CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Propositional Calculus</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Boolean Formulas</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Evaluation of Boolean Formulas</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Module that creates and modifies parse trees of well formed boolean formulas.</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Symbolic Logic Expressions</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>Logic Tables</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Indices and Tables</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Python Module Index</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>49</td>
</tr>
</tbody>
</table>
CHAPTER ONE

PROPOSITIONAL CALCULUS

Formulas consist of the following operators:

• \& – and
• | – or
• ~ – not
• ^ – xor
• -> – if-then
• <-> – if and only if

Operators can be applied to variables that consist of a leading letter and trailing underscores and alphanumerics. Parentheses may be used to explicitly show order of operation.

AUTHORS:

• Chris Gorecki (2006): initial version, propcalc, boolformula, logictable, logicparser, booleval
• Michael Greenberg – boolopt
• Paul Scurek (2013-08-05): updated docstring formatting
• Paul Scurek (2013-08-12): added get_formulas(), consistent(), valid_consequence()

EXAMPLES:

We can create boolean formulas in different ways:

\[
\begin{align*}
\text{sage: } f &= \text{propcalc.formula}("a&((b\mid c)^{a->c}<>b") \\
\text{sage: } g &= \text{propcalc.formula}("boolean<>algebra") \\
\text{sage: } (f\&\neg g).\text{ifthen}(f) &\quad ((a\&((b\mid c)^{a->c}<>b)\&\neg(\text{boolean<>algebra}))\rightarrow(a\&((b\mid c)^{a->c}<>b))
\end{align*}
\]

We can create a truth table from a formula:

\[
\begin{align*}
\text{sage: } f&.\text{truthTable}() \\
\quad a & b & c & \text{value} \\
\quad \text{False} & \text{False} & \text{False} & \text{True} \\
\quad \text{False} & \text{False} & \text{True} & \text{True} \\
\quad \text{False} & \text{True} & \text{False} & \text{False} \\
\quad \text{False} & \text{True} & \text{True} & \text{False} \\
\quad \text{True} & \text{False} & \text{False} & \text{True} \\
\quad \text{True} & \text{False} & \text{True} & \text{False} \\
\quad \text{True} & \text{True} & \text{False} & \text{True} \\
\quad \text{True} & \text{True} & \text{True} & \text{True} \\
\text{sage: } f&.\text{truthTable}(\text{end=3})
\end{align*}
\]

(continues on next page)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

```
sage: f.truthtable(start=4)
```

```
a b c value
True False False True
True False True False
True True False True
True True True True
```

```
sage: propcalc.formula("a").truthtable()
a value
False False
True True
```

Now we can evaluate the formula for a given set of input:

```
sage: f.evaluate({'a':True, 'b':False, 'c':True})
False
```

```
sage: f.evaluate({'a':False, 'b':False, 'c':True})
True
```

And we can convert a boolean formula to conjunctive normal form:

```
sage: f.convert_cnf_table()
sage: f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
```

```
sage: f.convert_cnf_recur()
sage: f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
```

Or determine if an expression is satisfiable, a contradiction, or a tautology:

```
sage: f = propcalc.formula("a|b")
sage: f.is_satisfiable()
True
```

```
sage: f = f & ~f
sage: f.is_satisfiable()
False
```

```
sage: f.is_contradiction()
True
```

```
sage: f = f | ~f
sage: f.is_tautology()
True
```

The equality operator compares semantic equivalence:

```
sage: f = propcalc.formula("(a|b)&c")
sage: g = propcalc.formula("c&(b|a)")
sage: f == g
True
```

```
sage: g = propcalc.formula("a|b&c")
sage: f == g
False
```

It is an error to create a formula with bad syntax:
sage: propcalc.formula(""")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&b~(c|(d)"")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&b")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&b a")
Traceback (most recent call last):
...
SyntaxError: malformed statement

It is also an error to not abide by the naming conventions.

sage: propcalc.formula("~a&9b")
Traceback (most recent call last):
...
NameError: invalid variable name 9b: identifiers must begin with a letter and contain only alphanumerics and underscores

```
sage.logic.propcalc.consistent(*formulas)
Determine if the formulas are logically consistent.

INPUT:
• *formulas – instances of BooleanFormula

OUTPUT:
A boolean value to be determined as follows:
• True - if the formulas are logically consistent
• False - if the formulas are not logically consistent

EXAMPLES:
This example illustrates determining if formulas are logically consistent.

```
sage: f, g, h, i = propcalc.get_formulas("a<->b", "~b->~c", "d|g", "c&a")
sage: propcalc.consistent(f, g, h, i)
True

sage: j, k, l, m = propcalc.get_formulas("a<->b", "~b->~c", "d|g", "c&a")
sage: propcalc.consistent(j, k ,l, m)
False
```

AUTHORS:
• Paul Scurek (2013-08-12)

```
sage.logic.propcalc.formula(s)
Return an instance of BooleanFormula.

INPUT:
• s – a string that contains a logical expression
```
An instance of `BooleanFormula`.

**EXAMPLES:**

This example illustrates ways to create a boolean formula:

```
sage: f = propcalc.formula("a&~b|c")
sage: g = propcalc.formula("a^c<->b")
sage: f&g|f
((a&~b|c)&(a^c<->b))|(a&~b|c)
```

We now demonstrate some possible errors:

```
sage: propcalc.formula("((a&b")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("_a&b")
Traceback (most recent call last):
...
NameError: invalid variable name _a: identifiers must begin with a letter and contain only alphanumerics and underscores
```

```
sage.logic.propcalc.get_formulas(*statements)
Convert statements and parse trees into instances of `BooleanFormula`.

INPUT:

- `*statements` – strings or lists; a list must be a full syntax parse tree of a formula, and a string must be a string representation of a formula

OUTPUT:

The converted formulas in a list.

EXAMPLES:

This example illustrates converting strings into boolean formulas.

```
sage: f = "a&(~c<->d)"
sage: g = "d|~~b"
sage: h = "~(a->c)<->(d|~c)"
sage: propcalc.get_formulas(f, g, h)
[a&(~c<->d), d|~~b, ~(a->c)<->(d|~c)]
```

```
sage: A, B, C = propcalc.get_formulas("(a&b)->~c", "c", "~(a&b)")
sage: A
(a&b)->~c
sage: B
~(a&b)
sage: C
c
```

We can also convert parse trees into formulas.

```
sage: t = ['a']
sage: u = ['~', ['|', ['&', 'a', 'b'], ['~', 'c']]]
sage: v = "b->(~c<->d)"
sage: formulas= propcalc.get_formulas(t, u, v)
```
AUTHORS:

- Paul Scurek (2013-08-12)
BOOLEAN FORMULAS

Formulas consist of the operators & , | ,^ , -> , <-> , corresponding to and, or, not, xor, if...then, if and only if. Operators can be applied to variables that consist of a leading letter and trailing underscores and alphanumerics. Parentheses may be used to explicitly show order of operation.

