CONTENTS

1 Number Fields 1
2 Elements 153
3 Morphisms 211
4 Orders, Ideals and Ideal Classes 229
5 Algebraic Numbers 347
6 Enumeration of Totally Real Fields 425
7 Indices and Tables 437

Python Module Index 439

Index .. 441
1.1 Number fields

We define a quartic number field and its quadratic extension:

```
sage: x = polygen(ZZ, 'x')
sage: K.<y> = NumberField(x^4 - 420*x^2 + 40000)
sage: z = y^5/11;  z
420/11*y^3 - 40000/11*y
sage: R.<y> = PolynomialRing(K)
sage: f = y^2 + y + 1
sage: L.<a> = K.extension(f); L
Number Field in a with defining polynomial y^2 + y + 1 over its base field
sage: KL.<b> = NumberField([x^4 - 420*x^2 + 40000, x^2 + x + 1]); KL
Number Field in b0 with defining polynomial x^4 - 420*x^2 + 40000 over its base field
```

We do some arithmetic in a tower of relative number fields:

```
sage: K.<cuberoot2> = NumberField(x^3 - 2)
sage: L.<cuberoot3> = K.extension(x^3 - 3)
sage: S.<sqrt2> = L.extension(x^2 - 2)
sage: S
Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field
sage: sqrt2 * cuberoot3
20*cuberoot3^2 + 15*cuberoot3 + 4)
sage: a = S(cuberoot2); a
sqrt2 + cuberoot3
sage: a.parent()
Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field
```
Warning: Doing arithmetic in towers of relative fields that depends on canonical coercions is currently VERY SLOW. It is much better to explicitly coerce all elements into a common field, then do arithmetic with them there (which is quite fast).

AUTHORS:

- Steven Sivek (2006-05-12): added support for relative extensions
- William Stein (2007-09-04): major rewrite and documentation
- Robert Bradshaw (2008-10): specified embeddings into ambient fields
- Simon King (2010-05): improved coercion from GAP
- Jeroen Demeyer (2010-07, 2011-04): upgraded PARI (github issue #9343, github issue #10430, github issue #11130)
- Robert Harron (2012-08): added is_CM(), complex_conjugation(), and maximal_totally_real_subfield()
- Christian Stump (2012-11): added conversion to universal cyclotomic field
- Julian Rueth (2014-04-03): absolute number fields are unique parents
- Vincent Delecroix (2015-02): comparisons/floor/ceil using embeddings
- Kiran Kedlaya (2016-05): relative number fields hash based on relative polynomials
- Peter Bruin (2016-06): made number fields fully satisfy unique representation
- John Jones (2017-07): improved check for is_galois(), add is_abelian(), building on work in patch by Chris Wuthrich
- Anna Haensch (2018-03): added quadratic_defect()
The default embedding sends the generator to the complex primitive n^{th} root of unity of least argument.

```
sage: CC(k.gen())
0.623489801858734 + 0.781831482468030*I
```

Cyclotomic fields are of a special type.

```
sage: type(k)
<class 'sage.rings.number_field.number_field.NumberField_cyclotomic_with_category'>
```

We can specify a different generator name as follows.

```
sage: k.<z7> = CyclotomicField(7); k
Cyclotomic Field of order 7 and degree 6
sage: k.gen()
z7
```

The n must be an integer.

```
sage: CyclotomicField(3/2)
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer
```

The degree must be nonnegative.

```
sage: CyclotomicField(-1)
Traceback (most recent call last):
...
ValueError: n (-1) must be a positive integer
```

The special case $n = 1$ does not return the rational numbers:

```
sage: CyclotomicField(1)
Cyclotomic Field of order 1 and degree 1
```

Due to their default embedding into \mathbb{C}, cyclotomic number fields are all compatible.

```
sage: cf30 = CyclotomicField(30)
sage: cf5 = CyclotomicField(5)
sage: cf3 = CyclotomicField(3)
sage: cf30.gen() + cf5.gen() + cf3.gen()
zeta30^6 + zeta30^5 + zeta30 - 1
sage: cf6 = CyclotomicField(6) ; z6 = cf6.0
sage: cf3 = CyclotomicField(3) ; z3 = cf3.0
sage: cf3(z6)
zeta3 + 1
sage: cf6(z3)
zeta6 - 1
sage: cf9 = CyclotomicField(9) ; z9 = cf9.0
sage: cf18 = CyclotomicField(18) ; z18 = cf18.0
```

(continues on next page)
create_key
\((n=0, \text{names}=\text{None, embedding}=\text{True}) \)
Create the unique key for the cyclotomic field specified by the parameters.

create_object
\(\text{(version, key, **extra_args)} \)
Create the unique cyclotomic field defined by key.

sage.rings.number_field.number_field.GaussianField()
The field \(\mathbb{Q}[i] \).

sage.rings.number_field.number_field.NumberField
\(\text{(polynomial, name, check=\text{None, names}=\text{True, embedding}=\text{None, latex_name}=\text{None, assume_disc_small}=\text{None, maximize_at_primes}=\text{False, structure}=\text{None, latex_names}=\text{None, **kwds})} \)

Return the number field (or tower of number fields) defined by the irreducible polynomial.

INPUT:

- \text{polynomial} – a polynomial over \(\mathbb{Q} \) or a number field, or a list of such polynomials.
- \text{names} (or \text{name}) - a string or a list of strings, the names of the generators
- \text{check} – a boolean (default: True); do type checking and irreducibility checking.
- \text{embedding} – None, an element, or a list of elements, the images of the generators in an ambient field (default: None)
- \text{latex_names} (or \text{latex_name}) - None, a string, or a list of strings (default: None), how the generators are printed for latex output
- \text{assume_disc_small} – a boolean (default: False); if True, assume that no square of a prime greater than PARI's primelimit (which should be 500000); only applies for absolute fields at present.
- \text{maximize_at_primes} – None or a list of primes (default: None); if not None, then the maximal order is computed by maximizing only at the primes in this list, which completely avoids having to factor the discriminant, but of course can lead to wrong results; only applies for absolute fields at present.
- \text{structure} – None, a list or an instance of \text{structure.NumberFieldStructure} (default: None), internally used to pass in additional structural information, e.g., about the field from which this field is created as a subfield.

We accept \text{implementation} and \text{prec} attributes for compatibility with \text{AlgebraicExtensionFunctor} but we ignore them as they are not used.

EXAMPLES:
Constructing a relative number field:

```
  sage: x = polygen(ZZ, 'x')
  sage: K.<a> = NumberField(x^2 - 2)
  sage: R.<t> = K[]
  sage: L.<b> = K.extension(t^3 + t + a); L
  Number Field in b with defining polynomial t^3 + t + a over its base field
  sage: L.absolute_field(c)
  Number Field in c with defining polynomial x^6 + 2*x^4 + x^2 - 2
  sage: a*b
  a*b
  sage: L(a)
  a
  sage: L.lift_to_base(b^3 + b)
  -a
```

Constructing another number field:

```
  sage: k.<i> = NumberField(x^2 + 1)
  sage: R.<z> = k[]
  sage: m.<j> = NumberField(z^3 + i*z + 3)
  sage: m
  Number Field in j with defining polynomial z^3 + i*z + 3 over its base field
```

Number fields are globally unique:

```
  sage: K.<a> = NumberField(x^3 - 5)
  sage: a^3
  5
  sage: L.<a> = NumberField(x^3 - 5)
  sage: K is L
  True
```

Equality of number fields depends on the variable name of the defining polynomial:

```
  sage: x = polygen(QQ, 'x'); y = polygen(QQ, 'y')
  sage: k.<a> = NumberField(x^2 + 3)
  sage: m.<a> = NumberField(y^2 + 3)
  sage: k
  Number Field in a with defining polynomial x^2 + 3
  sage: m
  Number Field in a with defining polynomial y^2 + 3
  sage: k == m
  False
```

In case of conflict of the generator name with the name given by the preparser, the name given by the preparser takes precedence:
One can also define number fields with specified embeddings, may be used for arithmetic and deduce relations with other number fields which would not be valid for an abstract number field.

```plaintext
sage: K.<a> = NumberField(x^3 - 2, embedding=1.2)
sage: RR.coerce_map_from(K)
Composite map:
  From: Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
  → Real Field with 53 bits of precision
  Defn: Generic morphism:
    From: Number Field in a with defining polynomial x^3 - 2
    with a = 1.259921049894873?
    To:   Real Lazy Field
    Defn: a -> 1.259921049894873?
    then
    Conversion via _mpfr_ method map:
      From: Real Lazy Field
      To:                 Real Field with 53 bits of precision
sage: RR(a)
1.2599210498948731647672106072782283505702514647015079800820
sage: 1.1 + a
2.3599210498948731647672106072782283505702514647015079800820
sage: b = 1/(a+1); b
1/3*a^2 - 1/3*a + 1/3
sage: RR(b)
0.442493334024442
```

Note that the image only needs to be specified to enough precision to distinguish roots, and is exactly computed to any needed precision:

```plaintext
sage: RealField(200)(a)
1.2599210498948731647672106072782283505702514647015079800820
```

One can embed into any other field:

```plaintext
sage: K.<a> = NumberField(x^3 - 2, embedding=CC.gen() - 0.6)
sage: CC(a)
-0.629960524947436 + 1.09112363597172*I
```

(continues on next page)
The QuadraticField and CyclotomicField constructors create an embedding by default unless otherwise specified:

```
sage: K.<zeta> = CyclotomicField(15)
sage: CC(zeta)
0.913545457642601 + 0.406736643075800*I
sage: L.<sqrtn3> = QuadraticField(-3)
sage: K(sqrtn3)
2*zeta^5 + 1
sage: sqrtn3 + zeta
2*zeta^5 + zeta + 1
```

Comparison depends on the (real) embedding specified (or the one selected by default). Note that the codomain of the embedding must be QQbar or AA for this to work (see github issue #20184):

```
sage: N.<g> = NumberField(x^3 + 2, embedding=1)
sage: 1 < g
False
sage: g > 1
False
sage: RR(g)
-1.25992104989487
```

If no embedding is specified or is complex, the comparison is not returning something meaningful.

```
sage: N.<g> = NumberField(x^3 + 2)
sage: 1 < g
False
sage: g > 1
True
```

Since SageMath 6.9, number fields may be defined by polynomials that are not necessarily integral or monic. The only notable practical point is that in the PARI interface, a monic integral polynomial defining the same number field is computed and used:

```
sage: K.<a> = NumberField(2*x^3 + x + 1)
sage: K.pari_polynomial()
x^3 - x^2 - 2
```

Elements and ideals may be converted to and from PARI as follows:

```
sage: pari(a)
Mod(-1/2*y^2 + 1/2*y, y^3 - y^2 - 2)
sage: K(pari(a))
a
sage: I = K.ideal(a); I
```

(continues on next page)
Here is an example where the field has non-trivial class group:

```python
sage: L.<b> = NumberField(3*x^2 - 1/5)
sage: L.pari_polynomial()
x^2 - 15
sage: J = L.primes_above(2)[0]; J
Fractional ideal (2, 15*b + 1)
sage: J.pari_hnf()
[2, 1; 0, 1]
sage: L.ideal(J.pari_hnf())
Fractional ideal (2, 15*b + 1)
```

An example involving a variable name that defines a function in PARI:

```python
sage: theta = polygen(QQ, 'theta')
sage: M.<z> = NumberField([theta^3 + 4, theta^2 + 3]); M
Number Field in z0 with defining polynomial theta^3 + 4 over its base field
```

```python
class sage.rings.number_field.number_field.NumberFieldFactory
Bases: UniqueFactory

Factory for number fields.

This should usually not be called directly, use *NumberField()* instead.

INPUT:

- *polynomial* – a polynomial over *Q* or a number field.
- *name* – a string (default: 'a'), the name of the generator
- *check* – a boolean (default: True); do type checking and irreducibility checking.
- *embedding* – None or an element, the images of the generator in an ambient field (default: None)
- *latex_name* – None or a string (default: None), how the generator is printed for latex output
- *assume_disc_small* – None or a boolean (default: False); if True, assume that no square of a prime greater than PARI's primelimit (which should be 500000); only applies for absolute fields at present.
- *maximize_at_primes* – None or a list of primes (default: None); if not None, then the maximal order is computed by maximizing only at the primes in this list, which completely avoids having to factor the discriminant, but of course can lead to wrong results; only applies for absolute fields at present.
- *structure* – None or an instance of *structure.NumberFieldStructure* (default: None), internally used to pass in additional structural information, e.g., about the field from which this field is created as a subfield.

create_key_and_extra_args (*polynomial, name, check, embedding, latex_name, assume_disc_small, maximize_at_primes, structure*)

Create a unique key for the number field specified by the parameters.

create_object (*version, key, check*)

Create the unique number field defined by *key*.
Create the tower of number fields defined by the polynomials in the list `polynomials`.

**INPUT:**

- `polynomials` – a list of polynomials. Each entry must be polynomial which is irreducible over the number field generated by the roots of the following entries.
- `names` – a list of strings or a string, the names of the generators of the relative number fields. If a single string, then names are generated from that string.
- `check` – a boolean (default: True), whether to check that the polynomials are irreducible
- `embeddings` – a list of elements or None (default: None), embeddings of the relative number fields in an ambient field.
- `latex_names` – a list of strings or None (default: None), names used to print the generators for latex output.
- `assume_disc_small` – a boolean (default: False); if True, assume that no square of a prime greater than PARI’s primelimit (which should be 500000); only applies for absolute fields at present.
- `maximize_at_primes` – None or a list of primes (default: None); if not None, then the maximal order is computed by maximizing only at the primes in this list, which completely avoids having to factor the discriminant, but of course can lead to wrong results; only applies for absolute fields at present.
- `structures` – None or a list (default: None), internally used to provide additional information about the number field such as the field from which it was created.

**OUTPUT:**

The relative number field generated by a root of the first entry of `polynomials` over the relative number field generated by root of the second entry of `polynomials` ... over the number field over which the last entry of `polynomials` is defined.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: k.<a,b,c> = NumberField([x^2 + 1, x^2 + 3, x^2 + 5]); k # indirect doctest
Number Field in a with defining polynomial x^2 + 1 over its base field
sage: a^2
-1
sage: b^2
-3
sage: c^2
-5
sage: (a+b+c)^2
(2*b + 2*c)*a + 2*c*b - 9
```

The Galois group is a product of 3 groups of order 2:

```python
sage: k.absolute_field(names=c).galois_group() # indirect doctest
Galois group 8T3 (2[x]2[x]2) with order 8 of x^8 + 36*x^6 + 302*x^4 + 564*x^2 + ...
```

1.1. Number fields
Repeatedly calling `base_field` allows us to descend the internally constructed tower of fields:

```python
sage: k.base_field()
Number Field in b with defining polynomial x^2 + 3 over its base field
sage: k.base_field().base_field()
Number Field in c with defining polynomial x^2 + 5
sage: k.base_field().base_field().base_field()
Rational Field
```

In the following example the second polynomial is reducible over the first, so we get an error:

```python
sage: v = NumberField([x^3 - 2, x^3 - 2], names='a')
Traceback (most recent call last):
 ... ValueError: defining polynomial (x^3 - 2) must be irreducible
```

We mix polynomial parent rings:

```python
sage: k.<y> = QQ[]
sage: m = NumberField([y^3 - 3, x^2 + x + 1, y^3 + 2], 'beta'); m
Number Field in beta0 with defining polynomial y^3 - 3 over its base field
sage: m.base_field()
Number Field in beta1 with defining polynomial x^2 + x + 1 over its base field
```

A tower of quadratic fields:

```python
sage: K.<a> = NumberField([x^2 + 3, x^2 + 2, x^2 + 1]); K
Number Field in a0 with defining polynomial x^2 + 3 over its base field
sage: K.base_field()
Number Field in a1 with defining polynomial x^2 + 2 over its base field
sage: K.base_field().base_field()
Number Field in a2 with defining polynomial x^2 + 1
```

LaTeX versions of generator names can be specified either as:

```python
sage: K = NumberField([x^3 - 2, x^3 - 3, x^3 - 5], names=['a', 'b', 'c'],
 : latex_names=[r'\alpha', r'\beta', r'\gamma'])
sage: K.inject_variables(verbose=False)
Defining a0, a1, a2
sage: latex(a0 + a1 + a2)
\alpha_{0} + \alpha_{1} + \alpha_{2}
```

or as:

```python
sage: K = NumberField([x^3 - 2, x^3 - 3, x^3 - 5], names='a', latex_names=r'\alpha ˓→')
sage: K.inject_variables()
Defining a0, a1, a2
sage: latex(a0 + a1 + a2)
\alpha_{0} + \alpha_{1} + \alpha_{2}
```

A bigger tower of quadratic fields:

```python
sage: K.<a2,a3,a5,a7> = NumberField([x^2 + p for p in [2,3,5,7]]); K
Number Field in a2 with defining polynomial x^2 + 2 over its base field
sage: a2^2
-2
sage: a3^2
-3
```

(continues on next page)
The function can also be called by name:

```python
sage: NumberFieldTower([x^2 + 1, x^2 + 2], ['a', 'b'])
```

Number Field in a with defining polynomial x^2 + 1 over its base field

---

**class** `sage.rings.number_field.number_field.NumberField_absolute`

Function to initialize an absolute number field.

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: K = NumberField(x^17 + 3, 'a'); K
Number Field in a with defining polynomial x^17 + 3
sage: type(K)
<class 'sage.rings.number_field.number_field.NumberField_absolute_with_category'>
sage: TestSuite(K).run()
```

**abs_val** *(v, iota, prec=None)*

Return the value |\(\iota|_v|_v|.

**INPUT:**

- **v** – a place of \(K\), finite (a fractional ideal) or infinite (element of \(K\).places(prec))
- **iota** – an element of \(K\)
- **prec** – (default: None) the precision of the real field

**OUTPUT:**

The absolute value as a real number

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: K.<xi> = NumberField(x^3 - 3)
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]
sage: v_fin = tuple(K.primes_above(3))[0]
sage: K.abs_val(phi_real, xi^2) 2.08008382305190
sage: K.abs_val(phi_complex, xi^2) 4.32674871092223
```

(continues on next page)
absolute_degree()

A synonym for degree().

EXAMPLES:

```sage
x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.absolute_degree()
2
```

absolute_different()

A synonym for different().

EXAMPLES:

```sage
x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.absolute_different()
Fractional ideal (2)
```

absolute_discriminant()

A synonym for discriminant().

EXAMPLES:

```sage
x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.absolute_discriminant()
-4
```

absolute_generator()

An alias for `sage.rings.number_field.number_field.NumberField_generic.gen()`.
This is provided for consistency with relative fields, where the element returned by `sage.rings.number_field.number_field_rel.NumberField_relative.gen()` only generates the field over its base field (not necessarily over \( \mathbb{Q} \)).

EXAMPLES:

```sage
x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^2 - 17)
sage: K.absolute_generator()
a
```

absolute_polynomial()

Return absolute polynomial that defines this absolute field. This is the same as `polynomial()`.

EXAMPLES:
absolute_vector_space(*args, **kwds)

Return vector space over \( \mathbb{Q} \) corresponding to this number field, along with maps from that space to this number field and in the other direction.

For an absolute extension this is identical to vector_space().

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 - 5)
sage: K.absolute_vector_space()
(Vector space of dimension 3 over Rational Field,
 Isomorphism map:
 From: Vector space of dimension 3 over Rational Field
 To: Number Field in a with defining polynomial x^3 - 5,
 Isomorphism map:
 From: Number Field in a with defining polynomial x^3 - 5
 To: Vector space of dimension 3 over Rational Field)
```

automorphisms()

Compute all Galois automorphisms of self.

This uses PARI’s pari:nfgaloisconj and is much faster than root finding for many fields.

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^2 + 10000)
sage: K.automorphisms()

[Ring endomorphism of Number Field in a with defining polynomial x^2 + 10000
 Defn: a |---> a,
 Ring endomorphism of Number Field in a with defining polynomial x^2 + 10000
 Defn: a |---> -a]
```

Here’s a larger example, that would take some time if we found roots instead of using PARI’s specialized machinery:

```python
sage: K = NumberField(x^6 - x^4 - 2*x^2 + 1, 'a')
sage: len(K.automorphisms())
2
```

\( L \) is the Galois closure of \( K \):

```python
sage: L = NumberField(x^24 - 84*x^22 + 2814*x^20 - 15880*x^18 - 409563*x^16
 : - 8543892*x^14 + 25518202*x^12 + 32831026956*x^10
 : - 4985379093428*x^8 + 32085441931940*x^6
 : + 817662865724712*x^2 + 513191437605441, 'a')
sage: len(L.automorphisms())
24
```

Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):
sage: R.<x> = QQ[]
sage: f = 7/9*x^3 + 7/3*x^2 - 56*x + 123
sage: K.<a> = NumberField(f)
sage: A = K.automorphisms(); A
[ Ring endomorphism of Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123
  Defn: a |--> a,
  Ring endomorphism of Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123
  Defn: a |--> -7/15*a^2 - 18/5*a + 96/5,
  Ring endomorphism of Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123
  Defn: a |--> 7/15*a^2 + 13/5*a - 111/5 ]
sage: prod(x - sigma(a) for sigma in A) == f.monic()
True

base_field()

Return the base field of self, which is always QQ.

EXAMPLES:

sage: K = CyclotomicField(5)
sage: K.base_field()
Rational Field

change_names(names)

Return number field isomorphic to self but with the given generator name.

INPUT:

* names – should be exactly one variable name.

Also, K.structure() returns from_K and to_K, where from_K is an isomorphism from K to self and to_K is an isomorphism from self to K.

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: K.<z> = NumberField(x^2 + 3); K
Number Field in z with defining polynomial x^2 + 3
sage: L.<ww> = K.change_names()
sage: L
Number Field in ww with defining polynomial x^2 + 3
sage: L.structure()[0]
Isomorphism given by variable name change map:
  From: Number Field in ww with defining polynomial x^2 + 3
  To:   Number Field in z with defining polynomial x^2 + 3
sage: L.structure()[0](ww + 5/3)
z + 5/3

elements_of_bounded_height(**kwds)

Return an iterator over the elements of self with relative multiplicative height at most bound.

This algorithm computes 2 lists: L containing elements x in K such that H_k(x) ≤ B, and a list L' containing elements x in K that, due to floating point issues, may be slightly larger than the bound. This can be controlled by lowering the tolerance.
In the current implementation, both lists \( (L, L') \) are merged and returned in form of iterator.

ALGORITHM:
This is an implementation of the revised algorithm (Algorithm 4) in [DK2013]. Algorithm 5 is used for imaginary quadratic fields.

INPUT:
kwds:
- bound – a real number
- tolerance – (default: 0.01) a rational number in \((0, 1]\)
- precision – (default: 53) a positive integer

OUTPUT:
an iterator of number field elements

EXAMPLES:
There are no elements in a number field with multiplicative height less than 1:

```plaintext
sage: x = polygen(QQ, 'x')
sage: K.<g> = NumberField(x^5 - x + 19)
sage: list(K.elements_of_bounded_height(bound=0.9))
[]
```

The only elements in a number field of height 1 are 0 and the roots of unity:

```plaintext
sage: K.<a> = NumberField(x^2 + x + 1)
sage: list(K.elements_of_bounded_height(bound=1))
[0, a + 1, a, -1, -a - 1, -a, 1]
```

```plaintext
sage: K.<a> = CyclotomicField(20)
sage: len(list(K.elements_of_bounded_height(bound=1)))
21
```

The elements in the output iterator all have relative multiplicative height at most the input bound:

```plaintext
sage: K.<a> = NumberField(x^6 + 2)
sage: L = K.elements_of_bounded_height(bound=5)
sage: for t in L:
 : exp(6*t.global_height())
1.00000000000000
1.00000000000000
1.00000000000000
2.00000000000000
2.00000000000000
2.00000000000000
2.00000000000000
4.00000000000000
4.00000000000000
4.00000000000000
```

```plaintext
sage: K.<a> = NumberField(x^2 - 71)
sage: L = K.elements_of_bounded_height(bound=20)
sage: all(exp(2*t.global_height()) <= 20 for t in L) # long time (5 s)
True
```
AUTHORS:

- John Doyle (2013)
- David Krumm (2013)
- Raman Raghukul (2018)

embeddings \( K \)

Compute all field embeddings of this field into the field \( K \) (which need not even be a number field, e.g., it could be the complex numbers). This will return an identical result when given \( K \) as input again.

If possible, the most natural embedding of this field into \( K \) is put first in the list.

INPUT:

- \( K \) – a field

EXAMPLES:

We embed a quadratic field into a cyclotomic field:
We embed a cubic field in the complex numbers:

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 - 2)
sage: K.embeddings(CC)
[Ring morphism:
 From: Number Field in a with defining polynomial x^3 - 2
 To: Complex Field with 53 bits of precision
 Defn: a |--> -0.62996052494743... - 1.09112363597172*I,
 Ring morphism:
 From: Number Field in a with defining polynomial x^3 - 2
 To: Complex Field with 53 bits of precision
 Defn: a |--> -0.62996052494743... + 1.09112363597172*I,
 Ring morphism:
 From: Number Field in a with defining polynomial x^3 - 2
 To: Complex Field with 53 bits of precision
 Defn: a |--> 1.25992104989487
]
```

Test that github issue #15053 is fixed:

```python
sage: K = NumberField(x^3 - 2, 'a')
sage: K.embeddings(GF(3))
[]
```

### free_module (base=None, basis=None, map=True)

Return a vector space \( V \) and isomorphisms \( \text{self} \rightarrow V \) and \( V \rightarrow \text{self} \).

**INPUT:**

- `base` – a subfield (default: None); the returned vector space is over this subfield \( R \), which defaults to the base field of this function field
- `basis` – a basis for this field over the base
- `maps` – boolean (default True), whether to return \( R \)-linear maps to and from \( V \)

**OUTPUT:**

- \( V \) – a vector space over the rational numbers
- `from_V` – an isomorphism from \( V \) to `self` (if requested)
- `to_V` – an isomorphism from `self` to \( V \) (if requested)
EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: k.<a> = NumberField(x^3 + 2)
sage: V, from_V, to_V = k.free_module()
sage: from_V(V([1,2,3]))
3*a^2 + 2*a + 1
sage: to_V(1 + 2*a + 3*a^2)
(1, 2, 3)
sage: V
Vector space of dimension 3 over Rational Field
sage: to_V
Isomorphism map:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Vector space of dimension 3 over Rational Field
sage: from_V(to_V(2/3*a - 5/8))
2/3*a - 5/8
sage: to_V(from_V(V([0,-1/7,0])))
(0, -1/7, 0)
```

```
galois_closure(names=None, map=False)

Return number field \(K \) that is the Galois closure of \(self \), i.e., is generated by all roots of the defining polynomial of \(self \), and possibly an embedding of \(self \) into \(K \).

INPUT:

- names – variable name for Galois closure
- map – (default: False) also return an embedding of \(self \) into \(K \)

EXAMPLES:

```
sage: # needs sage.groups
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^4 - 2)
sage: M = K.galois_closure('b'); M
Number Field in b with defining polynomial x^8 + 28*x^4 + 2500
sage: L.<a2> = K.galois_closure(); L
Number Field in a2 with defining polynomial x^8 + 28*x^4 + 2500
sage: K.galois_group(names=("a3")).order()
8
```

```
sage: # needs sage.groups
sage: phi = K.embeddings(L)[0]
sage: phi(K.0)
1/120*a2^5 + 19/60*a2
sage: phi(K.0).minpoly()
x^4 - 2
```

```
sage: # needs sage.groups
sage: phi = K.embeddings(L)[0]
sage: phi(K.0)
1/120*a2^5 + 19/60*a2
sage: phi(K.0).minpoly()
x^4 - 2
```

A cyclotomic field is already Galois:
hilbert_conductor \((a, b)\)

This is the product of all (finite) primes where the Hilbert symbol is \(-1\). What is the same, this is the (reduced) discriminant of the quaternion algebra \((a, b)\) over a number field.

INPUT:

- \(a, b\) – elements of the number field \(self\)

OUTPUT:

squarefree ideal of the ring of integers of \(self\)

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: F.<a> = NumberField(x^2 - x - 1)
sage: F.hilbert_conductor(2*a, F(-1))
Fractional ideal (2)
sage: K.<b> = NumberField(x^3 - 4*x + 2)
sage: K.hilbert_conductor(K(2), K(-2))
Fractional ideal (1)
sage: K.hilbert_conductor(K(2*b), K(-2))
Fractional ideal (b^2 + b - 2)
```

AUTHOR:

- Aly Deines

hilbert_symbol \((a, b, P=None)\)

Return the Hilbert symbol \((a, b)_P\) for a prime \(P\) of \(self\) and non-zero elements \(a\) and \(b\) of \(self\).

If \(P\) is omitted, return the global Hilbert symbol \((a, b)\) instead.

INPUT:

- \(a, b\) – elements of \(self\)

- \(P\) – (default: None) If None, compute the global symbol. Otherwise, \(P\) should be either a prime ideal of \(self\) (which may also be given as a generator or set of generators) or a real or complex embedding.

OUTPUT:

If \(a\) or \(b\) is zero, returns 0.

If \(a\) and \(b\) are non-zero and \(P\) is specified, returns the Hilbert symbol \((a, b)_P\), which is 1 if the equation \(ax^2 + by^2 = 1\) has a solution in the completion of \(self\) at \(P\), and is \(-1\) otherwise.

If \(a\) and \(b\) are non-zero and \(P\) is unspecified, returns 1 if the equation has a solution in \(self\) and \(-1\) otherwise.

EXAMPLES:

Some global examples:
That the latter two are unsolvable should be visible in local obstructions. For the first, this is a prime ideal above 19. For the second, the ramified prime above 23:

```
sage: K.hilbert_symbol(-a, a + 2, a + 2)
-1
sage: K.hilbert_symbol(a, a + 5, K.ideal(23).factor()[0][0])
-1
```

More local examples:

```
sage: K.hilbert_symbol(a, 0, K.fractional_ideal(5))
0
sage: K.hilbert_symbol(a, a + 5, K.fractional_ideal(5))
1
sage: K.hilbert_symbol(a + 1, 13, (a+6)*K)
-1
sage: [emb1, emb2] = K.embeddings(AA)
sage: K.hilbert_symbol(a, -1, emb1)
-1
sage: K.hilbert_symbol(a, -1, emb2)
1
```

Ideals P can be given by generators:

```
sage: K.<a> = NumberField(x^5 - 23)
sage: pi = 2*a^4 + 3*a^3 + 4*a^2 + 15*a + 11
sage: K.hilbert_symbol(a, a + 5, pi)
1
sage: rho = 2*a^4 + 3*a^3 + 4*a^2 + 15*a + 11
sage: K.hilbert_symbol(a, a + 5, rho)
1
```

This also works for non-principal ideals:

```
sage: K.<a> = QuadraticField(-5)
sage: P = K.ideal(3).factor()[0][0]
sage: P.gens_reduced()  # random, could be the other factor
(3, a + 1)
sage: K.hilbert_symbol(a, a + 3, P)
1
sage: K.hilbert_symbol(a, a + 3, [3, a+1])
1
```

Primes above 2:
sage: K.<a> = NumberField(x^5 - 23)
sage: p = [p[0] for p in (2*K).factor() if p[0].norm() == 16][0]
sage: K.hilbert_symbol(a, a + 5, p)
1
sage: K.hilbert_symbol(a, 2, p)
1
sage: K.hilbert_symbol(-1, a - 2, p)
-1

Various real fields are allowed:

sage: K.<a> = NumberField(x^3+x+1)
sage: K.hilbert_symbol(a/3, 1/2, K.embeddings(RDF)[0])
1
sage: K.hilbert_symbol(a/5, -1, K.embeddings(RR)[0])
-1
sage: [K.hilbert_symbol(a, -1, e) for e in K.embeddings(AA)]
[-1]

Real embeddings are not allowed to be disguised as complex embeddings:

sage: K.<a> = QuadraticField(5)
sage: K.hilbert_symbol(-1, -1, K.embeddings(CC)[0])
Traceback (most recent call last):
 ... ValueError: Possibly real place (=Ring morphism:
 From: Number Field in a with defining polynomial x^2 - 5
 with a = 2.236067977499790?
 To: Complex Field with 53 bits of precision
 Defn: a |--> -2.23606797749979)
given as complex embedding in hilbert_symbol. Is it real or complex?
sage: K.hilbert_symbol(-1, -1, K.embeddings(QQbar)[0])
Traceback (most recent call last):
 ... ValueError: Possibly real place (=Ring morphism:
 From: Number Field in a with defining polynomial x^2 - 5
 with a = 2.236067977499790?
 To: Algebraic Field
 Defn: a |--> -2.236067977499790?)
given as complex embedding in hilbert_symbol. Is it real or complex?
sage: K. = QuadraticField(-5)
sage: K.hilbert_symbol(-1, -1, K.embeddings(CDF)[0])
1
sage: K.hilbert_symbol(-1, -1, K.embeddings(QQbar)[0])
1

a and b do not have to be integral or coprime:

sage: K.<i> = QuadraticField(-1)
sage: K.hilbert_symbol(1/2, 1/6, 3*K)
1
sage: p = 1 + i
sage: K.hilbert_symbol(p, p, p)
1
sage: K.hilbert_symbol(p, 3*p, p)
-1
sage: K.hilbert_symbol(3, p, p)

(continues on next page)
Various other examples:

```
sage: K.<a> = NumberField(x^3 + x + 1)
sage: K.hilbert_symbol(-6912, 24, -a^2 - a - 2)
1
sage: K.<a> = NumberField(x^5 - 23)
sage: P = K.ideal(-1105*a^4 + 1541*a^3 - 795*a^2 - 2993*a + 11853)
sage: Q = K.ideal(-7*a^4 + 13*a^3 - 13*a^2 - 2*a + 50)
sage: b = -a-5
sage: K.hilbert_symbol(a, b, P)
1
sage: K.hilbert_symbol(a, b, Q)
1
sage: K.<a> = NumberField(x^5 - 23)
```

Check that the bug reported at `github issue #16043` has been fixed:

```
sage: K.<a> = NumberField(x^2 + 5)
```

AUTHOR:

- Aly Deines (2010-08-19): part of the doctests
- Marco Streng (2010-12-06)

`hilbert_symbol_negative_at_S(S, b, check=True)`

Return \(a \) such that the Hilbert conductor of \(a \) and \(b \) is \(S \).

INPUT:

- \(S \) – a list of places (or prime ideals) of even cardinality
- \(b \) – a non-zero rational number which is a non-square locally at every place in \(S \).
- `check` – bool (default: True) perform additional checks on the input and confirm the output
OUTPUT:
- an element \(a\) that has negative Hilbert symbol \((a, b)_p\) for every (finite and infinite) place \(p\) in \(S\).

ALGORITHM:
The implementation is following algorithm 3.4.1 in [Kir2016]. We note that class and unit groups are computed using the generalized Riemann hypothesis. If it is false, this may result in an infinite loop. Nevertheless, if the algorithm terminates the output is correct.

EXAMPLES:
```
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^2 + 20072)
sage: S = [K.primes_above(3)[0], K.primes_above(23)[0]]
sage: b = K.hilbert_symbol_negative_at_S(S, a + 1)
sage: [K.hilbert_symbol(b, a + 1, p) for p in S]
[-1, -1]
sage: K.<d> = CyclotomicField(11)
sage: S = [K.primes_above(2)[0], K.primes_above(11)[0]]
sage: b = d + 5
sage: a = K.hilbert_symbol_negative_at_S(S, b)
sage: [K.hilbert_symbol(a, b, p) for p in S]
[-1, -1]
sage: k.<c> = K.maximal_totally_real_subfield()[0]
sage: S = [k.primes_above(3)[0], k.primes_above(5)[0]]
sage: S += k.real_places()[:2]
sage: b = 5 + c + c^9
sage: a = k.hilbert_symbol_negative_at_S(S, b)
sage: [k.hilbert_symbol(a, b, p) for p in S]
[-1, -1, -1, -1]
```

Note that the closely related Hilbert conductor takes only the finite places into account:
```
sage: k.hilbert_conductor(a, b)
Fractional ideal (15)
```

AUTHORS:
- Simon Brandhorst, Anna Haensch (01-05-2018)

\texttt{is_absolute()}
Return \texttt{True} since \texttt{self} is an absolute field.

EXAMPLES:
```
sage: K = CyclotomicField(5)
sage: K.is_absolute()
True
```

\texttt{logarithmic_embedding(\text{\textit{prec}=53})}
Return the morphism of \texttt{self} under the logarithmic embedding in the category \texttt{Set}.
The logarithmic embedding is defined as a map from the number field \texttt{self} to \(\mathbb{R}^n\). It is defined under Definition 4.9.6 in [Coh1993].

INPUT:
- \texttt{prec} – desired floating point precision.
the morphism of self under the logarithmic embedding in the category Set.

EXAMPLES:

```python
sage: CF.<a> = CyclotomicField(5)
sage: f = CF.logarithmic_embedding()
sage: f(0)
(-1, -1)
sage: f(7)
(3.89182029811063, 3.89182029811063)
```

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 + 5)
sage: f = K.logarithmic_embedding()
sage: f(0)
(-1, -1)
sage: f(7)
(1.94591014905531, 3.89182029811063)
```

```python
sage: F.<a> = NumberField(x^4 - 8*x^2 + 3)
sage: f = F.logarithmic_embedding()
sage: f(0)
(-1, -1, -1, -1)
sage: f(7)
(1.94591014905531, 1.94591014905531, 1.94591014905531, 1.94591014905531)
```

minkowski_embedding (`B=None, prec=None`)

Return an \(n \times n\) matrix over RDF whose columns are the images of the basis \(\{1, \alpha, \ldots, \alpha^{n-1}\}\) of self over \(\mathbb{Q}\) (as vector spaces), where here \(\alpha\) is the generator of self over \(\mathbb{Q}\), i.e. self.gen(0). If \(B\) is not None, return the images of the vectors in \(B\) as the columns instead. If \(\text{prec}\) is not None, use \(\text{RealField}(\text{prec})\) instead of RDF.

This embedding is the so-called “Minkowski embedding” of a number field in \(\mathbb{R}^n\): given the \(n\) embeddings \(\sigma_1, \ldots, \sigma_n\) of self in \(\mathbb{C}\), write \(\sigma_1, \ldots, \sigma_r\) for the real embeddings, and \(\sigma_{r+1}, \ldots, \sigma_{r+s}\) for choices of one of each pair of complex conjugate embeddings (in our case, we simply choose the one where the image of \(\alpha\) has positive real part). Here \((r,s)\) is the signature of self. Then the Minkowski embedding is given by

\[
x \mapsto (\sigma_1(x), \ldots, \sigma_r(x), \sqrt{2}\Re(\sigma_{r+1}(x)), \sqrt{2}\Im(\sigma_{r+1}(x)), \ldots, \sqrt{2}\Re(\sigma_{r+s}(x)), \sqrt{2}\Im(\sigma_{r+s}(x)))
\]

Equivalently, this is an embedding of self in \(\mathbb{R}^n\) so that the usual norm on \(\mathbb{R}^n\) coincides with \(|x| = \sum_i |\sigma_i(x)|^2\) on self.

Todo: This could be much improved by implementing homomorphisms over VectorSpaces.

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: F.<alpha> = NumberField(x^3 + 2)
sage: F.minkowski_embedding()
[ 1.00000000000000  -1.25992104989487  1.58740105196820]
[ 1.41421356237309  0.89089871818517  -1.12246204830177]
[0.00000000000000  1.54308184421271  1.94416129723459]
sage: F.minkowski_embedding([1, alpha+2, alpha^2-alpha])
[ 1.00000000000000  0.740078950105127  2.84732210186307]
```

(continues on next page)
optimized_representation(name=None, both_maps=True)

Return a field isomorphic to self with a better defining polynomial if possible, along with field isomorphisms from the new field to self and from self to the new field.

EXAMPLES: We construct a compositum of 3 quadratic fields, then find an optimized representation and transform elements back and forth.

```
sage: x = polygen(QQ, 'x')
sage: K = NumberField([x^2 + p for p in [5, 3, 2]], 'a').absolute_field('b'); K
Number Field in b with defining polynomial x^8 + 40*x^6 + 352*x^4 + 960*x^2 + 576
sage: L, from_L, to_L = K.optimized_representation()
sage: L
Number Field in b1 with defining polynomial x^8 + 4*x^6 + 7*x^4 + 36*x^2 + 81
sage: to_L(K.0)
# random
4/189*b1^7 + 1/63*b1^6 + 1/27*b1^5 - 29/2*b1^4 - 5/2*b1^3 - 8/9*b1^2 + 3/7*b1 + 3/7
sage: from_L(L.0)
# random
1/1152*b^7 - 1/192*b^6 + 23/576*b^5 - 17/96*b^4 + 37/72*b^3 - 5/6*b^2 + 55/24*b - 3/4
```

The transformation maps are mutually inverse isomorphisms.

```
sage: from_L(to_L(K.0)) == K.0
True
sage: to_L(from_L(L.0)) == L.0
True
```

Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):

```
sage: K.<a> = NumberField(7/9*x^3 + 7/3*x^2 - 56*x + 123)
sage: K.optimized_representation()  # representation varies, not tested
(Number Field in a1 with defining polynomial x^3 - 7*x - 7,
 Ring morphism:
  From: Number Field in a1 with defining polynomial x^3 - 7*x - 7
  To:   Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123
        Defn: a1 |--> 7/225*a^2 - 7/75*a - 42/25,
 Ring morphism:
  From: Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123
  To:   Number Field in a1 with defining polynomial x^3 - 7*x - 7
        Defn: a |--> -15/7*a1^2 + 9)
```

optimized_subfields(degree=0, name=None, both_maps=True)

Return optimized representations of many (but not necessarily all!) subfields of self of the given degree, or of all possible degrees if degree is 0.

EXAMPLES:
We examine one of the optimized subfields in more detail:

```python
sage: M, from_M, to_M = L[2]
sage: M
Number Field in b2 with defining polynomial x^4 - 5*x^2 + 25
sage: from_M
# may be slightly random
Ring morphism:
From: Number Field in b2 with defining polynomial x^4 - 5*x^2 + 25
To:   Number Field in a1 with defining polynomial
       x^8 + 40*x^6 + 352*x^4 + 960*x^2 + 576
Defn: b2 |--> -5/1152*a1^7 + 1/96*a1^6 - 97/576*a1^5 + 17/48*a1^4
       - 95/72*a1^3 + 17/12*a1^2 - 53/24*a1 - 1
```

The `to_M` map is `None`, since there is no map from K to M:

```python
sage: to_M
```

We apply the from_M map to the generator of M, which gives a rather large element of K:

```python
sage: from_M(M.0)
-5/1152*a1^7 + 1/96*a1^6 - 97/576*a1^5 + 17/48*a1^4
- 95/72*a1^3 + 17/12*a1^2 - 53/24*a1 - 1
```

Nevertheless, that large-ish element lies in a degree 4 subfield:

```python
sage: from_M(M.0).minpoly()
# random
x^4 - 5*x^2 + 25
```

`order(*args, **kwds)`

Return the order with given ring generators in the maximal order of this number field.

INPUT:

- `gens` – list of elements in this number field; if no generators are given, just returns the cardinality of this number field (∞) for consistency.
- `check_is_integral` – bool (default: True), whether to check that each generator is integral.
- `check_rank` – bool (default: True), whether to check that the ring generated by `gens` is of full rank.
- `allow_subfield` – bool (default: False), if True and the generators do not generate an order, i.e., they generate a subring of smaller rank, instead of raising an error, return an order in a smaller number
EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: k.<i> = NumberField(x^2 + 1)
sage: k.order(2*i)
Order of conductor 2 generated by 2*i in Number Field in i with defining polynomial x^2 + 1
sage: k.order(10*i)
Order of conductor 10 generated by 10*i in Number Field in i with defining polynomial x^2 + 1
sage: k.order(3)
Traceback (most recent call last):
  ... ValueError: the rank of the span of gens is wrong
sage: k.order(i/2)
Traceback (most recent call last):
  ... ValueError: each generator must be integral
```

Alternatively, an order can be constructed by adjoining elements to \(\mathbb{Z} \):

```
sage: K.<a> = NumberField(x^3 - 2)
sage: ZZ[a]
Order generated by a0 in Number Field in a0 with defining polynomial x^3 - 2
  → with a0 = a
```

places (all_complex=False, prec=None)

Return the collection of all infinite places of \(\text{self} \).

By default, this returns the set of real places as homomorphisms into \(\mathbb{R} \) first, followed by a choice of one of each pair of complex conjugate homomorphisms into \(\mathbb{C} \).

On the other hand, if \(\text{prec} \) is not None, we simply return places into \(\mathbb{R} \) first, followed by a choice of one of each pair of complex conjugate homomorphisms into \(\mathbb{C} \).

There is an optional flag all_complex, which defaults to False. If all_complex is True, then the real embeddings are returned as embeddings into \(\mathbb{C} \) instead of \(\mathbb{R} \).

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: F.<alpha> = NumberField(x^3 - 100*x + 1); F.places()
[Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 - 100*x + 1
  To:  Real Field with 106 bits of precision
  Defn: alpha |--> -10.00499625499181184573367219280,
  Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 - 100*x + 1
  To:  Real Field with 106 bits of precision
  Defn: alpha |--> 0.01000001000003000012000055000273,
  Ring morphism:
  From: Number Field in alpha with defining polynomial x^3 - 100*x + 1
  To:  Real Field with 106 bits of precision
  Defn: alpha |--> 9.99499624491781845613530439509]
```
sage: F.<alpha> = NumberField(x^3 + 7); F.places()
[Ring morphism:
 From: Number Field in alpha with defining polynomial x^3 + 7
 To: Real Field with 106 bits of precision
 Defn: alpha |--> -1.912931182772389101199116839549,
 Ring morphism:
 From: Number Field in alpha with defining polynomial x^3 + 7
 To: Complex Field with 53 bits of precision
 Defn: alpha |--> 0.956465591386195 + 1.65664699997230*I]

sage: F.<alpha> = NumberField(x^3 + 7); F.places(all_complex=True)
[Ring morphism:
 From: Number Field in alpha with defining polynomial x^3 + 7
 To: Complex Field with 53 bits of precision
 Defn: alpha |--> -1.91293118277239,
 Ring morphism:
 From: Number Field in alpha with defining polynomial x^3 + 7
 To: Complex Field with 53 bits of precision
 Defn: alpha |--> 0.956465591386195 + 1.65664699997230*I]

sage: F.places(prec=10)
[Ring morphism:
 From: Number Field in alpha with defining polynomial x^3 + 7
 To: Real Field with 10 bits of precision
 Defn: alpha |--> -1.9,
 Ring morphism:
 From: Number Field in alpha with defining polynomial x^3 + 7
 To: Complex Field with 10 bits of precision
 Defn: alpha |--> 0.96 + 1.7*I]

real_places(\texttt{prec=None})

Return all real places of self as homomorphisms into RIF.

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: F.<alpha> = NumberField(x^4 - 7); F.real_places()
[Ring morphism:
 From: Number Field in alpha with defining polynomial x^4 - 7
 To: Real Field with 106 bits of precision
 Defn: alpha |--> -1.626576561697785743211232345494,
 Ring morphism:
 From: Number Field in alpha with defining polynomial x^4 - 7
 To: Real Field with 106 bits of precision
 Defn: alpha |--> 1.626576561697785743211232345494]

relative_degree()

A synonym for degree().

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.relative_degree()
2

relative_different()

A synonym for different().
EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.relative_different()
Fractional ideal (2)
```

relative_discriminant()

A synonym for `discriminant()`.

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.relative_discriminant()
-4
```

relative_polynomial()

A synonym for `polynomial()`.

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.relative_polynomial()
x^2 + 1
```

relative_vector_space(*args, **kwds)

A synonym for `vector_space()`.

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.relative_vector_space()
(Vector space of dimension 2 over Rational Field,
 Isomorphism map:
  From: Vector space of dimension 2 over Rational Field
  To:   Number Field in i with defining polynomial x^2 + 1,
  Isomorphism map:
  From: Number Field in i with defining polynomial x^2 + 1
  To:   Vector space of dimension 2 over Rational Field)
```

relativize(alpha, names, structure=None)

Given an element in `self` or an embedding of a subfield into `self`, return a relative number field K isomorphic to `self` that is relative over the absolute field $\mathbb{Q}(\alpha)$ or the domain of α, along with isomorphisms from K to `self` and from `self` to K.

INPUT:

- `alpha` – an element of `self` or an embedding of a subfield into `self`
- `names` – 2-tuple of names of generator for output field K and the subfield $\mathbb{Q}(\alpha)$
- `structure` – an instance of `structure.NumberFieldStructure` or None (default: None), if None, then the resulting field’s `structure()` will return isomorphisms from and to this field.

OUTPUT:
K – relative number field

Also, K.structure() returns from$_K$ and to$_K$, where from$_K$ is an isomorphism from K to self and to$_K$ is an isomorphism from self to K.

EXAMPLES:

```sage
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^10 - 2)
sage: L.<c,d> = K.relativize(a^4 + a^2 + 2); L
Number Field in c with defining polynomial
x^2 - 1/5*d^4 - 8/5*d^3 - 23/5*d^2 + 7*d - 18/5 over its base field
sage: c.absolute_minpoly()
x^10 - 2
sage: d.absolute_minpoly()
x^5 - 10*x^4 + 40*x^3 - 90*x^2 + 110*x - 58
sage: (a^4 + a^2 + 2).minpoly()
x^5 - 10*x^4 + 40*x^3 - 90*x^2 + 110*x - 58
sage: from_L, to_L = L.structure()
sage: to_L(a)
c
sage: to_L(a^4 + a^2 + 2)
d
sage: from_L(to_L(a^4 + a^2 + 2))
a^4 + a^2 + 2
```

The following demonstrates distinct embeddings of a subfield into a larger field:

```sage
sage: K.<a> = NumberField(x^4 + 2*x^2 + 2)
sage: K0 = K.subfields(2)[0][0]; K0
Number Field in a0 with defining polynomial x^2 - 2*x + 2
sage: rho, tau = K0.embeddings(K)
sage: L0 = K.relativize(rho(K0.gen()), 'b'); L0
Number Field in b0 with defining polynomial x^2 - b1 + 2 over its base field
sage: L1 = K.relativize(rho, 'b'); L1
Number Field in b with defining polynomial x^2 - a0 + 2 over its base field
sage: L2 = K.relativize(tau, 'b'); L2
Number Field in b with defining polynomial x^2 + a0 over its base field
sage: L0.base_field() is K0
False
sage: L1.base_field() is K0
True
sage: L2.base_field() is K0
True
```

Here we see that with the different embeddings, the relative norms are different:

```sage
sage: a0 = K0.gen()
sage: L1_into_K, K_into_L1 = L1.structure()
sage: L2_into_K, K_into_L2 = L2.structure()
sage: len(K.factor(41))
4
sage: w1 = -a^2 + a + 1; P = K.ideal([w1])
sage: Pp = L1.ideal(K_into_L1(w1)).ideal_below(); Pp == K0.ideal([4*a0 + 1])
True
sage: Pp == w1.norm(rho)
True
sage: w2 = a^2 + a - 1; Q = K.ideal([w2])
```

(continues on next page)
sage: Qq = L2.ideal(K_into_L2(w2)).ideal_below(); Qq == K0.ideal([-4*a0 + 9])
True
sage: Qq == w2.norm(tau)
True
sage: Pp == Qq
False

subfields *(degree=0, name=None)*

Return all subfields of *self* of the given degree, or of all possible degrees if degree is 0. The subfields are returned as absolute fields together with an embedding into *self*. For the case of the field itself, the reverse isomorphism is also provided.

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField([x^3 - 2, x^2 + x + 1])
sage: K = K.absolute_field('b')
sage: S = K.subfields()
sage: len(S)
6
sage: [k[0].polynomial() for k in S]
[x - 3,
 x^2 - 3*x + 9,
 x^3 - 3*x^2 + 3*x + 1,
 x^3 - 3*x^2 + 3*x + 1,
 x^3 - 3*x^2 + 3*x + 17,
 x^6 - 3*x^5 + 6*x^4 - 11*x^3 + 12*x^2 + 3*x + 1]
sage: R.<t> = QQ[]
sage: L = NumberField(t^3 - 3*t + 1, 'c')
sage: [k[1] for k in L.subfields()]
[Ring morphism:
  From: Number Field in c0 with defining polynomial t
  To:   Number Field in c with defining polynomial t^3 - 3*t + 1
  Defn: 0 |--> 0,
  Ring morphism:
  From: Number Field in c1 with defining polynomial t^3 - 3*t + 1
  To:   Number Field in c with defining polynomial t^3 - 3*t + 1
  Defn: c1 |--> c]
sage: len(L.subfields(2))
0
sage: len(L.subfields(1))
1
```

sage.rings.number_field.number_field.NumberField_absolute_v1 *(poly, name, latex_name, canonical_embedding=None)*

Used for unpickling old pickles.

EXAMPLES:

```python
sage: from sage.rings.number_field.number_field import NumberField_absolute_v1
sage: R.<x> = QQ[]
sage: NumberField_absolute_v1(x^2 + 1, 'i', 'i')`
Create a cyclotomic extension of the rational field.

The command \texttt{CyclotomicField(n)} creates the $n$-th cyclotomic field, obtained by adjoining an $n$-th root of unity to the rational field.

**EXAMPLES:**

\begin{verbatim}
sage: CyclotomicField(3)
Cyclotomic Field of order 3 and degree 2
sage: CyclotomicField(18)
Cyclotomic Field of order 18 and degree 6
sage: z = CyclotomicField(6).gen(); z
zeta6
sage: z^3
-1
sage: (1+z)^3
6*zeta6 - 3
sage: K = CyclotomicField(197)
sage: loads(K.dumps()) == K
True
sage: loads((z^2).dumps()) == z^2
True
sage: cf12 = CyclotomicField(12)
sage: z12 = cf12.0
sage: cf6 = CyclotomicField(6)
sage: z6 = cf6.0
sage: FF = Frac(cf12['x'])
sage: x = FF.0
sage: z6*x^3/(z6 + x)
zeta12^2*x^3/(x + zeta12^2)
sage: cf6 = CyclotomicField(6); z6 = cf6.gen(0)
sage: cf3 = CyclotomicField(3); z3 = cf3.gen(0)
sage: cf3(z6)
zeta3 + 1
sage: cf6(z3)
zeta6 - 1
sage: type(cf6(z3))
<class 'sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_˓→quadratic'>
sage: cf1 = CyclotomicField(1); z1 = cf1.0
sage: cf3(z1)
1
sage: type(cf3(z1))
<class 'sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_˓→quadratic'>
\end{verbatim}
**complex_embedding**(prec=53)

Return the embedding of this cyclotomic field into the approximate complex field with precision prec obtained by sending the generator \( \zeta \) of self to \( \exp(2\pi i/n) \), where \( n \) is the multiplicative order of \( \zeta \).

**EXAMPLES:**

```sage
sage: C = CyclotomicField(4)
sage: C.complex_embedding()
Ring morphism:
 From: Cyclotomic Field of order 4 and degree 2
 To: Complex Field with 53 bits of precision
 Defn: zeta4 |--> 6.12323399573677e-17 + 1.00000000000000*I
```

Note in the example above that the way \( \zeta \) is computed (using sine and cosine in MPFR) means that only the prec bits of the number after the decimal point are valid.

```sage
sage: K = CyclotomicField(3)
sage: phi = K.complex_embedding(10)
sage: phi(K.0)
-0.50 + 0.87*I
sage: phi(K.0^3)
1.0
sage: phi(K.0^3 - 1)
0.00
sage: phi(K.0^3 + 7)
8.0
```

**complex_embeddings**(prec=53)

Return all embeddings of this cyclotomic field into the approximate complex field with precision prec.

If you want 53-bit double precision, which is faster but less reliable, then do self.embeddings(CDF).

**EXAMPLES:**

```sage
sage: CyclotomicField(5).complex_embeddings()
[Ring morphism:
 From: Cyclotomic Field of order 5 and degree 4
 To: Complex Field with 53 bits of precision
 Defn: zeta5 |--> 0.309016994374947 + 0.951056516295154*I,
 Ring morphism:
 From: Cyclotomic Field of order 5 and degree 4
 To: Complex Field with 53 bits of precision
 Defn: zeta5 |--> -0.809016994374947 + 0.587785252292473*I,
 Ring morphism:
 From: Cyclotomic Field of order 5 and degree 4
 To: Complex Field with 53 bits of precision
 Defn: zeta5 |--> -0.809016994374947 - 0.587785252292473*I,
 Ring morphism:
 From: Cyclotomic Field of order 5 and degree 4
 To: Complex Field with 53 bits of precision
 Defn: zeta5 |--> 0.309016994374947 - 0.951056516295154*I]
```

**construction()**

Return data defining a functorial construction of self.

**EXAMPLES:**
different()  
Return the different ideal of the cyclotomic field self.

EXAMPLES:

```
sage: C20 = CyclotomicField(20)
sage: C20.different()
Fractional ideal (10, 2*zeta20^6 - 4*zeta20^4 - 4*zeta20^2 + 2)
sage: C18 = CyclotomicField(18)
sage: D = C18.different().norm()
sage: D == C18.discriminant().abs()
True
```


discriminant(v=None)
Return the discriminant of the ring of integers of the cyclotomic field self, or if v is specified, the determinant of the trace pairing on the elements of the list v.

Uses the formula for the discriminant of a prime power cyclotomic field and Hilbert Theorem 88 on the discriminant of composita.

INPUT:

• v – (optional) list of elements of this number field

OUTPUT: Integer if v is omitted, and Rational otherwise.

EXAMPLES:

```
sage: CyclotomicField(20).discriminant()
4000000
sage: CyclotomicField(18).discriminant()
-19683
```

embeddings(K)
Compute all field embeddings of this field into the field $K$.

INPUT:

• K – a field

EXAMPLES:

```
sage: CyclotomicField(5).embeddings(ComplexField(53))[1]
Ring morphism:
 From: Cyclotomic Field of order 5 and degree 4
 To: Complex Field with 53 bits of precision
 Defn: zeta5 |--> -0.809016994374948 + 0.587785252292473*I
```
sage: CyclotomicField(5).embeddings(Qp(11, 4, print_mode='digits'))[1]
# needs sage.rings.padics
Ring morphism:
From: Cyclotomic Field of order 5 and degree 4
To:  11-adic Field with capped relative precision 4
Defn: 
zeta5 |--> ...1525

is_abelian()
Return True since all cyclotomic fields are automatically abelian.

EXAMPLES:

sage: CyclotomicField(29).is_abelian()
True

is_galois()
Return True since all cyclotomic fields are automatically Galois.

EXAMPLES:

sage: CyclotomicField(29).is_galois()
True

is_isomorphic(other)
Return True if the cyclotomic field self is isomorphic as a number field to other.

EXAMPLES:

sage: CyclotomicField(11).is_isomorphic(CyclotomicField(22))
True
sage: CyclotomicField(11).is_isomorphic(CyclotomicField(23))
False
sage: x = polygen(QQ, 'x')
sage: CyclotomicField(3).is_isomorphic(NumberField(x^2 + x + 1, 'a'))
True
sage: CyclotomicField(18).is_isomorphic(CyclotomicField(9))
True
sage: CyclotomicField(10).is_isomorphic(NumberField(x^4 - x^3 + x^2 - x + 1, 'b'))
True

Check github issue #14300:

sage: K = CyclotomicField(4)
sage: N = K.extension(x^2 - 5, 'z')
sage: K.is_isomorphic(N)
False
sage: K.is_isomorphic(CyclotomicField(8))
False

next_split_prime(p=2)
Return the next prime integer p that splits completely in this cyclotomic field (and does not ramify).

EXAMPLES:
```python
sage: K.<z> = CyclotomicField(3)
sage: K.next_split_prime(7)
13
```

**number_of_roots_of_unity()**

Return number of roots of unity in this cyclotomic field.

**EXAMPLES:**

```python
sage: K.<a> = CyclotomicField(21)
sage: K.number_of_roots_of_unity()
42
```

**real_embeddings (prec=53)**

Return all embeddings of this cyclotomic field into the approximate real field with precision `prec`.

Mostly, of course, there are no such embeddings.

**EXAMPLES:**

```python
sage: len(CyclotomicField(4).real_embeddings())
0
sage: CyclotomicField(2).real_embeddings()
[
 Ring morphism:
 From: Cyclotomic Field of order 2 and degree 1
 To: Real Field with 53 bits of precision
 Defn: -1 |--> -1.00000000000000
]
```

**roots_of_unity()**

Return all the roots of unity in this cyclotomic field, primitive or not.

**EXAMPLES:**

```python
sage: K.<a> = CyclotomicField(3)
sage: zs = K.roots_of_unity(); zs
[1, a, -a - 1, -1, -a, a + 1]
sage: [z**K.number_of_roots_of_unity() for z in zs]
[1, 1, 1, 1, 1, 1]
```

**signature()**

Return \((r_1, r_2)\), where \(r_1\) and \(r_2\) are the number of real embeddings and pairs of complex embeddings of this cyclotomic field, respectively.

Trivial since, apart from \(\mathbb{Q}\), cyclotomic fields are totally complex.

**EXAMPLES:**

```python
sage: CyclotomicField(5).signature()
(0, 2)
sage: CyclotomicField(2).signature()
(1, 0)
```

**zeta (n=None, all=False)**

Return an element of multiplicative order \(n\) in this cyclotomic field.

If there is no such element, raise a `ValueError`.  

---

Chapter 1. Number Fields
INPUT:
• \( n \) – integer (default: None, returns element of maximal order)
• \( \text{all} \) – bool (default: False); whether to return a list of all primitive \( n \)-th roots of unity.

OUTPUT: root of unity or list

EXAMPLES:

```
sage: k = CyclotomicField(4)
sage: k.zeta()
zeta4
sage: k.zeta(2)
-1
sage: k.zeta().multiplicative_order()
4

sage: k = CyclotomicField(21)
sage: k.zeta().multiplicative_order()
42
sage: k.zeta(21).multiplicative_order()
21
sage: k.zeta(7).multiplicative_order()
7
sage: k.zeta(6).multiplicative_order()
6
sage: k.zeta(84)
Traceback (most recent call last):
... ValueError: 84 does not divide order of generator (42)

sage: K.<a> = CyclotomicField(7)
sage: K.zeta(all=True)
[-a^4, -a^5 + a^4 + a^3 + a^2 + a + 1, -a, -a^2, -a^3]
sage: K.zeta(14, all=True)
[-a^4, -a^5 + a^4 + a^3 + a^2 + a + 1, -a, -a^2, -a^3]
sage: K.zeta(2, all=True)
[-1]
sage: K.<a> = CyclotomicField(10)
sage: K.zeta(20, all=True)
Traceback (most recent call last):
... ValueError: 20 does not divide order of generator (10)

sage: K.<a> = CyclotomicField(5)
sage: K.zeta(4)
Traceback (most recent call last):
... ValueError: 4 does not divide order of generator (10)
```

```
sage: v = K.zeta(5, all=True); v
[a, a^2, a^3, -a^3 - a^2 - a - 1]
sage: [b^5 for b in v]
[1, 1, 1, 1]
```

```
zeta_order()
Return the order of the maximal root of unity contained in this cyclotomic field.

EXAMPLES:
```
sage: CyclotomicField(1).zeta_order()
2
sage: CyclotomicField(4).zeta_order()
4
sage: CyclotomicField(5).zeta_order()
10
sage: CyclotomicField(5)._n()
5
sage: CyclotomicField(389).zeta_order()
778

Used for unpickling old pickles.

EXAMPLES:

```
sage: from sage.rings.number_field.number_field import NumberField_cyclotomic_v1
sage: NumberField_cyclotomic_v1(5,a)
Cyclotomic Field of order 5 and degree 4
sage: NumberField_cyclotomic_v1(5,a).variable_name()
'a'
```

```
class sage.rings.number_field.number_field.NumberField_cyclotomic_v1(zeta_order, name, canonical_embedding=None)

Bases: WithEqualityById, NumberField

Generic class for number fields defined by an irreducible polynomial over \(\mathbb{Q} \).

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 2); K
Number Field in a with defining polynomial x^3 - 2
sage: TestSuite(K).run()
```

```
S_class_group (S, proof=None, names='c')

Return the S-class group of this number field over its base field.

INPUT:

- \( S \) – a set of primes of the base field
- \( \text{proof} \) – if False, assume the GRH in computing the class group. Default is True. Call number_field_proof to change this default globally.
- \( \text{names} \) – names of the generators of this class group.

OUTPUT: The S-class group of this number field.

EXAMPLES:
```
A well known example:

```
sage: K.<a> = QuadraticField(-5)
sage: K.S_class_group([])
S-class group of order 2 with structure C2 of Number Field in a
with defining polynomial x^2 + 5 with a = 2.236067977499790*I
```

When we include the prime \((2, a + 1)\), the S-class group becomes trivial:

```
sage: K.S_class_group([K.ideal(2, a + 1)])
S-class group of order 1 of Number Field in a
with defining polynomial x^2 + 5 with a = 2.236067977499790*I
```

S_unit_group *(proof=None, S=None)*

Return the \(S\)-unit group (including torsion) of this number field.

ALGORITHM: Uses PARI’s `pari:bnfsunit` command.

INPUT:

- `proof` – bool (default: True); flag passed to PARI
- `S` – list or tuple of prime ideals, or an ideal, or a single ideal or element from which an ideal can be constructed, in which case the support is used. If `None`, the global unit group is constructed; otherwise, the \(S\)-unit group is constructed.

Note: The group is cached.

EXAMPLES:

```
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^4 - 10*x^3 + 20*5*x^2 - 15*5^2*x + 11*5^3)
sage: U = K.S_unit_group(S=a); U
S-unit group with structure C10 x Z x Z x Z of
Number Field in a with defining polynomial x^4 - 10*x^3 + 100*x^2 - 375*x + 1375
with S = (Fractional ideal (5, 1/275*a^3 + 4/55*a^2 - 5/11*a + 5),
        Fractional ideal (11, 1/275*a^3 + 4/55*a^2 - 5/11*a + 9))
sage: U.gens()
(u0, u1, u2, u3)
sage: U.gens_values()  # random
[-1/275*a^3 + 7/55*a^2 - 6/11*a + 4, 1/275*a^3 + 4/55*a^2 - 5/11*a + 3,
  1/275*a^3 + 4/55*a^2 - 5/11*a + 5, -14/275*a^3 + 21/55*a^2 - 29/11*a + 6]
sage: U.invariants()
(10, 0, 0, 0)
sage: [u.multiplicative_order() for u in U.gens()]
[10, +Infinity, +Infinity, +Infinity]
sage: U.primes()
(Fractional ideal (5, 1/275*a^3 + 4/55*a^2 - 5/11*a + 5),
  Fractional ideal (11, 1/275*a^3 + 4/55*a^2 - 5/11*a + 9))
```

With the default value of \(S\), the \(S\)-unit group is the same as the global unit group:

```
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^3 + 3)
sage: U = K.unit_group(proof=False)
sage: U.is_isomorphic(K.S_unit_group(proof=False))
True
```
The value of S may be specified as a list of prime ideals, or an ideal, or an element of the field:

```python
sage: K.<a> = NumberField(x^3 + 3)
sage: U = K.S_unit_group(proof=False, S=K.ideal(6).prime_factors()); U
S-unit group with structure C2 x Z x Z x Z x Z
of Number Field in a with defining polynomial x^3 + 3
with $S = \{\text{Fractional ideal } (-a^2 + a - 1),\n\text{Fractional ideal } (a + 1),\n\text{Fractional ideal } (a)\}$
sage: K.<a> = NumberField(x^3 + 3)
sage: U = K.S_unit_group(proof=False, S=K.ideal(6)); U
S-unit group with structure C2 x Z x Z x Z x Z
of Number Field in a with defining polynomial x^3 + 3
with $S = \{\text{Fractional ideal } (-a^2 + a - 1),\n\text{Fractional ideal } (a + 1),\n\text{Fractional ideal } (a)\}$
sage: K.<a> = NumberField(x^3 + 3)
sage: U = K.S_unit_group(proof=False, S=6); U
S-unit group with structure C2 x Z x Z x Z x Z
of Number Field in a with defining polynomial x^3 + 3
with $S = \{\text{Fractional ideal } (-a^2 + a - 1),\n\text{Fractional ideal } (a + 1),\n\text{Fractional ideal } (a)\}$
sage: U.primes()
(Fractional ideal (-a^2 + a - 1),
Fractional ideal (a + 1),
Fractional ideal (a))
sage: U.gens()
(u0, u1, u2, u3, u4)
sage: U.gens_values()
[-1, a^2 - 2, -a^2 + a - 1, a + 1, a]
```

The `exp` and `log` methods can be used to create S-units from sequences of exponents, and recover the exponents:

```python
sage: U.gens_orders()
(2, 0, 0, 0, 0)
sage: u = U.exp((3,1,4,1,5)); u
-6*a^2 + 18*a - 54
sage: u.norm().factor()
The expand log method can be used to create $S$-units from sequences of exponents, and recover the exponents:
```

```python
-1 * 2^9 * 3^5
sage: U.log(u)
(1, 1, 4, 1, 5)
```

`S_unit_solutions` ($S=[]$, `prec=106`, `include_exponents=False`, `include_bound=False`, `proof=None`)

Return all solutions to the S-unit equation $x + y = 1$ over `self`.

INPUT:

- S – a list of finite primes in this number field
- `prec` – precision used for computations in real, complex, and p-adic fields (default: 106)
- `include_exponents` – whether to include the exponent vectors in the returned value (default: True).
- `include_bound` – whether to return the final computed bound (default: False).
- `proof` – if `False`, assume the GRH in computing the class group. Default is `True`.

OUTPUT:
A list \([[(A_1, B_1, x_1, y_1), (A_2, B_2, x_2, y_2), \ldots, (A_n, B_n, x_n, y_n)]]\) of tuples such that:

1. The first two entries are tuples \(A_i = (a_0, a_1, \ldots, a_t)\) and \(B_i = (b_0, b_1, \ldots, b_t)\) of exponents. These will be omitted if include_exponents is False.

2. The last two entries are \(S\)-units \(x_i\) and \(y_i\) in self with \(x_i + y_i = 1\).

3. If the default generators for the \(S\)-units of self are \((\rho_0, \rho_1, \ldots, \rho_t)\), then these satisfy \(x_i = \prod (\rho_i)^{a_i}\) and \(y_i = \prod (\rho_i)^{b_i}\).

If include_bound is True, will return a pair (sols, bound) where sols is as above and bound is the bound used for the entries in the exponent vectors.

EXAMPLES:

```sage
# needs sage.rings.padics
sage: x = polygen(QQ, 'x')
sage: K.<xi> = NumberField(x^2 + x + 1)
sage: S = K.primes_above(3)
sage: K.S_unit_solutions(S)  # random, due to ordering
[[(xi + 2, -xi - 1), (1/3*xi + 2/3, -1/3*xi + 1/3), (-xi, xi + 1), (-xi + 1, xi)]]
```

You can get the exponent vectors:

```sage
# needs sage.rings.padics
sage: K.S_unit_solutions(S, include_exponents=True)  # random, due to ordering
[[(2, 1), (4, 0), xi + 2, -xi - 1),
 ((5, -1), (4, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
 ((5, 0), (1, 0), -xi, xi + 1),
 ((1, 1), (2, 0), -xi + 1, xi)]
```

And the computed bound:

```sage
# needs sage.rings.padics
sage: solutions, bound = K.S_unit_solutions(S, prec=100, include_bound=True)
sage: bound
7
```

\textbf{S_units}(S, proof=True)

Return a list of generators of the \(S\)-units.

INPUT:

- \(S\) – a set of primes of the base field
- \texttt{proof} – if False, assume the GRH in computing the class group

OUTPUT: A list of generators of the unit group.

\textbf{Note:} For more functionality see the function \texttt{S_unit_group()}.
An example in a relative extension (see github issue #8722):

```python
sage: x = polygen(QQ, 'x')
sage: L.<a,b> = NumberField([x^2 + 1, x^2 - 5])
sage: p = L.ideal((-1/2*b - 1/2)*a + 1/2*b - 1/2)
sage: W = L.S_units([p]); [x.norm() for x in W]
[9, 1, 1]
```

Our generators should have the correct parent (github issue #9367):

```python
sage: _.<x> = QQ[]
sage: L.<alpha> = NumberField(x^3 + x + 1)
sage: p = L.S_units([ L.ideal(7) ])
sage: p[0].parent()
Number Field in alpha with defining polynomial x^3 + x + 1
```

absolute_degree()

Return the degree of self over \(\mathbb{Q} \).

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: NumberField(x^3 + x^2 + 997*x + 1, 'a').absolute_degree()
3
sage: NumberField(x + 1, 'a').absolute_degree()
1
sage: NumberField(x^997 + 17*x + 3, 'a', check=False).absolute_degree()
997
```

absolute_field(names)

Return self as an absolute number field.

INPUT:

- names – string: name of generator of the absolute field

OUTPUT:

- K – this number field (since it is already absolute)

Also, K.structure() returns from_K and to_K, where from_K is an isomorphism from \(K \) to self and to_K is an isomorphism from self to \(K \).

EXAMPLES:

```python
sage: K = CyclotomicField(5)
sage: K.absolute_field('a')
Number Field in a with defining polynomial x^4 + x^3 + x^2 + x + 1
```

absolute_polynomial_ntl()

Alias for polynomial_ntl(). Mostly for internal use.

EXAMPLES:
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + (2/3)*x - 9/17, 'a').absolute_polynomial_ntl()
([-27 34 51], 51)

```

algebraic_closure()

Return the algebraic closure of self (which is QQbar).

EXAMPLES:

sage: K.<i> = QuadraticField(-1)
sage: K.algebraic_closure()
Algebraic Field
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 - 2)
sage: K.algebraic_closure()
Algebraic Field
sage: K = CyclotomicField(23)
sage: K.algebraic_closure()
Algebraic Field
```

```

change_generator (alpha, name=None, names=None)

Given the number field self, construct another isomorphic number field \( K \) generated by the element \( \alpha \) of self, along with isomorphisms from \( K \) to self and from self to \( K \).

EXAMPLES:

sage: x = polygen(ZZ, x)
sage: L.<i> = NumberField(x^2 + 1); L
Number Field in i with defining polynomial x^2 + 1
sage: K, from_K, to_K = L.change_generator(i/2 + 3)
sage: K
Number Field in i0 with defining polynomial x^2 - 6*x + 37/4 with i0 = 1/2*i \_˓→+ 3
sage: from_K
Ring morphism:
  From: Number Field in i0 with defining polynomial x^2 - 6*x + 37/4
  with i0 = 1/2*i + 3
  To:   Number Field in i with defining polynomial x^2 + 1
  Defn: i0 |--> 1/2*i + 3
sage: to_K
Ring morphism:
  From: Number Field in i with defining polynomial x^2 + 1
  To:   Number Field in i0 with defining polynomial x^2 - 6*x + 37/4
  with i0 = 1/2*i + 3
  Defn: i |--> 2*i0 - 6

We can also do

sage: K.<c>, from_K, to_K = L.change_generator(i/2 + 3); K
Number Field in c with defining polynomial x^2 - 6*x + 37/4 with c = 1/2*i + 3

We compute the image of the generator \( \sqrt{-1} \) of \( L \).

sage: to_K(i)
2*c - 6

Note that the image is indeed a square root of \(-1\).
characteristic()

Return the characteristic of this number field, which is of course 0.

EXAMPLES:

```sage
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^99 + 2); k
Number Field in a with defining polynomial x^99 + 2
sage: k.characteristic()
```

class_group (proof=None, names='c')

Return the class group of the ring of integers of this number field.

INPUT:

- **proof** – if True then compute the class group provably correctly. Default is True. Call number_field_proof() to change this default globally.
- **names** – names of the generators of this class group.

OUTPUT: The class group of this number field.

EXAMPLES:

```sage
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^2 + 23)
sage: G = K.class_group(); G
Class group of order 3 with structure C3 of Number Field in a with defining polynomial x^2 + 23
sage: G.0
Fractional ideal class (2, 1/2*a - 1/2)
```

There can be multiple generators:

```sage
sage: k.<a> = NumberField(x^2 + 20072)
sage: G = k.class_group(); G
Class group of order 76 with structure C38 x C2 of Number Field in a with defining polynomial x^2 + 20072
sage: G.0 # random
```
Fractional ideal class \((41, a + 10)\)
\texttt{sage: G.0^38}

Trivial principal fractional ideal class
\texttt{sage: G.1 # random}

Fractional ideal class \((2, -1/2*a)\)
\texttt{sage: G.1^2}

Trivial principal fractional ideal class

Class groups of Hecke polynomials tend to be very small:
\texttt{sage: # needs sage.modular}
\texttt{sage: f = ModularForms(97, 2).T(2).charpoly()}
\texttt{sage: f.factor()}
\((x - 3) \cdot (x^3 + 4x^2 + 3x - 1) \cdot (x^4 - 3x^3 - x^2 + 6x - 1)\)
\texttt{sage: [NumberField(g,'a').class_group().order() for g,_ in f.factor()]
[1, 1, 1]}

\textbf{Note:} Unlike in PARI/GP, class group computations \texttt{in Sage do not} by default assume the Generalized Riemann Hypothesis. To do class groups computations not provably correctly you must often pass the flag \texttt{proof=False} to functions or call the function \texttt{proof.number_field(False)}. It can easily take 1000's of times longer to do computations with \texttt{proof=True} (the default).

\texttt{class_number(proof=None)}

Return the class number of this number field, as an integer.

**INPUT:**

- \texttt{proof} – \texttt{bool} (default: \texttt{True} unless you called \texttt{number_field_proof})

**EXAMPLES:**
\texttt{sage: x = polygen(QQ, 'x')}
\texttt{sage: NumberField(x^2 + 23, 'a').class_number()}
3
\texttt{sage: NumberField(x^2 + 163, 'a').class_number()}
1
\texttt{sage: NumberField(x^3 + x^2 + 997*x + 1, 'a').class_number(proof=False)}
1539

\texttt{completely_split_primes(B=200)}

Return a list of rational primes which split completely in the number field \(K\).

**INPUT:**

- \texttt{B} – a positive integer bound (default: \texttt{200})

**OUTPUT:**

A list of all primes \(p < B\) which split completely in \(K\).

**EXAMPLES:**
\texttt{sage: x = polygen(QQ, 'x')}
\texttt{sage: K.<xi> = NumberField(x^3 - 3*x + 1)}
\texttt{sage: K.completely_split_primes(100)}
[17, 19, 37, 53, 71, 73, 89]
**completion** \((p, \text{prec}, \text{extras}={})\)

Return the completion of \(self\) at \(p\) to the specified precision.

Only implemented at archimedean places, and then only if an embedding has been fixed.

**EXAMPLES:**

```sage
sage: K.<a> = QuadraticField(2)
sage: K.completion(infinity, 100)
Real Field with 100 bits of precision
```

```sage
sage: K.<zeta> = CyclotomicField(12)
sage: K.completion(infinity, 53, extras={'type': 'RDF'})
Complex Double Field
```

```sage
sage: zeta + 1.5
2.36602540378444 + 0.500000000000000*I
```

**complex_conjugation**()

Return the complex conjugation of \(self\).

This is only well-defined for fields contained in CM fields (i.e. for totally real fields and CM fields). Recall that a CM field is a totally imaginary quadratic extension of a totally real field. For other fields, a `ValueError` is raised.

**EXAMPLES:**

```sage
sage: QuadraticField(-1, 'I').complex_conjugation()
Ring endomorphism of
 Number Field in I with defining polynomial x^2 + 1 with I = 1*I
 Defn: I |--> -I
```

```sage
sage: CyclotomicField(8).complex_conjugation()
Ring endomorphism of Cyclotomic Field of order 8 and degree 4
 Defn: zeta8 |--> -zeta8^3
```

```sage
sage: QuadraticField(5, 'a').complex_conjugation()
Identity endomorphism of Number Field in a with defining polynomial x^2 - 5
 with a = 2.236067977499790?
```

```sage
sage: F = NumberField(x^4 + x^3 - 3*x^2 - x + 1, a)
sage: F.is_totally_real()
True
```

```sage
sage: F.complex_conjugation()
Identity endomorphism of Number Field in a with defining polynomial x^4 + x^3 - 3*x^2 - x + 1
```

```sage
sage: F. = NumberField(x^2 - 2)
sage: K2.<a> = F2.extension(x^2 + 1)
sage: cc = K2.complex_conjugation()
sage: cc(a)
-a
```

**complex_embeddings** \((\text{prec}=53)\)

Return all homomorphisms of this number field into the approximate complex field with precision \(\text{prec}\).
This always embeds into an MPFR based complex field. If you want embeddings into the 53-bit double precision, which is faster, use self.embeddings(CDF).

EXAMPLES:

```sage
sage: x = polygen(QQ, 'x')
sage: k.<a> = NumberField(x^5 + x + 17)
sage: v = k.complex_embeddings()
sage: ls = [phi(k.0^2) for phi in v]; ls # random order
[2.97572074038..., -2.40889943716 + 1.90254105304*I,
 -2.40889943716 - 1.90254105304*I,
 0.921039066973 + 3.07553311885*I,
 0.921039066973 - 3.07553311885*I]
sage: K.<a> = NumberField(x^3 + 2)
sage: ls = K.complex_embeddings(); ls # random order
[Ring morphism:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Complex Double Field
 Defn: a |--> -1.25992104989...
, Ring morphism:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Complex Double Field
 Defn: a |--> 0.629960524947 - 1.09112363597*I,
, Ring morphism:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Complex Double Field
 Defn: a |--> 0.629960524947 + 1.09112363597*I]
```

`composite_fields(other, names=None, both_maps=False, preserve_embedding=True)`

Return the possible composite number fields formed from self and other.

INPUT:

- `other` – number field
- `names` – generator name for composite fields
- `both_maps` – boolean (default: `False`)
- `preserve_embedding` – boolean (default: `True`)

OUTPUT:

A list of the composite fields, possibly with maps.

If `both_maps` is `True`, the list consists of quadruples `(F, self_into_F, other_into_F, k)` such that `self_into_F` is an embedding of `self` in `F`, `other_into_F` is an embedding of `other` in `F`, and `k` is one of the following:

- an integer such that `F.gen()` equals `other_into_F(other.gen()) + k*self_into_F(self.gen())`;
- `Infinity`, in which case `F.gen()` equals `self_into_F(self.gen())`;
- `None` (when `other` is a relative number field).

If both `self` and `other` have embeddings into an ambient field, then each `F` will have an embedding with respect to which both `self_into_F` and `other_into_F` will be compatible with the ambient embeddings.
If `preserve_embedding` is `True` and if `self` and `other` both have embeddings into the same ambient field, or into fields which are contained in a common field, only the compositum respecting both embeddings is returned. In all other cases, all possible composite number fields are returned.

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^4 - 2)
sage: K.composite_fields(K)
[Number Field in a with defining polynomial x^4 - 2,
 Number Field in a0 with defining polynomial x^8 + 28*x^4 + 2500]
```

A particular compositum is selected, together with compatible maps into the compositum, if the fields are endowed with a real or complex embedding:

```python
sage: # needs sage.symbolic
sage: K1 = NumberField(x^4 - 2, 'a', embedding=RR(2^(1/4)))
 #˓→ 189207115002722?
```

```python
sage: K2 = NumberField(x^4 - 2, 'a', embedding=RR(-2^(1/4)))
 #˓→ 189207115002722?
```

```python
sage: K1.composite_fields(K2)
[Number Field in a with defining polynomial x^4 - 2 with a = 1.189207115002722?
 Number Field in a0 with defining polynomial x^8 + 28*x^4 + 2500]
```

```python
sage: [F, f, g, k], = K1.composite_fields(K2, both_maps=True); F
Number Field in a with defining polynomial x^4 - 2 with a = 1.189207115002722?
```

```python
sage: f(K1.0), g(K2.0)
(a, -a)
```

With `preserve_embedding` set to `False`, the embeddings are ignored:

```python
sage: K1.composite_fields(K2, preserve_embedding=False) #˓→ needs sage.symbolic
[Number Field in a with defining polynomial x^4 - 2 with a = 1.
 Number Field in a0 with defining polynomial x^8 + 28*x^4 + 2500]
```

Changing the embedding selects a different compositum:

```python
sage: K3 = NumberField(x^4 - 2, 'a', embedding=CC(2^(1/4)*I)) #˓→ needs sage.symbolic
```

```python
sage: [F, f, g, k], = K1.composite_fields(K3, both_maps=True); F #˓→ needs sage.symbolic
Number Field in a0 with defining polynomial x^8 + 28*x^4 + 2500
with a0 = -2.378414230005443? + 1.189207115002722?*I
```

```python
sage: f(K1.0), g(K3.0) #˓→ needs sage.symbolic
(1/240*a0^5 - 41/120*a0, 1/120*a0^5 + 19/60*a0)
```

If no embeddings are specified, the maps into the compositum are chosen arbitrarily:

```python
sage: Q1.<a> = NumberField(x^4 + 10*x^2 + 1)
sage: Q2. = NumberField(x^4 + 16*x^2 + 4)
sage: Q1.composite_fields(Q2, 'c')
[Number Field in c with defining polynomial x^8 + 64*x^6 + 904*x^4 + 3840*x^2 + 3600]
sage: F, Q1_into_F, Q2_into_F, k = Q1.composite_fields(Q2, 'c', both_maps=True)[0]
sage: Q1_into_F
Ring morphism:
 From: Number Field in a with defining polynomial x^4 + 10*x^2 + 1
 To: Number Field in c with defining polynomial x^8 + 64*x^6 + 904*x^4 + 3840*x^2 + 3600
[..]
```

(continues on next page)
To: Number Field in `c` with defining polynomial
\[x^8 + 64x^6 + 904x^4 + 3840x^2 + 3600\]
Defn: `a` |→ \[
19/14400c^7 + 137/1800c^5 + 2599/3600c^3 + 8/15c
\]

This is just one of four embeddings of \(\mathbb{Q}_1\) into \(F\):

```python
sage: Hom(Q1, F).order()
sage: 4
```

Note that even with `preserve_embedding=True`, this method may fail to recognize that the two number fields have compatible embeddings, and hence return several composite number fields:

```python
sage: x = polygen(ZZ)
sage: A.<a> = NumberField(x^3 - 7, embedding=CC(-0.95+1.65*I))
sage: K = QQbar.polynomial_root(x^9 - 7, RIF(1.2, 1.3))
sage: B.<a> = NumberField(x^9 - 7, embedding=r)
sage: len(A.composite_fields(B, preserve_embedding=True))
sage: 2
```

**`conductor` (`check_abelian=True`)**

Computes the conductor of the abelian field \(K\). If `check_abelian` is set to `False` and the field is not an abelian extension of \(\mathbb{Q}\), the output is not meaningful.

**INPUT:**

- `check_abelian` – a boolean (default: `True`); check to see that this is an abelian extension of \(\mathbb{Q}\)

**OUTPUT:**

Integer which is the conductor of the field.

**EXAMPLES:**

```python
sage: # needs sage.groups
e
K = CyclotomicField(27)
sage: k = K.subfields(9)[0][0]
sage: k.conductor()
sage: 27
sage: x = polygen(QQ, 'x')
sage: K.<t> = NumberField(x^3 + x^2 - 2*x - 1)
sage: K.conductor()
sage: 7
sage: K.<t> = NumberField(x^3 + x^2 - 36*x - 4)
sage: K.conductor()
sage: 109
sage: K = CyclotomicField(48)
sage: k = K.subfields(16)[0][0]
sage: k.conductor()
sage: 48
sage: NumberField(x,'a').conductor()
sage: 1
sage: NumberField(x^8 - 8*x^6 + 19*x^4 - 12*x^2 + 1, 'a').conductor()
sage: 40
sage: NumberField(x^8 + 7*x^4 + 1, 'a').conductor()
sage: 40
sage: NumberField(x^8 - 40*x^6 + 500*x^4 - 2000*x^2 + 50, 'a').conductor()
sage: 160
```

**ALGORITHM:**

1.1. Number fields
For odd primes, it is easy to compute from the ramification index because the \( p \)-Sylow subgroup is cyclic. For \( p = 2 \), there are two choices for a given ramification index. They can be distinguished by the parity of the exponent in the discriminant of a 2-adic completion.

**construction()**

Construction of self.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + x^2 + 1, embedding=CC.gen())
sage: F, R = K.construction()
sage: F
AlgebraicExtensionFunctor
sage: R
Rational Field
```

The construction functor respects distinguished embeddings:

```python
sage: F(R) is K
True
sage: F.embeddings
[0.2327856159383841? + 0.7925519925154479?*I]
```

**decomposition_type(p)**

Return how the given prime of the base field splits in this number field.

**INPUT:**

- \( p \) – a prime element or ideal of the base field.

**OUTPUT:**

A list of triples \((e, f, g)\) where

- \( e \) is the ramification index,
- \( f \) is the residue class degree,
- \( g \) is the number of primes above \( p \) with given \( e \) and \( f \)

**EXAMPLES:**

```python
sage: R.<x> = ZZ[]
sage: K.<a> = NumberField(x^20 + 3*x^18 + 15*x^16 + 28*x^14 + 237*x^12 +
 579*x^10
 : + 1114*x^8 + 1470*x^6 + 2304*x^4 + 1296*x^2 + 729)
sage: K.is_galois() # needs sage.groups
True
sage: K.is_galois().factor()
2^20 * 3^10 * 53^10
sage: K.decomposition_type(2)
[(2, 5, 2)]
sage: K.decomposition_type(3)
[(2, 1, 10)]
sage: K.decomposition_type(53)
[(2, 2, 5)]
```

This example is only ramified at 11:
Computing the decomposition type is feasible even in large degree:

```
sage: K.<a> = NumberField(x^144 + 123*x^72 + 321*x^36 + 13*x^18 + 11)
sage: K.discriminant().factor(limit=100000)
2^144 * 3^288 * 7^18 * 11^17 * 31^18 * 157^18 * 2153^18 * 13907^18 * ...
sage: K.decomposition_type(2)
[(2, 4, 3), (2, 12, 2), (2, 36, 1)]
sage: K.decomposition_type(3)
[(9, 3, 2), (9, 10, 1)]
sage: K.decomposition_type(7)
[(1, 18, 1), (1, 90, 1), (2, 1, 6), (2, 3, 4)]
```

It also works for relative extensions:

```
sage: K.<a> = QuadraticField(-143)
sage: M.<c> = K.extension(x^10 - 6*x^8 + (a + 12)*x^6 + (-7/2*a - 89/2)*x^4 + (13/2*a - 77/2)*x^2 + 25)
```

There is a unique prime above $11$ and above $13$ in $K$, each of which is unramified in $M$:

```
sage: M.decomposition_type(11)
[(1, 2, 5)]
sage: len(M.primes_above(11))
5
sage: M.decomposition_type(13)
[(1, 1, 10)]
sage: len(M.primes_above(13))
10
```

There are two primes above $2$, each of which ramifies in $M$:

```
sage: Q0, Q1 = K.primes_above(2)
sage: M.decomposition_type(Q0)
[(2, 5, 1)]
sage: q0 = M.primes_above(Q0)
sage: q0.residue_class_degree()
5
sage: q0.relative_ramification_index()
2
sage: M.decomposition_type(Q1)
[(2, 5, 1)]
```

Check that github issue #34514 is fixed:

```
sage: K.<a> = NumberField(x^4 + 18*x^2 - 1)
sage: R.<y> = K[
]
sage: L. = K.extension(y^2 + 9*a^3 - 2*a^2 + 162*a - 38)
sage: [L.decomposition_type(i) for i in K.primes_above(3)]
[[[1, 1, 2]], [[1, 1, 2]], [[1, 2, 1]]]
```

1.1. Number fields 51
defining_polynomial()

Return the defining polynomial of this number field.

This is exactly the same as polynomial().

EXAMPLES:

```
sage: k5.<z> = CyclotomicField(5)
sage: k5.defining_polynomial()
x^4 + x^3 + x^2 + x + 1
sage: y = polygen(QQ, 'y')
sage: k.<a> = NumberField(y^9 - 3*y + 5); k
Number Field in a with defining polynomial y^9 - 3*y + 5
sage: k.defining_polynomial()
y^9 - 3*y + 5
```

degree()

Return the degree of this number field.

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: NumberField(x^3 + x^2 + 997*x + 1, 'a').degree()
3
sage: NumberField(x + 1, 'a').degree()
1
sage: NumberField(x^997 + 17*x + 3, 'a', check=False).degree()
997
```

different()

Compute the different fractional ideal of this number field.

The codifferent is the fractional ideal of all \( x \) in \( K \) such that the trace of \( xy \) is an integer for all \( y \in O_K \).

The different is the integral ideal which is the inverse of the codifferent.

See Wikipedia article Different_ideal

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: k.<a> = NumberField(x^2 + 23)
sage: d = k.different(); d
Fractional ideal (a)
sage: d.norm()
23
sage: k.disc()
-23
```

The different is cached:

```
sage: d is k.different()
True
```

Another example:

```
sage: k. = NumberField(x^2 - 123)
sage: d = k.different(); d
(continues on next page)```
Fractional ideal (2*b)

```python
sage: d.norm()
492
sage: k.disc()
492
```

dirichlet_group()

Given an abelian field K, compute and return the set of all Dirichlet characters corresponding to the characters of the Galois group of K/\mathbb{Q}.

The output is random if the field is not abelian.

OUTPUT: a list of Dirichlet characters

EXAMPLES:

```python
sage: # needs sage.groups sage.modular
sage: x = polygen(QQ, 'x')
sage: K.<t> = NumberField(x^3 + x^2 - 36*x - 4)
sage: K.conductor()
109
sage: K.dirichlet_group()  # optional - gap_package_polycyclic
[Dirichlet character modulo 109 of conductor 1 mapping 6 |--> 1,
  Dirichlet character modulo 109 of conductor 109 mapping 6 |--> zeta3,
  Dirichlet character modulo 109 of conductor 109 mapping 6 |--> -zeta3 - 1]

sage: # needs sage.modular
sage: K = CyclotomicField(44)
sage: L = K.subfields(5)[0][0]
sage: X = L.dirichlet_group(); X  # optional - gap_package_polycyclic
[Dirichlet character modulo 11 of conductor 1 mapping 2 |--> 1,
  Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta5,
  Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta5^2,
  Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta5^3,
  Dirichlet character modulo 11 of conductor 11 mapping 2 |--> -zeta5^3 - zeta5^2 - zeta5 - 1]

Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta5^3
sage: X[4]^2 in X  # optional - gap_package_polycyclic
True
```

disc(v=None)

Shortcut for `discriminant()`.

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: k.<b> = NumberField(x^2 - 123)
sage: k.disc()
492
```

discriminant(v=None)

Return the discriminant of the ring of integers of the number field, or if v is specified, the determinant of the trace pairing on the elements of the list v.

INPUT:

- v – (optional) list of elements of this number field
OUTPUT:

Integer if v is omitted, and Rational otherwise.

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: K.<t> = NumberField(x^3 + x^2 - 2*x + 8)
sage: K.disc()
-503
sage: K.disc([1, t, t^2])
-2012
sage: K.disc([1/7, (1/5)*t, (1/3)*t^2])
-2012/11025
sage: (5*7*3)^2
11025
sage: NumberField(x^2 - 1/2, 'a').discriminant()
8
```

```
elements_of_norm(n, proof=None)
```

Return a list of elements of norm n.

INPUT:

- n – integer
- proof – boolean (default: True, unless you called proof.number_field() and set it otherwise)

OUTPUT:

A complete system of integral elements of norm n, modulo units of positive norm.

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^2 + 1)
sage: K.elements_of_norm(3)
[]
sage: K.elements_of_norm(50)
[-a - 7, 5*a - 5, 7*a + 1]
```

```
extension(poly, name=None, names=None, latex_name=None, latex_names=None, *args, **kwds)
```

Return the relative extension of this field by a given polynomial.

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 - 2)
sage: R.<t> = K[]
sage: L.<b> = K.extension(t^2 + a); L
Number Field in b with defining polynomial t^2 + a over its base field
```

We create another extension:

```
sage: k.<a> = NumberField(x^2 + 1); k
Number Field in a with defining polynomial x^2 + 1
sage: y = polygen(QQ, 'y')
sage: m.<b> = k.extension(y^2 + 2); m
Number Field in b with defining polynomial y^2 + 2 over its base field
```

Note that b is a root of $y^2 + 2$:
sage: b.minpoly()
x^2 + 2
sage: b.minpoly('z')
z^2 + 2

A relative extension of a relative extension:

sage: k.<a> = NumberField([x^2 + 1, x^3 + x + 1])
sage: R.<z> = k[]
sage: L. = NumberField(z^3 + 3 + a); L
Number Field in b with defining polynomial z^3 + a0 + 3 over its base field

Extension fields with given defining data are unique (github issue #20791):

sage: K.<a> = NumberField(x^2 + 1)
sage: K.extension(x^2 - 2, 'b') is K.extension(x^2 - 2, 'b')
True

factor (n)

Ideal factorization of the principal ideal generated by n.

EXAMPLES:

Here we show how to factor Gaussian integers (up to units). First we form a number field defined by $x^2 + 1$:

sage: x = polygen(QQ, 'x')
sage: K.<I> = NumberField(x^2 + 1); K
Number Field in I with defining polynomial x^2 + 1

Here are the factors:

sage: fi, fj = K.factor(17); fi,fj
((Fractional ideal (I + 4), 1), (Fractional ideal (I - 4), 1))

Now we extract the reduced form of the generators:

sage: zi = fi[0].gens_reduced()[0]; zi
I + 4
sage: zj = fj[0].gens_reduced()[0]; zj
I - 4

We recover the integer that was factored in $\mathbb{Z}[i]$ (up to a unit):

sage: zi*zj
-17

One can also factor elements or ideals of the number field:

sage: K.<a> = NumberField(x^2 + 1)
sage: K.factor(1/3)
(Fractional ideal (3))^-1
sage: K.factor(1+a)
Fractional ideal (a + 1)
sage: K.factor(1+a/5)
(Fractional ideal (a + 1)) * (Fractional ideal (-a - 2))^-1
* (Fractional ideal (2*a + 1))^-1 * (Fractional ideal (-2*a + 3))

An example over a relative number field:
It doesn't make sense to factor the ideal (0), so this raises an error:

```
sage: f.value() == a+1
True
```

AUTHORS:

• Alex Clemesha (2006-05-20), Francis Clarke (2009-04-21): examples

fractional_ideal (*gens*, **kwds)**

Return the ideal in \(\mathcal{O}_K \) generated by \(\text{gens} \). This overrides the `sage.rings.ring.Field` method to use the `sage.rings.ring.Ring` one instead, since we're not really concerned with ideals in a field but in its ring of integers.

INPUT:

• \(\text{gens} \) – a list of generators, or a number field ideal.

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 - 2)
sage: K.fractional_ideal([1/a])
Fractional ideal (1/2*a^2)
```

One can also input a number field ideal itself, or, more usefully, for a tower of number fields an ideal in one of the fields lower down the tower.

```
sage: K.fractional_ideal(K.ideal(a))
Fractional ideal (a)
sage: L.<b> = K.extension(x^2 - 3, x^2 + 1)
sage: M.<c> = L.extension(x^2 + 1)
sage: L.ideal(K.ideal(2, a))
Fractional ideal (a)
sage: M.ideal(K.ideal(2, a)) == M.ideal(a*(b - c)/2)
True
```

The zero ideal is not a fractional ideal!

```
sage: K.fractional_ideal(0)
Traceback (most recent call last):
... ValueError: gens must have a nonzero element (zero ideal is not a fractional_ideal)
```

galois_group (type=`None`, algorithm=`'pari'`, names=`None`, gc_numbering=`None`)

Return the Galois group of the Galois closure of this number field.
INPUT:

- **type** – Deprecated; the different versions of Galois groups have been merged in github issue #28782.
- **algorithm** – `pari`, `gap`, `kash`, `magma`. (default: `pari`; for degrees between 12 and 15 default is `gap`, and when the degree is >= 16 it is `kash`.)
- **names** – a string giving a name for the generator of the Galois closure of **self**, when this field is not Galois.
- **gc_numbering** – if `True`, permutations will be written in terms of the action on the roots of a defining polynomial for the Galois closure, rather than the defining polynomial for the original number field. This is significantly faster; but not the standard way of presenting Galois groups. The default currently depends on the algorithm (`True` for `pari`, `False` for `magma`) and may change in the future.

