p-adics

Release 10.2

The Sage Development Team

Dec 06, 2023
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to the p-adics</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Factory</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Local Generic</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>p-adic Generic</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>p-adic Generic Nodes</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>p-adic Base Generic</td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td>p-adic Extension Generic</td>
<td>101</td>
</tr>
<tr>
<td>8</td>
<td>Eisenstein Extension Generic</td>
<td>109</td>
</tr>
<tr>
<td>9</td>
<td>Unramified Extension Generic</td>
<td>113</td>
</tr>
<tr>
<td>10</td>
<td>p-adic Base Leaves</td>
<td>117</td>
</tr>
<tr>
<td>11</td>
<td>p-adic Extension Leaves</td>
<td>125</td>
</tr>
<tr>
<td>12</td>
<td>Local Generic Element</td>
<td>129</td>
</tr>
<tr>
<td>13</td>
<td>p-adic Generic Element</td>
<td>137</td>
</tr>
<tr>
<td>14</td>
<td>p-adic Capped Relative Elements</td>
<td>165</td>
</tr>
<tr>
<td>15</td>
<td>p-adic Capped Absolute Elements</td>
<td>183</td>
</tr>
<tr>
<td>16</td>
<td>p-adic Fixed-Mod Element</td>
<td>197</td>
</tr>
<tr>
<td>17</td>
<td>p-adic Extension Element</td>
<td>211</td>
</tr>
<tr>
<td>18</td>
<td>p-adic ZZ_pX Element</td>
<td>215</td>
</tr>
<tr>
<td>19</td>
<td>p-adic ZZ_pX CR Element</td>
<td>217</td>
</tr>
<tr>
<td>20</td>
<td>p-adic ZZ_pX CA Element</td>
<td>227</td>
</tr>
<tr>
<td>21</td>
<td>p-adic ZZ_pX FM Element</td>
<td>237</td>
</tr>
<tr>
<td>22</td>
<td>PowComputer</td>
<td>247</td>
</tr>
</tbody>
</table>
23 PowComputer_ext 249
24 \(p\)-adic Printing 253
25 Precision Error 259
26 Miscellaneous Functions 261
27 The functions in this file are used in creating new \(p\)-adic elements. 265
28 Frobenius endomorphisms on \(p\)-adic fields 267
29 Indices and Tables 269

Python Module Index 271

Index 273
CHAPTER
ONE

INTRODUCTION TO THE p-ADICS

This tutorial outlines what you need to know in order to use p-adics in Sage effectively.

Our goal is to create a rich structure of different options that will reflect the mathematical structures of the p-adics. This is very much a work in progress: some of the classes that we eventually intend to include have not yet been written, and some of the functionality for classes in existence has not yet been implemented. In addition, while we strive for perfect code, bugs (both subtle and not-so-subtle) continue to evade our clutches. As a user, you serve an important role. By writing non-trivial code that uses the p-adics, you both give us insight into what features are actually used and also expose problems in the code for us to fix.

Our design philosophy has been to create a robust, usable interface working first, with simple-minded implementations underneath. We want this interface to stabilize rapidly, so that users’ code does not have to change. Once we get the framework in place, we can go back and work on the algorithms and implementations underneath. All of the current p-adic code is currently written in pure Python, which means that it does not have the speed advantage of compiled code. Thus our p-adics can be painfully slow at times when you’re doing real computations. However, finding and fixing bugs in Python code is far easier than finding and fixing errors in the compiled alternative within Sage (Cython), and Python code is also faster and easier to write. We thus have significantly more functionality implemented and working than we would have if we had chosen to focus initially on speed. And at some point in the future, we will go back and improve the speed. Any code you have written on top of our p-adics will then get an immediate performance enhancement.

If you do find bugs, have feature requests or general comments, please email sage-support@groups.google.com or roed@math.harvard.edu.

1.1 Terminology and types of p-adics

To write down a general p-adic element completely would require an infinite amount of data. Since computers do not have infinite storage space, we must instead store finite approximations to elements. Thus, just as in the case of floating point numbers for representing reals, we have to store an element to a finite precision level. The different ways of doing this account for the different types of p-adics.

We can think of p-adics in two ways. First, as a projective limit of finite groups:

$$Z_p = \lim_{\leftarrow n} Z/p^n Z.$$

Secondly, as Cauchy sequences of rationals (or integers, in the case of Z_p) under the p-adic metric. Since we only need to consider these sequences up to equivalence, this second way of thinking of the p-adics is the same as considering power series in p with integral coefficients in the range 0 to $p - 1$. If we only allow nonnegative powers of p then these power series converge to elements of Z_p, and if we allow bounded negative powers of p then we get Q_p.

Both of these representations give a natural way of thinking about finite approximations to a \(p \)-adic element. In the first representation, we can just stop at some point in the projective limit, giving an element of \(\mathbb{Z}/p^n\mathbb{Z} \). As \(\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z} \), this is equivalent to specifying our element modulo \(p^n\mathbb{Z}_p \).

The **absolute precision** of a finite approximation \(\bar{x} \in \mathbb{Z}/p^n\mathbb{Z} \) to \(x \in \mathbb{Z}_p \) is the non-negative integer \(n \).

In the second representation, we can achieve the same thing by truncating a series

\[
a_0 + a_1p + a_2p^2 + \cdots
\]

at \(p^n \), yielding

\[
a_0 + a_1p + \cdots + a_{n-1}p^{n-1} + O(p^n).
\]

As above, we call this \(n \) the absolute precision of our element.

Given any \(x \in \mathbb{Q}_p \) with \(x \neq 0 \), we can write \(x = p^k u \) where \(v \in \mathbb{Z} \) and \(u \in \mathbb{Z}_p^* \). We could also store an element of \(\mathbb{Q}_p \) (or \(\mathbb{Z}_p \)) by storing \(v \) and a finite approximation of \(u \). This motivates the following definition: the **relative precision** of an approximation to \(x \) is defined as the absolute precision of the approximation minus the valuation of \(x \). For example, if \(x = a_kp^k + a_{k+1}p^{k+1} + \cdots + a_{n-1}p^{n-1} + O(p^n) \) then the absolute precision of \(x \) is \(n \), the valuation of \(x \) is \(k \) and the relative precision of \(x \) is \(n - k \).

There are three different representations of \(\mathbb{Z}_p \) in Sage and one representation of \(\mathbb{Q}_p \):

- the fixed modulus ring
- the capped absolute precision ring
- the capped relative precision ring, and
- the capped relative precision field.

1.1.1 Fixed Modulus Rings

The first, and simplest, type of \(\mathbb{Z}_p \) is basically a wrapper around \(\mathbb{Z}/p^n\mathbb{Z} \), providing a unified interface with the rest of the \(p \)-adics. You specify a precision, and all elements are stored to that absolute precision. If you perform an operation that would normally lose precision, the element does not track that it no longer has full precision.

The fixed modulus ring provides the lowest level of convenience, but it is also the one that has the lowest computational overhead. Once we have ironed out some bugs, the fixed modulus elements will be those most optimized for speed.

As with all of the implementations of \(\mathbb{Z}_p \), one creates a new ring using the constructor \(\text{Zp} \), and passing in \(\text{'fixed-mod'} \) for the type parameter. For example,

```
sage: R = Zp(5, prec = 10, type = 'fixed-mod', print_mode = 'series')
sage: R
5-adic Ring of fixed modulus 5^10
```

One can create elements as follows:

```
sage: a = R(375)
sage: a
3*5^3
sage: b = R(105)
sage: b
5 + 4*5^2
```

Now that we have some elements, we can do arithmetic in the ring.
Floor division (\(//\)) divides even though the result isn’t really known to the claimed precision; note that division isn’t defined:

```
sage: a // 5
3*5^2
```

Since elements don’t actually store their actual precision, one can only divide by units:

```
sage: a / 2
4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 2*5^8 + 2*5^9
sage: a / b
Traceback (most recent call last):
 ...
ValueError: cannot invert non-unit
```

If you want to divide by a non-unit, do it using the \(//\) operator:

```
sage: a // b
3*5^2 + 3*5^3 + 2*5^5 + 5^6 + 4*5^7 + 2*5^8 + 3*5^9
```

1.1.2 Capped Absolute Rings

The second type of implementation of \(\mathbb{Z}_p\) is similar to the fixed modulus implementation, except that individual elements track their known precision. The absolute precision of each element is limited to be less than the precision cap of the ring, even if mathematically the precision of the element would be known to greater precision (see Appendix A for the reasons for the existence of a precision cap).

Once again, use \(\mathbb{Z}_p\) to create a capped absolute \(p\)-adic ring.

```
sage: R = Zp(5, prec = 10, type = 'capped-abs', print_mode = 'series')
sage: R
5-adic Ring with capped absolute precision 10
```

We can do similar things as in the fixed modulus case:

```
sage: a = R(375)
sage: a
3*5^3 + O(5^10)
sage: b = R(105)
sage: b
5 + 4*5^2 + O(5^10)
sage: a + b
(continues on next page)
Note that when we divided by 5, the precision of \( c \) dropped. This lower precision is now reflected in arithmetic.

\[
\text{sage: } c + b \\
5 + 2*5^2 + 5^3 + 0(5^9)
\]

Division is allowed: the element that results is a capped relative field element, which is discussed in the next section:

\[
\text{sage: } 1 / (c + b) \\
5^{-1} + 3 + 2*5 + 5^2 + 4*5^3 + 4*5^4 + 3*5^6 + O(5^7)
\]

### 1.1.3 Capped Relative Rings and Fields

Instead of restricting the absolute precision of elements (which doesn’t make much sense when elements have negative valuations), one can cap the relative precision of elements. This is analogous to floating point representations of real numbers. As in the reals, multiplication works very well: the valuations add and the relative precision of the product is the minimum of the relative precisions of the inputs. Addition, however, faces similar issues as floating point addition: relative precision is lost when lower order terms cancel.

To create a capped relative precision ring, use \( \mathbb{Z}_p \) as before. To create capped relative precision fields, use \( \mathbb{Q}_p \).

\[
\text{sage: } R = \mathbb{Z}_p(5, \text{prec} = 10, \text{type} = \text{'capped-rel'}, \text{print_mode} = \text{'series'}) \\
\text{sage: } R \\
5-adic Ring with capped relative precision 10 \\
\text{sage: } K = \mathbb{Q}_p(5, \text{prec} = 10, \text{type} = \text{'capped-rel'}, \text{print_mode} = \text{'series'}) \\
\text{sage: } K \\
5-adic Field with capped relative precision 10
\]

We can do all of the same operations as in the other two cases, but precision works a bit differently: the maximum precision of an element is limited by the precision cap of the ring.

\[
\text{sage: } a = R(375) \\
\text{sage: } a \\
3*5^3 + 0(5^{13}) \\
\text{sage: } b = K(105) \\
\text{sage: } b \\
5 + 4*5^2 + 0(5^{11}) \\
\text{sage: } a + b \\
5 + 4*5^2 + 3*5^3 + 0(5^{11}) \\
\text{sage: } a * b \\
3*5^4 + 2*5^5 + 2*5^6 + 0(5^{14}) \\
\text{sage: } c = a // 5 \\
\text{sage: } c \\
3*5^2 + 0(5^{12}) \\
\text{sage: } c + 1 \\
1 + 3*5^2 + 0(5^{10})
\]
As with the capped absolute precision rings, we can divide, yielding a capped relative precision field element.

\[
\frac{1}{c + b} = \frac{5^{-1} + 3 + 2 \cdot 5 + 5^2 + 4 \cdot 5^3 + 4 \cdot 5^4 + 3 \cdot 5^6 + 2 \cdot 5^7 + 5^8 + O(5^9)}{5^{\ast -1} + 3 + 2 \ast 5 + 5^2 + 4 \ast 5^3 + 4 \ast 5^4 + 3 \ast 5^6 + 2 \ast 5^7 + 5^8 + O(5^9)}
\]

### 1.1.4 Unramified Extensions

One can create unramified extensions of \( \mathbb{Z}_p \) and \( \mathbb{Q}_p \) using the functions \( \mathbb{Z}_q \) and \( \mathbb{Q}_q \).

In addition to requiring a prime power as the first argument, \( \mathbb{Z}_q \) also requires a name for the generator of the residue field. One can specify this name as follows:

\[
\text{sage: } R.<c> = \mathbb{Z}_q(125, \text{prec}=20); R
\]

\[
5\text{-adic Unramified Extension Ring in } c \text{ defined by } x^3 + 3x + 3
\]

### 1.1.5 Eisenstein Extensions

It is also possible to create Eisenstein extensions of \( \mathbb{Z}_p \) and \( \mathbb{Q}_p \). In order to do so, create the ground field first:

\[
\text{sage: } R = \mathbb{Z}_p(5, 2)
\]

Then define the polynomial yielding the desired extension:

\[
\text{sage: } S.<x> = \mathbb{Z}[x]
\]

\[
\text{sage: } f = x^5 - 25x^3 + 15x - 5
\]

Finally, use the \texttt{ext} function on the ground field to create the desired extension:

\[
\text{sage: } W.<w> = R.ext(f)
\]

You can do arithmetic in this Eisenstein extension:

\[
\text{sage: } (1 + w)^7
\]

\[
1 + 2w + w^2 + w^5 + 3w^6 + 3w^7 + 3w^8 + w^9 + O(w^{10})
\]

Note that the precision cap increased by a factor of 5, since the ramification index of this extension over \( \mathbb{Z}_p \) is 5.
This file contains the constructor classes and functions for \( p \)-adic rings and fields.

AUTHORS:

- David Roe

\[ \text{sage.rings.padics.factory.QpCR}(p, \text{prec=None, *args, **kwds}) \]

A shortcut function to create capped relative \( p \)-adic fields.

Same functionality as \( \text{Qp()} \). See documentation for \( \text{Qp()} \) for a description of the input parameters.

EXAMPLES:

```python
sage: QpCR(5, 40)
5-adic Field with capped relative precision 40
```

\[ \text{sage.rings.padics.factory.QpER}(p, \text{prec=None, halt=None, secure=False, *args, **kwds}) \]

A shortcut function to create relaxed \( p \)-adic fields.

See \( \text{ZpER()} \) for more information about this model of precision.

EXAMPLES:

```python
sage: R = QpER(2); R
needs sage.libs.flint
2-adic Field handled with relaxed arithmetics
```

\[ \text{sage.rings.padics.factory.QpFP}(p, \text{prec=None, *args, **kwds}) \]

A shortcut function to create floating point \( p \)-adic fields.

Same functionality as \( \text{Qp()} \). See documentation for \( \text{Qp()} \) for a description of the input parameters.

EXAMPLES:

```python
sage: QpFP(5, 40)
5-adic Field with floating precision 40
```

\[ \text{sage.rings.padics.factory.QpLC}(p, \text{prec=None, *args, **kwds}) \]

A shortcut function to create \( p \)-adic fields with lattice precision.

See \( \text{ZpLC()} \) for more information about this model of precision.

EXAMPLES:
sage: R = QpLC(2)
sage: R
2-adic Field with lattice-cap precision

sage.rings.padics.factory.QpLF(p, prec=None, *args, **kwds)
A shortcut function to create \( p \)-adic fields with lattice precision.
See \( \mathbb{Z}_p \)LC() for more information about this model of precision.

EXAMPLES:
sage: R = QpLF(2)
sage: R
2-adic Field with lattice-float precision

class sage.rings.padics.factory.Qp_class
Bases: UniqueFactory
A creation function for \( p \)-adic fields.

INPUT:
- \( p \) – integer: the \( p \) in \( \mathbb{Q}_p \)
- \( \text{prec} \) – integer (default: 20) the precision cap of the field. In the lattice capped case, \( \text{prec} \) can either be a pair (relative_cap, absolute_cap) or an integer (understood at relative cap). In the relaxed case, \( \text{prec} \) can be either a pair (default_prec, halting_prec) or an integer (understood at default precision). Except in the floating point case, individual elements keep track of their own precision. See TYPES and PRECISION below.
- \( \text{type} \) – string (default: 'capped-rel') Valid types are 'capped-rel', 'floating-point', 'lattice-cap', 'lattice-float'. See TYPES and PRECISION below
- \( \text{print_mode} \) – string (default: None). Valid modes are 'series', 'val-unit', 'terse', 'digits', and 'bars'. See PRINTING below
- \( \text{names} \) – string or tuple (defaults to a string representation of \( p \)). What to use whenever \( p \) is printed.
- \( \text{ram_name} \) – string. Another way to specify the name; for consistency with the \( \mathbb{Q}_q \) and \( \mathbb{Z}_q \) and extension functions.
- \( \text{print_pos} \) – bool (default None) Whether to only use positive integers in the representations of elements. See PRINTING below.
- \( \text{print_sep} \) – string (default None) The separator character used in the 'bars' mode. See PRINTING below.
- \( \text{print_alphabet} \) – tuple (default None) The encoding into digits for use in the 'digits' mode. See PRINTING below.
- \( \text{print_max_terms} \) – integer (default None) The maximum number of terms shown. See PRINTING below.
- \( \text{show_prec} \) – a boolean or a string (default None) Specify how the precision is printed. See PRINTING below.
- \( \text{check} \) – bool (default True) whether to check if \( p \) is prime. Non-prime input may cause seg-faults (but can also be useful for base \( n \) expansions for example)
- \( \text{label} \) – string (default None) used for lattice precision to create parents with different lattices.

OUTPUT:
- The corresponding \( p \)-adic field.
TYPES AND PRECISION:

There are two main types of precision for a $p$-adic element. The first is relative precision, which gives the number of known $p$-adic digits:

```python
sage: R = Qp(5, 20, 'capped-rel', 'series'); a = R(675); a
2*5^2 + 5^4 + O(5^22)
sage: a.precision_relative()
20
```

The second type of precision is absolute precision, which gives the power of $p$ that this element is defined modulo:

```python
sage: a.precision_absolute()
22
```

There are several types of $p$-adic fields, depending on the methods used for tracking precision. Namely, we have:

- capped relative fields (type='capped-rel')
- capped absolute fields (type='capped-abs')
- fixed modulus fields (type='fixed-mod')
- floating point fields (type='floating-point')
- lattice precision fields (type='lattice-cap' or type='lattice-float')
- exact fields with relaxed arithmetics (type='relaxed')

In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.

```python
sage: R = Qp(5, 5, 'capped-rel', 'series'); a = R(4006); a
1 + 5 + 2*5^3 + 5^4 + O(5^5)
sage: b = R(4025); b
5^2 + 2*5^3 + 5^4 + 5^5 + O(5^7)
sage: a + b
1 + 5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5)
```

In the floating point case, elements do not track their precision, but the relative precision of elements is truncated during arithmetic to the precision cap of the field.

In the lattice case, precision on elements is tracked by a global lattice that is updated after every operation, yielding better precision behavior at the cost of higher memory and runtime usage. We refer to the documentation of the function `ZpLC()` for a small demonstration of the capabilities of this precision model.

Finally, the model for relaxed $p$-adics is quite different from any of the other types. In addition to storing a finite approximation, one also stores a method for increasing the precision. A quite interesting feature with relaxed $p$-adics is the possibility to create (in some cases) self-referent numbers, that are numbers whose $n$-th digit is defined by the previous ones. We refer to the documentation of the function `ZpL()` for a small demonstration of the capabilities of this precision model.

PRINTING:

There are many different ways to print $p$-adic elements. The way elements of a given field print is controlled by options passed in at the creation of the field. There are five basic printing modes (series, val-unit, terse, digits and bars), as well as various options that either hide some information in the print representation or sometimes make print representations more compact. Note that the printing options affect whether different $p$-adic fields are considered equal.
1. **series**: elements are displayed as series in $p$.

<table>
<thead>
<tr>
<th>Sage code</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>R = Qp(5, print_mode='series'); a = R(70700); a</code></td>
<td>$3 \times 5^2 + 3\times 5^4 + 2\times 5^5 + 4\times 5^6 + O(5^{22})$</td>
</tr>
<tr>
<td><code>b = R(-70700); b</code></td>
<td>$2 \times 5^2 + 4\times 5^3 + 5 \times 5^4 + 2\times 5^5 + 4\times 5^7 + 4\times 5^8 + 4\times 5^9 + 4\times 5^{10} + 4\times 5^{11} + 4\times 5^{12} + 4\times 5^{13} + 4\times 5^{14} + 4\times 5^{15} + 4\times 5^{16} + 4\times 5^{17} + 4\times 5^{18} + 4\times 5^{19} + 4\times 5^{20} + 4\times 5^{21} + O(5^{22})$</td>
</tr>
</tbody>
</table>

`print_pos` controls whether negatives can be used in the coefficients of powers of $p$.

<table>
<thead>
<tr>
<th>Sage code</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>S = Qp(5, print_mode='series', print_pos=False); a = S(70700); a</code></td>
<td>$-2 \times 5^2 + 5^3 - 2\times 5^4 - 2\times 5^5 + 5^7 + O(5^{22})$</td>
</tr>
<tr>
<td><code>b = S(-70700); b</code></td>
<td>$2 \times 5^2 - 5^3 + 2\times 5^4 + 2\times 5^5 - 5^7 + O(5^{22})$</td>
</tr>
</tbody>
</table>

`print_max_terms` limits the number of terms that appear.

<table>
<thead>
<tr>
<th>Sage code</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>T = Qp(5, print_mode='series', print_max_terms=4); b = R(-70700); repr(b)</code></td>
<td>$2 \times 5^2 + 4\times 5^3 + 5^4 + 2\times 5^5 + ... + O(5^{22})$</td>
</tr>
</tbody>
</table>

`names` affects how the prime is printed.

<table>
<thead>
<tr>
<th>Sage code</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>U.&lt;p&gt; = Qp(5); p</code></td>
<td>$p + 0(p^21)$</td>
</tr>
</tbody>
</table>

`show_prec` determines how the precision is printed. It can be either ‘none’ (or equivalently False), ‘bigoh’ (or equivalently True) or ‘bigoh’. The default is False for the ‘floating-point’ type and True for all other types.

<table>
<thead>
<tr>
<th>Sage code</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Qp(5)(6)</code></td>
<td>$1 + 5 + O(5^{20})$</td>
</tr>
<tr>
<td><code>Qp(5, show_prec='none')(6)</code></td>
<td>$1 + 5$</td>
</tr>
<tr>
<td><code>QpFP(5)(6)</code></td>
<td>$1 + 5$</td>
</tr>
</tbody>
</table>

`print_sep` and `print_alphabet` have no effect in series mode.

Note that print options affect equality:

<table>
<thead>
<tr>
<th>Sage code</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>R == S, R == T, R == U, S == T, S == U, T == U</code></td>
<td><code>(False, False, False, False, False, False)</code></td>
</tr>
</tbody>
</table>

2. **val-unit**: elements are displayed as $p^k\times u$.

<table>
<thead>
<tr>
<th>Sage code</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>R = Qp(5, print_mode='val-unit'); a = R(70700); a</code></td>
<td>$5^2 \times 2828 + O(5^{22})$</td>
</tr>
<tr>
<td><code>b = R(-707/5); b</code></td>
<td>$5^{-1} \times 95367431639918 + O(5^{19})$</td>
</tr>
</tbody>
</table>

`print_pos` controls whether to use a balanced representation or not.
sage: S = Qp(5, print_mode='val-unit', print_pos=False); b = S(-70700); b
5^2 * (-2828) + O(5^22)

names affects how the prime is printed.

sage: T = Qp(5, print_mode='val-unit', names='pi'); a = T(70700); a
pi^2 * 2828 + O(pi^22)

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False) or 'bigoh' (or equivalently True). The default is False for the 'floating-point' type and True for all other types.

sage: Qp(5, print_mode='val-unit', show_prec=False)(30)
5 * 6

print_max_terms, print_sep and print_alphabet have no effect.

Equality again depends on the printing options:

sage: R == S, R == T, S == T
(False, False, False)

3. terse: elements are displayed as an integer in base 10 or the quotient of an integer by a power of \( p \) (still in base 10):

sage: R = Qp(5, print_mode='terse'); a = R(70700); a
70700 + O(5^22)

sage: b = R(-70700); b
2384185790944925 + O(5^22)

sage: c = R(-707/5); c
95367431639918/5 + O(5^19)

The denominator, as of version 3.3, is always printed explicitly as a power of \( p \), for predictability.

sage: d = R(707/5^2); d
707/5^2 + O(5^18)

print_pos controls whether to use a balanced representation or not.

sage: S = Qp(5, print_mode='terse', print_pos=False); b = S(-70700); b
-70700 + O(5^22)

sage: c = S(-707/5); c
-707/5 + O(5^19)

name affects how the name is printed.

sage: T.<unif> = Qp(5, print_mode='terse'); c = T(-707/5); c
95367431639918/unif + O(unif^19)

sage: d = T(-707/5^10); d
95367431639918/unif^10 + O(unif^19)

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False) or 'bigoh' (or equivalently True). The default is False for the 'floating-point' type and True for all other types.
\texttt{sage: } \texttt{Qp(5, print\_mode='terse', show\_prec=False)(6)}
\begin{verbatim}
6
\end{verbatim}

\textit{print\_max\_terms, print\_sep} and \textit{print\_alphabet} have no effect.

Equality depends on printing options:
\begin{verbatim}
sage: R == S, R == T, S == T
(False, False, False)
\end{verbatim}

4. \textbf{digits}: elements are displayed as a string of base \( p \) digits

Restriction: you can only use the digits printing mode for small primes. Namely, \( p \) must be less than the length of the alphabet tuple (default alphabet has length 62).
\begin{verbatim}
sage: R = Qp(5, print\_mode='digits'); a = R(70700); repr(a)
'...0000000000000004230300'
sage: b = R(-70700); repr(b)
'...44444444444440214200'
sage: c = R(-707/5); repr(c)
'...44444444444443413.3'
sage: d = R(-707/5^2); repr(d)
'...4444444444444341.33'
\end{verbatim}

Observe that the significant 0's are printed even if they are located in front of the number. On the contrary, unknown digits located after the comma appears as question marks. The precision can therefore be read in this mode as well. Here are more examples:
\begin{verbatim}
sage: p = 7
sage: K = Qp(p, prec=10, print\_mode='digits')
sage: repr(K(1))
'...0000000001'
sage: repr(K(p^2))
'...000000000100'
sage: repr(K(p^-5))
'...00000.00001'
sage: repr(K(p^-20))
'...? ?????????????0000000001'
\end{verbatim}

\textit{print\_max\_terms} limits the number of digits that are printed. Note that if the valuation of the element is very negative, more digits will be printed.
\begin{verbatim}
sage: S = Qp(5, print\_max\_terms=4); S(-70700)
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + ... + 0(5^22)
sage: S(-707/5^2)
3*5^-2 + 3*5^-1 + 1 + 4*5 + ... + 0(5^18)
sage: S(-707/5^6)
3*5^-6 + 3*5^-5 + 5^-4 + 4*5^-3 + ... + 0(5^14)
sage: S(-707/5^6, abs\_prec=-2)
3*5^-6 + 3*5^-5 + 5^-4 + 4*5^-3 + 0(5^-2)
sage: S(-707/5^4)
3*5^-4 + 3*5^-3 + 5^-2 + 4*5^-1 + ... + 0(5^16)
\end{verbatim}

\textit{print\_alphabet} controls the symbols used to substitute for digits greater than 9.

```
sage: T = Qp(5, print_mode='digits', print_alphabet=('1', '2', '3', '4', '5'));.. → repr(T(-70700)) '...5555555555555551325311'
```

`show_prec` determines how the precision is printed. It can be either 'none' (or equivalently False), 'dots' (or equivalently True) or 'bigoh'. The default is False for the 'floating-point' type and True for all other types.

```
sage: repr(Zp(5, print_mode='digits', show_prec=True)(6)) '...00000000000000000011'
sage: repr(Zp(5, print_mode='digits', show_prec='bigoh')(6)) '11 + O(5^20)
```

`print_pos`, `name` and `print_sep` have no effect.

Equality depends on printing options:

```
sage: R == S, R == T, S == T (False, False, False)
```

5. **bars**: elements are displayed as a string of base \( p \) digits with separators:

```
sage: R = Qp(5, print_mode='bars'); a = R(70700); repr(a) '...4|2|3|0|3|0|0'
sage: b = R(-70700); repr(b) '...-1|0|2|2|-1|2|0|0'
sage: d = R(-707/5^2); repr(d) '...4|4|4|4|4|4|4|4|4|4|3|4|1|.33'
```

Again, note that it’s not possible to read off the precision from the representation in this mode.

`print_pos` controls whether the digits can be negative.

```
sage: S = Qp(5, print_mode='bars',print_pos=False); b = S(-70700); repr(b) '....-1|0|2|2|-1|2|0|0'
```

`print_max_terms` limits the number of digits that are printed. Note that if the valuation of the element is very negative, more digits will be printed.

```
sage: T = Qp(5, print_max_terms=4); T(-70700)
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + ... + O(5^22)
sage: T(-707/5^2)
3*5^-2 + 3*5^-1 + 1 + 4*5 + ... + O(5^18)
sage: T(-707/5^6)
3*5^-6 + 3*5^-5 + 5^-4 + 4*5^-3 + ... + O(5^-2)
sage: T(-707/5^6, absprec=-2)
3*5^-6 + 3*5^-5 + 5^-4 + 4*5^-3 + O(5^-2)
sage: T(-707/5^4)
3*5^-4 + 3*5^-3 + 5^-2 + 4*5^-1 + ... + O(5^-16)
```

```
print_sep controls the separation character.

```python
sage: U = Qp(5, print_mode='bars', print_sep='[]'); a = U(70700); repr(a)
'...4][2][3][0][3][0][0'
```

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'dots' (or equivalently True) or 'bigoh' The default is False for the 'floating-point' type and True for all other types.

```python
sage: repr(Qp(5, print_mode='bars', show_prec='bigoh')(6))
'...1|1 + O(5^20)'
```

name and print_alphabet have no effect.

Equality depends on printing options:

```python
sage: R == S, R == T, R == U, S == T, S == U, T == U
(False, False, False, False, False, False)
```

EXAMPLES:

```python
sage: K = Qp(15, check=False); a = K(999); a
9 + 6*15 + 4*15^2 + O(15^20)
```

create_key(

```python
create_key(p, prec=None, type='capped-rel', name=None, write=None, fast=None, efmt=None, **
```

Creates a key from input parameters for Qp.

See the documentation for Qp for more information.

create_object(version, key)

Creates an object using a given key.

See the documentation for Qp for more information.

```python
sage: Qq = Qp(5, print_mode='bars', print_sep='[]'); a = Qq(70700); repr(a)
'...4][2][3][0][3][0][0'
```

Given a prime power \(q = p^n \), return the unique unramified extension of \(\mathbb{Q}_p \) of degree \(n \).

INPUT:

- \(q \) – integer, list, tuple or Factorization object. If \(q \) is an integer, it is the prime power \(q \) in \(\mathbb{Q}_q \). If \(q \) is a Factorization object, it is the factorization of the prime power \(q \). As a tuple it is the pair \((p, n)\), and as a list it is a single element list \([p, n]\).
- \(\text{prec} \) – integer (default: 20) the precision cap of the field. Individual elements keep track of their own precision. See TYPES and PRECISION below.
- \(\text{type} \) – string (default: 'capped-rel') Valid types are 'capped-rel', 'floating-point', 'lattice-cap' and 'lattice-float'. See TYPES and PRECISION below.
- \(\text{modulus} \) – polynomial (default None) A polynomial defining an unramified extension of \(\mathbb{Q}_p \). See MODULUS below.
• names – string or tuple (None is only allowed when $q = p$). The name of the generator, reducing to a generator of the residue field.

• print_mode – string (default: None). Valid modes are 'series', 'val-unit', 'terse', and 'bars'. See PRINTING below.

• ram_name – string (defaults to string representation of p if None). ram_name controls how the prime is printed. See PRINTING below.

• res_name – string (defaults to None, which corresponds to adding a '0' to the end of the name). Controls how elements of the residue field print.

• print_pos – bool (default None) Whether to only use positive integers in the representations of elements. See PRINTING below.

• print_sep – string (default None) The separator character used in the 'bars' mode. See PRINTING below.

• print_max_ram_terms – integer (default None) The maximum number of powers of p shown. See PRINTING below.

• print_max_unram_terms – integer (default None) The maximum number of entries shown in a coefficient of p. See PRINTING below.

• print_max_terse_terms – integer (default None) The maximum number of terms in the polynomial representation of an element (using 'terse'). See PRINTING below.

• show_prec – bool (default None) whether to show the precision for elements. See PRINTING below.

• check – bool (default True) whether to check inputs.

OUTPUT:
• The corresponding unramified p-adic field.

TYPES AND PRECISION:
There are two types of precision for a p-adic element. The first is relative precision, which gives the number of known p-adic digits:

```sage
cap=Qq(25, 20, 'capped-rel', print_mode='series'); b = 25^a; b  
# needs sage.libs.ntl

cap.a^5*2 + O(5^22)
sage: b.precision_relative()  
# needs sage.libs.ntl
20
```

The second type of precision is absolute precision, which gives the power of p that this element is defined modulo:

```sage
cap.b.precision_absolute()  
# needs sage.libs.ntl
22
```

There are two types of unramified p-adic fields: capped relative fields, floating point fields.
In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.
In the floating point case, elements do not track their precision, but the relative precision of elements is truncated during arithmetic to the precision cap of the field.

MODULUS:

The modulus needs to define an unramified extension of \(\mathbb{Q}_p \): when it is reduced to a polynomial over \(\mathbb{F}_p \) it should be irreducible.

The modulus can be given in a number of forms.

1. A polynomial.

The base ring can be \(\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p, \mathbb{Q}_p, \mathbb{F}_p \).

Which form the modulus is given in has no effect on the unramified extension produced:

unless the precision of the modulus differs. In the case of V, the modulus is only given to precision 1, so the resulting field has a precision cap of 1.
(continued from previous page)

\[(1 + 0(3^{20}))*x^3 + (2 + 0(3^{7}))*x + 1 + 0(3^{10})\]

sage: W.<a> = Qq(27, modulus = modulus); W.precision_cap()

\[7\]

2. The modulus can also be given as a **symbolic expression**.

```
sage: x = var('x')
˓→ # needs sage.symbolic
sage: X.<a> = Qq(27, modulus = x^3 + 2*x + 1); X.modulus()
˓→ # needs sage.symbolic
(1 + 0(3^{20}))*x^3 + 0(3^{20})*x^2 + (2 + 0(3^{20}))*x + 1 + 0(3^{20})
sage: X == R
˓→ # needs sage.libs.ntl sage.symbolic
True
```

By default, the polynomial chosen is the standard lift of the generator chosen for \(\mathbb{F}_q\).

```
sage: GF(125, 'a').modulus()
˓→ # needs sage.rings.finite_rings
x^3 + 3*x + 3
sage: Y.<a> = Qq(125); Y.modulus()
˓→ # needs sage.libs.ntl
(1 + 0(5^{20}))*x^3 + 0(5^{20})*x^2 + (3 + 0(5^{20}))*x + 3 + 0(5^{20})
```

However, you can choose another polynomial if desired (as long as the reduction to \(\mathbb{F}_p[x]\) is irreducible).

```
sage: P.<x> = ZZ[]
sage: Z.<a> = Qq(125, modulus = x^3 + 3*x^2 + x + 1); Z.modulus()
˓→ # needs sage.libs.ntl
(1 + 0(5^{20}))*x^3 + (3 + 0(5^{20}))*x^2 + (1 + 0(5^{20}))*x + 1 + 0(5^{20})
sage: Y == Z
˓→ # needs sage.libs.ntl
False
```

PRINTING:

There are many different ways to print \(p\)-adic elements. The way elements of a given field print is controlled by options passed in at the creation of the field. There are four basic printing modes ('series', 'val-unit', 'terse' and 'bars'; 'digits' is not available), as well as various options that either hide some information in the print representation or sometimes make print representations more compact. Note that the printing options affect whether different \(p\)-adic fields are considered equal.

1. **series:** elements are displayed as series in \(p\).

```
sage: R.<a> = Qq(9, 20, 'capped-rel', print_mode='series'); (1+2*a)^4
˓→ # needs sage.libs.ntl
2 + (2*a + 2)*3 + (2*a + 1)*3^2 + 0(3^20)
sage: -3*(1+2*a)^4
˓→ # needs sage.libs.ntl
3 + a*3^2 + 3*3 + (2*a + 2)*3^4 + (2*a + 2)*3^5 + (2*a + 2)*3^6 + (2*a + 2)*3^7 + (2*a + 2)*3^8 + (2*a + 2)*3^9 + (2*a + 2)*3^10 + (2*a + 2)*3^11
```

(continues on next page)
\[
\begin{align*}
&+ (2^a + 2) \cdot 3^{12} + (2^a + 2) \cdot 3^{13} + (2^a + 2) \cdot 3^{14} + (2^a + 2) \cdot 3^{15} \\
&+ (2^a + 2) \cdot 3^{16} + (2^a + 2) \cdot 3^{17} + (2^a + 2) \cdot 3^{18} + (2^a + 2) \cdot 3^{19} \\
&+ (2^a + 2) \cdot 3^{20} + O(3^{21})
\end{align*}
\]

sage: \(-3^a + 18\)

\[
\begin{align*}
\rightarrow & \# \text{ needs sage.libs.ntl} \\
1 - b^3 & - 3^2 + (b + 1) \cdot 3^3 + 0(3^{20})
\end{align*}
\]

sage: \(-3^a + 18\)

\[
\begin{align*}
\rightarrow & \# \text{ needs sage.libs.ntl} \\
3 & + b^3 + (2^a + 1) \cdot 3^4 + 3^5 + 2^a \cdot 3^6 + (2^a + 1) \cdot 3^7 + 3^8 + 2^a \cdot 3^9 + (2^a + 1) \cdot 3^{10} + 3^{11} + 2^a \cdot 3^{12} + (2^a + 1) \cdot 3^{13} + 3^{14} + 2^a \cdot 3^{15} + (2^a + 1) \cdot 3^{16} + 3^{17} + 2^a \cdot 3^{18} + (2^a + 1) \cdot 3^{19} + O(3^{20})
\end{align*}
\]

print_pos controls whether negatives can be used in the coefficients of powers of \(p\).

sage: \(S. = \mathbb{Q}_9\text{(print_mode='series', print_pos=\text{False}); (1+2^a)^4 \rightarrow \# \text{ needs sage.libs.ntl}} \) \(-1 - b^3 - 3^2 + (b + 1) \cdot 3^3 + O(3^{20})
\]

sage: \(-3^a + 18\)

\[
\begin{align*}
\rightarrow & \# \text{ needs sage.libs.ntl} \\
2^a & + (2^a + 2) \cdot p^2 + (2^a + 1) \cdot p^3 + O(p^{21})
\end{align*}
\]

ram_name controls how the prime is printed.

sage: \(T.<d> = \mathbb{Q}_9\text{(print_mode='series', ram_name=}'\text{p'}); 3^a + d^5 + \text{d}^4 + \text{d}^3 + \text{d}^2 + O(3^{22})
\]

print_max_ram_terms limits the number of powers of \(p\) that appear.

sage: \(U.<e> = \mathbb{Q}_9\text{(print_mode='series', print_max_ram_terms=4); repr(-3^a + 18)} \rightarrow \# \text{ needs sage.libs.ntl} \) \(3 + e^3 \cdot 2 + 3^3 + (2^a + 2) \cdot 3^4 + \ldots + O(3^{21})
\]

print_max_unram_terms limits the number of terms that appear in a coefficient of a power of \(p\).

sage: \(V.<f> = \mathbb{Q}_9\text{(print_mode='series', print_max_unram_terms=3); repr((1+f)^9)} \rightarrow \# \text{ needs sage.libs.ntl} \) \(3 + e^3 \cdot 2 + 3^3 + (2^a + 2) \cdot 3^4 + \ldots + O(3^{21})
\]

\(\text{print_max_unram_terms}\) limits the number of terms that appear in a coefficient of a power of \(p\).
\texttt{sage}: \texttt{V.<f> = Qq(128, prec = 8, print_mode='series', print_max_unram_terms=0); \texttt{repr((1+f)^9 - 1 - f^3)}}

\texttt{'(\ldots)^2 + (\ldots)^2\cdot 2 + (\ldots)^2\cdot 3 + (\ldots)^2\cdot 4 + (\ldots)^2\cdot 5 + (\ldots)^2\cdot 6} + \ldots
\texttt{\ldots)^2\cdot 7 + O(2^8)'}

\textit{show_prec} determines how the precision is printed. It can be either ‘none’ (or equivalently \texttt{False}), ‘bigoh’ (or equivalently \texttt{True}). The default is \texttt{False} for the ‘floating-point’ type and \texttt{True} for all other types.

\texttt{sage}: \texttt{U.<e> = Qq(9, 2, show_prec=False); \texttt{repr(-3*(1+2\cdot e)^4)}}

\texttt{3 + e\cdot 3^2}

\textit{print_sep} and \textit{print_max_terse_terms} have no effect.

Note that print options affect equality:

\texttt{sage}: \texttt{R == S, R == T, R == U, R == V, S == T, S == U, S == V, T == U, T == V, U == V}

\texttt{(False, False, False, False, False, False, False, False, False, False)}

2. \textbf{val_unit}: elements are displayed as \(p^k u:\)

\texttt{sage}: \texttt{R.<a> = Qq(9, 7, print_mode='val_unit'); \texttt{b = (1+3\cdot a)^9 - 1; \texttt{b}}}

\texttt{# needs sage.libs.ntl}
\texttt{3^3 \cdot (15 + 64\cdot a) + O(3^7)}

\texttt{sage}: \texttt{~b}

\texttt{# needs sage.libs.ntl}
\texttt{3^{-3} \cdot (-40 + a) + O(3)}

\textit{print_pos} controls whether to use a balanced representation or not.

\texttt{sage}: \texttt{S.<a> = Qq(9, 7, print_mode='val_unit', print_pos=False)}

\texttt{# needs sage.libs.ntl}
\texttt{sage}: \texttt{b = (1+3\cdot a)^9 - 1; \texttt{b}}

\texttt{# needs sage.libs.ntl}
\texttt{3^3 \cdot (15 - 17\cdot a) + O(3^7)}

\texttt{sage}: \texttt{~b}

\texttt{# needs sage.libs.ntl}
\texttt{3^{-3} \cdot (-40 + a) + O(3)}

\textit{ram_name} affects how the prime is printed.

\texttt{sage}: \texttt{# needs sage.libs.ntl}
\texttt{sage}: \texttt{A.<x> = Qp(next_prime(10^6), print_mode='val_unit')[]}
\texttt{sage}: \texttt{T.<a> = Qq(next_prime(10^6)^3, 4, print_mode='val_unit', ram_name='p',
\texttt{.....: modulus=x^3+385831*x^2+106556*x+321036)}}
\texttt{sage}: \texttt{b = ~(next_prime(10^6)^2*(a^2 + a - 4)); \texttt{b}}

\texttt{p^{-2} \cdot (5030095635085191377514940 + 704413692798200940253892\cdot a + 968097057817740999537581\cdot a^2) + O(p^2)}

\texttt{sage}: \texttt{b * (a^2 + a - 4)}

\texttt{p^{-2} \cdot 1 + O(p^2)}
print_max_terse_terms controls how many terms of the polynomial appear in the unit part.

```python
sage: U.<a> = Qq(17^4, 6, print_mode='val-unit', print_max_terse_terms=3)
   # needs sage.libs.ntl
sage: b = ~(17*(a^3-a+14)); b
   # needs sage.libs.ntl
17^-1 * (22110411 + 11317400*a + 20656972*a^2 + ...) + O(17^5)
sage: b*17*(a^3-a+14)
   # needs sage.libs.ntl
1 + O(17^6)
```

show_prec determines how the precision is printed. It can be either ‘none’ (or equivalently False), ‘bigoh’ (or equivalently True). The default is False for the 'floating-point' type and True for all other types.

```python
sage: U.<e> = Qq(9, 2, print_mode='val-unit', show_prec=False); repr(-3*(1+2*e)^4)
   # needs sage.libs.ntl
'3 * (1 + 3*e)'
```

print_sep, print_max_ram_terms and print_max_unram_terms have no effect.

Equality again depends on the printing options:

```python
sage: R == S, R == T, R == U, S == T, S == U, T == U
   # needs sage.libs.ntl
(False, False, False, False, False, False)
```

3. terse: elements are displayed as a polynomial of degree less than the degree of the extension.

```python
sage: R.<a> = Qq(125, print_mode='terse')
   # needs sage.libs.ntl
sage: (a+5)^177
   # needs sage.libs.ntl
6821977979428 + 90313850704069*a + 73948093055069*a^2 + O(5^20)
sage: (a/5+1)^177
   # needs sage.libs.ntl
6821977979428/5^177 + 90313850704069/5^177*a + 73948093055069/5^177*a^2 + O(5^-157)
```

As of version 3.3, if coefficients of the polynomial are non-integral, they are always printed with an explicit power of p in the denominator.

```python
sage: 5*a + a^2/25
   # needs sage.libs.ntl
5*a + 1/5^2*a^2 + O(5^18)
```

print_pos controls whether to use a balanced representation or not.

```python
sage: (a-5)^6
   # needs sage.libs.ntl
22864 - 12627*a + 8349*a^2 + O(5^20)
```

(continues on next page)
\(p\)-adics, Release 10.2

(continued from previous page)

\[
\text{sage: } (a - 1/5)^6
\]

\[
\rightarrow -20624/5^6 + 18369/5^5*a + 1353/5^3*a^2 + O(5^{14})
\]

\(\text{ram_name} \) affects how the prime is printed.

\[
\text{sage: } T.<a> = Qq(125, \text{print_mode}='\text{terse}', \text{ram_name}='p'); (a - 1/5)^6
\]

\[
\rightarrow 95367431620001/p^6 + 18369/p^5*a + 1353/p^3*a^2 + O(p^{14})
\]

\(\text{print_max_terse_terms} \) controls how many terms of the polynomial are shown.

\[
\text{sage: } U.<a> = Qq(625, \text{print_mode}='\text{terse}', \text{print_max_terse_terms}=2); (a-1/5)^6
\]

\[
\rightarrow 106251/5^6 + 49994/5^5*a + \ldots + O(5^{14})
\]

\(\text{show_prec} \) determines how the precision is printed. It can be either ‘none’ (or equivalently False), ‘bighi’ (or equivalently True). The default is False for the ‘floating-point’ type and True for all other types.

\[
\text{sage: } U.<e> = Qq(9, 2, \text{print_mode}='\text{terse}', \text{show_prec}=\text{False}); \text{repr}(-3*(1+2*e)^4)
\]

\[
\rightarrow '3 + 9*e'
\]

\(\text{print_sep}, \text{print_max_ram_terms} \) and \(\text{print_max_unram_terms} \) have no effect.

Equality again depends on the printing options:

\[
\text{sage: } R == S, R == T, R == U, S == T, S == U, T == U
\]

\[
\rightarrow (\text{False, False, False, False, False, False})
\]

4. \(\text{digits} \): This print mode is not available when the residue field is not prime.

It might make sense to have a dictionary for small fields, but this isn’t implemented.

5. \(\text{bars} \): elements are displayed in a similar fashion to series, but more compactly.

\[
\text{sage: } R.<a> = Qq(125); (a+5)^6
\]

\[
\rightarrow (4*a^2 + 3*a + 4) + (3*a^2 + 2*a)*5 + (a^2 + a + 1)*5^2 + (3*a + 2)*5^3 + (3*a^2 + a + 3)*5^4 + (2*a^2 + 3*a + 2)*5^5 + O(5^{20})
\]

\[
\text{sage: } R.<a> = Qq(125, \text{print_mode}='\text{bars}', \text{prec}=8); \text{repr}(a+5)^6
\]

\[
\rightarrow \ldots[2, 3, 2],[3, 1, 3],[2, 3],[1, 1, 1],[0, 2, 3],[4, 3, 4]'\]

\[
\text{sage: } \text{repr}(a-5)^6
\]

\[
\rightarrow \ldots[0, 4],[1, 4],[2, 0, 2],[1, 4, 3],[2, 3, 1],[4, 4, 3],[2, 4, 4],[4, 3, 4]'\]

Note that elements with negative valuation are shown with a decimal point at valuation 0.

\[
\text{sage: } \text{repr}(a+1/5)^6
\]

\[
\rightarrow \ldots[3],[4, 1, 3],[0, 3],[0, 3],[0, 1],[0, 1],[1]'\]

(continues on next page)
If not enough precision is known, '??' is used instead.

```sage
sage: repr((a+R(1/5, relprec=3))^7) # needs sage.libs.ntl
'...?|?|?|?|[0, 1, 1]|0, 2][1]'
```

Note that it’s not possible to read off the precision from the representation in this mode.

```sage
sage: b = a + 3; repr(b)
'...[3, 1]'
```

```sage
c = a + R(3, 4); repr(c)
'...[3, 1]'
```

```sage
d = b.precision_absolute()
8
d = c.precision_absolute()
4
```

`print_pos` controls whether the digits can be negative.

```sage
sage: S.<a> = Qq(125, print_mode='bars', print_pos=False); repr((a-5)^6) # needs sage.libs.ntl
'...[1, -1, 1]||[2, 0, -2]|([-2, -1, 2]|0, 0, -1)|[-2]|-1, -2, -1]'
```

```sage
d =repr((a-1/5)^6) # needs sage.libs.ntl
'...[0, 1, 2]|[-1, 1, 1]|-1, -1, -1]|2, 2, 1]|0, 0, -2]|0, -1]|0, -1]||1]'
```

`print_max_ram_terms` controls the maximum number of “digits” shown. Note that this puts a cap on the relative precision, not the absolute precision.

```sage
sage: T.<a> = Qq(125, print_max_ram_terms=3, print_pos=False); repr((a-5)^6) # needs sage.libs.ntl
(-a^2 - 2*a - 1) - 2*a^2*5 + ... + O(5^20)
```

```sage
sage: T.<a> = Qq(125, print_max_ram_terms=3, print_pos=); repr((a-5)^6) # needs sage.libs.ntl
(-a^2 - 2*a - 1)^5 - a^2*5^3 + (2*a^2 - a - 2)*5^4 + ... + O(5^21)
```

`print_sep` controls the separating character (" | ") by default.

```sage
sage: U.<a> = Qq(625, print_mode='bars', print_sep=''); b = (a+5)^6;
repr(b) # needs sage.libs.ntl
'...[0, 1][4, 0, 2][3, 2, 2, 3][4, 2, 2, 4][0, 3][1, 1, 3][3, 1, 4, 1]'
```

`print_max_unram_terms` controls how many terms are shown in each “digit”:

```sage
sage: # needs sage.libs.ntl
sage: with local_print_mode(U, {'max_unram_terms': 3}): repr(b)
(continues on next page)
\[ \ldots [0, 1][4, \ldots, 2][3, \ldots, 2, 3][4, \ldots, 2, 4][0, 3][1, \ldots, 1, 3][3, \ldots, 1, 4, 1] \]

```python
sage: with local_print_mode(U, {max_unram_terms: 2}): repr(b)
\ldots [0, 1][4, \ldots, 2][3, \ldots, 3][4, \ldots, 4][0, 3][1, \ldots, 3][3, \ldots, 1]
```

```python
sage: with local_print_mode(U, {max_unram_terms: 1}): repr(b)
\ldots [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...]
```

```python
sage: with local_print_mode(U, {max_unram_terms: 0}): repr(b - 75*a)
\ldots [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...], [...]
```

\(\text{show}\_\text{prec}\) determines how the precision is printed. It can be either 'none' (or equivalently \text{False}), 'dots' (or equivalently \text{True}) or 'bigoh'. The default is \text{False} for the 'floating-point' type and \text{True} for all other types.

```python
sage: U.<e> = Qq(9, 2, print_mode='bars', show_prec=True); repr(-3*(1+2*e)^4) # needs sage.libs.ntl
\ldots [0, 1][1][1][1][1]
```

\(\text{ram}\_\text{name}\) and \(\text{print}\_\text{max}\_\text{terse}\_\text{terms}\) have no effect.

Equality depends on printing options:

```python
sage: R == S, R == T, R == U, S == T, S == U, T == U # needs sage.libs.ntl
(False, False, False, False, False, False)
```

**EXAMPLES:**

Unlike for \(\text{Qp}\), you can’t create \(\text{Qq}(N)\) when \(N\) is not a prime power.

However, you can use \text{check=False} to pass in a pair in order to not have to factor. If you do so, you need to use names explicitly rather than the \(R.<a>\) syntax.

