CONTENTS

1 Introduction to the \(p \)-adics 1
2 Factory 7
3 Local Generic 53
4 \(p \)-adic Generic 67
5 \(p \)-adic Generic Nodes 79
6 \(p \)-adic Base Generic 95
7 \(p \)-adic Extension Generic 99
8 Eisenstein Extension Generic 107
9 Unramified Extension Generic 111
10 \(p \)-adic Base Leaves 115
11 \(p \)-adic Extension Leaves 123
12 Local Generic Element 127
13 \(p \)-adic Generic Element 135
14 \(p \)-adic Capped Relative Elements 161
15 \(p \)-adic Capped Absolute Elements 177
16 \(p \)-adic Fixed-Mod Element 191
17 \(p \)-adic Extension Element 205
18 \(p \)-adic \(\mathbb{Z}_p \mathbb{X} \) Element 209
19 \(p \)-adic \(\mathbb{Z}_p \mathbb{X} \) CR Element 211
20 \(p \)-adic \(\mathbb{Z}_p \mathbb{X} \) CA Element 221
21 \(p \)-adic \(\mathbb{Z}_p \mathbb{X} \) FM Element 231
22 PowComputer 241
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 PowComputer_ext</td>
<td>243</td>
</tr>
<tr>
<td>24 (p)-adic Printing</td>
<td>247</td>
</tr>
<tr>
<td>25 Precision Error</td>
<td>253</td>
</tr>
<tr>
<td>26 Miscellaneous Functions</td>
<td>255</td>
</tr>
<tr>
<td>27 The functions in this file are used in creating new (p)-adic elements.</td>
<td>259</td>
</tr>
<tr>
<td>28 Frobenius endomorphisms on (p)-adic fields</td>
<td>261</td>
</tr>
<tr>
<td>29 Indices and Tables</td>
<td>263</td>
</tr>
<tr>
<td>Python Module Index</td>
<td>265</td>
</tr>
<tr>
<td>Index</td>
<td>267</td>
</tr>
</tbody>
</table>
This tutorial outlines what you need to know in order to use \(p \)-adics in Sage effectively.

Our goal is to create a rich structure of different options that will reflect the mathematical structures of the \(p \)-adics. This is very much a work in progress: some of the classes that we eventually intend to include have not yet been written, and some of the functionality for classes in existence has not yet been implemented. In addition, while we strive for perfect code, bugs (both subtle and not-so-subtle) continue to evade our clutches. As a user, you serve an important role. By writing non-trivial code that uses the \(p \)-adics, you both give us insight into what features are actually used and also expose problems in the code for us to fix.

Our design philosophy has been to create a robust, usable interface working first, with simple-minded implementations underneath. We want this interface to stabilize rapidly, so that users’ code does not have to change. Once we get the framework in place, we can go back and work on the algorithms and implementations underneath. All of the current \(p \)-adic code is currently written in pure Python, which means that it does not have the speed advantage of compiled code. Thus our \(p \)-adics can be painfully slow at times when you’re doing real computations. However, finding and fixing bugs in Python code is far easier than finding and fixing errors in the compiled alternative within Sage (Cython), and Python code is also faster and easier to write. We thus have significantly more functionality implemented and working than we would have if we had chosen to focus initially on speed. And at some point in the future, we will go back and improve the speed. Any code you have written on top of our \(p \)-adics will then get an immediate performance enhancement.

If you do find bugs, have feature requests or general comments, please email sage-support@groups.google.com or roed@math.harvard.edu.

1.1 Terminology and types of \(p \)-adics

To write down a general \(p \)-adic element completely would require an infinite amount of data. Since computers do not have infinite storage space, we must instead store finite approximations to elements. Thus, just as in the case of floating point numbers for representing reals, we have to store an element to a finite precision level. The different ways of doing this account for the different types of \(p \)-adics.

We can think of \(p \)-adics in two ways. First, as a projective limit of finite groups:

\[
\mathbb{Z}_p = \lim_{\longleftarrow n} \mathbb{Z}/p^n\mathbb{Z}.
\]

Secondly, as Cauchy sequences of rationals (or integers, in the case of \(\mathbb{Z}_p \)) under the \(p \)-adic metric. Since we only need to consider these sequences up to equivalence, this second way of thinking of the \(p \)-adics is the same as considering power series in \(p \) with integral coefficients in the range 0 to \(p - 1 \). If we only allow nonnegative powers of \(p \) then these power series converge to elements of \(\mathbb{Z}_p \), and if we allow bounded negative powers of \(p \) then we get \(\mathbb{Q}_p \).

Both of these representations give a natural way of thinking about finite approximations to a \(p \)-adic element. In the first representation, we can just stop at some point in the projective limit, giving an element of \(\mathbb{Z}/p^n\mathbb{Z} \). As \(\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z} \), this is equivalent to specifying our element modulo \(p^n\mathbb{Z}_p \).
The absolute precision of a finite approximation \(x \in \mathbb{Z}/p^n \mathbb{Z} \) to \(x \in \mathbb{Z}_p \) is the non-negative integer \(n \).

In the second representation, we can achieve the same thing by truncating a series
\[
a_0 + a_1 p + a_2 p^2 + \cdots
\]
at \(p^n \), yielding
\[
a_0 + a_1 p + \cdots + a_{n-1} p^{n-1} + O(p^n).
\]

As above, we call this \(n \) the absolute precision of our element.

Given any \(x \in \mathbb{Q}_p \) with \(x \neq 0 \), we can write \(x = p^k u \) where \(v \in \mathbb{Z} \) and \(u \in \mathbb{Z}_p^\times \). We could thus also store an element of \(\mathbb{Q}_p \) (or \(\mathbb{Z}_p \)) by storing \(v \) and a finite approximation of \(u \). This motivates the following definition: the relative precision of an approximation to \(x \) is defined as the absolute precision of the approximation minus the valuation of \(x \). For example, if \(x = a_k p^k + a_{k+1} p^{k+1} + \cdots + a_{n-1} p^{n-1} + O(p^n) \) then the absolute precision of \(x \) is \(n \), the valuation of \(x \) is \(k \) and the relative precision of \(x \) is \(n - k \).

There are three different representations of \(\mathbb{Z}_p \) in Sage and one representation of \(\mathbb{Q}_p \):
- the fixed modulus ring
- the capped absolute precision ring
- the capped relative precision ring, and
- the capped relative precision field.

1.1.1 Fixed Modulus Rings

The first, and simplest, type of \(\mathbb{Z}_p \) is basically a wrapper around \(\mathbb{Z}/p^n \mathbb{Z} \), providing a unified interface with the rest of the \(p \)-adics. You specify a precision, and all elements are stored to that absolute precision. If you perform an operation that would normally lose precision, the element does not track that it no longer has full precision.

The fixed modulus ring provides the lowest level of convenience, but it is also the one that has the lowest computational overhead. Once we have ironed out some bugs, the fixed modulus elements will be those most optimized for speed.

As with all of the implementations of \(\mathbb{Z}_p \), one creates a new ring using the constructor \(\mathbb{Z}_p \), and passing in 'fixed-mod' for the type parameter. For example,

```plaintext
sage: R = Zp(5, prec = 10, type = 'fixed-mod', print_mode = 'series')
sage: R
5-adic Ring of fixed modulus 5^10
```

One can create elements as follows:

```plaintext
sage: a = R(375)
sage: a
3*5^3
sage: b = R(105)
sage: b
5 + 4*5^2
```

Now that we have some elements, we can do arithmetic in the ring.

```plaintext
sage: a + b
5 + 4*5^2 + 3*5^3
sage: a * b
3*5^4 + 2*5^5 + 2*5^6
```

Chapter 1. Introduction to the \(p \)-adics
Floor division (`//`) divides even though the result isn’t really known to the claimed precision; note that division isn’t defined:

```
sage: a // 5
3*5^2
```

```
sage: a / 5
Traceback (most recent call last):
  ... ValueError: cannot invert non-unit
```

Since elements don’t actually store their actual precision, one can only divide by units:

```
sage: a / 2
4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 2*5^8 + 2*5^9
```

```
sage: a / b
Traceback (most recent call last):
  ... ValueError: cannot invert non-unit
```

If you want to divide by a non-unit, do it using the `//` operator:

```
sage: a // b
3*5^2 + 3*5^3 + 2*5^5 + 5^6 + 4*5^7 + 2*5^8 + 3*5^9
```

1.1.2 Capped Absolute Rings

The second type of implementation of \(\mathbb{Z}_p \) is similar to the fixed modulus implementation, except that individual elements track their known precision. The absolute precision of each element is limited to be less than the precision cap of the ring, even if mathematically the precision of the element would be known to greater precision (see Appendix A for the reasons for the existence of a precision cap).

Once again, use `Zp` to create a capped absolute \(p \)-adic ring.

```
sage: R = Zp(5, prec = 10, type = 'capped-abs', print_mode = 'series')
sage: R
5-adic Ring with capped absolute precision 10
```

We can do similar things as in the fixed modulus case:

```
sage: a = R(375)
sage: a
3*5^3 + O(5^10)
sage: b = R(105)
sage: b
5 + 4*5^2 + O(5^10)
sage: a + b
5 + 4*5^2 + 3*5^3 + O(5^10)
sage: a * b
3*5^4 + 2*5^5 + 2*5^6 + O(5^10)
sage: c = a // 5
sage: c
3*5^2 + O(5^9)
```

Note that when we divided by 5, the precision of \(c \) dropped. This lower precision is now reflected in arithmetic.
Division is allowed: the element that results is a capped relative field element, which is discussed in the next section:

```
\texttt{sage: } 1 / (c + b)
\texttt{5^-1 + 3 + 2*5 + 5^2 + 4*5^3 + 4*5^4 + 3*5^6 + O(5^7)}
```

1.1.3 Capped Relative Rings and Fields

Instead of restricting the absolute precision of elements (which doesn’t make much sense when elements have negative valuations), one can cap the relative precision of elements. This is analogous to floating point representations of real numbers. As in the reals, multiplication works very well: the valuations add and the relative precision of the product is the minimum of the relative precisions of the inputs. Addition, however, faces similar issues as floating point addition: relative precision is lost when lower order terms cancel.

To create a capped relative precision ring, use \mathbb{Z}_p as before. To create capped relative precision fields, use \mathbb{Q}_p.

```
\texttt{sage: } R = \mathbb{Z}_p(5, \text{prec} = 10, \text{type} = \text{'capped-rel'}, \text{print_mode} = \text{'series'})
\texttt{sage: } K = \mathbb{Q}_p(5, \text{prec} = 10, \text{type} = \text{'capped-rel'}, \text{print_mode} = \text{'series'})
```

We can do all of the same operations as in the other two cases, but precision works a bit differently: the maximum precision of an element is limited by the precision cap of the ring.

```
\texttt{sage: } a = R(375)
\texttt{sage: } a
3*5^3 + O(5^13)
\texttt{sage: } b = K(105)
\texttt{sage: } b
5 + 4*5^2 + O(5^11)
\texttt{sage: } a + b
5 + 4*5^2 + 3*5^3 + O(5^11)
\texttt{sage: } a * b
3*5^4 + 2*5^5 + 2*5^6 + O(5^14)
\texttt{sage: } c = a / 5
\texttt{sage: } c
3*5^2 + O(5^12)
\texttt{sage: } c + 1
1 + 3*5^2 + O(5^10)
```

As with the capped absolute precision rings, we can divide, yielding a capped relative precision field element.

```
\texttt{sage: } 1 / (c + b)
\texttt{5^-1 + 3 + 2*5 + 5^2 + 4*5^3 + 4*5^4 + 3*5^6 + 2*5^7 + 5^8 + O(5^9)}
```
1.1.4 Unramified Extensions

One can create unramified extensions of \(\mathbb{Z}_p \) and \(\mathbb{Q}_p \) using the functions \(\mathcal{Z_q} \) and \(\mathcal{Q_q} \).

In addition to requiring a prime power as the first argument, \(\mathcal{Z_q} \) also requires a name for the generator of the residue field. One can specify this name as follows:

```python
sage: R.<c> = Zq(125, prec=20); R
5-adic Unramified Extension Ring in c defined by x^3 + 3*x + 3
```

1.1.5 Eisenstein Extensions

It is also possible to create Eisenstein extensions of \(\mathbb{Z}_p \) and \(\mathbb{Q}_p \). In order to do so, create the ground field first:

```python
sage: R = Zp(5, 2)
```

Then define the polynomial yielding the desired extension:

```python
sage: S.<x> = ZZ[]
sage: f = x^5 - 25*x^3 + 15*x - 5
```

Finally, use the `ext` function on the ground field to create the desired extension:

```python
sage: W.<w> = R.ext(f)
```

You can do arithmetic in this Eisenstein extension:

```python
sage: (1 + w)^7
```

Note that the precision cap increased by a factor of 5, since the ramification index of this extension over \(\mathbb{Z}_p \) is 5.

1.1. Terminology and types of \(p \)-adics

5
Chapter 1. Introduction to the p-adics
This file contains the constructor classes and functions for p-adic rings and fields.

AUTHORS:

- David Roe

`sage.rings.padics.factory.QpCR(p, prec=None, *args, **kwds)`

A shortcut function to create capped relative p-adic fields.

Same functionality as `Qp()`. See documentation for `Qp()` for a description of the input parameters.

EXAMPLES:

```sage
sage: QpCR(5, 40)
5-adic Field with capped relative precision 40
```

`sage.rings.padics.factory.QpER(p, prec=None, halt=None, secure=False, *args, **kwds)`

A shortcut function to create relaxed p-adic fields.

See `ZpER()` for more information about this model of precision.

EXAMPLES:

```sage
sage: R = QpER(2); R
2-adic Field handled with relaxed arithmetics
```

`sage.rings.padics.factory.QpFP(p, prec=None, *args, **kwds)`

A shortcut function to create floating point p-adic fields.

Same functionality as `Qp()`. See documentation for `Qp()` for a description of the input parameters.

EXAMPLES:

```sage
sage: QpFP(5, 40)
5-adic Field with floating precision 40
```

`sage.rings.padics.factory.QpLC(p, prec=None, *args, **kwds)`

A shortcut function to create p-adic fields with lattice precision.

See `ZpLC()` for more information about this model of precision.

EXAMPLES:

```sage
sage: R = QpLC(2)
sage: R
2-adic Field with lattice-cap precision
```
sage.rings.padics.factory.QpLF(p, prec=None, *args, **kwds)

A shortcut function to create \(p \)-adic fields with lattice precision.

See ZpLC() for more information about this model of precision.

EXAMPLES:

```
sage: R = QpLF(2)
sage: R
2-adic Field with lattice-float precision
```

class sage.rings.padics.factory.Qp_class

Bases: UniqueFactory

A creation function for \(p \)-adic fields.

INPUT:

- \(p \) – integer: the \(p \) in \(\mathbb{Q}_p \)
- prec – integer (default: 20) the precision cap of the field. In the lattice capped case, prec can either be a pair (relative_cap, absolute_cap) or an integer (understood at relative cap). In the relaxed case, prec can be either a pair (default_prec, halting_prec) or an integer (understood at default precision). Except in the floating point case, individual elements keep track of their own precision. See TYPES and PRECISION below.
- type – string (default: 'capped-rel') Valid types are 'capped-rel', 'floating-point', 'lattice-cap', 'lattice-float'. See TYPES and PRECISION below
- names – string or tuple (defaults to a string representation of \(p \)). What to use whenever \(p \) is printed.
- ram_name – string. Another way to specify the name; for consistency with the Qq and Zq and extension functions.
- print_pos – bool (default None) Whether to only use positive integers in the representations of elements. See PRINTING below.
- print_sep – string (default None) The separator character used in the 'bars' mode. See PRINTING below.
- print_alphabet – tuple (default None) The encoding into digits for use in the 'digits' mode. See PRINTING below.
- print_max_terms – integer (default None) The maximum number of terms shown. See PRINTING below.
- show_prec – a boolean or a string (default None) Specify how the precision is printed. See PRINTING below.
- check – bool (default True) whether to check if \(p \) is prime. Non-prime input may cause seg-faults (but can also be useful for base n expansions for example)
- label – string (default None) used for lattice precision to create parents with different lattices.

OUTPUT:

- The corresponding \(p \)-adic field.

TYPES AND PRECISION:

There are two main types of precision for a \(p \)-adic element. The first is relative precision, which gives the number of known \(p \)-adic digits:
The second type of precision is absolute precision, which gives the power of p that this element is defined modulo:

```
sage: a = R(675); a
2*5^2 + 5^4 + O(5^22)
```

```
sage: a.precision_relative()
20
```

Thesecond typeofprecision is absolute precision, which gives the power of p that this element is defined modulo:

```
sage: a.precision_absolute()
22
```

There are several types of p-adic fields, depending on the methods used for tracking precision. Namely, we have:

- capped relative fields (type='capped-rel')
- capped absolute fields (type='capped-abs')
- fixed modulus fields (type='fixed-mod')
- floating point fields (type='floating-point')
- lattice precision fields (type='lattice-cap' or type='lattice-float')
- exact fields with relaxed arithmetics (type='relaxed')

In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.

```
sage: R = Qp(5, 5, capped-rel, series); a = R(4006); a
1 + 5 + 2*5^3 + 5^4 + O(5^5)
```

```
sage: b = R(4025); b
5^2 + 2*5^3 + 5^4 + 5^5 + O(5^7)
```

```
sage: a + b
1 + 5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5)
```

In the floating point case, elements do not track their precision, but the relative precision of elements is truncated during arithmetic to the precision cap of the field.

In the lattice case, precision on elements is tracked by a global lattice that is updated after every operation, yielding better precision behavior at the cost of higher memory and runtime usage. We refer to the documentation of the function ZpLC() for a small demonstration of the capabilities of this precision model.

Finally, the model for relaxed p-adics is quite different from any of the other types. In addition to storing a finite approximation, one also stores a method for increasing the precision. A quite interesting feature with relaxed p-adics is the possibility to create (in some cases) self-referent numbers, that are numbers whose n-th digit is defined by the previous ones. We refer to the documentation of the function ZpL() for a small demonstration of the capabilities of this precision model.

PRINTING:

There are many different ways to print p-adic elements. The way elements of a given field print is controlled by options passed in at the creation of the field. There are five basic printing modes (series, val-unit, terse, digits and bars), as well as various options that either hide some information in the print representation or sometimes make print representations more compact. Note that the printing options affect whether different p-adic fields are considered equal.

1. **series**: elements are displayed as series in p.
print_pos controls whether negatives can be used in the coefficients of powers of p.

```
sage: S = Qp(5, print_mode='series', print_pos=False); a = S(70700); a
-2*5^2 + 5^3 - 2*5^4 - 2*5^5 + 5^7 + O(5^22)
sage: b = S(-70700); b
2*5^2 - 5^3 + 2*5^4 + 2*5^5 - 5^7 + O(5^22)
```

print_max_terms limits the number of terms that appear.

```
sage: T = Qp(5, print_max_terms=4); b = R(-70700); repr(b)
'2*5^2 + 4*5^3 + 5^4 + 2*5^5 + ... + O(5^22)'
```

names affects how the prime is printed.

```
sage: U.<p> = Qp(5); p
p + O(p^21)
```

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True) or 'bigoh'. The default is False for the 'floating-point' type and True for all other types.

```
sage: Qp(5)(6)
1 + 5 + O(5^20)
sage: Qp(5, show_prec='none')(6)
1 + 5
sage: QpFP(5)(6)
1 + 5
```

print_sep and print_alphabet have no effect in series mode.

Note that print options affect equality:

```
sage: R == S, R == T, R == U, S == T, S == U, T == U
(False, False, False, False, False, False)
```

2. val-unit: elements are displayed as p^k*u:

```
sage: R = Qp(5, print_mode='val-unit'); a = R(70700); a
5^2 * 2828 + O(5^22)
sage: b = R(-707/5); b
5^-1 * 95367431639918 + O(5^19)
```

print_pos controls whether to use a balanced representation or not.

```
sage: S = Qp(5, print_pos=False); b = S(-70700); b
5^2 * (-2828) + O(5^22)
```
names affects how the prime is printed.

```
sage: T = Qp(5, print_mode='val-unit', names='pi'); a = T(70700); a
pi^2 * 2828 + O(pi^22)
```

show_prec determines how the precision is printed. It can be either ‘none’ (or equivalently False) or ‘bigoh’ (or equivalently True). The default is False for the 'floating-point' type and True for all other types.

```
sage: Qp(5, print_mode='val-unit', show_prec=False)(30)
5 * 6
```

print_max_terms, print_sep and print_alphabet have no effect.

Equality again depends on the printing options:

```
sage: R == S, R == T, S == T
(False, False, False)
```

3. terse: elements are displayed as an integer in base 10 or the quotient of an integer by a power of p (still in base 10):

```
sage: R = Qp(5, print_mode='terse'); a = R(70700); a
70700 + O(5^22)
sage: b = R(-70700); b
2384185790944925 + O(5^22)
sage: c = R(-707/5); c
95367431639918/5 + O(5^19)
```

The denominator, as of version 3.3, is always printed explicitly as a power of p, for predictability.

```
sage: d = R(707/5^2); d
707/5^2 + O(5^18)
```

print_pos controls whether to use a balanced representation or not.

```
sage: S = Qp(5, print_mode='terse', print_pos=False); b = S(-70700); b
-70700 + O(5^22)
sage: c = S(-707/5); c
-707/5 + O(5^19)
```

name affects how the name is printed.

```
sage: T.<unif> = Qp(5, print_mode='terse'); c = T(-707/5); c
95367431639918/unif + O(unif^19)
sage: d = T(-707/5^10); d
95367431639918/unif^10 + O(unif^10)
```

show_prec determines how the precision is printed. It can be either ‘none’ (or equivalently False) or ‘bigoh’ (or equivalently True). The default is False for the 'floating-point' type and True for all other types.

```
sage: Qp(5, print_mode='terse', show_prec=False)(6)
6
```

print_max_terms, print_sep and print_alphabet have no effect.

Equality depends on printing options:
4. **digits**: elements are displayed as a string of base \(p \) digits

Restriction: you can only use the digits printing mode for small primes. Namely, \(p \) must be less than the length of the alphabet tuple (default alphabet has length 62).

```sage
sage: R == S, R == T, S == T
(False, False, False)

sage: R = Qp(5, print_mode='digits'); a = R(70700); repr(a)
'...0000000000000004230300'
sage: b = R(-70700); repr(b)
'...444444444444440214200'
sage: c = R(-707/5); repr(c)
'...444444444444443413.3'
sage: d = R(-707/5^2); repr(d)
'...44444444444444341.33'
```

Observe that the significant 0's are printed even if they are located in front of the number. On the contrary, unknown digits located after the comma appears as question marks. The precision can therefore be read in this mode as well. Here are more examples:

```sage
sage: p = 7
sage: K = Qp(p, prec=10, print_mode='digits')
sage: repr(K(1))
'...0000000001'
sage: repr(K(p^2))
'...000000000100'
sage: repr(K(p^-5))
'...00000.00001'
sage: repr(K(p^-20))
'...?.???????????0000000001'
```

`print_max_terms` limits the number of digits that are printed. Note that if the valuation of the element is very negative, more digits will be printed.

```sage
sage: S = Qp(5, print_max_terms=4); S(-70700)
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + ... + O(5^22)
sage: S(-707/5^2)
3*5^-2 + 3*5^-1 + 1 + 4*5 + ... + O(5^18)
sage: S(-707/5^6)
3*5^-6 + 3*5^-5 + 5^-4 + 4*5^-3 + ... + O(5^-14)
sage: S(-707/5^6, absprec=-2)
3*5^-6 + 3*5^-5 + 5^-4 + 4*5^-3 + O(5^-2)
sage: S(-707/5^4)
3*5^-4 + 3*5^-3 + 5^-2 + 4*5^-1 + ... + O(5^16)
```

`print_alphabet` controls the symbols used to substitute for digits greater than 9.


```sage
t = Qp(5, print_mode='digits', print_alphabet=('1', '2', '3', '4', '5'))
retrt(T(-70700))
'...5555555555555551325311'
```
show_prec determines how the precision is printed. It can be either ‘none’ (or equivalently False), ‘dots’ (or equivalently True) or ‘bigoh’. The default is False for the 'floating-point' type and True for all other types.

```
sage: repr(Zp(5, print_mode='digits', show_prec=True)(6))
'...000000000000000011'
sage: repr(Zp(5, print_mode='digits', show_prec='bigoh')(6))
'11 + 0(5^20)'
```

print_pos, name and print_sep have no effect.

Equality depends on printing options:

```
sage: R == S, R == T, S == T
(False, False, False)
```

5. bars: elements are displayed as a string of base p digits with separators:

```
sage: R = Qp(5, print_mode='bars'); a = R(70700); repr(a)
'...4|2|3|0|3|0|0'
sage: b = R(-70700); repr(b)
'...4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|0|2|1|4|2|0|0'
sage: d = R(-707/5^2); repr(d)
'...4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|3|4|1|1.3|3|3'
```

Again, note that it’s not possible to read off the precision from the representation in this mode.

print_pos controls whether the digits can be negative.

```
sage: S = Qp(5, print_mode='bars',print_pos=False); b = S(-70700); repr(b)
'...-1|0|2|2|-1|2|0|0'
```

print_max_terms limits the number of digits that are printed. Note that if the valuation of the element is very negative, more digits will be printed.

```
sage: T = Qp(5, print_max_terms=4); T(-70700)
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + ... + O(5^22)
sage: T(-707/5^2)
3*5^-2 + 3*5^-1 + 1 + 4*5 + ... + O(5^18)
sage: T(-707/5^6)
3*5^-6 + 3*5^-5 + 5^-4 + 4*5^-3 + ... + O(5^-14)
sage: T(-707/5^6,absprec=-2)
3*5^-6 + 3*5^-5 + 5^-4 + 4*5^-3 + O(5^-2)
sage: T(-707/5^4)
3*5^-4 + 3*5^-3 + 5^-2 + 4*5^-1 + ... + O(5^-16)
```

print_sep controls the separation character.

```
sage: U = Qp(5, print_mode='bars', print_sep='|'); a = U(70700); repr(a)
'...4|2|3|0|3|0|0'
```

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), ‘dots’ (or equivalently True) or ‘bigoh’. The default is False for the 'floating-point' type and True for all other types.
name and print_alphabet have no effect.

Equality depends on printing options:

```python
sage: R == S, R == T, R == U, S == T, S == U, T == U
(False, False, False, False, False, False)
```

EXAMPLES:

```python
sage: K = Qp(15, check=False); a = K(999); a
9 + 6*15 + 4*15^2 + O(15^20)
```

```
sage: create_key (p, prec=None, type='capped-rel', print_mode=None, show_prec=None, check=True, label=None)
```

Creates a key from input parameters for \(\mathbb{Q}_p \).

See the documentation for \(\mathbb{Q}_p \) for more information.

```
sage: create_object (version, key)
```

Creates an object using a given key.

See the documentation for \(\mathbb{Q}_p \) for more information.

```
sage.rings.padics.factory.Qq (q, prec=None, type='capped-rel', modulus=None, names=None, print_mode=None, print_pos=None, print_sep=None, print_alphabet=None, print_max_terms=None, show_prec=None, check=True, implementation='FLINT')
```

Given a prime power \(q = p^n \), return the unique unramified extension of \(\mathbb{Q}_p \) of degree \(n \).

INPUT:

- \(q \) – integer, list, tuple or Factorization object. If \(q \) is an integer, it is the prime power \(q \) in \(\mathbb{Q}_q \). If \(q \) is a Factorization object, it is the factorization of the prime power \(q \). As a tuple it is the pair \((p, n) \), and as a list it is a single element list \([(p, n)] \).
- \(\text{prec} \) – integer (default: 20) the precision cap of the field. Individual elements keep track of their own precision. See TYPES and PRECISION below.
- \(\text{type} \) – string (default: 'capped-rel') Valid types are 'capped-rel', 'floating-point', 'lattice-cap' and 'lattice-float'. See TYPES and PRECISION below
- \(\text{modulus} \) – polynomial (default None) A polynomial defining an unramified extension of \(\mathbb{Q}_p \). See MODULUS below.
- \(\text{names} \) – string or tuple (None is only allowed when \(q = p \)). The name of the generator, reducing to a generator of the residue field.
- \(\text{print_mode} \) – string (default: None). Valid modes are 'series', 'val-unit', 'terse', and 'bars'. See PRINTING below.
- \(\text{ram_name} \) – string (defaults to string representation of \(p \) if None). \(\text{ram_name} \) controls how the prime is printed. See PRINTING below.
- \(\text{res_name} \) – string (defaults to None, which corresponds to adding a ' 0 ' to the end of the name). Controls how elements of the residue field print.
• `print_pos` – bool (default None) Whether to only use positive integers in the representations of elements. See PRINTING below.

• `print_sep` – string (default None) The separator character used in the 'bars' mode. See PRINTING below.

• `print_max_ram_terms` – integer (default None) The maximum number of powers of \(p \) shown. See PRINTING below.

• `print_max_unram_terms` – integer (default None) The maximum number of entries shown in a coefficient of \(p \). See PRINTING below.

• `print_max_terse_terms` – integer (default None) The maximum number of terms in the polynomial representation of an element (using 'terse'). See PRINTING below.

• `show_prec` – bool (default None) whether to show the precision for elements. See PRINTING below.

• `check` – bool (default True) whether to check inputs.

OUTPUT:

• The corresponding unramified \(p \)-adic field.

TYPES AND PRECISION:

There are two types of precision for a \(p \)-adic element. The first is relative precision, which gives the number of known \(p \)-adic digits:

```
sage: R.<a> = Qq(25, 20, 'capped-rel', print_mode='series'); b = 25*a; b  #...
0.a1*5^2 + O(5^22)
sage: b.precision_relative()  #...
needs sage.libsntl
20
```

The second type of precision is absolute precision, which gives the power of \(p \) that this element is defined modulo:

```
sage: c = R(3249); c  #...
needs sage.libsntl
3^2 + 3^4 + 3^5 + O(3^7)
sage: b + c  #...
needs sage.libsntl
2 + (2*a + 2)*3 + 3^4 + O(3^5)
```

There are two types of unramified \(p \)-adic fields: capped relative fields, floating point fields.

In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.

```
sage: R.<a> = Qq(9, 5, 'capped-rel', print_mode='series'); b = (1+2*a)^4; b  #...
2 + (2*a + 2)*3 + (2*a + 1)*3^2 + O(3^5)
sage: c = R(3249); c  #...
needs sage.libsntl
3^2 + 3^4 + 3^5 + 3^6 + O(3^7)
sage: b + c  #...
needs sage.libsntl
2 + (2*a + 2)*3 + (2*a + 2)*3^2 + 3^4 + O(3^5)
```

In the floating point case, elements do not track their precision, but the relative precision of elements is truncated during arithmetic to the precision cap of the field.

MODULUS:
The modulus needs to define an unramified extension of \mathbb{Q}_p: when it is reduced to a polynomial over \mathbb{F}_p, it should be irreducible.

The modulus can be given in a number of forms.

1. **A polynomial.**

 The base ring can be \mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p, \mathbb{Q}_p, \mathbb{F}_p.

   ```sage
   sage: # needs sage.libs.ntl
   sage: P.<x> = ZZ[]
   sage: R.<a> = Qq(27, modulus = x^3 + 2*x + 1); R.modulus()
   (1 + O(3^20))*x^3 + O(3^20)*x^2 + (2 + O(3^20))*x + 1 + O(3^20)
   sage: P.<x> = QQ[]
   sage: S.<a> = Qq(27, modulus = x^3 + 2*x + 1)
   sage: P.<x> = Zp(3)[]
   sage: T.<a> = Qq(27, modulus = x^3 + 2*x + 1)
   sage: P.<x> = Qp(3)[]
   sage: U.<a> = Qq(27, modulus = x^3 + 2*x + 1)
   sage: P.<x> = GF(3)[]
   ___ # needs sage.rings.finite_rings
   sage: V.<a> = Qq(27, modulus = x^3 + 2*x + 1)
   ```

 Which form the modulus is given in has no effect on the unramified extension produced:

   ```sage
   sage: R == S, S == T, T == U, U == V ___ # needs sage.libs.ntl
   (True, True, True, False)
   ```

 unless the precision of the modulus differs. In the case of V, the modulus is only given to precision 1, so the resulting field has a precision cap of 1.

   ```sage
   sage: # needs sage.libs.ntl
   sage: V.precision_cap()
   1
   sage: U.precision_cap()
   20
   sage: P.<x> = Qp(3)[]
   sage: modulus = x^3 + (2 + O(3^7))*x + (1 + O(3^10))
   sage: modulus
   (1 + O(3^20))*x^3 + (2 + O(3^7))*x + 1 + O(3^10)
   sage: W.<a> = Qq(27, modulus = modulus); W.precision_cap()
   7
   ```

2. **The modulus can also be given as a symbolic expression.**

   ```sage
   sage: x = var('x') ___ # needs sage.symbolic
   sage: X.<a> = Qq(27, modulus = x^3 + 2*x + 1); X.modulus() ___ # needs sage.symbolic
   (1 + O(3^20))*x^3 + O(3^20)*x^2 + (2 + O(3^20))*x + 1 + O(3^20)
   sage: X == R ___ # needs sage.libs.ntl sage.symbolic
   True
   ```

 By default, the polynomial chosen is the standard lift of the generator chosen for \mathbb{F}_q.

However, you can choose another polynomial if desired (as long as the reduction to $\mathbb{F}_p[x]$ is irreducible).

```
sage: P.<x> = ZZ[]
sage: Z.<a> = Qq(125, modulus = x^3 + 3*x^2 + x + 1); Z.modulus()  
(1 + O(5^20))*x^3 + O(5^20)*x^2 + (3 + O(5^20))*x + 1 + O(5^20)
```

PRINTING:

There are many different ways to print p-adic elements. The way elements of a given field print is controlled by options passed in at the creation of the field. There are four basic printing modes ('series', 'val-unit', 'terse' and 'bars'; 'digits' is not available), as well as various options that either hide some information in the print representation or sometimes make print representations more compact. Note that the printing options affect whether different p-adic fields are considered equal.

1. **series:** elements are displayed as series in p.

```
sage: R.<a> = Qq(9, 20, capped-rel, print_mode='series'); (1+2*a)^4
2 + (2*a + 2)*3 + (2*a + 1)*3^2 + O(3^20)
sage: -3*(1+2*a)^4
3 + a*3^2 + 3*3 + (2*a + 2)*3^4 + (2*a + 2)*3^5 + (2*a + 2)*3^6 + (2*a + 2)*3^7
```

`print_pos` controls whether negatives can be used in the coefficients of powers of p.

```
sage: S.<b> = Qq(9, print_mode='series', print_pos=False); (1+2*b)^4
-1 - b*3 - 3^2 + (b + 1)*3^3 + O(3^20)
```

`ram_name` controls how the prime is printed.
sage: T.<d> = Qq(9, print_mode='series', ram_name='p'); 3*(1+2*d)^4
˓→ # needs sage.libsntl
2*p + (2*d + 2)*p^2 + (2*d + 1)*p^3 + O(p^21)

`print_max_ram_terms` limits the number of powers of `p` that appear.

sage: U.<e> = Qq(9, print_mode='series', print_max_ram_terms=4); repr(-
˓→3*(1+2*e)^4) # needs sage.libsntl
3 + e*3^2 + 3^3 + (2*e + 2)*3^4 + ... + O(3^21)

`print_max_unram_terms` limits the number of terms that appear in a coefficient of a power of `p`.

sage: V.<f> = Qq(128, prec = 8, print_mode='series'); repr((1+f)^9)
(1 + f) + (f^2 + f)*2 + (f^3 + f)*2^2 + (f^4 + f)*2^3 + (f^5 + f)*2^4 + (f^6 + f)*2^5 + (f^7 + f)*2^6 + (f^8 + f)*2^7 + O(2^8)

show_prec determines how the precision is printed. It can be either `none` (or equivalently `False`), 'bigoh' (or equivalently `True`). The default is `False` for the 'floating-point' type and `True` for all other types.

sage: U.<e> = Qq(9, 2, show_prec=False); repr(-3*(1+2*e)^4)
˓→ # needs sage.libsntl
3 + e*3^2

`print_sep` and `print_max_terse_terms` have no effect.

Note that print options affect equality:

(False, False, False, False, False, False, False, False, False, False)

2. val-unit: elements are displayed as $p^k u$:

sage: R.<a> = Qq(9, 7, print_mode='val-unit'); b = (1+3*a)^9 - 1; b # needs sage.libsntl
(continues on next page)
\[3^3 \times (15 + 64a) + O(3^7)\]
\[
\text{sage: } -b \rightarrow \text{ # needs sage.libs.ntl}
\]
\[3^{-3} \times (41 + a) + O(3)\]

```
sage: S.<a> = Qq(9, 7, print_mode='val-unit', print_pos=False) \rightarrow \text{ # needs sage.libs.ntl}
sage: b = (1+3*a)^9 - 1; b \rightarrow \text{ # needs sage.libs.ntl}
3^3 \times (15 - 17a) + O(3^7)
sage: -b \rightarrow \text{ # needs sage.libs.ntl}
3^{-3} \times (-40 + a) + O(3)
```

`print_pos` controls whether to use a balanced representation or not.

```
sage: S.<a> = Qq(9, 7, print_mode='val-unit', print_pos=True)
sage: b = (1+3*a)^9 - 1; b\rightarrow \text{ # needs sage.libs.ntl}
3^3 \times (15 - 17a) + O(3^7)
sage: -b \rightarrow \text{ # needs sage.libs.ntl}
3^{-3} \times (-40 + a) + O(3)
```

`ram_name` affects how the prime is printed.

```
sage: # needs sage.libs.ntl
sage: A.<x> = Qq(next_prime(10^6), print_mode='val-unit')
```

```
sage: b = ~(next_prime(10^6)^2*(a^2 + a - 4)); b
\[p^{-2} \times (503009563508519137754940 + 704413692798200940253892a^2 + 96809705781774999537581a^2 + O(p^2))\]
sage: b * (a^2 + a - 4) \rightarrow \text{ # needs sage.libs.ntl}
p^{-2} \times 1 + O(p^2)
```

`print_max_terse_terms` controls how many terms of the polynomial appear in the unit part.

```
sage: U.<a> = Qq(17^4, 6, print_mode='val-unit', print_max_terse_terms=3)\rightarrow \text{ # needs sage.libs.ntl}
sage: b = - (next_prime(10^6)^2*(a^2 + a - 4)); b\rightarrow \text{ # needs sage.libs.ntl}
17^{-1} \times (22110411 + 11317400*a + 20656972*a^2 + ...) + O(17^5)
sage: b*17*(a^3-a+14) \rightarrow \text{ # needs sage.libs.ntl}
1 + O(17^6)
```

`show_prec` determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True). The default is False for the 'floating-point' type and True for all other types.

```
sage: U.<e> = Qq(9, 2, print_mode='val-unit', show_prec=False); repr(-3*(1+2*e)^4) \rightarrow \text{ # needs sage.libs.ntl}
'3 \times (1 + 3e)'
```

`print_sep`, `print_max_ram_terms` and `print_max_unram_terms` have no effect.

Equality again depends on the printing options:

```
sage: R == S, R == T, R == U, S == T, S == U, T == U \rightarrow \text{ # needs sage.libs.ntl}
(False, False, False, False, False, False)
```
3. **terse**: elements are displayed as a polynomial of degree less than the degree of the extension.

```sage
sage: R.<a> = Qq(125, print_mode='terse')
˓→ # needs sage.libs.ntl
sage: (a+5)^177
˓→ # needs sage.libs.ntl
6821097797928 + 90313850704069*a + 73948093055069*a^2 + O(5^20)
sage: (a/5+1)^177
˓→ # needs sage.libs.ntl
6821097797928/5^177 + 90313850704069/5^177*a + 73948093055069/5^177*a^2 + O(5^-157)
```

As of version 3.3, if coefficients of the polynomial are non-integral, they are always printed with an explicit power of \(p \) in the denominator.

```sage
sage: 5*a + a^2/25  # needs sage.libs.ntl
5*a + 1/5^2*a^2 + O(5^18)
```

print_pos controls whether to use a balanced representation or not.

```sage
sage: (a-5)^6  # needs sage.libs.ntl
22864 + 12627*a + 8349*a^2 + O(5^20)
sage: S.<a> = Qq(125, print_mode='terse', print_pos=False); (a-1/5)^6  # needs sage.libs.ntl
-20624/5^6 + 18369/5^5*a + 1353/5^3*a^2 + O(5^14)
```

ram_name affects how the prime is printed.

```sage
sage: T.<a> = Qq(125, print_mode='terse', ram_name='p'); (a - 1/5)^6  # needs sage.libs.ntl
95367431620001/p^6 + 18369/p^5*a + 1353/p^3*a^2 + O(p^14)
```

print_max_terse_terms controls how many terms of the polynomial are shown.

```sage
sage: U.<a> = Qq(625, print_mode='terse', print_max_terse_terms=2); (a-1/5)^6  # needs sage.libs.ntl
106251/5^6 + 49994/5^5*a + ... + O(5^14)
```

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True). The default is False for the 'floating-point' type and True for all other types.

```sage
sage: U.<e> = Qq(9, 2, print_mode='terse', show_prec=False); repr(-3*(1+2*e)^4)  # needs sage.libs.ntl
'3 + 9*e'
```

print_sep, **print_max_ram_terms** and **print_max_unram_terms** have no effect.

Equality again depends on the printing options:

```sage
sage: R == S, R == T, R == U, S == T, S == U, T == U  # needs sage.libs.ntl
(False, False, False, False, False, False)
```
4. **digits**: This print mode is not available when the residue field is not prime. It might make sense to have a dictionary for small fields, but this isn’t implemented.

5. **bars**: elements are displayed in a similar fashion to series, but more compactly.

```sage
sage: R.<a> = Qq(125); (a+5)^6
˓→ # needs sage.libs.ntl
(4*a^2 + 3*a + 4) + (3*a^2 + 2*a)*5 + (a^2 + a + 1)*5^2 + (3*a + 2)*5^3 + (3*a^2 + a + 3)*5^4 + (2*a^2 + 3*a + 2)*5^5 + O(5^20)
sage: R.<a> = Qq(125, print_mode='bars', prec=8); repr((a+5)^6)
˓→ # needs sage.libsntl
'...[2, 3, 2][[3, 1, 3]][2, 3][1, 1, 1][0, 2, 3][4, 3, 4]'
sage: repr((a-5)^6)
˓→ # needs sage.libsntl
'...[0, 4][1, 4][2, 0, 2][1, 4, 3][2, 3, 1][4, 4, 3][2, 4, 4][4, 3, 4]'
```

Note that elements with negative valuation are shown with a decimal point at valuation 0.

```sage
sage: repr((a+1/5)^6)
˓→ # needs sage.libs.ntl
'...[3][[4, 1, 3]][[1, 2, 3][[3, 3]][0, 0, 1]][0, 1][1]'
sage: repr((a+1/5)^2)
˓→ # needs sage.libs.ntl
'...[0, 0, 1][0, 2][1]'
```

If not enough precision is known, ' ? ' is used instead.

```sage
sage: repr((a+R(1/5,relprec=3))^7)
˓→ # needs sage.libs.ntl
'...[?][?][?][?][?][?][?][?][?][[0, 1, 1]][0, 2][1]'
```

Note that it’s not possible to read off the precision from the representation in this mode.

```sage
sage: b = a + 3; repr(b)
'...[3, 1]'
sage: c = a + R(3, 4); repr(c)
'...[3, 1]'
sage: b.precision_absolute()
8
sage: c.precision_absolute()
4
```

,print_pos, controls whether the digits can be negative.

```sage
sage: S.<a> = Qq(125, print_mode='bars', print_pos=False); repr((a-5)^6)
˓→ # needs sage.libs.ntl
'...[-1, 1][2, 1, -2][2, 0, -2][-2, -1, 2][0, 0, -1][-2][-1, -2, -1]'
sage: repr((a-1/5)^6)
˓→ # needs sage.libs.ntl
'...[0, 1, 2][-1, 1, 1][-2, -1, -1][2, 2, 1][0, 0, -2][0, -1][0, -1][-1][1]'
```

,print_max_ram_terms, controls the maximum number of “digits” shown. Note that this puts a cap on the relative precision, not the absolute precision.
print_sep controls the separating character (' | ' by default).

print_max_unram_terms controls how many terms are shown in each "digit":

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'dots' (or equivalently True) or 'bigoh'. The default is False for the 'floating-point' type and True for all other types.

ram_name and print_max_terse_terms have no effect.

Equality depends on printing options:

EXAMPLES:

Unlike for Qp, you can't create Qq(N) when N is not a prime power.

However, you can use check=False to pass in a pair in order to not have to factor. If you do so, you need to use names explicitly rather than the R.<a> syntax.
\texttt{needs sage.libs.ntl} (-a - 4) + O(p^{20})

In tests on \texttt{sage.math.washington.edu}, the creation of \mathbb{K} as above took an average of 1.58ms, while:

\begin{verbatim}
sage: K = Qq(p^5, modulus=x^5+x+4, names='a', ram_name='p', #...
\texttt{needs sage.libs.ntl}
.....: print_pos=False, check=True)
\end{verbatim}

took an average of 24.5ms. Of course, with smaller primes these savings disappear.

\begin{verbatim}
sage: K = Qq(p^5, modulus=x^5+x+4, names='a', ram_name='p', #...
\texttt{needs sage.libs.ntl}
....: print_pos=False, check=True)
\end{verbatim}

\texttt{sage.rings.padics.factory.QqCR} (q, \texttt{prec=\texttt{None}}, \texttt{*args}, \texttt{**kwds})

A shortcut function to create capped relative unramified p-adic fields.

Same functionality as \texttt{Qq()}. See documentation for \texttt{Qq()} for a description of the input parameters.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<a> = QqCR(25, 40); R
\texttt{needs sage.libs.ntl}
5-adic Unramified Extension Field in a defined by $x^2 + 4*x + 2$
\end{verbatim}

\texttt{sage.rings.padics.factory.QqFP} (q, \texttt{prec=\texttt{None}}, \texttt{*args}, \texttt{**kwds})

A shortcut function to create floating point unramified p-adic fields.

Same functionality as \texttt{Qq()}. See documentation for \texttt{Qq()} for a description of the input parameters.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R.<a> = QqFP(25, 40); R
\texttt{needs sage.libs.ntl}
5-adic Unramified Extension Field in a defined by $x^2 + 4*x + 2$
\end{verbatim}

\texttt{sage.rings.padics.factory.ZpCA} (p, \texttt{prec=\texttt{None}}, \texttt{*args}, \texttt{**kwds})

A shortcut function to create capped absolute p-adic rings.

See documentation for \texttt{Zp()} for a description of the input parameters.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: ZpCA(5, 40)
5-adic Ring with capped absolute precision 40
\end{verbatim}

\texttt{sage.rings.padics.factory.ZpCR} (p, \texttt{prec=\texttt{None}}, \texttt{*args}, \texttt{**kwds})

A shortcut function to create capped relative p-adic rings.

Same functionality as \texttt{Zp()}. See documentation for \texttt{Zp()} for a description of the input parameters.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: ZpCR(5, 40)
5-adic Ring with capped relative precision 40
\end{verbatim}

\texttt{sage.rings.padics.factory.ZpER} (p, \texttt{prec=\texttt{None}}, \texttt{halt=\texttt{None}}, \texttt{secure=\texttt{False}}, \texttt{*args}, \texttt{**kwds})

A shortcut function to create relaxed p-adic rings.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{prec} – an integer (default: 20), the default precision
\end{itemize}
A SHORT INTRODUCTION TO RELAXED p-ADICS:

The model for relaxed p-adics is quite different from any of the other types of p-adics. In addition to storing a finite approximation, one also stores a method for increasing the precision.

Relaxed p-adic rings are created by the constructor $ZpER()$:

```
sage: R = ZpER(5, print_mode="digits"); R
5-adic Ring handled with relaxed arithmetics
```

The precision is not capped in R:

```
sage: R.precision_cap()
+Infinity
```

However, a default precision is fixed. This is the precision at which the elements will be printed:

```
sage: R.default_prec()
20
```

A default halting precision is also set. It is the default absolute precision at which the elements will be compared. By default, it is twice the default precision:

```
sage: R.halting_prec()
40
```

However, both the default precision and the halting precision can be customized at the creation of the parent as follows:

```
sage: S = ZpER(5, prec=10, halt=100)
sage: S.default_prec()
sage: S.halting_prec()
```

One creates elements as usual:

```
sage: a = R(17/42); a
sage: R.random_element()
```

See documentation for $Zp()$ for a description of the other input parameters.
Here we notice that 20 digits (that is the default precision) are printed. However, the computation model is designed in order to guarantee that more digits of a will be available on demand. This feature is reflected by the fact that, when we ask for the precision of a, the software answers $+\infty$:

```sage```
sage: a.precision_absolute()  #...
\rightarrow \text{needs } sage.libs.flint
+\infty
```

Asking for more digits is achieved by the methods `at_precision_absolute()` and `at_precision_relative()`:

```sage```
sage: a.at_precision_absolute(30)  #...
\rightarrow \text{needs } sage.libs.flint
...?244200244200244200244200244200244201
```

As a shortcut, one can use the bracket operator:

```sage```
sage: a[:30]  #...
\rightarrow \text{needs } sage.libs.flint
...?244200244200244200244200244200244201
```

Of course, standard operations are supported:

```sage```
sage: \# \text{needs } sage.libs.flint
sage: b = R(42/17)
sage: a + b
...03232011214322140002
sage: a - b
...42311334324023403400
sage: a * b
...000000000000000000000001
sage: a / b
...12442142113021233401
sage: sqrt(a)
...20042333114021142101
```

We observe again that only 20 digits are printed but, as before, more digits are available on demand:

```sage```
sage: sqrt(a)[:30]  #...
\rightarrow \text{needs } sage.libs.flint
...?142443342120042333114021142101
```

Equality tests

Checking equalities between relaxed p-adics is a bit subtle and can sometimes be puzzling at first glance.

When the parent is created with `secure=False` (which is the default), elements are compared at the current precision, or at the default halting precision if it is higher:

```sage```
sage: a == b  #...
\rightarrow \text{needs } sage.libs.flint
False
sage: a == sqrt(a)^2  #...
\rightarrow \text{needs } sage.libs.flint
True
```

(continues on next page)
In the above example, the halting precision is 40; it is the reason why a congruence modulo 5^{50} is considered as an equality. However, if both sides of the equalities have been previously computed with more digits, those digits are taken into account. Hence comparing two elements at different times can produce different results:

```
sage: a == sqrt(a)^2 + 5^50
True
```

This annoying situation, where the output of `a == aa` may change depending on previous computations, cannot occur when the parent is created with `secure=True`. Indeed, in this case, if the equality cannot be decided, an error is raised:

```
sage: S = ZpER(5, secure=True)
sage: u = S.random_element()
sage: uu = u + 5^50
sage: u == uu
Traceback (most recent call last):
  ... PrecisionError: unable to decide equality; try to bound precision
```

Self-referent numbers

A quite interesting feature with relaxed p-adics is the possibility to create (in some cases) self-referent numbers. Here is an example. We first declare a new variable as follows:

```
sage: x = R.unknown(); x
.0
```

We then use the method `set()` to define x by writing down an equation it satisfies:

```
sage: x.set(1 + 5*x^2)
```

The variable x now contains the unique solution of the equation $x = 1 + 5x^2$:
This works because the n-th digit of the right hand size of the defining equation only involves the i-th digits of x with $i < n$ (this is due to the factor 5).

As a comparison, the following does not work:

```sage
# needs sage.libs.flint
sage: y = R.unknown()
sage: y.set(1 + 3*y^2)
True
sage: y
...?0
sage: y[:20]
Traceback (most recent call last):
... RecursionError: definition looks circular
```

Self-referent definitions also work with systems of equations:

```sage
# needs sage.libs.flint
sage: u = R.unknown()
sage: v = R.unknown()
sage: w = R.unknown()
sage: u.set(1 + 2*v + 3*w^2 + 5*u*v*w)
True
sage: v.set(2 + 4*w + sqrt(1 + 5*u + 10*v + 15*w))
True
sage: w.set(3 + 25*(u*v + v*w + u*w))
True
sage: u
...31203130103131131433
sage: v
...33441043031103114240
sage: w
...302142204110244403
```

sage.rings.padics.factory.ZpFM $(p, \text{prec}={\text{None}}, \text{args}, \text{**kwds})$

A shortcut function to create fixed modulus p-adic rings.

See documentation for $Zp()$ for a description of the input parameters.

EXAMPLES:

```sage
sage: ZpFM(5, 40)
5-adic Ring of fixed modulus $5^{40}$
```

sage.rings.padics.factory.ZpFP $(p, \text{prec}={\text{None}}, \text{args}, \text{**kwds})$

A shortcut function to create floating point p-adic rings.

Same functionality as $Zp()$. See documentation for $Zp()$ for a description of the input parameters.

EXAMPLES:

```sage
sage: ZpFP(5, 40)
5-adic Ring with floating precision 40
```
A shortcut function to create \(p \)-adic rings with lattice precision (precision is encoded by a lattice in a large vector space and tracked using automatic differentiation).

See documentation for \(\mathbb{Z}_p() \) for a description of the input parameters.