The resulting group will only compute with automorphisms when necessary, so certain functions (such as `sage.rings.number_field.galois_group.GaloisGroup_v2.order()`) will still be fast. For more (important!) documentation, see the documentation for Galois groups of polynomials over `QQ`, e.g., by typing `K.polynomial().galois_group?`, where `K` is a number field.

EXAMPLES:

```python
sage: # needs sage.groups
sage: x = polygen(QQ, 'x')

sage: k.<b> = NumberField(x^2 - 14)  # a Galois extension
sage: G = k.galois_group(); G
Galois group 2T1 (S2) with order 2 of x^2 - 14
sage: G.gen(0)
(1,2)

sage: G.gen(0)(b)
-b

sage: G.artin_symbol(k.primes_above(3)[0])
(1,2)

sage: # needs sage.groups
sage: k.<b> = NumberField(x^3 - x + 1)  # not Galois

sage: G = k.galois_group(names='c'); G
Galois group 3T2 (S3) with order 6 of x^3 - x + 1
sage: G.gen(0)
(1,2,3)(4,5,6)

sage: K.<a> = NumberField(x^3 - 2)

sage: L.<b1> = K.galois_closure(); L
Number Field in b1 with defining polynomial x^6 + 108
sage: G = End(L); G
Automorphism group of Number Field in b1 with defining polynomial x^6 + 108
sage: G.list()
[Ring endomorphism of Number Field in b1 with defining polynomial x^6 + 108
  Defn: b1 |--> b1,
 (continues on next page)
```

EXPLICIT GALOIS GROUP: We compute the Galois group as an explicit group of automorphisms of the Galois closure of a field.

```python
sage: # needs sage.groups
sage: K.<a> = NumberField(x^3 - 2)
sage: L.<b1> = K.galois_closure(); L
Number Field in b1 with defining polynomial x^6 + 108
sage: G = End(L); G
Automorphism group of Number Field in b1 with defining polynomial x^6 + 108
sage: G.list()
[Ring endomorphism of Number Field in b1 with defining polynomial x^6 + 108
  Defn: b1 |--> b1,
 (continues on next page)
```
... Ring endomorphism of Number Field in b1 with defining polynomial \(x^6 + 108 \)
\[\text{Defn: } b1 \rightarrow -1/12*b1^4 - 1/2*b1\]
\[
sage: G[2](b1)
1/12*b1^4 + 1/2*b1\]

Many examples for higher degrees may be found in the online databases http://galoisdb.math.upb.de/ by Jürgen Klüners and Gunter Malle and https://www.lmfdb.org/NumberField/ by the LMFDB collaboration, although these might need a lot of computing time.

If \(L/K \) is a relative number field, this method will currently return \(Gal(L/Q) \). This behavior will change in the future, so it’s better to explicitly call \(absolute_field() \) if that is the desired behavior:

\[
sage: # needs sage.groups
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2 + 1)
sage: R.<t> = PolynomialRing(K)
sage: L = K.extension(t^5 - t + a, 'b')
sage: L.galois_group()
...DeprecationWarning: Use .absolute_field().galois_group() if you want the Galois group of the absolute field
See https://github.com/sagemath/sage/issues/28782 for details.
Galois group 10T22 (S(5)[x]2) with order 240 of t^5 - t + a
\]

\textbf{gen}(n=0)

Return the generator for this number field.

\textbf{INPUT:}

- \(n \) – must be 0 (the default), or an exception is raised.

\textbf{EXAMPLES:}

\[
sage: x = polygen(QQ, 'x')
sage: k.<theta> = NumberField(x^14 + 2); k
Number Field in theta with defining polynomial \(x^{14} + 2 \)
sage: k.gen()
theta
sage: k.gen(1)
Traceback (most recent call last):
... IndexError: Only one generator.
\]

\textbf{gen_embedding()}

If an embedding has been specified, return the image of the generator under that embedding. Otherwise return None.

\textbf{EXAMPLES:}

\[
sage: QuadraticField(-7, 'a').gen_embedding()
2.645751311064591*I
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + 7, 'a').gen_embedding() # None
\]

\textbf{ideal(*gens, **kwds)}

Return a fractional ideal of the field, except for the zero ideal, which is not a fractional ideal.
EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.ideal(2)
Fractional ideal (2)
sage: K.ideal(2 + i)
Fractional ideal (i + 2)
sage: K.ideal(0)
Ideal (0) of Number Field in i with defining polynomial x^2 + 1
```

`idealchinese(ideals, residues)`

Return a solution of the Chinese Remainder Theorem problem for ideals in a number field.

This is a wrapper around the pari function `pari:idealchinese`.

INPUT:

- `ideals` – a list of ideals of the number field.
- `residues` – a list of elements of the number field.

OUTPUT:

Return an element b of the number field such that $b \equiv x_i \mod I_i$ for all residues x_i and respective ideals I_i.

See also:

- `crt()`

EXAMPLES:

This is the example from the pari page on `idealchinese`:

```python
sage: # needs sage.symbolic
sage: K.<sqrt2> = NumberField(sqrt(2).minpoly())
sage: ideals = [K.ideal(4), K.ideal(3)]
sage: residues = [sqrt2, 1]
sage: r = K.idealchinese(ideals, residues); r
-3*sqrt2 + 4
sage: all((r - a) in I for I, a in zip(ideals, residues))
True
```

The result may be non-integral if the results are non-integral:

```python
sage: # needs sage.symbolic
sage: K.<sqrt2> = NumberField(sqrt(2).minpoly())
sage: ideals = [K.ideal(4), K.ideal(21)]
sage: residues = [1/sqrt2, 1]
sage: r = K.idealchinese(ideals, residues); r
-63/2*sqrt2 - 20
sage: all((r - a).valuation(P) >= k
.....:    for I, a in zip(ideals, residues)
.....:    for P, k in I.factor())
True
```

`ideals_of_bdd_norm(bound)`

Return all integral ideals of bounded norm.
INPUT:

- bound – a positive integer

OUTPUT: A dict of all integral ideals I such that $\text{Norm}(I) \leq \text{bound}$, keyed by norm.

EXAMPLES:

```sage
x = polygen(QQ, 'x')
K.<a> = NumberField(x^2 + 23)
d = K.ideals_of_bdd_norm(10)
sage: for n in d:
    ....:    print(n)
    ....:    for I in sorted(d[n]):
    ....:        print(I)
1 Fractional ideal (1)
2 Fractional ideal (2, 1/2*a - 1/2)
Fractional ideal (2, 1/2*a + 1/2)
3 Fractional ideal (3, 1/2*a - 1/2)
Fractional ideal (3, 1/2*a + 1/2)
4 Fractional ideal (2)
Fractional ideal (4, 1/2*a + 3/2)
Fractional ideal (4, 1/2*a + 5/2)
5 Fractional ideal (1/2*a - 1/2)
Fractional ideal (1/2*a + 1/2)
Fractional ideal (6, 1/2*a + 5/2)
Fractional ideal (6, 1/2*a + 7/2)
7 Fractional ideal (4, a - 1)
Fractional ideal (4, a + 1)
Fractional ideal (1/2*a + 3/2)
Fractional ideal (1/2*a - 3/2)
9 Fractional ideal (3)
Fractional ideal (9, 1/2*a + 7/2)
Fractional ideal (9, 1/2*a + 11/2)
10
```

integral_basis(v=None)

Return a list containing a \mathbb{Z}-basis for the full ring of integers of this number field.

INPUT:

- v – None, a prime, or a list of primes. See the documentation for `maximal_order()`.

EXAMPLES:

```sage
x = polygen(QQ, 'x')
K.<a> = NumberField(x^5 + 10*x + 1)
sage: K.integral_basis()
[1, a, a^2, a^3, a^4]
```

Next we compute the ring of integers of a cubic field in which 2 is an “essential discriminant divisor”, so the ring of integers is not generated by a single element.
Sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
Sage: K.integral_basis()
[1, 1/2*a^2 + 1/2*a, a^2]

ALGORITHM: Uses the PARI library (via pari: _pari_integral_basis_).

```python
is_CM()
```

Return True if self is a CM field (i.e., a totally imaginary quadratic extension of a totally real field).

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: Q.<a> = NumberField(x - 1)
sage: Q.is_CM()
False
sage: K.<i> = NumberField(x^2 + 1)
sage: K.is_CM()
True
sage: L.<zeta20> = CyclotomicField(20)
sage: L.is_CM()
True
sage: K.<omega> = QuadraticField(-3)
sage: K.is_CM()
True
sage: L.<sqrt5> = QuadraticField(5)
sage: L.is_CM()
False
sage: F.<a> = NumberField(x^3 - 2)
sage: F.is_CM()
False
sage: F.<a> = NumberField(x^4 - x^3 - 3*x^2 + x + 1)
sage: F.is_CM()
False
sage: F.<a> = NumberField(x^4 + x^3 - x^2 - x + 1)
sage: F.is_totally_imaginary()
True
sage: F.is_CM()
False
```

The following are non-CM totally imaginary fields.

```
sage: F.<a> = NumberField(x^4 + x^3 - x^2 - x + 1)
sage: F.is_totally_imaginary()
True
sage: F.is_CM()
False
sage: F2.<a> = NumberField(x^12 - 5*x^11 + 8*x^10 - 5*x^9 - x^8 + 9*x^7 + 7*x^6 - 3*x^5 + 5*x^4 + 7*x^3 - 4*x^2 - 7*x + 7)
sage: F2.is_totally_imaginary()
True
sage: F2.is_CM()
False
```

The following is a non-cyclotomic CM field.

```
sage: M.<a> = NumberField(x^4 - x^3 - x^2 - 2*x + 4)
sage: M.is_CM()
True
```

Now, we construct a totally imaginary quadratic extension of a totally real field (which is not cyclotomic).

```
sage: E_0.<a> = NumberField(x^7 - 4*x^6 - 4*x^5 + 10*x^4 + 4*x^3 - 6*x^2 - x + 1)
(continues on next page)
Finally, a CM field that is given as an extension that is not CM.

```python
sage: E_0.<a> = NumberField(x^2 - 4*x + 16)
sage: y = polygen(E_0)
sage: E.<z> = E_0.extension(y^2 - E_0.gen() / 2)
sage: E.is_CM() # is_CM is not CM
True
sage: E.is_CM_extension() # is_CM_extension is not CM
False
```

### is_abelian()

Return True if this number field is an abelian Galois extension of \( \mathbb{Q} \).

**EXAMPLES:**

```python
sage: # needs sage.groups
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + 1, 'i').is_abelian() # is_abelian is abelian
True
sage: NumberField(x^3 + 2, 'a').is_abelian() # is_abelian is not abelian
False
sage: NumberField(x^3 + x^2 - 2*x - 1, 'a').is_abelian() # is_abelian is abelian
True
sage: NumberField(x^6 + 40*x^3 + 1372, 'a').is_abelian() # is_abelian is not abelian
False
sage: NumberField(x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1, 'a').is_abelian() # is_abelian is not abelian
False
```

### is_absolute()

Return True if self is an absolute field.

This function will be implemented in the derived classes.

**EXAMPLES:**

```python
sage: K = CyclotomicField(5)
sage: K.is_absolute() # is_absolute is absolute
True
```

### is_field(proof=True)

Return True since a number field is a field.

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: NumberField(x^5 + x + 3, 'c').is_field() # is_field is a field
True
```

### is_galois()

Return True if this number field is a Galois extension of \( \mathbb{Q} \).
EXAMPLES:

```python
sage: # needs sage.groups
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + 1, 'i').is_galois()
True
sage: NumberField(x^3 + 2, 'a').is_galois()
False
sage: K = NumberField(x^15 + x^14 - 14*x^13 - 13*x^12 + 78*x^11 + 66*x^10
.....: - 220*x^9 - 165*x^8 + 330*x^7 + 210*x^6 - 252*x^5
.....: - 126*x^4 + 84*x^3 + 28*x^2 - 8*x - 10, 'a')
sage: K.is_galois()
True
sage: K = NumberField(x^15 + x^14 - 14*x^13 - 13*x^12 + 78*x^11 + 66*x^10
.....: - 220*x^9 - 165*x^8 + 330*x^7 + 210*x^6 - 252*x^5
.....: - 126*x^4 + 84*x^3 + 28*x^2 - 8*x - 10, 'a')
sage: K.is_galois()
False
```

**is_isomorphic**(other, isomorphism_maps=False)

Return `True` if `self` is isomorphic as a number field to `other`.

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: k.<a> = NumberField(x^2 + 1)
sage: m. = NumberField(x^2 + 4)
sage: k.is_isomorphic(m)
True
sage: m. = NumberField(x^2 + 5)
sage: k.is_isomorphic(m)
False
sage: k = NumberField(x^3 + 2, 'a')
sage: k.is_isomorphic(NumberField((x+1/3)^3 + 2, 'b'))
True
sage: k.is_isomorphic(NumberField(x^3 + 4, 'b'))
True
sage: k.is_isomorphic(NumberField(x^3 + 5, 'b'))
False
sage: k = NumberField(x^2 - x - 1, 'b')
sage: I = NumberField(x^2 - 7, 'a')
sage: k.is_isomorphic(I, True)
(False, [])
sage: k = NumberField(x^2 - x - 1, 'b')
sage: ky.<y> = k[]
sage: I = NumberField(y, 'a')
sage: k.is_isomorphic(I, True)
(True, [-x, x + 1])
```

**is_relative**()

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^10 - 2)
```

(continues on next page)
Algebraic Numbers and Number Fields, Release 10.3

sage: K.is_absolute()
True
sage: K.is_relative()
False

is_totally_imaginary()

Return True if self is totally imaginary, and False otherwise.

Totally imaginary means that no isomorphic embedding of self into the complex numbers has image contained in the real numbers.

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + 2, 'alpha').is_totally_imaginary()
True
sage: NumberField(x^2 - 2, 'alpha').is_totally_imaginary()
False
sage: NumberField(x^4 - 2, 'alpha').is_totally_imaginary()
False

is_totally_real()

Return True if self is totally real, and False otherwise.

Totally real means that every isomorphic embedding of self into the complex numbers has image contained in the real numbers.

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + 2, 'alpha').is_totally_real()
False
sage: NumberField(x^2 - 2, 'alpha').is_totally_real()
True
sage: NumberField(x^4 - 2, 'alpha').is_totally_real()
False

lmfdb_page()

Open the LMFDB web page of the number field in a browser.

See https://www.lmfdb.org

EXAMPLES:

sage: E = QuadraticField(-1)
sage: E.lmfdb_page() # optional -- webbrowser

Even if the variable name is different it works:

sage: R.<y> = PolynomialRing(QQ, "y")
sage: K = NumberField(y^2 + 1, "i")
sage: K.lmfdb_page() # optional -- webbrowser

maximal_order (v=None, assume_maximal='non-maximal-non-unique')

Return the maximal order, i.e., the ring of integers, associated to this number field.

INPUT:

- v = None, a prime, or a list of integer primes (default: None)
– if None, return the maximal order.
– if a prime $p$, return an order that is $p$-maximal.
– if a list, return an order that is maximal at each prime of these primes

**assume_maximal** – True, False, None, or "non-maximal-non-unique" (default: "non-maximal-non-unique") ignored when $v$ is None; otherwise, controls whether we assume that the order order.is_maximal() outside of $v$.

– if True, the order is assumed to be maximal at all primes.
– if False, the order is assumed to be non-maximal at some prime not in $v$.
– if None, no assumptions are made about primes not in $v$.
– if "non-maximal-non-unique" (deprecated), like False, however, the order is not a unique parent, so creating the same order later does typically not poison caches with the information that the order is not maximal.

**EXAMPLES:**

In this example, the maximal order cannot be generated by a single element:

```python
sage: x = polygen(QQ, 'x')
sage: k.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: o = k.maximal_order()
sage: o
Maximal Order generated by [1/2*a^2 + 1/2*a, a^2] in Number Field in a with defining polynomial x^3 + x^2 - 2*x + 8
```

We compute $p$-maximal orders for several $p$. Note that computing a $p$-maximal order is much faster in general than computing the maximal order:

```python
sage: p = next_prime(10^22)
sage: q = next_prime(10^23)
sage: K.<a> = NumberField(x^3 - p*q)

sage: K.maximal_order([3], assume_maximal=None).basis()
[1/3*a^2 + 1/3*a + 1/3, a, a^2]
sage: K.maximal_order([2], assume_maximal=None).basis()
[1/3*a^2 + 1/3*a + 1/3, a, a^2]
sage: K.maximal_order([p], assume_maximal=None).basis()
[1/3*a^2 + 1/3*a + 1/3, a, a^2]
sage: K.maximal_order([q], assume_maximal=None).basis()
[1/3*a^2 + 1/3*a + 1/3, a, a^2]
sage: K.maximal_order([p, 3], assume_maximal=None).basis()
[1/3*a^2 + 1/3*a + 1/3, a, a^2]
```

An example with bigger discriminant:

```python
sage: p = next_prime(10^97)
sage: q = next_prime(10^99)
sage: K.<a> = NumberField(x^3 - p*q)
sage: K.maximal_order(prime_range(10000), assume_maximal=None).basis()
[1, a, a^2]
```
An example in a relative number field:

```
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 3])
sage: OK = K.maximal_order()
sage: OK.basis()
[1, 1/2*a - 1/2*b, -1/2*b*a + 1/2, a]
sage: charpoly(OK.1)
x^2 + b*x + 1
sage: charpoly(OK.2)
x^2 - x + 1
sage: O2 = K.order([3*a, 2*b])
sage: O2.index_in(OK)
144
```

An order that is maximal at a prime. We happen to know that it is actually maximal and mark it as such:

```
sage: K.<i> = NumberField(x^2 + 1)
sage: K.maximal_order(v=2, assume_maximal=True)
Gaussian Integers generated by i in Number Field in i with defining polynomial x^2 + 1
```

It is an error to create a maximal order and declare it non-maximal, however, such mistakes are only caught automatically if they evidently contradict previous results in this session:

```
sage: K.maximal_order(v=2, assume_maximal=False)
Traceback (most recent call last):
... ValueError: cannot assume this order to be non-maximal because we already found it to be a maximal order
```

`maximal_totally_real_subfield()`

Return the maximal totally real subfield of `self` together with an embedding of it into `self`.

**EXAMPLES:**

```
sage: F.<a> = QuadraticField(11)
sage: F.maximal_totally_real_subfield()
[Number Field in a with defining polynomial x^2 - 11 with a = 3.
 →316624790355400?,
 Identity endomorphism of
 Number Field in a with defining polynomial x^2 - 11 with a = 3.
 →316624790355400?]
sage: F.<a> = QuadraticField(-15)
sage: F.maximal_totally_real_subfield()
[Rational Field, Natural morphism:
 From: Rational Field
 To: Number Field in a with defining polynomial x^2 + 15
 with a = 3.872983346207417*I]
sage: F.<a> = CyclotomicField(29)
sage: F.maximal_totally_real_subfield()
(Number Field in a0 with defining polynomial x^14 + x^13 - 13*x^12 - 12*x^11
 + 66*x^10 + 55*x^9 - 165*x^8 - 120*x^7 + 210*x^6 + 126*x^5 - 126*x^4
 - 56*x^3 + 28*x^2 + 7*x - 1 with a0 = 1.953241111420174?,
 Ring morphism:
 From: Number Field in a0 with defining polynomial x^14 + x^13 - 13*x^12 - ...
 To: Number Field in a with defining polynomial x^2 + 15)
```

(continues on next page)
+ 66*x^10 + 55*x^9 - 165*x^8 - 120*x^7 + 210*x^6 + 126*x^5 - 126*x^4
- 56*x^3 + 28*x^2 + 7*x - 1 with a0 = 1.953241111420174?
To: Cyclotomic Field of order 29 and degree 28
Defn: a0 |--> -a^27 - a^26 - a^25 - a^24 - a^23 - a^22 - a^21 - a^20 - a^19
- a^18 - a^17 - a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10
- a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 - 1

sage: x = polygen(QQ, 'x')
sage: F.<a> = NumberField(x^3 - 2)
sage: F.maximal_totally_real_subfield()

[Rational Field,
Coercion map:
From: Rational Field
To: Number Field in a with defining polynomial x^3 - 2]

sage: F.<a> = NumberField(x^4 - x^3 - x^2 + x + 1)

sage: F.maximal_totally_real_subfield()

[Rational Field,
Coercion map:
From: Rational Field
To: Number Field in a with defining polynomial x^4 - x^3 - x^2 + x + 1]

sage: F.<a> = NumberField(x^4 - 4*x^2 - x + 1)

sage: F.maximal_totally_real_subfield()

[Number Field in a with defining polynomial x^2 - x - 1,
Ring morphism:
From: Number Field in a with defining polynomial x^2 - x - 1
To: Number Field in a with defining polynomial x^4 - x^3 + 2*x^2 + x + 1
Defn: a1 |--> -1/2*a^3 - 1/2]

An example of a relative extension where the base field is not the maximal totally real subfield.

sage: E_0.<a> = NumberField(x^2 - 4*x + 16)
sage: y = polygen(E_0)
sage: E.<z> = E_0.extension(y^2 - E_0.gen() / 2)
sage: E.maximal_totally_real_subfield()

[Number Field in z1 with defining polynomial x^2 - 2*x - 5,
Composite map:
From: Number Field in z1 with defining polynomial x^2 - 2*x - 5
To: Number Field in z with defining polynomial x^2 - 1/2*a over its base
field
Defn: Ring morphism:
From: Number Field in z1 with defining polynomial x^2 - 2*x - 5
To: Number Field in z with defining polynomial x^2 - 1/2*a over its base
field
Defn: z1 |--> -1/3*z^3 + 1/3*z^2 + z - 1

narrow_class_group (proof=None)
Return the narrow class group of this field.

INPUT:

• proof – default: None (use the global proof setting, which defaults to True).

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: NumberField(x^3 + x + 9, 'a').narrow_class_group()
Multiplicative Abelian group isomorphic to C2
```

ngens ()

Return the number of generators of this number field (always 1).

OUTPUT: the python integer 1.

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + 17,'a').ngens()
1
sage: NumberField(x + 3,'a').ngens()
1
sage: k.<a> = NumberField(x + 3)
sage: k.ngens()
1
sage: k.0
-3
```

number_of_roots_of_unity ()

Return the number of roots of unity in this field.

**Note:** We do not create the full unit group since that can be expensive, but we do use it if it is already known.

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: F.<alpha> = NumberField(x^22 + 3)
sage: F.zeta_order()
6
sage: F.<alpha> = NumberField(x^2 - 7)
sage: F.zeta_order()
2
```

order ()

Return the order of this number field (always +infinity).

OUTPUT: always positive infinity

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + 19,'a').order()
+Infinity
```

pari_bnf (proof=None, units=True)

PARI big number field corresponding to this field.
INPUT:

- **proof** – If False, assume GRH. If True, run PARI’s `pari:bnfcertify` to make sure that the results are correct.
- **units** – (default: True) If `\( \text{``True} \)` insist on having fundamental units. If False, the units may or may not be computed.

OUTPUT:
The PARI `bnf` structure of this number field.

**Warning:** Even with `proof=True`, I wouldn’t trust this to mean that everything computed involving this number field is actually correct.

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: k.<a> = NumberField(x^2 + 1); k
Number Field in a with defining polynomial x^2 + 1
sage: len(k.pari_bnf())
10
sage: k.pari_bnf()[:4]
[[;], matrix(0,3), [;], ...]
sage: len(k.pari_nf())
9
```

### `pari_nf(important=True)`

Return the PARI number field corresponding to this field.

**INPUT:**

- **important** – boolean (default: True). If False, raise a `RuntimeError` if we need to do a difficult discriminant factorization. This is useful when an integral basis is not strictly required, such as for factoring polynomials over this number field.

**OUTPUT:**

The PARI number field obtained by calling the PARI function `pari:nfinit` with `self.pari_polynomial('y')` as argument.

**Note:** This method has the same effect as `pari(self)`.

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: k.<a> = NumberField(x^4 - 3*x + 7); k
Number Field in a with defining polynomial x^4 - 3*x + 7
sage: k.pari_nf()[:4]
[y^4 - 3*y + 7, [0, 2], 85621, 1]
sage: pari(k)[:4]
[y^4 - 3*y + 7, [0, 2], 85621, 1]
```
With `important=False`, we simply bail out if we cannot easily factor the discriminant:

```python
sage: p = next_prime(10^40); q = next_prime(10^41)
sage: K.<a> = NumberField(x^2 - p*q)
sage: K.pari_nf(important=False)
Traceback (most recent call last):
 ... RuntimeError: Unable to factor discriminant with trial division
```

Next, we illustrate the `maximize_at_primes` and `assume_disc_small` parameters of the `NumberField` constructor. The following would take a very long time without the `maximize_at_primes` option:

```python
sage: K.<a> = NumberField(x^2 - p*q, maximize_at_primes=[p])
sage: K.pari_nf()
[y^2 - 1000000000000000000000000000000000...]
```

Since the discriminant is square-free, this also works:

```python
sage: K.<a> = NumberField(x^2 - p*q, assume_disc_small=True)
sage: K.pari_nf()
[y^2 - 1000000000000000000000000000000000...]
```

**pari_polynomial** (*name='x'*')

Return the PARI polynomial corresponding to this number field.

**INPUT:**

- *name* – variable name (default: 'x')

**OUTPUT:**

A monic polynomial with integral coefficients (PARI `t_POL`) defining the PARI number field corresponding to `self`.

**Warning:** This is not the same as simply converting the defining polynomial to PARI.

**EXAMPLES:**

```python
sage: y = polygen(QQ)
sage: k.<a> = NumberField(y^2 + 3/2*y + 5/3)
sage: k.pari_polynomial()
x^2 - x + 40
```
Some examples with relative number fields:

```
sage: x = polygen(ZZ, 'x')
sage: k.<a, c> = NumberField([x^2 + 3, x^2 + 1])
sage: k.pari_polynomial()
x^4 + 8*x^2 + 4
sage: k.pari_polynomial('a')
a^4 + 8*a^2 + 4
sage: k.absolute_polynomial()
x^4 + 8*x^2 + 4
sage: k.relative_polynomial()
x^2 + 3
sage: k.<a, c> = NumberField([x^2 + 1/3, x^2 + 1/4])
sage: k.pari_polynomial()
x^4 - x^2 + 1
sage: k.absolute_polynomial()
x^4 - x^2 + 1
```

This fails with arguments which are not a valid PARI variable name:

```
sage: k = QuadraticField(-1)
sage: k.pari_polynomial('I')
Traceback (most recent call last):
... PariError: I already exists with incompatible valence
sage: k.pari_polynomial('i')
i^2 + 1
sage: k.pari_polynomial('theta')
Traceback (most recent call last):
... PariError: theta already exists with incompatible valence
```

**pari_rnfnorm_data** $(L, proof=True)$

Return the PARI pari:rnfnorminit data corresponding to the extension $L / self$.

**EXAMPLES:**

```
sage: x = polygen(QQ)
sage: K = NumberField(x^2 - 2, 'alpha')
sage: L = K.extension(x^2 + 5, 'gamma')
sage: ls = K.pari_rnfnorm_data(L) ; len(ls)
8
sage: K.<a> = NumberField(x^2 + x + 1)
sage: P.<X> = K[]
sage: L. = NumberField(X^3 + a)
sage: ls = K.pari_rnfnorm_data(L); len(ls)
8
```

**pari_zk()**

Integral basis of the PARI number field corresponding to this field.
This is the same as `pari_nf().getattr('zk')`, but much faster.

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: k.<a> = NumberField(x^3 - 17)
sage: k.pari_zk()
[1, 1/3*y^2 - 1/3*y + 1/3, y]
sage: k.pari_nf().getattr('zk')
[1, 1/3*y^2 - 1/3*y + 1/3, y]
```

### polynomial()

Return the defining polynomial of this number field.

This is exactly the same as `defining_polynomial()`.

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + (2/3)*x - 9/17, 'a').polynomial()
x^2 + 2/3*x - 9/17
```

### polynomial_ntl()

Return defining polynomial of this number field as a pair, an ntl polynomial and a denominator.

This is used mainly to implement some internal arithmetic.

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + (2/3)*x - 9/17, 'a').polynomial_ntl()
([-27 34 51], 51)
```

### polynomial_quotient_ring()

Return the polynomial quotient ring isomorphic to this number field.

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: K = NumberField(x^3 + 2*x - 5, alpha)
sage: K.polynomial_quotient_ring()
Univariate Quotient Polynomial Ring in alpha over Rational Field
with modulus x^3 + 2*x - 5
```

### polynomial_ring()

Return the polynomial ring that we view this number field as being a quotient of (by a principal ideal).

**EXAMPLES:** An example with an absolute field:

```python
sage: x = polygen(QQ, 'x')
sage: k.<a> = NumberField(x^2 + 3)
sage: y = polygen(QQ, 'y')
sage: k.<a> = NumberField(y^2 + 3)
sage: k.polynomial_ring()
Univariate Polynomial Ring in y over Rational Field
```

An example with a relative field:
sage: y = polygen(QQ, 'y')
sage: M.<a> = NumberField([y^3 + 97, y^2 + 1]); M
Number Field in a0 with defining polynomial y^3 + 97 over its base field
sage: M.polynomial_ring()
Univariate Polynomial Ring in y over
Number Field in a1 with defining polynomial y^2 + 1

power_basis()

Return a power basis for this number field over its base field.

If this number field is represented as $k[t]/f(t)$, then the basis returned is $1, t, t^2, \ldots, t^{d-1}$ where $d$ is the degree of this number field over its base field.

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^5 + 10*x + 1)
sage: K.power_basis()
[1, a, a^2, a^3, a^4]
sage: L.<b> = K.extension(x^2 - 2)
sage: L.power_basis()
[1, b]
sage: L.absolute_field('c').power_basis()
[1, c, c^2, c^3, c^4, c^5, c^6, c^7, c^8, c^9]

prime_above(x, degree=None)

Return a prime ideal of self lying over $x$.

INPUT:

- $x$ – usually an element or ideal of self. It should be such that self.ideal(x) is sensible. This excludes $x = 0$.
- degree – (default: None) None or an integer. If one, find a prime above $x$ of any degree. If an integer, find a prime above $x$ such that the resulting residue field has exactly this degree.

OUTPUT: A prime ideal of self lying over $x$. If degree is specified and no such ideal exists, raises a ValueError.

EXAMPLES:

sage: x = ZZ['x'].gen()
sage: F.<t> = NumberField(x^3 - 2)
sage: P2 = F.prime_above(2)
sage: P2
# random
Fractional ideal (-t)
sage: 2 in P2
True
sage: P2.is_prime()
True
sage: P2.norm()
2
The ideal (3) is totally ramified in \( F \), so there is no degree 2 prime above 3:

```
sage: F.prime_above(3, degree=2)
Traceback (most recent call last):
 ... ValueError: No prime of degree 2 above Fractional ideal (3)
sage: [id.residue_class_degree() for id, _ in F.ideal(3).factor()]
[1]
```

Asking for a specific degree works:

```
sage: P5_1 = F.prime_above(5, degree=1)
sage: P5_1
Fractional ideal (-t^2 - 1)
sage: P5_1.residue_class_degree()
1
```

```
sage: P5_2 = F.prime_above(5, degree=2)
sage: P5_2
Fractional ideal (t^2 - 2*t - 1)
sage: P5_2.residue_class_degree()
2
```

Relative number fields are ok:

```
sage: G = F.extension(x^2 - 11, 'b')
sage: G.prime_above(7)
Fractional ideal (b + 2)
```

It doesn’t make sense to factor the ideal (0):

```
sage: F.prime_above(0)
Traceback (most recent call last):
 ... AttributeError: 'NumberFieldIdeal' object has no attribute 'prime_factors'
```

**prime_factors**

Return a list of the prime ideals of self which divide the ideal generated by \( x \).

**OUTPUT:** list of prime ideals (a new list is returned each time this function is called)

**EXAMPLES:**

```
sage: x = polygen(QQ, 'x')
sage: K.<w> = NumberField(x^2 + 23)
sage: K.prime_factors(w + 1)
[Fractional ideal (2, 1/2*w - 1/2),
(continues on next page)
Fractional ideal ($2, 1/2*w + 1/2$),
Fractional ideal ($3, 1/2*w + 1/2$)]

primes_above ($x, degree=None$)

Return prime ideals of self lying over x.

INPUT:

- x – usually an element or ideal of self. It should be such that self.ideal(x) is sensible. This excludes $x = 0$.
- degree – (default: None) None or an integer. If None, find all primes above x of any degree. If an integer, find all primes above x such that the resulting residue field has exactly this degree.

OUTPUT: A list of prime ideals of self lying over x. If degree is specified and no such ideal exists, returns the empty list. The output is sorted by residue degree first, then by underlying prime (or equivalently, by norm).

EXAMPLES:

```python
sage: x = ZZ['x'].gen()
sage: F.<t> = NumberField(x^3 - 2)
sage: P2s = F.primes_above(2)
sage: P2s  # random
[Fractional ideal (-t)]
sage: all(2 in P2 for P2 in P2s)
True
sage: all(P2.is_prime() for P2 in P2s)
True
sage: [ P2.norm() for P2 in P2s ]
[2]
```

```python
sage: P3s = F.primes_above(3)
sage: P3s  # random
[Fractional ideal (t + 1)]
sage: all(3 in P3 for P3 in P3s)
True
sage: all(P3.is_prime() for P3 in P3s)
True
sage: [ P3.norm() for P3 in P3s ]
[3]
```

The ideal (3) is totally ramified in F, so there is no degree 2 prime above 3:

```python
sage: F.primes_above(3, degree=2)
[]
sage: [ id.residue_class_degree() for id, _ in F.ideal(3).factor() ]
[1]
```

Asking for a specific degree works:

```python
sage: P5_1s = F.primes_above(5, degree=1)
sage: P5_1s  # random
[Fractional ideal (-t^2 - 1)]
sage: P5_1 = P5_1s[0]; P5_1.residue_class_degree()
1
```

1.1. Number fields 75
Algebraic Numbers and Number Fields, Release 10.3

```sage
P5_2s = F.primes_above(5, degree=2)
P5_2s # random
[Fractional ideal (t^2 - 2*t - 1)]
P5_2 = P5_2s[0]; P5_2.residue_class_degree()
2
```

Works in relative extensions too:

```sage
PQ.<X> = QQ[]
F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
PF.<Y> = F[]
K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
I = F.ideal(a + 2*b)
P, Q = K.primes_above(I)
K.ideal(I) == P^4*Q
True
K.primes_above(I, degree=1) == [P]
True
K.primes_above(I, degree=4) == [Q]
True
```

It doesn’t make sense to factor the ideal (0), so this raises an error:

```sage
F.prime_above(0)
```

Traceback (most recent call last):
...
AttributeError: 'NumberFieldIdeal' object has no attribute 'prime_factors'

`primes_of_bounded_norm(B)`

Return a sorted list of all prime ideals with norm at most \(B \).

INPUT:

- \(B \) – a positive integer or real; upper bound on the norms of the primes generated.

OUTPUT:

A list of all prime ideals of this number field of norm at most \(B \), sorted by norm. Primes of the same norm are sorted using the comparison function for ideals, which is based on the Hermite Normal Form.

Note: See also `primes_of_bounded_norm_iter()` for an iterator version of this, but note that the iterator sorts the primes in order of underlying rational prime, not by norm.

EXAMPLES:

```sage
K.<i> = QuadraticField(-1)
K.primes_of_bounded_norm(10)
[Fractional ideal (i + 1), Fractional ideal (-i - 2),
 Fractional ideal (2*i + 1), Fractional ideal (3)]
K.primes_of_bounded_norm(1)
[]
x = polygen(QQ, 'x')
K.<a> = NumberField(x^3 - 2)
P = K.primes_of_bounded_norm(30)
P
```

(continues on next page)
Fractional ideal $(-a^2 - 1)$,
Fractional ideal $(a^2 + a - 1)$,
Fractional ideal $(2*a + 1)$,
Fractional ideal $(-2*a^2 - a - 1)$,
Fractional ideal $(a^2 - 2*a - 1)$,
Fractional ideal $(a + 3)$

\[
\text{sage: } [p \text{.norm()} \text{ for } p \text{ in } P] \\
[2, 3, 5, 11, 17, 23, 25, 29]
\]

primes_of_bounded_norm_iter (B)

Iterator yielding all prime ideals with norm at most B.

INPUT:
- B – a positive integer or real; upper bound on the norms of the primes generated.

OUTPUT:
An iterator over all prime ideals of this number field of norm at most B.

Note: The output is not sorted by norm, but by size of the underlying rational prime.

EXAMPLES:

```
\text{sage: } K.<i> = QuadraticField(-1) \\
\text{sage: } it = K.primes_of_bounded_norm_iter(10) \\
\text{sage: } \text{list(it)} \\
\text{[Fractional ideal } (i + 1), \\
\text{Fractional ideal } (3), \\
\text{Fractional ideal } (-i - 2), \\
\text{Fractional ideal } (2*i + 1)] \\
\text{sage: } \text{list(K.primes_of_bounded_norm_iter(1))} \\
\text{[]} \\
```

primes_of_degree_one_iter $(num_integer_primes=10000, max_iterations=100)$

Return an iterator yielding prime ideals of absolute degree one and small norm.

Warning: It is possible that there are no primes of K of absolute degree one of small prime norm, and it possible that this algorithm will not find any primes of small norm.

See module `sage.rings.number_field.small_primes_of_degree_one` for details.

INPUT:
- $num_integer_primes$ – (default: 10000) an integer. We try to find primes of absolute norm no greater than the $num_integer_primes$-th prime number. For example, if $num_integer_primes$ is 2, the largest norm found will be 3, since the second prime is 3.
- $max_iterations$ – (default: 100) an integer. We test $max_iterations$ integers to find small primes before raising `StopIteration`.

EXAMPLES:

```
\text{sage: } K.<z> = CyclotomicField(10) \\
\text{sage: } it = K.primes_of_degree_one_iter() \\
```
\textbf{primes_of_degree_one_list} \((n, \text{num}_\text{integer}_\text{primes}=10000, \text{max}_\text{iterations}=100)\)

Return a list of \(n\) prime ideals of absolute degree one and small norm.

\textbf{Warning:} It is possible that there are no primes of \(K\) of absolute degree one of small prime norm, and it is possible that this algorithm will not find any primes of small norm.

See module \texttt{sage.rings.number_field.small_primes_of_degree_one} for details.

\textbf{INPUT:}

- \texttt{num_integer_primes} – (default: 10000) an integer. We try to find primes of absolute norm no greater than the \(\text{num}_\text{integer}_\text{primes}\)-th prime number. For example, if \(\text{num}_\text{integer}_\text{primes}\) is 2, the largest norm found will be 3, since the second prime is 3.

- \texttt{max_iterations} – (default: 100) an integer. We test \(\text{max}_\text{iterations}\) integers to find small primes before raising \texttt{StopIteration}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K.<z> = CyclotomicField(10)
sage: Ps = K.primes_of_degree_one_list(3)
sage: Ps # random output
[Fractional ideal (-z^3 - z^2 + 1),
 Fractional ideal (2*z^3 - 2*z^2 + 2*z - 3),
 Fractional ideal (2*z^3 - 3*z^2 + z - 2)]
sage: [P.norm() for P in Ps] # random
[11, 31, 41]
sage: [P.residue_class_degree() for P in Ps]
[1, 1, 1]
\end{verbatim}

\textbf{primitive_element}()

Return a primitive element for this field, i.e., an element that generates it over \(\mathbb{Q}\).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + 2)
sage: K.primitive_element()
a
sage: K.<a,b,c> = NumberField([...])
sage: K.primitive_element()
a - b + c
sage: alpha = K.primitive_element(); alpha
a - b + c
sage: alpha.minpoly()
x^2 + (2*b - 2*c)*x - 2*c*b + 6
\end{verbatim}
primitive_root_of_unity()

Return a generator of the roots of unity in this field.

OUTPUT: a primitive root of unity. No guarantee is made about which primitive root of unity this returns, not even for cyclotomic fields. Repeated calls of this function may return a different value.

Note: We do not create the full unit group since that can be expensive, but we do use it if it is already known.

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: z = K.primitive_root_of_unity(); z
i
sage: z.multiplicative_order()
4
sage: K.<a> = NumberField(x^2 + x + 1)
sage: z = K.primitive_root_of_unity(); z
a + 1
sage: z.multiplicative_order()
6
sage: x = polygen(QQ)
sage: F.<a,b> = NumberField([x^2 - 2, x^2 - 3])
sage: y = polygen(F)
sage: K.<c> = F.extension(y^2 - (1 + a)*(a + b)*a*b)
sage: K.primitive_root_of_unity()
-1
```

We do not special-case cyclotomic fields, so we do not always get the most obvious primitive root of unity:

```python
sage: K.<a> = CyclotomicField(3)
sage: z = K.primitive_root_of_unity(); z
a + 1
sage: z.multiplicative_order()
6
sage: K = CyclotomicField(3)
sage: z = K.primitive_root_of_unity(); z
zeta3 + 1
sage: z.multiplicative_order()
6
```

quadratic_defect (a, p, check=True)

Return the valuation of the quadratic defect of \(a \) at \(p \).

INPUT:

- \(a \) – an element of self
- \(p \) – a prime ideal
- \(\text{check} \) – (default: True); check if \(p \) is prime
ALGORITHM:

This is an implementation of Algorithm 3.1.3 from [Kir2016]

EXAMPLES:

```sage
x = polygen(QQ, 'x')
K.<a> = NumberField(x^2 + 2)
p = K.primes_above(2)[0]
K.quadratic_defect(5, p)
4
K.quadratic_defect(0, p)
+Infinity
K.quadratic_defect(a, p)
1
K.<a> = CyclotomicField(5)
p = K.primes_above(2)[0]
K.quadratic_defect(5, p)
+Infinity
```

`random_element(num_bound=None, den_bound=None, integral_coefficients=False, distribution=None)`

Return a random element of this number field.

INPUT:

- `num_bound` – Bound on numerator of the coefficients of the resulting element
- `den_bound` – Bound on denominators of the coefficients of the resulting element
- `integral_coefficients` – (default: False) If True, then the resulting element will have integral coefficients. This option overrides any value of `den_bound`.
- `distribution` – Distribution to use for the coefficients of the resulting element

OUTPUT: Element of this number field

EXAMPLES:

```sage
x = polygen(ZZ, 'x')
K.<j> = NumberField(x^8 + 1)
K.random_element().parent() is K
True
while K.random_element().list()[0] != 0:
    ....:  pass
while K.random_element().list()[0] == 0:
    ....:  pass
while K.random_element().is_prime():
    ....:  pass
while not K.random_element().is_prime():
    ....:  pass
K.<a,b,c> = NumberField([x^2 - 2, x^2 - 3, x^2 - 5])
K.random_element().parent() is K
True
while K.random_element().is_prime():
    ....:  pass
while not K.random_element().is_prime():  # long time
    ....:  pass
```

(continues on next page)
sage: K.<a> = NumberField(x^5 - 2)
sage: p = K.random_element(integral_coefficients=True)
sage: p.is_integral()
True
sage: while K.random_element().is_integral():
 : pass

real_embeddings (prec=53)

Return all homomorphisms of this number field into the approximate real field with precision prec.

If prec is 53 (the default), then the real double field is used; otherwise the arbitrary precision (but slow) real field is used. If you want embeddings into the 53-bit double precision, which is faster, use self.embeddings(RDF).

Note: This function uses finite precision real numbers. In functions that should output proven results, one could use self.embeddings(AA) instead.

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 + 2)
sage: K.real_embeddings()
[Ring morphism:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Real Field with 53 bits of precision
 Defn: a |--> -1.25992104989487]
sage: K.real_embeddings(16)
[Ring morphism:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Real Field with 16 bits of precision
 Defn: a |--> -1.260]
sage: K.real_embeddings(100)
[Ring morphism:
 From: Number Field in a with defining polynomial x^3 + 2
 To: Real Field with 100 bits of precision
 Defn: a |--> -1.2599210498948731647672106073]

As this is a numerical function, the number of embeddings may be incorrect if the precision is too low:

sage: K = NumberField(x^2 + 2*10^1000*x + 10^2000 + 1, 'a')
sage: len(K.real_embeddings())
2
sage: len(K.real_embeddings(100))
2
sage: len(K.real_embeddings(10000))
0
sage: len(K.embeddings(AA))
0

1.1. Number fields
reduced_basis *(prec=None)*

Return an LLL-reduced basis for the Minkowski-embedding of the maximal order of a number field.

INPUT:

- **prec** (default: None) - the precision with which to compute the Minkowski embedding.

OUTPUT:

An LLL-reduced basis for the Minkowski-embedding of the maximal order of a number field, given by a sequence of (integral) elements from the field.

Note: In the non-totally-real case, the LLL routine we call is currently PARI's `pari:qflll`, which works with floating point approximations, and so the result is only as good as the precision promised by PARI. The matrix returned will always be integral; however, it may only be only “almost” LLL-reduced when the precision is not sufficiently high.

EXAMPLES:

```sage
tax = polygen(QQ, 'x')
F.<t> = NumberField(x^6 - 7*x^4 - x^3 + 11*x^2 + x - 1)
F.maximal_order().basis()
[1/2*t^5 + 1/2*t^4 + 1/2*t^2 + 1/2, t, t^2, t^3, t^4, t^5]
F.reduced_basis()
[-1, -1/2*t^5 + 1/2*t^4 + 3*t^3 - 3/2*t^2 - 4*t - 1/2, t,
  1/2*t^5 + 1/2*t^4 - 4*t^3 - 5/2*t^2 + 7*t + 1/2,
  1/2*t^5 - 1/2*t^4 - 2*t^3 + 3/2*t^2 - 1/2,
  1/2*t^5 - 1/2*t^4 - 3*t^3 + 5/2*t^2 + 4*t - 5/2]
CyclotomicField(12).reduced_basis()
[1, zeta12^2, zeta12, zeta12^3]
```

reduced_gram_matrix *(prec=None)*

Return the Gram matrix of an LLL-reduced basis for the Minkowski embedding of the maximal order of a number field.

INPUT:

- **prec** (default: None) - the precision with which to calculate the Minkowski embedding. (See NOTE below.)

OUTPUT: The Gram matrix \([xy]\) of an LLL reduced basis for the maximal order of self, where the integral basis for self is given by \([x_0,\ldots,x_{n-1}]\). Here \((,\)) is the usual inner product on \(\mathbb{R}^n\), and self is embedded in \(\mathbb{R}^n\) by the Minkowski embedding. See the docstring for `NumberField_absolute.minkowski_embedding()` for more information.

Note: In the non-totally-real case, the LLL routine we call is currently PARI's `pari:qflll`, which works with floating point approximations, and so the result is only as good as the precision promised by PARI. In particular, in this case, the returned matrix will not be integral, and may not have enough precision to recover the correct Gram matrix (which is known to be integral for theoretical reasons). Thus the need for the `prec` parameter above.

If the following run-time error occurs: “PariError: not a definite matrix in lllgram (42)”, try increasing the `prec` parameter.

EXAMPLES:

```sage```
```
sage: x = polygen(QQ, 'x')
sage: F.<t> = NumberField(x^6 - 7*x^4 - x^3 + 11*x^2 + x - 1)
sage: F.reduced_gram_matrix()
[6 3 0 2 0 1]
[3 9 0 1 0 -2]
[0 0 14 6 -2 3]
[2 1 6 16 -3 3]
[0 0 -2 16 6]
[1 -2 3 3 6 19]
sage: Matrix(6, [(x*y).trace()
.....: for x in F.integral_basis() for y in F.integral_basis()])
[2550 133 259 664 1368 3421]
[133 14 3 54 30 233]
[259 3 54 30 233 217]
[664 54 30 233 217 1078]
[1368 30 233 217 1078 1371]
[3421 233 217 1078 1371 5224]
sage: x = polygen(QQ)
sage: F.<alpha> = NumberField(x^4 + x^2 + 712312*x + 131001238)
sage: F.reduced_gram_matrix(prec=128)
[4.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000]
[0.0000000000000000000000000000000000000 46721.53933156321838165848353092335550 -11488.
[0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 46721.
[0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 46721.
[0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 46721.
[0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 46721.
[0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 46721.
[0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 0.0000000000000000000000000000000000000 46721.
```

**regulator** *(proof=None)*

Return the regulator of this number field.

Note that PARI computes the regulator to higher precision than the Sage default.

**INPUT:**

- proof – default: True, unless you set it otherwise.

**EXAMPLES:**

```
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 - 2, 'a').regulator()
0.881373587019543
sage: NumberField(x^4 + x^3 + x^2 + x + 1, 'a').regulator()
0.962423650119207
```

**residue_field** *(prime, names=None, check=True)*

Return the residue field of this number field at a given prime, ie \(O_K/pO_K\).

**INPUT:**

1.1. Number fields

83
• **prime** – a prime ideal of the maximal order in this number field, or an element of the field which generates a principal prime ideal.

• **names** – the name of the variable in the residue field

• **check** – whether or not to check the primality of `prime`.

**OUTPUT:** The residue field at this prime.

**EXAMPLES:**

```sage
define R.<x> = QQ[]
K.<a> = NumberField(x^4 + 3*x^2 - 17)
P = K.ideal(61).factor()[0][0]
K.residue_field(P)
Residue field in abar of Fractional ideal (61, a^2 + 30)
sage: K.<i> = NumberField(x^2 + 1)
K.residue_field(1+i)
Residue field of Fractional ideal (i + 1)
```

**roots_of_unity()**

Return all the roots of unity in this field, primitive or not.

**EXAMPLES:**

```sage
x = polygen(QQ, 'x')
K. = NumberField(x^2 + 1)
zs = K.roots_of_unity(); zs
[Mod(-1, b), Mod(1, b)]
```

**selmer_generators** *(S, m, proof=True, orders=False)*

Compute generators of the group \( K(S, m) \).

**INPUT:**

- **S** – a set of primes of `self`

- **m** – a positive integer

- **proof** – if `False`, assume the GRH in computing the class group

- **orders** – (default: `False`) if `True`, output two lists, the generators and their orders

**OUTPUT:**

A list of generators of \( K(S, m) \), and (optionally) their orders as elements of \( K^x/(K^x)^m \). This is the subgroup of \( K^x/(K^x)^m \) consisting of elements \( a \) such that the valuation of \( a \) is divisible by \( m \) at all primes not in \( S \). It fits in an exact sequence between the units modulo \( m \)-th powers and the \( m \)-torsion in the \( S \)-class group:

\[
1 \to O_{K,S}^x/(O_{K,S}^x)^m \to K(S, m) \to \text{Cl}_{K,S}[m] \to 0.
\]

The group \( K(S, m) \) contains the subgroup of those \( a \) such that \( K(\sqrt[m]{a})/K \) is unramified at all primes of \( K \) outside of \( S \), but may contain it properly when not all primes dividing \( m \) are in \( S \).

**See also:**

`NumberField_generic.selmer_space()`, which gives additional output when \( m = p \) is prime: as well as generators, it gives an abstract vector space over \( \mathbb{F}_p \) isomorphic to \( K(S, p) \) and maps implementing the isomorphism between this space and \( K(S, p) \) as a subgroup of \( K^x/(K^x)^p \).
### Examples:

```python
sage: K.<a> = QuadraticField(-5)
sage: K.selmer_generators([], 2)
[-1, 2]
```

The previous example shows that the group generated by the output may be strictly larger than the group of elements giving extensions unramified outside $S$, since that has order just 2, generated by $-1$:

```python
sage: K.class_number()
2
sage: K.hilbert_class_field('b')
Number Field in b with defining polynomial x^2 + 1 over its base field
```

When $m$ is prime all the orders are equal to $m$, but in general they are only divisors of $m$:

```python
sage: K.<a> = QuadraticField(-5)
sage: P2 = K.ideal(2, -a + 1)
sage: P3 = K.ideal(3, a + 1)
sage: K.selmer_generators([], 2, orders=True)
([-1, 2], [2, 2])
sage: K.selmer_generators([], 4, orders=True)
([-1, 4], [2, 2])
sage: K.selmer_generators([P2], 2)
[2, -1]
sage: K.selmer_generators([P2, P3], 4)
[2, -a - 1, -1]
sage: K.selmer_generators([P2, P3], 4, orders=True)
([2, -a - 1, -1], [4, 4, 2])
sage: K.selmer_generators([P2], 3)
[2]
sage: K.selmer_generators([P2, P3], 3)
[2, -a - 1]
sage: K.selmer_generators([P2, P3, K.ideal(a)], 3) # random signs
[2, a + 1, a]
```

Example over $\mathbb{Q}$ (as a number field):

```python
sage: K.<a> = NumberField(polygen(QQ))
sage: K.selmer_generators([], 5)
[]
sage: K.selmer_generators([K.prime_above(p) for p in [2, 3, 5]], 2)
[2, 3, 5, -1]
sage: K.selmer_generators([K.prime_above(p) for p in [2, 3, 5]], 6, orders=True)
([2, 3, 5, -1], [6, 6, 6, 2])
```

### `selmer_group_iterator` ($S, m, proof=True$)

Return an iterator through elements of the finite group $K(S, m)$.

**INPUT:**

- $S$ – a set of primes of self
- $m$ – a positive integer
- $proof$ – if False, assume the GRH in computing the class group

**OUTPUT:**

An iterator yielding the distinct elements of $K(S, m)$. See the docstring for `NumberField_generic.selmer_generators()` for more information.
EXAMPLES:

```python
sage: K.<a> = QuadraticField(-5)
sage: list(K.selmer_group_iterator(), 2)
[1, 2, -1, -2]
sage: list(K.selmer_group_iterator(), 4)
[1, 4, -1, -4]
sage: list(K.selmer_group_iterator([K.ideal(2, -a + 1)], 2))
[1, -1, 2, -2]
sage: list(K.selmer_group_iterator([K.ideal(2, -a + 1), K.ideal(3, a + 1)],
 → 2))
[1, -1, -a - 1, a + 1, 2, -2, -2*a - 2, 2*a + 2]
```

Examples over \( \mathbb{Q} \) (as a number field):

```python
sage: K.<a> = NumberField(polygen(QQ))
sage: list(K.selmer_group_iterator(), 5)
[1]
sage: list(K.selmer_group_iterator([], 4))
[1, -1]
sage: list(K.selmer_group_iterator([K.prime_above(p) for p in [11,13]],2))
[1, -1, 13, -13, 11, -11, 143, -143]
```

**selmer_space** \((S, p, proof=None)\)

Compute the group \( K(S, p) \) as a vector space with maps to and from \( K^* \).

**INPUT:**

- \( S \) – a set of primes ideals of self
- \( p \) – a prime number
- \( proof \) – if False, assume the GRH in computing the class group

**OUTPUT:**

(tuple) \( KSp, KSp\_gens, from\_KSp, to\_KSp \) where

- \( KSp \) is an abstract vector space over \( GF(p) \) isomorphic to \( K(S, p) \);
- \( KSp\_gens \) is a list of elements of \( K^* \) generating \( K(S, p) \);
- \( from\_KSp \) is a function from \( KSp \) to \( K^* \) implementing the isomorphism from the abstract \( K(S, p) \) to \( K^*/(K^*)^p \);
- \( to\_KSp \) is a partial function from \( K^* \) to \( KSp \), defined on elements \( a \) whose image in \( K^*/(K^*)^p \) lies in \( K(S, p) \), mapping them via the inverse isomorphism to the abstract vector space \( KSp \).

The group \( K(S, p) \) is the finite subgroup of \( K^*/(K^*)^p \) consisting of elements whose valuation at all primes not in \( S \) is a multiple of \( p \). It contains the subgroup of those \( a \in K^* \) such that \( K(\sqrt[p]{a})/K \) is unramified at all primes of \( K \) outside of \( S \), but may contain it properly when not all primes dividing \( p \) are in \( S \).

**EXAMPLES:**

A real quadratic field with class number 2, where the fundamental unit is a generator, and the class group provides another generator when \( p = 2 \):

```python
sage: K.<a> = QuadraticField(-5)
sage: K.class_number()
2
sage: P2 = K.ideal(2, -a + 1)
sage: P3 = K.ideal(3, a + 1)
```
Each generator must have even valuation at primes not in $S$:

```python
sage: [K.ideal(g).factor() for g in gens]
[(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1)),
 Fractional ideal (a),
 (Fractional ideal (2, a + 1))^2,
 1]
```

An example to show that the group $K(S, 2)$ may be strictly larger than the group of elements giving extensions unramified outside $S$. In this case, with $K$ of class number 2 and $S$ empty, there is only one quadratic extension of $K$ unramified outside $S$, the Hilbert Class Field $K(\sqrt{-1})$:

```python
sage: K.<a> = QuadraticField(-5)
sage: KS2, gens, fromKS2, toKS2 = K.selmer_space([], 2)
sage: gens
[2, -1]
sage: x = polygen(ZZ, 'x')
sage: for v in KS2:
 if not v:
 continue
 a = fromKS2(v)
 print((a, K.extension(x^2 - a, 'roota').relative_discriminant().factor()))
(2, (Fractional ideal (2, a + 1))^4)
(1, -1)
(4, (Fractional ideal (2, a + 1))^4)
sage: K.hilbert_class_field('b')
Number Field in b with defining polynomial x^2 + 1 over its base field
```

**signature()**

Return $(r_1, r_2)$, where $r_1$ and $r_2$ are the number of real embeddings and pairs of complex embeddings of this field, respectively.

**EXAMPLES:**
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 + 1, 'a').signature()
(0, 1)
sage: NumberField(x^3 - 2, 'a').signature()
(1, 1)

**solve_CRT**(reslist, IList, check=True)
Solve a Chinese remainder problem over this number field.

**INPUT:**
- reslist – a list of residues, i.e. integral number field elements
- IList – a list of integral ideals, assumed pairwise coprime
- check – (boolean, default True) if True, result is checked

**OUTPUT:**
An integral element \( x \) such that \( x - \text{reslist}[i] \) is in \( \text{IList}[i] \) for all \( i \).

**Note:** The current implementation requires the ideals to be pairwise coprime. A more general version would be possible.

**EXAMPLES:**

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^2 - 10)
sage: Ilist = [K.primes_above(p)[0] for p in prime_range(10)]
sage: b = K.solve_CRT([1,2,3,4], Ilist, True)
sage: all(b - i - 1 in IList[i] for i in range(4))
True
```

```python
sage: Ilist = [K.ideal(a), K.ideal(2)]
sage: K.solve_CRT([0,1], Ilist, True)
```

```
ArithmeticError: ideals in solve_CRT() must be pairwise coprime
```

```python
sage: Ilist[0] + Ilist[1]
```

```
Fractional ideal (2, a)
```

**some_elements**()
Return a list of elements in the given number field.

**EXAMPLES:**

```python
sage: R.<t> = QQ[]
sage: K.<a> = QQ.extension(t^2 - 2); K
Number Field in a with defining polynomial t^2 - 2
sage: K.some_elements()
[1, a, 2*a, 3*a - 4, 1/2, 1/3*a, 1/6*a, 0, 1/2*a, 2, ..., 12, -12*a + 18]
```

```python
sage: T.<u> = K[]
sage: M. = K.extension(t^3 - 5); M
Number Field in b with defining polynomial t^3 - 5 over its base field
sage: M.some_elements()
[1, b, 1/2*a*b, ..., 2/5*b^2 + 2/5, 1/6*b^2 + 5/6*b + 13/6, 2]
```
specified_complex_embedding()

Return the embedding of this field into the complex numbers which has been specified.

Fields created with the QuadraticField() or CyclotomicField() constructors come with an implicit embedding. To get one of these fields without the embedding, use the generic NumberField constructor.

EXAMPLES:

```
sage: QuadraticField(-1, 'I').specified_complex_embedding()
Generic morphism:
 From: Number Field in I with defining polynomial x^2 + 1 with I = 1*I
 To: Complex Lazy Field
 Defn: I -> 1*I

sage: QuadraticField(3, 'a').specified_complex_embedding()
Generic morphism:
 From: Number Field in a with defining polynomial x^2 - 3
 with a = 1.732050807568878?
 To: Real Lazy Field
 Defn: a -> 1.732050807568878?

sage: CyclotomicField(13).specified_complex_embedding()
Generic morphism:
 From: Cyclotomic Field of order 13 and degree 12
 To: Complex Lazy Field
 Defn: zeta13 -> 0.885456025653210? + 0.464723172043769*I
```

Most fields don’t implicitly have embeddings unless explicitly specified:

```
sage: x = polygen(QQ, 'x')
sage: NumberField(x^2 - 2, 'a').specified_complex_embedding() is None
True
sage: NumberField(x^3 - x + 5, 'a').specified_complex_embedding() is None
True
sage: NumberField(x^3 - x + 5, 'a', embedding=2).specified_complex_embedding()
Generic morphism:
 From: Number Field in a with defining polynomial x^3 - x + 5
 with a = -1.904160859134921?
 To: Real Lazy Field
 Defn: a -> -1.904160859134921?

sage: NumberField(x^3 - x + 5, 'a', embedding=CDF.0).specified_complex_embedding()
Generic morphism:
 From: Number Field in a with defining polynomial x^3 - x + 5
 with a = 0.952080429567461? + 1.311248044077123?*I
 To: Complex Lazy Field
 Defn: a -> 0.952080429567461? + 1.311248044077123?*I
```

This function only returns complex embeddings:

```
sage: # needs sage.rings.padics
sage: K.<a> = NumberField(x^2 - 2, embedding=Qp(7)(2).sqrt())
sage: K.specified_complex_embedding() is None
True
sage: K.gen_embedding()
3 + 7 + 2*7^2 + 6*7^3 + 7^4 + 2*7^5 + 7^6 + 2*7^7 + 4*7^8 + 6*7^9 + 6*7^10
```

(continues on next page)
sage: K.coerce_embedding()
Generic morphism:
  From: Number Field in a with defining polynomial x^2 - 2
    with a = 3 + 7 + 2*7^2 + 6*7^3 + 7^4 + 2*7^5 + 7^6 + 2*7^7 + 4*7^8
    + 6*7^9 + 6*7^10 + 2*7^11 + 7^12 + 7^13 + 2*7^15 + 7^16
    + 7^17 + 4*7^18 + 6*7^19 + O(7^20)
  To: 7-adic Field with capped relative precision 20
  Defn: a -> 3 + 7 + 2*7^2 + 6*7^3 + 7^4 + 2*7^5 + 7^6 + 2*7^7 + 4*7^8
    + 6*7^9 + 6*7^10 + 2*7^11 + 7^12 + 7^13 + 2*7^15 + 7^16
    + 7^17 + 4*7^18 + 6*7^19 + O(7^20)

\textbf{structure()}

Return fixed isomorphism or embedding structure on self.
This is used to record various isomorphisms or embeddings that arise naturally in other constructions.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 3)
sage: L.<a> = K.absolute_field(); L
Number Field in a with defining polynomial x^2 + 3
sage: L.structure()
(Isomorphism given by variable name change map:
  From: Number Field in a with defining polynomial x^2 + 3
  To: Number Field in z with defining polynomial x^2 + 3,
Isomorphism given by variable name change map:
  From: Number Field in z with defining polynomial x^2 + 3
  To: Number Field in a with defining polynomial x^2 + 3)
sage: K.<a> = QuadraticField(-3)
sage: R.<y> = K[]
sage: D.<x0> = K.extension(y)
sage: D_abs.<y0> = D.absolute_field()
sage: D_abs.structure()[0](y0)
-a
\end{verbatim}

\textbf{subfield}(alpha, name=None, names=None)

Return a number field $K$ isomorphic to $\mathbb{Q}(\alpha)$ (if this is an absolute number field) or $L(\alpha)$ (if this is a relative extension $M/L$) and a map from $K$ to self that sends the generator of $K$ to alpha.

\textbf{INPUT:}

• alpha – an element of self, or something that coerces to an element of self.

\textbf{OUTPUT:}

• $K$ – a number field

• from $K$ – a homomorphism from $K$ to self that sends the generator of $K$ to alpha.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^4 - 3); K
Number Field in a with defining polynomial x^4 - 3
sage: H.<b>, from_H = K.subfield(a^2)
sage: H
\end{verbatim}
Number Field in b with defining polynomial x^2 - 3 with b = a^2
\[a^2\]
\[sage: \text{from}_H(b)\]
Ring morphism:
\[\text{From: Number Field in b with defining polynomial x^2 - 3 with b = a^2} \]
\[\text{To: Number Field in a with defining polynomial x^4 - 3} \]
\[\text{Defn: b |--> a^2}\]

A relative example. Note that the result returned is the subfield generated by \(\alpha\) over \(\text{self.base_field()}\), not over \(\mathbb{Q}\) (see github issue #5392):

\[\text{sage: } \text{L.<a> = NumberField(x^2 - 3)}\]
\[\text{sage: } \text{M.<b> = L.extension(x^4 + 1)}\]
\[\text{sage: } \text{K, phi = M.subfield(b^2)}\]
\[\text{sage: } \text{K.base_field()} \text{ is L}\]
\[\text{True}\]

Subfields inherit embeddings:

\[\text{sage: } \text{K.<z> = CyclotomicField(5)}\]
\[\text{sage: } \text{L, K_from_L = K.subfield(z - z^2 - z^3 + z^4)}\]
\[\text{sage: } \text{L}\]
\[\text{Number Field in z0 with defining polynomial x^2 - 5 with z0 = 2.}\]
\[\rightarrow 23606797749979790?\]
\[\text{sage: } \text{CLF_from_K = K.coerce_embedding(); CLF_from_K}\]
\[\text{Generic morphism:}\]
\[\text{From: Cyclotomic Field of order 5 and degree 4}\]
\[\text{To: Complex Lazy Field}\]
\[\text{Defn: z -> 0.309016994374948? + 0.951056516295154?*I}\]
\[\text{sage: } \text{CLF_from_L = L.coerce_embedding(); CLF_from_L}\]
\[\text{Generic morphism:}\]
\[\text{From: Number Field in z0 with defining polynomial x^2 - 5}\]
\[\text{with z0 = 2.23606797749979790?}\]
\[\text{To: Complex Lazy Field}\]
\[\text{Defn: z0 -> 2.23606797749979790?}\]

Check transitivity:

\[\text{sage: } \text{CLF_from_L(L.gen())}\]
\[2.23606797749979790?\]
\[\text{sage: } \text{CLF_from_K(K_from_L(L.gen())))}\]
\[2.23606797749979790? + 0.?e-14*I\]

If \(\text{self}\) has no specified embedding, then \(\text{K}\) comes with an embedding in \(\text{self}\):

\[\text{sage: } \text{K.<a> = NumberField(x^6 - 6*x^4 + 8*x^2 - 1)}\]
\[\text{sage: } \text{L.<b>, from_L = K.subfield(a^2)}\]
\[\text{sage: } \text{L}\]
\[\text{Number Field in b with defining polynomial x^3 - 6*x^2 + 8*x - 1 with b = a^2}\]
\[\text{sage: } \text{L.gen_embedding()}\]
\[a^2\]

You can also view a number field as having a different generator by just choosing the input to generate the whole field; for that it is better to use \textit{change_generator()}, which gives isomorphisms in both directions.
subfield_from_elements \((\alpha, \text{name}\text{=}None, \text{polred}\text{=}True, \text{threshold}\text{=}None)\)

Return the subfield generated by the elements \(\alpha\).

If the generated subfield by the elements \(\alpha\) is either the rational field or the complete number field, the field returned is respectively \(\mathbb{Q}\) or \(self\).

**INPUT:**

- \(\alpha\) – list of elements in this number field
- \(\text{name}\) – a name for the generator of the new number field
- \(\text{polred}\) – (boolean, default True); whether to optimize the generator of the newly created field
- \(\text{threshold}\) – (positive number, default None) threshold to be passed to the do\_polred function

**OUTPUT:** a triple \((\text{field}, \beta, \text{hom})\) where

- \(\text{field}\) – a subfield of this number field
- \(\beta\) – a list of elements of \(\text{field}\) corresponding to \(\alpha\)
- \(\text{hom}\) – inclusion homomorphism from \(\text{field}\) to \(self\)

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: poly = x^4 - 4*x^2 + 1
sage: emb = AA.polynomial_root(poly, RIF(0.51, 0.52))
sage: K.<a> = NumberField(poly, embedding=emb)
sage: sqrt2 = -a^3 + 3*a
sage: sqrt3 = -a^2 + 2
sage: assert sqrt2**2 == 2 and sqrt3**2 == 3
sage: L, elts, phi = K.subfield_from_elements([sqrt2, 1 - sqrt2/3])
sage: L
Number Field in a0 with defining polynomial x^2 - 2 with a0 = 1.414213562373095?
sage: elts
[a0, -1/3*a0 + 1]
sage: phi
Ring morphism:
 From: Number Field in a0 with defining polynomial x^2 - 2
 with a0 = 1.414213562373095?
 To: Number Field in a with defining polynomial x^4 - 4*x^2 + 1
 with a = 0.5176380902050415?
 Defn: a0 |--> -a^3 + 3*a
sage: assert phi(elts[0]) == sqrt2
sage: assert phi(elts[1]) == 1 - sqrt2/3

sage: L, elts, phi = K.subfield_from_elements([1, sqrt3])
sage: assert phi(elts[0]) == 1
sage: assert phi(elts[1]) == sqrt3

sage: L, elts, phi = K.subfield_from_elements([sqrt2, sqrt3])
sage: phi
Identity endomorphism of Number Field in a with defining polynomial
x^4 - 4*x^2 + 1 with a = 0.5176380902050415?
```

trace_dual_basis \((b)\)

Compute the dual basis of a basis of \(self\) with respect to the trace pairing.
EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 + x + 1)
sage: b = [1, 2*a, 3*a^2]
sage: T = K.trace_dual_basis(b); T
[4/31*a^2 - 6/31*a + 13/31, -9/62*a^2 - 1/31*a - 3/31, 2/31*a^2 - 3/31*a + 4/93]
sage: [(b[i]*T[j]).trace() for i in range(3) for j in range(3)]
[1, 0, 0, 0, 1, 0, 0, 0, 1]
```

`trace_pairing(v)`

Return the matrix of the trace pairing on the elements of the list `v`.

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<zeta3> = NumberField(x^2 + 3)
sage: K.trace_pairing([1, zeta3])
[2 0]
[0 -6]
```

`uniformizer(P, others='positive')`

Return an element of `self` with valuation 1 at the prime ideal `P`.

INPUT:

- `self` – a number field
- `P` – a prime ideal of `self`
- `others` – either "positive" (default), in which case the element will have non-negative valuation at all other primes of `self`, or "negative", in which case the element will have non-positive valuation at all other primes of `self`.

**Note:** When `P` is principal (e.g., always when `self` has class number one) the result may or may not be a generator of `P`!

EXAMPLES:

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^2 + 5); K
Number Field in a with defining polynomial x^2 + 5
sage: P, Q = K.ideal(3).prime_factors()
sage: P
Fractional ideal (3, a + 1)
sage: pi = K.uniformizer(P); pi
a + 1
sage: K.ideal(pi).factor()
(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1))
sage: pi = K.uniformizer(P,'negative'); pi
1/2*a + 1/2
sage: K.ideal(pi).factor()
(Fractional ideal (2, a + 1))^-1 * (Fractional ideal (3, a + 1))
```

```python
sage: K = CyclotomicField(9)
sage: Plist = K.ideal(17).prime_factors()
(continues on next page)
```
sage: pilist = [K.uniformizer(P) for P in Plist]
sage: [pi.is_integral() for pi in pilist]
[True, True, True]
sage: [pi.valuation(P) for pi, P in zip(pilist, Plist)]
[1, 1, 1]
sage: [pilist[i] in Plist[i] for i in range(len(Plist))]
[True, True, True]
sage: K.<t> = NumberField(x^4 - x^3 - 3*x^2 - x + 1)
sage: [K.uniformizer(P) for P,e in factor(K.ideal(2))]
[2]
sage: [K.uniformizer(P) for P,e in factor(K.ideal(3))]
[t - 1]
sage: [K.uniformizer(P) for P,e in factor(K.ideal(5))]
[t^2 - t + 1, t + 2, t - 2]
sage: [K.uniformizer(P) for P,e in factor(K.ideal(7))]
# representation varies, not tested
[t^2 + 3*t + 1]
sage: [K.uniformizer(P) for P,e in factor(K.ideal(67))]
[t + 23, t + 26, t - 32, t - 18]

ALGORITHM:

Use PARI. More precisely, use the second component of pari:idealprimedec in the “positive” case. Use pari:idealappr with exponent of $-1$ and invert the result in the “negative” case.

unit_group (proof=None)

Return the unit group (including torsion) of this number field.

ALGORITHM: Uses PARI's pari:bnfinit command.

INPUT:

• proof (bool, default True) flag passed to PARI.

Note: The group is cached.

See also:

units() S_unit_group() S_units()

EXAMPLES:

sage: x = QQ['x'].0
sage: A = x^4 - 10*x^3 + 20*5*x^2 - 15*5^2*x + 11*5^3
sage: K = NumberField(A, 'a')
sage: U = K.unit_group(); U
Unit group with structure C10 x Z of Number Field in a
with defining polynomial x^4 - 10*x^3 + 100*x^2 - 375*x + 1375
sage: U.gens()
(u0, u1)
sage: U.gens_values()  # random
[-1/275*a^3 + 7/55*a^2 - 6/11*a + 4, 1/275*a^3 + 4/55*a^2 - 5/11*a + 3]
sage: U.invariants()
(10, 0)
sage: [u.multiplicative_order() for u in U.gens()]
[10, +Infinity]
For big number fields, provably computing the unit group can take a very long time. In this case, one can ask for the conjectural unit group (correct if the Generalized Riemann Hypothesis is true):

```
sage: K = NumberField(x^17 + 3, 'a')
sage: K.unit_group(proof=True) # takes forever, not tested...
sage: U = K.unit_group(proof=False)
sage: U
```

Unit group with structure C2 x Z x Z x Z x Z x Z x Z x Z of Number Field in a with defining polynomial x^17 + 3

```
sage: U.gens()
(u0, u1, u2, u3, u4, u5, u6, u7, u8)
sage: U.gens_values()
result not independently verified
[-1,
 -a^9 - a + 1,
 -a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 - a^7 + 2*a^6 - a^4 + 3*a^3 -...
 -2*a^2 + 2*a - 1,
 2*a^16 - a^14 - a^12 - 2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4...
 -2*a^3 - 2*a^2 + 3*a + 4,
 a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a +...
 -1,
 -a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2,
 -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 - 4*a^7 +...
 -5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4,
 a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2...
 -2*a + 2,
 2*a^16 + a^15 - a^11 - 3*a^10 - 4*a^9 - 4*a^8 - 4*a^7 - 5*a^6 - 7*a^5 - 8*a^4 - 6*a^3 - 5*a^2 - 6*a - 7]
```

units (proof=None)

Return generators for the unit group modulo torsion.

ALGORITHM: Uses PARI's pari:bnfinit command.

INPUT:

• proof (bool, default True) flag passed to PARI.

Note: For more functionality see unit_group().

See also:

unit_group() S_unit_group() S_units()

EXAMPLES:

```
sage: x = polygen(QQ)
sage: A = x^4 - 10*x^3 + 20*5*x^2 - 15*5^2*x + 11*5^3
sage: K = NumberField(A, 'a')
sage: K.units()
(-1/275*a^3 - 4/55*a^2 + 5/11*a - 3,)
```

For big number fields, provably computing the unit group can take a very long time. In this case, one can ask for the conjectural unit group (correct if the Generalized Riemann Hypothesis is true):

```
sage: K = NumberField(x^17 + 3, 'a')
sage: K.units(proof=True) # takes forever, not tested
```

(continues on next page)
...  
sage: K.units(proof=False)  # result not independently verified
(-a^9 - a + 1,  
-a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 - a^7 + 2*a^6 - a^4 + 3*a^3 ->  
2*a^2 + 2*a - 1,  
2*a^16 - a^14 - 3*a^12 - 2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 ->  
- 2*a^3 - 2*a^2 + 3*a + 4,  
a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + ->  
1,  
-a^16 + a^15 - a^14 - a^13 - a^12 - a^11 + a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2,  
-2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 - 4*a^7 + ->  
-5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4,  
a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 ->  
2*a + 2,  
2*a^16 + a^15 - a^11 - 3*a^10 - 4*a^9 - 4*a^8 - 4*a^7 - 5*a^6 - 7*a^5 - 8*a^4 -> 4 - 6*a^3 - 5*a^2 - 6*a - 7)

valuation(prime)

Return the valuation on this field defined by prime.

INPUT:

- prime – a prime that does not split, a discrete (pseudo-)valuation or a fractional ideal

EXAMPLES:

The valuation can be specified with an integer prime that is completely ramified in $R$:

```python
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^2 + 1)
sage: K.valuation(2) # needs sage.rings.padics
2-adic valuation
```

It can also be unramified in $R$:

```python
sage: K.valuation(3) # needs sage.rings.padics
3-adic valuation
```

A prime that factors into pairwise distinct factors, results in an error:

```python
sage: K.valuation(5) # needs sage.rings.padics
Traceback (most recent call last):
...
ValueError: The valuation Gauss valuation induced by 5-adic valuation does not approximate a unique extension of 5-adic valuation with respect to $x^2 + 1$
```

The valuation can also be selected by giving a valuation on the base ring that extends uniquely:

```python
sage: CyclotomicField(5).valuation(ZZ.valuation(5)) # needs sage.rings.padics
5-adic valuation
```

When the extension is not unique, this does not work:
For a number field which is of the form $K[x]/(G)$, you can specify a valuation by providing a discrete pseudo-valuation on $K[x]$ which sends $G$ to infinity. This lets us specify which extension of the 5-adic valuation we care about in the above example:

\[
\text{sage: } \# \text{ needs sage.rings.padics} \\
\text{sage: } R.<x> = QQ[] \\
\text{sage: } G5 = \text{GaussValuation}(R, QQ\text{.valuation}(5)) \\
\text{sage: } v = K\text{.valuation}(G5\text{.augmentation}(x + 2, \infty)) \\
\text{sage: } w = K\text{.valuation}(G5\text{.augmentation}(x + 1/2, \infty)) \\
\text{sage: } v == w \\
\text{False}
\]

Note that you get the same valuation, even if you write down the pseudo-valuation differently:

\[
\text{sage: } \# \text{ needs sage.rings.padics} \\
\text{sage: } \text{ww} = K\text{.valuation}(G5\text{.augmentation}(x + 3, \infty)) \\
\text{sage: } w \text{ is ww} \\
\text{True}
\]

The valuation \text{prime} does not need to send the defining polynomial $G$ to infinity. It is sufficient if it singles out one of the valuations on the number field. This is important if the prime only factors over the completion, i.e., if it is not possible to write down one of the factors within the number field:

\[
\text{sage: } \# \text{ needs sage.rings.padics} \\
\text{sage: } v = G5\text{.augmentation}(x + 3, 1) \\
\text{sage: } K\text{.valuation}(v) \\
\text{[ 5-adic valuation, v(x + 3) = 1 ]-adic valuation}
\]

Finally, \text{prime} can also be a fractional ideal of a number field if it singles out an extension of a $p$-adic valuation of the base field:

\[
\text{sage: } K\text{.valuation}(K\text{.fractional_ideal}(a + 1)) \\
\text{[2-adic valuation]}
\]

See also:

\text{Order.valuation()}, \text{pAdicGeneric.valuation()}

\text{zeta (n=2, all=False)}

Return one, or a list of all, primitive $n$-th root of unity in this field.

\text{INPUT:}

- \text{n} – positive integer
- \text{all} – boolean. If \text{False} (default), return a primitive \text{n}-th root of unity in this field, or raise a \text{ValueError} exception if there are none. If \text{True}, return a list of all primitive \text{n}-th roots of unity in this field (possibly empty).
Note: To obtain the maximal order of a root of unity in this field, use `number_of_roots_of_unity()`.

Note: We do not create the full unit group since that can be expensive, but we do use it if it is already known.

**EXAMPLES:**

```sage
x = polygen(QQ, 'x')
sage: K.<z> = NumberField(x^2 + 3)
sage: K.zeta(1)
1
sage: K.zeta(2)
-1
sage: K.zeta(2, all=True)
[-1]
sage: K.zeta(3)
-1/2*z - 1/2
sage: K.zeta(3, all=True)
[-1/2*z - 1/2, 1/2*z - 1/2]
sage: K.zeta(4)
Traceback (most recent call last):
... ValueError: there are no 4th roots of unity in self
```

```sage
r.<x> = QQ[]
sage: K. = NumberField(x^2 + 1)
sage: K.zeta(4)
b
sage: K.zeta(4, all=True)
[b, -b]
sage: K.zeta(3)
Traceback (most recent call last):
... ValueError: there are no 3rd roots of unity in self
sage: K.zeta(3, all=True)
[]
```

Number fields defined by non-monic and non-integral polynomials are supported ([github issue #252]):

```sage
K.<a> = NumberField(1/2*x^2 + 1/6)
sage: K.zeta(3)
-3/2*a - 1/2
```

**zeta_coefficients** (*n*)

Compute the first *n* coefficients of the Dedekind zeta function of this field as a Dirichlet series.

**EXAMPLES:**

```sage
x = QQ['x']
0
sage: NumberField(x^2 + 1, 'a').zeta_coefficients(10)
[1, 1, 0, 1, 2, 0, 0, 1, 1, 2]
```

**zeta_order**

Return the number of roots of unity in this field.
Note: We do not create the full unit group since that can be expensive, but we do use it if it is already known.

EXAMPLES:

```
sage: x = polygen(QQ, 'x')
sage: F.<alpha> = NumberField(x^22 + 3)
sage: F.zeta_order()
6
sage: F.<alpha> = NumberField(x^2 - 7)
sage: F.zeta_order()
2
```

```
sage.rings.number_field.number_field.NumberField_generic_v1(poly, name, latex_name, canonical_embedding=None)
```

Used for unpickling old pickles.

EXAMPLES:

```
sage: from sage.rings.number_field.number_field import NumberField_absolute_v1
sage: R.<x> = QQ[]
sage: NumberField_absolute_v1(x^2 + 1, i, i)
Number Field in i with defining polynomial x^2 + 1
```

```
class sage.rings.number_field.number_field.NumberField_quadratic(polynomial, name=None, latex_name=None, check=True, embedding=None, assume_disc_small=False, maximize_at_primes=None, structure=None)
```

Bases: `NumberField_absolute`, `NumberField_quadratic`

Create a quadratic extension of the rational field.

The command `QuadraticField(a)` creates the field $\mathbb{Q}(\sqrt{a})$.

EXAMPLES:

```
sage: QuadraticField(3, 'a')
Number Field in a with defining polynomial x^2 - 3 with a = 1.732050807568878?
sage: QuadraticField(-4, 'b')
Number Field in b with defining polynomial x^2 + 4 with b = 2*I
```

```
class_number(proof=None)
```

Return the size of the class group of self.

INPUT:

- `proof` – boolean (default: True, unless you called `proof.number_field()` and set it otherwise). If `proof` is False (not the default!), and the discriminant of the field is negative, then the following warning from the PARI manual applies:
**Warning:** For $D < 0$, this function may give incorrect results when the class group has a low exponent (has many cyclic factors), because implementing Shank’s method in full generality slows it down immensely.

**Examples:**

```python
sage: QuadraticField(-23, 'a').class_number()
3
```

These are all the primes so that the class number of $\mathbb{Q}(\sqrt{-p})$ is 1:

```python
sage: [d for d in prime_range(2, 300)....: if not is_square(d) and QuadraticField(-d, 'a').class_number() == 1]
[2, 3, 7, 11, 19, 43, 67, 163]
```

It is an open problem to prove that there are infinity many positive square-free $d$ such that $\mathbb{Q}(\sqrt{d})$ has class number 1:

```python
sage: len([d for d in range(2, 200)....: if not is_square(d) and QuadraticField(d, 'a').class_number() == 1])
121
```

**discriminant (v=None)**

Return the discriminant of the ring of integers of the number field, or if $v$ is specified, the determinant of the trace pairing on the elements of the list $v$.

**Input:**

- $v$ – (optional) list of element of this number field

**Output:** Integer if $v$ is omitted, and Rational otherwise.

**Examples:**

```python
sage: x = polygen(QQ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.discriminant()
-4
```

```python
sage: K.<a> = NumberField(x^2 + 5)
sage: K.discriminant()
-20
```

```python
sage: K.<a> = NumberField(x^2 - 5)
sage: K.discriminant()
5
```

**hilbert_class_field (names)**

Return the Hilbert class field of this quadratic field as a relative extension of this field.

**Note:** For the polynomial that defines this field as a relative extension, see the method `hilbert_class_field_defining_polynomial()`, which is vastly faster than this method, since it doesn’t construct a relative extension.

**Examples:**
hilbert_class_field_defining_polynomial \( (name='x') \)

Return a polynomial over \( \mathbb{Q} \) whose roots generate the Hilbert class field of this quadratic field as an extension of this quadratic field.

**Note:** Computed using PARI via Schertz's method. This implementation is quite fast.

**EXAMPLES:**

```python
sage: K. = QuadraticField(-23)
sage: K.hilbert_class_field_defining_polynomial()
x^3 - x^2 + 1
```

Note that this polynomial is not the actual Hilbert class polynomial: see `hilbert_class_polynomial`:

```python
sage: K.hilbert_class_polynomial()
needs sage.schemes
x^3 + 3491750*x^2 - 5151296875*x + 12771880859375
```

hilbert_class_polynomial \( (name='x') \)

Compute the Hilbert class polynomial of this quadratic field.

Right now, this is only implemented for imaginary quadratic fields.

**EXAMPLES:**

```python
sage: K.<a> = QuadraticField(-3)
sage: K.hilbert_class_polynomial() # needs sage.schemes
x
```

```python
sage: K.<a> = QuadraticField(-31)
sage: K.hilbert_class_polynomial(name='z') # needs sage.schemes
z^3 + 39491307*z^2 - 58682638134*z + 1566028350940383
```

is_galois()

Return `True` since all quadratic fields are automatically Galois.
EXAMPLES:

```
sage: QuadraticField(1234,'d').is_galois()
True
```

`number_of_roots_of_unity()`

Return the number of roots of unity in this quadratic field.

This is always 2 except when \( d \) is \(-3\) or \(-4\).

EXAMPLES:

```
sage: QF = QuadraticField
sage: [QF(d).number_of_roots_of_unity() for d in range(-7, -2)]
[2, 2, 2, 4, 6]
```

`order_of_conductor(f)`

Return the unique order with the given conductor in this quadratic field.

See also:

`sage.rings.number_field.order.Order.conductor()`

EXAMPLES:

```
sage: K.<t> = QuadraticField(-123)
sage: K.order_of_conductor(1) is K.maximal_order()
True
sage: K.order_of_conductor(2).gens()
(1, t)
```

sage.rings.number_field.number_field.NumberField_quadratic_v1 (`poly`, `name`, `canonical_embedding=None`)

Used for unpickling old pickles.

EXAMPLES:

```
sage: from sage.rings.number_field.number_field import NumberField_quadratic_v1
sage: R.<x> = QQ[]
sage: NumberField_quadratic_v1(x^2 - 2, 'd')
Number Field in d with defining polynomial x^2 - 2
```

sage.rings.number_field.number_field.QuadraticField (`D`, `name='a'`, `check=True`, `embedding=True`, `latex_name='sqrt'`, `**args`)

Return a quadratic field obtained by adjoining a square root of \( D \) to the rational numbers, where \( D \) is not a perfect square.

INPUT:

- `D` – a rational number
- `name` – variable name (default: 'a')
- `check` – bool (default: True)
- `embedding` – bool or square root of \( D \) in an ambient field (default: True)
• latex_name – latex variable name (default: $\sqrt{D}$)

OUTPUT: A number field defined by a quadratic polynomial. Unless otherwise specified, it has an embedding into $\mathbb{R}$ or $\mathbb{C}$ by sending the generator to the positive or upper-half-plane root.

EXAMPLES:

```
sage: QuadraticField(3, 'a')
Number Field in a with defining polynomial x^2 - 3 with a = 1.732050807568878?
sage: K.<theta> = QuadraticField(3); K
Number Field in theta with defining polynomial x^2 - 3 with theta = 1.732050807568878?
sage: RR(theta)
1.73205080756888
sage: QuadraticField(9, 'a')
Traceback (most recent call last):
 ... ValueError: D must not be a perfect square.
sage: QuadraticField(9, 'a', check=False)
Number Field in a with defining polynomial x^2 - 9 with a = 3
```

Quadratic number fields derive from general number fields.

```
sage: from sage.rings.number_field.number_field_base import NumberField
sage: type(K)
<class 'sage.rings.number_field.number_field.NumberField_quadratic_with_category'>
sage: isinstance(K, NumberField)
True
```

Quadratic number fields are cached:

```
sage: QuadraticField(-11, 'a') is QuadraticField(-11, 'a')
True
```

By default, quadratic fields come with a nice latex representation:

```
sage: K.<a> = QuadraticField(-7)
sage: latex(K)
\Bold{Q}\left(\sqrt{-7}\right)
sage: latex(a)
\sqrt{-7}
sage: latex(1/(1+a))
-\frac{1}{8} \sqrt{-7} + \frac{1}{8}
sage: list(K.latex_variable_names())
['\sqrt{-7}']
```

We can provide our own name as well:

```
sage: K.<a> = QuadraticField(next_prime(10^10), latex_name=r'\sqrt{D}')
sage: a + 1
a + 1
sage: latex(a + 1)
\sqrt{D} + 1
sage: latex(QuadraticField(-1, 'a', latex_name=None).gen())
a
```

The name of the generator does not interfere with Sage preparser, see github issue #1135:
Note that, in presence of two different names for the generator, the name given by the parser takes precedence:

```
sage: K4.<y> = QuadraticField(5, 'x'); K4
Number Field in y with defining polynomial x^2 - 5 with y = 2.236067977499790?
sage: K1 == K4
False
```

```
sage.rings.number_field.number_field.is_AbsoluteNumberField(x)
Return True if x is an absolute number field.

EXAMPLES:
```
sage: from sage.rings.number_field.number_field import is_AbsoluteNumberField
sage: x = polygen(ZZ, 'x')
```

```
sage: is_AbsoluteNumberField(NumberField(x^2 + 1, 'a'))
True
```

```
sage: is_AbsoluteNumberField(NumberField([x^3 + 17, x^2 + 1], 'a'))
False
```
```
The rationals are a number field, but they're not of the absolute number field class.
```

```
sage: is_AbsoluteNumberField(QQ)
False
```

```
sage.rings.number_field.number_field.is_NumberFieldHomsetCodomain(codomain)
Return whether codomain is a valid codomain for a number field homset. This is used by NumberField._Hom_ to determine whether the created homsets should be a sage.rings.number_field.homset.NumberFieldHomset.

EXAMPLES:
This currently accepts any parent (CC, RR, ...) in Fields:
```
sage: from sage.rings.number_field.number_field import is_NumberFieldHomsetCodomain
```

```
sage: is_NumberFieldHomsetCodomain(QQ)
True
```

```
sage: x = polygen(ZZ, 'x')
```

```
sage: is_NumberFieldHomsetCodomain(NumberField(x^2 + 1, 'x'))
True
```

```
sage: is_NumberFieldHomsetCodomain(ZZ)
False
```

```
sage: is_NumberFieldHomsetCodomain(3)
False
```

```
sage: is_NumberFieldHomsetCodomain(MatrixSpace(QQ, 2))
False
```
```
sage: is_NumberFieldHomsetCodomain(InfinityRing)
False
```

104 Chapter 1. Number Fields
Question: should, for example, QQ-algebras be accepted as well?

Caveat: Gap objects are not (yet) in Fields, and therefore not accepted as number field homset codomains:

```
sage: is_NumberFieldHomsetCodomain(gap.Rationals) # needs sage.libs.gap
False
```

```
sage.rings.number_field.number_field.is_fundamental_discriminant(D)
Return True if the integer D is a fundamental discriminant, i.e., if
D ≡ 0, 1 (mod 4), and D ≠ 0, 1 and either
(1) D is square free or (2) we have D ≡ 0 (mod 4) with D/4 ≡ 2, 3 (mod 4) and D/4 square free. These are
exactly the discriminants of quadratic fields.
EXAMPLES:
```
```
sage: [D for D in range(-15,15) if is_fundamental_discriminant(D)]
[-15, -11, -8, -7, -4, -3, 5, 8, 12, 13]
sage: [D for D in range(-15,15) if not is_square(D) and QuadraticField(D,'a').disc() == D]
[-15, -11, -8, -7, -4, -3, 5, 8, 12, 13]
```

```
sage.rings.number_field.number_field.is_real_place(v)
Return True if v is real, False if v is complex
INPUT:
 • v – an infinite place of self
OUTPUT:
A boolean indicating whether a place is real (True) or complex (False).
EXAMPLES:
```
```
sage: x = polygen(QQ, 'x')
sage: K.<xi> = NumberField(x^3 - 3)
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]
sage: v_fin = tuple(K.primes_above(3))[0]
```
```
sage: is_real_place(phi_real)
True
```
```
sage: is_real_place(phi_complex)
False
```
```
sage: is_real_place(v_fin)
Traceback (most recent call last):
 ...
AttributeError: 'NumberFieldFractionalIdeal' object has no attribute 'im_gens'...
```

```
sage.rings.number_field.number_field.proof_flag(t)
Used for easily determining the correct proof flag to use.
```

1.1. Number fields
Return \( t \) if \( t \) is not \( \text{None} \), otherwise return the system-wide proof-flag for number fields (default: True).

**EXAMPLES:**

```python
sage: from sage.rings.number_field.number_field import proof_flag
dsage: proof_flag(True)
True
dsage: proof_flag(False)
False
dsage: proof_flag(None)
True
dsage: proof_flag("banana")
'banana'
```

*sage.rings.number_field.number_field.put_natural_embedding_first\((v)\)*

Helper function for embeddings() functions for number fields.

**INPUT:**

- \( v \) – a list of embeddings of a number field

**OUTPUT:** None. The list is altered in-place, so that, if possible, the first embedding has been switched with one of the others, so that if there is an embedding which preserves the generator names then it appears first.

**EXAMPLES:**

```python
sage: K.<a> = CyclotomicField(7)
sage: embs = K.embeddings(K)
sage: [e(a) for e in embs] # random - there is no natural sort order
[a, a^2, a^3, a^4, a^5, -a^5 - a^4 - a^3 - a^2 - a - 1]
sage: id = [e for e in embs if e(a) == a][0]; id
Ring endomorphism of Cyclotomic Field of order 7 and degree 6
 Defn: a |--> a
sage: permuted_embs = list(embs); permuted_embs.remove(id); permuted_embs.
 →
sage: [e(a) for e in permuted_embs] # random - but natural map is not first
[a^2, a^3, a^4, a^5, -a^5 - a^4 - a^3 - a^2 - a - 1, a]
sage: permuted_embs[0] != a
True
sage: from sage.rings.number_field.number_field import put_natural_embedding_first
sage: put_natural_embedding_first(permuted_embs)
sage: [e(a) for e in permuted_embs] # random - but natural map is first
[a, a^2, a^3, a^4, a^5, -a^5 - a^4 - a^3 - a^2 - a - 1, a^2]
sage: permuted_embs[0] == id
True
```

*sage.rings.number_field.number_field.refine_embedding\((e, \text{prec}=\text{None})\)*

Given an embedding from a number field to either \( \mathbb{R} \) or \( \mathbb{C} \), return an equivalent embedding with higher precision.

**INPUT:**

- \( e \) – an embedding of a number field into either \( \mathbb{R} \) or \( \mathbb{C} \) (with some precision)
- \( \text{prec} \) – (default \( \text{None} \)) the desired precision; if \( \text{None} \), current precision is doubled; if \( \text{Infinity} \), the equivalent embedding into either \( \mathbb{Qbar} \) or \( \mathbb{AA} \) is returned.

**EXAMPLES:**


An example where we extend a real embedding into \( \mathbb{A} \):

```
sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 - 2)
sage: K.signature()
(1, 1)
sage: e = K.embeddings(RR)[0]; e
Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Real Field with 53 bits of precision
Defn: a |--> 1.25992104989487
sage: e = refine_embedding(e, Infinity); e
Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Real Field
Defn: a |--> 1.259921049894873?
```

Now we can obtain arbitrary precision values with no trouble:

```
sage: RealField(150)(e(a))
1.2599210498948731647672106072782283505702515
2
sage: ^3
2.000
sage: RealField(200)(e(a^2 - 3*a + 7))
4.8076379022835799804500738174376232086807389337953290695624
```

Complex embeddings can be extended into \( \mathbb{Q} \bar{\mathbb{Q}} \):

```
sage: e = K.embeddings(CC)[0]; e
Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Complex Field with 53 bits of precision
Defn: a |--> -0.62996052494743... - 1.09112363597172*I
sage: e = refine_embedding(e, Infinity); e
Ring morphism:
From: Number Field in a with defining polynomial x^3 - 2
To: Algebraic Field
Defn: a |--> -0.6299605249474365823860530363911417528512573235075399004099
- 1.0911236359717214203560072614189808813258733387403009407036*I
sage: e(a)^3
2
```

Embeddings into lazy fields work:

```
sage: L = CyclotomicField(7)
sage: x = L.specified_complex_embedding(); x
```

(continues on next page)
Generic morphism:
From: Cyclotomic Field of order 7 and degree 6
To: Complex Lazy Field
Defn: zeta7 -> 0.623489801858734? + 0.781831482468030?*I
sage: refine_embedding(x, 300)

Ring morphism:
From: Cyclotomic Field of order 7 and degree 6
To: Complex Field with 300 bits of precision
Defn: zeta7 |--> 0.62348980185873353052500488400423981063227473089640210536554943909685365245648728957594250790868007*I
sage: refine_embedding(x, infinity)

Ring morphism:
From: Cyclotomic Field of order 7 and degree 6
To: Algebraic Field
Defn: zeta7 |--> 0.62348980185873353052500488400423981063227473089640210536554943909685365245648728957594250790868007*I

When the old embedding is into the real lazy field, then only real embeddings should be considered. See github issue #17495:

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3 + x - 1, embedding=0.68)
sage: from sage.rings.number_field.number_field import refine_embedding
sage: refine_embedding(K.specified_complex_embedding(), 100)

Ring morphism:
From: Number Field in a with defining polynomial x^3 + x - 1 with a = 0.6823278038280193?
To: Real Field with 100 bits of precision
Defn: a |--> 0.68232780382801932736948373971

sage: refine_embedding(K.specified_complex_embedding(), Infinity)

Ring morphism:
From: Number Field in a with defining polynomial x^3 + x - 1 with a = 0.6823278038280193?
To: Algebraic Real Field
Defn: a |--> 0.6823278038280193?