EXAMPLES:

Create boolean formulas and combine them with ifthen() method:

```
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a&((b|c)^a->c)<->b")
sage: g = propcalc.formula("boolean<->algebra")
sage: (f&~g).ifthen(f)
((a&((b|c)^a->c)<->b)&(~(boolean<->algebra)))->(a&((b|c)^a->c)<->b)
```

We can create a truth table from a formula:

```
sage: f.truthtable()
a   b   c   value
False False False True
False False True True
False True False False
False True True False
True False False True
True False True False
True True False True
True True True True
sage: f.truthtable(end=3)
a   b   c   value
False False False True
False False True True
False True False False
sage: f.truthtable(start=4)
a   b   c   value
True False False True
True False True False
True True False True
sage: propcalc.formula("a").truthtable()
a   value
False False
True True
```

Now we can evaluate the formula for a given set of inputs:
And we can convert a boolean formula to conjunctive normal form:

```python
sage: f.convert_cnf_table()
sage: f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
sage: f.convert_cnf_recur()
sage: f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
```

Or determine if an expression is satisfiable, a contradiction, or a tautology:

```python
sage: f = propcalc.formula("a|b")
sage: f.is_satisfiable()  # True
sage: f & ~f
sage: f.is_satisfiable()  # False
sage: f.is_contradiction()  # True
sage: f = f | ~f
sage: f.is_tautology()  # True
```

The equality operator compares semantic equivalence:

```python
sage: f = propcalc.formula("(a|b)&c")
sage: g = propcalc.formula("c&(b|a)")
sage: f == g  # True
sage: g = propcalc.formula("a|b&c")
sage: f == g  # False
```

It is an error to create a formula with bad syntax:

```python
sage: propcalc.formula("")
Traceback (most recent call last):
  ...
SyntaxError: malformed statement
sage: propcalc.formula("a&b-(c|(d)")
Traceback (most recent call last):
  ...
SyntaxError: malformed statement
sage: propcalc.formula("a&b")
Traceback (most recent call last):
  ...
SyntaxError: malformed statement
sage: propcalc.formula("a& b a")
Traceback (most recent call last):
  ...
SyntaxError: malformed statement
```

It is also an error to not abide by the naming conventions:
AUTHORS:

- Chris Gorecki (2006): initial version
- Paul Scurek (2013-08-03): added polish_notation, full_tree, updated docstring formatting
- Paul Scurek (2013-08-08): added implies()

class sage.logic.boolformula.BooleanFormula(exp, tree, vo)

Bases: object

Boolean formulas.

INPUT:

- self – calling object
- exp – a string; this contains the boolean expression to be manipulated
- tree – a list; this contains the parse tree of the expression.
- vo – a list; this contains the variables in the expression, in the order that they appear; each variable only occurs once in the list

add_statement(other, op)

Combine two formulas with the given operator.

INPUT:

- other – instance of BooleanFormula; this is the formula on the right of the operator
- op – a string; this is the operator used to combine the two formulas

OUTPUT:

The result as an instance of BooleanFormula.

EXAMPLES:

This example shows how to create a new formula from two others:

```python
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("a&b")
sage: f = propcalc.formula("c^d")
sage: s.add_statement(f, '|')
(a&b)|(c^d)
sage: s.add_statement(f, '->')
(a&b)->(c^d)
```

cnf()

Convert boolean formula to conjunctive normal form.

OUTPUT:

An instance of BooleanFormula in conjunctive normal form.

EXAMPLES:

This example illustrates how to convert a formula to cnf:
We now show that `convert_cnf()` and `convert_cnf_table()` are aliases:

```
sage: t = propcalc.formula("a ^ b <-> c")
sage: t.convert_cnf_table(); t
(a|b|~c)&(~a|b|c)&(~a|~b|c)&(~a|~b|~c)
sage: t == s
True
```

Note: This method creates the cnf parse tree by examining the logic table of the formula. Creating the table requires $O(2^n)$ time where n is the number of variables in the formula.

`convert_cnf_recur()`

Convert boolean formula to conjunctive normal form.

OUTPUT:

An instance of `BooleanFormula` in conjunctive normal form.

EXAMPLES:

This example shows how to convert a formula to conjunctive normal form:

```
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("a ^ b <-> c")
sage: s.convert_cnf_recur()
sage: s
(~a|a|c)&(~b|a|c)&(~a|b|c)&(~b|b|c)&(~c|a|b)&(~c|~a|~b)
```

Note: This function works by applying a set of rules that are guaranteed to convert the formula. Worst case the converted expression has an $O(2^n)$ increase in size (and time as well), but if the formula is already in CNF (or close to) it is only $O(n)$.

This function can require an exponential blow up in space from the original expression. This in turn can require large amounts of time. Unless a formula is already in (or close to) being in cnf `convert_cnf()` is typically preferred, but results can vary.

`convert_cnf_table()`

Convert boolean formula to conjunctive normal form.

OUTPUT:

An instance of `BooleanFormula` in conjunctive normal form.

EXAMPLES:

This example illustrates how to convert a formula to cnf:

```
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("a ^ b <-> c")
sage: s.convert_cnf()
(continues on next page)
```

(continues on next page)
We now show that \texttt{convert_cnf()} and \texttt{convert_cnf_table()} are aliases:

\begin{verbatim}
sage: t = propcalc.formula("a ^ b <-> c")
sage: t.convert_cnf_table(); t
(a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c)
sage: t == s
True
\end{verbatim}

\textbf{Note:} This method creates the cnf parse tree by examining the logic table of the formula. Creating the table requires $O(2^n)$ time where n is the number of variables in the formula.

\textbf{convert_expression()}

Convert the string representation of a formula to conjunctive normal form.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("a^b<->c")
sage: s.convert_expression(); s
a^b<->c
\end{verbatim}

\textbf{convert_opt (tree)}

Convert a parse tree to the tuple form used by \texttt{bool_opt()}.

\textbf{INPUT:}

- \texttt{tree} – a list; this is a branch of a parse tree and can only contain the ‘&’, ‘|’ and ‘\~{}’ operators along with variables

\textbf{OUTPUT:}

A 3-tuple.

\textbf{EXAMPLES:}

This example illustrates the conversion of a formula into its corresponding tuple:

\begin{verbatim}
sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser
sage: s = propcalc.formula("a&(b|~c)")
sage: tree = ['&', 'a', ['|', 'b', ['~', 'c', None]]]
sage: logicparser.apply_func(tree, s.convert_opt)
('and', ('prop', 'a'), ('or', ('prop', 'b'), ('not', ('prop', 'c'))))
\end{verbatim}

\textbf{Note:} This function only works on one branch of the parse tree. To apply the function to every branch of a parse tree, pass the function as an argument in \texttt{apply_func()} in \texttt{logicparser}.

\textbf{dist_not (tree)}

Distribute ‘\~{}’ operators over ‘&’ and ‘|’ operators.

\textbf{INPUT:}

- \texttt{tree} a list; this represents a branch of a parse tree
OUTPUT:
A new list.

EXAMPLES:
This example illustrates the distribution of ‘~’ over ‘&’:

```
sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser
sage: s = propcalc.formula("~(a&b)")
sage: tree = ['~', ['&', 'a', 'b'], None]
sage: logicparser.apply_func(tree, s.dist_not) #long time
[['|', ['~', 'a', None], ['~', 'b', None]]]
```

Note: This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to `apply_func()` in `logicparser`.

dist_ors(tree)
Distribute ‘|’ over ‘&’.

INPUT:

- `tree` – a list; this represents a branch of a parse tree

OUTPUT:
A new list.

EXAMPLES:
This example illustrates the distribution of ‘|’ over ‘&’:

```
sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser
sage: s = propcalc.formula("(a&b)|(a&c)")
sage: tree = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']]
sage: logicparser.apply_func(tree, s.dist_ors) #long time
[['&', ['&', ['|', 'a', 'a'], ['|', 'b', 'a']], ['&', ['|', 'a', 'c'], ['|', 'b', 'c']]]]
```

Note: This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to `apply_func()` in `logicparser`.

equivalent(other)
Determine if two formulas are semantically equivalent.

INPUT:

- `self` – calling object
- `other` – instance of BooleanFormula class.

OUTPUT:
A boolean value to be determined as follows:

- True - if the two formulas are logically equivalent
- False - if the two formulas are not logically equivalent
EXAMPLES:

This example shows how to check for logical equivalence:

```
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("(a|b)&c")
sage: g = propcalc.formula("c&(a|b)")
sage: f.equivalent(g)
True
sage: g = propcalc.formula("a|b&c")
sage: f.equivalent(g)
False
```

`evaluate(var_values)`

Evaluate a formula for the given input values.

INPUT:

- `var_values` – a dictionary; this contains the pairs of variables and their boolean values.

