPUT:
True if and only if self satisfies all the invariants.

EXAMPLES:

sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: m = MIP_Problem()
sage: m.add_space_dimensions_and_embed(2)
sage: m.add_constraint(x >= 0)
sage: m.OK()
True

add_constraint(c)
Adds a copy of constraint c to the MIP problem.

EXAMPLES:

sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: m = MIP_Problem()

sage: m.add_constraint(x >= 0)
sage: m.add_constraint(y >= 0)

sage: m.add_constraint(3 * x + 5 * y <= 10)

sage: m.set_objective_function(x + y)

sage: m.optimal_value()
10/3

add_constraints(cs)
Adds a copy of the constraints in cs to the MIP problem.

EXAMPLES:

sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)

sage: cs = Constraint_System()
sage: cs.insert(x >= 0)

sage: cs.insert(y >= 0)

sage: cs.insert(3 * x + 5 * y <= 10)

sage: m.set_objective_function(x + y)

sage: m.add_constraints(cs)

sage: m.optimal_value()
10/3
add_space_dimensions_and_embed \((m)\)

Adds \(m\) new space dimensions and embeds the old MIP problem in the new vector space.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x >= 0)
sage: cs.insert(y >= 0)
sage: cs.insert(3 * x + 5 * y <= 10)
sage: m = MIP_Problem(2, cs, x + y)
sage: m.add_space_dimensions_and_embed(5)
sage: m.space_dimension()
7
```

add_to_integer_space_dimensions \((i\_vars)\)

Sets the variables whose indexes are in set \(i\_vars\) to be integer space dimensions.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Variables_Set, Constraint_System,
˓→MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x >= 0)
sage: cs.insert(y >= 0)
sage: cs.insert(3 * x + 5 * y <= 10)
sage: m = MIP_Problem(2)
sage: m.set_objective_function(x + y)
sage: m.add_constraints(cs)
sage: i_vars = Variables_Set(x, y)
sage: m.add_to_integer_space_dimensions(i_vars)
sage: m.optimal_value()
3
```

clear()

Reset the MIP_Problem to be equal to the trivial MIP_Problem.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x >= 0)
sage: cs.insert(y >= 0)
sage: cs.insert(3 * x + 5 * y <= 10)
sage: m = MIP_Problem(2, cs, x + y)
sage: m.objective_function()
x0+x1
sage: m.clear()
sage: m.objective_function()
0
```

evaluate_objective_function \((\text{evaluating\_point})\)

Return the result of evaluating the objective function on \(\text{evaluating\_point}\). ValueError thrown if self and
evaluating_point are dimension-incompatible or if the generator evaluating_point is not a point.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
 Generator
sage: x = Variable(0)
sage: y = Variable(1)
sage: m = MIP_Problem()
sage: m.add_space_dimensions_and_embed(2)
sage: m.add_constraint(x >= 0)
sage: m.add_constraint(y >= 0)
sage: m.add_constraint(3 * x + 5 * y <= 10)
sage: m.set_objective_function(x + y)
sage: g = Generator.point(5 * x - 2 * y, 7)
sage: m.evaluate_objective_function(g)
3/7
sage: z = Variable(2)
sage: g = Generator.point(5 * x - 2 * z, 7)
sage: m.evaluate_objective_function(g)
Traceback (most recent call last):
 ... ValueError: PPL::MIP_Problem::evaluate_objective_function(p, n, d):
 *this and p are dimension incompatible.
```

`is_satisfiable()`  
Check if the MIP_Problem is satisfiable

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x >= 0)
sage: cs.insert(y >= 0)
sage: cs.insert(3 * x + 5 * y <= 10)
sage: m = MIP_Problem(2, cs, x + y)
sage: m.is_satisfiable()
True
```

`objective_function()`  
Return the optimal value of the MIP_Problem.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x >= 0)
sage: cs.insert(y >= 0)
sage: cs.insert(3 * x + 5 * y <= 10)
sage: m = MIP_Problem(2, cs, x + y)
sage: m.objective_function()
x0+x1
```

`optimal_value()`  
Return the optimal value of the MIP_Problem. ValueError thrown if self does not have an optimizing point, i.e., if the MIP problem is unbounded or not satisfiable.
EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x >= 0)
sage: cs.insert(y >= 0)
sage: cs.insert(3 * x + 5 * y <= 10)
sage: m = MIP_Problem(2, cs, x + y)
sage: m.optimal_value()
10/3
```

```python
sage: cs = Constraint_System()
sage: m = MIP_Problem(1, cs, x + x)
sage: m.optimal_value()
Traceback (most recent call last):
 ... ValueError: PPL::MIP_Problem::optimizing_point():
*this does not have an optimizing point.
```

**optimization_mode()**

Return the optimization mode used in the MIP_Problem.

It will return “maximization” if the MIP_Problem was set to MAXIMIZATION mode, and “minimization” otherwise.

EXAMPLES:

```python
sage: from sage.libs.ppl import MIP_Problem
sage: m = MIP_Problem()
sage: m.optimization_mode()
'maximization'
```

**optimizing_point()**

Returns an optimal point for the MIP_Problem, if it exists.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: m = MIP_Problem()
sage: m.add_space_dimensions_and_embed(2)
sage: m.add_constraint(x >= 0)
sage: m.add_constraint(y >= 0)
sage: m.add_constraint(3 * x + 5 * y <= 10)
sage: m.set_objective_function(x + y)
sage: m.optimizing_point()
point(10/3, 0/3)
```

**set_objective_function**(obj)

Sets the objective function to obj.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
```

(continues on next page)
```python
sage: m = MIP_Problem()
sage: m.add_space_dimensions_and_embed(2)
sage: m.add_constraint(x >= 0)
sage: m.add_constraint(y >= 0)
sage: m.add_constraint(3 * x + 5 * y <= 10)
sage: m.set_objective_function(x + y)
sage: m.optimal_value()
10/3
```

**set_optimization_mode**(mode)

Sets the optimization mode to mode.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import MIP_Problem
sage: m = MIP_Problem()

sage: m.optimization_mode()
'maximization'
sage: m.set_optimization_mode('minimization')

sage: m.optimization_mode()
'minimization'
```

**solve()**

Optimizes the MIP_Problem.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: m = MIP_Problem()

sage: m.add_space_dimensions_and_embed(2)

sage: m.add_constraint(x >= 0)

sage: m.add_constraint(y >= 0)

sage: m.add_constraint(3 * x + 5 * y <= 10)

sage: m.set_objective_function(x + y)

sage: m.solve()
{'status': 'optimized'}
```

**space_dimension()**

Return the space dimension of the MIP_Problem.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, Constraint_System, MIP_Problem
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()

sage: cs.insert(x >= 0)

sage: cs.insert(y >= 0)

sage: cs.insert(3 * x + 5 * y <= 10)

sage: m = MIP_Problem(2, cs, x + y)

sage: m.space_dimension()
2
```

class sage.libs.ppl.NNC_Polyhedron

Bases: sage.libs.ppl.Polyhedron
Wrapper for PPL's \texttt{NNC\_Polyhedron} class.

An object of the class \texttt{NNC\_Polyhedron} represents a not necessarily closed (NNC) convex polyhedron in the vector space.

Note: Since NNC polyhedra are a generalization of closed polyhedra, any object of the class \texttt{C\_Polyhedron} can be (implicitly) converted into an object of the class \texttt{NNC\_Polyhedron}. The reason for defining two different classes is that objects of the class \texttt{C\_Polyhedron} are characterized by a more efficient implementation, requiring less time and memory resources.

INPUT:

- \texttt{arg} – the defining data of the polyhedron. Any one of the following is accepted:
  - An non-negative integer. Depending on \texttt{degenerate\_element}, either the space-filling or the empty polytope in the given dimension \texttt{arg} is constructed.
  - A \texttt{Constraint\_System}.
  - A \texttt{Generator\_System}.
  - A single \texttt{Constraint}.
  - A single \texttt{Generator}.
  - A \texttt{NNC\_Polyhedron}.
  - A \texttt{C\_Polyhedron}.

- \texttt{degenerate\_element} – string, either 'universe' or 'empty'. Only used if \texttt{arg} is an integer.

OUTPUT:
A \texttt{C\_Polyhedron}.

EXAMPLES:

```python
sage: from sage.libs.ppl import Constraint, Constraint_System, Generator, Generator_System, Variable, NNC_Polyhedron, point, ray, closure_point
sage: x = Variable(0)
sage: y = Variable(1)
sage: NNC_Polyhedron(5*x-2*y > x+y-1)
A 2-dimensional polyhedron in QQ\(^2\) defined as the convex hull of 1 point, 1 closure_point, 1 ray, 1 line
sage: cs = Constraint_System()
sage: cs.insert(x > 0)
sage: cs.insert(y > 0)
sage: NNC_Polyhedron(cs)
A 2-dimensional polyhedron in QQ\(^2\) defined as the convex hull of 1 point, 1 closure_point, 2 rays
sage: NNC_Polyhedron(point(x+y))
A 0-dimensional polyhedron in QQ\(^2\) defined as the convex hull of 1 point
sage: gs = Generator_System()
sage: gs.insert(point(-y))
sage: gs.insert(closure_point(-x-y))
sage: gs.insert(ray(x))
sage: p = NNC_Polyhedron(gs); p
A 1-dimensional polyhedron in QQ\(^2\) defined as the convex hull of 1 point, 1 closure_point, 1 ray
sage: p.minimized_constraints()
Constraint_System \{x1+1==0, x0+1>0\}
```

Note that, by convention, every polyhedron must contain a point:
sage: NNC_Polyhedron( closure_point(x+y) )
Traceback (most recent call last):
...
ValueError: PPL::NNC_Polyhedron::NNC_Polyhedron(gs):
  *this is an empty polyhedron and
the non-empty generator system gs contains no points.

class sage.libs.ppl.Poly_Con_Relation
Bases: object

Wrapper for PPL's Poly_Con_Relation class.

INPUT/OUTPUT:
You must not construct Poly_Con_Relation objects manually. You will usually get them from relation_with(). You can also get pre-defined relations from the class methods nothing(), is_disjoint(), strictly_intersects(), is_included(), and saturates().

EXAMPLES:

sage: from sage.libs.ppl import Poly_Con_Relation
sage: saturates = Poly_Con_Relation.saturates(); saturates
saturates
sage: is_included = Poly_Con_Relation.is_included(); is_included
is_included
sage: is_included.implies(saturates)
False
sage: saturates.implies(is_included)
False
sage: rels = []
sage: rels.append( Poly_Con_Relation.nothing() )
sage: rels.append( Poly_Con_Relation.is_disjoint() )
sage: rels.append( Poly_Con_Relation.strictly_intersects() )
sage: rels.append( Poly_Con_Relation.is_included() )
sage: rels.append( Poly_Con_Relation.saturates() )
sage: rels
[nof
ding, strictly_intersects, is_included, saturates]
sage: from sage.matrix.constructor import matrix
sage: m = matrix(5,5)
sage: for i, rel_i in enumerate(rels):
....:   for j, rel_j in enumerate(rels):
....:     m[i,j] = rel_i.implies(rel_j)
sage: m
[1 0 0 0 0]
[1 1 0 0 0]
[1 0 1 0 0]
[1 0 0 1 0]
[1 0 0 0 1]

OK (check_non_empty=False)
Check if all the invariants are satisfied.

EXAMPLES:

sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.nothing().OK()
True

ascii_dump()
Write an ASCII dump to stderr.

EXAMPLES:

```python
sage: sage_cmd = 'from sage.libs.ppl import Poly_Con_Relation
 sage: sage_cmd += 'Poly_Con_Relation.nothing().ascii_dump()
 sage: from sage.tests.cmdline import test_executable
 sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd],
 timeout=100) # long time, indirect doctest
 sage: print(err) # long time py2
 /... DeprecationWarning: The Sage wrappers around ppl are now superseded by
 →the standalone pplpy.
 Please use import 'ppl' instead of 'sage.libs.ppl'.
 See http://trac.sagemath.org/23024 for details.
 ...
 NOTHING
 sage: print(err) # long time py3
 NOTHING/... DeprecationWarning: The Sage wrappers around ppl are now
 →superseded by the standalone pplpy.
 Please use import 'ppl' instead of 'sage.libs.ppl'.
 See http://trac.sagemath.org/23024 for details.
 ...
```

`implies(y)`  
Test whether self implies y.

INPUT:

• y — a `Poly_Con_Relation`.

OUTPUT:

Boolean. True if and only if self implies y.

EXAMPLES:

```python
sage: from sage.libs.ppl import Poly_Con_Relation
sage: nothing = Poly_Con_Relation.nothing()
sage: nothing.implies(nothing)
True
```

`is_disjoint()`  
Return the assertion “The polyhedron and the set of points satisfying the constraint are disjoint”.

OUTPUT:

A `Poly_Con_Relation`.

EXAMPLES:

```python
sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.is_disjoint()
```

`is_included()`  
Return the assertion “The polyhedron is included in the set of points satisfying the constraint”.

OUTPUT:

A `Poly_Con_Relation`.

EXAMPLES:

```python
sage: from sage.libs.ppl import Poly_Con_Relation
sage: Poly_Con_Relation.is_disjoint()
```
nothing()  
Return the assertion that says nothing.

OUTPUT:
A `Poly_Con_Relation`.

EXAMPLES:

```sage
from sage.libs.ppl import Poly_Con_Relation
Poly_Con_Relation.is_included()
```

saturates()  
Return the assertion “”.  

OUTPUT:
A `Poly_Con_Relation`.

EXAMPLES:

```sage
from sage.libs.ppl import Poly_Con_Relation
Poly_Con_Relation.saturates()
```

strictly_intersects()  
Return the assertion “The polyhedron intersects the set of points satisfying the constraint, but it is not included in it”.

OUTPUT:
A `Poly_Con_Relation`.

EXAMPLES:

```sage
from sage.libs.ppl import Poly_Con_Relation
Poly_Con_Relation.strictly_intersects()
```

class sage.libs.ppl.Poly_Gen_Relation

Wrapper for PPL’s `Poly_Con_Relation` class.

INPUT/OUTPUT:
You must not construct `Poly_Gen_Relation` objects manually. You will usually get them from `relation_with()` . You can also get pre-defined relations from the class methods `nothing()` and `subsumes()`.

EXAMPLES:

```sage
from sage.libs.ppl import Poly_Gen_Relation
nothing = Poly_Gen_Relation.nothing(); nothing
subsumes = Poly_Gen_Relation.subsumes(); subsumes
```
subsumes
sage: nothing.implies( subsumes )
False
sage: subsumes.implies( nothing )
True

OK (check_non_empty=False)
Check if all the invariants are satisfied.