EXAMPLES:

Below is a small demo of the features by this model of precision:

```
sage: R = ZpLC(3, print_mode='terse')
sage: R
3-adic Ring with lattice-cap precision
sage: x = R(1,10)
```

Of course, when we multiply by 3, we gain one digit of absolute precision:

```
sage: 3*x
3 + O(3^11)
```

The lattice precision machinery sees this even if we decompose the computation into several steps:

```
sage: y = x+x
sage: y
2 + O(3^10)
sage: x + y
3 + O(3^11)
```

The same works for the multiplication:

```
sage: z = x^2
sage: z
1 + O(3^10)
sage: x*z
1 + O(3^11)
```

This can be more surprising when we are working with elements given at different precisions:

```
sage: R = ZpLC(2, print_mode='terse')
sage: x = R(1,10)
sage: y = R(1,5)
sage: z = x+y; z
2 + O(2^5)
sage: t = x-y; t
O(2^5)
sage: z+t  # observe that z+t = 2*x
2 + O(2^11)
sage: z-t  # observe that z-t = 2*y
2 + O(2^6)
sage: x = R(28888,15)
sage: y = R(204,10)
sage: z = x/y; z
242 + O(2^9)
sage: z*y  # which is x
28888 + O(2^15)
```
The SOMOS sequence is the sequence defined by the recurrence:

\[u_n = \frac{u_{n-1}u_{n-3} + u_{n-2}^2}{u_{n-4}} \]

It is known for its numerical instability. On the one hand, one can show that if the initial values are invertible in \(\mathbb{Z}_p \) and known at precision \(O(p^N) \) then all the next terms of the SOMOS sequence will be known at the same precision as well. On the other hand, because of the division, when we unroll the recurrence, we loose a lot of precision. Observe:

```python
sage: R = Zp(2, 30, print_mode='terse')
sage: a, b, c, d = R(1,15), R(1,15), R(1,15), R(3,15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
 4 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
13 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
55 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
21975 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
6639 + O(2^13)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
7186 + O(2^13)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
569 + O(2^13)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
253 + O(2^13)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
4149 + O(2^13)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
2899 + O(2^12)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
3072 + O(2^12)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
349 + O(2^12)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
619 + O(2^12)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
243 + O(2^12)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
3 + O(2^2)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
2 + O(2^2)
```

If instead, we use the lattice precision, everything goes well:

```python
sage: R = ZpLC(2, 30, print_mode='terse')
sage: a, b, c, d = R(1,15), R(1,15), R(1,15), R(3,15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
 4 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
13 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
55 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
21975 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
6639 + O(2^13)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
7186 + O(2^13)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
569 + O(2^13)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
253 + O(2^13)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
4149 + O(2^13)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
2899 + O(2^12)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
3072 + O(2^12)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
349 + O(2^12)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
619 + O(2^12)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
243 + O(2^12)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
3 + O(2^2)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
2 + O(2^2)
```

(continues on next page)
23023 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
31762 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
16953 + O(2^15)
sage: a, b, c, d = b, c, d, (b*d+c*c)/a; print(d)
16637 + O(2^15)
sage: for _ in range(100):
 : a, b, c, d = b, c, d, (b*d+c*c)/a
sage: a
15519 + O(2^15)
sage: b
32042 + O(2^15)
sage: c
17769 + O(2^15)
sage: d
20949 + O(2^15)

ALGORITHM:

The precision is global. It is encoded by a lattice in a huge vector space whose dimension is the number of elements having this parent. Precision is tracked using automatic differentiation techniques (see [CRV2014] and [CRV2018]).

Concretely, this precision datum is an instance of the class sage.rings.padic.lattice_precision. PrecisionLattice. It is attached to the parent and is created at the same time as the parent. (It is actually a bit more subtle because two different parents may share the same instance; this happens for instance for a p-adic ring and its field of fractions.)

This precision datum is accessible through the method precision():

```python
sage: R = ZpLC(5, print_mode='terse')
sage: prec = R.precision()
sage: prec
Precision lattice on 0 objects
```

This instance knows about all elements of the parent. It is automatically updated when a new element (of this parent) is created:

```python
sage: x = R(3513, 10)
sage: prec
Precision lattice on 1 object
sage: y = R(176, 5)
sage: prec
Precision lattice on 2 objects
sage: z = R.random_element()
sage: prec
Precision lattice on 3 objects
```

The method tracked_elements() provides the list of all tracked elements:

```python
sage: prec.tracked_elements()
[3513 + O(5^10), 176 + O(5^5), ...]
```

Similarly, when a variable is collected by the garbage collector, the precision lattice is updated. Note however that the update might be delayed. We can force it with the method del_elements():

```python
sage: del_elements()
```
The method \texttt{precision_lattice()} returns (a matrix defining) the lattice that models the precision. Here we have:

\begin{verbatim}
sage: prec.precision_lattice() #...
 \texttt{needs sage.geometry.polyhedron}

 \begin{bmatrix}
 9765625 & 0 \\
 0 & 3125
 \end{bmatrix}
\end{verbatim}

Observe that $5^3 0 = 9765625$ and $5^5 = 3125$. The above matrix then reflects the precision on x and y.

Now, observe how the precision lattice changes while performing computations:

\begin{verbatim}
sage: x, y = 3*x+2*y, 2*(x-y)
sage: prec.del_elements()
sage: prec.precision_lattice() #...
 \texttt{needs sage.geometry.polyhedron}

 \begin{bmatrix}
 3125 & 48825000 \\
 0 & 48828125
 \end{bmatrix}
\end{verbatim}

The matrix we get is no longer diagonal, meaning that some digits of precision are diffused among the two new elements x and y. They nevertheless show up when we compute for instance $x + y$:

\begin{verbatim}
sage: x
1516 + O(5^5)
sage: y
424 + O(5^5)
sage: x+y
17565 + O(5^{11})
\end{verbatim}

These diffused digits of precision (which are tracked but do not appear on the printing) allow to be always sharp on precision.

NOTE:

Each elementary operation requires significant manipulations on the precision lattice and therefore is costly. Precisely:

\begin{itemize}
 \item The creation of a new element has a cost $O(n)$ where n is the number of tracked elements.
 \item The destruction of one element has a cost $O(m^2)$ where m is the distance between the destroyed element and the last one. Fortunately, it seems that m tends to be small in general (the dynamics of the list of tracked elements is rather close to that of a stack).
\end{itemize}

It is nevertheless still possible to manipulate several hundred variables (e.g. square matrices of size 5 or polynomials of degree 20).

The class \texttt{PrecisionLattice} provides several features for introspection, especially concerning timings. See \texttt{history()} and \texttt{timings()} for details.

See also:

\texttt{ZpLF()}
sage.rings.padics.factory.ZpLF $(p, prec=None, *args, **kwds)$

A shortcut function to create p-adic rings where precision is encoded by a module in a large vector space.

See documentation for Zp() for a description of the input parameters.

Note: The precision is tracked using automatic differentiation techniques (see [CRV2018] and [CRV2014]). Floating point p-adic numbers are used for the computation of the differential (which is then not exact).

EXAMPLES:

```python
sage: R = ZpLF(5, 40)
sage: R
5-adic Ring with lattice-float precision
```

See also:

ZpLC()

class sage.rings.padics.factory.Zp_class

Bases: UniqueFactory

A creation function for p-adic rings.

INPUT:

- p – integer: the p in \mathbb{Z}_p
- prec – integer (default: 20) the precision cap of the ring. In the lattice capped case, prec can either be a pair (relative_cap, absolute_cap) or an integer (understood as relative cap). In the relaxed case, prec can be either a pair (default_prec, halting_prec) or an integer (understood as default precision). Except for the fixed modulus and floating point cases, individual elements keep track of their own precision. See TYPES and PRECISION below.
- type – string (default: 'capped-rel') Valid types are 'capped-rel', 'capped-abs', 'fixed-mod','floating-point','lattice-cap','lattice-float','relaxed'. See TYPES and PRECISION below.
- print_mode – string (default: None). Valid modes are 'series', 'val-unit', 'terse', 'digits', and 'bars'. See PRINTING below.
- names – string or tuple (defaults to a string representation of p). What to use whenever p is printed.
- print_pos – bool (default None) Whether to only use positive integers in the representations of elements. See PRINTING below.
- print_sep – string (default None) The separator character used in the 'bars' mode. See PRINTING below.
- print_alphabet – tuple (default None) The encoding into digits for use in the 'digits' mode. See PRINTING below.
- print_max_terms – integer (default None) The maximum number of terms shown. See PRINTING below.
- show_prec – bool (default None) whether to show the precision for elements. See PRINTING below.
- check – bool (default True) whether to check if p is prime. Non-prime input may cause seg-faults (but can also be useful for base n expansions for example)
- label – string (default None) used for lattice precision to create parents with different lattices.

OUTPUT:
• The corresponding p-adic ring.

TYPES AND PRECISION:

There are two main types of precision. The first is relative precision; it gives the number of known p-adic digits:

```
sage: R = Zp(5, 20, 'capped-rel', 'series'); a = R(675); a
2*5^2 + 5^4 + O(5^22)
sage: a.precision_relative()
20
```

The second type of precision is absolute precision, which gives the power of p that this element is defined modulo:

```
sage: a.precision_absolute()
22
```

There are several types of p-adic rings, depending on the methods used for tracking precision. Namely, we have:

- capped relative rings (type='capped-rel')
- capped absolute rings (type='capped-abs')
- fixed modulus rings (type='fixed-mod')
- floating point rings (type='floating-point')
- lattice precision rings (type='lattice-cap' or type='lattice-float')
- exact fields with relaxed arithmetics (type='relaxed')

In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.

```
sage: R = Zp(5, 5, 'capped-rel', 'series'); a = R(4006); a
1 + 5 + 2*5^3 + 5^4 + O(5^5)
sage: b = R(4025); b
5^2 + 2*5^3 + 5^4 + 5^5 + O(5^7)
sage: a + b
1 + 5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5)
```

In the capped absolute type, instead of having a cap on the relative precision of an element there is instead a cap on the absolute precision. Elements still store their own precisions, and as with the capped relative case, exact elements are truncated when cast into the ring.

```
sage: R = Zp(5, 5, 'capped-abs', 'series'); a = R(4005); a
5 + 2*5^3 + 5^4 + O(5^5)
sage: b = R(4025); b
5^2 + 2*5^3 + 5^4 + O(5^5)
sage: a * b
5^3 + 2*5^4 + O(5^5)
sage: (a * b) // 5^3
1 + 2*5 + O(5^2)
```

The fixed modulus type is the leanest of the p-adic rings: it is basically just a wrapper around $\mathbb{Z}/p^n\mathbb{Z}$ providing a unified interface with the rest of the p-adics. This is the type you should use if your sole interest is speed. It does not track precision of elements.
The floating point case is similar to the fixed modulus type in that elements do not track their own precision. However, relative precision is truncated with each operation rather than absolute precision.

On the contrary, the lattice type tracks precision using lattices and automatic differentiation. It is rather slow but provides sharp (often optimal) results regarding precision. We refer to the documentation of the function \(\text{ZpLC}() \) for a small demonstration of the capabilities of this precision model.

Finally, the model for relaxed \(p \)-adics is quite different from any of the other types. In addition to storing a finite approximation, one also stores a method for increasing the precision. A quite interesting feature with relaxed \(p \)-adics is the possibility to create (in some cases) self-referent numbers, that are numbers whose \(n \)-th digit is defined by the previous ones. We refer to the documentation of the function \(\text{ZpL()} \) for a small demonstration of the capabilities of this precision model.

PRINTING:

There are many different ways to print \(p \)-adic elements. The way elements of a given ring print is controlled by options passed in at the creation of the ring. There are five basic printing modes ('series', 'val-unit', 'terse', 'digits' and 'bars'), as well as various options that either hide some information in the print representation or sometimes make print representations more compact. Note that the printing options affect whether different \(p \)-adic fields are considered equal.

1. **series**: elements are displayed as series in \(p \).

```sage
sage: R = Zp(5, print_mode='series'); a = R(70700); a
3*5^2 + 3*5^4 + 2*5^5 + 4*5^6 + O(5^22)
sage: b = R(-70700); b
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + 4*5^7 + 4*5^8 + 4*5^9 + 4*5^10 + 4*5^11
+ 4*5^12 + 4*5^13 + 4*5^14 + 4*5^15 + 4*5^16 + 4*5^17 + 4*5^18
+ 4*5^19 + 4*5^20 + 4*5^21 + O(5^22)
```

print_pos controls whether negatives can be used in the coefficients of powers of \(p \).

```sage
sage: S = Zp(5, print_mode='series', print_pos=False); a = S(70700); a
-2*5^2 + 5^3 - 2*5^4 - 2*5^5 + 5^7 + O(5^22)
sage: b = S(-70700); b
2*5^2 - 5^3 + 2*5^4 + 2*5^5 - 5^7 + O(5^22)
```

print_max_terms limits the number of terms that appear.

```sage
sage: T = Zp(5, print_mode='series', print_max_terms=4); b = R(-70700); b
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + ... + O(5^22)
```

names affects how the prime is printed.

```sage
sage: U.<p> = Zp(5); p
p + O(p^21)
```

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True). The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

```sage
sage: Zp(5, show_prec=False)(6)
1 + 5
```
\textit{print_sep} and \textit{print_alphabet} have no effect.

Note that print options affect equality:

\begin{verbatim}
sage: R == S, R == T, R == U, S == T, S == U, T == U
(False, False, False, False, False, False)
\end{verbatim}

2. \textbf{val-unit}: elements are displayed as $p^k u$:

\begin{verbatim}
sage: R = Zp(5, print_mode='val-unit'); a = R(70700); a
5^2 * 2828 + O(5^22)
sage: b = R(-707*5); b
5 * 95367431639918 + O(5^21)
\end{verbatim}

\textit{print_pos} controls whether to use a balanced representation or not.

\begin{verbatim}
sage: S = Zp(5, print_mode='val-unit', print_pos=False); b = S(-70700); b
5^2 * (-2828) + O(5^22)
\end{verbatim}

\textit{names} affects how the prime is printed.

\begin{verbatim}
sage: T = Zp(5, print_mode='val-unit', names='pi'); a = T(70700); a
pi^2 * 2828 + O(pi^22)
\end{verbatim}

\textit{show_prec} determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True). The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

\begin{verbatim}
sage: 2p(5, print_mode='val-unit', show_prec=False)(30)
S^6
\end{verbatim}

\textit{print_max_terms}, \textit{print_sep} and \textit{print_alphabet} have no effect.

Equality again depends on the printing options:

\begin{verbatim}
sage: R == S, R == T, S == T
(False, False, False)
\end{verbatim}

3. \textbf{terse}: elements are displayed as an integer in base 10:

\begin{verbatim}
sage: R = Zp(5, print_mode='terse'); a = R(70700); a
70700 + O(5^22)
sage: b = R(-70700); b
2384185790944925 + O(5^22)
\end{verbatim}

\textit{print_pos} controls whether to use a balanced representation or not.

\begin{verbatim}
sage: S = Zp(5, print_mode='terse', print_pos=False); b = S(-70700); b
-70700 + O(5^22)
\end{verbatim}

\textit{name} affects how the name is printed. Note that this interacts with the choice of shorter string for denominators.

\begin{verbatim}
sage: T.<unif> = Zp(5, print_mode='terse'); c = T(-707); c
95367431639918 + O(unif^20)
\end{verbatim}
show_prec determines how the precision is printed. It can be either \textquote{none} (or equivalently \texttt{False}), \textquote{bigoh} (or equivalently \texttt{True}). The default is \texttt{False} for the \textquote{floating-point} and \textquote{fixed-mod} types and \texttt{True} for all other types.

\begin{verbatim}
sage: Zp(5, print_mode=\textquote{terse}, show_prec=\texttt{False})(30)
30
\end{verbatim}

\texttt{print_max_terms}, \texttt{print_sep} and \texttt{print_alphabet} have no effect.

Equality depends on printing options:

\begin{verbatim}
sage: R == S, R == T, S == T
(False, False, False)
\end{verbatim}

4. \textit{digits}: elements are displayed as a string of base \(p \) digits

Restriction: you can only use the digits printing mode for small primes. Namely, \(p \) must be less than the length of the alphabet tuple (default alphabet has length 62).

\begin{verbatim}
sage: R = Zp(5, print_mode=\textquote{digits}); a = R(70700); repr(a)
'...4230300'
sage: b = R(-70700); repr(b)
'...4444444444444440214200'
\end{verbatim}

Note that it’s not possible to read off the precision from the representation in this mode.

\texttt{print_max_terms} limits the number of digits that are printed.

\begin{verbatim}
sage: S = Zp(5, print_max_terms=4); S(-70700)
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + ... + O(5^22)
\end{verbatim}

\texttt{print_alphabet} controls the symbols used to substitute for digits greater than 9. Defaults to \textquote{(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z):}

\begin{verbatim}
sage: T = Zp(5, print_mode=\textquote{digits}, print_alphabet=('1', '2', '3', '4', '5'))
sage: repr(T(-70700))
'...5555555555555551325311'
\end{verbatim}

\texttt{show_prec} determines how the precision is printed. It can be either \textquote{none} (or equivalently \texttt{False}), \textquote{dots} (or equivalently \texttt{True}) or \textquote{bigoh}. The default is \texttt{False} for the \textquote{floating-point} and \textquote{fixed-mod} types and \texttt{True} for all other types.

\begin{verbatim}
sage: repr(Zp(5, 2, print_mode=\textquote{digits}, show_prec=\texttt{True})(6))
'...11'
sage: repr(Zp(5, 2, print_mode=\textquote{digits}, show_prec=\textquote{bigoh})(6))
'11 + O(5^2)'
\end{verbatim}

\texttt{print_pos}, \texttt{name} and \texttt{print_sep} have no effect.

Equality depends on printing options:

\begin{verbatim}
sage: R == S, R == T, S == T
(False, False, False)
\end{verbatim}

5. \textit{bars}: elements are displayed as a string of base \(p \) digits with separators:
sage: R = Zp(5, print_mode='bars'); a = R(70700); repr(a)
'.\ldots4|2|3|0|3|0|0'
sage: b = R(-70700); repr(b)
'.\ldots4|4|4|4|4|4|4|4|4|4|4|4|4|4|4|0|2|1|4|2|0|0'

Again, note that it’s not possible to read off the precision from the representation in this mode.

`print_pos` controls whether the digits can be negative.

sage: S = Zp(5, print_mode='bars', print_pos=False); b = S(-70700); repr(b)
'.\ldots-1|0|2|2|-1|2|0|0'

`print_max_terms` limits the number of digits that are printed.

sage: T = Zp(5, print_max_terms=4); T(-70700)
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + \ldots + O(5^22)

`print_sep` controls the separation character.

sage: U = Zp(5, print_mode='bars', print_sep=']'); a = U(70700); repr(a)

`show_prec` determines how the precision is printed. It can be either 'none' (or equivalently `False`), 'dots' (or equivalently `True`) or 'bigoh'. The default is `False` for the 'floating-point' and 'fixed-mod' types and `True` for all other types.

sage: repr(Zp(5, 2, print_mode='bars', show_prec=True)(6))
'.\ldots1|1'
sage: repr(Zp(5, 2, print_mode='bars', show_prec=False)(6))
'1|1'

`name` and `print_alphabet` have no effect.

Equality depends on printing options:

sage: R == S, R == T, R == U, S == T, S == U, T == U
(False, False, False, False, False, False)

EXAMPLES:

We allow non-prime \(p \), but only if `check=False`. Note that some features will not work.

sage: K = Zp(15, check=False); a = K(999); a
9 + 6*15 + 4*15^2 + O(15^20)

We create rings with various parameters:

sage: Zp(7)
7-adic Ring with capped relative precision 20
sage: Zp(9)
Traceback (most recent call last):
...
ValueError: p must be prime
sage: Zp(17, 5)
17-adic Ring with capped relative precision 5

(continues on next page)
\texttt{sage}: \texttt{Zp(17, 5)(-1)}
\[
16 + 16*17 + 16*17^2 + 16*17^3 + 16*17^4 + O(17^5)
\]

It works even with a fairly huge cap:

\texttt{sage}: \texttt{Zp(next_prime(10^50), 100000)}
\[
1000151-\text{adic Ring}
\text{with capped relative precision 100000}
\]

We create each type of ring:

\texttt{sage}: \texttt{Zp(7, 20, \text{'capped-rel'})}
\[
7-\text{adic Ring with capped relative precision 20}
\]
\texttt{sage}: \texttt{Zp(7, 20, \text{'fixed-mod'})}
\[
7-\text{adic Ring of fixed modulus 7^20}
\]
\texttt{sage}: \texttt{Zp(7, 20, \text{'capped-abs'})}
\[
7-\text{adic Ring with capped absolute precision 20}
\]

We create a capped relative ring with each print mode:

\texttt{sage}: \texttt{k = Zp(7, 8, print_mode=\text{'series'});} \texttt{k}
\[
7-\text{adic Ring with capped relative precision 8}
\]
\texttt{sage}: \texttt{k(7*(19))}
\[
5*7 + 2*7^2 + O(7^9)
\]
\texttt{sage}: \texttt{k(7*(-19))}
\[
2*7 + 4*7^2 + 6*7^3 + 6*7^4 + 6*7^5 + 6*7^6 + 6*7^7 + 6*7^8 + O(7^9)
\]

\texttt{sage}: \texttt{k = Zp(7, print_mode=\text{'val-unit'})}; \texttt{k}
\[
7-\text{adic Ring with capped relative precision 20}
\]
\texttt{sage}: \texttt{k(7*(19))}
\[
7 * 19 + O(7^21)
\]
\texttt{sage}: \texttt{k(7*(-19))}
\[
7 * 79792266297611982 + O(7^21)
\]

\texttt{sage}: \texttt{k = Zp(7, print_mode=\text{'terse'})}; \texttt{k}
\[
7-\text{adic Ring with capped relative precision 20}
\]
\texttt{sage}: \texttt{k(7*(19))}
\[
133 + O(7^21)
\]
\texttt{sage}: \texttt{k(7*(-19))}
\[
558545864083283874 + O(7^21)
\]

Note that p-adic rings are cached (via weak references):

\texttt{sage}: \texttt{a = Zp(7)}; \texttt{b = Zp(7)}
\texttt{sage}: \texttt{a is b}
\[
\text{True}
\]

We create some elements in various rings:

\texttt{sage}: \texttt{R = Zp(5)}; \texttt{a = R(4)}; \texttt{a}
\[
4 + O(5^20)
\]
\texttt{sage}: \texttt{S = Zp(5, 10, type = \text{'capped-abs'})}; \texttt{b = S(2)}; \texttt{b}
\[
2 + O(5^10)
\]
\texttt{sage}: \texttt{a + b}
\[
1 + 5 + O(5^10)
\]
create_key \((p, \text{prec} = \text{None}, \text{type} = \text{'capped-rel'}, \text{print_mode} = \text{None}, \text{names} = \text{None}, \text{ram_name} = \text{None}, \text{print_pos} = \text{None}, \text{print_sep} = \text{None}, \text{print_alphabet} = \text{None}, \text{print_max_terms} = \text{None}, \text{show_prec} = \text{None}, \text{check} = \text{True}, \text{label} = \text{None}) \)

Creates a key from input parameters for \(Z_p \).

See the documentation for \(Z_p() \) for more information.

create_object \((\text{version}, \text{key})\)

Creates an object using a given key.

See the documentation for \(Z_p() \) for more information.

\[
\text{sage.rings.padics.factory.Zq}(q, \text{prec} = \text{None}, \text{type} = \text{'capped-rel'}, \text{modulus} = \text{None}, \text{names} = \text{None}, \text{print_mode} = \text{None}, \text{ram_name} = \text{None}, \text{res_name} = \text{None}, \text{print_pos} = \text{None}, \text{print_max_ram_terms} = \text{None}, \text{print_max_unram_terms} = \text{None}, \text{print_max_terse_terms} = \text{None}, \text{show_prec} = \text{None}, \text{check} = \text{True}, \text{implementation} = \text{‘FLINT’})
\]

Given a prime power \(q = p^n \), return the unique unramified extension of \(Z_p \) of degree \(n \).

INPUT:

- \(q \) – integer, list or tuple: the prime power in \(Q_q \). Or a Factorization object, single element list \([(p, n)]\) where \(p \) is a prime and \(n \) a positive integer, or the pair \((p, n)\).
- \(\text{prec} \) – integer (default: 20) the precision cap of the field. Individual elements keep track of their own precision. See TYPES and PRECISION below.
- \(\text{type} \) – string (default: 'capped-rel') Valid types are 'capped-abs', 'capped-rel', 'fixed-mod', and 'floating-point'. See TYPES and PRECISION below.
- \(\text{modulus} \) – polynomial (default None) A polynomial defining an unramified extension of \(Z_p \). See MODULUS below.
- \(\text{names} \) – string or tuple (None is only allowed when \(q = p \)). The name of the generator, reducing to a generator of the residue field.
- \(\text{print_mode} \) – string (default: None). Valid modes are 'series', 'val-unit', 'terse', and 'bars'. See PRINTING below.
- \(\text{ram_name} \) – string (defaults to string representation of \(p \) if None). \(\text{ram_name} \) controls how the prime is printed. See PRINTING below.
- \(\text{res_name} \) – string (defaults to None, which corresponds to adding a ' 0 ' to the end of the name). Controls how elements of the residue field print.
- \(\text{print_pos} \) – bool (default None) Whether to only use positive integers in the representations of elements. See PRINTING below.
- \(\text{print_sep} \) – string (default None) The separator character used in the 'bars' mode. See PRINTING below.
- \(\text{print_max_ram_terms} \) – integer (default None) The maximum number of powers of \(p \) shown. See PRINTING below.
- \(\text{print_max_unram_terms} \) – integer (default None) The maximum number of entries shown in a coefficient of \(p \). See PRINTING below.
- \(\text{print_max_terse_terms} \) – integer (default None) The maximum number of terms in the polynomial representation of an element (using 'terse'). See PRINTING below.
- \(\text{show_prec} \) – bool (default None) Whether to show the precision for elements. See PRINTING below.
- \(\text{check} \) – bool (default True) whether to check inputs.
• implementation — string (default 'FLINT') which implementation to use. 'NTL' is the other option.

OUTPUT:
The corresponding unramified \(p \)-adic ring.

TYPES AND PRECISION:
There are two types of precision for a \(p \)-adic element. The first is relative precision (default), which gives the number of known \(p \)-adic digits:

```
sage: R.<a> = Zq(25, 20, 'capped-rel', print_mode='series'); b = 25*a; b
\rightarrow \text{needs sage.libs.ntl}
a*5^2 + O(5^22)
sage: b.precision_relative()
\rightarrow \text{needs sage.libs.ntl}
20
```

The second type of precision is absolute precision, which gives the power of \(p \) that this element is defined modulo:

```
sage: b.precision_absolute()
\rightarrow \text{needs sage.libs.ntl}
22
```

There are many types of \(p \)-adic rings: capped relative rings (type='capped-rel'), capped absolute rings (type='capped-abs'), fixed modulus rings (type='fixed-mod'), and floating point rings (type='floating-point').

In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.

```
sage: R.<a> = Zq(9, 5, 'capped-rel', print_mode='series'); b = (1+2*a)^4; b
\rightarrow \text{needs sage.libs.ntl}
2 + (2*a + 2)*3 + (2*a + 1)*3^2 + O(3^5)
sage: c = R(3249); c
\rightarrow \text{needs sage.libs.ntl}
3^2 + 3^4 + 3^5 + 3^6 + O(3^7)
sage: b + c
\rightarrow \text{needs sage.libs.ntl}
2 + (2*a + 2)*3 + (2*a + 2)*3^2 + 3^4 + O(3^5)
sage: d = ~(3*b+c); d
\rightarrow \text{needs sage.libs.ntl}
2*3^-1 + (a + 1) + (a + 1)*3 + a*3^3 + O(3^4)
sage: d.parent()
\rightarrow \text{needs sage.libs.ntl}
\text{3-adic Unramified Extension Field in a defined by x^2 + 2*x + 2}
```

One can invert non-units: the result is in the fraction field.

```
sage: d = ~(-3*b+c); d
\rightarrow \text{needs sage.libs.ntl}
2*3^-1 + (a + 1) + (a + 1)*3 + a*3^3 + O(3^4)
sage: d.parent()
\rightarrow \text{needs sage.libs.ntl}
\text{3-adic Unramified Extension Field in a defined by x^2 + 2*x + 2}
```

The capped absolute case is the same as the capped relative case, except that the cap is on the absolute precision rather than the relative precision.

```
sage: # needs sage.libs.flint
sage: R.<a> = Zq(9, 5, 'capped-abs', print_mode='series'); b = 3*(1+2*a)^4; b
\rightarrow \text{needs sage.libs.ntl}
2*3 + (2*a + 2)*3^2 + (2*a + 1)*3^3 + O(3^5)
sage: c = R(3249); c
\rightarrow \text{needs sage.libs.ntl}
```
(continues on next page)
The fixed modulus case is like the capped absolute, except that individual elements don’t track their precision.

The floating point case is similar to the fixed modulus type in that elements do not track their own precision. However, relative precision is truncated with each operation rather than absolute precision.

MODULUS:

The modulus needs to define an unramified extension of \mathbb{Z}_p: when it is reduced to a polynomial over \mathbb{F}_p it should be irreducible.

The modulus can be given in a number of forms.

1. A polynomial.

 The base ring can be \mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p, \mathbb{F}_p, or anything that can be converted to \mathbb{Z}_p.

 Which form the modulus is given in has no effect on the unramified extension produced:
unless the modulus is different, or the precision of the modulus differs. In the case of \(V \), the modulus is only given to precision 1, so the resulting field has a precision cap of 1.

```
sage: # needs sage.libs.ntl
dsage: V.precision_cap()
1
sage: U.precision_cap()
20
sage: P.<x> = Zp(3)[]
sage: modulus = x^3 + (2 + O(3^7))*x + (1 + O(3^10))
sage: modulus
(1 + O(3^20))*x^3 + (2 + O(3^7))*x + 1 + O(3^10)
sage: W.<a> = Zq(27, modulus = modulus); W.precision_cap()
7
```

2. The modulus can also be given as a symbolic expression.

```
sage: x = var('x')
  # needs sage.symbolic
sage: X.<a> = Zq(27, modulus = x^3 + 2*x + 1); X.modulus()
  # needs sage.symbolic
(1 + O(3^20))*x^3 + O(3^20)*x^2 + (2 + O(3^20))*x + 1 + O(3^20)
sage: X == R
  # needs sage.libs.ntl sage.symbolic
True
```

By default, the polynomial chosen is the standard lift of the generator chosen for \(\mathbb{F}_q \).

```
sage: GF(125, 'a').modulus()
  # needs sage.rings.finite_rings
x^3 + 3*x + 3
sage: Y.<a> = Zq(125); Y.modulus()
  # needs sage.libs.ntl
(1 + O(5^20))*x^3 + O(5^20)*x^2 + (3 + O(5^20))*x + 3 + O(5^20)
```

However, you can choose another polynomial if desired (as long as the reduction to \(\mathbb{F}_p[x] \) is irreducible).

```
sage: P.<x> = ZZ[]
sage: Z.<a> = Zq(125, modulus = x^3 + 3*x^2 + x + 1); Z.modulus()
  # needs sage.libs.ntl
(1 + O(5^20))*x^3 + (3 + O(5^20))*x^2 + (1 + O(5^20))*x + 1 + O(5^20)
sage: Y == Z
  # needs sage.libs.ntl
False
```

PRINTING:

There are many different ways to print \(p \)-adic elements. The way elements of a given field print is controlled by options passed in at the creation of the field. There are four basic printing modes (‘series’, ‘val-unit’, ‘terse’ and ‘bars’: ‘digits’ is not available), as well as various options that either hide some information in the print representation or sometimes make print representations more compact. Note that the printing options affect whether different \(p \)-adic fields are considered equal.

1. series: elements are displayed as series in \(p \).
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(9, 20, 'capped-rel', print_mode='series'); (1+2*a)^4
2 + (2*a + 2)*3 + (2*a + 1)*3^2 + O(3^20)
sage: -3*(1+2*a)^4
3 + a*3^2 + 3*3 + (2*a + 2)*3^4 + (2*a + 2)*3^5 + (2*a + 2)*3^6 + (2*a + 2)*3^7
+ (2*a + 2)*3^8 + (2*a + 2)*3^9 + (2*a + 2)*3^10 + (2*a + 2)*3^11 + (2*a + 2)*3^12
+ (2*a + 2)*3^13 + (2*a + 2)*3^14 + (2*a + 2)*3^15 + (2*a + 2)*3^16
+ (2*a + 2)*3^17 + (2*a + 2)*3^18 + (2*a + 2)*3^19 + (2*a + 2)*3^20 + O(3^21)
sage: b = ~(3*a+18); b
(a + 2)*3^-1 + 1 + 2*3 + (a + 1)*3^2 + 3*3 + 2*3^4 + (a + 1)*3^5 + 3^6 + 2*3^7
+ (a + 1)*3^8 + 3^9 + 2*3^10 + (a + 1)*3^11 + 3^12 + 2*3^13 + (a + 1)*3^14
+ 3^15 + 2*3^16 + (a + 1)*3^17 + 3^18 + O(3^19)
sage: b.parent() is R.fraction_field()
True
print_pos controls whether negatives can be used in the coefficients of powers of p.

sage: S. = Zq(9, print_mode='series', print_pos=False); (1+2*b)^4
-1 - b*3 - 3^2 + (b + 1)*3^3 + O(3^20)
sage: -3*(1+2*b)^4
3 + b*3^2 + 3^3 + (-b - 1)*3^4 + O(3^21)

ram_name controls how the prime is printed.

sage: T.<d> = Zq(9, print_mode='series', ram_name='p'); 3*(1+2*d)^4
2*p + (2*d + 2)*p^2 + (2*d + 1)*p^3 + O(p^21)
print_max_ram_terms limits the number of powers of p that appear.

sage: U.<e> = Zq(9, print_mode='series', print_max_ram_terms=4); repr(-3*(1+2*e)^4)
3 + e*3^2 + 3*3 + (2*e + 2)*3^4 + ... + O(3^21)
print_max_unram_terms limits the number of terms that appear in a coefficient of a power of p.

sage: V.<f> = Zq(128, prec = 8, print_mode='series'); repr((1+f)^9)
(f^3 + 1) + (f^5 + f^4 + f^3 + f^2)*2 + (f^6 + f^5 + f^4 + f + 1)*2^2 +
+ (f^5 + f^4 + f^2 + f + 1)*2^3 + (f^6 + f^5 + f^4 + f^3 + f^2 + f + 1)*2^4
+ (f^5 + f^4)*2^5 + (f^6 + f^5 + f^4 + f^3 + f + 1)*2^6 + (f + 1)*2^7
+ O(2^8)

sage: V.<f> = Zq(128, prec = 8, print_mode='series', print_max_unram_terms=3); repr((1+f)^9)
(f^3 + 1) + (f^5 + f^4 + ... + f^2)*2 + (f^6 + f^5 + ... + 1)*2^2 + (f^5
+ f^4 + ... + 1)*2^3 + (f^6 + f^5 + ... + 1)^2*4 + (f^5 + f^4)*2^5 + (f^6
+ f^5 + ... + 1)*2^6 + (f + 1)*2^7 + O(2^8)

sage: V.<f> = Zq(128, prec = 8, print_mode='series', print_max_unram_terms=2); repr((1+f)^9)
(f^3 + 1) + (f^5 + ... + f^2)*2 + (f^6 + ... + 1)*2^2 + (f^5 + ... +
+ 1)*2^3 + (f^6 + ... + 1)*2^4 + (f^5 + f^4)*2^5 + (f^6 + ... + 1)*2^6 +
+ (f + 1)*2^7 + O(2^8)

(continues on next page)
show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True). The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

print_sep and print_max_terse_terms have no effect.

Note that print options affect equality:

2. val-unit: elements are displayed as $p^k u$:

print_pos controls whether to use a balanced representation or not.

ram_name affects how the prime is printed.
\textit{print_max_terse_terms} controls how many terms of the polynomial appear in the unit part.

```
sage: # needs sage.libs.ntl
sage: U.<a> = Zq(17^4, 6, print_mode='val-unit', print_max_terse_terms=3)
sage: b = 17*(a^3-a+14)^6; b
17 * (12131797 + 12076378*a + 10809706*a^2 + ... ) + O(17^7)
```

\textit{show_prec} determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True). The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

```
sage: U.<e> = Zq(9, 2, print_mode='val-unit', show_prec=False); repr(-3*(1+2*e)^4)
'3 * (1 + 3*e)'
```

\textit{print_sep}, \textit{print_max_ram_terms} and \textit{print_max_unram_terms} have no effect.

Equality again depends on the printing options:

```
sage: R == S, R == T, R == U, S == T, S == U, T == U
(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)
```

3. \textit{terse}: elements are displayed as a polynomial of degree less than the degree of the extension.

```
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(125, print_mode='terse')
sage: (a+5)^177
68210977979428 + 90313850704069*a + 73948093055069*a^2 + O(5^20)
sage: (a/5+1)^177
68210977979428/5^177 + 90313850704069/5^177*a + 73948093055069/5^177*a^2 + O(5^-157)
```

Note that in this last computation, you get one fewer \(p\)-adic digit than one might expect. This is because \(R\) is capped absolute, and thus 5 is cast in with relative precision 19.

As of version 3.3, if coefficients of the polynomial are non-integral, they are always printed with an explicit power of \(p\) in the denominator.

```
sage: # needs sage.libs.ntl
sage: 5*a + a^2/25
5*a + 1/5^2*a^2 + O(5^18)
```

\textit{print_pos} controls whether to use a balanced representation or not.

```
sage: # needs sage.libs.ntl
sage: (a-5)^6
22864 + 95367431627998*a + 8349*a^2 + O(5^20)
sage: (a - 1/5)^6
-20624/5^6 + 18369/5^5*a + 1353/5^3*a^2 + O(5^14)
```

\textit{ram_name} affects how the prime is printed.

```
sage: T.<a> = Zq(125, print_mode='terse', ram_name='p'); (a - 1/5)^6
95367431620001/p^6 + 18369/p^5*a + 1353/p^3*a^2 + O(p^14)
```
\(p\)-adics, Release 10.3

\(print_max_terse_terms\) controls how many terms of the polynomial are shown.

```sage
sage: U.<a> = Zq(625, print_mode='terse', print_max_terse_terms=2); (a-1/5)^6
106251/5^6 + 49994/5^5*a + ... + O(5^14)
```

\(show_prec\) determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True). The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

```sage
sage: U.<e> = Zq(9, 2, print_mode='terse', show_prec=False); repr(-3*1+2*e)^4
'3 + 9*e'
```

\(print_sep\), \(print_max_ram_terms\) and \(print_max_unram_terms\) have no effect.

Equality again depends on the printing options:

```sage
sage: R == S, R == T, R == U, S == T, S == U, T == U
(False, False, False, False, False, False)
```

4. \textbf{digits}: This print mode is not available when the residue field is not prime. It might make sense to have a dictionary for small fields, but this isn’t implemented.

5. \textbf{bars}: elements are displayed in a similar fashion to series, but more compactly.

```sage
sage: S.<a> = Zq(125, print_mode=bars, prec=8); repr((a-5)^6)
'...[2, 3, 2]|[3, 1, 3]|[2, 3]|[1, 1, 1]|[0, 2, 3]|[4, 3, 4]'
sage: repr((a+5)^6)
'...[0, 4]|[1, 4]|[2, 0, 2]|[1, 4, 3]|[2, 3, 1]|[4, 4, 3]|[2, 4, 4]|[4, 3, 4]'
```

Note that it’s not possible to read off the precision from the representation in this mode.

```sage
sage: b = a + 3; repr(b)
'...[3, 1]'
sage: c = a + R(3, 4); repr(c)
'...[3, 1]'
sage: b.precision_absolute()
8
sage: c.precision_absolute()
4
```

\(print_pos\) controls whether the digits can be negative.

```sage
sage: S.<a> = Zq(125, print_mode='bars', print_pos=False); repr((a-5)^6)
'...[1, -1, 1]|[2, 1, -2]|2, 0, -2]|[-2, -1, 2]|0, 0, -1]|-2, -1, -2, ...
\rightarrow-1]'
sage: repr((a-1/5)^6)
'...[0, 1, 2]|[-1, 1, 1]|[-2, -1, -1]|2, 2, 1]|0, 0, -2]|0, -1]|0, -1]|1]'
```

46 Chapter 2. Factory
print_max_ram_terms controls the maximum number of “digits” shown. Note that this puts a cap on the relative precision, not the absolute precision.

```sage
# needs sage.libs.ntl
sage: T.<a> = Zq(125, print_max_ram_terms=3, print_pos=False); (a-5)^6
    (-a^2 - 2*a - 1) - 2*5 - a^2*5^2 + ... + O(5^20)
sage: 5*(a-5)^6 + 50
    (-a^2 - 2*a - 1)*5 - a^2*5^3 + (2*a^2 - a - 2)*5^4 + ... + O(5^21)
sage: (a-1/5)^6
    5^-6 - a*5^-5 - a*5^-4 + ... + O(5^14)
```

print_sep controls the separating character ('|' by default).

```sage
U.<a> = Zq(625, print_mode=bars, print_sep=''); b = (a+5)^6;
repr(b)  # needs sage.libsntl
'...[0, 1][4, 0, 2][3, 2, 2, 3][4, 2, 2, 4][0, 3][1, 1, 3][3, 1, 4, 1]'
```

print_max_unram_terms controls how many terms are shown in each 'digit':

```sage
# needs sage.libs.ntl
sage: with local_print_mode(U, {'max_unram_terms': 3}): repr(b)
'...[0, 1][4,..., 0, 2][3,..., 2, 3][4,..., 2, 4][0, 3][1,..., 1, 3][3,...
    --> 4, 1]'
sage: with local_print_mode(U, {'max_unram_terms': 2}): repr(b)
'...[0, 1][4,..., 2][3,..., 3][4,..., 4][0, 3][1,..., 3][3,..., 1]'
sage: with local_print_mode(U, {'max_unram_terms': 1}): repr(b)
'...[...][...][...][...][...][...][...][...][...][...][...][...][...]
```

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'dots' (or equivalently True) or 'bigoh'. The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

```sage
# needs sage.libs.ntl
sage: U.<e> = Zq(9, 2, print_mode=bars, show_prec='bigoh'); repr(-
    3*(1+2*e)^4)
'[0, 1][1][1]| + O(3^3)'
```

ram_name and print_max_terse_terms have no effect.

Equality depends on printing options:

```sage
R == S, R == T, R == U, S == T, S == U, T == U
# needs sage.libs.ntl
(False, False, False, False, False, False)
```

EXAMPLES:

Unlike for \(Z_p()\), you can’t create \(Zq(N)\) when \(N\) is not a prime power.

However, you can use `check=False` to pass in a pair in order to not have to factor. If you do so, you need to use names explicitly rather than the `R.<a>` syntax.

```sage
# needs sage.libs.ntl
sage: p = next_prime(2^123)
sage: k = Zp(p)
sage: R.<x> = k[]
sage: K = Zq([(p, 5)], modulus=x^5+x+4, names='a', ram_name='p'),
```

(continues on next page)
In tests on sage.math, the creation of K as above took an average of 1.58ms, while:

```python
sage: K = Zq(p^5, modulus=x^5+x+4, names='a', ram_name='p', # Needs sage.libs.ntl
      print_pos=False, check=True)
.....:
```

took an average of 24.5ms. Of course, with smaller primes these savings disappear.

sage.rings.padics.factory.ZqCA (q, *prec=None, *args, **kwds)

A shortcut function to create capped absolute unramified p-adic rings.

See documentation for *Zq()* for a description of the input parameters.

EXAMPLES:

```python
sage: R.<a> = ZqCA(25, 40); R
# Needs sage.lins.flint
5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2
```

sage.rings.padics.factory.ZqCR (q, *prec=None, *args, **kwds)

A shortcut function to create capped relative unramified p-adic rings.

Same functionality as *Zq()*. See documentation for *Zq()* for a description of the input parameters.

EXAMPLES:

```python
sage: R.<a> = ZqCR(25, 40); R
# Needs sage.lins.flint
5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2
```

sage.rings.padics.factory.ZqFM (q, *prec=None, *args, **kwds)

A shortcut function to create fixed modulus unramified p-adic rings.

See documentation for *Zq()* for a description of the input parameters.

EXAMPLES:

```python
sage: R.<a> = ZqFM(25, 40); R
# Needs sage.lins.flint
5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2
```

sage.rings.padics.factory.ZqFP (q, *prec=None, *args, **kwds)

A shortcut function to create floating point unramified p-adic rings.

Same functionality as *Zq()*. See documentation for *Zq()* for a description of the input parameters.

EXAMPLES:

```python
sage: R.<a> = ZqFP(25, 40); R
# Needs sage.lins.flint
5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2
```
This implements `create_key` for \(\mathbb{Z}_p \) and \(\mathbb{Q}_p \): moving it here prevents code duplication.

It fills in unspecified values and checks for contradictions in the input. It also standardizes irrelevant options so that duplicate parents are not created.

EXAMPLES:

```python
sage: from sage.rings.padics.factory import get_key_base
sage: get_key_base(11, 5, 'capped-rel', None, None, None, None, False, True, ['capped-rel'])
(11, 5, 'capped-rel', 'series', '11', True, '!', (), -1, 'none', None)
```

```python
tsage: get_key_base(12, 5, 'capped-rel', 'digits', None, None, None, None, None, False, True, False, ['capped-rel'])
(12, 5, 'capped-rel', 'digits', '12', True, '!', (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 'A', 'B'), -1, 'dots', None)
```

`sage.rings.padics.factory.is_eisenstein(poly)`

Return `True` iff this monic polynomial is Eisenstein.

A polynomial is Eisenstein if it is monic, the constant term has valuation 1 and all other terms have positive valuation.

EXAMPLES:

```python
sage: # needs sage.libs.ntl
sage: R = Zp(5)
sage: S.<x> = R[]
sage: from sage.rings.padics.factory import is_eisenstein
sage: f = x^4 - 75*x + 15
sage: is_eisenstein(f)
True
sage: g = x^4 + 75
sage: is_eisenstein(g)
False
sage: h = x^7 + 27*x -15
sage: is_eisenstein(h)
False
```

`sage.rings.padics.factory.is_unramified(poly)`

Return `True` iff this monic polynomial is unramified.

A polynomial is unramified if its reduction modulo the maximal ideal is irreducible.

EXAMPLES:

```python
sage: # needs sage.libs.ntl
sage: R = Zp(5)
sage: S.<x> = R[]
sage: from sage.rings.padics.factory import is_unramified
sage: f = x^4 + 14*x + 9
```

(continues on next page)
sage: is_unramified(f)
True
sage: g = x^6 + 17*x + 6
sage: is_unramified(g)
False

sage.rings.padics.factory.krasner_check(poly, prec)

Return True iff poly determines a unique isomorphism class of extensions at precision prec.

Currently just returns True (thus allowing extensions that are not defined to high enough precision in order to
specify them up to isomorphism). This will change in the future.

EXAMPLES:

sage: from sage.rings.padics.factory import krasner_check
sage: krasner_check(1,2) # this is a stupid example.
True

class sage.rings.padics.factory.pAdicExtension_class

Bases: UniqueFactory

A class for creating extensions of p-adic rings and fields.

EXAMPLES:

sage: R = Zp(5,3)
sage: S.<x> = ZZ[]
sage: W.<w> = pAdicExtension(R, x^4 - 15); W #...
˓→ needs sage.libsntl
5-adic Eisenstein Extension Ring in w defined by x^4 - 15
sage: W.precision_cap() #...
˓→ needs sage.libsntl
12

create_key_and_extra_args (base, modulus, prec=None, print_mode=None, names=None, var_name=None, res_name=None, unram_name=None, ram_name=None, print_pos=None, print_sep=None, print_alphabet=None, print_max_ram_terms=None, print_max_unram_terms=None, print_max_terse_terms=None, show_prec=None, check=True, unram=False, implementation='FLINT')

Creates a key from input parameters for pAdicExtension.

See the documentation for Qq() for more information.

create_object (version, key, approx_modulus=None, shift_seed=None)

Creates an object using a given key.

See the documentation for pAdicExtension for more information.

sage.rings.padics.factory.split (poly, prec)

Given a polynomial poly and a desired precision prec, computes upoly and epoly so that the extension defined by
poly is isomorphic to the extension defined by first taking an extension by the unramified polynomial upoly,
and then an extension by the Eisenstein polynomial epoly.

We need better p-adic factoring in Sage before this function can be implemented.

EXAMPLES:
```python
sage: k = Qp(13)
sage: x = polygen(k)  #...
→needs sage.libs.ntl
sage: f = x**2 + 1  #...
→needs sage.libs.ntl
sage: sage.rings.padics.factory.split(f, 10)  #...
→needs sage.libs.ntl sage.rings.real_double
Traceback (most recent call last):
... NotImplementedError: Extensions by general polynomials not yet supported.
Please use an unramified or Eisenstein polynomial.

sage.rings.padics.factory.truncate_to_prec(poly, R, absprec)
Truncates the unused precision off of a polynomial.

EXAMPLES:

```
Superclass for p-adic and power series rings.

AUTHORS:

- David Roe

```python
class sage.rings.padics.local_generic.LocalGeneric(base, prec, names, element_class, category=None)
```

Bases: `CommutativeRing`

Initialize `self`.

EXAMPLES:

```python
sage: R = Zp(5)  # indirect doctest
sage: R.precision_cap()
20
```

In GitHub issue #14084, the category framework has been implemented for p-adic rings:

```python
sage: TestSuite(R).run()  # indirect doctest
```

`absolute_degree()`

Return the degree of this extension over the prime p-adic field/ring.

EXAMPLES:

```python
sage: K.<a> = Qq(3^5)  # indirect doctest

5
sage: K.absolute_degree()  # indirect doctest
5
```

```python
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # indirect doctest

2
sage: L.absolute_degree()  # indirect doctest
2
```
absolute_e()

Return the absolute ramification index of this ring/field.

EXAMPLES:

```
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.absolute_e()  # needs sage.libs.ntl
1
sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
sage: L.absolute_e()  # needs sage.libs.ntl
2
```

absolute_f()

Return the degree of the residue field of this ring/field over its prime subfield.

EXAMPLES:

```
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.absolute_f()  # needs sage.libs.ntl
5
sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
sage: L.absolute_f()  # needs sage.libs.ntl
1
```

absolute_inertia_degree()

Return the degree of the residue field of this ring/field over its prime subfield.

EXAMPLES:

```
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.absolute_inertia_degree()  # needs sage.libs.ntl
5
sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
sage: L.absolute_inertia_degree()  # needs sage.libs.ntl
1
```

absolute_ramification_index()

Return the absolute ramification index of this ring/field.

EXAMPLES:
change (**kwds)**

Return a new ring with changed attributes.

INPUT:

The following arguments are applied to every ring in the tower:

- **type** – string, the precision type
- **p** – the prime of the ground ring. Defining polynomials will be converted to the new base rings.
- **print_mode** – string
- **print_pos** – bool
- **print_sep** – string
- **print_alphabet** – dict
- **show_prec** – bool
- **check** – bool
- **label** – string (only for lattice precision)

The following arguments are only applied to the top ring in the tower:

- **var_name** – string
- **res_name** – string
- **unram_name** – string
- **ram_name** – string
- **names** – string
- **modulus** – polynomial

The following arguments have special behavior:

- **prec** – integer. If the precision is increased on an extension ring, the precision on the base is increased as necessary (respecting ramification). If the precision is decreased, the precision of the base is unchanged.
- **field** – bool. If True, switch to a tower of fields via the fraction field. If False, switch to a tower of rings of integers.
- **q** – prime power. Replace the initial unramified extension of \(\mathbb{Q}_p \) or \(\mathbb{Z}_p \) with an unramified extension of residue cardinality \(q \). If the initial extension is ramified, add in an unramified extension.
- **base** – ring or field. Use a specific base ring instead of recursively calling `change()` down the tower.
See the constructors for more details on the meaning of these arguments.