OUTPUT:

The result of the evaluation as a boolean.

EXAMPLES:

This example illustrates the evaluation of a boolean formula:

```
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a&b|c")
sage: f.evaluate({'a':False, 'b':False, 'c':True})
True
sage: f.evaluate({'a':True, 'b':False, 'c':False})
False
```

`full_tree()`

Return a full syntax parse tree of the calling formula.

OUTPUT:

The full syntax parse tree as a nested list

EXAMPLES:

This example shows how to find the full syntax parse tree of a formula:

```
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("a->(b&c")
sage: s.full_tree()
['->', 'a', ['&', 'b', 'c']]
sage: t = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b")
sage: t.full_tree()
['<->', ['&', 'a', ['->', ['^', ['|', ['~', 'b'], 'c'], 'a'], 'c'], 'a'], 'c']], ['~', 'b ~']
sage: f = propcalc.formula("~~(a&~b)")
sage: f.full_tree()
['~', ['~', ['&', 'a', ['~', 'b']]]]
```
Note: This function is used by other functions in the logic module that perform syntactic operations on a boolean formula.

AUTHORS:

• Paul Scurek (2013-08-03)

\texttt{get_bit}(x, c)

Determine if bit c of the number x is 1.

INPUT:

• x – an integer; this is the number from which to take the bit
• c – an integer; this is the bit number to be taken, where 0 is the low order bit

OUTPUT:

A boolean to be determined as follows:

• \texttt{True} if bit c of x is 1.
• \texttt{False} if bit c of x is not 1.

EXAMPLES:

This example illustrates the use of \texttt{get_bit()}:

\begin{verbatim}
 sage: import sage.logic.propcalc as propcalc
 sage: s = propcalc.formula("a&b")
 sage: s.get_bit(2, 1)
 True
 sage: s.get_bit(8, 0)
 False
\end{verbatim}

It is not an error to have a bit out of range:

\begin{verbatim}
 sage: s.get_bit(64, 7)
 False
\end{verbatim}

Nor is it an error to use a negative number:

\begin{verbatim}
 sage: s.get_bit(-1, 3)
 False
 sage: s.get_bit(64, -1)
 True
 sage: s.get_bit(64, -2)
 False
\end{verbatim}

Note: The 0 bit is the low order bit. Errors should be handled gracefully by a return of \texttt{False}, and negative numbers x always return \texttt{False} while a negative c will index from the high order bit.

\texttt{get_next_op}(str)

Return the next operator in a string.

INPUT:

• str – a string; this contains a logical expression
OUTPUT:
The next operator as a string.

EXAMPLES:
This example illustrates how to find the next operator in a formula:

```
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("f&p")
sage: s.get_next_op("abra|cadabra")
'|'
```

Note: The parameter `str` is not necessarily the string representation of the calling object.

`iff(other)`
Combine two formulas with the `<->` operator.

INPUT:
- `other` – a boolean formula; this is the formula on the right side of the operator

OUTPUT:
A boolean formula of the form `self <-> other`.

EXAMPLES:
This example illustrates how to combine two formulas with `'<->'`:

```
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("a&b")
sage: f = propcalc.formula("c^d")
sage: s.iff(f)
(a&b)<->(c^d)
```

`ifthen(other)`
Combine two formulas with the `->` operator.

INPUT:
- `other` – a boolean formula; this is the formula on the right side of the operator

OUTPUT:
A boolean formula of the form `self -> other`.

EXAMPLES:
This example illustrates how to combine two formulas with `'->'`:

```
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("a&b")
sage: f = propcalc.formula("c^d")
sage: s.ifthen(f)
(a&b)->(c^d)
```

`implies(other)`
Determine if calling formula implies other formula.

INPUT:
- `self` – calling object
• other — instance of BooleanFormula

OUTPUT:

A boolean value to be determined as follows:

• True - if self implies other
• False - if self does not imply other

EXAMPLES:

This example illustrates determining if one formula implies another:

```python
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a<->b")
sage: g = propcalc.formula("b->a")
sage: f.implies(g)
True

sage: h = propcalc.formula("a->(a|~b)")
sage: i = propcalc.formula("a")
sage: h.implies(i)
False
```

AUTHORS:

• Paul Scurek (2013-08-08)

is_consequence(*hypotheses)

Determine if self (the desired conclusion) is a logical consequence of the hypotheses. The function call is_consequence(conclusion, *hypotheses) is a synonym for conclusion.
is_consequence(*hypotheses).

INPUT:

• *hypotheses — instances of BooleanFormula

OUTPUT:

A boolean value to be determined as follows:

• True - if self (the desired conclusion) is a logical consequence of the set of hypotheses
• False - if self (the desired conclusion) is not a logical consequence of the set of hypotheses

EXAMPLES:

```python
sage: from sage.logic.propcalc import formula
sage: formula("a | b").is_consequence(formula("b"))
True
sage: formula("a & b").is_consequence(formula("b"))
False
sage: formula("b").is_consequence(formula("a"), formula("a -> b"))
True
sage: formula("b -> a").is_consequence(formula("a -> b"))
False
sage: formula("~b -> ~a").is_consequence(formula("a -> b"))
True
```

```python
sage: f, g, h = propcalc.get_formulas("a & ~b", "c -> b", "c | e")
```

(continues on next page)
True
sage: i = propcalc.formula("a & ~e")

sage: i.is_consequence(f, g, h)
False

sage: from sage.logic.boolformula import is_consequence

sage: is_consequence(i, f, g, h)
False

sage: is_consequence(propcalc.formula("((p <-> q) & r) -> ~c"), f, g, h)
True

Only a tautology is a logical consequence of an empty set of formulas:

sage: propcalc.formula("a | ~a").is_consequence()
True

sage: propcalc.formula("a | b").is_consequence()
False

AUTHORS:
• Paul Scurek (2013-08-12)

is_contradiction()
Determine if the formula is always False.

OUTPUT:
A boolean value to be determined as follows:
• True if the formula is a contradiction.
• False if the formula is not a contradiction.

EXAMPLES:
This example illustrates how to check if a formula is a contradiction.

sage: import sage.logic.propcalc as propcalc

sage: f = propcalc.formula("a & ~a")

sage: f.is_contradiction()
True

sage: f = propcalc.formula("a|~a")

sage: f.is_contradiction()
False

sage: f = propcalc.formula("a|b")

sage: f.is_contradiction()
False

is_satisfiable()
Determine if the formula is True for some assignment of values.

OUTPUT:
A boolean value to be determined as follows:
• True if there is an assignment of values that makes the formula True.
• False if the formula cannot be made True by any assignment of values.

EXAMPLES:
This example illustrates how to check a formula for satisfiability:

```
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a|b")
sage: f.is_satisfiable()
True
sage: g = f & (~f)
sage: g.is_satisfiable()
False
```

\textbf{is_tautology()}

Determine if the formula is always True.

\textbf{OUTPUT:}

A boolean value to be determined as follows:

- True if the formula is a tautology.
- False if the formula is not a tautology.

\textbf{EXAMPLES:}

This example illustrates how to check if a formula is a tautology:

```
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a|~a")
sage: f.is_tautology()
True
sage: f = propcalc.formula("a&~a")
False
sage: f = propcalc.formula("a&b")
False
```

\textbf{polish_notation()}

Convert the calling boolean formula into polish notation.

\textbf{OUTPUT:}

A string representation of the formula in polish notation.

\textbf{EXAMPLES:}

This example illustrates converting a formula to polish notation:

```
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("(a|~b)->c")
sage: f.polish_notation()
'->|a~b'c'
sage: g = propcalc.formula("(a|~b)->c")
sage: g.polish_notation()
'->|a~bc'
```

\textbf{AUTHORS:}

- Paul Scurek (2013-08-03)
reduce_op(tree)

Convert if-and-only-if, if-then, and xor operations to operations only involving and/or operations.