```python
sage: p = next_prime(2^123)
sage: k = Qp(p)
sage: R.<x> = k[] # needs sage.libs.ntl
sage: K = Qq([(p, 5)], modulus=x^5+x+4, names='a', ram_name='p', # needs sage.libs.ntl
 print_pos=False, check=False)
sage: K.0^5 # needs sage.libs.ntl
(-a - 4) + O(p^20)
```

In tests on \text{sage.math.washington.edu}, the creation of \(K\) as above took an average of 1.58ms, while:

```python
sage: K = Qq(p^5, modulus=x^5+x+4, names='a', ram_name='p', # needs sage.libs.ntl
 print_pos=False, check=True)
```

took an average of 24.5ms. Of course, with smaller primes these savings disappear.

\(\text{sage.rings.padics.factory.QqCR}(q, prec=\text{None}, *\text{args}, **\text{kwds})\)

A shortcut function to create capped relative unramified \(p\)-adic fields.

Same functionality as \(\text{Qq}().\) See documentation for \(\text{Qq}()\) for a description of the input parameters.
EXEMPLARY:

```python
sage: R.<a> = QqCR(25, 40); R
5-adic Unramified Extension Field in a defined by x^2 + 4*x + 2
```

`sage.rings.padics.factory.QqFP(q, prec=None, *args, **kwds)`

A shortcut function to create floating point unramified $p$-adic fields.

Same functionality as `Qq()`. See documentation for `Qq()` for a description of the input parameters.

EXEMPLARY:

```python
sage: R.<a> = QqFP(25, 40); R
5-adic Unramified Extension Field in a defined by x^2 + 4*x + 2
```

`sage.rings.padics.factory.ZpCA(p, prec=None, *args, **kwds)`

A shortcut function to create capped absolute $p$-adic rings.

See documentation for `Zp()` for a description of the input parameters.

EXEMPLARY:

```python
sage: ZpCA(5, 40)
5-adic Ring with capped absolute precision 40
```

`sage.rings.padics.factory.ZpCR(p, prec=None, *args, **kwds)`

A shortcut function to create capped relative $p$-adic rings.

Same functionality as `Zp()`. See documentation for `Zp()` for a description of the input parameters.

EXEMPLARY:

```python
sage: ZpCR(5, 40)
5-adic Ring with capped relative precision 40
```

`sage.rings.padics.factory.ZpER(p, prec=None, halt=None, secure=False, *args, **kwds)`

A shortcut function to create relaxed $p$-adic rings.

INPUT:

- `prec` – an integer (default: 20), the default precision
- `halt` – an integer (default: twice `prec`), the halting precision
- `secure` – a boolean (default: `False`); if `False`, consider indistinguishable elements at the working precision as equal; otherwise, raise an error.

See documentation for `Zp()` for a description of the other input parameters.

A SHORT INTRODUCTION TO RELAXED $p$-ADICS:

The model for relaxed $p$-adics is quite different from any of the other types of $p$-adics. In addition to storing a finite approximation, one also stores a method for increasing the precision.

Relaxed $p$-adic rings are created by the constructor `ZpER()`:

```python
sage: R = ZpER(5, print_mode="digits"); R
5-adic Ring handled with relaxed arithmetics
```
The precision is not capped in \( R \):

```
sage: R.precision_cap()
+Infinity
```

However, a default precision is fixed. This is the precision at which the elements will be printed:

```
sage: R.default_prec()
20
```

A default halting precision is also set. It is the default absolute precision at which the elements will be compared. By default, it is twice the default precision:

```
sage: R.halting_prec()
40
```

However, both the default precision and the halting precision can be customized at the creation of the parent as follows:

```
sage: S = ZpER(5, prec=10, halt=100)
sage: S.default_prec()
10
sage: S.halting_prec()
100
```

One creates elements as usual:

```
sage: a = R(17/42); a
...00244200244200244201
sage: R.random_element()
...21013213133412431402
```

Here we notice that 20 digits (that is the default precision) are printed. However, the computation model is designed in order to guarantee that more digits of \( a \) will be available on demand. This feature is reflected by the fact that, when we ask for the precision of \( a \), the software answers \(+\infty\):

```
sage: a.precision_absolute()
+Infinity
```

Asking for more digits is achieved by the methods `at_precision_absolute()` and `at_precision_relative()`:

```
sage: a.at_precision_absolute(30)
...?244200244200244200244200244201
```
As a shortcut, one can use the bracket operator:

```sage
sage: a[:30] # needs sage.libs.flint
...
```

Of course, standard operations are supported:

```sage
sage: b = R(42/17)
sage: a + b

sage: a - b

sage: a * b

sage: a / b

sage: sqrt(a)

```

We observe again that only 20 digits are printed but, as before, more digits are available on demand:

```sage
sage: sqrt(a)[:30] # needs sage.libs.flint
...
```

### Equality tests

Checking equalities between relaxed $p$-adics is a bit subtle and can sometimes be puzzling at first glance.

When the parent is created with `secure=False` (which is the default), elements are compared at the current precision, or at the default halting precision if it is higher:

```sage
sage: a == b # needs sage.libs.flint
False

sage: a == sqrt(a)^2 # needs sage.libs.flint
True

sage: a == sqrt(a)^2 + 5^50 # needs sage.libs.flint
True
```

In the above example, the halting precision is 40; it is the reason why a congruence modulo $5^{50}$ is considered as an equality. However, if both sides of the equalities have been previously computed with more digits, those digits are taken into account. Hence comparing two elements at different times can produce different results:

```sage
sage: aa = sqrt(a)^2 + 5^50
sage: a == aa
```

(continues on next page)
This annoying situation, where the output of \texttt{a == aa} may change depending on previous computations, cannot occur when the parent is created with \texttt{secure=True}. Indeed, in this case, if the equality cannot be decided, an error is raised:

```python
sage: # needs sage.libs.flint
sage: S = ZpER(5, secure=True)
sage: u = S.random_element()
sage: uu = u + 5^50
sage: u == uu
Traceback (most recent call last):
 ...
PrecisionError: unable to decide equality; try to bound precision
```

```python
sage: u[:60] == uu # needs sage.libs.flint
False
```

### Self-referent numbers

A quite interesting feature with relaxed \(p\)-adics is the possibility to create (in some cases) self-referent numbers. Here is an example. We first declare a new variable as follows:

```python
sage: x = R.unknown(); x # needs sage.libs.flint
...
```

We then use the method \texttt{set()} to define \(x\) by writing down an equation it satisfies:

```python
sage: x.set(1 + 5^x^2) # needs sage.libs.flint
True
```

The variable \(x\) now contains the unique solution of the equation \(x = 1 + 5x^2\):

```python
sage: x # needs sage.libs.flint
...
```

This works because the \(n\)-th digit of the right hand size of the defining equation only involves the \(i\)-th digits of \(x\) with \(i < n\) (this is due to the factor 5).

As a comparison, the following does not work:

```python
sage: # needs sage.libs.flint
sage: y = R.unknown() (continues on next page)```
Self-referent definitions also work with systems of equations:

```
sage: # needs sage.libs.flint
sage: u = R.unknown()
sage: v = R.unknown()
sage: w = R.unknown()
sage: u.set(1 + 2*v + 3*w^2 + 5*u*v*w)
True
sage: v.set(2 + 4*w + sqrt(1 + 5*u + 10*v + 15*w))
True
sage: w.set(3 + 25*(u*v + v*w + u*w))
True
sage: u
...31203130103131131433
sage: v
...33441043031103114240
sage: w
...30212422041102444403
```

sage.rings.padics.factory.ZpFM(p, prec=None, *args, **kwds)

A shortcut function to create fixed modulus p-adic rings.

See documentation for Zp() for a description of the input parameters.

EXAMPLES:

```
sage: ZpFM(5, 40)
5-adic Ring of fixed modulus $5^{40}$
```

sage.rings.padics.factory.ZpFP(p, prec=None, *args, **kwds)

A shortcut function to create floating point p-adic rings.

Same functionality as Zp(). See documentation for Zp() for a description of the input parameters.

EXAMPLES:

```
sage: ZpFP(5, 40)
5-adic Ring with floating precision 40
```

sage.rings.padics.factory.ZpLC(p, prec=None, *args, **kwds)

A shortcut function to create p-adic rings with lattice precision (precision is encoded by a lattice in a large vector space and tracked using automatic differentiation).

See documentation for Zp() for a description of the input parameters.

EXAMPLES:
Below is a small demo of the features by this model of precision:

```
sage: R = ZpLC(3, print_mode='terse')
sage: R
3-adic Ring with lattice-cap precision
sage: x = R(1,10)
```

Of course, when we multiply by 3, we gain one digit of absolute precision:

```
sage: 3^x
3 + O(3^11)
```

The lattice precision machinery sees this even if we decompose the computation into several steps:

```
sage: y = x+x
sage: y
2 + O(3^10)
sage: x + y
3 + O(3^11)
```

The same works for the multiplication:

```
sage: z = x^2
sage: z
1 + O(3^10)
sage: x*z
1 + O(3^11)
```

This can be more surprising when we are working with elements given at different precisions:

```
sage: R = ZpLC(2, print_mode='terse')
sage: x = R(1,10)
sage: y = R(1,5)
sage: z = x+y; z
2 + O(2^5)
sage: t = x-y; t
O(2^5)
sage: z+t # observe that z+t = 2^x
2 + O(2^11)
sage: z-t # observe that z-t = 2^y
2 + O(2^6)
sage: x = R(28888,15)
sage: y = R(204,10)
sage: z = x/y; z
242 + O(2^9)
sage: z*y # which is x
28888 + O(2^15)
```

The SOMOS sequence is the sequence defined by the recurrence:

\[u_n = \frac{u_{n-1}u_{n-3} + u_{n-2}^2}{u_{n-4}} \]
It is known for its numerical instability. On the one hand, one can show that if the initial values are invertible in \(\mathbb{Z}_p \) and known at precision \(O(p^N) \) then all the next terms of the SOMOS sequence will be known at the same precision as well. On the other hand, because of the division, when we unroll the recurrence, we lose a lot of precision. Observe:

```
sage: R = Zp(2, 30, print_mode='terse')
sage: a,b,c,d = R(1,15), R(1,15), R(1,15), R(3,15)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 4 + O(2^15)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 13 + O(2^15)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 55 + O(2^15)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 21975 + O(2^15)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 6639 + O(2^13)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 7186 + O(2^13)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 569 + O(2^13)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 253 + O(2^13)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 4149 + O(2^13)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 2899 + O(2^12)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 3072 + O(2^12)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 349 + O(2^12)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 619 + O(2^12)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 243 + O(2^12)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 3 + O(2^2)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 2 + O(2^2)
```

If instead, we use the lattice precision, everything goes well:

```
sage: R = ZpLC(2, 30, print_mode='terse')
sage: a,b,c,d = R(1,15), R(1,15), R(1,15), R(3,15)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 4 + O(2^15)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 13 + O(2^15)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 55 + O(2^15)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 21975 + O(2^15)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 6639 + O(2^13)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 7186 + O(2^13)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 569 + O(2^13)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 253 + O(2^13)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 4149 + O(2^13)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 2899 + O(2^12)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 3072 + O(2^12)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 349 + O(2^12)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 619 + O(2^12)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 243 + O(2^12)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 3 + O(2^2)
sage: a,b,c,d = b,c,d,(b*b+c*c)/a; print(d)
 2 + O(2^2)
```
ALGORITHM:
The precision is global. It is encoded by a lattice in a huge vector space whose dimension is the number of elements having this parent. Precision is tracked using automatic differentiation techniques (see [CRV2014] and [CRV2018]).

Concretely, this precision datum is an instance of the class `sage.rings.padic.lattice_precision`. PrecisionLattice. It is attached to the parent and is created at the same time as the parent. (It is actually a bit more subtle because two different parents may share the same instance; this happens for instance for a p-adic ring and its field of fractions.)

This precision datum is accessible through the method `precision()`:

```python
sage: R = ZpLC(5, print_mode='terse')
sage: prec = R.precision()
sage: prec
Precision lattice on 0 objects
```

This instance knows about all elements of the parent. It is automatically updated when a new element (of this parent) is created:

```python
sage: x = R(3513,10)
sage: prec
Precision lattice on 1 object
sage: y = R(176,5)
sage: prec
Precision lattice on 2 objects
sage: z = R.random_element()
sage: prec
Precision lattice on 3 objects
```

The method `tracked_elements()` provides the list of all tracked elements:

```python
sage: prec.tracked_elements()
[3513 + O(5^10), 176 + O(5^5), ...]
```
Similarly, when a variable is collected by the garbage collector, the precision lattice is updated. Note however
that the update might be delayed. We can force it with the method del_elements():

```
sage: z = 0
sage: prec  # random output, could be 2 objects if the garbage collector is fast
Precision lattice on 3 objects
sage: prec.del_elements()
sage: prec
Precision lattice on 2 objects
```

The method precision_lattice() returns (a matrix defining) the lattice that models the precision. Here we have:

```
sage: prec.precision_lattice()
# needs sage.geometry.polyhedron
[9765625  0]
[  0 3125]
```

Observe that \(5^10 = 9765625\) and \(5^5 = 3125\). The above matrix then reflects the precision on \(x\) and \(y\).

Now, observe how the precision lattice changes while performing computations:

```
sage: x, y = 3*x+2*y, 2*(x-y)
sage: prec.del_elements()
sage: prec.precision_lattice()
# needs sage.geometry.polyhedron
[ 3125 48825000]
[  0 48828125]
```

The matrix we get is no longer diagonal, meaning that some digits of precision are diffused among the two new elements \(x\) and \(y\). They nevertheless show up when we compute for instance \(x+y\):

```
sage: x
1516 + O(5^5)
sage: y
424 + O(5^5)
sage: x+y
17565 + O(5^11)
```

These diffused digits of precision (which are tracked but do not appear on the printing) allow to be always sharp on precision.

NOTE:

Each elementary operation requires significant manipulations on the precision lattice and therefore is costly. Precisely:

- The creation of a new element has a cost \(O(n)\) where \(n\) is the number of tracked elements.
- The destruction of one element has a cost \(O(m^2)\) where \(m\) is the distance between the destroyed element and the last one. Fortunately, it seems that \(m\) tends to be small in general (the dynamics of the list of tracked elements is rather close to that of a stack).

It is nevertheless still possible to manipulate several hundred variables (e.g. square matrices of size 5 or polynomials of degree 20).

The class PrecisionLattice provides several features for introspection, especially concerning timings. See history() and timings() for details.
See also:

\texttt{ZpLF()}

\texttt{sage.rings.padics.factory.ZpLF(p, \texttt{prec=\texttt{None}}, *\texttt{args}, **\texttt{kwds})}

A shortcut function to create \(p\)-adic rings where precision is encoded by a module in a large vector space.

See documentation for \texttt{Zp()} for a description of the input parameters.

\textbf{Note:} The precision is tracked using automatic differentiation techniques (see [CRV2018] and [CRV2014]). Floating point \(p\)-adic numbers are used for the computation of the differential (which is then not exact).

\textbf{EXAMPLES:}

\begin{verbatim}sage: R = ZpLF(5, 40)
sage: R5-adic Ring with lattice-float precision\end{verbatim}

\textbf{See also:}

\texttt{ZpLC()}

\textbf{class} \texttt{sage.rings.padics.factory.Zp_class}

Bases: \texttt{UniqueFactory}

A creation function for \(p\)-adic rings.

\textbf{INPUT:}

\begin{itemize}
 \item \texttt{p} – integer: the \(p\) in \(\mathbb{Z}_p\)
 \item \texttt{prec} – integer (default: 20) the precision cap of the ring. In the lattice capped case, \texttt{prec} can either be a pair (\texttt{relative_cap}, \texttt{absolute_cap}) or an integer (understood as relative cap). In the relaxed case, \texttt{prec} can be either a pair (\texttt{default_prec}, \texttt{halting_prec}) or an integer (understood as default precision). Except for the fixed modulus and floating point cases, individual elements keep track of their own precision. See TYPES and PRECISION below.
 \item \texttt{type} – string (default: 'capped-rel') Valid types are 'capped-rel', 'capped-abs', 'fixed-mod', 'floating-point', 'lattice-cap', 'lattice-float', 'relaxed'. See TYPES and PRECISION below.
 \item \texttt{print_mode} – string (default: None). Valid modes are 'series', 'val-unit', 'terse', 'digits', and 'bars'. See PRINTING below.
 \item \texttt{names} – string or tuple (defaults to a string representation of \(p\)). What to use whenever \(p\) is printed.
 \item \texttt{print_pos} – bool (default \texttt{None}) Whether to only use positive integers in the representations of elements. See PRINTING below.
 \item \texttt{print_sep} – string (default \texttt{None}) The separator character used in the 'bars' mode. See PRINTING below.
 \item \texttt{print_alphabet} – tuple (default \texttt{None}) The encoding into digits for use in the 'digits' mode. See PRINTING below.
 \item \texttt{print_max_terms} – integer (default \texttt{None}) The maximum number of terms shown. See PRINTING below.
 \item \texttt{show_prec} – bool (default \texttt{None}) whether to show the precision for elements. See PRINTING below.
 \item \texttt{check} – bool (default \texttt{True}) whether to check if \(p\) is prime. Non-prime input may cause seg-faults (but can also be useful for base \(n\) expansions for example)
\end{itemize}
- \texttt{label} – string (default None) used for lattice precision to create parents with different lattices.

OUTPUT:
- The corresponding \(p \)-adic ring.

TYPES AND PRECISION:

There are two main types of precision. The first is relative precision; it gives the number of known \(p \)-adic digits:

```sage
R = Zp(5, 20, 'capped-rel', 'series'); a = R(675); a
2*5^2 + 5^4 + O(5^22)
```

```sage
a.precision_relative()
20
```

The second type of precision is absolute precision, which gives the power of \(p \) that this element is defined modulo:

```sage
a.precision_absolute()
22
```

There are several types of \(p \)-adic rings, depending on the methods used for tracking precision. Namely, we have:

- capped relative rings (type='capped-rel')
- capped absolute rings (type='capped-abs')
- fixed modulus rings (type='fixed-mod')
- floating point rings (type='floating-point')
- lattice precision rings (type='lattice-cap' or type='lattice-float')
- exact fields with relaxed arithmetics (type='relaxed')

In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.

```sage
R = Zp(5, 5, 'capped-rel', 'series'); a = R(4006); a
1 + 5 + 2*5^3 + 5^4 + O(5^5)
```

```sage
b = R(4025); b
5^2 + 2*5^3 + 5^4 + 5^5 + O(5^7)
```

```sage
a + b
1 + 5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5)
```

In the capped absolute type, instead of having a cap on the relative precision of an element there is instead a cap on the absolute precision. Elements still store their own precisions, and as with the capped relative case, exact elements are truncated when cast into the ring.

```sage
R = Zp(5, 5, 'capped-abs', 'series'); a = R(4005); a
5 + 2*5^3 + 5^4 + 0(5^5)
```

```sage
b = R(4025); b
5^2 + 2*5^3 + 5^4 + 0(5^5)
```

```sage
a * b
5^3 + 2*5^4 + O(5^5)
```

```sage
(a * b) // 5^3
1 + 2*5 + O(5^2)
```
The fixed modulus type is the leanest of the \(p \)-adic rings: it is basically just a wrapper around \(\mathbb{Z}/p^n\mathbb{Z} \) providing a unified interface with the rest of the \(p \)-adics. This is the type you should use if your sole interest is speed. It does not track precision of elements.

```
sage: R = Zp(5,5,'fixed-mod','series'); a = R(4005); a
5 + 2*5^3 + 5^4
sage: a // 5
1 + 2*5^2 + 5^3
```

The floating point case is similar to the fixed modulus type in that elements do not track their own precision. However, relative precision is truncated with each operation rather than absolute precision.

On the contrary, the lattice type tracks precision using lattices and automatic differentiation. It is rather slow but provides sharp (often optimal) results regarding precision. We refer to the documentation of the function `ZpLC()` for a small demonstration of the capabilities of this precision model.

Finally, the model for relaxed \(p \)-adics is quite different from any of the other types. In addition to storing a finite approximation, one also stores a method for increasing the precision. A quite interesting feature with relaxed \(p \)-adics is the possibility to create (in some cases) self-referent numbers, that are numbers whose \(n \)-th digit is defined by the previous ones. We refer to the documentation of the function `ZpL()` for a small demonstration of the capabilities of this precision model.

PRINTING:

There are many different ways to print \(p \)-adic elements. The way elements of a given ring print is controlled by options passed in at the creation of the ring. There are five basic printing modes ("series", "val-unit", "terse", "digits" and "bars"), as well as various options that either hide some information in the print representation or sometimes make print representations more compact. Note that the printing options affect whether different \(p \)-adic fields are considered equal.

1. **series**: elements are displayed as series in \(p \).

```
sage: R = Zp(5, print_mode='series'); a = R(70700); a
3*5^2 + 3*5^4 + 2*5^5 + 4*5^6 + O(5^22)
sage: b = R(-70700); b
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + 4*5^7 + 4*5^8 + 4*5^9 + 4*5^10 + 4*5^11
  + 4*5^12 + 4*5^13 + 4*5^14 + 4*5^15 + 4*5^16 + 4*5^17 + 4*5^18
  + 4*5^19 + 4*5^20 + 4*5^21 + O(5^22)
```

`print_pos` controls whether negatives can be used in the coefficients of powers of \(p \).

```
sage: S = Zp(5, print_mode='series', print_pos=False); a = S(70700); a
-2*5^2 + 5^3 - 2*5^4 - 2*5^5 + 5^7 + O(5^22)
sage: b = S(-70700); b
2*5^2 - 5^3 + 2*5^4 + 2*5^5 - 5^7 + O(5^22)
```

`print_max_terms` limits the number of terms that appear.

```
sage: T = Zp(5, print_mode='series', print_max_terms=4); b = R(-70700); b
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + ... + O(5^22)
```

`names` affects how the prime is printed.

```
sage: U.<p> = Zp(5); p
p + 0(p^21)
```
show_prec determines how the precision is printed. It can be either ‘none’ (or equivalently False), ‘bigoh’ (or equivalently True). The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

```
sage: Zp(5, show_prec=False)(6)  
1 + 5
```

print_sep and print_alphabet have no effect.

Note that print options affect equality:

```
sage: R == S, R == U, S == T, S == U, T == U  
(False, False, False, False, False)
```

2. **val-unit**: elements are displayed as \(p^k u \):

```
sage: R = Zp(5, print_mode='val-unit'); a = R(70700); a  
5^2 * 2828 + O(5^22)
```

```
sage: b = R(-707*5); b  
5 * 95367431639918 + O(5^21)
```

print_pos controls whether to use a balanced representation or not.

```
sage: S = Zp(5, print_mode='val-unit', print_pos=False); b = S(-70700); b  
5^2 * (-2828) + O(5^22)
```

names affects how the prime is printed.

```
sage: T = Zp(5, print_mode='val-unit', names='pi'); a = T(70700); a  
pi^2 * 2828 + O(pi^22)
```

show_prec determines how the precision is printed. It can be either ‘none’ (or equivalently False), ‘bigoh’ (or equivalently True). The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

```
sage: Zp(5, print_mode='val-unit', show_prec=False)(30)  
5 * 6
```

print_max_terms, print_sep and print_alphabet have no effect.

Equality again depends on the printing options:

```
sage: R == S, R == T, S == T  
(False, False, False)
```

3. **terse**: elements are displayed as an integer in base 10:

```
sage: R = Zp(5, print_mode='terse'); a = R(70700); a  
70700 + O(5^22)
```

```
sage: b = R(-70700); b  
2384185790944925 + O(5^22)
```

print_pos controls whether to use a balanced representation or not.
name affects how the name is printed. Note that this interacts with the choice of shorter string for denominators.

```
sage: T.<unif> = Zp(5, print_mode='terse'); c = T(-707); c
95367431639918 + O(unif^20)
```

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True). The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

```
sage: Zp(5, print_mode='terse', show_prec=False)(30)
30
```

print_max_terms, print_sep and print_alphabet have no effect.

Equality depends on printing options:

```
sage: R == S, R == T, S == T
(False, False, False)
```

4. digits: elements are displayed as a string of base p digits

Restriction: you can only use the digits printing mode for small primes. Namely, p must be less than the length of the alphabet tuple (default alphabet has length 62).

```
sage: R = Zp(5, print_mode='digits'); a = R(70700); repr(a)
'...4230300'
sage: b = R(-70700); repr(b)
'...4444444444444440214200'
```

Note that it's not possible to read off the precision from the representation in this mode.

```
sage: S = Zp(5, print_max_terms=4); S(-70700)
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + ... + O(5^22)
```


```
sage: T = Zp(5, print_mode='digits', print_alphabet=('1', '2', '3', '4', '5'))
sage: repr(T(-70700))
'...5555555555555551325311'
```

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'dots' (or equivalently True) or 'bigoh'. The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.
print_pos, name and print_sep have no effect.

Equality depends on printing options:

```sage
sage: R == S, R == T, S == T
(False, False, False)
```

5. bars: elements are displayed as a string of base \(p \) digits with separators:

```sage
sage: R = Zp(5, print_mode='bars'); a = R(70700); repr(a)
'...4|2|3|0|3|0|0'
sage: b = R(-70700); repr(b)
'...4|4|4|4|4|4|4|4|4|4|4|0|2|1|4|2|0|0'
```

Again, note that it’s not possible to read off the precision from the representation in this mode.

print_pos controls whether the digits can be negative.

```sage
sage: S = Zp(5, print_mode='bars', print_pos=False); b = S(-70700); repr(b)
'...-1|0|2|2|-1|2|0|0'
```

print_max_terms limits the number of digits that are printed.

```sage
sage: T = Zp(5, print_max_terms=4); T(-70700)
2*5^2 + 4*5^3 + 5^4 + 2*5^5 + ... + O(5^22)
```

print_sep controls the separation character.

```sage
sage: U = Zp(5, print_mode='bars', print_sep='|'); a = U(70700); repr(a)
'...4|2|3|0|3|0|0'
```

show_prec determines how the precision is printed. It can be either ‘none’ (or equivalently False), ‘dots’ (or equivalently True) or ‘bigoh’. The default is False for the ‘floating-point’ and ‘fixed-mod’ types and True for all other types.

```sage
sage: repr(Zp(5, 2, print_mode='bars', show_prec=True)(6))
'...1|1'
sage: repr(Zp(5, 2, print_mode='bars', show_prec=False)(6))
'1|1'
```

name and print_alphabet have no effect.

Equality depends on printing options:

```sage
sage: R == S, R == T, R == U, S == T, S == U, T == U
(False, False, False, False, False, False)
```

EXAMPLES:

We allow non-prime \(p \), but only if check=False. Note that some features will not work.
We create rings with various parameters:

```sage
t = Zp(7)
7-adic Ring with capped relative precision 20
sage: t = Zp(9)
Traceback (most recent call last):
... 
ValueError: p must be prime
```

It works even with a fairly huge cap:

```sage:
sage: Zp(next_prime(10^50), 100000)
100000000000000000000000000000000000000000000000151-adic Ring
with capped relative precision 100000
```

We create each type of ring:

```sage:
sage: Zp(7, 20, 'capped-rel')
7-adic Ring with capped relative precision 20
sage: Zp(7, 20, 'fixed-mod')
7-adic Ring of fixed modulus 7^20
sage: Zp(7, 20, 'capped-abs')
7-adic Ring with capped absolute precision 20
```

We create a capped relative ring with each print mode:

```sage:
sage: k = Zp(7, 8, print_mode='series'); k
7-adic Ring with capped relative precision 8
sage: k(7*(19))
5*7 + 2*7^2 + O(7^9)
sage: k(7*(-19))
2*7 + 4*7^2 + 6*7^3 + 6*7^4 + 6*7^5 + 6*7^6 + 6*7^7 + 6*7^8 + O(7^9)
```

```sage:
sage: k = Zp(7, print_mode='val-unit'); k
7-adic Ring with capped relative precision 20
sage: k(7*(19))
7 * 19 + O(7^21)
sage: k(7*(-19))
7 * 79792266297611982 + O(7^21)
```

```sage:
sage: k = Zp(7, print_mode='terse'); k
7-adic Ring with capped relative precision 20
sage: k(7*(19))
133 + O(7^21)
sage: k(7*(-19))
558545864083283874 + O(7^21)
```
Note that p-adic rings are cached (via weak references):

```python
sage: a = Zp(7); b = Zp(7)
sage: a is b
True
```

We create some elements in various rings:

```python
sage: R = Zp(5); a = R(4); a
4 + O(5^20)
sage: S = Zp(5, 10, type = 'capped-abs'); b = S(2); b
2 + O(5^10)
sage: a + b
1 + 5 + O(5^10)
```

```python
create_key(p, prec=None, type='capped-rel', print_mode=None, names=None, ram_name=None, print_pos=None, print_sep=None, print_max_terms=None, show_prec=None, check=True, label=None)

Creates a key from input parameters for $\mathbb{Z}_p$.
See the documentation for $\mathbb{Z}_p$() for more information.
```

```python
create_object(version, key)

Creates an object using a given key.
See the documentation for $\mathbb{Z}_p$() for more information.
```

```python
sage.rings.padics.factory.Zq(q, prec=None, type='capped-rel', modulus=None, names=None, print_mode=None, ram_name=None, res_name=None, print_pos=None, print_sep=None, print_max_ram_terms=None, print_max_unram_terms=None, print_max_terse_terms=None, show_prec=None, check=True, implementation='FLINT')

Given a prime power $q = p^n$, return the unique unramified extension of $\mathbb{Z}_p$ of degree $n$.
```

INPUT:

- q – integer, list or tuple: the prime power in \mathbb{Q}_q. Or a Factorization object, single element list [(p, n)] where p is a prime and n a positive integer, or the pair (p, n).
- prec – integer (default: 20) the precision cap of the field. Individual elements keep track of their own precision. See TYPES and PRECISION below.
- type – string (default: 'capped-rel') Valid types are 'capped-abs', 'capped-rel', 'fixed-mod', and 'floating-point'. See TYPES and PRECISION below.
- modulus – polynomial (default None) A polynomial defining an unramified extension of \mathbb{Z}_p. See MODULUS below.
- names – string or tuple (None is only allowed when $q = p$). The name of the generator, reducing to a generator of the residue field.
- print_mode – string (default: None). Valid modes are 'series', 'val-unit', 'terse', and 'bars'. See PRINTING below.
- ram_name – string (defaults to string representation of p if None). ram_name controls how the prime is printed. See PRINTING below.
- res_name – string (defaults to None, which corresponds to adding a '0' to the end of the name). Controls how elements of the residue field print.
- **print_pos** – bool (default None) Whether to only use positive integers in the representations of elements. See PRINTING below.
- **print_sep** – string (default None) The separator character used in the 'bars' mode. See PRINTING below.
- **print_max_ram_terms** – integer (default None) The maximum number of powers of p shown. See PRINTING below.
- **print_max_unram_terms** – integer (default None) The maximum number of entries shown in a coefficient of p. See PRINTING below.
- **print_max_terse_terms** – integer (default None) The maximum number of terms in the polynomial representation of an element (using 'terse'). See PRINTING below.
- **show_prec** – bool (default None) Whether to show the precision for elements. See PRINTING below.
- **check** – bool (default True) Whether to check inputs.
- **implementation** – string (default 'FLINT') which implementation to use. 'NTL' is the other option.

OUTPUT:
The corresponding unramified p-adic ring.

TYPES AND PRECISION:
There are two types of precision for a p-adic element. The first is relative precision (default), which gives the number of known p-adic digits:

```sage
sage: R.<a> = Zq(25, 20, 'capped-rel', print_mode='series'); b = 25*a; b  # _
needs sage.libs.ntl
a*5^2 + O(5^22)
sage: b.precision_relative()  # _
needs sage.libs.ntl
20
```

The second type of precision is absolute precision, which gives the power of p that this element is defined modulo:

```sage
sage: b.precision_absolute()  # _
needs sage.libs.ntl
22
```

There are many types of p-adic rings: capped relative rings (type='capped-rel'), capped absolute rings (type='capped-abs'), fixed modulus rings (type='fixed-mod'), and floating point rings (type='floating-point').

In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.

```sage
sage: R.<a> = Zq(9, 5, 'capped-rel', print_mode='series'); b = (1+2*a)^4; b  # _
needs sage.libs.ntl
2 + (2*a + 2)*3 + (2*a + 1)*3^2 + O(3^5)
sage: c = R(3249); c  # _
needs sage.libs.ntl
3^2 + 3^4 + 3^5 + 3^6 + O(3^7)
sage: b + c  # _
(continues on next page)
```
needs sage.libs.ntl

\[2 + (2^a + 2)3 + (2^a + 2)3^2 + 3^4 + 0(3^5)\]

One can invert non-units: the result is in the fraction field.

```python
sage: d = ~(3*b+c); d
sage: d.parent()
3-adic Unramified Extension Field in a defined by x^2 + 2*x + 2
```

The capped absolute case is the same as the capped relative case, except that the cap is on the absolute precision rather than the relative precision.

```python
sage: # needs sage.libs.flint
sage: R.<a> = Zq(9, 5, 'capped-abs', print_mode='series'); b = 3*(1+2*a)^4; b
sage: c = R(3249); c
sage: b*c
sage: b*c >> 1
```

The fixed modulus case is like the capped absolute, except that individual elements don’t track their precision.

```python
sage: # needs sage.libs.flint
sage: R.<a> = Zq(9, 5, 'fixed-mod', print_mode='series'); b = 3*(1+2*a)^4; b
sage: c = R(3249); c
sage: b*c
sage: b*c >> 1
```

The floating point case is similar to the fixed modulus type in that elements do not track their own precision. However, relative precision is truncated with each operation rather than absolute precision.

MODULUS:

The modulus needs to define an unramified extension of \(\mathbb{Z}_p \): when it is reduced to a polynomial over \(\mathbb{F}_p \) it should be irreducible.

The modulus can be given in a number of forms.

1. A polynomial.
The base ring can be \(\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p, \mathbb{F}_p\), or anything that can be converted to \(\mathbb{Z}_p\).

\[
\text{sage: } \# \text{ needs sage.libs.ntl}
\]
\[
\text{sage: } \text{P.<x> = ZZ[]}
\]
\[
\text{sage: } \text{R.<a> = Zq(27, modulus = x^3 + 2*x + 1); R.modulus()}
\]
\[
(1 + O(3^{20}))*x^3 + O(3^{20})*x^2 + (2 + O(3^{20}))*x + 1 + O(3^{20})
\]
\[
\text{sage: } \text{P.<x> = QQ[]}
\]
\[
\text{sage: } \text{S.<a> = Zq(27, modulus = x^3 + 2/7*x + 1)}
\]
\[
\text{sage: } \text{P.<x> = Zp(3)[]}
\]
\[
\text{sage: } \text{T.<a> = Zq(27, modulus = x^3 + 2*x + 1)}
\]
\[
\text{sage: } \text{P.<x> = Qp(3)[]}
\]
\[
\text{sage: } \text{U.<a> = Zq(27, modulus = x^3 + 2*x + 1)}
\]
\[
\text{sage: } \text{P.<x> = GF(3)[]}
\]
\[
\text{# needs sage.rings.finite_rings}
\]
\[
\text{sage: } \text{V.<a> = Zq(27, modulus = x^3 + 2*x + 1)}
\]

Which form the modulus is given in has no effect on the unramified extension produced:

\[
\text{sage: } \text{R == S, R == T, T == U, U == V}
\]
\[
\text{(False, True, True, False)}
\]

unless the modulus is different, or the precision of the modulus differs. In the case of \(V\), the modulus is only given to precision 1, so the resulting field has a precision cap of 1.

\[
\text{sage: } \# \text{ needs sage.libs.ntl}
\]
\[
\text{sage: } \text{V.precision_cap()}
\]
\[
1
\]
\[
\text{sage: } \text{U.precision_cap()}
\]
\[
20
\]
\[
\text{sage: } \text{P.<x> = Zp(3)[]}
\]
\[
\text{sage: } \text{modulus} = x^3 + (2 + O(3^7))*x + (1 + O(3^{10}))
\]
\[
\text{sage: } \text{modulus}
\]
\[
(1 + O(3^{20}))*x^3 + (2 + O(3^7))*x + 1 + O(3^{10})
\]
\[
\text{sage: } \text{W.<a> = Zq(27, modulus = modulus); W.precision_cap()}
\]
\[
7
\]

2. The modulus can also be given as a **symbolic expression**.

\[
\text{sage: } \text{x = var('x')}
\]
\[
\text{# needs sage.symbolic}
\]
\[
\text{sage: } \text{X.<a> = Zq(27, modulus = x^3 + 2*x + 1); X.modulus()}
\]
\[
\text{# needs sage.symbolic}
\]
\[
(1 + O(3^{20}))*x^3 + O(3^{20})*x^2 + (2 + O(3^{20}))*x + 1 + O(3^{20})
\]
\[
\text{sage: } \text{X} \equiv \text{R}
\]
\[
\text{# needs sage.libs.ntl sage.symbolic}
\]
\[
\text{True}
\]

By default, the polynomial chosen is the standard lift of the generator chosen for \(\mathbb{F}_q\).

\[
\text{sage: } \text{GF(125, 'a').modulus()}
\]
\[
\text{# needs sage.rings.finite_rings}
\]
\[
x^3 + 3*x + 3
\]

(continues on next page)
However, you can choose another polynomial if desired (as long as the reduction to $\mathbb{F}_p[x]$ is irreducible).

```
sage: P.<x> = ZZ[]
sage: Z.<a> = Zq(125, modulus = x^3 + 3*x^2 + x + 1); Z.modulus()
˓→ # needs sage.libs.ntl
(1 + O(5^20))*x^3 + (3 + O(5^20))*x^2 + (1 + O(5^20))*x + 1 + O(5^20)
sage: Y == Z
˓→ # needs sage.libs.ntl
False
```

PRINTING:

There are many different ways to print p-adic elements. The way elements of a given field print is controlled by options passed in at the creation of the field. There are four basic printing modes ('series', 'val-unit', 'terse' and 'bars'; 'digits' is not available), as well as various options that either hide some information in the print representation or sometimes make print representations more compact. Note that the printing options affect whether different p-adic fields are considered equal.

1. **series**: elements are displayed as series in p.

```
sage: R.<a> = Zq(9, 20, 'capped-rel', print_mode='series'); (1+2*a)^4
2 + (2*a + 2)*3 + (2*a + 1)*3^2 + 0(3^20)
sage: -3*(1+2*a)^4
2 + (2*a + 2)*3 + (2*a + 1)*3^2 + 0(3^20)
sage: b = ~(3*a+18); b
(a + 2)*3^-1 + 1 + 2*3 + (a + 1)*3^2 + 3*3 + 2*3^4 + (a + 1)*3^5 + 3^6 + 2*3^7 + (a + 1)*3^8 + 3^9 + 2*3^10 + (a + 1)*3^11 + 3^12 + 2*3^13 + (a + 1)*3^14 + 3^15 + 2*3^16 + (a + 1)*3^17 + 3^18 + O(3^19)
sage: b.parent() is R.fraction_field()
True
```

`print_pos` controls whether negatives can be used in the coefficients of powers of p.

```
sage: S.<b> = Zq(9, print_mode='series', print_pos=False); (1+2*b)^4
-1 - b*3 - 3^2 + (b + 1)*3^3 + 0(3^20)
sage: -3*(1+2*b)^4
-3 + b*3^2 + 3^3 + (-b - 1)*3^4 + O(3^21)
```

`ram_name` controls how the prime is printed.
\[p \text{-adics, Release 10.2} \]

```python
sage: T.<d> = Zq(9, print_mode='series', ram_name='p'); 3*(1+2*d)^4
\rightarrow # needs sage.libsntl
2^p + (2^d + 2)^p + (2^d + 1)^p^3 + O(p^21)
```

`print_max_ram_terms` limits the number of powers of \(p \) that appear.

```python
sage: U.<e> = Zq(9, print_mode='series', print_max_ram_terms=4); repr(-3*(1+2*e)^4)
\rightarrow # needs sage.libsntl
'3 + e*3^2 + 3^3 + (2*e + 2)^3^4 + ... + O(3^21)'
```

`print_max_unram_terms` limits the number of terms that appear in a coefficient of a power of \(p \).

```python
sage: V.<f> = Zq(128, prec = 8, print_mode='series'); repr((1+f)^9)
\rightarrow (f^3 + 1) + (f^5 + f^4 + f^3 + f^2)*2 + (f^6 + f^5 + f^4 + f^3 + f^2 + f + 1)^2^2 + (f^5 + f^4)^2^5 + (f^6 + f^5 + f^4 + f^3 + f + 1)^2^6 + (f + 1)^2^7 + O(2^8)'
```

`show_prec` determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True). The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

```python
sage: U.<e> = Zq(9, 2, show_prec=False); repr(-3*(1+2*e)^4)
\rightarrow # needs sage.libsntl
'3 + e*3^2'
```

`print_sep` and `print_max_terse_terms` have no effect.

Note that print options affect equality:

```python
\rightarrow (False, False, False, False, False, False, False, False, False, False)
```

2. \textbf{val-unit}: elements are displayed as \(p^k u \):
\begin{verbatim}
 sage: R.<a> = Zq(9, 7, print_mode='val-unit'); b = (1+3*a)^9 - 1; b
 # needs sage.libsntl
 3^3 * (15 + 64*a) + O(3^7)
 sage: ~b
 # needs sage.libsntl
 3^3 * (15 - 17*a) + O(3^7)

print_pos controls whether to use a balanced representation or not.

 sage: S.<a> = Zq(9, 7, print_mode='val-unit', print_pos=False); b = (1+3*a)^9 - 1; b
 # needs sage.libsntl
 3^3 * (15 - 17*a) + O(3^7)
 sage: ~b
 # needs sage.libsntl
 3^3 * (-40 + a) + O(3)

ram_name affects how the prime is printed.

 sage: A.<x> = Zp(next_prime(10^6), print_mode='val-unit')
 sage: T.<a> = Zq(next_prime(10^6)^3, 4, print_mode='val-unit', ram_name='p',
: modulus=x^3+385831*x^2+106556*x+321036)
 sage: b = next_prime(10^6)^2*(a^2 + a - 4)^4; b
 p^2 * (879961871188737387483 + 246348888344392418464080*a +
 ... -135353865377532610349*a^2)
 + O(p^6)
 sage: ~b
 p^2 * 1 + O(p^6)

print_max_terse_terms controls how many terms of the polynomial appear in the unit part.

 sage: U.<a> = Zq(17^4, 6, print_mode='val-unit', print_max_terse_terms=3)
 sage: b = 17*(a^3-a+14)^6; b
 17 * (12131797 + 12076378*a + 10809706*a^2 + ...)
 + O(17^7)

show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'bigoh' (or equivalently True). The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

 sage: U.<e> = Zq(9, 2, print_mode='val-unit', show_prec=False); repr(-
 ... 3*(1+2*e)^4)
 '3 * (1 + 3*e)'

print_sep, print_max_ram_terms and print_max_unram_terms have no effect.

 Equality again depends on the printing options:

 sage: R == S, R == T, R == U, S == T, S == U, T == U
 (False, False, False, False, False, False)

3. terse: elements are displayed as a polynomial of degree less than the degree of the extension.
\end{verbatim}
Note that in this last computation, you get one fewer p-adic digit than one might expect. This is because R is capped absolute, and thus 5 is cast in with relative precision 19.

As of version 3.3, if coefficients of the polynomial are non-integral, they are always printed with an explicit power of p in the denominator.

Equality again depends on the printing options:

```
sage: R == S, R == T, R == U, S == T, S == U, T == U
(False, False, False, False, False, False)
```
4. **digits**: This print mode is not available when the residue field is not prime. It might make sense to have a dictionary for small fields, but this isn’t implemented.

5. **bars**: elements are displayed in a similar fashion to series, but more compactly.

```sage
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(125); (a+5)^6
(4*a^2 + 3*a + 4) + (3*a^2 + 2*a)*5 + (a^2 + a + 1)*5^2 + (3*a + 2)*5^3
+ (3*a^2 + 2*a + 3)*5^4 + (2*a^2 + 3*a + 2)*5^5 + O(5^20)
sage: R.<a> = Zq(125, print_mode='bars', prec=8); repr((a+5)^6)
'...[2, 3, 2][[3, 1, 3]][2, 3][1, 1, 1][0, 2, 3][4, 3, 4]'
sage: repr((a-5)^6)
'...[0, 4][1, 4][2, 0, 2][1, 4, 3][2, 3, 1][4, 4, 3][4, 3, 4][4, 3, 4]'
```

Note that it’s not possible to read off the precision from the representation in this mode.

```sage
sage: # needs sage.libs.ntl
sage: b = a + 3; repr(b)
'...[3, 1]'
sage: c = a + R(3, 4); repr(c)
'...[3, 1]'
sage: b.precision_absolute()
8
sage: c.precision_absolute()
4
```

print_pos controls whether the digits can be negative.

```sage
sage: # needs sage.libs.ntl
sage: S.<a> = Zq(125, print_mode='bars', print_pos=False); repr((a-5)^6)
'...[1, -1, 1][2, 1, -2][2, 0, -2][2, -1, 2][0, 0, -1][1][2, -1, -1][0, -1, -1][0, -1]'
sage: repr((a-1/5)^6)
'...[0, 1, 2][[-1, 1, 1]].[-2, -1, -1][2, 2, 1][0, 0, -2][0, -2][0, -1][0, -1][1][1]
```

print_max_ram_terms controls the maximum number of “digits” shown. Note that this puts a cap on the relative precision, not the absolute precision.

```sage
sage: # needs sage.libs.ntl
sage: T.<a> = Zq(125, print_max_ram_terms=3, print_pos=False); (a-5)^6
(-a^2 - 2*a - 1) - 2*a^5 - a^2*a^2 + ... + O(5^20)
sage: (a-1/5)^6
5^6 - a^5^-5 - a^5^-4 + ... + O(5^14)
```

print_sep controls the separating character (' | ' by default).

```sage
sage: U.<a> = Zq(625, print_mode='bars', print_sep=''); b = (a+5)^6;
˓→repr(b)  # needs sage.libs.ntl
'...[0, 1][4, 0, 2][3, 2, 2, 3][4, 2, 2, 4][0, 3][1, 1, 3][3, 1, 4, 1]
```

print_max_unram_terms controls how many terms are shown in each 'digit':
show_prec determines how the precision is printed. It can be either 'none' (or equivalently False), 'dots' (or equivalently True) or 'bigoh'. The default is False for the 'floating-point' and 'fixed-mod' types and True for all other types.

```
sage: U.<e> = Zq(9, 2, print_mode='bars', show_prec='bigoh'); repr(-3*(1+2*e)^4)  
...
[0, 1][1][1] + O(3^3)
```

`ram_name` and `print_max_terse_terms` have no effect.

Equality depends on printing options:

```
sage: R == S, R == T, R == U, S == T, S == U, T == U  
(False, False, False, False, False, False)
```

EXAMPLES:

Unlike for `Zp()`, you can’t create `Zq(N)` when `N` is not a prime power.

However, you can use `check=False` to pass in a pair in order to not have to factor. If you do so, you need to use names explicitly rather than the `R.<a>` syntax.

```
sage: # needs sage.libsntl
sage: p = next_prime(2^123)  
sage: k = Zp(p)  
sage: R.<x> = k[]  
sage: K = Zq([(p, 5)], modulus=x^5+x+4, names='a', ram_name='p',  
.....:     print_pos=False, check=False)  
sage: K.0^5  
(-a - 4) + O(p^20)
```

In tests on sage.math, the creation of `K` as above took an average of 1.58ms, while:

```
sage: K = Zq(p,5, modulus=x^5+x+4, names='a', ram_name='p', #  
.....:     print_pos=False, check=True)
```

took an average of 24.5ms. Of course, with smaller primes these savings disappear.
sage: R.<a> = ZqCA(25, 40); R

5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2

sage.rings.padics.factory.ZqCR(q, prec=None, *args, **kwds)

A shortcut function to create capped relative unramified p-adic rings.

Same functionality as Zq(). See documentation for Zq() for a description of the input parameters.

EXAMPLES:

sage: R.<a> = ZqCR(25, 40); R

5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2

sage.rings.padics.factory.ZqFM(q, prec=None, *args, **kwds)

A shortcut function to create fixed modulus unramified p-adic rings.

See documentation for Zq() for a description of the input parameters.

EXAMPLES:

sage: R.<a> = ZqFM(25, 40); R

5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2

sage.rings.padics.factory.ZqFP(q, prec=None, *args, **kwds)

A shortcut function to create floating point unramified p-adic rings.

Same functionality as Zq(). See documentation for Zq() for a description of the input parameters.

EXAMPLES:

sage: R.<a> = ZqFP(25, 40); R

5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2

sage.rings.padics.factory.get_key_base(p, prec, type, print_mode, names, ram_name, print_pos, valid_types, label=None)

This implements create_key for Zp and Qp: moving it here prevents code duplication.

It fills in unspecified values and checks for contradictions in the input. It also standardizes irrelevant options so that duplicate parents are not created.

EXAMPLES:

sage: from sage.rings.padics.factory import get_key_base
sage: get_key_base(11, 5, 'capped-rel', None, None, None, ':', None, None, False, True, ['capped-rel'])
(11, 5, 'capped-rel', 'series', '11', True, ':', 0, 0, False, None)
sage: get_key_base(12, 5, 'capped-rel', 'digits', None, None, None, None, None, True, False, ['capped-rel'])
(12, 5, 'capped-rel',)
\[
\text{'digits', 'digits',}
\text{True, '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B'},
\text{1, 'dots', None)
\]

\[
\text{sage.rings.padics.factory.is_eisenstein(poly)}
\text{Return True iff this monic polynomial is Eisenstein.}
\text{A polynomial is Eisenstein if it is monic, the constant term has valuation 1 and all other terms have positive valuation.}
\text{EXAMPLES:}
\text{sage: # needs sage.libs.ntl}
\text{sage: R = Zp(5)}
\text{sage: S.<x> = R[]}
\text{sage: from sage.rings.padics.factory import is_eisenstein}
\text{sage: f = x^4 - 75*x + 15}
\text{sage: is_eisenstein(f)}
\text{True}
\text{sage: g = x^4 + 75}
\text{sage: is_eisenstein(g)}
\text{False}
\text{sage: h = x^7 + 27*x - 15}
\text{sage: is_eisenstein(h)}
\text{False}
\]

\[
\text{sage.rings.padics.factory.is_unramified(poly)}
\text{Return True iff this monic polynomial is unramified.}
\text{A polynomial is unramified if its reduction modulo the maximal ideal is irreducible.}
\text{EXAMPLES:}
\text{sage: # needs sage.libs.ntl}
\text{sage: R = Zp(5)}
\text{sage: S.<x> = R[]}
\text{sage: from sage.rings.padics.factory import is_unramified}
\text{sage: f = x^4 + 14*x + 9}
\text{sage: is_unramified(f)}
\text{True}
\text{sage: g = x^6 + 17*x + 6}
\text{sage: is_unramified(g)}
\text{False}
\]

\[
\text{sage.rings.padics.factory.krasner_check(poly, prec)}
\text{Return True iff poly determines a unique isomorphism class of extensions at precision prec.}
\text{Currently just returns True (thus allowing extensions that are not defined to high enough precision in order to specify them up to isomorphism). This will change in the future.}
\text{EXAMPLES:}
\]
class sage.rings.padics.factory.pAdicExtension_class

A class for creating extensions of \(p \)-adic rings and fields.

EXAMPLES:

```python
sage: R = Zp(5,3)
sage: S.<x> = ZZ[]
sage: W.<w> = pAdicExtension(R, x^4 - 15); W
# needs sage.libsntl
5-adic Eisenstein Extension Ring in w defined by x^4 - 15
sage: W.precision_cap()
# needs sage.libsntl
12
```

create_key_and_extra_args

```python
create_key_and_extra_args(base, modulus, prec=None, print_mode=None, names=None,
var_name=None, res_name=None, unram_name=None, ram_name=None,
print_pos=None, print_sep=None, print_alphabet=None,
print_max_ram_terms=None, print_max_unram_terms=None,
print_max_terse_terms=None, show_prec=None, check=True,
unram=False, implementation='FLINT')
```

Creates a key from input parameters for pAdicExtension.

See the documentation for \(Qq() \) for more information.

create_object

```python
create_object(version, key, approx_modulus=None, shift_seed=None)
```

Creates an object using a given key.

See the documentation for pAdicExtension for more information.

sage.rings.padics.factory.split(poly, prec)

Given a polynomial poly and a desired precision prec, computes upoly and epoly so that the extension defined by poly is isomorphic to the extension defined by first taking an extension by the unramified polynomial upoly, and then an extension by the Eisenstein polynomial epoly.

We need better \(p \)-adic factoring in Sage before this function can be implemented.

EXAMPLES:

```python
sage: k = Qp(13)
sage: x = polygen(k)
# needs sage.libsntl
sage: f = x^2 + 1
# needs sage.libsntl
sage: sage.rings.padics.factory.split(f, 10)
# needs sage.libsntl sage.rings.real_double
Traceback (most recent call last):
... Not ImplementedError: Extensions by general polynomials not yet supported.
Please use an unramified or Eisenstein polynomial.
```
\texttt{sage.rings.padics.factory.truncate_to_prec}(\texttt{poly}, \texttt{R}, \texttt{absprec})

Truncates the unused precision off of a polynomial.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = Zp(5)
sage: S.<x> = R[]
 # needs sage.libsntl
sage: from sage.rings.padics.factory import truncate_to_prec
sage: f = x^4 + (3+0(5^6))*x^3 + 0(5^4)
 # needs sage.libsntl
sage: truncate_to_prec(f, R, 5)
 # needs sage.libsntl
(1 + 0(5^5))*x^4 + (3 + 0(5^5))*x^3 + 0(5^5)*x^2 + 0(5^5)*x + 0(5^4)
\end{verbatim}
Supercalss for \(p \)-adic and power series rings.

AUTHORS:

- David Roe

class sage.rings.padics.local_generic.LocalGeneric(base, prec, names, element_class, category=None)

Initialize self.

EXAMPLES:

```
sage: R = Zp(5)  # indirect doctest
sage: R.precision_cap()
20
```

In github issue #14084, the category framework has been implemented for \(p \)-adic rings:

```
sage: TestSuite(R).run()  # needs sage.geometry.polyhedron
sage: K = Qp(7)
sage: TestSuite(K).run()  # needs sage.geometry.polyhedron
```

absolute_degree()

Return the degree of this extension over the prime \(p \)-adic field/ring.

EXAMPLES:

```
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.absolute_degree()  # needs sage.libs.ntl
5
sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
sage: L.absolute_degree()  # needs sage.libs.ntl
2
```
absolute_e()

Return the absolute ramification index of this ring/field.

EXAMPLES:

```
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.absolute_e()  # needs sage.libs.ntl
1
	sage: R.<x> = QQ[]
	sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
	sage: L.absolute_e()  # needs sage.libs.ntl
2
```

absolute_f()

Return the degree of the residue field of this ring/field over its prime subfield.

EXAMPLES:

```
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.absolute_f()  # needs sage.libs.ntl
5
	sage: R.<x> = QQ[]
	sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
	sage: L.absolute_f()  # needs sage.libs.ntl
1
```

absolute_inertia_degree()

Return the degree of the residue field of this ring/field over its prime subfield.

EXAMPLES:

```
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.absolute_inertia_degree()  # needs sage.libs.ntl
5
	sage: R.<x> = QQ[]
	sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
	sage: L.absolute_inertia_degree()  # needs sage.libs.ntl
1
```

absolute_ramification_index()
Return the absolute ramification index of this ring/field.

EXAMPLES:

```python
sage: K.<a> = Qq(3^5)  # needs sage.libsntl
sage: K.absolute_ramification_index()  # needs sage.libsntl
1

sage: R.<x> = QQ[]  
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libsntl
sage: L.absolute_ramification_index()  # needs sage.libsntl
2
```

`change(**kwds)`

Return a new ring with changed attributes.

INPUT:

The following arguments are applied to every ring in the tower:

- `type` – string, the precision type
- `p` – the prime of the ground ring. Defining polynomials will be converted to the new base rings.
- `print_mode` – string
- `print_pos` – bool
- `print_sep` – string
- `print_alphabet` – dict
- `show_prec` – bool
- `check` – bool
- `label` – string (only for lattice precision)

The following arguments are only applied to the top ring in the tower:

- `var_name` – string
- `res_name` – string
- `unram_name` – string
- `ram_name` – string
- `names` – string
- `modulus` – polynomial

The following arguments have special behavior:

- `prec` – integer. If the precision is increased on an extension ring, the precision on the base is increased as necessary (respecting ramification). If the precision is decreased, the precision of the base is unchanged.
• field – bool. If True, switch to a tower of fields via the fraction field. If False, switch to a tower of rings of integers.

