CONTENTS

1 Introduction 1

2 Function and Data Plots 3
 2.1 Plotting Functions ... 3
 2.2 Parametric Plots ... 48
 2.3 Surfaces of revolution ... 102
 2.4 Plotting 3D Fields ... 112
 2.5 Implicit Plots .. 113
 2.6 List Plots ... 152

3 Basic Shapes and Primitives 157
 3.1 Base Classes for 3D Graphics Objects and Plotting 157
 3.2 Basic objects such as Sphere, Box, Cone, etc. 182
 3.3 Classes for Lines, Frames, Rulers, Spheres, Points, Dots, and Text 221
 3.4 Platonic Solids .. 231
 3.5 Parametric Surface .. 256
 3.6 Graphics 3D Object for Representing and Triangulating Isosurfaces ... 260

4 Infrastructure 265
 4.1 Texture Support ... 265
 4.2 Indexed Face Sets ... 268
 4.3 Transformations ... 280
 4.4 Adaptive refinement code for 3d surface plotting 282

5 Backends 285
 5.1 The Tachyon 3D Ray Tracer ... 285
 5.2 Three.js JavaScript WebGL Renderer ... 303

6 Indices and Tables 305

Python Module Index 307

Index 309
Sage has a wide support for 3D graphics, from basic shapes to implicit and parametric plots. The following graphics functions are supported:

- `plot3d()` - plot a 3d function
- `parametric_plot3d()` - a parametric three-dimensional space curve or surface
- `revolution_plot3d()` - a plot of a revolved curve
- `plot_vector_field3d()` - a plot of a 3d vector field
- `implicit_plot3d()` - a plot of an isosurface of a function
- `list_plot3d()` - a 3-dimensional plot of a surface defined by a list of points in 3-dimensional space
- `list_plot3d_matrix()` - a 3-dimensional plot of a surface defined by a matrix defining points in 3-dimensional space
- `list_plot3d_array_of_arrays()` - a 3-dimensional plot of a surface defined by a list of lists defining points in 3-dimensional space
- `list_plot3d_tuples()` - a 3-dimensional plot of a surface defined by a list of points in 3-dimensional space

The following classes for basic shapes are supported:

- `Box` - a box given its three magnitudes
- `Cone` - a cone, with base in the xy-plane pointing up the z-axis
- `Cylinder` - a cylinder, with base in the xy-plane pointing up the z-axis
- `Line` - a 3d line joining a sequence of points
- `Sphere` - a sphere centered at the origin
- `Text` - a text label attached to a point in 3d space
- `Torus` - a 3d torus
- `Point` - a position in 3d, represented by a sphere of fixed size

The following plotting functions for basic shapes are supported:

- `ColorCube()` - a cube with given size and sides with given colors
- `LineSegment()` - a line segment, which is drawn as a cylinder from start to end with given radius
- `line3d()` - a 3d line joining a sequence of points
- `arrow3d()` - a 3d arrow
• point3d() - a point or list of points in 3d space
• bezier3d() - a 3d bezier path
• frame3d() - a frame in 3d
• frame_labels() - labels for a given frame in 3d
• polygon3d() - draw a polygon in 3d
• polygons3d() - draw the union of several polygons in 3d
• ruler() - draw a ruler in 3d, with major and minor ticks
• ruler_frame() - draw a frame made of 3d rulers, with major and minor ticks
• sphere() - plot of a sphere given center and radius
• text3d() - 3d text

Sage also supports platonic solids with the following functions:
• tetrahedron()
• cube()
• octahedron()
• dodecahedron()
• icosahedron()

Different viewers are supported: a web-based interactive viewer using the Three.js JavaScript library (the default), Jmol, and the Tachyon ray tracer. The viewer is invoked by adding the keyword argument viewer='threejs' (respectively 'jmol' or 'tachyon') to the command show() on any three-dimensional graphic.
• Tachyon - create a scene the can be rendered using the Tachyon ray tracer
• Axis_aligned_box - box with axis-aligned edges with the given min and max coordinates
• Cylinder - an infinite cylinder
• FCylinder - a finite cylinder
• FractalLandscape - axis-aligned fractal landscape
• Light - represents lighting objects
• ParametricPlot - parametric plot routines
• Plane - an infinite plane
• Ring - an annulus of zero thickness
• Sphere - a sphere
• TachyonSmoothTriangle - a triangle along with a normal vector, which is used for smoothing
• TachyonTriangle - basic triangle class
• TachyonTriangleFactory - class to produce triangles of various rendering types
• Texfunc - creates a texture function
• Texture - stores texture information
• tostr() - converts vector information to a space-separated string
2.1 Plotting Functions

EXAMPLES:

```
sage: x, y = var('x y')
sage: W = plot3d(sin(pi*((x)^2+(y)^2))/2, (x,-1,1), (y,-1,1), frame=False, color='purple', opacity=0.8)
sage: S = sphere((0,0,0), size=0.3, color='red', aspect_ratio=[1,1])
sage: show(W + S, figsize=8)
```
```python
sage: def f(x,y):
    return math.sin(y^2+x^2)/math.sqrt(x^2+y^2+0.0001)
sage: P = plot3d(f,(-3,3),(-3,3), adaptive=True, color=rainbow(60, 'rgbtuple'), max_bend=.1, max_depth=15)
sage: P.show()
```

Here is an example using a colormap and a color function c:

```python
sage: x, y = var('x y')
sage: cm = colormaps.hsv
sage: def c(x,y): return float((x+y+x*y)/15) % 1
sage: plot3d(x*x+y*y,(x,-4,4),(y,-4,4),color=(c,cm))
```

Beware that the color function must take values between 0 and 1.

We plot “cape man”:

```python
sage: def f(x,y):
    return math.exp(x/5)*math.sin(y)
    ...
sage: P = plot3d(f,(-5,5),(-5,5), adaptive=True, color=['red','yellow'])
sage: from sage.plot.plot3d.plot3d import axes
sage: S = P + axes(6, color='black')
sage: S.show()
```

Here is an example using a colormap and a color function c:
sage: S = sphere(size=.5, color='yellow')

sage: from sage.plot.plot3d.shapes import Cone
sage: S += Cone(.5, .5, color='red').translate(0,0,.3)

sage: S += sphere((.45,-.1,.15), size=.1, color='white') + sphere((.51,-.1,.17), size=.05, color='black')

sage: S += sphere((.45, .1,.15),size=.1, color='white') + sphere((.51, .1,.17), size=.05, color='black')

sage: S += sphere((.5,0,-.2),size=.1, color='yellow')

sage: def f(x,y):
 return math.exp(x/5)*math.cos(y)

sage: P = plot3d(f,(-5,5),(-5,5), adaptive=True, color=['red','yellow'], max_depth=10)

sage: cape_man = P.scale(.2) + S.translate(1,0,0)

sage: cape_man.show(aspect_ratio=[1,1,1])

Or, we plot a very simple function indeed:

sage: plot3d(pi, (-1,1), (-1,1))
Graphics3d Object

Transparent with fractional opacity value:

sage: plot3d(lambda x, y: x^2 + y^2, (-2,2), (-2,2), opacity=8/10)
Graphics3d Object
Todo: Add support for smooth triangles.

AUTHORS:

- Tom Boothby: adaptive refinement triangles
- Josh Kantor: adaptive refinement triangles
- Robert Bradshaw (2007-08): initial version of this file
- Oscar Lazo, William Cauchois, Jason Grout (2009-2010): Adding coordinate transformations

class sage.plot.plot3d.plot3d.Cylindrical(dep_var, indep_vars)
Bases: sage.plot.plot3d.plot3d._Coordinates

A cylindrical coordinate system for use with plot3d(transformation=...) where the position of a point is specified by three numbers:

- the radial distance (radius) from the z-axis
- the azimuth angle (azimuth) from the positive x-axis
- the height or altitude (height) above the xy-plane

These three variables must be specified in the constructor.

EXAMPLES:

Construct a cylindrical transformation for a function for height in terms of radius and azimuth:

```
sage: T = Cylindrical('height', ['radius', 'azimuth'])
```

If we construct some concrete variables, we can get a transformation:

```
sage: r, theta, z = var('r theta z')
sage: T.transform(radius=r, azimuth=theta, height=z)
(r*cos(theta), r*sin(theta), z)
```

We can plot with this transform. Remember that the dependent variable is the height, and the independent variables are the radius and the azimuth (in that order):

```
sage: plot3d(9-r^2, (r, 0, 3), (theta, 0, pi), transformation=T)
Graphics3d Object
```

We next graph the function where the radius is constant:

```
sage: S=Cylindrical('radius', ['azimuth', 'height'])
sage: theta,z=var('theta, z')
sage: plot3d(3, (theta, 0, 2*pi), (z, -2, 2), transformation=S)
Graphics3d Object
```

See also `cylindrical_plot3d()` for more examples of plotting in cylindrical coordinates.

transform(radius=None, azimuth=None, height=None)
A cylindrical coordinates transform.

EXAMPLES:
class sage.plot.plot3d.plot3d.Spherical(dep_var, indep_vars)

Bases: sage.plot.plot3d.plot3d._Coordinates

A spherical coordinate system for use with plot3d(transformation=...) where the position of a point is specified by three numbers:

- the radial distance (radius) from the origin
- the azimuth angle (azimuth) from the positive x-axis
- the inclination angle (inclination) from the positive z-axis

These three variables must be specified in the constructor.

EXAMPLES:

Construct a spherical transformation for a function for the radius in terms of the azimuth and inclination:

```
sage: T = Spherical('radius', ['azimuth', 'inclination'])
```

If we construct some concrete variables, we can get a transformation in terms of those variables:

```
sage: r, phi, theta = var('r phi theta')
sage: T.transform(radius=r, azimuth=theta, inclination=phi)
(r*cos(theta)*sin(phi), r*sin(phi)*sin(theta), r*cos(phi))
```

We can plot with this transform. Remember that the dependent variable is the radius, and the independent variables are the azimuth and the inclination (in that order):

```
sage: plot3d(phi * theta, (theta, 0, pi), (phi, 0, 1), transformation=T)
```

We next graph the function where the inclination angle is constant:

```
sage: S=Spherical('inclination', ['radius', 'azimuth'])
sage: r,theta=var('r,theta')
sage: plot3d(3, (r,0,3), (theta, 0, 2*pi), transformation=S)
```

See also `spherical_plot3d()` for more examples of plotting in spherical coordinates.

```
transform (radius=None, azimuth=None, inclination=None)
```

A spherical coordinates transform.

EXAMPLES:

```
sage: T = Spherical('radius', ['azimuth', 'inclination'])
sage: T.transform(radius=var('r'), azimuth=var('theta'), inclination=var('phi'))
(r*cos(theta)*sin(phi), r*sin(phi)*sin(theta), r*cos(phi))
```

class sage.plot.plot3d.plot3d.SphericalElevation(dep_var, indep_vars)

Bases: sage.plot.plot3d.plot3d._Coordinates

A spherical coordinate system for use with plot3d(transformation=...) where the position of a point is specified by three numbers:
• the radial distance (radius) from the origin
• the azimuth angle (azimuth) from the positive x-axis
• the elevation angle (elevation) from the xy-plane toward the positive z-axis

These three variables must be specified in the constructor.

EXAMPLES:
Construct a spherical transformation for the radius in terms of the azimuth and elevation. Then, get a transformation in terms of those variables:

```
sage: T = SphericalElevation('radius', ['azimuth', 'elevation'])
sage: r, theta, phi = var('r theta phi')
sage: T.transform(radius=r, azimuth=theta, elevation=phi)
(r*cos(phi)*cos(theta), r*cos(phi)*sin(theta), r*sin(phi))
```

We can plot with this transform. Remember that the dependent variable is the radius, and the independent variables are the azimuth and the elevation (in that order):

```
sage: plot3d(phi * theta, (theta, 0, pi), (phi, 0, 1), transformation=T)
Graphics3d Object
```

We next graph the function where the elevation angle is constant. This should be compared to the similar example for the Spherical coordinate system:
sage: SE=SphericalElevation('elevation', ['radius', 'azimuth'])
sage: r,theta=var('r,theta')
sage: plot3d(3, (r,0,3), (theta, 0, 2*pi), transformation=SE)
Graphics3d Object

Plot a sin curve wrapped around the equator:

sage: P1=plot3d((pi/12)*sin(8*theta), (r,0.99,1), (theta, 0, 2*pi),
 transformation=SE, plot_points=(10,200))
sage: P2=sphere(center=(0,0,0), size=1, color='red', opacity=0.3)
sage: P1+P2
Graphics3d Object

Now we graph several constant elevation functions alongside several constant inclination functions. This example illustrates the difference between the Spherical coordinate system and the SphericalElevation coordinate system:

sage: r, phi, theta = var('r phi theta')
sage: SE = SphericalElevation('elevation', ['radius', 'azimuth'])
sage: angles = [pi/18, pi/12, pi/6]
sage: P1 = [plot3d(a, (r,0,3), (theta, 0, 2*pi), transformation=SE, opacity=0.85,
 color='blue') for a in angles]
sage: S = Spherical('inclination', ['radius', 'azimuth'])
sage: P2 = [plot3d(a, (r,0,3), (theta, 0, 2*pi), transformation=S, opacity=0.85, color='red') for a in angles]
sage: show(sum(P1+P2), aspect_ratio=1)

See also `spherical_plot3d()` for more examples of plotting in spherical coordinates.

transform *(radius=None, azimuth=None, elevation=None)*

A spherical elevation coordinates transform.

EXAMPLES:

```
sage: T = SphericalElevation('radius', ['azimuth', 'elevation'])
sage: T.transform(radius=var('r'), azimuth=var('theta'), elevation=var('phi'))
(r*cos(phi)*cos(theta), r*cos(phi)*sin(theta), r*sin(phi))
```

class `sage.plot.plot3d.plot3d.TrivialTriangleFactory`

Class emulating behavior of `TriangleFactory` but simply returning a list of vertices for both regular and smooth triangles.

smooth_triangle *(a, b, c, da, db, dc, color=None)*

Function emulating behavior of `smooth_triangle()` but simply returning a list of vertices.

INPUT:
• a, b, c: triples (x, y, z) representing corners on a triangle in 3-space
• da, db, dc: ignored
• $color$: ignored

OUTPUT:
• the list $[a, b, c]$

triangle($a, b, c, color=None$)
Function emulating behavior of triangle() but simply returning a list of vertices.

INPUT:
• a, b, c: triples (x, y, z) representing corners on a triangle in 3-space
• $color$: ignored

OUTPUT:
• the list $[a, b, c]$

sage.plot.plot3d.plot3d.axes($scale=1, radius=None, **kwds$)
Creates basic axes in three dimensions. Each axis is a three dimensional arrow object.

INPUT:
• $scale$: (default: 1) The length of the axes (all three will be the same).
• $radius$: (default: .01) The radius of the axes as arrows.

EXAMPLES:

```
sage: from sage.plot.plot3d.plot3d import axes
sage: S = axes(6, color='black'); S
Graphics3d Object

sage: T = axes(2, .5); T
Graphics3d Object
```

sage.plot.plot3d.plot3d.cylindrical_plot3d($f, urange, vrange, **kwds$)
Plots a function in cylindrical coordinates. This function is equivalent to:

```
sage: r, u, v=var('|r, u, v|')
sage: f=u*v; urange=(u, 0, pi); vrange=(v, 0, pi)
sage: T = (r*cos(u), r*sin(u), v, [u,v])
sage: plot3d(f, urange, vrange, transformation=T)
Graphics3d Object
```
or equivalently:

```
sage: T = Cylindrical('radius', ['azimuth', 'height'])
sage: f=lambda u,v: u*v; urange=(u, 0, pi); vrange=(v, 0, pi)
sage: plot3d(f, urange, vrange, transformation=T)
Graphics3d Object
```

INPUT:
• f: a symbolic expression or function of two variables, representing the radius from the z-axis.
• $urange$: a 3-tuple $(u, \text{min}, u, \text{max})$, the domain of the azimuth variable.
• $vrange$: a 3-tuple $(v, v, \text{min}, v, \text{max})$, the domain of the elevation (z) variable.
EXAMPLES:

A portion of a cylinder of radius 2:

\begin{verbatim}
sage: theta, z = var('theta, z')
sage: cylindrical_plot3d(2, (theta, 0, 3*pi/2), (z, -2, 2))
Graphics3d Object
\end{verbatim}

Some random figures:

\begin{verbatim}
sage: cylindrical_plot3d(cosh(z), (theta, 0, 2*pi), (z, -2, 2))

sage: cylindrical_plot3d(e^(-z^2)*(cos(4*theta)+2)+1, (theta, 0, 2*pi), (z, -2, 2), plot_points=[80, 80]).show(aspect_ratio=(1,1,1))
\end{verbatim}

Plots a function in 3d.

INPUT:

- \(f \) - a symbolic expression or function of 2 variables
- \(urange \) - a 2-tuple \((u_{\text{min}}, u_{\text{max}})\) or a 3-tuple \((u, u_{\text{min}}, u_{\text{max}})\)
- \(vrange \) - a 2-tuple \((v_{\text{min}}, v_{\text{max}})\) or a 3-tuple \((v, v_{\text{min}}, v_{\text{max}})\)
- **adaptive** - (default: False) whether to use adaptive refinement to draw the plot (slower, but may look better). This option does NOT work in conjunction with a transformation (see below).
- **mesh** - bool (default: False) whether to display mesh grid lines
- **dots** - bool (default: False) whether to display dots at mesh grid points
- **plot_points** - (default: “automatic”) initial number of sample points in each direction; an integer or a pair of integers
- **transformation** - (default: None) a transformation to apply. May be a 3 or 4-tuple (x_func, y_func, z_func, independent_vars) where the first 3 items indicate a transformation to Cartesian coordinates (from your coordinate system) in terms of u, v, and the function variable fvar (for which the value of f will be substituted). If a 3-tuple is specified, the independent variables are chosen from the range variables. If a 4-tuple is specified, the 4th element is a list of independent variables. transformation may also be a predefined coordinate system transformation like Spherical or Cylindrical.

Note: mesh and dots are not supported when using the Tachyon raytracer renderer.

EXAMPLES: We plot a 3d function defined as a Python function:

```
sage: plot3d(lambda x, y: x^2 + y^2, (-2,2), (-2,2))
Graphics3d Object
```

We plot the same 3d function but using adaptive refinement:
Adaptive refinement but with more points:

```
sage: plot3d(lambda x, y: x^2 + y^2, (-2,2), (-2,2), adaptive=True, initial_depth=5)
```
Graphics3d Object

We plot some 3d symbolic functions:

```
sage: var('x,y')
(x, y)
sage: plot3d(x^2 + y^2, (x,-2,2), (y,-2,2))
```
Graphics3d Object

```
sage: plot3d(sin(x*y), (x, -pi, pi), (y, -pi, pi))
```
Graphics3d Object

We give a plot with extra sample points:

```
sage: var('x,y')
(x, y)
```
(continues on next page)
sage: plot3d(sin(x^2+y^2),(x,-5,5),(y,-5,5), plot_points=200)
Graphics3d Object

A 3d plot with a mesh:

sage: var('x,y')
(x, y)
sage: plot3d(sin(x-y)*y*cos(x),(x,-3,3),(y,-3,3), mesh=True)
Graphics3d Object

Two wobby translucent planes:

sage: x,y = var('x,y')
sage: P = plot3d(x+y+sin(x*y), (x,-10,10),(y,-10,10), opacity=0.87, color='blue')
sage: Q = plot3d(x-2*y-cos(x*y),(x,-10,10),(y,-10,10),opacity=0.3,color='red')
sage: P + Q
Graphics3d Object

We draw two parametric surfaces and a transparent plane:
We draw the “Sinus” function (water ripple-like surface):

\[
sage: x, y = var('x y')
\]
\[
sage: plot3d(sin(pi*(x^2+y^2))/2, (x,-1,1), (y,-1,1))
\]
Graphics3d Object

Hill and valley (flat surface with a bump and a dent):

\[
sage: x, y = var('x y')
\]
\[
sage: plot3d(4*x*exp(-x^2-y^2), (x,-2,2), (y,-2,2))
\]
Graphics3d Object

An example of a transformation:

\[
sage: r, phi, z = var('r phi z')
\]
\[
sage: trans=(r*cos(phi),r*sin(phi),z)
\]
\[
sage: plot3d(cos(r), (r,0,17*pi/2), (phi,0,2*pi),transformation=trans,opacity=0.87).
\]
\[
show(aspect_ratio=(1,1,2),frame=False)
\]
An example of a transformation with symbolic vector:

```
sage: cylindrical(r,theta,z)=[r*cos(theta),r*sin(theta),z]
sage: plot3d(3,(theta,0,pi/2),(z,0,pi/2),transformation=cylindrical)
Graphics3d Object
```

Many more examples of transformations:

```
sage: u, v, w = var('u v w')
sage: rectangular=(u,v,w)
sage: spherical=(w*cos(u)*sin(v),w*sin(u)*sin(v),w*cos(v))
sage: cylindric_radial=(w*cos(u),w*sin(u),v)
sage: cylindric_axial=(v*cos(u),v*sin(u),w)
sage: parabolic_cylindrical=(w*v,(v^2-w^2)/2,u)
```

Plot a constant function of each of these to get an idea of what it does:

```
sage: A = plot3d(2,(u,-pi,pi),(v,0,pi),transformation=rectangular,plot_points=[100,100])
sage: B = plot3d(2,(u,-pi,pi),(v,0,pi),transformation=spherical,plot_points=[100,100])
sage: C = plot3d(2,(u,-pi,pi),(v,0,pi),transformation=cylindric_radial,plot_points=[100,100])
sage: D = plot3d(2,(u,-pi,pi),(v,0,pi),transformation=cylindric_axial,plot_points=[100,100])
```
Now plot a function:

\begin{verbatim}
sage: g=3+sin(4*u)/2+cos(4*v)/2
sage: F = plot3d(g,(u,-pi,pi),(v,0,pi),transformation=rectangular,plot_points=[100,100])
sage: G = plot3d(g,(u,-pi,pi),(v,0,pi),transformation=spherical,plot_points=[100,100])
sage: H = plot3d(g,(u,-pi,pi),(v,0,pi),transformation=cylindric_radial,plot_points=[100,100])
sage: I = plot3d(g,(u,-pi,pi),(v,0,pi),transformation=cylindric_axial,plot_points=[100,100])
sage: J = plot3d(g,(u,-pi,pi),(v,0,pi),transformation=parabolic_cylindrical,plot_points=[100,100])
sage: @interact
....: def _ (which_plot=[F, G, H, I, J]):
....: show(which_plot)
Interactive function <function _ at ...> with 1 widget
 which_plot: Dropdown(description=u'which_plot', options=(Graphics3d Object, ...),
 value=Graphics3d Object)
\end{verbatim}

sage.plot.plot3d.plot3d.plot3d_adaptive(f, x_range, y_range, color='automatic',
 grad_f=None, max_bend=0.5, max_depth=5,
 initial_depth=4, num_colors=128, **kwds)

Adaptive 3d plotting of a function of two variables.
This is used internally by the plot3d command when the option adaptive=True is given.

INPUT:

- \(f \) - a symbolic function or a Python function of 3 variables.
- \(x\text{_range} \) - x range of values: 2-tuple (xmin, xmax) or 3-tuple (x,xmin,xmax)
- \(y\text{_range} \) - y range of values: 2-tuple (ymin, ymax) or 3-tuple (y,ymin,ymax)
- \(\text{\texttt{grad_f}} \) - gradient of \(f \) as a Python function
- \(\text{\texttt{color}} \) - “automatic” - a rainbow of num_colors colors
- \(\text{\texttt{num_colors}} \) - (default: 128) number of colors to use with default color
- \(\text{\texttt{max_bend}} \) - (default: 128)
- \(\text{\texttt{max_depth}} \) - (default: 5)
- \(\text{\texttt{initial_depth}} \) - (default: 4)
- \(\textnormal{**kwds} \) - standard graphics parameters

EXAMPLES:
We plot $\sin(xy)$:

```
sage: from sage.plot.plot3d.plot3d import plot3d_adaptive
sage: x,y=var('x,y'); plot3d_adaptive(sin(x*y), (x,-pi,pi), (y,-pi,pi), initial_depth=5)
Graphics3d Object
```

```
sage.plot.plot3d.plot3d.spherical_plot3d(f, urange, vrange, **kwds)
```
Plots a function in spherical coordinates. This function is equivalent to:

```
sage: r,u,v=var('r,u,v')
sage: f=u*v; urange=(u,0,pi); vrange=(v,0,pi)
sage: T = (r*cos(u)*sin(v), r*sin(u)*sin(v), r*cos(v), [u,v])
sage: plot3d(f, urange, vrange, transformation=T)
Graphics3d Object
```
or equivalently:

```
sage: T = Spherical('radius', ['azimuth', 'inclination'])
sage: f= lambda u,v: u*v; urange=(u,0,pi); vrange=(v,0,pi)
sage: plot3d(f, urange, vrange, transformation=T)
Graphics3d Object
```

INPUT:

- f - a symbolic expression or function of two variables.
• urange - a 3-tuple (u, u_min, u_max), the domain of the azimuth variable.
• vrange - a 3-tuple (v, v_min, v_max), the domain of the inclination variable.

EXAMPLES:
A sphere of radius 2:

```
sage: x,y=var('x,y')
sage: spherical_plot3d(2,(x,0,2*pi),(y,0,pi))
Graphics3d Object
```

The real and imaginary parts of a spherical harmonic with $l = 2$ and $m = 1$:

```
sage: phi, theta = var('phi, theta')
sage: Y = spherical_harmonic(2, 1, theta, phi)
sage: rea = spherical_plot3d(abs(real(Y)), (phi,0,2*pi), (theta,0,pi), color='blue', opacity=0.6)
sage: ima = spherical_plot3d(abs(imag(Y)), (phi,0,2*pi), (theta,0,pi), color='red', opacity=0.6)
sage: (rea + ima).show(aspect_ratio=1)  # long time (4s on sage.math, 2011)
```

A drop of water:

```
sage: x,y=var('x,y')
sage: spherical_plot3d(e^-y,(x,0,2*pi),(y,0,pi),opacity=0.5).show(frame=False)
```
An object similar to a heart:

```
sage: x,y=var('x,y')
sage: spherical_plot3d((2+cos(2*x))*(y+1),(x,0,2*pi),(y,0,pi),rgbcolor=(1,.1,.1))
Graphics3d Object
```

Some random figures:

```
sage: x,y=var('x,y')
sage: spherical_plot3d(1+sin(5*x)/5,(x,0,2*pi),(y,0,pi),rgbcolor=(1,0.5,0),plot_points=(80,80),opacity=0.7)
Graphics3d Object
```

```
sage: x,y=var('x,y')
sage: spherical_plot3d(1+2*cos(2*y),(x,0,3*pi/2),(y,0,pi)).show(aspect_ratio=(1,1,1))
```

2.1. Plotting Functions
2.2 Parametric Plots

sage.plot.plot3d.parametric_plot3d.parametric_plot3d(f, urange, vrange=None, plot_points='automatic', boundary_style=None, **kwds)

Return a parametric three-dimensional space curve or surface.

There are four ways to call this function:

• parametric_plot3d([f_x, f_y, f_z], (u_min, u_max)): f_x, f_y, f_z are three functions and u_min and u_max are real numbers
• parametric_plot3d([f_x, f_y, f_z], (u, u_min, u_max)): f_x, f_y, f_z can be viewed as functions of u
• parametric_plot3d([f_x, f_y, f_z], (u_min, u_max), (v_min, v_max)): f_x, f_y, f_z are each functions of two variables
• parametric_plot3d([f_x, f_y, f_z], (u, u_min, u_max), (v, v_min, v_max)): f_x, f_y, f_z can be viewed as functions of u and v

INPUT:

• f - a 3-tuple of functions or expressions, or vector of size 3
• urange - a 2-tuple (u_min, u_max) or a 3-tuple (u, u_min, u_max)
• vrange - (optional - only used for surfaces) a 2-tuple (v_min, v_max) or a 3-tuple (v, v_min, v_max)
• plot_points - (default: “automatic”, which is 75 for curves and [40,40] for surfaces) initial number of sample points in each parameter; an integer for a curve, and a pair of integers for a surface.
• boundary_style - (default: None, no boundary) a dict that describes how to draw the boundaries of regions by giving options that are passed to the line3d command.
• mesh - bool (default: False) whether to display mesh grid lines
• dots - bool (default: False) whether to display dots at mesh grid points

Note:

1. By default for a curve any points where f_x, f_y, or f_z do not evaluate to a real number are skipped.
2. Currently for a surface f_x, f_y, and f_z have to be defined everywhere. This will change.
3. mesh and dots are not supported when using the Tachyon ray tracer renderer.

EXAMPLES: We demonstrate each of the four ways to call this function.

1. A space curve defined by three functions of 1 variable:

 sage: parametric_plot3d((sin, cos, lambda u: u/10), (0,20))
 Graphics3d Object

 Note above the lambda function, which creates a callable Python function that sends u to u/10.

2. Next we draw the same plot as above, but using symbolic functions:

 sage: u = var('u')
 sage: parametric_plot3d((sin(u), cos(u), u/10), (u,0,20))
 Graphics3d Object
2.2. Parametric Plots
3. We draw a parametric surface using 3 Python functions (defined using lambda):

```
sage: f = (lambda u,v: cos(u), lambda u,v: sin(u)+cos(v), lambda u,v: sin(v))
sage: parametric_plot3d(f, (0,2*pi), (-pi,pi))
Graphics3d Object
```

4. The same surface, but where the defining functions are symbolic:

```
sage: u, v = var('u,v')
sage: parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)), (u,0,2*pi), (v,-pi,pi))
Graphics3d Object
```

The surface, but with a mesh:

```
sage: u, v = var('u,v')
sage: parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)), (u,0,2*pi), (v,-pi,pi),
mesh=True)
Graphics3d Object
```

We increase the number of plot points, and make the surface green and transparent:

```
sage: parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)), (u,0,2*pi), (v,-pi,pi),
.....: color='green', opacity=0.1, plot_points=[30,30])
```

(continues on next page)
2.2. Parametric Plots
One can also color the surface using a coloring function and a colormap as follows. Note that the coloring function must take values in the interval $[0,1]$.

```python
sage: u,v = var('u,v')
sage: def cf(u,v):
    return sin(u+v/2)**2
sage: P = parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)),
    ....:   (u,0,2*pi), (v,-pi,pi), color=(cf,colormaps.PiYG), plot_points=[60,60])
sage: P.show(viewer='tachyon')
```

Another example, a colored Möbius band:

```python
sage: cm = colormaps.ocean
sage: def c(x,y):
    return sin(x*y)**2
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: MoebiusStrip(5, 1, plot_points=200, color=(c,cm))
```

Yet another colored example:

```python
sage: from sage.plot.plot3d.parametric_surface import ParametricSurface
sage: cm = colormaps.autumn
```
We call the space curve function but with polynomials instead of symbolic variables.

