<table>
<thead>
<tr>
<th>Chapter</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Algebraic Number Fields</td>
<td>1</td>
</tr>
<tr>
<td>2 Morphisms</td>
<td>215</td>
</tr>
<tr>
<td>3 Orders, Ideals, Ideal Classes</td>
<td>233</td>
</tr>
<tr>
<td>4 Totally Real Fields</td>
<td>345</td>
</tr>
<tr>
<td>5 Algebraic Numbers</td>
<td>357</td>
</tr>
<tr>
<td>6 Indices and Tables</td>
<td>435</td>
</tr>
<tr>
<td>Python Module Index</td>
<td>437</td>
</tr>
<tr>
<td>Index</td>
<td>439</td>
</tr>
</tbody>
</table>
1.1 Number Fields

AUTHORS:

- Steven Sivek (2006-05-12): added support for relative extensions
- William Stein (2007-09-04): major rewrite and documentation
- Robert Bradshaw (2008-10): specified embeddings into ambient fields
- Simon King (2010-05): Improve coercion from GAP
- Jeroen Demeyer (2010-07, 2011-04): Upgrade PARI (github issue #9343, github issue #10430, github issue #11130)
- Robert Harron (2012-08): added is_CM(), complex_conjugation(), and maximal_totally_real_subfield()
- Christian Stump (2012-11): added conversion to universal cyclotomic field
- Julian Rueth (2014-04-03): absolute number fields are unique parents
- Vincent Delecroix (2015-02): comparisons/floor/ceil using embeddings
- Kiran Kedlaya (2016-05): relative number fields hash based on relative polynomials
- Peter Bruin (2016-06): make number fields fully satisfy unique representation
- John Jones (2017-07): improve check for is_galois(), add is_abelian(), building on work in patch by Chris Wuthrich
- Anna Haensch (2018-03): added quadratic_defect()
- Michael Daub, Chris Wuthrich (2020-09-01): adding Dirichlet characters for abelian fields

Note: Unlike in PARI/GP, class group computations in Sage do not by default assume the Generalized Riemann Hypothesis. To do class groups computations not provably correctly you must often pass the flag proof=False to functions or call the function proof.number_field(False). It can easily take 1000’s of times longer to do computations with proof=True (the default).

This example follows one in the Magma reference manual:

```
sage: K.<y> = NumberField(x^4 - 420*x^2 + 40000)
sage: z = y^5/11; z
420/11*y^3 - 40000/11*y
```
\textbf{Warning: } Doing arithmetic in towers of relative fields that depends on canonical coercions is currently VERY SLOW. It is much better to explicitly coerce all elements into a common field, then do arithmetic with them there (which is quite fast).

\textbf{class} \texttt{sage.rings.number_field.number_field.CyclotomicFieldFactory}

\textbf{Bases:} \texttt{UniqueFactory}

Return the \(n\)-th cyclotomic field, where \(n\) is a positive integer, or the universal cyclotomic field if \(n=0\).

For the documentation of the universal cyclotomic field, see \texttt{UniversalCyclotomicField}.

\textbf{INPUT:}

- \texttt{n} - a nonnegative integer, default: 0
- \texttt{names} - name of generator (optional - defaults to \texttt{zetan})
- \texttt{bracket} - Defines the brackets in the case of \(n=0\), and is ignored otherwise. Can be any even length string, with "()" being the default.
- \texttt{embedding} - bool or \(n\)-th root of unity in an ambient field (default True)

\textbf{EXAMPLES:}
If called without a parameter, we get the universal cyclotomic field:

```
sage: CyclotomicField()
Universal Cyclotomic Field
```

We create the 7th cyclotomic field \(\mathbb{Q}(\zeta_7) \) with the default generator name.

```
sage: k = CyclotomicField(7); k
Cyclotomic Field of order 7 and degree 6
sage: k.gen()
zeta7
```

The default embedding sends the generator to the complex primitive \(n^{th} \) root of unity of least argument.

```
sage: CC(k.gen())
0.623489801858734 + 0.781831482468030*I
```

Cyclotomic fields are of a special type.

```
sage: type(k)
<class 'sage.rings.number_field.number_field.NumberField_cyclotomic_with_category'>
```

We can specify a different generator name as follows.

```
sage: k.<z7> = CyclotomicField(7); k
Cyclotomic Field of order 7 and degree 6
sage: k.gen()
z7
```

The \(n \) must be an integer.

```
sage: CyclotomicField(3/2)
Traceback (most recent call last):
  ...
TypeError: no conversion of this rational to integer
```

The degree must be nonnegative.

```
sage: CyclotomicField(-1)
Traceback (most recent call last):
  ...
ValueError: n (=1) must be a positive integer
```

The special case \(n = 1 \) does not return the rational numbers:

```
sage: CyclotomicField(1)
Cyclotomic Field of order 1 and degree 1
```

Due to their default embedding into \(\mathbb{C} \), cyclotomic number fields are all compatible.

```
sage: cf30 = CyclotomicField(30)
sage: cf5 = CyclotomicField(5)
sage: cf3 = CyclotomicField(3)
sage: cf30.gen() + cf5.gen() + cf3.gen()
zeta30^6 + zeta30^5 + zeta30 - 1
```

(continues on next page)
sage: cf6 = CyclotomicField(6) ; z6 = cf6.0
sage: cf3 = CyclotomicField(3) ; z3 = cf3.0
sage: cf3(z6)
zeta6 + 1
sage: cf6(z3)
zeta6 - 1
sage: cf9 = CyclotomicField(9) ; z9 = cf9.0
sage: cf18 = CyclotomicField(18) ; z18 = cf18.0
sage: cf18(z9)
zeta18^2
sage: cf9(z18)
-zeta9^5
sage: cf18(z3)
zeta18^3 - 1
sage: cf18(z6)
zeta18^3
sage: cf18(z6)**2
zeta18^3 - 1
sage: cf9(z3)
zeta9^3

create_key(n=0, names=None, embedding=True)
Create the unique key for the cyclotomic field specified by the parameters.

create_object(version, key, **extra_args)
Create the unique cyclotomic field defined by key.

sage.rings.number_field.number_field.GaussianField()
The field \(\mathbb{Q}[i] \).

sage.rings.number_field.number_field.NumberField(polynomial, name, check=None, names=True, embedding=None, latex_name=None, assume_disc_small=None, maximize_at_primes=False, structure=None, latex_names=None, **kwds)
Return the number field (or tower of number fields) defined by the irreducible polynomial.

INPUT:

- polynomial - a polynomial over \(\mathbb{Q} \) or a number field, or a list of such polynomials.
- names (or name) - a string or a list of strings, the names of the generators
- check - a boolean (default: True); do type checking and irreducibility checking.
- embedding - None, an element, or a list of elements, the images of the generators in an ambient field (default: None)
- latex_names (or latex_name) - None, a string, or a list of strings (default: None), how the generators are printed for latex output
- assume_disc_small – a boolean (default: False); if True, assume that no square of a prime greater than PARI’s primelimit (which should be 500000); only applies for absolute fields at present.
- maximize_at_primes – None or a list of primes (default: None); if not None, then the maximal order is computed by maximizing only at the primes in this list, which completely avoids having to factor the discriminant, but of course can lead to wrong results; only applies for absolute fields at present.
- **structure** – None, a list or an instance of `structure.NumberFieldStructure` (default: None), internally used to pass in additional structural information, e.g., about the field from which this field is created as a subfield.

We accept `implementation` and `prec` attributes for compatibility with `AlgebraicExtensionFunctor` but we ignore them as they are not used.

EXAMPLES:

```python
sage: z = QQ['z'].0
sage: K = NumberField(z^2 - 2, 's'); K
Number Field in s with defining polynomial z^2 - 2
sage: s = K.0; s
s
sage: s*s
2
sage: s^2
2
```

Constructing a relative number field:

```python
sage: K.<a> = NumberField(x^2 - 2)
sage: R.<t> = K[]
sage: L.<b> = K.extension(t^3+t+a); L
Number Field in b with defining polynomial t^3 + t + a over its base field
sage: L.absolute_field('c')
Number Field in c with defining polynomial x^6 + 2*x^4 + x^2 - 2
sage: a*b
a*b
sage: L(a)
a
sage: L.lift_to_base(b^3 + b)
-a
```

Constructing another number field:

```python
sage: k.<i> = NumberField(x^2 + 1)
sage: R.<z> = k[]
sage: m.<j> = NumberField(z^3 + i*z + 3)
sage: m
Number Field in j with defining polynomial z^3 + i*z + 3 over its base field
```

Number fields are globally unique:

```python
sage: K.<a> = NumberField(x^3 - 5)
sage: a^3
5
sage: L.<a> = NumberField(x^3 - 5)
sage: K.is L
True
```

Equality of number fields depends on the variable name of the defining polynomial:

```python
sage: x = polygen(QQ, 'x'); y = polygen(QQ, 'y')
sage: k.<a> = NumberField(x^2 + 3)
```

(continues on next page)

1.1. Number Fields 5
In case of conflict of the generator name with the name given by the preparser, the name given by the preparser takes precedence:

```python
sage: K.<b> = NumberField(x^2 + 5, 'a'); K
Number Field in b with defining polynomial x^2 + 5
```

One can also define number fields with specified embeddings, may be used for arithmetic and deduce relations with other number fields which would not be valid for an abstract number field.

```python
sage: K.<a> = NumberField(x^3-2, embedding=1.2)
sage: RR.coerce_map_from(K)
Composite map:
  From: Number Field in a with defining polynomial x^3 - 2 with a = 1.˓→259921049894873?
  To:   Real Field with 53 bits of precision
  Defn: Generic morphism:
    From: Number Field in a with defining polynomial x^3 - 2 with a = 1.˓→259921049894873?
    To:   Real Lazy Field
    Defn: a -> 1.259921049894873?
    then
    Conversion via _mpfr_ method map:
      From: Real Lazy Field
      To:   Real Field with 53 bits of precision
sage: RR(a)
1.259992104989487316476721060728228350570251464701507980820
sage: 1.1 + a
2.35992104989487316476721060728228350570251464701507980820
sage: b = 1/(a+1); b
1/3*a^2 - 1/3*a + 1/3
sage: RR(b)
0.442493334024442
sage: L.<b> = NumberField(x^6-2, embedding=1.1)
sage: L(a)
b^2
sage: a + b
b^2 + b
```

Note that the image only needs to be specified to enough precision to distinguish roots, and is exactly computed to any needed precision:

```python
sage: RealField(200)(a)
1.25992104989487316476721060728228350570251464701507980820
```

One can embed into any other field:
sage: K.<a> = NumberField(x^3-2, embedding=CC.gen()-0.6)
sage: CC(a)
-0.629960524947436 + 1.09112363597172*I
sage: L = Qp(5)
sage: f = polygen(L)^3 - 2
sage: K.<a> = NumberField(x^3-2, embedding=f.roots()[0][0])
sage: a + L(1)
4 + 2*5^2 + 2*5^3 + 3*5^4 + 5^5 + 4*5^6 + 4*5^12 + 4*5^14 + 4*5^15 + 3*5^16 + 5^17 + 5^18 + 2*5^19 + O(5^20)
sage: L. = NumberField(x^6-x^2+1/10, embedding=1)
sage: K.<a> = NumberField(x^3-x+1/10, embedding=b^2)
sage: a+b
b^2 + b
sage: CC(a) == CC(b)^2
True
sage: K.coerce_embedding()
Generic morphism:
 From: Number Field in a with defining polynomial x^3 - x + 1/10 with a = b^2
 To: Number Field in b with defining polynomial x^6 - x^2 + 1/10 with b = 0.
 Defn: a -> b^2

The QuadraticField and CyclotomicField constructors create an embedding by default unless otherwise specified:

sage: K.<zeta> = CyclotomicField(15)
sage: CC(zeta)
0.913545457642601 + 0.406736643075800*I
sage: L.<sqrtn3> = QuadraticField(-3)
sage: K(sqrtn3)
2*zeta^5 + 1
sage: sqrtn3 + zeta
2*zeta^5 + zeta + 1

Comparison depends on the (real) embedding specified (or the one selected by default). Note that the codomain of the embedding must be QQbar or AA for this to work (see github issue #20184):

sage: N.<g> = NumberField(x^3+2,embedding=1)
sage: 1 < g
False
sage: g > 1
False
sage: RR(g)
-1.25992104989487

If no embedding is specified or is complex, the comparison is not returning something meaningful:

sage: N.<g> = NumberField(x^3+2)
sage: 1 < g
False
sage: g > 1
True

Since SageMath 6.9, number fields may be defined by polynomials that are not necessarily integral or monic.
The only notable practical point is that in the PARI interface, a monic integral polynomial defining the same number field is computed and used:

```
sage: K.<a> = NumberField(2*x^3 + x + 1)
sage: K.pari_polynomial()
x^3 - x^2 - 2
```

Elements and ideals may be converted to and from PARI as follows:

```
sage: pari(a)
Mod(-1/2*y^2 + 1/2*y, y^3 - y^2 - 2)
sage: K(pari(a))
a
sage: I = K.ideal(a); I
Fractional ideal (a)
sage: I.pari_hnf()
[1, 0, 0; 0, 1, 0; 0, 0, 1/2]
sage: K.ideal(I.pari_hnf())
Fractional ideal (a)
```

Here is an example where the field has non-trivial class group:

```
sage: L.<b> = NumberField(3*x^2 - 1/5)
sage: L.pari_polynomial()
x^2 - 15
sage: J = L.primes_above(2)[0]; J
Fractional ideal (2, 15*b + 1)
sage: J.pari_hnf()
[2, 1; 0, 1]
sage: L.ideal(J.pari_hnf())
Fractional ideal (2, 15*b + 1)
```

An example involving a variable name that defines a function in PARI:

```
sage: theta = polygen(QQ, 'theta')
sage: M.<z> = NumberField([theta^3 + 4, theta^2 + 3]); M
Number Field in z0 with defining polynomial theta^3 + 4 over its base field
```

```
class sage.rings.number_field.number_field_NumberFieldFactory
    Bases: UniqueFactory

Factory for number fields.
This should usually not be called directly, use NumberField() instead.

INPUT:

- polynomial - a polynomial over Q or a number field.
- name - a string (default: 'a'), the name of the generator
- check - a boolean (default: True); do type checking and irreducibility checking.
- embedding - None or an element, the images of the generator in an ambient field (default: None)
- latex_name - None or a string (default: None), how the generator is printed for latex output
- assume_disc_small – a boolean (default: False); if True, assume that no square of a prime greater than
  PARI's primelimit (which should be 500000); only applies for absolute fields at present.
```
• **maximize_at_primes** – None or a list of primes (default: None); if not None, then the maximal order is computed by maximizing only at the primes in this list, which completely avoids having to factor the discriminant, but of course can lead to wrong results; only applies for absolute fields at present.

• **structure** – None or an instance of structure.NumberFieldStructure (default: None), internally used to pass in additional structural information, e.g., about the field from which this field is created as a subfield.

create_key_and_extra_args *(polynomial, name, check, embedding, latex_name, assume_disc_small, maximize_at_primes, structure)*

Create a unique key for the number field specified by the parameters.

create_object *(version, key, check)*

Create the unique number field defined by key.

sage.rings.number_field.number_field.NumberFieldTower *(polynomials, names, check=True, embeddings=None, latex_names=None, assume_disc_small=False, maximize_at_primes=None, structures=None)*

Create the tower of number fields defined by the polynomials in the list polynomials.

INPUT:

• **polynomials** - a list of polynomials. Each entry must be polynomial which is irreducible over the number field generated by the roots of the following entries.

• **names** - a list of strings or a string, the names of the generators of the relative number fields. If a single string, then names are generated from that string.

• **check** - a boolean (default: True), whether to check that the polynomials are irreducible

• **embeddings** - a list of elements or None (default: None), embeddings of the relative number fields in an ambient field.

• **latex_names** - a list of strings or None (default: None), names used to print the generators for latex output.

• **assume_disc_small** – a boolean (default: False); if True, assume that no square of a prime greater than PARI’s primelimit (which should be 500000); only applies for absolute fields at present.

• **maximize_at_primes** – None or a list of primes (default: None); if not None, then the maximal order is computed by maximizing only at the primes in this list, which completely avoids having to factor the discriminant, but of course can lead to wrong results; only applies for absolute fields at present.

• **structures** – None or a list (default: None), internally used to provide additional information about the number field such as the field from which it was created.

OUTPUT:

The relative number field generated by a root of the first entry of polynomials over the relative number field generated by root of the second entry of polynomials ... over the number field over which the last entry of polynomials is defined.

EXAMPLES:

```python
sage: k.<a,b,c> = NumberField([x^2 + 1, x^2 + 3, x^2 + 5]); k # indirect doctest
Number Field in a with defining polynomial x^2 + 1 over its base field
sage: a^2
-1
sage: b^2
```

(continues on next page)
The Galois group is a product of 3 groups of order 2:

```
sage: k.absolute_field(names='c').galois_group()
Galois group 8T3 (2[2]2[2]) with order 8 of x^8 + 36*x^6 + 302*x^4 + 564*x^2 + 121
```

Repeatedly calling base_field allows us to descend the internally constructed tower of fields:

```
sage: k.base_field()
Number Field in b with defining polynomial x^2 + 3 over its base field
sage: k.base_field().base_field()
Number Field in c with defining polynomial x^2 + 5
sage: k.base_field().base_field().base_field()
Rational Field
```

In the following example the second polynomial is reducible over the first, so we get an error:

```
sage: v = NumberField([x^3 - 2, x^3 - 2], names='a')
Traceback (most recent call last):
  ...
ValueError: defining polynomial (x^3 - 2) must be irreducible
```

We mix polynomial parent rings:

```
sage: k.<y> = QQ[]
sage: m = NumberField([y^3 - 3, x^2 + x + 1, y^3 + 2], 'beta')
sage: m
Number Field in beta0 with defining polynomial y^3 - 3 over its base field
sage: m.base_field()
Number Field in beta1 with defining polynomial x^2 + x + 1 over its base field
```

A tower of quadratic fields:

```
sage: K.<a> = NumberField([x^2 + 3, x^2 + 2, x^2 + 1])
sage: K
Number Field in a0 with defining polynomial x^2 + 3 over its base field
sage: K.base_field()
Number Field in a1 with defining polynomial x^2 + 2 over its base field
sage: K.base_field().base_field()
Number Field in a2 with defining polynomial x^2 + 1
```

LaTeX versions of generator names can be specified either as:

```
sage: K = NumberField([x^3 - 2, x^3 - 3, x^3 - 5], names=['a', 'b', 'c'], latex_
   \rightarrow names=[r'\alpha', r'\beta', r'\gamma'])
sage: K.inject_variables(\text{verbose=False})
sage: latex(a + b + c)
\alpha + \beta + \gamma
```
or as:

```python
sage: K = NumberField([x^3 - 2, x^3 - 3, x^3 - 5], names='a', latex_names=r'$\alpha$')
sage: K.inject_variables()
Defining a0, a1, a2
sage: latex(a0 + a1 + a2)
\alpha_{0} + \alpha_{1} + \alpha_{2}
```

A bigger tower of quadratic fields:

```python
sage: K.<a2,a3,a5,a7> = NumberField([x^2 + p for p in [2,3,5,7]]); K
Number Field in a2 with defining polynomial x^2 + 2 over its base field
sage: a2^2
-2
sage: a3^2
-3
sage: (a2+a3+a5+a7)^3
((6*a5 + 6*a7)*a3 + 6*a7*a5 - 47)*a2 + (6*a7*a5 - 45)*a3 - 41*a5 - 37*a7
```

The function can also be called by name:

```python
sage: NumberFieldTower([x^2 + 1, x^2 + 2], ['a','b'])
Number Field in a with defining polynomial x^2 + 1 over its base field
```

```python
class sage.rings.number_field.number_field.NumberField_absolute(
    polynomial, name,
    latex_name=None, check=True,
    embedding=None,
    assume_disc_small=False,
    maximize_at_primes=None,
    structure=None)
```

Bases: `NumberField_generic`

Function to initialize an absolute number field.

EXAMPLES:

```python
sage: K = NumberField(x^17 + 3, 'a'); K
Number Field in a with defining polynomial x^17 + 3
sage: type(K)
<class 'sage.rings.number_field.number_field.NumberField_absolute_with_category'>
sage: TestSuite(K).run()
```

```python
abs_val(v, iota, prec=None)
```

Return the value $|c|_v$.

INPUT:

- `v` – a place of K, finite (a fractional ideal) or infinite (element of K.places(prec))
- `iota` – an element of K
- `prec` – (default: None) the precision of the real field

OUTPUT:

The absolute value as a real number

EXAMPLES:
sage: K.<xi> = NumberField(x^3-3)
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]
sage: v_fin = tuple(K.primes_above(3))[0]
sage: K.abs_val(phi_real, xi^2)
2.08008382305190
sage: K.abs_val(phi_complex, xi^2)
4.32674871092223
sage: K.abs_val(v_fin, xi^2)
0.111111111111111

Check that github issue #28345 is fixed:

sage: K.abs_val(v_fin, K.zero())
0.000000000000000

absolute_degree()
A synonym for degree.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: K.absolute_degree()
2

absolute_different()
A synonym for different.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: K.absolute_different()
Fractional ideal (2)

absolute_discriminant()
A synonym for discriminant.

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: K.absolute_discriminant()
-4

absolute_generator()
An alias for \texttt{sage.rings.number_field.number_field.NumberField_generic.gen()}. This is provided for consistency with relative fields, where the element returned by \texttt{sage.rings.number_field.number_field_rel.NumberField_relative.gen()} only generates the field over its base field (not necessarily over Q).

EXAMPLES:
sage: K.<a> = NumberField(x^2 - 17)
sage: K.absolute_generator()
a
absolute_polynomial()
Return absolute polynomial that defines this absolute field. This is the same as self.polynomial().

EXAMPLES:

sage: K.<a> = NumberField(x^2 + 1)
sage: K.absolute_polynomial ()
x^2 + 1

absolute_vector_space(*args, **kwds)
Return vector space over Q corresponding to this number field, along with maps from that space to this number field and in the other direction.

For an absolute extension this is identical to self.vector_space().

EXAMPLES:

sage: K.<a> = NumberField(x^3 - 5)
sage: K.absolute_vector_space() (Vector space of dimension 3 over Rational Field, Isomorphism map: From: Vector space of dimension 3 over Rational Field To: Number Field in a with defining polynomial x^3 - 5, Isomorphism map: From: Number Field in a with defining polynomial x^3 - 5 To: Vector space of dimension 3 over Rational Field)

automorphisms()
Compute all Galois automorphisms of self.

This uses PARI’s pari:nfgaloisconj and is much faster than root finding for many fields.

EXAMPLES:

sage: K.<a> = NumberField(x^2 + 10000)
sage: K.automorphisms()
[Ring endomorphism of Number Field in a with defining polynomial x^2 + 10000
 Defn: a |--> a,
 Ring endomorphism of Number Field in a with defining polynomial x^2 + 10000
 Defn: a |--> -a]

Here’s a larger example, that would take some time if we found roots instead of using PARI’s specialized machinery:

sage: K = NumberField(x^6 - x^4 - 2*x^2 + 1, 'a')
sage: len(K.automorphisms())
2

L is the Galois closure of K:
Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):

\[
\begin{align*}
\text{sage: } & \text{R.<x> = QQ[] } \\
\text{sage: } & \text{f = 7/9*x^3 + 7/3*x^2 - 56*x + 123 } \\
\text{sage: } & \text{K.<a> = NumberField(f) } \\
\text{sage: } & \text{A = K.automorphisms(); A } \\
& \text{Ring endomorphism of Number Field in a with defining polynomial } 7/9*x^3 + 7/3*x^2 - 56*x + 123 \\
& \text{Defn: a |--> a, } \\
& \text{Ring endomorphism of Number Field in a with defining polynomial } 7/9*x^3 + 7/3*x^2 - 56*x + 123 \\
& \text{Defn: a |--> -7/15*a^2 - 18/5*a + 96/5, } \\
& \text{Ring endomorphism of Number Field in a with defining polynomial } 7/9*x^3 + 7/3*x^2 - 56*x + 123 \\
& \text{Defn: a |--> 7/15*a^2 + 13/5*a - 111/5 } \\
\text{sage: } & \text{prod(x - sigma(a) for sigma in A) == f.monic() } \\
& \text{True }
\end{align*}
\]

base_field()

Return the base field of self, which is always QQ.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{K = CyclotomicField(5) } \\
\text{sage: } & \text{K.base_field() } \\
& \text{Rational Field
}\end{align*}
\]

change_names(names)

Return number field isomorphic to self but with the given generator name.

INPUT:

• names - should be exactly one variable name.

Also, K.structure() returns from_K and to_K, where from_K is an isomorphism from K to self and to_K is an isomorphism from self to K.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{K.<z> = NumberField(x^2 + 3); K } \\
& \text{Number Field in z with defining polynomial x^2 + 3 } \\
\text{sage: } & \text{L.<ww> = K.change_names() } \\
\text{sage: } & \text{L } \\
& \text{Number Field in ww with defining polynomial x^2 + 3 } \\
\text{sage: } & \text{L.structure()[0] } \\
& \text{Isomorphism given by variable name change map: }
\end{align*}
\]

(continues on next page)
elements_of_bounded_height(**kwds)

Return an iterator over the elements of self with relative multiplicative height at most bound.

This algorithm computes 2 lists: L containing elements x in \(K \) such that \(H_k(x) \leq B \), and a list L' containing elements x in \(K \) that, due to floating point issues, may be slightly larger then the bound. This can be controlled by lowering the tolerance.

In current implementation both lists (L,L') are merged and returned in form of iterator.

ALGORITHM:

This is an implementation of the revised algorithm (Algorithm 4) in [DK2013]. Algorithm 5 is used for imaginary quadratic fields.

INPUT:

kwds:

• bound - a real number
 • tolerance - (default: 0.01) a rational number in (0,1]
 • precision - (default: 53) a positive integer

OUTPUT:

• an iterator of number field elements

EXAMPLES:

There are no elements in a number field with multiplicative height less than 1:

```python
sage: K.<g> = NumberField(x^5 - x + 19)
```

```python
sage: list(K.elements_of_bounded_height(bound=0.9))
[]
```

The only elements in a number field of height 1 are 0 and the roots of unity:

```python
sage: K.<a> = NumberField(x^2 + x + 1)
```

```python
sage: list(K.elements_of_bounded_height(bound=1))
[0, a + 1, a, -1, -a - 1, -a, 1]
```

```python
sage: K.<a> = CyclotomicField(20)
```

```python
sage: len(list(K.elements_of_bounded_height(bound=1)))
21
```

The elements in the output iterator all have relative multiplicative height at most the input bound:

```python
sage: K.<a> = NumberField(x^6 + 2)
```

```python
sage: L = K.elements_of_bounded_height(bound=5)
```

```python
sage: for t in L:
    ....:   exp(6*t.global_height())
1.00000000000000
```

(continues on next page)
1.00000000000000
1.00000000000000
2.00000000000000
2.00000000000000
2.00000000000000
2.00000000000000
4.00000000000000
4.00000000000000
4.00000000000000
4.00000000000000

sage: K.<a> = NumberField(x^2 - 71)

sage: L = K.elements_of_bounded_height(bound=20)

sage: all(exp(2*t.global_height()) <= 20 for t in L) # long time (5 s)
True

sage: K.<a> = NumberField(x^2 + 17)

sage: L = K.elements_of_bounded_height(bound=120)

sage: len(list(L))
9047

sage: K.<a> = NumberField(x^4 - 5)

sage: L = K.elements_of_bounded_height(bound=50)

sage: len(list(L)) # long time (2 s)
2163

sage: K.<a> = CyclotomicField(13)

sage: L = K.elements_of_bounded_height(bound=2)

sage: len(list(L)) # long time (3 s)
27

sage: K.<a> = NumberField(x^6 + 2)

sage: L = K.elements_of_bounded_height(bound=60, precision=100)

sage: len(list(L)) # long time (5 s)
1899

sage: K.<a> = NumberField(x^4 - x^3 - 3*x^2 + x + 1)

sage: L = K.elements_of_bounded_height(bound=10, tolerance=0.1)

sage: len(list(L))
99

AUTHORS:

• John Doyle (2013)
• David Krumm (2013)
• Raman Raghukul (2018)

embeddings(*K*)

Compute all field embeddings of this field into the field *K* (which need not even be a number field, e.g., it could be the complex numbers). This will return an identical result when given *K* as input again.
If possible, the most natural embedding of this field into K is put first in the list.

INPUT:

• K – a field

EXAMPLES:

```
sage: K.<a> = NumberField(x^3 - 2)
sage: L.<a1> = K.galois_closure(); L
Number Field in a1 with defining polynomial x^6 + 108
sage: K.embeddings(L)[0]
Ring morphism:
  From: Number Field in a with defining polynomial x^3 - 2
  To:   Number Field in a1 with defining polynomial x^6 + 108
        Defn: a |--> 1/18*a1^4
sage: K.embeddings(L) is K.embeddings(L)
True
```

We embed a quadratic field into a cyclotomic field:

```
sage: L.<a> = QuadraticField(-7)
sage: K = CyclotomicField(7)
sage: L.embeddings(K)
[Ring morphism:
  From: Number Field in a with defining polynomial x^2 + 7 with a = 2.
  To:   Cyclotomic Field of order 7 and degree 6
        Defn: a |--> 2*zeta7^4 + 2*zeta7^2 + 2*zeta7 + 1,
  Ring morphism:
  From: Number Field in a with defining polynomial x^2 + 7 with a = 2.
  To:   Cyclotomic Field of order 7 and degree 6
        Defn: a |--> -2*zeta7^4 - 2*zeta7^2 - 2*zeta7 - 1]
```

We embed a cubic field in the complex numbers:

```
sage: K.<a> = NumberField(x^3 - 2)
sage: K.embeddings(CC)
[Ring morphism:
  From: Number Field in a with defining polynomial x^3 - 2
  To:   Complex Field with 53 bits of precision
        Defn: a |--> -0.62996052494743... + 1.09112363597172*I,
  Ring morphism:
  From: Number Field in a with defining polynomial x^3 - 2
  To:   Complex Field with 53 bits of precision
        Defn: a |--> -0.62996052494743... - 1.09112363597172*I,
  Ring morphism:
  From: Number Field in a with defining polynomial x^3 - 2
  To:   Complex Field with 53 bits of precision
        Defn: a |--> 1.25992104989487]
```
Test that github issue #15053 is fixed:

```
sage: K = NumberField(x^3 - 2, 'a')
sage: K.embeddings(GF(3))
[]
```

free_module$(base=None, basis=None, map=True)$

Return a vector space V and isomorphisms $\text{self} \rightarrow V$ and $V \rightarrow \text{self}$.

INPUT:
- **base** – a subfield (default: None); the returned vector space is over this subfield R, which defaults to the base field of this function field
- **basis** – a basis for this field over the base
- **maps** – boolean (default True), whether to return R-linear maps to and from V

OUTPUT:
- **V** - a vector space over the rational numbers
- **from$_V$** - an isomorphism from V to self (if requested)
- **to$_V$** - an isomorphism from self to V (if requested)

EXAMPLES:

```
sage: k.<a> = NumberField(x^3 + 2)
sage: V, from_V, to_V = k.free_module()
sage: from_V(V([1,2,3]))
3*a^2 + 2*a + 1
sage: to_V(1 + 2*a + 3*a^2)
(1, 2, 3)
sage: V
Vector space of dimension 3 over Rational Field
sage: to_V
Isomorphism map:
  From: Number Field in a with defining polynomial x^3 + 2
  To:  Vector space of dimension 3 over Rational Field
sage: from_V(to_V(2/3*a - 5/8))
2/3*a - 5/8
sage: to_V(from_V(V([0,-1/7,0])))
(0, -1/7, 0)
```

galois_closure$(names=None, map=False)$

Return number field K that is the Galois closure of self, i.e., is generated by all roots of the defining polynomial of self, and possibly an embedding of self into K.

INPUT:
- **names** - variable name for Galois closure
- **map** - (default: False) also return an embedding of self into K

EXAMPLES:

```
sage: K.<a> = NumberField(x^4 - 2)
sage: M = K.galois_closure('b'); M
Number Field in b with defining polynomial x^8 + 28*x^4 + 2500
```

(continues on next page)
A cyclotomic field is already Galois:

```
sage: K.<a> = NumberField(cyclotomic_polynomial(23))
sage: L.<z> = K.galois_closure()
sage: L
Number Field in z with defining polynomial x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
```

hilbert_conductor(*a*, *b*)

This is the product of all (finite) primes where the Hilbert symbol is -1. What is the same, this is the (reduced) discriminant of the quaternion algebra (*a*, *b*) over a number field.

INPUT:

- a, b – elements of the number field self

OUTPUT:

- squarefree ideal of the ring of integers of self

EXAMPLES:

```
sage: F.<a> = NumberField(x^2-x-1)
sage: F.hilbert_conductor(2*a,F(-1))
Fractional ideal (2)
sage: K.<b> = NumberField(x^3-4*x+2)
sage: K.hilbert_conductor(K(2),K(-2))
Fractional ideal (1)
sage: K.hilbert_conductor(K(2^b),K(-2))
Fractional ideal (b^2 + b - 2)
```

AUTHOR:

- Aly Deines

1.1. Number Fields
hilbert_symbol\((a, b, P=None) \)

Return the Hilbert symbol \((a, b)_P\) for a prime \(P\) of self and non-zero elements \(a\) and \(b\) of self.

If \(P\) is omitted, return the global Hilbert symbol \((a, b)\) instead.

INPUT:

- \(a, b\) – elements of self
- \(P\) – (default: None) If \(P\) is None, compute the global symbol. Otherwise, \(P\) should be either a prime ideal of self (which may also be given as a generator or set of generators) or a real or complex embedding.

OUTPUT:

If \(a\) or \(b\) is zero, returns 0.

If \(a\) and \(b\) are non-zero and \(P\) is specified, returns the Hilbert symbol \((a, b)_P\), which is 1 if the equation \(ax^2 + by^2 = 1\) has a solution in the completion of self at \(P\), and is -1 otherwise.

If \(a\) and \(b\) are non-zero and \(P\) is unspecified, returns 1 if the equation has a solution in self and -1 otherwise.

EXAMPLES:

Some global examples:

```
sage: K.<a> = NumberField(x^2 - 23)
sage: K.hilbert_symbol(0, a+5)
0
sage: K.hilbert_symbol(a, 0)
0
sage: K.hilbert_symbol(-a, a+1)
1
sage: K.hilbert_symbol(-a, a+2)
-1
sage: K.hilbert_symbol(a, a+5)
-1
```

That the latter two are unsolvable should be visible in local obstructions. For the first, this is a prime ideal above 19. For the second, the ramified prime above 23:

```
sage: K.hilbert_symbol(-a, a+2, a+2)
-1
sage: K.hilbert_symbol(a, a+5, K.ideal(23).factor()[0][0])
-1
```

More local examples:

```
sage: K.hilbert_symbol(a, 0, K.ideal(5))
0
sage: K.hilbert_symbol(a, a+5, K.ideal(5))
1
sage: K.hilbert_symbol(a+1, 13, (a+6)*K.maximal_order())
-1
sage: [emb1, emb2] = K.embeddings(AA)
sage: K.hilbert_symbol(a, -1, emb1)
-1
sage: K.hilbert_symbol(a, -1, emb2)
1
```
Ideals P can be given by generators:

```python
sage: K.<a> = NumberField(x^5 - 23)
sage: pi = 2*a^4 + 3*a^3 + 4*a^2 + 15*a + 11
sage: K.hilbert_symbol(a, a+5, pi)
1
sage: rho = 2*a^4 + 3*a^3 + 4*a^2 + 15*a + 11
sage: K.hilbert_symbol(a, a+5, rho)
1
```

This also works for non-principal ideals:

```python
sage: K.<a> = QuadraticField(-5)
sage: P = K.ideal(3).factor()[0]
sage: P.gens_reduced()  # random, could be the other factor
(3, a + 1)
sage: K.hilbert_symbol(a, a+3, P)
1
sage: K.hilbert_symbol(a, a+3, [3, a+1])
1
```

Primes above 2:

```python
sage: K.<a> = NumberField(x^5 - 23)
sage: O = K.maximal_order()
sage: p = [p[0] for p in (2*O).factor() if p[0].norm() == 16][0]
sage: K.hilbert_symbol(a, a+5, p)
1
sage: K.hilbert_symbol(a, 2, p)
1
sage: K.hilbert_symbol(-1, a-2, p)
-1
```

Various real fields are allowed:

```python
sage: K.<a> = NumberField(x^3+x+1)
sage: K.hilbert_symbol(a/3, 1/2, K.embeddings(RDF)[0])
1
sage: K.hilbert_symbol(a/5, -1, K.embeddings(RR)[0])
-1
sage: [K.hilbert_symbol(a, -1, e) for e in K.embeddings(AA)]
[-1]
```

Real embeddings are not allowed to be disguised as complex embeddings:

```python
sage: K.<a> = QuadraticField(5)
sage: K.hilbert_symbol(-1, -1, K.embeddings(CC)[0])
Traceback (most recent call last):
...
ValueError: Possibly real place (=Ring morphism:
 From: Number Field in a with defining polynomial x^2 - 5 with a = 2.
 To:   Complex Field with 53 bits of precision
 Defn: a |--> -2.23606797749979) given as complex embedding in hilbert_symbol.
```

(continues on next page)
Is it real or complex?

```sage
K.hilbert_symbol(-1, -1, K.embeddings(QQbar)[0])
```

Traceback (most recent call last):
...

ValueError: Possibly real place (=Ring morphism:
 From: Number Field in a with defining polynomial x^2 - 5 with a = 2.
 →2360679774997907
 To: Algebraic Field
 Defn: a |--> -2.2360679774997907) given as complex embedding in hilbert_
˓→symbol. Is it real or complex?

```sage
K.<b> = QuadraticField(-5)
```

```sage
K.hilbert_symbol(-1, -1, K.embeddings(CDF)[0])
```

```sage
1
```

```sage
K.hilbert_symbol(-1, -1, K.embeddings(QQbar)[0])
```

```sage
1
```

a and b do not have to be integral or coprime:

```sage
K.<i> = QuadraticField(-1)
```

```sage
O = K.maximal_order()
```

```sage
K.hilbert_symbol(1/2, 1/6, 3*O)
```

```sage
1
```

```sage
p = 1+i
```

```sage
K.hilbert_symbol(p, p, p)
```

```sage
1
```

```sage
K.hilbert_symbol(p, 3*p, p)
```

```sage
-1
```

```sage
K.hilbert_symbol(3, p, p)
```

```sage
-1
```

```sage
K.hilbert_symbol(1/3, 1/5, 1+i)
```

```sage
1
```

```sage
L = QuadraticField(5, 'a')
```

```sage
L.hilbert_symbol(-3, -1/2, 2)
```

```sage
1
```

Various other examples:

```sage
K.<a> = NumberField(x^3+x+1)
```

```sage
K.hilbert_symbol(-6912, 24, -a^2-a-2)
```

```sage
1
```

```sage
K.<a> = NumberField(x^5-23)
```

```sage
P = K.ideal(-1105*a^4 + 1541*a^3 - 795*a^2 + 2993*a + 11853)
```

```sage
Q = K.ideal(-7*a^4 + 13*a^3 - 13*a^2 - 2*a + 50)
```

```sage
b = -a+5
```

```sage
K.hilbert_symbol(a,b,P)
```

```sage
1
```

```sage
K.hilbert_symbol(a,b,Q)
```

```sage
1
```

```sage
K.<a> = NumberField(x^5-23)
```

```sage
P = K.ideal(-1105*a^4 + 1541*a^3 - 795*a^2 - 2993*a + 11853)
```

```sage
K.hilbert_symbol(a, a+5, P)
```

```sage
1
```
AUTHOR:
• Aly Deines (2010-08-19): part of the doctests
• Marco Streng (2010-12-06)

hilbert_symbol_negative_at_S(S, b, check=True)
Return a such that the hilbert conductor of a and b is S.

INPUT:
• S – a list of places (or prime ideals) of even cardinality
• b – a non-zero rational number which is a non-square locally at every place in S.
• check – bool (default: True) perform additional checks on the input and confirm the output

OUTPUT:
• an element a that has negative Hilbert symbol \((a, b)_p\) for every (finite and infinite) place \(p\) in S.

ALGORITHM:
The implementation is following algorithm 3.4.1 in [Kir2016]. We note that class and unit groups are computed using the generalized Riemann hypothesis. If it is false, this may result in an infinite loop. Nevertheless, if the algorithm terminates the output is correct.

EXAMPLES:

sage: K.<a> = NumberField(x^2 + 20072)
sage: S = [K.primes_above(3)[0], K.primes_above(23)[0]]
sage: b = K.hilbert_symbol_negative_at_S(S, a + 1)
sage: [K.hilbert_symbol(b, a + 1, p) for p in S]
[-1, -1]
sage: K.<d> = CyclotomicField(11)
sage: S = [K.primes_above(2)[0], K.primes_above(11)[0]]
sage: b = d + 5
sage: a = K.hilbert_symbol_negative_at_S(S, b)
sage: [K.hilbert_symbol(a, b, p) for p in S]
[-1, -1]
sage: k.<c> = K.maximal_totally_real_subfield()[0]
sage: S = [k.primes_above(3)[0], k.primes_above(5)[0]]
sage: S += k.real_places()[1:2]
sage: b = 5 + c + c^9
sage: a = k.hilbert_symbol_negative_at_S(S, b)
sage: [k.hilbert_symbol(a, b, p) for p in S]
[-1, -1, -1, -1]

Note that the closely related hilbert conductor takes only the finite places into account:

sage: k.hilbert_conductor(a, b)
Fractional ideal (15)

AUTHORS:
• Simon Brandhorst, Anna Haensch (01-05-2018)

is_absolute()
Return True since self is an absolute field.

EXAMPLES:

sage: K = CyclotomicField(5)
sage: K.is_absolute()
True

logarithmic_embedding(prec=53)
Return the morphism of self under the logarithmic embedding in the category Set.
The logarithmic embedding is defined as a map from the number field self to \(\mathbb{R}^n \).
It is defined under Definition 4.9.6 in [Coh1993].

INPUT:
• prec – desired floating point precision.

OUTPUT:
• the morphism of self under the logarithmic embedding in the category Set.

EXAMPLES:

sage: CF.<a> = CyclotomicField(5)
sage: f = CF.logarithmic_embedding()
sage: f(0)
(-1, -1)
sage: f(7)
(3.89182029811063, 3.89182029811063)

sage: K.<a> = NumberField(x^3 + 5)
sage: f = K.logarithmic_embedding()
sage: f(0)
(-1, -1)
sage: f(7)
(1.94591014905531, 3.89182029811063)

sage: F.<a> = NumberField(x^4 - 8*x^2 + 3)
sage: f = F.logarithmic_embedding()
sage: f(0)
(-1, -1, -1, -1)
sage: f(7)
(1.94591014905531, 1.94591014905531, 1.94591014905531, 1.94591014905531)

minkowski_embedding

Return an nxn matrix over RDF whose columns are the images of the basis \(\{1, \alpha, \ldots, \alpha^{n-1}\}\) of self over \(\mathbb{Q}\) (as vector spaces), where here \(\alpha\) is the generator of self over \(\mathbb{Q}\), i.e. self.gen(0). If B is not None, return the images of the vectors in B as the columns instead. If prec is not None, use RealField(prec) instead of RDF.

This embedding is the so-called “Minkowski embedding” of a number field in \(\mathbb{R}^n\): given the \(n\) embeddings \(\sigma_1, \ldots, \sigma_n\) of self in \(\mathbb{C}\), write \(\sigma_1, \ldots, \sigma_r\) for the real embeddings, and \(\sigma_{r+1}, \ldots, \sigma_{r+s}\) for choices of one of each pair of complex conjugate embeddings (in our case, we simply choose the one where the image of \(\alpha\) has positive real part). Here \((r, s)\) is the signature of self. Then the Minkowski embedding is given by

\[
x \mapsto (\sigma_1(x), \ldots, \sigma_r(x), \sqrt{2}\Re(\sigma_{r+1}(x)), \sqrt{2}\Im(\sigma_{r+1}(x)), \ldots, \sqrt{2}\Re(\sigma_{r+s}(x)), \sqrt{2}\Im(\sigma_{r+s}(x)))
\]

Equivalently, this is an embedding of self in \(\mathbb{R}^n\) so that the usual norm on \(\mathbb{R}^n\) coincides with \(|x|^2 = \sum_i |\sigma_i(x)|^2\) on self.

Todo: This could be much improved by implementing homomorphisms over VectorSpaces.

EXAMPLES:

sage: F.<alpha> = NumberField(x^3+2)
sage: F.minkowski_embedding()
[1.00000000000000 -1.25992104989487 1.58740105196820]
[1.41421356237309 0.89089871810817 -1.12246204830917]
[0.000000000000000 1.54308184421176 1.94416129723544]

sage: F.minkowski_embedding([1, alpha+2, alpha^2-alpha])
[1.00000000000000 0.25992104989487 1.58740105196820]
[1.41421356237309 0.89089871810817 -1.12246204830917]
[0.000000000000000 1.54308184421176 1.94416129723544]

sage: F.minkowski_embedding() * (alpha + 2).vector().column()
[0.740078950105127]
[3.7193258428...]
[1.54308184421...]

optimized_representation

Return a field isomorphic to self with a better defining polynomial if possible, along with field isomorphisms from the new field to self and from self to the new field.

EXAMPLES: We construct a compositum of 3 quadratic fields, then find an optimized representation and transform elements back and forth.
Algebraic Numbers and Number Fields, Release 10.0

```plaintext
sage: K = NumberField([x^2 + p for p in [5, 3, 2]], 'a').absolute_field('b'); K
Number Field in b with defining polynomial x^8 + 40*x^6 + 352*x^4 + 960*x^2 + 576
sage: L, from_L, to_L = K.optimized_representation()
sage: L
Number Field in b1 with defining polynomial x^8 + 4*x^6 + 7*x^4 + 36*x^2 + 81
sage: to_L(K.0)  # your answer may different, since algorithm is random
4/189*b1^7 + 1/63*b1^6 + 1/27*b1^5 - 2/9*b1^4 - 5/27*b1^3 - 8/9*b1^2 + 3/7*b1 - 3/7
sage: from_L(L.0)  # random
1/1152*b^7 - 1/192*b^6 + 23/576*b^5 - 17/96*b^4 + 37/72*b^3 - 5/6*b^2 + 55/24*b - 3/4
```

The transformation maps are mutually inverse isomorphisms.

```plaintext
sage: from_L(to_L(K.0)) == K.0
True
sage: to_L(from_L(L.0)) == L.0
True
```

Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):

```plaintext
sage: K.<a> = NumberField(7/9*x^3 + 7/3*x^2 - 56*x + 123)
sage: K.optimized_representation()  # representation varies, not tested
(Number Field in a1 with defining polynomial x^3 - 7*x - 7,
 Ring morphism:
   From: Number Field in a1 with defining polynomial x^3 - 7*x - 7
   To:   Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123
   Defn: a1 |--> 7/225*a^2 - 7/75*a - 42/25,
 Ring morphism:
   From: Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123
   To:   Number Field in a1 with defining polynomial x^3 - 7*x - 7
   Defn: a |--> -15/7*a1^2 + 9)
```

optimized_subfields(degree=0, name=None, both_maps=True)

Return optimized representations of many (but not necessarily all!) subfields of self of the given degree, or of all possible degrees if degree is 0.

EXAMPLES:

```plaintext
sage: K = NumberField([x^2 + p for p in [5, 3, 2]], 'a').absolute_field('b'); K
Number Field in b with defining polynomial x^8 + 40*x^6 + 352*x^4 + 960*x^2 + 576
sage: L = K.optimized_subfields(name='b')
sage: L[0][0]
Number Field in b0 with defining polynomial x
sage: L[1][0]
Number Field in b1 with defining polynomial x^2 - 3*x + 3
sage: [z[0] for z in L]  # random -- since algorithm is random
[Number Field in b0 with defining polynomial x - 1,
 Number Field in b1 with defining polynomial x^2 - x + 1,
 ...]
```

(continues on next page)
Number Field in \(b_2\) with defining polynomial \(x^4 - 5x^2 + 25\),
Number Field in \(b_3\) with defining polynomial \(x^4 - 2x^2 + 4\),
Number Field in \(b_4\) with defining polynomial \(x^8 + 4x^6 + 7x^4 + 36x^2 + 81\)

We examine one of the optimized subfields in more detail:

```python
sage: M, from_M, to_M = L[2]
sage: M  # random
Number Field in b2 with defining polynomial x^4 - 5*x^2 + 25
sage: from_M  # may be slightly random
Ring morphism:
  From: Number Field in b2 with defining polynomial x^4 - 5*x^2 + 25
  To:   Number Field in a1 with defining polynomial x^8 + 40*x^6 + 352*x^4 +
       → 960*x^2 + 576
  Defn: b2 |--> -5/1152*a1^7 + 1/96*a1^6 - 97/576*a1^5 + 17/48*a1^4 - 95/72*a1^3 +
       → 17/12*a1^2 - 53/24*a1 - 1
```

The to_M map is None, since there is no map from \(K\) to M:

```python
sage: to_M
```

We apply the from_M map to the generator of M, which gives a rather large element of \(K\):

```python
sage: from_M(M.0)  # random
-5/1152*a1^7 + 1/96*a1^6 - 97/576*a1^5 + 17/48*a1^4 - 95/72*a1^3 + 17/12*a1^2 -
       → 53/24*a1 - 1
```

Nevertheless, that large-lish element lies in a degree 4 subfield:

```python
sage: from_M(M.0).minpoly()  # random
x^4 - 5*x^2 + 25
```

```python
order(*args, **kwds)
```

Return the order with given ring generators in the maximal order of this number field.

INPUT:

- `gens` - list of elements in this number field; if no generators are given, just returns the cardinality of this number field (\(\infty\)) for consistency.
- `check_is_integral` - bool (default: True), whether to check that each generator is integral.
- `check_rank` - bool (default: True), whether to check that the ring generated by `gens` is of full rank.
- `allow_subfield` - bool (default: False), if True and the generators do not generate an order, i.e., they generate a subring of smaller rank, instead of raising an error, return an order in a smaller number field.

EXAMPLES:

```python
sage: k.<i> = NumberField(x^2 + 1)
sage: k.order(2*i)
Order in Number Field in i with defining polynomial x^2 + 1
sage: k.order(10*i)
Order in Number Field in i with defining polynomial x^2 + 1
sage: k.order(3)
```

(continues on next page)
Alternatively, an order can be constructed by adjoining elements to \(\mathbb{Z} \):

```
sage: K.<a> = NumberField(x^3 - 2)
sage: ZZ[a]
Order in Number Field in a0 with defining polynomial x^3 - 2 with a0 = a
```

`places(all_complex=False, prec=None)`

Return the collection of all infinite places of self.

By default, this returns the set of real places as homomorphisms into RIF first, followed by a choice of one of each pair of complex conjugate homomorphisms into CIF.

On the other hand, if `prec` is not `None`, we simply return places into `RealField(prec)` and `ComplexField(prec)` (or RDF, CDF if `prec=53`). One can also use `prec=infinity`, which returns embeddings into the field \(\mathbb{Q} \) of algebraic numbers (or its subfield \(\mathbb{A} \) of algebraic reals); this permits exact computation, but can be extremely slow.

There is an optional flag `all_complex`, which defaults to `False`. If `all_complex` is `True`, then the real embeddings are returned as embeddings into CIF instead of RIF.

EXAMPLES:

```
sage: F.<alpha> = NumberField(x^3-100*x+1) ; F.places()
[Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 - 100*x + 1
  To:   Real Field with 106 bits of precision
  Defn: alpha |--> -10.00499625499181184573367219280,
  Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 - 100*x + 1
  To:   Real Field with 106 bits of precision
  Defn: alpha |--> 0.01000001000003000012000055000273,
  Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 - 100*x + 1
  To:   Real Field with 106 bits of precision
  Defn: alpha |--> 9.994996244991781845613530439509]
```

```
sage: F.<alpha> = NumberField(x^3+7) ; F.places()
[Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 + 7
  To:   Real Field with 106 bits of precision
  Defn: alpha |--> -1.912931182772389101199116839549,
  Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 + 7
  To:   Complex Field with 53 bits of precision
  Defn: alpha |--> 0.956465591386195 + 1.65664699997230*I]
```
```python
sage: F.<alpha> = NumberField(x^3+7) ; F.places(all_complex=True)
[Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 + 7
  To:     Complex Field with 53 bits of precision
  Defn:   alpha |--> -1.91293118277239,
Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 + 7
  To:     Complex Field with 53 bits of precision
  Defn:   alpha |--> 0.956465591386195 + 1.6566469997230*I]
sage: F.places(prec=10)
[Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 + 7
  To:     Real Field with 10 bits of precision
  Defn:   alpha |--> -1.9,
Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 + 7
  To:     Complex Field with 10 bits of precision
  Defn:   alpha |--> 0.96 + 1.7*I]
```

real_places(prec=None)
Return all real places of self as homomorphisms into RIF.

EXAMPLES:
```python
sage: F.<alpha> = NumberField(x^4-7) ; F.real_places()
[Ring morphism:
  From: Number Field in alpha with defining polynomial x^4 - 7
  To:     Real Field with 106 bits of precision
  Defn:   alpha |--> -1.626576561697785743211232345494,
Ring morphism:
  From: Number Field in alpha with defining polynomial x^4 - 7
  To:     Real Field with 106 bits of precision
  Defn:   alpha |--> 1.626576561697785743211232345494]
```

relative_degree()
A synonym for degree.

EXAMPLES:
```python
sage: K.<i> = NumberField(x^2 + 1)
sage: K.relative_degree()
2
```

relative_different()
A synonym for different.

EXAMPLES:
```python
sage: K.<i> = NumberField(x^2 + 1)
sage: K.relative_different()
Fractional ideal (2)
```

relative_discriminant()
A synonym for discriminant.
EXAMPLES:

```
sage: K.<i> = NumberField(x^2 + 1)
sage: K.relative_discriminant()
-4
```

relative_polynomial()

A synonym for polynomial.

EXAMPLES:

```
sage: K.<i> = NumberField(x^2 + 1)
sage: K.relative_polynomial()
x^2 + 1
```

relative_vector_space(args, **kwds)**

A synonym for vector_space.

EXAMPLES:

```
sage: K.<i> = NumberField(x^2 + 1)
sage: K.relative_vector_space()
(Vector space of dimension 2 over Rational Field,
 Isomorphism map:
  From: Vector space of dimension 2 over Rational Field
  To:  Number Field in i with defining polynomial x^2 + 1,
 Isomorphism map:
  From: Number Field in i with defining polynomial x^2 + 1
  To:  Vector space of dimension 2 over Rational Field)
```

relativize(alpha, names, structure=None)

Given an element in self or an embedding of a subfield into self, return a relative number field K isomorphic to self that is relative over the absolute field $\mathbb{Q}(\alpha)$ or the domain of α, along with isomorphisms from K to self and from self to K.

INPUT:

- alpha - an element of self or an embedding of a subfield into self
- names - 2-tuple of names of generator for output field K and the subfield $\mathbb{Q}(\alpha)$ names[0] generators K and names[1] $\mathbb{Q}(\alpha)$.
- structure – an instance of `structure.NumberFieldStructure` or None (default: None), if None, then the resulting field’s structure() will return isomorphisms from and to this field. Otherwise, the field will be equipped with structure.

OUTPUT:

K – relative number field

Also, K.structure() returns from_K and to_K, where from_K is an isomorphism from K to self and to_K is an isomorphism from self to K.

EXAMPLES:

```
sage: K.<a> = NumberField(x^10 - 2)
sage: L.<c,d> = K.relativize(a^4 + a^2 + 2); L
Number Field in c with defining polynomial x^2 - 1/5*d^4 + 8/5*d^3 - 23/5*d^2 + ...
```

(continues on next page)
The following demonstrates distinct embeddings of a subfield into a larger field:

```
sage: K.<a> = NumberField(x^4 + 2*x^2 + 2)
sage: K0 = K.subfields(2)[0][0]; K0
Number Field in a0 with defining polynomial x^2 - 2*x + 2
sage: rho, tau = K0.embeddings(K)
sage: L0 = K.relativize(rho(K0.gen()), 'b'); L0
Number Field in b0 with defining polynomial x^2 - b1 + 2 over its base field
sage: L1 = K.relativize(rho, 'b'); L1
Number Field in b with defining polynomial x^2 - a0 + 2 over its base field
sage: L2 = K.relativize(tau, 'b'); L2
Number Field in b with defining polynomial x^2 + a0 over its base field
sage: L0.base_field() is K0
False
sage: L1.base_field() is K0
True
sage: L2.base_field() is K0
True
```

Here we see that with the different embeddings, the relative norms are different:

```
sage: a0 = K0.gen()
sage: L1_into_K, K_into_L1 = L1.structure()
sage: L2_into_K, K_into_L2 = L2.structure()
sage: len(K.factor(41))
4
sage: w1 = -a^2 + a + 1; P = K.ideal([w1])
sage: Pp = L1.ideal(K_into_L1(w1)).ideal_below(); Pp == K0.ideal([4*a0 + 1])
True
sage: Pp == w1.norm(rho)
True
sage: w2 = a^2 + a - 1; Q = K.ideal([w2])
sage: Qq = L2.ideal(K_into_L2(w2)).ideal_below(); Qq == K0.ideal([-4*a0 + 9])
True
sage: Qq == w2.norm(tau)
True
```
sage: Pp == Qq
False

`subfields(degree=0, name=None)`

Return all subfields of self of the given degree, or of all possible degrees if degree is 0. The subfields are returned as absolute fields together with an embedding into self. For the case of the field itself, the reverse isomorphism is also provided.

EXAMPLES:

```python
sage: K.<a> = NumberField([x^3 - 2, x^2 + x + 1])
sage: K = K.absolute_field('b')
sage: S = K.subfields()
sage: len(S)
6
sage: [k[0].polynomial() for k in S]
[x - 3,
 x^2 - 3*x + 9,
 x^3 - 3*x^2 + 3*x + 1,
 x^3 - 3*x^2 + 3*x + 1,
 x^3 - 3*x^2 + 3*x - 17,
 x^6 - 3*x^5 + 6*x^4 - 11*x^3 + 12*x^2 + 3*x + 1]
sage: R.<t> = QQ[]
sage: L = NumberField(t^3 - 3*t + 1, 'c')
sage: [k[1] for k in L.subfields()]
[Ring morphism:
  From: Number Field in c0 with defining polynomial t
  To:   Number Field in c with defining polynomial t^3 - 3*t + 1
  Defn: 0 |--> 0,
  Ring morphism:
  From: Number Field in c1 with defining polynomial t^3 - 3*t + 1
  To:   Number Field in c with defining polynomial t^3 - 3*t + 1
  Defn: c1 |--> c]
sage: len(L.subfields(2))
0
sage: len(L.subfields(1))
1
```

sage.rings.number_field.number_field.NumberField_absolute_v1(poly, name, latex_name, canonical_embedding=None)

Used for unpickling old pickles.

EXAMPLES:

```python
sage: from sage.rings.number_field.number_field import NumberField_absolute_v1
sage: R.<x> = QQ[]
sage: NumberField_absolute_v1(x^2 + 1, 'i', 'i')
Number Field in i with defining polynomial x^2 + 1
```

class sage.rings.number_field.number_field.NumberField_cyclotomic(n, names, embedding=None, assume_disc_small=False, maximize_at_primes=None)
Bases: *NumberField_absolute*, *NumberField_cyclotomic*

Create a cyclotomic extension of the rational field.

The command `CyclotomicField(n)` creates the n-th cyclotomic field, obtained by adjoining an n-th root of unity to the rational field.

EXAMPLES:

```
sage: CyclotomicField(3)
Cyclotomic Field of order 3 and degree 2
sage: CyclotomicField(18)
Cyclotomic Field of order 18 and degree 6
sage: z = CyclotomicField(6).gen(); z
zeta6
sage: z^3
-1
sage: (1+z)^3
6*zeta6 - 3
```

```
sage: K = CyclotomicField(197)
sage: loads(K.dumps()) == K
True
sage: loads((z^2).dumps()) == z^2
True
```

```
sage: cf12 = CyclotomicField(12)
sage: z12 = cf12.0
sage: cf6 = CyclotomicField(6)
sage: z6 = cf6.0
sage: FF = Frac( cf12['x'] )
sage: x = FF.0
sage: z6*x^3/(z6 + x)
zeta12^2*x^3/(x + zeta12^2)
```

```
sage: cf6 = CyclotomicField(6) ; z6 = cf6.gen(0)
sage: cf3 = CyclotomicField(3) ; z3 = cf3.gen(0)
sage: cf3(z6)
zeta3 + 1
sage: type(cf3(z1))
<class 'sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_˓→quadratic'>
sage: cf1 = CyclotomicField(1) ; z1 = cf1.0
sage: cf3(z1)
1
sage: type(cf3(z1))
<class 'sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_˓→quadratic'>
```

complex_embedding *(prec=53)*

Return the embedding of this cyclotomic field into the approximate complex field with precision prec obtained by sending the generator ζ of self to exp(2*pi*i/n), where n is the multiplicative order of ζ.
EXAMPLES:

```sage
sage: C = CyclotomicField(4)
sage: C.complex_embedding()
Ring morphism:
  From: Cyclotomic Field of order 4 and degree 2
  To:  Complex Field with 53 bits of precision
  Defn: zeta4 |--> 6.12323399573677e-17 + 1.00000000000000*I
```

Note in the example above that the way zeta is computed (using sin and cosine in MPFR) means that only
the prec bits of the number after the decimal point are valid.

```sage
sage: K = CyclotomicField(3)
sage: phi = K.complex_embedding(10)
sage: phi(K.0)
-0.50 + 0.87*I
sage: phi(K.0^3)
1.0
sage: phi(K.0^3 - 1)
0.00
sage: phi(K.0^3 + 7)
8.0
```

complex_embeddings(prec=53)

Return all embeddings of this cyclotomic field into the approximate complex field with precision prec.

If you want 53-bit double precision, which is faster but less reliable, then do `self.embeddings(CDF)`.

EXAMPLES:

```sage
sage: CyclotomicField(5).complex_embeddings()
[
  Ring morphism:
    From: Cyclotomic Field of order 5 and degree 4
    To:  Complex Field with 53 bits of precision
    Defn: zeta5 |--> 0.309016994374947 + 0.951056516295154*I,
  Ring morphism:
    From: Cyclotomic Field of order 5 and degree 4
    To:  Complex Field with 53 bits of precision
    Defn: zeta5 |--> -0.809016994374947 + 0.587785252292473*I,
  Ring morphism:
    From: Cyclotomic Field of order 5 and degree 4
    To:  Complex Field with 53 bits of precision
    Defn: zeta5 |--> -0.809016994374947 - 0.587785252292473*I,
  Ring morphism:
    From: Cyclotomic Field of order 5 and degree 4
    To:  Complex Field with 53 bits of precision
    Defn: zeta5 |--> 0.309016994374947 - 0.951056516295154*I
]
```

construction()

Return data defining a functorial construction of `self`.

EXAMPLES:
sage: F, R = CyclotomicField(5).construction()
sage: R
Rational Field
sage: F.polys
[x^4 + x^3 + x^2 + x + 1]
sage: F.names
['zeta5']
sage: F.embeddings
[0.309016994374948? + 0.951056516295154?*I]
sage: F.structures
[None]

different()
Return the different ideal of the cyclotomic field self.

EXAMPLES:

sage: C20 = CyclotomicField(20)
sage: C20.different()
Fractional ideal (10, 2*zeta20^6 - 4*zeta20^4 - 4*zeta20^2 + 2)
sage: C18 = CyclotomicField(18)
sage: D = C18.different().norm()
sage: D == C18.discriminant().abs()
True
discriminant(v=None)
Return the discriminant of the ring of integers of the cyclotomic field self, or if v is specified, the determinant of the trace pairing on the elements of the list v.

Uses the formula for the discriminant of a prime power cyclotomic field and Hilbert Theorem 88 on the discriminant of composita.

INPUT:

• v (optional) - list of element of this number field

OUTPUT: Integer if v is omitted, and Rational otherwise.

EXAMPLES:

sage: CyclotomicField(20).discriminant()
4000000
sage: CyclotomicField(18).discriminant()
-19683

embeddings(K)
Compute all field embeddings of this field into the field K.

INPUT:

• K – a field

EXAMPLES:

sage: CyclotomicField(5).embeddings(ComplexField(53))[1]
Ring morphism:
 From: Cyclotomic Field of order 5 and degree 4

To: Complex Field with 53 bits of precision
Defn: \(\zeta_5 \mapsto -0.809016994374947 + 0.587785252292473i \)
sage: CyclotomicField(5).embeddings(Qp(11, 4, print_mode='digits'))[1]

Ring morphism:
 From: Cyclotomic Field of order 5 and degree 4
 To: 11-adic Field with capped relative precision 4
 Defn: \(\zeta_5 \mapsto \ldots 1525 \)

is_abelian()
Return True since all cyclotomic fields are automatically abelian.

EXAMPLES:

sage: CyclotomicField(29).is_abelian()
True

is_galois()
Return True since all cyclotomic fields are automatically Galois.

EXAMPLES:

sage: CyclotomicField(29).is_galois()
True

is_isomorphic(other)
Return True if the cyclotomic field self is isomorphic as a number field to other.

EXAMPLES:

sage: CyclotomicField(11).is_isomorphic(CyclotomicField(22))
True
sage: CyclotomicField(11).is_isomorphic(CyclotomicField(23))
False
sage: CyclotomicField(3).is_isomorphic(NumberField(x^2 + x +1, 'a'))
True
sage: CyclotomicField(18).is_isomorphic(CyclotomicField(9))
True
sage: CyclotomicField(10).is_isomorphic(NumberField(x^4 - x^3 + x^2 - x + 1, 'b'))
True

Check github issue #14300:

sage: K = CyclotomicField(4)
sage: N = K.extension(x^2-5, 'z')
sage: K.is_isomorphic(N)
False
sage: K.is_isomorphic(CyclotomicField(8))
False

next_split_prime(p=2)
Return the next prime integer \(p \) that splits completely in this cyclotomic field (and does not ramify).

EXAMPLES:
sage: K.<z> = CyclotomicField(3)
sage: K.next_split_prime(7)
13

number_of_roots_of_unity()

Return number of roots of unity in this cyclotomic field.

EXAMPLES:

```
sage: K.<a> = CyclotomicField(21)
sage: K.number_of_roots_of_unity()
42
```

real_embeddings(prec=53)

Return all embeddings of this cyclotomic field into the approximate real field with precision prec.

Mostly, of course, there are no such embeddings.

EXAMPLES:

```
sage: len(CyclotomicField(4).real_embeddings())
0
sage: CyclotomicField(2).real_embeddings()
[Ring morphism:
  From: Cyclotomic Field of order 2 and degree 1
  To: Real Field with 53 bits of precision
  Defn: -1 |--> -1.00000000000000]
```

roots_of_unity()

Return all the roots of unity in this cyclotomic field, primitive or not.

EXAMPLES:

```
sage: K.<a> = CyclotomicField(3)
sage: zs = K.roots_of_unity(); zs
[1, a, -a - 1, -1, -a, a + 1]
sage: [z**K.number_of_roots_of_unity() for z in zs]
[1, 1, 1, 1, 1, 1]
```

signature()

Return (r1, r2), where r1 and r2 are the number of real embeddings and pairs of complex embeddings of this cyclotomic field, respectively.

Trivial since, apart from QQ, cyclotomic fields are totally complex.

EXAMPLES:

```
sage: CyclotomicField(5).signature()
(0, 2)
sage: CyclotomicField(2).signature()
(1, 0)
```

zeta(n=None, all=False)

Return an element of multiplicative order n in this cyclotomic field.
If there is no such element, raise a `ValueError`.

INPUT:

- `n` – integer (default: `None`, returns element of maximal order)
- `all` – bool (default: `False`) - whether to return a list of all primitive n-th roots of unity.

OUTPUT: root of unity or list

EXAMPLES:

```python
sage: k = CyclotomicField(4)
sage: k.zeta()
zeta4
sage: k.zeta(2)
-1
sage: k.zeta().multiplicative_order()
4
```

```python
sage: k = CyclotomicField(21)
sage: k.zeta().multiplicative_order()
42
sage: k.zeta(21).multiplicative_order()
21
sage: k.zeta(7).multiplicative_order()
7
sage: k.zeta(6).multiplicative_order()
6
sage: k.zeta(84)
Traceback (most recent call last):
...  
ValueError: 84 does not divide order of generator (42)
```

```python
sage: K.<a> = CyclotomicField(7)
sage: K.zeta(all=True)
[-a^4, -a^5, a^5 + a^4 + a^3 + a^2 + a + 1, -a, -a^2, -a^3]
sage: K.zeta(14, all=True)
[-a^4, -a^5, a^5 + a^4 + a^3 + a^2 + a + 1, -a, -a^2, -a^3]
sage: K.zeta(2, all=True)
[-1]
sage: K.<a> = CyclotomicField(10)
sage: K.zeta(20, all=True)
Traceback (most recent call last):
...  
ValueError: 20 does not divide order of generator (10)
```

```python
sage: K.<a> = CyclotomicField(5)
sage: K.zeta(4)
Traceback (most recent call last):
...  
ValueError: 4 does not divide order of generator (10)
sage: v = K.zeta(5, all=True); v
[a, a^2, a^3, -a^3 - a^2 - a - 1]
```

(continues on next page)
sage: [b^5 for b in v]
[1, 1, 1, 1]

\textbf{zeta_order()}

Return the order of the maximal root of unity contained in this cyclotomic field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: CyclotomicField(1).zeta_order()
2
sage: CyclotomicField(4).zeta_order()
4
sage: CyclotomicField(5).zeta_order()
10
sage: CyclotomicField(5).n()
5
sage: CyclotomicField(389).zeta_order()
778
\end{verbatim}

\textbf{class} \texttt{sage.rings.number_field.number_field.NumberField_generic}\(\text{(polynomial, name, latex_name, check=True, embedding=None, category=None, assume_disc_small=False, maximize_at_primes=None, structure=None)}\)

Bases: \texttt{WithEqualityById, NumberField}

Generic class for number fields defined by an irreducible polynomial over \(\mathbb{Q}\).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<a> = NumberField(x^3 - 2); K
Number Field in a with defining polynomial x^3 - 2
sage: TestSuite(K).run()
\end{verbatim}

\textbf{S_class_group}(S, proof=None, names=None)

Return the S-class group of this number field over its base field.

\textbf{INPUT:}

- \(S\) - a set of primes of the base field
- \textit{proof} - if False, assume the GRH in computing the class group. Default is True. Call \texttt{number_field_proof} to change this default globally.
• names - names of the generators of this class group.

OUTPUT:
The S-class group of this number field.

EXAMPLES:
A well known example:

```
sage: K.<a> = QuadraticField(-5)
sage: K.S_class_group([])
S-class group of order 2 with structure C2 of Number Field in a with defining
→ polynomial x^2 + 5 with a = 2.236067977499790?*I
```

When we include the prime \((2, a + 1)\), the S-class group becomes trivial:

```
sage: K.S_class_group([K.ideal(2,a+1)])
S-class group of order 1 of Number Field in a with defining polynomial x^2 + 5
→ with a = 2.236067977499790?*I
```

`S_unit_group``(proof=None, S=None)`

Return the S-unit group (including torsion) of this number field.

ALGORITHM: Uses PARI’s pari:bnfsunit command.

INPUT:
• proof (bool, default True) flag passed to pari.
• S - list or tuple of prime ideals, or an ideal, or a single ideal or element from which an ideal can be constructed, in which case the support is used. If None, the global unit group is constructed; otherwise, the S-unit group is constructed.

Note: The group is cached.

EXAMPLES:

```
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^4 - 10*x^3 + 20*5*x^2 - 15*5^2*x + 11*5^3)
sage: U = K.S_unit_group(S=a); U
S-unit group with structure C10 x Z x Z x Z of Number Field in a with defining
→ polynomial x^4 - 10*x^3 + 100*x^2 - 375*x + 1375 with S = (Fractional ideal
→ (5, 1/275*a^3 + 4/55*a^2 - 5/11*a + 5), Fractional ideal (11, 1/275*a^3 + 4/
→ 55*a^2 - 5/11*a + 9))
sage: U.gens()
u0, u1, u2, u3
sage: U.gens_values()  # random
[-1/275*a^3 + 7/55*a^2 - 6/11*a + 4, 1/275*a^3 + 4/55*a^2 - 5/11*a + 3, 1/275*a^3
→ 3 + 4/55*a^2 - 5/11*a + 5, -14/275*a^3 + 21/55*a^2 - 29/11*a + 6]
sage: U.invariants()
(10, 0, 0, 0)
sage: [u.multiplicative_order() for u in U.gens()]
[10, +Infinity, +Infinity, +Infinity]
sage: U.primes()
(Fractional ideal (5, 1/275*a^3 + 4/55*a^2 - 5/11*a + 5), Fractional ideal (11, \n→ 1/275*a^3 + 4/55*a^2 - 5/11*a + 9))
```
With the default value of S, the S-unit group is the same as the global unit group:

```
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^3 + 3)
sage: U = K.unit_group(proof=False)
sage: U.is_isomorphic(K.S_unit_group(proof=False))
True
```

The value of S may be specified as a list of prime ideals, or an ideal, or an element of the field:

```
sage: K.<a> = NumberField(x^3 + 3)
sage: U = K.S_unit_group(proof=False, S=K.ideal(6).prime_factors()); U
S-unit group with structure C2 x Z x Z x Z x Z of Number Field in a with defining polynomial x^3 + 3 with S = (Fractional ideal (-a^2 + a - 1), Fractional ideal (a + 1), Fractional ideal (a))
sage: K.<a> = NumberField(x^3 + 3)
sage: U = K.S_unit_group(proof=False, S=K.ideal(6)); U
S-unit group with structure C2 x Z x Z x Z x Z of Number Field in a with defining polynomial x^3 + 3 with S = (Fractional ideal (-a^2 + a - 1), Fractional ideal (a + 1), Fractional ideal (a))
sage: K.<a> = NumberField(x^3 + 3)
sage: U = K.S_unit_group(proof=False, S=6); U
S-unit group with structure C2 x Z x Z x Z x Z of Number Field in a with defining polynomial x^3 + 3 with S = (Fractional ideal (-a^2 + a - 1), Fractional ideal (a + 1), Fractional ideal (a))
```
• \(S \) – a list of finite primes in this number field
• \(\text{prec} \) – precision used for computations in real, complex, and p-adic fields (default: 106)
• \(\text{include}_\text{exponents} \) – whether to include the exponent vectors in the returned value (default: True).
• \(\text{include}_\text{bound} \) – whether to return the final computed bound (default: False)
• \(\text{proof} \) – if False, assume the GRH in computing the class group. Default is True.

OUTPUT:
A list of tuples \([(A_1, B_1, x_1, y_1), (A_2, B_2, x_2, y_2), \ldots, (A_n, B_n, x_n, y_n)]\) such that:
1. The first two entries are tuples \(A_i = (a_0, a_1, \ldots, a_t) \) and \(B_i = (b_0, b_1, \ldots, b_t) \) of exponents. These will be omitted if \(\text{include}_\text{exponents} \) is False.
2. The last two entries are \(S \)-units \(x_i \) and \(y_i \) in \(K \) with \(x_i + y_i = 1 \).
3. If the default generators for the \(S \)-units of \(K \) are \((\rho_0, \rho_1, \ldots, \rho_t) \), then these satisfy \(x_i = \prod(\rho_i)^{a_i} \) and \(y_i = \prod(\rho_i)^{b_i} \).

If \(\text{include}_\text{bound} \), will return a pair \((\text{sols}, \text{bound}) \) where \(\text{sols} \) is as above and \(\text{bound} \) is the bound used for the entries in the exponent vectors.

EXAMPLES:

```
sage: K.<xi> = NumberField(x^2+x+1)
sage: S = K.primes_above(3)
sage: K.S_unit_solutions(S)
# random, due to ordering
[(xi + 2, -xi - 1), (1/3*xi + 2/3, -1/3*xi + 1/3), (-xi, xi + 1), (-xi + 1, xi)]
```

You can get the exponent vectors:

```
sage: K.S_unit_solutions(S, include_exponents=True)
# random, due to ordering
[(2, 1), (4, 0), xi + 2, -xi - 1),
((5, -1), (4, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
((5, 0), (1, 0), -xi, xi + 1),
((1, 1), (2, 0), -xi + 1, xi)]
```

And the computed bound:

```
sage: solutions, bound = K.S_unit_solutions(S, prec=100, include_bound=True)
sage: bound
7
```

S_units \((S, proof=True)\)

Return a list of generators of the \(S \)-units.

INPUT:
• \(S \) – a set of primes of the base field
• \(proof \) – if False, assume the GRH in computing the class group

OUTPUT:
A list of generators of the unit group.

Note:
For more functionality see the `S_unit_group()` function.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(-3)
sage: K.unit_group()
Unit group with structure C6 of Number Field in a with defining polynomial x^2 + 3 with a = 1.732050807568878?*I
sage: K.S_units([])  # random
[1/2*a + 1/2]
sage: K.S_units([])[0].multiplicative_order()
6
```

An example in a relative extension (see github issue #8722):

```python
sage: L.<a,b> = NumberField([x^2 + 1, x^2 - 5])
sage: p = L.ideal((-1/2*b - 1/2)*a + 1/2*b - 1/2)
sage: W = L.S_units([p]); [x.norm() for x in W]
[9, 1, 1]
```

Our generators should have the correct parent (github issue #9367):

```python
sage: _.<x> = QQ[]
sage: L.<alpha> = NumberField(x^3 + x + 1)
sage: p = L.S_units([ L.ideal(7) ])  
sage: p[0].parent()
Number Field in alpha with defining polynomial x^3 + x + 1
```

absolute_degree()

Return the degree of self over \(\mathbb{Q} \).

EXAMPLES:

```python
sage: NumberField(x^3 + x^2 + 997*x + 1, 'a').absolute_degree()
3
sage: NumberField(x + 1, 'a').absolute_degree()
1
sage: NumberField(x^997 + 17*x + 3, 'a', check=False).absolute_degree()
997
```

absolute_field(names)

Return self as an absolute number field.

INPUT:

• names – string; name of generator of the absolute field

OUTPUT:

• K – this number field (since it is already absolute)

Also, K.structure() returns from_K and to_K, where from_K is an isomorphism from K to self and to_K is an isomorphism from self to K.

EXAMPLES:
Algebraic Numbers and Number Fields, Release 10.0

```sage
sage: K = CyclotomicField(5)
sage: K.absolute_field('a')
Number Field in a with defining polynomial x^4 + x^3 + x^2 + x + 1
```

absolute_polynomial_ntl()

Alias for `polynomial_ntl()`. Mostly for internal use.

EXAMPLES:

```sage
sage: NumberField(x^2 + (2/3)*x - 9/17, 'a').absolute_polynomial_ntl()
([-27 34 51], 51)
```

algebraic_closure()

Return the algebraic closure of self (which is QQbar).

EXAMPLES:

```sage
sage: K.<i> = QuadraticField(-1)
sage: K.algebraic_closure()
Algebraic Field
sage: K.<a> = NumberField(x^3-2)
sage: K.algebraic_closure()
Algebraic Field
sage: K = CyclotomicField(23)
sage: K.algebraic_closure()
Algebraic Field
```

change_generator(alpha, name=None, names=None)

Given the number field `self`, construct another isomorphic number field `K` generated by the element `alpha` of `self`, along with isomorphisms from `K` to `self` and from `self` to `K`.

EXAMPLES:

```sage
sage: L.<i> = NumberField(x^2 + 1); L
Number Field in i with defining polynomial x^2 + 1
sage: K, from_K, to_K = L.change_generator(i/2 + 3)
sage: K
Number Field in i0 with defining polynomial x^2 - 6*x + 37/4 with i0 = 1/2*i + 3
sage: from_K
Ring morphism:
    From: Number Field in i0 with defining polynomial x^2 - 6*x + 37/4 with i0 = 1/2*i + 3
    To:   Number Field in i with defining polynomial x^2 + 1
    Defn: i0 |--> 1/2*i + 3
sage: to_K
Ring morphism:
    From: Number Field in i with defining polynomial x^2 + 1
    To:   Number Field in i0 with defining polynomial x^2 - 6*x + 37/4 with i0 = 1/2*i + 3
    Defn: i |--> 2*i0 - 6
```

We can also do

```sage
sage: K.<c>, from_K, to_K = L.change_generator(i/2 + 3); K
Number Field in c with defining polynomial x^2 - 6*x + 37/4 with c = 1/2*i + 3
```
We compute the image of the generator $\sqrt{-1}$ of L.

```
sage: to_K(i)
2*c - 6
```

Note that the image is indeed a square root of -1.

```
sage: to_K(i)^2
-1
sage: from_K(to_K(i))
i
sage: to_K(from_K(c))
c
```

characteristic()

Return the characteristic of this number field, which is of course 0.

EXAMPLES:

```
sage: k.<a> = NumberField(x^99 + 2); k
Number Field in a with defining polynomial x^99 + 2
sage: k.characteristic()
0
```

class_group(proof=None, names='c')

Return the class group of the ring of integers of this number field.

INPUT:

- **proof** - if True then compute the class group provably correctly. Default is True. Call number_field_proof to change this default globally.
- **names** - names of the generators of this class group.

OUTPUT: The class group of this number field.

EXAMPLES:

```
sage: K.<a> = NumberField(x^2 + 23)
sage: G = K.class_group(); G
Class group of order 3 with structure C3 of Number Field in a with defining polynomial x^2 + 23
sage: G.0
Fractional ideal class (2, 1/2*a - 1/2)
sage: G.gens()
(Fractional ideal class (2, 1/2*a - 1/2),)
sage: G.number_field()
Number Field in a with defining polynomial x^2 + 23
sage: G is K.class_group()  # True
sage: G is K.class_group(proof=False)  # False
sage: G.gens()  # (Fractional ideal class (2, 1/2*a - 1/2),)
```

There can be multiple generators:
sage: k.<a> = NumberField(x^2 + 20072)
sage: G = k.class_group(); G
Class group of order 76 with structure C38 x C2 of Number Field in a with defining polynomial x^2 + 20072
sage: G.0 # random
Fractional ideal class (41, a + 10)
sage: G.0^38
Trivial principal fractional ideal class
sage: G.1 # random
Fractional ideal class (2, -1/2*a)
sage: G.1^2
Trivial principal fractional ideal class

Class groups of Hecke polynomials tend to be very small:
sage: f = ModularForms(97, 2).T(2).charpoly()
sage: f.factor()
(x - 3) * (x^3 + 4*x^2 + 3*x - 1) * (x^4 - 3*x^3 - x^2 + 6*x - 1)
sage: [NumberField(g, 'a').class_group().order() for g,_ in f.factor()]
[1, 1, 1]

class_number(proof=None)
Return the class number of this number field, as an integer.

INPUT:

• proof - bool (default: True unless you called number_field_proof)

EXAMPLES:
sage: NumberField(x^2 + 23, 'a').class_number()
3
sage: NumberField(x^2 + 163, 'a').class_number()
1
sage: NumberField(x^3 + x^2 + 997*x + 1, 'a').class_number(proof=False)
1539

completely_split_primes(B=200)
Return a list of rational primes which split completely in the number field K.

INPUT:

• B - a positive integer bound (default: 200)

OUTPUT:

A list of all primes $p < B$ which split completely in K.

EXAMPLES:
sage: K.<xi> = NumberField(x^3 - 3*x + 1)
sage: K.completely_split_primes(100)
[17, 19, 37, 53, 71, 73, 89]

completion(p, prec, extras=1)
Return the completion of self at p to the specified precision.
Only implemented at archimedean places, and then only if an embedding has been fixed.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(2)
sage: K.completion(infinity, 100)
Real Field with 100 bits of precision
sage: K.<zeta> = CyclotomicField(12)
sage: K.completion(infinity, 53, extras={'type': 'RDF'})
Complex Double Field
sage: zeta + 1.5
# implicit test
2.36602540378444 + 0.500000000000000*I
```

complex_conjugation()

Return the complex conjugation of self.

This is only well-defined for fields contained in CM fields (i.e. for totally real fields and CM fields). Recall that a CM field is a totally imaginary quadratic extension of a totally real field. For other fields, a ValueError is raised.

EXAMPLES:

```python
sage: QuadraticField(-1, 'I').complex_conjugation()
Ring endomorphism of Number Field in I with defining polynomial x^2 + 1 with I
   --> 1*I
   Defn: I |--> -I
sage: CyclotomicField(8).complex_conjugation()
Ring endomorphism of Cyclotomic Field of order 8 and degree 4
   Defn: zeta8 |--> -zeta8^3
sage: QuadraticField(5, 'a').complex_conjugation()
Identity endomorphism of Number Field in a with defining polynomial x^2 - 5
   with a = 2.236067977499790?
```

complex_embeddings(prec=53)

Return all homomorphisms of this number field into the approximate complex field with precision prec.

This always embeds into an MPFR based complex field. If you want embeddings into the 53-bit double...
precision, which is faster, use \texttt{self.embeddings(CDF)}.

EXAMPLES:

```python
sage: k.<a> = NumberField(x^5 + x + 17)
sage: v = k.complex_embeddings()
sage: ls = [phi(k.0^2) for phi in v] ; ls # random order
[2.97572074038..., 
 -2.40889943716 + 1.90254105304*I,
 -2.40889943716 - 1.90254105304*I,
 0.921039066973 + 3.0753311885*I,
 0.921039066973 - 3.0753311885*I]
sage: K.<a> = NumberField(x^3 + 2)
sage: ls = K.complex_embeddings() ; ls # random order
[
Ring morphism:
  From: Number Field in a with defining polynomial x^3 + 2
  To: Complex Double Field
  Defn: a |--> -1.25992104989...

Ring morphism:
  From: Number Field in a with defining polynomial x^3 + 2
  To: Complex Double Field
  Defn: a |--> 0.629960524947 - 1.09112363597*I

Ring morphism:
  From: Number Field in a with defining polynomial x^3 + 2
  To: Complex Double Field
  Defn: a |--> 0.629960524947 + 1.09112363597*I]
```

\texttt{composite_fields}(other, names=None, both_maps=False, preserve_embedding=True)

Return the possible composite number fields formed from \texttt{self} and \texttt{other}.

INPUT:

- \texttt{other} – number field
- \texttt{names} – generator name for composite fields
- \texttt{both_maps} – boolean (default: False)
- \texttt{preserve_embedding} – boolean (default: True)

OUTPUT:

A list of the composite fields, possibly with maps.

If \texttt{both_maps} is True, the list consists of quadruples \((F, \texttt{self_into_F}, \texttt{other_into_F}, k)\) such that
\texttt{self_into_F} is an embedding of \texttt{self} in \texttt{F}, \texttt{other_into_F} is an embedding of \texttt{other} in \texttt{F}, and \(k\) is one of the following:

- an integer such that \(F.\text{gen}()\) equals \(\texttt{other_into_F(other.\text{gen}()) + k*self_into_F(self.\text{gen}())}\);
- \texttt{Infinity}, in which case \(F.\text{gen}()\) equals \(\texttt{self_into_F(self.\text{gen}())}\);
- \texttt{None} (when \texttt{other} is a relative number field).

If both \texttt{self} and \texttt{other} have embeddings into an ambient field, then each \texttt{F} will have an embedding with respect to which both \texttt{self_into_F} and \texttt{other_into_F} will be compatible with the ambient embeddings.
If `preserve_embedding` is True and if `self` and `other` both have embeddings into the same ambient field, or into fields which are contained in a common field, only the compositum respecting both embeddings is returned. In all other cases, all possible composite number fields are returned.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^4 - 2)
sage: K.composite_fields(K)
[Number Field in a with defining polynomial x^4 - 2,
 Number Field in a0 with defining polynomial x^8 + 28*x^4 + 2500]
```

A particular compositum is selected, together with compatible maps into the compositum, if the fields are endowed with a real or complex embedding:

```python
sage: K1 = NumberField(x^4 - 2, 'a', embedding=RR(2^(1/4)))
sage: K2 = NumberField(x^4 - 2, 'a', embedding=RR(-2^(1/4)))
sage: K1.composite_fields(K2, both_maps=True)
F, f, g, k = K1.composite_fields(K2, both_maps=True)
Number Field in a with defining polynomial x^4 - 2 with a = 1.189207115002722?
```

With `preserve_embedding` set to False, the embeddings are ignored:

```python
sage: K1.composite_fields(K2, preserve_embedding=False)
[Number Field in a with defining polynomial x^4 - 2 with a = 1.189207115002722?,
 Number Field in a0 with defining polynomial x^8 + 28*x^4 + 2500]
```

Changing the embedding selects a different compositum:

```python
sage: K3 = NumberField(x^4 - 2, 'a', embedding=CC(2^(1/4)*I))
sage: [F, f, g, k], = K1.composite_fields(K3, both_maps=True)
Number Field in a0 with defining polynomial x^8 + 28*x^4 + 2500 with a0 = -2.
˓→378414230005443? + 1.189207115002722?*I
```

If no embeddings are specified, the maps into the compositum are chosen arbitrarily:

```python
sage: Q1.<a> = NumberField(x^4 + 10*x^2 + 1)
sage: Q2.<b> = NumberField(x^4 + 16*x^2 + 4)
sage: Q1.composite_fields(Q2, 'c')
```

This is just one of four embeddings of `Q1` into `F`:
Note that even with \(\text{preserve_embedding=True}\), this method may fail to recognize that the two number fields have compatible embeddings, and hence return several composite number fields:

\[
\begin{align*}
\text{sage: } & x = \text{polygen}(\mathbb{Z}) \\
\text{sage: } & A.<a> = \text{NumberField}(x^3 - 7, \text{embedding} = \text{CC(-0.95+1.65*I)}) \\
\text{sage: } & B.<a> = \text{NumberField}(x^9 - 7, \text{embedding} = \text{QQbar.polynomial_root(x^9 - 7, \rightarrow RIF(1.2, 1.3))}) \\
\text{sage: } & \text{len(A.composite_fields(B, preserve_embedding=True))} \\
& 2
\end{align*}
\]

conductor (*check_abelian=True*)

Computes the conductor of the abelian field \(\mathcal{K}\). If \(\text{check_abelian}\) is set to false and the field is not an abelian extension of \(\mathbb{Q}\), the output is not meaningful.

INPUT:

* *check_abelian* - a boolean (default: True); check to see that this is an abelian extension of \(\mathbb{Q}\)

OUTPUT:

Integer which is the conductor of the field.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & K = \text{CyclotomicField(27)} \\
\text{sage: } & k = K.\text{subfields(9)}[0][0] \\
\text{sage: } & k.\text{conductor()} \\
& 27 \\
\text{sage: } & K.<t> = \text{NumberField(x^3+x^2-2*x-1)} \\
\text{sage: } & K.\text{conductor()} \\
& 7 \\
\text{sage: } & K.<t> = \text{NumberField(x^3+x^2-36*x-4)} \\
\text{sage: } & K.\text{conductor()} \\
& 109 \\
\text{sage: } & K = \text{CyclotomicField(48)} \\
\text{sage: } & k = K.\text{subfields(16)}[0][0] \\
\text{sage: } & k.\text{conductor()} \\
& 48 \\
\text{sage: } & \text{NumberField(x, 'a').conductor()} \\
& 1 \\
\text{sage: } & \text{NumberField(x^8 - 8*x^6 + 19*x^4 - 12*x^2 + 1, 'a').conductor()} \\
& 40 \\
\text{sage: } & \text{NumberField(x^8 + 7*x^4 + 1, 'a').conductor()} \\
& 40 \\
\text{sage: } & \text{NumberField(x^8 - 40*x^6 + 500*x^4 - 2000*x^2 + 50, 'a').conductor()} \\
& 160
\end{align*}
\]

ALGORITHM:

For odd primes, it is easy to compute from the ramification index because the \(p\)-Sylow subgroup is cyclic. For \(p=2\), there are two choices for a given ramification index. They can be distinguished by the parity of the exponent in the discriminant of a 2-adic completion.
construction()

Construction of self.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3+x^2+1, embedding=CC.gen())
sage: F,R = K.construction()
sage: F
AlgebraicExtensionFunctor
go to R
sage: R
Rational Field
```

The construction functor respects distinguished embeddings:

```python
sage: F(R) is K
True
sage: F.embeddings
[0.2327856159383841? + 0.7925519925154479?*I]
```

decomposition_type(p)

Return how the given prime of the base field splits in this number field.

INPUT:

• p – a prime element or ideal of the base field.

OUTPUT:

A list of triples \((e, f, g)\) where

• \(e\) is the ramification index,
• \(f\) is the residue class degree,
• \(g\) is the number of primes above \(p\) with given \(e\) and \(f\)

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: K.<a> = NumberField(x^20 + 3*x^18 + 15*x^16 + 28*x^14 + 237*x^12 + 579*x^10 + 1114*x^8 + 1470*x^6 + 2304*x^4 + 1296*x^2 + 729)
sage: K.is_galois()
True
sage: K.discriminant().factor()
2^20 * 3^10 * 53^10
sage: K.decomposition_type(2)
[(2, 5, 2)]
sage: K.decomposition_type(3)
[(2, 1, 10)]
sage: K.decomposition_type(53)
[(2, 2, 5)]
```

This example is only ramified at 11:

```python
sage: K.<a> = NumberField(x^24 + 11^2*(90*x^12 - 640*x^8 + 2280*x^6 - 512*x^4 - 2432/11*x^2 - 11))
sage: K.discriminant().factor()
-1 * 11^43
```
Computing the decomposition type is feasible even in large degree:

```python
sage: K.<a> = NumberField(x^144 + 123*x^72 + 321*x^36 + 13*x^18 + 11)
sage: K.discriminant().factor(limit=100000)
2^144 * 3^288 * 7^18 * 11^17 * 31^18 * 157^18 * 2153^18 * 13907^18 * ...
sage: K.decomposition_type(2)
[(2, 4, 3), (2, 12, 2), (2, 36, 1)]
sage: K.decomposition_type(3)
[(9, 3, 2), (9, 10, 1)]
sage: K.decomposition_type(7)
[(1, 18, 1), (1, 90, 1), (2, 1, 6), (2, 3, 4)]
```

It also works for relative extensions:

```python
sage: K.<a> = QuadraticField(-143)
sage: M.<c> = K.extension(x^10 - 6*x^8 + (a + 12)*x^6 + (-7/2*a - 89/2)*x^4 + (13/2*a - 77/2)*x^2 + 25)
```

There is a unique prime above 11 and above 13 in \mathcal{K}, each of which is unramified in \mathcal{M}:

```python
sage: M.decomposition_type(11)
[(1, 2, 5)]
sage: M.decomposition_type(13)
[(1, 1, 10)]
```

There are two primes above 2, each of which ramifies in \mathcal{M}:

```python
sage: Q0, Q1 = K.primes_above(2)
sage: M.decomposition_type(Q0)
[(2, 5, 1)]
sage: q0, = M.primes_above(Q0)
sage: q0.residue_class_degree()
5
sage: q0.relative_ramification_index()
2
sage: M.decomposition_type(Q1)
[(2, 5, 1)]
```

Check that github issue #34514 is fixed:

```python
sage: K.<a> = NumberField(x^4 + 18*x^2 - 1)
sage: R.<y> = K[]
sage: L.<b> = K.extension(y^2 + 9*a^3 - 2*a^2 + 162*a - 38)
```

(continues on next page)
sage: [L.decomposition_type(i) for i in K.primes_above(3)]

[[1, 1, 2], [1, 1, 2], [1, 2, 1]]

defining_polynomial()

Return the defining polynomial of this number field.

This is exactly the same as `self.polynomial()`.

EXAMPLES:

```python
sage: k5.<z> = CyclotomicField(5)
sage: k5.defining_polynomial()
x^4 + x^3 + x^2 + x + 1
```

```python
sage: y = polygen(QQ,'y')
sage: k.<a> = NumberField(y^9 - 3*y + 5); k
Number Field in a with defining polynomial y^9 - 3*y + 5
sage: k.defining_polynomial()
y^9 - 3*y + 5
```

degree()

Return the degree of this number field.

EXAMPLES:

```python
sage: NumberField(x^3 + x^2 + 997*x + 1, 'a').degree()
3
sage: NumberField(x + 1, 'a').degree()
1
sage: NumberField(x^997 + 17*x + 3, 'a', check=False).degree()
997
```

different()

Compute the different fractional ideal of this number field.

The codifferent is the fractional ideal of all \(x \) in \(K \) such that the trace of \(xy \) is an integer for all \(y \in \mathcal{O}_K \).

The different is the integral ideal which is the inverse of the codifferent.

See Wikipedia article Different_ideal

EXAMPLES:

```python
sage: k.<a> = NumberField(x^2 + 23)
sage: d = k.different()
sage: d
Fractional ideal (-a)
sage: d.norm()
23
sage: k.disc()
-23
```

The different is cached:

```python
sage: d is k.different()
True
```
Another example:

```python
sage: k.<b> = NumberField(x^2 - 123)
sage: d = k.different(); d
Fractional ideal (2^b)
sage: d.norm()
492
sage: k.disc()
492
```

dirichlet_group()
Given a abelian field K, this computes and returns the set of all Dirichlet characters corresponding to the characters of the Galois group of K/\mathbb{Q}.

The output is random if the field is not abelian

OUTPUT:
- a list of Dirichlet characters

EXAMPLES:

```python
sage: K.<t> = NumberField(x^3+x^2-36*x-4)
sage: K.conductor()
109
sage: K.dirichlet_group()
[Dirichlet character modulo 109 of conductor 1 mapping 6 |--> 1,
 Dirichlet character modulo 109 of conductor 109 mapping 6 |--> zeta3,
 Dirichlet character modulo 109 of conductor 109 mapping 6 |--> -zeta3 - 1]
```

```python
sage: K = CyclotomicField(44)
sage: L = K.subfields(5)[0][0]
sage: X = L.dirichlet_group()
sage: X
[Dirichlet character modulo 11 of conductor 1 mapping 2 |--> 1,
 Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta5,
 Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta5^2,
 Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta5^3,
 Dirichlet character modulo 11 of conductor 11 mapping 2 |--> -zeta5^3 - zeta5^2 → - zeta5 - 1]
sage: X[4]^2
Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta5^3
sage: X[4]^2 in X
True
```

disc($v=None$)
Shortcut for self.discriminant.

EXAMPLES:

```python
sage: k.<b> = NumberField(x^2 - 123)
sage: k.disc()
492
```

discriminant($v=None$)
Return the discriminant of the ring of integers of the number field, or if v is specified, the determinant of the trace pairing on the elements of the list v.

Chapter 1. Algebraic Number Fields
Algebraic Numbers and Number Fields, Release 10.0

INPUT:
• \(v \) – (optional) list of elements of this number field

OUTPUT:
Integer if \(v \) is omitted, and Rational otherwise.

EXAMPLES:

```
sage: K.<t> = NumberField(x^3 + x^2 - 2*x + 8)
sage: K.disc()
-503
sage: K.disc([1, t, t^2])
-2012
sage: K.disc([1/7, (1/5)*t, (1/3)*t^2])
-2012/11025
sage: (5*7^3)^2
11025
sage: K.<t> = NumberField(x^2 - 1/2, 'a'); K.discriminant()
8
```

`elements_of_norm` \((n, proof=None)\)
Return a list of elements of norm \(n \).

INPUT:
• \(n \) – integer
• \(proof \) – boolean (default: True, unless you called \(proof.number_field() \) and set it otherwise)

OUTPUT:
A complete system of integral elements of norm \(n \), modulo units of positive norm.

EXAMPLES:

```
sage: K.<a> = NumberField(x^2+1)
sage: K.elements_of_norm(3)
[]
sage: K.elements_of_norm(50)
[-a - 7, 5*a - 5, 7*a + 1]
```

`extension` \((poly, name=None, names=None, latex_name=None, latex_names=None, *args, **kwds)\)
Return the relative extension of this field by a given polynomial.

EXAMPLES:

```
sage: K.<a> = NumberField(x^3 - 2)
sage: R.<t> = K[]
sage: L.<b> = K.extension(t^2 + a); L
Number Field in b with defining polynomial t^2 + a over its base field
```

We create another extension:

```
sage: k.<a> = NumberField(x^2 + 1); k
Number Field in a with defining polynomial x^2 + 1
sage: y = polygen(QQ, 'y')
sage: m.<b> = k.extension(y^2 + 2); m
Number Field in b with defining polynomial y^2 + 2 over its base field
```
Note that \(b \) is a root of \(y^2 + 2 \):

```sage
sage: b.minpoly()
x^2 + 2
sage: b.minpoly('z')
z^2 + 2
```

A relative extension of a relative extension:

```sage
sage: k.<a> = NumberField([x^2 + 1, x^3 + x + 1])
sage: R.<z> = k[

```

Extension fields with given defining data are unique (github issue #20791):

```sage
sage: K.<a> = NumberField(x^2 + 1)
sage: K.extension(x^2 - 2, 'b') is K.extension(x^2 - 2, 'b')
True
```

`factor(n)`

Ideal factorization of the principal ideal generated by \(n \).

EXAMPLES:

Here we show how to factor Gaussian integers (up to units). First we form a number field defined by \(x^2 + 1 \):

```sage
sage: K.<I> = NumberField(x^2 + 1); K
Number Field in I with defining polynomial x^2 + 1

```

Here are the factors:

```sage
sage: fi, fj = K.factor(17); fi,fj
((Fractional ideal (I + 4), 1), (Fractional ideal (I - 4), 1))
```

Now we extract the reduced form of the generators:

```sage
sage: zi = fi[0].gens_reduced()[0]; zi
I + 4
sage: zj = fj[0].gens_reduced()[0]; zj
I - 4
```

We recover the integer that was factored in \(\mathbb{Z}[i] \) (up to a unit):

```sage
sage: zi*zj
-17
```

One can also factor elements or ideals of the number field:

```sage
sage: K.<a> = NumberField(x^2 + 1)
sage: K.factor(1/3)
(Fractional ideal (3))^-1
sage: K.factor(1+a)
Fractional ideal (a + 1)
sage: K.factor(1+a/5)
```

(continues on next page)
An example over a relative number field:

```
sage: pari('setrand(2)')
sage: L.<b> = K.extension(x^2 - 7)
sage: f = L.factor(a + 1)
sage: f # representation varies, not tested
(Fractional ideal (1/2*a*b - a + 1/2)) * (Fractional ideal (-1/2*a*b - a + 1/2))
sage: f.value() == a+1
True
```

It doesn’t make sense to factor the ideal (0), so this raises an error:

```
sage: L.factor(0)
Traceback (most recent call last):
  ... AttributeError: 'NumberFieldIdeal' object has no attribute 'factor'
```

AUTHORS:

• Alex Clemesha (2006-05-20), Francis Clarke (2009-04-21): examples

```
fractional_ideal(*gens, **kwds)
```

Return the ideal in \(\mathcal{O}_K \) generated by gens. This overrides the `sage.rings.ring.Field` method to use the `sage.rings.ring.Ring` one instead, since we’re not really concerned with ideals in a field but in its ring of integers.

INPUT:

• gens - a list of generators, or a number field ideal.

EXAMPLES:

```
sage: K.<a> = NumberField(x^3-2)
sage: K.fractional_ideal([1/a])
Fractional ideal (1/2*a^2)
```

One can also input a number field ideal itself, or, more usefully, for a tower of number fields an ideal in one of the fields lower down the tower.