INPUT:
- tree – a list; this represents a branch of a parse tree

OUTPUT:
A new list with no ‘^’, ‘->’, or ‘<->’ as first element of list.

EXAMPLES:
This example illustrates the use of reduce_op() with apply_func():

```python
sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser

sage: s = propcalc.formula("a->b^c")
sage: tree = ["->", 'a', ['^', 'b', 'c']]
sage: logicparser.apply_func(tree, s.reduce_op)
["|", ["~", 'a', None], ["&", ["|", 'b', 'c'], ["~", ["&", 'b', 'c'], None]]]
```

Note: This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to apply_func() in logicparser.

satformat()

Return the satformat representation of a boolean formula.

OUTPUT:
The satformat of the formula as a string.

EXAMPLES:
This example illustrates how to find the satformat of a formula:

```python
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a&((b|c)^a->c)<->b")
sage: f.convert_cnf()
sage: f
'(a|~b|c)&(a|~b|~c)&(~a|b|~c)
sage: f.satformat()
'p cnf 3 0\n1 -2 3 0 1 -2 -3 \n0 -1 2 -3'
```

Note: See www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps for a description of satformat.

If the instance of boolean formula has not been converted to CNF form by a call to convert_cnf() or convert_cnf_recur(), then satformat() will call convert_cnf(). Please see the notes for convert_cnf() and convert_cnf_recur() for performance issues.

to_infix(tree)

Convert a parse tree from prefix to infix form.

INPUT:
- tree – a list; this represents a branch of a parse tree

OUTPUT:
A new list.
EXAMPLES:

This example shows how to convert a parse tree from prefix to infix form:

```python
sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser
sage: s = propcalc.formula("(a&b)|(a&c)")

sage: tree = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']]

sage: logicparser.apply_func(tree, s.to_infix)
[['a', '&', 'b'], '|', ['a', '&', 'c']]```

Note: This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to `apply_func()` in `logicparser`.

tree()

Return the parse tree of this boolean expression.

OUTPUT:

The parse tree as a nested list

EXAMPLES:

This example illustrates how to find the parse tree of a boolean formula:

```python
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("man -> monkey & human")

sage: s.tree()
['->', 'man', ['&', 'monkey', 'human']]

sage: f = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b")

sage: f.tree()
['<->', ['&', 'a', ['^', ['|', ['~', 'b', None], 'c'], 'a'], 'c'], ['~', 'b', None]]```

Note: This function is used by other functions in the logic module that perform semantic operations on a boolean formula.

truthtable(start=0, end=-1)

Return a truth table for the calling formula.

INPUT:

- `start` – (default: 0) an integer; this is the first row of the truth table to be created
- `end` – (default: -1) an integer; this is the last row of the truth table to be created

OUTPUT:

The truth table as a 2-D array

EXAMPLES:

This example illustrates the creation of a truth table:
We can now create a truthtable of rows 1 to 4, inclusive:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Note: Each row of the table corresponds to a binary number, with each variable associated to a column of the number, and taking on a true value if that column has a value of 1. Please see the logictable module for details. The function returns a table that start inclusive and end exclusive so `truthtable(0, 2)` will include row 0, but not row 2.

When sent with no start or end parameters, this is an exponential time function requiring $O(2^n)$ time, where n is the number of variables in the expression.

```
from sage.logic.propcalc import formula
sage: formula("a | b").is_consequence(formula("b"))
True
sage: formula("a & b").is_consequence(formula("b"))
False
sage: formula("b").is_consequence(formula("a"), formula("a -> b"))
True
sage: formula("b -> a").is_consequence(formula("a -> b"))
False
```
sage: formula("¬b → ¬a").is_consequence(formula("a → b"))
True

sage: f, g, h = propcalc.get_formulas("a & ¬b", "c → b", "c | e")

sage: propcalc.formula("a & e").is_consequence(f, g, h)
True

sage: i = propcalc.formula("a & ¬e")

sage: i.is_consequence(f, g, h)
False

sage: from sage.logic.boolformula import is_consequence

sage: is_consequence(i, f, g, h)
False

sage: is_consequence(propcalc.formula("((p <-> q) & r) → ¬c"), f, g, h)
True

Only a tautology is a logical consequence of an empty set of formulas:

sage: propcalc.formula("a | ¬a").is_consequence()
True

sage: propcalc.formula("a | b").is_consequence()
False

AUTHORS:

• Paul Scurek (2013-08-12)
EVALUATION OF BOOLEAN FORMULAS

AUTHORS:

• Chris Gorecki (2006): initial version
• Paul Scurek (2013-08-05): updated docstring formatting

EXAMPLES:

We can assign values to the variables and evaluate a formula:

```python
sage: import sage.logic.boolEval as boolEval
sage: t = [',', ['&', 'a', 'b'], ['&', 'a', 'c']]

sage: d = {'a' : True, 'b' : False, 'c' : True}

sage: boolEval.eval_formula(t, d)
True

sage: d['a'] = False
sage: boolEval.eval_formula(t, d)
False
```

sage.logic.boolEval.eval_f(tree)
Evaluate the tree.

INPUT:

• tree – a list of three elements corresponding to a branch of a parse tree

OUTPUT:

The result of the evaluation as a boolean value.

EXAMPLES:

This example illustrates how to evaluate a parse tree:

```python
sage: import sage.logic.boolEval as boolEval
sage: boolEval.eval_f(['&', True, False])
False

sage: boolEval.eval_f(['^', True, True])
False

sage: boolEval.eval_f(['|', False, True])
True
```
sage.logic.booleval.eval_formula(tree, vdict)
Evaluate the tree and return a boolean value.

INPUT:
- tree – a list of three elements corresponding to a branch of a parse tree
- vdict – a dictionary containing variable keys and boolean values

OUTPUT:
The result of the evaluation as a boolean value.

EXAMPLES:
This example illustrates evaluating a boolean formula:

```sage
import sage.logic.booleval as booleval
t = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']]
d = {'a' : True, 'b' : False, 'c' : True}
booleval.eval_formula(t, d)
True

d['a'] = False
booleval.eval_formula(t, d)
False
```

sage.logic.booleval.eval_op(op, lv, rv)
Evaluate lv and rv according to the operator op.

INPUT:
- op – a string or character representing a boolean operator
- lv – a boolean or variable
- rv – a boolean or variable

OUTPUT:
The evaluation of lv op rv as a boolean value.

EXAMPLES:
We can evaluate an operator given the values on either side:

```sage
import sage.logic.booleval as booleval
booleval.eval_op('&', True, False)
False
booleval.eval_op('^', True, True)
False
booleval.eval_op('|', False, True)
True
```
CHAPTER
FOUR

MODULE THAT CREATES AND MODIFIES PARSE TREES OF WELL FORMED BOOLEAN FORMULAS.

A parse tree of a boolean formula is a nested list, where each branch is either a single variable, or a formula composed of either two variables and a binary operator or one variable and a unary operator. The function parse produces a parse tree that is simplified for the purposes of more efficient truth value evaluation. The function polish_parse() produces the full parse tree of a boolean formula which is used in functions related to proof and inference. That is, parse() is meant to be used with functions in the logic module that perform semantic operations on a boolean formula, and polish_parse() is to be used with functions that perform syntactic operations on a boolean formula.