We do a plot but mix a symbolic input, and an integer:
We specify a boundary style to show us the values of the function at its extrema:

```python
sage: u, v = var('u,v')
sage: parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)), (u,0,pi), (v,0,pi),
    ....:      boundary_style={"color": "black", "thickness": 2})
Graphics3d Object
```

We can plot vectors:

```python
sage: x,y = var('x,y')
sage: parametric_plot3d(vector([x-y, x*y, x*cos(y)]), (x,0,2), (y,0,2))
Graphics3d Object
```

```
```

```python
sage: t = var('t')
sage: p = vector([1,2,3])
sage: q = vector([2,-1,2])
sage: parametric_plot3d(p*t+q, (t,0,2))
Graphics3d Object
```

Any options you would normally use to specify the appearance of a curve are valid as entries in the `boundary_style` dict.
MANY MORE EXAMPLES:

We plot two interlinked tori:

```
sage: u, v = var('u, v')
sage: f1 = (4+(3*cos(v))*sin(u), 4+(3*cos(v))*cos(u), 4*sin(v))
sage: f2 = (8+(3*cos(v))*sin(u), 3*sin(v), 4+(3*cos(v))*sin(u))
sage: p1 = parametric_plot3d(f1, (u,0,2*pi), (v,0,2*pi), texture="red")
sage: p2 = parametric_plot3d(f2, (u,0,2*pi), (v,0,2*pi), texture="blue")
sage: p1 + p2
```

A cylindrical Star of David:

```
sage: u,v = var('u v')
sage: K = (abs(cos(u))^200+abs(sin(u))^200)^(-1.0/200)
sage: f_x = cos(u) * cos(v) * (abs(cos(3*v/4))^500+abs(sin(3*v/4))^500)^(-1/260) * K
sage: f_y = cos(u) * sin(v) * (abs(cos(3*v/4))^500+abs(sin(3*v/4))^500)^(-1/260) * K
sage: f_z = sin(u) * K
sage: parametric_plot3d([f_x, f_y, f_z], (u, -pi, pi), (v, 0, 2*pi))
```

Double heart:
sage: u, v = var('u,v')
sage: G1 = abs(sqrt(2)*tanh((u/sqrt(2))))
sage: G2 = abs(sqrt(2)*tanh((v/sqrt(2))))
sage: f_x = (abs(v) - abs(u) - G1 + G2)*sin(v)
sage: f_y = (abs(v) - abs(u) - G1 - G2)*cos(v)
sage: f_z = sin(u)*(abs(cos(u)) + abs(sin(u)))^(-1)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,pi), (v,-pi,pi))
Graphics3d Object

Heart:

sage: u, v = var('u,v')
sage: f_x = cos(u)*(4*sqrt(1-v^2)*sin(abs(u))^abs(u))
 sage: f_y = sin(u)*(4*sqrt(1-v^2)*sin(abs(u))^abs(u))
 sage: f_z = v
 sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-1,1), frame=False, color="red")
Graphics3d Object

A Trefoil knot (Wikipedia article Trefoil_knot):

sage: u, v = var('u,v')
sage: f_x = (4*(1+0.25*sin(3*v))+cos(u))*cos(2*v)
 sage: f_y = (4*(1+0.25*sin(3*v))+cos(u))*sin(2*v)

(continues on next page)
2.2. Parametric Plots
Green bowtie:

\[
\begin{align*}
sage: & \quad u, v = \text{var}(u,v) \\
sage: & \quad f_x = \sin(u) / (\sqrt{2} + \sin(v)) \\
sage: & \quad f_y = \sin(u) / (\sqrt{2} + \cos(v)) \\
sage: & \quad f_z = \cos(u) / (1 + \sqrt{2}) \\
sage: & \quad \text{parametric_plot3d}([f_x, f_y, f_z], (u,-\pi,\pi), (v,-\pi,\pi), \text{frame=False, color="green"}) \\
\end{align*}
\]

Boy's surface (Wikipedia article Boy%27s_surface and https://mathcurve.com/surfaces/boy/boy.shtml):

\[
\begin{align*}
sage: & \quad u, v = \text{var}(u,v) \\
sage: & \quad K = \cos(u) / (\sqrt{2} - \cos(2*u)\sin(3*v)) \\
sage: & \quad f_x = K \cdot (\cos(u)\cos(2*v) + \sqrt{2}\sin(u)\cos(v)) \\
sage: & \quad f_y = K \cdot (\cos(u)\sin(2*v) - \sqrt{2}\sin(u)\sin(v)) \\
sage: & \quad f_z = 3 \cdot K \cdot \cos(u) \\
sage: & \quad \text{parametric_plot3d}([f_x, f_y, f_z], (u,-2*\pi,2*\pi), (v,0,\pi), \text{frame=False, color="green"}) \\
\end{align*}
\]
Maeder’s Owl also known as Bour’s minimal surface (Wikipedia article Bour’s minimal surface):

```sage
sage: u, v = var('u,v')
sage: f_x = v*cos(u) - 0.5*v^2*cos(2*u)
sage: f_y = -v*sin(u) - 0.5*v^2*sin(2*u)
sage: f_z = 4 * v^1.5 * cos(3*u/2) / 3
sage: parametric_plot3d([f_x, f_y, f_z], (u,-2*pi,2*pi), (v,0,1),
    plot_points=[90,90], frame=False, color="orange") # long
Graphics3d Object
```

Bracelet:

```sage
sage: u, v = var('u,v')
sage: f_x = (2 + 0.2*sin(2*pi*u))*sin(pi*v)
sage: f_y = 0.2 * cos(2*pi*u) * 3 * cos(2*pi*v)
sage: f_z = (2 + 0.2*sin(2*pi*u))*cos(pi*v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,pi/2), (v,0,3*pi/4), frame=False,
    color="gray")
Graphics3d Object
```
Green goblet:

```sage
u, v = var('u,v')
sage: f_x = cos(u) * cos(2*v)
sage: f_y = sin(u) * cos(2*v)
sage: f_z = sin(v)
```
```
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,pi), frame=False, color="green")
```

```
Graphics3d Object
```

Funny folded surface - with square projection:

```sage
u, v = var('u,v')
sage: f_x = cos(u) * sin(2*v)
sage: f_y = sin(u) * cos(2*v)
sage: f_z = sin(v)
```
```
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="green")
```
```
Graphics3d Object
```

Surface of revolution of figure 8:

```sage
u, v = var('u,v')
sage: f_x = cos(u) * sin(2*v)
sage: f_y = sin(u) * sin(2*v)
```
```
(continues on next page)
sage: f_z = sin(v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="green")
Graphics3d Object

Yellow Whitney’s umbrella (Wikipedia article Whitney_umbrella):

sage: u, v = var('u,v')
sage: f_x = u*v
sage: f_y = u
sage: f_z = v^2
sage: parametric_plot3d([f_x, f_y, f_z], (u,-1,1), (v,-1,1), frame=False, color="yellow")
Graphics3d Object

Cross cap (Wikipedia article Cross-cap):

sage: u, v = var('u,v')
sage: f_x = (1+cos(v)) * cos(u)
sage: f_y = (1+cos(v)) * sin(u)
sage: f_z = -tanh((2/3)*(u-pi)) * sin(v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="red")
Graphics3d Object
Twisted torus:

```
sage: u, v = var('u,v')
sage: f_x = (3+sin(v)+cos(u)) * cos(2*v)
sage: f_y = (3+sin(v)+cos(u)) * sin(2*v)
sage: f_z = sin(u) + 2*cos(v)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="red")
Graphics3d Object
```

Four intersecting discs:

```
sage: u, v = var('u,v')
sage: f_x = v*cos(u) - 0.5*v^2*cos(2*u)
sage: f_y = -v*sin(u) - 0.5*v^2*sin(2*u)
sage: f_z = 4 * v^1.5 * cos(3*u/2) / 3
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,4*pi), (v,0,2*pi), frame=False, color="red", opacity=0.7)
Graphics3d Object
```

Steiner surface/Roman’s surface (see Wikipedia article Roman_surface and Wikipedia article Steiner_surface):

```
sage: u, v = var('u,v')
sage: f_x = (sin(2*u) * cos(v)) * cos(v))
sage: f_y = (sin(u) * sin(2*v))
```

(continues on next page)
2.2. Parametric Plots
Klein bottle? (see Wikipedia article Klein_bottle):

sage: u, v = var('u,v')
sage: f_x = (3*(1+sin(v)) + 2*(1-cos(v)/2)*cos(u)) * cos(v)
sage: f_y = (4+2*(1-cos(v)/2)*cos(u)) * sin(v)
sage: f_z = -2 * (1-cos(v)/2) * sin(u)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="green")
Graphics3d Object

A Figure 8 embedding of the Klein bottle (see Wikipedia article Klein_bottle):

sage: u, v = var('u,v')
sage: f_x = (2*cos(v/2)*sin(u)-sin(v/2)*sin(2*u)) * cos(v)
sage: f_y = (2*cos(v/2)*sin(u)-sin(v/2)*sin(2*u)) * sin(v)
sage: f_z = sin(v/2)*sin(u) + cos(v/2)*sin(2*u)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0,2*pi), frame=False, color="red")
Graphics3d Object
2.2. Parametric Plots
Enneper’s surface (see Wikipedia article Enneper_surface):

```
sage: u, v = var('u,v')
sage: f_x = u - u^3/3 + u*v^2
sage: f_y = v - v^3/3 + v*u^2
sage: f_z = u^2 - v^2
sage: parametric_plot3d([f_x, f_y, f_z], (u,-2,2), (v,-2,2), frame=False, color="red")
```

Henneberg’s surface (see http://xahlee.org/surface/gallery_m.html):

```
sage: u, v = var('u,v')
sage: f_x = 2*sinh(u)*cos(v) - (2/3)*sinh(3*u)*cos(3*v)
sage: f_y = 2*sinh(u)*sin(v) + (2/3)*sinh(3*u)*sin(3*v)
sage: f_z = 2 * cosh(2*u) * cos(2*v)
```

Dini’s spiral:

```
sage: u, v = var('u,v')
sage: f_x = cos(u) * sin(v)
sage: f_y = sin(u) * sin(v)
```

(continues on next page)
sage: f_z = (cos(v)+log(tan(v/2))) + 0.2*u
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,12.4), (v,0.1,2), frame=False, color="red")
Graphics3d Object

Catalan’s surface (see http://xahlee.org/surface/catalan/catalan.html):

sage: u, v = var('u,v')
sage: f_x = u - sin(u)*cosh(v)
sage: f_y = 1 - cos(u)*cosh(v)
sage: f_z = 4 * sin(1/2*u) * sinh(v/2)

sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,3*pi), (v,-2,2), frame=False, color="red")
Graphics3d Object

A Conchoid:

sage: u, v = var('u,v')
sage: k = 1.2; k_2 = 1.2; a = 1.5
sage: f = (k^u*(1+cos(v))*cos(u), k^u*(1+cos(v))*sin(u), k^u*sin(v)-a*k_2^u)

sage: parametric_plot3d(f, (u,0,6*pi), (v,0,2*pi), plot_points=[40,40], texture=(0,0.5,0))
Graphics3d Object
A Möbius strip:

```
sage: u, v = var("u,v")
sage: parametric_plot3d([cos(u)*(1+v*cos(u/2)), sin(u)*(1+v*cos(u/2)), 0. -2*v*sin(u/2)],
........: (u,0, 4*pi+0.5), (v,0, 0.3), plot_points=[50,50])
Graphics3d Object
```

A Twisted Ribbon:

```
sage: u, v = var('u,v')
sage: parametric_plot3d([3*sin(u)*cos(v), 3*sin(u)*sin(v), cos(v)],
........: (u,0,2*pi), (v,0,pi), plot_points=[50,50])
Graphics3d Object
```

An Ellipsoid:

```
sage: u, v = var('u,v')
sage: parametric_plot3d([3*sin(u)*cos(v), 2*sin(u)*sin(v), cos(u)],
........: (u,0,2*pi), (v,0,2*pi), plot_points=[50,50], aspect_ratio=[1,1,1])
Graphics3d Object
```

A Cone:
2.2. Parametric Plots
sage: u, v = var('u,v')
sage: parametric_plot3d([u*cos(v), u*sin(v), u], (u,-1,1), (v,0,2*pi+0.5), plot_points=[50,50])
Graphics3d Object

A Paraboloid:

```
sage: u, v = var('u,v')
sage: parametric_plot3d([u*cos(v), u*sin(v), u^2], (u,0,1), (v,0,2*pi+0.4), plot_points=[50,50])
Graphics3d Object
```

A Hyperboloid:

```
sage: u, v = var('u,v')
sage: plot3d(u^2-v^2, (u,-1,1), (v,-1,1), plot_points=[50,50])
Graphics3d Object
```

A weird looking surface - like a Möbius band but also an O:

```
sage: u, v = var('u,v')
sage: parametric_plot3d([sin(u)*cos(u)*log(u^2)*sin(v), (u^2)^(1/6)*(cos(u)^2)^(1/4)*cos(v), sin(v)],
...: (u,0.001,1), (v,-pi,pi+0.2), plot_points=[50,50])
Graphics3d Object
```
A heart, but not a cardioid (for my wife):

```
sage: u, v = var('u,v')
sage: p1 = parametric_plot3d([sin(u)*cos(u)*log(u^2)*v*(1-v)/2, ((u^6)^(1/20)*(cos(u)^2)^(1/4)-1/2)*v*(1-v), v^(0.5)],: (u,0.001,1), (v,0,1), plot_points=[70,70], color='red')
sage: p2 = parametric_plot3d([-sin(u)*cos(u)*log(u^2)*v*(1-v)/2, ((u^6)^(1/20)*(cos(u)^2)^(1/4)-1/2)*v*(1-v), v^(0.5)],: (u, 0.001,1), (v,0,1), plot_points=[70,70], color= 'red')
sage: show(p1+p2)
```

A Hyperhelicoidal:

```
sage: u = var("u")
sage: v = var("v")
sage: f_x = (sinh(v)*cos(3*u)) / (1+cosh(u)*cosh(v))
sage: f_y = (sinh(v)*sin(3*u)) / (1+cosh(u)*cosh(v))
sage: f_z = (cosh(v)*sinh(u)) / (1+cosh(u)*cosh(v))
sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-pi,pi), plot_points=[50,: 50], frame=False, color="red")
```

A Helicoid (lines through a helix, Wikipedia article Helix):

```
sage: u = var("u")
sage: v = var("v")
sage: f_x = (sinh(v)*cos(3*u)) / (1+cosh(u)*cosh(v))
sage: f_y = (sinh(v)*sin(3*u)) / (1+cosh(u)*cosh(v))
sage: f_z = (cosh(v)*sinh(u)) / (1+cosh(u)*cosh(v))
sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-pi,pi), plot_points=[50,: 50], frame=False, color="red")
```

A Hyperhelicoidal:

```
sage: u = var("u")
sage: v = var("v")
sage: f_x = (sinh(v)*cos(3*u)) / (1+cosh(u)*cosh(v))
sage: f_y = (sinh(v)*sin(3*u)) / (1+cosh(u)*cosh(v))
sage: f_z = (cosh(v)*sinh(u)) / (1+cosh(u)*cosh(v))
sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-pi,pi), plot_points=[50,: 50], frame=False, color="red")
```

A Helicoid (lines through a helix, Wikipedia article Helix):
sage: u, v = var('u,v')
sage: f_x = sinh(v) * sin(u)
sage: f_y = -sinh(v) * cos(u)
sage: f_z = 3 * u
sage: parametric_plot3d([f_x, f_y, f_z], (u,-pi,pi), (v,-pi,pi), plot_points=[50, 50], frame=False, color="red")
Graphics3d Object

Kuen’s surface (http://virtualmathmuseum.org/Surface/kuen/kuen.html):

sage: f_x = (2*(cos(u) + u*sin(u))*sin(v))/(1+ u^2*sin(v)^2)
sage: f_y = (2*(sin(u) - u*cos(u))*sin(v))/(1+ u^2*sin(v)^2)
sage: f_z = log(tan(1/2 *v)) + (2*cos(v))/(1+ u^2*sin(v)^2)
sage: parametric_plot3d([f_x, f_y, f_z], (u,0,2*pi), (v,0.01,pi-0.01), plot_points=[50, 50], frame=False, color="green")
Graphics3d Object

A 5-pointed star:

sage: G1 = (abs(cos(u/4))^0.5+abs(sin(u/4))^0.5)^(-1/0.3)
sage: G2 = (abs(cos(5*v/4))^1.7+abs(sin(5*v/4))^1.7)^(-1/0.1)
sage: f_x = cos(u) * cos(v) * G1 * G2
sage: f_y = cos(u) * sin(v) * G1 * G2
sage: f_z = sin(u) * G1

(continues on next page)
A cool self-intersecting surface (Eppener surface?):

```python
sage: f_x = u - u^3/3 + u*v^2
sage: f_y = v - v^3/3 + v*u^2
sage: f_z = u^2 - v^2
sage: parametric_plot3d([f_x, f_y, f_z], (u, -25, 25), (v, -25, 25), plot_points=[50, 50], frame=False, color="green")
```

Graphics3d Object

The breather surface (Wikipedia article Breather_surface):

```python
sage: K = sqrt(0.84)
sage: G = (0.4*(K*cosh(0.4*u))^2 + (0.4*sin(K*v))^2)
sage: f_x = (2*K*cosh(0.4*u)*(-(K*cos(v)*cos(K*v)) - sin(v)*sin(K*v)))/G
sage: f_y = (2*K*cosh(0.4*u)*(-(K*sin(v)*cos(K*v)) + cos(v)*sin(K*v)))/G
sage: f_z = -u + (2*0.84*cosh(0.4*u)*sinh(0.4*u))/G
sage: parametric_plot3d([f_x, f_y, f_z], (u, -13.2,13.2), (v, -37.4,37.4), plot_points=[90, 90], frame=False, color="green")
```

Graphics3d Object
2.3 Surfaces of revolution

AUTHORS:
• Oscar Gerardo Lazo Arjona (2010): initial version.

\texttt{sage.plot.plot3d.revolution_plot3d.revolution_plot3d}(\texttt{curve, trange, phirange=None, parallel_axis='z', axis=0, print_vector=False, show_curve=False, **kwds})

Return a plot of a revolved curve.

There are three ways to call this function:
• \texttt{revolution_plot3d(f, trange)} where \( f \) is a function located in the \( xz \) plane.
• \texttt{revolution_plot3d((f_x, f_z), trange)} where \( (f_x, f_z) \) is a parametric curve on the \( xz \) plane.
• \texttt{revolution_plot3d((f_x, f_y, f_z), trange)} where \( (f_x, f_y, f_z) \) can be any parametric curve.

INPUT:
• \texttt{curve} - A curve to be revolved, specified as a function, a 2-tuple or a 3-tuple.
• \texttt{trange} - A 3-tuple \( (t, t_{\text{min}}, t_{\text{max}}) \) where \( t \) is the independent variable of the curve.
• \texttt{phirange} - A 2-tuple of the form \( (\phi_{\text{min}}, \phi_{\text{max}}) \), (default \( (0, \pi) \)) that specifies the angle in which the curve is to be revolved.
• \texttt{parallel_axis} - A string (Either ‘x’, ‘y’, or ‘z’) that specifies the coordinate axis parallel to the revolution axis.
• \texttt{axis} - A 2-tuple that specifies the position of the revolution axis. If parallel is:
  – ‘z’ - then axis is the point in which the revolution axis intersects the \( xy \) plane.
  – ‘x’ - then axis is the point in which the revolution axis intersects the \( yz \) plane.
  – ‘y’ - then axis is the point in which the revolution axis intersects the \( xz \) plane.
• \texttt{print_vector} - If True, the parametrization of the surface of revolution will be printed.
• \texttt{show_curve} - If True, the curve will be displayed.

EXAMPLES:
Let’s revolve a simple function around different axes:
\begin{verbatim}
sage: u = var('u')
sage: f = u^2
sage: revolution_plot3d(f, (u,0,2), show_curve=True, opacity=0.7).show(aspect_ratio=(1,1,1))
\end{verbatim}

If we move slightly the axis, we get a goblet-like surface:
\begin{verbatim}
sage: revolution_plot3d(f, (u,0,2), axis=(1,0.2), show_curve=True, opacity=0.5).show(aspect_ratio=(1,1,1))
\end{verbatim}

A common problem in calculus books, find the volume within the following revolution solid:
\begin{verbatim}
sage: line = u
def parabola = u^2
sage: sur1 = revolution_plot3d(line, (u,0,1), opacity=0.5, rgbcolor=(1,0.5,0), show_curve=True, parallel_axis='x')
\end{verbatim}

(continues on next page)
2.3. Surfaces of revolution
Now let’s revolve a parametrically defined circle. We can play with the topology of the surface by changing the axis, an axis in \((0, 0)\) (as the previous one) will produce a sphere-like surface:

```sage
u = var('u')
circle = (cos(u), sin(u))
sage: revolution_plot3d(circle, (u,0,2*pi), axis=(0,0), show_curve=True,
 opacity=0.5).show(aspect_ratio=(1,1,1))
```

An axis on \((0, y)\) will produce a cylinder-like surface:

```sage
sage: revolution_plot3d(circle, (u,0,2*pi), axis=(0,2), show_curve=True,
 opacity=0.5).show(aspect_ratio=(1,1,1))
```

And any other axis will produce a torus-like surface:

```sage
sage: revolution_plot3d(circle, (u,0,2*pi), axis=(2,0), show_curve=True,
 opacity=0.5).show(aspect_ratio=(1,1,1))
```

Now, we can get another goblet-like surface by revolving a curve in 3d:
A curvy curve with only a quarter turn:

```
sage: u, phi = var('u,phi')
sage: def cf(u,phi): return sin(phi+u) ^ 2
sage: curve = (1+u^2/4, 0, u)
sage: revolution_plot3d(curve, (u,-2,2), (0,2*pi), parallel_axis='z', color=(cf,colormaps.PiYG)).show(aspect_ratio=(1,1,1))
```

One can also color the surface using a coloring function of two parameters and a colormap as follows. Note that the coloring function must take values in the interval [0,1].

```
sage: u = var('u')
sage: curve = (sin(3*u), .8*cos(4*u), cos(u))
sage: revolution_plot3d(curve, (u,0,pi), (0,pi/2), show_curve=True, parallel_axis='z', opacity=0.5).show(aspect_ratio=(1,1,1),frame=False)
```

The first parameter of the coloring function will be identified with the parameter of the curve, and the second with the angle parameter.
Another colored example, illustrating that one can use (colormap, color function) instead of (color function, colormap):

```sage
u, phi = var('u,phi')
def cf(u, phi): return float(2 * u / pi) % 1
curve = (sin(u), 0, u)
revolution_plot3d(curve, (u,0,pi), (0,2*pi), parallel_axis: = 'z', color=(colormaps.brg, cf)).show(aspect_ratio=1)
```

### 2.4 Plotting 3D Fields

```sage
.plot.plot3d.plot_field3d.plot_vector_field3d(functions, xrange, yrange, zrange,
plot_points=5, colors='jet', center_arrows=False, **kwds)
```

Plot a 3d vector field

**INPUT:**

- `functions` - a list of three functions, representing the x-, y-, and z-coordinates of a vector
• `xrange`, `yrange`, and `zrange` - three tuples of the form (var, start, stop), giving the variables and ranges for each axis

• `plot_points` (default 5) - either a number or list of three numbers, specifying how many points to plot for each axis

• `colors` (default 'jet') - a color, list of colors (which are interpolated between), or matplotlib colormap name, giving the coloring of the arrows. If a list of colors or a colormap is given, coloring is done as a function of length of the vector

• `center_arrows` (default False) - If True, draw the arrows centered on the points; otherwise, draw the arrows with the tail at the point

• any other keywords are passed on to the plot command for each arrow

**EXAMPLES:**

```python
sage: x,y,z=var('x y z')
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi))
Graphics3d Object
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),colors=['red','green','blue'])
Graphics3d Object
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),colors='red')
Graphics3d Object
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),plot_points=4)
Graphics3d Object
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),plot_points=[3,5,7])
Graphics3d Object
sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (y,0,pi), (z,0,pi),center_arrows=True)
Graphics3d Object
```

## 2.5 Implicit Plots

`sage.plot.plot3d.implicit_plot3d.implicit_plot3d(f, xrange, yrange, zrange, **kwds)`

Plot an isosurface of a function.

**INPUT:**

• `f` – function

• `xrange` – a 2-tuple (x_min, x_max) or a 3-tuple (x, x_min, x_max)

• `yrange` – a 2-tuple (y_min, y_max) or a 3-tuple (y, y_min, y_max)

• `zrange` – a 2-tuple (z_min, z_max) or a 3-tuple (z, z_min, z_max)

• `plot_points` – (default: “automatic”, which is 40) the number of function evaluations in each direction. (The number of cubes in the marching cubes algorithm will be one less than this). Can be a triple of integers, to specify a different resolution in each of x,y,z.

• `contour` – (default: 0) plot the isosurface f(x,y,z)=contour. Can be a list, in which case multiple contours are plotted.
• **region** – (default: None) If region is given, it must be a Python callable. Only segments of the surface where region(x,y,z) returns a number >0 will be included in the plot. (Note that returning a Python boolean is acceptable, since True == 1 and False == 0).

**EXAMPLES:**

```sage
var('x,y,z')
(x, y, z)
```

A simple sphere:

```sage
implicit_plot3d(x^2+y^2+z^2==4, (x,-3,3), (y,-3,3), (z,-3,3))
```

Graphics3d Object

A nested set of spheres with a hole cut out:

```sage
implicit_plot3d(x^2+y^2+z^2, (x,-2,2), (y,-2,2), (z,-2,2), plot_points=60, contour=[1,3,5],
region=lambda x,y,z: x<=0.2 or y>=0.2 or z<=0.2, color='aquamarine').show(viewer='tachyon')
```

A very pretty example, attributed to Douglas Summers-Stay (archived page):

```sage
T = RDF(golden_ratio)
sage: F = 2 - (cos(x+T*y) + cos(x-T*y) + cos(y+T*z) + cos(y-T*z) + cos(z-T*x) + cos(z+T*x))
```
As I write this (but probably not as you read it), it’s almost Valentine’s day, so let’s try a heart (from http://mathworld.wolfram.com/HeartSurface.html)

```sage
r = 1.5
F = (x^2+9/4*y^2+z^2-1)^3 - x^2*z^3 - 9/(80)*y^2*z^3
implicit_plot3d(F, (x,-r,r), (y,-r,r), (z,-r,r), plot_points=80, color='red').show(viewer='tachyon')
```

The same examples also work with the default Jmol viewer; for example:

```sage
T = RDF(golden_ratio)
F = 2 - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z) + cos(y - T*z) + cos(z - T*x) + cos(z + T*x))
r = 4.77
implicit_plot3d(F, (x,-r,r), (y,-r,r), (z,-r,r), plot_points=40, color='deepskyblue').show()
```

Here we use smooth=True with a Tachyon graph:
2.5. Implicit Plots
We explicitly specify a gradient function (in conjunction with smooth=True) and invert the normals:

```python
sage: gx = lambda x, y, z: -(2*x + y^2 + z^2)
sage: gy = lambda x, y, z: -(x^2 + 2*y + z^2)
sage: gz = lambda x, y, z: -(x^2 + y^2 + 2*z)
```

```python
sage: implicit_plot3d(x^2+y^2+z^2, (x,-2,2), (y,-2,2), (z,-2,2), contour=4, color='deepskyblue', smooth=True)
```

A graph of two metaballs interacting with each other:

```python
sage: def metaball(x0, y0, z0):
 return 1 / ((x-x0)^2+(y-y0)^2+(z-z0)^2)
sage: implicit_plot3d(metaball(-0.6,0,0) + metaball(0.6,0,0), (x,-2,2), (y,-2,2), (z,-2,2), plot_points=60, contour=2, color='seagreen')
```

One can also color the surface using a coloring function and a colormap as follows. Note that the coloring function must take values in the interval [0,1].
Here is another colored example:

```python
sage: x, y, z = var('x,y,z')
sage: t = (x).function(x,y,z)
sage: cm = colormaps.PiYG
sage: G = implicit_plot3d(x^4 + y^2 + z^2, (x,-2,2), (y,-2,2), (z,-2,2),
.....: contour=4, color=(t,cm), plot_points=40)
sage: G
Graphics3d Object
```

**Warning:** This kind of coloring using a colormap can be visualized using Jmol, Tachyon (option `viewer='tachyon'`) and Canvas3D (option `viewer='canvas3d'` in the notebook).

**MANY MORE EXAMPLES:**

A kind of saddle:
A smooth surface with six radial openings:

```
sage: implicit_plot3d(x^3 + y^2 - z^2, (x,-2,2), (y,-2,2), (z,-2,2), plot_
˓→→ points=60, contour=0, color='lightcoral')
```
Graphics3d Object

A cube composed of eight conjoined blobs:

```
sage: F = x^2 + y^2 + z^2 + cos(4*x) + cos(4*y) + cos(4*z) - 0.2
sage: implicit_plot3d(F, (x,-2,2), (y,-2,2), (z,-2,2), color='mediumspringgreen')
```
Graphics3d Object

A variation of the blob cube featuring heterogeneously sized blobs:

```
sage: F = x^2 + y^2 + z^2 + sin(4*x) + sin(4*y) + sin(4*z) - 1
sage: implicit_plot3d(F, (x,-2,2), (y,-2,2), (z,-2,2), color='lavenderblush')
```
Graphics3d Object

A Klein bottle:
A lemniscate:

```sage
F = 4*x^2*(x^2+y^2+z^2) + y^2*(y^2+z^2-1)
sage: implicit_plot3d(F, (x,-0.5,0.5), (y,-1,1), (z,-1,1), color='deepink')
Graphics3d Object
```

Drope:

```sage
implicit_plot3d(z - 4*x*exp(-x^2-y^2), (x,-2,2), (y,-2,2), (z,-1.7,1.7), color='darkcyan')
Graphics3d Object
```

A cube with a circular aperture on each face:

```sage
F = ((1/2.3)^2 * (x^2 + y^2 + z^2))^(-6) + ((1/2)^8 * (x^8 + y^8 + z^8))^6 - 1
sage: implicit_plot3d(F, (x,-2,2), (y,-2,2), (z,-2,2), color='palevioletred')
Graphics3d Object
```

A simple hyperbolic surface:
Chapter 2. Function and Data Plots
2.5. Implicit Plots
A hyperboloid:

```python
sage: implicit_plot3d(x^2 + y^2 - z^2 - 0.3, (x,-2,2), (y,-2,2), (z,-1.8,1.8), color='honeydew')
```

Dupin cyclide (Wikipedia article Dupin_cyclide)

```python
sage: x, y, z , a, b, c, d = var('x,y,z,a,b,c,d')
sage: a = 3.5
do: b = 3
do: c = sqrt(a^2 - b^2)
do: d = 2
sage: F = (x^2 + y^2 + z^2 + b^2 - d^2)^2 - 4*(a*x-c*d)^2 - 4*b^2*y^2
sage: implicit_plot3d(F, (x,-6,6), (y,-6,6), (z,-6,6), color='seashell')
```

Sinus:
A torus:

```python
sage: implicit_plot3d((sqrt(x*x+y*y)-3)**2 + z*z - 1, (x,-4,4), (y,-4,4), (z,-1,1),
 color='indigo')
```

An octahedron:

```python
sage: implicit_plot3d(abs(x) + abs(y) + abs(z) - 1, (x,-1,1), (y,-1,1), (z,-1,1),
 color='olive')
```

A cube:

```python
sage: implicit_plot3d(x**100 + y**100 + z**100 - 1, (x,-2,2), (y,-2,2), (z,-2,2),
 color='lightseagreen')
```

Toupie:
2.5. Implicit Plots
2.5. Implicit Plots
A cube with rounded edges:

```
sage: F = x^4 + y^4 + z^4 - (x^2 + y^2 + z^2)
sage: implicit_plot3d(F, (x,-2,2), (y,-2,2), (z,-2,2), color='mediumvioletred')
```

Chmutov:

```
sage: F = x^4 + y^4 + z^4 - (x^2 + y^2 + z^2 - 0.3)
sage: implicit_plot3d(F, (x,-1.5,1.5), (y,-1.5,1.5), (z,-1.5,1.5), color='lightskyblue')
```

Further Chmutov:

```
sage: F = 2*(x^2*(3-4*x^2)^2+y^2*(3-4*y^2)^2+z^2*(3-4*z^2)^2) - 3
sage: implicit_plot3d(F, (x,-1.3,1.3), (y,-1.3,1.3), (z,-1.3,1.3), color='darksalmon')
```

Clebsch surface:
2.5. Implicit Plots
sage: F_1 = 81 * (x^3+y^3+z^3)
sage: F_2 = 189 * (x^2*(y+z)+y^2*(x+z)+z^2*(x+y))
sage: F_3 = 54 * x * y * z
sage: F_4 = 126 * (x+y+x*z+y*z)
sage: F_5 = 9 * (x^2+y^2+z^2)
sage: F_6 = 9 * (x+y+z)
sage: F = F_1 - F_2 + F_3 + F_4 - F_5 + F_6 + 1
sage: implicit_plot3d(F, (x,-1,1), (y,-1,1), (z,-1,1), color='yellowgreen')
Graphics3d Object

Looks like a water droplet:

sage: implicit_plot3d(x^2 + y^2 -(1-z)*z^2, (x,-1.5,1.5), (y,-1.5,1.5), (z,-1,1), color='bisque')
Graphics3d Object

Sphere in a cage:

sage: F = (x^8+z^30+y^8-(x^4 + z^50 + y^4 -0.3)) * (x^2+y^2+z^2-0.5)
sage: implicit_plot3d(F, (x,-1.2,1.2), (y,-1.3,1.3), (z,-1.5,1.5), color='firebrick')
Graphics3d Object

Ortho circle:
Cube sphere:

\[
sage: F = ((x^2+y^2-1)^2+z^2) * ((y^2+z^2-1)^2+x^2) * ((z^2+x^2-1)^2+y^2)-0.075^2 \rightarrow (1+3*(x^2+y^2+z^2))
\]

\[
sage: implicit_plot3d(F, (x,-1.5,1.5), (y,-1.5,1.5), (z,-1.5,1.5), color='lemonchiffon')
\]

Graphics3d Object

Two cylinders intersect to make a cross:

\[
sage: implicit_plot3d((x^2+y^2-1) * (x^2+z^2-1) - 1, (x,-3,3), (y,-3,3), (z,-3,3), color='burlywood')
\]

Graphics3d Object

Three cylinders intersect in a similar fashion:

\[
sage: implicit_plot3d((x^2+y^2-1) * (x^2+z^2-1) * (y^2+z^2-1)-1, (x,-3,3), (y,-3,3), (z,-3,3), color='aqua')
\]

Graphics3d Object

A sphere-ish object with twelve holes, four on each XYZ plane:
A gyroid:

\[
\text{sage: } \text{implicit\_plot3d}(\cos(x)\sin(y) + \cos(y)\sin(z) + \cos(z)\sin(x), (x,-4,4), (y,-4,4), (z,-4,4), \text{color='sandybrown'})
\]

Tetrahedra:

\[
\text{sage: } \text{implicit\_plot3d}((x^2+y^2+z^2)^2 + 8*x*y*z - 10*(x^2+y^2+z^2) + 25, (x,-4,4), (y,-4,4), (z,-4,4), \text{color='plum'})
\]
2.6 List Plots

sage.plot.plot3d.list_plot3d.list_plot3d(v, interpolation_type='default', point_list=None, **kwds)

A 3-dimensional plot of a surface defined by the list \(v\) of points in 3-dimensional space.

INPUT:

- \(v\) - something that defines a set of points in 3 space:
  - a matrix
  - a list of 3-tuples
  - a list of lists (all of the same length) - this is treated the same as a matrix.

OPTIONAL KEYWORDS:

- interpolation_type - 'linear', 'clough' (CloughTocher2D), 'spline'
  'linear' will perform linear interpolation
  The option 'clough' will interpolate by using a piecewise cubic interpolating Bezier polynomial on each triangle, using a Clough-Tocher scheme. The interpolant is guaranteed to be continuously differentiable. The gradients of the interpolant are chosen so that the curvature of the interpolating surface is approximatively minimized.
  The option 'spline' interpolates using a bivariate B-spline.
  When \(v\) is a matrix the default is to use linear interpolation, when \(v\) is a list of points the default is 'clough'.

- degree - an integer between 1 and 5, controls the degree of spline used for spline interpolation. For data that is highly oscillatory use higher values

- point_list - If point_list=True is passed, then if the array is a list of lists of length three, it will be treated as an array of points rather than a 3xn array.

- num_points - Number of points to sample interpolating function in each direction, when interpolation_type is not default. By default for an \(n \times n\) array this is \(n\).

- **kwds - all other arguments are passed to the surface function

OUTPUT: a 3d plot

EXAMPLES:

We plot a matrix that illustrates summation modulo \(n\):

```sage
sage: n = 5
sage: list_plot3d(matrix(RDF, n, [(i+j)%n for i in [1..n] for j in [1..n]])
Graphics3d Object
```

We plot a matrix of values of \(\sin\):

```sage
pi = float(pi)
sage: m = matrix(RDF, 6, [sin(i^2 + j^2) for i in [0,pi/5,..,pi] for j in [0,pi/5,˓→..,pi]]) sage: list_plot3d(m, color='yellow', frame_aspect_ratio=[1, 1, 1/3])
Graphics3d Object
```

Though it does not change the shape of the graph, increasing num_points can increase the clarity of the graph:
We can change the interpolation type:

```python
sage: import warnings
sage: warnings.simplefilter('ignore', UserWarning)
sage: list_plot3d(m, color='yellow', interpolation_type='clough', frame_aspect_ratio=[1, 1, 1/3])
```

Graphics3d Object

We can make this look better by increasing the number of samples:

```python
sage: list_plot3d(m, color='yellow', interpolation_type='clough', frame_aspect_ratio=[1, 1, 1/3], num_points=40)
```

Graphics3d Object

Let us try a spline:

```python
sage: list_plot3d(m, color='yellow', interpolation_type='spline', frame_aspect_ratio=[1, 1, 1/3])
```

Graphics3d Object

That spline does not capture the oscillation very well; let's try a higher degree spline:

```python
sage: list_plot3d(m, color='yellow', interpolation_type='spline', degree=5, frame_aspect_ratio=[1, 1, 1/3])
```

Graphics3d Object

We plot a list of lists:

```python
sage: show(list_plot3d([[1, 1, 1, 1], [1, 2, 1, 2], [1, 1, 3, 1], [1, 2, 1, 4]]))
```

We plot a list of points. As a first example we can extract the (x,y,z) coordinates from the above example and make a list plot out of it. By default we do linear interpolation:

```python
sage: l = []
sage: for i in range(6):
 : for j in range(6):
 : l.append((float(i*pi/5), float(j*pi/5), m[i,j]))
sage: list_plot3d(l, color='red')
```

Graphics3d Object

Note that the points do not have to be regularly sampled. For example:

```python
sage: l = []
sage: for i in range(-5, 5):
 : for j in range(-5, 5):
 : l.append((normalvariate(0, 1), normalvariate(0, 1), normalvariate(0, 1)))
sage: L = list_plot3d(l, interpolation_type='clough', color='orange', num_points=100)
sage: L
```

Graphics3d Object

Check that no NaNs are produced (see trac ticket #13135):

```python
sage: any(math.isnan(c) for v in L.vertices() for c in v)
False
```

`sage.plot.plot3d.list_plot3d.list_plot3d_array_of_arrays(v, interpolation_type, **kwds)`

A 3-dimensional plot of a surface defined by a list of lists `v` defining points in 3-dimensional space. This is done by making the list of lists into a matrix and passing back to `list_plot3d()`. See `list_plot3d()` for full details.

**INPUT:**
- `v` - a list of lists, all the same length
- `interpolation_type` - (default: ‘linear’)

**OPTIONAL KEYWORDS:**
- `**kwds` - all other arguments are passed to the surface function

**OUTPUT:** a 3d plot

**EXAMPLES:**
The resulting matrix does not have to be square:

```python
sage: show(list_plot3d([[1, 1, 1, 1], [1, 2, 1, 2], [1, 1, 3, 1]])
```

The normal route is for the list of lists to be turned into a matrix and use `list_plot3d_matrix()`:

```python
sage: show(list_plot3d([[1, 1, 1, 1], [1, 2, 1, 2], [1, 1, 3, 1], [1, 2, 1, 4]])
```

With certain extra keywords (see `list_plot3d_matrix()`), this function will end up using `list_plot3d_tuples()`:

```python
sage: show(list_plot3d([[1, 1, 1, 1], [1, 2, 1, 2], [1, 1, 3, 1], [1, 2, 1, 4]], interpolation_type='spline'))
```

`sage.plot.plot3d.list_plot3d.list_plot3d_matrix(m, **kwds)`

A 3-dimensional plot of a surface defined by a matrix `M` defining points in 3-dimensional space. See `list_plot3d()` for full details.

**INPUT:**
- `M` - a matrix

**OPTIONAL KEYWORDS:**
- `**kwds` - all other arguments are passed to the surface function

**OUTPUT:** a 3d plot

**EXAMPLES:**
We plot a matrix that illustrates summation modulo `n`:

```python
sage: n = 5
sage: list_plot3d(matrix(RDF, n, [(i+j)%n for i in [1..n] for j in [1..n]])) # indirect doctest
Graphics3d Object
```
The interpolation type for matrices is ‘linear’; for other types use other `list_plot3d()` input types.

We plot a matrix of values of $\sin$:  
```
sage: pi = float(pi)
sage: m = matrix(RDF, 6, [sin(i^2 + j^2) for i in [0,pi/5,..,pi] for j in [0,pi/5,˓→..,pi]])
sage: list_plot3d(m, color='yellow', frame_aspect_ratio=[1, 1, 1/3]) # indirect doctest
Graphics3d Object
```  
Here is a colored example, using a colormap and a coloring function which must take values in (0, 1):  
```
sage: cm = colormaps.rainbow
sage: n = 20
sage: cf = lambda x, y: ((2*(x-y)/n)**2) % 1
sage: list_plot3d(matrix(RDF, n, [cos(pi*(i+j)/n) for i in [1..n] ˓→.. for j in [1..n]]), color=(cf,cm))
Graphics3d Object
```  
\[\text{sage.plot.plot3d.list_plot3d.list_plot3d_tuples(v, interpolation_type, **kwds)}\]
A 3-dimensional plot of a surface defined by the list $v$ of points in 3-dimensional space.

INPUT:
• \( v \) - something that defines a set of points in 3 space, for example:
  – a matrix
    This will be if using an interpolation type other than ‘linear’, or if using `num_points` with ‘linear’; otherwise see `list_plot3d_matrix()`.
  – a list of 3-tuples
  – a list of lists (all of the same length, under same conditions as a matrix)

OPTIONAL KEYWORDS:
• `interpolation_type` - ‘linear’, ‘clough’ (CloughTocher2D), ‘spline’
  ‘linear’ will perform linear interpolation
  The option ‘clough’ will interpolate by using a piecewise cubic interpolating Bezier polynomial on each triangle, using a Clough-Tocher scheme. The interpolant is guaranteed to be continuously differentiable.
  The option ‘spline’ interpolates using a bivariate B-spline.
  When \( v \) is a matrix the default is to use linear interpolation, when \( v \) is a list of points the default is ‘clough’.
• `degree` - an integer between 1 and 5, controls the degree of spline used for spline interpolation. For data that is highly oscillatory use higher values
• `point_list` - If `point_list=True` is passed, then if the array is a list of lists of length three, it will be treated as an array of points rather than a \( 3 \times n \) array.
• `num_points` - Number of points to sample interpolating function in each direction. By default for an \( n \times n \) array this is \( n \).
• `**kwds` - all other arguments are passed to the surface function

OUTPUT: a 3d plot

EXAMPLES:
All of these use this function; see `list_plot3d()` for other list plots:

```python
sage: pi = float(pi)
sage: m = matrix(RDF, 6, [sin(i^2 + j^2) for i in [0, pi/5, ..., pi] for j in [0, pi/5, ..., pi]])
sage: list_plot3d(m, color='yellow', interpolation_type='linear', num_points=5) # indirect doctest
Graphics3d Object
```

```python
sage: list_plot3d(m, color='yellow', interpolation_type='spline', frame_aspect_ratio=[1, 1, 1/3])
Graphics3d Object
```

```python
sage: show(list_plot3d([[1, 1, 1], [1, 2, 1], [0, 1, 3], [1, 0, 4]], point_list=True))
```

```python
sage: list_plot3d([[1, 2, 3], [0, 1, 3], [2, 1, 4], [1, 0, -2]], color='yellow', num_points=50) # long time
Graphics3d Object
```
CHAPTER THREE

BASIC SHAPES AND PRIMITIVES

3.1 Base Classes for 3D Graphics Objects and Plotting

AUTHORS:

• Robert Bradshaw (2007-02): initial version
• Robert Bradshaw (2007-08): Cythonization, much optimization
• William Stein (2008)
• Paul Masson (2016): Three.js support
• Joshua Campbell (2020): Three.js animation support

Todo: finish integrating tachyon – good default lights, camera

class sage.plot.plot3d.base.BoundingSphere(cen, r)
Bases: sage.structure.sage_object.SageObject

A bounding sphere is like a bounding box, but is simpler to deal with and behaves better under rotations.

transform(T)

Return the bounding sphere of this sphere acted on by T. This always returns a new sphere, even if the resulting object is an ellipsoid.

EXAMPLES:

```
sage: from sage.plot.plot3d.transform import Transformation
sage: from sage.plot.plot3d.base import BoundingSphere
sage: BoundingSphere((0,0,0), 10).transform(Transformation(trans=(1,2,3)))
Center (1.0, 2.0, 3.0) radius 10.0
sage: BoundingSphere((0,0,0), 10).transform(Transformation(scale=(1/2, 1, 2)))
Center (0.0, 0.0, 0.0) radius 20.0
sage: BoundingSphere((0,0,3), 10).transform(Transformation(scale=(2, 2, 2)))
Center (0.0, 0.0, 6.0) radius 20.0
```

class sage.plot.plot3d.base.Graphics3d
Bases: sage.structure.sage_object.SageObject

This is the baseclass for all 3d graphics objects.

__add__(left, right)

Addition of objects adds them to the same scene.

EXAMPLES:
A Graphics 3d object can also be added a 2d graphic object:

```
sage: A = sphere((0, 0, 0), 1) + circle((0, 0), 1.5)
sage: A.show(aspect_ratio=1)
```

```
_amf_ascii_string_(name='surface')
Return an AMF (Additive Manufacturing File Format) representation of the surface.

Warning: This only works for triangulated surfaces!

INPUT:
- name (string, default: “surface”) – name of the surface.

OUTPUT:
A string that represents the surface in the AMF format.

See Wikipedia article Additive_Manufacturing_File_Format

Todo: This should rather be saved as a ZIP archive to save space.

EXAMPLES:
sage: x,y,z = var('x,y,z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9,[x,-5,5],[y,-5,5],[z,-5,5])
sage: a_amf = a.amf_ascii_string()
sage: a_amf[:160]
'<?xml version="1.0" encoding="utf-8"?><amf><object id="surface"><mesh>
→
<vertices><vertex><coordinates><x>2.948717948717948</y>-0.384615384615385
→
<z>-0.3935'
sage: p = polygon3d([[0,0,0], [1,2,3], [3,0,0]])
sage: print(p.amf_ascii_string(name='triangle'))
<?xml version="1.0" encoding="utf-8"?><amf><object id="triangle"><mesh>
→
<vertices><vertex><coordinates><x>0.0</y>0.0</z>0.0</coordinates>
→
<vertex><coordinates><x>1.0</y>2.0</z>3.0</coordinates>
→
<vertex><coordinates><x>3.0</y>0.0</z>0.0</coordinates></vertices><volume><triangle><v1>0</v1><v2>1</v2><v3>2</v3></triangle></volume></mesh></object></amf>

aspect_ratio(v=None)

Set or get the preferred aspect ratio of self.

INPUT:

• v – (default: None) must be a list or tuple of length three, or the integer 1. If no arguments are provided then the default aspect ratio is returned.

EXAMPLES:

sage: D = dodecahedron()
sage: D.aspect_ratio()
[1.0, 1.0, 1.0]
sage: D.aspect_ratio([1,2,3])
sage: D.aspect_ratio((1,2,3))
sage: D.aspect_ratio(1)
sage: D.aspect_ratio()
[1.0, 1.0, 1.0]

bounding_box()

Return the lower and upper corners of a 3d bounding box for self.

This is used for rendering and self should fit entirely within this box.

Specifically, the first point returned should have x, y, and z coordinates should be the respective infimum over all points in self, and the second point is the supremum.

The default return value is simply the box containing the origin.

EXAMPLES:

sage: sphere((1,1,1), 2).bounding_box()
((-1.0, -1.0, -1.0), (3.0, 3.0, 3.0))
sage: G = line3d([(1, 2, 3), (-1,-2,-3)])
sage: G.bounding_box()
((-1.0, -2.0, -3.0), (1.0, 2.0, 3.0))

default_render_params()

Return an instance of RenderParams suitable for plotting this object.

EXAMPLES:
sage: type(dodecahedron().default_render_params())
<class 'sage.plot.plot3d.base.RenderParams'>

default_render_params(self, **kwargs):
 if m is None:
 m = self.default_render_params(**kwargs)
 if m == 0:
 return self.default_render_params(**kwargs)
 else:
 return m

export_jmol (filename='jmol_shape.jmol', force_reload=False, zoom=1, spin=False, background=1, stereo=False, mesh=False, dots=False, perspective_depth=True, orientation=-764.1346, -545.7639, **ignored_kwds)

A jmol scene consists of a script which refers to external files. Fortunately, we are able to put all of them in a single zip archive, which is the output of this call.

EXAMPLES:

sage: out_file = tmp_filename(ext='.jmol')
sage: G = sphere((1, 2, 3), 5) + cube() + sage.plot.plot3d.shapes.Text("hi")
sage: G.export_jmol(out_file)
sage: import zipfile
sage: z = zipfile.ZipFile(out_file)
sage: z.namelist()
['obj_...pmesh', 'SCRIPT']
sage: print(z.read('SCRIPT').decode('ascii'))
data "model list"
2
empty
Xx 0 0 0
Xx 5.5 5.5 5.5
end "model list"; show data
select *
wireframe off; spacefill off
set labelOffset 0 0
background [255,255,255]
spin OFF
moveto 0 -764 -346 -545 76.39
centerAt absolute {0 0 0}
zoom 100
frank OFF
set perspectivevedepth ON
isosurface sphere_1 center {1.0 2.0 3.0} sphere 5.0
color isosurface [102,102,255]
pmesh obj_... "obj_...pmesh"
color pmesh [102,102,255]
select atomno = 1
color atom [102,102,255]
label "hi"
isosurface fullylit; pmesh o* fullylit; set antialiasdisplay on;

sage: print(z.read(z.namelist()[0]).decode('ascii'))
24
0.5 0.5 0.5
-0.5 0.5 0.5
...
-0.5 -0.5 -0.5
6
5
0
1
...

flatten()
Try to reduce the depth of the scene tree by consolidating groups and transformations.

The generic Graphics3d object cannot be made flatter.

EXAMPLES:

```python
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.flatten() is G
True
```

`frame_aspect_ratio(v=None)`

Set or get the preferred frame aspect ratio of `self`.

INPUT:

- `v` (default: None) must be a list or tuple of length three, or the integer 1. If no arguments are provided then the default frame aspect ratio is returned.

EXAMPLES:

```python
sage: D = dodecahedron()
sage: D.frame_aspect_ratio()
[1.0, 1.0, 1.0]
sage: D.frame_aspect_ratio([2,2,1])
sage: D.frame_aspect_ratio()
[2.0, 2.0, 1.0]
sage: D.frame_aspect_ratio(1)
sage: D.frame_aspect_ratio()
[1.0, 1.0, 1.0]
```

`jmol_repr(render_params)`

A (possibly nested) list of strings which will be concatenated and used by jmol to render `self`.

(Nested lists of strings are used because otherwise all the intermediate concatenations can kill performance). This may refer to several remove files, which are stored in render_params.output_archive.

EXAMPLES:

```python
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.jmol_repr(G.default_render_params())
[]
sage: G = sphere((1, 2, 3))
sage: G.jmol_repr(G.default_render_params())
[['isosurface sphere_1 center {1.0 2.0 3.0} sphere 1.0\ncolor isosurface \n→[102,102,255]']]
```

`json_repr(render_params)`

A (possibly nested) list of strings. Each entry is formatted as JSON, so that a JavaScript client could eval it and get an object. Each object has fields to encapsulate the faces and vertices of `self`. This representation is intended to be consumed by the canvas3d viewer backend.

EXAMPLES:

```python
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.json_repr(G.default_render_params())
[]
```

`mtl_str()`

Return the contents of a .mtl file, to be used to provide coloring information for an .obj file.

EXAMPLES:
```python
sage: G = tetrahedron(color='red') + tetrahedron(color='yellow', opacity=0.5)
sage: print(G.mtl_str())
newmtl ...
Ka 0.5 5e-06 5e-06
Kd 1.0 1e-05 1e-05
Ks 0.0 0.0 0.0
illum 1
Ns 1.0
d 1.0
newmtl ...
Ka 0.5 0.5 5e-06
Kd 1.0 1.0 1e-05
Ks 0.0 0.0 0.0
illum 1
Ns 1.0
d 0.5
```

obj()

An .obj scene file (as a string) containing the this object.

A .mtl file of the same name must also be produced for coloring.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import ColorCube
sage: print(ColorCube(1, ['red', 'yellow', 'blue']).obj())
g obj_1
usemtl ...
v 1 1 1
v -1 1 1
v -1 -1 1
v 1 -1 1
f 1 2 3 4 ...

g obj_6
usemtl ...
v -1 -1 1
v -1 1 1
v -1 1 -1
v -1 -1 -1
f 21 22 23 24
```

obj_repr(render_params)

A (possibly nested) list of strings which will be concatenated and used to construct an .obj file of self.

(Nested lists of strings are used because otherwise all the intermediate concatenations can kill performance). This may include a reference to color information which is stored elsewhere.

EXAMPLES:

```python
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.obj_repr(G.default_render_params())
[]
sage: G = cube()
sage: G.obj_repr(G.default_render_params())
['g obj_1', 'usemtl ...', 'v 0.5 0.5 0.5']
```
plot()
Draw a 3D plot of this graphics object, which just returns this object since this is already a 3D graphics object. Needed to support PLOT in doctests, see trac ticket #17498

EXAMPLES:

```
sage: S = sphere((0,0,0), 2)
sage: S.plot() is S
True
```

ply_ascii_string(name='surface')
Return a PLY (Polygon File Format) representation of the surface.

INPUT:

- name (string, default: "surface") – name of the surface.

OUTPUT:

A string that represents the surface in the PLY format.

See Wikipedia article PLY_(file_format)

EXAMPLES:

```
sage: x,y,z = var('x,y,z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9,[x,-5,5],[y,-5,5],[z,-5,5])
sage: astl = a.ply_ascii_string()
sage: astl.splitlines()[:10]
['ply',
'format ascii 1.0',
'comment surface',
'element vertex 15540',
'property float x',
'property float y',
'property float z',
'element face 5180',
'property list uchar int vertex_indices',
'end_header']
```

```
sage: p = polygon3d([[0,0,0], [1,2,3], [3,0,0]])
sage: print(p.ply_ascii_string(name='triangle'))
ply
format ascii 1.0
```
rotate \((v, \theta) \)
Return self rotated about the vector \(v \) by \(\theta \) radians.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Cone
sage: v = (1, 2, 3)
sage: G = arrow3d((0, 0, 0), v)
sage: G += Cone(1/5, 1).translate((0, 0, 2))
sage: C = Cone(1/5, 1, opacity=.25).translate((0, 0, 2))
sage: G += sum(C.rotate(v, pi*t/4) for t in range(1, 8))
sage: G.show(aspect_ratio=1)
```
The file type depends on the file extension you give in the filename. This can be either:

- an image file (of type: PNG, BMP, GIF, PPM, or TIFF) rendered using Jmol (default) or Tachyon,
- a Sage object file (of type .sobj) that you can load back later (a pickle),
- an HTML file depicting the graphic using the Three.js viewer,
- a data file (of type: X3D, STL, AMF, PLY) for export and use in other software.

For data files, the support is only partial. For instance STL and AMF only works for triangulated surfaces. The preferred format is X3D.

INPUT:

- *filename* – string. Where to save the image or object.
- **kwds** – When specifying an image file to be rendered by Tachyon or Jmol, any of the viewing options accepted by `show()` are valid as keyword arguments to this function and they will behave in the same way. Accepted keywords include: `viewer`, `verbosity`, `figsize`, `aspect_ratio`, `frame_aspect_ratio`, `zoom`, `frame`, and `axes`. Default values are provided.

EXAMPLES:

```python
sage: f = tmp_filename(ext='.png')
sage: G = sphere()
sage: G.save(f)
```

We demonstrate using keyword arguments to control the appearance of the output image:

```python
sage: G.save(f, zoom=2, figsize=[5, 10])
```

Using Tachyon instead of the default viewer (Jmol) to create the image:

```python
sage: G.save(f, viewer='tachyon')
```

Since Tachyon only outputs PNG images, PIL will be used to convert to alternate formats:

```python
sage: cube().save(tmp_filename(ext='.gif'), viewer='tachyon')
```

Here is how to save in one of the data formats:

```python
sage: f = tmp_filename(ext='.x3d')
sage: cube().save(f)
sage: open(f).read().splitlines()[7]
"<Shape><Box size='0.5 0.5 0.5'/><Appearance><Material diffuseColor='0.4 0.4
1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>"
```

Producing a Three.js-based HTML file:

```python
sage: f = tmp_filename(ext='.html')
sage: G.save(f, frame=False, online=True)
```

```
save_image (filename, **kwds)

Save a 2-D image rendering.

The image type is determined by the extension of the filename. For example, this could be .png, .jpg, .gif, .pdf, .svg.

**INPUT:**
• filename – string. The file name under which to save the image.

Any further keyword arguments are passed to the renderer.

EXAMPLES:

```python
sage: G = sphere()
sage: png = tmp_filename(ext='.png')
sage: G.save_image(png)
sage: with open(png, 'rb') as fobj:
....: assert fobj.read().startswith(b'x89PNG')

sage: gif = tmp_filename(ext='.gif')
sage: G.save_image(gif)
sage: with open(gif, 'rb') as fobj:
....: assert fobj.read().startswith(b'GIF')
```

scale(*x)

Return self scaled in the x, y, and z directions.

EXAMPLES:

```python
sage: G = dodecahedron() + dodecahedron(opacity=.5).scale(2)
sage: G.show(aspect_ratio=1)

sage: G = icosahedron() + icosahedron(opacity=.5).scale([1, 1/2, 2])
sage: G.show(aspect_ratio=1)
```

show(**kwds)

Display graphics immediately

This method attempts to display the graphics immediately, without waiting for the currently running code (if any) to return to the command line. Be careful, calling it from within a loop will potentially launch a large number of external viewer programs.

INPUT:

• viewer – string (default: 'threejs'), how to view the plot; admissible values are
  – 'threejs': interactive web-based 3D viewer using JavaScript and a WebGL renderer
  – 'jmol': interactive 3D viewer using Java
  – 'tachyon': ray tracer generating a static PNG image
  – 'canvas3d': web-based 3D viewer using JavaScript and a canvas renderer (Sage notebook only)

• verbosity – display information about rendering the figure

• figsize – (default: 5); x or pair [x,y] for numbers, e.g., [5,5]; controls the size of the output figure. E.g., with Tachyon the number of pixels in each direction is 100 times figsize[0]. This is ignored for the jmol embedded renderer.

• aspect_ratio – (default: 'automatic') – aspect ratio of the coordinate system itself. Give [1,1,1] to make spheres look round.

• frame_aspect_ratio – (default: 'automatic') aspect ratio of frame that contains the 3d scene.

• zoom – (default: 1) how zoomed in

• frame – (default: True) if True, draw a bounding frame with labels

• axes – (default: False) if True, draw coordinate axes
• **kwds** – other options, which make sense for particular rendering engines

**OUTPUT:**

This method does not return anything. Use `save()` if you want to save the figure as an image.

**CHANGING DEFAULTS:** Defaults can be uniformly changed by importing a dictionary and changing it. For example, here we change the default so images display without a frame instead of with one:

```python
sage: from sage.plot.plot3d.base import SHOW_DEFAULTS
sage: SHOW_DEFAULTS['frame'] = False
```

This sphere will not have a frame around it:

```python
sage: sphere((0,0,0))
Graphics3d Object
```

We change the default back:

```python
sage: SHOW_DEFAULTS['frame'] = True
```

Now this sphere is enclosed in a frame:

```python
sage: sphere((0,0,0))
Graphics3d Object
```

**EXAMPLES:** We illustrate use of the `aspect_ratio` option:

```python
sage: x, y = var('x,y')
sage: p = plot3d(2*sin(x*y), (x, -pi, pi), (y, -pi, pi))
sage: p.show(aspect_ratio=[1,1,1])
```

This looks flattened, but filled with the plot:

```python
sage: p.show(frame_aspect_ratio=[1,1,1/16])
```

This looks flattened, but the plot is square and smaller:

```python
sage: p.show(aspect_ratio=[1,1,1], frame_aspect_ratio=[1,1,1/8])
```

This example shows indirectly that the defaults from `plot()` are dealt with properly:

```python
sage: plot(vector([1,2,3]))
Graphics3d Object
```

We use the ‘canvas3d’ backend from inside the notebook to get a view of the plot rendered inline using HTML canvas:

```python
sage: p.show(viewer='canvas3d')
```

**stl_ascii_string** *(name='surface')*

Return an STL (STereoLithography) representation of the surface.

**Warning:** This only works for surfaces, not for general plot objects!

**INPUT:**

- name (string, default: “surface”) – name of the surface.
OUTPUT:

A string that represents the surface in the STL format.

See Wikipedia article STL_(file_format)

See also:

\texttt{stl\_binary()}

EXAMPLES:

\begin{verbatim}
sage: x,y,z = var('x,y,z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9, [x,-5,5], [y,-5,5], [z,-5,5])
sage: astl = a.stl_ascii_string()[:7]
['solid surface',
'facet normal 0.9733285267845754 -0.16222142113076257 -0.16222142113076257',
'outer loop',
'vextra 2.94871794872 -0.384615384615 -0.39358974359',
'vextra 2.95021367521 -0.384615384615 -0.384615384615',
'vextra 2.94871794872 -0.39358974359 -0.384615384615',
'endloop']
sage: p = polygon3d([[0,0,0], [1,2,3], [3,0,0]])
sage: print(p.stl_ascii_string(name='triangle'))
solid triangle
facet normal 0.0 0.8320502943378436 -0.5547001962252291
outer loop
'vextra 0.0 0.0 0.0
'vextra 1.0 2.0 3.0
'vextra 3.0 0.0 0.0
endloop
endfacet
endsolid triangle
\end{verbatim}

Now works when faces have more than 3 sides:

\begin{verbatim}
sage: P = polytopes.dodecahedron()
sage: Q = P.plot().all[-1]
sage: print(Q.stl_ascii_string().splitlines()[:7])
['solid surface',
'facet normal 0.0 0.525731112191338 0.8506508083520399',
'outer loop',
'vextra -0.7639320225002102 0.7639320225002102 0.7639320225002102',
'vextra -0.4721359549995796 0.0 1.2360679774997898',
'vextra 0.4721359549995796 0.0 1.2360679774997898',
'endloop']
\end{verbatim}

\texttt{stl\_binary()}

Return an STL (STereoLithography) binary representation of the surface.

**Warning:** This only works for surfaces, transforms and unions of surfaces, but not for general plot objects!

OUTPUT:

A binary string that represents the surface in the binary STL format.
See Wikipedia article STL_(file_format)

See also:

\texttt{stl_ascii_string()}

EXAMPLES:

\begin{verbatim}
sage: x,y,z = var('x,y,z')
sage: a = implicit_plot3d(x^2+y^2+z^2-9,[x,-5,5],[y,-5,5],[z,-5,5])
sage: astl = a.stl_binary()
sage: print
  (astl[:40].decode('ascii'))
STL binary file / made by SageMath / ###
sage: p = polygon3d([[0,0,0], [1,2,3], [3,0,0]])
sage: print
  (p.stl_binary()[:40].decode('ascii'))
STL binary file / made by SageMath / ###
\end{verbatim}

This works when faces have more then 3 sides:

\begin{verbatim}
sage: P = polytopes.dodecahedron()
sage: Q = P.plot().all[-1]
sage: print
  (Q.stl_binary()[:40].decode('ascii'))
STL binary file / made by SageMath / ###
\end{verbatim}

\texttt{tachyon()}

An tachyon input file (as a string) containing the this object.

EXAMPLES:

\begin{verbatim}
sage: print
  (sphere((1, 2, 3), 5, color='yellow').tachyon())
begin_scene
  
  resolution 400 400
  
  camera
    ...
  
  plane
    center -2000 -1000 -500
    
    normal 2.3 2.4 2.0
    
    TEXTURE
      AMBIENT 1.0 DIFFUSE 1.0 SPECULAR 1.0 OPACITY 1.0
      COLOR 1.0 1.0 1.0
      TEXFUNC 0
      Texdef texture...
    
    Ambient 0.3333333333333333 Diffuse 0.6666666666666666 Specular 0.0 Opacity
      →1.0
    
    Color 1.0 1.0 0.0
    TexFunc 0
    Sphere center 1.0 -2.0 3.0 Rad 5.0 texture...
  
end_scene

sage: G = icosahedron(color='red') + sphere((1,2,3), 0.5, color='yellow')
sage: G.show(viewer='tachyon', frame=false)
sage: print
  (G.tachyon())
begin_scene
  
  Texdef texture...
  
  Ambient 0.3333333333333333 Diffuse 0.6666666666666666 Specular 0.0 Opacity
    →1.0
  
  Color 1.0 1.0 0.0
  TexFunc 0
  Sphere center 1.0 -2.0 3.0 Rad 5.0 texture...
end_scene
\end{verbatim}

(continues on next page)
tachyon_repr (render_params)
A (possibly nested) list of strings which will be concatenated and used by tachyon to render self.
(Nested lists of strings are used because otherwise all the intermediate concatenations can kill performance). This may include a reference to color information which is stored elsewhere.

EXAMPLES:

```python
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.tachyon_repr(G.default_render_params())
[]
sage: G = sphere((1, 2, 3))
sage: G.tachyon_repr(G.default_render_params())
['Sphere center 1.0 2.0 3.0 Rad 1.0 texture...']
```

testing_render_params ()
Return an instance of RenderParams suitable for testing this object.
In particular, it opens up a temporary file as an auxiliary zip file for jmol.

EXAMPLES:

```python
sage: type(dodecahedron().testing_render_params())
<class 'sage.plot.plot3d.base.RenderParams'>
```

texture

texture_set ()
Often the textures of a 3d file format are kept separate from the objects themselves. This function returns the set of textures used, so they can be defined in a preamble or separate file.

EXAMPLES:

```python
sage: sage.plot.plot3d.base.Graphics3d().texture_set()
set()
sage: G = tetrahedron(color='red') + tetrahedron(color='yellow') +
 tetrahedron(color='red', opacity=0.5)
sage: [t for t in G.texture_set() if t.color == colors.red] # we should have
 -> two red textures
[Texture(texture..., red, ff0000), Texture(texture..., red, ff0000)]
sage: [t for t in G.texture_set() if t.color == colors.yellow] # ...and one
 -> yellow
[Texture(texture..., yellow, ffff00)]
```

threejs_repr (render_params)
A flat list of (kind, desc) tuples where kind is one of: ‘point’, ‘line’, ‘text’, or ‘surface’; and where desc is a dictionary describing a point, line, text, or surface.

EXAMPLES:

```python
sage: G = sage.plot.plot3d.base.Graphics3d()
sage: G.threejs_repr(G.default_render_params())
[]
```
transform(**kwds)
Apply a transformation to self, where the inputs are passed onto a TransformGroup object.

Mostly for internal use; see the translate, scale, and rotate methods for more details.

EXAMPLES:

```python
sage: sphere((0,0,0), 1).transform(trans=(1, 0, 0), scale=(2,3,4)).bounding_box()
((-1.0, -3.0, -4.0), (3.0, 3.0, 4.0))
```

translate(*x)
Return self translated by the given vector (which can be given either as a 3-iterable or via positional arguments).

EXAMPLES:

```python
sage: icosahedron() + sum(icosahedron(opacity=0.25).translate(2*n, 0, 0) for n in [1..4])
Graphics3d Object
```

```python
sage: icosahedron() + sum(icosahedron(opacity=0.25).translate([-2*n, n, n^2]) for n in [1..4])
Graphics3d Object
```

viewpoint()
Return the viewpoint of this plot.

Currently only a stub for x3d.

EXAMPLES:

```python
sage: type(dodecahedron().viewpoint())
<class 'sage.plot.plot3d.base.Viewpoint'>
```

x3d()
An x3d scene file (as a string) containing the this object.

EXAMPLES:

```python
sage: print(sphere((1, 2, 3), 5).x3d())
<X3D version='3.0' profile='Immersive' xmlns:xsd='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://www.web3d.org/specifications/x3d-3.0.xsd'>
<head>
<meta name='title' content='sage3d'/>
</head>
<Scene>
<Viewpoint position='0 0 6'/>
<Transform translation='1 2 3'>
<Shape>Sphere radius='5.0'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
</Transform>
</Scene>
</X3D>
```

```python
sage: G = icosahedron() + sphere((0,0,0), 0.5, color='red')
sage: print(G.x3d())
<X3D version='3.0' profile='Immersive' xmlns:xsd='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://www.web3d.org/specifications/x3d-3.0.xsd'>
(...continues on next page...)
```
class sage.plot.plot3d.base.Graphics3dGroup(all=(), rot=None, trans=None, scale=None, T=None)

Bases: sage.plot.plot3d.base.Graphics3d

This class represents a collection of 3d objects. Usually they are formed implicitly by summing.

bounding_box()

Box that contains the bounding boxes of all the objects that make up self.

EXAMPLES:

```
sage: A = sphere((0,0,0), 5)
sage: B = sphere((1, 5, 10), 1)
sage: A.bounding_box()
((-5.0, -5.0, -5.0), (5.0, 5.0, 5.0))
sage: B.bounding_box()
((0.0, 4.0, 9.0), (2.0, 6.0, 11.0))
sage: (A+B).bounding_box()
((-5.0, -5.0, -5.0), (5.0, 6.0, 11.0))
sage: (A+B).show(aspect_ratio=1, frame=True)
```

flatten()

Try to reduce the depth of the scene tree by consolidating groups and transformations.

EXAMPLES:

```
sage: G = sum([circle((0, t), 1) for t in [1..10]], sphere()); G
Graphics3d Object
sage: G.flatten()
Graphics3d Object
sage: len(G.all)
2
sage: len(G.flatten().all)
11
```

jmol_repr(render_params)

The jmol representation of a group is simply the concatenation of the representation of its objects.
EXAMPLES:

```python
sage: G = sphere() + sphere((1,2,3))
sage: G.jmol_repr(G.default_render_params())

\[
\text{[['isosurface sphere_1 center \{0.0 0.0 0.0\} sphere 1.0|color isosurface\rightarrow[102,102,255]'\],
[['isosurface sphere_2 center \{1.0 2.0 3.0\} sphere 1.0|color isosurface\rightarrow[102,102,255]'\]]
\]
```

```
json_repr(render_params)
The JSON representation of a group is simply the concatenation of the representations of its objects.

EXAMPLES:

```python
sage: G = sphere() + sphere((1, 2, 3))
sage: G.json_repr(G.default_render_params())

\[
\text{[[{"vertices":...'}\], 
[['{"vertices":...']}\]
```

```
obj_repr(render_params)
The obj representation of a group is simply the concatenation of the representation of its objects.

EXAMPLES:

```python
sage: G = tetrahedron() + tetrahedron().translate(10, 10, 10)
sage: G.obj_repr(G.default_render_params())

\[
\text{[['g obj_1',
'usenm1 ...',
['v 0 0 1',
'v 0.942809 0 -0.333333',
'v -0.471405 0.816497 -0.333333',
'v -0.471405 -0.816497 -0.333333'],
['f 1 2 3', 'f 2 4 3', 'f 1 3 4', 'f 1 4 2'],
[]],
[['g obj_2',
'usenm1 ...',
['v 10 10 11',
'v 10.9428 10 9.66667',
'v 9.5286 10.8165 9.66667',
'v 9.5286 9.1835 9.66667'],
['f 5 6 7', 'f 6 8 7', 'f 5 7 8', 'f 5 8 6'],
[]]]
```

```
plot()
```

```
set_texture(**kwds)
EXAMPLES:

```python
sage: G = dodecahedron(color='red', opacity=.5) + icosahedron((3, 0, 0),
\rightarrow color='blue')
sage: G
Graphics3d Object
sage: G.set_texture(color='yellow')
sage: G
Graphics3d Object
```

```
stl_binary_repr(render_params)
The STL binary representation is a list of binary strings, one for each triangle.
```

```
3.1. Base Classes for 3D Graphics Objects and Plotting

173
```
EXAMPLES:

```
sage: G = sphere() + sphere((1,2,3))
sage: len(G.stl_binary_repr(G.default_render_params()))
2736
```

tachyon_repr (render_params)
The tachyon representation of a group is simply the concatenation of the representations of its objects.

EXAMPLES:

```
sage: G = sphere() + sphere((1,2,3))
sage: G.tachyon_repr(G.default_render_params())
[['Sphere center 0.0 0.0 0.0 Rad 1.0 texture...'],
 ['Sphere center 1.0 2.0 3.0 Rad 1.0 texture...']]
```

texture_set ()
The texture set of a group is simply the union of the textures of all its objects.