• q – prime power. Replace the initial unramified extension of \(\mathbb{Q}_p \) or \(\mathbb{Z}_p \) with an unramified extension of residue cardinality \(q \). If the initial extension is ramified, add in an unramified extension.

• base – ring or field. Use a specific base ring instead of recursively calling \texttt{change()} down the tower.

See the \texttt{constructors} for more details on the meaning of these arguments.

EXAMPLES:

We can use this method to change the precision:

```
\texttt{sage: Zp(5).change(prec=40)}
```

5-adic Ring with capped relative precision 40

or the precision type:

```
\texttt{sage: Zp(5).change(type=\textquoteleft\textquoteleft\texttt{capped-abs}\textquoteright\textquoteright)}
```

5-adic Ring with capped absolute precision 20

or even the prime:

```
\texttt{sage: ZpCA(3).change(p=17)}
```

17-adic Ring with capped absolute precision 20

You can switch between the ring of integers and its fraction field:

```
\texttt{sage: ZpCA(3).change(field=\texttt{True})}
```

3-adic Field with capped relative precision 20

You can also change print modes:

```
\texttt{sage: R = Zp(5).change(prec=5, print_mode=\textquoteleft\textquoteleft\texttt{digits}\textquoteright\textquoteright)}
\texttt{sage: repr(-R(17))}
\textquoteleft\textquoteleft...13403\textquoteright\textquoteright
```

Changing print mode to ‘digits’ works for Eisenstein extensions:

```
\texttt{sage: # needs sage.libs.ntl}
\texttt{sage: S.\langle x \rangle = ZZ\[\]}
\texttt{sage: W.\langle w \rangle = Zp(3).extension(x^4 + 9*x^2 + 3*x - 3)}
\texttt{sage: W.print_mode()}  
\textquoteleft\textquoteleftseries\textquoteright\textquoteright
\texttt{sage: W.change(print_mode=\textquoteleft\textquoteleftdigits\textquoteright\textquoteright).print_mode()}  
\textquoteleft\textquoteleftdigits\textquoteright\textquoteright
```

You can change extensions:

```
\texttt{sage: # needs sage.libs.flint}
\texttt{sage: K.\langle a \rangle = QqFP(125, prec=4)}
\texttt{sage: K.change(q=64)}
```

2-adic Unramified Extension Field in a defined by \(x^6 + x^4 + x^3 + x + 1 \)

```
\texttt{sage: R.\langle x \rangle = QQ\[\]}
\texttt{sage: K.change(modulus = x^2 - x + 2, print_pos=\texttt{False})}
```

5-adic Unramified Extension Field in a defined by \(x^2 - x + 2 \)
and variable names:

```python
sage: K.change(names='b')
˓→needs sage.libs.flint
5-adic Unramified Extension Field in b defined by x^3 + 3*x + 3
```

and precision:

```python
sage: # needs sage.libs.flint
sage: Kup = K.change(prec=8); Kup
5-adic Unramified Extension Field in a defined by x^3 + 3*x + 3
sage: Kup.precision_cap()
8
sage: Kup.base_ring()
5-adic Field with floating precision 8
```

If you decrease the precision, the precision of the base stays the same:

```python
sage: # needs sage.libs.flint
sage: Kdown = K.change(prec=2); Kdown
5-adic Unramified Extension Field in a defined by x^3 + 3*x + 3
sage: Kdown.precision_cap()
2
sage: Kdown.base_ring()
5-adic Field with floating precision 4
```

Changing the prime works for extensions:

```python
sage: # needs sage.libs.ntl
sage: x = polygen(ZZ)
sage: R.<a> = Zp(5).extension(x^2 + 2)
sage: S = R.change(p=7)
sage: S.defining_polynomial(exact=True)
x^2 + 2
sage: A.<y> = Zp(5)[]
sage: R.<a> = Zp(5).extension(y^2 + 2)
sage: S = R.change(p=7)
sage: S.defining_polynomial(exact=True)
y^2 + 2
```

```python
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(5^3)
sage: S = R.change(prec=50)
sage: S.defining_polynomial(exact=True)
x^3 + 3*x + 3
```

Changing label for lattice precision (the precision lattice is not copied):

```python
sage: R = ZpLC(37, (8,11))
sage: S = R.change(label = "change"); S
37-adic Ring with lattice-cap precision (label: change)
sage: S.change(label = "new")
37-adic Ring with lattice-cap precision (label: new)
```
\textbf{defining_polynomial}(\textit{var}=\textquoteleft x\textquoteright, \textit{exact}=False)

Return the defining polynomial of this local ring

INPUT:

\begin{itemize}
 \item \textit{var} – string (default: \textquoteleft x\textquoteright), the name of the variable
 \item \textit{exact} – a boolean (default: \texttt{False}), whether to return the underlying exact defining polynomial rather than the one with coefficients in the base ring.
\end{itemize}

OUTPUT:

The defining polynomial of this ring as an extension over its ground ring

EXAMPLES:

\begin{verbatim}
sage: R = Zp(3, 3, \textquoteleft fixed-mod\textquoteright)
sage: R.defining_polynomial().parent()
Univariate Polynomial Ring in x over 3-adic Ring of fixed modulus 3^3
sage: R.defining_polynomial(\textquoteleft foo\textquoteright)
foo
sage: R.defining_polynomial(exact=\texttt{True}).parent()
Univariate Polynomial Ring in x over Integer Ring
\end{verbatim}

\textbf{degree()}

Return the degree of this extension.

Raise an error if the base ring/field is itself an extension.

EXAMPLES:

\begin{verbatim}
sage: K.<a> = Qq(3^5)
needs sage.libs.ntl
sage: K.degree()
needs sage.libs.ntl
5
sage: R.<x> = QQ[]

sage: L.<pi> = Qp(3).extension(x^2 - 3)
needs sage.libs.ntl
sage: L.degree()
needs sage.libs.ntl
2
\end{verbatim}

\textbf{e()}

Return the ramification index of this extension.

Raise an error if the base ring/field is itself an extension.

EXAMPLES:

\begin{verbatim}
sage: K.<a> = Qq(3^5)
needs sage.libs.ntl
sage: K.e()
needs sage.libs.ntl
1
\end{verbatim}
\texttt{sage: R.<x> = QQ[]}
\texttt{sage: L.<\pi> = Qp(3).extension(x^2 - 3)}
\texttt{# needs sage.libs.ntl}
\texttt{sage: L.e()}
\texttt{# needs sage.libs.ntl}
\texttt{2}

\texttt{ext(*args, **kwds)}

Construct an extension of \texttt{self}. See \texttt{extension()} for more details.

EXAMPLES:

\begin{verbatim}
\texttt{sage: A = Zp(7,10)}
\texttt{sage: S.<x> = A[]}
\texttt{# needs sage.libs.ntl}
\texttt{sage: B.<t> = A.ext(x^2 + 7)}
\texttt{# needs sage.libs.ntl}
\texttt{sage: B.uniformiser()}
\texttt{# needs sage.libs.ntl}
\texttt{t + O(t^21)}
\end{verbatim}

\texttt{f()}

Return the degree of the residual extension.

Raise an error if the base ring/field is itself an extension.

EXAMPLES:

\begin{verbatim}
\texttt{sage: K.<a> = Qq(3^5)}
\texttt{# needs sage.libs.ntl}
\texttt{sage: K.f()}
\texttt{# needs sage.libs.ntl}
\texttt{5}
\end{verbatim}

\begin{verbatim}
\texttt{sage: R.<x> = QQ[]}
\texttt{sage: L.<\pi> = Qp(3).extension(x^2 - 3)}
\texttt{# needs sage.libs.ntl}
\texttt{sage: L.f()}
\texttt{# needs sage.libs.ntl}
\texttt{1}
\end{verbatim}

\texttt{ground_ring()}

Return \texttt{self}.

Will be overridden by extensions.

INPUT:

- \texttt{self} – a local ring

OUTPUT:

The ground ring of \texttt{self}, i.e., itself.

EXAMPLES:
```python
sage: R = Zp(3, 5, 'fixed-mod')
sage: S = Zp(3, 4, 'fixed-mod')
sage: R.ground_ring() is R  
True
sage: S.ground_ring() is R  
False
```

ground_ring_of_tower()

Return self.

Will be overridden by extensions.

INPUT:

- `self` – a p-adic ring

OUTPUT:

The ground ring of the tower for `self`, i.e., itself.

EXAMPLES:

```python
sage: R = Zp(5)
sage: R.ground_ring_of_tower()  
5-adic Ring with capped relative precision 20
```

inertia_degree()

Return the degree of the residual extension.

Raise an error if the base ring/field is itself an extension.

EXAMPLES:

```python
sage: K.<a> = Qq(3^5)  
˓→ needs sage.libsntl
sage: K.inertia_degree()  
˓→ needs sage.libsntl
5
sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3)  
˓→ needs sage.libsntl
sage: L.inertia_degree()  
˓→ needs sage.libsntl
1
```

inertia_subring()

Return the inertia subring, i.e. `self`.

INPUT:

- `self` – a local ring

OUTPUT:

- the inertia subring of `self`, i.e., itself

EXAMPLES:
is_capped_absolute()

Return whether this p-adic ring bounds precision in a capped absolute fashion.

The absolute precision of an element is the power of p modulo which that element is defined. In a capped absolute ring, the absolute precision of elements are bounded by a constant depending on the ring.

EXAMPLES:

```python
sage: R = ZpCA(5, 15)
sage: R.is_capped_absolute()
True
sage: R(5^7)
5^7 + O(5^15)
sage: S = Zp(5, 15)
sage: S.is_capped_absolute()
False
sage: S(5^7)
5^7 + O(5^22)
```

is_capped_relative()

Return whether this p-adic ring bounds precision in a capped relative fashion.

The relative precision of an element is the power of p modulo which the unit part of that element is defined. In a capped relative ring, the relative precision of elements are bounded by a constant depending on the ring.

EXAMPLES:

```python
sage: R = ZpCA(5, 15)
sage: R.is_capped_relative()
False
sage: R(5^7)
5^7 + O(5^15)
sage: S = Zp(5, 15)
sage: S.is_capped_relative()
True
sage: S(5^7)
5^7 + O(5^22)
```

is_exact()

Return whether this p-adic ring is exact, i.e. False.

EXAMPLES:

```python
sage: R = Zp(5, 3, 'fixed-mod'); R.is_exact()
False
```

is_fixed_mod()

Return whether this p-adic ring bounds precision in a fixed modulus fashion.

The absolute precision of an element is the power of p modulo which that element is defined. In a fixed modulus ring, the absolute precision of every element is defined to be the precision cap of the parent. This
means that some operations, such as division by p, don’t return a well defined answer.

EXAMPLES:

```
sage: R = ZpFM(5,15)
sage: R.is_fixed_mod()
True
sage: R(5^7,absprec=9)
5^7
sage: S = ZpCA(5,15)
sage: S.is_fixed_mod()
False
sage: S(5^7,absprec=9)
5^7 + O(5^9)
```

is_floating_point()

Return whether this p-adic ring bounds precision in a floating point fashion.

The relative precision of an element is the power of p modulo which the unit part of that element is defined. In a floating point ring, elements do not store precision, but arithmetic operations truncate to a relative precision depending on the ring.

EXAMPLES:

```
sage: R = ZpCR(5,15)
sage: R.is_floating_point()
False
sage: R(5^7)
5^7 + O(5^22)
sage: S = ZpFP(5,15)
sage: S.is_floating_point()
True
sage: S(5^7)
5^7
```

is_lattice_prec()

Return whether this p-adic ring bounds precision using a lattice model.

In lattice precision, relationships between elements are stored in a precision object of the parent, which allows for optimal precision tracking at the cost of increased memory usage and runtime.

EXAMPLES:

```
sage: R = ZpCR(5,15)
sage: R.is_lattice_prec()
False
sage: x = R(25, 8)
sage: x - x
O(5^8)
sage: S = ZpLC(5,15)
doctest:...: FutureWarning: This class/method/function is marked as experimental. It, its functionality or its interface might change without a formal deprecation.
See https://github.com/sagemath/sage/issues/23505 for details.
sage: S.is_lattice_prec()
True
```
is_relaxed()
Return whether this p-adic ring bounds precision in a relaxed fashion.
In a relaxed ring, elements have mechanisms for computing themselves to greater precision.

EXAMPLES:

```
sage: R = Zp(5)
sage: R.is_relaxed()
False
```

maximal_unramified_subextension()
Return the maximal unramified subextension.

INPUT:
• self – a local ring

OUTPUT:
• the maximal unramified subextension of self

EXAMPLES:

```
sage: R = Zp(5)
sage: R.maximal_unramified_subextension()
5-adic Ring with capped relative precision 20
```

precision_cap()
Return the precision cap for this ring.

EXAMPLES:

```
sage: R = Zp(3, 10, 'fixed-mod'); R.precision_cap()
10
sage: R = Zp(3, 10, 'capped-rel'); R.precision_cap()
10
sage: R = Zp(3, 10, 'capped-abs'); R.precision_cap()
10
```

Note: This will have different meanings depending on the type of local ring. For fixed modulus rings, all elements are considered modulo self.prime()^self.precision_cap(). For rings with an absolute cap (i.e. the class pAdicRingCappedAbsolute), each element has a precision that is tracked and is bounded above by self.precision_cap(). Rings with relative caps (e.g. the class pAdicRingCappedRelative) are the same except that the precision is the precision of the unit part of each element.

ramification_index()
Return the ramification index of this extension.
Raise an error if the base ring/field is itself an extension.

EXAMPLES:
relative_degree()

Return the degree of this extension over its base field/ring.

EXAMPLES:

```
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.relative_degree()  # needs sage.libs.ntl
5

sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
sage: L.relative_degree()  # needs sage.libs.ntl
2
```

relative_e()

Return the ramification index of this extension over its base ring/field.

EXAMPLES:

```
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.relative_e()  # needs sage.libs.ntl
1

sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
sage: L.relative_e()  # needs sage.libs.ntl
2
```

relative_f()

Return the degree of the residual extension over its base ring/field.

EXAMPLES:
sage: K.<a> = Qq(3^5) # needs sage.libs.ntl
sage: K.relative_f() # needs sage.libs.ntl
5
sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3) # needs sage.libs.ntl
sage: L.relative_f() # needs sage.libs.ntl
1

relative_inertia_degree()
Return the degree of the residual extension over its base ring/field.

EXAMPLES:

sage: K.<a> = Qq(3^5) # needs sage.libs.ntl
sage: K.relative_inertia_degree() # needs sage.libs.ntl
5
sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3) # needs sage.libs.ntl
sage: L.relative_inertia_degree() # needs sage.libs.ntl
1

relative_ramification_index()
Return the ramification index of this extension over its base ring/field.

EXAMPLES:

sage: K.<a> = Qq(3^5) # needs sage.libs.ntl
sage: K.relative_ramification_index() # needs sage.libs.ntl
1
sage: R.<x> = QQ[]
sage: L.<pi> = Qp(3).extension(x^2 - 3) # needs sage.libs.ntl
sage: L.relative_ramification_index() # needs sage.libs.ntl
2

residue_characteristic()
Return the characteristic of self’s residue field.

INPUT:

• self – a p-adic ring.
 OUTPUT:
The characteristic of the residue field.

EXAMPLES:

```sage
sage: R = Zp(3, 5, 'capped-rel'); R.residue_characteristic()
3
```

uniformiser()
Return a uniformiser for self, ie a generator for the unique maximal ideal.

EXAMPLES:

```sage
sage: R = Zp(5)
sage: R.uniformiser()
5 + O(5^21)
sage: A = Zp(7,10)
sage: S.<x> = A[]
˓→ needs sage.libsntl
sage: B.<t> = A.ext(x^2+7)
˓→ needs sage.libsntl
sage: B.uniformiser()
˓→ needs sage.libsntl
t + O(t^21)
```

uniformiser_pow(n)
Return the n'th power of the uniformiser of "self" (as an element of self).

EXAMPLES:

```sage
sage: R = Zp(5)
sage: R.uniformiser_pow(5)
5^5 + O(5^25)
```
A generic superclass for all p-adic parents.

AUTHORS:

- David Roe
- Genya Zaytman: documentation
- David Harvey: doctests
- Julian Rueth (2013-03-16): test methods for basic arithmetic

class `sage.rings.padics.padic_generic.ResidueLiftingMap`

Bases: `Morphism`

Lifting map to a p-adic ring or field from its residue field or ring.

These maps must be created using the `_create_()` method in order to support categories correctly.

EXAMPLES:

```
sage: from sage.rings.padics.padic_generic import ResidueLiftingMap
sage: R.<a> = Zq(125); k = R.residue_field()
    # needs sage.libsntl
sage: f = ResidueLiftingMap._create_(k, R); f
    # needs sage.libsntl
Lifting morphism:
    From: Finite Field in a0 of size 5^3
    To: 5-adic Unramified Extension Ring in a defined by x^3 + 3*x + 3
```

class `sage.rings.padics.padic_generic.ResidueReductionMap`

Bases: `Morphism`

Reduction map from a p-adic ring or field to its residue field or ring.

These maps must be created using the `_create_()` method in order to support categories correctly.

EXAMPLES:

```
sage: from sage.rings.padics.padic_generic import ResidueReductionMap
sage: R.<a> = Zq(125); k = R.residue_field()
    # needs sage.libsntl
sage: f = ResidueReductionMap._create_(R, k); f
    # needs sage.libsntl
Reduction morphism:
    From: 5-adic Unramified Extension Ring in a defined by x^3 + 3*x + 3
    To: Finite Field in a0 of size 5^3
```
is_injective()
The reduction map is far from injective.

EXAMPLES:

```
sage: GF(5).convert_map_from(ZpCA(5)).is_injective()  # needs sage.rings.finite_rings
False
```

is_surjective()
The reduction map is surjective.

EXAMPLES:

```
sage: GF(7).convert_map_from(Qp(7)).is_surjective()  # needs sage.rings.finite_rings
True
```

section()
Return the section from the residue ring or field back to the p-adic ring or field.

EXAMPLES:

```
sage: GF(3).convert_map_from(Zp(3)).section()  # needs sage.rings.finite_rings
Lifting morphism:
  From: Finite Field of size 3
  To:  3-adic Ring with capped relative precision 20
```

sage.rings.padics.padic_generic.local_print_mode(obj, print_options, pos=None, ram_name=None)
Context manager for safely temporarily changing the print_mode of a p-adic ring/field.

EXAMPLES:

```
sage: R = Zp(5)
sage: R(45)
4*5 + 5^2 + O(5^21)
sage: with local_print_mode(R, 'val-unit'):
....:    print(R(45))
5 * 9 + O(5^21)
```

Note: For more documentation see sage.structure.parent_gens.localvars.

class sage.rings.padics.padic_generic.pAdicGeneric(base, p, prec, print_mode, names, element_class, category=None)
Bases: PrincipalIdealDomain, LocalGeneric
Initialize self.

INPUT:
- `base` – base ring
- `p` – prime
- `print_mode` – dictionary of print options
• names – how to print the uniformizer
• element_class – the class for elements of this ring

EXAMPLES:

```
sage: R = Zp(17)  # indirect doctest
```

`characteristic()`

Return the characteristic of self, which is always 0.

EXAMPLES:

```
sage: R = Zp(3, 10, 'fixed-mod'); R.characteristic()
0
```

`extension(modulus, prec=None, names=None, print_mode=None, implementation='FLINT', **kwds)`

Create an extension of this p-adic ring.

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: k = Qp(5)
sage: R.<x> = k[]
sage: l.<w> = k.extension(x^2 - 5); l
5-adic Eisenstein Extension Field in w defined by x^2 - 5
sage: F = list(Qp(19)[x](cyclotomic_polynomial(5)).factor())[0][0]
sage: L = Qp(19).extension(F, names='a'); L
19-adic Unramified Extension Field in a defined by x^2 + ˓→8751674996211859573806383^x + 1
```

`fraction_field(print_mode=None)`

Return the fraction field of this ring or field.

For \(\mathbb{Z}_p \), this is the \(p \)-adic field with the same options, and for extensions, it is just the extension of the fraction field of the base determined by the same polynomial.

The fraction field of a capped absolute ring is capped relative, and that of a fixed modulus ring is floating point.

INPUT:

• print_mode – (optional) a dictionary containing print options; defaults to the same options as this ring

OUTPUT:

• the fraction field of this ring

EXAMPLES:

```
sage: R = Zp(5, print_mode='digits', show_prec=False)
sage: K = R.fraction_field(); K(1/3)
313131313131313132
sage: L = R.fraction_field({'max_ram_terms':4}); L(1/3)
doctest:warning
... DeprecationWarning: Use the change method if you want to change print options...
˓→in fraction_field()
```
See https://github.com/sagemath/sage/issues/23227 for details.

3132

sage: U.<a> = Zq(17^4, 6, print_mode='val-unit', print_max_terse_terms=3) # needs sage.libs.ntl
sage: U.fraction_field() # needs sage.libs.ntl
17-adic Unramified Extension Field in a defined by x^4 + 7*x^2 + 10*x + 3
sage: U.fraction_field({"pos":False}) == U.fraction_field() # needs sage.libs.ntl
False

\textbf{frobenius_endomorphism}(n=1)

Return the \(n\)-th power of the absolute arithmetic Frobenius endomorphism on this field.

INPUT:

\begin{itemize}
 \item \texttt{n} – an integer (default: 1)
\end{itemize}

EXAMPLES:

sage: K.<a> = Qq(3^5) # needs sage.libs.ntl
sage: Frob = K.frobenius_endomorphism(); Frob # needs sage.libs.ntl
Frobenius endomorphism on 3-adic Unramified Extension
... lifting a |--> a^3 on the residue field
sage: Frob(a) == a.frobenius() # needs sage.libs.ntl
True

We can specify a power:

sage: K.frobenius_endomorphism(2) # needs sage.libs.ntl
Frobenius endomorphism on 3-adic Unramified Extension
... lifting a |--> a^(3^2) on the residue field

The result is simplified if possible:

sage: K.frobenius_endomorphism(6) # needs sage.libs.ntl
Frobenius endomorphism on 3-adic Unramified Extension
... lifting a |--> a^3 on the residue field
sage: K.frobenius_endomorphism(5) # needs sage.libs.ntl
Identity endomorphism of 3-adic Unramified Extension ...

Comparisons work:

sage: K.frobenius_endomorphism(6) == Frob # needs sage.libs.ntl
True

\textbf{gens}()

Return a list of generators.
EXAMPLES:

```python
sage: R = Zp(5); R.gens()
[5 + 0(5^21)]
sage: Zq(25, names='a').gens()  # needs sage.libs.ntl
[a + 0(5^20)]
sage: S.<x> = ZZ[]; f = x^5 + 25*x -5; W.<w> = R.ext(f); W.gens()  # needs sage.libs.ntl
[w + 0(w^101)]
```

integer_ring(print_mode=None)

Return the ring of integers of this ring or field.

For \(\mathbb{Q}_p\), this is the \(p\)-adic ring with the same options, and for extensions, it is just the extension of the ring of integers of the base determined by the same polynomial.

INPUT:

- `print_mode` – (optional) a dictionary containing print options; defaults to the same options as this ring

OUTPUT:

- the ring of elements of this field with nonnegative valuation

EXAMPLES:

```python
sage: K = Qp(5, print_mode='digits', show_prec=False)
sage: R = K.integer_ring(); R(1/3)
31313131313131313132
sage: S = K.integer_ring({'max_ram_terms':4}); S(1/3)
doctest:warning...
DeprecationWarning: Use the change method if you want to change print options...
in integer_ring()
See https://github.com/sagemath/sage/issues/23227 for details.
3132
sage: U.<a> = Qq(17^4, 6, print_mode='val-unit', print_max_terse_terms=3)  # needs sage.libsntl
sage: U.integer_ring()
17-adic Unramified Extension Ring in a defined by x^4 + 7*x^2 + 10*x + 3
sage: U.fraction_field({"print_mode":"terse"}) == U.fraction_field()  # needs sage.libsntl
doctest:warning...
DeprecationWarning: Use the change method if you want to change print options...
in fraction_field()
See https://github.com/sagemath/sage/issues/23227 for details.
False
```

ngens()

Return the number of generators of \(\text{self}\).

We conventionally define this as 1: for base rings, we take a uniformizer as the generator; for extension rings, we take a root of the minimal polynomial defining the extension.
EXAMPLES:

```python
sage: Zp(5).ngens()
1
sage: Zq(25,names='a').ngens()  # needs sage.libs.ntl
1
```

prime()

Return the prime, i.e., the characteristic of the residue field.

OUTPUT:

The characteristic of the residue field.

EXAMPLES:

```python
sage: R = Zp(3,5,'fixed-mod')
sage: R.prime()
3
```

primitive_root_of_unity(\(n=\text{None}, \text{order}=\text{False}\))

Return a generator of the group of \(n\)-th roots of unity in this ring.

INPUT:

- \(n\) – an integer or \text{None} (default: \text{None})
- \text{order} – a boolean (default: \text{False})

OUTPUT:

A generator of the group of \(n\)-th roots of unity. If \(n\) is \text{None}, a generator of the full group of roots of unity is returned.

If \text{order} is \text{True}, the order of the above group is returned as well.

EXAMPLES:

```python
sage: R = Zp(5, 10)
sage: zeta = R.primitive_root_of_unity(); zeta
2 + 5 + 2*5^2 + 5*3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: zeta == R.teichmuller(2)
True
```

Now we consider an example with non-trivial \(p\)-th roots of unity:

```python
sage: # needs sage.libs.ntl
sage: W = Zp(3, 2)
sage: S.<x> = W[]
sage: R.<pi> = W.extension((x+1)^6 + (x+1)^3 + 1)
sage: zeta, order = R.primitive_root_of_unity(order=True)
sage: zeta
2 + 2*pi + 2*pi^3 + 2*pi^7 + 2*pi^8 + 2*pi^9 + pi^11 + O(pi^12)
sage: order
18
sage: zeta.multiplicative_order()
18
```
```plaintext
sage: zeta, order = R.primitive_root_of_unity(24, order=True)
sage: zeta
2 + pi^3 + 2*pi^7 + 2*pi^8 + 2*pi^10 + 2*pi^11 + O(pi^12)
sage: order  # equal to gcd(18,24)
6
sage: zeta.multiplicative_order()
6
```

print_mode()

Return the current print mode as a string.

EXAMPLES:

```plaintext
sage: R = Qp(7,5, 'capped-rel')
sage: R.print_mode()
'series'
```

residue_characteristic()

Return the prime, i.e., the characteristic of the residue field.

OUTPUT:

The characteristic of the residue field.

EXAMPLES:

```plaintext
sage: R = Zp(3,5, 'fixed-mod')
sage: R.residue_characteristic()
3
```

residue_class_field()

Return the residue class field.

EXAMPLES:

```plaintext
sage: R = Zp(3,5, 'fixed-mod')
sage: k = R.residue_class_field()
sage: k
Finite Field of size 3
```

residue_field()

Return the residue class field.

EXAMPLES:

```plaintext
sage: R = Zp(3,5, 'fixed-mod')
sage: k = R.residue_field()
sage: k
Finite Field of size 3
```

residue_ring(n)

Return the quotient of the ring of integers by the n-th power of the maximal ideal.

EXAMPLES:
\texttt{sage: } R = \texttt{Zp}(11) \\
\texttt{sage: } R.residue_ring(3) \\
Ring of integers modulo 1331

\textbf{residue_system()}

Return a list of elements representing all the residue classes.

\textbf{EXAMPLES:}

\texttt{sage: } R = \texttt{Zp}(3, 5, 'fixed-mod') \\
\texttt{sage: } R.residue_system() \\
[0, 1, 2]

\textbf{roots_of_unity}(n=None)

Return all the n-th roots of unity in this ring.

\textbf{INPUT:}

- n – an integer or \texttt{None} (default: \texttt{None}); if \texttt{None}, the full group of roots of unity is returned

\textbf{EXAMPLES:}

\texttt{sage: } R = \texttt{Zp}(5, 10) \\
\texttt{sage: } roots = R.roots_of_unity(); roots \\
[1 + O(5^{10}), \\
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^{10}), \\
4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + O(5^{10}), \\
3 + 3*5 + 2*5^2 + 3*5^3 + 5^4 + 2*5^6 + 5^7 + 4*5^8 + 5^9 + O(5^{10})] \\
\texttt{sage: } R.roots_of_unity(10) \\
[1 + O(5^{10}), \\
4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + O(5^{10})]

In this case, the roots of unity are the Teichmüller representatives:

\texttt{sage: } R.teichmuller_system() \\
[1 + O(5^{10}), \\
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^{10}), \\
3 + 3*5 + 2*5^2 + 3*5^3 + 5^4 + 2*5^6 + 5^7 + 4*5^8 + 5^9 + O(5^{10}), \\
4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + O(5^{10})]

In general, there might be more roots of unity (it happens when the ring has non trivial p-th roots of unity):

\texttt{sage: } # \texttt{needs sage.libs.ntl} \\
\texttt{sage: } W.<a> = \texttt{Zq}(3^2, 2) \\
\texttt{sage: } S.<x> = W[] \\
\texttt{sage: } R.<pi> = W.extension((x+1)^2 + (x+1) + 1) \\
\texttt{sage: } roots = R.roots_of_unity(); roots \\
[1 + O(pi^4), \\
a + 2*a*pi + 2*a*pi^2 + a*pi^3 + O(pi^4), \\
... \\
1 + pi + O(pi^4), \\
... \\
(continues on next page)
a + a*π^2 + 2*a*π^3 + O(π^4),
...
1 + 2*π + π^2 + O(π^4),
a + a*π + a*π^2 + O(π^4),
...]

sage: len(roots)
24

We check that the logarithm of each root of unity vanishes:

sage: # needs sage.libs.ntl
sage: for root in roots:
....: if root.log() != 0:
....: raise ValueError

some_elements()

Return a list of elements in this ring.

This is typically used for running generic tests (see TestSuite).

EXAMPLES:

sage: Zp(2,4).some_elements()
[0, 1 + O(2^4), 2 + O(2^5), 1 + 2^2 + 2^3 + O(2^4), 2 + 2^2 + 2^3 + 2^4 + O(2^→5)]

teichmuller(x, prec=None)

Return the Teichmüller representative of x.

• x – something that can be cast into self

OUTPUT:

• the Teichmüller lift of x

EXAMPLES:

sage: R = Zp(5, 10, 'capped-rel', 'series')
sage: R.teichmuller(2)
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: R = Qp(5, 10, 'capped-rel', 'series')
sage: R.teichmuller(2)
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: R = Zp(5, 10, 'capped-abs', 'series')
sage: R.teichmuller(2)
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: R = Zp(5, 10, 'fixed-mod', 'series')
sage: R.teichmuller(2)
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + 4*5^5 + 2*5^6 + 3*5^7 + 3*5^9 + O(5^10)
sage: # needs sage.libs.ntl
sage: R = Zp(5, 5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: y = W.teichmuller(3); y
3 + 3*w^5 + w^7 + 2*w^9 + 2*w^10 + 4*w^11 + w^12 + 2*w^13 + 3*w^15
 + 2*w^16 + 3*w^17 + w^18 + 3*w^19 + 3*w^20 + 2*w^21 + 2*w^22
 + 3*w^23 + 4*w^24 + O(w^25)
sage: y^5 == y
True
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: b = A.teichmuller(1 + 2*a - a^2); b
(4*a^2 + 2*a + 1) + 2*a*5 + (3*a^2 + 1)*5^2 + (a + 4)*5^3
 + (a^2 + a + 1)*5^4 + O(5^5)
sage: b^125 == b
True

We check that github issue #23736 is resolved:

sage: # needs sage.libs.ntl
sage: R.teichmuller(GF(5)(2))
2 + 5 + 2*5^2 + 5^3 + 3*5^4 + O(5^5)

AUTHORS:

• Initial version: David Roe
• Quadratic time version: Kiran Kedlaya <kedlaya@math.mit.edu> (2007-03-27)

teichmuller_system()

Return a set of Teichmüller representatives for the invertible elements of \(\mathbb{Z}/p\mathbb{Z} \).

OUTPUT:

A list of Teichmüller representatives for the invertible elements of \(\mathbb{Z}/p\mathbb{Z} \).

EXAMPLES:

sage: R = Zp(3, 5, 'fixed-mod', 'terse')
sage: R.teichmuller_system()
[1, 242]

Check that github issue #20457 is fixed:

sage: F.<a> = Qq(5^2,6) # needs sage.libs.ntl
sage: F.teichmuller_system()[3] # needs sage.libs.ntl
(2*a + 2) + (4*a + 1)*5 + 4*5^2 + (2*a + 1)*5^3 + (4*a + 1)*5^4 + (2*a + 3)*5^5 + O(5^6)

Note: Should this return 0 as well?

uniformizer_pow(n)

Return \(p^n \), as an element of self.

If n is infinity, returns 0.

EXAMPLES:
valuation()

Return the p-adic valuation on this ring.

OUTPUT:

A valuation that is normalized such that the rational prime p has valuation 1.

EXAMPLES:

```
sage: # needs sage.libsntl
sage: K = Qp(3)
sage: R.<a> = K[]
sage: L.<a> = K.extension(a^3 - 3)
sage: v = L.valuation(); v
3-adic valuation
sage: v(3)
1
sage: L(3).valuation()
3
```

The normalization is chosen such that the valuation restricts to the valuation on the base ring:

```
sage: v(3) == K.valuation()(3) # needs sage.libsntl
True
sage: v.restriction(K) == K.valuation() # needs sage.libsntl
True
```

See also:

NumberField_generic.valuation(), Order.valuation()
This file contains a bunch of intermediate classes for the p-adic parents, allowing a function to be implemented at the right level of generality.

AUTHORS:

- David Roe

```python
class sage.rings.padics.generic_nodes.CappedAbsoluteGeneric(base, prec, names, element_class, category=None):
    Bases: LocalGeneric

is_capped_absolute()
    Return whether this $p$-adic ring bounds precision in a capped absolute fashion.

    The absolute precision of an element is the power of $p$ modulo which that element is defined. In a capped absolute ring, the absolute precision of elements are bounded by a constant depending on the ring.

    EXAMPLES:
    sage: R = ZpCA(5, 15)
    sage: R.is_capped_absolute()
    True
    sage: R(5^7)
    5^7 + O(5^15)
    sage: S = Zp(5, 15)
    sage: S.is_capped_absolute()
    False
    sage: S(5^7)
    5^7 + O(5^22)
```

```python
class sage.rings.padics.generic_nodes.CappedRelativeFieldGeneric(base, prec, names, element_class, category=None):
    Bases: CappedRelativeGeneric

class sage.rings.padics.generic_nodes.CappedRelativeGeneric(base, prec, names, element_class, category=None):
    Bases: LocalGeneric

    is_capped_relative()
        Return whether this $p$-adic ring bounds precision in a capped relative fashion.

        The relative precision of an element is the power of $p$ modulo which the unit part of that element is defined. In a capped relative ring, the relative precision of elements are bounded by a constant depending on the ring.
```

EXAMPLES:

```python
sage: R = ZpCA(5, 15)
sage: R.is_capped_relative()
False
sage: R(5^7)
5^7 + O(5^15)
sage: S = Zp(5, 15)
sage: S.is_capped_relative()
True
sage: S(5^7)
5^7 + O(5^22)
```

class sage.rings.padics.generic_nodes.CappedRelativeRingGeneric(base, prec, names, element_class, category=None)

Bases: CappedRelativeGeneric

class sage.rings.padics.generic_nodes.FixedModGeneric(base, prec, names, element_class, category=None)

Bases: LocalGeneric

```python
is_fixed_mod()

Return whether this \(p\)-adic ring bounds precision in a fixed modulus fashion.

The absolute precision of an element is the power of \(p\) modulo which that element is defined. In a fixed modulus ring, the absolute precision of every element is defined to be the precision cap of the parent. This means that some operations, such as division by \(p\), don’t return a well defined answer.

EXAMPLES:

```python
sage: R = ZpFM(5, 15)
sage: R.is_fixed_mod()
True
sage: R(5^7, absprec=9)
5^7
sage: S = ZpCA(5, 15)
sage: S.is_fixed_mod()
False
sage: S(5^7, absprec=9)
5^7 + O(5^9)
```

class sage.rings.padics.generic_nodes.FloatingPointFieldGeneric(base, prec, names, element_class, category=None)

Bases: FloatingPointGeneric

class sage.rings.padics.generic_nodes.FloatingPointGeneric(base, prec, names, element_class, category=None)

Bases: LocalGeneric

```python
is_floating_point()

Return whether this \(p\)-adic ring uses a floating point precision model.

Elements in the floating point model are stored by giving a valuation and a unit part. Arithmetic is done where the unit part is truncated modulo a fixed power of the uniformizer, stored in the precision cap of the parent.

EXAMPLES:

```python
```
```python
sage: R = ZpFP(5, 15)
sage: R.is_floating_point()
True
sage: R(5^7, absprec=9)
5^7
sage: S = ZpCR(5, 15)
sage: S.is_floating_point()
False
sage: S(5^7, absprec=9)
5^7 + O(5^9)
```

```python
class sage.rings.padics.generic_nodes.FloatingPointRingGeneric(base, prec, names, element_class, category=None)
    Bases: FloatingPointGeneric

class sage.rings.padics.generic_nodes.pAdicCappedAbsoluteRingGeneric(base, p, prec, print_mode, names, element_class, category=None)
    Bases: pAdicRingGeneric, CappedAbsoluteGeneric

class sage.rings.padics.generic_nodes.pAdicCappedRelativeFieldGeneric(base, p, prec, print_mode, names, element_class, category=None)
    Bases: pAdicFieldGeneric, CappedRelativeFieldGeneric

class sage.rings.padics.generic_nodes.pAdicCappedRelativeRingGeneric(base, p, prec, print_mode, names, element_class, category=None)
    Bases: pAdicRingGeneric, CappedRelativeRingGeneric

class sage.rings.padics.generic_nodes.pAdicFieldBaseGeneric(p, prec, print_mode, names, element_class)
    Bases: pAdicBaseGeneric, pAdicFieldGeneric

composite(subfield1, subfield2)
    Return the composite of two subfields of self, i.e., the largest subfield containing both

    INPUT:
    • self – a p-adic field
    • subfield1 – a subfield
    • subfield2 – a subfield

    OUTPUT:
    the composite of subfield1 and subfield2

    EXAMPLES:
    sage: K = Qp(17); K.composite(K, K) is K
    True

construction(forbid_frac_field=False)
    Return the factorial construction of self, namely, completion of the rational numbers with respect a given prime.
```
Also preserves other information that makes this field unique (e.g., precision, rounding, print mode).

INPUT:

- `forbid_frac_field` – require a completion functor rather than a fraction field functor. This is used in the `sage.rings.padics.local_generic.LocalGeneric.change()` method.

EXAMPLES:

```python
sage: K = Qp(17, 8, print_mode='val-unit', print_sep='&')
sage: c, L = K.construction(); L
17-adic Ring with capped relative precision 8
sage: c
FractionField
sage: c(L)
17-adic Field with capped relative precision 8
sage: K == c(L)
True
```

We can get a completion functor by forbidding the fraction field:

```python
sage: c, L = K.construction(forbid_frac_field=True); L
Rational Field
sage: c
Completion[17, prec=8]
sage: c(L)
17-adic Field with capped relative precision 8
sage: K == c(L)
True
```

subfield(list)

Return the subfield generated by the elements in list

INPUT:

- `self` – a \(p \)-adic field
- `list` – a list of elements of `self`

OUTPUT:

the subfield of `self` generated by the elements of `list`

EXAMPLES:

```python
sage: K = Qp(17); K.subfield([K(17), K(1827)]) is K
True
```

subfields_of_degree(n)

Return the number of subfields of `self` of degree \(n \)

INPUT:

- `self` – a \(p \)-adic field
- `n` – an integer

OUTPUT:

integer – the number of subfields of degree \(n \) over `self.base_ring()`

EXAMPLES:
class sage.rings.padics.generic_nodes.pAdicFieldGeneric(base, p, prec, print_mode, names, element_class, category=None)

Bases: pAdicGeneric, pAdicField

class sage.rings.padics.generic_nodes.pAdicFixedModRingGeneric(base, p, prec, print_mode, names, element_class, category=None)

Bases: pAdicRingGeneric, FixedModGeneric

class sage.rings.padics.generic_nodes.pAdicFloatingPointFieldGeneric(base, p, prec, print_mode, names, element_class, category=None)

Bases: pAdicFieldGeneric, FloatingPointFieldGeneric

class sage.rings.padics.generic_nodes.pAdicFloatingPointRingGeneric(base, p, prec, print_mode, names, element_class, category=None)

Bases: pAdicRingGeneric, FloatingPointRingGeneric

class sage.rings.padics.generic_nodes.pAdicLatticeGeneric(p, prec, print_mode, names, label=None)

Bases: pAdicGeneric

An implementation of the \(p \)-adic rationals with lattice precision.

INPUT:

- \(p \) – the underlying prime number
- \(\text{prec} \) – the precision
- \(\text{subtype} \) – either "cap" or "float", specifying the precision model used for tracking precision
- \(\text{label} \) – a string or None (default: None)

convert_multiple(*elts)

Convert a list of elements to this parent.

NOTE:

This function tries to be sharp on precision as much as possible. In particular, if the precision of the input elements are handled by a lattice, diffused digits of precision are preserved during the conversion.

EXAMPLES:

```
sage: R = ZpLC(2)
sage: x = R(1, 10); y = R(1, 5)
sage: x,y = x+y, x-y
```

Remark that the pair \((x, y)\) has diffused digits of precision:

```
sage: x
2 + O(2^5)
sage: y
O(2^5)
```

(continues on next page)
As a consequence, if we convert x and y separately, we lose some precision:

```python
sage: R2 = ZpLC(2, label='copy')
sage: x2 = R2(x); y2 = R2(y)
sage: x2
2 + O(2^5)
sage: y2
0(2^5)
sage: x2 + y2
2 + O(2^5)
sage: R2.precision().diffused_digits([x2,y2])  # needs sage.geometry.polyhedron
6
```

On the other hand, this issue disappears when we use multiple conversion:

```python
sage: x2, y2 = R2.convert_multiple(x,y)  # needs sage.geometry.polyhedron
sage: x2 + y2  # needs sage.rings.padics
2 + O(2^11)
sage: R2.precision().diffused_digits([x2,y2])  # needs sage.geometry.polyhedron
6
```

is_lattice_prec()

Return whether this p-adic ring bounds precision using a lattice model.

In lattice precision, relationships between elements are stored in a precision object of the parent, which allows for optimal precision tracking at the cost of increased memory usage and runtime.

EXAMPLES:

```python
sage: R = ZpCR(5, 15)
sage: R.is_lattice_prec()
False
sage: x = R(25, 8)
sage: x - x
O(5^8)
sage: S = ZpLC(5, 15)
sage: S.is_lattice_prec()
True
sage: x = S(25, 8)
sage: x - x
O(5^30)
```
label()

Return the label of this parent.

NOTE:

Labels can be used to distinguish between parents with the same defining data.

They are useful in the lattice precision framework in order to limit the size of the lattice modeling the precision (which is roughly the number of elements having this parent).

Elements of a parent with some label do not coerce to a parent with a different label. However conversions are allowed.

EXAMPLES:

```
sage: R = ZpLC(5)
sage: R.label()    # no label by default
sage: R = ZpLC(5, label='mylabel')
sage: R.label()
'mylabel'
```

Labels are typically useful to isolate computations. For example, assume that we first want to do some calculations with matrices:

```
sage: R = ZpLC(5, label='matrices')
sage: M = random_matrix(R, 4, 4)    # needs sage.geometry.polyhedron
sage: d = M.determinant()    # needs sage.geometry.polyhedron
```

Now, if we want to do another unrelated computation, we can use a different label:

```
sage: R = ZpLC(5, label='polynomials')
sage: S.<x> = PolynomialRing(R)
sage: P = (x-1)*(x-2)*(x-3)*(x-4)*(x-5)
```

Without labels, the software would have modeled the precision on the matrices and on the polynomials using the same lattice (manipulating a lattice of higher dimension can have a significant impact on performance).

precision()

Return the lattice precision object attached to this parent.

EXAMPLES:

```
sage: R = ZpLC(5, label='precision')
sage: R.precision()
Precision lattice on 0 objects (label: precision)
sage: x = R(1, 10); y = R(1, 5)
sage: R.precision()
Precision lattice on 2 objects (label: precision)
```

See also:

`sage.rings.padics.lattice_precision.PrecisionLattice`
precision_cap()

Return the relative precision cap for this ring if it is finite. Otherwise return the absolute precision cap.

EXAMPLES:

```python
sage: R = ZpLC(3)
sage: R.precision_cap()
20
sage: R.precision_cap_relative()
20

sage: R = ZpLC(3, prec=(infinity,20))
sage: R.precision_cap()
20
sage: R.precision_cap_relative()
+Infinity
sage: R.precision_cap_absolute()
20
```

See also:

`precision_cap_relative()`, `precision_cap_absolute()`

precision_cap_absolute()

Return the absolute precision cap for this ring.

EXAMPLES:

```python
sage: R = ZpLC(3)
sage: R.precision_cap_absolute()
40

sage: R = ZpLC(3, prec=(infinity,20))
sage: R.precision_cap_absolute()
20
```

See also:

`precision_cap()`, `precision_cap_relative()`

precision_cap_relative()

Return the relative precision cap for this ring.

EXAMPLES:

```python
sage: R = ZpLC(3)
sage: R.precision_cap_relative()
20

sage: R = ZpLC(3, prec=(infinity,20))
sage: R.precision_cap_relative()
+Infinity
```

See also:

`precision_cap()`, `precision_cap_absolute()`
class sage.rings.padics.generic_nodes.pAdicRelaxedGeneric(base, p, prec, print_mode, names, element_class, category=None)

Bases: pAdicGeneric

Generic class for relaxed p-adics.

INPUT:

- p – the underlying prime number
- prec – the default precision

an_element(unbounded=False)

Return an element in this ring.

EXAMPLES:

```sage
sage: R = ZpER(7, prec=5)
# needs sage.libs.flint
sage: R.an_element()
# needs sage.libs.flint
7 + O(7^5)
sage: R.an_element(unbounded=True)
# needs sage.libs.flint
7 + ...
```

default_prec()

Return the default precision of this relaxed p-adic ring.

The default precision is mostly used for printing: it is the number of digits which are printed for unbounded elements (that is elements having infinite absolute precision).

EXAMPLES:

```sage
sage: # needs sage.libs.flint
sage: R = ZpER(5, print_mode="digits")
sage: R.default_prec()
20
sage: R(1/17)
...34024323104201213403
sage: S = ZpER(5, prec=10, print_mode="digits")
sage: S.default_prec()
10
sage: S(1/17)
...4201213403
```

halting_prec()

Return the default halting precision of this relaxed p-adic ring.

The halting precision is the precision at which elements of this parent are compared (unless more digits have been previously computed). By default, it is twice the default precision.

EXAMPLES:

```sage
sage: # needs sage.libs.flint
sage: R = ZpER(5, print_mode="digits")
# needs sage.libs.flint
sage: R.halting_prec()
(continues on next page)
is_relaxed()  
Return whether this \( p \)-adic ring is relaxed.

EXAMPLES:

```python
sage: R = Zp(5)
sage: R.is_relaxed()
False
sage: S = ZpER(5) # needs sage.libs.flint
sage: S.is_relaxed() # needs sage.libs.flint
True
```

is_secure()  
Return \texttt{False} if this \( p \)-adic relaxed ring is not secure (i.e., if indistinguishable elements at the working precision are considered as equal); \texttt{True} otherwise (in which case, an error is raised when equality cannot be decided).

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R = ZpER(5)
sage: R.is_secure()
False
sage: x = R(20/21)
sage: y = x + 5^50
sage: x == y
True
sage: # needs sage.libs.flint
sage: S = ZpER(5, secure=True)
sage: S.is_secure()
True
sage: x = S(20/21)
sage: y = x + 5^50
sage: x == y
Traceback (most recent call last):
 ...
PrecisionError: unable to decide equality; try to bound precision
```

precision_cap()  
Return the precision cap of this \( p \)-adic ring, which is infinite in the case of relaxed rings.

EXAMPLES:

```python
sage: R = ZpER(5) # needs sage.libs.flint
sage: R.precision_cap() # needs sage.libs.flint
+Infinity
```
**random_element**(integral=False, prec=None)

Return a random element in this ring.

**INPUT:**

- **integral** – a boolean (default: False); if True, return a random element in the ring of integers of this ring
- **prec** – an integer or None (default: None); if given, bound the precision of the output to prec

**EXAMPLES:**

```python
sage: R = ZpER(5, prec=10) # needs sage.libs.flint
sage: R.random_element() # needs sage.libs.flint
4 + 3*5 + 3*5^2 + 5^3 + 3*5^4 + 2*5^5 + 5^7 + 5^9 + ...
sage: R.random_element(prec=15) # needs sage.libs.flint
2 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + 3*5^8 + 3*5^9 + 4*5^10 + 5^11 + 4*5^12 + 5^13 + 2*5^14 + O(5^15)
sage: R.some_elements(unbounded=False) # needs sage.libs.flint
[0(5^10), 1 + O(5^10), 7 + O(5^10), 7 + O(5^10), 1 + 5*7 + 3*7^2 + 6*7^3 + O(7^5), 7 + 6*7^2 + 6*7^3 + 6*7^4 + O(7^5)]]```

By default, this method returns a unbounded element:

```python
sage: a = R.random_element()  # needs sage.libs.flint
sage: a  # random  # needs sage.libs.flint
4 + 3*5 + 3*5^2 + 5^3 + 3*5^4 + 2*5^5 + 5^7 + 5^9 + ...
sage: a.precision_absolute()  # needs sage.libs.flint
+Infinity
```

The precision can be bounded by passing in a precision:

```python
sage: b = R.random_element(prec=15)  # needs sage.libs.flint
sage: b  # random  # needs sage.libs.flint
2 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + 3*5^8 + 3*5^9 + 4*5^10 + 5^11 + 4*5^12 + 5^13 + 2*5^14 + O(5^15)
sage: b.precision_absolute()  # needs sage.libs.flint
15
```

some_elements(unbounded=False)

Return a list of elements in this ring.

This is typically used for running generic tests (see TestSuite).

EXAMPLES:

```python
sage: R = ZpER(7, prec=5)  # needs sage.libs.flint
sage: R.some_elements()  # needs sage.libs.flint
[0(7^5), 1 + 0(7^5), 7 + 0(7^5), 7 + 0(7^5), 1 + 5*7 + 3*7^2 + 6*7^3 + O(7^5), 7 + 6*7^2 + 6*7^3 + 6*7^4 + O(7^5)]
```
\texttt{sage: R.some_elements(unbounded=True)}
\hspace{1em}# needs sage.libs.flint
[0, 1 + ..., 7 + ..., 1 + 5*7 + 3*7^2 + 6*7^3 + ..., 7 + 6*7^2 + 6*7^3 + 6*7^4 + ...]

\texttt{teichmuller(x)}

Return the Teichmuller representative of \(x\).

\textbf{EXAMPLES:}

\texttt{sage: R = ZpER(5, print_mode="digits")}
\hspace{1em}# needs sage.libs.flint
\texttt{sage: R.teichmuller(2)}
\hspace{1em}# needs sage.libs.flint
\hspace{1em}...40423140223032431212

\texttt{teichmuller_system()}

Return a set of teichmuller representatives for the invertible elements of \(\mathbb{Z}/p\mathbb{Z}\).

\textbf{EXAMPLES:}

\texttt{sage: R = ZpER(7, print_mode="digits")}
\hspace{1em}# needs sage.libs.flint
\texttt{sage: R.teichmuller_system()}
\hspace{1em}# needs sage.libs.flint
\hspace{1em}...00000000000000000001, ...
\hspace{1em}|...16412125443426203642, ...
\hspace{1em}|...00254541223240463024, ...
\hspace{1em}|...66666666666666666666]

\texttt{unknown(start_val=0, digits=None)}

Return a self-referent number in this ring.

\textbf{INPUT:}

- \texttt{start_val} – an integer (default: 0); a lower bound on the valuation of the returned element

- \texttt{digits} – an element, a list or \texttt{None} (default: \texttt{None}); the first digit or the list of the digits of the returned element

\textbf{NOTE:}

Self-referent numbers are numbers whose digits are defined in terms of the previous ones. This method is used to declare a self-referent number (and optionally, to set its first digits). The definition of the number itself will be given afterwards using method \texttt{sage.rings.padics.relaxed_template.RelaxedElement_unknown.set()} of the element.