EXAMPLES:

```python
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: Poly_Gen_Relation.nothing().OK()
True
```

```python
ascii_dump()
Write an ASCII dump to stderr.

EXAMPLES:

```python
sage: sage_cmd = 'from sage.libs.ppl import Poly_Gen_Relation
sage: sage_cmd += 'Poly_Gen_Relation.nothing().ascii_dump()"
```
```
sage: from sage.tests.cmdline import test_executable
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd],
    timeout=100) # long time, indirect doctest
```
```
sage: print(err)
# long time py2
/... DeprecationWarning: The Sage wrappers around ppl are now superseded by
the standalone pplpy.
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.
...
NOTHING
```
```
sage: print(err) # long time py3
NOTHING/... DeprecationWarning: The Sage wrappers around ppl are now
superseded by the standalone pplpy.
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.
...
```

implies(y)
Test whether self implies y.

INPUT:

- y - a Poly_Gen_Relation.

OUTPUT:

Boolean. True if and only if self implies y.

EXAMPLES:

```python
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: nothing = Poly_Gen_Relation.nothing()
```
```
sage: nothing.implies( nothing )
True
```

nothing()
Return the assertion that says nothing.

15.1. Cython wrapper for the Parma Polyhedra Library (PPL)
A Poly_Gen_Relation.

EXAMPLES:

```python
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: Poly_Gen_Relation.nothing()
nothing
```

subsumes()

Return the assertion “Adding the generator would not change the polyhedron”.

OUTPUT:

A Poly_Gen_Relation.

EXAMPLES:

```python
sage: from sage.libs.ppl import Poly_Gen_Relation
sage: Poly_Gen_Relation.subsumes()
subsumes
```

class sage.libs.ppl.Polyhedron

Wrapper for PPL’s Polyhedron class.

An object of the class Polyhedron represents a convex polyhedron in the vector space.

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see Section Representations of Convex Polyhedra) and it is always possible to obtain either representation. That is, if we know the system of constraints, we can obtain from this the system of generators that define the same polyhedron and vice versa. These systems can contain redundant members: in this case we say that they are not in the minimal form.

INPUT/OUTPUT:

This is an abstract base for C_Polyhedron and NNC_Polyhedron. You cannot instantiate this class.

OK (check_non_empty=False)

Check if all the invariants are satisfied.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-time assertions enabled, error messages are written on std::cerr in case invariants are violated. This is useful for the purpose of debugging the library.

INPUT:

• check_not_empty – boolean. True if and only if, in addition to checking the invariants, self must be checked to be not empty.

OUTPUT:

True if and only if self satisfies all the invariants and either check_not_empty is False or self is not empty.

EXAMPLES:

```python
sage: from sage.libs.ppl import Linear_Expression, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: e = 3*x+2*y+1
```
add_constraint *(c)*

Add a constraint to the polyhedron.

Adds a copy of constraint *c* to the system of constraints of *self*, without minimizing the result.

See also *add_constraints()*.

INPUT:

- *c* – the *Constraint* that will be added to the system of constraints of *self*.

OUTPUT:

This method modifies the polyhedron *self* and does not return anything.

Raises a *ValueError* if *self* and the constraint *c* are topology-incompatible or dimension-incompatible.

EXAMPLES:

```
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron( y>=0 )
sage: p.add_constraint( x>=0 )

We just added a 1-d constraint to a 2-d polyhedron, this is fine. The other way is not::

    sage: p = C_Polyhedron( x>=0 )
sage: p.add_constraint( y>=0 )
    Traceback (most recent call last):
    ...
    ValueError: PPL::C_Polyhedron::add_constraint(c):
    this->space_dimension() == 1, c.space_dimension() == 2.
```

The constraint must also be topology-compatible, that is, *C_Polyhedron* only allows non-strict inequalities::

```
sage: p = C_Polyhedron( x>=0 )
sage: p.add_constraint( x< 1 )
    Traceback (most recent call last):
    ...
    ValueError: PPL::C_Polyhedron::add_constraint(c):
    c is a strict inequality.
```

add_constraints(cs)

Add constraints to the polyhedron.

Adds a copy of constraints in *cs* to the system of constraints of *self*, without minimizing the result.

See also *add_constraint()*.

INPUT:

- *cs* – the *Constraint_System* that will be added to the system of constraints of *self*.

OUTPUT:
This method modifies the polyhedron \texttt{self} and does not return anything.

Raises a \texttt{ValueError} if \texttt{self} and the constraints in \texttt{cs} are topology-incompatible or dimension-incompatible.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, Constraint_System
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x>=0)
sage: cs.insert(y>=0)
sage: p = C_Polyhedron( y<=1 )
sage: p.add_constraints(cs)

We just added a 1-d constraint to a 2-d polyhedron, this is fine. The other way is not:

```python
sage: p = C_Polyhedron(x<=1)
sage: p.add_constraints(cs)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_recycled_constraints(cs):
this->space_dimension() == 1, cs.space_dimension() == 2.
```

The constraints must also be topology-compatible, that is, \texttt{C_Polyhedron} only allows non-strict inequalities:

```python
sage: p = C_Polyhedron(x>=0)
sage: p.add_constraints(Constraint_System(x<0))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_recycled_constraints(cs):
cs contains strict inequalities.
```

\textbf{add_generator} \((g)\)

Add a generator to the polyhedron.

Adds a copy of constraint \(c\) to the system of generators of \texttt{self}, without minimizing the result.

**INPUT:**

- \(g\) – the \texttt{Generator} that will be added to the system of Generators of \texttt{self}.

**OUTPUT:**

This method modifies the polyhedron \texttt{self} and does not return anything.

Raises a \texttt{ValueError} if \texttt{self} and the generator \(g\) are topology-incompatible or dimension-incompatible, or if \texttt{self} is an empty polyhedron and \(g\) is not a point.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, closure_, point, ray
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(1, 'empty')
sage: p.add_generator(point(0*x))
```
We just added a 1-d generator to a 2-d polyhedron, this is fine. The other way is not::

```python
sage: p = C_Polyhedron(1, 'empty')
sage: p.add_generator(point(0*y))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_generator(g):
this->space_dimension() == 1, g.space_dimension() == 2.
```

The constraint must also be topology-compatible, that is, :class:`C_Polyhedron` does not allow :func:`closure_point` generators::

```python
sage: p = C_Polyhedron(point(0*x+0*y))
sage: p.add_generator(closure_point(0*x))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_generator(g):
g is a closure point.
```

Finally, ever non-empty polyhedron must have at least one point generator:

```python
sage: p = C_Polyhedron(3, 'empty')
sage: p.add_generator(ray(x))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_generator(g):
*this is an empty polyhedron and g is not a point.
```

``add_generators(gs)`

Add generators to the polyhedron.

Adds a copy of the generators in `gs` to the system of generators of `self`, without minimizing the result.

See also `add_generator()`.

**INPUT:**

- `gs` – the `Generator_System` that will be added to the system of constraints of `self`.

**OUTPUT:**

This method modifies the polyhedron `self` and does not return anything.

Raises a `ValueError` if `self` and one of the generators in `gs` are topology-incompatible or dimension-incompatible, or if `self` is an empty polyhedron and `gs` does not contain a point.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, Generator_System,
 point, ray, closure_point
sage: x = Variable(0)
sage: y = Variable(1)
sage: gs = Generator_System()
sage: gs.insert(point(0*x+0*y))
sage: gs.insert(point(1*x+1*y))
sage: p = C_Polyhedron(2, 'empty')
sage: p.add_generators(gs)
```
We just added a 1-d constraint to a 2-d polyhedron, this is fine. The other way is not:

```python
sage: p = C_Polyhedron(1, 'empty')
sage: p.add_generators(gs)
Traceback (most recent call last):
 ...
ValueError: PPL::C_Polyhedron::add_recycled_generators(gs):
 this->space_dimension() == 1, gs.space_dimension() == 2.
```

The constraints must also be topology-compatible, that is, :class:`C_Polyhedron` does not allow :func:`closure_point` generators:

```python
sage: p = C_Polyhedron(point(0*x+0*y))
sage: p.add_generators(Generator_System(closure_point(x)))
Traceback (most recent call last):
 ...
ValueError: PPL::C_Polyhedron::add_recycled_generators(gs):
gs contains closure points.
```

### add_space_dimensions_and_embed \((m)\)

Add \(m\) new space dimensions and embed :obj:`self` in the new vector space.

The new space dimensions will be those having the highest indexes in the new polyhedron, which is characterized by a system of constraints in which the variables running through the new dimensions are not constrained. For instance, when starting from the polyhedron :math:`P` and adding a third space dimension, the result will be the polyhedron

\[
\{(x, y, z)^T \in \mathbb{R}^3 \mid (x, y)^T \in P\}
\]

**INPUT:**

- \(m\) – integer.

**OUTPUT:**

This method assigns the embedded polyhedron to :obj:`self` and does not return anything.

Raises a :exc:`ValueError` if adding \(m\) new space dimensions would cause the vector space to exceed dimension :meth:`self.max_space_dimension`.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, point
sage: x = Variable(0)
sage: p = C_Polyhedron(point(3*x))
sage: p.add_space_dimensions_and_embed(1)
sage: p.minimized_generators()
Generator_System {line(0, 1), point(3/1, 0/1)}
sage: p.add_space_dimensions_and_embed(p.max_space_dimension())
Traceback (most recent call last):
 ...
ValueError: PPL::C_Polyhedron::add_space_dimensions_and_embed(m):
adding \(m\) new space dimensions exceeds the maximum allowed space dimension.
```

### add_space_dimensions_and_project \((m)\)

Add \(m\) new space dimensions and embed :obj:`self` in the new vector space.
The new space dimensions will be those having the highest indexes in the new polyhedron, which is characterized by a system of constraints in which the variables running through the new dimensions are all constrained to be equal to 0. For instance, when starting from the polyhedron \( P \) and adding a third space dimension, the result will be the polyhedron

\[
\{(x, y, 0)^T \in \mathbb{R}^3 \mid (x, y)^T \in P\}
\]

**INPUT:**

- \( m \) – integer.

**OUTPUT:**

This method assigns the projected polyhedron to \( \text{self} \) and does not return anything.

Raises a \texttt{ValueError} if adding \( m \) new space dimensions would cause the vector space to exceed dimension \( \text{self}.\max\_\text{space}\_\text{dimension}() \).

**EXAMPLES:**

```
sage: from sage.libs.ppl import Variable, C_Polyhedron, point
sage: x = Variable(0)
sage: p = C_Polyhedron(point(3*x))
sage: p.add_space_dimensions_and_project(1)
sage: p.minimized_generators()
Generator_System {point(3/1, 0/1)}
sage: p.add_space_dimensions_and_project(p.max_space_dimension())
Traceback (most recent call last):
 ... ValueError: PPL::C_Polyhedron::add_space_dimensions_and_project(m):
 adding m new space dimensions exceeds the maximum allowed space dimension.
```

**affine_dimension()**

Return the affine dimension of \( \text{self} \).

**OUTPUT:**

An integer. Returns 0 if \( \text{self} \) is empty. Otherwise, returns the affine dimension of \( \text{self} \).

**EXAMPLES:**

```
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(5*x-2*y == x+y-1)
sage: p.affine_dimension()
1
```

**ascii_dump()**

Write an ASCII dump to stderr.

**EXAMPLES:**

```
sage: sage_cmd = 'from sage.libs.ppl import C_Polyhedron, Variable

sage: sage_cmd += 'x = Variable(0)\n'
sage: sage_cmd += 'y = Variable(1)\n'
sage: sage_cmd += 'p = C_Polyhedron(5*x-2*y == x+y-1)\n'
sage: sage_cmd += 'p.affine_dimension()\n'
sage: sage_cmd += 'p.ascii_dump()\n'
sage: from sage.tests.cmdline import test_executable
```

(continues on next page)
sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd],
    timeout=100)  # long time, indirect doctest
sage: print(err)  # long time py2
/... DeprecationWarning: The Sage wrappers around ppl are now superseded by
    the standalone pplpy.
Please use import 'ppl' instead of 'sage.libs.ppl'.
See http://trac.sagemath.org/23024 for details.
...
space_dim 2
-ZE -EM +CM +GM +CS +GS -CP -GP -SC +SG
con_sys (up-to-date)
topology NECESSARILY_CLOSED
2 x 2 SPARSE (sorted)
index_first_pending 2
size 3 -1 3 2 = (C)
size 3 1 0 0 >= (C)

gen_sys (up-to-date)
topology NECESSARILY_CLOSED
2 x 2 DENSE (not_sorted)
index_first_pending 2
size 3 0 2 -3 L (C)
size 3 2 0 1 P (C)
sat_c
0 x 0

sat_g
2 x 2
0 0
0 1
sage: print(err)  # long time py3
space_dim 2
-ZE -EM +CM +GM +CS +GS -CP -GP -SC +SG
con_sys (up-to-date)
topology NECESSARILY_CLOSED
2 x 2 SPARSE (sorted)
index_first_pending 2
size 3 -1 3 2 = (C)
size 3 1 0 0 >= (C)

gen_sys (up-to-date)
topology NECESSARILY_CLOSED
2 x 2 DENSE (not_sorted)
index_first_pending 2
size 3 0 2 -3 L (C)
size 3 2 0 1 P (C)
sat_c
0 x 0

sat_g
2 x 2
0 0
0 1
/... DeprecationWarning: The Sage wrappers around ppl are now superseded by
    the standalone pplpy. Please use import 'ppl' instead of 'sage.libs.ppl'.
bounds_from_above(expr)
Test whether the expr is bounded from above.

INPUT:
- expr - a Linear_Expression

OUTPUT:
Boolean. Returns True if and only if expr is bounded from above in self.
Raises a ValueError if expr and this are dimension-incompatible.

EXAMPLES:

```sage
define from sage.libs.ppl import Variable, C_Polyhedron, Linear_Expression
sage: x = Variable(0); y = Variable(1)
sage: p = C_Polyhedron(y<=0)
sage: p.bounds_from_above(x+1)
False
sage: p.bounds_from_above(Linear_Expression(y))
True
sage: p = C_Polyhedron(x<=0)
sage: p.bounds_from_below(y+1)
Traceback (most recent call last):
 ...
ValueError: PPL::C_Polyhedron::bounds_from_above(e):
 this->space_dimension() == 1, e.space_dimension() == 2.
```

bounds_from_below(expr)
Test whether the expr is bounded from above.

INPUT:
- expr - a Linear_Expression

OUTPUT:
Boolean. Returns True if and only if expr is bounded from above in self.
Raises a ValueError if expr and this are dimension-incompatible.

EXAMPLES:

```sage
define from sage.libs.ppl import Variable, C_Polyhedron, Linear_Expression
sage: x = Variable(0); y = Variable(1)
sage: p = C_Polyhedron(y>=0)
sage: p.bounds_from_below(x+1)
False
sage: p.bounds_from_below(Linear_Expression(y))
True
sage: p = C_Polyhedron(x<=0)
sage: p.bounds_from_below(y+1)
Traceback (most recent call last):
 ...
ValueError: PPL::C_Polyhedron::bounds_from_below(e):
 this->space_dimension() == 1, e.space_dimension() == 2.
```
concatenate_assign(y)
Assign to self the concatenation of self and y.
This function returns the Cartesian product of self and y.
Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples obtained by concatenating an ordered pair of polyhedra. Formally, the concatenation of the polyhedra \( P \) and \( Q \) (taken in this order) is the polyhedron such that

\[
R = \left\{(x_0, \ldots, x_{n-1}, y_0, \ldots, y_{m-1})^T \in \mathbb{R}^{n+m} \mid (x_0, \ldots, x_{n-1})^T \in P, (y_0, \ldots, y_{m-1})^T \in Q \right\}
\]

Another way of seeing it is as follows: first embed polyhedron \( P \) into a vector space of dimension \( n + m \) and then add a suitably renamed-apart version of the constraints defining \( Q \).

INPUT:
• \( m \) – integer.
OUTPUT:
This method assigns the concatenated polyhedron to self and does not return anything.
Raises a ValueError if self and y are topology-incompatible or if adding y.