AUTHORS:

• Chris Gorecki (2007): initial version
• Paul Scurek (2013-08-01): added polish_parse, cleaned up python code, updated docstring formatting
• Paul Scurek (2013-08-06): added recover_formula(), recover_formula_internal(), prefix_to_infix(), to_infix_internal()
• Paul Scurek (2013-08-08): added get_trees, error handling in polish_parse, recover_formula_internal, and tree_parse

EXAMPLES:

Find the parse tree and variables of a string representation of a boolean formula:

```python
sage: import sage.logic.logicparser as logicparser
sage: s = 'a|b&c'

sage: t = logicparser.parse(s)

sage: t
(['|', 'a', ['&', 'b', 'c']], ['a', 'b', 'c'])
```

Find the full syntax parse tree of a string representation of a boolean formula:

```python
sage: import sage.logic.logicparser as logicparser
sage: s = '(a&b)->~~c'

sage: logicparser.polish_parse(s)
['->', ['&', 'a', 'b'], ['~', ['~', 'c']]]
```

Find the tokens and distinct variables of a boolean formula:

```python
sage: import sage.logic.logicparser as logicparser
sage: s = '~(a|~b)<->(c->c)'

sage: logicparser.tokenize(s)
(['(', '~', '(', 'a', '|', '~', 'b', ')', '<->', '(', 'c', '->', 'c', ')', ')'], ['a', '→', 'b', 'c'])
```

Find the parse tree of a boolean formula from a list of the formula’s tokens:

```python
sage: import sage.logic.logicparser as logicparser
sage: s = ['^', '(', 'a', '→', 'b', ')', '<->', '(', 'c', '→', 'c', ')', ')', ']

sage: logicparser.tokenize(s)
(['(', '^', '(', 'a', '→', 'b', ')', '<->', '(', 'c', '→', 'c', ')', ')', ')'], ['a', '→', 'b', 'c'])
```
Find the full syntax parse tree of a boolean formula from a list of tokens:

```python
sage: import sage.logic.logicparser as logicparser
sage: t = [',', 'a', '->', ',', 'c', ',']
sage: logicparser.tree_parse(t)
['->', 'a', ['c', None]]
sage: r = [',', ',', ',', 'a', ',', 'b', ']
```
```python
sage: logicparser.tree_parse(r)
['|', 'a', 'b']
```

Sage logic.logicparser.apply_func(tree, func)

Apply func to each node of tree, and return a new parse tree.

INPUT:

- tree – a parse tree of a boolean formula
- func – a function to be applied to each node of tree; this may be a function that comes from elsewhere in the logic module

OUTPUT:

The new parse tree in the form of a nested list.

EXAMPLES:

This example uses apply_func() where func switches two entries of tree:

```python
sage: import sage.logic.logicparser as logicparser
sage: t = [',', ',', ',', 'a', ',', 'b', ',', 'c', ']
```
```python
sage: f = lambda t: [t[0], t[2], t[1]]
sage: logicparser.apply_func(t, f)
['|', 'c', 'a']
```

Sage logic.logicparser.get_trees(*statements)

Return the full syntax parse trees of the statements.

INPUT:

- *statements – strings or BooleanFormula instances

OUTPUT:

The parse trees in a list.

EXAMPLES:

This example illustrates finding the parse trees of multiple formulas.
sage: logicparser.get_trees(f, g, h)
[['&', ['|', 'a', 'b'], ['~', ['~', 'c']]],
['<->', 'a', ['~', 'c']],
['~', 'b']]

sage: i = "(~q->p)"
sage: j = propcalc.formula("a")
sage: logicparser.get_trees(i, j)
[['->', ['~', 'q'], 'p'], ['a']]

sage: k = "p"
sage: logicparser.get_trees(k)
[['p']]

AUTHORS:
• Paul Scurek (2013-08-06)

sage.logic.logicparser.parse(s)
Return a parse tree from a boolean formula s.

INPUT:
• s – a string containing a boolean formula

OUTPUT:
A list containing the parse tree and a list containing the variables in a boolean formula in this order:
1. the list containing the parse tree
2. the list containing the variables

EXAMPLES:
This example illustrates how to produce the parse tree of a boolean formula s:

sage: import sage.logic.logicparser as logicparser
sage: s = 'a|b&c'
sage: t = logicparser.parse(s)
sage: t
(['|', 'a', ['&', 'b', 'c']], ['a', 'b', 'c'])

sage.logic.logicparser.parse_ltor(toks, n=0, polish=False)
Return a parse tree from toks, where each token in toks is atomic.

INPUT:
• toks – a list of tokens. Each token is atomic.
• n – (default: 0) an integer representing which order of operations are occurring
• polish – (default: False) a boolean; when True, double negations are not cancelled and negated statements are turned into list of length two.

OUTPUT:
The parse tree as a nested list that depends on polish as follows:
• If False, then return a simplified parse tree.
• If True, then return the full syntax parse tree.
EXAMPLES:

This example illustrates the use of `parse_ltor()` when `polish` is `False`:

```python
sage: import sage.logic.logicparser as logicparser
gage: t = ['a', '|', 'b', '&', 'c']
gage: logicparser.parse_ltor(t)
['|', 'a', ['&', 'b', 'c']]
sage: import sage.logic.logicparser as logicparser
gage: t = ['a', '->', '~', '~', 'b']
gage: logicparser.parse_ltor(t)
['->', 'a', ['~', ['~', 'b']]]
```

We now repeat the previous example, but with `polish` being `True`:

```python
sage: import sage.logic.logicparser as logicparser
gage: t = ['a', '->', '~', '~', 'b']
gage: logicparser.parse_ltor(t, polish = True)
['->', 'a', ['~', ['~', 'b']]]
```

`sage.logic.logicparser.polish_parse(s)`
Return the full syntax parse tree from a boolean formula `s`.

INPUT:
- `s` – a string containing a boolean expression

OUTPUT:
The full syntax parse tree as a nested list.

EXAMPLES:

This example illustrates how to find the full syntax parse tree of a boolean formula:

```python
sage: import sage.logic.logicparser as logicparser
gage: s = 'a|~~b'
gage: t = logicparser.polish_parse(s)
gage: t
['|', 'a', ['~', ['~', 'b']]]
```

AUTHORS:
- Paul Scurek (2013-08-03)

`sage.logic.logicparser.prefix_to_infix(prefix_tree)`
Convert a parse tree from prefix form to infix form.

INPUT:
- `prefix_tree` – a list; this is a full syntax parse tree in prefix form

OUTPUT:
A list containing the tree in infix form.

EXAMPLES:

This example illustrates converting a prefix tree to an infix tree:

```python
sage: import sage.logic.logicparser as logicparser
gage: s = 'a|~b'
gage: t = logicparser.polish_parse(s)
gage: t
['|', 'a', ['~', ['~', 'b']]]
```
sage: import sage.logic.logicparser as logicparser
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("(a&~b)<->~~~(c|d)")

Note: The function \texttt{polish_parse()} may be passed as an argument, but \texttt{tree_parse()} may not unless the parameter \texttt{polish} is set to True.

AUTHORS:

- Paul Scurek (2013-08-06)

sage.logic.logicparser.recover_formula (prefix_tree)
Recover the formula from a parse tree in prefix form.

INPUT:

- prefix_tree – a list; this is a full syntax parse tree in prefix form

OUTPUT:

The formula as a string.

EXAMPLES:

This example illustrates the recovery of a formula from a parse tree:

sage: r = ['-', 'a']

Note: The function \texttt{polish_parse()} may be passed as an argument, but \texttt{tree_parse()} may not unless the parameter \texttt{polish} is set to True.

AUTHORS:

- Paul Scurek (2013-08-06)
sage.logic.logicparser.recover_formula_internal(prefix_tree)
Recovers the formula from a parse tree in prefix form.

INPUT:
 • prefix_tree - a list; this is a simple tree with at most one operator in prefix form

OUTPUT:
The formula as a string.

EXAMPLES:
This example illustrates recovering the formula from a parse tree:

```python
sage: import sage.logic.logicparser as logicparser
sage: t = ['->', 'a', 'b']
sage: logicparser.recover_formula_internal(t)
'(a->b)'
sage: r = ['~', 'c']
sage: logicparser.recover_formula_internal(r)
'~c'
sage: s = ['d']
sage: logicparser.recover_formula_internal(s)
'd'
```

We can pass recover_formula_internal() as an argument in apply_func():

```python
sage: f = propcalc.formula("~(d|c)<->(a&~~~c)")
sage: logicparser.apply_func(f.full_tree(), logicparser.recover_formula_internal)
'(~(d|c)<->(a&~~~c))'
```

Note: This function is for internal use by logicparser. The function recovers the formula of a simple parse tree in prefix form. A simple parse tree contains at most one operator.