1.2 Base class of number fields

AUTHORS:

• William Stein (2007-09-04): initial version

class sage.rings.number_field.number_field_base.NumberField

Bases: Field

Base class for all number fields.

OK (*args, **kwds)
Synonym for maximal_order().

EXAMPLES:

sage: x = polygen(ZZ)
sage: NumberField(x^3 - 2,'a').OK()
Maximal Order generated by \( a \) in Number Field in \( a \) with defining polynomial \( x^3 - 2 \)

**bach_bound()**

Return the Bach bound associated to this number field.

Assuming the General Riemann Hypothesis, this is a bound \( B \) so that every integral ideal is equivalent modulo principal fractional ideals to an integral ideal of norm at most \( B \).

See also:

**minkowski_bound()**

**OUTPUT:**

symbolic expression or the Integer 1

**EXAMPLES:**

We compute both the Minkowski and Bach bounds for a quadratic field, where the Minkowski bound is much better:

```
sage: # needs sage.symbolic
sage: K = QQ[sqrt(5)]
sage: K.minkowski_bound()
sage: 1/2*sqrt(5)
sage: K.minkowski_bound().n()
sage: 1.11803398874989
sage: K.bach_bound()
sage: 12*log(5)^2
sage: K.bach_bound().n()
sage: 31.0834847277628
```

We compute both the Minkowski and Bach bounds for a bigger degree field, where the Bach bound is much better:

```
sage: # needs sage.symbolic
sage: K = CyclotomicField(37)
sage: K.minkowski_bound().n()
sage: 7.50857335698544e14
sage: K.bach_bound().n()
sage: 191669.304126267
```

The bound of course also works for the rational numbers:

```
sage: QQ.bach_bound() # needs sage.symbolic
1
```

**degree()**

Return the degree of this number field.

**EXAMPLES:**

```
sage: x = polygen(ZZ)
sage: NumberField(x^3 + 9, 'a').degree()
sage: 3
```
discriminant()  
Return the discriminant of this number field.

EXAMPLES:

```sage
sage: x = polygen(ZZ)
sage: NumberField(x^3 + 9, 'a').discriminant()
-243
```

is_absolute()  
Return True if self is viewed as a single extension over \( \mathbb{Q} \).

EXAMPLES:

```sage
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^3 + 2)
sage: K.is_absolute()
True
sage: y = polygen(K)
sage: L. = NumberField(y^2 + 1)
sage: L.is_absolute()
False
sage: QQ.is_absolute()
True
```

maximal_order()  
Return the maximal order, i.e., the ring of integers of this number field.

EXAMPLES:

```sage
sage: x = polygen(ZZ)
sage: NumberField(x^3 - 2,'b').maximal_order()
Maximal Order generated by b in Number Field in b with defining polynomial x^3 - 2
```

minkowski_bound()  
Return the Minkowski bound associated to this number field.

This is a bound \( B \) so that every integral ideal is equivalent modulo principal fractional ideals to an integral ideal of norm at most \( B \).

See also:  
bach_bound()  

OUTPUT:  
symbolic expression or Rational

EXAMPLES:  
The Minkowski bound for \( \mathbb{Q}[i] \) tells us that the class number is 1:

```sage
sage: # needs sage.symbolic
sage: K = QQ[I]
sage: B = K.minkowski_bound(); B
4/pi
sage: B.n()
1.27323954473516
```

We compute the Minkowski bound for \( \mathbb{Q}[\sqrt{2}] \):
We compute the Minkowski bound for \( \mathbb{Q}[\sqrt{10}] \), which has class number 2:

```python
sage: # needs sage.symbolic
sage: K = QQ[sqrt(10)]
sage: B = K.minkowski_bound(); B
sqrt(10)
sage: int(B)
3
sage: K.class_number()
2
```

We compute the Minkowski bound for \( \mathbb{Q}[\sqrt{2} + \sqrt{3}] \):

```python
sage: # needs sage.symbolic
sage: x = polygen(ZZ)
sage: K.<y,z> = NumberField([x^2-2, x^2-3])
sage: L.<w> = QQ[sqrt(2) + sqrt(3)]
sage: B = K.minkowski_bound(); B
9/2
sage: int(B)
4
sage: B == L.minkowski_bound()
True
sage: K.class_number()
1
```

The bound of course also works for the rational numbers:

```python
sage: QQ.minkowski_bound()
1
```

\texttt{ring\_of\_integers(*args, \*\*kwds)}

Synonym for \texttt{maximal\_order()}. EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^2 + 1)
sage: K.ring_of_integers()
Gaussian Integers generated by a in Number Field in a with defining polynomial \(x^2 + 1 \)
```

\texttt{signature()}

Return \((r_1, r_2)\), where \(r_1\) and \(r_2\) are the number of real embeddings and pairs of complex embeddings of this field, respectively. EXAMPLES:
sage: x = polygen(ZZ)
sage: NumberField(x^3 - 2, 'a').signature()
(1, 1)

sage.rings.number_field.number_field_base.is_NumberField(x)

Return True if x is of number field type.

This function is deprecated.

EXAMPLES:

sage: from sage.rings.number_field.number_field_base import is_NumberField
sage: x = polygen(ZZ)
sage: is_NumberField(NumberField(x^2 + 1, 'a'))
doctest:...: DeprecationWarning: the function is_NumberField is deprecated; use isinstance(x, sage.rings.number_field.number_field_base.NumberField) instead
See https://github.com/sagemath/sage/issues/35283 for details.
True
sage: is_NumberField(QuadraticField(-97, 'theta'))
True
sage: is_NumberField(CyclotomicField(97))
True

Note that the rational numbers QQ are a number field.:

sage: is_NumberField(QQ)
True
sage: is_NumberField(ZZ)
False

1.3 Relative number fields

This example constructs a quadratic extension of a quartic number field:

sage: x = polygen(ZZ, 'x')
sage: K.<y> = NumberField(x^4 - 420*x^2 + 40000)
sage: z = y^5/11; z
420/11*y^3 - 40000/11*y
sage: R.<y> = PolynomialRing(K)
sage: f = y^2 + y + 1
sage: L.<a> = K.extension(f); L
Number Field in a with defining polynomial y^2 + y + 1 over its base field
sage: KL.<b> = NumberField([x^4 - 420*x^2 + 40000, x^2 + x + 1]); KL
Number Field in b0 with defining polynomial x^4 - 420*x^2 + 40000 over its base field

We do some arithmetic in a tower of relative number fields:

sage: K.<cuberoot2> = NumberField(x^3 - 2)
sage: L.<cuberoot3> = K.extension(x^3 - 3)
sage: S.<sqrt2> = L.extension(x^2 - 2)
sage: S
Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field
sage: sqrt2 * cuberoot3
sqrt2 * cuberoot3
sage: (sqrt2 + cuberoot3)^5
(continues on next page)
AUTHORS:

- Steven Sivek (2006-05-12): added support for relative extensions
- William Stein (2007-09-04): major rewrite and documentation
- Robert Bradshaw (2008-10): specified embeddings into ambient fields
- Nick Alexander (2009-01): modernized coercion implementation
- Robert Harron (2012-08): added is_CM_extension
- Julian Rüth (2014-04): absolute number fields are unique parents

sage.rings.number_field.number_field_rel.

class sage.rings.number_field.number_field_rel.

Bases: NumberField_generic

INPUT:

- base – the base field
• **polynomial** – a polynomial which must be defined in the ring $K[x]$, where $K$ is the base field.

• **name** – a string, the variable name

• **latex_name** – a string or None (default: None), variable name for latex printing

• **check** – a boolean (default: True), whether to check irreducibility of polynomial

• **embedding** – currently not supported, must be None

• **structure** – an instance of `structure.NumberFieldStructure` or None (default: None), provides additional information about this number field, e.g., the absolute number field from which it was created

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 2)
sage: t = polygen(K)
sage: L. = K.extension(t^2 + t + a);
L
Number Field in b with defining polynomial x^2 + x + a over its base field
```

**absolute_base_field()**

Return the base field of this relative extension, but viewed as an absolute field over $\mathbb{Q}$.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a,b,c> = NumberField([x^2 + 2, x^3 + 3, x^3 + 2])
sage: K
Number Field in a with defining polynomial x^2 + 2 over its base field
sage: K.base_field()
Number Field in b with defining polynomial x^3 + 3 over its base field
sage: K.absolute_base_field()[0]
Number Field in a0 with defining polynomial x^9 + 3*x^6 + 165*x^3 + 1
sage: K.base_field().absolute_field('z')
Number Field in z with defining polynomial x^9 + 3*x^6 + 165*x^3 + 1
```

**absolute_degree()**

The degree of this relative number field over the rational field.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberFieldTower([x^2 - 17, x^3 - 2])
sage: K
Number Field in a with defining polynomial x^2 - 17 over its base field
sage: K.absolute_degree()
6
```

**absolute_different()**

Return the absolute different of this relative number field $L$, as an ideal of $L$. To get the relative different of $L/K$, use `relative_different()`.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: t = K['t'].gen()
sage: L. = K.extension(t^4 - i)
sage: L.absolute_different()
Fractional ideal (8)
```
absolute_discriminant \((v=\text{None})\)
Return the absolute discriminant of this relative number field or if \(v\) is specified, the determinant of the trace pairing on the elements of the list \(v\).

INPUT:

- \(v\) (optional) – list of element of this relative number field.

OUTPUT: Integer if \(v\) is omitted, and Rational otherwise.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: t = K['t'].gen()
sage: L. = K.extension(t^4 - i)
sage: L.absolute_discriminant()
16777216
sage: L.absolute_discriminant([(b + i)^j for j in range(8)])
61911970349056
```

absolute_field \((\text{names})\)
Return self as an absolute number field.

INPUT:

- \(\text{names}\) – string; name of generator of the absolute field

OUTPUT:
An absolute number field \(K\) that is isomorphic to this field.
Also, \(K.\text{structure()}\) returns from\_K and to\_K, where from\_K is an isomorphism from \(K\) to self and to\_K is an isomorphism from self to \(K\).

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: L.<xyz> = K.absolute_field(); L
Number Field in xyz with defining polynomial x^8 + 8*x^6 + 30*x^4 - 40*x^2 + 49
sage: L.<c> = K.absolute_field(); L
Number Field in c with defining polynomial x^8 + 8*x^6 + 30*x^4 - 40*x^2 + 49
sage: from_L, to_L = L.structure()
sage: from_L
Isomorphism map:
 From: Number Field in c with defining polynomial x^8 + 8*x^6 + 30*x^4 - 40*x^2 + 49
 To: Number Field in a with defining polynomial x^4 + 3 over its base field
sage: from_L(c)
a - b
sage: to_L
Isomorphism map:
 From: Number Field in a with defining polynomial x^4 + 3 over its base field
 To: Number Field in c with defining polynomial x^8 + 8*x^6 + 30*x^4 - 40*x^2 + 49
sage: to_L(a)
-5/182*c^7 - 87/364*c^5 - 185/182*c^3 + 323/364*c
```

(continues on next page)
absolute_generator()

Return the chosen generator over \( \mathbb{Q} \) for this relative number field.

EXAMPLES:

```python
sage: y = polygen(QQ, 'y')
sage: k.<a> = NumberField([y^2 + 2, y^4 + 3])
sage: g = k.absolute_generator(); g
a0 - a1
sage: g.minpoly()
x^2 + 2*a1*x + a1^2 + 2
sage: g.absolute_minpoly()
x^8 + 8*x^6 + 30*x^4 - 40*x^2 + 49
```

absolute_polynomial()

Return the polynomial over \( \mathbb{Q} \) that defines this field as an extension of the rational numbers.

Note: The absolute polynomial of a relative number field is chosen to be equal to the defining polynomial of the underlying PARI absolute number field (it cannot be specified by the user). In particular, it is always a monic polynomial with integral coefficients. On the other hand, the defining polynomial of an absolute number field and the relative polynomial of a relative number field are in general different from their PARI counterparts.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: k.<a, b> = NumberField([x^2 + 1, x^3 + x + 1]); k
Number Field in a with defining polynomial x^2 + 1 over its base field
sage: k.absolute_polynomial()
x^6 + 5*x^4 - 2*x^3 + 4*x^2 + 4*x + 1
```

An example comparing the various defining polynomials to their PARI counterparts:

```python
sage: x = polygen(ZZ, 'x')
sage: k.<a, c> = NumberField([x^2 + 1/3, x^2 + 1/4])
sage: k.absolute_polynomial()
x^4 - x^2 + 1
sage: k.pari_polynomial()
x^4 - x^2 + 1
sage: k.base_field().absolute_polynomial()
x^2 + 1/4
sage: k.pari_absolute_base_polynomial()
y^2 + 1
sage: k.relative_polynomial()
x^2 + 1/3
sage: k.pari_relative_polynomial()
x^2 + Mod(y, y^2 + 1)*x - 1
```
**absolute_polynomial_ntl()**

Return defining polynomial of this number field as a pair, an ntl polynomial and a denominator.

This is used mainly to implement some internal arithmetic.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: NumberField(x^2 + (2/3)*x - 9/17, 'a').absolute_polynomial_ntl()
((-27 34 51), 51)
```

**absolute_vector_space(base=None, *args, **kwds)**

Return vector space over $\mathbb{Q}$ of self and isomorphisms from the vector space to self and in the other direction.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^3 + 3, x^3 + 2]); K
Number Field in a with defining polynomial x^3 + 3 over its base field
sage: V,from_V,to_V = K.absolute_vector_space(); V
Vector space of dimension 9 over Rational Field
sage: from_V
Isomorphism map:
 From: Vector space of dimension 9 over Rational Field
 To: Number Field in a with defining polynomial x^3 + 3 over its base field
sage: to_V
Isomorphism map:
 From: Number Field in a with defining polynomial x^3 + 3 over its base field
 To: Vector space of dimension 9 over Rational Field
sage: c = (a+1)^5; c
7*a^2 - 10*a - 29
sage: to_V(c)
(-29, -712/9, 19712/45, 0, -14/9, 364/45, 0, -4/9, 119/45)
sage: from_V(to_V(c))
7*a^2 - 10*a - 29
sage: from_V(3*to_V(b))
3*b
```

**automorphisms()**

Compute all Galois automorphisms of self over the base field. This is different from computing the embeddings of self into self; there, automorphisms that do not fix the base field are considered.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 10000, x^2 + x + 50]); K
Number Field in a with defining polynomial x^2 + 10000 over its base field
sage: K.automorphisms()
[(Relative number field endomorphism of Number Field in a
 with defining polynomial x^2 + 10000 over its base field
 Defn: a |--> a
 b |--> b,
Relative number field endomorphism of Number Field in a
 with defining polynomial x^2 + 10000 over its base field
 Defn: a |--> -a
 b |--> b),]
```

(continues on next page)
sage: rho, tau = K.automorphisms()
sage: tau(a)
-a
sage: tau(b) == b
True

sage: L.<b, a> = NumberField([x^2 + x + 50, x^2 + 10000, ]); L
Number Field in b with defining polynomial x^2 + x + 50 over its base field
sage: L.automorphisms()
[Relative number field endomorphism of Number Field in b with defining polynomial x^2 + x + 50 over its base field
 Defn: b |--> b
 a |--> a,

Relative number field endomorphism of Number Field in b
 with defining polynomial x^2 + x + 50 over its base field
 Defn: b |--> -b - 1
 a |--> a
]
sage: rho, tau = L.automorphisms()
sage: tau(a) == a
True
sage: tau(b)
-b - 1

sage: PQ.<X> = QQ
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: K.automorphisms()
[Relative number field endomorphism of Number Field in c
 with defining polynomial Y^2 + (-2*b - 3)*a - 2*b - 6 over its base field
 Defn: c |--> c
 a |--> a
 b |--> b,

Relative number field endomorphism of Number Field in c
 with defining polynomial Y^2 + (-2*b - 3)*a - 2*b - 6 over its base field
 Defn: c |--> -c
 a |--> a
 b |--> b
]

base_field()

Return the base field of this relative number field.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: k.<a> = NumberField([x^3 + x + 1])
sage: R.<z> = k
sage: L.<b> = NumberField(z^3 + a)
sage: L.base_field()
Number Field in a with defining polynomial x^3 + x + 1
sage: L.base_field() is k
True
This is very useful because the print representation of a relative field doesn’t describe the base field:

```sage
L
Number Field in b with defining polynomial z^3 + a over its base field
```

**base_ring()**

This is exactly the same as `base_field`.

**EXAMPLES:**

```sage
x = polygen(ZZ, 'x')
sage: k.<a> = NumberField([x^2 + 1, x^3 + x + 1])
sage: k.base_ring()
Number Field in a1 with defining polynomial x^3 + x + 1
```

**change_names(names)**

Return relative number field isomorphic to `self` but with the given generator names.

**INPUT:**

- `names` – number of names should be at most the number of generators of `self`, i.e., the number of steps in the tower of relative fields.

Also, `K.structure()` returns `from_K` and `to_K`, where `from_K` is an isomorphism from `K` to `self` and `to_K` is an isomorphism from `self` to `K`.

**EXAMPLES:**

```sage
x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
```

```sage:
L.<c,d> = K.change_names()
sage: L
Number Field in c with defining polynomial x^4 + 3 over its base field
```

An example with a 3-level tower:

```sage:
K.<a,b,c> = NumberField([x^2 + 17, x^2 + x + 1, x^3 - 2]); K
Number Field in a with defining polynomial x^2 + 17 over its base field
```

```sage:
L.<m,n,r> = K.change_names(); L
Number Field in m with defining polynomial x^2 + 17 over its base field
```

And a more complicated example:

```sage:
PQ.<X> = QQ[]
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
sage: FF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: L.<m, n, r> = K.change_names(); L
Number Field in m with defining polynomial
```

(continues on next page)
composite_fields (other, names=None, both_maps=False, preserve_embedding=True)

List of all possible composite number fields formed from self and other, together with (optionally) embeddings into the compositum; see the documentation for both_maps below.

Since relative fields do not have ambient embeddings, preserve_embedding has no effect. In every case all possible composite number fields are returned.

INPUT:

• other — a number field

• names — generator name for composite fields

• both_maps — (default: False) if True, return quadruples (F, self_into_F, `other_into_F, k) such that self_into_F maps self into F, other_into_F maps other into F. For relative number fields, k is always None.

• preserve_embedding — (default: True) has no effect, but is kept for compatibility with the absolute version of this method. In every case the list of all possible compositums is returned.

OUTPUT:

list of the composite fields, possibly with maps.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 5, x^2 - 2])
sage: L.<c, d> = NumberField([x^2 + 5, x^2 - 3])
sage: K.composite_fields(L, e)
[Number Field in e with defining polynomial x^8 - 24*x^6 + 464*x^4 + 3840*x^2 + 25600]  
sage: K.composite_fields(L, 'e', both_maps=True)
[[Number Field in e with defining polynomial x^8 - 24*x^6 + 464*x^4 + 3840*x^2 + 25600,  
  Relative number field morphism:  
  From: Number Field in a with defining polynomial x^2 + 5 over its base field  
  To:  Number Field in e with defining polynomial x^8 - 24*x^6 + 464*x^4 + 3840*x^2 + 25600  
  Defn: a |---> -9/66560*e^7 + 11/4160*e^5 - 241/4160*e^3 - 101/104*e  
  b |---> -21/166400*e^7 + 73/20800*e^5 - 779/10400*e^3 + 7/260*e,  
  Relative number field morphism:  
  From: Number Field in c with defining polynomial x^2 + 5 over its base field  
  To:  Number Field in e with defining polynomial x^8 - 24*x^6 + 464*x^4 + 3840*x^2 + 25600]
Algebraic Numbers and Number Fields, Release 10.3

\[ x^8 - 24x^6 + 464x^4 + 3840x^2 + 25600 \]

\[ \text{Defn: } c \mapsto -\frac{9}{66560}e^7 + \frac{11}{4160}e^5 - \frac{241}{4160}e^3 - \frac{101}{104}e, \]
\[ d \mapsto -\frac{3}{25600}e^7 + \frac{7}{1600}e^5 - \frac{147}{1600}e^3 + \frac{1}{40}e, \]
None]

\[ \text{defining_polynomial}() \]

Return the defining polynomial of this relative number field.

This is exactly the same as \texttt{relative_polynomial}().

**EXAMPLES:**

\[
\begin{align*}
\text{sage: } & C.<z> = \text{CyclotomicField}(5) \\
\text{sage: } & PC.<X> = C[] \\
\text{sage: } & K.<a> = C.extension(X^2 + X + z); K \\
& \text{Number Field in a with defining polynomial } X^2 + X + z \text{ over its base field} \\
\text{sage: } & K.\text{defining_polynomial}() \\
& X^2 + X + z
\end{align*}
\]

\[ \text{degree}() \]

The degree, unqualified, of a relative number field is deliberately not implemented, so that a user cannot mistake the absolute degree for the relative degree, or vice versa.

**EXAMPLES:**

\[
\begin{align*}
\text{sage: } & x = \text{polygen}(\mathbb{Z}, 'x') \\
\text{sage: } & K.<a> = \text{NumberFieldTower([x^2 - 17, x^3 - 2])} \\
\text{sage: } & K.\text{degree}() \\
& \text{Traceback (most recent call last):} \\
& \quad \vdots \\
& \text{NotImplementedError: For a relative number field you must use } \text{relative_degree} \text{ or } \text{absolute_degree} \text{ as appropriate}
\end{align*}
\]

\[ \text{different}() \]

The different, unqualified, of a relative number field is deliberately not implemented, so that a user cannot mistake the absolute different for the relative different, or vice versa.

**EXAMPLES:**

\[
\begin{align*}
\text{sage: } & x = \text{polygen}(\mathbb{Z}, 'x') \\
\text{sage: } & K.<a> = \text{NumberFieldTower([x^2 + x + 1, x^3 + x + 1])} \\
\text{sage: } & K.\text{different}() \\
& \text{Traceback (most recent call last):} \\
& \quad \vdots \\
& \text{NotImplementedError: For a relative number field you must use } \text{relative_different} \text{ or } \text{absolute_different} \text{ as appropriate}
\end{align*}
\]

\[ \text{disc}() \]

The discriminant, unqualified, of a relative number field is deliberately not implemented, so that a user cannot mistake the absolute discriminant for the relative discriminant, or vice versa.

**EXAMPLES:**

\[
\begin{align*}
\text{sage: } & x = \text{polygen}(\mathbb{Z}, 'x') \\
\text{sage: } & K.<a> = \text{NumberFieldTower([x^2 + x + 1, x^3 + x + 1])} \\
\text{sage: } & K.\text{disc}() \\
& \text{Traceback (most recent call last):}
\end{align*}
\]

(continues on next page)
... NotImplementedError: For a relative number field you must use relative_discriminant or absolute_discriminant as appropriate

**discriminant()**

The discriminant, unqualified, of a relative number field is deliberately not implemented, so that a user cannot mistake the absolute discriminant for the relative discriminant, or vice versa.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberFieldTower([x^2 + x + 1, x^3 + x + 1])
sage: K.discriminant()
Traceback (most recent call last):
... NotImplementedError: For a relative number field you must use relative_discriminant or absolute_discriminant as appropriate
```

**embeddings(K)**

Compute all field embeddings of the relative number field self into the field $K$ (which need not even be a number field, e.g., it could be the complex numbers). This will return an identical result when given $K$ as input again.

If possible, the most natural embedding of self into $K$ is put first in the list.

**INPUT:**

- $K$ – a field

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^3 - 2, x^2 + 1])
sage: f = K.embeddings(ComplexField(58)); f

[Relative number field morphism:
 From: Number Field in a with defining polynomial x^3 - 2 over its base field
 To: Complex Field with 58 bits of precision
 Defn: a |--> -0.62996052494743676 - 1.0911236359717214*I
 b |--> -1.9428902930940239e-16 + 1.0000000000000000*I,
...
Relative number field morphism:
 From: Number Field in a with defining polynomial x^3 - 2 over its base field
 To: Complex Field with 58 bits of precision
 Defn: a |--> 1.2599210498948731
 b |--> -0.99999999999999999*I]
```

```python
sage: f[0](a)^3
2.0000000000000002 - 8.6389229103644993e-16*I
sage: f[0](b)^2
-1.0000000000000000 - 3.8857805861880480e-16*I
sage: f[0](a+b)
-0.62996052494743693 - 0.091123635971721295*I
```

**free_module(base=None, basis=None, map=True)**

Return a vector space over a specified subfield that is isomorphic to this number field, together with the isomorphisms in each direction.
INPUT:

- base – a subfield
- basis – (optional) a list of elements giving a basis over the subfield
- map – (default True) whether to return isomorphisms to and from the vector space

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a,b,c> = NumberField([x^2 + 2, x^3 + 2, x^3 + 3]); K
Number Field in a with defining polynomial x^2 + 2 over its base field
sage: V, from_V, to_V = K.free_module()
sage: to_V(K.0)
(0, 1)
sage: W, from_W, to_W = K.free_module(base=QQ)
sage: w = to_W(K.0); len(w)
18
sage: w[0]
-127917622658689792301282/48787705559800061938765
```

galois_closure(names=None)

Return the absolute number field \( K \) that is the Galois closure of this relative number field.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: K.galois_closure(c)
#_...
Number Field in c with defining polynomial x^16 + 16*x^14 + 28*x^12
+ 784*x^10 + 19846*x^8 - 595280*x^6 + 2744476*x^4 + 3212848*x^2 + 29953729
```

gen(n=0)

Return the \( n \)’th generator of this relative number field.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: K.gens()
(a, b)
sage: K.gen(0)
a
```
gens()

Return the generators of this relative number field.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: K.gens()
(a, b)
```
**is_CM_extension()**

Return `True` if this is a CM extension, i.e. a totally imaginary quadratic extension of a totally real field.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: F.<a> = NumberField(x^2 - 5)
sage: K.<z> = F.extension(x^2 + 7)
sage: K.is_CM_extension()
True
sage: K = CyclotomicField(7)
sage: K.<z> = F.extension(x^2 + 7)
sage: K.is_CM_extension()
True
sage: F.<a> = NumberField(x^2 + 1)
sage: K.<z> = F.extension(x^2 - 3)
sage: K.is_CM_extension()
False
```

A CM field $K$ such that $K/F$ is not a CM extension

```python
sage: F.<a> = NumberField(x^2 + 1)
sage: K.<z> = F.extension(x^2 - 3)
sage: K.is_CM_extension()
False
```

**is_absolute()**

Return `False`, since this is not an absolute field.

**EXAMPLES:**

```python
sage: x = polygen(QQ)
.sage: K.<a> = NumberField((a^4 + 3, a^2 + 2)); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: K.is_absolute()
False
sage: K.is_relative()
True
```

**is_free**(proof=None)

Determine whether or not $L/K$ is free.

(i.e. if $\mathcal{O}_L$ is a free $\mathcal{O}_K$-module).

**INPUT:**

- `proof` – default: True

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2 + 6)
sage: x = polygen(K)
sage: L. = K.extension(x^2 + 3)
extend by x^2+3
sage: L.is_free()
False
```
is_galois()
For a relative number field, is_galois() is deliberately not implemented, since it is not clear whether this would mean “Galois over $\mathbb{Q}$” or “Galois over the given base field”. Use either is_galois_absolute() or is_galois_relative(), respectively.

EXAMPLES:
```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField([x^3 - 2, x^2 + x + 1])
sage: k.is_galois()
Traceback (most recent call last):
 ... NotImplementedError: For a relative number field L you must use either L.is_galois_relative() or L.is_galois_absolute() as appropriate
```

is_galois_absolute()
Return True if for this relative extension $L/K$, $L$ is a Galois extension of $\mathbb{Q}$.

EXAMPLES:
```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 2)
sage: y = polygen(K); L. = K.extension(y^2 - a)
sage: L.is_galois_absolute() # needs sage.groups
False
```

is_galois_relative()
Return True if for this relative extension $L/K$, $L$ is a Galois extension of $K$.

EXAMPLES:
```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 2)
sage: y = polygen(K)
```

The next example previously gave a wrong result; see github issue #9390:
```
sage: F.<a, b> = NumberField([x^2 - 2, x^2 - 3])
sage: F.is_galois_relative()
True
```

is_isomorphic_relative (other, base_isom=None)
For this relative extension $L/K$ and another relative extension $M/K$, return True if there is a $K$-linear isomorphism from $L$ to $M$. More generally, other can be a relative extension $M/K'$ with base_isom an isomorphism from $K$ to $K'$.

EXAMPLES:
```
sage: x = polygen(ZZ, 'x')
sage: K.<x9> = NumberField(x^6 + x^3 + 1)
sage: R.<z> = PolynomialRing(K)
```

(continues on next page)
sage: m1 = 3*z9^4 - 4*z9^3 - 4*z9^2 + 3*z9 - 8
sage: L1 = K.extension(z^2 - m1, 'b1')

sage: # needs sage.groups
sage: G = K.galois_group(); gamma = G.gen()

sage: m2 = (gamma^2)(m1)

sage: L2 = K.extension(z^2 - m2, 'b2')

sage: L1.is_isomorphic_relative(L2)
False

sage: L1.is_isomorphic(L2)
True

sage: L3 = K.extension(z^4 - m1, 'b3')

sage: L1.is_isomorphic_relative(L3)
False

If we have two extensions over different, but isomorphic, bases, we can compare them by letting base_isom be an isomorphism from self's base field to other's base field:

sage: Kcyc.<zeta9> = CyclotomicField(9)
sage: Rcyc.<zcyc> = PolynomialRing(Kcyc)
sage: phi1 = K.hom([zeta9])

sage: m1cyc = phi1(m1)

sage: L1cyc = Kcyc.extension(zcyc^2 - m1cyc, 'b1cyc')

sage: L1.is_isomorphic_relative(L1cyc, base_isom=phi1)
True

sage: L2.is_isomorphic_relative(L1cyc, base_isom=phi1)
False

sage: phi2 = K.hom([phi1((gamma^(-2))(z9))])

sage: L1.is_isomorphic_relative(L1cyc, base_isom=phi2)
False

sage: L2.is_isomorphic_relative(L1cyc, base_isom=phi2)
True

Omitting base_isom raises a ValueError when the base fields are not identical:

sage: L1.is_isomorphic_relative(L1cyc)
Traceback (most recent call last):
...
ValueError: other does not have the same base field as self, so an isomorphism from self's base_field to other's base_field must be provided using the base_isom parameter.

The parameter base_isom can also be used to check if the relative extensions are Galois conjugate:

sage: for g in G:
# ... needs sage.groups

....: if L1.is_isomorphic_relative(L2, g.as_hom()):
....: print(g.as_hom())

Ring endomorphism of Number Field in z9 with defining polynomial x^6 + x^3 + 1
Defn: z9 |--> z9^4

lift_to_base(element)

Lift an element of this extension into the base field if possible, or raise a ValueError if it is not possible.
EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^3 - 2)
sage: R.<y> = K[]
sage: L. = K.extension(y^2 - a)
sage: L.lift_to_base(b^4)
a^2
sage: L.lift_to_base(b^6)
2
sage: L.lift_to_base(355/113)
355/113
sage: L.lift_to_base(b)
Traceback (most recent call last):
 ... ValueError: The element b is not in the base field
```

`logarithmic_embedding` *(prec=53)*

Return the morphism of `self` under the logarithmic embedding in the category `Set`.

The logarithmic embedding is defined as a map from the relative number field `self` to \( \mathbb{R}^n \).

It is defined under Definition 4.9.6 in [Coh1993].

INPUT:

- `prec` – desired floating point precision.

OUTPUT:

the morphism of `self` under the logarithmic embedding in the category `Set`.

EXAMPLES:

```python
sage: K.<k> = CyclotomicField(3)
sage: R.<x> = K[]
sage: L.<l> = K.extension(x^5 + 5)
sage: f = L.logarithmic_embedding()
sage: f(0)
(-1, -1, -1, -1, -1)
sage: f(5)
(3.21887582486820, 3.21887582486820, 3.21887582486820, 3.21887582486820, 3.21887582486820, 3.21887582486820)
```

```python
sage: K.<i> = NumberField(x^2 + 1)
sage: t = K['t'].gen()
sage: L.<a> = K.extension(t^4 - i)
sage: f = L.logarithmic_embedding()
sage: f(0)
(-1, -1, -1, -1, -1, -1, -1, -1)
sage: f(3)
(2.19722457733622, 2.19722457733622, 2.19722457733622, 2.19722457733622, 2.19722457733622, 2.19722457733622, 2.19722457733622, 2.19722457733622)
```

`ngens` ()

Return the number of generators of this relative number field.

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: K.gens()
(a, b)
sage: K.ngens()
2

```
number_of_roots_of_unity()

Return the number of roots of unity in this relative field.

EXAMPLES:
```
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + x + 1, x^4 + 1])
sage: K.number_of_roots_of_unity()
24

```
order(*gens, **kwds)

Return the order with given ring generators in the maximal order of this number field.

INPUT:

- `gens` – list of elements of `self`; if no generators are given, just returns the cardinality of this number field (∞) for consistency.
- `check_is_integral` – bool (default: True), whether to check that each generator is integral.
- `check_rank` – bool (default: True), whether to check that the ring generated by `gens` is of full rank.
- `allow_subfield` – bool (default: False), if True and the generators do not generate an order, i.e., they generate a subring of smaller rank, instead of raising an error, return an order in a smaller number field.

The `check_is_integral` and `check_rank` inputs must be given as explicit keyword arguments.

EXAMPLES:
```
sage: P.<a,b,c> = QQ[2^(1/2), 2^(1/3), 3^(1/2)]  # needs sage.symbolic
sage: R = P.order([a,b,c]); R  # needs sage.symbolic
Relative Order generated by
[((-36372*sqrt3 + 371270)*a^2 + (-89082*sqrt3 + 384161)*a - 422504*sqrt3 -
  46595)*sqrt2 + (303148*sqrt3 - 90800)*a^2 + (313664*sqrt3 - 218211)*a -
  38053*sqrt3 - 1034933, ((-65954*sqrt3 + 323491)*a^2 + (-110591*sqrt3 + 350011)*a -
  351557*sqrt3 + 77507)*sqrt2 + (264138*sqrt3 - 161552)*a^2 + (285784*sqrt3 - 270906)*a +
  32187*sqrt3 - 861151, ((-89292*sqrt3 + 406648)*a^2 + (-137274*sqrt3 + 457033)*a -
  449503*sqrt3 + 102712)*sqrt2 + (332036*sqrt3 - 218718)*a^2 + (373172*sqrt3 - 336261)*a +
  83862*sqrt3 - 110179, ((-164204*sqrt3 + 553344)*a^2 + (-225111*sqrt3 + 646064)*a -
  594724*sqrt3 + 280879)*sqrt2 + (451819*sqrt3 - 402227)*a^2 + (527524*sqrt3 - 551431)*a +
  229346*sqrt3 - 1456815, ((-73815*sqrt3 + 257278)*a^2 + (-102896*sqrt3 + 298046)*a -
  277080*sqrt3 + 123726)*sqrt2 + (210072*sqrt3 - 180812)*a^2 + (243357*sqrt3 - 252052)*a +
  101026*sqrt3 - 678718] in Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field
```

128 Chapter 1. Number Fields
The base ring of an order in a relative extension is still \(\mathbb{Z} \):

```
sage: R.base_ring()
Integer Ring
```

One must give enough generators to generate a ring of finite index in the maximal order:

```
sage: P.order([a, b])
```

```
# needs sage.symbolic
Traceback (most recent call last):
...
ValueError: the rank of the span of gens is wrong
```

pari_absolute_base_polynomial()

Return the PARI polynomial defining the absolute base field, in \(y \).

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 2, x^2 + 3]); K
Number Field in a with defining polynomial x^2 + 2 over its base field
sage: K.pari_absolute_base_polynomial()
y^2 + 3
sage: type(K.pari_absolute_base_polynomial())
<class cypari2.gen.Gen>
sage: z = ZZ[z].0
sage: K.<a, b, c> = NumberField([z^2 + 2, z^2 + 3, z^2 + 5]); K
Number Field in a with defining polynomial z^2 + 2 over its base field
sage: K.pari_absolute_base_polynomial()
y^4 + 16*y^2 + 4
sage: K.base_field()
Number Field in b with defining polynomial z^2 + 3 over its base field
sage: len(QQ[y](K.pari_absolute_base_polynomial()).roots(K.base_field()))
4
sage: type(K.pari_absolute_base_polynomial())
<class cypari2.gen.Gen>
```

pari_relative_polynomial()

Return the PARI relative polynomial associated to this number field.

This is always a polynomial in \(x \) and \(y \), suitable for PARI's \texttt{pari:rnfinit} function. Notice that if this is a relative extension of a relative extension, the base field is the absolute base field.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: k.<i> = NumberField(x^2 + 1)
sage: m.<z> = k.extension(k[w]([i,0,1]))
sage: m
Number Field in z with defining polynomial w^2 + i over its base field
sage: m.pari_relative_polynomial()
Mod(1, y^2 + 1)*x^2 + Mod(y, y^2 + 1)
sage: l.<t> = m.extension(m[t].0^2 + z)
sage: l.pari_relative_polynomial()
Mod(1, y^4 + 1)*x^2 + Mod(y, y^4 + 1)
```
pari_rnf()

Return the PARI relative number field object associated to this relative extension.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: k.<a> = NumberField([x^4 + 3, x^2 + 2])
sage: k.pari_rnf()
[x^4 + 3, [364, -10*x^7 - 87*x^5 - 370*x^3 - 41*x], [108, 3], ...
```

places (all_complex=False, prec=None)

Return the collection of all infinite places of self.

By default, this returns the set of real places as homomorphisms into RIF first, followed by a choice of one of each pair of complex conjugate homomorphisms into CIF.

On the other hand, if prec is not None, we simply return places into RealField(prec) and ComplexField(prec) (or RDF, CDF if prec=53).

There is an optional flag all_complex, which defaults to False. If all_complex is True, then the real embeddings are returned as embeddings into CIF instead of RIF.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: L.<b, c> = NumberFieldTower([x^2 - 5, x^3 + x + 3])
sage: L.places()
Needs sage.libs.linbox
[Relative number field morphism:
 From: Number Field in b with defining polynomial x^2 - 5 over its base_field
 To: Real Field with 106 bits of precision
 Defn: b |--> -2.2360679774997896409173668937
 c |--> -1.21341166276229634132131377426,
 Relative number field morphism:
 From: Number Field in b with defining polynomial x^2 - 5 over its base_field
 To: Real Field with 106 bits of precision
 Defn: b |--> 2.2360679774997896409173668937
 c |--> -1.21341166276229634132131377426,
 Relative number field morphism:
 From: Number Field in b with defining polynomial x^2 - 5 over its base_field
 To: Complex Field with 53 bits of precision
 Defn: b |--> -2.2360679774997896409173668937...e-1...*I
 c |--> 0.606705831381115 - 1.45061224918844*I,
 Relative number field morphism:
 From: Number Field in b with defining polynomial x^2 - 5 over its base_field
 To: Complex Field with 53 bits of precision
 Defn: b |--> 2.2360679774997896409173668937 - 4.40892095063e-16*I
 c |--> 0.606705831381115 - 1.45061224918844*]
```

polynomial()

For a relative number field, polynomial() is deliberately not implemented. Either relative_polynomial() or absolute_polynomial() must be used.

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberFieldTower([x^2 + x + 1, x^3 + x + 1])
sage: K.polynomial()
Traceback (most recent call last):...
NotImplementedError: For a relative number field L you must use either
L.relative_polynomial() or L.absolute_polynomial() as appropriate

relative_degree()

Returns the relative degree of this relative number field.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberFieldTower([x^2 - 17, x^3 - 2])
sage: K.relative_degree()
2

relative_different()

Return the relative different of this extension L/K as an ideal of L. If you want the absolute different of L/Q, use `absolute_different()`.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: PK.<t> = K[]
sage: L.<a> = K.extension(t^4 - i)
sage: L.relative_different()
Fractional ideal (4)

relative_discriminant()

Return the relative discriminant of this extension L/K as an ideal of K. If you want the (rational) discriminant of L/Q, use e.g. `L.absolute_discriminant()`.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: t = K[t].gen()
sage: L. = K.extension(t^4 - i)
sage: L.relative_discriminant()
Fractional ideal (256)
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: K.relative_discriminant() == F.ideal(4*b)
True

relative_polynomial()

Return the defining polynomial of this relative number field over its base field.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberFieldTower([x^2 + x + 1, x^3 + x + 1])
(continues on next page)
Use `absolute_polynomial()` for a polynomial that defines the absolute extension:

```python
sage: K.absolute_polynomial()
x^6 + 3*x^5 + 8*x^4 + 9*x^3 + 7*x^2 + 6*x + 3
```

relative_vector_space *(base=None, *args, **kwds)*

Return vector space over the base field of `self` and isomorphisms from the vector space to `self` and in the other direction.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a,b,c> = NumberField([x^2 + 2, x^3 + 2, x^3 + 3]); K
Number Field in a with defining polynomial x^2 + 2 over its base field
sage: V, from_V, to_V = K.relative_vector_space()
sage: from_V(V.0)
1
sage: to_V(K.0)
(0, 1)
sage: from_V(to_V(K.0))
a
sage: to_V(from_V(V.0))
(1, 0)
sage: to_V(from_V(V.1))
(0, 1)
```

The underlying vector space and maps is cached:

```python
sage: W, from_V, to_V = K.relative_vector_space()
sage: V is W
True
```

relativize(alpha, names)

Given an element in `self` or an embedding of a subfield into `self`, return a relative number field \(K\) isomorphic to `self` that is relative over the absolute field \(\mathbb{Q}(\alpha)\) or the domain of \(\alpha\), along with isomorphisms from \(K\) to `self` and from `self` to \(K\).

INPUT:

- alpha – an element of `self`, or an embedding of a subfield into `self`
- names – name of generator for output field \(K\).

OUTPUT: \(K\) – a relative number field

Also, \(K\).structure() returns from_K and to_K, where from_K is an isomorphism from \(K\) to `self` and to_K is an isomorphism from `self` to \(K\).

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^4 + 3, x^2 + 2]); K
Number Field in a with defining polynomial x^4 + 3 over its base field
sage: L.<z,w> = K.relativize(a^2)
sage: z^2
```

(continues on next page)
Now suppose we have K below L below M:

```
sage: M = NumberField(x^8 + 2, 'a'); M
Number Field in a with defining polynomial x^8 + 2
sage: L, L_into_M, _ = M.subfields(4)[0]; L
Number Field in a0 with defining polynomial x^4 + 2
sage: K, K_into_L, _ = L.subfields(2)[0]; K
Number Field in a0_0 with defining polynomial x^2 + 2
sage: K_into_M = L_into_M * K_into_L
sage: L_over_K = L.relativize(K_into_L, c); L_over_K
Number Field in c with defining polynomial x^2 + a0_0 over its base field
sage: L_over_K_to_L, L_to_L_over_K = L_over_K.structure()
```

Test relativizing a degree 6 field over its degree 2 and degree 3 subfields, using both an explicit element:

```
sage: K.<a> = NumberField(x^6 + 2); K
Number Field in a with defining polynomial x^6 + 2
sage: K2, K2_into_K, _ = K.subfields(2)[0]; K2
Number Field in a0 with defining polynomial x^2 + 2
sage: K3, K3_into_K, _ = K.subfields(3)[0]; K3
Number Field in a0 with defining polynomial x^3 - 2
```

Here we explicitly relativize over an element of $K2$ (not the generator):

```
sage: L = K.relativize(K3_into_K, 'b'); L
Number Field in b with defining polynomial x^2 + a0 over its base field
sage: L_to_K, K_to_L = L.structure()
```

Here we use a morphism to preserve the base field information:

```
sage: K2_into_L = K_to_L * K2_into_K
sage: L_over_K2 = L.relativize(K2_into_L, 'c'); L_over_K2
Number Field in c with defining polynomial x^3 - a0 over its base field
sage: L_over_K2.base_field() is K2
True
```
Return all the roots of unity in this relative field, primitive or not.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + x + 1, x^4 + 1])
sage: rts = K.roots_of_unity()
sage: len(rts)
24
sage: all(u in rts for u in [b*a, -b^2*a - b^2, b^3, -a, b*a + b])
True
```

subfields *(degree=0, name=None)*

Return all subfields of this relative number field `self` of the given degree, or of all possible degrees if degree is 0. The subfields are returned as absolute fields together with an embedding into `self`. For the case of the field itself, the reverse isomorphism is also provided.

EXAMPLES:

```python
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: K.subfields(2)
[(Number Field in c0 with defining polynomial x^2 - 24*x + 96,
  Ring morphism:
    From: Number Field in c0 with defining polynomial x^2 - 24*x + 96
    To: Number Field in c with defining polynomial
        Y^2 + (-2*b - 3)*a - 2*b - 6 over its base field
    Defn: c0 |--> -4*b + 12,
  None),
(Number Field in c1 with defining polynomial x^2 - 24*x + 120,
  Ring morphism:
    From: Number Field in c1 with defining polynomial x^2 - 24*x + 120
    To: Number Field in c with defining polynomial
        Y^2 + (-2*b - 3)*a - 2*b - 6 over its base field
    Defn: c1 |--> 2*b*a + 12,
  None),
(Number Field in c2 with defining polynomial x^2 - 24*x + 72,
  Ring morphism:
    From: Number Field in c2 with defining polynomial x^2 - 24*x + 72
    To: Number Field in c with defining polynomial
        Y^2 + (-2*b - 3)*a - 2*b - 6 over its base field
    Defn: c2 |--> -6*a + 12,
  None)]
sage: K.subfields(8, 'w')
[(Number Field in w0 with defining polynomial x^8 - 12*x^6 + 36*x^4 - 36*x^2 +_
  → 9,
  Ring morphism:
    From: Number Field in w0 with defining polynomial
        x^8 - 12*x^6 + 36*x^4 - 36*x^2 + 9
    To: Number Field in c with defining polynomial
        Y^2 + (-2*b - 3)*a - 2*b - 6 over its base field
    Defn: w0 |--> (-1/2*b*a + 1/2*b + 1/2)*c, (continues on next page)
Relative number field morphism:
From: Number Field in c with defining polynomial
   \(Y^2 + (-2\cdot b - 3)\cdot a - 2\cdot b - 6\) over its base field
To: Number Field in w0 with defining polynomial
   \(x^8 - 12\cdot x^6 + 36\cdot x^4 - 36\cdot x^2 + 9\)
Defn: c |--> -1/3\cdot w0^7 + 4\cdot w0^5 - 12\cdot w0^3 + 11\cdot w0
   a |--> 1/3\cdot w0^6 - 10/3\cdot w0^4 + 5\cdot w0^2
   b |--> -2/3\cdot w0^6 + 7\cdot w0^4 - 14\cdot w0^2 + 6)

uniformizer (P, others='positive')
Returns an element of self with valuation 1 at the prime ideal P.

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 23, x^2 - 3])
sage: P = K.prime_factors(5)[0]; P
Fractional ideal (5, 1/2*a + b - 5/2)
sage: u = K.uniformizer(P)
sage: u.valuation(P)
1
sage: (P, 1) in K.factor(u)
True

vector_space (*args, **kwds)
For a relative number field, vector_space() is deliberately not implemented, so that a user cannot confuse relative_vector_space() with absolute_vector_space().

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberFieldTower([x^2 - 17, x^3 - 2])
sage: K.vector_space()
Traceback (most recent call last):
... NotImplementedError: For a relative number field L you must use either L.relative_vector_space() or L.absolute_vector_space() as appropriate
sage.rings.number_field.number_field_rel.NumberField_relative_v1(base_field, poly, name, latex_name, canonical_embedding=None)

Used for unpickling old pickles.

EXAMPLES:

```python
sage: from sage.rings.number_field.number_field_rel import NumberField_relative_v1
sage: R.<x> = CyclotomicField(3)[]
```

```python
NumberField_relative_v1(CyclotomicField(3), x^2 + 7, 'a', 'a')
Number Field in a with defining polynomial x^2 + 7 over its base field
```

sage.rings.number_field.number_field_rel.is_RelativeNumberField(x)

Return True if x is a relative number field.

EXAMPLES:

```python
sage: from sage.rings.number_field.number_field_rel import is_RelativeNumberField
sage: x = polygen(ZZ, x)
```

```python
is_RelativeNumberField(NumberField(x^2+1,a))
False
```

```python
k.<a> = NumberField(x^3 - 2)
```

```python
l. = k.extension(x^3 - 3); l
```

```python
is_RelativeNumberField(l)
True
```

```python
is_RelativeNumberField(QQ)
False
```

### 1.4 Splitting fields of polynomials over number fields

AUTHORS:

- Jeroen Demeyer (2014-01-02): initial version for github issue #2217
- Jeroen Demeyer (2014-01-03): added abort_degree argument, github issue #15626

A class to store data for internal use in splitting_field(). It contains two attributes pol (polynomial), dm (degree multiple), where pol is a PARI polynomial and dm a Sage Integer.

dm is a multiple of the degree of the splitting field of pol over some field E. In splitting_field(), E is the field containing the current field K and all roots of other polynomials inside the list L with dm less than this dm.

key()

Return a sorting key. Compare first by degree bound, then by polynomial degree, then by discriminant.

EXAMPLES:

```python
sage: from sage.rings.number_field.splitting_field import SplittingData
```

```python
L = []
```

```python
L.append(SplittingData(pari("x^2 + 1"), 1))
```

```python
L.append(SplittingData(pari("x^3 + 1"), 1))
```
sage: L.append(SplittingData(pari("x^2 + 7"), 2))
sage: L.append(SplittingData(pari("x^3 + 1"), 2))
sage: L.append(SplittingData(pari("x^3 + x^2 + x + 1"), 2))
sage: L.sort(key=lambda x: x.key()); L
  [SplittingData(x^2 + 1, 1), SplittingData(x^3 + 1, 1), SplittingData(x^2 + 7, 2), SplittingData(x^3 + x^2 + x + 1, 2), SplittingData(x^3 + 1, 2)]
sage: [x.key() for x in L]
  [(1, 16), (1, 729), (2, 784), (3, 256), (3, 729)]

poldegree()

Return the degree of self.pol

EXAMPLES:
sage: from sage.rings.number_field.splitting_field import SplittingData
sage: SplittingData(pari("x^123 + x + 1"), 2).poldegree()
  123

exception sage.rings.number_field.splitting_field.SplittingFieldAbort (div, mult)

Bases: Exception

Special exception class to indicate an early abort of splitting_field().

EXAMPLES:
sage: from sage.rings.number_field.splitting_field import SplittingFieldAbort
sage: raise SplittingFieldAbort(20, 60)
Traceback (most recent call last):
  ... SplittingFieldAbort: degree of splitting field is a multiple of 20
sage: raise SplittingFieldAbort(12, 12)
Traceback (most recent call last):
  ... SplittingFieldAbort: degree of splitting field equals 12

sage.rings.number_field.splitting_field.splitting_field (poly, name, map=False, degree_multiple=None, abort_degree=None, simplify=True, simplify_all=False)

Compute the splitting field of a given polynomial, defined over a number field.

INPUT:

• poly – a monic polynomial over a number field
• name – a variable name for the number field
• map – (default: False) also return an embedding of poly into the resulting field. Note that computing this embedding might be expensive.
• degree_multiple – a multiple of the absolute degree of the splitting field. If degree_multiple equals the actual degree, this can enormously speed up the computation.
• abort_degree – abort by raising a SplittingFieldAbort if it can be determined that the absolute degree of the splitting field is strictly larger than abort_degree.
• simplify – (default: True) during the algorithm, try to find a simpler defining polynomial for the intermediate number fields using PARI’s polredbest(). This usually speeds up the computation but can also considerably slow it down. Try and see what works best in the given situation.

• simplify_all – (default: False) If True, simplify intermediate fields and also the resulting number field.

**OUTPUT:**

If map is False, the splitting field as an absolute number field. If map is True, a tuple (K, phi) where phi is an embedding of the base field in K.

**EXAMPLES:**

```python
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = (x^3 + 2).splitting_field(); K
Number Field in a with defining polynomial x^6 + 3*x^5 + 6*x^4 + 11*x^3 + 12*x^2 - 3*x + 1

sage: K.<a> = (x^3 - 3*x + 1).splitting_field(); K
Number Field in a with defining polynomial x^3 - 3*x + 1
```

The simplify and simplify_all flags usually yield fields defined by polynomials with smaller coefficients. By default, simplify is True and simplify_all is False.

```python
sage: (x^4 - x + 1).splitting_field('a', simplify=False)
Number Field in a with defining polynomial
x^24 - 2780*x^22 + 2*x^21 + 3527512*x^20 - 2876*x^19 - 2701391985*x^18 + ...

sage: (x^4 - x + 1).splitting_field('a', simplify=True)
Number Field in a with defining polynomial
x^24 + 8*x^23 - 32*x^22 - 310*x^21 + 540*x^20 + 4688*x^19 - 6813*x^18 - 32380*x^...

sage: (x^4 - x + 1).splitting_field('a', simplify_all=True)
Number Field in a with defining polynomial
x^24 - 3*x^23 + 2*x^22 - x^20 + 4*x^19 + 32*x^18 - 35*x^17 - 92*x^16 + 49*x^15 + 163*x^14 - 15*x^13 - 194*x^12 - 15*x^11 + 163*x^10 + 49*x^9 - 92*x^8 - 35*x^7 + 32*x^6 + 4*x^5 - x^4 + 2*x^2 - 3*x + 1
```

Reducible polynomials also work:

```python
sage: pol = (x^4 - 1)*(x^2 + 1/2)*(x^2 + 1/3)
sage: pol.splitting_field('a', simplify_all=True)
Number Field in a with defining polynomial x^8 - x^4 + 1
```

Relative situation:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^3 + 2)
sage: S.<t> = PolynomialRing(K)
(continues on next page)
With `map=True`, we also get the embedding of the base field into the splitting field:

```
sage: L.<b>, phi = (t^2 - a).splitting_field(map=True)
sage: phi
Ring morphism:
  From: Number Field in a with defining polynomial x^3 + 2
  To:   Number Field in b with defining polynomial t^6 + 2
  Defn: a |--> b^2
```

We can enable verbose messages:

```
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(2)
sage: K.<a> = (x^3 - x + 1).splitting_field()
```

Try all Galois groups in degree 4. We use a quadratic base field such that `polgalois()` cannot be used:

```
sage: R.<x> = PolynomialRing(QuadraticField(-11))
sage: C2C2pol = x^4 - 10*x^2 + 1
```

(continues on next page)
Some bigger examples:

```python
sage: R.<x> = PolynomialRing(QQ)
sage: pol15 = chebyshev_T(31, x) - 1  # 2^30*(x-1)*minpoly(cos(2*pi/31))^2
dsage: pol15.splitting_field(a)
Number Field in a with defining polynomial x^15 + x^14 - 14*x^13 - 13*x^12 + 78*x^11 - 66*x^10 - 220*x^9 + 165*x^8 + 330*x^7 - 210*x^6 - 252*x^5 + 126*x^4 + 84*x^3 - 28*x^2 - 8*x - 1
```

If you somehow know the degree of the field in advance, you should add a `degree_multiple` argument. This can speed up the computation, in particular for polynomials of degree \(\geq 12 \) or for relative extensions:

```python
sage: pol15.splitting_field(a, degree_multiple=15)
Number Field in a with defining polynomial x^15 - x^14 - 14*x^13 - 13*x^12 + 78*x^11 - 66*x^10 - 220*x^9 + 165*x^8 + 330*x^7 - 210*x^6 - 252*x^5 + 126*x^4 + 84*x^3 - 28*x^2 - 8*x - 1
```

A value for `degree_multiple` which isn’t actually a multiple of the absolute degree of the splitting field can either result in a wrong answer or the following exception:

```python
sage: pol48.splitting_field(a, degree_multiple=20)
Traceback (most recent call last):
  ... ValueError: inconsistent degree_multiple in splitting_field()
```

Compute the Galois closure as the splitting field of the defining polynomial:
Algebraic Numbers and Number Fields, Release 10.3

```
sage: R.<x> = PolynomialRing(QQ)
sage: pol48 = x^6 - 4*x^4 + 12*x^2 - 12
sage: K.<a> = NumberField(pol48)
sage: L.<b> = pol48.change_ring(K).splitting_field()
sage: L
Number Field in b with defining polynomial x^48 ...
```

Try all Galois groups over \(\mathbb{Q} \) in degree 5 except for \(S_5 \) (the latter is infeasible with the current implementation):

```
sage: C5pol = x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1
sage: C5pol.splitting_field(x)
Number Field in x with defining polynomial x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1
sage: D10pol = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1
sage: D10pol.splitting_field('x')
Number Field in x with defining polynomial x^10 - 28*x^8 + 216*x^6 - 681*x^4 + 902*x^2 - 401
sage: AGL_1_5pol = x^5 - 2
sage: AGL_1_5pol.splitting_field(x)
Number Field in x with defining polynomial x^20 + 10*x^19 + 55*x^18 + 210*x^17 + 595*x^16 + 1300*x^15 + 2250*x^14 + 3130*x^13 + 3585*x^12 + 3500*x^11 + 2965*x^10 + 2250*x^9 + 1625*x^8 + 1150*x^7 + 750*x^6 + 400*x^5 + 275*x^4 + 100*x^3 + 75*x^2 + 25
sage: A5pol = x^5 - x^4 + 2*x^2 - 2*x + 2
sage: A5pol.splitting_field(x)
Number Field in x with defining polynomial x^60 ...
```

We can use the \texttt{abort_degree} option if we don’t want to compute fields of too large degree (this can be used to check whether the splitting field has small degree):

```
sage: (x^5 + x + 3).splitting_field('b', abort_degree=119)
Traceback (most recent call last):
...
SplittingFieldAbort: degree of splitting field equals 120
sage: (x^10 + x + 3).splitting_field('b', abort_degree=60)  # long time (10s on...

```

Use the \texttt{degree_divisor} attribute to recover the divisor of the degree of the splitting field or \texttt{degree_multiple} to recover a multiple:

```
sage: from sage.rings.number_field.splitting_field import SplittingFieldAbort
sage: try:  # long time (4s on sage.math, 2014)
...
........ (x^8 + x + 1).splitting_field('b', abort_degree=60, simplify=False)
........ except SplittingFieldAbort as e:
........ print(e.degree_divisor)
........ print(e.degree_multiple)
120
1440
```

1.4. Splitting fields of polynomials over number fields
1.5 Galois groups of number fields

AUTHORS:

- David Loeffler (2009): rewrote to give explicit homomorphism groups

`sage.rings.number_field.galois_group.GaloisGroup` alias of `GaloisGroup_v1`

class `sage.rings.number_field.galois_group.GaloisGroupElement`

Bases: `PermutationGroupElement`

An element of a Galois group. This is stored as a permutation, but may also be made to act on elements of the field (generally returning elements of its Galois closure).

EXAMPLES:

```sage
g = QuadraticField(-7,w).galois_group()
g[1]  # (1,2)
g[1](w + 2)  # -w + 2
```

```sage
x = polygen(ZZ, 'x')
L.<v> = NumberField(x^3 - 2); G = L.galois_group(names='y')
g[4]  # (1,5)(2,4)(3,6)
g[4](v)  # 1/18*y^4
```

```sage
g[4](G[4](v))  # -1/36*y^4 - 1/2*y
```

```sage
g[4](G[4](G[4](v)))  # 1/18*y^4
```

`as_hom()`

Return the homomorphism \(L \to L \) corresponding to \(\text{self} \), where \(L \) is the Galois closure of the ambient number field.

EXAMPLES:

```sage
g = QuadraticField(-7,'w').galois_group()
g[1].as_hom()  # Ring endomorphism of Number Field in w with defining polynomial x^2 + 7
     with w = 2.645751311064591?*I
     Defn: w |--> -w
```

`ramification_degree(P)`

Return the greatest value of \(v \) such that \(s \) acts trivially modulo \(P^v \). Should only be used if \(P \) is prime and \(s \) is in the decomposition group of \(P \).

EXAMPLES:

```sage
x = polygen(ZZ, 'x')
K.<b> = NumberField(x^3 - 3, 'a').galois_closure()
g = K.galois_group()
P = K.primes_above(3)[0]
```
class sage.rings.number_field.galois_group.GaloisGroup_subgroup

A subgroup of a Galois group, as returned by functions such as \texttt{decomposition_group}.

\textbf{INPUT:}

- \texttt{ambient} – the ambient Galois group
- \texttt{gens} – a list of generators for the group
- \texttt{gap_group} – a gap or libgap permutation group, or a string defining one (default: None)
- \texttt{domain} – a set on which this permutation group acts; extracted from \texttt{ambient} if not specified
- \texttt{category} – the category for this object
- \texttt{canonicalize} – if True, sorts and removes duplicates
- \texttt{check} – whether to check that generators actually lie in the ambient group

\textbf{EXAMPLES:}

```python
sage: from sage.rings.number_field.galois_group import GaloisGroup_subgroup
sage: x = polygen(ZZ, 'x')
sage: G = NumberField(x^3 - x - 1, 'a').galois_closure('b').galois_group()
sage: H = G.subgroup([G([(1,2,3),(4,5,6)])])
Subgroup generated by [(1,2,3)(4,5,6)] of (Galois group 6T2 ([3]2) with order 6 of x^6 - 6*x^4 + 9*x^2 + 23)
```

\textbf{Element}

\textit{alias of \texttt{GaloisGroupElement}}

\textbf{fixed_field (name=None, polred=None, threshold=None)}

Return the fixed field of this subgroup (as a subfield of the Galois closure of the number field associated to the ambient Galois group).
INPUT:

• name – a variable name for the new field.

• **polred** – whether to optimize the generator of the newly created field for a simpler polynomial, using PARI’s `pari:polredbest`. Defaults to `True` when the degree of the fixed field is at most 8.

• **threshold** – positive number; `polred` only performed if the cost is at most this threshold

EXAMPLES:

```sage
x = polygen(ZZ, 'x')
L.<a> = NumberField(x^4 + 1)
G = L.galois_group()
H = G.decomposition_group(L.primes_above(3)[0])
H.fixed_field()
```

(Number Field in a0 with defining polynomial x^2 + 2 with a0 = a^3 + a, Ring morphism:

From: Number Field in a0 with defining polynomial x^2 + 2 with a0 = a^3 + a
To: Number Field in a with defining polynomial x^4 + 1
Defn: a0 |--> a^3 + a)

You can use the **polred** option to get a simpler defining polynomial:

```sage
K.<a> = NumberField(x^5 - 5*x^2 - 3)
G = K.galois_group(); G
Galois group 5T2 (5:2) with order 10 of x^5 - 5*x^2 - 3
sigma, tau = G.gens()
H = G.subgroup([tau])
H.fixed_field(polred=False)
```

(Number Field in a0 with defining polynomial x^2 + 84375 with a0 = 5*ac^5 + 25*ac^3,
Ring morphism:

From: Number Field in a0 with defining polynomial x^2 + 84375 with a0 = 5*ac^5 + 25*ac^3
To: Number Field in ac with defining polynomial x^10 + 10*x^8 + 25*x^6 + 3375
Defn: a0 |--> 5*ac^5 + 25*ac^3)

```sage
H.fixed_field(polred=True)
```

(Number Field in a0 with defining polynomial x^2 - x + 4 with a0 = -1/30*ac^5 - 1/6*ac^3 + 1/2,
Ring morphism:

From: Number Field in a0 with defining polynomial x^2 - x + 4 with a0 = -1/30*ac^5 - 1/6*ac^3 + 1/2
To: Number Field in ac with defining polynomial x^10 + 10*x^8 + 25*x^6 + 3375
Defn: a0 |--> -1/30*ac^5 - 1/6*ac^3 + 1/2)

```sage
G.splitting_field()
```

Number Field in ac with defining polynomial x^10 + 10*x^8 + 25*x^6 + 3375

An embedding is returned also if the subgroup is trivial (github issue #26817):

```sage
H = G.subgroup([])
H.fixed_field()
```

(Number Field in ac with defining polynomial x^10 + 10*x^8 + 25*x^6 + 3375, Identity endomorphism of
Number Field in ac with defining polynomial x^10 + 10*x^8 + 25*x^6 + 3375)
class sage.rings.number_field.galois_group.GaloisGroup_v1(group, number_field)

Bases: SageObject

A wrapper around a class representing an abstract transitive group.

This is just a fairly minimal object at present. To get the underlying group, do G.group(), and to get the corresponding number field do G.number_field(). For a more sophisticated interface use the type=None option.

EXAMPLES:

```sage
definitions:
    sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
    sage: K = QQ[2^(1/3)]
    sage: pK = K.absolute_polynomial()
    sage: G = GaloisGroup_v1(pK.galois_group(pari_group=True), K); G
    ...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
    See https://github.com/sagemath/sage/issues/28782 for details.
    Galois group PARI group [6, -1, 2, "S3"] of degree 3 of the
    Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
    sage: G.order()
    6
    sage: G.group()
    PARI group [6, -1, 2, "S3"] of degree 3
    sage: G.number_field()
    Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873?
```

group()

Return the underlying abstract group.

EXAMPLES:

```sage
definitions:
    sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
    sage: x = polygen(ZZ, 'x')
    sage: K = NumberField(x^3 + 2, 'theta')
    sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K)
    ...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
    See https://github.com/sagemath/sage/issues/28782 for details.
    sage: H = G.group(); H
    PARI group [6, -1, 2, "S3"] of degree 3
    sage: P = H.permutation_group(); P
    Transitive group number 2 of degree 3
    sage: sorted(P)
    [(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]
```

number_field()

Return the number field of which this is the Galois group.

EXAMPLES:

```sage
definitions:
    sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
    sage: x = polygen(ZZ, 'x')
    sage: K = NumberField(x^6 + 2, 't')
    sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K); G
    ...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
    See https://github.com/sagemath/sage/issues/28782 for details.
    sage: P = H.permutation_group(); P
    Transitive group number 2 of degree 3
    sage: sorted(P)
    [(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]
```

1.5. Galois groups of number fields

(continues on next page)
order()

Return the order of this Galois group.

EXAMPLES:

```
sage: from sage.rings.number_field.galois_group import GaloisGroup_v1
sage: x = polygen(ZZ, 'x')
```

```
sage: K = NumberField(x^5 + 2, 'theta_1')
```

```
sage: G = GaloisGroup_v1(K.absolute_polynomial().galois_group(pari_group=True), K); G
```

...DeprecationWarning: GaloisGroup_v1 is deprecated; please use GaloisGroup_v2
See https://github.com/sagemath/sage/issues/28782 for details.
Galois group PARI group [20, -1, 3, "F(5) = 5:4"] of degree 5 of the
Number Field in theta_1 with defining polynomial x^5 + 2

```
sage: G.order()
```

20

class sage.rings.number_field.galois_group.GaloisGroup_v2(number_field, algorithm='pari', names=None, gc_numbering=None, _type=None)

Bases: GaloisGroup_perm

The Galois group of an (absolute) number field.

Note: We define the Galois group of a non-normal field \(K \) to be the Galois group of its Galois closure \(L \), and elements are stored as permutations of the roots of the defining polynomial of \(L \), not as permutations of the roots (in \(L \)) of the defining polynomial of \(K \). The latter would probably be preferable, but is harder to implement. Thus the permutation group that is returned is always simply-transitive.

The ‘arithmetical’ features (decomposition and ramification groups, Artin symbols etc) are only available for Galois fields.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
```

```
sage: G = NumberField(x^3 - x - 1, 'a').galois_closure('b').galois_group()
```

```
sage: G.subgroup([G([(1,2,3),(4,5,6)])])
```

Subgroup generated by [(1,2,3)(4,5,6)] of
(Galois group 6T2 ([3]2) with order 6 of x^6 - 6*x^4 + 9*x^2 + 23)

Subgroups can be specified using generators (github issue #26816):

```
sage: K.<a> = NumberField(x^6 - 6*x^4 + 9*x^2 + 23)
```

```
sage: G = K.galois_group()
sage: list(G)
```

[(),
 (1,2,3)(4,5,6),
 (1,3,2)(4,6,5),
 (1,4)(2,6)(3,5),
]
The Artin symbol is the unique element s of the decomposition group of P such that $s(x) = x^p \mod P$, where p is the residue characteristic of P.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<b> = NumberField(x^4 - 2*x^2 + 2, 'a').galois_closure()
sage: G = K.galois_group()
sage: [G.artin_symbol(P) for P in K.primes_above(7)]
[(1,4)(2,5)(3,6), (1,4)(2,5)(3,6), (1,5)(2,6)(3,7)(4,8), (1,5)(2,6)(3,7)(4,8)]
sage: G.artin_symbol(17)
Traceback (most recent call last):
  ... ValueError: Fractional ideal (17) is not prime
sage: QuadraticField(-7,'c').galois_group().artin_symbol(13)
(1,2)
sage: G.artin_symbol(K.primes_above(2)[0])
Traceback (most recent call last):
  ... ValueError: Fractional ideal (...) is ramified
```

The complex conjugation is the unique element of G corresponding to complex conjugation, for a specified embedding P into the complex numbers. If P is not specified, use the "standard" embedding, whenever that is well-defined.

EXAMPLES:

```python
sage: L.<z> = CyclotomicField(7)
sage: G = L.galois_group()
sage: conj = G.complex_conjugation(); conj
(1,4)(2,5)(3,6)
sage: conj(z)
-z^5 - z^4 - z^3 - z^2 - z - 1
```

An example where the field is not CM, so complex conjugation really depends on the choice of embedding:
sage: x = polygen(ZZ, 'x')
sage: L = NumberField(x^6 + 40*x^3 + 1372, 'a')
sage: G = L.galois_group()
sage: [G.complex_conjugation(x) for x in L.places()]
[(1,3)(2,6)(4,5), (1,5)(2,4)(3,6), (1,2)(3,4)(5,6)]

decomposition_group(p)

Decomposition group of a prime ideal \(P \), i.e., the subgroup of elements that map \(P \) to itself. This is the same as the Galois group of the extension of local fields obtained by completing at \(P \).

This function will raise an error if \(P \) is not prime or the given number field is not Galois. \(P \) can also be an infinite prime, i.e., an embedding into \(\mathbb{R} \) or \(\mathbb{C} \).

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^4 - 2*x^2 + 2, 'b').galois_closure()
sage: P = K.ideal([17, a^2])
sage: G = K.galois_group()
sage: G.decomposition_group(P)
Subgroup generated by [(1,8)(2,7)(3,6)(4,5)] of (Galois group 8T4 ([4]2) with order 8 of x^8 - 20*x^6 + 104*x^4 - 40*x^2 + →1156)
sage: G.decomposition_group(P^2)
Traceback (most recent call last):
... ValueError: Fractional ideal (...) is not a prime ideal
sage: G.decomposition_group(17)
Traceback (most recent call last):
... ValueError: Fractional ideal (17) is not a prime ideal

An example with an infinite place:

sage: x = polygen(ZZ, 'x')
sage: L. = NumberField(x^3 - 2, 'a').galois_closure(); G = L.galois_group()
sage: x = L.places()[0]
sage: G.decomposition_group(x).order()
2

easy_order(algorithm=None)

Return the order of this Galois group if it's quick to compute.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + 2*x + 2)
sage: G = K.galois_group()
sage: G.easy_order()
6
sage: x = polygen(ZZ, 'x')
sage: L. = NumberField(x^72 + 2*x + 2)
sage: H = L.galois_group()
sage: H.easy_order()
While *GaloisGroup_v1* is being deprecated, this provides public access to the PARI/GAP group in order to keep all aspects of that API.

EXAMPLES:

```sage
sage: R.<x> = ZZ[]
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + 2*x + 2)
sage: G = K.galois_group(type="pari")
...DeprecationWarning: the different Galois types have been merged into one...
See https://github.com/sagemath/sage/issues/28782 for details.
sage: G.group()
...DeprecationWarning: the group method is deprecated; you can use _pol_galgp if you really need it
See https://github.com/sagemath/sage/issues/28782 for details.
PARI group [6, -1, 2, "S3"] of degree 3
```

inertia_group (*P*)

Return the inertia group of the prime *P*, i.e., the group of elements acting trivially modulo *P*. This is just the 0th ramification group of *P*.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: K.<b> = NumberField(x^2 - 3, 'a')
sage: G = K.galois_group()
sage: G.inertia_group(K.primes_above(2)[0])
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 - 3)
sage: G.inertia_group(K.primes_above(5)[0])
Subgroup generated by [()] of (Galois group 2T1 (S2) with order 2 of x^2 - 3)
```

is_galois()

Whether the underlying number field is Galois.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: NumberField(x^3 - x + 1,'a').galois_group(names='b').is_galois()
False
sage: NumberField(x^2 - x + 1,'a').galois_group().is_galois()
True
```

list()

List of the elements of self.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: NumberField(x^3 - 3*x + 1,'a').galois_group().list()
[((), (1,2,3), (1,3,2))]
```

number_field()

The ambient number field.

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: K = NumberField(x^3 - x + 1, 'a')
sage: K.galois_group(names='b').number_field() is K
True

order (algorithm=None, recompute=False)

Return the order of this Galois group

EXAMPLES:

sage: R.<x> = ZZ[]
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + 2*x + 2)
sage: G = K.galois_group()
sage: G.order()
6

pari_label()

Return the label assigned by PARI for this Galois group, an attempt at giving a human readable description of the group.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^8 - x^5 + x^4 - x^3 + 1)
sage: G = K.galois_group()
sage: G.transitive_label()
'8T44'
sage: G.pari_label()
'[2^4]S(4)'

ramification_breaks (P)

Return the set of ramification breaks of the prime ideal P, i.e., the set of indices \(i \) such that the ramification group \(G_{i+1} \neq G_i \). This is only defined for Galois fields.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K. = NumberField(x^3 - 3, a).galois_closure()
(continues on next page)
sage: G = K.galois_group()
sage: P = K.primes_above(3)[0]
sage: G.ramification_group(P, 3)
Subgroup generated by [(1,2,4)(3,5,6)] of (Galois group 6T2 ([3]2) with order 6 of x^6 + 243)
sage: G.ramification_group(P, 5)
Subgroup generated by [()] of (Galois group 6T2 ([3]2) with order 6 of x^6 + 243)

signature()

Return 1 if contained in the alternating group, −1 otherwise.

EXAMPLES:
sage: R.<x> = ZZ[]
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 2)
sage: K.galois_group().signature()
-1
sage: K.<a> = NumberField(x^3 - 3*x - 1)
sage: K.galois_group().signature()
1

transitive_number(algorithm=None, recompute=False)

Regardless of the value of gc_numbering, give the transitive number for the action on the roots of the defining polynomial of the original number field, not the Galois closure.

INPUT:

- algorithm – string, specify the algorithm to be used
- recompute – boolean, whether to recompute the result even if known by another algorithm

EXAMPLES:
sage: R.<x> = ZZ[]
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + 2*x + 2)
sage: G = K.galois_group()
sage: G.transitive_number()
2
sage: x = polygen(ZZ, 'x')
sage: L. = NumberField(x^13 + 2*x + 2)
sage: H = L.galois_group(algorithm="gap")
sage: H.transitive_number() # optional - gap_packages
9

unrank(i)

Return the i-th element of self.

INPUT:

- i – integer between 0 and n − 1 where n is the cardinality of this set

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: G = NumberField(x^3 - 3*x + 1, 'a').galois_group()
sage: [G.unrank(i) for i in range(G.cardinality())]
[(0), (1,2,3), (1,3,2)]
2.1 Elements of number fields (implemented using NTL)

AUTHORS:
- William Stein: initial version
- Joel B. Mohler (2007-03-09): reimplemented in Cython
- William Stein (2007-09-04): added doctests
- Robert Bradshaw (2007-09-15): specialized classes for relative and absolute elements
- John Cremona (2009-05-15): added support for local and global logarithmic heights
- Robert Harron (2012-08): conjugate() now works for all fields contained in CM fields

```python
class sage.rings.number_field.number_field_element.CoordinateFunction(alpha, W, to_V):
    Bases: object

This class provides a callable object which expresses elements in terms of powers of a fixed field generator α.

EXAMPLES:
```
```sage
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + x + 3)
sage: f = (a + 1).coordinates_in_terms_of_powers(); f
Coordinate function that writes elements in terms of the powers of a + 1
sage: f.__class__
<class 'sage.rings.number_field.number_field_element.CoordinateFunction'>
sage: f(a)
[-1, 1]
sage: f == loads(dumps(f))
True
```
```
```sage
alpha()

EXAMPLES:
```
```
```sage
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + 2)
sage: (a + 2).coordinates_in_terms_of_powers().alpha()
a + 2
```
class sage.rings.number_field.number_field_element.NumberFieldElement

 Bases: NumberFieldElement_base

 An element of a number field.

 EXAMPLES:

 sage: x = polygen(ZZ, 'x')
 sage: k.<a> = NumberField(x^3 + x + 1)
 sage: a^3
 -a - 1

 abs (prec=None, i=None)

 Return the absolute value of this element.

 If i is provided, then the absolute value of the i-th embedding is given.

 Otherwise, if the number field has a coercion embedding into \RR, the corresponding absolute value is returned as an element of the same field (unless prec is given). Otherwise, if it has a coercion embedding into \CC, then the corresponding absolute value is returned. Finally, if there is no coercion embedding, i defaults to 0.

 For the computation, the complex field with prec bits of precision is used, defaulting to 53 bits of precision if prec is not provided. The result is in the corresponding real field.

 INPUT:

 • prec – (default: None) integer bits of precision
 • i – (default: None) integer, which embedding to use

 EXAMPLES:

 sage: z = CyclotomicField(7).gen()
 sage: abs(z)
 1.00000000000000
 sage: abs(z^2 + 17*z - 3)
 16.0604426799931
 sage: x = polygen(ZZ, 'x')
 sage: K.<a> = NumberField(x^3 + 17)
 sage: abs(a)
 2.57128159065824
 sage: a.abs(prec=100)
 2.5712815906582353554531872087
 sage: a.abs(prec=100, i=1)
 2.5712815906582353554531872087
 sage: a.abs(100, 2)
 2.5712815906582353554531872087

 Here’s one where the absolute value depends on the embedding:

 sage: K. = NumberField(x^2 - 2)
 sage: a = 1 + b
 sage: a.abs(i=0)
 0.414213562373095
 sage: a.abs(i=1)
 2.41421356237309

 Check that \texttt{github issue #16147 is fixed}:
sage: x = polygen(ZZ)
sage: f = x^3 - x - 1
sage: beta = f.complex_roots()[0]; beta
1.32471795724475
sage: K. = NumberField(f, embedding=beta)
sage: b.abs()
1.32471795724475

Check that for fields with real coercion embeddings, absolute values are in the same field (github issue #21105):

sage: x = polygen(ZZ)
sage: f = x^3 - x - 1
sage: K. = NumberField(f, embedding=1.3)
sage: b.abs()
b

However, if a specific embedding is requested, the behavior reverts to that of number fields without a coercion embedding into \mathbb{R}:

sage: b.abs(i=2)
1.32471795724475

Also, if a precision is requested explicitly, the behavior reverts to that of number fields without a coercion embedding into \mathbb{R}:

sage: b.abs(prec=53)
1.32471795724475

abs_non_arch (P, prec=None)
Return the non-archimedean absolute value of this element with respect to the prime P, to the given precision.

INPUT:

- P – a prime ideal of the parent of self
- prec (int) – desired floating point precision (default: default RealField precision).

OUTPUT:

(real) the non-archimedean absolute value of this element with respect to the prime P, to the given precision. This is the normalised absolute value, so that the underlying prime number p has absolute value $1/p$.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 5)
sage: [1/K(2).abs_non_arch(P) for P in K.primes_above(2)]
[2.00000000000000]
sage: [1/K(3).abs_non_arch(P) for P in K.primes_above(3)]
[3.00000000000000, 3.00000000000000]
sage: [1/K(5).abs_non_arch(P) for P in K.primes_above(5)]
[5.00000000000000]

A relative example:

sage: L. = K.extension(x^2 - 5)
sage: [b.abs_non_arch(P) for P in L.primes_above(b)]
[0.447213595499958, 0.447213595499958]
absolute_differ{}ent()
Return the absolute different of this element.
This means the different with respect to the base field \(\mathbb{Q} \).

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberFieldTower([x^2 - 17, x^3 - 2])
sage: a.absolute_differ{}ent()
0
```

See also:

\(\text{different()} \)

absolute_norm()
Return the absolute norm of this number field element.

EXAMPLES:

```
sage: K1.<a1> = CyclotomicField(11)
sage: x = polygen(ZZ, 'x')
sage: K2.<a2> = K1.extension(x^2 - 3)
sage: K3.<a3> = K2.extension(x^2 + 1)
sage: (a1 + a2 + a3).absolute_norm()
1353244757701
sage: QQ(7/5).absolute_norm()
7/5
```

additive_order()
Return the additive order of this element (i.e., infinity if self != 0 and 1 if self == 0).

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<u> = NumberField(x^4 - 3*x^2 + 3)
sage: u.additive_order()
+Infinity
sage: K(0).additive_order()
1
sage: K.ring_of_integers().characteristic()  # implicit doctest
0
```

ceil()
Return the ceiling of this number field element.

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: p = x**7 - 5*x**2 + x + 1
sage: a_AA = AA.polynomial_root(p, RIF(1,2))
sage: K.<a> = NumberField(p, embedding=a_AA)
sage: b = a**5 + a/2 - 1/7
sage: RR(b)
4.13444473767055
sage: b.ceil()
5
```
This function always succeeds even if a tremendous precision is needed:

```
sage: c = b - 5065701199253/1225243417356 + 2
sage: c.ceil()
3
sage: RIF(c).unique_ceil()
Traceback (most recent call last):
 ...ValueError: interval does not have a unique ceil
```

If the number field is not embedded, this function is valid only if the element is rational:

```
sage: p = x**5 - 3
sage: K.<a> = NumberField(p)
sage: K(2/3).ceil()
1
sage: a.ceil()
Traceback (most recent call last):
 ...TypeError: ceil not uniquely defined since no real embedding is specified
```

```charpoly(var=x')```

Return the characteristic polynomial of this number field element.

**EXAMPLES:**

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + 7)
sage: a.charpoly()
x^3 + 7
sage: K(1).charpoly()
x^3 - 3*x^2 + 3*x - 1
```

```complex_embedding(prec=53, i=0)```

Return the \(i\)-th embedding of \(self\) in the complex numbers, to the given precision.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: k.<a> = NumberField(x^3 - 2)
sage: a.complex_embedding()
-0.629960524947437 - 1.09112363597172*I
sage: a.complex_embedding(10)
-0.63 - 1.1*I
sage: a.complex_embedding(100)
-0.6299605249474365823860530364 - 1.0911236359717214035600726142*I
sage: a.complex_embedding(20, 1)
-0.62996 + 1.0911*I
sage: a.complex_embedding(20, 2)
1.2599
```

```complex_embeddings(prec=53)```

Return the images of this element in the floating point complex numbers, to the given bits of precision.

**INPUT:**

- \( prec \) – integer (default: 53) bits of precision

**EXAMPLES:**
conjugate()

Return the complex conjugate of the number field element.

This is only well-defined for fields contained in CM fields (i.e. for totally real fields and CM fields). Recall that a CM field is a totally imaginary quadratic extension of a totally real field. For other fields, a `ValueError` is raised.

EXAMPLES:

```python
sage: k.<I> = QuadraticField(-1)
sage: I.conjugate()
-I
sage: (I/(1+I)).conjugate()
-1/2*I + 1/2
sage: z6 = CyclotomicField(6).gen(0)
sage: (2*z6).conjugate()
-2*zeta6 + 2
```

The following example now works.

```python
sage: x = polygen(ZZ, 'x')
sage: F. = NumberField(x^2 - 2)
sage: K.<j> = F.extension(x^2 + 1)
sage: j.conjugate()
-j
```

Raise a `ValueError` if the field is not contained in a CM field.

```python
sage: K. = NumberField(x^3 - 2)
sage: b.conjugate()
Traceback (most recent call last):
...,
ValueError: Complex conjugation is only well-defined for fields contained in CM fields.
```

An example of a non-quadratic totally real field.

```python
sage: F.<a> = NumberField(x^4 + x^3 - 3*x^2 - x + 1)
sage: a.conjugate()
```

An example of a non-cyclotomic CM field.
coordinates_in_terms_of_powers()

Let \( \alpha \) be self. Return a callable object (of type \( \text{CoordinateFunction} \)) that takes any element of the parent of self in \( \mathbb{Q}(\alpha) \) and writes it in terms of the powers of \( \alpha: 1, \alpha, \alpha^2, \ldots \). (NOT CACHED).

EXAMPLES:

This function allows us to write elements of a number field in terms of a different generator without having to construct a whole separate number field.

\[
\text{sage: } y = \text{polygen}(\mathbb{Q}, 'y'); K.<beta> = \text{NumberField}(y^3 - 2); K
\]
Number Field in beta with defining polynomial \( y^3 - 2 \)

\[
\text{sage: } alpha = beta^2 + beta + 1
\]

Coordinate function that writes elements in terms of the powers of \( beta^2 + beta + 1 \)

\[
\text{sage: } c(beta)
\]
\([-2, -3, 1]\)

\[
\text{sage: } c(alpha)
\]
\([0, 1, 0]\)

\[
\text{sage: } c((1+beta)^5)
\]
\([3, 3, 3]\)

\[
\text{sage: } c((1+beta)^10)
\]
\([54, 162, 189]\)

This function works even if self only generates a subfield of this number field.

\[
\text{sage: } x = \text{polygen}(\mathbb{Z}, 'x')
\]
\[
\text{sage: } k.<a> = \text{NumberField}(x^6 - 5)
\]
\[
\text{sage: } alpha = a^3
\]
\[
\text{sage: } c = alpha.\text{coordinates_in_terms_of_powers()}
\]
\[
\text{sage: } c((2/3)*a^3 - 5/3)
\]
\([-5/3, 2/3]\)

\[
\text{sage: } c(a)
\]
Traceback (most recent call last):
...
ArithmeticError: vector is not in free module

denominator()

Return the denominator of this element, which is by definition the denominator of the corresponding polynomial representation. I.e., elements of number fields are represented as a polynomial (in reduced form) modulo the modulus of the number field, and the denominator is the denominator of this polynomial.

EXAMPLES:

\[
\text{sage: } K.<z> = \text{CyclotomicField}(3)
\]
\[
\text{sage: } a = 1/3 + (1/5)*z
\]
\[
\text{sage: } a.\text{denominator()}
\]
15
denominator_ideal()  
Return the denominator ideal of this number field element.

The denominator ideal of a number field element \( a \) is the integral ideal consisting of all elements of the ring of integers \( R \) whose product with \( a \) is also in \( R \).

See also:

toprint_ideal()

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 5)
sage: b = (1+a)/2
sage: b.norm()
3/2
sage: D = b.denominator_ideal(); D
Fractional ideal (2, a + 1)
sage: D.norm()
2
sage: (1/b).denominator_ideal()
Fractional ideal (3, a + 1)
sage: K(0).denominator_ideal()
Fractional ideal (1)
```

descend_mod_power(K='QQ', d=2)  
Return a list of elements of the subfield \( K \) equal to \texttt{self} modulo \( d \)'th powers.

INPUT:

- \( K \) (number field, default \( \QQ \)) – a subfield of the parent number field \( L \) of \texttt{self}
- \( d \) (positive integer, default 2) – an integer at least 2

OUTPUT:

A list, possibly empty, of elements of \( K \) equal to \texttt{self} modulo \( d \)'th powers, i.e. the preimages of \texttt{self} under the map \( K^*/(K^*)^d \rightarrow L^*/(L^*)^d \) where \( L \) is the parent of \texttt{self}. A \texttt{ValueError} is raised if \( K \) does not embed into \( L \).

ALGORITHM:

All preimages must lie in the Selmer group \( K(S, d) \) for a suitable finite set of primes \( S \), which reduces the question to a finite set of possibilities. We may take \( S \) to be the set of primes which ramify in \( L \) together with those for which the valuation of \texttt{self} is not divisible by \( d \).

EXAMPLES:

A relative example:

```
sage: Qi.<i> = QuadraticField(-1)
sage: K.<zeta> = CyclotomicField(8)
sage: f = Qi.embeddings(K)[0]
sage: a = f(2+3*i) * (2-zeta)^2
sage: a.descend_mod_power(Qi, 2)
[-2*i + 3, 3*i + 2]
```

An absolute example:
Different \((K=None)\)

Return the different of this element with respect to the given base field.

The different of an element \(a\) in an extension of number fields \(L/K\) is defined as \(\text{Diff}_{L/K}(a) = f'(a)\) where \(f\) is the characteristic polynomial of \(a\) over \(K\).

**INPUT:**

- \(K\) – a subfield (embedding of a subfield) of the parent number field of \(self\). Default: \(None\), which will amount to \(self.parent().base_field()\).

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 2)
sage: a.different()
3*a^2
sage: a.different(K=K)
1
```

The optional argument \(K\) can be an embedding of a subfield:

```python
sage: K. = NumberField(x^4 - 2)
sage: (b^2).different()
0
sage: phi = K.base_field().embeddings(K)[0]
sage: b.different(K=phi)
4*b^3
```

Compare the relative different and the absolute different for an element in a relative number field:

```python
sage: K.<a> = NumberFieldTower([x^2 - 17, x^3 - 2])
sage: a.different()
2*a0
sage: a.different(K=QQ)
0
sage: a.absolute_different()
0
```

Observe that for the field extension \(Q(i)/Q\), the different of the field extension is the ideal generated by the different of \(i\):

```python
sage: K.<c> = NumberField(x^2 + 1)
sage: K.different() == K.ideal(c.different())
True
```

See also:

- \(\text{absolute\_different()}\)
- \(\text{sage.rings.number\_field.number\_field\_rel.}\)
- \(\text{NumberField\_relative.different()}\)
factor()

Return factorization of this element into prime elements and a unit.

OUTPUT:

(Factorization) If all the prime ideals in the support are principal, the output is a Factorization as a product of prime elements raised to appropriate powers, with an appropriate unit factor.

Raise ValueError if the factorization of the ideal (self) contains a non-principal prime ideal.

EXAMPLES:

```sage
x = polygen(ZZ, 'x')
K.<i> = NumberField(x^2 + 1)
(6*i + 6).factor()
(-i) * (i + 1)^3 * 3
```

In the following example, the class number is 2. If a factorization in prime elements exists, we will find it:

```sage
K.<a> = NumberField(x^2 - 10)
K.<i> = QuadraticField(-1)
K(0).factor()
```

Factorization of 0 is not allowed:

```sage
K.<i> = QuadraticField(-1)
K(0).factor()
```

floor()

Return the floor of this number field element.

EXAMPLES:

```sage
x = polygen(ZZ)
p = x**7 - 5*x**2 + x + 1
K.<a> = NumberField(p, embedding=a_AA)
b = a**5 + a/2 - 1/7
RR(b)
4.13444473767055
```

This function always succeeds even if a tremendous precision is needed:

```sage
c = b - 4772404052447/1154303505127 + 2
c.c.floor()
1
```

(continues on next page)
If the number field is not embedded, this function is valid only if the element is rational:

```
... sage: p = x**5 - 3 sage: K.<a> = NumberField(p) sage: K(2/3).floor() 0 sage: a.floor() Traceback (most recent call last): ... TypeError: floor not uniquely defined since no real embedding is specified
```

**galois_conjugates** \((K)\)

Return all \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\)-conjugates of this number field element in the field \(K\).

**EXAMPLES:**

In the first example the conjugates are obvious:

```
sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^2 - 2) sage: a.galois_conjugates(K) [a, -a] sage: K(3).galois_conjugates(K) [3]
```

In this example the field is not Galois, so we have to pass to an extension to obtain the Galois conjugates.

```
sage: K.<a> = NumberField(x^3 - 2) sage: c = a.galois_conjugates(K); c [a] sage: K.<a> = NumberField(x^3 - 2) sage: c = a.galois_conjugates(K.galois_closure('a1')); c # needs sage.groups [1/18*a1^4, -1/36*a1^4 + 1/2*a1, -1/36*a1^4 - 1/2*a1] sage: c[0]^3 2 sage: parent(c[0]) Number Field in a1 with defining polynomial x^6 + 108 sage: parent(c[0]).is_galois() # needs sage.groups True
```

There is only one Galois conjugate of \(\sqrt[3]{2}\) in \(\mathbb{Q}(\sqrt[3]{2})\).

```
sage: a.galois_conjugates(K) [a]
```

Galois conjugates of \(\sqrt[3]{2}\) in the field \(\mathbb{Q}(\zeta_3, \sqrt[3]{2})\):

```
sage: L.<a> = CyclotomicField(3).extension(x^3 - 2) sage: a.galois_conjugates(L) [a, (-zeta3 - 1)*a, zeta3*a]
```
**gcd**(other)

Return the greatest common divisor of **self** and **other**.

**INPUT:**

- **self, other** – elements of a number field or maximal order.

**OUTPUT:**

- A generator of the ideal (**self**, **other**). If the parent is a number field, this always returns 0 or 1. For maximal orders, this raises **ArithmeticError** if the ideal is not principal.

**EXAMPLES:**

```
sage: K.<i> = QuadraticField(-1)
sage: (i+1).gcd(2)
1
sage: K(i).gcd(0)
1
sage: K(0).gcd(0)
0
sage: R = K.maximal_order()
sage: R(i+1).gcd(2)
i + 1
sage: R = K.order(2*i)
sage: R(1).gcd(R(4*i))
1
```

The following field has class number 3, but if the ideal (**self**, **other**) happens to be principal, this still works:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 7)
sage: K.class_number()
3
sage: a.gcd(7)
1
sage: R = K.maximal_order()
sage: R(a).gcd(7)
a
sage: R(a+1).gcd(2)
Traceback (most recent call last):
 ... ArithmeticError: ideal (a + 1, 2) is not principal, gcd is not defined
sage: R(2*a - a^2).gcd(0)
a
sage: R(a).gcd(R(2*a)).parent()
Maximal Order generated by a in Number Field in a with defining polynomial x^3 - 7
```

**global_height**(prec=None)

Returns the absolute logarithmic height of this number field element.

**INPUT:**

- **prec** (int) – desired floating point precision (default: default **RealField** precision).

**OUTPUT:**

(real) The absolute logarithmic height of this number field element; that is, the sum of the local heights at all finite and infinite places, scaled by the degree to make the result independent of the parent field.
EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4 + 3*x^2 - 17)
sage: b = a/2
sage: b.global_height()
0.789780699008...
sage: b.global_height(prec=200)
0.78978069900813892060267152032141577237037181070060784564457
```

The global height of an algebraic number is absolute, i.e. it does not depend on the parent field:

```python
sage: QQ(6).global_height()
1.79175946922805
sage: K(6).global_height()
1.79175946922805
sage: L. = NumberField((a^2).minpoly())
sage: L.degree()
2
sage: b.global_height() # element of L (degree 2 field)
1.41660667202811
sage: (a^2).global_height() # element of K (degree 4 field)
1.41660667202811
```

And of course every element has the same height as it’s inverse:

```python
sage: K.<s> = QuadraticField(2)
sage: s.global_height()
0.346573590279973
sage: (1/s).global_height() # make sure that 11758 is fixed
0.346573590279973
```

`global_height_arch(prec=None)`
Returns the total archimedean component of the height of `self`.

INPUT:

- `prec` (int) – desired floating point precision (default: default `RealField` precision).

OUTPUT:

(real) The total archimedean component of the height of this number field element; that is, the sum of the local heights at all infinite places.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4 + 3*x^2 - 17)
sage: b = a/2
sage: b.global_height_arch()
0.38653407379277...
```

`global_height_non_arch(prec=None)`
Returns the total non-archimedean component of the height of `self`.

INPUT:

- `prec` (int) – desired floating point precision (default: default `RealField` precision).
OUTPUT:
(real) The total non-archimedean component of the height of this number field element; that is, the sum of the local heights at all finite places, weighted by the local degrees.

ALGORITHM:
An alternative formula is \( \log(d) \) where \( d \) is the norm of the denominator ideal; this is used to avoid factorization.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4 + 3*x^2 - 17)
sage: b = a/6
sage: b.global_height_non_arch()
7.16703787691222
```
Check that this is equal to the sum of the non-archimedean local heights:

```
sage: [b.local_height(P) for P in b.support()]
[0.000000000000000, 0.693147180559945, 1.09861228866811, 1.09861228866811]
sage: [b.local_height(P, weighted=True) for P in b.support()]
[0.000000000000000, 2.77258872223978, 2.19722457733622, 2.19722457733622]
sage: sum([b.local_height(P,weighted=True) for P in b.support()])
7.16703787691222
```
A relative example:

```
sage: PK.<y> = K[]
sage: L.<c> = NumberField(y^2 + a)
sage: (c/10).global_height_non_arch()
18.4206807439524
```

inverse_mod(I)

Returns the inverse of \( \text{self} \) mod the integral ideal \( I \).

INPUT:

- \( I \) – may be an ideal of \( \text{self.parent()} \), or an element or list of elements of \( \text{self.parent()} \) generating a nonzero ideal. A ValueError is raised if \( I \) is non-integral or zero. A ZeroDivisionError is raised if \( I + (x) \neq (1) \).