\textbf{EXAMPLES:}

\texttt{sage: R = ZpER(5, prec=10) # needs sage.libs.flint}
We declare a self-referent number:

```
sage: a = R.unknown()  # needs sage.libs.flint
```

So far, we do not know anything on a (except that it has nonnegative valuation):

```
sage: a  # needs sage.libs.flint
O(5^0)
```

We can now use the method `sage.rings.padics.relaxed_template.RelaxedElement_unknown.set()` to define a. Below, for example, we say that the digits of a have to agree with the digits of $1 + 5a$. Note that the factor 5 shifts the digits; the n-th digit of a is then defined by the previous ones:

```
sage: a.set(1 + 5*a)  # needs sage.libs.flint
True
```

After this, a contains the solution of the equation $a = 1 + 5a$, that is $a = -1/4$:

```
sage: a  # needs sage.libs.flint
1 + 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + 5^7 + 5^8 + 5^9 + ...
```

Here is another example with an equation of degree 2:

```
sage: # needs sage.libs.flint
sage: b = R.unknown()
sage: b.set(1 - 5*b^2)
True
sage: b 1 + 4*5 + 5^2 + 3*5^4 + 4*5^6 + 4*5^8 + 2*5^9 + ...
```

Cross self-referent definitions are also allowed:

```
sage: # needs sage.libs.flint
sage: u = R.unknown()
sage: v = R.unknown()
sage: w = R.unknown()
sage: u.set(1 + 2*v + 3*w^2 + 5*u*v*w)
True
sage: v.set(2 + 4*w + sqrt(1 + 5*u + 10*v + 15*w))
True
sage: w.set(3 + 25*(u*v + v*w + u*w))
True
sage: u 3 + 3*5 + 4*5^2 + 5^3 + 3*5^4 + 5^5 + 5^6 + 3*5^7 + 5^8 + 3*5^9 + ...
sage: v 4*5 + 2*5^2 + 4*5^3 + 5^4 + 5^5 + 3*5^6 + 5^8 + 5^9 + ...
sage: w 3 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 2*5^6 + 5^8 + 5^9 + ...
```
```
class sage.rings.padics.generic_nodes.pAdicRingBaseGeneric(p, prec, print_mode, names,
              element_class)

Bases: pAdicBaseGeneric, pAdicRingGeneric

construction(forbid_frac_field=False)

Return the functorial construction of self, namely, completion of the rational numbers with respect to a
given prime.
Also preserves other information that makes this field unique (e.g., precision, rounding, print mode).
INPUT:
    • forbid_frac_field – ignored, for compatibility with other p-adic types.

EXAMPLES:

```
sage: K = Zp(17, 8, print_mode='val-unit', print_sep='&')
sage: c, L = K.construction(); L
Integer Ring
sage: c(L)
17-adic Ring with capped relative precision 8
sage: K == c(L)
True

random_element(algorithm='default')

Return a random element of self, optionally using the algorithm argument to decide how it generates
the element. Algorithms currently implemented:
 • 'default': Choose \(a_i, i \geq 0 \), randomly between 0 and \(p - 1 \) until a nonzero choice is made. Then
 continue choosing \(a_i \) randomly between 0 and \(p - 1 \) until we reach precision_cap, and return \(\sum a_ip^i \).

EXAMPLES:

```
sage: Zp(5,6).random_element().parent() is Zp(5,6)
True
sage: ZpCA(5,6).random_element().parent() is ZpCA(5,6)
True
sage: ZpFM(5,6).random_element().parent() is ZpFM(5,6)
True
```
```
OUTPUT:

- the Krull dimension of self. Since self is a $p$-adic ring, this is 1.

EXAMPLES:

```
sage: Zp(5).krull_dimension()
1
```
A superclass for implementations of $\mathbb{Z}_p$ and $\mathbb{Q}_p$.

AUTHORS:

- David Roe

```python
class sage.rings.padics.padic_base_generic.pAdicBaseGeneric(p, prec, print_mode, names, element_class):
 Bases: pAdicGeneric

Initialization

absolute_discriminant()
Returns the absolute discriminant of this p-adic ring

EXAMPLES:

```
sage: Zp(5).absolute_discriminant()
1
```

discriminant($K=None$)
Returns the discriminant of this p-adic ring over K

INPUT:

- `self` – a p-adic ring
- `K` – a sub-ring of `self` or `None` (default: `None`)

OUTPUT:

- `integer` – the discriminant of this ring over K (or the absolute discriminant if K is `None`)

EXAMPLES:

```
sage: Zp(5).discriminant()
1
```

exact_field()
Returns the rational field.

For compatibility with extensions of p-adics.

EXAMPLES:

```
sage: Zp(5).exact_field()
Rational Field
```
exact_ring()
Returns the integer ring.
EXAMPLES:

```python  
sage: Zp(5).exact_ring()  
Integer Ring  
```

gen(n=0)
Returns the nth generator of this extension. For base rings/fields, we consider the generator to be the prime.
EXAMPLES:

```python  
sage: R = Zp(5); R.gen()  
5 + O(5^21)  
```

has_pth_root()
Returns whether or not \(\mathbb{Z}_p \) has a primitive \(p \)th root of unity.
EXAMPLES:

```python  
sage: Zp(2).has_pth_root()  
True  
sage: Zp(17).has_pth_root()  
False  
```

has_root_of_unity(n)
Returns whether or not \(\mathbb{Z}_p \) has a primitive \(n \)th root of unity.
INPUT:
• self – a \(p \)-adic ring
• n – an integer
OUTPUT:
• boolean – whether self has primitive \(n \)th root of unity
EXAMPLES:

```python  
sage: R=Zp(37)  
sage: R.has_root_of_unity(12)  
True  
sage: R.has_root_of_unity(11)  
False  
```

is_abelian()
Returns whether the Galois group is abelian, i.e. True. #should this be automorphism group?
EXAMPLES:

```python  
sage: R = Zp(3, 10, 'fixed-mod'); R.is_abelian()  
True  
```

is_isomorphic(ring)
Returns whether self and ring are isomorphic, i.e. whether ring is an implementation of \(\mathbb{Z}_p \) for the same prime as self.
INPUT:
• \texttt{self} – a \(p\)-adic ring
• \texttt{ring} – a ring

OUTPUT:
• \texttt{boolean} – whether \texttt{ring} is an implementation of \texttt{ZZ_p} for the same prime as \texttt{self}.

EXAMPLES:
\begin{verbatim}
sage: R = Zp(5, 15, print_mode='digits'); S = Zp(5, 44, print_max_terms=4); R.˓→is_isomorphic(S)
True
\end{verbatim}

\texttt{is_normal}()

Returns whether or not this is a normal extension, i.e. True.

EXAMPLES:
\begin{verbatim}
sage: R = Zp(3, 10, 'fixed-mod'); R.is_normal()
True
\end{verbatim}

\texttt{modulus}(\texttt{exact}=\texttt{False})

Returns the polynomial defining this extension.
For compatibility with extension fields; we define the modulus to be \(x-1\).

INPUT:
• \texttt{exact} – boolean (default \texttt{False}), whether to return a polynomial with integer entries.

EXAMPLES:
\begin{verbatim}
sage: Zp(5).modulus(exact=True)
x
\end{verbatim}

\texttt{plot}(\texttt{max_points}=2500, **\texttt{args})

Create a visualization of this \(p\)-adic ring as a fractal similar to a generalization of the Sierpi\'nski triangle.
The resulting image attempts to capture the algebraic and topological characteristics of \(\mathbb{Z}_p\).

INPUT:
• \texttt{max_points} – the maximum number or points to plot, which controls the depth of recursion (default 2500)
• **\texttt{args} – color, size, etc. that are passed to the underlying point graphics objects

REFERENCES:

EXAMPLES:
\begin{verbatim}
sage: Zp(3).plot() # needs sage.plot
\end{verbatim}
\begin{verbatim}
sage: Zp(5).plot(max_points=625) # needs sage.plot
\end{verbatim}

(continues on next page)
uniformizer()

Returns a uniformizer for this ring.

EXAMPLES:

```python
sage: R = Zp(3,5,'fixed-mod', 'series')
sage: R.uniformizer()
3
```

uniformizer_pow(n)

Returns the \(n\)th power of the uniformizer of \(self\) (as an element of \(self\)).

EXAMPLES:

```python
sage: R = Zp(5)
sage: R.uniformizer_pow(5)
5^5 + O(5^25)
sage: R.uniformizer_pow(infinity)
0
```

zeta(n=None)

Returns a generator of the group of roots of unity.

INPUT:

- \(self\) – a \(p\)-adic ring
- \(n\) – an integer or None (default: None)

OUTPUT:

- element – a generator of the \(n\)th roots of unity, or a generator of the full group of roots of unity if \(n\) is None

EXAMPLES:

```python
sage: R = Zp(37,5)
sage: R.zeta(12)
8 + 24*37 + 37^2 + 29*37^3 + 23*37^4 + O(37^5)
```

zeta_order()

Returns the order of the group of roots of unity.

EXAMPLES:

```python
sage: R = Zp(37); R.zeta_order()
36
sage: Zp(2).zeta_order()
2
```
A common superclass for all extensions of \mathbb{Q}_p and \mathbb{Z}_p.

AUTHORS:

- David Roe

class sage.rings.padics.padic_extension_generic.DefPolyConversion

Bases: Morphism

Conversion map between p-adic rings/fields with the same defining polynomial.

INPUT:

- R – a p-adic extension ring or field.
- S – a p-adic extension ring or field with the same defining polynomial.

EXAMPLES:

```
sage: R.<a> = Zq(125, print_mode='terse')
sage: S = R.change(prec = 15, type='floating-point')
sage: a - 1
95367431640624 + a + O(5^20)
sage: S(a - 1)
30517578124 + a + O(5^15)
```

```
sage: R.<a> = Zq(125, print_mode='terse')
sage: S = R.change(prec = 15, type='floating-point')
sage: f = S.convert_map_from(R)
sage: TestSuite(f).run()
```

class sage.rings.padics.padic_extension_generic.MapFreeModuleToOneStep

Bases: pAdicModuleIsomorphism

The isomorphism from the underlying module of a one-step p-adic extension to the extension.

EXAMPLES:

```
sage: K.<a> = Qq(125)
sage: V, fr, to = K.free_module()
sage: TestSuite(fr).run(skip=['_test_nonzero_equal'])  # skipped since Qq(125) doesn't have dimension()
```

class `sage.rings.padics.padic_extension_generic.MapFreeModuleToTwoStep`

Bases: `pAdicModuleIsomorphism`

The isomorphism from the underlying module of a two-step p-adic extension to the extension.

EXAMPLES:

```
sage: K.<a> = Qq(125)
sage: R.<x> = ZZ[]
sage: L.<b> = K.extension(x^2 - 5*x + 5)
sage: V, fr, to = L.free_module(base=Qp(5))
sage: TestSuite(fr).run(skip=['_test_nonzero_equal'])  # skipped since L doesn't have dimension()
```

class `sage.rings.padics.padic_extension_generic.MapOneStepToFreeModule`

Bases: `pAdicModuleIsomorphism`

The isomorphism from a one-step p-adic extension to its underlying free module.

EXAMPLES:

```
sage: K.<a> = Qq(125)
sage: V, fr, to = K.free_module()
sage: TestSuite(to).run()
```

class `sage.rings.padics.padic_extension_generic.MapTwoStepToFreeModule`

Bases: `pAdicModuleIsomorphism`

The isomorphism from a two-step p-adic extension to its underlying free module.

EXAMPLES:

```
sage: K.<a> = Qq(125)
sage: R.<x> = ZZ[]
sage: L.<b> = K.extension(x^2 - 5*x + 5)
sage: V, fr, to = L.free_module(base=Qp(5))
sage: TestSuite(to).run()
```

class `sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric(poly, prec, print_mode, names, element_class)`

Bases: `pAdicGeneric`

Initialization

EXAMPLES:

```
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)  # indirect doctest
```

construction(`forbid_frac_field=False`)

Returns the functorial construction of this ring, namely, the algebraic extension of the base ring defined by the given polynomial.

Also preserves other information that makes this ring unique (e.g. precision, rounding, print mode).

INPUT:
- *forbid_frac_field* – require a completion functor rather than a fraction field functor. This is used in the `sage.rings.padics.local_generic.LocalGeneric.change()` method.

EXAMAPLES:

```python
sage: R.<a> = Zq(25, 8, print_mode='val-unit')
sage: c, R0 = R.construction(); R0
5-adic Ring with capped relative precision 8
sage: c(R0)
5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2
sage: c(R0) == R
True
```

For a field, by default we return a fraction field functor.

```python
sage: K.<a> = Qq(25, 8)
sage: c, R = K.construction(); R
5-adic Unramified Extension Ring in a defined by x^2 + 4*x + 2
sage: c
FractionField
```

If you prefer an extension functor, you can use the *forbit_frac_field* keyword:

```python
sage: c, R = K.construction(forbit_frac_field=True); R
5-adic Field with capped relative precision 8
sage: c
AlgebraicExtensionFunctor
sage: c(R) is K
True
```

defining_polynomial(var=None, exact=False)

Returns the polynomial defining this extension.

INPUT:

- *var* – string (default: 'x'), the name of the variable
- *exact* – boolean (default False), whether to return the underlying exact defining polynomial rather than the one with coefficients in the base ring.

EXAMPLES:

```python
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: W.defining_polynomial()
(1 + O(5^5))*x^5 + O(5^6)*x^4 + (3*5^2 + O(5^6))*x^3 + (2*5 + 4*5^2 + 4*5^3 +
˓→ 4*5^4 + 4*5^5 + O(5^6))*x^2 + (5^3 + O(5^6))*x + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 +
˓→ 4*5^5 + O(5^6)
```

```python
sage: W.defining_polynomial(exact=True)
x^5 + 75*x^3 - 15*x^2 + 125*x - 5
```

```python
sage: W.defining_polynomial(var='y', exact=True)
y^5 + 75*y^3 - 15*y^2 + 125*y - 5
```
See also:

\texttt{modulus()} \texttt{exact_field()}

\textbf{exact_field()}

Return a number field with the same defining polynomial.

Note that this method always returns a field, even for a p-adic ring.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: W.exact_field()
Number Field in w with defining polynomial x^5 + 75*x^3 - 15*x^2 + 125*x - 5
\end{verbatim}

See also:

\texttt{defining_polynomial()} \texttt{modulus()}

\textbf{exact_ring()}

Return the order with the same defining polynomial.

Will raise a \texttt{ValueError} if the coefficients of the defining polynomial are not integral.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: W.exact_ring()
Order in Number Field in w with defining polynomial x^5 + 75*x^3 - 15*x^2 + 125*x - 5
\end{verbatim}

sage: T = Zp(5,5)
sage: U.<z> = T[]
sage: g = 2*z^4 + 1
sage: V.<v> = T.ext(g)
sage: Traceback (most recent call last):
... ValueError: each generator must be integral
\end{verbatim}

\textbf{free_module}(\texttt{base=None, basis=None, map=True})

Return a free module V over a specified base ring together with maps to and from V.

\textbf{INPUT:}

\begin{itemize}
 \item base – a subring R so that this ring/field is isomorphic to a finite-rank free R-module V
 \item basis – a basis for this ring/field over the base
 \item map – boolean (default True), whether to return R-linear maps to and from V
\end{itemize}

\textbf{OUTPUT:}

\begin{itemize}
 \item A finite-rank free R-module V
\end{itemize}
- An R-module isomorphism from V to this ring/field (only included if map is True)
- An R-module isomorphism from this ring/field to V (only included if map is True)

EXAMPLES:

```python
sage: R.<x> = ZZ[]
sage: K.<a> = Qq(125)
sage: L.<pi> = K.extension(x^2-5)
sage: V, from_V, to_V = K.free_module()
sage: W, from_W, to_W = L.free_module()
sage: W0, from_W0, to_W0 = L.free_module(base=Qp(5))
sage: to_V(a + O(5^7))
(0(5^7), 1 + O(5^7), 0(5^7))
sage: to_W(a)
(a + 0(5^20), 0(5^20))
sage: to_W0(a + O(5^7))
(0(5^7), 1 + O(5^7), 0(5^7), 0(5^7), 0(5^7))
sage: to_W(pi)
(0(5^21), 1 + O(5^20))
sage: to_W0(pi + O(pi^11))
(0(5^6), 0(5^6), 0(5^6), 1 + O(5^5), 0(5^5), 0(5^5))

sage: X, from_X, to_X = K.free_module(K)
sage: to_X(a)
(a + O(5^20))
```

ground_ring()

Returns the ring of which this ring is an extension.

EXAMPLES:

```python
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: W.ground_ring()
5-adic Ring with capped relative precision 5
```

ground_ring_of_tower()

Returns the p-adic base ring of which this is ultimately an extension.

Currently this function is identical to ground_ring(), since relative extensions have not yet been imple-
mented.

EXAMPLES:

```python
sage: Qq(27,30,names='a').ground_ring_of_tower()
3-adic Field with capped relative precision 30
```

modulus(exact=False)

Returns the polynomial defining this extension.

INPUT:

- `exact` – boolean (default False), whether to return the underlying exact
defining polynomial rather than the one with coefficients in the base ring.
EXAMPLES:

```python
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: W.modulus()
(1 + O(5^5))*x^5 + O(5^6)*x^4 + (3*5^2 + O(5^6))*x^3 + (2*5 + 4*5^2 + 4*5^3 + O(5^6))*x^2 + (5^3 + O(5^6))*x + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^6)
sage: W.modulus(exact=True)
x^5 + 75*x^3 - 15*x^2 + 125*x - 5
```

See also:

* `defining_polynomial()`*
* `exact_field()`

polynomial_ring()

Returns the polynomial ring of which this is a quotient.

EXAMPLES:

```python
sage: Qq(27,30, names=’a’).polynomial_ring()
Univariate Polynomial Ring in x over 3-adic Field with capped relative precision 30
```

random_element()

Return a random element of self.

This is done by picking a random element of the ground ring self.degree() times, then treating those elements as coefficients of a polynomial in self.gen().

EXAMPLES:

```python
sage: R.<a> = Zq(125, 5)
sage: R.random_element().parent() is R
True
sage: R = Zp(5,3); S.<x> = ZZ[]; f = x^5 + 25*x^2 - 5; W.<w> = R.ext(f)
sage: W.random_element().parent() is W
True
```

class pAdicModuleIsomorphism

Bases: `Map`

A base class for various isomorphisms between p-adic rings/fields and free modules

EXAMPLES:

```python
sage: K.<a> = Qq(125)
sage: V, fr, to = K.free_module()
sage: from sage.rings.padics.padic_extension_generic import pAdicModuleIsomorphism
sage: isinstance(fr, pAdicModuleIsomorphism)
True
```

is_injective()

EXAMPLES:
```python
sage: K.<a> = Qq(125)
sage: V, fr, to = K.free_module()
sage: fr.is_injective()
True
```

is_surjective()

EXAMPLES:

```python
sage: K.<a> = Qq(125)
sage: V, fr, to = K.free_module()
sage: fr.is_surjective()
True
```
EISENSTEIN EXTENSION GENERIC

This file implements the shared functionality for Eisenstein extensions.

AUTHORS:

- David Roe

class sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric(poly, prec, print_mode, names, element_class)

Bases: pAdicExtensionGeneric

Initializes self.

EXAMPLES:

```
sage: A = Zp(7,10)
sage: S.<x> = A[]  # needs sage.libs.ntl
sage: B.<t> = A.ext(x^2+7)  # indirect doctest  # needs sage.libs.ntl sage.rings.padics
absolute_e()

Return the absolute ramification index of this ring or field

EXAMPLES:

```
```
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.absolute_e()  # needs sage.libs.ntl
1

sage: x = polygen(ZZ, 'x')
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
sage: L.absolute_e()  # needs sage.libs.ntl
2

```
gen(n=0)

Return a generator for self as an extension of its ground ring.

EXAMPLES:
```python
def inertia_subring(self):
    return self.residue_class_field()
```
The following requires implementing more general Artinian rings:

```
sage: W.residue_ring(2)
needs sage.libs.ntl
```

Traceback (most recent call last):
...
NotImplementedError

uniformizer()

Return the uniformizer of `self`, i.e., a generator for the unique maximal ideal.

EXAMPLES:

```
sage: A = Zp(7,10)
sage: S.<x> = A[]
needs sage.libs.ntl
sage: B.<t> = A.ext(x^2 + 7)
needs sage.libs.ntl
sage: B.uniformizer()
needs sage.libs.ntl
t + O(t^21)
```

uniformizer_pow(n)

Return the \(n\)-th power of the uniformizer of `self` (as an element of `self`).

EXAMPLES:

```
sage: A = Zp(7,10)
sage: S.<x> = A[]
needs sage.libs.ntl
sage: B.<t> = A.ext(x^2 + 7)
needs sage.libs.ntl
sage: B.uniformizer_pow(5)
needs sage.libs.ntl
t^5 + O(t^25)
```
This file implements the shared functionality for unramified extensions.

AUTHORS:

- David Roe

class sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric(poly, prec, print_mode, names, element_class)

Bases: pAdicExtensionGeneric

An unramified extension of \mathbb{Q}_p or \mathbb{Z}_p.

absolute_f()

Return the degree of the residue field of this ring/field over its prime subfield.

EXAMPLES:

```sage
sage: K.<a> = Qq(3^5)  # needs sage.libs.ntl
sage: K.absolute_f()    # needs sage.libs.ntl
5

sage: x = polygen(ZZ, 'x')
sage: L.<pi> = Qp(3).extension(x^2 - 3)  # needs sage.libs.ntl
sage: L.absolute_f()     # needs sage.libs.ntl
1
```

discriminant(K=*)

Return the discriminant of self over the subring K.

INPUT:

- K – a subring/subfield (defaults to the base ring).

EXAMPLES:

```sage
sage: R.<a> = Zq(125)    # needs sage.libs.ntl
sage: R.discriminant()   # needs sage.libs.ntl
(continues on next page)
```
\textbf{\textit{\texttt{gen}(n=0)}}

Return a generator for this unramified extension.

This is an element that satisfies the polynomial defining this extension. Such an element will reduce to a generator of the corresponding residue field extension.

EXAMPLES:

\begin{verbatim}
sage: R.<a> = Zq(125); R.gen() # needs sage.libs.ntl
a + O(5^20)
\end{verbatim}

\textbf{\textit{\texttt{has_pth_root()}}}

Return whether or not \(\mathbb{Z}_p \) has a primitive \(p \)-th root of unity.

Since adjoining a \(p \)-th root of unity yields a totally ramified extension, \texttt{self} will contain one if and only if the ground ring does.

INPUT:

- \texttt{\texttt{self} – a \(p \)-adic ring}

OUTPUT:

boolean – whether \texttt{\texttt{self}} has primitive \(p \)-th root of unity.

EXAMPLES:

\begin{verbatim}
sage: R.<a> = Zq(1024); R.has_pth_root() # needs sage.libs.ntl
True
sage: R.<a> = Zq(17^5); R.has_pth_root() # needs sage.libs.ntl
False
\end{verbatim}

\textbf{\textit{\texttt{has_root_of_unity}(n)}}

Return whether or not \(\mathbb{Z}_p \) has a primitive \(n \)-th root of unity.

INPUT:

- \texttt{self} – a \(p \)-adic ring
- \texttt{n} – an integer

OUTPUT:

boolean

EXAMPLES:

\begin{verbatim}
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(37^8)
\# sage: R.has_root_of_unity(144)
\end{verbatim}
sage: R.has_root_of_unity(89)
True
sage: R.has_root_of_unity(11)
False

is_galois(K=None)
Return True if this extension is Galois.
Every unramified extension is Galois.

INPUT:
• K – a subring/subfield (defaults to the base ring).

EXAMPLES:

sage: R.<a> = Zq(125); R.is_galois() # needs sage.libs.ntl
True

residue_class_field()
Returns the residue class field.

EXAMPLES:

sage: R.<a> = Zq(125); R.residue_class_field() # needs sage.libs.ntl
Finite Field in a0 of size 5^3

residue_ring(n)
Return the quotient of the ring of integers by the \(n \)-th power of its maximal ideal.

EXAMPLES:

sage: R.<a> = Zq(125) # needs sage.libs.ntl
sage: R.residue_ring(1) # needs sage.libs.ntl
Finite Field in a0 of size 5^3

The following requires implementing more general Artinian rings:

sage: R.residue_ring(2) # needs sage.libs.ntl
Traceback (most recent call last):
 ...
NotImplementedError

uniformizer()
Return a uniformizer for this extension.
Since this extension is unramified, a uniformizer for the ground ring will also be a uniformizer for this extension.

EXAMPLES:
uniformizer_pow\((n) \)

Return the \(n \)-th power of the uniformizer of \texttt{self} (as an element of \texttt{self}).

EXAMPLES:

\begin{verbatim}
sage: R.<a> = ZqCR(125) # needs sage.libs.ntl sage: R.uniformizer() # needs sage.libs.ntl 5 + 0(5^21)
sage: R.uniformizer_pow(5) # needs sage.libs.ntl 5^5 + 0(5^25)
\end{verbatim}
p-adic base leaves

Implementations of \mathbb{Z}_p and \mathbb{Q}_p

AUTHORS:
- David Roe
- Genya Zaytman: documentation
- David Harvey: doctests
- William Stein: doctest updates

EXAMPLES:
p-adic rings and fields are examples of inexact structures, as the reals are. That means that elements cannot generally be stored exactly: to do so would take an infinite amount of storage. Instead, we store an approximation to the elements with varying precision.

There are two types of precision for a p-adic element. The first is relative precision, which gives the number of known p-adic digits:

```sage
sage: R = Qp(5, 20, 'capped-rel', 'series'); a = R(675); a
2*5^2 + 5^4 + O(5^22)
sage: a.precision_relative()
20
```

The second type of precision is absolute precision, which gives the power of p that this element is stored modulo:

```sage
sage: a.precision_absolute()
22
```

The number of times that p divides the element is called the valuation, and can be accessed with the methods `valuation()` and `ordp()`:

```sage
sage: a.valuation() 2
```

The following relationship holds:

```sage
self.valuation() + self.precision_relative() == self.precision_absolute().
sage: a.valuation() + a.precision_relative() == a.precision_absolute() True
```

In the capped relative case, the relative precision of an element is restricted to be at most a certain value, specified at the creation of the field. Individual elements also store their own precision, so the effect of various arithmetic operations on precision is tracked. When you cast an exact element into a capped relative field, it truncates it to the precision cap of the field.:
In the capped absolute type, instead of having a cap on the relative precision of an element there is instead a cap on the absolute precision. Elements still store their own precisions, and as with the capped relative case, exact elements are truncated when cast into the ring:

```sage
sage: R = ZpCA(5, 5, 'capped-rel', 'series'); a = R(4006); a
5 + 2*5^3 + 5^4 + O(5^5)
sage: a // 5
1 + 2*5 + O(5^2)
sage: type((a * b) // 5^3)
<class 'sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement'>
sage: type((a * b) / 5^3)
<class 'sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement'>
```

The fixed modulus type is the leanest of the p-adic rings: it is basically just a wrapper around $\mathbb{Z}/p^n\mathbb{Z}$ providing a unified interface with the rest of the p-ads. This is the type you should use if your primary interest is in speed (though it’s not all that much faster than other p-adic types). It does not track precision of elements:

```sage
sage: R = ZpFM(5, 5); a = R(4005); a
5 + 2*5^3 + 5^4 + O(5^5)
sage: a // 5
1 + 2*5 + O(5^2)
```

p-adic rings and fields should be created using the creation functions \mathbb{Z}_p and \mathbb{Q}_p as above. This will ensure that there is only one instance of \mathbb{Z}_p and \mathbb{Q}_p of a given type, p, print mode and precision. It also saves typing very long class names:

```sage
sage: R = ZpFM(5, 5); a = R(4005); a
5 + 2*5^3 + 5^4
sage: a // 5
1 + 2*5^2 + 5^3
```
Once one has a p-adic ring or field, one can cast elements into it in the standard way. Integers, ints, longs, Rationals, other p-adic types, pari p-adics and elements of $\mathbb{Z}/p^n\mathbb{Z}$ can all be cast into a p-adic field:

\begin{verbatim}
sage: R = Qp(5, 5, 'capped-rel', 'series'); a = R(16); a
1 + 3*5 + O(5^5)
sage: b = R(23/15); b
5^-1 + 3 + 3*5 + 5^2 + 3*5^3 + O(5^4)
sage: S = Zp(5, 5, 'fixed-mod', 'val-unit'); c = S(Mod(75,125)); c
5^2 * 3
sage: R(c)
3*5^2 + O(5^5)
\end{verbatim}

In the previous example, since fixed-mod elements don’t keep track of their precision, we assume that it has the full precision of the ring. This is why you have to cast manually here.

While you can cast explicitly as above, the chains of automatic coercion are more restricted. As always in Sage, the following arrows are transitive and the diagram is commutative:

\begin{verbatim}
int -> long -> Integer -> Zp capped-rel -> Zp capped_abs -> IntegerMod
Integer -> Zp fixed-mod -> IntegerMod
Integer -> Zp capped-abs -> Qp capped-rel
\end{verbatim}

In addition, there are arrows within each type. For capped relative and capped absolute rings and fields, these arrows go from lower precision cap to higher precision cap. This works since elements track their own precision: choosing the parent with higher precision cap means that precision is less likely to be truncated unnecessarily. For fixed modulus parents, the arrow goes from higher precision cap to lower. The fact that elements do not track precision necessitates this choice in order to not produce incorrect results.

class sage.rings.padics.padic_base_leaves.pAdicFieldCappedRelative(p, prec, print_mode, names)
 Bases: pAdicFieldBaseGeneric, pAdicCappedRelativeFieldGeneric
 An implementation of p-adic fields with capped relative precision.

EXAMPLES:

\begin{verbatim}
sage: K = Qp(17, 1000000) # indirect doctest
sage: K = Qp(101) # indirect doctest
\end{verbatim}

random_element(algorithm='default')

Return a random element of self, optionally using the algorithm argument to decide how it generates the element. Algorithms currently implemented:

- 'default': Choose an integer k using the standard distribution on the integers. Then choose an integer a uniformly in the range $0 \leq a < p^N$ where N is the precision cap of self. Return $self(p^k * a, absprec = k + self.precission_cap())$.

EXAMPLES:
class sage.rings.padics.padic_base_leaves.pAdicFieldFloatingPoint(p, prec, print_mode, names)

Bases: pAdicFieldBaseGeneric, pAdicFloatingPointFieldGeneric

An implementation of the p-adic rationals with floating point precision.

class sage.rings.padics.padic_base_leaves.pAdicFieldLattice(p, prec, subtype, print_mode, names, label=None)

Bases: pAdicLatticeGeneric, pAdicFieldBaseGeneric

An implementation of the p-adic numbers with lattice precision.

INPUT:
- p – prime
- prec – precision cap, given as a pair (relative_cap, absolute_cap)
- subtype – either 'cap' or 'float'
- print_mode – dictionary with print options
- names – how to print the prime
- label – the label of this ring

See also:
- label()

EXAMPLES:

sage: R = QpLC(next_prime(10^60)) # indirect doctest
sage: type(R)
<class 'sage.rings.padics.padic_base_leaves.pAdicFieldLattice_with_category'>

sage: R = QpLC(2, label='init') # indirect doctest
sage: R
2-adic Field with lattice-cap precision (label: init)

random_element(prec=None, integral=False)
Return a random element of this ring.

INPUT:
- prec – an integer or None (the default): the absolute precision of the generated random element
- integral – a boolean (default: False); if True, return an element in the ring of integers

EXAMPLES:

sage: K = QpLC(2)
sage: K.random_element() # not tested, known bug (see :trac:`32126`)
2^8 + 2^7 + 2^6 + 2^5 + 2^3 + 1 + 2^2 + 2^3 + 2^5 + O(2^12)
sage: K.random_element(integral=True) # random
2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^10 + 2^11 + 2^14 + 2^15 + 2^16

(continues on next page)
\[+ 2^{17} + 2^{18} + 2^{19} + O(2^{20}) \]

```
sage: K.random_element(prec=10)    # random
2^(-3) + 1 + 2 + 2^4 + 2^8 + O(2^{10})
```

If the given precision is higher than the internal cap of the parent, then the cap is used:

```
sage: K.precision_cap_relative()
20
sage: K.random_element(prec=100)   # random
2^5 + 2^8 + 2^{11} + 2^{12} + 2^{14} + 2^{18} + 2^{20} + 2^{24} + O(2^{25})
```

```
class sage.rings.padics.padic_base_leaves.pAdicFieldRelaxed(p, prec, print_mode, names)
    Bases: pAdicRelaxedGeneric, pAdicFieldBaseGeneric
    An implementation of relaxed arithmetics over \( \mathbb{Q}_p \).
    INPUT:
    • p – prime
    • prec – default precision
    • print_mode – dictionary with print options
    • names – how to print the prime
    EXAMPLES:
    sage: R = QpER(5)    # indirect doctest
    → needs sage.libs.flint
    sage: type(R)        # indirect doctest
    <class 'sage.rings.padics.padic_base_leaves.pAdicFieldRelaxed_with_category'>
```

```
class sage.rings.padics.padic_base_leaves.pAdicRingCappedAbsolute(p, prec, print_mode, names)
    Bases: pAdicRingBaseGeneric, pAdicCappedAbsoluteRingGeneric
    An implementation of the \( p \)-adic integers with capped absolute precision.
```

```
class sage.rings.padics.padic_base_leaves.pAdicRingCappedRelative(p, prec, print_mode, names)
    Bases: pAdicRingBaseGeneric, pAdicCappedRelativeRingGeneric
    An implementation of the \( p \)-adic integers with capped relative precision.
```

```
class sage.rings.padics.padic_base_leaves.pAdicRingFixedMod(p, prec, print_mode, names)
    Bases: pAdicRingBaseGeneric, pAdicFixedModRingGeneric
    An implementation of the \( p \)-adic integers using fixed modulus.
```

```
class sage.rings.padics.padic_base_leaves.pAdicRingFloatingPoint(p, prec, print_mode, names)
    Bases: pAdicRingBaseGeneric, pAdicFloatingPointRingGeneric
    An implementation of the \( p \)-adic integers with floating point precision.
```

```
class sage.rings.padics.padic_base_leaves.pAdicRingLattice(p, prec, subtype, print_mode, names, label=None)
    Bases: pAdicLatticeGeneric, pAdicRingBaseGeneric
    An implementation of the \( p \)-adic integers with lattice precision.
```
INPUT:

- \(p \) – prime
- \(\text{prec} \) – precision cap, given as a pair (relative_cap, absolute_cap)
- \(\text{subtype} \) – either 'cap' or 'float'
- \(\text{print_mode} \) – dictionary with print options
- \(\text{names} \) – how to print the prime
- \(\text{label} \) – the label of this ring

See also:

\(\text{label}() \)

EXAMPLES:

```sage
sage: R = ZpLC(next_prime(10^60))  # indirect doctest
sage: type(R)                      # indirect doctest
<class 'sage.rings.padics.padic_base_leaves.pAdicRingLattice_with_category'>
```

```sage
sage: R = ZpLC(2, label='init')    # indirect doctest
sage: R                          # doctest: +ELLIPSIS
2-adic Ring with lattice-cap precision (label: init)
```

\[\text{random_element}(\text{prec=}\text{None}) \]

Return a random element of this ring.

INPUT:

- \(\text{prec} \) – an integer or \(\text{None} \) (the default): the absolute precision of the generated random element

EXAMPLES:

```sage
sage: R = ZpLC(2)
sage: R.random_element()         # random
2^3 + 2^4 + 2^6 + 2^7 + 2^10 + 2^11 + 2^14 + 2^15 + 2^16 + 2^17 + 2^18 + 2^19 + 2^21 + O(2^23)
sage: R.random_element(prec=10)   # random
1 + 2^3 + 2^4 + 2^7 + O(2^10)
```

\[\text{class} \ sage.rings.padics.padic_base_leaves.pAdicRingRelaxed}(p, \text{prec}, \text{print_mode}, \text{names}) \]

An implementation of relaxed arithmetics over \(\mathbb{Z}_p \).

INPUT:

- \(p \) – prime
- \(\text{prec} \) – default precision
- \(\text{print_mode} \) – dictionary with print options
- \(\text{names} \) – how to print the prime
EXAMPLES:

```
sage: R = ZpER(5)  # indirect doctest
    # needs sage.libs.flint
sage: type(R)
    # needs sage.libs.flint
<class 'sage.rings.padics.padic_base_leaves.pAdicRingRelaxed_with_category'>
```
The final classes for extensions of \mathbb{Z}_p and \mathbb{Q}_p (i.e., classes that are not just designed to be inherited from).

AUTHORS:

- David Roe

```python
class sage.rings.padics.padic_extension_leaves.EisensteinExtensionFieldCappedRelative(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='NTL')
```

Bases: `EisensteinExtensionGeneric, pAdicCappedRelativeFieldGeneric`

```python
class sage.rings.padics.padic_extension_leaves.EisensteinExtensionRingCappedAbsolute(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='NTL')
```

Bases: `EisensteinExtensionGeneric, pAdicCappedAbsoluteRingGeneric`

```python
class sage.rings.padics.padic_extension_leaves.EisensteinExtensionRingCappedRelative(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='NTL')
```
Bases: `EisensteinExtensionGeneric, pAdicCappedRelativeRingGeneric`

class sage.rings.padics.padic_extension_leaves.EisensteinExtensionRingFixedMod(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='NTL')

Bases: `EisensteinExtensionGeneric, pAdicFixedModRingGeneric`

`fraction_field()`

Eisenstein extensions with fixed modulus do not support fraction fields.

EXAMPLES:

```python
sage: S.<x> = ZZ[

sage: R.<a> = ZpFM(5).extension(x^2 - 5) # needs sage.libs.ntl

sage: R.fraction_field() # needs sage.libs.ntl

Traceback (most recent call last):
... TypeError: This implementation of the p-adic ring does not support fields of fractions.
```

class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionFieldCappedRelative(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT')

Bases: `UnramifiedExtensionGeneric, pAdicCappedRelativeFieldGeneric`

class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionFieldFloatingPoint(exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='FLINT')

Bases: `UnramifiedExtensionGeneric, pAdicFloatingPointFieldGeneric`
class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionRingCappedAbsolute

Bases: UnramifiedExtensionGeneric, pAdicCappedAbsoluteRingGeneric

class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionRingCappedRelative

Bases: UnramifiedExtensionGeneric, pAdicCappedRelativeRingGeneric

class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionRingFixedMod

Bases: UnramifiedExtensionGeneric, pAdicFixedModRingGeneric

class sage.rings.padics.padic_extension_leaves.UnramifiedExtensionRingFloatingPoint

Bases: UnramifiedExtensionGeneric, pAdicFloatingPointRingGeneric
This file contains a common superclass for \(p \)-adic elements and power series elements.

AUTHORS:

- David Roe: initial version

class sage.rings.padics.local_generic_element.LocalGenericElement

Bases: CommutativeRingElement

add_bigoh(absprec)

Return a copy of this element with absolute precision decreased to `absprec`.

INPUT:

- `absprec` – an integer or positive infinity

EXAMPLES:

```
sage: K = QpCR(3,4)
sage: o = K(1); o
1 + O(3^4)
sage: o.add_bigoh(2)
1 + O(3^2)
sage: o.add_bigoh(-5)
O(3^-5)
```

One cannot use `add_bigoh` to lift to a higher precision; this can be accomplished with `lift_to_precision()`:

```
sage: o.add_bigoh(5)
1 + O(3^4)
```

Negative values of `absprec` return an element in the fraction field of the element’s parent:

```
sage: R = ZpCA(3,4)
sage: R(3).add_bigoh(-5)
O(3^-5)
```

For fixed-mod elements this method truncates the element:
If absprec exceeds the precision of the element, then this method has no effect:

```
sage: R(3).add_bigoh(5)
3
```

A negative value for absprec returns an element in the fraction field:

```
sage: R(3).add_bigoh(-1).parent()
3-adic Field with floating precision 4
```

euclidean_degree()

Return the degree of this element as an element of an Euclidean domain.

EXAMPLES:

For a field, this is always zero except for the zero element:

```
sage: K = Qp(2)
sage: K.one().euclidean_degree()
0
sage: K.gen().euclidean_degree()
0
sage: K.zero().euclidean_degree()
Traceback (most recent call last):
... ValueError: euclidean degree not defined for the zero element
```

For a ring which is not a field, this is the valuation of the element:

```
sage: R = Zp(2)
sage: R.one().euclidean_degree()
0
sage: R.gen().euclidean_degree()
1
sage: R.zero().euclidean_degree()
Traceback (most recent call last):
... ValueError: euclidean degree not defined for the zero element
```

inverse_of_unit()

Returns the inverse of self if self is a unit.

OUTPUT:

• an element in the same ring as self

EXAMPLES:

```
sage: R = ZpCA(3,5)
sage: a = R(2); a
2 + O(3^5)
```

(continues on next page)
A ZeroDivisionError is raised if an element has no inverse in the ring:

```sage```
R(3).inverse_of_unit()
```
Traceback (most recent call last):
...
ZeroDivisionError: inverse of 3 + O(3^5) does not exist
```

Unlike the usual inverse of an element, the result is in the same ring as `self` and not just in its fraction field:

```sage```
c = ~a; c
```2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)```  
```sage```
a.parent()
```3-adic Ring with capped absolute precision 5```  
```sage```
b.parent()
```3-adic Ring with capped absolute precision 5```  
```sage```
c.parent()
```3-adic Field with capped relative precision 5```  

For fields this does of course not make any difference:

```sage```
R = QpCR(3,5)
```sage```
a = R(2)
```sage```
b = a.inverse_of_unit()
```sage```
c = ~a
```sage```
a.parent()
```3-adic Field with capped relative precision 5```  
```sage```
b.parent()
```3-adic Field with capped relative precision 5```  
```sage```
c.parent()
```3-adic Field with capped relative precision 5```
```
```

**is_integral()**

Returns whether `self` is an integral element.

**INPUT:**

• `self` – a local ring element

**OUTPUT:**

• boolean – whether `self` is an integral element.

**EXAMPLES:**

```sage```
R = Qp(3,20)
```sage```
a = R(7/3); a.is_integral()  
False  
```sage```
b = R(7/5); b.is_integral()
True
```

**is_padic_unit()**

Returns whether `self` is a \( p \)-adic unit. That is, whether it has zero valuation.
**INPUT:**
- `self` – a local ring element

**OUTPUT:**
- boolean – whether `self` is a unit

**EXAMPLES:**

```sage
R = Zp(3,20,'capped-rel'); K = Qp(3,20,'capped-rel')
sage: R(0).is_padic_unit()
False
sage: R(1).is_padic_unit()
True
sage: R(2).is_padic_unit()
True
sage: R(3).is_padic_unit()
False
sage: Qp(5,5)(5).is_padic_unit()
False
```

**is_unit()**
Returns whether `self` is a unit

**INPUT:**
- `self` – a local ring element

**OUTPUT:**
- boolean – whether `self` is a unit

**Note:** For fields all nonzero elements are units. For DVR’s, only those elements of valuation 0 are. An older implementation ignored the case of fields, and returned always the negation of `self.valuation()==0`. This behavior is now supported with `self.is_padic_unit()`.

**EXAMPLES:**

```sage
R = Zp(3,20,'capped-rel'); K = Qp(3,20,'capped-rel')
sage: R(0).is_unit()
False
sage: R(1).is_unit()
True
sage: R(2).is_unit()
True
sage: R(3).is_unit()
False
sage: Qp(5,5)(5).is_unit() # Note that 5 is invertible in `QQ_5`, even if it has positive valuation!
True
```

**normalized_valuation()**
Returns the normalized valuation of this local ring element, i.e., the valuation divided by the absolute ramification index.
INPUT:
self – a local ring element.

OUTPUT:
rational – the normalized valuation of self.

EXAMPLES:

```python
sage: Q7 = Qp(7)
sage: R.<x> = Q7[]
needs sage.libsntl
sage: F.<z> = Q7.ext(x^3+7*x+7)
needs sage.libsntl
sage: z.normalized_valuation()
needs sage.libsntl
1/3
```

**quo_rem**(other, integral=False)

Return the quotient with remainder of the division of this element by other.

INPUT:

- other – an element in the same ring
- integral – if True, use integral-style remainders even when the parent is a field. Namely, the remainder will have no terms in its p-adic expansion above the valuation of other.

EXAMPLES:

```python
sage: R = Zp(3, 5)
sage: R(12).quo_rem(R(2))
(2*3 + O(3^6), 0)
sage: R(2).quo_rem(R(12))
(0(3^4), 2 + O(3^5))
sage: K = Qp(3, 5)
sage: K(12).quo_rem(K(2))
(2*3^-1 + 1 + 3 + 3^2 + 3^3 + O(3^4), 0)
```

You can get the same behavior for fields as for rings by using integral=True:

```python
sage: K(12).quo_rem(K(2), integral=True)
(2*3 + O(3^6), 0)
sage: K(2).quo_rem(K(12), integral=True)
(0(3^4), 2 + O(3^5))
```

**slice**(i, j, k=1, lift_mode='simple')

Returns the sum of the $p^{i+l-k}$ terms of the series expansion of this element, where $p$ is the uniformizer, for $i + l \cdot k$ between $i$ and $j-1$ inclusive, and nonnegative integers $l$. Behaves analogously to the slice function for lists.

INPUT:

- i – an integer; if set to None, the sum will start with the first non-zero term of the series.
• \( j \) – an integer; if set to \texttt{None} or \( \infty \), this method behaves as if it was set to the absolute precision of this element.

• \( k \) – (default: 1) a positive integer

EXAMPLES:

```
sage: R = Zp(5, 6, 'capped-rel')
sage: a = R(1/2); a
3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + O(5^6)
sage: a.slice(2, 4)
2*5^2 + 2*5^3 + O(5^4)
sage: a.slice(1, 6, 2)
2*5 + 2*5^3 + 2*5^5 + O(5^6)
```

The step size \( k \) has to be positive:

```
sage: a.slice(0, 3, 0)
Traceback (most recent call last):
...
ValueError: slice step must be positive
```

```
sage: a.slice(0, 3, -1)
Traceback (most recent call last):
...
ValueError: slice step must be positive
```

If \( i \) exceeds \( j \), then the result will be zero, with the precision given by \( j \):

```
sage: a.slice(5, 4)
0(5^4)
sage: a.slice(6, 5)
0(5^5)
```

However, the precision cannot exceed the precision of the element:

```
sage: a.slice(101,100)
0(5^6)
sage: a.slice(0,5,2)
3 + 2*5^2 + 2*5^4 + O(5^5)
sage: a.slice(0,6,2)
3 + 2*5^2 + 2*5^4 + O(5^6)
sage: a.slice(0,7,2)
3 + 2*5^2 + 2*5^4 + O(5^6)
```

If start is left blank, it is set to the valuation:

```
sage: K = Qp(5, 6)
sage: x = K(1/25 + 5); x
5^-2 + 5 + O(5^4)
sage: x.slice(\texttt{None}, 3)
5^-2 + 5 + O(5^3)
sage: x[:3]
doctest:warning
...
DeprecationWarning: _getitem_ is changing to match the behavior of \texttt{number}.
```

(continues on next page)
Fields. Please use expansion instead. See https://github.com/sagemath/sage/issues/14825 for details.

\[ 5^{\bigwedge} - 2 + 5 + O(5^3) \]

```
\texttt{sqrt(extend=True, all=False, algorithm=None)}
```

Return the square root of this element.

**INPUT:**

- \texttt{self} – a \( p \)-adic element.
- \texttt{extend} – a boolean (default: \texttt{True}); if \texttt{True}, return a square root in an extension if necessary; if \texttt{False} and no root exists in the given ring or field, raise a \texttt{ValueError}.
- \texttt{all} – a boolean (default: \texttt{False}); if \texttt{True}, return a list of all square roots.
- \texttt{algorithm} – "\texttt{pari}", "\texttt{sage}" or \texttt{None} (default: \texttt{None}); Sage provides an implementation for any extension of \( \mathbb{Q}_p \) whereas only square roots over \( \mathbb{Q}_p \) is implemented in Pari; the default is "\texttt{pari}" if the ground field is \( \mathbb{Q}_p \), "\texttt{sage}" otherwise.

**OUTPUT:**

The square root or the list of all square roots of this element.

**Note:** The square root is chosen (resp. the square roots are ordered) in a deterministic way, which is compatible with change of precision.

**EXAMPLES:**

```
sage: R = Zp(3, 20)
sage: sqrt(R(0))
0
sage: sqrt(R(1))
1 + O(3^20)
sage: sqrt(R(4)); -s
2 + O(3^20)
sage: s = sqrt(R(9)); s
3 + O(3^21)
```

Over the \( 2 \)-adics, the precision of the square root is less than the input:

```
sage: R2 = Zp(2, 20)
sage: sqrt(R2(1))
1 + O(2^19)
sage: sqrt(R2(4))
2 + O(2^20)
```

(continues on next page)
However, observe that the precision increases to its original value when we recompute the square of the square root:

```
sage: v^2
1 + a^4 + a^5 + a^7 + a^8 + O(a^10)
```

If the input does not have enough precision in order to determine if the given element has a square root in the ground field, an error is raised:

```
sage: R(1, 6).sqrt()
Traceback (most recent call last):
... PrecisionError: not enough precision to be sure that this element has a square root

sage: R(1, 7).sqrt()
1 + O(a^4)
```

```
sage: R(1+a^6, 7).sqrt(extend=False)
Traceback (most recent call last):
... ValueError: element is not a square
```

In particular, an error is raised when we try to compute the square root of an inexact
Elements of $p$-adic Rings and Fields

AUTHORS:

• David Roe
• Genya Zaytman: documentation
• David Harvey: doctests
• Julian Rueth: fixes for exp() and log(), implemented gcd, xgcd

`sage.rings.padics.padic_generic_element.dwork_mahler_coeffs(R, bd=20)`

Compute Dwork’s formula for Mahler coefficients of $p$-adic Gamma.

This is called internally when one computes Gamma for a $p$-adic integer. Normally there is no need to call it directly.

INPUT:

• $R$ – $p$-adic ring in which to compute
• $bd$ – integer. Number of terms in the expansion to use

OUTPUT:

A list of $p$-adic integers.

EXAMPLES:

```python
sage: from sage.rings.padics.padic_generic_element import dwork_mahler_coeffs,
 evaluate_dwork_mahler
sage: R = Zp(3)
sage: v = dwork_mahler_coeffs(R)
sage: x = R(1/7)
sage: evaluate_dwork_mahler(v, x, 3, 20, 1)
2 + 2*3 + 3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^11
 + 2*3^12 + 3^13 + 3^14 + 2*3^16 + 3^17 + 3^19 + O(3^20)
sage: x.dwork_expansion(a=1) # Same result
2 + 2*3 + 3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^11
 + 2*3^12 + 3^13 + 3^14 + 2*3^16 + 3^17 + 3^19 + O(3^20)
```

`sage.rings.padics.padic_generic_element.evaluate_dwork_mahler(v, x, p, bd, a)`

Evaluate Dwork’s Mahler series for $p$-adic Gamma.

EXAMPLES:
```python
sage: from sage.rings.padics.padic_generic_element import dwork_mahler_coeffs,
 evaluate_dwork_mahler
sage: R = Zp(3)
sage: v = dwork_mahler_coeffs(R)
sage: x = R(1/7)
sage: evaluate_dwork_mahler(v, x, 3, 20, 1)
2 + 2*3 + 3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^11
+ 2*3^12 + 3^13 + 3^14 + 2*3^16 + 3^17 + 3^19 + O(3^20)
sage: x.dwork_expansion(a=1) # Same result
2 + 2*3 + 3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^11
+ 2*3^12 + 3^13 + 3^14 + 2*3^16 + 3^17 + 3^19 + O(3^20)
```

`sage.rings.padics.padic_generic_element.gauss_table(p, f, prec, use_longs)`

Compute a table of Gauss sums using the Gross-Koblitz formula.

This is used in the computation of L-functions of hypergeometric motives. The Gross-Koblitz formula is used as in `sage.rings.padics.misc.gauss_sum`, but further unpacked for efficiency.

**INPUT:**

- `p` - prime
- `f, prec` - positive integers
- `use_longs` - boolean; if True, computations are done in C `long long` integers rather than Sage p-adics, and the results are returned as a Python array rather than a list.

**OUTPUT:**

A list of length \( q - 1 = p^f - 1 \). The entries are p-adic units created with absolute precision `prec`.

**EXAMPLES:**

```python
sage: from sage.rings.padics.padic_generic_element import gauss_table
sage: gauss_table(2,2,4, False)
[1 + 2 + 2^2 + 2^3, 1 + 2 + 2^2 + 2^3, 1 + 2 + 2^2 + 2^3]
sage: gauss_table(3,2,4, False)[3]
2 + 3 + 2*3^2
```

**class** `sage.rings.padics.padic_generic_element.pAdicGenericElement`

**Bases:** `LocalGenericElement`

**abs**(prec=None)

Return the p-adic absolute value of `self`.

This is normalized so that the absolute value of \( p \) is \( 1/p \).

**INPUT:**

- `prec` - Integer. The precision of the real field in which the answer is returned. If `None`, returns a rational for absolutely unramified fields, or a real with 53 bits of precision for ramified fields.

**EXAMPLES:**

```python
sage: a = Qp(5)(15); a.abs()
1/5
sage: a.abs(53) # needs sage.rings.real_mpfr
0.200000000000000
```
An unramified extension:

```python
sage: # needs sage.libsntl
sage: R = Zp(5, 5)
sage: P.<x> = PolynomialRing(R)
sage: Z25.<u> = R.ext(x^2 - 3)
sage: u.abs() 1
sage: (u^24-1).abs() 1/5
```

A ramified extension:

```python
sage: # needs sage.libsntl
sage: W.<w> = R.ext(x^5 + 75*x^3 - 15*x^2 + 125*x - 5)
sage: w.abs() 0.724779663677696
sage: W(0).abs() 0.000000000000000
```

**additive_order**(prec=None)

Return the additive order of this element truncated at precision prec.

**INPUT:**

* prec – an integer or None (default: None)

**OUTPUT:**

The additive order of this element

**EXAMPLES:**

```python
sage: R = Zp(7, 4, 'capped-rel', 'series'); a = R(7^3); a.additive_order(3) 1
sage: a.additive_order(4) +Infinity
```

**algdep**(n)

Returns a polynomial of degree at most n which is approximately satisfied by this number. Note that the returned polynomial need not be irreducible, and indeed usually won't be if this number is a good approximation to an algebraic number of degree less than n.

**ALGORITHM:** Uses the PARI C-library pari:algdep command.

**INPUT:**

* self – a p-adic element
• n – an integer

OUTPUT:

polynomial – degree $n$ polynomial approximately satisfied by self

EXAMPLES:

```
sage: K = Qp(3,20,'capped-rel','series'); R = Zp(3,20,'capped-rel','series')
sage: a = K(7/19); a
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12
 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
sage: a.algebraic_dependency(1)
19*x - 7
sage: K2 = Qp(7,20,'capped-rel')
sage: b = K2.zeta(); b.algebraic_dependency(2)
x^2 - x + 1
sage: K2 = Qp(11,20,'capped-rel')
sage: b = K2.zeta(); b.algebraic_dependency(4)
x^4 - x^3 + x^2 - x + 1
sage: a = R(7/19); a
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12
 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
sage: a.algebraic_dependency(1)
19*x - 7
sage: R2 = Zp(7,20,'capped-rel')
sage: b = R2.zeta(); b.algebraic_dependency(2)
x^2 - x + 1
sage: R2 = Zp(11,20,'capped-rel')
sage: b = R2.zeta(); b.algebraic_dependency(4)
x^4 - x^3 + x^2 - x + 1
```

algebraic_dependency($n$)

Returns a polynomial of degree at most $n$ which is approximately satisfied by this number. Note that the returned polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than $n$.

ALGORITHM: Uses the PARI C-library pari:algdep command.

INPUT:

• self – a $p$-adic element
• n – an integer

OUTPUT:

polynomial – degree $n$ polynomial approximately satisfied by self

EXAMPLES:

```
sage: K = Qp(3,20,'capped-rel','series'); R = Zp(3,20,'capped-rel','series')
sage: a = K(7/19); a
1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12
 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
sage: a.algebraic_dependency(1)
19*x - 7
sage: K2 = Qp(7,20,'capped-rel')
```
sage: b = K2.zeta(); b.algebraic_dependency(2)
x^2 - x + 1
sage: K2 = Qp(11,20,'capped-rel')
sage: b = K2.zeta(); b.algebraic_dependency(4)
x^4 - x^3 + x^2 - x + 1
sage: a = R(7/19); a
1 + 2*3 + 3*2 + 3*3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12  
+ 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20)
sage: a.algebraic_dependency(1)
19*x - 7
sage: R2 = Zp(7,20,'capped-rel')
sage: b = R2.zeta(); b.algebraic_dependency(2)
x^2 - x + 1
sage: R2 = Zp(11,20,'capped-rel')
sage: b = R2.zeta(); b.algebraic_dependency(4)
x^4 - x^3 + x^2 - x + 1

artin_hasse_exp(prec=None, algorithm=None)

Return the Artin-Hasse exponential of this element.

INPUT:

• prec – an integer or None (default: None) the desired precision on the result; if None, the precision is derived from the precision on the input

• algorithm – 'direct', 'series', 'newton' or None (default)

  The direct algorithm computes the Artin-Hasse exponential of x, namely $AH(x)$ as

  $AH(x) = \exp(x + \frac{x^p}{p} + \frac{x^{p^2}}{p^2} + \ldots)$

  It runs roughly as fast as the computation of the exponential (since the computation of the argument is not that costly).

  The series algorithm computes the series defining the Artin-Hasse exponential and evaluates it.

  The 'newton' algorithm solves the equation

  $\log(AH(x)) = x + \frac{x^p}{p} + \frac{x^{p^2}}{p^2} + \ldots$

  using a Newton scheme. It runs roughly as fast as the computation of the logarithm.

  By default, we use the 'direct' algorithm if a fast algorithm for computing the exponential is available. If not, we use the 'newton' algorithm if a fast algorithm for computing the logarithm is available. Otherwise we switch to the 'series' algorithm.

OUTPUT:

The Artin-Hasse exponential of this element.

See Wikipedia article Artin-Hasse_exponential for more information.

EXAMPLES:

sage: x = Zp(5)(45/7)
sage: y = x.artin_hasse_exp(); y
The function respects your precision:

```
sage: x = Zp(3,30)(45/7)
sage: x.artin_hasse_exp()
1 + 2*3^2 + 3^4 + 2*3^5 + 3^6 + 2*3^7 + 2*3^8 + 3^9 + 2*3^10 + 3^11 +
3^13 + 2*3^15 + 2*3^16 + 2*3^17 + 3^19 + 3^20 + 2*3^21 + 3^23 + 3^24 +
3^26 + 3^27 + 2*3^28 + O(3^30)
```

Unless you tell it not to:

```
sage: x = Zp(3,30)(45/7)
sage: x.artin_hasse_exp(10)
1 + 2*3^2 + 3^4 + 2*3^5 + 3^6 + 2*3^7 + 2*3^8 + 3^9 + O(3^10)
```

For precision 1 the function just returns 1 since the exponential is always a 1-unit:

```
sage: x = Zp(3).random_element()
sage: while x.dist(0) >= 1:
: x = Zp(3).random_element()
sage: x.artin_hasse_exp(1)
1 + O(3)
```

AUTHORS:

- Xavier Caruso (2018-08): extend to any $p$-adic rings and fields and implement several algorithms.

`dwork_expansion(bd=20, a=0)`

Return the value of a function defined by Dwork.

Used to compute the $p$-adic Gamma function, see `gamma()`.

**INPUT:**

- `bd` – integer. Precision bound, defaults to 20
- `a` – integer. Offset parameter, defaults to 0

**OUTPUT:**

A $p$-adic integer.

**Note:** This is based on GP code written by Fernando Rodriguez Villegas (http://www.ma.utexas.edu/cnt/cnt-frames.html). William Stein sped it up for GP (http://sage.math.washington.edu/home/wstein/www/home/wbhart/pari-2.4.2.alpha/src/basemath/trans2.c). The output is a $p$-adic integer from Dwork’s expansion, used to compute the $p$-adic gamma function as in [RV2007] section 6.2. The coefficients of the

```plaintext
1 + 2*5 + 4*5^2 + 3*5^3 + 5^7 + 2*5^8 + 3*5^10 + 2*5^11 + 2*5^12 +
2*5^13 + 5^14 + 3*5^17 + 2*5^18 + 2*5^19 + 0(5^20)
sage: y = (-x).artin_hasse_exp()
1 + 0(5^20)
```
exp\( (aprec=None, \text{algorithm}=None) \)

Compute the \( p \)-adic exponential of this element if the exponential series converges.

**INPUT:**

- \( aprec \) – an integer or \( None \) (default: \( None \)); if specified, computes only up to the indicated precision
- \( \text{algorithm} \) – 'generic', 'binary_splitting', 'newton' or \( None \) (default)

The 'generic' algorithm evaluates naively the series defining the exponential, namely

\[
\exp(x) = 1 + x + x^2/2 + x^3/6 + x^4/24 + \cdots.
\]

Its binary complexity is quadratic with respect to the precision.

The 'binary_splitting' algorithm is faster, it has a quasi-linear complexity.

The 'newton' algorithms solve the equation \( \log(x) = \text{self} \) using a Newton scheme. It runs roughly as fast as the computation of the logarithm.

By default, we use the 'binary_splitting' if it is available. If it is not, we use the 'newton' algorithm if a fast algorithm for computing the logarithm is available. Otherwise we switch to the 'generic' algorithm.

**EXAMPLES:**

\( \log() \) and \( \exp() \) are inverse to each other:

\[
\text{sage: } Z13 = \text{Zp}(13, 10) \\
\text{sage: } a = Z13(14); a \\
1 + 13 + 0(13^{10}) \\
\text{sage: } a.log().exp() \\
1 + 13 + 0(13^{10})
\]

An error occurs if this is called with an element for which the exponential series does not converge:

\[
\text{sage: } Z13.\text{one()}.\exp() \\
\text{Traceback (most recent call last):} \\
... \\
\text{ValueError: Exponential does not converge for that input.}
\]
The next few examples illustrate precision when computing $p$-adic exponentials:

```
sage: R = Zp(5,10)
sage: e = R(2*5 + 2*5^2 + 4*5^3 + 3*5^4 + 5^5 + 3*5^7 + 2*5^8 + 4*5^9 + O(5^10))
```

```
sage: e.add_bigoh(10); e
2*5 + 2*5^2 + 4*5^3 + 3*5^4 + 5^5 + 3*5^7 + 2*5^8 + 4*5^9 + O(5^10)
```

```
sage: e.exp()*R.teichmuller(4)
4 + 2*5 + 3*5^3 + 0(5^10)
```

```
sage: K = Qp(5,10)
sage: e = K(2*5 + 2*5^2 + 4*5^3 + 3*5^4 + 5^5 + 3*5^7 + 2*5^8 + 4*5^9 + O(5^10))
```

```
sage: e.exp()*K.teichmuller(4)
4 + 2*5 + 3*5^3 + 0(5^10)
```

Logarithms and exponentials in extension fields. First, in an Eisenstein extension:

```
sage: # needs sage.libs.ntl
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^4 + 15*x^2 + 625*x - 5
sage: W.<w> = R.ext(f)
sage: z = 1 + w^2 + 4*w^7; z
1 + w^2 + 4*w^7 + O(w^20)
```

```
sage: z.log().exp()
1 + w^2 + 4*w^7 + O(w^20)
```

Now an unramified example:

```
sage: # needs sage.libs.ntl
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: b = 1 + 5*(1 + a^2) + 5^3*(3 + 2*a); b
1 + (a^2 + 1)*5 + (2*a + 3)*5^3 + 0(5^5)
```

```
sage: b.log().exp()
1 + (a^2 + 1)*5 + (2*a + 3)*5^3 + 0(5^5)
```

AUTHORS:

• Genya Zaytman (2007-02-15)
• Amnon Besser, Marc Masdeu (2012-02-23): Complete rewrite
• Julian Rueth (2013-02-14): Added doctests, fixed some corner cases
• Xavier Caruso (2017-06): Added binary splitting and Newton algorithms

gamma(algorithm='pari')

Return the value of the $p$-adic Gamma function.

INPUT:

• algorithm – string. Can be set to 'pari' to call the PARI function, or 'sage' to call the function implemented in Sage. The default is 'pari' since PARI is about 10 times faster than Sage.
OUTPUT:

- a \( p \)-adic integer

**Note:** This is based on GP code written by Fernando Rodriguez Villegas (http://www.ma.utexas.edu/cnt/cnt-frames.html). William Stein sped it up for GP (http://sage.math.washington.edu/home/wstein/www/home/wbhart/pari-2.4.2.alpha/src/basemath/trans2.c). The ‘sage’ version uses dwork_expansion() to compute the \( p \)-adic gamma function of self as in [RV2007] section 6.2.

**EXAMPLES:**

This example illustrates \( x . \text{gamma}() \) for \( x \) a \( p \)-adic unit:

```python
sage: R = Zp(7)
sage: x = R(2+3*7^2+4*7^3+O(7^20))
sage: x.gamma('pari')
1 + 2*7^2 + 4*7^3 + 5*7^4 + 3*7^5 + 7^8 + 7^9 + 4*7^10 + 3*7^12 + 7^13 + 5*7^14 + 3*7^15 + 2*7^16 + 2*7^17 + 5*7^18 + 4*7^19 + O(7^20)
sage: x.gamma('sage')
1 + 2*7^2 + 4*7^3 + 5*7^4 + 3*7^5 + 7^8 + 7^9 + 4*7^10 + 3*7^12 + 7^13 + 5*7^14 + 3*7^15 + 2*7^16 + 2*7^17 + 5*7^18 + 4*7^19 + O(7^20)
sage: x.gamma('pari') == x.gamma('sage')
True
```

Now \( x . \text{gamma}() \) for \( x \) a \( p \)-adic integer but not a unit:

```python
sage: R = Zp(17)
sage: x = R(17+17^2+3*17^3+12*17^8+O(17^13))
sage: x.gamma('pari')
1 + 12*17 + 13*17^2 + 13*17^3 + 10*17^4 + 7*17^5 + 16*17^7 + 13*17^9 + 4*17^10 + 9*17^11 + 17^12 + O(17^13)
sage: x.gamma('sage')
1 + 12*17 + 13*17^2 + 13*17^3 + 10*17^4 + 7*17^5 + 16*17^7 + 13*17^9 + 4*17^10 + 9*17^11 + 17^12 + O(17^13)
sage: x.gamma('pari') == x.gamma('sage')
True
```

Finally, this function is not defined if \( x \) is not a \( p \)-adic integer:

```python
sage: R = Qp(7)
sage: x = K(7^-5 + 2*7^-4 + 5*7^-3 + 2*7^-2 + 3*7^-1 + 3 + 3*7^2 + 7^3 + 4*7^4 + 5*7^5 + 6*7^8 + 3*7^9 + 6*7^10 + 5*7^11 + 6*7^12 + 3*7^13 + 5*7^14 + O(7^15))
sage: x.gamma()
Traceback (most recent call last):
 ...
ValueError: The p-adic gamma function only works on elements of Zp
```

**gcd**(other)

Return a greatest common divisor of \( \text{self} \) and \( \text{other} \).

**INPUT:**

- \( \text{other} \) – an element in the same ring as \( \text{self} \)

**AUTHORS:**
Note: Since the elements are only given with finite precision, their greatest common divisor is in general not unique (not even up to units). For example $O(3)$ is a representative for the elements 0 and 3 in the 3-adic ring $\mathbb{Z}_3$. The greatest common divisor of $O(3)$ and $O(3)$ could be (among others) 3 or 0 which have different valuation. The algorithm implemented here, will return an element of minimal valuation among the possible greatest common divisors.

EXAMPLES:

The greatest common divisor is either zero or a power of the uniformizing parameter:

```
sage: R = Zp(3)
sage: R.zero().gcd(R.zero())
0
sage: R(3).gcd(9)
3 + O(3^21)
```

A non-zero result is always lifted to the maximal precision possible in the ring:

```
sage: a = R(3,2); a
3 + O(3^2)
sage: b = R(9,3); b
3^2 + O(3^3)
sage: a.gcd(b)
3 + O(3^21)
sage: a.gcd(0)
3 + O(3^21)
```

If both elements are zero, then the result is zero with the precision set to the smallest of their precisions:

```
sage: a = R.zero(); a
0
sage: b = R(0,2); b
O(3^2)
sage: a.gcd(b)
O(3^2)
```

One could argue that it is mathematically correct to return $9 + O(3^{22})$ instead. However, this would lead to some confusing behaviour:

```
sage: alternative_gcd = R(9,22); alternative_gcd
3^2 + O(3^{22})
sage: a.is_zero()
True
sage: b.is_zero()
True
sage: alternative_gcd.is_zero()
False
```

If exactly one element is zero, then the result depends on the valuation of the other element:

```
sage: R(0,3).gcd(3^4)
0(3^3)
```

(continues on next page)
sage: R(0,4).gcd(3^4)
O(3^4)
sage: R(0,5).gcd(3^4)
3^4 + O(3^24)

Over a field, the greatest common divisor is either zero (possibly with finite precision) or one:

sage: K = Qp(3)
sage: K(3).gcd(0)
1 + O(3^20)
sage: K.zero().gcd(0)
0
sage: K.zero().gcd(K(0,2))
0(3^2)
sage: K(3).gcd(4)
1 + O(3^20)

is_prime()
Return whether this element is prime in its parent.

EXAMPLES:

sage: A = Zp(2)
sage: A(1).is_prime()
False
sage: A(2).is_prime()
True
sage: K = A.fraction_field()
sage: K(2).is_prime()
False

# needs sage.libs.ntl
sage: x = polygen(ZZ, 'x')
sage: B.<pi> = A.extension(x^5 - 2)
sage: pi.is_prime()  # needs sage.symbolic
True
sage: B(2).is_prime()
False

is_square()
Returns whether this element is a square

INPUT:

• self – a $p$-adic element

EXAMPLES:

sage: R = Zp(3,20,'capped-rel')
sage: R(0).is_square()
True
sage: R(1).is_square()
is_squarefree()
Return whether this element is squarefree, i.e., whether there exists no non-unit $g$ such that $g^2$ divides this element.

EXAMPLES:
The zero element is never squarefree:

```
sage: K = Qp(2)
sage: K.zero().is_squarefree()
False
```

In $p$-adic rings, only elements of valuation at most 1 are squarefree:

```
sage: R = Zp(2)
sage: R(1).is_squarefree()
True
sage: R(2).is_squarefree()
True
sage: R(4).is_squarefree()
False
```

This works only if the precision is known sufficiently well:

```
sage: R(0,1).is_squarefree()
Traceback (most recent call last):
...
PrecisionError: element not known to sufficient precision to decide
--squarefreeness
sage: R(0,2).is_squarefree()
False
sage: R(1,1).is_squarefree()
True
```

For fields we are not so strict about the precision and treat inexact zeros as the zero element:

```
K(0,0).is_squarefree()
False
```

log($p\_branch=\text{None}, pi\_branch=\text{None}, aprec=\text{None}, change\_frac=\text{False}, algorithm=\text{None}$)
Compute the $p$-adic logarithm of this element.

The usual power series for the logarithm with values in the additive group of a $p$-adic ring only converges for 1-units (units congruent to 1 modulo $p$). However, there is a unique extension of the logarithm to a homomorphism defined on all the units: If $u = a \cdot v$ is a unit with $v \equiv 1 \pmod{p}$ and $a$ a Teichmuller representative, then we define $\log(u) = \log(v)$. This is the correct extension because the units $U$ split as a product $U = V \times \langle w \rangle$, where $V$ is the subgroup of 1-units and $w$ is a fundamental root of unity. The $\langle w \rangle$ factor is torsion, so must go to 0 under any homomorphism to the fraction field, which is a torsion free group.

INPUT:
• p_branch – an element in the base ring or its fraction field; the implementation will choose the branch of the logarithm which sends $p$ to \texttt{branch}.

• pi_branch – an element in the base ring or its fraction field; the implementation will choose the branch of the logarithm which sends the uniformizer to \texttt{branch}; you may specify at most one of \texttt{p_branch} and \texttt{pi_branch}, and must specify one of them if this element is not a unit.

• aprec – an integer or \texttt{None} (default: \texttt{None}); if not \texttt{None}, then the result will only be correct to precision \texttt{aprec}.

• change_frac – In general the codomain of the logarithm should be in the $p$-adic field, however, for most neighborhoods of 1, it lies in the ring of integers. This flag decides if the codomain should be the same as the input (default) or if it should change to the fraction field of the input.

• algorithm – ‘generic’, 'binary_splitting' or \texttt{None} (default) The generic algorithm evaluates naively the series defining the log, namely

$$\log(1-x) = -x - 1/2 x^2 - 1/3 x^3 - 1/4 x^4 - 1/5 x^5 - \cdots.$$ 

Its binary complexity is quadratic with respect to the precision.

The 'binary_splitting' algorithm is faster, it has a quasi-linear complexity. By default, we use 'binary_splitting' if it is available. Otherwise we switch to the 'generic' algorithm.

\textbf{Note:} What some other systems do:

• PARI: Seems to define the logarithm for units not congruent to 1 as we do.

• MAGMA: Only implements logarithm for 1-units (version 2.19-2)

\textbf{Todo:} There is a soft-linear time algorithm for logarithm described by Dan Bernstein at \url{http://cr.yp.to/lineartime/multapps-20041007.pdf}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Z13 = Zp(13, 10)
sage: a = Z13(14); a
1 + 13*O(13^10)
sage: a.log()
13 + 6*13^2 + 2*13^3 + 5*13^4 + 10*13^6 + 13^7 + 11*13^8 + 8*13^9 + O(13^10)
sage: Q13 = Qp(13, 10)
sage: a = Q13(14); a
1 + 13*O(13^10)
sage: a.log()
13 + 6*13^2 + 2*13^3 + 5*13^4 + 10*13^6 + 13^7 + 11*13^8 + 8*13^9 + O(13^10)
\end{verbatim}

Note that the relative precision decreases when we take log. Precisely the absolute precision on $\log(a)$ agrees with the relative precision on $a$ thanks to the relation $d \log(a) = da/a$.

The call $\log(a)$ works as well:

\begin{verbatim}
sage: log(a)
13 + 6*13^2 + 2*13^3 + 5*13^4 + 10*13^6 + 13^7 + 11*13^8 + 8*13^9 + O(13^10)
sage: log(a) == a.log()
True
\end{verbatim}
The logarithm is not only defined for 1-units:

```python
sage: R = Zp(5, 10)
sage: a = R(2)
sage: a.log()
2*5 + 3*5^2 + 2*5^3 + 4*5^4 + 2*5^6 + 2*5^7 + 4*5^8 + 2*5^9 + O(5^10)
```

If you want to take the logarithm of a non-unit you must specify either `p_branch` or `pi_branch`:

```python
sage: b = R(5)
sage: b.log()
Traceback (most recent call last):
... Value Error: you must specify a branch of the logarithm for non-units
sage: b.log(p_branch=4)
4 + O(5^10)
sage: c = R(10)
sage: c.log(p_branch=4)
4 + 2*5 + 3*5^2 + 2*5^3 + 4*5^4 + 2*5^6 + 2*5^7 + 4*5^8 + 2*5^9 + O(5^10)
```

The branch parameters are only relevant for elements of non-zero valuation:

```python
sage: a.log(p_branch=0)
2*5 + 3*5^2 + 2*5^3 + 4*5^4 + 2*5^6 + 2*5^7 + 4*5^8 + 2*5^9 + O(5^10)
sage: a.log(p_branch=1)
2*5 + 3*5^2 + 2*5^3 + 4*5^4 + 2*5^6 + 2*5^7 + 4*5^8 + 2*5^9 + O(5^10)
```

Logarithms can also be computed in extension fields. First, in an Eisenstein extension:

```python
sage: S.<x> = ZZ[]
sage: f = x^4 + 15*x^2 + 625*x - 5
sage: W.<w> = R.ext(f) # needs sage.libs.ntl
sage: z = 1 + w^2 + 4*w^7; z
1 + w^2 + 4*w^7 + O(w^20)
sage: z.log() # needs sage.libs.ntl
w^2 + 2*w^4 + 3*w^6 + 4*w^7 + w^9 + 4*w^10 + 4*w^11 + 4*w^12 + 3*w^14 + w^15 + w^17 + 3*w^18 + 3*w^19 + O(w^20)
```

In an extension, there will usually be a difference between specifying `p_branch` and `pi_branch`:

```python
sage: # needs sage.libs.ntl
sage: b = W(5)
sage: b.log()
Traceback (most recent call last):
... Value Error: you must specify a branch of the logarithm for non-units
sage: b.log(p_branch=0)
0(w^20)
sage: b.log(p_branch=w)
w + O(w^20)
```
sage: b.log(pi_branch=0)
3*w^2 + 2*w^4 + 2*w^6 + 3*w^8 + 4*w^10 + w^13 + w^14 + 2*w^15
+ 2*w^16 + w^18 + 4*w^19 + O(w^20)
sage: b.unit_part().log()
3*w^2 + 2*w^4 + 2*w^6 + 3*w^8 + 4*w^10 + w^13 + w^14 + 2*w^15
+ 2*w^16 + w^18 + 4*w^19 + O(w^20)
sage: y = w^2 * 4*w^7; y
4*w^9 + O(w^29)
sage: y.log(p_branch=0)
2*w^2 + 2*w^4 + 2*w^6 + 2*w^8 + w^10 + w^12 + 4*w^13 + 4*w^14 + 3*w^15
+ 4*w^16 + 4*w^17 + w^18 + 4*w^19 + 0(w^20)
sage: y.log(p_branch=w)
w + 2*w^2 + 2*w^4 + 4*w^5 + 2*w^6 + 2*w^7 + 2*w^8 + 4*w^9 + w^10
+ 3*w^11 + w^12 + 4*w^14 + 4*w^16 + 2*w^17 + w^19 + O(w^20)

Check that log is multiplicative:

sage: y.log(p_branch=0) + z.log() - (y*z).log(p_branch=0)
# needs sage.libs.ntl
O(w^20)

Now an unramified example:

sage: # needs sage.libs.ntl
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: b = 1 + 5*(1 + a^2) + 5^3*(3 + 2*a)
sage: b.log()
(a^2 + 1)*5 + (3*a^2 + 4*a + 2)*5^2 + (3*a^2 + 2*a)*5^3
+ (3*a^2 + 2*a + 2)*5^4 + 0(5^5)

Check that log is multiplicative:

sage: # needs sage.libs.ntl
sage: c = 3 + 5^2*(2 + 4*a)
sage: b.log() + c.log() - (b*c).log()
0(5^5)

We illustrate the effect of the precision argument:

sage: R = ZpCA(7,10)
sage: x = R(41152263); x
5 + 3*7^2 + 4*7^3 + 3*7^4 + 5*7^5 + 6*7^6 + 7^9 + 0(7^10)
sage: x.log(aprec = 5)
7 + 3*7^2 + 4*7^3 + 3*7^4 + 0(7^5)
sage: x.log(aprec = 7)
7 + 3*7^2 + 4*7^3 + 3*7^4 + 7^5 + 3*7^6 + 0(7^7)
sage: x.log()
7 + 3*7^2 + 4*7^3 + 3*7^4 + 7^5 + 3*7^6 + 7^7 + 3*7^8 + 4*7^9 + 0(7^10)

The logarithm is not defined for zero:
```python
sage: R.zero().log()
Traceback (most recent call last):
 ...
ValueError: logarithm is not defined at zero
```

For elements in a \( p \)-adic ring, the logarithm will be returned in the same ring:

```python
sage: x = R(2)
sage: x.log().parent()
7-adic Ring with capped absolute precision 10
sage: x = R(14)
sage: x.log(p_branch=0).parent()
7-adic Ring with capped absolute precision 10
```

This is not possible if the logarithm has negative valuation:

```python
sage: R = ZpCA(3,10)
sage: S.<x> = R[]
sage: f = x^3 - 3
sage: W.<w> = R.ext(f)
needs sage.libsntl sage.rings.padics
sage: w.log(p_branch=2)
needs sage.libsntl sage.rings.padics
Traceback (most recent call last):
 ...
ValueError: logarithm is not integral, use change_frac=True
to obtain a result in the fraction field
sage: w.log(p_branch=2, change_frac=True)
needs sage.libsntl sage.rings.padics
2*w^3 + O(w^24)
```

AUTHORS:

- William Stein: initial version
- David Harvey (2006-09-13): corrected subtle precision bug (need to take denominators into account! – see github issue #53)
- Genya Zaytman (2007-02-14): adapted to new \( p \)-adic class
- Amnon Besser, Marc Masdeu (2012-02-21): complete rewrite, valid for generic \( p \)-adic rings.
- Soroosh Yazdani (2013-02-1): Fixed a precision issue in \_log\_generic(). This should really fix the issue with divisions.
- Xavier Caruso (2017-06): Added binary splitting type algorithms over \( Q_p \)

```python
minimal_polynomial(name='x', base=None)
```

Returns the minimal polynomial of this element over \( base \)

**INPUT:**

- name – string (default: 'x'): the name of the variable
- base – a ring (default: the base ring of the parent): the base ring over which the minimal polynomial is computed

**EXAMPLES:**

...
\textbf{multiplicative\_order}(\textit{prec=\texttt{None}})

Returns the multiplicative order of \textit{self}, where \textit{self} is considered to be one if it is one modulo \(p^{\text{\textit{prec}}}\).

\textbf{INPUT:}

- \textit{self} – a \(p\)-adic element
- \textit{prec} – an integer

\textbf{OUTPUT:}

- \textbf{integer} – the multiplicative order of \textit{self}

\textbf{EXAMPLES:}

\begin{verbatim}
sage: K = Qp(5,20,'capped-rel')
sage: K(-1).multiplicative_order(20) 2
sage: K(1).multiplicative_order(20) 1
sage: K(2).multiplicative_order(20) +Infinity
sage: K(5).multiplicative_order(20) +Infinity
sage: K(1/5).multiplicative_order(20) +Infinity
sage: K.zeta().multiplicative_order(20) 4
\end{verbatim}

Over unramified extensions:
\begin{verbatim}
sage: # needs sage.libsntl
sage: L1.<a> = Qq(5^3)
sage: c = L1.teichmuller(a)
sage: c.multiplicative_order()
124
sage: c^124
1 + O(5^20)

Over totally ramified extensions:

sage: # needs sage.libsntl
sage: x = polygen(ZZ, 'x')
sage: L2.<pi> = Qp(5).extension(x^4 + 5*x^3 + 10*x^2 + 10*x + 5)
sage: u = 1 + pi
sage: u.multiplicative_order()
5
sage: v = L2.teichmuller(2)
sage: v.multiplicative_order()
4
sage: (u*v).multiplicative_order()
20
\end{verbatim}

\textbf{norm} \texttt{(base=None)}

Return the norm of this \(p\)-adic element over base.

\textbf{Warning:} This is not the \(p\)-adic absolute value. This is a field theoretic norm down to a base ring. If you want the \(p\)-adic absolute value, use the method \texttt{abs()} instead.

\begin{itemize}
  \item base -- a subring of the parent (default: base ring)
\end{itemize}

\textbf{OUTPUT:}

The norm of this \(p\)-adic element over the given base.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: Zp(5)(5).norm() # needs sage.libsntl
5 + O(5^21)
sage: K.<a> = QqCR(2^3,5)
sage: S.<x> = K[]
sage: L.<pi> = K.extension(x^4 - 2*a)
sage: pi.norm() # norm over K # needs sage.symbolic
a*2 + a*2^2 + a*2^3 + a*2^4 + a*2^5 + O(2^6)
sage: (pi^2).norm() # needs sage.symbolic
a^2*2^2 + O(2^7)
sage: pi.norm()^2
\end{verbatim}

(continues on next page)
\texttt{nth\_root}(n, all=False)

Return the \(n\)-th root of this element.

INPUT:

\begin{itemize}
  \item \(n\) – an integer
  \item all – a boolean (default: \texttt{False}): if \texttt{True}, return all \(n\)-th roots of this element, instead of just one.
\end{itemize}

EXAMPLES:

\begin{verbatim}
sage: A = Zp(5,10)
sage: x = A(61376); x
1 + 5^3 + 3*5^4 + 4*5^5 + 3*5^6 + 0(5^10)
sage: y = x.nth_root(4); y
2 + 5 + 2*5^2 + 4*5^3 + 3*5^4 + 5^6 + 0(5^10)
sage: y^4 == x
True

sage: x.nth_root(4, all=True)
[2 + 5 + 2*5^2 + 4*5^3 + 3*5^4 + 5^6 + 0(5^10),
  4 + 4*5 + 4*5^2 + 4*5^4 + 3*5^5 + 5^6 + 3*5^7 + 5^8 + 5^9 + 0(5^10),
  3 + 3*5 + 2*5^2 + 5^4 + 4*5^5 + 3*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + 0(5^10),
  1 + 4*5^3 + 5^5 + 5^6 + 3*5^7 + 3*5^8 + 3*5^9 + 0(5^10)]
\end{verbatim}

When \(n\) is divisible by the underlying prime \(p\), we are losing precision (which is consistent with the fact that raising to the \(p\)-th power increases precision):

\begin{verbatim}
sage: z = x.nth_root(5); z
1 + 5^2 + 3*5^3 + 2*5^4 + 5^5 + 3*5^7 + 2*5^8 + O(5^9)
sage: z^5
1 + 5^3 + 3*5^4 + 4*5^5 + 3*5^6 + O(5^10)
\end{verbatim}

Everything works over extensions as well:

\begin{verbatim}
sage: # needs sage.libs.ntl
sage: W.<a> = Zq(5^3)
sage: S.<x> = W[]
sage: R.<pi> = W.extension(x^7 - 5)
sage: R(5).nth_root(7)
pi + O(pi^141)
sage: R(5).nth_root(7, all=True)
[pi + O(pi^141)]
\end{verbatim}

An error is raised if the given element is not an \(n\)-th power in the ring:

\begin{verbatim}
sage: R(5).nth_root(11)    # needs sage.libs.ntl
Traceback (most recent call last):
...
ValueError: this element is not a nth power
\end{verbatim}
Similarly, when precision on the input is too small, an error is raised:

```python
sage: # needs sage.libs.ntl
sage: R = Zp(1,6); x
1 + 0(pi^6)
sage: x.nth_root(5)
Traceback (most recent call last):
...
PrecisionError: not enough precision to be sure that this element is a nth power
```

Check that github issue #30314 is fixed:

```python
sage: # needs sage.libs.ntl
sage: K = Qp(29)
sage: x = polygen(K)
sage: L.<a> = K.extension(x^2 - 29)
sage: L(4).nth_root(2)
2 + O(a^40)
```

`ordp(p=None)`

Return the valuation of `self`, normalized so that the valuation of `p` is 1.

**INPUT:**
- `self` – a `p`-adic element
- `p` – a prime (default: `None`). If specified, will make sure that `p == self.parent().prime()`

**Note:** The optional argument `p` is used for consistency with the valuation methods on integers and rationals.

**OUTPUT:**
integer – the valuation of `self`, normalized so that the valuation of `p` is 1

**EXAMPLES:**

```python
sage: R = Zp(5,20,'capped-rel')
sage: R(0).ordp()
+Infinity
sage: R(1).ordp()
0
sage: R(2).ordp()
0
sage: R(5).ordp()
1
sage: R(10).ordp()
1
sage: R(25).ordp()
2
sage: R(50).ordp()
2
sage: R(1/2).ordp()
0
```

`polylog(n, p_branch=0)`

Return \( Li_n(self) \), the \( n \)-th \( p \)-adic polylogarithm of this element.
INPUT:

- n – a non-negative integer
- p\_branch – an element in the base ring or its fraction field; the implementation will choose the branch of the logarithm which sends \( p \) to \( p\_branch \)

EXAMPLES:

The \( n \)-th polylogarithm of \(-1\) is 0 for even \( n \):

```python
sage: Qp(13)(-1).polylog(6) == 0 # needs sage.rings.real_mpfr sage.symbolic
True
```

We can check some identities, for example those mentioned in [DCW2016]:

```python
sage: x = Qp(7, prec=30)(1/3)
sage: (x^2).polylog(4) - 8*x.polylog(4) - 8*(-x).polylog(4) == 0 # needs sage.symbolic
True
```

```python
sage: x = Qp(5, prec=30)(4)
sage: x.polylog(2) + (1/x).polylog(2) + x.log(0)**2/2 == 0 # needs sage.symbolic
True
```

```python
sage: x = Qp(11, prec=30)(2)
sage: x.polylog(2) + (1-x).polylog(2) + x.log(0)**2*(1-x).log(0) == 0 # needs sage.symbolic
True
```

\( Li_1(z) = -\log(1 - z) \) for \(|z| < 1\):

```python
sage: Qp(5)(10).polylog(1) == -Qp(5)(1-10).log(0)
True
```

The dilogarithm of 1 is zero:

```python
sage: Qp(5)(1).polylog(2) # needs sage.rings.real_mpfr sage.symbolic
0(5^20)
```

The cubing relation holds for the trilogarithm at 1:

```python
sage: K = Qp(7)
sage: z = K.zeta(3)
sage: -8*K(1).polylog(3) == 9*(K(z).polylog(3) + K(z^2).polylog(3)) # needs sage.rings.padics sage.rings.real_mpfr sage.symbolic
True
```

The polylogarithm of 0 is 0:

```python
sage: Qp(11)(0).polylog(7)
0
```

Only polylogarithms for positive \( n \) are defined:
```
sage: Qp(11)(2).polylog(-1)
Traceback (most recent call last):
...
ValueError: polylogarithm only implemented for n at least 0
```

Check that github issue #29222 is fixed:
```
sage: K = Qp(7)
sage: print(K(1 + 7^11).polylog(4)) # needs sage.symbolic
6*7^14 + 3*7^15 + 7^16 + 7^17 + O(7^18)
```

ALGORITHM:
The algorithm of Besser-de Jeu, as described in [BdJ2008] is used.

AUTHORS:
- Jennifer Balakrishnan - Initial implementation
- Alex J. Best (2017-07-21) - Extended to other residue disks

Todo:
- Implement for extensions.
- Use the change method to create K from self.parent().

**rational_reconstruction()**

Returns a rational approximation to this $p$-adic number.

This will raise an ArithmeticError if there are no valid approximations to the unit part with numerator and denominator bounded by $\sqrt{p^\text{absprec}/2}$.

See also:
- _rational_()

OUTPUT:

rational – an approximation to self

EXAMPLES:
```
sage: R = Zp(5,20,'capped-rel')
sage: for i in range(11):
....: for j in range(1,10):
....: if j == 5:
....: continue
....: assert i/j == R(i/j).rational_reconstruction()
```

**square_root**(extend=True, all=False, algorithm=None)

Return the square root of this $p$-adic number.

INPUT:

- self – a $p$-adic element.
- extend – a boolean (default: True); if True, return a square root in an extension if necessary; if False and no root exists in the given ring or field, raise a ValueError.
• all – a boolean (default: False); if True, return a list of all square roots.
• algorithm – "pari", "sage" or None (default: None); Sage provides an implementation for any
  extension of \( \mathbb{Q}_p \), whereas only square roots over \( \mathbb{Q}_p \) are implemented in PARI; the default is "pari"
  if the ground field is \( \mathbb{Q}_p \), "sage" otherwise.

OUTPUT:
The square root or the list of all square roots of this \( p \)-adic number.

NOTE:
The square root is chosen (resp. the square roots are ordered) in a deterministic way.

EXAMPLES:

```
sage: R = Zp(3, 20)
sage: R(0).square_root()
0
sage: R(1).square_root()
1 + O(3^20)
sage: R(2).square_root(extend=False)
Traceback (most recent call last):
...
ValueError: element is not a square
sage: -R(4).square_root()
2 + O(3^20)
sage: R(9).square_root()
3 + O(3^21)
```

When \( p = 2 \), the precision of the square root is less than the input:

```
sage: R2 = Zp(2, 20)
sage: R2(1).square_root()
1 + O(2^19)
sage: R2(4).square_root()
2 + O(2^20)
```

(continues on next page)
However, observe that the precision increases to its original value when we recompute the square of the square root:

```
sage: v^2
1 + a^4 + a^5 + a^7 + a^8 + O(a^10)
```

If the input does not have enough precision in order to determine if the given element has a square root in the ground field, an error is raised:

```
sage: # needs sage.libs.ntl
sage: R(1, 6).square_root()
Traceback (most recent call last):
... PrecisionError: not enough precision to be sure that this element has a square root
sage: R(1+a^6, 7).square_root(extend=False)
Traceback (most recent call last):
... ValueError: element is not a square
```

In particular, an error is raised when we try to compute the square root of an inexact zero.

```
str(mode=None)
```

Return a string representation of `self`.

**EXAMPLES:**

```
sage: Zp(5, 5, print_mode='bars')(1/3).str()[3:]
'1|3|1|3|2'
```

```
trace(base=None)
```

Returns the trace of this $p$-adic element over the base ring

**INPUT:**

- base – a subring of the parent (default: base ring)

**OUTPUT:**

The trace of this $p$-adic element over the given base.

**EXAMPLES:**

```
sage: Zp(5, 5)(5).trace() # needs sage.libs.ntl
5 + O(5^6)
```

```
sage: # needs sage.libs.ntl
sage: K.<a> = QqCR(2^3, 7)
sage: S.<x> = K[]
```
sage: L.<pi> = K.extension(x^4 - 4*a*x^3 + 2*a)
sage: pi.trace() # trace over K
˓→ needs sage.symbolic
a^2 + 0(2^8)
sage: (pi+1).trace()
˓→ needs sage.symbolic
(a + 1)^2 + 0(2^7)

val_unit()

Return (self.valuation(), self.unit_part()). To be overridden in derived classes.

EXAMPLES:

sage: Zp(5,5)(5).val_unit()
(1, 1 + 0(5^5))

valuation(p=None)

Return the valuation of this element.

INPUT:

• self – a p-adic element
• p – a prime (default: None). If specified, will make sure that p == self.parent().prime()

Note: The optional argument p is used for consistency with the valuation methods on integers and rationals.

OUTPUT:

integer – the valuation of self

EXAMPLES:

sage: R = Zp(17, 4,'capped-rel')
sage: a = R(2*17^2)
sage: a.valuation()
2
sage: R = Zp(5, 4,'capped-rel')
sage: R(0).valuation()
+Infinity

xgcd(other)

Compute the extended gcd of this element and other.

INPUT:

• other – an element in the same ring

OUTPUT:

A tuple r, s, t such that r is a greatest common divisor of this element and other and r = s*self + t*other.

AUTHORS:

• Julian Rueth (2012-10-19): initial version
Note: Since the elements are only given with finite precision, their greatest common divisor is in general not unique (not even up to units). For example $O(3)$ is a representative for the elements 0 and 3 in the 3-adic ring $\mathbb{Z}_3$. The greatest common divisor of $O(3)$ and $O(3)$ could be (among others) 3 or 0 which have different valuation. The algorithm implemented here, will return an element of minimal valuation among the possible greatest common divisors.

EXAMPLES:

The greatest common divisor is either zero or a power of the uniformizing parameter:

```
sage: R = Zp(3)
sage: R.zero().xgcd(R.zero())
(0, 1 + O(3^20), 0)
sage: R(3).xgcd(9)
(3 + O(3^21), 1 + O(3^20), 0)
```

Unlike for \texttt{gcd()}, the result is not lifted to the maximal precision possible in the ring; it is such that $r = s \* \text{self} + t \* \text{other}$ holds true:

```
sage: a = R(3,2); a
3 + O(3^2)
sage: b = R(9,3); b
3^2 + O(3^3)
sage: a.xgcd(b)
(3 + O(3^2), 1 + O(3), 0)
sage: a.xgcd(0)
(3 + O(3^2), 1 + O(3), 0)
```

If both elements are zero, then the result is zero with the precision set to the smallest of their precisions:

```
sage: a = R.zero(); a
0
sage: b = R(0,2); b
0(3^2)
sage: a.xgcd(b)
(0(3^2), 0, 1 + O(3^20))
```

If only one element is zero, then the result depends on its precision:

```
sage: # needs sage.rings.padics
sage: R(9).xgcd(R(0,1))
(0(3), 0, 1 + O(3^20))
sage: R(9).xgcd(R(0,2))
(0(3^2), 0, 1 + O(3^20))
sage: R(9).xgcd(R(0,3))
(3^2 + 0(3^22), 1 + O(3^20), 0)
sage: R(9).xgcd(R(0,4))
(3^2 + 0(3^22), 1 + O(3^20), 0)
```

Over a field, the greatest common divisor is either zero (possibly with finite precision) or one:

```
sage: K = Qp(3)
sage: K(3).xgcd(0)
```
(1 + O(3^20), 3^-1 + O(3^19), 0)
\textbf{sage}: K.zero().xgcd(0)
(0, 1 + O(3^20), 0)
\textbf{sage}: K.zero().xgcd(K(0, 2))
(O(3^2), 0, 1 + O(3^20))
\textbf{sage}: K(3).xgcd(4)
(1 + O(3^20), 3^-1 + O(3^19), 0)
Elements of \( p \)-adic Rings with Capped Relative Precision

AUTHORS:

- David Roe: initial version, rewriting to use templates (2012-3-1)
- Genya Zaytman: documentation
- David Harvey: doctests

class sage.rings.padics.padic_capped_relative_element.CRElement
Bases: \textit{pAdicTemplateElement}

\texttt{add\_bigoh(\textit{absprec})}
Return a new element with absolute precision decreased to \textit{absprec}.

INPUT:

- \textit{absprec} – an integer or infinity

OUTPUT:

an equal element with precision set to the minimum of \textit{self}’s precision and \textit{absprec}

EXAMPLSES:

\texttt{sage}: R = \texttt{Zp(7,4,'capped-rel','series')} ; a = \texttt{R(8)} ; a.add\_bigoh(1)
\begin{align*}
1 + O(7) \\
\texttt{sage}: b = \texttt{R(0)} ; b.add\_bigoh(3) \\
O(7^3) \\
\texttt{sage}: R = \texttt{Qp(7,4)} ; a = \texttt{R(8)} ; a.add\_bigoh(1) \\
1 + O(7) \\
\texttt{sage}: b = \texttt{R(0)} ; b.add\_bigoh(3) \\
O(7^3)
\end{align*}

The precision never increases:

\texttt{sage}: \texttt{R(4).add\_bigoh(2).add\_bigoh(4)}
\begin{align*}
4 + O(7^2)
\end{align*}

Another example that illustrates that the precision does not increase:

\texttt{sage}: k = \texttt{Qp(3,5)}
\texttt{sage}: a = k(1234123412/3^70) ; a \\
2\times 3^{-70} + 3^{-69} + 3^{-68} + 3^{-67} + O(3^{-65}) \\
\texttt{sage}: a.add\_bigoh(2)

(continues on next page)
2*3^(-70) + 3^(-69) + 3^(-68) + 3^(-67) + O(3^(-65))

sage: k = Qp(5, 10)
sage: a = k(1/5^3 + 5^2); a
5^(-3) + 5^2 + O(5^7)
sage: a.add_bigoh(2)  # Add bigoh to the precision
5^(-3) + O(5^2)
sage: a.add_bigoh(-1)  # Add negative bigoh to reduce precision
5^(-3) + O(5^(-1))

is_equal_to(right, absprec=None)

Return whether self is equal to right modulo \( p^{\text{absprec}} \).

If absprec is None, returns True if self and right are equal to the minimum of their precisions.

INPUT:

- right – a \( p \)-adic element
- absprec – an integer, infinity, or None

EXAMPLES:

sage: R = Zp(5, 10); a = R(0); b = R(0, 3); c = R(75, 5)
sage: aa = a + 625; bb = b + 625; cc = c + 625
sage: a.is_equal_to(aa), a.is_equal_to(aa, 4), a.is_equal_to(aa, 5)
(False, True, False)
sage: a.is_equal_to(aa, 15)
Traceback (most recent call last):
  ... PrecisionError: elements not known to enough precision
sage: a.is_equal_to(a, 50000)
True
sage: a.is_equal_to(b), a.is_equal_to(b, 2)
(True, True)
sage: a.is_equal_to(b, 5)
Traceback (most recent call last):
  ... PrecisionError: elements not known to enough precision
sage: b.is_equal_to(b, 5)
Traceback (most recent call last):
  ... PrecisionError: elements not known to enough precision
sage: b.is_equal_to(bb, 3)
True
sage: b.is_equal_to(bb, 4)
Traceback (most recent call last):
  ... PrecisionError: elements not known to enough precision

(continues on next page)
sage: c.is_equal_to(b, 2), c.is_equal_to(b, 3)
(True, False)
sage: c.is_equal_to(b, 4)
Traceback (most recent call last):
  ...  
PrecisionError: elements not known to enough precision
sage: c.is_equal_to(cc, 2), c.is_equal_to(cc, 4), c.is_equal_to(cc, 5)
(True, True, False)

is_zero(absprec=None)

Determine whether this element is zero modulo $\pi^{\text{absprec}}$.

If absprec is None, returns True if this element is indistinguishable from zero.

INPUT:

• absprec – an integer, infinity, or None

EXAMPLES:

sage: R = Zp(5); a = R(0); b = R(0,5); c = R(75)
sage: a.is_zero(), a.is_zero(6)
(True, True)
sage: b.is_zero(), b.is_zero(5)
(True, True)
sage: c.is_zero(), c.is_zero(2), c.is_zero(3)
(False, True, False)
sage: b.is_zero(6)
Traceback (most recent call last):
  ...  
PrecisionError: not enough precision to determine if element is zero

polynomial(var='x')

Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

INPUT:

• var – string, the variable name for the polynomial

EXAMPLES:

sage: # needs sage.libs.ntl
sage: K.<a> = Qq(5^3)
sage: a.polynomial()
(1 + O(5^20))*x + O(5^20)
sage: a.polynomial(var='y')
(1 + O(5^20))*y + O(5^20)
sage: (5*a^2 + K(25, 4)).polynomial()
(5 + O(5^4))*x^2 + O(5^4)*x + 5^2 + O(5^4)

precision_absolute()

Returns the absolute precision of this element.

This is the power of the maximal ideal modulo which this element is defined.

EXAMPLES:
precision_relative()

Return the relative precision of this element.

This is the power of the maximal ideal modulo which the unit part of self is defined.

EXAMPLES:

```
sage: R = Zp(7,3,'capped-rel'); a = R(7); a.precision_relative()
3
sage: R = Qp(7,3); a = R(7); a.precision_relative()
3
sage: a = R(7^-2, -1); a.precision_relative()
1
sage: a
7^-2 + O(7^-1)
sage: R(0).precision_relative()
0
sage: R(0,7).precision_relative()
0
```

unit_part()

Return \( u \), where this element is \( \pi^v u \).

EXAMPLES:

```
sage: R = Zp(17,4,'capped-rel')
sage: a = R(18*17)
sage: a.unit_part()
1 + 17 + O(17^4)
sage: type(a)
<class 'sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement'>
sage: R = Qp(17,4,'capped-rel')
sage: a = R(18*17)
sage: a.unit_part()
1 + 17 + O(17^4)
sage: type(a)
<class 'sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement'>
sage: a = R(2*17^2); a
2*17^2 + O(17^6)
```

(continues on next page)
\texttt{sage}: \ a\unit_part()
2 + O(17^4)
\texttt{sage}: b=1/a; b
9*17^{-2} + 8*17^{-1} + 8 + 8*17 + O(17^2)
\texttt{sage}: b\unit_part()
9 + 8*17 + 8*17^2 + 8*17^3 + O(17^4)
\texttt{sage}: Zp(5)(75).unit_part()
3 + O(5^{20})
\texttt{sage}: R(0).unit_part()
Traceback (most recent call last):
...
ValueError: unit part of 0 not defined
\texttt{sage}: R(0,7).unit_part()
O(17^0)

\texttt{val\_unit}(p=None)

Return a pair \((self.valuation(), self.unit_part())\).

INPUT:

\begin{itemize}
  \item \texttt{p} – a prime (default: None). If specified, will make sure that \(p == self.parent().prime()\)
\end{itemize}

\textbf{Note:} The optional argument \texttt{p} is used for consistency with the valuation methods on integers and rationals.

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage}: R = Zp(5); a = R(75, 20); a
3*5^2 + O(5^{20})
\texttt{sage}: a.val_unit()
(2, 3 + O(5^{18}))
\texttt{sage}: R(0).val_unit()
Traceback (most recent call last):
...
ValueError: unit part of 0 not defined
\texttt{sage}: R(0,7).val_unit()
(10, O(5^0))
\end{verbatim}

\textbf{class} \texttt{sage.rings.padics.padic_capped_relative_element.ExpansionIter}

\textbf{Bases:} \texttt{object}

An iterator over a \(p\)-adic expansion.

This class should not be instantiated directly, but instead using \texttt{expansion()}.

\textbf{INPUT:}

\begin{itemize}
  \item \texttt{elt} – the \(p\)-adic element
  \item \texttt{prec} – the number of terms to be emitted
  \item \texttt{mode} – either \texttt{simple\_mode}, \texttt{smallest\_mode} or \texttt{teichmuller\_mode}
\end{itemize}

\textbf{EXAMPLES:}
**p-adics, Release 10.2**

```python
sage: E = Zp(5,4)(373).expansion()
sage: I = iter(E) # indirect doctest
sage: type(I)
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIter'>
```

class sage.rings.padics.padic_capped_relative_element.ExpansionIterable

Bases: object

An iterable storing a $p$-adic expansion of an element.

This class should not be instantiated directly, but instead using `expansion()`.

INPUT:

- `elt` – the $p$-adic element
- `prec` – the number of terms to be emitted
- `val_shift` – how many zeros to add at the beginning of the expansion, or the number of initial terms to truncate (if negative)
- `mode` – one of the following:
  - `'simple_mode'`
  - `'smallest_mode'`
  - `'teichmuller_mode'`

EXAMPLES:

```python
sage: E = Zp(5,4)(373).expansion() # indirect doctest
sage: type(E)
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIterable'>
```

class sage.rings.padics.padic_capped_relative_element.PowComputer_

Bases: PowComputer_base

A PowComputer for a capped-relative padic ring or field.

sage.rings.padics.padic_capped_relative_element.base_p_list($n$, $pos$, $prime_pow$)

Return a base-$p$ list of digits of $n$.

INPUT:

- `$n$` – a positive `Integer`
- `$pos$` – a boolean; if `True`, then returns the standard base $p$ expansion, otherwise the digits lie in the range $-p/2$ to $p/2$.
- `$prime_pow$` – a `PowComputer` giving the prime

EXAMPLES:

```python
sage: from sage.rings.padics.padic_capped_relative_element import base_p_list
sage: base_p_list(192837, True, Zp(5).prime_pow) # indirect doctest
[2, 2, 3, 2, 3, 1, 2, 2]
sage: 2 + 2*5 + 3*5^2 + 2*5^3 + 3*5^4 + 5*5 + 2*5^6 + 2*5^7
192837
sage: base_p_list(192837, False, Zp(5).prime_pow)
[2, 2, -2, -2, -1, 2, 2, 2]
```
$$sage: \ 2 + 2 \cdot 5 - 2 \cdot 5^2 - 2 \cdot 5^3 - 5^4 + 2 \cdot 5^5 + 2 \cdot 5^6 + 2 \cdot 5^7$$

192837

```python
class sage.rings.padics.padic_capped_relative_element.pAdicCappedRelativeElement
 Bases: CRElement

 Constructs new element with given parent and value.

 INPUT:

 - x -- value to coerce into a capped relative ring or field
 - absprec -- maximum number of digits of absolute precision
 - relprec -- maximum number of digits of relative precision

 EXAMPLES:
    ```

    sage: R = Zp(5, 10, 'capped-rel')

    Construct from integers:
    ```

 sage: R(3)
 3 + O(5^10)
 sage: R(75)
 3*5^2 + O(5^12)
 sage: R(0)
 0
 sage: R(-1)
 4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + O(5^10)
 sage: R(-5)
 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + O(5^11)
 sage: R(-7*25)
 3*5^2 + 3*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + 4*5^10 + 4*5^11 + O(5^12)

 Construct from rationals:
    ```

    sage: R(1/2)
    3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 2*5^8 + 2*5^9 + O(5^10)
    sage: R(-7875/874)
    3*5^3 + 2*5^4 + 2*5^5 + 5*6 + 3*5^7 + 2*5^8 + 3*5^10 + 3*5^11 + 3*5^12 + O(5^13)
    sage: R(15/425)
    Traceback (most recent call last):
    ...
    ValueError: p divides the denominator

    Construct from IntegerMod:
    ```

 sage: R(IntegerMod(125)(3))
 3 + O(5^3)
 sage: R(IntegerMod(5)(3))
 3 + O(5)
 sage: R(IntegerMod(5^30)(3))
```

(continues on next page)
3 + O(5^10)
sage: R(Integers(5^30)(1+5^23))
1 + O(5^10)
sage: R(Integers(49)(3))
Traceback (most recent call last):
...  
TypeError: p does not divide modulus 49

sage: R(Integers(48)(3))
Traceback (most recent call last):
...  
TypeError: p does not divide modulus 48

Some other conversions:

sage: R(R(5))
5 + O(5^11)

Construct from Pari objects:

sage: R = Zp(5)
sage: x = pari(123123) ; R(x)
3 + 4*5 + 4*5^2 + 4*5^3 + 5^4 + 4*5^5 + 2*5^6 + 5^7 + O(5^20)
sage: R(pari(R(5252)))
2 + 2*5^3 + 3*5^4 + 5^5 + O(5^20)
sage: R = Zp(5, prec=5)
sage: R(pari(-1))
4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5)
sage: pari(R(-1))
4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5)
sage: R(pari(R(0)))
0
sage: R(pari(R(0, 5)))
O(5^5)

Todo: doctests for converting from other types of p-adic rings

lift()

Return an integer or rational congruent to self modulo self’s precision. If a rational is returned, its denominator will equal p^ordp(self).

EXAMPLES:

sage: R = Zp(7, 4, 'capped-rel'); a = R(8); a.lift()
8
sage: R = Qp(7, 4); a = R(8); a.lift()
8

(continues on next page)
residue(absprec=1, field=None, check_prec=True)

Reduce this element modulo $p^{\text{absprec}}$.

**INPUT:**

- absprec – a non-negative integer (default: 1)
- field – boolean (default None); whether to return an element of $\mathbb{F}_p$ or $\mathbb{Z}/p\mathbb{Z}$
- check_prec – boolean (default True); whether to raise an error if this element has insufficient precision to determine the reduction

**OUTPUT:**

This element reduced modulo $p^{\text{absprec}}$ as an element of $\mathbb{Z}/p^{\text{absprec}}\mathbb{Z}$.

**EXAMPLES:**

```python
sage: R = Qp(7,4); a = R(8/7); a.lift()
8/7
```

Reduce this element modulo $p^{\text{absprec}}$.

**INPUT:**

- absprec – a non-negative integer (default: 1)
- field – boolean (default None); whether to return an element of $\mathbb{F}_p$ or $\mathbb{Z}/p\mathbb{Z}$
- check_prec – boolean (default True); whether to raise an error if this element has insufficient precision to determine the reduction

**OUTPUT:**

This element reduced modulo $p^{\text{absprec}}$ as an element of $\mathbb{Z}/p^{\text{absprec}}\mathbb{Z}$.

**EXAMPLES:**

```python
sage: R = Zp(7,4)
sage: a = R(8)
sage: a.residue(1)
1
```

This is different from applying $\% p^n$ which returns an element in the same ring:

```python
sage: b = a.residue(2); b
8
sage: b.parent()
Ring of integers modulo 49
```

For elements in a field, application of $\% p^n$ always returns zero, the remainder of the division by $p^n$:

```python
sage: K = Qp(7,4)
sage: a = K(8)
sage: a.residue(2)
8
sage: a % 7^2
1 + 7 + O(7^4)
```

**See also:**

_\mod_()}
class sage.rings.padics.padic_capped_relative_element.pAdicCoercion_CR_frac_field

Bases: RingHomomorphism

The canonical inclusion of $\mathbb{Z}_q$ into its fraction field.

EXAMPLES:

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqCR(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R); f
Ring morphism:
 From: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
 To: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
```

is_injective()

Return whether this map is injective.