EXAMPLES:

```
sage: G = sphere(color='red') + sphere(color='yellow')
sage: [t for t in G.texture_set() if t.color == colors.red]  # one red texture
[Texture(texture..., red, ff0000)]
sage: [t for t in G.texture_set() if t.color == colors.yellow]  # one yellow
[Texture(texture..., yellow, ffff00)]
sage: T = sage.plot.plot3d.texture.Texture('blue'); T
Texture(texture..., blue, 0000ff)
sage: G = sphere(texture=T) + sphere((1, 1, 1), texture=T)
sage: len(G.texture_set())
1
```

threejs_repr (render_params)
The three.js representation of a group is the concatenation of the representations of its objects.

EXAMPLES:

```
sage: G = point3d((1,2,3)) + point3d((4,5,6)) + line3d([(1,2,3), (4,5,6)])
sage: G.threejs_repr(G.default_render_params())
[['point',
  {'color': '#6666ff', 'opacity': 1.0, 'point': (1.0, 2.0, 3.0), 'size': 5.0}]
  →),
[['point',
  {'color': '#6666ff', 'opacity': 1.0, 'point': (4.0, 5.0, 6.0), 'size': 5.0}]
  →],
[['line',
  {'color': '#6666ff',
   'linewidth': 1.0,
   'opacity': 1.0,
   'points': [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)]})]
```

transform (**kwds)
Transforming this entire group simply makes a transform group with the same contents.

EXAMPLES:
sage: G = dodecahedron(color='red', opacity=.5) + icosahedron(color='blue')
sage: G
Graphics3d Object
sage: G.transform(scale=(2,1/2,1))
Graphics3d Object
sage: G.transform(trans=(1,1,3))
Graphics3d Object

x3d_str()

The x3d representation of a group is simply the concatenation of the representation of its objects.

EXAMPLES:

sage: G = sphere() + sphere((1,2,3))
sage: print(G.x3d_str())
<Transform translation='0 0 0'>
<Shape><Sphere radius='1.0'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
</Transform>
<Transform translation='1 2 3'>
<Shape><Sphere radius='1.0'/><Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
</Transform>

class sage.plot.plot3d.base.KeyframeAnimationGroup(all=(), **kwds)
Bases: sage.plot.plot3d.base.Graphics3dGroup

A group of objects, each depicting a single frame of animation

threejs_repr(render_params)

Adds keyframe information to the representations of the group’s contents.

EXAMPLES:

sage: a = point3d((0, 0, 1))
sage: b = point3d((0, 1, 0))
sage: c = point3d((1, 0, 0))
sage: g = sage.plot.plot3d.base.KeyframeAnimationGroup([a, b, c])
sage: g.threejs_repr(g.default_render_params())
[('point', {..., 'keyframe': 0, ..., 'point': (0.0, 0.0, 1.0), ...}), ('point', {..., 'keyframe': 1, ..., 'point': (0.0, 1.0, 0.0), ...}), ('point', {..., 'keyframe': 2, ..., 'point': (1.0, 0.0, 0.0), ...})]

Only top-level objects get a unique keyframe. Nested objects share the same keyframe:

sage: g = sage.plot.plot3d.base.KeyframeAnimationGroup([a + b, c])
sage: g.threejs_repr(g.default_render_params())
[('point', {..., 'keyframe': 0, ..., 'point': (0.0, 0.0, 1.0), ...}), ('point', {..., 'keyframe': 0, ..., 'point': (0.0, 0.0, 1.0), ...}), ('point', {..., 'keyframe': 1, ..., 'point': (1.0, 0.0, 0.0), ...})]

class sage.plot.plot3d.base.PrimitiveObject
Bases: sage.plot.plot3d.base.Graphics3d

This is the base class for the non-container 3d objects.

get_texture()

EXAMPLES:
jmol_repr (render_params)
Default behavior is to render the triangulation. The actual polygon data is stored in a separate file.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Torus
sage: G = Torus(1, .5)
sage: G.jmol_repr(G.testing_render_params())
['pmesh obj_1 "obj_1.pmesh"
color pmesh [102,102,255]']
```

obj_repr (render_params)
Default behavior is to render the triangulation.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Torus
sage: G = Torus(1, .5)
sage: G.obj_repr(G.default_render_params())
['g obj_1',
 'usemtl ...',
 ['v 0 1 0.5',
 ...
 'f ...'],
[]]
```

set_texture (texture=None, **kwds)

EXAMPLES:

```
sage: G = dodecahedron(color='red'); G
Graphics3d Object
sage: G.set_texture(color='yellow'); G
Graphics3d Object
```

tachyon_repr (render_params)
Default behavior is to render the triangulation.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Torus
sage: G = Torus(1, .5)
sage: G.tachyon_repr(G.default_render_params())
['TRI V0 0 1 0.5
 ...
'texture...']
```

texture_set ()

EXAMPLES:

```
sage: G = dodecahedron(color='red')
sage: G.texture_set()
{Texture(texture..., red, ff0000)}
```
	hreejs_repr (render_params)
Default behavior is to render the triangulation.
EXAMPLES:

```python
sage: from sage.plot.plot3d.base import PrimitiveObject
sage: class SimpleTriangle(PrimitiveObject):
    ....:     def triangulation(self):
    ....:         return polygon3d([(0,0,0), (1,0,0), (0,1,0)])

sage: G = SimpleTriangle()
sage: G.threejs_repr(G.default_render_params())
[['surface',
  {'color': '#0000ff',
   'faces': [[0, 1, 2]],
   'opacity': 1.0,
   'vertices': [{'x': 0.0, 'y': 0.0, 'z': 0.0},
                {'x': 1.0, 'y': 0.0, 'z': 0.0},
                {'x': 0.0, 'y': 1.0, 'z': 0.0}]]]
```

```plaintext
x3d_str()

```

EXAMPLES:

```python
sage: sphere().flatten().x3d_str()
"<Transform>
<Shape><Sphere radius='1.0'/><Appearance><Material diffuseColor="0.4 0.4 1.0" shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>
</Transform>"
```

```python
class sage.plot.plot3d.base.RenderParams(**kwds)
  Bases: sage.structure.sage_object.SageObject

This class is a container for all parameters that may be needed to render triangulate/render an object to a certain format. It can contain both cumulative and global parameters.

Of particular note is the transformation object, which holds the cumulative transformation from the root of the scene graph to this node in the tree.

**pop_transform()**

Remove the last transformation off the stack, resetting self.transform to the previous value.

EXAMPLES:

```python
sage: from sage.plot.plot3d.transform import Transformation
sage: params = sage.plot.plot3d.base.RenderParams()
sage: T = Transformation(trans=(100, 500, 0))
sage: params.push_transform(T)
sage: params.transform.get_matrix()
[1.0 0.0 0.0 100.0]
[0.0 1.0 0.0 500.0]
[0.0 0.0 1.0 0.0]
[0.0 0.0 0.0 1.0]
sage: params.push_transform(Transformation(trans=(-100, 500, 200)))
sage: params.transform.get_matrix()
[1.0 0.0 0.0 0.0]
[0.0 1.0 0.0 1000.0]
[0.0 0.0 1.0 200.0]
[0.0 0.0 0.0 1.0]
sage: params.pop_transform()
sage: params.transform.get_matrix()
[1.0 0.0 0.0 100.0]
[0.0 1.0 0.0 500.0]
[0.0 0.0 1.0 0.0]
[0.0 0.0 0.0 1.0]
```
**push_transform**(*T*)

Push a transformation onto the stack, updating self.transform.

EXAMPLES:

```python
sage: from sage.plot.plot3d.transform import Transformation
sage: params = sage.plot.plot3d.base.RenderParams()
sage: params.transform is None
True
sage: T = Transformation(scale=(10,20,30))
```

```python
sage: params.push_transform(T)
```

```python
sage: params.transform.get_matrix()
[10.0 0.0 0.0 0.0]
[0.0 20.0 0.0 0.0]
[0.0 0.0 30.0 0.0]
[0.0 0.0 0.0 1.0]
```

```python
sage: params.push_transform(T) # scale again
```

```python
sage: params.transform.get_matrix()
[100.0 0.0 0.0 0.0]
[0.0 400.0 0.0 0.0]
[0.0 0.0 900.0 0.0]
[0.0 0.0 0.0 1.0]
```

**unique_name**(*desc='name*)

Return a unique identifier starting with desc.

INPUT:

- desc (string) – the prefix of the names (default ‘name’)

EXAMPLES:

```python
sage: params = sage.plot.plot3d.base.RenderParams()
```

```python
sage: params.unique_name()
'name_1'
```

```python
sage: params.unique_name()
'name_2'
```

```python
sage: params.unique_name('texture')
'texture_3'
```

**class** sage.plot.plot3d.base.TransformGroup(*all=[], rot=None, trans=None, scale=None, *T=None*)

Bases: sage.plot.plot3d.base.Graphics3dGroup

This class is a container for a group of objects with a common transformation.

**bounding_box**()

Return the bounding box of self, i.e., the box containing the contents of self after applying the transformation.

EXAMPLES:

```python
sage: G = cube()
```

```python
sage: G.bounding_box()
((-0.5, -0.5, -0.5), (0.5, 0.5, 0.5))
```

```python
sage: G.scale(4).bounding_box()
((-2.0, -2.0, -2.0), (2.0, 2.0, 2.0))
```

```python
sage: G.rotateZ(pi/4).bounding_box()
((-0.7071067811865475, -0.7071067811865475, -0.5),
 (0.7071067811865475, 0.7071067811865475, 0.5))
```
flatten()
Try to reduce the depth of the scene tree by consolidating groups and transformations.

EXAMPLES:

```python
sage: G = sphere((1,2,3)).scale(100)
sage: T = G.get_transformation()
sage: T.get_matrix()
[100.0 0.0 0.0 0.0]
[0.0 100.0 0.0 0.0]
[0.0 0.0 100.0 0.0]
[0.0 0.0 0.0 1.0]
sage: G.flatten().get_transformation().get_matrix()
[100.0 0.0 0.0 100.0]
[0.0 100.0 0.0 200.0]
[0.0 0.0 100.0 300.0]
[0.0 0.0 0.0 1.0]
```

get_transformation()
Return the actual transformation object associated with self.

EXAMPLES:

```python
sage: G = sphere().scale(100)
sage: T = G.get_transformation()
sage: T.get_matrix()
[100.0 0.0 0.0 0.0]
[0.0 100.0 0.0 0.0]
[0.0 0.0 100.0 0.0]
[0.0 0.0 0.0 1.0]
```

jmol_repr(render_params)
Transformations for jmol are applied at the leaf nodes.

EXAMPLES:

```python
sage: G = sphere((1,2,3)).scale(2)
sage: G.jmol_repr(G.default_render_params())
[['isosurface sphere_1 center (2.0 4.0 6.0) sphere 2.0\ncolor isosurface →[102,102,255]']]
```

json_repr(render_params)
Transformations are applied at the leaf nodes.

EXAMPLES:

```python
sage: G = cube().rotateX(0.2)
sage: G.json_repr(G.default_render_params())
[['"vertices":["x":0.5,"y":0.589368,"z":0.390699},...']
```

obj_repr(render_params)
Transformations for .obj files are applied at the leaf nodes.

EXAMPLES:

```python
sage: G = cube().scale(4).translate(1, 2, 3)
sage: G.obj_repr(G.default_render_params())
[[''g obj_1',
```
The STL binary representation is a list of binary strings, one for each triangle.

EXAMPLES:

```python
sage: G = sphere().translate((1,2,0))
sage: len(G.stl_binary_repr(G.default_render_params()))
1368
```

**tachyon_repr**(render_params)

Transformations for Tachyon are applied at the leaf nodes.

EXAMPLES:

```python
sage: G = sphere((1,2,3)).scale(2)
sage: G.tachyon_repr(G.default_render_params())
[['Sphere center 2.0 4.0 6.0 Rad 2.0 texture...']]
```

**threejs_repr**(render_params)

Transformations for three.js are applied at the leaf nodes.

EXAMPLES:

```python
sage: G = point3d((1,2,3)) + point3d((4,5,6))
sage: G = G.translate(-1, -2, -3).scale(10)
sage: G.threejs_repr(G.default_render_params())
[['point',
 {'color': '#6666ff', 'opacity': 1.0, 'point': (0.0, 0.0, 0.0), 'size': 5.0}, ...
 'point',
 {'color': '#6666ff',
 'opacity': 1.0,
 'point': (30.0, 30.0, 30.0),
 'size': 5.0})]
```

**transform**(**kwds)**

Transforming this entire group can be done by composing transformations.

EXAMPLES:
To apply a transformation to a set of objects in x3d, simply make them all children of an x3d Transform node.

**EXAMPLES:**

```python
sage: sphere((1,2,3)).x3d_str()
"<Transform translation='1 2 3'>
<Shape><Sphere radius='1.0'/><Appearance>
 → <Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></Shape>

</Transform>"
```

```python
class sage.plot.plot3d.base.Viewpoint(*x)
Bases: sage.plot.plot3d.base.Graphics3d

This class represents a viewpoint, necessary for x3d.

In the future, there could be multiple viewpoints, and they could have more properties. (Currently they only hold a position).

EXAMPLES:

```python
sage: sphere((0,0,0), 100).viewpoint().x3d_str()
"<Viewpoint position='0 0 6'/>"
```

```python
class sage.plot.plot3d.base.flatten_list(L)

This is an optimized routine to turn a list of lists (of lists ...) into a single list. We generate data in a non-flat format to avoid multiple data copying, and then concatenate it all at the end.

This is NOT recursive, otherwise there would be a lot of redundant copying (which we are trying to avoid in the first place, though at least it would be just the pointers).

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.base import flatten_list
sage: flatten_list([])
[]
sage: flatten_list([[[[]]]])
[]
sage: flatten_list([[['a', 'b', 'c']]])
['a', 'b', 'c']
sage: flatten_list([[['a', 'b', 'c'], ['d', ['e', 'f', 'g']]]])
['a', 'b', 'c', 'd', 'e', 'f', 'g']
```

```python
class sage.plot.plot3d.base.max3(v)

Return the componentwise maximum of a list of 3-tuples.

EXAMPLES:

```python
```
sage.plot.plot3d.base.min3(v)
Return the componentwise minimum of a list of 3-tuples.

EXAMPLES:

sage.plot.plot3d.base.min3([(-1,2,5), (-3, 4, 2)])
(-3, 2, 2)

sage.plot.plot3d.base.optimal_aspect_ratios(ratios)
sage.plot.plot3d.base.optimal_extra_kwds(v)
Given a list v of dictionaries, this function merges them such that later dictionaries have precedence.
sage.plot.plot3d.base.point_list_bounding_box(v)
Return the bounding box of a list of points.

EXAMPLES:

3.2 Basic objects such as Sphere, Box, Cone, etc.

AUTHORS:
• Robert Bradshaw 2007-02: initial version
• Robert Bradshaw 2007-08: obj/tachyon rendering, much updating
• Robert Bradshaw 2007-08: cythonization

EXAMPLES:

class sage.plot.plot3d.shapes.Box(*size, **kwds)
Bases: sage.plot.plot3d.index_face_set.IndexFaceSet
3.2. Basic objects such as Sphere, Box, Cone, etc.
Return a box.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Box
```

A square black box:

```
sage: show(Box([1,1,1]), color='black')
```

A red rectangular box:

```
sage: show(Box([2,3,4], color="red"))
```

A stack of boxes:

```
sage: show(sum([Box([2,3,1], color="red").translate((0,0,6*i)) for i in [0..3]]))
```

A sinusoidal stack of multicolored boxes:

```
sage: B = sum([Box([2,4,1/4], color=(i/4,i/5,1)).translate((sin(i),0,5-i)) for i in [0..20]])
sage: show(B, figsize=6)
```

`bounding_box()`

EXAMPLES:
3.2. Basic objects such as Sphere, Box, Cone, etc.
sage: from sage.plot.plot3d.shapes import Box
sage: Box([1,2,3]).bounding_box()
((-1.0, -2.0, -3.0), (1.0, 2.0, 3.0))

x3d_geometry()

EXAMPLES:

sage: from sage.plot.plot3d.shapes import Box
sage: Box([1,2,1/4]).x3d_geometry()
"<Box size='1.0 2.0 0.25'/>"

sage.plot.plot3d.shapes.ColorCube(size, colors, opacity=1, **kwds)
Return a cube with given size and sides with given colors.

INPUT:

- size – 3-tuple of sizes (same as for box and frame)
- colors – a list of either 3 or 6 colors
- opacity – (default: 1) opacity of cube sides
- **kwds – passed to the face constructor

OUTPUT:
a 3d graphics object

EXAMPLES:

A color cube with translucent sides:

sage: from sage.plot.plot3d.shapes import ColorCube
sage: c = ColorCube([1,2,3], ['red', 'blue', 'green', 'black', 'white', 'orange'],
 opacity=0.5)
sage: c.show()
sage: list(c.texture_set())[0].opacity
0.5

If you omit the last 3 colors then the first three are repeated (with repeated colors on opposing faces):

sage: c = ColorCube([0.5,0.5,0.5], ['red', 'blue', 'green'])

class sage.plot.plot3d.shapes.Cone

Bases: sage.plot.plot3d.parametric_surface.ParametricSurface

A cone, with base in the xy-plane pointing up the z-axis.

INPUT:

- radius – positive real number
- height – positive real number
- closed – whether or not to include the base (default True)
- **kwds – passed to the ParametricSurface constructor

EXAMPLES:
3.2. Basic objects such as Sphere, Box, Cone, etc.
We may omit the base:

```
sage: Cone(1, 1, closed=False)
Graphics3d Object
```

A spiky plot of the sine function:

```
sage: sum(Cone(.1, sin(n), color='yellow').translate(n, sin(n), 0) for n in [0..10, step=.1])
Graphics3d Object
```

A Christmas tree:

```
sage: T = sum(Cone(exp(-n/5), 4/3*exp(-n/5), color=(0, .5, 0)).translate(0, 0, -3*exp(-n/5)) for n in [1..7])
sage: T += Cone(1/8, 1, color='brown').translate(0, 0, -3)
sage: T.show(aspect_ratio=1, frame=False)
```

\texttt{get_grid(ds)}

Return the grid on which to evaluate this parametric surface.
3.2. Basic objects such as Sphere, Box, Cone, etc.
3.2. Basic objects such as Sphere, Box, Cone, etc.
EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Cone
sage: Cone(1, 3, closed=True).get_grid(100)
([1, 0, -1], [0.0, 2.5132..., 3.7699..., 5.0265..., 0.0])
sage: Cone(1, 3, closed=False).get_grid(100)
([1, 0], [0.0, 2.5132..., 3.7699..., 5.0265..., 0.0])
sage: len(Cone(1, 3).get_grid(.001)[1])
38
```

```python
x3d_geometry()
EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Cone
sage: Cone(1, 3).x3d_geometry()
"<Cone bottomRadius='1.0' height='3.0'/>"
```

class `sage.plot.plot3d.shapes.Cylinder`

Bases: `sage.plot.plot3d.parametric_surface.ParametricSurface`

A cone, with base in the xy-plane pointing up the z-axis.

INPUT:

- radius – positive real number
- height – positive real number
- closed – whether or not to include the ends (default True)
- **kwds – passed to the ParametricSurface constructor

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Cylinder
sage: c = Cylinder(3/2, 1, color='red') + Cylinder(1, 2, color='yellow').translate(3, 0, 0)
sage: c.show(aspect_ratio=1)
```

We may omit the base:

```python
sage: Cylinder(1, 1, closed=False)
Graphics3d Object
```

Some gears:

```python
sage: G = Cylinder(1, .5) + Cylinder(.25, 3).translate(0, 0, -3)
sage: G += sum(Cylinder(.2, 1).translate(cos(2*pi*n/9), sin(2*pi*n/9), 0) for n in [1..9])
sage: G += G.translate(2.3, 0, -.5)
sage: G += G.translate(3.5, 2, -1)
sage: G.show(aspect_ratio=1, frame=False)
```

`bounding_box()`

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Cylinder
sage: Cylinder(1, 2).bounding_box()
((-1.0, -1.0, 0), (1.0, 1.0, 2.0))
```
3.2. Basic objects such as Sphere, Box, Cone, etc.
3.2. Basic objects such as Sphere, Box, Cone, etc.
**get_endpoints**(transform=None)

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import Cylinder
sage: from sage.plot.plot3d.transform import Transformation
sage: Cylinder(1, 5).get_endpoints()
((0, 0, 0), (0, 0, 5.0))
sage: Cylinder(1, 5).get_endpoints(Transformation(trans=(1,2,3), scale=(2,2,2)))
((1.0, 2.0, 3.0), (1.0, 2.0, 13.0))
```

**get_grid**(ds)

Return the grid on which to evaluate this parametric surface.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import Cylinder
sage: Cylinder(1, 3, closed=True).get_grid(100)
((2, 1, -1, -2), [0.0, 1.2566..., 2.5132..., 3.7699..., 5.0265..., 0.0])
sage: Cylinder(1, 3, closed=False).get_grid(100)
([1, -1], [0.0, 1.2566..., 2.5132..., 3.7699..., 5.0265..., 0.0])
sage: len(Cylinder(1, 3).get_grid(.001)[1])
38
```

**get_radius**(transform=None)

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import Cylinder
sage: from sage.plot.plot3d.transform import Transformation
sage: Cylinder(3, 1).get_radius()
3.0
sage: Cylinder(3, 1).get_radius(Transformation(trans=(1,2,3), scale=(2,2,2)))
6.0
```

**jmol_repr**(render_params)

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import Cylinder
sage: C = Cylinder(1/2, 4, closed=False)
sage: C.jmol_repr(C.default_render_params())
'FCylinder
 Base 0 0 0
 Apex 0 0 4.0
 Rad 0.5
 texture...'
```

For thin cylinders, lines are used:

```python
sage: C = Cylinder(.1, 4)
sage: C.jmol_repr(C.default_render_params())
['\ndraw line_1 width 0.1 {0 0 0} {0 0 4.0}
color $line_1 [102,102,255]
']
```

For anything larger, we use a pmesh:

```python
sage: C = Cylinder(3, 1, closed=False)
sage: C.jmol_repr(C.testing_render_params())
['pmesh obj_1 "obj_1.pmesh"
color pmesh [102,102,255]'
```

**tachyon_repr**(render_params)

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import Cylinder
sage: C = Cylinder(1/2, 4, closed=False)
sage: C.tachyon_repr(C.default_render_params())
'FCylinder
 Base 0 0 0
 Apex 0 0 4.0
 Rad 0.5
 texture...'
```

(continues on next page)
sage: C = Cylinder(1, 2)
sage: C.tachyon_repr(C.default_render_params())
['Ring Center 0 0 0 Normal 0 0 1 Inner 0 Outer 1.0 texture...',
 'FCylinder
 Base 0 0 0
 Apex 0 0 2.0
 Rad 1.0
 texture...
→',
 'Ring Center 0 0 2.0 Normal 0 0 1 Inner 0 Outer 1.0 texture...']

x3d_geometry()

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Cylinder
sage: Cylinder(1, 2).x3d_geometry()
"<Cylinder radius='1.0' height='2.0'/>"
```

sage.plot.plot3d.shapes.LineSegment(start, end, thickness=1, radius=None, **kwds)

Create a line segment, which is drawn as a cylinder from start to end with radius radius.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import LineSegment, Sphere
sage: P = (0,0,0.1)
sage: Q = (0.5,0.6,0.7)
sage: S = Sphere(.2, color='red').translate(P)
sage: S += Sphere(.2, color='blue').translate(Q)
sage: S += LineSegment(P, Q, .05, color='black')
sage: S.show()
sage: S = Sphere(.1, color='red').translate(P)
sage: S += Sphere(.1, color='blue').translate(Q)
sage: S += LineSegment(P, Q, .15, color='black')
sage: S.show()
```

AUTHOR:

• Robert Bradshaw

class sage.plot.plot3d.shapes.Sphere

Bases: sage.plot.plot3d.parametric_surface.ParametricSurface

This class represents a sphere centered at the origin.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Sphere
sage: Sphere(3)
Graphics3d Object
Plot with aspect_ratio=1 to see it unsquashed:
```

```
sage: S = Sphere(3, color='blue') + Sphere(2, color='red').translate(0,3,0)
sage: S.show(aspect_ratio=1)
```

Scale to get an ellipsoid:

```
sage: S = Sphere(1).scale(1,2,1/2)
sage: S.show(aspect_ratio=1)
```

3.2. Basic objects such as Sphere, Box, Cone, etc. 201
3.2. Basic objects such as Sphere, Box, Cone, etc.
3.2. Basic objects such as Sphere, Box, Cone, etc.
bounding_box()  
Return the bounding box that contains this sphere.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Sphere
sage: Sphere(3).bounding_box()
((-3.0, -3.0, -3.0), (3.0, 3.0, 3.0))
```

get_grid(ds)  
Return the range of variables to be evaluated on to render as a parametric surface.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Sphere
sage: Sphere(1).get_grid(100)
([[-10.0, ..., 10.0],
 [0.0, ..., 3.141592653589793, ..., 0.0]])
```

jmol_repr(render_params)  
EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Sphere
sage: S = Sphere(2)
sage: S.jmol_repr(S.default_render_params())
['isosurface sphere_1 center {0 0 0} sphere 2.0
 ncolor isosurface [102,102,255]']
sage: S.translate(10, 100, 1000).jmol_repr(S.default_render_params())
['isosurface sphere_1 center {10.0 100.0 1000.0} sphere 2.0
 ncolor isosurface [102,102,255]']
```

It cannot natively handle ellipsoids:

```python
sage: Sphere(1).scale(2, 3, 4).jmol_repr(S.testing_render_params())
[['pmesh obj_2 "obj_2.pmesh"
 ncolor pmesh [102,102,255]']]
```

Small spheres need extra hints to render well:

```python
sage: Sphere(.01).jmol_repr(S.default_render_params())
['isosurface sphere_1 resolution 100 center {0 0 0} sphere 0.01
 ncolor isosurface [102,102,255]']
```

tachyon_repr(render_params)  
Tachyon can natively handle spheres. Ellipsoids rendering is done as a parametric surface.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Sphere
sage: S = Sphere(2)
sage: S.tachyon_repr(S.default_render_params())
'Sphere center 0 0 0 Rad 2.0 texture...'
sage: S.translate(1, 2, 3).scale(3).tachyon_repr(S.default_render_params())
'TRI V0 0 0 -0.5 V1 0.308116 0.0271646 -0.493844 V2 0.312869 0 -0.493844',
```

(continues on next page)
x3d_geometry()
EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Sphere
sage: Sphere(12).x3d_geometry()
"<Sphere radius='12.0'/>"
```

class sage.plot.plot3d.shapes.Text(string, **kwds)

Bases: sage.plot.plot3d.base.PrimitiveObject

A text label attached to a point in 3d space. It always starts at the origin, translate it to move it elsewhere.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Text
sage: Text("Just a lonely label.")
```

Graphics3d Object

```
<table>
<thead>
<tr>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

Just a lonely label.
```python
sage: pts = [(RealField(10)^3).random_element() for k in range(20)]
sage: sum(Text(str(P)).translate(P) for P in pts)
Graphics3d Object
```

bounding_box()

Text labels have no extent:

```python
sage: from sage.plot.plot3d.shapes import Text
sage: Text("Hi").bounding_box()
((0, 0, 0), (0, 0, 0))
```

jmol_repr(render_params)

Labels in jmol must be attached to atoms.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Text
sage: T = Text("Hi")
sage: T.jmol_repr(T.testing_render_params())
[['select atomno = 1', 'color atom [102,102,255]', 'label "Hi"']]
sage: T = Text("Hi").translate(-1, 0, 0) + Text("Bye").translate(1, 0, 0)
sage: T.jmol_repr(T.testing_render_params())
[['select atomno = 1', 'color atom [102,102,255]', 'label "Hi"'],
[['select atomno = 2', 'color atom [102,102,255]', 'label "Bye"']]
```

3.2. Basic objects such as Sphere, Box, Cone, etc.
The obj file format does not support text strings:

```python
sage: from sage.plot.plot3d.shapes import Text
sage: Text("Hi").obj_repr(None)
```

Strings are not yet supported in Tachyon, so we ignore them for now:

```python
sage: from sage.plot.plot3d.shapes import Text
sage: Text("Hi").tachyon_repr(None)
```

Return representation of the text suitable for plotting in three.js.

```python
sage: T = text3d("Hi", (1, 2, 3), color='red', fontfamily='serif',
....:     fontweight='bold', fontstyle='italic', fontsize=20,
....:     opacity=0.5)
sage: T.threejs_repr(T.default_render_params())
[['text',
  {'color': '#ff0000',
   'fontFamily': ['serif'],
   'fontSize': 20.0,
   'fontStyle': 'italic',
   'fontWeight': 'bold',
   'opacity': 0.5,
   'text': 'Hi',
   'x': 1.0,
   'y': 2.0,
   'z': 3.0}]]
```

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Text
sage: Text("Hi").x3d_geometry()
"<Text string='Hi' solid='true'/>"
```

class sage.plot.plot3d.shapes.Torus

Bases: sage.plot.plot3d.parametric_surface.ParametricSurface

INPUT:

- R – (default: 1) outer radius
- r – (default: .3) inner radius

OUTPUT:

a 3d torus

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Torus
sage: Torus(1, .2).show(aspect_ratio=1)
```
3.2. Basic objects such as Sphere, Box, Cone, etc.
A rubberband ball:

```python
sage: show(sum([Torus(1, .03, color=(1, t/30.0, 0)).rotate((1,1,1),t) for t in range(30)]))
```

Mmm... doughnuts:

```python
sage: D = Torus(1, .4, color=(.5, .3, .2)) + Torus(1, .3, color='yellow').translate(0, 0, .15)
sage: G = sum(D.translate(RDF.random_element(-.2, .2), RDF.random_element(-.2, .2), .8*t) for t in range(10))
sage: G.show(aspect_ratio=1, frame=False)
```

```
get_grid(ds)
```

Return the range of variables to be evaluated on to render as a parametric surface.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import Torus
def get_grid(100)

(0.0, -1.047..., -3.141592653589793, ..., 0.0],
[0.0, 1.047..., 3.141592653589793, ..., 0.0])
```
3.2. Basic objects such as Sphere, Box, Cone, etc.
sage.plot.plot3d.shapes.arrow3d(start, end, width=1, radius=None, head_radius=None, head_len=None, **kwds)

Create a 3d arrow.

INPUT:

- start – (x,y,z) point; the starting point of the arrow
- end – (x,y,z) point; the end point
- width – (default: 1); how wide the arrow is
- radius – (default: width/50.0) the radius of the arrow
- head_radius – (default: 3*radius); radius of arrow head
- head_len – (default: 3*head_radius); len of arrow head

EXAMPLES:
The default arrow:

```
sage: arrow3d((0,0,0), (1,1,1), 1)
Graphics3d Object
```

A fat arrow:

```
sage: arrow3d((0,0,0), (1,1,1), radius=0.1)
Graphics3d Object
```
A green arrow:

```python
sage: arrow3d((0,0,0), (1,1,1), color='green')
Graphics3d Object
```

A fat arrow head:

```python
sage: arrow3d((2,1,0), (1,1,1), color='green', head_radius=0.3, aspect_ratio=[1,1,1])
Graphics3d Object
```

Many arrows arranged in a circle (flying spears?):

```python
sage: sum([arrow3d((cos(t),sin(t),0),(cos(t),sin(t),1)) for t in [0,0.3,..,2*pi]])
Graphics3d Object
```

Change the width of the arrow. (Note: for an arrow that scales with zoom, please consider the line3d function with the option arrow_head=True):

```python
sage: arrow3d((0,0,0), (1,1,1), width=1)
Graphics3d Object
```

`sage.plot.plot3d.shapes.validate_frame_size(size)`

Check that the input is an iterable of length 3 with all elements nonnegative and coercible to floats.

EXAMPLES:
3.2. Basic objects such as Sphere, Box, Cone, etc.
3.3 Classes for Lines, Frames, Rulers, Spheres, Points, Dots, and Text

AUTHORS:

• William Stein (2007-12): initial version

```python
class sage.plot.plot3d.shapes2.Line(points, thickness=5, corner_cutoff=0.5, arrow_head=False, **kwds)
Bases: sage.plot.plot3d.base.PrimitiveObject

Draw a 3d line joining a sequence of points.
This line has a fixed diameter unaffected by transformations and zooming. It may be smoothed if corner_cutoff < 1.

INPUT:

• points – list of points to pass through
• thickness – (optional, default 5) diameter of the line
• corner_cutoff – (optional, default 0.5) threshold for smoothing (see corners()).
• arrow_head – (optional, default False) if True make this curve into an arrow

The parameter corner_cutoff is a bound for the cosine of the angle made by two successive segments. This angle is close to 0 (and the cosine close to 1) if the two successive segments are almost aligned and close to π (and the cosine close to -1) if the path has a strong peak. If the cosine is smaller than the bound (which means a sharper peak) then no smoothing is done.

EXAMPLES:
```
sage: from sage.plot.plot3d.shapes2 import Line
sage: Line([(i*math.sin(i), i*math.cos(i), i/3) for i in range(30)], arrow_head=True)
Graphics3d Object

Smooth angles less than 90 degrees:
```
sage: Line([(0,0,0),(1,0,0),(2,1,0),(0,1,0)], corner_cutoff=0)
Graphics3d Object

Make sure that the corner_cutoff keyword works (trac ticket #3859):
```
sage: N = 11
sage: c = 0.4
sage: sum([Line([(i,1,0), (i,0,0), (i*cos(2*pi*i/N), sin(2*pi*i/N))],
...: corner_cutoff=c,
...: color='red' if -cos(2*pi*i/N)<=c else 'blue')
...: for i in range(N+1)])
Graphics3d Object
```
**bounding_box()**

Return the lower and upper corners of a 3-D bounding box for self.

This is used for rendering and self should fit entirely within this box. In this case, we return the highest and lowest values of each coordinate among all points.

**corners**(corner_cutoff=None, max_len=None)

Figure out where the curve turns too sharply to pretend it is smooth.

**INPUT:**

- **corner_cutoff** – (optional, default None) If the cosine of the angle between adjacent line segments is smaller than this bound, then there will be a sharp corner in the path. Otherwise, the path is smoothed. If None, then the default value 0.5 is used.

- **max_len** – (optional, default None) Maximum number of points allowed in a single path. If this is set, this creates corners at smooth points in order to break the path into smaller pieces.

The parameter corner_cutoff is a bound for the cosine of the angle made by two successive segments. This angle is close to 0 (and the cosine close to 1) if the two successive segments are almost aligned and close to π (and the cosine close to -1) if the path has a strong peak. If the cosine is smaller than the bound (which means a sharper peak) then there must be a corner.

**OUTPUT:**

List of points at which to start a new line. This always includes the first point, and never the last.