EXAMPLES:
```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron, point
sage: x = Variable(0)
sage: p1 = C_Polyhedron(point(x))
sage: p2 = C_Polyhedron(point(2*x))
sage: p1.concatenate_assign(p2)
sage: p1.minimized_generators()
Generator_System {point(1/1, 2/1)}
```
The polyhedra must be topology-compatible and not exceed the maximum space dimension:
```python
sage: p1.concatenate_assign(NNC_Polyhedron(1, 'universe'))
Traceback (most recent call last):
... ValueError: PPL::C_Polyhedron::concatenate_assign(y):
y is a NNC_Polyhedron.
sage: p1.concatenate_assign(C_Polyhedron(p1.max_space_dimension(), 'empty'))
Traceback (most recent call last):
... ValueError: PPL::C_Polyhedron::concatenate_assign(y):
concatenation exceeds the maximum allowed space dimension.
```

constrains(var)
Test whether var is constrained in self.

INPUT:
• \( \text{var} \) – a Variable.
OUTPUT:
Boolean. Returns True if and only if var is constrained in self.
Raises a ValueError if var is not a space dimension of self.

EXAMPLES:
```python
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
```

```python
sage: p = C_Polyhedron(1, 'universe')
sage: p.constrains(x)
False
```

```python
sage: p = C_Polyhedron(x>=0)
sage: p.constrains(x)
True
```

```python
sage: y = Variable(1)
sage: p.constrains(y)
Traceback (most recent call last):
 ...
ValueError: PPL::C_Polyhedron::constrains(v):
 this->space_dimension() == 1, v.space_dimension() == 2.
```

**constraints()**

Returns the system of constraints.

See also *minimized_constraints()*.

**OUTPUT:**

A `Constraint_System`.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(y>=0)
sage: p.add_constraint(x>=0)
sage: p.add_constraint(x+y>=0)
sage: p.constraints()
Constraint_System {x1>=0, x0>=0, x0+x1>=0}
sage: p.minimized_constraints()
Constraint_System {x1>=0, x0>=0}
```

**contains(y)**

Test whether self contains y.

**INPUT:**

- y — a `Polyhedron`.

**OUTPUT:**

Boolean. Returns True if and only if self contains y.

Raises a `ValueError` if self and y are topology-incompatible or dimension-incompatible.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p0 = C_Polyhedron(x>=0)
sage: p1 = C_Polyhedron(x>=1)
sage: p0.contains(p1)
True
sage: p1.contains(p0)
False
```
Errors are raised if the dimension or topology is not compatible:

```python
sage: p0.contains(C_Polyhedron(y>=0))
Traceback (most recent call last):
 ...
ValueError: PPL::C_Polyhedron::contains(y):
 this->space_dimension() == 1, y.space_dimension() == 2.
```

```python
sage: p0.contains(NNC_Polyhedron(x>0))
Traceback (most recent call last):
 ...
ValueError: PPL::C_Polyhedron::contains(y):
 y is a NNC_Polyhedron.
```

`contains_integer_point()`

Test whether `self` contains an integer point.

**OUTPUT:**

Boolean. Returns `True` if and only if `self` contains an integer point.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, NNC_Polyhedron
doctest:...: import Variable, NNC_Polyhedron
sage: x = Variable(0)
```

```python
sage: p = NNC_Polyhedron(x>0)
```

```python
sage: p.add_constraint(x<1)
```

```python
sage: p.contains_integer_point()
False
```

```python
sage: p.topological_closure_assign()
```

```python
sage: p.contains_integer_point()
True
```

`difference_assign(y)`

Assign to `self` the poly-difference of `self` and `y`.

For any pair of NNC polyhedra $P_1$ and $P_2$ the convex polyhedral difference (or poly-difference) of $P_1$ and $P_2$ is defined as the smallest convex polyhedron containing the set-theoretic difference $P_1 \setminus P_2$ of $P_1$ and $P_2$.

In general, even if $P_1$ and $P_2$ are topologically closed polyhedra, their poly-difference may be a convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference of two `C_Polyhedron`, the library will enforce the topological closure of the result.

**INPUT:**

- `y` -- a `Polyhedron`

**OUTPUT:**

This method assigns the poly-difference to `self` and does not return anything.

Raises a `ValueError` if `self` and `y` are topology-incompatible or dimension-incompatible.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, closure_point, NNC_Polyhedron
sage: x = Variable(0)
```

```python
sage: p = NNC_Polyhedron(point(0*x))
```

```python
sage: p.add_generator(point(1*x))
```

```python
sage: p.poly_difference_assign(NNC_Polyhedron(point(0*x)))
```
The poly-difference of `C_polyhedron` is really its closure:

```python
sage: p = C_Polyhedron(point(0*x))
sage: p.add_generator(point(1*x))
sage: p.poly_difference_assign(C_Polyhedron(point(0*x)))
sage: p.minimized_constraints()
Constraint_System {x0>=0, -x0+1>=0}
```

`self` and `y` must be dimension- and topology-compatible, or an exception is raised:

```python
sage: y = Variable(1)
sage: p.poly_difference_assign(C_Polyhedron(y>=0))
Traceback (most recent call last):
 ... ValueError: PPL::C_Polyhedron::poly_difference_assign(y):
 this->space_dimension() == 1, y.space_dimension() == 2.
sage: p.poly_difference_assign(NNC_Polyhedron(x+y<1))
Traceback (most recent call last):
 ... ValueError: PPL::C_Polyhedron::poly_difference_assign(y):
 y is a NNC_Polyhedron.
```

### drop_some_non_integer_points()

Possibly tighten `self` by dropping some points with non-integer coordinates.

The modified polyhedron satisfies:

- it is (not necessarily strictly) contained in the original polyhedron.
- integral vertices (generating points with integer coordinates) of the original polyhedron are not removed.

**Note:** The modified polyhedron is not necessarily a lattice polyhedron; Some vertices will, in general, still be rational. Lattice points interior to the polyhedron may be lost in the process.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, NNC_Polyhedron, Constraint_System
sage: x = Variable(0)
sage: y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x>=0)
sage: cs.insert(y>=0)
sage: cs.insert(3*x+2*y<5)
sage: p = NNC_Polyhedron(cs)
sage: p.minimized_generators()
Generator_System {point(0/1, 0/1), closure_point(0/2, 5/2), closure_point(5/3, ← 0/3)}
sage: p.drop_some_non_integer_points()
sage: p.minimized_generators()
Generator_System {point(0/1, 0/1), point(0/1, 2/1), point(4/3, 0/3)}
```

### generators()

Returns the system of generators.
See also `minimized_generators()`.

**OUTPUT:**

A `Generator_System`.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, point
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(3, 'empty')
sage: p.add_generator(point(-x-y))
sage: p.add_generator(point(0))
sage: p.add_generator(point(+x+y))
sage: p.generators()
Generator_System {point(-1/1, -1/1, 0/1), point(0/1, 0/1, 0/1), point(1/1, 1/1, 0/1)}

sage: p.minimized_generators()
Generator_System {point(-1/1, -1/1, 0/1), point(1/1, 1/1, 0/1)}
```

**intersection_assign** (*y*)

Assign to `self` the intersection of `self` and `y`.

**INPUT:**

- `y` - a `Polyhedron`

**OUTPUT:**

This method assigns the intersection to `self` and does not return anything.

Raises a `ValueError` if `self` and `y` are topology-incompatible or dimension-incompatible.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(1*x+0*y >= 0)
sage: p.intersection_assign(C_Polyhedron(y>=0))
sage: p.constraints()
Constraint_System {x0>=0, x1>=0}
sage: z = Variable(2)
sage: p.intersection_assign(C_Polyhedron(z>=0))
Traceback (most recent call last):
 ... ValueError: PPL::C_Polyhedron::intersection_assign(y):
this->space_dimension() == 2, y.space_dimension() == 3.
sage: p.intersection_assign(NNC_Polyhedron(x+y<1))
Traceback (most recent call last):
 ... ValueError: PPL::C_Polyhedron::intersection_assign(y):
y is a NNC_Polyhedron.
```

**is_bounded**()

Test whether `self` is bounded.

**OUTPUT:**

Boolean. Returns `True` if and only if `self` is a bounded polyhedron.

**EXAMPLES:**
```python
sage: from sage.libs.ppl import Variable, NNC_Polyhedron, point, closure_point, ray
sage: x = Variable(0)
sage: p = NNC_Polyhedron(point(0*x))
sage: p.add_generator(closure_point(1*x))
sage: p.is_bounded() # True
sage: p.add_generator(ray(1*x))
False
```

**is_discrete()**

Test whether self is discrete.

**OUTPUT:**

Boolean. Returns True if and only if self is discrete.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, ray
sage: x = Variable(0); y = Variable(1)
sage: p = C_Polyhedron(point(1*x+2*y))
sage: p.is_discrete() # True
sage: p.add_generator(point(x))
True
sage: p.is_discrete() # False
```

**is_disjoint_from(y)**

Tests whether self and y are disjoint.

**INPUT:**

- y — a Polyhedron.

**OUTPUT:**

Boolean. Returns True if and only if self and y are disjoint.

 Raises a ValueError if self and y are topology-incompatible or dimension-incompatible.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron
sage: x = Variable(0); y = Variable(1)
sage: p = C_Polyhedron(x<=0).is_disjoint_from(C_Polyhedron(x>=1))
True
```

This is not allowed:

```python
sage: x = Variable(0); y = Variable(1)
sage: poly_1d = C_Polyhedron(x<=0)
sage: poly_2d = C_Polyhedron(x+0*y>=1)
sage: poly_1d.is_disjoint_from(poly_2d)
Traceback (most recent call last):
 ...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
 this->space_dimension() == 1, y.space_dimension() == 2.
```

Nor is this:

```python
Traceback (most recent call last):
 ...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
 this->space_dimension() == 1, y.space_dimension() == 2.
```
sage: x = Variable(0); y = Variable(1)
sage: c_poly = C_Polyhedron( x<=0 )
sage: nnc_poly = NNC_Polyhedron( x >0 )
sage: c_poly.is_disjoint_from(nnc_poly)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
y is a NNC_Polyhedron.
sage: NNC_Polyhedron(c_poly).is_disjoint_from(nnc_poly)
True

is_empty()
Test if self is an empty polyhedron.
OUTPUT:
Boolean.
EXAMPLES:

sage: from sage.libs.ppl import C_Polyhedron
sage: C_Polyhedron(3, 'empty').is_empty()
True
sage: C_Polyhedron(3, 'universe').is_empty()
False

is_topologically_closed()
Tests if self is topologically closed.
OUTPUT:
Returns True if and only if self is a topologically closed subset of the ambient vector space.
EXAMPLES:

sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron
sage: x = Variable(0); y = Variable(1)
sage: C_Polyhedron(3, 'universe').is_topologically_closed()
True
sage: C_Polyhedron( x>=1 ).is_topologically_closed()
True
sage: NNC_Polyhedron( x>1 ).is_topologically_closed()
False

is_universe()
Test if self is a universe (space-filling) polyhedron.
OUTPUT:
Boolean.
EXAMPLES:

sage: from sage.libs.ppl import C_Polyhedron
sage: C_Polyhedron(3, 'empty').is_universe()
False
sage: C_Polyhedron(3, 'universe').is_universe()
True

max_space_dimension()
Return the maximum space dimension all kinds of Polyhedron can handle.
OUTPUT:

Integer.

EXAMPLES:

```python
sage: from sage.libs.ppl import C_Polyhedron
sage: C_Polyhedron(1, 'empty').max_space_dimension() # random output
1152921504606846974
sage: C_Polyhedron(1, 'empty').max_space_dimension() # 32-bit
357913940
1152921504606846974 # 64-bit
```

**maximize**(expr)

Maximize expr.

**INPUT:**

- expr – a *Linear_Expression*.

**OUTPUT:**

A dictionary with the following keyword:value pair:

- 'bounded': Boolean. Whether the linear expression expr is bounded from above on self.

If expr is bounded from above, the following additional keyword:value pairs are set to provide information about the supremum:

- 'sup_n': Integer. The numerator of the supremum value.
- 'sup_d': Non-zero integer. The denominator of the supremum value.
- 'maximum': Boolean. True if and only if the supremum is also the maximum value.
- 'generator': a *Generator*. A point or closure point where expr reaches its supremum value.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron,
 Constraint_System, Linear_Expression
sage: x = Variable(0); y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x>=0)
sage: cs.insert(y>=0)
sage: cs.insert(3*x+5*y<=10)
sage: p = C_Polyhedron(cs)
sage: p.maximize(x+y)
{'bounded': True,
 'generator': point(10/3, 0/3),
 'maximum': True,
 'sup_d': 3,
 'sup_n': 10}
```

Unbounded case:

```python
sage: cs = Constraint_System()
sage: cs.insert(x>0)
sage: p = NNC_Polyhedron(cs)
sage: p.maximize(+x)
{'bounded': False}
sage: p.maximize(-x)
```

(continues on next page)
minimize(expr)

Minimize expr.

**INPUT:**

- expr — a Linear Expression.

**OUTPUT:**

A dictionary with the following keyword:value pair:

- 'bounded': Boolean. Whether the linear expression expr is bounded from below on self.

If expr is bounded from below, the following additional keyword:value pairs are set to provide information about the infimum:

- 'inf_n': Integer. The numerator of the infimum value.
- 'inf_d': Non-zero integer. The denominator of the infimum value.
- 'minimum': Boolean. True if and only if the infimum is also the minimum value.
- 'generator': a Generator. A point or closure point where expr reaches its infimum value.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron,
 →Constraint_System, Linear_Expression
sage: x = Variable(0); y = Variable(1)
sage: cs = Constraint_System()
sage: cs.insert(x>=0)
sage: cs.insert(y>=0)
sage: cs.insert(3*x+5*y<=10)
sage: p = C_Polyhedron(cs)
sage: p.minimize(x+y)
{'bounded': True,
 'generator': point(0/1, 0/1),
 'inf_d': 1,
 'inf_n': 0,
 'minimum': True}
```

Unbounded case:

```python
sage: cs = Constraint_System()
sage: cs.insert(x>0)
sage: p = NNC_Polyhedron(cs)
sage: p.minimize(+x)
{'bounded': True,
 'generator': closure_point(0/1),
 'inf_d': 1,
 'inf_n': 0,
 'minimum': False}
sage: p.minimize(-x)
{'bounded': False}
```
minimized_constraints()  
Returns the minimized system of constraints.  
See also constraints().  
OUTPUT:  
A Constraint_System.  
EXAMPLES:

```sage
from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(y>=0)
sage: p.add_constraint(x>=0)
sage: p.add_constraint(x+y>=0)
sage: p.constraints()
Constraint_System {x1>=0, x0>=0, x0+x1>=0}
sage: p.minimized_constraints()
Constraint_System {x1>=0, x0>=0}
```

minimized_generators()  
Returns the minimized system of generators.  
See also generators().  
OUTPUT:  
A Generator_System.  
EXAMPLES:

```sage
from sage.libs.ppl import Variable, C_Polyhedron, point
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(3,'empty')
sage: p.add_generator(point(-x-y))
sage: p.add_generator(point(0))
sage: p.add_generator(point(+x+y))
sage: p.generators()
Generator_System {point(-1/1, -1/1, 0/1), point(0/1, 0/1, 0/1), point(1/1, 1/1, 0/1)}
sage: p.minimized_generators()
Generator_System {point(-1/1, -1/1, 0/1), point(1/1, 1/1, 0/1)}
```

poly_difference_assign(y)  
Assign to self the poly-difference of self and y.  
For any pair of NNC polyhedra $P_1$ and $P_2$ the convex polyhedral difference (or poly-difference) of $P_1$ and $P_2$ is defined as the smallest convex polyhedron containing the set-theoretic difference $P_1 \setminus P_2$ of $P_1$ and $P_2$.  
In general, even if $P_1$ and $P_2$ are topologically closed polyhedra, their poly-difference may be a convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference of two C_Polyhedron, the library will enforce the topological closure of the result.  
INPUT:  
• $y$ - a Polyhedron  
OUTPUT:
This method assigns the poly-difference to self and does not return anything.

 Raises a `ValueError` if self and y are topology-incompatible or dimension-incompatible.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, closure_point,
 NNC_Polyhedron
sage: x = Variable(0)
sage: p = NNC_Polyhedron(point(0*x))
sage: p.add_generator(point(1*x))
sage: p.poly_difference_assign(NNC_Polyhedron(point(0*x)))
sage: p.minimized_constraints()
Constraint_System {-x0+1>=0, x0>0}
```

The poly-difference of C_polyhedron is really its closure:

```python
sage: p = C_Polyhedron(point(0*x))
sage: p.add_generator(point(1*x))
sage: p.poly_difference_assign(C_Polyhedron(point(0*x)))
sage: p.minimized_constraints()
Constraint_System {x0>=0, -x0+1>=0}
```

self and y must be dimension- and topology-compatible, or an exception is raised:

```python
sage: y = Variable(1)
sage: p.poly_difference_assign(C_Polyhedron(point(0*x+1*y))
Traceback (most recent call last):
 ... ValueError: PPL::C_Polyhedron::poly_difference_assign(y):
this->space_dimension() == 1, y.space_dimension() == 2.
sage: p.poly_difference_assign(NNC_Polyhedron(x+y<1))
Traceback (most recent call last):
 ... ValueError: PPL::C_Polyhedron::poly_difference_assign(y):
 y is a NNC_Polyhedron.
```

**poly_hull_assign(y)**

Assign to self the poly-hull of self and y.