EXAMPLES:

We can use this method to change the precision:

```
sage: Zp(5).change(prec=40)
5-adic Ring with capped relative precision 40
```
or the precision type:

```
sage: Zp(5).change(type="capped-abs")
5-adic Ring with capped absolute precision 20
```
or even the prime:

```
sage: ZpCA(3).change(p=17)
17-adic Ring with capped absolute precision 20
```
You can switch between the ring of integers and its fraction field:

```
sage: ZpCA(3).change(field=True)
3-adic Field with capped relative precision 20
```
You can also change print modes:

```
sage: R = Zp(5).change(prec=5, print_mode='digits')
sage: repr(~R(17))
'...13403'
```
Changing print mode to `digits` works for Eisenstein extensions:

```
sage: # needs sage.libs.ntl
sage: S.<x> = ZZ[]
sage: W.<w> = Zp(3).extension(x^4 + 9*x^2 + 3*x - 3)
sage: W.print_mode()
'series'
sage: W.change(print_mode='digits').print_mode()
'digits'
```
You can change extensions:

```
sage: # needs sage.libs.flint
sage: K.<a> = QqFP(125, prec=4)
sage: K.change(q=64)
2-adic Unramified Extension Field in a defined by x^6 + x^4 + x^3 + x + 1
sage: R.<x> = QQ[]
sage: K.change(modulus = x^2 - x + 2, print_pos=False)
5-adic Unramified Extension Field in a defined by x^2 - x + 2
```
and variable names:

```
sage: K.change(names='b')  # needs sage.libs.flint
5-adic Unramified Extension Field in b defined by x^3 + 3*x + 3
```
and precision:
```python
sage: # needs sage.libs.flint
sage: Kup = K.change(prec=8); Kup
5-adic Unramified Extension Field in a defined by x^3 + 3*x + 3
sage: Kup.precision_cap()
8
sage: Kup.base_ring()
5-adic Field with floating precision 8
```

If you decrease the precision, the precision of the base stays the same:

```python
sage: # needs sage.libs.flint
sage: Kdown = K.change(prec=2); Kdown
5-adic Unramified Extension Field in a defined by x^3 + 3*x + 3
sage: Kdown.precision_cap()
2
sage: Kdown.base_ring()
5-adic Field with floating precision 4
```

Changing the prime works for extensions:

```python
sage: # needs sage.libs.ntl
sage: x = polygen(ZZ)
```

```python
sage: R.<a> = Zp(5).extension(x^2 + 2)
sage: S = R.change(p=7)
sage: S.defining_polynomial(exact=True)
x^2 + 2
```

```python
sage: A.<y> = Zp(5)[]
sage: R.<a> = Zp(5).extension(y^2 + 2)
sage: S = R.change(p=7)
sage: S.defining_polynomial(exact=True)
y^2 + 2
```

```python
sage: # needs sage.libs.ntl
```

```python
sage: R.<a> = Zq(5^3)
sage: S = R.change(prec=50)
sage: S.defining_polynomial(exact=True)
x^3 + 3*x + 3
```

Changing label for lattice precision (the precision lattice is not copied):

```python
sage: R = ZpLC(37, (8,11))
sage: S = R.change(label = "change"); S
37-adic Ring with lattice-cap precision (label: change)
sage: S.change(label = "new")
37-adic Ring with lattice-cap precision (label: new)
```

defining_polynomial *(var='x', exact=False)*

Return the defining polynomial of this local ring

INPUT:

- **var** – string (default: 'x'), the name of the variable
- **exact** – a boolean (default: False), whether to return the underlying exact defining polynomial rather than the one with coefficients in the base ring.

OUTPUT:

The defining polynomial of this ring as an extension over its ground ring
EXAMPLES:

```python
sage: R = Zp(3, 3, 'fixed-mod')
sage: R.defining_polynomial().parent()
Univariate Polynomial Ring in x over 3-adic Ring of fixed modulus 3^3
sage: R.defining_polynomial('foo')
foo
sage: R.defining_polynomial(exact=True).parent()
Univariate Polynomial Ring in x over Integer Ring
```

`degree()`

Return the degree of this extension.

Raise an error if the base ring/field is itself an extension.

EXAMPLES:

```python
sage: K.<a> = Qq(3^5)
# needs sage.libs.ntl
sage: K.degree()
# needs sage.libs.ntl
5
sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3)
# needs sage.libs.ntl
sage: L.degree()
# needs sage.libs.ntl
2
```

`e()`

Return the ramification index of this extension.

Raise an error if the base ring/field is itself an extension.

EXAMPLES:

```python
sage: K.<a> = Qq(3^5)
# needs sage.libs.ntl
sage: K.e()
# needs sage.libs.ntl
1
sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3)
# needs sage.libs.ntl
sage: L.e()
# needs sage.libs.ntl
2
```

`ext(*args, **kwds)`

Construct an extension of `self`. See `extension()` for more details.

EXAMPLES:

```python
sage: A = Zp(7, 10)
sage: S.<x> = A[]
(continues on next page)```
\[ \text{f()} \]
Return the degree of the residual extension.
Raise an error if the base ring/field is itself an extension.

**EXAMPLES:**

\[ \text{sage: K.<a> = Qq(3^5)} \]
\[ \text{sage: K.f() \#...} \]
\[ \text{sage: L.<pi> = Qp(3).extension(x^2 - 3)} \]
\[ \text{sage: L.f() \#...} \]
\[ 5 \]

\[ \text{ground_ring()} \]
Return self.

Will be overridden by extensions.

**INPUT:**

• self – a local ring

**OUTPUT:**

The ground ring of self, i.e., itself.

**EXAMPLES:**

\[ \text{sage: R = Zp(3, 5, 'fixed-mod')} \]
\[ \text{sage: S = Zp(3, 4, 'fixed-mod')} \]
\[ \text{sage: R.ground_ring() is R} \]
\[ \text{True} \]
\[ \text{sage: S.ground_ring() is R} \]
\[ \text{False} \]

\[ \text{ground_ring_of_tower()} \]
Return self.

Will be overridden by extensions.

**INPUT:**

• self – a \( p \)-adic ring

**OUTPUT:**

The ground ring of the tower for self, i.e., itself.
EXAMPLES:

```python
sage: R = Zp(5)
sage: R.ground_ring_of_tower()
5-adic Ring with capped relative precision 20
```

**inertia_degree()**

Return the degree of the residual extension.

Raise an error if the base ring/field is itself an extension.

EXAMPLES:

```python
sage: K.<a> = Qq(3^5) # needs sage.libs.ntl
sage: K.inertia_degree() # needs sage.libs.ntl
5
sage: R.<x> = QQ[]
R.<pi> = Qp(3).extension(x^2 - 3) # needs sage.libs.ntl
sage: L.inertia_degree() # needs sage.libs.ntl
1
```

**inertia_subring()**

Return the inertia subring, i.e. self.

**INPUT:**

- self—a local ring

**OUTPUT:**

- the inertia subring of self, i.e., itself

EXAMPLES:

```python
sage: R = Zp(5)
sage: R.inertia_subring()
5-adic Ring with capped relative precision 20
```

**is_capped_absolute()**

Return whether this $p$-adic ring bounds precision in a capped absolute fashion.

The absolute precision of an element is the power of $p$ modulo which that element is defined. In a capped absolute ring, the absolute precision of elements are bounded by a constant depending on the ring.

EXAMPLES:

```python
sage: R = ZpCA(5, 15)
sage: R.is_capped_absolute()
True
sage: R(5^7)
5^7 + O(5^15)
sage: S = Zp(5, 15)
sage: S.is_capped_absolute()
False
sage: S(5^7)
5^7 + O(5^22)
```
**is_capped_relative()**

Return whether this \( p \)-adic ring bounds precision in a capped relative fashion.

The relative precision of an element is the power of \( p \) modulo which the unit part of that element is defined. In a capped relative ring, the relative precision of elements are bounded by a constant depending on the ring.

**EXAMPLES:**

```sage
sage: R = ZpCA(5, 15)
sage: R.is_capped_relative()
False
sage: R(5^7)
5^7 + O(5^15)
sage: S = Zp(5, 15)
sage: S.is_capped_relative()
True
sage: S(5^7)
5^7 + O(5^22)
```

**is_exact()**

Return whether this \( p \)-adic ring is exact, i.e. False.

**EXAMPLES:**

```sage
sage: R = Zp(5, 3, 'fixed-mod'); R.is_exact()
False
```

**is_fixed_mod()**

Return whether this \( p \)-adic ring bounds precision in a fixed modulus fashion.

The absolute precision of an element is the power of \( p \) modulo which that element is defined. In a fixed modulus ring, the absolute precision of every element is defined to be the precision cap of the parent. This means that some operations, such as division by \( p \), don’t return a well defined answer.

**EXAMPLES:**

```sage
sage: R = ZpFM(5,15)
sage: R.is_fixed_mod()
True
sage: R(5^7,absprec=9)
5^7
sage: S = ZpCA(5, 15)
sage: S.is_fixed_mod()
False
sage: S(5^7,absprec=9)
5^7 + O(5^9)
```

**is_floating_point()**

Return whether this \( p \)-adic ring bounds precision in a floating point fashion.

The relative precision of an element is the power of \( p \) modulo which the unit part of that element is defined. In a floating point ring, elements do not store precision, but arithmetic operations truncate to a relative precision depending on the ring.

**EXAMPLES:**

```sage
sage: R = ZpCR(5, 15)
sage: R.is_floating_point()
False
```
is_lattice_prec()

Return whether this $p$-adic ring bounds precision using a lattice model.

In lattice precision, relationships between elements are stored in a precision object of the parent, which allows for optimal precision tracking at the cost of increased memory usage and runtime.

EXAMPLES:

```python
sage: R = ZpCR(5, 15)
sage: R.is_lattice_prec()
False
sage: x = R(25, 8)
sage: x - x
O(5^8)
sage: S = ZpLC(5, 15)
doctest:...: FutureWarning: This class/method/function is marked as experimental. It, its functionality or its interface might change without a formal deprecation. See https://github.com/sagemath/sage/issues/23505 for details.
sage: S.is_lattice_prec()
True
sage: x = S(25, 8)
sage: x - x
O(5^30)
```

is_relaxed()

Return whether this $p$-adic ring bounds precision in a relaxed fashion.

In a relaxed ring, elements have mechanisms for computing themselves to greater precision.

EXAMPLES:

```python
sage: R = Zp(5)
sage: R.is_relaxed()
False
```

maximal_unramified_subextension()

Return the maximal unramified subextension.

INPUT:

- `self` – a local ring

OUTPUT:

- the maximal unramified subextension of `self`

EXAMPLES:
sage: R = Zp(5)
sage: R.maximal_unramified_subextension()
5-adic Ring with capped relative precision 20

**precision_cap()**

Return the precision cap for this ring.

**EXAMPLES:**

```plaintext
sage: R = Zp(3, 10,'fixed-mod'); R.precision_cap()
10
sage: R = Zp(3, 10,'capped-rel'); R.precision_cap()
10
sage: R = Zp(3, 10,'capped-abs'); R.precision_cap()
10
```

**Note:** This will have different meanings depending on the type of local ring. For fixed modulus rings, all elements are considered modulo \( \text{self.prime}()^{\text{self.precision_cap()}} \). For rings with an absolute cap (i.e. the class \text{pAdicRingCappedAbsolute}), each element has a precision that is tracked and is bounded above by \text{self.precision_cap()}. Rings with relative caps (e.g. the class \text{pAdicRingCappedRelative}) are the same except that the precision is the precision of the unit part of each element.

**ramification_index()**

Return the ramification index of this extension.

Raise an error if the base ring/field is itself an extension.

**EXAMPLES:**

```plaintext
sage: K.<a> = Qq(3^5) # needs sage.libs.ntl
sage: K.ramification_index() # needs sage.libs.ntl
1
sage: R.<x> = QQ[]
```  
```plaintext
sage: L.<pi> = Qp(3).extension(x^2 - 3) # needs sage.libs.ntl
sage: L.ramification_index() # needs sage.libs.ntl
2
```

**relative_degree()**

Return the degree of this extension over its base field/ring.

**EXAMPLES:**

```plaintext
sage: K.<a> = Qq(3^5) # needs sage.libs.ntl
sage: K.relative_degree() # needs sage.libs.ntl
5
sage: R.<x> = QQ[]
```
relative_e()
Return the ramification index of this extension over its base ring/field.

EXAMPLES:

```
sage: K.<a> = Qq(3^5) #...
→ needs sage.libsntl
sage: K.relative_e() #...
→ needs sage.libsntl
1
```

relative_f()
Return the degree of the residual extension over its base ring/field.

EXAMPLES:

```
sage: K.<a> = Qq(3^5) #...
→ needs sage.libsntl
sage: K.relative_f() #...
→ needs sage.libsntl
5
```

relative_inertia_degree()
Return the degree of the residual extension over its base ring/field.

EXAMPLES:

```
sage: K.<a> = Qq(3^5) #...
→ needs sage.libsntl
sage: K.relative_inertia_degree() #...
→ needs sage.libsntl
5
```

(continues on next page)
relative_ramification_index()

Return the ramification index of this extension over its base ring/field.

EXAMPLES:

```
sage: K.<a> = Qq(3^5)
 #← needs sage.libs.ntl
sage: K.relative_ramification_index()
 #← needs sage.libs.ntl
1
```

residue_characteristic()

Return the characteristic of self's residue field.

INPUT:

• self—a p-adic ring.

OUTPUT:

The characteristic of the residue field.

EXAMPLES:

```
sage: R = Zp(3, 5, 'capped-rel'); R.residue_characteristic()
3
```

uniformiser()

Return a uniformiser for self, i.e, a generator for the unique maximal ideal.

EXAMPLES:

```
sage: R = Zp(5)
sage: R.uniformiser() #← needs sage.libs.ntl
5 + O(5^21)
sage: A = Zp(7,10)
sage: S.<x> = A[]
 #← needs sage.libs.ntl
sage: B.<t> = A.ext(x^2+7)
 #← needs sage.libs.ntl
sage: B.uniformiser() #← needs sage.libs.ntl
```

uniformiser_pow(n)

Return the \(n\)’th power of the uniformiser of "\(\text{self}\)" (as an element of \(\text{self}\)).

EXAMPLES:
\texttt{sage}: \texttt{R = Zp(5)}
\texttt{sage}: \texttt{R.uniformiser_pow(5)}
$5^5 + O(5^{25})$
A generic superclass for all p-adic parents.

AUTHORS:

- David Roe
- Genya Zaytman: documentation
- David Harvey: doctests
- Julian Rueth (2013-03-16): test methods for basic arithmetic

class sage.rings.padics.padic_generic.ResidueLiftingMap
    Bases: Morphism

Lifting map to a p-adic ring or field from its residue field or ring.

These maps must be created using the _create_() method in order to support categories correctly.

EXAMPLES:

```
sage: from sage.rings.padics.padic_generic import ResidueLiftingMap
sage: R.<a> = Zq(125); k = R.residue_field()
 # needs sage.libs.ntl
sage: f = ResidueLiftingMap._create_(k, R); f
 # needs sage.libs.ntl
Lifting morphism:
From: Finite Field in a0 of size 5^3
To: 5-adic Unramified Extension Ring in a defined by x^3 + 3*x + 3
```

class sage.rings.padics.padic_generic.ResidueReductionMap
    Bases: Morphism

Reduction map from a p-adic ring or field to its residue field or ring.

These maps must be created using the _create_() method in order to support categories correctly.

EXAMPLES:

```
sage: from sage.rings.padics.padic_generic import ResidueReductionMap
sage: R.<a> = Zq(125); k = R.residue_field()
 # needs sage.libs.ntl
sage: f = ResidueReductionMap._create_(R, k); f
 # needs sage.libs.ntl
Reduction morphism:
From: 5-adic Unramified Extension Ring in a defined by x^3 + 3*x + 3
To: Finite Field in a0 of size 5^3
```
\textbf{is\_injective()}  

The reduction map is far from injective.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: GF(5).convert_map_from(ZpCA(5)).is_injective()  #... ˓→needs sage.rings.finite_rings False
\end{verbatim}

\textbf{is\_surjective()}  

The reduction map is surjective.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: GF(7).convert_map_from(Qp(7)).is_surjective()  #... ˓→needs sage.rings.finite_rings True
\end{verbatim}

\textbf{section()}  

Return the section from the residue ring or field back to the p-adic ring or field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: GF(3).convert_map_from(Zp(3)).section()  #... ˓→needs sage.rings.finite_rings  Lifting morphism:  From: Finite Field of size 3  To: 3-adic Ring with capped relative precision 20
\end{verbatim}

\texttt{sage.rings.padics.padic\_generic.local\_print\_mode}(obj, print\_options, pos=None, ram\_name=None)  

Context manager for safely temporarily changing the print\_mode of a p-adic ring/field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = Zp(5)  sage: R(45) 4*5 + 5^2 + O(5^21)  sage: with local\_print\_mode(R, 'val-unit\_'):  ....:  print(R(45))  5 * 9 + O(5^21)
\end{verbatim}

\textbf{Note:} For more documentation see \texttt{sage.structure.parent\_gens.localvars}.
• names – how to print the uniformizer
• element_class – the class for elements of this ring

EXAMPLES:

```
sage: R = Zp(17) # indirect doctest
```

```
def characteristic()
 Return the characteristic of self, which is always 0.

 EXAMPLES:

 sage: R = Zp(3, 10, 'fixed-mod'); R.characteristic()
 0
```

```
def extension(modulus, prec=None, names=None, print_mode=None, implementation='FLINT', **kwds)
 Create an extension of this p-adic ring.

 EXAMPLES:

 sage: # needs sage.libs.ntl
 sage: k = Qp(5)
 sage: R.<x> = k[]
 sage: l.<w> = k.extension(x^2 - 5); l
 5-adic Eisenstein Extension Field in w defined by x^2 - 5
 sage: F = list(Qp(19) ['x'](cyclotomic_polynomial(5)).factor())[0][0]
 sage: L = Qp(19).extension(F, names='a'); L
 19-adic Unramified Extension Field in a defined by x^2 + \ldots
 \rightarrow 8751674996211859573806383*x + 1
```

```
def fraction_field(print_mode=None)
 Return the fraction field of this ring or field.

 For \(\mathbb{Z}_p \), this is the \(p \)-adic field with the same options, and for extensions, it is just the extension of the fraction field of the base determined by the same polynomial.

 The fraction field of a capped absolute ring is capped relative, and that of a fixed modulus ring is floating point.

 INPUT:
 • print_mode – (optional) a dictionary containing print options; defaults to the same options as this ring

 OUTPUT:
 • the fraction field of this ring

 EXAMPLES:

 sage: R = Zp(5, print_mode='digits', show_prec=False)
 sage: R = R.fraction_field(); K(1/3)
 313131313131313132
 sage: L = R.fraction_field({'max_ram_terms':4}); L(1/3)
 doctest:warning
 ... DeprecationWarning: Use the change method if you want to change print options...
 \rightarrow in fraction_field()
 See https://github.com/sagemath/sage/issues/23227 for details.
 3132
```

(continues on next page)
frobenius_endomorphism \( (n=1) \)

Return the \( n \)-th power of the absolute arithmetic Frobenius endomorphism on this field.

**INPUT:**

- \( n \) – an integer (default: 1)

**EXAMPLES:**

```sage
K.<a> = Qq(3^5)
Frob = K.frobenius_endomorphism(); Frob
```

Frobenius endomorphism on 3-adic Unramified Extension
... lifting a |--> a^3 on the residue field

```sage
Frob(a) == a.frobenius()
```

True

We can specify a power:

```sage
K.frobenius_endomorphism(2)
```

Frobenius endomorphism on 3-adic Unramified Extension
... lifting a |--> a^(3^2) on the residue field

The result is simplified if possible:

```sage
K.frobenius_endomorphism(6)
```

Frobenius endomorphism on 3-adic Unramified Extension
... lifting a |--> a^3 on the residue field

```sage
K.frobenius_endomorphism(5)
```

Identity endomorphism of 3-adic Unramified Extension ...

Comparisons work:

```sage
K.frobenius_endomorphism(6) == Frob
```

True

gens ()

Return a list of generators.
\texttt{sage}: R = \mathbb{Z}_p(5); R.gens()
[5 + O(5^{21})]
\texttt{sage}: \mathbb{Z}_q(25, \text{names}='a').gens() # needs \texttt{sage.libs.ntl}
[a + O(5^{20})]
\texttt{sage}: S.<x> = \mathbb{Z}[x]; f = x^5 + 25*x -5; \mathbb{W}.<w> = R.\text{ext}(f); \mathbb{W}.gens() # needs \texttt{sage.libs.ntl}
[w + O(w^{101})]

\textbf{integer\textunderscore ring}(\texttt{print\_mode=\text{None}})

Return the ring of integers of this ring or field.

For \(\mathbb{Q}_p\), this is the \(p\)-adic ring with the same options, and for extensions, it is just the extension of the ring of integers of the base determined by the same polynomial.

\textbf{INPUT}:

- \texttt{print\_mode} – (optional) a dictionary containing print options; defaults to the same options as this ring

\textbf{OUTPUT}:

- the ring of elements of this field with nonnegative valuation

\textbf{EXAMPLES}:

\texttt{sage}: K = \mathbb{Q}_p(5, \texttt{print\_mode='digits', show\_prec=False})
\texttt{sage}: R = K.\text{integer\_ring}(); R(1/3)
31313131313131313132
\texttt{sage}: S = K.\text{integer\_ring}({'\text{max\_ram\_terms':4}}); S(1/3)
doctest:warning
... DeprecationWarning: Use the change method if you want to change print options...
in integer\_ring()
See https://github.com/sagemath/sage/issues/23227 for details.
3132
\texttt{sage}: U.<a> = \mathbb{Q}_q(17^4, 6, \texttt{print\_mode='val\_unit', print\_max\_terse\_terms=3}) # needs \texttt{sage.libs.ntl}
\texttt{sage}: U.\text{integer\_ring}() # needs \texttt{sage.libs.ntl}
17\text{-adic Unramified Extension Ring in a defined by x^4 + 7*x^2 + 10*x + 3
\texttt{sage}: U.\text{fraction\_field}({"\text{print\_mode":"terse"}) == U.\text{fraction\_field}() # needs \texttt{sage.libs.ntl}
doctest:warning
... DeprecationWarning: Use the change method if you want to change print options...
in fraction\_field()
See https://github.com/sagemath/sage/issues/23227 for details.
False

\textbf{ngens}()

Return the number of generators of \texttt{self}.

We conventionally define this as 1: for base rings, we take a uniformizer as the generator; for extension rings, we take a root of the minimal polynomial defining the extension.

\textbf{EXAMPLES}: 
prime()

Return the prime, i.e., the characteristic of the residue field.

OUTPUT:

The characteristic of the residue field.

EXAMPLES:

```python
sage: R = Zp(3, 5, 'fixed-mod')
sage: R.prime()
3
```

primitive_root_of_unity(n=None, order=False)

Return a generator of the group of \( n \)-th roots of unity in this ring.

INPUT:

- \( n \) – an integer or None (default: None)
- \( \text{order} \) – a boolean (default: False)

OUTPUT:

A generator of the group of \( n \)-th roots of unity. If \( n \) is None, a generator of the full group of roots of unity is returned.

If \( \text{order} \) is True, the order of the above group is returned as well.

EXAMPLES:

```python
sage: R = Zp(5, 10)
sage: zeta = R.primitive_root_of_unity(); zeta
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: zeta == R.teichmuller(2)
True
```

Now we consider an example with non-trivial \( p \)-th roots of unity:

```python
sage: # needs sage.libsntl
sage: W = Zp(3, 2)
sage: S.<x> = W[]
sage: R.<pi> = W.extension((x+1)^6 + (x+1)^3 + 1)
sage: zeta, order = R.primitive_root_of_unity(order=True)
sage: zeta
2 + 2*pi + 2*pi^3 + 2*pi^7 + 2*pi^8 + 2*pi^9 + pi^11 + O(pi^12)
sage: order
18
sage: zeta.multiplicative_order()
18
sage: zeta, order = R.primitive_root_of_unity(24, order=True)
sage: zeta
2 + pi^3 + 2*pi^7 + 2*pi^8 + 2*pi^10 + 2*pi^11 + O(pi^12)
sage: order # equal to \text{gcd}(18, 24)
```
6
sage: zeta.multiplicative_order()
6

print_mode()

Return the current print mode as a string.

EXAMPLES:

sage: R = Qp(7,5, 'capped-rel')
sage: R.print_mode()
'series'

residue_characteristic()

Return the prime, i.e., the characteristic of the residue field.

OUTPUT:
The characteristic of the residue field.

EXAMPLES:

sage: R = Zp(3,5,'fixed-mod')
sage: R.residue_characteristic()
3

residue_class_field()

Return the residue class field.

EXAMPLES:

sage: R = Zp(3,5,'fixed-mod')
sage: k = R.residue_class_field()
sage: k
Finite Field of size 3

residue_field()

Return the residue class field.

EXAMPLES:

sage: R = Zp(3,5,'fixed-mod')
sage: k = R.residue_field()
sage: k
Finite Field of size 3

residue_ring(n)

Return the quotient of the ring of integers by the \(n\)-th power of the maximal ideal.

EXAMPLES:

sage: R = Zp(11)
sage: R.residue_ring(3)
Ring of integers modulo 1331
residue_system()

Return a list of elements representing all the residue classes.

EXAMPLES:

```python
sage: R = Zp(3, 5, 'fixed-mod')
sage: R.residue_system()
[0, 1, 2]
```

roots_of_unity(n=None)

Return all the $n$-th roots of unity in this ring.

INPUT:

- $n$ -- an integer or None (default: None); if None, the full group of roots of unity is returned

EXAMPLES:

```python
sage: R = Zp(5, 10)
sage: roots = R.roots_of_unity(); roots
[1 + O(5^10),
 2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10),
 4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + ...
 ˓→O(5^10),
 3 + 3*5 + 2*5^2 + 3*5^3 + 5^4 + 2*5^6 + 5^7 + 4*5^8 + 5^9 + O(5^10)]
```

```python
sage: R.roots_of_unity(10)
[1 + O(5^10),
 4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + ...
 ˓→O(5^10)]
```

In this case, the roots of unity are the Teichmüller representatives:

```python
sage: R.teichmuller_system()
[1 + O(5^10),
 2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10),
 3 + 3*5 + 2*5^2 + 3*5^3 + 5^4 + 2*5^6 + 5^7 + 4*5^8 + 5^9 + O(5^10),
 4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + ...
 ˓→O(5^10)]
```

In general, there might be more roots of unity (it happens when the ring has non trivial $p$-th roots of unity):

```python
sage: # needs sage.libs.ntl
sage: W.<a> = Zq(3^2, 2)
sage: S.<x> = W[]
sage: R.<pi> = W.extension((x+1)^2 + (x+1) + 1)
sage: roots = R.roots_of_unity(); roots
[1 + O(pi^4),
 a + 2*a*pi + 2*a*pi^2 + a*pi^3 + O(pi^4),
 ˓→ pi + O(pi^4),
 a + a*pi^2 + 2*a*pi^3 + O(pi^4),
 ˓→ 2*pi + pi^2 + O(pi^4),
 a + a*pi + a*pi^2 + O(pi^4),
 ˓→]
sage: len(roots)
24
```

We check that the logarithm of each root of unity vanishes:
some_elements()

Return a list of elements in this ring.

This is typically used for running generic tests (see TestSuite).

EXAMPLES:

```python
sage: Zp(2,4).some_elements()
[0, 1 + O(2^4), 2 + O(2^5), 1 + 2^2 + 2^3 + O(2^4), 2 + 2^2 + 2^3 + 2^4 + O(2^5)]
```

teichmuller(x, prec=None)

Return the Teichmüller representative of x.

- x – something that can be cast into self

OUTPUT:

- the Teichmüller lift of x

EXAMPLES:

```python
sage: R = Zp(5, 10, 'capped-rel', 'series')
sage: R.teichmuller(2)
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: R = Qp(5, 10, 'capped-rel', 'series')
sage: R.teichmuller(2)
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: R = Zp(5, 10, 'capped-abs', 'series')
sage: R.teichmuller(2)
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: R = Zp(5, 10, 'fixed-mod', 'series')
sage: R.teichmuller(2)
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9
```
AUTHORS:

- Initial version: David Roe
- Quadratic time version: Kiran Kedlaya <kedlaya@math.mit.edu> (2007-03-27)

\textbf{teichmuller_system()}

Return a set of Teichmüller representatives for the invertible elements of $\mathbb{Z}/p\mathbb{Z}$.

\ \ \ \ \ \ \ \ OUTPUT:

A list of Teichmüller representatives for the invertible elements of $\mathbb{Z}/p\mathbb{Z}$.

\ EXAMPLES:

\sage\ $R = \mathbb{Z}_p(3, 5, \text{'fixed-mod', \ 'terse'})$
\sage\ $R.teichmuller_system()$
\[ [1, 242] \]

Check that \texttt{github issue #20457} is fixed:

\sage\ $R = \mathbb{Z}_p(3, 5, \text{'fixed-mod', \ 'terse'})$
\sage\ $R.teichmuller_system()[3]$
\[ (2*a + 2) + (4*a + 1)*5 + 4*5^2 + (2*a + 1)*5^3 + (4*a + 1)*5^4 + (2*a + 3)*5^5$
\[ \rightarrow 5 + O(5^6) \]

\ NOTE: \ Should this return 0 as well?

\ \ \ \ \ \ \ \ uniformizer\_pow(n)

Return $p^n$, as an element of \texttt{self}.

If \texttt{n} is infinity, returns 0.

\ EXAMPLES:

\sage\ $R = \mathbb{Z}_p(3, 5, \text{'fixed-mod'})$
\sage\ $R.uniformizer\_pow(3)$
\[ 3^3 \]
\sage\ $R.uniformizer\_pow(\text{infinity})$
\[ 0 \]

\ \ \ \ \ \ \ \ valuation()

Return the $p$-adic valuation on this ring.

\ \ \ \ \ \ \ \ OUTPUT:

A valuation that is normalized such that the rational prime $p$ has valuation 1.

\ EXAMPLES:
sage: # needs sage.libsntl
sage: K = Qp(3)
sage: R.<a> = K[]
sage: L.<a> = K.extension(a^3 - 3)
sage: v = L.valuation(); v
3-adic valuation
sage: v(3)
1
sage: L(3).valuation()
3

The normalization is chosen such that the valuation restricts to the valuation on the base ring:

sage: v(3) == K.valuation()(3)  # needs sage.libs_ntl
True
sage: v.restriction(K) == K.valuation()  # needs sage.libs_ntl
True

See also:

NumberField_generic.valuation(), Order.valuation()
This file contains a bunch of intermediate classes for the $p$-adic parents, allowing a function to be implemented at the right level of generality.

AUTHORS:

- David Roe

```python
class sage.rings.padics.generic_nodes.CappedAbsoluteGeneric(base, prec, names, element_class, category=None):
 is_capped_absolute() -> bool
 Return whether this p-adic ring bounds precision in a capped absolute fashion.
 The absolute precision of an element is the power of p modulo which that element is defined. In a capped absolute ring, the absolute precision of elements are bounded by a constant depending on the ring.
```

```python
sage: R = ZpCA(5, 15)
sage: R.is_capped_absolute()
True
```

```python
sage: R(5^7)
5^7 + O(5^15)
sage: S = Zp(5, 15)
sage: S.is_capped_absolute()
False
```

```python
class sage.rings.padics.generic_nodes.CappedRelativeFieldGeneric(base, prec, names, element_class, category=None):
 is_capped_relative() -> bool
 Return whether this p-adic ring bounds precision in a capped relative fashion.
```

```python
class sage.rings.padics.generic_nodes.CappedRelativeGeneric(base, prec, names, element_class, category=None):
 is_capped_relative() -> bool
 Return whether this p-adic ring bounds precision in a capped relative fashion.
```

```python
sage: R = ZpCA(5, 15)
sage: R.is_capped_absolute()
True
sage: R(5^7)
5^7 + O(5^15)
sage: S = Zp(5, 15)
sage: S.is_capped_absolute()
False
```

```python
class sage.rings.padics.generic_nodes.CappedRelativeFieldGeneric(base, prec, names, element_class, category=None):
 is_capped_relative() -> bool
 Return whether this p-adic ring bounds precision in a capped relative fashion.
```

```python
class sage.rings.padics.generic_nodes.CappedRelativeGeneric(base, prec, names, element_class, category=None):
 is_capped_relative() -> bool
 Return whether this p-adic ring bounds precision in a capped relative fashion.
```
The relative precision of an element is the power of $p$ modulo which the unit part of that element is defined. In a capped relative ring, the relative precision of elements are bounded by a constant depending on the ring.

**EXAMPLES:**

```python
sage: R = ZpCA(5, 15)
sage: R.is_capped_relative() # False
sage: R(5^7) # 5^7 + O(5^15)
sage: S = ZpCA(5, 15)
sage: S.is_capped_relative() # True
sage: S(5^7) # 5^7 + O(5^22)
```

```python
class sage.rings.padics.generic_nodes.CappedRelativeRingGeneric(base, prec, names, element_class, category=None):
 Bases: CappedRelativeGeneric
class sage.rings.padics.generic_nodes.FixedModGeneric(base, prec, names, element_class, category=None):
 Bases: LocalGeneric
 is_fixed_mod() # Return whether this p-adic ring bounds precision in a fixed modulus fashion.

The absolute precision of an element is the power of p modulo which that element is defined. In a fixed modulus ring, the absolute precision of every element is defined to be the precision cap of the parent. This means that some operations, such as division by p, don’t return a well defined answer.

EXAMPLES:

```python
sage: R = ZpFM(5,15)
sage: R.is_fixed_mod()  # True
sage: R(5^7, absprec=9)  # 5^7
sage: S = ZpCA(5, 15)
sage: S.is_fixed_mod()  # False
sage: S(5^7, absprec=9)  # 5^7 + O(5^9)
```

```python
class sage.rings.padics.generic_nodes.FloatingPointFieldGeneric(base, prec, names, element_class, category=None):
    Bases: FloatingPointGeneric
class sage.rings.padics.generic_nodes.FloatingPointGeneric(base, prec, names, element_class, category=None):
    Bases: LocalGeneric
    is_floating_point()  # Return whether this $p$-adic ring uses a floating point precision model.
```
Elements in the floating point model are stored by giving a valuation and a unit part. Arithmetic is done where the unit part is truncated modulo a fixed power of the uniformizer, stored in the precision cap of the parent.

EXAMPLES:

```
sage: R = ZpFP(5,15)
sage: R.is_floating_point()
True
sage: R(5^7,absprec=9)
5^7
sage: S = ZpCR(5,15)
sage: S.is_floating_point()
False
sage: S(5^7,absprec=9)
5^7 + O(5^9)
```

```python
class sage.rings.padics.generic_nodes.FloatingPointRingGeneric(base, prec, names, element_class, category=None)

Bases: FloatingPointGeneric
```

class sage.rings.padics.generic_nodes.pAdicCappedAbsoluteRingGeneric(base, p, prec, print_mode, names, element_class, category=None)

Bases: pAdicRingGeneric, CappedAbsoluteGeneric
```

class sage.rings.padics.generic_nodes.pAdicCappedRelativeFieldGeneric(base, p, prec, print_mode, names, element_class, category=None)

Bases: pAdicFieldGeneric, CappedRelativeFieldGeneric
```

class sage.rings.padics.generic_nodes.pAdicCappedRelativeRingGeneric(base, p, prec, print_mode, names, element_class, category=None)

Bases: pAdicRingGeneric, CappedRelativeRingGeneric
```

class sage.rings.padics.generic_nodes.pAdicFieldBaseGeneric(p, prec, print_mode, names, element_class)

Bases: pAdicBaseGeneric, pAdicFieldGeneric
```

composite (subfield1, subfield2)

Return the composite of two subfields of self, i.e., the largest subfield containing both

INPUT:

- self – a p-adic field
- subfield1 – a subfield
• subfield2 — a subfield

OUTPUT:

the composite of subfield1 and subfield2

EXAMPLES:

```
sage: K = Qp(17); K.composite(K, K)  # K
True
```

construction *(forbid_frac_field=False)*

Return the functorial construction of self, namely, completion of the rational numbers with respect a given prime.

Also preserves other information that makes this field unique (e.g., precision, rounding, print mode).

INPUT:

• forbid_frac_field— require a completion functor rather than a fraction field functor. This is used in the `sage.rings.padics.local_generic.LocalGeneric.change()` method.

EXAMPLES:

```
sage: K = Qp(17, 8, print_mode='val-unit', print_sep='\$')
sage: c, L = K.construction(); L
17-adic Ring with capped relative precision 8
sage: c
FractionField
sage: c(L)
17-adic Field with capped relative precision 8
sage: K == c(L)
True
```

We can get a completion functor by forbidding the fraction field:

```
sage: c, L = K.construction(forbid_frac_field=True); L
Rational Field
sage: c
Completion[17, prec=8]
```

subfield *(list)*

Return the subfield generated by the elements in list

INPUT:

• self — a p-adic field

• list — a list of elements of self

OUTPUT:

the subfield of self generated by the elements of list

EXAMPLES:

```
sage: K = Qp(17); K.subfield([K(17), K(1827)])  # K
True
```
subfields_of_degree \((n) \)

Return the number of subfields of self of degree \(n \)

INPUT:

- self – a \(p \)-adic field
- \(n \) – an integer

OUTPUT:
integer – the number of subfields of degree \(n \) over self.base_ring()

EXAMPLES:

```python
sage: K = Qp(17)
sage: K.subfields_of_degree(1)
sage: 1
```

class `sage.rings.padics.generic_nodes.pAdicFieldGeneric` (base, \(p \), prec, print_mode, names, element_class, category=None)

Bases: `pAdicGeneric`, `pAdicField`

class `sage.rings.padics.generic_nodes.pAdicFixedModRingGeneric` (base, \(p \), prec, print_mode, names, element_class, category=None)

Bases: `pAdicRingGeneric`, `FixedModGeneric`

class `sage.rings.padics.generic_nodes.pAdicFloatingPointFieldGeneric` (base, \(p \), prec, print_mode, names, element_class, category=None)

Bases: `pAdicFieldGeneric`, `FloatingPointFieldGeneric`

class `sage.rings.padics.generic_nodes.pAdicFloatingPointRingGeneric` (base, \(p \), prec, print_mode, names, element_class, category=None)

Bases: `pAdicRingGeneric`, `FloatingPointRingGeneric`

class `sage.rings.padics.generic_nodes.pAdicLatticeGeneric` (\(p \), prec, print_mode, names, label=None)

Bases: `pAdicGeneric`

An implementation of the \(p \)-adic rationals with lattice precision.

INPUT:

- \(p \) – the underlying prime number
- \(\text{prec} \) – the precision
- \(\text{subtype} \) – either "cap" or "float", specifying the precision model used for tracking precision
- \(\text{label} \) – a string or None (default: None)
convert_multiple(*elts)

Convert a list of elements to this parent.

NOTE:

This function tries to be sharp on precision as much as possible. In particular, if the precision of the input elements are handled by a lattice, diffused digits of precision are preserved during the conversion.

EXAMPLES:

```
sage: R = ZpLC(2)
sage: x = R(1, 10); y = R(1, 5)
sage: x, y = x+y, x-y
```

Remark that the pair \((x, y)\) has diffused digits of precision:

```
sage: x
2 + O(2^5)
sage: y
O(2^5)
sage: x + y
2 + O(2^{11})
sage: R.precision().diffused_digits([x,y])
# needs sage.geometry.polyhedron
6
```

As a consequence, if we convert \(x\) and \(y\) separately, we lose some precision:

```
sage: R2 = ZpLC(2, label='copy')
sage: x2 = R2(x); y2 = R2(y)
sage: x2
2 + O(2^5)
sage: y2
O(2^5)
sage: x2 + y2
2 + O(2^5)
sage: R2.precision().diffused_digits([x2,y2])
# needs sage.geometry.polyhedron
0
```

On the other hand, this issue disappears when we use multiple conversion:

```
sage: x2,y2 = R2.convert_multiple(x,y)
# needs sage.geometry.polyhedron
sage: x2 + y2
# needs sage.rings.padics
2 + O(2^{11})
sage: R2.precision().diffused_digits([x2,y2])
# needs sage.geometry.polyhedron
6
```

is_lattice_prec()

Return whether this \(p\)-adic ring bounds precision using a lattice model.

In lattice precision, relationships between elements are stored in a precision object of the parent, which allows for optimal precision tracking at the cost of increased memory usage and runtime.
EXAMPLES:

```python
sage: R = ZpCR(5, 15)
sage: R.is_lattice_prec()
False
sage: x = R(25, 8)
sage: x - x
O(5^8)
sage: S = ZpLC(5, 15)
sage: S.is_lattice_prec()
True
sage: x = S(25, 8)
sage: x - x
O(5^30)
```

`label()`

Return the label of this parent.

NOTE:

Labels can be used to distinguish between parents with the same defining data.

They are useful in the lattice precision framework in order to limit the size of the lattice modeling the precision (which is roughly the number of elements having this parent).

Elements of a parent with some label do not coerce to a parent with a different label. However conversions are allowed.

EXAMPLES:

```python
sage: R = ZpLC(5)
sage: R.label()
# no label by default
sage: R = ZpLC(5, label='mylabel')
sage: R.label()
'mylabel'
```

Labels are typically useful to isolate computations. For example, assume that we first want to do some calculations with matrices:

```python
sage: M = random_matrix(R, 4, 4) # needs sage.geometry.polyhedron
sage: d = M.det() # needs sage.geometry.polyhedron
```

Now, if we want to do another unrelated computation, we can use a different label:

```python
sage: R = ZpLC(5, label='polynomials')
sage: S.<x> = PolynomialRing(R)
sage: P = (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
```

Without labels, the software would have modeled the precision on the matrices and on the polynomials using the same lattice (manipulating a lattice of higher dimension can have a significant impact on performance).

`precision()`

Return the lattice precision object attached to this parent.

EXAMPLES:
sage: R = ZpLC(5, label='precision')
sage: R.precision()
Precision lattice on 0 objects (label: precision)

sage: x = R(1, 10); y = R(1, 5)
sage: R.precision()
Precision lattice on 2 objects (label: precision)

See also:
sage.rings.padics.lattice_precision.PrecisionLattice

precision_cap()

Return the relative precision cap for this ring if it is finite. Otherwise return the absolute precision cap.

EXAMPLES:

sage: R = ZpLC(3)
sage: R.precision_cap()
20
sage: R.precision_cap_relative()
20

sage: R = ZpLC(3, prec=(infinity, 20))
sage: R.precision_cap()
20
sage: R.precision_cap_relative()
+Infinity
sage: R.precision_cap_absolute()
20

See also:
precision_cap_relative(), precision_cap_absolute()

precision_cap_absolute()

Return the absolute precision cap for this ring.

EXAMPLES:

sage: R = ZpLC(3)
sage: R.precision_cap_absolute()
40
sage: R = ZpLC(3, prec=(infinity, 20))
sage: R.precision_cap_absolute()
20

See also:
precision_cap(), precision_cap_relative()

precision_cap_relative()

Return the relative precision cap for this ring.

EXAMPLES:

sage: R = ZpLC(3)
sage: R.precision_cap_relative()
Bases: pAdicGeneric

Generic class for relaxed \(p \)-adics.

INPUT:

• \(p \) – the underlying prime number
• \(\text{prec} \) – the default precision

\textbf{an_element} (\textit{unbounded}=False)

Return an element in this ring.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = ZpER(7, prec=5) # needs sage.libs.flint
sage: R.an_element() # needs sage.libs.flint
7 + O(7^5)
sage: R.an_element(unbounded=True) # needs sage.libs.flint
7 + ...
\end{verbatim}

\textbf{default_prec}()

Return the default precision of this relaxed \(p \)-adic ring.

The default precision is mostly used for printing: it is the number of digits which are printed for unbounded elements (that is elements having infinite absolute precision).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: # needs sage.libs.flint
sage: R = ZpER(5, print_mode="digits")
sage: R.default_prec()
20
sage: R(1/17)
...34024323104201213403
sage: S = ZpER(5, prec=10, print_mode="digits")
sage: S.default_prec()
10
sage: S(1/17)
...4201213403
\end{verbatim}

\textbf{halting_prec}()

Return the default halting precision of this relaxed \(p \)-adic ring.
The halting precision is the precision at which elements of this parent are compared (unless more digits have been previously computed). By default, it is twice the default precision.

EXAMPLES:

```python
sage: R = ZpER(5, print_mode="digits")  # needs sage.libs.flint
sage: R.halting_prec()  # needs sage.libs.flint
40
```

is_relaxed()

Return whether this p-adic ring is relaxed.

EXAMPLES:

```python
sage: R = Zp(5)
sage: R.is_relaxed()
False
sage: S = ZpER(5)  # needs sage.libs.flint
sage: S.is_relaxed()  # needs sage.libs.flint
True
```

is_secure()

Return `False` if this p-adic relaxed ring is not secure (i.e., if indistinguishable elements at the working precision are considered as equal); `True` otherwise (in which case, an error is raised when equality cannot be decided).

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R = ZpER(5)
sage: R.is_secure()
False
sage: x = R(20/21)
sage: y = x + 5^50
sage: x == y
True
sage: # needs sage.libs.flint
sage: S = ZpER(5, secure=True)
sage: S.is_secure()
True
sage: x = S(20/21)
sage: y = x + 5^50
sage: x == y
Traceback (most recent call last):
  ... PrecisionError: unable to decide equality; try to bound precision
```

precision_cap()

Return the precision cap of this p-adic ring, which is infinite in the case of relaxed rings.

EXAMPLES:
\texttt{sage}: R = ZpER(5)
\hspace{2em} \# \text{needs sage.libs.flint}
\texttt{sage}: R.precison_cap()
\hspace{2em} \# \text{needs sage.libs.flint}
\hspace{1em} +\infty

\textbf{random_element (integral=False, prec=None)}

Return a random element in this ring.

\textbf{INPUT:}

- \texttt{integral} – a boolean (default: False); if True, return a random element in the ring of integers of this ring
- \texttt{prec} – an integer or None (default: None); if given, bound the precision of the output to \texttt{prec}

\textbf{EXAMPLES:}

\texttt{sage}: R = ZpER(5, prec=10)
\hspace{2em} \# \text{needs sage.libs.flint}
\texttt{sage}: a = R.random_element()
\hspace{2em} \# \text{needs sage.libs.flint}
\texttt{4 + 3\cdot 5 + 3\cdot 5^2 + 5^3 + 3\cdot 5^4 + 2\cdot 5^5 + 5^7 + 5^9 + ...}

The precision can be bounded by passing in a precision:

\texttt{sage}: b = R.random_element(prec=15)
\hspace{2em} \# \text{needs sage.libs.flint}
\texttt{2 + 3\cdot 5^2 + 5^3 + 3\cdot 5^4 + 5^5 + 3\cdot 5^6 + 3\cdot 5^8 + 3\cdot 5^9 + 4\cdot 5^{10}}
\hspace{2em} + 5^{11} + 4\cdot 5^{12} + 5^{13} + 2\cdot 5^{14} + O(5^{15})

\texttt{sage}: b\hspace{1em} \text{.precision_absolute() } \# \text{needs sage.libs.flint}
\hspace{1em} +\infty

\textbf{some_elements (unbounded=False)}

Return a list of elements in this ring.

This is typically used for running generic tests (see \texttt{TestSuite}).

\textbf{EXAMPLES:}

\texttt{sage}: R = ZpER(7, prec=5)
\hspace{2em} \# \text{needs sage.libs.flint}
\texttt{sage}: R\hspace{1em} \text{.some_elements() } \# \text{needs sage.libs.flint}
\hspace{1em} [0(7^5),
\hspace{2em} 1 + 0(7^5),
\hspace{2em} 7 + 0(7^5),
\hspace{2em} 7 + 0(7^5),
\hspace{2em} (continues on next page)
\[1 + 5 \cdot 7 + 3 \cdot 7^2 + 6 \cdot 7^3 + O(7^5),
7 + 6 \cdot 7^2 + 6 \cdot 7^3 + 6 \cdot 7^4 + O(7^5)]

\texttt{sage: R.some_elements(unbounded=True)} \
\# needs \texttt{sage.libs.flint}
[0,
1 + ...,
7 + ...,
1 + 5 \cdot 7 + 3 \cdot 7^2 + 6 \cdot 7^3 + ...,
7 + 6 \cdot 7^2 + 6 \cdot 7^3 + 6 \cdot 7^4 + ...]

\texttt{teichmuller(x)}

Return the Teichmuller representative of \(x\).

\textbf{EXAMPLES:}

\texttt{sage: R = ZpER(5, print_mode="digits")} \
\# needs \texttt{sage.libs.flint}
\texttt{sage: R.teichmuller(2)} \
\# needs \texttt{sage.libs.flint}
...40423140223032431212

\texttt{teichmuller_system()}

Return a set of teichmuller representatives for the invertible elements of \(\mathbb{Z}/p\mathbb{Z}\).

\textbf{EXAMPLES:}

\texttt{sage: R = ZpER(7, print_mode="digits")} \
\# needs \texttt{sage.libs.flint}
\texttt{sage: R.teichmuller_system()} \
\# needs \texttt{sage.libs.flint}
[...000000000000000001,
...16412125443426203642,
...16412125443426203643,
...50254541223240463024,
...50254541223240463025,
...66666666666666666666]

\texttt{unknown(start_val=0, digits=None)}

Return a self-referent number in this ring.

\textbf{INPUT:}

• \texttt{start_val} – an integer (default: 0); a lower bound on the valuation of the returned element
• \texttt{digits} – an element, a list or None (default: None); the first digit or the list of the digits of the returned element

\textbf{NOTE:}

Self-referent numbers are numbers whose digits are defined in terms of the previous ones. This method is used to declare a self-referent number (and optionally, to set its first digits). The definition of the number itself will be given afterwords using to method \texttt{sage.rings.padics.relaxed_template.RelaxedElement_unknown.set()} of the element.

\textbf{EXAMPLES:}

\texttt{sage: R = ZpER(5, prec=10) \# needs sage.libs.flint}
We declare a self-referent number:

```python
sage: a = R.unknown()
    # needs sage.libs.flint
```

So far, we do not know anything on \(a \) (except that it has nonnegative valuation):

```python
sage: a
    # needs sage.libs.flint
0(5^0)
```

We can now use the method `sage.rings.padics.relaxed_template.RelaxedElement_unknown.set()` to define \(a \). Below, for example, we say that the digits of \(a \) have to agree with the digits of \(1 + 5a \). Note that the factor 5 shifts the digits; the \(n \)-th digit of \(a \) is then defined by the previous ones:

```python
sage: a.set(1 + 5*a)
    # needs sage.libs.flint
True
```

After this, \(a \) contains the solution of the equation \(a = 1 + 5a \), that is \(a = -1/4 \):

```python
sage: a
    # needs sage.libs.flint
1 + 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + 5^7 + 5^8 + 5^9 + ...
```

Here is another example with an equation of degree 2:

```python
sage: # needs sage.libs.flint
sage: b = R.unknown()
sage: b.set(1 - 5*b^2)
True
sage: b
1 + 4*5 + 5^2 + 3*5^4 + 4*5^6 + 2*5^9 + ...
```

Cross self-referent definitions are also allowed:

```python
sage: # needs sage.libs.flint
sage: u = R.unknown()
sage: v = R.unknown()
sage: w = R.unknown()
sage: u.set(1 + 2*v + 3*w^2 + 5*u*v*w)
True
sage: v.set(2 + 4*w + sqrt(1 + 5*u + 10*v + 15*w))
True
sage: w.set(3 + 25*(u*v + v*w + u*w))
True
sage: u
3 + 3*5 + 4*5^2 + 5^3 + 3*5^4 + 5^5 + 5^6 + 3*5^7 + 5^8 + 3*5^9 + ...
```

```python
class sage.rings.padics.generic_nodes.pAdicRingBaseGeneric(p, prec, print_mode, names, element_class)
```
Bases: `pAdicBaseGeneric`, `pAdicRingGeneric`

construction *(forbid_frac_field=False)*

Return the functorial construction of `self`, namely, completion of the rational numbers with respect to a given prime.

Also preserves other information that makes this field unique (e.g., precision, rounding, print mode).

INPUT:

- `forbid_frac_field` – ignored, for compatibility with other p-adic types.

EXAMPLES:

```python
sage: K = Zp(17, 8, print_mode='val-unit', print_sep='&')
sage: c, L = K.construction(); L
Integer Ring
sage: c(L)
17-adic Ring with capped relative precision 8
sage: K == c(L)
True
```

random_element *(algorithm='default')*

Return a random element of `self`, optionally using the `algorithm` argument to decide how it generates the element. Algorithms currently implemented:

- 'default': Choose $a_i, i \geq 0$, randomly between 0 and $p - 1$ until a nonzero choice is made. Then continue choosing a_i, randomly between 0 and $p - 1$ until we reach precision_cap, and return $\sum a_i p^i$.

EXAMPLES:

```python
sage: Zp(5,6).random_element().parent() is Zp(5,6)
True
sage: ZpCA(5,6).random_element().parent() is ZpCA(5,6)
True
sage: ZpFM(5,6).random_element().parent() is ZpFM(5,6)
True
```

class `sage.rings.padics.generic_nodes.pAdicRingGeneric` *(base, p, prec, print_mode, names, element_class, category=None)*

Bases: `pAdicGeneric`, `pAdicRing`

is_field *(proof=True)*

Return whether this ring is actually a field, i.e. False.

EXAMPLES:

```python
sage: Zp(5).is_field()
False
```

krull_dimension *()*

Return the Krull dimension of self, i.e. 1

INPUT:

- `self` – a p-adic ring

OUTPUT:

- the Krull dimension of self. Since self is a p-adic ring, this is 1.
EXAMPLES:

```python
sage: Zp(5).krull_dimension()
1
```
A superclass for implementations of \(\mathbb{Z}_p \) and \(\mathbb{Q}_p \).

AUTHORS:
- David Roe

```python
class sage.rings.padics.padic_base_generic.pAdicBaseGeneric(p, prec, print_mode, names, element_class)
```

Initialization

absolute_discriminant()

Returns the absolute discriminant of this \(p \)-adic ring.

EXAMPLES:

```python
sage: Zp(5).absolute_discriminant()
1
```

discriminant(K=None)

Returns the discriminant of this \(p \)-adic ring over \(K \).

INPUT:
- \(\text{self} \) – a \(p \)-adic ring
- \(K \) – a sub-ring of \(\text{self} \) or \(\text{None} \) (default: \(\text{None} \))

OUTPUT:
- integer – the discriminant of this ring over \(K \) (or the absolute discriminant if \(K \) is \(\text{None} \))

EXAMPLES:

```python
sage: Zp(5).discriminant()
1
```

exact_field()

Returns the rational field.

For compatibility with extensions of \(p \)-adics.

EXAMPLES:

```python
sage: Zp(5).exact_field()
Rational Field
```
exact_ring()
Returns the integer ring.
EXAMPLES:

```
sage: Zp(5).exact_ring()  
Integer Ring
```

gen \((n=0)\)
Returns the \(n\)th generator of this extension. For base rings/fields, we consider the generator to be the prime.
EXAMPLES:

```
sage: R = Zp(5); R.gen()  
5 + O(5\^21)
```

has_pth_root()
Returns whether or not \(\mathbb{Z}_p\) has a primitive \(p^{th}\) root of unity.
EXAMPLES:

```
sage: Zp(2).has_pth_root()  
True
sage: Zp(17).has_pth_root()  
False
```

has_root_of_unity\((n)\)
Returns whether or not \(\mathbb{Z}_p\) has a primitive \(n^{th}\) root of unity.
INPUT:

- \textit{self} – a \(p\)-adic ring
- \textit{n} – an integer

OUTPUT:

- boolean – whether \textit{self} has primitive \(n^{th}\) root of unity

EXAMPLES:

```
sage: R = Zp(37)  
sage: R.has_root_of_unity(12)  
True
sage: R.has_root_of_unity(11)  
False
```

is_abelian()
Returns whether the Galois group is abelian, i.e. True. #should this be automorphism group?
EXAMPLES:

```
sage: R = Zp(3, 10, \textquoteleft fixed-mod\textquoteright); R.is_abelian()  
True
```

is_isomorphic\((\textit{ring})\)
Returns whether \textit{self} and \textit{ring} are isomorphic, i.e. whether \textit{ring} is an implementation of \(\mathbb{Z}_p\) for the same prime as \textit{self}.
INPUT:
• self – a p-adic ring
• ring – a ring

OUTPUT:
• boolean – whether ring is an implementation of \mathbb{Z}_p for the same prime as self.

EXAMPLES:
```
sage: R = Zp(5, 15, print_mode='digits'); S = Zp(5, 44, print_max_terms=4); R.
˓→is_isomorphic(S)
True
```

is_normal()
Returns whether or not this is a normal extension, i.e. True.

EXAMPLES:
```
sage: R = Zp(3, 10,'fixed-mod'); R.is_normal()
True
```

modulus (exact=False)
Returns the polynomial defining this extension.
For compatibility with extension fields; we define the modulus to be x-1.

INPUT:
• exact – boolean (default False), whether to return a polynomial with integer entries.

EXAMPLES:
```
sage: Zp(5).modulus(exact=True)
x
```

plot (max_points=2500, **args)
Create a visualization of this p-adic ring as a fractal similar to a generalization of the Sierpiński triangle.
The resulting image attempts to capture the algebraic and topological characteristics of \mathbb{Z}_p.

INPUT:
• max_points – the maximum number or points to plot, which controls the depth of recursion (default 2500)
• **args – color, size, etc. that are passed to the underlying point graphics objects

REFERENCES:

EXAMPLES:
```
sage: Zp(3).plot()  #...
˓→needs sage.plot
Graphics object consisting of 1 graphics primitive
sage: Zp(5).plot(max_points=625)  #...
˓→needs sage.plot
Graphics object consisting of 1 graphics primitive
sage: Zp(23).plot(rgbcolor=(1,0,0))  #...
```

(continues on next page)
uniformizer()

Returns a uniformizer for this ring.

EXAMPLES:

```python
sage: R = Zp(3,5,'fixed-mod', 'series')
sage: R.uniformizer()
3
```

uniformizer_pow(n)

Returns the \(n\)th power of the uniformizer of self (as an element of self).

EXAMPLES:

```python
sage: R = Zp(5)
sage: R.uniformizer_pow(5)
5^5 + O(5^25)
sage: R.uniformizer_pow(infinity)
0
```

zeta \((n=None)\)

Returns a generator of the group of roots of unity.

INPUT:

- self – a \(p\)-adic ring
- \(n\) – an integer or \texttt{None} (default: \texttt{None})

OUTPUT:

- element – a generator of the \(n\)th roots of unity, or a generator of the full group of roots of unity if \(n\) is \texttt{None}

EXAMPLES:

```python
sage: R = Zp(37,5)
sage: R.zeta(12)
8 + 24*37 + 37^2 + 29*37^3 + 23*37^4 + O(37^5)
```

zeta_order()

Returns the order of the group of roots of unity.

EXAMPLES:

```python
sage: R = Zp(37); R.zeta_order()
36
sage: Zp(2).zeta_order()
2
```
A common superclass for all extensions of \mathbb{Q}_p and \mathbb{Z}_p.

AUTHORS:

• David Roe

```python
class sage.rings.padics.padic_extension_generic.DefPolyConversion
    Bases: Morphism
    Conversion map between p-adic rings/fields with the same defining polynomial.
    INPUT:
    • $R$ – a p-adic extension ring or field.
    • $S$ – a p-adic extension ring or field with the same defining polynomial.
    EXAMPLES:

    sage: R.<a> = Zq(125, print_mode='terse')
    sage: S = R.change(prec = 15, type='floating-point')
    sage: a - 1
    95367431640624 + a + O(5^20)
    sage: S(a - 1)
    30517578124 + a + O(5^15)
```

```python
class sage.rings.padics.padic_extension_generic.MapFreeModuleToOneStep
    Bases: pAdicModuleIsomorphism
    The isomorphism from the underlying module of a one-step p-adic extension to the extension.
    EXAMPLES:

    sage: K.<a> = Qq(125)
    sage: V, fr, to = K.free_module()
    sage: TestSuite(fr).run(skip=['_test_nonzero_equal'])  # skipped since Qq(125)_
    doesn't have dimension()
```

```python
class sage.rings.padics.padic_extension_generic.MapFreeModuleToTwoStep
    Bases: pAdicModuleIsomorphism
    The isomorphism from the underlying module of a two-step p-adic extension to the extension.
```
EXAMPLES:

```python
sage: K.<a> = Qq(125)
sage: R.<x> = ZZ[]
sage: L.<b> = K.extension(x^2 - 5*x + 5)
sage: V, fr, to = L.free_module(base=Qp(5))
sage: TestSuite(fr).run(skip=['_test_nonzero_equal'])  # skipped since L doesn't have dimension()
```

class sage.rings.padics.padic_extension_generic.MapOneStepToFreeModule
Bases: pAdicModuleIsomorphism

The isomorphism from a one-step p-adic extension to its underlying free module

EXAMPLES:

```python
sage: K.<a> = Qq(125)
sage: V, fr, to = K.free_module()
sage: TestSuite(to).run()
```

class sage.rings.padics.padic_extension_generic.MapTwoStepToFreeModule
Bases: pAdicModuleIsomorphism

The isomorphism from a two-step p-adic extension to its underlying free module

EXAMPLES:

```python
sage: K.<a> = Qq(125)
sage: R.<x> = ZZ[]
sage: L.<b> = K.extension(x^2 - 5*x + 5)
sage: V, fr, to = L.free_module(base=Qp(5))
sage: TestSuite(to).run()
```

class sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric(poly, prec, print_mode, names, element_class)
Bases: pAdicGeneric

Initialization

EXAMPLES:

```python
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)  # indirect doctest
```

construction (forbid_frac_field=False)

Returns the functorial construction of this ring, namely, the algebraic extension of the base ring defined by the given polynomial.

Also preserves other information that makes this ring unique (e.g. precision, rounding, print mode).

INPUT:

- `forbid_frac_field`—require a completion functor rather than a fraction field functor. This is used in the `sage.rings.padics.local_generic.LocalGeneric.change()` method.

EXAMPLES:
```python
sage: R.<a> = Zq(25, 8, print_mode='val-unit')
```
```
sage: R = R.construction(); R
5-adic Ring with capped relative precision 8
```
```
sage: c(R)
5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2
```
```
sage: c(R) == R
True
```
```
For a field, by default we return a fraction field functor.
```
```
sage: K.<a> = QQ(25, 8)
```
```
sage: c, R = K.construction(); R
5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2
```
```
sage: c
FractionField
```
```
If you prefer an extension functor, you can use the `forbid_frac_field` keyword:
```
```
sage: c, R = K.construction(forbid_frac_field=True); R
5-adic Field with capped relative precision 8
```
```
sage: c
AlgebraicExtensionFunctor
```
```
sage: c(R) is K
True
```
```
defining_polynomial(var=None, exact=False)
```
```
Returns the polynomial defining this extension.
```
```
INPUT:
```
```
- `var` – string (default: 'x'), the name of the variable
- `exact` – boolean (default `False`), whether to return the underlying exact
defining polynomial rather than the one with coefficients in the base ring.
```
```
EXAMPLES:
```
```
sage: R = Zp(5,5)
```
```
sage: S.<x> = R[
```
```
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
```
```
sage: W.<w> = R.ext(f)
```
```
sage: W.defining_polynomial()
(1 + O(5^5))*x^5 + O(5^6)*x^4 + (3*5^2 + O(5^6))*x^3 + (2*5 + 4*5^2 + 4*5^3 +
    4*5^4 + 4*5^5 + O(5^6))*x^2 + (5^3 + O(5^6))*x + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 +
    4*5^5 + O(5^6)
```
```
sage: W.defining_polynomial(exact=True)
x^5 + 75*x^3 - 15*x^2 + 125*x - 5
```
```
sage: W.defining_polynomial(var='y', exact=True)
y^5 + 75*y^3 - 15*y^2 + 125*y - 5
```
```
See also:
```
```
modulus() exact_field()
```
```
extact_field()
```
```
Return a number field with the same defining polynomial.
```
```
Note that this method always returns a field, even for a p-adic ring.
```
```
```
EXAMPLES:

```plaintext
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: W.exact_field()
Number Field in w with defining polynomial x^5 + 75*x^3 - 15*x^2 + 125*x - 5
```

See also:

- `defining_polynomial()`
- `modulus()`

`exact_ring()`

Return the order with the same defining polynomial.

Will raise a `ValueError` if the coefficients of the defining polynomial are not integral.

EXAMPLES:

```plaintext
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: W.exact_ring()
Order generated by w in Number Field in w with defining polynomial x^5 + 75*x^3 - 15*x^2 + 125*x - 5
```

```plaintext
sage: T = Zp(5,5)
sage: U.<z> = T[]
sage: g = 2*z^4 + 1
sage: V.<v> = T.ext(g)
sage: V.exact_ring()
Traceback (most recent call last):
  ...
ValueError: each generator must be integral
```

`free_module` *(base=None, basis=None, map=True)*

Return a free module V over a specified base ring together with maps to and from V.

INPUT:

- `base` — a subring R so that this ring/field is isomorphic to a finite-rank free R-module V
- `basis` — a basis for this ring/field over the base
- `map` — boolean (default True), whether to return R-linear maps to and from V

OUTPUT:

- A finite-rank free R-module V
- An R-module isomorphism from V to this ring/field (only included if `map` is True)
- An R-module isomorphism from this ring/field to V (only included if `map` is True)

EXAMPLES:

```plaintext
sage: R.<x> = ZZ[]
sage: K.<a> = Qq(125)
sage: L.<pi> = K.extension(x^2-5)
sage: V, from_V, to_V = K.free_module()
```
\texttt{sage: W, from_W, to_W = L.free_module()}
\texttt{sage: W0, from_W0, to_W0 = L.free_module(base=Qp(5))}
\texttt{sage: to_V(a + O(5^7))}
\texttt{(O(5^7), 1 + O(5^7), O(5^7))}
\texttt{sage: to_W(a)}
\texttt{(a + O(5^20), O(5^20))}
\texttt{sage: to_W0(a + O(5^7))}
\texttt{(O(5^7), 1 + O(5^7), O(5^7), O(5^7), O(5^7))}
\texttt{sage: to_W(pi)}
\texttt{(O(5^21), 1 + O(5^20))}
\texttt{sage: to_W0(pi + O(pi^11))}
\texttt{(O(5^6), O(5^6), O(5^6), 1 + O(5^5), O(5^5), O(5^5))}
\texttt{sage: X, from_X, to_X = K.free_module(K)}
\texttt{sage: to_X(a)}
\texttt{(a + O(5^20))}

\textbf{ground_ring()}
Returns the ring of which this ring is an extension.

\textbf{EXAMPLES:}

\texttt{sage: R = Zp(5,5)}
\texttt{sage: S.<x> = R[]}
sage: W.modulus(exact=True)
x^5 + 75*x^3 - 15*x^2 + 125*x - 5

See also:

defining_polynomial() exact_field()

polynomial_ring()

Returns the polynomial ring of which this is a quotient.

EXAMPLES:

sage: Qq(27,30,names='a').polynomial_ring()
Univariate Polynomial Ring in x over 3-adic Field with capped relative...
˓→precision 30

random_element()

Return a random element of self.

This is done by picking a random element of the ground ring self.degree() times, then treating those elements as coefficients of a polynomial in self.gen().

EXAMPLES:

sage: R.<a> = Zq(125, 5)
sage: R.random_element().parent() is R
True
sage: R = Zp(5,3); S.<x> = ZZ[]; f = x^5 + 25*x^2 - 5; W.<w> = R.ext(f)
sage: W.random_element().parent() is W
True

class sage.rings.padics.padic_extension_generic.pAdicModuleIsomorphism

Bases: Map

A base class for various isomorphisms between p-adic rings/fields and free modules

EXAMPLES:

sage: K.<a> = Qq(125)
sage: V, fr, to = K.free_module()
sage: from sage.rings.padics.padic_extension_generic import pAdicModuleIsomorphism
sage: isinstance(fr, pAdicModuleIsomorphism)
True

is_injective()

EXAMPLES:

sage: K.<a> = Qq(125)
sage: V, fr, to = K.free_module()
sage: fr.is_injective()
True

is_surjective()

EXAMPLES:

sage: K.<a> = Qq(125)
sage: V, fr, to = K.free_module()
\begin{verbatim}
sage: fr.is_surjective()
True
\end{verbatim}
This file implements the shared functionality for Eisenstein extensions.

AUTHORS:
- David Roe

```python
class sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric
    (poly, prec, print_mode, names, element_class)
```

Bases: `pAdicExtensionGeneric`

Initializes `self`.

EXAMPLES:

```python
sage: A = Zp(7,10)
sage: S.<x> = A[]
    # needs sage.libs.ntl
sage: B.<t> = A.ext(x^2+7)  # indirect doctest
    # needs sage.libs.ntl sage.rings.padics
```

```python
absolute_e()
```

Return the absolute ramification index of this ring or field

EXAMPLES:

```python
sage: K.<a> = Qq(3^5)
    # needs sage.libs.ntl
sage: K.absolute_e()  # needs sage.libs.ntl
1
sage: x = polygen(ZZ, 'x')
sage: L.<pi> = Qp(3).extension(x^2 - 3)
    # needs sage.libs.ntl
sage: L.absolute_e()  # needs sage.libs.ntl
2
```

```python
gen(n=0)
```

Return a generator for `self` as an extension of its ground ring.
EXAMPLES:

```
sage: A = Zp(7,10)
sage: S.<x> = A[]  # needs sage.libsntl
sage: B.<t> = A.ext(x^2 + 7)  # needs sage.libsntl
sage: B.gen()  # needs sage.libsntl
\t+ O(t^21)
```

\textbf{inertia_subring()}

Return the inertia subring.

Since an Eisenstein extension is totally ramified, this is just the ground field.

EXAMPLES:

```
sage: A = Zp(7,10)
sage: S.<x> = A[]  # needs sage.libsntl
sage: B.<t> = A.ext(x^2 + 7)  # needs sage.libsntl
sage: B.inertia_subring()  # needs sage.libsntl
\text{7-adic Ring with capped relative precision 10}
```

\textbf{residue_class_field()}

Return the residue class field.

\textbf{INPUT:}

- \texttt{self} – a p-adic ring

\textbf{OUTPUT:}

the residue field

\textbf{EXAMPLES:}

```
sage: A = Zp(7,10)
sage: S.<x> = A[]  # needs sage.libsntl
sage: B.<t> = A.ext(x^2 + 7)  # needs sage.libsntl
sage: B.residue_class_field()  # needs sage.libsntl
\text{Finite Field of size 7}
```

\textbf{residue_ring}(n)

Return the quotient of the ring of integers by the \(n\)-th power of its maximal ideal.

\textbf{EXAMPLES:}

```
sage: S.<x> = ZZ[]
sage: W.<w> = Zp(5).extension(x^2 - 5)  # needs sage.libsntl
sage: W.residue_ring(1)  # needs sage.libsntl
\text{Ring of integers modulo 5}
```
The following requires implementing more general Artinian rings:

```sage
sage: W.residue_ring(2) # needs sage.libsntl
Traceback (most recent call last):
... Not ImplementedError
```

uniformizer()

Return the uniformizer of self, i.e., a generator for the unique maximal ideal.

EXAMPLES:

```sage
sage: A = Zp(7,10)
sage: S.<x> = A[] # needs sage.libsntl
sage: B.<t> = A.ext(x^2 + 7) # needs sage.libsntl
sage: B.uniformizer() # needs sage.libsntl
```

```sage
t + O(t^21)
```

uniformizer_pow(n)

Return the n-th power of the uniformizer of self (as an element of self).

EXAMPLES:

```sage
sage: A = Zp(7,10)
sage: S.<x> = A[] # needs sage.libsntl
sage: B.<t> = A.ext(x^2 + 7) # needs sage.libsntl
sage: B.uniformizer_pow(5) # needs sage.libsntl
```

```sage
t^5 + O(t^25)
```
This file implements the shared functionality for unramified extensions.

AUTHORS:
- David Roe

```python
class sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric(poly, prec, print_mode, names, element_class)
```

Bases: `pAdicExtensionGeneric`

An unramified extension of \(\mathbb{Q}_p \) or \(\mathbb{Z}_p \).

absolute_f()

Return the degree of the residue field of this ring/field over its prime subfield.

EXAMPLES:

```python
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.absolute_f()  # needs sage.libs.ntl
5

sage: x = polygen(ZZ, 'x')
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
sage: L.absolute_f()  # needs sage.libs.ntl
1
```

discriminant(K=None)

Return the discriminant of self over the subring K.

INPUT:
- K – a subring/subfield (defaults to the base ring).

EXAMPLES:
```python
sage: R.<a> = Zq(125)  # needs sage.libsntl
sage: R.discriminant()  # needs sage.libsntl
Traceback (most recent call last):
... 
NotImplementedError
```

gen *(n=0)*

Return a generator for this unramified extension.

This is an element that satisfies the polynomial defining this extension. Such an element will reduce to a generator of the corresponding residue field extension.

EXAMPLES:

```python
sage: R.<a> = Zq(125); R.gen()                  # needs sage.libsntl
a + 0(5^20)
```

has_pth_root *

Return whether or not \(\mathbb{Z}_p \) has a primitive \(p \)-th root of unity.

Since adjoining a \(p \)-th root of unity yields a totally ramified extension, `self` will contain one if and only if the ground ring does.

INPUT:

- `self` – a \(p \)-adic ring

OUTPUT:

boolean – whether `self` has primitive \(p \)-th root of unity.

EXAMPLES:

```python
sage: R.<a> = Zq(1024); R.has_pth_root()        # needs sage.libsntl
True
sage: R.<a> = Zq(17^5); R.has_pth_root()        # needs sage.libsntl
False
```

has_root_of_unity *(n)*

Return whether or not \(\mathbb{Z}_p \) has a primitive \(n \)-th root of unity.

INPUT:

- `self` – a \(p \)-adic ring
- `n` – an integer

OUTPUT:

- boolean

EXAMPLES:

```python
sage: R.<a> = Zq(37^8)                           # needs sage.libsntl
sage: R.has_root_of_unity(144)                   # needs sage.libsntl
```

(continues on next page)
True
\[\text{sage: } R\text{.has_root_of_unity}(89)\]
True
\[\text{sage: } R\text{.has_root_of_unity}(11)\]
False

is_galois (*K=None*)

Return True if this extension is Galois.

Every unramified extension is Galois.

INPUT:

- *K* – a subring/subfield (defaults to the base ring).

EXAMPLES:

\[\text{sage: } R\text{.<a> = Zq}(125)\text{; } R\text{.is_galois()}\]

needs sage.libs.ntl
True

residue_class_field()

Returns the residue class field.

EXAMPLES:

\[\text{sage: } R\text{.<a> = Zq}(125)\text{; } R\text{.residue_class_field()}\]

needs sage.libs.ntl
Finite Field in a0 of size 5^3

residue_ring (*n*)

Return the quotient of the ring of integers by the \(n\)-th power of its maximal ideal.

EXAMPLES:

\[\text{sage: } R\text{.<a> = Zq}(125)\]

needs sage.libs.ntl
\[\text{sage: } R\text{.residue_ring}(1)\]

needs sage.libs.ntl
Finite Field in a0 of size 5^3

The following requires implementing more general Artinian rings:

\[\text{sage: } R\text{.residue_ring}(2)\]

needs sage.libs.ntl
Traceback (most recent call last):
...
NotImplementedError

uniformizer()

Return a uniformizer for this extension.

Since this extension is unramified, a uniformizer for the ground ring will also be a uniformizer for this extension.

EXAMPLES:
uniformizer_pow(n)

Return the n-th power of the uniformizer of \textit{self} (as an element of \textit{self}).

EXAMPLES:
Implementations of \mathbb{Z}_p and \mathbb{Q}_p

AUTHORS:
• David Roe
• Genya Zaytman: documentation
• David Harvey: doctests
• William Stein: doctest updates

EXAMPLES:

p-adic rings and fields are examples of inexact structures, as the reals are. That means that elements cannot generally be stored exactly: to do so would take an infinite amount of storage. Instead, we store an approximation to the elements with varying precision.

There are two types of precision for a p-adic element. The first is relative precision, which gives the number of known p-adic digits:

```
sage: R = Qp(5, 20, capped-rel, 'series'); a = R(675); a
2*5^2 + 5^4 + O(5^22)
sage: a.precision_relative()
20
```

The number of times that p divides the element is called the valuation, and can be accessed with the methods `valuation()` and `ordp()`:

```
sage: a.valuation() 2
```

The following relationship holds:

```
self.valuation() + self.precision_relative() == self.precision_absolute().
sage: a.valuation() + a.precision_relative() == a.precision_absolute() True
```

In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.
\begin{verbatim}
sage: R = Qp(5, 5); a = R(4006); a
1 + 5 + 2*5^3 + 5^4 + O(5^5)
\sage: b = R(17/3); b
4 + 2*5 + 3*5^2 + 5^3 + 3*5^4 + O(5^5)
\sage: c = R(4025); c
5^2 + 2*5^3 + 5^4 + 5^5 + O(5^7)
\sage: a + b
4*5 + 3*5^2 + 3*5^3 + 4*5^4 + O(5^5)
\sage: a + b + c
4*5 + 4*5^2 + 5^4 + O(5^5)

sage: R = Zp(5, 5, capped-rel, series); a = R(4006); a
1 + 5 + 2*5^3 + 5^4 + O(5^5)
\sage: b = R(17/3); b
4 + 2*5 + 3*5^2 + 5^3 + 3*5^4 + O(5^5)
\sage: c = R(4025); c
5^2 + 2*5^3 + 5^4 + 5^5 + O(5^7)
\sage: a + b
4*5 + 3*5^2 + 3*5^3 + 4*5^4 + O(5^5)
\sage: a + b + c
4*5 + 4*5^2 + 5^4 + O(5^5)

\end{verbatim}

In the capped absolute type, instead of having a cap on the relative precision of an element there is instead a cap on the absolute precision. Elements still store their own precisions, and as with the capped relative case, exact elements are truncated when cast into the ring:

\begin{verbatim}
\sage: R = ZpCA(5, 5); a = R(4005); a
5 + 2*5^3 + 5^4
\sage: a // 5
1 + 2*5 + O(5^2)
\sage: type((a * b) // 5^3)
<class 'sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement'>
\sage: (a * b) / 5^3
1 + 2*5 + O(5^2)
\sage: type((a * b) / 5^3)
<class 'sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement'>

\end{verbatim}

The fixed modulus type is the leanest of the p-adic rings: it is basically just a wrapper around \(\mathbb{Z}/p^n\mathbb{Z} \) providing a unified interface with the rest of the p-adics. This is the type you should use if your primary interest is in speed (though it’s not all that much faster than other p-adic types). It does not track precision of elements:

\begin{verbatim}
\sage: R = ZpFM(5, 5); a = R(4005); a
5 + 2*5^3 + 5^4
\sage: a // 5
1 + 2*5 + O(5^2)
\end{verbatim}

\(p \)-adic rings and fields should be created using the creation functions \texttt{Zp()} and \texttt{Qp()} as above. This will ensure that there is only one instance of \(\mathbb{Z}_p \) and \(\mathbb{Q}_p \) of a given type, \(p \), print mode and precision. It also saves typing very long class names.:
Once one has a p-adic ring or field, one can cast elements into it in the standard way. Integers, ints, longs, Rationals, other p-adic types, pari p-adics and elements of $\mathbb{Z}/p^n\mathbb{Z}$ can all be cast into a p-adic field:

```python
sage: R = Qp(5, 5, capped-rel,series); a = R(16); a
1 + 3*5 + O(5^5)
sage: b = R(23/15); b
5^-1 + 3 + 3*5 + 5^2 + 3*5^3 + O(5^4)
sage: S = Zp(5, 5, fixed-mod,'val-unit'); c = S(Mod(75,125)); c
5^2 * 3
sage: R(c)
3*5^2 + O(5^5)
```

In the previous example, since fixed-mod elements don't keep track of their precision, we assume that it has the full precision of the ring. This is why you have to cast manually here.

While you can cast explicitly as above, the chains of automatic coercion are more restricted. As always in Sage, the following arrows are transitive and the diagram is commutative:

```
int -> long -> Integer -> Zp capped-rel -> Zp capped_abs -> IntegerMod
Integer -> Zp fixed-mod -> IntegerMod
Integer -> Zp capped-abs -> Qp capped-rel
```

In addition, there are arrows within each type. For capped relative and capped absolute rings and fields, these arrows go from lower precision cap to higher precision cap. This works since elements track their own precision: choosing the parent with higher precision cap means that precision is less likely to be truncated unnecessarily. For fixed modulus parents, the arrow goes from higher precision cap to lower. The fact that elements do not track precision necessitates this choice in order to not produce incorrect results.

```python
class sage.rings.padics.padic_base_leaves.pAdicFieldCappedRelative(p, prec, print_mode, names)

Bases: pAdicFieldBaseGeneric, pAdicCappedRelativeFieldGeneric

An implementation of $p$-adic fields with capped relative precision.

EXAMPLES:

```python
sage: K = Qp(17, 1000000) # indirect doctest
sage: K = Qp(101) # indirect doctest
random_element (algorithm='default')

Return a random element of self, optionally using the algorithm argument to decide how it generates the element. Algorithms currently implemented:

- 'default': Choose an integer k using the standard distribution on the integers. Then choose an integer a uniformly in the range $0 \leq a < p^N$ where N is the precision cap of self. Return $self(p^k * a$, absprec = $k + self.precision_cap())$.

EXAMPLES:
class sage.rings.padics.padic_base_leaves.pAdicFieldFloatingPoint(p, prec, print_mode, names)

Bases: pAdicFieldBaseGeneric, pAdicFloatingPointFieldGeneric

An implementation of the p-adic rationals with floating point precision.

class sage.rings.padics.padic_base_leaves.pAdicFieldLattice(p, prec, subtype, print_mode, names, label=None)

Bases: pAdicLatticeGeneric, pAdicFieldBaseGeneric

An implementation of the p-adic numbers with lattice precision.

INPUT:

- p – prime
- prec – precision cap, given as a pair $(\text{relative_cap}, \text{absolute_cap})$
- subtype – either 'cap' or 'float'
- print_mode – dictionary with print options
- names – how to print the prime
- label – the label of this ring

See also: label()

EXAMPLES:

sage: R = QpLC(next_prime(10^60)) # indirect doctest
sage: type(R)
<class 'sage.rings.padics.padic_base_leaves.pAdicFieldLattice_with_category'>

random_element (\text{prec}=\text{None}, \text{integral}=\text{False})

Return a random element of this ring.

INPUT:

- prec – an integer or None (the default): the absolute precision of the generated random element
- integral – a boolean (default: False); if True, return an element in the ring of integers

EXAMPLES:

sage: K = QpLC(2)
sage: K.random_element() # not tested, known bug (see :issue:`32126`)
If the given precision is higher than the internal cap of the parent, then the cap is used:

```
sage: K.random_element(prec=10)  # random
2^(-3) + 1 + 2 + 2^4 + 2^8 + O(2^10)
```

class sage.rings.padics.padic_base_leaves.pAdicFieldRelaxed(p, prec, print_mode, names)

Bases: `pAdicRelaxedGeneric`, `pAdicFieldBaseGeneric`

An implementation of relaxed arithmetics over \(\mathbb{Q}_p \).

INPUT:

- `p` – prime
- `prec` – default precision
- `print_mode` – dictionary with print options
- `names` – how to print the prime

EXAMPLES:

```
sage: R = QpER(5)  # indirect doctest
˓→ needs sage.libs.flint
sage: type(R)  # indirect doctest
˓→ needs sage.libs.flint
<class 'sage.rings.padics.padic_base_leaves.pAdicFieldRelaxed_with_category'>
```

class sage.rings.padics.padic_base_leaves.pAdicRingCappedAbsolute(p, prec, print_mode, names)

Bases: `pAdicRingBaseGeneric`, `pAdicCappedAbsoluteRingGeneric`

An implementation of the \(p \)-adic integers with capped absolute precision.

class sage.rings.padics.padic_base_leaves.pAdicRingCappedRelative(p, prec, print_mode, names)

Bases: `pAdicRingBaseGeneric`, `pAdicCappedRelativeRingGeneric`

An implementation of the \(p \)-adic integers with capped relative precision.

class sage.rings.padics.padic_base_leaves.pAdicRingFixedMod(p, prec, print_mode, names)

Bases: `pAdicRingBaseGeneric`, `pAdicFixedModRingGeneric`

An implementation of the \(p \)-adic integers using fixed modulus.
class sage.rings.padics.padic_base_leaves.pAdicRingFloatingPoint(p, prec, print_mode, names)

Bases: pAdicRingBaseGeneric, pAdicFloatingPointRingGeneric

An implementation of the p-adic integers with floating point precision.

class sage.rings.padics.padic_base_leaves.pAdicRingLattice(p, prec, subtype, print_mode, names, label=None)

Bases: pAdicLatticeGeneric, pAdicRingBaseGeneric

An implementation of the p-adic integers with lattice precision.

INPUT:

- p – prime
- $prec$ – precision cap, given as a pair $(relative_cap, absolute_cap)$
- $subtype$ – either 'cap' or 'float'
- $print_mode$ – dictionary with print options
- $names$ – how to print the prime
- $label$ – the label of this ring

See also:

label()

EXAMPLES:

sage: R = ZpLC(next_prime(10^60)) # indirect doctest
sage: type(R)
class 'sage.rings.padics.padic_base_leaves.pAdicRingLattice_with_category'

sage: R = ZpLC(2, label='init') # indirect doctest
sage: R
2-adic Ring with lattice-cap precision (label: init)

random_element (prec=None)

Return a random element of this ring.

INPUT:

- $prec$ – an integer or None (the default): the absolute precision of the generated random element

EXAMPLES:

sage: R = ZpLC(2)
sage: R.random_element() # random
2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^10 + 2^11 + 2^14 + 2^15 + 2^16 + 2^17 + 2^18 + 2^19 + 2^21 + 0(2^23)
sage: R.random_element(prec=10) # random
1 + 2^3 + 2^4 + 2^7 + 0(2^10)
class sage.rings.padics.padic_base_leaves.pAdicRingRelaxed(p, prec, print_mode, names)

Bases: pAdicRelaxedGeneric, pAdicRingBaseGeneric

An implementation of relaxed arithmetics over \mathbb{Z}_p.

INPUT:

* p – prime
* $prec$ – default precision
* $print_mode$ – dictionary with print options
* $names$ – how to print the prime

EXAMPLES:

```python
sage: R = ZpER(5)  # indirect doctest
˓→needs sage.libs.flint
sage: type(R)     # needs sage.libs.flint
<class 'sage.rings.padics.padic_base_leaves.pAdicRingRelaxed_with_category'>
```
The final classes for extensions of \mathbb{Z}_p and \mathbb{Q}_p (i.e., classes that are not just designed to be inherited from).

AUTHORS:

- David Roe

```python
class sage.rings.padics.padic_extension_leaves.EisensteinExtensionFieldCappedRelative
```

Bases: `EisensteinExtensionGeneric, pAdicCappedRelativeFieldGeneric`

```python
class sage.rings.padics.padic_extension_leaves.EisensteinExtensionRingCappedAbsolute
```

Bases: `EisensteinExtensionGeneric, pAdicCappedAbsoluteRingGeneric`
class sage.rings.padics.padic_extension_leaves.EisensteinExtensionRingCappedRelative(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='NTL')

Bases: EisensteinExtensionGeneric, pAdicCappedRelativeRingGeneric

class sage.rings.padics.padic_extension_leaves.EisensteinExtensionRingFixedMod(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='NTL')

Bases: EisensteinExtensionGeneric, pAdicFixedModRingGeneric

def fraction_field()
 Eisenstein extensions with fixed modulus do not support fraction fields.

 EXAMPLES:

 sage: S.<x> = ZZ[]
sage: R.<a> = ZpFM(5).extension(x^2 - 5) # needs sage.libsntl
 sage: R.fraction_field() # needs sage.libsntl
 Traceback (most recent call last):
 ...TypeError: This implementation of the p-adic ring does not support fields of fractions.
class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionFieldCappedRelative(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT')

Bases: UnramifiedExtensionGeneric, pAdicCappedRelativeFieldGeneric

class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionFieldFloatingPoint(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT')

Bases: UnramifiedExtensionGeneric, pAdicFloatingPointFieldGeneric

class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionRingCappedAbsolute(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT')

Bases: UnramifiedExtensionGeneric, pAdicCappedAbsoluteRingGeneric
class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionRingCappedRelative(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT')

Bases: UnramifiedExtensionGeneric, pAdicCappedRelativeRingGeneric

class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionRingFixedMod(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT')

Bases: UnramifiedExtensionGeneric, pAdicFixedModRingGeneric

class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionRingFloatingPoint(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT')

Bases: UnramifiedExtensionGeneric, pAdicFloatingPointRingGeneric
This file contains a common superclass for p-adic elements and power series elements.

AUTHORS:
- David Roe: initial version

```python
class sage.rings.padics.local_generic_element.LocalGenericElement
    Bases: CommutativeRingElement

    def add_bigoh(self, absprec)
        Return a copy of this element with absolute precision decreased to absprec.

        INPUT:
        - absprec -- an integer or positive infinity

        EXAMPLES:
        sage: K = QpCR(3,4)
        sage: o = K(1); o
        1 + O(3^4)
        sage: o.add_bigoh(2)
        1 + O(3^2)
        sage: o.add_bigoh(-5)
        O(3^-5)
        One cannot use add_bigoh to lift to a higher precision; this can be accomplished with lift_to_precision():
        sage: o.add_bigoh(5)
        1 + O(3^4)
        Negative values of absprec return an element in the fraction field of the element’s parent:
        sage: R = ZpCA(3,4)
        sage: R(3).add_bigoh(-5)
        O(3^-5)
        For fixed-mod elements this method truncates the element:
        sage: R = ZpFM(3,4)
        sage: R(3).add_bigoh(1)
        0```

If \( \text{absprec} \) exceeds the precision of the element, then this method has no effect:

```sage
R(3).add_bigoh(5)
```

A negative value for \( \text{absprec} \) returns an element in the fraction field:

```sage
R(3).add_bigoh(-1).parent()
```

**euclidean_degree()**

Return the degree of this element as an element of an Euclidean domain.

**EXAMPLES:**

For a field, this is always zero except for the zero element:

```sage
K = Qp(2)
sage: K.one().euclidean_degree()
0
sage: K.gen().euclidean_degree()
0
sage: K.zero().euclidean_degree()
Traceback (most recent call last):
 ... ValueError: euclidean degree not defined for the zero element
```

For a ring which is not a field, this is the valuation of the element:

```sage
R = Zp(2)
sage: R.one().euclidean_degree()
0
sage: R.gen().euclidean_degree()
1
sage: R.zero().euclidean_degree()
Traceback (most recent call last):
 ... ValueError: euclidean degree not defined for the zero element
```

**inverse_of_unit()**

Returns the inverse of \( \text{self} \) if \( \text{self} \) is a unit.

**OUTPUT:**

- an element in the same ring as \( \text{self} \)

**EXAMPLES:**

```sage
R = ZpCA(3,5)
sage: a = R(2); a
2 + O(3^5)
sage: b = a.inverse_of_unit(); b
2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
```

A `ZeroDivisionError` is raised if an element has no inverse in the ring:

```sage
R(3).inverse_of_unit()
```

```Traceback (most recent call last):
 ... ZeroDivisionError: inverse of 3 + O(3^5) does not exist```
Unlike the usual inverse of an element, the result is in the same ring as self and not just in its fraction field:

```sage
c = -a; c
2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
sage: a.parent()
3-adic Ring with capped absolute precision 5
sage: b.parent()
3-adic Ring with capped absolute precision 5
sage: c.parent()
3-adic Field with capped relative precision 5
```

For fields this does of course not make any difference:

```sage
R = QpCR(3,5)
sage: a = R(2)
sage: b = a.inverse_of_unit()
sage: c = -a
sage: a.parent()
3-adic Field with capped relative precision 5
sage: b.parent()
3-adic Field with capped relative precision 5
sage: c.parent()
3-adic Field with capped relative precision 5
```

is_integral()

Returns whether self is an integral element.

INPUT:

- `self` — a local ring element

OUTPUT:

- boolean – whether self is an integral element.

EXAMPLES:

```sage
R = Qp(3,20)
sage: a = R(7/3); a.is_integral()
False
sage: b = R(7/5); b.is_integral()
True
```

is_padic_unit()

Returns whether self is a p-adic unit. That is, whether it has zero valuation.

INPUT:

- `self` — a local ring element

OUTPUT:

- boolean – whether self is a unit

EXAMPLES:

```sage
R = Zp(3,20,'capped-rel'); K = Qp(3,20,'capped-rel')
sage: R(0).is_padic_unit()
False
sage: R(1).is_padic_unit()
True
```
is_unit()
Returns whether self is a unit

INPUT:
• self – a local ring element

OUTPUT:
• boolean – whether self is a unit

Note: For fields all nonzero elements are units. For DVR’s, only those elements of valuation 0 are. An older implementation ignored the case of fields, and returned always the negation of self.valuation()==0. This behavior is now supported with self.is_padic_unit().

EXAMPLES:

```
sage: R = Zp(3,20,'capped-rel'); K = Qp(3,20,'capped-rel')
sage: R(0).is_unit()  
False
sage: R(1).is_unit()  
True
sage: R(2).is_unit()  
True
sage: R(3).is_unit()  
False
sage: Qp(5,5)(5).is_unit()  
# Note that 5 is invertible in QQ_5, even if it has positive valuation!
True
sage: Qp(5,5)(5).is_padic_unit()  
False
```
\[\texttt{sage: } z.\text{normalized_valuation}() \#: \ldots \]

\[\texttt{sage: } 1/3 \]

\textbf{\texttt{quo_rem}}(\textit{other, integral=False})

Return the quotient with remainder of the division of this element by \textit{other}.

\textbf{INPUT:}

- \textit{other} – an element in the same ring
- \textit{integral} – if True, use integral-style remainders even when the parent is a field. Namely, the remainder will have no terms in its p-adic expansion above the valuation of \textit{other}.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: } R = \texttt{Zp(3, 5)}
\texttt{sage: } R(12).\texttt{quo_rem}\texttt{(R(2))} \\
\hspace{1em} (2*3 + O(3^6), 0)
\texttt{sage: } R(2).\texttt{quo_rem}\texttt{(R(12))} \\
\hspace{1em} (0(3^4), 2 + 0(3^5))
\texttt{sage: } K = \texttt{Qp(3, 5)}
\texttt{sage: } K(12).\texttt{quo_rem}\texttt{(K(2))} \\
\hspace{1em} (2*3 + O(3^6), 0)
\texttt{sage: } K(2).\texttt{quo_rem}\texttt{(K(12))} \\
\hspace{1em} (2*3^{-1} + 1 + 3 + 3^2 + 3^3 + O(3^4), 0)
\end{verbatim}

You can get the same behavior for fields as for rings by using integral=True:

\begin{verbatim}
\texttt{sage: } K(12).\texttt{quo_rem}\texttt{(K(2), integral=True)} \\
\hspace{1em} (2*3 + O(3^6), 0)
\texttt{sage: } K(2).\texttt{quo_rem}\texttt{(K(12), integral=True)} \\
\hspace{1em} (2*3^{-1} + 1 + 3 + 3^2 + 3^3 + O(3^4), 0)
\end{verbatim}

\textbf{\texttt{slice}}(\textit{i, j}, \textit{k}=1, \textit{lift_mode}=\text{\texttt{'simple'}})

Returns the sum of the \(p^{i+l\cdot k} \) terms of the series expansion of this element, where \(p \) is the uniformizer, for \(i + l \cdot k \) between \texttt{i} and \texttt{j}-1 inclusive, and nonnegative integers \(l \). Behaves analogously to the \texttt{slice} function for lists.

\textbf{INPUT:}

- \textit{i} – an integer; if set to \texttt{None}, the sum will start with the first non-zero term of the series.
- \textit{j} – an integer; if set to \texttt{None} or \texttt{\infty}, this method behaves as if it was set to the absolute precision of this element.
- \textit{k} – (default: 1) a positive integer

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: } R = \texttt{Zp(5, 6, capped-rel')}
\texttt{sage: } a = R(1/2); a \\
\hspace{1em} 3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + O(5^6)
\texttt{sage: } a.\texttt{slice}(2, 4) \\
\hspace{1em} 2*5^2 + 2*5^3 + O(5^4)
\texttt{sage: } a.\texttt{slice}(1, 6, 2) \\
\hspace{1em} 2*5 + 2*5^3 + 2*5^5 + O(5^6)
\end{verbatim}
The step size \(k \) has to be positive:

\[
\text{sage: a.slice(0, 3, 0)}
\]

Traceback (most recent call last):
...
ValueError: slice step must be positive

\[
\text{sage: a.slice(0, 3, -1)}
\]

Traceback (most recent call last):
...
ValueError: slice step must be positive

If \(i \) exceeds \(j \), then the result will be zero, with the precision given by \(j \):

\[
\text{sage: a.slice(5, 4)}
O(5^4)
\text{sage: a.slice(6, 5)}
O(5^5)
\]

However, the precision cannot exceed the precision of the element:

\[
\text{sage: a.slice(101, 100)}
O(5^6)
\text{sage: a.slice(0, 5, 2)}
3 + 2*5^2 + 2*5^4 + O(5^5)
\text{sage: a.slice(0, 6, 2)}
3 + 2*5^2 + 2*5^4 + O(5^6)
\text{sage: a.slice(0, 7, 2)}
3 + 2*5^2 + 2*5^4 + O(5^6)
\]

If start is left blank, it is set to the valuation:

\[
\text{sage: K = Qp(5, 6)}
\text{sage: x = K(1/25 + 5)}; x
5^-2 + 5 + O(5^4)
\text{sage: x.slice(None, 3)}
5^-2 + 5 + O(5^3)
\text{sage: x[:3]}\]
doctest:warning...

DeprecationWarning: _getitem_ is changing to match the behavior of number_fields. Please use expansion instead.
See https://github.com/sagemath/sage/issues/14825 for details.
5^-2 + 5 + O(5^3)

\text{sqrt (extend=True, all=False, algorithm=None)}

Return the square root of this element.

INPUT:

- \text{self} – a \(p \)-adic element.
- \text{extend} – a boolean (default: True); if True, return a square root in an extension if necessary; if False and no root exists in the given ring or field, raise a ValueError.
- \text{all} – a boolean (default: False); if True, return a list of all square roots.
- \text{algorithm} – "pari", "sage" or None (default: None); Sage provides an implementation for any extension of \(\mathbb{Q}_p \), whereas only square roots over \(\mathbb{Q}_p \) is implemented in Pari; the default is "pari" if the ground field is \(\mathbb{Q}_p \), "sage" otherwise.
OUTPUT:

The square root or the list of all square roots of this element.

Note: The square root is chosen (resp. the square roots are ordered) in a deterministic way, which is compatible with change of precision.

EXAMPLES:

```
sage: R = Zp(3, 20)
sage: sqrt(R(0))
0

sage: sqrt(R(1))
1 + O(3^20)

sage: R(2).sqrt(extend=False)
Traceback (most recent call last):
...
ValueError: element is not a square

sage: s = sqrt(R(4)); -s
2 + O(3^20)

sage: s = sqrt(R(9)); s
3 + O(3^21)
```

Over the 2-adics, the precision of the square root is less than the input:

```
sage: R2 = Zp(2, 20)
sage: sqrt(R2(1))
1 + O(2^19)

sage: sqrt(R2(4))
2 + O(2^20)

sage: R.<t> = Zq(2^10, 10)
# needs sage.libsntl
sage: u = 1 + 8*t
# needs sage.libsntl
sage: sqrt(u)
# needs sage.libsntl
1 + t*2^2 + t^2*2^3 + t^2*2^4 + (t^4 + t^3 + t^2)*2^5 + (t^4 + t^2)*2^6 + (t^5 + t^2)*2^7 + (t^6 + t^5 + t^4 + t^2)*2^8 + O(2^9)

sage: R.<a> = Zp(2).extension(x^3 - 2)
sage: u = R(1 + a^4 + a^5 + a^7 + a^8, 10); u
1 + a^4 + a^5 + a^7 + a^8 + O(a^10)

sage: v = sqrt(u); v
# needs sage.libsntl
1 + a^2 + a^4 + a^6 + O(a^7)
```

However, observe that the precision increases to its original value when we recompute the square of the square root:

```
sage: v^2
# needs sage.libsntl
1 + a^4 + a^5 + a^7 + a^8 + O(a^10)
```
If the input does not have enough precision in order to determine if the given element has a square root in the ground field, an error is raised:

```
sage: R(1, 6).sqrt()
Traceback (most recent call last):
  ...  
PrecisionError: not enough precision to be sure that this element has a square root
```

```
sage: R(1, 7).sqrt()
1 + O(a^4)
```

```
sage: R(1+a^6, 7).sqrt(extend=False)
Traceback (most recent call last):
  ...  
ValueError: element is not a square
```

In particular, an error is raised when we try to compute the square root of an inexact
Elements of p-adic Rings and Fields

AUTHORS:

- David Roe
- Genya Zaytman: documentation
- David Harvey: doctests
- Julian Rueth: fixes for exp() and log(), implemented gcd, xgcd

`sage.rings.padics.padic_generic_element.dwork_mahler_coeffs(R, bd=20)`

Compute Dwork’s formula for Mahler coefficients of p-adic Gamma.

This is called internally when one computes Gamma for a p-adic integer. Normally there is no need to call it directly.

INPUT:
- `R` – p-adic ring in which to compute
- `bd` – integer. Number of terms in the expansion to use

OUTPUT:
A list of p-adic integers.

EXAMPLES:

```
sage: from sage.rings.padics.padic_generic_element import dwork_mahler_coeffs, ...
          evaluate_dwork_mahler
sage: R = Zp(3)
sage: v = dwork_mahler_coeffs(R)
sage: x = R(1/7)
sage: evaluate_dwork_mahler(v, x, 3, 20, 1)
2 + 2*3 + 3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^11 + 2*3^12 + 3^13 + 3^14 + 2*3^16 + 3^17 + 3^19 + O(3^20)
sage: x.dwork_expansion(a=1)  # Same result
2 + 2*3 + 3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^11 + 2*3^12 + 3^13 + 3^14 + 2*3^16 + 3^17 + 3^19 + O(3^20)
```

`sage.rings.padics.padic_generic_element.evaluate_dwork_mahler(v, x, p, bd, a)`

Evaluate Dwork’s Mahler series for p-adic Gamma.

EXAMPLES:
```
sage: from sage.rings.padics.padic_generic_element import dwork_mahler_coeffs,␣ evaluate_dwork_mahler
sage: R = Zp(3)
sage: v = dwork_mahler_coeffs(R)
sage: x = R(1/7)
sage: evaluate_dwork_mahler(v, x, 3, 20, 1)
2 + 2*3 + 3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^11 + 2*3^12 + 3^13 + 3^14 + 2*3^16 + 3^17 + 3^19 + O(3^20)
sage: x.dwork_expansion(a=1)  
# Same result
2 + 2*3 + 3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^11 + 2*3^12 + 3^13 + 3^14 + 2*3^16 + 3^17 + 3^19 + O(3^20)
```

```
sage.rings.padics.padic_generic_element.gauss_table (p, f, prec, use_longs)
Compute a table of Gauss sums using the Gross-Koblitz formula.
This is used in the computation of L-functions of hypergeometric motives. The Gross-Koblitz formula is used as in
sage.rings.padics.misc.gauss_sum, but further unpacked for efficiency.

INPUT:
• p - prime
• f, prec - positive integers
• use_longs - boolean; if True, computations are done in C long long
    integers rather than Sage p-adics, and the results are returned as a Python array rather than a list.

OUTPUT:
A list of length \( q - 1 = p^f - 1 \). The entries are p-adic units created with absolute precision prec.

EXAMPLES:
```
sage: from sage.rings.padics.padic_generic_element import gauss_table
sage: gauss_table(2,2,4, False)
[1 + 2 + 2^2 + 2^3, 1 + 2 + 2^2 + 2^3, 1 + 2 + 2^2 + 2^3]
sage: gauss_table(3,2,4, False)[3]
2 + 3 + 2*3^2
```

class sage.rings.padics.padic_generic_element.pAdicGenericElement
Bases: LocalGenericElement
```
abs (prec=None)
Return the p-adic absolute value of self.
This is normalized so that the absolute value of \(p \) is \(1/p \).

INPUT:
• prec - Integer. The precision of the real field in which the answer is returned. If None, returns a rational for absolutely unramified fields, or a real with 53 bits of precision for ramified fields.

EXAMPLES:
```
sage: a = Qp(5)(15); a.abs()  
1/5
sage: a.abs(53)
# needs sage.rings.real_mpfr
0.200000000000000
sage: Qp(7)(0).abs()  
0
```
```
An unramified extension:

```
sage: # needs sage.libs.ntl
sage: R = Zp(5, 5)
sage: P.<x> = PolynomialRing(R)
sage: 225.<u> = R.ext(x^2 - 3)
sage: u.abs()
1
sage: (u^24-1).abs()
1/5
```

A ramified extension:

```
sage: # needs sage.libs.ntl
sage: W.<w> = R.ext(x^5 + 75*x^3 - 15*x^2 + 125*x - 5)
sage: w.abs()
0.724779663677696
sage: W(0).abs()
0.000000000000000
```

additive_order (prec=None)

Return the additive order of this element truncated at precision `prec`.

INPUT:

• prec – an integer or None (default: None)

OUTPUT:

The additive order of this element

EXAMPLES:

```
sage: R = Zp(7, 4, 'capped-rel', 'series'); a = R(7^3); a.additive_order(3)
1
sage: a.additive_order(4)
+Infinity
sage: R = Zp(7, 4, 'fixed-mod', 'series'); a = R(7^5); a.additive_order(6)
1
```

algdep (n)

Returns a polynomial of degree at most n which is approximately satisfied by this number. Note that the returned polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than n.

ALGORITHM: Uses the PARI C-library pari:algdep command.

INPUT:

• self – a p-adic element

• n – an integer

OUTPUT:

polynomial – degree n polynomial approximately satisfied by self
EXAMPLES:

```python
sage: K = Qp(3,20,'capped-rel','series'); R = Zp(3,20,'capped-rel','series')
sage: a = K(7/19); a
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12
 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
sage: a.algebraic_dependency(1)
19*x - 7
sage: K2 = Qp(7,20,'capped-rel')
sage: b = K2.zeta(); b.algebraic_dependency(2)
x^2 - x + 1
sage: K2 = Qp(11,20,'capped-rel')
sage: b = K2.zeta(); b.algebraic_dependency(4)
x^4 - x^3 + x^2 - x + 1
```

`algebraic_dependency(n)`

Returns a polynomial of degree at most \( n \) which is approximately satisfied by this number. Note that the returned polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than \( n \).

ALGORITHM: Uses the PARI C-library `pari:algdep` command.

INPUT:

- `self` – a \( p \)-adic element
- \( n \) – an integer

OUTPUT:

polynomial – degree \( n \) polynomial approximately satisfied by `self`

EXAMPLES:

```python
sage: K = Qp(3,20,'capped-rel','series'); R = Zp(3,20,'capped-rel','series')
sage: a = K(7/19); a
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12
 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
sage: a.algebraic_dependency(1)
19*x - 7
sage: K2 = Qp(7,20,'capped-rel')
sage: b = K2.zeta(); b.algebraic_dependency(2)
x^2 - x + 1
sage: K2 = Qp(11,20,'capped-rel')
sage: b = K2.zeta(); b.algebraic_dependency(4)
x^4 - x^3 + x^2 - x + 1
sage: a = R(7/19); a
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12
 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
```

(continues on next page)
(continued from previous page)

```
sage: a.algebraic_dependency(1)
19*x - 7
sage: R2 = Zp(7,20,'capped-rel')
sage: b = R2.zeta(); b.algebraic_dependency(2)
x^2 - x + 1
sage: R2 = Zp(11,20,'capped-rel')
sage: b = R2.zeta(); b.algebraic_dependency(4)
x^4 - x^3 + x^2 - x + 1
```

**artin_hasse_exp** *(prec=None, algorithm=None)*

Return the Artin-Hasse exponential of this element.