The function polish_parse() may be passed as an argument, but tree_parse() may not unless the parameter polish is set to True.

AUTHORS:
 • Paul Scurek (2013-08-06)

sage.logic.logicparser.to_infix_internal(prefix_tree)
Convert a simple parse tree from prefix form to infix form.

INPUT:
 • prefix_tree - a list; this is a simple tree in prefix form with at most one operator

OUTPUT:
The tree in infix form as a list.

EXAMPLES:
This example illustrates converting a simple tree from prefix to infix form:
sage: import sage.logic.logicparser as logicparser
sage: import sage.logic.propcalc as propcalc
sage: t = ['|', 'a', 'b']

We can pass to_infix_internal() as an argument in apply_func():

```
sage: f = propcalc.formula("(a&~b)<->~~~(c|d)")
sage: logicparser.apply_func(f.full_tree(), logicparser.to_infix_internal)
[['a', '&', ['~', 'b']], '<->', ['~', ['~', ['~', ['c', '|', 'd']]]]]
```

Note: This function is for internal use by `logicparser`. It converts a simple parse tree from prefix form to infix form. A simple parse tree contains at most one operator.

The function `polish_parse()` may be passed as an argument, but `tree_parse()` may not unless the parameter `polish` is set to `True`.

AUTHORS:
- Paul Scurek (2013-08-06)

tokenize(s)

Return the tokens and the distinct variables appearing in a boolean formula `s`.

INPUT:
- `s` – a string representation of a boolean formula

OUTPUT:
The tokens and variables as an ordered pair of lists in the following order:

1. A list containing the tokens of `s`, in the order they appear in `s`
2. A list containing the distinct variables in `s`, in the order they appear in `s`

EXAMPLES:
This example illustrates how to tokenize a string representation of a boolean formula:

```
sage: import sage.logic.logicparser as logicparser
sage: s = 'a|b&c'
sage: t = logicparser.tokenize(s)
sage: t
(['(', 'a', '|', 'b', '&', 'c', ')'], ['a', 'b', 'c'])
```

tree_parse(toks, polish=False)

Return a parse tree from the tokens in `toks`.

INPUT:
- `toks` – a list of tokens from a boolean formula
- `polish` – (default: False) a boolean; when True, `tree_parse()` will return the full syntax parse tree

OUTPUT:
A parse tree in the form of a nested list that depends on `polish` as follows:
- If `False`, then return a simplified parse tree.
• If True, then return the full syntax parse tree.

EXAMPLES:

This example illustrates the use of tree_parse() when polish is False:

```
sage: import sage.logic.logicparser as logicparser
sage: t = [')(a, '|', 'b', ', 'c', ')']
sage: logicparser.tree_parse(t)
['|', 'a', ['&', 'b', 'c']]
```

We now demonstrate the use of tree_parse() when polish is True:

```
sage: t = [')(a, '->', '~', '~', 'b', ')']
sage: logicparser.tree_parse(t)
['->', 'a', ['~', '~', 'b']]
sage: t = [')(a, '->', '~', '~', 'b', ')']
sage: logicparser.tree_parse(t, polish = True)
['->', 'a', ['~', '~', 'b']]
```

Chapter 4. Module that creates and modifies parse trees of well formed boolean formulas.
SYMBOLIC LOGIC EXPRESSIONS

An expression is created from a string that consists of the operators !, &, |, ->, <->, which correspond to the logical functions not, and, or, if then, if and only if, respectively. Variable names must start with a letter and contain only alpha-numerics and the underscore character.

AUTHORS:

• Chris Gorecki (2007): initial version
• William Stein (2007-08-31): integration into Sage 2.8.4
• Paul Scurek (2013-08-03): updated docstring formatting

class sage.logic.logic.SymbolicLogic
 Bases: object

 EXAMPLES:

 This example illustrates how to create a boolean formula and print its table:

 sage: log = SymbolicLogic()
 sage: s = log.statement("a&b|!(c|a)"")
 sage: t = log.truthtable(s)
 sage: log.print_table(t)
 a | b | c | value |

 False | False | False | True |
 False | False | True | False |
 False | True | False | True |
 False | True | True | False |
 True | False | False | False |
 True | False | True | False |
 True | True | False | True |
 True | True | True | True |

 combine (statement1, statement2)
 Return a new statement which contains the two statements or’d together.

 INPUT:
 • statement1 – the first statement
 • statement2 – the second statement

 OUTPUT:
 A new statement which or’d the given statements together.

 EXAMPLES:
print_table (table)
Return a truthtable corresponding to the given statement.

INPUT:

- table – object created by truthtable() method; it contains the variable values and the evaluation of the statement

OUTPUT:
A formatted version of the truth table.

EXAMPLES:
This example illustrates the creation of a statement and its truth table:

\[
\begin{align*}
\text{sage: } & \log = \text{SymbolicLogic()} \\
\text{sage: } & s = \log.\text{statement}("a\&b|!(c|a)") \\
\text{sage: } & t = \log.\text{truthtable}(s) \ #\text{creates the whole truth table} \\
\text{sage: } & \log.\text{print_table}(t) \\
\end{align*}
\]

We can also print a shortened table:

\[
\begin{align*}
\text{sage: } & t = \log.\text{truthtable}(s, 1, 5) \\
\text{sage: } & \log.\text{print_table}(t) \\
\end{align*}
\]
prove \((\text{statement})\)
A function to test to see if the statement is a tautology or contradiction by calling a C++ library.

Todo: Implement this method.

EXAMPLES:

```python
sage: log = SymbolicLogic()
sage: s = log.statement("a&b|!(c|a)")
sage: log.prove(s)
Traceback (most recent call last):
  ...  
NotImplementedError
```

simplify \((\text{table})\)
Call a C++ implementation of the ESPRESSO algorithm to simplify the given truth table.

Todo: Implement this method.

EXAMPLES:

```python
sage: log = SymbolicLogic()
sage: s = log.statement("a&b|!(c|a)")
sage: t = log.truthtable(s)
sage: log.simplify(t)
Traceback (most recent call last):
  ...  
NotImplementedError
```

statement \((s)\)
Return a token list to be used by other functions in the class

INPUT:

- \(s\) – a string containing the logic expression to be manipulated
- \text{global vars} – a dictionary with variable names as keys and the variables’ current boolean values as dictionary values
- \text{global vars}_\text{order} – a list of the variables in the order that they are found

OUTPUT:

A list of length three containing the following in this order:

1. a list of tokens
2. a dictionary of variable/value pairs
3. a list of the variables in the order they were found

EXAMPLES:

This example illustrates the creation of a statement:

```python
sage: log = SymbolicLogic()
sage: s = log.statement("a&b|!(c|a)")
sage: s2 = log.statement("!(a&b)")
```

It is an error to use invalid variable names:

```python
sage: s = log.statement("3fe & @q")
Invalid variable name: 3fe
Invalid variable name: @q
```

It is also an error to use invalid syntax:

```python
sage: s = log.statement("a&&b")
Malformed Statement
sage: s = log.statement("a&(b")
Malformed Statement
```

```python
truthtable (statement, start=0, end=-1)
Return a truth table.
```

INPUT:

- `statement` – a list; it contains the tokens and the two global variables `vars` and `vars_order`
- `start` – (default: 0) an integer; this represents the row of the truth table from which to start
- `end` – (default: -1) an integer; this represents the last row of the truth table to be created

OUTPUT:

The truth table as a 2d array with the creating formula tacked to the front.