Note: It’s not implemented yet for non-integral elements.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3)
sage: d = 3*a + 1
sage: d.inverse_mod(N)
1
```

```
sage: k.<a> = NumberField(x^3 + 11)
sage: d = a + 13
sage: d.inverse_mod(a^2)*d - 1 in k.ideal(a^2)
```
(continues on next page)
True
sage: d.inverse_mod((5, a + 1))*d - 1 in k.ideal(5, a + 1)
True
sage: K.<b> = k.extension(x^2 + 3)

sage: K.<b> = k.extension(x^2 + 3)

sage: b.inverse_mod([37, a - b])
7
sage: 7*b - 1 in K.ideal(37, a - b)
True
sage: b.inverse_mod([37, a - b]).parent() == K
True

is_integer()

Test whether this number field element is an integer.

See also:

- is_rational() to test if this element is a rational number
- is_integral() to test if this element is an algebraic integer

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<cbt3> = NumberField(x^3 - 3)
sage: cbt3.is_integer()
False
sage: (cbt3**2 - cbt3 + 2).is_integer()
False
sage: K(-12).is_integer()
True
sage: K(0).is_integer()
True
sage: K(1/2).is_integer()
False

is_integral()

Determine if a number is in the ring of integers of this number field.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 23)
sage: a.is_integral()
True
sage: t = (1+a)/2
sage: t.is_integral()
True
sage: t.minpoly()
x^2 - x + 6
sage: t = a/2
sage: t.is_integral()
False
sage: t.minpoly()
x^2 + 23/4

An example in a relative extension:
is_norm($L$, element=False, proof=True)

Determine whether self is the relative norm of an element of $L/K$, where $K$ is self.parent().

**INPUT:**

- $L$ – a number field containing $K = $ self.parent().
- element – True or False, whether to also output an element of which self is a norm.
- proof – If True, then the output is correct unconditionally. If False, then the output is correct under GRH.

**OUTPUT:**

If element is False, then the output is a boolean $B$, which is True if and only if self is the relative norm of an element of $L$ to $K$.

If element is True, then the output is a pair $(B,x)$, where $B$ is as above. If $B$ is True, then $x$ is an element of $L$ such that self == x.norm($K$). Otherwise, $x$ is None.

**ALGORITHM:**

Uses PARI’s pari:rnfisnorm. See _rnfisnorm().

**EXAMPLES:**

```
sage: x = polygen(ZZ, 'x')
sage: K.<beta> = NumberField(x^3 + 5)
sage: Q.<X> = K[]
sage: L = K.extension(X^2 + X + beta, 'gamma')
sage: (beta/2).is_norm(L) # False
```

With a relative base field:

```
sage: K.<a, b> = NumberField([x^2 - 2, x^2 - 3])
sage: L.<c> = K.extension(x^2 - 5)
sage: (2*a*b).is_norm(L) # True
```

Non-Galois number fields:

```
sage: K.<a> = NumberField(x^2 + x + 1)
sage: Q.<X> = K[]
sage: L. = NumberField(X^4 + a + 2)
sage: (a/4).is_norm(L) # True
```

(continues on next page)
Traceback (most recent call last):
...
NotImplementedError: is_norm is not implemented unconditionally
for norms from non-Galois number fields
sage: (a/2).is_norm(L, proof=False)  # needs sage.groups
False
sage: K.<a> = NumberField(x^3 + x + 1)
sage: Q.<X> = K[]
sage: L.<b> = NumberField(X^4 + a)
sage: t, u = (-a).is_norm(L, element=True); u  # random (not unique)
b^3 + 1
sage: t and u.norm(K) == -a
True

Verify that github issue #27469 has been fixed:

sage: L.<z24> = CyclotomicField(24); L
Cyclotomic Field of order 24 and degree 8
sage: K = L.subfield(z24^3, 'z8')[0]; K
Number Field in z8 with defining polynomial x^4 + 1
with z8 = 0.7071067811865475? + 0.7071067811865475?*I
sage: flag, c = K(-7).is_norm(K, element=True); flag
True
sage: c.norm(K)
-7
sage: c in L
True

AUTHORS:

- Craig Citro (2008-04-05)
- Marco Streng (2010-12-03)

is_nth_power(n)

Return True if self is an n'th power in its parent K.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^4 - 7)
sage: K(7).is_nth_power(2)
True
sage: K(7).is_nth_power(4)
True
sage: K(7).is_nth_power(8)
False
sage: K((a-3)^5).is_nth_power(5)
True

ALGORITHM: Use PARI to factor \(x^n - \text{self}\) in \(K\).

is_one()

Test whether this number field element is 1.

EXAMPLES:
is_padic_square \( (P, \text{check}=\text{True}) \)

Return if \( \text{self} \) is a square in the completion at the prime \( P \).

INPUT:

- \( P \) – a prime ideal
- \( \text{check} \) – (default: \text{True}); check if \( P \) is prime

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 2)
sage: p = K.primes_above(2)[0]
sage: K(5).is_padic_square(p)
False
```

is_prime()

Test whether this number-field element is prime as an algebraic integer.

Note that the behavior of this method differs from the behavior of \text{is_prime()} in a general ring, according to which (number) fields would have no nonzero prime elements.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: (1 + i).is_prime()
True
sage: ((1+i)/2).is_prime()
False
```

is_rational()

Test whether this number field element is a rational number.

See also:

- \text{is_integer()} to test if this element is an integer
- \text{is_integral()} to test if this element is an algebraic integer

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: K.<cbrt3> = NumberField(x^3 - 3)
sage: cbrt3.is_rational()
```

(continues on next page)
False
sage: (cbrt3**2 - cbrt3 + 1/2).is_rational()
False
sage: K(-12).is_rational()
True
sage: K(0).is_rational()
True
sage: K(1/2).is_rational()
True

is_square (root=False)
Return True if self is a square in its parent number field and otherwise return False.

INPUT:
  • root – if True, also return a square root (or None if self is not a perfect square)

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: m.<b> = NumberField(x^4 - 1789)
sage: b.is_square()
False
sage: c = (2/3*b + 5)^2; c
4/9*b^2 + 20/3*b + 25
sage: c.is_square()
True
sage: c.is_square(True)
(True, 2/3*b + 5)

We also test the functional notation.

sage: is_square(c, True)
(True, 2/3*b + 5)

is_totally_positive ()
Return True if self is positive for all real embeddings of its parent number field. We do nothing at complex places, so e.g. any element of a totally complex number field will return True.

EXAMPLES:

is_unit ()
Return True if self is a unit in the ring where it is defined.

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - x - 1)
sage: OK = K.ring_of_integers()
sage: OK(a).is_unit()
    True
sage: OK(13).is_unit()
    False
sage: K(13).is_unit()
    True

It also works for relative fields and orders:

sage: K.<a,b> = NumberField([x^2 - 3, x^4 + x^3 + x^2 + x + 1])
sage: OK = K.ring_of_integers()
sage: OK(a).is_unit()
    True
sage: OK(b).is_unit()
    False
sage: a.is_unit()
    True

list()

Return the list of coefficients of self written in terms of a power basis.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - x + 2); ((a + 1)/(a + 2)).list()
    [1/4, 1/2, -1/4]
sage: K.<a, b> = NumberField([x^3 - x + 2, x^2 + 23]); ((a + b)/(a + 2)).list()
    [3/4*b - 1/2, -1/2*b + 1, 1/4*b - 1/2]

local_height (P, prec=None, weighted=False)

Returns the local height of self at a given prime ideal P.

INPUT:

• P – a prime ideal of the parent of self

• prec (int) – desired floating point precision (default: default RealField precision).

• weighted (bool, default False) – if True, apply local degree weighting.

OUTPUT:

(real) The local height of this number field element at the place P. If weighted is True, this is multiplied by the local degree (as required for global heights).

EXAMPLES:

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4 + 3*x^2 - 17)
sage: P = K.ideal(61).factor()[0][0]
sage: b = 1/(a^2 + 30)
sage: b.local_height(P)
    4.11087386417331
sage: b.local_height(P, weighted=True)
    8.22174772834662
A relative example:

```
sage: PK.<y> = K[]
sage: L.<c> = NumberField(y^2 + a)
sage: L(1/4).local_height(L.ideal(2, c - a + 1))
1.38629436111989
```

**local_height_arch** *(i, prec=None, weighted=False)*

Returns the local height of self at the *i*’th infinite place.

**INPUT:**

- *i* (int) – an integer in `range(r+s)` where 
  *(r, s)*
  is the signature of the parent field (so 
  
  \( n = r + 2s \)
  is the degree).

- *prec* (int) – desired floating point precision (default: default
  `RealField` precision).

- *weighted* (bool, default False) – if True, apply local degree weighting, i.e. double the value for complex places.

**OUTPUT:**

(real) The archimedean local height of this number field element at the *i*’th infinite place. If *weighted* is True, this is multiplied by the local degree (as required for global heights), i.e. 1 for real places and 2 for complex places.

**EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4 + 3*x^2 - 17)
sage: [p.codomain() for p in K.places()]
[Real Field with 106 bits of precision,
 Real Field with 106 bits of precision,
 Complex Field with 53 bits of precision]
sage: [a.local_height_arch(i) for i in range(3)]
[0.5301924545717755083366563897519,
 0.5301924545717755083366563897519,
 0.886414217456333]
sage: [a.local_height_arch(i, weighted=True) for i in range(3)]
[0.5301924545717755083366563897519,
 0.5301924545717755083366563897519,
 1.77282843491267]
```

A relative example:

```
sage: L.<b, c> = NumberFieldTower([x^2 - 5, x^3 + x + 3])
sage: [(b + c).local_height_arch(i) for i in range(4)]
[1.238223390757884911842206617439,
 0.02240347229957875780769746914391,
 0.780028961749618,
 1.16048938497298]
```
matrix \( (\text{base}=\text{None}) \)

If \( \text{base} \) is None, return the matrix of right multiplication by the element on the power basis \( 1, x, x^2, \ldots, x^{d-1} \) for the number field. Thus the rows of this matrix give the images of each of the \( x^i \).

If \( \text{base} \) is not None, then \( \text{base} \) must be either a field that embeds in the parent of \( \text{self} \) or a morphism to the parent of \( \text{self} \), in which case this function returns the matrix of multiplication by \( \text{self} \) on the power basis, where we view the parent field as a field over \( \text{base} \).

Specifying \( \text{base} \) as the base field over which the parent of \( \text{self} \) is a relative extension is equivalent to \( \text{base} \) being None.

**INPUT:**

- \( \text{base} \) – field or morphism

**EXAMPLES:**

Regular number field:

```
sage: K.<a> = NumberField(QQ['x'].0^3 - 5)
sage: M = a.matrix(); M
\[
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
5 & 0 & 0
\end{bmatrix}
\]
sage: M.base_ring() is QQ
True
```

Relative number field:

```
sage: L. = K.extension(K['x'].0^2 - 2)
sage: M = b.matrix(); M
\[
\begin{bmatrix}
0 & 1 \\
a & 0
\end{bmatrix}
\]
sage: M.base_ring() is K
True
```

Absolute number field:

```
sage: M = L.absolute_field('c').gen().matrix(); M
\[
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
-17 & -60 & -12 & -10 & 6 & 0
\end{bmatrix}
\]
sage: M.base_ring() is QQ
True
```

More complicated relative number field:

```
sage: L. = K.extension(K['x'].0^2 - a); L
Number Field in b with defining polynomial x^2 - a over its base field
sage: M = b.matrix(); M
\[
\begin{bmatrix}
0 & 1 \\
a & 0
\end{bmatrix}
\]
sage: M.base_ring() is K
True
```

An example where we explicitly give the subfield or the embedding:
Notice that if we compute all embeddings and choose a different one, then the matrix is changed as it should be:

```
sage: v = L.embeddings(K)
sage: a.matrix(v[1])
[0 1]
[-a2 0]
```

The norm is also changed:

```
sage: a.norm(v[1])
a2
sage: a.norm(v[0])
-a2
```

### minpoly (var='x')

Return the minimal polynomial of this number field element.

**EXAMPLES:**

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 3)
sage: a.minpoly('x')
x^2 + 3
sage: R.<X> = K[X]
sage: L. = K.extension(X^2 - (22 + a))
sage: b.minpoly('t')
t^2 - a - 22
sage: b.absolute_minpoly('t')
t^4 - 44*t^2 + 487
sage: b^2 - (22+a)
0
```

### multiplicative_order()

Return the multiplicative order of this number field element.

**EXAMPLES:**

```
sage: K.<z> = CyclotomicField(5)
sage: z.multiplicative_order()
5
sage: (-z).multiplicative_order()
10
sage: (1+z).multiplicative_order()
+Infinity
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^40 - x^20 + 4)
sage: u = 1/4*a^30 + 1/4*a^10 + 1/2
sage: u.multiplicative_order()
6
```

(continues on next page)
An example in a relative extension:

```python
sage: K.<a, b> = NumberField([x^2 + x + 1, x^2 - 3])
sage: z = (a - 1)*b/3
sage: z.multiplicative_order()
12
sage: z^12==1 and z^6!=1 and z^4!=1
True
```

### norm (K=None)

Return the absolute or relative norm of this number field element.

If \( K \) is given, then \( K \) must be a subfield of the parent \( L \) of self, in which case the norm is the relative norm from \( L \) to \( K \). In all other cases, the norm is the absolute norm down to \( \mathbb{Q} \).

### EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + x^2 + x - 132/7); K
Number Field in a with defining polynomial x^3 + x^2 + x - 132/7
sage: a.norm()
132/7
sage: factor(a.norm())
2^2 * 3 * 7^-1 * 11
sage: K(0).norm()
0
```

Some complicated relatives norms in a tower of number fields.

```python
sage: K.<a,b,c> = NumberField([x^2 + 1, x^2 + 3, x^2 + 5])
sage: L = K.base_field(); M = L.base_field()
sage: a.norm()
1
sage: a.norm(L)
1
sage: a.norm(M)
1
sage: a
a
sage: (a + b + c).norm()
121
sage: (a + b + c).norm(L)
2*c*b - 7
sage: (a + b + c).norm(M)
-11
```

We illustrate that norm is compatible with towers:

```python
sage: z = (a + b + c).norm(L); z.norm(M)
-11
```

If we are in an order, the norm is an integer:
```
sage: K.<a> = NumberField(x^3 - 2)
sage: a.norm().parent()
Rational Field
sage: R = K.ring_of_integers()
sage: R(a).norm().parent()
Integer Ring
```

When the base field is given by an embedding:

```
sage: K.<a> = NumberField(x^4 + 1)
sage: L.<a2> = NumberField(x^2 + 1)
sage: v = L.embeddings(K)
sage: a.norm(v[1])
a2
sage: a.norm(v[0])
-a2
```

**nth_root** (*n*, *all=False*)

Return an *n*’th root of *self* in its parent *K*.

**EXAMPLES:**

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^4 - 7)
sage: K(7).nth_root(2)
a^2
sage: K((a-3)^5).nth_root(5)
a - 3
```

ALGORITHM: Use PARI to factor *x^n* - *self* in *K*.

**numerator_ideal()**

Return the numerator ideal of this number field element.

The numerator ideal of a number field element *a* is the ideal of the ring of integers *R* obtained by intersecting *aR* with *R*.

**EXAMPLES:**

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 5)
sage: b = (1+a)/2
sage: b.norm()
3/2
sage: N = b.numerator_ideal(); N
Fractional ideal (3, a + 1)
sage: N.norm()
3
sage: (1/b).numerator_ideal()
Fractional ideal (2, a + 1)
sage: K(0).numerator_ideal()
Ideal (0) of Number Field in a with defining polynomial x^2 + 5
```

**ord** (*P*)

Return the valuation of *self* at a given prime ideal *P*.
INPUT:

- \( P \) – a prime ideal of the parent of \( \text{self} \)

Note: The method \( \texttt{ord()} \) is an alias for \( \texttt{valuation()} \).

EXAMPLES:

```sage
R.<x> = QQ[]
K.<a> = NumberField(x^4 + 3*x^2 - 17)
P = K.ideal(61).factor()[0][0]
b = a^2 + 30
b.valuation(P)
1
b.ord(P)
1
type(b.valuation(P))
<class 'sage.rings.integer.Integer'>
```

The function can be applied to elements in relative number fields:

```sage
L. = K.extension(x^2 - 3)

[L(6).valuation(P) for P in L.primes_above(2)]
[4]

[L(6).valuation(P) for P in L.primes_above(3)]
[2, 2]
```

\texttt{polynomial(var='x')}

Return the underlying polynomial corresponding to this number field element.

The resulting polynomial is currently \textit{not} cached.

EXAMPLES:

```sage
x = polygen(ZZ, 'x')
K.<a> = NumberField(x^5 - x - 1)
f = (-2/3 + 1/3*a)^4; f
1/81*a^4 - 8/81*a^3 + 8/27*a^2 - 32/81*a + 16/81
g = f.polynomial(); g
1/81*x^4 - 8/81*x^3 + 8/27*x^2 - 32/81*x + 16/81
parent(g)
Univariate Polynomial Ring in x over Rational Field
```

Note that the result of this function is not cached (should this be changed?):

```sage
g is f.polynomial()
False
```

Note that in relative number fields, this produces the polynomial of the internal representation of this element:

```sage
R.<y> = K[]
L. = K.extension(y^2 - a)
b.polynomial()
x
```

In some cases this might not be what you are looking for:
relative_norm()

Return the relative norm of this number field element over the next field down in some tower of number fields.

EXAMPLES:

```python
sage: K1.<a1> = CyclotomicField(11)
sage: x = polygen(ZZ, 'x')
sage: K2.<a2> = K1.extension(x^2 - 3)
sage: (a1 + a2).relative_norm()
```

residue_symbol($P$, $m$, check=True)

The $m$-th power residue symbol for an element $self$ and proper ideal $P$.

$$\left( \frac{\alpha}{P} \right) \equiv \alpha^{N(P)-1} \mod P$$

Note: accepts $m = 1$, in which case returns 1

Note: can also be called for an ideal from sage.rings.number_field_ideal.residue_symbol

Note: $self$ is coerced into the number field of the ideal $P$

Note: if $m = 2$, $self$ is an integer, and $P$ is an ideal of a number field of absolute degree 1 (i.e. it is a copy of the rationals), then this calls kronecker_symbol(), which is implemented using GMP.

INPUT:

• $P$ – proper ideal of the number field (or an extension)

• $m$ – positive integer

OUTPUT:

• an $m$-th root of unity in the number field

EXAMPLES:

Quadratic Residue (11 is not a square modulo 17):
The result depends on the number field of the ideal:

```
sage: K.<a> = NumberField(x - 1)
sage: L. = K.extension(x^2 + 1)
sage: K(7).residue_symbol(K.ideal(11),2)
-1
sage: K(7).residue_symbol(L.ideal(11),2)
needs sage.libs.gap
1
```

Cubic Residue:

```
sage: K.<w> = NumberField(x^2 - x + 1)
sage: (w^2 + 3).residue_symbol(K.ideal(17),3)
-w
```

The field must contain the m-th roots of unity:

```
sage: K.<w> = NumberField(x^2 - x + 1)
sage: (w^2 + 3).residue_symbol(K.ideal(17),5)
Traceback (most recent call last):
 ... ValueError: The residue symbol to that power is not defined for the number_field
```

**round()**

Return the round (nearest integer) of this number field element. In case of ties, this relies on the default rounding for rational numbers.

**EXAMPLES:**

```
sage: x = polygen(ZZ)
sage: p = x**7 - 5*x**2 + x + 1
sage: a-AA = AA.polynomial_root(p, RIF(1,2))
sage: K.<a> = NumberField(p, embedding=a_AA)
sage: b = a**5 + a/2 - 1/7
sage: RR(b)
4.1344473767055
sage: b.round()
4
sage: (-b).round()
-4
sage: (b + 1/2).round() # 5
5
sage: (-b - 1/2).round() # -5
-5
```

This function always succeeds even if a tremendous precision is needed:
If the number field is not embedded, this function is valid only if the element is rational:

```
 sage: p = x**5 - 3
 sage: K.<a> = NumberField(p)
 sage: [K(k/3).round() for k in range(-3,4)]
 [-1, -1, 0, 0, 0, 1, 1]
 sage: a.round()
 Traceback (most recent call last):
 ...
 TypeError: floor not uniquely defined since no real embedding is specified
```

**sign()**

Return the sign of this algebraic number (if a real embedding is well defined)

**EXAMPLES:**

```
 sage: x = polygen(ZZ, 'x')
 sage: K.<a> = NumberField(x^3 - 2, embedding=AA(2)**(1/3))
 sage: K.zero().sign()
 0
 sage: K.one().sign()
 1
 sage: (-K.one()).sign()
 -1
 sage: a.sign()
 1
 sage: (a - 234917380309015/186454048314072).sign()
 1
 sage: (a - 3741049304830488/2969272800976409).sign()
 -1
```

If the field is not embedded in real numbers, this method will only work for rational elements:

```
 sage: L. = NumberField(x^4 - x - 1)
 sage: b.sign()
 Traceback (most recent call last):
 ...
 TypeError: sign not well defined since no real embedding is specified
 sage: L(-33/125).sign()
 -1
 sage: L.zero().sign()
 0
```

**sqrt (all=False, extend=True)**

Return the square root of this number in the given number field.

**INPUT:**

- all – optional boolean (default False): whether to return both square roots
- extend – optional boolean (default True); whether to extend the field by adding the square roots if needed

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - 3)
sage: K(3).sqrt()
a
sage: K(3).sqrt(all=True)
[a, -a]
sage: K(a^10).sqrt()
9*a
sage: K(49).sqrt()
7
sage: K(i+a).sqrt(extend=False)
Traceback (most recent call last):
 ... ValueError: a + 1 not a square in Number Field in a with defining polynomial...

sage: K(0).sqrt()
0
sage: K((7+a)^2).sqrt(all=True)
[a + 7, -a - 7]
```

```python
sage: K.<a> = CyclotomicField(7)
sage: a.sqrt()
a^4
sage: K.<a> = NumberField(x^5 - x + 1)
sage: (a^4 + a^2 - 3*a + 2).sqrt()
a^3 - a^2
```

Using the `extend` keyword:

```python
sage: K = QuadraticField(-5)
sage: z = K(-7).sqrt(extend=True); z
 needs sage.symbolic
sqrt(-7)
sage: CyclotomicField(4)(4).sqrt(extend=False)
2
```

If `extend=False` an error is raised, if `self` is not a square:

```python
sage: K = QuadraticField(-5)
sage: K(-7).sqrt(extend=False)
Traceback (most recent call last):
 ... ValueError: -7 not a square in Number Field in a
 with defining polynomial x^2 + 5 with a = 2.236067977499790?I
```

**ALGORITHM:** Use PARI to factor $x^2 - \text{self}$ in $K$.

**support()**

- Return the support of this number field element.

**OUTPUT:** A sorted list of the prime ideals at which this number field element has nonzero valuation. An error is raised if the element is zero.
EXAMPLES:

```sage
sage: x = ZZ['x'].gen()
sage: F.<t> = NumberField(x^3 - 2)
sage: P5s = F(5).support()
sage: P5s
[Fractional ideal (-t^2 - 1), Fractional ideal (t^2 - 2*t - 1)]
sage: all(5 in P5 for P5 in P5s)
True
sage: all(P5.is_prime() for P5 in P5s)
True
sage: [P5.norm() for P5 in P5s]
[5, 25]
```

\textbf{trace} $\text{(K=NONE)}$

Return the absolute or relative trace of this number field element.

If $K$ is given, then $K$ must be a subfield of the parent $L$ of \texttt{self}, in which case the trace is the relative trace from $L$ to $K$. In all other cases, the trace is the absolute trace down to $\mathbb{Q}$.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 132/7*x^2 + x + 1); K
Number Field in a with defining polynomial x^3 - 132/7*x^2 + x + 1
sage: a.trace()
132/7
sage: (a + 1).trace() == a.trace() + 3
True
```

If we are in an order, the trace is an integer:

```sage
sage: K.<zeta> = CyclotomicField(17)
sage: R = K.ring_of_integers()
sage: R(zeta).trace().parent()
Integer Ring
```

\textbf{valuation} $\text{(P)}$

Return the valuation of \texttt{self} at a given prime ideal $P$.

INPUT:

- $P$ – a prime ideal of the parent of \texttt{self}

\textbf{Note:} The method \texttt{ord()} is an alias for \texttt{valuation()}.

EXAMPLES:

```sage
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^4 + 3*x^2 - 17)
sage: P = K.ideal(61).factor()[0][0]
sage: b = a^2 + 30
sage: b.valuation(P)
1
sage: b.ord(P)
1
```

(continues on next page)
The function can be applied to elements in relative number fields:

```
sage: L. = K.extension(x^2 - 3)
sage: [L(6).valuation(P) for P in L.primes_above(2)]
[4]
sage: [L(6).valuation(P) for P in L.primes_above(3)]
[2, 2]
```

### vector() method

Return vector representation of self in terms of the basis for the ambient number field.

**EXAMPLES:**

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 1)
sage: (2/3*a - 5/6).vector()
(-5/6, 2/3)
sage: O = K.order(2*a)
sage: (O.1).vector()
(0, 2)
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: (a + b).vector()
(b, 1)
sage: O = K.order([a,b])
sage: (O.1).vector()
(-b, 1)
sage: (O.2).vector()
(1, -b)
```

---

### class sage.rings.number_field.number_field_element.NumberFieldElement_absolute

**Bases:** NumberFieldElement

**absolute_charpoly**(var='x', algorithm=None)

Return the characteristic polynomial of this element over \( \mathbb{Q} \).

For the meaning of the optional argument algorithm, see charpoly().

**EXAMPLES:**

```
sage: x = ZZ['x'].0
sage: K.<a> = NumberField(x^4 + 2, 'a')
sage: a.absolute_charpoly()
x^4 + 2
sage: a.absolute_charpoly('y')
y^4 + 2
sage: (-a^2).absolute_charpoly()
x^4 + 4*x^2 + 4
sage: (-a^2).absolute_minpoly()
x^2 + 2
sage: a.absolute_charpoly(algorithm='pari') == a.absolute_charpoly(algorithm='sage')
True
```
**absolute_minpoly** *(var='x', algorithm=None)*

Return the minimal polynomial of this element over \( \mathbb{Q} \).

For the meaning of the optional argument algorithm, see `charpoly()`.

**EXAMPLES:**

```
sage: x = ZZ['x'].0
sage: f = (x^10 - 5*x^9 + 15*x^8 - 68*x^7 + 81*x^6 - 221*x^5 + 141*x^4 - 242*x^3 - 13*x^2 - 33*x - 135)
sage: K.<a> = NumberField(f, 'a')
sage: a.absolute_charpoly()
x^10 - 5*x^9 + 15*x^8 - 68*x^7 + 81*x^6 - 221*x^5 + 141*x^4 - 242*x^3 - 13*x^2 - 33*x - 135
sage: a.absolute_charpoly(y)
y^10 - 5*y^9 + 15*y^8 - 68*y^7 + 81*y^6 - 221*y^5 + 141*y^4 - 242*y^3 - 13*y^2 - 33*y - 135
sage: b = (-79/9995*a^9 + 52/9995*a^8 + 271/9995*a^7 + 1663/9995*a^6 + 13204/9995*a^5 + 5573/9995*a^4 + 8435/1999*a^3 - 3116/9995*a^2 + 7734/1999*a + 1620/1999)
sage: b.absolute_charpoly()
x^10 + 10*x^9 + 25*x^8 - 80*x^7 - 438*x^6 + 80*x^5 + 2950*x^4 + 1520*x^3 - 10439*x^2 - 5130*x + 18225
sage: b.absolute_minpoly()
x^5 + 5*x^4 - 40*x^2 - 19*x + 135
sage: b.absolute_minpoly(algorithm='pari') == b.absolute_minpoly(algorithm='sage') # needs sage.libs.pari
True
```

**charpoly** *(var='x', algorithm=None)*

The characteristic polynomial of this element, over \( \mathbb{Q} \) if \( \text{self} \) is an element of a field, and over \( \mathbb{Z} \) if \( \text{self} \) is an element of an order.

This is the same as `absolute_charpoly()` since this is an element of an absolute extension.

The optional argument algorithm controls how the characteristic polynomial is computed: 'pari' uses PARI, 'sage' uses charpoly for Sage matrices. The default value None means that 'pari' is used for small degrees (up to the value of the constant TUNE_CHARPOLY_NF, currently at 25), otherwise 'sage' is used. The constant TUNE_CHARPOLY_NF should give reasonable performance on all architectures; however, if you feel the need to customize it to your own machine, see github issue #5213 for a tuning script.

**EXAMPLES:**

We compute the characteristic polynomial of the cube root of 2.

```
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3 - 2)
sage: a.charpoly('x')
x^3 - 2
sage: a.charpoly('y').parent()
Univariate Polynomial Ring in y over Rational Field
```

**is_real_positive** *(min_prec=53)*

Using the \( n \) method of approximation, return True if \( \text{self} \) is a real positive number and False otherwise. This method is completely dependent of the embedding used by the \( n \) method.

The algorithm first checks that \( \text{self} \) is not a strictly complex number. Then if \( \text{self} \) is not zero, by approximation more and more precise, the method answers True if the number is positive. Using RealInterval, the result is guaranteed to be correct.
For \texttt{CyclotomicField}, the embedding is the natural one sending \( \zeta_n \) on \( \cos(2 \pi n) \).

**EXAMPLES:**

```sage
sage: K.<a> = CyclotomicField(3)
sage: (a + a^2).is_real_positive()
False
sage: (-a - a^2).is_real_positive()
True
sage: K.<a> = CyclotomicField(1000)
sage: (a + a^(-1)).is_real_positive()
True
sage: K.<a> = CyclotomicField(1009)
sage: d = a^252
sage: (d + d.conjugate()).is_real_positive()
True
sage: d = a^253
sage: (d + d.conjugate()).is_real_positive()
False
sage: K.<a> = QuadraticField(3)
sage: a.is_real_positive()
True
sage: K.<a> = QuadraticField(-3)
sage: a.is_real_positive()
False
sage: (a - a).is_real_positive()
False
```

**lift**(var='x')

Return an element of \( \mathbb{Q}[x] \), where this number field element lives in \( \mathbb{Q}[x]/(f(x)) \).

**EXAMPLES:**

```sage
sage: K.<a> = QuadraticField(-3)
sage: a.lift()
x
```

**list()**

Return the list of coefficients of \texttt{self} written in terms of a power basis.

**EXAMPLES:**

```sage
sage: K.<z> = CyclotomicField(3)
sage: (2 + 3/5*z).list()
[2, 3/5]
sage: (5*z).list()
[0, 5]
sage: K(3).list()
[3, 0]
```

**minpoly**(var='x', algorithm=None)

Return the minimal polynomial of this number field element.

For the meaning of the optional argument \texttt{algorithm}, see \texttt{charpoly()}.

**EXAMPLES:**

We compute the characteristic polynomial of cube root of 2.
class sage.rings.number_field.number_field_element.NumberFieldElement_relative

Bases: NumberFieldElement

The current relative number field element implementation does everything in terms of absolute polynomials.

All conversions from relative polynomials, lists, vectors, etc should happen in the parent.

absolute_charpoly (var='x', algorithm=None)

The characteristic polynomial of this element over \( \mathbb{Q} \).

We construct a relative extension and find the characteristic polynomial over \( \mathbb{Q} \).

The optional argument algorithm controls how the characteristic polynomial is computed: 'pari' uses PARI, 'sage' uses charpoly for Sage matrices. The default value None means that 'pari' is used for small degrees (up to the value of the constant TUNE_CHARPOLY_NF, currently at 25), otherwise 'sage' is used. The constant TUNE_CHARPOLY_NF should give reasonable performance on all architectures; however, if you feel the need to customize it to your own machine, see github issue #5213 for a tuning script.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^3-2)
sage: a.minpoly('x')
x^3 - 2
sage: a.minpoly('y').parent()
Univariate Polynomial Ring in y over Rational Field
```

absolute_minpoly (var='x', algorithm=None)

Return the minimal polynomial over \( \mathbb{Q} \) of this element.

For the meaning of the optional argument algorithm, see absolute_charpoly().

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 2, x^2 + 1000*x + 1])
sage: y = K['y'].0
sage: L.<c> = K.extension(y^2 + a*y + b)
sage: c.absolute_charpoly()
```

(continues on next page)
\[
x^8 - 1996x^6 + 996006x^4 + 1997996x^2 + 1
\]
sage: c.absolute_minpoly()
\[
x^8 - 1996x^6 + 996006x^4 + 1997996x^2 + 1
\]
sage: L(a).absolute_charpoly()
\[
x^8 + 8x^6 + 24x^4 + 32x^2 + 16
\]
sage: L(a).absolute_minpoly()
\[
x^2 + 2
\]
sage: L(b).absolute_charpoly()
\[
x^8 + 4000x^7 + 6000004x^6 + 4000012000x^5 + 1000012000006x^4 + 4000012000x^3 + 6000004x^2 + 4000x + 1
\]
sage: L(b).absolute_minpoly()
\[
x^2 + 1000x + 1
\]

\[\text{charpoly}(\text{var}='x')\]

The characteristic polynomial of this element over its base field.

EXAMPLES:

```
sage: x = ZZ['x'].0
sage: K.<a, b> = QQ.extension([x^2 + 2, x^5 + 400*x^4 + 11*x^2 + 2])
sage: a.charpoly()
\[
x^2 + 2
\]
sage: b.charpoly()
\[
x^2 - 2b*x + b^2
\]
sage: b.minpoly()
\[
x - b
\]
sage: K.<a, b> = NumberField([x^2 + 2, x^2 + 1000*x + 1])
sage: y = K['y'].0
sage: L.<c> = K.extension(y^2 + a*y + b)
sage: c.charpoly()
\[
x^2 + a*x + b
\]
sage: c.minpoly()
\[
x^2 + a*x + b
\]
sage: L(a).charpoly()
\[
x^2 - 2a^2*x - 2
\]
sage: L(a).minpoly()
\[
x - a
\]
sage: L(b).charpoly()
\[
x^2 - 2b*x - 1000*b - 1
\]
sage: L(b).minpoly()
\[
x - b
\]
```

\[\text{lift}(\text{var}='x')\]

Return an element of \(K[x]\), where this number field element lives in the relative number field \(K[x]/(f(x))\).

EXAMPLES:

```
sage: K.<a> = QuadraticField(-3)
sage: x = polygen(K)
sage: L. = K.extension(x^7 + 5)
sage: u = L(1/2*a + 1/2 + b + (a-9)*b^5)
sage: u.lift()
\[
(a - 9)*x^5 + x + 1/2*a + 1/2
\]
```

\[\text{list}()\]

Return the list of coefficients of \texttt{self} written in terms of a power basis.
EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^3 + 2, x^2 + 1])
sage: a.list()
[0, 1, 0]
sage: v = (K.base_field().0 + a)^2; v
a^2 + 2*b*a - 1
sage: v.list()
[-1, 2*b, 1]
```

**valuation** *(P)*

Return the valuation of *self* at a given prime ideal *P*.

**INPUT:**

- *P* – a prime ideal of relative number field which is the parent of *self*

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b, c> = NumberField([x^2 - 2, x^2 - 3, x^2 - 5])
sage: P = K.prime_factors(5)[1]
sage: (2*a + b - c).valuation(P)
1
```

class **sage.rings.number_field.number_field_element.OrderElement_absolute**

Bases: *NumberFieldElement_absolute*

Element of an order in an absolute number field.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 1)
sage: O2 = K.order(2*a)
sage: w = O2.1; w
2*a
sage: parent(w)
Order of conductor 2 generated by 2*a in Number Field in a with defining polynomial x^2 + 1
sage: w.absolute_charpoly()
x^2 + 4
sage: w.absolute_charpoly().parent()
Univariate Polynomial Ring in x over Integer Ring
sage: w.absolute_minpoly()
x^2 + 4
sage: w.absolute_minpoly().parent()
Univariate Polynomial Ring in x over Integer Ring
```

**inverse_mod** *(I)*

Return an inverse of *self* modulo the given ideal.

**INPUT:**

- *I* – may be an ideal of *self.parent()* , or an element or list of elements of *self.parent()* generating a nonzero ideal. *A ValueError* is raised if *I* is non-integral or is zero. *A ZeroDivisionError* is raised if *I + (x) ≠ (1)*.
**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: OE.<w> = EquationOrder(x^3 - x + 2)
sage: w.inverse_mod(13)
6*w^2 - 6
sage: w * (w.inverse_mod(13)) - 1 in 13*OE.number_field()
True
sage: w.inverse_mod(13).parent() == OE
True
sage: w.inverse_mod(2)
Traceback (most recent call last):
...
ZeroDivisionError: w is not invertible modulo Fractional ideal (2)
```

```python
class sage.rings.number_field.number_field_element.OrderElement_relative

Bases: NumberFieldElement_relative

Element of an order in a relative number field.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: O = EquationOrder([x^2 + x + 1, x^3 - 2], a,b)
```

```python
sage: c = O.1; c
(-2*b^2 - 2)*a - 2*b^2 - b
sage: type(c)
<class 'sage.rings.number_field.number_field_element.OrderElement_relative'>
```

```python
absolute_charpoly(var='x')

The absolute characteristic polynomial of this order element over \(\mathbb{Z}\).

**EXAMPLES:**

```python
sage: x = ZZ['x'].0
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: OK = K.maximal_order()
sage: _, u, _, v = OK.basis()
sage: t = 2*u - v; t
-b
sage: t.absolute_charpoly()
x^4 - 6*x^2 + 9
sage: t.absolute_minpoly()
x^2 - 3
sage: t.absolute_charpoly().parent()
Univariate Polynomial Ring in x over Integer Ring
```

```python
absolute_minpoly(var='x')

The absolute minimal polynomial of this order element over \(\mathbb{Z}\).

EXAMPLES:

```python
sage: x = ZZ['x'].0
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: OK = K.maximal_order()
sage: _, u, _, v = OK.basis()
sage: t = 2*u - v; t
-b
```
sage: t.absolute_charpoly()
x^4 - 6*x^2 + 9
sage: t.absolute_minpoly()
x^2 - 3
sage: t.absolute_minpoly().parent()
Univariate Polynomial Ring in x over Integer Ring

charpoly (var='x')
The characteristic polynomial of this order element over its base ring.

This special implementation works around github issue #4738. At this time the base ring of relative order elements is \(\mathbb{Z} \); it should be the ring of integers of the base field.

EXAMPLES:

```sage
sage: x = ZZ['x'].0
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: OK = K.maximal_order(); OK.basis()
[1, 1/2*a - 1/2*b, -1/2*b*a + 1/2, a]
sage: charpoly(OK.1)
x^2 + b*x + 1
sage: charpoly(OK.1).parent()
Univariate Polynomial Ring in x over Maximal Order generated by b
in Number Field in b with defining polynomial x^2 - 3
sage: [ charpoly(t) for t in OK.basis() ]
[x^2 - 2*x + 1, x^2 + b*x + 1, x^2 - x + 1, x^2 + 1]
```

inverse_mod (I)
Return an inverse of self modulo the given ideal.

INPUT:

- I – may be an ideal of self.parent(), or an element or list of elements of self.parent() generating a nonzero ideal. A ValueError is raised if I is non-integral or is zero. A ZeroDivisionError is raised if \(I + (x) \neq (1) \).

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: E.<a,b> = NumberField([x^2 - x + 2, x^2 + 1])
sage: OE = E.ring_of_integers()
sage: t = OE(b - a).inverse_mod(17*b)
sage: t*(b - a) - 1 in E.ideal(17*b)
True
sage: t.parent() == OE
True
```

minpoly (var='x')
The minimal polynomial of this order element over its base ring.

This special implementation works around github issue #4738. At this time the base ring of relative order elements is \(\mathbb{Z} \); it should be the ring of integers of the base field.

EXAMPLES:

```sage
sage: x = ZZ['x'].0
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: OK = K.maximal_order(); OK.basis()
(continues on next page)
```
[1, 1/2*a - 1/2*b, -1/2*b*a + 1/2, a]
sage: minpoly(OK.1)
x^2 + b*x + 1
sage: charpoly(OK.1).parent()
Univariate Polynomial Ring in x over Maximal Order generated by b
in Number Field in b with defining polynomial x^2 - 3
sage: _, u, _, v = OK.basis()
sage: t = 2*u - v; t
-b
sage: t.charpoly()
x^2 + 2*b*x + 3
sage: t.minpoly()
x + b
sage: t.absolute_charpoly()
x^4 - 6*x^2 + 9
sage: t absolute_minpoly()
x^2 - 3

sage. rings. number_field. number_field_element. is_NumberFieldElement(x)

Return True if \(x \) is of type NumberFieldElement, i.e., an element of a number field.

EXAMPLES:

sage: from sage. rings. number_field. number_field_element import is_
˓→NumberFieldElement
sage: is_NumberFieldElement(2)
doctest: warning...
DeprecationWarning: is_NumberFieldElement is deprecated;
use isinstance(..., sage. structure. element. NumberFieldElement) instead
See https://github.com/sagemath/sage/issues/34931 for details.
False
sage: x = polygen(ZZ, 'x')
sage: k.<a> = NumberField(x^7 + 17*x + 1)
sage: is_NumberFieldElement(a+1)
True

2.2 Elements optimized for quadratic number fields

This module defines a Cython class NumberFieldElement_quadratic to speed up computations in quadratic extensions of \(\mathbb{Q} \).

Todo: The _new() method should be overridden in this class to copy the \(D \) and standard_embedding attributes.

AUTHORS:

- Robert Bradshaw (2007-09): initial version
- David Harvey (2007-10): fixed up a few bugs, polish around the edges
- David Loeffler (2009-05): added more documentation and tests
- Vincent Delecroix (2012-07): added comparisons for quadratic number fields (github issue #13213), abs, floor and ceil functions (github issue #13256)
class sage.rings.number_field.number_field_element_quadratic.
NumberFieldElement_gaussian

Bases: NumberFieldElement_quadratic_sqrt

An element of $\mathbb{Q}[i]$.

Some methods of this class behave slightly differently than the corresponding methods of general elements of quadratic number fields, especially with regard to conversions to parents that can represent complex numbers in rectangular form.

In addition, this class provides some convenience methods similar to methods of symbolic expressions to make the behavior of $a + I*b$ with rational a, b closer to that when a, b are expressions.

EXAMPLES:

```python
sage: type(I)
<class 'sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_
˓→gaussian'>
sage: mi = QuadraticField(-1, embedding=CC(0,-1)).gen()
sage: type(mi)
<class 'sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_
˓→gaussian'>
sage: CC(mi)
-1.00000000000000*I
```

imag()

Imaginary part.

EXAMPLES:

```python
sage: (1 + 2*I).imag()
2
sage: (1 + 2*I).imag().parent()
Rational Field
sage: K.<mi> = QuadraticField(-1, embedding=CC(0,-1))
sage: (1 - mi).imag()
1
```

imag_part()

Imaginary part.

EXAMPLES:

```python
sage: (1 + 2*I).imag()
2
sage: (1 + 2*I).imag().parent()
Rational Field
sage: K.<mi> = QuadraticField(-1, embedding=CC(0,-1))
sage: (1 - mi).imag()
1
```

log(*args, **kwds)

Complex logarithm (standard branch).

EXAMPLES:
real()
Real part.
EXAMPLES:

```sage
sage: (1 + 2*I).real()
sage: 1
sage: (1 + 2*I).real().parent()
Rational Field
```

real_part()
Real part.
EXAMPLES:

```sage
sage: (1 + 2*I).real()
sage: 1
sage: (1 + 2*I).real().parent()
Rational Field
```

class sage.rings.number_field.number_field_element_quadratic.
NumberFieldElement_quadratic

Bases: NumberFieldElement_absolute

A NumberFieldElement_quadratic object gives an efficient representation of an element of a quadratic extension of \(\mathbb{Q} \).

Elements are represented internally as triples \((a, b, c)\) of integers, where \(\gcd(a, b, c) = 1 \) and \(c > 0 \), representing the element \((a + b\sqrt{D})/c\). Note that if the discriminant \(D \) is 1 mod 4, integral elements do not necessarily have \(c = 1 \).

ceil()
Return the ceiling.
EXAMPLES:

```sage
sage: K.<sqrt7> = QuadraticField(7, name='sqrt7')
sage: sqrt7.ceil()
sage: 3
sage: (-sqrt7).ceil()
sage: -2
sage: (1022/313*sqrt7 - 14/23).ceil()
sage: 9
```

charpoly(var='x', algorithm=None)
The characteristic polynomial of this element over \(\mathbb{Q} \).

INPUT:

- var – the minimal polynomial is defined over a polynomial ring
 in a variable with this name. If not specified, this defaults to \('x' \)
- algorithm – for compatibility with general number field elements; ignored

EXAMPLES:
\texttt{sage}: x = polygen(ZZ, 'x')
\texttt{sage}: K.<a> = NumberField(x^2 - x + 13)
\texttt{sage}: a.charpoly()
x^2 - x + 13
\texttt{sage}: b = 3 - a/2
\texttt{sage}: f = b.charpoly(); f
x^2 - 11/2*x + 43/4
\texttt{sage}: f(b)
0

c\texttt{ontinued_fraction}()

Return the (finite or ultimately periodic) continued fraction of \texttt{self}.

EXAMPLES:

\texttt{sage}: K.<sqrt2> = QuadraticField(2)
\texttt{sage}: cf = sqrt2.continued_fraction(); cf
[1; (2)*]
\texttt{sage}: cf.n()
1.41421356237310
\texttt{sage}: sqrt2.n()
1.41421356237309
\texttt{sage}: cf.value()
sqrt2
\texttt{sage}: (sqrt2/3 + 1/4).continued_fraction()
[0; 1, (2, 1, 1, 2, 3, 2, 1, 1, 2, 5, 1, 1, 14, 1, 1, 5)*]

\texttt{continued_fraction_list}()

Return the preperiod and the period of the continued fraction expansion of \texttt{self}.

EXAMPLES:

\texttt{sage}: K.<sqrt2> = QuadraticField(2)
\texttt{sage}: sqrt2.continued_fraction_list()
((1,), (2,))
\texttt{sage}: (1/2 + sqrt2/3).continued_fraction_list()
((0, 1, 33), (1, 32))

For rational entries a pair of tuples is also returned but the second one is empty:

\texttt{sage}: K(123/567).continued_fraction_list()
((0, 4, 1, 1, 1, 3, 2), ())

d\texttt{enominator}()

Return the denominator of \texttt{self}.

This is the LCM of the denominators of the coefficients of \texttt{self}, and thus it may well be \textgreater{} 1 even when the element is an algebraic integer.

EXAMPLES:

\texttt{sage}: x = polygen(ZZ, 'x')
\texttt{sage}: K.<a> = NumberField(x^2 - 5)
\texttt{sage}: b = (a + 1)/2
\texttt{sage}: b.denominator()
2
\texttt{sage}: b.is_integral()
sage: K.<c> = NumberField(x^2 - x + 7)
sage: c.denominator()
1

floor()

Returns the floor of self.

EXAMPLES:

sage: K.<sqrt2> = QuadraticField(2, name='sqrt2')
sage: sqrt2.floor()
1
sage: (-sqrt2).floor()
-2
sage: (13/197 + 3702/123*sqrt2).floor()
42
sage: (13/197 - 3702/123*sqrt2).floor()
-43

galois_conjugate()

Return the image of this element under action of the nontrivial element of the Galois group of this field.

EXAMPLES:

sage: K.<a> = QuadraticField(23)
sage: a.galois_conjugate()
-a
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - 5*x + 1)
sage: a.galois_conjugate()
-a + 5
sage: b = 5*a + 1/3
sage: b.galois_conjugate()
-5*a + 76/3
sage: b.norm() == b * b.galois_conjugate()
True
sage: b.trace() == b + b.galois_conjugate()
True

imag()

Return the imaginary part of self.

EXAMPLES:

sage: K.<sqrt2> = QuadraticField(2)
sage: sqrt2.imag()
0
sage: parent(sqrt2.imag())
Rational Field
sage: K.<i> = QuadraticField(-1)
sage: i.imag()
1
Rational Field

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + x + 1, embedding=CDF.0)
sage: a.imag()
1/2*sqrt3
sage: a.real()
-1/2
sage: SR(a)
˓→ needs sage.symbolic
1/2*I*sqrt(3) - 1/2
sage: bool(QQbar(I)*QQbar(a.imag()) + QQbar(a.real()) == QQbar(a))
True
```

is_integer()

Check whether this number field element is an integer.

See also:

- **is_rational()** to test if this element is a rational number
- **is_integral()** to test if this element is an algebraic integer

EXAMPLES:

```
sage: K.<sqrt3> = QuadraticField(3)
sage: sqrt3.is_integer()
False
sage: (sqrt3 - 1/2).is_integer()
False
sage: K(0).is_integer()
True
sage: K(-12).is_integer()
True
sage: K(1/3).is_integer()
False
```

is_integral()

Return whether this element is an algebraic integer.

is_one()

Check whether this number field element is 1.

EXAMPLES:

```
sage: K = QuadraticField(-2)
sage: K(1).is_one()
True
sage: K(-1).is_one()
False
sage: K(2).is_one()
False
sage: K(0).is_one()
False
sage: K(1/2).is_one()
False
```

(continues on next page)
is_rational()

Check whether this number field element is a rational number.

See also:

• is_integer() to test if this element is an integer
• is_integral() to test if this element is an algebraic integer

EXAMPLES:

sage: K.<sqrt3> = QuadraticField(3)
sage: sqrt3.is_rational()
False
sage: (sqrt3 - 1/2).is_rational()
False
sage: K(0).is_rational()
True
sage: K(-12).is_rational()
True
sage: K(1/3).is_rational()
True

minpoly(var='x', algorithm=None)

The minimal polynomial of this element over \(\mathbb{Q} \).

INPUT:

• var – the minimal polynomial is defined over a polynomial ring
 in a variable with this name. If not specified, this defaults to 'x'

• algorithm – for compatibility with general number field elements: and ignored

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 13)
sage: a.minpoly()
x^2 + 13
sage: a.minpoly('T')
T^2 + 13
sage: (a + 1/2 - a).minpoly()
x - 1/2

norm(K=None)

Return the norm of self.

If the second argument is None, this is the norm down to \(\mathbb{Q} \). Otherwise, return the norm down to \(K \) (which had better be either \(\mathbb{Q} \) or this number field).

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - x + 3)
sage: a.norm()
The norm is multiplicative:

```sage
sage: K.<a> = NumberField(x^2 - 3)
sage: a.norm()
-3
sage: K(3).norm()
9
sage: (3*a).norm()
-27
```

We test that the optional argument is handled sensibly:

```sage
sage: (3*a).norm(QQ)
-27
sage: (3*a).norm(K)
3*a
sage: (3*a).norm(CyclotomicField(3))
Traceback (most recent call last):
... ValueError: no way to embed L into parent's base ring K
```

numerator()

Return `self * self.denominator()`.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + x + 41)
sage: b = (2*a+1)/6
sage: b.denominator()
6
sage: b.numerator()
2*a + 1
```

parts()

Return a pair of rationals `a` and `b` such that `self = a + b√D`.

This is much closer to the internal storage format of the elements than the polynomial representation coefficients (the output of `self.list()`), unless the generator with which this number field was constructed was equal to √D. See the last example below.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - 13)
sage: K.discriminant()
13
sage: a.parts()
(0, 1)
```
real()

Return the real part of self, which is either self (if self lives in a totally real field) or a rational number.

EXAMPLES:

```
sage: K.<sqrt2> = QuadraticField(2)
sage: sqrt2.real()
sqrt2
sage: K.<a> = QuadraticField(-3)
sage: a.real()
0
sage: (a + 1/2).real()
1/2
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + x + 1)
sage: a.real()
-1/2
sage: parent(a.real())
Rational Field
sage: K.<i> = QuadraticField(-1)
sage: i.real()
0
```

round()

Return the round (nearest integer) of this number field element. In case of ties, this relies on the default rounding for rational numbers.

EXAMPLES:

```
sage: K.<sqrt7> = QuadraticField(7, name='sqrt7')
sage: sqrt7.round()
3
sage: (-sqrt7).round()
-3
sage: (12/313*sqrt7 - 1745917/2902921).round()
0
sage: (12/313*sqrt7 - 1745918/2902921).round()
-1
```

sign()

Returns the sign of self (0 if zero, +1 if positive, and −1 if negative).

EXAMPLES:
sage: K.<sqrt2> = QuadraticField(2, name='sqrt2')
sage: K(0).sign()
0
sage: sqrt2.sign()
1
sage: (sqrt2+1).sign()
1
sage: (sqrt2-1).sign()
1
sage: (sqrt2-2).sign()
-1
sage: (-sqrt2).sign()
-1
sage: (-sqrt2+1).sign()
-1
sage: (-sqrt2+2).sign()
1
sage: K.<a> = QuadraticField(2, embedding=-1.4142)
sage: K(0).sign()
0
sage: a.sign()
-1
sage: (a+1).sign()
-1
sage: (a+2).sign()
1
sage: (a-1).sign()
-1
sage: (-a).sign()
1
sage: (-a-1).sign()
1
sage: (-a-2).sign()
-1
sage: # needs sage.symbolic
sage: x = polygen(ZZ, 'x')
sage: K. = NumberField(x^2 + 2*x + 7, 'b', embedding=CC(-1,-sqrt(6)))
sage: b.sign()
Traceback (most recent call last):
 ... ValueError: a complex number has no sign!
sage: K(1).sign()
1
sage: K(0).sign()
0
sage: K(-2/3).sign()
-1

trace()

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + x + 41)
sage: a.trace()
-1

(continues on next page)
sage: a.matrix()
[0 1]
[-41 -1]

The trace is additive:

sage: K.<a> = NumberField(x^2 + 7)
sage: (a + 1).trace()
2
sage: K(3).trace()
6
sage: (a + 4).trace()
8
sage: (a/3 + 1).trace()
2

class sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic_sqrt

Bases: NumberFieldElement_quadratic

A `NumberFieldElement_quadratic_sqrt` object gives an efficient representation of an element of a quadratic extension of \(\mathbb{Q} \) for the case when `is_sqrt_disc()` is True.

denominator()

Return the denominator of self.

This is the LCM of the denominators of the coefficients of self, and thus it may well be \(> 1 \) even when the element is an algebraic integer.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + x + 41)
sage: a.denominator()
1
sage: b = (2*a+1)/6
sage: b.denominator()
6
sage: K(1).denominator()
1
sage: K(1/2).denominator()
2
sage: K(0).denominator()
1
```

```python
sage: b.is_integral()
True
```

class sage.rings.number_field.number_field_element_quadratic.OrderElement_quadratic

Bases: NumberFieldElement_quadratic

Element of an order in a quadratic field.
EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 1)
sage: O2 = K.order(2*a)
sage: w = O2.1; w
2*a
sage: parent(w)
Order of conductor 2 generated by 2*a in Number Field in a with defining polynomial x^2 + 1
```

c`charpoly (var='x', algorithm=None)`

The characteristic polynomial of this element, which is over \(\mathbb{Z} \) because this element is an algebraic integer.

INPUT:

• `var` – the minimal polynomial is defined over a polynomial ring in a variable with this name. If not specified, this defaults to `x`

• `algorithm` – for compatibility with general number field elements; ignored

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - 5)
sage: R = K.ring_of_integers()
sage: b = R((5+a)/2)
sage: f = b.charpoly('x'); f
x^2 - 5*x + 5
sage: f.parent()
Univariate Polynomial Ring in x over Integer Ring
sage: f(b)
0
```

c`denominator ()`

Return the denominator of `self`.

This is the LCM of the denominators of the coefficients of `self`, and thus it may well be \(> 1 \) even when the element is an algebraic integer.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - 27)
sage: R = K.ring_of_integers()
sage: aa = R.gen(1)
sage: aa.denominator()
3
```

c`inverse_mod (I)`

Return an inverse of `self` modulo the given ideal.

INPUT:

• `I` – may be an ideal of `self.parent()`, or an element or list of elements of `self.parent()` generating a nonzero ideal. A `ValueError` is raised if `I` is non-integral or is zero. A `ZeroDivisionError` is raised if `I + (x) \neq (1)`.

EXAMPLES:
Algebraic Numbers and Number Fields, Release 10.3

```
sage: x = polygen(ZZ, 'x')
sage: OE.<w> = EquationOrder(x^2 - x + 2)
sage: w.inverse_mod(13) == 6*w - 6
True
sage: w*(6*w - 6) - 1
-13
sage: w.inverse_mod(13).parent() == OE
True
sage: w.inverse_mod(2*OE)
Traceback (most recent call last):
  ...  ZeroDivisionError: w is not invertible modulo Fractional ideal (2)
```

minpoly (*var='x', algorithm=None*)

The minimal polynomial of this element over \(\mathbb{Z}\).

INPUT:

• **var** – the minimal polynomial is defined over a polynomial ring
in a variable with this name. If not specified, this defaults to 'x'

• **algorithm** – for compatibility with general number field elements; ignored

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 163)
sage: R = K.ring_of_integers()
sage: f = R(a).minpoly(x); f
x^2 + 163
sage: f.parent()
Univariate Polynomial Ring in x over Integer Ring
sage: R(5).minpoly()
x - 5
```

norm()

The norm of an element of the ring of integers is an Integer.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 3)
sage: O2 = K.order(2*a)
sage: w = O2.gen(1); w
2*a
sage: w.norm()
12
sage: parent(w.norm())
Integer Ring
```

trace()

The trace of an element of the ring of integers is an Integer.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - 5)
sage: R = K.ring_of_integers()
```

(continues on next page)
class sage.rings.number_field.number_field_element_quadratic.
Q_to_quadratic_field_element

Bases: Morphism

Morphism that coerces from rationals to elements of a quadratic number field \(K \).

EXAMPLES:

sage: K.<a> = QuadraticField(-3)
sage: f = K.coerce_map_from(QQ); f
Natural morphism:
 From: Rational Field
 To: Number Field in a with defining polynomial x^2 + 3 with a = 1.
 \(-73205080756887878*I\)
sage: f(3/1)
3
sage: f(1/2).parent() is K
True

class sage.rings.number_field.number_field_element_quadratic.
Z_to_quadratic_field_element

Bases: Morphism

Morphism that coerces from integers to elements of a quadratic number field \(K \).

EXAMPLES:

sage: K.<a> = QuadraticField(3)
sage: phi = K.coerce_map_from(ZZ); phi
Natural morphism:
 From: Integer Ring
 To: Number Field in a with defining polynomial x^2 - 3 with a = 1.
 \(-7320508075688787878\)
sage: phi(4)
4
sage: phi(5).parent() is K
True

sage.rings.number_field.number_field_element_quadratic.is_sqrt_disc(ad, bd)

Return True if the pair \((ad, bd)\) is \(\sqrt{D}\).

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: F. = NumberField(x^2 - x + 7)
sage: b.denominator() # indirect doctest
1

2.2. Elements optimized for quadratic number fields 205
2.3 Elements of bounded height in number fields

This module provides functions to list all elements of a given number field with height less than a specified bound.

REFERENCES:
• [DK2013]

AUTHORS:
• John Doyle, David Krumm (2013): initial version
• TJ Combs, Raghukul Raman (2018): added Doyle-Krumm algorithm-4

```
sage.rings.number_field.bdd_height.bdd_height(K, height_bound, tolerance=0.01, precision=53)
```

Compute all elements in the number field K which have relative multiplicative height at most $\text{height}_\text{bound}$.

The function can only be called for number fields K with positive unit rank. An error will occur if K is \mathbb{Q} or an imaginary quadratic field.

This algorithm computes 2 lists: L, containing elements x in K such that $H_k(x) \leq B$, and a list L' containing elements x in K that, due to floating point issues, may be slightly larger than the bound. This can be controlled by lowering the tolerance.

In current implementation both lists (L, L') are merged and returned in form of iterator.

ALGORITHM:
This is an implementation of the revised algorithm (Algorithm 4) in [DK2013].

INPUT:
• $\text{height}_{\text{bound}}$ – real number
• tolerance – (default: 0.01) a rational number in $(0,1]$
• precision – (default: 53) positive integer

OUTPUT:
an iterator of number field elements

EXAMPLES:
There are no elements of negative height:

```
sage: from sage.rings.number_field.bdd_height import bdd_height
sage: x = polygen(ZZ, 'x')
sage: K.<g> = NumberField(x^5 - x + 7)
sage: list(bdd_height(K, -3))
[]
```

The only nonzero elements of height 1 are the roots of unity:

```
sage: from sage.rings.number_field.bdd_height import bdd_height
sage: K.<g> = QuadraticField(3)
sage: list(bdd_height(K, 1))
[0, -1, 1]
```

```
sage: from sage.rings.number_field.bdd_height import bdd_height
sage: K.<g> = QuadraticField(36865)
sage: len(list(bdd_height(K, 101))) # long time (4 s)
131
```

206 Chapter 2. Elements
sage: from sage.rings.number_field.bdd_height import bdd_height
sage: K.<g> = NumberField(x^6 + 2)
sage: len(list(bdd_height(K, 60))) # long time (5 s)
1899

sage: from sage.rings.number_field.bdd_height import bdd_height
sage: K.<g> = NumberField(x^4 - x^3 - 3*x^2 + x + 1)
sage: len(list(bdd_height(K, 10)))
99

sage.rings.number_field.bdd_height.bdd_height_iq(K, height_bound)

Compute all elements in the imaginary quadratic field K which have relative multiplicative height at most height_bound.

The function will only be called with K an imaginary quadratic field.

If called with K not an imaginary quadratic, the function will likely yield incorrect output.

ALGORITHM:

This is an implementation of Algorithm 5 in [DK2013].

INPUT:

• K – an imaginary quadratic number field

• height_bound – a real number

OUTPUT:

• an iterator of number field elements

EXAMPLES:

sage: from sage.rings.number_field.bdd_height import bdd_height_iq
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 191)
sage: for t in bdd_height_iq(K, 8):
 print(exp(2*t.global_height()))
1.00000000000000
1.00000000000000
1.00000000000000
4.00000000000000
4.00000000000000
4.00000000000000
4.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000
8.00000000000000

There are 175 elements of height at most 10 in $\mathbb{Q}(\sqrt{-3})$:

sage: from sage.rings.number_field.bdd_height import bdd_height_iq
sage: K.<a> = NumberField(x^2 + 3)
sage: len(list(bdd_height_iq(K, 10)))
175

2.3. Elements of bounded height in number fields
The only elements of multiplicative height 1 in a number field are 0 and the roots of unity:

```python
sage: from sage.rings.number_field.bdd_height import bdd_height_iq
sage: K.<a> = NumberField(x^2 + x + 1)
sage: list(bdd_height_iq(K,1))
[0, a + 1, a, -1, -a - 1, -a, 1]
```

A number field has no elements of multiplicative height less than 1:

```python
sage: from sage.rings.number_field.bdd_height import bdd_height_iq
sage: K.<a> = NumberField(x^2 + 5)
sage: list(bdd_height_iq(K,0.9))
[]
```

`sage.rings.number_field.bdd_height.bdd_norm_pr_gens_iq(K, norm_list)`

Compute generators for all principal ideals in an imaginary quadratic field K whose norms are in `norm_list`. The only keys for the output dictionary are integers n appearing in `norm_list`. The function will only be called with K an imaginary quadratic field. The function will return a dictionary for other number fields, but it may be incorrect.

INPUT:

- K -- an imaginary quadratic number field
- `norm_list` -- a list of positive integers

OUTPUT:

- a dictionary of number field elements, keyed by norm

EXAMPLES:

In $\mathbb{Q}(i)$, there is one principal ideal of norm 4, two principal ideals of norm 5, but no principal ideals of norm 7:

```python
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_gens_iq
sage: x = polygen(ZZ, x)
sage: K.<g> = NumberField(x^2 + 1)
sage: L = range(10)
sage: bdd_pr_ideals = bdd_norm_pr_gens_iq(K, L)
sage: bdd_pr_ideals[4][2]
sage: bdd_pr_ideals[5][[-g - 2, -g + 2]]
sage: bdd_pr_ideals[7][[]]
```

There are no ideals in the ring of integers with negative norm:

```python
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_gens_iq
sage: K.<g> = NumberField(x^2 + 10)
sage: L = range(-5,-1)
sage: bdd_pr_ideals = bdd_norm_pr_gens_iq(K,L)
sage: bdd_pr_ideals
(-5: [], -4: [], -3: [], -2: [])
```

Calling a key that is not in the input `norm_list` raises a `KeyError`:
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_gens_iq
sage: K.<g> = NumberField(x^2 + 20)
sage: L = range(100)
sage: bdd_pr_ideals = bdd_norm_pr_gens_iq(K, L)
sage: bdd_pr_ideals[100]
Traceback (most recent call last):
...
KeyError: 100

```
sage.rings.number_field.bdd_height.bdd_norm_pr_ideal_gens(K, norm_list)
Compute generators for all principal ideals in a number field K whose norms are in norm_list.

INPUT:
- K - a number field
- norm_list - a list of positive integers

OUTPUT:
- a dictionary of number field elements, keyed by norm

EXAMPLES:
There is only one principal ideal of norm 1, and it is generated by the element 1:
```
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens
sage: K.<g> = QuadraticField(101)
sage: bdd_norm_pr_ideal_gens(K, [1])
{1: [1]}
```
```
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens
sage: K.<g> = QuadraticField(123)
sage: bdd_norm_pr_ideal_gens(K, range(5))
{0: [0], 1: [1], 2: [g + 11], 3: [], 4: [2]}
```
```
sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens
sage: x = polygen(ZZ, 'x')
sage: K.<g> = NumberField(x^5 - x + 19)
sage: b = bdd_norm_pr_ideal_gens(K, range(30))
sage: key = ZZ(28)
sage: b[key]
[157*g^4 - 139*g^3 - 369*g^2 + 848*g + 158, g^4 + g^3 - g - 7]
```

```
sage.rings.number_field.bdd_height.integer_points_in_polytope(matrix, interval_radius)
Return the set of integer points in the polytope obtained by acting on a cube by a linear transformation.

Given an r-by-r matrix matrix and a real number interval_radius, this function finds all integer lattice points in the polytope obtained by transforming the cube [-interval_radius, interval_radius]^r via the linear map induced by matrix.

INPUT:
- matrix - a square matrix of real numbers
- interval_radius - a real number

OUTPUT:
- a list of tuples of integers
```

2.3. Elements of bounded height in number fields 209
EXAMPLES:

Stretch the interval \([-1, 1]\) by a factor of 2 and find the integers in the resulting interval:

```python
sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope
sage: m = matrix([2])
sage: r = 1
sage: integer_points_in_polytope(m, r)
[(-2), (-1), (0), (1), (2)]
```

Integer points inside a parallelogram:

```python
sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope
sage: m = matrix([[1, 2], [3, 4]])
sage: r = RealField()(1.3)
sage: integer_points_in_polytope(m, r)
[(-3, -7), (-2, -5), (-2, -4), (-1, -3), (-1, -2), (-1, -1), (0, -1),
 (0, 0), (0, 1), (1, 1), (1, 2), (1, 3), (2, 4), (2, 5), (3, 7)]
```

Integer points inside a parallelepiped:

```python
sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope
sage: m = matrix([[1.2, 3.7, 0.2], [-5.3, -0.43, 3], [1.2, 4.7, -2.1]])
sage: r = 2.2
sage: L = integer_points_in_polytope(m, r)
sage: len(L)
4143
```

If `interval_radius` is 0, the output should include only the zero tuple:

```python
sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope
sage: m = matrix([[1, 2, 3, 7], [4, 5, 6, 2], [7, 8, 9, 3], [0, 3, 4, 5]])
sage: integer_points_in_polytope(m, 0)
[(0, 0, 0, 0)]
```
3.1 Morphisms between number fields

This module provides classes to represent ring homomorphisms between number fields (i.e. field embeddings).

```python
class sage.rings.number_field.morphism.CyclotomicFieldHomomorphism_im_gens
 Bases: sage.rings.number_field.morphism.NumberFieldHomomorphism_im_gens

class sage.rings.number_field.morphism.NumberFieldHomomorphism_im_gens
 Bases: sage.rings.number_field.morphism.RingHomomorphism_im_gens

preimage(y)
 Compute a preimage of y in the domain, provided one exists. Raises a ValueError if y has no preimage.

 INPUT:
 • y -- an element of the codomain of self.

 OUTPUT:
 Returns the preimage of y in the domain, if one exists. Raises a ValueError if y has no preimage.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - 7)
sage: L. = NumberField(x^4 - 7)
sage: f = K.embeddings(L)[0]
sage: f.preimage(3*b^2 - 12/7)
3*a - 12/7
sage: f.preimage(b)
Traceback (most recent call last):
... ValueError: Element 'b' is not in the image of this homomorphism.

sage: # needs sage.libs.linbox
sage: F. = QuadraticField(23)
sage: G.<a> = F.extension(x^3 + 5)
sage: f = F.embeddings(G)[0]
sage: f.preimage(a^3 + 2*b + 3)
2*b - 2
```

```python
class sage.rings.number_field.morphism.RelativeNumberFieldHomomorphism_from_abs
```

Bases: RingHomomorphism

A homomorphism from a relative number field to some other ring, stored as a homomorphism from the corresponding absolute field.

abs_hom()

Return the corresponding homomorphism from the absolute number field.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^3 + 2, x^2 + x + 1])
sage: K.hom(a, K).abs_hom()
Ring morphism:
 From: Number Field in a with defining polynomial
 x^6 - 3*x^5 + 6*x^4 - 3*x^3 - 9*x + 9
 To: Number Field in a with defining polynomial x^3 + 2 over its base field
 Defn: a |--> a - b
```

im_gens()

Return the images of the generators under this map.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^3 + 2, x^2 + x + 1])
sage: K.hom(a, K).im_gens()
[a, b]
```

3.2 Sets of homomorphisms between number fields

class sage.rings.number_field.homset.CyclotomicFieldHomset (R, S, category=None)

Bases: NumberFieldHomset

Set of homomorphisms with domain a given cyclotomic field.

EXAMPLES:

```
sage: End(CyclotomicField(16))
Automorphism group of Cyclotomic Field of order 16 and degree 8
```

Element

alias of CyclotomicFieldHomomorphism_im_gens

list()

Return a list of all the elements of self (for which the domain is a cyclotomic field).

EXAMPLES:

```
sage: K.<z> = CyclotomicField(12)
sage: G = End(K); G
Automorphism group of Cyclotomic Field of order 12 and degree 4
sage: [g(z) for g in G]
[z, z^3 - z, -z, -z^3 + z]
sage: x = polygen(ZZ, 'x')
```

(continues on next page)
sage: L.<a, b> = NumberField([x^2 + x + 1, x^4 + 1])
sage: L
Number Field in a with defining polynomial x^2 + x + 1 over its base field
sage: Hom(CyclotomicField(12), L)[3]
Ring morphism:
  From: Cyclotomic Field of order 12 and degree 4
  To:  Number Field in a with defining polynomial x^2 + x + 1 over its base
  Defn: zeta12 |--> -b^2*a
sage: list(Hom(CyclotomicField(5), K))
[]
sage: Hom(CyclotomicField(11), L).list()
[]

3.2. Sets of homomorphisms between number fields

class sage.rings.number_field.homset.NumberFieldHomset (R, S, category=None)
    Set of homomorphisms with domain a given number field.

Element
    alias of NumberFieldHomomorphism_im_gens

cardinality()
    Return the order of this set of field homomorphism.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: k.<a> = NumberField(x^2 + 1)
sage: End(k)
Automorphism group of Number Field in a with defining polynomial x^2 + 1
sage: End(k).order()
2
sage: k.<a> = NumberField(x^3 + 2)
sage: End(k).order()
1
sage: K.<a> = NumberField([x^3 + 2, x^2 + x + 1])
sage: End(K).order()
6

list()
    Return a list of all the elements of self.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 3*x + 1)
sage: End(K).list()
[Ring endomorphism of Number Field in a with defining polynomial x^3 - 3*x + 1
  Defn: a |--> a,
  Ring endomorphism of Number Field in a with defining polynomial x^3 - 3*x + 1
  Defn: a |--> a^2 - 2,
  Ring endomorphism of Number Field in a with defining polynomial x^3 - 3*x + 1
  Defn: a |--> -a^2 - a + 2]
sage: Hom(K, CyclotomicField(9))[0] # indirect doctest
Ring morphism:
  From: Number Field in a with defining polynomial x^3 - 3*x + 1
  To:  Cyclotomic Field of order 9 and degree 6
  Defn: a |--> -zeta9^4 + zeta9^2 - zeta9

An example where the codomain is a relative extension:

sage: K.<a> = NumberField(x^3 - 2)
sage: L.<b> = K.extension(x^2 + 3)
sage: Hom(K, L).list()
[
  Ring morphism:
    From: Number Field in a with defining polynomial x^3 - 2
    To:  Number Field in b with defining polynomial x^2 + 3 over its base field
    Defn: a |--> a,
  Ring morphism:
    From: Number Field in a with defining polynomial x^3 - 2
    To:  Number Field in b with defining polynomial x^2 + 3 over its base field
    Defn: a |--> -1/2*a*b - 1/2*a,
  Ring morphism:
    From: Number Field in a with defining polynomial x^3 - 2
    To:  Number Field in b with defining polynomial x^2 + 3 over its base field
    Defn: a |--> 1/2*a*b - 1/2*a
]

order()

Return the order of this set of field homomorphism.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: k.<a> = NumberField(x^2 + 1)
sage: End(k)
Automorphism group of Number Field in a with defining polynomial x^2 + 1
sage: End(k).order()
2
sage: k.<a> = NumberField(x^3 + 2)
sage: End(k).order()
1
sage: K.<a> = NumberField([x^3 + 2, x^2 + x + 1])
sage: End(K).order()
6

class sage.rings.number_field.homset.RelativeNumberFieldHomset(R, S, category=None)

Set of homomorphisms with domain a given relative number field.

EXAMPLES:

We construct a homomorphism from a relative field by giving the image of a generator:

sage: x = polygen(ZZ, 'x')
sage: L.<cuberoot2, zeta3> = CyclotomicField(3).extension(x^3 - 2)
sage: phi = L.hom([cuberoot2 * zeta3]); phi
Relative number field endomorphism of
Number Field in cuberoot2 with defining polynomial x^3 - 2 over its base field
Defn: cuberoot2 |--> zeta3*cuberoot2
zeta3 |--> zeta3
\[\text{sage: } \phi(\text{cuberoot2} + \text{zeta3})\]
\[\text{zeta3*cuberoot2} + \text{zeta3}\]

In fact, this $\phi$ is a generator for the Kummer Galois group of this cyclic extension:

\[\text{sage: } \phi(\phi(\text{cuberoot2} + \text{zeta3}))\]
\[(-\text{zeta3} - 1)*\text{cuberoot2} + \text{zeta3}\]
\[\text{sage: } \phi(\phi(\phi(\text{cuberoot2} + \text{zeta3})))\]
\[\text{cuberoot2} + \text{zeta3}\]

Element

alias of \texttt{RelativeNumberFieldHomomorphism\_from\_abs}

default\_base\_hom()

Pick an embedding of the base field of \texttt{self} into the codomain of this homset. This is done in an essentially arbitrary way.

EXAMPLES:

\[\text{sage: } x = \text{polygen}(\ZZ, 'x')\]
\[\text{sage: } L.<a, b> = \text{NumberField}([x^3 - x + 1, x^2 + 23])\]
\[\text{sage: } M.<c> = \text{NumberField}(x^4 + 80*x^2 + 36)\]
\[\text{sage: } \text{Hom}(L, M).\text{default\_base\_hom}()\]

Ring morphism:

From: Number Field in b with defining polynomial x^2 + 23
To: Number Field in c with defining polynomial x^4 + 80*x^2 + 36
Defn: b |--> 1/12*c^3 + 43/6*c

list()

Return a list of all the elements of \texttt{self} (for which the domain is a relative number field).

EXAMPLES:

\[\text{sage: } x = \text{polygen}(\ZZ, 'x')\]
\[\text{sage: } K.<a, b> = \text{NumberField}([x^2 + x + 1, x^3 + 2])\]
\[\text{sage: } \text{End(K)}.\text{list}()\]

[...
Relative number field endomorphism of
Number Field in a with defining polynomial x^2 + x + 1 over its base field
Defn: a |--> a
b |--> b,
...
Relative number field endomorphism of
Number Field in a with defining polynomial x^2 + x + 1 over its base field
Defn: a |--> a
b |--> -b*a - b
]

An example with an absolute codomain:

\[\text{sage: } x = \text{polygen}(\ZZ, 'x')\]
\[\text{sage: } K.<a, b> = \text{NumberField}([x^2 - 3, x^2 + 2])\]

(continues on next page)
Relative number field morphism:
From: Number Field in a with defining polynomial $x^2 - 3$ over its base field
To: Cyclotomic Field of order 24 and degree 8
Defn: $a \mapsto z^6 - 2z^2$
$b \mapsto -z^5 - z^3 + z$,
...
Relative number field morphism:
From: Number Field in a with defining polynomial $x^2 - 3$ over its base field
To: Cyclotomic Field of order 24 and degree 8
Defn: $a \mapsto -z^6 + 2z^2$
$b \mapsto z^5 + z^3 - z$
]

3.3 Embeddings into ambient fields

This module provides classes to handle embeddings of number fields into ambient fields (generally $\mathbb{R}$ or $\mathbb{C}$).

class sage.rings.number_field.number_field_morphisms.CyclotomicFieldConversion

Bases: Map

This allows one to cast one cyclotomic field in another consistently.

EXAMPLES:

sage: from sage.rings.number_field.number_field_morphisms import CyclotomicFieldConversion
sage: K1.<z1> = CyclotomicField(12)
sage: K2.<z2> = CyclotomicField(18)
sage: f = CyclotomicFieldConversion(K1, K2)
sage: f(z1^2)
z2^3
sage: f(z1)
Traceback (most recent call last):
... ValueError: Element z1 has no image in the codomain

Tests from github issue #29511:

sage: K.<z> = CyclotomicField(12)
sage: K1.<z1> = CyclotomicField(3)
sage: K(2) in K1 # indirect doctest
True
sage: K1(K(2)) # indirect doctest
2

class sage.rings.number_field.number_field_morphisms.CyclotomicFieldEmbedding

Bases: NumberFieldEmbedding

Specialized class for converting cyclotomic field elements into a cyclotomic field of higher order. All the real work is done by _lift_cyclotomic_element().

section()

Return the section of self.
EXAMPLES:

```python
sage: from sage.rings.number_field.number_field_morphisms import...
 ~CyclotomicFieldEmbedding
sage: K = CyclotomicField(7)
sage: L = CyclotomicField(21)
sage: f = CyclotomicFieldEmbedding(K, L)
sage: h = f.section()
sage: h(f(K.gen())) # indirect doctest
zeta7
```

```python
class sage.rings.number_field.number_field_morphisms.EmbeddedNumberFieldConversion
 Bases: Map

This allows one to cast one number field in another consistently, assuming they both have specified embeddings into an ambient field (by default it looks for an embedding into \(\mathbb{C} \)).

This is done by factoring the minimal polynomial of the input in the number field of the codomain. This may fail if the element is not actually in the given field.

```python
ambient_field
```

```python
class sage.rings.number_field.number_field_morphisms.EmbeddedNumberFieldMorphism
    Bases: NumberFieldEmbedding

This allows one to go from one number field in another consistently, assuming they both have specified embeddings into an ambient field.

If no ambient field is supplied, then the following ambient fields are tried:
  • the pushout of the fields where the number fields are embedded;
  • the algebraic closure of the previous pushout;
  • \( \mathbb{C} \).

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1, embedding=QQbar(I))
sage: L.<i> = NumberField(x^2 + 1, embedding=-QQbar(I))
sage: from sage.rings.number_field.number_field_morphisms import...
 ~EmbeddedNumberFieldMorphism
sage: EmbeddedNumberFieldMorphism(K, L, CDF)
Generic morphism:
 From: Number Field in i with defining polynomial x^2 + 1 with i = I
 To: Number Field in i with defining polynomial x^2 + 1 with i = -I
 Defn: i -> -i
```

```python
ambient_field
```

```python
section()
```

EXAMPLES:
### Algebraic Numbers and Number Fields, Release 10.3

```python
sage: from sage.rings.number_field.number_field_morphisms import...
˓→EmbeddedNumberFieldMorphism
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - 700, embedding=25)
sage: L. = NumberField(x^6 - 700, embedding=3)
sage: f = EmbeddedNumberFieldMorphism(K, L)
sage: f(2*a - 1)
2*b^3 - 1
sage: g = f.section()
sage: g(2*b^3 - 1)
2*a - 1
```

**class** `sage.rings.number_field.number_field_morphisms.NumberFieldEmbedding`

**Bases:** `Morphism`

If R is a lazy field, the closest root to gen_embedding will be chosen.

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: from sage.rings.number_field.number_field_morphisms import...
˓→NumberFieldEmbedding
sage: K.<a> = NumberField(x^3-2)
sage: f = NumberFieldEmbedding(K, RLF, 1)
sage: f(a)^3
2.00000000000000?
sage: RealField(200)(f(a)^3)
2.00
sage: sigma_a = K.polynomial().change_ring(CC).roots()[1][0]; sigma_a
-0.62996052494743... - 1.09112363597172*I
sage: g = NumberFieldEmbedding(K, CC, sigma_a)
sage: g(a+1)
0.37003947505256... - 1.09112363597172*I
```

**gen_image()**

Return the image of the generator under this embedding.

**EXAMPLES:**

```python
sage: f = QuadraticField(7, 'a', embedding=2).coerce_embedding()
sage: f.gen_image()
2.6457513131064591?
```

`sage.rings.number_field.number_field_morphisms.closest` *(target, values, margin=1)*

This is a utility function that returns the item in values closest to target (with respect to the abs function). If margin is greater than 1, and x and y are the first and second closest elements to target, then only return x if x is margin times closer to target than y, i.e. margin * abs(target-x) < abs(target-y).

**sage.rings.number_field.number_field_morphisms.create_embedding_from_approx** *(K, gen_image)*

Return an embedding of K determined by gen_image.

The codomain of the embedding is the parent of gen_image or, if gen_image is not already an exact root of the defining polynomial of K, the corresponding lazy field. The embedding maps the generator of K to a root of the defining polynomial of K closest to gen_image.
EXAMPLES:

```python
sage: from sage.rings.number_field.number_field_morphisms import create_embedding_from_approx
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - x + 1/10)
Generic morphism:
 From: Number Field in a with defining polynomial x^3 - x + 1/10
 To: Real Lazy Field
 Defn: a -> 0.9456492739235915?

sage: create_embedding_from_approx(K, 1)
Generic morphism:
 From: Number Field in a with defining polynomial x^3 - x + 1/10
 To: Real Lazy Field
 Defn: a -> 0.10103125788101081?

sage: create_embedding_from_approx(K, -1)
Generic morphism:
 From: Number Field in a with defining polynomial x^3 - x + 1/10
 To: Real Lazy Field
 Defn: a -> -1.046680531804603?
```

We can define embeddings from one number field to another:

```python
sage: L. = NumberField(x^6-x^2+1/10)
sage: create_embedding_from_approx(K, b^2)
Generic morphism:
 From: Number Field in a with defining polynomial x^3 - x + 1/10
 To: Number Field in b with defining polynomial x^6 - x^2 + 1/10
 Defn: a -> b^2
```

If the embedding is exact, it must be valid:

```python
sage: create_embedding_from_approx(K, b)
Traceback (most recent call last):
 ... ValueError: b is not a root of x^3 - x + 1/10
```

```python
sage.rings.number_field.number_field_morphisms.matching_root(poly, target, ambient_field=None, margin=1, max_prec=None)
```

Given a polynomial and a target, choose the root that target best approximates as compared in ambient_field.

If the parent of target is exact, the equality is required, otherwise find closest root (with respect to the abs function) in the ambient field to the target, and return the root of poly (if any) that approximates it best.

EXAMPLES:

```python
sage: from sage.rings.number_field.number_field_morphisms import matching_root
sage: R.<x> = CC[]
sage: matching_root(x^2-2, 1.5)
1.41421356237310
sage: matching_root(x^2-2, -100.0)
-1.41421356237310
sage: matching_root(x^2-2, .00000001)
1.41421356237310
```

(continues on next page)
sage.rings.number_field.number_field_morphisms.root_from_approx(f, a)

Return an exact root of the polynomial \( f \) closest to \( a \).

INPUT:

- \( f \) – polynomial with rational coefficients
- \( a \) – element of a ring

OUTPUT:

A root of \( f \) in the parent of \( a \) or, if \( a \) is not already an exact root of \( f \), in the corresponding lazy field. The root is taken to be closest to \( a \) among all roots of \( f \).

EXAMPLES:

```
sage: from sage.rings.number_field.number_field_morphisms import root_from_approx
sage: R.<x> = QQ[]
sage: root_from_approx(x^2 - 1, -1)
-1
sage: root_from_approx(x^2 - 2, 1)
1.414213562373095?
sage: root_from_approx(x^3 - x - 1, RR(1))
1.324717957244746?
sage: root_from_approx(x^3 - x - 1, CC.gen())
-0.6623589786223730? + 0.5622795120623013?*I
sage: root_from_approx(x^2 + 1, 0)
Traceback (most recent call last):
 ... ValueError: x^2 + 1 has no real roots
sage: root_from_approx(x^2 + 1, CC(0))
-1*I
sage: root_from_approx(x^2 - 2, sqrt(2))
Traceback (most recent call last):
 ... ValueError: sqrt(3) is not a root of x^2 - 2
```

\[ \textsf{sage}: \text{matching\_root}(x^3-1, \text{CDF.0}) \]
\[ \text{-0.50000000000000... + 0.86602540378443...} \times \text{I} \]
\[ \text{sage}: \text{matching\_root}(x^3-x, 2, \text{ambient\_field=RR}) \]
\[ 1.00000000000000 \]
3.4 Structure maps for number fields

This module provides isomorphisms between relative and absolute presentations, to and from vector spaces, name changing maps, etc.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: L.<cuberoot2, zeta3> = CyclotomicField(3).extension(x^3 - 2)
sage: K = L.absolute_field('a')
sage: from_K, to_K = K.structure()
sage: from_K
Isomorphism map:
 From: Number Field in a with defining polynomial
 x^6 - 3*x^5 + 6*x^4 - 11*x^3 + 12*x^2 + 3*x + 1
 To: Number Field in cuberoot2 with defining polynomial
 x^3 - 2 over its base field
sage: to_K
Isomorphism map:
 From: Number Field in cuberoot2 with defining polynomial
 x^3 - 2 over its base field
 To: Number Field in a with defining polynomial
 x^6 - 3*x^5 + 6*x^4 - 11*x^3 + 12*x^2 + 3*x + 1
```

```python
class sage.rings.number_field.maps.MapAbsoluteToRelativeNumberField(A, R):
 Bases: NumberFieldIsomorphism

 See MapRelativeToAbsoluteNumberField for examples.

class sage.rings.number_field.maps.MapNumberFieldToVectorSpace(K, V):
 Bases: Map

 A class for the isomorphism from an absolute number field to its underlying Q-vector space.

 EXAMPLES:

    ```sage
    sage: x = polygen(ZZ, 'x')
    sage: L.<a> = NumberField(x^3 - x + 1)
    sage: V, fr, to = L.vector_space()
    sage: type(to)
    <class 'sage.rings.number_field.maps.MapNumberFieldToVectorSpace'>
    ```

    ```python
class sage.rings.number_field.maps.MapRelativeNumberFieldToRelativeVectorSpace(K, V):
    Bases: NumberFieldIsomorphism

    EXAMPLES:

    ```sage
 sage: x = polygen(ZZ, 'x')
 sage: K.<a, b> = NumberField([x^3 - x + 1, x^2 + 23])
 sage: V, fr, to = K.relative_vector_space()
 sage: type(to)
 <class 'sage.rings.number_field.maps.MapRelativeNumberFieldToRelativeVectorSpace'>
    ```

    ```python
class sage.rings.number_field.maps.MapRelativeNumberFieldToVectorSpace(L, V, to_K, to_V):
 Bases: NumberFieldIsomorphism
```
The isomorphism from a relative number field to its underlying $\mathbb{Q}$-vector space. Compare \texttt{MapRelativeNumberFieldToRelativeVectorSpace}.

**EXAMPLES:**

```sage
tax = polygen(ZZ, 'x')
K.<a> = NumberField(x^8 + 100*x^6 + x^2 + 5)
L = K.relativize(K.subfields(4)[0][1], 'b'); L
Number Field in b with defining polynomial x^2 + a0 over its base field
sage: L_to_K, K_to_L = L.structure()
sage: V, fr, to = L.absolute_vector_space()
Vector space of dimension 8 over Rational Field
sage: fr
Isomorphism map:
 From: Vector space of dimension 8 over Rational Field
 To: Number Field in b with defining polynomial x^2 + a0 over its base field
sage: to
Isomorphism map:
 From: Number Field in b with defining polynomial x^2 + a0 over its base field
 To: Vector space of dimension 8 over Rational Field
sage: type(fr), type(to)
(<class 'sage.rings.number_field.maps.MapVectorSpaceToRelativeNumberField'>,
 <class 'sage.rings.number_field.maps.MapRelativeNumberFieldToVectorSpace'>)
sage: v = V([1, 1, 1, 1, 0, 1, 1, 1])
sage: fr(v), to(fr(v)) == v
((-a0^3 + a0^2 - a0 + 1)*b - a0^3 - a0 + 1, True)
sage: to(L.gen()), fr(to(L.gen())) == L.gen()
((0, 1, 0, 0, 0, 0, 0, 0), True)
```

**class** `sage.rings.number_field.maps.MapRelativeToAbsoluteNumberField(R, A)`

**Bases:** `NumberFieldIsomorphism`

**EXAMPLES:**

```sage
tax = polygen(ZZ, 'x')
K.<a> = NumberField(x^6 + 4*x^2 + 200)
L = K.relativize(K.subfields(3)[0][1], 'b'); L
Number Field in b with defining polynomial x^2 + a0 over its base field
sage: fr, to = L.structure()
sage: fr
Relative number field morphism:
 From: Number Field in b with defining polynomial x^2 + a0 over its base field
 To: Number Field in a with defining polynomial x^6 + 4*x^2 + 200
 Defn: b |--> a
 a0 |--> -a^2
sage: to
Ring morphism:
 From: Number Field in a with defining polynomial x^6 + 4*x^2 + 200
 To: Number Field in b with defining polynomial x^2 + a0 over its base field
 Defn: a |--> b
sage: type(fr), type(to)
(<class 'sage.rings.number_field.homset.RelativeNumberFieldHomset_with_category.element_class'>,
 <class 'sage.rings.number_field.homset.NumberFieldHomset_with_category.element_class'>)
```
sage: M.<c> = L.absolute_field(); M
Number Field in c with defining polynomial x^6 + 4*x^2 + 200
sage: fr, to = M.structure()
sage: fr
Isomorphism map:
  From: Number Field in c with defining polynomial x^6 + 4*x^2 + 200
  To:  Number Field in b with defining polynomial x^2 + a0 over its base field
sage: to
Isomorphism map:
  From: Number Field in b with defining polynomial x^2 + a0 over its base field
  To:  Number Field in c with defining polynomial x^6 + 4*x^2 + 200
sage: type(fr), type(to)
(<class 'sage.rings.number_field.maps.MapAbsoluteToRelativeNumberField'>,
 <class 'sage.rings.number_field.maps.MapRelativeToAbsoluteNumberField'>)

class sage.rings.number_field.maps.MapRelativeVectorSpaceToRelativeNumberField(V, K)

Bases: NumberFieldIsomorphism

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: L.<b> = NumberField(x^4 + 3*x^2 + 1)
sage: K = L.relativize(L.subfields(2)[0][1], 'a'); K
Number Field in a with defining polynomial x^2 - b0*x + 1 over its base field
sage: V, fr, to = K.relative_vector_space()
sage: V
Vector space of dimension 2 over Number Field in b0 with defining polynomial x^2 + 1
sage: fr
Isomorphism map:
  From: Vector space of dimension 2
     over Number Field in b0 with defining polynomial x^2 + 1
  To:  Number Field in a
     with defining polynomial x^2 - b0*x + 1 over its base field
sage: type(fr)
<class 'sage.rings.number_field.maps.MapRelativeVectorSpaceToRelativeNumberField'>

sage: a0 = K.gen(); b0 = K.base_field().gen()
sage: fr(to(a0 + 2*b0)), fr(V([0, 1])), fr(V([b0, 2*b0]))
(a + 2*b0, a, 2*b0*a + b0)
sage: (fr * to)(K.gen()) == K.gen()
True
sage: (to * fr)(V([1, 2])) == V([1, 2])
True

class sage.rings.number_field.maps.MapVectorSpaceToNumberField(V, K)

Bases: NumberFieldIsomorphism

The map to an absolute number field from its underlying Q-vector space.

3.4. Structure maps for number fields

223
EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^4 + 3*x + 1)
sage: V, fr, to = K.vector_space()
sage: V
Vector space of dimension 4 over Rational Field
sage: fr
Isomorphism map:
 From: Vector space of dimension 4 over Rational Field
 To: Number Field in a with defining polynomial x^4 + 3*x + 1
sage: to
Isomorphism map:
 From: Number Field in a with defining polynomial x^4 + 3*x + 1
 To: Vector space of dimension 4 over Rational Field
sage: type(fr), type(to)
(<class 'sage.rings.number_field.maps.MapVectorSpaceToNumberField'>, <class 'sage.rings.number_field.maps.MapNumberFieldToVectorSpace'>)
sage: fr.is_injective(), fr.is_surjective()
(True, True)
sage: fr.domain(), to.codomain()
(Vector space of dimension 4 over Rational Field, Vector space of dimension 4 over Rational Field)
sage: to.domain(), fr.codomain()
(Number Field in a with defining polynomial x^4 + 3*x + 1, Number Field in a with defining polynomial x^4 + 3*x + 1)
sage: fr * to
Composite map:
 From: Number Field in a with defining polynomial x^4 + 3*x + 1
 To: Number Field in a with defining polynomial x^4 + 3*x + 1
 Defn: Isomorphism map:
 From: Number Field in a with defining polynomial x^4 + 3*x + 1
 To: Vector space of dimension 4 over Rational Field
 then
 Isomorphism map:
 From: Vector space of dimension 4 over Rational Field
 To: Number Field in a with defining polynomial x^4 + 3*x + 1
sage: to * fr
Composite map:
 From: Vector space of dimension 4 over Rational Field
 To: Vector space of dimension 4 over Rational Field
 Defn: Isomorphism map:
 From: Vector space of dimension 4 over Rational Field
 To: Number Field in a with defining polynomial x^4 + 3*x + 1
 then
 Isomorphism map:
 From: Number Field in a with defining polynomial x^4 + 3*x + 1
 To: Vector space of dimension 4 over Rational Field
sage: to(a), to(a + 1)
((0, 1, 0, 0), (1, 1, 0, 0))
sage: fr(to(a)), fr(V([0, 1, 2, 3]))
(a, 3*a^3 + 2*a^2 + a)
```

class sage.rings.number_field.maps.MapVectorSpaceToRelativeNumberField(V, L, from_V, from_K)
Bases: NumberFieldIsomorphism

The isomorphism to a relative number field from its underlying \( \mathbb{Q} \)-vector space. Compare MapRelativeVectorSpaceToRelativeNumberField.

EXAMPLES:

```sage
x = polygen(ZZ, 'x')
L.<a, b> = NumberField([x^2 + 3, x^2 + 5])
V, fr, to = L.absolute_vector_space()
type(fr)
<class 'sage.rings.number_field.maps.MapVectorSpaceToRelativeNumberField'>
```

class sage.rings.number_field.maps.NameChangeMap(K, L)

Bases: NumberFieldIsomorphism

A map between two isomorphic number fields with the same defining polynomial but different variable names.

EXAMPLES:

```sage
x = polygen(ZZ, 'x')
K.<a> = NumberField(x^2 - 3)
L. = K.change_names()
from_L, to_L = L.structure()
from_L
Isomorphism given by variable name change map:
 From: Number Field in b with defining polynomial x^2 - 3
 To: Number Field in a with defining polynomial x^2 - 3
to_L
Isomorphism given by variable name change map:
 From: Number Field in a with defining polynomial x^2 - 3
 To: Number Field in b with defining polynomial x^2 - 3
type(from_L), type(to_L)
<class 'sage.rings.number_field.maps.NameChangeMap'>,
<class 'sage.rings.number_field.maps.NameChangeMap'>
```

class sage.rings.number_field.maps.NumberFieldIsomorphism

Bases: Map

A base class for various isomorphisms between number fields and vector spaces.

EXAMPLES:

```sage
x = polygen(ZZ, 'x')
K.<a> = NumberField(x^4 + 3*x + 1)
V, fr, to = K.vector_space()
isinstance(fr, sage.rings.number_field.maps.NumberFieldIsomorphism)
True
is_injective()
EXAMPLES:

```sage
x = polygen(ZZ, 'x')
K.<a> = NumberField(x^4 + 3*x + 1)
V, fr, to = K.vector_space()
fr.is_injective()
True
```
3.5 Helper classes for structural embeddings and isomorphisms of number fields

Consider the following fields L and M:

```
sage: L.<a> = QuadraticField(2)
sage: M.<a> = L.absolute_field()
```

Both produce the same extension of \mathbb{Q}. However, they should not be identical because M carries additional information:

```
sage: L.structure()
(Identity endomorphism of Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?,
Identity endomorphism of Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?)
sage: M.structure()
(Isomorphism given by variable name change map:
  From: Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?,
  To:   Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?,
(Isomorphism given by variable name change map:
  From: Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095?,
  To:   Number Field in a with defining polynomial x^2 - 2)
```

This used to cause trouble with caching and made (absolute) number fields not unique when they should have been. The underlying technical problem is that the morphisms returned by `structure()` can only be defined once the fields in question have been created. Therefore, these morphisms cannot be part of a key which uniquely identifies a number field.

The classes defined in this file encapsulate information about these structure morphisms which can be passed to the factory creating number fields. This makes it possible to distinguish number fields which only differ in terms of these structure morphisms:

```
sage: L is M
False
sage: N.<a> = L.absolute_field()
sage: M is N
True
```

AUTHORS:
- Julian Rueth (2014-04-03): initial version

class `sage.rings.number_field.structure.AbsoluteFromRelative(other)`

Bases: `NumberFieldStructure`

Structure for an absolute number field created from a relative number field.
INPUT:

• other – the number field from which this field has been created.

create_structure(field)

Return a pair of isomorphisms which go from field to other and vice versa.

class sage.rings.number_field.structure.NameChange(other)

Bases: NumberFieldStructure

Structure for a number field created by a change in variable name.

INPUT:

• other – the number field from which this field has been created.

create_structure(field)

Return a pair of isomorphisms which send the generator of field to the generator of other and vice versa.

class sage.rings.number_field.structure.NumberFieldStructure(other)

Bases: UniqueRepresentation

Abstract base class encapsulating information about a number fields relation to other number fields.

create_structure(field)

Return a tuple encoding structural information about field.

OUTPUT:

Typically, the output is a pair of morphisms. The first one from field to a field from which field has been constructed and the second one its inverse. In this case, these morphisms are used as conversion maps between the two fields.

class sage.rings.number_field.structure.RelativeFromAbsolute(other, gen)

Bases: NumberFieldStructure

Structure for a relative number field created from an absolute number field.

INPUT:

• other – the (absolute) number field from which this field has been created.
• gen – the generator of the intermediate field

create_structure(field)

Return a pair of isomorphisms which go from field to other and vice versa.

INPUT:

• field – a relative number field

class sage.rings.number_field.structure.RelativeFromRelative(other)

Bases: NumberFieldStructure

Structure for a relative number field created from another relative number field.

INPUT:

• other – the relative number field used in the construction, see create_structure(); there this field will be called field_.

3.5. Helper classes for structural embeddings and isomorphisms of number fields
create_structure(field)

Return a pair of isomorphisms which go from field to the relative number field (called other below) from which field has been created and vice versa.

The isomorphism is created via the relative number field field_ which is identical to field but is equipped with an isomorphism to an absolute field which was used in the construction of field.

INPUT:

- field – a relative number field
ORDERS, IDEALS AND IDEAL CLASSES

4.1 Orders in number fields

EXAMPLES:

We define an absolute order:

\[\text{sage: } \text{x = polygen(ZZ, 'x')}\]
\[\text{sage: } K.<a> = NumberField(x^2 + 1); O = K.order(2*a)\]
\[\text{sage: } O.basis()\]
\[[1, 2*a]\]

We compute a basis for an order in a relative extension that is generated by 2 elements:

\[\text{sage: } K.<a,b> = NumberField([x^2 + 1, x^2 - 3])\]
\[\text{sage: } O = K.order([3*a, 2*b])\]
\[\text{sage: } O.basis()\]
\[[1, 3*a - 2*b, -6*b*a + 6, 3*a]\]

We compute a maximal order of a degree 10 field:

\[\text{sage: } K.<a> = NumberField((x+1)^10 + 17)\]
\[\text{sage: } K.maximal_order()\]
Maximal Order generated by a in Number Field in a with defining polynomial
\[x^{10} + 10*x^9 + 45*x^8 + 120*x^7 + 210*x^6 + 252*x^5 + 210*x^4 + 120*x^3 + 45*x^2 + -10*x + 18\]

We compute a suborder, which has index a power of 17 in the maximal order:

\[\text{sage: } O = K.order(17*a); O\]
Order generated by 17*a in Number Field in a with defining polynomial
\[x^{10} + 10*x^9 + 45*x^8 + 120*x^7 + 210*x^6 + 252*x^5 + 210*x^4 + 120*x^3 + 45*x^2 + -10*x + 18\]
\[\text{sage: } m = O.index_in(K.maximal_order()); m\]
234531651653277889116655919444416226304630809183732482257
\[\text{sage: } \text{factor}(m)\]
17^45

AUTHORS:

\textit{class} \ sage.rings.number_field.order.AbsoluteOrderFactory
\textit{Bases:} \ sage.rings.number_field.order.OrderFactory
An order in an (absolute) number field.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.order(i)
Gaussian Integers generated by i in Number Field in i with defining polynomial x^2 + 1
```

`create_key_and_extra_args` *(K, module_rep, is_maximal=None, check=True, is_maximal_at=())*

Return normalized arguments to create an absolute order.