**EXAMPLES:**

No corners, always smooth:

```sage
from sage.plot.plot3d.shapes2 import Line
sage: Line([[0,0,0], [1,0,0], [2,1,0], [0,1,0]], corner_cutoff=-1).corners()
[(0, 0, 0)]
```

Smooth if the angle is greater than 90 degrees:

```sage
sage: Line([[0,0,0], [1,0,0], [2,1,0], [0,1,0]], corner_cutoff=0).corners()
[(0, 0, 0), (2, 1, 0)]
```

Every point (corners everywhere):

```sage
sage: Line([[0,0,0], [1,0,0], [2,1,0], [0,1,0]], corner_cutoff=1).corners()
[(0, 0, 0), (1, 0, 0), (2, 1, 0)]
```

**jmol_repr**(render_params)

Return representation of the object suitable for plotting using Jmol.

**obj_repr**(render_params)

Return complete representation of the line as an object.

**stl_binary_repr**(render_params)

Return an empty list, as this is not useful for STL export.

**EXAMPLES:**

```sage
L = line3d([[1,2,3], [4,5,6]]).translate(-1, -2, -3)
sage: L.stl_binary_repr(L.default_render_params())
[]
```

**tachyon_repr**(render_params)

Return representation of the line suitable for plotting using the Tachyon ray tracer.
**threejs_repr** *(render_params)*
Return representation of the line suitable for plotting with three.js.

**EXAMPLES:**
```
sage: L = line3d([(1, 2, 3), (4, 5, 6)], thickness=10, color=(1, 0, 0), opacity=0.5)
sage: L.threejs_repr(L.default_render_params())
[['line',
 {'color': '#ff0000',
 'linewidth': 10.0,
 'opacity': 0.5,
 'points': [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)]}]
```

---

**class** `sage.plot.plot3d.shapes2.Point` *(center, size=1, **kwds)*
Bases: `sage.plot.plot3d.base.PrimitiveObject`

Create a position in 3-space, represented by a sphere of fixed size.

**INPUT:**
- `center` – point (3-tuple)
- `size` – (default: 1)

**EXAMPLES:**
We normally access this via the `point3d` function. Note that extra keywords are correctly used:
```
sage: point3d((4,3,2),size=2,color='red',opacity=.5)
Graphics3d Object
```

**bounding_box()**
Returns the lower and upper corners of a 3-D bounding box for `self`.
This is used for rendering and `self` should fit entirely within this box. In this case, we simply return the center of the point.

**jmol_repr** *(render_params)*
Return representation of the object suitable for plotting using Jmol.

**obj_repr** *(render_params)*
Return complete representation of the point as a sphere.

**stl_binary_repr** *(render_params)*
Return an empty list, as this is not useful for STL export.

**EXAMPLES:**
```
sage: P = point3d((1,2,3)).translate(-1, -2, -3)
sage: P.stl_binary_repr(P.default_render_params())
[]
```

**tachyon_repr** *(render_params)*
Return representation of the point suitable for plotting using the Tachyon ray tracer.

**threejs_repr** *(render_params)*
Return representation of the point suitable for plotting with three.js.

**EXAMPLES:**
Draw a 3-dimensional bezier path.

Input is similar to bezier_path, but each point in the path and each control point is required to have 3 coordinates.

INPUT:

- **path** – a list of curves, which each is a list of points. See further detail below.
- **thickness** – (default: 2)
- **color** – a string ("red", "green" etc) or a tuple (r, g, b) with r, g, b numbers between 0 and 1
- **opacity** – (default: 1) if less than 1 then is transparent
- **aspect_ratio** – (default:[1,1,1])

The path is a list of curves, and each curve is a list of points. Each point is a tuple (x,y,z).

The first curve contains the endpoints as the first and last point in the list. All other curves assume a starting point given by the last entry in the preceding list, and take the last point in the list as their opposite endpoint. A curve can have 0, 1 or 2 control points listed between the endpoints. In the input example for path below, the first and second curves have 2 control points, the third has one, and the fourth has no control points:

```
path = [[[p1, c1, c2, p2], [c3, c4, p3], [c5, p4], [p5], ...]]
```

In the case of no control points, a straight line will be drawn between the two endpoints. If one control point is supplied, then the curve at each of the endpoints will be tangent to the line from that endpoint to the control point. Similarly, in the case of two control points, at each endpoint the curve will be tangent to the line connecting that endpoint with the control point immediately after or immediately preceding it in the list.

So in our example above, the curve between p1 and p2 is tangent to the line through p1 and c1 at p1, and tangent to the line through p2 and c2 at p2. Similarly, the curve between p2 and p3 is tangent to line(p2,c3) at p2 and tangent to line(p3,c4) at p3. Curve(p3,p4) is tangent to line(p3,c5) at p3 and tangent to line(p4,c5) at p4. Curve(p4,p5) is a straight line.

EXAMPLES:

```
sage: path = [[(0,0,0),(.5,1,.2),(.75,3,-1),(1,1,0)],[(.5,1,.2),(1,.5,0)],[(.7,.2,.5)]]
sage: b = bezier3d(path, color='green')
sage: b
Graphics3d Object
```

To construct a simple curve, create a list containing a single list:

```
sage: path = [[[0,0,0),(1,0,0),(0,1,0),(0,1,1)]]
sage: curve = bezier3d(path, thickness=5, color='blue')
sage: curve
Graphics3d Object
```

Draw a frame in 3-D.
Primarily used as a helper function for creating frames for 3-D graphics viewing.

**INPUT:**

- `lower_left` – the lower left corner of the frame, as a list, tuple, or vector.
- `upper_right` – the upper right corner of the frame, as a list, tuple, or vector.

**EXAMPLES:**

A frame:

```python
sage: from sage.plot.plot3d.shapes2 import frame3d
sage: frame3d([1,3,2],vector([2,5,4]),color='red')
Graphics3d Object
```

This is usually used for making an actual plot:

```python
sage: y = var('y')
sage: plot3d(sin(x^2+y^2),(x,0,pi),(y,0,pi))
Graphics3d Object
```

**sage.plot.plot3d.shapes2.frame_labels**

Draw correct labels for a given frame in 3-D.

Primarily used as a helper function for creating frames for 3-D graphics viewing - do not use directly unless you know what you are doing!

**INPUT:**

- `lower_left` – the lower left corner of the frame, as a list, tuple, or vector.
- `upper_right` – the upper right corner of the frame, as a list, tuple, or vector.
- `label_lower_left` – the label for the lower left corner of the frame, as a list, tuple, or vector. This label must actually have all coordinates less than the coordinates of the other label.
- `label_upper_right` – the label for the upper right corner of the frame, as a list, tuple, or vector. This label must actually have all coordinates greater than the coordinates of the other label.
- `eps` – (default: 1) a parameter for how far away from the frame to put the labels.

**EXAMPLES:**

We can use it directly:

```python
sage: from sage.plot.plot3d.shapes2 import frame_labels
sage: frame_labels([1,2,3],[4,5,6],[1,2,3],[4,5,6])
Graphics3d Object
```

This is usually used for making an actual plot:

```python
sage: y = var('y')
sage: P = plot3d(sin(x^2+y^2),(x,0,pi),(y,0,pi))
sage: a,b = P._rescale_for_frame_aspect_ratio_and_zoom(1.0,[1,1,1],1)
sage: F = frame_labels(a,b,*P._box_for_aspect_ratio("automatic",a,b))
sage: F.jmol_repr(F.default_render_params())[0][
['select atomno = 1', 'color atom [76,76,76]', 'label "0.0"']
```

**sage.plot.plot3d.shapes2.line3d**

Draw a 3d line joining a sequence of points.
One may specify either a thickness or radius. If a thickness is specified, this line will have a constant diameter regardless of scaling and zooming. If a radius is specified, it will behave as a series of cylinders.

**INPUT:**

- **points** – a list of at least 2 points
- **thickness** – (default: 1)
- **radius** – (default: None)
- **arrow_head** – (default: False)
- **color** – a string ("red", "green" etc) or a tuple (r, g, b) with r, g, b numbers between 0 and 1
- **opacity** – (default: 1) if less than 1 then is transparent

**EXAMPLES:**

A line in 3-space:

```python
sage: line3d([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)])
Graphics3d Object
```

The same line but red:

```python
sage: line3d([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)], color='red')
Graphics3d Object
```

The points of the line provided as a numpy array:

```python
sage: import numpy
sage: line3d(numpy.array([(1,2,3), (1,0,-2), (3,1,4), (2,1,-2)]))
Graphics3d Object
```

A transparent thick green line and a little blue line:

```python
sage: line3d([(0,0,0), (1,1,1), (1,0,2)], opacity=0.5, radius=0.1,
 color='green') + line3d([(0,1,0), (1,0,2)])
Graphics3d Object
```

A Dodecahedral complex of 5 tetrahedra (a more elaborate example from Peter Jipsen):

```python
sage: def tetra(col):
 return line3d([(0,0,1), (2*sqrt(2.)/3,0,-1./3), (-sqrt(2.)/3, sqrt(6.)/3,-1./3),
 (-sqrt(2.)/3,-sqrt(6.)/3,-1./3), (0,0,1), (-sqrt(2.)/3, sqrt(6.)/3,-1./3),
 (-sqrt(2.)/3,-sqrt(6.)/3,-1./3), (2*sqrt(2.)/3,0,-1./3)],
 color=col, thickness=10, aspect_ratio=[1,1,1])

sage: v = (sqrt(5.)/2-5/6, 5/6 *sqrt(3.)-sqrt(15.)/2, sqrt(5.)/3)
sage: t = acos(sqrt(5.)/3)/2
sage: t1 = tetra('blue').rotateZ(t)
sage: t2 = tetra('red').rotateZ(t).rotate(v,2*pi/5)
sage: t3 = tetra('green').rotateZ(t).rotate(v,4*pi/5)
sage: t4 = tetra('yellow').rotateZ(t).rotate(v,6*pi/5)
sage: t5 = tetra('orange').rotateZ(t).rotate(v,8*pi/5)
sage: show(t1+t2+t3+t4+t5, frame=False)
```

`sage.plot.plot3d.shapes2.point3d(v, size=5, **kwds)`

Plot a point or list of points in 3d space.
INPUT:
- \(v\) – a point or list of points
- \(\text{size}\) – (default: 5) size of the point (or points)
- \(\text{color}\) – a string ("red", "green" etc) or a tuple (r, g, b) with r, g, b numbers between 0 and 1
- \(\text{opacity}\) – (default: 1) if less than 1 then is transparent

EXAMPLES:

```sage
sage: sum([point3d((i,i^2,i^3), size=5) for i in range(10)])
Graphics3d Object
```

We check to make sure this works with vectors and other iterables:

```sage
sage: pl = point3d([vector(ZZ,(1, 0, 0)), vector(ZZ,(0, 1, 0)), (-1, -1, 0)])
sage: print(point(vector((2,3,4))))
Graphics3d Object
```

```sage
sage: c = polytopes.hypercube(3)
sage: v = c.vertices()[0]; v
A vertex at (1, -1, -1)
sage: print(point(v))
Graphics3d Object
```

We check to make sure the options work:

```sage
sage: point3d((4,3,2),size=20,color='red',opacity=.5)
Graphics3d Object
```

Numpy arrays can be provided as input:

```sage
sage: import numpy
sage: point3d(numpy.array([[1,2,3], [4,5,6], [7,8,9]]))
Graphics3d Object
```

We check that iterators of points are accepted (trac ticket #13890):

```sage
sage: point3d(iter([(1,1,2),(2,3,4),(3,5,8)]),size=20,color='red')
Graphics3d Object
```

```sage
sage.plot.plot3d.shapes2.polygon3d(points, opacity=1, color=0, 0, 1, **options)
```

Draw a polygon in 3d.

INPUT:
- \(\text{points}\) – the vertices of the polygon

Type `polygon3d.options` for a dictionary of the default options for polygons. You can change this to change the defaults for all future polygons. Use `polygon3d.reset()` to reset to the default options.

EXAMPLES:

A simple triangle:

```sage
sage: polygon3d([[0,0,0], [1,2,3], [3,0,0]])
Graphics3d Object
```
Some modern art – a random polygon:

```python
sage: v = [(randrange(-5,5), randrange(-5,5), randrange(-5, 5)) for _ in range(10)]
sage: polygon3d(v)
Graphics3d Object
```

A bent transparent green triangle:

```python
sage: polygon3d([[1, 2, 3], [0,1,0], [1,0,1], [3,0,0]], color=(0,1,0), opacity=0.7)
Graphics3d Object
```

This is the same as using alpha=0.7:

```python
sage: polygon3d([[1, 2, 3], [0,1,0], [1,0,1], [3,0,0]], color=(0,1,0), alpha=0.7)
Graphics3d Object
```

`sage.plot.plot3d.shapes2.polygons3d(faces, points, opacity=1, color=0, 0, 1, **options)`
Draw the union of several polygons in 3d.

Useful to plot a polyhedron as just one IndexFaceSet.

**INPUT:**

- `faces` – list of faces, every face given by the list of indices of its vertices
- `points` – coordinates of the vertices in the union

**EXAMPLES:**

Two adjacent triangles:

```python
sage: f = [[0,1,2], [1,2,3]]
sage: v = [(-1,0,0), (0,1,1), (0,-1,1), (1,0,0)]
sage: polygons3d(f, v, color='red')
Graphics3d Object
```

`sage.plot.plot3d.shapes2.ruler(start, end, ticks=4, sub_ticks=4, absolute=False, snap=False, **kwds)`
Draw a ruler in 3-D, with major and minor ticks.

**INPUT:**

- `start` – the beginning of the ruler, as a list, tuple, or vector.
- `end` – the end of the ruler, as a list, tuple, or vector.
- `ticks` – (default: 4) the number of major ticks shown on the ruler.
- `sub_ticks` – (default: 4) the number of shown subdivisions between each major tick.
- `absolute` – (default: False) if True, makes a huge ruler in the direction of an axis.
- `snap` – (default: False) if True, snaps to an implied grid.

**EXAMPLES:**

A ruler:

```python
sage: from sage.plot.plot3d.shapes2 import ruler
sage: R = ruler([1,2,3], vector([2,3,4])); R
Graphics3d Object
```
A ruler with some options:

```
sage: R = ruler([1,2,3],vector([2,3,4]),ticks=6, sub_ticks=2, color='red'); R
Graphics3d Object
```

The keyword `snap` makes the ticks not necessarily coincide with the ruler:

```
sage: ruler([1,2,3],vector([1,2,4]),snap=True)
Graphics3d Object
```

The keyword `absolute` makes a huge ruler in one of the axis directions:

```
sage: ruler([1,2,3],vector([1,2,4]),absolute=True)
Graphics3d Object
```

`sage.plot.plot3d.shapes2.ruler_frame(lower_left, upper_right, ticks=4, sub_ticks=4, **kwds)`

Draw a frame made of 3-D rulers, with major and minor ticks.

**INPUT:**

- `lower_left` – the lower left corner of the frame, as a list, tuple, or vector.
- `upper_right` – the upper right corner of the frame, as a list, tuple, or vector.
- `ticks` – (default: 4) the number of major ticks shown on each ruler.
- `sub_ticks` – (default: 4) the number of shown subdivisions between each major tick.

**EXAMPLES:**

A ruler frame:

```
sage: from sage.plot.plot3d.shapes2 import ruler_frame
sage: F = ruler_frame([1,2,3],vector([2,3,4])); F
Graphics3d Object
```

A ruler frame with some options:

```
sage: F = ruler_frame([1,2,3],vector([2,3,4]),ticks=6, sub_ticks=2, color='red'); F
Graphics3d Object
```

`sage.plot.plot3d.shapes2.sphere(center=0, 0, 0, size=1, **kwds)`

Return a plot of a sphere of radius `size` centered at \((x, y, z)\).

**INPUT:**

- \((x, y, z)\) – center (default: (0,0,0))
- `size` – the radius (default: 1)

**EXAMPLES:** A simple sphere:

```
sage: sphere()
Graphics3d Object
```

Two spheres touching:

```
sage: sphere(center=(-1,0,0)) + sphere(center=(1,0,0), aspect_ratio=[1,1,1])
Graphics3d Object
```

Spheres of radii 1 and 2 one stuck into the other:
We draw a transparent sphere on a saddle.

```
sage: u,v = var('u v')
sage: saddle = plot3d(u^2 - v^2, (u,-2,2), (v,-2,2))
sage: sphere((0,0,1), color='red', opacity=0.5, aspect_ratio=[1,1,1]) + saddle
```

We write the word Sage in red at position (1,2,3):

```
sage: text3d("Sage", (1,2,3), color=(0.5,0,0))
```

We draw a multicolor spiral of numbers:

```
sage: sum([text3d('%.1f'%%n, (cos(n),sin(n),n), color=(n/2,1-n/2,0))
 : for n in [0,0.2,..,8]])
```

Another example:

```
sage: text3d("Sage is really neat!!",(2,12,1))
```

And in 3d in two places:

```
sage: text3d("Sage is...",(2,12,1), color=(1,0,0)) + text3d("quite powerful!!",(4,˓→10,0), color=(0,0,1))
```

Adjust the font size, family, style, and weight (Three.js viewer only):

```
sage: t0 = text3d("Pixel size", (0, 0, 0), fontsize=20)
sage: t1 = text3d("Percentage size", (0, 0, 1), fontsize='300%')
sage: t2 = text3d("Keyword size", (0, 0, 2), fontsize='x-small')
sage: t3 = text3d("Single family", (0, 0, 3), fontfamily='serif')
sage: t4 = text3d("Family fallback", (0, 0, 4), fontfamily=['Consolas', 'LucidaConsole', 'monospace'])
sage: t5 = text3d("Another way", (0, 0, 5), fontfamily='Consolas, Lucida Console, monospace')
sage: t6 = text3d("Style", (0, 0, 6), fontstyle='italic')
sage: t7 = text3d("Keyword weight", (0, 0, 7), fontweight='bold')
```
sage: t8 = text3d("Integer weight (1-1000)", (0, 0, 8), fontweight=800) # 'extra', "bold"
sage: sum([t0, t1, t2, t3, t4, t5, t6, t7, t8]).show(viewer='threejs', frame=False)

Adjust the text's opacity (Three.js viewer only):

sage: def echo(o):
        ....:     return text3d("Echo!", (0, 0, o), opacity=o)
sage: show(sum([echo(o) for o in (0.1, 0.2, .., 1)]), viewer='threejs')

3.4 Platonic Solids

EXAMPLES: The five platonic solids in a row:

sage: G = tetrahedron((0,-3.5,0), color='blue') + cube((0,-2,0),color=(.25,0,.5))
sage: G += octahedron(color='red') + dodecahedron((0,2,0), color='orange')
sage: G += icosahedron(center=(0,4,0), color='yellow')
sage: G.show(aspect_ratio=[1,1,1])

All the platonic solids in the same place:
sage: G = tetrahedron(color='blue', opacity=0.7)
sage: G += cube(color=(.25,0,.5), opacity=0.7)
sage: G += octahedron(color='red', opacity=0.7)
sage: G += dodecahedron(color='orange', opacity=0.7) + icosahedron(opacity=0.7)
sage: G.show(aspect_ratio=[1,1,1])

Display nice faces only:

sage: icosahedron().stickers(['red','blue'], .075, .1)

AUTHORS:

• Robert Bradshaw (2007, 2008): initial version
• William Stein

sage.plot.plot3d.platonic.cube(center=0, 0, 0, size=1, color=None, frame_thickness=0,
frame_color=None, **kwds)

A 3D cube centered at the origin with default side lengths 1.

INPUT:

• center – (default: (0,0,0))
• size – (default: 1) the side lengths of the cube
3.4. Platonic Solids
• **color** – a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and opposite faces) are colored.

• **frame_thickness** – (default: 0) if positive, then thickness of the frame

• **frame_color** – (default: None) if given, gives the color of the frame

• **opacity** – (default: 1) if less than 1 then it’s transparent

**EXAMPLES:**

A simple cube:

```python
sage: cube()
Graphics3d Object
```

A red cube:

```python
sage: cube(color="red")
Graphics3d Object
```

A transparent grey cube that contains a red cube:

```python
sage: cube(opacity=0.8, color='grey') + cube(size=3/4)
Graphics3d Object
```

A transparent colored cube:
3.4. Platonic Solids
A bunch of random cubes:

```python
sage: v = [(random(), random(), random()) for _ in [1..30]]
sage: sum([cube((10*a,10*b,10*c), size=random()/3, color=(a,b,c)) for a,b,c in v])
Graphics3d Object
```

Non-square cubes (boxes):

```python
sage: cube(aspect_ratio=[1,1,1]).scale([1,2,3])
Graphics3d Object

sage: cube(color=['red', 'blue', 'green'], aspect_ratio=[1,1,1]).scale([1,2,3])
Graphics3d Object
```

And one that is colored:

```python
sage: cube(color=['red', 'blue', 'green', 'black', 'white', 'orange'],: aspect_ratio=[1,1,1]).scale([1,2,3])
Graphics3d Object
```

A nice translucent color cube with a frame:
3.4. Platonic Solids
A raytraced color cube with frame and transparency:

```python
sage: c.show(viewer='tachyon')
```

This shows trac ticket #11272 has been fixed:

```python
sage: cube(center=(10, 10, 10), size=0.5).bounding_box()
((9.75, 9.75, 9.75), (10.25, 10.25, 10.25))
```

AUTHORS:

- William Stein

sage.plot.plot3d.platonic.dodecahedron(center=0, 0, 0, size=1, **kwds)

A dodecahedron.

INPUT:

- center – (default: (0,0,0))
- size – (default: 1)
• **color** – a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.

• **opacity** – (default: 1) if less than 1 then is transparent

**EXAMPLES**: A plain Dodecahedron:

```sage
dodecahedron()
```

Graphics3d Object

A translucent dodecahedron that contains a black sphere:

```sage
G = dodecahedron(color='orange', opacity=0.8)
sage: G += sphere(size=0.5, color='black')
sage: G
```

Graphics3d Object

**CONSTRUCTION**: This is how we construct a dodecahedron. We let one point be \( Q = (0, 1, 0) \).

Now there are three points spaced equally on a circle around the north pole. The other requirement is that the angle between them be the angle of a pentagon, namely \( 3\pi/5 \). This is enough to determine them. Placing one on the \( xz \)-plane we have:

\[
P_1 = (t, 0, \sqrt{1-t^2})
\]

\[
P_2 = \left( -\frac{1}{2}t, \frac{\sqrt{3}}{2}t, \sqrt{1-t^2} \right)
\]
\[ P_3 = \left( -\frac{1}{2}t, \frac{\sqrt{3}}{2}t, \sqrt{1-t^2} \right) \]

Solving \((P_1 - Q) \cdot (P_2 - Q) = \cos(3\pi/5)\) we get \(t = 2/3\).

Now we have 6 points \(R_1, \ldots, R_6\) to close the three top pentagons. These can be found by mirroring \(P_2\) and \(P_3\) by the \(yz\)-plane and rotating around the \(y\)-axis by the angle \(\theta\) from \(Q\) to \(P_1\). Note that \(\cos(\theta) = t = 2/3\) and so \(\sin(\theta) = \sqrt{5}/3\). Rotation gives us the other four.

Now we reflect through the origin for the bottom half.

AUTHORS:
• Robert Bradshaw, William Stein

```
sage.plot.plot3d.platonic.icosahedron(center=0, 0, 0, size=1, **kwds)
```

An icosahedron.

INPUT:
• \texttt{center} – (default: \(0, 0, 0\))
• \texttt{size} – (default: 1)
• \texttt{color} – a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.
• \texttt{opacity} – (default: 1) if less than 1 then is transparent

EXAMPLES:

```
sage: icosahedron()
Graphics3d Object
```

Two icosahedra at different positions of different sizes.

```
sage: p = icosahedron((-1/2,0,1), color='orange')
sage: p += icosahedron((2,0,1), size=1/2, color='red', aspect_ratio=[1,1,1])
sage: p
Graphics3d Object
```

```
sage.plot.plot3d.platonic.index_face_set(face_list, point_list, enclosed, **kwds)
```

Helper function that creates IndexFaceSet object for the tetrahedron, dodecahedron, and icosahedron.

INPUT:
• \texttt{face_list} – list of faces, given explicitly from the solid invocation
• \texttt{point_list} – list of points, given explicitly from the solid invocation
• \texttt{enclosed} – boolean (default passed is always True for these solids)

```
sage.plot.plot3d.platonic.octahedron(center=0, 0, 0, size=1, **kwds)
```

Return an octahedron.

INPUT:
• \texttt{center} – (default: \((0,0,0)\))
• \texttt{size} – (default: 1)
• \texttt{color} – a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.
• \texttt{opacity} – (default: 1) if less than 1 then is transparent

EXAMPLES:
sage: G = octahedron((1,4,3), color='orange')
sage: G += octahedron((0,2,1), size=2, opacity=0.6)
sage: G
Graphics3d Object

sage.plot.plot3d.platonic.prep(G, center, size, kwds)

Helper function that scales and translates the platonic solid, and passes extra keywords on.

INPUT:
- center – 3-tuple indicating the center (default passed from index_face_set() is the origin (0, 0, 0))
- size – number indicating amount to scale by (default passed from index_face_set() is 1)
- kwds – a dictionary of keywords, passed from solid invocation by index_face_set()

sage.plot.plot3d.platonic.tetrahedron(center=0, 0, 0, size=1, **kwds)

A 3d tetrahedron.

INPUT:
- center – (default: (0,0,0))
- size – (default: 1)
- color – a string ("red", "green", etc) or a tuple (r, g, b) with r, g, b numbers between 0 and 1
- opacity – (default: 1) if less than 1 then is transparent
EXAMPLES: A default colored tetrahedron at the origin:

```
sage: tetrahedron()
Graphics3d Object
```

A transparent green tetrahedron in front of a solid red one:

```
sage: tetrahedron(opacity=0.8, color='green') + tetrahedron((-2,1,0),color='red')
Graphics3d Object
```

A translucent tetrahedron sharing space with a sphere:

```
sage: tetrahedron(color='yellow',opacity=0.7) + sphere(size=.5, color='red')
Graphics3d Object
```

A big tetrahedron:

```
sage: tetrahedron(size=10)
Graphics3d Object
```

A wide tetrahedron:

```
sage: tetrahedron(aspect_ratio=[1,1,1]).scale((4,4,1))
Graphics3d Object
```

A red and blue tetrahedron touching noses:
3.4. Platonic Solids
Sage: tetrahedron(color='red') + tetrahedron((0,0,-2)).scale([1,1,-1])
Graphics3d Object

A Dodecahedral complex of 5 tetrahedra (a more elaborate example from Peter Jipsen):

Sage: v=(sqrt(5.)/2-5/6, 5/6*sqrt(3.)-sqrt(15.)/2, sqrt(5.)/3)
Sage: t=acos(sqrt(5.)/3)/2
Sage: t1=tetrahedron(aspect_ratio=(1,1,1), opacity=0.5).rotateZ(t)
Sage: t2=tetrahedron(color='red', opacity=0.5).rotateZ(t).rotate(v,2*pi/5)
Sage: t3=tetrahedron(color='green', opacity=0.5).rotateZ(t).rotate(v,4*pi/5)
Sage: t4=tetrahedron(color='yellow', opacity=0.5).rotateZ(t).rotate(v,6*pi/5)
Sage: t5=tetrahedron(color='orange', opacity=0.5).rotateZ(t).rotate(v,8*pi/5)
Sage: show(t1+t2+t3+t4+t5, frame=False, zoom=1.3)

AUTHORS:
- Robert Bradshaw and William Stein
3.5 Parametric Surface

Graphics 3D object for triangulating surfaces, and a base class for many other objects that can be represented by a 2D parametrization.

It takes great care to turn degenerate quadrilaterals into triangles and to propagate identified points to all attached polygons. This is not so much to save space as it is to assist the raytracers/other rendering systems to better understand the surface (and especially calculate correct surface normals).

AUTHORS:

- Robert Bradshaw (2007-08-26): initial version

EXAMPLES:

```python
sage: from sage.plot.plot3d.parametric_surface import ParametricSurface, MoebiusStrip
sage: def f(x,y):
 return x+y, sin(x)*sin(y), x*y
sage: P = ParametricSurface(f, (srange(0,10,0.1), srange(-5,5.0,0.1)))
sage: show(P)
sage: S = MoebiusStrip(1,.2)
sage: S.is_enclosed() # False
sage: S.show()
```

By default, the surface is colored with one single color.

```python
sage: P = ParametricSurface(f, (srange(0,10,0.1), srange(-5,5.0,0.1)), color="red")
sage: P.show() # Color example
```

One can instead provide a coloring function and a colormap:

```python
sage: def f(x,y):
 return x+y, x-y, x*y
sage: def c(x,y):
 return sin((x+y)/2)**2
sage: cm = colormaps.RdYlGn
sage: P = ParametricSurface(f, (srange(-5,5,0.1), srange(-5,5.0,0.1)), color=(c,cm))
sage: P.show(viewer='tachyon') # Note that the coloring function should rather have values between 0 and 1. This value is passed to the chosen colormap.
```

Another colored example:

```python
sage: colm = colormaps.autumn
sage: def g(x,y):
 return x, y, x**2 + y**2
sage: P = ParametricSurface(g, (srange(-10,10,0.1), srange(-5,5.0,0.1)), color=(c,colm))
sage: P.show(viewer='tachyon')
```

Warning: This kind of coloring using a colormap can be visualized using Jmol, Tachyon (option viewer='tachyon') and Canvas3D (option viewer='canvas3d' in the notebook).

Note: One may override `eval()` or `eval_c()` in a subclass rather than passing in a function for greater speed. One also would want to override `get_grid`. 

256 Chapter 3. Basic Shapes and Primitives
Todo: actually remove unused points, fix the below code:

```python
S = ParametricSurface(f=lambda xy: (xy[0],xy[1],0), domain=(range(10),range(10)))
```

```python
class sage.plot.plot3d.parametric_surface.MoebiusStrip(r, width, twists=1, **kwds)
 Bases: sage.plot.plot3d.parametric_surface.ParametricSurface

 Base class for the MoebiusStrip graphics type. This sets the basic parameters of the object.

 INPUT:

 - `r` – a number which can be coerced to a float, serving roughly as the radius of the object
 - `width` – a number which can be coerced to a float, which gives the width of the object
 - `twists` – (default: 1) an integer, giving the number of twists in the object (where one twist is the ‘traditional’ Möbius strip)

 EXAMPLES:

```python
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: M = MoebiusStrip(3,3)
sage: M.show()
```

```python
def eval(u, v):
    Return a tuple for \(x, y, z\) coordinates for the given \(u\) and \(v\) for this MoebiusStrip instance.

    EXAMPLES:

```python
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: N = MoebiusStrip(7,3,2) \# two twists
sage: N.eval(-1,0)
(4.0, 0.0, -0.0)
```

```python
def get_grid(ds):
 Return appropriate \(u\) and \(v\) ranges for this MoebiusStrip instance.

 This is intended for internal use in creating an actual plot.

 INPUT:

 - `ds` – A number, typically coming from a RenderParams object, which helps determine the increment for the \(v\) range for the MoebiusStrip object.

 EXAMPLES:

```python
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: N = MoebiusStrip(7,3,2) \# two twists
sage: N.get_grid(N.default_render_params().ds)
([-1, 1], [0.0, 0.12566370614359174, 0.25132741228718347, 0.37699111843077515, ...
```

```python
class sage.plot.plot3d.parametric_surface.ParametricSurface
    Bases: sage.plot.plot3d.index_face_set.IndexFaceSet

    Base class that initializes the ParametricSurface graphics type. This sets options, the function to be plotted, and the plotting array as attributes.

    INPUT:
```
• \(f \) - (default: None) The defining function. Either a tuple of three functions, or a single function which returns a tuple, taking two python floats as input. To subclass, pass None for \(f \) and override `eval_c` or `eval` instead.

• `domain` - (default: None) A tuple of two lists, defining the grid of \(u, v \) values. If None, this will be calculated automatically.

• `color` - (default: None) A pair \((h, c)\) where \(h \) is a function with values in \([0, 1]\) and \(c \) is a colormap. The color of a point \(p \) is then defined as the composition \(c(h(p)) \)

EXAMPLES:

```python
sage: from sage.plot.plot3d.parametric_surface import ParametricSurface
sage: def f(x,y): return cos(x)*sin(y), sin(x)*sin(y), cos(y)+log(tan(y/2))+0.2*x
sage: S = ParametricSurface(f, (srange(0,12.4,0.1), srange(0.1,2,0.1)))
```

A colored example using the `color` keyword:

```python
sage: def g(x,y): return x, y, - x**2 + y**2
sage: def c(x,y): return sin((x-y/2)*y/4)**2
sage: cm = colormaps.gist_rainbow
sage: P = ParametricSurface(g, (srange(-10,10,0.1),
    srange(-5,5.0,0.1)), color=(c,cm))
```

`bounding_box()`

Return the lower and upper corners of a 3D bounding box for `self`.

This is used for rendering and `self` should fit entirely within this box.

Specifically, the first point returned should have \(x, y, \) and \(z \) coordinates should be the respective infimum over all points in `self`, and the second point is the supremum.

EXAMPLES:

```python
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
```


default_render_params()
Returns an instance of RenderParams suitable for plotting this object.

dual()
Returns an IndexFaceSet which is the dual of the ParametricSurface object as a triangulated surface.

EXAMPLES:
As one might expect, this gives an icosahedron:

```
sage: D = dodecahedron()
sage: D.dual()
Graphics3d Object
```

But any enclosed surface should work:

```
sage: from sage.plot.plot3d.shapes import Torus
sage: T = Torus(1, .2)
sage: T.dual()
Graphics3d Object
sage: T.is_enclosed()
True
```

Surfaces which are not enclosed, though, should raise an exception:

```
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: M = MoebiusStrip(3,1)
sage: M.is_enclosed()
False
sage: M.dual()
Traceback (most recent call last):
  ... Not ImplementedError: This is only implemented for enclosed surfaces
```

eval(u, v)
get_grid(ds)
is_enclosed()
Return a boolean telling whether or not it is necessary to render the back sides of the polygons (assuming, of course, that they have the correct orientation).

This is calculated in by verifying the opposite edges of the rendered domain either line up or are pinched together.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Sphere
sage: Sphere(1).is_enclosed()
True
```

```
sage: from sage.plot.plot3d.parametric_surface import MoebiusStrip
sage: MoebiusStrip(1,0.2).is_enclosed()
False
```

jmol_repr(render_params)
Return a representation of the object suitable for plotting using Jmol.
json_repr (render_params)
Return a representation of the object in JSON format as a list with one element, which is a string of a
dictionary listing vertices, faces and colors.

obj_repr (render_params)
Return a complete representation of object with name, texture, and lists of vertices, faces, and back-faces.

plot()
Draw a 3D plot of this graphics object, which just returns this object since this is already a 3D graphics
object. Needed to support PLOT in doctstrings, see trac ticket #17498

EXAMPLES:
sage: S = parametric_plot3d((sin, cos, lambda u: u/10), (0, 20))
sage: S.plot() is S
True

tachyon_repr (render_params)
Return representation of the object suitable for plotting using Tachyon ray tracer.

threejs_repr (render_params)
Return a representation of the surface suitable for plotting with three.js.