For any pair of NNC polyhedra \( P_1 \) and \( P_2 \), the convex polyhedral hull (or poly-hull) of is the smallest NNC polyhedron that includes both \( P_1 \) and \( P_2 \). The poly-hull of any pair of closed polyhedra in is also closed.

**INPUT:**

- y – a `Polyhedron`

**OUTPUT:**

This method assigns the poly-hull to self and does not return anything.

 Raises a `ValueError` if self and y are topology-incompatible or dimension-incompatible.

**EXAMPLES:**

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, NNC_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(point(1*x+0*y))
sage: p.poly_hull_assign(C_Polyhedron(point(0*x+1*y)))
```

(continues on next page)
self and \( y \) must be dimension- and topology-compatible, or an exception is raised:

```sage
sage: z = Variable(2)
sage: p.poly_hull_assign(C_Polyhedron(z>=0))
Traceback (most recent call last):
... ValueError: PPL::C_Polyhedron::poly_hull_assign(y):
this->space_dimension() == 2, y.space_dimension() == 3.
sage: p.poly_hull_assign(NNC_Polyhedron(x+y<1))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::poly_hull_assign(y):
y is a NNC_Polyhedron.
```

### `relation_with(arg)`

Return the relations holding between the polyhedron `self` and the generator or constraint `arg`.

**INPUT:**

- `arg` – a `Generator` or a `Constraint`.

**OUTPUT:**

A `Poly_Gen_Relation` or a `Poly_Con_Relation` according to the type of the input.

Raises `ValueError` if `self` and the generator/constraint `arg` are dimension-incompatible.

**EXAMPLES:**

```sage
sage: from sage.libs.ppl import Variable, C_Polyhedron, point, ray, Poly_Con_Relation

sage: x = Variable(0); y = Variable(1)
sage: p = C_Polyhedron(2, 'empty')
sage: p.add_generator(point(1*x+0*y))
sage: p.add_generator(point(0*x+1*y))
sage: p.minimized_constraints()
Constraint_System {x0+x1-1==0, -x1+1>=0, x1>=0}
sage: p.relation_with(point(1*x+1*y))
nothing
sage: p.relation_with(point(1*x+1*y, 2))
subsumes
sage: p.relation_with(x+y==1)
is_disjoint
sage: p.relation_with(x==y)
strictly_intersects
sage: p.relation_with(x+y<1)
is_included, saturates
sage: p.relation_with(x<y<1)
is_disjoint, saturates
```

In a Sage program you will usually use `relation_with()` together with `implies()` or `implies()`, for example:

```sage
sage: p.relation_with(x+y<1).implies(Poly_Con_Relation.saturates())
True
```
You can only get relations with dimension-compatible generators or constraints:

```
sage: z = Variable(2)
sage: p.relation_with(point(x+y+z))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::relation_with(g):
 this->space_dimension() == 2, g.space_dimension() == 3.
sage: p.relation_with(z>0)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::relation_with(c):
 this->space_dimension() == 2, c.space_dimension() == 3.
```

**remove higher space dimensions** (*new_dimension*)

Remove the higher dimensions of the vector space so that the resulting space will have dimension *new_dimension*.

**OUTPUT:**

This method modifies *self* and does not return anything.

Raises a `ValueError` if *new_dimensions* is greater than the space dimension of *self*.

**EXAMPLES:**

```
sage: from sage.libs.ppl import C_Polyhedron, Variable
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(3*x+0*y==2)
sage: p.remove_higher_space_dimensions(1)
sage: p.minimized_constraints()
Constraint_System {3*x0-2==0}
sage: p.remove_higher_space_dimensions(2)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::remove_higher_space_dimensions(nd):
 this->space_dimension() == 1, required space dimension == 2.
```

**space_dimension()**

Return the dimension of the vector space enclosing *self*.

**OUTPUT:**

Integer.

**EXAMPLES:**

```
sage: from sage.libs.ppl import Variable, C_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p = C_Polyhedron(5*x-2*y >= x+y-1)
sage: p.space_dimension()
2
```

**strictly contains** (*y*)

Test whether *self* strictly contains *y*.

**INPUT:**

- *y* — a `Polyhedron`.
OUTPUT:

Boolean. Returns True if and only if self contains y and self does not equal y.
Raises a ValueError if self and y are topology-incompatible or dimension-incompatible.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, C_Polyhedron, NNC_Polyhedron
sage: x = Variable(0)
sage: y = Variable(1)
sage: p0 = C_Polyhedron(x>=0)
sage: p1 = C_Polyhedron(x>=1)
sage: p0.strictly_contains(p1)
True
sage: p1.strictly_contains(p0)
False
```

Errors are raised if the dimension or topology is not compatible:

```python
sage: p0.strictly_contains(C_Polyhedron(y>=0))
Traceback (most recent call last):
 ... ValueError: PPL::C_Polyhedron::contains(y):
this->space_dimension() == 1, y.space_dimension() == 2.
sage: p0.strictly_contains(NNC_Polyhedron(x>0))
Traceback (most recent call last):
 ... ValueError: PPL::C_Polyhedron::contains(y):
y is a NNC_Polyhedron.
```

topological_closure_assign()
Assign to self its topological closure.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, NNC_Polyhedron
sage: x = Variable(0)
sage: p = NNC_Polyhedron(x>0)
sage: p.is_topologically_closed()
False
sage: p.topological_closure_assign()
sage: p.is_topologically_closed()
True
sage: p.minimized_constraints()
Constraint_System {x0>=0}
```

unconstrain(var)
Compute the cylindrification of self with respect to space dimension var.

INPUT:

- var – a Variable. The space dimension that will be unconstrained. Exceptions:

OUTPUT:

This method assigns the cylindrification to self and does not return anything.

Raises a ValueError if var is not a space dimension of self.

EXAMPLES:
```python
from sage.libs.ppl import Variable, C_Polyhedron, point
x = Variable(0)
y = Variable(1)
p = C_Polyhedron(point(x+y)); p
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
p.unconstrain(x); p
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 → line
z = Variable(2)
p.unconstrain(z)
Traceback (most recent call last):
... ValueError: PPL::C_Polyhedron::unconstrain(var):
this->space_dimension() == 2, required space dimension == 3.
```

**upper_bound_assign** *(y)*

Assign to *self* the poly-hull of *self* and *y*.

For any pair of NNC polyhedra *P*₁ and *P*₂, the convex polyhedral hull (or poly-hull) of is the smallest NNC polyhedron that includes both *P*₁ and *P*₂. The poly-hull of any pair of closed polyhedra in is also closed.

**INPUT:**

- *y* — a *Polyhedron*

**OUTPUT:**

This method assigns the poly-hull to *self* and does not return anything.

Raises a *ValueError* if *self* and *y* are topology-incompatible or dimension-incompatible.

**EXAMPLES:**

```python
from sage.libs.ppl import Variable, C_Polyhedron, point, NNC_Polyhedron
x = Variable(0)
y = Variable(1)
p = C_Polyhedron(point(1*x+0*y))
p.poly_hull_assign(C_Polyhedron(point(0*x+1*y)))
p.generators()
Generator_System {point(0/1, 1/1), point(1/1, 0/1)}
```

*self* and *y* must be dimension- and topology-compatible, or an exception is raised:

```python
z = Variable(2)
p.poly_hull_assign(C_Polyhedron(z>=0))
Traceback (most recent call last):
... ValueError: PPL::C_Polyhedron::poly_hull_assign(y):
this->space_dimension() == 2, y.space_dimension() == 3.
p.poly_hull_assign(NNC_Polyhedron(x+y<1))
Traceback (most recent call last):
... ValueError: PPL::C_Polyhedron::poly_hull_assign(y):
y is a NNC_Polyhedron.
```

class sage.libs.ppl.Variable
    Bases: object

Wrapper for PPL’s Variable class.
A dimension of the vector space.

An object of the class Variable represents a dimension of the space, that is one of the Cartesian axes. Variables are used as basic blocks in order to build more complex linear expressions. Each variable is identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first axis has index 0). The space dimension of a variable is the dimension of the vector space made by all the Cartesian axes having an index less than or equal to that of the considered variable; thus, if a variable has index \( i \), its space dimension is \( i + 1 \).

INPUT:
- \( i \) – integer. The index of the axis.

OUTPUT:
A Variable

EXAMPLES:

```
sage: from sage.libs.ppl import Variable
sage: x = Variable(123)
sage: x.id()
123
sage: x
x123
```

Note that the “meaning” of an object of the class Variable is completely specified by the integer index provided to its constructor: be careful not to be mislead by C++ language variable names. For instance, in the following example the linear expressions \( e_1 \) and \( e_2 \) are equivalent, since the two variables \( x \) and \( z \) denote the same Cartesian axis:

```
sage: x = Variable(0)
sage: y = Variable(1)
sage: z = Variable(0)
sage: e1 = x + y; e1
x0+x1
sage: e2 = y + z; e2
x0+x1
sage: e1 - e2
0
```

\( \text{OK()} \)
Checks if all the invariants are satisfied.

OUTPUT:
Boolean.

EXAMPLES:

```
sage: from sage.libs.ppl import Variable
sage: x = Variable(0)
sage: x.OK()
True
```

\( \text{id()} \)
Return the index of the Cartesian axis associated to the variable.

EXAMPLES:
from sage.libs.ppl import Variable
x = Variable(123)
x.id()

space_dimension()  
Return the dimension of the vector space enclosing self.  

OUTPUT:  
Integer. The returned value is self.id()+1.  

EXAMPLES:  

sage: from sage.libs.ppl import Variable  
sage: x = Variable(0)  
sage: x.space_dimension()  
1

class sage.libs.ppl.Variables_Set  
Bases: object  
Wrapper for PPL's Variables_Set class.  
A set of variables’ indexes.  

EXAMPLES:  
Build the empty set of variable indexes:  

sage: from sage.libs.ppl import Variable, Variables_Set  
sage: Variables_Set()  
Variables_Set of cardinality 0
 
Build the singleton set of indexes containing the index of the variable:  

sage: v123 = Variable(123)  
sage: Variables_Set(v123)  
Variables_Set of cardinality 1
 
Build the set of variables’ indexes in the range from one variable to another variable:  

sage: v127 = Variable(127)  
sage: Variables_Set(v123,v127)  
Variables_Set of cardinality 5

OK()  
Checks if all the invariants are satisfied.  

OUTPUT:  
Boolean.  

EXAMPLES:  

sage: from sage.libs.ppl import Variable, Variables_Set  
sage: v123 = Variable(123)  
sage: S = Variables_Set(v123)  
sage: S.OK()  
True
ascii_dump()  
Write an ASCII dump to stderr.

EXAMPLES:

```python
sage: sage_cmd = 'from sage.libs.ppl import Variable, Variables_Set
 sage: sage_cmd += 'v123 = Variable(123)
 sage: sage_cmd += 'S = Variables_Set(v123)
 sage: sage_cmd += 'S.ascii_dump()
 sage: from sage.tests.cmdline import test_executable
 sage: (out, err, ret) = test_executable(['sage', '-c', sage_cmd],
 # long time, indirect doctest
 sage: print(err) # long time py2
 /... DeprecationWarning: The Sage wrappers around ppl are now superseded by
 →the standalone pplpy. Please use import 'ppl' instead of 'sage.libs.ppl'.
 See http://trac.sagemath.org/23024 for details.
 ...
 variables(1)
 123
 sage: print(err) # long time py3
 variables(1)
 123 /... DeprecationWarning: The Sage wrappers around ppl are now superseded
 →by the standalone pplpy. Please use import 'ppl' instead of 'sage.libs.ppl'.
 See http://trac.sagemath.org/23024 for details.
 ...
```

insert(v)

Inserts the index of variable \(v\) into the set.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Variables_Set
sage: S = Variables_Set()
sage: v123 = Variable(123)
sage: S.insert(v123)
```

space_dimension()

Returns the dimension of the smallest vector space enclosing all the variables whose indexes are in the set.

OUTPUT:

Integer.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, Variables_Set
sage: S = Variables_Set()
sage: v123 = Variable(123)
sage: S.space_dimension()
```

sage.libs.ppl.closure_point(expression=0, divisor=1)

Construct a closure point.

See `Generator.closure_point()` for documentation.
EXAMPLES:

```
sage: from sage.libs.ppl import Variable, closure_point
sage: y = Variable(1)
sage: closure_point(2*y, 5)
closure_point(0/5, 2/5)
```

`sage.libs.ppl.equation(expression)`

Construct an equation.

**INPUT:**

• `expression` – a `Linear_Expression`.

**OUTPUT:**

The equation `expression == 0`.

**EXAMPLES:**

```
sage: from sage.libs.ppl import Variable, equation
sage: y = Variable(1)
sage: 2*y+1 == 0
2*x1+1==0
sage: equation(2*y+1)
2*x1+1==0
```

`sage.libs.ppl.inequality(expression)`

Construct an inequality.

**INPUT:**

• `expression` – a `Linear_Expression`.

**OUTPUT:**

The inequality `expression >= 0`.

**EXAMPLES:**

```
sage: from sage.libs.ppl import Variable, inequality
sage: y = Variable(1)
sage: 2*y+1 >= 0
2*x1+1>=0
sage: inequality(2*y+1)
2*x1+1>=0
```

`sage.libs.ppl.line(expression)`

Construct a line.

See `Generator.line()` for documentation.

**EXAMPLES:**

```
sage: from sage.libs.ppl import Variable, line
sage: y = Variable(1)
sage: line(2*y)
line(0, 1)
```

`sage.libs.ppl.point(expression=0, divisor=1)`

Construct a point.

See `Generator.point()` for documentation.
EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, point
sage: y = Variable(1)
sage: point(2*y, 5)
point(0/5, 2/5)
```

`sage.libs.ppl.ray(expression)`

Construct a ray.