**INPUT:**

- `prec` – an integer or None (default: None) the desired precision on the result; if None, the precision is derived from the precision on the input
- `algorithm` – 'direct', 'series', 'newton' or None (default)

The direct algorithm computes the Artin-Hasse exponential of $x$, namely $AH(x)$ as

$$AH(x) = \exp(x + \frac{x^p}{p} + \frac{x^{p^2}}{p^2} + \ldots)$$

It runs roughly as fast as the computation of the exponential (since the computation of the argument is not that costly).

The series algorithm computes the series defining the Artin-Hasse exponential and evaluates it.

The 'newton' algorithm solves the equation

$$\log(AH(x)) = x + \frac{x^p}{p} + \frac{x^{p^2}}{p^2} + \ldots$$

using a Newton scheme. It runs roughly as fast as the computation of the logarithm.

By default, we use the 'direct' algorithm if a fast algorithm for computing the exponential is available. If not, we use the 'newton' algorithm if a fast algorithm for computing the logarithm is available. Otherwise we switch to the 'series' algorithm.

**OUTPUT:**

The Artin-Hasse exponential of this element.

See Wikipedia article Artin-Hasse_exponential for more information.

**EXAMPLES:**

```
sage: x = Zp(5)(45/7)
sage: y = x.artin_hasse_exp(); y
1 + 2*5 + 4*5^2 + 3*5^3 + 5^7 + 2*5^8 + 3*5^10 + 2*5^11 + 2*5^12 +
2*5^13 + 5^14 + 3*5^17 + 2*5^18 + 2*5^19 + O(5^20)
sage: y * (-x).artin_hasse_exp()
1 + O(5^20)
```

The function respects your precision:
Unless you tell it not to:

```
sage: x = Zp(3,30)(45/7)
sage: x.artin_hasse_exp()
1 + 2*3^2 + 3^4 + 2*3^5 + 3^6 + 2*3^7 + 3^9 + 2*3^10 + 3^11 +
3^13 + 2*3^15 + 2*3^16 + 2*3^17 + 3^19 + 3^20 + 2*3^21 + 3^23 + 3^24 +
3^26 + 3^27 + 2*3^28 + O(3^30)
sage: x.artin_hasse_exp(10)
1 + O(3)
```

For precision 1 the function just returns 1 since the exponential is always a 1-unit:

```
sage: x = Zp(3).random_element()
sage: while x.dist(0) >= 1:
 : x = Zp(3).random_element()
sage: x.artin_hasse_exp(1)
1 + O(3)
```

AUTHORS:

- Xavier Caruso (2018-08): extend to any $p$-adic rings and fields and implement several algorithms.

**dwork_expansion** \((bd=20, a=0)\)

Return the value of a function defined by Dwork.

Used to compute the $p$-adic Gamma function, see `gamma()`.

**INPUT:**

- \(bd\) – integer. Precision bound, defaults to 20
- \(a\) – integer. Offset parameter, defaults to 0

**OUTPUT:**

A $p$-adic integer.

**Note:** This is based on GP code written by Fernando Rodriguez Villegas (http://www.ma.utexas.edu/cnt/cnt-frames.html). William Stein sped it up for GP (http://sage.math.washington.edu/home/wstein/www/home/wbhart/pari-2.4.2.alpha/src/basemath/trans2.c). The output is a $p$-adic integer from Dwork’s expansion, used to compute the $p$-adic gamma function as in [RV2007] section 6.2. The coefficients of the expansion are now cached to speed up multiple evaluation, as in the trace formula for hypergeometric motives.

**EXAMPLES:**

```
sage: R = Zp(17)
sage: x = R(5^3*17+13*17^2+6*17^3+12*17^5+10*17^6+5*17^7+O(17^19))
sage: x.dwork_expansion(18)
16 + 7*17 + 11*17^2 + 4*17^3 + 8*17^4 + 10*17^5 + 11*17^6 + 6*17^7
+ 17^8 + 8*17^10 + 13*17^11 + 9*17^12 + 15*17^13 + 2*17^14 + 6*17^15
```

(continues on next page)
\[ + 717^{16} + 617^{17} + O(17^{18}) \]

```
sage: R = Zp(5)
sage: x = R(3\cdot 5^2 + 4\cdot 5^3 + 1\cdot 5^4 + 2\cdot 5^5 + 1\cdot 5^{10} + O(5^{20}))
sage: x.dwork_expansion()
4 + 4\cdot 5 + 4\cdot 5^2 + 4\cdot 5^3 + 2\cdot 5^4 + 4\cdot 5^5 + 5^7 + 3\cdot 5^9 + 4\cdot 5^{10} + 3\cdot 5^{11} + 5\cdot 13 + 4\cdot 5^{14} + 2\cdot 5^5 + 2\cdot 5^{15} + 2\cdot 5^{16} + 2\cdot 5^{17} + 3\cdot 5^{18} + O(5^{20})
```
\texttt{sage}: \ K = \text{Qp}(5,10) \\
\texttt{sage}: \ e = K(2*5 + 2*5^2 + 4*5^3 + 3*5^4 + 2*5^5 + 3*5^7 + 2*5^8 + 4*5^9).add_bigoh(10); e \\
\texttt{2*5 + 2*5^2 + 4*5^3 + 3*5^4 + 2*5^5 + 3*5^7 + 2*5^8 + 4*5^9 + O(5^{10})} \\
\texttt{sage}: \ e.exp() * K.teichmuller(4) \\
\texttt{4 + 2*5 + 3*5^3 + O(5^{10})} \\

Logarithms and exponentials in extension fields. First, in an Eisenstein extension:

\texttt{sage}: \ # requires sage.libs.ntl \\
\texttt{sage}: \ R = \text{Zp}(5,5) \\
\texttt{sage}: \ S.<x> = R[] \\
\texttt{sage}: \ f = x^4 + 15*x^2 + 625*x - 5 \\
\texttt{sage}: \ W.<w> = R.ext(f) \\
\texttt{sage}: \ z = 1 + w^2 + 4*w^7; z \\
\texttt{1 + w^2 + 4*w^7 + O(w^{20})} \\
\texttt{sage}: \ z.log().exp() \\
\texttt{1 + w^2 + 4*w^7 + O(w^{20})} \\

Now an unramified example:

\texttt{sage}: \ # requires sage.libs.ntl \\
\texttt{sage}: \ R = \text{Zp}(5,5) \\
\texttt{sage}: \ S.<x> = R[] \\
\texttt{sage}: \ g = x^3 + 3*x + 3 \\
\texttt{sage}: \ A.<a> = R.ext(g) \\
\texttt{sage}: \ b = 1 + 5*(1 + a^2) + 5*3*(3 + 2*a); b \\
\texttt{1 + (a^2 + 1)*5 + (2*a + 3)*5^3 + O(5^5)} \\
\texttt{sage}: \ b.log().exp() \\
\texttt{1 + (a^2 + 1)*5 + (2*a + 3)*5^3 + O(5^5)} \\

AUTHORS:

\begin{itemize}
  \item Genya Zaytman (2007-02-15)
  \item Amnon Besser, Marc Masdeu (2012-02-23): Complete rewrite
  \item Julian Rueth (2013-02-14): Added doctests, fixed some corner cases
  \item Xavier Caruso (2017-06): Added binary splitting and Newton algorithms
\end{itemize}

\texttt{gamma(algorithm='pari')} \\
Return the value of the \( p \)-adic Gamma function.

INPUT:

\begin{itemize}
  \item \texttt{algorithm} -- string. Can be set to 'pari' to call the PARI function, or 'sage' to call the function implemented in Sage. The default is 'pari' since PARI is about 10 times faster than Sage.
\end{itemize}

OUTPUT:

\begin{itemize}
  \item a \( p \)-adic integer
\end{itemize}

\textbf{Note:} This is based on GP code written by Fernando Rodriguez Villegas (http://www.ma.utexas.edu/cnt/cnt-frames.html). William Stein sped it up for GP (http://sage.math.washington.edu/home/wstein/www/home/wbhart/pari-2.4.2.alpha/src/basemath/trans2.c). The 'sage' version uses dwork_expansion() to compute the \( p \)-adic gamma function of self as in [RV2007] section 6.2.
This example illustrates $x\cdot\text{gamma()}$ for $x$ a $p$-adic unit:

```
sage: R = Zp(7)
sage: x = R(2+3*7^2+4*7^3+O(7^20))
sage: x.gamma('pari')
1 + 2*7^2 + 4*7^3 + 5*7^4 + 3*7^5 + 7^8 + 7^9 + 4*7^10 + 3*7^12
+ 7^13 + 5*7^14 + 3*7^15 + 2*7^16 + 2*7^17 + 5*7^18 + 4*7^19 + O(7^20)
sage: x.gamma('sage')
1 + 2*7^2 + 4*7^3 + 5*7^4 + 3*7^5 + 7^8 + 7^9 + 4*7^10 + 3*7^12
+ 7^13 + 5*7^14 + 3*7^15 + 2*7^16 + 2*7^17 + 5*7^18 + 4*7^19 + O(7^20)
sage: x.gamma('pari') == x.gamma('sage')
True
```

Now $x\cdot\text{gamma()}$ for $x$ a $p$-adic integer but not a unit:

```
sage: R = Zp(17)
sage: x = R(17+17^2+3*17^3+12*17^8+O(17^13))
sage: x.gamma('pari')
1 + 12*17 + 13*17^2 + 13*17^3 + 10*17^4 + 7*17^5 + 16*17^7
+ 13*17^9 + 4*17^10 + 9*17^11 + 17^12 + O(17^13)
sage: x.gamma('sage')
1 + 12*17 + 13*17^2 + 13*17^3 + 10*17^4 + 7*17^5 + 16*17^7
+ 13*17^9 + 4*17^10 + 9*17^11 + 17^12 + O(17^13)
sage: x.gamma('pari') == x.gamma('sage')
True
```

Finally, this function is not defined if $x$ is not a $p$-adic integer:

```
sage: K = Qp(7)
sage: x = K(7^-5 + 2*7^-4 + 5*7^-3 + 2*7^-2 + 3*7^-1 + 3 + 3*7
....:
.....: + 7^3 + 4*7^4 + 5*7^5 + 6*7^8 + 3*7^9 + 6*7^10 + 5*7^11 + 6*7^12
.....: + 3*7^13 + 5*7^14 + O(7^15))
sage: x.gamma()
Traceback (most recent call last):
...
ValueError: The p-adic gamma function only works on elements of \mathbb{Z}_p
```

**gcd**

Return a greatest common divisor of self and other.

**INPUT:**

- other -- an element in the same ring as self

**AUTHORS:**

- Julian Rueth (2012-10-19): initial version

**Note:** Since the elements are only given with finite precision, their greatest common divisor is in general not unique (not even up to units). For example $O(3)$ is a representative for the elements 0 and 3 in the 3-adic ring $\mathbb{Z}_3$. The greatest common divisor of $O(3)$ and $O(3)$ could be (among others) 3 or 0 which have different valuation. The algorithm implemented here, will return an element of minimal valuation among the possible greatest common divisors.

**EXAMPLES:**

The greatest common divisor is either zero or a power of the uniformizing parameter:
A non-zero result is always lifted to the maximal precision possible in the ring:

```python
sage: a = R(3,2); a
3 + O(3^2)
sage: b = R(9,3); b
3^2 + O(3^3)
sage: a.gcd(b)
3 + O(3^21)
sage: a.gcd(0)
3 + O(3^21)
```

If both elements are zero, then the result is zero with the precision set to the smallest of their precisions:

```python
sage: a = R.zero(); a
0
sage: b = R(0,2); b
O(3^2)
sage: a.gcd(b)
O(3^2)
```

One could argue that it is mathematically correct to return $9 + O(3^{22})$ instead. However, this would lead to some confusing behaviour:

```python
sage: alternative_gcd = R(9,22); alternative_gcd
3^2 + O(3^22)
sage: a.is_zero()
True
sage: b.is_zero()
True
sage: alternative_gcd.is_zero()
False
```

If exactly one element is zero, then the result depends on the valuation of the other element:

```python
sage: R(0,3).gcd(3^4)
O(3^3)
sage: R(0,4).gcd(3^4)
O(3^4)
sage: R(0,5).gcd(3^4)
3^4 + O(3^24)
```

Over a field, the greatest common divisor is either zero (possibly with finite precision) or one:

```python
sage: K = Qp(3)
sage: K(3).gcd(0)
1 + O(3^20)
sage: K.zero().gcd(0)
0
sage: K.zero().gcd(K(0,2))
O(3^2)
sage: K(3).gcd(4)
1 + O(3^20)
```
**is_prime()**

Return whether this element is prime in its parent.

**EXAMPLES:**

```
sage: A = Zp(2)
sage: A(1).is_prime()
False
sage: A(2).is_prime()
True

sage: K = A.fraction_field()
sage: K(2).is_prime()
False
```

```
sage: # needs sage.libs.ntl
sage: x = polygen(ZZ, 'x')
sage: B.<pi> = A.extension(x^5 - 2)
sage: pi.is_prime() # needs sage.symbolic
True
sage: B(2).is_prime()
False
```

**is_square()**

Returns whether this element is a square

**INPUT:**

- `self` – a $p$-adic element

**EXAMPLES:**

```
sage: R = Zp(3,20,'capped-rel')
sage: R(0).is_square()
True
sage: R(1).is_square()
True
sage: R(2).is_square()
False
```

**is_squarefree()**

Return whether this element is squarefree, i.e., whether there exists no non-unit $g$ such that $g^2$ divides this element.

**EXAMPLES:**

The zero element is never squarefree:

```
sage: K = Qp(2)
sage: K.zero().is_squarefree()
False
```

In $p$-adic rings, only elements of valuation at most 1 are squarefree:

```
sage: R = Zp(2)
sage: R(1).is_squarefree()
True
sage: R(2).is_squarefree()
```

(continues on next page)
This works only if the precision is known sufficiently well:

```
sage: R(0,1).is_squarefree()
Traceback (most recent call last):
...
PrecisionError: element not known to sufficient precision to decide...
```

For fields we are not so strict about the precision and treat inexact zeros as the zero element:

```
K(0,0).is_squarefree()
```

```
log (p_branch=None, pi_branch=None, aprec=None, change_frac=False, algorithm=None)
```

Compute the \( p \)-adic logarithm of this element.

The usual power series for the logarithm with values in the additive group of a \( p \)-adic ring only converges for 1-units (units congruent to 1 modulo \( p \)). However, there is a unique extension of the logarithm to a homomorphism defined on all the units: If \( u = a \cdot v \) is a unit with \( v \equiv 1 \pmod{p} \) and \( a \) a Teichmuller representative, then we define \( \log(u) = \log(v) \). This is the correct extension because the units \( U \) split as a product \( U = V \times \langle w \rangle \), where \( V \) is the subgroup of 1-units and \( w \) is a fundamental root of unity. The \( \langle w \rangle \) factor is torsion, so must go to 0 under any homomorphism to the fraction field, which is a torsion free group.

**INPUT:**

- `p_branch` – an element in the base ring or its fraction field; the implementation will choose the branch of the logarithm which sends \( p \) to `branch`
- `pi_branch` – an element in the base ring or its fraction field; the implementation will choose the branch of the logarithm which sends the uniformizer to `branch`; you may specify at most one of `p_branch` and `pi_branch`, and must specify one of them if this element is not a unit
- `aprec` – an integer or `None` (default: `None`); if not `None`, then the result will only be correct to precision `aprec`
- `change_frac` – in general the codomain of the logarithm should be in the \( p \)-adic field, however, for most neighborhoods of 1, it lies in the ring of integers. This flag decides if the codomain should be the same as the input (default) or if it should change to the fraction field of the input.
- `algorithm` – `'generic'`, `'binary_splitting'` or `None` (default) The generic algorithm evaluates naively the series defining the log, namely

\[
\log(1 - x) = -x - 1/2x^2 - 1/3x^3 - 1/4x^4 - 1/5x^5 - \cdots.
\]

Its binary complexity is quadratic with respect to the precision.

The `'binary_splitting'` algorithm is faster, it has a quasi-linear complexity. By default, we use `'binary_splitting'` if it is available. Otherwise we switch to the `'generic'` algorithm.

**Note:** What some other systems do:
- PARI: Seems to define the logarithm for units not congruent to 1 as we do.
- MAGMA: Only implements logarithm for 1-units (version 2.19-2)

Todo: There is a soft-linear time algorithm for logarithm described by Dan Bernstein at [http://cr.yp.to/linetime/multapps-20041007.pdf](http://cr.yp.to/linetime/multapps-20041007.pdf)

EXAMPLES:

```
sage: Z13 = Zp(13, 10)
sage: a = Z13(14); a
1 + 13 + O(13^10)
sage: a.log()
13 + 6*13^2 + 2*13^3 + 5*13^4 + 10*13^6 + 13^7 + 11*13^8 + 8*13^9 + O(13^10)
sage: Q13 = Qp(13, 10)
sage: a = Q13(14); a
1 + 13 + O(13^10)
sage: a.log()
13 + 6*13^2 + 2*13^3 + 5*13^4 + 10*13^6 + 13^7 + 11*13^8 + 8*13^9 + O(13^10)
```

Note that the relative precision decreases when we take log. Precisely the absolute precision on \( \log(a) \) agrees with the relative precision on \( a \) thanks to the relation \( d \log(a) = da/a \).

The call \( \log(a) \) works as well:

```
sage: log(a)
13 + 6*13^2 + 2*13^3 + 5*13^4 + 10*13^6 + 13^7 + 11*13^8 + 8*13^9 + O(13^10)
sage: log(a) == a.log()
True
```

The logarithm is not only defined for 1-units:

```
sage: R = Zp(5, 10)
sage: a = R(2)
sage: a.log()
2*5 + 3*5^2 + 2*5^3 + 4*5^4 + 2*5^6 + 2*5^7 + 4*5^8 + 2*5^9 + O(5^10)
```

If you want to take the logarithm of a non-unit you must specify either \( p\text{-branch} \) or \( \pi\text{-branch} \):

```
sage: b = R(5)
sage: b.log()
Traceback (most recent call last):
...
ValueError: you must specify a branch of the logarithm for non-units
```
Logarithms can also be computed in extension fields. First, in an Eisenstein extension:

```python
sage: R = Zp(5,5)
sage: S.<x> = ZZ[]
sage: f = x^4 + 15*x^2 + 625*x - 5
sage: W.<w> = R.ext(f)
```

In an extension, there will usually be a difference between specifying `p_branch` and `pi_branch`:

```python
sage: # needs sage.libsntl
sage: b = W(5)
sage: b.log()
Traceback (most recent call last):
... ValueError: you must specify a branch of the logarithm for non-units
sage: b.log(p_branch=0)
O(w^20)
sage: b.log(p_branch=w)
w + O(w^20)
sage: b.log(pi_branch=0)
3*w^2 + 2*w^4 + 2*w^6 + 3*w^8 + 4*w^10 + 4*w^11 + 4*w^12 + 3*w^14 + w^15 + w^17 + 3*w^18 + 3*w^19 + O(w^20)
sage: y = w^2 * 4*w^7; y
4*w^9 + O(w^29)
sage: y.log(p_branch=0)
2*w^2 + 2*w^4 + 2*w^6 + 2*w^8 + w^10 + w^12 + 4*w^13 + 4*w^14 + 3*w^15 + 4*w^16 + 4*w^17 + w^18 + 4*w^19 + O(w^20)
sage: y.log(p_branch=w)
w + 2*w^2 + 2*w^4 + 4*w^5 + 2*w^7 + 2*w^8 + 4*w^9 + w^10 + 3*w^11 + w^12 + 4*w^13 + 4*w^16 + 2*w^17 + w^19 + O(w^20)
```

Check that log is multiplicative:

```python
sage: y.log(p_branch=0) + z.log() - (y*z).log(p_branch=0)
```

Now an unramified example:

```python
sage: # needs sage.libsntl
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: b = 1 + 5*(1 + a^2) + 5^3*(3 + 2*a)
```
Check that log is multiplicative:

```python
sage: # needs sage.libs.ntl
sage: c = 3 + 5^2*(2 + 4*a)

sage: b.log() + c.log() - (b*c).log()
0(5^5)
```

We illustrate the effect of the precision argument:

```python
sage: R = ZpCA(7,10)

sage: x = R(41152263); x
5 + 3*7^2 + 4*7^3 + 3*7^4 + 5*7^5 + 6*7^6 + 7^9 + O(7^10)

sage: x.log(aprec = 5)
7 + 3*7^2 + 4*7^3 + 3*7^4 + O(7^5)

sage: x.log(aprec = 7)
7 + 3*7^2 + 4*7^3 + 3*7^4 + 7^5 + 3*7^6 + O(7^7)

sage: x.log()
7 + 3*7^2 + 4*7^3 + 3*7^4 + 7^5 + 3*7^6 + 7^7 + 3*7^8 + 4*7^9 + O(7^10)
```

The logarithm is not defined for zero:

```python
sage: R.zero().log()
Traceback (most recent call last):
... ValueError: logarithm is not defined at zero
```

For elements in a $p$-adic ring, the logarithm will be returned in the same ring:

```python
sage: x = R(2)

sage: x.log().parent()
7-adic Ring with capped absolute precision 10

sage: x = R(14)

sage: x.log(p_branch=0).parent()
7-adic Ring with capped absolute precision 10
```

This is not possible if the logarithm has negative valuation:

```python
sage: R = ZpCA(3,10)

sage: S.<x> = R[]

sage: f = x^3 - 3

sage: W.<w> = R.ext(f)

needs sage.libsntl sage.rings.padics
sage: w.log(p_branch=2)
Traceback (most recent call last):
...
ValueError: logarithm is not integral, use change_frac=True to obtain a result in the fraction field

sage: w.log(p_branch=2, change_frac=True)
2*w^3 + O(w^24)
```

AUTHORS:
minimal_polynomial (name='x', base=None)

Returns the minimal polynomial of this element over base

INPUT:

• name -- string (default: 'x'): the name of the variable

• base -- a ring (default: the base ring of the parent): the base ring over which the minimal polynomial is computed

EXAMPLES:

sage: Zp(5,5)(1/3).minimal_polynomial('x')
(1 + O(5^5))*x + 3 + 5 + 3*5^2 + 5^3 + 3*5^4 + O(5^5)

sage: Zp(5,5)(1/3).minimal_polynomial('foo')
(1 + O(5^5))*foo + 3 + 5 + 3*5^2 + 5^3 + 3*5^4 + O(5^5)

multiplicative_order (prec=None)

Returns the multiplicative order of self, where self is considered to be one if it is one modulo \( p^\text{prec} \).

INPUT:

• self -- a \( p \)-adic element
• prec – an integer

OUTPUT:
• integer – the multiplicative order of self

EXAMPLES:
```
sage: K = Qp(5,20,'capped-rel')
sage: K(-1).multiplicative_order(20)
2
sage: K(1).multiplicative_order(20)
1
sage: K(2).multiplicative_order(20)
+Infinity
sage: K(5).multiplicative_order(20)
+Infinity
sage: K(1/5).multiplicative_order(20)
+Infinity
sage: K.zeta().multiplicative_order(20)
4
```

Over unramified extensions:
```
sage: # needs sage.libs.ntl
sage: L1.<a> = Qq(5^3)
sage: c = L1.teichmuller(a)
sage: c.multiplicative_order()
124
sage: c^124
1 + O(5^20)
```

Over totally ramified extensions:
```
sage: # needs sage.libs.ntl
sage: x = polygen(ZZ, 'x')
sage: L2.<pi> = Qp(5).extension(x^4 + 5*x^3 + 10*x^2 + 10*x + 5)
sage: u = 1 + pi
sage: u.multiplicative_order()
5
sage: v = L2.teichmuller(2)
sage: v.multiplicative_order()
4
sage: (u*v).multiplicative_order()
20
```

norm (base=None)

Return the norm of this p-adic element over base.

**Warning:** This is not the p-adic absolute value. This is a field theoretic norm down to a base ring. If you want the p-adic absolute value, use the method `abs()` instead.

INPUT:
• base – a subring of the parent (default: base ring)

OUTPUT:
The norm of this p-adic element over the given base.
EXAMPLES:

```python
sage: Zp(5)(5).norm() # needs sage.libs.ntl
5 + O(5^21)
```

```python
sage: K.<a> = QqCR(2^3,5)
sage: S.<x> = K[]
sage: L.<pi> = K.extension(x^4 - 2*a)
sage: pi.norm() # norm over K # needs sage.symbolic
a*2 + a*2^2 + a*2^3 + a*2^4 + a*2^5 + O(2^6)
```

```python
sage: (pi^2).norm() # needs sage.symbolic
a^2*2^2 + O(2^7)
```

```python
sage: pi.norm()^2 # needs sage.symbolic
a^2*2^2 + O(2^7)
```

```python
nth_root (n, all=False)
```

Return the \( n \)-th root of this element.

INPUT:

- \( n \) – an integer
- \( all \) – a boolean (default: False): if True, return all \( n \)-th roots of this element, instead of just one.

EXAMPLES:

```python
sage: A = Zp(5,10)
sage: x = A(61376); x
1 + 5^3 + 3*5^4 + 4*5^5 + 3*5^6 + O(5^10)
sage: y = x.nth_root(4); y
2 + 5 + 2*5^2 + 4*5^3 + 3*5^4 + 5^6 + O(5^10)
sage: y^4 == x
True
```

```python
sage: x.nth_root(4, all=True)
[2 + 5 + 2*5^2 + 4*5^3 + 3*5^4 + 5^6 + O(5^10),
 4 + 4*5 + 4*5^2 + 4*5^4 + 3*5^5 + 5^6 + 3*5^7 + 5^8 + 5^9 + O(5^10),
 3 + 3*5 + 2*5^2 + 5^4 + 4*5^5 + 3*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + O(5^10),
 1 + 4*5^3 + 5^5 + 3*5^6 + 5^7 + 3*5^8 + 3*5^9 + O(5^10)]
```

When \( n \) is divisible by the underlying prime \( p \), we are losing precision (which is consistent with the fact that raising to the \( p \)-th power increases precision):

```python
sage: z = x.nth_root(5); z
1 + 5^2 + 3*5^3 + 2*5^4 + 5^5 + 3*5^7 + 2*5^8 + O(5^9)
sage: z^5
1 + 5^3 + 3*5^4 + 4*5^5 + 3*5^6 + O(5^10)
```

Everything works over extensions as well:

```python
sage: W.<a> = Zq(5^3)
sage: S.<x> = W[]
sage: R.<pi> = W.extension(x^7 - 5)
```

(continues on next page)
An error is raised if the given element is not an $n$-th power in the ring:

```python
sage: R(5).nth_root(11)
needs sage.libsntl
Traceback (most recent call last):
... ValueError: this element is not a nth power
```

Similarly, when precision on the input is too small, an error is raised:

```python
sage: # needs sage.libsntl
sage: x = R(1,6); x
1 + O(pi^6)

sage: x.nth_root(5)
Traceback (most recent call last):
... PrecisionError: not enough precision to be sure that this element is a nth-
```

Check that github issue #30314 is fixed:

```python
sage: # needs sage.libsntl
sage: K = Qp(29)
sage: x = polygen(K)
sage: L.<a> = K.extension(x^2 - 29)
sage: L(4).nth_root(2)
2 + O(a^40)
```

`ordp(p=None)`

Return the valuation of `self`, normalized so that the valuation of $p$ is 1.

**INPUT:**

- `self` — a $p$-adic element
- `p` — a prime (default: None). If specified, will make sure that $p == self.parent().prime()$

**Note:** The optional argument $p$ is used for consistency with the valuation methods on integers and rationals.

**OUTPUT:**

integer — the valuation of `self`, normalized so that the valuation of $p$ is 1

**EXAMPLES:**

```python
sage: R = Zp(5,20,capped-rel)
sage: R(0).ordp() +Infinity
sage: R(1).ordp() 0
sage: R(2).ordp()
```
polylog\( (n, p\text{-branch}=0) \)

Return \( Li_n(\text{self}) \), the \( n \)-th \( p \)-adic polylogarithm of this element.

**INPUT:**

- \( n \) – a non-negative integer
- \( p\_branch \) – an element in the base ring or its fraction field; the implementation will choose the branch of the logarithm which sends \( p \) to \( p\_branch \)

**EXAMPLES:**

The \( n \)-th polylogarithm of \(-1\) is 0 for even \( n \):

\[
\text{sage: } Qp(13)(-1).polylog(6) == 0 \quad \#\quad \text{needs sage.rings.real_mpfr sage.symbolic} \\
\text{True}
\]

We can check some identities, for example those mentioned in [DCW2016]:

\[
\text{sage: } x = Qp(7, \text{prec=30})(1/3) \\
\text{sage: } (x^2).polylog(4) - 8*x.polylog(4) - 8*(-x).polylog(4) == 0 \quad \#\quad \text{needs sage.symbolic} \\
\text{True}
\]

\[
\text{sage: } x = Qp(5, \text{prec=30})(4) \\
\text{sage: } x.polylog(2) + (1/x).polylog(2) + x.log(0)**2/2 == 0 \quad \#\quad \text{needs sage.symbolic} \\
\text{True}
\]

\[
\text{sage: } x = Qp(11, \text{prec=30})(2) \\
\text{sage: } x.polylog(2) + (1-x).polylog(2) + x.log(0)**2*(1-x).log(0) == 0 \quad \#\quad \text{needs sage.symbolic} \\
\text{True}
\]

\( Li_1(z) = -\log(1 - z) \) for \( |z| < 1 \):

\[
\text{sage: } Qp(5)(10).polylog(1) == -Qp(5)(1-10).log(0) \\
\text{True}
\]

The dilogarithm of \( 1 \) is zero:

\[
\text{sage: } Qp(5)(1).polylog(2) \quad \#\quad \text{needs sage.rings.real_mpfr sage.symbolic} \\
0(5^{20})
\]
The cubing relation holds for the trilogarithm at 1:

```python
sage: K = Qp(7)
sage: z = K.zeta(3)
sage: -8*K(1).polylog(3) == 9*(K(z).polylog(3) + K(z^2).polylog(3)) # needs sage.rings.padics sage.rings.real_mpfr sage.symbolic
True
```

The polylogarithm of 0 is 0:

```python
sage: Qp(11)(0).polylog(7)
0
```

Only polylogarithms for positive \( n \) are defined:

```python
sage: Qp(11)(2).polylog(-1)
Traceback (most recent call last):
 ...
ValueError: polylogarithm only implemented for n at least 0
```

Check that `github issue #29222` is fixed:

```python
sage: K = Qp(7)
sage: print(K(1 + 7^11).polylog(4)) # needs sage.symbolic
6*7^14 + 3*7^15 + 7^16 + 7^17 + O(7^18)
```

**ALGORITHM:**

The algorithm of Besser-de Jeu, as described in [BdJ2008] is used.

**AUTHORS:**

- Jennifer Balakrishnan - Initial implementation
- Alex J. Best (2017-07-21) - Extended to other residue disks

**Todo:**

- Implement for extensions.
- Use the change method to create \( K \) from `self.parent()`.

**rational_reconstruction()**

Returns a rational approximation to this \( p \)-adic number.

This will raise an `ArithmeticError` if there are no valid approximations to the unit part with numerator and denominator bounded by \( \sqrt{p^{absprec} / 2} \).

**See also:**

- `_rational_()`

**OUTPUT:**

- `rational` – an approximation to `self`

**EXAMPLES:**
```python
sage: R = Zp(5,20,'capped-rel')
sage: for i in range(11):
 : for j in range(1,10):
 : if j == 5:
 : continue
 : assert i/j == R(i/j).rational_reconstruction()
```

**square_root** *(extend=True, all=False, algorithm=None)*

Return the square root of this $p$-adic number.

INPUT:

- self – a $p$-adic element.
- extend – a boolean (default: True); if True, return a square root in an extension if necessary; if False and no root exists in the given ring or field, raise a `ValueError`.
- all – a boolean (default: False); if True, return a list of all square roots.
- algorithm – "pari", "sage" or None (default: None); Sage provides an implementation for any extension of $\mathbb{Q}_p$, whereas only square roots over $\mathbb{Q}_p$ are implemented in PARI; the default is "pari" if the ground field is $\mathbb{Q}_p$, "sage" otherwise.

OUTPUT:

The square root or the list of all square roots of this $p$-adic number.

NOTE:

The square root is chosen (resp. the square roots are ordered) in a deterministic way.

EXAMPLES:

```python
sage: R = Zp(3, 20)
sage: R(0).square_root()
0
sage: R(1).square_root()
1 + O(3^20)
sage: R(2).square_root(extend=False)
Traceback (most recent call last):
 ...
ValueError: element is not a square
sage: -R(4).square_root()
2 + O(3^20)
sage: R(9).square_root()
3 + O(3^21)
```

When $p = 2$, the precision of the square root is less than the input:

```python
sage: R2 = Zp(2, 20)
sage: R2(1).square_root()
1 + O(2^19)
sage: R2(4).square_root()
2 + O(2^20)
sage: R.<t> = Zq(2^10, 10)
#...
```

(continues on next page)
However, observe that the precision increases to its original value when we recompute the square of the square root:

```
sage: v^2 # needs sage.libsntl
1 + a^4 + a^5 + a^7 + a^8 + O(a^10)
```

If the input does not have enough precision in order to determine if the given element has a square root in the ground field, an error is raised:

```
sage: R(1, 6).square_root() # needs sage.libsntl
Traceback (most recent call last):
 ...PrecisionError: not enough precision to be sure that this element has a...
sage: R(1, 7).square_root() # needs sage.libsntl
1 + O(a^4)
sage: R(1+a^6, 7).square_root(extend=False) # needs sage.libsntl
Traceback (most recent call last):
 ...ValueError: element is not a square
```

In particular, an error is raised when we try to compute the square root of an inexact zero.

```python
str(mode=None)
```

Return a string representation of `self`.

EXAMPLES:

```
sage: Zp(5,5,print_mode='bars')(1/3).str()[3:]
'1|3|1|3|2'
```

```python
trace(base=None)
```

Returns the trace of this \(p\)-adic element over the base ring.

INPUT:

- `base` – a subring of the parent (default: base ring)

OUTPUT:

The trace of this \(p\)-adic element over the given base.
EXAMPLES:

```python
sage: Zp(5,5)(5).trace() # needs sage.libs.ntl
5 + O(5^6)

sage: # needs sage.libs.ntl
sage: K.<a> = QqCR(2^3,7)

sage: S.<x> = K[]

sage: L.<pi> = K.extension(x^4 - 4*a*x^3 + 2*a)

sage: pi.trace() # trace over K # needs sage.symbolic
a*2^2 + O(2^8)

sage: (pi+1).trace() # needs sage.symbolic
(a + 1)*2^2 + O(2^7)
```

`val_unit()`

Return `(self.valuation(), self.unit_part()).` To be overridden in derived classes.

EXAMPLES:

```python
sage: Zp(5,5)(5).val_unit()
(1, 1 + O(5^5))
```

`valuation(p=None)`

Return the valuation of this element.

INPUT:

- `self` – a p-adic element
- `p` – a prime (default: None). If specified, will make sure that `p == self.parent().prime()`

Note: The optional argument `p` is used for consistency with the valuation methods on integers and rationals.

OUTPUT:

integer – the valuation of `self`

EXAMPLES:

```python
sage: R = Zp(17, 4,capped-rel)
sage: a = R(2*17^2)
sage: a.valuation()
2

sage: R = Zp(5, 4,capped-rel)
sage: R(0).valuation()
+Infinity
```

`xgcd(other)`

Compute the extended gcd of this element and `other`.

INPUT:

- `other` – an element in the same ring

OUTPUT:
A tuple \( r, s, t \) such that \( r \) is a greatest common divisor of this element and \( \text{other} \) and \( r = s*\text{self} + t*\text{other} \).

**AUTHORS:**

- Julian Rueth (2012-10-19): initial version

**Note:** Since the elements are only given with finite precision, their greatest common divisor is in general not unique (not even up to units). For example \( O(3) \) is a representative for the elements \( 0 \) and \( 3 \) in the 3-adic ring \( \mathbb{Z}_3 \). The greatest common divisor of \( O(3) \) and \( O(3) \) could be (among others) \( 3 \) or \( 0 \) which have different valuation. The algorithm implemented here, will return an element of minimal valuation among the possible greatest common divisors.

**EXAMPLES:**

The greatest common divisor is either zero or a power of the uniformizing parameter:

```python
sage: R = ZZp(3)
sage: R.zero().xgcd(R.zero())
(0, 1 + O(3^20), 0)
sage: R(3).xgcd(9)
(3 + O(3^21), 1 + O(3^20), 0)
```

Unlike for \( \text{gcd()} \), the result is not lifted to the maximal precision possible in the ring; it is such that \( r = s*\text{self} + t*\text{other} \) holds true:

```python
sage: a = R(3,2); a
3 + O(3^2)
sage: b = R(9,3); b
3^2 + O(3^3)
sage: a.xgcd(b)
(3 + O(3^2), 1 + O(3), 0)
sage: a.xgcd(0)
(3 + O(3^2), 1 + O(3), 0)
```

If both elements are zero, then the result is zero with the precision set to the smallest of their precisions:

```python
sage: a = R.zero(); a
0
sage: b = R(0,2); b
O(3^2)
sage: a.xgcd(b)
(0(3^2), 0, 1 + O(3^20))
```

If only one element is zero, then the result depends on its precision:

```python
sage: # needs sage.rings.padics
sage: R(9).xgcd(R(0,1))
(0(3), 0, 1 + O(3^20))
sage: R(9).xgcd(R(0,2))
(0(3^2), 0, 1 + O(3^20))
sage: R(9).xgcd(R(0,3))
(3^2 + O(3^22), 1 + O(3^20), 0)
sage: R(9).xgcd(R(0,4))
(3^2 + O(3^22), 1 + O(3^20), 0)
```

Over a field, the greatest common divisor is either zero (possibly with finite precision) or one:
\begin{verbatim}
sage: K = Qp(3)
sage: K(3).xgcd(0)
(1 + O(3^20), 3^-1 + O(3^19), 0)
sage: K.zero().xgcd(0)
(0, 1 + O(3^20), 0)
sage: K.zero().xgcd(K(0,2))
(0(3^2), 0, 1 + O(3^20))
sage: K(3).xgcd(4)
(1 + O(3^20), 3^-1 + O(3^19), 0)
\end{verbatim}
Elements of $p$-adic Rings with Capped Relative Precision

AUTHORS:
- David Roe: initial version, rewriting to use templates (2012-3-1)
- Genya Zaytman: documentation
- David Harvey: doctests

```python
class sage.rings.padics.padic_capped_relative_element.CRElement
 Bases: pAdicTemplateElement

 add_bigoh(absprec)
 Return a new element with absolute precision decreased to absprec.
 INPUT:
 • absprec – an integer or infinity
 OUTPUT:
 an equal element with precision set to the minimum of self’s precision and absprec

 EXAMPLES:

 sage: R = Zp(7,4,'capped-rel','series'); a = R(8); a.add_bigoh(1)
 1 + O(7)
 sage: b = R(0); b.add_bigoh(3)
 O(7^3)
 sage: R = Qp(7,4); a = R(8); a.add_bigoh(1)
 1 + O(7)
 sage: b = R(0); b.add_bigoh(3)
 O(7^3)
```

The precision never increases:

```python
sage: R(4).add_bigoh(2).add_bigoh(4)
4 + O(7^2)
```

Another example that illustrates that the precision does not increase:

```python
sage: k = Qp(3,5)
sage: a = k(1234123412/3^70); a
2*3^-70 + 3^-69 + 3^-68 + 3^-67 + O(3^-65)
sage: a.add_bigoh(2)
2*3^-70 + 3^-69 + 3^-68 + 3^-67 + O(3^-65)
```

(continues on next page)
\[ \textbf{sage: } k = \text{Qp}(5, 10) \\
\textbf{sage: } a = k(1/5^3 + 5^2); a \\
5^{-3} + 5^2 + O(5^7) \\
\textbf{sage: } a.add\_bigoh(2) \\
5^{-3} + O(5^2) \\
\textbf{sage: } a.add\_bigoh(-1) \\
5^{-3} + O(5^{-1}) \]

\textbf{\texttt{is\_equal\_to}} (_\textbf{right}, \textbf{absprec}=\text{None})

Return whether \texttt{self} is equal to \texttt{right} modulo \( \pi^{\text{absprec}} \).

If \texttt{absprec} is None, returns True if \texttt{self} and \texttt{right} are equal to the minimum of their precisions.

\textbf{INPUT:}

- \texttt{right} – a \( p \)-adic element
- \texttt{absprec} – an integer, infinity, or \text{None}

\textbf{EXAMPLES:}

\[ \textbf{sage: } R = \text{Zp}(5, 10); a = R(0); b = R(0, 3); c = R(75, 5) \\
\textbf{sage: } aa = a + 625; bb = b + 625; cc = c + 625 \\
\textbf{sage: } a.is\_equal\_to(aa), a.is\_equal\_to(aa, 4), a.is\_equal\_to(aa, 5) \\
(\text{False}, \text{True}, \text{False}) \\
\textbf{sage: } a.is\_equal\_to(aa, 15) \\
\text{Traceback (most recent call last):} \\
\ldots \\
\text{PrecisionError: elements not known to enough precision} \]

\[ \textbf{sage: } a.is\_equal\_to(a, 50000) \\
\text{True} \]

\[ \textbf{sage: } a.is\_equal\_to(b), a.is\_equal\_to(b, 2) \\
(\text{True}, \text{True}) \]

\[ \textbf{sage: } a.is\_equal\_to(b, 5) \\
\text{Traceback (most recent call last):} \\
\ldots \\
\text{PrecisionError: elements not known to enough precision} \]

\[ \textbf{sage: } b.is\_equal\_to(b, 5) \\
\text{Traceback (most recent call last):} \\
\ldots \\
\text{PrecisionError: elements not known to enough precision} \]

\[ \textbf{sage: } b.is\_equal\_to(bb, 3) \\
\text{True} \]

\[ \textbf{sage: } b.is\_equal\_to(bb, 4) \\
\text{Traceback (most recent call last):} \\
\ldots \\
\text{PrecisionError: elements not known to enough precision} \]

\[ \textbf{sage: } c.is\_equal\_to(b, 2), c.is\_equal\_to(b, 3) \\
(\text{True}, \text{False}) \]

\[ \textbf{sage: } c.is\_equal\_to(b, 4) \\
\text{Traceback (most recent call last):} \\
\ldots \]
**is_zero** *(absprec=None)*

Determine whether this element is zero modulo \(p^{\text{absprec}}\).

If absprec is None, returns True if this element is indistinguishable from zero.

**INPUT:**

- absprec – an integer, infinity, or None

**EXAMPLES:**

```python
sage: R = Zp(5); a = R(0); b = R(0,5); c = R(75)
sage: a.is_zero(), a.is_zero(6)
(True, True)
sage: b.is_zero(), b.is_zero(5)
(True, True)
sage: c.is_zero(), c.is_zero(2), c.is_zero(3)
(False, True, False)
sage: b.is_zero(6)
Traceback (most recent call last):
 ...
PrecisionError: not enough precision to determine if element is zero
```

**polynomial** *(var=x)*

Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

**INPUT:**

- var – string, the variable name for the polynomial

**EXAMPLES:**

```python
sage: # needs sage.libsntl
sage: K.<a> = Qq(5^3)
sage: a.polynomial()
(1 + O(5^20))*x + O(5^20)
sage: a.polynomial(var='y')
(1 + O(5^20))*y + O(5^20)
sage: (5*a^2 + K(25, 4)).polynomial()
(5 + O(5^4))*x^2 + O(5^4)*x + 5^2 + O(5^4)
```

**precision_absolute**

Returns the absolute precision of this element.

This is the power of the maximal ideal modulo which this element is defined.

**EXAMPLES:**

```python
sage: R = Zp(7,3,'capped-rel'); a = R(7); a.precision_absolute()
4
sage: R = Qp(7,3); a = R(7); a.precision_absolute()
4
sage: R(7^-3).precision_absolute()
```

(continues on next page)
**precision_relative()**

Return the relative precision of this element.

This is the power of the maximal ideal modulo which the unit part of `self` is defined.

**EXAMPLES:**

```
sage: R = Zp(7,3,'capped-rel'); a = R(7); a.precision_relative()
sage: 3
sage: R = Qp(7,3); a = R(7); a.precision_relative()
sage: 3
sage: a = R(7^-2, -1); a.precision_relative()
sage: 1
sage: a
7^-2 + O(7^-1)
sage: R(0).precision_relative()
sage: 0
sage: R(0,7).precision_relative()
sage: 0
```

**unit_part()**

Return $u$, where this element is $\pi^n u$.

**EXAMPLES:**

```
sage: R = Zp(17,4,'capped-rel')
sage: a = R(18*17)
sage: a.unit_part()
1 + 17 + O(17^4)
sage: type(a)
<class 'sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement'>
sage: R = Qp(17,4,'capped-rel')
sage: a = R(18*17)
sage: a.unit_part()
1 + 17 + O(17^4)
sage: type(a)
<class 'sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement'>
sage: a = R(2*17^2); a
2*17^2 + O(17^6)
sage: a.unit_part()
2 + O(17^4)
sage: b=1/a; b
9*17^-2 + 8*17^-1 + 8 + 8*17 + O(17^2)
sage: b.unit_part()
9 + 8*17 + 8*17^2 + 8*17^3 + O(17^4)
sage: Zp(5)(75).unit_part()
3 + O(5^20)
```
sage: R(0).unit_part()
Traceback (most recent call last):
...
ValueError: unit part of 0 not defined
sage: R(0,7).unit_part()
O(17^0)

val_unit (p=None)

Return a pair (self.valuation(), self.unit_part()).

INPUT:

• p – a prime (default: None). If specified, will make sure that p == self.parent().prime()

Note: The optional argument p is used for consistency with the valuation methods on integers and rationals.

EXAMPLES:

sage: R = Zp(5); a = R(75, 20); a
3*5^2 + O(5^20)
sage: a.val_unit()
(2, 3 + O(5^18))
sage: R(0).val_unit()
Traceback (most recent call last):
...
ValueError: unit part of 0 not defined
sage: R(0, 10).val_unit()
(10, O(5^0))

class sage.rings.padics.padic_capped_relative_element.ExpansionIter

Bases: object

An iterator over a \( p \)-adic expansion.

This class should not be instantiated directly, but instead using \texttt{expansion()}.

INPUT:

• elt – the \( p \)-adic element
• prec – the number of terms to be emitted
• mode – either \texttt{simple_mode}, \texttt{smallest_mode} or \texttt{teichmuller_mode}

EXAMPLES:

sage: E = Zp(5,4)(373).expansion()
sage: I = iter(E)  # indirect doctest	sage: type(I)
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIter'>

class sage.rings.padics.padic_capped_relative_element.ExpansionIterable

Bases: object

An iterable storing a \( p \)-adic expansion of an element.

This class should not be instantiated directly, but instead using \texttt{expansion()}.
INPUT:
- `elt` – the $p$-adic element
- `prec` – the number of terms to be emitted
- `val_shift` – how many zeros to add at the beginning of the expansion, or the number of initial terms to truncate (if negative)
- `mode` – one of the following:
  - `'simple_mode'`
  - `'smallest_mode'`
  - `'teichmuller_mode'`

EXAMPLES:
```
sage: E = Zp(5, 4)(373).expansion() # indirect doctest
ten
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIterable'>
```

class `sage.rings.padics.padic_capped_relative_element.PowComputer_
Bases: PowComputer_base
A PowComputer for a capped-relative p-adic ring or field.

```
sage: from sage.rings.padics.padic_capped_relative_element import base_p_list
sage: base_p_list(192837, True, Zp(5).prime_pow)
[2, 2, 3, 2, 3, 1, 2, 2]
```

INPUT:
- `n` – a positive `Integer`
- `pos` – a boolean; if `True`, then returns the standard base $p$ expansion, otherwise the digits lie in the range $-p/2$ to $p/2$.
- `prime_pow` – a `PowComputer` giving the prime

EXAMPLES:
```
sage: from sage.rings.padics.padic_capped_relative_element import base_p_list
sage: base_p_list(192837, False, Zp(5).prime_pow)
[2, -2, -2, -1, 2, 2, 2]
```

class `sage.rings.padics.padic_capped_relative_element.PAdicCappedRelativeElement`
Bases: CRElement
Constructs new element with given parent and value.

INPUT:
- `x` – value to coerce into a capped relative ring or field
- `absprec` – maximum number of digits of absolute precision
- `relprec` – maximum number of digits of relative precision
## EXAMPLES:

```python
sage: R = Zp(5, 10, 'capped-rel')
```

### Construct from integers:

```python
sage: R(3)
3 + O(5^10)
sage: R(75)
3*5^2 + O(5^12)
sage: R(0)
0
sage: R(-1)
4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + O(5^10)
sage: R(-5)
4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + 4*5^10 + O(5^11)
sage: R(-7*25)
3*5^2 + 3*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + 4*5^10 + 4*5^11 + O(5^12)
```

### Construct from rationals:

```python
sage: R(1/2)
3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 2*5^8 + O(5^10)
sage: R(-7875/874)
3*5^3 + 2*5^4 + 5^6 + 3*5^7 + 2*5^8 + 3*5^10 + 3*5^11 + O(5^13)
sage: R(15/425)
Traceback (most recent call last):
 ... ValueError: p divides the denominator
```

### Construct from IntegerMod:

```python
sage: R(IntegerMod(125)(3))
3 + O(5^3)
sage: R(IntegerMod(5)(3))
3 + O(5)
sage: R(IntegerMod(5^30)(3))
3 + O(5^10)
sage: R(IntegerMod(5^30)(1+5^23))
1 + O(5^10)
sage: R(IntegerMod(49)(3))
Traceback (most recent call last):
 ... TypeError: p does not divide modulus 49
```

```python
sage: R(IntegerMod(48)(3))
Traceback (most recent call last):
 ... TypeError: p does not divide modulus 48
```

### Some other conversions:

```python
sage: R(R(5))
5 + O(5^11)
```

### Construct from Pari objects:

```python
sage: sage:
```

---

167
Todo: doctests for converting from other types of p-adic rings

lift()

Return an integer or rational congruent to self modulo self's precision. If a rational is returned, its denominator will equal $p^\text{ord}_p(self)$.

EXAMPLES:

```
sage: R = Zp(7,4,'capped-rel'); a = R(8); a.lift()
8
sage: R = Qp(7,4); a = R(8); a.lift()
8
sage: R = Qp(7,4); a = R(8/7); a.lift()
8/7
```

residue(absprec=1, field=None, check_prec=True)

Reduce this element modulo $p^\text{absprec}$.

INPUT:

- absprec – a non-negative integer (default: 1)
- field – boolean (default None); whether to return an element of $F_p$ or $\mathbb{Z}/p\mathbb{Z}$
- check_prec – boolean (default True); whether to raise an error if this element has insufficient precision to determine the reduction

OUTPUT:

This element reduced modulo $p^\text{absprec}$ as an element of $\mathbb{Z}/p^\text{absprec}\mathbb{Z}$.

EXAMPLES:

```
sage: R = Zp(7,4)
sage: a = R(8)
sage: a.residue(1)
1
```

This is different from applying $\% p^n$ which returns an element in the same ring:
sage: b = a.residue(2); b
8
sage: b.parent()
Ring of integers modulo 49
sage: c = a % 7^2; c
1 + 7 + O(7^4)
sage: c.parent()
7-adic Ring with capped relative precision 4

For elements in a field, application of \( p^n \) always returns zero, the remainder of the division by \( p^n \):

sage: K = Qp(7,4)
sage: a = K(8)
sage: a.residue(2)
8
sage: a % 7^2
1 + 7 + O(7^4)

sage: b = K(1/7)
sage: b.residue()
Traceback (most recent call last):
... ValueError: element must have non-negative valuation in order to compute...

See also:

__mod__()

class

class sage.rings.padics.padic_capped_relative_element.pAdicCoercion_CR_frac_field

Bases: RingHomomorphism

The canonical inclusion of \( \mathbb{Z}_q \) into its fraction field.

EXAMPLES:

sage: # needs sage.libs.flint
sage: R.<a> = ZqCR(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R); f
Ring morphism:
    From: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
    To:  3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1

is_injective()

Return whether this map is injective.

EXAMPLES:

sage: # needs sage.libs.flint
sage: R.<a> = ZqCR(9, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f.is_injective()
True

is_surjective()

Return whether this map is surjective.
EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqCR(9, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f.is_surjective()
False
```

```
section()
Return a map back to the ring that converts elements of non-negative valuation.

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqCR(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f(K.gen())
a + O(3^20)
sage: f.section()
Generic morphism:
   From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
   To:   3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
```

```python
class sage.rings.padics.padic_capped_relative_element.pAdicCoercion_QQ_CR
Bases: RingHomomorphism
The canonical inclusion from the rationals to a capped relative field.