EXAMPLES:
sage: _ = var('x,y')
sage: P = plot3d(x^2-y^2, (x, -2, 2), (y, -2, 2))
sage: P.threejs_repr(P.default_render_params())
[['surface',
 'color': '#6666ff',
 'faces': [[0, 1, 2, 3],
 ...
 'opacity': 1.0,
 'vertices': [{'x': -2.0, 'y': -2.0, 'z': 0.0},
 ...
 {'x': 2.0, 'y': 2.0, 'z': 0.0}]]

triangulate (render_params=None)
Call self.eval_grid() for all (u,v) in urange × vrange to construct this surface.

The most complicated part of this code is identifying shared vertices and shrinking trivial edges. This is not
done so much to save memory, rather it is needed so normals of the triangles can be calculated correctly.

x3d_geometry()
Return XML-like representation of the coordinates of all points in a triangulation of the object along with
an indexing of those points.

3.6 Graphics 3D Object for Representing and Triangulating Isosurfaces.

AUTHORS:
• Bill Cauchois (2009): improvements for inclusion into Sage.
class sage.plot.plot3d.implicit_surface.ImplicitSurface
 Bases: sage.plot.plot3d.index_face_set.IndexFaceSet

bounding_box()
 Return a bounding box for the ImplicitSurface, as a tuple of two 3-dimensional points.

 EXAMPLES:
 Note that the bounding box corresponds exactly to the x-, y-, and z- range:

 sage: from sage.plot.plot3d.implicit_surface import ImplicitSurface
 sage: G = ImplicitSurface(0, (0, 1), (0, 1), (0, 1))
 sage: G.bounding_box()
 ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0))

color_function
colormap
contours
f
gradient
jmol_repr(render_params)
 Return a representation of this object suitable for use with the Jmol renderer.

json_repr(render_params)
 Return a representation of this object in JavaScript Object Notation (JSON).

obj_repr(render_params)
 Return a representation of this object in the .obj format.

plot_points
region
smooth
tachyon_repr(render_params)
 Return a representation of this object suitable for use with the Tachyon renderer.

threejs_repr(render_params)
 Return a representation of the surface suitable for plotting with three.js.

 EXAMPLES:

 sage: from sage.plot.plot3d.implicit_surface import ImplicitSurface
 sage: _ = var('x,y,z')
 sage: G = ImplicitSurface(x + y + z, (x,-1, 1), (y,-1, 1), (z,-1, 1))
 sage: G.threejs_repr(G.default_render_params())
 [('surface',
 {'color': '#6666ff',
 'faces': [[0, 1, 2],
 ...,
 'opacity': 1.0,
 'vertices': [{'x': ...
 },
 ...,
 {'x': -1.0, 'y': 0.9487179487179..., 'z': 0.05128205128205...}])})

3.6. Graphics 3D Object for Representing and Triangulating Isosurfaces. 261
triangulate (*force=False*)

The IndexFaceSet will be empty until you call this method, which generates the faces and vertices according to the parameters specified in the constructor for ImplicitSurface.

Note that if you call this method more than once, subsequent invocations will have no effect (this is an optimization to avoid repeated work) unless you specify *force=True* in the keywords.

EXAMPLES:

```python
sage: from sage.plot.plot3d.implicit_surface import ImplicitSurface
sage: var('x,y,z')
(x, y, z)
sage: G = ImplicitSurface(x + y + z, (x,-1, 1), (y,-1, 1), (z,-1, 1))
sage: len(G.vertex_list()), len(G.face_list())
(0, 0)
sage: G.triangulate()
sage: len(G.vertex_list()) > 0, len(G.face_list()) > 0
(True, True)
sage: G.show() # This should be fast, since the mesh is already triangulated.
```

vars
xrange
yrange
zrange

class `sage.plot.plot3d.implicit_surface.MarchingCubes`

Handles marching cube rendering.

Protocol:

1. Create the class.
2. Call `process_slice` once for each X slice, from `self.nx > x >= 0`.
3. Call `finish()`, which returns a list of strings.

Note: Actually, only 4 slices ever exist; the caller will re-use old storage.

color_function
colormap
contour
finish()

Return the results of the marching cubes algorithm as a list.

The format is specific to the subclass implementing this method.

gradient
nx
ny
nz
region
class sage.plot.plot3d.implicit_surface.MarchingCubesTriangles
Bases: sage.plot.plot3d.implicit_surface.MarchingCubes

A subclass of MarchingCubes that returns its results as a list of triangles, including their vertices and normals (if smooth=True).

And also their vertex colors if a vertex coloring function is given.

add_triangle(v1, v2, v3)
Called when a new triangle is generated by the marching cubes algorithm to update the results array.

process_cubes(_left, _right)

process_slice(x, slice)
Process a single slice of function evaluations at the specified x coordinate.

EXAMPLES:

```
sage: from sage.plot.plot3d.implicit_surface import MarchingCubesTriangles
sage: import numpy as np
sage: cube_marcher = MarchingCubesTriangles((-2, 2), (-2, 2), (-2, 2), 4, (10, ˓→), smooth=False)
sage: f = lambda x, y, z: x^2 + y^2 + z^2
sage: slices = np.zeros((10, 10, 10), dtype=np.double)
sage: for x in reversed(range(0, 10)):
  ... for y in range(0, 10):
  ... for z in range(0, 10):
  ...   slices[x, y, z] = f(*[a * (4 / 9) - 2 for a in (x, y, z)])
  ...   cube_marcher.process_slice(x, slices[x, :, :])
sage: faces = cube_marcher.finish()
sage: faces[0][0]
{'x': 1.555555555555..., 'y': -1.111111111111..., 'z': -0.555555555555...}
```

We render the isosurface using IndexFaceSet:

```
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: IndexFaceSet([tuple((p['x'], p['y'], p['z'])) for p in face) for face in ˓→faces])
```

```
slices
x_vertices
y_vertices
y_vertices_swapped
z_vertices
z_vertices_swapped
```


263
class sage.plot.plot3d.implicit_surface.VertexInfo
Bases: object

sage.plot.plot3d.implicit_surface.render_implicit(f, xrange, yrange, zrange, plot_points, cube_marchers)

INPUT:

• \(f \) - a (fast!) callable function
• \(\text{xrange} \) - a 2-tuple \((x_{\text{min}}, x_{\text{max}})\)
• \(\text{yrange} \) - a 2-tuple \((y_{\text{min}}, y_{\text{may}})\)
• \(\text{zrange} \) - a 2-tuple \((z_{\text{min}}, z_{\text{maz}})\)
• \(\text{plot_points} \) - a triple of integers indicating the number of function evaluations in each direction.
• \(\text{cube_marchers} \) - a list of cube marchers, one for each contour.

OUTPUT:

A representation of the isosurface, in the format specified by the individual cube marchers.
4.1 Texture Support

This module provides texture/material support for 3D Graphics objects and plotting. This is a very rough common interface for Tachyon, x3d, and obj (mtl). See Texture for full details about options and use.

Initially, we have no textures set:

```
sage: sage.plot.plot3d.base.Graphics3d().texture_set()
sset()
```

However, one can access these textures in the following manner:

```
sage: G = tetrahedron(color='red') + tetrahedron(color='yellow') + tetrahedron(color='red', opacity=0.5)
sage: [t for t in G.texture_set() if t.color == colors.red] # we should have two red textures
[Texture(texture..., red, ff0000), Texture(texture..., red, ff0000)]
sage: [t for t in G.texture_set() if t.color == colors.yellow] # ...and one yellow
[Texture(texture..., yellow, ffff00)]
```

And the Texture objects keep track of all their data:

```
sage: T = tetrahedron(color='red', opacity=0.5)
sage: t = T.get_texture()
sage: t.opacity
0.5
```

AUTHOR:

```
class sage.plot.plot3d.texture.Texture(id, color=0.4, 0.4, 1, opacity=1, ambient=0.5, diffuse=1, specular=0, shininess=1, name=None, **kwds)

    Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.SageObject

    Class representing a texture.
    
    See documentation of Texture.__classcall__ for more details and examples.
```

EXAMPLES:

We create a translucent texture:
sage: from sage.plot.plot3d.texture import Texture
sage: t = Texture(opacity=0.6)
Texture(texture..., 6666ff)
sage: t.opacity
0.6
sage: t.jmol_str('obj')
'color obj translucent 0.4 [102,102,255]'
sage: t.mtl_str()
'newmtl texture...
Ka 0.2 0.2 0.5
Kd 0.4 0.4 1.0
Ks 0.0 0.0 0.0
illum 1
Ns 1.
→0\nd 0.6'
sage: t.x3d_str()
"<Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0' specularColor= ˓→'0.0 0.0 0.0'/></Appearance>"

hex_rgb()

EXAMPLES:

sage: from sage.plot.plot3d.texture import Texture
sage: Texture('red').hex_rgb()
'ff0000'
sage: Texture((1, .5, 0)).hex_rgb()
'ff7f00'

jmol_str(obj)
Convert Texture object to string suitable for Jmol applet.

INPUT:

• obj - str

EXAMPLES:

sage: from sage.plot.plot3d.texture import Texture
sage: t = Texture(opacity=0.6)
sage: t.jmol_str('obj')
'color obj translucent 0.4 [102,102,255]'
sage: sum([dodecahedron(center=[2.5*x, 0, 0], color=(1, 0, 0, x/10)) for ˓→x in range(11)])).show(aspect_ratio=[1,1,1], frame=False, zoom=2)

mtl_str()
Convert Texture object to string suitable for mtl output.

EXAMPLES:

sage: from sage.plot.plot3d.texture import Texture
sage: t = Texture(opacity=0.6)
sage: t.mtl_str()
'newmtl texture...
Ka 0.2 0.2 0.5
Kd 0.4 0.4 1.0
Ks 0.0 0.0 0.0
illum 1
→nNs 1.0\nd 0.6'

tachyon_str()
Convert Texture object to string suitable for Tachyon ray tracer.

EXAMPLES:
sage: from sage.plot.plot3d.texture import Texture
sage: t = Texture(opacity=0.6)

sage: t.tachyon_str()
"Texdef texture...
 Ambient 0.3333333333333333 Diffuse 0.6666666666666666
Specular 0.0 Opacity 0.6\n Color 0.4 0.4 1.0\n TexFunc 0"

\texttt{x3d_str()}
Convert Texture object to string suitable for x3d.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.plot.plot3d.texture import Texture
sage: t = Texture(opacity=0.6)
sage: t.x3d_str()
"<Appearance><Material diffuseColor='0.4 0.4 1.0' shininess='1.0'
specularColor='0.0 0.0 0.0'/></Appearance>"
\end{verbatim}

\texttt{sage.plot.plot3d.texture.is_Texture(x)}
Deprecated. Use \texttt{isinstance(x, Texture)} instead.

\textbf{EXAMPLES:}

\begin{verbatim}
sage: from sage.plot.plot3d.texture import is_Texture, Texture
sage: t = Texture(0.5)
sage: is_Texture(t)
doctest:...: DeprecationWarning: Please use isinstance(x, Texture)
See https://trac.sagemath.org/27593 for details.
True
\end{verbatim}

\texttt{sage.plot.plot3d.texture.parse_color(info, base=None)}
Parse the color.

It transforms a valid color string into a color object and a color object into an RBG tuple of length 3. Otherwise, it multiplies the info by the base color.

\textbf{INPUT:}

- \texttt{info} - color, valid color str or number
- \texttt{base} - tuple of length 3 (optional, default: None)

\textbf{OUTPUT:}

A tuple or color.

\textbf{EXAMPLES:}

From a color:

\begin{verbatim}
sage: from sage.plot.plot3d.texture import parse_color
sage: c = Color('red')
sage: parse_color(c)
(1.0, 0.0, 0.0)
\end{verbatim}

From a valid color str:

\begin{verbatim}
sage: parse_color('red')
RGB color (1.0, 0.0, 0.0)
sage: parse_color('#ff0000')
RGB color (1.0, 0.0, 0.0)
\end{verbatim}
From a non valid color str:

```python
sage: parse_color('redd')
Traceback (most recent call last):
... ValueError: unknown color 'redd'
```

From an info and a base:

```python
sage: opacity = 10
sage: parse_color(opacity, base=(.2,.3,.4))
(2.0, 3.0, 4.0)
```

4.2 Indexed Face Sets

Graphics3D object that consists of a list of polygons, also used for triangulations of other objects.

Usually these objects are not created directly by users.

AUTHORS:

- Robert Bradshaw (2007-08-26): initial version
- Robert Bradshaw (2007-08-28): significant optimizations

Todo: Smooth triangles using vertex normals

class `sage.plot.plot3d.index_face_set.EdgeIter`
Bases: `object`
A class for iteration over edges
EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: len(list(S.edges())) == 12  # indirect doctest
True
```

class `sage.plot.plot3d.index_face_set.FaceIter`
Bases: `object`
A class for iteration over faces
EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: len(list(S.faces())) == 6  # indirect doctest
True
```

class `sage.plot.plot3d.index_face_set.IndexFaceSet`
Bases: `sage.plot.plot3d.base.PrimitiveObject`
Graphics3D object that consists of a list of polygons, also used for triangulations of other objects.
Polygons (mostly triangles and quadrilaterals) are stored in the struct `face_c` (see `transform.pyx`). Rather than storing the points directly for each polygon, each face consists a list of pointers into a common list of points which are basically triples of doubles in a `point_c`.

Moreover, each face has an attribute `color` which is used to store color information when faces are colored. The red/green/blue components are then available as floats between 0 and 1 using `color.r, color.g, color.b`.

Usually these objects are not created directly by users.

EXAMPLES:

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: S = IndexFaceSet([[1,0,0),(0,1,0),(0,0,1)],[(1,0,0),(0,1,0),(0,0,0)])
sage: S.face_list()
[(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0), (0.0, 0.0, 0.0)]
```

```python
sage: def make_face(n):
    return [(0,0,n),(0,1,n),(1,1,n),(1,0,n)]

sage: S = IndexFaceSet([make_face(n) for n in range(10)])
```

```python
sage: point_list = [(1,0,0),(0,1,0)] + [(0,0,n) for n in range(10)]
sage: face_list = [[0,1,n] for n in range(2,10)]
```

```python
sage: S = IndexFaceSet(face_list, point_list, color='red')
```

```python
sage: add_condition(condition, N=40)
Cut the surface according to the given condition.
This allows to take the intersection of the surface with a domain in 3-space, in such a way that the result has a smooth boundary.

**INPUT:**

- `condition` – boolean function on ambient space, that defines the domain
- `N` – number of steps (default: 40) used on the boundary to cut the triangles that are not entirely within the domain

**A simple example of colored IndexFaceSet (trac ticket #12212):**

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture

sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]

sage: face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]

sage: col = rainbow(10, 'rgbtuple')

sage: t_list = [Texture(color[i]) for i in range(10)]

sage: S = IndexFaceSet(face_list, point_list, texture_list=t_list)
```

```python
sage: S.show(viewer='tachyon')
```

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture

```
For higher quality, meaning smoother boundary, use larger $N$.

OUTPUT:

an `IndexFaceSet`

This will contain both triangular and quadrilateral faces.

EXAMPLES:

```python
sage: var('x,y,z')
(x, y, z)
sage: P = implicit_plot3d(z-x*y,(-2,2),(-2,2),(-2,2))
sage: def condi(x,y,z):
....: return bool(x*x+y*y+z*z <= Integer(1))
sage: R = P.add_condition(condi,8); R
Graphics3d Object
```

An example with colors:

```python
sage: def condi(x,y,z):
....: return bool(x*x+y*y <= 1.1)
sage: cm = colormaps.hsv
sage: cf = lambda x,y,z: float(x+y) % 1
sage: P = implicit_plot3d(x**2+y**2+z**2-1-x**2*z+y**2*z,(-2,2),(-2,2),
˓→color=(cm,cf))
sage: R = P.add_condition(condi,18); R
```

(continues on next page)
An example with transparency:

```
sage: P = implicit_plot3d(x**4+y**4+z**2-4,(x,-2,2),(y,-2,2),(z,-2,2),alpha=0.3)
sage: def cut(a,b,c):
....: return a*a+c*c > 2
sage: Q = P.add_condition(cut,40); Q
Graphics3d Object
```

A sombrero with quadrilaterals:

```
sage: P = plot3d(-sin(2*x*x+2*y*y)*exp(-x*x-y*y),(x,-2,2),(y,-2,2),color='gold')
sage: def cut(x,y,z):
....: return x*x+y*y < 1
sage: Q = P.add_condition(cut); Q
Graphics3d Object
```

Todo:

- Use a dichotomy to search for the place where to cut,
4.2. Indexed Face Sets
• Compute the cut only once for each edge.

**bounding_box()**

Calculate the bounding box for the vertices in this object (ignoring infinite or NaN coordinates).

**OUTPUT:**

a tuple ((low_x, low_y, low_z), (high_x, high_y, high_z)), which gives the coordinates of opposite corners of the bounding box.

**EXAMPLES:**

```python
sage: x, y = var('x, y')
sage: p = plot3d(sqrt(sin(x)*sin(y)), (x,0,2*pi),(y,0,2*pi))
sage: p.bounding_box()
((0.0, 0.0, -0.0), (6.283185307179586, 6.283185307179586, 0.9991889981715697))
```

**dual(** **kwds** **)**

Return the dual.

**EXAMPLES:**

```python
sage: S = cube()
sage: T = S.dual()
sage: len(T.vertex_list())
6
```

**edge_list()**

Return the list of edges.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: S.edge_list()[0]
((1.0, -2.0, 3.0), (1.0, 2.0, 3.0))
```

**edges()**

An iterator over the edges.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: list(S.edges())[0]
((1.0, -2.0, 3.0), (1.0, 2.0, 3.0))
```

**face_list(** **render_params=None** **)**

Return the list of faces.

Every face is given as a tuple of vertices.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: S.face_list(S.default_render_params())[0]
[(1.0, 2.0, 3.0), (-1.0, 2.0, 3.0), (-1.0, -2.0, 3.0), (1.0, -2.0, 3.0)]
```
faces()
An iterator over the faces.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: list(S.faces()) == S.face_list()
True
```

has_local_colors()
Return True if and only if every face has an individual color.

EXAMPLES:

```
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture
sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]
sage: face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]
sage: col = rainbow(10, 'rgbtuple')
sage: t_list = [Texture(col[i]) for i in range(10)]
sage: S = IndexFaceSet(face_list, point_list, texture_list=t_list)
sage: S.has_local_colors()
True
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: S.has_local_colors()
False
```

index_faces()
Return the list over all faces of the indices of the vertices.

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: S.index_faces()
[[0, 1, 2, 3],
 [0, 4, 5, 1],
 [0, 3, 6, 4],
 [5, 4, 6, 7],
 [6, 3, 2, 7],
 [2, 1, 5, 7]]
```

index_faces_with_colors()
Return the list over all faces of (indices of the vertices, color).

This only works if every face has its own color.

See also:

has_local_colors()

EXAMPLES:

A simple colored one:

```
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture
```

(continues on next page)
sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]
sage: face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]
sage: col = rainbow(10, 'rgbtuple')
sage: t_list=[Texture(col[i]) for i in range(10)]
sage: S = IndexFaceSet(face_list, point_list, texture_list=t_list)
sage: S.index_faces_with_colors()
[([0, 4, 5], '#ff0000'),
 ([3, 4, 5], '#ff9900'),
 ([2, 3, 4], '#cbff00'),
 ([1, 3, 5], '#33ff00')]

When the texture is global, an error is raised:

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: S.index_faces_with_colors()
Traceback (most recent call last):
 ... ValueError: the texture is global
```

`is_enclosed()`

Whether or not it is necessary to render the back sides of the polygons.

One is assuming, of course, that they have the correct orientation.

This is may be passed in on construction. It is also calculated in `sage.plot.plot3d.parametric_surface.ParametricSurface` by verifying the opposite edges of the rendered domain either line up or are pinched together.

EXAMPLES:

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: IndexFaceSet([(0,0,1),(0,1,0),(1,0,0)]).is_enclosed()
False
```

`jmol_repr` *(render_params)*

Return a jmol representation for self.

`json_repr` *(render_params)*

Return a json representation for self.

`obj_repr` *(render_params)*

Return an obj representation for self.

`partition(f)`

Partition the faces of self.

The partition is done according to the value of a map \( f : \mathbb{R}^3 \rightarrow \mathbb{Z} \) applied to the center of each face.

INPUT:

- \( f \) – a function from \( \mathbb{R}^3 \) to \( \mathbb{Z} \)

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: len(S.partition(lambda x,y,z : floor(x+y+z)))
6
```
sticker  (face_list, width, hover, **kwds)
    Return a sticker on the chosen faces.

stickers  (colors, width, hover)
    Return a group of IndexFaceSets.

INPUT:
    • colors – list of colors/textures to use (in cyclic order)
    • width – offset perpendicular into the edge (to create a border) may also be negative
    • hover – offset normal to the face (usually have to float above the original surface so it shows,
          typically this value is very small compared to the actual object

OUTPUT:
  Graphics3dGroup of stickers

EXAMPLES:

```
sage: from sage.plot.plot3d.shapes import Box
sage: B = Box(.5,.4,.3, color='black')
sage: S = B.stickers(['red','yellow','blue'], 0.1, 0.05)
sage: S.show()
sage: (S+B).show()
```

stl_binary_repr  (render_params)
    Return data for STL (STereoLithography) representation of the surface.
    The STL binary representation is a list of binary strings, one for each triangle.

EXAMPLES:

```
sage: G = sphere()
sage: data = G.stl_binary_repr(G.default_render_params()); len(data)
1368
```

tachyon_repr  (render_params)
    Return a tachyon object for self.

EXAMPLES:

A basic test with a triangle:

```
sage: G = polygon([(0,0,1), (1,1,1), (2,0,1)])
sage: s = G.tachyon_repr(G.default_render_params()); s
['TRI V0 0 0 1 V1 1 1 1 V2 2 0 1', ...]
```

A simple colored one:

```
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture
sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]
sage: face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]
sage: col = rainbow(10, 'rgbtuple')
sage: t_list=[Texture(col[i]) for i in range(10)]
sage: S = IndexFaceSet(face_list, point_list, texture_list=t_list)
sage: S.tachyon_repr(S.default_render_params())
['TRI V0 0 0 1 V1 1 1 1 V2 2 0 1', TEXTURE... AMBIENT 0.3 DIFFUSE 0.7 SPECULAR 0 OPACITY 1.0... COLOR 1 0 0 ... TEXFUNC 0',...]
```

4.2. Indexed Face Sets  277
threejs_repr (render_params)
Return representation of the surface suitable for plotting with three.js.

EXAMPLES:

A simple triangle:

```python
sage: G = polygon([(0,0,1), (1,1,1), (2,0,1)])
sage: G.threejs_repr(G.default_render_params())
[('surface',
 {'color': '#0000ff',
 'faces': [[0, 1, 2]],
 'opacity': 1.0,
 'vertices': [{'x': 0.0, 'y': 0.0, 'z': 1.0},
 {'x': 1.0, 'y': 1.0, 'z': 1.0},
 {'x': 2.0, 'y': 0.0, 'z': 1.0}])]
```

The same but with more options applied:

```python
sage: G = polygon([(0,0,1), (1,1,1), (2,0,1)], color='red', opacity=0.5,
 render_order=2, threejs_flat_shading=True,
 single_side=True, mesh=True)
sage: G.threejs_repr(G.default_render_params())
[('surface',
 {'color': '#ff0000',
 'faces': [[0, 1, 2]],
 'opacity': 0.5,
 'renderOrder': 2.0,
 'showMeshGrid': True,
 'singleSide': True,
 'useFlatShading': True,
 'vertices': [{'x': 0.0, 'y': 0.0, 'z': 1.0},
 {'x': 1.0, 'y': 1.0, 'z': 1.0},
 {'x': 2.0, 'y': 0.0, 'z': 1.0}])]
```

vertex_list ()
Return the list of vertices.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = polygon([(0,0,1), (1,1,1), (2,0,1)])
sage: S.vertex_list()[0]
(0.0, 0.0, 1.0)
```

vertices ()
An iterator over the vertices.

EXAMPLES:

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = Cone(1,1)
sage: list(S.vertices()) == S.vertex_list()
True
```

x3d_geometry ()
Return the x3d data.

EXAMPLES:

A basic test with a triangle:

```python
```
A simple colored one:

```python
sage: from sage.plot.plot3d.index_face_set import IndexFaceSet
sage: from sage.plot.plot3d.texture import Texture
sage: point_list = [(2,0,0),(0,2,0),(0,0,2),(0,1,1),(1,0,1),(1,1,0)]
```
```python
def face_list = [[0,4,5],[3,4,5],[2,3,4],[1,3,5]]
sage: col = rainbow(10, 'rgbtuple')
```
```python
def t_list = [Texture(col[i]) for i in range(10)]
sage: S = IndexFaceSet(face_list, point_list, texture_list=t_list)
```
```python
sage: print(S.x3d_geometry())
```

```xml
<IndexedFaceSet solid='False' colorPerVertex='False' coordIndex='0,4,5,-1,3,4,-1,2,3,4,-1,1,3,5,-1'>
 <Coordinate point='2.0 0.0 0.0,0.0 2.0 0.0,0.0 0.0 0.0,2.0 0.0 0.0,1.0 0.0 0.0,0.0 0.0 0.0' />
 <Color color='1.0 0.0 0.0,1.0 0.6000000000000001 0.0,0.7999999999999998 1.0,0.20000000000000018 1.0 0.0' />
</IndexedFaceSet>
```

**class sage.plot.plot3d.index_face_set.VertexIter**

A class for iteration over vertices

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.shapes import *
sage: S = Box(1,2,3)
sage: len(list(S.vertices())) == 8 # indirect doctest
```
```python
True
```

**sage.plot.plot3d.index_face_set.midpoint(pointa, pointb, w)**

Return the weighted mean of two points in 3-space.

**INPUT:**

- `pointa, pointb` – two points in 3-dimensional space
- `w` – a real weight between 0 and 1.

If the weight is zero, the result is `pointb`. If the weight is one, the result is `pointa`.

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.index_face_set import midpoint
sage: midpoint((1,2,3),(4,4,4),0.8)
```
```python
(1.600000000000000, 2.400000000000000, 3.200000000000000)
```

**sage.plot.plot3d.index_face_set.sticker(face, width, hover)**

Return a sticker over the given face.
4.3 Transformations

```python
class sage.plot.plot3d.transform.Transformation
 Bases: object
 avg_scale()
 get_matrix()
 is_skew(eps=1e-05)
 is_uniform(eps=1e-05)
 is_uniform_on(basis, eps=1e-05)
 max_scale()
 transform_bounding_box(box)
 transform_point(x)
 transform_vector(v)
```

`sage.plot.plot3d.transform.rotate_arbitrary(v, theta)`

Return a matrix that rotates the coordinate space about the axis v by the angle theta.

**INPUT:**

- `theta` - real number, the angle

**EXAMPLES:**

```python
sage: from sage.plot.plot3d.transform import rotate_arbitrary

Try rotating about the axes:

```python
sage: rotate_arbitrary((1,0,0), 1)
[ 1.0 0.0 0.0]
[ 0.0 0.5403023058681398 0.8414709848078965]
[ 0.0 -0.8414709848078965 0.5403023058681398]

sage: rotate_arbitrary((0,1,0), 1)
[ 0.5403023058681398 0.0 -0.8414709848078965]
[ 0.0 1.0 0.0]
[ 0.8414709848078965 0.0 0.5403023058681398]

sage: rotate_arbitrary((0,0,1), 1)
[ 0.5403023058681398 0.8414709848078965 0.0]
[-0.8414709848078965 0.5403023058681398 0.0]

sage: rotate_arbitrary((0,0,1), 1)^(-1)
[ 0.5403023058681398 0.8414709848078965 0.0]
[-0.8414709848078965 0.5403023058681398 0.0]

These next two should be the same (up to floating-point errors):

```python
sage: rotate_arbitrary((1,1,1), 1) # rel tol le-15
[0.6935348705787598 0.6390560643047186 -0.33259093488347846]
[-0.33259093488347846 0.6935348705787598 0.6390560643047186]
[0.6390560643047186 -0.3325909348834784 0.6935348705787598]

sage: rotate_arbitrary((1,1,1), -1)^(-1) # rel tol le-15
[0.6935348705787598 0.6390560643047186 -0.33259093488347846]
[-0.33259093488347846 0.6935348705787598 0.6390560643047186]
[0.6390560643047186 -0.3325909348834784 0.6935348705787598]
```

Make sure it does the right thing...:
AUTHORS:

- Robert Bradshaw

ALGORITHM:

There is a formula. Where did it come from? Let's take a quick jaunt into Sage's calculus package...

Setup some variables:

```
sage: vx, vy, vz, theta = var('x y z theta')
```

Symbolic rotation matrices about X and Y axis:

```
sage: def rotX(theta):
 return matrix(SR, 3, 3, [1, 0, 0, 0, cos(theta), -sin(theta), 0, sin(theta), cos(theta)])
sage: def rotZ(theta):
 return matrix(SR, 3, 3, [cos(theta), -sin(theta), 0, sin(theta), cos(theta), 0, 0, 0, 1])
```

Normalizing $y$ so that $|v|=1$. Perhaps there is a better way to tell Maxima that $x^2+y^2+z^2=1$ which would make for a much cleaner calculation:

```
sage: vy = sqrt(1-vx^2-vz^2)
```

Now we rotate about the $x$-axis so $v$ is in the $xy$-plane:

```
sage: t = arctan(vy/vz)+pi/2
sage: m = rotX(t)
sage: new_y = vy*cos(t) - vz*sin(t)
```

And rotate about the $z$ axis so $v$ lies on the $x$ axis:

```
sage: s = arctan(vx/new_y) + pi/2
sage: m = rotZ(s) * m
```

Rotating about $v$ in our old system is the same as rotating about the $x$-axis in the new:

```
sage: m = rotX(theta) * m
```

Do some simplifying here to avoid blow-up:

```
sage: m = m.simplify_rational()
```

Now go back to the original coordinate system:

```
sage: m = rotZ(-s) * m
sage: m = rotX(-t) * m
```

4.3. Transformations 281
And simplify every single entry (which is more effective that simplify the whole matrix like above):

```python
sage: m.parent()([x.simplify_full() for x in m._list()]) # long time;
random
[-(cos(theta) - 1) *x^2 +
 (cos(theta) - 1)*sqrt(-x^2 - z^2 + 1)*x +
 sin(theta)*abs(z) -((cos(theta) - 1)*x^2 + sqrt(-x^2 - z^2 +
 1)*x*z^2 + sqrt(-x^2 - z^2 + 1)*sin(theta)*abs(z))/z
 -(cos(theta) - 1)*sqrt(-x^2 - z^2 + 1)*x -
 (cos(theta) - 1)*x^2 +
 (cos(theta) - 1)*z^2 + 1 -((cos(theta) - 1)*sqrt(-x^2 - z^2 +
 1)*z*abs(z) - x*z*sin(theta))/abs(z)]

Re-expressing some entries in terms of y and resolving the absolute values introduced by eliminating y, we get the desired result.

4.4 Adaptive refinement code for 3d surface plotting

AUTHOR:

- Tom Boothby – Algorithm design, code
- Joshua Kantor – Algorithm design
- Marshall Hampton – Docstrings and doctests

Todo:

- Parametrizations (cylindrical, spherical)
- Massive optimization

```python
class sage.plot.plot3d.tri_plot.PlotBlock(
    left, left_c, top, top_c, right, right_c, bottom, bottom_c)
Bases: object
A container class to hold information about spatial blocks.
class sage.plot.plot3d.tri_plot.SmoothTriangle(a, b, c, da, db, dc, color=0)
Bases: sage.plot.plot3d.tri_plot.Triangle
A class for smoothed triangles.

get_normals()
    Returns the normals to vertices a, b, and c.
str()
    Returns a string representation of the SmoothTriangle of the form
    a b c color da db dc
    where a, b, and c are the triangle corner coordinates, da, db, dc are normals at each corner, and color is the color.
```
class sage.plot.plot3d.tri_plot.Triangle(a, b, c, color=0)
Bases: object

A graphical triangle class.

get_vertices()
Returns a tuple of vertex coordinates of the triangle.

set_color(color)
This method will reset the color of the triangle.

str()
Returns a string representation of an instance of the Triangle class of the form
a b c color
where a, b, and c are corner coordinates and color is the color.

class sage.plot.plot3d.tri_plot.TriangleFactory
Bases: object

get_colors(list)
Parameters: list: an iterable collection of values which can be cast into colors – typically an RGB triple,
or an RGBA 4-tuple
Returns: a list of single parameters which can be passed into the set_color method of the Triangle or
SmoothTriangle objects generated by this factory.

smooth_triangle(a, b, c, da, db, dc, color=None)
Parameters:
• a, b, c : triples (x,y,z) representing corners on a triangle in 3-space
• da, db, dc : triples (dx,dy,dz) representing the normal vector at each point a,b,c
Returns: a SmoothTriangle object with the specified coordinates and normals

triangle(a, b, c, color=None)
Parameters: a, b, c : triples (x,y,z) representing corners on a triangle in 3-space
Returns: a Triangle object with the specified coordinates

class sage.plot.plot3d.tri_plot.TrianglePlot(triangle_factory, f, min_x_max_x, min_y_max_y, g=None, min_depth=4, max_depth=8, num_colors=None, max_bend=0.3)
Bases: object

Recursively plots a function of two variables by building squares of 4 triangles, checking at every stage whether
or not each square should be split into four more squares. This way, more planar areas get fewer triangles, and
areas with higher curvature get more triangles.

extrema(list)
If the num_colors option has been set, this expands the TrianglePlot’s _min and _max attributes to include
the minimum and maximum of the argument list.

interface(n, p, p_c, q, q_c)
Takes a pair of lists of points, and compares the (n)th coordinate, and “zips” the lists together into one.
The “centers”, supplied in p_c and q_c are matched up such that the lists describe triangles whose sides
are “perfectly” aligned. This algorithm assumes that p and q start and end at the same point, and are sorted
smallest to largest.

plot_block(min_x, mid_x, max_x, min_y, mid_y, max_y, sw_z, nw_z, se_z, ne_z, mid_z, depth)
Recursive triangulation function for plotting.

4.4. Adaptive refinement code for 3d surface plotting
First six inputs are scalars, next 5 are 2-dimensional lists, and the depth argument keeps track of the depth of recursion.

\texttt{str()}

Returns a string listing the objects in the instance of the TrianglePlot class.

\texttt{triangulate(p, c)}

Pass in a list of edge points (p) and center points (c). Triangles will be rendered between consecutive edge points and the center point with the same index number as the earlier edge point.

\texttt{sage.plot.plot3d.tri_plot_crossunit(u, v)}

This function computes triangle normal unit vectors by taking the cross-products of the midpoint-to-corner vectors. It always goes around clockwise so we’re guaranteed to have a positive value near 1 when neighboring triangles are parallel. However – crossunit doesn’t really return a unit vector. It returns the length of the vector to avoid numerical instability when the length is nearly zero – rather than divide by nearly zero, we multiply the other side of the inequality by nearly zero – in general, this should work a bit better because of the density of floating-point numbers near zero.
5.1 The Tachyon 3D Ray Tracer

Given any 3D graphics object one can compute a raytraced representation by typing `show(viewer='tachyon')`. For example, we draw two translucent spheres that contain a red tube, and render the result using Tachyon.