`create_object` *(version, key, is_maximal=None, is_maximal_at=())*

Create an absolute order.

`reduce_data` *(order)*

Return the data that can be used to pickle an order created by this factory.

This overrides the default implementation to update the latest knowledge about primes at which the order is maximal.

EXAMPLES:

This also works for relative orders since they are wrapping absolute orders:

```
sage: x = polygen(ZZ, 'x')
sage: L.<a, b> = NumberField([x^2 - 1000003, x^2 - 5*1000099^2])
sage: O = L.maximal_order([5], assume_maximal=None)
sage: s = dumps(O)
sage: loads(s) is O
True
```

`sage.rings.number_field.order.EisensteinIntegers(names='omega')`

Return the ring of Eisenstein integers.

This is the ring of all complex numbers of the form $a + b\omega$ with a and b integers and $\omega = (-1 + \sqrt{-3})/2$.

EXAMPLES:

```
sage: R.<omega> = EisensteinIntegers()
sage: R
Eisenstein Integers generated by omega in Number Field in omega with defining polynomial x^2 + x + 1
with omega = -0.500000000000000000000000000 + 0.866025403784439059135802470*I
sage: factor(3 + omega)
(-1) * (-omega - 3)
sage: CC(omega)
-0.500000000000000 + 0.866025403784439*I
sage: omega.minpoly()
x^2 + x + 1
```

(continues on next page)
sage: EisensteinIntegers().basis()
[1, \omega]

`sage.rings.number_field.order.EquationOrder(f, names, **kwds)`

Return the equation order generated by a root of the irreducible polynomial \(f \) or list \(f \) of polynomials (to construct a relative equation order).

IMPORTANT: Note that the generators of the returned order need not be roots of \(f \), since the generators of an order are – in Sage – module generators.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: O.<a,b> = EquationOrder([x^2 + 1, x^2 + 2])
sage: O
Relative Order generated by [-b*a - 1, -3*a + 2*b] in Number Field in a with defining polynomial x^2 + 1 over its base field
sage: O.0
-b*a - 1
sage: O.1
-3*a + 2*b
```

Of course the input polynomial must be integral:

```python
sage: R = EquationOrder(x^3 + x + 1/3, 'alpha'); R
Traceback (most recent call last):
... ValueError: each generator must be integral
```

```python
sage: R = EquationOrder([x^3 + x + 1, x^2 + 1/2], 'alpha'); R
Traceback (most recent call last):
... ValueError: each generator must be integral
```

`sage.rings.number_field.order.GaussianIntegers(names='I', latex_name='\i')`

Return the ring of Gaussian integers.

This is the ring of all complex numbers of the form \(a + b\i \) with \(a \) and \(b \) integers and \(\i = \sqrt{-1} \).

EXAMPLES:

```python
sage: ZZI.<I> = GaussianIntegers()
sage: ZZI
Gaussian Integers generated by I in Number Field in I with defining polynomial x^2 + 1 with I = 1*I
sage: factor(3 + I)
(-I) * (I + 1) * (2*I + 1)
sage: CC(I)
1.00000000000000*I
sage: I.minpoly()
x^2 + 1
sage: GaussianIntegers().basis()
[1, I]
```

```python
class sage.rings.number_field.order.Order(K)

Bases: IntegralDomain, Order

An order in a number field.
```
An order is a subring of the number field that has \(\mathbb{Z} \)-rank equal to the degree of the number field over \(\mathbb{Q} \).

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<theta> = NumberField(x^4 + x + 17)
sage: K.maximal_order()
Maximal Order generated by theta in Number Field in theta with defining polynomial x^4 + x + 17
sage: R = K.order(17*theta); R
Order generated by 17*theta in Number Field in theta with defining polynomial x^4 + x + 17
sage: R.basis()
[1, 17*theta, 289*theta^2, 4913*theta^3]
sage: R = K.order(17*theta, 13*theta); R
Maximal Order generated by theta in Number Field in theta with defining polynomial x^4 + x + 17
sage: R.basis()
[1, theta, theta^2, theta^3]
sage: R = K.order([34*theta, 17*theta + 17]); R
Order generated by 17*theta in Number Field in theta with defining polynomial x^4 + x + 17
sage: R.basis()
[1, theta, theta^2, theta^3]
sage: K.<b> = NumberField(x^4 + x^2 + 2)
sage: (b^2).charpoly().factor()
(x^2 + x + 2)^2
sage: K.order(b^2)
Traceback (most recent call last):
  ...
  ValueError: the rank of the span of gens is wrong
```

absolute_degree()

Return the absolute degree of this order, i.e., the degree of this order over \(\mathbb{Z} \).

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + 2)
sage: O = K.maximal_order()
sage: O.absolute_degree()
3
```

ambient()

Return the ambient number field that contains \(\text{self} \).

This is the same as \textit{number_field()} and \textit{fraction_field()}

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: k.<z> = NumberField(x^2 - 389)
sage: o = k.order(389*z + 1)
sage: o
Order of conductor 778 generated by 389*z in Number Field in z with defining polynomial x^2 - 389
sage: o.basis()
[1, 389*z]
sage: o.ambient()
Number Field in z with defining polynomial x^2 - 389
```
basis()

Return a basis over \mathbb{Z} of this order.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + x^2 - 16*x + 16)
sage: O = K.maximal_order(); O
Maximal Order generated by 1/4*a^2 + 1/4*a in Number Field in a with defining polynomial x^3 + x^2 - 16*x + 16
sage: O.basis()
[1, 1/4*a^2 + 1/4*a, a^2]
```

class_group (proof=None, names='c')

Return the class group of this order.

(Currently only implemented for the maximal order.)

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: k.<a> = NumberField(x^2 + 5077)
sage: O = k.maximal_order(); O
Maximal Order generated by a in Number Field in a with defining polynomial x^2 + 5077
sage: O.class_group()
Class group of order 22 with structure C22 of Number Field in a with defining polynomial x^2 + 5077
```

class_number (proof=None)

Return the class number of this order.

EXAMPLES:

```python
sage: ZZ[2^(1/3)].class_number()  # needs sage.symbolic
1
sage: QQ[sqrt(-23)].maximal_order().class_number()  # needs sage.symbolic
3
sage: ZZ[120*sqrt(-23)].class_number()  # needs sage.symbolic
288
```

Note that non-maximal orders are only supported in quadratic fields:

```python
sage: ZZ[120*sqrt(-23)].class_number()  # needs sage.symbolic
288
sage: ZZ[100*sqrt(3)].class_number()  # needs sage.symbolic
4
sage: ZZ[11*2^(1/3)].class_number()  # needs sage.symbolic
Traceback (most recent call last):
NotImplementedError: computation of class numbers of non-maximal orders not in quadratic fields is not implemented
```
conductor()

For orders in *quadratic* number fields, return the conductor of this order.

The conductor is the unique positive integer f such that the discriminant of this order is f^2 times the discriminant of the containing quadratic field.

Not implemented for orders in number fields of degree $\neq 2$.

See also:

`sage.rings.number_field.number_field.NumberField_quadratic.order_of_conductor()`

EXAMPLES:

```
sage: K.<t> = QuadraticField(-101)
sage: K.maximal_order().conductor()
1
sage: K.order(5*t).conductor()
5
sage: K.discriminant().factor()
-1 * 2^2 * 101
sage: K.order(5*t).discriminant().factor()
-1 * 2^2 * 5^2 * 101
```
degree()
Return the degree of this order, which is the rank of this order as a \(\mathbb{Z}\)-module.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: k.<c> = NumberField(x^3 + x^2 - 2*x+8)
sage: o = k.maximal_order()
sage: o.degree()
3
sage: o.rank()
3
```

fraction_field()
Return the fraction field of this order, which is the ambient number field.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<b> = NumberField(x^4 + 17*x^2 + 17)
sage: O = K.order(17*b); O
Order generated by 17*b in Number Field in b with defining polynomial x^4 + 17*x^2 + 17
sage: O.fraction_field()
Number Field in b with defining polynomial x^4 + 17*x^2 + 17
```

fractional_ideal(*args, **kwds)
Return the fractional ideal of the maximal order with given generators.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 2)
sage: R = K.maximal_order()
sage: R.fractional_ideal(2/3 + 7*a, a)
Fractional ideal (1/3*a)
```

free_module()
Return the free \(\mathbb{Z}\)-module contained in the vector space associated to the ambient number field, that corresponds to this order.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: O = K.maximal_order(); O.basis()
[1, 1/2*a^2 + 1/2*a, a^2]
sage: O.free_module()
Free module of degree 3 and rank 3 over Integer Ring
User basis matrix:
```

(continues on next page)
An example in a relative extension. Notice that the module is a \(Z\)-module in the absolute field associated to the relative field:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1/2 & 1/2 \\
0 & 0 & 1
\end{bmatrix}
\]

\texttt{sage: x = polygen(ZZ, 'x')}
\texttt{sage: K.<a,b> = NumberField([x^2 + 1, x^2 + 2])}
\texttt{sage: O = K.maximal_order(); O.basis()}
\begin{verbatim}
((-3/2*b - 5)*a + 7/2*b - 2, -3*a + 2*b, -2*b*a - 3, -7*a + 5*b)
\end{verbatim}
\texttt{sage: O.free_module()}
Free module of degree 4 and rank 4 over Integer Ring
User basis matrix:
\[
\begin{bmatrix}
1/4 & 1/4 & 3/4 & 3/4 \\
0 & 1/2 & 0 & 1/2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
\texttt{gen(i)}
Return \(i\)th module generator of this order.

EXAMPLES:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1/2 & 1/2 \\
0 & 0 & 1
\end{bmatrix}
\]

\texttt{sage: x = polygen(ZZ, 'x')}
\texttt{sage: K.<c> = NumberField(x^3 + 2*x + 17)}
\texttt{sage: O = K.maximal_order(); O}
Maximal Order generated by c in Number Field in c with defining polynomial \(x^3 + 2*x + 17\)
\texttt{sage: O.basis()}
\begin{verbatim}
[1, c, c^2]
\end{verbatim}
\texttt{sage: O.gen(1)}
c
\texttt{sage: O.gen(2)}
c^2
\texttt{sage: O.gen(5)}
Traceback (most recent call last):
... IndexError: no 5th generator
\texttt{sage: O.gen(-1)}
Traceback (most recent call last):
... IndexError: no -1th generator

\texttt{ideal(*args, **kwds)}
Return the integral ideal with given generators.

EXAMPLES:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1/2 & 1/2 \\
0 & 0 & 1
\end{bmatrix}
\]

\texttt{sage: x = polygen(ZZ, 'x')}
\texttt{sage: K.<a> = NumberField(x^2 + 7)}
\texttt{sage: R = K.maximal_order()}
\texttt{sage: R.ideal(2/3 + 7*a, a)}
Traceback (most recent call last):
... ValueError: ideal must be integral;
use fractional_ideal to create a non-integral ideal.

This function is called implicitly below:

```python
sage: R = EquationOrder(x^2 + 2, a); R
Maximal Order generated by a in Number Field in a with defining polynomial x^2 + 2
sage: (3,15)*R
doctest:warning ... DeprecationWarning: ... 
Fractional ideal (3)
```

The zero ideal is handled properly:

```python
sage: R.ideal(0)
Ideal (0) of Number Field in a with defining polynomial x^2 + 2
```

integral_closure()

Return the integral closure of this order.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(5)
sage: O2 = K.order(2*a); O2
Order of conductor 4 generated by 2*a in Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790?
sage: O2.integral_closure()
Maximal Order generated by 1/2*a + 1/2 in Number Field in a with defining polynomial x^2 - 5 with a = 2.236067977499790?
sage: OK = K.maximal_order()
sage: OK is OK.integral_closure()
True
```

is_field *(proof=True)*

Return False (because an order is never a field).

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: L.<alpha> = NumberField(x^4 - x^2 + 7)
sage: O = L.maximal_order() ; O.is_field()
False
sage: CyclotomicField(12).ring_of_integers().is_field()
False
```

is_integrally_closed()

Return True if this ring is integrally closed, i.e., is equal to the maximal order.

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 189*x + 394)
sage: R = K.order(2*a)
sage: R.is_integrally_closed() # False
sage: R
Order of conductor 2 generated by 2*a in Number Field in a with defining polynomial x^2 + 189*x + 394

sage: S = K.maximal_order(); S
Maximal Order generated by a in Number Field in a with defining polynomial x^2 + 189*x + 394
sage: S.is_integrally_closed() # True
True

is_noetherian()
Return True (because orders are always Noetherian)

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: L.<alpha> = NumberField(x**4 - x**2 + 7)
sage: O = L.maximal_order(); O.is_noetherian() # True
sage: E.<w> = NumberField(x^2 - x + 2)
sage: OE = E.ring_of_integers(); OE.is_noetherian() # True
True

is_suborder(other)
Return True if self and other are both orders in the same ambient number field and self is a subset of other.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: W.<i> = NumberField(x^2 + 1)
sage: O5 = W.order(5*i)
sage: O10 = W.order(10*i)
sage: O15 = W.order(15*i)
sage: O15.is_suborder(O5) # True
sage: O5.is_suborder(O15) # False
sage: O10.is_suborder(O15) # False
sage: O5.is_suborder(O10) # False

We create another isomorphic but different field:

sage: W2.<j> = NumberField(x^2 + 1)
sage: P5 = W2.order(5*j)

This is False because the ambient number fields are not equal:

sage: O5.is_suborder(P5) # False

We create a field that contains (in no natural way!) W, and of course again is_suborder() returns False:
krull_dimension()

Return the Krull dimension of this order, which is 1.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(5)
sage: OK = K.maximal_order()
sage: OK.krull_dimension()
1
sage: O2 = K.order(2*a)
sage: O2.krull_dimension()
1
```

gens()

Return the number of module generators of this order.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: O = K.maximal_order()
sage: O.ngens()
3
```

number_field()

Return the number field of this order, which is the ambient number field that this order is embedded in.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<b> = NumberField(x^4 + x^2 + 2)
sage: O = K.order(2*b); O
Order generated by 2*b in Number Field in b with defining polynomial x^4 + x^2 + 2
sage: O.basis()
[1, 2*b, 4*b^2, 8*b^3]
sage: O.number_field()
Number Field in b with defining polynomial x^4 + x^2 + 2
sage: O.number_field() == K
True
```

random_element(*args, **kwds)

Return a random element of this order.

INPUT:

- *args, **kwds – parameters passed to the random integer function. See the documentation for ZZ.random_element() for details.

OUTPUT:

A random element of this order, computed as a random \(\mathbb{Z}\)-linear combination of the basis.

EXAMPLES:
The code snippet demonstrates the use of SageMath for working with algebraic numbers and number fields, specifically using the `NumberField`, `ring_of_integers`, and `random_element` methods. Here's a breakdown of the operations shown:

1. Creation of a number field `K` with a polynomial `x^3 + 2`.
2. Generation of random elements within the ring of integers of `K`.
3. Operations with different distributions for random elements.
4. Random elements within a specified range.
5. Operations with a cyclotomic field `K.<z> = CyclotomicField(17)`.
6. Example of a relative order in `K.<a, b> = NumberField([x^2 + 2, x^2 + 1000*x + 1])`.
7. Example in a non-maximal order in `K.<a> = QuadraticField(-3)`.

Additionally, the `rank()` method is introduced, which returns the rank of the order, equivalent to the degree of the ambient number field.

rank()

Return the rank of this order, which is the rank of the underlying Z-module, or the degree of the ambient number field that contains this order.

This is a synonym for `degree()`.

EXAMPLES:
residue_field (prime, names=None, check=False)
Return the residue field of this order at a given prime, i.e., \(O/pO \).

INPUT:

- `prime` – a prime ideal of the maximal order in this number field.
- `names` – the name of the variable in the residue field.
- `check` – whether or not to check the primality of `prime`.

OUTPUT:
The residue field at this prime.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^4 + 3*x^2 - 17)
sage: P = K.ideal(61).factor()[0][0]
sage: OK = K.maximal_order()
sage: OK.residue_field(P)
Residue field in abar of Fractional ideal (61, a^2 + 30)
sage: Fp.<b> = OK.residue_field(P)
sage: Fp
Residue field in b of Fractional ideal (61, a^2 + 30)
```

ring_generators()
Return generators for self as a ring.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: O = K.maximal_order(); O
Gaussian Integers generated by i in Number Field in i with defining polynomial x^2 + 1
sage: O.ring_generators()
[i]
```

This is an example where 2 generators are required (because 2 is an essential discriminant divisor).

```python
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: O = K.maximal_order(); O.basis()
[1, 1/2*a^2 + 1/2*a, a^2]
sage: O.ring_generators()
[1/2*a^2 + 1/2*a, a^2]
```

An example in a relative number field:
sage: K.<a, b> = NumberField([x^2 + x + 1, x^3 - 3])
sage: O = K.maximal_order()
sage: O.ring_generators()
[(-5/3*b^2 + 3*b - 2)*a - 7/3*b^2 + b + 3, (-5*b^2 - 9)*a - 5*b^2 - b, (-6*b^2 - 11)*a - 6*b^2 - b]

some_elements()

Return a list of elements of the given order.

EXAMPLES:

sage: G = GaussianIntegers(); G
Gaussian Integers generated by I in Number Field in I with defining polynomial x^2 + 1 with I = 1*I
sage: G.some_elements()
[1, I, 2*I, -1, 0, -I, 2, 4*I, -2, -2*I, -4]

sage: R.<t> = QQ[]
sage: K.<a> = QQ.extension(t^3 - 2); K
Number Field in a with defining polynomial t^3 - 2
sage: Z = K.ring_of_integers(); Z
Maximal Order generated by a in Number Field in a with defining polynomial t^3 - 2
sage: Z.some_elements()
[1, a, a^2, 2*a, 0, 2, a^2 + 2*a + 1, ..., a^2 + 1, 2*a^2 + 2, a^2 + 2*a, 4*a^2 + 2 + 4]

valuation(p)

Return the p-adic valuation on this order.

EXAMPLES:

The valuation can be specified with an integer prime p that is completely ramified or unramified:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 1)
sage: O = K.order(2*a)
sage: valuations.pAdicValuation(O, 2)
2-adic valuation
sage: GaussianIntegers().valuation(2)
2-adic valuation

sage: GaussianIntegers().valuation(3)
3-adic valuation

A prime p that factors into pairwise distinct factors, results in an error:

sage: GaussianIntegers().valuation(5)
Traceback (most recent call last):
...
ValueError: The valuation Gauss valuation induced by 5-adic valuation does not approximate a unique extension of 5-adic valuation with respect to x^2 + 1

The valuation can also be selected by giving a valuation on the base ring that extends uniquely:
When the extension is not unique, this does not work:

```sage
sage: GaussianIntegers().valuation(ZZ.valuation(5))
Traceback (most recent call last):
...
ValueError: The valuation Gauss valuation induced by 5-adic valuation does not approximate a unique extension of 5-adic valuation with respect to x^2 + 1
```

If the fraction field is of the form $K[x]/(G)$, you can specify a valuation by providing a discrete pseudo-valuation on $K[x]$ which sends G to infinity:

```sage
sage: R.<x> = QQ[]
sage: GV5 = GaussValuation(R, QQ.valuation(5))
sage: v = GaussianIntegers().valuation(GV5.augmentation(x + 2, infinity))
sage: w = GaussianIntegers().valuation(GV5.augmentation(x + 1/2, infinity))
sage: v == w
False
```

See also:

* `NumberField_generic.valuation()`
* `pAdicGeneric.valuation()`

zeta ($n=2$, all=False)

Return a primitive n-th root of unity in this order, if it contains one. If all is True, return all of them.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: F.<alpha> = NumberField(x**2 + 3)
sage: F.ring_of_integers().zeta(6)
-1/2*alpha + 1/2
sage: O = F.order([3*alpha])
sage: O.zeta(3)
Traceback (most recent call last):
...
ArithmeticError: there are no 3rd roots of unity in self
```

class `sage.rings.number_field.order.OrderFactory`

Bases: `UniqueFactory`

Abstract base class for factories creating orders, such as `AbsoluteOrderFactory` and `RelativeOrderFactory`.

get_object (`version, key, extra_args`)

Create the order identified by `key`.

This overrides the default implementation to update the maximality of the order if it was explicitly specified.

EXAMPLES:

Even though orders are unique parents, this lets us update their internal state when they are recreated with more additional information available about them:

```sage
sage: x = polygen(ZZ, 'x')
sage: L.<a, b> = NumberField([x^2 - 1000003, x^2 - 5*1000099^2])
sage: O = L.maximal_order([2], assume_maximal=None)
```

(continues on next page)
\begin{verbatim}
from sage.rings.number_field.order import *
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^3 + 2)
sage: V, from_v, to_v = K.vector_space()
sage: M = span([to_v(a^2), to_v(a), to_v(1)], ZZ)
sage: O = AbsoluteOrder(K, M); O
Maximal Order generated by a in Number Field in a with defining polynomial x^3 + 2
sage: M = span([to_v(a^2), to_v(a), to_v(2)], ZZ)
sage: O = AbsoluteOrder(K, M); O
Traceback (most recent call last):
... ValueError: 1 is not in the span of the module, hence not an order
\end{verbatim}

\texttt{absolute_discriminant()}

Return the discriminant of this order.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^8 + x^3 - 13*x + 26)
sage: O = K.maximal_order()
sage: factor(O.discriminant())
3 * 11 * 13^2 * 613 * 1575917857
sage: L = K.order(13*a^2)
sage: factor(L.discriminant())
3^3 * 5^2 * 11 * 13^60 * 613 * 733^2 * 1575917857
sage: factor(L.index_in(O))
3 * 5 * 13^29 * 733
sage: L.discriminant() / O.discriminant() == L.index_in(O)^2
True
\end{verbatim}

\texttt{absolute_order()}

Return the absolute order associated to this order, which is just this order again since this is an absolute order.

\textbf{EXAMPLES:}

Algebraic Numbers and Number Fields, Release 10.3

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + 2)
sage: O1 = K.order(a); O1
Maximal Order generated by a in Number Field in a with defining polynomial x^3 + 2
sage: O1.absolute_order() is O1
True
```

basis()

Return the basis over \(\mathbb{Z}\) for this order.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: k.<c> = NumberField(x^3 + x^2 + 1)
sage: O = k.maximal_order(); O
Maximal Order generated by c in Number Field in c with defining polynomial x^3 + x^2 + 1
sage: O.basis()
[1, c, c^2]
The basis is an immutable sequence:
```
```
sage: type(O.basis())
<class 'sage.structure.sequence.Sequence_generic'>
```

The generator functionality uses the basis method:

```
sage: 0.0
1
sage: 0.1
c
sage: O.basis()
[1, c, c^2]
sage: O.ngens()
3
```

change_names(names)

Return a new order isomorphic to this one in the number field with given variable names.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: R = EquationOrder(x^3 + x + 1, alpha); R
Order generated by alpha in Number Field in alpha with defining polynomial x^3 + x + 1
sage: R.basis()
[1, alpha, alpha^2]
sage: S = R.change_names(gamma); S
Order generated by gamma in Number Field in gamma with defining polynomial x^3 + x + 1
sage: S.basis()
[1, gamma, gamma^2]
```

discriminant()

Return the discriminant of this order.

EXAMPLES:

```
4.1. Orders in number fields 245
```
index_in(other)

Return the index of self in other.

This is a lattice index, so it is a rational number if self is not contained in other.

INPUT:

• other—another absolute order with the same ambient number field.

OUTPUT:

a rational number

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^8 + x^3 - 13*x + 26)
sage: O = K.maximal_order()
sage: factor(O.discriminant())
3 * 11 * 13^2 * 613 * 1575917857
sage: L = K.order(13*a^2)
sage: factor(L.discriminant())
3^3 * 5^2 * 11 * 13^60 * 613 * 733^2 * 1575917857
sage: factor(L.index_in(O))
3 * 5 * 13^29 * 733
sage: L.discriminant() / O.discriminant() == L.index_in(O)^2
True

intersection(other)

Return the intersection of this order with another order.

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: k.<i> = NumberField(x^2 + 1)
sage: O6 = k.order(6*i)
sage: O9 = k.order(9*i)
sage: O6.basis()
[1, 6*i]
sage: O9.basis()
[1, 9*i]
sage: O6.intersection(O9).basis()
[1, 18*i]
sage: (O6 & O9).basis()
[1, 18*i]
sage: (O6 + O9).basis()
[1, 3*i]

```
is_maximal (p=None)
Return whether this is the maximal order.

INPUT:

• p – an integer prime or None (default: None); if set, return whether this order is maximal at the prime p.

EXAMPLES:
```
sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: K.order(3*i).is_maximal() # False
False
sage: K.order(5*i).is_maximal() # False
False
sage: (K.order(3*i) + K.order(5*i)).is_maximal() # True
True
sage: K.maximal_order().is_maximal() # True
True

Maximality can be checked at primes when the order is maximal at that prime by construction:
```
sage: K.maximal_order().is_maximal(p=3)
True

And also at other primes:
```
sage: K.order(3*i).is_maximal(p=3) # False
False

An example involving a relative order::
```
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 3])
sage: O = K.order([3*a, 2*b])
sage: O.is_maximal()  # False
False
```

```
module()
Return the underlying free module corresponding to this order, embedded in the vector space corresponding to the ambient number field.

EXAMPLES:
```

4.1. Orders in number fields
sage: x = polygen(ZZ, 'x')
sage: k.<a> = NumberField(x^3 + x + 3)
sage: m = k.order(3*a); m
Order generated by 3*a in Number Field in a with defining polynomial x^3 + x^2 + 3
sage: m.module()
Free module of degree 3 and rank 3 over Integer Ring
Echelon basis matrix:
[1 0 0]
[0 3 0]
[0 0 9]

class sage.rings.number_field.order.Order_relative(K, absolute_order)
Bases: Order

A relative order in a number field.
A relative order is an order in some relative number field.
Invariants of this order may be computed with respect to the contained order.

absolute_discriminant()
Return the absolute discriminant of self, which is the discriminant of the absolute order associated to self.
OUTPUT:
an integer
EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: R = EquationOrder([x^2 + 1, x^3 + 2], a, b)
sage: d = R.absolute_discriminant(); d
-746496
sage: d is R.absolute_discriminant()
True
sage: factor(d)
-1 * 2^10 * 3^6

absolute_order(names='z')
Return underlying absolute order associated to this relative order.
INPUT:

- names – string (default: 'z'); name of generator of absolute extension.

Note: There is a default variable name, since this absolute order is frequently used for internal algorithms.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: R = EquationOrder([x^2 + 1, x^2 - 5], i, g); R
Relative Order generated by [6*i - g, -g*i + 2, 7*i - g] in
Number Field in i with defining polynomial x^2 + 1 over its base field
sage: R.basis()
[1, 6*i - g, -g*i + 2, 7*i - g]
We compute a relative order in \(\alpha_0, \alpha_1\), then make the generator of the number field that contains the absolute order be called \(\gamma\).

```sage
R = EquationOrder([x^2 + 2, x^2 - 3], 'alpha'); R
Relative Order generated by [-alpha1*alpha0 + 1, 5*alpha0 + 2*alpha1, -7*alpha0 + 3*alpha1] in
Number Field in alpha0 with defining polynomial x^2 + 2 over its base field
```

```sage
R.absolute_order('gamma').basis()
Order generated by [1/2*gamma^2 + 1/2, 7/10*gamma^3 + 1/10*gamma, gamma^3] in
Number Field in gamma with defining polynomial x^4 - 2*x^2 + 25
```

basis()
Return a basis for this order as \(\mathbb{Z}\)-module.

EXAMPLES:

```sage
x = polygen(ZZ, 'x')
K.<a,b> = NumberField([x^3 + x + 3, x^2 + 1])
O = K.order([a,b])
basis()
[1, -2*a + b, -b*a - 2, -5*a + 3*b]
```

index_in(other)
Return the index of \(\text{self}\) in \(\text{other}\).

This is a lattice index, so it is a rational number if \(\text{self}\) is not contained in \(\text{other}\).

INPUT:

- \(\text{other}\) – another order with the same ambient absolute number field.

OUTPUT:

a rational number

EXAMPLES:

```sage
x = polygen(ZZ, 'x')
K.<a,b> = NumberField([x^3 + x + 3, x^2 + 1])
R1 = K.order([3*a, 2*b])
R2 = K.order([a, 4*b])
R1.index_in(R2)
729/8
R2.index_in(R1)
8/729
```
is_maximal \((p=None)\)
Return whether this is the maximal order.

INPUT:

- \(p\) – an integer prime or None (default: None); if set, return whether this order is maximal at the prime \(p\).

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 5])
sage: K.order(3*a, b).is_maximal()
False
sage: K.order(5*a, b/2 + 1/2).is_maximal()
False
sage: (K.order(3*a, b) + K.order(5*a, b/2 + 1/2)).is_maximal()
True
sage: K.maximal_order().is_maximal()
True
```

Maximality can be checked at primes when the order is maximal at that prime by construction:

```python
sage: K.maximal_order().is_maximal(p=3)
True
```

And at other primes:

```python
sage: K.order(3*a, b).is_maximal(p=3)
False
```

is_suborder \((other)\)
Return True if self is a subset of the order other.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^2 + 1, x^3 + 2])
sage: R1 = K.order([a, b])
sage: R2 = K.order([2*a, b])
sage: R3 = K.order([a + b, b + 2*a])
sage: R1.is_suborder(R2)
False
sage: R2.is_suborder(R1)
True
sage: R3.is_suborder(R1)
True
sage: R1.is_suborder(R3)
True
sage: R1 == R3
True
```

class sage.rings.number_field.order.RelativeOrderFactory

Bases: OrderFactory

An order in a relative number field extension.

EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: K.<i> = NumberField(x^2 + 1)
sage: R.<j> = K[]
sage: L.<j> = K.extension(j^2 - 2)
sage: L.order([i, j])
Relative Order generated by [-i*j + 1, -i] in
Number Field in j with defining polynomial j^2 - 2 over its base field

create_key_and_extra_args(K, absolute_order, is_maximal=None, check=True, is_maximal_at=())

Return normalized arguments to create a relative order.

create_object (version, key, is_maximal=None, is_maximal_at=())

Create a relative order.

sage.rings.number_field.order.absolute_order_from_module_generators(gens, check_integral=True, check_rank=True, check_is_ring=True, is_maximal=None, allow_subfield=False, is_maximal_at=())

INPUT:
- gens – list of elements of an absolute number field that generates an order in that number field as a \(\mathbb{Z} \)-module.
- check_integral – check that each generator is integral
- check_rank – check that the gens span a module of the correct rank
- check_is_ring – check that the module is closed under multiplication (this is very expensive)
- is_maximal – bool (or None); set if maximality of the generated order is known
- is_maximal_at – a tuple of primes where this order is known to be maximal

OUTPUT:
an absolute order

EXAMPLES:
We have to explicitly import the function, since it is not meant for regular usage:

sage: from sage.rings.number_field.order import absolute_order_from_module_generators

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^4 - 5)
sage: O = K.maximal_order(); O
Maximal Order generated by [1/2*a^2 + 1/2, 1/2*a^3 + 1/2*a] in Number Field in a with defining polynomial x^4 - 5
sage: O.basis()
[1/2*a^2 + 1/2, 1/2*a^3 + 1/2*a, a^2, a^3]
sage: O.module()
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
[1/2 0 1/2 0]

(continues on next page)
We illustrate each check flag – the output is the same but in case the function would run ever so slightly faster:

```
sage: absolute_order_from_module_generators(g, check_is_ring=False)
Maximal Order generated by [1/2*a^2 + 1/2, 1/2*a^3 + 1/2*a] in Number Field in a
˓→ with defining polynomial x^4 - 5
sage: absolute_order_from_module_generators(g, check_rank=False)
Maximal Order generated by [1/2*a^2 + 1/2, 1/2*a^3 + 1/2*a] in Number Field in a
˓→ with defining polynomial x^4 - 5
sage: absolute_order_from_module_generators(g, check_integral=False)
Maximal Order generated by [1/2*a^2 + 1/2, 1/2*a^3 + 1/2*a] in Number Field in a
˓→ with defining polynomial x^4 - 5
```

Next we illustrate constructing “fake” orders to illustrate turning off various check flags:

```
sage: k.<i> = NumberField(x^2 + 1)
sage: R = absolute_order_from_module_generators([2, 2*i],
˓→ check_is_ring=False); R
Order of conductor 4 generated by [2, 2*i]
in Number Field in i with defining polynomial x^2 + 1
sage: R.basis()
[2, 2*i]
sage: R = absolute_order_from_module_generators([k(1)],
˓→ check_rank=False); R
Order of conductor I generated by []
in Number Field in i with defining polynomial x^2 + 1
sage: R.basis()
[1]
```

If the order contains a non-integral element, even if we do not check that, we will find that the rank is wrong or that the order is not closed under multiplication:

```
sage: absolute_order_from_module_generators([1/2, i],
˓→ check_integral=False)
Traceback (most recent call last):
...
ValueError: the module span of the gens is not closed under multiplication.
sage: R = absolute_order_from_module_generators([1/2, i],
˓→ check_is_ring=False,
˓→ check_integral=False); R
Order of conductor 0 generated by [1/2, i] in Number Field in i with defining...
˓→ polynomial x^2 + 1
sage: R.basis()
[1/2, i]
```

We turn off all check flags and make a really messed up order:

```
sage: R = absolute_order_from_module_generators([1/2, i],
˓→ check_is_ring=False,
˓→ (continues on next page)
```
An order that lives in a subfield:

```python
sage: F.<α> = NumberField(x**4 + 3)
sage: F.order([α**2], allow_subfield=True)
Order of conductor 2 generated by ... in Number Field in beta with defining...
→polynomial ... with beta = ...
```

sage.rings.number_field.order.absolute_order_from_ring_generators

INPUT:

- `gens` – list of integral elements of an absolute order.
- `check_is_integral` – bool (default: True), whether to check that each generator is integral.
- `check_rank` – bool (default: True), whether to check that the ring generated by `gens` is of full rank.
- `is_maximal` – bool (or None); set if maximality of the generated order is known
- `allow_subfield` – bool (default: False), if True and the generators do not generate an order, i.e., they generate a subring of smaller rank, instead of raising an error, return an order in a smaller number field.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^4 - 5)
sage: K.order(a)
Order generated by a in Number Field in a with defining polynomial x^4 - 5

We have to explicitly import this function, since typically it is called with `K.order` as above.:  

```python
sage: from sage.rings.number_field.order import absolute_order_from_ring_generators
sage: absolute_order_from_ring_generators([a])
Order generated by a in Number Field in a with defining polynomial x^4 - 5
sage: absolute_order_from_ring_generators([3*a, 2, 6*a + 1])
Order generated by 3*a in Number Field in a with defining polynomial x^4 - 5
```

If one of the inputs is non-integral, it is an error.:  

```python
sage: absolute_order_from_ring_generators([a/2])
Traceback (most recent call last):
...
ValueError: each generator must be integral
```

If the `gens` do not generate an order, i.e., generate a ring of full rank, then it is an error.:
sage: absolute_order_from_ring_generators([a^2])
Traceback (most recent call last):
  ...  
ValueError: the rank of the span of gens is wrong

Both checking for integrality and checking for full rank can be turned off in order to save time, though one can get nonsense as illustrated below:

sage: absolute_order_from_ring_generators([a/2], check_is_integral=False)
Order generated by [1, 1/2*a, 1/4*a^2, 1/8*a^3] in Number Field in a with defining polynomial x^4 - 5

sage: absolute_order_from_ring_generators([a^2], check_rank=False)
Order generated by a^2 in Number Field in a with defining polynomial x^4 - 5

sage.rings.number_field.order.each_is_integral(v)

Return whether every element of the list v of elements of a number field is integral.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: W.<sqrt5> = NumberField(x^2 - 5)
sage: from sage.rings.number_field.order import each_is_integral
sage: each_is_integral([sqrt5, 2, (1+sqrt5)/2])
True
sage: each_is_integral([sqrt5, (1+sqrt5)/3])
False

sage.rings.number_field.order.is_NumberFieldOrder(R)

Return True if R is either an order in a number field or is the ring Z of integers.

EXAMPLES:

sage: from sage.rings.number_field.order import is_NumberFieldOrder
sage: is_NumberFieldOrder(NumberField(x^2 + 1,'a').maximal_order())
True
sage: is_NumberFieldOrder(ZZ)
True
sage: is_NumberFieldOrder(QQ)
False
sage: is_NumberFieldOrder(45)
False

sage.rings.number_field.order.quadratic_order_class_number(disc)

Return the class number of the quadratic order of given discriminant.

EXAMPLES:

sage: from sage.rings.number_field.order import quadratic_order_class_number
sage: quadratic_order_class_number(-419)
9
sage: quadratic_order_class_number(60)
2

ALGORITHM: Either pariqfbclassno or pari:quadclassunit, depending on the size of the discriminant.
INPUT:

- `gens` – list of integral elements of an absolute order.
- `check_is_integral` – bool (default: True), whether to check that each generator is integral.
- `check_rank` – bool (default: True), whether to check that the ring generated by `gens` is of full rank.
- `is_maximal` – bool (or None); set if maximality of the generated order is known.

EXAMPLES:

We have to explicitly import this function, since it is not meant for regular usage:

```python
sage: from sage.rings.number_field.order import relative_order_from_ring_generators
sage: x = polygen(ZZ, 'x')
Sage: K.<i, a> = NumberField([x^2 + 1, x^2 - 17])
Sage: R = K.base_field().maximal_order()
Sage: S = relative_order_from_ring_generators([i, a]); S
Relative Order generated by [7*i - 2*a, -a*i + 8, 25*i - 7*a] in
Number Field in i with defining polynomial x^2 + 1 over its base field
```

Basis for the relative order, which is obtained by computing the algebra generated by `i` and `a`:

```python
sage: S.basis()
[1, 7*i - 2*a, -a*i + 8, 25*i - 7*a]
```

### 4.2 Ideals of number fields

AUTHORS:

- Steven Sivek (2005-05-16): initial version
- William Stein (2007-09-06): vastly improved the doctesting
- William Stein and John Cremona (2007-01-28): new class `NumberFieldFractionalIdeal` now used for all except the 0 ideal
- Radoslav Kirov and Alyson Deines (2010-06-22): `prime_to_S_part`, `is_S_unit`, `is_S_integral`

```python
class sage.rings.number_field.number_field_ideal.LiftMap(OK, M_OK_map, Q, I)
Bases: object
Class to hold data needed by lifting maps from residue fields to number field orders.
```

```python
class sage.rings.number_field.number_field_ideal.NumberFieldFractionalIdeal(field, gens, coerce=True)
```
\textbf{Bases: MultiplicativeGroupElement, NumberFieldIdeal, Ideal_fractional}

A fractional ideal in a number field.

\textbf{EXAMPLES:}

```sage
x = polygen(ZZ)
R.<x> = PolynomialRing(QQ)
K.<a> = NumberField(x^3 - 2)
I = K.ideal(2/(5+a))
J = I^2
Jinv = I^(-2)
J*Jinv
Fractional ideal (1)
```

denominator()

Return the denominator ideal of this fractional ideal. Each fractional ideal has a unique expression as $N/D$ where $N, D$ are coprime integral ideals; the denominator is $D$.

\textbf{EXAMPLES:}

```sage
x = polygen(ZZ)
K.<i> = NumberField(x^2 + 1)
I = K.ideal((3+4*i)/5); I
Fractional ideal (4/5*i + 3/5)
sage: I.denominator()
Fractional ideal (2*i + 1)
sage: I.numerator()
Fractional ideal (i + 2)
sage: I.numerator().is_integral() and I.denominator().is_integral()
True
sage: I.numerator() + I.denominator() == K.unit_ideal()
True
sage: I.numerator()/I.denominator() == I
True
```

divides(other)

Return True if this ideal divides other and False otherwise.

\textbf{EXAMPLES:}

```sage
K.<a> = CyclotomicField(11); K
Cyclotomic Field of order 11 and degree 10
sage: I = K.factor(31)[0][0]; I
Fractional ideal (31, a^5 + 10*a^4 - a^3 + a^2 + 9*a - 1)
sage: I.divides(I)
True
sage: I.divides(31)
True
sage: I.divides(29)
False
```

element_1_mod(other)

Return an element $r$ in this ideal such that $1 - r$ is in other.

An error is raised if either ideal is not integral of if they are not coprime.

\textbf{INPUT:}
• other – another ideal of the same field, or generators of an ideal.

OUTPUT:

An element $r$ of the ideal self such that $1 - r$ is in the ideal other

AUTHOR: Maite Aranes (modified to use PARI’s pari:idealaddtoone by Francis Clarke)

EXAMPLES:

```sage
x = polygen(ZZ)
K.<a> = NumberField(x^3 - 2)
A = K.ideal(a + 1); A; A.norm()
Fractional ideal (a + 1)

3
B = K.ideal(a^2 - 4*a + 2); B; B.norm()
Fractional ideal (a^2 - 4*a + 2)

68
r = A.element_1_mod(B); r

-33
sage: r in A
True
sage: 1 - r in B
True
```

euler_phi()

Return the Euler $\varphi$-function of this integral ideal.

This is the order of the multiplicative group of the quotient modulo the ideal.

An error is raised if the ideal is not integral.

EXAMPLES:

```sage
x = polygen(ZZ)
K.<i> = NumberField(x^2 + 1)
I = K.ideal(2 + i)

[r for r in I.residues() if I.is_coprime(r)]
[-2*i, -i, i, 2*i]

I.euler_phi()

4

J = I^3
J.euler_phi()

100

len([r for r in J.residues() if J.is_coprime(r)])
100

J = K.ideal(3 - 2*i)
I.is_coprime(J)
True

I.euler_phi() * J.euler_phi() == (I*J).euler_phi()
True

L. = K.extension(x^2 - 7)
L.ideal(3).euler_phi()

64
```

factor()

Factorization of this ideal in terms of prime ideals.

EXAMPLES:
```python
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^4 + 23); K
Number Field in a with defining polynomial x^4 + 23
sage: I = K.ideal(19); I
Fractional ideal (19)
sage: F = I.factor(); F
(Fractional ideal (19, 1/2*a^2 + a - 17/2))
 * (Fractional ideal (19, 1/2*a^2 - a - 17/2))
sage: type(F)
<class 'sage.structure.factorization.Factorization'>
sage: list(F)
[(Fractional ideal (19, 1/2*a^2 + a - 17/2), 1),
 (Fractional ideal (19, 1/2*a^2 - a - 17/2), 1)]
sage: F.prod()
Fractional ideal (19)
```

`idealcoprime(J)`

Return $l$ such that $l \cdot \text{self}$ is coprime to $J$.

**INPUT:**
- $J$ – another integral ideal of the same field as `self`, which must also be integral.

**OUTPUT:**
an element $l$ such that $l \cdot \text{self}$ is coprime to the ideal $J$

**Todo:** Extend the implementation to non-integral ideals.

**EXAMPLES:**

```python
sage: x = polygen(ZZ)
sage: k.<a> = NumberField(x^2 + 23)
sage: A = k.ideal(a + 1)
sage: B = k.ideal(3)
sage: A.is_coprime(B)
False
sage: lam = A.idealcoprime(B)
representation depends, not tested
-1/6*a + 1/6
sage: (lam*a).is_coprime(B)
True
```

**ALGORITHM:** Uses Pari function `pari:idealcoprime`.

`ideallog(x, gens=None, check=True)`

Return the discrete logarithm of $x$ with respect to the generators given in the bid structure of the ideal `self`, or with respect to the generators `gens` if these are given.

**INPUT:**
- $x$ – a non-zero element of the number field of `self`, which must have valuation equal to 0 at all prime ideals in the support of the ideal `self`.
- `gens` – a list of elements of the number field which generate $(R/I)^*$, where $R$ is the ring of integers of the field and $I$ is this ideal, or `None`. If `None`, use the generators calculated by `idealstar()`.
- `check` – if `True`, do a consistency check on the results. Ignored if `gens` is `None`.

258 Chapter 4. Orders, Ideals and Ideal Classes
OUTPUT:

a list of non-negative integers \((x_i)\) such that \(x = \prod_i g_i^{x_i}\) in \((R/I)^*\), where \(x_i\) are the generators, and the list \((x_i)\) is lexicographically minimal with respect to this requirement. If the \(x_i\) generate independent cyclic factors of order \(d_i\), as is the case for the default generators calculated by \texttt{idealstar()}, this just means that \(0 \leq x_i < d_i\).

A \texttt{ValueError} will be raised if the elements specified in \texttt{gens} do not in fact generate the unit group (even if the element \(x\) is in the subgroup they generate).

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: k.<a> = NumberField(x^3 - 11)
sage: A = k.ideal(5)
sage: G = A.idealstar(2)
sage: l = A.ideallog(a^2 + 3)
sage: r = G(l).value()
sage: (a^2 + 3) - r in A
True
sage: A.small_residue(r) # random
a^2 - 2
```

Examples with custom generators:

```
sage: K.<a> = NumberField(x^2 - 7)
sage: I = K.ideal(17)
sage: I.ideallog(a + 7, [1 + a, 2])
[10, 3]
sage: I.ideallog(a + 7, [2, 1 + a])
[0, 118]
sage: L. = NumberField(x^4 - x^3 + 7*x^2 + 3*x + 2)
sage: J = L.ideal(-b^3 - b^2 - 2)
sage: u = -14*b^3 + 21*b^2 + b - 1
sage: v = 4*b^2 + 2*b - 1
sage: J.ideallog(5 + 2*b, [u, v], check=True)
[4, 13]
```

A non-example:

```
sage: I.ideallog(a + 7, [2])
Traceback (most recent call last):
...
ValueError: Given elements do not generate unit group -- they generate a subgroup of index 36
```

ALGORITHM: Uses PARI function \texttt{pari:ideallog}, and (if \texttt{gens} is not \texttt{None}) a Hermite normal form calculation to express the result in terms of the generators \texttt{gens}.

\texttt{idealstar} (\texttt{flag}=1)

Return the finite abelian group \((O_K/I)^*\), where \(I\) is the ideal \texttt{self} of the number field \(K\), and \(O_K\) is the ring of integers of \(K\).

INPUT:

- \texttt{flag} (int default 1) – when \texttt{flag}=2, it also computes the generators of the group \((O_K/I)^*\), which takes more time. By default \texttt{flag}=1 (no generators are computed). In both cases the special PARI structure \texttt{bid} is computed as well. If \texttt{flag}=0 (deprecated) it computes only the group structure of \((O_K/I)^*\) (with generators) and not the special \texttt{bid} structure.
OUTPUT:

The finite abelian group \((O_K/I)^*\).

**Note:** Uses the PARI function `pari:idealstar`. The PARI function outputs a special bid structure which is stored in the internal field `_bid` of the ideal (when `flag = 1,2`). The special structure `bid` is used in the PARI function `pari:ideallog` to compute discrete logarithms.

**EXAMPLES:**

```python
sage: x = polygen(ZZ)
sage: k.<a> = NumberField(x^3 - 11)
sage: A = k.ideal(5)
sage: G = A.idealstar(); G
Multiplicative Abelian group isomorphic to C24 x C4
sage: G.gens()
(f0, f1)
sage: G = A.idealstar(2)
sage: G.gens()
(f0, f1)
sage: G.gens_values()
random output
(2*a^2 - 1, 2*a^2 + 2*a - 2)
sage: all(G.gen(i).value() in k for i in range(G.ngens()))
True
```

**ALGORITHM:** Uses Pari function `pari:idealstar`

**invertible_residues** (*reduce=True*)

Return an iterator through a list of invertible residues modulo this integral ideal.

An error is raised if this fractional ideal is not integral.

**INPUT:**

- `reduce` – bool. If True (default), use `small_residue` to get small representatives of the residues.

**OUTPUT:**

An iterator through a list of invertible residues modulo this ideal \(I\), i.e. a list of elements in the ring of integers \(R\) representing the elements of \((R/I)^*\).

**ALGORITHM:** Use `pari:idealstar` to find the group structure and generators of the multiplicative group modulo the ideal.

**EXAMPLES:**

```python
sage: x = polygen(ZZ)
sage: K.<i> = NumberField(x^2 + 1)
sage: ires = K.ideal(2).invertible_residues(); ires
xmrange_iter([0, 1]), <function ...<lambda> at 0x...>
sage: list(ires)
[1, -i]
sage: list(K.ideal(2 + i).invertible_residues())
[1, 2, 4, 3]
sage: list(K.ideal(i).residues())
[0]
sage: list(K.ideal(i).invertible_residues())
[1]
```

(continues on next page)
AUTHOR: John Cremona

invertible_residues_mod (subgp_gens=[], reduce=True)
Return a iterator through a list of representatives for the invertible residues modulo this integral ideal, modulo the subgroup generated by the elements in the list subgp_gens.

INPUT:
- subgp_gens – either None or a list of elements of the number field of self. These need not be integral, but should be coprime to the ideal self. If the list is empty or None, the function returns an iterator through a list of representatives for the invertible residues modulo the integral ideal self.
- reduce – bool. If True (default), use small_residues to get small representatives of the residues.

Note: See also invertible_residues() for a simpler version without the subgroup.

OUTPUT:
An iterator through a list of representatives for the invertible residues modulo self and modulo the group generated by subgp_gens, i.e. a list of elements in the ring of integers R representing the elements of (R/I)^*/U, where I is this ideal and U is the subgroup of (R/I)^* generated by subgp_gens.

EXAMPLES:
AUTHOR: Maite Aranes.

**is_S_integral** ($S$)

Return True if this fractional ideal is integral with respect to the list of primes $S$.

**INPUT:**

- $S$ – a list of prime ideals (not checked if they are indeed prime).

**Note:** This function assumes that $S$ is a list of prime ideals, but does not check this. This function will fail if $S$ is not a list of prime ideals.

**OUTPUT:**

True, if the ideal is $S$-integral: that is, if the valuations of the ideal at all primes not in $S$ are non-negative. False, otherwise.

**EXAMPLES:**

```
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^2 + 23)
sage: I = K.ideal(1/2)
sage: P = K.ideal(2, 1/2*a - 1/2)
sage: I.is_S_integral([P])
False
```

**is_S_unit** ($S$)

Return True if this fractional ideal is a unit with respect to the list of primes $S$.

**INPUT:**

- $S$ – a list of prime ideals (not checked if they are indeed prime).

**Note:** This function assumes that $S$ is a list of prime ideals, but does not check this. This function will fail if $S$ is not a list of prime ideals.

**OUTPUT:**

True, if the ideal is an $S$-unit: that is, if the valuations of the ideal at all primes not in $S$ are zero. False, otherwise.

**EXAMPLES:**

```python
sage: K.<z> = CyclotomicField(10)
sage: len(list(K.primes_above(3)[0].invertible_residues_mod([])))
80
```
is_coprime(*other*)
Return True if this ideal is coprime to other, else False.

INPUT:

- other – another ideal of the same field, or generators of an ideal.

OUTPUT:
True if self and other are coprime, else False.

Note: This function works for fractional ideals as well as integral ideals.

AUTHOR: John Cremona

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^2 + 23)
sage: I = K.ideal(2)
sage: P = I.factor()[0][0]
sage: I.is_S_unit([P])
False

sage: I.is_coprime(K.ideal(2 + a))
True
sage: I.is_coprime(K.ideal(2 - a))
False
```

See github issue #4536:

```python
sage: E.<a> = NumberField(x^5 + 7*x^4 + 18*x^2 + x - 3)
sage: T = [u[0] for u in factor(3*E)]
sage: (i/j).is_coprime(j/k)
False
sage: (j/k).is_coprime(j/k)
False
```

is_maximal()
Return True if this ideal is maximal. This is equivalent to self being prime, since it is nonzero.

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^3 + 3); K
```
Number Field in a with defining polynomial x^3 + 3
sage: K.ideal(5).is_maximal()
False
sage: K.ideal(7).is_maximal()
True

is_trivial(proof=None)

Return True if this is a trivial ideal.

EXAMPLES:

sage: F.<a> = QuadraticField(-5)
sage: I = F.ideal(3)
sage: I.is_trivial()
False
sage: J = F.ideal(5)
sage: J.is_trivial()
False
sage: (I + J).is_trivial()
True

numerator()

Return the numerator ideal of this fractional ideal. Each fractional ideal has a unique expression as \( N/D \) where \( N, D \) are coprime integral ideals. The numerator is \( N \).

EXAMPLES:

sage: x = polygen(ZZ)
sage: K.<i> = NumberField(x^2 + 1)
sage: I = K.ideal((3+4*i)/5); I
Fractional ideal (4/5*i + 3/5)
sage: I.denominator()
Fractional ideal (2*i + 1)
sage: I.numerator()
Fractional ideal (-i - 2)
sage: I.numerator().is_integral() and I.denominator().is_integral()
True
sage: I.numerator() + I.denominator() == K.unit_ideal()
True
sage: I.numerator()/I.denominator() == I
True

prime_factors()

Return a list of the prime ideal factors of self.

OUTPUT:
list of prime ideals (a new list is returned each time this function is called)

EXAMPLES:

sage: x = polygen(ZZ)
sage: K.<w> = NumberField(x^2 + 23)
sage: I = ideal(w+1)
sage: I.prime_factors()
[Fractional ideal (2, 1/2*w - 1/2),]
prime_to_S_part(S)

Return the part of this fractional ideal which is coprime to the prime ideals in the list S.

**Note:** This function assumes that S is a list of prime ideals, but does not check this. This function will fail if S is not a list of prime ideals.

**INPUT:**
- S – a list of prime ideals

**OUTPUT:**
A fractional ideal coprime to the primes in S, whose prime factorization is that of self with the primes in S removed.

**EXAMPLES:**

```
sage: x = polygen(ZZ)

sage: K.<a> = NumberField(x^2 - 23)

sage: I = K.ideal(24)

sage: S = [K.ideal(-a + 5), K.ideal(5)]

sage: I.prime_to_S_part(S)
Fractional ideal (3)

sage: J = K.ideal(15)

sage: J.prime_to_S_part(S)
Fractional ideal (3)
```

prime_to_idealM_part(M)

Version for integral ideals of the prime_to_m_part function over \( \mathbb{Z} \). Return the largest divisor of self that is coprime to the ideal M.

**INPUT:**
- M – an integral ideal of the same field, or generators of an ideal

**OUTPUT:**
An ideal which is the largest divisor of self that is coprime to M.

**AUTHOR:** Maite Aranes

**EXAMPLES:**

```
sage: x = polygen(ZZ)

sage: k.<a> = NumberField(x^2 + 23)

sage: I = k.ideal(a + 1)

sage: M = k.ideal(2, 1/2*a - 1/2)
```

(continues on next page)
**ramification_index()**

Return the ramification index of this fractional ideal, assuming it is prime. Otherwise, raise a `ValueError`

The ramification index is the power of this prime appearing in the factorization of the prime in $\mathbb{Z}$ that this prime lies over.

**EXAMPLES:**

```sage
x = polygen(ZZ)
K.<a> = NumberField(x^2 + 2); K
Number Field in a with defining polynomial x^2 + 2
sage: f = K.factor(2); f
(Fractional ideal (a))^2
sage: f[0][0].ramification_index()
2
```

```sage
K.ideal(13).ramification_index()
1
```

```sage
K.ideal(17).ramification_index()
Traceback (most recent call last):
...
ValueError: Fractional ideal (17) is not a prime ideal
```

**ray_class_number()**

Return the order of the ray class group modulo this ideal. This is a wrapper around PARI’s `pari:bnrclassno` function.

**EXAMPLES:**

```sage
K.<z> = QuadraticField(-23)
p = K.primes_above(3)[0]
p.ray_class_number()
3
```

```sage
x = polygen(K)
L.<w> = K.extension(x^3 - z)
I = L.ideal(5)
I.ray_class_number()
5184
```

**reduce(f)**

Return the canonical reduction of the element $f$ modulo the ideal $I (= \text{self})$. This is an element of $R$ (the ring of integers of the number field) that is equivalent modulo $I$ to $f$.

An error is raised if this fractional ideal is not integral or the element $f$ is not integral.

**INPUT:**

- $f$ – an integral element of the number field
OUTPUT:

An integral element \( g \), such that \( f - g \) belongs to the ideal \( \text{self} \) and such that \( g \) is a canonical reduced representative of the coset \( f + I \) (where \( I = \text{self} \)) as described in the method \( \text{residues()} \), namely an integral element with coordinates \( (r_0, \ldots, r_{n-1}) \), where:

- \( r_i \) is reduced modulo \( d_i \)
- \( d_i = b_i[i] \), with \( \{b_0, b_1, \ldots, b_n\} \) HNF basis of the ideal \( \text{self} \).

**Note:** The reduced element \( g \) is not necessarily small. To get a small \( g \) use the method \( \text{small_residue()} \).

**EXAMPLES:**

```sage
sage: x = polygen(ZZ)
sage: k.<a> = NumberField(x^3 + 11)
sage: I = k.ideal(5, a^2 - a + 1)
sage: c = 4*a + 9
sage: I.reduce(c)
a^2 - 2*a
sage: c - I.reduce(c) in I
True
```

The reduced element is in the list of canonical representatives returned by the \( \text{residues()} \) method:

```sage
sage: I.reduce(c) in list(I.residues())
True
```

The reduced element does not necessarily have smaller norm (use \( \text{small_residue()} \) for that)

```sage
sage: c.norm()
25
sage: (I.reduce(c)).norm()
209
sage: (I.small_residue(c)).norm()
10
```

Sometimes the canonical reduced representative of 1 won’t be 1 (it depends on the choice of basis for the ring of integers):

```sage
sage: k.<a> = NumberField(x^2 + 23)
sage: I = k.ideal(3)
sage: I.reduce(3*a + 1)
-3/2*a - 1/2
sage: k.ring_of_integers().basis()
[1/2*a + 1/2, a]
```

**AUTHOR:** Maite Aranes.

**residue_class_degree()**

Return the residue class degree of this fractional ideal, assuming it is prime. Otherwise, raise a \( \text{ValueError} \).

The residue class degree of a prime ideal \( I \) is the degree of the extension \( O_K/I \) of its prime subfield.

**EXAMPLES:**
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^5 + 2); K
Number Field in a with defining polynomial x^5 + 2
sage: f = K.factor(19); f
(Fractional ideal (a^2 + a - 3))
* (Fractional ideal (2*a^4 + a^2 - 2*a + 1))
* (Fractional ideal (a^2 + a - 1))
sage: [i.residue_class_degree() for i, _ in f]
[2, 2, 1]

residue_field(names=None)

Return the residue class field of this fractional ideal, which must be prime.

EXAMPLES:

sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^3 - 7)
sage: P = K.ideal(29).factor()[0][0]
sage: P.residue_field()
Residue field in abar of Fractional ideal (2*a^2 + 3*a - 10)
sage: P.residue_field(z)
Residue field in z of Fractional ideal (2*a^2 + 3*a - 10)

Another example:

sage: K.<a> = NumberField(x^3 - 7)
sage: P = K.ideal(389).factor()[0][0]; P
Fractional ideal (389, a^2 - 44*a - 9)
sage: P.residue_field()
Residue field in abar of Fractional ideal (389, a^2 - 44*a - 9)
sage: P.residue_field('z')
Residue field in z of Fractional ideal (389, a^2 - 44*a - 9)
sage: FF.<w> = P.residue_field(); FF
Residue field in w of Fractional ideal (389, a^2 - 44*a - 9)
sage: FF((a+1)^390)
36
sage: FF(a)
w

An example of reduction maps to the residue field: these are defined on the whole valuation ring, i.e. the
subring of the number field consisting of elements with non-negative valuation. This shows that the issue
raised in github issue #1951 has been fixed:

sage: K.<i> = NumberField(x^2 + 1)
sage: P1, P2 = [g[0] for g in K.factor(5)]; P1, P2
(Fractional ideal (-i - 2), Fractional ideal (2*i + 1))
sage: a = 1/(1+2*i)
sage: F1, F2 = [g.residue_field() for g in [P1, P2]]; F1, F2
(Residue field of Fractional ideal (-i - 2),
 Residue field of Fractional ideal (2*i + 1))
sage: a.valuation(P1)
0
sage: F1(i/7)
4

(continues on next page)
An example with a relative number field:

```
sage: L.<a,b> = NumberField([x^2 + 1, x^2 - 5])
sage: p = L.ideal((-1/2*b - 1/2)*a + 1/2*b - 1/2)
sage: R = p.residue_field(); R
Residue field in abar of Fractional ideal ((-1/2*b - 1/2)*a + 1/2*b - 1/2)
sage: R.cardinality()
9
sage: R(17)
2
sage: R((a + b)/17)
abar
sage: R(1/b)
2*abar
```

We verify that Github issue #8721 is fixed:

```
sage: L.<a,b> = NumberField([x^2 - 3, x^2 - 5])
sage: L.ideal(a).residue_field()
Residue field in abar of Fractional ideal (a)
```

residues ()

Return a iterator through a complete list of residues modulo this integral ideal.

An error is raised if this fractional ideal is not integral.

OUTPUT:

An iterator through a complete list of residues modulo the integral ideal self. This list is the set of canonical reduced representatives given by all integral elements with coordinates \((r_0, \ldots, r_{n-1})\), where:

- \(r_i\) is reduced modulo \(d_i\)
- \(d_i = b_i[i]\), with \(\{b_0, b_1, \ldots, b_n\}\) HNF basis of the ideal.

AUTHOR: John Cremona (modified by Maite Aranes)

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: K.<i> = NumberField(x^2 + 1)
sage: res = K.ideal(2).residues(); res
xmrange_iter([[0, 1], [0, 1]], <function ...<lambda> at 0x...>)
sage: list(res)
[0, i, 1, i + 1]
sage: list(K.ideal(2 + i).residues())
[-2*i, -i, 0, i, 2*i]
sage: list(K.ideal(i).residues())
[0]
```

(continues on next page)
small_residue(f)

Given an element \( f \) of the ambient number field, return an element \( g \) such that \( f - g \) belongs to the ideal \( \text{self} \) (which must be integral), and \( g \) is small.

**Note:** The reduced representative returned is not uniquely determined.

**ALGORITHM:** Uses PARI function `pari:nfeltreduce`.

**EXAMPLES:**

```
sage: x = polygen(ZZ)
sage: k.<a> = NumberField(x^2 + 5)
sage: I = k.ideal(a)
sage: I.small_residue(14)
4
```

```
sage: K.<a> = NumberField(x^5 + 7*x^4 + 18*x^2 + x - 3)
sage: I = K.ideal(5)
sage: I.small_residue(a^2 -13)
a^2 + 5*a - 3
```

support()

Return a list of the prime ideal factors of \( \text{self} \).

**OUTPUT:**

list of prime ideals (a new list is returned each time this function is called)

**EXAMPLES:**

```
sage: x = polygen(ZZ)
sage: k.<w> = NumberField(x^2 + 23)
sage: I = ideal(w+1)
sage: I.prime_factors()
[Fractional ideal (2, 1/2*w - 1/2),
 Fractional ideal (2, 1/2*w + 1/2),
 Fractional ideal (3, 1/2*w + 1/2)]
```
class sage.rings.number_field.number_field_ideal.NumberFieldIdeal (field, gens, coerce=True)

Bases: Ideal_generic

An ideal of a number field.

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: K.<i> = NumberField(x^2 + 1)
sage: K.ideal(7)
Fractional ideal (7)
```

Initialization from PARI:

```python
sage: K.ideal(pari(7))
Fractional ideal (7)
sage: K.ideal(pari(4), pari(4 + 2*i))
Fractional ideal (2)
sage: K.ideal(pari("i + 2"))
Fractional ideal (i + 2)
sage: K.ideal(pari("[3,0;0,3]"))
Fractional ideal (3)
sage: F = pari(K).idealprimedec(5)
sage: K.ideal(F[0])
Fractional ideal (2*i + 1)
```

\texttt{S\_ideal\_class\_log} (S)

\text{S-class group version of} \texttt{ideal\_class\_log}().

\text{EXAMPLES:}

```python
sage: K.<a> = QuadraticField(-14)
sage: S = K.primes_above(2)
sage: I = K.ideal(3, a + 1)
sage: I.S_ideal_class_log(S)
[1]
sage: I.S_ideal_class_log([])
[3]
```

\texttt{absolute\_norm}()

A synonym for \texttt{norm}().

\text{EXAMPLES:}

```python
sage: x = polygen(ZZ)
sage: K.<i> = NumberField(x^2 + 1)
sage: K.ideal(1 + 2*i).absolute_norm()
5
```

\texttt{absolute\_ramification\_index}()

A synonym for \texttt{ramification\_index}().

\text{EXAMPLES:}

```python
sage: x = polygen(ZZ)
sage: K.<i> = NumberField(x^2 + 1)
sage: K.ideal(1 + i).absolute_ramification_index()
2
```
artin_symbol()

Return the Artin symbol \((K/Q, P)\), where \(K\) is the number field of \(P = \text{self}\). This is the unique element \(s\) of the decomposition group of \(P\) such that \(s(x) = x^p \mod P\) where \(p\) is the residue characteristic of \(P\). (Here \(P(\text{self})\) should be prime and unramified.)

See the GaloisGroup_v2.artin_symbol() method for further documentation and examples.

EXAMPLES:

```python
sage: QuadraticField(-23, 'w').primes_above(7)[0].artin_symbol() # needs sage.groups
(1,2)
```

basis()

Return a basis for this ideal viewed as a \(\mathbb{Z}\)-module.

OUTPUT:

An immutable sequence of elements of this ideal (note: their parent is the number field) forming a basis for this ideal.

EXAMPLES:

```python
sage: K.<z> = CyclotomicField(7)
sage: I = K.factor(11)[0][0]
sage: I.basis()
warning -- choice of basis can be somewhat random
[11, 11*z, 11*z^2, z^3 + 5*z^2 + 4*z + 10, z^4 + z^2 + z + 5, z^5 + z^4 + z^3 + 2*z^2 + 6*z + 5]
```

An example of a non-integral ideal:

```python
sage: J = 1/I
sage: J
Fractional ideal (2/11*z^5 + 2/11*z^4 + 3/11*z^3 + 2/11)
sage: J.basis()
warning -- choice of basis can be somewhat random
[1, z, z^2, 1/11*z^3 + 7/11*z^2 + 6/11*z + 10/11, 1/11*z^4 + 1/11*z^2 + 1/11*z + 7/11, 1/11*z^5 + 1/11*z^4 + 1/11*z^3 + 2/11*z^2 + 8/11*z + 7/11]
```

Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):

```python
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(2*x^2 - 1/3)
sage: K.ideal(a).basis()
[1, a]
```

coordinates \((x)\)

Return the coordinate vector of \(x\) with respect to this ideal.

INPUT:

- \(x\) – an element of the number field (or ring of integers) of this ideal.

OUTPUT:

List giving the coordinates of \(x\) with respect to the integral basis of the ideal. In general this will be a vector of rationals; it will consist of integers if and only if \(x\) is in the ideal.

AUTHOR: John Cremona 2008-10-31

ALGORITHM:
Uses linear algebra. Provides simpler implementations for \_\_contains\_\_, \_\_is_integral\_\_ and \_\_smallest_integer\_\_.

EXAMPLES:

```python
sage: K.<i> = QuadraticField(-1)
sage: I = K.ideal(7 + 3*i)
sage: Ibasis = I.integral_basis(); Ibasis
[58, i + 41]
sage: a = 23 - 14*i
sage: acoords = I.coordinates(a); acoords
(597/58, -14)
sage: sum([Ibasis[j]*acoords[j] for j in range(2)]) == a
True
sage: b = 123 + 456*i
sage: bcoords = I.coordinates(b); bcoords
(-18573/58, 456)
sage: sum([Ibasis[j]*bcoords[j] for j in range(2)]) == b
True
sage: J = K.ideal(0)
sage: J.coordinates(0)
()
sage: J.coordinates(1)
Traceback (most recent call last):
 ...
TypeError: vector is not in free module
```

decomposition_group()  
Return the decomposition group of self, as a subset of the automorphism group of the number field of self. Raises an error if the field isn’t Galois. See the \_\_GaloisGroup_v2\_.\_\_decomposition_group\_\_ method for further examples and doctests.

EXAMPLES:

```python
sage: QuadraticField(-23, 'w').primes_above(7)[0].decomposition_group() # needs sage.groups
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
```

free_module()  
Return the free \(\mathbb{Z}\)-module contained in the vector space associated to the ambient number field, that corresponds to this ideal.

EXAMPLES:

```python
sage: K.<z> = CyclotomicField(7)
sage: I = K.factor(11)[0][0]; I
Fractional ideal (-3*z^4 - 2*z^3 - 2*z^2 - 2)
sage: A = I.free_module()
sage: A
Free module of degree 6 and rank 6 over Integer Ring
User basis matrix:
[11 0 0 0 0 0]
[0 11 0 0 0 0]
[0 0 11 0 0 0]
[10 4 5 1 0 0]
[5 1 1 0 1 0]
[5 6 2 1 1 1]
```
However, the actual $\mathbb{Z}$-module is not at all random:

```
sage: A.basis_matrix().change_ring(ZZ).echelon_form()
[1 0 0 5 1 1]
[0 1 0 1 1 7]
[0 0 1 7 6 10]
[0 0 0 11 0 0]
[0 0 0 0 11 0]
[0 0 0 0 0 11]
```

The ideal doesn’t have to be integral:

```
sage: J = I^(-1)
sage: B = J.free_module()
sage: B.echelonized_basis_matrix()
[1/11 0 0 7/11 1/11 1/11]
[0 1/11 0 1/11 1/11 5/11]
[0 0 1/11 5/11 4/11 10/11]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]
```

This also works for relative extensions:

```
sage: x = polygen(ZZ)
sage: K.<a,b> = NumberField([x^2 + 1, x^2 + 2])
sage: I = K.fractional_ideal(4)
sage: I.free_module()
Free module of degree 4 and rank 4 over Integer Ring
User basis matrix:
[4 0 0 0]
[-3 7 -1 1]
[3 7 1 1]
[0 -10 0 -2]
sage: J = I^(-1); J.free_module()
Free module of degree 4 and rank 4 over Integer Ring
User basis matrix:
[1/4 0 0 0]
[-3/16 7/16 -1/16 1/16]
[3/16 7/16 1/16 1/16]
[0 -5/8 0 -1/8]
```

An example of intersecting ideals by intersecting free modules.:

```
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: I = K.factor(2)
sage: p1 = I[0][0]; p2 = I[1][0]
sage: N = p1.free_module().intersection(p2.free_module()); N
Free module of degree 3 and rank 3 over Integer Ring
Echelon basis matrix:
[1 1/2 1/2]
[0 1 1]
[0 0 2]
sage: N.index_in(p1.free_module()).abs()
2
gens_reduced (proof=None)
Express this ideal in terms of at most two generators, and one if possible.
This function indirectly uses `pari:bnfisprincipal`, so set `proof=True` if you want to prove correctness (which is the default).

EXAMPLES:
```python
sage: x = polygen(ZZ)
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^2 + 5)
sage: K.ideal(0).gens_reduced()
(0,)
sage: J = K.ideal([a + 2, 9])
sage: J.gens()
(a + 2, 9)
sage: J.gens_reduced()  # random sign
(a + 2,)
sage: K.ideal([a + 2, 3]).gens_reduced()
(3, a + 2)
sage: J.gens_two()      # Express this ideal using exactly two generators, the first of which is a generator for the intersection of the ideal with Q.
(9, a + 2)
sage: K.ideal([a + 5, a + 8]).gens_two()
(3, a + 2)
sage: K.ideal(0).gens_two()
(0, 0)
```

The second generator is zero if and only if the ideal is generated by a rational, in contrast to the PARI function `pari:idealtwoelt`:
```python
sage: I = K.ideal(12)
sage: pari(K).idealtwoelt(I)  # Note that second element is not zero
[12, [0, 12]~]
sage: I.gens_two()
(12, 0)
```

ideal_class_log *(proof=None)*

Return the output of PARI’s `pari:bnfisprincipal` for this ideal, i.e. a vector expressing the class of this ideal in terms of a set of generators for the class group.

Since it uses the PARI method `pari:bnfisprincipal`, specify `proof=True` (this is the default setting) to prove the correctness of the output.

EXAMPLES:
When the class number is 1, the result is always the empty list:
sage: K.<a> = QuadraticField(-163)
sage: J = K.primes_above(random_prime(10^6))[0]
sage: J.ideal_class_log()
[]

An example with class group of order 2. The first ideal is not principal, the second one is:

sage: K.<a> = QuadraticField(-5)
sage: J = K.ideal(23).factor()[0][0]
sage: J.ideal_class_log()
[1]
sage: (J^10).ideal_class_log()
[0]

An example with a more complicated class group:

sage: x = polygen(ZZ)
sage: R.<x> = PolynomialRing(QQ)
sage: K.<i> = NumberField(x^2 + 1)
sage: J = K.ideal(i + 1)
sage: J.integral_basis()
[2, i + 1]

inertia_group()

Return the inertia group of self, i.e. the set of elements \(s \) of the Galois group of the number field of self (which we assume is Galois) such that \(s \) acts trivially modulo self. This is the same as the 0th ramification group of self. See the GaloisGroup_v2.inertia_group() method for examples and doctests.

EXAMPLES:

sage: QuadraticField(-23, 'w').primes_above(23)[0].inertia_group() # random
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)

integral_basis()

Return a list of generators for this ideal as a \(\mathbb{Z} \)-module.

EXAMPLES:

sage: x = polygen(ZZ)
sage: R.<x> = PolynomialRing(QQ)
sage: K.<i> = NumberField(x^2 + 1)
sage: J = K.ideal(i + 1)
sage: J.integral_basis()
[2, i + 1]

integral_split()

Return a tuple \((I, d)\), where \(I\) is an integral ideal, and \(d\) is the smallest positive integer such that this ideal is equal to \(I/d\).

EXAMPLES:

sage: x = polygen(ZZ)
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^2 - 5)
sage: I = K.ideal(2/(5+a))
sage: I.is_integral()
False
sage: J, d = I.integral_split()
sage: J
Fractional ideal (-1/2*a + 5/2)
sage: J.is_integral()
True
sage: d
5
sage: I == J/d
True

intersection(other)
Return the intersection of self and other.

EXAMPLES:

sage: K.<a> = QuadraticField(-11)
sage: p = K.ideal((a + 1)/2); q = K.ideal((a + 3)/2)
sage: p.intersection(q) == q.intersection(p) == K.ideal(a - 2)
True

An example with non-principal ideals:

sage: x = polygen(ZZ)
sage: L.<a> = NumberField(x^3 - 7)
sage: p = L.ideal(a^2 + a + 1, 2)
sage: q = L.ideal(a + 1)
sage: p.intersection(q) == L.ideal(8, 2*a + 2)
True

A relative example:

sage: L.<a,b> = NumberField([x^2 + 11, x^2 - 5])
sage: A = L.ideal([15, (-3/2*b + 7/2)*a - 8])
sage: B = L.ideal([6, (-1/2*b + 1)*a - b - 5/2])
sage: A.intersection(B) == L.ideal(-1/2*a - 3/2*b - 1)
True

is_integral()
Return True if this ideal is integral.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^5 - x + 1)
sage: K.ideal(a).is_integral()
True
sage: (K.ideal(1) / (3*a+1)).is_integral()
False

is_maximal()
Return True if this ideal is maximal. This is equivalent to self being prime and nonzero.

EXAMPLES:
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^3 + 3); K
Number Field in a with defining polynomial x^3 + 3
sage: K.ideal(5).is_maximal()
False
sage: K.ideal(7).is_maximal()
True

is_prime()
Return True if this ideal is prime.

EXAMPLES:

sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^2 - 17); K
Number Field in a with defining polynomial x^2 - 17
sage: K.ideal(5).is_prime() # inert prime
True
sage: K.ideal(13).is_prime() # split
False
sage: K.ideal(17).is_prime() # ramified
False

is_principal(proof=None)
Return True if this ideal is principal.
Since it uses the PARI method pari:bnfisprincipal, specify proof=True (this is the default setting) to prove the correctness of the output.

EXAMPLES:

sage: K = QuadraticField(-119,'a')
sage: P = K.factor(2)[1][0]
sage: P.is_principal()
False
sage: I = P^5
sage: I.is_principal()
True
sage: I # random
Fractional ideal (-1/2*a + 3/2)
sage: P = K.ideal([2]).factor()[1][0]
sage: I = P^5
sage: I.is_principal()
True

is_zero()
Return True if self is the zero ideal
Note that (0) is a NumberFieldIdeal, not a NumberFieldFractionalIdeal.

EXAMPLES:

sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^2 + 2); K
Number Field in a with defining polynomial x^2 + 2
sage: K.ideal(3).is_zero()
False
sage: I = K.ideal(0); I.is_zero()
norm()

Return the norm of this fractional ideal as a rational number.

EXAMPLES:

```sage
sage: x = polygen(ZZ)
0
sage: K.<a> = NumberField(x^4 + 23); K
Number Field in a with defining polynomial x^4 + 23
sage: I = K.ideal(19); I
Fractional ideal (19)
```

```sage
sage: factor(I.norm())
19^4
```

```sage
sage: F = I.factor()
```

```sage
sage: F[0][0].norm().factor()
19^2
```

number_field()

Return the number field that this is a fractional ideal in.

EXAMPLES:

```sage
sage: x = polygen(ZZ)
0
sage: K.<a> = NumberField(x^2 + 2); K
Number Field in a with defining polynomial x^2 + 2
sage: K.ideal(3).number_field()
Number Field in a with defining polynomial x^2 + 2
```

```sage
sage: K.ideal(0).number_field()  # not tested (not implemented)
```

pari_hnf()

Return PARI’s representation of this ideal in Hermite normal form.

```sage
sage: x = polygen(ZZ)
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^3 - 2)
sage: I = K.ideal(2/(5+a))
sage: I.pari_hnf()
```

```sage
[2, 0, 50/127; 0, 2, 244/127; 0, 0, 2/127]
```

pari_prime()

Return a PARI prime ideal corresponding to the ideal self.

INPUT:

- `self` — a prime ideal.

OUTPUT: a PARI “prime ideal”, i.e. a five-component vector \([p, a, e, f, b]\) representing the prime ideal \(p\mathcal{O}_K + a\mathcal{O}_K\), \(e, f\) as usual, \(a\) as vector of components on the integral basis, \(b\) Lenstra’s constant.

EXAMPLES:
```python
sage: K.<i> = QuadraticField(-1)
sage: K.ideal(3).pari_prime()
[3, [3, 0], 1, 2, 1]
sage: K.ideal(2+i).pari_prime()
[5, [2, 1], 1, 1, [-2, -1; 1, -2]]
sage: K.ideal(2).pari_prime()
Traceback (most recent call last):
...
ValueError: Fractional ideal (2) is not a prime ideal
```

ramification_group(v)

Return the v'th ramification group of `self`, i.e. the set of elements s of the Galois group of the number field of `self` (which we assume is Galois) such that s acts trivially modulo the $(v+1)$'st power of `self`. See the `GaloisGroup.ramification_group()` method for further examples and doctests.

EXAMPLES:

```python
sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(0)  # needs sage.groups
Subgroup generated by [(1,2)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
sage: QuadraticField(-23, 'w').primes_above(23)[0].ramification_group(1)  # needs sage.groups
Subgroup generated by [(0)] of (Galois group 2T1 (S2) with order 2 of x^2 + 23)
```

random_element(*args, **kwds)

Return a random element of this ideal.

INPUT:

- *args, **kwds - Parameters passed to the random integer function. See the documentation of `ZZ.random_element()` for details.

OUTPUT:

A random element of this fractional ideal, computed as a random \mathbb{Z}-linear combination of the basis.

EXAMPLES:

```python
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^3 + 2)
sage: I = K.ideal(1 - a)
sage: I.random_element()  # random output
-a^2 - a - 19
sage: I.random_element(distribution="uniform")  # random output
a^2 - 2*a - 8
sage: I.random_element(-30, 30)  # random output
-7*a^2 - 17*a - 75
sage: I.random_element(-100, 200).is_integral()  # random output
True
sage: I.random_element(-30, 30).parent().is_K
True
```

A relative example:

```python
sage: K.<a, b> = NumberField([x^2 + 2, x^2 + 1000*x + 1])
sage: I = K.ideal(1 - a)
sage: I.random_element()  # random output
```

(continues on next page)
17/500002*a^3 + 737253/250001*a^2 - 1494505893/500002*a + 752473260/250001

sage: I.random_element().is_integral()
True
sage: I.random_element(-100, 200).parent() is K
True

reduce_equiv()

Return a small ideal that is equivalent to self in the group of fractional ideals modulo principal ideals. Very often (but not always) if self is principal then this function returns the unit ideal.

ALGORITHM: Calls pari:idealred function.

EXAMPLES:

sage: x = polygen(ZZ)
sage: K.<w> = NumberField(x^2 + 23)
sage: I = ideal(w*23^5); I
Fractional ideal (6436343*w)
sage: I.reduce_equiv()
Fractional ideal (1)
sage: I = K.class_group().0.ideal()^10; I
Fractional ideal (1024, 1/2*w + 979/2)
sage: I.reduce_equiv()
Fractional ideal (2, 1/2*w - 1/2)

relative_norm()

A synonym for norm().

EXAMPLES:

sage: x = polygen(ZZ)
sage: K.<i> = NumberField(x^2 + 1)
sage: K.ideal(1 + 2*i).relative_norm()
5

relative_ramification_index()

A synonym for ramification_index().

EXAMPLES:

sage: x = polygen(ZZ)
sage: K.<i> = NumberField(x^2 + 1)
sage: K.ideal(1 + i).relative_ramification_index()
2

residue_symbol(e, m, check=True)

The m-th power residue symbol for an element e and the proper ideal.

\[
\left(\frac{e}{P} \right) \equiv a^{N(P)/m - 1} \mod P
\]

Note: accepts \(m = 1 \), in which case returns 1

Note: can also be called for an element from sage.rings.number_field_element.residue_symbol
Note: e is coerced into the number field of self

Note: if $m = 2$, e is an integer, and self.number_field() has absolute degree 1 (i.e. it is a copy of the rationals), then this calls kronecker_symbol(), which is implemented using GMP.

INPUT:
- e – element of the number field
- m – positive integer

OUTPUT:
- an m-th root of unity in the number field

EXAMPLES:

Quadratic Residue (7 is not a square modulo 11):

```
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x - 1)
sage: K.ideal(11).residue_symbol(7, 2)
-1
```

Cubic Residue:

```
sage: K.<w> = NumberField(x^2 - x + 1)
sage: K.ideal(17).residue_symbol(w^2 + 3, 3)
-w
```

The field must contain the m-th roots of unity:

```
sage: K.<w> = NumberField(x^2 - x + 1)
sage: K.ideal(17).residue_symbol(w^2 + 3, 5)
Traceback (most recent call last):
  ...
ValueError: The residue symbol to that power is not defined for the number_field
```

smallest_integer()

Return the smallest non-negative integer in $I \cap \mathbb{Z}$, where I is this ideal. If $I = 0$, returns 0.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^2 + 6)
sage: I = K.ideal([4, a])/7; I
Fractional ideal (2/7, 1/7*a)
sage: I.smallest_integer()
2
```

valuation(p)

Return the valuation of self at p.

INPUT:
- p – a prime ideal p of this number field.
OUTPUT:

(integer) The valuation of this fractional ideal at the prime \(p \). If \(p \) is not prime, raise a \texttt{ValueError}.

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: K.<a> = NumberField(x^5 + 2); K
Number Field in a with defining polynomial x^5 + 2
sage: i = K.ideal(38); i
Fractional ideal (38)
sage: i.valuation(K.factor(19)[0][0])
1
sage: i.valuation(K.factor(2)[0][0])
5
sage: i.valuation(K.factor(3)[0][0])
0
sage: i.valuation(0)
Traceback (most recent call last):
...
ValueError: p (= Ideal (0) of Number Field in a with defining polynomial x^5 + 2) must be nonzero
sage: K.ideal(0).valuation(K.factor(2)[0][0])
+Infinity
```

class \texttt{sage.rings.number_field.number_field_ideal.\texttt{QuotientMap}}(K, M_OK_change, Q, I)

Bases: object

Class to hold data needed by quotient maps from number field orders to residue fields. These are only partial maps: the exact domain is the appropriate valuation ring. For examples, see \texttt{residue_field()}.

\texttt{sage.rings.number_field.number_field_ideal.\texttt{basis_to_module}}(B, K)

Given a basis \(B \) of elements for a \(\mathbb{Z} \)-submodule of a number field \(K \), return the corresponding \(\mathbb{Z} \)-submodule.

EXAMPLES:

```
sage: x = polygen(ZZ)
sage: K.<w> = NumberField(x^4 + 1)
sage: from sage.rings.number_field.number_field_ideal import basis_to_module
sage: basis_to_module([K.0, K.0^2 + 3], K)
Free module of degree 4 and rank 2 over Integer Ring
User basis matrix:
[0 1 0 0]
[3 0 1 0]
```

\texttt{sage.rings.number_field.number_field_ideal.\texttt{is_NumberFieldFractionalIdeal}}(x)

Return \texttt{True} if \(x \) is a fractional ideal of a number field.

EXAMPLES:

```
sage: from sage.rings.number_field.number_field_ideal import is_NumberFieldFractionalIdeal
sage: is_NumberFieldFractionalIdeal(2/3)
False
sage: is_NumberFieldFractionalIdeal(ideal(5))
False
sage: x = polygen(ZZ)
sage: k.<a> = NumberField(x^2 + 2)
sage: I = k.ideal([a + 1]); I
```

(continues on next page)
Fractional ideal (a + 1)
\[\text{sage: is_NumberFieldFractionalIdeal(I)}\]
True
\[\text{sage: Z = k.ideal(0); Z}\]
Ideal (0) of Number Field in a with defining polynomial x^2 + 2
\[\text{sage: is_NumberFieldFractionalIdeal(Z)}\]
False

\[\text{sage.rings.number_field.number_field_ideal.}\]
\[\text{is_NumberFieldIdeal}(x)\]
Return True if \(x\) is an ideal of a number field.

\[\text{EXAMPLES:}\]
\[\text{sage: from sage.rings.number_field.number_field_ideal import is_NumberFieldIdeal}\]
\[\text{sage: is_NumberFieldIdeal(2/3)}\]
False
\[\text{sage: is_NumberFieldIdeal(ideal(5))}\]
False
\[\text{sage: x = polygen(ZZ)}\]
\[\text{sage: k.<a> = NumberField(x^2 + 2)}\]
\[\text{sage: I = k.ideal([a + 1]); I}\]
Fractional ideal (a + 1)
\[\text{sage: is_NumberFieldIdeal(I)}\]
True
\[\text{sage: Z = k.ideal(0); Z}\]
Ideal (0) of Number Field in a with defining polynomial x^2 + 2
\[\text{sage: is_NumberFieldIdeal(Z)}\]
True

\[\text{sage.rings.number_field.number_field_ideal.}\]
\[\text{quotient_char_p}(I, p)\]
Given an integral ideal \(I\) that contains a prime number \(p\), compute a vector space \(V = (O_K \mod p)/(I \mod p)\), along with a homomorphism \(O_K \to V\) and a section \(V \to O_K\).

\[\text{EXAMPLES:}\]
\[\text{sage: from sage.rings.number_field.number_field_ideal import quotient_char_p}\]
\[\text{sage: x = polygen(ZZ)}\]
\[\text{sage: K.<i> = NumberField(x^2 + 1); O = K.maximal_order(); I = K.fractional_}\]
\[\rightarrow\text{ideal(15)}\]
\[\text{sage: quotient_char_p(I, 5)[0]}\]
Vector space quotient \(V/W\) of dimension 2 over Finite Field of size 5 where
\(V:\) Vector space of dimension 2 over Finite Field of size 5
\(W:\) Vector space of degree 2 and dimension 0 over Finite Field of size 5
Basis matrix:
[]
\[\text{sage: quotient_char_p(I, 3)[0]}\]
Vector space quotient \(V/W\) of dimension 2 over Finite Field of size 3 where
\(V:\) Vector space of dimension 2 over Finite Field of size 3
\(W:\) Vector space of degree 2 and dimension 0 over Finite Field of size 3
Basis matrix:
[]
\[\text{sage: I = K.factor(13)[0][0]; I}\]
Fractional ideal (-2*i + 3)
\[\text{sage: I.residue_class_degree()}\]
4.3 Ideals of relative number fields

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^2 + 1, x^2 + 2])
sage: A = K.absolute_field('z')
sage: I = A.factor(7)[0][0]
sage: from_A, to_A = A.structure()
sage: G = [from_A(z) for z in I.gens()]; G
[7, -2*b*a - 1]
sage: K.fractional_ideal(G)
Fractional ideal ((1/2*b + 2)*a - 1/2*b + 2)
sage: K.fractional_ideal(G).absolute_norm().factor()
7^2

AUTHORS:

• Steven Sivek (2005-05-16)
• William Stein (2007-09-06)
• Nick Alexander (2009-01)

class sage.rings.number_field.number_field_ideal_rel.NumberFieldFractionalIdeal_rel(field, gens, coerce=True)

Bases: NumberFieldFractionalIdeal

An ideal of a relative number field.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField([x^2 + 1, x^2 + 2]); K
Number Field in a0 with defining polynomial x^2 + 1 over its base field
sage: i = K.ideal(38); i
Fractional ideal (38)

sage: K.<a0, a1> = NumberField([x^2 + 1, x^2 + 2]); K
Number Field in a0 with defining polynomial x^2 + 1 over its base field
sage: i = K.ideal([a0+1]); i # random
Fractional ideal (-a1*a0)
sage: (g,) = i.gens_reduced(); g # random
-a1*a0
sage: (g / (a0 + 1)).is_integral()
True
\begin{verbatim}
sage: ((a0 + 1) / g).is_integral()
True
\end{verbatim}

\texttt{absolute_ideal}(names='a')

If this is an ideal in the extension L/K, return the ideal with the same generators in the absolute field L/Q.

\textbf{INPUT:}

- names (optional) – string; name of generator of the absolute field

\textbf{EXAMPLES:}

\begin{verbatim}
sage: x = ZZ['x'].0
sage: K. = NumberField(x^2 - 2)
sage: L.<c> = K.extension(x^2 - b)
sage: F.<m> = L.absolute_field()

An example of an inert ideal:

sage: P = F.factor(13)[0][0]; P
Fractional ideal (13)
sage: J = L.ideal(13)
sage: J.absolute_ideal()
Fractional ideal (13)

Now a non-trivial ideal in L that is principal in the subfield K. Since the optional names argument is not passed, the generators of the absolute ideal J are returned in terms of the default field generator a. This does not agree with the generator m of the absolute field F defined above:

sage: J = L.ideal(b); J
Fractional ideal (b)
sage: J.absolute_ideal()
Fractional ideal (a^2)
sage: J.relative_norm()
Fractional ideal (2)
sage: J.absolute_norm()
4
sage: J.absolute_ideal().norm()
4

Now pass m as the name for the generator of the absolute field:

sage: J.absolute_ideal('m')
Fractional ideal (m^2)

Now an ideal not generated by an element of K:

sage: J = L.ideal(c); J
Fractional ideal (c)
sage: J.absolute_ideal()
Fractional ideal (a)
sage: J.absolute_norm()
2
sage: J.ideal_below()
Fractional ideal (b)
sage: J.ideal_below().norm()
2
absolute_norm()

Compute the absolute norm of this fractional ideal in a relative number field, returning a positive integer.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: L.<a, b, c> = QQ.extension([x^2 - 23, x^2 - 5, x^2 - 7])
sage: I = L.ideal(a + b)
sage: I.absolute_norm()
104976
```

absolute_ramification_index()

Return the absolute ramification index of this fractional ideal, assuming it is prime. Otherwise, raise a `ValueError`.

The absolute ramification index is the power of this prime appearing in the factorization of the rational prime that this prime lies over.

Use `relative_ramification_index()` to obtain the power of this prime occurring in the factorization of the prime ideal of the base field that this prime lies over.

EXAMPLES:

```
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: I = K.ideal(3, c)
sage: I.absolute_ramification_index()
4
```

element_1_mod(other)

Returns an element \(r \) in this ideal such that \(1 - r \) is in other.

An error is raised if either ideal is not integral or if they are not coprime.

INPUT:

- **other** – another ideal of the same field, or generators of an ideal.

OUTPUT:

an element \(r \) of the ideal self such that \(1 - r \) is in the ideal other.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberFieldTower([x^2 - 23, x^2 + 1])
sage: I = Ideal(2, (a - 3*b + 2)/2)
sage: J = K.ideal(a)
sage: z = I.element_1_mod(J)
sage: z in I
True
```

4.3. Ideals of relative number fields
factor()

Factor the ideal by factoring the corresponding ideal in the absolute number field.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = QQ.extension([x^2 + 11, x^2 - 5])
sage: K.factor(5)
(Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 3/4))^2
  * (Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 7/4))^2
sage: K.ideal(5).factor()
(Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 3/4))^2
  * (Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 7/4))^2
sage: K.ideal(5).prime_factors()
[Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 3/4),
  Fractional ideal (5, (-1/4*b - 1/4)*a + 1/4*b - 7/4)]
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: I = K.ideal((b*a - b - 1)*c/2 + a - 1)
sage: Q = K.ideal((b*a - b - 1)*c/2)
sage: list(I.factor()) == [(P, 2), (Q, 1)]
True
sage: I == P^2*Q
True
sage: [p.is_prime() for p in [P, Q]]
[True, True]
```

free_module()

Return this ideal as a \mathbb{Z}-submodule of the \mathbb{Q}-vector space corresponding to the ambient number field.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^3 - x + 1, x^2 + 23])
sage: I = K.ideal(a*b - 1)
sage: I.free_module()
Free module of degree 6 and rank 6 over Integer Ring
User basis matrix:
...
sage: I.free_module().is_submodule(K.maximal_order().free_module())
True
```

gens_reduced()

Return a small set of generators for this ideal. This will always return a single generator if one exists (i.e. if the ideal is principal), and otherwise two generators.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 2])
sage: I = K.ideal((a + 1)*b/2 + 1)
sage: I.gens_reduced()
(1/2*b*a + 1/2*b + 1,)
```
ideal_below()

Compute the ideal of K below this ideal of L.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^2 + 6)
sage: L.<b> = K.extension(K['x'].gen()^4 + a)
sage: N = L.ideal(b)
sage: M = N.ideal_below(); M == K.ideal([-a])
True
sage: Np = L.ideal([L(t) for t in M.gens()])
sage: Np.ideal_below() == M
True
sage: M.parent()
Monoid of ideals of Number Field in a with defining polynomial x^2 + 6
sage: M.ring()
Number Field in a with defining polynomial x^2 + 6
sage: M.ring() is K
True
```

This example concerns an inert ideal:

```python
sage: K = NumberField(x^4 + 6*x^2 + 24, 'a')
sage: K.factor(7)
Fractional ideal (7)
sage: K0, K0_into_K, _ = K.subfields(2)[0]
sage: K0
Number Field in a0 with defining polynomial x^2 - 6*x + 24
sage: L = K.relativize(K0_into_K, c); L
Number Field in c with defining polynomial x^2 + a0 over its base field
sage: L.base_field() is K0
True
sage: L.ideal(7)
Fractional ideal (7)
sage: L.ideal(7).ideal_below()
Fractional ideal (7)
```

This example concerns an ideal that splits in the quadratic field but each factor ideal remains inert in the extension:

```python
sage: len(K.factor(19))
2
sage: K0 = L.base_field(); a0 = K0.gen()
```

```python
sage: len(K0.factor(19))
2
sage: w1 = -a0 + 1; P1 = K0.ideal([w1])
sage: P1.norm().factor(), P1.is_prime()
((19, True),)
sage: L_into_K, K_into_L = L.structure()
sage: L.ideal(K_into_L(K0_into_K(w1))).ideal_below() == P1
True
```

The choice of embedding of quadratic field into quartic field matters:

4.3. Ideals of relative number fields
sage: rho, tau = K0.embeddings(K)
sage: L1 = K.relativize(rho, 'b')
sage: L2 = K.relativize(tau, 'b')
sage: L1_into_K, K_into_L1 = L1.structure()
sage: L2_into_K, K_into_L2 = L2.structure()
sage: a = K.gen()
sage: P = K.ideal([a^2 + 5])
sage: K_into_L1(P).ideal_below() == K0.ideal([-a0 + 1])
True
sage: K_into_L2(P).ideal_below() == K0.ideal([-a0 + 5])
True
sage: K0.ideal([-a0 + 1]) == K0.ideal([-a0 + 5])
False

It works when the base field is itself a relative number field:

sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: I = K.ideal(3, c)
sage: J = I.ideal_below()
sage: J == K.ideal(b)
True
sage: J.number_field() == F
True

Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):

sage: K.<a> = NumberField(2*x^2 - 1/3)
sage: L. = K.extension(5*x^2 + 1)
sage: P = L.primes_above(2)[0]
sage: P.ideal_below()
Fractional ideal (6*a + 2)

integral_basis()

Return a basis for self as a Z-module.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: I = K.ideal(17*b - 3*a)
sage: x = I.integral_basis(); x
[438, -b*a + 309, 219*a - 219*b, 156*a - 154*b]

The exact results are somewhat unpredictable, hence the # random flag, but we can test that they are indeed a basis:

sage: V, _, phi = K.absolute_vector_space()
sage: V.span([phi(u) for u in x], ZZ) == I.free_module()
True

integral_split()

Return a tuple \((I, d)\), where \(I\) is an ideal ideal, and \(d\) is the smallest positive integer such that this ideal is equal to \(I/d\).

EXAMPLES:
is_integral()

Return True if this ideal is integral.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberFieldTower([x^2 - 23, x^2 + 1])
sage: I = K.ideal([a + b/3])
sage: J, d = I.integral_split()
sage: J.is_integral()
True
sage: J == d*I
True
```

is_prime()

Return True if this ideal of a relative number field is prime.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = QQ.extension([x^2 + 11, x^2 - 5])
sage: I = K.ideal(7).prime_factors()[0]
sage: I.is_integral()
True
sage: (I/2).is_integral()
False
```

is_principal *(proof=None)*

Return True if this ideal is principal. If so, set self.__reduced_generators, with length one.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 - 23, x^2 + 1])
sage: I = K.ideal([7, (-1/2*b - 3/2)*a + 3/2*b + 9/2])
sage: I.is_principal()
True
sage: I # random
Fractional ideal ((1/2*b + 1/2)*a - 3/2*b - 3/2)
```

is_zero()

Return True if this is the zero ideal.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 3, x^3 + 4])
sage: K.ideal(17).is_zero()
False
sage: K.ideal(0).is_zero()
True
```
norm()

The norm of a fractional ideal in a relative number field is deliberately unimplemented, so that a user cannot mistake the absolute norm for the relative norm, or vice versa.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 2])
sage: K.ideal(2).norm()
Traceback (most recent call last):
... NotImplementedError: For a fractional ideal in a relative number field you must use relative_norm or absolute_norm as appropriate
```

pari_rhnf()

Return PARI's representation of this relative ideal in Hermite normal form.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 23, x^2 - 7])
sage: I = K.ideal(2, (a + 2*b + 3)/2)
sage: I.pari_rhnf()
[[1, -2; 0, 1], [[2, 1; 0, 1], 1/2]]
```

ramification_index()

For ideals in relative number fields, `ramification_index()` is deliberately not implemented in order to avoid ambiguity. Either `relative_ramification_index()` or `absolute_ramification_index()` should be used instead.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, b> = NumberField([x^2 + 1, x^2 - 2])
sage: K.ideal(2).ramification_index()
Traceback (most recent call last):
... NotImplementedError: For an ideal in a relative number field you must use relative_ramification_index or absolute_ramification_index as appropriate
```

relative_norm()

Compute the relative norm of this fractional ideal in a relative number field, returning an ideal in the base field.