EXAMPLES:

```python
sage: f = Qp(5).coerce_map_from(QQ); f
Ring morphism:
 From: Rational Field
 To: 5-adic Field with capped relative precision 20
```

```
section()
Returns a map back to the rationals that approximates an element by a rational number.

EXAMPLES:

```python
sage: f = Qp(5).coerce_map_from(QQ).section()
sage: f(Qp(5)(1/4))
1/4
sage: f(Qp(5)(1/5))
1/5
```

class sage.rings.padics.padic_capped_relative_element.pAdicCoercion_ZZ_CR
Bases: RingHomomorphism
The canonical inclusion from the integer ring to a capped relative ring.

EXAMPLES:

```python
sage: f = Zp(5).coerce_map_from(ZZ); f
Ring morphism:
   From: Integer Ring
   To:   5-adic Ring with capped relative precision 20
```
section()

Returns a map back to the ring of integers that approximates an element by an integer.

EXAMPLES:

```sage
sage: f = Zp(5).coerce_map_from(ZZ).section()
sage: f(Zp(5)(-1)) - 5^20
-1
```

class sage.rings.padics.padic_capped_relative_element.pAdicConvert_CR_QQ

Bases: RingMap

The map from the capped relative ring back to the rationals that returns a rational approximation of its input.

EXAMPLES:

```sage
sage: f = Qp(5).coerce_map_from(QQ).section(); f
Set-theoretic ring morphism:
  From: 5-adic Field with capped relative precision 20
  To:   Rational Field
```

class sage.rings.padics.padic_capped_relative_element.pAdicConvert_CR_ZZ

Bases: RingMap

The map from a capped relative ring back to the ring of integers that returns the smallest non-negative integer approximation to its input which is accurate up to the precision.

Raises a **ValueError**, if the input is not in the closure of the image of the integers.

EXAMPLES:

```sage
sage: f = Zp(5).coerce_map_from(ZZ).section(); f
Set-theoretic ring morphism:
  From: 5-adic Ring with capped relative precision 20
  To:   Integer Ring
```

class sage.rings.padics.padic_capped_relative_element.pAdicConvert_CR_frac_field

Bases: Morphism

The section of the inclusion from \(\mathbb{Z}_q \) to its fraction field.

EXAMPLES:

```sage
sage: # needs sage.libs.flint
sage: R.<a> = ZqCR(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = R.convert_map_from(K); f
Generic morphism:
  From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
  To:   3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
```

class sage.rings.padics.padic_capped_relative_element.pAdicConvert_QQ_CR

Bases: Morphism

The inclusion map from the rationals to a capped relative ring that is defined on all elements with non-negative \(p \)-adic valuation.

EXAMPLES:
sage: f = Zp(5).convert_map_from(QQ); f
Generic morphism:
 From: Rational Field
 To: 5-adic Ring with capped relative precision 20

section()

Return the map back to the rationals that returns the smallest non-negative integer approximation to its input which is accurate up to the precision.

EXAMPLES:

sage: f = Zp(5,4).convert_map_from(QQ).section()
sage: f(Zp(5,4)(-1))
-1

class sage.rings.padics.padic_capped_relative_element.pAdicTemplateElement

Bases: pAdicGenericElement

A class for common functionality among the \(p \)-adic template classes.

INPUT:

- \(\text{parent} \) – a local ring or field
- \(\text{x} \) – data defining this element. Various types are supported, including ints, Integers, Rationals, PARI \(p \)-adics, integers \(\text{mod} \) \(p^k \) and other Sage \(p \)-adics.
- \(\text{absprec} \) – a cap on the absolute precision of this element
- \(\text{relprec} \) – a cap on the relative precision of this element

EXAMPLES:

sage: Zp(17)(17^3, 8, 4)
17^3 + O(17^7)

expansion (\(n=\text{None} \), \(\text{lift_mode}=\text{’simple’} \), \(\text{start_val}=\text{None} \))

Return the coefficients in a \(\pi \)-adic expansion. If this is a field element, start at \(\pi^\text{valuation} \), if a ring element at \(\pi^0 \).

For each lift mode, this function returns a list of \(a_i \) so that this element can be expressed as

\[\pi^v \cdot \sum_{i=0}^{\infty} a_i \pi^i, \]

where \(v \) is the valuation of this element when the parent is a field, and \(v = 0 \) otherwise.

Different lift modes affect the choice of \(a_i \). When \text{lift_mode} is \’simple\', the resulting \(a_i \) will be non-negative: if the residue field is \(\mathbb{F}_p \) then they will be integers with \(0 \leq a_i < p \); otherwise they will be a list of integers in the same range giving the coefficients of a polynomial in the indeterminant representing the maximal unramified subextension.

Choosing \text{lift_mode} as \’smallest\' is similar to \’simple\', but uses a balanced representation \(-p/2 < a_i \leq p/2\).

Finally, setting \text{lift_mode} = \’teichmuller\' will yield Teichmuller representatives for the \(a_i \): \(a_i^q = a_i \). In this case the \(a_i \) will lie in the ring of integers of the maximal unramified subextension of the parent of this element.

INPUT:
• \(n\) – integer (default None). If given, returns the corresponding entry in the expansion. Can also accept a slice (see slice())
• \(\text{lift_mode} = \text{'simple', 'smallest' or 'teichmuller'}\) (default: 'simple')
• \(\text{start_val}\) – start at this valuation rather than the default (0 or the valuation of this element).

OUTPUT:

• If \(n\) is None, an iterable giving a \(\pi\)-adic expansion of this element. For base elements the contents will be integers if \(\text{lift_mode}\) is 'simple' or 'smallest', and elements of self.parent() if \(\text{lift_mode}\) is 'teichmuller'.

• If \(n\) is an integer, the coefficient of \(\pi^n\) in the \(\pi\)-adic expansion of this element.

Note: Use slice operators to get a particular range.

EXAMPLES:

```python
sage: R = Zp(7, 6); a = R(12837162817); a
3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
sage: E = a.expansion(); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
sage: list(E)
[3, 4, 4, 0, 4, 0]
sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True
```

```python
sage: E = a.expansion(lift_mode='smallest'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (balanced)
sage: list(E)
[3, -3, -2, 1, -3, 1]
sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True
```

```python
sage: E = a.expansion(lift_mode='teichmuller'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (teichmuller)
sage: list(E)
[3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + O(7^6),
  0, 5 + 2*7 + 3*7^3 + O(7^4),
  1 + O(7^3),
  3 + 4*7 + O(7^2),
  5 + O(7)]
sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True
```

If the element has positive valuation then the list will start with some zeros:

```python
sage: a = R(7^3 * 17)
sage: E = a.expansion(); E
7-adic expansion of 3*7^3 + 2*7^4 + O(7^9)
sage: list(E)
[0, 0, 0, 3, 2, 0, 0, 0, 0]
```

The expansion of 0 is truncated:

```python
sage: E = R(0, 7).expansion(); E
7-adic expansion of 0(7^7)
sage: len(E)
```

(continues on next page)
In fields, on the other hand, the expansion starts at the valuation:

```sage
R = Qp(7, 4); a = R(6*7 + 7^2 + O(7^5)); E = a.expansion(); E
7-adic expansion of 6*7 + 7^2 + O(7^5)
```

```sage
list(E)
[6, 1, 0, 0]
```

```sage
list(a.expansion(lift_mode='smallest'))
[-1, 2, 0, 0]
```

```sage
list(a.expansion(lift_mode='teichmuller'))
[6 + 6*7 + 6*7^2 + 6*7^3 + O(7^4),
  2 + 4*7 + 6*7^2 + O(7^3),
  3 + 4*7 + O(7^2),
  3 + O(7)]
```

You can ask for a specific entry in the expansion:

```sage
a.expansion(1)
6
```

```sage
a.expansion(1, lift_mode='smallest')
-1
```

```sage
a.expansion(2, lift_mode='teichmuller')
2 + 4*7 + 6*7^2 + O(7^3)
```

lift_to_precision *(absprec= None)*

Return another element of the same parent with absolute precision at least `absprec`, congruent to this \(\mathbb{p} \)-adic element modulo the precision of this element.

INPUT:

- `absprec` – an integer or None (default: None); the absolute precision of the result. If None, lifts to the maximum precision allowed

Note: If setting `absprec` that high would violate the precision cap, raises a precision error. Note that the new digits will not necessarily be zero.

EXAMPLES:

```sage
R = ZpCA(17)
R(-1, 2).lift_to_precision(10)
16 + 16*17 + O(17^10)
```

```sage
R(1, 15).lift_to_precision(10)
1 + O(17^15)
```

```sage
R(1, 15).lift_to_precision(30)
Traceback (most recent call last):
...
PrecisionError: precision higher than allowed by the precision cap
```

```sage
R(-1, 2).lift_to_precision().precision_absolute() == R.precision_cap()
True
```

```sage
R = Zp(5); c = R(17^3); c.lift_to_precision(8)
2 + 3*5 + O(5^8)
```
Fixed modulus elements don’t raise errors:

```sage
sage: R = ZpFM(5); a = R(5); a.lift_to_precision(7)
5
sage: a.lift_to_precision(10000)
5
```

residue *(absprec=1, field=None, check_prec=True)*

Reduce this element modulo \(p^{\text{absprec}} \).

INPUT:

- `absprec` – 0 or 1.
- `field` – boolean (default None). For precision 1, whether to return an element of the residue field or a residue ring. Currently unused.
- `check_prec` – boolean (default True). Whether to raise an error if this element has insufficient precision to determine the reduction. Errors are never raised for fixed-mod or floating-point types.

OUTPUT:

This element reduced modulo \(p^{\text{absprec}} \) as an element of the residue field or the null ring.

EXAMPLES:

```sage
sage: # needs sage.libsntl
sage: R.<a> = Zq(27, 4)
sage: (3 + 3*a).residue()
0
sage: (a + 1).residue()
a0 + 1
```

teichmuller_expansion *(n=None)*

Returns an iterator over coefficients \(a_0, a_1, \ldots, a_n \) such that

- \(a_i^q = a_i \), where \(q \) is the cardinality of the residue field,
- this element can be expressed as

\[
\pi^v \sum_{i=0}^{\infty} a_i \pi^i
\]

where \(v \) is the valuation of this element when the parent is a field, and \(v = 0 \) otherwise.

- if \(a_i \neq 0 \), the precision of \(a_i \) is \(i \) less than the precision of this element (relative in the case that the parent is a field, absolute otherwise)

Note: The coefficients will lie in the ring of integers of the maximal unramified subextension.

INPUT:

- `n` – integer (default None). If given, returns the coefficient of \(\pi^n \) in the expansion.

EXAMPLES:

For fields, the expansion starts at the valuation:
But if you specify \(n \), you get the coefficient of \(\pi^n \):

```python
sage: R(70).teichmuller_expansion(2)
3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4)
```

unit_part()

Returns the unit part of this element.

This is the \(p \)-adic element \(u \) in the same ring so that this element is \(\pi^v u \), where \(\pi \) is a uniformizer and \(v \) is the valuation of this element.

EXAMPLES:

```python
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(125)
3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4)
```

Unpickles a capped relative element.

EXAMPLES:

```python
sage: from sage.rings.padics.padic_capped_relative_element import unpickle_cre_v2
sage: R = Zp(5); a = R(85,6)
2*5^2 + 3*5^3 + O(5^7)
```

Unpickles a capped relative element.

EXAMPLES:

```python
sage: from sage.rings.padics.padic_capped_relative_element import unpickle_pcre_v1
sage: R = Zp(5)
2*5^2 + 3*5^3 + O(5^7)
```
Elements of p-adic Rings with Absolute Precision Cap

AUTHORS:

- David Roe
- Genya Zaytman: documentation
- David Harvey: doctests

class sage.rings.padics.padic_capped_absolute_element.CAElement

Bases: pAdicTemplateElement

add_bigoh *(absprec)*

Return a new element with absolute precision decreased to `absprec`. The precision never increases.

INPUT:

- `absprec` – an integer or infinity

OUTPUT:

self with precision set to the minimum of self's precision and `prec`

EXAMPLES:

```sage
calculator 1: 
R = Zp(7,4,'capped-abs','series'); a = R(8); a.add_bigoh(1)
1 + O(7)
calculator 2: 
k = ZpCA(3,5)
K = ZpCA(3,5)
K = ZpCA(3,5)
K = ZpCA(3,5)
``` 

is_equal_to *(_right, absprec=None)*

Determine whether the inputs are equal modulo $p^{absprec}$.

INPUT:

- `right` – a p-adic element with the same parent
- `absprec` – an integer, infinity, or None

EXAMPLES:
```python
sage: R = ZpCA(2, 6)
sage: R(13).is_equal_to(R(13))
True
sage: R(13).is_equal_to(R(13+2^10))
True
sage: R(13).is_equal_to(R(17), 2)
True
sage: R(13).is_equal_to(R(17), 5)
False
sage: R(13).is_equal_to(R(13+2^10), absprec=10)
Traceback (most recent call last):
    ...
PrecisionError: elements not known to enough precision
```

is_zero *(absprec=None)*

Determine whether this element is zero modulo \(\pi^{\text{absprec}}\).

If `absprec` is None, returns True if this element is indistinguishable from zero.

INPUT:
- `absprec` – an integer, infinity, or None

EXAMPLES:
```python
sage: R = ZpCA(17, 6)
sage: R(0).is_zero()
True
sage: R(17^6).is_zero()
True
sage: R(17^2).is_zero(absprec=2)
True
sage: R(17^6).is_zero(absprec=10)
Traceback (most recent call last):
    ...
PrecisionError: not enough precision to determine if element is zero
```

polynomial *(var='x')*

Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

INPUT:
- `var` – string; the variable name for the polynomial

EXAMPLES:
```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqCA(5^3)
sage: a.polynomial()
(1 + O(5^20))*x + O(5^20)
sage: a.polynomial(var='y')
(1 + O(5^20))*y + O(5^20)
sage: (5*a^2 + R(25, 4)).polynomial()
(5 + O(5^4))*x^2 + O(5^4)*x + 5^2 + O(5^4)
```

precision_absolute()

The absolute precision of this element.

This is the power of the maximal ideal modulo which this element is defined.
EXAMPLES:

```sage
sage: R = Zp(7, 4, 'capped-abs'); a = R(7); a.precision_absolute()
sage: a.precision_relative()
```

precision_relative()

The relative precision of this element.

This is the power of the maximal ideal modulo which the unit part of this element is defined.

EXAMPLES:

```sage
sage: R = Zp(7, 4, 'capped-abs'); a = R(7); a.precision_relative()
```

unit_part()

Return the unit part of this element.

EXAMPLES:

```sage
sage: R = Zp(17, 4, 'capped-abs', 'val-unit')
sage: a = R(18*17)
sage: a.unit_part()
18 + O(17^3)
sage: type(a)
<class 'sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement'>
sage: R(0).unit_part()
O(17^0)
```

val_unit()

Return a 2-tuple, the first element set to the valuation of this element, and the second to the unit part of this element.

For a zero element, the unit part is $O(p^0)$.

EXAMPLES:

```sage
sage: R = ZpCA(5)
sage: a = R(75, 6); b = a - a
sage: a.val_unit()
(2, 3 + O(5^4))
sage: b.val_unit()
(6, O(5^0))
```

class **sage.rings.padics.padic_capped_absolute_element.ExpansionIter**

Bases: object

An iterator over a p-adic expansion.

This class should not be instantiated directly, but instead using `expansion()`.

INPUT:

- `elt` – the p-adic element
- `prec` – the number of terms to be emitted
- `mode` – either `simple_mode`, `smallest_mode` or `teichmuller_mode`

EXAMPLES:
class sage.rings.padics.padic_capped_absolute_element.ExpansionIterable
Bases: object

An iterable storing a \(p \)-adic expansion of an element.

This class should not be instantiated directly, but instead using `expansion()`.

INPUT:

- `elt` -- the \(p \)-adic element
- `prec` -- the number of terms to be emitted
- `val_shift` -- how many zeros to add at the beginning of the expansion, or the number of initial terms to truncate (if negative)
- `mode` -- one of the following:
 - `simple_mode`
 - `smallest_mode`
 - `teichmuller_mode`

EXAMPLES:

```python
sage: E = Zp(5,4)(373).expansion() # indirect doctest
sage: type(E)
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIter'>
```

class sage.rings.padics.padic_capped_absolute_element.PowComputer_
Bases: PowComputer_base

A PowComputer for a capped-absolute p-adic ring.

sage.rings.padics.padic_capped_absolute_element.make_pAdicCappedAbsoluteElement (parent, x, absprec)

Unpickles a capped absolute element.

EXAMPLES:

```python
sage: from sage.rings.padics.padic_capped_absolute_element import make_pAdicCappedAbsoluteElement
sage: R = ZpCA(5)
sage: a = make_pAdicCappedAbsoluteElement(R, 17*25, 5); a
2*5^2 + 3*5^3 + O(5^5)
```

class sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement
Bases: CAElement

Constructs new element with given parent and value.

INPUT:
• x – value to coerce into a capped absolute ring
• absprec – maximum number of digits of absolute precision
• relprec – maximum number of digits of relative precision

EXAMPLES:
```
sage: R = ZpCA(3, 5)
sage: R(2)
2 + O(3^5)
sage: R(2, absprec=2)
2 + O(3^2)
sage: R(3, relprec=2)
3 + O(3^3)
sage: R(Qp(3)(10))
1 + 3^2 + O(3^5)
sage: R(pari(6))
2*3 + O(3^5)
sage: R(pari(1/2))
2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
sage: R(1/2)
2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
sage: R(mod(-1, 3^7))
2 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + O(3^5)
sage: R(mod(-1, 3^2))
2 + 2*3 + O(3^2)
sage: R(3 + O(3^2))
3 + O(3^2)
```

```
lift()
EXAMPLES:
```
```
sage: R = ZpCA(3)
sage: R(10).lift()
10
sage: R(-1).lift()
3486784400
```

```
multiplicative_order()
Return the minimum possible multiplicative order of this element.

OUTPUT:
The multiplicative order of self. This is the minimum multiplicative order of all elements of \( \mathbb{Z}_p \) lifting \( \text{self} \) to infinite precision.

EXAMPLES:
```
sage: R = ZpCA(7, 6)
sage: R(1/3)
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + 4*7^5 + O(7^6)
sage: R(1/3).multiplicative_order()
+Infinity
sage: R(7).multiplicative_order()
+Infinity
sage: R(-1).multiplicative_order()
1
sage: R(-1).multiplicative_order()
```
```
2sage: R.teichmuller(3).multiplicative_order()6

residue(absprec=1, field=None, check_prec=True)

Reduces self modulo \(p^{\text{absprec}} \).

INPUT:

- absprec – a non-negative integer (default: 1)
- field – boolean (default None). Whether to return an element of GF(p) or Zmod(p).
- check_prec – boolean (default True). Whether to raise an error if this element has insufficient precision to determine the reduction.

OUTPUT:

This element reduced modulo \(p^{\text{absprec}} \) as an element of \(\mathbb{Z}/p^{\text{absprec}}\mathbb{Z} \)

EXAMPLES:

sage: R =

This is different from applying \(\% \ p^n \) which returns an element in the same ring:

sage: b = a.residue(2); b 8
sage: b.parent()
Ring of integers modulo 49
sage: c = a \% 7^2; c
1 + 7 + O(7^10)
sage: c.parent()
7-adic Ring with capped absolute precision 10

Note that reduction of \(c \) dropped to the precision of the unit part of \(7^2 \), see _mod_():

sage: R(7^2).unit_part()
1 + O(7^8)

See also:

mod()

class

sage.rings.padics.padic_capped_absolute_element.\texttt{pAdicCoercion_CA_frac_field}

Bases: \texttt{RingHomomorphism}

The canonical inclusion of \(\mathbb{Z}_q \) into its fraction field.

EXAMPLES:

sage: \# needs sage.libs.flint
sage: R.<a> = ZqCA(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R); f
is_injective()
Return whether this map is injective.

EXAMPLES:

```sage
sage: # needs sage.libs.flint
sage: R.<a> = ZqCA(9, implementation='FLINT')
sage: K = R.fraction_field()
```  
```sage
type: f = K.coerce_map_from(R)
sage: f.is_injective()
```

is_surjective()
Return whether this map is surjective.

EXAMPLES:

```sage
sage: # needs sage.libs.flint
sage: R.<a> = ZqCA(9, implementation='FLINT')
```
```sage
type: f = K.coerce_map_from(R)
```  
```sage: f.is_surjective()
```

section()
Return a map back to the ring that converts elements of non-negative valuation.

EXAMPLES:

```sage
sage: # needs sage.libs.flint
sage: R.<a> = ZqCA(27, implementation='FLINT')
```  
```sage: K = R.fraction_field()
```  
```sage: f = K.coerce_map_from(R)
```  
```sage: f(K.gen())
```
```sage: f.section()
```

class sage.rings.padics.padic_capped_absolute_element.pAdicCoercion_ZZ_CA
Bases: RingHomomorphism

The canonical inclusion from the ring of integers to a capped absolute ring.

EXAMPLES:

```sage: f = ZpCA(5).coerce_map_from(ZZ); f
Ring morphism:
    From: Integer Ring
    To:   5-adic Ring with capped absolute precision 20
```
section()

Return a map back to the ring of integers that approximates an element by an integer.

EXAMPLES:

```
sage: f = ZpCA(5).coerce_map_from(ZZ).section()
sage: f(ZpCA(5)(-1)) - 5^20
-1
```

```python
class sage.rings.padics.padic_capped_absolute_element.pAdicConvert_CA_ZZ
    Bases: RingMap

    The map from a capped absolute ring back to the ring of integers that returns the smallest non-negative integer approximation to its input which is accurate up to the precision.

    Raises a ValueError if the input is not in the closure of the image of the ring of integers.

    **EXAMPLES:**

```
sage: f = ZpCA(5).coerce_map_from(ZZ).section(); f
Set-theoretic ring morphism:
 From: 5-adic Ring with capped absolute precision 20
 To: Integer Ring
```

```python
class sage.rings.padics.padic_capped_absolute_element.pAdicConvert_CA_frac_field
 Bases: Morphism

 The section of the inclusion from \(\mathbb{Z}_q \) to its fraction field.

 EXAMPLES:

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqCA(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = R.convert_map_from(K); f
Generic morphism:
    From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
    To:   3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
```

```python
class sage.rings.padics.padic_capped_absolute_element.pAdicConvert_QQ_CA
    Bases: Morphism

    The inclusion map from the rationals to a capped absolute ring that is defined on all elements with non-negative \( p \)-adic valuation.

    **EXAMPLES:**

```
sage: f = ZpCA(5).convert_map_from(QQ); f
```

```python
class sage.rings.padics.padic_capped_absolute_element.pAdicTemplateElement
 Bases: pAdicGenericElement

 A class for common functionality among the \(p \)-adic template classes.

 INPUT:

 - parent – a local ring or field
• x – data defining this element. Various types are supported, including ints, Integers, Rationals, PARI p-adics, integers mod p^k and other Sage p-adics.
• absprec – a cap on the absolute precision of this element
• relprec – a cap on the relative precision of this element

EXAMPLES:

```
sage: Zp(17)(17^3, 8, 4)
17^3 + O(17^7)
```

`expansion(n=None, lift_mode='simple', start_val=None)`

Return the coefficients in a π-adic expansion. If this is a field element, start at π^v valuation, if a ring element at π^0.

For each lift mode, this function returns a list of a_i so that this element can be expressed as

$$
\pi^v \cdot \sum_{i=0}^{\infty} a_i \pi^i,
$$

where v is the valuation of this element when the parent is a field, and $v = 0$ otherwise.

Different lift modes affect the choice of a_i. When `lift_mode` is 'simple', the resulting a_i will be non-negative: if the residue field is F_p then they will be integers with $0 \leq a_i < p$; otherwise they will be a list of integers in the same range giving the coefficients of a polynomial in the indeterminant representing the maximal unramified subextension.

Choosing `lift_mode` as 'smallest' is similar to 'simple', but uses a balanced representation $-p/2 < a_i \leq p/2$.

Finally, setting `lift_mode = 'teichmuller'` will yield Teichmuller representatives for the a_i: $a_i^q = a_i$. In this case the a_i will lie in the ring of integers of the maximal unramified subextension of the parent of this element.

INPUT:

• `n` – integer (default None). If given, returns the corresponding entry in the expansion. Can also accept a slice (see `slice()`)
• `lift_mode` – 'simple', 'smallest' or 'teichmuller' (default: 'simple')
• `start_val` – start at this valuation rather than the default (0 or the valuation of this element).

OUTPUT:

• If `n` is None, an iterable giving a π-adic expansion of this element. For base elements the contents will be integers if `lift_mode` is 'simple' or 'smallest', and elements of `self.parent()` if `lift_mode is 'teichmuller'.
• If `n` is an integer, the coefficient of π^n in the π-adic expansion of this element.

Note: Use slice operators to get a particular range.

EXAMPLES: Use slice operators to get a particular range.
sage: list(E)
[3, 4, 4, 0, 4, 0]
sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True
sage: E = a.expansion(lift_mode='smallest'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (balanced)
sage: list(E)
[3, -3, -2, 1, -3, 1]
sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True
sage: E = a.expansion(lift_mode='teichmuller'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (teichmuller)
sage: list(E)
[3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + O(7^6),
 0,
 5 + 2*7 + 3*7^3 + O(7^4),
 1 + O(7^3),
 3 + 4*7 + O(7^2),
 5 + O(7)]
sage: sum(c * 7^i for i, c in enumerate(E))
3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)

If the element has positive valuation then the list will start with some zeros:

sage: a = R(7^3 * 17)
sage: E = a.expansion(); E
7-adic expansion of 3*7^3 + 2*7^4 + O(7^9)
sage: list(E)
[0, 0, 0, 3, 2, 0, 0, 0, 0]
The expansion of 0 is truncated:

sage: E = R(0, 7).expansion(); E
7-adic expansion of 0(7^7)
sage: len(E)
0
sage: list(E)
[]

In fields, on the other hand, the expansion starts at the valuation:

sage: R = Qp(7,4); a = R(6*7+7**2); E = a.expansion(); E
7-adic expansion of 6*7 + 7^2 + O(7^5)
sage: list(E)
[6, 1, 0, 0]
sage: list(a.expansion(lift_mode='smallest'))
[-1, 2, 0, 0]
sage: list(a.expansion(lift_mode='teichmuller'))
[6 + 6*7 + 6*7^2 + 6*7^3 + O(7^4),
 2 + 4*7 + 6*7^2 + O(7^3),
 3 + 4*7 + O(7^2),
 3 + O(7)]

You can ask for a specific entry in the expansion:

sage: a.expansion(1)
6
lift_to_precision (absprec=None)

Return another element of the same parent with absolute precision at least absprec, congruent to this p-adic element modulo the precision of this element.

INPUT:

- absprec – an integer or None (default: None); the absolute precision of the result. If None, lifts to the maximum precision allowed

Note: If setting absprec that high would violate the precision cap, raises a precision error. Note that the new digits will not necessarily be zero.

EXAMPLES:

\begin{verbatim}
sage: R = ZpCA(17)
sage: R(-1,2).lift_to_precision(10)
16 + 16*17 + 0(17^10)
sage: R(1,15).lift_to_precision(10)
1 + 0(17^15)
sage: R(1,15).lift_to_precision(30)
Traceback (most recent call last):
 ... PrecisionError: precision higher than allowed by the precision cap
sage: R(-1,2).lift_to_precision().precision_absolute() == R.precision_cap()
True
sage: R = Zp(5); c = R(17,3); c.lift_to_precision(8)
2 + 3*5 + 0(5^8)
sage: c.lift_to_precision().precision_relative() == R.precision_cap()
True
\end{verbatim}

Fixed modulus elements don’t raise errors:

\begin{verbatim}
sage: R = ZpFM(5); a = R(5); a.lift_to_precision(7)
5
sage: a.lift_to_precision(10000)
5
\end{verbatim}

residue (absprec=1, field=None, check_prec=True)

Reduce this element modulo p^{absprec}.

INPUT:

- absprec – 0 or 1.
- field – boolean (default None). For precision 1, whether to return an element of the residue field or a residue ring. Currently unused.
- check_prec – boolean (default True). Whether to raise an error if this element has insufficient precision to determine the reduction. Errors are never raised for fixed-mod or floating-point types.

OUTPUT:
This element reduced modulo p^{absprec} as an element of the residue field or the null ring.

EXAMPLES:

```python
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(27, 4)
sage: (3 + 3*a).residue()
0
sage: (a + 1).residue()
a0 + 1
```

teichmuller_expansion (*n=None*)
Returns an iterator over coefficients a_0, a_1, \ldots, a_n such that

- $a_i^q = a_i$, where q is the cardinality of the residue field,
- this element can be expressed as
 $$\pi^v \cdot \sum_{i=0}^{\infty} a_i \pi^i$$

where v is the valuation of this element when the parent is a field, and $v = 0$ otherwise.

- if $a_i \neq 0$, the precision of a_i is i less than the precision of this element (relative in the case that the parent is a field, absolute otherwise)

Note: The coefficients will lie in the ring of integers of the maximal unramified subextension.

INPUT:

- *n* – integer (default None). If given, returns the coefficient of π^n in the expansion.

EXAMPLES:

For fields, the expansion starts at the valuation:

```python
sage: R = Qp(5,5); list(R(70).teichmuller_expansion())
[4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5),
  3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4),
  2 + 5 + 2*5^2 + O(5^3),
  1 + O(5^2),
  4 + O(5)]
```

But if you specify *n*, you get the coefficient of π^n:

```python
sage: R(70).teichmuller_expansion(2)
3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4)
```

unit_part

Returns the unit part of this element.

This is the p-adic element u in the same ring so that this element is π^vu, where π is a uniformizer and v is the valuation of this element.

EXAMPLES:

```python
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(125)
sage: (5*a).unit_part()
a + O(5^20)
```
Unpickle capped absolute elements.

INPUT:

- `cls` – the class of the capped absolute element
- `parent` – a \(p \)-adic ring
- `value` – a Python object wrapping a celement, of the kind accepted by the cunpickle function
- `absprec` – a Python int or Sage integer

EXAMPLES:

```python
sage: from sage.rings.padics.padic_capped_absolute_element import unpickle_cae_v2,
              pAdicCappedAbsoluteElement
sage: R = ZpCA(5, 8)
sage: a = unpickle_cae_v2(pAdicCappedAbsoluteElement, R, 42, int(6)); a
2 + 3*5 + 5^2 + O(5^6)
sage: a.parent() is R
True
```
Elements of \(p \)-adic Rings with Fixed Modulus

AUTHORS:

• David Roe
• Genya Zaytman: documentation
• David Harvey: doctests

```python
class sage.rings.padics.padic_fixed_mod_element.ExpansionIter
    Bases: object
    
An iterator over a \( p \)-adic expansion.

This class should not be instantiated directly, but instead using `expansion()`.

INPUT:

• `elt` – the \( p \)-adic element
• `prec` – the number of terms to be emitted
• `mode` – either `simple_mode`, `smallest_mode` or `teichmuller_mode`

EXAMPLES:

```python
sage: E = Zp(5,4)(373).expansion()
sage: I = iter(E) # indirect doctest
sage: type(I)
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIter'>
```
```
```

```python
class sage.rings.padics.padic_fixed_mod_element.ExpansionIterable
 Bases: object

An iterable storing a \(p \)-adic expansion of an element.

This class should not be instantiated directly, but instead using `expansion()`.

INPUT:

• `elt` – the \(p \)-adic element
• `prec` – the number of terms to be emitted
• `val_shift` – how many zeros to add at the beginning of the expansion, or the number of initial terms to truncate (if negative)
• `mode` – one of the following:
 - `'simple_mode'`
EXAMPLES:

```
sage: E = Zp(5,4)(373).expansion()  # indirect doctest
sage: type(E)
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIterable'>
```

```python
class sage.rings.padics.padic_fixed_mod_element.FMElement
    Bases: pAdicTemplateElement
    add_bigoh(absprec)
        Return a new element truncated modulo $\pi^{absprec}$.
        INPUT:
        • absprec – an integer or infinity
        OUTPUT:
        a new element truncated modulo $\pi^{absprec}$.
        EXAMPLES:
        ```
sage: R = Zp(7,4,'fixed-mod','series'); a = R(8); a.add_bigoh(1)
 1
    ```
    is_equal_to(_right, absprec=None)
        Return whether this element is equal to right modulo $p^{absprec}$.
        If absprec is None, returns if self == 0.
        INPUT:
        • right – a $p$-adic element with the same parent
        • absprec – a positive integer or None (default: None)
        EXAMPLES:
        ```
sage: R = ZpFM(2, 6)
sage: R(13).is_equal_to(R(13))
 True
sage: R(13).is_equal_to(R(13+2^10))
 True
sage: R(13).is_equal_to(R(17), 2)
 True
sage: R(13).is_equal_to(R(17), 5)
 False
    ```
    is_zero(absprec=None)
        Returns whether self is zero modulo $\pi^{absprec}$.
        INPUT:
        • absprec – an integer
        EXAMPLES:
sage: R = ZpFM(17, 6)
sage: R(0).is_zero()
True
sage: R(17^6).is_zero()
True
sage: R(17^2).is_zero(absprec=2)
True

polynomial (var='x')
Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

INPUT:
• var – string, the variable name for the polynomial

EXAMPLES:

sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(5^3)
sage: a.polynomial()
x
sage: a.polynomial(var='y')
y
sage: (5*a^2 + 25).polynomial()
5*x^2 + 5^2

precision_absolute ()
The absolute precision of this element.

EXAMPLES:

sage: R = Zp(7,4,'fixed-mod'); a = R(7); a.precision_absolute()
4

precision_relative ()
The relative precision of this element.

EXAMPLES:

sage: R = Zp(7,4,'fixed-mod'); a = R(7); a.precision_relative()
3
sage: a = R(0); a.precision_relative()
0

unit_part ()
Return the unit part of self.

If the valuation of self is positive, then the high digits of the result will be zero.

EXAMPLES:

sage: R = Zp(17, 4, 'fixed-mod')
sage: R(5).unit_part()
5
sage: R(18*17).unit_part()
1 + 17
sage: R(0).unit_part()
0

(continues on next page)
val_unit()

Return a 2-tuple, the first element set to the valuation of self, and the second to the unit part of self.

If self == 0, then the unit part is $O(p^{\text{prec}.\text{cap}})$.

EXAMPLES:

```
sage: R = ZpFM(5, 5)
sage: a = R(75); b = a - a
sage: a.val_unit()
(2, 3)
sage: b.val_unit()
(5, 0)
```

class sage.rings.padics.padic_fixed_mod_element.PowComputer_

Bases: PowComputer_base

A PowComputer for a fixed-modulus p-adic ring.

class sage.rings.padics.padic_fixed_mod_element.make_pAdicFixedModElement (parent, value)

Unpickles a fixed modulus element.

EXAMPLES:

```
sage: from sage.rings.padics.padic_fixed_mod_element import make_pAdicFixedModElement
sage: R = ZpFM(5)
sage: a = make_pAdicFixedModElement(R, 17*25); a
2*5^2 + 3*5^3
```

class sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_FM_frac_field

Bases: RingHomomorphism

The canonical inclusion of $\mathbb{Z}_q$ into its fraction field.

EXAMPLES:

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R); f
Ring morphism:
 From: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
 To: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
```

is_injective()

Return whether this map is injective.

EXAMPLES:

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(9)
sage: K = R.fraction_field()
```
```
sage: f = K.coerce_map_from(R)
sage: f.is_injective()
True
```

**is_surjective()**

Return whether this map is surjective.

**EXAMPLES:**

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(9)
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f.is_surjective()
False
```

**section()**

Return a map back to the ring that converts elements of non-negative valuation.

**EXAMPLES:**

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(27)
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f.section()(K.gen())
a
```

---

**class** `sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_ZZ_FM`

**Bases:** `RingHomomorphism`

The canonical inclusion from \( \mathbb{Z} \) to a fixed modulus ring.

**EXAMPLES:**

```
sage: f = ZpFM(5).coerce_map_from(ZZ); f
Ring morphism:
 From: Integer Ring
 To: 5-adic Ring of fixed modulus 5^20
```

**section()**

Returns a map back to \( \mathbb{Z} \) that approximates an element of this \( p \)-adic ring by an integer.

**EXAMPLES:**

```
sage: f = ZpFM(5).coerce_map_from(ZZ).section()
sage: f(ZpFM(5)(-1)) - 5^20
-1
```

---

**class** `sage.rings.padics.padic_fixed_mod_element.pAdicConvert_FM_ZZ`

**Bases:** `RingMap`

The map from a fixed modulus ring back to \( \mathbb{Z} \) that returns the smallest non-negative integer approximation to its input which is accurate up to the precision.

If the input is not in the closure of the image of \( \mathbb{Z} \), raises a `ValueError`.

**EXAMPLES:**
class sage.rings.padics.padic_fixed_mod_element.pAdicConvert_FM_frac_field

Bases: Morphism

The section of the inclusion from $\mathbb{Z}_q$ to its fraction field.

EXAMPLES:

```sage
needs sage.libs.flint
sage: R.<a> = ZqFM(27)
sage: K = R.fraction_field()
sage: f = R.convert_map_from(K); f
Generic morphism:
 From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
 To: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
```

class sage.rings.padics.padic_fixed_mod_element.pAdicConvert_QQ_FM

Bases: Morphism

The inclusion map from $\mathbb{Q}$ to a fixed modulus ring that is defined on all elements with non-negative $p$-adic valuation.

EXAMPLES:

```sage
sage: f = ZpFM(5).convert_map_from(QQ); f
Generic morphism:
 From: Rational Field
 To: 5-adic Ring of fixed modulus 5^20
```

class sage.rings.padics.padic_fixed_mod_element.pAdicFixedModElement

Bases: FMElement

INPUT:

- `parent` -- a $p$AdicRingFixedMod object.
- `x` -- input data to be converted into the parent.
- `absprec` -- ignored; for compatibility with other $p$-adic rings
- `relprec` -- ignored; for compatibility with other $p$-adic rings

Note: The following types are currently supported for $x$:

- Integers
- Rationals -- denominator must be relatively prime to $p$
- FixedMod $p$-adics
- Elements of $\text{IntegerModRing}(p^k)$ for $k$ less than or equal to the modulus

The following types should be supported eventually:

- Finite precision $p$-adics
- Lazy $p$-adics
- Elements of local extensions of THIS $p$-adic ring that actually lie in $\mathbb{Z}_p$
EXAMPLES:

```
sage: R = Zp(5, 20, 'fixed-mod', 'terse')
Construct from integers:
```
sage: R(3)
3
sage: R(75)
75
sage: R(0)
0
sage: R(-1)
95367431640624
sage: R(-5)
95367431640620

```
Construct from rationals:
```
sage: R(1/2)
47683715820313
sage: R(-7875/874)
9493096742250
sage: R(15/425)
Traceback (most recent call last):
... ValueError: p divides denominator

```
Construct from IntegerMod:
```
sage: R(Integers(125)(3))
3
sage: R(Integers(5)(3))
3
sage: R(Integers(5^30)(3))
3
sage: R(Integers(5^30)(1+5^23))
1
sage: R(Integers(49)(3))
Traceback (most recent call last):
... TypeError: p does not divide modulus 49

```
 Some other conversions:
```
sage: R(R(5))
5

Todo: doctests for converting from other types of \( p \)-adic rings
**lift()**

Return an integer congruent to self modulo the precision.

**Warning:** Since fixed modulus elements don’t track their precision, the result may not be correct modulo \( p^{\text{prec}} \) if the element was defined by constructions that lost precision.

**EXAMPLES:**

```
sage: R = Zp(7, 4, 'fixed-mod'); a = R(8); a.lift()
sage: type(a.lift())
<class 'sage.rings.integer.Integer'>
```

**multiplicative_order()**

Return the minimum possible multiplicative order of self.

**OUTPUT:**

an integer – the multiplicative order of this element. This is the minimum multiplicative order of all elements of \( \mathbb{Z}_p \) lifting this element to infinite precision.

**EXAMPLES:**

```
sage: R = ZpFM(7, 6)
sage: R(1/3)
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + 4*7^5
sage: R(1/3).multiplicative_order()
+Infinity
sage: R(7).multiplicative_order()
+Infinity
sage: R(1).multiplicative_order()
1
sage: R(-1).multiplicative_order()
2
sage: R.teichmuller(3).multiplicative_order()
6
```

**residue(absprec=1, field=None, check_prec=False)**

Reduce self modulo \( p^{\text{absprec}} \).

**INPUT:**

- absprec – an integer (default: 1)
- field – boolean (default None). Whether to return an element of GF(p) or Zmod(p).
- check_prec – boolean (default False). No effect (for compatibility with other types).

**OUTPUT:**

This element reduced modulo \( p^{\text{absprec}} \) as an element of \( \mathbb{Z}/p^{\text{absprec}}\mathbb{Z} \).

**EXAMPLES:**

```
sage: R = Zp(7, 4, 'fixed-mod')
sage: a = R(8)
sage: a.residue(1)
1
```
This is different from applying \( p^n \) which returns an element in the same ring:

```sage
sage: b = a.residue(2); b
8
sage: b.parent()
Ring of integers modulo 49
sage: c = a % 7^2; c
1 + 7
sage: c.parent()
7-adic Ring of fixed modulus 7^4
```

See also:

```sage
__mod__()
```

class sage.rings.padics.padic_fixed_mod_element.pAdicTemplateElement

**Bases:** pAdicGenericElement

A class for common functionality among the \( p \)-adic template classes.

**INPUT:**

- **parent** – a local ring or field
- **x** – data defining this element. Various types are supported, including ints, Integers, Rationals, PARI \( p \)-adics, integers mod \( p^k \) and other Sage \( p \)-adics.
- **absprec** – a cap on the absolute precision of this element
- **relprec** – a cap on the relative precision of this element

**EXAMPLES:**

```sage
sage: Zp(17)(17^3, 8, 4)
17^3 + O(17^7)
```

**expansion** (*n=None, lift_mode='simple', start_val=None*)

Return the coefficients in a \( \pi \)-adic expansion. If this is a field element, start at \( \pi^{\text{valuation}} \), if a ring element at \( \pi^0 \).

For each lift mode, this function returns a list of \( a_i \) so that this element can be expressed as

\[ \pi^v \cdot \sum_{i=0}^{\infty} a_i \pi^i, \]

where \( v \) is the valuation of this element when the parent is a field, and \( v = 0 \) otherwise.

Different lift modes affect the choice of \( a_i \). When `lift_mode` is `'simple'`, the resulting \( a_i \) will be non-negative: if the residue field is \( \mathbb{F}_p \) then they will be integers with \( 0 \leq a_i < p \); otherwise they will be a list of integers in the same range giving the coefficients of a polynomial in the indeterminant representing the maximal unramified subextension.

Choosing `lift_mode` as `'smallest'` is similar to `'simple'`, but uses a balanced representation \(-p/2 < a_i \leq p/2\).

Finally, setting `lift_mode` = `'teichmuller'` will yield Teichmuller representatives for the \( a_i \): \( a_i^q = a_i \). In this case the \( a_i \) will lie in the ring of integers of the maximal unramified subextension of the parent of this element.

**INPUT:**
• \( n \) – integer (default None). If given, returns the corresponding entry in the expansion. Can also accept a slice (see slice())
• lift_mode = 'simple', 'smallest' or 'teichmuller' (default: 'simple')
• start_val – start at this valuation rather than the default (0 or the valuation of this element).

OUTPUT:

• If \( n \) is None, an iterable giving a \( \pi \)-adic expansion of this element. For base elements the contents will be integers if lift_mode is 'simple' or 'smallest', and elements of self.parent() if lift_mode is 'teichmuller'.
• If \( n \) is an integer, the coefficient of \( \pi^n \) in the \( \pi \)-adic expansion of this element.

Note: Use slice operators to get a particular range.

EXAMPLES:

```
sage: R = Zp(7,6); a = R(12837162817); a
3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
sage: E = a.expansion(); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
sage: list(E)
[3, 4, 4, 0, 4, 0]
sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True
sage: E = a.expansion(lift_mode='smallest'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (balanced)
sage: list(E)
[3, -3, -2, 1, -3, 1]
sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True
sage: E = a.expansion(lift_mode='teichmuller'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (teichmuller)
sage: list(E)
[3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + O(7^6),
 0,
 5 + 2*7 + 3*7^3 + O(7^4),
 1 + O(7^3),
 3 + 4*7 + O(7^2),
 5 + O(7)]
sage: sum(c * 7^i for i, c in enumerate(E))
3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
```

If the element has positive valuation then the list will start with some zeros:

```
sage: a = R(7^3 * 17)
sage: E = a.expansion(); E
7-adic expansion of 3*7^3 + 2*7^4 + O(7^9)
sage: list(E)
[0, 0, 0, 3, 2, 0, 0, 0, 0]
```

The expansion of 0 is truncated:

```
sage: E = R(0, 7).expansion(); E
7-adic expansion of O(7^7)
sage: len(E)
(continues on next page)```
In fields, on the other hand, the expansion starts at the valuation:

```python
sage: R = Qp(7, 4); a = R(6*7 + 7^2 + O(7^5)); E = a.expansion(); E
7-adic expansion of 6*7 + 7^2 + O(7^5)
```

```python
sage: list(E)
[6, 1, 0, 0]
```

You can ask for a specific entry in the expansion:

```python
sage: a.expansion(1)
6
```

```python
sage: a.expansion(1, lift_mode='smallest')
-1
```

```python
sage: a.expansion(2, lift_mode='teichmuller')
2 + 4*7 + 6*7^2 + O(7^3)
```

lift_to_precision *(absprec=None)*

Return another element of the same parent with absolute precision at least `absprec`, congruent to this p-adic element modulo the precision of this element.

INPUT:

- `absprec` - an integer or None (default: None); the absolute precision of the result. If None, lifts to the maximum precision allowed

Note: If setting `absprec` that high would violate the precision cap, raises a precision error. Note that the new digits will not necessarily be zero.

EXAMPLES:

```python
sage: R = ZpCA(17)
sage: R(-1, 2).lift_to_precision(10)
16 + 16*17 + O(17^10)
```

```python
sage: R(1, 15).lift_to_precision(10)
1 + O(17^15)
```

```python
sage: R(1, 15).lift_to_precision(30)
Traceback (most recent call last):
...
PrecisionError: precision higher than allowed by the precision cap
```

```python
sage: R(-1, 2).lift_to_precision().precision_absolute() == R.precision_cap()
True
```

```python
sage: R = Zp(5); c = R(17, 3); c.lift_to_precision(8)
2 + 3*5 + O(5^8)
```
Fixed modulus elements don’t raise errors:

```python
sage: R = ZpFM(5); a = R(5); a.lift_to_precision(7)
5
sage: a.lift_to_precision(10000)
5
```

residue(absprec=1, field=None, check_prec=True)
Reduce this element modulo p^{absprec}.

INPUT:

- absprec – 0 or 1.
- field – boolean (default None). For precision 1, whether to return an element of the residue field or a residue ring. Currently unused.
- check_prec – boolean (default True). Whether to raise an error if this element has insufficient precision to determine the reduction. Errors are never raised for fixed-mod or floating-point types.

OUTPUT:
This element reduced modulo p^{absprec} as an element of the residue field or the null ring.

EXAMPLES:

```python
sage: # needs sage.libsntl
sage: R.<a> = Zq(27, 4)
sage: (3 + 3*a).residue()
0
sage: (a + 1).residue()
a0 + 1
```

teichmuller_expansion(n=None)
Returns an iterator over coefficients a_0, a_1, \ldots, a_n such that

- $a_q^i = a_i$, where q is the cardinality of the residue field,
- this element can be expressed as

\[
p^v \sum_{i=0}^{\infty} a_i p^i
\]

where v is the valuation of this element when the parent is a field, and $v = 0$ otherwise.
- if $a_i \neq 0$, the precision of a_i is i less than the precision of this element (relative in the case that the parent is a field, absolute otherwise)

Note: The coefficients will lie in the ring of integers of the maximal unramified subextension.

INPUT:

- n – integer (default None). If given, returns the coefficient of p^n in the expansion.

EXAMPLES:

For fields, the expansion starts at the valuation:
```python
sage: R = Qp(5,5); list(R(70).teichmuller_expansion())
[4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5),
 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4),
 2 + 5 + 2*5^2 + O(5^3),
 1 + O(5^2),
 4 + O(5)]
```

But if you specify \(n\), you get the coefficient of \(\pi^n\):

```python
sage: R(70).teichmuller_expansion(2)
3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4)
```

unit_part()

Returns the unit part of this element.

This is the \(p\)-adic element \(u\) in the same ring so that this element is \(\pi^nu\), where \(\pi\) is a uniformizer and \(v\) is the valuation of this element.

EXAMPLES:

```python
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(125)
sage: (5*a).unit_part()
a + O(5^20)
```

`sage.rings.padics.padic_fixed_mod_element.unpickle_fme_v2(cls, parent, value)`

Unpickles a fixed-mod element.

EXAMPLES:

```python
sage: from sage.rings.padics.padic_fixed_mod_element import pAdicFixedModElement,
˓→unpickle_fme_v2
sage: R = ZpFM(5)
sage: a = unpickle_fme_v2(pAdicFixedModElement, R, 17*25); a
2*5^2 + 3*5^3
sage: a.parent() is R
True
```
A common superclass for all elements of extension rings and field of \mathbb{Z}_p and \mathbb{Q}_p.

AUTHORS:
- David Roe (2007): initial version
- Julian Rueth (2012-10-18): added residue

```python
class sage.rings.padics.padic_ext_element.pAdicExtElement
    Bases: pAdicGenericElement

frobenius (arithmetic=True)
    Return the image of this element under the Frobenius automorphism applied to its parent.

    INPUT:
    - arithmetic -- whether to apply the arithmetic Frobenius (acting by raising to the $p$-th power on the 
      residue field). If False is provided, the image of geometric Frobenius (raising to the $(1/p)$-th power on the 
      residue field) will be returned instead.

    EXAMPLES:
    sage: R.<a> = Zq(5^4,3)
    sage: a.frobenius()
    (a^3 + a^2 + 3*a) + (3*a + 1)*5 + (2*a^3 + 2*a^2 + 2*a)*5^2 + O(5^3)
    sage: f = R.defining_polynomial()
    sage: f(a)
    O(5^3)
    sage: f(a.frobenius())
    O(5^3)
    sage: for i in range(4): a = a.frobenius()
    sage: a
    a + O(5^3)
    sage: K.<a> = Qq(7^3,4)
    sage: b = (a+1)/7
    sage: c = b.frobenius(); c
    (3*a^2 + 5*a + 1)*7^-1 + (6*a^2 + 6*a + 6) + (4*a^2 + 3*a + 4)*7 + (6*a^2 + a_...
    + 6)*7^2 + O(7^3)
    sage: c.frobenius().frobenius()
    (a + 1)*7^-1 + O(7^3)
    ``
```

An error will be raised if the parent of self is a ramified extension:

```python
sage: x = polygen(ZZ, 'x')
```

(continues on next page)
residue(absprec=1, field=None, check_prec=True)

Reduces this element modulo π^{absprec}.

INPUT:

- absprec – a non-negative integer (default: 1)
- field – boolean (default None). For precision 1, whether to return an element of the residue field or a residue ring. Currently unused.
- check_prec – boolean (default True). Whether to raise an error if this element has insufficient precision to determine the reduction. Errors are never raised for fixed-mod or floating-point types.

OUTPUT:

This element reduced modulo π^{absprec}.

If absprec is zero, then as an element of $\mathbb{Z}/(1)$.

If absprec is one, then as an element of the residue field.

Note: Only implemented for absprec less than or equal to one.

AUTHORS:

- Julian Rueth (2012-10-18): initial version

EXAMPLES:

Unramified case:

```
sage: # needs sage.libs.flint
sage: R = ZpCA(3,5)
sage: S.<a> = R[]
sage: W.<a> = R.extension(a^2 + 9*a + 1)
sage: (a + 1).residue(1)
a0 + 1
sage: a.residue(2)
Traceback (most recent call last):
...  
NotImplementedError: reduction modulo $p^n$ with $n>1$
```

Eisenstein case:

```
sage: R = ZpCA(3,5)
sage: S.<a> = R[]
sage: W.<a> = R.extension(a^2 + 9*a + 3)
sage: (a + 1).residue(1)
1
sage: a.residue(2)
Traceback (most recent call last):
...
```

(continues on next page)
NotImplementedError: residue() not implemented in extensions for absprec larger than one
A common superclass implementing features shared by all elements that use NTL’s \(\mathbb{Z}_p \) as the fundamental data type.

AUTHORS:

- David Roe

class sage.rings.padics.padic_ZZ_pX_element.pAdicZZpXElement

Bases: pAdicExtElement

Initialization

EXAMPLES:

```python
sage: A = Zp(next_prime(50000),10)
sage: S.<x> = A[]
sage: B.<t> = A.ext(x^2 + next_prime(50000))  # indirect doctest
```

norm(base=None)

Return the absolute or relative norm of this element.

Note: This is not the \(p \)-adic absolute value. This is a field theoretic norm down to a ground ring. If you want the \(p \)-adic absolute value, use the \(\text{abs}() \) function instead.

If `base` is given then `base` must be a subfield of the parent \(L \) of `self`, in which case the norm is the relative norm from \(L \) to `base`.

In all other cases, the norm is the absolute norm down to \(\mathbb{Q}_p \) or \(\mathbb{Z}_p \).

EXAMPLES:

```python
sage: R = ZpCR(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: ((1+2*w)^5).norm()  # indirect doctest
1 + 5^2 + O(5^5)
sage: ((1+2*w)).norm().norm()^5
1 + 5^2 + O(5^5)
```

trace(base=None)

Return the absolute or relative trace of this element.

If `base` is given then `base` must be a subfield of the parent \(L \) of `self`, in which case the norm is the relative norm from \(L \) to `base`.
In all other cases, the norm is the absolute norm down to \(\mathbb{Q}_p \) or \(\mathbb{Z}_p \).