EXAMPLES:

This example illustrates the creation of a statement:

```python
sage: log = SymbolicLogic()
sage: s = log.statement("a&b|!(c|a)")
sage: t = log.truthtable(s) #creates the whole truth table
```

We can now create truthtable of rows 1 to 5:

```python
sage: s2 = log.truthtable(s, 1, 5); s2
[[['OPAREN',
  'a',
  'AND',
  'b',
  'OR',
  'NOT',
  'OPAREN',
  'c',
  'OR',
  'a',
  'CPAREN',
  'CPAREN'],
  ['a': 'False', 'b': 'False', 'c': 'True'],
  ['a', 'b', 'c']]
```

(continues on next page)
Note: When sent with no start or end parameters this is an exponential time function requiring $O(2^n)$ time, where n is the number of variables in the logic expression.

```python
sage.logic.logic.eval(toks)
```
Evaluate the expression contained in `toks`.

INPUT:
- `toks` – a list of tokens; this represents a boolean expression

OUTPUT:
A boolean value to be determined as follows:
- True if expression evaluates to True.
- False if expression evaluates to False.

Note: This function is for internal use by the `SymbolicLogic` class. The evaluations rely on setting the values of the variables in the global dictionary `vars`.

```python
sage.logic.logic.eval_and_op(lval, rval)
```
Apply the ‘and’ operator to `lval` and `rval`.

INPUT:
- `lval` – a string; this represents the value of the variable appearing to the left of the ‘and’ operator
- `rval` – a string; this represents the value of the variable appearing to the right of the ‘and’ operator

OUTPUT:
The result of applying ‘and’ to `lval` and `rval` as a string.

Note: This function is for internal use by the `SymbolicLogic` class.

```python
sage.logic.logic.eval_bin_op(args)
```
Return a boolean value based on the truth table of the operator in `args`.

INPUT:
- `args` – a list of length 3; this contains a variable name, then a binary operator, and then a variable name, in that order

OUTPUT:
A boolean value; this is the evaluation of the operator based on the truth values of the variables.

Note: This function is for internal use by the `SymbolicLogic` class.

```python
sage.logic.logic.eval_iff_op(lval, rval)
```
Apply the ‘if and only if’ operator to `lval` and `rval`.

Note: When sent with no start or end parameters this is an exponential time function requiring $O(2^n)$ time, where n is the number of variables in the logic expression.
INPUT:

- lval – a string; this represents the value of the variable appearing to the left of the ‘if and only if’ operator
- rval – a string; this represents the value of the variable appearing to the right of the ‘if and only if’ operator

OUTPUT:

A string representing the result of applying ‘if and only if’ to lval and rval.

Note: This function is for internal use by the SymbolicLogic class.

```
sage.logic.logic.eval_ifthen_op(lval, rval)
```

Apply the ‘if then’ operator to lval and rval.

INPUT:

- lval – a string; this represents the value of the variable appearing to the left of the ‘if then’ operator
- rval – a string; this represents the value of the variable appearing to the right of the ‘if then’ operator

OUTPUT:

A string representing the result of applying ‘if then’ to lval and rval.

Note: This function is for internal use by the SymbolicLogic class.

```
sage.logic.logic.eval_ltor_toks(lrtoks)
```

Evaluates the expression contained in lrtoks.

INPUT:

- lrtoks – a list of tokens; this represents a part of a boolean formula that contains no inner parentheses

OUTPUT:

A boolean value to be determined as follows:

- True if expression evaluates to True.
- False if expression evaluates to False.

Note: This function is for internal use by the SymbolicLogic class. The evaluations rely on setting the values of the variables in the global dictionary vars.

```
sage.logic.logic.eval_mon_op(args)
```

Return a boolean value based on the truth table of the operator in args.

INPUT:

- args – a list of length 2; this contains the token ‘NOT’ and then a variable name

OUTPUT:

A boolean value to be determined as follows:

- True if the variable in args is False.
- False if the variable in args is True.
sage.logic.logic.eval_or_op(lval, rval)
Apply the ‘or’ operator to lval and rval.

INPUT:
• lval – a string; this represents the value of the variable appearing to the left of the ‘or’ operator
• rval – a string; this represents the value of the variable appearing to the right of the ‘or’ operator

OUTPUT:
A string representing the result of applying ‘or’ to lval and rval.

Note: This function is for internal use by the SymbolicLogic class.

sage.logic.logic.get_bit(x, c)
Determine if bit c of the number x is 1.

INPUT:
• x – an integer; this is the number from which to take the bit
• c – an integer; this is the bit number to be taken

OUTPUT:
A boolean value to be determined as follows:
• True if bit c of x is 1.
• False if bit c of x is not 1.

Note: This function is for internal use by the SymbolicLogic class.

EXAMPLES:

```
sage: from sage.logic.logic import get_bit
sage: get_bit(int(2), int(1))
'True'
sage: get_bit(int(8), int(0))
'False'
```

sage.logic.logic.reduce_bins(lrtoks)
Evaluate lrtoks to a single boolean value.

INPUT:
• lrtoks – a list of tokens; this represents a part of a boolean formula that contains no inner parentheses or monotonic operators

OUTPUT:
None; the pointer to lrtoks is now a list containing True or False.

Note: This function is for internal use by the SymbolicLogic class.
sage.logic.logic.reduce_monos(lrtoks)
Replace monotonic operator/variable pairs with a boolean value.

INPUT:
• lrtoks – a list of tokens; this represents a part of a boolean expression that contains now inner parenthe-
ses

OUTPUT:
None; the pointer to lrtoks is now a list containing monotonic operators.

Note: This function is for internal use by the SymbolicLogic class.

sage.logic.logic.tokenize(s, toks)
Tokenize s and place the tokens of s in toks.

INPUT:
• s – a string; this contains a boolean expression
• toks – a list; this will be populated with the tokens of s

OUTPUT:
None; the tokens of s are placed in toks.

Note: This function is for internal use by the SymbolicLogic class.

EXAMPLES:

```
sage: from sage.logic.logic import tokenize
sage: toks = []
sage: tokenize("(a&b)|c", toks)
sage: toks
['OPAREN', 'a', 'AND', 'b', 'CPAREN', 'OR', 'c', 'CPAREN']
```
A logic table is essentially a 2-D array that is created by the statement class and stored in the private global variable table, along with a list containing the variable names to be used, in order.

The order in which the table is listed essentially amounts to counting in binary. For instance, with the variables A, B, and C the truth table looks like:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>?</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>?</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>?</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>?</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>?</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>?</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>?</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>?</td>
</tr>
</tbody>
</table>

This is equivalent to counting in binary, where a table would appear thus:

\[
\begin{array}{c|ccc|c}
2^2 & 2^1 & 2^0 & value \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 1 & 1 & 3 \\
1 & 0 & 0 & 4 \\
1 & 0 & 1 & 5 \\
1 & 1 & 0 & 6 \\
1 & 1 & 1 & 7 \\
\end{array}
\]

Given that a table can be created corresponding to any range of acceptable values for a given statement, it is easy to find the value of a statement for arbitrary values of its variables.