EXAMPLES:

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqCR(9, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f.is_injective()
True
```

is_surjective()

Return whether this map is surjective.

EXAMPLES:

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqCR(9, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f.is_surjective()
False
```

section()

Return a map back to the ring that converts elements of non-negative valuation.

EXAMPLES:

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqCR(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f(K.gen())
a + O(3^20)
sage: f.section()
Generic morphism:
 From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
 To: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
```
class sage.rings.padics.padic_capped_relative_element.pAdicCoercion_QQ_CR

Bases: RingHomomorphism

The canonical inclusion from the rationals to a capped relative field.

EXAMPLES:

```sage
f = Qp(5).coerce_map_from(QQ); f
Ring morphism:
 From: Rational Field
 To: 5-adic Field with capped relative precision 20
```

```sage
section()
Returns a map back to the rationals that approximates an element by a rational number.

EXAMPLES:

```sage
f = Qp(5).coerce_map_from(QQ).section()
f(Qp(5)(1/4))
1/4
f(Qp(5)(1/5))
1/5
```

class sage.rings.padics.padic_capped_relative_element.pAdicCoercion_ZZ_CR

Bases: RingHomomorphism

The canonical inclusion from the integer ring to a capped relative ring.

EXAMPLES:

```sage
f = Zp(5).coerce_map_from(ZZ); f
Ring morphism:
    From: Integer Ring
    To:   5-adic Ring with capped relative precision 20
```

```sage
section()
Returns a map back to the ring of integers that approximates an element by an integer.

EXAMPLES:

```sage
f = Zp(5).coerce_map_from(ZZ).section()
f(Zp(5)(-1)) - 5^20
-1
```

class sage.rings.padics.padic_capped_relative_element.pAdicConvert_CR_QQ

Bases: RingMap

The map from the capped relative ring back to the rationals that returns a rational approximation of its input.

EXAMPLES:

```sage
f = Qp(5).coerce_map_from(QQ).section(); f
Set-theoretic ring morphism:
 From: 5-adic Field with capped relative precision 20
 To: Rational Field
```
class sage.rings.padics.padic_capped_relative_element.pAdicConvert_CR_ZZ

Bases: RingMap

The map from a capped relative ring back to the ring of integers that returns the smallest non-negative integer approximation to its input which is accurate up to the precision.

Raises a ValueError, if the input is not in the closure of the image of the integers.

EXAMPLES:

```python
sage: f = Zp(5).coerce_map_from(ZZ).section(); f
Set-theoretic ring morphism:
 From: 5-adic Ring with capped relative precision 20
 To: Integer Ring
```

class sage.rings.padics.padic_capped_relative_element.pAdicConvert_CR_frac_field

Bases: Morphism

The section of the inclusion from \( \mathbb{Z}_q \) to its fraction field.

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqCR(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = R.convert_map_from(K); f
Generic morphism:
 From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
 To: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
```

class sage.rings.padics.padic_capped_relative_element.pAdicConvert_QQ_CR

Bases: Morphism

The inclusion map from the rationals to a capped relative ring that is defined on all elements with non-negative \( p \)-adic valuation.

EXAMPLES:

```python
sage: f = Zp(5).convert_map_from(QQ); f
Generic morphism:
 From: Rational Field
 To: 5-adic Ring with capped relative precision 20
```

section()

Return the map back to the rationals that returns the smallest non-negative integer approximation to its input which is accurate up to the precision.

EXAMPLES:

```python
sage: f = Zp(5,4).convert_map_from(QQ).section()
sage: f(Zp(5,4)(-1))
-1
```

class sage.rings.padics.padic_capped_relative_element.pAdicTemplateElement

Bases: pAdicGenericElement

A class for common functionality among the \( p \)-adic template classes.

INPUT:
• parent – a local ring or field
• x – data defining this element. Various types are supported, including ints, Integers, Rationals, PARI p-adics, integers mod $p^k$ and other Sage p-adics.
• absprec – a cap on the absolute precision of this element
• relprec – a cap on the relative precision of this element

EXAMPLES:
sage: Zp(17)(17^3, 8, 4)
17^3 + O(17^7)

expansion(n=None, lift_mode='simple', start_val=None)

Return the coefficients in a $\pi$-adic expansion. If this is a field element, start at $\pi^\text{valuation}$, if a ring element at $\pi^0$.

For each lift mode, this function returns a list of $a_i$ so that this element can be expressed as

$$\pi^v \cdot \sum_{i=0}^{\infty} a_i \pi^i,$$

where $v$ is the valuation of this element when the parent is a field, and $v = 0$ otherwise.

Different lift modes affect the choice of $a_i$. When lift_mode is 'simple', the resulting $a_i$ will be non-negative: if the residue field is $F_p$, then they will be integers with $0 \leq a_i < p$; otherwise they will be a list of integers in the same range giving the coefficients of a polynomial in the indeterminant representing the maximal unramified subextension.

Choosing lift_mode as 'smallest' is similar to 'simple', but uses a balanced representation $-p/2 < a_i \leq p/2$.

Finally, setting lift_mode = 'teichmuller' will yield Teichmuller representatives for the $a_i$: $a_i^q = a_i$.

In this case the $a_i$ will lie in the ring of integers of the maximal unramified subextension of the parent of this element.

INPUT:
• n – integer (default None). If given, returns the corresponding entry in the expansion. Can also accept a slice (see slice())
• lift_mode – 'simple', 'smallest' or 'teichmuller' (default: 'simple')
• start_val – start at this valuation rather than the default (0 or the valuation of this element).

OUTPUT:
• If n is None, an iterable giving a $\pi$-adic expansion of this element. For base elements the contents will be integers if lift_mode is 'simple' or 'smallest', and elements of self.parent() if lift_mode is 'teichmuller'.
• If n is an integer, the coefficient of $\pi^n$ in the $\pi$-adic expansion of this element.

Note: Use slice operators to get a particular range.

EXAMPLES:
```python
sage: R = Zp(7,6); a = R(12837162817); a
3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)

sage: E = a.expansion(); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)

sage: list(E)
[3, 4, 0, 4, 0]

sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True

sage: E = a.expansion(lift_mode='smallest'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (balanced)

sage: list(E)
[3, -3, 1, -3, 1]

sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True

sage: E = a.expansion(lift_mode='teichmuller'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (teichmuller)

sage: list(E)
[3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + O(7^6), 0,
 5 + 2*7 + 3*7^3 + O(7^4),
 1 + O(7^3),
 3 + 4*7 + O(7^2),
 5 + O(7)]

sage: sum(c * 7^i for i, c in enumerate(E))
3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
```

If the element has positive valuation then the list will start with some zeros:

```python
sage: a = R(7^3 * 17)

sage: E = a.expansion(); E
7-adic expansion of 3*7^3 + 2*7^4 + O(7^9)

sage: list(E)
[0, 0, 3, 2, 0, 0, 0, 0]
```

The expansion of 0 is truncated:

```python
sage: E = R(0,7).expansion(); E
7-adic expansion of 0(7^7)

sage: len(E)
0

sage: list(E)
[]
```

In fields, on the other hand, the expansion starts at the valuation:

```python
sage: R = Qp(7,4); a = R(6*7+7^2); E = a.expansion(); E
7-adic expansion of 6*7 + 7^2 + O(7^5)

sage: list(E)
[6, 1, 0, 0]

sage: list(a.expansion(lift_mode='smallest'))
[-1, 2, 0, 0]

sage: list(a.expansion(lift_mode='teichmuller'))
[6 + 6*7 + 6*7^2 + 6*7^3 + O(7^4),
```
You can ask for a specific entry in the expansion:

```
sage: a.expansion(1)
6
sage: a.expansion(1, lift_mode='smallest')
-1
sage: a.expansion(2, lift_mode='teichmuller')
2 + 4*7 + 6*7^2 + O(7^3)
```

`lift_to_precision(absprec=None)`

Return another element of the same parent with absolute precision at least `absprec`, congruent to this \( p \)-adic element modulo the precision of this element.

**INPUT:**

- `absprec` – an integer or `None` (default: `None`); the absolute precision of the result. If `None`, lifts to the maximum precision allowed

**Note:** If setting `absprec` that high would violate the precision cap, raises a precision error. Note that the new digits will not necessarily be zero.

**EXAMPLES:**

```
sage: R = ZpCA(17)
sage: R(-1,2).lift_to_precision(10)
16 + 16*17 + O(17^10)
sage: R(1,15).lift_to_precision(10)
1 + O(17^15)
sage: R(1,15).lift_to_precision(30)
Traceback (most recent call last):
 ...,
PrecisionError: precision higher than allowed by the precision cap
```

```
sage: R(-1,2).lift_to_precision().precision_absolute() == R.precision_cap()
True
```

```
sage: R = Zp(5); c = R(17,3); c.lift_to_precision(8)
2 + 3*5 + 0(5^8)
sage: c.lift_to_precision().precision_relative() == R.precision_cap()
True
```

Fixed modulus elements don’t raise errors:

```
sage: R = ZpFM(5); a = R(5); a.lift_to_precision(7)
5
sage: a.lift_to_precision(10000)
5
```

`residue(absprec=1, field=None, check_prec=True)`

Reduce this element modulo \( p^{absprec} \).
INPUT:

- `absprec` – 0 or 1.
- `field` – boolean (default `None`). For precision 1, whether to return an element of the residue field or a residue ring. Currently unused.
- `check_prec` – boolean (default `True`). Whether to raise an error if this element has insufficient precision to determine the reduction. Errors are never raised for fixed-mod or floating-point types.

OUTPUT:

This element reduced modulo $p^{\text{absprec}}$ as an element of the residue field or the null ring.

EXAMPLES:

```
sage: # needs sage.libs.ntl
sage: R, <a> = Zq(27, 4)
sage: (3 + 3*a).residue()
0
sage: (a + 1).residue()
a0 + 1
```

`teichmuller_expansion(n=None)`

Returns an iterator over coefficients $a_0, a_1, \ldots, a_n$ such that

- $a_q^i = a_i$, where $q$ is the cardinality of the residue field,
- this element can be expressed as
  
  \[ \pi^v \sum_{i=0}^{\infty} a_i \pi^i \]

where $v$ is the valuation of this element when the parent is a field, and $v=0$ otherwise.

- if $a_i \neq 0$, the precision of $a_i$ is $i$ less than the precision of this element (relative in the case that the parent is a field, absolute otherwise)

**Note:** The coefficients will lie in the ring of integers of the maximal unramified subextension.

INPUT:

- `n` – integer (default `None`). If given, returns the coefficient of $\pi^n$ in the expansion.

EXAMPLES:

For fields, the expansion starts at the valuation:

```
sage: R = Qp(5, 5); list(R(70).teichmuller_expansion())
[4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 0(5^5),
 3 + 3*5 + 2*5^2 + 3*5^3 + 0(5^4),
 2 + 5 + 2*5^2 + 0(5^3),
 1 + 0(5^2),
 4 + 0(5)]
```

But if you specify `n`, you get the coefficient of $\pi^n$:

```
sage: R(70).teichmuller_expansion(2)
3 + 3*5 + 2*5^2 + 3*5^3 + 0(5^4)
```
unit_part()

Returns the unit part of this element.

This is the \( p \)-adic element \( u \) in the same ring so that this element is \( \pi^v u \), where \( \pi \) is a uniformizer and \( v \) is the valuation of this element.

EXAMPLES:

```python
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(125)
sage: (5*a).unit_part()
a + O(5^20)
```

sage.rings.padics.padic_capped_relative_element.unpickle_cre_v2(cls, parent, unit, ordp, relprec)

Unpickles a capped relative element.

EXAMPLES:

```python
sage: from sage.rings.padics.padic_capped_relative_element import unpickle_cre_v2
sage: R = Zp(5); a = R(85,6)
sage: b = unpickle_cre_v2(a.__class__, R, 17, 1, 5)
sage: a == b
True
sage: a.precision_relative() == b.precision_relative()
True
```

sage.rings.padics.padic_capped_relative_element.unpickle_pcre_v1(R, unit, ordp, relprec)

Unpickles a capped relative element.

EXAMPLES:

```python
sage: from sage.rings.padics.padic_capped_relative_element import unpickle_pcre_v1
sage: R = Zp(5)
sage: a = unpickle_pcre_v1(R, 17, 2, 5); a
2*5^2 + 3*5^3 + O(5^7)
```
Elements of \( p \)-adic Rings with Absolute Precision Cap

AUTHORS:

- David Roe
- Genya Zaytman: documentation
- David Harvey: doctests

```python
class sage.rings.padics.padic_capped_absolute_element.CAElement
 Bases: pAdicTemplateElement

 add_bigoh(absprec)
 Return a new element with absolute precision decreased to absprec. The precision never increases.
 INPUT:
 • absprec – an integer or infinity
 OUTPUT:
 self with precision set to the minimum of self's precision and prec

 EXAMPLES:

 sage: R = Zp(7,4,'capped-abs','series'); a = R(8); a.add_bigoh(1)
 1 + O(7)
 sage: k = ZpCA(3,5)
 sage: a = k(41); a
 2 + 3 + 3^2 + 3^3 + O(3^5)
 sage: a.add_bigoh(7)
 2 + 3 + 3^2 + 3^3 + O(3^5)
 sage: a.add_bigoh(3)
 2 + 3 + 3^2 + O(3^3)
```

```python
def is_equal_to(right, absprec=None)
 Determine whether the inputs are equal modulo \(\pi^{\text{absprec}} \).
 INPUT:
 • right – a \(p \)-adic element with the same parent
 • absprec – an integer, infinity, or None

 EXAMPLES:
```
\texttt{sage: R = ZpCA(2, 6)}
\texttt{sage: R(13).is_equal_to(R(13))}
True
\texttt{sage: R(13).is_equal_to(R(13+2^{10}))}
True
\texttt{sage: R(13).is_equal_to(R(17), 2)}
True
\texttt{sage: R(13).is_equal_to(R(17), 5)}
False
\texttt{sage: R(13).is_equal_to(R(13+2^{10}), \text{absprec}=10)}
Traceback (most recent call last):
...  
PrecisionError: elements not known to enough precision

\textbf{is\_zero}(\textit{absprec}=\texttt{None})

Determine whether this element is zero modulo \(\pi^{\text{absprec}}\).

If \textit{absprec} is \texttt{None}, returns True if this element is indistinguishable from zero.

\textbf{INPUT:}

\begin{itemize}
\item \textit{absprec} – an integer, infinity, or \texttt{None}
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: R = ZpCA(17, 6)}
\texttt{sage: R(0).is_zero()}
True
\texttt{sage: R(17^6).is_zero()}  
True
\texttt{sage: R(17^2).is_zero(\text{absprec}=2)}
True
\texttt{sage: R(17^6).is_zero(\text{absprec}=10)}
Traceback (most recent call last):
...  
PrecisionError: not enough precision to determine if element is zero
\end{verbatim}

\textbf{polynomial}(\textit{\texttt{var} = 'x')}  

Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

\textbf{INPUT:}

\begin{itemize}
\item \textit{\texttt{var}} – string; the variable name for the polynomial
\end{itemize}

\textbf{EXAMPLES:}

\begin{verbatim}
\texttt{sage: R.<a> = ZqCA(5^3)}
\texttt{sage: a.polynomial()}  
(1 + O(5^{20}))*x + O(5^{20})
\texttt{sage: a.polynomial(\texttt{var}='y')}  
(1 + O(5^{20}))*y + O(5^{20})
\texttt{sage: (5*a^2 + R(25, 4)).polynomial()}  
(5 + O(5^{4}))*x^2 + O(5^{4})*x + 5^2 + O(5^{4})
\end{verbatim}
precision_absolute()
The absolute precision of this element.
This is the power of the maximal ideal modulo which this element is defined.
EXAMPLES:

```
sage: R = Zp(7,4,'capped-abs'); a = R(7); a.precision_absolute()
4
```

precision_relative()
The relative precision of this element.
This is the power of the maximal ideal modulo which the unit part of this element is defined.
EXAMPLES:

```
sage: R = Zp(7,4,'capped-abs'); a = R(7); a.precision_relative()
3
```

unit_part()
Return the unit part of this element.
EXAMPLES:

```
sage: R = Zp(17,4,'capped-abs', 'val-unit')
sage: a = R(18*17)
sage: a = a - a
sage: a.val_unit()
(2, 3 + O(5^4))
```

val_unit()
Return a 2-tuple, the first element set to the valuation of this element, and the second to the unit part of this element.
For a zero element, the unit part is \(O(p^0)\).
EXAMPLES:

```
sage: R = ZpCA(5)
sage: a = R(75, 6); b = a - a
sage: a.val_unit()
(2, 3 + O(5^4))
```

```
sage: b.val_unit()
(6, O(5^0))
```

class sage.rings.padics.padic_capped_absolute_element.ExpansionIter
Bases: object
An iterator over a \(p\)-adic expansion.
This class should not be instantiated directly, but instead using \(\text{expansion()}\).
INPUT:
• elt – the $p$-adic element
• prec – the number of terms to be emitted
• mode – either simple_mode, smallest_mode or teichmuller_mode

EXAMPLES:

```python
sage: E = Zp(5,4)(373).expansion()
sage: I = iter(E) # indirect doctest	sage: type(I)
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIter'>
```

```python
class sage.rings.padics.padic_capped_absolute_element.ExpansionIterable
Bases: object
An iterable storing a p-adic expansion of an element.
This class should not be instantiated directly, but instead using expansion().
INPUT:
• elt – the p-adic element
• prec – the number of terms to be emitted
• val_shift – how many zeros to add at the beginning of the expansion, or the number of initial terms to truncate (if negative)
• mode – one of the following:
 – 'simple_mode'
 – 'smallest_mode'
 – 'teichmuller_mode'

EXAMPLES:

```python
sage: E = Zp(5,4)(373).expansion()  # indirect doctest	sage: type(E)
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIterable'>
```

```python
class sage.rings.padics.padic_capped_absolute_element.PowComputer_
Bases: PowComputer_base
A PowComputer for a capped-absolute padic ring.
sage.rings.padics.padic_capped_absolute_element.make_pAdicCappedAbsoluteElement(parent, x, absprec)
Unpickles a capped absolute element.
EXAMPLES:

```python
sage: from sage.rings.padics.padic_capped_absolute_element import make_
 →pAdicCappedAbsoluteElement
sage: R = ZpCA(5)
sage: a = make_pAdicCappedAbsoluteElement(R, 17*25, 5); a
2*5^2 + 3*5^3 + O(5^5)
```
class sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement
Bases: CAElement

Constructs new element with given parent and value.

INPUT:

• \(x\) – value to coerce into a capped absolute ring

• absprec – maximum number of digits of absolute precision

• relprec – maximum number of digits of relative precision

EXAMPLES:

```python
sage: R = ZpCA(3, 5)
sage: R(2)
2 + O(3^5)
sage: R(2, absprec=2)
2 + O(3^2)
sage: R(3, relprec=2)
3 + O(3^3)
sage: R(Qp(3)(10))
1 + 3^2 + O(3^5)
sage: R(pari(6))
2*3 + O(3^5)
sage: R(pari(1/2))
2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
sage: R(1/2)
2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
sage: R(mod(-1, 3^7))
2 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + O(3^5)
sage: R(mod(-1, 3^2))
2 + 2*3 + O(3^2)
sage: R(3 + O(3^2))
3 + 0(3^2)
```

lift()

EXAMPLES:

```python
sage: R = ZpCA(3)
sage: R(10).lift()
10
sage: R(-1).lift()
3486784400
```

multiplicative_order()

Return the minimum possible multiplicative order of this element.

OUTPUT:

The multiplicative order of self. This is the minimum multiplicative order of all elements of \(\mathbb{Z}_p\) lifting self to infinite precision.

EXAMPLES:
sage: R = ZpCA(7, 6)
sage: R(1/3)
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + 4*7^5 + O(7^6)
sage: R(1/3).multiplicative_order()
+Infinity
sage: R(7).multiplicative_order()
+Infinity
sage: R(1).multiplicative_order()
1
sage: R(-1).multiplicative_order()
2
sage: R.teichmuller(3).multiplicative_order()
6

residue(absprec=1, field=None, check_prec=True)

Reduces self modulo \( p^{\text{absprec}} \).

INPUT:

- absprec – a non-negative integer (default: 1)
- field – boolean (default None). Whether to return an element of GF(p) or Zmod(p).
- check_prec – boolean (default True). Whether to raise an error if this element has insufficient pre-

precision to determine the reduction.

OUTPUT:

This element reduced modulo \( p^{\text{absprec}} \) as an element of \( \mathbb{Z}/p^{\text{absprec}}\mathbb{Z} \)

EXAMPLES:

```python
sage: R = Zp(7, 10, 'capped-abs')
sage: a = R(8)
sage: a.residue(1)
1
```

This is different from applying \% \( p^n \) which returns an element in the same ring:

```python
sage: b = a.residue(2); b
8
sage: b.parent()
Ring of integers modulo 49
```

Note that reduction of \( c \) dropped to the precision of the unit part of \( 7^2 \), see \_mod\_():

```python
sage: R(7^2).unit_part()
1 + O(7^10)
```

See also:

\_mod\_()
class sage.rings.padics.padic_capped_absolute_element.pAdicCoercion_CA_fric_field

Bases: RingHomomorphism

The canonical inclusion of Zq into its fraction field.

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqCA(27, implementation='FLINT')
sage: K = R.fraction_field()
```

```
sage: f = K.coerce_map_from(R); f
Ring morphism:
 From: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
 To: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
```

`is_injective()`

Return whether this map is injective.

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqCA(9, implementation='FLINT')
```

```
sage: f = K.coerce_map_from(R)
sage: f.is_injective()
True
```

`is_surjective()`

Return whether this map is surjective.

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqCA(9, implementation='FLINT')
```

```
sage: f = K.coerce_map_from(R)
sage: f.is_surjective()
False
```

`section()`

Return a map back to the ring that converts elements of non-negative valuation.

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqCA(27, implementation='FLINT')
```

```
sage: f(K.gen())
a + O(3^20)
sage: f.section()
Generic morphism:
 From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
 To: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
```
class sage.rings.padics.padic_capped_absolute_element.pAdicCoercion_ZZ_CA

Bases: RingHomomorphism

The canonical inclusion from the ring of integers to a capped absolute ring.

EXAMPLES:

```
sage: f = ZpCA(5).coerce_map_from(ZZ); f
Ring morphism:
 From: Integer Ring
 To: 5-adic Ring with capped absolute precision 20
```

section()

Return a map back to the ring of integers that approximates an element by an integer.

EXAMPLES:

```
sage: f = ZpCA(5).coerce_map_from(ZZ).section()
sage: f(ZpCA(5)(-1)) - 5^20
-1
```

class sage.rings.padics.padic_capped_absolute_element.pAdicConvert_CA_ZZ

Bases: RingMap

The map from a capped absolute ring back to the ring of integers that returns the smallest non-negative integer approximation to its input which is accurate up to the precision.

Raises a ValueError if the input is not in the closure of the image of the ring of integers.

EXAMPLES:

```
sage: f = ZpCA(5).coerce_map_from(ZZ).section(); f
Set-theoretic ring morphism:
 From: 5-adic Ring with capped absolute precision 20
 To: Integer Ring
```

class sage.rings.padics.padic_capped_absolute_element.pAdicConvert_CA_frac_field

Bases: Morphism

The section of the inclusion from \( \mathbb{Z}_q \) to its fraction field.

EXAMPLES:

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqCA(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = R.convert_map_from(K); f
Generic morphism:
 From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
 To: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
```

class sage.rings.padics.padic_capped_absolute_element.pAdicConvert_QQ_CA

Bases: Morphism

The inclusion map from the rationals to a capped absolute ring that is defined on all elements with non-negative \( p \)-adic valuation.

EXAMPLES:
```
sage: f = ZpCA(5).convert_map_from(QQ); f
Generic morphism:
 From: Rational Field
 To: 5-adic Ring with capped absolute precision 20
```

```python
class sage.rings.padics.padic_capped_absolute_element.pAdicTemplateElement
Bases: pAdicGenericElement

A class for common functionality among the p-adic template classes.

INPUT:

- `parent` – a local ring or field
- `x` – data defining this element. Various types are supported, including ints, Integers, Rationals, PARI p-adics, integers mod p^k and other Sage p-adics.
- `absprec` – a cap on the absolute precision of this element
- `relprec` – a cap on the relative precision of this element

EXAMPLES:
```
sage: Zp(17)(17^3, 8, 4)
17^3 + O(17^7)
```

```
expansion(n=None, lift_mode='simple', start_val=None)

Return the coefficients in a $\pi$-adic expansion. If this is a field element, start at $\pi^\text{valuation}$, if a ring element at $\pi^0$.

For each lift mode, this function returns a list of $a_i$ so that this element can be expressed as

$$\pi^v \cdot \sum_{i=0}^{\infty} a_i\pi^i,$$

where $v$ is the valuation of this element when the parent is a field, and $v = 0$ otherwise.

Different lift modes affect the choice of $a_i$. When `lift_mode` is 'simple', the resulting $a_i$ will be non-negative: if the residue field is $\mathbb{F}_p$, then they will be integers with $0 \leq a_i < p$; otherwise they will be a list of integers in the same range giving the coefficients of a polynomial in the indeterminant representing the maximal unramified subextension.

Choosing `lift_mode` as 'smallest' is similar to 'simple', but uses a balanced representation $-p/2 < a_i \leq p/2$.

Finally, setting `lift_mode = 'teichmuller'` will yield Teichmuller representatives for the $a_i$: $a_i^\pi = a_i$.

In this case the $a_i$ will lie in the ring of integers of the maximal unramified subextension of the parent of this element.

INPUT:

- `n` – integer (default None). If given, returns the corresponding entry in the expansion. Can also accept a slice (see slice()
- `lift_mode` – 'simple', 'smallest' or 'teichmuller' (default: 'simple')
- `start_val` – start at this valuation rather than the default (0 or the valuation of this element).

OUTPUT:
• If \( n \) is None, an iterable giving a \( \pi \)-adic expansion of this element. For base elements the contents will be integers if lift_mode is 'simple' or 'smallest', and elements of self.parent() if lift_mode is 'teichmuller'.

• If \( n \) is an integer, the coefficient of \( \pi^n \) in the \( \pi \)-adic expansion of this element.

**Note:** Use slice operators to get a particular range.

**EXAMPLES:**

```python
sage: R = Zp(7,6); a = R(12837162817); a
3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
sage: E = a.expansion(); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
sage: list(E)
[3, 4, 4, 0, 4, 0]
sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True
sage: E = a.expansion(lift_mode='smallest'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (balanced)
sage: list(E)
[3, -3, -2, 1, -3, 1]
sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True
sage: E = a.expansion(lift_mode='teichmuller'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (teichmuller)
sage: list(E)
[3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + O(7^6),
 0,
 5 + 2*7 + 3*7^3 + O(7^4),
 1 + O(7^3),
 3 + 4*7 + O(7^2),
 5 + O(7)]
sage: sum(c * 7^i for i, c in enumerate(E))
3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
```

If the element has positive valuation then the list will start with some zeros:

```python
sage: a = R(7^3 * 17)
sage: E = a.expansion(); E
7-adic expansion of 3*7^3 + 2*7^4 + O(7^9)
sage: list(E)
[0, 0, 0, 3, 2, 0, 0, 0, 0]
```

The expansion of 0 is truncated:

```python
sage: E = R(0, 7).expansion(); E
7-adic expansion of 0(7^7)
sage: len(E)
0
sage: list(E)
[]
```

In fields, on the other hand, the expansion starts at the valuation:
You can ask for a specific entry in the expansion:

```
sage: a.expansion(1)
6
sage: a.expansion(1, lift_mode='smallest')
-1
sage: a.expansion(2, lift_mode='teichmuller')
2 + 4*7 + 6*7^2 + O(7^3)
```

**lift_to_precision** *(absprec=None)*

Return another element of the same parent with absolute precision at least `absprec`, congruent to this \( p \)-adic element modulo the precision of this element.

**INPUT:**

- `absprec` – an integer or `None` (default: `None`); the absolute precision of the result. If `None`, lifts to the maximum precision allowed

**Note:** If setting `absprec` that high would violate the precision cap, raises a precision error. Note that the new digits will not necessarily be zero.

**EXAMPLES:**

```
sage: R = ZpCA(17)
sage: R(-1,2).lift_to_precision(10)
16 + 16*17 + O(17^10)
sage: R(1,15).lift_to_precision(10)
1 + O(17^15)
sage: R(1,15).lift_to_precision(30)
Traceback (most recent call last):
 ...
PrecisionError: precision higher than allowed by the precision cap
sage: R(-1,2).lift_to_precision().precision_absolute() == R.precision_cap()
True
```

Fixed modulus elements don’t raise errors:
residue(absprec=1, field=None, check_prec=True)
Reduce this element modulo $p^{\text{absprec}}$.

INPUT:
• absprec – 0 or 1.
• field – boolean (default None). For precision 1, whether to return an element of the residue field or a residue ring. Currently unused.
• check_prec – boolean (default True). Whether to raise an error if this element has insufficient precision to determine the reduction. Errors are never raised for fixed-mod or floating-point types.

OUTPUT:
This element reduced modulo $p^{\text{absprec}}$ as an element of the residue field or the null ring.

EXAMPLES:

sage: # needs sage.libs.ntl
sage: R.<a> = Zq(27, 4)
(3 + 3*a).residue()  # with precision 1
0
sage: (a + 1).residue()  # with precision 0
a0 + 1

Note: The coefficients will lie in the ring of integers of the maximal unramified subextension.

INPUT:
• n – integer (default None). If given, returns the coefficient of $\pi^n$ in the expansion.

EXAMPLES:
For fields, the expansion starts at the valuation:

sage: R = Qp(5, 5); list(R(70).teichmuller_expansion())
[4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5),
 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4),

(continues on next page)
But if you specify n, you get the coefficient of $\pi^n$:

```
sage: R(70).teichmuller_expansion(2)
3 + 3*5 + 2*5^2 + 3*5^3 + 0(5^4)
```

### unit_part()

Returns the unit part of this element.

This is the $p$-adic element $u$ in the same ring so that this element is $\pi^v u$, where $\pi$ is a uniformizer and $v$ is the valuation of this element.

**EXAMPLES:**

```
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(125)
sage: (5*a).unit_part()
a + O(5^20)
```

### `sage.rings.padics.padic_capped_absolute_element.unpickle_cae_v2.cls, parent, value, absprec)`

Unpickle capped absolute elements.

**INPUT:**

- `cls` – the class of the capped absolute element
- `parent` – a $p$-adic ring
- `value` – a Python object wrapping a celement, of the kind accepted by the cunpickle function
- `absprec` – a Python int or Sage integer

**EXAMPLES:**

```
sage: from sage.rings.padics.padic_capped_absolute_element import unpickle_cae_v2
sage: R = ZpCA(5,8)
sage: a = unpickle_cae_v2(pAdicCappedAbsoluteElement, R, 42, int(6)); a
2 + 3*5 + 5^2 + O(5^6)
sage: a.parent() is R
True
```
$P$-adic Fixed-Mod Element

Elements of $p$-adic Rings with Fixed Modulus

AUTHORS:

- David Roe
- Genya Zaytman: documentation
- David Harvey: doctests

class sage.rings.padics.padic_fixed_mod_element.ExpansionIter

Bases: object

An iterator over a $p$-adic expansion.

This class should not be instantiated directly, but instead using expansion().

INPUT:

- elt – the $p$-adic element
- prec – the number of terms to be emitted
- mode – either simple_mode, smallest_mode or teichmuller_mode

EXAMPLES:

```python
sage: E = Zp(5,4)(373).expansion()
sage: I = iter(E) # indirect doctest
sage: type(I)
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIter'>
```

class sage.rings.padics.padic_fixed_mod_element.ExpansionIterable

Bases: object

An iterable storing a $p$-adic expansion of an element.

This class should not be instantiated directly, but instead using expansion().

INPUT:

- elt – the $p$-adic element
- prec – the number of terms to be emitted
- val_shift – how many zeros to add at the beginning of the expansion, or the number of initial terms to truncate (if negative)
- mode – one of the following:
  - 'simple_mode'

```python
sage: a = Zp(5,4)(373)
```
- 'smallest_mode'
- 'teichmuller_mode'

EXAMPLES:

```python
sage: E = Zp(5,4)(373).expansion() # indirect doctest
sage: type(E)
<class 'sage.rings.padics.padic_capped_relative_element.ExpansionIterable'>
```

```python
class sage.rings.padics.padic_fixed_mod_element.FMElement
 Bases: pAdicTemplateElement

 add_bigoh(absprec)

 Return a new element truncated modulo \(p^{\text{absprec}} \).

 INPUT:
 • absprec – an integer or infinity

 OUTPUT:
 a new element truncated modulo \(p^{\text{absprec}} \).

 EXAMPLES:

    ```python
    sage: R = ZpFM(2, 6)
    sage: R(13).is_equal_to(R(13))
    True
    sage: R(13).is_equal_to(R(13 + 2^10))
    True
    sage: R(13).is_equal_to(R(17), 2)
    True
    sage: R(13).is_equal_to(R(17), 5)
    False
    ```
```

```python
 is_zero(absprec=None)

 Returns whether self is zero modulo \(p^{\text{absprec}} \).

 INPUT:
 • absprec – an integer

 EXAMPLES:

    ```python
    ```
\begin{verbatim}
sage: R = ZpFM(17, 6)
sage: R(0).is_zero()
True
sage: R(17^6).is_zero()
True
sage: R(17^2).is_zero(absprec=2)
True

polynomial(var='x')
Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

INPUT:
- var – string, the variable name for the polynomial

EXAMPLES:
\begin{verbatim}
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(5^3)
sage: a.polynomial()
x
sage: a.polynomial(var='y')
y
sage: (5*a^2 + 25).polynomial()
5*x^2 + 5^2
\end{verbatim}
\end{verbatim}

precision_absolute()
The absolute precision of this element.

EXAMPLES:
\begin{verbatim}
sage: R = Zp(7,4,'fixed-mod'); a = R(7); a.precision_absolute()
4
\end{verbatim}

precision_relative()
The relative precision of this element.

EXAMPLES:
\begin{verbatim}
sage: R = Zp(7,4,'fixed-mod'); a = R(7); a.precision_relative()
3
sage: a = R(0); a.precision_relative()
0
\end{verbatim}

unit_part()
Return the unit part of self.
If the valuation of self is positive, then the high digits of the result will be zero.

EXAMPLES:
\begin{verbatim}
sage: R = Zp(17, 4, 'fixed-mod')
sage: R(5).unit_part()
5
sage: R(18*17).unit_part()
1 + 17
\end{verbatim}
\end{verbatim}

(continues on next page)
\textbf{sage: } \texttt{R(0).unit_part()}
\begin{verbatim}
0
\end{verbatim}

\textbf{sage: } \texttt{type(R(5).unit_part())}

\begin{verbatim}
<class 'sage.rings.padics.padic_fixed_mod_element.pAdicFixedModElement'>
\end{verbatim}

\textbf{sage: } \texttt{R = ZpFM(5, 5); a = R(75); a.unit_part()}

\begin{verbatim}
3
\end{verbatim}

\textbf{val_unit()}

Return a 2-tuple, the first element set to the valuation of \texttt{self}, and the second to the unit part of \texttt{self}.

If \texttt{self == 0}, then the unit part is \(0(p^{\text{self.parent().precision_cap()}})\).

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = ZpFM(5, 5)
sage: a = R(75); b = a - a
sage: a.val_unit()
(2, 3)
sage: b.val_unit()
(5, 0)
\end{verbatim}

\textbf{class} \texttt{sage.rings.padics.padic_fixed_mod_element.PowComputer_}

\textbf{Bases:} \texttt{PowComputer_base}

A PowComputer for a fixed-modulus p-adic ring.

\texttt{sage.rings.padics.padic_fixed_mod_element.make_pAdicFixedModElement}(\texttt{parent, value})

Unpickles a fixed modulus element.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.rings.padics.padic_fixed_mod_element import make_pAdicFixedModElement
sage: R = ZpFM(5)
sage: a = make_pAdicFixedModElement(R, 17*25); a
2*5^2 + 3*5^3
\end{verbatim}

\textbf{class} \texttt{sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_FM_frac_field}

\textbf{Bases:} \texttt{RingHomomorphism}

The canonical inclusion of \(\mathbb{Z}_q\) into its fraction field.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(27, implementation='FLINT')
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R); f
sage: f
Ring morphism:
 From: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
 To: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
\end{verbatim}

\textbf{is_injective()}

Return whether this map is injective.

\textbf{EXAMPLES:}
```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(9)
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f.is_injective()
True
```

is_surjective()

Return whether this map is surjective.

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(9)
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f.is_surjective()
False
```

section()

Return a map back to the ring that converts elements of non-negative valuation.

EXAMPLES:

```python
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(27)
sage: K = R.fraction_field()
sage: f = K.coerce_map_from(R)
sage: f.section()(K.gen())
a
```

class sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_ZZ_FM

Bases: RingHomomorphism

The canonical inclusion from \(\mathbb{Z} \) to a fixed modulus ring.

EXAMPLES:

```python
sage: f = ZpFM(5).coerce_map_from(ZZ); f
Ring morphism:
  From: Integer Ring
  To:  5-adic Ring of fixed modulus 5^20
sage: f(ZpFM(5)(-1)) - 5^20
-1
```

section()

Returns a map back to \(\mathbb{Z} \) that approximates an element of this \(p \)-adic ring by an integer.

EXAMPLES:

```python
sage: f = ZpFM(5).coerce_map_from(ZZ).section()
sage: f(ZpFM(5)(-1)) - 5^20
-1
```

class sage.rings.padics.padic_fixed_mod_element.pAdicConvert_FM_ZZ

Bases: RingMap

```python
class sage.rings.padics.padic_fixed_mod_element.pAdicCoercion_ZZ_FM
class sage.rings.padics.padic_fixed_mod_element.pAdicConvert_FM_ZZ
```

201
The map from a fixed modulus ring back to \mathbb{Z} that returns the smallest non-negative integer approximation to its input which is accurate up to the precision.

If the input is not in the closure of the image of \mathbb{Z}, raises a `ValueError`.

EXAMPLES:

```
sage: f = ZpFM(5).coerce_map_from(ZZ).section(); f
Set-theoretic ring morphism:
  - From: 5-adic Ring of fixed modulus 5^20
  - To: Integer Ring
```

class `sage.rings.padics.padic_fixed_mod_element.pAdicConvert_FM_frac_field`

Bases: `Morphism`

The section of the inclusion from \mathbb{Z}_q to its fraction field.

EXAMPLES:

```
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(27)
sage: K = R.fraction_field()
sage: f = R.convert_map_from(K); f
Generic morphism:
  - From: 3-adic Unramified Extension Field in a defined by x^3 + 2*x + 1
  - To: 3-adic Unramified Extension Ring in a defined by x^3 + 2*x + 1
```

class `sage.rings.padics.padic_fixed_mod_element.pAdicConvert_QQ_FM`

Bases: `Morphism`

The inclusion map from \mathbb{Q} to a fixed modulus ring that is defined on all elements with non-negative p-adic valuation.

EXAMPLES:

```
sage: f = ZpFM(5).convert_map_from(QQ); f
Generic morphism:
  - From: Rational Field
  - To: 5-adic Ring of fixed modulus 5^20
```

class `sage.rings.padics.padic_fixed_mod_element.pAdicFixedModElement`

Bases: `FMElement`

INPUT:

- `parent` – a `pAdicRingFixedMod` object.
- `x` – input data to be converted into the parent.
- `absprec` – ignored; for compatibility with other p-adic rings
- `relprec` – ignored; for compatibility with other p-adic rings

Note: The following types are currently supported for `x`:

- Integers
- Rationals – denominator must be relatively prime to p
- FixedMod p-adics
• Elements of \texttt{IntegerModRing}\texttt{(p^k)} for \(k \) less than or equal to the modulus

The following types should be supported eventually:

• Finite precision \(p \)-adics

• Lazy \(p \)-adics

• Elements of local extensions of THIS \(p \)-adic ring that actually lie in \(\mathbb{Z}_p \)

\textbf{EXAMPLES:}

\begin{verbatim}
sage: R = Zp(5, 20, 'fixed-mod', 'terse')
sage: R(3)
3
sage: R(75)
75
sage: R(0)
0
sage: R(-1)
95367431640624
sage: R(-5)
95367431640620

sage: R(1/2)
47683715820313
sage: R(-7875/874)
9493096742250
sage: R(15/425)
Traceback (most recent call last):
 ... ValueError: p divides denominator

sage: R(Integers(125)(3))
3
sage: R(Integers(5)(3))
3
sage: R(Integers(5^30)(3))
3
sage: R(Integers(5^30)(1+5^23))
1
sage: R(Integers(49)(3))
Traceback (most recent call last):
 ... TypeError: p does not divide modulus 49
sage: R(Integers(48)(3))

declen 203
Some other conversions:

\begin{verbatim}
R(R(5))
5
\end{verbatim}

Todo: doctests for converting from other types of \(p\)-adic rings

\begin{verbatim}
lift()
Return an integer congruent to self modulo the precision.

\textbf{Warning:} Since fixed modulus elements don't track their precision, the result may not be correct modulo \(i_{prec, ap}\) if the element was defined by constructions that lost precision.

\begin{verbatim}
R = Zp(7,4,'fixed-mod'); a = R(8); a.lift()
8
type(a.lift())
<class 'sage.rings.integer.Integer'>
\end{verbatim}

\begin{verbatim}
multiplicative_order()
Return the minimum possible multiplicative order of self.

\textbf{OUTPUT:}

an integer – the multiplicative order of this element. This is the minimum multiplicative order of all elements of \(\mathbb{Z}_p\), lifting this element to infinite precision.

\begin{verbatim}
sage: R = ZpFM(7, 6)
sage: R(1/3)
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + 4*7^5
sage: R(1/3).multiplicative_order()
+Infinity
sage: R(7).multiplicative_order()
+Infinity
sage: R(1).multiplicative_order()
1
sage: R(-1).multiplicative_order()
2
sage: R.teichmuller(3).multiplicative_order()
6
\end{verbatim}

\begin{verbatim}
residue(absprec=1, field=None, check_prec=False)
Reduce self modulo \(p^{absprec}\).

\textbf{INPUT:}

\end{verbatim}
• absprec – an integer (default: 1)
• field – boolean (default None). Whether to return an element of GF(p) or Zmod(p).
• check_prec – boolean (default False). No effect (for compatibility with other types).

OUTPUT:
This element reduced modulo p^{absprec} as an element of $\mathbb{Z}/p^{\text{absprec}}\mathbb{Z}$.

EXAMPLES:

```
sage: R = Zp(7,4,'fixed-mod')
sage: a = R(8)
sage: a.residue(1)
1
```

This is different from applying $\% p^n$ which returns an element in the same ring:

```
sage: b = a.residue(2); b
8
sage: b.parent()
Ring of integers modulo 49
sage: c = a % 7^2; c
1 + 7
sage: c.parent()
7-adic Ring of fixed modulus 7^4
```

See also:

```
._mod_()
```

class sage.rings.padics.padic_fixed_mod_element.pAdicTemplateElement

Bases: pAdicGenericElement

A class for common functionality among the p-adic template classes.

INPUT:

• parent – a local ring or field
• x – data defining this element. Various types are supported, including ints, Integers, Rationals, PARI p-adics, integers mod p^k and other Sage p-adics.
• absprec – a cap on the absolute precision of this element
• relprec – a cap on the relative precision of this element

EXAMPLES:

```
sage: Zp(17)(17^3, 8, 4)
17^3 + O(17^7)
```

```
expansion(n=None, lift_mode='simple', start_val=None)
```

Return the coefficients in a π-adic expansion. If this is a field element, start at $\pi^{\text{valuation}}$, if a ring element at π^0.

For each lift mode, this function returns a list of a_i so that this element can be expressed as

$$
\pi^n \cdot \sum_{i=0}^{\infty} a_i \pi^i
$$
where \(v \) is the valuation of this element when the parent is a field, and \(v = 0 \) otherwise.

Different lift modes affect the choice of \(a_i \). When \(\text{lift_mode} \) is 'simple', the resulting \(a_i \) will be non-negative: if the residue field is \(\mathbb{F}_p \), then they will be integers with \(0 \leq a_i < p \); otherwise they will be a list of integers in the same range giving the coefficients of a polynomial in the indeterminant representing the maximal unramified subextension.

Choosing \(\text{lift_mode} \) as 'smallest' is similar to 'simple', but uses a balanced representation \(-p/2 < a_i \leq p/2\).

Finally, setting \(\text{lift_mode} = \text{'}teichmuller\text{'\) will yield Teichmuller representatives for the \(a_i\): \(a_i^q = a_i\). In this case the \(a_i \) will lie in the ring of integers of the maximal unramified subextension of the parent of this element.

INPUT:

- \(n \) – integer (default None). If given, returns the corresponding entry in the expansion. Can also accept a slice (see slice())
- \(\text{lift_mode} \) – 'simple', 'smallest' or 'teichmuller' (default: 'simple')
- \(\text{start_val} \) – start at this valuation rather than the default (0 or the valuation of this element).

OUTPUT:

- If \(n \) is None, an iterable giving a \(\pi \)-adic expansion of this element. For base elements the contents will be integers if \(\text{lift_mode} \) is 'simple' or 'smallest', and elements of self.parent() if \(\text{lift_mode} \) is 'teichmuller'.
- If \(n \) is an integer, the coefficient of \(\pi^n \) in the \(\pi \)-adic expansion of this element.

Note: Use slice operators to get a particular range.

EXAMPLES:

```sage```
R = Zp(7, 6); a = R(12837162817); a
3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)

sage: E = a.expansion(); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)

sage: list(E)
[3, 4, 4, 0, 4, 0]

sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True

sage: E = a.expansion(lift_mode='smallest'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (balanced)

sage: list(E)
[3, -3, -2, 1, -3, 1]

sage: sum([c * 7^i for i, c in enumerate(E)]) == a
True

sage: E = a.expansion(lift_mode='teichmuller'); E
7-adic expansion of 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) (teichmuller)

sage: list(E)
[3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + O(7^6),
0,
5 + 2*7 + 3*7^3 + O(7^4),
1 + O(7^3),
3 + 4*7 + O(7^2),

(continues on next page)
```
\[5 + O(7)]
\[
\textbf{sage: sum(c * 7^i \text{ for } i, c \text{ in enumerate(E)})}
\]
\[
3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
\]

If the element has positive valuation then the list will start with some zeros:

\[
\textbf{sage: a = R(7^3 * 17)}
\]
\[
\textbf{sage: E = a.expansion(); E}
7-adic expansion of 3*7^3 + 2*7^4 + O(7^9)
\]
\[
\textbf{sage: list(E)}
[0, 0, 0, 3, 2, 0, 0, 0, 0]
\]

The expansion of 0 is truncated:

\[
\textbf{sage: E = R(0, 7).expansion(); E}
7-adic expansion of O(7^7)
\]
\[
\textbf{sage: len(E)}
0
\]
\[
\textbf{sage: list(E)}
[]
\]

In fields, on the other hand, the expansion starts at the valuation:

\[
\textbf{sage: R = Qp(7,4); a = R(6*7+7**2); E = a.expansion(); E}
7-adic expansion of 6*7 + 7^2 + O(7^5)
\]
\[
\textbf{sage: list(E)}
[6, 1, 0, 0]
\]
\[
\textbf{sage: list(a.expansion(lift_mode='smallest'))}
[-1, 2, 0, 0]
\]
\[
\textbf{sage: list(a.expansion(lift_mode='teichmuller'))}
[6 + 6*7 + 6*7^2 + 6*7^3 + O(7^4),
2 + 4*7 + 6*7^2 + O(7^3),
3 + 4*7 + O(7^2),
3 + O(7)]
\]

You can ask for a specific entry in the expansion:

\[
\textbf{sage: a.expansion(1)}
6
\]
\[
\textbf{sage: a.expansion(1, lift_mode='smallest')}
-1
\]
\[
\textbf{sage: a.expansion(2, lift_mode='teichmuller')}
2 + 4*7 + 6*7^2 + O(7^3)
\]

\textbf{lift_to_precision}(\texttt{absprec=None})

Return another element of the same parent with absolute precision at least \texttt{absprec}, congruent to this \(p\)-adic element modulo the precision of this element.

\textbf{INPUT:}

- \texttt{absprec} – an integer or \texttt{None} (default: \texttt{None}); the absolute precision of the result. If \texttt{None}, lifts to the maximum precision allowed.

\textbf{Note:} If setting \texttt{absprec} that high would violate the precision cap, raises a precision error. Note that the
new digits will not necessarily be zero.

EXAMPLES:

```python
sage: R = ZpCA(17)
sage: R(-1,2).lift_to_precision(10)
16 + 16*17 + O(17^10)
sage: R(1,15).lift_to_precision(10)
1 + O(17^15)
sage: R(1,15).lift_to_precision(30)
Traceback (most recent call last):
  ...  
PrecisionError: precision higher than allowed by the precision cap
sage: R(-1,2).lift_to_precision().precision_absolute() == R.precision_cap()
True

sage: R = Zp(5); c = R(17,3); c.lift_to_precision(8)
2 + 3*5 + O(5^8)
sage: c.lift_to_precision().precision_relative() == R.precision_cap()
True
```

Fixed modulus elements don’t raise errors:

```python
sage: R = ZpFM(5); a = R(5); a.lift_to_precision(7)
5
sage: a.lift_to_precision(10000)
5
```

residue(absprec=1, field=None, check_prec=True)

Reduce this element modulo p^{absprec}.

INPUT:

- `absprec` – 0 or 1.
- `field` – boolean (default `None`). For precision 1, whether to return an element of the residue field or a residue ring. Currently unused.
- `check_prec` – boolean (default `True`). Whether to raise an error if this element has insufficient precision to determine the reduction. Errors are never raised for fixed-mod or floating-point types.

OUTPUT:

This element reduced modulo p^{absprec} as an element of the residue field or the null ring.

EXAMPLES:

```python
sage: # needs sage.libs.ntl
sage: R.<a> = Zq(27, 4)
sage: (3 + 3*a).residue()
0
sage: (a + 1).residue()
a0 + 1
```

teichmuller_expansion(n=None)

Returns an iterator over coefficients a_0, a_1, \ldots, a_n such that

- $a_i^q = a_i$, where q is the cardinality of the residue field,
• this element can be expressed as
\[\pi^v \sum_{i=0}^{\infty} a_i \pi^i \]
where \(v \) is the valuation of this element when the parent is a field, and \(v = 0 \) otherwise.

• if \(a_i \neq 0 \), the precision of \(a_i \) is \(i \) less than the precision of this element (relative in the case that the parent is a field, absolute otherwise)

Note: The coefficients will lie in the ring of integers of the maximal unramified subextension.

INPUT:

• \(n \) – integer (default None). If given, returns the coefficient of \(\pi^n \) in the expansion.

EXAMPLES:

For fields, the expansion starts at the valuation:

\[
\begin{align*}
\text{sage}: & \quad \text{R = Qp(5,5); list(R(70).teichmuller_expansion()}) \\
& \quad [4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5), \\
& \quad 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4), \\
& \quad 2 + 5 + 2*5^2 + O(5^3), \\
& \quad 1 + 0(5^2), \\
& \quad 4 + O(5)]
\end{align*}
\]

But if you specify \(n \), you get the coefficient of \(\pi^n \):

\[
\begin{align*}
\text{sage}: & \quad \text{R(70).teichmuller_expansion(2)} \\
& \quad 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4)
\end{align*}
\]

unit_part()

Returns the unit part of this element.

This is the \(p \)-adic element \(u \) in the same ring so that this element is \(\pi^v u \), where \(\pi \) is a uniformizer and \(v \) is the valuation of this element.

EXAMPLES:

\[
\begin{align*}
\text{sage}: & \quad \# \text{ needs sage.libs.ntl} \\
\text{sage}: & \quad \text{R.<a> = Zq(125)} \\
\text{sage}: & \quad \text{(5*a).unit_part(}) \\
& \quad a + O(5^20)
\end{align*}
\]

sage.rings.padics.padic_fixed_mod_element.unpickle_fme_v2(*cls*, *parent*, *value*)

Unpickles a fixed-mod element.

EXAMPLES:

\[
\begin{align*}
\text{sage}: & \quad \text{from sage.rings.padics.padic_fixed_mod_element import pAdicFixedModElement,} \\
& \quad \text{˓→unpickle_fme_v2} \\
\text{sage}: & \quad \text{R = ZpFM(5)} \\
\text{sage}: & \quad \text{a = unpickle_fme_v2(pAdicFixedModElement, R, 17*25); a} \\
& \quad 2*5^2 + 3*5^3 \\
\text{sage}: & \quad \text{a.parent()} \text{ is R} \\
& \quad \text{True}
\end{align*}
\]
A common superclass for all elements of extension rings and field of \(\mathbb{Z}_p \) and \(\mathbb{Q}_p \).

AUTHORS:

• David Roe (2007): initial version
• Julian Rueth (2012-10-18): added residue

class `sage.rings.padics.padic_ext_element.pAdicExtElement`

Bases: `pAdicGenericElement`

**frobenius*(arithmetic=True)*

Return the image of this element under the Frobenius automorphism applied to its parent.

INPUT:

• `arithmetic` – whether to apply the arithmetic Frobenius (acting by raising to the \(p \)-th power on the residue field). If False is provided, the image of geometric Frobenius (raising to the \((1/p) \)-th power on the residue field) will be returned instead.

EXAMPLES:

```
sage: R.<a> = Zq(5^4,3)
sage: a.frobenius()
(a^3 + a^2 + 3*a) + (3*a + 1)*5 + (2*a^3 + 2*a^2 + 2*a)*5^2 + O(5^3)
sage: f = R.defining_polynomial()
sage: f(a)
0(5^3)
sage: f(a.frobenius())
0(5^3)
sage: for i in range(4): a = a.frobenius()
sage: a
a + O(5^3)
sage: K.<a> = Qq(7^3,4)
sage: b = (a+1)/7
sage: c = b.frobenius(); c
(3*a^2 + 5*a + 1)*7^-1 + (6*a^2 + 6*a + 6) + (4*a^2 + 3*a + 4)*7 + (6*a^2 + a + 6)*7^2 + O(7^3)
sage: c.frobenius().frobenius()
(a + 1)*7^-1 + O(7^3)
```

An error will be raised if the parent of self is a ramified extension:
The document contains code examples and explanations related to computing with p-adic numbers in SageMath. The code snippet includes the definition and usage of the `residue` method for elements in a p-adic extension field. The method `residue` reduces an element modulo p^{absprec}, where `absprec` is a non-negative integer. The method has additional parameters `field` and `check_prec` for specific cases and precision control.

The code examples show how to use this method with both unramified and Eisenstein cases, demonstrating the reduction process for elements in the p-adic field. The examples also highlight the importance of precision (`absprec`) and the implications of insufficient precision for reduction.

The documentation notes that the method is only implemented for `absprec` less than or equal to one. The authors of the method are listed as Julian Rueth, and the implementation dates back to 2012.

Additional notes mention that the computation for `absprec` greater than one is not supported, and errors are raised for fixed-mod or floating-point types.
sage: a.residue(2)
Traceback (most recent call last):
...
NotImplementedError: residue() not implemented in extensions for absprec larger than one
A common superclass implementing features shared by all elements that use NTL's ZZ_pX as the fundamental data type.

AUTHORS:

- David Roe

class sage.rings.padics.padic_ZZ_pX_element.pAdicZZpXElement

Bases: pAdicExtElement

Initialization

EXAMPLES:

```
sage: A = Zp(next_prime(50000),10)
sage: S.<x> = A[]
sage: B.<t> = A.ext(x^2 + next_prime(50000))  # indirect doctest
```

```python
norm(base=None)
```

Return the absolute or relative norm of this element.

Note: This is not the p-adic absolute value. This is a field theoretic norm down to a ground ring. If you want the p-adic absolute value, use the abs() function instead.

If base is given then base must be a subfield of the parent L of self, in which case the norm is the relative norm from L to base.

In all other cases, the norm is the absolute norm down to \mathbb{Q}_p or \mathbb{Z}_p.

EXAMPLES:

```
sage: R = ZpCR(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: (1+2*w)^5).norm()
1 + 5^2 + O(5^5)
sage: (1+2*w).norm()^5
1 + 5^2 + O(5^5)
```

```python
trace(base=None)
```

Return the absolute or relative trace of this element.
If base is given then base must be a subfield of the parent \(L \) of self, in which case the norm is the relative norm from \(L \) to base.

In all other cases, the norm is the absolute norm down to \(\mathbb{Q}_p \) or \(\mathbb{Z}_p \).

EXAMPLES:

```python
sage: R = ZpCR(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = (2+3*w)^7
sage: b = (6+w^3)^5
sage: a.trace()
3*5 + 2*5^2 + 3*5^3 + 2*5^4 + O(5^5)
sage: a.trace() + b.trace()
4*5 + 5^2 + 5^3 + 2*5^4 + O(5^5)
sage: (a+b).trace()
4*5 + 5^2 + 5^3 + 2*5^4 + O(5^5)
```
This file implements elements of Eisenstein and unramified extensions of \mathbb{Z}_p and \mathbb{Q}_p with capped relative precision.

For the parent class see `sage.rings.padics.padic_extension_leaves`.

The underlying implementation is through NTL’s `ZZ_pX` class. Each element contains the following data:

- `ordp (long)` – A power of the uniformizer to scale the unit by. For unramified extensions this uniformizer is p, for Eisenstein extensions it is not. A value equal to the maximum value of a `long` indicates that the element is an exact zero.

- `relprec (long)` – A signed integer giving the precision to which this element is defined. For nonzero `relprec`, the absolute value gives the power of the uniformizer modulo which the unit is defined. A positive value indicates that the element is normalized (ie `unit` is actually a unit: in the case of Eisenstein extensions the constant term is not divisible by p, in the case of unramified extensions that there is at least one coefficient that is not divisible by p). A negative value indicates that the element may or may not be normalized. A zero value indicates that the element is zero to some precision. If so, `ordp` gives the absolute precision of the element. If `ordp` is greater than `maxordp`, then the element is an exact zero.

- `unit (ZZ_pX_c)` – An `ntl ZZ_pX` storing the unit part. The variable x is the uniformizer in the case of Eisenstein extensions. If the element is not normalized, the `unit` may or may not actually be a unit. This `ZZ_pX` is created with global `ntl` modulus determined by the absolute value of `relprec`. If `relprec` is 0, `unit` is not initialized, or destructed if normalized and found to be zero. Otherwise, let r be `relprec` and e be the ramification index over \mathbb{Q}_p or \mathbb{Z}_p. Then the modulus of `unit` is given by $p^{\lceil r/e \rceil}$. Note that all kinds of problems arise if you try to mix moduli. `ZZ_pX_conv_modulus` gives a semi-safe way to convert between different moduli without having to pass through `ZZX`.

- `prime_pow` (some subclass of `PowComputer_ZZ_pX`) – a class, identical among all elements with the same parent, holding common data.
 - `prime_pow.deg` – The degree of the extension
 - `prime_pow.e` – The ramification index
 - `prime_pow.f` – The inertia degree
 - `prime_pow.prec_cap` – the unramified precision cap. For Eisenstein extensions this is the smallest power of p that is zero.
 - `prime_pow.ram_prec_cap` – the ramified precision cap. For Eisenstein extensions this will be the smallest power of x that is indistinguishable from zero.
 - `prime_pow.pow_ZZ`, `prime_pow.pow_mpz_t`, `prime_pow.pow_Integer` – functions for accessing powers of p. The first two return pointers. See `sage.rings.padics.pow_computer_ext` for examples and important warnings.
Examples:

An Eisenstein extension:

```plaintext
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f); W
5-adic Eisenstein Extension Ring in w defined by x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: z = (1+w)^5; z
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 + 4*w^...17 + 4*w^20 + w^21 + 4*w^24 + 0(w^25)
sage: y = z >> 1; y
w^4 + w^5 + 2*w^6 + 4*w^7 + 3*w^9 + w^11 + 4*w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 + ...
...4*w^19 + w^20 + 4*w^23 + O(w^24)
sage: y.valuation()
4
sage: y.precision_relative()
20
sage: y.precision_absolute()
24
sage: z - (y << 1)
1 + O(w^25)
sage: (1/w)^12+w
w^-12 + w + O(w^13)
sage: (1/w).parent()
5-adic Eisenstein Extension Field in w defined by x^5 + 75*x^3 - 15*x^2 + 125*x - 5
```

Unramified extensions:

```plaintext
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: z = (1+a)^5; z
(2*a^2 + 4*a) + (3*a^2 + 3*a + 1)*5 + (4*a^2 + 3*a + 4)*5^2 + (4*a^2 + 4*a + 4)*5^3 + ...
...4*a^2 + 4*a + 4)*5^4 + O(5^5)
sage: y = z - 1 - 5*a - 10*a^2 - 10*a^3 - 5*a^4 - a^5
0(5^5)
sage: y = z - 1; y
(3*a^2 + 3*a + 1) + (4*a^2 + 3*a + 4)*5 + (4*a^2 + 4*a + 4)*5^2 + (4*a^2 + 4*a + 4)*5^3 + ...
...+ 0(5^4)
sage: 1/a
(3*a^2 + 4) + (a^2 + 4)*5 + (3*a^2 + 4)*5^2 + (a^2 + 4)*5^3 + (3*a^2 + 4)*5^4 + 0(5^5)
sage: FFP = R.residue_field()
sage: R(FFP(3))
3 + 0(5)
```
𝑝-adics, Release 10.2

(continued from previous page)

sage: QQq.<zz> = Qq(25,4)
sage: QQq(FFp(3))
3 + O(5)
sage: FFq = QQq.residue_field(); QQq(FFq(3))
3 + O(5)
sage: zz0 = FFq.gen(); QQq(zz0^2)
(zz + 3) + O(5)
Different printing modes:
sage: R = Zp(5, print_mode='digits'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x -5;␣
˓→W.<w> = R.ext(f)
sage: z = (1+w)^5; repr(z)
'...
˓→4110403113210310442221311242000111011201102002023303214332011214403232013144001400444441030421100001
˓→'
sage: R = Zp(5, print_mode='bars'); S.<x> = R[]; g = x^3 + 3*x + 3; A.<a> = R.ext(g)
sage: z = (1+a)^5; repr(z)
'...[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4,␣
˓→4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4, 4]|[4, 4,␣
˓→4]|[4, 3, 4]|[1, 3, 3]|[0, 4, 2]'
sage: R = Zp(5, print_mode='terse'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x -5;␣
˓→W.<w> = R.ext(f)
sage: z = (1+w)^5; z
6 + 95367431640505*w + 25*w^2 + 95367431640560*w^3 + 5*w^4 + O(w^100)
sage: R = Zp(5, print_mode='val-unit'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x ˓→5; W.<w> = R.ext(f)
sage: y = (1+w)^5 - 1; y
w^5 * (2090041 + 19073486126901*w + 1258902*w^2 + 674*w^3 + 16785*w^4) + O(w^100)
You can get at the underlying ntl unit:
sage: z._ntl_rep()
[6 95367431640505 25 95367431640560 5]
sage: y._ntl_rep()
[2090041 19073486126901 1258902 674 16785]
sage: y._ntl_rep_abs()
([5 95367431640505 25 95367431640560 5], 0)

Note: If you get an error internal error:
being mixed inappropriately somewhere.

can't grow this _ntl_gbigint, it indicates that moduli are

For example, when calling a function with a ZZ_pX_c as an argument, it copies. If the modulus is not set to the modulus
of the ZZ_pX_c, you can get errors.
AUTHORS:
• David Roe (2008-01-01): initial version
• Robert Harron (2011-09): fixes/enhancements
• Julian Rueth (2014-05-09): enable caching through _cache_key

219


sage.rings.padics.padic_ZZ_pX_CR_element.make_ZZpXCRElement(parent, unit, ordp, relprec, version)

Unpickling.

EXAMPLES:

```python
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
dsage: W.<w> = R.ext(f)
sage: y = W(775, 19); y
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
sage: loads(dumps(y))  # indirect doctest
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
```

class sage.rings.padics.padic_ZZ_pX_CR_element.pAdicZZpXCRElement

Bases: `pAdicZZpXElement`

Creates an element of a capped relative precision, unramified or Eisenstein extension of \(\mathbb{Z}_p \) or \(\mathbb{Q}_p \).

INPUT:

- `parent` – either an EisensteinRingCappedRelative or UnramifiedRingCappedRelative
- `x` – an integer, rational, \(p \)-adic element, polynomial, list, integer_mod, pari int/frac/poly_t/pol_mod, an ntl_ZZ_pX, an ntl_ZZ, an ntl1_ZZ_p, an ntl1_ZZX, or something convertible into parent.residue_field()
- `absprec` – an upper bound on the absolute precision of the element created
- `relprec` – an upper bound on the relative precision of the element created
- `empty` – whether to return after initializing to zero (without setting the valuation).

EXAMPLES:

```python
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
dsage: W.<w> = R.ext(f)
dsage: z = (1+w)^5; z
# indirect doctest
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^15 + 4*w^16 + w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: W(pari('3 + O(5^3)'))
3 + O(w^15)
```

expansion(n=None, lift_mode='simple')

Return a list giving a series representation of self.
- If lift_mode == 'simple' or 'smallest', the returned list will consist of integers (in the Eisenstein case) or a list of lists of integers (in the unramified case). self can be reconstructed as a sum of elements of the list times powers of the uniformiser (in the Eisenstein case), or as a sum of powers of the \(p \) times polynomials in the generator (in the unramified case).

 - If lift_mode == 'simple', all integers will be in the interval \([0, p - 1]\).

 - If lift_mode == 'smallest' they will be in the interval \([(1 - p)/2, p/2]\).

- If lift_mode == 'teichmuller', returns a list of \(\mathbb{p} \text{AdicZZpXCRElements} \), all of which are Teichmuller representatives and such that self is the sum of that list times powers of the uniformizer.

Note that zeros are truncated from the returned list if self.parent() is a field, so you must use the valuation function to fully reconstruct self.

INPUT:

- \(n \) – integer (default None). If given, returns the corresponding entry in the expansion.

EXAMPLES:

```python
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: y = W(775, 19); y
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
sage: (y>>9).expansion()
[0, 1, 0, 4, 0, 2, 1, 2, 4, 1]
sage: (y>>9).expansion(lift_mode='smallest')
[0, 1, 0, -1, 0, 2, 1, 2, 0, 1]
sage: w^10 - w^12 + 2*w^14 + w^15 + 2*w^16 + w^18 + O(w^19)
5-adic expansion of 4*a^5 + (3*a^2 + a + 3)*a^5 + a^2*a^5 + 0(5^6)
sage: E = y.expansion(); E
[[], [0, 4], [3, 1, 3], [0, 0, 4], [0, 0, 1], []]
sage: list(y.expansion(lift_mode='smallest'))
[[], [0, -1], [-2, 2, -2], [1], [0, 0, 2], []]
sage: 5*((-2*a^5 + 25) + (-1 + 2*a^2)*a + (-2*a + 2*a^5)*a^2)
4*a^5 + (3*a^2 + a + 3)*a^5 + 4*a^2*a^5 + a^2*a^5 + 0(5^6)
sage: list(W(0).expansion())
[]
sage: list(W(0,4).expansion())
[]
sage: list(A(0,4).expansion())
[]
```

is_equal_to(right, absprec=None)

Return whether this element is equal to right modulo self.uniformizer()^absprec.

If absprec is None, checks whether this element is equal to right modulo the lower of their two precisions.

EXAMPLES:
\begin{Verbatim}
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(47); b = W(47 + 25)
sage: a.is_equal_to(b)
False
sage: a.is_equal_to(b, 7)
True
\end{Verbatim}

\textbf{is_zero(\texttt{absprec}=\texttt{None})}

Return whether the valuation of this element is at least \texttt{absprec}. If \texttt{absprec} is \texttt{None}, checks if this element is indistinguishable from zero.

If this element is an inexact zero of valuation less than \texttt{absprec}, raises a \texttt{PrecisionError}.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: O(w^189).is_zero()
True
sage: W(0).is_zero()
True
sage: a = W(675)
sage: a.is_zero()
False
sage: a.is_zero(7)
True
sage: a.is_zero(21)
False
\end{Verbatim}

\textbf{lift_to_precision(\texttt{absprec}=\texttt{None})}

Return a p-adic \mathbb{Z}_pXCR element congruent to this element but with absolute precision at least \texttt{absprec}.

\textbf{INPUT:}

\begin{itemize}
\item \texttt{absprec} – (default \texttt{None}) the absolute precision of the result. If \texttt{None}, lifts to the maximum precision allowed.
\end{itemize}

\textbf{Note:} If setting \texttt{absprec} that high would violate the precision cap, raises a precision error. If self is an inexact zero and \texttt{absprec} is greater than the maximum allowed valuation, raises an error.

Note that the new digits will not necessarily be zero.

\textbf{EXAMPLES:}

\begin{Verbatim}
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(345, 17); a
\end{Verbatim}
\(4w^5 + 3w^7 + w^9 + 3w^{10} + 2w^{11} + 4w^{12} + w^{13} + 2w^{14} + 2w^{15} + O(w^{17})\)

```python
sage: b = a.lift_to_precision(19); b
4w^5 + 3w^7 + w^9 + 3w^{10} + 2w^{11} + 4w^{12} + w^{13} + 2w^{14} + 2w^{15} + w^{17} + 2w^{18} + O(w^{19})
```

```python
sage: c = a.lift_to_precision(24); c
4w^5 + 3w^7 + w^9 + 3w^{10} + 2w^{11} + 4w^{12} + w^{13} + 2w^{14} + 2w^{15} + w^{17} + 2w^{18} + 4w^{19} + 4w^{20} + 2w^{21} + 4w^{23} + O(w^{24})
```

```python
sage: a._ntl_rep()
[19 35 118 60 121]
```

```python
sage: b._ntl_rep()
[19 35 118 60 121]
```

```python
sage: c._ntl_rep()
[19 35 118 60 121]
```

```python
sage: a.lift_to_precision().precision_relative() == W.precision_cap()
True
```

matrix_mod_pn()

Return the matrix of right multiplication by the element on the power basis \(1, x, x^2, \ldots, x^{d-1}\) for this extension field. Thus the rows of this matrix give the images of each of the \(x^i\). The entries of the matrices are \texttt{IntegerMod} elements, defined modulo \(p^N/e\) where \(N\) is the absolute precision of this element (unless this element is zero to arbitrary precision; in that case the entries are integer zeros.)

Raises an error if this element has negative valuation.

EXAMPLES:

```python
sage: R = ZpCR(5,5)
sage: S.<x> = R[

sage: W.<w> = R.ext(f)
sage: a = (3+w)^7
sage: a.matrix_mod_pn()
[2757 333 1068 725 2510]
[ 50 1507 483 318 725]
[ 500 50 3007 2358 318]
[1590 1375 1695 1032 2358]
[2415 590 2370 2970 1032]
```

polynomial(var='x')

Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

INPUT:

- var – string, the variable name for the polynomial

EXAMPLES:

```python
sage: S.<x> = ZZ[

sage: W.<w> = Zp(5).extension(x^2 - 5)
sage: (w + W(5, 7)).polynomial()
(1 + O(5^3))*x + 5 + O(5^4)
```

precision_absolute()

(continued from previous page)
Return the absolute precision of this element, i.e., the power of the uniformizer modulo which this element is defined.

EXAMPLES:

```
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
sage: (a.unit_part() - 3).precision_absolute()
9
```

precision_relative()

Return the relative precision of this element, i.e., the power of the uniformizer modulo which the unit part of `self` is defined.

EXAMPLES:

```
sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
```

teichmuller_expansion(n=None)

Return a list \([a_0, a_1, \ldots, a_n]\) such that

- \(a_q = a_i\)
- `self.unit_part()` = \(\sum_{i=0}^{n} a_i \pi^i\), where \(\pi\) is a uniformizer of `self.parent()`
- if \(a_i \neq 0\), the absolute precision of \(a_i\) is `self.precision_relative()` - i

INPUT:

- n – integer (default None). If given, returns the corresponding entry in the expansion.

EXAMPLES:

```
```
sage: R.<a> = ZqCR(5^4,4)
sage: E = a.teichmuller_expansion(); E
5-adic expansion of a + O(5^4) (teichmuller)
sage: list(E)
[a + (2*a^3 + 2*a^2 + 3*a + 4)*5 + (4*a^3 + 3*a^2 + 3*a + 2)*5^2
 + (4*a^2 + 2*a + 2)*5^3 + O(5^4),
 (3*a^3 + 3*a^2 + 2*a + 1) + (a^3 + 4*a^2 + 1)*5 + (a^2 + 4*a + 4)*5^2 + O(5^3),
 (4*a^3 + 2*a^2 + a + 1) + (2*a^3 + 2*a^2 + 2*a + 4)*5 + O(5^2),
 (a^3 + a^2 + a + 4) + O(5)]
sage: sum([c * 5^i for i, c in enumerate(E)])
a + O(5^4)
sage: all(c^625 == c for c in E)
True
sage: S.<x> = ZZ[]
sage: f = x^3 - 98*x + 7
sage: W.<w> = ZpCR(7,3).ext(f)
sage: b = (1+w)^5; L = b.teichmuller_expansion(); L
[1 + O(w^9), 5 + 5*w^3 + w^6 + 4*w^7 + O(w^8), 3 + 3*w^3 + 0(w^7),
 3 + 3*w^3 + O(w^6), 0(w^5), 4 + 5*w^3 + O(w^4), 3 + 0(w^3),
 6 + 0(w^2), 6 + 0(w)]
sage: sum([w^i*L[i] for i in range(9)]) == b
True
sage: all(L[i]**(7^3) == L[i] for i in range(9))
True
sage: L = W(3).teichmuller_expansion(); L
[3 + 3*w^3 + w^7 + O(w^9), 0(w^8), 0(w^7), 4 + 5*w^3 + 0(w^6),
 0(w^5), 0(w^4), 3 + 0(w^3), 6 + 0(w^2)]
sage: sum([w^i*L[i] for i in range(len(L))])
3 + O(w^9)

unit_part()

Return the unit part of this element, ie self / uniformizer^(self.valuation()).

EXAMPLES:

sage: R = Zp(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
Chapter 19. \(p \)-adic ZZ\(_p\) CR Element
This file implements elements of Eisenstein and unramified extensions of \mathbb{Z}_p with capped absolute precision.

For the parent class see `padic_extension_leaves.pyx`.

The underlying implementation is through NTL's $\mathbb{Z}_p\mathbb{X}$ class. Each element contains the following data:

- **absprec** (long) – An integer giving the precision to which this element is defined. This is the power of the uniformizer modulo which the element is well defined.

- **value** ($\mathbb{Z}_p\mathbb{X}_c$) – An ntl $\mathbb{Z}_p\mathbb{X}$ storing the value. The variable x is the uniformizer in the case of Eisenstein extensions. This $\mathbb{Z}_p\mathbb{X}$ is created with global ntl modulus determined by absprec. Let a be absprec and e be the ramification index over \mathbb{Q}_p or \mathbb{Z}_p. Then the modulus is given by $p^{\lceil a/e \rceil}$. Note that all kinds of problems arise if you try to mix moduli. $\mathbb{Z}_p\mathbb{X}$ _conv_modulus_ gives a semi-safe way to convert between different moduli without having to pass through $\mathbb{Z}_p\mathbb{X}$.

- **prime_pow** (some subclass of `PowComputer_ZZ_pX`) – a class, identical among all elements with the same parent, holding common data.
 - **prime_pow.deg** – The degree of the extension
 - **prime_pow.e** – The ramification index
 - **prime_pow.f** – The inertia degree
 - **prime_pow.prec_cap** – the unramified precision cap. For Eisenstein extensions this is the smallest power of p that is zero.
 - **prime_pow.ram_prec_cap** – the ramified precision cap. For Eisenstein extensions this will be the smallest power of x that is indistinguishable from zero.
 - **prime_pow.pow_ZZ_tmp**, **prime_pow.pow_mpz_t_tmp**, **prime_pow.pow_Integer** – functions for accessing powers of p. The first two return pointers. See `sage/rings/padics/pow_computer_ext` for examples and important warnings.
 - **prime_pow.get_context**, **prime_pow.get_context_capdiv**, **prime_pow.get_top_context** – obtain an ntl \mathbb{Z}_pContext_class corresponding to p^n. The capdiv version divides by prime_pow.e as appropriate. top_context corresponds to $p^{\text{prec.cap}}$.
 - **prime_pow.restore_context**, **prime_pow.restore_context_capdiv**, **prime_pow.restore_top_context** – restores the given context.
 - **prime_pow.get_modulus**, **get_modulus_capdiv**, **get_top_modulus** – Returns a $\mathbb{Z}_p\mathbb{X}$Modulus_c*, pointing to a polynomial modulus defined modulo p^n (appropriately divided by prime_pow.e in the capdiv case).

EXAMPLES:

An Eisenstein extension:
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f); W
5-adic Eisenstein Extension Ring in w defined by x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: z = (1+w)^5; z
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15
 + 4*w^16 + 4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: y = z >> 1; y
w^4 + w^5 + 2*w^6 + 4*w^7 + 3*w^9 + w^11 + 4*w^12 + 4*w^13 + 4*w^14 + 4*w^15
 + 4*w^16 + 4*w^19 + w^20 + 4*w^23 + O(w^24)
sage: y.valuation()
4
sage: y.precision_relative()
20
sage: y.precision_absolute()
24
sage: z - (y << 1)
1 + O(w^25)
sage: (1/w)^12+w
w^-12 + w + O(w^12)
sage: (1/w).parent()
5-adic Eisenstein Extension Field in w defined by x^5 + 75*x^3 - 15*x^2 + 125*x - 5

An unramified extension:

sage: # needs sage.libs.flint
sage: g = x^3 + 3*x + 3
sage: A.<a> = R.ext(g)
sage: z = (1+a)^5; z
(2*a^2 + 4*a) + (3*a^2 + 3*a + 1)*5 + (4*a^2 + 3*a + 4)*5^2
 + (4*a^2 + 4*a + 4)*5^3 + (4*a^2 + 4*a + 4)*5^4 + O(5^5)
sage: z - 1 - 5*a - 10*a^2 - 10*a^3 - 5*a^4 - a^5
0(5^5)
sage: y = z >> 1; y
(3*a^2 + 3*a + 1) + (4*a^2 + 3*a + 4)*5 + (4*a^2 + 4*a + 4)*5^2
 + (4*a^2 + 4*a + 4)*5^3 + O(5^4)
sage: 1/a
(3*a^2 + 4) + (a^2 + 2)*5 + (3*a^2 + 4)*5^2 + (a^2 + 2 + 2)*5^3 + (3*a^2 + 2 + 4)*5^4 + O(5^5)
sage: FFA = A.residue_field()
sage: a0 = FFA.gen(); A(a0^3)
(2*a + 2) + O(5)

Different printing modes:

sage: # needs sage.libs.flint
sage: R = ZpCA(5, print_mode='digits'); S.<x> = ZZ[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x - ...
 - 5; W.<w> = R.ext(f)
sage: z = (1+w)^5; repr(z)
'...

 ...4110403132103104422231312420001110111202000253032143320112144032201314400140044441030421100001...
 ...'
sage: R = ZpCA(5, print_mode='bars'); S.<x> = ZZ[]; g = x^3 + 3*x + 3; A.<a> = R.ext(g)
You can get at the underlying ntl representation:

```
sage: # needs sage.libsntl
sage: z._ntl_rep()
[6 95367431640505 25 95367431640560 5]
sage: y._ntl_rep()
[5 95367431640505 25 95367431640560 5]
sage: y._ntl_rep_abs()
([5 95367431640505 25 95367431640560 5], 0)
```

Note: If you get an error `internal error: can't grow this _ntl_gbigit`, it indicates that moduli are being mixed inappropriately somewhere.

For example, when calling a function with a \mathbb{Z}_pX_c as an argument, it copies. If the modulus is not set to the modulus of the \mathbb{Z}_pX_c, you can get errors.

AUTHORS:
- David Roe (2008-01-01): initial version
- Robert Harron (2011-09): fixes/enhancements
- Julian Rueth (2012-10-15): fixed an initialization bug

EXAMPLES:

```
sage: from sage.rings.padics.padic_ZZ_pX_CA_element import make_ZZpXCAElement
sage: R = ZpCA(5, 5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: make_ZZpXCAElement(W, ntl.ZZ_pX([[3,2,4],5^3]),13,0)
3 + 2*w + 4*w^2 + O(w^13)
```

class `sage.rings.padics.padic_ZZ_pX_CA_element.pAdicZZpXCAElement`
Bases: `pAdicZZpXElement`

Creates an element of a capped absolute precision, unramified or Eisenstein extension of \mathbb{Z}_p or \mathbb{Q}_p.
INPUT:

- parent – either an EisensteinRingCappedAbsolute or UnramifiedRingCappedAbsolute
- \(x \) – an integer, rational, \(p \)-adic element, polynomial, list, integer_mod, pari int/frac/poly_t/pol_mod, an ntl_ZZ_pX, an ntl_ZZ, an ntl_ZZ_p, an ntl_ZZX, or something convertible into parent.residue_field()
- absprec – an upper bound on the absolute precision of the element created
- relprec – an upper bound on the relative precision of the element created
- empty – whether to return after initializing to zero.

EXAMPLES:

```python
sage: R = ZpCA(5, 5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: z = (1+w)^5; z  # indirect doctest
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15
 + 4*w^16 + 4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: W(R(3, 3))
3 + O(w^15)
sage: W(pari('3 + O(5^3)'))
3 + O(w^15)
sage: W(w, 14)
w + O(w^14)
```

expansion\((n=None, \text{lift_mode}='simple')\)

Return a list giving a series representation of \(\text{self} \).

- If \(\text{lift_mode} == '\text{simple}' \) or 'smallest', the returned list will consist of integers (in the Eisenstein case) or a list of lists of integers (in the unramified case). \(\text{self} \) can be reconstructed as a sum of elements of the list times powers of the uniformiser (in the Eisenstein case), or as a sum of powers of \(p \) times polynomials in the generator (in the unramified case).
 - If \(\text{lift_mode} == '\text{simple}' \), all integers will be in the interval \([0, p - 1]\)
 - If \(\text{lift_mode} == '\text{smallest}' \) they will be in the interval \([(1 - p)/2, p/2]\).
- If \(\text{lift_mode} == '\text{teichmuller}' \), returns a list of \(p \)-adic\(\mathbb{Z}_p \)XCAElements, all of which are Teichmuller representatives and such that \(\text{self} \) is the sum of that list times powers of the uniformizer.

INPUT:

- \(n \) – integer (default None). If given, returns the corresponding entry in the expansion.

EXAMPLES:

```python
sage: R = ZpCA(5, 5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: y = W(775, 19); y
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + O(w^19)
sage: (y>>9).expansion()
[0, 1, 0, 4, 0, 2, 1, 2, 4, 1]
sage: (y>>9).expansion(lift_mode='smallest')
[0, 1, 0, -1, 0, 2, 1, 2, 0, 1]
```

(continues on next page)
Check that github issue #25879 has been resolved:

```python
sage: K = ZpCA(3,5)
sage: R.<a> = K[]
sage: L.<a> = K.extension(a^2 - 3)
sage: a.residue()
0
```

is_equal_to(right, absprec=None)

Returns whether self is equal to right modulo self.uniformizer()^absprec.

If absprec is None, returns if self is equal to right modulo the lower of their two precisions.

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(47); b = W(47 + 25)
sage: a.is_equal_to(b)
False
sage: a.is_equal_to(b, 7)
True
```

is_zero(absprec=None)

Return whether the valuation of self is at least absprec.

If absprec is None, returns if self is indistinguishable from zero.

If self is an inexact zero of valuation less than absprec, raises a PrecisionError.

EXAMPLES:

```python
```
```sage
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: O(w^189).is_zero()
True
sage: W(0).is_zero()
True
sage: a = W(675)
sage: a.is_zero()
False
sage: a.is_zero(7)
True
sage: a.is_zero(21)
False
```

lift_to_precision *(absprec=None)*

Returns a \(p \)-adic \(ZZpXCAElement \) congruent to `self` but with absolute precision at least `absprec`.

INPUT:

- `absprec` – (default `None`) the absolute precision of the result. If `None`, lifts to the maximum precision allowed.

Note: If setting `absprec` that high would violate the precision cap, raises a precision error.

Note that the new digits will not necessarily be zero.

EXAMPLES:

```sage
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(345, 17); a
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + O(w ˓→ 17)
sage: b = a.lift_to_precision(19); b  # indirect doctest
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + w^17˓→ + 2*w^18 + O(w^19)
sage: c = a.lift_to_precision(24); c
4*w^5 + 3*w^7 + w^9 + 3*w^10 + 2*w^11 + 4*w^12 + w^13 + 2*w^14 + 2*w^15 + w^17˓→ + 2*w^18 + 4*w^19 + 4*w^20 + 2*w^21 + 4*w^23 + O(w^24)
sage: a._ntl_rep()
[345]
sage: b._ntl_rep()
[345]
sage: c._ntl_rep()
[345]
sage: a.lift_to_precision().precision_absolute() == W.precision_cap()
True
```

matrix_mod_pn

Return the matrix of right multiplication by the element on the power basis \(1, x, x^2, \ldots, x^{d-1} \) for this
extension field. Thus the rows of this matrix give the images of each of the \(x^i\). The entries of the matrices are \texttt{IntegerMod} elements, defined modulo \(p^{\text{self.absprec}() / e}\).

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = (3+w)^7
sage: a.matrix_mod_pn()  # needs sage.geometry.polyhedron
[2757 333 1068 725 2510]
[ 50 1507 483 318 725]
[ 500 50 3007 2358 318]
[1590 1375 1695 1032 2358]
[2415 590 2370 2970 1032]
```

\texttt{polynomial}(\texttt{var=’x’})

Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

INPUT:

* \texttt{var} – string, the variable name for the polynomial

EXAMPLES:

```python
sage: S.<x> = ZZ[]
sage: W.<w> = ZpCA(5).extension(x^2 - 5)
sage: (w + W(5, 7)).polynomial()
(1 + O(5^3))*x + 5 + O(5^4)
```

\texttt{precision_absolute}()

Returns the absolute precision of \texttt{self}, i.e. the power of the uniformizer modulo which this element is defined.

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
```

\texttt{precision_relative}()

Returns the relative precision of \texttt{self}, i.e. the power of the uniformizer modulo which the unit part of \texttt{self} is defined.
EXAMPLES:

```python
sage: R = ZpCA(5, 5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + 3*w^18 + O(w^19)
sage: a.valuation()
10
sage: a.precision_absolute()
19
sage: a.precision_relative()
9
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
```

`teichmuller_expansion(n=None)`

Returns a list \([a_0, a_1,..., a_n]\) such that

- \(a_q^i = a_i\)
- \(self.unit_part() = \sum_{i=0}^{n} a_i \pi^i\), where \(\pi\) is a uniformizer of \(self.parent()\)
- if \(a_i \neq 0\), the absolute precision of \(a_i\) is \(self.precision_relative() - i\)

INPUT:

- \(n\) – integer (default None). If given, returns the corresponding entry in the expansion.

EXAMPLES:

```python
sage: R.<a> = Zq(5^4, 4)
sage: E = a.teichmuller_expansion(); E
5-adic expansion of a + O(5^4) (teichmuller)
sage: list(E)
[a + (2*a^3 + 2*a^2 + 3*a + 4)*5 + (4*a^3 + 3*a^2 + 3*a + 2)*5^2 + (4*a^2 + 2*a + 2)*5^3 + O(5^4),
 (3*a^3 + 3*a^2 + 2*a + 1) + (a^3 + 4*a^2 + 1)*5 + (a^2 + 4*a + 4)*5^2 + O(5^3),
 (4*a^3 + 2*a^2 + a + 1) + (2*a^3 + 2*a^2 + 2*a + 4)*5 + O(5^2),
 (a^3 + a^2 + a + 4) + O(5)]
sage: sum([c * 5^i for i, c in enumerate(E)])
a + O(5^4)
sage: all(c^625 == c for c in E)
True
```

(continues on next page)
True

```python
sage: L = W(3).teichmuller_expansion(); L
[3 + 3*w^3 + w^7 + O(w^9), 0(w^8), 0(w^7), 4 + 5*w^3 + 0(w^6), 0(w^5),
 0(w^4), 3 + 0(w^3), 6 + 0(w^2)]
sage: sum([w^i*L[i] for i in range(len(L))])
3 + 0(w^9)
```

to_fraction_field()

Returns `self` cast into the fraction field of `self.parent()`.

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: z = (1 + w)^5; z
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 + 4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: y = z.to_fraction_field(); y  # indirect doctest
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 + 4*w^17 + 4*w^20 + w^21 + 4*w^24 + O(w^25)
sage: y.parent() 5-adic Eisenstein Extension Field in w defined by x^5 + 75*x^3 - 15*x^2 + 125*x - 5
```

unit_part()

Returns the unit part of `self`, i.e. `self / uniformizer^(self.valuation())`

EXAMPLES:

```python
sage: R = ZpCA(5,5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75, 19); a
3*w^10 + 2*w^12 + w^14 + w^16 + w^17 + 3*w^18 + O(w^19)
sage: a.valuation() 10
sage: a.precision_absolute() 19
sage: a.precision_relative() 9
sage: a.unit_part() 3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + O(w^9)
```
This file implements elements of Eisenstein and unramified extensions of \mathbb{Z}_p with fixed modulus precision.

For the parent class see `padic_extension_leaves.pyx`.

The underlying implementation is through NTL’s \mathbb{Z}_pX class. Each element contains the following data:

- **value (\mathbb{Z}_pX_c)** – An ntl \mathbb{Z}_pX storing the value. The variable x is the uniformizer in the case of Eisenstein extensions. This \mathbb{Z}_pX is created with global ntl modulus determined by the parent’s precision cap and shared among all elements.

- **prime_pow** (some subclass of `PowComputer_\mathbb{Z}_pX`) – a class, identical among all elements with the same parent, holding common data.
 - `prime_pow.deg` – the degree of the extension
 - `prime_pow.e` – the ramification index
 - `prime_pow.f` – the inertia degree
 - `prime_pow.prec_cap` – the unramified precision cap: for Eisenstein extensions this is the smallest power of p that is zero
 - `prime_pow.ram_prec_cap` – the ramified precision cap: for Eisenstein extensions this will be the smallest power of x that is indistinguishable from zero
 - `prime_pow.pow_\mathbb{Z}_pX_tmp`, `prime_pow.pow_mpz_t_tmp`, `prime_pow.pow_Integer` – functions for accessing powers of p. The first two return pointers. See `sage/rings/padics/pow_computer_ext` for examples and important warnings.
 - `prime_pow.get_context`, `prime_pow.get_context_capdiv`, `prime_pow.get_top_context` – obtain an ntl \mathbb{Z}_pContext_class corresponding to p^n. The capdiv version divides by `prime_pow.e` as appropriate. top_context corresponds to $p^{\text{prec_cap}}$.
 - `prime_pow.restore_context`, `prime_pow.restore_context_capdiv`, `prime_pow.restore_top_context` – restores the given context

- **prime_pow.get_modulus**, **get_modulus_capdiv**, **get_top_modulus** – Returns a \mathbb{Z}_pXModulus_c* pointing to a polynomial modulus defined modulo p^n (appropriately divided by `prime_pow.e` in the capdiv case).

EXAMPLES:

An Eisenstein extension:

```
sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f); W
```

(continues on next page)
5-adic Eisenstein Extension Ring in \(w \) defined by \(x^5 + 75x^3 - 15x^2 + 125x - 5 \)

\[
sage: z = (1+w)^5; z
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^{12} + 4*w^{13} + 4*w^{14} + 4*w^{15} + 4*w^{16} + 4*w^_\ldots 17 + 4*w^{20} + w^{21} + 4*w^{24}
\]

\[
sage: y = z >> 1; y
w^4 + w^5 + 2*w^6 + 4*w^7 + 3*w^9 + w^{11} + 4*w^{12} + 4*w^{13} + 4*w^{14} + 4*w^{15} + 4*w^{16} + \ldots 4*w^{19} + w^{20} + 4*w^{23} + 4*w^{24}
\]

\[
sage: y.valuation()
4
\]

\[
sage: y.precision_relative()
21
\]

\[
sage: y.precision_absolute()
25
\]

\[
sage: z - (y << 1)
1
\]

An unramified extension:

\[
sage: # needs sage.libs.flint
\]

\[
sage: g = x^3 + 3*x + 3
\]

\[
sage: A.<a> = R.ext(g)
\]

\[
sage: z = (1+a)^5; z
(2*a^2 + 4*a) + (3*a^2 + 3*a + 1)*5 + (4*a^2 + 3*a + 4)*5^2 + (4*a^2 + 4*a + 4)*5^3 + \ldots (4*a^2 + 4*a + 4)*5^4
\]

\[
sage: z - 1 - 5*a - 10*a^2 - 10*a^3 - 5*a^4 - a^5
0
\]

\[
sage: y = z >> 1; y
(3*a^2 + 3*a + 1) + (4*a^2 + 3*a + 4)*5 + (4*a^2 + 4*a + 4)*5^2 + (4*a^2 + 4*a + 4)*5^3
\]

\[
sage: 1/a
(3*a^2 + 4) + (a^2 + 4)*5 + (3*a^2 + 4)*5^2 + (a^2 + 4)*5^3 + (3*a^2 + 4)*5^4
\]

Different printing modes:

\[
sage: # needs sage.libs.flint
\]

\[
sage: R = ZpFM(5, print_mode='digits'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5; W.<w> = R.ext(f)
\]

\[
sage: z = (1+w)^5; repr(z)
'... 41104031132103104422213124200011101120102002023303214332011214403232013144000140044441030421100001
\]

\[
sage: R = ZpFM(5, print_mode='bars'); S.<x> = R[]; g = x^3 + 3*x + 3; A.<a> = R.ext(g)
\]

\[
sage: z = (1+a)^5; repr(z)
'...[4, 4, 4] | [4, 4, 4] | [4, 3, 4] | [0, 4, 2]'
\]

\[
sage: R = ZpFM(5, print_mode='terse'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5; W.<w> = R.ext(f)
\]

\[
sage: z = (1+w)^5; z
6 + 95367431640505*w + 25*w^2 + 95367431640560*w^3 + 5*w^4
\]

\[
sage: R = ZpFM(5, print_mode='val-unit'); S.<x> = R[]; f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5; W.<w> = R.ext(f)
\]

\[
sage: y = (1+w)^5 - 1; y
w^5 * (2090041 + 19073486126901*w + 1258902*w^2 + 57220458985049*w^3 + 16785*w^4)
\]
AUTHORS:
 • David Roe (2008-01-01) initial version

sage.rings.padics.padic_ZZ_pX_FM_element.make_ZZpXFMElement(parent,f)
 Create a new pAdicZZpXFMElement out of an ntl_ZZ_pX f, with parent parent. For use with pickling.

EXAMPLES:

```python
sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: z = (1 + w)^5 - 1
sage: loads(dumps(z)) == z  # indirect doctest
True
```

class sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZZpXFMElement
 Bases: pAdicZZpXElement

 Creates an element of a fixed modulus, unramified or eisenstein extension of \(\mathbb{Z}_p \) or \(\mathbb{Q}_p \).

 INPUT:
 • parent – either an EisensteinRingFixedMod or UnramifiedRingFixedMod
 • x – an integer, rational, \(p \)-adic element, polynomial, list, integer_mod, pari int/frac/poly_t/pol_mod, an ntl_ZZ_pX, an ntl_ZZX, an ntl_ZZ, or an ntl_ZZ_p
 • absprec – not used
 • relprec – not used
 • empty – whether to return after initializing to zero (without setting anything)

 EXAMPLES:

```python
sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: z = (1+w)^5; z  # indirect doctest
1 + w^5 + w^6 + 2*w^7 + 4*w^8 + 3*w^10 + w^12 + 4*w^13 + 4*w^14 + 4*w^15 + 4*w^16 + w^17 + 4*w^20 + w^21 + 4*w^24
```

add_bigoh(absprec)
 Return a new element truncated modulo \(\pi^{absprec} \).
 This is only implemented for unramified extension at this point.

 INPUT:
 • absprec – an integer

 OUTPUT:
 A new element truncated modulo \(\pi^{absprec} \).

 EXAMPLES:
```
sage: R = Zp(7,4,'fixed-mod')
sage: a = R(1 + 7 + 7^2)
sage: a.add_bigoh(1)
1
```

expansion \((n=None, \text{lift_mode}=\text{'simple'})\)

Return a list giving a series representation of this element.

- If \(\text{lift_mode} = \text{'simple'}\) or \(\text{'smallest'}\), the returned list will consist of
 - integers (in the eisenstein case) or
 - lists of integers (in the unramified case).
- this element can be reconstructed as
 - a sum of elements of the list times powers of the uniformiser (in the eisenstein case), or
 - as a sum of powers of the \(p\) times polynomials in the generator (in the unramified case).
- If \(\text{lift_mode} = \text{'simple'}\), all integers will be in the range \([0, p-1]\).
- If \(\text{lift_mode} = \text{'smallest'}\) they will be in the range \([(1-p)/2, p/2]\).
- If \(\text{lift_mode} = \text{'teichmuller'}\), returns a list of \(\text{pAdicZZpXCRElements}\), all of which are Teichmuller representatives and such that this element is the sum of that list times powers of the uniformiser.

INPUT:

- \(n\) – integer (default None); if given, returns the corresponding entry in the expansion

EXAMPLES:

```
sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: y = W(775); y
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + w^20 + 2*w^21 + 3*w^22...
˓→+ w^23 + w^24
sage: (y>>9).expansion()
[0, 1, 0, 4, 0, 2, 1, 2, 4, 1, 0, 1, 2, 3, 1, 4, 1, 2, 4, 1, 0, 0, 3]
sage: (y>>9).expansion(lift_mode='smallest')
[0, 1, 0, -1, 0, 2, 1, 2, 0, 1, 2, 1, -1, -1, -2, 0, -2, -2, -2, -2, -2, -2, 2]
sage: w^10 - w^12 + 2*w^14 + w^15 + 2*w^16 + w^18 + 2*w^19 + w^20 + w^21 - w^22...
˓→- w^23 + 2*w^24
w^10 + 4*w^12 + 2*w^14 + w^15 + 2*w^16 + 4*w^17 + w^18 + w^20 + 2*w^21 + 3*w^22...
˓→+ w^23 + w^24
sage: g = x^3 + 3*x + 3
sage: # needs sage.libs.flint
sage: A.<a> = R.ext(g)
sage: y = 75 + 45*a + 1200*a^2; y
4*a^5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4
sage: E = y.expansion(); E
5-adic expansion of 4*a^5 + (3*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4
sage: list(E)
```

(continues on next page)
p-adics, Release 10.2

[[], [0, 4], [3, 1, 3], [0, 0, 4], [0, 0, 1]]
sage: list(y.expansion(lift_mode='smallest'))
[[], [0, -1], [-2, 2, -2], [1], [0, 0, 2]]
sage: 5*((-2*5 + 25) + (-1 + 2*5)*a + (-2*5 + 2*125)*a^2) +
4*a^5 + (4*a^2 + a + 3)*5^2 + 4*a^2*5^3 + a^2*5^4
sage: W(0).expansion()
[]
sage: list(A(0, 4).expansion())
[]

Check that github issue #25879 has been resolved:

sage: K = ZpCA(3, 5)
sage: R.<a> = K[]
sage: L.<a> = K.extension(a^2 - 3)
sage: a.residue()
0

is_equal_to(right, absprec=None)
Return whether self is equal to right modulo self.uniformizer()^absprec.
If absprec is None, returns if self is equal to right modulo the precision cap.

EXAMPLES:

sage: R = Zp(5, 5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(47); b = W(47 + 25)
sage: a.is_equal_to(b)
False
sage: a.is_equal_to(b, 7)
True

is_zero(absprec=None)
Return whether the valuation of self is at least absprec; if absprec is None, return whether self is indistinguishable from zero.

EXAMPLES:

sage: R = ZpFM(5, 5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: O(w^189).is_zero()
True
sage: W(0).is_zero()
True
sage: a = W(675)
sage: a.is_zero()
False
sage: a.is_zero(7)
True
lift_to_precision(absprec=None)

Return self.

EXAMPLES:

sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: w.lift_to_precision(10000)

matrix_mod_pn()

Return the matrix of right multiplication by the element on the power basis \(1, x, x^2, \ldots, x^{d-1}\) for this extension field.

The rows of this matrix give the images of each of the \(x^i\). The entries of the matrices are \texttt{IntegerMod} elements, defined modulo \(p^{\text{self.absprec}() / \text{e}}\).

Raises an error if \texttt{self} has negative valuation.

EXAMPLES:

sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = (3+w)^7
sage: a.matrix_mod_pn() # needs sage.geometry.polyhedron
[2757 333 1068 725 2510]
[50 1507 483 318 725]
[500 50 3007 2358 318]
[1590 1375 1695 1032 2358]
[2415 590 2370 2970 1032]

norm(base=None)

Return the absolute or relative norm of this element.

Note: This is not the \(p\)-adic absolute value. This is a field theoretic norm down to a ground ring.

If you want the \(p\)-adic absolute value, use the \texttt{abs()} function instead.

If \(K\) is given then \(K\) must be a subfield of the parent \(L\) of \texttt{self}, in which case the norm is the relative norm from \(L\) to \(K\). In all other cases, the norm is the absolute norm down to \(\mathbb{Q}_p\) or \(\mathbb{Z}_p\).

EXAMPLES:

sage: R = ZpCR(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
\(p \)-adics, Release 10.2

\begin{verbatim}
(continued from previous page)
sage: W.<w> = R.ext(f)
sage: ((1+2*w)^5).norm()
1 + 5^2 + O(5^5)
sage: ((1+2*w)).norm()^5
1 + 5^2 + O(5^5)

polynomial(var='x')
Return a polynomial over the base ring that yields this element when evaluated at the generator of the parent.

INPUT:

• var – string, the variable name for the polynomial

EXAMPLES:

sage: S.<x> = ZZ[]
sage: W.<w> = ZpFM(5).extension(x^2 - 5)
sage: (w + 5).polynomial()
x + 5

precision_absolute()
Return the absolute precision of self, ie the precision cap of self.parent().

EXAMPLES:

sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75); a
3*w^10 + 2*w^12 + w^14 + w^16 + 3*w^18 + 3*w^19 + 2*w^21 + 3*w^22 + 3*w^24
sage: a.valuation()
10
sage: a.precision_absolute()
25
sage: a.precision_relative()
15
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + 3*w^9 + 2*w^11 + 3*w^12 + 3*w^13 + w^15 + 4*w^16 + 2*w^17 + w^18 + 3*w^21 + w^22 + 3*w^24

precision_relative()
Return the relative precision of self, ie the precision cap of self.parent() minus the valuation of self.

EXAMPLES:

sage: R = ZpFM(5,5)
sage: S.<x> = R[]
sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5
sage: W.<w> = R.ext(f)
sage: a = W(75); a
3*w^10 + 2*w^12 + w^14 + w^16 + 3*w^18 + 3*w^19 + 2*w^21 + 3*w^22 + 3*w^24
\end{verbatim}

(continues on next page)
\begin{verbatim}
23
sage: a.valuation()
10
sage: a.precision_absolute()
25
sage: a.precision_relative()
15
sage: a.unit_part()
3 + 2*w^2 + w^4 + w^6 + w^7 + 3*w^8 + 3*w^9 + 2*w^11 + 3*w^12
 + 3*w^13 + w^15 + 4*w^16 + 2*w^17 + w^18 + 3*w^21 + w^22 + 3*w^24
\end{verbatim}

\textbf{teichmuller_expansion}(n=None)

Return a list \([a_0, a_1, \ldots, a_n]\) such that
\begin{itemize}
 \item \(a_i^q = a_i\)
 \item \(self.unit_part() = \sum_{i=0}^{n} a_i \pi^i\), where \(\pi\) is a uniformizer of \(self.parent()\)
\end{itemize}

\textbf{INPUT:}
\begin{itemize}
 \item \(n\) – integer (default \(None\)); \(f\) given, returns the corresponding entry in the expansion
\end{itemize}

\textbf{EXAMPLES:}
\begin{verbatim}
sage: # needs sage.libs.flint
sage: R.<a> = ZqFM(5^4,4)
sage: E = a.teichmuller_expansion(); E
5-adic expansion of a (teichmuller)
sage: list(E)
[a + (2*a^3 + 2*a^2 + 3*a + 4)*5 + (4*a^3 + 3*a^2 + 3*a + 2)*5^2 + (4*a^2 + 2*a + 2)*5^3,
 (3*a^3 + 3*a^2 + 2*a + 1) + (a^3 + 4*a^2 + 1)*5 + (a^2 + 4*a + 4)*5^2 + (4*a^2 + a + 3)*5^3,
 (4*a^3 + 2*a^2 + a + 1) + (2*a^3 + 2*a^2 + 2*a + 4)*5 + (3*a^3 + 2*a^2 + a + 4)*5^2 + (4*a^2 + a + 3)*5^3,
 (a^3 + a^2 + a + 4) + (3*a^3 + 3)*5 + (3*a^3 + a + 2)*5^2 + (3*a^3 + 3*a^2 + a + 4)*5^3]
sage: sum([c * 5^i for i, c in enumerate(E)])
a
sage: all(c^625 == c for c in E)
True
sage: S.<x> = ZZ[]
sage: f = x^3 - 98*x + 7
sage: W.<w> = ZpFM(7,3).ext(f)
sage: b = (1+w)^5; L = b.teichmuller_expansion(); L
[1,
 5 + 5*w^3 + w^6 + 4*w^7,
 3 + 3*w^3 + w^7,
 3 + 3*w^3 + w^7,
 0,
 4 + 5*w^3 + w^6 + 4*w^7,
 3 + 3*w^3 + w^7,
 6 + w^3 + 5*w^7,
\end{verbatim}
p-adics, Release 10.2

\[6 + w^3 + 5w^7 \]

\texttt{sage: sum([w^i*L[i] for i in range(len(L))]) == b}
True

\texttt{sage: all(L[i]^(7^3) == L[i] for i in range(9))}
True

\texttt{sage: L = W(3).teichmuller_expansion(); L}
\[[3 + 3w^3 + w^7, 0, 0, 4 + 5w^3 + w^6 + 4w^7, 0, 0, 3 + 3w^3 + w^7, 6 + w^3 + 5w^7] \]

\texttt{sage: sum([w^i*L[i] for i in range(len(L))])}
3

\texttt{trace(base=None)}

Return the absolute or relative trace of this element.

If \(K \) is given then \(K \) must be a subfield of the parent \(L \) of \texttt{self}, in which case the norm is the relative norm from \(L \) to \(K \). In all other cases, the norm is the absolute norm down to \(\mathbb{Q}_p \) or \(\mathbb{Z}_p \).

\textbf{EXAMPLES:}

\texttt{sage: R = ZpCR(5,5)}
\texttt{sage: S.<x> = R[]}
\texttt{sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5}
\texttt{sage: W.<w> = R.ext(f)}
\texttt{sage: a = (2+3*w)^7}
\texttt{sage: b = (6+w^3)^5}
\texttt{sage: a.trace()}
\[3*5 + 2*5^2 + 3*5^3 + 2*5^4 + O(5^5) \]
\texttt{sage: a.trace() + b.trace()}
\[4*5 + 5^2 + 5^3 + 2*5^4 + O(5^5) \]
\texttt{sage: (a+b).trace()}
\[4*5 + 5^2 + 5^3 + 2*5^4 + O(5^5) \]

\texttt{unit_part()}

Return the unit part of \texttt{self}, ie \texttt{self / uniformizer^\texttt{(self.valuation())}}

\textbf{Warning:} If this element has positive valuation then the unit part is not defined to the full precision of the ring. Asking for the unit part of \texttt{ZpFM(5)(0)} will not raise an error, but rather return itself.

\textbf{EXAMPLES:}

\texttt{sage: R = ZpFM(5,5)}
\texttt{sage: S.<x> = R[]}
\texttt{sage: f = x^5 + 75*x^3 - 15*x^2 + 125*x - 5}
\texttt{sage: W.<w> = R.ext(f)}
\texttt{sage: a = W(75); a}
(continued from previous page)

\[3^w 10 + 2^w 12 + w 14 + w 16 + w 17 + 3^w 18 + 3^w 19 + 2^w 21 + 3^w 22 + 3^w 23\]