```
sage: K.fractional_ideal(K.ideal(a))
Fractional ideal (a)
sage: L.<b> = K.extension(x^2 - 3, x^2 + 1)
sage: M.<c> = L.extension(x^2 + 1)
sage: L.ideal(K.ideal(2, a))
Fractional ideal (a)
sage: M.ideal(K.ideal(2, a)) == M.ideal(a*(b - c)/2)
True
```

The zero ideal is not a fractional ideal!

```
sage: K.fractional_ideal(0)
Traceback (most recent call last):
```

(continues on next page)
ValueError: gens must have a nonzero element (zero ideal is not a fractional ideal)

galois_group(type=None, algorithm='pari', names=None, gc_numbering=None)

Return the Galois group of the Galois closure of this number field.

INPUT:

- `type` - Deprecated; the different versions of Galois groups have been merged in github issue #28782.
- `algorithm` - 'pari', 'gap', 'kash', 'magma'. (default: 'pari'; for degrees between 12 and 15 default is 'gap', and when the degree is >= 16 it is 'kash'.)
- `names` - a string giving a name for the generator of the Galois closure of self, when this field is not Galois.
- `gc_numbering` – if True, permutations will be written in terms of the action on the roots of a defining polynomial for the Galois closure, rather than the defining polynomial for the original number field. This is significantly faster; but not the standard way of presenting Galois groups. The default currently depends on the algorithm (True for 'pari', False for 'magma') and may change in the future.

The resulting group will only compute with automorphisms when necessary, so certain functions (such as `sage.rings.number_field.galois_group.GaloisGroup_v2.order()`) will still be fast. For more (important!) documentation, see the documentation for Galois groups of polynomials over \(\mathbb{Q} \), e.g., by typing `K.polynomial().galois_group?`, where \(K \) is a number field.

EXAMPLES:

```
sage: k.<b> = NumberField(x^2 - 14) # a Galois extension
sage: G = k.galois_group(); G
Galois group 2T1 (S2) with order 2 of x^2 - 14
sage: G.gen(0)
(1,2)
sage: G.gen(0)(b)
-b
sage: G.artin_symbol(k.primes_above(3)[0])
(1,2)
```

```
sage: k.<b> = NumberField(x^3 - x + 1) # not Galois
sage: G = k.galois_group(names='c'); G
Galois group 3T2 (S3) with order 6 of x^3 - x + 1
sage: G.gen(0)
(1,2,3)(4,5,6)
```

```
sage: NumberField(x^3 + 2*x + 1, 'a').galois_group(algorithm='magma') # optional - magma
Galois group Transitive group number 2 of degree 3 of the Number Field in a with defining polynomial x^3 + 2*x + 1
```

EXPLICIT GALOIS GROUP: We compute the Galois group as an explicit group of automorphisms of the Galois closure of a field.

```
sage: K.<a> = NumberField(x^3 - 2)
sage: L.<b1> = K.galois_closure(); L
Number Field in b1 with defining polynomial x^6 + 108
```

(continues on next page)
sage: G = End(L); G
Automorphism group of Number Field in b1 with defining polynomial x^6 + 108
sage: G.list()
[
Ring endomorphism of Number Field in b1 with defining polynomial x^6 + 108
 Defn: b1 |--> b1,
 ...
Ring endomorphism of Number Field in b1 with defining polynomial x^6 + 108
 Defn: b1 |--> -1/12*b1^4 - 1/2*b1
]
sage: G[2](b1)
1/12*b1^4 + 1/2*b1

many examples for higher degrees may be found in the online databases http://galoisdb.math.upb.de/ by
Jürgen Klüners and Gunter Malle and https://www.lmfdb.org/NumberField/ by the LMFDB collaboration,
although these might need a lot of computing time.

If L/K is a relative number field, this method will currently return $Gal(L/Q)$. This behavior will change
in the future, so it’s better to explicitly call absolute_field() if that is the desired behavior:

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2 + 1)
sage: R.<t> = PolynomialRing(K)
sage: L = K.extension(t^5-t+a, 'b')
sage: L.galois_group()
...DeprecationWarning: Use .absolute_field().galois_group() if you want the...
 → Galois group of the absolute field
See https://github.com/sagemath/sage/issues/28782 for details.
Galois group 10T22 (S(5)[x]2) with order 240 of t^5 - t + a

\textbf{gen}(n=0)

Return the generator for this number field.

\textbf{INPUT}:

\begin{itemize}
 \item \texttt{n} - must be 0 (the default), or an exception is raised.
\end{itemize}

\textbf{EXAMPLES}:

sage: k.<theta> = NumberField(x^14 + 2); k
Number Field in theta with defining polynomial x^14 + 2
sage: k.gen()
theta
sage: k.gen(1)
Traceback (most recent call last):
...
IndexError: Only one generator.

\textbf{gen_embedding()}

If an embedding has been specified, return the image of the generator under that embedding. Otherwise
return None.

\textbf{EXAMPLES}:
ideal(*gens, **kwds)

K.ideal() returns a fractional ideal of the field, except for the zero ideal which is not a fractional ideal.

EXAMPLES:

```sage
sage: K.<i>=NumberField(x^2+1)
sage: K.ideal(2)
Fractional ideal (2)
sage: K.ideal(2+i)
Fractional ideal (i + 2)
sage: K.ideal(0)
Ideal (0) of Number Field in i with defining polynomial x^2 + 1
```

idealchinese(ideals, residues)

Return a solution of the Chinese Remainder Theorem problem for ideals in a number field.

This is a wrapper around the pari function pari:idealchinese.

INPUT:

- ideals - a list of ideals of the number field.
- residues - a list of elements of the number field.

OUTPUT:

Return an element \(b \) of the number field such that \(b \equiv x_i \pmod{I_i} \) for all residues \(x_i \) and respective ideals \(I_i \).

See also:

- \(\text{crt}() \)

EXAMPLES:

This is the example from the pari page on idealchinese:

```sage
sage: K.<sqrt2> = NumberField(sqrt(2).minpoly())
sage: ideals = [K.ideal(4),K.ideal(3)]
sage: residues = [sqrt2,1]
sage: r = K.idealchinese(ideals,residues); r
-3*sqrt2 + 4
sage: all((r - a) in I for I,a in zip(ideals,residues))
True
```

The result may be non-integral if the results are non-integral:

```sage
sage: K.<sqrt2> = NumberField(sqrt(2).minpoly())
sage: ideals = [K.ideal(4),K.ideal(21)]
sage: residues = [1/sqrt2,1]
sage: r = K.idealchinese(ideals,residues); r
-63/2*sqrt2 - 20
sage: all()
```
(continued from previous page)

```
.....:   (r-a).valuation(P) >= k
.....:   for I,a in zip(ideals,residues)
.....:       for P,k in I.factor()
.....:     )
True
```

`ideals_of_bdd_norm(bound)`

All integral ideals of bounded norm.

INPUT:

- `bound` - a positive integer

OUTPUT: A dict of all integral ideals I such that Norm(I) <= bound, keyed by norm.

EXAMPLES:

```
sage: K.<a> = NumberField(x^2 + 23)
sage: d = K.ideals_of_bdd_norm(10)
sage: for n in d:
.....:    print(n)
.....:    for I in sorted(d[n]):
.....:        print(I)
1
  Fractional ideal (1)
  Fractional ideal (2, 1/2*a - 1/2)
  Fractional ideal (2, 1/2*a + 1/2)
  Fractional ideal (3, 1/2*a - 1/2)
  Fractional ideal (3, 1/2*a + 1/2)
  Fractional ideal (2)
  Fractional ideal (4, 1/2*a + 3/2)
  Fractional ideal (4, 1/2*a + 5/2)
  Fractional ideal (1/2*a - 1/2)
  Fractional ideal (1/2*a + 1/2)
  Fractional ideal (6, 1/2*a + 5/2)
  Fractional ideal (6, 1/2*a + 7/2)
  Fractional ideal (4, a - 1)
  Fractional ideal (4, a + 1)
  Fractional ideal (1/2*a + 3/2)
  Fractional ideal (1/2*a - 3/2)
  Fractional ideal (3)
  Fractional ideal (9, 1/2*a + 7/2)
  Fractional ideal (9, 1/2*a + 11/2)
```

`integral_basis(v=None)`

Return a list containing a ZZ-basis for the full ring of integers of this number field.

1.1. Number Fields 61
INPUT:

- \(v \) - None, a prime, or a list of primes. See the documentation for `self.maximal_order`.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^5 + 10*x + 1)
sage: K.integral_basis()
[1, a, a^2, a^3, a^4]
```

Next we compute the ring of integers of a cubic field in which 2 is an “essential discriminant divisor”, so the ring of integers is not generated by a single element.

```python
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: K.integral_basis()
[1, 1/2*a^2 + 1/2*a, a^2]
```

ALGORITHM: Uses the pari library (via `_pari_integral_basis`).

is_CM()

Return True if self is a CM field (i.e. a totally imaginary quadratic extension of a totally real field).

EXAMPLES:

```python
sage: Q.<a> = NumberField(x - 1)
sage: Q.is_CM()
False
sage: K.<i> = NumberField(x^2 + 1)
sage: K.is_CM()
True
sage: L.<zeta20> = CyclotomicField(20)
sage: L.is_CM()
True
sage: K.<omega> = QuadraticField(-3)
sage: K.is_CM()
True
sage: L.<sqrt5> = QuadraticField(5)
sage: L.is_CM()
False
sage: F.<a> = NumberField(x^3 - 2)
sage: F.is_CM()
False
sage: F.<a> = NumberField(x^4-x^3-3*x^2+x+1)
sage: F.is_CM()
False
```

The following are non-CM totally imaginary fields.

```python
sage: F.<a> = NumberField(x^4 + x^3 - x^2 - x + 1)
sage: F.is_totally_imaginary()
True
sage: F.is_CM()
False
sage: F2.<a> = NumberField(x^12 - 5*x^11 + 8*x^10 - 5*x^9 - 
                         x^8 + 9*x^7 + 7*x^6 - 3*x^5 + 5*x^4 + 
                         7*x^3 - 4*x^2 - 7*x + 7)
```

(continues on next page)
The following is a non-cyclotomic CM field.

```python
sage: M.<a> = NumberField(x^4 - x^3 - x^2 - 2*x + 4)
```

Now, we construct a totally imaginary quadratic extension of a totally real field (which is not cyclotomic).

```python
sage: E_0.<a> = NumberField(x^7 - 4*x^6 - 4*x^5 + 10*x^4 + 4*x^3 - 6*x^2 - x + 1)
```

Finally, a CM field that is given as an extension that is not CM.

```python
sage: E_0.<a> = NumberField(x^2 - 4*x + 16)
```

is_abelian()
Return True if this number field is an abelian Galois extension of \(\mathbb{Q} \).

EXAMPLES:

```python
sage: NumberField(x^2 + 1, 'i').is_abelian()
sage: NumberField(x^3 + 2, 'a').is_abelian()
sage: NumberField(x^3 + x^2 - 2*x - 1, 'a').is_abelian()
sage: NumberField(x^6 + 40*x^3 + 1372, 'a').is_abelian()
sage: NumberField(x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1, 'a').is_abelian()
```

is_absolute()
Return True if self is an absolute field.

This function will be implemented in the derived classes.

EXAMPLES:

```python
```
```sage
sage: K = CyclotomicField(5)
sage: K.is_absolute()
True
```

is_field(proof=True)

Return True since a number field is a field.

EXAMPLES:

```sage
sage: NumberField(x^5 + x + 3, 'c').is_field()
True
```

is_galois()

Return True if this number field is a Galois extension of \mathbb{Q}.

EXAMPLES:

```sage
sage: NumberField(x^2 + 1, 'i').is_galois()
True
sage: NumberField(x^3 + 2, 'a').is_galois()
False
sage: NumberField(x^15 + x^14 - 14*x^13 - 13*x^12 + 78*x^11 + 66*x^10 - 220*x^9 - 165*x^8 + 330*x^7 + 210*x^6 - 252*x^5 - 126*x^4 + 84*x^3 + 28*x^2 - 8*x - 1, 'a').is_galois()
True
sage: NumberField(x^15 + x^14 - 14*x^13 - 13*x^12 + 78*x^11 + 66*x^10 - 220*x^9 - 165*x^8 + 330*x^7 + 210*x^6 - 252*x^5 - 126*x^4 + 84*x^3 + 28*x^2 - 8*x - 10, 'a').is_galois()
False
```

is_isomorphic(other, isomorphism_maps=False)

Return True if self is isomorphic as a number field to other.

EXAMPLES:

```sage
sage: k.<a> = NumberField(x^2 + 1)
sage: m.<b> = NumberField(x^2 + 4)
sage: k.is_isomorphic(m)
True
sage: m.<b> = NumberField(x^2 + 5)
sage: k.is_isomorphic(m)
False
sage: k = NumberField(x^3 + 2, 'a')
sage: k.is_isomorphic(NumberField((x+1/3)^3 + 2, 'b'))
True
sage: k.is_isomorphic(NumberField(x^3 + 4, 'b'))
True
sage: k.is_isomorphic(NumberField(x^3 + 5, 'b'))
False
sage: k = NumberField(x^2 - x - 1, 'b')
sage: l = NumberField(x^2 - 7, 'a')
sage: k.is_isomorphic(l, True)
(continues on next page)
```
sage: k = NumberField(x^2 - x - 1, 'b')
sage: ky.<y> = k[]
sage: l = NumberField(y, 'a')
sage: k.is_isomorphic(l, True)
(True, [-x, x + 1])

is_relative()

EXAMPLES:

sage: K.<a> = NumberField(x^10 - 2)
sage: K.is_absolute()
True
sage: K.is_relative()
False

is_totally_imaginary()

Return True if self is totally imaginary, and False otherwise.

Totally imaginary means that no isomorphic embedding of self into the complex numbers has image contained in the real numbers.

EXAMPLES:

sage: NumberField(x^2+2, 'alpha').is_totally_imaginary()
True
sage: NumberField(x^2-2, 'alpha').is_totally_imaginary()
False
sage: NumberField(x^4-2, 'alpha').is_totally_imaginary()
False

is_totally_real()

Return True if self is totally real, and False otherwise.

Totally real means that every isomorphic embedding of self into the complex numbers has image contained in the real numbers.

EXAMPLES:

sage: NumberField(x^2+2, 'alpha').is_totally_real()
False
sage: NumberField(x^2-2, 'alpha').is_totally_real()
True
sage: NumberField(x^4-2, 'alpha').is_totally_real()
False

latex_variable_name(name=None)

Return the latex representation of the variable name for this number field.

EXAMPLES:

sage: NumberField(x^2 + 3, 'a').latex_variable_name()
doctest:...: DeprecationWarning: This method is replaced by ...
(continued from previous page)

```python
'\theta_{3}'
'sage: CyclotomicField(5).latex_variable_name()
'\zeta_{5}'
```

lmfdb_page()

Open the LMFDB web page of the number field in a browser.

See https://www.lmfdb.org

EXAMPLES:

```python
'sage: E = QuadraticField(-1)
sage: E.lmfdb_page()  # optional -- webbrowser
```

Even if the variable name is different it works:

```python
'sage: R.<y>= PolynomialRing(QQ, "y")
sage: K = NumberField(y^2 + 1 , "i")
sage: K.lmfdb_page()  # optional -- webbrowser
```

maximal_order(v=None, assume_maximal='non-maximal-non-unique')

Return the maximal order, i.e., the ring of integers, associated to this number field.

INPUT:

- **v** - None, a prime, or a list of integer primes (default: None)
 - if None, return the maximal order.
 - if a prime \(p \), return an order that is \(p \)-maximal.
 - if a list, return an order that is maximal at each prime of these primes
- **assume_maximal** - True, False, None, or "non-maximal-non-unique" (default: "non-maximal-non-unique") ignored when \(v \) is None; otherwise, controls whether we assume that the order order.is_maximal() outside of \(v \).
 - if True, the order is assumed to be maximal at all primes.
 - if False, the order is assumed to be non-maximal at some prime not in \(v \).
 - if None, no assumptions are made about primes not in \(v \).
 - if "non-maximal-non-unique" (deprecated), like False, however, the order is not a unique parent, so creating the same order later does typically not poison caches with the information that the order is not maximal.

EXAMPLES:

In this example, the maximal order cannot be generated by a single element:

```python
'sage: k.<a> = NumberField(x^3 + x^2 - 2*x+8)
sage: o = k.maximal_order()
sage: o
Maximal Order in Number Field in a with defining polynomial x^3 + x^2 - 2*x + 8
```
We compute p-maximal orders for several p. Note that computing a p-maximal order is much faster in general than computing the maximal order:

```python
sage: p = next_prime(10^22)
sage: q = next_prime(10^23)
sage: K.<a> = NumberField(x^3 - p*q)

sage: K.maximal_order([3], assume_maximal=None).basis()
[1/3*a^2 + 1/3*a + 1/3, a, a^2]

sage: K.maximal_order([2], assume_maximal=None).basis()
[1/3*a^2 + 1/3*a + 1/3, a, a^2]

sage: K.maximal_order([p], assume_maximal=None).basis()
[1/3*a^2 + 1/3*a + 1/3, a, a^2]

sage: K.maximal_order([q], assume_maximal=None).basis()
[1/3*a^2 + 1/3*a + 1/3, a, a^2]

sage: K.maximal_order([p, 3], assume_maximal=None).basis()
[1/3*a^2 + 1/3*a + 1/3, a, a^2]
```

An example with bigger discriminant:

```python
sage: p = next_prime(10^97)
sage: q = next_prime(10^99)
sage: K.<a> = NumberField(x^3 - p*q)

sage: K.maximal_order(prime_range(10000), assume_maximal=None).basis()
[1, a, a^2]
```

An example in a relative number field:

```python
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 3])
sage: OK = K.maximal_order()
sage: OK.basis()
[1, 1/2*a - 1/2*b, -1/2*b*a + 1/2, a]

sage: charpoly(OK.1)
x^2 + b*x + 1
sage: charpoly(OK.2)
x^2 - x + 1

sage: O2 = K.order([3*a, 2*b])
sage: O2.index_in(OK)
144
```

An order that is maximal at a prime. We happen to know that it is actually maximal and mark it as such:

```python
sage: K.<i> = NumberField(x^2 + 1)
sage: K.maximal_order(v=2, assume_maximal=True)
Gaussian Integers in Number Field in i with defining polynomial x^2 + 1
```

It is an error to create a maximal order and declare it non-maximal, however, such mistakes are only caught automatically if they evidently contradict previous results in this session:
maximal_totally_real_subfield()

Return the maximal totally real subfield of self together with an embedding of it into self.

EXAMPLES:

```
sage: F.<a> = QuadraticField(11)
sage: F.maximal_totally_real_subfield()
(Number Field in a with defining polynomial x^2 - 11 with a = 3.316624790355400?,  
Identity endomorphism of Number Field in a with defining polynomial x^2 - 11)  
sage: F.<a> = QuadraticField(-15)
sage: F.maximal_totally_real_subfield()
(Rational Field, Natural morphism:
    From: Rational Field
    To:  Number Field in a with defining polynomial x^2 + 15 with a = 3.
    Defined on Rational Field)

sage: F.<a> = CyclotomicField(29)
sage: F.maximal_totally_real_subfield()
(Number Field in a0 with defining polynomial x^14 + x^13 - 13*x^12 - 12*x^11 +  
66*x^10 + 55*x^9 - 165*x^8 - 120*x^7 + 210*x^6 + 126*x^5 - 126*x^4 - 56*x^3 +  
28*x^2 + 7*x - 1 with a0 = 1.953241114201747?,
    Ring morphism:
        From: Number Field in a0 with defining polynomial x^14 + x^13 - 13*x^12 - 12*x^11 +  
66*x^10 + 55*x^9 - 165*x^8 - 120*x^7 + 210*x^6 + 126*x^5 - 126*x^4 - 56*x^3 +  
28*x^2 + 7*x - 1 with a0 = 1.953241114201747?
        To:  Cyclotomic Field of order 29 and degree 28
        Defined on Number Field in a0 with defining polynomial x^14 + x^13 - 13*x^12 - 12*x^11 +  
66*x^10 + 55*x^9 - 165*x^8 - 120*x^7 + 210*x^6 + 126*x^5 - 126*x^4 - 56*x^3 +  
28*x^2 + 7*x - 1 with a0 = 1.953241114201747?)
```

```
sage: F.<a> = NumberField(x^3 - 2)
sage: F.maximal_totally_real_subfield()
(Number Field in a1 with defining polynomial x^2 - x - 1,  
Ring morphism:
    From: Number Field in a1 with defining polynomial x^2 - x - 1
    To:  Number Field in a with defining polynomial x^4 - x^3 - x^2 + x + 1
    Defined on Number Field in a1 with defining polynomial x^2 - x - 1)
```
An example of a relative extension where the base field is not the maximal totally real subfield.

\begin{verbatim}
sage: E_0.<a> = NumberField(x^2 - 4*x + 16)
sage: y = polygen(E_0)
sage: E.<z> = E_0.extension(y^2 - E_0.gen() / 2)
sage: E.maximal_totally_real_subfield()
[Number Field in z1 with defining polynomial x^2 - 2*x - 5, Composite map:
 From: Number Field in z1 with defining polynomial x^2 - 2*x - 5
 To: Number Field in z with defining polynomial x^4 - 2*x^3 + x^2 + 6*x + 3
 Defn: Ring morphism:
 From: Number Field in z1 with defining polynomial x^2 - 2*x - 5
 To: Number Field in z with defining polynomial x^4 - 2*x^3 + x^2 + 6*x + 3
 Defn: z1 |--> -1/3*z^3 + 1/3*z^2 + z - 1
 then
 Isomorphism map:
 From: Number Field in z with defining polynomial x^4 - 2*x^3 + x^2 + 6*x + 3
 To: Number Field in z with defining polynomial x^2 - 1/2*a over its base field]
\end{verbatim}

\textbf{narrow_class_group}(proof=\texttt{None})

Return the narrow class group of this field.

INPUT:

\begin{itemize}
 \item proof - default: None (use the global proof setting, which defaults to True).
\end{itemize}

EXAMPLERS:

\begin{verbatim}
sage: NumberField(x^3+x+9, 'a').narrow_class_group()
Multiplicative Abelian group isomorphic to C2
\end{verbatim}

\textbf{ngens}()

Return the number of generators of this number field (always 1).

OUTPUT: the python integer 1.

EXAMPLES:

\begin{verbatim}
sage: NumberField(x^2 + 17, 'a').ngens()
1
sage: NumberField(x + 3, 'a').ngens()
1
sage: k.<a> = NumberField(x + 3)
sage: k.ngens()
1
sage: k.0
-3
\end{verbatim}
number_of_roots_of_unity()

Return the number of roots of unity in this field.

Note: We do not create the full unit group since that can be expensive, but we do use it if it is already known.

EXAMPLES:

```python
sage: F.<alpha> = NumberField(x**22+3)
sage: F.zeta_order()
6
sage: F.<alpha> = NumberField(x**2-7)
sage: F.zeta_order()
2
```

order()

Return the order of this number field (always +infinity).

OUTPUT: always positive infinity

EXAMPLES:

```python
sage: NumberField(x^2 + 19, 'a').order()
+Infinity
```

pari_bnf(proof=None, units=True)

PARI big number field corresponding to this field.

INPUT:

- **proof** – If False, assume GRH. If True, run PARI’s pari:bnfcertify to make sure that the results are correct.
- **units** – (default: True) If `True`, insist on having fundamental units. If False, the units may or may not be computed.

OUTPUT:

The PARI bnf structure of this number field.

Warning: Even with proof=True, I wouldn’t trust this to mean that everything computed involving this number field is actually correct.

EXAMPLES:

```python
sage: k.<a> = NumberField(x^2 + 1); k
Number Field in a with defining polynomial x^2 + 1
sage: len(k.pari_bnf())
10
sage: k.pari_bnf()[:4]
[[;], matrix(0,3), [;], ...]
sage: len(k.pari_nf())
9
```

(continues on next page)
Number Field in a with defining polynomial \(x^7 + 7 \)

`sage`: dummy = k.pari_bnf(proof=True)

pari_nf *(important=True)*

Return the PARI number field corresponding to this field.

INPUT:

- **important** – boolean (default: True). If False, raise a `RuntimeError` if we need to do a difficult discriminant factorization. This is useful when an integral basis is not strictly required, such as for factoring polynomials over this number field.

OUTPUT:

The PARI number field obtained by calling the PARI function `pari:nfinit` with `self`. `pari_polynomial('y')` as argument.

Note: This method has the same effect as `pari(self)`.

EXAMPLES:

`sage`: k.<a> = NumberField(x^4 - 3*x + 7); k
Number Field in a with defining polynomial \(x^4 - 3*x + 7 \)

`sage`: k.pari_nf()[:4]
\([y^4 - 3*y + 7, [0, 2], 85621, 1] \)

`sage`: pari(k)[:4]
\([y^4 - 3*y + 7, [0, 2], 85621, 1] \)

`sage`: k.<a> = NumberField(x^4 - 3/2*x + 5/3); k
Number Field in a with defining polynomial \(x^4 - 3/2*x + 5/3 \)

`sage`: k.pari_nf()[:4]
\([y^4 - 324*y + 2160, [0, 2], 48918708, 216, ...] \)

`sage`: pari(k)[:4]
\([y^4 - 324*y + 2160, [0, 2], 48918708, 216, ...] \)

`gp(k)`
\([y^4 - 324*y + 2160, [0, 2], 48918708, 216, ...] \)

With `important=False`, we simply bail out if we cannot easily factor the discriminant:

`sage`: p = next_prime(10^40); q = next_prime(10^41)
`sage`: K.<a> = NumberField(x^2 - p*q)
`sage`: K.pari_nf(important=False)
Traceback (most recent call last):
... RuntimeError: Unable to factor discriminant with trial division

Next, we illustrate the `maximize_at_primes` and `assume_disc_small` parameters of the `NumberField` constructor. The following would take a very long time without the `maximize_at_primes` option:
The code snippet provided demonstrates how to work with number fields in the SageMath environment. It shows how to define a number field using a polynomial and how to compute its pari nf representation. The examples also illustrate the `pari_polynomial` method, which returns the PARI polynomial corresponding to a number field.

Code Snippet

```python
sage: K.<a> = NumberField(x^2 - p*q, maximize_at_primes=[p])
sage: K.pari_nf()
[y^2 - 100000000000000000000...]
```

Explanation

The `NumberField` method is used to create a number field with a given polynomial. In this case, `x^2 - p*q` is used with `maximize_at_primes=[p]` to specify that the field should be maximized at the prime `p`. The `K.pari_nf()` method then returns the pari nf representation of the number field.

pari_polynomial

The `pari_polynomial` method returns the PARI polynomial corresponding to the number field. It takes an optional parameter `name` which specifies the variable name.

Warning

The `Warning` section notes that the `pari_polynomial` method is not the same as simply converting the defining polynomial to PARI.

Examples

The examples show how to use `pari_polynomial` with different number fields, including relative number fields.

This fails with arguments which are not a valid PARI variable name:
sage: k = QuadraticField(-1)
sage: k.pari_polynomial('I')
Traceback (most recent call last):
...
PariError: I already exists with incompatible valence
sage: k.pari_polynomial('i')
i^2 + 1
sage: k.pari_polynomial('theta')
Traceback (most recent call last):
...
PariError: theta already exists with incompatible valence

pari_rnfnorm_data(L, proof=True)
Return the PARI pari:rnfisnorminit data corresponding to the extension L/self.
EXAMPLES:

sage: x = polygen(QQ)
sage: K = NumberField(x^2 - 2, 'alpha')
sage: L = K.extension(x^2 + 5, 'gamma')
sage: ls = K.pari_rnfnorm_data(L) ; len(ls)
8

sage: K.<a> = NumberField(x^2 + x + 1)
sage: P.<X> = K[]
sage: L. = NumberField(X^3 + a)
sage: ls = K.pari_rnfnorm_data(L); len(ls)
8

pari_zk()
Integral basis of the PARI number field corresponding to this field.
This is the same as pari_nf().getattr('zk'), but much faster.
EXAMPLES:

sage: k.<a> = NumberField(x^3 - 17)
sage: k.pari_zk()
[1, 1/3*y^2 - 1/3*y + 1/3, y]
sage: k.pari_nf().getattr('zk')
[1, 1/3*y^2 - 1/3*y + 1/3, y]

polynomial()
Return the defining polynomial of this number field.
This is exactly the same as self.defining_polynomial().
EXAMPLES:

sage: NumberField(x^2 + (2/3)*x - 9/17,'a').polynomial()
x^2 + 2/3*x - 9/17

polynomial_ntl()
Return defining polynomial of this number field as a pair, an ntl polynomial and a denominator.
This is used mainly to implement some internal arithmetic.
EXAMPLES:

```
sage: NumberField(x^2 + (2/3)*x - 9/17, 'a').polynomial_n tl()
([-27 34 51], 51)
```

polynomial_quotient_ring()

Return the polynomial quotient ring isomorphic to this number field.

EXAMPLES:

```
sage: K = NumberField(x^3 + 2*x - 5, 'alpha')
sage: K.polynomial_quotient_ring()
Univariate Quotient Polynomial Ring in alpha over Rational Field with modulus x^3 + 2*x - 5
```

polynomial_ring()

Return the polynomial ring that we view this number field as being a quotient of (by a principal ideal).

EXAMPLES: An example with an absolute field:

```
sage: k.<a> = NumberField(x^2 + 3)
sage: y = polygen(QQ, 'y')
sage: k.<a> = NumberField(y^2 + 3)
sage: k.polynomial_ring()
Univariate Polynomial Ring in y over Rational Field
```

An example with a relative field:

```
sage: y = polygen(QQ, 'y')
sage: M.<a> = NumberField([y^3 + 97, y^2 + 1]); M
Number Field in a0 with defining polynomial y^3 + 97 over its base field
sage: M.polynomial_ring()
Univariate Polynomial Ring in y over Number Field in a1 with defining polynomial y^2 + 1
```

power_basis()

Return a power basis for this number field over its base field.

If this number field is represented as $k[t]/f(t)$, then the basis returned is $1, t, t^2, \ldots, t^{d-1}$ where d is the degree of this number field over its base field.

EXAMPLES:

```
sage: K.<a> = NumberField(x^5 + 10*x + 1)
sage: K.power_basis()
[1, a, a^2, a^3, a^4]
```

```
sage: L.<b> = K.extension(x^2 - 2)
sage: L.power_basis()
[1, b]
```

```
sage: M = CyclotomicField(15)
sage: M.power_basis()
[1, zeta15, zeta15^2, zeta15^3, zeta15^4, zeta15^5, zeta15^6, zeta15^7]
```
prime_above(x, degree=None)

Return a prime ideal of self lying over x.

INPUT:

• x: usually an element or ideal of self. It should be such that self.ideal(x) is sensible. This excludes x=0.

• degree (default: None): None or an integer. If one, find a prime above x of any degree. If an integer, find a prime above x such that the resulting residue field has exactly this degree.

OUTPUT: A prime ideal of self lying over x. If degree is specified and no such ideal exists, raises a ValueError.

EXAMPLES:

sage: x = ZZ['x'].gen()
sage: F.<t> = NumberField(x^3 - 2)

sage: P2 = F.prime_above(2)
sage: P2
random
Fractional ideal (-t)
sage: 2 in P2
True
sage: P2.is_prime()
True
sage: P2.norm()
2

sage: P3 = F.prime_above(3)
sage: P3
random
Fractional ideal (t + 1)
sage: 3 in P3
True
sage: P3.is_prime()
True
sage: P3.norm()
3

The ideal (3) is totally ramified in F, so there is no degree 2 prime above 3:

sage: F.prime_above(3, degree=2)
Traceback (most recent call last):
...
ValueError: No prime of degree 2 above Fractional ideal (3)
sage: [id.residue_class_degree() for id, _ in F.ideal(3).factor()]
[1]

Asking for a specific degree works:

sage: P5_1 = F.prime_above(5, degree=1)
sage: P5_1
random
Fractional ideal (-t^2 - 1)
sage: P5_1.residue_class_degree()
Relative number fields are ok:

```python
sage: G = F.extension(x^2 - 11, 'b')
sage: G.prime_above(7)
Fractional ideal (b + 2)
```

It doesn’t make sense to factor the ideal (0):

```python
sage: F.prime_above(0)
Traceback (most recent call last):
...  
AttributeError: 'NumberFieldIdeal' object has no attribute 'prime_factors'
```

prime_factors(x)

Return a list of the prime ideals of self which divide the ideal generated by x.

OUTPUT: list of prime ideals (a new list is returned each time this function is called)

EXAMPLES:

```python
sage: K.<w> = NumberField(x^2 + 23)
sage: K.prime_factors(w + 1)
[ Fractional ideal (2, 1/2* w - 1/2), Fractional ideal (2, 1/2* w + 1/2), Fractional ideal (3, 1/2* w + 1/2), ...]
```

primes_above(x, degree=None)

Return prime ideals of self lying over x.

INPUT:

- x: usually an element or ideal of self. It should be such that self.ideal(x) is sensible. This excludes $x=0$.

- degree (default: None): None or an integer. If None, find all primes above x of any degree. If an integer, find all primes above x such that the resulting residue field has exactly this degree.

OUTPUT: A list of prime ideals of self lying over x. If degree is specified and no such ideal exists, returns the empty list. The output is sorted by residue degree first, then by underlying prime (or equivalently, by norm).

EXAMPLES:

```python
sage: x = ZZ['x'].gen()
sage: F.<t> = NumberField(x^3 - 2)

sage: P2s = F.primes_above(2)
sage: P2s # random
[ Fractional ideal (-t) ]
sage: all(2 in P2 for P2 in P2s)
True
```
sage: all(P2.is_prime() for P2 in P2s)
True
sage: [P2.norm() for P2 in P2s]
[2]

sage: P3s = F.primes_above(3)
sage: P3s # random
[Fractional ideal (t + 1)]
sage: all(3 in P3 for P3 in P3s)
True
sage: all(P3.is_prime() for P3 in P3s)
True
sage: [P3.norm() for P3 in P3s]
[3]

The ideal (3) is totally ramified in F, so there is no degree 2 prime above 3:

sage: F.primes_above(3, degree=2)
[]
sage: [id.residue_class_degree() for id, _ in F.ideal(3).factor()]
[1]

Asking for a specific degree works:

sage: P5_1s = F.primes_above(5, degree=1)
sage: P5_1s # random
[Fractional ideal (-t^2 - 1)]
sage: P5_1 = P5_1s[0]; P5_1.residue_class_degree()
1

sage: P5_2s = F.primes_above(5, degree=2)
sage: P5_2s # random
[Fractional ideal (t^2 - 2*t - 1)]
sage: P5_2 = P5_2s[0]; P5_2.residue_class_degree()
2

Works in relative extensions too:

sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: I = F.ideal(a + 2*b)
sage: P, Q = K.primes_above(I)
sage: K.ideal(I) == P^4*Q
True
sage: K.primes_above(I, degree=1) == [P]
True
sage: K.primes_above(I, degree=4) == [Q]
True

It doesn’t make sense to factor the ideal (0), so this raises an error:
sage: F.prime_above(0)
Traceback (most recent call last):
...
AttributeError: 'NumberFieldIdeal' object has no attribute 'prime_factors'

primes_of_bounded_norm\((B) \)

Return a sorted list of all prime ideals with norm at most \(B \).

INPUT:

- \(B \) – a positive integer or real; upper bound on the norms of the primes generated.

OUTPUT:

A list of all prime ideals of this number field of norm at most \(B \), sorted by norm. Primes of the same norm are sorted using the comparison function for ideals, which is based on the Hermite Normal Form.

Note: See also primes_of_bounded_norm_iter() for an iterator version of this, but note that the iterator sorts the primes in order of underlying rational prime, not by norm.

EXAMPLES:

```python
sage: K.<i> = QuadraticField(-1)
sage: K.primes_of_bounded_norm(10)
[Fractional ideal (i + 1), Fractional ideal (-i - 2), Fractional ideal (2*i + 1), Fractional ideal (3)]
sage: K.primes_of_bounded_norm(1)
[]
sage: K.<a> = NumberField(x^3-2)
sage: P = K.primes_of_bounded_norm(30)
sage: P
[Fractional ideal (a), Fractional ideal (a + 1), Fractional ideal (-a^2 - 1), Fractional ideal (a^2 + a - 1), Fractional ideal (2*a + 1), Fractional ideal (-2*a^2 - a - 1), Fractional ideal (a^2 - 2*a - 1), Fractional ideal (a + 3)]
sage: [p.norm() for p in P]
[2, 3, 5, 11, 17, 23, 25, 29]
```

primes_of_bounded_norm_iter\((B) \)

Iterator yielding all prime ideals with norm at most \(B \).

INPUT:

- \(B \) – a positive integer or real; upper bound on the norms of the primes generated.

OUTPUT:

An iterator over all prime ideals of this number field of norm at most \(B \).

Note: The output is not sorted by norm, but by size of the underlying rational prime.
EXAMPLES:

```python
sage: K.<i> = QuadraticField(-1)
sage: it = K.primes_of_bounded_norm_iter(10)
sage: list(it)
[Fractional ideal (i + 1),
 Fractional ideal (3),
 Fractional ideal (-i - 2),
 Fractional ideal (2*i + 1)]
sage: list(K.primes_of_bounded_norm_iter(1))
[]
```

`primes_of_degree_one_iter(num_integer_primes=10000, max_iterations=100)`

Return an iterator yielding prime ideals of absolute degree one and small norm.

Warning: It is possible that there are no primes of \(K \) of absolute degree one of small prime norm, and it possible that this algorithm will not find any primes of small norm.

See module `sage.rings.number_field.small_primes_of_degree_one` for details.

INPUT:

- `num_integer_primes` (default: 10000) - an integer. We try to find primes of absolute norm no greater than the num_integer_primes-th prime number. For example, if num_integer_primes is 2, the largest norm found will be 3, since the second prime is 3.

- `max_iterations` (default: 100) - an integer. We test max_iterations integers to find small primes before raising StopIteration.

EXAMPLES:

```python
sage: K.<z> = CyclotomicField(10)
sage: it = K.primes_of_degree_one_iter()
sage: Ps = [ next(it) for i in range(3) ]
sage: Ps # random
[Fractional ideal (z^3 + z + 1), Fractional ideal (3*z^3 - z^2 + z - 1),
 Fractional ideal (2*z^3 - 3*z^2 + z - 2)]
sage: [ P.norm() for P in Ps ] # random
[11, 31, 41]
sage: [ P.residue_class_degree() for P in Ps ]
[1, 1, 1]
```

`primes_of_degree_one_list(n, num_integer_primes=10000, max_iterations=100)`

Return a list of \(n \) prime ideals of absolute degree one and small norm.

Warning: It is possible that there are no primes of \(K \) of absolute degree one of small prime norm, and it possible that this algorithm will not find any primes of small norm.

See module `sage.rings.number_field.small_primes_of_degree_one` for details.

INPUT:

- `num_integer_primes` (default: 10000) - an integer. We try to find primes of absolute norm no greater than the num_integer_primes-th prime number. For example, if num_integer_primes is 2,
the largest norm found will be 3, since the second prime is 3.

- **max_iterations** (default: 100) - an integer. We test max_iterations integers to find small primes before raising StopIteration.

EXAMPLES:

```python
sage: K.<z> = CyclotomicField(10)
sage: Ps = K.primes_of_degree_one_list(3)
sage: Ps # random output
[Fractional ideal (-z^3 - z^2 + 1), Fractional ideal (2*z^3 - 2*z^2 + 2*z - 3),
 Fractional ideal (2*z^3 - 3*z^2 + z - 2)]
```

```python
sage: [ P.norm() for P in Ps ]
[11, 31, 41]
```

```python
sage: [ P.residue_class_degree() for P in Ps ]
[1, 1, 1]
```

primitive_element()

Return a primitive element for this field, i.e., an element that generates it over \(\mathbb{Q} \).

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3 + 2)
sage: K.primitive_element()
a
sage: K.<a,b,c> = NumberField([x^2-2,x^2-3,x^2-5])
sage: K.primitive_element()
a - b + c
```

```python
sage: alpha = K.primitive_element(); alpha
a - b + c
```

```python
sage: alpha.minpoly()
x^2 + (2*b - 2*c)*x - 2*c*b + 6
```

```python
sage: alpha.absolute_minpoly()
x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576
```

primitive_root_of_unity()

Return a generator of the roots of unity in this field.

OUTPUT: a primitive root of unity. No guarantee is made about which primitive root of unity this returns, not even for cyclotomic fields. Repeated calls of this function may return a different value.

Note: We do not create the full unit group since that can be expensive, but we do use it if it is already known.

EXAMPLES:

```python
sage: K.<i> = NumberField(x^2+1)
sage: z = K.primitive_root_of_unity(); z
i
```

```python
sage: z.multiplicative_order()
4
```

```python
sage: K.<a> = NumberField(x^2+x+1)
sage: z = K.primitive_root_of_unity(); z
```

(continues on next page)
We do not special-case cyclotomic fields, so we do not always get the most obvious primitive root of unity:

```sage
sage: K.<a> = CyclotomicField(3)
sage: z = K.primitive_root_of_unity(); z
a + 1
sage: z.multiplicative_order()
6

sage: K = CyclotomicField(3)
sage: z = K.primitive_root_of_unity(); z
zeta3 + 1
sage: z.multiplicative_order()
6
```

The function `quadratic_defect(a, p, check=True)` returns the valuation of the quadratic defect of `a` at `p`.

INPUT:

- `a` – an element of `self`
- `p` – a prime ideal
- `check` – (default: True); check if `p` is prime

ALGORITHM:

This is an implementation of Algorithm 3.1.3 from [Kir2016]

EXAMPLES:

```sage
sage: K.<a> = NumberField(x^2 + 2)
sage: p = K.primes_above(2)[0]
sage: K.quadratic_defect(5, p)
4
sage: K.quadratic_defect(0, p)
+Infinity
sage: K.quadratic_defect(a, p)
1
sage: K.<a> = CyclotomicField(5)
sage: p = K.primes_above(2)[0]
sage: K.quadratic_defect(5, p)
+Infinity
```
random_element\((\text{num_bound}=\text{None}, \text{den_bound}=\text{None}, \text{integral_coefficients}=\text{False}, \text{distribution}=\text{None}) \)

Return a random element of this number field.

INPUT:

- **num_bound** - Bound on numerator of the coefficients of the resulting element
- **den_bound** - Bound on denominators of the coefficients of the resulting element
- **integral_coefficients** (default: False) - If True, then the resulting element will have integral coefficients. This option overrides any value of `den_bound`.
- **distribution** - Distribution to use for the coefficients of the resulting element

OUTPUT:

- Element of this number field

EXAMPLES:

```python
sage: K.<j> = NumberField(x^8+1)
sage: K.random_element().parent() is K
True
sage: while K.random_element().list()[0] != 0:
    ....:     pass
sage: while K.random_element().list()[0] == 0:
    ....:     pass
sage: while not K.random_element().is_prime():
    ....:     pass
sage: while not K.random_element().is_prime():
    ....:     pass
sage: K.<a,b,c> = NumberField([x^2-2,x^2-3,x^2-5])
sage: K.random_element().parent() is K
True
sage: while K.random_element().is_prime():
    ....:     pass
sage: while not K.random_element().is_prime(): # long time
    ....:     pass
sage: K.<a> = NumberField(x^5-2)
sage: p = K.random_element(integral_coefficients=True)
sage: p.is_integral()
True
sage: while K.random_element().is_integral():
    ....:     pass
```

real_embeddings\((\text{prec}=53) \)

Return all homomorphisms of this number field into the approximate real field with precision prec.

If prec is 53 (the default), then the real double field is used; otherwise the arbitrary precision (but slow) real field is used. If you want embeddings into the 53-bit double precision, which is faster, use `self.embeddings(RDF)`.

Chapter 1. Algebraic Number Fields

82
Note: This function uses finite precision real numbers. In functions that should output proven results, one could use `self.embeddings(AA)` instead.

EXAMPLES:

```
sage: K.<a> = NumberField(x^3 + 2)
sage: K.real_embeddings()
[
  Ring morphism:
      From: Number Field in a with defining polynomial x^3 + 2
      To:   Real Field with 53 bits of precision
         Defn: a |--> -1.25992104989487
]
sage: K.real_embeddings(16)
[
  Ring morphism:
      From: Number Field in a with defining polynomial x^3 + 2
      To:   Real Field with 16 bits of precision
         Defn: a |--> -1.260
]
sage: K.real_embeddings(100)
[
  Ring morphism:
      From: Number Field in a with defining polynomial x^3 + 2
      To:   Real Field with 100 bits of precision
         Defn: a |--> -1.259921049894873164767210673
]
```

As this is a numerical function, the number of embeddings may be incorrect if the precision is too low:

```
sage: K = NumberField(x^2+2*10^1000*x + 10^2000+1, 'a')
sage: len(K.real_embeddings())
2
sage: len(K.real_embeddings(100))
2
sage: len(K.real_embeddings(10000))
0
sage: len(K.embeddings(AA))
0
```

`reduced_basis(prec=None)`

Return an LLL-reduced basis for the Minkowski-embedding of the maximal order of a number field.

INPUT:

- `prec` (default: `None`) - the precision with which to compute the Minkowski embedding.

OUTPUT:

An LLL-reduced basis for the Minkowski-embedding of the maximal order of a number field, given by a sequence of (integral) elements from the field.

Note: In the non-totally-real case, the LLL routine we call is currently PARI’s `pari:qflll`, which works with floating point approximations, and so the result is only as good as the precision promised by PARI.
The matrix returned will always be integral; however, it may only be only “almost” LLL-reduced when the precision is not sufficiently high.

EXAMPLES:

```
sage: F.<t> = NumberField(x^6-7*x^4-x^3+11*x^2+x-1)
sage: F.maximal_order().basis()
[1/2*t^5 + 1/2*t^4 + 1/2, t, t^2, t^3, t^4, t^5]
sage: F.reduced_basis()
[-1, -1/2*t^5 + 1/2*t^4 + 3*t^3 - 3/2*t^2 - 4*t - 1/2, t, 1/2*t^5 + 1/2*t^4 - 4*t^3 - 5/2*t^2 + 7*t + 1/2, 1/2*t^5 - 1/2*t^4 - 2*t^3 + 3/2*t^2 - 1/2, 1/2*t^5 - 5/2*t^4 - 3*t^3 + 5/2*t^2 + 4*t - 5/2]
sage: CyclotomicField(12).reduced_basis()
[1, zeta12^2, zeta12, zeta12^3]
```

```
reduced_gram_matrix(prec=None)
```

Return the Gram matrix of an LLL-reduced basis for the Minkowski embedding of the maximal order of a number field.

INPUT:

- prec (default: None) - the precision with which to calculate the Minkowski embedding. (See NOTE below.)

OUTPUT: The Gram matrix \([\langle x_i, x_j \rangle]\) of an LLL reduced basis for the maximal order of self, where the integral basis for self is given by \([x_0, \ldots, x_{n-1}]\). Here \(\langle, \rangle\) is the usual inner product on \(\mathbb{R}^n\), and self is embedded in \(\mathbb{R}^n\) by the Minkowski embedding. See the docstring for `NumberField_absolute.minkowski_embedding()` for more information.

Note: In the non-totally-real case, the LLL routine we call is currently PARI’s `pari:qflll`, which works with floating point approximations, and so the result is only as good as the precision promised by PARI. In particular, in this case, the returned matrix will *not* be integral, and may not have enough precision to recover the correct gram matrix (which is known to be integral for theoretical reasons). Thus the need for the prec flag above.

If the following run-time error occurs: “PariError: not a definite matrix in llgram (42)” try increasing the prec parameter.

EXAMPLES:

```
sage: F.<t> = NumberField(x^6-7*x^4-x^3+11*x^2+x-1)
sage: F.reduced_gram_matrix()

[6 3 0 2 0 1]
[3 9 0 1 0 -2]
[0 0 14 6 -2 3]
[2 1 6 16 -3 3]
[0 0 -2 -3 16 6]
[1 -2 3 3 16 9]
sagen: Matrix(6, [(x*y).trace() for x in F.integral_basis() for y in F.integral_˓→basis()])

[2550 133 259 664 1363 3421]
[133 14 3 54 30 233]
[259 3 54 30 233 217]
[664 54 30 233 217 1078]
```

(continues on next page)
sage: x = polygen(QQ)
sage: F.<alpha> = NumberField(x^4+x^2+712312*x+131001238)
sage: F.reduced_gram_matrix(prec=128)
[4.0000000000000000000000000000000000000 0.00000000000000000000000000000000000000]
[0.00000000000000000000000000000000000000 -0.9999999999999999999999999999993702]
[0.00000000000000000000000000000000000000 -1.99999999999999999999999999999383702]
[-0.999999999999999999999999999999383702 -1.417909227149407005043336847682152174e8]

regulator(proof=None)
Return the regulator of this number field.

Note that PARI computes the regulator to higher precision than the Sage default.

INPUT:
• proof - default: True, unless you set it otherwise.

EXAMPLES:

sage: NumberField(x^2-2, 'a').regulator()
0.881373587019543
sage: NumberField(x^4+x^3+x^2+x+1, 'a').regulator()
0.962423650119207

residue_field(prime, names=None, check=True)
Return the residue field of this number field at a given prime, \(O_K/pO_K \).

INPUT:
• prime - a prime ideal of the maximal order in this number field, or an element of the field which generates a principal prime ideal.
• names - the name of the variable in the residue field
• check - whether or not to check the primality of the prime.

OUTPUT: The residue field at this prime.

EXAMPLES:

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4+3*x^2+1)
sage: P = K.ideal(61).factor()[0][0]
sage: K.residue_field(P)
Residue field in abar of Fractional ideal (61, a^2 + 30)

sage: K.<i> = NumberField(x^2 + 1)
sage: K.residue_field(1+i)
Residue field of Fractional ideal (i + 1)

roots_of_unity()

Return all the roots of unity in this field, primitive or not.

EXAMPLES:

sage: K. = NumberField(x^2+1)
sage: zs = K.roots_of_unity(); zs
[b, -1, -b, 1]
sage: [z**K.number_of_roots_of_unity() for z in zs]
[1, 1, 1, 1]

selmer_generators(S, m, proof=True, orders=False)

Compute generators of the group $K(S, m)$.

INPUT:

- S – a set of primes of self
- m – a positive integer
- proof – if False, assume the GRH in computing the class group
- orders (default False) – if True, output two lists, the generators and their orders

OUTPUT:

A list of generators of $K(S, m)$, and (optionally) their orders as elements of $K^\times/(K^\times)^m$. This is the subgroup of $K^\times/(K^\times)^m$ consisting of elements a such that the valuation of a is divisible by m at all primes not in S. It fits in an exact sequence between the units modulo m-th powers and the m-torsion in the S-class group:

$$1 \longrightarrow O_{K,S}^\times/(O_{K,S}^\times)^m \longrightarrow K(S, m) \longrightarrow \text{Cl}_{K,S}[m] \longrightarrow 0.$$

The group $K(S, m)$ contains the subgroup of those a such that $K(\sqrt[n]{a})/K$ is unramified at all primes of K outside of S, but may contain it properly when not all primes dividing m are in S.

See also:

$\text{NumberField_generic\.selmer_space()}$, which gives additional output when $m = p$ is prime: as well as generators, it gives an abstract vector space over $GF(p)$ isomorphic to $K(S, p)$ and maps implementing the isomorphism between this space and $K(S, p)$ as a subgroup of $K^\times/(K^\times)^p$.

EXAMPLES:

sage: K.<a> = QuadraticField(-5)
sage: K.selmer_generators((), 2)
[-1, 2]

The previous example shows that the group generated by the output may be strictly larger than the group of elements giving extensions unramified outside S, since that has order just 2, generated by -1:
sage: K.class_number()
2
sage: K.hilbert_class_field('b')
Number Field in b with defining polynomial x^2 + 1 over its base field

When \(m \) is prime all the orders are equal to \(m \), but in general they are only divisors of \(m \):

sage: K.<a> = QuadraticField(-5)
sage: P2 = K.ideal(2, -a+1)
sage: P3 = K.ideal(3, a+1)
sage: K.selmer_generators(), orders=True
([-1, 2], [2, 2])
sage: K.selmer_generators(), orders=True
([-1, 4], [2, 2])
sage: K.selmer_generators([P2], 2)
[2, -1]
sage: K.selmer_generators([P2, P3], 4)
[2, -a - 1, -1]
sage: K.selmer_generators([P2, P3], 4, orders=True)
([2, -a - 1, -1], [4, 4, 2])
sage: K.selmer_generators([P2], 3)
[2]
sage: K.selmer_generators([P2, P3], 3)
[2, -a - 1]
sage: K.selmer_generators([P2, P3, K.ideal(a)], 3) # random signs
[2, a + 1, a]

Example over \(\mathbb{Q} \) (as a number field):

sage: K.<a> = NumberField(polygen(QQ))
sage: K.selmer_generators(), 5
[]
sage: K.selmer_generators([K.prime_above(p) for p in [2, 3, 5]], 2)
[2, 3, 5, -1]
sage: K.selmer_generators([K.prime_above(p) for p in [2, 3, 5]], 6, orders=True)
([2, 3, 5, -1], [6, 6, 6, 2])

\textbf{selmer_group}(*\textit{args}, **\textit{kwds})

Deprecated: Use \texttt{selmer_generators()} instead. See github issue #31345 for details.

\textbf{selmer_group_iterator}(S, m, proof=True)

Return an iterator through elements of the finite group \(K(S, m) \).

\textbf{INPUT}:

- \(S \) – a set of primes of \texttt{self}
- \(m \) – a positive integer
- \texttt{proof} – if False, assume the GRH in computing the class group

\textbf{OUTPUT}:

An iterator yielding the distinct elements of \(K(S, m) \). See the docstring for \texttt{NumberField_generic.selmer_generators()} for more information.

\textbf{EXAMPLES}:
Examples over \mathbb{Q} (as a number field):

```
sage: K.<a> = NumberField(polygen(QQ))
sage: list(K.selmer_group_iterator([], 5))
[1]
sage: list(K.selmer_group_iterator([], 4))
[1, -1]
sage: list(K.selmer_group_iterator([K.prime_above(p) for p in [11,13]],2))
[1, -1, 13, -13, 11, -11, 143, -143]
```

```
sage: K.<a> = QuadraticField(-5)
sage: K.class_number()
2
sage: P2 = K.ideal(2, -a+1)
sage: P3 = K.ideal(3, a+1)
```

The group $K(S, p)$ is the finite subgroup of $K^*/(K^*)^p$ consisting of elements whose valuation at all primes not in S is a multiple of p. It contains the subgroup of those $a \in K^*$ such that $K(\sqrt[p]{a})/K$ is unramified at all primes of K outside of S, but may contain it properly when not all primes dividing p are in S.

EXAMPLES:

A real quadratic field with class number 2, where the fundamental unit is a generator, and the class group provides another generator when $p = 2$:

```
sage: K.<a> = QuadraticField(-5)
sage: K.class_number()
2
sage: P2 = K.ideal(2, -a+1)
sage: P3 = K.ideal(3, a+1)
```
Each generator must have even valuation at primes not in S:

```sage
sage: [K.ideal(g).factor() for g in gens]
[(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1)),
 Fractional ideal (a),
 (Fractional ideal (2, a + 1))^2,
 1]
```

```sage
toKS2(10)
(0, 0, 1, 1)
```

```sage
fromKS2([0,0,1,1])
-2
```

```sage
K(10/(-2)).is_square()
True
```

```sage
KS3, gens, fromKS3, toKS3 = K.selmer_space([], 3)
```

```sage
Vector space of dimension 3 over Finite Field of size 3
```

```sage
gens
[1/2, 1/4*a + 1/4, a]
```

An example to show that the group $K(S, 2)$ may be strictly larger than the group of elements giving extensions unramified outside S. In this case, with K of class number 2 and S empty, there is only one quadratic extension of K unramified outside S, the Hilbert Class Field $K(\sqrt{-1})$:

```sage
sage: K.<a> = QuadraticField(-5)
sage: KS2, gens, fromKS2, toKS2 = K.selmer_space([], 2)
sage: KS2
Vector space of dimension 2 over Finite Field of size 2
sage: gens
[2, -1]
sage: for v in KS2:
    ....:     if not v:
    ....:         continue
    ....:     a = fromKS2(v)
    ....:     print((a,K.extension(x^2-a, 'roota').relative_discriminant().factor()))
(2, (Fractional ideal (2, a + 1))^4)
(1, -1)
(-2, (Fractional ideal (2, a + 1))^4)
sage: K.hilbert_class_field('b')
Number Field in b with defining polynomial x^2 + 1 over its base field
```

`signature()`

Return (r_1, r_2), where r_1 and r_2 are the number of real embeddings and pairs of complex embeddings of
this field, respectively.

EXAMPLES:

```python
sage: NumberField(x^2+1, 'a').signature()
(0, 1)
sage: NumberField(x^3-2, 'a').signature()
(1, 1)
```

solve_CRT(reslist, Ilist, check=True)

Solve a Chinese remainder problem over this number field.

INPUT:

- `reslist` – a list of residues, i.e. integral number field elements
- `Ilist` – a list of integral ideals, assumed pairwise coprime
- `check` (boolean, default True) – if True, result is checked

OUTPUT:

An integral element x such that $x-reslist[i]$ is in $Ilist[i]$ for all i.

Note: The current implementation requires the ideals to be pairwise coprime. A more general version would be possible.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2-10)
sage: Ilist = [K.primes_above(p)[0] for p in prime_range(10)]
sage: b = K.solve_CRT([1,2,3,4],Ilist,True)
sage: all(b-i-1 in Ilist[i] for i in range(4))
True
sage: Ilist = [K.ideal(a), K.ideal(2)]
sage: K.solve_CRT([0,1],Ilist,True)
Traceback (most recent call last):
  ... ArithmeticError: ideals in solve_CRT() must be pairwise coprime
sage: Ilist[0]+Ilist[1]
Fractional ideal (2, a)
```

some_elements()

Return a list of elements in the given number field.

EXAMPLES:

```python
sage: R.<t> = QQ[]
sage: K.<a> = QQ.extension(t^2 - 2); K
Number Field in a with defining polynomial t^2 - 2
sage: K.some_elements()
[1, a, 2*a, 3*a - 4, 1/2, 1/3*a, 1/6*a, 0, 1/2*a, 2, ..., 12, -12*a + 18]
sage: T.<u> = K[]
sage: M.<b> = K.extension(t^3 - 5); M
Number Field in b with defining polynomial t^3 - 5 over its base field
```
sage: M.some_elements()
[1, b, 1/2*a*b, ..., 2/5*b^2 + 2/5, 1/6*b^2 + 5/6*b + 13/6, 2]

specified_complex_embedding()

Return the embedding of this field into the complex numbers which has been specified.

Fields created with the `QuadraticField` or `CyclotomicField` constructors come with an implicit embedding. To get one of these fields without the embedding, use the generic `NumberField` constructor.

EXAMPLES:

```python
sage: QuadraticField(-1, 'I').specified_complex_embedding()
Generic morphism:
  From: Number Field in I with defining polynomial x^2 + 1 with I = 1*I
  To:  Complex Lazy Field
  Defn: I -> 1*I
```

```python
sage: QuadraticField(3, 'a').specified_complex_embedding()
Generic morphism:
  From: Number Field in a with defining polynomial x^2 - 3 with a = 1.
    732050807568878?
  To:  Real Lazy Field
  Defn: a -> 1.732050807568878?
```

```python
sage: CyclotomicField(13).specified_complex_embedding()
Generic morphism:
  From: Cyclotomic Field of order 13 and degree 12
  To:  Complex Lazy Field
  Defn: zeta13 -> 0.885456025653210? + 0.464723172043769?*I
```

Most fields don’t implicitly have embeddings unless explicitly specified:

```python
sage: NumberField(x^2-2, 'a').specified_complex_embedding() is None
True
sage: NumberField(x^3-x+5, 'a').specified_complex_embedding() is None
True
sage: NumberField(x^3-x+5, 'a', embedding=2).specified_complex_embedding()
Generic morphism:
  From: Number Field in a with defining polynomial x^3 - x + 5 with a = -1.
    904160859134921?
  To:  Real Lazy Field
  Defn: a -> -1.904160859134921?
```

```python
sage: NumberField(x^3-x+5, 'a', embedding=CDF.0).specified_complex_embedding()
Generic morphism:
  From: Number Field in a with defining polynomial x^3 - x + 5 with a = 0.
    952080429567461? + 1.311248044077123?*I
  To:  Complex Lazy Field
  Defn: a -> 0.952080429567461? + 1.311248044077123?*I
```

This function only returns complex embeddings:

```python
sage: K.<a> = NumberField(x^2-2, embedding=Qp(7)(2).sqrt())
sage: K.specified_complex_embedding() is None
True
```
structure()

Return fixed isomorphism or embedding structure on self.

This is used to record various isomorphisms or embeddings that arise naturally in other constructions.

EXAMPLES:

```
sage: K.<z> = NumberField(x^2 + 3)
sage: L.<a> = K.absolute_field(); L
Number Field in a with defining polynomial x^2 + 3
sage: L.structure()
(Isomorphism given by variable name change map:
  From: Number Field in a with defining polynomial x^2 + 3
  To: Number Field in z with defining polynomial x^2 + 3,
Isomorphism given by variable name change map:
  From: Number Field in z with defining polynomial x^2 + 3
  To: Number Field in a with defining polynomial x^2 + 3)
```

subfield(alpha, name=None, names=None)

Return a number field K isomorphic to $\mathbb{Q}(\alpha)$ (if this is an absolute number field) or $L(\alpha)$ (if this is a relative extension M/L) and a map from K to self that sends the generator of K to alpha.

INPUT:

- alpha - an element of self, or something that coerces to an element of self.

OUTPUT:

- K - a number field
- from_K - a homomorphism from K to self that sends the generator of K to alpha.

EXAMPLES:
1.1. Number Fields

```python
sage: K.<a> = NumberField(x^4 - 3); K
Number Field in a with defining polynomial x^4 - 3
sage: H.<b>, from_H = K.subfield(a^2)
sage: H
Number Field in b with defining polynomial x^2 - 3 with b = a^2
sage: from_H(b)
a^2
sage: from_H
Ring morphism:
  From: Number Field in b with defining polynomial x^2 - 3 with b = a^2
  To:   Number Field in a with defining polynomial x^4 - 3
  Defn: b |--> a^2

A relative example. Note that the result returned is the subfield generated by α over self.base_field(), not over Q (see github issue #5392):

```python
sage: L.<a> = NumberField(x^2 - 3)
sage: M. = L.extension(x^4 + 1)
sage: K, phi = M.subfield(b^2)
sage: K.base_field() is L
True
```

Subfields inherit embeddings:

```python
sage: K.<z> = CyclotomicField(5)
sage: L, K_from_L = K.subfield(z-z^2-z^3+z^4)
sage: L
Number Field in z0 with defining polynomial x^2 - 5 with z0 = 2.236067977499790?
sage: CLF_from_K = K.coerce_embedding(); CLF_from_K
Generic morphism:
 From: Cyclotomic Field of order 5 and degree 4
 To: Complex Lazy Field
 Defn: z -> 0.309016994374948? + 0.951056516295154?*I
sage: CLF_from_L = L.coerce_embedding(); CLF_from_L
Generic morphism:
 From: Number Field in z0 with defining polynomial x^2 - 5 with z0 = 2.236067977499790?
 To: Complex Lazy Field
 Defn: z0 -> 2.236067977499790?
```

Check transitivity:

```python
sage: CLF_from_L(L.gen())
2.236067977499790?
sage: CLF_from_K(K_from_L(L.gen()))
2.236067977499790? + 0.?e-14*I
```

If `self` has no specified embedding, then `K` comes with an embedding in `self`:

```python
sage: K.<a> = NumberField(x^6 - 6*x^4 + 8*x^2 - 1)
sage: L., from_L = K.subfield(a^2)
sage: L
Number Field in b with defining polynomial x^3 - 6*x^2 + 8*x - 1 with b = a^2
```

(continues on next page)
You can also view a number field as having a different generator by just choosing the input to generate the whole field; for that it is better to use `self.change_generator`, which gives isomorphisms in both directions.

**subfield_from_elements**(alpha, name=None, polred=True, threshold=None)

Return the subfield generated by the elements alpha.

If the generated subfield by the elements alpha is either the rational field or the complete number field, the field returned is respectively QQ or self.

**INPUT:**
- alpha - list of elements in this number field
- name - a name for the generator of the new number field
- polred (boolean, default True) - whether to optimize the generator of the newly created field
- threshold (positive number, default None) - threshold to be passed to the do_polred function

**OUTPUT:** a triple (field, beta, hom) where
- field - a subfield of this number field
- beta - a list of elements of field corresponding to alpha
- hom - inclusion homomorphism from field to self

**EXAMPLES:**

```plaintext
sage: x = polygen(QQ)
sage: poly = x^4 - 4*x^2 + 1
sage: emb = AA.polynomial_root(poly, RIF(0.51, 0.52))
sage: K.<a> = NumberField(poly, embedding=emb)
sage: sqrt2 = -a^3 + 3*a
sage: sqrt3 = -a^2 + 2
sage: assert sqrt2 ** 2 == 2
 and sqrt3 ** 2 == 3
sage: L, elts, phi = K.subfield_from_elements([sqrt2, 1 - sqrt2/3])
sage: L
Number Field in a0 with defining polynomial x^2 - 2 with a0 = 1.414213562373095?
sage: elts
[a0, -1/3*a0 + 1]
sage: phi
Ring morphism:
 From: Number Field in a0 with defining polynomial x^2 - 2 with a0 = 1.414213562373095?
 ---> 5176380902050415?
 Defn: a0 |--> -a^3 + 3*a
sage: assert phi(elts[0]) == sqrt2
sage: assert phi(elts[1]) == 1 - sqrt2/3
```

```plaintext
(continues on next page)
```
sage: assert phi(elts[1]) == sqrt3
sage: L, elts, phi = K.subfield_from_elements([sqrt2, sqrt3])
sage: phi
Identity endomorphism of Number Field in a with defining polynomial x^4 - 4*x^2 + 1 with a = 0.5176380902050415?

trace_dual_basis(b)
Compute the dual basis of a basis of self with respect to the trace pairing.

EXAMPLES:

```sage
sage: K.<a> = NumberField(x^3 + x + 1)
sage: b = [1, 2*a, 3*a^2]
sage: T = K.trace_dual_basis(b); T
[4/31*a^2 - 6/31*a + 13/31, -9/62*a^2 - 1/31*a - 3/31, 2/31*a^2 - 3/31*a + 4/93]
sage: [(b[i]*T[j]).trace() for i in range(3) for j in range(3)]
[1, 0, 0, 0, 1, 0, 0, 0, 1]
```

trace_pairing(v)
Return the matrix of the trace pairing on the elements of the list v.

EXAMPLES:

```sage
sage: K.<zeta3> = NumberField(x^2 + 3)
sage: K.trace_pairing([1, zeta3])
[2 0]
[0 -6]
```

uniformizer(P, others='positive')
Return an element of self with valuation 1 at the prime ideal P.

INPUT:

- **self** - a number field
- **P** - a prime ideal of self
- **others** - either “positive” (default), in which case the element will have non-negative valuation at all other primes of self, or “negative”, in which case the element will have non-positive valuation at all other primes of self.

**Note:** When P is principal (e.g. always when self has class number one) the result may or may not be a generator of P!

EXAMPLES:

```sage
sage: K.<a> = NumberField(x^2 + 5); K
Number Field in a with defining polynomial x^2 + 5
sage: P, Q = K.ideal(3).prime_factors()
sage: pi = K.uniformizer(P); pi
a + 1
```

(continues on next page)
sage: K.ideal(pi).factor()
(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1))
sage: pi = K.uniformizer(P, 'negative'); pi
1/2*a + 1/2
sage: K.ideal(pi).factor()
(Fractional ideal (2, a + 1))^-1 * (Fractional ideal (3, a + 1))
sage: K = CyclotomicField(9)
sage: Plist=K.ideal(17).prime_factors()
sage: pilist = [K.uniformizer(P) for P in Plist]
sage: [pi.is_integral() for pi in pilist]
[True, True, True]
sage: [pi.valuation(P) for pi,P in zip(pilist,Plist)]
[1, 1, 1]
sage: [ pilist[i] in Plist[i] for i in range(len(Plist)) ]
[True, True, True]
sage: K.<t> = NumberField(x^4 - x^3 - 3*x^2 - x + 1)
sage: [K.uniformizer(P) for P,e in factor(K.ideal(2))]
[2]
sage: [K.uniformizer(P) for P,e in factor(K.ideal(3))]
[t - 1]
sage: [K.uniformizer(P) for P,e in factor(K.ideal(5))]
[t^2 - t + 1, t^2 + 3*t + 1]  # representation varies, not tested
[ t^2 + 3*t + 1]
sage: [K.uniformizer(P) for P,e in factor(K.ideal(67))]
[t + 23, t + 26, t - 32, t - 18]

ALGORITHM:

Use PARI. More precisely, use the second component of pari:idealprimedec in the “positive” case. Use pari:idealappr with exponent of -1 and invert the result in the “negative” case.

unit_group(proof=None)

Return the unit group (including torsion) of this number field.

ALGORITHM: Uses PARI's pari:bnfinit command.

INPUT:

• proof (bool, default True) flag passed to pari.

Note: The group is cached.

See also:

units() S_unit_group() S_units()

EXAMPLES:

sage: x = QQ['x'].0
sage: A = x^4 - 10*x^3 + 20*5*x^2 - 15*5^2*x + 11*5^3

(continues on next page)
sage: K = NumberField(A, 'a')
sage: U = K.unit_group(); U
Unit group with structure C10 x Z of Number Field in a with defining polynomial:
-x^4 - 10*x^3 + 100*x^2 - 375*x + 1375
sage: U.gens()
(u0, u1)
sage: U.gens_values()  # random
[-1/275*a^3 + 7/55*a^2 - 6/11*a + 4, 1/275*a^3 + 4/55*a^2 - 5/11*a + 3]
sage: U.invariants()
(10, 0)
sage: [u.multiplicative_order() for u in U.gens()]
[10, +Infinity]

For big number fields, provably computing the unit group can take a very long time. In this case, one can ask for the conjectural unit group (correct if the Generalized Riemann Hypothesis is true):

sage: K = NumberField(x^17 + 3, 'a')
sage: K.unit_group(proof=True)  # takes forever, not tested
...
sage: U = K.unit_group(proof=False)
sage: U
Unit group with structure C2 x Z x Z x Z x Z x Z x Z x Z x Z of Number Field in a with defining polynomial x^17 + 3
sage: U.gens()
(u0, u1, u2, u3, u4, u5, u6, u7, u8)
sage: U.gens_values()  # result not independently verified
[-1, -a^9 - a + 1, -a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 - a^7 + 2*a^6,
-a^4 + 3*a^3 - 2*a^2 + 2*a - 1, 2*a^16 - a^14 - a^13 + 3*a^12 - 2*a^10 + a^9,
+3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 - 2*a^3 - 2*a^2 + 3*a + 4, a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1, -a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2, -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 - 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 - 2*a^2 - 2*a + 2, 2*a^16 + a^15 - a^11 - 3*a^10 - 4*a^9 - 4*a^8 - 4*a^7 - 5*a^6 - 7*a^5 - 8*a^4 - 6*a^3 - 5*a^2 - 2 - 6*a - 7]

units(proof=None)

Return generators for the unit group modulo torsion.

ALGORITHM: Uses PARI’s pari:bnfinit command.

INPUT:

* proof (bool, default True) flag passed to pari.

Note: For more functionality see the unit_group() function.

See also:

unit_group() S_unit_group() S_units()
Algebraic Numbers and Number Fields, Release 10.0

```
sage: x = polygen(QQ)
sage: A = x^4 - 10*x^3 + 20*5*x^2 - 15*5^2*x + 11*5^3
sage: K = NumberField(A, 'a')
sage: K.units()
(-1/275*a^3 - 4/55*a^2 + 5/11*a - 3,)
```

For big number fields, provably computing the unit group can take a very long time. In this case, one can ask for the conjectural unit group (correct if the Generalized Riemann Hypothesis is true):

```
sage: K = NumberField(x^17 + 3, 'a')
sage: K.units(proof=True) # takes forever, not tested
...
sage: K.units(proof=False) # result not independently verified
(-a^9 - a + 1,
 -a^16 + a^15 - a^14 + a^12 + a^11 + a^10 + a^8 - a^7 + 2*a^6 - a^4 + 3*a^3 -
 2*a^2 + 2*a - 1,
 2*a^16 - a^14 - a^13 + 3*a^12 - 2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 -
 2*a^3 - 2*a^2 + 3*a + 4,
 a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1,
 -a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 -
 a^4 - a^3 - a^2 + 2,
 -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 + a^9 + 3*a^8 - 4*a^7 + 5*a^6
 - 6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4,
 a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 -
 2*a + 2,
 2*a^16 + a^15 - a^11 - 3*a^10 - 4*a^9 - 4*a^8 - 4*a^7 - 5*a^6 - 7*a^5 - 8*a^4 -
 6*a^3 - 5*a^2 - 6*a - 7)
```

**valuation**(prime)

Return the valuation on this field defined by prime.

**INPUT:**

- **prime** – a prime that does not split, a discrete (pseudo-)valuation or a fractional ideal

**EXAMPLES:**

The valuation can be specified with an integer prime that is completely ramified in R:

```
sage: K.<a> = NumberField(x^2 + 1)
sage: K.valuation(2)
2-adic valuation
```

It can also be unramified in R:

```
sage: K.valuation(3)
3-adic valuation
```

A prime that factors into pairwise distinct factors, results in an error:

```
sage: K.valuation(5)
Traceback (most recent call last):
...
ValueError: The valuation Gauss valuation induced by 5-adic valuation does not approximate a unique extension of 5-adic valuation with respect to x^2 + 1
```
The valuation can also be selected by giving a valuation on the base ring that extends uniquely:

```
sage: CyclotomicField(5).valuation(ZZ.valuation(5))
5-adic valuation
```

When the extension is not unique, this does not work:

```
sage: K.valuation(ZZ.valuation(5))
Traceback (most recent call last):
...
ValueError: The valuation Gauss valuation induced by 5-adic valuation does not...
→approximate a unique extension of 5-adic valuation with respect to x^2 + 1
```

For a number field which is of the form \( K[x]/(G) \), you can specify a valuation by providing a discrete pseudo-valuation on \( K[x] \) which sends \( G \) to infinity. This lets us specify which extension of the 5-adic valuation we care about in the above example:

```
sage: R.<x> = QQ[]
sage: v = K.valuation(GaussValuation(R, QQ.valuation(5)).augmentation(x + 2,␣
→infinity))
sage: w = K.valuation(GaussValuation(R, QQ.valuation(5)).augmentation(x + 1/2,␣
→infinity))
sage: v == w
False
```

Note that you get the same valuation, even if you write down the pseudo-valuation differently:

```
sage: ww = K.valuation(GaussValuation(R, QQ.valuation(5)).augmentation(x + 3,␣
→infinity))
sage: w is ww
True
```

The valuation prime does not need to send the defining polynomial \( G \) to infinity. It is sufficient if it singles out one of the valuations on the number field. This is important if the prime only factors over the completion, i.e., if it is not possible to write down one of the factors within the number field:

```
sage: v = GaussValuation(R, QQ.valuation(5)).augmentation(x + 3, 1)
sage: K.valuation(v)
[5-adic valuation, v(x + 3) = 1]-adic valuation
```

Finally, prime can also be a fractional ideal of a number field if it singles out an extension of a \( p \)-adic valuation of the base field:

```
sage: K.valuation(K.fractional_ideal(a + 1))
2-adic valuation
```

See also:

- `Order.valuation()`, `pAdicGeneric.valuation()`
- `zeta(n=2, all=False)`
  
  Return one, or a list of all, primitive \( n \)-th root of unity in this field.

  INPUT:
  
  - \( n \) – positive integer
• all – boolean. If False (default), return a primitive \( n \)-th root of unity in this field, or raise a ValueError exception if there are none. If True, return a list of all primitive \( n \)-th roots of unity in this field (possibly empty).

Note: To obtain the maximal order of a root of unity in this field, use \texttt{number_of_roots_of_unity()}.

Note: We do not create the full unit group since that can be expensive, but we do use it if it is already known.

EXAMPLES:

```python
sage: K.<z> = NumberField(x^2 + 3)
1
sage: K.zeta(2)
-1
sage: K.zeta(2, all=True)
[-1]
```

```python
sage: K.zeta(3)
-1/2*z - 1/2
sage: K.zeta(3, all=True)
[-1/2*z - 1/2, 1/2*z - 1/2]
```

```python
sage: K.zeta(4)
Traceback (most recent call last):
...: ValueError: there are no 4th roots of unity in self
```

```python
sage: r.<x> = QQ[]
sage: K. = NumberField(x^2+1)
b
sage: K.zeta(4,all=True)
[b, -b]
```

```python
sage: K.zeta(3)
Traceback (most recent call last):
...: ValueError: there are no 3rd roots of unity in self
```

```python
sage: K.zeta(3,all=True)
[]
```

Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):

```python
sage: K.<a> = NumberField(1/2*a^2 + 1/6)
sage: K.zeta(3)
-3/2*a - 1/2
```

\texttt{zeta_coefficients}(n)

Compute the first \( n \) coefficients of the Dedekind zeta function of this field as a Dirichlet series.

EXAMPLES:
sage: x = QQ['x'].0
sage: NumberField(x^2+1, 'a').zeta_coefficients(10)
[1, 1, 0, 1, 2, 0, 0, 1, 1, 2]

zeta_order()
Return the number of roots of unity in this field.

Note: We do not create the full unit group since that can be expensive, but we do use it if it is already known.

EXAMPLES:

sage: F.<alpha> = NumberField(x**22+3)
sage: F.zeta_order()
6
sage: F.<alpha> = NumberField(x**2-7)
sage: F.zeta_order()
2

sage.rings.number_field.number_field.NumberField_generic_v1(poly, name, latex_name, canonical_embedding=None)
Used for unpickling old pickles.

EXAMPLES:

sage: from sage.rings.number_field.number_field import NumberField_absolute_v1
sage: R.<x> = QQ[]
sage: NumberField_absolute_v1(x^2 + 1, 'i', 'i')
Number Field in i with defining polynomial x^2 + 1

class sage.rings.number_field.number_field.NumberField_quadratic(polynomial, name=None, latex_name=None, check=True, embedding=None, assume_disc_small=False, maximize_at_primes=None, structure=None)
Bases: NumberField_absolute, NumberField_quadratic
Create a quadratic extension of the rational field.

The command QuadraticField(a) creates the field \( \mathbb{Q}(\sqrt{a}) \).

EXAMPLES:

sage: QuadraticField(3, 'a')
Number Field in a with defining polynomial x^2 - 3 with a = 1.732050807568878?
sage: QuadraticField(-4, 'b')
Number Field in b with defining polynomial x^2 + 4 with b = 2*I

class_number(proof=None)
Return the size of the class group of self.

INPUT:
• **proof** – boolean (default: True, unless you called `proof.number_field()` and set it otherwise). If `proof` is False (not the default!), and the discriminant of the field is negative, then the following warning from the PARI manual applies:

**Warning:** For \( D < 0 \), this function may give incorrect results when the class group has a low exponent (has many cyclic factors), because implementing Shank’s method in full generality slows it down immensely.

**EXAMPLES:**

```sage
sage: QuadraticField(-23, 'a').class_number()
sage: 3
```

These are all the primes so that the class number of \( \mathbb{Q}(\sqrt{-p}) \) is 1:

```sage
sage: [d for d in prime_range(2,300) if not is_square(d) and QuadraticField(-d, 'a').class_number() == 1]
[2, 3, 7, 11, 19, 43, 67, 163]
```

It is an open problem to prove that there are infinity many positive square-free \( d \) such that \( \mathbb{Q}(\sqrt{d}) \) has class number 1:

```sage
sage: len([d for d in range(2,200) if not is_square(d) and QuadraticField(d,'a').class_number() == 1])
sage: 121
```

**discriminant**

Return the discriminant of the ring of integers of the number field, or if \( v \) is specified, the determinant of the trace pairing on the elements of the list \( v \).

**INPUT:**

• \( v \) (optional) - list of element of this number field

**OUTPUT:** Integer if \( v \) is omitted, and Rational otherwise.

**EXAMPLES:**

```sage
sage: K.<i> = NumberField(x^2+1)
sage: K.discriminant()
sage: -4
sage: K.<a> = NumberField(x^2+5)
sage: K.discriminant()
sage: -20
sage: K.<a> = NumberField(x^2-5)
sage: K.discriminant()
sage: 5
```

**hilbert_class_field**

Return the Hilbert class field of this quadratic field as a relative extension of this field.

**Note:** For the polynomial that defines this field as a relative extension, see the `hilbert_class_field_defining_polynomial` command, which is vastly faster than this command, since it doesn’t construct a relative extension.
EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 + 23)
sage: L = K.hilbert_class_field('b'); L
Number Field in b with defining polynomial x^3 - x^2 + 1 over its base field
sage: L.absolute_field('c')
Number Field in c with defining polynomial x^6 - 2*x^5 + 70*x^4 - 90*x^3 +
\rightarrow 1631*x^2 - 1196*x + 12743
sage: K.hilbert_class_field_defining_polynomial()
x^3 - x^2 + 1
```

`hilbert_class_field_defining_polynomial(name='x')`

Return a polynomial over \( \mathbb{Q} \) whose roots generate the Hilbert class field of this quadratic field as an extension of this quadratic field.

**Note:** Computed using PARI via Schertz’s method. This implementation is quite fast.

EXAMPLES:

```python
sage: K. = QuadraticField(-23)
sage: K.hilbert_class_field_defining_polynomial()
x^3 - x^2 + 1
```

Note that this polynomial is not the actual Hilbert class polynomial: see `hilbert_class_polynomial`:

```python
sage: K.hilbert_class_polynomial()
x^3 + 3491750*x^2 - 5151296875*x + 12771880859375
```

```python
sage: K.<a> = QuadraticField(-431)
sage: K.class_number()
21
sage: K.hilbert_class_field_defining_polynomial(name='z')
z^3 + 6*z^2 + 9*z^19 - 4*z^18 + 33*z^17 + 140*z^16 + 220*z^15 + 243*z^14 +
\rightarrow 322*z^13 + 461*z^12 + 658*z^11 + 743*z^11 + 722*z^9 + 681*z^8 + 619*z^7 +
\rightarrow 522*z^6 + 405*z^5 + 261*z^4 + 119*z^3 + 35*z^2 + 7*z + 1
```

`hilbert_class_polynomial(name='x')`

Compute the Hilbert class polynomial of this quadratic field.

Right now, this is only implemented for imaginary quadratic fields.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(-3)
sage: K.hilbert_class_polynomial()
x
```

```python
sage: K.<a> = QuadraticField(-31)
sage: K.hilbert_class_polynomial(name='z')
z^3 + 39491307*z^2 - 58682638134*z + 1566028350940383
```

`is_galois()`

Return True since all quadratic fields are automatically Galois.

EXAMPLES:
sage: QuadraticField(1234, 'd').is_galois()
True

**number_of_roots_of_unity()**

Return the number of roots of unity in this quadratic field.

This is always 2 except when \( d \) is -3 or -4.

**EXAMPLES:**
```
sage: QF = QuadraticField
sage: [QF(d).number_of_roots_of_unity() for d in range(-7, -2)]
[2, 2, 2, 4, 6]
```

**order_of_conductor()**

Return the unique order with the given conductor in this quadratic field.

**See also:**
```
sage.rings.number_field.order.Order.conductor()
```

**EXAMPLES:**
```
sage: K.<t> = QuadraticField(-123)
sage: K.order_of_conductor(1) is K.maximal_order()
True
sage: K.order_of_conductor(2).gens()
(1, t)
sage: K.order_of_conductor(44).gens()
(1, 22*t)
sage: K.order_of_conductor(9001).conductor()
9001
```

sage.rings.number_field.number_field.NumberField_quadratic_v1(poly, name, canonical_embedding=None)

Used for unpickling old pickles.

**EXAMPLES:**
```
sage: from sage.rings.number_field.number_field import NumberField_quadratic_v1
sage: R.<x> = QQ[]
sage: NumberField_quadratic_v1(x^2 - 2, 'd')
Number Field in d with defining polynomial x^2 - 2
```

sage.rings.number_field.number_field.QuadraticField(D, name='a', check=True, embedding=True, latex_name='sqrt', **args)

Return a quadratic field obtained by adjoining a square root of \( D \) to the rational numbers, where \( D \) is not a perfect square.

**INPUT:**
- \( D \) - a rational number
- name - variable name (default: 'a')
- check - bool (default: True)
- embedding - bool or square root of \( D \) in an ambient field (default: True)
• latex_name - latex variable name (default: sqrt(D))

OUTPUT: A number field defined by a quadratic polynomial. Unless otherwise specified, it has an embedding into $\mathbb{R}$ or $\mathbb{C}$ by sending the generator to the positive or upper-half-plane root.

EXAMPLES:

```
sage: QuadraticField(3, 'a')
Number Field in a with defining polynomial x^2 - 3 with a = 1.7320508075688787
sage: K.<theta> = QuadraticField(3); K
Number Field in theta with defining polynomial x^2 - 3 with theta = 1.
\rightarrow 1.7320508075688787
sage: RR(theta)
1.73205080756888
sage: QuadraticField(9, 'a')
Traceback (most recent call last):
 ... ValueError: D must not be a perfect square.
sage: QuadraticField(9, 'a', check=False)
Number Field in a with defining polynomial x^2 - 9 with a = 3
```

Quadratic number fields derive from general number fields.

```
sage: from sage.rings.number_field.number_field_base import NumberField
data: type(K)
<class 'sage.rings.number_field.number_field.NumberField_quadratic_with_category'>
sage: isinstance(K, NumberField)
True
```

Quadratic number fields are cached:

```
sage: QuadraticField(-11, 'a') is QuadraticField(-11, 'a')
True
```

By default, quadratic fields come with a nice latex representation:

```
sage: K.<a> = QuadraticField(-7)
sage: latex(K)
\Bold{\mathbb{Q}}(\sqrt{-7})
sage: latex(a)
\sqrt{-7}
sage: latex(1/(1+a))
-\frac{1}{8} \sqrt{-7} + \frac{1}{8}
sage: list(K.latex_variable_names())
['\sqrt{-7}']
```

We can provide our own name as well:

```
sage: K.<a> = QuadraticField(next_prime(10^10), latex_name=r'\sqrt{D}')</nsage: 1+a
a + 1
sage: latex(1+a)
\sqrt{D} + 1
sage: latex(QuadraticField(-1, 'a', latex_name=None).gen())
a
```
The name of the generator does not interfere with Sage preparser, see github issue #1135:

```sage
K1 = QuadraticField(5, 'x')
sage: K1
Number Field in x with defining polynomial x^2 - 5 with x = 2.236067977499790?

sage: K1 is K2
True
sage: K1 is K3
True
sage: K1
Number Field in x with defining polynomial x^2 - 5 with x = 2.236067977499790?

sage: K4.<y> = QuadraticField(5, 'x'); K4
Number Field in y with defining polynomial x^2 - 5 with y = 2.236067977499790?

sage: K1 == K4
False
```

```sage
sage.rings.number_field.number_field.is_AbsoluteNumberField(x)
Return True if x is an absolute number field.