See `Generator.ray()` for documentation.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, ray
sage: y = Variable(1)
sage: ray(2*y)
ray(0, 1)
```

`sage.libs.ppl.strict_inequality(expression)`

Construct a strict inequality.

INPUT:

- `expression` – a `Linear_Expression`.

OUTPUT:

The inequality `expression > 0`.

EXAMPLES:

```python
sage: from sage.libs.ppl import Variable, strict_inequality
sage: y = Variable(1)
sage: 2*y+1 > 0
2*x1+1>0
sage: strict_inequality(2*y+1)
2*x1+1>0
```
16.1 Hyperelliptic Curve Point Finding, via ratpoints (deprecated)

This module is deprecated, use PARI instead:

```python
sage: pari(EllipticCurve("389a1").ellratpoints(4))
([-2, 0], [-2, -1], [-1, 1], [-1, -2], [0, 0], [0, -1], [1, 0], [1, -1], [3, 5], [3, -6], [4, 8], [4, -9], [-3/4, 7/8], [-3/4, -15/8])
sage: pari("[x^3 + x^2 - 2*x, 1]").hyperellratpoints(4)
([-2, 0], [-2, -1], [-1, 1], [-1, -2], [0, 0], [0, -1], [1, 0], [1, -1], [3, 5], [3, -6], [4, 8], [4, -9], [-3/4, 7/8], [-3/4, -15/8])
```

```
sage.libs.ratpoints.ratpoints(coeffs, H, verbose=False, max=0, min_x_denom=None, max_x_denom=None, intervals=[])
```

Access the ratpoints library to find points on the hyperelliptic curve:

\[ y^2 = a_n x^n + \cdots + a_1 x + a_0. \]

**INPUT:**

- `coeffs` – list of integer coefficients \( a_0, a_1, \ldots, a_n \)
- `H` – the bound for the denominator and the absolute value of the numerator of the \( x \)-coordinate
- `verbose` – if True, ratpoints will print comments about its progress
- `max` – maximum number of points to find (if 0, find all of them)

**OUTPUT:**

The points output by this program are points in \((1, \text{ceil}(n/2), 1)\)-weighted projective space. If \( n \) is even, then the associated homogeneous equation is \( y^2 = a_n x^n + \cdots + a_1 x z^{n-1} + a_0 z^n \) while if \( n \) is odd, it is \( y^2 = a_n x^n z + \cdots + a_1 x z^n + a_0 z^{n+1} \).

**EXAMPLES:**

```python
sage: from sage.libs.ratpoints import ratpoints
doctest:...: DeprecationWarning: the module sage.libs.ratpoints is deprecated; use pari.ellratpoints or pari.hyperellratpoints instead
See http://trac.sagemath.org/24531 for details.
sage: for x,y,z in ratpoints([1..6], 200):
....: print(-1*y^2 + 1*z^6 + 2*x*z^5 + 3*x^2*z^4 + 4*x^3*z^3 + 5*x^4*z^2 +
 6*x^5*z)
0
0
0
0
```

(continues on next page)
The denominator of \( x \) can be restricted, for example to find integral points:

```python
sage: from sage.libs.ratpoints import ratpoints
sage: coeffs = [400, -112, 0, 1]
```

```python
sage: ratpoints(coeffs, 10^6, max_x_denom=1, intervals=[[[-10,0],[1000,2000]])
```

```python
[(1, 0, 0), (-8, 28, 1), (-8, -28, 1), (-7, 29, 1), (-7, -29, 1),
 (-4, 28, 1), (-4, -28, 1), (0, 20, 1), (0, -20, 1), (1368, 50596, 1),
 (1368, -50596, 1), (1624, 65444, 1), (1624, -65444, 1)]
```

```python
sage: ratpoints(coeffs, 1000, min_x_denom=100, max_x_denom=200)
```

```python
[(1, 0, 0),
 (-656, 426316, 121),
 (-656, -426316, 121),
 (452, 85052, 121),
 (452, -85052, 121),
 (988, 80036, 121),
 (988, -80036, 121),
 (-556, 773188, 169),
 (-556, -773188, 169),
 (264, 432068, 169),
 (264, -432068, 169)]
```

Finding the integral points on the compact component of an elliptic curve:

```python
sage: E = EllipticCurve([0,1,0,-35220,-1346400])
```

```python
sage: e1, e2, e3 = E.division_polynomial(2).roots(multiplicities=False)
```

```python
sage: coeffs = [E.a6(), E.a4(), E.a2(), 1]
```

```python
sage: ratpoints(coeffs, 1000, max_x_denom=1, intervals=[[e3,e2]])
```

```python
[(1, 0, 0),
 (-165, 0, 1),
 (-162, 366, 1),
 ...]
```

(continues on next page)
16.1. Hyperelliptic Curve Point Finding, via ratpoints (deprecated)

(-162, -366, 1),
(-120, 1080, 1),
(-120, -1080, 1),
(-90, 1050, 1),
(-90, -1050, 1),
(-85, 1020, 1),
(-85, -1020, 1),
(-42, 246, 1),
(-42, -246, 1),
(-40, 0, 1)}
17.1 Readline

This is the library behind the command line input, it takes keypresses until you hit Enter and then returns it as a string to Python. We hook into it so we can make it redraw the input area.

EXAMPLES:

```python
sage: from sage.libs.readline import *
sage: replace_line('foobar', 0)
sage: set_point(3)
sage: print('current line: ', repr(copy_text(0, get_end())))
current line: 'foobar'
sage: print('cursor position: ', get_point())
cursor position: 3
```

When printing with `interleaved_output` the prompt and current line is removed:

```python
sage: with interleaved_output():
 : print('output')
 : print('current line: ',
 : repr(copy_text(0, get_end())))
 : print('cursor position: ', get_point())
output
current line: ''
cursor position: 0
```

After the interleaved output, the line and cursor is restored to the old value:

```python
sage: print('current line: ', repr(copy_text(0, get_end())))
current line: 'foobar'
sage: print('cursor position: ', get_point())
cursor position: 3
```

Finally, clear the current line for the remaining doctests:

```python
sage: replace_line('', 1)
sage.libs.readline.clear_signals()
Remove the readline signal handlers

Remove all of the Readline signal handlers installed by `set_signals()`

EXAMPLES:
sage: from sage.libs.readline import clear_signals
clear_signals()
0

sage.libs.readline.copy_text(pos_start, pos_end)
Return a copy of the text between start and end in the current line.

INPUT:
 • pos_start, pos_end – integer. Start and end position.

OUTPUT:
String.

EXAMPLES:

sage: from sage.libs.readline import copy_text, replace_line
sage: replace_line('foobar', 0)
sage: copy_text(1, 5)
'ooba'

sage.libs.readline.forced_update_display()
Force the line to be updated and redisplayed, whether or not Readline thinks
the screen display is correct.

EXAMPLES:

sage: from sage.libs.readline import forced_update_display
sage: forced_update_display()
0

sage.libs.readline.get_end()
Get the end position of the current input

OUTPUT:
Integer

EXAMPLES:

sage: from sage.libs.readline import get_end
sage: get_end()
0

sage.libs.readline.get_point()
Get the cursor position

OUTPUT:
Integer

EXAMPLES:

sage: from sage.libs.readline import get_point, set_point
sage: get_point()
0
sage: set_point(5)
sage: get_point()
5
sage: set_point(0)
sage.libs.readline.initialize()
Initialize or re-initialize Readline’s internal state. It’s not strictly necessary to call this; readline() calls it before reading any input.

EXAMPLES:
```
sage: from sage.libs.readline import initialize
sage: initialize()
0
```

class sage.libs.readline.interleaved_output
Bases: object

Context manager for asynchronous output

This allows you to show output while at the readline prompt. When the block is left, the prompt is restored even if it was clobbered by the output.

EXAMPLES:
```
sage: from sage.libs.readline import interleaved_output
sage: with interleaved_output():
....:    print('output')
output
```

sage.libs.readline.print_status()
Print readline status for debug purposes

EXAMPLES:
```
sage: from sage.libs.readline import print_status
sage: print_status()
catch_signals: 1
catch_sigwinch: 1
```

sage.libs.readline.replace_line(text, clear_undo)
Replace the contents of rl_line_buffer with text.
The point and mark are preserved, if possible.

INPUT:

• text – the new content of the line.

• clear_undo – integer. If non-zero, the undo list associated with the current line is cleared.

EXAMPLES:
```
sage: from sage.libs.readline import copy_text, replace_line
sage: replace_line('foobar', 0)
sage: copy_text(1, 5)
'ooba'
```

sage.libs.readline.set_point(point)
Set the cursor position

INPUT:

• point – integer. The new cursor position.

EXAMPLES:
sage: from sage.libs.readline import get_point, set_point
sage: get_point()
0
sage: set_point(5)
sage: get_point()
5
sage: set_point(0)

sage.libs.readline.set_signals()
Install the readline signal handlers

Install Readline’s signal handler for SIGINT, SIGQUIT, SIGTERM, SIGALRM, SIGTSTP, SIGTTIN, SIGTTOU, and SIGWINCH, depending on the values of rl_catch_signals and rl_catch_sigwinch.

EXAMPLES:

sage: from sage.libs.readline import set_signals
sage: set_signals()
18.1 Symmetrica library

sage.libs.symmetrica.symmetrica.bdg_symmetrica(part, perm)
Calculates the irreducible matrix representation $D^{\text{part}}(\text{perm})$, whose entries are of integral numbers.

sage.libs.symmetrica.symmetrica.chartafel_symmetrica(n)
you enter the degree of the symmetric group, as INTEGER object and the result is a MATRIX object: the charactertable of the symmetric group of the given degree.

EXAMPLES:

```
sage: symmetrica.chartafel(3)
[ 1 1 1]
[-1 0 2]
[ 1 -1 1]
sage: symmetrica.chartafel(4)
[ 1 1 1 1]
[-1 0 -1 1 3]
[ 0 -1 2 0 2]
[ 1 0 -1 -1 3]
[-1 1 1 -1 1]
```

sage.libs.symmetrica.symmetrica.charvalue_symmetrica(irred, cls, table=None)
you enter a PARTITION object part, labelling the irreducible character, you enter a PARTITION object class, labeling the class or class may be a PERMUTATION object, then result becomes the value of that character on that class or permutation. Note that the table may be NULL, in which case the value is computed, or it may be taken from a precalculated charactertable.

FIXME: add table parameter

EXAMPLES:

```
sage: n = 3
dsage: m = matrix([[symmetrica.charvalue(irred, cls) for cls in Partitions(n)] for \n˓→irred in Partitions(n)]); m
[ 1 1 1]
[-1 0 2]
[ 1 -1 1]
sage: m == symmetrica.chartafel(n)
True
sage: n = 4
dsage: m = matrix([[symmetrica.charvalue(irred, cls) for cls in Partitions(n)] for \n˓→irred in Partitions(n)]))
```
computes the expansion of an elementary symmetric function labeled by an INTEGER number as a POLYNOM erg. The object number may also be a PARTITION or an ELM_SYM object. The INTEGER length specifies the length of the alphabet. Both routines are the same.

EXAMPLES:

```
sage: a = symmetrica.compute_elmsym_with_alphabet(2,2); a
x0*x1
sage: a.parent()
Multivariate Polynomial Ring in x0, x1 over Integer Ring
sage: a = symmetrica.compute_elmsym_with_alphabet([2],2); a
x0*x1
sage: symmetrica.compute_elmsym_with_alphabet(3,2)
0
sage: symmetrica.compute_elmsym_with_alphabet([3,2,1],2)
0
```

computes the expansion of a homogenous (=complete) symmetric function labeled by an INTEGER number as a POLYNOM erg. The object number may also be a PARTITION or a HOM_SYM object. The INTEGER length specifies the length of the alphabet. Both routines are the same.

EXAMPLES:

```
sage: symmetrica.compute_homsym_with_alphabet(3,1,'x')
x^3
sage: symmetrica.compute_homsym_with_alphabet([2,1],1,'x')
x^3
sage: symmetrica.compute_homsym_with_alphabet([2,1],2,'x')
x0^3 + 2*x0^2*x1 + 2*x0*x1^2 + x1^3
sage: symmetrica.compute_homsym_with_alphabet([2,1],2,'a,b')
a^3 + 2*a^2*b + 2*a*b^2 + b^3
sage: symmetrica.compute_homsym_with_alphabet([2,1],2,'x').parent()
Multivariate Polynomial Ring in x0, x1 over Integer Ring
```

computes the expansion of a monomial symmetric function labeled by a PARTITION number as a POLYNOM erg. The INTEGER length specifies the length of the alphabet.

EXAMPLES:

```
sage: symmetrica.compute_monomial_with_alphabet([2,1],2,'x')
x0^3 + 2*x0^2*x1 + 2*x0*x1^2 + x1^3
```
sage: symmetrica.compute_monomial_with_alphabet([2,1],2,'x')
x0^2*x1 + x0*x1^2
sage: symmetrica.compute_monomial_with_alphabet([1,1,1],2,'x')
0
sage: symmetrica.compute_monomial_with_alphabet(2,2,'x')
x0^2 + x1^2
sage: symmetrica.compute_monomial_with_alphabet(2,2,'a,b')
a^2 + b^2
sage: symmetrica.compute_monomial_with_alphabet(2,2,'x').parent()
Multivariate Polynomial Ring in x0, x1 over Integer Ring

sage.libs.symmetrica.symmetrica.compute_powsym_with_alphabet_symmetrica(n, length, alphabet='x')

computes the expansion of a power symmetric function labeled by a INTEGER label or by a PARTITION label or a POW_SYM label as a POLYNOM erg. The INTEGER length specifies the length of the alphabet.