EXAMPLES:

```python
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^2 + 6)
sage: L.<b> = K.extension(K['x'].gen()^4 + a)
sage: N = L.ideal(b).relative_norm(); N
Fractional ideal (-a)
sage: N.parent()
Monoid of ideals of Number Field in a with defining polynomial x^2 + 6
sage: N.ring()
Number Field in a with defining polynomial x^2 + 6
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
```
Number fields defined by non-monic and non-integral polynomials are supported (github issue #252):

```python
sage: K.<a> = NumberField(2*x^2 - 1/3)
sage: L.<b> = K.extension(5*x^2 + 1)
sage: P = L.primes_above(2)[0]
sage: P.relative_norm()
Fractional ideal (6*a + 2)
```

relative_ramification_index()

Return the relative ramification index of this fractional ideal, assuming it is prime. Otherwise, raise a `ValueError`.

The relative ramification index is the power of this prime appearing in the factorization of the prime ideal of the base field that this prime lies over.

Use `absolute_ramification_index()` to obtain the power of this prime occurring in the factorization of the rational prime that this prime lies over.

EXAMPLES:

```python
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: I = K.ideal(3, c)
sage: I.relative_ramification_index()
2
sage: I.ideal_below()  # random sign
Fractional ideal (b)
sage: I.ideal_below() == K.ideal(b)
True
sage: K.ideal(b) == I^2
True
```

residue_class_degree()

Return the residue class degree of this prime.

EXAMPLES:

```python
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberFieldTower([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: [I.residue_class_degree() for I in K.ideal(c).prime_factors()]
[1, 2]
```

residues()

Returns a iterator through a complete list of residues modulo this integral ideal.
An error is raised if this fractional ideal is not integral.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a, w> = NumberFieldTower([x^2 - 3, x^2 + x + 1])
sage: I = K.ideal(6, -w*a - w + 4)
sage: list(I.residues())[:5]
[(25/3*w - 1/3)*a + 22*w + 1,
 (16/3*w - 1/3)*a + 13*w,
 (7/3*w - 1/3)*a + 4*w - 1,
 (-2/3*w - 1/3)*a - 5*w - 2,
 (-11/3*w - 1/3)*a - 14*w - 3]
```

`sage.rings.number_field.number_field_ideal_rel.is_NumberFieldFractionalIdeal_rel(x)`

Return True if \(x \) is a fractional ideal of a relative number field.

EXAMPLES:

```python
sage: from sage.rings.number_field.number_field_ideal_rel import is_NumberFieldFractionalIdeal_rel
sage: is_NumberFieldFractionalIdeal_rel
```

(continues on next page)
This module implements (integral) ideals of orders in number fields.

Note: Currently, Sage only offers very limited functionality for ideals of non-maximal orders (compared to the maximal case). This should hopefully change in the future.

EXAMPLES:

```python
sage: O = QuadraticField(-1).order(5*i)
sage: I = O.ideal([13, 5*i-1]); I
Ideal (60*a + 1, 65*a) of Order of conductor 5 generated by 5*a
in Number Field in a with defining polynomial x^2 + 1 with a = 1*I
```

An ideal of an order in a relative number field:

```python
sage: K.<a,b> = NumberField([x^2 + 1, x^2 - 3])
sage: O = K.order([3*a,2*b])
sage: I = O.ideal((-6*b + 6)*a + 6*b + 18); I
Ideal ((-60*b + 180)*a + 72, (-54*b + 174)*a - 6*b + 54, (-72*b + 288)*a + 72, 1872*a)
of Relative Order generated by [3*a - 2*b, -6*b*a + 6, 3*a]
in Number Field in a with defining polynomial x^2 + 1 over its base field
```

Perhaps the most useful functionality at this time is mapping ideals of quadratic orders to corresponding binary quadratic forms:
Todo: Generalize more functionality (such as primality testing and factoring) from `NumberFieldFractionalIdeal` to ideals of not necessarily maximal orders.

AUTHORS:
- Lorenz Panny (2022)

```sage
sage: K.<t> = QuadraticField(-21463)
sage: O = K.order(t)
sage: I = O.ideal([123457, t + 45259]); I
Ideal (23058*t + 1, 123457*t) of Order of conductor 26 generated by t
in Number Field in t with defining polynomial x^2 + 21463 with t = 146.5025597046004?
˓
    →
    sage: I.quadratic_form()
    123457*x^2 - 90518*x*y + 16592*y^2
```
sage: O = K.order(567*g)
sage: I = O.ideal([191, 567*t-27]); I
Ideal (56133/2*t + 1/2, 108297*t) of Order of conductor 567 generated by 567/2*t + 1/2
in Number Field in t with defining polynomial x^2 + 123 with t = 11.09536506409427*I
sage: I.free_module()
Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1/2 56133/2]
[0 108297]
sage: I.free_module().is_submodule(O.free_module())
True

See also:

- sage.rings.number_field.number_field.NumberField_absolute.absolute_vector_space()
- sage.rings.number_field.order.Order.free_module()
- sage.rings.number_field.number_field_ideal.NumberFieldIdeal.free_module()

\textbf{norm}()

Return the norm of this ideal.

The norm is defined as the index (as an abelian group) of the ideal in its order.

\textbf{EXAMPLES:}

sage: K.<t> = QuadraticField(-123)
sage: g, = K.ring_of_integers().ring_generators()
sage: O = K.order(567*g)
sage: I = O.ideal([191, 567*t-27])
sage: I.norm()
191
sage: (O.free_module() / I.free_module()).cardinality()
191

class \texttt{sage.rings.number_field.order_ideal.NumberFieldOrderIdeal}_quadratic}(O, gens, *, \texttt{coerce=True})

\textbf{Bases:} \texttt{NumberFieldOrderIdeal_generic}

An ideal of a not necessarily maximal order in a \textit{quadratic} number field.

\textbf{conjugate}()

Return the conjugate of this ideal, defined by conjugating the generators.

\textbf{EXAMPLES:}

sage: K.<t> = QuadraticField(-123)
sage: g, = K.ring_of_integers().ring_generators()
sage: O = K.order(567*g)
sage: I = O.ideal([191, 567*t-27])
sage: I.norm()
191
sage: I.norm() in I.conjugate() * I
True
sage: I.conjugate() * I == I.norm() * O
True

gens_reduced()
Express this ideal in terms of at most two generators, and one if possible (i.e., if the ideal is principal).

EXAMPLES:

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^2 + 11*x + 5)
sage: O = K.order(7*a)
sage: I = O.ideal([31915, -71145879*a - 32195694])
sage: I.gens_reduced()
(-63*a + 17,)

ALGORITHM:
Compute a reduction of the quadratic_form() to see if it represents 1, then use the transformation matrix to find an element in the ideal whose norm equals the norm of the ideal.

gens_two()
Express this ideal using exactly two generators, the first of which is a generator for the intersection of the ideal with \(\mathbb{Z} \).

EXAMPLES:

sage: K.<t> = QuadraticField(-100)
sage: O = K.order(t)
sage: I = O.ideal([123, 131-t, 21+23*t])
sage: I.gens_two()
(41, t - 8)
sage: I == O.ideal(I.gens_two())
True

The second generator is zero if and only if the ideal is generated by an integer:

sage: J = O.ideal([-33*t, 11*t-6589])
sage: J.gens_two()
(11, 0)
sage: J == O.ideal(11)
True

Warning: The returned generators do not necessarily form a \(\mathbb{Z} \)-basis of the ideal.

is_equivalent (other, narrow=False)
Determine whether this ideal is equivalent to another ideal in the same order.

If narrow is True, test narrow equivalence instead.

(Two ideals are equivalent if they differ by multiplication by a non-zero element. They are narrowly equivalent if they differ by multiplication by an element of positive norm.)

EXAMPLES:
```python
sage: K.<a> = QuadraticField(-163)
sage: O = K.order(7*a)
sage: I = O.ideal([47, 7*a-35])
sage: J = O.ideal([71, 7*a-65])
sage: I.is_equivalent(J)
False
sage: (I^10).is_equivalent(J)
True
```
quadratic_form(basis)

Return the binary quadratic form associated to this ideal.

This map induces an injective homomorphism from the narrow class group on ideals to the class group on quadratic forms.

If basis is set to True (default: False), the method additionally returns a \mathbb{Z}-basis (a, b) of this ideal I such that $f(x, y)$ equals $\text{norm}(xa + yb)/\text{norm}(I)$, where f is the returned quadratic form.

Note: The narrow class group is the group of invertible ideals modulo the principal ideals generated by an element of positive norm.

- For imaginary quadratic orders, the narrow class group is identical to the class group.
- For real quadratic orders, identifying the classes of $f(x, y)$ and $-f(y, x)$ recovers a correspondence with the standard class group.

REFERENCES:
The correspondence itself is classical. Implemented after [Coh1993], §5.2.

See also:
sage.rings.number_field.number_field_ideal.NumberFieldFractionalIdeal.quadratic_form()

EXAMPLES:

```
sage: K.<t> = QuadraticField(-419)
sage: O = K.order(t)
sage: O.discriminant().factor()  -1 * 2^2 * 419
sage: I = O.ideal([t-1, 105]); I
Ideal (104*t + 1, 105*t) of Order of conductor 2 generated by t in Number Field in t with defining polynomial x^2 + 419 with t = 20.
˓
-469489490458737*I
sage: f = I.quadratic_form(); f
105*x^2 - 208*x*y + 107*y^2
sage: f.discriminant().factor()  -1 * 2^2 * 419
sage: power(f,3).reduced_form()  x^2 + 419*y^2
sage: u = 23*t - 45
sage: J = I*u
sage: g = J.quadratic_form(); g
23485980*x^2 - 22795498*x*y + 5531329*y^2
sage: f.is_equivalent(g)  True
```

The inverse operation (modulo equivalence) can be computed by passing a BinaryQF to O.ideal():
4.5 Class groups of number fields

An element of a class group is stored as a pair consisting of both an explicit ideal in that ideal class, and a list of exponents giving that ideal class in terms of the generators of the parent class group. These can be accessed with the ideal() and exponents() methods respectively.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 23)
sage: I = K.class_group().gen(); I
Fractional ideal class (2, 1/2*a - 1/2)
sage: I.ideal()
Fractional ideal (2, 1/2*a - 1/2)
sage: I.exponents()
(1,)
sage: I.ideal() * I.ideal()
Fractional ideal (4, 1/2*a + 3/2)
sage: (I.ideal() * I.ideal()).reduce_equiv()
Fractional ideal (2, 1/2*a + 1/2)
sage: J = I * I; J  # class group multiplication is automatically reduced
Fractional ideal class (2, 1/2*a + 1/2)
sage: J.ideal()
Fractional ideal (2, 1/2*a + 1/2)
sage: J.exponents()
(2,)
sage: I * I.ideal()  # ideal classes coerce to their representative ideal
Fractional ideal (4, 1/2*a + 3/2)
sage: K.fractional_ideal([2, 1/2*a + 1/2])
Fractional ideal (2, 1/2*a + 1/2)
sage: K.fractional_ideal([2, 1/2*a + 1/2]).is_principal()
False
sage: K.fractional_ideal([2, 1/2*a + 1/2])^3
Fractional ideal (1/2*a - 3/2)
```

```sage
class sage.rings.number_field.class_group.ClassGroup (gens_orders, names, number_field, gens, proof=True)

Bases: AbelianGroupWithValues_class

The class group of a number field.

EXAMPLES:

```sage
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 23)
```
Note the distinction between abstract generators, their ideal, and exponents:

```python
sage: C = NumberField(x^2 + 120071, a).class_group(); C
Class group of order 500 with structure C250 x C2 of Number Field in a with defining polynomial x^2 + 120071
sage: c = C.gen(0)
sage: c
random Fractional ideal class (5, 1/2*a + 3/2)
sage: c.ideal()
random Fractional ideal (5, 1/2*a + 3/2)
sage: c.ideal() is c.value() # alias True
sage: c.exponents()
(1, 0)
```

### Element
 alias of `FractionalIdealClass`

gens_ideals()

Return generating ideals for the (S-)class group.

This is an alias for gens_values().

**OUTPUT:**

A tuple of ideals, one for each abstract Abelian group generator.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^4 + 23)
sage: K.class_group().gens_ideals()
random gens (platform dependent)
(Fractional ideal (2, 1/4*a^3 - 1/4*a^2 + 1/4*a - 1/4),)
```

```python
sage: C = NumberField(x^2 + x + 23899, a).class_group(); C
Class group of order 68 with structure C34 x C2 of Number Field in a with defining polynomial x^2 + x + 23899
sage: C.gens()
(Fractional ideal class (7, a + 5), Fractional ideal class (5, a + 3))
sage: C.gens_ideals()
(Fractional ideal (7, a + 5), Fractional ideal (5, a + 3))
```

**number_field()**

Return the number field that this (S-)class group is attached to.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: C = NumberField(x^2 + 23, 'w').class_group(); C
Class group of order 3 with structure C3 of Number Field in w with defining polynomial x^2 + 23
sage: C.number_field()
```
Number Field in \( w \) with defining polynomial \( x^2 + 23 \)

```python
sage: K.<a> = QuadraticField(-14)
sage: CS = K.S_class_group(K.primes_above(2))
sage: CS.number_field()
Number Field in a with defining polynomial \(x^2 + 14 \) with \(a = 3. \quad \rightarrow 741657386773942?*I \)
```

### class `sage.rings.number_field.class_group.FractionalIdealClass` (parent, element, ideal=None)

Bases: `sage.modules.module.ModuleElement`

A fractional ideal class in a number field.

**EXAMPLES:**

```python
sage: x = polygen(ZZ, 'x')
sage: G = NumberField(x^2 + 23,'a').class_group(); G
Class group of order 3 with structure C3 of Number Field in a with defining polynomial \(x^2 + 23 \)
sage: I = G.0; I
Fractional ideal class (2, 1/2*a - 1/2)
sage: I.ideal()
Fractional ideal (2, 1/2*a - 1/2)
sage: K.<w> = QuadraticField(-23)
sage: OK = K.ring_of_integers()
sage: C = OK.class_group()
sage: P2a, P2b = [P for P, e in (2*K).factor()]
sage: c = C(P2a); c
Fractional ideal class (2, 1/2*w - 1/2)
sage: c.gens()
(2, 1/2*w - 1/2)
```

**gens()**

Return generators for a representative ideal in this \((S-)\)ideal class.

**EXAMPLES:**

```python
sage: K.<w> = QuadraticField(-23)
sage: OK = K.ring_of_integers()
sage: C = OK.class_group()
sage: P2a, P2b = [P for P, e in (2*K).factor()]
sage: c = C(P2a); c
Fractional ideal class (2, 1/2*w - 1/2)
sage: c.gens()
(2, 1/2*w - 1/2)
```

**ideal()**

Return a representative ideal in this ideal class.

**EXAMPLES:**

```python
sage: K.<w> = QuadraticField(-23)
sage: OK = K.ring_of_integers()
sage: C = OK.class_group()
sage: P2a, P2b = [P for P, e in (2*K).factor()]
sage: c = C(P2a); c
Fractional ideal class (2, 1/2*w - 1/2)
sage: c.ideal()
Fractional ideal (2, 1/2*w - 1/2)
```
sage: c = C(P2a); c
Fractional ideal class (2, 1/2*w - 1/2)
sage: c.ideal()
Fractional ideal (2, 1/2*w - 1/2)

inverse()

Return the multiplicative inverse of this ideal class.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 3*x + 8); G = K.class_group()
sage: G(2, a).inverse()
Fractional ideal class (2, a^2 + 2*a - 1)
sage: ~G(2, a)
Fractional ideal class (2, a^2 + 2*a - 1)

is_principal()

Return True iff this ideal class is the trivial (principal) class.

EXAMPLES:

sage: K.<w> = QuadraticField(-23)
sage: OK = K.ring_of_integers()
sage: C = OK.class_group()
sage: P2a, P2b = [P for P, e in (2*K).factor()]
sage: c = C(P2a)
sage: c.is_principal()
False
sage: (c^2).is_principal()
False
sage: (c^3).is_principal()
True

reduce()

Return representative for this ideal class that has been reduced using PARI's pari:idealred.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: k.<a> = NumberField(x^2 + 20072); G = k.class_group(); G
Class group of order 76 with structure C38 x C2 of
Number Field in a with defining polynomial x^2 + 20072
sage: I = (G.0)^11; I
Fractional ideal class (33, 1/2*a + 8)
sage: J = G(I.ideal()^5); J
Fractional ideal class (39135393, 1/2*a + 13654253)
sage: J.reduce()
Fractional ideal class (73, 1/2*a + 47)
sage: J == I^5
True

representative_prime(norm_bound=1000)

Return a prime ideal in this ideal class.

INPUT:

- norm_bound – (positive integer) upper bound on the norm of primes tested.
EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 31)
sage: K.class_number()
3
sage: Cl = K.class_group()
sage: [c.representative_prime() for c in Cl]
[Fractional ideal (3),
 Fractional ideal (2, 1/2*a + 1/2),
 Fractional ideal (2, 1/2*a - 1/2)]

sage: K.<a> = NumberField(x^2 + 223)
sage: K.class_number()
7
sage: Cl = K.class_group()
sage: [c.representative_prime() for c in Cl]
[Fractional ideal (3),
 Fractional ideal (2, 1/2*a + 1/2),
 Fractional ideal (17, 1/2*a + 7/2),
 Fractional ideal (7, 1/2*a - 1/2),
 Fractional ideal (7, 1/2*a + 1/2),
 Fractional ideal (17, 1/2*a + 27/2),
 Fractional ideal (2, 1/2*a - 1/2)]
```

```python
class sage.rings.number_field.class_group.SClassGroup(gens_orders, names, number_field, gens, S, proof=True)

Bases: ClassGroup

The S-class group of a number field.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(-14)
sage: S = K.primes_above(2)
sage: K.S_class_group(S).gens()  # random gens (platform dependent)
(Fractional S-ideal class (3, a + 2),)

sage: K.<a> = QuadraticField(-974)
sage: CS = K.S_class_group(K.primes_above(2)); CS
S-class group of order 18 with structure C6 x C3 of Number Field in a with defining polynomial x^2 + 974 with a = 31.20897306865447?
˓
I
sage: CS.gen(0)  # random
Fractional S-ideal class (3, a + 2)
sage: CS.gen(1)  # random
Fractional S-ideal class (31, a + 24)
```

Element

alias of SFractionalIdealClass

S()

Return the set (or rather tuple) of primes used to define this class group.

EXAMPLES:

```python
sage: K.<a> = QuadraticField(-14)
sage: I = K.ideal(2, a)
(continues on next page)```
```python
sage: S = (I,)
sage: CS = K.S_class_group(S); CS
S-class group of order 2 with structure C2 of
Number Field in a with defining polynomial x^2 + 14 with a = 3.
\rightarrow 741657386773942?*I
sage: T = tuple()
sage: CT = K.S_class_group(T); CT
S-class group of order 4 with structure C4 of
Number Field in a with defining polynomial x^2 + 14 with a = 3.
\rightarrow 741657386773942?*I
sage: CS.S()
(Fractional ideal (2, a),)
sage: CT.S()
()
```

**class** `sage.rings.number_field.class_group.SFractionalIdealClass` *(parent, element, ideal=None)*

Bases: `FractionalIdealClass`

An $S$-fractional ideal class in a number field for a tuple $S$ of primes.

**EXAMPLES:**

```python
sage: K.<a> = QuadraticField(-14)
sage: I = K.ideal(2, a)
sage: S = (I,)
sage: CS = K.S_class_group(S)
sage: J = K.ideal(7, a)
sage: G = K.ideal(3, a + 1)
sage: CS(I)
Trivial S-ideal class
sage: CS(J)
Trivial S-ideal class
sage: CS(G)
Fractional S-ideal class (3, a + 1)
```

```python
sage: K.<a> = QuadraticField(-14)
sage: I = K.ideal(2, a)
sage: S = (I,)
sage: CS = K.S_class_group(S)
sage: J = K.ideal(7, a)
sage: G = K.ideal(3, a + 1)
sage: CS(I).ideal()
Fractional ideal (2, a)
sage: CS(J).ideal()
Fractional ideal (7, a)
sage: CS(G).ideal()
Fractional ideal (3, a + 1)
```

```python
sage: K.<a> = QuadraticField(-14)
sage: I = K.ideal(2, a)
sage: S = (I,)
sage: CS = K.S_class_group(S)
sage: G = K.ideal(3, a + 1)
sage: CS(G).inverse()
Fractional S-ideal class (3, a + 2)
```
4.6 Units and $S$-unit groups of number fields

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^4 - 8*x^2 + 36)
sage: UK = UnitGroup(K); UK
Unit group with structure C4 x Z of Number Field in a with defining polynomial x^4 - 8*x^2 + 36
sage: UK.gens()
(u0, u1)
sage: UK.gens_values()
[-1/12*a^3 + 1/6*a, 1/24*a^3 + 1/4*a^2 - 1/12*a - 1]
sage: UK.gen(0).value()
1/12*a^3 - 1/6*a
sage: UK.gen(0) + K.one() # coerce abstract generator into number field
1/12*a^3 - 1/6*a + 1
sage: [u.multiplicative_order() for u in UK.gens()]
[4, +Infinity]
sage: UK.rank()
1
sage: UK.ngens()
2
```

Units in the field can be converted into elements of the unit group represented as elements of an abstract multiplicative group:

```python
sage: UK(1)
1
sage: UK(-1)
u0^2
sage: [UK(u) for u in (x^4 - 1).roots(K, multiplicities=False)]
[1, u0^2, u0, u0^3]
```

Exp and log functions provide maps between units as field elements and exponent vectors with respect to the generators:

```python
sage: u = UK.exp([13,10]); u # random
-41/8*a^3 - 55/4*a^2 + 41/4*a + 55
sage: UK.log(u)
(continues on next page)
```

(continues on next page)
S-unit groups may be constructed, where $S$ is a set of primes:

```python
sage: K.<a> = NumberField(x^5 - 2,'a')
sage: UK = UnitGroup(K)
sage: UK.rank()
2
sage: UK.fundamental_units()
[a^3 + a^2 - 1, a - 1]
```

A relative number field example:

```python
sage: L.<a, b> = NumberField([x^2 + x + 1, x^4 + 1])
sage: UL = L.unit_group(); UL
Unit group with structure C24 x Z x Z x Z of Number Field in a with defining polynomial x^2 + x + 1 over its base field
sage: UL.gens_values() # random
[-b^3*a - b^3, -b^3*a + b, (-b^3 - b^2 - b)*a - b - 1, (-b^3 - 1)*a - b^2 + b - 1]
sage: UL.zeta_order()
24
sage: UL.roots_of_unity()
[-b*a,
 -b^2*a - b^2,
 -b^3,
 -a,
 -b*a - b,
 -b^2,
 b^3*a,
 -a - 1,
 -b,
 b^2*a,
```

(continues on next page)
A relative extension example, which worked thanks to the code review by F.W.Clarke:

```
sage: PQ.<X> = QQ[]
sage: F.<a, b> = NumberField([X^2 - 2, X^2 - 3])
sage: PF.<Y> = F[]
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: K.unit_group()
```

Unit group with structure $C_2 \times Z \times Z \times Z \times Z \times Z \times Z \times Z$ of Number Field in $c$
with defining polynomial $Y^2 + (-2*b - 3)*a - 2*b - 6$ over its base field

AUTHOR:

• John Cremona

class sage.rings.number_field.unit_group.UnitGroup(number_field, proof=True, S=None)

Bases: AbelianGroupWithValues_class

The unit group or an $S$-unit group of a number field.

exp(exponents)

Return unit with given exponents with respect to group generators.

INPUT:

• $u$ – Any object from which an element of the unit group’s number field $K$ may be constructed; an error is raised if an element of $K$ cannot be constructed from $u$, or if the element constructed is not a unit.

OUTPUT: a list of integers giving the exponents of $u$ with respect to the unit group’s basis.

EXAMPLES:

```
sage: x = polygen(QQ)
sage: K.<z> = CyclotomicField(13)
sage: UK = UnitGroup(K)
sage: [UK.log(u) for u in UK.gens()]
[(1, 0, 0, 0, 0, 0),
 (0, 1, 0, 0, 0, 0),
 (0, 0, 1, 0, 0, 0),
 (0, 0, 0, 1, 0, 0),
 (0, 0, 0, 0, 1, 0),
 (0, 0, 0, 0, 0, 1)]
sage: vec = [65,6,7,8,9,10]
sage: UK.log(unit)
```

(continues on next page)
An S-unit example:

```python
sage: SUK = UnitGroup(K, S=2)
sage: v = [3, 1, 4, 1, 5, 9, 2]
sage: u = SUK.exp(v); u
8732*z^11 - 15496*z^10 - 51840*z^9 - 68804*z^8 - 51840*z^7 - 15496*z^6
 + 8732*z^5 - 34216*z^3 - 64312*z^2 - 64312*z - 34216
sage: SUK.log(u)
(3, 1, 4, 1, 5, 9, 2)
sage: SUK.log(u) == v
True
```

`sage`: `UK.gens()[-1]`
sage: `UK.exp(UK.log(u)) == u.value()
True`

**fundamental_units()**

Return generators for the free part of the unit group, as a list.

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^4 + 23)
sage: U = UnitGroup(K)
sage: U.fundamental_units() # random
[1/4*a^3 - 7/4*a^2 + 17/4*a - 19/4]
```

**log(u)**

Return the exponents of the unit `u` with respect to group generators.

**INPUT:**

- `u` – Any object from which an element of the unit group’s number field `K` may be constructed; an error is raised if an element of `K` cannot be constructed from `u`, or if the element constructed is not a unit.

**OUTPUT:** a list of integers giving the exponents of `u` with respect to the unit group’s basis.

**EXAMPLES:**

```python
sage: x = polygen(QQ)
sage: K.<z> = CyclotomicField(13)
sage: UK = UnitGroup(K)
sage: [UK.log(u) for u in UK.gens()]
[(1, 0, 0, 0, 0, 0),
 (0, 1, 0, 0, 0, 0),
 (0, 0, 1, 0, 0, 0),
 (0, 0, 0, 1, 0, 0),
 (0, 0, 0, 0, 1, 0),
 (0, 0, 0, 0, 0, 1)]
sage: vec = [65, 6, 7, 8, 9, 10]
sage: unit = UK.exp(vec); unit # random
-253576*z^11 + 7003*z^10 - 395532*z^9 - 35275*z^8 - 500326*z^7 - 35275*z^6
 - 395532*z^5 + 7003*z^4 - 253576*z^3 - 59925*z - 59925
sage: UK.log(unit)
(13, 6, 7, 8, 9, 10)
```

An S-unit example:
sage: SUK = UnitGroup(K, S=2)
sage: v = (3,1,4,1,5,9,2)
sage: u = SUK.exp(v); u
8732*z^11 - 15496*z^10 - 51840*z^9 - 68804*z^8 - 51840*z^7 - 15496*z^6
   + 8732*z^5 - 34216*z^3 - 64312*z^2 - 64312*z - 34216
sage: SUK.log(u)
(3, 1, 4, 1, 5, 9, 2)
sage: SUK.log(u) == v
True

number_field()
Return the number field associated with this unit group.

EXAMPLES:

sage: U = UnitGroup(QuadraticField(-23, 'w')); U
Unit group with structure C2 of
Number Field in w with defining polynomial x^2 + 23 with w = 4.
→795831523312720*I
sage: U.number_field()
Number Field in w with defining polynomial x^2 + 23 with w = 4.
→795831523312720*I

primes()
Return the (possibly empty) list of primes associated with this S-unit group.

EXAMPLES:

sage: K.<a> = QuadraticField(-23)
sage: S = tuple(K.ideal(3).prime_factors()); S
(Fractional ideal (3, 1/2*a - 1/2), Fractional ideal (3, 1/2*a + 1/2))
sage: U = UnitGroup(K,S=tuple(S)); U
S-unit group with structure C2 x Z x Z of
Number Field in a with defining polynomial x^2 + 23 with a = 4.
→795831523312720*I
with S = (Fractional ideal (3, 1/2*a - 1/2), Fractional ideal (3, 1/2*a + 1/2))
sage: U.primes() == S
True

rank()
Return the rank of the unit group.

EXAMPLES:

sage: K.<z> = CyclotomicField(13)
sage: UnitGroup(K).rank()
5
sage: SUK = UnitGroup(K, S=2); SUK.rank()
6

roots_of_unity()
Return all the roots of unity in this unit group, primitive or not.

EXAMPLES:
sage: x = polygen(QQ)
sage: K.<b> = NumberField(x^2 + 1)
sage: U = UnitGroup(K)
sage: zs = U.roots_of_unity(); zs
[b, -1, -b, 1]
sage: [ z**U.zeta_order() for z in zs ]
[1, 1, 1, 1]

torsion_generator ()
Return a generator for the torsion part of the unit group.

EXAMPLES:

sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^4 - x^2 + 4)
sage: U = UnitGroup(K)
sage: U.torsion_generator()
u0
sage: U.torsion_generator().value() # random
-1/4*a^3 - 1/4*a + 1/2

zeta (n=2, all=False)
Return one, or a list of all, primitive n-th root of unity in this unit group.

EXAMPLES:

sage: x = polygen(QQ)
sage: K.<z> = NumberField(x^2 + 3)
sage: U = UnitGroup(K)
sage: U.zeta(1)
1
sage: U.zeta(2)
-1
sage: U.zeta(2, all=True)
[-1]
sage: U.zeta(3)
-1/2*z - 1/2
sage: U.zeta(3, all=True)
[-1/2*z - 1/2, 1/2*z - 1/2]
sage: U.zeta(4)
Traceback (most recent call last):
  ...
ValueError: n (=4) does not divide order of generator

sage: r.<x> = QQ[]
sage: K.<b> = NumberField(x^2 + 1)
sage: U = UnitGroup(K)
sage: U.zeta(4)
b
sage: U.zeta(4, all=True)
[b, -b]
sage: U.zeta(3)
Traceback (most recent call last):
  ...
ValueError: n (=3) does not divide order of generator
sage: U.zeta(3, all=True)
[]
zeta_order()

Returns the order of the torsion part of the unit group.

EXAMPLES:

```python
sage: x = polygen(QQ)
sage: K.<a> = NumberField(x^4 - x^2 + 4)
sage: U = UnitGroup(K)
sage: U.zeta_order()
6
```

4.7 Solver for the $S$-unit equation $x + y = 1$

Inspired by works of Tzanakis–de Weger, Baker–Wustholz and Smart, we use the LLL methods to implement an algorithm that returns all $S$-unit solutions to the equation $x + y = 1$.

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import solve_S_unit_equation, eq_up_to_order
sage: x = polygen(ZZ, x)
sage: K.<xi> = NumberField(x^2 + x + 1)
sage: S = K.primes_above(3)
sage: expected = [((0, 1), (4, 0), xi + 2, -xi - 1),
 ((1, -1), (0, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
 ((1, 0), (5, 0), xi + 1, -xi),
 ((2, 0), (5, 1), xi, -xi + 1)]
sage: sols = solve_S_unit_equation(K, S, 200)
sage: eq_up_to_order(sols, expected)
True
```

Todo:

- Use Cython to improve timings on the sieve

REFERENCES:

- [MR2016]
- [Sma1995]
- [Sma1998]
- [Yu2007]
- [AKMRVW]

AUTHORS:

- Alejandra Alvarado, Angelos Koutsianas, Beth Malmskog, Christopher Rasmussen, David Roe, Christelle Vincent, Mckenzie West (2018-04-25 to 2018-11-09): original version

sage.rings.number_field.S_unit_solver.K0_func(SUK, A, prec=106)

Return the constant $K_0$ from [AKMRVW].

INPUT:

- SUK – a group of $S$-units
• \( A \) – the set of the products of the coefficients of the \( S \)-unit equation with each root of unity of \( K \)
• \( \text{prec} \) – the precision of the real field (default: 106)

**OUTPUT:**
The constant \( K_0 \), a real number.

**EXAMPLES:**
```
sage: from sage.rings.number_field.S_unit_solver import K0_func
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 11)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(6)))
sage: v = K.primes_above(3)[0]
sage: K0_func(SUK, K.roots_of_unity())
8.84763586062272e12
```

**REFERENCES:**
• [Sma1995] p. 824
• [AKMRVW] arXiv 1903.00977

### \texttt{K1\_func} \( (SUK, v, A, \text{prec}=106) \)

Return the constant \( K_1 \) from Smart’s TCDF paper, [Sma1995].

**INPUT:**
• \( SUK \) – a group of \( S \)-units
• \( v \) – an infinite place of \( K \) (element of \( SUK \).\text{number\_field()}.\text{places(prec)} )
• \( A \) – a list of all products of each potential \( a, b \) in the \( S \)-unit equation \( ax + by + 1 = 0 \) with each root of unity of \( K \)
• \( \text{prec} \) – the precision of the real field (default: 106)

**OUTPUT:**
The constant \( K_1 \), a real number

**EXAMPLES:**
```
sage: from sage.rings.number_field.S_unit_solver import K1_func
sage: x = polygen(ZZ, 'x')
sage: K.<xi> = NumberField(x^3 - 3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]
sage: A = K.roots_of_unity()
sage: K1_func(SUK, phi_real, A)
4.483038368145048508970350163578e16
sage: K1_func(SUK, phi_complex, A)
2.073346189067285101984136298965e17
```

**REFERENCES:**
• [Sma1995] p. 825
sage.rings.number_field.S_unit_solver.Omega_prime(dK, v, mu_list, prec=106)

Return the constant $\Omega'$ appearing in [AKMRVW].

INPUT:

- dK – the degree of a number field $K$
- v – a finite place of $K$
- mu_list – a list of nonzero elements of $K$. It is assumed that the sublist mu_list[1:] is multiplicatively independent.
- prec – the precision of the real field

OUTPUT:

The constant $\Omega'$.  

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import mus, Omega_prime
sage: x = polygen(ZZ, 'x')
```
```
sage: K.<a> = NumberField(x^3 - 3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(6)))
sage: v = K.primes_above(3)[0]
sage: mu_list = [-1] + mus(SUK, v)
sage: dK = K.degree()
```
```
sage: Omega_prime(dK, v, mu_list)
0.000487349679922696
```

REFERENCES:

- [AKMRVW] arXiv 1903.00977

sage.rings.number_field.S_unit_solver.Yu_C1_star(n, v, prec=106)

Return the constant $C^*_1$ appearing in [Yu2007] (1.23).

INPUT:

- n – the number of generators of a multiplicative subgroup of a field $K$
- v – a finite place of $K$ (a fractional ideal)
- prec – the precision of the real field

OUTPUT:

The constant $C^*_1$ as a real number.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
```
```
sage: K.<a> = NumberField(x^2 + 5)
sage: v11 = K.primes_above(11)[0]
sage: from sage.rings.number_field.S_unit_solver import Yu_C1_star
```
```
sage: Yu_C1_star(1,v11)
2.154667761574516556114215527020e6
```

REFERENCES:

- [Yu2007] p.189,193
sage.rings.number_field.S_unit_solver.Yu_a1_kappa1_c1 \( (p, dK, ep) \)

Compute the constants \( a(1), \kappa_1, \text{and } c(1) \) of [Yu2007].

**INPUT:**
- \( p \) – a rational prime number
- \( dK \) – the absolute degree of some number field \( K \)
- \( ep \) – the absolute ramification index of some prime \( \mathfrak{p} \) of \( K \) lying above \( p \)

**OUTPUT:**
The constants \( a(1), \kappa_1, \text{and } c(1) \).

**EXAMPLES:**
```
sage: from sage.rings.number_field.S_unit_solver import Yu_a1_kappa1_c1/nsage: Yu_a1_kappa1_c1(5, 10, 3)
(16, 20, 319)
```

**REFERENCES:**
- [Yu2007]

sage.rings.number_field.S_unit_solver.Yu_bound \( (SUk, v, prec=106) \)

Return \( c_8 \) such that \( c_8 \geq \exp(2)/\log(2) \) and \( \text{ord}_p(\Theta - 1) < c_8 \log B, \) where \( \Theta = \prod_{j=1}^{n} a_j^{b_j} \) and \( B \geq \max_j |b_j| \)
and \( B \geq 3 \).

**INPUT:**
- \( SUK \) – a group of \( S \)-units
- \( v \) – a finite place of \( K \) (a fractional ideal)
- \( prec \) – the precision of the real field

**OUTPUT:**
The constant \( c_8 \) as a real number.

**EXAMPLES:**
```
sage: from sage.rings.number_field.S_unit_solver import Yu_bound
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 11)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(6)))
sage: v = K.primes_above(3)[0]
sage: Yu_bound(SUK, v)
9.03984381033128e9
```

**REFERENCES:**
- [Sma1995] p. 825
- [AKMRVW] arXiv 1903.00977

sage.rings.number_field.S_unit_solver.Yu_condition_115 \( (K, v) \)

Return True or False, as the number field \( K \) and the finite place \( v \) satisfy condition (1.15) of [Yu2007].

**INPUT:**
- \( K \) – a number field
• \( v \) – a finite place of \( K \)

OUTPUT:

True if (1.15) is satisfied, otherwise False.

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import Yu_condition_115
sage: x = polygen(ZZ, 'x')

sage: K.<a> = NumberField(x^2 + 5)

sage: v2 = K.primes_above(2)[0]

sage: v11 = K.primes_above(11)[0]

sage: Yu_condition_115(K, v2)
False

sage: Yu_condition_115(K, v11)
True
```

REFERENCES:

• [Yu2007] p. 188

sage.rings.number_field.S_unit_solver.Yu_modified_height \((mu, n, v, prec=106)\)

Return the value of \( h(n)(mu) \) as appearing in [Yu2007] equation (1.21).

INPUT:

• \( mu \) – an element of a field \( K \)
• \( n \) – number of \( mu_j \) to be considered in Yu’s Theorem.
• \( v \) – a place of \( K \)
• \( prec \) – the precision of the real field

OUTPUT:

The value \( h_p(mu) \).

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')

sage: K.<a> = NumberField(x^2 + 5)

sage: v11 = K.primes_above(11)[0]

sage: from sage.rings.number_field.S_unit_solver import Yu_modified_height

sage: Yu_modified_height(a, 3, v11)
0.8047189562170501873003796666131

If mu is a root of unity, the output is not zero. ::

sage: Yu_modified_height(-1, 3, v11) 0.03425564675426243634374205111379

REFERENCES:

• [Yu2007] p. 192

sage.rings.number_field.S_unit_solver.beta_k \((betas_and_ns)\)

Return a pair \([beta_k, |beta_k|_v]\), where \(beta_k \) has the smallest nonzero valuation in absolute value of the list \(betas_and_ns \).

INPUT:

• \(betas_and_ns \) – a list of pairs \([beta, val_v(beta)]\) outputted from the function where \(beta \) is an element of \(SUK.fundamental_units() \)
OUTPUT:

The pair \([\beta_k, v(\beta_k)]\), where \(\beta_k\) is an element of \(K\) and \(\text{val}_v(\beta_k)\) is an integer.

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import beta_k
sage: x = polygen(ZZ, 'x')
sage: K.<xi> = NumberField(x^3 - 3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: v_fin = tuple(K.primes_above(3))[0]

sage: betas = [[beta, beta.valuation(v_fin) for beta in SUK.fundamental_units()]
          for xi, 1]
```

REFERENCES:

• [Sma1995] pp. 824-825

\(\text{sage.rings.number_field.S_unit_solver.c11_func(SUK, v, A, prec=106)}\)

Return the constant \(c_{11}\) from Smart’s TCDF paper, [Sma1995].

INPUT:

• \(\text{SUK}\) – a group of \(S\)-units
• \(\text{v}\) – a place of \(K\), finite (a fractional ideal) or infinite (element of \(\text{SUK.number_field().places(prec)}\))
• \(A\) – the set of the product of the coefficients of the \(S\)-unit equation with each root of unity of \(K\)
• \(\text{prec}\) – the precision of the real field (default: 106)

OUTPUT:

The constant \(c_{11}\), a real number

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import c11_func
sage: x = polygen(ZZ, 'x')
sage: K.<xi> = NumberField(x^3 - 3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))

sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]

sage: A = K.roots_of_unity()

sage: c11_func(SUK, phi_real, A)  # abs tol 1e-29
3.255848343572896153455615423662  # abs tol 1e-29

sage: c11_func(SUK, phi_complex, A)  # abs tol 1e-29
6.511696687145792306911230847323
```

REFERENCES:

• [Sma1995] p. 825

\(\text{sage.rings.number_field.S_unit_solver.c13_func(SUK, v, prec=106)}\)

Return the constant \(c_{13}\) from Smart’s TCDF paper, [Sma1995].

INPUT:

• \(\text{SUK}\) – a group of \(S\)-units
The constant c_{13}, as a real number

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import c13_func
sage: x = polygen(ZZ, 'x')
sage: K.<xi> = NumberField(x^3 - 3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]

sage: c13_func(SUK, phi_real)  # abs tol 1e-29
0.4257859134798034746197327286726

sage: c13_func(SUK, phi_complex)  # abs tol 1e-29
0.2128929567399017373098663643363
```

It is an error to input a finite place.

```python
sage: phi_finite = K.primes_above(3)[0]
sage: c13_func(SUK, phi_finite)
Traceback (most recent call last):
...  
TypeError: Place must be infinite
```

REFERENCES:

- [Sma1995] p. 825

sage.rings.number_field.S_unit_solver.c3_func(SUK, prec=106)

Return the constant c_3 from [AKMRVW].

INPUT:

- SUK – a group of S-units
- prec – the precision of the real field (default: 106)

OUTPUT:

The constant c_3, as a real number

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import c3_func
sage: x = polygen(ZZ, 'x')

sage: K.<xi> = NumberField(x^3 - 3)

sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))

sage: c3_func(SUK)  # abs tol 1e-29
0.4257859134798034746197327286726
```

Note: The numerator should be as close to 1 as possible, especially as the rank of the S-units grows large

REFERENCES:

4.7. Solver for the S-unit equation $x + y = 1$
sage.rings.number_field.S_unit_solver.c4_func(SUK, v, A, prec=106)

Return the constant \(c_4 \) from Smart’s TCDF paper, [Sma1995].

INPUT:
- SUK – a group of \(S \)-units
- \(v \) – a place of \(K \), finite (a fractional ideal) or infinite (element of \(SUK.number_field().places(prec) \))
- \(A \) – the set of the product of the coefficients of the \(S \)-unit equation with each root of unity of \(K \)
- \(prec \) – the precision of the real field (default: 106)

OUTPUT:
The constant \(c_4 \), as a real number

EXAMPLES:
```
sage: from sage.rings.number_field.S_unit_solver import c4_func
sage: x = polygen(ZZ, 'x')
sage: K.<xi> = NumberField(x^3 - 3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: phi_real = K.places()[0]
sage: phi_complex = K.places()[1]
sage: v_fin = tuple(K.primes_above(3))[0]
sage: A = K.roots_of_unity()
sage: c4_func(SUK, phi_real, A)
1.000000000000000000000000000000
sage: c4_func(SUK, phi_complex, A)
1.000000000000000000000000000000
sage: c4_func(SUK, v_fin, A)
1.000000000000000000000000000000
```

REFERENCES:
- [Sma1995] p. 824

sage.rings.number_field.S_unit_solver.clean_rfv_dict(rfv_dictionary)

Given a residue field vector dictionary, remove some impossible keys and entries.

INPUT:
- \(rfv_dictionary \) – a dictionary whose keys are exponent vectors and whose values are residue field vectors

OUTPUT:
None. But it removes some keys from the input dictionary.

Note:
- The keys of a residue field vector dictionary are exponent vectors modulo \(q - 1 \) for some prime \(q \).
- The values are residue field vectors. It is known that a residue field vector which comes from a solution to the \(S \)-unit equation cannot have 1 in any entry.
EXAMPLES:

In this example, we use a truncated list generated when solving the S-unit equation in the case that K is defined by the polynomial $x^2 + x + 1$ and S consists of the primes above 3:

```python
sage: from sage.rings.number_field.S_unit_solver import clean_rfv_dict
sage: rfv_dict = {(1, 3): [3, 2], (3, 0): [6, 6], (5, 4): [3, 6], (2, 1): [4, 6], ...
    (5, 1): [3, 1], (2, 5): [1, 5], (0, 3): [1, 6]}
sage: len(rfv_dict)
7
sage: clean_rfv_dict(rfv_dict)
4
sage: rfv_dict
{(1, 3): [3, 2], (2, 1): [4, 6], (3, 0): [6, 6], (5, 4): [3, 6]}
```

\textbf{sage.rings.number_field.S_unit_solver.clean_sfs(sfs_list)}

Given a list of S-unit equation solutions, remove trivial redundancies.

\textbf{INPUT:}

- \textit{sfs_list} – a list of solutions to the S-unit equation

\textbf{OUTPUT:}

A list of solutions to the S-unit equation

\textbf{Note:} The function looks for cases where $x + y = 1$ and $y + x = 1$ appear as separate solutions, and removes one.

\textbf{EXAMPLES:}

The function is not dependent on the number field and removes redundancies in any list.

```python
sage: from sage.rings.number_field.S_unit_solver import clean_sfs
sage: sols = [((1, 0, 0), (0, 0, 1), -1, 2), ((0, 0, 1), (1, 0, 0), 2, -1)]
sage: clean_sfs( sols )
[((1, 0, 0), (0, 0, 1), -1, 2)]
```

\textbf{sage.rings.number_field.S_unit_solver.column_Log(SUK, iota, U, prec=106)}

Return the log vector of $iota$; i.e., the logs of all the valuations.

\textbf{INPUT:}

- \textit{SUK} – a group of S-units
- \textit{iota} – an element of K
- \textit{U} – a list of places (finite or infinite) of K
- \textit{prec} – the precision of the real field (default: 106)

\textbf{OUTPUT:}

The log vector as a list of real numbers

\textbf{EXAMPLES:}
Algebraic Numbers and Number Fields, Release 10.3

```python
sage: from sage.rings.number_field.S_unit_solver import column_Log
sage: x = polygen(ZZ, 'x')
sage: K.<xi> = NumberField(x^3 - 3)
sage: S = tuple(K.primes_above(3))
sage: SUK = UnitGroup(K, S=S)
sage: phi_complex = K.places()[1]
sage: v_fin = S[0]
sage: U = [phi_complex, v_fin]
sage: column_Log(SUK, xi^2, U)
# abs tol 1e-29
[1.464816384890812968625966, -2.197224577336219382790473845]
```

REFERENCES:

- [Sma1995] p. 823

sage.rings.number_field.S_unit_solver.compatibl...e_lift(compatible_system, split_primes_list)

Given a compatible system of exponent vectors and complementary exponent vectors, return a lift to the integers.

INPUT:

- compatible_system – a list of pairs \([v_0, w_0], [v_1, w_1], \ldots, [v_k, w_k]\) where \([v_i, w_i]\) is a pair of complementary exponent vectors modulo \(q_i - 1\), and all pairs are compatible.

- split_primes_list – a list of primes \([q_0, q_1, \ldots, q_k]\)

OUTPUT:

A pair of vectors \([v, w]\) satisfying:

1. \(v[0] == v_i[0]\) for all \(i\)
2. \(w[0] == w_i[0]\) for all \(i\)
3. \(v[j] == v_i[j]\) modulo \(q_i - 1\) for all \(i\) and all \(j > 0\)
4. \(w[j] == w_i[j]\) modulo \(q_i - 1\) for all \(i\) and all \(j > 0\)
5. every entry of \(v\) and \(w\) is bounded by \(L/2\) in absolute value, where \(L\) is the least common multiple of \(\{q_i - 1 : q_i \in \text{split_primes_list}\}\)

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import compatible_system_lift
sage: split_primes_list = [3, 7]
sage: comp_sys = [[(0, 1, 0), (0, 1, 0)], [(0, 3, 4), (0, 1, 2)]
sage: compatible_system_lift(comp_sys, split_primes_list)
[(0, 1, -2), (0, 1, 2)]
```

sage.rings.number_field.S_unit_solver.compatibl...e_systems(split_prime_list, complement_exp_vec_dict)

Given dictionaries of complement exponent vectors for various primes that split in \(K\), compute all possible compatible systems.

INPUT:

- split_prime_list – a list of rational primes that split completely in \(K\)
- complement_exp_vec_dict – a dictionary of dictionaries. The keys are primes from split_prime_list.

Chapter 4. Orders, Ideals and Ideal Classes
OUTPUT:
A list of compatible systems of exponent vectors.

Note:
- For any \(q \) in \(\text{split_prime_list} \), \(\text{complement_exp_vec_dict}[q] \) is a dictionary whose keys are exponent vectors modulo \(q - 1 \) and whose values are lists of exponent vectors modulo \(q - 1 \) which are complementary to the key.
- An item in \(\text{system_list} \) has the form \([[v_0, w_0], [v_1, w_1], \ldots, [v_k, w_k]]\), where:
 - \(\text{\`\`qj = split_prime_list[j]\`\`} \)
 - \(\text{\`\`vj\`\`} \) and \(\text{\`\`wj\`\`} \) are complementary exponent vectors modulo \(\text{\`\`(qj - 1)\`\`} \)
 - the pairs are all simultaneously compatible.
- Let \(H = \text{lcm}(q_j - 1 : q_j \text{ in split_primes_list}) \). Then for any compatible system, there is at most one pair of integer exponent vectors \([v, w]\) such that:
 - every entry of \(\text{\`\`v\`\`} \) and \(\text{\`\`w\`\`} \) is bounded in absolute value by \(\text{\`\`H\`\`} \)
 - for any \(\text{\`\`(qj - 1)\`\`} \), \(\text{\`\`v\`\'} \) and \(\text{\`\`vj\`\`} \) agree modulo \(\text{\`\`(qj - 1)\`\`} \)
 - for any \(\text{\`\`(qj - 1)\`\`} \), \(\text{\`\`w\`\'} \) and \(\text{\`\`wj\`\`} \) agree modulo \(\text{\`\`(qj - 1)\`\`} \)

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import compatible_systems
sage: split_primes_list = [3, 7]
sage: checking_dict = {3: {(0, 1, 0): [(1, 0, 0)]}, 7: {(0, 1, 0): [(1, 0, 0)]}}
sage: compatible_systems(split_primes_list, checking_dict)
[[[(0, 1, 0), (1, 0, 0)], [(0, 1, 0), (1, 0, 0)]]]
```

```
sage.rings.number_field.S_unit_solver.compatible_vectors(a, m0, ml, g)
```

Given an exponent vector \(a \) modulo \(m_0 \), return an iterator over the exponent vectors for the modulus \(m_1 \), such that a lift to the \(\text{lcm} \) modulus exists.

INPUT:
- \(a \) – an exponent vector for the modulus \(m_0 \)
- \(m_0 \) – a positive integer (specifying the modulus for \(a \))
- \(m_1 \) – a positive integer (specifying the alternate modulus)
- \(g \) – the \(\text{gcd} \) of \(m_0 \) and \(m_1 \)

OUTPUT:
A list of exponent vectors modulo \(m_1 \) which are compatible with \(a \).

Note:
- Exponent vectors must agree exactly in the 0th position in order to be compatible.

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import compatible_vectors
sage: a = (3, 1, 8, 1)
sage: list(compatible_vectors(a, 18, 12, gcd(18,12)))
```

(continues on next page)
The order of the moduli matters.

```
sage: len(list(compatible_vectors(a, 18, 12, gcd(18,12))))
8
sage: len(list(compatible_vectors(a, 12, 18, gcd(18,12))))
27
```

`sage.rings.number_field.S_unit_solver.compatible_vectors_check`(a0, a1, g, l)

Given exponent vectors with respect to two moduli, determine if they are compatible.

INPUT:
- a0 – an exponent vector modulo m0
- a1 – an exponent vector modulo m1 (must have the same length as a0)
- g – the gcd of m0 and m1
- l – the length of a0 and of a1

OUTPUT:
True if there is an integer exponent vector a satisfying

\[
\begin{align*}
a[0] &\equiv a0[0] \equiv a1[0] \\
a[1:] &\equiv a0[1:] \mod m_0 \\
a[1:] &\equiv a1[1:] \mod m_1
\end{align*}
\]

and False otherwise.

Note:
- Exponent vectors must agree exactly in the first coordinate.
- If exponent vectors are different lengths, an error is raised.

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import compatible_vectors_check
sage: a0 = (3, 1, 8, 11)
sage: a1 = (3, 5, 6, 13)
sage: a2 = (5, 5, 6, 13)
sage: compatible_vectors_check(a0, a1, gcd(12, 22), 4r)
True
sage: compatible_vectors_check(a0, a2, gcd(12, 22), 4r)
False
```
sage.rings.number_field.S_unit_solver.construct_comp_exp_vec(rfv_to_ev_dict, q)

Constructs a dictionary associating complement vectors to residue field vectors.

INPUT:
- `rfv_to_ev_dict` – a dictionary whose keys are residue field vectors and whose values are lists of exponent vectors with the associated residue field vector.
- `q` – the characteristic of the residue field

OUTPUT:
A dictionary whose typical key is an exponent vector \(a \), and whose associated value is a list of complementary exponent vectors to \(a \).

EXAMPLES:
In this example, we use the list generated when solving the \(S \)-unit equation in the case that \(K \) is defined by the polynomial \(x^2 + x + 1 \) and \(S \) consists of the primes above 3.

```python
sage: from sage.rings.number_field.S_unit_solver import construct_comp_exp_vec
sage: rfv_to_ev_dict = {(6, 6): [(3, 0)], (5, 6): [(1, 2)], (5, 4): [(5, 3)],
           ....: (6, 2): [(5, 5)], (2, 5): [(0, 1)], (5, 5): [(3, 4)],
           ....: (4, 4): [(0, 2)], (6, 3): [(1, 4)], (3, 6): [(5, 4)],
           ....: (2, 2): [(0, 4)], (3, 5): [(1, 0)], (6, 4): [(1, 1)],
           ....: (3, 2): [(1, 3)], (2, 6): [(4, 5)], (4, 5): [(4, 3)],
           ....: (2, 3): [(2, 3)], (4, 2): [(4, 0)], (6, 5): [(5, 2)],
           ....: (3, 3): [(3, 2)], (5, 3): [(5, 0)], (4, 6): [(2, 1)],
           ....: (3, 4): [(3, 5)], (4, 3): [(0, 5)], (5, 2): [(3, 1)],
           ....: (2, 4): [(2, 0)]}
```

```python
sage: construct_comp_exp_vec(rfv_to_ev_dict, 7)
{(0, 1): [(1, 4)],
 (0, 2): [(0, 2)],
 (0, 4): [(3, 0)],
 (0, 5): [(4, 3)],
 (1, 0): [(5, 0)],
 (1, 1): [(2, 0)],
 (1, 2): [(1, 3)],
 (1, 3): [(1, 2)],
 (1, 4): [(0, 1)],
 (2, 0): [(1, 1)],
 (2, 1): [(4, 0)],
 (2, 3): [(5, 2)],
 (3, 0): [(0, 4)],
 (3, 1): [(5, 4)],
 (3, 2): [(3, 4)],
 (3, 4): [(3, 2)],
 (3, 5): [(5, 3)],
 (4, 0): [(2, 1)],
 (4, 3): [(0, 5)],
 (4, 5): [(5, 5)],
 (5, 0): [(1, 0)],
 (5, 2): [(2, 3)],
 (5, 3): [(3, 5)],
 (5, 4): [(3, 1)],
 (5, 5): [(4, 5)]}
```

sage.rings.number_field.S_unit_solver.construct_complement_dictionaries(split_primes_list, SUK, verbose=False)

4.7. Solver for the \(S \)-unit equation \(x + y = 1 \)
Construct the complement exponent vector dictionaries.

INPUT:

- `split_primes_list` – a list of rational primes which split completely in the number field \(K \)
- `SUK` – the \(S \)-unit group for a number field \(K \)
- `verbose` – a boolean to provide additional feedback (default: False)

OUTPUT:

A dictionary of dictionaries. The keys coincide with the primes in `split_primes_list`. For each \(q \), `comp_exp_vec[q]` is a dictionary whose keys are exponent vectors modulo \(q - 1 \), and whose values are lists of exponent vectors modulo \(q - 1 \).

If \(w \) is an exponent vector in `comp_exp_vec[q][v]`, then the residue field vectors modulo \(q \) for \(v \) and \(w \) sum to \([1,1,...,1]\).

Note:

- The data of `comp_exp_vec` will later be lifted to \(\mathbb{Z} \) to look for true \(S \)-Unit equation solutions.
- During construction, the various dictionaries are compared to each other several times to eliminate as many mod \(q \) solutions as possible.
- The authors acknowledge a helpful discussion with Norman Danner which helped formulate this code.

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import construct_complement_dictionaries
sage: x = polygen(ZZ, 'x')
sage: f = x^2 + 5
sage: H = 10
sage: K.<xi> = NumberField(f)
sage: SUK = K.S_unit_group(S=K.primes_above(H))
sage: split_primes_list = [3, 7]
sage: actual = construct_complement_dictionaries(split_primes_list, SUK)
sage: expected = {3: {0,1,0): [(1,0,0), (0,1,0)],
....: (1,0,0): [(1,0,0), (0,1,0)]},
....: 7: {0,1,0): [(1,0,0), (1,4,4), (1,2,2)],
....: (0,1,2): [(0,1,2), (0,3,4), (0,5,0)],
....: (0,3,2): [(1,0,0), (1,4,4), (1,2,2)],
....: (0,3,4): [(0,1,2), (0,3,4), (0,5,0)],
....: (0,5,0): [(0,1,2), (0,3,4), (0,5,0)],
....: (0,5,4): [(1,0,0), (1,4,4), (1,2,2)],
....: (1,0,0): [(0,5,4), (0,3,2), (0,1,0)],
....: (1,0,2): [(1,0,0), (1,4,4), (1,2,2)],
....: (1,0,4): [(1,2,4), (1,4,0), (1,0,2)],
....: (1,2,0): [(1,2,4), (1,4,0), (1,0,2)],
....: (1,2,2): [(0,5,4), (0,3,2), (0,1,0)],
....: (1,2,4): [(1,0,4), (1,4,2), (1,2,0)],
....: (1,4,0): [(1,0,4), (1,4,2), (1,2,0)],
....: (1,4,2): [(1,2,4), (1,4,0), (1,0,2)],
....: (1,4,4): [(0,5,4), (0,3,2), (0,1,0)]}
sage: all(set(actual[p][vec]) == set(expected[p][vec])
....: for p in [3, 7] for vec in expected[p])
True
```
sage.rings.number_field.S_unit_solver.construct_rfv_to_ev(rfv_dictionary, q, d, verbose=False)

Return a reverse lookup dictionary, to find the exponent vectors associated to a given residue field vector.

INPUT:
- rfv_dictionary – a dictionary whose keys are exponent vectors and whose values are the associated residue field vectors
- q – a prime (assumed to split completely in the relevant number field)
- d – the number of primes in K above the rational prime q
- verbose – a boolean flag to indicate more detailed output is desired (default: False)

OUTPUT:
A dictionary P whose keys are residue field vectors and whose values are lists of all exponent vectors which correspond to the given residue field vector.

Note:
- For example, if $rfv_dictionary[e0] = r0$, then $P[r0]$ is a list which contains $e0$.
- During construction, some residue field vectors can be eliminated as coming from solutions to the S-unit equation. Such vectors are dropped from the keys of the dictionary P.

EXAMPLES:
In this example, we use a truncated list generated when solving the S-unit equation in the case that K is defined by the polynomial $x^2 + x + 1$ and S consists of the primes above 3:

```python
sage: from sage.rings.number_field.S_unit_solver import construct_rfv_to_ev
sage: rfv_dict = {(1, 3): [3, 2], (3, 0): [6, 6], (5, 4): [3, 6], (2, 1): [4, 6], ....: (4, 0): [4, 2], (1, 2): [5, 6]}

sage: construct_rfv_to_ev(rfv_dict, 7, 2, False)
{(3, 2): [(1, 3)], (4, 2): [(4, 0)], (4, 6): [(2, 1)], (5, 6): [(1, 2)]}
```

sage.rings.number_field.S_unit_solver.cx_LLL_bound(SUK, A, prec=106)

Return the maximum of all of the K_1’s as they are LLL-optimized for each infinite place v.

INPUT:
- SUK – a group of S-units
- A – a list of all products of each potential a, b in the S-unit equation $ax + by + 1 = 0$ with each root of unity of K
- prec – precision of real field (default: 106)

OUTPUT:
A bound for the exponents at the infinite place, as a real number

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import cx_LLL_bound
sage: x = polygen(ZZ, 'x')

sage: K.<x1> = NumberField(x^3 - 3)

sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))

sage: A = K.roots_of_unity()
```

(continues on next page)
sage: cx_LLL_bound(SUK, A) # long time
35

sage.rings.number_field.S_unit_solver.defining_polynomial_for_Kp(\texttt{prime}, \texttt{prec}=106)

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{prime} – a prime ideal of a number field \(K\)
 \item \texttt{prec} – a positive natural number (default: 106)
\end{itemize}

\textbf{OUTPUT:}

A polynomial with integer coefficients that is equivalent \texttt{mod p^{\texttt{prec}}} to a defining polynomial for the completion of \(K\) associated to the specified prime.

\textbf{Note:} \(K\) has to be an absolute extension

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.rings.number_field.S_unit_solver import defining_polynomial_for_Kp sage: K.<a> = QuadraticField(2) sage: p2 = K.prime_above(7); p2 Fractional ideal (-2*a + 1) sage: defining_polynomial_for_Kp(p2, 10) x + 266983762

sage: K.<a> = QuadraticField(-6) sage: p2 = K.prime_above(2); p2 Fractional ideal (2, a) sage: defining_polynomial_for_Kp(p2, 100) x^2 + 6 sage: p5 = K.prime_above(5); p5 Fractional ideal (5, a + 2) sage: defining_polynomial_for_Kp(p5, 100) x + 3408332191958133851149426133518341009642854963040407828906961917542037
\end{verbatim}

\begin{verbatim}
sage: sage.rings.number_field.S_unit_solver.drop_vector(\texttt{ev}, \texttt{p}, \texttt{q}, \texttt{complement_ev_dict})
\end{verbatim}

Determine if the exponent vector, \(\texttt{ev}\), may be removed from the complement dictionary during construction. This will occur if \(\texttt{ev}\) is not compatible with an exponent vector \texttt{mod q - 1}.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{ev} – an exponent vector modulo \(p - 1\)
 \item \texttt{p} – the prime such that \(\texttt{ev}\) is an exponent vector modulo \(p - 1\)
 \item \texttt{q} – a prime, distinct from \(p\), that is a key in the \texttt{complement_ev_dict}
 \item \texttt{complement_ev_dict} – a dictionary of dictionaries, whose keys are primes. \texttt{complement_ev_dict[\texttt{q}]} is a dictionary whose keys are exponent vectors modulo \(q - 1\) and whose values are lists of complementary exponent vectors modulo \(q - 1\)
\end{itemize}

\textbf{OUTPUT:}

Returns \texttt{True} if \(\texttt{ev}\) may be dropped from the complement exponent vector dictionary, and \texttt{False} if not.

\textbf{Note:}
• If \(ev \) is not compatible with any of the vectors modulo \(q - 1 \), then it can no longer correspond to a solution of the \(S \)-unit equation. It returns \(True \) to indicate that it should be removed.

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import drop_vector
sage: drop_vector((1, 2, 5), 7, 11, {11: {(1, 1, 3): [(1, 1, 3), (2, 3, 4)]}})
True

sage: P = {3: {(1, 0, 0): [(1, 0, 0), (0, 1, 0)],
                      (0, 3, 4): [(0, 1, 2), (0, 3, 4), (0, 5, 0)],
                      (1, 2, 4): [(1, 0, 4), (1, 4, 2), (1, 2, 0)],
                      (0, 1, 2): [(0, 1, 2), (0, 3, 4), (0, 5, 0)],
                      (0, 5, 4): [(1, 0, 0), (1, 4, 4), (1, 2, 2)],
                      (1, 4, 2): [(1, 2, 4), (1, 4, 0), (1, 0, 2)],
                      (1, 0, 4): [(1, 2, 4), (1, 4, 0), (1, 0, 2)],
                      (0, 5, 0): [(0, 1, 2), (0, 3, 4), (0, 5, 0)],
                      (1, 2, 2): [(0, 5, 4), (0, 3, 2), (0, 1, 0)],
                      (1, 0, 2): [(1, 0, 4), (1, 4, 2), (1, 2, 0)]},
            7: {(0, 3, 4): [(0, 1, 2), (0, 3, 4), (0, 5, 0)],
                      (1, 2, 4): [(1, 0, 4), (1, 4, 2), (1, 2, 0)],
                      (0, 1, 2): [(0, 1, 2), (0, 3, 4), (0, 5, 0)],
                      (0, 5, 4): [(1, 0, 0), (1, 4, 4), (1, 2, 2)],
                      (1, 4, 2): [(1, 2, 4), (1, 4, 0), (1, 0, 2)],
                      (1, 0, 4): [(1, 2, 4), (1, 4, 0), (1, 0, 2)],
                      (0, 5, 0): [(0, 1, 2), (0, 3, 4), (0, 5, 0)],
                      (1, 2, 2): [(0, 5, 4), (0, 3, 2), (0, 1, 0)],
                      (1, 0, 2): [(1, 0, 4), (1, 4, 2), (1, 2, 0)],
                      (1, 4, 4): [(0, 5, 4), (0, 3, 2), (0, 1, 0)]}}

sage: drop_vector((0, 1, 0), 3, 7, P)
False
```

sage.rings.number_field.S_unit_solver.embedding_to_Kp\((a, \text{prime}, \text{prec}) \)

INPUT:

- \(a \) – an element of a number field \(K \)
- \(\text{prime} \) – a prime ideal of \(K \)
- \(\text{prec} \) – a positive natural number

OUTPUT:

An element of \(K \) that is equivalent to \(a \) modulo \(p^\text{\(\text{prec} \)} \) and the generator of \(K \) appears with exponent less than \(e \cdot f \), where \(p \) is the rational prime below \(\text{prime} \) and \(e, f \) are the ramification index and residue degree, respectively.

Note: \(K \) has to be an absolute number field

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import embedding_to_Kp
sage: K.<a> = QuadraticField(17)
```

```python
sage: p = K.prime_above(13); p
Fractional ideal (-a + 2)
```

```python
sage: embedding_to_Kp(a-3, p, 15)
-205428901122375827
```

4.7. Solver for the \(S \)-unit equation \(x + y = 1 \)
Algebraic Numbers and Number Fields, Release 10.3

```
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^4 - 2)
sage: p = K.prime_above(7); p
Fractional ideal (-a^2 + a - 1)
sage: embedding_to_Kp(a^3 - 3, p, 15)
-1261985118949117459462968282807202378
```

```
sage: from sage.rings.number_field.S_unit_solver import eq_up_to_order
sage: L = [(1,2,3,4), (5,6,7,8)]
sage: L1 = [L[1], L[0]]
sage: L2 = [(2,1,4,3), (6,5,8,7)]
sage: eq_up_to_order(L, L1)
True
sage: eq_up_to_order(L, L2)
True
sage: eq_up_to_order(L, [(1,2,4,3), (5,6,8,7)])
False
```

```
sage: from sage.rings.number_field.S_unit_solver import log_p
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 14)
sage: p1 = K.primes_above(3)[0]
sage: p1
Fractional ideal (3, a + 1)
sage: log_p(a+2, p1, 20)
8255385638/3*a + 15567609440/3
sage: K.<a> = NumberField(x^4 + 14)
sage: p1 = K.primes_above(5)[0]
sage: p1
Fractional ideal (5, a + 1)
```

\[
\text{sage.rings.number_field.S_unit_solver.eq_up_to_order}(A, B)
\]

If \(A\) and \(B\) are lists of four-tuples \([a_0, a_1, a_2, a_3]\) and \([b_0, b_1, b_2, b_3]\), check that there is some reordering so that either \(a_i = b_i\) for all \(i\) or \(a_0 = b_1, a_1 = b_0, a_2 = b_3, a_3 = b_2\).

The entries must be hashable.

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import log_p
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 14)
sage: p1 = K.primes_above(3)[0]
sage: p1
Fractional ideal (3, a + 1)
sage: log_p(a+2, p1, 20)
8255385638/3*a + 15567609440/3
sage: K.<a> = NumberField(x^4 + 14)
sage: p1 = K.primes_above(5)[0]
sage: p1
Fractional ideal (5, a + 1)
```

\[
\text{sage.rings.number_field.S_unit_solver.log_p}(a, \text{prime}, \text{prec})
\]

INPUT:

- \(a\) – an element of a number field \(K\)
- \(\text{prime}\) – a prime ideal of the number field \(K\)
- \(\text{prec}\) – a positive integer

OUTPUT:

An element of \(K\) which is congruent to the \(p\)-adic logarithm of \(a\) with respect to \(\text{prime}\) modulo \(p^{\text{prec}}\), where \(p\) is the rational prime below \(\text{prime}\).

Note: Here we take into account the other primes in \(K\) above \(p\) in order to get coefficients with small values.

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import log_p
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 14)
sage: p1 = K.primes_above(3)[0]
sage: p1
Fractional ideal (3, a + 1)
sage: log_p(a+2, p1, 20)
8255385638/3*a + 15567609440/3
```

(continues on next page)
sage: log_p(1/(a^2-4), p1, 30)
-42392683853751591353463/25*a^3 - 113099841599709611260219/25*a^2 + 8496494127046033599196/5*a - 18774052619501226990432/25

sage.rings.number_field.S_unit_solver.log_p_series_part(a, prime, prec)

INPUT:
• a – an element of a number field \(K \)
• prime – a prime ideal of the number field \(K \)
• prec – a positive integer

OUTPUT:
The prime-adic logarithm of \(a \) and accuracy \(p^\text{prec} \), where \(p \) is the rational prime below \(\text{prime} \)

ALGORITHM:
The algorithm is based on the algorithm on page 30 of [Sma1998]

EXAMPLES:
sage: from sage.rings.number_field.S_unit_solver import log_p_series_part
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - 5)
sage: p1 = K.primes_above(3)[0]
sage: p1
Fractional ideal (3)
sage: log_p_series_part(a^2 - a + 1, p1, 30)
120042736778562*a + 263389019530092

sage: K.<a> = NumberField(x^4 + 14)
sage: p1 = K.primes_above(5)[0]
sage: p1
Fractional ideal (5, a + 1)
sage: log_p_series_part(1/(a^2-4), p1, 30)
\[\frac{5628940883264583692246880484598954349879320483965421501954860602122195091510657655581925236618}{235143241369202225406643826265771001835148280044159050404373266020049649630635942232146528817325}
\]
\[\rightarrow 18465957235571471561578615249936668756972274401113024070204558092805940380562238525689517184625\]
\[\rightarrow \frac{235143241369202225406643826265771001835148280044159050404373266020049649630635942232146528817325}{235143241369202225406643826265771001835148280044159050404373266020049649630635942232146528817325}\]
\[\rightarrow 18465957235571471561578615249936668756972274401113024070204558092805940380562238525689517184625\]

sage.rings.number_field.S_unit_solver.minimal_vector(A, y, prec=106)

INPUT:
• A – a square \(n \) by \(n \) non-singular integer matrix whose rows generate a lattice \(\mathcal{L} \)
• y – a row (1 by \(n \)) vector with integer coordinates
• prec – precision of real field (default: 106)

OUTPUT:
A lower bound for the square of
\[
\ell(\mathcal{L}, \vec{y}) = \begin{cases}
\min_{\vec{x} \in \mathcal{L}} \| \vec{x} - \vec{y} \|, & \vec{y} \not\in \mathcal{L}, \\
\min_{0 \neq \vec{x} \in \mathcal{L}} \| \vec{x} \|, & \vec{y} \in \mathcal{L}.
\end{cases}
\]

ALGORITHM:
The algorithm is based on V.9 and V.10 of [Sma1998]

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import minimal_vector
sage: B = matrix(ZZ, 2, [1,1,1,0])
sage: y = vector(ZZ, [2,1])
sage: minimal_vector(B, y)
1/2
```

```
sage: B = random_matrix(ZZ, 3)
sage: while not B.determinant():
....:
B = random_matrix(ZZ, 3)
sage: B  
# random
[-2 -1 -1]
[ 1 1 -2]
[ 6 1 -1]
sage: y = vector([1, 2, 100])
sage: minimal_vector(B, y)  
# random
15/28
```

```
sage.rings.number_field.S_unit_solver.mus(SUK, v)
```
Return a list \([\mu]\), for \(\mu\) defined in [AKMRVW].

INPUT:

- **SUK** – a group of \(S\)-units
- **v** – a finite place of \(K\)

OUTPUT:

A list \([\mu]s\) where each \(\mu\) is an element of \(K\)

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import mus
sage: x = polygen(ZZ, 'x')
sage: K.<xi> = NumberField(x^3 - 3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: v_fin = tuple(K.primes_above(3))[0]
sage: mus(SUK, v_fin)
[xi^2 - 2]
```

REFERENCES:

- [AKMRVW]

```
sage.rings.number_field.S_unit_solver.p_adicLLL_bound(SUK, A, prec=106)
```
Return the maximum of all of the \(K_0\)'s as they are LLL-optimized for each finite place \(v\).

INPUT:

- **SUK** – a group of \(S\)-units
- **A** – a list of all products of each potential \(a, b\) in the \(S\)-unit equation \(ax + by + 1 = 0\) with each root of unity of \(K\)
- **prec** – precision for p-adic LLL calculations (default: 106)
OUTPUT:
A bound for the max of exponents in the case that extremal place is finite (see [Sma1995]) as a real number

EXAMPLES:

```python
sage: from sage.rings.number_field.S_unit_solver import p_adicLLL_bound
sage: x = polygen(ZZ, 'x')
sage: K.<xi> = NumberField(x^3 - 3)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: A = SUK.roots_of_unity()
sage: prec = 100
sage: p_adicLLL_bound(SUK, A, prec)
89
```

```
[89]
sage.rings.number_field.S_unit_solver.p_adicLLL_bound_one_prime(prime, B0, M, M_logp, m0, c3, prec=106)

INPUT:
- prime – a prime ideal of a number field \(K\)
- \(B0\) – the initial bound
- \(M\) – a list of elements of \(K\), the \(\mu_i\)'s from Lemma IX.3 of [Sma1998]
- \(M_{\log p}\) – the \(p\)-adic logarithm of elements in \(M\)
- \(m0\) – an element of \(K\), this is \(\mu_0\) from Lemma IX.3 of [Sma1998]
- \(c3\) – a positive real constant
- \(prec\) – the precision of the calculations (default: 106), i.e., values are known to \(O(p^{\text{prec}})\)

OUTPUT:
A pair consisting of:
1. a new upper bound, an integer
2. a boolean value, True if we have to increase precision, otherwise False

Note: The constant \(c_5\) is the constant \(c_5\) at the page 89 of [Sma1998] which is equal to the constant \(c_{10}\) at the page 139 of [Sma1995]. In this function, the \(c_i\) constants are in line with [Sma1998], but generally differ from the constants in [Sma1995] and other parts of this code.

EXAMPLES:
This example indicates a case where we must increase precision:

```python
sage: from sage.rings.number_field.S_unit_solver import p_adicLLL_bound_one_prime
sage: prec = 50
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - 3)
sage: S = tuple(K.primes_above(3))
sage: SUK = UnitGroup(K, S=S)
sage: v = S[0]
sage: A = SUK.roots_of_unity()
sage: K0_old = 9.4755766731093e17
sage: Mus = [a^2 - 2]
sage: Log_p_Mus = [185056824593551109742400*a^2]
```

(continues on next page)
And now we increase the precision to make it all work:

\[\text{sage: } \text{prec} = 106\]
\[\text{sage: } \text{K0_old} = 9.47557667310927543280257946930e17\]
\[\text{sage: } \text{Log_p_Mus} = [1029563604390986737334686387890424583658678662701816*a^2 + 6614507001563684584755750752066889190195539484403866*a]\]
\[\text{sage: } \text{c3_value} = 0.4257859134798034746197327286726\]
\[\text{sage: } \text{m0_Kv_new, increase_prec} = \text{p_adic_LLL_bound_one_prime(v, K0_old, Mus, Log_p_Mus, } \mu_0, \text{c3_value, prec)}\]
\[\text{sage: } \text{m0_Kv_new} = 476\]
\[\text{sage: } \text{increase_prec} = \text{False}\]

\[
\text{sage.rings.number_field.S_unit_solver.possible_mu0s(SUK, v)}
\]

Return a list \([\mu_0]\) of all possible \(\mu_0\) values defined in [AKMRVW].

**INPUT:**

- SUK – a group of \(S\)-units
- \(v\) – a finite place of \(K\)

**OUTPUT:**

A list \([\mu_0s]\) where each \(\mu_0\) is an element of \(K\)

**EXAMPLES:**

\[
\text{sage: from sage.rings.number_field.S_unit_solver import possible_mu0s} \\n\text{sage: x = polygen(ZZ, 'x')} \\n\text{sage: K.<xi> = NumberField(x^3 - 3)} \\n\text{sage: S = tuple(K.primes_above(3))} \\n\text{sage: SUK = UnitGroup(K, S=S)} \\n\text{sage: v_fin = S[0]} \\n\text{sage: possible_mu0s(SUK, v_fin)} \\n\text{[-1, 1]} \]

**Note:** \(n_0\) is the valuation of the coefficient \(\alpha_d\) of the \(S\)-unit equation such that \(|\alpha_d T_d|_v = 1\) We have set \(n_0 = 0\) here since the coefficients are roots of unity \(\alpha_0\) is not defined in the paper, we set it to be 1

**REFERENCES:**

- [AKMRVW]
• [Sma1995] pp. 824-825, but we modify the definition of \( \sigma (\sigma_t) \) to make it easier to code

```
sage.rings.number_field.S_unit_solver.reduction_step_complex_case(place, B0, list_of_gens, torsion_gen, c13)
```

**INPUT:**
- `place` – (ring morphism) an infinite place of a number field \( K \)
- `B0` – the initial bound
- `list_of_gens` – a set of generators of the free part of the group
- `torsion_gen` – an element of the torsion part of the group
- `c13` – a positive real number

**OUTPUT:**
A tuple consisting of:
1. a new upper bound, an integer
2. a boolean value, `True` if we have to increase precision, otherwise `False`

**Note:**
The constant \( c_{13} \) in Section 5, [AKMRVW] This function does handle both real and non-real infinite places.

**REFERENCES:**
See [Sma1998], [AKMRVW].

**EXAMPLES:**
```
sage: from sage.rings.number_field.S_unit_solver import reduction_step_complex_case
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField([x^3 - 2])
sage: SK = sum([K.primes_above(p) for p in [2, 3, 5]], [])
sage: G = [g for g in K.S_unit_group(S=SK).gens_values() if g.multiplicative_order() == Infinity]
sage: p1 = K.places(prec=100)[1]
sage: reduction_step_complex_case(p1, 10^5, G, -1, 2)
(18, False)
```

```
sage.rings.number_field.S_unit_solver.sieve_below_bound(K, S, bound=10, bump=10, split_primes_list=[], verbose=False)
```

Return all solutions to the \( S \)-unit equation \( x + y = 1 \) over \( K \) with exponents below the given bound.

**INPUT:**
- `K` – a number field (an absolute extension of the rationals)
- `S` – a list of finite primes of \( K \)
- `bound` – a positive integer upper bound for exponents, solutions with exponents having absolute value below this bound will be found (default: 10)
- `bump` – a positive integer by which the minimum LCM will be increased if not enough split primes are found in sieving step (default: 10)

4.7. **Solver for the \( S \)-unit equation** \( x + y = 1 \) 335
• split_primes_list – a list of rational primes that split completely in the extension \( K/\mathbb{Q} \), used for sieving. For complete list of solutions should have lcm of \{(p_i - 1)\} for primes greater than bound (default: [])

• verbose – an optional parameter allowing the user to print information during the sieving process (default: False)

OUTPUT:
A list of tuples \([(A_1, B_1, x_1, y_1), (A_2, B_2, x_2, y_2), \ldots, (A_n, B_n, x_n, y_n)]\) such that:

1. The first two entries are tuples \(A_i = (a_0, a_1, \ldots, a_t)\) and \(B_i = (b_0, b_1, \ldots, b_t)\) of exponents.
2. The last two entries are \(S\)-units \(x_i\) and \(y_i\) in \(K\) with \(x_i + y_i = 1\).
3. If the default generators for the \(S\)-units of \(K\) are \((\rho_0, \rho_1, \ldots, \rho_t)\), then these satisfy \(x_i = \prod (\rho_i)^{a_i}\) and \(y_i = \prod (\rho_i)^{b_i}\).

EXAMPLES:

```
sage: from sage.rings.number_field.S_unit_solver import sieve_below_bound, eq_up_to_order

sage: x = polygen(ZZ, 'x')
sage: K.<xi> = NumberField(x^2 + x + 1)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(3)))
sage: S = SUK.primes()
sage: sols = sieve_below_bound(K, S, 10)
sage: expected = [\[((1, -1), (0, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
 : (0, 1), (4, 0), xi + 2, -xi - 1),
 : (2, 0), (5, 1), xi, -xi + 1),
 : (1, 0), (5, 0), xi + 1, -xi)]
sage: eq_up_to_order(sols, expected)
True
```

sage.rings.number_field.S_unit_solver.sieve_ordering(SUK, q)

Return ordered data for running sieve on the primes in SUK over the rational prime \(q\).

INPUT:

• SUK – the \(S\)-unit group of a number field \(K\)

• \(q\) – a rational prime number which splits completely in \(K\)

OUTPUT:

A list of tuples, [ideals_over_q, residue_fields, rho_images, product_rho_orders], where

1. ideals_over_q is a list of the \(d = [K : \mathbb{Q}]\) ideals in \(K\) over \(q\)
2. residue_fields[i] is the residue field of ideals_over_q[i]
3. rho_images[i] is a list of the reductions of the generators in of the \(S\)-unit group, modulo ideals_over_q[i]
4. product_rho_orders[i] is the product of the multiplicative orders of the elements in rho_images[i]

Note:

• The list ideals_over_q is sorted so that the product of orders is smallest for ideals_over_q[0], as this will make the later sieving steps more efficient.
• The primes of $S$ must not lie over $q$.

EXAMPLES:

```python
from sage.rings.number_field.S_unit_solver import sieve_ordering
x = polygen(ZZ, 'x')
K.<xi> = NumberField(x^3 - 3*x + 1)
SUK = K.S_unit_group(S=3)
sieve_data = list(sieve_ordering(SUK, 19))
sieve_data[0]
(Fractional ideal (-2*xi^2 + 3),
 Fractional ideal (-xi + 3),
 Fractional ideal (2*xi + 1))

sage: sieve_data[1]
(Residue field of Fractional ideal (-2*xi^2 + 3),
 Residue field of Fractional ideal (-xi + 3),
 Residue field of Fractional ideal (2*xi + 1))

sage: sieve_data[2]
([18, 12, 16, 8], [18, 16, 10, 4], [18, 10, 12, 10])

sage: sieve_data[3]
(648, 2916, 3888)
```

`sage.rings.number_field.S_unit_solver.solutions_from_systems` *(SUK, bound, cs_list, split_primes_list)*

Lift compatible systems to the integers and return the $S$-unit equation solutions that the lifts yield.

INPUT:

• `SUK` – the group of $S$-units where we search for solutions
• `bound` – a bound for the entries of all entries of all lifts
• `cs_list` – a list of compatible systems of exponent vectors modulo $q - 1$ for various primes $q$
• `split_primes_list` – a list of primes giving the moduli of the exponent vectors in `cs_list`

OUTPUT:

A list of solutions to the $S$-unit equation. Each solution is a list:

1. an exponent vector over the integers, `ev`
2. an exponent vector over the integers, `cv`
3. the $S$-unit corresponding to `ev`, `iota_exp`
4. the $S$-unit corresponding to `cv`, `iota_comp`

Note:

• Every entry of `ev` is less than or equal to bound in absolute value
• every entry of `cv` is less than or equal to bound in absolute value
• `iota_exp + iota_comp == 1`

EXAMPLES:

Given a single compatible system, a solution can be found.

4.7. **Solver for the $S$-unit equation** $x + y = 1$
Return all solutions to the $S$-unit equation $x + y = 1$ over $K$.

INPUT:

- $K$ – a number field (an absolute extension of the rationals)
- $S$ – a list of finite primes of $K$
- $\text{pre}c$ – precision used for computations in real, complex, and p-adic fields (default: 106)
- $\text{include}_\text{exponents}$ – whether to include the exponent vectors in the returned value (default: True).
- $\text{include}_\text{bound}$ – whether to return the final computed bound (default: False)
- $\text{verbose}$ – whether to print information during the sieving step (default: False)

OUTPUT:

A list of tuples $[(A_1, B_1, x_1, y_1), (A_2, B_2, x_2, y_2), \ldots (A_n, B_n, x_n, y_n)]$ such that:

1. The first two entries are tuples $A_i = (a_0, a_1, \ldots, a_t)$ and $B_i = (b_0, b_1, \ldots, b_t)$ of exponents. These will be omitted if $\text{include}_\text{exponents}$ is False.
2. The last two entries are $S$-units $x_i$ and $y_i$ in $K$ with $x_i + y_i = 1$.
3. If the default generators for the $S$-units of $K$ are $(\rho_0, \rho_1, \ldots, \rho_t)$, then these satisfy $x_i = \prod (\rho_i)^{a_i}$ and $y_i = \prod (\rho_i)^{b_i}$.

If $\text{include}_\text{bound}$, will return a pair $(\text{sols}, \text{bound})$ where $\text{sols}$ is as above and $\text{bound}$ is the bound used for the entries in the exponent vectors.

EXAMPLES:

In order to see the bound as well, use the optional parameter $\text{include}_\text{bound}$:
Algebraic Numbers and Number Fields, Release 10.3

```python
sage: solutions, bound = solve_S_unit_equation(K, S, 100, include_bound=True)
sage: bound
7
```

You can omit the exponent vectors:

```python
sage: sols = solve_S_unit_equation(K, S, 200, include_exponents=False)
sage: expected = [(xi + 2, -xi - 1), (1/3*xi + 2/3, -1/3*xi + 1/3),
 (-xi, xi + 1), (-xi + 1, xi)]
sage: set(frozenset(a) for a in sols) == set(frozenset(b) for b in expected)
True
```

It is an error to use values in $S$ that are not primes in $K$:

```python
sage: solve_S_unit_equation(K, [3], 200)
Traceback (most recent call last):
 ...
ValueError: S must consist only of prime ideals, or a single element from which a prime ideal can be constructed.
```

We check the case that the rank is 0:

```python
sage: K.<xi> = NumberField(x^2 + x + 1)
sage: solve_S_unit_equation(K, [])
[((1,), (5,), xi + 1, -xi)]
```

```
sage.rings.number_field.S_unit_solver.split_primes_large_lcm(SUK, bound)
```

Return a list $L$ of rational primes $q$ which split completely in $K$ and which have desirable properties (see NOTE).

**INPUT:**

- SUK – the $S$-unit group of an absolute number field $K$.
- bound – a positive integer

**OUTPUT:**

A list $L$ of rational primes $q$, with the following properties:

- each prime $q$ in $L$ splits completely in $K$
- if $Q$ is a prime in $S$ and $q$ is the rational prime below $Q$, then $q$ is not in $L$
- the value lcm($\{q - 1 : q \in L\}$) is greater than or equal to $2 \times$ bound + 1.

**Note:**

- A series of compatible exponent vectors for the primes in $L$ will lift to at most one integer exponent vector whose entries $a_i$ satisfy $|a_i|$ is less than or equal to bound.
- The ordering of this set is not very intelligent for the purposes of the later sieving processes.

**EXAMPLES:**

```python
sage: from sage.rings.number_field.S_unit_solver import split_primes_large_lcm
sage: x = polygen(ZZ, 'x')
sage: K.<xi> = NumberField(x^3 - 3*x + 1)
sage: S = K.primes_above(3)
sage: SUK = UnitGroup(K, S=tuple(S))
```

(continues on next page)
With a tiny bound, Sage may ask you to increase the bound.

```
sage: from sage.rings.number_field.S_unit_solver import split_primes_large_lcm
sage: K.<xi> = NumberField(x^2 + 163)
sage: SUK = UnitGroup(K, S=tuple(K.primes_above(23)))
sage: split_primes_large_lcm(SUK, 8)
Traceback (most recent call last):
 ... ValueError: Not enough split primes found. Increase bound.
```

## 4.8 Small primes of degree one

Iterator for finding several primes of absolute degree one of a number field of *small* prime norm.

**ALGORITHM:**

Let $P$ denote the product of some set of prime numbers. (In practice, we use the product of the first 10000 primes, because Pari computes this many by default.)

Let $K$ be a number field and let $f(x)$ be a polynomial defining $K$ over the rational field. Let $\alpha$ be a root of $f$ in $K$.

We know that $|O_K : \mathbb{Z}[\alpha]|^2 = |\Delta(f(x))/\Delta(O_K)|$, where $\Delta$ denotes the discriminant (see, for example, Proposition 4.4.4, p165 of [Coh1993]). Therefore, after discarding primes dividing $\Delta(f(x))$ (this includes all ramified primes), any integer $n$ such that $\gcd(f(n), P) > 0$ yields a prime $p|P$ such that $f(x)$ has a root modulo $p$. By the condition on discriminants, this root is a single root. As is well known (see, for example Theorem 4.8.13, p199 of [Coh1993]), the ideal generated by $(p, \alpha - n)$ is prime and of degree one.

**Warning:** It is possible that there are no primes of $K$ of absolute degree one of small prime norm, and it is possible that this algorithm will not find any primes of small norm.

**Todo:** There are situations when this will fail. There are questions of finding primes of relative degree one. There are questions of finding primes of exact degree larger than one. In short, if you can contribute, please do!

**EXAMPLES:**

```
sage: x = ZZ['x'].gen()
sage: F.<a> = NumberField(x^2 - 2)
sage: Ps = F.primes_of_degree_one_list(3)
sage: Ps # random
[Fractional ideal (2*a + 1), Fractional ideal (-3*a + 1), Fractional ideal (-a + 5)]
sage: [P.norm() for P in Ps] # random
[7, 17, 23]
sage: all(ZZ(P.norm()).is_prime() for P in Ps)
True
sage: all(P.residue_class_degree() == 1 for P in Ps)
True
```

The next two examples are for relative number fields.:
AUTHORS:

- Nick Alexander (2008): initial version
- David Loeffler (2009): fixed a bug with relative fields
- Maarten Derickx (2017): fixed a bug with number fields not generated by an integral element

class sage.rings.number_field.small_primes_of_degree_one.Small_primes_of_degree_one_iter

Bases: object

Iterator that finds primes of a number field of absolute degree one and bounded small prime norm.

INPUT:

- field -- a NumberField.
- num_integer_primes -- (default: 10000) an integer. We try to find primes of absolute norm no greater than the num_integer_primes-th prime number. For example, if num_integer_primes is 2, the largest norm found will be 3, since the second prime is 3.
- max_iterations -- (default: 100) an integer. We test max_iterations integers to find small primes before raising StopIteration.

AUTHOR:

- Nick Alexander

next ()

Return a prime of absolute degree one of small prime norm.
Algebraic Numbers and Number Fields, Release 10.3

Raises :class:`StopIteration` if such a prime cannot be easily found.

EXAMPLES:

```python
sage: x = QQ['x'].gen()
sage: K.<a> = NumberField(x^2 - 3)
sage: it = K.primes_of_degree_one_iter()
sage: [next(it) for i in range(3)] # random
[Fractional ideal (2*a + 1), Fractional ideal (-a + 4), Fractional ideal (3*a + 2)]
```

4.9 \(p\)-Selmer groups of number fields

This file contains code to compute \(K(S, p)\) where

- \(K\) is a number field
- \(S\) is a finite set of primes of \(K\)
- \(p\) is a prime number

For \(m \geq 2\), \(K(S, m)\) is defined to be the finite subgroup of \(K^*/(K^*)^m\) consisting of elements represented by \(a \in K^*\) whose valuation at all primes not in \(S\) is a multiple of \(m\). It fits in the short exact sequence

\[
1 \to O_{K,S}^*/(O_{K,S}^*)^m \to K(S, m) \to Cl_{K,S}[m] \to 1
\]

where \(O_{K,S}^*\) is the group of \(S\)-units of \(K\) and \(Cl_{K,S}\) the \(S\)-class group. When \(m = p\) is prime, \(K(S, p)\) is a finite-dimensional vector space over \(GF(p)\). Its generators come from three sources: units (modulo \(p\)'th powers); generators of the \(p\)'th powers of ideals which are not principal but whose \(p\)'th powers are principal; and generators coming from the prime ideals in \(S\).

The main function here is :func:`pSelmerGroup()`. This will not normally be used by users, who instead will access it through a method of the :class:`NumberField` class.

AUTHORS:

- John Cremona (2005-2021)

```
sage.rings.number_field.selmer_group.basis_for_p_cokernel(S, C, p)
```

Return a basis for the group of ideals supported on \(S\) (mod \(p\)'th-powers) whose class in the class group \(C\) is a \(p\)'th power, together with a function which takes the \(S\)-exponents of such an ideal and returns its coordinates on this basis.

**INPUT:**

- \(S\) (list) – a list of prime ideals in a number field \(K\).
- \(C\) (class group) – the ideal class group of \(K\).
- \(p\) (prime) – a prime number.

**OUTPUT:**

(tuple) \((\mathcal{B}, \xi)\) where

- \(\mathcal{B}\) is a list of ideals which is a basis for the group of ideals supported on \(S\) (modulo \(p\)'th powers) whose ideal class is a \(p\)'th power;
- \(\xi\) is a function which takes such an ideal and returns its coordinates with respect to this basis.

**EXAMPLES:**
sage: from sage.rings.number_field.selmer_group import basis_for_p_cokernel
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 - x + 58)
sage: S = K.ideal(30).support(); S
[Fractional ideal (2, a),
 Fractional ideal (2, a + 1),
 Fractional ideal (3, a + 1),
 Fractional ideal (5, a + 1),
 Fractional ideal (5, a + 3)]
sage: C = K.class_group()
sage: C.gens_orders()
(6, 2)
sage: [C(P).exponents() for P in S]
[(5, 0), (1, 0), (3, 1), (1, 1), (5, 1)]
sage: b, f = basis_for_p_cokernel(S, C, 2); b
[Fractional ideal (2), Fractional ideal (15, a + 13), Fractional ideal (5)]
sage: b, f = basis_for_p_cokernel(S, C, 3); b
[Fractional ideal (50, a + 18),
 Fractional ideal (10, a + 3),
 Fractional ideal (3, a + 1),
 Fractional ideal (5)]
sage: b, f = basis_for_p_cokernel(S, C, 5); b
[Fractional ideal (2, a),
 Fractional ideal (2, a + 1),
 Fractional ideal (3, a + 1),
 Fractional ideal (5, a + 1),
 Fractional ideal (5, a + 3)]

sage.rings.number_field.selmer_group.coords_in_U_mod_p(u, U, p)

Return coordinates of a unit u with respect to a basis of the p-cotorsion \( U/U^p \) of the unit group U.

INPUT:

- u (algebraic unit) – a unit in a number field K.
- U (unit group) – the unit group of K.
- p (prime) – a prime number.

OUTPUT:

The coordinates of the unit u in the p-cotorsion group \( U/U^p \).

ALGORITHM:

Take the coordinate vector of u with respect to the generators of the unit group, drop the coordinate of the roots of unity factor if it is prime to p, and reduce the vector mod p.

EXAMPLES:
sage: coords_in_U_mod_p(u,U,3)
[1, 2, 0]
sage: u*=u0
sage: coords_in_U_mod_p(u,U,2)
[1, 1, 0, 1]
sage: coords_in_U_mod_p(u,U,3)
[1, 2, 0]

sage.rings.number_field.selmer_group.
pSelmerGroup(K, S, p, proof=None, debug=False)

Return the $p$-Selmer group $K(S, p)$ of the number field $K$ with respect to the prime ideals in $S$.

INPUT:
- $K$ – a number field or $\mathbb{Q}$.
- $S$ – a list of prime ideals in $K$, or prime numbers when $K$ is $\mathbb{Q}$.
- $p$ – a prime number.
- proof – if True, compute the class group provably correctly. Default is True. Call proof.
  number_field() to change this default globally.
- debug – (boolean, default False) debug flag.

OUTPUT:
(tuple) $K\text{Sp}, K\text{Sp}_\text{gens}, \text{from}_\text{KSp}, \text{to}_\text{KSp}$ where
- $K\text{Sp}$ is an abstract vector space over $GF(p)$ isomorphic to $K(S, p)$;
- $K\text{Sp}_\text{gens}$ is a list of elements of $K^*$ generating $K(S, p)$;
- from_KSp is a function from $K\text{Sp}$ to $K^*$ implementing the isomorphism from the abstract $K(S, p)$ to $K(S, p)$ as a subgroup of $K^*/(K^*)^p$;
- to_KSp is a partial function from $K^*$ to $K\text{Sp}$, defined on elements $a$ whose image in $K^*/(K^*)^p$ lies in $K(S, p)$, mapping them via the inverse isomorphism to the abstract vector space $K\text{Sp}$.