EXAMPLES:

```sage
sage: from sage.rings.number_field.number_field import is_AbsoluteNumberField
sage: is_AbsoluteNumberField(NumberField(x^2 + 1, 'a'))
True
sage: is_AbsoluteNumberField(NumberField([x^3 + 17, x^2 + 1], 'a'))
False
```

The rationals are a number field, but they're not of the absolute number field class.

```sage
sage: is_AbsoluteNumberField(QQ)
False
```

```sage
sage.rings.number_field.number_field.is_CyclotomicField(x)
Return True if x is a cyclotomic field, i.e., of the special cyclotomic field class. This function does not return True for a number field that just happens to be isomorphic to a cyclotomic field.

This function is deprecated. Use `isinstance()` with NumberField_cyclotomic instead.

EXAMPLES:

```sage
sage: from sage.rings.number_field.number_field import is_CyclotomicField
doctest:warning... DeprecationWarning: is_CyclotomicField is deprecated; use isinstance(..., sage.rings.abc.NumberField_cyclotomic) instead
See https://github.com/sagemath/sage/issues/32660 for details.
False
sage: is_CyclotomicField(CyclotomicField(4))
True
sage: is_CyclotomicField(CyclotomicField(1))
True
sage: is_CyclotomicField(QQ)
```
sage.rings.number_field.number_field.is_NumberFieldHomsetCodomain(codomain)
Return whether codomain is a valid codomain for a number field homset. This is used by NumberField._Hom_ to determine whether the created homsets should be a sage.rings.number_field.homset.NumberFieldHomset.

EXAMPLES:
This currently accepts any parent (CC, RR,...) in Fields:

```python
sage: from sage.rings.number_field.number_field import is_NumberFieldHomsetCodomain
sage: is_NumberFieldHomsetCodomain(QQ)
True
sage: is_NumberFieldHomsetCodomain(NumberField(x^2 + 1, 'x'))
True
sage: is_NumberFieldHomsetCodomain(ZZ)
False
sage: is_NumberFieldHomsetCodomain(3)
False
sage: is_NumberFieldHomsetCodomain(MatrixSpace(QQ, 2))
False
sage: is_NumberFieldHomsetCodomain(InfinityRing)
False
```

Question: should, for example, QQ-algebras be accepted as well?

Caveat: Gap objects are not (yet) in Fields, and therefore not accepted as number field homset codomains:

```python
sage: is_NumberFieldHomsetCodomain(gap.Rationals)
False
```

sage.rings.number_field.number_field.is_QuadraticField(x)
Return True if x is of the quadratic number field type.

This function is deprecated. Use isinstance() with NumberField_quadratic instead.

EXAMPLES:

```python
sage: from sage.rings.number_field.number_field import is_QuadraticField
sage: is_QuadraticField(QuadraticField(5, 'a'))
doctest:warning...
DeprecationWarning: is_QuadraticField is deprecated; use isinstance(..., sage.rings.abc.NumberField_quadratic instead
See https://github.com/sagemath/sage/issues/32660 for details.
True
sage: is_QuadraticField(NumberField(x^2 - 5, 'b'))
True
sage: is_QuadraticField(NumberField(x^3 - 5, 'b'))
False
```

A quadratic field specially refers to a number field, not a finite field:
sage: is_QuadraticField(GF(9, 'a'))
False

sage.rings.number_field.number_field.is_fundamental_discriminant(D)
Return True if the integer $D$ is a fundamental discriminant, i.e., if $D \equiv 0, 1 \pmod{4}$, and $D \neq 0, 1$ and either (1) $D$ is square free or (2) we have $D \equiv 0 \pmod{4}$ with $D/4 \equiv 2, 3 \pmod{4}$ and $D/4$ square free. These are exactly the discriminants of quadratic fields.

EXAMPLES:

sage: [D for D in range(-15,15) if is_fundamental_discriminant(D)]
...  
DeprecationWarning: is_fundamental_discriminant(D) is deprecated; please use D.is_
˓→fundamental_discriminant()
...  
[-15, -11, -8, -7, -4, -3, 5, 8, 12, 13]

sage: [D for D in range(-15,15) if not is_square(D) and QuadraticField(D, 'a').
˓→disc() == D]
[-15, -11, -8, -7, -4, -3, 5, 8, 12, 13]

sage.rings.number_field.number_field.is_real_place(v)
Return True if $v$ is real, False if $v$ is complex

INPUT:
  • $v$ – an infinite place of $K$

OUTPUT:
A boolean indicating whether a place is real (True) or complex (False).

EXAMPLES:

sage: K.<xi> = NumberField(x^3-3)
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]
sage: v_fin = tuple(K.primes_above(3))[0]
sage: is_real_place(phi_real)
True

sage: is_real_place(phi_complex)
False

It is an error to put in a finite place

sage: is_real_place(v_fin)
Traceback (most recent call last):
  ...  
AttributeError: 'NumberFieldFractionalIdeal' object has no attribute 'im_gens'

sage.rings.number_field.number_field.proof_flag(t)
Used for easily determining the correct proof flag to use.

Return $t$ if $t$ is not None, otherwise return the system-wide proof-flag for number fields (default: True).

EXAMPLES:
sage: from sage.rings.number_field.number_field import proof_flag
sage: proof_flag(True)
True
sage: proof_flag(False)
False
sage: proof_flag(None)
True
sage: proof_flag("banana")
'banana'

sage.rings.number_field.number_field.put_natural_embedding_first(v)
Helper function for embeddings() functions for number fields.

INPUT: a list of embeddings of a number field

OUTPUT: None. The list is altered in-place, so that, if possible, the first embedding has been switched with one of the others, so that if there is an embedding which preserves the generator names then it appears first.

EXAMPLES:

sage: K.<a> = CyclotomicField(7)
sage: embs = K.embeddings(K)
sage: [e(a) for e in embs]
# random - there is no natural sort order
[a, a^2, a^3, a^4, a^5, -a^5 - a^4 - a^3 - a^2 - a - 1]
sage: id = [ e for e in embs if e(a) == a ][0]; id
Ring endomorphism of Cyclotomic Field of order 7 and degree 6
  Defn: a |--> a
sage: permuted_embs = list(embs); permuted_embs.remove(id); permuted_embs.append(id)
sage: [e(a) for e in permuted_embs]
# random - but natural map is not first
[a^2, a^3, a^4, a^5, -a^5 - a^4 - a^3 - a^2 - a - 1, a]
sage: permuted_embs[0] != a
True
sage: from sage.rings.number_field.number_field import put_natural_embedding_first
sage: put_natural_embedding_first(permuted_embs)
[0]
sage: [e(a) for e in permuted_embs]
# random - but natural map is first
[a, a^3, a^4, a^5, -a^5 - a^4 - a^3 - a^2 - a - 1, a^2]
sage: permuted_embs[0] == id
True

sage.rings.number_field.number_field.refine_embedding(e, prec=None)
Given an embedding from a number field to either R or C, returns an equivalent embedding with higher precision.

INPUT:

- e - an embedding of a number field into either RR or CC (with some precision)
- prec - (default None) the desired precision; if None, current precision is doubled; if Infinity, the equivalent embedding into either QQbar or AA is returned.

EXAMPLES:

sage: from sage.rings.number_field.number_field import refine_embedding
sage: K = CyclotomicField(3)
sage: e10 = K.complex_embedding(10)
sage: e10.codomain().precision()
10
(continues on next page)
An example where we extend a real embedding into $\mathbb{AA}$:

```python
sage: K.<a> = NumberField(x^3-2)
sage: K.signature()
(1, 1)
sage: e = K.embeddings(RR)[0]; e
Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Real Field with 53 bits of precision
Defn: a |--> 1.25992104989487
sage: e = refine_embedding(e,Infinity); e
Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Real Field
Defn: a |--> 1.259921049894873?
```

Now we can obtain arbitrary precision values with no trouble:

```python
sage: RealField(150)(e(a))
1.2599921049894873164767210607278283505702515
sage: e(a)^3
2
```

Complex embeddings can be extended into $\mathbb{QQbar}$:

```python
sage: e = K.embeddings(CC)[0]; e
Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Complex Field with 53 bits of precision
Defn: a |--> -0.62996052494743... - 1.09112363597172*I
sage: e = refine_embedding(e,Infinity); e
Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Field
Defn: a |--> -0.6299605249474365823836503963911417528512573235075399004099 + 1.
-0.911236359712140335600726141898088813258733387403009407036*I
sage: e(a)^3
```

Embeddings into lazy fields work:

```python
sage: L = CyclotomicField(7)
sage: x = L.specified_complex_embedding(); x
Generic morphism:
 From: Cyclotomic Field of order 7 and degree 6
```

(continues on next page)
To: Complex Lazy Field

Defn: \( zeta_7 \rightarrow 0.623489801858734? + 0.781831482468030?*I \)

\[ \text{sage: refine_embedding}(x, 300) \]

Ring morphism:

- From: Cyclotomic Field of order 7 and degree 6
- To: Complex Field with 300 bits of precision
- Defn: \( zeta_7 \mid\rightarrow 0.6234898018587335305250048840042398106322747308964021053655494390968565245648728457942507 \)

\[ \rightarrow 0. \]

\[ \rightarrow 0.6234898018587335305250048840042398106322747308964021053655494390968565245648728457942507 \]

\[ \rightarrow + 0.781831482468029808708444526674057750232334518708687528980634958045091731633936441700868007*I \]

\[ \text{sage: refine_embedding}(x, \text{infinity}) \]

Ring morphism:

- From: Cyclotomic Field of order 7 and degree 6
- To: Algebraic Field
- Defn: \( zeta_7 \mid\rightarrow 0.6234898018587335? + 0.7818314824680299?*I \)

When the old embedding is into the real lazy field, then only real embeddings should be considered. See github issue #17495:

\[ \text{sage}: \text{R.<}x\text{=}\text{QQ}[] \]
\[ \text{sage}: \text{K.<}a\text{=}\text{NumberField}(x^3+x-1, \text{embedding}=0.68) \]
\[ \text{sage}: \text{from} \ \text{sage.rings.number_field.number_field} \ \text{import} \ \text{refine_embedding} \]
\[ \text{sage}: \text{refine_embedding(K.specified_complex_embedding()), 100} \]

Ring morphism:

- From: Number Field in a with defining polynomial \( x^3 + x - 1 \) with a = 0.
- \( \rightarrow 6823278038280193? \)
- To: Real Field with 100 bits of precision
- Defn: a |\rightarrow 0.68232780382801932736948373971

\[ \text{sage: refine_embedding}(K.\text{specified\_complex\_embedding}(), \text{Infinity}) \]

Ring morphism:

- From: Number Field in a with defining polynomial \( x^3 + x - 1 \) with a = 0.
- \( \rightarrow 6823278038280193? \)
- To: Algebraic Real Field
- Defn: a |\rightarrow 0.6823278038280193?

1.2 Base class for all number fields

\[ \text{class} \ \text{sage.rings.number_field.number_field_base.NumberField} \]

Bases: Field

Base class for all number fields.

\[ \text{OK(*args, **kwd)} \]

Synonym for self.maximal_order(...).

EXAMPLES:

\[ \text{sage: NumberField}(x^3 - 2, 'a').\text{OK}() \]

Maximal Order in Number Field in a with defining polynomial \( x^3 - 2 \)

\[ \text{bach_bound()} \]

Return the Bach bound associated to this number field.
Assuming the General Riemann Hypothesis, this is a bound $B$ so that every integral ideal is equivalent modulo principal fractional ideals to an integral ideal of norm at most $B$.

See also:

$minkowski_bound()$

OUTPUT:

symbolic expression or the Integer 1

EXAMPLES:

We compute both the Minkowski and Bach bounds for a quadratic field, where the Minkowski bound is much better:

```
sage: K = QQ[sqrt(5)]
sage: K.minkowski_bound()
1/2*sqrt(5)
sage: K.minkowski_bound().n()
1.11803398874989
sage: K.bach_bound()
12*log(5)^2
sage: K.bach_bound().n()
31.0834847277628
```

We compute both the Minkowski and Bach bounds for a bigger degree field, where the Bach bound is much better:

```
sage: K = CyclotomicField(37)
sage: K.minkowski_bound().n()
7.5087335698544e14
sage: K.bach_bound().n()
191669.304126267
```

The bound of course also works for the rational numbers:

```
sage: QQ.minkowski_bound() 1
```

degree()

Return the degree of this number field.

EXAMPLES:

```
sage: NumberField(x^3 + 9, 'a').degree()
3
```

discriminant()

Return the discriminant of this number field.

EXAMPLES:

```
sage: NumberField(x^3 + 9, 'a').discriminant()
-243
```

is_absolute()

Return True if self is viewed as a single extension over $\mathbb{Q}$.

EXAMPLES:
maximal_order()

Return the maximal order, i.e., the ring of integers of this number field.

EXAMPLES:

```sage
sage: NumberField(x^3 - 2,'b').maximal_order()
Maximal Order in Number Field in b with defining polynomial x^3 - 2
```

minkowski_bound()

Return the Minkowski bound associated to this number field.

This is a bound B so that every integral ideal is equivalent modulo principal fractional ideals to an integral ideal of norm at most B.

See also:

bach_bound()

OUTPUT:

symbolic expression or Rational

EXAMPLES:

The Minkowski bound for \(\mathbb{Q}[i]\) tells us that the class number is 1:

```sage
sage: K = QQ[I]
sage: B = K.minkowski_bound(); B
4/pi
sage: B.n()
1.27323954473516
```

We compute the Minkowski bound for \(\mathbb{Q}[\sqrt{2}]\):

```sage
sage: K = QQ[2^(1/3)]
sage: B = K.minkowski_bound(); B
16/3*sqrt(3)/pi
sage: B.n()
2.94042077558289
sage: int(B)
2
```

We compute the Minkowski bound for \(\mathbb{Q}[\sqrt{10}]\), which has class number 2:

```sage
sage: K = QQ[sqrt(10)]
sage: B = K.minkowski_bound(); B
sqrt(10)
```

(continues on next page)
We compute the Minkowski bound for $\mathbb{Q}[\sqrt{2} + \sqrt{3}]$:

\begin{verbatim}
  sage: K.<y,z> = NumberField([x^2-2, x^2-3])
  sage: L.<w> = QQ[sqrt(2) + sqrt(3)]
  sage: B = K.minkowski_bound(); B
  9/2
  sage: int(B)
  4
  sage: B == L.minkowski_bound()
  True
  sage: K.class_number()
  1
\end{verbatim}

The bound of course also works for the rational numbers:

\begin{verbatim}
  sage: QQ.minkowski_bound()
  1
\end{verbatim}

\begin{verbatim}
ring_of_integers(*args, **kwds)

  Synonym for self.maximal_order(...).

  EXAMPLES:

  sage: K.<a> = NumberField(x^2 + 1)
  sage: K.ring_of_integers()
  Gaussian Integers in Number Field in a with defining polynomial x^2 + 1
\end{verbatim}

\begin{verbatim}
signature()

  Return (r1, r2), where r1 and r2 are the number of real embeddings and pairs of complex embeddings of
  this field, respectively.

  EXAMPLES:

  sage: NumberField(x^3 - 2, 'a').signature()
  (1, 1)
\end{verbatim}

\begin{verbatim}
sage.rings.number_field.number_field_base.is_NumberField(x)

  Return True if x is of number field type.

  This function is deprecated.

  EXAMPLES:

  sage: from sage.rings.number_field.number_field_base import is_NumberField
  sage: is_NumberField(NumberField(x^2 + 1, 'a'))
  doctest:...: DeprecationWarning: the function is_NumberField is deprecated; use
  isinstance(x, sage.rings.number_field.number_field_base.NumberField) instead
  See https://github.com/sagemath/sage/issues/35283 for details.
  True
\end{verbatim}
sage: is_NumberField(QuadraticField(-97, 'theta'))
True
sage: is_NumberField(CyclotomicField(97))
True

Note that the rational numbers \( \mathbb{Q} \) are a number field:

sage: is_NumberField(QQ)
True
sage: is_NumberField(ZZ)
False

1.3 Relative Number Fields

AUTHORS:

- Steven Sivek (2006-05-12): added support for relative extensions
- William Stein (2007-09-04): major rewrite and documentation
- Robert Bradshaw (2008-10): specified embeddings into ambient fields
- Nick Alexander (2009-01): modernize coercion implementation
- Robert Harron (2012-08): added \texttt{is\_CM\_extension}
- Julian Rüth (2014-04): absolute number fields are unique parents

This example follows one in the Magma reference manual:

sage: K.<y> = NumberField(x^4 - 420*x^2 + 40000)
sage: z = y^5/11; z
420/11*y^3 - 40000/11*y
sage: R.<y> = PolynomialRing(K)
sage: f = y^2 + y + 1
sage: L.<a> = K.extension(f); L
Number Field in a with defining polynomial \( y^2 + y + 1 \) over its base field
sage: KL.<b> = NumberField([x^4 - 420*x^2 + 40000, x^2 + x + 1]); KL
Number Field in b0 with defining polynomial \( x^4 - 420*x^2 + 40000 \) over its base field

We do some arithmetic in a tower of relative number fields:

sage: K.<cuberoot2> = NumberField(x^3 - 2)
sage: L.<cuberoot3> = K.extension(x^3 - 3)
sage: S.<sqrt2> = L.extension(x^2 - 2)
sage: sqrt2 * cuberoot3
cuberoot3*sqrt2
sage: (sqrt2 + cuberoot3)^5
(20*cuberoot3^2 + 15*cuberoot3 + 4)*sqrt2 + 3*cuberoot3^2 + 20*cuberoot3 + 60
sage: cuberoot2 + cuberoot3
(continues on next page)
cuberoot3 + cuberoot2
sage: cuberoot2 + cuberoot3 + sqrt2
sqrt2 + cuberoot3 + cuberoot2
sage: (cuberoot2 + cuberoot3 + sqrt2)^2
(2*cuberoot3 + 2*cuberoot2)*sqrt2 + cuberoot3^2 + 2*cuberoot2*cuberoot3 + cuberoot2^2 + 2
sage: cuberoot2 + sqrt2
sqrt2 + cuberoot2
sage: a = S(cuberoot2); a
cuberoot2
sage: a.parent()
Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field

WARNING: Doing arithmetic in towers of relative fields that depends on canonical coercions is currently VERY SLOW. It is much better to explicitly coerce all elements into a common field, then do arithmetic with them there (which is quite fast).

sage.rings.number_field.number_field_rel.NumberField_extension_v1(base_field, poly, name, latex_name, canonical_embedding=\text{None})

Used for unpickling old pickles.

EXAMPLES:

sage: from sage.rings.number_field.number_field_rel import NumberField_relative_v1
sage: R.<x> = CyclotomicField(3)[]
sage: NumberField_relative_v1(CyclotomicField(3), x^2 + 7, 'a', 'a')
Number Field in a with defining polynomial x^2 + 7 over its base field

class sage.rings.number_field.number_field_rel.NumberField_relative(base, polynomial, name, latex_name=None, names=None, check=True, embedding=None, structure=None)

Bases: NumberField_generic

INPUT:

- base – the base field
- polynomial – a polynomial which must be defined in the ring \( K[x] \), where \( K \) is the base field.
- name – a string, the variable name
- latex_name – a string or None (default: None), variable name for latex printing
- check – a boolean (default: True), whether to check irreducibility of polynomial
- embedding – currently not supported, must be None
- structure – an instance of structure.NumberFieldStructure or None (default: None), provides additional information about this number field, e.g., the absolute number field from which it was created

EXAMPLES:

sage: K.<a> = NumberField(x^3 - 2)
sage: t = polygen(K)
sage: L.<b> = K.extension(t^2+t+a); L
Number Field in b with defining polynomial x^2 + x + a over its base field

Chapter 1. Algebraic Number Fields
absolute_base_field()

Return the base field of this relative extension, but viewed as an absolute field over \( \mathbb{Q} \).

**EXAMPLES:**

```python
sage: K.<a,b,c> = NumberField([x^2 + 2, x^3 + 3, x^3 + 2])
sage: K
Number Field in a with defining polynomial x^2 + 2 over its base field
sage: K.base_field()
Number Field in b with defining polynomial x^3 + 3 over its base field
sage: K.absolute_base_field()[0]
Number Field in a0 with defining polynomial x^9 + 3*x^6 + 165*x^3 + 1
sage: K.base_field().absolute_field('z')
Number Field in z with defining polynomial x^9 + 3*x^6 + 165*x^3 + 1
```

absolute_degree()

The degree of this relative number field over the rational field.

**EXAMPLES:**

```python
sage: K.<a> = NumberFieldTower([x^2 - 17, x^3 - 2])
sage: K.absolute_degree()
6
```

absolute_different()

Return the absolute different of this relative number field \( L \), as an ideal of \( L \). To get the relative different of \( L/K \), use \( L\.relative\_different() \).

**EXAMPLES:**

```python
sage: K.<i> = NumberField(x^2 + 1)
sage: t = K['t'].gen()
sage: L. = K.extension(t^4 - i)
sage: L.absolute_different()
Fractional ideal (8)
```

absolute_discriminant(\( \nu=\text{None} \))

Return the absolute discriminant of this relative number field or if \( \nu \) is specified, the determinant of the trace pairing on the elements of the list \( \nu \).

**INPUT:**

- \( \nu \) (optional) – list of element of this relative number field.

**OUTPUT:** Integer if \( \nu \) is omitted, and Rational otherwise.

**EXAMPLES:**

```python
sage: K.<i> = NumberField(x^2 + 1)
sage: t = K['t'].gen()
sage: L. = K.extension(t^4 - i)
sage: L.absolute_discriminant()
16777216
sage: L.absolute_discriminant([(b + i)^j for j in range(8)])
61911970349056
```
absolute_field(names)

Return self as an absolute number field.

INPUT:

• names – string; name of generator of the absolute field

OUTPUT:

An absolute number field $K$ that is isomorphic to this field.

Also, $K$.structure() returns from_K and to_K, where from_K is an isomorphism from $K$ to self and to_K is an isomorphism from self to $K$.

EXAMPLES:

```python
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: L.<xyz> = K.absolute_field(); L
Number Field in xyz with defining polynomial x^8 + 8*x^6 + 30*x^4 - 40*x^2 + 49
sage: L.<c> = K.absolute_field(); L
Number Field in c with defining polynomial x^8 + 8*x^6 + 30*x^4 - 40*x^2 + 49
sage: from_L, to_L = L.structure()
sage: from_L
Isomorphism map:
From: Number Field in c with defining polynomial x^8 + 8*x^6 + 30*x^4 - 40*x^2 + 49
To: Number Field in a with defining polynomial x^4 + 3 over its base field
sage: from_L(c)
a - b
sage: to_L
Isomorphism map:
From: Number Field in a with defining polynomial x^4 + 3 over its base field
To: Number Field in c with defining polynomial x^8 + 8*x^6 + 30*x^4 - 40*x^2 + 49
sage: to_L(a)
-5/182*c^7 - 87/364*c^5 - 185/182*c^3 + 323/364*c
sage: to_L(b)
-5/182*c^7 - 87/364*c^5 - 185/182*c^3 - 41/364*c
sage: to_L(a)^4
-3
sage: to_L(b)^2
-2
```

absolute_generator()

Return the chosen generator over $\mathbb{Q}$ for this relative number field.

EXAMPLES:

```python
sage: y = polygen(QQ, 'y')
sage: k.<a> = NumberField([y^2 + 2, y^4 + 3])
sage: g = k.absolute_generator(); g
a0 - a1
sage: g.minpoly()
x^2 + 2*a1*x + a1^2 + 2
```
absolute_minpoly()

Return the polynomial over \( \mathbb{Q} \) that defines this field as an extension of the rational numbers.

Note: The absolute polynomial of a relative number field is chosen to be equal to the defining polynomial of the underlying PARI absolute number field (it cannot be specified by the user). In particular, it is always a monic polynomial with integral coefficients. On the other hand, the defining polynomial of an absolute number field and the relative polynomial of a relative number field are in general different from their PARI counterparts.

EXAMPLES:

```sage
k.<a, b> = NumberField([x^2 + 1, x^3 + x + 1]); k
Number Field in a with defining polynomial x^2 + 1 over its base field
```

```sage
k.absolute_minpoly()
x^6 + 5*x^4 - 2*x^3 + 4*x^2 + 4*x + 1
```

An example comparing the various defining polynomials to their PARI counterparts:

```sage
k.<a, c> = NumberField([x^2 + 1/3, x^2 + 1/4])
sage: k.absolute_minpoly()
x^4 - x^2 + 1
```

```sage
k.pari_polynomial()
x^4 - x^2 + 1
```

```sage
k.base_field().absolute_polynomial()
x^2 + 1/4
```

```sage
k.pari_absolute_base_polynomial()
y^2 + 1
```

```sage
k.relative_minpoly()
x^2 + 1/3
```

```sage
k.pari_relative_minpoly()
x^2 + Mod(y, y^2 + 1)*x - 1
```

absolute_polynomial

Return the polynomial over \( \mathbb{Q} \) that defines this field as an extension of the rational numbers.

absolute_polynomial_ntl()

Return defining polynomial of this number field as a pair, an ntl polynomial and a denominator.

This is used mainly to implement some internal arithmetic.

EXAMPLES:

```sage
NumberField(x^2 + (2/3)*x - 9/17, 'a').absolute_minpoly()
([-27 34 51], 51)
```

absolute_vector_space(base=None, *args, **kwds)

Return vector space over \( \mathbb{Q} \) of \( \textsf{self} \) and isomorphisms from the vector space to \( \textsf{self} \) and in the other direction.

EXAMPLES:

```sage
K.<a,b> = NumberField([x^3 + 3, x^3 + 2]); K
Number Field in a with defining polynomial x^3 + 3 over its base field
```

(continues on next page)
\texttt{sage: }V, \texttt{from\_V, to\_V} = \texttt{K.absolute\_vector\_space()}; \ V
\texttt{sage: }\texttt{from\_V}
Isomorphism map:
  \texttt{From: Vector space of dimension 9 over Rational Field}
  \texttt{To: Number Field in a with defining polynomial x^3 + 3 over its base field}
\texttt{sage: }\texttt{to\_V}
Isomorphism map:
  \texttt{From: Number Field in a with defining polynomial x^3 + 3 over its base field}
  \texttt{To: Vector space of dimension 9 over Rational Field}
\texttt{sage: }c = (a+1)^5; \ c
7*a^2 - 10*a - 29
\texttt{sage: }\texttt{to\_V(c)}
\texttt{(-29, -712/9, 19712/45, 0, -14/9, 364/45, 0, -4/9, 119/45)}
\texttt{sage: }\texttt{from\_V(to\_V(c))}
7*a^2 - 10*a - 29
\texttt{sage: }\texttt{from\_V(3*to\_V(b))}
3*b

\texttt{automorphisms()}

Compute all Galois automorphisms of self over the base field. This is different than computing the embeddings of self into self; there, automorphisms that do not fix the base field are considered.

EXAMPLES:

\texttt{sage: }K.<a, b> = \texttt{NumberField([x^2 + 10000, x^2 + x + 50]); K}
Number Field in a with defining polynomial x^2 + 10000 over its base field
\texttt{sage: }K.\texttt{automorphisms()}
\texttt{[}
Relative number field endomorphism of Number Field in a with defining polynomial x^2 + 10000 over its base field
  \texttt{Defn: a |--> a}
  \texttt{b |--> b},
Relative number field endomorphism of Number Field in a with defining polynomial x^2 + 10000 over its base field
  \texttt{Defn: a |--> -a}
  \texttt{b |--> b}
\texttt{]}
\texttt{sage: }\rho, \tau = K.\texttt{automorphisms()}
\texttt{sage: }\tau(a)
-a
\texttt{sage: }\tau(b) == b
\texttt{True}
\texttt{sage: }L.<b, a> = \texttt{NumberField([x^2 + x + 50, x^2 + 10000, ]); L}
Number Field in b with defining polynomial x^2 + x + 50 over its base field
\texttt{sage: }L.\texttt{automorphisms()}
\texttt{[}
Relative number field endomorphism of Number Field in b with defining polynomial x^2 + x + 50 over its base field
  \texttt{Defn: b |--> b}
  \texttt{a |--> a,
Relative number field endomorphism of Number Field in b with defining polynomial \(x^2 + x + 50\) over its base field

\[
\text{Defn: } \begin{align*}
b & \mapsto -b - 1 \\
a & \mapsto a
\end{align*}
\]

\[
\text{sage: } \rho, \tau = L.\text{automorphisms}()
\]

\[
\text{sage: } \tau(a) == a
\]
True

\[
\text{sage: } \tau(b)
\]
\(-b - 1\)

\[
\text{sage: } \text{PQ.<}X\text{> = QQ[]}
\]

\[
\text{sage: } F.<a, b> = \text{NumberField([}X^2 - 2, X^2 - 3\text{])}
\]

\[
\text{sage: } \text{PF.<}Y\text{> = F[]}
\]

\[
\text{sage: } K.<c> = F.\text{extension(}Y^2 - (1 + a)*a + b)*a*b\text{)}
\]

\[
\text{sage: } K.\text{automorphisms}()
\]

\[
\text{[}
\begin{align*}
\text{Relative number field endomorphism of Number Field in c with defining polynomial } & Y^2 + (-2*b - 3)*a - 2*b - 6 \\
\text{Defn: } c & \mapsto c \\
a & \mapsto a \\
b & \mapsto b,
\end{align*}
\]

\[
\text{Relative number field endomorphism of Number Field in c with defining polynomial } & Y^2 + (-2*b - 3)*a - 2*b - 6 \\
\text{Defn: } c & \mapsto -c \\
a & \mapsto a \\
b & \mapsto b
\]

\]

**base_field()**

Return the base field of this relative number field.

**EXAMPLES:**

\[
\text{sage: } k.<a> = \text{NumberField([}x^3 + x + 1\text{])}
\]

\[
\text{sage: } R.<z> = k[
\]

\[
\text{sage: } L.<b> = \text{NumberField(z^3 + a)}
\]

\[
\text{sage: } L.\text{base_field}()
\]

Number Field in a with defining polynomial \(x^3 + x + 1\)

\[
\text{sage: } L.\text{base_field}() \text{ is } k
\]
True

This is very useful because the print representation of a relative field doesn’t describe the base field:

\[
\text{sage: } L
\]

Number Field in b with defining polynomial \(z^3 + a\) over its base field

**base_ring()**

This is exactly the same as base_field.

**EXAMPLES:**
change_names(names)

Return relative number field isomorphic to self but with the given generator names.

INPUT:

• names – number of names should be at most the number of generators of self, i.e., the number of steps in the tower of relative fields.

Also, K.structure() returns from_K and to_K, where from_K is an isomorphism from K to self and to_K is an isomorphism from self to K.

EXAMPLES:

sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: L.<c,d> = K.change_names()

An example with a 3-level tower:

sage: K.<a,b,c> = NumberField([x^2 + 17, x^2 + x + 1, x^3 - 2]); K
Number Field in a with defining polynomial x^2 + 17 over its base field
sage: L.<m,n,r> = K.change_names()

And a more complicated example:

sage: PQ.<X> = QQ
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])

(continues on next page)
composite_fields\(\)\(\text{(other, names=\text{None}, both\_maps=\text{False}, preserve\_embedding=\text{True})}\)

List of all possible composite number fields formed from self and other, together with (optionally) embeddings into the compositum; see the documentation for both\_maps below.

Since relative fields do not have ambient embeddings, preserve\_embedding has no effect. In every case all possible composite number fields are returned.

INPUT:

\begin{itemize}
\item other - a number field
\item names - generator name for composite fields
\item both\_maps - (default: False) if True, return quadruples \((F, \text{self\_into\_F}, \text{other\_into\_F}, k)\) such that \(\text{self\_into\_F}\) maps self into \(F\), other\_into\_F maps other into \(F\). For relative number fields \(k\) is always None.
\item preserve\_embedding - (default: True) has no effect, but is kept for compatibility with the absolute version of this function. In every case the list of all possible compositums is returned.
\end{itemize}

OUTPUT:

\begin{itemize}
\item list - list of the composite fields, possibly with maps.
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: K.<a, b> = NumberField([x^2 + 5, x^2 - 2])
sage: L.<c, d> = NumberField([x^2 + 5, x^2 - 3])
sage: K.composite_fields(L, 'e')
[Number Field in e with defining polynomial x^8 - 24*x^6 + 464*x^4 + 3840*x^2 + 25600]
sage: K.composite_fields(L, 'e', both_maps=True)
[[Number Field in e with defining polynomial x^8 - 24*x^6 + 464*x^4 + 3840*x^2 + 25600,
  Relative number field morphism:
  From: Number Field in a with defining polynomial x^2 + 5 over its base field
  To:  Number Field in e with defining polynomial x^8 - 24*x^6 + 464*x^4 + 3840*x^2 + 25600
  Defn: a |--> -9/66560*e^7 + 11/4160*e^5 - 241/4160*e^3 - 101/104*e
  b |--> -21/166400*e^7 + 73/20800*e^5 - 779/10400*e^3 + 7/260*e,
  Relative number field morphism:
  From: Number Field in c with defining polynomial x^2 + 5 over its base field
  To:  Number Field in e with defining polynomial x^8 - 24*x^6 + 464*x^4 + 3840*x^2 + 25600
  Defn: c |--> -9/66560*e^7 + 11/4160*e^5 - 241/4160*e^3 - 101/104*e
d |--> -3/25600*e^7 + 7/1600*e^5 - 147/1600*e^3 + 1/40*e,
  None]]
\end{verbatim}

\text{defining\_polynomial\(\)}

Return the defining polynomial of this relative number field.

This is exactly the same as \text{relative\_polynomial\(\)}.
EXAMPLES:

```
sage: C.<z> = CyclotomicField(5)
sage: PC.<X> = C[]
sage: K.<a> = C.extension(X^2 + X + z); K
Number Field in a with defining polynomial X^2 + X + z over its base field
sage: K.defining_polynomial()
X^2 + X + z
```

**degree()**

The degree, unqualified, of a relative number field is deliberately not implemented, so that a user cannot mistake the absolute degree for the relative degree, or vice versa.

EXAMPLES:

```
sage: K.<a> = NumberFieldTower([x^2 - 17, x^3 - 2])
sage: K.degree()
Traceback (most recent call last):
 ...;
NotImplementedError: For a relative number field you must use relative_degree...
→ or absolute_degree as appropriate
```

different()  

The different, unqualified, of a relative number field is deliberately not implemented, so that a user cannot mistake the absolute different for the relative different, or vice versa.

EXAMPLES:

```
sage: K.<a> = NumberFieldTower([x^2 + x + 1, x^3 + x + 1])
sage: K.different()
Traceback (most recent call last):
 ...;
NotImplementedError: For a relative number field you must use relative_...
→ different or absolute_differnece as appropriate
```

disc()  

The discriminant, unqualified, of a relative number field is deliberately not implemented, so that a user cannot mistake the absolute discriminant for the relative discriminant, or vice versa.

EXAMPLES:

```
sage: K.<a> = NumberFieldTower([x^2 + x + 1, x^3 + x + 1])
sage: K.disc()
Traceback (most recent call last):
 ...;
NotImplementedError: For a relative number field you must use relative_...
→ discriminant or absolute_discriminant as appropriate
```

discriminant()  

The discriminant, unqualified, of a relative number field is deliberately not implemented, so that a user cannot mistake the absolute discriminant for the relative discriminant, or vice versa.

EXAMPLES:
sage: K.<a> = NumberFieldTower([x^2 + x + 1, x^3 + x + 1])
sage: K.discriminant()
Traceback (most recent call last):
... 
NotImplementedError: For a relative number field you must use relative_discriminant or absolute_discriminant as appropriate

embeddings(K)

Compute all field embeddings of the relative number field self into the field \( K \) (which need not even be a number field, e.g., it could be the complex numbers). This will return an identical result when given \( K \) as input again.

If possible, the most natural embedding of self into \( K \) is put first in the list.

INPUT:

- \( K \) — a field

EXAMPLES:

sage: K.<a,b> = NumberField([x^3 - 2, x^2+1])
sage: f = K.embeddings(ComplexField(58)); f
[ Relative number field morphism:
  From: Number Field in a with defining polynomial x^3 - 2 over its base field
  To:   Complex Field with 58 bits of precision
  Defn: a |--> -0.62996052494743676 - 1.0911236359717214*I
  b |--> -1.9428902930940239e-16 + 1.0000000000000000*I,
  ...
  Relative number field morphism:
  From: Number Field in a with defining polynomial x^3 - 2 over its base field
  To:   Complex Field with 58 bits of precision
  Defn: a |--> 1.2599210498948731
  b |--> -0.99999999999999999*I
]
sage: f[0](a)^3
2.0000000000000002 - 8.6389229103644993e-16*I
sage: f[0](b)^2
-1.0000000000000001 - 3.8857805861880480e-16*I
sage: f[0](a+b)
-0.62996052494743693 - 0.091123635971721295*I

free_module(base=None, basis=None, map=True)

Return a vector space over a specified subfield that is isomorphic to this number field, together with the isomorphisms in each direction.

INPUT:

- \( \text{base} \) — a subfield
- \( \text{basis} \) — (optional) a list of elements giving a basis over the subfield
- \( \text{map} \) — (default True) whether to return isomorphisms to and from the vector space

EXAMPLES:
sage: K.<a,b,c> = NumberField([x^2 + 2, x^3 + 2, x^3 + 3]); K
Number Field in a with defining polynomial x^2 + 2 over its base field
sage: V, from_V, to_V = K.free_module()
sage: to_V(K.0)
(0, 1)
sage: W, from_W, to_W = K.free_module(base=QQ)
sage: w = to_W(K.0); len(w)
18
sage: w[0]
-127917622658689792301282/48787705559800061938765

\textbf{galois_closure}(\textit{names=None})

Return the absolute number field \( K \) that is the Galois closure of this relative number field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: K.galois_closure()
Number Field in c with defining polynomial x^16 + 16*x^14 + 28*x^12 + 784*x^10 + 19846*x^8 - 595280*x^6 + 2744476*x^4 + 3212848*x^2 + 29953729
\end{verbatim}

\textbf{gen}(\textit{n=0})

Return the \( n \)’th generator of this relative number field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: K.gens()
(a, b)
sage: K.gen(0)
a
\end{verbatim}

\textbf{gens}()

Return the generators of this relative number field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: K.gens()
(a, b)
\end{verbatim}

\textbf{is_CM_extension}()

Return True is this is a CM extension, i.e. a totally imaginary quadratic extension of a totally real field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: F.<a> = NumberField(x^2 - 5)
sage: K.<z> = F.extension(x^2 + 7)
sage: K.is_CM_extension()
True
sage: K = CyclotomicField(7)
\end{verbatim}
A CM field $K$ such that $K/F$ is not a CM extension

```python
sage: F.<a> = CyclotomicField(3)
sage: K.<z> = F.extension(x^3 - 2)
sage: K.is_CM_extension()
False
```

A CM field $K$ such that $K/F$ is not a CM extension

```python
sage: F.<a> = NumberField(x^2 + 1)
sage: K.<z> = F.extension(x^2 - 3)
sage: K.is_CM_extension()
False
```

### `is_absolute()`

Returns False, since this is not an absolute field.

**EXAMPLES:**

```python
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: K.is_absolute()
False
```

### `is_free` (*proof=None*)

Determine whether or not $L/K$ is free.

(i.e. if $\mathcal{O}_L$ is a free $\mathcal{O}_K$-module).

**INPUT:**

* proof – default: True

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2+6)
sage: x = polygen(K)
sage: L. = K.extension(x^2 + 3) # extend by x^2+3
sage: L.is_free()
False
```

### `is_galois()`

For a relative number field, `is_galois()` is deliberately not implemented, since it is not clear whether this would mean “Galois over $\mathbb{Q}$” or “Galois over the given base field”. Use either `is_galois_absolute()` or `is_galois_relative()` respectively.

**EXAMPLES:**
sage: k.<a> = NumberField([x^3 - 2, x^2 + x + 1])
sage: k.is_galois()
Traceback (most recent call last):
... NotImplementedError: For a relative number field L you must use either L.is_galois_relative() or L.is_galois_absolute() as appropriate

is_galois_absolute()
Return True if for this relative extension $L/K$, $L$ is a Galois extension of $\mathbb{Q}$.

EXAMPLES:

sage: K.<a> = NumberField(x^3 - 2)
sage: y = polygen(K); L.<b> = K.extension(y^2 - a)
sage: L.is_galois_absolute()
False

is_galois_relative()
Return True if for this relative extension $L/K$, $L$ is a Galois extension of $K$.

EXAMPLES:

sage: K.<a> = NumberField(x^3 - 2)
sage: y = polygen(K)
sage: L.<b> = K.extension(y^2 - a)
sage: L.is_galois_relative()
True
sage: M.<c> = K.extension(y^3 - a)
sage: M.is_galois_relative()
False

The next example previously gave a wrong result; see github issue #9390:

sage: F.<a, b> = NumberField([x^2 - 2, x^2 - 3])
sage: F.is_galois_relative()
True

is_isomorphic_relative(other, base_isom=None)
For this relative extension $L/K$ and another relative extension $M/K$, return True if there is a $K$-linear isomorphism from $L$ to $M$. More generally, other can be a relative extension $M/K'$ with base_isom an isomorphism from $K$ to $K'$.

EXAMPLES:

sage: K.<z9> = NumberField(x^6 + x^3 + 1)
sage: R.<cz> = PolynomialRing(K)
sage: m1 = 3*z9^4 - 4*z9^3 - 4*z9^2 + 3*z9 - 8
sage: L1 = K.extension(z^2 - m1, 'b1')
sage: G = K.galois_group(); gamma = G.gen()
sage: m2 = (gamma^2)(m1)
sage: L2 = K.extension(z^2 - m2, 'b2')
sage: L1.is_isomorphic_relative(L2)
False
sage: L1.is_isomorphic(L2)
(continues on next page)
sage: L3 = K.extension(z^4 - m1, 'b3')
sage: L1.is_isomorphic_relative(L3)
False

If we have two extensions over different, but isomorphic, bases, we can compare them by letting base_isom be an isomorphism from self’s base field to other’s base field:

sage: Kcyc.<zeta9> = CyclotomicField(9)
sage: Rcyc.<zcyc> = PolynomialRing(Kcyc)
sage: phi1 = K.hom([zeta9])
sage: m1cyc = phi1(m1)
sage: L1cyc = Kcyc.extension(zcyc^2 - m1cyc, 'b1cyc')

sage: L1.is_isomorphic_relative(L1cyc, base_isom=phi1)
True
sage: L2.is_isomorphic_relative(L1cyc, base_isom=phi1)
False
sage: phi2 = K.hom([phi1((gamma^(-2))(z9))])
sage: L1.is_isomorphic_relative(L1cyc, base_isom=phi2)
False
sage: L2.is_isomorphic_relative(L1cyc, base_isom=phi2)
True

Omitting base_isom raises a ValueError when the base fields are not identical:

sage: L1.is_isomorphic_relative(L1cyc)
Traceback (most recent call last):
  ... ValueError: other does not have the same base field as self, so an isomorphism → from self's base_field to other's base_field must be provided using the base_→ isom parameter.

The parameter base_isom can also be used to check if the relative extensions are Galois conjugate:

sage: for g in G:
    ....:     if L1.is_isomorphic_relative(L2, g.as_hom()):
    ....:         print(g.as_hom())
    Ring endomorphism of Number Field in z9 with defining polynomial x^6 + x^3 + 1
    Defn: z9 |--> z9^4

**lift_to_base(element)**

Lift an element of this extension into the base field if possible, or raise a ValueError if it is not possible.

**EXAMPLES:**

sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^3 - 2)
sage: R.<y> = K[]
sage: L.<b> = K.extension(y^2 - a)
sage: L.lift_to_base(b^4)
a^2
sage: L.lift_to_base(b^6)
2
sage: L.lift_to_base(355/113)
355/113
sage: L.lift_to_base(b)
Traceback (most recent call last):
  ... ValueError: The element b is not in the base field

logarithmic_embedding(prec=53)

Return the morphism of self under the logarithmic embedding in the category Set.

The logarithmic embedding is defined as a map from the relative number field self to $\mathbb{R}^n$.

It is defined under Definition 4.9.6 in [Coh1993].

INPUT:

- prec – desired floating point precision.

OUTPUT:

- the morphism of self under the logarithmic embedding in the category Set.

EXAMPLES:

sage: K.<k> = CyclotomicField(3)
sage: R.<x> = K[
]
sage: L.<l> = K.extension(x^5 + 5)
sage: f = L.logarithmic_embedding()
sage: f(0)
(-1, -1, -1, -1, -1)
sage: f(5)
(3.21887582486820, 3.21887582486820, 3.21887582486820, 3.21887582486820, 3.21887582486820)

sage: K.<i> = NumberField(x^2 + 1)
sage: t = K['t'].gen()
sage: L.<a> = K.extension(t^4 - i)
sage: f = L.logarithmic_embedding()
sage: f(0)
(-1, -1, -1, -1, -1, -1, -1, -1)
sage: f(3)
(2.19722457733622, 2.19722457733622, 2.19722457733622, 2.19722457733622, 2.19722457733622, 2.19722457733622, 2.19722457733622, 2.19722457733622)

ngens()

Return the number of generators of this relative number field.

EXAMPLES:

sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: K.gens()
(a, b)
sage: K.ngens()
2
number_of_roots_of_unity()
Return number of roots of unity in this relative field.

EXAMPLES:

```
sage: K.<a, b> = NumberField([x^2 + x + 1, x^4 + 1])
sage: K.number_of_roots_of_unity()
24
```

order(*gens, **kwds)
Return the order with given ring generators in the maximal order of this number field.

INPUT:

• gens – list of elements of self; if no generators are given, just returns the cardinality of this number field (oo) for consistency.

• check_is_integral – bool (default: True), whether to check that each generator is integral.

• check_rank – bool (default: True), whether to check that the ring generated by gens is of full rank.

• allow_subfield – bool (default: False), if True and the generators do not generate an order, i.e., they generate a subring of smaller rank, instead of raising an error, return an order in a smaller number field.

The check_is_integral and check_rank inputs must be given as explicit keyword arguments.

EXAMPLES:

```
sage: P.<a,b,c> = QQ[2^(1/2), 2^(1/3), 3^(1/2)]
sage: R = P.order([a,b,c]); R
Relative Order in Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field
```

The base ring of an order in a relative extension is still \( \mathbb{Z} \):

```
sage: R.base_ring()
Integer Ring
```

One must give enough generators to generate a ring of finite index in the maximal order:

```
sage: P.order([a,b])
Traceback (most recent call last):
 ... ValueError: the rank of the span of gens is wrong
```

pari_absolute_base_polynomial()
Return the PARI polynomial defining the absolute base field, in \( y \).

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: K.<a, b> = NumberField([x^2 + 2, x^2 + 3]); K
Number Field in a with defining polynomial x^2 + 2 over its base field
sage: K.pari_absolute_base_polynomial()
y^2 + 3
sage: type(K.pari_absolute_base_polynomial())
<class 'cypari2.gen.Gen'>
```
sage: z = ZZ['z'].0
sage: K, a, b, c = NumberField([z^2 + 2, z^2 + 3, z^2 + 5]); K
Number Field in a with defining polynomial z^2 + 2 over its base field
sage: K.pari_absolute_base_polynomial()
y^4 + 16*y^2 + 4
sage: K.base_field()
Number Field in b with defining polynomial z^2 + 3 over its base field
sage: len(QQ['y'](K.pari_absolute_base_polynomial()).roots(K.base_field()))
4
sage: type(K.pari_absolute_base_polynomial())
<class 'cypari2.gen.Gen'>

pari_relative_polynomial()

Returns the PARI relative polynomial associated to this number field.

This is always a polynomial in x and y, suitable for PARI’s rnfinit function. Notice that if this is a relative
extension of a relative extension, the base field is the absolute base field.

EXAMPLES:

sage: k.<i> = NumberField(x^2 + 1)
sage: m.<z> = k.extension(k['w']([i,0,1]))
sage: m
Number Field in z with defining polynomial w^2 + i over its base field
sage: m.pari_relative_polynomial()
Mod(1, y^2 + 1)*x^2 + Mod(y, y^2 + 1)
sage: l.<t> = m.extension(m['t'].0^2 + z)
sage: l.pari_relative_polynomial()
Mod(1, y^4 + 1)*x^2 + Mod(y, y^4 + 1)

pari_rnf()

Returns the PARI relative number field object associated to this relative extension.

EXAMPLES:

sage: k.<a> = NumberField([x^4 + 3, x^2 + 2])
sage: k.pari_rnf()
[x^4 + 3, [364, -10*x^7 - 87*x^5 - 370*x^3 - 41*x], [108, 3], ...]

places(all_complex=False, prec=None)

Returns the collection of all infinite places of self.

By default, this returns the set of real places as homomorphisms into RIF first, followed by a choice of one
of each pair of complex conjugate homomorphisms into CIF.

On the other hand, if prec is not None, we simply return places into RealField(prec) and ComplexField(prec)
(or RDF, CDF if prec=53).

There is an optional flag all_complex, which defaults to False. If all_complex is True, then the real embed-
dings are returned as embeddings into CIF instead of RIF.

EXAMPLES:
sage: L.<b, c> = NumberFieldTower([x^2 - 5, x^3 + x + 3])
sage: L.places()
(Relative number field morphism:
    From: Number Field in b with defining polynomial x^2 - 5 over its base field
    To:    Real Field with 106 bits of precision
    Defn: b |--> -2.236067977499789696409173668937
    c |--> -1.21341166276222963413213177426,
    Relative number field morphism:
    From: Number Field in b with defining polynomial x^2 - 5 over its base field
    To:    Real Field with 106 bits of precision
    Defn: b |--> 2.236067977499789696411548005367
    c |--> -1.213411662762229634130492421800,
    Relative number field morphism:
    From: Number Field in b with defining polynomial x^2 - 5 over its base field
    To:    Complex Field with 53 bits of precision
    Defn: b |--> -2.2360797749979896411548005367 e-1...*I
    c |--> 0.606705831381115 - 1.45061224918844*I,
    Relative number field morphism:
    From: Number Field in b with defining polynomial x^2 - 5 over its base field
    To:    Complex Field with 53 bits of precision
    Defn: b |--> 2.23606797749979 - 4.44089209850063e-16*I
    c |--> 0.606705831381115 - 1.45061224918844*I)

polynomial()

For a relative number field, polynomial() is deliberately not implemented. Either relative_polynomial() or absolute_polynomial() must be used.

EXAMPLES:

sage: K.<a> = NumberFieldTower([x^2 + x + 1, x^3 + x + 1])
sage: K.polynomial()
Traceback (most recent call last):
  ... Not ImplementedError: For a relative number field L you must use either L.relative_polynomial() or L.absolute_polynomial() as appropriate

relative_degree()

Returns the relative degree of this relative number field.

EXAMPLES:

sage: K.<a> = NumberFieldTower([x^2 - 17, x^3 - 2])
sage: K.relative_degree()
2

relative_different()

Return the relative different of this extension \( L/K \) as an ideal of \( L \). If you want the absolute different of \( L/Q \), use \( L.absolute_different() \).

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: PK.<t> = K[

(continues on next page)
sage: L.relative_different()
Fractional ideal (4)

relative_discriminant()

Return the relative discriminant of this extension $L/K$ as an ideal of $K$. If you want the (rational) discriminant of $L/\mathbb{Q}$, use e.g. L.absolute_discriminant().

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: t = K['t'].gen()
sage: L.<b> = K.extension(t^4 - i)
sage: L.relative_discriminant()
Fractional ideal (256)
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: K.relative_discriminant() == F.ideal(4*b)
True

relative_polynomial()

Return the defining polynomial of this relative number field over its base field.

EXAMPLES:

sage: K.<a> = NumberFieldTower([x^2 + x + 1, x^3 + x + 1])
sage: K.relative_polynomial()
x^2 + x + 1

Use absolute polynomial for a polynomial that defines the absolute extension:

sage: K.absolute_polynomial()
x^6 + 3*x^5 + 8*x^4 + 9*x^3 + 7*x^2 + 6*x + 3

relative_vector_space(base=None, *args, **kwds)

Return vector space over the base field of self and isomorphisms from the vector space to self and in the other direction.

EXAMPLES:

sage: K.<a,b,c> = NumberField([x^2 + 2, x^3 + 2, x^3 + 3]); K
Number Field in a with defining polynomial x^2 + 2 over its base field
sage: V, from_V, to_V = K.relative_vector_space()
sage: from_V(V.0)
1
sage: to_V(K.0)
(0, 1)
sage: from_V(to_V(K.0))
a
sage: to_V(from_V(V.0))
(1, 0)
sage: to_V(from_V(V.1))
(0, 1)
The underlying vector space and maps is cached:

```
sage: W, from_V, to_V = K.relative_vector_space()
sage: V is W
True
```

**relativize**(alpha, names)

Given an element in self or an embedding of a subfield into self, return a relative number field $K$ isomorphic to self that is relative over the absolute field $\mathbb{Q}(\alpha)$ or the domain of $\alpha$, along with isomorphisms from $K$ to self and from self to $K$.

**INPUT:**

- alpha – an element of self, or an embedding of a subfield into self
- names – name of generator for output field $K$.

**OUTPUT:** $K$ – a relative number field

Also, $K$.structure() returns from$_K$ and to$_K$, where from$_K$ is an isomorphism from $K$ to self and to$_K$ is an isomorphism from self to $K$.

**EXAMPLES:**

```
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: L.<z,w> = K.relativize(a^2)
sage: z^2
z^2
sage: w^2
-3
sage: L
Number Field in z with defining polynomial x^4 + (-2*w + 4)*x^2 + 4*w + 1 over its base field
sage: L.base_field()
Number Field in w with defining polynomial x^2 + 3
```

Now suppose we have $K$ below $L$ below $M$:

```
sage: M = NumberField(x^8 + 2, 'a'); M
Number Field in a with defining polynomial x^8 + 2
sage: L, L_into_M, _ = M.subfields(4)[0]; L
Number Field in a0 with defining polynomial x^4 + 2
sage: K, K_into_L, _ = L.subfields(2)[0]; K
Number Field in a0_0 with defining polynomial x^2 + 2
sage: K_into_M = L_into_M * K_into_L
sage: L_over_K = L.relativize(K_into_L, 'c'); L_over_K
Number Field in c with defining polynomial x^2 + a0_0 over its base field
sage: L_over_K.to_L, L.to_L_over_K = L_over_K.structure()
sage: M_over_L_over_K = M.relativize(L_into_M * L_over_K_to_L, 'd'); M_over_L_over_K
Number Field in d with defining polynomial x^2 + c over its base field
sage: M_over_L_over_K.base_field() is L_over_K
True
```

Test relativizing a degree 6 field over its degree 2 and degree 3 subfields, using both an explicit element:
Here we explicitly relativize over an element of $K_2$ (not the generator):

```sage
sage: L = K.relativize(K3_into_K, 'b'); L
Number Field in b with defining polynomial $x^2 + a_0$ over its base field
sage: L_to_K, K_to_L = L.structure()
sage: L_over_K2 = L.relativize(K_to_L(K2_into_K(K2.gen() + 1)), 'c'); L_over_K2
Number Field in c with defining polynomial $x^3 - a_0$ over its base field
```

Here we use a morphism to preserve the base field information:

```sage
sage: K2_into_L = K_to_L * K2_into_K
sage: L_over_K2 = L.relativize(K2_into_L, 'c'); L_over_K2
Number Field in c with defining polynomial $x^3 - a_0$ over its base field
sage: L_over_K2.base_field() is K2
True
```

### roots_of_unity()

Return all the roots of unity in this relative field, primitive or not.

**EXAMPLES:**

```sage
sage: K.<a, b> = NumberField([x^2 + x + 1, x^4 + 1])
sage: rts = K.roots_of_unity()
sage: len(rts)
24
sage: all(u in rts for u in [b*a, -b^2*a - b^2, b^3, -a, b*a + b])
True
```

### subfields(degree=0, name=None)

Return all subfields of this relative number field self of the given degree, or of all possible degrees if degree is 0. The subfields are returned as absolute fields together with an embedding into self. For the case of the field itself, the reverse isomorphism is also provided.

**EXAMPLES:**

```sage
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: K.subfields(2)
[
 (Number Field in c0 with defining polynomial $x^2 - 24*x + 96$, Ring morphism:
 From: Number Field in c0 with defining polynomial $x^2 - 24*x + 96$
 To: Number Field in c with defining polynomial $Y^2 + (-2*b - 3)*a - 2*b - 6$
 over its base field
)
```
Defn: \( c_0 \rightarrow -4b + 12, \) None),  
(Number Field in \( c_1 \) with defining polynomial \( x^2 - 24x + 120 \), Ring morphism:  
From: Number Field in \( c_1 \) with defining polynomial \( x^2 - 24x + 120 \)  
To: Number Field in \( c \) with defining polynomial \( Y^2 + (-2b - 3)a - 2b - 6 \)  
over its base field  
Defn: \( c_1 \rightarrow 2b*a + 12, \) None),  
(Number Field in \( c_2 \) with defining polynomial \( x^2 - 24x + 72 \), Ring morphism:  
From: Number Field in \( c_2 \) with defining polynomial \( x^2 - 24x + 72 \)  
To: Number Field in \( c \) with defining polynomial \( Y^2 + (-2b - 3)a - 2b - 6 \)  
over its base field  
Defn: \( c_2 \rightarrow -6a + 12, \) None)

\[\text{sage: } K \text{.subfields}(8, 'w')\]
\[
(\text{Number Field in } w_0 \text{ with defining polynomial } x^8 - 12x^6 + 36x^4 - 36x^2 + 9,  
\rightarrow \text{Ring morphism: }  
\text{From: Number Field in } w_0 \text{ with defining polynomial } x^8 - 12x^6 + 36x^4 - 36x^2 + 9  
\rightarrow \text{Number Field in } c \text{ with defining polynomial } Y^2 + (-2b - 3)a - 2b - 6  
\rightarrow \text{over its base field}  
\text{Defn: } w_0 \rightarrow (-1/2b*a + 1/2b + 1/2)c, \text{ Relative number field morphism: }  
\text{From: Number Field in } c \text{ with defining polynomial } Y^2 + (-2b - 3)a - 2b - 6  
\rightarrow \text{over its base field}  
\text{To: Number Field in } w_0 \text{ with defining polynomial } x^8 - 12x^6 + 36x^4 - 36x^2 + 9  
\rightarrow \text{Number Field in } c \text{ with defining polynomial } Y^2 + (-2b - 3)a - 2b - 6  
\rightarrow \text{over its base field}  
\text{Defn: } c \rightarrow -1/3w_0^7 + 4w_0^5 - 12w_0^3 + 11w_0  
a \rightarrow 1/3w_0^6 - 10/3w_0^4 + 5w_0^2  
b \rightarrow -2/3w_0^6 + 7w_0^4 - 14w_0^2 + 6)\]
\[\text{sage: } K \text{.subfields}(3)\]
\[
[]\]

\textbf{uniformizer}(P, others='positive')

Returns an element of self with valuation 1 at the prime ideal P.

INPUT:

- **self** - a number field
- **P** - a prime ideal of self
- **others** - either “positive” (default), in which case the element will have non-negative valuation at all other primes of self, or “negative”, in which case the element will have non-positive valuation at all other primes of self.

\textbf{Note:} When P is principal (e.g. always when self has class number one) the result may or may not be a generator of P!

\textbf{EXAMPLES:}

\[\text{sage: } a, b = \text{NumberField}([x^2 + 23, x^2 - 3])\]
\[\text{sage: } P = K \text{.prime_factors}(5)[0]; P\]
Fractional ideal (5, 1/2*a + b - 5/2)
sage: u = K.uniformizer(P)
sage: u.valuation(P)
1
sage: (P, 1) in K.factor(u)
True

vector_space(*args, **kwds)

For a relative number field, vector_space() is deliberately not implemented, so that a user cannot confuse relative_vector_space() with absolute_vector_space().

EXAMPLES:

sage: K.<a> = NumberFieldTower([x^2 - 17, x^3 - 2])
sage: K.vector_space()
Traceback (most recent call last):
  ...  NotInImplementedError: For a relative number field L you must use either L.
  relative_vector_space() or L.absolute_vector_space() as appropriate

sage.rings.number_field.number_field_rel.NumberField_relative_v1(base_field, poly, name, latex_name, canonical_embedding=None)

Used for unpickling old pickles.

EXAMPLES:

sage: from sage.rings.number_field.number_field_rel import NumberField_relative_v1
sage: R.<x> = CyclotomicField(3)[]
sage: NumberField_relative_v1(CyclotomicField(3), x^2 + 7, 'a', 'a')
Number Field in a with defining polynomial x^2 + 7 over its base field

sage.rings.number_field.number_field_rel.is_RelativeNumberField(x)

Return True if x is a relative number field.

EXAMPLES:

sage: from sage.rings.number_field.number_field_rel import is_RelativeNumberField
sage: is_RelativeNumberField(NumberField(x^2+1,'a'))
False
sage: k.<a> = NumberField(x^3 - 2)
sage: l.<b> = k.extension(x^3 - 3); l
Number Field in b with defining polynomial x^3 - 3 over its base field
sage: is_RelativeNumberField(l)
True
sage: is_RelativeNumberField(QQ)
False
1.4 Number field elements (implementation using NTL)

AUTHORS:

- William Stein: version before it got Cython’d
- Joel B. Mohler (2007-03-09): First reimplementation in Cython
- Robert Bradshaw (2007-09-15): specialized classes for relative and absolute elements
- Robert Harron (2012-08): conjugate() now works for all fields contained in CM fields

class sage.rings.number_field.number_field_element.CoordinateFunction(alpha, W, to_V)

Bases: object

This class provides a callable object which expresses elements in terms of powers of a fixed field generator $\alpha$.

EXAMPLES:

```
sage: K.<a> = NumberField(x^2 + x + 3)
sage: f = (a + 1).coordinates_in_terms_of_powers(); f
Coordinate function that writes elements in terms of the powers of a + 1
sage: f.__class__
<class 'sage.rings.number_field.number_field_element.CoordinateFunction'>
sage: f(a)
[-1, 1]
sage: f == loads(dumps(f))
True
```

alpha()

EXAMPLES:

```
sage: K.<a> = NumberField(x^3 + 2)
sage: (a + 2).coordinates_in_terms_of_powers().alpha()
a + 2
```

class sage.rings.number_field.number_field_element.NumberFieldElement

Bases: NumberFieldElement_base

An element of a number field.

EXAMPLES:

```
sage: k.<a> = NumberField(x^3 + x + 1)
sage: a^3
-a - 1
```

abs(prec=None, i=None)

Return the absolute value of this element.

If $i$ is provided, then the absolute value of the $i$-th embedding is given.

Otherwise, if the number field has a coercion embedding into $R$, the corresponding absolute value is returned as an element of the same field (unless $\text{prec}$ is given). Otherwise, if it has a coercion embedding into $C$, then the corresponding absolute value is returned. Finally, if there is no coercion embedding, $i$ defaults to 0.
For the computation, the complex field with \texttt{prec} bits of precision is used, defaulting to 53 bits of precision if \texttt{prec} is not provided. The result is in the corresponding real field.

INPUT:

- \texttt{prec} - (default: None) integer bits of precision
- \texttt{i} - (default: None) integer, which embedding to use

EXAMPLES:

```
sage: z = CyclotomicField(7).gen()
sage: abs(z)
1.00000000000000
sage: abs(z^2 + 17*z - 3)
16.0604426799931
sage: K.<a> = NumberField(x^3+17)
sage: abs(a)
2.57128159065824
sage: a.abs(prec=100)
2.5712815906582353554531872087
sage: a.abs(prec=100, i=1)
2.5712815906582353554531872087
sage: a.abs(100, 2)
2.5712815906582353554531872087

Here's one where the absolute value depends on the embedding:

```
sage: K.<b> = NumberField(x^2-2)
sage: a = 1 + b
sage: a.abs(i=0)
0.414213562373095
sage: a.abs(i=1)
2.41421356237309
```

Check that \texttt{github issue #16147} is fixed:

```
sage: x = polygen(ZZ)
sage: f = x^3 - x - 1
sage: beta = f.complex_roots()[0]; beta
1.32471795724475
sage: K.<b> = NumberField(f, embedding=beta)
sage: b.abs()
1.32471795724475
```

Check that for fields with real coercion embeddings, absolute values are in the same field (\texttt{github issue #21105}):

```
sage: x = polygen(ZZ)
sage: f = x^3 - x - 1
sage: K.<b> = NumberField(f, embedding=1.3)
sage: b.abs()
b
```

However, if a specific embedding is requested, the behavior reverts to that of number fields without a coercion embedding into \mathbb{R}:
\texttt{sage}: \ b.\ abs(i=2) \\
1.32471795724475

Also, if a precision is requested explicitly, the behavior reverts to that of number fields without a coercion embedding into \mathbb{R}:

\texttt{sage}: \ b.\ abs(prec=53) \\
1.32471795724475

\texttt{abs_non_arch}(P, prec=None)

Return the non-archimedean absolute value of this element with respect to the prime P, to the given precision.

INPUT:

- P - a prime ideal of the parent of self
- \texttt{prec} (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(real) the non-archimedean absolute value of this element with respect to the prime P, to the given precision. This is the normalised absolute value, so that the underlying prime number p has absolute value $1/p$.

EXAMPLES:

\texttt{sage}: \ K.\ <a> = NumberField(x^2+5) \\
\texttt{sage}: \ [1/K(2).\ abs_non_arch(P) \ for \ P \ in \ K.\ primes_above(2)] \\
[2.00000000000000] \\
\texttt{sage}: \ [1/K(3).\ abs_non_arch(P) \ for \ P \ in \ K.\ primes_above(3)] \\
[3.00000000000000, \ 3.00000000000000] \\
\texttt{sage}: \ [1/K(5).\ abs_non_arch(P) \ for \ P \ in \ K.\ primes_above(5)] \\
[5.00000000000000]

A relative example:

\texttt{sage}: \ L.\ = K.\ extension(x^2-5) \\
\texttt{sage}: \ [b.\ abs_non_arch(P) \ for \ P \ in \ L.\ primes_above(b)] \\
[0.447213595499958, \ 0.447213595499958]

\texttt{absolute_different}()

Return the absolute different of this element.

This means the different with respect to the base field \mathbb{Q}.

EXAMPLES:

\texttt{sage}: \ K.\ <a> = NumberFieldTower([x^2 - 17, x^3 - 2]) \\
\texttt{sage}: \ a.\ absolute_different() \\
\emptyset

See also:

\texttt{different}()

\texttt{absolute_norm}()

Return the absolute norm of this number field element.

EXAMPLES:
additive_order()

Return the additive order of this element (i.e. infinity if self != 0, 1 if self == 0)

EXAMPLES:

sage: K.<u> = NumberField(x^4 - 3*x^2 + 3)
sage: u.additive_order()
+Infinity
sage: K(0).additive_order()
1
sage: K.ring_of_integers().characteristic() # implicit doctest
0

ceil()

Return the ceiling of this number field element.

EXAMPLES:

sage: x = polygen(ZZ)
sage: p = x**7 - 5*x**2 + x + 1
sage: a_AA = AA.polynomial_root(p, RIF(1,2))
sage: K.<a> = NumberField(p, embedding=a_AA)
sage: b = a**5 + a/2 - 1/7
sage: RR(b)
4.13444473767055
sage: b.ceil()
5

This function always succeeds even if a tremendous precision is needed:

sage: c = b - 5065701199253/1225243417356 + 2
sage: c.ceil()
3
sage: RIF(c).unique ceil()
Traceback (most recent call last):
...
ValueError: interval does not have a unique ceil

If the number field is not embedded, this function is valid only if the element is rational:

sage: p = x**5 - 3
sage: K.<a> = NumberField(p)
sage: K(2/3).ceil()
1
sage: a.ceil()
Traceback (most recent call last):
...
TypeError: ceil not uniquely defined since no real embedding is specified

\textbf{\texttt{charpoly}} (\texttt{var='x')}
Return the characteristic polynomial of this number field element.

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: K.<a> = NumberField(x^3 + 7)
 sage: a.charpoly()
x^3 + 7
 sage: K(1).charpoly()
x^3 - 3*x^2 + 3*x - 1
\end{verbatim}

\textbf{\texttt{complex_embedding}} (\texttt{prec=53}, \texttt{i=0})
Return the \texttt{i}-th embedding of self in the complex numbers, to the given precision.

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: k.<a> = NumberField(x^3 - 2)
 sage: a.complex_embedding()
-0.629960524947437 - 1.09112363597172*I
 sage: a.complex_embedding(10)
-0.63 - 1.1*I
 sage: a.complex_embedding(100)
-0.62996052494743658238360530364 - 1.0911236359717214035600726142*I
 sage: a.complex_embedding(20, 1)
-0.62996 + 1.0911*I
 sage: a.complex_embedding(20, 2)
1.2599
\end{verbatim}

\textbf{\texttt{complex_embeddings}} (\texttt{prec=53})
Return the images of this element in the floating point complex numbers, to the given bits of precision.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{prec} - integer (default: 53) bits of precision
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
 sage: k.<a> = NumberField(x^3 - 2)
 sage: a.complex_embeddings()
[-0.629960524947437 - 1.09112363597172*I, -0.62996052494743658238360530364 + 1.0911236359717214035600726142*I, 1.25992104989487]
 sage: a.complex_embeddings(10)
[-0.63 - 1.1*I, -0.63 + 1.1*I, 1.3]
 sage: a.complex_embeddings(100)
[-0.62996052494743658238360530364 - 1.0911236359717214035600726142*I, -0.62996052494743658238360530364 + 1.0911236359717214035600726142*I, 1.2599210498948731647672106073]
\end{verbatim}

\textbf{\texttt{conjugate}} ()
Return the complex conjugate of the number field element.
This is only well-defined for fields contained in CM fields (i.e. for totally real fields and CM fields). Recall that a CM field is a totally imaginary quadratic extension of a totally real field. For other fields, a ValueError is raised.

EXAMPLES:

```
sage: k.<I> = QuadraticField(-1)
sage: I.conjugate()
-I
sage: (I/(1+I)).conjugate()
-1/2*I + 1/2
sage: z6 = CyclotomicField(6).gen(0)
sage: (2*z6).conjugate()
-2*zeta6 + 2
```

The following example now works.

```
sage: F.<b> = NumberField(x^2 - 2)
sage: K.<j> = F.extension(x^2 + 1)
sage: j.conjugate()
-j
```

Raise a ValueError if the field is not contained in a CM field.

```
sage: K.<b> = NumberField(x^3 - 2)
sage: b.conjugate()
Traceback (most recent call last):
...
ValueError: Complex conjugation is only well-defined for fields contained in CM fields.
```

An example of a non-quadratic totally real field.

```
sage: F.<a> = NumberField(x^4 + x^3 - 3*x^2 - x + 1)
sage: a.conjugate()
a
```

An example of a non-cyclotomic CM field.

```
sage: K.<a> = NumberField(x^4 - x^3 + 2*x^2 + x + 1)
sage: a.conjugate()
-1/2*a^3 - a - 1/2
sage: (2*a^2 - 1).conjugate()
a^3 - 2*a^2 - 2
```

coordinates_in_terms_of_powers()
Let \(\alpha \) be self. Return a callable object (of type CoordinateFunction) that takes any element of the parent of self in \(\mathbb{Q}(\alpha) \) and writes it in terms of the powers of \(\alpha \): \(1, \alpha, \alpha^2, \ldots \).

(NOT CACHED).

EXAMPLES:
This function allows us to write elements of a number field in terms of a different generator without having to construct a whole separate number field.
sage: y = polygen(QQ, 'y'); K.<beta> = NumberField(y^3 - 2); K
Number Field in beta with defining polynomial y^3 - 2
sage: alpha = beta^2 + beta + 1
sage: c = alpha.coordinates_in_terms_of_powers(); c
Coordinate function that writes elements in terms of the powers of beta^2 + beta + 1
sage: c(beta)
[-2, -3, 1]
sage: c(alpha)
[0, 1, 0]
sage: c((1+beta)^5)
[3, 3, 3]
sage: c((1+beta)^10)
[54, 162, 189]

This function works even if self only generates a subfield of this number field.

sage: k.<a> = NumberField(x^6 - 5)
sage: alpha = a^3
sage: c = alpha.coordinates_in_terms_of_powers()
sage: c((2/3)*a^3 - 5/3)
[-5/3, 2/3]
sage: c
Coordinate function that writes elements in terms of the powers of a^3
sage: c(a)
Traceback (most recent call last):
... ArithmeticError: vector is not in free module

denominator()
Return the denominator of this element, which is by definition the denominator of the corresponding polynomial representation. I.e., elements of number fields are represented as a polynomial (in reduced form) modulo the modulus of the number field, and the denominator is the denominator of this polynomial.

EXAMPLES:

sage: K.<z> = CyclotomicField(3)
sage: a = 1/3 + (1/5)*z
sage: a.denominator()
15
denominator_ideal()
Return the denominator ideal of this number field element.

The denominator ideal of a number field element a is the integral ideal consisting of all elements of the ring of integers R whose product with a is also in R.

See also:

numerator_ideal()

EXAMPLES:

sage: K.<a> = NumberField(x^2+5)
sage: b = (1+a)/2

(continues on next page)
descend_mod_power($K='QQ', d=2$)

Return a list of elements of the subfield K equal to self modulo d’th powers.

INPUT:

- K (number field, default QQ) – a subfield of the parent number field L of self
- d (positive integer, default 2) – an integer at least 2

OUTPUT:

A list, possibly empty, of elements of K equal to self modulo d’th powers, i.e. the preimages of self under the map $K^*/(K^*)^d \rightarrow L^*/(L^*)^d$ where L is the parent of self. A ValueError is raised if K does not embed into L.

ALGORITHM:

All preimages must lie in the Selmer group $K(S,d)$ for a suitable finite set of primes S, which reduces the question to a finite set of possibilities. We may take S to be the set of primes which ramify in L together with those for which the valuation of self is not divisible by d.

EXAMPLES:

A relative example:

```python
sage: Qi.<i> = QuadraticField(-1)
sage: K.<zeta> = CyclotomicField(8)
sage: f = Qi.embeddings(K)[0]
sage: a = f(2+3*i) * (2-zeta)^2
sage: a.descend_mod_power(Qi,2)
[-2*i + 3, 3*i + 2]
```

An absolute example:

```python
sage: K.<zeta> = CyclotomicField(8)
sage: K(1).descend_mod_power(QQ,2)
[1, 2, -1, -2]
sage: a = 17 * K._random_nonzero_element()^2
sage: a.descend_mod_power(QQ,2)
[17, 34, -17, -34]
```

different($K=None$)

Return the different of this element with respect to the given base field.

The different of an element a in an extension of number fields L/K is defined as \(\text{Diff}_{L/K}(a) = f'(a) \) where f is the characteristic polynomial of a over K.

Chapter 1. Algebraic Number Fields
INPUT:

- \(K \) – a subfield (embedding of a subfield) of the parent number field of \(\text{self} \). Default: None, which will amount to \(\text{self.parent().base_field()} \).

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3 - 2)
sage: a.different()
3*a^2
sage: a.different(K=K)
1
```

The optional argument \(K \) can be an embedding of a subfield:

```python
sage: K.<b> = NumberField(x^4 - 2)
sage: (b^2).different()
0
sage: phi = K.base_field().embeddings(K)[0]
sage: b.different(K=phi)
4*b^3
```

Compare the relative different and the absolute different for an element in a relative number field:

```python
sage: K.<a> = NumberFieldTower([x^2 - 17, x^3 - 2])
sage: a.different()
2*a0
sage: a.different(K=QQ)
0
sage: a.absolute_different()
0
```

Observe that for the field extension \(\mathbb{Q}(i) / \mathbb{Q} \), the different of the field extension is the ideal generated by the different of \(i \):

```python
sage: K.<c> = NumberField(x^2 + 1)
sage: K.different() == K.ideal(c.different())
True
```

See also:

- `absolute_different()`
- `sage.rings.number_field.number_field_rel.NumberField_relative.different()`
- `factor()`

Return factorization of this element into prime elements and a unit.

OUTPUT:

(Factorization) If all the prime ideals in the support are principal, the output is a Factorization as a product of prime elements raised to appropriate powers, with an appropriate unit factor.

Raise ValueError if the factorization of the ideal (\(\text{self} \)) contains a non-principal prime ideal.

EXAMPLES:
In the following example, the class number is 2. If a factorization in prime elements exists, we will find it:

```sage
K.<a> = NumberField(x^2-10)
sage: factor(169*a + 531)
(-6*a - 19) * (-3*a - 1) * (-2*a + 9)
sage: factor(K(3))
Traceback (most recent call last):
  ... ArithmeticError: non-principal ideal in factorization
```

Factorization of 0 is not allowed:

```sage
K.<i> = QuadraticField(-1)
sage: K(0).factor()
Traceback (most recent call last):
  ... ArithmeticError: factorization of 0 is not defined
```

floor()

Return the floor of this number field element.

EXAMPLES:

```sage
sage: x = polygen(ZZ)
sage: p = x^7 - 5*x^2 + x + 1
sage: a_AA = AA.polynomial_root(p, RIF(1,2))
sage: K.<a> = NumberField(p, embedding=a_AA)
sage: b = a**5 + a/2 - 1/7
sage: RR(b)
4.13444473767055
sage: b.floor()
4
sage: K(125/7).floor()
17
```

This function always succeeds even if a tremendous precision is needed:

```sage
sage: c = b - 4772404052447/1154303505127 + 2
sage: c.floor()
1
sage: RIF(c).unique_floor()
Traceback (most recent call last):
  ... ValueError: interval does not have a unique floor
```

If the number field is not embedded, this function is valid only if the element is rational:

```sage
sage: p = x**5 - 3
sage: K.<a> = NumberField(p)
```

(continues on next page)
sage: K(2/3).floor()
0
sage: a.floor()
Traceback (most recent call last):
...
TypeError: floor not uniquely defined since no real embedding is specified

galois_conjugates(K)

Return all Gal(Qbar/Q)-conjugates of this number field element in the field K.

EXAMPLES:

In the first example the conjugates are obvious:

sage: K.<a> = NumberField(x^2 - 2)
sage: a.galois_conjugates(K)
[a, -a]
sage: K(3).galois_conjugates(K)
[3]

In this example the field is not Galois, so we have to pass to an extension to obtain the Galois conjugates.

sage: K.<a> = NumberField(x^3 - 2)
sage: c = a.galois_conjugates(K); c
[a]
sage: K.<a> = NumberField(x^3 - 2)
sage: c = a.galois_conjugates(K.galois_closure('a1')); c
[1/18*a1^4, -1/36*a1^4 + 1/2*a1, -1/36*a1^4 - 1/2*a1]
sage: c[0]^3
2
sage: parent(c[0])
Number Field in a1 with defining polynomial x^6 + 108
sage: parent(c[0]).is_galois()
True

There is only one Galois conjugate of $\sqrt[3]{2}$ in $\mathbb{Q}(\sqrt[3]{2})$.

sage: a.galois_conjugates(K)
[a]

Galois conjugates of $\sqrt[3]{2}$ in the field $\mathbb{Q}(\zeta_3, \sqrt[3]{2})$:

sage: L.<a> = CyclotomicField(3).extension(x^3 - 2)
sage: a.galois_conjugates(L)
[a, (-zeta3 - 1)*a, zeta3*a]

gcd(other)

Return the greatest common divisor of self and other.

INPUT:

• self, other – elements of a number field or maximal order.

OUTPUT:
A generator of the ideal (self, other). If the parent is a number field, this always returns 0 or 1. For maximal orders, this raises \texttt{ArithmeticError} if the ideal is not principal.

EXAMPLES:

```python
sage: K.<i> = QuadraticField(-1)
sage: (i+1).gcd(2)
1
sage: K(i).gcd(0)
1
sage: K(0).gcd(0)
0
sage: R = K.maximal_order()
sage: R(i+1).gcd(2)
i + 1
```

Non-maximal orders are not supported:

```python
sage: R = K.order(2*i)
sage: R(1).gcd(R(4*i))
Traceback (most recent call last):
  ... 
NotImplementedError: gcd() for Order in Number Field in i with defining polynomial x^2 + 1 with i = 1*I is not implemented
```

The following field has class number 3, but if the ideal (self, other) happens to be principal, this still works:

```python
sage: K.<a> = NumberField(x^3 - 7)
sage: K.class_number()
3
sage: a.gcd(7)
1
sage: R = K.maximal_order()
sage: R(a).gcd(7)
a
sage: R(a+1).gcd(2)
Traceback (most recent call last):
  ... 
ArithmeticError: ideal (a + 1, 2) is not principal, gcd is not defined
sage: R(2*a - a^2).gcd(0)
a
sage: R(a).gcd(R(2*a)).parent()
Maximal Order in Number Field in a with defining polynomial x^3 - 7
```

global_height(prec=None)

Returns the absolute logarithmic height of this number field element.

INPUT:

- \texttt{prec} (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(real) The absolute logarithmic height of this number field element; that is, the sum of the local heights at all finite and infinite places, scaled by the degree to make the result independent of the parent field.
EXAMPLES:

```
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4+3*x^2-17)
sage: b = a/2
sage: b.global_height()
0.789780699008...
sage: b.global_height(prec=200)
0.789780699008138920632141577237037181070060784564457
```

The global height of an algebraic number is absolute, i.e. it does not depend on the parent field:

```
sage: QQ(6).global_height()
1.79175946922805
sage: K(6).global_height()
1.79175946922805
sage: L.<b> = NumberField((a^2).minpoly())
sage: L.degree()
2
sage: b.global_height() # element of L (degree 2 field)
1.41660667202811
sage: (a^2).global_height() # element of K (degree 4 field)
1.41660667202811
```

And of course every element has the same height as its inverse:

```
sage: K.<s> = QuadraticField(2)
sage: s.global_height()
0.346573590279973
sage: (1/s).global_height() # make sure that 11758 is fixed
0.346573590279973
```

global_height_arch(prec=None)
Returns the total archimedean component of the height of self.

INPUT:

- prec (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(real) The total archimedean component of the height of this number field element; that is, the sum of the local heights at all infinite places.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4+3*x^2-17)
sage: b = a/2
sage: b.global_height_arch()
0.38653407379277...
```

global_height_non_arch(prec=None)
Returns the total non-archimedean component of the height of self.

INPUT:
• prec (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(real) The total non-archimedean component of the height of this number field element; that is, the sum of
the local heights at all finite places, weighted by the local degrees.

ALGORITHM:

An alternative formula is \(\log(d) \) where \(d \) is the norm of the denominator ideal; this is used to avoid factor-
ization.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4+3*x^2-17)
sage: b = a/6
sage: b.global_height_non_arch()
7.16703787691222
```

Check that this is equal to the sum of the non-archimedean local heights:

```python
sage: [b.local_height(P) for P in b.support()]
[0.000000000000000, 0.693147180559945, 1.09861228866811, 1.09861228866811]
sage: [b.local_height(P, weighted=True) for P in b.support()]
[0.000000000000000, 2.7725887223978, 2.19722457733622, 2.19722457733622]
sage: sum([b.local_height(P,weighted=True) for P in b.support()])
7.16703787691222
```

A relative example:

```python
sage: PK.<y> = K[]
sage: L.<c> = NumberField(y^2 + a)
sage: (c/10).global_height_non_arch()
18.4206807439524
```

\textbf{inverse_mod(I)}

Returns the inverse of self mod the integral ideal I.

INPUT:

• I - may be an ideal of self.parent(), or an element or list of elements of self.parent() generating a
 nonzero ideal. A ValueError is raised if I is non-integral or zero. A ZeroDivisionError is raised if I +
 (x) != (1).

NOTE: It’s not implemented yet for non-integral elements.

EXAMPLES:

```python
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3)
sage: d = 3*a + 1
sage: d.inverse_mod(N)
1
```

```python
sage: k.<a> = NumberField(x^3 + 11)
sage: d = a + 13
sage: d.inverse_mod(a^2)*d - 1 in k.ideal(a^2)
```

(continues on next page)
True

sage: d.inverse_mod((5, a + 1))*d - 1 in k.ideal(5, a + 1)
True

sage: K. = k.extension(x^2 + 3)

sage: b.inverse_mod([37, a - b])
7

sage: 7*b - 1 in K.ideal(37, a - b)
True

sage: b.inverse_mod([37, a - b]).parent() == K
True

\texttt{is_integer()}

Test whether this number field element is an integer

See also:

- \texttt{is_rational()} to test if this element is a rational number
- \texttt{is_integral()} to test if this element is an algebraic integer

EXAMPLES:

\begin{verbatim}
sage: K.<cbrt3> = NumberField(x^3 - 3)
sage: cbrt3.is_integer()
False
sage: (cbrt3**2 - cbrt3 + 2).is_integer()
False
sage: K(-12).is_integer()
True
sage: K(0).is_integer()
True
sage: K(1/2).is_integer()
False
\end{verbatim}

\texttt{is_integral()}

Determine if a number is in the ring of integers of this number field.

EXAMPLES:

\begin{verbatim}
sage: K.<a> = NumberField(x^2 + 23)
sage: a.is_integral()
True
sage: t = (1+a)/2
sage: t.is_integral()
True
sage: t.minpoly()
\texttt{x^2 - x + 6}
sage: t = a/2
sage: t.is_integral()
False
sage: t.minpoly()
\texttt{x^2 + 23/4}
\end{verbatim}

An example in a relative extension:
```python
sage: K.<a,b> = NumberField([x^2+1, x^2+3])
sage: (a+b).is_integral()
True
sage: ((a-b)/2).is_integral()
False
```

is_norm

```
is_norm(L, element=False, proof=True)
```

Determine whether self is the relative norm of an element of \(L/K \), where \(K \) is self.parent().

INPUT:

- \(L \) – a number field containing \(K=\text{self.parent()} \)
- element – True or False, whether to also output an element of which self is a norm
- proof – If True, then the output is correct unconditionally. If False, then the output is correct under GRH.

OUTPUT:

If element is False, then the output is a boolean \(B \), which is True if and only if self is the relative norm of an element of \(L \) to \(K \). If element is False, then the output is a pair \((B, x)\), where \(B \) is as above. If \(B \) is True, then \(x \) is an element of \(L \) such that \(\text{self} == x.\text{norm}(K) \). Otherwise, \(x \) is None.

ALGORITHM:

Uses PARI's `pari:rnfisnorm`. See self._rnfisnorm().

EXAMPLES:

```python
sage: K.<beta> = NumberField(x^3+5)
sage: Q.<X> = K[]
sage: L = K.extension(X^2+X+beta, 'gamma')
sage: (beta/2).is_norm(L)
False
sage: beta.is_norm(L)
True
```

With a relative base field:

```python
sage: K.<a, b> = NumberField([x^2 - 2, x^2 - 3])
sage: L.<c> = K.extension(x^2 - 5)
sage: (2*a*b).is_norm(L)
True
sage: _, v = (2*b*a).is_norm(L, element=True)
sage: v.norm(K) == 2*a*b
True
```

Non-Galois number fields:

```python
sage: K.<a> = NumberField(x^2 + x + 1)
sage: Q.<X> = K[]
sage: L.<b> = NumberField(X^4 + a + 2)
sage: (a/4).is_norm(L)
True
sage: (a/2).is_norm(L)
Traceback (most recent call last):
```

(continues on next page)
...\NotImplementedError: is_norm is not implemented unconditionally for norms from non-Galois number fields

```
sage: (a/2).is_norm(L, proof=False)
False
```

```
sage: K.<a> = NumberField(x^3 + x + 1)
sage: Q.<X> = K[]
sage: L.<b> = NumberField(X^4 + a)
sage: t, u = (-a).is_norm(L, element=True); u # random (not unique)
b^3 + 1
```

```
sage: t and u.norm(K) == -a
```

Verify that github issue #27469 has been fixed:

```
sage: L.<z24> = CyclotomicField(24); L
Cyclotomic Field of order 24 and degree 8
```

```
sage: K = L.subfield(z24^3, 'z8')[0]; K
Number Field in z8 with defining polynomial x^4 + 1 with z8 = 0.
```

```
sage: flag, c = K(-7).is_norm(K, element=True); flag
True
```

```
sage: c.norm(K)
-7
```

```
sage: c in L
True
```

AUTHORS:

• Craig Citro (2008-04-05)

• Marco Streng (2010-12-03)

is_nth_power(*n*)

Return True if self is an \(n\)'th power in its parent \(K\).

EXAMPLES:

```
sage: K.<a> = NumberField(x^4-7)
sage: K(7).is_nth_power(2)
True
```

```
sage: K(7).is_nth_power(4)
True
```

```
sage: K(7).is_nth_power(8)
False
```

```
sage: K((a-3)^5).is_nth_power(5)
True
```

ALGORITHM: Use PARI to factor \(x^n - self\) in \(K\).

is_one()

Test whether this number field element is 1.

EXAMPLES:
is_padic_square(P, check=True)

Return if self is a square in the completion at the prime P.

INPUT:

• P – a prime ideal
• check – (default: True); check if P is prime

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 + 2)
sage: p = K.primes_above(2)[0]
sage: K(5).is_padic_square(p)
False
```

is_prime()

Test whether this number-field element is prime as an algebraic integer.

Note that the behavior of this method differs from the behavior of is_prime() in a general ring, according to which (number) fields would have no nonzero prime elements.

EXAMPLES:

```python
sage: K.<i> = NumberField(x^2+1)
sage: (1+i).is_prime()
True
sage: ((1+i)/2).is_prime()
False
```

is_rational()

Test whether this number field element is a rational number

See also:

• is_integer() to test if this element is an integer
• is_integral() to test if this element is an algebraic integer

EXAMPLES:

```python
sage: K.<cbrt3> = NumberField(x^3 - 3)
sage: cbrt3.is_rational()
False
```
\begin{itemize}
\item \texttt{sage: (cbrt3**2 - cbrt3 + 1/2).is_rational()}
False
\item \texttt{sage: K(-12).is_rational()}
True
\item \texttt{sage: K(0).is_rational()}
True
\item \texttt{sage: K(1/2).is_rational()}
True
\end{itemize}

\textbf{is_square}(\texttt{root=False})

Return True if self is a square in its parent number field and otherwise return False.

\textbf{INPUT}:
\begin{itemize}
\item \texttt{root} - if True, also return a square root (or None if self is not a perfect square)
\end{itemize}

\textbf{EXAMPLES}:
\begin{itemize}
\item \texttt{sage: m. = NumberField(x^4 - 1789)}
\item \texttt{sage: b.is_square()}
False
\item \texttt{sage: c = (2/3*b + 5)^2; c}
4/9*b^2 + 20/3*b + 25
\item \texttt{sage: c.is_square()}
True
\item \texttt{sage: c.is_square(\texttt{True})}
(True, 2/3*b + 5)
\end{itemize}
We also test the functional notation.
\begin{itemize}
\item \texttt{sage: is_square(c, \texttt{True})}
(True, 2/3*b + 5)
\item \texttt{sage: is_square(c)}
True
\item \texttt{sage: is_square(c+1)}
False
\end{itemize}

\textbf{is_totally_positive}()

Returns True if self is positive for all real embeddings of its parent number field. We do nothing at complex places, so e.g. any element of a totally complex number field will return True.

\textbf{EXAMPLES}:
\begin{itemize}
\item \texttt{sage: F. = NumberField(x^3-3*x-1)}
\item \texttt{sage: b.is_totally_positive()}
False
\item \texttt{sage: (b^2).is_totally_positive()}
True
\end{itemize}

\textbf{is_unit}()

Return True if self is a unit in the ring where it is defined.

\textbf{EXAMPLES}:
sage: K.<a> = NumberField(x^2 - x - 1)
sage: OK = K.ring_of_integers()
sage: OK(a).is_unit()
True
sage: OK(13).is_unit()
False
sage: K(13).is_unit()
True

It also works for relative fields and orders:

sage: K.<a,b> = NumberField([x^2 - 3, x^4 + x^3 + x^2 + x + 1])
sage: OK = K.ring_of_integers()
sage: OK(b).is_unit()
True
sage: OK(a).is_unit()
False
sage: a.is_unit()
True

list()

Return the list of coefficients of self written in terms of a power basis.

EXAMPLES:

sage: K.<a> = NumberField(x^3 - x + 2); ((a + 1)/(a + 2)).list()
[1/4, 1/2, -1/4]
sage: K.<a, b> = NumberField([x^3 - x + 2, x^2 + 23]); ((a + b)/(a + 2)).list()
[3/4*b - 1/2, -1/2*b + 1, 1/4*b - 1/2]

local_height(P, prec=None, weighted=False)

Returns the local height of self at a given prime ideal P.

INPUT:

- P - a prime ideal of the parent of self
- prec (int) – desired floating point precision (default: default RealField precision).
- weighted (bool, default False) – if True, apply local degree weighting.

OUTPUT:

(real) The local height of this number field element at the place P. If weighted is True, this is multiplied by the local degree (as required for global heights).

EXAMPLES:

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4+3*x^2-17)
sage: P = K.ideal(61).factor()[0][0]
sage: b = 1/(a^2 + 30)
sage: b.local_height(P)
4.11087386417331
sage: b.local_height(P, weighted=True)
8.22174772834662
sage: b.local_height(P, 200)
(continues on next page)
A relative example:

```python
sage: PK.<y> = K[]
sage: L.<c> = NumberField(y^2 + a)
sage: L(1/4).local_height(L.ideal(2, c-a+1))
1.38629436111989
```

`local_height_arch(i, prec=None, weighted=False)`

Returns the local height of self at the i’th infinite place.

INPUT:

- `i` (int) - an integer in `range(r+s)` where `(r, s)` is the signature of the parent field (so `n = r + 2s` is the degree).
- `prec` (int) – desired floating point precision (default: default RealField precision).
- `weighted` (bool, default False) – if True, apply local degree weighting, i.e. double the value for complex places.

OUTPUT:

(real) The archimedean local height of this number field element at the i’th infinite place. If `weighted` is True, this is multiplied by the local degree (as required for global heights), i.e. 1 for real places and 2 for complex places.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4+3*x^2-17)
sage: [p.codomain() for p in K.places()]
[Real Field with 106 bits of precision, Real Field with 106 bits of precision, Complex Field with 53 bits of precision]
sage: [a.local_height_arch(i) for i in range(3)]
[0.5301924545717755083366563897519, 0.5301924545717755083366563897519, 0.886412174563333]
sage: [a.local_height_arch(i, weighted=True) for i in range(3)]
[0.5301924545717755083366563897519, 0.5301924545717755083366563897519, 1.772834419599263]
```

A relative example:

```python
sage: L.<b, c> = NumberFieldTower([x^2 - 5, x^3 + x + 3])
sage: [(b + c).local_height_arch(i) for i in range(4)]
[1.2382233907578584911842206617439, 0.02240347229957875780769746914391, 0.884699506263208, 0.884699506263208]
```
0.780028961749618,
1.16048938497298]

\textit{matrix}(\texttt{base=\texttt{None}})

If \texttt{base} is \texttt{None}, return the matrix of right multiplication by the element on the power basis $1, x, x^2, \ldots, x^{d-1}$ for the number field. Thus the \textit{rows} of this matrix give the images of each of the x^i.

If \texttt{base} is not \texttt{None}, then \texttt{base} must be either a field that embeds in the parent of \texttt{self} or a morphism to the parent of \texttt{self}, in which case this function returns the matrix of multiplication by \texttt{self} on the power basis, where we view the parent field as a field over \texttt{base}.

Specifying \texttt{base} as the base field over which the parent of \texttt{self} is a relative extension is equivalent to \texttt{base} being \texttt{None}.

\textbf{INPUT:}

- \texttt{base} - field or morphism

\textbf{EXAMPLES:}

Regular number field:

\begin{verbatim}
sage: K.<a> = NumberField(QQ['x'].0^3 - 5)
sage: M = a.matrix(); M
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
5 & 0 & 0 \\
\end{bmatrix}
sage: M.base_ring() is QQ
True
\end{verbatim}

Relative number field:

\begin{verbatim}
sage: L. = K.extension(K['x'].0^2 - 2)
sage: M = b.matrix(); M
\begin{bmatrix}
0 & 1 \\
2 & 0 \\
\end{bmatrix}
sage: M.base_ring() is K
True
\end{verbatim}

Absolute number field:

\begin{verbatim}
sage: M = L.absolute_field('c').gen().matrix(); M
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
-17 & -60 & -12 & -10 & 6 & 0 \\
\end{bmatrix}
sage: M.base_ring() is QQ
True
\end{verbatim}

More complicated relative number field:

\begin{verbatim}
sage: L. = K.extension(K['x'].0^2 - a); L
Number Field in b with defining polynomial x^2 - a over its base field
\end{verbatim}
An example where we explicitly give the subfield or the embedding:

\begin{Verbatim}
\texttt{sage: K.<a> = NumberField(x^4 + 1); L.<a2> = NumberField(x^2 + 1)}
\texttt{sage: a.matrix(L)}
\texttt{[0 1]}
\texttt{[a2 0]}
\end{Verbatim}

Notice that if we compute all embeddings and choose a different one, then the matrix is changed as it should be:

\begin{Verbatim}
\texttt{sage: v = L.embeddings(K)}
\texttt{sage: a.matrix(v[1])}
\texttt{[0 1]}
\texttt{[-a2 0]}
\end{Verbatim}

The norm is also changed:

\begin{Verbatim}
\texttt{sage: a.norm(v[1])}
\texttt{a2}
\texttt{sage: a.norm(v[0])}
\texttt{-a2}
\end{Verbatim}

\texttt{minpoly(var='x')}

Return the minimal polynomial of this number field element.

\textbf{EXAMPLES:}

\begin{Verbatim}
\texttt{sage: K.<a> = NumberField(x^2+3)}
\texttt{sage: a.minpoly('x')}
\texttt{x^2 + 3}
\texttt{sage: R.<X> = K['X']}
\texttt{sage: L. = K.extension(X^2-(22 + a))}
\texttt{sage: b.minpoly('t')} \texttt{t^2 - a - 22}
\texttt{sage: b.absolute_minpoly('t')} \texttt{t^4 - 44*t^2 + 487}
\texttt{sage: b^2 - (22+a)} \texttt{0}
\end{Verbatim}

\texttt{multiplicative_order()}

Return the multiplicative order of this number field element.

\textbf{EXAMPLES:}

\begin{Verbatim}
\texttt{sage: K.<z> = CyclotomicField(5)}
\texttt{sage: z.multiplicative_order()} \texttt{5}
\end{Verbatim}
sage: (-z).multiplicative_order()
10
sage: (1+z).multiplicative_order()
+Infinity

sage: x = polygen(QQ)
sage: K.<a>=NumberField(x^40 - x^20 + 4)
sage: u = 1/4*a^30 + 1/4*a^10 + 1/2
sage: u.multiplicative_order()
6
sage: a.multiplicative_order()
+Infinity

An example in a relative extension:

sage: K.<a, b> = NumberField([x^2 + x + 1, x^2 - 3])
sage: z = (a - 1)*b/3
sage: z.multiplicative_order()
12
sage: z^12==1 and z^6!=1 and z^4!=1
True

norm(K=None)

Return the absolute or relative norm of this number field element.

If K is given then K must be a subfield of the parent L of self, in which case the norm is the relative norm from L to K. In all other cases, the norm is the absolute norm down to QQ.

EXAMPLES:

sage: K.<a> = NumberField(x^3 + x^2 + x - 132/7); K
Number Field in a with defining polynomial x^3 + x^2 + x - 132/7
sage: a.norm()
132/7
sage: factor(a.norm())
2^2 * 3 * 7^-1 * 11
sage: K(0).norm()
0

Some complicated relatives norms in a tower of number fields.

sage: K.<a,b,c> = NumberField([x^2 + 1, x^2 + 3, x^2 + 5])
sage: L = K.base_field(); M = L.base_field()
sage: a.norm()
1
sage: a.norm(L)
1
sage: a.norm(M)
1
sage: a
a
sage: (a+b+c).norm()
121
We illustrate that norm is compatible with towers:

```
sage: z = (a+b+c).norm(L); z.norm(M)
-11
```

If we are in an order, the norm is an integer:

```
sage: K.<a> = NumberField(x^3-2)
sage: a.norm().parent()
Rational Field
sage: R = K.ring_of_integers()
sage: R(a).norm().parent()
Integer Ring
```

When the base field is given by an embedding:

```
sage: K.<a> = NumberField(x^4 + 1)
sage: L.<a2> = NumberField(x^2 + 1)
sage: v = L.embeddings(K)
sage: a.norm(v[1])
a2
sage: a.norm(v[0])
a - a2
```

`nth_root(n, all=False)`

Return an n'th root of `self` in its parent K.

EXAMPLES:

```
sage: K.<a> = NumberField(x^4-7)
sage: K(7).nth_root(2)
a^2
sage: K((a-3)^5).nth_root(5)
a - 3
```

ALGORITHM: Use PARI to factor $x^n - \text{self}$ in K.

`numerator_ideal()`

Return the numerator ideal of this number field element.

The numerator ideal of a number field element a is the ideal of the ring of integers R obtained by intersecting aR with R.

See also:

`denominator_ideal()`

EXAMPLES:
Algebraic Numbers and Number Fields, Release 10.0

\begin{verbatim}
sage: K.<a> = NumberField(x^2+5)
sage: b = (1+a)/2
sage: b.norm()
3/2
sage: N = b.numerator_ideal(); N
Fractional ideal (3, a + 1)
sage: N.norm()
3
sage: (1/b).numerator_ideal()
Fractional ideal (2, a + 1)
sage: K(0).numerator_ideal()
Ideal (0) of Number Field in a with defining polynomial x^2 + 5
\end{verbatim}

\textbf{ord}(P)

Return the valuation of \texttt{self} at a given prime ideal \texttt{P}.

\textbf{INPUT:}

• \texttt{P} – a prime ideal of the parent of \texttt{self}

\textbf{Note:} The function \texttt{ord()} is an alias for \texttt{valuation()}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4+3*x^2-17)
sage: P = K.ideal(61).factor()[0][0]
sage: b = a^2 + 30
sage: b.valuation(P)
1
sage: b.ord(P)
1
sage: type(b.valuation(P))
<class 'sage.rings.integer.Integer'>
\end{verbatim}

The function can be applied to elements in relative number fields:

\begin{verbatim}
sage: L. = K.extension(x^2 - 3)
sage: [L(6).valuation(P) for P in L.primes_above(2)]
[4]
sage: [L(6).valuation(P) for P in L.primes_above(3)]
[2, 2]
\end{verbatim}

\textbf{polynomial}(\texttt{var='x')}

Return the underlying polynomial corresponding to this number field element.

The resulting polynomial is currently \textit{not} cached.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<a> = NumberField(x^5 - x - 1)
sage: f = (-2/3 + 1/3*a)^4; f
1/81*a^4 - 8/81*a^3 + 8/27*a^2 - 32/81*a + 16/81
sage: g = f.polynomial(); g
\end{verbatim}
1/81*x^4 - 8/81*x^3 + 8/27*x^2 - 32/81*x + 16/81

sage: parent(g)

Univariate Polynomial Ring in x over Rational Field

Note that the result of this function is not cached (should this be changed?):

sage: g is f.polynomial()

False

Note that in relative number fields, this produces the polynomial of the internal representation of this element:

sage: R.<y> = K[
sage: L. = K.extension(y^2 - a)
sage: b.polynomial()

x

In some cases this might not be what you are looking for:

sage: K.<a> = NumberField(x^2 + x + 1)
sage: R.<y> = K[
sage: L. = K.extension(y^2 + y + 2)
sage: b.polynomial()
1/2*x^3 + 3*x - 1/2
sage: R(list(b))

y

relative_norm()

Return the relative norm of this number field element over the next field down in some tower of number fields.

EXAMPLES:

sage: K1.<a1> = CyclotomicField(11)
sage: K2.<a2> = K1.extension(x^2 - 3)
sage: (a1 + a2).relative_norm()

a1^2 - 3

sage: (a1 + a2).relative_norm().relative_norm() == (a1 + a2).absolute_norm()

True

sage: K.<x,y,z> = NumberField([x^2 + 1, x^3 - 3, x^2 - 5])
sage: (x + y + z).relative_norm()

y^2 + 2*z^2*y + 6

residue_symbol(P, m, check=True)

The m-th power residue symbol for an element self and proper ideal P.

\[
\left(\frac{\alpha}{P} \right) \equiv \alpha^{N(P)/m} \mod P
\]

Note: accepts m=1, in which case returns 1
Note: can also be called for an ideal from sage.rings.number_field_ideal.residue_symbol

Note: self is coerced into the number field of the ideal P

Note: if \(m = 2 \), self is an integer, and \(P \) is an ideal of a number field of absolute degree 1 (i.e. it is a copy of the rationals), then this calls kronecker_symbol, which is implemented using GMP.

INPUT:

- \(P \) - proper ideal of the number field (or an extension)
- \(m \) - positive integer

OUTPUT:

- an \(m \)-th root of unity in the number field

EXAMPLES:

Quadratic Residue (11 is not a square modulo 17):

```
sage: K.<a> = NumberField(x - 1)
sage: K(11).residue_symbol(K.ideal(17),2)
-1
sage: kronecker_symbol(11,17)
-1
```

The result depends on the number field of the ideal:

```
sage: K.<a> = NumberField(x - 1)
sage: L.<b> = K.extension(x^2 + 1)
sage: K(7).residue_symbol(K.ideal(11),2)
-1
sage: K(7).residue_symbol(L.ideal(11),2)
1
```

Cubic Residue:

```
sage: K.<w> = NumberField(x^2 - x + 1)
sage: (w^2 + 3).residue_symbol(K.ideal(17),3)
-w
```

The field must contain the \(m \)-th roots of unity:

```
sage: K.<w> = NumberField(x^2 - x + 1)
sage: (w^2 + 3).residue_symbol(K.ideal(17),5)
Traceback (most recent call last):
...
ValueError: The residue symbol to that power is not defined for the number field
```

`round()`

Return the round (nearest integer) of this number field element.

EXAMPLES:
sage: x = polygen(ZZ)
sage: p = x**7 - 5*x**2 + x + 1
sage: a_AA = AA.polynomial_root(p, RIF(1,2))
sage: K.<a> = NumberField(p, embedding=a_AA)
sage: b = a**5 + a/2 - 1/7
sage: RR(b)
4.13444473767055
sage: b.round()
4
sage: (-b).round()
-4
sage: (b+1/2).round()
5
sage: (-b-1/2).round()
-5

This function always succeeds even if a tremendous precision is needed:

sage: c = b - 5678322907931/1225243417356 + 3
sage: c.round()
3
sage: RIF(c).unique_round()
Traceback (most recent call last):
 ... ValueError: interval does not have a unique round (nearest integer)

If the number field is not embedded, this function is valid only if the element is rational:

sage: p = x**5 - 3
sage: K.<a> = NumberField(p)
sage: [K(k/3).round() for k in range(-3,4)]
[-1, -1, 0, 0, 0, 1, 1]
sage: a.round()
Traceback (most recent call last):
 ... TypeError: floor not uniquely defined since no real embedding is specified

sign()

Return the sign of this algebraic number (if a real embedding is well defined)

EXAMPLES:

sage: K.<a> = NumberField(x^3 - 2, embedding=AA(2)**(1/3))
sage: K.zero().sign()
0
sage: K.one().sign()
1
sage: (-K.one()).sign()
-1
sage: a.sign()
1
sage: (a - 234917380309015/186454048314072).sign()
1

(continues on next page)
If the field is not embedded in real numbers, this method will only work for rational elements:

```python
sage: L.<b> = NumberField(x^4 - x - 1)
sage: b.sign()
Traceback (most recent call last):
  ...TypeError: sign not well defined since no real embedding is specified
sage: L(-33/125).sign()
-1
sage: L.zero().sign()
0
```

```
srqt(all=False, extend=True)
```

Return the square root of this number in the given number field.

INPUT:
- `all` – optional boolean (default False); whether to return both square roots
- `extend` – optional boolean (default True); whether to extend the field by adding the square roots if needed

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 - 3)
sage: K(3).sqrt()
a
sage: K(3).sqrt(all=True)
[a, -a]
sage: K(a^10).sqrt()
9*a
sage: K(49).sqrt()
7
sage: K(1+a).sqrt(extend=False)
Traceback (most recent call last):
  ...ValueError: a + 1 not a square in Number Field in a with defining polynomial x^2 - 3
sage: K(0).sqrt()
0
sage: K((7+a)^2).sqrt(all=True)
[a + 7, -a - 7]
```

```python
sage: K.<a> = CyclotomicField(7)
sage: a.sqrt()
a^4
```

```python
sage: K.<a> = NumberField(x^5 - x + 1)
sage: (a^4 + a^2 - 3*a + 2).sqrt()
a^3 - a^2
```
Using the extend keyword:

```
sage: K = QuadraticField(-5)
sage: z = K(-7).sqrt(extend=True); z
sqrt(-7)
sage: CyclotomicField(4)(4).sqrt(extend=False)
2
```

If `extend=False` an error is raised, if `self` is not a square:

```
sage: K = QuadraticField(-5)
sage: K(-7).sqrt(extend=False)
Traceback (most recent call last):
  ...  
ValueError: -7 not a square in Number Field in a with defining polynomial x^2 +...
→5 with a = 2.236067977499790?*I
```

ALGORITHM: Use PARI to factor $x^2 - self$ in K.

support()

Return the support of this number field element.