EXAMPLES:

sage: symmetrica.compute_powsym_with_alphabet(2,2,'x')
x0^2 + x1^2
sage: symmetrica.compute_powsym_with_alphabet(2,2,'x').parent()
Multivariate Polynomial Ring in x0, x1 over Integer Ring
sage: symmetrica.compute_powsym_with_alphabet([2],2,'x')
x0^2 + x1^2
sage: symmetrica.compute_powsym_with_alphabet([2],2,'a,b')
a^2 + b^2
sage: symmetrica.compute_powsym_with_alphabet([2,1],2,'a,b')
a^3 + a^2*b + a*b^2 + b^3

sage.libs.symmetrica.symmetrica.compute_schur_with_alphabet_det_symmetrica(part, length, alphabet='x')

Computes the expansion of a schurfuction labeled by a partition PART as a POLYNOM erg. The INTEGER length specifies the length of the alphabet.

sage: symmetrica.compute_schur_with_alphabet_det(2,2)
x0^2 + x0*x1 + x1^2
sage: symmetrica.compute_schur_with_alphabet_det([2],2)
x0^2 + x0*x1 + x1^2
sage: symmetrica.compute_schur_with_alphabet_det(Partition([2]),2)
x0^2 + x0*x1 + x1^2
sage: symmetrica.compute_schur_with_alphabet_det(Partition([2]),2,'y')
y0^2 + y0*y1 + y1^2
sage: symmetrica.compute_schur_with_alphabet_det(Partition([2]),2,'a,b')
a^2 + a*b + b^2

sage.libs.symmetrica.symmetrica.compute_schur_with_alphabet_symmetrica(part, length, alphabet='x')
EXAMPLES:

```python
sage: symmetrica.compute_schur_with_alphabet(2,2)
x0^2 + x0*x1 + x1^2
sage: symmetrica.compute_schur_with_alphabet([2],2)
x0^2 + x0*x1 + x1^2
sage: symmetrica.compute_schur_with_alphabet(Partition([2]),2)
x0^2 + x0*x1 + x1^2
sage: symmetrica.compute_schur_with_alphabet(Partition([2]),2,'y')
y0^2 + y0*y1 + y1^2
sage: symmetrica.compute_schur_with_alphabet(Partition([2]),2,'a,b')
a^2 + a*b + b^2
sage: symmetrica.compute_schur_with_alphabet([2,1],1,'x')
0
```

```
sage.libs.symmetrica.symmetrica.dimension_schur_symmetrica(s)
you enter a SCHUR object a, and the result is the dimension of the corresponding representation of the symmetric group sn.

sage.libs.symmetrica.symmetrica.dimension_symmetrization_symmetrica(n, part)
computes the dimension of the degree of a irreducible representation of the GL_n, n is a INTEGER object, labeled by the PARTITION object a.

sage.libs.symmetrica.symmetrica.divdiff_perm_schubert_symmetrica(perm, a)
Returns the result of applying the divided difference operator \( \delta_i \) to a where a is either a permutation or a Schubert polynomial over QQ.

EXAMPLES:

```python
sage: symmetrica.divdiff_perm_schubert([2,3,1], [3,2,1])
X[2, 1]
sage: symmetrica.divdiff_perm_schubert([3,1,2], [3,2,1])
X[1, 3, 2]
sage: symmetrica.divdiff_perm_schubert([3,2,4,1], [3,2,1])
Traceback (most recent call last):
...
ValueError: cannot apply \(\delta_i \) to a (= [3, 2, 1])
```

sage.libs.symmetrica.symmetrica.divdiff_schubert_symmetrica(i, a)
Returns the result of applying the divided difference operator \( \delta_i \) to a where a is either a permutation or a Schubert polynomial over QQ.

EXAMPLES:

```python
sage: symmetrica.divdiff_schubert(1, [3,2,1])
X[2, 3, 1]
sage: symmetrica.divdiff_schubert(2, [3,2,1])
X[3, 1, 2]
sage: symmetrica.divdiff_schubert(3, [3,2,1])
Traceback (most recent call last):
...
ValueError: cannot apply \(\delta_3 \) to a (= [3, 2, 1])
```

sage.libs.symmetrica.symmetrica.end()

sage.libs.symmetrica.symmetrica.gupta_nm_symmetrica(n, m)
this routine computes the number of partitions of n with maximal part m. The result is erg. The input n,m must be INTEGER objects. The result is freed first to an empty object. The result must be a different from m and n.
it computes the table of the above values. The entry n,m is the result of gupta_nm. mat is freed first. max must be an INTEGER object, it is the maximum weight for the partitions. max must be different from result.

computes the so called Hall Littlewood Polynomials, i.e. a SCHUR object, whose coefficient are polynomials in one variable. The method, which is used for the computation is described in the paper: A.O. Morris The Characters of the group GL(n,q) Math Zeitschr 81, 112-123 (1963)

computes the kostkanumber, i.e. the number of tableaux of given shape, which is a PARTITION object, and of given content, which also is a PARTITION object, or a VECTOR object with INTEGER entries. The result is an INTEGER object, which is freed to an empty object at the beginning. The shape could also be a SKEWPARTITION object, then we compute the number of skewtableaux of the given shape.

EXAMPLES:

```python
sage: symmetrica.kostka_number([2,1],[1,1,1])
2
sage: symmetrica.kostka_number([1,1,1],[1,1,1])
1
sage: symmetrica.kostka_number([3],[1,1,1])
1
```

computes the list of tableaux of given shape and content. shape is a PARTITION object or a SKEWPARTITION object and content is a PARTITION object or a VECTOR object with INTEGER entries, the result becomes a LIST object whose entries are the computed TABLEAUX object.

EXAMPLES:

```python
sage: symmetrica.kostka_tab([3],[1,1,1])
[[[1, 2, 3]]]
sage: symmetrica.kostka_tab([2,1],[1,1,1])
[[[1, 2], [3]], [[1, 3], [2]]]
sage: symmetrica.kostka_tab([1,1,1],[1,1,1])
[[[1], [2], [3]]]
sage: symmetrica.kostka_tab([[2,2,1],[1,1]], [1,1,1])
[[[None, 1], [None, 2], [3]], [[None, 1], [None, 3], [2]], [[None, 2], [None, 3], [1]]]
sage: symmetrica.kostka_tab([[2,2],[1]], [1,1,1])
[[[None, 1], [2, 3]], [[None, 2], [1, 3]]]
```

Returns the table of Kostka numbers of weight n.

EXAMPLES:

```python
sage: symmetrica.kostka_tafel(1)
[1]
sage: symmetrica.kostka_tafel(2)
[1 0]
[1 1]
sage: symmetrica.kostka_tafel(3)
[1 0 0]
[1 1 0]
```

(continues on next page)
sage: Kostenkta_tafel(4)
[[1 0 0 0 0]
 [1 1 0 0 0]
 [1 1 1 0 0]
 [1 2 1 1 0]
 [1 3 2 3 1]]

sage: Kostenkta_tafel(5)
[[1 0 0 0 0 0 0]
 [1 1 0 0 0 0 0]
 [1 1 1 0 0 0 0]
 [1 2 1 1 0 0 0]
 [1 2 2 1 1 0 0]
 [1 3 3 3 2 1 0]
 [1 4 5 6 5 4 1]]

sage.libs.symmetrica.symmetrica.kranztafel_symmetrica(a, b)
you enter the INTEGER objects, say a and b, and res becomes a MATRIX object, the charactertable of $S_b \wr S_a$, co becomes a VECTOR object of classorders and cl becomes a VECTOR object of the classlabels.

EXAMPLES:

sage: (a, b, c) = symmetrica.kranztafel(2,2)
sage: a
[ 1 -1  1 -1  1]
[ 1  1  1  1  1]
[-1  1  1 -1  1]
[ 0  0  2  0 -2]
[-1 -1  1  1  1]
sage: b
[2, 2, 1, 2, 1]
sage: for m in c: print(m)
[0 0]
[0 1]
[0 0]
[1 0]
[0 2]
[0 0]
[1 1]
[0 0]
[2 0]
[0 0]

sage.libs.symmetrica.symmetrica.mult_monomial_monomial_symmetrica(m1, m2)
sage.libs.symmetrica.symmetrica.mult_schubert_schubert_symmetrica(a, b)
Multiplies the Schubert polynomials a and b.

EXAMPLES:

sage: symmetrica.mult_schubert_schubert([3,2,1], [3,2,1])
X[5, 3, 1, 2, 4]

sage.libs.symmetrica.symmetrica.mult_schubert_variable_symmetrica(a, i)
Returns the product of a and x_i. Note that indexing with i starts at 1.
EXAMPLES:

```python
sage: symmetrica.mult_schubert_variable([3,2,1], 2)
X[3, 2, 4, 1]
sage: symmetrica.mult_schubert_variable([3,2,1], 4)
X[3, 2, 1, 4, 6, 5] - X[3, 2, 1, 5, 4]
```

sage.libs.symmetrica.symmetrica.mult_schur_schur_symmetrica(s1, s2)

sage.libs.symmetrica.symmetrica.ndg_symmetrica(part, perm)

computes the decomposition of a schubertpolynomial labeled by the permutation perm, as a sum of Schurfunction.

FIXME!

sage.libs.symmetrica.symmetrica.odd_to_strict_part_symmetrica(part)

implements the bijection between partitions with odd parts and strict partitions. input is a VECTOR type partition, the result is a partition of the same weight with different parts.

sage.libs.symmetrica.symmetrica.odg_symmetrica(part, perm)

Calculates the irreducible matrix representation D\^part(perm), which consists of real numbers.


sage.libs.symmetrica.symmetrica.outerproduct_schur_symmetrica(parta, parth)

you enter two PARTITION objects, and the result is a SCHUR object, which is the expansion of the product of the two schurfunctions, labeled by the two PARTITION objects parta and parth. Of course this can also be interpreted as the decomposition of the outer tensor product of two irreducible representations of the symmetric group.

EXAMPLES:

```python
sage: symmetrica.outerproduct_schur([2],[2])
```

sage.libs.symmetrica.symmetrica.part_part_skewschur_symmetrica(outer, inner)

Return the skew Schur function s_{outer/inner}.

EXAMPLES:

```python
sage: symmetrica.part_part_skewschur([3,2,1],[2,1])
s[1, 1, 1] + 2*s[2, 1] + s[3]
```

sage.libs.symmetrica.symmetrica.plethysm_symmetrica(outer, inner)

sage.libs.symmetrica.symmetrica.q_core_symmetrica(part, d)

computes the q-core of a PARTITION object part. This is the remaining partition (=res) after removing of all hooks of length d (= INTEGER object). The result may be an empty object, if the whole partition disappears.

sage.libs.symmetrica.symmetrica.random_partition_symmetrica(n)

Return a random partition p of the entered weight w.

w must be an INTEGER object, p becomes a PARTITION object. Type of partition is VECTOR . It uses the algorithm of Nijenhuis and Wilf, p.76

sage.libs.symmetrica.symmetrica.scalarproduct_schubert_symmetrica(a, b)

EXAMPLES:
sage: symmetrica.scalarproduct_schubert([3,2,1], [3,2,1])
X[1, 3, 5, 2, 4]
sage: symmetrica.scalarproduct_schubert([3,2,1], [2,1,3])
X[1, 2, 4, 3]

Calculates the irreducible matrix representation $D^\lambda$.


sage: symmetrica.specht_dg_symmetrica(part, perm)

Converts a symmetric polynomial with base ring QQ or ZZ into a symmetric function in the elementary basis.

sage: symmetrica.t_POLYNOM_ELMSYM_symmetrica(p)

Converts a symmetric polynomial with base ring QQ or ZZ into a symmetric function in the elementary basis.
sage.libs.symmetrica.symmetrica.t_POLYNOM_SCHUR_symmetrica \(p\)

Converts a symmetric polynomial with base ring \(\mathbb{Q}\) or \(\mathbb{Z}\) into a symmetric function in the Schur basis.

sage.libs.symmetrica.symmetrica.t_POWSYM_ELMSYM_symmetrica \(\text{powsym}\)

sage.libs.symmetrica.symmetrica.t_POWSYM_HOMSYM_symmetrica \(\text{powsym}\)

sage.libs.symmetrica.symmetrica.t_POWSYM_MONOMIAL_symmetrica \(\text{powsym}\)

sage.libs.symmetrica.symmetrica.t_POWSYM_SCHUR_symmetrica \(\text{powsym}\)

sage.libs.symmetrica.symmetrica.t_SCHUBERT_POLYNOM_symmetrica \(a\)

Converts a Schubert polynomial to a ‘regular’ multivariate polynomial.

EXAMPLES:

```python
sage: symmetrica.t_SCHUBERT_POLYNOM([3,2,1])
x0^2*x1
```

sage.libs.symmetrica.symmetrica.t_SCHUR_ELMSYM_symmetrica \(\text{schur}\)

sage.libs.symmetrica.symmetrica.t_SCHUR_HOMSYM_symmetrica \(\text{schur}\)

sage.libs.symmetrica.symmetrica.t_SCHUR_MONOMIAL_symmetrica \(\text{schur}\)

sage.libs.symmetrica.symmetrica.t_SCHUR_POWSYM_symmetrica \(\text{schur}\)

Tests functionality for converting between Sage’s integers and symmetrica’s integers.

EXAMPLES:

```python
sage: from sage.libs.symmetrica.symmetrica import test_integer
sage: test_integer(1)
1
sage: test_integer(-1)
-1
sage: test_integer(2^33)
8589934592
sage: test_integer(-2^33)
-8589934592
sage: test_integer(2^100)
1267650600228229401496703205376
sage: test_integer(-2^100)
-1267650600228229401496703205376
sage: for i in range(100):
....: if test_integer(2^i) != 2^i:
....: print("Failure at {}".format(i))
```
CHAPTER
NINETEEN

INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.libs.ecl, 3
sage.libs.eclib.constructor, 34
sage.libs.eclib.homspace, 31
sage.libs.eclib.interface, 11
sage.libs.eclib.mat, 28
sage.libs.eclib.mwrank, 26
sage.libs.eclib.newforms, 29
sage.libs.flint.arith, 39
sage.libs.flint.flint, 37
sage.libs.flint.fmpz_poly, 37
sage.libs.gap.context_managers, 79
sage.libs.gap.element, 88
sage.libs.gap.gap_functions, 80
sage.libs.gap.libgap, 81
sage.libs.gap.saved_workspace, 103
sage.libs.gap.test, 87
sage.libs.gap.test_long, 80
sage.libs.gap.util, 80
sage.libs.giac, 43
sage.libs.gsl.array, 49
sage.libs.lcalc.lcalc_Lfunction, 51
sage.libs.libecm, 47
sage.libs.linbox.linbox_flint_interface, 105
sage.libs.lrcalc.lrcalc, 107
sage.libs.mpmath.utils, 115
sage.libs.ntl.all, 121
sage.libs.pari, 123
sage.libs.pari.convert_sage, 125
sage.libs.ppl, 131
sage.libs.ratpoints, 195
sage.libs.readline, 199
sage.libs.singular.function, 59
sage.libs.singular.function_factory, 67
sage.libs.singular.groebner_strategy, 74
sage.libs.singular.option, 68
sage.libs.singular.polynomial, 68
add_constraint() (sage.libs.ppl.MIP_Problem method), 156
add_constraint() (sage.libs.ppl.Polyhedron method), 167
add_constraints() (sage.libs.ppl.MIP_Problem method), 156
add_constraints() (sage.libs.ppl.Polyhedron method), 167
add_generator() (sage.libs.ppl.Polyhedron method), 168
add_generators() (sage.libs.ppl.Polyhedron method), 169
add_scalar() (sage.libs.eclib.mat.Matrix method), 28
add_space_dimensions_and_embed() (sage.libs.ppl.MIP_Problem method), 156
add_space_dimensions_and_embed() (sage.libs.ppl.Polyhedron method), 170
add_space_dimensions_and_project() (sage.libs.ppl.Polyhedron method), 170
add_to_integer_space_dimensions() (sage.libs.ppl.MIP_Problem method), 157
affine_dimension() (sage.libs.ppl.Polyhedron method), 171
ainvs() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 12
all_homogeneous_terms_are_zero() (sage.libs.ppl.Linear_Expression method), 153
all_singular_poly_wrapper() (in module sage.libs.singular.function), 63
all_vectors() (in module sage.libs.singular.function), 63
ascii_dump() (sage.libs.ppl.Constraint method), 135
ascii_dump() (sage.libs.ppl.Constraint_System method), 140
ascii_dump() (sage.libs.ppl-generator method), 143
ascii_dump() (sage.libs.ppl-generator System method), 150
ascii_dump() (sage.libs.ppl.Linear_Expression method), 153
ascii_dump() (sage.libs.ppl.Poly_Con_Relation method), 162
ascii_dump() (sage.libs.ppl.Poly_Gen_Relation method), 165
ascii_dump() (sage.libs.ppl.Polyhedron method), 171
ascii_dump() (sage.libs.ppl.Variables_Set method), 190
atomp() (sage.libs.ecl.EclObject method), 4

BaseCallHandler (class in sage.libs.singular.function), 60
bdg_symmetrica() (in module sage.libs.symmetrica.symmetrica), 203
bell_number() (in module sage.libs.flint.arith), 39
bernoulli_number() (in module sage.libs.flint.arith), 39
bitcount() (in module sage.libs.mpmath.utils), 115
bounds_from_above() (sage.libs.ppl.Polyhedron method), 173
bounds_from_below() (sage.libs.ppl.Polyhedron method), 173
C

C_Polyhedron (class in sage.libs.ppl), 133
caar () (sage.libs.ecl.EclObject method), 5
cadr () (sage.libs.ecl.EclObject method), 5
call () (in module sage.libs.mpmath.utils), 115
car () (sage.libs.ecl.EclObject method), 5
cdar () (sage.libs.ecl.EclObject method), 6
cddr () (sage.libs.ecl.EclObject method), 6
cdr () (sage.libs.ecl.EclObject method), 6
certain () (sage.libs.eclib.interface.mwrank_EllipticCurve method), 12
characteristic() (sage.libs.singular.function.RingWrap method), 61
characteristic() (sage.rings.pari_ring.PariRing method), 129
characterp() (sage.libs.ecl.EclObject method), 7
charpoly() (sage.libs.eclib.mat.Matrix method), 28
chartafel_symmetrica() (in module sage.libs.symmetrica.symmetrica), 203
charvalue_symmetrica() (in module sage.libs.symmetrica.symmetrica), 203
clear() (sage.libs.ppl.Constraint_System method), 140
clear() (sage.libs.ppl.Generator_System method), 151
clear() (sage.libs.ppl.MIP_Problem method), 157
clear_signals() (in module sage.libs.readline), 199
closure_point() (in module sage.libs.ppl), 191
closure_point() (sage.libs.ppl.Generator method), 144
coefficient() (sage.libs.ppl.Constraint method), 136
coefficient() (sage.libs.ppl.Generator method), 144
coefficient() (sage.libs.ppl.Linear_Expression method), 154
coefficients() (sage.libs.ppl.Constraint method), 136
coefficients() (sage.libs.ppl.Generator method), 145
coefficients() (sage.libs.ppl.Linear_Expression method), 154
collect() (sage.libs.gap.libgap.Gap method), 84
compute_elmsym_with_alphabet_symmetrica() (in module sage.libs.symmetrica.symmetrica), 204
compute_homsym_with_alphabet_symmetrica() (in module sage.libs.symmetrica.symmetrica), 204
compute_monomial_with_alphabet_symmetrica() (in module sage.libs.symmetrica.symmetrica), 204
compute_powsym_with_alphabet_symmetrica() (in module sage.libs.symmetrica.symmetrica), 205
compute_rank() (sage.libs.lcalc.lcalc_Lfunction.Lfunction method), 51
compute_schur_with_alphabet_det_symmetrica() (in module sage.libs.symmetrica.symmetrica), 205
compute_schur_with_alphabet_symmetrica() (in module sage.libs.symmetrica.symmetrica), 205
concatenate_assign() (sage.libs.ppl.Polyhedron method), 173
conductor() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 13
cons () (sage.libs.ecl.EclObject method), 7
consp() (sage.libs.ecl.EclObject method), 7
constrains() (sage.libs.ppl.Polyhedron method), 174
Constraint (class in sage.libs.ppl), 134
Constraint_System (class in sage.libs.ppl), 139
Constraint_System_iterator (class in sage.libs.ppl), 142
constraints () (sage.libs.ppl.Polyhedron method), 175
contains() (sage.libs.ppl.Polyhedron method), 175
contains_integer_point () (sage.libs.ppl.Polyhedron method), 176
Converter (class in sage.libs.singular.function), 60
coprod() (in module sage.libs.lrcalc.lrcalc), 109
copy_text() (in module sage.libs.readline), 200
count_GAP_objects() (sage.libs.gap.libgap.Gap method), 84
CPS_height_bound() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 12
CremonaModularSymbols() (in module sage.libs.eclib.constructor), 34
currRing_wrapper() (in module sage.libs.singular.ring), 73

d
dedekind_sum() (in module sage.libs.flint.arith), 40
deeffy() (sage.libs.gap.element.GapElement method), 88
degree() (sage.libs.flint.fmpz_poly.Fmpz_poly method), 37
derivative() (sage.libs.flint.fmpz_poly.Fmpz_poly method), 37
difference_assign() (sage.libs.ppl.Polyhedron method), 176
dimension() (sage.libs.eclib.homspace.ModularSymbols method), 31
dimension_symmetrization_symmetrica() (in module sage.libs.symmetrica.symmetrica), 206
div_rem() (sage.libs.flint.fmpz_poly.Fmpz_poly method), 38
divdiff_perm_schubert_symmetrica() (in module sage.libs.symmetrica.symmetrica), 206
divdiff_schubert_symmetrica() (in module sage.libs.symmetrica.symmetrica), 206
divisor() (sage.libs.ppl.Generator method), 145
drop_some_non_integer_points() (sage.libs.ppl.Polyhedron method), 177

e
ecl_eval() (in module sage.libs.ecl), 9
EclListIterator (class in sage.libs.ecl), 3
EclObject (class in sage.libs.ecl), 3
ecmfactor() (in module sage.libs.libecm), 47
ECModularSymbol (class in sage.libs.eclib.newforms), 29
Element (sage.libs.gap.libgap.Gap attribute), 84
Element (sage.rings.pari_ring.PariRing attribute), 129
empty() (sage.libs.ppl.Constraint_System method), 141
empty() (sage.libs.ppl.Generator_System method), 151
div() (in module sage.libs.symmetrica.symmetrica), 206
equation() (in module sage.libs.ppl), 192
euler_number() (in module sage.libs.flint.arith), 40
eval() (sage.libs.ecl.EclObject method), 7
eval() (sage.libs.gap.libgap.Gap method), 84
evaluate_objective_function() (sage.libs.ppl.MIP_Problem method), 157

F
find_zeros() (sage.libs.lcalc.lcalc_Lfunction.Lfunction method), 51
find_zeros_via_N() (sage.libs.lcalc.lcalc_Lfunction.Lfunction method), 52
fixnump() (sage.libs.ecl.EclObject method), 7
Fmpz_poly (class in sage.libs.flint.fmpz_poly), 37
forced_update_display() (in module sage.libs.readline), 200
free_flint_stack() (in module sage.libs.flint.flint), 200
from_man_exp() (in module sage.libs.mpmath.utils), 116
function_factory() (sage.libs.gap.libgap.Gap method), 84

G
Gap (class in sage.libs.gap.libgap), 83
gap_root() (in module sage.libs.gap.util), 80
GapElement (class in sage.libs.gap.element), 88
GapElement_Boolean (class in sage.libs.gap.element), 91
GapElement_Cyclotomic (class in sage.libs.gap.element), 92
GapElement_FiniteField (class in sage.libs.gap.element), 92
GapElement_Float (class in sage.libs.gap.element), 93
GapElement_Function (class in sage.libs.gap.element), 94
GapElement_Integer (class in sage.libs.gap.element), 94
GapElement_IntegerMod (class in sage.libs.gap.element), 95
GapElement_MethodProxy (class in sage.libs.gap.element), 98
GapElement_Permutation (class in sage.libs.gap.element), 98
GapElement_Rational (class in sage.libs.gap.element), 98
GapElement_Record (class in sage.libs.gap.element), 99
GapElement_RecordIterator (class in sage.libs.gap.element), 100
GapElement_Ring (class in sage.libs.gap.element), 100
GapElement_String (class in sage.libs.gap.element), 102
GAPError, 80
gen_to_sage() (in module sage.libs.pari.convert_sage), 125
Generator (class in sage.libs.ppl), 142
Generator_System (class in sage.libs.ppl), 149
Generator_System_iterator (class in sage.libs.ppl), 152
generators () (sage.libs.ppl.Polyhedron method), 177
gens () (sage.libs.eclib.interface.mwrank_EllipticCurve method), 13
get_end () (in module sage.libs.readline), 200
get_global () (sage.libs.gap.libgap.Gap method), 85
get_owned_objects () (in module sage.libs.gap.util), 81
get_point () (in module sage.libs.readline), 200
get_precision () (in module sage.libs.eclib.mwrank), 26
GiacSettingsDefaultContext (class in sage.libs.giac), 43
global_context () (sage.libs.gap.libgap.Gap method), 85
GlobalVariableContext (class in sage.libs.gap.context_managers), 79
groebner_basis () (in module sage.libs.giac), 43
GroebnerStrategy (class in sage.libs.singular.groebner_strategy), 74
GSLDoubleArray (class in sage.libs.gsl.array), 49
gupta_nm_symmetrica () (in module sage.libs.symmetrica.symmetrica), 206
gupta_tafel_symmetrica () (in module sage.libs.symmetrica.symmetrica), 206
hall_littlewood_symmetrica () (in module sage.libs.symmetrica.symmetrica), 207
hardy_z_function () (sage.libs.lcalc.lcalc_Lfunction.Lfunction method), 53
harmonic_number () (in module sage.libs.flint.arith), 40
has_equalities () (sage.libs.ppl.Constraint_System method), 141
has_strict_inequalities () (sage.libs.ppl.Constraint_System method), 141
hecke_matrix () (sage.libs.eclib.homspace.ModularSymbols method), 32
id () (sage.libs.ppl.Variable method), 189
ideal () (sage.libs.singular.groebner_strategy.GroebnerStrategy method), 75
ideal () (sage.libs.singular.groebner_strategy.NCGroebnerStrategy method), 75

H

hardy_z_function () (sage.libs.lcalc.lcalc_Lfunction.Lfunction method), 53
implies() (sage.libs.ppl.Poly_Con_Relation method), 163
implies() (sage.libs.ppl.Poly_Gen_Relation method), 165
inequality() (in module sage.libs.ppl), 192
inhomogeneous_term() (sage.libs.ppl.Constraint method), 136
inhomogeneous_term() (sage.libs.ppl.Linear_Expression method), 154
init_ecl() (in module sage.libs.ecl), 9
initialize() (in module sage.libs.readline), 200
initprimes() (in module sage.libs.eclib.mwrank), 27
insert() (sage.libs.ppl.Constraint_System method), 142
insert() (sage.libs.ppl.Generator_System method), 151
insert() (sage.libs.ppl.Variables_Set method), 191
interleaved_output (class in sage.libs.readline), 201
intersection_assign() (sage.libs.ppl.Polyhedron method), 178
is_bool() (sage.libs.gap.element.GapElement method), 89
is_bounded() (sage.libs.ppl.Polyhedron method), 178
is_C_int() (sage.libs.gap.element.GapElement_Integer method), 94
is_closure_point() (sage.libs.ppl.Generator method), 145
is_commutative() (sage.libs.singular.function.RingWrap method), 61
is_cuspidal() (sage.libs.eclib.homspace.ModularSymbols method), 32
is_discrete() (sage.libs.ppl.Polyhedron method), 179
is_disjoint() (sage.libs.ppl.Poly_Con_Relation method), 163
is_disjoint_from() (sage.libs.ppl.Polyhedron method), 179
is_empty() (sage.libs.ppl.Polyhedron method), 180
is_equality() (sage.libs.ppl.Constraint method), 136
is_equivalent_to() (sage.libs.ppl.Constraint method), 137
is_equivalent_to() (sage.libs.ppl.Generator method), 146
is_field() (sage.rings.pari_ring.PariRing method), 129
is_function() (sage.libs.gap.element.GapElement method), 89
is_included() (sage.libs.ppl.Poly_Con_Relation method), 163
is_inconsistent() (sage.libs.ppl.Constraint method), 137
is_inequality() (sage.libs.ppl.Constraint method), 137
is_line() (sage.libs.ppl.Generator method), 146
is_line_or_ray() (sage.libs.ppl.Generator method), 146
is_list() (sage.libs.gap.element.GapElement method), 89
is_nonstrict_inequality() (sage.libs.ppl.Constraint method), 138
is_permutation() (sage.libs.gap.element.GapElement method), 89
is_point() (sage.libs.ppl.Generator method), 147
is_ray() (sage.libs.ppl.Generator method), 147
is_record() (sage.libs.gap.element.GapElement method), 90
is_singular_poly_wrapper() (in module sage.libs.singular.function), 63
is_satisfiable() (sage.libs.ppl.MIP_Problem method), 158
is_singular_poly_wrapper() (in module sage.libs.singular.function), 63
is_strict_inequality() (sage.libs.ppl.Constraint method), 138
is_string() (sage.libs.gap.element.GapElement method), 90
is_tautological() (sage.libs.ppl.Constraint method), 138
is_topologically_closed() (sage.libs.ppl.Polyhedron method), 180
is_universe() (sage.libs.ppl.Polyhedron method), 180
is_zero() (sage.libs.ppl.Linear_Expression method), 154
isogeny_class() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 13
isqrt() (in module sage.libs.mpmath.utils), 117
K
KernelCallHandler (class in sage.libs.singular.function), 60
kostka_number_symmetrica() (in module sage.libs.symmetrica.symmetrica), 207
kostka_tab_symmetrica() (in module sage.libs.symmetrica.symmetrica), 207
kostka_tafel_symmetrica() (in module sage.libs.symmetrica.symmetrica), 207
kranztafel_symmetrica() (in module sage.libs.symmetrica.symmetrica), 208

L
left_shift() (sage.libs.flinf.fmpz_poly.Fmpz_poly method), 38
level() (sage.libs.eclib.homspace.ModularSymbols method), 33
Lfunction (class in sage.libs.lcalc.lcalc_Lfunction), 51
Lfunction_C (class in sage.libs.lcalc.lcalc_Lfunction), 54
Lfunction_D (class in sage.libs.lcalc.lcalc_Lfunction), 55
Lfunction_from_character() (in module sage.libs.lcalc.lcalc_Lfunction), 56
Lfunction_from_elliptic_curve() (in module sage.libs.lcalc.lcalc_Lfunction), 56
Lfunction_I (class in sage.libs.lcalc.lcalc_Lfunction), 55
Lfunction_Zeta (class in sage.libs.lcalc.lcalc_Lfunction), 56
lib() (in module sage.libs.singular.function), 63
LibraryCallHandler (class in sage.libs.singular.function), 60
LibSingularOptions (class in sage.libs.singular.option), 69
LibSingularOptions_abstract (class in sage.libs.singular.option), 72
LibSingularOptionsContext (class in sage.libs.singular.option), 71
LibSingularVerboseOptions (class in sage.libs.singular.option), 72
lift() (sage.libs.gap.element.GapElement_FiniteField method), 92
lift() (sage.libs.gap.element.GapElement_IntegerMod method), 95
line() (in module sage.libs.ppl), 192
line() (sage.libs.ppl.Generator method), 147
Linear_Expression (class in sage.libs.ppl), 152
list() (sage.libs.flinf.fmpz_poly.Fmpz_poly method), 38