AUTHORS:
- William Stein (2006): initial version
- Chris Gorecki (2006): initial version
- Paul Scurek (2013-08-03): updated docstring formatting

EXAMPLES:

Create a truth table of a boolean formula:

```python
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("a&b|~(c|a)")
sage: s.truthtable()
```

(continues on next page)
Get the LaTeX code for a truth table:

```
sage: latex(s.truthtable(5,11))
\begin{tabular}{llll}c & b & a & value \\
\hline True & False & True & False \\
True & True & True & True \\
\end{tabular}
```

It is not an error to use nonsensical numeric inputs:

```
sage: s = propcalc.formula("a&b|~(c|a)")
sage: s.truthtable(5, 9)
a b c value
True False True False
True True False True
True True True True
sage: s.truthtable(9, 5)
a b c value
False False False True
False False True False
False True False True
False True True False
True False False False
True False True False
True True False True
True True True True
```

If one argument is provided, `truthtable` defaults to the end:

```
sage: s.truthtable(-1)
a b c value
False False False True
False False True False
False True False True
False True True False
True False False False
True False True False
True True False True
True True True True
```

If the second argument is negative, `truthtable` defaults to the end:

```
sage: s.truthtable(4, -2)
a b c value
False False False True
False False True False
False True False True
False True True False
True False False False
True False True False
True True False True
True True True True
```

Note: For statements that contain a variable list that when printed is longer than the LaTeX page, the columns of the table will run off the screen.

```python
class sage.logic.logictable.Truthtable(t, vo)
    Bases: object
```
A truth table.

INPUT:

- \(t \) – a 2-D array containing the table values
- \(vo \) – a list of the variables in the expression in order, with each variable occurring only once

get_table_list()

Return a list representation of the calling table object.

OUTPUT:

A list representation of the table.

EXAMPLES:

This example illustrates how to show the table as a list:

```python
sage: import sage.logic.propcalc as propcalc
sage: s = propcalc.formula("man->monkey&human")
sage: s.truthtable().get_table_list()
[['man', 'monkey', 'human'], [False, False, False, True], [False, False, True, True], [False, True, False, True], [False, True, True, True], [True, False, False, False], [True, False, True, False], [True, True, False, False], [True, True, True, True]]
```
• Index
• Module Index
• Search Page
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>sage.logic.booleval, 23</td>
</tr>
<tr>
<td>sage.logic.boolformula, 7</td>
</tr>
<tr>
<td>sage.logic.logic, 33</td>
</tr>
<tr>
<td>sage.logic.logicparser, 25</td>
</tr>
<tr>
<td>sage.logic.logictable, 41</td>
</tr>
<tr>
<td>sage.logic.propcalc, 1</td>
</tr>
</tbody>
</table>
add_statement() (sage.logic.boolformula.BooleanFormula method), 9
apply_func() (in module sage.logic.logicparser), 26

BooleanFormula (class in sage.logic.boolformula), 9

combine() (sage.logic.logic.SymbolicLogic method), 33
consistent() (in module sage.logic.propcalc), 3
convert_cnf() (sage.logic.boolformula.BooleanFormula method), 9
convert_cnf_recur() (sage.logic.boolformula.BooleanFormula method), 10
convert_cnf_table() (sage.logic.boolformula.BooleanFormula method), 10
convert_expression() (sage.logic.boolformula.BooleanFormula method), 11
convert_opt() (sage.logic.boolformula.BooleanFormula method), 11

dist_not() (sage.logic.boolformula.BooleanFormula method), 11
dist_ors() (sage.logic.boolformula.BooleanFormula method), 12

equivalent() (sage.logic.boolformula.BooleanFormula method), 12
eval() (in module sage.logic.logic), 37
eval_and_op() (in module sage.logic.logic), 37
eval_bin_op() (in module sage.logic.logic), 37
eval_f() (in module sage.logic.booleval), 23
eval_formula() (in module sage.logic.booleval), 23
eval_iff_op() (in module sage.logic.logic), 37
eval_ifthen_op() (in module sage.logic.logic), 38
eval_ltor_toks() (in module sage.logic.logic), 38
eval_mon_op() (in module sage.logic.logic), 38
eval_op() (in module sage.logic.booleval), 24
eval_or_op() (in module sage.logic.logic), 39
evaluate() (sage.logic.boolformula.BooleanFormula method), 13

formula() (in module sage.logic.propcalc), 3
<table>
<thead>
<tr>
<th>Function</th>
<th>Module/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>full_tree()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>13</td>
</tr>
<tr>
<td>get_bit()</td>
<td>(in module sage.logic.logic)</td>
<td>39</td>
</tr>
<tr>
<td>get_bit()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>14</td>
</tr>
<tr>
<td>get_formulas()</td>
<td>(in module sage.logic.propcalc)</td>
<td>4</td>
</tr>
<tr>
<td>get_next_op()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>14</td>
</tr>
<tr>
<td>get_table_list()</td>
<td>(sage.logic.logictable.Truthtable method)</td>
<td>43</td>
</tr>
<tr>
<td>get_trees()</td>
<td>(in module sage.logic.logicparser)</td>
<td>26</td>
</tr>
<tr>
<td>iff()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>15</td>
</tr>
<tr>
<td>ifthen()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>15</td>
</tr>
<tr>
<td>implies()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>15</td>
</tr>
<tr>
<td>is_consequence()</td>
<td>(in module sage.logic.boolformula)</td>
<td>21</td>
</tr>
<tr>
<td>is_consequence()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>16</td>
</tr>
<tr>
<td>is_contradiction()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>17</td>
</tr>
<tr>
<td>is_satisfiable()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>17</td>
</tr>
<tr>
<td>is_tautology()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>18</td>
</tr>
<tr>
<td>module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sage.logic.booleval</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>sage.logic.boolformula</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>sage.logic.logic</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>sage.logic.logicparser</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>sage.logic.logictable</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>sage.logic.propcalc</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>parse()</td>
<td>(in module sage.logic.logicparser)</td>
<td>27</td>
</tr>
<tr>
<td>parse_ltor()</td>
<td>(in module sage.logic.logicparser)</td>
<td>27</td>
</tr>
<tr>
<td>polish_notation()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>18</td>
</tr>
<tr>
<td>polish_parse()</td>
<td>(in module sage.logic.logicparser)</td>
<td>28</td>
</tr>
<tr>
<td>prefix_to_infix()</td>
<td>(in module sage.logic.logicparser)</td>
<td>28</td>
</tr>
<tr>
<td>print_table()</td>
<td>(sage.logic.logic.SymbolicLogic method)</td>
<td>34</td>
</tr>
<tr>
<td>prove()</td>
<td>(sage.logic.logic.SymbolicLogic method)</td>
<td>35</td>
</tr>
<tr>
<td>recover_formula()</td>
<td>(in module sage.logic.logicparser)</td>
<td>29</td>
</tr>
<tr>
<td>recover_formula_internal()</td>
<td>(in module sage.logic.logicparser)</td>
<td>29</td>
</tr>
<tr>
<td>reduce_bins()</td>
<td>(in module sage.logic.logic)</td>
<td>39</td>
</tr>
<tr>
<td>reduce_monos()</td>
<td>(in module sage.logic.logic)</td>
<td>39</td>
</tr>
<tr>
<td>reduce_op()</td>
<td>(sage.logic.boolformula.BooleanFormula method)</td>
<td>18</td>
</tr>
<tr>
<td>sage.logic.booleval</td>
<td>module, 23</td>
<td></td>
</tr>
<tr>
<td>sage.logic.boolformula</td>
<td>module, 7</td>
<td></td>
</tr>
</tbody>
</table>
sage.logic.logic
 module, 33
sage.logic.logicparser
 module, 25
sage.logic.logictable
 module, 41
sage.logic.propcalc
 module, 1
satformat() (sage.logic.boolformula.BooleanFormula method), 19
simplify() (sage.logic.logic.SymbolicLogic method), 35
statement() (sage.logic.logic.SymbolicLogic method), 35
SymbolicLogic (class in sage.logic.logic), 33

T
to_infix() (sage.logic.boolformula.BooleanFormula method), 19
to_infix_internal() (in module sage.logic.logicparser), 30
tokenize() (in module sage.logic.logic), 40
tokenize() (in module sage.logic.logicparser), 31
tree() (sage.logic.boolformula.BooleanFormula method), 20
tree_parse() (in module sage.logic.logicparser), 31
Truthtable (class in sage.logic.logictable), 42
truthtable() (sage.logic.boolformula.BooleanFormula method), 20
truthtable() (sage.logic.logic.SymbolicLogic method), 36