OUTPUT: A sorted list of the primes ideals at which this number field element has nonzero valuation. An error is raised if the element is zero.

EXAMPLES:

```
sage: x = ZZ['x'].gen()
sage: F.<t> = NumberField(x^3 - 2)

sage: P5s = F(5).support()
sage: P5s
[Fractional ideal (-t^2 - 1), Fractional ideal (t^2 - 2*t - 1)]
sage: all(5 in P5 for P5 in P5s)
True
sage: all(P5.is_prime() for P5 in P5s)
True
sage: [ P5.norm() for P5 in P5s ]
[5, 25]
```

trace(K=None)

Return the absolute or relative trace of this number field element.

If K is given then K must be a subfield of the parent L of $self$, in which case the trace is the relative trace from L to K. In all other cases, the trace is the absolute trace down to QQ.

EXAMPLES:

```
sage: K.<a> = NumberField(x^3 -132/7*x^2 + x + 1); K
Number Field in a with defining polynomial x^3 - 132/7*x^2 + x + 1
sage: a.trace()
132/7
sage: (a+1).trace() == a.trace() + 3
True
```

If we are in an order, the trace is an integer:
\begin{verbatim}
\textbf{sage:} K.<zeta> = CyclotomicField(17)
\textbf{sage:} R = K.ring_of_integers()
\textbf{sage:} R(zeta).trace().parent()
\end{verbatim}

\textbf{valuation}(P)

Return the valuation of self at a given prime ideal P.

INPUT:

- P – a prime ideal of the parent of self

Note: The function \texttt{ord()} is an alias for \texttt{valuation()}.

EXAMPLES:

\begin{verbatim}
\textbf{sage:} R.<x> = QQ[]
\textbf{sage:} K.<a> = NumberField(x^4+3*x^2-17)
\textbf{sage:} P = K.ideal(61).factor()[0][0]
\textbf{sage:} b = a^2 + 30
\textbf{sage:} b.valuation(P)
1
\textbf{sage:} b.ord(P)
1
\textbf{sage: type(b.valuation(P))}
<class 'sage.rings.integer.Integer'>
\end{verbatim}

The function can be applied to elements in relative number fields:

\begin{verbatim}
\textbf{sage:} L. = K.extension(x^2 - 3)
\textbf{sage:} [L(6).valuation(P) for P in L.primes_above(2)]
[4]
\textbf{sage:} [L(6).valuation(P) for P in L.primes_above(3)]
[2, 2]
\end{verbatim}

\textbf{vector()}

Return vector representation of self in terms of the basis for the ambient number field.

EXAMPLES:

\begin{verbatim}
\textbf{sage:} K.<a> = NumberField(x^2 + 1)
\textbf{sage:} (2/3*a - 5/6).vector()
(-5/6, 2/3)
\textbf{sage:} (O.1).vector()
(0, 2)
\textbf{sage:} K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
\textbf{sage:} (a + b).vector()
(b, 1)
\textbf{sage:} 0 = K.order([a,b])
\textbf{sage:} (0.1).vector()
\end{verbatim}

(continues on next page)
(continued from previous page)

\[(-b, 1) \]
\[\text{sage: } (0.2).\text{vector() } \]
\[(1, -b) \]

class `sage.rings.number_field.number_field_element.NumberFieldElement_absolute`

Bases: `NumberFieldElement`

absolute_charpoly(var='x', algorithm=None)

Return the characteristic polynomial of this element over \(\mathbb{Q} \).

For the meaning of the optional argument `algorithm`, see `charpoly()`.

EXAMPLES:

```python
sage: x = ZZ['x'].0
sage: K.<a> = NumberField(x^4 + 2, 'a')
sage: a.absolute_charpoly()
x^4 + 2
sage: a.absolute_charpoly('y')
y^4 + 2
sage: (-a^2).absolute_charpoly()
x^4 + 4*x^2 + 4
sage: (-a^2).absolute_minpoly()
x^2 + 2
sage: a.absolute_charpoly(algorithm='pari') == a.absolute_charpoly(algorithm='sage')
True
```

absolute_minpoly(var='x', algorithm=None)

Return the minimal polynomial of this element over \(\mathbb{Q} \).

For the meaning of the optional argument `algorithm`, see `charpoly()`.

EXAMPLES:

```python
sage: x = ZZ['x'].0
sage: f = x^10 - 5*x^9 + 15*x^8 - 68*x^7 + 81*x^6 - 221*x^5 + 141*x^4 - 242*x^3 - 13*x^2 - 33*x - 135
sage: K.<a> = NumberField(f, 'a')
sage: a.absolute_charpoly()
x^10 - 5*x^9 + 15*x^8 - 68*x^7 + 81*x^6 - 221*x^5 + 141*x^4 - 242*x^3 - 13*x^2 - 33*x - 135
sage: a.absolute_charpoly('y')
y^10 - 5*y^9 + 15*y^8 - 68*y^7 + 81*y^6 - 221*y^5 + 141*y^4 - 242*y^3 - 13*y^2 - 33*y - 135
sage: b = -79/9995*a^9 + 52/9995*a^8 + 271/9995*a^7 + 1663/9995*a^6 + 13204/9995*a^5 + 5573/9995*a^4 + 8435/1999*a^3 - 3116/9995*a^2 + 7734/1999*a + 1620/1999
sage: b.absolute_charpoly()
x^10 + 10*x^9 + 25*x^8 - 80*x^7 - 438*x^6 + 80*x^5 + 2950*x^4 + 1520*x^3 - 10439*x^2 - 5130*x + 18225
sage: b.absolute_minpoly()
x^5 + 5*x^4 - 40*x^2 - 19*x + 135
```

(continues on next page)
sage: b.absolute_minpoly(algorithm='pari') == b.absolute_minpoly(algorithm='sage')
True

charpoly(var='x', algorithm=None)

The characteristic polynomial of this element, over \mathbb{Q} if self is an element of a field, and over \mathbb{Z} if self is an element of an order.

This is the same as self.absolutcharepoly since this is an element of an absolute extension.

The optional argument algorithm controls how the characteristic polynomial is computed: `pari` uses PARI, `sage` uses charpoly for Sage matrices. The default value None means that `pari` is used for small degrees (up to the value of the constant TUNE_CHARPOLY_NF, currently at 25), otherwise `sage` is used. The constant TUNE_CHARPOLY_NF should give reasonable performance on all architectures; however, if you feel the need to customize it to your own machine, see github issue #5213 for a tuning script.

EXAMPLES:

We compute the characteristic polynomial of the cube root of 2.

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-2)
sage: a.charpoly('x')
x^3 - 2
sage: a.charpoly('y').parent()
Univariate Polynomial Ring in y over Rational Field
```

is_real_positive(min_prec=53)

Using the n method of approximation, return True if self is a real positive number and False otherwise. This method is completely dependent of the embedding used by the n method.

The algorithm first checks that self is not a strictly complex number. Then if self is not zero, by approximation more and more precise, the method answers True if the number is positive. Using RealInterval, the result is guaranteed to be correct.

For CyclotomicField, the embedding is the natural one sending ζ_n on $\cos(2 \pi/n)$.

EXAMPLES:

```python
sage: K.<a> = CyclotomicField(3)
sage: (a+a^2).is_real_positive()
False
sage: (-a-a^2).is_real_positive()
True
sage: K.<a> = CyclotomicField(1000)
sage: (a+a^(-1)).is_real_positive()
True
sage: K.<a> = CyclotomicField(1009)
sage: d = a^252
sage: (d+d.conjugate()).is_real_positive()
True
sage: d = a^253
sage: (d+d.conjugate()).is_real_positive()
False
```

(continues on next page)
sage: K.<a> = QuadraticField(3)
sage: a.is_real_positive()
True
sage: K.<a> = QuadraticField(-3)
sage: a.is_real_positive()
False
sage: (a-a).is_real_positive()
False

lift *(var='x')*

Return an element of QQ[x], where this number field element lives in QQ[x]/(f(x)).

EXAMPLES:

sage: K.<a> = QuadraticField(-3)
sage: a.lift()
x

list()

Return the list of coefficients of self written in terms of a power basis.

EXAMPLES:

sage: K.<z> = CyclotomicField(3)
sage: (2+3/5*z).list()
[2, 3/5]
sage: (5*z).list()
[0, 5]
sage: K(3).list()
[3, 0]

minpoly *(var='x', algorithm=None)*

Return the minimal polynomial of this number field element.

For the meaning of the optional argument algorithm, see charpoly().

EXAMPLES:

We compute the characteristic polynomial of cube root of 2.

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-2)
sage: a.minpoly('x')
\(x^3 - 2\)
sage: a.minpoly('y').parent()
Univariate Polynomial Ring in y over Rational Field

class `sage.rings.number_field.number_field_element.NumberFieldElement_relative`

Bases: `NumberFieldElement`

The current relative number field element implementation does everything in terms of absolute polynomials. All conversions from relative polynomials, lists, vectors, etc should happen in the parent.
absolute_charpoly(\(var='x', algorithm=None\))

The characteristic polynomial of this element over \(\mathbb{Q}\).

We construct a relative extension and find the characteristic polynomial over \(\mathbb{Q}\).

The optional argument algorithm controls how the characteristic polynomial is computed: ‘pari’ uses PARI, ‘sage’ uses charpoly for Sage matrices. The default value None means that ‘pari’ is used for small degrees (up to the value of the constant TUNE_CHARPOLY_NF, currently at 25), otherwise ‘sage’ is used. The constant TUNE_CHARPOLY_NF should give reasonable performance on all architectures; however, if you feel the need to customize it to your own machine, see github issue #5213 for a tuning script.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-2)
sage: S.<X> = K[]
sage: L.<b> = NumberField(X^3 + 17); L
Number Field in b with defining polynomial X^3 + 17 over its base field
sage: b.absolute_charpoly()
x^9 + 51*x^6 + 867*x^3 + 4913
sage: b.charpoly()(b)
0
sage: a = L.0; a
b
sage: a.absolute_charpoly('x')
x^9 + 51*x^6 + 867*x^3 + 4913
sage: a.absolute_charpoly('y')
y^9 + 51*y^6 + 867*y^3 + 4913
sage: a.absolute_charpoly(algorithm='pari') == a.absolute_charpoly(algorithm='sage')
True
```

absolute_minpoly(\(var='x', algorithm=None\))

Return the minimal polynomial over \(\mathbb{Q}\) of this element.

For the meaning of the optional argument algorithm, see **absolute_charpoly**().

EXAMPLES:

```
sage: K.<a, b> = NumberField([x^2 + 2, x^2 + 1000*x + 1])
sage: y = K['y'].0
sage: L.<c> = K.extension(y^2 + a*y + b)
sage: c.absolute_charpoly()
x^8 - 1996*x^6 + 996006*x^4 + 1997996*x^2 + 1
sage: c.absolute_minpoly()
x^8 - 1996*x^6 + 996006*x^4 + 1997996*x^2 + 1
sage: L(a).absolute_charpoly()
x^2 + 2
sage: L(b).absolute_charpoly()
x^8 + 4000*x^7 + 6000004*x^6 + 4000012000*x^5 + 1000012000006*x^4 + ...
   -4000012000*x^3 + 60000004*x^2 + 4000*x + 1
sage: L(b).absolute_minpoly()
x^2 + 1000*x + 1
```
\textbf{charpoly}(\texttt{var='x'})

The characteristic polynomial of this element over its base field.

\textbf{EXAMPLES:}

```
sage: x = ZZ['x'].0
sage: K.<a, b> = QQ.extension([x^2 + 2, x^5 + 400*x^4 + 11*x^2 + 2])
sage: a.charpoly()
x^2 + 2
sage: b.charpoly()
x^2 - 2*b*x + b^2
sage: b.minpoly()
x - b
sage: K.<a, b> = NumberField([x^2 + 2, x^2 + 1000*x + 1])
sage: y = K['y'].0
sage: L.<c> = K.extension(y^2 + a*y + b)
sage: c.charpoly()
x^2 + a*x + b
sage: c.minpoly()
x^2 + a*x + b
sage: L(a).charpoly()
x^2 - 2*a*x - 2
sage: L(a).minpoly()
x - a
sage: L(b).charpoly()
x^2 - 2*b*x - 1000*b - 1
sage: L(b).minpoly()
x - b
```

\textbf{lift}(\texttt{var='x'})

Return an element of \(K[x]\), where this number field element lives in the relative number field \(K[x]/(f(x))\).

\textbf{EXAMPLES:}

```
sage: K.<a> = QuadraticField(-3)
sage: x = polygen(K)
sage: L.<b> = K.extension(x^7 + 5)
sage: u = L(1/2*a + 1/2 + b + (a-9)*b^5)
sage: u.lift()
(a - 9)*x^5 + x + 1/2*a + 1/2
```

\textbf{list()}

Return the list of coefficients of self written in terms of a power basis.

\textbf{EXAMPLES:}

```
sage: K.<a,b> = NumberField([x^3+2, x^2+1])
sage: a.list()
[0, 1, 0]
sage: v = (K.base_field().0 + a)^2 ; v
a^2 + 2*b*a - 1
sage: v.list()
[-1, 2*b, 1]
```

1.4. Number field elements (implementation using NTL) 175
valuation(P)

Returns the valuation of self at a given prime ideal P.

INPUT:

• P - a prime ideal of relative number field which is the parent of self

EXAMPLES:

```python
sage: K.<a, b, c> = NumberField([x^2 - 2, x^2 - 3, x^2 - 5])
sage: P = K.prime_factors(5)[1]
sage: (2*a + b - c).valuation(P)
1
```

class sage.rings.number_field.number_field_element.OrderElement_absolute

Bases: NumberFieldElement_absolute

Element of an order in an absolute number field.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 + 1)
sage: O2 = K.order(2*a)
sage: w = O2.1; w
2*a
sage: parent(w)
Order in Number Field in a with defining polynomial x^2 + 1
sage: w.absolute_charpoly()
x^2 + 4
sage: w.absolute_charpoly().parent()
Univariate Polynomial Ring in x over Integer Ring
sage: w.absolute_minpoly()
x^2 + 4
sage: w.absolute_minpoly().parent()
Univariate Polynomial Ring in x over Integer Ring
```

inverse_mod(I)

Return an inverse of self modulo the given ideal.

INPUT:

• I - may be an ideal of self.parent(), or an element or list of elements of self.parent() generating a nonzero ideal. A ValueError is raised if I is non-integral or is zero. A ZeroDivisionError is raised if $I + (x) \neq (1)$.

EXAMPLES:

```python
sage: OE.<w> = EquationOrder(x^3 - x + 2)
sage: w.inverse_mod(13*OE)
6*w^2 - 6
sage: w * (w.inverse_mod(13)) - 1 in 13*OE
True
sage: w.inverse_mod(13).parent() == OE
True
sage: w.inverse_mod(2*OE)
Traceback (most recent call last):
```

(continues on next page)
class sage.rings.number_field.number_field_element.OrderElement_relative

Bases: NumberFieldElement_relative

Element of an order in a relative number field.

EXAMPLES:

```python
sage: O = EquationOrder([x^2 + x + 1, x^3 - 2], 'a,b')
sage: c = O.1; c
(-2*b^2 - 2)*a - 2*b^2 - b
sage: type(c)
<class 'sage.rings.number_field.number_field_element.OrderElement_relative'>
```

absolute_charpoly(var='x')

The absolute characteristic polynomial of this order element over ZZ.

EXAMPLES:

```python
sage: x = ZZ['x'].0
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: OK = K.maximal_order()
sage: _, u, _, v = OK.basis()
sage: t = 2*u - v; t
-b
sage: t.absolute_charpoly()
x^4 - 6*x^2 + 9
sage: t.absolute_minpoly()
x^2 - 3
sage: t.absolute_charpoly().parent()
Univariate Polynomial Ring in x over Integer Ring
```

absolute_minpoly(var='x')

The absolute minimal polynomial of this order element over ZZ.

EXAMPLES:

```python
sage: x = ZZ['x'].0
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: OK = K.maximal_order()
sage: _, u, _, v = OK.basis()
sage: t = 2*u - v; t
-b
sage: t.absolute_charpoly()
x^4 - 6*x^2 + 9
sage: t.absolute_minpoly()
x^2 - 3
sage: t.absolute_minpoly().parent()
Univariate Polynomial Ring in x over Integer Ring
```

charpoly(var='x')

The characteristic polynomial of this order element over its base ring.
This special implementation works around bug #4738. At this time the base ring of relative order elements is ZZ; it should be the ring of integers of the base field.

EXAMPLES:

```
sage: x = ZZ['x'].0
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: OK = K.maximal_order(); OK.basis()
[1, 1/2*a - 1/2*b, -1/2*b*a + 1/2, a]
sage: charpoly(OK.1)
x^2 + b*x + 1
sage: charpoly(OK.1).parent()
Univariate Polynomial Ring in x over Maximal Order in Number Field in b with...
  defining polynomial x^2 - 3
sage: [ charpoly(t) for t in OK.basis() ]
[x^2 - 2*x + 1, x^2 + b*x + 1, x^2 - x + 1, x^2 + 1]
```

`inverse_mod(I)`

Return an inverse of self modulo the given ideal.

INPUT:

- `I` - may be an ideal of self.parent(), or an element or list of elements of self.parent() generating a nonzero ideal. A ValueError is raised if I is non-integral or is zero. A ZeroDivisionError is raised if I + (x) != (1).

EXAMPLES:

```
sage: E.<a,b> = NumberField([x^2 - x + 2, x^2 + 1])
sage: OE = E.ring_of_integers()
sage: t = OE(b - a).inverse_mod(17*b)
sage: t*(b - a) - 1 in E.ideal(17*b)
True
sage: t.parent() == OE
True
```

`minpoly(var='x')`

The minimal polynomial of this order element over its base ring.

This special implementation works around bug #4738. At this time the base ring of relative order elements is ZZ; it should be the ring of integers of the base field.

EXAMPLES:

```
sage: x = ZZ['x'].0
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: OK = K.maximal_order(); OK.basis()
[1, 1/2*a - 1/2*b, -1/2*b*a + 1/2, a]
sage: minpoly(OK.1)
x^2 + b*x + 1
sage: charpoly(OK.1).parent()
Univariate Polynomial Ring in x over Maximal Order in Number Field in b with...
  defining polynomial x^2 - 3
sage: _, u, _, v = OK.basis()
sage: t = 2*u - v; t
-b
```

(continues on next page)
sage: t.charpoly()
x^2 + 2*b*x + 3
sage: t.minpoly()
x + b
sage: t.absolute_charpoly()
x^4 - 6*x^2 + 9
sage: t.absolute_minpoly()
x^2 - 3

sage.rings.number_field.number_field_element.is_NumberFieldElement(x)
Return True if x is of type NumberFieldElement, i.e., an element of a number field.

EXAMPLES:

sage: from sage.rings.number_field.number_field_element import is_NumberFieldElement
sage: is_NumberFieldElement(2)
doctest:warning...
DeprecationWarning: is_NumberFieldElement is deprecated; use isinstance(..., sage.structure.element.NumberFieldElement) instead
See https://github.com/sagemath/sage/issues/34931 for details.
False
sage: k.<a> = NumberField(x^7 + 17*x + 1)
sage: is_NumberFieldElement(a+1)
True

1.5 Optimized Quadratic Number Field Elements

This file defines a Cython class NumberFieldElement_quadratic to speed up computations in quadratic extensions of \(\mathbb{Q} \).

AUTHORS:

• Robert Bradshaw (2007-09): Initial version
• David Harvey (2007-10): fix up a few bugs, polish around the edges
• David Loeffler (2009-05): add more documentation and tests
• Vincent Delecroix (2012-07): comparisons for quadratic number fields (github issue #13213), abs, floor and ceil functions (github issue #13256)

Todo: The _new() method should be overridden in this class to copy the \(D \) and standard_embedding attributes

class sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_gaussian
Bases: NumberFieldElement_quadratic_sqrt

An element of \(\mathbb{Q}[\sqrt{2}] \).

Some methods of this class behave slightly differently than the corresponding methods of general elements of quadratic number fields, especially with regard to conversions to parents that can represent complex numbers in rectangular form.
In addition, this class provides some convenience methods similar to methods of symbolic expressions to make the behavior of \(a + I \times b \) with rational \(a, b \) closer to that when \(a, b \) are expressions.

EXAMPLES:

```
sage: type(I)
<class 'sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_→gaussian'>
sage: mi = QuadraticField(-1, embedding=CC(0,-1)).gen()
sage: type(mi)
<class 'sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_→gaussian'>
sage: CC(mi)
-1.00000000000000*I
```

imag()

Imaginary part.

EXAMPLES:

```
sage: (1 + 2*I).imag()
2
sage: (1 + 2*I).imag().parent()
Rational Field
sage: K.<mi> = QuadraticField(-1, embedding=CC(0,-1))
sage: (1 - mi).imag()
1
```

imag_part()

Imaginary part.

EXAMPLES:

```
sage: (1 + 2*I).imag()
2
sage: (1 + 2*I).imag().parent()
Rational Field
sage: K.<mi> = QuadraticField(-1, embedding=CC(0,-1))
sage: (1 - mi).imag()
1
```

log(*args, **kwds)

Complex logarithm (standard branch).

EXAMPLES:

```
sage: I.log()
1/2*I*pi
```

real()

Real part.

EXAMPLES:
real_part()

Real part.

EXAMPLES:

```
sage: (1 + 2*I).real()
sage: (1 + 2*I).real().parent()  
```

class sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic

Bases: NumberFieldElement_absolute

A NumberFieldElement_quadratic object gives an efficient representation of an element of a quadratic extension of \(\mathbb{Q} \).

Elements are represented internally as triples \((a, b, c)\) of integers, where \(\gcd(a, b, c) = 1\) and \(c > 0\), representing the element \((a + b\sqrt{D})/c\). Note that if the discriminant \(D\) is 1 mod 4, integral elements do not necessarily have \(c = 1\).

ceil()

Returns the ceil.

EXAMPLES:

```
sage: K.<sqrt7> = QuadraticField(7, name='sqrt7')
sage: sqrt7.ceil()  
sage: (-sqrt7).ceil()  
sage: (1022/313*sqrt7 - 14/23).ceil()  
```

charpoly(var='x', algorithm=None)

The characteristic polynomial of this element over \(\mathbb{Q} \).

INPUT:

- **var** – the minimal polynomial is defined over a polynomial ring in a variable with this name. If not specified this defaults to \(x\)
- **algorithm** – for compatibility with general number field elements; ignored

EXAMPLES:

```
sage: K.<a> = NumberField(x^2-x+13)  
sage: a.charpoly()  
sage: b = 3-a/2  
sage: f = b.charpoly(); f  
```

(continues on next page)
\textbf{continued_fraction()}

Return the (finite or ultimately periodic) continued fraction of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<sqrt2> = QuadraticField(2)
sage: cf = sqrt2.continued_fraction(); cf
[1; (2)*]
sage: cf.n()
1.41421356237310
sage: sqrt2.n()
1.41421356237309
sage: cf.value()
sqrt2
sage: (sqrt2/3 + 1/4).continued_fraction()
[0; 1, (2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 5, 1, 1, 14, 1, 1, 5)*]
\end{verbatim}

\textbf{continued_fraction_list()}

Return the preperiod and the period of the continued fraction expansion of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<sqrt2> = QuadraticField(2)
sage: sqrt2.continued_fraction_list()
((1,), (2,))
sage: (1/2+sqrt2/3).continued_fraction_list()
((0, 1, 33), (1, 32))
\end{verbatim}

For rational entries a pair of tuples is also returned but the second one is empty:

\begin{verbatim}
sage: K(123/567).continued_fraction_list()
((0, 4, 1, 1, 1, 1, 3, 2), ())
\end{verbatim}

\textbf{denominator()}

Return the denominator of \texttt{self}.

This is the LCM of the denominators of the coefficients of \texttt{self}, and thus it may well be > 1 even when the element is an algebraic integer.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<a> = NumberField(x^2 - 5)
sage: b = (a + 1)/2
sage: b.denominator()
2
sage: b.is_integral()
True
sage: K.<c> = NumberField(x^2-x+7)
sage: c.denominator()
1
\end{verbatim}
floor()
Returns the floor of x.

EXAMPLES:

```
sage: K.<sqrt2> = QuadraticField(2, name='sqrt2')
sage: sqrt2.floor()
1
sage: (-sqrt2).floor()
-2
sage: (13/197 + 3702/123*sqrt2).floor()
42
sage: (13/197-3702/123*sqrt2).floor()
-43
```

galois_conjugate()
Returns the image of this element under action of the nontrivial element of the Galois group of this field.

EXAMPLES:

```
sage: K.<a> = QuadraticField(23)
sage: a.galois_conjugate()
-a
sage: K.<a> = NumberField(x^2 - 5*x + 1)
sage: a.galois_conjugate()
-a + 5
sage: b = 5*a + 1/3
sage: b.galois_conjugate()
-5*a + 76/3
sage: b.norm() == b * b.galois_conjugate()
True
sage: b.trace() == b + b.galois_conjugate()
True
```

imag()
Return the imaginary part of self.

EXAMPLES:

```
sage: K.<sqrt2> = QuadraticField(2)
sage: sqrt2.imag()
0
sage: parent(sqrt2.imag())
Rational Field
sage: K.<i> = QuadraticField(-1)
sage: i.imag()
1
sage: parent(i.imag())
Rational Field
sage: K.<a> = NumberField(x^2 + x + 1, embedding=CDF.0)
sage: a.imag()
1/2*sqrt3
```

(continues on next page)
sage: a.real()
-1/2
sage: SR(a)
1/2*I*sqrt(3) - 1/2
sage: bool(QQbar(I)*QQbar(a.imag()) + QQbar(a.real()) == QQbar(a))
True

is_integer()
Check whether this number field element is an integer.

See also:

• is_rational() to test if this element is a rational number
• is_integral() to test if this element is an algebraic integer

EXAMPLES:

sage: K.<sqrt3> = QuadraticField(3)
sage: sqrt3.is_integer()
False
sage: (sqrt3-1/2).is_integer()
False
sage: K(0).is_integer()
True
sage: K(-12).is_integer()
True
sage: K(1/3).is_integer()
False

is_integral()
Return whether this element is an algebraic integer.

is_one()
Check whether this number field element is 1.

EXAMPLES:

sage: K = QuadraticField(-2)
sage: K(1).is_one()
True
sage: K(-1).is_one()
False
sage: K(2).is_one()
False
sage: K(0).is_one()
False
sage: K(1/2).is_one()
False
sage: K.gen().is_one()
False

is_rational()
Check whether this number field element is a rational number.
See also:

- `is_integer()` to test if this element is an integer
- `is_integral()` to test if this element is an algebraic integer

EXAMPLES:

```python
sage: K.<sqrt3> = QuadraticField(3)
sage: sqrt3.is_rational()
False
sage: (sqrt3-1/2).is_rational()
False
sage: K(0).is_rational()
True
sage: K(-12).is_rational()
True
sage: K(1/3).is_rational()
True
```

`minpoly(var='x', algorithm=None)`

The minimal polynomial of this element over \(\mathbb{Q} \).

INPUT:

- `var` – the minimal polynomial is defined over a polynomial ring in a variable with this name. If not specified this defaults to \(x \)
- `algorithm` – for compatibility with general number field elements: and ignored

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2+13)
sage: a.minpoly()
x^2 + 13
sage: a.minpoly('T')
T^2 + 13
sage: (a+1/2-a).minpoly()
x - 1/2
```

`norm(K=None)`

Return the norm of `self`.

If the second argument is `None`, this is the norm down to \(\mathbb{Q} \). Otherwise, return the norm down to \(K \) (which had better be either \(\mathbb{Q} \) or this number field).

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2-x+3)
sage: a.norm()
3
sage: a.matrix()
[ 0 1]
[-3 1]
sage: K.<a> = NumberField(x^2+5)
sage: (1+a).norm()
6
```
The norm is multiplicative:

```
sage: K.<a> = NumberField(x^2-3)
sage: a.norm()
-3
sage: K(3).norm()
9
sage: (3*a).norm()
-27
```

We test that the optional argument is handled sensibly:

```
sage: (3*a).norm(QQ)
-27
sage: (3*a).norm(K)
3*a
sage: (3*a).norm(CyclotomicField(3))
Traceback (most recent call last):
...
ValueError: no way to embed L into parent's base ring K
```

`numerator()`

Return `self * self.denominator()`.

EXAMPLES:

```
sage: K.<a> = NumberField(x^2+41)
sage: b = (2*a+1)/6
sage: b.denominator()
6
sage: b.numerator()
2*a + 1
```

`parts()`

This function returns a pair of rationals \(a \) and \(b \) such that \(self = a + b\sqrt{D} \).

This is much closer to the internal storage format of the elements than the polynomial representation coefficients (the output of \(self.list() \)), unless the generator with which this number field was constructed was equal to \(\sqrt{D} \). See the last example below.

EXAMPLES:

```
sage: K.<a> = NumberField(x^2-13)
sage: K.discriminant()
13
sage: a.parts()
(0, 1)
sage: (a/2-4).parts()
(-4, 1/2)
sage: K.<a> = NumberField(x^2-7)
sage: K.discriminant()
28
sage: a.parts()
(0, 1)
sage: K.<a> = NumberField(x^2-x+7)
```

(continues on next page)
real()

Return the real part of self, which is either self (if self lives in a totally real field) or a rational number.

EXAMPLES:

```
sage: K.<sqrt2> = QuadraticField(2)
sage: sqrt2.real()
sqrt2
sage: K.<a> = QuadraticField(-3)
sage: a.real()
0
sage: (a + 1/2).real()
1/2
sage: K.<a> = NumberField(x^2 + x + 1)
sage: a.real()
-1/2
sage: parent(a.real())
Rational Field
sage: K.<i> = QuadraticField(-1)
sage: i.real()
0
```

round()

Returns the round (nearest integer).

EXAMPLES:

```
sage: K.<sqrt7> = QuadraticField(7, name='sqrt7')
sage: sqrt7.round()
3
sage: (-sqrt7).round()
-3
sage: (12/313*sqrt7 - 1745917/2902921).round()
0
sage: (12/313*sqrt7 - 1745918/2902921).round()
-1
```

sign()

Returns the sign of self (0 if zero, +1 if positive and -1 if negative).

EXAMPLES:

```
sage: K.<sqrt2> = QuadraticField(2, name='sqrt2')
sage: K(0).sign()
0
sage: sqrt2.sign()
1
sage: (sqrt2+1).sign()
(continues on next page)
1
sage: (sqrt2-1).sign()
1
sage: (sqrt2-2).sign()
-1
sage: (-sqrt2).sign()
-1
sage: (-sqrt2+1).sign()
-1
sage: (-sqrt2+2).sign()
1

sage: K.<a> = QuadraticField(2, embedding=-1.4142)
sage: K(0).sign()
0
sage: a.sign()
-1
sage: (a+1).sign()
-1
sage: (a+2).sign()
1
sage: (a-1).sign()
-1
sage: (-a).sign()
1
sage: (-a-1).sign()
1
sage: (-a-2).sign()
-1

sage: K.<b> = NumberField(x^2 + 2*x + 7, 'b', embedding=CC(-1,-sqrt(6)))
sage: b.sign()
Traceback (most recent call last):
  ... 
ValueError: a complex number has no sign!
sage: K(1).sign()
1
sage: K(0).sign()
0
sage: K(-2/3).sign()
-1

trace()

EXAMPLES:

sage: K.<a> = NumberField(x^2+2x+41)
sage: a.trace()
-1
sage: a.matrix()
[ 0 1]
[ 1 0]

The trace is additive:
Algebraic Numbers and Number Fields, Release 10.0

```
sage: K.<a> = NumberField(x^2+7)
sage: (a+1).trace()
2
sage: K(3).trace()
6
sage: (a+4).trace()
8
sage: (a/3+1).trace()
2
```

class
sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic_sqrt
Bases: NumberFieldElement_quadratic

A NumberFieldElement_quadratic object gives an efficient representation of an element of a quadratic extension of $\mathbb{Q}$ for the case when is_sqrt_disc() is True.

denominator()
Return the denominator of self.

This is the LCM of the denominators of the coefficients of self, and thus it may well be $> 1$ even when the element is an algebraic integer.

EXAMPLES:
```
sage: K.<a> = NumberField(x^2+x+41)
sage: a.denominator()
1
sage: b = (2*a+1)/6
sage: b.denominator()
6
sage: K(1).denominator()
1
sage: K(1/2).denominator()
2
sage: K(0).denominator()
1
sage: K.<a> = NumberField(x^2 - 5)
sage: b = (a + 1)/2
sage: b.denominator()
2
sage: b.is_integral()
True
```

class sage.rings.number_field.number_field_element_quadratic.OrderElement_quadratic
Bases: NumberFieldElement_quadratic

Element of an order in a quadratic field.

EXAMPLES:
```
sage: K.<a> = NumberField(x^2 + 1)
sage: O2 = K.order(2*a)
sage: w = O2.1; w

(continues on next page)
2*a

sage: parent(w)
Order in Number Field in a with defining polynomial x^2 + 1

charpoly(var='x', algorithm=None)

The characteristic polynomial of this element, which is over \(\mathbb{Z} \) because this element is an algebraic integer.

INPUT:

- var – the minimal polynomial is defined over a polynomial ring
 in a variable with this name. If not specified this defaults to \(x \)
- algorithm – for compatibility with general number field elements; ignored

EXAMPLES:

sage: K.<a> = NumberField(x^2 - 5)
sage: R = K.ring_of_integers()
sage: b = R((5+a)/2)
sage: f = b.charpoly('x'); f
x^2 - 5*x + 5
sage: f.parent()
Univariate Polynomial Ring in x over Integer Ring
sage: f(b)
0

denominator()

Return the denominator of self.

This is the LCM of the denominators of the coefficients of \(\text{self} \), and thus it may well be > 1 even when the element is an algebraic integer.

EXAMPLES:

sage: K.<a> = NumberField(x^2-27)
sage: R = K.ring_of_integers()
sage: aa = R.gen(1)
sage: aa.denominator()
3

inverse_mod(I)

Return an inverse of self modulo the given ideal.

INPUT:

- I - may be an ideal of self.parent(), or an element or list of elements of self.parent() generating a nonzero ideal. A ValueError is raised if I is non-integral or is zero. A ZeroDivisionError is raised if I + (x) != (1).

EXAMPLES:

sage: OE.<w> = EquationOrder(x^2 - x + 2)
sage: w.inverse_mod(13) == 6*w - 6
True
sage: w*(6*w - 6) - 1
-13
minpoly *(var='x', algorithm=None)*

The minimal polynomial of this element over \(\mathbb{Z} \).

INPUT:

- **var** – the minimal polynomial is defined over a polynomial ring in a variable with this name. If not specified this defaults to \(x \)
- **algorithm** – for compatibility with general number field elements; ignored

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 + 163)
sage: R = K.ring_of_integers()
sage: f = R(a).minpoly('x'); f
x^2 + 163
sage: f.parent()
Univariate Polynomial Ring in x over Integer Ring
```

norm()

The norm of an element of the ring of integers is an Integer.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 + 3)
sage: O2 = K.order(2*a)
sage: w = O2.gen(1); w
2*a
sage: w.norm()
12
sage: parent(w.norm())
Integer Ring
```

trace()

The trace of an element of the ring of integers is an Integer.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 - 5)
sage: R = K.ring_of_integers()
sage: b = R((1+a)/2)
sage: b.trace()
1
sage: parent(b.trace())
Integer Ring
```
class sage.rings.number_field.number_field_element_quadratic.Q_to_quadratic_field_element

Bases: Morphism

Morphism that coerces from rationals to elements of a quadratic number field K.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(-3)
sage: f = K.coerce_map_from(QQ); f
Natural morphism:
  From: Rational Field
  To:   Number Field in a with defining polynomial x^2 + 3 with a = 1.
              → -732050807568878?*I
sage: f(3/1)
3
sage: f(1/2).parent() is K
True
```

class sage.rings.number_field.number_field_element_quadratic.Z_to_quadratic_field_element

Bases: Morphism

Morphism that coerces from integers to elements of a quadratic number field K.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(3)
sage: phi = K.coerce_map_from(ZZ); phi
Natural morphism:
  From: Integer Ring
  To:   Number Field in a with defining polynomial x^2 - 3 with a = 1.
              → -732050807568878?
sage: phi(4)
4
sage: phi(5).parent() is K
True
```

sage.rings.number_field.number_field_element_quadratic.is_sqrt_disc(ad, bd)

Return True if the pair (ad, bd) is \sqrt{D}.

EXAMPLES:

```python
sage: F.<b> = NumberField(x^2 - x + 7)
sage: b.denominator()  # indirect doctest
1
```

1.6 Splitting fields of polynomials over number fields

AUTHORS:

- Jeroen Demeyer (2014-01-02): initial version for github issue #2217
- Jeroen Demeyer (2014-01-03): add abort_degree argument, github issue #15626
class sage.rings.number_field.splitting_field.SplittingData(_pol, _dm)

 Bases: object

 A class to store data for internal use in splitting_field(). It contains two attributes _pol (polynomial), _dm (degree multiple), where _pol is a PARI polynomial and _dm a Sage Integer.

 _dm is a multiple of the degree of the splitting field of _pol over some field E. In splitting_field(), E is the field containing the current field K and all roots of other polynomials inside the list L with _dm less than this _dm.

 key()

 Return a sorting key. Compare first by degree bound, then by polynomial degree, then by discriminant.

 EXAMPLES:

 sage: from sage.rings.number_field.splitting_field import SplittingData
 sage: L = []
 sage: L.append(SplittingData(pari("x^2 + 1"), 1))
 sage: L.append(SplittingData(pari("x^3 + 1"), 1))
 sage: L.append(SplittingData(pari("x^2 + 7"), 2))
 sage: L.append(SplittingData(pari("x^3 + 1"), 2))
 sage: L.append(SplittingData(pari("x^3 + x^2 + x + 1"), 2))
 sage: L.sort(key=lambda x: x.key()); L
 [SplittingData(x^2 + 1, 1), SplittingData(x^3 + 1, 1), SplittingData(x^2 + 7, 2), SplittingData(x^3 + 1, 2), SplittingData(x^3 + x^2 + x + 1, 2)]
 sage: [x.key() for x in L]
 [(1, 2, 16), (1, 3, 729), (2, 2, 784), (2, 3, 256), (2, 3, 729)]

 poldegree()

 Return the degree of self._pol

 EXAMPLES:

 sage: from sage.rings.number_field.splitting_field import SplittingData
 sage: SplittingData(pari("x^123 + x + 1"), 2).poldegree()
 123

 exception sage.rings.number_field.splitting_field.SplittingFieldAbort(div, mult)

 Bases: Exception

 Special exception class to indicate an early abort of splitting_field().

 EXAMPLES:

 sage: from sage.rings.number_field.splitting_field import SplittingFieldAbort
 sage: raise SplittingFieldAbort(20, 60)
 Traceback (most recent call last):
 ... SplittingFieldAbort: degree of splitting field is a multiple of 20
 sage: raise SplittingFieldAbort(12, 12)
 Traceback (most recent call last):
 ... SplittingFieldAbort: degree of splitting field equals 12

sage.rings.number_field.splitting_field.splitting_field(poly, name, map=False, degree_multiple=None, abort_degree=None, simplify=True, simplify_all=False)
Compute the splitting field of a given polynomial, defined over a number field.

INPUT:

- **poly** – a monic polynomial over a number field
- **name** – a variable name for the number field
- **map** – (default: False) also return an embedding of poly into the resulting field. Note that computing this embedding might be expensive.
- **degree_multiple** – a multiple of the absolute degree of the splitting field. If degree_multiple equals the actual degree, this can enormously speed up the computation.
- **abort_degree** – abort by raising a *SplittingFieldAbort* if it can be determined that the absolute degree of the splitting field is strictly larger than abort_degree.
- **simplify** – (default: True) during the algorithm, try to find a simpler defining polynomial for the intermediate number fields using PARI's *polred()*. This usually speeds up the computation but can also considerably slow it down. Try and see what works best in the given situation.
- **simplify_all** – (default: False) If True, simplify intermediate fields and also the resulting number field.

OUTPUT:

If map is False, the splitting field as an absolute number field. If map is True, a tuple (K, phi) where phi is an embedding of the base field in K.

EXAMPLES:

```sage
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = (x^3 + 2).splitting_field(); K
Number Field in a with defining polynomial x^6 + 3*x^5 + 6*x^4 + 11*x^3 + 12*x^2 - 3*x + 1
sage: K.<a> = (x^3 - 3*x + 1).splitting_field(); K
Number Field in a with defining polynomial x^3 - 3*x + 1
```

The simplify and simplify_all flags usually yield fields defined by polynomials with smaller coefficients. By default, simplify is True and simplify_all is False.

```sage
sage: (x^4 - x + 1).splitting_field('a', simplify=False)
Number Field in a with defining polynomial x^24 - 2780*x^22 + 2*x^21 + 3527512*x^20 -
-2876*x^19 - 2701391985*x^18 + 945948*x^17 + 1390511639677*x^16 + 736757420*x^15 -
-506816498313560*x^14 - 822702898220*x^13 + 134120588299548463*x^12 + -
-362240696528256*x^11 - 25964582366880639486*x^10 - 91743672243419990*x^9 + -
-3649429473447308439427*x^8 + 1431033292713407236*x^7 - -
-363192569823568746892571*x^6 - 1353403793640477725898*x^5 + -
-24293393281774560140427565*x^4 + 7067381489993412357628*x^3 - -
-980621447568959243128437933*x^2 - 1539841440617895471181333*x + -
-18065914012013502602456565991
sage: (x^4 - x + 1).splitting_field('a', simplify=True)
Number Field in a with defining polynomial x^24 + 8*x^23 - 32*x^22 - 310*x^21 + -
-3408*x^20 + 4688*x^19 - 6813*x^18 - 32380*x^17 + 49525*x^16 + 102460*x^15 - -
-129944*x^14 - 287884*x^13 + 372727*x^12 + 150624*x^11 - 110530*x^10 - 566926*x^9 - +
+ 1062759*x^8 - 779490*x^7 + 863493*x^6 - 1623578*x^5 + 1759513*x^4 + 955624*x^3 - +
+ 459975*x^2 - 141948*x + 53919
sage: (x^4 - x + 1).splitting_field('a', simplify_all=True)
(continues on next page)```
Reducible polynomials also work:

```python
sage: pol = (x^4 - 1)*(x^2 + 1/2)*(x^2 + 1/3)
sage: pol.splitting_field('a', simplify_all=True)
Number Field in a with defining polynomial x^8 - x^4 + 1
```

Relative situation:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^3 + 2)
sage: S.<t> = PolynomialRing(K)
sage: L. = (t^2 - a).splitting_field()
sage: L
Number Field in b with defining polynomial t^6 + 2
```

With `map=True`, we also get the embedding of the base field into the splitting field:

```python
sage: L., phi = (t^2 - a).splitting_field(map=True)
sage: phi
Ring morphism:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Number Field in b with defining polynomial t^6 + 2
 Defn: a |--> b^2
sage: (x^4 - x + 1).splitting_field('a', simplify_all=True, map=True)[1]
Ring morphism:
 From: Rational Field
 To: Number Field in a with defining polynomial x^24 - 3*x^23 + 2*x^22 - x^20 + 4*x^19 - 32*x^18 - 35*x^17 - 92*x^16 + 49*x^15 + 163*x^14 - 15*x^13 - 194*x^12 - 15*x^11 + 163*x^10 + 49*x^9 - 92*x^8 - 35*x^7 + 32*x^6 + 4*x^5 - x^4 + 2*x^2 - 3*x + 1
 Defn: 1 |--> 1
```

We can enable verbose messages:

```python
sage: from sage.misc.verbose import setVerbose
sage: setVerbose(2)
sage: K.<a> = (x^3 - x + 1).splitting_field()
verbose 1 (...: splitting_field.py, splitting_field) Starting field: y
verbose 1 (...: splitting_field.py, splitting_field) SplittingData to factor: [(3, 0)]
verbose 2 (...: splitting_field.py, splitting_field) Done factoring (time = ...)
verbose 1 (...: splitting_field.py, splitting_field) SplittingData to handle: [(2, 2), (3, 3)]
verbose 1 (...: splitting_field.py, splitting_field) Bounds for absolute degree: [6, 6]
verbose 2 (...: splitting_field.py, splitting_field) Handling polynomial x^2 + 23
verbose 1 (...: splitting_field.py, splitting_field) New field before simplifying: y^2 + 23 (time = ...)
verbose 1 (...: splitting_field.py, splitting_field) New field: y^2 - y + 6 (time = ...)
```
verbose 2 (...: splitting_field.py, splitting_field) Converted polynomials to new field (time = ...)
verbose 1 (...: splitting_field.py, splitting_field) SplittingData to factor: []
verbose 2 (...: splitting_field.py, splitting_field) Done factoring (time = ...)
verbose 1 (...: splitting_field.py, splitting_field) SplittingData to handle: [(3, 3)]
verbose 1 (...: splitting_field.py, splitting_field) Bounds for absolute degree: [6, 6]
verbose 2 (...: splitting_field.py, splitting_field) Handling polynomial x^3 - x + 1
verbose 1 (...: splitting_field.py, splitting_field) New field: y^6 + 3*y^5 + 19*y^4 + 35*y^3 + 127*y^2 + 73*y + 271 (time = ...)

sage: set_verbose(0)

Try all Galois groups in degree 4. We use a quadratic base field such that polgalois() cannot be used:

sage: R.<x> = PolynomialRing(QuadraticField(-11))
sage: C2C2pol = x^4 - 10*x^2 + 1
sage: C2C2pol.splitting_field('x')
Number Field in x with defining polynomial x^8 + 24*x^6 + 608*x^4 + 9792*x^2 + 53824

sage: C4pol = x^4 + x^3 + x^2 + x + 1
sage: C4pol.splitting_field('x')
Number Field in x with defining polynomial x^8 - x^7 - 2*x^6 + 5*x^5 + x^4 + 15*x^3 - 18*x^2 - 27*x + 81

sage: D8pol = x^4 - 2
sage: D8pol.splitting_field('x')
Number Field in x with defining polynomial x^16 + 8*x^15 + 68*x^14 + 336*x^13 + 1514*x^12 + 5080*x^11 + 14912*x^10 + 35048*x^9 + 64959*x^8 + 93416*x^7 + 88216*x^6 + 41608*x^5 - 25586*x^4 - 60048*x^3 - 16628*x^2 + 12008*x + 34961

sage: A4pol = x^4 - 4*x^3 + 14*x^2 - 28*x + 21
sage: A4pol.splitting_field('x')
Number Field in x with defining polynomial x^24 - 20*x^23 + 290*x^22 - 3048*x^21 + 26147*x^20 - 186132*x^19 + 1130626*x^18 - 5913784*x^17 + 26899345*x^16 - 106792132*x^15 + 371066384*x^14 - 1127792656*x^13 + 2991524876*x^12 - 6888328132*x^11 + 1365596064*x^10 - 23000783036*x^9 + 32244796382*x^8 - 36347834476*x^7 + 30850889884*x^6 - 16707053128*x^5 + 1896946429*x^4 + 4832907884*x^3 - 3038258802*x^2 - 200383596*x + 593179173

sage: S4pol = x^4 + x + 1
sage: S4pol.splitting_field('x')
Number Field in x with defining polynomial x^48 ...
If you somehow know the degree of the field in advance, you should add a `degree_multiple` argument. This can speed up the computation, in particular for polynomials of degree >= 12 or for relative extensions:

```python
sage: pol15.splitting_field('a', degree_multiple=15)
Number Field in a with defining polynomial x^15 + x^14 - 14*x^13 - 13*x^12 + 78*x^11 + 66*x^10 - 220*x^9 - 165*x^8 + 330*x^7 + 210*x^6 - 252*x^5 - 126*x^4 + 84*x^3 + 28*x^2 - 8*x - 1
```

A value for `degree_multiple` which isn’t actually a multiple of the absolute degree of the splitting field can either result in a wrong answer or the following exception:

```python
sage: pol48.splitting_field('a', degree_multiple=20)
Traceback (most recent call last):
 ...
ValueError: inconsistent degree_multiple in splitting_field()
```

Compute the Galois closure as the splitting field of the defining polynomial:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: pol48 = x^6 - 4*x^4 + 12*x^2 - 12
sage: K.<a> = NumberField(pol48)
sage: L. = pol48.change_ring(K).splitting_field()
sage: L
Number Field in b with defining polynomial x^48 ...
```

Try all Galois groups over \( \mathbb{Q} \) in degree 5 except for \( S_5 \) (the latter is infeasible with the current implementation):

```python
sage: C5pol = x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1
sage: C5pol.splitting_field('x')
Number Field in x with defining polynomial x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1
sage: D10pol = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1
sage: D10pol.splitting_field('x')
Number Field in x with defining polynomial x^10 - 28*x^8 + 216*x^6 - 681*x^4 + 902*x^2 - 401
sage: AGL_1_5pol = x^5 - 2
sage: AGL_1_5pol.splitting_field('x')
Number Field in x with defining polynomial x^20 + 10*x^19 + 55*x^18 + 210*x^17 + 595*x^16 + 1300*x^15 + 2250*x^14 + 3130*x^13 + 3585*x^12 + 3500*x^11 + 2965*x^10 + 2250*x^9 + 1625*x^8 + 1150*x^7 + 750*x^6 + 400*x^5 + 100*x^4 + 25
sage: A5pol = x^5 - x^4 + 2*x^2 - 2*x + 2
sage: A5pol.splitting_field('x')
Number Field in x with defining polynomial x^60 ...
```

We can use the `abort_degree` option if we don’t want to compute fields of too large degree (this can be used to check whether the splitting field has small degree):

```python
sage: (x^5+x^3).splitting_field('b', abort_degree=119)
Traceback (most recent call last):
 ...
SplittingFieldAbort: degree of splitting field equals 120
sage: (x^10+x^3).splitting_field('b', abort_degree=60) # long time (10s on sage.math, 2014)
Traceback (most recent call last):
```

(continues on next page)
... 
SplittingFieldAbort: degree of splitting field is a multiple of 180

Use the degree_divisor attribute to recover the divisor of the degree of the splitting field or degree_multiple to recover a multiple:

```
sage: from sage.rings.number_field.splitting_field import SplittingFieldAbort
sage: try:
 # long time (4s on sage.math, 2014)
 : (x^8+x+1).splitting_field('b', abort_degree=60, simplify=False)
 : except SplittingFieldAbort as e:
 : print(e.degree_divisor)
 : print(e.degree_multiple)
120
1440
```

## 1.7 Galois Groups of Number Fields

AUTHORS:

- David Loeffler (2009): rewrite to give explicit homomorphism groups

```
sage: from sage.rings.number_field.galois_group import GaloisGroup
sage: sage.rings.number_field.galois_group.GaloisGroup
alias of GaloisGroup_v1
```

```
class sage.rings.number_field.galois_group.GaloisGroupElement
 Bases: PermutationGroupElement

 An element of a Galois group. This is stored as a permutation, but may also be made to act on elements of the field (generally returning elements of its Galois closure).

 EXAMPLES:

```
sage: K.<w> = QuadraticField(-7); G = K.galois_group()
sage: G[1]
(1,2)
sage: G[1](w + 2)
-w + 2
sage: L.<v> = NumberField(x^3 - 2); G = L.galois_group(names='y')
sage: G[4]
(1,5)(2,4)(3,6)
sage: G[4](v)
1/18*y^4
sage: G[4](G[4](v))
-1/36*y^4 - 1/2*y
sage: G[4](G[4](G[4](v)))
1/18*y^4
```

```
as_hom()
    Return the homomorphism L -> L corresponding to self, where L is the Galois closure of the ambient number field.
```
EXAMPLES:

```python
sage: G = QuadraticField(-7, 'w').galois_group()
sage: G[1].as_hom()
Ring endomorphism of Number Field in w with defining polynomial x^2 + 7 with w → 2.6457513110645917*I
  Defn: w |--> -w
```

`ramification_degree(P)`

Return the greatest value of v such that s acts trivially modulo \(P^v \). Should only be used if P is prime and s is in the decomposition group of P.

EXAMPLES:

```python
sage: K.<b> = NumberField(x^3 - 3, 'a').galois_closure()
sage: G = K.galois_group()
sage: P = K.primes_above(3)[0]
sage: s = hom(K, K, 1/18*b^4 - 1/2*b)
sage: G(s).ramification_degree(P)
4
```

class `sage.rings.number_field.galois_group.GaloisGroup_subgroup`

A subgroup of a Galois group, as returned by functions such as `decomposition_group`.

INPUT:

- `ambient` – the ambient Galois group
- `gens` – a list of generators for the group
- `gap_group` – a gap or libgap permutation group, or a string defining one (default: None)
- `domain` – a set on which this permutation group acts; extracted from `ambient` if not specified
- `category` – the category for this object
- `canonicalize` – if true, sorts and removes duplicates
- `check` – whether to check that generators actually lie in the ambient group

EXAMPLES:

```python
sage: from sage.rings.number_field.galois_group import GaloisGroup_subgroup
sage: G = NumberField(x^3 - x - 1, 'a').galois_closure('b').galois_group()
sage: GaloisGroup_subgroup(G, G([[(1,2,3),(4,5,6)]]))
Subgroup generated by [(1,2,3)(4,5,6)] of (Galois group 6T2 ([3]2) with order 6 of
  x^6 - 6*x^4 + 9*x^2 + 23)

sage: K.<a> = NumberField(x^6-3*x^4-2-1)
sage: L.<b> = K.galois_closure()
sage: G = L.galois_group()
sage: P = L.primes_above(3)[0]
sage: H = G.decomposition_group(P)
```

(continues on next page)
Element

alias of \texttt{GaloisGroupElement}

\texttt{fixed_field(name=None, polred=None, threshold=None)}

Return the fixed field of this subgroup (as a subfield of the Galois closure of the number field associated to the ambient Galois group).

INPUT:

- \texttt{name} – a variable name for the new field.
- \texttt{polred} – whether to optimize the generator of the newly created field
 for a simpler polynomial, using pari’s \texttt{polredbest}. Defaults to \texttt{True} when the degree of the fixed field is at most 8.
- \texttt{threshold} – positive number; \texttt{polred} only performed if the cost is at most this threshold

EXAMPLES:

\begin{verbatim}
sage: L.<a> = NumberField(x^4 + 1)
sage: G = L.galois_group()
sage: H = G.decomposition_group(L.primes_above(3)[0])
sage: H.fixed_field() (Number Field in a0 with defining polynomial x^2 + 2 with a0 = a^3 + a,
 Ring morphism:
 From: Number Field in a0 with defining polynomial x^2 + 2 with a0 = a^3 + a
 To: Number Field in a with defining polynomial x^4 + 1
 Defn: a0 |--> a^3 + a)
\end{verbatim}

You can use the \texttt{polred} option to get a simpler defining polynomial:

\begin{verbatim}
sage: K.<a> = NumberField(x^5 - 5*x^2 - 3)
sage: G = K.galois_group(); G
Galois group 5T2 (5:2) with order 10 of x^5 - 5*x^2 - 3
sage: sigma, tau = G.gens()
sage: H = G.subgroup([tau])
sage: H.fixed_field(polred=False) (Number Field in a0 with defining polynomial x^2 + 84375 with a0 = 5*a*ac^5 +
 25*a*ac^3,
 Ring morphism:
 From: Number Field in a0 with defining polynomial x^2 + 84375 with a0 = 5*a*ac^5 +
 25*a*ac^3
 To: Number Field in ac with defining polynomial x^10 + 10*a*x^8 + 25*a*x^6 +
 3375
 Defn: a0 |--> 5*a*ac^5 + 25*a*ac^3)
sage: H.fixed_field(polred=True)
\end{verbatim}
An embedding is returned also if the subgroup is trivial (github issue #26817):

```
sage: H = G.subgroup([])
sage: H.fixed_field()
(\text{Number Field in } a \text{ with defining polynomial } x^{10} + 10x^8 + 25x^6 + 3375,
\text{Identity endomorphism of Number Field in } a \text{ with defining polynomial } x^{10} + \\
10x^8 + 25x^6 + 3375)
```

class `sage.rings.number_field.galois_group.GaloisGroup_v1(group, number_field)`

Bases: `SageObject`

A wrapper around a class representing an abstract transitive group.

This is just a fairly minimal object at present. To get the underlying group, do `G.group()`, and to get the corresponding number field do `G.number_field()`. For a more sophisticated interface use the `type=None` option.

EXAMPLES:

```
sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
sage: K = QQ[2^(1/3)]
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K);
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
See https://github.com/sagemath/sage/issues/28782 for details.
Galois group PARI group [6, -1, 2, "S3"] of degree 3 of the Number Field in a with
defining polynomial x^3 - 2 with a = 1.259921049894873?
sage: G.order()
6
sage: G.group()
PARI group [6, -1, 2, "S3"] of degree 3
sage: G.number_field()
Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
```

group()

Return the underlying abstract group.

EXAMPLES:

```
sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
sage: K = NumberField(x^3 + 2*x + 2, 'theta')
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K)
```

(continues on next page)
...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
See https://github.com/sagemath/sage/issues/28782 for details.
sage: H = G.group(); H
PARI group [6, -1, 2, "S3"] of degree 3
sage: P = H.permutation_group(); P
Transitive group number 2 of degree 3
sage: sorted(P)
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

number_field()

Return the number field of which this is the Galois group.

EXAMPLES:

sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
sage: K = NumberField(x^6 + 2, 't')
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K); G
Galois group PARI group [12, -1, 3, "D(6) = S(3)[x]2"] of degree 6 of the Number Field in t with defining polynomial x^6 + 2
sage: G.number_field()
Number Field in t with defining polynomial x^6 + 2

order()

Return the order of this Galois group.

EXAMPLES:

sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
sage: K = NumberField(x^5 + 2, 'theta_1')
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K); G
Galois group PARI group [20, -1, 3, "F(5) = 5:4"] of degree 5 of the Number Field in theta_1 with defining polynomial x^5 + 2
sage: G.order()
20

class sage.rings.number_field.galois_group.GaloisGroup_v2(number_field, algorithm='pari', names=None, gc_numbering=None, _type=None)

Bases: GaloisGroup_perm

The Galois group of an (absolute) number field.

Note: We define the Galois group of a non-normal field K to be the Galois group of its Galois closure L, and elements are stored as permutations of the roots of the defining polynomial of L, not as permutations of the roots (in L) of the defining polynomial of K. The latter would probably be preferable, but is harder to implement. Thus the permutation group that is returned is always simply-transitive.
The ‘arithmetical’ features (decomposition and ramification groups, Artin symbols etc) are only available for Galois fields.

EXAMPLES:

```
sage: G = NumberField(x^3 - x - 1, 'a').galois_closure('b').galois_group()
sage: G.subgroup([G([1,2,3],[4,5,6])])
Subgroup generated by [(1,2,3)(4,5,6)] of (Galois group 6T2 ([3]2) with order 6 of \( \sim x^6 - 6*x^4 + 9*x^2 + 23 \))

Subgroups can be specified using generators (github issue #26816):

```
sage: K.<a> = NumberField(x^6 - 6*x^4 + 9*x^2 + 23)
sage: G = K.galois_group()
sage: list(G)
[((), (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,4)(2,6)(3,5), (1,5)(2,4)(3,6), (1,6)(2,5)(3,4))]
sage: g = G[1]
sage: h = G[3]
sage: sorted(G.subgroup([g,h])) == sorted(G)
True
```

Element

alias of `GaloisGroupElement`

Subgroup

alias of `GaloisGroup_subgroup`

artin_symbol(\( \mathfrak{P} \))

Return the Artin symbol \( \left( \frac{\mathbb{K}/\mathbb{Q}}{\mathfrak{P}} \right) \), where \( \mathbb{K} \) is the number field of self, and \( \mathfrak{P} \) is an unramified prime ideal. This is the unique element \( s \) of the decomposition group of \( \mathfrak{P} \) such that \( s(x) = x^p \mod \mathfrak{P} \), where \( p \) is the residue characteristic of \( \mathfrak{P} \).

EXAMPLES:

```
sage: K. = NumberField(x^4 - 2*x^2 + 2, 'a').galois_closure()
sage: G = K.galois_group()
sage: [G.artin_symbol(P) for P in K.primes_above(7)]
[(1,4)(2,3)(5,8)(6,7), (1,4)(2,3)(5,8)(6,7), (1,5)(2,6)(3,7)(4,8), (1,5)(2,6)(3,7)(4,8)]
sage: G.artin_symbol(17)
Traceback (most recent call last):
...
```

(continues on next page)
ValueError: Fractional ideal (17) is not prime

sage: QuadraticField(-7, 'c').galois_group().artin_symbol(13)
(1,2)
sage: G.artin_symbol(K.primes_above(2)[0])
Traceback (most recent call last):
...
ValueError: Fractional ideal (...) is ramified

complex_conjugation(P=None)

Return the unique element of self corresponding to complex conjugation, for a specified embedding P into the complex numbers. If P is not specified, use the “standard” embedding, whenever that is well-defined.

EXAMPLES:

sage: L.<z> = CyclotomicField(7)
sage: G = L.galois_group()
sage: conj = G.complex_conjugation(); conj
(1,4)(2,5)(3,6)
sage: conj(z)
-z^5 - z^4 - z^3 - z^2 - z - 1

An example where the field is not CM, so complex conjugation really depends on the choice of embedding:

sage: L = NumberField(x^6 + 40*x^3 + 1372, 'a')
sage: G = L.galois_group()
sage: [G.complex_conjugation(x) for x in L.places()]
[(1,3)(2,6)(4,5), (1,5)(2,4)(3,6), (1,2)(3,4)(5,6)]

decomposition_group(P)

Decomposition group of a prime ideal P, i.e. the subgroup of elements that map P to itself. This is the same as the Galois group of the extension of local fields obtained by completing at P.

This function will raise an error if P is not prime or the given number field is not Galois.

P can also be an infinite prime, i.e. an embedding into \( \mathbb{R} \) or \( \mathbb{C} \).

EXAMPLES:

sage: K.<a> = NumberField(x^4 - 2*x^2 + 2, 'b').galois_closure()
sage: P = K.ideal([17, a^2])
sage: G = K.galois_group()
sage: G.decomposition_group(P)
Subgroup generated by [(1,8)(2,7)(3,6)(4,5)] of (Galois group 8T4 ([4]
˓→order 8 of x^8 - 20*x^6 + 104*x^4 - 40*x^2 + 1156)
sage: G.decomposition_group(P^2)
Traceback (most recent call last):
...
ValueError: Fractional ideal (...) is not a prime ideal
sage: G.decomposition_group(17)
Traceback (most recent call last):
...
ValueError: Fractional ideal (17) is not a prime ideal

An example with an infinite place:
sage: L.<b> = NumberField(x^3 - 2,'a').galois_closure(); G=L.galois_group()
sage: x = L.places()[0]
sage: G.decomposition_group(x).order()
2

```

easy_order(algorithm=\texttt{None})

Return the order of this Galois group if it’s quick to compute.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: K.<a> = NumberField(x^3 + 2*x + 2)
sage: G = K.galois_group()
sage: G.easy_order()
6
```

```

**group()**

While GaloisGroup_v1 is being deprecated, this provides public access to the Pari/GAP group in order to keep all aspects of that API.

**EXAMPLES:**

```
sage: R.<x> = ZZ[]
sage: K.<a> = NumberField(x^3 + 2*x + 2)
sage: G = K.galois_group(type="pari")
...
DeprecationWarning: the different Galois types have been merged into one...
˓→class
See https://github.com/sagemath/sage/issues/28782 for details.
sage: G.group()
...
DeprecationWarning: the group method is deprecated; you can use _pol_galgp...
˓→if you really need it
See https://github.com/sagemath/sage/issues/28782 for details.
PARI group [6, -1, 2, "S3"] of degree 3
```

```

inertia_group(P)

Return the inertia group of the prime \(P \), i.e. the group of elements acting trivially modulo \(P \). This is just the 0th ramification group of \(P \).

EXAMPLES:

```
sage: K.<b> = NumberField(x^2 - 3,'a')
sage: G = K.galois_group()
sage: G.inertia_group(K.primes_above(2)[0])
Subgroup generated by \([\{1,2\}]\) of (Galois group 2T1 (S2) with order 2 of x^2 - 3)
sage: G.inertia_group(K.primes_above(5)[0])
Subgroup generated by \([\{\}]\) of (Galois group 2T1 (S2) with order 2 of x^2 - 3)
```

```

**is_galois()**

Whether the underlying number field is Galois

**EXAMPLES:**

```
```
list()

List of the elements of self.

EXAMPLES:

```python
sage: NumberField(x^3 - 3*x + 1,'a').galois_group().list()
[(0), (1,2,3), (1,3,2)]
```

number_field()

The ambient number field.

EXAMPLES:

```python
sage: K = NumberField(x^3 - x + 1, 'a')
sage: K.galois_group(names='b').number_field() == K
True
```

order(algorithm=None, recompute=False)

Return the order of this Galois group.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: K.<a> = NumberField(x^8 - x^5 + x^4 - x^3 + 1)
sage: G = K.galois_group()
sage: G.order()
6
```

pari_label()

Return the label assigned by Pari for this Galois group, an attempt at giving a human readable description of the group.

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: K.<a> = NumberField(x^8 - 20*x^6 + 104*x^4 - 40*x^2 + 1156)
sage: G = K.galois_group()
sage: G.pari_label()
'[2^4]S(4)'
```

ramification_breaks(P)

Return the set of ramification breaks of the prime ideal P, i.e. the set of indices i such that the ramification group $G_{i+1} \neq G_i$. This is only defined for Galois fields.

EXAMPLES:

```python
sage: K. = NumberField(x^8 - 20*x^6 + 104*x^4 - 40*x^2 + 1156)
sage: G = K.galois_group()
```
Algebraic Numbers and Number Fields, Release 10.0

sage: P = K.primes_above(2)[0]
sage: G.ramification_breaks(P)
{1, 3, 5}
sage: min([G.ramification_group(P, i).order() / G.ramification_group(P, i+1).order() for i in G.ramification_breaks(P)])
2

ramification_group(P, v)
Return the vth ramification group of self for the prime P, i.e. the set of elements s of self such that s acts trivially modulo P^{v+1}. This is only defined for Galois fields.

EXAMPLES:

sage: K.<b> = NumberField(x^3 - 3, 'a').galois_closure()
sage: G=K.galois_group()
sage: P = K.primes_above(3)[0]
sage: G.ramification_group(P, 3)
Subgroup generated by [(1,2,4)(3,5,6)] of (Galois group 6T2 ([3]2) with order 6 of x^6 + 243)
sage: G.ramification_group(P, 5)
Subgroup generated by [()] of (Galois group 6T2 ([3]2) with order 6 of x^6 + 243)

signature()
Return 1 if contained in the alternating group, -1 otherwise.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: K.<a> = NumberField(x^3 + 2*x + 2)
sage: G = K.galois_group()
sage: G.transitive_number()
2
sage: L.<b> = NumberField(x^13 + 2*x + 2)
sage: H = L.galois_group(algorithm="gap")

transitive_number(algorithm=None, recompute=False)
Regardless of the value of gc_numbering, this gives the transitive number for the action on the roots of the defining polynomial of the original number field, not the Galois closure.

INPUT:

- algorithm – string, specify the algorithm to be used
- recompute – boolean, whether to recompute the result even if known by another algorithm

EXAMPLES:

sage: R.<x> = ZZ[]
sage: K.<a> = NumberField(x^3 + 2*x + 2)
sage: G = K.galois_group()
sage: G.transitive_number()
2
sage: L.<b> = NumberField(x^13 + 2*x + 2)
sage: H = L.galois_group(algorithm="gap")
unrank(i)

Return the i-th element of self.

INPUT:

• i – integer between 0 and n−1 where n is the cardinality of this set

EXAMPLES:

sage: G = NumberField(x^3 - 3*x + 1, 'a').galois_group()
sage: [G.unrank(i) for i in range(G.cardinality())]
[(), (1,2,3), (1,3,2)]

1.8 Elements of bounded height in number fields

Sage functions to list all elements of a given number field with height less than a specified bound.

AUTHORS:

• John Doyle (2013): initial version
• David Krumm (2013): initial version
• TJ Combs (2018): added Doyle-Krumm algorithm - 4
• Raghukul Raman (2018): added Doyle-Krumm algorithm - 4

REFERENCES:

• [DK2013]

sage.rings.number_field.bdd_height.bdd_height(K, height_bound, tolerance=0.01, precision=53)

Compute all elements in the number field K which have relative multiplicative height at most height_bound.

The function can only be called for number fields K with positive unit rank. An error will occur if K is QQ or an imaginary quadratic field.

This algorithm computes 2 lists: L containing elements x in K such that H_k(x) <= B, and a list L' containing elements x in K that, due to floating point issues, may be slightly larger then the bound. This can be controlled by lowering the tolerance.

In current implementation both lists (L,L') are merged and returned in form of iterator.

ALGORITHM:

This is an implementation of the revised algorithm (Algorithm 4) in [DK2013].

INPUT:

• height_bound – real number
• tolerance – (default: 0.01) a rational number in (0,1]
• precision – (default: 53) positive integer

OUTPUT:

• an iterator of number field elements
EXAMPLES:

There are no elements of negative height:

```python
sage: from sage.rings.number_field.bdd_height import bdd_height
sage: K.<g> = NumberField(x^5 - x + 7)
```

```python
sage: list(bdd_height(K,-3))
[]
```

The only nonzero elements of height 1 are the roots of unity:

```python
sage: from sage.rings.number_field.bdd_height import bdd_height
sage: K.<g> = QuadraticField(3)
```

```python
sage: list(bdd_height(K,1))
[0, -1, 1]
```

```python
sage: from sage.rings.number_field.bdd_height import bdd_height
sage: K.<g> = QuadraticField(36865)
```

```python
sage: len(list(bdd_height(K,101))) # long time (4 s)
131
```

```python
sage: from sage.rings.number_field.bdd_height import bdd_height
sage: K.<g> = NumberField(x^6 + 2)
```

```python
sage: len(list(bdd_height(K,60))) # long time (5 s)
1899
```

```python
sage: from sage.rings.number_field.bdd_height import bdd_height
sage: K.<g> = NumberField(x^4 - x^3 - 3*x^2 + x + 1)
```

```python
sage: len(list(bdd_height(K,10)))
99
```

```python
sage.rings.number_field.bdd_height.bdd_height_iq(K, height_bound)
```

Compute all elements in the imaginary quadratic field $K$ which have relative multiplicative height at most $height_bound$.

The function will only be called with $K$ an imaginary quadratic field.

If called with $K$ not an imaginary quadratic, the function will likely yield incorrect output.

**ALGORITHM:**

This is an implementation of Algorithm 5 in [DK2013].

**INPUT:**

- $K$ – an imaginary quadratic number field
- $height_bound$ – a real number

**OUTPUT:**

- an iterator of number field elements

**EXAMPLES:**

```python
sage: from sage.rings.number_field.bdd_height import bdd_height_iq
sage: K.<a> = NumberField(x^2 + 191)
```

```python
sage: for t in bdd_height_iq(K,8):
```
There are 175 elements of height at most 10 in $\mathbb{Q}(\sqrt{-3})$:

```
sage: from sage.rings.number_field.bdd_height import bdd_height_iq
sage: K.<a> = NumberField(x^2 + 3)
sage: len(list(bdd_height_iq(K,10)))
175
```

The only elements of multiplicative height 1 in a number field are 0 and the roots of unity:

```
sage: from sage.rings.number_field.bdd_height import bdd_height_iq
sage: K.<a> = NumberField(x^2 + x + 1)
sage: list(bdd_height_iq(K,1))
[0, a + 1, a, -1, -a - 1, -a, 1]
```

A number field has no elements of multiplicative height less than 1:

```
sage: from sage.rings.number_field.bdd_height import bdd_height_iq
sage: K.<a> = NumberField(x^2 + 5)
sage: list(bdd_height_iq(K,0.9))
[]
```

**sage.rings.number_field.bdd_height.bdd_norm_pr gens iq(K, norm_list)**

Compute generators for all principal ideals in an imaginary quadratic field $K$ whose norms are in `norm_list`.

The only keys for the output dictionary are integers $n$ appearing in `norm_list`.

The function will only be called with $K$ an imaginary quadratic field.

The function will return a dictionary for other number fields, but it may be incorrect.

**INPUT:**
- $K$ – an imaginary quadratic number field
- `norm_list` – a list of positive integers

**OUTPUT:**
- a dictionary of number field elements, keyed by norm
EXAMPLES:

In $\mathbb{Q}(i)$, there is one principal ideal of norm 4, two principal ideals of norm 5, but no principal ideals of norm 7:

```
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_gens_iq
sage: K.<g> = NumberField(x^2 + 1)
sage: L = range(10)
sage: bdd_pr_ideals = bdd_norm_pr_gens_iq(K, L)
sage: bdd_pr_ideals[4][2]
sage: bdd_pr_ideals[5][-g - 2, -g + 2]
sage: bdd_pr_ideals[7][]{
```

There are no ideals in the ring of integers with negative norm:

```
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_gens_iq
sage: K.<g> = NumberField(x^2 + 10)
sage: L = range(-5,-1)
sage: bdd_pr_ideals = bdd_norm_pr_gens_iq(K,L)
sage: bdd_pr_ideals
{-5: [], -4: [], -3: [], -2: []}
```

Calling a key that is not in the input `norm_list` raises a KeyError:

```
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_gens_iq
sage: K.<g> = NumberField(x^2 + 20)
sage: L = range(100)
sage: bdd_pr_ideals = bdd_norm_pr_gens_iq(K, L)
sage: bdd_pr_ideals[100]
Traceback (most recent call last):
...
KeyError: 100
```

`sage.rings.number_field.bdd_height.bdd_norm_pr_ideal_gens(K, norm_list)`
Compute generators for all principal ideals in a number field $K$ whose norms are in `norm_list`.

**INPUT:**

- `K` – a number field
- `norm_list` – a list of positive integers

**OUTPUT:**

- a dictionary of number field elements, keyed by norm

**EXAMPLES:**

There is only one principal ideal of norm 1, and it is generated by the element 1:

```
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens
sage: K.<g> = QuadraticField(101)
sage: bdd_norm_pr_ideal_gens(K, [1])
{1: [1]}
```
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens
sage: K.<g> = QuadraticField(123)
{0: [0], 1: [1], 2: [g + 11], 3: [], 4: [2]}

sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens
sage: K.<g> = NumberField(x^5 - x + 19)
key = ZZ(28)
b[key]
[157*g^4 - 139*g^3 - 369*g^2 + 848*g + 158, g^4 + g^3 - g - 7]

sage.rings.number_field.bdd_height.integer_points_in_polytope(matrix, interval_radius)

Return the set of integer points in the polytope obtained by acting on a cube by a linear transformation.

Given an r-by-r matrix matrix and a real number interval_radius, this function finds all integer lattice points in the polytope obtained by transforming the cube [-interval_radius,interval_radius]^r via the linear map induced by matrix.

INPUT:

• matrix – a square matrix of real numbers
• interval_radius – a real number

OUTPUT:

• a list of tuples of integers

EXAMPLES:

Stretch the interval [-1,1] by a factor of 2 and find the integers in the resulting interval:

sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope
sage: m = matrix([2])
sage: r = 1
sage: integer_points_in_polytope(m,r)
[(-2), (-1), (0), (1), (2)]

Integer points inside a parallelogram:

sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope
sage: m = matrix([[1, 2],[3, 4]])
sage: r = RealField()(1.3)
sage: integer_points_in_polytope(m,r)
[(-3, -7), (-2, -5), (-2, -4), (-1, -3), (-1, -2), (-1, -1), (0, -1), (0, 0), (0, 1), (1, 1), (1, 2), (1, 3), (2, 4), (2, 5), (3, 7)]

Integer points inside a parallelepiped:

sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope
sage: m = matrix([[1.2,3.7,0.2],[-5.3,-.43,3],[1.2,4.7,-2.1]])
sage: r = 2.2
sage: L = integer_points_in_polytope(m,r)
sage: len(L)
4143

If interval_radius is 0, the output should include only the zero tuple:
```
sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope
sage: m = matrix([[1,2,3,7],[4,5,6,2],[7,8,9,3],[0,3,4,5]])
sage: integer_points_in_polytope(m,0)
[(0, 0, 0, 0)]
```
2.1 Morphisms between number fields

This module provides classes to represent ring homomorphisms between number fields (i.e. field embeddings).

```python
class sage.rings.number_field.morphism.CyclotomicFieldHomomorphism_im_gens
 Bases: NumberFieldHomomorphism_im_gens
class sage.rings.number_field.morphism.NumberFieldHomomorphism_im_gens
 Bases: RingHomomorphism_im_gens
 preimage(y)
 Computes a preimage of y in the domain, provided one exists. Raises a ValueError if y has no preimage.
 INPUT:
 • y – an element of the codomain of self.
 OUTPUT:
 Returns the preimage of y in the domain, if one exists. Raises a ValueError if y has no preimage.
 EXAMPLES:
 sage: K.<a> = NumberField(x^2 - 7)
 sage: L. = NumberField(x^4 - 7)
 sage: f = K.embeddings(L)[0]
 sage: f.preimage(3*b^2 - 12/7)
 3*a - 12/7
 sage: f.preimage(b)
 Traceback (most recent call last):
 ... ValueError: Element 'b' is not in the image of this homomorphism.
```

```python
sage: K.<a> = NumberField(x^2 - 7)
sage: L. = NumberField(x^4 - 7)
sage: f = K.embeddings(L)[0]
sage: f.preimage(3*a^2 - 12/7)
3*a - 12/7
sage: f.preimage(b)
Traceback (most recent call last):
... ValueError: Element 'b' is not in the image of this homomorphism.
```

```python
sage: F. = QuadraticField(23)
sage: G.<a> = F.extension(x^3+5)
sage: f = F.embeddings(G)[0]
sage: f.preimage(a^3+2*b+3)
2*b - 2
```

```python
class sage.rings.number_field.morphism.RelativeNumberFieldHomomorphism_from_abs
 Bases: RingHomomorphism
```

```python
class sage.rings.number_field.morphism.RelativeNumberFieldHomomorphism_from_abs
 Bases: RingHomomorphism
```
A homomorphism from a relative number field to some other ring, stored as a homomorphism from the corresponding absolute field.

**abs_hom()**

Return the corresponding homomorphism from the absolute number field.

**EXAMPLES:**

```
sage: K.<a, b> = NumberField([x^3 + 2, x^2 + x + 1])
sage: K.hom(a, K).abs_hom()
Ring morphism:
 From: Number Field in a with defining polynomial x^6 - 3*x^5 + 6*x^4 - 3*x^3 - 9*x + 9
 To: Number Field in a with defining polynomial x^3 + 2 over its base field
 Defn: a |--> a - b
```

**im_gens()**

Return the images of the generators under this map.

**EXAMPLES:**

```
sage: K.<a, b> = NumberField([x^3 + 2, x^2 + x + 1])
sage: K.hom(a, K).im_gens()
[a, b]
```

### 2.2 Sets of homomorphisms between number fields

**class** `sage.rings.number_field.homset.CyclotomicFieldHomset(R, S, category=None)`

**Bases:** `NumberFieldHomset`

Set of homomorphisms with domain a given cyclotomic field.

**EXAMPLES:**

```
sage: End(CyclotomicField(16))
Automorphism group of Cyclotomic Field of order 16 and degree 8
sage: [g(z) for g in G]
z, z^3 - z, -z, -z^3 + z
sage: L.<a, b> = NumberField([x^2 + x + 1, x^4 + 1])
sage: L
Number Field in a with defining polynomial x^2 + x + 1 over its base field
sage: Hom(CyclotomicField(12), L)[3]
```

(continues on next page)
Ring morphism:
  From: Cyclotomic Field of order 12 and degree 4
  To:  Number Field in a with defining polynomial x^2 + x + 1 over its base
→
  Defn: zeta12 |--> -b^2*a

```
sage: list(Hom(CyclotomicField(5), K))
[]
sage: Hom(CyclotomicField(11), L).list()
[]
```

class sage.rings.number_field.homset.NumberFieldHomset(R, S, category=None)

Bases: RingHomset_generic

Set of homomorphisms with domain a given number field.

Element

alias of NumberFieldHomomorphism_im_gens
cardinality()

Return the order of this set of field homomorphism.

EXAMPLES:

```
sage: k.<a> = NumberField(x^2 + 1)
sage: End(k)
Automorphism group of Number Field in a with defining polynomial x^2 + 1
sage: End(k).order()
2
sage: k.<a> = NumberField(x^3 + 2)
sage: End(k).order()
1
sage: K.<a> = NumberField([x^3 + 2, x^2 + x + 1])
sage: End(K).order()
6
```

list()

Return a list of all the elements of self.

EXAMPLES:

```
sage: K.<a> = NumberField(x^3 - 3*x + 1)
sage: End(K).list()
[Ring endomorphism of Number Field in a with defining polynomial x^3 - 3*x + 1
 Defn: a |--> a,
Ring endomorphism of Number Field in a with defining polynomial x^3 - 3*x + 1
 Defn: a |--> a^2 - 2,
Ring endomorphism of Number Field in a with defining polynomial x^3 - 3*x + 1
 Defn: a |--> -a^2 - a + 2
]
sage: Hom(K, CyclotomicField(9))[0] # indirect doctest
Ring morphism:
 From: Number Field in a with defining polynomial x^3 - 3*x + 1
 To: Cyclotomic Field of order 9 and degree 6
 Defn: a |--> a
```

(continues on next page)
An example where the codomain is a relative extension:

```python
sage: K.<a> = NumberField(x^3 - 2)
sage: L. = K.extension(x^2 + 3)
sage: Hom(K, L).list()
[
 Ring morphism:
 From: Number Field in a with defining polynomial x^3 - 2
 To: Number Field in b with defining polynomial x^2 + 3 over its base field
 Defn: a |--> a,
 Ring morphism:
 From: Number Field in a with defining polynomial x^3 - 2
 To: Number Field in b with defining polynomial x^2 + 3 over its base field
 Defn: a |--> -1/2*a*b - 1/2*a,
 Ring morphism:
 From: Number Field in a with defining polynomial x^3 - 2
 To: Number Field in b with defining polynomial x^2 + 3 over its base field
 Defn: a |--> 1/2*a*b - 1/2*a
]
```

```
order() # Return the order of this set of field homomorphism.
EXAMPLES:
```
```python
sage: k.<a> = NumberField(x^2 + 1)
sage: End(k)
Automorphism group of Number Field in a with defining polynomial x^2 + 1	sage: End(k).order()
2
sage: k.<a> = NumberField(x^3 + 2)
sage: End(k).order()
1
sage: K.<a> = NumberField([x^3 + 2, x^2 + x + 1])
sage: End(K).order()
6
```

```python
class sage.rings.number_field.homset.RelativeNumberFieldHomset(R, S, category=None)
 Bases: NumberFieldHomset
 Set of homomorphisms with domain a given relative number field.
 EXAMPLES:
 We construct a homomorphism from a relative field by giving the image of a generator:
    ```python
    sage: L.<cuberoot2, zeta3> = CyclotomicField(3).extension(x^3 - 2)
sage: phi = L.hom([cuberoot2 * zeta3]); phi
    Relative number field endomorphism of Number Field in cuberoot2 with defining polynomial x^3 - 2 over its base field
    ```
```
Defn: cuberoot2 |--> zeta3*cuberoot2
    zeta3 |--> zeta3
  sage: phi(cuberoot2 + zeta3)
    zeta3*cuberoot2 + zeta3

In fact, this phi is a generator for the Kummer Galois group of this cyclic extension:

  sage: phi(phi(cuberoot2 + zeta3))
    (-zeta3 - 1)*cuberoot2 + zeta3
  sage: phi(phi(phi(cuberoot2 + zeta3)))
    cuberoot2 + zeta3

Element
    alias of RelativeNumberFieldHomomorphism_from_abs
default_base_hom()
    Pick an embedding of the base field of self into the codomain of this homset. This is done in an essentially arbitrary way.

EXAMPLES:

  sage: L.<a, b> = NumberField([x^3 - x + 1, x^2 + 23])
  sage: M.<c> = NumberField(x^4 + 80*x^2 + 36)
  sage: Hom(L, M).default_base_hom()
    Ring morphism:
    From: Number Field in b with defining polynomial x^2 + 23
    To:   Number Field in c with defining polynomial x^4 + 80*x^2 + 36
    Defn: b |--> 1/12*c^3 + 43/6*c

list()
    Return a list of all the elements of self (for which the domain is a relative number field).

EXAMPLES:

  sage: K.<a, b> = NumberField([x^2 + x + 1, x^3 + 2])
  sage: End(K).list()
  [Relative number field endomorphism of Number Field in a with defining polynomial x^2 + x + 1 over its base field
    Defn: a |--> a
    b |--> b,

... Relative number field endomorphism of Number Field in a with defining polynomial x^2 + x + 1 over its base field
    Defn: a |--> a
    b |--> -b*a - b
  ]

An example with an absolute codomain:

  sage: K.<a, b> = NumberField([x^2 - 3, x^2 + 2])
  sage: Hom(K, CyclotomicField(24, 'z')).list()
  [Relative number field morphism:

(continues on next page)
2.3 Embeddings into ambient fields

This module provides classes to handle embeddings of number fields into ambient fields (generally \( \mathbb{R} \) or \( \mathbb{C} \)).

**class** `sage.rings.number_field.number_field_morphisms.CyclotomicFieldConversion`

Bases: `Map`

This allows one to cast one cyclotomic field in another consistently.

**EXAMPLES:**

```python
sage: from sage.rings.number_field.number_field_morphisms import CyclotomicFieldConversion
sage: K1.<z1> = CyclotomicField(12)
sage: K2.<z2> = CyclotomicField(18)
sage: f = CyclotomicFieldConversion(K1, K2)
sage: f(z1^2)
z2^3
sage: f(z1)
Traceback (most recent call last):
 ... ValueError: Element z1 has no image in the codomain
```

Tests from github issue #29511:

```python
sage: K.<z> = CyclotomicField(12)
sage: K1.<z1> = CyclotomicField(3)
sage: K(z2) in K1 # indirect doctest
True
sage: K1(K(2)) # indirect doctest
2
```

**class** `sage.rings.number_field.number_field_morphisms.CyclotomicFieldEmbedding`

Bases: `NumberFieldEmbedding`

Specialized class for converting cyclotomic field elements into a cyclotomic field of higher order. All the real work is done by `_lift_cyclotomic_element`.