ALGORITHM:
The list of generators of $K(S, p)$ is the concatenation of three sublists, called alphalist, betalist and ulist in the code. Only alphalist depends on the primes in $S$.
- ulist is a basis for $U/U^p$ where $U$ is the unit group. This is the list of fundamental units, including the generator of the group of roots of unity if its order is divisible by $p$. These have valuation 0 at all primes.
- betalist is a list of the generators of the $p$'th powers of ideals which generate the $p$-torsion in the class group (so is empty if the class number is prime to $p$). These have valuation divisible by $p$ at all primes.
- alphalist is a list of generators for each ideal $A$ in a basis of those ideals supported on $S$ (modulo $p$'th powers of ideals) which are $p$'th powers in the class group. We find $B$ such that $A/B^p$ is principal and take a generator of it, for each $A$ in a generating set. As a special case, if all the ideals in $S$ are principal then alphalist is a list of their generators.

The map from the abstract space to $K^*$ is easy: we just take the product of the generators to powers given by the coefficient vector. No attempt is made to reduce the resulting product modulo $p$'th powers.

The reverse map is more complicated. Given $a \in K^*$:
- write the principal ideal $(a)$ in the form $AB^p$ with $A$ supported by $S$ and $p$'th power free. If this fails, then $a$ does not represent an element of $K(S, p)$ and an error is raised.
• set \( I_S \) to be the group of ideals spanned by \( S \) mod \( p \)'th powers, and \( I_{S,p} \) the subgroup of \( I_S \) which maps to 0 in \( C/C^p \).

• Convert \( A \) to an element of \( I_{S,p} \), hence find the coordinates of \( a \) with respect to the generators in alphalist.

• after dividing out by \( A \), now \( \langle a \rangle = B^p \) (with a different \( a \) and \( B \)). Write the ideal class \([B]\), whose \( p \)'th power is trivial, in terms of the generators of \( C[p] \); then \( B = (b)B_1 \), where the coefficients of \( B_1 \) with respect to generators of \( C[p] \) give the coordinates of the result with respect to the generators in betalist.

• after dividing out by \( B \), and by \( b^p \), we now have \( \langle a \rangle = (1) \), so \( a \) is a unit, which can be expressed in terms of the unit generators.

EXAMPLES:

Over \( \mathbb{Q} \) the unit contribution is trivial unless \( p = 2 \) and the class group is trivial:

```python
sage: from sage.rings.number_field.selmer_group import pSelmerGroup
sage: QS2, gens, fromQS2, toQS2 = pSelmerGroup(QQ, [2,3], 2)
sage: QS2
Vector space of dimension 3 over Finite Field of size 2
sage: gens
[2, 3, -1]
sage: a = fromQS2([1,1,1]); a.factor()
-1 * 2 * 3
sage: toQS2(-6)
(1, 1, 1)

sage: QS3, gens, fromQS3, toQS3 = pSelmerGroup(QQ, [2,13], 3)
sage: QS3
Vector space of dimension 2 over Finite Field of size 3
sage: gens
[2, 13]
sage: a = fromQS3([5,4]); a.factor()
2^5 * 13^4
sage: toQS3(a)
(2, 1)
sage: toQS3(a) == QS3([5,4])
True
```

A real quadratic field with class number 2, where the fundamental unit is a generator, and the class group provides another generator when \( p = 2 \):

```python
sage: K.<a> = QuadraticField(-5)
sage: K.class_number()
2
sage: P2 = K.ideal(2, -a+1)
sage: P3 = K.ideal(3, a+1)
sage: P5 = K.ideal(a)
sage: KS2, gens, fromKS2, toKS2 = pSelmerGroup(K, [P2, P3, P5], 2)
sage: KS2
Vector space of dimension 4 over Finite Field of size 2
sage: gens
[a + 1, a, 2, -1]
```

Each generator must have even valuation at primes not in \( S \):

```python
sage: [K.ideal(g).factor() for g in gens]
[(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1)),
 (Fractional ideal (a))]
```

(continues on next page)
Fractional ideal (a),
(Fractional ideal (2, a + 1))^2,
1]

\texttt{sage: toKS2(10)}
(0, 0, 1, 1)
\texttt{sage: fromKS2([0,0,1,1])}
-2
\texttt{sage: K(10/(-2)).is_square()}
True

\texttt{sage: KS3, gens, fromKS3, toKS3 = pSelmerGroup(K, [P2, P3, P5], 3)}
\texttt{sage: KS3}
Vector space of dimension 3 over Finite Field of size 3
\texttt{sage: gens}
[1/2, 1/4*a + 1/4, a]

The \texttt{to} and \texttt{from} maps are inverses of each other:

\texttt{sage: K.<a> = QuadraticField(-5)}
\texttt{sage: S = K.ideal(30).support()}\texttt{)}
\texttt{sage: KS2, gens, fromKS2, toKS2 = pSelmerGroup(K, S, 2)}
\texttt{sage: KS2}
Vector space of dimension 5 over Finite Field of size 2
\texttt{sage: assert all(toKS2(fromKS2(v))==v for v in KS2)}
\texttt{sage: KS3, gens, fromKS3, toKS3 = pSelmerGroup(K, S, 3)}
\texttt{sage: KS3}
Vector space of dimension 4 over Finite Field of size 3
\texttt{sage: assert all(toKS3(fromKS3(v))==v for v in KS3)}
CHAPTER
FIVE

ALGEBRAIC NUMBERS

5.1 Algebraic numbers

This module implements the algebraic numbers (the complex numbers which are the zero of a polynomial in \( \mathbb{Z}[x] \); in other words, the algebraic closure of \( \mathbb{Q} \), with an embedding into \( \mathbb{C} \)). All computations are exact. We also include an implementation of the algebraic reals (the intersection of the algebraic numbers with \( \mathbb{R} \)). The field of algebraic numbers \( \mathbb{Q} \) is available with abbreviation \( \mathbb{QQbar} \); the field of algebraic reals has abbreviation \( \mathbb{AA} \).

As with many other implementations of the algebraic numbers, we try hard to avoid computing a number field and working in the number field; instead, we use floating-point interval arithmetic whenever possible (basically whenever we need to prove non-equalities), and resort to symbolic computation only as needed (basically to prove equalities).

Algebraic numbers exist in one of the following forms:

- a rational number
- the sum, difference, product, or quotient of algebraic numbers
- the negation, inverse, absolute value, norm, real part, imaginary part, or complex conjugate of an algebraic number
- a particular root of a polynomial, given as a polynomial with algebraic coefficients together with an isolating interval (given as a \( \mathbb{RealIntervalFieldElement} \)) which encloses exactly one root, and the multiplicity of the root
- a polynomial in one generator, where the generator is an algebraic number given as the root of an irreducible polynomial with integral coefficients and the polynomial is given as a \( \mathbb{NumberFieldElement} \).

An algebraic number can be coerced into \( \mathbb{ComplexIntervalField} \) (or \( \mathbb{RealIntervalField} \), for algebraic reals); every algebraic number has a cached interval of the highest precision yet calculated.

In most cases, computations that need to compare two algebraic numbers compute them with 128-bit precision intervals; if this does not suffice to prove that the numbers are different, then we fall back on exact computation.

Note that division involves an implicit comparison of the divisor against zero, and may thus trigger exact computation.

Also, using an algebraic number in the leading coefficient of a polynomial also involves an implicit comparison against zero, which again may trigger exact computation.

Note that we work fairly hard to avoid computing new number fields; to help, we keep a lattice of already-computed number fields and their inclusions.

EXAMPLES:

```
sage: sqrt(AA(2)) > 0
True
sage: (sqrt(5 + 2*sqrt(QQbar(6))) - sqrt(QQbar(3)))^2 == 2
True
sage: AA((sqrt(5 + 2*sqrt(6)) - sqrt(3))^2) == 2
#...```

(continues on next page)
For a monic cubic polynomial $x^3 + bx^2 + cx + d$ with roots s_1, s_2, s_3, the discriminant is defined as $(s_1 - s_2)^2(s_1 - s_3)^2(s_2 - s_3)^2$ and can be computed as $b^2c^2 - 4b^3d - 4c^3 + 18bcd - 27d^2$. We can test that these definitions do give the same result:

```python
sage: def disc1(b, c, d):
    ....: return b^2*c^2 - 4*b^3*d - 4*c^3 + 18*b*c*d - 27*d^2
sage: def disc2(s1, s2, s3):
    ....: return ((s1-s2)*(s1-s3)*(s2-s3))^2
sage: x = polygen(AA)

sage: p = x*(x-2)*(x-4)

sage: cp = AA.common_polynomial(p)

sage: d, c, b, _ = p.list()

sage: s1 = AA.polynomial_root(cp, RIF(-1, 1))

sage: s2 = AA.polynomial_root(cp, RIF(1, 3))

sage: s3 = AA.polynomial_root(cp, RIF(3, 5))

sage: disc1(b, c, d) == disc2(s1, s2, s3)
True

sage: p = p + 1

sage: cp = AA.common_polynomial(p)

sage: d, c, b, _ = p.list()

sage: s1 = AA.polynomial_root(cp, RIF(-1, 1))

sage: s2 = AA.polynomial_root(cp, RIF(1, 3))

sage: s3 = AA.polynomial_root(cp, RIF(3, 5))

sage: disc1(b, c, d) == disc2(s1, s2, s3)
True

sage: p = (x-sqrt(AA(2)))*(x-AA(2).nth_root(3))*(x-sqrt(AA(3)))

sage: cp = AA.common_polynomial(p)

sage: d, c, b, _ = p.list()

sage: s1 = AA.polynomial_root(cp, RIF(1.4, 1.5))

sage: s2 = AA.polynomial_root(cp, RIF(1.7, 1.8))

sage: s3 = AA.polynomial_root(cp, RIF(1.2, 1.3))

sage: disc1(b, c, d) == disc2(s1, s2, s3)
True
```

We can convert from symbolic expressions:

```python
sage: # needs sage.symbolic

sage: QQbar(sqrt(-5))
2.236067977499790?*I

sage: AA(sqrt(2) + sqrt(3))
3.146264369941973?

sage: QQbar(I)
I

sage: QQbar(I * golden_ratio)
1.618033988749895?*I

sage: AA(golden_ratio)^2 - AA(golden_ratio)
1

sage: QQbar((-8)^(1/3))
1.000000000000000? + 1.732050807568878?*I

sage: AA((-8)^(1/3))
-2

sage: QQbar((-4)^(1/4))
1 + 1*I
```

(continues on next page)
The coercion, however, goes in the other direction, since not all symbolic expressions are algebraic numbers:

```
sage: QQbar(sqrt(2)) + sqrt(3)  # needs sage.symbolic
sqrt(3) + 1.414213562373095?
sage: QQbar(sqrt(2) + QQbar(sqrt(3)))  # needs sage.symbolic
3.146264369941973?
```

Note the different behavior in taking roots: for `AA` we prefer real roots if they exist, but for `QQbar` we take the principal root:

```
sage: AA(-1)^(1/3)
-1
sage: QQbar(-1)^(1/3)
0.500000000000000? + 0.866025403784439?*I
```

However, implicit coercion from $\mathbb{Q}[i]$ is only allowed when it is equipped with a complex embedding:

```
sage: i.parent()
Number Field in I with defining polynomial x^2 + 1 with I = 1*I
sage: QQbar(1) + i
I + 1

sage: K.<im> = QuadraticField(-1, embedding=None)
sage: QQbar(1) + im
Traceback (most recent call last):
... TypeError: unsupported operand parent(s) for +: 'Algebraic Field' and 'Number Field in im with defining polynomial x^2 + 1'
```

However, we can explicitly coerce from the abstract number field $\mathbb{Q}[i]$. (Technically, this is not quite kosher, since we do not know whether the field generator is supposed to map to $+I$ or $-I$. We assume that for any quadratic field with polynomial $x^2 + 1$, the generator maps to $+I$):

```
sage: pythag = QQbar(3/5 + 4*im/5); pythag
4/5*I + 3/5
sage: pythag.abs() == 1
True
```

We can implicitly coerce from algebraic reals to algebraic numbers:

```
sage: a = QQbar(1); a, a.parent()
(1, Algebraic Field)
sage: b = AA(1); b, b.parent()
(1, Algebraic Real Field)
sage: c = a + b; c, c.parent()
(2, Algebraic Field)
```

Some computation with radicals:

5.1. Algebraic numbers
The Sage rings \texttt{AA} and \texttt{QQbar} can decide equalities between radical expressions (over the reals and complex numbers respectively):

\begin{verbatim}
sage: a = AA((2/(3*sqrt(3)) + 10/27)^(1/3) # needs sage.symbolic
- 2/(9*(2/(3*sqrt(3)) + 10/27)^(1/3)) + 1/3)
sage: a
1.000000000000000?
sage: a == 1 # needs sage.symbolic
True
\end{verbatim}

Algebraic numbers which are known to be rational print as rationals; otherwise they print as intervals (with 53-bit precision):

\begin{verbatim}
sage: AA(2)/3
2/3
sage: QQbar(5/7)
5/7
sage: QQbar(1/3 - 1/4*I)
-1/4*I + 1/3
sage: two = QQbar(4).nth_root(4)^2; two
2.000000000000000?
sage: two == 2; two
True
sage: phi
1.618033988749895?
\end{verbatim}

We can find the real and imaginary parts of an algebraic number (exactly):

\begin{verbatim}
sage: r = QQbar.polynomial_root(x^5 - x - 1, CIF(RIF(0.1, 0.2), RIF(1.0, 1.1))); r
0.1812324444698754? + 1.0839541013177117*I
sage: r.real()
0.1812324444698754?
sage: r.imag() # needs sage.symbolic
1.0839541013177117?
sage: r.minpoly()
x^5 - x - 1
\end{verbatim}
We can find the absolute value and norm of an algebraic number exactly. (Note that we define the norm as the product of a number and its complex conjugate; this is the algebraic definition of norm, if we view \(\mathbb{Q}bar\) as \(\mathbb{A}I\).

We can compute the multiplicative order of an algebraic number:

The paper “ARPREC: An Arbitrary Precision Computation Package” by Bailey, Yozo, Li and Thompson discusses this result. Evidently it is difficult to find, but we can easily verify it.
Given an algebraic number, we can produce a string that will reproduce that algebraic number if you type the string into Sage. We can see that until exact computation is triggered, an algebraic number keeps track of the computation steps used to produce that number:

```
sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: n = (rt2 + rt3)^5; n
308.3018001722975
sage: sage_input(n)
R.<x> = AA[
  AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) + AA.polynomial_root(AA.common_polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))
]
v1 = v1*v1
v2*v2*v1
```

But once exact computation is triggered, the computation tree is discarded, and we get a way to produce the number directly:

```
sage: n == 109*rt2 + 89*rt3
True
sage: sage_input(n)
R.<y> = QQ[
  3*QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RR(0.9510565162951536), RR(0.3090169943749475)))]
```

We can also see that some computations (basically, those which are easy to perform exactly) are performed directly, instead of storing the computation tree:

```
sage: z3_3 = QQbar.zeta(3) * 3
sage: z4_4 = QQbar.zeta(4) * 4
sage: z5_5 = QQbar.zeta(5) * 5
sage: sage_input(z3_3 * z4_4 * z5_5)
```

Note that the `verify=True` argument to `sage_input` will always trigger exact computation, so running `sage_input` twice in a row on the same number will actually give different answers. In the following, running `sage_input` on `n` will also trigger exact computation on `rt2`, as you can see by the fact that the third output is different than the first:
```python
# needs sage.symbolic
sage: rt2 = AA(sqrt(2))
sage: n = rt2^2
# Verified
R.<x> = AA[]
v = AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))
v^2

sage: sage_input(n, verify=True)  # Verified
AA(2)

sage: n = rt2^2
# Verified

Just for fun, let’s try sage_input on a very complicated expression. The output of this example changed with the rewriting of polynomial multiplication algorithms in github issue #10255:

```python
sage: rt2 = sqrt(AA(2))
sage: rt3 = sqrt(QQbar(3))
sage: x = polygen(QQbar)
sage: nrt3 = AA.polynomial_root((x-rt2)*(x+rt3), RIF(-2, -1))
sage: one = AA.polynomial_root((x-rt2)*(x-rt3)*(x-nrt3)*(x-1-rt3-nrt3), RIF(0.9, 1.1))
sage: one
1.000000000000000?
sage: sage_input(one, verify=True) # Verified

We can pickle and unpickle algebraic fields (and they are globally unique):

```python
sage: loads(dumps(AlgebraicField())) is AlgebraicField()
True
sage: loads(dumps(AlgebraicRealField())) is AlgebraicRealField()
True

We can pickle and unpickle algebraic numbers:

```python
sage: loads(dumps(QQbar(10))) == QQbar(10)
True
sage: loads(dumps(QQbar(5/2))) == QQbar(5/2)
True
sage: loads(dumps(QQbar.zeta(5))) == QQbar.zeta(5)
True

sage: # needs sage.symbolic
sage: t = QQbar(sqrt(2)); type(t._descr)
```

(continues on next page)
We can convert elements of \( \mathbb{QQbar} \) and AA into the following types: float, complex, RDF, CDF, RR, CC, RIF, CIF, ZZ, and QQ, with a few exceptions. (For the arbitrary-precision types, RR, CC, RIF, and CIF, it can convert into a field of arbitrary precision.)

Converting from \( \mathbb{QQbar} \) to a real type (float, RDF, RR, RIF, ZZ, or QQ) succeeds only if the \( \mathbb{QQbar} \) is actually real (has an imaginary component of exactly zero). Converting from either AA or \( \mathbb{QQbar} \) to ZZ or QQ succeeds only if the number actually is an integer or rational. If conversion fails, a ValueError will be raised.

Here are examples of all of these conversions:

```python
sage: # needs sage.symbolic
sage: all_vals = [AA(42), AA(22/7), AA(golden_ratio),
 QQbar(-13), QQbar(89/55), QQbar(-sqrt(7)), QQbar.zeta(5)]

sage: def convert_test_all(ty):
 : return [convert_test(v) for v in all_vals]

sage: convert_test_all(float)
[42.0, 3.1428571428571432, 1.618033988749895, -13.0, 1.6181818181818182, -2.6457513110645907, None]

sage: convert_test_all(complex)
[(42+0j), (3.1428571428571432+0j), (1.618033988749895+0j), (-13+0j), (1.6181818181818182+0j), (-2.6457513110645907+0j), (0.30901699437494745+0.951056516295154*I)]

sage: convert_test_all(RDF)
[42.0, 3.142857142857143?, 1.618033988749895?, -13.0, 1.61818181818182?, -2.64575131106459?, None]

sage: convert_test_all(CC)
[42.0000000000000, 3.14285714285714, 1.61803398874989, -13.0000000000000, 1.61818181818182, -2.64575131106459, 0.309016994374947 + 0.951056516295154*I]

sage: convert_test_all(RIF)
[42.00000000000000000, 3.142857142857143?, 1.618033988749895?, -13.00000000000000000, 1.61818181818182?, -2.64575131106459?, 0.30901699437494794745 + 0.951056516295154*I]

sage: convert_test_all(RIF)
[42.00000000000000000, 3.142857142857143?, 1.618033988749895?, -13.00000000000000000, 1.61818181818182?, -2.64575131106459?, 0.30901699437494794745 + 0.951056516295154*I]
```

Compute the exact coordinates of a 34-gon (the formulas used are from Weisstein, Eric W. “Trigonometry Angles–Pi/17.” and can be found at http://mathworld.wolfram.com/TrigonometryAnglesPi17.html):

\[
\begin{align*}
s\alpha &= (34 + 6*r17 + rt2*delta*epss - 8*rt2*eps).sqrt() \\
\beta &= 2*(17 + 3*r17 - 2*rt2*eps - rt2*epss).sqrt() \\
x &= rt2*(15 + r17 + rt2*(alpha + epss)).sqrt()/8 \\
y &= rt2*(epss**2 - rt2*(alpha + epss)).sqrt()/8 \\
\end{align*}
\]

Ideally, in the above example we should be able to test \( x == x2 \) and \( y == y2 \) but this is currently infinitely long.

AUTHOR:
• Carl Witty (2007-01-27): initial version
• Carl Witty (2007-10-29): massive rewrite to support complex as well as real numbers
exactify()

handle_sage_input(sib, coerce, is_qqbar)

Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always True for ANBinaryExpr).

EXAMPLES:

```
sage: sage_input(2 + sqrt(AA(2)), verify=True)
Verified
R.<x> = AA[]
2 + AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))
sage: sage_input(sqrt(AA(2)) + 2, verify=True)
Verified
R.<x> = AA[]
AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951))) + 2
sage: sage_input(2 - sqrt(AA(2)), verify=True)
Verified
R.<x> = AA[]
2 - AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))
sage: sage_input(2 / sqrt(AA(2)), verify=True)
Verified
R.<x> = AA[]
2/AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))
sage: sage_input(2 + (-1*sqrt(AA(2))), verify=True)
Verified
R.<x> = AA[]
2 - AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))
sage: sage_input(2*sqrt(AA(2)), verify=True)
Verified
R.<x> = AA[]
2*AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))
sage: rt2 = sqrt(AA(2))
sage: one = rt2/rt2
sage: n = one+3
sage: sage_input(n)
R.<x> = AA[]
v = AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949), RR(1.4142135623730951)))
v/v + 3
sage: one == 1
True
sage: sage_input(n)
1 + AA(3)
sage: rt3 = QQbar(sqrt(3))
needs sage.symbolic
sage: one = rt3/rt3
needs sage.symbolic
sage: n = sqrt(AA(2)) + one
sage: one == 1
needs sage.symbolic
True
```
sage: sage_input(n)
R.<x> = AA[]
QQbar.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1. 
˓→4142135623730949), RR(1.4142135623730951)) + 1
sage: from sage.rings.qqbar import *
sage: from sage.misc.sage_input import SageInputBuilder
sage: sib = SageInputBuilder()
sage: binexp = ANBinaryExpr(AA(3), AA(5), operator.mul)
sage: binexp.handle_sage_input(sib, False, False)
{(binop:* {atomic:3} {call: {atomic:AA}({atomic:5})}}, True)
sage: binexp.handle_sage_input(sib, False, True)
{(call: {atomic:QQbar}({binop:* {atomic:3} {call: {atomic:AA}({atomic:5})}})}, True)

is_complex()
Whether this element is complex. Does not trigger exact computation, so may return True even if the element
is real.
EXAMPLES:
sage: x = (QQbar(sqrt(-2)) / QQbar(sqrt(-5)))._descr  # needs sage.symbolic
sage: x.is_complex()  # needs sage.symbolic
True

class sage.rings.qqbar.ANDescr
Bases: SageObject

An AlgebraicNumber or AlgebraicReal is a wrapper around an ANDescr object. ANDescr is an
abstract base class, which should never be directly instantiated; its concrete subclasses are ANRational, ANBi-
naryExpr, ANUnaryExpr, ANRoot, and ANExtensionElement. ANDescr and all of its subclasses are
for internal use, and should not be used directly.

abs(n)
Absolute value of self.
EXAMPLES:
sage: a = QQbar(sqrt(2))  # needs sage.symbolic
sage: b = a._descr  # needs sage.symbolic
sage: b.abs(a)  # needs sage.symbolic
<sage.rings.qqbar.ANUnaryExpr object at ...>

conjugate(n)
Complex conjugate of self.
EXAMPLES:
sage: a = QQbar(sqrt(-7))  # needs sage.symbolic
sage: b = a._descr  # needs sage.symbolic
sage: b.conjugate(a)  # needs sage.symbolic
(continues on next page)
\texttt{imag \((n)\)}

Imaginary part of self.

EXAMPLES:


game: a = QQbar\left(\sqrt{-7}\right) \\
\texttt{#...}
\texttt{game: b = a._descr} \\
\texttt{#...}
\texttt{game: b.imag(a)} \\
\texttt{#...}

\texttt{invert \((n)\)}

1/self.

EXAMPLES:


game: a = QQbar\left(\sqrt{2}\right) \\
\texttt{#...}
\texttt{game: b = a._descr} \\
\texttt{#...}
\texttt{game: b.invert(a)} \\
\texttt{#...}

\texttt{is\_simple()} 

Check whether this descriptor represents a value with the same algebraic degree as the number field associated with the descriptor.

This returns \texttt{True} if \texttt{self} is an \texttt{ANRational}, or a minimal \texttt{ANExtensionElement}.

EXAMPLES:


game: \texttt{from sage.rings.qqbar import ANRational} \\
\texttt{game: ANRational(1/2).is\_simple()} \\
\texttt{True}

\texttt{neg \((n)\)}

Negation of self.
EXAMPLES:

```python
sage: a = QQbar(sqrt(2))
needs sage.symbolic
sage: b = a._descr
needs sage.symbolic
sage: b.neg(a)
needs sage.symbolic
<sage.rings.qqbar.ANUnaryExpr object at ...>
```

**norm**

Field norm of self from \( \mathbb{Q} \) to its real subfield \( \mathbb{A} \), i.e. the square of the usual complex absolute value.

**EXAMPLES:**

```python
sage: a = QQbar(sqrt(-7))
needs sage.symbolic
sage: b = a._descr
needs sage.symbolic
sage: b.norm(a)
needs sage.symbolic
<sage.rings.qqbar.ANUnaryExpr object at ...>
```

**real**

Real part of self.

**EXAMPLES:**

```python
sage: a = QQbar(sqrt(-7))
needs sage.symbolic
sage: b = a._descr
needs sage.symbolic
sage: b.real(a)
needs sage.symbolic
<sage.rings.qqbar.ANUnaryExpr object at ...>
```

**class** `sage.rings.qqbar.ANExtensionElement` *(generator, value)*

**Bases:** `ANDescr`

The subclass of `ANDescr` that represents a number field element in terms of a specific generator. Consists of a polynomial with rational coefficients in terms of the generator, and the generator itself, an *AlgebraicGenerator*.

**abs**

Return the absolute value of `self` (square root of the norm).

**EXAMPLES:**

```python
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3))
sage: a.exactify()
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: b.abs(a)
Root 3.146264369941972342? of x^2 - 9.89897948556636?
```

5.1. Algebraic numbers
conjugate \((n)\)
Complex conjugate of self.

EXAMPLES:

```
sage: # needs sage.symbolic
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3))
sage: a.exactify()
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: c = b.conjugate(None); c # random (not uniquely represented)
1/3*a^3 - 1/3*a^2 + a + 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0
and a in 1.724744871391589? - 1.573132184970987?*I
```

Internally, complex conjugation is implemented by taking the same abstract field element but conjugating the complex embedding of the field:

```
sage: c.generator() == b.generator().conjugate() # needs sage.symbolic
True
sage: c.field_element_value() == b.field_element_value() # needs sage.symbolic
True
```

The parameter is ignored:

```
sage: (b.conjugate("random").generator() == c.generator()) # needs sage.symbolic
....: and (b.conjugate("random").field_element_value() == c.field_element_value())
True
```

exactify()
Return an exact representation of self.
Since self is already exact, just return self.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.
 : exactify()
sage: type(v)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: v.exactify() is v
True
```

field_element_value()
Return the underlying number field element.

EXAMPLES:

```
sage: x = polygen(ZZ, 'x')
sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.
 : exactify()
sage: v.field_element_value()
a
```
generator()

Return the AlgebraicGenerator object corresponding to self.

EXAMPLES:

```python
sage: x = polygen(ZZ, 'x')
sage: v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[0]._descr.
 →exactify()
sage: v.generator()
Number Field in a with defining polynomial y^2 - y - 1 with a in 1.
 →618033988749895?
```

handle_sage_input (sib, coerce, is_qqbar)

Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always True for ANExtensionElement).

EXAMPLES:

```python
sage: I = QQbar(I)
sage: sage_input(3+4*I, verify=True)
Verified
QQbar(3 + 4*I)
sage: v = QQbar.zeta(3) + QQbar.zeta(5)
sage: v - v == 0
True
sage: sage_input(vector(QQbar, (4-3*I, QQbar.zeta(7))), verify=True)
Verified
R.<y> = QQ[]
vector(QQbar, [4 - 3*I, QQbar.polynomial_root(AA.common_polynomial(y^6 + y^5
 →+ y^4 + y^3 + y^2 + y + 1), CDF(RIF(RR(0.62348980185873348), RR(0.
 →62348980185873359)), CDF(RR(0.7818314824680298), RR(0.
 →78183148246802991))))]))
sage: sage_input(v, verify=True)
Verified
R.<y> = QQ[]
v = QQbar.polynomial_root(AA.common_polynomial(y^8 - y^7 + y^5 - y^4 + y^3 -
 →y + 1), CDF(RIF(RR(0.91354545764260087), RR(0.91354545764260098)), CDF(RR(0.
 →40673664307580015), RR(0.40673664307580021))))
v^5 + v^3
sage: v = QQbar(sqrt(AA(2)))
sage: v.exactify()
sage: sage_input(v, verify=True)
Verified
R.<y> = QQ[]
QQbar(AA.polynomial_root(AA.common_polynomial(y^2 - 2), CDF(RIF(1.
 →4142135623730949), CDF(1.4142135623730951))))
sage: from sage.rings.qqbar import *
sage: from sage.misc.sage_input import SageInputBuilder
sage: sib = SageInputBuilder()
sage: extel = ANExtensionElement(QQbar_I_generator, QQbar_I_generator.field().
 →gen() + 1)
sage: extel.handle_sage_input(sib, False, True)
{(call: {atomic:QQbar}{{binop:+ {atomic:1} {atomic:I}}}), True}
```

invert (n)

Reciprocal of self.

EXAMPLES:
```python
sage: # needs sage.symbolic
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(-3))
sage: a.exactify()
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: c = b.invert(None); c
random (not uniquely represented)
-7/3*a^3 + 19/3*a^2 - 7*a - 9 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0
and a in 1.724744871391589? + 1.573132184970987??*I
sage: (c.generator() == b.generator() and c.field_element_value() * b.field_element_value() == 1)
True
```

The parameter is ignored:

```python
sage: (b.invert("random").generator() == c.generator() and b.invert("random").field_element_value() == c.field_element_value())
True
```

**is_complex()**

Return True if the number field that defines this element is not real.

This does not imply that the element itself is definitely non-real, as in the example below.

**EXAMPLES:**

```python
sage: # needs sage.symbolic
sage: rt2 = QQbar(sqrt(2))
sage: rtm3 = QQbar(sqrt(-3))
sage: x = rtm3 + rt2 - rtm3
sage: x.exactify()
sage: y = x._descr
sage: type(y)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: y.is_complex()
True
sage: x.imag() == 0
True
```

**is_simple()**

Check whether this descriptor represents a value with the same algebraic degree as the number field associated with the descriptor.

For ANExtensionElement elements, we check this by comparing the degree of the minimal polynomial to the degree of the field.

**EXAMPLES:**

```python
sage: # needs sage.symbolic
sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: rt2b = rt3 + rt2 - rt3
sage: rt2.exactify()
sage: rt2._descr
a where a^2 - 2 = 0 and a in 1.414213562373095?
sage: rt2._descr.is_simple()
```

(continues on next page)
\textbf{True}

\texttt{sage: } \texttt{rt2b.exactify()} \hspace{1cm} \#...
\texttt{sage: } \texttt{rt2b._descr} \hspace{1cm} \#...
\texttt{a^3 - 3*a where } a^4 - 4*a^2 + 1 = 0 \text{ and } a \text{ in } -0.5176380902050415?
\texttt{sage: } \texttt{rt2b._descr.is_simple()} \hspace{1cm} \#...
\texttt{False}

\textbf{minpoly()}\hspace{1cm}
Compute the minimal polynomial of this algebraic number.

**EXAMPLES:**

\texttt{sage: } \texttt{x = polygen(ZZ, 'x')}
\texttt{sage: } \texttt{v = (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.}
\texttt{exactify()}
\texttt{sage: } \texttt{type(v)}
\texttt{<class sage.rings.qqbar.ANExtensionElement>}
\texttt{sage: } \texttt{v.minpoly()}
\texttt{x^2 - x - 1}

\textbf{neg}(n)\hspace{1cm}
Negation of self.

**EXAMPLES:**

\texttt{sage: } \texttt{# needs sage.symbolic}
\texttt{sage: } \texttt{a = QQbar(sqrt(-2)) + QQbar(sqrt(-3))}
\texttt{sage: } \texttt{a.exactify()}
\texttt{sage: } \texttt{b = a._descr}
\texttt{sage: } \texttt{type(b)}
\texttt{<class 'sage.rings.qqbar.ANExtensionElement'>}
\texttt{sage: } \texttt{c = b.neg(None)}; \texttt{c} \hspace{1cm} \# random (not uniquely represented)
\texttt{-1/3*a^3 + 1/3*a^2 - a - 1 where } a^4 - 2*a^3 + a^2 + 6*a + 3 = 0
\text{ and } a \text{ in } 1.724744871391589? + 1.573132184970987?*I
\texttt{sage: } \texttt{(c.generator() == b.generator())}
\texttt{....: and c.field_element_value() + b.field_element_value() == 0}
\texttt{True}

The parameter is ignored:

\texttt{sage: } \texttt{(b.neg("random").generator() == c.generator())} \hspace{1cm} \#...
\texttt{needs sage.symbolic}
\texttt{....: and b.neg("random").field_element_value() == c.field_element_value())}
\texttt{True}

\textbf{norm}(n)\hspace{1cm}
Norm of self (square of complex absolute value)

**EXAMPLES:**

\texttt{sage: } \texttt{# needs sage.symbolic}
\texttt{sage: } \texttt{a = QQbar(sqrt(-2)) + QQbar(sqrt(-3))}
\texttt{sage: } \texttt{a.exactify()}

(continues on next page)
rational_argument(n)

If the argument of self is \(2\pi\) times some rational number in \([1/2, -1/2)\), return that rational; otherwise, return None.

EXAMPLES:

```plaintext
sage: # needs sage.symbolic
sage: a = QQbar(sqrt(-2)) + QQbar(sqrt(3))
sage: a.exactify()
sage: b = a._descr
sage: type(b) # class 'sage.rings.qqbar.ANExtensionElement'
<class sage.rings.qqbar.ANUnaryExpr object at ...>
sage: b.rational_argument(a) # is None
True

sage: x = polygen(QQ)
sage: a = (x^4 + 1).roots(QQbar, multiplicities=False)[0]
sage: a.exactify()
sage: b = a._descr
sage: b.rational_argument(a) # simplify(n)
-3/8
```

simplify(n)

Compute an exact representation for this descriptor, in the smallest possible number field.

INPUT:

- \(n\) – The element of \(\text{AA}\) or \(\text{QQbar}\) corresponding to this descriptor.

EXAMPLES:

```plaintext
sage: # needs sage.symbolic
sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: rt2b = rt3 + rt2 - rt3
sage: rt2b.exactify()
sage: rt2b._descr
a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in -0.5176380902050415?
sage: rt2b._descr.simplify(rt2b)
a where a^2 - 2 = 0 and a in 1.414213562373095?
```

class sage.rings.qqbar.ANRational(x)

Bases: ANDescr

The subclass of \(\text{ANDescr}\) that represents an arbitrary rational. This class is private, and should not be used directly.

abs(n)

Absolute value of self.

EXAMPLES:
angle()  
Return a rational number \( q \in (-1/2, 1/2] \) such that self is a rational multiple of \( e^{2\pi iq} \). Always returns 0, since this element is rational.

EXAMPLES:

sage: QQbar(3)._descr.angle()  
0  
sage: QQbar(-3)._descr.angle()  
0  
sage: QQbar(0)._descr.angle()  
0

exactify()  
Calculate self exactly. Since self is a rational number, return self.

EXAMPLES:

sage: a = QQbar(1/3)._descr  
sage: a.exactify() is a  
True

generator()  
Return an AlgebraicGenerator object associated to this element. Returns the trivial generator, since self is rational.

EXAMPLES:

sage: QQbar(0)._descr.generator()  
Trivial generator

handle_sage_input (sib, coerce, is_qqbar)  
Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always False, for rationals).

EXAMPLES:

sage: from sage.rings.qqbar import *  
sage: from sage.misc.sage_input import SageInputBuilder  
sage: sib = SageInputBuilder()  
sage: rat = ANRational(9/10)  
sage: rat.handle_sage_input(sib, False, True)  
{(call: {atomic:QQbar}({binop:/ {atomic:9} {atomic:10}})), False}
invert \(n\)
\[
\text{1/self.}
\]
EXAMPLES:
```
sage: a = QQbar(3)
sage: b = a._descr
sage: b.invert(a)
1/3
```

is_complex()

Return False, since rational numbers are real

EXAMPLES:
```
sage: QQbar(1/7)._descr.is_complex()
False
```

is_simple()

Checks whether this descriptor represents a value with the same algebraic degree as the number field associated with the descriptor.

This is always true for rational numbers.

EXAMPLES:
```
sage: AA(1/2)._descr.is_simple()
True
```

minpoly()

Return the min poly of self over \(\mathbb{Q}\).

EXAMPLES:
```
sage: QQbar(7)._descr.minpoly()
x - 7
```

neg \(n\)

Negation of self.

EXAMPLES:
```
sage: a = QQbar(3)
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANRational'>
sage: b.neg(a)
-3
```

rational_argument \(n\)

Return the argument of self divided by \(2\pi\), or None if this element is 0.

EXAMPLES:
```
sage: QQbar(3)._descr.rational_argument(None)
0
sage: QQbar(-3)._descr.rational_argument(None)
1/2
```
scale()

Return a rational number $r$ such that $self$ is equal to $re^{2\pi iq}$ for some $q \in (-1/2, 1/2]$. In other words, just return $self$ as a rational number.

EXAMPLES:

```python
sage: QQbar(-3)._descr.scale()
-3
```

class sage.rings.qqbar.ANRoot(poly, interval, multiplicity=1)

Bases: ANDescr

The subclass of $ANDescr$ that represents a particular root of a polynomial with algebraic coefficients. This class is private, and should not be used directly.

conjugate(n)

Complex conjugate of this $ANRoot$ object.

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: a = (x^2 + 23).roots(ring=QQbar, multiplicities=False)[0]
sage: b = a._descr
sage: type(b)
<class 'sage.rings.qqbar.ANRoot'>
sage: c = b.conjugate(a); c
<sage.rings.qqbar.ANUnaryExpr object at ...>
sage: c.exactify()
-2*a + 1 where a^2 - a + 6 = 0 and a in 0.5000000000000000? - 2.
˓→-397915761656360?*I
```

exactify()

Return either an $ANRational$ or an $ANExtensionElement$ with the same value as this number.

EXAMPLES:

```python
sage: from sage.rings.qqbar import ANRoot
sage: x = polygen(QQbar)
sage: two = ANRoot((x-2)*(x-sqrt(QQbar(2))), RIF(1.9, 2.1))
sage: two.exactify()
2
sage: strange = ANRoot(x^2 + sqrt(QQbar(3))*x - sqrt(QQbar(2)), RIF(-0, 1))
sage: strange.exactify()
a where a^8 - 6*a^6 + 5*a^4 - 12*a^2 + 4 = 0 and a in 0.6051012265139511? - 2.
˓→-397915761656360?*I
```

handle_sage_input(sib, coerce, is_qqbar)

Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always True for $ANRoot$).

EXAMPLES:

```python
sage: sage_input((AA(3)^(1/2))^(1/3), verify=True)
Verified
R.<x> = AA[]
These two examples are too big to verify quickly. (Verification would create a field of degree 28.):

```
sage: sage_input((sqrt(AA(3))^(5/7))^(9/4))
R.<x> = AA[]
v1 = AA.polynomial_root(AA.common_polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))
v2 = v1*v1
v3 = AA.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), RIF(RR(1.480728524798112), RR(1.480728524798114)))
v4 = v3*v3
v5 = v4*v4
AA.polynomial_root(AA.common_polynomial(x^4 - v5*v5*v3), RIF(RR(2.41769219382678), RR(2.417692193826781)))

sage: sage_input((sqrt(QQbar(-7))^(5/7))^(9/4))
R.<x> = QQbar[]
v1 = QQbar.polynomial_root(AA.common_polynomial(x^2 + 7), CIF(RIF(RR(0), RIF(RR(0.8693488875796217), RIF(RR(1.8052215661454434), RIF(RR(1.8052215661454436)))))
v2 = v1*v1
v3 = QQbar.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), CIF(RIF(RR(-3.8954086044650786), RIF(RR(2.7639398015408925), RIF(RR(2.7639398015408929)))))

sage: sage_input((sqrt(AA(3))^(5/7))^(9/4))
R.<x> = AA[]
v1 = AA.polynomial_root(AA.common_polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))
v2 = v1*v1
v3 = AA.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), RIF(RR(1.480728524798112), RR(1.480728524798114)))
v4 = v3*v3
v5 = v4*v4
AA.polynomial_root(AA.common_polynomial(x^4 - v5*v5*v3), RIF(RR(2.41769219382678), RR(2.417692193826781)))

sage: sage_input((sqrt(QQbar(-7))^(5/7))^(9/4))
R.<x> = QQbar[]
v1 = QQbar.polynomial_root(AA.common_polynomial(x^2 + 7), CIF(RIF(RR(0), RIF(RR(0.8693488875796217), RIF(RR(1.8052215661454434), RIF(RR(1.8052215661454436)))))
v2 = v1*v1
v3 = QQbar.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), CIF(RIF(RR(-3.8954086044650786), RIF(RR(2.7639398015408925), RIF(RR(2.7639398015408929)))))

sage: sage_input((sqrt(AA(3))^(5/7))^(9/4))
R.<x> = AA[]
v1 = AA.polynomial_root(AA.common_polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))
v2 = v1*v1
v3 = AA.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), RIF(RR(1.480728524798112), RR(1.480728524798114)))
v4 = v3*v3
v5 = v4*v4
AA.polynomial_root(AA.common_polynomial(x^4 - v5*v5*v3), RIF(RR(2.41769219382678), RR(2.417692193826781)))

sage: sage_input((sqrt(QQbar(-7))^(5/7))^(9/4))
R.<x> = QQbar[]
v1 = QQbar.polynomial_root(AA.common_polynomial(x^2 + 7), CIF(RIF(RR(0), RIF(RR(0.8693488875796217), RIF(RR(1.8052215661454434), RIF(RR(1.8052215661454436)))))
v2 = v1*v1
v3 = QQbar.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), CIF(RIF(RR(-3.8954086044650786), RIF(RR(2.7639398015408925), RIF(RR(2.7639398015408929)))))

sage: sage_input((sqrt(AA(3))^(5/7))^(9/4))
R.<x> = AA[]
v1 = AA.polynomial_root(AA.common_polynomial(x^2 - 3), RIF(RR(1.7320508075688772), RR(1.7320508075688774)))
v2 = v1*v1
v3 = AA.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), RIF(RR(1.480728524798112), RR(1.480728524798114)))
v4 = v3*v3
v5 = v4*v4
AA.polynomial_root(AA.common_polynomial(x^4 - v5*v5*v3), RIF(RR(2.41769219382678), RR(2.417692193826781)))

sage: sage_input((sqrt(QQbar(-7))^(5/7))^(9/4))
R.<x> = QQbar[]
v1 = QQbar.polynomial_root(AA.common_polynomial(x^2 + 7), CIF(RIF(RR(0), RIF(RR(0.8693488875796217), RIF(RR(1.8052215661454434), RIF(RR(1.8052215661454436)))))
v2 = v1*v1
v3 = QQbar.polynomial_root(AA.common_polynomial(x^7 - v2*v2*v1), CIF(RIF(RR(-3.8954086044650786), RIF(RR(2.7639398015408925), RIF(RR(2.7639398015408929)))))

sage: sage_input((sqrt(AA(3))^(5/7))^(9/4))
R.<x> = AA[]
```
the second example shows; it does not trigger exact computation to see if the root is real.

EXAMPLES:

```python
sage: x = polygen(QQ)
sage: (x^2 - x - 1).roots(ring=AA, multiplicities=False)[1]._descr.is_complex()
False
sage: (x^2 - x - 1).roots(ring=QQbar, multiplicities=False)[1]._descr.is_complex()
True
```

`refine_interval` *(interval, prec)*

Takes an interval which is assumed to enclose exactly one root of the polynomial (or, with multiplicity=`k`, exactly one root of the $k-1$-st derivative); and a precision, in bits.

Tries to find a narrow interval enclosing the root using interval arithmetic of the given precision. (No particular number of resulting bits of precision is guaranteed.)

Uses a combination of Newton’s method (adapted for interval arithmetic) and bisection. The algorithm will converge very quickly if started with a sufficiently narrow interval.

EXAMPLES:

```python
sage: from sage.rings.qqbar import ANRoot
sage: x = polygen(AA)
sage: rt2 = ANRoot(x^2 - 2, RIF(0, 2))
sage: rt2.refine_interval(RIF(0, 2), 75)
1.4142135623730950488017?
```

`class` *sage.rings.qqbar.ANUnaryExpr*(arg, op)*

Bases: `ANDescr`

Initialize this ANUnaryExpr.

EXAMPLES:

```python
sage: t = ~QQbar(sqrt(2)); type(t._descr) # indirect doctest
# needs sage.symbolic
<class 'sage.rings.qqbar.ANUnaryExpr'>
```

`exactify` *

Trigger exact computation of *self*.

EXAMPLES:

```python
sage: v = (~QQbar(sqrt(2)))._descr #...
# needs sage.symbolic
sage: type(v) #...
<class 'sage.rings.qqbar.ANUnaryExpr'>
sage: v.exactify() #...
<needs sage.symbolic>
-a where a^2 - 2 = 0 and a in 1.4142135623730950488017?
```

`handle_sage_input` *(sib, coerce, is_qqbar)*

Produce an expression which will reproduce this value when evaluated, and an indication of whether this value is worth sharing (always `True` for `ANUnaryExpr`).

EXAMPLES:
sage: sage_input(-sqrt(AA(2)), verify=True) # Verified
R.<x> = AA[]
~AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949),
→ RR(1.4142135623730951)))
sage: sage_input(-sqrt(AA(2)), verify=True) # Verified
R.<x> = AA[]
~AA.polynomial_root(AA.common_polynomial(x^2 - 2), RIF(RR(1.4142135623730949),
→ RR(1.4142135623730951)))
sage: sage_input(sqrt(QQbar(-3)).conjugate(), verify=True) # Verified
R.<x> = QQbar[]
QQbar.polynomial_root(AA.common_polynomial(x^2 + 3), CIF(RIF(RR(0)), RIF(RR(0.
→ 1.7320508075688772), RR(1.7320508075688774)))).conjugate()
sage: sage_input(QQbar.zeta(3).real(), verify=True) # Verified
R.<y> = QQ[]
QQbar(QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RIF(RR(0).
→ 0.8660254037844386), RR(0.86602540378443871)))), real()
sage: sage_input(QQbar.zeta(3).imag(), verify=True) # Verified
R.<y> = QQ[]
QQbar(QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RIF(RR(0).
→ 0.8660254037844386), RR(0.86602540378443871)))), imag()
sage: sage_input(abs(sqrt(QQbar(-3))), verify=True) # Verified
R.<x> = QQbar[]
abs(QQbar.polynomial_root(AA.common_polynomial(x^2 + 3), RIF(RR(0)), RIF(RR(1.
→ 1.7320508075688772), RR(1.7320508075688774)))).norm()
sage: sage_input(QQbar(QQbar.zeta(3).real()), verify=True) # Verified
R.<y> = QQ[]
QQbar(QQbar.polynomial_root(AA.common_polynomial(y^2 + y + 1), CIF(RIF(RR(0).
→ 0.8660254037844386), RR(0.86602540378443871)))), real()
sage: sage: from sage.rings.qqbar import *
sage: from sage.misc.sage_input import SageInputBuilder
sage: sib = SageInputBuilder()
sage: unexp = ANUnaryExpr(sqrt(AA(2)), ~)
sage: unexp.handle_sage_input(sib, False, False)
({unop:~ {call: {getattr: {atomic:AA}.polynomial_root}({call: {getattr:
→ {atomic:AA}.common_polynomial}({binop:* {gen:x {constr_parent:
→ {subscr: {atomic:AA}[{atomic:x} with gens: ['x',]} {atomic:AA}.common_polynomial}}
→ {atomic:2}})}, {call: {atomic:RIF}({call: {atomic:RR}{{atomic:1.
→ 4142135623730951})}})}, {call: {atomic:RR}{{atomic:1.4142135623730951}}}})}},
True)
sage: unexp.handle_sage_input(sib, False, True)
{(call: {atomic:QQbar}({unop:~ (call: {getattr: {atomic:AA}.polynomial_root}({
→ {call: {getattr: {atomic:AA}.common_polynomial}({binop:* {gen:x
continues on next page...
is_complex()

Return whether or not this element is complex. Note that this is a data type check, and triggers no computations – if it returns False, the element might still be real, it just doesn’t know it yet.

EXAMPLES:

```sage
sage: # needs sage.symbolic
sage: t = AA(sqrt(2))
sage: s = (-t)._descr
sage: s
<sage.rings.qqbar.ANUnaryExpr object at ...>
sage: s.is_complex()
False
sage: QQbar(-sqrt(2))._descr.is_complex()
True
```

class sage.rings.qqbar.AlgebraicField

Bases: Singleton, AlgebraicField_common, AlgebraicField

The field of all algebraic complex numbers.

algebraic_closure()

Return the algebraic closure of this field.

As this field is already algebraically closed, just returns self.

EXAMPLES:

```sage
sage: QQbar.algebraic_closure()
Algebraic Field
```

completion(p, prec, extras={})

Return the completion of self at the place p.

Only implemented for p = ∞ at present.

INPUT:

- p – either a prime (not implemented at present) or Infinity
- prec – precision of approximate field to return
- extras – (optional) a dict of extra keyword arguments for the RealField constructor

EXAMPLES:

```sage
sage: QQbar.completion(infinity, 500)
Complex Field with 500 bits of precision
sage: QQbar.completion(infinity, prec=53, extras={'type':'RDF'})
Complex Double Field
sage: QQbar.completion(infinity, 53) is CC
True
sage: QQbar.completion(3, 20)
```

(continues on next page)
construction()

Return a functor that constructs self (used by the coercion machinery).

EXAMPLES:

```python
sage: QQbar.construction()
(AlgebraicClosureFunctor, Rational Field)
```

gen (n=0)

Return the \(n \)-th element of the tuple returned by `gens()`.

EXAMPLES:

```python
sage: QQbar.gen(0)
1
sage: QQbar.gen(1)
Traceback (most recent call last):
... 
IndexError: n must be 0
```

gens()

Return a set of generators for this field.

As this field is not finitely generated over its prime field, we opt for just returning \(\mathbb{I} \).

EXAMPLES:

```python
sage: QQbar.gens()
(I,)
```

ngens()

Return the size of the tuple returned by `gens()`.

EXAMPLES:

```python
sage: QQbar.ngens()
1
```

polynomial_root (poly, interval, multiplicity=1)

Given a polynomial with algebraic coefficients and an interval enclosing exactly one root of the polynomial, constructs an algebraic real representation of that root.

The polynomial need not be irreducible, or even squarefree; but if the given root is a multiple root, its multiplicity must be specified. (IMPORTANT NOTE: Currently, multiplicity-\(k \) roots are handled by taking the \((k - 1)\)-st derivative of the polynomial. This means that the interval must enclose exactly one root of this derivative.)

The conditions on the arguments (that the interval encloses exactly one root, and that multiple roots match the given multiplicity) are not checked; if they are not satisfied, an error may be thrown (possibly later, when the algebraic number is used), or wrong answers may result.

Note that if you are constructing multiple roots of a single polynomial, it is better to use `QQbar.common_polynomial` to get a shared polynomial.
EXAMPLES:

```
sage: x = polygen(QQbar)
sage: phi = QQbar.polynomial_root(x^2 - x - 1, RIF(0, 2)); phi
1.618033988749895?
sage: p = (x-1)^7 * (x-2)
sage: r = QQbar.polynomial_root(p, RIF(9/10, 11/10), multiplicity=7)
sage: r; r == 1
1
True
sage: p = (x-phi)*(x-sqrt(QQbar(2)))
sage: r = QQbar.polynomial_root(p, RIF(1, 3/2))
sage: r; r == sqrt(QQbar(2))
1.414213562373095?
True
```

`random_element (poly_degree=2, *args, **kwds)`

Return a random algebraic number.

INPUT:

- `poly_degree` - default: 2 - degree of the random polynomial over the integers of which the returned algebraic number is a root. This is not necessarily the degree of the minimal polynomial of the number. Increase this parameter to achieve a greater diversity of algebraic numbers, at a cost of greater computation time. You can also vary the distribution of the coefficients but that will not vary the degree of the extension containing the element.

- `args`, `kwds` - arguments and keywords passed to the random number generator for elements of ZZ, the integers. See `random_element()` for details, or see example below.

OUTPUT:

An element of QQbar, the field of algebraic numbers (see `sage.rings.qqbar`).

ALGORITHM:

A polynomial with degree between 1 and `poly_degree`, with random integer coefficients is created. A root of this polynomial is chosen at random. The default degree is 2 and the integer coefficients come from a distribution heavily weighted towards 0, ±1, ±2.

EXAMPLES:

```
sage: a = QQbar.random_element()
sage: a
# random
0.2626138748742799? + 0.8769062830975992?*I
sage: a in QQbar
True
sage: b = QQbar.random_element(poly_degree=20)
sage: b
# random
-0.8642649077479498? - 0.5995098147478391?*I
sage: b in QQbar
True
```

Parameters for the distribution of the integer coefficients of the polynomials can be passed on to the random element method for integers. For example, current default behavior of this method returns zero about 15% of the time; if we do not include zero as a possible coefficient, there will never be a zero constant term, and thus never a zero root.
If you just want real algebraic numbers you can filter them out. Using an odd degree for the polynomials will ensure some degree of success.

```
sage: r = []
sage: while len(r) < 3:
    ....:     x = QQbar.random_element(poly_degree=3)
    ....:     if x in AA:
    ....:         r.append(x)
sage: (len(r) == 3) and all(z in AA for z in r)
True
```

```
zeta (n=4)
Return a primitive \( n \)’th root of unity, specifically \( \exp(2 \pi i / n) \).

INPUT:

• \( n \) (integer) – default 4

EXAMPLES:
```
sage: QQbar.zeta(1) 1
sage: QQbar.zeta(2)
-1
sage: QQbar.zeta(3)
-0.500000000000000? + 0.866025403784439?*i
sage: QQbar.zeta(4)
I
sage: QQbar.zeta()
I
sage: QQbar.zeta(5)
0.3090169943749474? + 0.9510565162951536?*i
sage: QQbar.zeta(3000)
0.999997806755380? + 0.002094393571219374?*i
```

class `sage.rings.qqbar.AlgebraicField_common`

Common base class for the classes `AlgebraicRealField` and `AlgebraicField`.

`characteristic()`

Return the characteristic of this field.

Since this class is only used for fields of characteristic 0, this always returns 0.

EXAMPLES:
```
sage: AA.characteristic()
0
```

`common_polynomial (poly)`

Given a polynomial with algebraic coefficients, return a wrapper that caches high-precision calculations and factorizations. This wrapper can be passed to `polynomial_root()` in place of the polynomial.

Using `common_polynomial()` makes no semantic difference, but will improve efficiency if you are dealing with multiple roots of a single polynomial.
EXAMPLES:

```
sage: x = polygen(ZZ)
sage: p = AA.common_polynomial(x^2 - x - 1)
sage: phi = AA.polynomial_root(p, RIF(1, 2))
sage: tau = AA.polynomial_root(p, RIF(-1, 0))
sage: phi + tau == 1
True
sage: phi * tau == -1
True
sage: # needs sage.symbolic
sage: x = polygen(SR)
sage: p = (x - sqrt(-5)) * (x - sqrt(3)); p
x^2 + (-sqrt(3) - sqrt(-5))*x + sqrt(3)*sqrt(-5)
sage: p = QQbar.common_polynomial(p)
sage: a = QQbar.polynomial_root(p, CIF(RIF(-0.1, 0.1), RIF(2, 3))); a
0.?e-18 + 2.236067977499790?*I
sage: b = QQbar.polynomial_root(p, RIF(1, 2)); b
1.732050807568878?
```

These “common polynomials” can be shared between real and complex roots:

```
sage: p = AA.common_polynomial(x^3 - x - 1)
sage: r1 = AA.polynomial_root(p, RIF(1.3, 1.4)); r1
1.324717957244746?
sage: r2 = QQbar.polynomial_root(p, CIF(RIF(-0.7, -0.6), RIF(0.5, 0.6))); r2
-0.6623589786223730? + 0.5622795120623013?*I
```

default_interval_prec()

Return the default interval precision used for root isolation.

EXAMPLES:

```
sage: AA.default_interval_prec()
64
```

options = Current options for AlgebraicField - display_format: decimal

order()

Return the cardinality of self.

Since this class is only used for fields of characteristic 0, always returns Infinity.

EXAMPLES:

```
sage: QQbar.order()
+Infinity
```

```
class sage.rings.qqbar.AlgebraicGenerator (field, root)

Bases: sage.rings.qqbar.AlgebraicGenerator

An AlgebraicGenerator represents both an algebraic number \(\alpha \) and the number field \(\mathbb{Q}[\alpha] \). There is a single AlgebraicGenerator representing \(\mathbb{Q} \) (with \(\alpha = 0 \)).

The AlgebraicGenerator class is private, and should not be used directly.

conjugate()

If this generator is for the algebraic number \(\alpha \), return a generator for the complex conjugate of \(\alpha \).

5.1. Algebraic numbers
EXAMPLES:
```
sage: from sage.rings.qqbar import AlgebraicGenerator
sage: x = polygen(QQ); f = x^4 + x + 17
sage: nf = NumberField(f,name='a')
```
```
sage: gen = AlgebraicGenerator(nf, root)
sage: gen.conjugate()
```
```Number Field in a with defining polynomial x^4 + x + 17 with a in -1.436449997483091? + 1.374535713065812?*I```

**field()**
Return the number field attached to self.

EXAMPLES:
```
sage: from sage.rings.qqbar import qq_generator
sage: qq_generator.field()
Rational Field
```

**is_complex()**
Return True if this is a generator for a non-real number field.

EXAMPLES:
```
sage: z7 = QQbar.zeta(7)
sage: g = z7._descr._generator
sage: g.is_complex()
True
```
```
sage: from sage.rings.qqbar import ANRoot, AlgebraicGenerator
sage: x = polygen(QQbar)
sage: nf = NumberField(y^2 - y - 1, name='a', check=False)
sage: root = ANRoot(x^2 - x - 1, RIF(1, 2))
sage: gen = AlgebraicGenerator(nf, root)
sage: gen.is_complex()
False
```

**is_trivial()**
Return True if this is the trivial generator (alpha == 1), which does not actually extend the rationals.

EXAMPLES:
```
sage: from sage.rings.qqbar import qq_generator
sage: qq_generator.is_trivial()
True
```

**pari_field()**
Return the PARI field attached to this generator.

EXAMPLES:
```
sage: from sage.rings.qqbar import qq_generator
sage: qq_generator.pari_field() Traceback (most recent call last):
...
ValueError: No PARI field attached to trivial generator

```
sage: from sage.rings.qqbar import ANRoot, AlgebraicGenerator, qq_generator
sage: y = polygen(QQ)
sage: x = polygen(QQbar)
sage: nf = NumberField(y^2 - y - 1, name='a', check=False)
sage: root = ANRoot(x^2 - x - 1, RIF(1, 2))
sage: gen = AlgebraicGenerator(nf, root)
sage: gen.pari_field()

[[y^2 - y - 1, [2, 0], ...]

root_as_algebraic()

Return the root attached to self as an algebraic number.

EXAMPLES:

```
sage: t = sage.rings.qqbar.qq_generator.root_as_algebraic(); t
1
sage: t.parent()
Algebraic Real Field
```

super_poly (super, checked=None)

Given a generator `gen` and another generator `super`, where `super` is the result of a tree of `union()` operations where one of the leaves is `gen`, `gen.super_poly(super)` returns a polynomial expressing the value of `gen` in terms of the value of `super` (except that if `gen` is `qq_generator`, `super_poly()` always returns None.)

EXAMPLES:

```
sage: from sage.rings.qqbar import AlgebraicGenerator, ANRoot, qq_generator
sage: _.<y> = QQ['y']
sage: x = polygen(QQbar)
sage: nf2 = NumberField(y^2 - 2, name='a', check=False)
sage: root2 = ANRoot(x^2 - 2, RIF(1, 2))
sage: gen2 = AlgebraicGenerator(nf2, root2)
sage: gen2
Number Field in a with defining polynomial y^2 - 2 with a in 1.˓→414213562373095?
sage: nf3 = NumberField(y^2 - 3, name='a', check=False)
sage: root3 = ANRoot(x^2 - 3, RIF(1, 2))
sage: gen3 = AlgebraicGenerator(nf3, root3)
sage: gen3
Number Field in a with defining polynomial y^2 - 3 with a in 1.˓→732050807568878?
sage: gen2_3 = gen2.union(gen3)
sage: gen2_3
Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a in -1.˓→931851562578137?
sage: qq_generator.super_poly(gen2) is None
True
sage: gen2.super_poly(gen2_3)
a^2 + 3*a
sage: gen3.super_poly(gen2_3)
a^2 - 2
```

union (other, name='a')

Given generators `self`, α, and `other`, β, `self.union(other)` gives a generator for the number field

5.1. Algebraic numbers 377
**Q[α][β].**

**INPUT:**

- `other` – an algebraic number
- `name` – string (default: 'a'); a name for the primitive element

**EXAMPLES:**

```python
sage: from sage.rings.qqbar import ANRoot, AlgebraicGenerator, qq_generator
sage: _.<y> = QQ['y']
sage: x = polygen(QQbar)
sage: nf2 = NumberField(y^2 - 2, name='a', check=False)
sage: root2 = ANRoot(x^2 - 2, RIF(1, 2))
sage: gen2 = AlgebraicGenerator(nf2, root2)
sage: gen2
Number Field in a with defining polynomial y^2 - 2 with a in 1.
 →414213562373095?

sage: nf3 = NumberField(y^2 - 3, name='a', check=False)
sage: root3 = ANRoot(x^2 - 3, RIF(1, 2))
sage: gen3 = AlgebraicGenerator(nf3, root3)
sage: gen3
Number Field in a with defining polynomial y^2 - 3 with a in 1.
 →732050807568878?

sage: gen2.union(qq_generator)
is gen2
True
sage: qq_generator.union(gen3)
is gen3
True
sage: gen2.union(gen3, name='b')
Number Field in b with defining polynomial y^4 - 4*y^2 + 1 with b in -1.
 →931851652578137?
```

**class sage.rings.qqbar.AlgebraicGeneratorRelation(child1, child1_poly, child2, child2_poly, parent)**

**Bases:** `SageObject`

A simple class for maintaining relations in the lattice of algebraic extensions.

**class sage.rings.qqbar.AlgebraicNumber(x)**

**Bases:** `AlgebraicNumber_base`

The class for algebraic numbers (complex numbers which are the roots of a polynomial with integer coefficients). Much of its functionality is inherited from `AlgebraicNumber_base`.

**_richcmp_(other, op)**

Compare two algebraic numbers, lexicographically. (That is, first compare the real components; if the real components are equal, compare the imaginary components.)

**EXAMPLES:**

```python
sage: x = QQbar.zeta(3); x
-0.5000000000000000? + 0.866025403784439?*I
sage: QQbar(-1) < x
True
sage: QQbar(-1/2) < x
True
sage: QQbar(0) > x
True
```
One problem with this lexicographic ordering is the fact that if two algebraic numbers have the same real component, that real component has to be compared for exact equality, which can be a costly operation. For the special case where both numbers have the same minimal polynomial, that cost can be avoided, though (see github issue #16964):

```sage
x = polygen(ZZ)
p = 69721504*x^8 + 251777664*x^6 + 329532012*x^4 + 184429548*x^2 + 37344321
sorted(p.roots(QQbar, False))
```

```
[-0.0221204634374361? - 1.090991904211621?*I, -0.0221204634374361? + 1.090991904211621?*I, -0.8088604911480535?*I, 0.?e-215 - 0.7598602580415435?*I, 0.?e-229 + 0.7598602580415435?*I, 0.8088604911480535?*I, 0.0221204634374361? - 1.090991904211621?*I, 0.0221204634374361? + 1.090991904211621?*I]
```

It also works for comparison of conjugate roots even in a degenerate situation where many roots have the same real part. In the following example, the polynomial \( p_2 \) is irreducible and all its roots have real part equal to 1:

```sage
p1 = x^8 + 74*x^7 + 2300*x^6 + 38928*x^5 + 388193*x^4 + 2295312*x^3 + 7613898*x^2 + 12066806*x + 5477001
p2 = p1((x-1)^2)
sorted(p2.roots(QQbar, False))
```

Complex numbers can be used to achieve the best possible approximation of a certain number within a specified field. The `complex_exact` function is used to check if one component is sufficiently close to the halfway point between two floating-point numbers in the corresponding `RealField`, and if so, it will trigger exact computation which can be very slow.

**complex_exact** *(field)*

Given a `ComplexField`, return the best possible approximation of this number in that field. Note that if either component is sufficiently close to the halfway point between two floating-point numbers in the corresponding `RealField`, then this will trigger exact computation, which may be very slow.

**EXAMPLES:**

```sage
a = QQbar.zeta(9) + QQbar(I) + QQbar.zeta(9).conjugate(); a
a.complex_exact(CIF)
```

Complex numbers can be used to achieve the best possible approximation of a certain number within a specified field. The `complex_number` function is used to check if one component is sufficiently close to the halfway point between two floating-point numbers in the corresponding `RealField`, and if so, it will trigger exact computation which can be very slow.

**complex_number** *(field)*

5.1. Algebraic numbers
Given the complex field `field`, compute an accurate approximation of this element in that field.

The approximation will be off by at most two ulp’s in each component, except for components which are very close to zero, which will have an absolute error at most $2^{-\text{prec}+1}$ where `prec` is the precision of the field.

**EXAMPLES:**

```python
sage: a = QQbar.zeta(5)
sage: a.complex_number(CC)
0.309016994374947 + 0.951056516295154*I

sage: b = QQbar(2).sqrt() + QQbar(3).sqrt() * QQbar.gen()
sage: b.complex_number(ComplexField(128))
1.414213562373095048801688724209690786 + 1.7320508075688772935274463415058723669*I
```

**conjugate()**

Return the complex conjugate of `self`.

**EXAMPLES:**

```python
sage: QQbar(3 + 4*I).conjugate()
3 - 4*I

sage: QQbar.zeta(7).conjugate()
0.6234898018587335? - 0.7818314824680299?*I

sage: QQbar.zeta(7) + QQbar.zeta(7).conjugate()
1.246979603717467? + 0.?e-18*I
```

**imag()**

Return the imaginary part of `self`.

**EXAMPLES:**

```python
sage: QQbar.zeta(7).imag()
0.7818314824680299?
```

**interval_exact** `(field)`

Given a `ComplexIntervalField`, compute the best possible approximation of this number in that field. Note that if either the real or imaginary parts of this number are sufficiently close to some floating-point number (and, in particular, if either is exactly representable in floating-point), then this will trigger exact computation, which may be very slow.

**EXAMPLES:**

```python
sage: a = QQbar(I).sqrt(); a
0.7071067811865475? + 0.7071067811865475?*I

sage: a.interval_exact(CIF)
0.7071067811865475? + 0.7071067811865475?*I

sage: b = QQbar((1+I)*sqrt(2)/2)
needs sage.symbolic

sage: (a - b).interval_exact(CIF)
0.7071067811865475? + 0.7071067811865475?*I
needs sage.symbolic
```

380 Chapter 5. Algebraic Numbers
multiplicative_order()

Compute the multiplicative order of this algebraic number.

That is, find the smallest positive integer \( n \) such that \( x^n = 1 \). If there is no such \( n \), returns +Infinity.

We first check that abs(x) is very close to 1. If so, we compute \( x \) exactly and examine its argument.

EXAMPLES:

```
sage: QQbar(-sqrt(3)/2 - I/2).multiplicative_order() # needs sage.symbolic
12
sage: QQbar(1).multiplicative_order() # needs sage.symbolic
1
sage: QQbar(-I).multiplicative_order() # needs sage.symbolic
4
sage: QQbar(707/1000 + 707/1000*I).multiplicative_order() # needs sage.symbolic
+Infinity
sage: QQbar(3/5 + 4/5*I).multiplicative_order() # needs sage.symbolic
+Infinity
```

norm()

Return \( self \times self.conjugate() \).

This is the algebraic definition of norm, if we view \( \text{QQbar} \) as \( \text{AA}[I] \).

EXAMPLES:

```
sage: QQbar(3 + 4*I).norm() # needs sage.symbolic
25
sage: type(QQbar(I).norm()) # needs sage.symbolic
<class 'sage.rings.qqbar.AlgebraicReal'>
sage: QQbar.zeta(1007).norm() # needs sage.symbolic
1.000000000000000?
```

rational_argument()

Return the argument of \( self \), divided by \( 2\pi \), as long as this result is rational. Otherwise returns None. Always triggers exact computation.

EXAMPLES:

```
sage: QQbar((1+I)*(sqrt(2)+sqrt(5))).rational_argument() # needs sage.symbolic
1/8
sage: QQbar(-1 + I*sqrt(3)).rational_argument() # needs sage.symbolic
1/3
sage: QQbar(-1 - I*sqrt(3)).rational_argument() # needs sage.symbolic
-1/3
sage: QQbar(3+4*I).rational_argument() is None # needs sage.symbolic
True
sage: (QQbar(2)**(1/5) * QQbar.zeta(7)**2).rational_argument() # long time
2/7
sage: (QQbar.zeta(73)**5).rational_argument() # needs sage.symbolic
5/73
sage: (QQbar.zeta(3)^65536).rational_argument() # needs sage.symbolic
1/3
```
real()

Return the real part of self.

EXAMPLES:

```python
sage: QQbar.zeta(5).real()
0.3090169943749474?
```

class sage.rings.qqbar.AlgebraicNumberPowQQAction(G, S)

Bases: Action

Implement powering of an algebraic number (an element of QQbar or AA) by a rational.

This is always a right action.

INPUT:

- `G` – must be QQ
- `S` – the parent on which to act, either AA or QQbar.

Note: To compute \( x^{\frac{a}{b}} \), we take the \( b \)'th root of \( x \); then we take that to the \( a \)'th power. If \( x \) is a negative algebraic real and \( b \) is odd, take the real \( b \)'th root; otherwise take the principal \( b \)'th root.

EXAMPLES:

In QQbar:

```python
sage: QQbar(2)^(1/2)
1.414213562373095?

sage: QQbar(8)^(2/3)
4

sage: QQbar(8)^(2/3) == 4
True

sage: x = polygen(QQbar)
sage: phi = QQbar.polynomial_root(x^2 - x - 1, RIF(1, 2))
sage: tau = QQbar.polynomial_root(x^2 - x - 1, RIF(-1, 0))
sage: rt5 = QQbar(5)^(1/2)
sage: phi^10 / rt5
55.00363612324742?

sage: tau^10 / rt5
0.003636123247413266?

sage: (phi^10 - tau^10) / rt5
55.00000000000000?

sage: (phi^10 - tau^10) / rt5 == fibonacci(10)
True

sage: (phi^50 - tau^50) / rt5 == fibonacci(50)
True

sage: QQbar(-8)^(1/3)
1.000000000000000 + 1.732050807568878*I

sage: (QQbar(-8)^(1/3))^3
-8

sage: QQbar(32)^(1/5)
2

sage: a = QQbar.zeta(7)^(1/3); a
0.9555728057861407? + 0.294755174109043?*I

sage: a == QQbar.zeta(21)
True
```

(continues on next page)
In `AA`:

```
sage: AA(2)^(1/2)
1.414213562373095?
sage: AA(8)^(2/3)
4
sage: AA(8)^(2/3) == 4
True
sage: x = polygen(AA)
sage: phi = AA.polynomial_root(x^2 - x - 1, RIF(0, 2))
sage: tau = AA.polynomial_root(x^2 - x - 1, RIF(-2, 0))
sage: rt5 = AA(5)^(1/2)
sage: phi^10 / rt5
55.00363612324742?
sage: tau^10 / rt5
0.003636123247413266?
sage: (phi^10 - tau^10) / rt5
55.00000000000000?
sage: (phi^10 - tau^10) / rt5 == fibonacci(10)
True
sage: (phi^50 - tau^50) / rt5 == fibonacci(50)
True
```

**class** `sage.rings.qqbar.AlgebraicNumber_base (parent, x)`

**Bases:** `FieldElement`

This is the common base class for algebraic numbers (complex numbers which are the zero of a polynomial in \( \mathbb{Z}[x] \)) and algebraic reals (algebraic numbers which happen to be real).

AlgebraicNumber objects can be created using `QQbar` (== AlgebraicNumberField()), and AlgebraicReal objects can be created using `AA` (== AlgebraicRealField()). They can be created either by coercing a rational or a symbolic expression, or by using the QQbar.polynomial_root() or AA. polynomial_root() method to construct a particular root of a polynomial with algebraic coefficients. Also, AlgebraicNumber and AlgebraicReal are closed under addition, subtraction, multiplication, division (except by 0), and rational powers (including roots), except that for a negative AlgebraicReal, taking a power with an even denominator returns an AlgebraicNumber instead of an AlgebraicReal.

AlgebraicNumber and AlgebraicReal objects can be approximated to any desired precision. They can be compared exactly; if the two numbers are very close, or are equal, this may require exact computation, which can be extremely slow.

As long as exact computation is not triggered, computation with algebraic numbers should not be too much slower than computation with intervals. As mentioned above, exact computation is triggered when comparing two algebraic numbers which are very close together. This can be an explicit comparison in user code, but the following list of actions (not necessarily complete) can also trigger exact computation:

- Dividing by an algebraic number which is very close to 0.
- Using an algebraic number which is very close to 0 as the leading coefficient in a polynomial.
- Taking a root of an algebraic number which is very close to 0.

The exact definition of “very close” is subject to change; currently, we compute our best approximation of the two numbers using 128-bit arithmetic, and see if that’s sufficient to decide the comparison. Note that comparing two
algebraic numbers which are actually equal will always trigger exact computation, unless they are actually the same object.

**EXAMPLES:**

```python
sage: sqrt(QQbar(2))
1.414213562373095?

sage: sqrt(QQbar(2))^2 == 2
True

sage: x = polygen(QQbar)

sage: phi = QQbar.polynomial_root(x^2 - x - 1, RIF(1, 2))

sage: phi
1.618033988749895?

sage: phi^2 == phi+1
True

sage: AA(sqrt(65537))
needs sage.symbolic
256.0019531175495?
```

**as_number_field_element** *(minimal=False, embedded=False, prec=53)*

Return a number field containing this value, a representation of this value as an element of that number field, and a homomorphism from the number field back to AA or QQbar.

**INPUT:**

- **minimal** – Boolean (default: False). Whether to minimize the degree of the extension.
- **embedded** – Boolean (default: False). Whether to make the NumberField embedded.
- **prec** – integer (default: 53). The number of bit of precision to guarantee finding real roots.

This may not return the smallest such number field, unless minimal=True is specified.

To compute a single number field containing multiple algebraic numbers, use the function `number_field_elements_from_algebraics` instead.

**EXAMPLES:**

```python
sage: QQbar(sqrt(8)).as_number_field_element()
needs sage.symbolic
(Number Field in a with defining polynomial y^2 - 2, 2*a,
 Ring morphism:
 From: Number Field in a with defining polynomial y^2 - 2
 To: Algebraic Real Field
 Defn: a |--> 1.414213562373095?)

sage: x = polygen(ZZ)

sage: p = x^3 + x^2 + x + 17

sage: (rt,) = p.roots(ring=AA, multiplicities=False); rt
-2.804642726932742?

sage: (nf, elt, hom) = rt.as_number_field_element()

sage: nf, elt, hom
(Number Field in a with defining polynomial y^3 - 2*y^2 - 31*y - 50,
 a^2 - 5*a - 19,
 Ring morphism:
 From: Number Field in a with defining polynomial y^3 - 2*y^2 - 31*y - 50
 To: Algebraic Real Field
 Defn: a |--> 7.237653139801104?)

sage: elt == rt
```

(continues on next page)
False
sage: AA(elt)
Traceback (most recent call last):
...
ValueError: need a real or complex embedding to convert a non rational
→ element of a number field into an algebraic number
sage: hom(elt) == rt
True

Creating an element of an embedded number field:

sage: (nf, elt, hom) = rt.as_number_field_element(embedded=True)
sage: nf.coerce_embedding()
Generic morphism:
  From: Number Field in a with defining polynomial y^3 - 2*y^2 - 31*y - 50...
  with a = 7.237653139801104?
  To:    Algebraic Real Field
  Defn: a |--> 7.237653139801104?

sage: elt
a^2 - 5*a - 19
sage: elt.parent() == nf
True
sage: hom(elt).parent()
Algebraic Real Field
sage: hom(elt) == rt
True
sage: elt == rt
True
sage: AA(elt)
-2.804642726932742?
sage: RR(elt)
-2.80464272693274

A complex algebraic number as an element of an embedded number field:

sage: # needs sage.symbolic
sage: num = QQbar(sqrt(2) + 3^(1/3)*I)
sage: nf, elt, hom = num.as_number_field_element(embedded=True)
sage: hom(elt).parent() is QQbar
True
sage: nf.coerce_embedding() is not None
True
sage: QQbar(elt) == num == hom(elt)
True

We see an example where we do not get the minimal number field unless we specify minimal=True:

sage: # needs sage.symbolic
sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: rt3b = rt2 + rt3 - rt2
sage: rt3b.as_number_field_element()
(Number Field in a with defining polynomial y^4 - 4*y^2 + 1, a^2 - 2,
  Ring morphism:
    From: Number Field in a with defining polynomial y^4 - 4*y^2 + 1
    To:    Algebraic Real Field
    Defn: a |--> -1.931851652578137?)

(continues on next page)
sage: rt3b.as_number_field_element(minimal=True)
(Number Field in a with defining polynomial y^2 - 3, a,
Ring morphism:
    From: Number Field in a with defining polynomial y^2 - 3
    To:   Algebraic Real Field
    Defn: a |--> 1.732050807568878?)

degree()

Return the degree of this algebraic number (the degree of its minimal polynomial, or equivalently, the degree of the smallest algebraic extension of the rationals containing this number).

EXAMPLES:

sage: QQbar(5/3).degree()
1
sage: sqrt(QQbar(2)).degree()
2
sage: QQbar(17).nth_root(5).degree()
5
sage: sqrt(3+sqrt(QQbar(8))).degree()
2

exactify()

Compute an exact representation for this number.

EXAMPLES:

sage: two = QQbar(4).nth_root(4)^2
sage: two
2.000000000000000?

sage: two.exactify()

sage: two
2

interval(field)

Given an interval (or ball) field (real or complex, as appropriate) of precision \( p \), compute an interval representation of self with \( \text{diameter}() \) at most \( 2^{-p} \); then round that representation into the given field. Here \( \text{diameter}() \) is relative diameter for intervals not containing 0, and absolute diameter for intervals that do contain 0; thus, if the returned interval does not contain 0, it has at least \( p - 1 \) good bits.

EXAMPLES:

sage: RIF64 = RealIntervalField(64)
sage: x = AA(2).sqrt()
sage: y = x*x
sage: y = 1000 * y - 999 * y
sage: y.interval_fast(RIF64)
2.000000000000000000?
sage: y.interval(RIF64)
2.000000000000000000?

sage: CIF64 = ComplexIntervalField(64)
sage: x = QQbar.zeta(11)
sage: x.interval_fast(CIF64)
0.8412535328311811689? + 0.5406408174555975821?*I
sage: x.interval(CIF64)
0.8412535328311811689? + 0.5406408174555975822?*I
The following implicitly use this method:

```python
sage: RIF(AA(5).sqrt())
2.236067977499790?
```

```python
sage: AA(-5).sqrt().interval(RIF)
Traceback (most recent call last):
...
TypeError: unable to convert 2.236067977499790?*I to real interval
```

**interval_diameter** *(diam)*

Compute an interval representation of self with `diameter()` at most `diam`. The precision of the returned value is unpredictable.

**EXAMPLES:**

```python
sage: AA(2).sqrt().interval_diameter(1e-10)
1.4142135623730950488?
```

```python
sage: AA(2).sqrt().interval_diameter(1e-30)
1.41421356237309504880168872420969807857?
```

```python
sage: QQbar(2).sqrt().interval_diameter(1e-10)
1.4142135623730950488?
```

```python
sage: QQbar(2).sqrt().interval_diameter(1e-30)
1.41421356237309504880168872420969807857?
```

**interval_fast** *(field)*

Given a `RealIntervalField` or `ComplexIntervalField`, compute the value of this number using interval arithmetic of at least the precision of the field, and return the value in that field. (More precision may be used in the computation.) The returned interval may be arbitrarily imprecise, if this number is the result of a sufficiently long computation chain.

**EXAMPLES:**

```python
sage: x = AA(2).sqrt()
sage: x.interval_fast(RIF)
1.414213562373095?
```

```python
sage: x = QQbar(I).sqrt()
sage: x.interval_fast(CIF)
0.7071067811865475? + 0.7071067811865475?*I
```

```python
sage: x = QQbar(1).sqrt()
sage: x.interval_fast(CIF)
0.7071067811865475? + 0.7071067811865475?*I
```

```python
sage: x = QQbar(I).sqrt()
sage: x.interval_fast(RIF)
Traceback (most recent call last):
...
TypeError: unable to convert complex interval 0.7071067811865475244? + 0.
˓→0.7071067811865475244?*I to real interval
```

**is_integer**

Return `True` if this number is an integer.

**EXAMPLES:**

```python
sage: QQbar(2).is_integer()
True
```
\texttt{sage: QQbar(1/2).is_integer()}
False

\textbf{is\_square()}

Return whether or not this number is square.

\textbf{OUTPUT:}

(boolean) True in all cases for elements of \texttt{QQbar}; True for non-negative elements of \texttt{AA}; otherwise False

\textbf{EXAMPLES:}

\texttt{sage: AA(2).is\_square()}
True
\texttt{sage: AA(-2).is\_square()}
False
\texttt{sage: QQbar(-2).is\_square()}
True
\texttt{sage: QQbar(I).is\_square()}
True

\textbf{minpoly()}

Compute the minimal polynomial of this algebraic number. The minimal polynomial is the monic polynomial of least degree having this number as a root; it is unique.

\textbf{EXAMPLES:}

\texttt{sage: QQbar(4).sqrt().minpoly()}
x - 2
\texttt{sage: ((QQbar(2).nth\_root(4))^2).minpoly()}
x^2 - 2
\texttt{sage: v = sqrt(QQbar(2)) + sqrt(QQbar(3)); v}
3.146264369941973?
\texttt{sage: p = v.minpoly(); p}
x^4 - 10*x^2 + 1
\texttt{sage: p(RR(v.real()))}
1.31006316905768e-14

\textbf{nth\_root(\texttt{n}, all=False)}

Return the \texttt{n}-th root of this number.

\textbf{INPUT:}

- \texttt{all} - bool (default: False). If True, return a list of all \texttt{n}-th roots as complex algebraic numbers.

\textbf{Warning:} Note that for odd \texttt{n}, all='False' and negative real numbers, \texttt{AlgebraicReal} and \texttt{AlgebraicNumber} values give different answers: \texttt{AlgebraicReal} values prefer real results, and \texttt{AlgebraicNumber} values return the principal root.

\textbf{EXAMPLES:}

\texttt{sage: AA(-8).nth\_root(3)}
-2
\texttt{sage: QQbar(-8).nth\_root(3)
You can get all \(n\)-th roots of algebraic numbers:

```python
sage: AA(-8).nth_root(3, all=True)
[1.000000000000000? + 1.732050807568878?*I,
 -2.000000000000000? + 0.7e-18*I,
 1.000000000000000? - 1.732050807568878?*I]
```

```python
sage: QQbar(1+I).nth_root(4, all=True)
[1.069553932363986? + 0.2127475047267431?*I,
 -0.2127475047267431? + 1.069553932363986?*I,
 -1.069553932363986? - 0.2127475047267431?*I,
 0.2127475047267431? - 1.069553932363986?*I]
```

`radical_expression()`

Attempt to obtain a symbolic expression using radicals. If no exact symbolic expression can be found, the algebraic number will be returned without modification.

**EXAMPLES:**

```python
sage: # needs sage.symbolic
sage: AA(1/sqrt(5)).radical_expression()
sqrt(1/5)
```

```python
sage: AA(sqrt(5 + sqrt(5))).radical_expression()
sqrt(sqrt(5) + 5)
```

```python
sage: QQbar.zeta(5).radical_expression()
1/4*sqrt(5) + 1/2*sqrt(-1/2*sqrt(5) - 5/2) - 1/4
```

```python
sage: x = polygen(QQ, x)
sage: a = (x^7 - x - 1).roots(AA, False)[0]
sage: a.radical_expression()
1.112775684278706?
```

```python
sage: a = sorted((x^7-x-1).roots(QQbar, False), key=imag)[0]
sage: a.radical_expression()
-0.3636235193291805? - 0.9525611952610331?*I
```

```python
sage: QQbar(0).radical_expression()
0
```

`simplify()`

Compute an exact representation for this number, in the smallest possible number field.

**EXAMPLES:**

```python
sage: # needs sage.symbolic
sage: rt2 = AA(sqrt(2))
sage: rt3 = AA(sqrt(3))
sage: rt2b = rt3 + rt2 - rt3
```

(continues on next page)
sqrt (all=False, extend=True)

Return the square root(s) of this number.

INPUT:

- **extend** - bool (default: True); ignored if self is in QQbar, or positive in AA. If self is negative in AA, do the following: if True, return a square root of self in QQbar, otherwise raise a ValueError.

- **all** - bool (default: False); if True, return a list of all square roots. If False, return just one square root, or raise an ValueError if self is a negative element of AA and extend=False.

OUTPUT:

Either the principal square root of self, or a list of its square roots (with the principal one first).

EXAMPLES:

```sage
sage: AA(2).sqrt()
1.414213562373095?
sage: QQbar(I).sqrt()
0.7071067811865475? + 0.7071067811865475?*I
sage: QQbar(I).sqrt(all=True)
[0.7071067811865475? + 0.7071067811865475?*I, -0.7071067811865475? - 0.*I]
sage: a = QQbar(0)
sage: a.sqrt()
0
sage: a.sqrt(all=True)
[0]
sage: a = AA(0)
sage: a.sqrt()
0
sage: a.sqrt(all=True)
[0]
```

This second example just shows that the program does not care where 0 is defined, it gives the same answer regardless. After all, how many ways can you square-root zero?

```sage
sage: AA(-2).sqrt()
1.414213562373095?*I
sage: AA(-2).sqrt(all=True)
[1.414213562373095?*I, -1.414213562373095?*I]
sage: AA(-2).sqrt(extend=False)
Traceback (most recent call last):
 ...
ValueError: -2 is not a square in AA, being negative. Use extend = True for a square root in QQbar.
```
class sage.rings.qqbar.AlgebraicPolynomialTracker(poly)
Bases: SageObject

Keeps track of a polynomial used for algebraic numbers.

If multiple algebraic numbers are created as roots of a single polynomial, this allows the polynomial and information about the polynomial to be shared. This reduces work if the polynomial must be recomputed at higher precision, or if it must be factored.

This class is private, and should only be constructed by AA.common_polynomial() or QQbar.common_polynomial(), and should only be used as an argument to AA.polynomial_root() or QQbar.polynomial_root(). (It does not matter whether you create the common polynomial with AA.common_polynomial() or QQbar.common_polynomial().)

EXAMPLES:

```python
cp = QQbar.common_polynomial(x^2 - x - 1)
cp.complex_roots(30, 1)
```

complex_roots(prec, multiplicity)

Find the roots of self in the complex field to precision prec.

EXAMPLES:

```python
cp = AA.common_polynomial(x^4 - 2)
cp.complex_roots(30, 1)
```

Note that the precision is not guaranteed to find the tightest possible interval since complex_roots() depends on the underlying BLAS implementation.

```python
cp = AA.common_polynomial(sqrt(AA(2)) * x^2 - sqrt(AA(3)))
cp.exactify()
```

exactify()

Compute a common field that holds all of the algebraic coefficients of this polynomial, then factor the polynomial over that field. Store the factors for later use (ignoring multiplicity).

EXAMPLES:

```python
cp = AA.common_polynomial(sqrt(AA(2)) * x^2 - sqrt(AA(3)))
cp.exactify()
```

factors()

EXAMPLES:
sage: x = polygen(QQ)
sage: f = QQbar.common_polynomial(x^4 + 4)
sage: f.factors()
[y^2 - 2*y + 2, y^2 + 2*y + 2]

generator()

Return an AlgebraicGenerator for a number field containing all the coefficients of self.

EXAMPLES:

sage: x = polygen(AA)
sage: p = sqrt(AA(2)) * x^2 - sqrt(AA(3))
sage: cp = AA.common_polynomial(p)
sage: cp.generator()
Number Field in a with defining polynomial y^4 - 4*y^2 + 1
with a in -0.5176380902050415?

is_complex()

Return True if the coefficients of this polynomial are non-real.

EXAMPLES:

sage: x = polygen(QQ); f = x^3 - 7
sage: g = AA.common_polynomial(f)
sage: g.is_complex()
False
sage: QQbar.common_polynomial(x^3 - QQbar(I)).is_complex()
True

poly()

Return the underlying polynomial of self.

EXAMPLES:

sage: x = polygen(QQ)
sage: f = x^3 - 7
sage: g = AA.common_polynomial(f)
sage: g.poly()
y^3 - 7

class sage.rings.qqbar.AlgebraicReal(x)

Bases: AlgebraicNumber_base

A real algebraic number.

__richcmp__(other, op)

Compare two algebraic reals.

EXAMPLES:

sage: AA(2).sqrt() < AA(3).sqrt()
True
sage: ((5+AA(5).sqrt())/2).sqrt() == 2*QQbar.zeta(5).imag()
True
sage: AA(3).sqrt() + AA(2).sqrt() < 3
False
**ceil()**

Return the smallest integer not smaller than self.

EXAMPLES:

```
sage: AA(sqrt(2)).ceil() # needs sage.symbolic
2
sage: AA(-sqrt(2)).ceil() # needs sage.symbolic
-1
sage: AA(42).ceil()
42
```

**conjugate()**

Return the complex conjugate of self, i.e. returns itself.

EXAMPLES:

```
sage: a = AA(sqrt(2) + sqrt(3)) # needs sage.symbolic
sage: a.conjugate() # needs sage.symbolic
3.146264369941973?
```

**floor()**

Return the largest integer not greater than self.

EXAMPLES:

```
sage: AA(sqrt(2)).floor() # needs sage.symbolic
1
sage: AA(-sqrt(2)).floor() # needs sage.symbolic
-2
sage: AA(42).floor()
42
```

**imag()**

Return the imaginary part of this algebraic real.

It always returns 0.

EXAMPLES:

```
sage: a = AA(sqrt(2) + sqrt(3)) # needs sage.symbolic
sage: a.imag() # needs sage.symbolic
0
sage: parent(a.imag()) # needs sage.symbolic
Algebraic Real Field
```
**interval_exact** *(field)*

Given a `RealIntervalField`, compute the best possible approximation of this number in that field. Note that if this number is sufficiently close to some floating-point number (and, in particular, if this number is exactly representable in floating-point), then this will trigger exact computation, which may be very slow.

EXAMPLES:

```sage
sage: x = AA(2).sqrt()
sage: y = x*x
sage: x.interval(RIF)
1.414213562373095?
sage: x.interval_exact(RIF)
1.414213562373095?
sage: y.interval(RIF)
2.000000000000000?
sage: y.interval_exact(RIF)
2
sage: z = 1 + AA(2).sqrt() / 2^200
sage: z.interval(RIF)
1.000000000000001?
sage: z.interval_exact(RIF)
1.000000000000001?
```

**multiplicative_order** *

Compute the multiplicative order of this real algebraic number.

That is, find the smallest positive integer \( n \) such that \( x^n = 1 \). If there is no such \( n \), returns \(+\infty\).

We first check that \( \text{abs}(x) \) is very close to 1. If so, we compute \( x \) exactly and compare it to 1 and \(-1\).

EXAMPLES:

```sage
sage: AA(1).multiplicative_order()
1
sage: AA(-1).multiplicative_order()
2
sage: AA(5).sqrt().multiplicative_order()
+Infinity
```

**real** *

Return the real part of this algebraic real.

It always returns self.

EXAMPLES:

```sage
sage: a = AA(sqrt(2) + sqrt(3)) # needs sage.symbolic
sage: a.real() # needs sage.symbolic
3.146264369941973?
sage: a.real() is a # needs sage.symbolic
True
```

**real_exact** *(field)*

Given a `RealField`, compute the best possible approximation of this number in that field. Note that if this number is sufficiently close to the halfway point between two floating-point numbers in the field (for the
default round-to-nearest mode) or if the number is sufficiently close to a floating-point number in the field
(for directed rounding modes), then this will trigger exact computation, which may be very slow.

The rounding mode of the field is respected.

EXAMPLES:

```
sage: x = AA(2).sqrt()^2
sage: x.real_exact(RR)
2.00000000000000
sage: x.real_exact(RealField(53, rnd='RNDD'))
2.00000000000000
sage: x.real_exact(RealField(53, rnd='RNDU'))
2.00000000000000
sage: x.real_exact(RealField(53, rnd='RNDZ'))
2.00000000000000
sage: (-x).real_exact(RR)
-2.00000000000000
sage: (-x).real_exact(RealField(53, rnd='RNDD'))
-2.00000000000000
sage: (-x).real_exact(RealField(53, rnd='RNDU'))
-2.00000000000000
sage: (-x).real_exact(RealField(53, rnd='RNDZ'))
-2.00000000000000
sage: y = (x-2).real_exact(RR).abs()
sage: y == 0.0 or y == -0.0 # the sign of 0.0 is not significant in MPFI
True
sage: y = (x-2).real_exact(RealField(53, rnd='RNDD'))
sage: y == 0.0 or y == -0.0 # same as above
True
sage: y = (x-2).real_exact(RealField(53, rnd='RNDU'))
sage: y == 0.0 or y == -0.0 # idem
True
sage: y = (x-2).real_exact(RealField(53, rnd='RNDZ'))
sage: y == 0.0 or y == -0.0 # ibidem
True
sage: y = AA(2).sqrt()
sage: y.real_exact(RR)
1.41421356237310
sage: y.real_exact(RealField(53, rnd='RNDD'))
1.41421356237309
sage: y.real_exact(RealField(53, rnd='RNDU'))
1.41421356237310
sage: y.real_exact(RealField(53, rnd='RNDZ'))
1.41421356237309
```

**real_number** *(field)*

Given a RealField, compute a good approximation to self in that field. The approximation will be off
by at most two ulp's, except for numbers which are very close to 0, which will have an absolute error at most
$2^{-\text{prec}()-1}$). Also, the rounding mode of the field is respected.

EXAMPLES:

```
sage: x = AA(2).sqrt()^2
sage: x.real_number(RR)
2.00000000000000
sage: x.real_number(RealField(53, rnd='RNDD'))
1.99999999999999
sage: x.real_number(RealField(53, rnd='RNDU'))
```

(continues on next page)
2.00000000000001
\begin{sage}
x.real_number(RealField(53, rnd='RNDZ'))
\end{sage}
1.99999999999999
\begin{sage}
(-x).real_number(RR)
\end{sage}
-2.00000000000000
\begin{sage}
(-x).real_number(RealField(53, rnd='RNDD'))
\end{sage}
-2.000000000000001
\begin{sage}
(-x).real_number(RealField(53, rnd='RNDU'))
\end{sage}
-1.99999999999999
\begin{sage}
(-x).real_number(RealField(53, rnd='RNDZ'))
\end{sage}
-1.99999999999999
\begin{sage}
(x-2).real_number(RR)
\end{sage}
5.42101086242752e-20
\begin{sage}
(x-2).real_number(RealField(53, rnd='RNDD'))
\end{sage}
-1.08420217248551e-19
\begin{sage}
(x-2).real_number(RealField(53, rnd='RNDU'))
\end{sage}
2.16840434497101e-19
\begin{sage}
(x-2).real_number(RealField(53, rnd='RNDZ'))
\end{sage}
0.00000000000000
\begin{sage}
y = AA(2).sqrt()
y.real_number(RR)
\end{sage}
1.41421356237309
\begin{sage}
y.real_number(RealField(53, rnd='RNDD'))
\end{sage}
1.41421356237309
\begin{sage}
y.real_number(RealField(53, rnd='RNDU'))
\end{sage}
1.41421356237310
\begin{sage}
y.real_number(RealField(53, rnd='RNDZ'))
\end{sage}
1.41421356237309

round()

Round \texttt{self} to the nearest integer.

EXAMPLES:

\begin{sage}
\texttt{sage: AA(sqrt(2)).round()} \quad # needs \texttt{sage.symbolic}
\end{sage}
1
\begin{sage}
\texttt{sage: AA(1/2).round()}
\end{sage}
1
\begin{sage}
\texttt{sage: AA(-1/2).round()}
\end{sage}
-1

sign()

Compute the sign of this algebraic number (return \(-1\) if negative, 0 if zero, or \(1\) if positive).

This computes an interval enclosing this number using 128-bit interval arithmetic; if this interval includes 0, then fall back to exact computation (which can be very slow).

EXAMPLES:

\begin{sage}
\texttt{sage: AA(-5).nth_root(7).sign()}
\end{sage}
-1
\begin{sage}
\texttt{sage: (AA(2).sqrt() - AA(2).sqrt()).sign()}
\end{sage}
0
\begin{sage}
\texttt{sage: a = AA(2).sqrt() + AA(3).sqrt() - 58114382797550084497/18470915334626475921}
\end{sage}

sage: a.sign()
1
sage: b = AA(2).sqrt() + AA(3).sqrt() - 2602510228533039296408/827174681630786895911
    
    sage: b.sign()
-1
sage: c = AA(5)**(1/3) - 1437624125539676934786/84072688792155114277
sage: c.sign()
1
sage: ((a+b)*(a+c)*(b+c))**9 / (a*b*c).sign()
1
sage: (a-b).sign()
1
sage: (b-a).sign()
-1
sage: (a*b).sign()
-1
sage: ((a*b).abs() + a).sign()
1
sage: (a*b - b*a).sign()
0
sage: a = AA(sqrt(1/2))
    
    sage: b = AA(-sqrt(1/2))
    
    sage: (a + b).sign()
0

trunc()

Round \texttt{self} to the nearest integer toward zero.