EXAMPLES:

```
sage: R = ZpCR(5, 5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = (2+3*w)^7
sage: b = (6+w^3)^5
sage: a.trace()
3*5 + 2*5^2 + 3*5^3 + 2*5^4 + O(5^5)
sage: a.trace() + b.trace()
4*5 + 5^2 + 5^3 + 2*5^4 + O(5^5)
sage: (a+b).trace()
4*5 + 5^2 + 5^3 + 2*5^4 + O(5^5)
```
This file implements elements of Eisenstein and unramified extensions of \mathbb{Z}_p and \mathbb{Q}_p with capped relative precision.

For the parent class see *sage.rings.padics.padic_extension_leaves*.

The underlying implementation is through NTL’s \mathbb{Z}_p class. Each element contains the following data:

- **ordp (long)** – A power of the uniformizer to scale the unit by. For unramified extensions this uniformizer is p, for Eisenstein extensions it is not. A value equal to the maximum value of a `long` indicates that the element is an exact zero.

- **relprec (long)** – A signed integer giving the precision to which this element is defined. For nonzero `relprec`, the absolute value gives the power of the uniformizer modulo which the unit is defined. A positive value indicates that the element is normalized (i.e., the unit is actually a unit: in the case of Eisenstein extensions the constant term is not divisible by p, in the case of unramified extensions that there is at least one coefficient that is not divisible by p). A negative value indicates that the element may or may not be normalized. A zero value indicates that the element is zero to some precision. If so, `ordp` gives the absolute precision of the element. If `ordp` is greater than maxordp, then the element is an exact zero.

- **unit (ZZ_pX_c)** – An ntl \mathbb{Z}_pX storing the unit part. The variable x is the uniformizer in the case of Eisenstein extensions. If the element is not normalized, the `unit` may or may not actually be a unit. This \mathbb{Z}_pX is created with global ntl modulus determined by the absolute value of `relprec`. If `relprec` is 0, `unit` is not initialized, or destructed if normalized and found to be zero. Otherwise, let r be `relprec` and e be the ramification index over \mathbb{Q}_p or \mathbb{Z}_p. Then the modulus of `unit` is given by $p^{\lceil r/e \rceil}$. Note that all kinds of problems arise if you try to mix moduli. `$\mathbb{Z}_pXConvModulus` gives a semi-safe way to convert between different moduli without having to pass through \mathbb{Z}_pX.

- **prime_pow** (some subclass of `PowComputer_ZZ_pX`) – A class, identical among all elements with the same parent, holding common data.

 - `prime_pow.deg` – The degree of the extension
 - `prime_pow.e` – The ramification index
 - `prime_pow.f` – The inertia degree
 - `prime_pow.prec_cap` – the unramified precision cap. For Eisenstein extensions this is the smallest power of p that is zero.
 - `prime_pow.ram_prec_cap` – the ramified precision cap. For Eisenstein extensions this will be the smallest power of x that is indistinguishable from zero.
 - `prime_pow.pow_ZZ_t`, `prime_pow.pow_mpz_t`, `prime_pow.pow_Integer` – functions for accessing powers of p. The first two return pointers. See *sage.rings.padics.pow_computer_ext* for examples and important warnings.
- prime_pow.get_context, prime_pow.get_context_capdiv, prime_pow.get_top_context — obtain an ntl_ZZ_pContext_class corresponding to p^n. The capdiv version divides by prime_pow.e as appropriate. top_context corresponds to $p^{\text{prec_cap}}$.

- prime_pow.restore_context, prime_pow.restore_context_capdiv, prime_pow.restore_top_context — restores the given context.

- prime_pow.get_modulus, get_modulus_capdiv, get_top_modulus — Returns a ZZ_pX_Modulus_c* pointing to a polynomial modulus defined modulo p^n (appropriately divided by prime_pow.e in the capdiv case).

EXAMPLES:

An Eisenstein extension:

```python
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f); W
5-adic Eisenstein Extension Ring in w defined by x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: z = (1+w)^5; z
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 + ...
-4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: y = z >> 1; y
w^4 + w^5 + 2*w^6 + 4*w^7 + 3*w^9 + w^11 + 4*w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 ...
-4*w^19 + w^20 + 4*w^23 + O(w^24)
sage: y.valuation()
4
sage: y.precision_relative()
20
sage: y.precision_absolute()
24
sage: z - (y << 1)
1 + O(w^25)
sage: (1/w)^12+w
w^-12 + w + O(w^13)
sage: (1/w).parent()
5-adic Eisenstein Extension Field in w defined by x^5 + 75*x^3 - 15*x^2 + 125*x - 5
```

Unramified extensions:

```python
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: z = (1+a)^5; z
(2*a^2 + 4*a) + (3*a^2 + 3*a + 1)*5 + (4*a^2 + 3*a + 4)*5^2 + (4*a^2 + 4*a + 4)*5^3 + ...
-4*a^2 + 4*a + 4)*5^4 + O(5^5)
sage: z - 1 - 5*a - 10*a^2 - 10*a^3 - 5*a^4 - a^5
0(5^5)
sage: y = z >> 1; y
(3*a^2 + 3*a + 1) + (4*a^2 + 3*a + 4)*5 + (4*a^2 + 4*a + 4)*5^2 + (4*a^2 + 4*a + 4)*5^3 + ...
-3 + 0(5^4)
sage: 1/a
(3*a^2 + 4) + (a^2 + 4)*5 + (3*a^2 + 4)*5^2 + (a^2 + 4)*5^3 + (3*a^2 + 4)*5^4 + O(5^5)
sage: FFP = R.residue_field()
sage: R(FFp(3))
3 + O(5)
sage: QQq.<zz> = Qq(25,4)
sage: QQq(FFp(3))
3 + O(5)
```

(continues on next page)
Different printing modes:

```python
sage: R = Zp(5, print_mode='digits'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5; W.<w> = R.ext(f)
sage: z = (1+w)^5; repr(z)
'...
+4110403113210310442213112420001110112011020020233032143320112144032320131440014044444103042110000...
'
sage: R = Zp(5, print_mode='bars'); S.<x> = R[]; g = x^3 + 3*x + 3; A.<a> = R.ext(g)
sage: z = (1+a)^5; repr(z)
'...[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]...
[4, 4, 4]|[4, 4, 4]|[4, 3, 4]|[1, 3, 3]|[0, 4, 2]
'
sage: R = Zp(5, print_mode='terse'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5; W.<w> = R.ext(f)
sage: z = (1+w)^5; z
6 + 95367431640505*w + 25*w^2 + 95367431640560*w^3 + 5*w^4 + O(w^100)
sage: R = Zp(5, print_mode='val-unit'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5; W.<w> = R.ext(f)
sage: y = (1+w)^5 - 1; y
w^5 * (2090041 + 19073486126901*w + 1258902*w^2 + 674*w^3 + 16785*w^4) + O(w^100)
```

You can get at the underlying ntl unit:

```python
sage: z._ntl_rep()
[6 95367431640505 25 95367431640560 5]
sage: y._ntl_rep()
[2090041 19073486126901 1258902 674 16785]
sage: y._ntl_rep_abs()
([5 95367431640505 25 95367431640560 5], 0)
```

Note: If you get an error `internal error: can't grow this _ntl_gbigint`, it indicates that moduli are being mixed inappropriately somewhere.

For example, when calling a function with a `ZZ_pX_c` as an argument, it copies. If the modulus is not set to the modulus of the `ZZ_pX_c`, you can get errors.

AUTHORS:

- David Roe (2008-01-01): initial version
- Robert Harron (2011-09): fixes/enhancements
- Julian Rueth (2014-05-09): enable caching through `_cache_key`

```python
sage.rings.padics.padic_ZZ_pX_CR_element.make_ZZpXCRElement(parent, unit, ordp, relprec, version)
```

Unpickling.

EXAMPLES:
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: y = W(775, 19); y
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
sage: loads(dumps(y)) # indirect doctest
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)

sage: from sage.rings.padics.padic_ZZ_pX_CR_element import make_ZZpXCRElement
sage: make_ZZpXCRElement(W, y._ntl_rep(), 3, 9, 0)
w^3 + 4*w^5 + 2*w^7 + w^8 + 2*w^9 + 4*w^10 + w^11 + O(w^12)

class sage.rings.padics.padic_ZZ_pX_CR_element.pAdicZZpXCRElement

Bases: pAdicZZpXElement

Creates an element of a capped relative precision, unramified or Eisenstein extension of \(\mathbb{Z}_p \) or \(\mathbb{Q}_p \).

INPUT:

- parent – either an EisensteinRingCappedRelative or UnramifiedRingCappedRelative
- x – an integer, rational, \(p \)-adic element, polynomial, list, integer_mod, pari int/frac/poly_t/pol_mod, an ntl_ZZ_pX, an ntl_ZZ, an ntl_ZZ_p, an ntl_ZZX, or something convertible into parent.residue_field()
- absprec – an upper bound on the absolute precision of the element created
- relprec – an upper bound on the relative precision of the element created
- empty – whether to return after initializing to zero (without setting the valuation).

EXAMPLES:

sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: z = (1+w)^5; z
indirect doctest
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16
˓→ 4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: W(pari('3 + O(5^3)'))
3 + O(w^15)
sage: W(R(3,3))
3 + O(w^15)
sage: W.<w> = R.ext(x^625 + 915*x^17 - 95)
sage: W(3)
3 + O(w^3125)
sage: W<w> = R.ext(x^625 + 915*x^17 - 95)
sage: W(3)
3 + O(w^14)
w + O(w^14)

def expansion(self, n=None, lift_mode='simple')

Return a list giving a series representation of self.

- If lift_mode == 'simple' or 'smallest', the returned list will consist of integers (in the Eisenstein case) or a list of lists of integers (in the unramified case). self can be reconstructed as a sum of elements of the list times powers of the uniformiser (in the Eisenstein case), or as a sum of powers of the \(p \) times polynomials in the generator (in the unramified case).
- If \texttt{lift_mode} == 'simple', all integers will be in the interval \([0, p - 1]\).
- If \texttt{lift_mode} == 'smallest' they will be in the interval \([(1 - p)/2, p/2]\).

 • If \texttt{lift_mode} == 'teichmuller', returns a list of \texttt{pAdicZZpXCRElements}, all of which are Teichmüller representatives and such that \texttt{self} is the sum of that list times powers of the uniformizer.

Note that zeros are truncated from the returned list if \texttt{self.parent()} is a field, so you must use the \texttt{valuation} function to fully reconstruct \texttt{self}.

INPUT:

 • \texttt{n} – integer (default \texttt{None}). If given, returns the corresponding entry in the expansion.

EXAMPLES:

```python
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: y = W(775, 19); y
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
sage: (y>>9).expansion()
[0, 1, 0, 4, 0, 2, 1, 2, 4, 1]
sage: (y>>9).expansion(lift_mode='smallest')
[0, 1, 0, -1, 0, 2, 1, 2, 0, 1]
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: y = 75 + 45*a + 1200*a^2; y
4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4 + O(5^6)
sage: E = y.expansion(); E
5-adic expansion of 4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4 + O(5^6)
sage: list(E)
[[], [0, 4], [3, 1, 3], [0, 0, 4], [0, 0, 1], []]
sage: list(y.expansion(lift_mode='smallest'))
[[], [0, -1], [-2, 2, -2], [1], [0, 0, 2], []]
sage: 5*((-2*5 + 25) + (-1 + 2*5)*a + (-2*5 + 2*125)*a^2)
4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4 + O(5^6)
sage: list(W(0).expansion())
[]
sage: list(W(0,4).expansion())
[]
sage: list(A(0,4).expansion())
[]
```

\textbf{is_equal_to} (\texttt{right}, \texttt{absprec=None})

Return whether this element is equal to \texttt{right} modulo \texttt{self.uniformizer()}^\texttt{absprec}.

If \texttt{absprec} is \texttt{None}, checks whether this element is equal to \texttt{right} modulo the lower of their two precisions.

EXAMPLES:

```python
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(47); b = W(47 + 25)
```
is_zero(absprec=None)
Return whether this element is at least absprec. If absprec is None, checks if this element is indistinguishable from zero.
If this element is an inexact zero of valuation less than absprec, raises a PrecisionError.

EXAMPLES:

```
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = w^189
sage: O(a).is_zero()  # absprec=None
True
sage: W(0).is_zero()  # absprec=None
True
sage: a = W(675)
sage: a.is_zero()  # absprec=None
False
sage: a.is_zero(7)  # absprec=7
True
sage: a.is_zero(21)  # absprec=21
False
```

lift_to_precision(absprec=None)
Return a \(p \)-adic \(\ZZ_p \) \(X \) CRElement congruent to this element but with absolute precision at least absprec.

INPUT:
- absprec – (default None) the absolute precision of the result. If None, lifts to the maximum precision allowed.

Note: If setting absprec that high would violate the precision cap, raises a precision error. If self is an inexact zero and absprec is greater than the maximum allowed valuation, raises an error.

Note that the new digits will not necessarily be zero.

EXAMPLES:

```
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(345, 17); a
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + O(w^17)
sage: b = a.lift_to_precision(19); b
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + w^17 + 2*w^18 + O(w^19)
sage: c = a.lift_to_precision(24); c
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + O(w^25)
```

(continues on next page)
matrix_mod_pn()

Return the matrix of right multiplication by the element on the power basis 1, 𝑥, 𝑥^2, ..., 𝑥^{d−1} for this extension field. Thus the rows of this matrix give the images of each of the 𝑥^i. The entries of the matrices are IntegerMod elements, defined modulo 𝑝^N/𝑒 where 𝑁 is the absolute precision of this element (unless this element is zero to arbitrary precision; in that case the entries are integer zeros.)

Raises an error if this element has negative valuation.

EXAMPLES:

```sage
sage: R = ZpCR(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = (3+w)^7
sage: a.matrix_mod_pn()
[2757 333 1068 725 2510]
[ 50 1507 483 318 725]
[ 500 50 3007 2358 318]
[1590 1375 1695 1032 2358]
[2415 590 2370 2970 1032]
```

polynomial(var='x')

Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

INPUT:

- var – string, the variable name for the polynomial

EXAMPLES:

```sage
sage: S.<x> = ZZ[]
sage: W.<w> = Zp(5).extension(x^2 - 5)
sage: (w + W(5, 7)).polynomial()
(1 + O(5^3))*x + 5 + O(5^4)
```

precision_absolute()

Return the absolute precision of this element, i.e., the power of the uniformizer modulo which this element is defined.

EXAMPLES:

```sage
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
```
3*w^10 + 2*w^12 + w^14 + w^16 + 3*w^18 + O(w^19)

sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)

sage: (a.unit_part() - 3).precision_absolute()
9

precision_relative()

Return the relative precision of this element, i.e., the power of the uniformizer modulo which the unit part of self is defined.

EXAMPLES:

sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + 3*w^18 + O(w^19)

sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)

teichmuller_expansion(n=None)

Return a list \([a_0, a_1, \ldots, a_n]\) such that

- \(a_i = a_i\)
- \(\text{self.unit_part()} = \sum_{i=0}^{n} a_i \pi^i\), where \(\pi\) is a uniformizer of \(\text{self.parent()}\)
- if \(a_i \neq 0\), the absolute precision of \(a_i\) is \(\text{self.precision_relative()} - i\)

INPUT:

- \(n\) – integer (default None). If given, returns the corresponding entry in the expansion.

EXAMPLES:

sage: R.<a> = ZqCR(5^4,4)
sage: E = a.teichmuller_expansion(); E
5-adic expansion of a + O(5^4) (teichmuller)
sage: list(E)
[a + (2*a^3 + 2*a^2 + 3*a + 4)*5 + (4*a^3 + 3*a^2 + 3*a + 2)*5^2
 + (4*a^2 + 2*a + 2)*5^3 + O(5^4),
 (3*a^3 + 3*a^2 + 2*a + 1) + (a^3 + 4*a^2 + 1)*5 + (a^2 + 4*a + 4)*5^2 + O(5^→3),
 (4*a^3 + 2*a^2 + a + 1) + (2*a^3 + 2*a^2 + 2*a + 4)*5 + O(5^2),
 (a^3 + a^2 + a + 4) + O(5)]
sage: sum([c * 5^i for i, c in enumerate(E)])
a + O(5^4)
sage: all(c^625 == c for c in E)
True

sage: S.<x> = ZZ[]
sage: f = x^3 - 98*x + 7
sage: W.<w> = ZpCR(7,3).ext(f)
sage: b = (1+w)^5; L = b.teichmuller_expansion(); L
[1 + O(w^9), 5 + 5*w^3 + w^6 + 4*w^7 + O(w^8), 3 + 3*w^3 + O(w^7),
 3 + 3*w^3 + 0(w^6), 0(w^5), 4 + 5*w^3 + 0(w^4), 3 + 0(w^3),
 6 + 0(w^2), 6 + 0(w)]
sage: sum([w^i*L[i] for i in range(9)]) == b
True
sage: all(L[i]^(7^3) == L[i] for i in range(9))
True

sage: L = W(3).teichmuller_expansion(); L
[3 + 3*w^3 + w^7 + O(w^9), O(w^8), O(w^7), 4 + 5*w^3 + O(w^6),
 0(w^5), 0(w^4), 3 + 0(w^3), 6 + 0(w^2)]
sage: sum([w^i*L[i] for i in range(len(L))])
3 + O(w^9)

unit_part()

Return the unit part of this element, i.e. self / uniformizer^(self.valuation()).

EXAMPLES:

sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
Chapter 19. p-adic $\mathbb{Z}_p X$ CR Element
This file implements elements of Eisenstein and unramified extensions of \(\mathbb{Z}_p\) with capped absolute precision.

For the parent class see `padic_extension_leaves.pyx`.

The underlying implementation is through NTL’s `ZZ_pX` class. Each element contains the following data:

- **absprec** (long) – An integer giving the precision to which this element is defined. This is the power of the uniformizer modulo which the element is well defined.

- **value** (`ZZ_pX_c`) – An ntl `ZZ_pX` storing the value. The variable \(x\) is the uniformizer in the case of Eisenstein extensions. This `ZZ_pX` is created with global ntl modulus determined by `absprec`. Let \(a\) be `absprec` and \(e\) be the ramification index over \(\mathbb{Q}_p\) or \(\mathbb{Z}_p\). Then the modulus is given by \(p^{cei(a/e)}\). Note that all kinds of problems arise if you try to mix moduli. `ZZ_pX.conv_modulus` gives a semi-safe way to convert between different moduli without having to pass through ZZX.

- **prime_pow** (some subclass of `PowComputer_ZZ_pX`) – a class, identical among all elements with the same parent, holding common data.

 - `prime_pow.deg` – The degree of the extension
 - `prime_pow.e` – The ramification index
 - `prime_pow.f` – The inertia degree
 - `prime_pow.prec_cap` – the unramified precision cap. For Eisenstein extensions this is the smallest power of \(p\) that is zero.
 - `prime_pow.ram_prec_cap` – the ramified precision cap. For Eisenstein extensions this will be the smallest power of \(x\) that is indistinguishable from zero.
 - `prime_pow.pow_ZZ_tmp`, `prime_pow.pow_mmpz_t_tmp`, `prime_pow.pow_Integer` – functions for accessing powers of \(p\). The first two return pointers. See `sage/rings/padics/pow_computer_ext` for examples and important warnings.
 - `prime_pow.get_context`, `prime_pow.get_context_capdiv`, `prime_pow.get_top_context` – obtain an ntl `ZZ_pContext_class` corresponding to \(p^n\). The capdiv version divides by `prime_pow.e` as appropriate. `top_context` corresponds to \(p^{\text{prec_cap}}\).
 - `prime_pow.restore_context`, `prime_pow.restore_context_capdiv`, `prime_pow.restore_top_context` – restores the given context.
 - `prime_pow.get_modulus`, `get_modulus_capdiv`, `get_top_modulus` – Returns a `ZZ_pModulus_c*` pointing to a polynomial modulus defined modulo \(p^n\) (appropriately divided by `prime_pow.e` in the capdiv case).

EXAMPLES:

An Eisenstein extension:
```python
sage: R = ZpCA(5, 5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f); W
5-adic Eisenstein Extension Ring in w defined by x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: z = (1+w)^5; z
1 + w^5 + 2*w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15
+ 4*w^16 + 4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: y = z >> 1; y
w^4 + w^5 + 2*w^6 + 4*w^7 + 3*w^9 + w^11 + 4*w^12 + 4*w^13 + 4*w^14 + 4*w^15
+ 4*w^16 + 4*w^19 + w^20 + 4*w^23 + O(w^24)
sage: y.valuation()
4
sage: y.precision_relative()
20
sage: y.precision_absolute()
24
sage: z - (y << 1)
1 + O(w^25)
sage: (1/w)^12+w
w^-12 + w + O(w^12)
```

An unramified extension:

```python
sage: # needs sage.libs.flint
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: z = (1+a)^5; z
(2*a^2 + 4*a) + (3*a^2 + 3*a + 1)*5 + (4*a^2 + 3*a + 4)*5^2
+ (4*a^2 + 4*a + 4)*5^3 + (4*a^2 + 4*a + 4)*5^4 + O(5^5)
sage: z - 1 - 5*a - 10*a^2 - 10*a^3 - 5*a^4 - a^5
0(5^5)
sage: y = z >> 1; y
(3*a^2 + 3*a + 1) + (4*a^2 + 3*a + 4)*5 + (4*a^2 + 4*a + 4)*5^2
+ (4*a^2 + 4*a + 4)*5^3 + O(5^4)
sage: 1/a
(3*a^2 + 4) + (a^2 + 4)*5 + (3*a^2 + 4)*5^2 + (a^2 + 4)*5^3 + (3*a^2 + 4)*5^4 + O(5^5)
sage: FFA = A.residue_field()
sage: a0 = FFA.gen(); A(a0^3)
(2*a + 2) + O(5)
```

Different printing modes:

```python
sage: # needs sage.libs.flint
sage: R = ZpCA(5, print_mode='digits'); S.<x> = ZZ[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: z = (1+w)^5; repr(z)
'...
411040311320104220131124200011101120100202330321433201121440323201314400140044441030421100001...

sage: R = ZpCA(5, print_mode='bars'); S.<x> = ZZ[]; g = x^3 + 3*x + 3; A.<a> = R.

sage: z = (1+a)^5; repr(z)
'...
[4, 4, 4],[4, 4, 4],[4, 4, 4],[4, 4, 4],[4, 4, 4],[4, 4, 4],[4, 4, 4],[4, 4, 4],[4, 4, 4],[4, 4, 4],[4, 4, 4],[4, 4, 4],[4, 4, 4]
```

(continues on next page)
\[\begin{align*} -4) &\cdot [4, 4, 4] \cdot [4, 3, 4] \cdot [1, 3, 3] \cdot [0, 4, 2] \\
\text{sage: } &R = \text{ZpCA}(5, \text{print_mode}=\text{terse}); S.\langle x \rangle = \text{ZZ}[x]; f = x^5 + 75x^3 - 15x^2 + 125x - 5; W.\langle w \rangle = R.\text{ext}(f) \\
\text{sage: } &z = (1+w)^5; z \\
&= 6 + 95367431640505*w + 25*w^2 + 95367431640560*w^3 + 5*w^4 + O(w^{100}) \\
\text{sage: } &R = \text{ZpCA}(5, \text{print_mode}=\text{val-unit}); S.\langle x \rangle = \text{ZZ}[x]; f = x^5 + 75x^3 - 15x^2 + 125x - 5; W.\langle w \rangle = R.\text{ext}(f) \\
\text{sage: } &y = (1+w)^5 - 1; y \\
&= w^5 * (2090041 + 19073486126901*w + 1258902*w^2 + 674*w^3 + 16785*w^4) + O(w^{100}) \\
\end{align*} \]

You can get at the underlying ntl representation:

\[
\text{sage: } # \text{ needs sage.libs.flint} \\
\text{sage: } z._\text{ntl_rep}() \\
[6 95367431640505 25 95367431640560 5] \\
\text{sage: } y._\text{ntl_rep}() \\
[5 95367431640505 25 95367431640560 5] \\
\text{sage: } y._\text{ntl_rep_abs}() \\
([5 95367431640505 25 95367431640560 5], 0)
\]

Note: If you get an error \texttt{internal error: can't grow this _ntl_gbigint}, it indicates that moduli are being mixed inappropriately somewhere.

For example, when calling a function with a \texttt{ZZ_pX_c} as an argument, it copies. If the modulus is not set to the modulus of the \texttt{ZZ_pX_c}, you can get errors.

AUTHORS:

- David Roe (2008-01-01): initial version
- Robert Harron (2011-09): fixes/enhancements
- Julian Rueth (2012-10-15): fixed an initialization bug

\texttt{sage.rings.padics.padic_ZZ_pX_CA_element.make_ZZpXCAElement} \texttt{(parent, value, absprec, version)}

For pickling. Makes a \texttt{pAdicZZpXCAElement} with given parent, value, absprec.

EXAMPLES:

\[
\text{sage: from sage.rings.padics.padic_ZZ_pX_CA_element import make_ZZpXCAElement} \\
\text{sage: } R = \text{ZpCA}(5,5) \\
\text{sage: } S.\langle x \rangle = \text{ZZ}[x] \\
\text{sage: } f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5 \\
\text{sage: } W.\langle w \rangle = R.\text{ext}(f) \\
\text{sage: } \text{make_ZZpXCAElement}(W, \text{ntl.\texttt{ZZ_pX}}([3,2,4],5^3),13,0) \\
\]

\[3 + 2*w + 4*w^2 + 0(w^{13})\]

\texttt{class sage.rings.padics.padic_ZZ_pX_CA_element_pAdicZZpXCAElement}

\texttt{Bases: pAdicZZpXElement}

Creates an element of a capped absolute precision, unramified or Eisenstein extension of \(\mathbb{Z}_p \) or \(\mathbb{Q}_p \).

INPUT:

- \texttt{parent} – either an \texttt{EisensteinRingCappedAbsolute} or \texttt{UnramifiedRingCappedAbsolute}
• x – an integer, rational, p-adic element, polynomial, list, integer_mod, pari int/frac/poly_t/pol_mod, an ntl_ZZ_pX, an ntl_ZZ, an ntl_ZZ_p, an ntl_ZZX, or something convertible into parent.residue_field()

• absprec – an upper bound on the absolute precision of the element created

• relprec – an upper bound on the relative precision of the element created

• empty – whether to return after initializing to zero.

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: z = (1+w)^5; z  # indirect doctest
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15
 + 4*w^16 + 4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: W(R(3,3))
3 + O(w^15)
sage: W(pari(3 + O(5^3)))
3 + O(w^15)
sage: W(w, 14)
w + O(w^14)
```

expansion *(n=None, lift_mode='simple')*

Return a list giving a series representation of self.

• If lift_mode == 'simple' or 'smallest', the returned list will consist of integers (in the Eisenstein case) or a list of lists of integers (in the unramified case). self can be reconstructed as a sum of elements of the list times powers of the uniformiser (in the Eisenstein case), or as a sum of powers of p times polynomials in the generator (in the unramified case).

 - If lift_mode == 'simple', all integers will be in the interval $[0, p - 1]$

 - If lift_mode == 'smallest' they will be in the interval $[(1 - p)/2, p/2]$.

• If lift_mode == 'teichmuller', returns a list of pAdicZZpXCAElements, all of which are Teichmuller representatives and such that self is the sum of that list times powers of the uniformizer.

INPUT:

• n – integer (default None). If given, returns the corresponding entry in the expansion.

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: y = W(775, 19); y
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
sage: (y<<9).expansion()
[0, 1, 0, 4, 0, 2, 1, 2, 4, 1]
sage: (y<<9).expansion(lift_mode='smallest')
[0, 1, 0, -1, 0, 2, 1, 2, 0, 1]
sage: g = x^3 + 3*x + 3
```

(continues on next page)
sage: # needs sage.libs.flint
sage: A.<a> = R.ext(q)
sage: y = 75 + 45*a + 1200*a^2; y
4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4 + O(5^5)
sage: E = y.expansion(); E
5-adic expansion of 4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4 + O(5^5)
sage: list(E)
[[], [0, 4], [3, 1, 3], [0, 0, 4], [0, 0, 1]]
sage: list(y.expansion(lift_mode='smallest'))
[[], [0, -1], [-2, 2, -2], [1], [0, 0, 2]]
sage: 5*((-2*5 + 25) + (-1 + 2*5)*a + (-2*5 + 2*125)*a^2)
4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4 + O(5^5)
sage: W(0).expansion()
[]
sage: list(A(0,4).expansion())
[]

Check that github issue #25879 has been resolved:

```python
sage: K = ZpCA(3,5)
sage: R.<a> = K[]
sage: L.<a> = K.extension(a^2 - 3)
sage: a.residue()
0
```

is_equal_to (right, absprec=None)

Returns whether self is equal to right modulo self.uniformizer()^absprec.

If absprec is None, returns if self is equal to right modulo the lower of their two precisions.

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(47); b = W(47 + 25)
sage: a.is_equal_to(b)
False
sage: a.is_equal_to(b, 7)
True
```

is_zero (absprec=None)

Return whether the valuation of self is at least absprec.

If absprec is None, returns if self is indistinguishable from zero.

If self is an inexact zero of valuation less than absprec, raises a PrecisionError.

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: O(w^189).is_zero()
True
sage: W(0).is_zero()
```

(continues on next page)
True

```python
sage: a = W(675)
sage: a.is_zero()
False
sage: a.is_zero(7)
True
sage: a.is_zero(21)
False
```

lift_to_precision *(absprec=None)*

Returns a pAdicZZpXCAElement congruent to self but with absolute precision at least absprec.

INPUT:

- `absprec` *(default None)* the absolute precision of the result. If None, lifts to the maximum precision allowed.

Note: If setting absprec that high would violate the precision cap, raises a precision error.

Note that the new digits will not necessarily be zero.

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(345, 17); a
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + O(w^→17)
sage: b = a.lift_to_precision(19); b  # indirect doctest
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + w^→17 + 2*w^18 + O(w^19)
sage: c = a.lift_to_precision(24); c
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + w^→17 + 2*w^18 + 4*w^19 + 4*w^20 + 2*w^21 + 4*w^23 + O(w^24)
sage: a._ntl_rep()
[345]
sage: b._ntl_rep()
[345]
sage: c._ntl_rep()
[345]
sage: a.lift_to_precision().precision_absolute() == W.precision_cap()
True
```

matrix_mod_pn()

Return the matrix of right multiplication by the element on the power basis \(1, x, x^2, \ldots, x^{d-1}\) for this extension field. Thus the rows of this matrix give the images of each of the \(x^i\). The entries of the matrices are IntegerMod elements, defined modulo \(p^{\text{absprec} / e}\).

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
(continues on next page)```
sage: a = (3+w)^7
sage: a.matrix_mod_pn()  # needs sage.geometry.polyhedron
\[
\begin{pmatrix}
2757 & 333 & 1068 & 725 & 2510 \\
50 & 1507 & 483 & 318 & 725 \\
500 & 1068 & 1375 & 1695 & 1032 \\
1590 & 1375 & 1695 & 725 & 2510 \\
2415 & 590 & 2370 & 2970 & 1032
\end{pmatrix}
\]

\textbf{polynomial}(\textit{var}=’x’)  \\
Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

\textbf{INPUT:}

\begin{itemize}
\item \textit{var} – string, the variable name for the polynomial
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: S.<x> = ZZ[]
sage: W.<w> = ZpCA(5).extension(x^2 - 5)
sage: (w + W(5, 7)).polynomial()
(1 + O(5^3))*x + 5 + O(5^4)
\end{verbatim}

\textbf{precision\_absolute()}  \\
Returns the absolute precision of \textit{self}, i.e. the power of the uniformizer modulo which this element is defined.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute() 19
sage: a.precision_relative() 9
sage: a.unit_part() 3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
\end{verbatim}

\textbf{precision\_relative()}  \\
Returns the relative precision of \textit{self}, i.e. the power of the uniformizer modulo which the unit part of \textit{self} is defined.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
\end{verbatim}
 sage: a = QQpCA(5).uniformizer(); a
5-adic uniformizer (teichmuller)

 sage: L = a.teichmuller_expansion(); L
[5^2 + O(w), 0 + O(w^3), 4 + 5*w + O(w^2), 3 + O(w), 6 + O(w^2), 6 + O(w^2), 6 + O(w^2), 6 + O(w^2), 6 + O(w^2)]

 sage: sum([w^i*L[i] for i in range(len(L))])
3 + O(w^9)

 sage: all(L[i]^(5^3) == L[i] for i in range(9))
True

 sage: L = W(3).teichmuller_expansion(); L
[3 + 3*w^3 + w^7 + O(w^9), 0(w^8), 0(w^7), 4 + 5*w^3 + O(w^6), 0(w^5), O(w^4), 3 + O(w^3), 6 + O(w^2)]

 sage: sum([w^i*L[i] for i in range(len(L))])
3 + O(w^9)


to_fraction_field()

Returns self cast into the fraction field of self.parent().

EXAMPLES:
```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: z = (1 + w)^5; z
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15 +
4*w^16 + 4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: y = z.to_fraction_field(); y
indirect doctest
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15 +
4*w^16 + 4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: y.parent()
5-adic Eisenstein Extension Field in w defined by x^5 + 75*x^3 - 15*x^2 +
125*x - 5
```

**unit_part()**

Returns the unit part of `self`, i.e., `self / uniformizer^(self.valuation())`

**EXAMPLES:**

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
```
This file implements elements of Eisenstein and unramified extensions of $\mathbb{Z}_p$ with fixed modulus precision.

For the parent class see $\text{padic\_extension\_leaves.pyx}$.

The underlying implementation is through NTL’s $\mathbb{Z}_pX$ class. Each element contains the following data:

- **value ($\mathbb{Z}_pX_c$)** – An ntl $\mathbb{Z}_pX$ storing the value. The variable $x$ is the uniformizer in the case of Eisenstein extensions. This $\mathbb{Z}_pX$ is created with global ntl modulus determined by the parent’s precision cap and shared among all elements.

- **prime_pow (some subclass of PowComputer $\mathbb{Z}_pX$)** – a class, identical among all elements with the same parent, holding common data.
  - prime_pow.deg – the degree of the extension
  - prime_pow.e – the ramification index
  - prime_pow.f – the inertia degree
  - prime_pow.prec_cap – the unramified precision cap: for Eisenstein extensions this is the smallest power of $p$ that is zero
  - prime_pow.ram_prec_cap – the ramified precision cap: for Eisenstein extensions this will be the smallest power of $x$ that is indistinguishable from zero
  - prime_pow.pow_ZZ_tmp, prime_pow.pow_mpz_t_tmp`, prime_pow.pow_Integer – functions for accessing powers of $p$. The first two return pointers. See $\text{sage/rings/padics/pow\_computer\_ext}$ for examples and important warnings.
  - prime_pow.get_context, prime_pow.get_context_capdiv, prime_pow.get_top_context – obtain an ntl $\mathbb{Z}_p$Context class corresponding to $p^n$. The capdiv version divides by prime_pow.e as appropriate, top_context corresponds to $p^{\text{prec\_cap}}$.
  - prime_pow.restore_context, prime_pow.restore_context_capdiv, prime_pow.restore_top_context – restores the given context
  - prime_pow.get_modulus, get_modulus_capdiv, get_top_modulus – Returns a $\mathbb{Z}_pX$Modulus_c* pointing to a polynomial modulus defined modulo $p^n$ (appropriately divided by prime_pow.e in the capdiv case).

**EXAMPLES:**

An Eisenstein extension:

```plaintext
sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f); W
```

(continues on next page)
5-adic Eisenstein Extension Ring in \( w \) defined by \( x^5 + 75x^3 - 15x^2 + 125x - 5 \)

```python
sage: z = (1+w)^5; z
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 +
 4*w^17 + 4*w^20 + w^21 + 4*w^24
```

```python
sage: y = z >> 1; y
w^4 + w^5 + 2*w^6 + 4*w^7 + 3*w^9 + w^11 + 4*w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 +
 4*w^19 + w^20 + 4*w^23 + 4*w^24
```

```python
sage: y.valuation()
4
```

```python
sage: y.precision_relative()
21
```

```python
sage: y.precision_absolute()
25
```

```python
sage: z - (y << 1)
1
```

An unramified extension:

```python
sage: # needs sage.libs.flint
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
```

```python
sage: z = (1+a)^5; z
(2*a^2 + 4*a) + (3*a^2 + 3*a + 1)*5 + (4*a^2 + 2*3*a + 4)*5^2 + (4*a^2 + 2*4*a + 4)*5^3 +
 (4*a^2 + 4*a + 4)*5^4
```

```python
sage: z - 1 - 5*a - 10*a^2 - 10*a^3 - 5*a^4 - a^5
0
```

```python
sage: y = z >> 1; y
(3*a^2 + 3*a + 1) + (4*a^2 + 3*a + 4)*5 + (4*a^2 + 4*a + 4)*5^2 + (4*a^2 + 4*a + 4)*5^3 +
 (4*a^2 + 4*a + 4)*5^4
```

Different printing modes:

```python
sage: # needs sage.libs.flint
sage: R = ZpFM(5, print_mode='digits'); S.<x> = R[]
```

```python
sage: g = x^5 + 75*x^3 - 15*x^2 + 125*x - 5; W.<w> = R.ext(f)
```

```python
sage: z = (1+w)^5; repr(z)
...
```

```python
sage: R = ZpFM(5, print_mode='bars'); S.<x> = R[]
```

```python
sage: g = x^3 + 3*x + 3; A.<a> = R.ext(g)
```

```python
sage: z = (1+a)^5; repr(z)
...'...
```

```python
sage: R = ZpFM(5, print_mode='terse'); S.<x> = R[]
```

```python
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5; W.<w> = R.ext(f)
```

```python
sage: y = (1+w)^5 - 1; y
w^5 * (2090041 + 19073486126901*w + 1258902*w^2 + 57220458985049*w^3 + 16785*w^4)
```

AUTHORS:

- David Roe (2008-01-01) initial version
Create a new pAdicZpXElement out of an ntl_ZZ_pX f, with parent parent. For use with pickling.

EXAMPLES:

```python
sage: R = ZpFM(5, 5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: z = (1 + w)^5 - 1
sage: loads(dumps(z)) == z # indirect doctest
True
```

class sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZpXElement

Creates an element of a fixed modulus, unramified or eisenstein extension of \( \mathbb{Z}_p \) or \( \mathbb{Q}_p \).

INPUT:

- **parent** – either an EisensteinRingFixedMod or UnramifiedRingFixedMod
- **x** – an integer, rational, \( p \)-adic element, polynomial, list, integer_mod, pari int/frac/poly_t/pol_mod, an ntl_ZZ_pX, an ntl_ZZX, an ntl_ZZ, or an ntl_ZZ_p
- **absprec** – not used
- **relprec** – not used
- **empty** – whether to return after initializing to zero (without setting anything)

EXAMPLES:

```python
sage: R = Zp(7, 4, 'fixed-mod')
sage: a = R(1 + 7 + 7^2)
sage: a.add_bigoh(1)
1
```
\textbf{expansion} \((n=\text{None}, \text{lift_mode}='\text{simple}')\)

Return a list giving a series representation of this element.

- If \(\text{lift_mode} == '\text{simple}'\) or 'smallest', the returned list will consist of
  - integers (in the eisenstein case) or
  - lists of integers (in the unramified case).
- This element can be reconstructed as
  - a sum of elements of the list times powers of the uniformiser (in the eisenstein case), or
  - as a sum of powers of the \(p\) times polynomials in the generator (in the unramified case).
- If \(\text{lift_mode} == '\text{simple}'\), all integers will be in the range \([0, p - 1]\),
- If \(\text{lift_mode} == '\text{smallest}'\) they will be in the range \([(1 - p)/2, p/2]\).
- If \(\text{lift_mode} == '\text{teichmuller}'\), returns a list of \texttt{pAdicZZpXCRElements}, all of which are Teichmuller representatives and such that this element is the sum of that list times powers of the uniformizer.

\textbf{INPUT:}

- \(n\) – integer (default None); if given, returns the corresponding entry in the expansion

\textbf{EXAMPLES:}

```python
sage: R = ZpFM(5, 5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: y = W(775); y
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + w^20 + 2*w^21 + 3*w^22 + w^23 + w^24
sage: (y>>9).expansion()
[0, 1, 0, 4, 0, 2, 1, 2, 4, 1, 0, 1, 2, 3, 1, 4, 1, 2, 4, 1, 0, 0, 3]
sage: (y>>9).expansion(lift_mode='smallest')
[0, 1, 0, -1, 0, 2, 1, 2, 0, 1, 2, 1, 1, -1, -2, 0, -2, -2, 0, -2, 0, -2,...
 \rightarrow -2, 2)
sage: g = x^3 + 3*x + 3
sage: # needs sage.libs.flint
sage: A.<a> = R.ext(g)
sage: y = 75 + 45*a + 1200*a^2; y
4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4
sage: E = y.expansion(); E
5-adic expansion of 4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4
sage: list(E)
[[], [0, 4], [3, 1, 3], [0, 0, 4], [0, 0, 1]]
sage: list(y.expansion(lift_mode='smallest'))
[[], [0, -1], [2, -2], [1, 0, 0, 2]]
sage: 5*((-2*5 + 25) + (-1 + 2*5)*a + (-2*5 + 2*125)*a^2)
4*a*5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4
sage: W(0).expansion()
[]
```

(continues on next page)
Check that `github issue #25879` has been resolved:

```python
sage: K = ZpCA(3, 5)
sage: R.<a> = K[]
sage: L.<a> = K.extension(a^2 - 3)
sage: a.residue()
0
```

`is_equal_to(right, absprec=None)`

Return whether `self` is equal to `right` modulo `self.uniformizer()^absprec`.

If `absprec` is `None`, returns if `self` is equal to `right` modulo the precision cap.

**EXAMPLES:**

```python
sage: R = Zp(5, 5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(47); b = W(47 + 25)
sage: a.is_equal_to(b)
False
sage: a.is_equal_to(b, 7)
True
```

`is_zero(absprec=None)`

Return whether the valuation of `self` is at least `absprec`; if `absprec` is `None`, return whether `self` is indistinguishable from zero.

**EXAMPLES:**

```python
sage: R = ZpFM(5, 5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: O(w^189).is_zero()
True
sage: W(0).is_zero()
True
sage: a = W(675)
sage: a.is_zero() # False
sage: a.is_zero(7)
True
sage: a.is_zero(21)
False
```

`lift_to_precision(absprec=None)`

Return `self`.

**EXAMPLES:**

```python
sage: R = ZpFM(5, 5)
sage: S.<x> = R[]
```
matrix_mod_pn()

Return the matrix of right multiplication by the element on the power basis $1, x, x^2, \ldots, x^{d-1}$ for this extension field.

The rows of this matrix give the images of each of the $x^i$. The entries of the matrices are \texttt{IntegerMod} elements, defined modulo $p^{\text{self.absprec() / e}}$.

Raises an error if \texttt{self} has negative valuation.

EXAMPLES:

```python
sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = (3+w)^7
sage: a.matrix_mod_pn() # needs sage.geometry.polyhedron
[2757 333 1068 725 2510]
[50 1507 483 318 725]
[500 50 3007 2358 318]
[1590 1375 1695 1032 2358]
[2415 590 2370 2970 1032]
```

norm(base=None)

Return the absolute or relative norm of this element.

**Note:** This is not the $p$-adic absolute value. This is a field theoretic norm down to a ground ring.

If you want the $p$-adic absolute value, use the \texttt{abs()} function instead.

If $K$ is given then $K$ must be a subfield of the parent $L$ of \texttt{self}, in which case the norm is the relative norm from $L$ to $K$. In all other cases, the norm is the absolute norm down to $\mathbb{Q}_p$ or $\mathbb{Z}_p$.

EXAMPLES:

```python
sage: R = ZpCR(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: ((1+2*w)^5).norm()
1 + 5^2 + O(5^5)
sage: ((1+2*w)).norm()^5
1 + 5^2 + O(5^5)
```

polynomial(var='x')

Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

**INPUT:**

- \texttt{var} – string, the variable name for the polynomial
EXAMPLES:

```python
sage: S.<x> = ZZ[]
sage: W.<w> = ZpFM(5).extension(x^2 - 5)
sage: (w + 5).polynomial()
x + 5
```

**precision_absolute()**

Return the absolute precision of `self`, i.e., the precision cap of `self.parent()`.

EXAMPLES:

```python
sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + 3*w^19 + 2*w^21 + 3*w^22 + 3*w^23
sage: a.valuation()
10
sage: a.precision_absolute()
25
sage: a.precision_relative()
15
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + 3*w^9 + 2*w^11 + 3*w^12 + 3*w^13 + w^15 + 4*w^16 + 2*w^17 + w^18 + 3*w^21 + w^22 + 3*w^24
```

**precision_relative()**

Return the relative precision of `self`, i.e., the precision cap of `self.parent()` minus the valuation of `self`.

EXAMPLES:

```python
sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + 3*w^19 + 2*w^21 + 3*w^22 + 3*w^23
sage: a.valuation()
10
sage: a.precision_absolute()
25
sage: a.precision_relative()
15
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + 3*w^9 + 2*w^11 + 3*w^12 + 3*w^13 + w^15 + 4*w^16 + 2*w^17 + w^18 + 3*w^21 + w^22 + 3*w^24
```

**teichmuller_expansion** *(n=None)*

Return a list `[a_0, a_1, ..., a_n]` such that

- `a_i^q = a_i`
- `self.unit_part()` = `\sum_{i=0}^{n} a_i \pi^i`, where \( \pi \) is a uniformizer of `self.parent()`

INPUT:
• \( n \) – integer (default \( \text{None} \)); \( f \) given, returns the corresponding entry in the expansion

**EXAMPLES:**

```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(5^4,4)
sage: E = a.teichmuller_expansion(); E
5-adic expansion of a (teichmuller)
sage: list(E)
[a + (2*a^3 + 2*a^2 + 3*a + 4)*5 + (4*a^3 + 3*a^2 + 3*a + 2)*5^2 + (4*a^2 +
→ 2*a + 2)*5^3,
(3*a^3 + 3*a^2 + 2*a + 1) + (a^3 + 4*a^2 + 1)*5 + (a^2 + 4*a + 4)*5^2 + (4*a^2
→ 2 + a + 3)*5^3,
(4*a^3 + 2*a^2 + a + 1) + (2*a^3 + 2*a^2 + 2*a + 4)*5 + (3*a^3 + 2*a^2 + a +
→ 1)*5^2 + (a^3 + a^2 + 2)*5^3,
(a^3 + a^2 + a + 4) + (3*a^3 + 1)*5 + (3*a^3 + a + 2)*5^2 + (3*a^3 + 3*a^2 +
→ 3*a + 1)*5^3]
sage: sum([c * 5^i for i, c in enumerate(E)])
a
sage: all(c^625 == c for c in E)
True
```

```
sage: S.<x> = ZZ[]
sage: f = x^3 - 98*x + 7
sage: W.<w> = ZpFM(7,3).ext(f)
sage: b = (1+w)^5; L = b.teichmuller_expansion(); L
[1,
5 + 5*w^3 + w^6 + 4*w^7,
3 + 3*w^3 + w^7,
3 + 3*w^3 + w^7,
0,
4 + 5*w^3 + w^6 + 4*w^7,
3 + 3*w^3 + w^7,
6 + w^3 + 5*w^7,
6 + w^3 + 5*w^7]
sage: sum([w^i*L[i] for i in range(len(L))]) == b
True
sage: all(L[i]^(7^3) == L[i] for i in range(9))
True
```

```
sage: L = W(3).teichmuller_expansion(); L
[3 + 3*w^3 + w^7,
0,
0,
4 + 5*w^3 + w^6 + 4*w^7,
0,
0,
3 + 3*w^3 + w^7,
6 + w^3 + 5*w^7]
sage: sum([w^i*L[i] for i in range(len(L))])
3
```

**trace** (\( \text{base}=\text{None} \))

Return the absolute or relative trace of this element.

If \( K \) is given then \( K \) must be a subfield of the parent \( L \) of \( \text{self} \), in which case the norm is the relative norm from \( L \) to \( K \). In all other cases, the norm is the absolute norm down to \( \mathbb{Q}_p \) or \( \mathbb{Z}_p \).

**EXAMPLES:**

238 Chapter 21. \( p \)-adic \( \mathbb{Z}_p \times \mathbb{F}_m \) FM Element
\texttt{sage:} \ R = \ZpCR(5,5) \\
\texttt{sage:} \ S.\langle x \rangle = R[] \\
\texttt{sage:} \ f = x^5 + 75x^3 - 15x^2 + 125x - 5 \\
\texttt{sage:} \ W.\langle w \rangle = R.\text{ext}(f) \\
\texttt{sage:} \ a = (2+3w)^7 \\
\texttt{sage:} \ b = (6+w^3)^5 \\
\texttt{sage:} \ a.\text{trace()} \\
\quad 3*5 + 2*5^2 + 3*5^3 + 2*5^4 + O(5^5) \\
\texttt{sage:} \ a.\text{trace()} + b.\text{trace()} \\
\quad 4*5 + 5^2 + 5^3 + 2*5^4 + O(5^5) \\
\texttt{sage:} \ (a+b).\text{trace()} \\
\quad 4*5 + 5^2 + 5^3 + 2*5^4 + O(5^5) \\

\texttt{unit\_part()} \\
\quad \text{Return the unit part of self, i.e.} \ \text{self} / \ \text{uniformizer}^\langle \text{self.valuation()} \rangle \\

\textbf{Warning:} \ If this element has positive valuation then the unit part is not defined to the full precision of the ring. Asking for the unit part of \ZpFM(5)(0) will not raise an error, but rather return itself.

\textbf{EXAMPLES:}

\texttt{sage:} \ R = \ZpFM(5,5) \\
\texttt{sage:} \ S.\langle x \rangle = R[] \\
\texttt{sage:} \ f = x^5 + 75x^3 - 15x^2 + 125x - 5 \\
\texttt{sage:} \ W.\langle w \rangle = R.\text{ext}(f) \\
\texttt{sage:} \ a = W(75); \ a \\
\quad 3*w^{10} + 2*w^{12} + w^{14} + w^{16} + w^{17} + 3*w^{18} + 3*w^{19} + 2*w^{21} + 3*w^{22} + \ldots + 3*w^{23} \\
\texttt{sage:} \ a.\text{valuation()} \\
\quad 10 \\
\texttt{sage:} \ a.\text{precision\_absolute()} \\
\quad 25 \\
\texttt{sage:} \ a.\text{precision\_relative()} \\
\quad 15 \\
\texttt{sage:} \ a.\text{unit\_part()} \\
\quad 3 + 2*w^{2} + w^{4} + w^{6} + w^{7} + 3*w^{8} + 3*w^{9} + 2*w^{11} + 3*w^{12} \\
\quad + 3*w^{13} + w^{15} + 4*w^{16} + 2*w^{17} + w^{18} + 3*w^{21} + w^{22} + 3*w^{24} \\

The unit part inserts nonsense digits if this element has positive valuation:

\texttt{sage:} \ (a-a).\text{unit\_part()} \\
\quad 0
A class for computing and caching powers of the same integer.

This class is designed to be used as a field of p-adic rings and fields. Since elements of p-adic rings and fields need to use powers of p over and over, this class precomputes and stores powers of p. There is no reason that the base has to be prime however.

EXAMPLES:

```
sage: X = PowComputer(3, 4, 10)
sage: X(3)
27
sage: X(10) == 3^10
True
```

AUTHORS:

• David Roe

`sage.rings.padics.pow_computer.PowComputer` (`m, cache_limit, prec_cap, in_field=False, prec_type=None`)  

Returns a PowComputer that caches the values $1, m, m^2, \ldots, m^C$, where $C$ is cache_limit.

Once you create a PowComputer, merely call it to get values out.

You can input any integer, even if it's outside of the precomputed range.

INPUT:

• m – An integer, the base that you want to exponentiate.

• cache_limit – A positive integer that you want to cache powers up to.

EXAMPLES:

```
sage: PC = PowComputer(3, 5, 10)
sage: PC
PowComputer for 3
sage: PC(4)
81
sage: PC(6)
729
sage: PC(-1)
1/3
```

class sage.rings.padics.pow_computer.PowComputer_base

Bases: PowComputer_class

Initialization.
class sage.rings.padics.pow_computer.PowComputer_class

Bases: SageObject

Initializes self.

INPUT:

• prime – the prime that is the base of the exponentials stored in this pow_computer.
• cache_limit – how high to cache powers of prime.
• prec_cap – data stored for p-adic elements using this pow_computer (so they have C-level access to fields common to all elements of the same parent).
• ram_prec_cap – prec_cap * e
• in_field – same idea as prec_cap
• poly – same idea as prec_cap
• shift_seed – same idea as prec_cap

EXAMPLES:

sage: PC = PowComputer(3, 5, 10)
sage: PC.pow_Integer_Integer(2)
9

pow_Integer_Integer(n)

Tests the pow_Integer function.

EXAMPLES:

sage: PC = PowComputer(3, 5, 10)
sage: PC.pow_Integer_Integer(4)
81
sage: PC.pow_Integer_Integer(6)
729
sage: PC.pow_Integer_Integer(0)
1
sage: PC.pow_Integer_Integer(10)
59049

sage: # needs sage.libsntl
sage: PC = PowComputer_ext_maker(3, 5, 10, 20, False, ntl.ZZ_pX([-3,0,1], 3^→10), 'big','e',ntl.ZZ_pX([1],3^10))
sage: PC.pow_Integer_Integer(4)
81
sage: PC.pow_Integer_Integer(6)
729
sage: PC.pow_Integer_Integer(0)
1
sage: PC.pow_Integer_Integer(10)
59049
The classes in this file are designed to be attached to p-adic parents and elements for Cython access to properties of the parent.