**section()**

Return the section of `self`.
EXAMPLES:

```python
sage: from sage.rings.number_field.number_field_morphisms import...
˓→CyclotomicFieldEmbedding
sage: K = CyclotomicField(7)
sage: L = CyclotomicField(21)
sage: f = CyclotomicFieldEmbedding(K, L)
sage: h = f.section()
sage: h(f(K.gen())) # indirect doctest
zeta7
```

```python
class sage.rings.number_field.number_field_morphisms.EmbeddedNumberFieldConversion
Bases: Map

This allows one to cast one number field in another consistently, assuming they both have specified embeddings into an ambient field (by default it looks for an embedding into \(\mathbb{C} \)).

This is done by factoring the minimal polynomial of the input in the number field of the codomain. This may fail if the element is not actually in the given field.

ambient_field
```

```python
class sage.rings.number_field.number_field_morphisms.EmbeddedNumberFieldMorphism
Bases: NumberFieldEmbedding

This allows one to go from one number field in another consistently, assuming they both have specified embeddings into an ambient field.

If no ambient field is supplied, then the following ambient fields are tried:

- the pushout of the fields where the number fields are embedded;
- the algebraic closure of the previous pushout;
- \(\mathbb{C} \).

EXAMPLES:

```python
sage: K.<i> = NumberField(x^2+1, embedding=QQbar(I))
sage: L.<i> = NumberField(x^2+1, embedding=-QQbar(I))
sage: from sage.rings.number_field.number_field_morphisms import...
˓→EmbeddedNumberFieldMorphism
sage: EmbeddedNumberFieldMorphism(K, L, CDF)
Generic morphism:
  From: Number Field in i with defining polynomial x^2 + 1 with i = I
  To:   Number Field in i with defining polynomial x^2 + 1 with i = -I
  Defn: i -> -i
sage: EmbeddedNumberFieldMorphism(K, L, QQbar)
Generic morphism:
  From: Number Field in i with defining polynomial x^2 + 1 with i = I
  To:   Number Field in i with defining polynomial x^2 + 1 with i = -I
  Defn: i -> -i
```

ambient_field

section()

EXAMPLES:
```python
sage: from sage.rings.number_field.number_field_morphisms import EmbeddedNumberFieldMorphism
sage: K.<a> = NumberField(x^2-700, embedding=25)
sage: L.<b> = NumberField(x^6-700, embedding=3)
sage: f = EmbeddedNumberFieldMorphism(K, L)
sage: f(2*a-1)
2*b^3 - 1
sage: g = f.section()
sage: g(2*b^3-1)
2*a - 1
```

class `sage.rings.number_field.number_field_morphisms.NumberFieldEmbedding`

Bases: `Morphism`

If R is a lazy field, the closest root to gen_embedding will be chosen.

EXAMPLES:

```python
sage: x = polygen(QQ)
sage: from sage.rings.number_field.number_field_morphisms import NumberFieldEmbedding
sage: K.<a> = NumberField(x^3-2)
sage: f = NumberFieldEmbedding(K, RLF, 1)
sage: f(a)^3
2.00000000000000?
sage: RealField(200)(f(a)^3)
2.0000000000000000000000000000000000000000000000000000000000
sage: sigma_a = K.polynomial().change_ring(CC).roots()[1][0]; sigma_a
-0.62996052494743... - 1.09112363597172*I
sage: g = NumberFieldEmbedding(K, CC, sigma_a)
sage: g(a+1)
0.37003947505256... - 1.09112363597172*I
```

gen_image()

Returns the image of the generator under this embedding.

EXAMPLES:

```python
sage: f = QuadraticField(7, 'a', embedding=2).coerce_embedding()
sage: f.gen_image()
2.645751311064591?
```

sage.rings.number_field.number_field_morphisms.closest(target, values, margin=1)

This is a utility function that returns the item in values closest to target (with respect to the abs function). If margin is greater than 1, and x and y are the first and second closest elements to target, then only return x if x is margin times closer to target than y, i.e. margin * abs(target-x) < abs(target-y).

sage.rings.number_field.number_field_morphisms.create_embedding_from_approx(K, gen_image)

Return an embedding of K determined by gen_image.

The codomain of the embedding is the parent of gen_image or, if gen_image is not already an exact root of the defining polynomial of K, the corresponding lazy field. The embedding maps the generator of K to a root of the defining polynomial of K closest to gen_image.

EXAMPLES:
We can define embeddings from one number field to another:

```
sage: L.<b> = NumberField(x^6-x^2+1/10)
sage: create_embedding_from_approx(K, b^2)
Generic morphism:
  From: Number Field in a with defining polynomial x^3 - x + 1/10
  To:  Number Field in b with defining polynomial x^6 - x^2 + 1/10
  Defn: a -> b^2
```

If the embedding is exact, it must be valid:

```
sage: create_embedding_from_approx(K, b)
Traceback (most recent call last):
  ... ValueError: b is not a root of x^3 - x + 1/10
```

Given a polynomial and a target, this function chooses the root that target best approximates as compared in ambient_field.

If the parent of target is exact, the equality is required, otherwise find closest root (with respect to the abs function) in the ambient field to the target, and return the root of poly (if any) that approximates it best.

EXAMPLES:

```
sage: from sage.rings.number_field.number_field_morphisms import matching_root
sage: matching_root(x^2-2, 1.5)
1.41421356237310
```

(continues on next page)
-0.50000000000000... + 0.86602540378443...*I
sage: matching_root(x^3-x, 2, ambient_field=RR)
1.00000000000000

sage.rings.number_field.number_field_morphisms.root_from_approx(f, a)
Return an exact root of the polynomial f closest to a.

INPUT:
• f – polynomial with rational coefficients
• a – element of a ring

OUTPUT:
A root of f in the parent of a or, if a is not already an exact root of f, in the corresponding lazy field. The root is taken to be closest to a among all roots of f.

EXAMPLES:

sage: from sage.rings.number_field.number_field_morphisms import root_from_approx
sage: R.<x> = QQ[]

sage: root_from_approx(x^2 - 1, -1)
-1
sage: root_from_approx(x^2 - 2, 1)
1.414213562373095?

sage: root_from_approx(x^3 - x - 1, RR(1))
1.324717957244746?

sage: root_from_approx(x^3 - x - 1, CC.gen())
-0.6623589786223730? + 0.5622795120623013?*I

sage: root_from_approx(x^2 + 1, 0)
Traceback (most recent call last):
... ValueError: x^2 + 1 has no real roots

sage: root_from_approx(x^2 + 1, CC(0))
-I

sage: root_from_approx(x^2 - 2, sqrt(2))
sqrt(2)

sage: root_from_approx(x^2 - 2, sqrt(3))
Traceback (most recent call last):
... ValueError: sqrt(3) is not a root of x^2 - 2
2.4 Structure maps for number fields

Provides isomorphisms between relative and absolute presentations, to and from vector spaces, name changing maps, etc.

EXAMPLES:

```sage
sage: L.<cuberoot2, zeta3> = CyclotomicField(3).extension(x^3 - 2)
sage: K = L.absolute_field('a')
sage: from_K, to_K = K.structure()
sage: from_K
Isomorphism map:
  From: Number Field in a with defining polynomial x^6 - 3*x^5 + 6*x^4 - 11*x^3 + 12*x^2 - 3*x + 1
  To:   Number Field in cuberoot2 with defining polynomial x^3 - 2 over its base field
sage: to_K
Isomorphism map:
  From: Number Field in cuberoot2 with defining polynomial x^3 - 2 over its base field
  To:   Number Field in a with defining polynomial x^6 - 3*x^5 + 6*x^4 - 11*x^3 + 12*x^2 - 3*x + 1
```

```python
class sage.rings.number_field.maps.MapAbsoluteToRelativeNumberField(A, R):
    Bases: NumberFieldIsomorphism
    See MapRelativeToAbsoluteNumberField for examples.

class sage.rings.number_field.maps.MapNumberFieldToVectorSpace(K, V):
    Bases: Map
    A class for the isomorphism from an absolute number field to its underlying \( \mathbb{Q} \)-vector space.
    EXAMPLES:

```sage```n
sage: L.<a> = NumberField(x^3 - x + 1)
sage: V, fr, to = L.vector_space()
sage: type(to)
<class 'sage.rings.number_field.maps.MapNumberFieldToVectorSpace'>
```

```python
class sage.rings.number_field.maps.MapRelativeNumberFieldToRelativeVectorSpace(K, V):
 Bases: NumberFieldIsomorphism
 EXAMPLES:

```sage```n
sage: K.<a, b> = NumberField([x^3 - x + 1, x^2 + 23])
sage: V, fr, to = K.relative_vector_space()  
sage: type(to)  
<class 'sage.rings.number_field.maps.MapRelativeNumberFieldToRelativeVectorSpace'>
```

```python
class sage.rings.number_field.maps.MapRelativeNumberFieldToVectorSpace(L, V, to_K, to_V):
    Bases: NumberFieldIsomorphism
    The isomorphism from a relative number field to its underlying \( \mathbb{Q} \)-vector space. Compare MapRelativeNumberFieldToRelativeVectorSpace.
    EXAMPLES:
```

2.4. Structure maps for number fields 225
sage: K.<a> = NumberField(x^8 + 100*x^6 + x^2 + 5)
sage: L = K.relativize(K.subfields(4)[0][1], 'b'); L
Number Field in b with defining polynomial x^2 + a0 over its base field
sage: L_to_K, K_to_L = L.structure()
sage: V, fr, to = L.absolute_vector_space()
sage: V
Vector space of dimension 8 over Rational Field
sage: fr
Isomorphism map:
 From: Vector space of dimension 8 over Rational Field
 To: Number Field in b with defining polynomial x^2 + a0 over its base field
sage: to
Isomorphism map:
 From: Number Field in b with defining polynomial x^2 + a0 over its base field
 To: Vector space of dimension 8 over Rational Field
sage: type(fr), type(to)
(<class 'sage.rings.number_field.maps.MapVectorSpaceToRelativeNumberField'>,
 <class 'sage.rings.number_field.maps.MapRelativeNumberFieldToVectorSpace'>)

sage: v = V([1, 1, 1, 1, 0, 1, 1, 1])
sage: fr(v), to(fr(v)) == v
((-a0^3 + a0^2 - a0 + 1)*b - a0^3 - a0 + 1, True)
sage: to(L.gen()), fr(to(L.gen())) == L.gen()
((0, 1, 0, 0, 0, 0, 0, 0), True)

class sage.rings.number_field.maps.MapRelativeToAbsoluteNumberField(R, A)

Bases: NumberFieldIsomorphism

EXAMPLES:

sage: K.<a> = NumberField(x^6 + 4*x^2 + 200)
sage: L = K.relativize(K.subfields(3)[0][1], 'b'); L
Number Field in b with defining polynomial x^2 + a0 over its base field
sage: fr, to = L.structure()
sage: fr
Relative number field morphism:
 From: Number Field in b with defining polynomial x^2 + a0 over its base field
 To: Number Field in a with defining polynomial x^6 + 4*x^2 + 200
 Defn: b |--> a
 a0 |--> -a^2
sage: to
Ring morphism:
 From: Number Field in a with defining polynomial x^6 + 4*x^2 + 200
 To: Number Field in b with defining polynomial x^2 + a0 over its base field
 Defn: a |--> b
sage: type(fr), type(to)
(<class 'sage.rings.number_field.homset.RelativeNumberFieldHomset_with_category.element_class'>,
 <class 'sage.rings.number_field.homset.NumberFieldHomset_with_category.element_class'>)

sage: M.<c> = L.absolute_field(); M

(continues on next page)
Number Field in c with defining polynomial x^6 + 4*x^2 + 200
\texttt{sage: fr, to = M.structure()}
\texttt{sage: fr}
Isomorphism map:
 From: Number Field in c with defining polynomial x^6 + 4*x^2 + 200
 To: Number Field in b with defining polynomial x^2 + a0 over its base field
\texttt{sage: to}
Isomorphism map:
 From: Number Field in b with defining polynomial x^2 + a0 over its base field
 To: Number Field in c with defining polynomial x^6 + 4*x^2 + 200
\texttt{sage: type(fr), type(to)}
(<class 'sage.rings.number_field.maps.MapAbsoluteToRelativeNumberField'>, <class 'sage.rings.number_field.maps.MapRelativeToAbsoluteNumberField'>)
\texttt{sage: fr(M.gen()), to(fr(M.gen()))) == M.gen()}
(b, True)
\texttt{sage: to(L.gen()), fr(to(L.gen()))) == L.gen()}
(c, True)
\texttt{sage: (to * fr)(M.gen()) == M.gen(), (fr * to)(L.gen()) == L.gen()}
(True, True)

\texttt{class sage.rings.number_field.maps.MapRelativeVectorSpaceToRelativeNumberField(V, K)}
Bases: \texttt{NumberFieldIsomorphism}

\texttt{EXAMPLES:}
\texttt{sage: L. = NumberField(x^4 + 3*x^2 + 1)}
\texttt{sage: K = L.relativize(L.subfields(2)[0][1], 'a'); K}
Number Field in a with defining polynomial x^2 - b0*x + 1 over its base field
\texttt{sage: V, fr, to = K.relative_vector_space()}
\texttt{sage: V}
Vector space of dimension 2 over Number Field in b0 with defining polynomial x^2 + 1
\texttt{sage: fr}
Isomorphism map:
 From: Vector space of dimension 2 over Number Field in b0 with defining polynomial x^2 + 1
 To: Number Field in a with defining polynomial x^2 - b0*x + 1 over its base field
\texttt{sage: type(fr)}
<class 'sage.rings.number_field.maps.MapRelativeVectorSpaceToRelativeNumberField'>
\texttt{sage: a0 = K.gen(); b0 = K.base_field().gen()}
\texttt{sage: fr(to(a0 + 2*b0)), fr(V([0, 1])), fr(V([b0, 2*b0])))}
(a + 2*b0, a, 2*b0*a + b0)
\texttt{sage: (fr * to)(K.gen()) == K.gen()}
True
\texttt{sage: (to * fr)(V([1, 2])) == V([1, 2])}
True

\texttt{class sage.rings.number_field.maps.MapVectorSpaceToNumberField(V, K)}
Bases: \texttt{NumberFieldIsomorphism}

The map to an absolute number field from its underlying Q-vector space.

\texttt{EXAMPLES:}
sage: K.<a> = NumberField(x^4 + 3*x + 1)
sage: V, fr, to = K.vector_space()
sage: V
Vector space of dimension 4 over Rational Field
sage: fr
Isomorphism map:
 From: Vector space of dimension 4 over Rational Field
 To: Number Field in a with defining polynomial x^4 + 3*x + 1
sage: to
Isomorphism map:
 From: Number Field in a with defining polynomial x^4 + 3*x + 1
 To: Vector space of dimension 4 over Rational Field
sage: type(fr), type(to)
(<class 'sage.rings.number_field.maps.MapVectorSpaceToNumberField'>, <class 'sage.rings.number_field.maps.MapNumberFieldToVectorSpace'>)

sage: fr.is_injective(), fr.is_surjective()
(True, True)

sage: fr.domain(), to.codomain()
(Vector space of dimension 4 over Rational Field, Vector space of dimension 4 over Rational Field)

sage: to.domain(), fr.codomain()
(Number Field in a with defining polynomial x^4 + 3*x + 1, Number Field in a with defining polynomial x^4 + 3*x + 1)

sage: fr * to
Composite map:
 From: Number Field in a with defining polynomial x^4 + 3*x + 1
 To: Number Field in a with defining polynomial x^4 + 3*x + 1
 Defn: Isomorphism map:
 From: Number Field in a with defining polynomial x^4 + 3*x + 1
 To: Vector space of dimension 4 over Rational Field
 then
 Isomorphism map:
 From: Vector space of dimension 4 over Rational Field
 To: Number Field in a with defining polynomial x^4 + 3*x + 1

sage: to * fr
Composite map:
 From: Vector space of dimension 4 over Rational Field
 To: Vector space of dimension 4 over Rational Field
 Defn: Isomorphism map:
 From: Vector space of dimension 4 over Rational Field
 To: Number Field in a with defining polynomial x^4 + 3*x + 1
 then
 Isomorphism map:
 From: Number Field in a with defining polynomial x^4 + 3*x + 1
 To: Vector space of dimension 4 over Rational Field

sage: to(a), to(a + 1)
((0, 1, 0, 0), (1, 1, 0, 0))

sage: fr(to(a)), fr(V([0, 1, 2, 3]))
(a, 3*a^3 + 2*a^2 + a)
The isomorphism to a relative number field from its underlying \mathbb{Q}-vector space. Compare `MapRelativeVectorSpaceToRelativeNumberField`.

EXAMPLES:

```python
sage: L.<a, b> = NumberField([x^2 + 3, x^2 + 5])
sage: V, fr, to = L.absolute_vector_space()
sage: type(fr)
<class 'sage.rings.number_field.maps.MapVectorSpaceToRelativeNumberField'>
```

class `sage.rings.number_field.maps.NameChangeMap(K, L)`

A map between two isomorphic number fields with the same defining polynomial but different variable names.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 - 3)
sage: L.<b> = K.change_names()
sage: from_L, to_L = L.structure()
sage: from_L
Isomorphism given by variable name change map:
  From: Number Field in b with defining polynomial x^2 - 3
  To: Number Field in a with defining polynomial x^2 - 3
sage: to_L
Isomorphism given by variable name change map:
  From: Number Field in a with defining polynomial x^2 - 3
  To: Number Field in b with defining polynomial x^2 - 3
sage: type(from_L), type(to_L)
(<class 'sage.rings.number_field.maps.NameChangeMap'>, <class 'sage.rings.number_field.maps.NameChangeMap'>)
```

class `sage.rings.number_field.maps.NumberFieldIsomorphism`

A base class for various isomorphisms between number fields and vector spaces.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^4 + 3*x + 1)
sage: V, fr, to = K.vector_space()
sage: isinstance(fr, sage.rings.number_field.maps.NumberFieldIsomorphism)
True
```

is_injective()

EXAMPLES:

```python
sage: K.<a> = NumberField(x^4 + 3*x + 1)
sage: V, fr, to = K.vector_space()
sage: fr.is_injective()
True
```

is_surjective()

EXAMPLES:

```python
```

2.4. Structure maps for number fields
Consider the following fields L and M:

\begin{verbatim}
 sage: L.<a> = QuadraticField(2)
sage: M.<a> = L.absolute_field()
\end{verbatim}

Both produce the same extension of \mathbb{Q}. However, they should not be identical because M carries additional information:

\begin{verbatim}
 sage: L.structure()
(Identity endomorphism of Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?,
 Identity endomorphism of Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?)
sage: M.structure()
(Isomorphism given by variable name change map:
 From: Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?,
 To: Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?)
\end{verbatim}

This used to cause trouble with caching and made (absolute) number fields not unique when they should have been. The underlying technical problem is that the morphisms returned by `structure()` can only be defined once the fields in question have been created. Therefore, these morphisms cannot be part of a key which uniquely identifies a number field.

The classes defined in this file encapsulate information about these structure morphisms which can be passed to the factory creating number fields. This makes it possible to distinguish number fields which only differ in terms of these structure morphisms:

\begin{verbatim}
 sage: L is M
False
 sage: N.<a> = L.absolute_field()
sage: M is N
True
\end{verbatim}

\section{2.5 Helper classes for structural embeddings and isomorphisms of number fields}

AUTHORS:

- Julian Rueth (2014-04-03): initial version
• other – the number field from which this field has been created.

create_structure(field)

Return a pair of isomorphisms which go from field to other and vice versa.

class sage.rings.number_field.structure.NameChange(other)

Bases: NumberFieldStructure

Structure for a number field created by a change in variable name.

INPUT:

• other – the number field from which this field has been created.

create_structure(field)

Return a pair of isomorphisms which send the generator of field to the generator of other and vice versa.

class sage.rings.number_field.structure.NumberFieldStructure(other)

Bases: UniqueRepresentation

Abstract base class encapsulating information about a number fields relation to other number fields.

create_structure(field)

Return a tuple encoding structural information about field.

OUTPUT:

Typically, the output is a pair of morphisms. The first one from field to a field from which field has been constructed and the second one its inverse. In this case, these morphisms are used as conversion maps between the two fields.

class sage.rings.number_field.structure.RelativeFromAbsolute(other, gen)

Bases: NumberFieldStructure

Structure for a relative number field created from an absolute number field.

INPUT:

• other – the (absolute) number field from which this field has been created.
• gen – the generator of the intermediate field

create_structure(field)

Return a pair of isomorphisms which go from field to other and vice versa.

INPUT:

• field – a relative number field

class sage.rings.number_field.structure.RelativeFromRelative(other)

Bases: NumberFieldStructure

Structure for a relative number field created from another relative number field.

INPUT:

• other – the relative number field used in the construction, see create_structure(); there this field will be called field_.

create_structure(field)

Return a pair of isomorphisms which go from field to the relative number field (called other below) from which field has been created and vice versa.
The isomorphism is created via the relative number field \texttt{field} which is identical to \texttt{field} but is equipped with an isomorphism to an absolute field which was used in the construction of \texttt{field}.

INPUT:

- \texttt{field} – a relative number field
ORDERS, IDEALS, IDEAL CLASSES

3.1 Orders in Number Fields

AUTHORS:

• William Stein and Robert Bradshaw (2007-09): initial version

EXAMPLES:

We define an absolute order:

```
K.<a> = NumberField(x^2 + 1); O = K.order(2*a)
```

```
O.basis()
[1, 2*a]
```

We compute a basis for an order in a relative extension that is generated by 2 elements:

```
K.<a,b> = NumberField([x^2 + 1, x^2 - 3]); O = K.order([3*a,2*b])
```

```
O.basis()
[1, 3*a - 2*b, -6*b*a + 6, 3*a]
```

We compute a maximal order of a degree 10 field:

```
K.<a> = NumberField((x+1)^10 + 17)
```

```
K.maximal_order()
Maximal Order in Number Field in a with defining polynomial x^10 + 10*x^9 + 45*x^8 + 120*x^7 + 210*x^6 + 252*x^5 + 210*x^4 + 120*x^3 + 45*x^2 + 10*x + 18
```

We compute a suborder, which has index a power of 17 in the maximal order:

```
O = K.order(17*a); O
```

```
Order in Number Field in a with defining polynomial x^10 + 10*x^9 + 45*x^8 + 120*x^7 + 210*x^6 + 252*x^5 + 210*x^4 + 120*x^3 + 45*x^2 + 10*x + 18
```

```
m = O.index_in(K.maximal_order()); m
```

```
2345316516532778911665591944416226304630809183732482257
```

```
factor(m)
17^45
```

class sage.rings.number_field.order.AbsoluteOrderFactory

Bases: OrderFactory

An order in an (absolute) number field.

EXAMPLES:
```
sage: K.<i> = NumberField(x^2 + 1)
sage: K.order(i)
Order in Number Field in i with defining polynomial x^2 + 1
```

`create_key_and_extra_args(K, module_rep, is_maximal=None, check=True, is_maximal_at=())`
- Return normalized arguments to create an absolute order.

`create_object(version, key, is_maximal=None, is_maximal_at=())`
- Create an absolute order.

`reduce_data(order)`
- Return the data that can be used to pickle an order created by this factory.

This overrides the default implementation to update the latest knowledge about primes at which the order is maximal.

EXAMPLES:

This also works for relative orders since they are wrapping absolute orders:

```
sage: L.<a, b> = NumberField([x^2 - 1000003, x^2 - 5*1000099^2])
sage: O = L.maximal_order([5], assume_maximal=None)
sage: s = dumps(O)
sage: loads(s) is O
True
sage: N = L.maximal_order([7], assume_maximal=None)
sage: dumps(N) == s
False
sage: loads(dumps(N)) is O
True
```

`sage.rings.number_field.order.EisensteinIntegers(names='omega')`
- Return the ring of Eisenstein integers.

 This is the ring of all complex numbers of the form \(a + b\omega\) with \(a\) and \(b\) integers and \(\omega = (-1 + \sqrt{-3})/2\).

EXAMPLES:

```
sage: R.<omega> = EisensteinIntegers()
sage: R
Eisenstein Integers in Number Field in omega with defining polynomial x^2 + x + 1˓→with omega = -0.5000000000000000? + 0.866025403784439?*I
sage: factor(3 + omega)
(-1) * (-omega - 3)
sage: CC(omega)
-0.500000000000000 + 0.866025403784439*I
sage: omega.minpoly()
x^2 + x + 1
sage: EisensteinIntegers().basis()
[1, omega]
```

`sage.rings.number_field.order.EquationOrder(f, names, **kwds)`
Return the equation order generated by a root of the irreducible polynomial \(f \) or list of polynomials \(f \) (to construct a relative equation order).

IMPORTANT: Note that the generators of the returned order need *not* be roots of \(f \), since the generators of an order are – in Sage – module generators.

EXAMPLES:

```
sage: O.<a,b> = EquationOrder([x^2+1, x^2+2])
sage: O
Relative Order in Number Field in a with defining polynomial x^2 + 1 over its base_field
sage: O.0
-b*a - 1
sage: O.1
-3*a + 2*b
```

Of course the input polynomial must be integral:

```
sage: R = EquationOrder(x^3 + x + 1/3, 'alpha'); R
Traceback (most recent call last):
... ValueError: each generator must be integral
```

```
sage: R = EquationOrder( [x^3 + x + 1, x^2 + 1/2], 'alpha'); R
Traceback (most recent call last):
... ValueError: each generator must be integral
```

```
sage.rings.number_field.order.GaussianIntegers(names='I', latex_name='i')
```

Return the ring of Gaussian integers.

This is the ring of all complex numbers of the form \(a + bI \) with \(a \) and \(b \) integers and \(I = \sqrt{-1} \).

EXAMPLES:

```
sage: ZZI.<I> = GaussianIntegers()
sage: ZZI
Gaussian Integers in Number Field in I with defining polynomial x^2 + 1 with I = 1*I
sage: factor(3 + I)
(-I) * (I + 1) * (2*I + 1)
sage: CC(I)
1.00000000000000*I
sage: I.minpoly()
x^2 + 1
sage: GaussianIntegers().basis()
[1, I]
```

```
class sage.rings.number_field.order.Order(K)
```

Bases: `IntegralDomain`, `Order`

An order in a number field.

An order is a subring of the number field that has \(\mathbb{Z} \)-rank equal to the degree of the number field over \(\mathbb{Q} \).

EXAMPLES:
```python
sage: K.<theta> = NumberField(x^4 + x + 17)
sage: K.maximal_order()
Maximal Order in Number Field in theta with defining polynomial x^4 + x + 17
sage: R = K.order(17*theta); R
Order in Number Field in theta with defining polynomial x^4 + x + 17
sage: R.basis()
[1, 17*theta, 289*theta^2, 4913*theta^3]
```

```python
sage: R = K.order(17*theta, 13*theta); R
Maximal Order in Number Field in theta with defining polynomial x^4 + x + 17
sage: R.basis()
[1, theta, theta^2, theta^3]
```

```python
sage: R = K.order([34*theta, 17*theta + 17]); R
Order in Number Field in theta with defining polynomial x^4 + x + 17
sage: K.<b> = NumberField(x^4 + x^2 + 2)
sage: (b^2).charpoly().factor()
(x^2 + x + 2)^2
sage: K.order(b^2)
Traceback (most recent call last):
  ... ValueError: the rank of the span of gens is wrong
```

absolute_degree()

Return the absolute degree of this order, i.e., the degree of this order over \(\mathbb{Z} \).

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3 + 2)
sage: O = K.maximal_order(); O
```

ambient()

Return the ambient number field that contains self.

This is the same as `self.number_field()` and `self.fraction_field()`

EXAMPLES:

```python
sage: k.<z> = NumberField(x^2 - 389)
sage: o = k.order(389*z + 1)
sage: o
```

basis()

Return a basis over \(\mathbb{Z} \) of this order.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3 + x^2 - 16*x + 16)
sage: 0 = K.maximal_order(); 0
```
Maximal Order in Number Field in \(a \) with defining polynomial \(x^3 + x^2 - 16x + 16 \nrightarrow 16 \)

```python
sage: O.basis()
[1, 1/4*a^2 + 1/4*a, a^2]
```

class_group

proof=None, names='c'

Return the class group of this order.

(Currently only implemented for the maximal order.)

EXAMPLES:

```python
sage: k.<a> = NumberField(x^2 + 5077)
sage: O = k.maximal_order(); O
Maximal Order in Number Field in a with defining polynomial x^2 + 5077
sage: O.class_group()
Class group of order 22 with structure C22 of Number Field in a with defining polynomial x^2 + 5077
```

class_number

proof=None

Return the class number of this order.

EXAMPLES:

```python
sage: ZZ[2^(1/3)].class_number()
1
sage: QQ[sqrt(-23)].maximal_order().class_number()
3
sage: ZZ[120*sqrt(-23)].class_number()
288
```

Note that non-maximal orders are only supported in quadratic fields:

```python
sage: ZZ[120*sqrt(-23)].class_number()
288
sage: ZZ[100*sqrt(3)].class_number()
4
sage: ZZ[11*2^(1/3)].class_number()
Traceback (most recent call last):
... NotImplementedError: computation of class numbers of non-maximal orders not in quadratic fields is not implemented
```

conductor()

For orders in **quadratic** number fields, return the conductor of this order.

The conductor is the unique positive integer \(f \) such that the discriminant of this order is \(f^2 \) times the discriminant of the containing quadratic field.

Not implemented for orders in number fields of degree \(\neq 2 \).

See also:

`sage.rings.number_field.number_field.NumberField_quadratic.order_of_conductor()`

EXAMPLES:
```python
sage: K.<t> = QuadraticField(-101)
sage: K.maximal_order().conductor()
1
sage: K.order(5*t).conductor()
5
sage: K.discriminant().factor()
-1 * 2^2 * 101
sage: K.order(5*t).discriminant().factor()
-1 * 2^2 * 5^2 * 101
```

coordinates

Return the coordinate vector of x with respect to this order.

INPUT:

- x – an element of the number field of this order.

OUTPUT:

A vector of length n (the degree of the field) giving the coordinates of x with respect to the integral basis of the order. In general this will be a vector of rationals; it will consist of integers if and only if x is in the order.

AUTHOR: John Cremona 2008-11-15

ALGORITHM:

Uses linear algebra. The change-of-basis matrix is cached. Provides simpler implementations for `_contains_()`, `is_integral()` and `smallest_integer()`.

EXAMPLES:

```python
sage: K.<i> = QuadraticField(-1)
sage: OK = K.ring_of_integers()
sage: OK_basis = OK.basis(); OK_basis
[1, i]
sage: a = 23-14*i
sage: acoords = OK.coordinates(a); acoords
(23, -14)
sage: sum([OK_basis[j]*acoords[j] for j in range(2)]) == a
True
sage: OK.coordinates((120+340*i)/8)
(15, 85/2)
sage: O = K.order(3*i)
sage: O.is_maximal()
False
sage: O.index_in(OK)
3
sage: acoords = O.coordinates(a); acoords
(23, -14/3)
sage: sum([O.basis()[j]*acoords[j] for j in range(2)]) == a
True
```

degree()

Return the degree of this order, which is the rank of this order as a \mathbb{Z}-module.

EXAMPLES:
Algebraic Numbers and Number Fields, Release 10.0

\begin{verbatim}
sage: k.<c> = NumberField(x^3 + x^2 - 2*x+8)
sage: o = k.maximal_order()
sage: o.degree()
3
sage: o.rank()
3

fraction_field()

Return the fraction field of this order, which is the ambient number field.

EXAMPLES:

\begin{verbatim}
sage: K. = NumberField(x^4 + 17*x^2 + 17)
sage: O = K.order(17*b); O
Order in Number Field in b with defining polynomial x^4 + 17*x^2 + 17
sage: O.fraction_field()
Number Field in b with defining polynomial x^4 + 17*x^2 + 17
\end{verbatim}

fractional_ideal(*args, **kwds)

Return the fractional ideal of the maximal order with given generators.

EXAMPLES:

\begin{verbatim}
sage: K.<a> = NumberField(x^2 + 2)
sage: R = K.maximal_order()
sage: R.fractional_ideal(2/3 + 7*a, a)
Fractional ideal (1/3*a)
\end{verbatim}

free_module()

Return the free \mathbb{Z}-module contained in the vector space associated to the ambient number field, that corresponds to this order.

EXAMPLES:

\begin{verbatim}
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: O = K.maximal_order(); O.basis()
[1, 1/2*a^2 + 1/2*a, a^2]
sage: O.free_module()
Free module of degree 3 and rank 3 over Integer Ring
User basis matrix:
[1 0 0]
[0 1/2 1/2]
[0 0 1]
\end{verbatim}

An example in a relative extension. Notice that the module is a \mathbb{Z}-module in the absolute_field associated to the relative field:

\begin{verbatim}
sage: K.<a,b> = NumberField([x^2 + 1, x^2 + 2])
sage: O = K.maximal_order(); O.basis()
[(-3/2*b - 5)*a + 7/2*b - 2, -3*a + 2*b, -2*b*a - 3, -7*a + 5*b]
sage: O.free_module()
Free module of degree 4 and rank 4 over Integer Ring
User basis matrix:
[1/4 1/4 3/4 3/4]
\end{verbatim}
(continues on next page)
\end{verbatim}
gen(i)

Return \(i\)'th module generator of this order.

EXAMPLES:

```python
sage: K.<c> = NumberField(x^3 + 2*x + 17)
sage: O = K.maximal_order(); O
Maximal Order in Number Field in c with defining polynomial x^3 + 2*x + 17
sage: O.basis()
[1, c, c^2]
sage: O.gen(1)
c
sage: O.gen(2)
c^2
sage: O.gen(5)
Traceback (most recent call last):
... IndexError: no 5th generator
sage: O.gen(-1)
Traceback (most recent call last):
... IndexError: no -1th generator
```

ideal(*args, **kwds)

Return the integral ideal with given generators.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 + 7)
sage: R = K.maximal_order()
sage: R.ideal(2/3 + 7*a, a)
Traceback (most recent call last):
... ValueError: ideal must be integral; use fractional_ideal to create a non-integral ideal.
sage: R.ideal(7*a, 77 + 28*a)
Fractional ideal (7)
sage: R = K.order(4*a)
sage: R.ideal(8)
Traceback (most recent call last):
... NotImplementedError: ideals of non-maximal orders not yet supported.
```

This function is called implicitly below:

```python
sage: R = EquationOrder(x^2 + 2, 'a'); R
Maximal Order in Number Field in a with defining polynomial x^2 + 2
sage: (3,15)*R
Fractional ideal (3)
```
The zero ideal is handled properly:

```sage
sage: R.ideal(0)
Ideal (0) of Number Field in a with defining polynomial x^2 + 2
```

integral_closure()

Return the integral closure of this order.

EXAMPLES:

```sage
sage: K.<a> = QuadraticField(5)
sage: O2 = K.order(2*a); O2
Order in Number Field in a with defining polynomial x^2 - 5 with a = 2.
˓→236067977499790?
sage: O2.integral_closure()
Maximal Order in Number Field in a with defining polynomial x^2 - 5 with a = 2.
˓→236067977499790?
sage: OK = K.maximal_order()
sage: OK
Maximal Order in Number Field in a with defining polynomial x^2 - 5 with a = 2.
˓→236067977499790?
```

is_field(proof=True)

Return False (because an order is never a field).

EXAMPLES:

```sage
sage: L.<alpha> = NumberField(x**4 - x**2 + 7)
sage: O = L.maximal_order() ; O.is_field()
False
sage: CyclotomicField(12).ring_of_integers().is_field()
False
```

is_integrally_closed()

Return True if this ring is integrally closed, i.e., is equal to the maximal order.

EXAMPLES:

```sage
sage: K.<a> = NumberField(x^2 + 189*x + 394)
sage: R = K.order(2*a)
sage: R.is_integrally_closed()
False
sage: R
Order in Number Field in a with defining polynomial x^2 + 189*x + 394
sage: S = K.maximal_order(); S
Maximal Order in Number Field in a with defining polynomial x^2 + 189*x + 394
sage: S.is_integrally_closed()
True
```

is_noetherian()

Return True (because orders are always Noetherian)

EXAMPLES:

```sage
sage: L.<alpha> = NumberField(x**4 - x**2 + 7)
sage: 0 = L.maximal_order() ; 0.is_noetherian()
```

(continues on next page)
True
sage: E.<w> = NumberField(x^2 - x + 2)
sage: OE = E.ring_of_integers(); OE.is_noetherian()
True

is_suborder(\texttt{other})
Return True if self and other are both orders in the same ambient number field and self is a subset of other.

EXAMPLES:

\begin{verbatim}sage: W.<i> = NumberField(x^2 + 1)
sage: O5 = W.order(5*i)
sage: O10 = W.order(10*i)
sage: O15 = W.order(15*i)
sage: O15.is_suborder(O5)
True
sage: O5.is_suborder(O15)
False
sage: O10.is_suborder(O15)
False\end{verbatim}

We create another isomorphic but different field:

\begin{verbatim}sage: W2.<j> = NumberField(x^2 + 1)
sage: P5 = W2.order(5*j)\end{verbatim}

This is False because the ambient number fields are not equal:

\begin{verbatim}sage: O5.is_suborder(P5)
False\end{verbatim}

We create a field that contains (in no natural way!) \(W \), and of course again is_suborder returns False:

\begin{verbatim}sage: K.<z> = NumberField(x^4 + 1)
sage: M = K.order(5*z)
sage: O5.is_suborder(M)
False\end{verbatim}

krull_dimension()
Return the Krull dimension of this order, which is 1.

EXAMPLES:

\begin{verbatim}sage: K.<a> = QuadraticField(5)
sage: OK = K.maximal_order()
sage: OK.krull_dimension()
1
sage: O2 = K.order(2*a)
sage: O2.krull_dimension()
1\end{verbatim}

ngens()
Return the number of module generators of this order.

EXAMPLES:
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: O = K.maximal_order()
sage: O.ngens()
3

number_field()

Return the number field of this order, which is the ambient number field that this order is embedded in.

EXAMPLES:

```
sage: K.<b> = NumberField(x^4 + x^2 + 2)
sage: O = K.order(2*b); O
Order in Number Field in b with defining polynomial x^4 + x^2 + 2
sage: O.basis()
[1, 2*b, 4*b^2, 8*b^3]
sage: O.number_field()
Number Field in b with defining polynomial x^4 + x^2 + 2
sage: O.number_field() is K
True
```

random_element(*args, **kwds**)

Return a random element of this order.

INPUT:

- *args, kwds – parameters passed to the random integer function. See the documentation for ZZ.random_element() for details.

OUTPUT:

A random element of this order, computed as a random \(\mathbb{Z} \)-linear combination of the basis.

EXAMPLES:

```
sage: K.<a> = NumberField(x^3 + 2)
sage: OK = K.ring_of_integers()
sage: OK.random_element() # random output
-2*a^2 - a - 2
sage: OK.random_element(distribution="uniform") # random output
-a^2 - 1
sage: OK.random_element(-10,10) # random output
-10*a^2 - 9*a - 2
sage: K.order(a).random_element() # random output
a^2 - a - 3
```

```
sage: K.<z> = CyclotomicField(17)
sage: OK = K.ring_of_integers()
sage: OK.random_element() # random output
z^15 - z^11 - z^10 - 4*z^9 + z^8 + 2*z^7 + z^6 - 2*z^5 - z^4 - 445*z^3 - 2*z^2 - 15*z - 2
sage: OK.random_element().is_integral()
True
sage: OK.random_element().parent() is OK
True
```

A relative example:
An example in a non-maximal order:

```python
sage: K.<a> = QuadraticField(-3)
sage: R = K.ring_of_integers()
sage: A = K.order(a)
sage: A.index_in(R)
2
sage: R.random_element()  # random output
-39/2*a - 1/2
sage: A.random_element()  # random output
2*a - 1
sage: A.random_element().is_integral()
True
sage: A.random_element().parent() is A
True
```

rank()

Return the rank of this order, which is the rank of the underlying \(\mathbb{Z}\)-module, or the degree of the ambient number field that contains this order.

This is a synonym for \texttt{degree()}.

EXAMPLES:

```python
sage: k.<c> = NumberField(x^5 + x^2 + 1)
sage: o = k.maximal_order(); o
Maximal Order in Number Field in c with defining polynomial x^5 + x^2 + 1
sage: o.rank()
5
```

residue_field(\(\text{prime, names=None, check=False}\))

Return the residue field of this order at a given prime, ie \(O/\mathfrak{p}O\).

INPUT:

- \(\text{prime} – \) a prime ideal of the maximal order in this number field.
- \(\text{names} – \) the name of the variable in the residue field
- \(\text{check} – \) whether or not to check the primality of \(\text{prime}\).

OUTPUT:

The residue field at this prime.

EXAMPLES:
```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4+3*x^2-17)
sage: P = K.ideal(61).factor()[0][0]
sage: OK = K.maximal_order()
sage: OK.residue_field(P)
Residue field in abar of Fractional ideal (61, a^2 + 30)
sage: Fp.<b> = OK.residue_field(P)
sage: Fp
Residue field in b of Fractional ideal (61, a^2 + 30)
```

ring_generators()

Return generators for self as a ring.

EXAMPLES:

```python
sage: K.<i> = NumberField(x^2 + 1)
sage: O = K.maximal_order(); O
Gaussian Integers in Number Field in i with defining polynomial x^2 + 1
sage: O.ring_generators()
[i]
```

This is an example where 2 generators are required (because 2 is an essential discriminant divisor):

```python
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: O = K.maximal_order(); O
Maximal Order in Number Field in a with defining polynomial t^3 - 2
sage: O.basis()
[1, 1/2*a^2 + 1/2*a, a^2]
sage: O.ring_generators()
[1/2*a^2 + 1/2*a, a^2]
```

An example in a relative number field:

```python
sage: K.<a, b> = NumberField([x^2 + x + 1, x^3 - 3])
sage: O = K.maximal_order()
sage: O.ring_generators()
[(−5/3*b^2 + 3*b - 2)*a - 7/3*b^2 + b + 3, (-5*b^2 - 9)*a - 5*b^2 - b, (-6*b^2 - 11)*a - 6*b^2 - b]
```

some_elements()

Return a list of elements of the given order.

EXAMPLES:

```python
sage: G = GaussianIntegers(); G
Gaussian Integers in Number Field in I with defining polynomial x^2 + 1 with I
sage: G.some_elements()
[1, I, 2*I, -1, 0, -I, 2, 4*I, -2, -2*I, -4]
sage: R.<t> = QQ[]
sage: K.<a> = QQ.extension(t^3 - 2); K
Number Field in a with defining polynomial t^3 - 2
sage: Z = K.ring_of_integers(); Z
Maximal Order in Number Field in a with defining polynomial t^3 - 2
sage: Z.some_elements()
(continues on next page)
```

3.1. Orders in Number Fields

245
valuation(p)

Return the p-adic valuation on this order.

EXAMPLES:

The valuation can be specified with an integer prime that is completely ramified or unramified:

```
sage: K.<a> = NumberField(x^2 + 1)
sage: O = K.order(2*a)
sage: valuations.pAdicValuation(O, 2)
sage: GaussianIntegers().valuation(2)
```

2-adic valuation

```
sage: GaussianIntegers().valuation(3)
```

3-adic valuation

A prime that factors into pairwise distinct factors, results in an error:

```
sage: GaussianIntegers().valuation(5)
sage: CyclotomicField(5).ring_of_integers().valuation(ZZ.valuation(5))
```

5-adic valuation

When the extension is not unique, this does not work:

```
sage: GaussianIntegers().valuation(ZZ.valuation(5))
```

If the fraction field is of the form $K[x]/(G)$, you can specify a valuation by providing a discrete pseudo-valueation on $K[x]$ which sends G to infinity:

```
sage: R.<x> = QQ[]
sage: v = GaussianIntegers().valuation(GaussValuation(R, QQ.valuation(5)).
    augmentation(x + 2, infinity))
sage: w = GaussianIntegers().valuation(GaussValuation(R, QQ.valuation(5)).
    augmentation(x + 1/2, infinity))
sage: v == w
False
```
See also:

```
NumberField_generic.valuation(), pAdicGeneric.valuation()
```

def zeta(n=2, all=False)

Return a primitive n-th root of unity in this order, if it contains one. If all is True, return all of them.

EXAMPLES:

```
sage: F.<alpha> = NumberField(x**2+3)
sage: F.ring_of_integers().zeta(6)
-1/2*alpha + 1/2
sage: O = F.order([3*alpha])
sage: O.zeta(3)
Traceback (most recent call last):
... ArithmeticError: there are no 3rd roots of unity in self
```

class sage.rings.number_field.order.OrderFactory

Bases: UniqueFactory

Abstract base class for factories creating orders, such as `AbsoluteOrderFactory` and `RelativeOrderFactory`.

```
def get_object(version, key, extra_args)
```

Create the order identified by `key`.

This overrides the default implementation to update the maximality of the order if it was explicitly specified.

EXAMPLES:

Even though orders are unique parents, this lets us update their internal state when they are recreated with more additional information available about them:

```
sage: L.<a, b> = NumberField([x^2 - 1000003, x^2 - 5*1000099^2])
sage: O = L.maximal_order([2], assume_maximal=None)
sage: O._is_maximal_at(2)
True
sage: O._is_maximal_at(3)
is None
True
sage: N = L.maximal_order([3], assume_maximal=None)
sage: N is O
True
sage: N._is_maximal_at(2)
True
sage: N._is_maximal_at(3)
True
```

class sage.rings.number_field.order.Order_absolute(K, module_rep)

Bases: Order

EXAMPLES:

```
sage: from sage.rings.number_field.order import *
sage: x = polygen(QQ)
```

(continues on next page)
sage: K.<a> = NumberField(x^3 + 2)

sage: V, from_v, to_v = K.vector_space()

sage: M = span([to_v(a^2), to_v(a), to_v(1)], ZZ)

sage: O = AbsoluteOrder(K, M); O
Maximal Order in Number Field in a with defining polynomial x^3 + 2

sage: M = span([to_v(a^2), to_v(a), to_v(2)], ZZ)

sage: O = AbsoluteOrder(K, M); O
Traceback (most recent call last):
...
ValueError: 1 is not in the span of the module, hence not an order

absolute_discriminant()

Return the discriminant of this order.

EXAMPLES:

sage: K.<a> = NumberField(x^8 + x^3 - 13*x + 26)

sage: O = K.maximal_order()

sage: factor(O.discriminant())
3 * 11 * 13^2 * 613 * 1575917857

sage: L = K.order(13*a^2)

sage: factor(L.discriminant())
3^3 * 5^2 * 11 * 13^60 * 613 * 733^2 * 1575917857

sage: factor(L.index_in(O))
3 * 5 * 13^29 * 733

sage: L.discriminant() / O.discriminant() == L.index_in(O)^2
True

absolute_order()

Return the absolute order associated to this order, which is just this order again since this is an absolute order.

EXAMPLES:

sage: K.<a> = NumberField(x^3 + 2)

sage: O1 = K.order(a); O1
Maximal Order in Number Field in a with defining polynomial x^3 + 2

sage: O1.absolute_order() is O1
True

basis()

Return the basis over Z for this order.

EXAMPLES:

sage: k.<c> = NumberField(x^3 + x^2 + 1)

sage: O = k.maximal_order(); O
Maximal Order in Number Field in c with defining polynomial x^3 + x^2 + 1

sage: O.basis()
[1, c, c^2]

The basis is an immutable sequence:
The generator functionality uses the basis method:

```python
sage: 0.0
1
sage: 0.1
c
sage: O.basis()
[1, c, c^2]
sage: O.ngens()
3
```

change_names(names)

Return a new order isomorphic to this one in the number field with given variable names.

EXAMPLES:

```python
sage: R = EquationOrder(x^3 + x + 1, 'alpha'); R
Order in Number Field in alpha with defining polynomial x^3 + x + 1
sage: R.basis()
[1, alpha, alpha^2]
sage: S = R.change_names('gamma'); S
Order in Number Field in gamma with defining polynomial x^3 + x + 1
sage: S.basis()
[1, gamma, gamma^2]
```

discriminant()

Return the discriminant of this order.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^8 + x^3 - 13*x + 26)
sage: O = K.maximal_order()
sage: factor(O.discriminant())
3 * 11 * 13^2 * 613 * 1575917857
sage: L = K.order(13*a^2)
sage: factor(L.discriminant())
3^3 * 5^2 * 11 * 13^60 * 613 * 733^2 * 1575917857
sage: factor(L.index_in(O))
3 * 5 * 13^29 * 733
sage: L.discriminant() / O.discriminant() == L.index_in(O)^2
True
```

index_in(other)

Return the index of self in other.

This is a lattice index, so it is a rational number if self is not contained in other.

INPUT:

- **other** – another absolute order with the same ambient number field.

OUTPUT:

- a rational number
EXAMPLES:

```python
sage: k.<i> = NumberField(x^2 + 1)
sage: O1 = k.order(i)
sage: O5 = k.order(5*i)
sage: O5.index_in(O1)
5
sage: k.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: o = k.maximal_order()
sage: o
Maximal Order in Number Field in a with defining polynomial x^3 + x^2 - 2*x + 8
sage: O1 = k.order(a); O1
Order in Number Field in a with defining polynomial x^3 + x^2 - 2*x + 8
sage: O1.index_in(o)
2
sage: O2 = k.order(1+2*a); O2
Order in Number Field in a with defining polynomial x^3 + x^2 - 2*x + 8
sage: O1.basis()
[1, a, a^2]
sage: O2.basis()
[1, 2*a, 4*a^2]
sage: o.index_in(O2)
1/16
```

intersection *other*
Return the intersection of this order with another order.

is_maximal *p=None*
Return whether this is the maximal order.

INPUT:
- *p* – an integer prime or None (default: None); if set, return whether this order is maximal at the prime *p*.

EXAMPLES:
```python
sage: K.<i> = NumberField(x^2 + 1)
sage: K.order(3*i).is_maximal()
False
sage: K.order(5*i).is_maximal()
False
sage: (K.order(3*i) + K.order(5*i)).is_maximal()
True
sage: K.maximal_order().is_maximal()
True
```

Maximality can be checked at primes when the order is maximal at that prime by construction:

```python
sage: K.maximal_order().is_maximal(p=3)
True
```

And also at other primes:

```python
sage: K.order(3*i).is_maximal(p=3)
False
```

An example involving a relative order:

```python
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 3])
sage: O = K.order([3*a,2*b])
sage: O.is_maximal()
False
```

module()

Return the underlying free module corresponding to this order, embedded in the vector space corresponding to the ambient number field.

EXAMPLES:

```python
sage: k.<a> = NumberField(x^3 + x + 3)
sage: m = k.order(3*a); m
Order in Number Field in a with defining polynomial x^3 + x + 3
sage: m.module()
Free module of degree 3 and rank 3 over Integer Ring
Echelon basis matrix:
[1 0 0]
[0 3 0]
[0 0 9]
```

class `sage.rings.number_field.order.Order_relative(K, absolute_order)`

Bases: `Order`

A relative order in a number field.

A relative order is an order in some relative number field

Invariants of this order may be computed with respect to the contained order.

absolute_discriminant()

Return the absolute discriminant of self, which is the discriminant of the absolute order associated to self.
OUTPUT:

an integer

EXAMPLES:

```python
sage: R = EquationOrder([x^2 + 1, x^3 + 2], 'a,b')
sage: d = R.absolute_discriminant(); d
-746496
sage: d is R.absolute_discriminant()
True
sage: factor(d)
-1 * 2^10 * 3^6
```

`absolute_order(names='z')`

Return underlying absolute order associated to this relative order.

INPUT:

- names – string (default: ‘z’); name of generator of absolute extension.

Note: There is a default variable name, since this absolute order is frequently used for internal algorithms.

EXAMPLES:

```python
sage: R = EquationOrder([x^2 + 1, x^2 - 5], 'i,g'); R
Relative Order in Number Field in i with defining polynomial x^2 + 1 over its base field
sage: R.basis()
[1, 6*i - g, -g*i + 2, 7*i - g]
sage: S = R.absolute_order(); S
Order in Number Field in z with defining polynomial x^4 - 8*x^2 + 36
sage: S.basis()
[1, 5/12*z^3 + 1/6*z, 1/2*z^2, 1/2*z^3]
```

We compute a relative order in alpha0, alpha1, then make the number field that contains the absolute order be called gamma.:

```python
sage: R = EquationOrder([x^2 + 2, x^2 - 3], 'alpha'); R
Relative Order in Number Field in alpha0 with defining polynomial x^2 + 2 over its base field
sage: R.absolute_order('gamma')
Order in Number Field in gamma with defining polynomial x^4 - 2*x^2 + 25
sage: R.absolute_order('gamma').basis()
[1/2*gamma^2 + 1/2, 7/10*gamma^3 + 1/10*gamma, gamma^2, gamma^3]
```

`basis()`

Return a basis for this order as \(\mathbb{Z}\)-module.

EXAMPLES:

```python
sage: K.<a,b> = NumberField([x^2+1, x^2+3])
sage: O = K.order([a,b])
sage: O.basis()
```
index_in(other)

Return the index of self in other.

This is a lattice index, so it is a rational number if self is not contained in other.

INPUT:

• other – another order with the same ambient absolute number field.

OUTPUT:

a rational number

EXAMPLES:

sage: K.<a,b> = NumberField([x^3 + x + 3, x^2 + 1])
sage: R1 = K.order([3*a, 2*b])
sage: R2 = K.order([a, 4*b])
sage: R1.index_in(R2)
729/8
sage: R2.index_in(R1)
8/729

is_maximal(p=None)

Return whether this is the maximal order.

INPUT:

• p – an integer prime or None (default: None); if set, return whether this order is maximal at the prime p.

EXAMPLES:

sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 5])
sage: K.order(3*a, b).is_maximal()
False
sage: K.order(5*a, b/2 + 1/2).is_maximal()
False
sage: (K.order(3*a, b) + K.order(5*a, b/2 + 1/2)).is_maximal()
True
sage: K.maximal_order().is_maximal()
True

Maximality can be checked at primes when the order is maximal at that prime by construction:

sage: K.maximal_order().is_maximal(p=3)
True

And at other primes:
is_suborder(other)

Return True if self is a subset of the order other.

EXAMPLES:

```sage
sage: K.<a,b> = NumberField([x^2 + 1, x^3 + 2])
sage: R1 = K.order([a,b])
sage: R2 = K.order([2*a,b])
sage: R3 = K.order([a + b, b + 2*a])
sage: R1.is_suborder(R2)
False
sage: R2.is_suborder(R1)
True
sage: R3.is_suborder(R1)
True
sage: R1.is_suborder(R3)
True
sage: R1 == R3
True
```

class sage.rings.number_field.order.RelativeOrderFactory

Bases: OrderFactory

An order in a relative number field extension.

EXAMPLES:

```sage
sage: K.<i> = NumberField(x^2 + 1)
sage: R.<j> = K[

```
• check_is_ring – check that the module is closed under multiplication (this is very expensive)
• is_maximal – bool (or None); set if maximality of the generated order is known
• is_maximal_at – a tuple of primes where this order is known to be maximal

OUTPUT:
an absolute order

EXAMPLES:
We have to explicitly import the function, since it is not meant for regular usage:

\begin{verbatim}
from sage.rings.number_field.order import absolute_order_from_module_generators

K.<a> = NumberField(x^4 - 5)
O = K.maximal_order(); O
Maximal Order in Number Field in a with defining polynomial x^4 - 5
O.basis()
[1/2*a^2 + 1/2, 1/2*a^3 + 1/2*a, a^2, a^3]
O.module()
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
| 1/2 0 1/2 0 |
| 0 1/2 0 1/2 |
| 0 0 1 0 |
| 0 0 0 1 |
O.basis()
[1/2*a^2 + 1/2, 1/2*a^3 + 1/2*a, a^2, a^3]
absolute_order_from_module_generators(O.basis())
Maximal Order in Number Field in a with defining polynomial x^4 - 5
\end{verbatim}

We illustrate each check flag – the output is the same but in case the function would run ever so slightly faster:

\begin{verbatim}
absolute_order_from_module_generators(O.basis(), check_is_ring=False)
Maximal Order in Number Field in a with defining polynomial x^4 - 5
absolute_order_from_module_generators(O.basis(), check_rank=False)
Maximal Order in Number Field in a with defining polynomial x^4 - 5
absolute_order_from_module_generators(O.basis(), check_integral=False)
Maximal Order in Number Field in a with defining polynomial x^4 - 5
\end{verbatim}

Next we illustrate constructing “fake” orders to illustrate turning off various check flags:

\begin{verbatim}
k.<i> = NumberField(x^2 + 1)
R = absolute_order_from_module_generators([2, 2*i], check_is_ring=False); R
Order in Number Field in i with defining polynomial x^2 + 1
R.basis()
[2, 2*i]
R = absolute_order_from_module_generators([k(1)], check_rank=False); R
Order in Number Field in i with defining polynomial x^2 + 1
R.basis()
[1]
\end{verbatim}

If the order contains a non-integral element, even if we do not check that, we will find that the rank is wrong or that the order is not closed under multiplication:
We turn off all check flags and make a really messed up order:

```
sage: R = absolute_order_from_module_generators([1/2, i], check_is_ring=False, check_integral=False, check_rank=False); R
Order in Number Field in i with defining polynomial x^2 + 1
sage: R.basis()
[1/2, i]
```

An order that lives in a subfield:

```
sage: F.<alpha> = NumberField(x**4+3)
sage: F.order([alpha**2], allow_subfield=True)
Order in Number Field in beta with defining polynomial ... with beta = ...
```

```
sage.rings.number_field.order.absolute_order_from_ring_generators(gens, check_is_integral=True, check_rank=True, is_maximal=None, allow_subfield=False)
```

INPUT:

- `gens` – list of integral elements of an absolute order.
- `check_is_integral` – bool (default: True), whether to check that each generator is integral.
- `check_rank` – bool (default: True), whether to check that the ring generated by gens is of full rank.
- `is_maximal` – bool (or None); set if maximality of the generated order is known
- `allow_subfield` – bool (default: False), if True and the generators do not generate an order, i.e., they generate a subring of smaller rank, instead of raising an error, return an order in a smaller number field.

EXAMPLES:

```
sage: K.<a> = NumberField(x^4 - 5)
sage: K.order(a)
Order in Number Field in a with defining polynomial x^4 - 5
```

We have to explicitly import this function, since typically it is called with `K.order` as above.:
sage: absolute_order_from_ring_generators([a/2])
Traceback (most recent call last):
 ...
ValueError: each generator must be integral

If the gens do not generate an order, i.e., generate a ring of full rank, then it is an error:

sage: absolute_order_from_ring_generators([a^2])
Traceback (most recent call last):
 ...
ValueError: the rank of the span of gens is wrong

Both checking for integrality and checking for full rank can be turned off in order to save time, though one can get nonsense as illustrated below:

sage: absolute_order_from_ring_generators([a/2], check_is_integral=False)
Order in Number Field in a with defining polynomial x^4 - 5
sage: absolute_order_from_ring_generators([a^2], check_rank=False)
Order in Number Field in a with defining polynomial x^4 - 5

sage.rings.number_field.order.each_is_integral(v)
Return whether every element of the list v of elements of a number field is integral.

EXAMPLES:

sage: W.<sqrt5> = NumberField(x^2 - 5)
sage: from sage.rings.number_field.order import each_is_integral
sage: each_is_integral([sqrt5, 2, (1+sqrt5)/2])
True
sage: each_is_integral([sqrt5, (1+sqrt5)/3])
False

sage.rings.number_field.order.is_NumberFieldOrder(R)
Return True if R is either an order in a number field or is the ring \(\mathbb{Z} \) of integers.

EXAMPLES:

sage: from sage.rings.number_field.order import is_NumberFieldOrder
sage: is_NumberFieldOrder(NumberField(x^2+1,'a').maximal_order())
True
sage: is_NumberFieldOrder(ZZ)
True
sage: is_NumberFieldOrder(QQ)
False
sage: is_NumberFieldOrder(45)
False

sage.rings.number_field.order.relative_order_from_ring_generators(gens, check_is_integral=True, check_rank=True, is_maximal=None, allow_subfield=False, is_maximal_at=())

INPUT:

- gens – list of integral elements of an absolute order.
• check_is_integral – bool (default: True), whether to check that each generator is integral.
• check_rank – bool (default: True), whether to check that the ring generated by gens is of full rank.
• is_maximal – bool (or None); set if maximality of the generated order is known

EXAMPLES:
We have to explicitly import this function, since it is not meant for regular usage:

```python
sage: from sage.rings.number_field.order import relative_order_from_ring_generators
sage: K.<i, a> = NumberField([x^2 + 1, x^2 - 17])
sage: R = K.base_field().maximal_order()
sage: S = relative_order_from_ring_generators([i,a]); S
Relative Order in Number Field in i with defining polynomial x^2 + 1 over its base_field
Basis for the relative order, which is obtained by computing the algebra generated by i and a:

```python
sage: S.basis()
[1, 7*i - 2*a, -a*i + 8, 25*i - 7*a]
```

### 3.2 Number Field Ideals

AUTHORS:
- Steven Sivek (2005-05-16)
- William Stein (2007-09-06): vastly improved the doctesting
- William Stein and John Cremona (2007-01-28): new class NumberFieldFractionalIdeal now used for all except the 0 ideal
- **Radoslav Kirov and Alyson Deines (2010-06-22):**
  - prime_to_S_part, is_S_unit, is_S_integral

We test that pickling works:

```python
sage: K.<a> = NumberField(x^2 - 5)
sage: I = K.ideal(2/(5+a))
sage: I == loads(dumps(I))
True
```

```python
class sage.rings.number_field.number_field_ideal.LiftMap(OK, M_OK_map, Q, I)
 Bases: object
 Class to hold data needed by lifting maps from residue fields to number field orders.

class sage.rings.number_field.number_field_ideal.NumberFieldFractionalIdeal(field, gens,
 coerce=True)
 Bases: MultiplicativeGroupElement, NumberFieldIdeal, Ideal_fractional
 A fractional ideal in a number field.
```

EXAMPLES:
```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^3 - 2)
sage: I = K.ideal(2/(5+a))
sage: J = I^2
sage: Jinv = I^(-2)
```

```
J*Jinv
Fractional ideal (1)
```

### denominator()

Return the denominator ideal of this fractional ideal. Each fractional ideal has a unique expression as \( N/D \) where \( N, D \) are coprime integral ideals; the denominator is \( D \).

**EXAMPLES:**

```
sage: K.<i>=NumberField(x^2+1)
sage: I = K.ideal((3+4*i)/5); I
Fractional ideal (4/5*i + 3/5)
sage: I.denominator()
Fractional ideal (2*i + 1)
sage: I.numerator()
Fractional ideal (-i - 2)
sage: I.numerator().is_integral() and I.denominator().is_integral()
True
sage: I.numerator() + I.denominator() == K.unit_ideal()
True
sage: I.numerator()/I.denominator() == I
True
```

### divides(other)

Returns True if this ideal divides other and False otherwise.

**EXAMPLES:**

```
sage: K.<a> = CyclotomicField(11); K
Cyclotomic Field of order 11 and degree 10
sage: I = K.factor(31)[0][0]; I
Fractional ideal (31, a^5 + 10*a^4 - a^3 + a^2 + 9*a - 1)
sage: I.divides(I)
True
sage: I.divides(31)
True
sage: I.divides(29)
False
```

### element_1_mod(other)

Returns an element \( r \) in this ideal such that \( 1 - r \) is in other.

An error is raised if either ideal is not integral or if they are not coprime.

**INPUT:**

- other – another ideal of the same field, or generators of an ideal.

**OUTPUT:**

An element \( r \) of the ideal self such that \( 1 - r \) is in the ideal other.
AUTHOR: Maite Aranes (modified to use PARI's pari:idealaddtoone by Francis Clarke)

EXAMPLES:

```
sage: K.<a> = NumberField(x^3-2)
sage: A = K.ideal(a+1); A; A.norm()
Fractional ideal (a + 1)
3
dsage: B = K.ideal(a^2-4*a+2); B; B.norm()
Fractional ideal (a^2 - 4*a + 2)
68
dsage: r = A.element_1_mod(B); r
-33
sage: r in A
True
sage: 1-r in B
True
```

euler_phi()

Returns the Euler $\varphi$-function of this integral ideal.

This is the order of the multiplicative group of the quotient modulo the ideal.

An error is raised if the ideal is not integral.

EXAMPLES:

```
sage: K.<i>=NumberField(x^2+1)
sage: I = K.ideal(2+i)
sage: [r for r in I.residues() if I.is_coprime(r)]
[-2*i, -i, i, 2*i]
sage: I.euler_phi()
4
sage: J = I^3
sage: J.euler_phi()
100
sage: len([r for r in J.residues() if J.is_coprime(r)])
100
sage: J = K.ideal(3-2*i)
sage: J.is_coprime(J)
True
sage: J.euler_phi()*J.euler_phi() == (I^3).euler_phi()
True
sage: L. = K.extension(x^2 - 7)
sage: L.ideal(3).euler_phi()
64
```

factor()

Factorization of this ideal in terms of prime ideals.

EXAMPLES:

```
sage: K.<a> = NumberField(x^4 + 23); K
Number Field in a with defining polynomial x^4 + 23
sage: I = K.ideal(19); I
Fractional ideal (19)
```

(continues on next page)
Algebraic Numbers and Number Fields, Release 10.0

sage: F = I.factor(); F
(Fractional ideal (19, 1/2*a^2 + a - 17/2)) * (Fractional ideal (19, 1/2*a^2 - a - 17/2))
sage: type(F)
<class 'sage.structure.factorization.Factorization'>
sage: list(F)
[(Fractional ideal (19, 1/2*a^2 + a - 17/2), 1), (Fractional ideal (19, 1/2*a^2 - a - 17/2), 1)]
sage: F.prod()
Fractional ideal (19)

idealcoprime(J)
Returns l such that l*self is coprime to J.

INPUT:
• J - another integral ideal of the same field as self, which must also be integral.

OUTPUT:
• l - an element such that l*self is coprime to the ideal J

TODO: Extend the implementation to non-integral ideals.

EXAMPLES:

sage: k.<a> = NumberField(x^2 + 23)
sage: A = k.ideal(a+1)
sage: B = k.ideal(3)
sage: A.is_coprime(B)
False
sage: lam = A.idealcoprime(B)
-1/6*a + 1/6
sage: (lam*A).is_coprime(B)
True

ALGORITHM: Uses Pari function pari:idealcoprime.

ideallog(x, gens=None, check=True)
Returns the discrete logarithm of x with respect to the generators given in the bid structure of the ideal self, or with respect to the generators gens if these are given.

INPUT:
• x - a non-zero element of the number field of self, which must have valuation equal to 0 at all prime ideals in the support of the ideal self.

• gens - a list of elements of the number field which generate (R/I)*, where R is the ring of integers of the field and I is this ideal, or None. If None, use the generators calculated by idealstar().

• check - if True, do a consistency check on the results. Ignored if gens is None.

OUTPUT:
• l - a list of non-negative integers (x_i) such that x = \prod_i g_i^{x_i} in (R/I)*, where x_i are the generators, and the list (x_i) is lexicographically minimal with respect to this requirement. If the x_i generate independent cyclic factors of order d_i, as is the case for the default generators calculated by idealstar(), this just means that 0 \leq x_i < d_i.

3.2. Number Field Ideals 261
A `ValueError` will be raised if the elements specified in `gens` do not in fact generate the unit group (even if the element \( x \) is in the subgroup they generate).

**EXAMPLES:**

```python
sage: k.<a> = NumberField(x^3 - 11)
sage: A = k.ideal(5)
sage: G = A.idealstar(2)
sage: l = A.ideallog(a^2 +3)
sage: r = G(l).value()
sage: (a^2 + 3) - r in A
True
sage: A.small_residue(r) # random
a^2 - 2
```

Examples with custom generators:

```python
sage: K.<a> = NumberField(x^2 - 7)
sage: I = K.ideal(17)
sage: I.ideallog(a + 7, [1+a, 2])
[10, 3]
sage: I.ideallog(a + 7, [2, 1+a])
[0, 118]
sage: L. = NumberField(x^4 - x^3 - 7*x^2 + 3*x + 2)
sage: J = L.ideal(-b^3 - b^2 - 2)
sage: u = -14*b^3 + 21*b^2 + b - 1
sage: v = 4*b^2 + 2*b - 1
sage: J.ideallog(5+2*b, [u, v], check=True)
[4, 13]
```

A non-example:

```python
sage: I.ideallog(a + 7, [2])
Traceback (most recent call last):
...
ValueError: Given elements do not generate unit group -- they generate a subgroup of index 36
```

**ALGORITHM:** Uses Pari function `pari:ideallog`, and (if `gens` is not None) a Hermite normal form calculation to express the result in terms of the generators `gens`.

`idealstar(\text{flag}=1)`

Returns the finite abelian group \((O_K/I)^*\), where I is the ideal self of the number field K, and \(O_K\) is the ring of integers of K.

**INPUT:**

- `flag` (int default 1) – when `flag` =2, it also computes the generators of the group \((O_K/I)^*\), which takes more time. By default `flag`=1 (no generators are computed). In both cases the special pari structure `bid` is computed as well. If `flag`=0 (deprecated) it computes only the group structure of \((O_K/I)^*\) (with generators) and not the special `bid` structure.

**OUTPUT:**

The finite abelian group \((O_K/I)^*\).
Note: Uses the pari function pari:idealstar. The pari function outputs a special bid structure which is stored in the internal field bid of the ideal (when flag=1,2). The special structure bid is used in the pari function pari:ideallog to compute discrete logarithms.

EXAMPLES:

```sage
sage: k.<a> = NumberField(x^3 - 11)
sage: A = k.ideal(5)
sage: G = A.idealstar(); G
Multiplicative Abelian group isomorphic to C24 x C4
sage: G.gens()
(f0, f1)
sage: G = A.idealstar(2)
sage: G.gens()
(f0, f1)
sage: G.gens_values() # random output
(2*a^2 - 1, 2*a^2 + 2*a - 2)
sage: all(G.gen(i).value() in k for i in range(G.ngens()))
True
```

ALGORITHM: Uses Pari function pari:idealstar

`invertible_residues(reduce=True)`

Returns a iterator through a list of invertible residues modulo this integral ideal.

An error is raised if this fractional ideal is not integral.

INPUT:

• reduce - bool. If True (default), use small_residue to get small representatives of the residues.

OUTPUT:

• An iterator through a list of invertible residues modulo this ideal I, i.e. a list of elements in the ring of integers R representing the elements of (R/I)*.

ALGORITHM: Use pari:idealstar to find the group structure and generators of the multiplicative group modulo the ideal.

EXAMPLES:

```sage
sage: K.<i>=NumberField(x^2+1)
sage: ires = K.ideal(2).invertible_residues(); ires
xrange_iter([[0, 1]], <function ...<lambda> at 0x...>)
sage: list(ires)
[1, -i]
sage: list(K.ideal(2+i).invertible_residues())
[1, 2, 4, 3]
sage: list(K.ideal(i).residues())
[0]
sage: list(K.ideal(i).invertible_residues())
[1]
sage: I = K.ideal(3+6*i)
sage: units=I.invertible_residues()
sage: len(list(units))==I.euler_phi()
```

(continues on next page)
AUTHOR: John Cremona

invertible_residues_mod(subgp_gens=[], reduce=True)

Returns a iterator through a list of representatives for the invertible residues modulo this integral ideal, modulo the subgroup generated by the elements in the list subgp_gens.

INPUT:

• subgp_gens - either None or a list of elements of the number field of self. These need not be integral, but should be coprime to the ideal self. If the list is empty or None, the function returns an iterator through a list of representatives for the invertible residues modulo the integral ideal self.

• reduce - bool. If True (default), use small_residues to get small representatives of the residues.

Note: See also invertible_residues() for a simpler version without the subgroup.

OUTPUT:

• An iterator through a list of representatives for the invertible residues modulo self and modulo the group generated by subgp_gens, i.e. a list of elements in the ring of integers \( R \) representing the elements of \( (R/I)^*/U \), where \( I \) is this ideal and \( U \) is the subgroup of \( (R/I)^* \) generated by subgp_gens.

EXAMPLES:

```python
sage: k.<a> = NumberField(x^2 +23)
sage: I = k.ideal(a)
sage: list(I.invertible_residues_mod([-1]))
[1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9]
sage: list(I.invertible_residues_mod([1/2]))
[1, 5]
sage: list(I.invertible_residues_mod([23]))
Traceback (most recent call last):
 ... TypeError: the element must be invertible mod the ideal
```

```python
sage: k.<a> = NumberField(x^2 +23)
sage: I = k.ideal(a)
sage: list(I.invertible_residues_mod([-1]))
[1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9]
sage: list(I.invertible_residues_mod([1/2]))
[1, 5]
sage: list(I.invertible_residues_mod([23]))
Traceback (most recent call last):
 ... TypeError: the element must be invertible mod the ideal
```
sage: K.<z> = CyclotomicField(10)
sage: len(list(K.primes_above(3)[0].invertible_residues_mod([])))
80

AUTHOR: Maite Aranes.

is_S_integral(S)
Return True if this fractional ideal is integral with respect to the list of primes $S$.

INPUT:
• $S$ - a list of prime ideals (not checked if they are indeed prime).

Note: This function assumes that $S$ is a list of prime ideals, but does not check this. This function will fail if $S$ is not a list of prime ideals.

OUTPUT:
True, if the ideal is $S$-integral: that is, if the valuations of the ideal at all primes not in $S$ are non-negative. False, otherwise.

EXAMPLES:

sage: K.<a> = NumberField(x^2+23)
sage: I = K.ideal(1/2)
sage: P = K.ideal(2,1/2*a - 1/2)
sage: I.is_S_integral([P])
False
sage: J = K.ideal(1/5)
sage: J.is_S_integral([K.ideal(5)])
True

is_S_unit(S)
Return True if this fractional ideal is a unit with respect to the list of primes $S$.

INPUT:
• $S$ - a list of prime ideals (not checked if they are indeed prime).

Note: This function assumes that $S$ is a list of prime ideals, but does not check this. This function will fail if $S$ is not a list of prime ideals.

OUTPUT:
True, if the ideal is an $S$-unit: that is, if the valuations of the ideal at all primes not in $S$ are zero. False, otherwise.

EXAMPLES:

sage: K.<a> = NumberField(x^2+23)
sage: I = K.ideal(2)
sage: P = I.factor()[0][0]
sage: I.is_S_unit([P])
False
**is_coprime(other)**

Returns True if this ideal is coprime to the other, else False.

**INPUT:**

- other – another ideal of the same field, or generators of an ideal.

**OUTPUT:**

True if self and other are coprime, else False.

**Note:** This function works for fractional ideals as well as integral ideals.

**AUTHOR:** John Cremona

**EXAMPLES:**

```python
sage: K.<i> = NumberField(x^2+1)
sage: I = K.ideal(2+i)
sage: J = K.ideal(2-i)
sage: I.is_coprime(J)
True
sage: (I^-1).is_coprime(J^3)
True
sage: I.is_coprime(5)
False
sage: I.is_coprime(6+i)
True
```

See github issue #4536:

```python
sage: E.<a> = NumberField(x^5 + 7*x^4 + 18*x^2 + x - 3)
sage: OE = E.ring_of_integers()
sage: i,j,k = [u[0] for u in factor(3*OE)]
sage: (i/j).is_coprime(j/k)
False
sage: (j/k).is_coprime(j/k)
False
```

**is_maximal()**

Return True if this ideal is maximal. This is equivalent to self being prime, since it is nonzero.

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^3 + 3); K
Number Field in a with defining polynomial x^3 + 3
sage: K.ideal(5).is_maximal()
False
sage: K.ideal(7).is_maximal()
True
```
**is_trivial***(proof=\texttt{None})***

Returns True if this is a trivial ideal.

**EXAMPLES:**

```python
sage: F.<a> = QuadraticField(-5)
sage: I = F.ideal(3)
sage: I.is_trivial()
False
sage: J = F.ideal(5)
sage: J.is_trivial()
False
sage: (I+J).is_trivial()
True
```

**numerator()**

Return the numerator ideal of this fractional ideal.

Each fractional ideal has a unique expression as $N/D$ where $N$, $D$ are coprime integral ideals. The numerator is $N$.

**EXAMPLES:**

```python
sage: K.<i>=NumberField(x^2+1)
sage: I = K.ideal((3+4*i)/5); I
Fractional ideal (4/5*i + 3/5)
sage: I.denominator()
Fractional ideal (2*i + 1)
sage: I.numerator()
Fractional ideal (-i - 2)
sage: I.numerator().is_integral() and I.denominator().is_integral()
True
sage: I.numerator() + I.denominator() == K.unit_ideal()
True
sage: I.numerator()/I.denominator() == I
True
```

**prime_factors()**

Return a list of the prime ideal factors of self

**OUTPUT:**

list – list of prime ideals (a new list is returned each time this function is called)

**EXAMPLES:**

```python
sage: K.<w> = NumberField(x^2 + 23)
sage: I = ideal(w+1)
sage: I.prime_factors()
[Fractional ideal (2, 1/2*w - 1/2), Fractional ideal (2, 1/2*w + 1/2),]
```

**prime_to_S_part(S)**

Return the part of this fractional ideal which is coprime to the prime ideals in the list $S$.

**Note:** This function assumes that $S$ is a list of prime ideals, but does not check this. This function will
fail if $S$ is not a list of prime ideals.

INPUT:

- $S$ – a list of prime ideals

OUTPUT:

A fractional ideal coprime to the primes in $S$, whose prime factorization is that of self with the primes in $S$ removed.

EXAMPLES:

```sage
sage: K.<a> = NumberField(x^2-23)
sage: I = K.ideal(24)
sage: S = [K.ideal(-a+5),K.ideal(5)]
sage: I.prime_to_S_part(S)
Fractional ideal (3)
sage: J = K.ideal(15)
sage: J.prime_to_S_part(S)
Fractional ideal (3)
```
**ramification_index()**

Return the ramification index of this fractional ideal, assuming it is prime. Otherwise, raise a ValueError.

The ramification index is the power of this prime appearing in the factorization of the prime in \( \mathbb{Z} \) that this prime lies over.

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^2 + 2); K
Number Field in a with defining polynomial x^2 + 2
sage: f = K.factor(2); f
(Fractional ideal (a))^2
sage: f[0][0].ramification_index()
2
sage: K.ideal(13).ramification_index()
1
sage: K.ideal(17).ramification_index()
Traceback (most recent call last):
 ... ValueError: Fractional ideal (17) is not a prime ideal
```

**ray_class_number()**

Return the order of the ray class group modulo this ideal. This is a wrapper around Pari’s `pari:bnrclassno` function.

**EXAMPLES:**

```python
sage: K.<z> = QuadraticField(-23)
sage: p = K.primes_above(3)[0]
sage: p.ray_class_number()
3
sage: x = polygen(K)
sage: L.<w> = K.extension(x^3 - z)
sage: I = L.ideal(5)
sage: I.ray_class_number()
5184
```

**reduce(f)**

Return the canonical reduction of the element of \( f \) modulo the ideal \( I (=\text{self}) \). This is an element of \( R \) (the ring of integers of the number field) that is equivalent modulo \( I \) to \( f \).

An error is raised if this fractional ideal is not integral or the element \( f \) is not integral.

**INPUT:**

• \( f \) - an integral element of the number field

**OUTPUT:**

An integral element \( g \), such that \( f - g \) belongs to the ideal \( I \) and such that \( g \) is a canonical reduced representative of the coset \( f + I \) (\( I =\text{self} \)) as described in the `residues` function, namely an integral element with coordinates \((r_0, \ldots, r_{n-1})\), where:

• \( r_i \) is reduced modulo \( d_i \)
• \( d_i = b_i[i] \), with \( b_0, b_1, \ldots, b_n \) HNF basis of the ideal \( I \).
Note: The reduced element \( g \) is not necessarily small. To get a small \( g \) use the method `small_residue`.

**EXAMPLES:**

```
sage: k.<a> = NumberField(x^3 + 11)
sage: I = k.ideal(5, a^2 - a + 1)
sage: c = 4*a + 9
sage: I.reduce(c)
a^2 - 2*a

sage: c - I.reduce(c) in I
True
```

The reduced element is in the list of canonical representatives returned by the `residues` method:

```
sage: I.reduce(c) in list(I.residues())
True
```

The reduced element does not necessarily have smaller norm (use `small_residue` for that)

```
sage: c.norm()
25
sage: (I.reduce(c)).norm()
209
sage: (I.small_residue(c)).norm()
10
```

Sometimes the canonical reduced representative of \( 1 \) won’t be \( 1 \) (it depends on the choice of basis for the ring of integers):

```
sage: k.<a> = NumberField(x^2 + 23)
sage: I = k.ideal(3)
sage: I.reduce(3*a + 1)
-3/2*a - 1/2

sage: k.ring_of_integers().basis()
[1/2*a + 1/2, a]
```

**AUTHOR:** Maite Aranes.

**residue_class_degree()**

Return the residue class degree of this fractional ideal, assuming it is prime. Otherwise, raise a `ValueError`.

The residue class degree of a prime ideal \( I \) is the degree of the extension \( O_K/I \) of its prime subfield.

**EXAMPLES:**

```
sage: K.<a> = NumberField(x^5 + 2); K
Number Field in a with defining polynomial x^5 + 2
sage: f = K.factor(19); f
(Fractional ideal (a^2 + a - 3)) * (Fractional ideal (2*a^4 + a^2 - 2*a + 1)) *...
(Fractional ideal (a^2 + a - 1))
sage: [i.residue_class_degree() for i, _ in f]
[2, 2, 1]
```

**residue_field(names=None)**

Return the residue class field of this fractional ideal, which must be prime.
EXAMPLES:

```
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(29).factor()[0][0]
sage: P.residue_field()
Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
sage: P.residue_field('z')
Residue field in z of Fractional ideal (2*a^2 + 3*a - 10)
```

Another example:

```
sage: K.<a> = NumberField(x^3-7)
sage: P = K.ideal(389).factor()[0][0]; P
Fractional ideal (389, a^2 - 44*a - 9)
sage: P.residue_class_degree()
2
sage: P.residue_field()
Residue field in abar of Fractional ideal (389, a^2 - 44*a - 9)
sage: P.residue_field('z')
Residue field in z of Fractional ideal (389, a^2 - 44*a - 9)
sage: FF.<w> = P.residue_field()
sage: FF
Residue field in w of Fractional ideal (389, a^2 - 44*a - 9)
sage: FF((a+1)^390)
36
sage: FF(a)
w
```

An example of reduction maps to the residue field: these are defined on the whole valuation ring, i.e. the subring of the number field consisting of elements with non-negative valuation. This shows that the issue raised in github issue #1951 has been fixed:

```
sage: K.<i> = NumberField(x^2 + 1)
sage: P1, P2 = [g[0] for g in K.factor(5)]; (P1,P2)
(Fractional ideal (-i - 2), Fractional ideal (2*i + 1))
sage: a = 1/(1+2*i)
sage: F1, F2 = [g.residue_field() for g in [P1,P2]]; (F1,F2)
(Residue field of Fractional ideal (-i - 2), Residue field of Fractional ideal
 →(2*i + 1))
sage: a.valuation(P1)
0
sage: F1(i/7)
4
sage: F1(a)
3
sage: a.valuation(P2)
3
sage: F2(a)
Traceback (most recent call last):
...
ZeroDivisionError: Cannot reduce field element -2/5*i + 1/5 modulo Fractional
 →ideal (2*i + 1): it has negative valuation
```

An example with a relative number field:

3.2. Number Field Ideals
sage: L.<a,b> = NumberField([x^2 + 1, x^2 - 5])
sage: p = L.ideal((-1/2*b - 1/2)*a + 1/2*b - 1/2)
sage: R = p.residue_field(); R
Residue field in abar of Fractional ideal ((-1/2*b - 1/2)*a + 1/2*b - 1/2)
sage: R.cardinality()
9
sage: R(17)
2
sage: R((a + b)/17)
abar
sage: R(1/b)
2*abar

We verify that github issue #8721 is fixed:

sage: L.<a, b> = NumberField([x^2 - 3, x^2 - 5])
sage: L.ideal(a).residue_field()
Residue field in abar of Fractional ideal (a)

residues()

Return a iterator through a complete list of residues modulo this integral ideal.

An error is raised if this fractional ideal is not integral.

OUTPUT:

An iterator through a complete list of residues modulo the integral ideal self. This list is the set of canonical reduced representatives given by all integral elements with coordinates \((r_0, \ldots, r_{n-1})\), where:

- \(r_i\) is reduced modulo \(d_i\)
- \(d_i = b_i[i]\), with \(b_0, b_1, \ldots, b_n\) HNF basis of the ideal.

AUTHOR: John Cremona (modified by Maite Aranes)

EXAMPLES:

sage: K.<i>=NumberField(x^2+1)
sage: res = K.ideal(2).residues(); res
xmrange_iter([[0, 1], [0, 1]], <function ...<lambda> at 0x...>)
sage: list(res)
[0, i, 1, i + 1]
sage: list(K.ideal(2+i).residues())
[-2*i, -i, 0, i, 2*i]
sage: list(K.ideal(i).residues())
[0]
sage: I = K.ideal(3+6*i)
sage: reps=I.residues()
sage: len(list(reps)) == I.norm()
True
sage: all(r == s or not (r-s) in I for r in reps for s in reps) # long time
→ (6s on sage.math, 2011)
True
sage: K.<a> = NumberField(x^3-10)
sage: I = K.ideal(a-1)
sage: 
len(list(I.residues())) == I.norm()
True

sage: 
K.<z> = CyclotomicField(11)
sage: 
len(list(K.primes_above(3)[0].residues())) == 3**5  # long time (5s on...
˓→sage.math, 2011)
True

small_residue(f)

Given an element \(f\) of the ambient number field, returns an element \(g\) such that \(f - g\) belongs to the ideal self (which must be integral), and \(g\) is small.

**Note:** The reduced representative returned is not uniquely determined.

ALGORITHM: Uses Pari function pari:nfeltreduce.

EXAMPLES:

sage: 
k.<a> = NumberField(x^2 + 5)
sage: 
I = k.ideal(a)
sage: 
I.small_residue(14)
4

sage: 
K.<a> = NumberField(x^5 + 7*x^4 + 18*x^2 + x - 3)
sage: 
I = K.ideal(5)
sage: 
I.small_residue(a^2 -13)
a^2 + 5*a - 3

support()

Return a list of the prime ideal factors of self

**OUTPUT:**

list – list of prime ideals (a new list is returned each time this function is called)

EXAMPLES:

sage: 
K.<w> = NumberField(x^2 + 23)
sage: 
I = ideal(w+1)
sage: 
I.prime_factors()
[Fractional ideal (2, 1/2*w - 1/2), Fractional ideal (2, 1/2*w + 1/2), Fractional ideal (3, 1/2*w + 1/2)]

class sage.rings.number_field.number_field_ideal.
NumberFieldIdeal(field, gens, coerce=True)

Bases: Ideal_generic

An ideal of a number field.

S_ideal_class_log(S)

S-class group version of ideal_class_log().

EXAMPLES:
sage: K.<a> = QuadraticField(-14)
sage: S = K.primes_above(2)
sage: I = K.ideal(3, a + 1)
sage: I.S_ideal_class_log(S)
[1]
sage: I.S_ideal_class_log([])
[3]

absolute_norm()  
A synonym for norm.  

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: K.ideal(1 + 2*i).absolute_norm()
5

absolute_ramification_index()  
A synonym for ramification_index.  

EXAMPLES:

sage: K.<i> = NumberField(x^2 + 1)
sage: K.ideal(1 + i).absolute_ramification_index()
2

artin_symbol()  
Return the Artin symbol \((K/Q, P)\), where \(K\) is the number field of \(P = self\). This is the unique element \(s\) of the decomposition group of \(P\) such that \(s(x) = x^p \pmod{P}\) where \(p\) is the residue characteristic of \(P\). (Here \(P\) (self) should be prime and unramified.)

See the artin_symbol method of the GaloisGroup_v2 class for further documentation and examples.  

EXAMPLES:

sage: QuadraticField(-23, 'w').primes_above(7)[0].artin_symbol()
(1,2)

basis()  
Return a basis for this ideal viewed as a \(Z\) -module.  

OUTPUT:  
An immutable sequence of elements of this ideal (note: their parent is the number field) forming a basis for this ideal.  

EXAMPLES:

sage: K.<z> = CyclotomicField(7)
sage: I = K.factor(11)[0][0]
sage: I.basis()  # warning -- choice of basis can be somewhat random
[11, 11*z, 11*z^2, z^3 + 5*z^2 + 4*z + 10, z^4 + z^2 + z + 5, z^5 + z^4 + z^3 + z + 5]

An example of a non-integral ideal:
sage: J = 1/I
sage: J
# warning -- choice of generators can be somewhat random
Fractional ideal (2/11*z^5 + 2/11*z^4 + 3/11*z^3 + 2/11)
sage: J.basis()
# warning -- choice of basis can be somewhat random
[1, z, z^2, 1/11*z^3 + 7/11*z^2 + 6/11*z + 10/11, 1/11*z^4 + 1/11*z^2 + 1/11*z + 7/11]

Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):
sage: K.<a> = NumberField(2*x^2 - 1/3)
sage: K.ideal(a).basis()
[1, a]

coordinates(x)
Returns the coordinate vector of $x$ with respect to this ideal.

INPUT:
- $x$ – an element of the number field (or ring of integers) of this ideal.

OUTPUT:
- List giving the coordinates of $x$ with respect to the integral basis of the ideal. In general this will be a vector of rationals; it will consist of integers if and only if $x$ is in the ideal.

AUTHOR: John Cremona 2008-10-31

ALGORITHM:
Uses linear algebra. Provides simpler implementations for _contains_, is_integral and smallest_integer().

EXAMPLES:
sage: K.<i> = QuadraticField(-1)
sage: I = K.ideal(7+3*i)
sage: Ibasis = I.integral_basis(); Ibasis
[58, i + 41]
sage: a = 23-14*i
sage: acoords = I.coordinates(a); acoords
(597/58, -14)
sage: sum([Ibasis[j]*acoords[j] for j in range(2)]) == a
True
sage: b = 123+456*i
sage: bcoords = I.coordinates(b); bcoords
(-18573/58, 456)
sage: sum([Ibasis[j]*bcoords[j] for j in range(2)]) == b
True
sage: J = K.ideal(0)
sage: J.coordinates(0)
()
sage: J.coordinates(1)
Traceback (most recent call last):
...
TypeError: vector is not in free module

decomposition_group()
Return the decomposition group of self, as a subset of the automorphism group of the number field of self.
Raises an error if the field isn’t Galois. See the decomposition_group method of the GaloisGroup_v2 class for further examples and doctests.

EXAMPLES:

```
sage: QuadraticField(-23, 'w').primes_above(7)[0].decomposition_group()
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + w → -23)
```

**free_module()**

Return the free \(\mathbb{Z}\)-module contained in the vector space associated to the ambient number field, that corresponds to this ideal.

EXAMPLES:

```
sage: K.<z> = CyclotomicField(7)
sage: I = K.factor(11)[0][0]; I
Fractional ideal (-3*z^4 - 2*z^3 - 2*z^2 - 2)
sage: A = I.free_module()
sage: A
Free module of degree 6 and rank 6 over Integer Ring
User basis matrix:
[11 0 0 0 0 0]
[0 11 0 0 0 0]
[0 0 11 0 0 0]
[10 4 5 1 0 0]
[5 1 1 0 1 0]
[5 6 2 1 1 1]
```

However, the actual \(\mathbb{Z}\)-module is not at all random:

```
sage: A.basis_matrix().change_ring(ZZ).echelon_form()
[1 0 0 5 1 1]
[0 1 0 1 1 7]
[0 0 1 7 6 10]
[0 0 0 11 0 0]
[0 0 0 0 11 0]
[0 0 0 0 0 11]
```

The ideal doesn’t have to be integral:

```
sage: J = I^(-1)
sage: B = J.free_module()
sage: B.echelonized_basis_matrix()
[1/11 0 0 7/11 1/11 1/11]
[0 1/11 0 1/11 1/11 5/11]
[0 0 1/11 5/11 4/11 10/11]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]
```

This also works for relative extensions:

```
sage: K.<a,b> = NumberField([x^2 + 1, x^2 + 2])
sage: I = K.fractional_ideal(4)
```

(continues on next page)
\texttt{sage}: \texttt{I.free-module()}
Free module of degree 4 and rank 4 over Integer Ring
User basis matrix:
\[
\begin{bmatrix}
4 & 0 & 0 & 0 \\
-3 & 7 & -1 & 1 \\
3 & 7 & 1 & 1 \\
0 & -10 & 0 & -2
\end{bmatrix}
\]

\texttt{sage}: \texttt{J = I^{-1}; J.free-module()}
Free module of degree 4 and rank 4 over Integer Ring
User basis matrix:
\[
\begin{bmatrix}
1/4 & 0 & 0 & 0 \\
-3/16 & 7/16 & -1/16 & 1/16 \\
3/16 & 7/16 & 1/16 & 1/16 \\
0 & -5/8 & 0 & -1/8
\end{bmatrix}
\]

An example of intersecting ideals by intersecting free modules:

\texttt{sage}: \texttt{K.<a> = NumberField(x^{3} + x^{2} - 2*x + 8)}
\texttt{sage}: \texttt{I = K.factor(2)}
\texttt{sage}: \texttt{p1 = I[0][0]; p2 = I[1][0]}
\texttt{sage}: \texttt{N = p1.free-module().intersection(p2.free-module()); N}
Free module of degree 3 and rank 3 over Integer Ring
Echelon basis matrix:
\[
\begin{bmatrix}
1 & 1/2 & 1/2 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{bmatrix}
\]
\texttt{sage}: \texttt{N.index_in(p1.free-module()).abs()}
2

\texttt{gens_reduced}(\texttt{proof=None})
Express this ideal in terms of at most two generators, and one if possible.
This function indirectly uses \texttt{bnfisprincipal}, so set \texttt{proof=True} if you want to prove correctness (which is the default).

EXAMPLES:

\texttt{sage}: \texttt{R.<x> = PolynomialRing(QQ)}
\texttt{sage}: \texttt{K.<a> = NumberField(x^{2} + 5)}
\texttt{sage}: \texttt{K.ideal(0).gens_reduced()} (0,)
\texttt{sage}: \texttt{J = K.ideal([a+2, 9])}
\texttt{sage}: \texttt{J.gens()}
(a + 2, 9)
\texttt{sage}: \texttt{J.gens_reduced() \# random sign}
(a + 2,)
\texttt{sage}: \texttt{K.ideal([a+2, 3]).gens_reduced()}
(3, a + 2)

\texttt{gens_two()}
Express this ideal using exactly two generators, the first of which is a generator for the intersection of the ideal with \texttt{Q}.
ALGORITHM: uses PARI’s \texttt{pari:idealtwoel} function, which runs in randomized polynomial time and is
very fast in practice.

EXAMPLES:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^2 + 5)
sage: J = K.ideal([a+2, 9])
sage: J.gens()
(a + 2, 9)
sage: J.gens_two()
(9, a + 2)
sage: K.ideal([a+5, a+8]).gens_two()
(3, a + 2)
sage: K.ideal(0).gens_two()
(0, 0)
```

The second generator is zero if and only if the ideal is generated by a rational, in contrast to the PARI function `pari:idealtwoelt`:

```python
sage: I = K.ideal(12)
sage: pari(K).idealtwoelt(I) # Note that second element is not zero
[12, [0, 12]]
sage: I.gens_two()
(12, 0)
```

**ideal_class_log**(proof=None)

Return the output of PARI’s `pari:bnfisprincipal` for this ideal, i.e. a vector expressing the class of this ideal in terms of a set of generators for the class group.

Since it uses the PARI method `pari:bnfisprincipal`, specify `proof=True` (this is the default setting) to prove the correctness of the output.

**EXAMPLES:**

When the class number is 1, the result is always the empty list:

```python
sage: K.<a> = QuadraticField(-163)
sage: J = K.primes_above(random_prime(10^6))[0]
sage: J.ideal_class_log()
[]
```

An example with class group of order 2. The first ideal is not principal, the second one is:

```python
sage: K.<a> = QuadraticField(-5)
sage: J = K.ideal(23).factor()[0][0]
sage: J.ideal_class_log()
[1]
sage: (J^10).ideal_class_log()
[0]
```

An example with a more complicated class group:

```python
sage: K.<a, b> = NumberField([x^3 - x + 1, x^2 + 26])
sage: K.class_group()
Class group of order 18 with structure C6 x C3 of Number Field in a with defining polynomial x^3 - x + 1 over its base field
```
sage: K.primes_above(7)[0].ideal_class_log() # random
[1, 2]

inertia_group()

Return the inertia group of self, i.e. the set of elements s of the Galois group of the number field of self (which we assume is Galois) such that s acts trivially modulo self. This is the same as the 0th ramification group of self. See the inertia_group method of the GaloisGroup_v2 class for further examples and doctests.

EXAMPLES:

sage: QuadraticField(-23, 'w').primes_above(23)[0].inertia_group()
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 +w^2 →23)

integral_basis()

Return a list of generators for this ideal as a \( \mathbb{Z} \)-module.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: K.<i> = NumberField(x^2 + 1)
sage: J = K.ideal(i+1)
sage: J.integral_basis()
[2, i + 1]

integral_split()

Return a tuple \((I, d)\), where \(I\) is an integral ideal, and \(d\) is the smallest positive integer such that this ideal is equal to \(I/d\).

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^2-5)
sage: I = K.ideal(2/(5+a))
sage: I.is_integral()  # False
sage: J,d = I.integral_split()
sage: J
Fractional ideal (-1/2*a + 5/2)
sage: J.is_integral()  # True
sage: d
5
sage: I == J/d  # True

intersection(other)

Return the intersection of self and other.

EXAMPLES:

sage: K.<a> = QuadraticField(-11)
sage: p = K.ideal((a + 1)/2); q = K.ideal((a + 3)/2)
An example with non-principal ideals:

```
sage: L.<a> = NumberField(x^3 - 7)
sage: p = L.ideal(a^2 + a + 1, 2)
sage: q = L.ideal(a+1)
sage: p.intersection(q) == L.ideal(8, 2*a + 2)
True
```

A relative example:

```
sage: L.<a,b> = NumberField([x^2 + 11, x^2 - 5])
sage: A = L.ideal([15, (-3/2*b + 7/2)*a - 8])
sage: B = L.ideal([6, (-1/2*b + 1)*a - b - 5/2])
sage: A.intersection(B) == L.ideal(-1/2*a - 3/2*b - 1)
True
```

**is_integral()**

Return True if this ideal is integral.

**EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^5-x+1)
sage: K.ideal(a).is_integral()
True
sage: (K.ideal(1) / (3*a+1)).is_integral()
False
```

**is_maximal()**

Return True if this ideal is maximal. This is equivalent to self being prime and nonzero.

**EXAMPLES:**

```
sage: K.<a> = NumberField(x^3 + 3); K
Number Field in a with defining polynomial x^3 + 3
sage: K.ideal(5).is_maximal()
False
sage: K.ideal(7).is_maximal()
True
```

**is_prime()**

Return True if this ideal is prime.

**EXAMPLES:**

```
sage: K.<a> = NumberField(x^2 - 17); K
Number Field in a with defining polynomial x^2 - 17
sage: K.ideal(5).is_prime() # inert prime
True
sage: K.ideal(13).is_prime() # split
False
```

(continues on next page)
is_prime()    # ramified

Return True if this ideal is principal.

Since it uses the PARI method `pari:bnfisprincipal`, specify `proof=True` (this is the default setting) to prove the correctness of the output.

EXAMPLES:

```sage
K = QuadraticField(-119, 'a')
P = K.factor(2)[1][0]
P.is_principal() # ramified
False

I = P^5
I.is_principal() # ramified
True
```

is_zero()

Return True iff self is the zero ideal.

Note that \((0)\) is a `NumberFieldIdeal`, not a `NumberFieldFractionalIdeal`.

EXAMPLES:

```sage
K.<a> = NumberField(x^2 + 2); K
Number Field in a with defining polynomial x^2 + 2

I=K.ideal(0); I.is_zero() # ramified
True
I
Ideal (0) of Number Field in a with defining polynomial x^2 + 2
```

norm()

Return the norm of this fractional ideal as a rational number.

EXAMPLES:

```sage
K.<a> = NumberField(x^4 + 23); K
Number Field in a with defining polynomial x^4 + 23

I = K.ideal(19); I
Fractional ideal (19)

factor(I.norm())
19^4

F = I.factor()
F[0][0].norm().factor()
19^4
```

3.2. Number Field Ideals 281
number_field()
Return the number field that this is a fractional ideal in.

EXAMPLES:

```
sage: K.<a> = NumberField(x^2 + 2); K
Number Field in a with defining polynomial x^2 + 2
sage: K.ideal(3).number_field()
Number Field in a with defining polynomial x^2 + 2
sage: K.ideal(0).number_field() # not tested (not implemented)
Number Field in a with defining polynomial x^2 + 2
```

pari_hnf()
Return PARI’s representation of this ideal in Hermite normal form.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^3 - 2)
sage: I = K.ideal(2/(5+a))
sage: I.pari_hnf()
[2, 0, 50/127; 0, 2, 244/127; 0, 0, 2/127]
```

pari_prime()
Returns a PARI prime ideal corresponding to the ideal self.

INPUT:
• self - a prime ideal.

OUTPUT: a PARI “prime ideal”, i.e. a five-component vector \([p, a, e, f, b]\) representing the prime ideal \(pO_K + aO_K, e, f\) as usual, \(a\) as vector of components on the integral basis, \(b\) Lenstra’s constant.

EXAMPLES:

```
sage: K.<i> = QuadraticField(-1)
sage: K.ideal(3).pari_prime()
[3, [3, 0]~, 1, 2, 1]
sage: K.ideal(2+i).pari_prime()
[5, [2, 1]~, 1, 1, [-2, -1; 1, -2]]
sage: K.ideal(2).pari_prime()
Traceback (most recent call last):
... ValueError: Fractional ideal (2) is not a prime ideal
```

ramification_group(v)
Return the \(v\)’th ramification group of self, i.e. the set of elements \(s\) of the Galois group of the number field of self (which we assume is Galois) such that \(s\) acts trivially modulo the \((v+1)\)st power of self. See the ramification_group method of the GaloisGroup class for further examples and doctests.

EXAMPLES:

```
sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(0)
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(1)
Subgroup generated by [(O)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
```
random_element(*args, **kwds)

Return a random element of this order.

INPUT:

- *args, **kwds - Parameters passed to the random integer function. See the documentation of ZZ.

OUTPUT:

A random element of this fractional ideal, computed as a random \( \mathbb{Z} \)-linear combination of the basis.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3 + 2)
sage: I = K.ideal(1-a)
sage: I.random_element() # random output
-a^2 - a - 19
sage: I.random_element(distribution="uniform") # random output
a^2 - 2*a - 8
sage: I.random_element(-30, 30) # random output
-7*a^2 - 17*a - 75
sage: I.random_element(-30,30).is_integral() # random output
True
```

reduce_equiv()

Return a small ideal that is equivalent to self in the group of fractional ideals modulo principal ideals. Very often (but not always) if self is principal then this function returns the unit ideal.

ALGORITHM: Calls pari:idealred function.

EXAMPLES:

```python
sage: K.<w> = NumberField(x^2 + 23)
sage: I = ideal(w*23^5); I
Fractional ideal (6436343*w)
sage: I.reduce_equiv()
Fractional ideal (1)
sage: I = K.class_group().0.ideal()^10; I
Fractional ideal (1024, 1/2*w + 979/2)
sage: I.reduce_equiv()
Fractional ideal (2, 1/2*w - 1/2)
```
**relative_norm()**
A synonym for norm.

**EXAMPLES:**
```python
sage: K.<i> = NumberField(x^2 + 1)
sage: K.ideal(1 + 2*i).relative_norm()
5
```

**relative_ramification_index()**
A synonym for ramification_index.

**EXAMPLES:**
```python
sage: K.<i> = NumberField(x^2 + 1)
sage: K.ideal(1 + i).relative_ramification_index()
2
```

**residue_symbol(e, m, check=True)**
The m-th power residue symbol for an element e and the proper ideal.

\[
\left( \frac{\alpha}{P} \right) \equiv \alpha^{N(P)-1} \mod P
\]

**Note:** accepts m=1, in which case returns 1

**Note:** can also be called for an element from sage.rings.number_field_element.residue_symbol

**Note:** e is coerced into the number field of self

**Note:** if m=2, e is an integer, and self.number_field() has absolute degree 1 (i.e. it is a copy of the rationals), then this calls kronecker_symbol, which is implemented using GMP.

**INPUT:**
- e - element of the number field
- m - positive integer

**OUTPUT:**
- an m-th root of unity in the number field

**EXAMPLES:**

Quadratic Residue (7 is not a square modulo 11):
```python
sage: K.<a> = NumberField(x - 1)
sage: K.ideal(11).residue_symbol(7,2)
-1
```

Cubic Residue:
\begin{Verbatim}[commandchars=\[\]]
sage: K.<w> = NumberField(x^2 - x + 1)
sage: K.ideal(17).residue_symbol(w^2 + 3,3)
-w
\end{Verbatim}

The field must contain the \(m\)-th roots of unity:

\begin{Verbatim}[commandchars=\[\]]
sage: K.<w> = NumberField(x^2 - x + 1)
sage: K.ideal(17).residue_symbol(w^2 + 3,5)
Traceback (most recent call last):
...
ValueError: The residue symbol to that power is not defined for the number field
\end{Verbatim}

\textbf{smallest\_integer()}

Return the smallest non-negative integer in \(I \cap \mathbb{Z}\), where \(I\) is this ideal. If \(I = 0\), returns 0.

\textbf{EXAMPLES:}

\begin{Verbatim}[commandchars=\[\]]
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^2+6)
sage: I = K.ideal([4,a])/7; I
Fractional ideal (2/7, 1/7*a)
sage: I.smallest_integer()
2
\end{Verbatim}

\textbf{valuation(p)}

Return the valuation of self at \(p\).

\textbf{INPUT:}

\begin{itemize}
  \item \(p\) – a prime ideal \(p\) of this number field.
\end{itemize}

\textbf{OUTPUT:}

\text{(integer)} The valuation of this fractional ideal at the prime \(p\). If \(p\) is not prime, raise a ValueError.