EXAMPLES:

\begin{align*}
\text{sage: } & \text{AA}(\sqrt{2}).\text{trunc()} \quad \#_{\text{--}} \\
& \text{needs sage.symbolic} \\
\text{sage: } & \text{AA}(-\sqrt{2}).\text{trunc()} \quad \#_{\text{--}} \\
& \text{needs sage.symbolic} \\
\end{align*}

\begin{align*}
\text{sage: } & \text{AA}(1).\text{trunc()} \\
& 1 \\
\text{sage: } & \text{AA}(-1).\text{trunc()} \\
& -1
\end{align*}

\begin{small}
\textbf{class} \ \texttt{sage.rings.qqbar.AlgebraicRealField}

\textbf{Bases:.singleton, AlgebraicField_common, AlgebraicRealField}

The field of algebraic reals.

\textbf{algebraic_closure()}

Return the algebraic closure of this field, which is the field $\overline{\mathbb{Q}}$ of algebraic numbers.

\textbf{EXAMPLES:}
\end{small}
**completion**(\(p, \text{prec}, \text{extras}={}\))

Return the completion of \(self\) at the place \(p\).

Only implemented for \(p = \infty\) at present.

**INPUT:**

- \(p\) – either a prime (not implemented at present) or \(\text{Infinity}\)
- \(\text{prec}\) – precision of approximate field to return
- \(\text{extras}\) – (optional) a dict of extra keyword arguments for the \(\text{RealField}\) constructor

**EXAMPLES:**

```python
sage: AA.completion(infinity, 500)
Real Field with 500 bits of precision
sage: AA.completion(infinity, prec=53, extras={'type': 'RDF'})
Real Double Field
sage: AA.completion(infinity, 53) is RR
True
sage: AA.completion(7, 10)
Traceback (most recent call last):
... NotImplementedError
```

**gen**\((n=0)\)

Return the \(n\)-th element of the tuple returned by \(\text{gens()}\).

**EXAMPLES:**

```python
sage: AA.gen(0)
1
sage: AA.gen(1)
Traceback (most recent call last):
... IndexError: n must be 0
```

**gens()**

Return a set of generators for this field.

As this field is not finitely generated, we opt for just returning \(1\).

**EXAMPLES:**

```python
sage: AA.gens()
(1,)
```

**ngens()**

Return the size of the tuple returned by \(\text{gens()}\).

**EXAMPLES:**

```python
sage: AA.ngens()
1
```
**polynomial_root** *(polynomial, interval, multiplicity=1)*

Given a polynomial with algebraic coefficients and an interval enclosing exactly one root of the polynomial, constructs an algebraic real representation of that root.

The polynomial need not be irreducible, or even squarefree; but if the given root is a multiple root, its multiplicity must be specified. (IMPORTANT NOTE: Currently, multiplicity-\(k\) roots are handled by taking the \((k - 1)\)-st derivative of the polynomial. This means that the interval must enclose exactly one root of this derivative.)

The conditions on the arguments (that the interval encloses exactly one root, and that multiple roots match the given multiplicity) are not checked; if they are not satisfied, an error may be thrown (possibly later, when the algebraic number is used), or wrong answers may result.

Note that if you are constructing multiple roots of a single polynomial, it is better to use `AA.common_polynomial` (or `QQbar.common_polynomial`; the two are equivalent) to get a shared polynomial.

**EXAMPLES:**

```
sage: x = polygen(AA)
sage: phi = AA.polynomial_root(x^2 - x - 1, RIF(1, 2)); phi
1.618033988749895?
sage: p = (x-1)^7 * (x-2)
sage: r = AA.polynomial_root(p, RIF(9/10, 11/10), multiplicity=7)
sage: r; r == 1
1.000000000000000?
True
sage: p = (x-phi)*(x-sqrt(AA(2)))
sage: r = AA.polynomial_root(p, RIF(1, 3/2))
sage: r; r == sqrt(AA(2))
1.414213562373095?
True
```

We allow complex polynomials, as long as the particular root in question is real.

```
sage: K.<im> = QQ[I]
sage: x = polygen(K)
sage: p = (im + 1) * (x^3 - 2); p
(I + 1)*x^3 - 2*I - 2
sage: r = AA.polynomial_root(p, RIF(1, 2)); r^3
2.00?
```

**random_element** *(poly_degree=2, *args, **kwds)*

Return a random algebraic real number.

**INPUT:**

- `poly_degree` - default: 2 - degree of the random polynomial over the integers of which the returned algebraic real number is a (real part of a) root. This is not necessarily the degree of the minimal polynomial of the number. Increase this parameter to achieve a greater diversity of algebraic numbers, at a cost of greater computation time. You can also vary the distribution of the coefficients but that will not vary the degree of the extension containing the element.
- `args, kwds` - arguments and keywords passed to the random number generator for elements of \(\mathbb{Z}\), the integers. See `random_element()` for details, or see example below.

**OUTPUT:**

An element of `AA`, the field of algebraic real numbers (see `sage.rings.qqbar`).

**ALGORITHM:**
We pass all arguments to `AlgebraicField.random_element()`, and then take the real part of the result.

**EXAMPLES:**

```python
sage: a = AA.random_element()
sage: a in AA
True
```

```python
sage: b = AA.random_element(poly_degree=5)
sage: b in AA
True
```

Parameters for the distribution of the integer coefficients of the polynomials can be passed on to the random element method for integers. For example, we can rule out zero as a coefficient (and therefore as a root) by requesting coefficients between 1 and 10:

```python
sage: z = [AA.random_element(x=1, y=10) for _ in range(5)]
sage: AA(0) in z
False
```

**zeta** (*n=2*)

Return an $n$-th root of unity in this field. This will raise a `ValueError` if $n \neq \{1, 2\}$ since no such root exists.

**INPUT:**

- $n$ (integer) – default 2

**EXAMPLES:**

```python
sage: AA.zeta(1)
1
sage: AA.zeta(2)
-1
sage: AA.zeta()
-1
sage: AA.zeta(3)
Traceback (most recent call last):
...
ValueError: no n-th root of unity in algebraic reals
```

Some silly inputs:

```python
sage: AA.zeta(Mod(-5, 7))
-1
sage: AA.zeta(0)
Traceback (most recent call last):
...
ValueError: no n-th root of unity in algebraic reals
```

**sage.rings.qqbar.an_binop_element** (*a, b, op*)

Add, subtract, multiply or divide two elements represented as elements of number fields.

**EXAMPLES:**

```python
sage: sqrt2 = QQbar(2).sqrt()
sage: sqrt3 = QQbar(3).sqrt()```

(continues on next page)


```python
sage: sqrt5 = QQbar(5).sqrt()
sage: a = sqrt2 + sqrt3; a.exactify()
sage: b = sqrt3 + sqrt5; b.exactify()
sage: type(a._descr)
<class 'sage.rings.qqbar.ANExtensionElement'>
sage: from sage.rings.qqbar import an_binop_element
sage: an_binop_element(a, b, operator.add)
<sage.rings.qqbar.ANBinaryExpr object at ...>
sage: an_binop_element(a, b, operator.sub)
<sage.rings.qqbar.ANBinaryExpr object at ...>
sage: an_binop_element(a, b, operator.mul)
<sage.rings.qqbar.ANBinaryExpr object at ...>
sage: an_binop_element(a, b, operator.truediv)
<sage.rings.qqbar.ANBinaryExpr object at ...>

The code tries to use existing unions of number fields:

```python
sage: sqrt17 = QQbar(17).sqrt()
sage: sqrt19 = QQbar(19).sqrt()
sage: a = sqrt17 + sqrt19
sage: b = sqrt17 * sqrt19 - sqrt17 + sqrt19 * (sqrt17 + 2)
sage: b, type(b._descr)
(40.53909377268655?, <class 'sage.rings.qqbar.ANBinaryExpr'>)
sage: a.exactify()
sage: b = sqrt17 * sqrt19 - sqrt17 + sqrt19 * (sqrt17 + 2)
sage: b, type(b._descr)
(40.53909377268655?, <class 'sage.rings.qqbar.ANExtensionElement'>)
```

```python
sage.rings.qqbar.an_binop_expr(a, b, op)

Add, subtract, multiply or divide algebraic numbers represented as binary expressions.

INPUT:

- a, b – two elements
- op – an operator

EXAMPLES:

```python
sage: # needs sage.symbolic
sage: a = QQbar(sqrt(2)) + QQbar(sqrt(3))
sage: b = QQbar(sqrt(3)) + QQbar(sqrt(5))
sage: type(a._descr); type(b._descr)
<class 'sage.rings.qqbar.ANBinaryExpr'>
<class 'sage.rings.qqbar.ANBinaryExpr'>
sage: from sage.rings.qqbar import an_binop_expr
sage: x = an_binop_expr(a, b, operator.add); x
<sage.rings.qqbar.ANBinaryExpr object at ...>
sage: x.exactify()
6/7*a^7 - 2/7*a^6 - 71/7*a^5 + 26/7*a^4 + 125/7*a^3 - 72/7*a^2 - 43/7*a + 47/7
where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in -0.3199179336182997?
```

```python
sage: # needs sage.symbolic
sage: a = QQbar(sqrt(2)) + QQbar(sqrt(3))
sage: b = QQbar(sqrt(3)) + QQbar(sqrt(5))
sage: type(a._descr)
<class 'sage.rings.qqbar.ANExtensionElement'>
```

(continues on next page)
sage.rings.qqbar.an_binop_expr(a, b, operator.mul); x
\<sage.rings.qqbar.ANBinaryExpr object at \ldots\>

sage: x.exactify()
2*a^7 - a^6 - 24*a^5 + 12*a^4 + 46*a^3 - 22*a^2 - 22*a + 9
where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in -0.3199179336182997?

sage.rings.qqbar.an_binop_rational(a, b, op)
Used to add, subtract, multiply or divide algebraic numbers.

EXAMPLES:
sage: from sage.rings.qqbar import an_binop_rational
sage: f = an_binop_rational(QQbar(2), QQbar(3/7), operator.add)
sage: f
17/7
sage: type(f)
<class 'sage.rings.qqbar.ANRational'>

sage: f = an_binop_rational(QQbar(2), QQbar(3/7), operator.mul)
sage: f
6/7
sage: type(f)
<class 'sage.rings.qqbar.ANRational'>

sage.rings.qqbar.clear_denominators(poly)
Take a monic polynomial and rescale the variable to get a monic polynomial with “integral” coefficients.

This works on any univariate polynomial whose base ring has a denominator() method that returns integers; for example, the base ring might be \(\mathbb{Q} \) or a number field.

Returns the scale factor and the new polynomial.

(Inspired by pari:primitive_pol_to_monic.)

We assume that coefficient denominators are “small”; the algorithm factors the denominators, to give the smallest possible scale factor.

EXAMPLES:
sage: from sage.rings.qqbar import clear_denominators
sage: _.<x> = QQ['x']
sage: clear_denominators(x + 3/2)
(2, x + 3)
sage: clear_denominators(x^2 + x/2 + 1/4)
(2, x^2 + x + 1)

sage.rings.qqbar.cmp_elements_with_same_minpoly(a, b, p)
Compare the algebraic elements \(a \) and \(b \) knowing that they have the same minimal polynomial \(p \).

This is a helper function for comparison of algebraic elements (i.e. the methods AlgebraicNumber._richcmp_() and AlgebraicReal._richcmp_()).

INPUT:

- \(a \) and \(b \) – elements of the algebraic or the real algebraic field with same minimal polynomial
- \(p \) – the minimal polynomial
OUTPUT:

$-1, 0, 1, \text{None}$ depending on whether $a < b$, $a = b$ or $a > b$ or the function did not succeed with the given precision of a and b.

EXAMPLES:

```python
sage: from sage.rings.qqbar import cmp_elements_with_same_minpoly
sage: x = polygen(ZZ)
sage: p = x^2 - 2
sage: a = AA.polynomial_root(p, RIF(1,2))
sage: b = AA.polynomial_root(p, RIF(-2,-1))
sage: cmp_elements_with_same_minpoly(a, b, p)
1
sage: cmp_elements_with_same_minpoly(-a, b, p)
0
```

 sage.rings.qqbar.conjugate_expand(v)

If the interval v (which may be real or complex) includes some purely real numbers, return v' containing v such that $v' == v'.conjugate()$. Otherwise return v unchanged. (Note that if $v' == v'.conjugate()$, and v' includes one non-real root of a real polynomial, then v' also includes the conjugate of that root. Also note that the diameter of the return value is at most twice the diameter of the input.)

EXAMPLES:

```python
sage: from sage.rings.qqbar import conjugate_expand
sage: conjugate_expand(CIF(RIF(0, 1), RIF(1, 2))).str(style='brackets')
[0.0000000000000000 .. 1.0000000000000000] + [1.0000000000000000 .. 2.0000000000000000]*I
sage: conjugate_expand(CIF(RIF(0, 1), RIF(0, 1))).str(style='brackets')
[0.0000000000000000 .. 1.0000000000000000] + [-1.0000000000000000 .. 1.0000000000000000]*I
sage: conjugate_expand(CIF(RIF(0, 1), RIF(-2, 1))).str(style='brackets')
[0.0000000000000000 .. 1.0000000000000000] + [-2.0000000000000000 .. 2.0000000000000000]*I
sage: conjugate_expand(RIF(1, 2)).str(style='brackets')
[1.0000000000000000 .. 2.0000000000000000]
```

 sage.rings.qqbar.conjugate_shrink(v)

If the interval v includes some purely real numbers, return a real interval containing only those real numbers. Otherwise return v unchanged.

If v includes exactly one root of a real polynomial, and v was returned by `conjugate_expand()`, then `conjugate_shrink(v)` still includes that root, and is a `RealIntervalFieldElement` iff the root in question is real.

EXAMPLES:

```python
sage: from sage.rings.qqbar import conjugate_shrink
sage: conjugate_shrink(RIF(3, 4)).str(style='brackets')
[3.0000000000000000 .. 4.0000000000000000]
```

5.1. Algebraic numbers
sage.rings.qqbar.do_polred(poly, threshold=32)

Find a polynomial of reasonably small discriminant that generates the same number field as poly, using the PARI polredbest function.

INPUT:

- poly - a monic irreducible polynomial with integer coefficients
- threshold - an integer used to decide whether to run polredbest

OUTPUT:

A triple (elt_fwd, elt_back, new_poly), where:

- new_poly is the new polynomial defining the same number field,
- elt_fwd is a polynomial expression for a root of the new polynomial in terms of a root of the original polynomial,
- elt_back is a polynomial expression for a root of the original polynomial in terms of a root of the new polynomial.

EXAMPLES:

```python
sage: from sage.rings.qqbar import do_polred
sage: R.<x> = QQ['x']
sage: oldpol = x^2 - 5
sage: fwd, back, newpol = do_polred(oldpol)
sage: newpol
x^2 - x - 1
sage: Kold.<a> = NumberField(oldpol)
sage: Knew.<b> = NumberField(newpol)
sage: newpol(fwd(a))
0
sage: oldpol(back(b))
0
sage: do_polred(x^2 - x - 11)
(1/3*x + 1/3, 3*x - 1, x^2 - x - 1)
sage: do_polred(x^3 + 123456)
(-1/4*x, -4*x, x^3 - 1929)
```

This shows that github issue #13054 has been fixed:

```python
sage: do_polred(x^4 - 4294967296*x^2 + 54265257667816538374400)
(1/4*x, 4*x, x^4 - 268435456*x^2 + 211973662764908353025)
```

sage.rings.qqbar.find_zero_result(fn, l)

l is a list of some sort. fn is a function which maps an element of l and a precision into an interval (either real or complex) of that precision, such that for sufficiently precise, exactly one element of l results in an interval containing 0. Returns that one element of l.

EXAMPLES:

```python
sage: from sage.rings.qqbar import find_zero_result
sage: _.<x> = QQ['x']
sage: delta = 10^(-70)
sage: p1 = x - 1
sage: p2 = x - 1 - delta
sage: p3 = x - 1 + delta
sage: p2 == find_zero_result(lambda p, prec: p(RealIntervalField(prec)(1 +
(continues on next page)
sage.rings.qqbar.get_AA_golden_ratio()

Return the golden ratio as an element of the algebraic real field. Used by sage.symbolic.constants.golden_ratio._algebraic_.

EXAMPLES:

```
sage: AA(golden_ratio) # indirect doctest
1.618033988749895?
```

sage.rings.qqbar.is_AlgebraicField(F)

Check whether F is an AlgebraicField instance.

This function is deprecated. Use isinstance() with AlgebraicField instead.

EXAMPLES:

```
sage: from sage.rings.qqbar import is_AlgebraicField
sage: [is_AlgebraicField(x) for x in [AA, QQbar, None, 0, "spam"]]
False, True, False, False, False
```

sage.rings.qqbar.is_AlgebraicNumber(x)

Test if x is an instance of AlgebraicNumber. For internal use.

EXAMPLES:

```
sage: from sage.rings.qqbar import is_AlgebraicNumber
sage: is_AlgebraicNumber(AA(sqrt(2))) # needs sage.symbolic
False
sage: is_AlgebraicNumber(QQbar(sqrt(2))) # needs sage.symbolic
True
sage: is_AlgebraicNumber("spam") # needs sage.symbolic
False
```

sage.rings.qqbar.is_AlgebraicReal(x)

Test if x is an instance of AlgebraicReal. For internal use.

EXAMPLES:

```
sage: from sage.rings.qqbar import is_AlgebraicReal
sage: is_AlgebraicReal(AA(sqrt(2))) # needs sage.symbolic
True
sage: is_AlgebraicReal(QQbar(sqrt(2))) # needs sage.symbolic
False
sage: is_AlgebraicReal("spam") # needs sage.symbolic
False
```
sage.rings.qqbar.is_AlgebraicRealField\( (F) \)

Check whether \( F \) is an \emph{AlgebraicRealField} instance. For internal use.

This function is deprecated. Use \texttt{isinstance()} with \texttt{AlgebraicRealField} instead.

**EXAMPLES:**

```python
sage: from sage.rings.qqbar import is_AlgebraicRealField
given_input = [AA, QQbar, None, 0, "spam"]
sage: [is_AlgebraicRealField(x) for x in given_input]
```

sage.rings.qqbar.isolating_interval\( (\text{inv}_\text{fn}, \text{pol}) \)

\( \text{inv}_\text{fn} \) is a function that takes a precision and returns an interval of that precision containing some particular root of \( \text{pol} \). (It must return better approximations as the precision increases.) \( \text{pol} \) is an irreducible polynomial with rational coefficients.

Returns an interval containing at most one root of \( \text{pol} \).

**EXAMPLES:**

```python
sage: from sage.rings.qqbar import isolating_interval
sage: _.<x> = QQ[x]
sage: isolating_interval(lambda prec: sqrt(RealIntervalField(prec)(2)), x^2 - 2)
```

And an example that requires more precision:

```python
sage: delta = 10^(-70)
sage: p = (x - 1) * (x - 1 - delta) * (x - 1 + delta)
sage: isolating_interval(lambda prec: RealIntervalField(prec)(1 + delta), p)
```

The function also works with complex intervals and complex roots:

```python
sage: p = x^2 - x + 13/36
sage: isolating_interval(lambda prec: ComplexIntervalField(prec)(1/2, 1/3), p)
```

sage.rings.qqbar.number_field_elements_from_algebraics\( (\text{numbers}, \text{minimal}=False, \text{same_field}=False, \text{embedded}=False, \text{name}='a', \text{prec}=53) \)

Given a sequence of elements of either \texttt{AA} or \texttt{QQbar} (or a mixture), computes a number field containing all of these elements, these elements as members of that number field, and a homomorphism from the number field back to \texttt{AA} or \texttt{QQbar}.

**INPUT:**

- \texttt{numbers} – a number or list of numbers
- \texttt{minimal} – Boolean (default: \texttt{False}). Whether to minimize the degree of the extension
- \texttt{same_field} – Boolean (default: \texttt{False}). See below
- embedded – Boolean (default: False). Whether to make the NumberField embedded
- name – string (default: 'a'); name of the primitive element
- prec – integer (default: 53). The number of bit of precision to guarantee finding real roots

OUTPUT:
A tuple with the NumberField, the numbers inside the NumberField, and a homomorphism from the number field back to AA or QQbar.

This may not return the smallest such number field, unless minimal=True is specified.

If same_field=True is specified, and all of the elements are from the same field (either AA or QQbar), the generated homomorphism will map back to that field. Otherwise, if all specified elements are real, the homomorphism might map back to AA (and will, if minimal=True is specified), even if the elements were in QQbar.

Also, a single number can be passed, rather than a sequence; and any values which are not elements of AA or QQbar will automatically be coerced to QQbar.

This function may be useful for efficiency reasons: doing exact computations in the corresponding number field will be faster than doing exact computations directly in AA or QQbar.

EXAMPLES:
We can use this to compute the splitting field of a polynomial. (Unfortunately this takes an unreasonably long time for non-toy examples.):

```
sage: x = polygen(QQ)
sage: p = x^3 + x^2 + x + 17
sage: rts = p.roots(ring=QQbar, multiplicities=False)
sage: splitting = number_field_elements_from_algebraics(rts, name='b')[0];
 → splitting
Number Field in b with defining polynomial y^6 - 40*y^4 - 22*y^3 + 873*y^2 +
 → 1386*y + 594
sage: p.roots(ring=splitting)
[(361/29286*b^5 - 19/3254*b^4 - 14359/29286*b^3 + 401/29286*b^2 + 18183/1627*b +␣
 → 15930/1627, 1),
 (49/117144*b^5 - 179/39048*b^4 - 3247/117144*b^3 + 22553/117144*b^2 + 1744/
 → 4881*b - 17195/6508, 1),
 (-1493/117144*b^5 + 407/39048*b^4 + 60683/117144*b^3 - 24157/117144*b^2 - 56293/
 → 4881*b - 53033/6508, 1)]
sage: # needs sage.symbolic
sage: rt2 = AA(sqrt(2)); rt2
1.414213562373095?
sage: rt3 = AA(sqrt(3)); rt3
1.732050807568878?
sage: rt3a = QQbar(sqrt(3)); rt3a
1.732050807568878?
sage: qqI = QQbar.zeta(4); qqI
I
sage: z3 = QQbar.zeta(3); z3
-0.500000000000000? + 0.866025403784439?*I
sage: rt2b = rt3 + rt2 - rt3; rt2b
1.414213562373095?
sage: rt2c = z3 + rt2 - z3;
 rt2c
1.414213562373095? + 0.?e-19*I
sage: number_field_elements_from_algebraics(rt2)
(Number Field in a with defining polynomial y^2 - 2, a,
 Ring morphism:
```
(continues on next page)
rt3a is a real number in QQbar. Ordinarily, we'd get a homomorphism to AA (because all elements are real), but if we specify same_field=True, we'll get a homomorphism back to QQbar:

```
sage: number_field_elements_from_algebraics(rt3a, same_field=True)
(Number Field in a with defining polynomial y^2 - 3, a, Ring morphism:
 From: Number Field in a with defining polynomial y^2 - 3
 To: Algebraic Field
 Defn: a |--> 1.732050807568878?)
```

We've created rt2b in such a way that sage does not initially know that it's in a degree-2 extension of Q:

```
sage: number_field_elements_from_algebraics(rt2b, minimal=True)
(Number Field in a with defining polynomial y^2 - 2, a, Ring morphism:
 From: Number Field in a with defining polynomial y^2 - 2
 To: Algebraic Real Field
 Defn: a |--> 1.414213562373095?)
```

Things work fine with rational numbers, too:
Or we can just pass in symbolic expressions, as long as they can be coerced into \( \mathbb{Q}\bar{\mathbb{Q}} \):

```sage
sage: number_field_elements_from_algebraics((sqrt(7), sqrt(9), sqrt(11))) #...
˓→needs sage.symbolic
(Number Field in a with defining polynomial \(y^4 - 9*y^2 + 1 \),
\[-a^3 + 8*a, 3, -a^3 + 10*a],
Ring morphism:
 From: Number Field in a with defining polynomial \(y^4 - 9*y^2 + 1 \)
 To: Algebraic Real Field
 Defn: a |--> 0.3354367396454047?)
```

Here we see an example of doing some computations with number field elements, and then mapping them back into \( \mathbb{Q}\bar{\mathbb{Q}} \):

```sage
sage: # needs sage.symbolic
sage: algebraics = (rt2, rt3, qqI, z3)
sage: fld,nums,hom = number_field_elements_from_algebraics(algebraics)
sage: fld,nums,hom
random
(Number Field in a with defining polynomial \(y^8 - y^4 + 1 \),
\[-a^5 + a^3 + a, a^6 - 2*a^2, a^6, -a^4],
Ring morphism:
 From: Number Field in a with defining polynomial \(y^8 - y^4 + 1 \)
 To: Algebraic Field
 Defn: a |--> -0.2588190451025208? - 0.9659258262890683?*I)
sage: (nfrt2, nfrt3, nfI, nfz3) = nums
sage: hom(nfrt2)
1.414213562373095? + 0.?e-18*I
sage: nfrt2^2
2
sage: nfrt3^2
3
sage: nfz3 + nfz3^2
-1
sage: nfI^2
-1
sage: sum = nfrt2 + nfrt3 + nfI + nfz3; sum
a^5 + a^4 - a^3 + 2*a^2 - a - 1
sage: hom(sum)
2.646264369941973? + 1.866025403784439?*I
sage: hom(sum) == rt2 + rt3 + qqI + z3
True
sage: [hom(n) for n in nums] == [rt2, rt3, qqI, z3]
True
```

It is also possible to have an embedded Number Field:

```sage
sage: x = polygen(ZZ)
sage: my_num = AA.polynomial_root(x^3-2, RIF(0,3))
sage: res = number_field_elements_from_algebraics(my_num,embedded=True)
sage: res[0].gen_embedding()
1.259921049894873?
sage: res[2]
Ring morphism:
 From: Number Field in a with defining polynomial \(y^3 - 2 \) with a = 1.
 To: Algebraic Real Field
 Defn: a |--> 1.259921049894873?
```

5.1. Algebraic numbers
Complex embeddings are possible as well:

```
sage: # needs sage.symbolic
elems = [sqrt(5), 2^(1/3)+sqrt(3)*I, 3/4]
nf, nums, hom = number_field_elements_from_algebraics(elems, embedded=True)
sage: nf
Number Field in a with defining polynomial y^24 - 6*y^23 ...- 9*y^2 + 1
with a = 0.2598679? + 0.0572892?*I
sage: nf.is_isomorphic(NumberField(...:
x^24 - 9*x^22 + 135*x^20 - 720*x^18 + 1821*x^16
- 3015*x^14 + 3974*x^12 - 3015*x^10 + 1821*x^8
- 720*x^6 + 135*x^4 - 9*x^2 + 1, 'a'))
True
sage: list(map(QQbar, nums)) == elems == list(map(hom, nums))
True
```

```
sage.rings.qqbar.prec_seq()
Return a generator object which iterates over an infinite increasing sequence of precisions to be tried in various numerical computations.
Currently just returns powers of 2 starting at 64.
EXAMPLES:

```
sage: g = sage.rings.qqbar.prec_seq()
sage: [next(g), next(g), next(g)]
[64, 128, 256]
```

```
sage.rings.qqbar.rational_exact_root(r, d)
Check whether the rational r is an exact d'th power.
If so, this returns the d'th root of r; otherwise, this returns None.
EXAMPLES:

```
sage: from sage.rings.qqbar import rational_exact_root
sage: rational_exact_root(16/81, 4)
2/3
sage: rational_exact_root(8/81, 3) is None
True
```
```
sage.rings.qqbar.short_prec_seq()

Return a sequence of precisions to try in cases when an infinite-precision computation is possible: returns a couple of small powers of 2 and then None.

EXAMPLES:

```python
sage: from sage.rings.qqbar import short_prec_seq
sage: short_prec_seq()
(64, 128, None)
```

sage.rings.qqbar.t1

alias of ANBinaryExpr

sage.rings.qqbar.t2

alias of ANRoot

sage.rings.qqbar.tail_prec_seq()

A generator over precisions larger than those in `short_prec_seq()`.

EXAMPLES:

```python
sage: from sage.rings.qqbar import tail_prec_seq
sage: g = tail_prec_seq()
sage: [next(g), next(g), next(g)]
[256, 512, 1024]
```

5.2 Universal cyclotomic field

The universal cyclotomic field is the smallest subfield of the complex field containing all roots of unity. It is also the maximal abelian extension of the rational numbers.

EXAMPLES:

```python
sage: UCF = UniversalCyclotomicField(); UCF
Universal Cyclotomic Field

To generate cyclotomic elements:

```python
sage: UCF.gen(5)
E(5)
sage: UCF.gen(5,2)
E(5)^2
sage: E = UCF.gen
```

Equality and inequality checks:

```python
sage: E(6,2) == E(6)^2 == E(3)
True
sage: E(6)^2 != E(3)
False
```

Addition and multiplication:
Algebraic Numbers and Number Fields, Release 10.3

```
sage: E(2) * E(3)
-E(3)
sage: f = E(2) + E(3); f
2*E(3) + E(3)^2
```

**Inverses:**

```
sage: f^-1
1/3*E(3) + 2/3*E(3)^2
```

**Conjugation and Galois conjugates:**

```
sage: f.conjugate()
E(3) + 2*E(3)^2
```

```
sage: f.galois_conjugates()
[2*E(3) + E(3)^2, E(3) + 2*E(3)^2]
```

```
sage: f.norm_of_galois_extension()
3
```

**One can create matrices and polynomials:**

```
sage: m = matrix(2,[E(3),1,1,E(4)]); m
[E(3) 1]
[1 E(4)]
sage: m.parent()
Full MatrixSpace of 2 by 2 dense matrices over Universal Cyclotomic Field
```

```
sage: m^2
[-E(3) E(12)^4 - E(12)^7 - E(12)^11]
[E(12)^4 - E(12)^7 - E(12)^11 0]
```

```
sage: m.charpoly()
x^2 + (-E(12)^4 + E(12)^7 + E(12)^11)*x + E(12)^4 + E(12)^7 + E(12)^8
```

```
sage: m.echelon_form()
[1 0]
[0 1]
sage: m.pivots()
(0, 1)
sage: m.rank()
2
```

```
sage: R.<x> = PolynomialRing(UniversalCyclotomicField(), 'x')
sage: E(3) * x - 1
E(3)*x - 1
```

The implementation simply wraps GAP Cyclotomic. As mentioned in their documentation: arithmetical operations are quite expensive, so the use of internally represented cyclotomics is not recommended for doing arithmetic over number fields, such as calculations with matrices of cyclotomics.

**Note:** There used to be a native Sage version of the universal cyclotomic field written by Christian Stump (see github
It was slower on most operations and it was decided to use a version based on GAP instead (see github issue #18152). One main difference in the design choices is that GAP stores dense vectors whereas the native ones used Python dictionaries (storing only nonzero coefficients). Most operations are faster with GAP except some operation on very sparse elements. All details can be found in github issue #18152.

REFERENCES:

- [Bre1997]

AUTHORS:

- Christian Stump (2013): initial Sage version (see github issue #8327)
- Vincent Delecroix (2015): completed rewriting using libgap (see github issue #18152)
- Sebastian Oehms (2018): deleted the method is_finite since it returned the wrong result (see github issue #25686)
- Sebastian Oehms (2019): added _factor_univariate_polynomial() (see github issue #28631)

sage.rings.universal_cyclotomic_field.E(n, k=1)

Return the n-th root of unity as an element of the universal cyclotomic field.

EXAMPLES:

```python
sage: E(3)
E(3)
sage: E(3) + E(5)
-E(15)^2 - 2*E(15)^8 - E(15)^11 - E(15)^13 - E(15)^14
```

sage.rings.universal_cyclotomic_field.UCF_sqrt_int(N, UCF)

Return the square root of the integer N.

EXAMPLES:

```python
sage: from sage.rings.universal_cyclotomic_field import UCF_sqrt_int
sage: UCF = UniversalCyclotomicField()
sage: UCF_sqrt_int(0, UCF)
0
sage: UCF_sqrt_int(1, UCF)
1
sage: UCF_sqrt_int(-1, UCF)
E(4)
sage: UCF_sqrt_int(-2, UCF)
E(8) - E(8)^3
sage: UCF_sqrt_int(-2, UCF)
E(8) + E(8)^3
```

class sage.rings.universal_cyclotomic_field.UCFtoQQbar(UCF)

Bases: Morphism

Conversion to QQbar.

EXAMPLES:

```python
sage: UCF = UniversalCyclotomicField()
sage: QQbar(UCF.gen(3))
-0.500000000000000? + 0.866025403784439?*I
sage: CC(UCF.gen(7, 2) + UCF.gen(7, 6))
0.400968867902419 + 0.193096429713793*I
```

(continues on next page)
class sage.rings.universal_cyclotomic_field.UniversalCyclotomicField(names=None)

Bases: UniqueRepresentation, UniversalCyclotomicField

The universal cyclotomic field.

The universal cyclotomic field is the infinite algebraic extension of \( \mathbb{Q} \) generated by the roots of unity. It is also the maximal Abelian extension of \( \mathbb{Q} \) in the sense that any Abelian Galois extension of \( \mathbb{Q} \) is also a subfield of the universal cyclotomic field.

Element

alias of UniversalCyclotomicFieldElement

algebraic_closure()

The algebraic closure.

EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF.algebraic_closure()
Algebraic Field
```

an_element()

Return an element.

EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF.an_element()
E(5) - 3*E(5)^2
```

class characteristic()

Return the characteristic.

EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF.characteristic()
0
```

degree()

Return the degree of self as a field extension over the Rationals.

EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF.degree()
+Infinity
```

gen(n, k=None)

Return the standard primitive \( n \)-th root of unity.

If \( k \) is not None, return the \( k \)-th power of it.

EXAMPLES:
sage: UCF = UniversalCyclotomicField()
sage: UCF.gen(15)
E(15)
sage: UCF.gen(7, 3)
E(7)^3
sage: UCF.gen(4, 2)
-1

There is an alias `zeta` also available:

sage: UCF.zeta(6)
-E(3)^2

`is_exact()`

Return `True` as this is an exact ring (i.e. not numerical).

EXAMPLES:

sage: UniversalCyclotomicField().is_exact()
True

`one()`

Return one.

EXAMPLES:

sage: UCF = UniversalCyclotomicField()
sage: UCF.one()
1
sage: parent(_)
Universal Cyclotomic Field

`some_elements()`

Return a tuple of some elements in the universal cyclotomic field.

EXAMPLES:

sage: UniversalCyclotomicField().some_elements()
(0, 1, -1, E(3), E(7) - 2/3*E(7)^2)
sage: all(parent(x) is UniversalCyclotomicField() for x in _)
True

`zero()`

Return zero.

EXAMPLES:

sage: UCF = UniversalCyclotomicField()
sage: UCF.zero()
0
sage: parent(_)
Universal Cyclotomic Field

`zeta(n, k=1)`

Return the standard primitive $n$-th root of unity.

If $k$ is not `None`, return the $k$-th power of it.

EXAMPLES:
There is an alias \texttt{zeta} also available:

\begin{verbatim}
sage: UCF = UniversalCyclotomicField()
sage: UCF.zeta(6)
-E(3)^2
\end{verbatim}

\begin{verbatim}
class sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement(par-
ent, obj)

Bases: FieldElement

INPUT:

\begin{itemize}
\item parent – a universal cyclotomic field
\item obj – a libgap element (either an integer, a rational or a cyclotomic)
\end{itemize}

\textbf{abs}()

Return the absolute value (or complex modulus) of \texttt{self}.

The absolute value is returned as an algebraic real number.

\begin{verbatim}
sage: f = 5/2*E(3)+E(5)/7
sage: f.abs()
2.597760303873084?
\end{verbatim}

\begin{verbatim}
sage: abs(f)
2.597760303873084?
\end{verbatim}

\begin{verbatim}
sage: a = E(8)
sage: abs(a)
1
\end{verbatim}

\begin{verbatim}
sage: v, w = vector([a]), vector([a, a])
sage: v.norm(), w.norm()
(1, 1.414213562373095?)
\end{verbatim}

\textbf{additive_order}()

Return the additive order.

\begin{verbatim}
sage: UCF = UniversalCyclotomicField()
sage: UCF.zero().additive_order()
0
sage: UCF.one().additive_order()
+Infinity
sage: UCF.gen(3).additive_order()
+Infinity
\end{verbatim}
\textbf{conductor()}

Return the conductor of \texttt{self}.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E(3).conductor() 3
sage: (E(5) + E(3)).conductor() 15
\end{verbatim}

\textbf{conjugate()}

Return the complex conjugate.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: (E(7) + 3*E(7,2) - 5 * E(7,3)).conjugate() -5*E(7)^4 + 3*E(7)^5 + E(7)^6
\end{verbatim}

\textbf{denominator()}

Return the denominator of this element.

\textbf{See also:}

\texttt{is_integral()}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: a = E(5) + 1/2*E(5,2) + 1/3*E(5,3)
sage: a
E(5) + 1/2*E(5)^2 + 1/3*E(5)^3
sage: a.denominator()
6
sage: parent(_)
Integer Ring
\end{verbatim}

\textbf{galois_conjugates}(n=None)

Return the Galois conjugates of \texttt{self}.

\textbf{INPUT:}

\begin{itemize}
  \item \texttt{n} – an optional integer. If provided, return the orbit of the Galois group of the \texttt{n}-th cyclotomic field over \texttt{Q}. Note that \texttt{n} must be such that this element belongs to the \texttt{n}-th cyclotomic field (in other words, it must be a multiple of the conductor).
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E(6).galois_conjugates() [-E(3)^2, -E(3)]
\end{verbatim}

\begin{verbatim}
sage: E(6).galois_conjugates() [-E(3)^2, -E(3)]
\end{verbatim}

\begin{verbatim}
sage: (E(9,2) - E(9,4)).galois_conjugates() [E(9)^2 - E(9)^4, E(9)^2 + E(9)^4 + E(9)^5, -E(9)^2 - E(9)^5 - E(9)^7, -E(9)^2 - E(9)^4 - E(9)^7, E(9)^4 + E(9)^5 + E(9)^7, -E(9)^5 + E(9)^7]
\end{verbatim}

(continues on next page)

\section{5.2. Universal cyclotomic field}
imag()  
Return the imaginary part of this element.

EXAMPLES:

```sage
sage: E(3).imag()
-1/2*E(12)^7 + 1/2*E(12)^11
sage: E(5).imag()
1/2*E(20) - 1/2*E(20)^9
```

imag_part()  
Return the imaginary part of this element.

EXAMPLES:

```sage
sage: E(3).imag()
-1/2*E(12)^7 + 1/2*E(12)^11
sage: E(5).imag()
1/2*E(20) - 1/2*E(20)^9
```

inverse()  
is_integral()  
Return whether self is an algebraic integer.

This just wraps `IsIntegralCyclotomic` from GAP.

See also:

denominator()  

EXAMPLES:

```sage
sage: E(6).is_integral()
True
```
is_rational()

Test whether this element is a rational number.

EXAMPLES:

```
sage: E(3).is_rational()
False
sage: (E(3) + E(3,2)).is_rational()
True
```

is_real()

Test whether this element is real.

EXAMPLES:

```
sage: E(3).is_real()
False
sage: (E(3) + E(3,2)).is_real()
True
sage: a = E(3) - 2*E(7)
sage: a.real_part().is_real()
True
sage: a.imag_part().is_real()
True
```

is_square()

EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF(5/2).is_square()
True
sage: UCF.zeta(7,3).is_square()
True
sage: (2 + UCF.zeta(3)).is_square()
Traceback (most recent call last):
 ... Not ImplementedError: is_square() not fully implemented for elements of...
```

minpoly(var='x')

The minimal polynomial of self element over \( \mathbb{Q} \).

INPUT:

- \( \text{var} \) – (optional, default 'x') the name of the variable to use.

EXAMPLES:

```
sage: UCF.<E> = UniversalCyclotomicField()
sage: UCF(4).minpoly()
```

(continues on next page)
Todo: Polynomials with libgap currently does not implement a .sage() method (see github issue #18266). It would be faster/safer to not use string to construct the polynomial.

\textbf{multiplicative\_order()} \\
Return the multiplicative order.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E(5).multiplicative_order()
5
sage: (E(5) + E(12)).multiplicative_order()
+Infinity
sage: UniversalCyclotomicField().zero().multiplicative_order()
Traceback (most recent call last):
  ...
GAPError: Error, argument must be nonzero
\end{verbatim}

\textbf{norm\_of\_galois\_extension()} \\
Return the norm as a Galois extension of $\mathbb{Q}$, which is given by the product of all galois_conjugates.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E(3).norm_of_galois_extension()
1
sage: E(6).norm_of_galois_extension()
1
sage: (E(2) + E(3)).norm_of_galois_extension()
3
sage: parent(_)
Integer Ring
\end{verbatim}

\textbf{real()} \\
Return the real part of this element.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: E(3).real()
-1/2
sage: E(5).real()
1/2*E(5) + 1/2*E(5)^4
\end{verbatim}

\begin{verbatim}
sage: a = E(5) - 2*E(3)
sage: AA(a.real()) == QQbar(a).real()
True
\end{verbatim}
**real_part()**

Return the real part of this element.

**EXAMPLES:**

```
sage: E(3).real()
-1/2
sage: E(5).real()
1/2*E(5) + 1/2*E(5)^4
```

```
sage: a = E(5) - 2*E(3)
sage: AA(a.real()) == QQbar(a).real()
True
```

**sqrt(extend=True, all=False)**

Return a square root of *self*.

With default options, the output is an element of the universal cyclotomic field when this element is expressed via a single root of unity (including rational numbers). Otherwise, return an algebraic number.

**INPUT:**

- extend – bool (default: True); if True, might return a square root in the algebraic closure of the rationals. If False, return a square root in the universal cyclotomic field or raises an error.
- all – bool (default: False); if True, return a list of all square roots.

**EXAMPLES:**

```
sage: UCF = UniversalCyclotomicField()
sage: UCF(3).sqrt()
E(12)^7 - E(12)^11
```

```
sage: r = UCF(-1400 / 143).sqrt()
sage: r**2
-1400/143
```

```
sage: E(33).sqrt()
-E(33)^17
```

```
sage: (3 * E(5)).sqrt() ** 2
3*E(5)
```

```
sage: UCF(3).sqrt(all=True)
[E(12)^7 - E(12)^11, -E(12)^7 + E(12)^11]
sage: (1 + UCF.zeta(5)).sqrt(all=True)
[1.2097625765258337 + 0.3930756888787117*I,
-1.2097625765258337 - 0.3930756888787117*I]
```

Setting all=True you obtain the two square roots in a list:

In the following situation, Sage is not (yet) able to compute a square root within the universal cyclotomic field:
to_cyclotomic_field(R=None)

Return this element as an element of a cyclotomic field.

EXAMPLES:

```
sage: UCF = UniversalCyclotomicField()
sage: UCF.gen(3).to_cyclotomic_field()
zeta3
sage: UCF.gen(3,2).to_cyclotomic_field()
-zeta3 - 1

sage: CF = CyclotomicField(5)
sage: CF(E(5)) # indirect doctest
zeta5

sage: CF = CyclotomicField(7)
sage: CF(E(5)) # indirect doctest
Traceback (most recent call last):
 ...
TypeError: cannot coerce zeta5 into Cyclotomic Field of order 7 and degree 6

sage: CF = CyclotomicField(10)
sage: CF(E(5)) # indirect doctest
zeta10^2
```

Matrices are correctly dealt with:

```
[E(3) E(4)]
[E(5) -E(3)^2]
```

```
sage: Matrix(CyclotomicField(60),M) # indirect doctest
[zeta60^10 - 1 zeta60^15]
[zeta60^12 zeta60^10]
```

Using a non-standard embedding:

```
sage: # needs sage.symbolic
sage: CF = CyclotomicField(5, embedding=CC(exp(4*pi*i/5)))
sage: x = E(5)
sage: CC(x)
0.309016994374947 + 0.951056516295154*I
sage: CC(CF(x))
0.309016994374947 + 0.951056516295154*I
```

Test that the bug reported in github issue #19912 has been fixed:
sage: a = 1+E(4); a
1 + E(4)
sage: a.to_cyclotomic_field()
zeta4 + 1

sage.rings.universal_cyclotomic_field.late_import()

This function avoids importing libgap on startup. It is called once through the constructor of UniversalCyclotomicField.

EXAMPLES:

sage: import sage.rings.universal_cyclotomic_field as ucf
sage: _ = UniversalCyclotomicField()  # indirect doctest
sage: ucf.libgap is None  # indirect doctest
False
6.1 Enumeration of primitive totally real fields

This module contains functions for enumerating all primitive totally real number fields of given degree and small discriminant. Here a number field is called primitive if it contains no proper subfields except \( \mathbb{Q} \).

See also \texttt{sage.rings.number_field.totallyreal_rel}, which handles the non-primitive case using relative extensions.

ALGORITHM:

We use Hunter’s algorithm ([Coh2000], Section 9.3) with modifications due to Takeuchi [Tak1999] and the author [Voi2008].

We enumerate polynomials \( f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \). Hunter’s theorem gives bounds on \( a_{n-1} \) and \( a_{n-2} \); then given \( a_{n-1} \) and \( a_{n-2} \), one can recursively compute bounds on \( a_{n-3}, \ldots, a_0 \), using the fact that the polynomial is totally real by looking at the zeros of successive derivatives and applying Rolle’s theorem. See [Tak1999] for more details.

EXAMPLES:

In this first simple example, we compute the totally real quadratic fields of discriminant \( \leq 50 \).

```python
sage: enumerate_totallyreal_fields_prim(2, 50)
[[5, x^2 - x - 1],
 [8, x^2 - 2],
 [12, x^2 - 3],
 [13, x^2 - x - 3],
 [17, x^2 - x - 4],
 [21, x^2 - x - 5],
 [24, x^2 - 6],
 [28, x^2 - 7],
 [29, x^2 - x - 7],
 [33, x^2 - x - 8],
 [37, x^2 - x - 9],
 [40, x^2 - 10],
 [41, x^2 - x - 10],
 [44, x^2 - 11]]
```

Next, we compute all totally real quintic fields of discriminant \( \leq 10^5 \):

```python
sage: ls = enumerate_totallyreal_fields_prim(5, 10^5) ; ls
[[14641, x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1],
 (continues on next page)
We see that there are 9 such fields (up to isomorphism!).

See also [Mar1980].

AUTHORS:

- John Voight (2007-09-01): initial version; various optimization tweaks
- John Voight (2007-10-09): added DSage module; added pari functions to avoid recomputations; separated DSage component
- Craig Citro and John Voight (2007-11-04): additional doctests and type checking
- Craig Citro and John Voight (2008-02-10): final modifications for submission

sage.rings.number_field.totallyreal.enumerate_totallyreal_fields_prim(n, B, a=[], verbose=0, return_seq=False, phc=False, keep_fields=False, t_2=False, just_print=False, return_pari_objects=True)

Enumerate primitive totally real fields of degree $n > 1$ with discriminant $d \leq B$; optionally one can specify the first few coefficients, where the sequence a corresponds to

$$a[d]*x^n + \ldots + a[0]*x^{(n-d)}$$

where $\text{length}(a) = d+1$, so in particular always $a[d] = 1$.

Note: This is guaranteed to give all primitive such fields, and seems in practice to give many imprimitive ones.

INPUT:

- n – (integer) the degree
- B – (integer) the discriminant bound
- a – (list, default: []) the coefficient list to begin with
- verbose – (integer or string, default: 0) if $\text{verbose} == 1$ (or 2), then print to the screen (really) verbosely; if verbose is a string, then print verbosely to the file specified by verbose.
- return_seq – (boolean, default False) If True, then return the polynomials as sequences (for easier exporting to a file).
Algebraic Numbers and Number Fields, Release 10.3

• \texttt{phc} – boolean or integer (default: False)
• \texttt{keep_fields} – (boolean or integer, default: False) If \texttt{keep_fields} is True, then keep fields up to $B^{*\log(B)}$; if \texttt{keep_fields} is an integer, then keep fields up to that integer.
• \texttt{t_2} – (boolean or integer, default: False) If $t_2 = T$, then keep only polynomials with t_2 norm $\geq T$.
• \texttt{just_print} – (boolean, default: False): if \texttt{just_print} is not False, instead of creating a sorted list of totally real number fields, we simply write each totally real field we find to the file whose filename is given by \texttt{just_print}. In this case, we don’t return anything.
• \texttt{return_pari_objects} – (boolean, default: True) if both \texttt{return_seqs} and \texttt{return_pari_objects} are False then it returns the elements as Sage objects; otherwise it returns PARI objects.

\textbf{OUTPUT:} the list of fields with entries $[d, f]$, where d is the discriminant and f is a defining polynomial, sorted by discriminant.

\textbf{AUTHORS:}
• John Voight (2007-09-03)
• Craig Citro (2008-09-19): moved to Cython for speed improvement

\texttt{sage.rings.number_field.totallyreal.odlyzko_bound_totallyreal}(n)
This function returns the unconditional Odlyzko bound for the root discriminant of a totally real number field of degree n.

\textbf{Note:} The bounds for $n > 50$ are not necessarily optimal.

\textbf{INPUT:}
• n – (integer) the degree

\textbf{OUTPUT:}
a lower bound on the root discriminant (as a real number)

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.rings.number_field.totallyreal import odlyzko_bound_totallyreal
golden_bound_totallyreal(10)
sage: [odlyzko_bound_totallyreal(n) for n in range(1, 5)]
[1.0, 2.223, 3.61, 5.067]
\end{verbatim}

\textbf{AUTHORS:}
• John Voight (2007-09-03)

\textbf{Note:} The values are calculated by Martinet [Mar1980].

\texttt{sage.rings.number_field.totallyreal.weed_fields}(S, \texttt{lenS}=0)
Function used internally by the \texttt{enumerate_totallyreal_fields_prim()} routine. (Weeds the fields listed by \texttt{[discriminant, polynomial]} for isomorphism classes.) Returns the size of the resulting list.

\textbf{EXAMPLES:}
6.2 Enumeration of totally real fields: relative extensions

This module contains functions to enumerate primitive extensions \(L/K \), where \(K \) is a given totally real number field, with given degree and small root discriminant. This is a relative analogue of the problem described in \texttt{sage.rings.number_field.totallyreal}, and we use a similar approach based on a relative version of Hunter’s theorem.

In this first simple example, we compute the totally real quadratic fields of \(F = \mathbb{Q}(\sqrt{2}) \) of discriminant \(\leq 2000 \).

\begin{sage}
sage: ZZx.<x> = ZZ[]
sage: F.<t> = NumberField(x^2 - 2)
sage: enumerate_totallyreal_fields_rel(F, 2, 2000)
[[1600, x^4 - 6*x^2 + 4, xF^2 + xF - 1]]
\end{sage}

There is indeed only one such extension, given by \(F(\sqrt{5}) \).

Next, we list all totally real quadratic extensions of \(F(\sqrt{5}) \) with root discriminant \(\leq 10 \).

\begin{sage}
sage: F.<t> = NumberField(x^2 - 5)
sage: ls = enumerate_totallyreal_fields_rel(F, 2, 10^4)
sage: ls
[[725, x^4 - 3*x^2 + 1, xF^2 + (xF^2 - 3)],
[1125, x^4 - 4*x^2 + 5, xF^2 + (-1/2*t - 7/2)*xF + 7/2],
[1600, x^4 - 6*x^2 + 4, xF^2 - 2],
[2000, x^4 - 5*x^2 + 5, xF^2 - 1/2*t - 5/2],
[2225, x^4 - 5*x^2 + 7*x + 1, xF^2 + (xF^2 + 3)*xF - 3],
[2525, x^4 - 2*x^3 - 4*x^2 + 5*x + 5, xF^2 + (-1/2*t - 1/2)*xF - 1/2*t - 5/2],
[3600, x^4 - 2*x^3 - 7*x^2 + 8*x + 1, xF^2 - 3],
[4225, x^4 - 9*x^2 + 4, xF^2 + (-1/2*t - 1/2)*xF - 3/2*t - 9/2],
[4400, x^4 - 7*x^2 + 11, xF^2 - 1/2*t - 7/2],
[4525, x^4 - x^3 - 3*x^2 + 3*x + 9, xF^2 + (1/2*t - 1/2)*xF - 3],
[5125, x^4 - 2*x^3 - 6*x^2 + 5*x + 7, xF^2 + (-1/2*t - 1/2)*xF + t - 4],
[5225, x^4 - 3*x^2 + 7*x + 11, xF^2 + (-1/2*t - 1/2)*xF - 1/2*t - 7/2],
[5725, x^4 - 3*x^2 - 8*x^2 + 6*x + 11, xF^2 + (-1/2*t + 1/2)*xF - 3/2*t - 9/2],
[6125, x^4 - x^3 - 9*x^2 + 9*x + 11, xF^2 + (-1/2*t + 1/2)*xF - t - 4],
[7225, x^4 - 11*x^2 + 9, xF^2 + (-1)*xF - 3],
[7600, x^4 - 9*x^2 + 19, xF^2 - 1/2*t - 9/2],
[7625, x^4 - x^3 - 9*x^2 + 4*x + 16, xF^2 + (-1/2*t - 1/2)*xF - 4],
[8000, x^4 - 10*x^2 + 20, xF^2 - t - 5],
[8525, x^4 - 2*x^3 - 8*x^2 + 9*x + 19, xF^2 + (-1)*xF - 1/2*t - 9/2],
[8725, x^4 - x^3 - 10*x^2 + 2*x + 19, xF^2 + (-1/2*t - 1/2)*xF - 1/2*t - 9/2],
[9225, x^4 - x^3 - 10*x^2 + 7*x + 19, xF^2 + (-1/2*t + 1/2)*xF - 1/2*t - 9/2]]
sage: [f[0] for f in ls]
[725, 1125, 1600, 2000, 2225, 2525, 3600, 4225, 4400, 4525, 5125, 5225, 5725, 6125, 6725, 7225, 7600, 7625, 8000, 8525, 8725, 9225]
sage: [NumberField(ZZx(x[1]), 't').is_galois() for x in ls]
[False, True, True, False, False, True, True, False, False, False, False, False, True, False, False, False, False, False, False, False, False]
\end{sage}
Eight out of 21 such fields are Galois (with Galois group C_4 or $C_2 \times C_2$); the others have Galois closure of degree 8 (with Galois group D_8).

Finally, we compute the cubic extensions of $\mathbb{Q}(\zeta_7)$ with discriminant $\leq 17 \times 10^9$.

```sage
sage: F.<t> = NumberField(ZZx([1,-4,3,1]))
sage: F.disc()
49
sage: enumerate_totallyreal_fields_rel(F, 3, 17*10^9) # not tested, too long time...
→ (258s on sage.math, 2013)
[[16240385609L, x^9 - x^8 - 9*x^7 + 4*x^6 + 26*x^5 - 2*x^4 - 25*x^3 - x^2 + 7*x + 1,
x^3 + (-t^2 - 4*t + 1)*xF^2 + (t^2 + 3*t - 5)*xF + 3*t^2 + 11*t - 5]
] # 32-bit
[[16240385609, x^9 - x^8 - 9*x^7 + 4*x^6 + 26*x^5 - 2*x^4 - 25*x^3 - x^2 + 7*x + 1,
x^3 + (-t^2 - 4*t + 1)*xF^2 + (t^2 + 3*t - 5)*xF + 3*t^2 + 11*t - 5]] # 64-bit
```

AUTHORS:

- John Voight (2007-11-03): initial version

sage.rings.number_field.totallyreal_rel.enumerate_totallyreal_fields_all(n, B, verbose=0, return_seqs=False, return_pari_objects=True)

Enumerate all totally real fields of degree n with discriminant at most B, primitive or otherwise.

INPUT:

- n – integer, the degree
- B – integer, the discriminant bound
- verbose – boolean or nonnegative integer or string (default: 0) give a verbose description of the computations being performed. If verbose is set to 2 or more, it outputs some extra information. If verbose is a string, it outputs to a file specified by verbose
- return_seqs – (boolean, default False) If True, then return the polynomials as sequences (for easier exporting to a file). This also returns a list of four numbers, as explained in the OUTPUT section below.
- return_pari_objects – (boolean, default: True) If both return_seqs and return_pari_objects are False then it returns the elements as Sage objects; otherwise it returns PARI objects.

EXAMPLES:

```sage
sage: enumerate_totallyreal_fields_all(4, 2000)
[[725, x^4 - x^3 - 3*x^2 + x + 1],
 [1125, x^4 - x^3 - 4*x^2 + 4*x + 1],
 [1600, x^4 - 6*x^2 + 4],
 [1957, x^4 - 4*x^2 - x + 1],
 [2000, x^4 - 5*x^2 + 5]]
sage: enumerate_totallyreal_fields_all(1, 10)
[[[1, x - 1]]
```

6.2. Enumeration of totally real fields: relative extensions 429
This function enumerates (primitive) totally real field extensions of degree \(m > 1 \) of the totally real field \(F \) with discriminant \(d \leq B \); optionally one can specify the first few coefficients, where the sequence \(a \) corresponds to a polynomial by

\[a[d]*x^n + \ldots + a[0]*x^{(n-d)} \]

if \(\text{length}(a) = d+1 \), so in particular always \(a[d] = 1 \).

Note: This is guaranteed to give all primitive such fields, and seems in practice to give many imprimitive ones.

INPUT:
- \(F \) – number field, the base field
- \(m \) – integer, the degree
- \(B \) – integer, the discriminant bound
- \(a \) – list (default: \([\]\)), the coefficient list to begin with
- \(\text{verbose} \) – boolean or nonnegative integer or string (default: 0) give a verbose description of the computations being performed. If \(\text{verbose} \) is set to 2 or more then it outputs some extra information. If \(\text{verbose} \) is a string then it outputs to a file specified by \(\text{verbose} \)
- \(\text{return_seqs} \) – (boolean, default False) If True, then return the polynomials as sequences (for easier exporting to a file). This also returns a list of four numbers, as explained in the OUTPUT section below.
- \(\text{return_pari_objects} \) – (boolean, default: True) if both \(\text{return_seqs} \) and \(\text{return_pari_objects} \) are False then it returns the elements as Sage objects; otherwise it returns PARI objects.

OUTPUT:
- the list of fields with entries \([d, \text{fabs}, f]\), where \(d \) is the discriminant, \(\text{fabs} \) is an absolute defining polynomial, and \(f \) is a defining polynomial relative to \(F \), sorted by discriminant.
- if \(\text{return_seqs} \) is True, then the first field of the list is a list containing the count of four items as explained below
 - the first entry gives the number of polynomials tested
 - the second entry gives the number of polynomials with its discriminant having a large enough square divisor
 - the third entry is the number of irreducible polynomials
 - the fourth entry is the number of irreducible polynomials with discriminant at most \(B \)

EXAMPLES:
AUTHORS:

- John Voight (2007-11-01)

```
sage: ZZx.<x> = ZZ[]
sage: F.<t> = NumberField(x^2 - 2)
sage: enumerate_totallyreal_fields_rel(F, 1, 2000)
[[1, [-2, 0, 1], xF - 1]]
sage: enumerate_totallyreal_fields_rel(F, 2, 2000)
[[1600, x^4 - 6*x^2 + 4, xF^2 + xF - 1]]
sage: enumerate_totallyreal_fields_rel(F, 2, 2000, return_seqs=True)
[[9, 6, 5, 0], [[1600, [4, 0, -6, 0, 1], [-1, 1, 1]]]]
```

```
INTRODUCTION

This class encodes the data used in the enumeration of totally real fields for relative extensions.

```
6.2. Enumeration of totally real fields: relative extensions 431
```
We do not give a complete description here. For more information, see the attached functions; all of these are used internally by the functions in totallyreal_rel.py, so see that file for examples and further documentation.

`incr(f_out, verbose=False, haltk=0)`

‘Increment’ the totally real data to the next value which satisfies the bounds essentially given by Rolle’s theorem, and return the next polynomial in the sequence `f_out`.

The default or usual case just increments the constant coefficient; then inductively, if this is outside of the bounds we increment the next higher coefficient, and so on.

If there are no more coefficients to be had, returns the zero polynomial.

**INPUT:**
- `f_out` – an integer sequence, to be written with the coefficients of the next polynomial
- `verbose` – boolean or nonnegative integer (default: `False`) print verbosely computational details. It prints extra information if `verbose` is set to 2 or more
- `haltk` – integer, the level at which to halt the inductive coefficient bounds

**OUTPUT:**
the successor polynomial as a coefficient list.

### 6.3 Enumeration of totally real fields: data

**AUTHORS:**
- John Voight (2007-09-01): Initial version
- John Voight (2007-09-19): various optimization tweaks
- Craig Citro and John Voight (2007-11-04): type checking and other polishing

`sage.rings.number_field.totallyreal_data.easy_is_irreducible_py(f)`

Used solely for testing `easy_is_irreducible`.

**EXAMPLES:**

```python
sage: sage.rings.number_field.totallyreal_data.easy_is_irreducible_py(pari('x^2+1 →'))
1
sage: sage.rings.number_field.totallyreal_data.easy_is_irreducible_py(pari('x^2-1 →'))
0
```

`sage.rings.number_field.totallyreal_data.hermite_constant(n)`

Return the \( n \)-th Hermite constant.

The \( n \)-th Hermite constant (typically denoted \( \gamma_n \)), is defined to be

\[
\max_L \min_{0 \neq x \in L} \|x\|^2
\]

where \( L \) runs over all lattices of dimension \( n \) and determinant 1.

For \( n \leq 8 \) it returns the exact value of \( \gamma_n \), and for \( n > 9 \) it returns an upper bound on \( \gamma_n \).

**INPUT:**
• \( n \) – integer

OUTPUT:

(an upper bound for) the Hermite constant \( \gamma_n \)

EXAMPLES:

```python
sage: hermite_constant(1) # trivial one-dimensional lattice
1.0
sage: hermite_constant(2) # Eisenstein lattice
1.1547005383792515
sage: 2/sqrt(3.)
1.15470053837925
sage: hermite_constant(8) # E_8
2.0
```

Note: The upper bounds used can be found in [CS1999] and [CE2003].

AUTHORS:

• John Voight (2007-09-03)

`sage.rings.number_field.totallyreal_data.int_has_small_square_divisor(d)`

Return the largest \( a \) such that \( a^2 \) divides \( d \) and \( a \) has prime divisors < 200.

EXAMPLES:

```python
sage: from sage.rings.number_field.totallyreal_data import int_has_small_square_divisor
sage: int_has_small_square_divisor(500)
100
sage: is_prime(691)
True
sage: int_has_small_square_divisor(691)
1
sage: int_has_small_square_divisor(691^2)
1
```

`sage.rings.number_field.totallyreal_data.lagrange_degree_3(n, an1, an2, an3)`

Private function. Solves the equations which arise in the Lagrange multiplier for degree 3: for each \( 1 \leq r \leq n-2 \), we solve

\[
rx_i + (n - 1 - r)y_i + z_i = s_i \quad (i = 1, 2, 3)
\]

where the \( s_i \) are the power sums determined by the coefficients \( a \). We output the largest value of \( z \) which occurs. We use a precomputed elimination ideal.

EXAMPLES:

```python
sage: ls = sage.rings.number_field.totallyreal_data.lagrange_degree_3(3,0,1,2)
sage: [RealField(10)(x) for x in ls]
[-1.0, -1.0]
sage: sage.rings.number_field.totallyreal_data.lagrange_degree_3(3,6,1,2) # random
[-5.8878, -5.8878]
```
class sage.rings.number_field.totallyreal_data.tr_data

Bases: object

This class encodes the data used in the enumeration of totally real fields.

We do not give a complete description here. For more information, see the attached functions; all of these are used internally by the functions in *totallyreal*, so see that file for examples and further documentation.

**increment** *(verbose=False, haltk=0, phc=False)*

‘Increment’ the totally real data to the next value which satisfies the bounds essentially given by Rolle’s theorem, and return the next polynomial as a sequence of integers.

The default or usual case just increments the constant coefficient; then inductively, if this is outside of the bounds we increment the next higher coefficient, and so on.

If there are no more coefficients to be had, returns the zero polynomial.

**INPUT:**

- **verbose** – boolean to print verbosely computational details
- **haltk** – integer, the level at which to halt the inductive coefficient bounds
- **phc** – boolean, if PHCPACK is available, use it when $k = n - 5$ to compute an improved Lagrange multiplier bound

**OUTPUT:**

The next polynomial, as a sequence of integers

**EXAMPLES:**

```python
sage: T = sage.rings.number_field.totallyreal_data.tr_data(2,100)
sage: T.increment()
[-24, -1, 1]
sage: for i in range(19): _ = T.increment()
sage: T.increment()
[-3, -1, 1]
sage: T.increment()
[-25, 0, 1]
```

**printa()**

Print relevant data for *self*.

**EXAMPLES:**

```python
sage: T = sage.rings.number_field.totallyreal_data.tr_data(3,2^10)
sage: T.printa()
k = 1
a = [0, 0, -1, 1]
amax = [0, 0, 0, 1]
beta = [...] gnk = [...]```
6.4 Enumeration of totally real fields: PHC interface

AUTHORS:
- John Voight (2007-09-19): initial version

```python
sage.rings.number_field.totallyreal_phc.coefficients_to_power_sums(n, m, a)
```

Take the list `a`, representing a list of initial coefficients of a (monic) polynomial of degree `n`, and return the power sums of the roots of `f` up to `(m - 1)`-th powers.

INPUT:
- `n` – integer, the degree
- `a` – list of integers, the coefficients

OUTPUT:
list of integers.

Note: This uses Newton’s relations, which are classical.

EXAMPLES:

```python
sage: from sage.rings.number_field.totallyreal_phc import coefficients_to_power_sums
sage: coefficients_to_power_sums(3, 2, [1, 5, 7])
[3, -7, 39]
sage: coefficients_to_power_sums(5, 4, [1, 5, 7, 9, 8])
[5, -8, 46, -317, 2158]
```
INDICES AND TABLES

- Index
- Module Index
- Search Page
sage.rings.number_field.bdd_height, 206
sage.rings.number_field.class_group, 301
sage.rings.number_field.galois_group, 142
sage.rings.number_field.homset, 212
sage.rings.number_field.maps, 221
sage.rings.number_field.morphism, 211
sage.rings.number_field.number_field, 1
sage.rings.number_field.number_field_base, 108
sage.rings.number_field.number_field_element, 153
sage.rings.number_field.number_field_element_quadratic, 192
sage.rings.number_field.number_field_ideal, 255
sage.rings.number_field.number_field_ideal_rel, 285
sage.rings.number_field.number_field_morphisms, 216
sage.rings.number_field.number_field_rel, 112
sage.rings.number_field.order, 229
sage.rings.number_field.order_ideal, 295
sage.rings.number_field.S_unit_solver, 313
sage.rings.number_field.selmer_group, 342
sage.rings.number_field.small_primes_of_degree_one, 340
sage.rings.number_field.splitting_field, 136
sage.rings.number_field.structure, 226
sage.rings.number_field.totallyreal, 425
sage.rings.number_field.totallyreal_data, 432
sage.rings.number_field.totallyreal_phc, 435
sage.rings.number_field.totallyreal_rel, 428
sage.rings.number_field.unit_group, 307
sage.rings.qqbar, 347
sage.rings.universal_cyclotomic_field, 411
Non-alphabetical

richcmp() (sage.rings.qqbar.AlgebraicNumber method), 378
richcmp() (sage.rings.qqbar.AlgebraicReal method), 392

A

abs() (sage.rings.number_field.number_field_element.NumberFieldElement method), 154
abs() (sage.rings.qqbar.ANDescr method), 357
abs() (sage.rings.qqbar.ANExtensionElement method), 359
abs() (sage.rings.qqbar.ANRational method), 364
abs() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement method), 416
abs_hom() (sage.rings.number_field.morphism.RelativeNumberFieldHomomorphism_from_abs method), 212
abs_non_arch() (sage.rings.number_field.number_field_element.NumberFieldElement method), 155
abs_val() (sage.rings.number_field.number_field_element.NumberFieldElement method), 11
absolute_base_field() (sage.rings.number_field.number_field_element.NumberFieldElement_relative method), 114
absolute_charpoly() (sage.rings.number_field.number_field_element.NumberFieldElement_absolute method), 184
absolute_charpoly() (sage.rings.number_field.number_field_element.NumberFieldElement_relative method), 187
absolute_charpoly() (sage.rings.number_field.number_field_element.OrderElement_relative method), 190
absolute_degree() (sage.rings.number_field.number_field_element.NumberField_element, NumberFieldElement_relative method), 114
absolute_degree() (sage.rings.number_field_number_field.Generic method), 42
absolute_degree() (sage.rings.number_field_order.Order method), 232
absolute_different() (sage.rings.number_field.number_field_element.NumberFieldElement method), 155
absolute_different() (sage.rings.number_field.number_field_rel.NumberField_relative method), 114
absolute_different() (sage.rings.number_field.number_field_rel.NumberField_element, NumberField_absolute method), 12
absolute_discriminant() (sage.rings.number_field.number_field_element.NumberField_element, NumberField_absolute method), 12
absolute_discriminant() (sage.rings.number_field_order.Order_absolute method), 244
absolute_discriminant() (sage.rings.number_field_order.Order_relative method), 248
absolute_field() (sage.rings.number_field.number_field_element.NumberField_element, NumberField_element, NumberField_element_ideal method), 115
absolute_field() (sage.rings.number_field_number_field.Generic method), 42
absolute_generator() (sage.rings.number_field_number_field.Generic method), 116
absolute_generator() (sage.rings.number_field_number_field_element.NumberFieldAbsolute method), 12
absolute_ideal() (sage.rings.number_field_number_field_ideal_RelativeIdeal method), 286
absolute_minpoly() (sage.rings.number_field_number_field_element.NumberFieldElement_absolute method), 184
absolute_minpoly() (sage.rings.number_field_number_field_element.NumberFieldElement_relative method), 12

441
Index
Index 445
Index
gens() (sage.rings.number_field.NumberField_element_quadratic method), 196
galois_conjugates() (sage.rings.number_field.NumberField_element_quadratic method), 196
galois_conjugates() (sage.rings.number_field.NumberField_element_number_field method), 163
galois_conjugates() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement method), 417
galois_group() (sage.rings.number_field_number_field_method), 56
GaloisGroup (in module sage.rings.number_field.galois_group), 142
GaloisGroup_subgroup (class in sage.rings.number_field.galois_group), 143
GaloisGroup_v1 (class in sage.rings.number_field.galois_group), 144
GaloisGroup_v2 (class in sage.rings.number_field.galois_group), 146
GaloisGroupElement (class in sage.rings.number_field.galois_group), 142
GaussianField() (in module sage.rings.number_field.number_field.number_field_quadratic method), 4
GaussianIntegers() (in module sage.rings.number_field.order), 231
gcd() (sage.rings.number_field_number_field_element_NumberFieldElement method), 163
gen() (sage.rings.number_field_number_field_number_field_Relative method), 123
gen() (sage.rings.number_field_number_field_number_field_Generic method), 58
gen() (sage.rings.number_field_number_field_number_field_order_Order method), 236
gen() (sage.rings.qqbar.AlgebraicField method), 372
gen() (sage.rings.qqbar.AlgebraicRealField method), 398
gen() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicField method), 414
gen_embedding() (sage.rings.number_field_number_field_number_field_Generic method), 58
gen_image() (sage.rings.number_field_number_field_number_field_morphisms_NumberFieldEmbedding method), 218
generator() (sage.rings.qqbar.AlgebraicPolynomialTracker method), 392
generator() (sage.rings.qqbar.ANExtensionElement method), 360
generator() (sage.rings.qqbar.ANRational method), 365
gens() (sage.rings.number_field_class_group.FractionalidealClass method), 303
gens() (sage.rings.number_field_number_field_number_field_Relative method), 123
gens() (sage.rings.qqbar.AlgebraicField method), 372
gen() (sage.rings.qqbar.AlgebraicRealField method), 398
gens() (sage.rings.number_field_class_group.ClassGroup method), 302
gen_reduced() (sage.rings.number_field_number_field_number_field_ideal_rel_NumberFieldFractionalideal_relat method), 288
gen_reduced() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldIdeal method), 274
gen_reduced() (sage.rings.number_field_number_field_number_field_order_id NumberFieldOrderIdeal_quadratic method), 298
gen_two() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldIdeal method), 275
gen_two() (sage.rings.number_field_number_field_number_field_order_id NumberFieldOrderIdeal_quadratic method), 298
get_AA_golden_ratio() (in module sage.rings.qqbar), 405
get_object() (sage.rings.number_field_number_field.OrderFactory method), 243
global_height() (sage.rings.number_field_number_field_element_number_field_element_NumberFieldElement method), 164
global_height_arch() (sage.rings.number_field_number_field_element_number_field_element_NumberFieldElement method), 165
global_height_non_arch() (sage.rings.number_field_number_field_element_NumberFieldElement method), 165
group() (sage.rings.number_field.galois_group.GaloisGroup_v1 method), 145
group() (sage.rings.number_field.galois_group.GaloisGroup_v2 method), 148
H
display_sage_input() (sage.rings.qqbar.ANBinaryExpr method), 356
display_sage_input() (sage.rings.qqbar.ANExtensionElement method), 361
display_sage_input() (sage.rings.qqbar.ANRational method), 365
display_sage_input() (sage.rings.qqbar.ANUnaryExpr method), 369
hermite_constant() (in module sage.rings.number_field_totallyreal_data), 432
hilbert_class_field() (sage.rings.number_field_number_field_number_field_quadratic method), 100
hilbert_class_field_defining_polynomial() (sage.rings.number_field_number_field_number_field_quadratic method),
hilbert_class_polynomial() (sage.rings.number_field_number_field.NumberField_quadratic method), 101
hilbert_conductor() (sage.rings.number_field_number_field.NumberField_absolute method), 19
hilbert_symbol() (sage.rings.number_field_number_field.NumberField_absolute method), 19
hilbert_symbol_negative_at_S() (sage.rings.number_field_number_field_NumberField_absolute method), 22

ideal() (sage.rings.number_field_class_group.FractionalIdealClass method), 303
ideal() (sage.rings.number_field_number_field.NumberField_gaussian method), 58
ideal() (sage.rings.number_field_number_field.Order method), 236
ideal_below() (sage.rings.number_field_number_field_number_field_ideal_associative.NumberFieldFractionalIdeal method), 288
ideal_class_log() (sage.rings.number_field_number_field_number_field_ideal_associative.NumberFieldIdeal method), 275
idealchoineese() (sage.rings.number_field_number_field.NumberField_gaussian method), 59
idealcoprime() (sage.rings.number_field_number_field_number_field_ideal_associative.NumberFieldFractionalIdeal method), 258
ideallog() (sage.rings.number_field_number_field_number_field_ideal_associative.NumberFieldIdeal method), 258
ideals_of_bdd_norm() (sage.rings.number_field_number_field.NumberField_gaussian method), 59
idealstar() (sage.rings.number_field_number_field_number_field_ideal_associative.NumberFieldFractionalIdeal method), 259
im_gens() (sage.rings.number_field.number_field.morphism.RelativeNumberFieldHomomorphism_from_abs method), 212
imag() (sage.rings.number_field_number_field_number_field_element_quadratic.NumberFieldElement_quadratic method), 193
imag() (sage.rings.number_field_number_field_number_field_element_quadratic.NumberFieldElement_gaussian method), 196
imag() (sage.rings.qqbar.AlgebraicNumber method), 380
imag() (sage.rings.qqbar.AlgebraicReal method), 393
imag() (sage.rings.qqbar.ANDescr method), 358
imag() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement method), 418
imag_part() (sage.rings.number_field.number_field_number_field_element_quadratic.NumberFieldElement_gaussian method), 193
imag_part() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement method), 418
incr() (sage.rings.number_field.totallyreal_tr_data_rel method), 432
increment() (sage.rings.number_field.totallyreal_data_tr_data_rel method), 434
index_in() (sage.rings.number_field.order.Order_absolute method), 246
index_in() (sage.rings.number_field.order.Order_relative method), 249
inertia_group() (sage.rings.number_field.galois.GaloisGroup_v2 method), 149
inertia_group() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldIdeal method), 276
int_has_small_square_divisor() (in module sage.rings.number_field.totallyreal_data), 433
integer_points_in_polytope() (in module sage.rings.number_field.bdd_height), 209
integral_basis() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldFractionalIdeal_rel method), 290
integral_basis() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldIdeal method), 276
integral_basis() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldGeneric method), 60
integral_closure() (sage.rings.number_field_number_field_order.Order method), 237
integral_elements_in_box() (in module sage.rings.number_field.totallyreal_rel), 431
integral_split() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldFractionalIdeal_rel method), 290
integral_split() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldIdeal method), 276
intersection() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldIdeal method), 277
intersection() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldIdeal method), 246
interval() (sage.rings.qqbar.AlgebraicNumber_base method), 386
interval_diameter() (sage.rings.qqbar.AlgebraicNumber_base method), 387
interval_exact() (sage.rings.qqbar.AlgebraicNumber method), 380
interval_exact() (sage.rings.qqbar.AlgebraicReal method), 393

Index
interval_fast() (sage.rings.qqbar.AlgebraicNumber_base method), 387
inverse() (sage.rings.number_field.class_group.FractionalIdealElementClass method), 304
inverse() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement method), 418
inverse_mod() (sage.rings.number_field.number_field_element_quadratic.OrderElement_quadratic method), 203
inverse_mod() (sage.rings.number_field.number_field_element.NumberFieldElement method), 166
inverse_mod() (sage.rings.number_field.number_field_element.OrderElement_absolute method), 189
inverse_mod() (sage.rings.number_field.number_field_element.OrderElement_relative method), 191
invert() (sage.rings.qqbar.ANDescr method), 358
invert() (sage.rings.qqbar.ANExtensionElement method), 361
invert() (sage.rings.qqbar.ANRational method), 365
invertible_residues() (sage.rings.number_field.number_field_ideal.NumberFieldFractionalIdeal method), 260
invertible_residues_mod() (sage.rings.number_field.number_field_ideal.NumberFieldFractionalIdeal method), 261
is_abelian() (sage.rings.number_field.number_field_cyclotomic method), 35
is_abelian() (sage.rings.number_field.NumberField_cyclotomic method), 35
is_abelian() (sage.rings.number_field.NumberField_generic method), 35
is_abelian() (sage.rings.number_field.NumberField_number_field method), 62
is_absolute() (sage.rings.number_field_number_field_base.NumberField method), 110
is_absolute() (sage.rings.number_field_number_field_rel.NumberField_relative method), 124
is_absolute() (sage.rings.number_field_number_field_number_field_number_field_absolut method), 23
is_absolute() (sage.rings.number_field_number_field_number_field_Generic method), 62
is_absolunumber_field() (in module sage.rings.number_field_number_field), 104
is_AlgebraicField() (in module sage.rings.qqbar), 405
is_AlgebraicNumber() (in module sage.rings.qqbar), 405
is_AlgebraicReal() (in module sage.rings.qqbar), 405
is_AlgebraicRealField() (in module sage.rings.qqbar), 405
is_CM() (sage.rings.number_field_number_field_NumberField_generic method), 61
is_CM_extension() (sage.rings.number_field_number_field_number_field_Relative method), 123
is_complex() (sage.rings.qqbar.AlgebraicGenerator method), 376
is_complex() (sage.rings.qqbar.AlgebraicPolynomialTracker method), 392
is_complex() (sage.rings.qqbar.ANBinaryExpr method), 357
is_complex() (sage.rings.qqbar.ANExtensionElement method), 362
is_complex() (sage.rings.qqbar.ANRational method), 366
is_complex() (sage.rings.qqbar.ANS miejscowości method), 368
is_complex() (sage.rings.qqbar.ANUrealExpr method), 371
is_coprime() (sage.rings.number_field_number_field_number_field_ideal.NumberFieldFractionalIdeal method), 263
is_equivalent() (sage.rings.number_field_order.OrderIdeal_number_field_Relative method), 298
is_exact() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicField method), 415
is_field() (sage.rings.number_field_number_field_number_field_number_field_Generic method), 62
is_field() (sage.rings.number_field_order.Order method), 237
is_free() (sage.rings.number_field_number_field_number_field_Relative method), 124
is_fundamental_discriminant() (in module sage.rings.number_field_number_field), 105
is_galois() (sage.rings.number_field_number_field_galois_group.GaloisGroup_v2 method), 149
is_galois() (sage.rings.number_field_number_field_number_field_Relative method), 124
is_galois() (sage.rings.number_field_number_field_number_field_number_field_cyclotomic method), 35
is_galois() (sage.rings.number_field_number_field_number_field_number_field_Generic method), 62
is_galois() (sage.rings.number_field_number_field_number_field_quadratic method), 101
is_galois_absolute() (sage.rings.number_field_number_field_number_field_Relative method), 125
is_galois_relative() (sage.rings.number_field_number_field_number_field_Relative method), 125
is_injective() (sage.rings.number_field.maps.NumberFieldIsomorphism method), 225
is_integer() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 197
is_integer() (sage.rings.number_field.number_field_element.NumberFieldElement method), 167
is_integer() (sage.rings.qqbar.AlgebraicNumber_base method), 387
is_integral() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 197
is_integral() (sage.rings.number_field.number_field_element.NumberFieldElement method), 167
is_integral() (sage.rings.number_field.number_field_ideal_rel.NumberFieldFractionalIdeal_rel method), 291
is_integral() (sage.rings.number_field.number_field_ideal.NumberFieldIdeal method), 277
is_integral() (sage.rings.universal_cyclo-
tomic_field.UniversalCyclotomicFieldElement method), 418
is_integra-
llly_closed() (sage.rings.number_field.number_field.order.Order method), 237
is_isomorphic() (sage.rings.number_field.number_field.cyclotomic_element.NumberField_cyclotomic method), 35
is_isomorphic() (sage.rings.number_field.number_field.cyclotomic_element.NumberField_cyclotomic method), 63
is_isomorphic_relative() (sage.rings.number_field.number_field_rel.NumberField_relative method), 125
is_maximal() (sage.rings.number_field.number_field_ideal.NumberFieldIdeal method), 263
is_maximal() (sage.rings.number_field.number_field_ideal.NumberFieldIdeal method), 277
is_maximal() (sage.rings.number_field.order.Order_absolute method), 247
is_maximal() (sage.rings.number_field.order.Order_relative method), 249
is_noetherian() (sage.rings.number_field.order.Order method), 238
is_norm() (sage.rings.number_field.number_field_element.NumberFieldElement method), 168
is_nth_power() (sage.rings.number_field.number_field_element.NumberFieldElement method), 169
is_NumberField() (in module sage.rings.number_field.number_field_base), 112
is_NumberFieldElement() (in module sage.rings.number_field.number_field_element), 192
is_NumberFieldFractionalIdeal() (in module sage.rings.number_field.number_field_ideal), 283
is_NumberFieldFractionalIdeal_rel() (in module sage.rings.number_field.number_field_ideal_rel), 294
is_NumberFieldHomsetCodomain() (in module sage.rings.number_field.number_field), 104
is_NumberFieldIdeal() (in module sage.rings.number_field.number_field_ideal), 284
is_NumberFieldOrder() (in module sage.rings.number_field.order), 254
is_one() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 197
is_one() (sage.rings.number_field.number_field_element.NumberFieldElement method), 169
is_padic_square() (sage.rings.number_field.number_field_element.NumberFieldElement method), 170
is_prime() (sage.rings.number_field.number_field_element.NumberFieldElement method), 170
is_prime() (sage.rings.number_field.number_field_ideal_rel.NumberFieldFractionalIdeal_rel method), 291
is_prime() (sage.rings.number_field.number_field_ideal.NumberFieldIdeal method), 278
is_principal() (sage.rings.number_field.class_group.FractionalIdealClass method), 304
is_principal() (sage.rings.number_field.number_field_ideal_rel.NumberFieldFractionalIdeal_rel method), 291
is_principal() (sage.rings.number_field.number_field_ideal.NumberFieldIdeal method), 278
is_principal() (sage.rings.number_field.order_order_ideal.NumberFieldOrderIdeal_quadratic method), 299
is_rational() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_cyclotomic method), 198
is_rational() (sage.rings.number_field.number_field_element.NumberFieldElement method), 170
is_rational() (sage.rings.universal_cyclo-
tomic_field.UniversalCyclotomicFieldElement method), 419
is_real() (sage.rings.universal_cyclo-
tomic_field.UniversalCyclotomicFieldElement method), 419
is_real_place() (in module sage.rings.num-

Index 451
Index
sage.rings.number_field.S_unit_solver, 313
sage.rings.number_field.selmer_group, 342
sage.rings.number_field.small_primes_of_degree_one, 340
sage.rings.number_field.splitting_field, 136
sage.rings.number_field.structure, 226
sage.rings.number_field.total_leyreal, 425
sage.rings.number_field.total_leyreal_data, 432
sage.rings.number_field.total_leyreal_pch, 435
sage.rings.number_field.total_leyreal_rel, 428
sage.rings.number_field.unit_group, 307
sage.rings.qqbar, 347
sage.rings.universal_cyclotomic_field, 411
module() (sage.rings.number_field.order.Order_absolute method), 247
multiplicative_order() (sage.rings.number_field.number_field_element.NumberFieldElement method), 175
multiplicative_order() (sage.rings.qqbar.AlgebraicNumber method), 380
multiplicative_order() (sage.rings.qqbar.AlgebraicReal method), 394
multiplicative_order() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement method), 420
mus() (in module sage.rings.number_field.S_unit_solver), 332

N
NameChange (class in sage.rings.number_field.structure), 227
NameChangeMap (class in sage.rings.number_field.maps), 225
narrow_class_group() (sage.rings.number_field.number_field_generic method), 67
neg() (sage.rings.qqbar.ANDescr method), 358
neg() (sage.rings.qqbar.ANExtensionElement method), 363
neg() (sage.rings.qqbar.ANRational method), 366
next() (sage.rings.number_field.small_primes_of_degree_one.Small_primes_of_degree_one_iter method), 341
next_split_prime() (sage.rings.number_field.number_field_number_field_cyclotomic method), 35
ngens() (sage.rings.number_field.number_field_number_field_relative method), 127
ngens() (sage.rings.number_field.number_field_NumberField_generic method), 68
ngens() (sage.rings.number_field.order.Order method), 239
ngens() (sage.rings.qqbar.AlgebraicField method), 372
ngens() (sage.rings.qqbar.AlgebraicRealField method), 398
norm() (sage.rings.number_field.number_field_element_number_field_element_quadratic method), 198
norm() (sage.rings.number_field.number_field_element_number_field_element_quadratic_ideal method), 204
norm() (sage.rings.number_field.number_field_element_NumberFieldElement method), 176
norm() (sage.rings.number_field.number_field_ideal_NumberFieldFractional_ideal method), 291
norm() (sage.rings.number_field.number_field_ideal_NumberFieldIdeal method), 279
norm() (sage.rings.number_field.order.Order_ideal_NumberFieldOrderIdealGeneric method), 297
norm() (sage.rings.qqbar.AlgebraicNumber method), 381
norm() (sage.rings.qqbar.ANDescr method), 359
norm() (sage.rings.qqbar.ANExtensionElement method), 363
norm_of_galois_extension() (sage.rings.universal_cyclotomic_field.UniversalCyclotomicFieldElement method), 420
nth_root() (sage.rings.number_field.number_field_element_NumberFieldElement method), 177
nth_root() (sage.rings.qqbar.AlgebraicNumber_base method), 388
number_field() (sage.rings.number_field.class_group.ClassGroup method), 302
number_field() (sage.rings.number_field_galois_group.GaloisGroup_v1 method), 145
number_field() (sage.rings.number_field_galois_group.GaloisGroup_v2 method), 149
number_field() (sage.rings.number_field_number_field_number_field_cyclotomic method), 279
number_field() (sage.rings.number_field.order.Order method), 239
number_field() (sage.rings.number_field_unit_group.UnitGroup method), 311
Index
optimized_subfields() (sage.rings.number_field_number_field.NumberField_absolute method), 25
options (sage.rings.qqbar.AlgebraicField_common attribute), 375
ord() (class in sage.rings.number_field.order), 231
order() (sage.rings.number_field.galois_group.GaloisGroup_v1 method), 146
order() (sage.rings.number_field.galois_group.GaloisGroup_v2 method), 150
order() (sage.rings.number_field_number_field.NumberField_Homset method), 214
order() (sage.rings.number_field_number_field_NumberField_relative method), 128
order() (sage.rings.number_field_number_field_NumberField_relative method), 26
order() (sage.rings.number_field_number_field_NumberField_generic method), 68
order() (sage.rings.qqbar.AlgebraicField_common method), 375
Order_absolute (class in sage.rings.number_field.order), 244
order_of_conductor() (sage.rings.number_field_number_field_NumberField_quadratic method), 102
Order_relative (class in sage.rings.number_field.order), 248
OrderElement_absolute (class in sage.rings.number_field_number_field_number_field_element), 189
OrderElement_quadratic (class in sage.rings.number_field_number_field_number_field_element_quadratic), 202
OrderElement_relative (class in sage.rings.number_field_number_field_number_field_element), 190
OrderFactory (class in sage.rings.number_field.order), 243

P
p_adicLLL_bound() (in module sage.rings.number_field.S_unit_solver), 332
p_adicLLL_bound_one_prime() (in module sage.rings.number_field.S_unit_solver), 333
pari_absolute_base_polynomial() (sage.rings.number_field_number_field_NumberField_relative method), 129
pari_bnf() (sage.rings.number_field_number_field_NumberField_generic method), 68
pari_field() (sage.rings.qqbar.AlgebraicGenerator method), 376
pari_hnf() (sage.rings.number_field_number_field_number_field_ideal.NumberFieldIdeal method), 279
pari_label() (sage.rings.number_field.galois_group.GaloisGroup_v2 method), 150
pari_nf() (sage.rings.number_field_number_field_NumberField_generic method), 69
pari_polynomial() (sage.rings.number_field_number_field_NumberField_generic method), 70
pari_prime() (sage.rings.number_field_number_field_number_field_ideal_NumberFieldIdeal method), 279
pari_relative_polynomial() (sage.rings.number_field_number_field_number_field_rel.NumberField_relative method), 129
pari_rhnf() (sage.rings.number_field_number_field_number_field_rel.NumberField_relative method), 292
pari_rnf() (sage.rings.number_field_number_field_number_field_rel.NumberField_relative method), 129
pari_rnfnorm_data() (sage.rings.number_field_number_field_NumberField_generic method), 71
pari_zk() (sage.rings.number_field_number_field_NumberField_generic method), 71
parts() (sage.rings.number_field_number_field_number_field_element_quadratic.NumberFieldElement_quadratic method), 199
places() (sage.rings.number_field_number_field_number_field_rel.NumberField_relative method), 130
places() (sage.rings.number_field_number_field_NumberField_absolute method), 27
poldegree() (sage.rings.number_field.splitting_field.SplittingData method), 137
poly() (sage.rings.qqbar.AlgebraicPolynomialTracker method), 392
polynomial() (sage.rings.number_field_number_field_number_field_element.NumberFieldElement method), 178
polynomial() (sage.rings.number_field_number_field_number_field_rel.NumberField_relative method), 130
polynomial() (sage.rings.number_field_number_field_NumberField_generic method), 72
polynomial_ntl() (sage.rings.number_field_number_field_NumberField_generic method), 72
polynomial_quotient_ring() (sage.rings.number_field_number_field_NumberField_generic method), 72
polynomial_ring() (sage.rings.number_field_number_field_NumberField_generic method), 72
polynomial_root() (sage.rings.qqbar.AlgebraicField method), 372
polynomial_root() (sage.rings.qqbar.AlgebraicGen
relative_prime() (sage.rings.number_field.class_group.FractionalIdealClass method), 304
residue_class_degree() (sage.rings.number_field.number_field_ideal_rel.NumberFieldFractionalIdeal_rela
method), 293
residue_class_degree() (sage.rings.number_field.number_field_ideal.NumberFieldFractionalIdeal method), 267
residue_field() (sage.rings.number_field.number_field_ideal.NumberFieldFractionalIdeal method), 268
residue_field() (sage.rings.number_field.NumberField_generic method), 83
residue_field() (sage.rings.number_field.order.Order method), 241
residue_symbol() (sage.rings.number_field_number_field_element.NumberFieldElement method), 179
residue_symbol() (sage.rings.number_field_number_field_ideal.NumberFieldIdeal method), 281
residues() (sage.rings.number_field_number_field_ideal_rel.NumberFieldFractionalIdeal_rela
method), 293
residues() (sage.rings.number_field_number_field_ideal.NumberFieldFractionalIdeal method), 269
ring_generators() (sage.rings.number_field_order.Order method), 241
ring_of_integers() (sage.rings.number_field_number_field_base.NumberField method), 111
root_as_algebraic() (sage.rings.qqbar.AlgebraicGenerator method), 377
root_from_approx() (in module sage.rings.number_field.number_field_morphisms), 220
roots_of_unity() (sage.rings.number_field_number_field_rel.NumberField_relative method), 133
roots_of_unity() (sage.rings.number_field_number_field_cyclotomic_number_field_number_field_generic meth
method), 36
roots_of_unity() (sage.rings.number_field_number_field_number_field_unit_group.UnitGroup method), 311
round() (sage.rings.number_field_number_field_element_quadratic.NumberFieldElement_quadratic method), 200
round() (sage.rings.number_field_number_field_element_NumberFieldElement method), 180
round() (sage.rings.qqbar.AlgebraicReal method), 396
S() (sage.rings.number_field_class_group.SClassGroup method), 305
S_class_group() (sage.rings.number_field_number_field_number_field_generic method), 38
S_ideal_class_log() (sage.rings.number_field_number_field_ideal.NumberFieldIdeal method), 271
S_unit_group() (sage.rings.number_field_number_field_number_field_generic method), 39
S_unit_solutions() (sage.rings.number_field_number_field_number_field_generic method), 40
S_units() (sage.rings.number_field_number_field_number_field_generic method), 41
sage.rings.number_field.bdd_height
module, 206
sage.rings.number_field.class_group
module, 301
sage.rings.number_field.galois_group
module, 142
sage.rings.number_field.homset
module, 212
sage.rings.number_field.maps
module, 221
sage.rings.number_field.morphism
module, 211
sage.rings.number_field.number_field
module, 1
sage.rings.number_field.number_field_base
module, 108
sage.rings.number_field_number_field_element
module, 153
scale() (sage.rings.qqbar.ANRational method), 367

SClassGroup (class in sage.rings.number_field.class_group), 305

section() (sage.rings.number_field.number_field_morphisms.CyclotomicFieldEmbedding method), 216

some_elements() (sage.rings.number_field.number_field_morphisms.EmbeddedNumberFieldMorphism method), 217

selmer_generators() (sage.rings.number_field.number_field_number_field_generic method), 84

selmer_group_iterator() (sage.rings.number_field.number_field_number_field_generic method), 85

selmer_space() (sage.rings.number_field.number_field_number_field_generic method), 86

SFractionalIdealClass (class in sage.rings.number_field), 306

short_prec_seq() (in module sage.rings.qqbar), 410

sieve_below_bound() (in module sage.rings.number_field.S_unit_solver), 335

sieve_ordering() (in module sage.rings.number_field.S_unit_solver), 336

signature() (sage.rings.number_field.number_field_element_quadratic.NumberFieldElement_quadratic method), 200

signature() (sage.rings.number_field.number_field_element.NumberFieldElement method), 181

signature() (sage.rings.qqbar.AlgebraicReal method), 396

signature() (sage.rings.number_field.galois_group.GaloisGroup_v2 method), 151

signature() (sage.rings.number_field.number_field_base.NumberField method), 111

signature() (sage.rings.number_field.number_field_number_field_cyclotomic method), 36

signature() (sage.rings.number_field.number_field_number_field_number_field_generic method), 87

simplify() (sage.rings.qqbar.AlgebraicNumber method), 87

simplify() (sage.rings.qqbar.ANExtensionElement method), 364

Small_primes_of_degree_one_iter (class in sage.rings.number_field.small_primes_of_degree_one), 341

small_residue() (sage.rings.number_field.number_field_number_field_number_field_cyclotomicIdeal method), 270

smallest_integer() (sage.rings.number_field.number_field_number_field_number_field_cyclotomicIdeal method), 282

solutions_from_systems() (in module sage.rings.number_field.S_unit_solver), 337

solve_CRT() (sage.rings.number_field.number_field_number_field_generic method), 88

solve_S_unit_equation() (in module sage.rings.number_field.S_unit_solver), 338

some_elements() (sage.rings.number_field.uan-
Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Module/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>valuation()</td>
<td>(sage.rings.number_field.number_field_ideal_rel.NumberFieldFractionalIdeal_rel method), 294</td>
</tr>
<tr>
<td>valuation()</td>
<td>(sage.rings.number_field.number_field_ideal.NumberFieldIdeal method), 282</td>
</tr>
<tr>
<td>valuation()</td>
<td>(sage.rings.number_field.number_field.NumberField_generic method), 96</td>
</tr>
<tr>
<td>valuation()</td>
<td>(sage.rings.number_field.order.Order method), 242</td>
</tr>
<tr>
<td>vector()</td>
<td>(sage.rings.number_field.number_field_element.NumberFieldElement method), 184</td>
</tr>
<tr>
<td>vector_space()</td>
<td>(sage.rings.number_field.number_field_relative method), 135</td>
</tr>
<tr>
<td>weed_fields()</td>
<td>(in module sage.rings.number_field.totallyreal), 427</td>
</tr>
<tr>
<td>Yu_ai_kappa1_c1()</td>
<td>(in module sage.rings.number_field.S_unit_solver), 315</td>
</tr>
<tr>
<td>Yu_bound()</td>
<td>(in module sage.rings.number_field.S_unit_solver), 316</td>
</tr>
<tr>
<td>Yu_C1_star()</td>
<td>(in module sage.rings.number_field.S_unit_solver), 315</td>
</tr>
<tr>
<td>Yu_condition_115()</td>
<td>(in module sage.rings.number_field.S_unit_solver), 316</td>
</tr>
<tr>
<td>Yu_modified_height()</td>
<td>(in module sage.rings.number_field.S_unit_solver), 317</td>
</tr>
<tr>
<td>Z_to_quadratic_field_element</td>
<td>(class in sage.rings.number_field.number_field_element_quadratic), 205</td>
</tr>
<tr>
<td>zero()</td>
<td>(sage.rings.universal_cyclotomic_field.UniversalCyclotomicField method), 415</td>
</tr>
<tr>
<td>zeta()</td>
<td>(sage.rings.number_field.number_field.NumberField_cyclotomic method), 37</td>
</tr>
<tr>
<td>zeta()</td>
<td>(sage.rings.number_field.number_field.NumberField_generic method), 98</td>
</tr>
<tr>
<td>zeta()</td>
<td>(sage.rings.number_field.unit_group.UnitGroup method), 312</td>
</tr>
<tr>
<td>zeta()</td>
<td>(sage.rings.qqbar.AlgebraicField method), 374</td>
</tr>
<tr>
<td>zeta()</td>
<td>(sage.rings.qqbar.AlgebraicRealField method), 400</td>
</tr>
<tr>
<td>zeta()</td>
<td>(sage.rings.universal_cyclotomic_field.UniversalCyclotomicField method), 415</td>
</tr>
<tr>
<td>zeta_coefficients()</td>
<td>(sage.rings.number_field.number_field.NumberField_generic method), 98</td>
</tr>
</tbody>
</table>