```
sage: a.valuation()
10
sage: a.precision_absolute()
25
sage: a.precision_relative()
15
sage: a.unit_part()
3 + 2^w 2 + w 4 + w 6 + w 7 + 3^w 8 + 3^w 9 + 2^w 11 + 3^w 12
+ 3^w 13 + w 15 + 4^w 16 + 2^w 17 + w 18 + 3^w 21 + w 22 + 3^w 24
```

The unit part inserts nonsense digits if this element has positive valuation:

```
sage: (a-a).unit_part()
0
```
A class for computing and caching powers of the same integer.

This class is designed to be used as a field of p-adic rings and fields. Since elements of p-adic rings and fields need to use powers of p over and over, this class precomputes and stores powers of p. There is no reason that the base has to be prime however.

EXAMPLES:

```python
sage: X = PowComputer(3, 4, 10)
sage: X(3)
27
sage: X(10) == 3^10
True
```

AUTHORS:

• David Roe

`sage.rings.padics.pow_computer.PowComputer(m, cache_limit, prec_cap, in_field=False, prec_type=None)`

Returns a PowComputer that caches the values $1, m, m^2, \ldots, m^C$, where C is `cache_limit`.

Once you create a PowComputer, merely call it to get values out.

You can input any integer, even if it’s outside of the precomputed range.

INPUT:

• m – An integer, the base that you want to exponentiate.

• `cache_limit` – A positive integer that you want to cache powers up to.

EXAMPLES:

```python
sage: PC = PowComputer(3, 5, 10)
sage: PC
PowComputer for 3
sage: PC(4)
81
sage: PC(6)
729
sage: PC(-1)
1/3
```
class sage.rings.padics.pow_computer.PowComputer_class
Bases: SageObject

Initializes self.

INPUT:

• prime – the prime that is the base of the exponentials stored in this pow_computer.
• cache_limit – how high to cache powers of prime.
• prec_cap – data stored for p-adic elements using this pow_computer (so they have C-level access to fields common to all elements of the same parent).
• ram_prec_cap – prec_cap * e
• in_field – same idea as prec_cap
• poly – same idea as prec_cap
• shift_seed – same idea as prec_cap

EXAMPLES:

sage: PC = PowComputer(3, 5, 10)
sage: PC.pow_Integer_Integer(2)
9

pow_Integer_Integer(n)
Tests the pow_Integer function.

EXAMPLES:

sage: PC = PowComputer(3, 5, 10)
sage: PC.pow_Integer_Integer(4)
81
sage: PC.pow_Integer_Integer(6)
729
sage: PC.pow_Integer_Integer(0)
1
sage: PC.pow_Integer_Integer(10)
59049

sage: # needs sage.libsntl
sage: PC = PowComputer_ext_maker(3, 5, 10, False, ntl.ZZ_pX([-3,0,1], 3^10),
 \rightarrow 'big','e',ntl.ZZ_pX([1],3^10))
sage: PC.pow_Integer_Integer(4)
81
sage: PC.pow_Integer_Integer(6)
729
sage: PC.pow_Integer_Integer(0)
1
sage: PC.pow_Integer_Integer(10)
59049
The classes in this file are designed to be attached to p-adic parents and elements for Cython access to properties of the parent.

In addition to storing the defining polynomial (as an NTL polynomial) at different precisions, they also cache powers of p and data to speed right shifting of elements.

The hierarchy of PowComputers splits first at whether it's for a base ring (Qp or Zp) or an extension.

Among the extension classes (those in this file), they are first split by the type of NTL polynomial (ntl_ZZ_pX or ntl_ZZ_pEX), then by the amount and style of caching (see below). Finally, there are subclasses of the ntl_ZZ_pX PowComputers that cache additional information for Eisenstein extensions.

There are three styles of caching:

• FM: caches powers of p up to the cache_limit, only caches the polynomial modulus and the ntl_ZZ_pContext of precision prec_cap.

• small: Requires cache_limit = prec_cap. Caches p^k for every k up to the cache_limit and caches a polynomial modulus and a ntl_ZZ_pContext for each such power of p.

• big: Caches as the small does up to cache_limit and caches prec_cap. Also has a dictionary that caches values above the cache_limit when they are computed (rather than at ring creation time).

AUTHORS:

• David Roe (2008-01-01) initial version

class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX

 Returns the polynomial (with coefficient precision prec_cap) associated to this PowComputer.

 The polynomial is output as an ntl_ZZ_pX.

 EXAMPLES:

 sage: PC = PowComputer_ext_maker(5, 5, 10, 20, False, ntl.ZZ_pX([-5,0,1],5^10), 'FM', 'e',ntl.ZZ_pX([1],5^10))
 sage: PC.polynomial()
 [9765620 0 1]

 speed_test(n, runs)

 Runs a speed test.

 INPUT:

 • n – input to a function to be tested (the function needs to be set in the source code).
• runs – The number of runs of that function

 OUTPUT:
• The time in seconds that it takes to call the function on \(n \), \(\text{runs} \) times.

 EXAMPLES:

```python
sage: PC = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'small', 'e', ntl.ZZ_pX([1], 5^10))
sage: PC.speed_test(10, 10^6)  # random
    0.0090679999999991878
```

class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_FM

 Bases: PowComputer_ZZ_pX

 This class only caches a context and modulus for \(p^{\text{prec_cap}} \).

 Designed for use with fixed modulus \(p \)-adic rings, in Eisenstein and unramified extensions of \(\mathbb{Z}_p \).

class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_FM_Eis

 Bases: PowComputer_ZZ_pX_FM

 This class computes and stores \(\text{low_shifter} \) and \(\text{high_shifter} \), which aid in right shifting elements.

class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_big

 Bases: PowComputer_ZZ_pX

 This class caches all contexts and moduli between 1 and \(\text{cache_limit} \), and also caches for \(\text{prec_cap} \). In addition, it stores a dictionary of contexts and moduli of

 \(\text{reset_dictionaries}() \)

 Resets the dictionaries. Note that if there are elements lying around that need access to these dictionaries, calling this function and then doing arithmetic with those elements could cause trouble (if the context object gets garbage collected for example. The bugs introduced could be very subtle, because NTL will generate a new context object and use it, but there’s the potential for the object to be incompatible with the different context object).

 EXAMPLES:

```python
sage: A = PowComputer_ext_maker(5, 10, 10, 20, False, ntl.ZZ_pX([-5, 0, 1], 5^10), 'big', 'e', ntl.ZZ_pX([1], 5^10))
sage: P = A._get_context_test(8)
sage: A._context_dict()
    {8: NTL modulus 390625}
sage: A.reset_dictionaries()
sage: A._context_dict()
    {}
```

class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_big_Eis

 Bases: PowComputer_ZZ_pX_big

 This class computes and stores \(\text{low_shifter} \) and \(\text{high_shifter} \), which aid in right shifting elements. These are only stored at maximal precision: in order to get lower precision versions just reduce mod \(p^n \).

class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_small

 Bases: PowComputer_ZZ_pX

 This class caches contexts and moduli densely between 1 and \(\text{cache_limit} \). It requires \(\text{cache_limit} == \text{prec_cap} \).
It is intended for use with capped relative and capped absolute rings and fields, in Eisenstein and unramified extensions of the base p-adic fields.

```python
class sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX_small_Eis
    Bases: PowComputer_ZZ_pX_small

This class computes and stores low_shifter and high_shifter, which aid in right shifting elements. These are only stored at maximal precision: in order to get lower precision versions just reduce mod p^n.

```python
class sage.rings.padics.pow_computer_ext.PowComputer_ext
 Bases: PowComputer_class

data
sage.rings.padics.pow_computer_ext.PowComputer_ext_maker
 \(\text{PowComputer}_\text{ext}\) for 5, with polynomial \([-5, 0, 1]\)

data
sage.rings.padics.pow_computer_ext.ZZ_pX_eis_shift_test
 Shifts \(a\) right \(n\) x-adic digits, where \(x\) is considered modulo the polynomial in \(_{\text{shifter}}\).

data
```
sage: ZZ_pX_eis_shift_test(A, [0, 0, 1], 1, 5)
[0 1]
sage: ZZ_pX_eis_shift_test(A, [5], 1, 5)
[75 15 0 1]
sage: ZZ_pX_eis_shift_test(A, [1], 1, 5)
[]
sage: ZZ_pX_eis_shift_test(A, [17, 91, 8, -2], 1, 5)
[316 53 3123 3]
sage: ZZ_pX_eis_shift_test(A, [316, 53, 3123, 3], -1, 5)
[15 91 8 3123]
sage: ZZ_pX_eis_shift_test(A, [15, 91, 8, 3123], 1, 5)
[316 53 3123 3]
This file contains code for printing p-adic elements.  
It has been moved here to prevent code duplication and make finding the relevant code easier.

AUTHORS:

• David Roe

sage.rings.padics.padic_printing.pAdicPrinter(ring, options={})

Create a pAdicPrinter.

INPUT:

• ring – a p-adic ring or field.

• options – a dictionary, with keys in 'mode', 'pos', 'ram_name', 'unram_name', 'var_name', 'max_ram_terms', 'max_unram_terms', 'max_terse_terms', 'sep', 'alphabet'; see pAdicPrinter_class for the meanings of these keywords.

EXAMPLES:

sage: from sage.rings.padics.padic_printing import pAdicPrinter
sage: R = Zp(5)
sage: pAdicPrinter(R, {'sep': '&'})
series printer for 5-adic Ring with capped relative precision 20

class sage.rings.padics.padic_printing.pAdicPrinterDefaults(mode='series', pos=True, max_ram_terms=-1, max_unram_terms=-1, max_terse_terms=-1, sep='|', alphabet=None)

Bases: SageObject

This class stores global defaults for p-adic printing.

allow_negatives(neg=None)

Controls whether or not to display a balanced representation.

neg=None returns the current value.

EXAMPLES:

sage: padic_printing.allow_negatives(True)
sage: padic_printing.allow_negatives()
True
sage: Qp(29)(-1)
(continues on next page)
\(-1 + 0(29^{20})\)
\text{sage: } Qp(29)(-1000)
\(-14 - 5 \cdot 29 - 29^2 + 0(29^{20})\)
\text{sage: } padic_printing.allow_negatives(False)

\textbf{alphabet}(\textit{alphabet=\texttt{None}})

Controls the alphabet used to translate p-adic digits into strings (so that no separator need be used in 'digits' mode).

\text{alphabet} should be passed in as a list or tuple.
\text{alphabet=}None returns the current value.

\textbf{EXAMPLES:}
\begin{verbatim}
\text{sage: } padic_printing.alphabet("abc")
\text{sage: } padic_printing.mode('digits')
\text{sage: } repr(Qp(3)(1234))
'...bcaacab'
\text{sage: } padic_printing.mode('series')
\text{sage: } padic_printing.alphabet(('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B',
\text{→} 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
\text{→} 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'))
\end{verbatim}

\textbf{max\_poly\_terms}(\textit{max=\texttt{None}})

Controls the number of terms appearing when printing polynomial representations in 'terse' or 'val-unit' modes.

\text{max=}None returns the current value.
\text{max=}1 encodes 'no limit.'

\textbf{EXAMPLES:}
\begin{verbatim}
\text{sage: } padic_printing.max_poly_terms(3)
\text{sage: } padic_printing.max_poly_terms()
3
\text{sage: } padic_printing.mode('terse')
\text{sage: } Zq(7^5, 5, names='a')([2, 3, 4])^8  # ˓→ needs sage.libs.ntl
2570 + 15808*a + 9018*a^2 + ... + 0(7^5)
\text{sage: } padic_printing.max_poly_terms(-1)
\text{sage: } padic_printing.mode('series')
\end{verbatim}

\textbf{max\_series\_terms}(\textit{max=\texttt{None}})

Controls the maximum number of terms shown when printing in 'series', 'digits' or 'bars' mode.

\text{max=}None returns the current value.
\text{max=}1 encodes 'no limit.'

\textbf{EXAMPLES:}
\begin{verbatim}
\text{sage: } padic_printing.max_series_terms(3)
\text{sage: } padic_printing.max_series_terms()
3
\text{sage: } padic_printing.mode('series')
\end{verbatim}
\texttt{sage: padic\_printing.max\_series\_terms(2)}
\texttt{sage: padic\_printing.max\_series\_terms()}
\texttt{2}
\texttt{sage: Qp(31)(1000)}
\texttt{8 + 31 + ... + O(31^{20})}
\texttt{sage: padic\_printing.max\_series\_terms(-1)}
\texttt{sage: Qp(37)(100000)}
\texttt{26 + 37 + 36*37^2 + 37^3 + O(37^{20})}

\textbf{max\_unram\_terms}(\texttt{max=None})

For rings with non-prime residue fields, controls how many terms appear in the coefficient of each \(p^i\) when printing in 'series' or 'bar' modes.

\texttt{max=None} returns the current value.

\texttt{max=-1} encodes 'no limit.'

\textbf{EXAMPLES:}

\texttt{sage: padic\_printing.max\_unram\_terms(2)}
\texttt{sage: padic\_printing.max\_unram\_terms()}  
\texttt{2}
\texttt{sage: Zq(5^6, 5, names=’a’)([1,2,3,-1])^17}  
\texttt{˓→ needs sage.libs.ntl}  
\texttt{(3*a^4 + ... + 3) + (a^5 + ... + a)*5 + (3*a^3 + ... + 2)*5^2 + (3*a^5 + ... + ˓→2)*5^3 + (4*a^5 + ... + 4)*5^4 + O(5^5)}
\texttt{sage: padic\_printing.max\_unram\_terms(-1)}

\textbf{mode}(\texttt{mode=None})

Set the default printing mode.

\texttt{mode=None} returns the current value.

The allowed values for \texttt{mode} are: 'val-unit', 'series', 'terse', 'digits' and 'bars'.

\textbf{EXAMPLES:}

\texttt{sage: padic\_printing.mode(’terse’)}
\texttt{sage: padic\_printing.mode()}  
'\texttt{terse}’
\texttt{sage: Qp(7)(100)}  
\texttt{100 + O(7^{20})}
\texttt{sage: padic\_printing.mode(’series’)}
\texttt{sage: Qp(11)(100)}  
\texttt{1 + 9*11 + O(11^{20})}
\texttt{sage: padic\_printing.mode(’val-unit’)}
\texttt{sage: Qp(13)(130)}  
\texttt{13 * 10 + O(13^{21})}
\texttt{sage: padic\_printing.mode(’digits’)}
\texttt{sage: repr(Qp(17)(1000))}  
'\texttt{...5F}’
\texttt{sage: repr(Qp(17)(10000))}  
'\texttt{...37E}’
\texttt{sage: padic\_printing.mode(’bars’)}
\texttt{sage: repr(Qp(19)(10000))}  

(continues on next page)
'...2|14|12'

```
sage: padic_printing.mode('series')
```

sep(sep=None)

Controls the separator used in 'bars' mode.
sep=None returns the current value.

EXAMPLES:

```
sage: padic_printing.sep(']')[

sage: padic_printing.sep()
'sep'

sage: padic_printing.mode('bars')

sage: repr(Qp(61)(-1))
'...
˓→60[60]
˓→'

sage: padic_printing.sep(']')

sage: padic_printing.mode('series')
```

class sage.rings.padics.padic_printing.pAdicPrinter_class

Bases: SageObject

This class stores the printing options for a specific p-adic ring or field, and uses these to compute the representations of elements.

dict()

Return a dictionary storing all of self’s printing options.

EXAMPLES:

```
sage: D = Zp(5)._printer.dict(); D['sep']
'
```

repr_gen(elt, do_latex, pos=None, mode=None, ram_name=None)

The entry point for printing an element.

INPUT:

- elt – a p-adic element of the appropriate ring to print.
- do_latex – whether to return a latex representation or a normal one.

EXAMPLES:

```
sage: R = Zp(5,5); P = R._printer; a = R(-5); a
4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + O(5^6)

sage: P.repr_gen(a, False, pos=False)
'\(-5 + O(5^6)\)'

sage: P.repr_gen(a, False, ram_name='p')
'4*p + 4*p^2 + 4*p^3 + 4*p^4 + 4*p^5 + O(p^6)'
```

(continued from previous page)
richcmp_modes(\(other, op\))

Return a comparison of the printing modes of self and other.

Return 0 if and only if all relevant modes are equal (\texttt{max\_unram\_terms} is irrelevant if the ring is totally ramified over the base, for example). This does not check if the rings are equal (to prevent infinite recursion in the comparison functions of \(p\)-adic rings), but it does check if the primes are the same (since the prime affects whether \texttt{pos} is relevant).

EXAMPLES:

\begin{verbatim}
sage: R = Qp(7, print_mode='digits', print_pos=True)
sage: S = Qp(7, print_mode='digits', print_pos=False)
sage: R._printer == S._printer
True
sage: R = Qp(7)
sage: S = Qp(7, print_mode='val-unit')
sage: R == S
False
sage: R._printer < S._printer
True
\end{verbatim}
CHAPTER
TWENTYFIVE

PRECISION ERROR

The errors in this file indicate various styles of precision problems that can go wrong for p-adics and power series.

AUTHORS:

• David Roe

exception sage.rings.padics.precision_error.PrecisionError
  Bases: ArithmeticError
MISCELLANEOUS FUNCTIONS

This file contains several miscellaneous functions used by \( p \)-adics.

- \texttt{gauss\_sum} – compute Gauss sums using the Gross-Koblitz formula.
- \texttt{min} – a version of \texttt{min} that returns \( \infty \) on empty input.
- \texttt{max} – a version of \texttt{max} that returns \( -\infty \) on empty input.

AUTHORS:

- David Roe
- Adriana Salerno
- Ander Steele
- Kiran Kedlaya (modified \texttt{gauss\_sum} 2017/09)

\texttt{gauss\_sum}(a, p, f, \text{prec=20, factored=False, algorithm='pari', parent=None})

Return the Gauss sum \( g_q(a) \) as a \( p \)-adic number.

The Gauss sum \( g_q(a) \) is defined by

\[
g_q(a) = \sum_{u \in F_q^*} \omega(u)^{-a} \zeta_q^u,
\]

where \( q = p^f \), \( \omega \) is the Teichmüller character and \( \zeta_q \) is some arbitrary choice of primitive \( q \)-th root of unity.


Let \( p \) be a prime, \( f \) a positive integer, \( q = p^f \), and \( \pi \) be the unique root of \( f(x) = x^{p-1} + p \) congruent to \( \zeta_p - 1 \) modulo \( (\zeta_p - 1)^2 \). Let \( 0 \leq a < q - 1 \). Then the Gross-Koblitz formula gives us the value of the Gauss sum \( g_q(a) \) as a product of \( p \)-adic Gamma functions as follows:

\[
g_q(a) = -\pi^s \prod_{0 \leq i < f} \Gamma_p(a^{(i)}/(q - 1)),
\]

where \( s \) is the sum of the digits of \( a \) in base \( p \) and the \( a^{(i)} \) have \( p \)-adic expansions obtained from cyclic permutations of that of \( a \).

INPUT:

- \texttt{a} – integer
- \texttt{p} – prime
- \texttt{f} – positive integer
- \texttt{prec} – positive integer (optional, 20 by default)
• factored – boolean (optional, False by default)
• algorithm – flag passed to p-adic Gamma function (optional, "pari" by default)

OUTPUT:
If factored is False, returns a $p$-adic number in an Eisenstein extension of $\mathbb{Q}_p$. This number has the form $p^e \cdot z$ where $p^e$ is as above, $e$ is some nonnegative integer, and $z$ is an element of $\mathbb{Z}_p$; if factored is True, the pair $(e, z)$ is returned instead, and the Eisenstein extension is not formed.

Note: This is based on GP code written by Adriana Salerno.

EXAMPLES:
In this example, we verify that $g_3(0) = -1$:

```sage
sage: from sage.rings.padics.misc import gauss_sum
sage: -gauss_sum(0, 3, 1) #→ needs sage.libs.ntl sage.rings.padics
1 + O(p^40)
```

Next, we verify that $g_5(a)g_5(-a) = 5(-1)^a$:

```sage
sage: from sage.rings.padics.misc import gauss_sum
sage: gauss_sum(2, 5, 1)^2 - 5 #→ needs sage.libs.ntl
O(p^84)
sage: gauss_sum(1, 5, 1)*gauss_sum(3, 5, 1) + 5 #→ needs sage.libs.ntl
O(p^84)
```

Finally, we compute a non-trivial value:

```sage
sage: from sage.rings.padics.misc import gauss_sum
sage: gauss_sum(2, 13, 2) #→ needs sage.libs.ntl
6pi^2 + 7pi^14 + 11pi^26 + 3pi^26 + 6pi^74 + 3pi^86 + 5pi^98 + pi^110 + 7pi^134 + 9pi^146 + 4pi^158 + 6pi^170 + 4pi^194 + pi^206 + 6pi^218 + 9pi^230 + 0(pi^242)
sage: gauss_sum(2, 13, 2, prec=5, factored=True) #→ needs sage.rings.padics
(2, 6 + 6*13 + 10*13^2 + O(13^5))
```

See also:
- `sage.arith.misc.gauss_sum()` for general finite fields
- `sage.modular.dirichlet.DirichletCharacter.gauss_sum()` for prime finite fields
- `sage.modular.dirichlet.DirichletCharacter.gauss_sum_numerical()` for prime finite fields

`sage.rings.padics.misc.max(*L)`

Return the maximum of the inputs, where the maximum of the empty list is $-\infty$.

EXAMPLES:
sage: from sage.rings.padics.misc import max
sage: max()
-Infinity
sage: max(2,3)
3

sage.rings.padics.misc.min(*L)

Return the minimum of the inputs, where the minimum of the empty list is $\infty$.

EXAMPLES:

sage: from sage.rings.padics.misc import min
sage: min()
+Infinity
sage: min(2,3)
2

sage.rings.padics.misc.precprint(prec_type, prec_cap, p)

String describing the precision mode on a p-adic ring or field.

EXAMPLES:

sage: from sage.rings.padics.misc import precprint
sage: precprint('capped-rel', 12, 2)
'with capped relative precision 12'
sage: precprint('capped-abs', 11, 3)
'with capped absolute precision 11'
sage: precprint('floating-point', 1234, 5)
'with floating precision 1234'
sage: precprint('fixed-mod', 1, 17)
'of fixed modulus 17^1'

sage.rings.padics.misc.trim_zeros(L)

Strips trailing zeros/empty lists from a list.

EXAMPLES:

sage: from sage.rings.padics.misc import trim_zeros
sage: trim_zeros([1,0,1,0])
[1, 0, 1]
sage: trim_zeros([[1],[],[2],[],[]])
[[1], [], [2]]
sage: trim_zeros([])
[]
sage: trim_zeros([])
[]

Zeros are also trimmed from nested lists (one deep):

sage: trim_zeros([[1,0]]) [[1]] sage: trim_zeros([[0],[1]]) [[], [1]]
THE FUNCTIONS IN THIS FILE ARE USED IN CREATING NEW P-ADIC ELEMENTS.

When creating a p-adic element, the user can specify that the absolute precision be bounded and/or that the relative precision be bounded. Moreover, different p-adic parents impose their own bounds on the relative or absolute precision of their elements. The precision determines to what power of $p$ the defining data will be reduced, but the valuation of the resulting element needs to be determined before the element is created. Moreover, some defining data can impose their own precision bounds on the result.

AUTHORS:

- David Roe (2012-03-01)
The functions in this file are used in creating new $p$-adic elements.
class sage.rings.padics.morphism.FrobeniusEndomorphism_padics
    Bases: RingHomomorphism

    A class implementing Frobenius endomorphisms on p-adic fields.

    is_identity()
    Return True if this morphism is the identity morphism.

    EXAMPLES:

    sage: K.<a> = Qq(5^3)
sage: Frob = K.frobenius_endomorphism()
sage: Frob.is_identity()
    False
    sage: (Frob^3).is_identity()
    True

    is_injective()
    Return True since any power of the Frobenius endomorphism over an unramified p-adic field is always injective.

    EXAMPLES:

    sage: K.<a> = Qq(5^3)
sage: Frob = K.frobenius_endomorphism()
sage: Frob.is_injective()
    True

    is_surjective()
    Return True since any power of the Frobenius endomorphism over an unramified p-adic field is always surjective.

    EXAMPLES:

    sage: K.<a> = Qq(5^3)
sage: Frob = K.frobenius_endomorphism()
sage: Frob.is_surjective()
    True

    order()
    Return the order of this endomorphism.

    EXAMPLES:
sage: K.<a> = Qq(5^12)
sage: Frob = K.frobenius_endomorphism()
sage: Frob.order()
12
sage: (Frob^2).order()
6
sage: (Frob^9).order()
4

power()  
Return the smallest integer $n$ such that this endomorphism is the $n$-th power of the absolute (arithmetic) Frobenius.

EXAMPLES:

sage: K.<a> = Qq(5^12)
sage: Frob = K.frobenius_endomorphism()
sage: Frob.power()
1
sage: (Frob^9).power()
9
sage: (Frob^13).power()
1
INDICES AND TABLES

- Index
- Module Index
- Search Page
sage.rings.padics.common_conversion, 265
sage.rings.padics.eisenstein_extension_generic, 109
sage.rings.padics.factory, 7
sage.rings.padics.generic_nodes, 81
sage.rings.padics.local_generic, 55
sage.rings.padics.local_generic_element, 129
sage.rings.padics.misc, 261
sage.rings.padics.morphism, 267
sage.rings.padics.padic_base_generic, 97
sage.rings.padics.padic_base_leaves, 117
sage.rings.padics.padic_capped_absolute_element, 183
sage.rings.padics.padic_capped_relative_element, 165
sage.rings.padics.padic_ext_element, 211
sage.rings.padics.padic_extension_generic, 101
sage.rings.padics.padic_extension_leaves, 125
sage.rings.padics.padic_fixed_mod_element, 197
sage.rings.padics.padic_generic, 69
sage.rings.padics.padic_generic_element, 137
sage.rings.padics.padic_printing, 253
sage.rings.padics.padic_ZZ_pX_CA_element, 227
sage.rings.padics.padic_ZZ_pX_CR_element, 217
sage.rings.padics.padic_ZZ_pX_element, 215
sage.rings.padics.padic_ZZ_pX_FM_element, 237
sage.rings.padics.pow_computer, 247
sage.rings.padics.pow_computer_ext, 249
sage.rings.padics.precision_error, 259
sage.rings.padics.tutorial, 1
sage.rings.padics.unramified_extension_generic, 113
INDEX

A

abs() (sage.rings.padics.padic_generic_element.pAdicGenericElement
method), 138

absolute_degree() (sage.rings.padics.local_generic.LocalGeneric
method), 55

absolute_discriminant()
(sage.rings.padics.padic_base_generic.pAdicBaseGeneric
method), 97

absolute_e() (sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric
method), 109

absolute_e() (sage.rings.padics.local_generic.LocalGeneric
method), 55

absolute_f() (sage.rings.padics.local_generic.LocalGeneric
method), 56

absolute_f()
(sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric
method), 113

absolute_inertia_degree()
(sage.rings.padics.local_generic.LocalGeneric
method), 56

absolute_ramification_index()
(sage.rings.padics.local_generic.LocalGeneric
method), 56

add_bigoh() (sage.rings.padics.local_generic.LocalGenericElement
method), 129

add_bigoh() (sage.rings.padics.local_generic.LocalGeneric
method), 183

add_bigoh()
(sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric
method), 113

add_bigoh()
(sage.rings.padics.padic_capped_absolute_element.CAElement
method), 183

add_bigoh()
(sage.rings.padics.padic_capped_relative_element.CRElement
method), 165

add_bigoh()
(sage.rings.padics.padic_fixed_mod_element.FMElement
method), 198

add_bigoh()
(sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZZpXFMElement
method), 239

add_bigoh()
(sage.rings.padics.padic_capped_relative_element.CappedRelativeElement
method), 170

add_bigoh()
(sage.rings.padics.local_generic.LocalGeneric
method), 56

add_bigoh() (sage.rings.padics.padic_capped_absolute_element.CappedAbsoluteElement
method), 183

addingNSElement() (class in sage.rings.padics.padic_capped_absolute_element
method), 183

algdep() (sage.rings.padics.padic_capped_absolute_element.CappedAbsoluteElement
method), 139

algdep() (sage.rings.padics.padic_capped_relative_element.CappedRelativeElement
method), 139

algdep() (sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZZpXFMElement
method), 139

algdep() (sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric
method), 140

algdep() (sage.rings.padics.padic_capped_absolute_element.CappedAbsoluteElement
class in sage.rings.padics.padic_capped_absolute_element
method), 139

algdep() (sage.rings.padics.padic_capped_relative_element.CappedRelativeElement
method), 139

algdep() (sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric
method), 102

algdep(create_key_multiple) (sage.rings.padics.generic_nodes.pAdicLatticeGeneric
method), 85

algdep(create_key) (sage.rings.padics.factory.Qp_class
method), 14

algdep(create_key) (sage.rings.padics.factory.Zp_class
method), 40

allow_negatives() (sage.rings.padics.padic_printing.pAdicPrinterDefaults
method), 253
**p-adics, Release 10.2**

- `create_object()` (in module `sage.rings.padics.factory.pAdicExtension_class`, method), 52
- `create_object()` (in module `sage.rings.padics.factory.Qp_class`, method), 52
- `create_object()` (in module `sage.rings.padics.factory.Zp_class`, method), 40
- `CRElement` (class in module `sage.rings.padics.padic_capped_relative_element`), 165
- `evaluate_dwork_mahler()` (in module `sage.rings.padics.padic_element`, method), 137
- `exact_field()` (in module `sage.rings.padics.padic_base_generic.pAdicBaseGeneric`, method), 97
- `exact_field()` (in module `sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric`, method), 104
- `exact_ring()` (in module `sage.rings.padics.padic_base_generic.pAdicBaseGeneric`, method), 97
- `exact_ring()` (in module `sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric`, method), 104
- `default_prec()` (in module `sage.rings.padics.generic.pAdicRational`, method), 89
- `defining_polynomial()` (in module `sage.rings.padics.local_generic.LocalGeneric`, method), 59
- `defining_polynomial()` (in module `sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric`, method), 103
- `DefPolyConversion` (class in module `sage.rings.padics.padic_extension_generic`), 101
- `degree()` (in module `sage.rings.padics.local_generic.LocalGeneric`, method), 60
- `dict()` (in module `sage.rings.padics.padic_printing.pAdicPrinter_class`, method), 256
- `discriminant()` (in module `sage.rings.padics.padic_base_generic.pAdicBaseGeneric`, method), 97
- `discriminant()` (in module `sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric`, method), 113
- `dwork_expansion()` (in module `sage.rings.padics.padic_generic_element.pAdicGenericElement`, method), 142
- `dwork_mahler_coeffs()` (in module `sage.rings.padics.padic_element`, method), 137
- `e()` (in module `sage.rings.padics.local_generic.LocalGeneric`, method), 60
- `EisensteinExtensionFieldCappedRelative` (class in module `sage.rings.padics.padic_extension_leaves`), 125
- `EisensteinExtensionGeneric` (class in module `sage.rings.padics.eisenstein_extension_generic`), 109
- `EisensteinExtensionRingCappedAbsolute` (class in module `sage.rings.padics.padic_extension_leaves`), 125
- `EisensteinExtensionRingCappedRelative` (class in module `sage.rings.padics.padic_extension_leaves`), 125
- `EisensteinExtensionRingFixedMod` (class in module `sage.rings.padics.padic_extension_leaves`), 125
- `euclidean_degree()` (in module `sage.rings.padics.local_generic.LocalGeneric`, method), 130
- `exp()` (in module `sage.rings.padics.padic_generic_element.pAdicGenericElement`, method), 143
- `expansion()` (in module `sage.rings.padics.padic_capped_absolute_element.pAdicGenericElement`, method), 191
- `expansion()` (in module `sage.rings.padics.padic_capped_relative_element.pAdicGenericElement`, method), 177
- `expansion()` (in module `sage.rings.padics.padic_fixed_mod_element.pAdicGenericElement`, method), 205
- `expansion()` (in module `sage.rings.padics.padic_ZZ_pX_CA_element`, method), 230
- `expansion()` (in module `sage.rings.padics.padic_ZZ_pX_CR_element`, method), 220
- `expansion()` (in module `sage.rings.padics.padic_ZZ_pX_FM_element`, method), 240
- `ExpansionIter` (class in module `sage.rings.padics.padic_capped_absolute_element`), 185
- `ExpansionIter` (class in module `sage.rings.padics.padic_capped_relative_element`), 180
- `ExpansionIter` (class in module `sage.rings.padics.padic_fixed_mod_element`), 197
- `ExpansionIterable` (class in module `sage.rings.padics.padic_capped_absolute_element`), 186
- `ExpansionIterable` (class in module `sage.rings.padics.padic_capped_relative_element`), 170
- `ExtensionRingGenericElement` (class in module `sage.rings.padics.generic_element`, method), 61
- `f()` (in module `sage.rings.padics.local_generic.LocalGeneric`, method), 61

---

274 **Index**
FloatingPointFieldGeneric (class in sage.rings.padics.generic_nodes), 82

FloatingPointGeneric (class in sage.rings.padics.generic_nodes), 82

FloatingPointRingGeneric (class in sage.rings.padics.generic_nodes), 83

FMElement (class in sage.rings.padics.generic_nodes), 72

fraction_field() (sage.rings.padics.padic_fixed_mod_element), 198

fraction_field() (sage.rings.padics.padic_extension_leaves.EisensteinExtensionRingFixedMod method), 126

fraction_field() (sage.rings.padics.padic_generic.pAdicGeneric method), 71

free_module() (sage.rings.padics.padic_extension_general.pAdicExtensionGeneric method), 104

frobenius() (sage.rings.padics.padic_ext_element.pAdicExtElement method), 211

frobenius_endomorphism() (sage.rings.padics.padic_generic.pAdicGeneric method), 72

FrobeniusEndomorphism_padics (class in sage.rings.padics.morphism), 267

gamma() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 144

gauss_sum() (in module sage.rings.padics.misc), 261

gauss_table() (in module sage.rings.padics.padic_generic_element), 138

gcd() (sage.rings.padics.padic_generic_element.pAdicGenericElement, 145

gen() (sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric method), 109

gen() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 98

gen() (sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric method), 114

gens() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 72

gens() (sage.rings.padics.padic_generic_element.pAdicGenericElement, 114

get_key_base() (in module sage.rings.padics.factory), 50

ground_ring() (sage.rings.padics.local_generic.LocalGeneric method), 61

ground_ring() (sage.rings.padics.padic_extension_general.pAdicExtensionGeneric method), 105

ground_ring() (sage.rings.padics.padic_extension_general.pAdicExtensionGeneric, 62

ground_ring_of_tower() (sage.rings.padics.local_generic.LocalGeneric method), 61

ground_ring_of_tower() (sage.rings.padics.padic_extension_general.pAdicExtensionGeneric method), 105

H

halting_prec() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric method), 63

Index 275
\textbf{\textit{p}}-\textsc{adics}, Release 10.2

\begin{verbatim}
is_field() (sage.rings.padics.generic_nodes.pAdicRingGeneric, 94) is_fixed_mod() (sage.rings.padics.generic_nodes.FixedModGeneric, 82) is_isomorphic() (sage.rings.padics.padic_capped_absolute_element.pAdicMethod, 189) is_surjective() (sage.rings.padics.padic_capped_relative_element.pAdicMethod, 174) is_galois() (sage.rings.padics.padic_extension_generic.pAdicMethod, 63) is_injective() (sage.rings.padics.local_generic.LocalGeneric, 107) is_lattice_prec() (sage.rings.padics.local_generic.LocalGeneric, 64) is_zerodivisor() (sage.rings.padics.padic_capped_absolute_element.CAElement, 267) is_injective() (sage.rings.padics.padic_capped_absolute_element.CAElement, 189) is_injective() (sage.rings.padics.padic_capped_absolute_element.CAElement, 174) is_injective() (sage.rings.padics.padic_capped_relative_element.CRElement, 198) is_injective() (sage.rings.padics.padic_fixed_mod_element.FMElement, 231) is_zeromorphism() (sage.rings.padics.padic_ZZ_pX_FM_element, 222) is_zeromorphism() (sage.rings.padics.padic_ZZ_pX_CA_element, 179) is_zeromorphism() (sage.rings.padics.padic_ZZ_pX_CA_element, 51) is_integral() (sage.rings.padics.local_generic.LocalGenericElement, 131) is_isomorphic() (sage.rings.padics.padic_base_generic.pAdicGenericElement, 98) is_lattice_prec() (sage.rings.padics.generic_nodes.pAdicLatticeGeneric, 86) is_lattice_prec() (sage.rings.padics.local_generic.LocalGeneric, 64) is_normal() (sage.rings.padics.padic_base_generic.pAdicBaseGenericElement, 99) is_padic_unit() (sage.rings.padics.local_generic.LocalGenericElement, 131) is_prime() (sage.rings.padics.padic_generic_element.pAdicGenericElement, 147) is_zero() (sage.rings.padics.padic_capped_absolute_element.FAElement, 86) is_zero() (sage.rings.padics.padic_capped_relative_element.FAElement, 187) is_zero() (sage.rings.padics.padic_fixed_mod_element.FAElement, 172) is_zero() (sage.rings.padics.padic_capped_relative_element.FAElement, 204) lift_to_precision() (sage.rings.padics.padic_capped_absolute_element.pAdicMethod, 193) lift_to_precision() (sage.rings.padics.padic_capped_relative_element.pAdicMethod, 179) lift_to_precision() (sage.rings.padics.padic_capped_absolute_element.pAdicMethod, 232)
\end{verbatim}
lift_to_precision()
(sage.rings.padics.padic_ZZ_pX_CR_element.pAdicZZpXCRElement
method), 222

lift_to_precision()
(sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZZpXFMElement
method), 242

local_print_mode()
(in module
sage.rings.padics.padic_generic), 70

LocalGeneric
(class in
sage.rings.padics.local_generic), 55

LocalGenericElement
(class in
sage.rings.padics.local_generic_element), 129

log()
(sage.rings.padics.padic_generic_element.pAdicGenericElement
method), 148

M
make_pAdicCappedAbsoluteElement()
(in module
sage.rings.padics.padic_capped_absolute_element), 186

make_pAdicFixedModElement()
(in module
sage.rings.padics.padic_fixed_mod_element), 200

make_ZZpXCAElement()
(in module
sage.rings.padics.padic_ZZ_pX_CA_element), 229

make_ZZpXCRElement()
(in module
sage.rings.padics.padic_ZZ_pX_CR_element), 219

make_ZZpXFMElement()
(in module
sage.rings.padics.padic_ZZ_pX_FM_element), 239

MapFreeModuleToOneStep
(class in
sage.rings.padics.padic_extension_generic), 101

MapFreeModuleToTwoStep
(class in
sage.rings.padics.padic_extension_generic), 101

MapOneStepToFreeModule
(class in
sage.rings.padics.padic_extension_generic), 102

MapTwoStepToFreeModule
(class in
sage.rings.padics.padic_extension_generic), 102

matrix_mod_pn()
(sage.rings.padics.padic_ZZ_pX_CA_element.pAdicZZpXCAElement
method), 232

matrix_mod_pn()
(sage.rings.padics.padic_ZZ_pX_CR_element.pAdicZZpXCRElement
method), 223

matrix_mod_pn()
(sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZZpXFMElement
method), 242

max()
(in module sage.rings.padics.misc), 262

max_poly_terms()
(sage.rings.padics.padic_printing.pAdicPrinterDefaults
method), 254

max_series_terms()
(sage.rings.padics.padic_printing.pAdicPrinterDefaults
method), 254

max_unram_terms()
(sage.rings.padics.padic_printing.pAdicPrinterDefaults
method), 255

maximal_unramified_subextension()
(sage.rings.padics.local_generic.LocalGeneric
method), 65

min()
(in module sage.rings.padics.misc), 263

minimal_polynomial()
(sage.rings.padics.padic_generic_element.pAdicGenericElement
method), 152

mode()
(sage.rings.padics.padic_printing.pAdicPrinterDefaults
method), 255

module
sage.rings.padics.common_conversion, 265

sage.rings.padics.eisenstein_extension_generic, 109

sage.rings.padics.factor, 7

sage.rings.padics.generic_nodes, 81

sage.rings.padics.local_generic, 55

sage.rings.padics.local_generic_element, 129

sage.rings.padics.misc, 261

sage.rings.padics.morphism, 267

sage.rings.padics.padic_base_element, 97

sage.rings.padics.padic_base_leaves, 117

sage.rings.padics.padic_capped_absolute_element, 183

sage.rings.padics.padic_capped_relative_element, 165

sage.rings.padics.padic_ext_element, 211

sage.rings.padics.padic_extension_generic, 101

sage.rings.padics.padic_extension_leaves, 125

sage.rings.padics.padic_fixed_mod_element, 197

sage.rings.padics.padic_generic, 69

sage.rings.padics.padic_generic_element, 137

sage.rings.padics.padic_printing, 253

sage.rings.padics.padic_extension_generic, 227

sage.rings.padics.padic_extension_leaves, 227

sage.rings.padics.padic_ZZ_pX_CA_element, 227

sage.rings.padics.pow_computer, 247

sage.rings.padics.pow_computer_ext, 249

sage.rings.padics.precision_error, 259

sage.rings.padics.tutorial, 1

sage.rings.padics.unramified_extension_generic,
$p$-adics, Release 10.2

113 modulus() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 99
113 modulus() (sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric method), 105
113 multiplicative_order() (sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement method), 187
113 multiplicative_order() (sage.rings.padics.padic_fixed_mod_element.pAdicFixedModElement method), 204
113 multiplicative_order() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 153
113 N ngens() (sage.rings.padics.padic_generic.pAdicGeneric method), 73
113 norm() (sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement method), 154
113 norm() (sage.rings.padics.padic_ZZ_pX_element.pAdicZZpXElement method), 215
113 norm() (sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZZpXFMElement method), 242
113 normalized_value() (sage.rings.padics.local_generic_element.LocalGenericElement method), 132
113 nth_root() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 155

O

114 order() (sage.rings.padics.morphism.FrobeniusEndomorphism_padic method), 267
114 ordp() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 156

P

114 pAdicBaseGeneric (class in sage.rings.padics.padic_base_generic), 97
115 pAdicCappedAbsoluteElement (class in sage.rings.padics.padic_capped_absolute_element), 186
115 pAdicCappedAbsoluteRingGeneric (class in sage.rings.padics.generic_nodes), 83
115 pAdicCappedRelativeElement (class in sage.rings.padics.padic_capped_relative_element), 171
115 pAdicCappedRelativeFieldGeneric (class in sage.rings.padics.generic_nodes), 83
115 pAdicCappedRelativeRingGeneric (class in sage.rings.padics.generic_nodes), 83
115 pAdicCoercion_CA_frac_field (class in sage.rings.padics.padic_capped_absolute_element), 188
114 pAdicCoercion_CR_frac_field (class in sage.rings.padics.padic_fixed_mod_element), 173
114 pAdicCoercion_FM_frac_field (class in sage.rings.padics.padic_fixed_mod_element), 200
114 pAdicCoercion_ZZ_CA (class in sage.rings.padics.padic_capped_absolute_element), 189
114 pAdicCoercion_ZZ_CR (class in sage.rings.padics.padic_capped_relative_element), 175
114 pAdicCoercion_ZZ_FM (class in sage.rings.padics.padic_fixed_mod_element), 201
114 pAdicConvert_CA_frac_field (class in sage.rings.padics.padic_capped_absolute_element), 190
114 pAdicConvert_CA_ZZ (class in sage.rings.padics.padic_capped_absolute_element), 190
114 pAdicConvert_CR_frac_field (class in sage.rings.padics.padic_capped_relative_element), 176
114 pAdicConvert_CR_QQ (class in sage.rings.padics.padic_capped_relative_element), 175
114 pAdicConvert_CR_ZZ (class in sage.rings.padics.padic_capped_relative_element), 175
114 pAdicConvert_FM_frac_field (class in sage.rings.padics.padic_fixed_mod_element), 202
114 pAdicConvert_FM_ZZ (class in sage.rings.padics.padic_fixed_mod_element), 202
114 pAdicConvert_QQ_CA (class in sage.rings.padics.padic_capped_absolute_element), 190
114 pAdicConvert_QQ_CR (class in sage.rings.padics.padic_capped_relative_element), 176
114 pAdicConvert_QQ_FM (class in sage.rings.padics.padic_fixed_mod_element), 202
114 pAdicExtElement (class in sage.rings.padics.padic_ext_element), 211
114 pAdicExtension_class (class in sage.rings.padics.factory), 52
pAdicFieldBaseGeneric (class in sage.rings.padics.generic_nodes), 83
pAdicFieldCappedRelative (class in sage.rings.padics.padic_base_leaves), 119
pAdicFieldFloatingPoint (class in sage.rings.padics.padic_base_leaves), 120
pAdicFieldGeneric (class in sage.rings.padics.generic_nodes), 85
pAdicFieldLattice (class in sage.rings.padics.padic_base_leaves), 120
pAdicFieldRelaxed (class in sage.rings.padics.padic_base_leaves), 121
pAdicFixedModElement (class in sage.rings.padics.padic_fixed_mod_element), 202
pAdicFixedModRingGeneric (class in sage.rings.padics.generic_nodes), 85
pAdicFloatingPointFieldGeneric (class in sage.rings.padics.generic_nodes), 85
pAdicFloatingPointRingGeneric (class in sage.rings.padics.generic_nodes), 85
pAdicGeneric (class in sage.rings.padics.padic_generic), 70
pAdicGenericElement (class in sage.rings.padics.padic_generic_element), 138
pAdicLatticeGeneric (class in sage.rings.padics.padic_base_leaves), 85
pAdicModuleIsomorphism (class in sage.rings.padics.padic_extension_generic), 106
pAdicPrinter() (in module sage.rings.padics.padic_printing), 253
pAdicPrinter_class (class in sage.rings.padics.padic_printing), 256
pAdicPrinterDefaults (class in sage.rings.padics.padic_printing), 253
pAdicRelaxedGeneric (class in sage.rings.padics.padic_generic_nodes), 88
pAdicRingBaseGeneric (class in sage.rings.padics.padic_generic_nodes), 93
pAdicRingCappedAbsolute (class in sage.rings.padics.padic_base_leaves), 121
pAdicRingCappedRelative (class in sage.rings.padics.padic_base_leaves), 121
pAdicRingFixedMod (class in sage.rings.padics.padic_base_leaves), 121
pAdicRingFloatingPoint (class in sage.rings.padics.padic_base_leaves), 121
pAdicRingGeneric (class in sage.rings.padics.padic_generic_nodes), 94
pAdicRingLattice (class in sage.rings.padics.padic_base_leaves), 121
pAdicRingRelaxed (class in sage.rings.padics.padic_base_leaves), 122
pAdicTemplateElement (class in sage.rings.padics.padic_capped_absolute_element), 191
pAdicTemplateElement (class in sage.rings.padics.padic_capped_relative_element), 176
pAdicTemplateElement (class in sage.rings.padics.padic_fixed_mod_element), 205
pAdicZZpXCAElement (class in sage.rings.padics.padic_ZZ_pX_CA_element), 229
pAdicZZpXCRElement (class in sage.rings.padics.padic_ZZ_pX_CR_element), 220
pAdicZZpXElement (class in sage.rings.padics.padic_ZZ_pX_element), 215
pAdicZZpXFElement (class in sage.rings.padics.padic_ZZ_pX_FM_element), 239
plot() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric method), 99
polylog() (sage.rings.padics.padic_generic_element.pAdicGenericElement method), 156
polynomial() (sage.rings.padics.padic_capped_absolute_element.CAElement method), 184
polynomial() (sage.rings.padics.padic_capped_relative_element.REElement method), 167
polynomial() (sage.rings.padics.padic_fixed_mod_element.FMElement method), 199
polynomial() (sage.rings.padics.padic_ZZ_pX_CA_element.pAdicZZpXCAElement method), 233
polynomial() (sage.rings.padics.padic_ZZ_pX_CR_element.pAdicZZpXCRElement method), 223
polynomial() (sage.rings.padics.padic_ZZ_pX_FM_element.pAdicZZpXFElement method), 243
polynomial() (sage.rings.padics.pow_computer_ext.PowComputer_ZZ_pX method), 249
polynomial_ring() (sage.rings.padics.padic_extension_generic.pAdicExtensionGeneric method), 106
pow_Integer_Integer() (sage.rings.padics.pow_computer_ext.PowComputer_class method), 248
PowComputer() (in module sage.rings.padics.pow_computer), 247
pow_Integer_Integer() (in sage.rings.padics.pow_computer.PowComputer_class method), 106
pow_Integer_Integer() (in sage.rings.padics.pow_computer.PowComputer_PowComputer method), 248
uniformiser() (sage.rings.padics.local_generic.LocalGeneric
method), 68
uniformiser_pow() (sage.rings.padics.local_generic.LocalGeneric
method), 68
uniformizer() (sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric
method), 111
uniformizer() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric
method), 100
uniformizer() (sage.rings.padics.unramified_extension_generic.UnramifiedExtensionGeneric
method), 115
uniformizer_pow() (sage.rings.padics.eisenstein_extension_generic.EisensteinExtensionGeneric
method), 111
uniformizer_pow() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric
method), 100
unit_part() (sage.rings.padics.padic_capped_absolute_element.CAElement
method), 185
unit_part() (sage.rings.padics.padic_capped_relative_element.CRElement
method), 169
unit_part() (sage.rings.padics.padic_fixed_mod_element.FMElement
method), 200
unit_part() (sage.rings.padics.padic_capped_relative_element.CRElement
method), 161
unit_part() (sage.rings.padics.padic_capped_absolute_element.CAElement
method), 195
unit_part() (sage.rings.padics.padic_capped_relative_element.CRElement
method), 168
unit_part() (sage.rings.padics.padic_fixed_mod_element.FMElement
method), 180
unit_part() (sage.rings.padics.padic_fixed_mod_element.FMElement
method), 199
unit_part() (sage.rings.padics.padic_fixed_mod_element.FMElement
method), 209
unit_part() (sage.rings.padics.padic_fixed_mod_element.FMElement
method), 235
unit_part() (sage.rings.padics.padic_fixed_mod_element.FMElement
method), 225
unit_part() (sage.rings.padics.padic_fixed_mod_element.FMElement
method), 245
unknown() (sage.rings.padics.generic_nodes.pAdicRelaxedGeneric
method), 92
unpickle_cae_v2() (in module sage.rings.padics.padic_capped_absolute_element), 195
unpickle_cae_v2() (in module sage.rings.padics.padic_capped_relative_element), 181
unpickle_cme_v2() (in module sage.rings.padics.padic_capped_relative_element), 181
unpickle_cme_v2() (in module sage.rings.padics.padic_capped_relative_element), 181
UnramifiedExtensionFieldCappedRelative (class in sage.rings.padics.padic_extension_leaves), 126
UnramifiedExtensionFieldFloatingPoint (class in sage.rings.padics.padic_extension_leaves), 126
UnramifiedExtensionGeneric (class in sage.rings.padics.unramified_extension_generic), 113
UnramifiedExtensionRingCappedAbsolute (class in sage.rings.padics.padic_extension_leaves), 126
UnramifiedExtensionRingCappedRelative (class in sage.rings.padics.padic_extension_leaves), 127
UnramifiedExtensionRingFixedMod (class in sage.rings.padics.padic_extension_leaves), 127
UnramifiedExtensionRingFloatingPoint (class in sage.rings.padics.padic_extension_leaves), 127

Z
zeta() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric
method), 100
zeta_order() (sage.rings.padics.padic_base_generic.pAdicBaseGeneric
method), 100
Zp_class (class in sage.rings.padics.factory), 33
ZpCA() (in module sage.rings.padics.factory), 24
ZpCR() (in module sage.rings.padics.factory), 24
ZpER() (in module sage.rings.padics.factory), 24
ZpFM() (in module sage.rings.padics.factory), 28
ZpFP() (in module sage.rings.padics.factory), 28
ZpLC() (in module sage.rings.padics.factory), 28
ZpLF() (in module sage.rings.padics.factory), 28
Zq() (in module sage.rings.padics.factory), 33
ZqCA() (in module sage.rings.padics.factory), 40
ZqCR() (in module sage.rings.padics.factory), 49
ZqFM() (in module sage.rings.padics.factory), 50
ZqFP() (in module sage.rings.padics.factory), 50

ZZ_pX_eis_shift_test() (in module sage.rings.padics.pow_computer_ext), 251

Index

283