\textbf{EXAMPLES:}

\begin{Verbatim}[commandchars=\[\]]
sage: K.<a> = NumberField(x^5 + 2); K
Number Field in a with defining polynomial x^5 + 2
sage: i = K.ideal(38); i
Fractional ideal (38)
sage: i.valuation(K.factor(19)[0][0])
1
sage: i.valuation(K.factor(2)[0][0])
5
sage: i.valuation(K.factor(3)[0][0])
0
sage: i.valuation(0)
Traceback (most recent call last):
...
ValueError: p (= Ideal (0) of Number Field in a with defining polynomial x^5 +\n-2) must be nonzero
sage: K.ideal(0).valuation(K.factor(2)[0][0])
+Infinity
\end{Verbatim}
class sage.rings.number_field.number_field_ideal.QuotientMap(K, M_OK_change, Q, I)

    Bases: object

    Class to hold data needed by quotient maps from number field orders to residue fields. These are only partial
    maps: the exact domain is the appropriate valuation ring. For examples, see residue_field().

sage.rings.number_field.number_field_ideal.basis_to_module(B, K)

    Given a basis \( B \) of elements for a \( \mathbb{Z} \)-submodule of a number field \( K \), return the corresponding \( \mathbb{Z} \)-submodule.

    EXAMPLES:

```
 sage: K.<w> = NumberField(x^4 + 1)
 sage: from sage.rings.number_field.number_field_ideal import basis_to_module
 sage: basis_to_module([K.0, K.0^2 + 3], K)
 Free module of degree 4 and rank 2 over Integer Ring
 User basis matrix:
 [0 1 0 0]
 [3 0 1 0]
```

sage.rings.number_field.number_field_ideal.is_NumberFieldFractionalIdeal(x)

    Return True if \( x \) is a fractional ideal of a number field.

    EXAMPLES:

```
 sage: from sage.rings.number_field.number_field_ideal import is_NumberFieldFractionalIdeal
 sage: is_NumberFieldFractionalIdeal(2/3)
 False
 sage: is_NumberFieldFractionalIdeal(ideal(5))
 False
 sage: k.<a> = NumberField(x^2 + 2)
 sage: I = k.ideal([a + 1]); I
 Fractional ideal (a + 1)
 sage: is_NumberFieldFractionalIdeal(I)
 True
 sage: Z = k.ideal(0); Z
 Ideal (0) of Number Field in a with defining polynomial x^2 + 2
 sage: is_NumberFieldFractionalIdeal(Z)
 False
```

sage.rings.number_field.number_field_ideal.is_NumberFieldIdeal(x)

    Return True if \( x \) is an ideal of a number field.

    EXAMPLES:

```
 sage: from sage.rings.number_field.number_field_ideal import is_NumberFieldIdeal
 sage: is_NumberFieldIdeal(2/3)
 False
 sage: is_NumberFieldIdeal(ideal(5))
 False
 sage: k.<a> = NumberField(x^2 + 2)
 sage: I = k.ideal([a + 1]); I
 Fractional ideal (a + 1)
 sage: is_NumberFieldIdeal(I)
 True
 sage: Z = k.ideal(0); Z
 Ideal (0) of Number Field in a with defining polynomial x^2 + 2
 sage: is_NumberFieldIdeal(Z)
 False
```

(continues on next page)
sage: Z = k.ideal(0); Z
Ideal (0) of Number Field in a with defining polynomial x^2 + 2
sage: is_NumberFieldIdeal(Z)
True

sage.rings.number_field.number_field_ideal.quotient_char_p(I, p)
Given an integral ideal \( I \) that contains a prime number \( p \), compute a vector space \( V = (O_K \mod p)/(I \mod p) \), along with a homomorphism \( O_K \to V \) and a section \( V \to O_K \).

EXAMPLES:

sage: from sage.rings.number_field.number_field_ideal import quotient_char_p
sage: K.<i> = NumberField(x^2 + 1); O = K.maximal_order(); I = K.fractional_ideal(15)
sage: quotient_char_p(I, 5)[0]
Vector space quotient V/W of dimension 2 over Finite Field of size 5 where
V: Vector space of dimension 2 over Finite Field of size 5
W: Vector space of degree 2 and dimension 0 over Finite Field of size 5
Basis matrix:
[]
sage: quotient_char_p(I, 3)[0]
Vector space quotient V/W of dimension 2 over Finite Field of size 3 where
V: Vector space of dimension 2 over Finite Field of size 3
W: Vector space of degree 2 and dimension 0 over Finite Field of size 3
Basis matrix:
[]

sage: I = K.factor(13)[0][0]; I
Fractional ideal (-2*i + 3)
sage: I.residue_class_degree()
1
sage: quotient_char_p(I, 13)[0]
Vector space quotient V/W of dimension 1 over Finite Field of size 13 where
V: Vector space of dimension 2 over Finite Field of size 13
W: Vector space of degree 2 and dimension 1 over Finite Field of size 13
Basis matrix:
[1 8]

3.3 Relative Number Field Ideals

AUTHORS:
• Steven Sivek (2005-05-16)
• William Stein (2007-09-06)
• Nick Alexander (2009-01)

EXAMPLES:
```sage
K.<a,b> = NumberField([x^2 + 1, x^2 + 2])
A = K.absolute_field('z')
I = A.factor(7)[0][0]
from_A, to_A = A.structure()
G = [from_A(z) for z in I.gens()]; G
[7, -2*b*a - 1]
K.fractional_ideal(G)
Fractional ideal ((1/2*b + 2)*a - 1/2*b + 2)
K.fractional_ideal(G).absolute_norm().factor()
7^2
```

```sage
class sage.rings.number_field.number_field_ideal_rel.NumberFieldFractionalIdeal_rel(field, gens, coerce=True)

Bases: NumberFieldFractionalIdeal

An ideal of a relative number field.

EXAMPLES:
```sage
K.<a> = NumberField([x^2 + 1, x^2 + 2]); K
Number Field in a0 with defining polynomial x^2 + 1 over its base field
sage: i = K.ideal(38); i
Fractional ideal (38)
K.<a0, a1> = NumberField([x^2 + 1, x^2 + 2]); K
Number Field in a0 with defining polynomial x^2 + 1 over its base field
sage: i = K.ideal([a0+1]); i # random
Fractional ideal (-a1*a0)
sage: (g, ) = i.gens_reduced(); g # random
-a1*a0
sage: (g / (a0 + 1)).is_integral()
True
```

```sage
absolute_ideal(names='a')
If this is an ideal in the extension \( L/K \), return the ideal with the same generators in the absolute field \( L/Q \).

INPUT:

* names (optional) – string; name of generator of the absolute field

EXAMPLES:
```sage
x = ZZ['x'].0
K. = NumberField(x^2 - 2)
L.<c> = K.extension(x^2 - b)
P.<m> = L.absolute_field()
```

An example of an inert ideal:
```sage
P = F.factor(13)[0][0]; P
Fractional ideal (13)
```

(continues on next page)
sage: J = L.ideal(13)
sage: J.absolute_ideal()
Fractional ideal (13)

Now a non-trivial ideal in $L$ that is principal in the subfield $K$. Since the optional ‘names’ argument is not passed, the generators of the absolute ideal $J$ are returned in terms of the default field generator ‘a’. This does not agree with the generator ‘m’ of the absolute field $F$ defined above:

```sage
sage: J = L.ideal(b); J
Fractional ideal (b)
sage: J.absolute_ideal()
Fractional ideal (a^2)
sage: J.relative_norm()
Fractional ideal (2)
sage: J.absolute_norm()
4
sage: J.absolute_ideal().norm()
4
```

Now pass ‘m’ as the name for the generator of the absolute field:

```sage
sage: J.absolute_ideal('m')
Fractional ideal (m^2)
```

Now an ideal not generated by an element of $K$:

```sage
sage: J = L.ideal(c); J
Fractional ideal (c)
sage: J.absolute_ideal()
Fractional ideal (a)
sage: J.absolute_norm()
2
sage: J.ideal_below()
Fractional ideal (b)
sage: J.ideal_below().norm()
2
```

**absolute_norm()**

Compute the absolute norm of this fractional ideal in a relative number field, returning a positive integer.

EXAMPLES:

```sage
sage: L.<a, b, c> = QQ.extension([x^2 - 23, x^2 - 5, x^2 - 7])
sage: I = L.ideal(a + b)
sage: I.absolute_norm()
104976
sage: I.relative_norm().relative_norm().relative_norm()
104976
```

**absolute_ramification_index()**

Return the absolute ramification index of this fractional ideal, assuming it is prime. Otherwise, raise a ValueError.

3.3. Relative Number Field Ideals
The absolute ramification index is the power of this prime appearing in the factorization of the rational prime that this prime lies over.

Use relative_ramification_index to obtain the power of this prime occurring in the factorization of the prime ideal of the base field that this prime lies over.

EXAMPLES:

```
sage: PQ.<X> = QQ[]
sage: F.<a,b> = NumberFieldTower([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: I = K.ideal(3, c)
sage: I.absolute_ramification_index()
4
sage: I.smallest_integer()
3
sage: K.ideal(3) == I^4
True
```

`element_1_mod(other)`

Returns an element \( r \) in this ideal such that \( 1 - r \) is in other.

An error is raised if either ideal is not integral or if they are not coprime.

INPUT:

- `other` – another ideal of the same field, or generators of an ideal.

OUTPUT:

an element \( r \) of the ideal self such that \( 1 - r \) is in the ideal other.

EXAMPLES:

```
sage: K.<a,b> = NumberFieldTower([x^2 - 23, x^2 + 1])
sage: I = Ideal(2, (a - 3*b + 2)/2)
sage: J = K.ideal(a)
sage: z = I.element_1_mod(J)
sage: z
in I
True
sage: 1 - z
in J
True
```

`factor()`

Factor the ideal by factoring the corresponding ideal in the absolute number field.

EXAMPLES:

```
sage: K.<a,b> = QQ.extension([x^2 + 11, x^2 - 5])
sage: K.factor(5)
Fractional ideal (5, -1/4*b - 1/4)*a + 1/4*b - 3/4)^2
* (Fractional ideal (5, -1/4*b - 1/4)*a + 1/4*b - 7/4)^2
sage: K.ideal(5).factor()
(Fractional ideal (5, -1/4*b - 1/4)*a + 1/4*b - 3/4)^2
* (Fractional ideal (5, -1/4*b - 1/4)*a + 1/4*b - 7/4)^2
sage: K.ideal(5).prime_factors()
[Fractional ideal (5, -1/4*b - 1/4)*a + 1/4*b - 3/4],
```

(continues on next page)
Fractional ideal \((5, (-1/4*b - 1/4)*a + 1/4*b - 7/4)\]

```python
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3])
sage: FF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: I = K.ideal(c)
sage: P = K.ideal((b*a - b - 1)*c/2 + a - 1)
sage: Q = K.ideal((b*a - b - 1)*c/2)
sage: list(I.factor()) == [(P, 2), (Q, 1)]
True
sage: I == P^2*Q
True
sage: [p.is_prime() for p in [P, Q]]
[True, True]
```

### free_module()

Return this ideal as a \(\mathbb{Z}\)-submodule of the \(\mathbb{Q}\)-vector space corresponding to the ambient number field.

**EXAMPLES:**

```python
sage: K.<a, b> = NumberField([x^3 - x + 1, x^2 + 23])
sage: I = K.ideal(a*b - 1)
sage: I.free_module()
Free module of degree 6 and rank 6 over Integer Ring
User basis matrix:
...
sage: I.free_module().is_submodule(K.maximal_order().free_module())
True
```

### gens_reduced()

Return a small set of generators for this ideal. This will always return a single generator if one exists (i.e. if the ideal is principal), and otherwise two generators.

**EXAMPLES:**

```python
sage: K.<a, b> = NumberField([x^3 - x + 1, x^2 + 23])
sage: I = K.ideal(a*b - 1)
sage: I.gens_reduced()
(1/2*b*a + 1/2*b + 1,)
```

### ideal_below()

Compute the ideal of \(K\) below this ideal of \(L\).

**EXAMPLES:**

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^2+6)
sage: L. = K.extension(K['x'].gen()^4 + a)
sage: N = L.ideal(b)
sage: M = N.ideal_below(); M == K.ideal([-a])
True
sage: Np = L.ideal([L(t) for t in M.gens()])
```

(continues on next page)
This example concerns an inert ideal:

```python
sage: K = NumberField(x^4 + 6*x^2 + 24, 'a')
sage: K.factor(7)
Fractional ideal (7)
sage: K0, K0_into_K, _ = K.subfields(2)[0]
sage: K0
Number Field in a0 with defining polynomial x^2 - 6*x + 24
sage: L = K.relativize(K0_into_K, 'c'); L
Number Field in c with defining polynomial x^2 + a0 over its base field
sage: L.base_field() is K0
True
sage: L.ideal(7)
Fractional ideal (7)
```

This example concerns an ideal that splits in the quadratic field but each factor ideal remains inert in the extension:

```python
sage: len(K.factor(19))
2
sage: K0 = L.base_field(); a0 = K0.gen()
sage: len(K0.factor(19))
2
sage: w1 = -a0 + 1; P1 = K0.ideal([w1])
sage: P1.norm().factor(), P1.is_prime()
(19, True)
sage: L_into_K, K_into_L = L.structure()
sage: L.ideal(K_into_L(K0_into_K(w1))).ideal_below() == P1
True
```

The choice of embedding of quadratic field into quartic field matters:

```python
sage: rho, tau = K0.embeddings(K)
sage: L1 = K.relativize(rho, 'b')
sage: L2 = K.relativize(tau, 'b')
sage: L1_into_K, K_into_L1 = L1.structure()
sage: L2_into_K, K_into_L2 = L2.structure()
sage: a = K.gen()
sage: P = K.ideal([a^2 + 5])
sage: K_into_L1(P).ideal_below() == K.ideal([-a0 + 1])
```

(continues on next page)
It works when the base_field is itself a relative number field:

```sage
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: I = K.ideal(3, c)
sage: J = I.ideal_below()
sage: J == K.ideal(b)
True
sage: J.number_field() == F
True
```

Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):

```sage
sage: K.<a> = NumberField(2*x^2 - 1/3)
sage: L. = K.extension(5*x^2 + 1)
sage: P = L.primes_above(2)[0]
sage: P.ideal_below()
Fractional ideal (6*a + 2)
```

### integral_basis()

Return a basis for self as a \( \mathbb{Z} \)-module.

**EXAMPLES:**

```sage
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 3])
sage: I = K.ideal(17*b - 3*a)
sage: x = I.integral_basis(); x
[438, -b*a + 309, 219*a - 219*b, 156*a - 154*b]
```

The exact results are somewhat unpredictable, hence the \# random flag, but we can test that they are indeed a basis:

```sage
sage: V, _, phi = K.absolute_vector_space()
sage: V.span([phi(u) for u in x], ZZ) == I.free_module()
True
```

### integral_split()

Return a tuple \((I, d)\), where \(I\) is an integral ideal, and \(d\) is the smallest positive integer such that this ideal is equal to \(I/d\).

**EXAMPLES:**

```sage
sage: K.<a, b> = NumberFieldTower([x^2 - 23, x^2 + 1])
sage: I = K.ideal([a + b/3])
sage: J, d = I.integral_split()
```
sage: J.is_integral()
True
sage: J == d*I
True

**is_integral()**

Return True if this ideal is integral.

**EXAMPLES:**

```sage
sage: K.<a, b> = QQ.extension([x^2 + 11, x^2 - 5])
sage: I = K.ideal(7).prime_factors()[0]
sage: I.is_integral()
True
sage: (I/2).is_integral()
False
```

**is_prime()**

Return True if this ideal of a relative number field is prime.

**EXAMPLES:**

```sage
sage: K.<a, b> = NumberField([x^2 - 17, x^3 - 2])
sage: K.ideal(a + b).is_prime()
True
sage: K.ideal(13).is_prime()
False
```

**is_principal**(proof=None)

Return True if this ideal is principal. If so, set self.__reduced_generators, with length one.

**EXAMPLES:**

```sage
sage: K.<a, b> = NumberField([x^2 - 23, x^2 + 1])
sage: I = K.ideal([7, (-1/2*b - 3/2)*a + 3/2*b + 9/2])
sage: I.is_principal()
True
sage: I
random
Fractional ideal ((1/2*b + 1/2)*a - 3/2*b - 3/2)
```

**is_zero()**

Return True if this is the zero ideal.

**EXAMPLES:**

```sage
sage: K.<a, b> = NumberField([x^2 + 3, x^3 + 4])
sage: K.ideal(17).is_zero()
False
sage: K.ideal(0).is_zero()
True
```

**norm()**

The norm of a fractional ideal in a relative number field is deliberately unimplemented, so that a user cannot mistake the absolute norm for the relative norm, or vice versa.
 EXAMPLES:

```sage
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 2])
sage: K.ideal(2).norm()
```

Traceback (most recent call last):
...

NotImplementedError: For a fractional ideal in a relative number field you must use relative_norm or absolute_norm as appropriate

```python
pari_rhnf()
```

Return PARI’s representation of this relative ideal in Hermite normal form.

EXAMPLES:

```sage
sage: K.<a, b> = NumberField([x^2 + 23, x^2 - 7])
sage: I = K.ideal(2, (a + 2*b + 3)/2)
sage: I.pari_rhnf()
```

```
[[1, -2; 0, 1], [[2, 1; 0, 1], 1/2]]
```  

```python
ramification_index()
```

For ideals in relative number fields, ramification_index is deliberately not implemented in order to avoid ambiguity. Either relative_ramification_index() or absolute_ramification_index() should be used instead.

EXAMPLES:

```sage
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 2])
sage: K.ideal(2).ramification_index()
```

Traceback (most recent call last):
...

NotImplementedError: For an ideal in a relative number field you must use relative_ramification_index or absolute_ramification_index as appropriate

```python
relative_norm()
```

Compute the relative norm of this fractional ideal in a relative number field, returning an ideal in the base field.

EXAMPLES:

```sage
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^2+6)
sage: L. = K.extension(K['x'].gen()^4 + a)
sage: N = L.ideal(b).relative_norm(); N
```

Fractional ideal (-a)

```sage
sage: N.parent()
```

Monoid of ideals of Number Field in a with defining polynomial x^2 + 6

```sage
sage: N.ring()
```

Number Field in a with defining polynomial x^2 + 6

```sage
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: K.ideal(1).relative_norm()
```

Fractional ideal (1)

```sage
sage: K.ideal(13).relative_norm().relative_norm()
```

(continues on next page)
Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):

```python
sage: K.<a> = NumberField(2*x^2 - 1/3)
sage: L. = K.extension(5*x^2 + 1)
sage: P = L.primes_above(2)[0]
sage: P.relative_norm()
Fractional ideal (6*a + 2)
```

**relative_ramification_index()**

Return the relative ramification index of this fractional ideal, assuming it is prime. Otherwise, raise a ValueError.

The relative ramification index is the power of this prime appearing in the factorization of the prime ideal of the base field that this prime lies over.

Use absolute_ramification_index to obtain the power of this prime occurring in the factorization of the rational prime that this prime lies over.

**EXAMPLES:**

```python
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: I = K.ideal(c)
sage: I.relative_ramification_index()
2
sage: I.ideal_below() # random sign
 Fractional ideal (b)
sage: I.ideal_below() == K.ideal(b)
 True
sage: K.ideal(b) == I^2
True
```

**residue_class_degree()**

Return the residue class degree of this prime.

**EXAMPLES:**

```python
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: I = K.ideal(c)
```

**residues()**

Returns a iterator through a complete list of residues modulo this integral ideal.
An error is raised if this fractional ideal is not integral.

EXAMPLES:

```python
sage: K.<a, w> = NumberFieldTower([x^2 - 3, x^2 + x + 1])
sage: I = K.ideal(6, -w*a - w + 4)
sage: list(I.residues())[:5]
[(25/3*w - 1/3)*a + 22*w + 1,
 (16/3*w - 1/3)*a + 13*w,
 (7/3*w - 1/3)*a + 4*w - 1,
 (-2/3*w - 1/3)*a - 5*w - 2,
 (-11/3*w - 1/3)*a - 14*w - 3]
```

**smallest_integer()**

Return the smallest non-negative integer in \( I \cap \mathbb{Z} \), where \( I \) is this ideal. If \( I = 0 \), returns 0.

EXAMPLES:

```python
sage: K.<a, b> = NumberFieldTower([x^2 - 23, x^2 + 1])
sage: I = K.ideal([a + b])
sage: I.smallest_integer()
12
```

**valuation(\( p \))**

Return the valuation of this fractional ideal at \( p \).

**INPUT:**

* \( p \) – a prime ideal \( p \) of this relative number field.

**OUTPUT:**

(integer) The valuation of this fractional ideal at the prime \( p \). If \( p \) is not prime, raise a `ValueError`.

EXAMPLES:

```python
sage: K.<a, b> = NumberField([x^2 - 17, x^3 - 2])
sage: A = K.ideal(a + b)
sage: A.is_prime()
True
sage: (A*K.ideal(3)).valuation(A)
1
```

```python
sage: K.ideal(25).valuation(5)
Traceback (most recent call last):
 ...
ValueError: p (= Fractional ideal (5)) must be a prime
```

**sage.rings.number_field.number_field_ideal_rel.is_NumberFieldFractionalIdeal_rel(\( x \))**

Return True if \( x \) is a fractional ideal of a relative number field.

**EXAMPLES:**

```python
sage: from sage.rings.number_field.number_field_ideal_rel import is_
 NumberFieldFractionalIdeal_rel
sage: from sage.rings.number_field.number_field_ideal import is_
```
3.4 Class Groups of Number Fields

An element of a class group is stored as a pair consisting of both an explicit ideal in that ideal class, and a list of exponents giving that ideal class in terms of the generators of the parent class group. These can be accessed with the ideal() and exponents() methods respectively.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2 + 23)
sage: I = K.class_group().gen(); I
Fractional ideal class (2, 1/2*a - 1/2)
sage: I.ideal()
Fractional ideal (2, 1/2*a - 1/2)
sage: I.exponents()
(1,)
sage: I.ideal() * I.ideal()
Fractional ideal (4, 1/2*a + 3/2)
sage: (I.ideal() * I.ideal()).reduce_equiv()
Fractional ideal (2, 1/2*a + 1/2)
sage: J = I * I; J # class group multiplication is automatically reduced
Fractional ideal class (2, 1/2*a + 1/2)
sage: J.ideal()
Fractional ideal (2, 1/2*a + 1/2)
sage: J.exponents()
(2,)
```
sage: I * I.ideal()  # ideal classes coerce to their representative ideal
Fractional ideal (4, 1/2*a + 3/2)

sage: O = K.OK(); O
Maximal Order in Number Field in a with defining polynomial x^2 + 23

sage: O*(2, 1/2*a + 1/2)
Fractional ideal (2, 1/2*a + 1/2)

sage: (O*(2, 1/2*a + 1/2)).is_principal()
False

sage: (O*(2, 1/2*a + 1/2))^3
Fractional ideal (1/2*a - 3/2)


class sage.rings.number_field.class_group.ClassGroup(gens_orders, names, number_field, gens, proof=True)

Bases: AbelianGroupWithValues_class

The class group of a number field.

EXAMPLES:

```
sage: K.<a> = NumberField(x^2 + 23)
sage: G = K.class_group(); G
Class group of order 3 with structure C3 of Number Field in a with defining polynomial x^2 + 23
sage: G.category()
Category of finite enumerated commutative groups
```

Note the distinction between abstract generators, their ideal, and exponents:

```
sage: C = NumberField(x^2 + 120071, 'a').class_group(); C
Class group of order 500 with structure C250 x C2 of Number Field in a with defining polynomial x^2 + 120071
sage: c = C.gen(0)
sage: c # random
Fractional ideal class (5, 1/2*a + 3/2)
sage: c.ideal() # random
Fractional ideal (5, 1/2*a + 3/2)
sage: c.ideal() is c.value() # alias
True
sage: c.exponents()
(1, 0)
```

Element

alias of FractionalIdealClass
gens_ideals()

Return generating ideals for the (S-)class group.

This is an alias for gens_values().

OUTPUT:

A tuple of ideals, one for each abstract Abelian group generator.

EXAMPLES:
```python
sage: K.<a> = NumberField(x^4 + 23)
sage: K.class_group().gens_ideals() # random gens (platform dependent)
(Fractional ideal (2, 1/4*a^3 - 1/4*a^2 + 1/4*a - 1/4),)

sage: C = NumberField(x^2 + x + 23899, 'a').class_group(); C
Class group of order 68 with structure C34 x C2 of Number Field
 in a with defining polynomial x^2 + x + 23899
sage: C.gens()
(Fractional ideal class (7, a + 5), Fractional ideal class (5, a + 3))
sage: C.gens_ideals()
(Fractional ideal (7, a + 5), Fractional ideal (5, a + 3))
```

### number_field()

Return the number field that this (S-)class group is attached to.

**EXAMPLES:**

```python
sage: C = NumberField(x^2 + 23, 'w').class_group(); C
Class group of order 3 with structure C3 of Number Field in w with defining polynomial x^2 + 23
sage: C.number_field()
Number Field in w with defining polynomial x^2 + 23
```

### class sage.rings.number_field.class_group.FractionalIdealClass(parent, element, ideal=None)

Bases: AbelianGroupWithValuesElement

A fractional ideal class in a number field.

**EXAMPLES:**

```python
sage: G = NumberField(x^2 + 23, 'a').class_group(); G
Class group of order 3 with structure C3 of Number Field in a with defining polynomial x^2 + 23
sage: I = G.0; I
Fractional ideal class (2, 1/2*a - 1/2)
sage: I.ideal()
Fractional ideal (2, 1/2*a - 1/2)
```

```
gens()

Return generators for a representative ideal in this (S-)ideal class.

EXAMPLES:

```python
sage: K.<w>=QuadraticField(-23)
sage: OK = K.ring_of_integers()
sage: C = OK.class_group()
sage: P2a,P2b=[P for P,e in (2*OK).factor()]
sage: c = C(P2a); c
Fractional ideal class (2, 1/2*w - 1/2)
sage: c.gens()
(2, 1/2*w - 1/2)
```

ideal()

Return a representative ideal in this ideal class.

EXAMPLES:

```python
sage: K.<w>=QuadraticField(-23)
sage: OK=K.ring_of_integers()
sage: C=OK.class_group()
sage: P2a,P2b=[P for P,e in (2*OK).factor()]
sage: c=C(P2a); c
Fractional ideal class (2, 1/2*w - 1/2)
sage: c.ideal()
Fractional ideal (2, 1/2*w - 1/2)
```

inverse()

Return the multiplicative inverse of this ideal class.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^3 - 3*x + 8); G = K.class_group()
sage: G(2, a).inverse()
Fractional ideal class (2, a^2 + 2*a - 1)
sage: ~G(2, a)
Fractional ideal class (2, a^2 + 2*a - 1)
```

is_principal()

Returns True iff this ideal class is the trivial (principal) class.

EXAMPLES:

```python
sage: K.<w>=QuadraticField(-23)
sage: OK=K.ring_of_integers()
sage: C=OK.class_group()
sage: P2a,P2b=[P for P,e in (2*OK).factor()]
sage: c=C(P2a)
sage: c.is_principal()
False
sage: (c^2).is_principal()
False
sage: (c^3).is_principal()
True
```
reduce()

Return representative for this ideal class that has been reduced using PARI’s pari:idealred.

EXAMPLES:

```python
sage: k.<a> = NumberField(x^2 + 20072); G = k.class_group(); G
Class group of order 76 with structure C38 x C2
of Number Field in a with defining polynomial x^2 + 20072
sage: I = (G.0)^11; I
Fractional ideal class (33, 1/2*a + 8)
sage: J = G(I.ideal()^5); J
Fractional ideal class (39135393, 1/2*a + 13654253)
sage: J.reduce()
Fractional ideal class (73, 1/2*a + 47)
sage: J == I^5
True
```

representative_prime(norm_bound=1000)

Return a prime ideal in this ideal class.

INPUT:

norm_bound (positive integer) – upper bound on the norm of primes tested.

EXAMPLES:

```python
sage: K.<a> = NumberField(x^2+31)
sage: K.class_number()
3
sage: Cl = K.class_group()
sage: [c.representative_prime() for c in Cl]
[Fractional ideal (3),
 Fractional ideal (2, 1/2*a + 1/2),
 Fractional ideal (2, 1/2*a - 1/2)]
sage: K.<a> = NumberField(x^2+223)
sage: K.class_number()
7
sage: Cl = K.class_group()
sage: [c.representative_prime() for c in Cl]
[Fractional ideal (3),
 Fractional ideal (2, 1/2*a + 1/2),
 Fractional ideal (17, 1/2*a + 7/2),
 Fractional ideal (7, 1/2*a - 1/2),
 Fractional ideal (7, 1/2*a + 1/2),
 Fractional ideal (17, 1/2*a + 27/2),
 Fractional ideal (2, 1/2*a - 1/2)]
```

class sage.rings.number_field.class_group.SClassGroup(gens_orders, names, number_field, gens, S, proof=True)

Bases: ClassGroup

The S-class group of a number field.

EXAMPLES:
```python
sage: K.<a> = QuadraticField(-14)
sage: S = K.primes_above(2)
sage: K.S_class_group(S).gens()  # random gens (platform dependent)
(Fractional S-ideal class (3, a + 2),)
```

```python
sage: K.<a> = QuadraticField(-974)
sage: CS = K.S_class_group(K.primes_above(2)); CS
S-class group of order 18 with structure C6 x C3 of Number Field in a with defining polynomial x^2 + 974 with a = 31.20897306865447*I
sage: CS.gen(0)  # random
Fractional S-ideal class (3, a + 2)
sage: CS.gen(1)  # random
Fractional S-ideal class (31, a + 24)
```

Element

alias of `SFractionalIdealClass`

`s()`
Return the set (or rather tuple) of primes used to define this class group.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(-14)
sage: I = K.ideal(2,a)
sage: S = (I,)
sage: CS = K.S_class_group(S); CS
S-class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942*I
sage: T = tuple()
sage: CT = K.S_class_group(T); CT
S-class group of order 4 with structure C4 of Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942*I
sage: CS.S()
(Fractional ideal (2, a),)
sage: CT.S()
()```

**class** `sage.rings.number_field.class_group.SFractionalIdealClass(parent, element, ideal=None)`

Bases: `FractionalIdealClass`

An S-fractional ideal class in a number field for a tuple of primes S.

**EXAMPLES:**

```python
sage: K.<a> = QuadraticField(-14)
sage: I = K.ideal(2,a)
sage: S = (I,)
sage: CS = K.S_class_group(S)
sage: J = K.ideal(7,a)
sage: G = K.ideal(3,a+1)
sage: CS(I)
Trivial S-ideal class
sage: CS(J)
Trivial S-ideal class
```

(continues on next page)
sage: CS(G)
Fractional S-ideal class (3, a + 1)

3.5 Unit and S-unit groups of Number Fields

EXAMPLES:

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^4-8*x^2+36)
sage: UK = UnitGroup(K); UK
Unit group with structure C4 x Z of Number Field in a with defining polynomial x^4 - 8*x^2 + 36

The first generator is a primitive root of unity in the field:

sage: UK.gens()
(u0, u1)
sage: UK.gens_values()  # random
[-1/12*a^3 + 1/6*a, 1/24*a^3 + 1/4*a^2 - 1/12*a - 1]
sage: UK.gen(0).value()
1/12*a^3 - 1/6*a

sage: UK.gen(0) + K.one()  # coerce abstract generator into number field
1/12*a^3 - 1/6*a + 1
Units in the field can be converted into elements of the unit group represented as elements of an abstract multiplicative group:

```
sage: UK(1)
1
sage: UK(-1)
\(u_0^2 \)
sage: [UK(u) for u in (x^4-1).roots(K, multiplicities=False)]
[1, \(u_0^2 \), \(u_0 \), \(u_0^3 \)]
```

Exp and log functions provide maps between units as field elements and exponent vectors with respect to the generators:

```
sage: u = UK.exp([13,10]); u
\(-41/8*a^3 - 55/4*a^2 + 41/4*a + 55\)
sage: UK.log(u)
(1, 10)
sage: all(UK.log(u^k) == (0,k) for k in range(10))
True
```

S-unit groups may be constructed, where S is a set of primes:

```
sage: K.<a> = NumberField(x^5-2,'a')
sage: S = K.ideal(3).prime_factors(); S
[Fractional ideal (3, a + 1), Fractional ideal (3, a - 1)]
```

(continues on next page)
sage: SUK = UnitGroup(K,S=tuple(S)); SUK
S-unit group with structure C2 x Z x Z x Z x Z of Number Field in a with defining polynomial x^6 + 2 with S = (Fractional ideal (3, a + 1), Fractional ideal (3, a - 1))
sage: SUK.primes()
(Fractional ideal (3, a + 1), Fractional ideal (3, a - 1))
sage: SUK.rank()
4
sage: SUK.gens_values()
[-1, a^2 + 1, -a^5 - a^4 + a^2 + a + 1, a + 1, a - 1]
sage: u = 9*prod(SUK.gens_values()); u
-18*a^5 - 18*a^4 - 18*a^3 - 9*a^2 + 9*a + 27
sage: SUK.log(u)
(1, 3, 1, 7, 7)
sage: u == SUK.exp((1,3,1,7,7))
True
A relative number field example:
sage: L.<a, b> = NumberField([x^2 + x + 1, x^4 + 1])
sage: UL = L.unit_group(); UL
Unit group with structure C24 x Z x Z x Z of Number Field in a with defining polynomial x^2 + x + 1 over its base field
sage: UL.gens_values() # random
[-b^3*a - b^3, -b^3*a + b, (-b^3 - b^2 - b)*a - b - 1, (-b^3 - 1)*a - b^2 + b - 1]
sage: UL.zeta_order()
24
sage: UL.roots_of_unity()
[-b*a, -b^2*a - b^2, -b^3, -a, -b*a - b, -b^2, b^3*a, -a - 1, -b, b^2*a, b^3*a + b^3, -1, b*a, b^2*a + b^2, b^3, a, b*a + b, b^2, -b^3*a, a + 1, b, -b^2*a, -b^3*a - b^3, 1]
A relative extension example, which worked thanks to the code review by F.W.Clarke:
**sage:** PQ.<X> = QQ[]
**sage:** F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
**sage:** PF.<Y> = F[]
**sage:** K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
**sage:** K.unit_group()

Unit group with structure C₂ × Z × Z × Z × Z × Z × Z × Z of Number Field in c with defining polynomial Y^2 + (-2*b - 3)*a - 2*b - 6 over its base field

**AUTHOR:**

- John Cremona

**class** sage.rings.number_field.unit_group.UnitGroup(number_field, proof=True, S=None)

Bases: AbelianGroupWithValues_class

The unit group or an $S$-unit group of a number field.

**exp(exponents)**

Return unit with given exponents with respect to group generators.

**INPUT:**

- u – Any object from which an element of the unit group’s number field $K$ may be constructed; an error is raised if an element of $K$ cannot be constructed from u, or if the element constructed is not a unit.

**OUTPUT:** a list of integers giving the exponents of u with respect to the unit group’s basis.

**EXAMPLES:**

**sage:** x = polygen(QQ)
**sage:** K.<z> = CyclotomicField(13)
**sage:** UK = UnitGroup(K)
**sage:** [UK.log(u) for u in UK.gens()]

[(1, 0, 0, 0, 0, 0),
 (0, 1, 0, 0, 0, 0),
 (0, 0, 1, 0, 0, 0),
 (0, 0, 0, 1, 0, 0),
 (0, 0, 0, 0, 1, 0),
 (0, 0, 0, 0, 0, 1)]

**sage:** vec = [65,6,7,8,9,10]
**sage:** unit = UK.exp(vec); unit

8732*z^11 - 15496*z^10 - 51840*z^9 - 68804*z^8 - 51840*z^7 - 15496*z^6 + 8732*z^5 - 34216*z^3 - 64312*z^2 - 64312*z - 34216

**sage:** UK.log(unit)

(3, 1, 4, 1, 5, 9, 2)

An $S$-unit example:

**sage:** SUK = UnitGroup(K, S=2)
**sage:** v = (3,1,4,1,5,9,2)
**sage:** u = SUK.exp(v); u

8732*z^11 - 15496*z^10 - 51840*z^9 - 68804*z^8 - 51840*z^7 - 15496*z^6 + 8732*z^5 - 34216*z^3 - 64312*z^2 - 64312*z - 34216

**sage:** SUK.log(u)

(3, 1, 4, 1, 5, 9, 2)
sage: SUK.log(u) == v
True

**fundamental_units()**

Return generators for the free part of the unit group, as a list.

**EXAMPLES:**

```
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^4 + 23)
sage: U = UnitGroup(K)
sage: U.fundamental_units() # random
[1/4*a^3 - 7/4*a^2 + 17/4*a - 19/4]
```

**log(u)**

Return the exponents of the unit \( u \) with respect to group generators.

**INPUT:**

- \( u \) – Any object from which an element of the unit group’s number field \( K \) may be constructed; an error is raised if an element of \( K \) cannot be constructed from \( u \), or if the element constructed is not a unit.

**OUTPUT:** a list of integers giving the exponents of \( u \) with respect to the unit group’s basis.

**EXAMPLES:**

```
sage: x = polygen(QQ)
sage: K.<z> = CyclotomicField(13)
sage: UK = UnitGroup(K)
sage: [UK.log(u) for u in UK.gens()]
[(1, 0, 0, 0, 0, 0),
 (0, 1, 0, 0, 0, 0),
 (0, 0, 1, 0, 0, 0),
 (0, 0, 0, 1, 0, 0),
 (0, 0, 0, 0, 1, 0),
 (0, 0, 0, 0, 0, 1)]
sage: vec = [65,6,7,8,9,10]
sage: unit = UK.exp(vec); unit
-253576*z^11 + 7003*z^10 - 395532*z^9 - 35275*z^8 - 500326*z^7 - 35275*z^6 -
-395532*z^5 + 7003*z^4 - 253576*z^3 - 59925*z^2 - 59925*z
sage: UK.log(unit)
(13, 6, 7, 8, 9, 10)
sage: SUK = UnitGroup(K,S=2)
sage: v = (3,1,4,1,5,9,2)
sage: u = SUK.exp(v); u
8732*z^11 - 15496*z^10 - 51840*z^9 - 68804*z^8 - 51840*z^7 - 15496*z^6 + 8732*z^5 -
-34216*z^3 - 64312*z^2 - 64312*z - 34216
sage: SUK.log(u)
(3, 1, 4, 1, 5, 9, 2)
sage: SUK.log(u) == v
True
```
number_field()

Return the number field associated with this unit group.

EXAMPLES:

```
sage: U = UnitGroup(QuadraticField(-23, 'w')); U
Unit group with structure C2 of Number Field in w with defining polynomial x^2 + 23 with w = 4.795831523312720?*I
sage: U.number_field()
Number Field in w with defining polynomial x^2 + 23 with w = 4.795831523312720?*I
```

primes()

Return the (possibly empty) list of primes associated with this S-unit group.

EXAMPLES:

```
sage: K.<a> = QuadraticField(-23)
sage: S = tuple(K.ideal(3).prime_factors()); S
(Fractional ideal (3, 1/2*a - 1/2), Fractional ideal (3, 1/2*a + 1/2))
sage: U = UnitGroup(K,S=tuple(S)); U
S-unit group with structure C2 x Z x Z of Number Field in a with defining polynomial x^2 + 23 with a = 4.795831523312720?*I with S = (Fractional ideal (3, 1/2*a - 1/2), Fractional ideal (3, 1/2*a + 1/2))
sage: U.primes() == S
True
```

rank()

Return the rank of the unit group.

EXAMPLES:

```
sage: K.<z> = CyclotomicField(13)
sage: UnitGroup(K).rank()
5
sage: SUK = UnitGroup(K,S=2); SUK.rank()
6
```

roots_of_unity()

Return all the roots of unity in this unit group, primitive or not.

EXAMPLES:

```
sage: x = polygen(QQ)
sage: K. = NumberField(x^2+1)
sage: U = UnitGroup(K)
sage: zs = U.roots_of_unity(); zs
[b, -1, -b, 1]
sage: [z**U.zeta_order() for z in zs]
[1, 1, 1, 1]
```

torsion_generator()

Return a generator for the torsion part of the unit group.

EXAMPLES:
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^4 - x^2 + 4)
sage: U = UnitGroup(K)
sage: U.torsion_generator()
u0
sage: U.torsion_generator().value()  # random
-1/4*a^3 - 1/4*a + 1/2

\textbf{zeta}(n=2, all=False)

Return one, or a list of all, primitive n-th root of unity in this unit group.

**EXAMPLES:**

sage: x = polygen(QQ)
sage: K.<z> = NumberField(x^2 + 3)
sage: U = UnitGroup(K)
sage: U.zeta(1)
1
sage: U.zeta(2)
-1
sage: U.zeta(2, all=True)
[-1]
sage: U.zeta(3)
-1/2*z - 1/2
sage: U.zeta(3, all=True)
[-1/2*z - 1/2, 1/2*z - 1/2]
sage: U.zeta(4)
Traceback (most recent call last):
  ... ValueError: n (=4) does not divide order of generator

sage: r.<x> = QQ[]
sage: K.<b> = NumberField(x^2+1)
sage: U = UnitGroup(K)
sage: U.zeta(4)
b
sage: U.zeta(4, all=True)
[b, -b]
sage: U.zeta(3)
Traceback (most recent call last):
  ... ValueError: n (=3) does not divide order of generator
sage: U.zeta(3, all=True)
[]

\textbf{zeta_order()}

Returns the order of the torsion part of the unit group.

**EXAMPLES:**

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^4 - x^2 + 4)
sage: U = UnitGroup(K)
3.6 Solve S-unit equation $x + y = 1$

Inspired by work of Tzanakis–de Weger, Baker–Wustholz and Smart, we use the LLL methods in Sage to implement an algorithm that returns all S-unit solutions to the equation $x + y = 1$.

REFERENCES:

- [MR2016]
- [Sma1995]
- [Sma1998]
- [Yu2007]
- [AKMRVW]

AUTHORS:

- Alejandra Alvarado, Angelos Koutsianas, Beth Malmskog, Christopher Rasmussen, David Roe, Christelle Vincent, McKenzie West (2018-04-25 to 2018-11-09): original version

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import solve_S_unit_equation, eq_up_to_order
sage: K.<xi> = NumberField(x^2+x+1)
sage: S = K.primes_above(3)
sage: expected = [((0, 1), (4, 0), xi + 2, -xi - 1),
 ((1, -1), (0, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
 ((1, 0), (5, 0), xi + 1, -xi),
 ((2, 0), (5, 1), xi, -xi + 1)]
sage: sols = solve_S_unit_equation(K, S, 200)
sage: eq_up_to_order(sols, expected)
True
```

Todo:

- Use Cython to improve timings on the sieve

```python
sage.rings.number_field.S_unit_solver.K0_func(SUK, A, prec=106)
Return the constant K_0 from [AKMRVW].
```

INPUT:

- SUK – a group of $S$-units
- A – the set of the products of the coefficients of the $S$-unit equation with each root of unity of $K$
- prec – the precision of the real field (default: 106)

OUTPUT:

The constant $K_0$, a real number.
EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import K0_func
sage: K.<a> = NumberField(x^2 + 11)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(6)))
sage: v = K.primes_above(3)[0]
sage: K0_func(SUK, K.roots_of_unity())
8.84763586062272e12
```

REFERENCES:

- [Sma1995] p. 824
- [AKMRVW] arXiv 1903.00977

`sage.rings.number_field.S_unit_solver.K1_func(SUK, v, A, prec=106)`

Return the constant $K_1$ from Smart's TCDF paper, [Sma1995].

INPUT:

- $SUK$ – a group of $S$-units
- $v$ – an infinite place of $K$ (element of $SUK.number_field().places(prec)$)
- $A$ – a list of all products of each potential $a, b$ in the $S$-unit equation $ax + by + 1 = 0$ with each root of unity of $K$
- $prec$ – the precision of the real field (default: 106)

OUTPUT:

The constant $K_1$, a real number

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import K1_func
sage: K.<xi> = NumberField(x^3-3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]
sage: A = K.roots_of_unity()
sage: K1_func(SUK, phi_real, A)
4.483038368145048508970350163578e16
sage: K1_func(SUK, phi_complex, A)
2.073346189067285101984136298965e17
```

REFERENCES:

- [Sma1995] p. 825

`sage.rings.number_field.S_unit_solver.Omega_prime(dK, v, mu_list, prec=106)`

Return the constant Omega' appearing in [AKMRVW].

INPUT:

- $dK$ – the degree of a number field $K$
- $v$ – a finite place of $K$
• `mu_list` – a list of nonzero elements of $K$. It is assumed that the sublists $\mu[1:]$ is multiplicatively independent.
• `prec` – the precision of the real field

OUTPUT:
The constant $\Omega'$.  

EXAMPLES:
```python
sage: from sage.rings.number_field.S_unit_solver import mus, Omega_prime
sage: K.<a> = NumberField(x^3 - 3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(6)))
sage: v = K.primes_above(3)[0]
sage: mu_list = [-1] + mus(SUK, v)
sage: dK = K.degree()
sage: Omega_prime(dK, v, mu_list)
0.000487349679922696
```

REFERENCES:
• [AKMRVW] arXiv 1903.00977

sage.rings.number_field.S_unit_solver.Yu_C1_star($n$, $v$, `prec=106`)  
Return the constant $C_1^{\star}$ appearing in [Yu2007] (1.23).  

INPUT:
• $n$ – the number of generators of a multiplicative subgroup of a field $K$
• $v$ – a finite place of $K$ (a fractional ideal)
• `prec` – the precision of the real field

OUTPUT:
The constant $C_1^{\star}$ as a real number.  

EXAMPLES:
```python
sage: K.<a> = NumberField(x^2 + 5)
sage: v11 = K.primes_above(11)[0]
sage: from sage.rings.number_field.S_unit_solver import Yu_C1_star
sage: Yu_C1_star(1, v11)
2.15466776157451656114215527020e6
```

REFERENCES:
• [Yu2007] p.189,193

sage.rings.number_field.S_unit_solver.Yu_a1_kappa1_c1($p$, $dK$, $ep$)
Compute the constants $a(1)$, $kappa1$, and $c(1)$ of [Yu2007].

INPUT:
• $p$ – a rational prime number
• $dK$ – the absolute degree of some number field $K$
• $ep$ – the absolute ramification index of some prime $frak_p$ of $K$ lying above $p$
OUTPUT:
The constants $a(1)$, $\kappa_1$, and $c(1)$.

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import Yu_a1_kappa1_c1
sage: Yu_a1_kappa1_c1(5, 10, 3)
(16, 20, 319)
```

REFERENCES:

- [Yu2007]

```
sage.rings.number_field.S_unit_solver.Yu_bound(SUK, v, prec=106)
```

Return $c_8$ such that $c_8 \geq \exp(2)/\log(2)$ and $\text{ord}_p(\Theta - 1) < c_8 \log B$, where $\Theta = \prod_{j=1}^n \alpha_{b_j}$ and $B \geq \max_j |b_j|$ and $B \geq 3$.

INPUT:

- $\text{SU}_K$ – a group of $S$-units
- $v$ – a finite place of $K$ (a fractional ideal)
- $\text{prec}$ – the precision of the real field

OUTPUT:
The constant $c_8$ as a real number.

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import Yu_bound
sage: K.<a> = NumberField(x^2 + 11)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(6)))
sage: v = K.primes_above(3)[0]
sage: Yu_bound(SUK, v)
9.03984381033128e9
```

REFERENCES:

- [Sma1995] p. 825
- [AKMRVW] arXiv 1903.00977

```
sage.rings.number_field.S_unit_solver.Yu_condition_115(K, v)
```

Return True or False, as the number field $K$ and the finite place $v$ satisfy condition (1.15) of [Yu2007].

INPUT:

- $K$ – a number field
- $v$ – a finite place of $K$

OUTPUT:

True if (1.15) is satisfied, otherwise False.

EXAMPLES:
```python
sage: from sage.rings.number_field.S_unit_solver import Yu_condition_115
sage: K.<a> = NumberField(x^2 + 5)
sage: v2 = K.primes_above(2)[0]
sage: v11 = K.primes_above(11)[0]
sage: Yu_condition_115(K, v2)
False
sage: Yu_condition_115(K, v11)
True
```

REFERENCES:

- [Yu2007] p. 188

`sage.rings.number_field. S_unit_solver.Yu_modified_height(mu, n, v, prec=106)`

Return the value of $h(n)(mu)$ as appearing in [Yu2007] equation (1.21).

**INPUT:**

- $mu$ – an element of a field $K$
- $n$ – number of $mu_j$ to be considered in Yu's Theorem.
- $v$ – a place of $K$
- $prec$ – the precision of the real field

**OUTPUT:**

The value $h_p(mu)$.

**EXAMPLES:**

```python
sage: K.<a> = NumberField(x^2 + 5)
sage: v11 = K.primes_above(11)[0]
sage: from sage.rings.number_field.S_unit_solver import Yu_modified_height
sage: Yu_modified_height(a, 3, v11)
0.8047189562170501873003796666131
```

If $mu$ is a root of unity, the output is not zero. ::

```python
sage: Yu_modified_height(-1, 3, v11) 0.03425564675426243634374205111379
```

REFERENCES:

- [Yu2007] p. 192

`sage.rings.number_field. S_unit_solver.beta_k(betas_and_ns)`

Return a pair $[beta_k, |beta_k|_v]$, where $beta_k$ has the smallest nonzero valuation in absolute value of the list $betas_and_ns$.

**INPUT:**

- $betas_and_ns$ – a list of pairs $[beta, val_v(beta)]$ outputted from the function where $beta$ is an element of $SU阡fundamental_units()$

**OUTPUT:**

The pair $[beta_k, v(beta_k)]$, where $beta_k$ is an element of $K$ and $val_v(beta_k)$ is an integer

**EXAMPLES:**

3.6. Solve S-unit equation $x + y = 1$ 315
```python
sage: from sage.rings.number_field.S_unit_solver import beta_k
sage: K.<xi> = NumberField(x^3-3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: v_fin = tuple(K.primes_above(3))[0]

sage: betas = [[beta, beta.valuation(v_fin)] for beta in SUK.fundamental_units()]
sage: beta_k(betas)
[xi, 1]
```

REFERENCES:

• [Sma1995] pp. 824-825

`sage.rings.number_field.S_unit_solver.c11_func(SUK, v, A, prec=106)`

Return the constant $c_{11}$ from Smart's TCDF paper, [Sma1995].

INPUT:

• $SUK$ – a group of $S$-units
• $v$ – a place of $K$, finite (a fractional ideal) or infinite (element of $SUK.number_field().places(prec)$)
• $A$ – the set of the product of the coefficients of the $S$-unit equation with each root of unity of $K$
• $prec$ – the precision of the real field (default: 106)

OUTPUT:

The constant $c_{11}$, a real number

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import c11_func
sage: K.<xi> = NumberField(x^3-3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]

sage: A = K.roots_of_unity()

sage: c11_func(SUK, phi_real, A) # abs tol 1e-29
3.255848343572896153455615423662

sage: c11_func(SUK, phi_complex, A) # abs tol 1e-29
6.511696687145792306911230847323
```

REFERENCES:

• [Sma1995] p. 825

`sage.rings.number_field.S_unit_solver.c13_func(SUK, v, prec=106)`

Return the constant $c_{13}$ from Smart's TCDF paper, [Sma1995].

INPUT:

• $SUK$ – a group of $S$-units
• $v$ – an infinite place of $K$ (element of $SUK.number_field().places(prec)$)
• $prec$ – the precision of the real field (default: 106)
OUTPUT:

The constant $c_{13}$, as a real number

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import c13_func
sage: K.<xi> = NumberField(x^3-3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]

sage: c13_func(SUK, phi_real) # abs tol 1e-29
0.4257859134798034746197327286726

sage: c13_func(SUK, phi_complex) # abs tol 1e-29
0.2128929567399017373098663643363
```

It is an error to input a finite place.

```python
sage: phi_finite = K.primes_above(3)[0]
sage: c13_func(SUK, phi_finite)
Traceback (most recent call last):
...
TypeError: Place must be infinite
```

REFERENCES:

• [Sma1995] p. 825

```
sage.rings.number_field.S_unit_solver.c3_func(SUK, prec=106)
```

Return the constant $c_3$ from [AKMRVW].

INPUT:

• $SUK$ – a group of $S$-units
• $\text{prec}$ – the precision of the real field (default: 106)

OUTPUT:

The constant $c_3$, as a real number

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import c3_func
sage: K.<xi> = NumberField(x^3-3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))

sage: c3_func(SUK) # abs tol 1e-29
0.4257859134798034746197327286726
```

Note: The numerator should be as close to 1 as possible, especially as the rank of the $S$-units grows large

REFERENCES:

• [AKMRVW] arXiv 1903.00977

3.6. Solve $S$-unit equation $x + y = 1$
Return the constant $c_4$ from Smart's TCDF paper, [Sma1995].

**INPUT:**
- SUK – a group of $S$-units
- $v$ – a place of $K$, finite (a fractional ideal) or infinite (element of SUK.number_field().places(prec))
- $A$ – the set of the product of the coefficients of the $S$-unit equation with each root of unity of $K$
- prec – the precision of the real field (default: 106)

**OUTPUT:**
The constant $c_4$, as a real number

**EXAMPLES:**

```python
sage: from sage.rings.number_field.S_unit_solver import c4_func
sage: K.<xi> = NumberField(x^3-3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]
sage: v_fin = tuple(K.primes_above(3))[0]
sage: A = K.roots_of_unity()
sage: c4_func(SUK, phi_real, A)
1.000000000000000000000000000000
sage: c4_func(SUK, phi_complex, A)
1.000000000000000000000000000000
sage: c4_func(SUK, v_fin, A)
1.000000000000000000000000000000
```

**REFERENCES:**
- [Sma1995] p. 824

Given a residue field vector dictionary, removes some impossible keys and entries.

**INPUT:**
- rfv_dictionary – a dictionary whose keys are exponent vectors and whose values are residue field vectors

**OUTPUT:**
None. But it removes some keys from the input dictionary.

**Note:**
- The keys of a residue field vector dictionary are exponent vectors modulo $(q-1)$ for some prime $q$.
- The values are residue field vectors. It is known that the entries of a residue field vector which comes from a solution to the $S$-unit equation cannot have 1 in any entry.

**EXAMPLES:**
In this example, we use a truncated list generated when solving the \( S \)-unit equation in the case that \( K \) is defined by the polynomial \( x^2 + x + 1 \) and \( S \) consists of the primes above 3:

```sage
from sage.rings.number_field.S_unit_solver import clean_rfv_dict
sage: rfv_dict = {(1, 3): [3, 2], (3, 0): [6, 6], (5, 4): [3, 6], (2, 1): [4, 6],
 (5, 1): [3, 1], (2, 5): [1, 5], (0, 3): [1, 6]}
sage: len(rfv_dict)
7
sage: clean_rfv_dict(rfv_dict)
4
sage: rfv_dict
{(1, 3): [3, 2], (2, 1): [4, 6], (3, 0): [6, 6], (5, 4): [3, 6]}
```

\[ \text{sage.rings.number_field.S_unit_solver.clean_sfs(sfs_list)} \]

Given a list of \( S \)-unit equation solutions, remove trivial redundancies.

INPUT:

- \( sfs\_\text{list} \) – a list of solutions to the \( S \)-unit equation

OUTPUT:

A list of solutions to the \( S \)-unit equation

**Note:** The function looks for cases where \( x + y = 1 \) and \( y + x = 1 \) appear as separate solutions, and removes one.

**EXAMPLES:**

The function is not dependent on the number field and removes redundancies in any list.

```sage
from sage.rings.number_field.S_unit_solver import clean_sfs
sage: sols = [((1, 0, 0), (0, 0, 1), -1, 2), ((0, 0, 1), (1, 0, 0), 2, -1)]
sage: clean_sfs(sols)
[((1, 0, 0), (0, 0, 1), -1, 2)]
```

\[ \text{sage.rings.number_field.S_unit_solver.column_Log(SUK, iota, U, prec=106)} \]

Return the log vector of \( \iota \); i.e., the logs of all the valuations.

INPUT:

- \( SUK \) – a group of \( S \)-units
- \( \iota \) – an element of \( K \)
- \( U \) – a list of places (finite or infinite) of \( K \)
- \( \text{prec} \) – the precision of the real field (default: 106)

OUTPUT:

The log vector as a list of real numbers

**EXAMPLES:**

```sage
from sage.rings.number_field.S_unit_solver import column_Log
sage: K.<xi> = NumberField(x^3-3)
sage: S = tuple(K.primes_above(3))
```
sage: SUK = UnitGroup(K, S=S)
sage: phi_complex = K.places()[1]
sage: v_fin = S[0]
sage: U = [phi_complex, v_fin]
sage: column_Log(SUK, xi^2, U)  # abs tol 1e-29
[1.46481638489081296862966, -2.197224577336219382790473845]

REFERENCES:
• [Sma1995] p. 823

sage.rings.number_field.S_unit_solver.compatible_system_lift(compatible_system, split_primes_list)

Given a compatible system of exponent vectors and complementary exponent vectors, return a lift to the integers.

INPUT:
• compatible_system – a list of pairs \([v_0, w_0], [v_1, w_1], \ldots, [v_k, w_k]\) where \([v_i, w_i]\) is a pair of complementary exponent vectors modulo \(q_i - 1\), and all pairs are compatible.
• split_primes_list – a list of primes \([q_0, q_1, \ldots, q_k]\)

OUTPUT:
A pair of vectors \([v, w]\) satisfying:
1. \(v[0] = v_i[0]\) for all \(i\)
2. \(w[0] = w_i[0]\) for all \(i\)
3. \(v[j] = v_i[j]\) modulo \(q_i - 1\) for all \(i\) and all \(j > 0\)
4. \(w[j] = w_i[j]\) modulo \(q_i - 1\) for all \(i\) and all \(j > 0\)
5. every entry of \(v\) and \(w\) is bounded by \(L/2\) in absolute value, where \(L\) is the least common multiple of \(\{q_i - 1 : q_i \in \text{split_primes_list}\}\)

EXAMPLES:

sage: from sage.rings.number_field.S_unit_solver import compatible_system_lift
sage: split_primes_list = [3, 7]
sage: comp_sys = [[[0, 1, 0], (0, 1, 0)], [(0, 3, 4), (0, 1, 2)]

sage: compatible_system_lift(comp_sys, split_primes_list)
[(0, 3, -2), (0, 1, 2)]

sage.rings.number_field.S_unit_solver.compatible_systems(split_prime_list, complement_exp_vec_dict)

Given dictionaries of complement exponent vectors for various primes that split in \(K\), compute all possible compatible systems.

INPUT:
• split_prime_list – a list of rational primes that split completely in \(K\)
• complement_exp_vec_dict – a dictionary of dictionaries. The keys are primes from split_prime_list.

OUTPUT:
A list of compatible systems of exponent vectors.
Note:

• For any $q$ in split_prime_list, complement_exp_vec_dict[q] is a dictionary whose keys are exponent vectors modulo $q-1$ and whose values are lists of exponent vectors modulo $q-1$ which are complementary to the key.

• an item in system_list has the form $[[v0, w0], [v1, w1], \ldots, [vk, wk]]$, where:

- `$qj = \text{split_prime_list}[j]$`
- `$vj` and `$wj` are complementary exponent vectors modulo `$qj - 1$`
- the pairs are all simultaneously compatible.

• Let $H = \text{lcm}( qj - 1 : qj \in \text{split_primes_list} )$. Then for any compatible system, there is at most one pair of integer exponent vectors $[v, w]$ such that:

- every entry of `$v$` and `$w$` is bounded in absolute value by `$H$`
- for any `$qj`, `$v$` and `$vj` agree modulo `$qj - 1$`
- for any `$qj`, `$w$` and `$wj` agree modulo `$qj - 1$`

EXAMPLES:

sage: from sage.rings.number_field.S_unit_solver import compatible_systems
sage: split_primes_list = [3, 7]
sage: checking_dict = {3: {(0, 1, 0): [(1, 0, 0)]}, 7: {(0, 1, 0): [(1, 0, 0)]}}
sage: compatible_systems(split_primes_list, checking_dict)
[[[(0, 1, 0), (1, 0, 0)], [(0, 1, 0), (1, 0, 0)]]

sage.rings.number_field.S_unit_solver.compatible_vectors(a, m0, m1, g)

Given an exponent vector $a$ modulo $m0$, returns an iterator over the exponent vectors for the modulus $m1$, such that a lift to the lcm modulus exists.

INPUT:

• $a$ – an exponent vector for the modulus $m0$
• $m0$ – a positive integer (specifying the modulus for $a$)
• $m1$ – a positive integer (specifying the alternate modulus)
• $g$ – the gcd of $m0$ and $m1$

OUTPUT:

A list of exponent vectors modulo $m1$ which are compatible with $a$.

Note:

• Exponent vectors must agree exactly in the 0th position in order to be compatible.

EXAMPLES:

sage: from sage.rings.number_field.S_unit_solver import compatible_vectors
sage: a = (3, 1, 8, 1)
sage: list(compatible_vectors(a, 18, 12, gcd(18,12)))
[(3, 1, 2, 1), (3, 1, 2, 7), (continues on next page)
The order of the moduli matters.

```
sage: len(list(compatible_vectors(a, 18, 12, gcd(18,12))))
8
sage: len(list(compatible_vectors(a, 12, 18, gcd(18,12))))
27
```

`sage.rings.number_field.S_unit_solver.compatible_vectors_check(a0, a1, g, l)`

Given exponent vectors with respect to two moduli, determines if they are compatible.

**INPUT:**
- `a0` – an exponent vector modulo $m_0$
- `a1` – an exponent vector modulo $m_1$ (must have the same length as `a0`)
- `g` – the gcd of $m_0$ and $m_1$
- `l` – the length of `a0` and of `a1`

**OUTPUT:**
True if there is an integer exponent vector $a$ satisfying

\[
\begin{align*}
a[0] &= a_0[0] == a_1[0] \\
a[1:] &= a_0[1:] \mod m_0 \\
a[1:] &= a_1[1:] \mod m_1
\end{align*}
\]

and False otherwise.

**Note:**
- Exponent vectors must agree exactly in the first coordinate.
- If exponent vectors are different lengths, an error is raised.

**EXAMPLES:**

```
sage: from sage.rings.number_field.S_unit_solver import compatible_vectors_check
sage: a0 = (3, 1, 8, 11)
sage: a1 = (3, 5, 6, 13)
sage: a2 = (5, 5, 6, 13)
sage: compatible_vectors_check(a0, a1, gcd(12, 22), 4r)
True
sage: compatible_vectors_check(a0, a2, gcd(12, 22), 4r)
False
```
sage.rings.number_field.S_unit_solver.construct_comp_exp_vec(rfv_to_ev_dict, q)

Constructs a dictionary associating complement vectors to residue field vectors.

INPUT:

- rfv_to_ev_dict – a dictionary whose keys are residue field vectors and whose values are lists of exponent vectors with the associated residue field vector.
- q – the characteristic of the residue field

OUTPUT:

A dictionary whose typical key is an exponent vector $a$, and whose associated value is a list of complementary exponent vectors to $a$.

EXAMPLES:

In this example, we use the list generated when solving the $S$-unit equation in the case that $K$ is defined by the polynomial $x^2 + x + 1$ and $S$ consists of the primes above $3$

\[
\text{sage: from sage.rings.number_field.S_unit_solver import construct_comp_exp_vec} \\
\text{sage: rfv_to_ev_dict = \{(6, 6): [(3, 0)], (5, 6): [(1, 2)], (5, 4): [(5, 3)], (6, \rightarrow 2): [(5, 5)], (2, 5): [(0, 1)], (5, 5): [(3, 4)], (4, 4): [(0, 2)], (6, 3): [(1, \rightarrow 4)], (3, 6): [(5, 4)], (2, 2): [(0, 4)], (3, 5): [(1, 0)], (6, 4): [(1, 1)], (3, \rightarrow 2): [(1, 3)], (2, 6): [(4, 5)], (4, 5): [(4, 3)], (2, 3): [(2, 3)], (4, 2): [(4, \rightarrow 0)], (6, 5): [(5, 2)], (3, 3): [(3, 2)], (5, 3): [(5, 0)], (4, 6): [(2, 1)], (3, \rightarrow 4): [(3, 5)], (4, 3): [(0, 5)], (5, 2): [(3, 1)], (2, 4): [(2, 0)]\} \\
\text{sage: construct_comp_exp_vec(rfv_to_ev_dict, 7)}
\]

\[
\{(0, 1): [(1, 4)], \\
(0, 2): [(0, 2)], \\
(0, 4): [(3, 0)], \\
(0, 5): [(4, 3)], \\
(1, 0): [(5, 0)], \\
(1, 1): [(2, 0)], \\
(1, 2): [(1, 3)], \\
(1, 3): [(1, 2)], \\
(1, 4): [(0, 1)], \\
(2, 0): [(1, 1)], \\
(2, 1): [(4, 0)], \\
(2, 3): [(5, 2)], \\
(3, 0): [(0, 4)], \\
(3, 1): [(5, 4)], \\
(3, 2): [(3, 4)], \\
(3, 4): [(3, 2)], \\
(3, 5): [(5, 3)], \\
(4, 0): [(2, 1)], \\
(4, 3): [(0, 5)], \\
(4, 5): [(5, 5)], \\
(5, 0): [(1, 0)], \\
(5, 2): [(2, 3)], \\
(5, 3): [(3, 5)], \\
(5, 4): [(3, 1)], \\
(5, 5): [(4, 5)]\}
\]

sage.rings.number_field.S_unit_solver.construct_complicant_dictionaries(split_primes_list, SUK, verbose=False)

A function to construct the complement exponent vector dictionaries.
INPUT:

- **split_primes_list** – a list of rational primes which split completely in the number field $K$
- **SUK** – the $S$-unit group for a number field $K$
- **verbose** – a boolean to provide additional feedback (default: False)

OUTPUT:

A dictionary of dictionaries. The keys coincide with the primes in `split_primes_list`. For each $q$, `comp_exp_vec[q]` is a dictionary whose keys are exponent vectors modulo $q-1$, and whose values are lists of exponent vectors modulo $q-1$

If $w$ is an exponent vector in `comp_exp_vec[q][v]`, then the residue field vectors modulo $q$ for $v$ and $w$ sum to $[1,1,...,1]$

Note:

- The data of `comp_exp_vec` will later be lifted to $\mathbb{Z}$ to look for true $S$-Unit equation solutions.
- During construction, the various dictionaries are compared to each other several times to eliminate as many mod $q$ solutions as possible.
- The authors acknowledge a helpful discussion with Norman Danner which helped formulate this code.

EXAMPLES:

```sage
from sage.rings.number_field.S_unit_solver import construct_complement_dictionaries
def:
 f = x^2 + 5
sage: H = 10
sage: K.<xi> = NumberField(f)
sage: SUK = K.S_unit_group(S=K.primes_above(H))
sage: split_primes_list = [3, 7]
sage: actual = construct_complement_dictionaries(split_primes_list, SUK)
sage: expected = {3: {(0, 1, 0): [(1, 0, 0), (0, 1, 0)],
 : (1, 0, 0): [(1, 0, 0), (0, 1, 0)]},
 : 7: {(0, 1, 0): [(1, 0, 0), (1, 4, 4), (1, 2, 2)],
 : (0, 1, 2): [(0, 1, 2), (0, 3, 4), (0, 5, 0)],
 : (0, 3, 2): [(1, 0, 0), (1, 4, 4), (1, 2, 2)],
 : (0, 3, 4): [(0, 1, 2), (0, 3, 4), (0, 5, 0)],
 : (0, 5, 0): [(0, 1, 2), (0, 3, 4), (0, 5, 0)],
 : (0, 5, 4): [(1, 0, 0), (1, 4, 4), (1, 2, 2)],
 : (1, 0, 0): [(0, 5, 4), (0, 3, 2), (0, 1, 0)],
 : (1, 0, 2): [(1, 0, 4), (1, 4, 2), (1, 2, 0)],
 : (1, 0, 4): [(1, 2, 4), (1, 4, 0), (1, 0, 2)],
 : (1, 2, 0): [(1, 2, 4), (1, 4, 0), (1, 0, 2)],
 : (1, 2, 2): [(0, 5, 4), (0, 3, 2), (0, 1, 0)],
 : (1, 2, 4): [(1, 0, 4), (1, 4, 2), (1, 2, 0)],
 : (1, 4, 0): [(1, 2, 4), (1, 4, 0), (1, 0, 2)],
 : (1, 4, 2): [(1, 0, 4), (1, 4, 0), (1, 0, 2)]}
sage: all(set(actual[p][vec]) == set(expected[p][vec]) for p in [3,7] for vec in actual[p])
True
```
sage.rings.number_field.S_unit_solver.construct_rfv_to_ev(rfv_dictionary, q, d, verbose=False)

Return a reverse lookup dictionary, to find the exponent vectors associated to a given residue field vector.

INPUT:

- rfv_dictionary – a dictionary whose keys are exponent vectors and whose values are the associated residue field vectors
- q – a prime (assumed to split completely in the relevant number field)
- d – the number of primes in \( K \) above the rational prime \( q \)
- verbose – a boolean flag to indicate more detailed output is desired (default: False)

OUTPUT:

A dictionary \( P \) whose keys are residue field vectors and whose values are lists of all exponent vectors which correspond to the given residue field vector.

Note:

- For example, if \( rfv\_dictionary[ e_0 ] = r_0 \), then \( P[ r_0 ] \) is a list which contains \( e_0 \).
- During construction, some residue field vectors can be eliminated as coming from solutions to the \( S \)-unit equation. Such vectors are dropped from the keys of the dictionary \( P \).

EXAMPLES:

In this example, we use a truncated list generated when solving the \( S \)-unit equation in the case that \( K \) is defined by the polynomial \( x^2 + x + 1 \) and \( S \) consists of the primes above 3:

```python
sage: from sage.rings.number_field.S_unit_solver import construct_rfv_to_ev
sage: rfv_dict = {(1, 3): [3, 2], (3, 0): [6, 6], (5, 4): [3, 6], (2, 1): [4, 6],
 (4, 0): [4, 2], (1, 2): [5, 6]}

sage: construct_rfv_to_ev(rfv_dict, 7, 2, False)
{(3, 2): [(1, 3)], (4, 2): [(4, 0)], (4, 6): [(2, 1)], (5, 6): [(1, 2)]}
```

sage.rings.number_field.S_unit_solver.cxLLL_bound(SUK, A, prec=106)

Return the maximum of all of the \( K_v \)’s as they are LLL-optimized for each infinite place \( v \).

INPUT:

- SUK – a group of \( S \)-units
- A – a list of all products of each potential \( a, b \) in the \( S \)-unit equation \( ax + by + 1 = 0 \) with each root of unity of \( K \)
- prec – precision of real field (default: 106)

OUTPUT:

A bound for the exponents at the infinite place, as a real number

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import cxLLL_bound
sage: K.<xi> = NumberField(x^3-3)

sage: SUK = UnitGroup(K,S=tuple(K.primes_above(3)))

sage: A = K.roots_of_unity()
```

(continues on next page)
sage: cx_LLL_bound(SUK,A)  # long time
35

sage.rings.number_field.S_unit_solver.defining_polynomial_for_Kp(prime, prec=106)

INPUT:
- prime – a prime ideal of a number field \( K \)
- prec – a positive natural number (default: 106)

OUTPUT:
A polynomial with integer coefficients that is equivalent mod \( p^\text{prec} \) to a defining polynomial for the completion of \( K \) associated to the specified prime.

Note: \( K \) has to be an absolute extension

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import defining_polynomial_for_Kp
sage: K.<a> = QuadraticField(2)
sage: p2 = K.prime_above(7); p2
Fractional ideal (-2*a + 1)
sage: defining_polynomial_for_Kp(p2, 10)
x + 266983762
sage: K.<a> = QuadraticField(-6)
sage: p2 = K.prime_above(2); p2
Fractional ideal (2, a)
sage: defining_polynomial_for_Kp(p2, 100)
x^2 + 6
sage: p5 = K.prime_above(5); p5
Fractional ideal (5, a + 2)
sage: defining_polynomial_for_Kp(p5, 100)
x + 34083321919581333851149426133518341009642854963040728906961917542037
```

sage.rings.number_field.S_unit_solver.drop_vector(ev, p, q, complement_ev_dict)

Determines if the exponent vector, \( ev \), may be removed from the complement dictionary during construction. This will occur if \( ev \) is not compatible with an exponent vector mod \( q - 1 \).

INPUT:
- \( ev \) – an exponent vector modulo \( p - 1 \)
- \( p \) – the prime such that \( ev \) is an exponent vector modulo \( p - 1 \)
- \( q \) – a prime, distinct from \( p \), that is a key in the \( \text{complement_ev_dict} \)
  - \( \text{complement_ev_dict} \) – a dictionary of dictionaries, whose keys are primes \( \text{complement_ev_dict}[q] \)
    is a dictionary whose keys are exponent vectors modulo \( q - 1 \) and whose values are lists of complementary exponent vectors modulo \( q - 1 \)

OUTPUT:
Returns True if \( ev \) may be dropped from the complement exponent vector dictionary, and False if not.
Note:

- If ev is not compatible with any of the vectors modulo q⁻¹, then it can no longer correspond to a solution of the S-unit equation. It returns True to indicate that it should be removed.

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import drop_vector
dsage: drop_vector((1, 2, 5), 7, 11, {11: {(1, 1, 3): [(1, 1, 3), (2, 3, 4)]}})
True
```

```python
sage: P={3: {(1, 0, 0): [(1, 0, 0), (0, 1, 0)], (0, 1, 0): [(1, 0, 0), (0, 1, 0)]}, 7: {(0, 3, 4): [(0, 1, 2), (0, 3, 4), (0, 5, 0)], (1, 2, 4): [(1, 0, 4), (1, 4, -2), (1, 2, 0)], (0, 1, 2): [(0, 1, 2), (0, 3, 4), (0, 5, 0)], (0, 5, 4): [(0, 1, 4), (1, 0, -2), (0, 3, 4), (0, 5, 0)], (1, 2, 4): [(1, 2, 4), (1, 4, 0), (1, 0, 2)], (1, 0, -2): [(1, 2, 4), (1, 4, 0), (1, 0, 2)], (0, 1, 0): [(0, 5, 4), (0, 3, 2), (0, 1, 0)], (0, 5, 0): [(0, 1, 4), (1, 0, -2), (0, 3, 4), (0, 5, 0)]}
sage: drop_vector((0,1,0),3,7,P)
False
```

```python
sage: from sage.rings.number_field.S_unit_solver import embedding_to_Kp
dotage: embedding_to_Kp(a-3, p, 15)
-20542890112375827
sage: K.<a> = NumberField(x^4-2)
sage: p = K.prime_above(7); p
Fractional ideal (-a^2 + a - 1)
```

3.6. Solve S-unit equation \( x + y = 1 \)
```python
sage: embedding_to_Kp(a^3 - 3, p, 15)
-126198511894917459462968282807202378
```

```python
def eq_up_to_order(A, B):
 if A and B are lists of four-tuples \([a0, a1, a2, a3]\) and \([b0, b1, b2, b3]\), checks that there is some reordering so that either \(ai = bi\) for all \(i\) or \(a0 == b1, a1 == b0, a2 == b3, a3 == b2\).
 The entries must be hashable.

 EXAMPLES:
    ```python
    sage: from sage.rings.number_field.S_unit_solver import eq_up_to_order
    sage: L = [(1,2,3,4),(5,6,7,8)]
    sage: L1 = [L[1],L[0]]
    sage: L2 = [(2,1,4,3),(6,5,8,7)]
    sage: eq_up_to_order(L, L1)
    True
    sage: eq_up_to_order(L, L2)
    True
    sage: eq_up_to_order(L, [(1,2,4,3),(5,6,8,7)])
    False
    ```
```

```python
def log_p(a, prime, prec):
 INPUT:
 • \(a\) – an element of a number field \(K\)
 • \(prime\) – a prime ideal of the number field \(K\)
 • \(prec\) – a positive integer
 OUTPUT:
 An element of \(K\) which is congruent to the prime-adic logarithm of \(a\) with respect to \(prime\) modulo \(p^\text{prec}\), where \(p\) is the rational prime below \(prime\).

 Note: Here we take into account the other primes in \(K\) above \(p\) in order to get coefficients with small values.

 EXAMPLES:
    ```python
    sage: from sage.rings.number_field.S_unit_solver import log_p
    sage: K.<a> = NumberField(x^2 + 14)
    sage: p1 = K.primes_above(3)[0]
    sage: log_p(a + 2, p1, 20)
    8255385638/3*a + 15567609440/3
    sage: K.<a> = NumberField(x^4 + 14)
    sage: p1 = K.primes_above(5)[0]
    sage: log_p(1/(a^2 - 4), p1, 30)
    -42392683853751591352946/25*a^3 - 113099841599709611260219/25*a^2 - 8496494127064033599196/5*a - 1877405261950122690432/25
    ```
```
sage.rings.number_field.S_unit_solver.log_p_series_part\((a, \text{prime}, \text{prec})\)

**INPUT:**
- \(a\) – an element of a number field \(K\)
- \(\text{prime}\) – a prime ideal of the number field \(K\)
- \(\text{prec}\) – a positive integer

**OUTPUT:**
The prime-adic logarithm of \(a\) and accuracy \(p^{\text{prec}}\), where \(p\) is the rational prime below \(\text{prime}\)

**ALGORITHM:**
The algorithm is based on the algorithm on page 30 of [Sma1998]

**EXAMPLES:**

```
sage: from sage.rings.number_field.S_unit_solver import log_p_series_part
sage: K.<a> = NumberField(x^2-5)
sage: p1 = K.primes_above(3)[0]
sage: p1
Fractional ideal (3)
sage: log_p_series_part(a^2-a+1, p1, 30)
120042736778562*a + 263389019530092
```

```
sage: K.<a> = NumberField(x^4+14)
sage: p1 = K.primes_above(5)[0]
sage: p1
Fractional ideal (5, a + 1)
sage: log_p_series_part(1/(a^2-4), p1, 30)
56289408832645853692246880484598965434987932048396542150195486006212219509151065765558119252366183669
˓→1846595723557147156151786152499366668756727440113024070204558092805940380562238525689517184624749
˓→2 + ...
˓→23514324136920222540664382665771001835148280044159050404373266020049469306359422331465288173254162...
˓→1846595723557147156151786152499366668756727440113024070204558092805940380562238525689517184624749
```

```
sage: K.<a> = NumberField(x^2-4)
sage: p1, p2 = K.primes_above(2)[0:2]
sage: minimal_vector(p1, p2)

528
```

sage.rings.number_field.S_unit_solver.minimal_vector\((A, y, \text{prec}=106)\)

**INPUT:**
- \(A\) : a square \(n\) by \(n\) non-singular integer matrix whose rows generate a lattice \(\mathcal{L}\)
- \(y\) : a row (1 by \(n\)) vector with integer coordinates
- \(\text{prec}\) : precision of real field (default: 106)

**OUTPUT:**
A lower bound for the square of

\[
\ell(\mathcal{L}, \vec{y}) = \begin{cases} 
\min_{\vec{x} \in \mathcal{L}} \|\vec{x} - \vec{y}\|, & \vec{y} \notin \mathcal{L} \\
\min_{0 \neq \vec{x} \in \mathcal{L}} \|\vec{x}\|, & \vec{y} \in \mathcal{L}
\end{cases}
\]

**ALGORITHM:**
The algorithm is based on V.9 and V.10 of [Sma1998]

**EXAMPLES:**

3.6. Solve S-unit equation \(x + y = 1\)
sage: from sage.rings.number_field.S_unit_solver import minimal_vector
sage: B = matrix(ZZ, 2, [1,1,1,0])
sage: y = vector(ZZ, [2,1])
sage: minimal_vector(B, y)
1/2

sage: B = random_matrix(ZZ, 3)
sage: while not B.determinant():
    ....: B = random_matrix(ZZ, 3)
sage: B # random
[-2 -1 -1]
[ 1 1 -2]
[ 6 1 -1]
sage: y = vector([1, 2, 100])
sage: minimal_vector(B, y) # random
15/28

sage.rings.number_field.S_unit_solver.mus(SUK, v)
Return a list \([\mu]\), for \(\mu\) defined in \([AKMRVW]\).

INPUT:

- SUK – a group of \(S\)-units
- \(v\) – a finite place of \(K\)

OUTPUT:
A list \([\text{mus}]\) where each \(\mu\) is an element of \(K\)

EXAMPLES:

sage: from sage.rings.number_field.S_unit_solver import mus
sage: K.<xi> = NumberField(x^3-3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: v_fin = tuple(K.primes_above(3))[0]
sage: mus(SUK, v_fin)
[xi^2 - 2]

REFERENCES:
- [AKMRVW]

sage.rings.number_field.S_unit_solver.p_adicLLL_bound(SUK, A, prec=106)
Return the maximum of all of the \(K_0\)'s as they are LLL-optimized for each finite place \(v\).

INPUT:
- SUK – a group of \(S\)-units
- \(A\) – a list of all products of each potential a, b in the \(S\)-unit equation \(ax + by + 1 = 0\) with each root of unity of \(K\)
- prec – precision for p-adic LLL calculations (default: 106)

OUTPUT:
A bound for the max of exponents in the case that extremal place is finite (see [Sma1995]) as a real number
EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import p_adicLLL_bound
sage: K.<xi> = NumberField(x^3-3)
sage: SUK = UnitGroup(K,S=tuple(K.primes_above(3)))
sage: A = SUK.roots_of_unity()
sage: prec = 100
sage: p_adicLLL_bound(SUK,A, prec)
89
```

```python
sage.rings.number_field.S_unit_solver.p_adicLLL_bound_one_prime(prime, B0, M, M_logp, m0, c3, prec=106)
```

**INPUT:**

- `prime` – a prime ideal of a number field $K$
- `B0` – the initial bound
- `M` – a list of elements of $K$, the $\mu_i$’s from Lemma IX.3 of [Sma1998]
- `M_logp` – the $p$-adic logarithm of elements in $M$
- `m0` – an element of $K$, this is $\mu_0$ from Lemma IX.3 of [Sma1998]
- `c3` – a positive real constant
- `prec` – the precision of the calculations (default: 106), i.e., values are known to $O(p^\text{prec})$

**OUTPUT:**

A pair consisting of:

1. a new upper bound, an integer
2. a boolean value, `True` if we have to increase precision, otherwise `False`

**Note:** The constant $c_5$ is the constant $c_5$ at the page 89 of [Sma1998] which is equal to the constant $c_{10}$ at the page 139 of [Sma1995]. In this function, the $c_i$ constants are in line with [Sma1998], but generally differ from the constants in [Sma1995] and other parts of this code.

**EXAMPLES:**

This example indicates a case where we must increase precision:

```python
sage: from sage.rings.number_field.S_unit_solver import p_adicLLL_bound_one_prime
sage: prec = 50
sage: K.<a> = NumberField(x^3-3)
sage: S = tuple(K.primes_above(3))
sage: SUK = UnitGroup(K, S=S)
sage: v = S[0]
sage: A = SUK.roots_of_unity()
sage: K0_old = 9.4755766731093e17
sage: Mus = [a^2 - 2]
sage: Log_p_Mus = [185056824593551109742400*a^2 + 1389583284398773572269676*a +
→717897987691852588770249]
sage: mu0 = K(-1)
sage: c3_value = 0.42578591347980
sage: m0_Kv_new, increase_precision = p_adicLLL_bound_one_prime(v, K0_old, Mus, µ0,
→c3_value, prec=106)
```

(continues on next page)
And now we increase the precision to make it all work:

```
sage: prec = 106
sage: K0_old = 9.47557667310927543282057946930e17
sage: Log_p_Mus = [1029563604390986737334686387890424583658678662701816*a^2 +...
 661450700156368458475507502666889190195530948403866*a]
sage: c3_value = 0.4257859134798034746197327286726
sage: m0_Kv_new, increase_precision = p_adic_LLL_bound_one_prime(v, K0_old, Mus, ...
 Log_p_Mus, mu0, c3_value, prec)
sage: m0_Kv_new
476
sage: increase_precision
False
```

```
sage.rings.number_field.S_unit_solver.possible_mu0s(SUK, v)

Return a list $[\mu_0]$ of all possible μ_0 values defined in [AKMRVW].

INPUT:

- SUK – a group of S-units
- v – a finite place of K

OUTPUT:

A list $[\mu_0s]$ where each μ_0 is an element of K

EXAMPLES:

```sage
from sage.rings.number_field.S_unit_solver import possible_mu0s
sage: K.<xi> = NumberField(x^3-3)
sage: S = tuple(K.primes_above(3))
sage: SUK = UnitGroup(K, S=S)
sage: v_fin = S[0]
sage: possible_mu0s(SUK, v_fin)
[-1, 1]
```

Note: n_0 is the valuation of the coefficient α_d of the S-unit equation such that $|\alpha_d \tau_d|_v = 1$ We have set $n_0 = 0$ here since the coefficients are roots of unity α_0 is not defined in the paper, we set it to be 1

REFERENCES:

- [AKMRVW]
- [Sma1995] pp. 824-825, but we modify the definition of σ (σ_{tilde}) to make it easier to code

```
sage.rings.number_field.S_unit_solver.reduction_step_complex_case(place, B0, list_of_gens,
torsion_gen, c13)
```

INPUT:
• place – (ring morphism) an infinite place of a number field \(K \)
• \(B_0 \) – the initial bound
• list_of_gens – a set of generators of the free part of the group
• torsion_gen – an element of the torsion part of the group
• \(c_{13} \) – a positive real number

OUTPUT:
A tuple consisting of:
1. a new upper bound, an integer
2. a boolean value, True if we have to increase precision, otherwise False

Note: The constant \(c_{13} \) in Section 5, [AKMRVW] This function does handle both real and non-real infinite places.

REFERENCES:
See [Sma1998], [AKMRVW].

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import reduction_step_complex_case
sage: K.<a> = NumberField([x^3-2])
sage: SK = sum([K.primes_above(p) for p in [2,3,5]],[])
sage: G = [g for g in K.S_unit_group(S=SK).gens_values() if g.multiplicative_order()==Infinity]
sage: p1 = K.places(prec=100)[1]
sage: reduction_step_complex_case(p1, 10^5, G, -1, 2)
(18, False)
```

```
sage.rings.number_field.S_unit_solver.sieve_below_bound(K, S, bound=10, bump=10, split_primes_list=[], verbose=False)
```

Return all solutions to the S-unit equation \(x + y = 1 \) over \(K \) with exponents below the given bound.

INPUT:
• \(K \) – a number field (an absolute extension of the rationals)
• \(S \) – a list of finite primes of \(K \)
• bound – a positive integer upper bound for exponents, solutions with exponents having absolute value below this bound will be found (default: 10)
• bump – a positive integer by which the minimum LCM will be increased if not enough split primes are found in sieving step (default: 10)
• split_primes_list – a list of rational primes that split completely in the extension \(K/Q \), used for sieving. For complete list of solutions should have lcm of \((p_i-1)\) for primes \(p_i \) greater than bound (default: [])
• verbose – an optional parameter allowing the user to print information during the sieving process (default: False)

OUTPUT:
A list of tuples \([(A_1, B_1, x_1, y_1), (A_2, B_2, x_2, y_2), \ldots (A_n, B_n, x_n, y_n)]\) such that:
1. The first two entries are tuples $A_i = (a_0, a_1, \ldots, a_t)$ and $B_i = (b_0, b_1, \ldots, b_t)$ of exponents.

2. The last two entries are S-units x_i and y_i in K with $x_i + y_i = 1$.

3. If the default generators for the S-units of K are $(\rho_0, \rho_1, \ldots, \rho_t)$, then these satisfy $x_i = \prod(\rho_i)^{(a_i)}$ and $y_i = \prod(\rho_i)^{(b_i)}$.

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import sieve_below_bound, eq_up_to_order
sage: K.<xi> = NumberField(x^2+x+1)
sage: SUK = UnitGroup(K,S=tuple(K.primes_above(3)))
sage: S = SUK.primes()
sage: sols = sieve_below_bound(K, S, 10)
sage: expected = [(1, -1), (0, -1), 1/3*xi + 2/3, -1/3*xi + 1/3],
             [(0, 1), (4, 0), xi + 2, -xi - 1],
             [(2, 0), (5, 1), xi, -xi + 1],
             [(1, 0), (5, 0), xi + 1, -xi]]
sage: eq_up_to_order(sols, expected)
True
```

`sage.rings.number_field.S_unit_solver.sieve_ordering(SUK, q)`

Returns ordered data for running sieve on the primes in $S K$ over the rational prime q.

INPUT:

- SUK – the S-unit group of a number field K
- q – a rational prime number which splits completely in K

OUTPUT:

A list of tuples, $[\text{ideals_over_q}, \text{residue_fields}, \text{rho_images}, \text{product_rho_orders}]$, where

1. ideals_over_q is a list of the $d = [K : \mathbb{Q}]$ ideals in K over q
2. $\text{residue_fields}[i]$ is the residue field of $\text{ideals_over_q}[i]$
3. $\text{rho_images}[i]$ is a list of the reductions of the generators in of the S-unit group, modulo $\text{ideals_over_q}[i]$
4. $\text{product_rho_orders}[i]$ is the product of the multiplicative orders of the elements in $\text{rho_images}[i]$

Note:

- The list ideals_over_q is sorted so that the product of orders is smallest for $\text{ideals_over_q}[0]$, as this will make the later sieving steps more efficient.
- The primes of S must not lie over q.

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import sieve_ordering
sage: K.<xi> = NumberField(x^3 - 3*x + 1)
sage: SUK = K.S_unit_group(S=3)
sage: sieve_data = list(sieve_ordering(SUK, 19))
(continues on next page)
```

(continued from previous page)

\begin{verbatim}
sage: sieve_data[0]
(Fractional ideal (-2*xi^2 + 3),
 Fractional ideal (-xi + 3),
 Fractional ideal (2*xi + 1))
sage: sieve_data[1]
(Residue field of Fractional ideal (-2*xi^2 + 3),
 Residue field of Fractional ideal (-xi + 3),
 Residue field of Fractional ideal (2*xi + 1))
sage: sieve_data[2]
([18, 12, 16, 8], [18, 16, 10, 4], [18, 10, 12, 10])
sage: sieve_data[3]
(648, 2916, 3888)
\end{verbatim}

sage.rings.number_field.S_unit_solver.solutions_from_systems(SUK, bound, cs_list, split_primes_list)

Lifts compatible systems to the integers and returns the S-unit equation solutions the lifts yield.

INPUT:

- SUK – the group of S-units where we search for solutions
- bound – a bound for the entries of all entries of all lifts
- cs_list – a list of compatible systems of exponent vectors modulo $q - 1$ for various primes q
- split_primes_list – a list of primes giving the moduli of the exponent vectors in cs_list

OUTPUT:

A list of solutions to the S-unit equation. Each solution is a list:

1. an exponent vector over the integers, ev
2. an exponent vector over the integers, cv
3. the S-unit corresponding to ev, iota_exp
4. the S-unit corresponding to cv, iota_comp

Note:

- Every entry of ev is less than or equal to bound in absolute value
- every entry of cv is less than or equal to bound in absolute value
- iota_exp + iota_comp == 1

EXAMPLES:

Given a single compatible system, a solution can be found.

\begin{verbatim}
sage: from sage.rings.number_field.S_unit_solver import solutions_from_systems
sage: K.<xi> = NumberField(x^2-15)
sage: SUK = K.S_unit_group(S=K.primes_above(2))
\end{verbatim}

3.6. Solve S-unit equation $x + y = 1$
sage: split_primes_list = [7, 17]
sage: a_compatible_system = [[[0, 0, 5], [0, 0, 5]], [[0, 0, 15], [0, 0, 15]]]
sage: solutions_from_systems(SUK, 20, a_compatible_system, split_primes_list)

[[((0, 0, -1), (0, 0, -1), 1/2, 1/2)]]

sage.rings.number_field.S_unit_solver.solve_S_unit_equation(K, S, prec=106,
include_exponents=True,
include_bound=False, proof=None,
verbose=False)

Return all solutions to the S-unit equation $x + y = 1$ over K.

INPUT:

• K – a number field (an absolute extension of the rationals)
• S – a list of finite primes of K
• prec – precision used for computations in real, complex, and p-adic fields (default: 106)
• include_exponents – whether to include the exponent vectors in the returned value (default: True).
• include_bound – whether to return the final computed bound (default: False)
• verbose – whether to print information during the sieving step (default: False)

OUTPUT:

A list of tuples $[(A_1, B_1, x_1, y_1), (A_2, B_2, x_2, y_2), \ldots, (A_n, B_n, x_n, y_n)]$ such that:

1. The first two entries are tuples $A_i = (a_0, a_1, \ldots, a_t)$ and $B_i = (b_0, b_1, \ldots, b_t)$ of exponents. These will be omitted if include_exponents is False.
2. The last two entries are S-units x_i and y_i in K with $x_i + y_i = 1$.
3. If the default generators for the S-units of K are $(\rho_0, \rho_1, \ldots, \rho_t)$, then these satisfy $x_i = \prod(\rho_i)^{(a_i)}$ and $y_i = \prod(\rho_i)^{(b_i)}$.

If include_bound, will return a pair $(sols, bound)$ where sols is as above and bound is the bound used for the entries in the exponent vectors.

EXAMPLES:

sage: from sage.rings.number_field.S_unit_solver import solve_S_unit_equation, eq_up_to_order
sage: K.<xi> = NumberField(x^2+x+1)
sage: S = K.primes_above(3)
sage: sols = solve_S_unit_equation(K, S, 200)
sage: expected = [(0, 1), (4, 0), xi + 2, -xi - 1],
(...: (0, 0, 5), [0, 0, 5]], [[0, 0, 15], [0, 0, 15]]]
sage: sols = solve_S_unit_equation(K, S, 200)
sage: expected = [(0, 1), (4, 0), xi + 2, -xi - 1],
(...: (0, 0, 5), [0, 0, 5]], [[0, 0, 15], [0, 0, 15]]]
sage: sols = solve_S_unit_equation(K, S, 200)
sage: expected = [(0, 1), (4, 0), xi + 2, -xi - 1],
(...: (0, 0, 5), [0, 0, 5]], [[0, 0, 15], [0, 0, 15]]]
sage: sols = solve_S_unit_equation(K, S, 200)
sage: expected = [(0, 1), (4, 0), xi + 2, -xi - 1],
(...: (0, 0, 5), [0, 0, 5]], [[0, 0, 15], [0, 0, 15]]]
sage: sols = solve_S_unit_equation(K, S, 200)
sage: expected = [(0, 1), (4, 0), xi + 2, -xi - 1],
(...: (0, 0, 5), [0, 0, 5]], [[0, 0, 15], [0, 0, 15]]]
sage: sols = solve_S_unit_equation(K, S, 200)
sage: expected = [(0, 1), (4, 0), xi + 2, -xi - 1],
(...: (0, 0, 5), [0, 0, 5]], [[0, 0, 15], [0, 0, 15]]]
sage: sols = solve_S_unit_equation(K, S, 200)
sage: expected = [(0, 1), (4, 0), xi + 2, -xi - 1],
(...: (0, 0, 5), [0, 0, 5]], [[0, 0, 15], [0, 0, 15]]]
sage: sols = solve_S_unit_equation(K, S, 200)
sage: expected = [(0, 1), (4, 0), xi + 2, -xi - 1],
In order to see the bound as well use the optional parameter include_bound:
sage: solutions, bound = solve_S_unit_equation(K, S, 100, include_bound=True)
sage: bound
7

You can omit the exponent vectors:

sage: sols = solve_S_unit_equation(K, S, 200, include_exponents=False)
sage: expected = [(xi + 2, -xi - 1), (1/3*xi + 2/3, -1/3*xi + 1/3), (-xi, xi + 1), (-xi + 1, xi)]
sage: set(frozenset(a) for a in sols) == set(frozenset(b) for b in expected)
True

It is an error to use values in S that are not primes in K:

sage: solve_S_unit_equation(K, [3], 200)
Traceback (most recent call last):...
ValueError: S must consist only of prime ideals, or a single element from which a prime ideal can be constructed.

We check the case that the rank is 0:

sage: K.<xi> = NumberField(x^2+x+1)
sage: solve_S_unit_equation(K, [])
[((1,), (5,), xi + 1, -xi)]

sage.rings.number_field.S_unit_solver.split_primes_large_lcm(SUK, bound)
Return a list L of rational primes q which split completely in K and which have desirable properties (see NOTE).
INPUT:
• SUK – the S-unit group of an absolute number field K.
• bound – a positive integer
OUTPUT:
A list L of rational primes q, with the following properties:
• each prime q in L splits completely in K
• if Q is a prime in S and q is the rational prime below Q, then q is not in L
• the value lcm { q-1 : q in L } is greater than or equal to 2*bound + 1.

Note:
• A series of compatible exponent vectors for the primes in L will lift to at most one integer exponent vector whose entries a_i satisfy |a_i| is less than or equal to bound.
• The ordering of this set is not very intelligent for the purposes of the later sieving processes.

EXAMPLES:
sage: from sage.rings.number_field.S_unit_solver import split_primes_large_lcm
sage: K.<xi> = NumberField(x^3 - 3*x + 1)
sage: S = K.primes_above(3)
3.7 Small primes of degree one

Iterator for finding several primes of absolute degree one of a number field of small prime norm.

Algorithm:

Let \(P \) denote the product of some set of prime numbers. (In practice, we use the product of the first 10000 primes, because Pari computes this many by default.)

Let \(K \) be a number field and let \(f(x) \) be a polynomial defining \(K \) over the rational field. Let \(\alpha \) be a root of \(f \) in \(K \).

We know that \([O_K : \mathbb{Z}[\alpha]]^2 = |\Delta(f(x))/\Delta(O_K)| \), where \(\Delta \) denotes the discriminant (see, for example, Proposition 4.4.4, p165 of [Coh1993]). Therefore, after discarding primes dividing \(\Delta(f(x)) \) (this includes all ramified primes), any integer \(n \) such that \(\gcd(f(n), P) > 0 \) yields a prime \(p | P \) such that \(f(x) \) has a root modulo \(p \). By the condition on discriminants, this root is a single root. As is well known (see, for example Theorem 4.8.13, p199 of [Coh1993]), the ideal generated by \((p, \alpha - n) \) is prime and of degree one.

Warning: It is possible that there are no primes of \(K \) of absolute degree one of small prime norm, and it is possible that this algorithm will not find any primes of small norm.

To do:

There are situations when this will fail. There are questions of finding primes of relative degree one. There are questions of finding primes of exact degree larger than one. In short, if you can contribute, please do!