list_of_functions() (in module sage.libs.singular.function), 64
listp() (sage.libs.ecl.EclObject method), 8
load() (sage.libs.singular.option.LibSingularOptions_abstract method), 72
load_package() (sage.libs.gap.libgap.Gap method), 85
local_giacsettings() (in module sage.libs.giac), 45
lrcoef() (in module sage.libs.lrcalc.lrcalc), 110
lrcoef_unsafe() (in module sage.libs.lrcalc.lrcalc), 110
lrskew() (in module sage.libs.lrcalc.lrcalc), 111

M
Matrix (class in sage.libs.eclib.mat), 28
matrix() (sage.libs.gap.element.GapElement_List method), 96
MatrixFactory (class in sage.libs.eclib.mat), 29
max_space_dimension() (sage.libs.ppl.Polyhedron method), 180
maximize() (sage.libs.ppl.Polyhedron method), 181
mem() (sage.libs.gap.libgap.Gap method), 85
minimize() (sage.libs.ppl.Polyhedron method), 182
minimized_constraints() (sage.libs.ppl.Polyhedron method), 182
minimized_generators() (sage.libs.ppl.Polyhedron method), 183
MIP_Problem (class in sage.libs.ppl), 155
ModularSymbols (class in sage.libs.eclib.homspace), 31
mpmath_to_sage() (in module sage.libs.mpmath.utils), 117
mult() (in module sage.libs.lrcalc.lrcalc), 111
mult_monomial_monomial_symmetrica() (in module sage.libs.symmetrica.symmetrica), 208
mult_schubert() (in module sage.libs.lrcalc.lrcalc), 112
mult_schubert_schubert_symmetrica() (in module sage.libs.symmetrica.symmetrica), 208
mult_schubert_variable_symmetrica() (in module sage.libs.symmetrica.symmetrica), 208
mult_schur_schur_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
mwrank_EllipticCurve (class in sage.libs.eclib.interface), 11
mwrank_MordellWeil (class in sage.libs.eclib.interface), 17

N
NCGroebnerStrategy (class in sage.libs.singular.groebner_strategy), 75
ncols() (sage.libs.eclib.mat.Matrix method), 28
ndg_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
newtrans_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
ngens() (sage.libs.singular.function.RingWrap method), 61
NNC_Polyhedron (class in sage.libs.ppl), 160
normal_form() (sage.libs.singular.groebner_strategy.GroebnerStrategy method), 75
normal_form() (sage.libs.singular.groebner_strategy.NCGroebnerStrategy method), 76
normalize() (in module sage.libs.mpmath.utils), 118
nothing() (sage.libs.ppl.Poly_Con_Relation method), 164
nothing() (sage.libs.ppl.Poly_Gen_Relation method), 165
npars() (sage.libs.singular.function.RingWrap method), 61
nrows() (sage.libs.eclib.mat.Matrix method), 29
nullp() (sage.libs.ecl.EclObject method), 8
number_of_cusps() (sage.libs.eclib.homspace.ModularSymbols method), 33
number_of_partitions() (in module sage.libs.flint.arith), 40

O
objective_function() (sage.libs.ppl.MIP_Problem method), 158
ObjWrapper (class in sage.libs.gap.util), 80
odd_to_strict_part_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
odg_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
OK() (sage.libs.ppl.Constraint method), 135
OK() (sage.libs.ppl.Constraint_System method), 140
OK() (sage.libs.ppl.Generator method), 143
OK() (sage.libs.ppl.Generator_System method), 150
OK() (sage.libs.ppl.Linear_Expression method), 153
OK() (sage.libs.ppl.MIP_Problem method), 156
OK() (sage.libs.ppl.Poly_Con_Relation method), 162
OK() (sage.libs.ppl.Poly_Gen_Relation method), 165
OK() (sage.libs.ppl.Polyhedron method), 166
OK() (sage.libs.ppl.Variable method), 189
OK() (sage.libs.ppl.Variables_Set method), 190
one() (sage.libs.gap.libgap.Gap method), 85
opt (sage.libs.singular.option.LibSingularOptionsContext attribute), 72
optimal_value() (sage.libs.ppl.MIP_Problem method), 158
optimization_mode() (sage.libs.ppl.MIP_Problem method), 159
optimizing_point() (sage.libs.ppl.MIP_Problem method), 159
ordering_string() (sage.libs.singular.function.RingWrap method), 61
outerproduct_schur_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209

P
par_names() (sage.libs.singular.function.RingWrap method), 62
Pari (class in sage.rings.pari_ring), 129
PariRing (class in sage.rings.pari_ring), 129
part_part_skewschur_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
plethysm_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
point() (in module sage.libs.ppl), 192
point() (sage.libs.ppl.Generator method), 148
points() (sage.libs.eclib.interface.mwrank_MordellWeil method), 20
poison_currRing() (in module sage.libs.singular.ring), 73
Poly_Con_Relation (class in sage.libs.ppl), 162
poly_difference_assign() (sage.libs.ppl.Polyhedron method), 183
Poly_Gen_Relation (class in sage.libs.ppl), 164
poly_hull_assign() (sage.libs.ppl.Polyhedron method), 184
Polyhedron (class in sage.libs.ppl), 166
pow_truncate() (sage.libs.flint.fmpz_poly.Fmpz_poly method), 38
print_currRing() (in module sage.libs.singular.ring), 74
print_objects() (in module sage.libs.ecl), 9
print_status() (in module sage.libs.readline), 201
process() (sage.libs.eclib.interface.mwrank_MordellWeil method), 20
pseudo_div() (sage.libs.flint.fmpz_poly.Fmpz_poly method), 39
pseudo_div_rem() (sage.libs.flint.fmpz_poly.Fmpz_poly method), 39
python() (sage.libs.ecl.EclObject method), 8

Q
q_core_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209

R
random_element() (sage.rings.pari_ring.PariRing method), 129
random_partition_symmetrica() (in module sage.libs.symmetrica.symmetrica), 209
rank() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 13
rank() (sage.libs.eclib.interface.mwrank_MordellWeil method), 22
rank_bound() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 14
ratpoints() (in module sage.libs.ratpoints), 195
ray() (in module sage.libs.ppl), 193
ray() (sage.libs.ppl.Generator method), 148
record_name_to_index() (sage.libs.gap.element.GapElement_Record method), 99
regulator() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 14
regulator() (sage.libs.eclib.interface.mwrank_MordellWeil method), 22
relation_with() (sage.libs.ppl.Polyhedron method), 185
remove_higher_space_dimensions() (sage.libs.ppl.Polyhedron method), 186
replace_line() (in module sage.libs.readline), 201
reset_default() (sage.libs.singular.option.LibSingularOptions method), 71
reset_default() (sage.libs.singular.option.LibSingularVerboseOptions method), 73
Resolution (class in sage.libs.singular.function), 60
right_shift() (sage.libs.flint.fmpz_poly.Fmpz_poly method), 39
ring() (sage.libs.singular.function.Converter method), 60
ring() (sage.libs.singular.groebner_strategy.GroebnerStrategy method), 75
ring() (sage.libs.singular.groebner_strategy.NCGroebnerStrategy method), 76
ring_cyclotomic() (sage.libs.gap.element.GapElement_Ring method), 101
ring_finite_field() (sage.libs.gap.element.GapElement_Ring method), 101
ring_integer() (sage.libs.gap.element.GapElement_Ring method), 101
ring_integer_mod() (sage.libs.gap.element.GapElement_Ring method), 101
ring_polynomial() (sage.libs.gap.element.GapElement_Ring method), 101
ring_rational() (sage.libs.gap.element.GapElement_Ring method), 101
ring_wrapper_Py (class in sage.libs.singular.ring), 74
RingWrap (class in sage.libs.singular.function), 60
rplaca() (sage.libs.ecl.EclObject method), 8
rplacd() (sage.libs.ecl.EclObject method), 8

S
sage() (sage.libs.gap.element.GapElement method), 90
sage() (sage.libs.gap.element.GapElement_Boolean method), 91
sage() (sage.libs.gap.element.GapElement_Cyclotomic method), 92
sage() (sage.libs.gap.element.GapElement_FiniteField method), 93
sage() (sage.libs.gap.element.GapElement_Float method), 93
sage() (sage.libs.gap.element.GapElement_Integer method), 95
sage() (sage.libs.gap.element.GapElement_IntegerMod method), 95
sage() (sage.libs.gap.element.GapElement_List method), 97
sage() (sage.libs.gap.element.GapElement_Permutation method), 98
sage() (sage.libs.gap.element.GapElement_Rational method), 99
sage() (sage.libs.gap.element.GapElement_Record method), 100
sage() (sage.libs.gap.element.GapElement_Ring method), 101
sage() (sage.libs.gap.element.GapElement_String method), 102
sage.libs.ecl (module), 3
sage.libs.eclib.constructor (module), 34
sage.libs.eclib.homspace (module), 31
sage.libs.eclib.interface (module), 11
sage.libs.eclib.mat (module), 28
sage.libs.eclib.mwrank (module), 26
sage.libs.eclib.newforms (module), 29
sage.libs.flint.arith (module), 39
sage.libs.flint.flint (module), 37
sage.libs.flint.fmpz_poly (module), 37
sage.libs.gap.context_managers (module), 79
sage.libs.gap.element (module), 88
sage.libs.gap.gap_functions (module), 80
sage.libs.gap.libgap (module), 81
sage.libs.gap.saved_workspace (module), 103
sage.libs.gap.test (module), 87
sage.libs.gap.test_long (module), 80
sage.libs.gaputil (module), 80
sage.libs.giac (module), 43
sage.libs.gsl.array (module), 49
sage.libs.lcalc.lcalc_lfunction (module), 51
sage.libs.libecm (module), 47
sage.libs.linbox.linbox_flint_interface (module), 105
sage.libs.lrcalc.lrcalc (module), 107
sage.libs.mpmath.utils (module), 115
sage.libsntl.all (module), 121
sage.libs.pari (module), 123
sage.libs.pari.convert_sage (module), 125
sage.libs.ppl (module), 131
sage.libs.ratpoints (module), 195
sage.libs.readline (module), 199
sage.libs.singular.function (module), 59
sage.libs.singular.function_factory (module), 67
sage.libs.singular.groebner_strategy (module), 74
sage.libs.singular.option (module), 68
sage.libs.singular.polynomial (module), 68
sage.libs.singular.ring (module), 73
sage.libs.singular.singular (module), 67
sage.rings.pari_ring (module), 129
sage_matrix_over_ZZ() (sage.libs.eclib.mat.Matrix method), 29
sage_to_mpmath() (in module sage.libs.mpmath.utils), 118
saturate() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 14
saturate() (sage.libs.eclib.interface.mwrank_MordellWeil method), 23
saturates() (sage.libs.ppl.poly_con_relation method), 164
save() (sage.libs.singular.option.LibSingularOptions_abstract method), 72
scalarproduct_schubert_symmetrica() (in module sage.libs.sagematrixsymmetrica), 209
scalarproduct_schur_symmetrica() (in module sage.libs.sagematrixsymmetrica), 210
schur_schur_plet_symmetrica() (in module sage.libs.sagematrixsymmetrica), 210
sdg_symmetrica() (in module sage.libs.sagematrixsymmetrica), 210
search() (sage.libs.eclib.interface.mwrank_MordellWeil method), 25
selmer_rank() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 15
set_global() (sage.libs.gap.libgap.Gap method), 86
set_objective_function() (sage.libs.ppl.MIP_Problem method), 159
set_optimization_mode() (sage.libs.ppl.MIP_Problem method), 160
set_point() (in module sage.libs.readline), 201
set_precision() (in module sage.libs.eclib.mwrank), 27
set_seed() (sage.libs.gap.libgap.Gap method), 86
set_signals() (in module sage.libs.readline), 202
set_verbose() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 16
show() (sage.libs.gap.libgap.Gap method), 86
shutdown_ecl() (in module sage.libs.ecl), 10
sign() (sage.libs.eclib.homspace.ModularSymbols method), 33
silverman_bound() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 16
singular_function() (in module sage.libs.singular.function), 64
SingularFunction (class in sage.libs.singular.function), 62
SingularFunctionFactory (class in sage.libs.singular.function_factory), 67
SingularKernelFunction (class in sage.libs.singular.function), 62
SingularLibraryFunction (class in sage.libs.singular.function), 62
skew() (in module sage.libs.lrcalc.lrcalc), 113
solve() (sage.libs.ppl.MIP_Problem method), 160
space_dimension() (sage.libs.ppl.Constraint method), 139
space_dimension() (sage.libs.ppl.Constraint_System method), 142
space_dimension() (sage.libs.ppl-generator method), 149
space_dimension() (sage.libs.ppl.Generator_System method), 151
space_dimension() (sage.libs.ppl.Linear_Expression method), 155
space_dimension() (sage.libs.ppl.MIP_Problem method), 160
space_dimension() (sage.libs.ppl.Polyhedron method), 186
space_dimension() (sage.libs.ppl.Variable method), 190
space_dimension() (sage.libs.ppl.Variables_Set method), 191
sparse_hecke_matrix() (sage.libs.eclib.homspace.ModularSymbols method), 33
specht_dg_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
start() (in module sage.libs.symmetrica.symmetrica), 210
str() (sage.libs.eclib.mat.Matrix method), 29
strict_inequality() (sage.libs.ppl.Polyhedron method), 186
strictly_contains() (sage.libs.ppl.Poly_Con_Relation method), 164
strictly_intersects() (sage.libs.ppl.Poly_Gen_Relation method), 166
symbolp() (sage.libs.ecl.EclObject method), 9

T

t_ELMSYM_HOMSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_ELMSYM_MONOMIAL_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_ELMSYM_POWSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_ELMSYM_SCHUR_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_HOMSYM_ELMSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_HOMSYM_MONOMIAL_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_HOMSYM_POWSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_HOMSYM_SCHUR_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_MONOMIAL_ELMSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_MONOMIAL_HOMSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_MONOMIAL_POWSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_MONOMIAL_SCHUR_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_POLYNOM_ELMSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_POLYNOM_MONOMIAL_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_POLYNOM_POWSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_POLYNOM_SCHUBERT_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_POLYNOM_SCHUR_symmetrica() (in module sage.libs.symmetrica.symmetrica), 210
t_POWSYM_ELMSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
t_POWSYM_HOMSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
t_POWSYM_MONOMIAL_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
t_POWSYM_POWSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
t_POWSYM_SCHUR_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
t_SCHUBERT_POLYNOM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
t_SCHUR_ELMSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
t_SCHUR_HOMSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
t_SCHUR_MONOMIAL_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
t_SCHUR_POWSYM_symmetrica() (in module sage.libs.symmetrica.symmetrica), 211
test_ecl_options() (in module sage.libs.ecl), 10
test_integer() (in module sage.libs.symmetrica.symmetrica), 211
test_iterable_to_vector() (in module sage.libs.lrcalc.lrcalc), 113
test_loop_1() (in module sage.libs.gap.test_long), 80
test_loop_2() (in module sage.libs.gap.test_long), 80
test_loop_3() (in module sage.libs.gap.test_long), 80
test_sigint_before_ecl_sig_on() (in module sage.libs.ecl), 10

test_skewtab_to_SkewTableau() (in module sage.libs.lrcalc.lrcalc), 113

test_write_to_file() (in module sage.libs.gap.test), 87

timestamp() (in module sage.libs.gap.saved_workspace), 103

topological_closure_assign() (sage.libs.ppl.Polyhedron method), 187

trait_names() (sage.libs.singular.function_factory.SingularFunctionFactory method), 67

truncate() (sage.libs.fmpq_poly.Fmpq_poly method), 39

two_descent() (sage.libs.eclib.interface.mwrank_EllipticCurve method), 17

type() (sage.libs.ppl.Constraint method), 139


type() (sage.libs.ppl.Generator method), 149


U

unconstrain() (sage.libs.ppl.Polyhedron method), 187

unpickle_GroebnerStrategy0() (in module sage.libs.singular.groebner_strategy), 76

unpickle_NCGroebnerStrategy0() (in module sage.libs.singular.groebner_strategy), 76

unset_global() (sage.libs.gap.libgap.Gap method), 87

upper_bound_assign() (sage.libs.ppl.Polyhedron method), 188

V

value() (sage.libs.lcalc.lcalc_Lfunction.Lfunction method), 53

var_names() (sage.libs.singular.function.RingWrap method), 62

Variable (class in sage.libs.ppl), 188

Variables_Set (class in sage.libs.ppl), 190

vector() (sage.libs.gap.element.GapElement_List method), 97

W

workspace() (in module sage.libs.gap.saved_workspace), 103

Z

zero() (sage.libs.gap.libgap.Gap method), 87

zeta() (sage.rings.pari_ring.PariRing method), 130