```sage
S = sphere(opacity=0.8, aspect_ratio=[1,1,1])
sage: L = line3d(((0,0,0),(2,0,0)), thickness=10, color='red')
sage: M = S + S.translate((2,0,0)) + L
sage: M.show(viewer='tachyon')
```

One can also directly control Tachyon, which gives a huge amount of flexibility. For example, here we directly use Tachyon to draw 3 spheres on the coordinate axes:

```sage
t = Tachyon(xres=500,yres=500, camera_center=(2,0,0))
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t2', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,0))
sage: t.texture('t3', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,1,0))
sage: t.texture('t4', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,0,1))
sage: t.sphere((0,0.5,0), 0.2, 't2')
sage: t.sphere((0.5,0,0), 0.2, 't3')
sage: t.sphere((0,0,0.5), 0.2, 't4')
sage: t.show()
```

For scenes with many reflections it is helpful to increase the raydepth option, and turn on antialiasing. The following scene is an extreme case with many reflections between four cotangent spheres:

```sage
t = Tachyon(camera_center=(0,-4,1), xres = 800, yres = 600, raydepth = 12, aspectratio=.75, antialiasing = 4)
sage: t.light((0.02,0.012,0.001), 0.01, (1,0,0))
sage: t.light((0,0,10), 0.01, (0,0,1))
sage: t.texture('s', color = (.8,1,1), opacity = .9, specular = .95, diffuse = .3, ambient = 0.05)
sage: t.texture('p', color = (0,0,1), opacity = 1, specular = .2)
sage: t.sphere((-1,-.57735,-0.7071),1,'s')
sage: t.sphere((1,-.57735,-0.7071),1,'s')
sage: t.sphere((0,1.15465,-0.7071),1,'s')
sage: t.sphere((0,0,0.9259),1,'s')
sage: t.plane((0,0,-1.9259),(0,0,1),'p')
sage: t.show()  # long time
```
Different projection options are available. The following examples all use a sphere and cube:

```python
sage: cedges = [[[1, 1, 1], [-1, 1, 1]], [[1, 1, 1], [1, -1, 1]],
               [[-1, 1, -1]], [[1, -1, 1]], [[1, -1, -1]],
               [[-1, 1, -1]], [[1, -1, 1]], [[1, -1, -1]],
               [[-1, 1, -1]], [[1, -1, 1]], [[1, -1, -1]],
               [[-1, 1, -1]], [[1, -1, 1]], [[1, -1, -1]]
```

The default projection is 'perspective':

```python
sage: t = Tachyon(xres=800, yres=600, camera_center=(-1.5,0.0,0.0), zoom=.2)
sage: t.texture('t1', color=(0,0,1))
```

```python
sage: for ed in cedges:
    t.fcylinder(ed[0], ed[1], .05, 't1')
```

```python
sage: t.light((-4,-4,4), .1, (1,1,1))
```

```python
sage: t.show()
```

Another option is projection='fisheye', which requires frustum information. The frustum data is (bottom angle, top angle, left angle, right angle):

```python
sage: t = Tachyon(xres=800, yres=600, camera_center=(-1.5,0.0,0.0),
               projection='fisheye', frustum=(-1.2, 1.2, -1.2, 1.2))
sage: t.texture('t1', color=(0,0,1))
```

```python
sage: for ed in cedges:
    t.fcylinder(ed[0], ed[1], .05, 't1')
```

```python
sage: t.light((-4,-4,4), .1, (1,1,1))
```

```python
sage: t.show()
```

Finally there is the projection='perspective_dof' option.

```python
sage: T = Tachyon(xres=800, antialiasing=4, raydepth=10,
               projection='perspective_dof', focallength='1.0', aperture='0.0025')
sage: T.light((0,5,7), 1.0, (1,1,1))
sage: T.texture('t1', opacity=1, specular=.3)
sage: T.texture('t2', opacity=1, specular=.3, color=(0,0,1))
sage: T.texture('t3', opacity=1, specular=1, color=(.8,1), diffuse=0.2)
sage: T.plane((0,0,-1), (0,0,1), 't3')
sage: tlist = ['t1', 't2']
sage: tt = 't1'
sage: T.cylinder((0,0,.1), (1,1/3,0), .05, 't3')
```

```python
sage: for q in srange(-3, 100, .15):
    if tt == 't1':
        tt = 't2'
    else:
        tt = 't1'
    T.sphere((q, q/3+.3*sin(3*q), .1+.3*cos(3*q)), .1, tt)
```

```python
sage: T.show()
```

Image files in the ppm format can be used to tile planes or cover cylinders or spheres. In this example an image is created and then used to tile the plane:

```python
sage: T = Tachyon(xres=800, yres=600, camera_center=(-2.0,-.1,.3),
               projection='fisheye', frustum=(-1.0, 1.0, -1.0, 1.0))
sage: T.texture('t1', color=(0,0,1))
```

```python
sage: for ed in cedges:
    T.fcylinder(ed[0], ed[1], .05, 't1')
```

```python
sage: T.light((-4,-4,4), .1, (1,1,1))
```

(continues on next page)
sage: fname_png = tmp_filename(ext='.png')
sage: fname_ppm = tmp_filename(ext='.ppm')
sage: T.save(fname_png)
sage: r2 = os.system('convert '+fname_png+' '+fname_ppm) # optional -- ImageMagick

sage: T = Tachyon(xres=800, yres=600, camera_center=(-2.0,-.1,.3), projection='fisheye', frustum=(-1.0, 1.0, -1.0, 1.0)) # optional -- ImageMagick
sage: T.texture('t1', color=(1,0,0), specular=.9) # optional -- ImageMagick
sage: T.texture('p1', color=(1,1,1), opacity=.1, imagefile=fname_ppm, texfunc=9) # optional -- ImageMagick
sage: T.sphere((0,0,0), .5, 't1') # optional -- ImageMagick
sage: T.plane((0,0,-1), (0,0,1), 'p1') # optional -- ImageMagick
sage: T.light((-4,-4,4), .1, (1,1,1)) # optional -- ImageMagick
sage: T.show() # optional -- ImageMagick

AUTHOR:

• John E. Stone (johns@megapixel.com): wrote tachyon ray tracer
• William Stein: sage-tachyon interface
• Joshua Kantor: 3d function plotting
• Tom Boothby: 3d function plotting n’stuff
• Leif Hille: key idea for bugfix for texfunc issue (trac ticket #799)
• Marshall Hampton: improved doctests, rings, axis-aligned boxes.
• Paul Graham: Respect global verbosity settings (trac ticket #16228)

Todo:

• clean up trianglefactory stuff

class sage.plot.plot3d.tachyon.Axis_aligned_box(min_p, max_p, texture)
Bases: object
Box with axis-aligned edges with the given min and max coordinates.

str()
Return the scene string of the axis-aligned box.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import Axis_aligned_box
sage: aab = Axis_aligned_box((0,0,0),(1,1,1),'s')
sage: aab.str()
'\n box min 0.0 0.0 0.0 max 1.0 1.0 1.0 s\n'
```

class sage.plot.plot3d.tachyon.Cylinder(center, axis, radius, texture)
Bases: object
An infinite cylinder.

str()
Return the scene string of the cylinder.

EXAMPLES:
sage: t = Tachyon()
sage: from sage.plot.plot3d.tachyon import Cylinder
sage: c = Cylinder((0,0,0),(1,1,1),.1,'s')
sage: c.str()
'\ncylinder center 0.0 0.0 0.0 axis 1.0 1.0 1.0 rad 0.1 s\n'

FCylinder

class `sage.plot.plot3d.tachyon.FCylinder(base, apex, radius, texture)`

Bases: object

A finite cylinder.

str()

Return the scene string of the finite cylinder.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import FCylinder
sage: fc = FCylinder((0,0,0),(1,1,1),.1,'s')
sage: fc.str()
'fcylinder base 0.0 0.0 0.0 apex 1.0 1.0 1.0 rad 0.1 s
'
```

FractalLandscape

class `sage.plot.plot3d.tachyon.FractalLandscape(res, scale, center, texture)`

Bases: object

Axis-aligned fractal landscape.

Does not seem very useful at the moment, but perhaps will be improved in the future.

str()

Return the scene string of the fractal landscape.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import FractalLandscape
sage: fl = FractalLandscape([20,20],[30,30],[1,2,3],'s')
sage: fl.str()
'scape res 20 20 scale 30 30 center 1.0 2.0 3.0 s
'
```

Light

class `sage.plot.plot3d.tachyon.Light(center, radius, color)`

Bases: object

Represent lighting objects.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import Light
sage: q = Light((1,1,1), 1, (1,1,1))
sage: q._center
(1.0, 1.0, 1.0)
sage: q._radius
1.0

sage: from sage.plot.plot3d.tachyon import Light
sage: q = Light((1,1,1), 1, (1,1,1))
sage: q._radius
```
class sage.plot.plot3d.tachyon.ParametricPlot(f, t_0, t_f, tex, r=0.1, cylinders=True, min_depth=4, max_depth=8, e_rel=0.01, e_abs=0.01)

Bases: object

Parametric plotting routines.

str()

Return the tachyon string representation of the parameterized curve.

EXAMPLES:

```
sage: from sage.plot.plot3d.tachyon import ParametricPlot
sage: t = var('t')
sage: f = lambda t: (t,t^2,t^3)
sage: q = ParametricPlot(f,0,1,'s')
sage: q.str()[9:69]
'sphere center 0.0 0.0 0.0 rad 0.1 s\n 
f cyli'
```

tol(est, val)

Check relative, then absolute tolerance.

If both fail, return False.

This is a zero-safe error checker.

EXAMPLES:

```
sage: from sage.plot.plot3d.tachyon import ParametricPlot
sage: t = var('t')
sage: f = lambda t: (t,t^2,t^3)
sage: q = ParametricPlot(f,0,1,'s')
sage: q.tol([0,0,0],[1,0,0])
False
sage: q.tol([0,0,0],[.0001,0,0])
True
```

class sage.plot.plot3d.tachyon.Plane(center, normal, texture)

Bases: object

An infinite plane.

str()

Return the scene string of the plane.

EXAMPLES:

```
sage: from sage.plot.plot3d.tachyon import Plane
sage: p = Plane((1,2,3),(1,2,4),'s')
sage: p.str()
'\n plane center 1.0 2.0 3.0 normal 1.0 2.0 4.0 s\n ' 
```

class sage.plot.plot3d.tachyon.Ring(center, normal, inner, outer, texture)

Bases: object

An annulus of zero thickness.

str()

Return the scene string of the ring.

EXAMPLES:
class sage.plot.plot3d.tachyon.Sphere(center, radius, texture)

A class for creating spheres in tachyon.

str()

Return the scene string for the sphere.

EXAMPLES:

```python
t = Tachyon()
from sage.plot.plot3d.tachyon import Sphere
t.texture('r', color=(.8,0,0), ambient = .1)
s = Sphere((1,1,1), 1, 'r')
s.str()
```

class sage.plot.plot3d.tachyon.Tachyon(xres=350, yres=350, zoom=1.0, antialiasing=False, aspectratio=1.0, raydepth=8, camera_center=-3, 0, 0, updir=0, 0, 1, look_at=0, 0, 0, viewdir=None, projection='PERSPECTIVE', focallength='', aperture='', frustum='')

Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.SageObject

Create a scene the can be rendered using the Tachyon ray tracer.

INPUT:

- xres - (default 350)
- yres - (default 350)
- zoom - (default 1.0)
- antialiasing - (default False)
- aspectratio - (default 1.0)
- raydepth - (default 5)
- camera_center - (default (-3, 0, 0))
- updir - (default (0, 0, 1))
- look_at - (default (0,0,0))
- viewdir - (default None), otherwise list of three numbers
- projection - 'PERSPECTIVE' (default), 'perspective_dof' or 'fisheye'.
- frustum - (default ''), otherwise list of four numbers. Only used with projection='fisheye'.
- focallength - (default ''), otherwise a number. Only used with projection='perspective_dof'.
- aperture - (default ''), otherwise a number. Only used with projection='perspective_dof'.
OUTPUT: A Tachyon 3d scene.

Note that the coordinates are by default such that \(z \) is up, positive \(y \) is to the left and \(x \) is toward you. This is not oriented according to the right hand rule.

EXAMPLES: Spheres along the twisted cubic.

```sage
sage: t = Tachyon(xres=512,yres=512, camera_center=(3,0.3,0))
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, ...
\color=(1.0,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.3, opacity=1.0, ...
\color=(0,1,0))
sage: t.texture('t2', ambient=0.2,diffuse=0.7, specular=0.5, opacity=0.7, ...
\color=(0,0,1.0))
sage: k=0
sage: for i in srange(-1,1,0.05):
    ...:    k += 1
    ...:    t.sphere((i,i^2-0.5,i^3), 0.1, 't%s'%(k%3))
sage: t.show()
```

Another twisted cubic, but with a white background, got by putting infinite planes around the scene.

```sage
sage: t = Tachyon(xres=512,yres=512, camera_center=(3,0.3,0), raydepth=8)
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, ...
\color=(1.0,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.3, opacity=1.0, ...
\color=(0,1,0))
sage: t.texture('t2', ambient=0.2,diffuse=0.7, specular=0.5, opacity=0.7, ...
\color=(0,0,1.0))
sage: t.texture('white', color=(1,1,1))
sage: t.plane((0,0,-1), (0,0,1), 'white')
sage: t.plane((0,-20,0), (0,1,0), 'white')
sage: t.plane((-20,0,0), (1,0,0), 'white')
sage: k=0
sage: for i in srange(-1,1,0.05):
    ...:    k += 1
    ...:    t.sphere((i,i^2 - 0.5,i^3), 0.1, 't%s'%(k%3))
    ...:    t.cylinder((0,0,0), (0,0,1), 0.05,'t1')
sage: t.show()
```

Many random spheres:

```sage
sage: t = Tachyon(xres=512,yres=512, camera_center=(2,0.5,0.5), look_at=(0.5,0.5, ...
\color=0.5), raydepth=4)
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, ...
\color=(1.0,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.3, opacity=1.0, ...
\color=(0,1,0))
sage: t.texture('t2', ambient=0.2,diffuse=0.7, specular=0.5, opacity=0.7, ...
\color=(0,0,1.0))
sage: k=0
sage: for i in range(100):
    ...:    k += 1
    ...:    t.sphere(((random()),random(), random()), random()/10, 't%s'%(k%3))
sage: t.show()
```
Points on an elliptic curve, their height indicated by their height above the axis:

```
sage: t = Tachyon(camera_center=(5,2,2), look_at=(0,1,0))
sage: t.light((10,3,2), 0.2, (1,1,1))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,0))
sage: t.texture('t1', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,1,0))
sage: t.texture('t2', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(0,0,1))
sage: E = EllipticCurve('37a')
sage: P = E([0,0])
sage: Q = P

sage: for i in range(n):
    ....:     Q = Q + P
    ....:     t.sphere((Q[1], Q[0], ZZ(i)/n), 0.1, 't%s'%(i%3))

sage: t.show()
```

A beautiful picture of rational points on a rank 1 elliptic curve.

```
sage: t = Tachyon(xres=1000, yres=800, camera_center=(2,7,4), look_at=(2,0,0), raydepth=4)
sage: t.light((10,3,2), 1, (1,1,1))
sage: t.light((10,-3,2), 1, (1,1,1))
sage: t.texture('black', color=(0,0,0))
sage: t.texture('red', color=(1,0,0))
sage: t.texture('grey', color=(.9,.9,.9))
sage: t.plane((0,0,0),(0,0,1),'grey')
sage: t.cylinder((0,0,0),(1,0,0),.01,'black')
sage: t.cylinder((0,0,0),(0,1,0),.01,'black')
sage: E = EllipticCurve('37a')
sage: P = E([0,0])
sage: Q = P

sage: for i in range(n):
    ....:     c = i/n + .1
    ....:     t.texture('r%s' % i, color=(float(i/n),0,0))
    ....:     t.sphere((Q[0], -Q[1], .01), .04, 'r%s' % i)

sage: t.show()  # long time, e.g., 10-20 seconds
```

A beautiful spiral.

```
sage: t = Tachyon(xres=800,yres=800, camera_center=(2,5,2), look_at=(2.5,0,0))
sage: t.light((0,0,100), 1, (1,1,1))
sage: t.texture('r', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0, color=(1,0,0))
sage: for i in srange(0,50,0.1):
    ....:     t.sphere((i/10,sin(i),cos(i)), 0.05, 'r')

sage: t.texture('white', color=(1,1,1), opacity=1, specular=1, diffuse=1)
sage: t.plane((0,0,-100), (0,0,-100), 'white')
sage: t.show()
```

If the optional parameter viewdir is not set, the camera center should not coincide with the point which is looked at (see trac ticket #7232):
sage: t = Tachyon(xres=80, yres=80, camera_center=(2,5,2), look_at=(2,5,2))
Traceback (most recent call last):
...
ValueError: camera_center and look_at coincide

Use of a fisheye lens perspective.

sage: T = Tachyon(xres=800, yres=600, camera_center=(-1.5,-1.5,.3), projection='fisheye', frustum=(-1.0, 1.0, -1.0, 1.0))
sage: T.texture('t1', color=(0,0,1))
sage: cedges = [[[-1, 1, 1], [-1, 1, -1]], [[1, 1, 1], [1, -1, 1]], [[-1, 1, -1]], [[1, -1, 1], [-1, 1, 1]], [[1, -1, 1], [-1, -1, 1]], [[-1, 1, 1], [-1, -1, 1]], [[1, 1, 1], [1, -1, 1]], [[1, -1, 1], [-1, -1, 1]], [[-1, -1, 1], [-1, -1, -1]]
sage: for ed in cedges:
 T.fcylinder(ed[0], ed[1], .05, 't1')
sage: T.light((-4,-4,4), .1, (1,1,1))
sage: T.show()

Use of the projection='perspective_dof' option. This may not be implemented correctly.

sage: T = Tachyon(xres=800, antialiasing=4, raydepth=10, projection='perspective_dof', focallength='1.0', aperture='.0025')
sage: T.light((0,5,7), 1.0, (1,1,1))
sage: T.texture('t1', opacity=1, specular=.3)
sage: T.texture('t2', opacity=1, specular=.3, color=(0,0,1))
sage: T.texture('t3', opacity=1, specular=1, color=(1,.8,1), diffuse=0.2)
sage: T.plane((0,0,-1), (0,0,1), 't3')
sage: ttlist = ['t1', 't2']
sage: tt = 't1'
sage: T.cylinder((0,0,0),(-1,-1,-1),.1,'t3')
sage: for q in srange(-3, 100, .15):
 if tt == 't1':
 tt = 't2'
 else:
 tt = 't1'
sage: T.sphere((q, q/3+.3*sin(3*q), .1+.3*cos(3*q)), .1, tt)
sage: T.show()

axis_aligned_box(min_p, max_p, texture)
Create an axis-aligned box with minimal point min_p and maximum point max_p.

EXAMPLES:

sage: t = Tachyon()
sage: t.axis_aligned_box((0,0,0),(2,2,2),'s')
cylinder(center, axis, radius, texture)
Create the scene information for a infinite cylinder with the given center, axis direction, radius, and texture.

EXAMPLES:

sage: t = Tachyon()
sage: t.texture('c')
sage: t.cylinder((0,0,0),(-1,-1,-1),.1,'c')

5.1. The Tachyon 3D Ray Tracer 293
fcylinder \((base, \text{apex}, \text{radius}, \text{texture})\)
Finite cylinders are almost the same as infinite ones, but the center and length of the axis determine the extents of the cylinder.

The finite cylinder is also really a shell, it does not have any caps. If you need to close off the ends of the cylinder, use two ring objects, with the inner radius set to 0.0 and the normal set to be the axis of the cylinder. Finite cylinders are built this way to enhance speed.

EXAMPLES:

```python
sage: t = Tachyon()
sage: t.fcylinder((1,1,1),(1,2,3),.01,'s')
sage: len(t.str())
451
```

fractal_landscape \((res, \text{scale}, \text{center}, \text{texture})\)
Axis-aligned fractal landscape.

Not very useful at the moment.

EXAMPLES:

```python
sage: t = Tachyon()
sage: t.texture('s')
sage: t.fractal_landscape([30,30],[80,80],[0,0,0],'s')
sage: len(t._objects)
2
```

light \((\text{center}, \text{radius}, \text{color})\)
Create a light source of the given center, radius, and color.

EXAMPLES:

```python
sage: q = Tachyon()
sage: q.light((-20,-20,40), 0.2, (1,1,1))
sage: q.str().split('n')[17]
' light center 1.0 1.0 1.0 '
```

parametric_plot \((f, t_0, t_f, \text{tex}, r=0.1, \text{cylinders}=True, \text{min_depth}=4, \text{max_depth}=8, e_{rel}=0.01, e_{abs}=0.01)\)
Plot a space curve as a series of spheres and finite cylinders.

Example (twisted cubic)

```python
sage: f = lambda t: (t,t^2,t^3)
sage: t = Tachyon(camera_center=(5,0,4))
sage: t.texture('t')
sage: t.light((-20,-20,40), 0.2, (1,1,1))
sage: t.parametric_plot(f,-5,5,'t',min_depth=6)
sage: t.show(verbose=1)
tachyon ... Scene contains 482 objects.
...
```

plane \((\text{center}, \text{normal}, \text{texture})\)
Create an infinite plane with the given center and normal.

plot \((f, \text{xmin}_\text{xmax}, \text{ymin}_\text{ymax}, \text{texture}, \text{grad}_f=\text{None}, \text{max}_\text{bend}=0.7, \text{max}_\text{depth}=5, \text{initial}_\text{depth}=3, \text{num}_\text{colors}=\text{None})\)
INPUT:
• **f** - Function of two variables, which returns a float (or coercible to a float) \((xmin, xmax)\)

• \((ymin, ymax)\) - defines the rectangle to plot over texture: Name of texture to be used Optional arguments:

• **grad_f** - gradient function. If specified, smooth triangles will be used.

• **max_bend** - Cosine of the threshold angle between triangles used to determine whether or not to recurse after the minimum depth

• **max_depth** - maximum recursion depth. Maximum triangles plotted = \(2^{2 \cdot \text{maxdepth}}\)

• **initial_depth** - minimum recursion depth. No error-tolerance checking is performed below this depth. Minimum triangles plotted: \(2^{2 \cdot \text{mindepth}}\)

• **num_colors** - Number of rainbow bands to color the plot with. Texture supplied will be cloned (with different colors) using the texture_recolor method of the Tachyon object.

Plots a function by constructing a mesh with nonstandard sampling density without gaps. At very high resolutions (depths 10) it becomes very slow. Cython may help. Complexity is approx. \(O(2^{2 \cdot \text{maxdepth}})\).

This algorithm has been optimized for speed, not memory - values from \(f(x, y)\) are recycled rather than calling the function multiple times. At high recursion depth, this may cause problems for some machines.

Flat Triangles:

```python
sage: t = Tachyon(xres=512, yres=512, camera_center=(4,-4,3), viewdir=(-4,4,-3),
                 raydepth=4)
sage: t.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y): return float(sin(x*y))
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0,
               color=(1.0,0,0))
sage: t.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, num_colors=60)
# increase min_depth for better picture
sage: t.show(verbos=1)
tachyon ...
Scene contains 2713 objects.
...
```

Plotting with Smooth Triangles (requires explicit gradient function):

```python
sage: t = Tachyon(xres=512, yres=512, camera_center=(4,-4,3), viewdir=(-4,4,-3),
                 raydepth=4)
sage: t.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y): return float(sin(x*y))
sage: def g(x,y): return ( float(y*cos(x*y)), float(x*cos(x*y)), 1 )
sage: t.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0,
               color=(1.0,0,0))
sage: t.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, grad_f = g)  #
# increase min_depth for better picture
sage: t.show(verbos=1)
tachyon ...
Scene contains 2713 objects.
...
```

Preconditions: \(f\) is a scalar function of two variables, \(\text{grad}_f\) is None or a triple-valued function of two variables, \(\text{min}_x \neq \text{max}_x, \text{min}_y \neq \text{max}_y\)

```python
sage: f = lambda x,y: x*y
sage: t = Tachyon()
sage: t.plot(f,(2.,2.),(-2.,2.),"")
```

(continues on next page)
Traceback (most recent call last):
...
ValueError: Plot rectangle is really a line. Make sure min_x != max_x and
- min_y != max_y.

ring (center, normal, inner, outer, texture)
Create the scene information for a ring with the given parameters.

EXAMPLES:

```
sage: t = Tachyon()
sage: t.ring([0,0,0], [0,0,1], 1.0, 2.0, 's')
sage: t._objects[0]._center
(0.0, 0.0, 0.0)
```

save (filename='sage.png', verbose=None, extra_opts='')
Save rendering of the tachyon scene

INPUT:

- `filename` - (default: 'sage.png') output filename; the extension of the filename determines the type. Supported types include:
 - `tga` - 24-bit (uncompressed)
 - `bmp` - 24-bit Windows BMP (uncompressed)
 - `ppm` - 24-bit PPM (uncompressed)
 - `rgb` - 24-bit SGI RGB (uncompressed)
 - `png` - 24-bit PNG (compressed, lossless)
 - `verbose` - integer (default: None); if no verbosity setting is supplied, the verbosity level set by `sage.misc.verbose.set_verbose` is used.
 - 0 - silent
 - 1 - some output
 - 2 - very verbose output
 - `extra_opts` - passed directly to tachyon command line. Use tachyon_rt.usage() to see some of the possibilities.

EXAMPLES:

```
sage: q = Tachyon()
sage: q.light((1,1,11), 1,(1,1,1))
sage: q.texture('s')
sage: q.sphere((0,0,0),1,'s')
sage: tempname = tmp_filename()
sage: q.save(tempname)
```

save_image (filename=None, *args, **kwds)
Save an image representation of self.

The image type is determined by the extension of the filename. For example, this could be `.png`, `.jpg`, `.gif`, `.pdf`, `.svg`. Currently this is implemented by calling the `save()` method of self, passing along all arguments and keywords.
Note: Not all image types are necessarily implemented for all graphics types. See \texttt{save()} for more details.

EXAMPLES:

```python
sage: q = Tachyon()
sage: q.light((1,1,11), 1,(1,1,1))
sage: q.texture('s')
sage: q.sphere((0,-1,1),1,'s')
sage: tempname = tmp_filename()
sage: q.save_image(tempname)
```

\texttt{show (**kwds**)}

Create a PNG file of the scene.

This method attempts to display the graphics immediately, without waiting for the currently running code (if any) to return to the command line. Be careful, calling it from within a loop will potentially launch a large number of external viewer programs.

OUTPUT:

This method does not return anything. Use \texttt{save()} if you want to save the figure as an image.

EXAMPLES:

This example demonstrates how the global Sage verbosity setting is used if none is supplied. Firstly, using a global verbosity setting of 0 means no extra technical information is displayed, and we are simply shown the plot.

```python
sage: h = Tachyon(xres=512,yres=512, camera_center=(4,-4,3),viewdir=(-4,4,-3),
               raydepth=4)
sage: h.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y):
    return float(sin(x*y))
sage: h.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0,
             color=(1.0,0,0))
sage: h.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, num_colors=60),
# increase min_depth for better picture
sage: from sage.misc.verbose import set_verbose, get_verbose
sage: set_verbose(0)
sage: h.show()
```

This second example, using a “medium” global verbosity setting of 1, displays some extra technical information then displays our graph.

```python
sage: s = Tachyon(xres=512,yres=512, camera_center=(4,-4,3),viewdir=(-4,4,-3),
               raydepth=4)
sage: s.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y):
    return float(sin(x*y))
sage: s.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0,
             color=(1.0,0,0))
sage: s.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, num_colors=60),
# increase min_depth for better picture
sage: setVerbose(1)
sage: s.show()
tachyon ...
Scene contains 2713 objects.
...
```
The last example shows how you can override the global Sage verbosity setting, my supplying a setting level as an argument. In this case we chose the highest verbosity setting level, 2, so much more extra technical information is shown, along with the plot.

```python
sage: setVerbose(0)
sage: d = Tachyon(xres=512, yres=512, camera_center=(4,-4,3), viewdir=(-4,4,-3),
              raydepth=4)
sage: d.light((4.4,-4.4,4.4), 0.2, (1,1,1))
sage: def f(x,y): return float(sin(x*y))
sage: d.texture('t0', ambient=0.1, diffuse=0.9, specular=0.1, opacity=1.0,
              color=(1.0,0,0))
sage: d.plot(f,(-4,4),(-4,4),"t0",max_depth=5,initial_depth=3, num_colors=60),
             # increase min_depth for better picture
sage: getVerbose()
0
sage: d.show(verbos="e=2")
tachyon ...
Scene contains 2713 objects.
...
Scene contains 1 non-gridded objects
```

smooth_triangle (vertex_1, vertex_2, vertex_3, normal_1, normal_2, normal_3, texture)

Create a triangle along with a normal vector for smoothing.

EXAMPLES:

```python
sage: t = Tachyon()
sage: t.light((1,1,1),.1,(1,1,1))
sage: t.texture('s')
sage: t.smooth_triangle([0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,1,2],[3,0,0],'s')
sage: t._objects[2].get_vertices()([0, 0, 0], [0, 0, 1], [0, 1, 0])
sage: t._objects[2].get_normals()([[0, 1, 1], [-1, 1, 2], [3, 0, 0]])
```

sphere (center, radius, texture)

Create the scene information for a sphere with the given center, radius, and texture.

EXAMPLES:

```python
sage: t = Tachyon()
sage: t.texture('sphere_texture')
sage: t.sphere((1,2,3), .1, 'sphere_texture')
sage: t._objects[1].str()"sphere center 1.0 2.0 3.0 rad 0.1 sphere_texture"
```

str()

Return the complete tachyon scene file as a string.

EXAMPLES:

```python
sage: t = Tachyon(xres=500, yres=500, camera_center=(2,0,0))
sage: t.light((4,3,2), 0.2, (1,1,1))
sage: t.texture('t2', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0,
            color=(1,0,0))
sage: t.texture('t3', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0,
            color=(0,1,0))
sage: t.texture('t4', ambient=0.1, diffuse=0.9, specular=0.5, opacity=1.0,
            color=(0,0,1))
```
\begin{verbatim}
\textbf{sage}: t.sphere((0,0.5,0), 0.2, 't2')
\textbf{sage}: t.sphere((0.5,0,0), 0.2, 't3')
\textbf{sage}: t.sphere((0,0,0.5), 0.2, 't4')
\textbf{sage}: 'PLASTIC' \textbf{in} t.str()
\textbf{True}
\end{verbatim}

\texttt{texfunc} (\texttt{type=0, \texttt{center}=0, 0, 0, \texttt{rotate}=0, 0, \texttt{scale}=1, 1, 1, \texttt{imagefile}='')

INPUT:

- \texttt{type} - (default: 0)
 - 0. No special texture, plain shading
 - 1. 3D checkerboard function, like a rubik’s cube
 - 2. Grit Texture, randomized surface color
 - 3. 3D marble texture, uses object’s base color
 - 4. 3D wood texture, light and dark brown, not very good yet
 - 5. 3D gradient noise function (can’t remember what it looks like)
 - 6. Don’t remember
 - 7. Cylindrical Image Map, requires ppm filename (with path)
 - 8. Spherical Image Map, requires ppm filename (with path)
 - 9. Planar Image Map, requires ppm filename (with path)

- \texttt{center} - (default: (0,0,0))
- \texttt{rotate} - (default: (0,0,0))
- \texttt{scale} - (default: (1,1,1))

EXAMPLES: We draw an infinite checkerboard:

\begin{verbatim}
\textbf{sage}: t = Tachyon(camera_center=(2,7,4), look_at=(2,0,0))
\textbf{sage}: t.texture('black', color=(0,0,0), texfunc=1)
\textbf{sage}: t.plane((0,0,0),(0,0,1),'black')
\textbf{sage}: t.show()
\end{verbatim}

\texttt{texture} (\texttt{name, ambient=0.2, diffuse=0.8, specular=0.0, opacity=1.0, color=1.0, 0.0, 0.5, texfunc=0, phong=0, phongsize=0.5, phongtype='PLASTIC', imagefile='')

INPUT:

- \texttt{name} - string; the name of the texture (to be used later)
- \texttt{ambient} - (default: 0.2)
- \texttt{diffuse} - (default: 0.8)
- \texttt{specular} - (default: 0.0)
- \texttt{opacity} - (default: 1.0)
- \texttt{color} - (default: (1.0,0.0,0.5))
- \texttt{texfunc} - (default: 0); a texture function; this is either the output of self.texfunc, or a number between 0 and 9, inclusive. See the docs for self.texfunc.
- \texttt{phong} - (default: 0)
- \texttt{phongsize} - (default: 0.5)
• phongtype - (default: “PLASTIC”)

EXAMPLES:

We draw a scene with 4 spheres that illustrates various uses of the texture command:

```
sage: t = Tachyon(camera_center=(2,5,4), look_at=(2,0,0), raydepth=6)
sage: t.light((10,3,4), 1, (1,1,1))
sage: t.texture('mirror', ambient=0.05, diffuse=0.05, specular=.9, opacity=0.9, color=(.8,.8,.8))
sage: t.texture('grey', color=(.8,.8,.8), texfunc=3)
sage: t.plane((0,0,0),(0,0,1),'grey')
sage: t.sphere((4,-1,1), 1, 'mirror')
sage: t.sphere((0,-1,1), 1, 'mirror')
sage: t.sphere((2,-1,1), 0.5, 'mirror')
sage: t.sphere((2,1,1), 0.5, 'mirror')
sage: show(t)  # known bug (trac #7232)
```

texture_recolor (name, colors)
Recolor default textures.

EXAMPLES:

```
sage: t = Tachyon()
sage: t.texture('s')
sage: q = t.texture_recolor('s',[(0,0,1)])
sage: t._objects[1]._color(0.0, 0.0, 1.0)
```

triangle (vertex_1, vertex_2, vertex_3, texture)
Create a triangle with the given vertices and texture.

EXAMPLES:

```
sage: t = Tachyon()
sage: t.texture('s')
sage: t.triangle([1,2,3],[4,5,6],[7,8,10],'s')
sage: t._objects[1].get_vertices()
[(1, 2, 3), (4, 5, 6), (7, 8, 10)]
```

class sage.plot.plot3d.tachyon.TachyonSmoothTriangle (a, b, c, da, db, dc; color=0)
Bases: sage.plot.plot3d.tri_plot.SmoothTriangle

A triangle along with a normal vector, which is used for smoothing.

str()
Return the scene string for a smoothed triangle.

EXAMPLES:

```
sage: from sage.plot.plot3d.tachyon import TachyonSmoothTriangle
sage: t = TachyonSmoothTriangle([-1,-1,-1],[0,0,0],[1,2,3],[1,0,0],[0,1,0],[0,0,1])
sage: t.str()
'\n STRI V0 ... 1.0 0.0 0.0 N1 0.0 1.0 0.0 N2 0.0 0.0 1.0
 ' 0
```

class sage.plot.plot3d.tachyon.TachyonTriangle (a, b, c, color=0)
Bases: sage.plot.plot3d.tri_plot.Triangle

Basic triangle class.
str()
Return the scene string for a triangle.

EXAMPLES:

```
sage: from sage.plot.plot3d.tachyon import TachyonTriangle
sage: t = TachyonTriangle([-1,-1,-1],[0,0,0],[1,2,3])
sage: t.str()

\n TRI V0 -1.0 -1.0 -1.0 V1 0.0 0.0 0.0 V2 1.0 2.0 3.0 \n \n```

class sage.plot.plot3d.tachyon.TachyonTriangleFactory (tach, tex)
Bases: sage.plot.plot3d.tri_plot.TriangleFactory

A class to produce triangles of various rendering types.

get_colors (list)
Return a list of color labels.