EXAMPLES:

```python
sage: x = ZZ['x'].gen()
sage: F.<a> = NumberField(x^2 - 2)
sage: Ps = F.primes_of_degree_one_list(3)
sage: Ps
# random
[Fractional ideal (2*a + 1), Fractional ideal (-3*a + 1), Fractional ideal (-a + 5)]
sage: [ P.norm() for P in Ps ] # random

(continues on next page)```
sage: all(ZZ(P.norm()).is_prime() for P in Ps)
True
sage: all(P.residue_class_degree() == 1 for P in Ps)
True

The next two examples are for relative number fields:

sage: L.<b> = F.extension(x^3 - a)
sage: Ps = L.primes_of_degree_one_list(3)
sage: Ps
# random
[Fractional ideal (17, b - 5), Fractional ideal (23, b - 4), Fractional ideal (31, b - 2)]
sage: [P.absolute_norm() for P in Ps] # random
[17, 23, 31]
sage: all(ZZ(P.absolute_norm()).is_prime() for P in Ps)
True
sage: all(P.residue_class_degree() == 1 for P in Ps)
True

AUTHORS:

• Nick Alexander (2008)
• David Loeffler (2009): fixed a bug with relative fields
• Maarten Derickx (2017): fixed a bug with number fields not generated by an integral element

class sage.rings.number_field.small_primes_of_degree_one.Small_primes_of_degree_one_iter(field, num_integer_primes=10000, max_iterations=100)

Bases: object

Iterator that finds primes of a number field of absolute degree one and bounded small prime norm.

INPUT:

• field – a NumberField.
• num_integer_primes (default: 10000) – an integer. We try to find primes of absolute norm no greater than the num_integer_primes-th prime number. For example, if num_integer_primes is 2, the largest norm found will be 3, since the second prime is 3.
• max_iterations (default: 100) – an integer. We test max_iterations integers to find small primes before raising StopIteration.

AUTHOR:

3.7. Small primes of degree one
Nick Alexander

next()

Return a prime of absolute degree one of small prime norm.

Raises StopIteration if such a prime cannot be easily found.

EXAMPLES:

sage: x = QQ['x'].gen()
sage: K.<a> = NumberField(x^2 - 3)
sage: it = K.primes_of_degree_one_iter()
sage: [ next(it) for i in range(3) ]  # random
[Fractional ideal (2*a + 1), Fractional ideal (-a + 4), Fractional ideal (3*a + 2)]

3.8 \( p \)-Selmer groups of number fields

This file contains code to compute \( K(S, p) \) where

- \( K \) is a number field
- \( S \) is a finite set of primes of \( K \)
- \( p \) is a prime number

For \( m \geq 2, K(S, m) \) is defined to be the finite subgroup of \( K^*/(K^*)^m \) consisting of elements represented by \( a \in K^* \) whose valuation at all primes not in \( S \) is a multiple of \( m \). It fits in the short exact sequence

\[
1 \to O_{K,S}^*/(O_{K,S}^*)^m \to K(S, m) \to Cl_{K,S}[m] \to 1
\]

where \( O_{K,S}^* \) is the group of \( S \)-units of \( K \) and \( Cl_{K,S} \) the \( S \)-class group. When \( m = p \) is prime, \( K(S, p) \) is a finite-dimensional vector space over \( GF(p) \). Its generators come from three sources: units (modulo \( p \)'th powers); generators of the \( p \)'th powers of ideals which are not principal but whose \( p \)'the powers are principal; and generators coming from the prime ideals in \( S \).

The main function here is \( pSelmerGroup() \). This will not normally be used by users, who instead will access it through a method of the NumberField class.

AUTHORS:

- John Cremona (2005-2021)

sage.rings.number_field.selmer_group.basis_for_p_cokernel(S, C, p)

Return a basis for the group of ideals supported on \( S \) (mod \( p \)'th-powers) whose class in the class group \( C \) is a \( p \)'th power, together with a function which takes the \( S \)-exponents of such an ideal and returns its coordinates on this basis.

INPUT:

- \( S \) (list) – a list of prime ideals in a number field \( K \).
- \( C \) (class group) – the ideal class group of \( K \).
- \( p \) (prime) – a prime number.

OUTPUT:

(tuple) \((b, f)\) where
• $b$ is a list of ideals which is a basis for the group of ideals supported on $S$ (modulo $p$’th powers) whose ideal class is a $p$’th power;
• $f$ is a function which takes such an ideal and returns its coordinates with respect to this basis.

EXAMPLES:

```python
sage: from sage.rings.number_field.selmer_group import basis_for_p_cokernel
sage: K.<a> = NumberField(x^2 - x + 58)
sage: S = K.ideal(30).support(); S
[Fractional ideal (2, a),
 Fractional ideal (2, a + 1),
 Fractional ideal (3, a + 1),
 Fractional ideal (5, a + 1),
 Fractional ideal (5, a + 3)]
sage: C = K.class_group()
sage: C.gens_orders()
(6, 2)
sage: [C(P).exponents() for P in S]
[(5, 0), (1, 0), (3, 1), (1, 1), (5, 1)]
sage: b, f = basis_for_p_cokernel(S, C, 2); b
[Fractional ideal (2), Fractional ideal (15, a + 13), Fractional ideal (5)]
sage: b, f = basis_for_p_cokernel(S, C, 3); b
[Fractional ideal (50, a + 18),
 Fractional ideal (10, a + 3),
 Fractional ideal (3, a + 1),
 Fractional ideal (5)]
sage: b, f = basis_for_p_cokernel(S, C, 5); b
[Fractional ideal (2, a),
 Fractional ideal (2, a + 1),
 Fractional ideal (3, a + 1),
 Fractional ideal (5, a + 1),
 Fractional ideal (5, a + 3)]
```

sage.rings.number_field.selmer_group.coords_in_U_mod_p($u, U, p$)

Return coordinates of a unit $u$ with respect to a basis of the $p$-cotorsion $U/U^p$ of the unit group $U$.

INPUT:
• $u$ (algebraic unit) – a unit in a number field $K$.
• $U$ (unit group) – the unit group of $K$.
• $p$ (prime) – a prime number.

OUTPUT:
The coordinates of the unit $u$ in the $p$-cotorsion group $U/U^p$.

ALGORITHM:
Take the coordinate vector of $u$ with respect to the generators of the unit group, drop the coordinate of the roots of unity factor if it is prime to $p$, and reduce the vector mod $p$.

EXAMPLES:

```python
sage: from sage.rings.number_field.selmer_group import coords_in_U_mod_p
sage: K.<a> = NumberField(x^4 - 5*x^2 + 1)
sage: U = K.unit_group()
```

(continues on next page)
sage: U
Unit group with structure C2 x Z x Z x Z of Number Field in a with defining polynomial x^4 - 5*x^2 + 1
sage: u0, u1, u2, u3 = U.gens_values()
sage: u = u1*u2^2*u3^3
sage: coords_in_U_mod_p(u,U,2)
[0, 1, 0, 1]
sage: coords_in_U_mod_p(u,U,3)
[1, 2, 0]
sage: u*=u0
sage: coords_in_U_mod_p(u,U,2)
[1, 1, 0, 1]
sage: coords_in_U_mod_p(u,U,3)
[1, 2, 0]

sage.rings.number_field.selmer_group.pSelmerGroup(K, S, p, proof=None, debug=False)

Return the p-Selmer group \( K(S, p) \) of the number field \( K \) with respect to the prime ideals in \( S \)

INPUT:

- \( K \) (number field) – a number field, or \( \mathbb{Q} \).
- \( S \) (list) – a list of prime ideals in \( K \), or prime numbers when \( K = \mathbb{Q} \).
- \( p \) (prime) – a prime number.
- \( \text{proof} \) - if True then compute the class group provably correctly. Default is True. Call \text{proof.number_field()} \ to change this default globally.
- \( \text{debug} \) (boolean, default False) – debug flag.

OUTPUT:

(tuple) \( KSp, KSp\_gens, \text{from}_KSp, \text{to}_KSp \) where

- \( KSp \) is an abstract vector space over \( GF(p) \) isomorphic to \( K(S, p) \);
- \( KSp\_gens \) is a list of elements of \( K^* \) generating \( K(S, p) \);
- \( \text{from}_KSp \) is a function from \( KSp \) to \( K^* \) implementing the isomorphism from the abstract \( K(S, p) \) to \( K(S, p) \) as a subgroup of \( K^*/(K^*)^p \);
- \( \text{to}_KSp \) is a partial function from \( K^* \) to \( KSp \), defined on elements \( a \) whose image in \( K^*/(K^*)^p \) lies in \( K(S, p) \), mapping them via the inverse isomorphism to the abstract vector space \( KSp \).

ALGORITHM:

The list of generators of \( K(S, p) \) is the concatenation of three sublists, called \text{alphalist}, \text{betalist} and \text{ulist} in the code. Only \text{alphalist} depends on the primes in \( S \).

- \text{ulist} is a basis for \( U/U^p \) where \( U \) is the unit group. This is the list of fundamental units, including the generator of the group of roots of unity if its order is divisible by \( p \). These have valuation 0 at all primes.
- \text{betalist} is a list of the generators of the \( p \)'th powers of ideals which generate the \( p \)-torsion in the class group (so is empty if the class number is prime to \( p \)). These have valuation divisible by \( p \) at all primes.
- \text{alphalist} is a list of generators for each ideal \( A \) in a basis of those ideals supported on \( S \) (modulo \( p \)'th powers of ideals) which are \( p \)'th powers in the class group. We find \( B \) such that \( A/B^p \) is principal and take a generator of it, for each \( A \) in a generating set. As a special case, if all the ideals in \( S \) are principal then \text{alphalist} is a list of their generators.
The map from the abstract space to $K^*$ is easy: we just take the product of the generators to powers given by the coefficient vector. No attempt is made to reduce the resulting product modulo $p'$th powers.

The reverse map is more complicated. Given $a \in K^*$:

- write the principal ideal $(a)$ in the form $AB^p$ with $A$ supported by $S$ and $p'$th power free. If this fails, then $a$ does not represent an element of $K(S, p)$ and an error is raised.
- set $I_S$ to be the group of ideals spanned by $S$ mod $p'$th powers, and $I_{S,p}$ the subgroup of $I_S$ which maps to 0 in $C/C_p$.
- Convert $A$ to an element of $I_{S,p}$, hence find the coordinates of $a$ with respect to the generators in alphalist.
- after dividing out by $A$, now $(a) = B^p$ (with a different $a$ and $B$). Write the ideal class $[B]$, whose $p'$th power is trivial, in terms of the generators of $C[p]$; then $B = (b)B_1$, where the coefficients of $B_1$ with respect to generators of $C[p]$ give the coordinates of the result with respect to the generators in betalist.
- after dividing out by $B$, and by $b^p$, we now have $(a) = (1)$, so $a$ is a unit, which can be expressed in terms of the unit generators.

**EXAMPLES:**

Over $\mathbb{Q}$ the unit contribution is trivial unless $p = 2$ and the class group is trivial:

```
sage: from sage.rings.number_field.selmer_group import pSelmerGroup
tsage: QS2, gens, fromQS2, toQS2 = pSelmerGroup(QQ, [2,3], 2)
tsage: QS2
Vector space of dimension 3 over Finite Field of size 2
tsage: gens
[2, 3, -1]
tsage: a = fromQS2([1,1,1]); a.factor()
-1 * 2 * 3
tsage: toQS2(-6)
(1, 1, 1)
```

```
sage: QS3, gens, fromQS3, toQS3 = pSelmerGroup(QQ, [2,13], 3)
tsage: QS3
Vector space of dimension 2 over Finite Field of size 3
tsage: gens
[2, 13]
tsage: a = fromQS3([5,4]); a.factor()
2^5 * 13^4
tsage: toQS3(a)
(2, 1)
tsage: toQS3(a) == QS3([5,4])
True
```

A real quadratic field with class number 2, where the fundamental unit is a generator, and the class group provides another generator when $p = 2$:

```
sage: K.<a> = QuadraticField(-5)
tsage: K.class_number()
2
tsage: P2 = K.ideal(2, -a+1)
tsage: P3 = K.ideal(3, a+1)
tsage: P5 = K.ideal(a)
tsage: KS2, gens, fromKS2, toKS2 = pSelmerGroup(K, [P2, P3, P5], 2)
```

(continues on next page)
sage: KS2
Vector space of dimension 4 over Finite Field of size 2
sage: gens
[a + 1, a, 2, -1]

Each generator must have even valuation at primes not in $S$:

sage: [K.ideal(g).factor() for g in gens]
[(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1)),
 Fractional ideal (a),
 (Fractional ideal (2, a + 1))^2,
 1]

sage: toKS2(10)
(0, 0, 1, 1)
sage: fromKS2([0,0,1,1])
-2
sage: K(10/(-2)).is_square()
True

sage: KS3, gens, fromKS3, toKS3 = pSelmerGroup(K, [P2, P3, P5], 3)
sage: KS3
Vector space of dimension 3 over Finite Field of size 3
sage: gens
[1/2, 1/4*a + 1/4, a]

The to and from maps are inverses of each other:

sage: K.<a> = QuadraticField(-5)
sage: S = K.ideal(30).support()
sage: KS2, gens, fromKS2, toKS2 = pSelmerGroup(K, S, 2)
sage: KS2
Vector space of dimension 5 over Finite Field of size 2
sage: assert all(toKS2(fromKS2(v))==v for v in KS2)
sage: KS3, gens, fromKS3, toKS3 = pSelmerGroup(K, S, 3)
sage: KS3
Vector space of dimension 4 over Finite Field of size 3
sage: assert all(toKS3(fromKS3(v))==v for v in KS3)

See also:

sage.rings.finite_rings.residue_field


4.1 Enumeration of Primitive Totally Real Fields

This module contains functions for enumerating all primitive totally real number fields of given degree and small discriminant. Here a number field is called primitive if it contains no proper subfields except \( \mathbb{Q} \).

See also \texttt{sage.rings.number_field.totallyreal_rel}, which handles the non-primitive case using relative extensions.

4.1.1 Algorithm

We use Hunter’s algorithm ([Coh2000], Section 9.3) with modifications due to Takeuchi [Tak1999] and the author [Voi2008].

We enumerate polynomials \( f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \). Hunter’s theorem gives bounds on \( a_{n-1} \) and \( a_{n-2} \); then given \( a_{n-1} \) and \( a_{n-2} \), one can recursively compute bounds on \( a_{n-3}, \ldots, a_0 \), using the fact that the polynomial is totally real by looking at the zeros of successive derivatives and applying Rolle’s theorem. See [Tak1999] for more details.

4.1.2 Examples

In this first simple example, we compute the totally real quadratic fields of discriminant \( \leq 50 \).

\begin{verbatim}
\texttt{sage: enumerate_totallyreal_fields_prim(2,50)}
[[5, x^2 - x - 1],
 [8, x^2 - 2],
 [12, x^2 - 3],
 [13, x^2 - x - 3],
 [17, x^2 - x - 4],
 [21, x^2 - x - 5],
 [24, x^2 - 6],
 [28, x^2 - 7],
 [29, x^2 - x - 7],
 [33, x^2 - x - 8],
 [37, x^2 - x - 9],
 [40, x^2 - 10],
 [41, x^2 - x - 10],
 [44, x^2 - 11]]
\texttt{sage: d for d in range(5,50) if is_squarefree(d) and d%4 == 1 or (d%4 == 0 and is_}

(continues on next page)
Next, we compute all totally real quintic fields of discriminant \( \leq 10^5 \):

```python
sage: ls = enumerate_totallyreal_fields_prim(5, 10^5) ; ls
[[14641, x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1],
 [24217, x^5 - 5*x^3 - x^2 + 3*x + 1],
 [36497, x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1],
 [38569, x^5 - 5*x^3 + 4*x + 1],
 [65657, x^5 - x^4 - 5*x^3 + 2*x^2 + 5*x + 1],
 [70601, x^5 - x^4 - 5*x^3 + 2*x^2 + 3*x - 1],
 [81509, x^5 - x^4 - 5*x^3 + 3*x^2 + 5*x - 2],
 [81589, x^5 - 6*x^3 + 8*x - 1],
 [89417, x^5 - 6*x^3 - x^2 + 8*x + 3]]
```

We see that there are 9 such fields (up to isomorphism!).

See also [Mar1980].

### 4.1.3 Authors

- John Voight (2007-10-17): Added pari functions to avoid recomputations.
- Craig Citro and John Voight (2007-11-04): Additional doctests and type checking.
- Craig Citro and John Voight (2008-02-10): Final modifications for submission.

This function enumerates primitive totally real fields of degree \( n > 1 \) with discriminant \( d \leq B \); optionally one can specify the first few coefficients, where the sequence \( a \) corresponds to

\[
a[d]*x^n + \ldots + a[0]*x^{n-d}
\]

where \( \text{length}(a) = d+1 \), so in particular always \( a[d] = 1 \).

**Note:** This is guaranteed to give all primitive such fields, and seems in practice to give many imprimitive ones.
INPUT:

- \( n \) – (integer) the degree
- \( B \) – (integer) the discriminant bound
- \( a \) – (list, default: []) the coefficient list to begin with
- \( \text{verbose} \) – (integer or string, default: 0) if \( \text{verbose} == 1 \) (or 2), then print to the screen (really) verbosely; if \( \text{verbose} \) is a string, then print verbosely to the file specified by \( \text{verbose} \).
- \( \text{return\_seqs} \) – (boolean, default False) If True, then return the polynomials as sequences (for easier exporting to a file).
- \( \text{phc} \) – boolean or integer (default: False)
- \( \text{keep\_fields} \) – (boolean or integer, default: False) If \( \text{keep\_fields} \) is True, then keep fields up to \( B^*\log(B) \); if \( \text{keep\_fields} \) is an integer, then keep fields up to that integer.
- \( t_2 \) – (boolean or integer, default: False) If \( t_2 = T \), then keep only polynomials with \( t_2 \) norm \( \geq T \).
- \( \text{just\_print} \) – (boolean, default: False): if \( \text{just\_print} \) is not False, instead of creating a sorted list of totally real number fields, we simply write each totally real field we find to the file whose filename is given by \( \text{just\_print} \). In this case, we don’t return anything.
- \( \text{return\_pari\_objects} \) – (boolean, default: True) if both \( \text{return\_seqs} \) and \( \text{return\_pari\_objects} \) are False then it returns the elements as Sage objects; otherwise it returns pari objects.

OUTPUT:

the list of fields with entries \([d, f]\), where \( d \) is the discriminant and \( f \) is a defining polynomial, sorted by discriminant.

AUTHORS:

- John Voight (2007-09-03)
- Craig Citro (2008-09-19): moved to Cython for speed improvement

\( \text{sage.rings.number_field.totallyreal.odlyzko_bound_totallyreal}(n) \)

This function returns the unconditional Odlyzko bound for the root discriminant of a totally real number field of degree \( n \).

\underline{Note:} The bounds for \( n > 50 \) are not necessarily optimal.

INPUT:

- \( n \) (integer) the degree

OUTPUT:

a lower bound on the root discriminant (as a real number)

EXAMPLES:

\( \text{sage: [sage.rings.number_field.totallyreal.odlyzko_bound_totallyreal(n) for n in \text{range}(1,5)]} \)

\[1.0, 2.223, 3.61, 5.067\]

AUTHORS:

- John Voight (2007-09-03)
sage.rings.number_field.totallyreal.weed_fields(S, lenS=0)

Function used internally by the enumerate_totallyreal_fields_prim() routine. (Weeds the fields listed by [discriminant, polynomial] for isomorphism classes.) Returns the size of the resulting list.

EXAMPLES:

```python
sage: ls = [[5, pari('x^2-3*x+1')]], [5, pari('x^2-5')]]
sage: sage.rings.number_field.totallyreal.weed_fields(ls)
1
sage: ls
[[5, x^2 - 3*x + 1]]
```

### 4.2 Enumeration of Totally Real Fields: Relative Extensions

This module contains functions to enumerate primitive extensions $L/K$, where $K$ is a given totally real number field, with given degree and small root discriminant. This is a relative analogue of the problem described in `sage.rings.number_field.totallyreal`, and we use a similar approach based on a relative version of Hunter’s theorem.

In this first simple example, we compute the totally real quadratic fields of $F = \mathbb{Q}(\sqrt{2})$ of discriminant $\leq 2000$.

```python
sage: ZZx = ZZ['x']
sage: F.<t> = NumberField(x^2-2)
sage: enumerate_totallyreal_fields_rel(F, 2, 2000)
[[1600, x^4 - 6*x^2 + 4, xF^2 + xF - 1]]
```

There is indeed only one such extension, given by $F(\sqrt{5})$.

Next, we list all totally real quadratic extensions of $\mathbb{Q}(\sqrt{5})$ with root discriminant $\leq 10$.

```python
sage: F.<t> = NumberField(x^2-5)
sage: ls = enumerate_totallyreal_fields_rel(F, 2, 10^4)
sage: ls
[[725, x^4 - x^3 - 5*x^2 + 2*x + 4, xF^2 - 3*x + 1],
[1125, x^4 - x^3 - 4*x^2 + 4*x + 1, xF^2 + xF - 1/2*t - 1/2],
[1600, x^4 - 6*x^2 + 4, xF^2 - 2],
[2000, x^4 - 5*x^2 + 5, xF^2 - 1/2*t - 5/2],
[2225, x^4 - x^3 - 5*x^2 + 2*x + 4, xF^2 + xF - 1/2*t + 3/2],
[2525, x^4 - 2*x^3 - 4*x^2 + 5*x + 5, xF^2 + xF - 1/2*t - 5/2],
[3600, x^4 - 2*x^3 - 7*x^2 + 8*x + 1, xF^2 - 3],
[4225, x^4 - 9*x^2 + 4, xF^2 + xF - 1/2*t + 1/2],
[4400, x^4 - 7*x^2 + 11, xF^2 - 1/2*t - 7/2],
[4525, x^4 - x^3 - 7*x^2 + 3*x + 9, xF^2 + xF - 1/2*t - 1/2],
[5125, x^4 - 2*x^3 - 6*x^2 + 7*x + 11, xF^2 + xF - 1/2*t - 1/2],
[5225, x^4 - x^3 - 8*x^2 + x + 11, xF^2 + xF - 1/2*t - 1/2],
[5725, x^4 - x^3 - 8*x^2 + 6*x + 11, xF^2 + xF - 1/2*t - 1/2],
[6125, x^4 - x^3 - 9*x^2 + 9*x + 11, xF^2 + xF - 1/2*t - 1/2],
[7225, x^4 - 11*x^2 + 9, xF^2 + xF - 4],
[7600, x^4 - 9*x^2 + 19, xF^2 - 1/2*t - 9/2],
[7625, x^4 - x^3 - 9*x^2 + 4*x + 16, xF^2 + xF - 1/2*t - 1/2],
```

(continues on next page)
Eight out of 21 such fields are Galois (with Galois group \( C_4 \) or \( C_2 \times C_2 \)); the others have Galois closure of degree 8 (with Galois group \( D_8 \)).

Finally, we compute the cubic extensions of \( \mathbb{Q}(\zeta_7)^+ \) with discriminant \( \leq 17 \times 10^9 \).

```sage
F.<t> = NumberField(ZZx([1,-4,3,1]))
sage: F.disc()
49
sage: enumerate_totallyreal_fields_rel(F, 3, 17*10^9) # not tested, too long time (258s → on sage.math, 2013)
[[16240385609L, x^9 - x^8 - 9*x^7 + 4*x^6 + 26*x^5 - 2*x^4 - 25*x^3 - x^2 + 7*x + 1, xF^3 + (-t^2 - 4*t + 1)*xF^2 + (t^2 + 3*t - 5)*xF + 3*t^2 + 11*t - 5]
[[16240385609, x^9 - x^8 - 9*x^7 + 4*x^6 + 26*x^5 - 2*x^4 - 25*x^3 - x^2 + 7*x + 1, xF^3 + (-t^2 - 4*t + 1)*xF^2 + (t^2 + 3*t - 5)*xF + 3*t^2 + 11*t - 5]] # 64-bit
```

AUTHORS:

Enumerates all totally real fields of degree \( n \) with discriminant at most \( B \), primitive or otherwise.

INPUT:
- \( n \) – integer, the degree
- \( B \) – integer, the discriminant bound
- \( verbose \) – boolean or nonnegative integer or string (default: 0) give a verbose description of the computations being performed. If \( verbose \) is set to 2 or more then it outputs some extra information. If \( verbose \) is a string then it outputs to a file specified by \( verbose \)
- \( return_segs \) – (boolean, default False) If True, then return the polynomials as sequences (for easier exporting to a file). This also returns a list of four numbers, as explained in the OUTPUT section below.
- \( return_pari_objects \) – (boolean, default True) If both \( return_segs \) and \( return_pari_objects \) are False then it returns the elements as Sage objects; otherwise it returns pari objects.

EXAMPLES:

```sage
sage: enumerate_totallyreal_fields_all(4, 2000)
[[725, x^4 - x^3 - 3*x^2 + x + 1],

```

4.2. Enumeration of Totally Real Fields: Relative Extensions 349
[1125, \(x^4 - x^3 - 4x^2 + 4x + 1\)],
[1600, \(x^4 - 6x^2 + 4\)],
[1957, \(x^4 - 4x^2 - x + 1\)],
[2000, \(x^4 - 5x^2 + 5\)]

**sage:** enumerate_totallyreal_fields_all(1, 10)
[[1, \(x - 1\)]]

This function enumerates (primitive) totally real field extensions of degree \(m > 1\) of the totally real field \(F\) with discriminant \(d \leq B\); optionally one can specify the first few coefficients, where the sequence \(a\) corresponds to a polynomial by

\[a[d]x^n + \ldots + a[0]x^(n-d)\]

if \(\text{length}(a) = d+1\), so in particular always \(a[d] = 1\).

**Note:** This is guaranteed to give all primitive such fields, and seems in practice to give many imprimitive ones.

**INPUT:**
- \(F\) – number field, the base field
- \(m\) – integer, the degree
- \(B\) – integer, the discriminant bound
- \(a\) – list (default: []), the coefficient list to begin with
- **verbose** – boolean or nonnegative integer or string (default: 0) give a verbose description of the computations being performed. If **verbose** is set to 2 or more then it outputs some extra information. If **verbose** is a string then it outputs to a file specified by **verbose**
- **return_seqs** – (boolean, default False) If True, then return the polynomials as sequences (for easier exporting to a file). This also returns a list of four numbers, as explained in the OUTPUT section below.
- **return_pari_objects** – (boolean, default: True) if both **return_seqs** and **return_pari_objects** are False then it returns the elements as Sage objects; otherwise it returns pari objects.

**OUTPUT:**
- the list of fields with entries [\(d\), \(\text{fabs}\), \(f\)], where \(d\) is the discriminant, \(\text{fabs}\) is an absolute defining polynomial, and \(f\) is a defining polynomial relative to \(F\), sorted by discriminant.
- if **return_seqs** is True, then the first field of the list is a list containing the count of four items as explained below
  - the first entry gives the number of polynomials tested
  - the second entry gives the number of polynomials with its discriminant having a large enough square divisor
  - the third entry is the number of irreducible polynomials
  - the fourth entry is the number of irreducible polynomials with discriminant at most \(B\).
EXAMPLES:

```python
sage: ZZx = ZZ['x']
sage: F.<t> = NumberField(x^2-2)
sage: enumerate_totallyreal_fields_rel(F, 1, 2000)
[[1, [-2, 0, 1], xF - 1]]
sage: enumerate_totallyreal_fields_rel(F, 2, 2000)
[[1600, x^4 - 6*x^2 + 4, xF^2 + xF - 1]]
sage: enumerate_totallyreal_fields_rel(F, 2, 2000, return_seqs=True)
[[9, 6, 5, 0], [[1600, [4, 0, -6, 0, 1], [-1, 1, 1]]]]
```

AUTHORS:

• John Voight (2007-11-01)

`sage.rings.number_field.totallyreal_rel.integral_elements_in_box(K, C)`

Return all integral elements of the totally real field $K$ whose embeddings lie numerically within the bounds specified by the list $C$. The output is architecture dependent, and one may want to expand the bounds that define $C$ by some epsilon.

INPUT:

• $K$ – a totally real number field

• $C$ – a list $[\text{lower}, \text{upper}, \ldots]$ of lower and upper bounds, for each embedding

EXAMPLES:

```python
sage: x = polygen(QQ)
sage: K.<alpha> = NumberField(x^2-2)
sage: eps = 10e-6
sage: C = [[0-eps,5+eps],[0-eps,10+eps]]
sage: ls = sage.rings.number_field.totallyreal_rel.integral_elements_in_box(K, C)
sage: sorted([a.trace() for a in ls])
[0, 2, 4, 4, 4, 6, 6, 6, 8, 8, 8, 10, 10, 10, 10, 12, 12, 14]
sage: len(ls)
19
sage: v = sage.rings.number_field.totallyreal_rel.integral_elements_in_box(K, C)
sage: sorted(v)
[-1/2*a + 2, 1/4*a^2 + 1/2*a, 0, 1, 2, 3, 4,...-1/4*a^2 - 1/2*a + 5, 1/2*a + 3, -1/
˓→4*a^2 + 5]
```

A cubic field:

```python
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^3 - 16*x + 16)
sage: eps = 10e-6
sage: C = [[0-eps,5+eps]]
sage: v = sage.rings.number_field.totallyreal_rel.integral_elements_in_box(K, C)
sage: sorted(v)
[-1/2*a + 2, 1/4*a^2 + 1/2*a, 0, 1, 2, 3, 4,...-1/4*a^2 + 2 - 1/2*a + 5, 1/2*a + 3, -1/
˓→4*a^2 + 5]
```

Note that the output is platform dependent (sometimes a 5 is listed below, and sometimes it isn’t):
class sage.rings.number_field.totallyreal_rel.tr_data_rel(F, m, B, a=None)

Bases: object

This class encodes the data used in the enumeration of totally real fields for relative extensions.

We do not give a complete description here. For more information, see the attached functions; all of these are used internally by the functions in totallyreal_rel.py, so see that file for examples and further documentation.

**incr**(*f_out*, *verbose=False*, *haltk=0*)

This function ‘increments’ the totally real data to the next value which satisfies the bounds essentially given by Rolle’s theorem, and returns the next polynomial in the sequence *f_out*.

The default or usual case just increments the constant coefficient; then inductively, if this is outside of the bounds we increment the next higher coefficient, and so on.

If there are no more coefficients to be had, returns the zero polynomial.

**INPUT:**
- *f_out* – an integer sequence, to be written with the coefficients of the next polynomial
- *verbose* – boolean or nonnegative integer (default: False) print verbosely computational details. It prints extra information if *verbose* is set to 2 or more
- *haltk* – integer, the level at which to halt the inductive coefficient bounds

**OUTPUT:**
the successor polynomial as a coefficient list.

### 4.3 Enumeration of Totally Real Fields

**AUTHORS:**
- Craig Citro and John Voight (2007-11-04): Type checking and other polishing.

**sage.rings.number_field.totallyreal_data.easy_is_irreducible_py**(*f*)

Used solely for testing easy_is_irreducible.

**EXAMPLES:**

```python
sage: sage.rings.number_field.totallyreal_data.easy_is_irreducible_py(pari('x^2+1'))
1
sage: sage.rings.number_field.totallyreal_data.easy_is_irreducible_py(pari('x^2-1'))
0
```

**sage.rings.number_field.totallyreal_data.hermite_constant**(*n*)

This function returns the *n*th Hermite constant

The *n*th Hermite constant (typically denoted \( \gamma_n \)), is defined to be

\[
\max_L \min_{0 \neq x \in L} ||x||^2
\]

where *L* runs over all lattices of dimension *n* and determinant 1.
For $n \leq 8$ it returns the exact value of $\gamma_n$, and for $n > 9$ it returns an upper bound on $\gamma_n$.

**INPUT:**

- n – integer

**OUTPUT:**

- (an upper bound for) the Hermite constant $\gamma_n$

**EXAMPLES:**

```python
sage: hermite_constant(1) # trivial one-dimensional lattice
1.0
sage: hermite_constant(2) # Eisenstein lattice
1.1547005383792515
sage: 2/sqrt(3.)
1.15470053837925
sage: hermite_constant(8) # E_8
2.0
```

**Note:** The upper bounds used can be found in [CS1999] and [CE2003].

**AUTHORS:**

- John Voight (2007-09-03)

---

```
sage.rings.number_field.totallyreal_data.int_has_small_square_divisor(d)
Returns the largest a such that a^2 divides d and a has prime divisors < 200.

EXAMPLES:

```python
sage: from sage.rings.number_field.totallyreal_data import int_has_small_square_divisor
sage: int_has_small_square_divisor(500)
100
sage: is_prime(691)
True
sage: int_has_small_square_divisor(691)
1
sage: int_has_small_square_divisor(691^2)
1
```

```
sage.rings.number_field.totallyreal_data.lagrange_degree_3(n, an1, an2, an3)
Private function. Solves the equations which arise in the Lagrange multiplier for degree 3: for each $1 \leq r \leq n-2$, we solve

$$r^*x^i + (n-1-r)^*y^i + z^i = s_i \quad (i = 1,2,3)$$

where the $s_i$ are the power sums determined by the coefficients $a$. We output the largest value of $z$ which occurs. We use a precomputed elimination ideal.

**EXAMPLES:**

```python
sage: ls = sage.rings.number_field.totallyreal_data.lagrange_degree_3(3, 0, 1, 2)
sage: [RealField(10)(x) for x in ls]
[-1.0, -1.0]
```

(continues on next page)
class sage.rings.number_field.totallyreal_data.tr_data

Bases: object

This class encodes the data used in the enumeration of totally real fields.

We do not give a complete description here. For more information, see the attached functions; all of these are used internally by the functions in totallyreal.py, so see that file for examples and further documentation.

increment(\texttt{verbose=False, haltk=0, phc=False})

This function ‘increments’ the totally real data to the next value which satisfies the bounds essentially given by Rolle’s theorem, and returns the next polynomial as a sequence of integers.

The default or usual case just increments the constant coefficient; then inductively, if this is outside of the bounds we increment the next higher coefficient, and so on.

If there are no more coefficients to be had, returns the zero polynomial.

INPUT:

• \texttt{verbose} – boolean to print verbosely computational details
• \texttt{haltk} – integer, the level at which to halt the inductive coefficient bounds
• \texttt{phc} – boolean, if PHCPACK is available, use it when \texttt{k == n-5} to compute an improved Lagrange multiplier bound

OUTPUT:

The next polynomial, as a sequence of integers

EXAMPLES:

\begin{verbatim}
sage: T = sage.rings.number_field.totallyreal_data.tr_data(2,100)
sage: T.increment() [-24, -1, 1]
sage: for i in range(19): _ = T.increment()
sage: T.increment() [-3, -1, 1]
sage: T.increment() [-25, 0, 1]
\end{verbatim}

printa()

Print relevant data for self.

EXAMPLES:

\begin{verbatim}
sage: T = sage.rings.number_field.totallyreal_data.tr_data(3,2^10)
sage: T.printa() k = 1 a = [0, 0, -1, 1] amax = [0, 0, 0, 1] beta = [...] gnk = [...]\end{verbatim}
4.4 Enumeration of Totally Real Fields: PHC interface

AUTHORS:
– John Voight (2007-10-10):
  • Zeroth attempt.

sage.rings.number_field.totallyreal_phc.coefficients_to_power_sums(n, m, a)
Takes the list a, representing a list of initial coefficients of a (monic) polynomial of degree n, and returns the
power sums of the roots of f up to (m-1)th powers.

INPUT:
• n – integer, the degree
• a – list of integers, the coefficients

OUTPUT:
list of integers.

Note: This uses Newton’s relations, which are classical.

AUTHORS:
– John Voight (2007-09-19)

EXAMPLES:

sage: from sage.rings.number_field.totallyreal_phc import coefficients_to_power_sums
sage: coefficients_to_power_sums(3,2,[1,5,7])
[3, -7, 39]
sage: coefficients_to_power_sums(5,4,[1,5,7,9,8])
[5, -8, 46, -317, 2158]
CHAPTER
FIVE

ALGEBRAIC NUMBERS

5.1 Field of Algebraic Numbers

AUTHOR:
• Carl Witty (2007-01-27): initial version
• Carl Witty (2007-10-29): massive rewrite to support complex as well as real numbers

This is an implementation of the algebraic numbers (the complex numbers which are the zero of a polynomial in \( \mathbb{Z}[x] \); in other words, the algebraic closure of \( \mathbb{Q} \), with an embedding into \( \mathbb{C} \)). All computations are exact. We also include an implementation of the algebraic reals (the intersection of the algebraic numbers with \( \mathbb{R} \)). The field of algebraic numbers \( \mathbb{Q} \) is available with abbreviation \( \text{QQbar} \); the field of algebraic reals has abbreviation \( \text{AA} \).

As with many other implementations of the algebraic numbers, we try hard to avoid computing a number field and working in the number field; instead, we use floating-point interval arithmetic whenever possible (basically whenever we need to prove non-equalities), and resort to symbolic computation only as needed (basically to prove equalities).

Algebraic numbers exist in one of the following forms:
• a rational number
• the sum, difference, product, or quotient of algebraic numbers
• the negation, inverse, absolute value, norm, real part, imaginary part, or complex conjugate of an algebraic number
• a particular root of a polynomial, given as a polynomial with algebraic coefficients together with an isolating interval (given as a \text{RealIntervalFieldElement}) which encloses exactly one root, and the multiplicity of the root
• a polynomial in one generator, where the generator is an algebraic number given as the root of an irreducible polynomial with integral coefficients and the polynomial is given as a \text{NumberFieldElement}.

An algebraic number can be coerced into \text{ComplexIntervalField} (or \text{RealIntervalField}, for algebraic reals); every algebraic number has a cached interval of the highest precision yet calculated.

In most cases, computations that need to compare two algebraic numbers compute them with 128-bit precision intervals; if this does not suffice to prove that the numbers are different, then we fall back on exact computation.

Note that division involves an implicit comparison of the divisor against zero, and may thus trigger exact computation.

Also, using an algebraic number in the leading coefficient of a polynomial also involves an implicit comparison against zero, which again may trigger exact computation.

Note that we work fairly hard to avoid computing new number fields; to help, we keep a lattice of already-computed number fields and their inclusions.

EXAMPLES:
For a monic cubic polynomial $x^3 + bx^2 + cx + d$ with roots $s_1, s_2, s_3$, the discriminant is defined as $(s_1 - s_2)^2(s_1 - s_3)^2(s_2 - s_3)^2$ and can be computed as $b^2c^2 - 4b^3d - 4c^3 + 18bcd - 27d^2$. We can test that these definitions do give the same result:

```python
sage: def disc1(b, c, d):
 : return b^2*c^2 - 4*b^3*d - 4*c^3 + 18*b*c*d - 27*d^2
sage: def disc2(s1, s2, s3):
 : return ((s1-s2)*(s1-s3)*(s2-s3))^2
sage: x = polygen(AA)
sage: p = x*(x-2)*(x-4)
sage: cp = AA.common_polynomial(p)
sage: d, c, b, _ = p.list()
sage: s1 = AA.polynomial_root(cp, RIF(-1, 1))
sage: s2 = AA.polynomial_root(cp, RIF(1, 3))
sage: s3 = AA.polynomial_root(cp, RIF(3, 5))
sage: disc1(b, c, d) == disc2(s1, s2, s3)
True
sage: p = p + 1
sage: cp = AA.common_polynomial(p)
sage: d, c, b, _ = p.list()
sage: s1 = AA.polynomial_root(cp, RIF(-1, 1))
sage: s2 = AA.polynomial_root(cp, RIF(1, 3))
sage: s3 = AA.polynomial_root(cp, RIF(3, 5))
sage: disc1(b, c, d) == disc2(s1, s2, s3)
True
sage: p = (x-sqrt(AA(2)))*(x-AA(2).nth_root(3))*(x-sqrt(AA(3)))
sage: cp = AA.common_polynomial(p)
sage: d, c, b, _ = p.list()
sage: s1 = AA.polynomial_root(cp, RIF(1.4, 1.5))
sage: s2 = AA.polynomial_root(cp, RIF(1.7, 1.8))
sage: s3 = AA.polynomial_root(cp, RIF(1.2, 1.3))
sage: disc1(b, c, d) == disc2(s1, s2, s3)
True
```

We can convert from symbolic expressions:

```python
sage: QQbar(sqrt(-5))
2.236067749900268960846772972354995072690230235388743677047870600842820525584762452111684
sage: AA(sqrt(2) + sqrt(3))
3.146264369941973314292752961366801115050627358778863604852277965716851572997089695846
sage: QQbar(I)
1.000
sage: QQbar(I * golden_ratio)
1.618033988749894848204586838301504445957273247154146853876015305575979057533838087633
sage: AA(golden_ratio)^2 - AA(golden_ratio)
1
```

(continues on next page)
sage: QQbar((-8)^(1/3))
1.000000000000000? + 1.732050807568878?*I
sage: AA((-8)^(1/3))
-2
sage: QQbar((-4)^(1/4))
1 + 1*I
sage: AA((-4)^(1/4))
Traceback (most recent call last):
...
ValueError: Cannot coerce algebraic number with non-zero imaginary part to algebraic real

The coercion, however, goes in the other direction, since not all symbolic expressions are algebraic numbers:

sage: QQbar(sqrt(2)) + sqrt(3)
sqrt(3) + 1.414213562373095?
sage: QQbar(sqrt(2) + QQbar(sqrt(3)))
3.146264369941973?

Note the different behavior in taking roots: for AA we prefer real roots if they exist, but for QQbar we take the principal root:

sage: AA(-1)^(1/3)
-1
sage: QQbar(-1)^(1/3)
0.500000000000000? + 0.866025403784439?*I

However, implicit coercion from $\mathbb{Q}[I]$ is only allowed when it is equipped with a complex embedding:

sage: i.parent()
Number Field in I with defining polynomial $x^2 + 1$ with I = 1*I
sage: QQbar(1) + i
I + 1
sage: K.<im> = QuadraticField(-1, embedding=None)
sage: QQbar(1) + im
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Algebraic Field' and 'Number Field in im with defining polynomial $x^2 + 1$'

However, we can explicitly coerce from the abstract number field $\mathbb{Q}[I]$. (Technically, this is not quite kosher, since we do not know whether the field generator is supposed to map to $+I$ or $-I$. We assume that for any quadratic field with polynomial $x^2 + 1$, the generator maps to $+I$):

sage: pythag = QQbar(3/5 + 4*im/5); pythag
4/5*I + 3/5
sage: pythag.abs() == 1
True

We can implicitly coerce from algebraic reals to algebraic numbers:
sage: b = AA(1); b, b.parent()
(1, Algebraic Real Field)
sage: c = a + b; c, c.parent()
(2, Algebraic Field)

Some computation with radicals:

sage: phi = (1 + sqrt(AA(5))) / 2
sage: phi^2 == phi + 1
True
sage: tau = (1 - sqrt(AA(5))) / 2
sage: tau^2 == tau + 1
True
sage: phi + tau == 1
True
sage: tau < 0
True
sage: rt23 = sqrt(AA(2/3))
sage: rt35 = sqrt(AA(3/5))
sage: rt25 = sqrt(AA(2/5))
sage: rt23 * rt35 == rt25
True

The Sage rings AA and QQbar can decide equalities between radical expressions (over the reals and complex numbers respectively):

sage: a = AA((2/(3*sqrt(3)) + 10/27)^(1/3) - 2/(9*(2/(3*sqrt(3)) + 10/27)^(1/3)) + 1/3)
sage: a
1.000000000000000?
sage: a == 1
True

Algebraic numbers which are known to be rational print as rationals; otherwise they print as intervals (with 53-bit precision):

sage: AA(2)/3
2/3
sage: QQbar(5/7)
5/7
sage: QQbar(1/3 - 1/4*I)
-1/4*I + 1/3
sage: two = QQbar(4).nth_root(4)^2; two
2.000000000000000?
sage: two == 2; two
True
sage: phi
1.618033988749895?

We can find the real and imaginary parts of an algebraic number (exactly):
We can find the absolute value and norm of an algebraic number exactly. (Note that we define the norm as the product of a number and its complex conjugate; this is the algebraic definition of norm, if we view $\mathbb{Q} \bar{\mathbb{Q}}$ as $\mathbb{A}[I]$):

```python
sage: R.<x> = QQ[]
sage: r = (x^3 + 8).roots(QQbar, multiplicities=False)[2]; r
1.000000000000000? + 1.732050807568878?*I
sage: r.abs() == 2
True
sage: r.norm() == 4
True
sage: (r+QQbar(I)).norm().minpoly()
x^2 - 10*x + 13
```

We can compute the multiplicative order of an algebraic number:

```python
sage: QQbar(-1/2 + I*sqrt(3)/2).multiplicative_order()
3
sage: QQbar(-sqrt(3)/2 + I/2).multiplicative_order()
12
sage: (QQbar.zeta(23)**5).multiplicative_order()
23
```

The paper “ARPREC: An Arbitrary Precision Computation Package” by Bailey, Yozo, Li and Thompson discusses this result. Evidently it is difficult to find, but we can easily verify it.

```python
sage: alpha = QQbar.polynomial_root(x^10 + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1, RIF(1, 1.2))
sage: lhs = alpha^630 - 1
sage: rhs_num = (alpha^315 - 1) * (alpha^210 - 1) * (alpha^126 - 1)^2 * (alpha^90 - 1) * (alpha^3 - 1)^3 * (alpha^2 - 1)^5 * (alpha - 1)^3
sage: rhs_den = (alpha^55 - 1) * (alpha^15 - 1)^2 * (alpha^14 - 1)^2 * (alpha^5 - 1)^6 * (alpha - 1)^6
sage: rhs = rhs_num / rhs_den
sage: lhs
2.642040335819351?e44
```

(continues on next page)
Given an algebraic number, we can produce a string that will reproduce that algebraic number if you type the string into Sage. We can see that until exact computation is triggered, an algebraic number keeps track of the computation steps used to produce that number:

```
sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: n = (rt2 + rt3)^5; n
308.3018001722975
sage: sage_input(n)
R.<x> = AA[]
v1 = AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) + AA.polynomial_root(AA.common_polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))
v2 = v1^*v1
v2*v2*v1
```

But once exact computation is triggered, the computation tree is discarded, and we get a way to produce the number directly:

```
sage: n == 109*rt2 + 89*rt3
True
sage: sage_input(n)
R.<y> = QQ[]
v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), RIF(-RR(1.9318516525781366), -RR(1.9318516525781364)))
-109*v^3 + 89*v^2 + 327*v - 178
```

We can also see that some computations (basically, those which are easy to perform exactly) are performed directly, instead of storing the computation tree:
Note that the `verify=True` argument to `sage_input` will always trigger exact computation, so running `sage_input` twice in a row on the same number will actually give different answers. In the following, running `sage_input` on `n` will also trigger exact computation on `rt2`, as you can see by the fact that the third output is different than the first:

Just for fun, let's try `sage_input` on a very complicated expression. The output of this example changed with the rewriting of polynomial multiplication algorithms in github issue #10255:

We can pickle and unpickle algebraic fields (and they are globally unique):

5.1. Field of Algebraic Numbers
We can pickle and unpickle algebraic numbers:

```python
sage: t = QQbar(sqrt(2)); type(t._descr)
<class 'sage.rings.qqbar.ANRoot'>
sage: loads(dumps(t)) == QQbar(sqrt(2))
True
sage: t.exactify(); type(t._descr)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: loads(dumps(t)) == QQbar(sqrt(2))
True
sage: t = ~QQbar(sqrt(2)); type(t._descr)
<class 'sage.rings.qqbar.ANUUnaryExpr'>
sage: loads(dumps(t)) == 1/QQbar(sqrt(2))
True
sage: t = QQbar(sqrt(2)) + QQbar(sqrt(3)); type(t._descr)
<class 'sage.rings.qqbar.ANBinaryExpr'>
sage: loads(dumps(t)) == QQbar(sqrt(2)) + QQbar(sqrt(3))
True
```

We can convert elements of QQbar and AA into the following types: float, complex, RDF, CDF, RR, CC, RIF, CIF, ZZ, and QQ, with a few exceptions. (For the arbitrary-precision types, RR, CC, RIF, and CIF, it can convert into a field of arbitrary precision.) Converting from QQbar to a real type (float, RDF, RR, RIF, ZZ, or QQ) succeeds only if the QQbar is actually real (has an imaginary component of exactly zero). Converting from either AA or QQbar to ZZ or QQ succeeds only if the number actually is an integer or rational. If conversion fails, a ValueError will be raised.

Here are examples of all of these conversions:

```python
sage: all_vals = [AA(42), AA(22/7), AA(golden_ratio), QQbar(-13), QQbar(89/55), QQbar(-sqrt(7)), QQbar.zeta(5)]
sage: def convert_test_all(ty):
....: def convert_test(v):
....: try:
....: return ty(v)
....: except (TypeError, ValueError):
....: return None
....: return [convert_test(_) for _ in all_vals]
sage: convert_test_all(float)
```

(continues on next page)
Compute the exact coordinates of a 34-gon (the formulas used are from Weisstein, Eric W. “Trigonometry Angles–Pi/17.” and can be found at http://mathworld.wolfram.com/TrigonometryAnglesPi17.html):

sage: rt17 = AA(17).sqrt()
sage: rt2 = AA(2).sqrt()
sage: eps = (17 + rt17).sqrt()
sage: epss = (17 - rt17).sqrt()
sage: delta = rt17 - 1
sage: alpha = (34 + 6*rt17 + rt2*delta*epss - 8*rt2*eps).sqrt()
sage: beta = 2*(17 + 3*rt17 - 2*rt2*eps - rt2*epss).sqrt()
sage: x = rt2*(15 + rt17 + rt2*(alpha + epss)).sqrt()/8
sage: y = rt2*(epss**2 - rt2*(alpha + epss)).sqrt()/8

sage: cx, cy = 1, 0
sage: for i in range(34):
    ....:    cx, cy = x*cx-y*cy, x*cy+y*cx

sage: cx
1.00000000000000
sage: cy
0.7e-15

sage: ax = polygen(AA)
sage: x2 = AA.polynomial_root(256*ax**8 - 128*ax**7 - 448*ax**6 + 192*ax**5 + 240*ax**4 -
Ideally, in the above example we should be able to test $x == x^2$ and $y == y^2$ but this is currently infinitely long.

```python
class sage.rings.qqbar.ANBinaryExpr(left, right, op)
 Bases: ANDescr

 Initialize this ANBinaryExpr.

 EXAMPLES:

 sage: t = QQbar(sqrt(2)) + QQbar(sqrt(3)); type(t._descr) # indirect doctest
 <class 'sage.rings.qqbar.ANBinaryExpr'>

 exactify()

 handle_sage_input(sib, coerce, is_qqbar)

 Produce an expression which will reproduce this value when evaluated, and an indication of whether this
 value is worth sharing (always True for ANBinaryExpr).

 EXAMPLES:

 sage: sage_input(2 + sqrt(AA(2)), verify=True) # Verified
 R.<x> = AA[]
 2 + AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))

 sage: sage_input(sqrt(AA(2)) + 2, verify=True) # Verified
 R.<x> = AA[]
 AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) + 2

 sage: sage_input(2 - sqrt(AA(2)), verify=True) # Verified
 R.<x> = AA[]
 2 - AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))

 sage: sage_input(2 / sqrt(AA(2)), verify=True) # Verified
 R.<x> = AA[]
 2/AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))

 sage: sage_input(2 + (-1*sqrt(AA(2))), verify=True) # Verified
 R.<x> = AA[]
 2 - AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))
```

(continues on next page)
R.<x> = AA[
2*AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949),␣
˓→RR(1.4142135623730951))))
sage: rt2 = sqrt(AA(2))
sage: one = rt2/rt2
sage: n = one+3
sage: sage_input(n)
R.<x> = AA[
AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))))
v/v + 3
sage: one == 1
True
sage: sage_input(n)
1 + AA(3)
sage: rt3 = QQbar(sqrt(3))
sage: one = rt3/rt3
sage: n = sqrt(AA(2))+one
sage: one == 1
True
sage: sage_input(n)
R.<x> = AA[
QQbar.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), ˓→RR(1.4142135623730951)))) + 1
sage: from sage.rings.qqbar import *
sage: from sage.misc.sage_input import SageInputBuilder
sage: sib = SageInputBuilder()
sage: binexp = ANBinaryExpr(AA(3), AA(5), operator.mul)
sage: binexp.handle_sage_input(sib, False, False)
({binop:* {atomic:3} {call: {atomic:AA}({atomic:5})}}, True)
sage: binexp.handle_sage_input(sib, False, True)
({{call: {atomic:QQbar}({binop:* {atomic:3} {call: {atomic:AA}({atomic:5})}})},␣ ˓→True)

is_complex()
Whether this element is complex. Does not trigger exact computation, so may return True even if the element is real.

EXAMPLES:
sage: x = (QQbar(sqrt(-2)) / QQbar(sqrt(-5)))._descr
sage: x.is_complex()
True

class sage.rings.qqbar.ANDescr
Bases: sageObject
An AlgebraicNumber or AlgebraicReal is a wrapper around an ANDescr object. ANDescr is an abstract base class, which should never be directly instantiated; its concrete subclasses are ANRational, ANBinaryExpr, ANUnaryExpr, ANRoot, and ANExtensionElement. ANDescr and all of its subclasses are for internal use, and should not be used directly.

abs(n)
Absolute value of self.

5.1. Field of Algebraic Numbers 367
EXAMPLES:

```python
sage: a = QQbar(sqrt(2))
sage: b = a._descr
sage: b.abs(a)
<sage.rings.qqbar.ANUnaryExpr object at ...>
```

**conjugate**(n)

Complex conjugate of self.

EXAMPLES:

```python
sage: a = QQbar(sqrt(-7))
sage: b = a._descr
sage: b.conjugate(a)
<sage.rings.qqbar.ANUnaryExpr object at ...>
```

**imag**(n)

Imaginary part of self.

EXAMPLES:

```python
sage: a = QQbar(sqrt(-7))
sage: b = a._descr
sage: b.imag(a)
<sage.rings.qqbar.ANUnaryExpr object at ...>
```

**invert**(n)

1/self.

EXAMPLES:

```python
sage: a = QQbar(sqrt(2))
sage: b = a._descr
sage: b.invert(a)
<sage.rings.qqbar.ANUnaryExpr object at ...>
```

**is_simple**()

Check whether this descriptor represents a value with the same algebraic degree as the number field associated with the descriptor.

This returns True if self is an ANRational, or a minimal ANExtensionElement.

EXAMPLES:

```python
sage: from sage.rings.qqbar import ANRational
sage: ANRational(1/2).is_simple()
True
sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: rt2b = rt3 + rt2 - rt3
sage: rt2.exactify()
```

(continues on next page)
False
sage: rt2b.simplify()
sage: rt2b._descr.is_simple()
True

neg(n)
Negation of self.

EXAMPLES:

```python
sage: a = QQbar(sqrt(2))
sage: b = a._descr
sage: b.neg(a)
<sage.rings.qqbar.ANUnaryExpr object at ...>
```

norm(n)
Field norm of self from \( \mathbb{Q} \) to its real subfield \( \mathbb{A} \), i.e. the square of the usual complex absolute value.

EXAMPLES:

```python
sage: a = QQbar(sqrt(-7))
sage: b = a._descr
sage: b.norm(a)
<sage.rings.qqbar.ANUnaryExpr object at ...>
```

real(n)
Real part of self.

EXAMPLES:

```python
sage: a = QQbar(sqrt(-7))
sage: b = a._descr
sage: b.real(a)
<sage.rings.qqbar.ANUnaryExpr object at ...>
```

class sage.rings.qqbar.ANExtensionElement(generator, value)

Bases: ANDescr

The subclass of ANDescr that represents a number field element in terms of a specific generator. Consists of a polynomial with rational coefficients in terms of the generator, and the generator itself, an AlgebraicGenerator.

abs(n)
Return the absolute value of self (square root of the norm).

EXAMPLES:

```python
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3))
sage: a.exactify()
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: b.abs(a)
Root 3.146264369941972342? of x^2 - 9.89897948556636?
conjugate(n)

Complex conjugate of self.

EXAMPLES:

```
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3))
sage: a.exactify()
sage: b = a._descr
sage: type(b)  # random (not uniquely represented)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: c = b.conjugate(None); c
1/3*a^3 - 1/3*a^2 + a + 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 and a in 1.
˓→724744871391589? - 1.573132184970987?*I
```

Internally, complex conjugation is implemented by taking the same abstract field element but conjugating the complex embedding of the field:

```
sage: c.generator() == b.generator().conjugate()
True
sage: c.field_element_value() == b.field_element_value()
True
```

The parameter is ignored:

```
sage: b.conjugate("random").generator() == c.generator() and b.conjugate("random").field_element_value() == c.field_element_value()
True
```

exactify()

Return an exact representation of self.

Since self is already exact, just return self.

EXAMPLES:

```
sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.
˓→exactify()
sage: type(v)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: v.exactify() is v
True
```

field_element_value()

Return the underlying number field element.

EXAMPLES:

```
sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.
˓→exactify()
sage: v.field_element_value()
a
```

generator()

Return the AlgebraicGenerator object corresponding to self.

EXAMPLES:
sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.
 ~exactify()
sage: v.generator()
Number Field in a with defining polynomial y^2 - y - 1 with a in 1.
 ~618033988749895?

handle_sage_input(sib, coerce, is_qqbar)

Produce an expression which will reproduce this value when evaluated, and an indication of whether this
value is worth sharing (always True, for ANExtensionElement).

EXAMPLES:

sage: I = QQbar(I)
sage: sage_input(3+4*I, verify=True)
Verified
QQbar(3 + 4*I)
sage: v = QQbar.zeta(3) + QQbar.zeta(5)
sage: v - v == 0
True
sage: sage_input(vector(QQbar, (4-3*I, QQbar.zeta(7))), verify=True)
Verified
R.<y> = QQ[]
vector(QQbar, [4 - 3*I, QQbar.polynomial_root(AA.common_polynomial(y^6 + y^5 +
 ~y^4 + y^3 + y^2 + y + 1), CIF(RIF(RR(0.62348980185873348), RR(0.
 ~62348980185873359)), RIF(RR(0.7818314824680298), RR(0.78183148246802991))))],

sage: sage_input(v, verify=True)
Verified
R.<y> = QQ[]
v = QQbar.polynomial_root(AA.common_polynomial(y^8 - y^7 + y^5 - y^4 + y^3 - y^2 + 1), CIF(RIF(RR(0.91354545764260087), RR(0.91354545764260098)), RIF(RR(0.
 ~40673664307580015), RR(0.40673664307580021))))

sage: v^5 + v^3
sage: v = QQbar(sqrt(AA(2)))
sage: v.exactify()
sage: sage_input(v, verify=True)
Verified
R.<y> = QQ[]
QQbar(AA.polynomial_root(AA.common_polynomial(y^2 - 2), RIF(RR(1.4142135623730951))))

invert(n)

Reciprocal of self.

EXAMPLES:

sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3))
sage: a.exactify()
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANExtensionElement'>

sage: c = b.invert(None); c
random (not uniquely represented)
-7/3*a^3 + 19/3*a^2 - 7*a - 9 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 and a in 1.
˓→724744871391589? + 1.573132184970987?*I
sage: c.generator() == b.generator() and c.field_element_value() * b.field_element_value() == 1
True

The parameter is ignored:

sage: b.invert("random").generator() == c.generator() and b.invert("random").field_element_value() == c.field_element_value()
True

is_complex()

Return True if the number field that defines this element is not real.

This does not imply that the element itself is definitely non-real, as in the example below.

EXAMPLES:

sage: rt2 = QQbar(sqrt(2))
sage: rtm3 = QQbar(sqrt(-3))
sage: x = rtm3 + rt2 - rtm3
sage: x.exactify()
sage: y = x._descr
sage: type(y)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: y.is_complex()
True
sage: x.imag() == 0
True

is_simple()

Check whether this descriptor represents a value with the same algebraic degree as the number field associated with the descriptor.

For ANExtensionElement elements, we check this by comparing the degree of the minimal polynomial to the degree of the field.

EXAMPLES:

sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: rt2b = rt3 + rt2 - rt3
sage: rt2.exactify()
sage: rt2._descr
a where a^2 - 2 = 0 and a in 1.414213562373095?
sage: rt2._descr.is_simple()
True
sage: rt2b.exactify()
sage: rt2b._descr
a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in -0.5176380902050415?
sage: rt2b._descr.is_simple()
False

minpoly()

Compute the minimal polynomial of this algebraic number.

EXAMPLES:

sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.
˓→exactify()
sage: type(v)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: v.minpoly()
x^2 - x - 1

neg(n)

Negation of self.

EXAMPLES:

sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3))
sage: a.exactify()
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: c = b.neg(None); c # random (not uniquely represented)
-1/3*a^3 + 1/3*a^2 - a - 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 and a in 1.
˓→724744871391589? + 1.573132184970987?*I
sage: c.generator() == b.generator() and c.field_element_value() + b.field_
˓→element_value() == 0
True

The parameter is ignored:

sage: b.neg("random").generator() == c.generator() and b.neg("random").field_
˓→element_value() == c.field_element_value()
True

norm(n)

Norm of self (square of complex absolute value)

EXAMPLES:

sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3))
sage: a.exactify()
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: b.norm(a)
<sage.rings.qqbar.ANUnaryExpr object at ...>

5.1. Field of Algebraic Numbers
rational_argument\((n)\)

If the argument of self is \(2\pi\) times some rational number in \([1/2, -1/2)\), return that rational; otherwise, return None.

EXAMPLES:

```python
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(3))
sage: a.exactify()
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: b.rational_argument(a) is None
True
sage: x = polygen(QQ)
sage: a = (x^4 + 1).roots(QQbar, multiplicities=False)[0]
sage: a.exactify()
sage: b = a._descr
sage: b.rational_argument(a)
-3/8
```

simplify\((n)\)

Compute an exact representation for this descriptor, in the smallest possible number field.

INPUT:

- \(n\) – The element of AA or QQbar corresponding to this descriptor.

EXAMPLES:

```python
sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: rt2b = rt3 + rt2 - rt3
sage: rt2b.exactify()
sage: rt2b._descr
a where a^2 - 2 = 0 and a in 1.414213562373095?
sage: rt2b._descr.simplify(rt2b)
a where a^2 - 2 = 0 and a in 1.414213562373095?
```

class sage.rings.qqbar.ANRational\((x)\)

Bases: ANDescr

The subclass of ANDescr that represents an arbitrary rational. This class is private, and should not be used directly.

abs\((n)\)

Absolute value of self.

EXAMPLES:

```python
sage: a = QQbar(3)
sage: b = a._descr
sage: b.abs(a)
3
```

angle()

Return a rational number \(q \in (-1/2, 1/2]\) such that self is a rational multiple of \(e^{2\pi i q}\). Always returns 0, since this element is rational.
EXAMPLES:

```
sage: QQbar(3)._descr.angle()
0
sage: QQbar(-3)._descr.angle()
0
sage: QQbar(0)._descr.angle()
0
```

exactify()

Calculate self exactly. Since self is a rational number, return self.

EXAMPLES:

```
sage: a = QQbar(1/3)._descr
sage: a.exactify() is a
True
```

generator()

Return an `AlgebraicGenerator` object associated to this element. Returns the trivial generator, since `self` is rational.

EXAMPLES:

```
sage: QQbar(0)._descr.generator()
Trivial generator
```

handle_sage_input(sib, coerce, is_qqbar)

Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always False, for rationals).

EXAMPLES:

```
sage: sage_input(QQbar(22/7), verify=True)
# Verified
QQbar(22/7)
sage: sage_input(-AA(3)/5, verify=True)
# Verified
AA(-3/5)
sage: sage_input(vector(AA, (0, 1/2, 1/3)), verify=True)
# Verified
vector(AA, [0, 1/2, 1/3])
sage: from sage.rings.qqbar import *
sage: from sage.misc.sage_input import SageInputBuilder
sage: sib = SageInputBuilder()
sage: rat = ANRational(9/10)
sage: rat.handle_sage_input(sib, False, True)
({call: {atomic:QQbar}({binop:/ {atomic:9} {atomic:10}})}, False)
```

invert(n)

`1/self`.

EXAMPLES:
\begin{verbatim}
sage: a = QQbar(3)
sage: b = a._descr
sage: b.invert(a)
1/3

\textbf{is_complex()}

Return False, since rational numbers are real

\textbf{EXAMPLES:}

\begin{verbatim}
sage: QQbar(1/7)._descr.is_complex()
False
\end{verbatim}

\textbf{is_simple()}

Checks whether this descriptor represents a value with the same algebraic degree as the number field associated with the descriptor.

This is always true for rational numbers.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: AA(1/2)._descr.is_simple()
True
\end{verbatim}

\textbf{minpoly()}

Return the min poly of self over \mathbb{Q}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: QQbar(7)._descr.minpoly()
x - 7
\end{verbatim}

\textbf{neg()}

Negation of self.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: a = QQbar(3)
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANRational'>
sage: b.neg(a)
-3
\end{verbatim}

\textbf{rational_argument()}

Return the argument of self divided by 2π, or None if this element is 0.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: QQbar(3)._descr.rational_argument(None)
0
sage: QQbar(-3)._descr.rational_argument(None)
1/2
sage: QQbar(0)._descr.rational_argument(None) is None
True
\end{verbatim}
\end{verbatim}
scale()

Return a rational number r such that self is equal to \(re^{2\pi i q} \) for some \(q \in (-1/2, 1/2] \). In other words, just return self as a rational number.

EXAMPLES:

```python
sage: QQbar(-3)._descr.scale()
-3
```

class `sage.rings.qqbar.ANRoot(poly, interval, multiplicity=1)`

Bases: `ANDescr`

The subclass of `ANDescr` that represents a particular root of a polynomial with algebraic coefficients. This class is private, and should not be used directly.

conjugate(n)

Complex conjugate of this ANRoot object.

EXAMPLES:

```python
sage: a = (x^2 + 23).roots(ring=QQbar, multiplicities=False)[0]
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANRoot'>
sage: c = b.conjugate(a); c
<sage.rings.qqbar.ANUnaryExpr object at ...>
sage: c.exactify()
-2*a + 1 where a^2 - a + 6 = 0 and a in 0.5000000000000000? - 2.
→ 397915761656360?*I
```

exactify()

Return either an ANRational or an ANExtensionElement with the same value as this number.

EXAMPLES:

```python
sage: from sage.rings.qqbar import ANRoot
sage: x = polygen(QQbar)
sage: two = ANRoot((x-2)*(x-sqrt(QQbar(2))), RIF(1.9, 2.1))
sage: two.exactify()
2
sage: strange = ANRoot(x^2 + sqrt(QQbar(3))*x - sqrt(QQbar(2)), RIF(-0, 1))
sage: strange.exactify()
a where a^8 - 6*a^6 + 5*a^4 - 12*a^2 + 4 = 0 and a in 0.6051012265139511? + 3.872983346207419?*I
```

handle_sage_input(sib, coerce, is_qqbar)

Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always True, for ANRoot).

EXAMPLES:

```python
sage: sage_input((AA(3)^(1/2))^(1/3), verify=True)
# Verified
R.<x> = AA[]
AA.polynomial_root(AA.common_polynomial(x^3 - AA.polynomial_root(AA.common_...
→ polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774))),→ RIF(RR(1.2009369551760025), RR(1.2009369551760027)))
```

5.1. Field of Algebraic Numbers 377
These two examples are too big to verify quickly. (Verification would create a field of degree 28.):

```
sage: sage_input((sqrt(AA(3))^(5/7))^(9/4))
R.<x> = AA[]
v1 = AA.polynomial_root(AA.common_polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))
v2 = v1*v1
v3 = AA.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), RIF(RR(1.4804728524798112), RR(1.4804728524798114)))
v4 = v3*v3
v5 = v4*v4
AA.polynomial_root(AA.common_polynomial(x^4 - v5*v5*v3), RIF(RR(2.4176921938267877), RR(2.4176921938267881)))
sage: sage_input((sqrt(QQbar(-7))^(5/7))^(9/4))
R.<x> = QQbar[]
v1 = QQbar.polynomial_root(AA.common_polynomial(x^2 + 7), CIF(RIF(RR(0), RIF(RR(0.8693488875796217), RR(0.86934888757962181)), CIF(RIF(RR(1.805221566145434), RR(1.8052215661454436))))))
v2 = v1*v1
v3 = QQbar.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), CIF(RIF(-RR(3.8954086044650786), -RR(3.8954086044650791)), CIF(RIF(RR(2.7639398015408925), RR(2.7639398015408929)), CIF(RIF(RR(1.8052215661454436), RR(1.8052215661454436)))))
R.<y> = QQbar.polynomial_root(AA.common_polynomial(y^3 - 5), CIF(RIF(-RR(0.85498797333834853), -RR(0.85498797333834842)), CIF(RIF(RR(1.4808826096823642), RR(1.4808826096823644))))
sage: from sage.rings.qqbar import *
sage: from sage.misc.sage_input import SageInputBuilder
sage: sib = SageInputBuilder()
sage: rt = ANRoot(x^3 - 2, RIF(1, 2)), verify=True)
```

Whether this is a root in \(\mathbb{Q} \) (rather than \(\mathbb{A} \)). Note that this may return True even if the root is actually real, as the second example shows; it does not trigger exact computation to see if the root is real.
EXAMPLES:

```python
sage: x = polygen(QQ)
sage: (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.is_complex()
False
sage: (x^2 - x - 1).roots(ring=QQbar, multiplicities=False)[1]._descr.is_complex()
True
```

refine_interval *(interval, prec)*

Takes an interval which is assumed to enclose exactly one root of the polynomial (or, with multiplicity=`k`, exactly one root of the $k-1$-st derivative); and a precision, in bits.

Tries to find a narrow interval enclosing the root using interval arithmetic of the given precision. (No particular number of resulting bits of precision is guaranteed.)

Uses a combination of Newton’s method (adapted for interval arithmetic) and bisection. The algorithm will converge very quickly if started with a sufficiently narrow interval.

EXAMPLES:

```python
sage: from sage.rings.qqbar import ANRoot
sage: x = polygen(AA)
sage: rt2 = ANRoot(x^2 - 2, RIF(0, 2))
sage: rt2.refine_interval(RIF(0, 2), 75)
1.4142135623730950488017?
```

class *sage.rings.qqbar.ANUnaryExpr*(arg, op)

Bases: *ANDescr*

Initialize this ANUnaryExpr.

EXAMPLES:

```python
sage: t = ~QQbar(sqrt(2)); type(t._descr) # indirect doctest
<class 'sage.rings.qqbar.ANUnaryExpr'>
```

exactify()

Trigger exact computation of self.

EXAMPLES:

```python
sage: v = (~QQbar(sqrt(2)))._descr
sage: type(v)
<class 'sage.rings.qqbar.ANUnaryExpr'>
sage: v.exactify()
-a where a^2 - 2 = 0 and a in 1.4142135623730950488017?
```

handle_sage_input(sib, coerce, is_qqbar)

Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always True for ANUnaryExpr).

EXAMPLES:

```python
sage: sage_input(-sqrt(AA(2)), verify=True)
# Verified
R.<x> = AA[]
```
Algebraic Numbers and Number Fields, Release 10.0

- AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))

sage: sage_input(~sqrt(AA(2)), verify=True)
Verified
R.<x> = AA[]
~AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))
sage: sage_input(sqrt(QQbar(-3)).conjugate(), verify=True)
Verified
R.<x> = QQbar[]
QQbar.polynomial_root(AA.common_polynomial(x^2 + 3), CIF(RIF(RR(0)), RIF(RR(1.7320508075688772), RR(1.7320508075688774))).conjugate()
sage: sage_input(QQbar.zeta(3).real(), verify=True)
Verified
R.<y> = QQ[]
QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RIF(RR(0.8660254037844386), RR(0.86602540378443871))).conjugate()
sage: sage_input(QQbar.zeta(3).imag(), verify=True)
Verified
R.<y> = QQ[]
QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RIF(RR(0.8660254037844386), RR(0.86602540378443871))).imag()
sage: sage_input(abs(sqrt(QQbar(-3))), verify=True)
Verified
R.<x> = QQbar[]
abs(QQbar.polynomial_root(AA.common_polynomial(x^2 + 3), CIF(RIF(RR(0)), RIF(RR(1.7320508075688772), RR(1.7320508075688774))))
sage: sage_input(sqrt(QQbar(-3)).norm(), verify=True)
Verified
R.<x> = QQbar[]
QQbar.polynomial_root(AA.common_polynomial(x^2 + 3), CIF(RIF(RR(0)), RIF(RR(1.7320508075688772), RR(1.7320508075688774))).norm()
sage: sage_input(QQbar(QQbar.zeta(3).real()), verify=True)
Verified
R.<y> = QQ[]
QQbar(QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RIF(RR(0.8660254037844386), RR(0.86602540378443871)))).real())

sage: from sage.rings.qqbar import *
sage: from sage.misc.sage_input import SageInputBuilder
sage: sib = SageInputBuilder()
sage: unexp = ANUnaryExpr(sqrt(AA(2)), '~~')
sage: unexp.handle_sage_input(sib, False, False)

(continues on next page)
is_complex()

Return whether or not this element is complex. Note that this is a data type check, and triggers no computations – if it returns False, the element might still be real, it just doesn’t know it yet.

EXAMPLES:

```python
sage: t = AA(sqrt(2))
sage: s = (-t)._descr
sage: s
<sage.rings.qqbar.ANUnaryExpr object at ...>
sage: s.is_complex()
False
sage: QQbar(-sqrt(2))._descr.is_complex()
True
```

class sage.rings.qqbar.AlgebraicField

Bases: Singleton, AlgebraicField_common, AlgebraicField

The field of all algebraic complex numbers.

algebraic_closure()

Return the algebraic closure of this field.

As this field is already algebraically closed, just returns self.

EXAMPLES:

```python
sage: QQbar.algebraic_closure()
Algebraic Field
```

completion(p, prec, extras={})

Return the completion of self at the place p.

Only implemented for $p = \infty$ at present.

INPUT:

* p – either a prime (not implemented at present) or `Infinity`
* prec – precision of approximate field to return
* extras – (optional) a dict of extra keyword arguments for the `RealField` constructor

EXAMPLES:

```python
sage: QQbar.completion(infinity, 500)
Complex Field with 500 bits of precision
sage: QQbar.completion(infinity, prec=53, extras={'type': 'RDF'})
Complex Double Field
sage: QQbar.completion(infinity, 53) is CC
```

(continues on next page)
True

```python
sage: QQbar.completion(3, 20)
Traceback (most recent call last):
...
NotImplementedError
```

construction()

Return a functor that constructs self (used by the coercion machinery).

EXAMPLES:

```python
sage: QQbar.construction()
(AlgebraicClosureFunctor, Rational Field)
```

gen

Return the \(n \)-th element of the tuple returned by `gens()`.

EXAMPLES:

```python
sage: QQbar.gen(0)
I
sage: QQbar.gen(1)
Traceback (most recent call last):
...
IndexError: n must be 0
```

gens()

Return a set of generators for this field.

As this field is not finitely generated over its prime field, we opt for just returning \(I \).

EXAMPLES:

```python
sage: QQbar.gens()
(I,)
```

ngens()

Return the size of the tuple returned by `gens()`.

EXAMPLES:

```python
sage: QQbar.ngens()
1
```

polynomial_root

Given a polynomial with algebraic coefficients and an interval enclosing exactly one root of the polynomial, constructs an algebraic real representation of that root.

The polynomial need not be irreducible, or even squarefree; but if the given root is a multiple root, its multiplicity must be specified. (IMPORTANT NOTE: Currently, multiplicity-\(k \) roots are handled by taking the \((k - 1)\)-st derivative of the polynomial. This means that the interval must enclose exactly one root of this derivative.)

The conditions on the arguments (that the interval encloses exactly one root, and that multiple roots match the given multiplicity) are not checked; if they are not satisfied, an error may be thrown (possibly later, when the algebraic number is used), or wrong answers may result.
Note that if you are constructing multiple roots of a single polynomial, it is better to use \texttt{QQbar}. \texttt{common_polynomial} to get a shared polynomial.

\textbf{EXAMPLES:}

\begin{verbatim}
from sage import QQbar

sage: x = polygen(QQbar)
sage: phi = QQbar.polynomial_root(x^2 - x - 1, RIF(0, 2)); phi
1.618033988749895?
sage: p = (x-1)^7 * (x-2)
sage: r = QQbar.polynomial_root(p, RIF(9/10, 11/10), multiplicity=7)
sage: r
1
1
sage: p = (x-phi)*(x-sqrt(QQbar(2)))
sage: r = QQbar.polynomial_root(p, RIF(1, 3/2))
sage: r
1.414213562373095?
\end{verbatim}

\textbf{random_element}(\texttt{poly_degree=2, *args, **kwds})

Return a random algebraic number.

\textbf{INPUT:}

- \texttt{poly_degree} - default: 2 - degree of the random polynomial over the integers of which the returned algebraic number is a root. This is not necessarily the degree of the minimal polynomial of the number. Increase this parameter to achieve a greater diversity of algebraic numbers, at a cost of greater computation time. You can also vary the distribution of the coefficients but that will not vary the degree of the extension containing the element.

- \texttt{args, kwds} - arguments and keywords passed to the random number generator for elements of \texttt{ZZ}, the integers. See \texttt{random_element()} for details, or see example below.

\textbf{OUTPUT:}

An element of \texttt{QQbar}, the field of algebraic numbers (see \texttt{sage.rings.qqbar}).

\textbf{ALGORITHM:}

A polynomial with degree between 1 and \texttt{poly_degree}, with random integer coefficients is created. A root of this polynomial is chosen at random. The default degree is 2 and the integer coefficients come from a distribution heavily weighted towards 0, ±1, ±2.

\textbf{EXAMPLES:}

\begin{verbatim}
from sage import QQbar

sage: a = QQbar.random_element()
sage: a
random
0.2626138748742799? + 0.8769062830975992?*I
sage: a in QQbar
True

sage: b = QQbar.random_element(poly_degree=20)
sage: b
random
-0.8642649077479498? - 0.5995098147478391?*I
sage: b in QQbar
True
\end{verbatim}

Parameters for the distribution of the integer coefficients of the polynomials can be passed on to the random element method for integers. For example, current default behavior of this method returns zero about 15%
of the time; if we do not include zero as a possible coefficient, there will never be a zero constant term, and thus never a zero root.

```sage
z = [QQbar.random_element(x=1, y=10) for _ in range(20)]
sage: QQbar(0) in z
False
```

If you just want real algebraic numbers you can filter them out. Using an odd degree for the polynomials will ensure some degree of success.

```sage
r = []
sage: while len(r) < 3:
    x = QQbar.random_element(poly_degree=3)
    if x in AA:
        r.append(x)
sage: (len(r) == 3) and all(z in AA for z in r)
True
```

\texttt{zeta}(n=4)
\begin{itemize}
 \item Return a primitive \(n \) ’th root of unity, specifically \(\exp(2 \pi i/n) \).
\end{itemize}

\textbf{INPUT:}
\begin{itemize}
 \item \(n \) (integer) – default 4
\end{itemize}

\textbf{EXAMPLES:}

```sage
sage: QQbar.zeta(1)
1
sage: QQbar.zeta(2)
-1
sage: QQbar.zeta(3)
-0.500000000000000? + 0.866025403784439?*I
sage: QQbar.zeta(4)
I
sage: QQbar.zeta()
I
sage: QQbar.zeta(5)
0.3090169943749474? + 0.9510565162951536?*I
sage: QQbar.zeta(3000)
0.999997806755380? + 0.002094393571219374?*I
```

\textbf{class sage.rings.qqbar.AlgebraicField_common}
\begin{itemize}
 \item Common base class for the classes \texttt{AlgebraicRealField} and \texttt{AlgebraicField}.
\end{itemize}

\textbf{characteristic()}
\begin{itemize}
 \item Return the characteristic of this field.

 Since this class is only used for fields of characteristic 0, this always returns 0.
\end{itemize}

\textbf{EXAMPLES:}

```sage
sage: AA.characteristic()
0
```
common_polynomial(poly)
Given a polynomial with algebraic coefficients, returns a wrapper that caches high-precision calculations and factorizations. This wrapper can be passed to polynomial_root in place of the polynomial.

Using common_polynomial makes no semantic difference, but will improve efficiency if you are dealing with multiple roots of a single polynomial.

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: p = AA.common_polynomial(x^2 - x - 1)
sage: phi = AA.polynomial_root(p, RIF(1, 2))
sage: tau = AA.polynomial_root(p, RIF(-1, 0))
sage: phi + tau == 1
True
sage: phi * tau == -1
True

sage: x = polygen(SR)
sage: p = (x - sqrt(-5)) * (x - sqrt(3)); p
x^2 + (-sqrt(3) - sqrt(-5))*x + sqrt(3)*sqrt(-5)
sage: p = QQbar.common_polynomial(p)
sage: a = QQbar.polynomial_root(p, CIF(RIF(-0.1, 0.1), RIF(2, 3))); a
0.?e-18 + 2.236067977499790?*I
sage: b = QQbar.polynomial_root(p, RIF(1, 2)); b
1.732050807568878?
```

These “common polynomials” can be shared between real and complex roots:

```
sage: p = AA.common_polynomial(x^3 - x - 1)
sage: r1 = AA.polynomial_root(p, RIF(1.3, 1.4)); r1
1.324717957244746?
sage: r2 = QQbar.polynomial_root(p, CIF(RIF(-0.7, -0.6), RIF(0.5, 0.6))); r2
-0.6623589786223730? + 0.5622795120623013?*I
```

default_interval_prec()
Return the default interval precision used for root isolation.

EXAMPLES:

```
sage: AA.default_interval_prec()
64
```

options = Current options for AlgebraicField - display_format: decimal

order()
Return the cardinality of self.
Since this class is only used for fields of characteristic 0, always returns Infinity.

EXAMPLES:

```
sage: QQbar.order()
+Infinity
```
class sage.rings.qqbar.AlgebraicGenerator(field, root)

Bases: SageObject

An AlgebraicGenerator represents both an algebraic number \(\alpha \) and the number field \(\mathbb{Q}[\alpha] \). There is a single AlgebraicGenerator representing \(\mathbb{Q} \) (with \(\alpha = 0 \)).

The AlgebraicGenerator class is private, and should not be used directly.

conjugate()

If this generator is for the algebraic number \(\alpha \), return a generator for the complex conjugate of \(\alpha \).

EXAMPLES:

```python
sage: from sage.rings.qqbar import AlgebraicGenerator
sage: x = polygen(QQ); f = x^4 + x + 17
sage: nf = NumberField(f,name='a')
```

```python
sage: b = f.roots(QQbar)[0][0]
sage: root = b._descr
sage: gen = AlgebraicGenerator(nf, root)
sage: gen.conjugate()
```

```python
Number Field in a with defining polynomial x^4 + x + 17 with a in -1.436449974830917? + 1.374535713065812?*I
```

field()

Return the number field attached to self.

EXAMPLES:

```python
sage: from sage.rings.qqbar import qq_generator
sage: qq_generator.field()
```

Rational Field

is_complex()

Return True if this is a generator for a non-real number field.

EXAMPLES:

```python
sage: z7 = QQbar.zeta(7)
sage: g = z7._descr._generator
sage: g.is_complex()
```

```python
True
```

```python
sage: from sage.rings.qqbar import ANRoot, AlgebraicGenerator
sage: y = polygen(QQ, 'y')
sage: x = polygen(QQbar)
sage: nf = NumberField(y^2 - y - 1, name='a', check=False)
sage: root = ANRoot(x^2 - x - 1, RIF(1, 2))
sage: gen = AlgebraicGenerator(nf, root)
sage: gen.is_complex()
```

```python
False
```

is_trivial()

Return true iff this is the trivial generator (alpha == 1), which does not actually extend the rationals.

EXAMPLES:
pari_field()
Return the PARI field attached to this generator.

EXAMPLES:

sage: from sage.rings.qqbar import qq_generator
sage: qq_generator.pari_field()
Traceback (most recent call last):
 ...
ValueError: No PARI field attached to trivial generator

root_as_algebraic()
Return the root attached to self as an algebraic number.

EXAMPLES:

sage: t = sage.rings.qqbar.qq_generator.root_as_algebraic(); t
1
sage: t.parent()
Algebraic Real Field

super_poly(super, checked=None)
Given a generator gen and another generator super, where super is the result of a tree of union() operations where one of the leaves is gen, gen.super_poly(super) returns a polynomial expressing the value of gen in terms of the value of super (except that if gen is qq_generator, super_poly() always returns None.)

EXAMPLES:

sage: from sage.rings.qqbar import AlgebraicGenerator, ANRoot, qq_generator
sage: _.<y> = QQ['y']
...
Number Field in a with defining polynomial y^2 - 2 with a in 1.414213562373095?

(continues on next page)
Number Field in a with defining polynomial y^2 - 3 with a in 1.732050807568878?
\[\text{sage: } \text{gen2}_3 = \text{gen2} \cup \text{gen3}\]
\[\text{sage: } \text{gen2}_3\]
Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in -1.
\[\sim 931851652578137?\]
\[\text{sage: } \text{qq_generator}.\text{super_poly}(\text{gen2}) \text{ is None}\]
True
\[\text{sage: } \text{gen2}.\text{super_poly}(\text{gen2}_3)\]
-a^3 + 3*a
\[\text{sage: } \text{gen3}.\text{super_poly}(\text{gen2}_3)\]
a^2 - 2

\textbf{union}(other)

Given generators alpha and beta, alpha.union(beta) gives a generator for the number field \(\mathbb{Q}[\alpha][\beta]\).

\textbf{EXAMPLES:}

\[\text{sage: } \text{from sage.rings.qqbar import ANRoot, AlgebraicGenerator, qq_generator}\]
\[\text{sage: } .<y> = \text{QQ}[y]\]
\[\text{sage: } x = \text{polygen(QQbar)}\]
\[\text{sage: } \text{nf2} = \text{NumberField}(y^2 - 2, \text{name='a', check=False})\]
\[\text{sage: } \text{root2} = \text{ANRoot}(x^2 - 2, \text{RIF(1, 2)})\]
\[\text{sage: } \text{gen2} = \text{AlgebraicGenerator}(\text{nf2}, \text{root2})\]
\[\text{sage: } \text{gen2}\]
Number Field in a with defining polynomial y^2 - 2 with a in 1.414213562373095?
\[\text{sage: } \text{nf3} = \text{NumberField}(y^2 - 3, \text{name='a', check=False})\]
\[\text{sage: } \text{root3} = \text{ANRoot}(x^2 - 3, \text{RIF(1, 2)})\]
\[\text{sage: } \text{gen3} = \text{AlgebraicGenerator}(\text{nf3}, \text{root3})\]
\[\text{sage: } \text{gen3}\]
Number Field in a with defining polynomial y^2 - 3 with a in 1.732050807568878?
\[\text{sage: } \text{gen2}.\text{union}(\text{qq_generator}) \text{ is gen2}\]
True
\[\text{sage: } \text{qq_generator}.\text{union}(\text{gen3}) \text{ is gen3}\]
True
\[\text{sage: } \text{gen2}.\text{union}(\text{gen3})\]
Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in -1.
\[\sim 931851652578137?\]

class \text{sage.rings.qqbar.AlgebraicGeneratorRelation}(child1, child1_poly, child2, child2_poly, parent)

Bases: \text{SageObject}

A simple class for maintaining relations in the lattice of algebraic extensions.

class \text{sage.rings.qqbar.AlgebraicNumber}(x)

Bases: \text{AlgebraicNumber_base}

The class for algebraic numbers (complex numbers which are the roots of a polynomial with integer coefficients). Much of its functionality is inherited from \text{AlgebraicNumber_base}.

\textbf{_richcmp_}(other, op)

Compare two algebraic numbers, lexicographically. (That is, first compare the real components; if the real components are equal, compare the imaginary components.)

\textbf{EXAMPLES:}
One problem with this lexicographic ordering is the fact that if two algebraic numbers have the same real component, that real component has to be compared for exact equality, which can be a costly operation. For the special case where both numbers have the same minimal polynomial, that cost can be avoided, though (see github issue #16964):

```
sage: x = polygen(ZZ)
sage: p = 69721504*x^8 + 251777664*x^6 + 329532012*x^4 + 184429548*x^2 + 37344321
sage: sorted(p.roots(QQbar, False))
[-0.0221204634374361 - 1.090991904211621*I, -0.0221204634374361 + 1.090991904211621*I, -0.0088604911480535*I, 0.7598602580415435 - 0.8088604911480535*I, 0.7598602580415435 + 0.8088604911480535*I, -0.0221204634374361 - 1.090991904211621*I, -0.0221204634374361 + 1.090991904211621*I]
```

It also works for comparison of conjugate roots even in a degenerate situation where many roots have the same real part. In the following example, the polynomial \(p_2 \) is irreducible and all its roots have real part equal to 1:

```
sage: p1 = x^8 + 74*x^7 + 2300*x^6 + 38928*x^5 + 388193*x^4 + 2295312*x^3 + 7613898*x^2 + 12066806*x + 5477001
sage: p2 = p1((x-1)^2)
sage: sum(1 for r in p2.roots(CC, False) if abs(r.real() - 1) < 0.0001)
16
sage: r1 = QQbar.polynomial_root(p2, CIF(1, (-4.1,-4.0)))
sage: r2 = QQbar.polynomial_root(p2, CIF(1, (4.0, 4.1)))
sage: all([r1<r2, r1==r1, r2==r2, r2>r1])
True
```

Though, comparing roots which are not equal or conjugate is much slower because the algorithm needs to check the equality of the real parts:

```
sage: sorted(p2.roots(QQbar, False))  # long time - 3 secs
```

5.1. Field of Algebraic Numbers
complex_exact(field)

Given a ComplexField, return the best possible approximation of this number in that field. Note that if either component is sufficiently close to the halfway point between two floating-point numbers in the corresponding RealField, then this will trigger exact computation, which may be very slow.

EXAMPLES:

```
sage: a = QQbar.zeta(9) + QQbar(I) + QQbar.zeta(9).conjugate(); a
1.53208886237957? + 1.000000000000000?*I
sage: a.complex_exact(CIF)
1.53208886237957? + 1*I
```

complex_number(field)

Given the complex field field compute an accurate approximation of this element in that field.

The approximation will be off by at most two ulp’s in each component, except for components which are very close to zero, which will have an absolute error at most $2^{-\text{prec}+1}$ where \texttt{prec} is the precision of the field.

EXAMPLES:

```
sage: a = QQbar.zeta(5)
sage: a.complex_number(CC)
0.309016994374947 + 0.951056516295154*I
sage: b = QQbar(2).sqrt() + QQbar(3).sqrt() * QQbar.gen()
sage: b.complex_number(ComplexField(128))
1.4142135623730950488016887242096980786 + 1.˓→07320508075688772935274463415058723669*I
```

conjugate()

Return the complex conjugate of self.

EXAMPLES:

```
sage: QQbar(3 + 4*I).conjugate()
3 - 4*I
sage: QQbar.zeta(7).conjugate()
0.6234898018587335? - 0.7818314824680299?*I
sage: QQbar.zeta(7) + QQbar.zeta(7).conjugate()
1.246979603717467? + 0.?e-18*I
```

imag()

Return the imaginary part of self.

EXAMPLES:

```
sage: QQbar.zeta(7).imag()
0.7818314824680299?
```

interval_exact(field)

Given a ComplexIntervalField, compute the best possible approximation of this number in that field. Note that if either the real or imaginary parts of this number are sufficiently close to some floating-point number (and, in particular, if either is exactly representable in floating-point), then this will trigger exact computation, which may be very slow.

EXAMPLES:
sage: a = QQbar(I).sqrt(); a
0.7071067811865475? + 0.7071067811865475?*I
sage: a.interval_exact(CIF)
0.7071067811865475? + 0.7071067811865475?*I
sage: b = QQbar((1+I)*sqrt(2)/2)
sage: (a - b).interval(CIF)
0.?e-19 + 0.?e-18*I
sage: (a - b).interval_exact(CIF)
0

multiplicative_order()

Compute the multiplicative order of this algebraic number.

That is, find the smallest positive integer n such that $x^n = 1$. If there is no such n, returns $+\infty$.

We first check that $\lvert x \rvert$ is very close to 1. If so, we compute x exactly and examine its argument.

EXAMPLES:

```
sage: QQbar(-sqrt(3)/2 - I/2).multiplicative_order()
12
sage: QQbar(1).multiplicative_order()
1
sage: QQbar(-I).multiplicative_order()
4
sage: QQbar(707/1000 + 707/1000*I).multiplicative_order()
+Infinity
sage: QQbar(3/5 + 4/5*I).multiplicative_order()
+Infinity
```

norm()

Return $\text{self} \times \text{self.conjugate()}$.

This is the algebraic definition of norm, if we view QQbar as AA[I].

EXAMPLES:

```
sage: QQbar(3 + 4*I).norm()
25
sage: type(QQbar(I).norm())
<class 'sage.rings.qqbar.AlgebraicReal'>
sage: QQbar.zeta(1007).norm()
1.000000000000000?
```

rational_argument()

Return the argument of self, divided by 2π, as long as this result is rational. Otherwise returns None. Always triggers exact computation.

EXAMPLES:

```
sage: QQbar((1+I)*(sqrt(2)+sqrt(5))).rational_argument()
1/8
sage: QQbar(-1 + I*sqrt(3)).rational_argument()
1/3
sage: QQbar(-1 - I*sqrt(3)).rational_argument()
```

(continues on next page)
-1/3

\[
\text{sage: } \text{QQbar}(3+4*I).\text{rational_argument()} \text{ is None}
\]

True

\[
\text{sage: } (\text{QQbar}(2)**(1/5) * \text{QQbar.zeta}(7)**2).\text{rational_argument()} \# \text{long time}
\]

2/7

\[
\text{sage: } (\text{QQbar.zeta}(73)**5).\text{rational_argument()}
\]

5/73

\[
\text{sage: } (\text{QQbar.zeta}(3)^{65536}).\text{rational_argument()}
\]

1/3

\text{real()}

Return the real part of self.

EXAMPLES:

\[
\text{sage: } \text{QQbar.zeta}(5).\text{real()}
\]

0.3090169943749474?

\text{class sage.rings.qqbar.AlgebraicNumberPowQQAction(G, S)}

Bases: Action

Implement powering of an algebraic number (an element of QQbar or AA) by a rational.

This is always a right action.

INPUT:

- \(G\) – must be QQ
- \(S\) – the parent on which to act, either AA or QQbar.

\text{Note: } To compute \(x^\frac{a}{b}\), we take the \(b\)'th root of \(x\); then we take that to the \(a\)'th power. If \(x\) is a negative algebraic real and \(b\) is odd, take the real \(b\)'th root; otherwise take the principal \(b\)'th root.

EXAMPLES:

In QQbar:

\[
\text{sage: } \text{QQbar}(2)^{(1/2)}
\]

1.414213562373095?

\[
\text{sage: } \text{QQbar}(8)^{(2/3)}
\]

4

\[
\text{sage: } \text{QQbar}(8)^{(2/3)} == 4
\]

True

\[
\text{sage: } x = \text{polygen(QQbar)}
\]

\[
\text{sage: } \text{phi} = \text{QQbar.polynomial_root}(x^2 - x - 1, \text{RIF}(1, 2))
\]

\[
\text{sage: } \text{tau} = \text{QQbar.polynomial_root}(x^2 - x - 1, \text{RIF}(-1, 0))
\]

\[
\text{sage: } \text{rt5} = \text{QQbar}(5)^{(1/2)}
\]

\[
\text{sage: } \text{phi}^{10} / \text{rt5}
\]

55.00363612324742?

\[
\text{sage: } \text{tau}^{10} / \text{rt5}
\]

0.003636123247413266?

\[
\text{sage: } (\text{phi}^{10} - \text{tau}^{10}) / \text{rt5}
\]

55.00000000000000?
sage: (phi^10 - tau^10) / rt5 == fibonacci(10)
True
sage: (phi^50 - tau^50) / rt5 == fibonacci(50)
True
sage: QQbar(-8)^(1/3)
1.000000000000000? + 1.732050807568878?*I
sage: (QQbar(-8)^(1/3))^3
-8
sage: QQbar(32)^(1/5)
2
sage: a = QQbar.zeta(7)^(1/3); a
0.9555728057861407? + 0.2947551744109043?*I
sage: a == QQbar.zeta(21)
True
sage: QQbar.zeta(7)^6
0.6234898018587335? - 0.7818314824680299?*I
sage: (QQbar.zeta(7)^6)^(1/3) * QQbar.zeta(21)
1.000000000000000? + 0.?e-17*I

In AA:

sage: AA(2)^(1/2)
1.414213562373095?
sage: AA(8)^(2/3)
4
sage: AA(8)^(2/3) == 4
True
sage: x = polygen(AA)
sage: phi = AA.polynomial_root(x^2 - x - 1, RIF(0, 2))
sage: tau = AA.polynomial_root(x^2 - x - 1, RIF(-2, 0))
sage: rt5 = AA(5)^(1/2)
sage: phi^10 / rt5
55.00363612324742?
sage: tau^10 / rt5
0.003636123247413266?
sage: (phi^10 - tau^10) / rt5 == fibonacci(10)
True
sage: (phi^50 - tau^50) / rt5 == fibonacci(50)
True

class sage.rings.qqbar.AlgebraicNumber_base(parent, x)
Bases: FieldElement

This is the common base class for algebraic numbers (complex numbers which are the zero of a polynomial in \(\mathbb{Z}[x] \)) and algebraic reals (algebraic numbers which happen to be real).

AlgebraicNumber objects can be created using QQbar (== AlgebraicNumberField()), and AlgebraicReal objects can be created using AA (== AlgebraicRealField()). They can be created either by coercing a rational or a symbolic expression, or by using the QQbar.polynomial_root() or AA.polynomial_root() method to construct a particular root of a polynomial with algebraic coefficients. Also, AlgebraicNumber and AlgebraicReal are closed under addition, subtraction, multiplication, division (except by 0), and rational powers (including roots), except that for a negative AlgebraicReal, taking a power with an even denominator

5.1. Field of Algebraic Numbers
returns an `AlgebraicNumber` instead of an `AlgebraicReal`.

`AlgebraicNumber` and `AlgebraicReal` objects can be approximated to any desired precision. They can be compared exactly; if the two numbers are very close, or are equal, this may require exact computation, which can be extremely slow.

As long as exact computation is not triggered, computation with algebraic numbers should not be too much slower than computation with intervals. As mentioned above, exact computation is triggered when comparing two algebraic numbers which are very close together. This can be an explicit comparison in user code, but the following list of actions (not necessarily complete) can also trigger exact computation:

- Dividing by an algebraic number which is very close to 0.
- Using an algebraic number which is very close to 0 as the leading coefficient in a polynomial.
- Taking a root of an algebraic number which is very close to 0.

The exact definition of “very close” is subject to change; currently, we compute our best approximation of the two numbers using 128-bit arithmetic, and see if that’s sufficient to decide the comparison. Note that comparing two algebraic numbers which are actually equal will always trigger exact computation, unless they are actually the same object.

EXAMPLES:

```sage
sage: sqrt(QQbar(2))
1.414213562373095?

sage: sqrt(QQbar(2))^2 == 2
True

sage: x = polygen(QQbar)
sage: phi = QQbar.polynomial_root(x^2 - x - 1, RIF(1, 2))
sage: phi
1.618033988749895?

sage: phi^2 == phi+1
True

sage: AA(sqrt(65537))
256.0019531175495?
```

as_number_field_element *(minimal=False, embedded=False, prec=53)*

Return a number field containing this value, a representation of this value as an element of that number field, and a homomorphism from the number field back to `AA` or `QQbar`.

INPUT:

- `minimal` – Boolean (default: False). Whether to minimize the degree of the extension.
- `embedded` – Boolean (default: False). Whether to make the NumberField embedded.
- `prec` – integer (default: 53). The number of bit of precision to guarantee finding real roots.

This may not return the smallest such number field, unless `minimal=True` is specified.

To compute a single number field containing multiple algebraic numbers, use the function `number_field_elements_from_algebraics` instead.

EXAMPLES:

```sage
sage: QQbar(sqrt(8)).as_number_field_element()
(Number Field in a with defining polynomial y^2 - 2, 2*a, Ring morphism:
    From: Number Field in a with defining polynomial y^2 - 2
    To:   Algebraic Real Field)
```
Defn: a |--> 1.414213562373095?

\[
\text{sage: } x = \text{polygen}(\mathbb{Z}) \\
\text{sage: } p = x^3 + x^2 + x + 17 \\
\text{sage: } (rt,_) = p.\text{roots}\left(\text{ring} = \mathbb{A}A, \text{multiplicities} = \text{False}\right); \text{rt} \\
\quad -2.804642726932742? \\
\text{sage: } (nf, elt, hom) = rt.\text{as_number_field_element}() \\
\text{sage: } nf, elt, hom \\
\quad (\text{Number Field in } a \text{ with defining polynomial } y^3 - 2y^2 - 31y - 50, \text{a}^2 - 5\text{a} - 19, \text{Ring morphism:} \text{From: Number Field in } a \text{ with defining polynomial } y^3 - 2y^2 - 31y - 50 \text{To: Algebraic Real Field} \text{Defn: a |--> 7.237653139801104?}) \\
\text{sage: } elt == rt \\
\quad False \\
\text{sage: } AA(elt) \\
\quad \text{ValueError: need a real or complex embedding to convert a non rational element} \\
\quad \text{of a number field into an algebraic number} \\
\text{sage: } hom(elt) == rt \\
\quad True \\
\text{sage: } elt == rt \\
\quad True \\
\text{sage: } AA(elt) \\
\quad -2.804642726932742? \\
\text{sage: } RR(elt) \\
\quad -2.804642726932742?
\]

Creating an element of an embedded number field:

\[
\text{sage: } (nf, elt, hom) = rt.\text{as_number_field_element}(\text{embedded} = \text{True}) \\
\text{sage: } nf.\text{coerce_embedding}() \\
\quad \text{Generic morphism:} \text{From: Number Field in } a \text{ with defining polynomial } y^3 - 2y^2 - 31y - 50 \text{ with}_a = 7.237653139801104? \text{To: Algebraic Real Field} \text{Defn: a -> 7.237653139801104?} \\
\text{sage: } elt \\
\quad a^2 - 5a - 19 \\
\text{sage: } elt.\text{parent}() == nf \\
\quad True \\
\text{sage: } hom(elt).\text{parent}() \\
\quad \text{Algebraic Real Field} \\
\text{sage: } hom(elt) == rt \\
\quad True \\
\text{sage: } elt == rt \\
\quad True \\
\text{sage: } AA(elt) \\
\quad -2.804642726932742? \\
\text{sage: } RR(elt) \\
\quad -2.804642726932742? \\
\]

A complex algebraic number as an element of an embedded number field:

\[
\text{sage: } \text{num} = \text{QQbar}(\sqrt{2} + 3^{(1/3)}*I) \\
\]

5.1. Field of Algebraic Numbers 395
We see an example where we do not get the minimal number field unless we specify minimal=True:

\[
\begin{align*}
\text{sage: } & \text{rt2 = AA(sqrt(2))} \\
\text{sage: } & \text{rt3 = AA(sqrt(3))} \\
\text{sage: } & \text{rt3b = rt2 + rt3 - rt2} \\
\text{sage: } & \text{rt3b.as_number_field_element()} \\
& \text{(Number Field in a with defining polynomial y^4 - 4*y^2 + 1, a^2 - 2, Ring morphism: From: Number Field in a with defining polynomial y^4 - 4*y^2 + 1 To: Algebraic Real Field Defn: a |--> -1.931851652578137?)} \\
\text{sage: } & \text{rt3b.as_number_field_element(minimal=True)} \\
& \text{(Number Field in a with defining polynomial y^2 - 3, a, Ring morphism: From: Number Field in a with defining polynomial y^2 - 3 To: Algebraic Real Field Defn: a |--> 1.732050807568878?)}
\end{align*}
\]

degree()

Return the degree of this algebraic number (the degree of its minimal polynomial, or equivalently, the degree of the smallest algebraic extension of the rationals containing this number).

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{QQbar(5/3).degree()} \\
& 1 \\
\text{sage: } & \text{sqrt(QQbar(2)).degree()} \\
& 2 \\
\text{sage: } & \text{QQbar(17).nth_root(5).degree()} \\
& 5 \\
\text{sage: } & \text{sqrt(3+sqrt(QQbar(8))).degree()} \\
& 2
\end{align*}
\]

exactify()

Compute an exact representation for this number.

EXAMPLES:

\[
\begin{align*}
\text{sage: } & \text{two = QQbar(4).nth_root(4)^2} \\
\text{sage: } & \text{two} \\
& 2.000000000000000? \\
\text{sage: } & \text{two.exactify()} \\
\text{sage: } & \text{two} \\
& 2
\end{align*}
\]

interval(field)

Given an interval (or ball) field (real or complex, as appropriate) of precision \(p \), compute an interval rep-
representation of self with \texttt{diameter()} at most \(2^{-p}\); then round that representation into the given field. Here \texttt{diameter()} is relative diameter for intervals not containing 0, and absolute diameter for intervals that do contain 0; thus, if the returned interval does not contain 0, it has at least \(p - 1\) good bits.

EXAMPLES:

```
sage: RIF64 = RealIntervalField(64)
sage: x = AA(2).sqrt()
sage: y = x*x
sage: y = 1000 * y - 999 * y
sage: y.interval_fast(RIF64)
2.000000000000000000?

sage: y.interval(RIF64)
2.000000000000000000?

sage: CIF64 = ComplexIntervalField(64)
sage: x = QQbar.zeta(11)
sage: x.interval_fast(CIF64)
0.8412535328311811689? + 0.5406408174555975821?*I

sage: x.interval(CIF64)
0.8412535328311811689? + 0.5406408174555975822?*I

sage: x.interval(CBF) # abs tol 1e-16
[0.8412535328311812 +/- 3.12e-17] + [0.5406408174555976 +/- 1.79e-17]*I
```

The following implicitly use this method:

```
sage: RIF(AA(5).sqrt())
2.236067977499790?

sage: AA(-5).sqrt().interval(RIF)
Traceback (most recent call last):
...  
TypeError: unable to convert 2.236067977499790*I to real interval
```

interval_diameter\((diam)\)

Compute an interval representation of self with \texttt{diameter()} at most \(diam\). The precision of the returned value is unpredictable.

EXAMPLES:

```
sage: AA(2).sqrt().interval_diameter(1e-10)
1.4142135623730950488?

sage: AA(2).sqrt().interval_diameter(1e-30)
1.41421356237309504880168872420969807857?

sage: QQbar(2).sqrt().interval_diameter(1e-10)
1.4142135623730950488?

sage: QQbar(2).sqrt().interval_diameter(1e-30)
1.41421356237309504880168872420969807857?
```

interval_fast\((field)\)

Given a \texttt{RealIntervalField} or \texttt{ComplexIntervalField}, compute the value of this number using interval arithmetic of at least the precision of the field, and return the value in that field. (More precision may be used in the computation.) The returned interval may be arbitrarily imprecise, if this number is the result of a sufficiently long computation chain.

EXAMPLES:

5.1. Field of Algebraic Numbers 397
sage: x = AA(2).sqrt()
sage: x.interval_fast(RIF)
1.414213562373095?
sage: x.interval_fast(RealIntervalField(200))
1.414213562373095048801688724209698078569671875376948073176680?
sage: x = QQbar(I).sqrt()
sage: x.interval_fast(CIF)
0.7071067811865475? + 0.7071067811865475?*I
sage: x.interval_fast(RIF)
Traceback (most recent call last):
...
TypeError: unable to convert complex interval 0.7071067811865475244? + 0.
˓→7071067811865475244?*I to real interval

is_integer()

Return True if this number is a integer.

EXAMPLES:

sage: QQbar(2).is_integer()
True
sage: QQbar(1/2).is_integer()
False

is_square()

Return whether or not this number is square.

OUTPUT:
(boolean) True in all cases for elements of QQbar; True for non-negative elements of AA; otherwise False

EXAMPLES:

sage: AA(2).is_square()
True
sage: AA(-2).is_square()
False
sage: QQbar(-2).is_square()
True
sage: QQbar(I).is_square()
True

minpoly()

Compute the minimal polynomial of this algebraic number. The minimal polynomial is the monic polynomial of least degree having this number as a root; it is unique.

EXAMPLES:

sage: QQbar(4).sqrt().minpoly()
x - 2
sage: ((QQbar(2).nth_root(4))^2).minpoly()
x^2 - 2
sage: v = sqrt(QQbar(2)) + sqrt(QQbar(3)); v
3.146264369941973?
sage: p = v.minpoly(); p
(continues on next page)
\[x^4 - 10x^2 + 1 \]

```
sage: p(RR(v.real()))
1.31006316905768e-14
```

\textbf{nth_root}(n, all=False)

Return the \(n \)-th root of this number.

\textbf{INPUT:}

- \texttt{all} - bool (default: \text{False}). If \text{True}, return a list of all \(n \)-th roots as complex algebraic numbers.

\textbf{Warning:} Note that for odd \(n \), \text{all=`False`} and negative real numbers, \texttt{AlgebraicReal} and \texttt{AlgebraicNumber} values give different answers: \texttt{AlgebraicReal} values prefer real results, and \texttt{AlgebraicNumber} values return the principal root.

\textbf{EXAMPLES:}

```
sage: AA(-8).nth_root(3)
-2
sage: QQbar(-8).nth_root(3)
1.000000000000000? + 1.732050807568878?*I
sage: QQbar.zeta(12).nth_root(15)
0.9993908270190957? + 0.03489949670250097?*I
```

You can get all \(n \)-th roots of algebraic numbers:

```
sage: AA(-8).nth_root(3, all=True)
[1.000000000000000? + 1.732050807568878?*I,
 -2.000000000000000? + 0.?e-18*I,
 1.000000000000000? - 1.732050807568878?*I]
sage: QQbar(1+I).nth_root(4, all=True)
[1.069553932363986? + 0.2127475047267431?*I,
 -0.2127475047267431? + 1.069553932363986?*I,
 -1.069553932363986? - 0.2127475047267431?*I,
 0.2127475047267431? - 1.069553932363986?*I]
```

\textbf{radical_expression()}

Attempt to obtain a symbolic expression using radicals. If no exact symbolic expression can be found, the algebraic number will be returned without modification.

\textbf{EXAMPLES:}

```
sage: AA(1/sqrt(5)).radical_expression()
sqrt(1/5)
sage: AA(sqrt(5 + sqrt(5))).radical_expression()
sqrt(sqrt(5) + 5)
sage: QQbar.zeta(5).radical_expression()
1/4*sqrt(5) + 1/2*sqrt(-1/2*sqrt(5) - 5/2) - 1/4
sage: a = QQ[x](x^7 - x - 1).roots(AA, False)[0]
sage: a.radical_expression()
1.112775684278706?
```
sage: a.radical_expression().parent() == SR
False
sage: a = sorted(QQ[x](x^7-x-1).roots(QQbar, False), key=imag)[0]
sage: a.radical_expression()
-0.3636235193291805? - 0.9525611952610331?*I
sage: QQbar.zeta(5).imag().radical_expression()
1/2*sqrt(1/2*sqrt(5) + 5/2)
sage: AA(5/3).radical_expression()
5/3
sage: AA(5/3).radical_expression().parent() == SR
True
sage: QQbar(0).radical_expression()
0

\textbf{simplify()}

Compute an exact representation for this number, in the smallest possible number field.

EXAMPLES:

\begin{verbatim}
sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: rt2b = rt3 + rt2 - rt3
dsage: rt2b.exactify()
sage: rt2b._exact_value()
a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in -0.5176380902050415?
sage: rt2b.simplify()
sage: rt2b._exact_value()
a where a^2 - 2 = 0 and a in 1.414213562373095?
\end{verbatim}

\textbf{sqrt(all=False, extend=True)}

Return the square root(s) of this number.

INPUT:

- \texttt{extend} - bool (default: True); ignored if self is in QQbar, or positive in AA. If self is negative in AA, do the following: if True, return a square root of self in QQbar, otherwise raise a ValueError.
- \texttt{all} - bool (default: False); if True, return a list of all square roots. If False, return just one square root, or raise an ValueError if self is a negative element of AA and extend=False.

OUTPUT:

Either the principal square root of self, or a list of its square roots (with the principal one first).

EXAMPLES:

\begin{verbatim}
sage: AA(2).sqrt()
1.414213562373095?
sage: QQbar(I).sqrt()
0.7071067811865475? + 0.7071067811865475?*I
sage: QQbar(I).sqrt(all=True)
[0.7071067811865475? + 0.7071067811865475?*I, -0.7071067811865475? - 0.
→7071067811865475?*I]
\end{verbatim}
This second example just shows that the program does not care where 0 is defined, it gives the same answer regardless. After all, how many ways can you square-root zero?