In addition to storing the defining polynomial (as an NTL polynomial) at different precisions, they also cache powers of p and data to speed right shifting of elements.

The hierarchy of PowComputers splits first at whether it's for a base ring (Qp or Zp) or an extension.

Among the extension classes (those in this file), they are first split by the type of NTL polynomial (ntl_ZZ_pX or ntl_ZZ_pEX), then by the amount and style of caching (see below). Finally, there are subclasses of the ntl_ZZ_pX PowComputers that cache additional information for Eisenstein extensions.

There are three styles of caching:

- **FM:** caches powers of p up to the cache_limit, only caches the polynomial modulus and the ntl_ZZ_pContext of precision prec_cap.
- **small:** Requires cache_limit = prec_cap. Caches p^k for every k up to the cache_limit and caches a polynomial modulus and a ntl_ZZ_pContext for each such power of p.
- **big:** Caches as the small does up to cache_limit and caches prec_cap. Also has a dictionary that caches values above the cache_limit when they are computed (rather than at ring creation time).

AUTHORS:

- David Roe (2008-01-01) initial version

```python
class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX
 Bases: PowComputer_ext

 polynomial()
 Returns the polynomial (with coefficient precision prec_cap) associated to this PowComputer.
 The polynomial is output as an ntl_ZZ_pX.

 EXAMPLES:

 sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^\rightarrow 10), 'FM', 'e', ntl.ZZ_pX([1],5^10))
 sage: PC.polynomial()
 [9765620 0 1]

 speed_test (n, runs)
 Runs a speed test.
 INPUT:
 - n – input to a function to be tested (the function needs to be set in the source code).
```
• runs – The number of runs of that function

OUTPUT:

• The time in seconds that it takes to call the function on \( n \), \( runs \) times.

EXAMPLES:

```sage
PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], ˓→5^10), 'small', 'e', ntl.ZZ_pX([1], 5^10))
sage: PC.speed_test(10, 10^6) # random
0.0090679999999991878
```

```sage
class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_FM
Bases: PowComputer_ZZ_pX

This class only caches a context and modulus for \(p^{\text{prec_cap}} \).

Designed for use with fixed modulus p-adic rings, in Eisenstein and unramified extensions of \(\mathbb{Z}_p \).
```

```sage
class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_FM_Eis
Bases: PowComputer_ZZ_pX_FM

This class computes and stores low_shifter and high_shifter, which aid in right shifting elements.
```

```sage
class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_big
Bases: PowComputer_ZZ_pX

This class caches all contexts and moduli between 1 and cache_limit, and also caches for prec_cap. In addition, it stores a dictionary of contexts and moduli of

```
reset_dictionaries()
```

Resets the dictionaries. Note that if there are elements lying around that need access to these dictionaries, calling this function and then doing arithmetic with those elements could cause trouble (if the context object gets garbage collected for example. The bugs introduced could be very subtle, because NTL will generate a new context object and use it, but there's the potential for the object to be incompatible with the different context object).

EXAMPLES:

```sage
A = PowComputer_ext_maker(5, 6, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), ˓→'big','e', ntl.ZZ_pX([1],5^10))
sage: P = A._get_context_test(8)
sage: A._context_dict()
{8: NTL modulus 390625}
sage: A.reset_dictionaries()
sage: A._context_dict()
{}```

```sage
class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_big_Eis
Bases: PowComputer_ZZ_pX_big

This class computes and stores low_shifter and high_shifter, which aid in right shifting elements. These are only stored at maximal precision: in order to get lower precision versions just reduce mod \(p^n \).
```

```sage
class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_small
Bases: PowComputer_ZZ_pX

This class caches contexts and moduli densely between 1 and cache_limit. It requires cache_limit == prec_cap.

It is intended for use with capped relative and capped absolute rings and fields, in Eisenstein and unramified extensions of the base p-adic fields.
```
class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_small_Eis

Bases: PowComputer_ZZ_pX_small

This class computes and stores low_shifter and high_shifter, which aid in right shifting elements. These are only stored at maximal precision: in order to get lower precision versions just reduce mod \( p^n \).

class sage.rings.padics.pow_computer_ext.PowComputer_ext

Bases: PowComputer_class

sage.rings.padics.pow_computer_ext.PowComputer_ext_maker (prime, cache_limit, prec_cap, ram_prec_cap, in_field, poly, prec_type='small', ext_type='u', shift_seed=None)

Returns a PowComputer that caches the values \( 1, p, p^2, \ldots, p^C \), where \( C \) is cache_limit.

Once you create a PowComputer, merely call it to get values out. You can input any integer, even if it’s outside of the precomputed range.

INPUT:

- prime – An integer, the base that you want to exponentiate.
- cache_limit – A positive integer that you want to cache powers up to.
- prec_cap – The cap on precisions of elements. For ramified extensions, \( p^\left(\text{prec\_cap} - 1 \right) / e \) will be the largest power of \( p \) distinguishable from zero.
- in_field – Boolean indicating whether this PowComputer is attached to a field or not.
- poly – An ntl.ZZ_pX or ntl.ZZ_pEX defining the extension. It should be defined modulo \( p^\left(\text{prec\_cap} - 1 \right) / e + 1 \)
- prec_type – ‘FM’, ‘small’, or ‘big’, defining how caching is done.
- ext_type – ‘u’ = unramified, ‘e’ = Eisenstein, ‘t’ = two-step
- shift_seed – (required only for Eisenstein and two-step) For Eisenstein and two-step extensions, if \( f = a_n x^n - p a_{n-1} x^{n-1} - \ldots - p a_0 \) with \( a_n \) a unit, then shift_seed should be \( 1/a_n (a_{n-1} x^{n-1} + \ldots + a_0) \)

EXAMPLES:

```python
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), small, e, ntl.ZZ_pX([1], 5^10))
```

sage.rings.padics.pow_computer_ext.ZZ_pX_eis_shift_test (_shifter, _a, _n, _finalprec)

Shifts \( _a \) right \( _n \) \( x \)-adic digits, where \( x \) is considered modulo the polynomial in \(_shifter\).

EXAMPLES:

```python
sage: from sage.rings.padics.pow_computer_ext import ZZ_pX_eis_shift_test
sage: A = PowComputer_ext_maker(5, 3, 10, 40, False, ntl.ZZ_pX([-5, 75, 15, 0, 1], 5^10), 'big', 'e', ntl.ZZ_pX([1], 5^10))
```

(continues on next page)
sage: ZZ_pX_eis_shift_test(A, [1], 1, 5)	[]
sage: ZZ_pX_eis_shift_test(A, [17, 91, 8, -2], 1, 5)	[316 53 3123 3]
sage: ZZ_pX_eis_shift_test(A, [316, 53, 3123, 3], -1, 5)	[15 91 8 3123]
sage: ZZ_pX_eis_shift_test(A, [15, 91, 8, 3123], 1, 5)	[316 53 3123 3]
This file contains code for printing p-adic elements. It has been moved here to prevent code duplication and make finding the relevant code easier.

AUTHORS:

- David Roe

```python
sage.rings.padics.padic_printing.PAdicPrinter(ring, options={})
```

Create a `PAdicPrinter`.

**INPUT:**

- **ring** – a p-adic ring or field.
- **options** – a dictionary, with keys in `mode`, `pos`, `ram_name`, `unram_name`, `var_name`, `max_ram_terms`, `max_unram_terms`, `max_terse_terms`, `sep`, `alphabet`; see `PAdicPrinter_class` for the meanings of these keywords.

**EXAMPLES:**

```python
sage: from sage.rings.padics.padic_printing import PAdicPrinter
game: R = Zp(5)
sage: pAdicPrinter(R, {sep: '&'})
```

series printer for 5-adic Ring with capped relative precision 20

```python
class sage.rings.padics.padic_printing.PAdicPrinterDefaults (mode='series', pos=True, max_ram_terms=-1, max_unram_terms=-1, max_terse_terms=-1, sep='\', alphabet=None)
```

**Bases:** `SageObject`

This class stores global defaults for p-adic printing.

```python
allow_negatives (neg=None)
```

Controls whether or not to display a balanced representation.

```python
neg=None returns the current value.
```

**EXAMPLES:**

```python
sage: padic_printing.allow_negatives(True)
sage: padic_printing.allow_negatives()
True
sage: Qp(29)(-1)
-1 + O(29^20)
```

(continues on next page)
alphabet (alphabet=None)

Controls the alphabet used to translate $p$-adic digits into strings (so that no separator need be used in 'digits' mode).

alphabet should be passed in as a list or tuple.

alphabet=None returns the current value.

EXAMPLES:

```
sage: padic_printing.alphabet("abc")
sage: padic_printing.mode('digits')
sage: repr(Qp(3)(1234))
'...bcaacab'
sage: padic_printing.mode('series')
```

max_poly_terms (max=None)

Controls the number of terms appearing when printing polynomial representations in 'terse' or 'val-unit' modes.

max=None returns the current value.

max=-1 encodes 'no limit.'

EXAMPLES:

```
sage: padic_printing.max_poly_terms(3)
sage: padic_printing.max_poly_terms()
3
sage: padic_printing.mode('terse')
sage: Zq(7^5, 5, names='a')((2,3,4))^8
needs sage.libs.ntl
2570 + 15808*a + 9018*a^2 + ... + O(7^5)
sage: padic_printing.max_poly_terms(-1)
sage: padic_printing.mode('series')
```

max_series_terms (max=None)

Controls the maximum number of terms shown when printing in 'series', 'digits' or 'bars' mode.

max=None returns the current value.

max=-1 encodes 'no limit.'

EXAMPLES:

```
sage: padic_printing.max_series_terms(2)
sage: padic_printing.max_series_terms()
2
sage: Qp(31)(1000)
```

(continues on next page)
max_unram_terms (max=None)
For rings with non-prime residue fields, controls how many terms appear in the coefficient of each \( p^n \) when printing in 'series' or 'bar' modes.

max=None returns the current value.
max=-1 encodes 'no limit.'

EXAMPLES:

```
sage: padic_printing.max_unram_terms(2)
sage: padic_printing.max_unram_terms()
2
```

```
sage: Qq(5^6, 5, names='a')((1,2,3,-1))^17
(3*a^4 + ... + 3) + (a^5 + ... + a)*5 + (3*a^3 + ... + 2)*5^2 + (3*a^5 + ... + 2)*5^3 + (4*a^5 + ... + 4)*5^4 + O(5^5)
```

mode (mode=None)
Set the default printing mode.

mode=None returns the current value.

The allowed values for mode are: 'val-unit', 'series', 'terse', 'digits' and 'bars'.

EXAMPLES:

```
sage: padic_printing.mode('terse')
sage: padic_printing.mode()
'terse'
sage: Qp(7)(100)
100 + O(7^20)
sage: padic_printing.mode('series')
sage: Qp(11)(100)
1 + 9*11 + O(11^20)
sage: padic_printing.mode('val-unit')
sage: Qp(13)(130)
13 * 10 + O(13^21)
sage: padic_printing.mode('digits')
sage: repr(Qp(17)(100))
'...5F'
sage: repr(Qp(17)(1000))
'...37E'
sage: padic_printing.mode('bars')
sage: repr(Qp(19)(1000))
'...2|14|12'
sage: padic_printing.mode('series')
```

sep (sep=None)
Controls the separator used in 'bars' mode.
sep=None returns the current value.

EXAMPLES:

```
sage: padic_printing.sep(']')['
sage: padic_printing.sep()
'[]
sage: padic_printing.mode('bars')
sage: repr(Qp(61)(-1))
'...
→,'
sage: padic_printing.sep('|')
sage: padic_printing.mode('series')
```

class `sage.rings.padics.padic_printing.pAdicPrinter_class`

Bases: `SageObject`

This class stores the printing options for a specific p-adic ring or field, and uses these to compute the representations of elements.

`dict()`

Return a dictionary storing all of self's printing options.

EXAMPLES:

```
sage: D = Zp(5)._printer.dict(); D['sep']
'
```

`repr_gen(elt, do_latex, pos=None, mode=None, ram_name=None)`

The entry point for printing an element.

INPUT:

- elt – a p-adic element of the appropriate ring to print.
- do_latex – whether to return a latex representation or a normal one.

EXAMPLES:

```
sage: R = Zp(5,5); P = R._printer; a = R(-5); a
4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 0(5^6)
sage: P.repr_gen(a, False, pos=False)
'-5 + 0(5^6)'
sage: P.repr_gen(a, False, ram_name='p')
'4*p + 4*p^2 + 4*p^3 + 4*p^4 + 4*p^5 + 0(p^6)'
```

`richcmp_modes(other, op)`

Return a comparison of the printing modes of self and other.

Return 0 if and only if all relevant modes are equal (max_unram_terms is irrelevant if the ring is totally ramified over the base, for example). This does not check if the rings are equal (to prevent infinite recursion in the comparison functions of p-adic rings), but it does check if the primes are the same (since the prime affects whether pos is relevant).

EXAMPLES:
sage: R = Qp(7, print_mode='digits', print_pos=True)
sage: S = Qp(7, print_mode='digits', print_pos=False)
sage: R._printer == S._printer
True
sage: R = Qp(7)
sage: S = Qp(7, print_mode='val-unit')
sage: R == S
False
sage: R._printer < S._printer
True
Chapter 24. $p$-adic Printing
The errors in this file indicate various styles of precision problems that can go wrong for p-adics and power series.

AUTHORS:

• David Roe

```python
exception sage.rings.padics.precision_error.PrecisionError
 Bases: ArithmeticError
```
MISCELLANEOUS FUNCTIONS

This file contains several miscellaneous functions used by \( p \)-adics.

- \texttt{gauss\_sum} – compute Gauss sums using the Gross-Koblitz formula.
- \texttt{min} – a version of \texttt{min} that returns \( \infty \) on empty input.
- \texttt{max} – a version of \texttt{max} that returns \( -\infty \) on empty input.

AUTHORS:
- David Roe
- Adriana Salerno
- Ander Steele
- Kiran Kedlaya (modified \texttt{gauss\_sum} 2017/09)

\texttt{sage.rings.padics.misc.gauss\_sum}(a, p, f, prec=20, factored=False, algorithm='pari', parent=None)

Return the Gauss sum \( g_q(a) \) as a \( p \)-adic number.

The Gauss sum \( g_q(a) \) is defined by

\[
g_q(a) = \sum_{u \in F_q^*} \omega(u)^{-a} \zeta_q^u,
\]

where \( q = p^f \), \( \omega \) is the Teichmüller character and \( \zeta_q \) is some arbitrary choice of primitive \( q \)-th root of unity. The computation is adapted from the main theorem in Alain Robert’s paper \textit{The Gross-Koblitz formula revisited}, Rend. Sem. Mat. Univ. Padova 105 (2001), 157–170.

Let \( p \) be a prime, \( f \) a positive integer, \( q = p^f \), and \( \pi \) be the unique root of \( f(x) = x^{p-1} + p \) congruent to \( \zeta_p - 1 \) modulo \( (\zeta_p - 1)^2 \). Let \( 0 \leq a < q - 1 \). Then the Gross-Koblitz formula gives us the value of the Gauss sum \( g_q(a) \) as a product of \( p \)-adic Gamma functions as follows:

\[
g_q(a) = -\pi^s \prod_{0 \leq i < f} \Gamma_p(a^{(i)}/(q - 1)),
\]

where \( s \) is the sum of the digits of \( a \) in base \( p \) and the \( a^{(i)} \) have \( p \)-adic expansions obtained from cyclic permutations of that of \( a \).

INPUT:
- \texttt{a} – integer
- \texttt{p} – prime
- \texttt{f} – positive integer
- \texttt{prec} – positive integer (optional, 20 by default)
• factored — boolean (optional, False by default)
• algorithm — flag passed to p-adic Gamma function (optional, "pari" by default)

OUTPUT:

If factored is False, returns a p-adic number in an Eisenstein extension of \(\mathbb{Q}_p\). This number has the form \(p^e * z\) where \(p^e\) is as above, \(e\) is some nonnegative integer, and \(z\) is an element of \(\mathbb{Z}_p\); if factored is True, the pair \((e, z)\) is returned instead, and the Eisenstein extension is not formed.

Note: This is based on GP code written by Adriana Salerno.

EXAMPLES:

In this example, we verify that \(g_3(0) = -1\):

```python
sage: from sage.rings.padics.misc import gauss_sum
sage: -gauss_sum(0, 3, 1) # needs sage.libs.ntl sage.rings.padics
1 + O(p^40)
```

Next, we verify that \(g_5(a)g_5(-a) = 5(-1)^a\):

```python
sage: from sage.rings.padics.misc import gauss_sum
sage: gauss_sum(2,5,1)^2 - 5 # needs sage.libs.ntl
O(p^84)
sage: gauss_sum(1,5,1)*gauss_sum(3,5,1) + 5 # needs sage.libs.ntl
O(p^84)
```

Finally, we compute a non-trivial value:

```python
sage: from sage.rings.padics.misc import gauss_sum
sage: gauss_sum(2,13,2, prec=5, factored=True) # needs sage.rings.padics
(2, 6 + 6*13 + 10*13^2 + O(13^5))
```

See also:

• `sage.arith.misc.gauss_sum()` for general finite fields
• `sage.modular.dirichlet.DirichletCharacter.gauss_sum()` for prime finite fields
• `sage.modular.dirichlet.DirichletCharacter.gauss_sum_numerical()` for prime finite fields

`sage.rings.padics.misc.max(*L)`

Return the maximum of the inputs, where the maximum of the empty list is \(-\infty\).

EXAMPLES:
sage: from sage.rings.padics.misc import max
sage: max()
-Infinity
sage: max(2,3)
3

sage.rings.padics.misc.min(*L)

Return the minimum of the inputs, where the minimum of the empty list is \( \infty \).

EXAMPLES:

sage: from sage.rings.padics.misc import min
sage: min()
+Infinity
sage: min(2,3)
2

sage.rings.padics.misc.precprint(\text{prec\_type}, \text{prec\_cap}, p)

String describing the precision mode on a \( p \)-adic ring or field.

EXAMPLES:

sage: from sage.rings.padics.misc import precprint
sage: precprint(capped-rel, 12, 2)
'with capped relative precision 12'
sage: precprint(capped-abs, 11, 3)
'with capped absolute precision 11'
sage: precprint(floating-point, 1234, 5)
'with floating precision 1234'
sage: precprint(fixed-mod, 1, 17)
'of fixed modulus 17^1'

sage.rings.padics.misc.trim_zeros(L)

Strips trailing zeros/empty lists from a list.

EXAMPLES:

sage: from sage.rings.padics.misc import trim_zeros
sage: trim_zeros([1,0,1,0])
[1, 0, 1]
sage: trim_zeros([[1],[[],[2],[],[]]])
[[1], [], [2]]
sage: trim_zeros([[],[]])
[]
sage: trim_zeros([])
[]

Zeros are also trimmed from nested lists (one deep):

sage: trim_zeros([[1,0]])
[[1]]
sage: trim_zeros([[0],[1]])
[]
THE FUNCTIONS IN THIS FILE ARE USED IN CREATING NEW P-ADIC ELEMENTS.

When creating a p-adic element, the user can specify that the absolute precision be bounded and/or that the relative precision be bounded. Moreover, different p-adic parents impose their own bounds on the relative or absolute precision of their elements. The precision determines to what power of \( p \) the defining data will be reduced, but the valuation of the resulting element needs to be determined before the element is created. Moreover, some defining data can impose their own precision bounds on the result.

AUTHORS:

- David Roe (2012-03-01)
Chapter 27. The functions in this file are used in creating new p-adic elements.
class sage.rings.padics.morphism.FrobeniusEndomorphism_padics
    Bases: RingHomomorphism

    A class implementing Frobenius endomorphisms on p-adic fields.

    is_identity()
    Return True if this morphism is the identity morphism.

    EXAMPLES:
    sage: K.<a> = Qq(5^3)
    sage: Frob = K.frobenius_endomorphism()
    sage: Frob.is_identity()
    False
    sage: (Frob^3).is_identity()
    True

    is_injective()
    Return True since any power of the Frobenius endomorphism over an unramified p-adic field is always injective.

    EXAMPLES:
    sage: K.<a> = Qq(5^3)
    sage: Frob = K.frobenius_endomorphism()
    sage: Frob.is_injective()
    True

    is_surjective()
    Return True since any power of the Frobenius endomorphism over an unramified p-adic field is always surjective.

    EXAMPLES:
    sage: K.<a> = Qq(5^3)
    sage: Frob = K.frobenius_endomorphism()
    sage: Frob.is_surjective()
    True

    order()
    Return the order of this endomorphism.

    EXAMPLES:
\textbf{power}()

Return the smallest integer \( n \) such that this endomorphism is the \( n \)-th power of the absolute (arithmetic) Frobenius.

\textbf{EXAMPLES}:

```
sage: K.<a> = Qq(5^12)
sage: Frob = K.frobenius_endomorphism()
sage: Frob.power() 1
sage: (Frob^9).power() 9
sage: (Frob^13).power() 1
```
INDICES AND TABLES

• Index
• Module Index
• Search Page
sage.rings.padics.common_conversion, 259
sage.rings.padics.eisenstein_extension_generic, 107
sage.rings.padics.factory, 7
sage.rings.padics.generic_nodes, 79
sage.rings.padics.local_generic, 53
sage.rings.padics.local_generic_element, 127
sage.rings.padics.misc, 255
sage.rings.padics.morphism, 261
sage.rings.padics.padic_base_generic, 95
sage.rings.padics.padic_base_leaves, 115
sage.rings.padics.padic_capped_absolute_element, 177
sage.rings.padics.padic_capped_relative_element, 161
sage.rings.padics.padic_ext_element, 205
sage.rings.padics.padic_extension_generic, 99
sage.rings.padics.padic_extension_leaves, 123
sage.rings.padics.padic_fixed_mod_element, 191
sage.rings.padics.padic_generic, 67
sage.rings.padics.padic_generic_element, 135
sage.rings.padics.padic_printing, 247
sage.rings.padics.padic_ZZ_pX_CA_element, 221
sage.rings.padics.padic_ZZ_pX_CR_element, 211
sage.rings.padics.padic_ZZ_pX_element, 209
sage.rings.padics.padic_ZZ_pX_FM_element, 231
sage.rings.padics.pow_computer, 241
sage.rings.padics.pow_computer_ext, 243
sage.rings.padics.precision_error, 253
sage.rings.padics.tutorial, 1
sage.rings.padics.unramified_extension_generic, 111
INDEX

A

abs() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 136
absolute_degree() (sage.rings.padics.local_generic.LocalGeneric method), 53
absolute_discriminant() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 95
absolute_e() (sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric method), 107
absolute_e() (sage.rings.padics.local_generic.LocalGeneric method), 53
absolute_f() (sage.rings.padics.local_generic.LocalGeneric method), 54
absolute_f() (sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric method), 111
absolute_inertia_degree() (sage.rings.padics.local_generic.LocalGeneric method), 54
absolute_ramification_index() (sage.rings.padics.local_generic.LocalGeneric method), 54
add_bigoh() (sage.rings.padics.local_generic_element.LocalGenericElement method), 127
add_bigoh() (sage.rings.padics.padic_capped_absolute_extension.Generic method), 177
add_bigoh() (sage.rings.padics.padic_capped_relative_element.CRElement method), 161
add_bigoh() (sage.rings.padics.padic_fixed_mod_element.FMElement method), 192
add_bigoh() (sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZZpXFMElement method), 233
additive_order() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 137
algdep() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 137
algebraic_dependency() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 138
allow_negatives() (sage.rings.padics.padic_printing.pAdicPrinterDefaults method), 247
alphabet() (sage.rings.padics.padic_printing.pAdicPrinterDefaults method), 248
an_element() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric method), 87
artin_hasse_exp() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 139
B

base_p_list() (in module sage.rings.padics.padic_capped_relative_element), 166
C

CAElement (class in sage.rings.padics.padic_capped_absolute_element), 177
CappedAbsoluteGeneric (class in sage.rings.padics.generic_nodes), 79
CappedRelativeFieldGeneric (class in sage.rings.padics.generic_nodes), 79
CappedRelativeGeneric (class in sage.rings.padics.generic_nodes), 79
CappedRelativeRingGeneric (class in sage.rings.padics.generic_nodes), 80
change() (sage.rings.padics.local_generic.LocalGeneric method), 55
characteristic() (sage.rings.padics.padic_generic.pAdicGeneric method), 69
composite() (sage.rings.padics.generic_nodes.pAdicFieldBaseGeneric method), 81
construction() (sage.rings.padics.generic_nodes.pAdicFieldBaseGeneric method), 82
construction() (sage.rings.padics.generic_nodes.pAdicRingBaseGeneric method), 92
construction() (sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric method), 100
convert_multiple() (sage.rings.padics.generic_nodes.pAdicLatticeGeneric method), 83
(sage.rings.padics.generic_nodes.CappedRelativeGeneric method), 79
is_capped_relative() (sage.rings.padics.local_generic.LocalGeneric method), 60
is_eisenstein() (in module sage.rings.padics.factory), 49
is_equal_to() (sage.rings.padics.padic_capped_absolute_element.CAElement method), 177
is_equal_to() (sage.rings.padics.padic_capped_relative_element.CRElement method), 162
is_equal_to() (sage.rings.padics.padic_fixed_mod_element.FMElElement method), 192
is_equal_to() (sage.rings.padics.padic ZZ pX CA_element.pAdicZZpXCAElement method), 225
is_equal_to() (sage.rings.padics.padic ZZ pX CR_element.pAdicZZpXCRElement method), 215
is_equal_to() (sage.rings.padics.padic ZZ pX FM_element.pAdicZZpXFMElement method), 235
is_exact() (sage.rings.padics.local Generic.LocalGeneric method), 61
is_field() (sage.rings.padics.generic_nodes.pAdicRingGeneric method), 92
is_fixed_mod() (sage.rings.padics.generic_nodes.FixedModGeneric method), 80
is_fixed_mod() (sage.rings.padics.local Generic.LocalGeneric method), 61
is_floating_point() (sage.rings.padics.generic_nodes.FloatingPointGeneric method), 80
is_floating_point() (sage.rings.padics.generic_nodes.LocalGeneric method), 61
is_galois() (sage.rings.padics.unramified_extension.Generic.UnramifiedExtensionGeneric method), 113
is_identity() (sage.rings.padics.morphism.FrobeniusEndomorphism_padic method), 261
is_injective() (sage.rings.padics.morphism.FrobeniusEndomorphism_padic method), 261
is_injective() (sage.rings.padics.padic_capped_absolute_element.pAdicCoercion_CA_frac_field method), 183
is_injective() (sage.rings.padics.padic_capped_relative_element.pAdicCoercion_CR_frac_field method), 195
is_injective() (sage.rings.padics.padic_extension.Generic.pAdicModuleIsomorphism method), 104
is_injective() (sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_FM_frac_field method), 194
is_injective() (sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_FM_frac_field method), 216
is_injective() (sage.rings.padics.padic_extension.Generic.ResidueReductionMap method), 68
is_normal() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 62
is_prime() (sage.rings.padics.padic generic_element.pAdicGenericElement method), 144
is_relaxed() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric method), 88
is_secure() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric method), 88
is_square() (sage.rings.padics.padic generic_element.pAdicGenericElement method), 145
is_squarefree() (sage.rings.padics.padic generic_element.pAdicGenericElement method), 145
is_surjective() (sage.rings.padics.morphism.FrobeniusEndomorphism_padic method), 261
is_surjective() (sage.rings.padics.padic_capped_absolute_element.pAdicCoercion_CA_frac_field method), 183
is_surjective() (sage.rings.padics.padic_capped_relative_element.pAdicCoercion_CR_frac_field method), 169
is_surjective() (sage.rings.padics.padic_extension.generic.pAdicModuleIsomorphism method), 104
is_surjective() (sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_FM_frac_field method), 195
is_surjective() (sage.rings.padics.padic_extension.generic.ResidueReductionMap method), 68
is_unit() (sage.rings.padics.local Generic.LocalGenericElement method), 130
is_unramified() (in module sage.rings.padics.factory), 49
is_zero() (sage.rings.padics.padic_capped_absolute_element.CAElement method), 178
is_zero() (sage.rings.padics.padic_capped_relative_element.CRElement method), 163
is_zero() (sage.rings.padics.padic_extension.generic.ResidueReductionMap method), 67
is_zero() (sage.rings.padics.padic ZZ pX CA_element.pAdicZZpXCAElement method), 225
is_zero() (sage.rings.padics.padic ZZ pX CR_element.pAdicZZpXCRElement method), 216
is_zero() (sage.rings.padics.padic ZZ pX FM_el-

is_isomorphic() (sage.rings.padics.padic_base_generic.pAdicGenericElement method), 96
is_lattice_prec() (sage.rings.padics.generic_nodes.pAdicLatticeGeneric method), 84
is_lattice_prec() (sage.rings.padics.local Generic.LocalGeneric method), 62
is_prime() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 97
is_padic_unit() (sage.rings.padics.local Generic.LocalGenericElement method), 129
is_prime() (sage.rings.padics.padic generic_element.pAdicGenericElement method), 144
is_relaxed() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric method), 88
is_secure() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric method), 88
is_square() (sage.rings.padics.padic generic_element.pAdicGenericElement method), 145
is_squarefree() (sage.rings.padics.padic generic_element.pAdicGenericElement method), 145
is_surjective() (sage.rings.padics.morphism.FrobeniusEndomorphism_padic method), 261
is_surjective() (sage.rings.padics.padic_capped_absolute_element.pAdicCoercion_CA_frac_field method), 183
is_surjective() (sage.rings.padics.padic_capped_relative_element.pAdicCoercion_CR_frac_field method), 169
is_surjective() (sage.rings.padics.padic_extension.generic.pAdicModuleIsomorphism method), 104
is_surjective() (sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_FM_frac_field method), 195
is_surjective() (sage.rings.padics.padic_extension.generic.ResidueReductionMap method), 68
is_unit() (sage.rings.padics.local Generic.LocalGenericElement method), 130
is_unramified() (in module sage.rings.padics.factory), 49
is_zero() (sage.rings.padics.padic_capped_absolute_element.CAElement method), 178
is_zero() (sage.rings.padics.padic_capped_relative_element.CRElement method), 163
is_zero() (sage.rings.padics.padic_extension.generic.ResidueReductionMap method), 67
is_zero() (sage.rings.padics.padic ZZ pX CA_element.pAdicZZpXCAElement method), 225
is_zero() (sage.rings.padics.padic ZZ pX CR_element.pAdicZZpXCRElement method), 216
is_zero() (sage.rings.padics.padic ZZ pX FM_el-

270  Index

(p-adics, Release 10.3)
K

krasner_check() (in module sage.rings.padics.factory), 50

krull_dimension()
(sage.rings.padics.generic_nodes.pAdicRingGeneric method), 92

L

label()
(sage.rings.padics.generic_nodes.pAdicLatticeGeneric method), 85

lift()
(sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement method), 181

lift()
(sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement method), 168

lift()
(sage.rings.padics.padic_fixed_mod_element.pAdicFixedModElement method), 197

lift_to_precision()
(sage.rings.padics.padic_capped_absolute_element.pAdicTemplateElement method), 187

lift_to_precision()
(sage.rings.padics.padic_capped_relative_element.pAdicTemplateElement method), 174

lift_to_precision()
(sage.rings.padics.padic_fixed_mod_element.pAdicTemplateElement method), 201

lift_to_precision()
(sage.rings.padics.padic_ZZ_pX_CA_element.pAdicZZpXCAElement method), 226

lift_to_precision()
(sage.rings.padics.padic_ZZ_pX_CR_element.pAdicZZpXCRElement method), 216

lift_to_precision()
(sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZZpXFMElement method), 235

local_print_mode()
(in module sage.rings.padics.misc), 68

LocalGeneric (class in sage.rings.padics.local_generic), 53

LocalGenericElement (class in sage.rings.padics.local_generic_element), 127

log()
(sage.rings.padics.padic_generic_element.pAdicGenericElement method), 146

M

make_pAdicCappedAbsoluteElement() (in module sage.rings.padics.padic_capped_absolute_element), 180

make_pAdicFixedModElement() (in module sage.rings.padics.padic_fixed_mod_element), 194

make_ZZpXCAElement() (in module sage.rings.padics.padic_ZZ_pX_CA_element), 223

make_ZZpXCRElement() (in module sage.rings.padics.padic_ZZ_pX_CR_element), 213

make_ZZpXFMElement() (in module sage.rings.padics.padic_ZZ_pX_FM_element), 233

MapFreeModuleToOneStep (class in sage.rings.padics.padic_extension_generic), 99

MapFreeModuleToTwoStep (class in sage.rings.padics.padic_extension_generic), 99

MapOneStepToFreeModule (class in sage.rings.padics.padic_extension_generic), 100

MapTwoStepToFreeModule (class in sage.rings.padics.padic_extension_generic), 100

matrix_mod_pn()
(sage.rings.padics.padic_ZZ_pX_CA_element.pAdicZZpXCAElement method), 226

matrix_mod_pn()
(sage.rings.padics.padic_ZZ_pX_CR_element.pAdicZZpXCRElement method), 217

matrix_mod_pn()
(sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZZpXFMElement method), 236

max()
(in module sage.rings.padics.misc), 256

max_poly_terms()
(sage.rings.padics.padic_printing.pAdicPrinterDefaults method), 248

max_series_terms()
(sage.rings.padics.padic_printing.pAdicPrinterDefaults method), 248

max_unram_terms()
(sage.rings.padics.padic_printing.pAdicPrinterDefaults method), 249

maximal_unramified_subextension()
(sage.rings.padics.local_generic.LocalGeneric method), 62

min()
(in module sage.rings.padics.misc), 257

minimal_polynomial()
(sage.rings.padics.padic_generic_element.pAdicGenericElement method), 150

mode()
(sage.rings.padics.padic_printing.pAdicPrinterDefaults method), 249

module
sage.rings.padics.common_conversion, 259
sage.rings.padics.eisenstein_extension_generic, 107
sage.rings.padics.factory, 7
sage.rings.padics.generic_nodes, 79
sage.rings.padics.local_generic, 53
sage.rings.padics.local_generic_element, 127
sage.rings.padics.misc, 255
\textbf{N}ngens() \hspace{1cm} (\texttt{sage.rings.padics.padic_generic.pAdicGeneric method}), 71

\textbf{N}orm() \hspace{1cm} (\texttt{sage.rings.padics.padic_relative_element.pAdicZZpX_element.pAdicZZpXElement method}), 209

\textbf{N}orm() \hspace{1cm} (\texttt{sage.rings.padics.padic_ZZ_pX_element.pAdicZZpX_element.pAdicZZpXFMElement method}), 236

\textbf{N}ormalized\_valuation() \hspace{1cm} (\texttt{sage.rings.padics.local\_generic\_element.LocalGenericElement method}), 130

\textbf{n}th\_root() \hspace{1cm} (\texttt{sage.rings.padics.padic\_generic\_element.pAdicGenericElement method}), 152

\textbf{O}rder() \hspace{1cm} (\texttt{sage.rings.padics.morphism.FrobeniusEndomorphism\_p\_adics method}), 261

\textbf{O}rdp() \hspace{1cm} (\texttt{sage.rings.padics.padic\_generic\_element.pAdicGenericElement method}), 153

\textbf{P}\texttt{pAdicBaseGeneric} \hspace{1cm} (\texttt{class in sage.rings.padics.padic\_base\_generic}), 95

\texttt{pAdicCappedAbsoluteElement} \hspace{1cm} (\texttt{class in sage.rings.padics.padic\_capped\_absolute\_element}), 180

\texttt{pAdicCappedAbsoluteRingGeneric} \hspace{1cm} (\texttt{class in sage.rings.padics.generic\_nodes}), 81

\texttt{pAdicCappedRelativeElement} \hspace{1cm} (\texttt{class in sage.rings.padics.padic\_capped\_relative\_element}), 166

\texttt{pAdicCappedRelativeFieldGeneric} \hspace{1cm} (\texttt{class in sage.rings.padics.generic\_nodes}), 81

\texttt{pAdicCappedRelativeRingGeneric} \hspace{1cm} (\texttt{class in sage.rings.padics.generic\_nodes}), 81

\texttt{pAdicCoercion\_CA\_frac\_field} \hspace{1cm} (\texttt{class in sage.rings.padics.padic\_capped\_absolute\_element}), 182

\texttt{pAdicCoercion\_CR\_frac\_field} \hspace{1cm} (\texttt{class in sage.rings.padics.padic\_capped\_relative\_element}), 169

\texttt{pAdicCoercion\_FM\_frac\_field} \hspace{1cm} (\texttt{class in sage.rings.padics.padic\_fixed\_mod\_element}), 194

\texttt{pAdicCoercion\_QQ\_CR} \hspace{1cm} (\texttt{class in sage.rings.padics.padic\_capped\_relative\_element}), 170

\texttt{pAdicCoercion\_ZZ\_CA} \hspace{1cm} (\texttt{class in sage.rings.padics.padic\_capped\_absolute\_element}), 183

\texttt{pAdicCoercion\_ZZ\_CR} \hspace{1cm} (\texttt{class in sage.rings.padics.padic\_capped\_relative\_element}), 170

\textbf{Index}
PAdicCoercion_ZZ_FM (class sage.rings.padics.padic_fixed_mod_element), 195
PAdicConvert_CA_frac_field (class sage.rings.padics.padic_capped_absolute_element), 184
PAdicConvert_CA_ZZ (class sage.rings.padics.padic_capped_absolute_element), 184
PAdicConvert_CR_frac_field (class sage.rings.padics.padic_capped_relative_element), 171
PAdicConvert_CR_QQ (class sage.rings.padics.padic_capped_relative_element), 171
PAdicConvert_FM_frac_field (class sage.rings.padics.padic_fixed_mod_element), 196
PAdicConvert_FM_ZZ (class sage.rings.padics.padic_fixed_mod_element), 195
PAdicConvert_QQ_CA (class sage.rings.padics.padic_capped_absolute_element), 184
PAdicConvert_QQ_CR (class sage.rings.padics.padic_capped_relative_element), 171
PAdicConvert_QQ_FM (class sage.rings.padics.padic_fixed_mod_element), 196
PAdicExtElement (class sage.rings.padics.padic_ext_element), 205
pAdicExtension_class (class sage.rings.padics.factory), 50
pAdicExtensionGeneric (class sage.rings.padics.padic_extension_generic), 100
pAdicFieldBaseGeneric (class sage.rings.padics.padic_extension_generic), 81
pAdicFieldCappedRelative (class sage.rings.padics.padic_base_leaves), 117
pAdicFieldFloatingPoint (class sage.rings.padics.padic_base_leaves), 118
pAdicFieldGeneric (class sage.rings.padics.padic_generic), 83
pAdicFieldLattice (class sage.rings.padics.padic_base_leaves), 118
pAdicFieldRelaxed (class sage.rings.padics.padic_base_leaves), 119
pAdicFixedModElement (class sage.rings.padics.padic_fixed_mod_element), 196
pAdicFixedModRingGeneric (class in sage.rings.padics.generic_nodes), 83
pAdicFloatingPointFieldGeneric (class in sage.rings.padics.generic_nodes), 83
pAdicFloatingPointRingGeneric (class in sage.rings.padics.generic_nodes), 83
pAdicGeneric (class in sage.rings.padics.padic_generic), 68
pAdicGenericElement (class in sage.rings.padics.padic_generic_element), 136
pAdicLatticeGeneric (class in sage.rings.padics.padic_extension_generic), 83
pAdicModuleIsomorphism (class in sage.rings.padics.padic_extension_generic), 104
pAdicPrinter() (in module sage.rings.padics.padic_printing), 247
pAdicPrinter_class (class in sage.rings.padics.padic_printing), 250
pAdicPrinterDefaults (class in sage.rings.padics.padic_printing), 247
pAdicRelaxedGeneric (class in sage.rings.padics.padic_generic_nodes), 87
pAdicRingBaseGeneric (class in sage.rings.padics.padic_generic_nodes), 91
pAdicRingCappedAbsolute (class in sage.rings.padics.padic_base_leaves), 119
pAdicRingCappedRelative (class in sage.rings.padics.padic_base_leaves), 119
pAdicRingFixedMod (class in sage.rings.padics.padic_base_leaves), 119
pAdicRingFloatingPoint (class in sage.rings.padics.padic_base_leaves), 119
pAdicRingGeneric (class in sage.rings.padics.padic_generic_nodes), 92
pAdicRingLattice (class in sage.rings.padics.padic_base_leaves), 120
pAdicRingRelaxed (class in sage.rings.padics.padic_base_leaves), 120
pAdicTemplateElement (class in sage.rings.padics.padic_capped_absolute_element), 184
pAdicTemplateElement (class in sage.rings.padics.padic_capped_relative_element), 172
pAdicTemplateElement (class in sage.rings.padics.padic_fixed_mod_element), 199
PAdicZZpXCAElement (class in sage.rings.padics.padicZZ_pX_CA_element), 223
PAdicZZpXCRElement (class in sage.rings.padics.padicZZ_pX_CA_element), 223

Index
p-adics, Release 10.3

sage.rings.padics.padic ZZ_pX_CR_element), 214
pAdicZZpXElement (class in sage.rings.padics.padic ZZ_pX_element), 209
pAdicZZpXFMElement (class in sage.rings.padics.padic ZZ_pX_FM_element), 233
plot() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 97
polylog() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 154
class in sage.rings.padics.padic ZZ_pX_element), 214
pow_Integer_Integer() (sage.rings.padics.pow_computer.PowComputer_class method), 242
power() (sage.rings.padics.morphism.FrobeniusEndomorphism_padics method), 262
precision() (sage.rings.padics.generic_nodes.pAdicLatticeGeneric method), 85
class in sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX method), 243
precision_cap() (sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_FM_element method), 236
precision_cap() (sage.rings.padics.generic_nodes.pAdicLatticeGeneric method), 86
class in sage.rings.padics.padic_capped_absolute_element.CAElement method), 178
class in sage.rings.padics.padic_capped_relative_element.CRElement method), 163
class in sage.rings.padics.padic_capped_relative_element.FMElement method), 193
sage.rings.padics.padic ZZ_pX_FM_element, pAdicZZpXCAElement method), 227
sage.rings.padics.padic ZZ_pX_FM_element, pAdicZZpXCRElement method), 217
class in sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX method), 243
class in sage.rings.padics.padic_capped_absolute_element.CAElement method), 179
class in sage.rings.padics.padic_capped_relative_element.CRElement method), 164
powComputer_ZZ_pX_big (class in sage.rings.padics.pow_computer_ext), 244
powComputer_ZZ_pX_big_Eis (class in sage.rings.padics.pow_computer_ext), 244
powComputer_ZZ_pX_FM (class in sage.rings.padics.pow_computer_ext), 244
powComputer_ZZ_pX_FM_Eis (class in sage.rings.padics.pow_computer_ext), 244
powComputer_ZZ_pX_small (class in sage.rings.padics.pow_computer_ext), 245
powComputer_ZZ_pX_small_Eis (class in sage.rings.padics.pow_computer_ext), 245
precision_cap() (sage.rings.padics.generic_nodes.pAdicLatticeGeneric method), 86
class in sage.rings.padics.padic_capped_relative_element.CRElement method), 163
powComputer_base (class in sage.rings.padics.pow_computer), 241
powComputer_class (class in sage.rings.padics.padic ZZ_pX_element), 242
powComputer_ext (class in sage.rings.padics.pow_computer_ext), 245
powComputer_ext_make () (in module sage.rings.padics.pow_computer_ext), 245
PowComputer_ZZ_pX (class in sage.rings.padics.pow_computer_ext), 243
PowComputer_ZZ_pX_big (class in sage.rings.padics.pow_computer_ext), 244
PowComputer_ZZ_pX_big_Eis (class in sage.rings.padics.pow_computer_ext), 244
PowComputer_ZZ_pX_FM (class in sage.rings.padics.pow_computer_ext), 244
PowComputer_ZZ_pX_FM_Eis (class in sage.rings.padics.pow_computer_ext), 244
PowComputer_ZZ_pX_small (class in sage.rings.padics.pow_computer_ext), 245
PowComputer_ZZ_pX_small_Eis (class in sage.rings.padics.pow_computer_ext), 245
precision_cap() (sage.rings.padics.generic_nodes.pAdicLatticeGeneric method), 86
tension_generic.UnramifiedExtensionGeneric method), 113
residue_system() (sage.rings.padics.padic_generic.pAdic Generic method), 73
ResidueLiftingMap (class in sage.rings.padics.padic_generic), 67
ResidueReductionMap (class in sage.rings.padics.padic_generic), 67
richcmp_modes() (sage.rings.padics.padic_printing.pAdicPrinter_class method), 250
roots_of_unity() (sage.rings.padics.padic_generic.pAdic Generic method), 74

S
sage.rings.padics.common_conversion module, 259
sage.rings.padics.eisenstein_extension_generic module, 107
sage.rings.padics.factory module, 7
sage.rings.padics.generic_nodes module, 79
sage.rings.padics.local_generic module, 53
sage.rings.padics.local_generic_element module, 127
sage.rings.padics.misc module, 255
sage.rings.padics.morphism module, 261
sage.rings.padics.padic_base_generic module, 95
sage.rings.padics.padic_base_leaves module, 115
sage.rings.padics.padic_capped_absolute_element module, 177
sage.rings.padics.padic_capped_relative_element module, 161
sage.rings.padics.padic_ext_element module, 205
sage.rings.padics.padic_extension_generic module, 99
sage.rings.padics.padic_extension_leaves module, 123
sage.rings.padics.padic_fixed_mod_element module, 191
sage.rings.padics.padic_generic module, 67
sage.rings.padics.padic_generic_element module, 135
sage.rings.padics.padic_printing module, 247
sage.rings.padics.padic_ZZ_pX_CA_element module, 221
sage.rings.padics.padic_ZZ_pX_CR_element module, 211
sage.rings.padics.padic_ZZ_pX_element module, 209
sage.rings.padics.padic_ZZ_pX_FM_element module, 231
sage.rings.padics.pow_computer module, 241
sage.rings.padics.pow_computer_ext module, 243
sage.rings.padics.precision_error module, 253
sage.rings.padics.tutorial module, 1
sage.rings.padics.unramified_extension_generic module, 111
section() (sage.rings.padics.padic_capped_absolute_element.pAdicCoercion_CA_frac_field method), 183
section() (sage.rings.padics.padic_capped_absolute_element.pAdicCoercion_ZZ_CA method), 183
section() (sage.rings.padics.padic_capped_relative_element.pAdicCoercion_CR_frac_field method), 170
section() (sage.rings.padics.padic_capped_relative_element.pAdicCoercion_QQ_CR method), 170
section() (sage.rings.padics.padic_capped_relative_element.pAdicCoercion_ZZ_CR method), 170
section() (sage.rings.padics.padic_capped_relative_element.pAdicConvert_QQ_CR method), 172
section() (sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_FM_frac_field method), 195
section() (sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_ZZ_FM method), 195
section() (sage.rings.padics.padic_padic_element.pAdicCoercion_QQ method), 195
section() (sage.rings.padics.padic_padic_element.pAdicCoercion_ZZ method), 195
section() (sage.rings.padics.padic_padic_element.pAdicReductionMap method), 68
sep() (sage.rings.padics.padic_printing.pAdicPrinterDefaults method), 249
slice() (sage.rings.padics.local_generic_element.LocalGenericElement method), 131
some_elements() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric method), 89
some_elements() (sage.rings.padics.padic_generic.pAdicRelaxedGeneric method), 75
speed_test() (sage.rings.padics.pow_computer_ext.PowComputer_pX method), 243
split() (in module sage.rings.padics.factory), 50
sqrt() (sage.rings.padics.local_generic_element.LocalGeneric method), 132
square_root() (sage.rings.padics.padic_element.pAdicGenericElement method), 156
str() (sage.rings.padics.padic_element.pAdicGenericElement method), 157
subfield() (sage.rings.padics.generic_nodes.pAdicFieldBaseGeneric method), 82
subfields_of_degree() (sage.rings.padics.generic_nodes.pAdicFieldBaseGeneric method), 82
techmuller() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric method), 90
techmuller() (sage.rings.padics.padic_generic.pAdicGeneric method), 75
techmuller_expansion() (sage.rings.padics.padic_capped_absolute_element.pAdicTemplateElement method), 188
techmuller_expansion() (sage.rings.padics.padic_capped_relative_element.pAdicTemplateElement method), 175
techmuller_expansion() (sage.rings.padics.padic_fixed_mod_element.pAdicTemplateElement method), 202
techmuller_expansion() (sage.rings.padics.padic_ZZ_pX_CA_element.pAdic ZZpXCAElement method), 228
techmuller_expansion() (sage.rings.padics.padic_ZZ_pX_CR_element.pAdic ZZpXCRElemen method), 218
techmuller_expansion() (sage.rings.padics.padic_ZZ_pX_FM_element.pAdic ZZpXFMElemen method), 237
techmuller_system() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric method), 90
techmuller_system() (sage.rings.padics.padic_generic.pAdicGeneric method), 76
to_fraction_field() (sage.rings.padics.padic_ZZ_pX_CA_element.pAdic ZZpXCAElement method), 228
trace() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 157

U
uniformiser() (sage.rings.padics.local_generic.LocalGeneric method), 65
uniformiser_pow() (sage.rings.padics.local_generic.LocalGeneric method), 65
uniformizer() (sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric method), 109
uniformizer() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 98
uniformizer() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 98
uniformizer() (sage.rings.padics.eisenstein_extension_generic.UnramifiedExtensionGeneric method), 113
uniformizer_pow() (sage.rings.padics.eisenstein_extension_generic.UnramifiedExtensionGeneric method), 109
uniformizer_pow() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 98
uniformizer_pow() (sage.rings.padics.eisenstein_extension_generic.UnramifiedExtensionGeneric method), 114
unit_part() (sage.rings.padics.padic_capped_absolute_element.CAElement method), 179
unit_part() (sage.rings.padics.padic_capped_absolute_element.pAdicTemplateElement method), 188
unit_part() (sage.rings.padics.padic_capped_relative_element.CRElement method), 164
unit_part() (sage.rings.padics.padic_capped_relative_element.pAdicTemplateElement method), 176
unit_part() (sage.rings.padics.padic_fixed_mod_element.FMElement method), 193
unit_part() (sage.rings.padics.padic_fixed_mod_element.pAdicTemplateElement method), 203
unit_part() (sage.rings.padics.padic_ZZ_pX_CA_element.pAdic ZZpXCAElement method), 229
unit_part() (sage.rings.padics.padic_ZZ_pX_CR_element.pAdic ZZpXCRElement method), 219
unit_part() (sage.rings.padics.padic_ZZ_pX_FM_element.pAdic ZZpXFMElement method), 239

Index
unknown() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric method), 90

unpickle_cae_v2() (in module sage.rings.padics.padic_capped_absolute_element), 188

unpickle_cre_v2() (in module sage.rings.padics.padic_capped_relative_element), 176

unpickle_fme_v2() (in module sage.rings.padics.padic_fixed_mod_element), 203

unpickle_pcre_v1() (in module sage.rings.padics.padic_capped_relative_element), 176

UnramifiedExtensionFieldCappedRelative (class in sage.rings.padics.padic_extension_leaves), 124

UnramifiedExtensionFieldFloatingPoint (class in sage.rings.padics.padic_extension_leaves), 125

UnramifiedExtensionGeneric (class in sage.rings.padics.unramified_extension_generic), 111

UnramifiedExtensionRingCappedAbsolute (class in sage.rings.padics.padic_extension_leaves), 125

UnramifiedExtensionRingCappedRelative (class in sage.rings.padics.padic_extension_leaves), 125

UnramifiedExtensionRingFixedMod (class in sage.rings.padics.padic_extension_leaves), 126

UnramifiedExtensionRingFloatingPoint (class in sage.rings.padics.padic_extension_leaves), 126

V

val_unit() (sage.rings.padics.padic_capped_absolute_element.CAElement method), 179

val_unit() (sage.rings.padics.padic_capped_relative_element.CRElement method), 165

val_unit() (sage.rings.padics.padic_fixed_mod_element.FMElement method), 194

val_unit() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 158

valuation() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 158

valuation() (sage.rings.padics.padic_generic.pAdicGeneric method), 76

X

xgcd() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 158

Z

zeta() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 98

zeta_order() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 98

Zp_class (class in sage.rings.padics.factory), 32

ZpCA() (in module sage.rings.padics.factory), 23

ZpCR() (in module sage.rings.padics.factory), 23

ZpER() (in module sage.rings.padics.factory), 23

ZpFM() (in module sage.rings.padics.factory), 27

ZpFP() (in module sage.rings.padics.factory), 27

ZpLC() (in module sage.rings.padics.factory), 27

ZpLF() (in module sage.rings.padics.factory), 31

Zq() (in module sage.rings.padics.factory), 39

ZqCA() (in module sage.rings.padics.factory), 48

ZqCR() (in module sage.rings.padics.factory), 48

ZqFM() (in module sage.rings.padics.factory), 48

ZqFP() (in module sage.rings.padics.factory), 48

ZZ_pX_eis_shift_test() (in module sage.rings.padics.pow_computer_ext), 245