EXAMPLES:

```
sage: from sage.plot.plot3d.tachyon import TachyonTriangleFactory
sage: t = Tachyon()
sage: t.texture('s')
sage: ttf = TachyonTriangleFactory(t, 's')
sage: ttf.get_colors([[(1,1,1)]])
['TEX1_0']
```

smooth_triangle (a, b, c, da, db, dc, color=None)
Create a TachyonSmoothTriangle.

EXAMPLES:

```
sage: from sage.plot.plot3d.tachyon import TachyonTriangleFactory
sage: t = Tachyon()
sage: t.texture('s')
sage: ttf = TachyonTriangleFactory(t, 's')
sage: ttfst = ttf.smooth_triangle([0,0,0],[1,0,0],[0,0,1],[1,1,1],[1,2,3],[1,-1,2])
sage: ttfst.str()

\n STRI V0 0.0 0.0 0.0 ... \n```

triangle (a, b, c, color=None)
Create a TachyonTriangle with vertices a, b, and c.

EXAMPLES:

```
sage: from sage.plot.plot3d.tachyon import TachyonTriangleFactory
sage: t = Tachyon()
sage: t.texture('s')
sage: ttf = TachyonTriangleFactory(t, 's')
sage: ttft = ttf.triangle([1,2,3],[3,2,1],[0,2,1])
sage: ttft.str()

\n TRI V0 1.0 2.0 3.0 V1 3.0 2.0 1.0 V2 0.0 2.0 1.0 \n```

class sage.plot.plot3d.tachyon.Texfunc (ttype=0, center=0, 0, 0, rotate=0, 0, 0, scale=1, 1, 1, imagefile='')
Bases: object

Create a texture function.
EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import Texfunc
sage: t = Texfunc()
sage: t._tttype
0
```

```
str()
```

Return the scene string for this texture function.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import Texfunc
sage: t = Texfunc()
sage: t.str()
'0'
```

```
class sage.plot.plot3d.tachyon.Texture(name, ambient=0.2, diffuse=0.8, specular=0.0, opacity=1.0, color=1.0, 0.0, 0.5, texfunc=0, phong=0, phongsize=0, phongtype='PLASTIC', imagefile='')
```

Bases: object

Store texture information.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import Texture
sage: t = Texture('w')
```

```python
sage: t.str().split()[2:6]
['ambient', '0.2', 'diffuse', '0.8']
```

```
recolor(name, color)
```

Return a texture with the new given color.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import Texture
sage: t2 = Texture('w')
```

```python
sage: t2w = t2.recolor('w2', (.1,.2,.3))
```

```python
sage: t2ws = t2w.str()
```

```python
sage: color_index = t2ws.find('color')
```

```python
sage: t2ws[color_index:color_index+20]
'color 0.1 0.2 0.3 '
```

```
str()
```

Return the scene string for this texture.

EXAMPLES:

```python
sage: from sage.plot.plot3d.tachyon import Texture
sage: t = Texture('w')
```

```python
sage: t.str().split()[2:6]
['ambient', '0.2', 'diffuse', '0.8']
```

```
sage.plot.plot3d.tachyon.tostr(s, length=3, out_type=<class 'float'>)
```

Convert vector information to a space-separated string.

EXAMPLES:
5.2 Three.js JavaScript WebGL Renderer

A web-based interactive viewer using the Three.js JavaScript library maintained by https://threejs.org. The viewer is invoked by adding the keyword argument viewer=’threejs’ to the command show() or any three-dimensional graphic. The scene is rendered and displayed in the user’s web browser. Interactivity includes

- Zooming in or out with the mouse wheel or pinching on a touch pad
- Rotation by clicking and dragging with the mouse or swiping on a touch pad
- Panning by right-clicking and dragging with the mouse or swiping with three fingers on a touch pad

The generated HTML file contains all data for the scene apart from the JavaScript library and can be saved to disk for sharing or embedding in a web page. The option online can be set to true to provide links to the required files in an online content delivery network. Alternately the required files can be downloaded from the Three.js GitHub repository and linked directly from the web server.

Options currently supported by the viewer:

- aspect_ratio – (default: [1,1,1]) list or tuple of three numeric values; z-aspect is automatically reduced when large but can be overridden
- axes – (default: False) Boolean determining whether coordinate axes are drawn
- axes_labels – (default: ['x','y','z']) list or tuple of three strings; set to False to remove all labels
- color – (default: 'blue') color of the 3D object
- decimals – (default: 2) integer determining decimals displayed in labels
- frame – (default: True) Boolean determining whether frame is drawn
- online – (default: False) Boolean determining whether the local standard package files are replaced by links to an online content delivery network
- opacity – (default: 1) numeric value for transparency of lines and surfaces
- projection – (default: ‘perspective’) the type of camera projection to use; ‘perspective’ or ‘orthographic’
- radius – (default: None) numeric value for radius of lines; use to render lines thicker than available using thickness or on Windows platforms where thickness is ignored
- render_order – (default: 0) numeric value for rendering order of transparent surfaces; objects render from lowest to highest value ensuring that lower-valued objects render completely
- single_side – (default: False) Boolean determining whether both sides of a surface material are rendered; set to True to reduce rendering artifacts for closed transparent surfaces
- thickness – (default: 1) numeric value for thickness of lines
- viewpoint – (default: None) list or tuple of the form [[x,y,z],angle] setting the initial viewpoint of the scene, where angle is in degrees; can be determined using the ‘Get Viewpoint’ option of the information menu

In addition, the following animation-related options are supported:
• **animate** – (default: depends) whether to enable animation. Automatically set to True if animation data is present in the plot. If False, all frames of animation will be displayed simultaneously.

• **animationControls** – (default: True) whether to include the playback slider and buttons (play, pause, etc.) in the page

• **auto_play** – (default: True) whether to immediately start playing the animation when the page loads. Recommend setting animationControls=True to be able to start playback.

• **delay** – (default: 20) an integer amount of time between consecutive frames of animation, in hundredths of a second

• **loop** – (default: True) whether to loop the animation or have it stop after reaching the end. Can be toggled on the page itself if animationControls is set.

Clicking on the information icon in the lower right-hand corner of the viewer opens a menu of available actions. These include saving the three-dimensional scene as a static PNG image or as complete HTML source code.

**AUTHORS:**

• Paul Masson (2016): Initial version

• Joshua Campbell (2020): Animation support

**EXAMPLES:**

Three spheres of different color and opacity:

```sage
sage: p1 = sphere(color='red', opacity='.5')
sage: p2 = sphere((-1,-1,1), color='cyan', opacity='.3')
sage: p3 = sphere((1,-1,-1), color='yellow', opacity='.7')
sage: show(p1 + p2 + p3, viewer='threejs')
```

A parametric helix:

```sage
sage: parametric_plot3d([cos(x),sin(x),x/10], (x,0,4*pi), color='red', viewer='threejs')
Graphics3d Object
```

An interactive() animation:

```sage
def build_frame(t):
 e = parametric_plot3d([sin(x-t), 0, x], (x, 0, 2*pi), color='red')
 m = parametric_plot3d([0, -sin(x-t), x], (x, 0, 2*pi), color='green')
 return e + m

sage: frames = [build_frame(t) for t in (0, pi/32, pi/16, ..., 2*pi)]
sage: plot = animate(frames).interactive()
sage: show(plot, delay=5, auto_play=False, projection='orthographic')
```
CHAPTER
SIX

INDICES AND TABLES

• Index
• Module Index
• Search Page
p
sage.plot.plot3d.base, 157
sage.plot.plot3d.implicit_plot3d, 113
sage.plot.plot3d.implicit_surface, 260
sage.plot.plot3d.index_face_set, 268
sage.plot.plot3d.introduction, 1
sage.plot.plot3d.list_plot3d, 152
sage.plot.plot3d.parametric_plot3d, 48
sage.plot.plot3d.parametric_surface, 256
sage.plot.plot3d.platonic, 231
sage.plot.plot3d.plot3d, 3
sage.plot.plot3d.plot_field3d, 112
sage.plot.plot3d.revolution_plot3d, 102
sage.plot.plot3d.shapes, 182
sage.plot.plot3d.shapes2, 221
sage.plot.plot3d.tachyon, 285
sage.plot.plot3d.texture, 265
sage.plot.plot3d.transform, 280
sage.plot.plot3d.tri_plot, 282
INDEX

Symbols

__add__() (sage.plot.plot3d.base.Graphics3d method), 157
_rich_repr__() (sage.plot.plot3d.base.Graphics3d method), 158

A

add_condition() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 269
add_triangle() (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles method), 263
amf_ascii_string() (sage.plot.plot3d.base.Graphics3d method), 158
arrow3d() (in module sage.plot.plot3d.shapes), 212
aspect_ratio() (sage.plot.plot3d.base.Graphics3d method), 159
avg_scale() (sage.plot.plot3d.transform.Transformation method), 280
axes() (in module sage.plot.plot3d.plot3d), 19
Axis-aligned_box (class in sage.plot.plot3d.tachyon), 287
axis_aligned_box() (sage.plot.plot3d.tachyon.Tachyon method), 293

B

bezier3d() (in module sage.plot.plot3d.shapes2), 224
bounding_box() (sage.plot.plot3d.base.Graphics3d method), 159
bounding_box() (sage.plot.plot3d.base.Graphics3dGroup method), 172
bounding_box() (sage.plot.plot3d.base.TransformGroup method), 178
bounding_box() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 261
bounding_box() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 274
bounding_box() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 258
bounding_box() (sage.plot.plot3d.shapes.Box method), 185
bounding_box() (sage.plot.plot3d.shapes.Cylinder method), 196
bounding_box() (sage.plot.plot3d.shapes.Sphere method), 201
bounding_box() (sage.plot.plot3d.shapes.Text method), 209
bounding_box() (sage.plot.plot3d.shapes2.Line method), 221
bounding_box() (sage.plot.plot3d.shapes2.Point method), 223
BoundingSphere (class in sage.plot.plot3d.base), 157
Box (class in sage.plot.plot3d.shapes), 182

C

color_function (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 261
color_function (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 262
ColorCube() (in module sage.plot.plot3d.shapes), 189
colormap (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 261
colormap (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 262
Cone (class in sage.plot.plot3d.shapes), 189
contour (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 262
contours (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 261
corners() (sage.plot.plot3d.shapes2.Line method), 222
crossunit () (in module sage.plot.plot3d.tri_plot), 284
cube () (in module sage.plot.plot3d.platonic), 232
Cylinder (class in sage.plot.plot3d.shapes), 196
Cylinder (class in sage.plot.plot3d.tachyon), 287
cylinder () (sage.plot.plot3d.tachyon.Tachyon method), 293
Cylindrical (class in sage.plot.plot3d.plot3d), 9
cylindrical_plot3d () (in module sage.plot.plot3d.plot3d), 19

D
default_render_params () (sage.plot.plot3d.base.Graphics3d method), 159
default_render_params () (sage.plot.plot3d.parametric_surface.ParametricSurface method), 258
dodecahedron () (in module sage.plot.plot3d.platonic), 242
dual () (sage.plot.plot3d.index_face_set.IndexFaceSet method), 274
dual () (sage.plot.plot3d.parametric_surface.ParametricSurface method), 259

E
edge_list () (sage.plot.plot3d.index_face_set.IndexFaceSet method), 274
EdgeIter (class in sage.plot.plot3d.index_face_set), 268
dges() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 274
eval() (sage.plot.plot3d.parametric_surface.MoebiusStrip method), 257
eval() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 259
export_jmol () (sage.plot.plot3d.base.Graphics3d method), 160
extrema () (sage.plot.plot3d.tri_plot.TrianglePlot method), 283

F
f (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 261
face_list () (sage.plot.plot3d.index_face_set.IndexFaceSet method), 274
FaceIter (class in sage.plot.plot3d.index_face_set), 268
daces() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 274
FCylinder (class in sage.plot.plot3d.tachyon), 288
fcylinder() (sage.plot.plot3d.tachyon.Tachyon method), 293
flatten() (sage.plot.plot3d.implicit_surface.MarchingCubes method), 262
flatten() (sage.plot.plot3d.base.Graphics3d method), 160
flatten() (sage.plot.plot3d.base.Graphics3dGroup method), 172
flatten() (sage.plot.plot3d.base.TransformGroup method), 178
flatten_list() (in module sage.plot.plot3d.base), 181
fractal_landscape() (sage.plot.plot3d.tachyon.Tachyon method), 294
FractalLandscape (class in sage.plot.plot3d.tachyon), 288
frame3d() (in module sage.plot.plot3d.shapes2), 224
frame_aspect_ratio() (sage.plot.plot3d.base.Graphics3d method), 161
frame_labels() (in module sage.plot.plot3d.shapes2), 225

G
get_colors () (sage.plot.plot3d.tachyon.TachyonTriangleFactory method), 301
get_colors () (sage.plot.plot3d.tri_plot.TriangleFactory method), 283
get_endpoints() (sage.plot.plot3d.shapes.Cylinder method), 196
get_grid() (sage.plot.plot3d.parametric_surface.MoebiusStrip method), 257
get_grid() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 259
get_grid() (sage.plot.plot3d.shapes.Cone method), 192
get_grid() (sage.plot.plot3d.shapes.Cylinder method), 200
get_grid() (sage.plot.plot3d.shapes.Sphere method), 207
get_grid() (sage.plot.plot3d.shapes.Torus method), 212
get_matrix() (sage.plot.plot3d.transform.Transformation method), 280
get_normals() (sage.plot.plot3d.tri_plot.SmoothTriangle method), 282
get_radius() (sage.plot.plot3d.shapes.Cylinder method), 200
get_texture() (sage.plot.plot3d.base.PrimitiveObject method), 175
get_transformation() (sage.plot.plot3d.base.TransformGroup method), 179
get_vertices() (sage.plot.plot3d.tri_plot.Triangle method), 283
gradient (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 261
gradient (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 262
Graphics3d (class in sage.plot.plot3d.base), 157
Graphics3dGroup (class in sage.plot.plot3d.base), 172

has_local_colors() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 275
hex_rgb() (sage.plot.plot3d.texture.Texture method), 266

icosahedron() (in module sage.plot.plot3d.platonic), 245
implicit_plot3d() (in module sage.plot.plot3d.implicit_plot3d), 113
ImplicitSurface (class in sage.plot.plot3d.implicit_surface), 260
index_face_set() (in module sage.plot.plot3d.platonic), 245
index_faces() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 275
index_faces_with_colors() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 275
IndexFaceSet (class in sage.plot.plot3d.index_face_set), 268
interface() (sage.plot.plot3d.tri_plot.TrianglePlot method), 283
is_enclosed() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 276
is_enclosed() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 259
is_skew() (sage.plot.plot3d.transform.Transformation method), 280
is_Texture() (in module sage.plot.plot3d.texture), 267
is_uniform() (sage.plot.plot3d.transform.Transformation method), 280
is_uniform_on() (sage.plot.plot3d.transform.Transformation method), 280

jmol_repr() (sage.plot.plot3d.base.Graphics3d method), 161
jmol_repr() (sage.plot.plot3d.base.Graphics3dGroup method), 172
jmol_repr() (sage.plot.plot3d.base.PrimitiveObject method), 176
jmol_repr() (sage.plot.plot3d.base.TransformGroup method), 179
jmol_repr() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 261
jmol_repr() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 276
jmol_repr() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 259
jmol_repr() (sage.plot.plot3d.shapes.Cylinder method), 200
jmol_repr() (sage.plot.plot3d.shapes.Sphere method), 207
jmol_repr() (sage.plot.plot3d.shapes.Text method), 209
jmol_repr() (sage.plot.plot3d.shapes2.Line method), 222
jmol_repr() (sage.plot.plot3d.shapes2.Point method), 223
jmol_str() (sage.plot.plot3d.texture.Texture method), 266
json_repr() (sage.plot.plot3d.base.Graphics3d method), 161
json_repr() (sage.plot.plot3d.base.Graphics3dGroup method), 173
json_repr() (sage.plot.plot3d.base.TransformGroup method), 179
json_repr() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 261
json_repr() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 276
json_repr() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 259

K

KeyframeAnimationGroup (class in sage.plot.plot3d.base), 175

L

Light (class in sage.plot.plot3d.tachyon), 288
light() (sage.plot.plot3d.tachyon.Tachyon method), 294
Line (class in sage.plot.plot3d.shapes2), 221
line3d() (in module sage.plot.plot3d.shapes2), 225
LineSegment () (in module sage.plot.plot3d.shapes), 201
list_plot3d() (in module sage.plot.plot3d.list_plot3d), 152
list_plot3d_array_of_arrays() (in module sage.plot.plot3d.list_plot3d), 154
list_plot3d_matrix() (in module sage.plot.plot3d.list_plot3d), 154
list_plot3d_tuples() (in module sage.plot.plot3d.list_plot3d), 155

M

MarchingCubes (class in sage.plot.plot3d.implicit_surface), 262
MarchingCubesTriangles (class in sage.plot.plot3d.implicit_surface), 263
max3 () (in module sage.plot.plot3d.base), 181
max_scale() (sage.plot.plot3d.transform.Transformation method), 280
midpoint() (in module sage.plot.plot3d.index_face_set), 279
min3 () (in module sage.plot.plot3d.base), 182
module
  sage.plot.plot3d.base, 157
  sage.plot.plot3d.implicit_plot3d, 113
  sage.plot.plot3d.implicit_surface, 260
  sage.plot.plot3d.index_face_set, 268
  sage.plot.plot3d.introduction, 1
  sage.plot.plot3d.list_plot3d, 152
  sage.plot.plot3d.parametric_plot3d, 48
  sage.plot.plot3d.parametric_surface, 256
  sage.plot.plot3d.platonic, 231
  sage.plot.plot3d.plot3d, 3
  sage.plot.plot3d.plot_field3d, 112
  sage.plot.plot3d.revolution_plot3d, 102
  sage.plot.plot3d.shapes, 182
  sage.plot.plot3d.shapes2, 221
  sage.plot.plot3d.tachyon, 285
  sage.plot.plot3d.texture, 265
  sage.plot.plot3d.transform, 280
  sage.plot.plot3d.tri_plot, 282
MoebiusStrip (class in sage.plot.plot3d.parametric_surface), 257
mtl_str() (sage.plot.plot3d.base.Graphics3d method), 161
mtl_str() (sage.plot.plot3d.texture.Texture method), 266

N

nx (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 262
ny (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 262
nz (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 262

O

obj() (sage.plot.plot3d.base.Graphics3d method), 162
obj_repr() (sage.plot.plot3d.base.Graphics3d method), 162
obj_repr() (sage.plot.plot3d.base.Graphics3dGroup method), 173
obj_repr() (sage.plot.plot3d.base.PrimitiveObject method), 176
obj_repr() (sage.plot.plot3d.base.TransformGroup method), 179
obj_repr() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 261
obj_repr() (sage.plot.plot3d.graphics3d.index_face_set.IndexFaceSet method), 276
obj_repr() (sage.plot.plot3d.implicit_surface.implicit_surface.ParametricSurface method), 260
obj_repr() (sage.plot.plot3d.shapes.Text method), 209
obj_repr() (sage.plot.plot3d.shapes2.Line method), 222
obj_repr() (sage.plot.plot3d.shapes2.Point method), 223
octahedron() (in module sage.plot.plot3d.platonic), 245
optimal_aspect_ratios() (in module sage.plot.plot3d.base), 182
optimal_extra_kwds() (in module sage.plot.plot3d.base), 182

P

parametric_plot() (sage.plot.plot3d.tachyon.Tachyon method), 294
parametric_plot3d() (in module sage.plot.plot3d.parametric_plot3d), 48
ParametricPlot (class in sage.plot.plot3d.tachyon), 288
ParametricSurface (class in sage.plot.plot3d.parametric_surface), 257
parse_color() (in module sage.plot.plot3d.texture), 267
partition() (sage.plot.plot3d.graphics3d.index_face_set.IndexFaceSet method), 276
Plane (class in sage.plot.plot3d.tachyon), 289
plane() (sage.plot.plot3d.tachyon.Tachyon method), 294
plot() (sage.plot.plot3d.base.Graphics3d method), 163
plot() (sage.plot.plot3d.base.Graphics3dGroup method), 173
plot() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 260
plot() (sage.plot.plot3d.tachyon.Tachyon method), 294
plot3d() (in module sage.plot.plot3d.plot3d), 23
plot3d_adaptive() (in module sage.plot.plot3d.plot3d), 40
plot_block() (sage.plot.plot3d.tri_plot.TrianglePlot method), 283
plot_points (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 261
plot_vector_field3d() (in module sage.plot.plot3d.plot_field3d), 112
PlotBlock (class in sage.plot.plot3d.tri_plot), 282
ply_ascii_string() (sage.plot.plot3d.base.Graphics3d method), 163
Point (class in sage.plot.plot3d.shapes2), 223
point3d() (in module sage.plot.plot3d.shapes2), 226
point_list_bounding_box() (in module sage.plot.plot3d.base), 182
polygon3d() (in module sage.plot.plot3d.shapes2), 227
polygons3d() (in module sage.plot.plot3d.shapes2), 228
pop_transform() (sage.plot.plot3d.base.RenderParams method), 177
prep() (in module sage.plot.plot3d.platonic), 248
PrimitiveObject (class in sage.plot.plot3d.base), 175
process_cubes() (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles method), 263
process_slice() (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles method), 263
push_transform() (sage.plot.plot3d.base.RenderParams method), 177

R
recolor() (sage.plot.plot3d.tachyon.Texture method), 302
region (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 261
region (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 262
render_implicit() (in module sage.plot.plot3d.implicit_surface), 264
RenderParams (class in sage.plot.plot3d.base), 177
results (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 262
revolution_plot3d() (in module sage.plot.plot3d.revolution_plot3d), 102
Ring (class in sage.plot.plot3d.tachyon), 289
ring() (sage.plot.plot3d.tachyon.Tachyon method), 296
rotate() (sage.plot.plot3d.base.Graphics3d method), 164
rotate_arbitrary() (in module sage.plot.plot3d.transform), 280
rotateX() (sage.plot.plot3d.base.Graphics3d method), 164
rotateY() (sage.plot.plot3d.base.Graphics3d method), 164
rotateZ() (sage.plot.plot3d.base.Graphics3d method), 164
ruler() (in module sage.plot.plot3d.shapes2), 228
ruler_frame() (in module sage.plot.plot3d.shapes2), 229

S
sage.plot.plot3d.base
 module, 157
sage.plot.plot3d.implicit_plot3d
 module, 113
sage.plot.plot3d.implicit_surface
 module, 260
sage.plot.plot3d.index_face_set
 module, 268
sage.plot.plot3d.introduction
 module, 1
sage.plot.plot3d.list_plot3d
 module, 152
sage.plot.plot3d.parametric_plot3d
 module, 48
sage.plot.plot3d.parametric_surface
 module, 256
sage.plot.plot3d.platonic
 module, 231
sage.plot.plot3d.plot3d
 module, 3
sage.plot.plot3d.plot_field3d
 module, 112
sage.plot.plot3d.revolution_plot3d
 module, 102
sage.plot.plot3d.shapes
module, 182
sage.plot.plot3d.shapes2 module, 221
sage.plot.plot3d.tachyon module, 285
sage.plot.plot3d.texture module, 265
sage.plot.plot3d.transform module, 280
sage.plot.plot3d.tri_plot module, 282
save() (sage.plot.plot3d.base.Graphics3d method), 164
save() (sage.plot.plot3d.tachyon.Tachyon method), 296
save_image() (sage.plot.plot3d.base.Graphics3d method), 165
save_image() (sage.plot.plot3d.tachyon.Tachyon method), 296
scale() (sage.plot.plot3d.base.Graphics3d method), 166
set_color() (sage.plot.plot3d.tri_plot.Triangle method), 283
set_texture() (sage.plot.plot3d.base.Graphics3dGroup method), 173
set_texture() (sage.plot.plot3d.base.PrimitiveObject method), 176
show() (sage.plot.plot3d.base.Graphics3d method), 166
show() (sage.plot.plot3d.tachyon.Tachyon method), 297
slices (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 263
smooth (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 261
smooth (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 263
smooth_triangle() (sage.plot.plot3d.tri_plot.TrivialTriangleFactory method), 18
smooth_triangle() (sage.plot.plot3d.tachyon.Tachyon method), 298
smooth_triangle() (sage.plot.plot3d.tachyon.TachyonTriangleFactory method), 301
SmoothTriangle (class in sage.plot.plot3d.tri_plot), 282
Sphere (class in sage.plot.plot3d.shapes), 201
Sphere (class in sage.plot.plot3d.tachyon), 290
sphere() (in module sage.plot.plot3d.shapes2), 229
sphere() (sage.plot.plot3d.tachyon.Tachyon method), 298
Spherical (class in sage.plot.plot3d.plot3d), 12
spherical_plot3d() (in module sage.plot.plot3d.plot3d), 41
SphericalElevation (class in sage.plot.plot3d.plot3d), 12
sticker() (in module sage.plot.plot3d.index_face_set), 279
sticker() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 276
stickers() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 277
stl_ascii_string() (sage.plot.plot3d.base.Graphics3d method), 167
stl_binary() (sage.plot.plot3d.base.Graphics3d method), 168
stl_binary_repr() (sage.plot.plot3d.base.Graphics3dGroup method), 173
stl_binary_repr() (sage.plot.plot3d.base.TransformGroup method), 180
stl_binary_repr() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 277
stl_binary_repr() (sage.plot.plot3d.shapes2.Line method), 222
stl_binary_repr() (sage.plot.plot3d.shapes2.Point method), 223
str() (sage.plot.plot3d.tachyon.Axis_aligned_box method), 287
str() (sage.plot.plot3d.tachyon.Cylinder method), 287
str() (sage.plot.plot3d.tachyon.FCylinder method), 288
str() (sage.plot.plot3d.tachyon.FractalLandscape method), 288
str() (sage.plot.plot3d.tachyon.Light method), 288
str() (sage.plot.plot3d.tachyon.ParametricPlot method), 289
str() (sage.plot.plot3d.tachyon.Plane method), 289
str() (sage.plot.plot3d.tachyon.Ring method), 289
str() (sage.plot.plot3d.tachyon.Tree method), 290
str() (sage.plot.plot3d.tachyon.Tachyon method), 298
str() (tachyon repr() (sage.plot.plot3d.tachyon.TachyonSmoothTriangle method), 300
str() (tachyon repr() (sage.plot.plot3d.tachyon.TachyonTriangle method), 300
str() (tachyon repr() (sage.plot.plot3d.tachyon.Texfunc method), 302
str() (tachyon repr() (sage.plot.plot3d.tachyon.Texture method), 302
str() (tachyon repr() (sage.plot.plot3d.tachyon.Triangle method), 300
str() (tachyon repr() (sage.plot.plot3d.tachyon.TrianglePlot method), 300
str() (tachyon repr() (sage.plot.plot3d.tachyon.Texfunc method), 302
str() (tachyon repr() (sage.plot.plot3d.tachyon.Texture method), 302
str() (sage.plot.plot3d.tri_plot.SmoothTriangle method), 282
str() (sage.plot.plot3d.tri_plot.Triangle method), 283
str() (sage.plot.plot3d.tri_plot.TrianglePlot method), 284
str() (sage.plot.plot3d.tri_plot.SmoothTriangle method), 282
str() (sage.plot.plot3d.tri_plot.Triangle method), 283
str() (sage.plot.plot3d.tri_plot.TrianglePlot method), 284

T
Tachyon (class in sage.plot.plot3d.tachyon), 290
tachyon() (sage.plot.plot3d.base.Graphics3d method), 169
tachyon_repr() (sage.plot.plot3d.base.Graphics3d method), 170
tachyon_repr() (sage.plot.plot3d.base.Graphics3dGroup method), 174
tachyon_repr() (sage.plot.plot3d.base.PrimitiveObject method), 176
tachyon_repr() (sage.plot.plot3d.base.TransformGroup method), 180
tachyon_repr() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 261
tachyon_repr() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 277
tachyon_repr() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 260
tachyon_repr() (sage.plot.plot3d.shapes.Cylinder method), 200
tachyon_repr() (sage.plot.plot3d.shapes.Sphere method), 207
tachyon_repr() (sage.plot.plot3d.shapes.Text method), 210
tachyon_repr() (sage.plot.plot3d.shapes2.Line method), 222
tachyon_repr() (sage.plot.plot3d.shapes2.Point method), 223
tachyon_str() (sage.plot.plot3d.texture.Texture method), 266
TachyonSmoothTriangle (class in sage.plot.plot3d.tachyon), 300
TachyonTriangle (class in sage.plot.plot3d.tachyon), 300
TachyonTriangleFactory (class in sage.plot.plot3d.tachyon), 301
testing_render_params() (sage.plot.plot3d.base.Graphics3d method), 170
tetrahedron() (in module sage.plot.plot3d.platonic), 248
Texfunc (class in sage.plot.plot3d.tachyon), 301
texfunc() (sage.plot.plot3d.tachyon.Tachyon method), 299
Text (class in sage.plot.plot3d.shapes), 208
text3d() (in module sage.plot.plot3d.shapes2), 230
Texture (class in sage.plot.plot3d.texture), 265
texture (sage.plot.plot3d.base.Graphics3d attribute), 170
texture() (sage.plot.plot3d.tachyon.Tachyon method), 299
texture_recolor() (sage.plot.plot3d.tachyon.Tachyon method), 300
texture_set() (sage.plot.plot3d.base.Graphics3d method), 170
texture_set() (sage.plot.plot3d.base.Graphics3dGroup method), 174
texture_set() (sage.plot.plot3d.base.PrimitiveObject method), 176
threejs_repr() (sage.plot.plot3d.base.Graphics3d method), 170
threejs_repr() (sage.plot.plot3d.base.Graphics3dGroup method), 174
threejs_repr() (sage.plot.plot3d.base.KeyframeAnimationGroup method), 175
threejs_repr() (sage.plot.plot3d.base.PrimitiveObject method), 176
threejs_repr() (sage.plot.plot3d.base.TransformGroup method), 180
threejs_repr() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 261
threejs_repr() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 277
threejs_repr() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 260
threejs_repr() (sage.plot.plot3d.shapes.Text method), 210
threejs_repr() (sage.plot.plot3d.shapes2.Line method), 222
threejs_repr() (sage.plot.plot3d.shapes2.Point method), 223
tol() (sage.plot.plot3d.tachyon.ParametricPlot method), 289
Torus (class in sage.plot.plot3d.shapes), 210
tostr() (in module sage.plot.plot3d.tachyon), 302
transform (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 263
transform() (sage.plot.plot3d.base.BoundingSphere method), 157
transform() (sage.plot.plot3d.base.Graphics3d method), 170
transform() (sage.plot.plot3d.base.Graphics3dGroup method), 174
transform() (sage.plot.plot3d.base.TransformGroup method), 180
transform() (sage.plot.plot3d.plot3d.Cylindrical method), 9
transform() (sage.plot.plot3d.plot3d.Dimensional method), 12
transform() (sage.plot.plot3d.plot3d.SphericalElevation method), 18
transform_bounding_box() (sage.plot.plot3d.transform.Transformation method), 280
transform_point() (sage.plot.plot3d.transform.Transformation method), 280
transform_vector() (sage.plot.plot3d.transform.Transformation method), 280
Transformation (class in sage.plot.plot3d.transform), 280
TransformGroup (class in sage.plot.plot3d.base), 178
translate() (sage.plot.plot3d.base.Graphics3d method), 171
Triangle (class in sage.plot.plot3d.tri_plot), 282
triangle() (sage.plot.plot3d.plot3d.TriangularTriangleFactory method), 19
triangle() (sage.plot.plot3d.tachyon.Tachyon method), 300
triangle() (sage.plot.plot3d.tachyon.TachyonTriangleFactory method), 301
triangle() (sage.plot.plot3d.tri_plot.TriangleFactory method), 283
TriangleFactory (class in sage.plot.plot3d.tri_plot), 283
TrianglePlot (class in sage.plot.plot3d.tri_plot), 283
triangulate() (sage.plot.plot3d.implicit_surface.ImplicitSurface method), 261
triangulate() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 260
triangulate() (sage.plot.plot3d.tri_plot.TrianglePlot method), 284
TrivialTriangleFactory (class in sage.plot.plot3d.plot3d), 18

U
unique_name() (sage.plot.plot3d.base.RenderParams method), 178

V
validate_frame_size() (in module sage.plot.plot3d.shapes), 217
vars (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 262
vertex_list() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 278
VertexInfo (class in sage.plot.plot3d.implicit_surface), 263
VertexIter (class in sage.plot.plot3d.index_face_set), 279
vertices() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 278
Viewpoint (class in sage.plot.plot3d.base), 181
viewpoint() (sage.plot.plot3d.base.Graphics3d method), 171
X

x3d() (sage.plot.plot3d.base.Graphics3d method), 171
x3d_geometry() (sage.plot.plot3d.index_face_set.IndexFaceSet method), 278
x3d_geometry() (sage.plot.plot3d.parametric_surface.ParametricSurface method), 260
x3d_geometry() (sage.plot.plot3d.shapes.Box method), 189
x3d_geometry() (sage.plot.plot3d.shapes.Cone method), 196
x3d_geometry() (sage.plot.plot3d.shapes.Cylinder method), 201
x3d_geometry() (sage.plot.plot3d.shapes.Sphere method), 208
x3d_str() (sage.plot.plot3d.base.Graphics3dGroup method), 175
x3d_str() (sage.plot.plot3d.base.PrimitiveObject method), 177
x3d_str() (sage.plot.plot3d.base.TransformGroup method), 181
x3d_str() (sage.plot.plot3d.base.Viewpoint method), 181
x3d_str() (sage.plot.plot3d.texture.Texture method), 267
x_vertices (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 263
xrange (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 262
xrange (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 263

Y

y_vertices (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 263
y_vertices_swapped (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 263
yrange (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 262
yrange (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 263

Z

z_vertices (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 263
z_vertices_swapped (sage.plot.plot3d.implicit_surface.MarchingCubesTriangles attribute), 263
zrange (sage.plot.plot3d.implicit_surface.ImplicitSurface attribute), 262
zrange (sage.plot.plot3d.implicit_surface.MarchingCubes attribute), 263