```
sage: AA(-2).sqrt()
1.414213562373095*I
sage: AA(-2).sqrt(all=True)
[1.414213562373095*I, -1.414213562373095*I]
sage: AA(-2).sqrt(extend=False)
Traceback (most recent call last):
  ... ValueError: -2 is not a square in AA, being negative. Use extend = True for a square root in QQbar.
```

```
class sage.rings.qqbar.AlgebraicPolynomialTracker(poly)
    Bases: SageObject

    Keeps track of a polynomial used for algebraic numbers.

    If multiple algebraic numbers are created as roots of a single polynomial, this allows the polynomial and information about the polynomial to be shared. This reduces work if the polynomial must be recomputed at higher precision, or if it must be factored.

    This class is private, and should only be constructed by AA.common_polynomial() or QQbar.common_polynomial(), and should only be used as an argument to AA.polynomial_root() or QQbar.polynomial_root(). (It does not matter whether you create the common polynomial with AA.common_polynomial() or QQbar.common_polynomial().)

    EXAMPLES:

    ```
sage: x = polygen(QQbar)
sage: P = QQbar.common_polynomial(x^2 - x - 1)
sage: P
x^2 - x - 1
sage: QQbar.polynomial_root(P, RIF(1, 2))
1.618033988749895?
```

```
complex_roots(prec, multiplicity)
 Find the roots of self in the complex field to precision prec.

 EXAMPLES:
```
Note that the precision is not guaranteed to find the tightest possible interval since `complex_roots()` depends on the underlying BLAS implementation.

```python
sage: cp.complex_roots(30, 1)
[-1.18920711500272...?, 1.189207115002721?, -1.189207115002721?*I, 1.189207115002721?*I]
```

**exactify()**

Compute a common field that holds all of the algebraic coefficients of this polynomial, then factor the polynomial over that field. Store the factors for later use (ignoring multiplicity).

**EXAMPLES:**

```python
sage: x = polygen(AA)
sage: p = sqrt(AA(2)) * x^2 - sqrt(AA(3))
sage: cp = AA.common_polynomial(p)
sage: cp._exact
False
sage: cp.exactify()
```

**factors()**

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: f = QQbar.common_polynomial(x^4 + 4)
sage: f.factors()
[y^2 - 2*y + 2, y^2 + 2*y + 2]
```

**generator()**

Return an `AlgebraicGenerator` for a number field containing all the coefficients of self.

**EXAMPLES:**

```python
sage: x = polygen(AA)
sage: p = sqrt(AA(2)) * x^2 - sqrt(AA(3))
sage: cp = AA.common_polynomial(p)
sage: cp.generator()
Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in -0.˓→5176380902050415?
```

**is_complex()**

Return `True` if the coefficients of this polynomial are non-real.

**EXAMPLES:**

```python
sage: x = polygen(QQ); f = x^3 - 7
sage: g = AA.common_polynomial(f)
```
sage: g.is_complex()
False
sage: QQbar.common_polynomial(x^3 - QQbar(I)).is_complex()
True

poly()
Return the underlying polynomial of self.

EXAMPLES:

```
sage: x = polygen(QQ)
sage: f = x^3 - 7
sage: g = AA.common_polynomial(f)
sage: g.poly()
y^3 - 7
```

class sage.rings.qqbar.AlgebraicReal(x)
Bases: AlgebraicNumber_base
A real algebraic number.

__richcmp__(other, op)
Compare two algebraic reals.

EXAMPLES:

```
sage: AA(2).sqrt() < AA(3).sqrt()
True
sage: ((5+AA(5).sqrt())/2).sqrt() == 2*QQbar.zeta(5).imag()
True
sage: AA(3).sqrt() + AA(2).sqrt() < 3
False
```

ceil()
Return the smallest integer not smaller than self.

EXAMPLES:

```
sage: AA(sqrt(2)).ceil()
2
sage: AA(-sqrt(2)).ceil()
-1
sage: AA(42).ceil()
42
```

conjugate()
Return the complex conjugate of self, i.e. returns itself.

EXAMPLES:

```
sage: a = AA(sqrt(2) + sqrt(3))
sage: a.conjugate()
3.146264369941973?
sage: a.conjugate() is a
True
```
floor()
Return the largest integer not greater than self.

EXAMPLES:

```
sage: AA(sqrt(2)).floor()
sage: AA(-sqrt(2)).floor()
sage: AA(42).floor()
1
-2
42
```

imag()
Return the imaginary part of this algebraic real.

It always returns 0.

EXAMPLES:

```
sage: a = AA(sqrt(2) + sqrt(3))
sage: a.imag()
sage: parent(a.imag())
0
Algebraic Real Field
```

interval_exact(field)
Given a RealIntervalField, compute the best possible approximation of this number in that field. Note that if this number is sufficiently close to some floating-point number (and, in particular, if this number is exactly representable in floating-point), then this will trigger exact computation, which may be very slow.

EXAMPLES:

```
sage: x = AA(2).sqrt()
sage: y = x*x
sage: x.interval(RIF)
1.414213562373095?
sage: x.interval_exact(RIF)
1.414213562373095?
sage: y.interval(RIF)
2.000000000000000?
sage: y.interval_exact(RIF)
2
sage: z = 1 + AA(2).sqrt() / 2^200
sage: z.interval(RIF)
1.00000000000001?
sage: z.interval_exact(RIF)
1.00000000000001?
```

multiplicative_order()
Compute the multiplicative order of this real algebraic number.

That is, find the smallest positive integer $n$ such that $x^n = 1$. If there is no such $n$, returns $+\infty$.

We first check that abs(x) is very close to 1. If so, we compute $x$ exactly and compare it to 1 and -1.

EXAMPLES:
sage: AA(1).multiplicative_order()
1
sage: AA(-1).multiplicative_order()
2
sage: AA(5).sqrt().multiplicative_order()
+Infinity

real()

Return the real part of this algebraic real.

It always returns self.

EXAMPLES:

sage: a = AA(sqrt(2) + sqrt(3))
sage: a.real()
3.146264369941973?
sage: a.real() is a
True

real_exact(field)

Given a RealField, compute the best possible approximation of this number in that field. Note that if this
number is sufficiently close to the halfway point between two floating-point numbers in the field (for the
default round-to-nearest mode) or if the number is sufficiently close to a floating-point number in the field
(for directed rounding modes), then this will trigger exact computation, which may be very slow.

The rounding mode of the field is respected.

EXAMPLES:

sage: x = AA(2).sqrt()^2
sage: x.real_exact(RR)
2.00000000000000
sage: x.real_exact(RealField(53, rnd='RNDD'))
2.00000000000000
sage: x.real_exact(RealField(53, rnd='RNDU'))
2.00000000000000
sage: x.real_exact(RealField(53, rnd='RNDZ'))
2.00000000000000
sage: (-x).real_exact(RR)
-2.00000000000000
sage: (-x).real_exact(RealField(53, rnd='RNDD'))
-2.00000000000000
sage: (-x).real_exact(RealField(53, rnd='RNDU'))
-2.00000000000000
sage: (-x).real_exact(RealField(53, rnd='RNDZ'))
-2.00000000000000
sage: y = (x-2).real_exact(RR).abs()
sage: y == 0.0 or y == -0.0 # the sign of 0.0 is not significant in MPFI
True
sage: y == 0.0 or y == -0.0 # same as above
True
sage: y == 0.0 or y == -0.0 # idem
(continues on next page)
Given a `RealField`, compute a good approximation to self in that field. The approximation will be off by at most two ulp’s, except for numbers which are very close to 0, which will have an absolute error at most $2^{**(-\text{field.prec}()-1)}$. Also, the rounding mode of the field is respected.

**EXAMPLES:**

```sage
sage: x = AA(2).sqrt()^2
sage: x.real_number(RR)
2.00000000000000
sage: x.real_number(RealField(53, rnd='RNDD'))
1.99999999999999
sage: x.real_number(RealField(53, rnd='RNDU'))
2.00000000000000
sage: x.real_number(RealField(53, rnd='RNDZ'))
1.99999999999999
sage: (-x).real_number(RR)
-2.00000000000000
sage: (-x).real_number(RealField(53, rnd='RNDD'))
-2.00000000000000
sage: (-x).real_number(RealField(53, rnd='RNDU'))
-1.99999999999999
sage: (-x).real_number(RealField(53, rnd='RNDZ'))
-1.99999999999999
sage: (x-2).real_number(RR)
5.42101086242752e-20
sage: (x-2).real_number(RealField(53, rnd='RNDD'))
-1.08420217248551e-19
sage: (x-2).real_number(RealField(53, rnd='RNDU'))
2.16840434497101e-19
sage: (x-2).real_number(RealField(53, rnd='RNDZ'))
0.00000000000000
sage: y = AA(2).sqrt()
```

```sage
sage: y.real_number(RR)
1.41421356237309
sage: y.real_number(RealField(53, rnd='RNDD'))
1.41421356237309
sage: y.real_number(RealField(53, rnd='RNDU'))
1.41421356237309
```

(continues on next page)
round()

Round self to the nearest integer.

EXAMPLES:

```
sage: AA(sqrt(2)).round()
1
sage: AA(1/2).round()
1
sage: AA(-1/2).round()
-1
```

sign()

Compute the sign of this algebraic number (return -1 if negative, 0 if zero, or 1 if positive).

This computes an interval enclosing this number using 128-bit interval arithmetic; if this interval includes 0, then fall back to exact computation (which can be very slow).

EXAMPLES:

```
sage: AA(-5).nth_root(7).sign()
-1
sage: (AA(2).sqrt() - AA(2).sqrt()).sign()
0
sage: a = AA(2).sqrt() + AA(3).sqrt() - 58114382797550084497/18470915334626475921
sage: a.sign()
1
sage: b = AA(2).sqrt() + AA(3).sqrt() - 2602510228533039296408/827174681630786895911
sage: b.sign()
-1
sage: c = AA(5)**(1/3) - 1437624125539676934786/840727688792155114277
sage: c.sign()
1
sage: (((a+b)*(a+c)*(b+c))**9 / (a*b*c)).sign()
1
sage: (a-b).sign()
1
sage: (b-a).sign()
-1
sage: (a*b).sign()
-1
sage: ((a*b).abs() + a).sign()
1
sage: (a*b - b*a).sign()
```

(continues on next page)
0
sage: a = AA(sqrt(1/2))
sage: b = AA(-sqrt(1/2))
sage: (a + b).sign()
0

trunc()
Round self to the nearest integer toward zero.

EXAMPLES:

sage: AA(sqrt(2)).trunc()
1
sage: AA(-sqrt(2)).trunc()
-1
sage: AA(1).trunc()
1
sage: AA(-1).trunc()
-1

class sage.rings.qqbar.AlgebraicRealField
Bases: Singleton, AlgebraicField_common, AlgebraicRealField

The field of algebraic reals.

algebraic_closure()
Return the algebraic closure of this field, which is the field $\overline{\mathbb{Q}}$ of algebraic numbers.

EXAMPLES:

sage: AA.algebraic_closure()
Algebraic Field

completion(p, prec, extras={})
Return the completion of self at the place $p$.

Only implemented for $p = \infty$ at present.

INPUT:

- p – either a prime (not implemented at present) or Infinity
- prec – precision of approximate field to return
- extras – (optional) a dict of extra keyword arguments for the RealField constructor

EXAMPLES:

sage: AA.completion(infinity, 500)
Real Field with 500 bits of precision
sage: AA.completion(infinity, prec=53, extras={'type': 'RDF'})
Real Double Field
sage: AA.completion(infinity, 53) is RR
True
sage: AA.completion(7, 10)
(continues on next page)
gen\((n=0)\)
Return the \(n\)-th element of the tuple returned by \texttt{gens()}.  

**EXAMPLES:**

\begin{verbatim}
sage: AA.gen(0)
1
sage: AA.gen(1)
Traceback (most recent call last):
  ...  
IndexError: n must be 0
\end{verbatim}

gens()
Return a set of generators for this field.

As this field is not finitely generated, we opt for just returning 1.

**EXAMPLES:**

\begin{verbatim}
sage: AA.gens()
(1,)
\end{verbatim}

ngens()
Return the size of the tuple returned by \texttt{gens()}.  

**EXAMPLES:**

\begin{verbatim}
sage: AA.ngens()
1
\end{verbatim}

\texttt{polynomial_root\((poly, interval, multiplicity=1)\)}
Given a polynomial with algebraic coefficients and an interval enclosing exactly one root of the polynomial, constructs an algebraic real representation of that root.

The polynomial need not be irreducible, or even squarefree; but if the given root is a multiple root, its multiplicity must be specified. (IMPORTANT NOTE: Currently, multiplicity-\(k\) roots are handled by taking the \((k-1)\)-st derivative of the polynomial. This means that the interval must enclose exactly one root of this derivative.)

The conditions on the arguments (that the interval encloses exactly one root, and that multiple roots match the given multiplicity) are not checked; if they are not satisfied, an error may be thrown (possibly later, when the algebraic number is used), or wrong answers may result.

Note that if you are constructing multiple roots of a single polynomial, it is better to use \texttt{AA.common_polynomial} (or \texttt{QQbar.common_polynomial}; the two are equivalent) to get a shared polynomial.

**EXAMPLES:**

\begin{verbatim}
sage: x = polygen(AA)
sage: phi = AA.polynomial_root(x^2 - x - 1, RIF(1, 2)); phi
1.618033988749895?
\end{verbatim}
We allow complex polynomials, as long as the particular root in question is real.

```
sage: K.<im> = QQ[I]
sage: x = polygen(K)
sage: p = (im + 1) * (x^3 - 2); p
 (I + 1)*x^3 - 2*I - 2
sage: r = AA.polynomial_root(p, RIF(1, 2)); r^3
 2.000000000000000?
```

**random_element**(*poly_degree=2, *args, **kwds*)

Return a random algebraic real number.

**INPUT:**

- **poly_degree** - default: 2 - degree of the random polynomial over the integers of which the returned algebraic real number is a (real part of a) root. This is not necessarily the degree of the minimal polynomial of the number. Increase this parameter to achieve a greater diversity of algebraic numbers, at a cost of greater computation time. You can also vary the distribution of the coefficients but that will not vary the degree of the extension containing the element.

- **args, kwds** - arguments and keywords passed to the random number generator for elements of ZZ, the integers. See **random_element** for details, or see example below.

**OUTPUT:**

An element of AA, the field of algebraic real numbers (see **sage.rings.qqbar**).

**ALGORITHM:**

We pass all arguments to **AlgebraicField.random_element()**, and then take the real part of the result.

**EXAMPLES:**

```
sage: a = AA.random_element()
sage: a in AA
 True

sage: b = AA.random_element(poly_degree=5)
sage: b in AA
 True
```

Parameters for the distribution of the integer coefficients of the polynomials can be passed on to the random element method for integers. For example, we can rule out zero as a coefficient (and therefore as a root) by requesting coefficients between 1 and 10:
sage: z = [AA.random_element(x=1, y=10) for _ in range(5)]
sage: AA(0) in z
False

zeta(n=2)
Return an n-th root of unity in this field. This will raise a ValueError if \( n \not\in \{1, 2\} \) since no such root exists.

INPUT:
- n (integer) – default 2

EXAMPLES:

sage: AA.zeta(1)
1
sage: AA.zeta(2)
-1
sage: AA.zeta()
-1
sage: AA.zeta(3)
Traceback (most recent call last):
...
ValueError: no n-th root of unity in algebraic reals

Some silly inputs:

sage: AA.zeta(Mod(-5, 7))
-1
sage: AA.zeta(0)
Traceback (most recent call last):
...
ValueError: no n-th root of unity in algebraic reals

sage.rings.qqbar.an_binop_element(a, b, op)
Add, subtract, multiply or divide two elements represented as elements of number fields.

EXAMPLES:

sage: sqrt2 = QQbar(2).sqrt()
sage: sqrt3 = QQbar(3).sqrt()
sage: sqrt5 = QQbar(5).sqrt()
sage: a = sqrt2 + sqrt3; a.exactify()
sage: b = sqrt3 + sqrt5; b.exactify()
sage: type(a._descr)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: from sage.rings.qqbar import an_binop_element
sage: an_binop_element(a, b, operator.add)
<sage.rings.qqbar.ANBinaryExpr object at ...>

The code tries to use existing unions of number fields:

```python
sage: sqrt17 = QQbar(17).sqrt()
sage: sqrt19 = QQbar(19).sqrt()
sage: a = sqrt17 + sqrt19
sage: b = sqrt17 * sqrt19 - sqrt17 + sqrt19 * (sqrt17 + 2)
sage: a.exactify()
sage: b = sqrt17 * sqrt19 - sqrt17 + sqrt19 * (sqrt17 + 2)
sage: b, type(b._descr)
```

```python
(40.53909377268655?, <class 'sage.rings.qqbar.ANExtensionElement'>)
```

```python
sage: from sage.rings.qqbar import an_binop_expr
sage: x = an_binop_expr(a, b, operator.mul); x
```

```python
<sage.rings.qqbar.ANBinaryExpr object at ...>
```

```python
sage: x.exactify()
2*a^7 - a^6 - 24*a^5 + 12*a^4 + 46*a^3 - 22*a^2 + 9 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in -0.3199179336182997?
```

```python
sage: a = QQbar(sqrt(2)) + QQbar(sqrt(3))
sage: b = QQbar(sqrt(3)) + QQbar(sqrt(5))
sage: type(a._descr)
```

```python
<class 'sage.rings.qqbar.ANBinaryExpr'>
```

```python
sage: x = an_binop_expr(a, b, operator.add); x
```

```python
<sage.rings.qqbar.ANBinaryExpr object at ...>
```

```python
sage: x.exactify()
```

```python
6/7*a^7 - 2/7*a^6 - 71/7*a^5 + 26/7*a^4 + 125/7*a^3 - 72/7*a^2 - 43/7*a + 47/7 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in -0.3199179336182997?
```

sage.rings.qqbar.an_binop_rational(a, b, op)

Add, subtract, multiply or divide algebraic numbers.

INPUT:
- `a, b` – two elements
- `op` – an operator

EXAMPLES:

```python
sage: a = QQbar(sqrt(2)) + QQbar(sqrt(3))
sage: b = QQbar(sqrt(3)) + QQbar(sqrt(5))
sage: type(a._descr)
```

```python
<class 'sage.rings.qqbar.ANBinaryExpr'>
```

```python
sage: x = an_binop_rational(a, b, operator.mul); x
```

```python
<sage.rings.qqbar.ANBinaryExpr object at ...>
```

```python
sage: x.exactify()
```

```python
2*a^7 - a^6 - 24*a^5 + 12*a^4 + 46*a^3 - 22*a^2 + 9 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in -0.3199179336182997?
```
```python
sage: from sage.rings.qqbar import an_binop_rational
sage: f = an_binop_rational(QQbar(2), QQbar(3/7), operator.add)
sage: f
17/7
sage: type(f)
<class 'sage.rings.qqbar.ANRational'>

sage: f = an_binop_rational(QQbar(2), QQbar(3/7), operator.mul)
sage: f
6/7
sage: type(f)
<class 'sage.rings.qqbar.ANRational'>
```

`sage.rings.qqbar.clear_denominators(poly)`

Take a monic polynomial and rescale the variable to get a monic polynomial with “integral” coefficients.

This works on any univariate polynomial whose base ring has a `denominator()` method that returns integers; for example, the base ring might be \( \mathbb{Q} \) or a number field.

Returns the scale factor and the new polynomial.

(Inspired by pari:primitive_pol_to_monic.)

We assume that coefficient denominators are “small”; the algorithm factors the denominators, to give the smallest possible scale factor.

**EXAMPLES:**

```python
sage: from sage.rings.qqbar import clear_denominators

sage: _.<x> = QQ['x']
sage: clear_denominators(x + 3/2)
(2, x + 3)
sage: clear_denominators(x^2 + x/2 + 1/4)
(2, x^2 + x + 1)
```

`sage.rings.qqbar.cmp_elements_with_same_minpoly(a, b, p)`

Compare the algebraic elements \( a \) and \( b \) knowing that they have the same minimal polynomial \( p \).

This is an helper function for comparison of algebraic elements (i.e. the methods `AlgebraicNumber._richcmp_()` and `AlgebraicReal._richcmp_()`).

**INPUT:**

- \( a \) and \( b \) – elements of the algebraic or the real algebraic field with same minimal polynomial
- \( p \) – the minimal polynomial

**OUTPUT:**

\(-1, 0, 1, None\) depending on whether \( a < b \), \( a = b \) or \( a > b \) or the function did not succeed with the given precision of \( a \) and \( b \).

**EXAMPLES:**

```python
sage: from sage.rings.qqbar import cmp_elements_with_same_minpoly

sage: x = polygen(ZZ)
sage: p = x^2 - 2
```

(continues on next page)
sage: a = AA.polynomial_root(p, RIF(1, 2))
sage: b = AA.polynomial_root(p, RIF(-2, -1))
sage: cmp_elements_with_same_minpoly(a, b, p)
1
sage: cmp_elements_with_same_minpoly(-a, b, p)
0

If the interval $v$ (which may be real or complex) includes some purely real numbers, return $v'$ containing $v$ such that $v' = v'.\text{conjugate}()$. Otherwise return $v$ unchanged. (Note that if $v' = v'.\text{conjugate}()$, and $v'$ includes one non-real root of a real polynomial, then $v'$ also includes the conjugate of that root. Also note that the diameter of the return value is at most twice the diameter of the input.)

EXAMPLES:

```python
sage: from sage.rings.qqbar import conjugate_expand
sage: conjugate_expand(CIF(RIF(0, 1), RIF(1, 2))).str(style='brackets')
'[0.0000000000000000 .. 1.0000000000000000] + [1.0000000000000000 .. 2.0000000000000000]*I'
sage: conjugate_expand(CIF(RIF(0, 1), RIF(0, 1))).str(style='brackets')
'[0.0000000000000000 .. 1.0000000000000000] + [-1.0000000000000000 .. 1.0000000000000000]*I'
sage: conjugate_expand(CIF(RIF(0, 1), RIF(-2, 1))).str(style='brackets')
'[0.0000000000000000 .. 1.0000000000000000] + [-2.0000000000000000 .. 2.0000000000000000]*I'
sage: conjugate_expand(RIF(1, 2)).str(style='brackets')
'[1.0000000000000000 .. 2.0000000000000000]'```

If the interval v includes some purely real numbers, return a real interval containing only those real numbers. Otherwise return v unchanged.

If v includes exactly one root of a real polynomial, and v was returned by conjugate_expand(), then conjugate_shrink(v) still includes that root, and is a RealIntervalFieldElement iff the root in question is real.

EXAMPLES:

```python
sage: from sage.rings.qqbar import conjugate_shrink
sage: conjugate_shrink(RIF(3, 4)).str(style='brackets')
'[3.0000000000000000 .. 4.0000000000000000]'
sage: conjugate_shrink(CIF(RIF(1, 2), RIF(1, 2))).str(style='brackets')
'[1.0000000000000000 .. 2.0000000000000000] + [1.0000000000000000 .. 2.0000000000000000]*I'
sage: conjugate_shrink(CIF(RIF(1, 2), RIF(0, 1))).str(style='brackets')
'[1.0000000000000000 .. 2.0000000000000000]'
sage: conjugate_shrink(CIF(RIF(1, 2), RIF(-1, 2))).str(style='brackets')
'[1.0000000000000000 .. 2.0000000000000000]'```

Find a polynomial of reasonably small discriminant that generates the same number field as poly, using the PARI polredbest function.

INPUT:
• poly - a monic irreducible polynomial with integer coefficients
• threshold - an integer used to decide whether to run `polredbest`

OUTPUT:

A triple `(elt_fwd, elt_back, new_poly)`, where:

• `new_poly` is the new polynomial defining the same number field,
• `elt_fwd` is a polynomial expression for a root of the new polynomial in terms of a root of the original polynomial,
• `elt_back` is a polynomial expression for a root of the original polynomial in terms of a root of the new polynomial.

EXAMPLES:

```python
sage: from sage.rings.qqbar import do_polred
sage: R.<x> = QQ['x']

sage: oldpol = x^2 - 5
sage: fwd, back, newpol = do_polred(oldpol)

sage: newpol
x^2 - x - 1
sage: Kold.<a> = NumberField(oldpol)

sage: Knew. = NumberField(newpol)

sage: newpol(fwd(a))
0
sage: oldpol(back(b))
0
sage: do_polred(x^2 - x - 11)
(1/3*x + 1/3, 3*x - 1, x^2 - x - 1)
sage: do_polred(x^3 + 123456)
(-1/4*x, -4*x, x^3 - 1929)
```

This shows that Github issue #13054 has been fixed:

```python
sage: do_polred(x^4 - 4294967296*x^2 + 54265257667816538374400)
(1/4*x, 4*x, x^4 - 268435456*x^2 + 211973662764908353025)
```

`sage.rings.qqbar.find_zero_result(fn, l)`

`l` is a list of some sort. `fn` is a function which maps an element of `l` and a precision into an interval (either real or complex) of that precision, such that for sufficient precision, exactly one element of `l` results in an interval containing `0`. Returns that one element of `l`.

EXAMPLES:

```python
sage: from sage.rings.qqbar import find_zero_result

sage: _.<x> = QQ['x']

sage: delta = 10^(-70)

sage: p1 = x - 1

sage: p2 = x - 1 - delta

sage: p3 = x - 1 + delta

sage: p2 == find_zero_result(lambda p, prec: p(RealIntervalField(prec)(1 + delta)), ...
\[p1, p2, p3\])
True
```
sage.rings.qqbar.get_AA_golden_ratio()

Return the golden ratio as an element of the algebraic real field. Used by sage.symbolic.constants.golden_ratio._algebraic_().

EXAMPLES:

```
sage: AA(golden_ratio) # indirect doctest
1.618033988749895?
```

sage.rings.qqbar.is_AlgebraicField(F)

Check whether F is an AlgebraicField instance.

This function is deprecated. Use isinstance() with AlgebraicField instead.

EXAMPLES:

```
sage: from sage.rings.qqbar import is_AlgebraicField
dsage: [is_AlgebraicField(x) for x in [AA, QQbar, None, 0, "spam"]]
doctest:warning...
DeprecationWarning: is_AlgebraicField is deprecated; use isinstance(..., sage.rings.abc.AlgebraicField instead
See https://github.com/sagemath/sage/issues/32660 for details.
[False, True, False, False, False]
```

sage.rings.qqbar.is_AlgebraicField_common(F)

Check whether F is an AlgebraicField_common instance.

This function is deprecated. Use isinstance() with AlgebraicField_common instead.

EXAMPLES:

```
sage: from sage.rings.qqbar import is_AlgebraicField_common
dsage: [is_AlgebraicField_common(x) for x in [AA, QQbar, None, 0, "spam"]]
doctest:warning...
DeprecationWarning: is_AlgebraicField_common is deprecated; use isinstance(..., sage.rings.abc.AlgebraicField_common) instead
See https://github.com/sagemath/sage/issues/32610 for details.
[True, True, False, False, False]
```

sage.rings.qqbar.is_AlgebraicNumber(x)

Test if x is an instance of AlgebraicNumber. For internal use.

EXAMPLES:

```
sage: from sage.rings.qqbar import is_AlgebraicNumber
dsage: is_AlgebraicNumber(AA(sqrt(2)))
False
dsage: is_AlgebraicNumber(QQbar(sqrt(2)))
True
dsage: is_AlgebraicNumber("spam")
False
```

sage.rings.qqbar.is_AlgebraicReal(x)

Test if x is an instance of AlgebraicReal. For internal use.

EXAMPLES:
sage: from sage.rings.qqbar import is_AlgebraicReal
sage: is_AlgebraicReal(AA(sqrt(2)))
True
sage: is_AlgebraicReal(QQbar(sqrt(2)))
False
sage: is_AlgebraicReal("spam")
False

sage.rings.qqbar.is_AlgebraicRealField(F)

Check whether F is an AlgebraicRealField instance. For internal use.

This function is deprecated. Use isinstance() with AlgebraicRealField instead.

EXAMPLES:

sage: from sage.rings.qqbar import is_AlgebraicRealField
sage: [is_AlgebraicRealField(x) for x in [AA, QQbar, None, 0, "spam"]]
doctest:warning... 
DeprecationWarning: is_AlgebraicRealField is deprecated; use isinstance(..., sage.rings.abc.AlgebraicRealField instead
See https://github.com/sagemath/sage/issues/32660 for details.
[True, False, False, False, False]

sage.rings.qqbar.isolating_interval(intv_fn, pol)

intv_fn is a function that takes a precision and returns an interval of that precision containing some particular root of pol. (It must return better approximations as the precision increases.) pol is an irreducible polynomial with rational coefficients.

Returns an interval containing at most one root of pol.

EXAMPLES:

sage: from sage.rings.qqbar import isolating_interval
sage: _.<x> = QQ['x']
sage: isolating_interval(lambda prec: sqrt(RealIntervalField(prec)(2)), x^2 - 2)
1.4142135623730950488?

And an example that requires more precision:

sage: delta = 10^(-70)
sage: p = (x - 1) * (x - 1 - delta) * (x - 1 + delta)
sage: isolating_interval(lambda prec: RealIntervalField(prec)(1 + delta), p)
1.

The function also works with complex intervals and complex roots:

sage: p = x^2 - x + 13/36
sage: isolating_interval(lambda prec: ComplexIntervalField(prec)(1/2, 1/3), p)
0.5000000000000000? + 0.3333333333333334?*I

sage.rings.qqbar.number_field_elements_from_algebraics(numbers, minimal=False, same_field=False, embedded=False, prec=53)

Given a sequence of elements of either AA or QQbar (or a mixture), computes a number field containing all of

5.1. Field of Algebraic Numbers
these elements, these elements as members of that number field, and a homomorphism from the number field back to AA or QQbar.

INPUT:

- **numbers** – a number or list of numbers.
- **minimal** – Boolean (default: False). Whether to minimize the degree of the extension.
- **same_field** – Boolean (default: False). See below.
- **embedded** – Boolean (default: False). Whether to make the NumberField embedded.
- **prec** – integer (default: 53). The number of bit of precision to guarantee finding real roots.

OUTPUT:

A tuple with the NumberField, the numbers inside the NumberField, and a homomorphism from the number field back to AA or QQbar.

This may not return the smallest such number field, unless minimal=True is specified.

If same_field=True is specified, and all of the elements are from the same field (either AA or QQbar), the generated homomorphism will map back to that field. Otherwise, if all specified elements are real, the homomorphism might map back to AA (and will, if minimal=True is specified), even if the elements were in QQbar.

Also, a single number can be passed, rather than a sequence; and any values which are not elements of AA or QQbar will automatically be coerced to QQbar.

This function may be useful for efficiency reasons: doing exact computations in the corresponding number field will be faster than doing exact computations directly in AA or QQbar.

EXAMPLES:

We can use this to compute the splitting field of a polynomial. (Unfortunately this takes an unreasonably long time for non-toy examples.):

```python
sage: x = polygen(QQ)
sage: p = x^3 + x^2 + x + 17
sage: rts = p.roots(ring=QQbar, multiplicities=False)
sage: splitting = number_field_elements_from_algebraics(rts)[0]; splitting
Number Field in a with defining polynomial y^6 - 40*y^4 - 22*y^3 + 873*y^2 + 1386*y + 594
sage: p.roots(ring=splitting)
[(361/29286*a^5 - 19/3254*a^4 - 14359/29286*a^3 + 401/29286*a^2 + 18183/1627*a + 15930/1627, 1), (49/117144*a^5 - 179/39048*a^4 - 3247/117144*a^3 + 22553/117144*a^2 + 1744/4881*a - 17195/6508, 1), (-1493/117144*a^5 + 407/39048*a^4 + 60683/117144*a^3 - 24157/117144*a^2 - 56293/4881*a - 53033/6508, 1)]
sage: rt2 = AA(sqrt(2)); rt2
1.414213562373095?
sage: rt3 = AA(sqrt(3)); rt3
1.732050807568878?
sage: rt3a = QQbar(sqrt(3)); rt3a
1.732050807568878?
sage: qqI = QQbar.zeta(4); qqI
I
sage: z3 = QQbar.zeta(3); z3
-0.500000000000000? + 0.866025403784439?*I
sage: rt2b = rt3 + rt2 - rt3; rt2b
1.414213562373095?
```

(continues on next page)
rt2c is a real number in QQbar. Ordinarily, we'd get a homomorphism to AA (because all elements are real), but if we specify same_field=True, we'll get a homomorphism back to QQbar:

```
sage: number_field_elements_from_algebraics(rt3a, same_field=True)
(Number Field in a with defining polynomial y^2 - 3, a, Ring morphism:
 From: Number Field in a with defining polynomial y^2 - 3
 To: Algebraic Field
 Defn: a |--> 1.732050807568878?)
```

We’ve created rt2b in such a way that sage does not initially know that it’s in a degree-2 extension of Q:

```
sage: number_field_elements_from_algebraics(rt2b, minimal=True)
(Number Field in a with defining polynomial y^2 - 2, a, Ring morphism:
 From: Number Field in a with defining polynomial y^2 - 2
 To: Algebraic Real Field
 Defn: a |--> 1.414213562373095?)
```

We can specify minimal=True if we want the smallest number field:

```
sage: number_field_elements_from_algebraics((QQbar(1/2), AA(17)))
(Rational Field,
 Ring morphism:
 From: Rational Field
 Defn: 1/2 |--> 0.5)
```

Things work fine with rational numbers, too:
To: Algebraic Real Field  
Defn: 1 |--> 1)

Or we can just pass in symbolic expressions, as long as they can be coerced into QQbar:

```
sage: number_field_elements_from_algebraics((sqrt(7), sqrt(9), sqrt(11)))
(Number Field in a with defining polynomial y^4 - 9*y^2 + 1, [-a^3 + 8*a, 3, -a^3 + \omega \rightarrow 10*a], Ring morphism:
From: Number Field in a with defining polynomial y^4 - 9*y^2 + 1
To: Algebraic Real Field
Defn: a |--> 0.3354367396454047?)
```

Here we see an example of doing some computations with number field elements, and then mapping them back into QQbar:

```
sage: (fld,nums,hom) = number_field_elements_from_algebraics((rt2, rt3, qqI, z3))
sage: fld,nums,hom # random
(Number Field in a with defining polynomial y^8 - y^4 + 1, [-a^5 + a^3 + a, a^6 - \omega \rightarrow -2*a^2, a^6, -a^4], Ring morphism:
From: Number Field in a with defining polynomial y^8 - y^4 + 1
To: Algebraic Field
Defn: a |--> -0.2588190451025208? - 0.9659258262890683?*I)
sage: (nfrt2, nfrt3, nfI, nfz3) = nums
sage: hom(nfrt2)
1.414213562373095? + 0.?e-18*I
sage: nfrt2^2
2
sage: nfrt3^2
3
sage: nfz3 + nfz3^2
-1
sage: nfI^2
-1
sage: sum = nfrt2 + nfrt3 + nfI + nfz3; sum
a^5 + a^4 - a^3 + 2*a^2 - a - 1
sage: hom(sum)
2.646264369941973? + 1.866025403784439?*I
sage: hom(sum) == rt2 + rt3 + qqI + z3
True
sage: [hom(n) for n in nums] == [rt2, rt3, qqI, z3]
True
```

It is also possible to have an embedded Number Field:

```
sage: x = polygen(ZZ)
sage: my_num = AA.polynomial_root(x^3-2, RIF(0,3))
sage: res = number_field_elements_from_algebraics(my_num,embedded=True)
sage: res[0].gen_embedding()
1.259921049894873?
sage: res[2]
Ring morphism:
From: Number Field in a with defining polynomial y^3 - 2 with a = 1.
\rightarrow 1.259921049894873?
```

(continues on next page)
To: Algebraic Real Field
Defn: a |--> 1.259921049894873?

```
sage: nf, nums, hom = number_field_elements_from_algebraics([2^(1/3), 3^(1/5)], embedded=True)
sage: nf
Number Field in a with defining polynomial y^15 - 9*y^10 + 21*y^5 - 3 with a = 0.
˓→ 6866813218928813?
sage: nums
[a^10 - 5*a^5 + 2, -a^8 + 4*a^3]
sage: hom
Ring morphism:
 From: Number Field in a with defining polynomial y^15 - 9*y^10 + 21*y^5 - 3 with...
 → a = 0.6866813218928813?
To: Algebraic Real Field
Defn: a |--> 0.6866813218928813?
```

Complex embeddings are possible as well:

```
sage: elems = [sqrt(5), 2^(1/3)+sqrt(3)*I, 3/4]
sage: nf, nums, hom = number_field_elements_from_algebraics(elems, embedded=True)
sage: nf # random (polynomial and root not unique)
Number Field in a with defining polynomial y^24 - 6*y^23 ...- 9*y^2 + 1
 with a = 0.2598679? + 0.0572892?*I
sage: nf.is_isomorphic(NumberField(x^24 - 9*x^22 + 135*x^20 - 720*x^18 + 1821*x^16 -
 ˓→ 3015*x^14 + 3974*x^12 - 3015*x^10 + 1821*x^8 - 720*x^6 + 135*x^4 - 9*x^2 + 1, 'a'))
True
sage: list(map(QQbar, nums)) == elems == list(map(hom, nums))
True
```

```
sage.rings.qqbar.prec_seq()

Return a generator object which iterates over an infinite increasing sequence of precisions to be tried in various numerical computations.

Currently just returns powers of 2 starting at 64.

EXAMPLES:

```
sage: g = sage.rings.qqbar.prec_seq()
sage: [next(g), next(g), next(g)]
[64, 128, 256]
```

```
sage.rings.qqbar.rational_exact_root(r, d)

Check whether the rational \( r \) is an exact \( d \)’th power.

If so, this returns the \( d \)’th root of \( r \); otherwise, this returns None.

EXAMPLES:

```
sage: from sage.rings.qqbar import rational_exact_root
sage: rational_exact_root(16/81, 4)
2/3
```
5.2 Universal cyclotomic field

The universal cyclotomic field is the smallest subfield of the complex field containing all roots of unity. It is also the maximal Galois Abelian extension of the rational numbers.

The implementation simply wraps GAP Cyclotomic. As mentioned in their documentation: arithmetical operations are quite expensive, so the use of internally represented cyclotomics is not recommended for doing arithmetic over number fields, such as calculations with matrices of cyclotomics.

Note: There used to be a native Sage version of the universal cyclotomic field written by Christian Stump (see github issue #8327). It was slower on most operations and it was decided to use a version based on GAP instead (see github issue #18152). One main difference in the design choices is that GAP stores dense vectors whereas the native ones used Python dictionaries (storing only nonzero coefficients). Most operations are faster with GAP except some operation on very sparse elements. All details can be found in github issue #18152.

REFERENCES:

• [Bre1997]

EXAMPLES:

```sage: UCF = UniversalCyclotomicField(); UCF
Universal Cyclotomic Field```
To generate cyclotomic elements:

```sage
sage: UCF.gen(5)
E(5)
sage: UCF.gen(5,2)
E(5)^2
sage: E = UCF.gen
```

Equality and inequality checks:

```sage
sage: E(6,2) == E(6)^2 == E(3)
True
sage: E(6)^2 != E(3)
False
```

Addition and multiplication:

```sage
sage: E(2) * E(3)
-E(3)
sage: f = E(2) + E(3); f
2*E(3) + E(3)^2
```

Inverses:

```sage
sage: f^-1
1/3*E(3) + 2/3*E(3)^2
sage: f.inverse()
1/3*E(3) + 2/3*E(3)^2
sage: f * f.inverse()
1
```

Conjugation and Galois conjugates:

```sage
sage: f.conjugate()
E(3) + 2*E(3)^2
sage: f.galois_conjugates()
[2*E(3) + E(3)^2, E(3) + 2*E(3)^2]
sage: f.norm_of_galois_extension()
3
```

One can create matrices and polynomials:

```sage
sage: m = matrix(2,[E(3),1,1,E(4)]); m
[ E(3)  1]
[ 1  E(4)]
sage: m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Universal Cyclotomic Field
sage: m**2
[ E(3)  E(12)^4 - E(12)^7 - E(12)^11]
[ E(12)^4 - E(12)^7 - E(12)^11  0]
```

(continues on next page)
sage: m.charpoly()
x^2 + (-E(12)^4 + E(12)^7 + E(12)^11)*x + E(12)^4 + E(12)^7 + E(12)^8

sage: m.echelon_form()
[1 0]
[0 1]

sage: m.pivots()
(0, 1)

sage: m.rank()
2

sage: R.<x> = PolynomialRing(UniversalCyclotomicField(), 'x')
sage: E(3) * x - 1
E(3)*x - 1

AUTHORS:

• Christian Stump (2013): initial Sage version (see github issue #8327)
• Vincent Delecroix (2015): complete rewriting using libgap (see github issue #18152)
• Sebastian Oehms (2018): deleting the method is_finite since it returned the wrong result (see github issue #25686)
• Sebastian Oehms (2019): add _factor_univariate_polynomial() (see github issue #28631)

sage.rings.universal_cyclotomic_field.E(n, k=1)
Return the n-th root of unity as an element of the universal cyclotomic field.

EXAMPLES:

sage: E(3)
E(3)
sage: E(3) + E(5)
-E(15)^2 - 2*E(15)^8 - E(15)^11 - E(15)^13 - E(15)^14

sage.rings.universal_cyclotomic_field.UCF_sqrt_int(N, UCF)
Return the square root of the integer N.

EXAMPLES:

sage: from sage.rings.universal_cyclotomic_field import UCF_sqrt_int
sage: UCF = UniversalCyclotomicField()
sage: UCF_sqrt_int(0, UCF)
0
sage: UCF_sqrt_int(1, UCF)
1
sage: UCF_sqrt_int(-1, UCF)
E(4)
sage: UCF_sqrt_int(2, UCF)
E(8) - E(8)^3
sage: UCF_sqrt_int(-2, UCF)
E(8) + E(8)^3
class sage.rings.universal_cyclotomic_field.UCFtoQQbar(UCF)
 Bases: Morphism
 Conversion to QQbar.

 EXAMPLES:
 ::

 sage: UCF = UniversalCyclotomicField()
 sage: QQbar(UCF.gen(3))
 -0.500000000000000? + 0.866025403784439?*I
 sage: CC(UCF.gen(7, 2) + UCF.gen(7, 6))
 0.400968867902419 + 0.193096429713793*I
 sage: complex(E(7)+E(7, 2))
 (0.40096886790241915+1.7567593946498534j)
 sage: complex(UCF.one()/2)
 (0.5+0j)

class sage.rings.universal_cyclotomic_field.UniversalCyclotomicField(names=None)
 Bases: UniqueRepresentation, Field
 The universal cyclotomic field.

 The universal cyclotomic field is the infinite algebraic extension of \(\mathbb{Q} \) generated by the roots of unity. It is also the maximal Abelian extension of \(\mathbb{Q} \) in the sense that any Abelian Galois extension of \(\mathbb{Q} \) is also a subfield of the universal cyclotomic field.

 Element
 alias of UniversalCyclotomicFieldElement

 algebraic_closure()
 The algebraic closure.

 EXAMPLES:
 ::

 sage: UniversalCyclotomicField().algebraic_closure()
 Algebraic Field

 an_element()
 Return an element.

 EXAMPLES:
 ::

 sage: UniversalCyclotomicField().an_element()
 E(5) - 3*E(5)^2

 characteristic()
 Return the characteristic.

 EXAMPLES:
 ::

 sage: UniversalCyclotomicField().characteristic()
 0
 sage: parent(_)
 Integer Ring
degree()

Return the degree of self as a field extension over the Rationals.

EXAMPLES:

```sage
sage: UCF = UniversalCyclotomicField()
sage: UCF.degree()
+Infinity
```

gen(n, k=1)

Return the standard primitive n-th root of unity.

If k is not None, return the k-th power of it.

EXAMPLES:

```sage
sage: UCF = UniversalCyclotomicField()
sage: UCF.gen(15)
E(15)
sage: UCF.gen(7,3)
E(7)^3
sage: UCF.gen(4,2)
-1
```

There is an alias `zeta` also available:

```sage
sage: UCF.zeta(6)
-E(3)^2
```

is_exact()

Return True as this is an exact ring (i.e. not numerical).

EXAMPLES:

```sage
sage: UniversalCyclotomicField().is_exact()
True
```

one()

Return one.

EXAMPLES:

```sage
sage: UCF = UniversalCyclotomicField()
sage: UCF.one()
1
sage: parent(_)
Universal Cyclotomic Field
```

some_elements()

Return a tuple of some elements in the universal cyclotomic field.

EXAMPLES:

```sage
sage: UniversalCyclotomicField().some_elements()
(0, 1, -1, E(3), E(7) - 2/3*E(7)^2)
sage: all(parent(x) is UniversalCyclotomicField() for x in _)
True
```
zero()
Return zero.

EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF.zero()
0
sage: parent(_)
Universal Cyclotomic Field
```

zeta(n, k=None)
Return the standard primitive n-th root of unity.
If k is not None, return the k-th power of it.

EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF.gen(15)
E(15)
sage: UCF.gen(7,3)
E(7)^3
sage: UCF.gen(4,2)
-1
```

There is an alias zeta also available:

```
sage: UCF.zeta(6)
-E(3)^2
```

class sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement(parent, obj)
Bases: FieldElement

INPUT:

• parent – a universal cyclotomic field
• obj – a libgap element (either an integer, a rational or a cyclotomic)

abs()
Return the absolute value (or complex modulus) of self.
The absolute value is returned as an algebraic real number.

EXAMPLES:

```
sage: f = 5/2*E(3)+E(5)/7
sage: f.abs()
2.597760303873084?
sage: abs(f)
2.597760303873084?
sage: a = E(8)
sage: abs(a)
1
sage: v, w = vector([a]), vector([a, a])
sage: v.norm(), w.norm()
```
(continues on next page)
additive_order()
Return the additive order.
EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF.zero().additive_order()
0
sage: UCF.one().additive_order()
+Infinity
sage: UCF.gen(3).additive_order()
+Infinity
```

conductor()
Return the conductor of self.
EXAMPLES:

```
sage: E(3).conductor()
3
sage: (E(5) + E(3)).conductor()
15
```

conjugate()
Return the complex conjugate.
EXAMPLES:

```
sage: (E(7) + 3*E(7,2) - 5 * E(7,3)).conjugate()
-5*E(7)^4 + 3*E(7)^5 + E(7)^6
```

denominator()
Return the denominator of this element.
See also:
is_integral()
EXAMPLES:

```
sage: a = E(5) + 1/2*E(5,2) + 1/3*E(5,3)
sage: a
E(5) + 1/2*E(5)^2 + 1/3*E(5)^3
sage: a.denominator()
6
sage: parent(_)
Integer Ring
```

galois_conjugates(n=None)
Return the Galois conjugates of self.
INPUT:
• \(n \) – an optional integer. If provided, return the orbit of the Galois group of the \(n \)-th cyclotomic field over \(\mathbb{Q} \). Note that \(n \) must be such that this element belongs to the \(n \)-th cyclotomic field (in other words, it must be a multiple of the conductor).

EXAMPLES:

```python
sage: E(6).galois_conjugates()
[-E(3)^2, -E(3)]

sage: E(6).galois_conjugates()
[-E(3)^2, -E(3)]

sage: (E(9,2) - E(9,4)).galois_conjugates()
[E(9)^2 - E(9)^4, 
 E(9)^2 + E(9)^4 + E(9)^5, 
 -E(9)^2 - E(9)^5 - E(9)^7, 
 -E(9)^2 - E(9)^4 - E(9)^7, 
 E(9)^4 + E(9)^5 + E(9)^7, 
 -E(9)^5 + E(9)^7]

sage: zeta = E(5)

sage: zeta.galois_conjugates(5)

sage: zeta.galois_conjugates(10)

sage: zeta.galois_conjugates(15)

sage: zeta.galois_conjugates(17)
Traceback (most recent call last):
  ... ValueError: n = 17 must be a multiple of the conductor (5)
```

imag()

Return the imaginary part of this element.

EXAMPLES:

```python
sage: E(3).imag()
-1/2*E(12)^7 + 1/2*E(12)^11

sage: E(5).imag()
1/2*E(20) - 1/2*E(20)^9

sage: a = E(5) - 2*E(3)

sage: QQbar(a.imag()) == QQbar(a).imag()
True
```

imag_part()

Return the imaginary part of this element.

EXAMPLES:

```python
sage: E(3).imag()
-1/2*E(12)^7 + 1/2*E(12)^11

sage: E(5).imag()
```

(continues on next page)
1/2*E(20) - 1/2*E(20)^9

```
sage: a = E(5) - 2*E(3)
sage: AA(a.imag()) == QQbar(a).imag()
True
```

inverse()

is_integral()

Return whether self is an algebraic integer.

This just wraps IsIntegralCyclotomic from GAP.

See also:

denominator()

EXAMPLES:

```
sage: E(6).is_integral()
True
sage: (E(4)/2).is_integral()
False
```

is_rational()

Test whether this element is a rational number.

EXAMPLES:

```
sage: E(3).is_rational()
False
sage: (E(3) + E(3,2)).is_rational()
True
```

is_real()

Test whether this element is real.

EXAMPLES:

```
sage: E(3).is_real()
False
sage: (E(3) + E(3,2)).is_real()
True
sage: a = E(3) - 2*E(7)
sage: a.real_part().is_real()
True
sage: a.imag_part().is_real()
True
```

is_square()

EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF(5/2).is_square()
```

(continues on next page)
True

\texttt{sage}: \texttt{UCF.zeta(7,3).is_square()}
\texttt{True}

\texttt{sage}: \texttt{(2 + UCF.zeta(3)).is_square()}
\texttt{Traceback (most recent call last):}
\texttt{NotImplementedError: is_square() not fully implemented for elements of Universal Cyclotomic Field}

\textbf{\texttt{minpoly} (\texttt{var='x'})}
The minimal polynomial of \texttt{self} element over \texttt{Q}.

\textbf{INPUT:}

- \texttt{var} – (optional, default \texttt{'x'}) the name of the variable to use.

\textbf{EXAMPLES:}

\texttt{sage}: \texttt{UCF.<E> = UniversalCyclotomicField()}
\texttt{sage}: \texttt{UCF(4).minpoly()}
\texttt{x - 4}
\texttt{sage}: \texttt{UCF(4).minpoly(var='y')}
\texttt{y - 4}
\texttt{sage}: \texttt{E(3).minpoly()}
\texttt{x^2 + x + 1}
\texttt{sage}: \texttt{E(3).minpoly(var='y')}
\texttt{y^2 + y + 1}

\textbf{Todo:} Polynomials with libgap currently does not implement a \texttt{sage()} method (see \texttt{github issue #18266}). It would be faster/safer to not use string to construct the polynomial.

\textbf{\texttt{multiplicative_order}()}
Return the multiplicative order.

\textbf{EXAMPLES:}

\texttt{sage}: \texttt{E(5).multiplicative_order()}
\texttt{5}
\texttt{sage}: \texttt{(E(5) + E(12)).multiplicative_order()}
\texttt{+Infinity}
\texttt{sage}: \texttt{UniversalCyclotomicField().zero().multiplicative_order()}
\texttt{Traceback (most recent call last):}
\texttt{...
\texttt{GAPError: Error, argument must be nonzero}

\textbf{\texttt{norm_of_galois_extension}()}
Return the norm as a Galois extension of \texttt{Q}, which is given by the product of all galois_conjugates.

\section{5.2. Universal cyclotomic field}
EXAMPLES:

```
sage: E(3).norm_of_galois_extension()
1
sage: E(6).norm_of_galois_extension()
1
sage: (E(2) + E(3)).norm_of_galois_extension()
3
sage: parent(_)
Integer Ring
```

`real()`

Return the real part of this element.

EXAMPLES:

```
sage: E(3).real()
-1/2
sage: E(5).real()
1/2*E(5) + 1/2*E(5)^4
```

```
sage: a = E(5) - 2*E(3)
sage: AA(a.real()) == QQbar(a).real()
True
```

`real_part()`

Return the real part of this element.

EXAMPLES:

```
sage: E(3).real()
-1/2
sage: E(5).real()
1/2*E(5) + 1/2*E(5)^4
```

```
sage: a = E(5) - 2*E(3)
sage: AA(a.real()) == QQbar(a).real()
True
```

`sqrt(extend=True, all=False)`

Return a square root of self.

With default options, the output is an element of the universal cyclotomic field when this element is expressed via a single root of unity (including rational numbers). Otherwise, return an algebraic number.

INPUT:

- `extend` – bool (default: True); if True, might return a square root in the algebraic closure of the rationals. If false, return a square root in the universal cyclotomic field or raises an error.

- `all` – bool (default: False); if True, return a list of all square roots.

EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF(3).sqrt()
E(12)^7 - E(12)^11
```

(continues on next page)
sage: (UCF(3).sqrt())**2
3

sage: r = UCF(-1400 / 143).sqrt()
sage: r**2
-1400/143

sage: E(33).sqrt()
-E(33)**17
sage: E(33).sqrt() ** 2
E(33)

sage: (3 * E(5)).sqrt()
-E(60)**11 + E(60)**31
sage: (3 * E(5)).sqrt() ** 2
3*E(5)

Setting all=True you obtain the two square roots in a list:

sage: UCF(3).sqrt(all=True)
[E(12)**7 - E(12)**11, -E(12)**7 + E(12)**11]
sage: (1 + UCF.zeta(5)).sqrt(all=True)
[1.209762576525833? + 0.3930756888787117?*I, -1.209762576525833? - 0.3930756888787117?*I]

In the following situation, Sage is not (yet) able to compute a square root within the universal cyclotomic field:

sage: (E(5) + E(5, 2)).sqrt()
0.7476743906106103? + 1.0290855136357467*I
sage: (E(5) + E(5, 2)).sqrt(extend=False)
Traceback (most recent call last):
... Not ImplementedError: sqrt() not fully implemented for elements of Universal Cyclotomic Field
to_cyclotomic_field(R=None)
Return this element as an element of a cyclotomic field.

EXAMPLES:

sage: UCF = UniversalCyclotomicField()
sage: UCF.gen(3).to_cyclotomic_field()
zeta3
sage: UCF.gen(3, 2).to_cyclotomic_field()
-zeta3 - 1

sage: CF = CyclotomicField(5)
sage: CF(E(5)) # indirect doctest
zeta5

sage: CF = CyclotomicField(7)

(continues on next page)
Matrices are correctly dealt with:

```
[ E(3) E(4)]
[ E(5) -E(3)^2]
sage: Matrix(CyclotomicField(60),M) # indirect doctest
[zeta60^10 - 1 zeta60^15]
[ zeta60^12 zeta60^10]
```

Using a non-standard embedding:

```
sage: CF = CyclotomicField(5,embedding=CC(exp(4*pi*i/5)))
sage: x = E(5)
sage: CC(x)
0.309016994374947 + 0.951056516295154*I
sage: CC(CF(x))
0.309016994374947 + 0.951056516295154*I
```

Test that the bug reported in github issue #19912 has been fixed:

```
sage: a = 1+E(4); a
1 + E(4)
sage: a.to_cyclotomic_field()
zeta4 + 1
```

```
sage.rings.universal_cyclotomic_field.late_import()
```

This function avoids importing libgap on startup. It is called once through the constructor of `UniversalCyclotomicField`.

EXAMPLES:

```
sage: import sage.rings.universal_cyclotomic_field as ucf
sage: _ = UniversalCyclotomicField() # indirect doctest
sage: ucf.libgap is None # indirect doctest
False
```

See also:

```
sage.rings.algebraic_closure_finite_field
```
INDICES AND TABLES

- Index
- Module Index
- Search Page
sage.rings.number_field.bdd_height, 208
sage.rings.number_field.class_group, 298
sage.rings.number_field.galois_group, 198
sage.rings.number_field.homset, 216
sage.rings.number_field.maps, 225
sage.rings.number_field.morphism, 215
sage.rings.number_field.number_field, 1
sage.rings.number_field.number_field_base, 111
sage.rings.number_field.number_field_element, 139
sage.rings.number_field.number_field_element_quadratic, 179
sage.rings.number_field.number_field_ideal, 258
sage.rings.number_field.number_field_ideal_rel, 287
sage.rings.number_field.number_field_morphisms, 220
sage.rings.number_field.number_field_rel, 115
sage.rings.number_field.order, 233
sage.rings.number_field.S_unit_solver, 311
sage.rings.number_field.selmer_group, 340
sage.rings.number_field.small_primes_of_degree_one, 338
sage.rings.number_field.splitting_field, 192
sage.rings.number_field.structure, 230
sage.rings.number_field.totallyreal, 345
sage.rings.number_field.totallyreal_data, 352
sage.rings.number_field.totallyreal_phc, 355
sage.rings.number_field.totallyreal_rel, 348
sage.rings.number_field.unit_group, 304
sage.rings.qqbar, 357
sage.ringsuniversal_cyclotomic_field, 422
INDEX

Symbols

richcmp() (sage.rings.qqbar.AlgebraicNumber method), 388
richcmp() (sage.rings.qqbar.AlgebraicReal method), 403

A
abs() (sage.rings.number_field.number_field_element.NumberFieldElement method), 139
abs() (sage.rings.qqbar.ANScr method), 367
abs() (sage.rings.qqbar.ANExtensionElement method), 369
abs() (sage.rings.qqbar.ANRational method), 374
abs() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement method), 427
abs_hom() (sage.rings.number_field.morphism.RelativeNumberFieldHomomorphism_from_abs method), 216
abs_non_arch() (sage.rings.number_field.number_field_element.NumberFieldElement method), 141
abs_val() (sage.rings.number_field.number_field_element.NumberFieldElement method), 11
absolute_base_field() (sage.rings.number_field.number_field_element.NumberFieldElement method), 116
absolute_charpoly() (sage.rings.number_field.number_field_element.NumberFieldElement method), 171
absolute_charpoly() (sage.rings.number_field.number_field_element.NumberFieldElement method), 173
absolute_charpoly() (sage.rings.number_field.number_field_element.NumberFieldElement method), 177
absolute_degree() (sage.rings.number_field.number_field_element.OrderElement method), 12
absolute_degree() (sage.rings.number_field.number_field_element.OrderElement method), 43
absolute_degree() (sage.rings.number_field.number_field_element.OrderElement method), 117
absolute_degree() (sage.rings.number_field.number_field_element.OrderElement method), 236
absolute_different() (sage.rings.number_field.number_field_element.NumberFieldElement method), 12
absolute_different() (sage.rings.number_field.number_field_element.NumberFieldElement method), 141
absolute_different() (sage.rings.number_field.number_field_element.NumberFieldElement method), 141
absolute_discriminant() (sage.rings.number_field.number_field_element.OrderElement method), 117
absolute_discriminant() (sage.rings.number_field.number_field_element.OrderElement method), 117
absolute_discriminant() (sage.rings.number_field.number_field_element.OrderElement method), 248
absolute_discriminant() (sage.rings.number_field.number_field_element.OrderElement method), 251
absolute_field() (sage.rings.number_field.number_field_element.OrderElement method), 43
absolute_field() (sage.rings.number_field.number_field_element.OrderElement method), 117
absolute_generator() (sage.rings.number_field.number_field_element.NumberField_element method), 12
absolute_generator() (sage.rings.number_field.number_field_element.NumberField_element method), 118
absolute_ideal() (sage.rings.number_field.number_field_element.OrderElement method), 288
absolute_minpoly() (sage.rings.number_field.number_field_element.NumberField_element method), 171
absolute_minpoly() (sage.rings.number_field.number_field_element.NumberField_element method), 174
absolute_minpoly() (sage.rings.number_field.number_field_element.NumberField_element method), 177
absolute_minpoly() (sage.rings.number_field.number_field_element.NumberField_element method), 141
absolute_minpoly() (sage.rings.number_field.number_field_element.NumberField_element method), 274
<table>
<thead>
<tr>
<th>Function/Class</th>
<th>Module/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>field_element_value()</td>
<td>(sage.rings.qqbar.ANExtensionElement, method)</td>
<td>370</td>
</tr>
<tr>
<td>find_zero_result()</td>
<td>(in module sage.rings.qqbar)</td>
<td>415</td>
</tr>
<tr>
<td>fixed_field()</td>
<td>(sage.rings.number_field.galois_group.GaloisGroup, method)</td>
<td>200</td>
</tr>
<tr>
<td>floor()</td>
<td>(sage.rings.number_field.number_field_element.NumberFieldElement, method)</td>
<td>148</td>
</tr>
<tr>
<td>floor()</td>
<td>(sage.rings.number_field.number_field_element_quadratic.NumberFieldElement, method)</td>
<td>182</td>
</tr>
<tr>
<td>floor()</td>
<td>(sage.rings.qqbar.AlgebraicReal, method)</td>
<td>403</td>
</tr>
<tr>
<td>fraction_field()</td>
<td>(sage.rings.number_field.order.Order, method)</td>
<td>239</td>
</tr>
<tr>
<td>fractional_ideal()</td>
<td>(sage.rings.number_field.number_field_ideal.NumberField_ideal, method)</td>
<td>57</td>
</tr>
<tr>
<td>fractional_ideal()</td>
<td>(sage.rings.number_field.order.Order, method)</td>
<td>239</td>
</tr>
<tr>
<td>FractionalIdealClass</td>
<td>(class in sage.rings.number_field.class_group)</td>
<td>300</td>
</tr>
<tr>
<td>free_module()</td>
<td>(sage.rings.number_field.number_field.NumberField, method)</td>
<td>18</td>
</tr>
<tr>
<td>free_module()</td>
<td>(sage.rings.number_field.number_field_ideal.NumberField_ideal, method)</td>
<td>276</td>
</tr>
<tr>
<td>free_module()</td>
<td>(sage.rings.number_field.number_field_ideal_rel.NumberField_ideal_rel, method)</td>
<td>291</td>
</tr>
<tr>
<td>free_module()</td>
<td>(sage.rings.number_field.number_field_rel.NumberField_relative, method)</td>
<td>125</td>
</tr>
<tr>
<td>free_module()</td>
<td>(sage.rings.number_field.order.Order, method)</td>
<td>239</td>
</tr>
<tr>
<td>fundamental_units()</td>
<td>(sage.rings.number_field.unit_group.UnitGroup, method)</td>
<td>308</td>
</tr>
<tr>
<td>gen()</td>
<td>(sage.rings.qqbar.AlgebraicField, method)</td>
<td>382</td>
</tr>
<tr>
<td>gen()</td>
<td>(sage.rings.qqbar.AlgebraicRealField, method)</td>
<td>240</td>
</tr>
<tr>
<td>G</td>
<td>(class in sage.rings.universal_cyclotomic_field.UniversalCyclotomicField)</td>
<td>126</td>
</tr>
<tr>
<td>galois_closure()</td>
<td>(sage.rings.number_field.number_field.NumberField, method)</td>
<td>18</td>
</tr>
<tr>
<td>galois_closure()</td>
<td>(sage.rings.number_field_number_field_ideal.NumberField_ideal, method)</td>
<td>126</td>
</tr>
<tr>
<td>galois_conjugate()</td>
<td>(sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic, method)</td>
<td>183</td>
</tr>
<tr>
<td>galois_conjugates()</td>
<td>(sage.rings.number_field.number_field_element.NumberFieldElement, method)</td>
<td>149</td>
</tr>
<tr>
<td>galois_conjugates()</td>
<td>(sage.rings.universal_cyclotomic_field.UniversalCyclotomicField, method)</td>
<td>428</td>
</tr>
<tr>
<td>galois_group()</td>
<td>(sage.rings.number_field.number_field, method)</td>
<td>58</td>
</tr>
<tr>
<td>GaloisGroup</td>
<td>(in module sage.rings.number_field.galois_group)</td>
<td>198</td>
</tr>
<tr>
<td>GaloisGroup_subgroup</td>
<td>(class in sage.rings.number_field.galois_group)</td>
<td>199</td>
</tr>
<tr>
<td>gcd()</td>
<td>(sage.rings.number_field.number_field_element.NumberFieldElement, method)</td>
<td>149</td>
</tr>
<tr>
<td>generator()</td>
<td>(sage.rings.qqbar.AlgebraicPolynomialTracker, method)</td>
<td>402</td>
</tr>
<tr>
<td>generator()</td>
<td>(sage.rings.qqbar.ANExtensionElement, method)</td>
<td>370</td>
</tr>
<tr>
<td>generator()</td>
<td>(sage.rings.qqbar.ANRational, method)</td>
<td>375</td>
</tr>
<tr>
<td>gens()</td>
<td>(sage.rings.number_field.class_group.FractionalIdealClass, method)</td>
<td>300</td>
</tr>
<tr>
<td>gens()</td>
<td>(sage.rings.number_field.number_field_ideal.NumberField_ideal, method)</td>
<td>126</td>
</tr>
<tr>
<td>gens()</td>
<td>(sage.rings.qqbar.AlgebraicField, method)</td>
<td>382</td>
</tr>
<tr>
<td>gens()</td>
<td>(sage.rings.qqbar.AlgebraicRealField, method)</td>
<td>409</td>
</tr>
<tr>
<td>gens()</td>
<td>(sage.rings.universal_cyclotomic_field.UniversalCyclotomicField, method)</td>
<td>428</td>
</tr>
<tr>
<td>gens_reduced()</td>
<td>(sage.rings.number_field.number_field_ideal.NumberFieldElement, method)</td>
<td>277</td>
</tr>
<tr>
<td>gens_reduced()</td>
<td>(sage.rings.number_field_number_field_ideal.NumberFieldElement, method)</td>
<td>277</td>
</tr>
<tr>
<td>gens_two()</td>
<td>(sage.rings.number_field.number_field_element, method)</td>
<td>150</td>
</tr>
<tr>
<td>get_AA_golden_ratio()</td>
<td>(in module sage.rings.qqbar)</td>
<td>150</td>
</tr>
<tr>
<td>get_object()</td>
<td>(sage.rings.number_field.order.OrderFactory, method)</td>
<td>247</td>
</tr>
<tr>
<td>global_height()</td>
<td>(sage.rings.number_field_number_field_element, method)</td>
<td>150</td>
</tr>
</tbody>
</table>
global_height_arch() (sage.rings.number_field.number_field_element.NumberFieldElement method), 151

global_height_non_arch() (sage.rings.number_field.number_field_element.NumberFieldElement method), 151

group() (sage.rings.number_field.galois_group.GaloisGroup_v1 method), 201

group() (sage.rings.number_field.galois_group.GaloisGroup_v2 method), 205

H

handle_sage_input() (sage.rings.qqbar.ANBinaryExpr method), 366

handle_sage_input() (sage.rings.qqbar.ANExtensionElement method), 371

handle_sage_input() (sage.rings.qqbar.ANRational method), 375

handle_sage_input() (sage.rings.qqbar.ANUnaryExpr method), 379

hermite_constant() (in module sage.rings.number_field.totallyreal_data), 352

hilbert_class_field() (sage.rings.number_field.number_field.NumberField_quadratic method), 102

hilbert_class_field_defining_polynomial() (sage.rings.number_field.number_field.NumberField_quadratic method), 103

hilbert_class_polynomial() (sage.rings.number_field.number_field.NumberField_quadratic method), 103

hilbert_conductor() (sage.rings.number_field.number_field.NumberField_absolutel method), 19

hilbert_symbol() (sage.rings.number_field.number_field.NumberField_absolutel method), 19

hilbert_symbol_negative_at_S() (sage.rings.number_field.number_field.NumberField_quadratic method), 23

ideal_below() (sage.rings.number_field.number_field_number_field_ideal_rel.NumberFieldIdealRel method), 191

ideal_class_log() (sage.rings.number_field.number_field_number_field_ideal.NumberFieldIdeal method), 278

ideal_coprime() (sage.rings.number_field.number_field_number_field_ideal.NumberFieldIdeal method), 261

ideallog() (sage.rings.number_field.number_field_number_field_ideal.NumberFieldIdeal method), 261

ideals_of_bdd_norm() (sage.rings.number_field.number_field_number_field_ideal_rel.NumberFieldIdealRel method), 191

idealstar() (sage.rings.number_field.number_field_ideal.NumberFieldIdeal method), 61

im_gens() (sage.rings.number_field.morphism.RelativeNumberFieldHomomorphism method), 216

imag() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement method), 180

imag() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement method), 183

imag() (sage.rings.qqbar.AlgebraicNumber method), 390

imag() (sage.rings.qqbar.AlgebraicReal method), 404

imag() (sage.rings.qqbar.ANDescr method), 368

imag() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicField method), 429

imag_part() (sage.rings.number_field_number_field_element_quadratic.NumberFieldElement method), 180

imag_part() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicField method), 429

incr() (sage.rings.number_field.totallyreal_data.tr_data_rel method), 354

increment() (sage.rings.number_field.totallyreal_data.tr_data_rel method), 354

index_in() (sage.rings.number_field.order.Order_absolute method), 249

index_in() (sage.rings.number_field.order.Order_relative method), 253

inertia_group() (sage.rings.number_field.galois_group.GaloisGroup_v2 method), 205

inertia_group() (sage.rings.number_field.number_field_number_field_ideal.NumberFieldIdeal method), 279

integer_points_in_polytope() (in module sage.rings.number_field.totallyreal_data), 353

integral_basis_in_polytope() (in module sage.rings.number_field.bdd_height), 212

integral_basis() (sage.rings.number_field.number_field_number_field_ideal.NumberFieldIdeal method), 61

integral_basis() (sage.rings.number_field.number_field_number_field_ideal_rel.NumberFieldIdealRel method), 293

integral_closure() (sage.rings.number_field.order.Order method), 240

index() (sage.rings.number_field.class_group.FractionalIdealClass method), 301

index() (sage.rings.number_field.number_field.NumberField_quadratic method), 60

index() (sage.rings.number_field.order.Order method), 240
is_galois() (sage.rings.number_field.number_field_rel.NumberField_galois(), method), 127
is_galois_absolute() is_NumberFieldFractionalIdeal() (in module sage.rings.number_field.number_field_rel.NumberField_relative.NumberField_relative_number_field_element, method), 128
is_galois_relative() is_NumberFieldFractionalIdeal_rel() (in module sage.rings.number_field.number_field_rel.NumberField_relative.NumberField_relative_number_field_element_rel, method), 128
is_injective() is_NumberFieldHomsetCodomain() (in module sage.rings.number_field.number_field), 297
is_integer() is_NumberFieldIdeal() (in module sage.rings.number_field.number_field_element, 107
is_integral() is_NumberFieldIdeal() (in module sage.rings.number_field.number_field_element, 153
is_integer() is_NumberFieldElement_quadratic.is_NumberFieldElement_quadratic() (in module sage.rings.number_field.number_field_element.quadratic, method), 184
is_integer() is_NumberFieldOrder() (in module sage.rings.number_field.order, 257
is_integer() is_one() (sage.rings.number_field.number_field_element.NumberFieldElement, method), 398
is_integral() is_one() (sage.rings.number_field.number_field_element.NumberFieldElement, method), 153
is_integral() is_one() (sage.rings.number_field.number_field_element_number_field_element_quadratic.Numb, 286
is_integral() is_integer() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic, method), 184
is_integral() is_integer() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic, method), 280
is_integral() is_integer() (sage.rings.number_field.number_field_ideal_number_field_ideal, 66
is_integral() is_integer() (sage.rings.number_field.number_field_ideal_number_field_ideal_rel, 294
is_integral() is_integer() (sage.rings.number_field.number_field_ideal_number_field_ideal, 430
is_integrally_closed() is_principal() (sage.rings.number_field.class_group.FractionalIdealCodomain(), 241
is_isomorphic() (sage.rings.number_field.number_field.order), 301
is_isomorphic() (sage.rings.number_field.number_field.number_field.order), 64
is_isomorphic_relative() is_quadratic_field() (in module sage.rings.number_field.number_field_element_number_field_element_rel, method), 294
is_maximal() is_rational() (sage.rings.number_field.number_field_element_number_field_element, 107
is_maximal() is_rational() (sage.rings.number_field.number_field_element_number_field_element, 84
is_maximal() is_rational() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicField, method), 430
is_maximal() is_rational() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicField, method), 430
is_maximal() is_real() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicField, method), 250
is_maximal() is_real() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicField, method), 253
is_noetherian() is_real() (sage.rings.number_field.number_field_element, 108
is_norm() is_real_positive() (sage.rings.number_field.number_field_element, 241
is_nth_power() is_real_place() (in module sage.rings.number_field.number_field_element, 154
is_number_field() is_relative() (sage.rings.number_field.number_field_element, 82
is_number_field_element() is_relative() (sage.rings.number_field.number_field_element, 155
is_number_field_element() is_relative() (sage.rings.number_field.number_field_element, 114
is_number_field_element() is_RelativeNumberField() (in module sage.rings.number_field.number_field_element, 138
Index

sage.rings.number_field.bdd_height
- 208

sage.rings.number_field.class_group
- 298

sage.rings.number_field.galois_group
- 198

sage.rings.number_field.homset
- 216

sage.rings.number_field.maps
- 225

sage.rings.number_field.morphism
- 215

sage.rings.number_field.number_field
- 1

sage.rings.number_field.number_field_base
- 111

sage.rings.number_field.number_field_element
- 139

sage.rings.number_field.number_field_element_quadratic
- 179

sage.rings.number_field.number_field_ideal
- 258

sage.rings.number_field.number_field_ideal_rel
- 287

sage.rings.number_field.number_field_morphisms
- 220

sage.rings.number_field.number_field_rel
- 115

sage.rings.number_field.order
- 233

sage.rings.number_field.S_unit_solver
- 311

sage.rings.number_field.selmer_group
- 340

sage.rings.number_field.small_primes_of_degree_one
- 338

sage.rings.number_field.splitting_field
- 192

sage.rings.number_field.structure
- 230

sage.rings.number_field.totallyreal
- 345

sage.rings.number_field.totallyreal_data
- 352

sage.rings.number_field.totallyreal_phc
- 355

sage.rings.number_field.unit_group
- 304

sage.rings.qqbar
- 357

sage.rings.universal_cyclotomic_field
- 422

module
- 431

multiplicative_order
- 161

minpoly
- 161

maxpoly
- 161

match
- 161

maximal_order
- 66

minkowski_bound
- 113

minkowski_embedding
- 25

minimal_vector
- 329

matrix
- 160

maximal_totally_real_subfield
- 68

minpoly
- 398

minkowski_vector
- 223

multiplicative_order
- 391

multiplicative_order
- 404

multiplicative_order
- 376

multiplicative_order
- 450
Algebraic Numbers and Number Fields, Release 10.0

(sage.rings.number_field.number_field_rel.NumberField_rel, 140)
possible_mus() (in module sage.rings.number_field.number_field_S_unit_solver, 332)
power_basis() (sage.rings.number_field.number_field_number_field_generic, 74)
prec_seq() (in module sage.rings.qqbar, 421)
 paradigm_data() (sage.rings.number_field.morphism.NumberFieldMorphism, 215)
preimage() (sage.rings.number_field.number_field_number_field_number_field, 74)
prime_factors() (sage.rings.number_field.number_field_ideal.NumberFieldFractionalIdeal, 76)
prime_to_S_part() (sage.rings.number_field.number_field_number_field_number_field, 206)
prime_to_idealM_part() (sage.rings.number_field.number_field_ideal.NumberFieldFractionalIdeal, 80)
prime_factors() (sage.rings.number_field.number_field.NumberField_generic, 76)
primes_of_bounded_norm() (sage.rings.number_field.number_field.NumberField_generic, 78)
primes_of_degree_one_iter() (sage.rings.number_field.number_field_element_quadratic.NumberField_element_quadratic, 79)
primes_of_degree_one_list() (sage.rings.number_field.number_field.NumberField_generic, 79)
poldegree() (sage.rings.number_field.splitting_field.SplittingData, 79)
primitive_element() (sage.rings.number_field.number_field_generic, 80)
polynomial() (sage.rings.number_field.number_field_element_quadratic.NumberField_element_quadratic, 73)
polynomial() (sage.rings.number_field.number_field_element.NumberField_element, 164)
primitive_root_of_unity() (sage.rings.number_field.number_field.NumberField_generic, 133)
polynomial() (sage.rings.number_field.number_field_element.NumberField_element, 133)
printa() (sage.rings.number_field.totallyreal_data.tr_data, 193)
proof_flag() (in module sage.rings.number_field.number_field.S_unit_solver, 193)
pSelmerGroup() (sage.rings.number_field.number_field, 108)
Q_to_quadratic_field_element (class in sage.rings.number_field.number_field_element_quadratic, 382)
quadratic_defect() (sage.rings.number_field.number_field.Field element), 81
QuadraticField() (in module sage.rings.number_field.number_field), 104
quotient_char_p() (in module sage.rings.number_field.number_field_ideal), 287
QuotientMap (class in sage.rings.number_field.number_field_ideal), 285

R
radical_expression() (sage.rings.qqbar.AlgebraicNumber_base method), 399
ramification_breaks() (sage.rings.number_field.galois_group.GaloisGroup_v2 method), 206
ramification_degree() (sage.rings.number_field.galois_group.GaloisGroupElement method), 199
ramification_group() (sage.rings.number_field.galois_group.GaloisGroupElement method), 207
ramification_group() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 282
ramification_index() (sage.rings.number_field.number_field_ideal.NumberFieldIdeal method), 268
ramification_index() (sage.rings.number_field.number_field_ideal_rel.NumberFieldFractionalIdeal_rel method), 295
random_element() (sage.rings.number_field.number_field_field_element) method), 81
random_element() (sage.rings.number_field.number_field_field_element) method), 282
random_element() (sage.rings.number_field.order.Order method), 243
random_element() (sage.rings.qqbar.AlgebraicField method), 383
random_element() (sage.rings.qqbar.AlgebraicRealField method), 410
rank() (sage.rings.number_field.order.Order method), 244
rank() (sage.rings.number_field.unit_group.UnitGroup method), 309
rational_argument() (sage.rings.qqbar.AlgebraicNumber method), 391
rational_argument() (sage.rings.qqbar.ANExtensionElement method), 373
rational_exact_root() (in module sage.rings.qqbar), 421
ray_class_number() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 180
real() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 187
real() (sage.rings.qqbar.AlgebraicNumber method), 392
real() (sage.rings.qqbar.AlgebraicReal method), 405
real() (sage.rings.qqbar.ANDescr method), 369
real() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement method), 432
real_embeddings() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 37
real_embeddings() (sage.rings.number_field.number_field_number_field_element_quadratic.NumberFieldElement_quadratic method), 82
real_exact() (sage.rings.qqbar.AlgebraicReal method), 406
real_part() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 181
real_part() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement method), 432
reduce() (sage.rings.number_field.class_group.FractionalIdealClass method), 29
reduce() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 29
reduce() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 283
reduce_basis() (sage.rings.number_field.number_field_number_field_element_quadratic.NumberFieldElement_quadratic method), 83
reduced_fundamental() (in module sage.rings.w蝶.ca NumberField), 84
reduction_step_complex_case() (in module sage.rings.w蝶.ca NumberField), 332
refine_embedding() (in module sage.rings.w蝶.ca NumberField), 109
refine_interval() (sage.rings.qqbar.ARho method), 379
regulator() (sage.rings.number_field.number_field_number_field_number_field method), 85
relative_degree() (sage.rings.number_field.number_field_number_field_number_field method), 29
relative_degree() (sage.rings.number_field.number_field_number_field_number_field method), 373
method), 273
S_unit_group() (sage.rings.number_field.number_field.NumberField_generic method), 274
S_unit_solutions() (sage.rings.number_field.number_field.NumberField_generic method), 41
S_units() (sage.rings.number_field.number_field.NumberField_generic method), 42
sage.rings.number_field.bdd_height module, 208
sage.rings.number_field.class_group module, 298
sage.rings.number_field.galois_group module, 198
sage.rings.number_field.homset module, 216
sage.rings.number_field.maps module, 225
sage.rings.number_field.morphism module, 215
sage.rings.number_field.number_field module, 1
sage.rings.number_field.number_field_base module, 111
sage.rings.number_field.number_field_element module, 139
sage.rings.number_field.number_field_element_quadratic module, 179
sage.rings.number_field.number_field_ideal module, 258
sage.rings.number_field.number_field_ideal_rel module, 287
sage.rings.number_field.number_field_morphism module, 220
sage.rings.number_field.number_field_relat module, 115
sage.rings.number_field.order module, 233
sage.rings.number_field.S_unit_solver module, 311
sage.rings.number_field.selmer_group module, 340
sage.rings.number_field.small_primes_of_degree_one module, 338
sage.rings.number_field.splitting_field module, 192
sage.rings.number_field.structure module, 230
sage.rings.number_field.totallyreal module, 345
sage.rings.number_field.totallyreal_data module, 352
sage.rings.number_field.totallyreal_phc module, 355
sage.rings.number_field.totallyreal_rel module, 348
Sage.rings.number_field.unit_group module, 304
Sage.rings.number_field.unit_group_quadratic module, 357
Sage.rings.universal_cyclotomic_field module, 322
scale() (sage.rings.qqbar.ANRational method), 376
SClassGroup (class in sage.rings.number_field.class_group), 302
section() (sage.rings.number_field.number_field_morphisms.CyclotomicFieldEmbedding method), 220
section() (sage.rings.number_field.number_field_morphisms.EmbeddedNumberFieldMorphism method), 221
selmer_generators() (sage.rings.number_field.number_field.NumberField_generic method), 86
selmer_group() (sage.rings.number_field.number_field.NumberField_generic method), 87
selmer_group_iterator() (sage.rings.number_field.number_field.NumberField_generic method), 87
selmer_space() (sage.rings.number_field.number_field.NumberField_generic method), 88
S_fractional_ideal_class (class in sage.rings.number_field.class_group), 303
short_prec_seq() (in module sage.rings.qqbar), 422
sieve_below_bound() (in module sage.rings.number_field.S_unit_solver), 333
sieve_below_ordering() (in module sage.rings.number_field.S_unit_solver), 334
sign() (sage.rings.number_field.number_field_element.NumberFieldElement method), 167
sign() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement method), 187
sign() (sage.rings.qqbar.AlgebraicReal method), 407
signature() (sage.rings.number_field.galois_group.GaloisGroup_v2 method), 207
signature() (sage.rings.number_field.number_field.NumberField_cyclotomic method), 37
signature() (sage.rings.number_field.number_field.NumberField_generic method), 89
signature() (sage.rings.number_field.number_field_base.NumberField method), 114
simplify() (sage.rings.qqbar.AlgebraicNumber_base method), 400
simplify() (sage.rings.qqbar.ANExtensionElement method), 374
Small_primes_of_degree_one_iter (class in sage.rings.number_field.small_primes_of_degree_one), 339
small_residue() (sage.rings.number_field.number_field_ideal.NumberFieldIdeal method), 273
smallest_integer() (sage.rings.number_field.number_field_ideal.NumberField_ideal method), 273
Index
valuation() (sage.rings.number_field.number_field_element.NumberFieldElement method), 170

valuation() (sage.rings.number_field.number_field_element.NumberFieldElement_relative method), 175

valuation() (sage.rings.number_field.number_field_ideal.NumberFieldIdeal method), 285

valuation() (sage.rings.number_field.number_field_ideal_rel.NumberFieldFractionalIdeal_rel method), 297

valuation() (sage.rings.number_field.order.Order method), 246

vector() (sage.rings.number_field.number_field_element.NumberFieldElement method), 170

vector_space() (sage.rings.number_field.number_field_element_relative.NumberField_relative method), 138

W

weed_fields() (in module sage.rings.number_field.totallyreal), 348

Y

Yu_a1_kappa1_c1() (in module sage.rings.number_field.S_unit_solver), 313

Yu_bound() (in module sage.rings.number_field.S_unit_solver), 314

Yu_C1_star() (in module sage.rings.number_field.S_unit_solver), 313

Yu_condition_115() (in module sage.rings.number_field.S_unit_solver), 314

Yu_modified_height() (in module sage.rings.number_field.S_unit_solver), 315

Z

Z_to_quadratic_field_element (class in sage.rings.number_field.number_field_element_quadratic), 192

zero() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicField method), 426

zeta() (sage.rings.number_field.number_field.NumberField_cyclotomic method), 37

zeta() (sage.rings.number_field.number_field.NumberField_generic method), 99

zeta() (sage.rings.number_field.order.Order method), 247

zeta() (sage.rings.number_field.unit_group.UnitGroup method), 310

zeta() (sage.rings.qqbar.AlgebraicField method), 384

zeta() (sage.rings.qqbar.AlgebraicRealField method), 411

zeta() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicField method), 427

zeta_coefficients() (sage.rings.number_field.number_field_number_field_generic method), 100